Gary D. Knott

Interpolating Cubic Splines

Birkhiuser
Boston ¢ Basel ¢ Berlin

Gary D. Knott

Civilized Software, Inc.
12109 Heritage Park Circle
Silver Spring, MD 20906
US.A.

www.civilized.com

Library of Congress Cataloging-in-Publication Data
Knott, Gary D.
Interpolating cubic splines / Gary D. Knott,
p. cm. — (Progress in computer science and applied logic ;
v. 18)
Includes bibliographical references and index.
ISBN 0-8176-4100-9 (alk. paper). — ISBN 3-7643-4100-9 (alk. paper)
1. Spline theory. 2. Interpolation. L. Title. II. Series.
QA224.K66 1999
511'.42—dc21

AMS Subject Classifications: 41A15, 65D05, 65D07, 65D10, 65D17

Printed on acid-free paper. . . ®
© 2000 Birkhiuser Boston Birkhduser

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Birkhiuser Boston, c/o Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.

The use of general descriptive names, trade names, trademarks, elc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by the
Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

ISBN 0-8176-4100-9 SPIN 10692469
ISBN 3-7643-4100-9

Reformatted from author's files in IATEX 2e by TgXniques, Inc., Cambridge, MA.
Printed and bound by Hamilton Printing Company, Rensselaer, NY.
Printed in the United States of America.

987654321

Contents

Preface

1 Mathematical Preliminaries

1.1 The Pythagorean Theorem
1.2 Vectors v v i e e e e
1.3 Subspaces and Linear Independence
14 VectorSpaceBases
1.5 EuclideanLength
1.6 The Euclidean Inner Product
1.7 Projectionontoaline.
1.8 Planesin3-Space
1.9 Coordinate System Orientation
1.10 TheCross Product.
2 Curves
2.1 TheTangentCurve uvouu...
2.2 Curve Parameterization
23 TheNomalCurve

24 EnvelopeCurveso iiiii. .,

ix

—= 00 N W

vi

Contents

2.5 Arc Length Parameterization
26 Curvature i e e e e e e e e e
2.7 The FrenetEquations
28 Involutesand Evolutes
29 Helices 0 ..
2.10 SignedCurvaturettt
2.11 InflectionPoints
Surfaces

3.1 The GradientofaFunction
3.2 The Tangent Space and Normal Vector
3.3 Derivatives
Function and Space Curve Interpolation

2D-Function Interpolation

5.1 Lagrange Interpolating Polynomials
5.2 Whittaker’s Interpolation Formula
5.3 Cubic Splines for 2D-Function Interpolation
5.4 EstimatingSlopes
5.5 Monotone 2D Cubic Spline Functions
5.6 Error in 2D Cubic Spline Interpolation Functions
A-Spline Curves With Range Dimension d

Cubic Polynomial Space Curve Splines

7.1 Choosing the Segment Parameter Limits
7.2 Estimating Tangent Vectors
7.3 BézierPolynomials
Double Tangent Cubic Splines

8.1 Kochanek-Bartels Tangents
8.2 Fletcher-McAllister Tangent Magnitudes
Global Cubic Space Curve Splines

9.1 Second Derivatives of Global Cubic Splines
9.2 Third Derivatives of Global Cubic Splines

9.3 A Variational Characterization of Natural Splines
9.4 Weightedv-Splines

51
52
54
55

59

63
63
65
65
68
69
72

75

77
81
85
90

10

11

12

13

14

15

16

17

Contents

Smoothing Splines

10.1 Computing an Optimal Smoothing Spline
10.2 Computing the Smoothing Parameter
10.3 Best Fit Smoothing Cubic Splines
10.4 Monotone Smoothing Splines.

Geometrically Continuous Cubic Splines
11.1 BetaSplines

Quadratic Space Curve Based Cubic Splines

Cubic Spline Vector Space Basis Functions

13.1 Bases for C! and C? Space Curve Cubic Splines
13.2 Cardinal Bases for Cubic Spline Vector Spaces
13.3 The B-Spline Basis for Global Cubic Splines

Rational Cubic Splines

Two Spline Programs
15.1 Interpolating Cubic Splines Program
15.2 Optimal Smoothing Spline Program

Tensor Product Surface Splines

16.1 Bicubic Tensor Product Surface Patch Splines
16.2 A Generalized Tensor Product Patch Spline
16.3 Regular Grid Multi-Patch Surface Interpolation
16.4 Estimating Tangent and Twist Vectors
16.5 Tensor Product Cardinal Basis Representation
16.6 Bicubic Splines with Variable Parameter Limits
16.7 TriangularPatches
16.8 ParametricGrids
16.9 3D-Function Interpolation

Boundary Curve Based Surface Splines

17.1 Boundary Curve Based Bilinear Interpolation
17.2 Boundary Curve Based Bicubic Interpolation
17.3 General Boundary Curve Based Spline Interpolation

vii

123
124
127
129
130

133
136

139
143
144
148
151
157
159
159
178

193

viii Contents

18 Physical Splines

18.1 Computing a Space Curve Physical Spline Segment .

18.2 Computing a 2D Physical Spline Segment
References

Index

217

. 222

230
233

237

Preface

A spline is a thin flexible strip composed of a material such as bamboo or
steel that can be bent to pass through or near given points in the plane, or in
3-space in a smooth manner. Mechanical engineers and drafting specialists
find such (physical) splines useful in designing and in drawing plans for
a wide variety of objects, such as for hulls of boats or for the bodies of
automobiles where smooth curves need to be specified. These days, physi-
cal splines are largely replaced by computer software that can compute the
desired curves (with appropriate encouragment). The same mathematical
ideas used for computing “spline” curves can be extended to allow us to
compute “spline” surfaces.

The application of these mathematical ideas is rather widespread. Spline
functions are central to computer graphics disciplines. Spline curves and
surfaces are used in computer graphics renderings for both real and imagi-
nary objects. Computer-aided-design (CAD) systems depend on algorithms
for computing spline functions, and splines are used in numerical analysis
and statistics. Thus the construction of movies and computer games trav-
els side-by-side with the art of automobile design, sail construction, and
architecture; and statisticians and applied mathematicians use splines as
everyday computational tools, often divorced from graphic images.

The functions that have been most frequently used for the mathematical
incarnation of splines are the simple univariate or bivariate polynomials,
well-known to students of mathematics. Cubic polynomials hold a special

X Preface

place among these functions for reasons elaborated in this text. A cubic
spline function is made by “joining together” various univariate or bivari-
ate cubic polynomials, i.e., by defining the cubic spline function of interest
piece by piece (piecewise), where each piece is given by a particular cubic
polynomial. This mathematical device of constructing a function piecewise
is employed to overcome the obstreperous oscillatory behavior that single
polynomials often exhibit. Splines based on higher-degree polynomials are
infrequently found in practical application, and their study adds only lim-
ited theoretical content to the understanding of polynomial splines beyond
that which is apparent by studying cubic splines. I therefore focus on cubic
polynomials in this book.

Mathematically, the study of spline functions falls under the heading of
approximation theory wherein we study functions that approximate other
functions. In some cases these other functions may be completely known,
but difficult to compute, so we seek a nearby function that is easier to com-
pute. In other cases, our knowledge may be incomplete. For example, we
may only know a set of points that lie in the graph of a function of inter-
est, and sometimes these points may be inexactly known, so that we must
deal with measurement error in the given points. It is these latter situations,
where only some points are known, that generally interest us here.

The study of spline functions involves an array of basic mathematical
concepts from calculus and analysis, as well as numerical analysis. Spline
functions and their properties thus serve as an excellent application subject
for solidifying and appreciating concepts introduced in the first two or three
years of college mathematics. I have included a chapter covering the basics
of the differential geometry of curves, which provides a foundation for
subsequent topics and which may be of independent interest particularly to
computer graphics programmers.

There is a vast literature on spline functions spread across the various
disciplines mentioned above and elsewhere. Much work in the last twenty
years, including the material covered in most common reference texts on
splines, has focused on particular representations of splines, such as B-
splines and, to a lesser degree, rational splines. Much of this work has
considered splines that approximate given points rather than exactly inter-
polate them. In contrast, the focus in this book is the under-discussed area
of spline interpolation, although approximation is also covered in a few es-
pecially important contexts. My intent is to provide a reasonably broad sur-
vey of explicit formulas and algorithms for interpolating spline functions
and to cover some less-commonly treated topics such as optimal smoothing
splines and cardinal splines, or untreated topics such as monotonic spline

Preface xi

interpolation and physical splines which have heretofore been confined to
(relatively inaccessible) technical reports and journals. One should keep in
mind, however, that any expository mathematical text necessarily presents
a distillation and synthesis of the work of many people done over many
years; only a few of the fruitful or unfruitful digressions explored by these
many people, each of which sheds light of its own, can be presented.

This text does not use the classic structure consisting of theorems and
proofs in sequence, typographically set off and visually easy to identify.
Rather a discursive style is employed; I encourage you to identify and
label your own theorems as you read. I believe the dividends from this
investment outweigh the benefits of using a more formal structuring. Nev-
ertheless, the discussion is carefully organized and rigor is not completely
ignored. Definitions of terms occur at or just after their first use, as indi-
cated by the use of italic type.

There are many exercises scattered throughout the text, in most cases
at the places where they seem most relevant to the story. These exercises
should at least be read. Many exercises have solutions, often because these
are repositories of useful information, and sometimes because the result
is subsequently required in the text. In these cases, reading the exercise
and giving it some cursory contemplation will, I hope, make the solution
clear; the exercise-solution format is a device for concisely presenting the
subject material. Also, when so inclined, it helps to seek a solution your-
self. Even unfruitful contemplation (in moderation) can be enjoyable and
valuable. The exercises differ greatly in their levels of difficulty; in a few
cases, no solutions are known, so seeking a solution is a research project.
Rather than indicate the level of difficulty, I have chosen to adopt Richard
Bellman’s position, as stated in the seminal book The Art of Computer Pro-
gramming:Volume 1 /| Fundamental Algorithms by Donald E. Knuth.

I hope that this book will be a useful reference for numerical analysts,
engineers, computer graphics programmers, and CAD specialists, as well
as other mathematical scientists and students of all types. Several C pro-
grams that exhibit a few interesting computational approaches are pre-
sented. Source files for these programs are available at the Birkhduser web
site whose URL is WWW.BIRKHAUSER.COM. The figures in this book
were mostly constructed by using the MLAB mathematical and statistical
modeling program which contains a sampling of the spline computation
methods discussed in this book (see WWW.CIVILIZED.COM).

Programmers may find this book helpful as a source of formulas for
methods beyond those encoded in the given C programs. Statisticians with
an interest in kernel and other forms of density estimation and in smoothing

xif Preface

and non-parametric regression may also find this book interesting,
albeit statistically incomplete. In addition to serving as a reference source
and as a resource for autodidacts, this book is suitable as a text for upper
level undergraduate/graduate courses, either as the primary text for a spe-
cial topics course within the disciplines of numerical analysis, computer
graphics, or engineering, or as an adjunct text in courses in these areas.

I wish to thank Ann Kostant and Tom Grasso at Birkhduser and Elizabeth
Loew at TgXniques, for all their help in the preparation of this book; and I
wish to dedicate this book to the teachers who have inspired me, especially
Robert W. Floyd and Donald E. Knuth.

Gary D. Knott
Civilized Software Inc.

1

Mathematical Preliminaries

This initial chapter contains a reminder of some basic vector algebra used
in the book. The focus is on a geometric view of vector spaces, and on
the inner product (also known as the dot product) and vector cross product
operations. Although this episodic material is no substitute for previous
exposure, it may be helpful to have some basic results presented here.

1.1 The Pythagorean Theorem

Two triangles S and T are similar if they have the same three angles at their
vertices; that is, if the angles of S are «, 8, and y in clockwise order, then
the angles of T are also «, 8, and y in clockwise order when S and T are
similar. Similar triangles differ only in size, not shape. Note that if we did
not require the angles of the triangles S and T to be the same in the same
order (here arbitrarily chosen to be clockwise), the triangles S and T might
be scaled reflections, i.e., scaled mirror-images of each other.

Recall that a right triangle is one that has a 90 degree angle at one of
its vertices; the side opposite to that vertex is called the hypotenuse of the
triangle.

Four copies of a right triangle T in R?, which has a hypotenuse of length
¢ and whose two perpendicular sides are of length a and b, can be placed
on the four sides of a square S, of side length c, so as to form a larger

2 1. Mathematical Preliminaries

square S, of side length a + b, which circumscribes the square S.. Thus
area(S,,) = area(S.) + 4 - area(T), and so, equivalently, (@ + b)> =
c? + 4(ab)/2, which implies that a®> + b> = ¢?. This relationship among
the lengths of the side of a right triangle is the pythagorean theorem, one
of the most far-reaching theorems of mathematics, whose influence is seen
from number theory to Fourier analysis. The use of a lower-case ‘p’ in the
word “pythagorean” (taken from the discoverer’s name Pythagorus) is a
traditional mark of special respect denoting ubiquity.

Exercise 1.1: Draw a picture of the square S, showing the four cir-
cumscribed right triangles.

Solution 1.1: The requested picture is shown below.

a b

b a

Another demonstration of the pythagorean theorem for the right triangle
T is as follows. We drop a perpendicular line segment of length d from
the right angle vertex onto the hypotenuse of length ¢ to form two right
triangles T and 7>, each similar to T. The sides of T} are of lengths b,
d, and e, where b is the length of the hypotenuse in 7;. The sides of T
are of lengths a, d, and f, where a is the length of the hypotenuse in T>.
These lengths satisfy e + f = c. Then, since these triangles are similar,
we have b/c = e/b and a/c = f/a and so, b> = ce and a*> = cf. Thus,
a’+b*=c(f+e)=c%

Exercise 1.2: Use a library to find another proof of the pythagorean
theorem.

Exercise 1.3: The pythagorean theorem says that the squares con-

1.2 Vectors 3

structed on the three sides of a right triangle are such that the area of
the largest square equals the sum of the areas of the other two squares.
Show that if we construct half circles on the three sides of a right trian-
gle, then the area of the largest half circle equals the sum of the areas
of the other two half circles. Can you generalize to other shapes?

Exercise 1.4: Show that a triangle T with sides of lengths a, b, c in

increasing order is a right triangle if a* + b* = ¢2.

1.2 Vectors

Euclid defines a point as “that which has no part.” Following Descartes, a
numerical definition of a point is used in modern mathematics. A point in
2-space is an ordered pair of real numbers, and each distinct ordered pair of
real numbers is a distinct point in 2-space. Similarly, a point in 3-space is
an ordered triple of real numbers, and each distinct triple of real numbers
is a distinct point in 3-space; in general, a point in n-space is an n-tuple
of real numbers. We denote the set of real numbers by R, and the set of
ordered n-tuples of real numbers by R", where n is a positive integer. A
point in R" is written explicitly as (x;, x2, . .., X,), where each component,
X;, is a real number. R" is called n-dimensional euclidean space, or just n-
space for short. Note that, except for a subtle quibble, R = R!. The word
“scalar” is a synonym for “real number.”

We may imagine mutually perpendicular x and y axes in 2-space and
thus represent a point p in R? pictorially as a dot, positioned according to
the first and second numerical components p; and p; of p, used respec-
tively as x and y coordinates. A similar graphical interpretation applies in
3-space. We shall almost always interpret the components of a point as co-
ordinate values, and then we should say we have a point in coordinatized
n-space; but we will usually not bother to be so precise.

Points in R" are also called vectors, and traditionally a vector p in R”
corresponds to the directed line segment from the origin,0 = (0,0, ... ,0),

4 1. Mathematical Preliminaries

in coordinatized n-space to the point p in coordinatized n-space. This line
segment is denoted by segment[0, p], and in general, we denote the line
segment from a point a to a point b by segment|[a, b]. Similarly, we denote
the directed line, which is directed so that it passes first through the point
a and then through the point b by line[a, b]. For us, vectors always start at
the origin! A directed line segment starting at an arbitrary point is parallel
to a particular vector starting at the origin, but the directed line segment
itself is not a vector unless it starts at the origin.

Points and vectors are in one-to-one correspondence, and the two terms
are used interchangeably even though they have slightly differing pictorial
interpretations. The origin-based directed line segment model for vectors
has the great advantage that the product of a vector and a scalar which
results in another vector, and the sum of two vectors, which likewise is a
vector, can be geometrically interpreted in this model.

Exercise 1.5: Look up the words geometry and trigonometry in a
dictionary.

We shall define scalar vector products and vector sums for vectors in R”,
but you should keep R? and R? uppermost in mind.

The scalar vector product of a real scalar value @ and a vectorx € R" is
written ax (or even xa) and is itself a vector in R". When x is given in co-
ordinatized form as (x, x5, ..., X,), ax is the vector (axy, axy, ..., 0x,),
which lies in R". A non-zero vector x is said to specify or to have a direc-
tion, namely the direction from the origin 0 to x; and any positive multiple
of x has the same direction. If you stand at 0, looking at the point x, then
you are also looking at ax for all @ > 0. That is, ax lies on the same line
which connects 0 and x in R". If @ < 0, ax also lies on the line defined
by the two points, O and x, but in this case ax is said to have the direction
opposite to the direction of x. We may write x /a as short for x(1/a), and
we write —x as short for (—1)x. If x, y € R" and x is parallel to y, then x
is a multiple of y, and conversely.

Note that we casually write 0 to denote the coordinate vector
(0,0,...,0), and the dimension of the space holding this vector must be
deduced from the context.

1.2 Vectors 5

The sum of two n-space vectors p and q is defined to be another n-space
vector. When p and q are given in coordinatized form, p 4 g is the n-space
vector whose components are the sums of the corresponding components
of pandq. Thus p+q = (p1 + 41, p2 + g2, ..., Pn +q,). Forn = 3, the
three points 0, p, and g determine a plane in R? except in degenerate cases,
and the line segments, segment[0, p] and segment[0, q], may be taken as
two adjacent sides of a parallelogram lying in this plane. The vector p + g
is the vertex of this parallelogram occurring diagonally across from 0. The
vertices of this parallelogram in order are thus 0, p, p + q, q, and we shall
denote this four-sided polygon by the notation polygon[0, p, p + q, q]-

Exercise 1.6: When do the points 0, p, and g fail to determine a plane
in R> and what is the line segment, segment|[0, p + q], in this case?

Exercise 1.7: Show by a diagram that segment[0, p + q] is the diag-
onal of the parallelogram polygon|[0, p, p +q,q].

Exercise 1.8: Show that the usual rules of real arithmetic imply that
a(p+q) =ap+aqg,where o € R and p and g are vectors in n-space.

Exercise 1.9: Show by a diagram that p + g = q + p.

Exercise 1.10: In R2, how can you tell which of polygon[0, p, p +
q, q] and polygon|0, q, p+q, p] is clockwise, i.e., has its vertices listed
in clockwise order?

The general graphical interpretation for vector addition is as follows. To
find the point p +g, take a line segment, segment|[p, z], of the same length
as g, with its starting point at p, and positioned parallel to and in the same
direction as g. Then the ending point z coincides with p + g.

The graphical interpretation of vector subtraction is as follows. To find
the point p — g, take the line segment, segment| p, z], of the same length
as g, with its starting point at p, and positioned parallel to and in the same
direction as —q. Then the ending point z coincides with p — q.

Exercise 1.11: Show that the notation —b is consistent by showing
that a + (—1)b = a — b, where a and b are vectors in R”.

Exercise 1.12: Show thata — b = (a; — by, ...,a, — b,).

Exercise 1.13: Show that the midpoint of segment[x, y] is the point
(x +y)/2.

6 1. Mathematical Preliminaries

pt+tq

-4q

1.3 Subspaces and Linear Independence

The set of vectors R" has the closure property that if x,y € R, then
ax + By € R" for all scalars @ and 8 € R. Thus R" is closed with
respect to scalar vector multiplication and vector addition. Such a closed
non-empty set of vectors is called a vector space with respect to the field
of scalars R. There are subsets of R"” which are vector spaces in their own
right. For example, for n > 2, the set {x | x € R" and x; = x; } is closed
with respect to scalar vector multiplication and vector addition. Such non-
empty subsets of R" are called subspaces of R".

The smallest subspace of R" is {(0,0,...,0)}. The largest is R"
itself. Subspaces of R" of the form {x | x = ayforo € Randy #
0 fixed in R" } are lines, and for n > 2, subspaces of R" of the form
{x |x=ay+Bzfora,B € Rand y # 0and z # 0 fixed in R" with y #
8z for any 8§ € R} are subspaces are planes. Not every line or plane is a
subspace however; the point 0 must be in a line or plane which is a sub-
space.

Exercise 1.14: A linear combination of vectors vy, ... , v Is a vector
x which is a sum of scalar multiples of the vectors vy, ..., v, so that
X = ajv; + -+ + o v where , ..., o € R. Show that all linear
combinations of any finite set of vectors of R” are members of R”,
given that this is true for all sets of two vectors.

Exercise 1.15: Let S be a subspace of R". Show that 0 € S.

Exercise 1.16: Let S be a subspace of R" containing two distinct
vectors. Show that S contains an infinite number of distinct vectors.

Exercise 1.17: Let n > 1. Show that R” has an infinite number of
subspaces. What about R1?

1.3 Subspaces and Linear Independence 7

There are numerous varieties of vector spaces, each with special defi-
nitions of scalar vector multiplication and vector addition, such as the set
of all polynomials of degree n or less, or the set of all square integrable
periodic functions of period p, or the fundamental cycles in an abstract
network (i.e., graph), in addition to the vector spaces R', R?, The
field of scalars can be chosen to be a class of values other than the reals,
e.g., the complex numbers C could be used; but most of the main concepts
are clearly evident within the R" spaces.

We shall be peripherally concerned below with the infinite-dimensional
vector space consisting of all the real-valued functions defined on a given
interval. Such functions form a vector space, since if f and g are such
functions, then af + Bg is also such a function. When we restrict our-
selves to admit only those functions that are suitably “nice,” such as those
functions whose squares can be integrated over the given interval, then it
can be shown that Cauchy sequences of such functions converge to a func-
tion of this same type, and the corresponding vector space of functions is
then called a Hilbert space. Since we generally avoid any concessions to
mathematical completeness that would cause a digression from the central
topics at hand, and since we shall have no need to use any of the proper-
ties of Hilbert spaces in any depth, the interesting story about Hilbert space
bases and inner products, etc., will be left for independent investigation.

A given set of vectors A C R" can be enlarged to obtain the smallest
subspace of R" containing A. (A set Q is a smallest set satisfying a con-
dition C if no proper subset of Q satisfies C.) This subspace is called the
subspace spanned by A, and is denoted by subspace(A). The subspace
spanned by A is just the set of all linear combinations of all the vectors
in every finite subset of A. Thus subspace(A) = {aja; + --- + aza; |
o ..., €R,ay,...,q,. € A,0 <k <o0}U{O,...,0)}.

Exercise 1.18: Show that for a given non-empty set A C R”,
subspace(A) is uniquely determined.

The intersection P N Q of two subspaces P and Q of R” is itself a
subspace of R". The union of the two subspaces is not necessarily a sub-
space, however the subspace spanned by PUQ can always be formed. This
subspace is denoted by subspace(P U Q).

Exercise 1.19: Show that subspace(P N Q) C subspace(P) N
subspace(Q), and subspace(P)Usubspace(Q) C subspace(PU Q)
where P and Q are arbitrary subsets of R". Explain why 0 is explicitly

8 1. Mathematical Preliminaries
7

placed in subspace(A) by definition. Hint: consider the empty set as a
subset of R".

Every subspace P C R" is spanned by some finite subset of n or fewer
vectors. (You can imagine that the subspace {0} C R" is spanned by the
n-vector 0). We may seek the smallest set of non-zero vectors which span a
given subspace, P. This set will be called a basis set of the subspace P. All
basis sets for P have the same size. This number is called the dimension
of P. The subspace {0} C R" has dimension 0, and the empty set @ will
be assigned to be its basis set. (You may wish to contemplate whether this
assignment requires consideration of a theory of types of distinct empty
sets). We start the discussion of dimension with the definition of linear
independence.

The vectors ay,az,...,a; are called linearly-independent if and only
if, for all scalars, a1,..., 0 € R,a1a1 + --- + aar = 0 only when
ay = --- =ozk=0.

A sequence of vectors ay, ..., a; are linearly-dependent if they are not
linearly-independent, which occurs if and only if one or more of the vectors
a; is a linear combination of the earlier vectors ay, ..., a;_;. Thus a set of
vectors aj, . .., ax, Which spans a subspace, can be reduced to a linearly-
independent set by discarding zero or more of the vectors.

Exercise 1.20: Show that if the vectors ay,as, ... ,a; are linearly-
independent, then one or more of these vectors a; can be written as a
linear combination of the remaining vectors.

If a vector space has a finite spanning set, it is called a finite-dimensional
vector space. If n vectors span a vector space which contains r-linearly-
independent vectors, thenn > r.

1.4 Vector Space Bases

A basis of a vector space V is a sequence of linearly-independent vectors
which span V. If B is a basis for V' consisting of n vectors, then there are
n! — 1 other bases for V which have the same basis set as B.

If a vector space V is finite-dimensional, then every basis set for V is
of the same size. A contradiction would arise if this were not the case.
This common size is called the dimension of V and denoted by dim(V).
Note R" is a finite-dimensional vector space of dimension n, since the

1.4 Vector Space Bases 9

sequence of vectors (e, ..., e,), where ¢, = (0,...,0,1,0,...,0) is a
vector whose i-th component is 1 and whose other components are all 0,
is a basis for R". The sequence of vectors (ej, ... ,e,) is a particularly

important basis called the natural basis for R".

Exercise 1.21: Show that any set of m vectors of an n-dimensional
vector space which has a basis set of size n with m > n is linearly-
dependent.

If the k vectors ay, . .., a, form a basis for a vector space V, then every
vector x in V is uniquely expressible as a linear combination of ay, . . . , a;.
If x = aya; + - -+ + agay, the scalar coefficients ay, . . ., a; are called the
coordinates of x with respect to the basis (aj, ..., a;). Thus x corresponds
to a coordinate vector (ay, ..., a,) with respect to the basis (ay, ... , a;)
in R¥. The basis vectors themselves correspond to the coordinate vectors
er,...,eysincea; =0a; +--- + la; +--- + Oay. A basis for V can thus
be called a coordinate system for V. Every vector in V is represented by
a coordinate vector n-tuple with respect to the chosen coordinate system
basis.

When we use explicit n-tuple coordinate vectors, we are implicitly spec-
ifying vectors in terms of some fixed coordinate system basis. Thus, we
can treat R" as being coordinatized by some fixed unspecified basis of n
linearly-independent abstract vectors whose coordinate vectors are ey, . . . ,
en. It is usually convenient to postulate that a basis of mutually perpendic-
ular vectors exists and to choose the coordinate system basis to be such a
sequence of mutually perpendicular vectors; this basis then becomes the
natural basis for R". This is what we do when we draw coordinate axes for
constructing graphs of objects in 2-space or 3-space. Each axis line corre-
sponds to a coordinate system basis vector which is, in turn, a point on its
axis line,

Let basis(V) denote an arbitrary basis of the vector space V. If S and
T are subspaces of R", then subspace(S U T) = subspace(basis(S) U
basis(T)). If SN T = {0}, then subspace(S U T) is called the direct
sum of S and T, which is written S @ T. Moreover, when SN T = {0},
basis(S) U basis(T) = basis(subspace(S U T)) and dim(S & T) =
dim(S)+dim(T). When SNT = {0}, wethencall Sand T complementary
subspaces in S@ T . Note that use of the notation S®T implies that SNT =
{0}, otherwise its use is not kosher.

10 1. Mathematical Preliminaries

Exercise 1.22: Let S and T be subspaces of R". Show thatif SNT =
{0}, then S @& T = subspace(SUT)={x+y|x €S,y eT} Also
show that SN T = {0} if and only if every vectorx € subspace(SUT)
can be written x = a + b, wherea € S and b € T, in only one way;
1.e., the vectors a and b are uniquely determined by x.

Exercise 1.23: Let S, A, and B be subspaces of R"” with ANB = {0}.
Show that SN (A @ B) = (SN A) & (SN B).

Exercise 1.24: Let S and T be arbitrary subspaces of R". Show that
dim(8) + dim(T) = dim(SNT) + dim(subspace(S U T)). This
result states, for example, that the sum of the dimensions of two planes,
which intersect in a line in 3-space which passes through the origin, is
the dimension of the intersection line plus the dimension of 3-space;
thatis,24+2=1+3.

Exercise 1.25: Show that the set of all univariate polynomial func-
tions of degree n or less with real coefficients is a vector space of di-
mension n; do this by specifying the vector addition and scalar vector
multiplication operations, and by presenting an explicit basis for this
finite-dimensional vector space of functions.

We mentioned above that not every line or plane is a subspace, however,
they are almost subspaces. It is useful to consider such sets of vectors; they
are called affine subspaces or linear manifolds or flats. (The word “affine”
has the same root as the word “affinity”; this root is the basis of the Latin
word for “related”). In particular, if S is a dimension & subspace of R", and
t is a vector in R", then {x + ¢ | x € S} is an affine subspace or flat of
R". The flat {x +¢ | x € S} is also called a translate of S and is written
t + S. Note that an affine subspace is not a subspace unless it contains the
vector 0. The flat A = {x + ¢ | x € S} is assigned the same dimension
as the subspace S, so dim(A) = k. Lines in R" are just 1-dimensional
flats, and for n > 2, planes in R" are 2-dimensional flats. In addition,
(n — 1)-dimensional flats of R" are called hyperplanes. Dimension 0 flats
are points.

Let A be a k-dimensional flat,lett € A,andletS ={v—¢|v e A}]. S
is the k-dimensional subspace corresponding to the k-dimensional flat A.
Let by, ..., b be a basis for S. Then every point x in A can be written
x =t + Biby + - - - + Bibi with a unique sequence of coefficients 8y, ... ,
Br.Butthenx = (1 — By —--- = Bt + fi(by + 1) + -+ - + Be(br +).

1.5 Euclidean Length 11

Letag=t,anda; =b; +tforl <i <k,andletBp=1—B1—---— bk
Then x = Boag + - - - + Prax, where ag, ay, ... ,ar € Aand fop+ --- +
Br = 1. Thus we see that every point x € A can be written as a linear
combination of k+1 points in A with coefficients that sum to 1. The vectors
ao, . - - »ax are called a barycentric basis for the flat A, and (By, ... , B;) are
called the barycentric coordinates of x with respect to the barycentric basis

Qag, ... s Q-

Exercise 1.26: Show that if ay, ... , a; is a barycentric basis for the
flat A, then the vectors ay, . . . , a; are linearly-dependent, but a subset
of k of these vectors are linearly-independent.

Exercise 1.27: Show that the barycentric coordinates of a pointx € A
with respect to the barycentric basis ag, .. . , a; are unique.

Exercise 1.28: Show that, if ay, ... , a; form a barycentric basis for
the flat A, then (ag + - - - + ax)/(k + 1) belongs to A.

It is sometimes useful to extend euclidean n-space by adding “ideal”
points, defined by fiat as the points where parallel lines intersect, so that
now parallel lines always intersect. In particular, given any family of par-
allel lines, we may imagine that these lines “curve back” onto themselves
to all join at a single point which is not found in R". Then we say that
two distinct lines intersect at one point, even when they are parallel. The
ideal point which represents the common intersection point of a family of
parallel lines with a given direction specified by that particular line of the
family is called the point at infinity for this direction. Note that a family of
parallel lines forms a 1-dimensional flat. When we add the points at infinity
to R", we get a mathematical structure called projective n-space, denoted
by P". The points at infinity in P" form lines at infinity, and in general,
k-dimensional flats at infinity arise for 0 < k < n. Projective n-space is
not a vector space, but it contains euclidean n-space as a subset. Euclidean

geometry metamorphizes into projective geometry when we move from R”
to P".

1.5 Euclidean Length

The euclidean length |x| of a vector x € R" coordinatized with respect
to a fixed basis of mutually perpendicular unit length vectors (which we
postulate exists) is [x? + xZ + --- + x2]'/2, and the euclidean distance

12 1. Mathematical Preliminaries

between two vectors x and y is the length |[x — y|. Note |x| > O unless
x =0, and forx # 0, x/|x| is a vector of length 1 in the same direction as
x. A vector of length 1 is called a unit vector.

Exercise 1.29: Show that the length of a vector x in R? is the same
as the distance from the origin to the point x, obtained by applying the
pythagorean theorem at most twice.

Exercise 1.30: Show thatforx € R", |x| = | — x]|.

Exercise 1.31: Show that the length of the vector ax is the same as
|| times the length of x, where o € R.

Exercise 1.32: What is the length of the line segment segment|[a, b]
in R"?

1.6 The Euclidean Inner Product

Given two vectors x and y, coordinatized with respect to a fixed basis of
mutually perpendicular unit vectors, the euclidean inner product of x and
y is a scalar denoted by (x, y). By definition (x, y) = x,y; + -+ + X Yn.
The notation x - y is also used to denote the inner product, which is also
called the dot product because of this alternate notation. We may write x - y
when (x, y) might be confused with a vector.

The following facts are easily verified.

x,y) = Ox),
(ax,y) = alx,y),
x+y,2) = x,2+ (.2,
(x,x) = |x|% and
x| = Oifandonlyifx =0.

Note that to compute (x, y), we must express the vectors x and y with
respect to a common basis of mutually perpendicular unit vectors. It will
be seen later that (x, y) is the same value, no matter which such basis is
chosen.

If (x;, x5) is a unit vector in R? which forms an angle of o radians with
the x-axis vector (1, 0), then x; = cos(a) and x; = sin(a). Together
with an understanding of the angular direction specified by an arbitrary

1.6 The Euclidean Inner Product 13

real number, this constitutes a geometric definition of the functions cos(a)
and sin{a).

Exercise 1.33: Prove that the sum of the angles at the three vertices
of a triangle is 180°.

Consider the triangle in R? with vertices at the points (0, 0), (a, 0),
and (bcos(a), bsin(e)), where @ > 0, b > 0, and « is the angle at the
vertex (0, 0). The sides of this triangle are of lengths a, b, and [a® +
b? — 2abcos(a)]'/2. Note that 0 < o < 7. This follows since the length
of the side opposite the angle o is same as the length of the vector
(a,0) — (bcos(ar), bsin(e)). This length is |(a — bcos(ar), —bsin(a))| =
[a% + b2 — 2abcos(ar)]'/2. This is the “law of cosines,” which generalizes
the pythagorean theorem to yield the length of the third side of any triangle,
given the lengths of the other two sides and the angle between them.

Now consider the triangle whose vertices are the points 0, x, and y. The
length of the side between x and y is {x — y|, which, by the law of cosines,
must equal [|x|2 + |y|? — 2|x| - |y|cos(a)]"/?, where « is the angle between
the two vectors x and y. But [x —y|? = (x —y, x —y) = (x, x) = 2(x, y) +
0, y) = X +1yl* = 2(x, y), and s0 |x|*+ |y|* = 2|x| - |y|cos(@) = |x|* +
ly|?> — 2(x, y). Therefore (x, y) = |x| - |[y|cos(a). Thus the euclidean inner
product determines the cosine of the smallest angle between two vectors in
2-space.

Exercise 1.34: Prove that (x, y) = |x| - |[y|cos(a) is true in 3-space.
Exercise 1.35: Prove the Schwarz inequality: |(x, y)| < |x| - |y].

Solution 1.35: Suppose x # 0 and y # 0, and let ¢ > 0 be such that
clyl = |x|. Then 0 < (cy £ x,cy £ x) = (cly])® + |x|> £ 2¢(x, y), so
F2c(x, y) < clyl(clyD+xDIx| = cly|-Ix|+clyl-|x| = 2¢c|x|-]y|, and
hence F(x, y) < |x| - |y|. This proof relies only on the facts: (x, y) =
¥, x), (ax,y) = a@x,y), x +y,2) = (x,2) + (¥, 2), x| = (x, %),
and |x| = 0if and only if x = 0.

In general, for non-zero vectors x and y in R", we define angle(x, y) to
be the smallest angle « of the two angles between x and y such that 0 <
@ < 7 and cos(ar) = (x,y)/(|x| - |y]). The Schwarz inequality guarantees
that —1 < (x, y)/(Ix| - |y = 1.

Exercise 1.36: Prove the triangle inequality: |x + y| < |x| + |y|.

14

1. Mathematical Preliminaries

(b cos a, bsin a)

(a,0)

Why is this called the triangle inequality? Use this to establish that
X1 — Xm| < |x1 — x2| + |x2 — x3] + -+ + [Xm—1 — Xn| for any vectors
X1y ooosXme

Exercise 1.37: Show that if |x + y| = |x| + |y|, then x and y are
linearly-dependent.

Exercise 1.38: Show that if u is a unit vector, then u; = cos(a;),
where ¢; is the angle between u and e;, the i-th natural basis vector,
and then show that (cos(c;))? + --- + (cos(ay))? = 1, and that the
angles ay, ..., a, satisfy n(arccos(1/n'?)) < |ay| + -+ + |aa| <
n(w — arccos(1/n'/2)). Also show that if u; > O for 1 < i < n, then
lag| + -+« + |on| < (n — Dmr/2.

Solution 1.38: The value || + -+« + |&,| is minimal when u; =
- = u, = 1/n"/? and maximal when u; = --- = u, = —1/n'/2.

Exercise 1.39: Prove that if |a| = |b|, then (@ + b,a — b) = 0.

Solution 1.39: This states that the diagonals of a rhombus with four
equal sides are perpendicular.

Exercise 1.40: Find the unit vector which lies on the bisector of the
angle between the two vectors, a and b.

Solution 1.40: The bisector vector v is (a/|a| + b/|b|)/2.

Exercise 1.41: Letu # 0 and v be vectors in R, such that au = v.
Solve for the scalar o in terms of the vectors 4 and v.

1.6 The Euclidean Inner Product 15
Solution 1.41: o = (v, u)/(u, u).

Exercise 1.42: Given a rectangle, A, whose diagonal is of length o,
and a rectangle, B, whose diagonal is of length B, is it true or false that
B > a implies area(B) > area(A)?

Solution 1.42: It is false. But if we translate A and B so that the
vector a is the diagonal of A and the vector b is the diagonal of B,
with all the coordinates of both 2 and b non-negative, then area(B) >
area(A) whenever 8 > a(cos(s)sin(s)/(cos(t)sin(t)))/?, where s =
angle(a, (1,0)) and t = angle(b, (1, 0)).

Exercise 1.43: Suppose that the four points a, b, ¢, and d are dis-
tinct. Show that the quadrilateral polygon{(a + b)/2, (b + ¢)/2, (c +
d)/2,(d + a)/2] is a parallelogram. What happens as a approaches
b? Show that any non-degenerate triangle circumscribes three distinct
parallelograms.

A vector function x of a real variable ¢ is a function that maps from R
into R", so that x(t) € R". Defining such a vector function x is
equivalent to specifying n ordinary real-valued functions x, x2,... , X,
such that x;(t) = (x(t));. The derivative of a vector function x(¢) =
x1(t), ..., x,(1)) is the vector function x’(¢) whose components are the
derivatives x;(¢), ... , X, (z).

Exercise 1.44: Note that, for vector functions u and v of a real vari-
able ¢, the inner product u - v is a scalar function of ¢. Show that the
derivative (u - v) =u'-v+u-v'.

Exercise 1.45: Show that if @ and b are unit vectors, then |a|?|b|? —
(a,b)? =0ifandonly ifa = bora = —b.

A vector x is determined by its length and its direction, and its direction
is determined by the angles between the vector x and each member of a
set of basis vectors. Let ay, a3, .. ., a, be n linearly-independent vectors in
R™ and let By, Bs, ..., Bn € R. Then the n simultaneous linear equations
(@1,x) = By, ..., (an, x) = B, define x to be an n-vector which forms
the specific angles oy, a2, ..., o, with the vectors ay, as, ..., a,, where
Bi/(la;| - |x|) = cos(a;). When n — 1 of these angles are determined, the
femaining angle is then fixed. The last equation is thus usable to determine
|x].

16 1. Mathematical Preliminaries

Exercise 1.46: Show that the triangle ¢riangle[(a + b)/2, (b +¢)/2,
(¢ + a)/2] is similar to ¢rianglefa, b, c].

In the definitions of the euclidean length of a vector and the euclidean
inner product of two vectors given above, we have postulated the exis-
tence of and assumed that the underlying coordinate system basis for R”
is a sequence of n mutually perpendicular unit vectors. This is implied
by the fact that the inner product is defined so that (¢;, e;) = &;;, where
8;; == ifi = jthenlelse O, and ey, ..., e, are the coordinate vectors of
the underlying basis vectors.

Rather than introduce the euclidean inner product (x, y) and the eu-
clidean length of a vector |x| by generalizing from our notions of angle
and length in R? and R? with a postulated coordinate basis of mutually per-
pendicular unit vectors, we could proceed more abstractly to show that any
possible inner product operation that satisfies the properties: (1): (x, y) =
y,x), @) (@x,y) = alx,y), 3): (x,y +2) = (x,y) + (x,2) is ob-
tained by choosing a basis B = (b, ..., b,) for R" and specifying the
inner product values (b;, b;) for 1 < i < j < n. The length of a vector
x can then be defined in terms of the inner product as (x, x)!/? whenever
(x,x) = 0, which can be shown to always be the case for certain choices
of the inner product values (b;, b;). For such choices, it turns out that there
is always another basis (ey, ... , e,) for which (e;, ¢;) = §;;.

Exercise 1.47: Show that if a length function |x| is defined on R"
such that |ax| = |a||x| and |x| = O, then an associated inner product
function can be defined by (x, y) = (|x + y|?> — |x|2 = [y|?)/2.

1.7 Projection onto a Line

Two vectors x and y in R", coordinatized with respect to a basis of mu-
tually perpendicular unit vectors, are said to be perpendicular or normal
or orthogonal to each other if and only if (x, y) = 0. Note this definition
implies that the zero vector is normal to every vector.

Whether or not (x, y) = 0, the vector y can always be expressed as
y = Bx + z for some scalar 8 and some vector z, where (x, z) = 0. This
can be shown by construction: define 8 = (x,y)/|x|*and z = y — Bx;
then y = Bx + z and (x,z) = 0. The vector 8x is the component of y
parallel to the vector x, and the vectorz =y — Bx = y — (x/|x|, y)(x/|x|)
is the component of y normal to x, and (x, y — (x /|x|, y)(x/|x])) = 0. This

1.7 Projection onto a Line 17

operation of decomposing a vector y into a sum of mutually perpendicular
component vectors is one of most fundamental and important operations in
all of mathematics.

When 8 > 0, Bx is in the same direction as x, and when 8 < 0, Sx
is in the opposite direction to x. The length [Bx| is |y| - [cos(a)| and
|z|] = |ylsin(e) where 0 < o < m is the angle between x and y. Thus
|Bx| = |(x, y)/Ix||. The angle o between x and y satisfies cos(a) > 0
when B > 0, and cos(e) < 0 when 8 < 0, and conversely. Therefore
Bx = (|lylcos(a))(x/|x]) = (x/|x|, ¥)(x/|x]), which is the component of
y in the direction of x. The vector Bx = (x/|x|, y)(x/|x]|) is called the
projection of y on x. Note if x is a unit vector, the projection of y on x, 8x,
is just (x, y)x.

Exercise 1.48: Show that 8 = (x, y)/(x, x).

Exercise 1.49: Show that, if x, y, and z are given vectors in n-space
withy # 0 and @ € R, then x = ay + z implies & = ((x,y) —
(z,¥))/(y, y), but not conversely. When does a solution a exist such
that x = ay + 2?

Exercise 1.50: Use trigonometry to show that in 3-space, y is perpen-
dicular to x if and only if (y, x) = 0.

Now consider a one-dimensional subspace, L = {au | @ € R} with
u € R" such that |u| = 1. The subspace L is a line through the origin,
the projection of a point x on L is (4, x)u. The notion of projection can be
obviously generalized to define the projection of a point x onto an arbitrary
line, line[a, b]. In order to compute the projection of the point x onto the
arbitrary line, line[a, b], we may translate n-space by adding —a to every
point, compute the projection, (x — a, (b — a)/|b — a|)(b — a)/|b — a|,
of x — a on line[0, b — a], and then translate back to obtain the answer

18 1. Mathematical Preliminaries

(x—a, (b—a)/|b—al)(b—a)/|b—a|+a. This idea of translation, effected
by adding a fixed vector to every vector of a flat in order to convert the flat
into a subspace, is used frequently.

Given two line segments in 2-space, segment|a, b] and segment|c, d],
we may wish to decide if they are parallel. This can be done by choos-
ing a new coordinate system for 2-space by translating 2-space so that
one of the segments, say segment|[a, b], starts at the new origin. In this
new coordinate system, the question becomes: are segment[0, b — a] and
segment|[c —a, d — a] parallel? But this question can be answered by com-
puting the projection p of ¢ —a on b—a, the projection g of d —a on b —a,
and the projection r of (c —a +d — a)/2 on b — a, and checking whether
c—a—p|l=|d—a—-q|=I|(c—a+d—a)/2—r|;if so, segment|[a, b]
and segment|c, d] are parallel.

Exercise 1.51: Whatare |c—a — p|,|d—a —q|,and |(c—a +d —
a)/2 —r|interms of a, b, ¢, and d?

Exercise 1.52: Show that segment[a, b] and segment[c,d] in 2-
space are parallel exactly when ((b—a)/|b—al, (d —c)/|d —c|) = £1.

Exercise 1.53: Show that line[a,b] = {v|v=a(b —a)+a, a €
Rl={viv=00—-a)a+ab, a €eR}.

Exercise 1.54: What is a necessary and sufficient condition for the
two lines, line[a, b] and line[c, d] in 2-space, to be mutually perpen-
dicular?

Exercise 1.55: What is the shortest vector ¢, from 0 to the line H =
{au+w | @ € R} where u and w are vectors with |u| = 1? Hint: show
that the vector u is parallel to the line H.

Solution 1.55: ¢ = w — (w, u)u. This can be shown by computing

1.7 Projection onto a Line 19

¢ = au + w with o equal to the minimizer of |au + w|, or alternatively,
by finding « so that (ou + w, u) = 0.

Exercise 1.56: Let p be the projection of x on y, and let g be the
projection of y on x. Show that |y| - |p| = |x]| - |g|. Also show that

angle(x, y) = angle(p, q).

Exercise 1.57: Letx,y € R" and define ag = x, a; = y, and a; to
be the projection of a;_; on a;_; fori > 1. Show that lim;_, a; = 0 if
and only if angle(x, y) > 0.

Exercise 1.58: Letx,y € R", and define the maximal shared compo-
nent of x and y to be the vectora € R" such that |a| is maximal subject
tox =a+b,y =a+c,angle(a,b) < n/2 and angle(a,c) < n/2
with b, ¢ € R". Find a formula for the maximal shared component of x
and y. Hint: consider the projection of 0 on line[x, y].

Exercise 1.59: Suppose we specify 3 vertices a, b, and ¢ of a not-
necessarily rectilinearly-oriented rectangle in the xy-plane. What is the
length and width of this rectangle, and what is the fourth vertex in terms
of a, b, and ¢?

Exercise 1.60: Compute the projection 4 of a point u on the line
through the two points p and g, whichis {x | x = p+t(p—gq),t € R}.

Solution 1.60: h = p+ (u— p,r)r,wherer = (g — p)/lq — p|. The
distance from « to the line is |u — A|.

Exercise 1.61: Given a = (aj, az) € R?, with a # 0, present a point
b such that b # aa for any real value a.

Solution 1.61: b = (—a, — a3, a; + a3).

Exercise 1.62: Give a computationally-effective formula for the dis-
tance from a point x to a line segment segment[a, b], defined by

MiNy esegment(a.b] lx — yl.

Exercise 1.63: Let p be a point inside an equilateral triangle, triangle
[a, b, c]. Let r be the projection of p on segment|a, b], let s be the pro-
jection of p on segment(b, c], and let ¢ be the projection of p on seg-
ment [c, a]. Let d be the projection of a on segment[b, c]; thus |a —d|

20 1. Mathematical Preliminaries

is the length of the altitude of the triangle. Show that |r — p| +|s — p|+
It — pl = la —dl.

A set of linearly-independent unit vectors with the inner product of each
pair of distinct vectors equal to 0 is called an orthonormal set of vectors.
The vectors of an orthonormal set are mutually perpendicular linearly-
independent unit vectors.

If vy, v2, ..., Uy is an orthonormal sequence of unit vectors, then g =
(v1, y)v1 + (v2, y)v2 + - -+ + (vm, ¥)vn, is the projection of the vector y on
the subspace S, spanned by vy, ..., v,. The vector y — g is the component
of y normal to S. Various vectors may have component vectors normal to
S in differing directions, but if S is an n — 1 dimensional subspace of a
space of dimension # (i.e., a hyperplane), the direction of a vector which is
normal to S is unique to within a multiple of +1 or —1.

Exercise 1.64: Show that, for the vectors vy, v, ... ,Up, ¥y and g
specified above, (y — g, v;) =0forl <i <m.

1.8 Planes in 3-Space

A plane Q in R? which passes through the origin can be defined by a non-
zero normal vector n as Q = {x | x - n = 0}, and thus the translate
plane P denoted as ¢t + (, which is a translate of Q, is represented by
P={t+x|x-n=0}={x]|(x—1t)-n=0}, where we have translated
the subspace Q by ¢ to obtain the flat P. Note t € P. The plane Q, which
contains 0, is a two-dimensional subspace of R?.

Exercise 1.65: Suppose Q is a two-dimensional subspace, and sup-
pose t € R? is non-zero. When is t + Q a subspace?

Now P ={x|x-n=1t-n}) ={x | x-n = k} where the scalar
k = t - n. The vector ¢ is not unique; there are many translation vectors
which produce P from Q. The equation x .n = k is a plane equation for P.
We may normalize it to obtain a plane equation for P wherein |#| = 1 and
k < 0. This form is called a standardized plane equation for P. Note that,
if x -n = k is any plane equation for a plane P, then the line { Bn | B € R}
is normal to P.

Exercise 1.66: Explain precisely how the plane equation x - n = k
can be normalized.

1.8 Planes in 3-Space 21

Exercise 1.67: Show thatif x - n = k is any plane equation for a plane
P, then (k/|n|*)n € P.

Exercise 1.68: Show that in the standardized plane equationn-x =k
with [n| = 1 and k¥ < 0 which defines a particular plane, P = Q + ¢,
with 0 € Q, k is independent of any translation vector ¢; k depends only

on P.

Solution 1.68: Any choice of ¢ in P determines a translation which
carries Q into P, and |t - n| with |n| = 1 is the length of the projection
of such a point ¢ in P onto the vector n. This projection (¢ - n)n, is the
unique shortest translation vector that carries Q into P, and it is inde-
pendent of ¢. The unique translation of Q along the direction normal to
Q which produces P is determined by the vector of the form an where
a =k =1t - nforany vectort in P.

Note the vector r — s is parallel to P for all r and s in P.

Note the x-axis intercept in P is k/n;, the y-axis intercept is k/n,, and
the z-axis intercept is k/n3. If any of the values n;, ny, or nj are 0, then P
is parallel to the x-axis, y-axis, or z-axis, respectively. A plane P with a
standardized plane equation n - x = k where |#| = 1 and & < 0, for which
k/ny # 0,k/ny # 0, and k/n3 # 0 has an associated specific cardinal oc-
tant, which is that octant of R? in which the point kn lies; this is the octant
{(,y,2) | sign(x) = sign(k/m),sign(y) = sign(k/n2),sign(z) =
sign(k/n3)}.

Exercise 1.69: There are 18 degenerate cases where a plane fails to
have a cardinal octant. List them.

Let n be a unit normal vector of the 2-dimensional subspace Q. Choose
a so that the distance of the origin from the plane P = Q + ¢ is the length
of the vector an which is normal to Q and lies in P. The vector an is the
projection of 0 onto P. Since an lies in P, it satisfies n - an = k, where
n-x = k with [n| = 1 is a plane equation for P. Thus @ = k/|n|> = k.
Thus t = kn is the shortest translation vector which satisfies Q + ¢t = P.
Note that when k < 0, P and n lie on opposite sides of Q.

Given three non-colinear points a, b, and ¢, which determine a plane P,
anormal vector n for P is obtainedasn = (a—c¢)x (b—c)andn-x =c-n
is a plane equation for P, which is unique when we normalize n to be a unit
vector such that ¢ - n < 0. The vector (c, n)n is the vector from the origin

22 1. Mathematical Preliminaries

to P of minimum length. Conversely, given the plane equationn - x = k
with |n| = 1, we can generate a point in P from an arbitrary point y by
projection as y — (y, n)n + kn.

Exercise 1.70: Show that if the points a and b lie in a plane P, then
{a+ab—a)|aeR})CP.

Exercise 1.71: How many numbers determine a plane?

Solution 1.71: Four numbers n,, n,, n3, and k determine a plane,
with the dependency n? + n3 + n2 = 1. This is equivalent to three
numbers and one bit. Nine numbers are needed, however, to directly
specify three points. (Can you specify three points in R* with fewer
than nine numbers?)

Exercise 1.72: Find the plane H which contains the line, line[a, b],
and which is parallel to the line, line[p, q], where line[a, b] and
line[p, q] are not themselves parallel.

Solution 1.72: H is the plane containing the point r and normal to the
unique line segment, segment|r, s], which is the shortest segment be-
tween line[a, b] and line[p, q], with s € line[p,q] andr € line[a, b].
Then H={x|(x—r,s—r)=0}.

If f:R? — R!is a continuous function such that S = {x | f(x) =0}
is a surface which divides space into two disconnected parts, then {x |
fx) <0}and {x | f(x) > O} are the two parts. Thus {x | x -n < k}
lies to one side of the plane P ={x |x-n=k}and {x |x-n > k}ison
the other side.

Exercise 1.73: Given a standardized plane equation n - x = k for
a plane P which does not contain 0, what is the direction of n with
respect to P?

Solution 1.73: The cardinal octant of P is the octant which contains
kn. We know kn € P and k < 0, so n is directed away from P, lying in
the same side of P as 0, since n-n > k and n-0 > k. The directed line
segment, segment[kn, 0], is in the same direction as n and points from
the plane P towards 0.

1.8 Planes in 3-Space 23

Given the plane Q holding the points 0, #, and v, and given two points,
p and g, not in Q, then p and g lie on the same side of Q if and only if
either they both lie on the same side as the normal vector u x v, or they
both lie on the opposite side from u# x v. Thus p and g lie on the same side
of Q if and only if sign(p - (u x v)) = sign(q - (u x v)).

Given two planes, plane(0, u, v) and plane(0, a, b), the vector x =
(u x v) x (a x b) coincides with the line of intersection of the two planes.
Let a be the angle between the two vectors (a x b) and (4 x v). The angle
between the two planes is min{(a, ™ — a).

The equation of the line of intersection L = {x | x = ab+c,a € R} of
the two planes {x [n-x = ¢} and {x | m - x = &} given by standardized
plane equations satisfies b = n x m, and the vector ¢ can be chosen to
satisfyn-c =¢e,m-c = §and c = Bn+ym. The reason thatc = Bn+ym
is that plane[0, n, m] intersects both the planes containing L, and hence
intersects L. In fact, L is normal to plane[0, n,m]. Thus B+ yn-m = ¢
and y + Bn-m = &, and hence B = (¢ — én -m)/(1 — (n - m)?) and
y=@—en-m)/(1—~(n-m?.

Exercise 1.74: Giventheline L = {x | x = ab +c,a € R} and
the plane P = {x | n-x = k}, give an explicit construction for the set
LNP.

Solution 1.74: If (n,b) = 0,then L N P = L. Otherwise, LN P =
{[(k - (nv c))/(n, b)]b + C}.

Exercise 1.75: Given three planes {x |x-a =}, {x |x-b= 8},
and {x | x - ¢ = y }, find the single point of intersection, and indicate
when it exists.

Exercise 1.76: Given the vertices a;, ... ,a, and by, . .. , b of two
planar polygons A and B in 3-space, devise an algorithm which either
finds a plane, P, that contains the origin and separates A and B, so that
all the vertices of A lie on one side of P and all the vertices of B lie on
the other side of P, or reports that no such plane exists.

Let O be a plane in 3-space which is a subspace and let the vector n # 0
be normal to Q. The 1-dimensional subspace {x | x = an witha € R)
and Q are complementary subspaces, i.e., their intersection is {0}. Two
Planes A and B which are both subspaces in R> and whose normal vectors
are orthogonal are not complementary subspaces, however, since they share

24 1. Mathematical Preliminaries

an entire line of intersection in common.

In general, in R" with n > 2, a plane is a two-dimensional flat, defined
by three points. An (n — 1)-dimensional flat in R" is called a hyperplane.
A hyperplane is defined by n points, or equivalently, by a translation vector
and a normal vector. When n = 3, hyperplanes are planes.

1.9 Coordinate System Orientation

The orientation of a coordinate system is a property of the coordinate
system indicating which of two classes (left-handed or right-handed) the
coordinate system belongs to. Given an orthonormal sequence of n vectors,
B = (b, ..., b,), we may coordinatize n-space with respect to these unit
vectors listed in the arbitrarily given fixed order. The coordinate vectors of
these n basis vectors will be denoted by ey, ..., e,, where the coordinate
vector ¢; is (0,...,0,1,0,...,0) so that (¢;); = &; with respect to the
given orthonormal basis B. We may arbitrarily assign this basis either the
left-handed or right-handed orientation. A basis, by itself, has no absolute
orientation; all we can tell is if two basis sequences have the same or op-
posite orientation. The descriptive correspondence such as the right-hand
rule by which we draw pictures representing a left or right-handed coordi-
nate system is merely a graphical aid; it would be consistent if we were to
switch these graphical description rules.

> >

right-handed x left-handed Y

There are two possible orthonormal coordinate systems for 2-space,
namely ((1, 0), (0, 1)) and {(0, 1), (1, 0)). One is right-handed and the other
is left-handed.

There are six orthonormal coordinate systems for 3-space: three are left-
handed and the other three are right-handed.

Each of the right-handed orthonormal coordinate systems for 3-space
can be converted into one of the others by a suitable rotation operation,

1.9 Coordinate System Orientation 25

z XA YA

left- left- left-
handed handed handed

right-
handed

right- right-
handed handed

=
'*'
<

. 4

and each of the left-handed orthonormal coordinate systems for 3-space
are similarly interconvertable by means of suitable rotations; but there is
no physically realizable rigid transformation of 3-space that can convert
a right-handed coordinate system into a left-handed one, or vice-versa. In
general, two orthonormal bases for R" will have the same orientation if
one can be transformed into the other by a series of rotations. We shall say
more about this in the section on rotation transformations.

A rotation transformation of 3-space can be described as a righthand
screw rotation or a lefthand screw rotation. A righthand screw rotation
of a point x about the non-zero vector v by 8 degrees results in the point
x', where x' is found by curling the fingers of your right hand about the
vector v with your thumb pointing in the direction of v and rotating x 6
degrees in the direction that your right hand fingers are curling to reach the
point x’. This rotation of x takes place in the plane P containing x which is
perpendicular to the line, line{0, v]; it is observed to be a counterclockwise
rotation in this plane about the point in P where line[0, v] intersects P
when P is viewed with the vector v directed at the observer.

A lefthand screw rotation is based on the same “rule of thumb,” but using
your left hand. In the case of a lefthand screw rotation of x, it can be seen
to be a clockwise rotation of x in a plane viewed with the axes of rotation
vector v directed toward the observer.

Just as there is no way to absolutely determine whether a coordinate sys-
tem is left-handed or right-handed, there is no absolute way to distinguish
between a lefthand and righthand screw rotation.

The fundamental issue has been illustrated by Richard Feynman [RFS63]

26 1. Mathematical Preliminaries

as follows. Imagine that you are speaking via radio to a person in another
culture who has never heard your language. You begin by teaching nu-
meral names which you communicate by making k equally spaced sounds
followed by the name for k. Proceeding in this manner, you can (perhaps)
define major parts of English. But can you define left and right? The idea
that they are opposite directions or sides with respect to a center is com-
municable, but your communication partner may model “left” as his or her
right and no discrepancy will arise which allows this to be detected.

Having called a basis left-handed, however, a righthand screw rotation
of o radians about a vector u, expressed in that coordinate system, is distin-
guishable from the lefthand screw rotation of « radians about u. Moreover,
orientation-preserving transformations which map the natural basis to a
basis with the same orientation can be distinguished from an orientation-
reversing transformation.

1.10 The Cross Product

The cross product of two vectors a = (ay,az,a3) and b = (by, by, b3)
in 3-space coordinatized with an orthonormal basis is @ x b := (a;b3 —
a3by, asby — aybs, a1b; — azby). The cross product a x b is 0 if and only
ifa =0o0rb = 0ora is parallel to b, i.e., a is a multiple of b. Also
|a x b| = |a||b|sin{ar) where 0 < o < is the angle between a and b.

Notea x b= —(b xa)and (a x b,a) = (a x b,b) =0.

Suppose a and b are linearly-independent 3-space vectors. Then in a
left-handed coordinate system for R3, the vectors a, b, and a x b in this
order form another left-handed coordinate system for R3, where b rotates
into @ by means of a right-handed screw rotation of angle(a, b) radians
about @ x b. Similarly a, b, and a x b in this order form a right-handed
coordinate system in a right-handed coordinate system with a rotated into
b by a right-hand screw rotation of angle(a, b) radians about a x b.

Exercise 1.77: Derive the cross product formula from first principles
by computing the vectors which are normal to both a and b, and then
choosing the nicest of these normals to be the vectora x b.

Solution 1.77: Consider the vector, n, where (n,a) = (n,b) = 0.
These two equations yield ny = ((byaz — baas)/(b.a; — azby))n3, and
n; = ((a3b1 - b3a1)/(b2a1 - azbl))n3, and choosing ny = b2a1 - a2b1
produces the simplest result.

1.10 The Cross Product 27

[bla

axb

In a left-handed coordinate system, the cross product vector a x b can be
characterized as the 90 degree righthand screw rotation of the component
of |b|a normal to b about the vector b. In a right-handed coordinate system,
a x b is the 90 degree righthand screw rotation of the component of |a|b
normal to a about the vector a.

Exercise 1.78: Showthat(a +b) xc=a xc+b x c.
Exercise 1.79: Show that (aea) x b = a x (ab) = a(a x b).
Exercise 1.80: Show that (a x b, ¢ xd) = (a, ¢)(b,d) —(a, d)(b, ¢).

Exercise 1.81: Show that |a x b| = |a||b|sin(«), where « is the angle
in radians between the vectors a and b.

Solution 1.81: (a x b,a x b) = |a|*|b|*(1 — (cos(a))?) from the
exercise above. Now we may apply the identity (a, b) = |a||b|cos(a).

Exercise 1.82: Show thata x b = 0 if and only if a = ab for some
real number a.

28 1. Mathematical Preliminaries

Exercise 1.83: Show thata x (b x ¢) = (a, c)b — (a, b)c and that
(axb)xc=(a,c)b— (b, c)a.

Exercise 1.84: Show that (a, b)? + |a x b|? = |a|?|b|?.

We can extend the notion of the orientation of a basis of orthogonal
vectors to apply to any linearly-independent sequence of vectors which
form a basis. This is done, in essence, by having an arbitrary basis inherit
the orientation of the closest orthogonal basis. This can be illustrated in
3-space with the aid of the cross product operation. In order to deter-
mine the orientation of a sequence of vectors a, b, ¢ in 3-space, it is use-
ful to define the vector triple product [a,b,c] := (a x b) - c. (Here
¢.” denotes the vector dot-product operation). We can directly check that
[a,b,c] = [b,c,a] = [c,a,b] = —[a,c,b] = —[b,a,c] = —[c, b, a].
Also, [a,b,c] = 0 only when a, b, c and 0 are coplanar, so for a ba-
sis (a, b,c) of R, [a,b,c] # 0. Recall that the assignment of right-
handedness or left-handedness to the basis with which we coordinatize R>
is an arbitrary choice. The resulting coordinate vectors are ey, e,, and es,
and we can check whether any triad of independent vectors (a, b, c} is ori-
ented identically to, or opposite from, {e;, €2, e3).

Consider the triad of vectors (a, b, c) in R3. We can rotate 3-space to
convert a,b,and c to a, b ¢ such that 4 = (4;,0,0) with 2; > 0, and

= (bl,bz,O) with bz > 0, and ¢ = (1, é,, ¢3). Note that the triad
(a,b, c) has the same orientation as (eq, ¢;,e3) when ¢;3 > 0 and the
opposite orientation as {ej, €3, e3) when é;3 < 0. This means that when
{a, b, c¢) and (e, e, e3) have the same orientation, ¢ lies on the same side
of plane|0, a, 13] as es lies with respect to plane[0, e;, e2] in coordinatized
3-space.

We may show that (a, b, c) has the same orientation as that assigned
to (e1, e2, e3) when [a, b, c] > 0, and has the opposite orientation when
[a,b,c] < O, as follows. Let « = (a x b,c)/(a x b,a x b). Then the
projection of c on a x b is a(a x b) and [a, b,c] = [a,b,a(a x b) +
c—oala xb)] =(@xb) (al@ xb)+(axb)- (c—(oz(axb)):
[a,b,a(a x b)] = «¢fa,b,a x b]. Therefore [a, b, c] = Bla, b,a x b]
where 8 = (@ x b, &)/(4 x b, @ x b). Note that [x, y, x x y] = |x x y|* >
0 whenever x and y are not parallel. Thus, sign([a, b, c]) = sign(8) =
sign((a x b, 6)) = sign(6113263) = sign(¢;). But then (a, b, ¢) has the
same orientation as (ej, €2, e3) when [a, b, c] > 0 and has the opposite
orientation when [a, b, c] < 0.

1.10 The Cross Product 29

Exercise 1.85: Show that
sign([a, b, c]) = sign([aa, Bb, yc]) sign(a) sign(B) sign(y).

Since [a, b,a x b] > 0 when a and b are not parallel, we see that the
triad of vectors (a, b, a x b) has the same orientation as that assigned to
the triad of vectors (e}, ez, e3).

Exercise 1.86: Let (a, b, ¢) be a lefi-handed basis triad in left-handed
3-space. Which side of line[0, a + b] does c lie on in plane[0, a + b, c]
when viewed from the point a?

Exercise 1.87: Show that[a x b, b x ¢, ¢ x a] = [a, b, c]*.

Exercise 1.88: Showthata x (b+c)+bx(c+a)+cx(a+b)=0.
Exercise 1.89: Showthata x (bx¢)+bx(cxa)+cx(axb)=0.
Exercise 1.90: Show thata xb+bxc+cxa is normal to plane[a, b, c].

Exercise 1.91: Show that in a left-handed orthonormal coordinate
system, the cross product, a x b, of two independent vectors, a and b,
lies on the side of the plane, plane|0, a, b], such that the points 0, a,
and b in this order are arranged in clockwise order from the point of
view of a x b.

Exercise 1.92: Show that (b x a) x b is in the same direction as the
component of a normal to b, which is a — (a, b/|b|)b/|b|.

Exercise 1.93: Show that the area of the parallelogram with vertices
0,a,b,anda x bis|a x b|.

Exercise 1.94: Show that, for vector functions, # and v, of a real
variable, ¢, the derivative (u x v) = u’ x v+ u x v'.

2

Curves

A curve in either 2-space or 3-space may be given parametrically by spec-
ifying coordinate functions. For example, a circle x in the plane is defined
by x;(¢) = cos(t) and x,(¢t) = sin(t) for —7 < ¢t < m; the argument ¢
is called the parameter of the curve mapping x. The graph of x is thus
{ (x1(2), x2(2)) | x1(8) = cos(t), x2(t) = sin(t), —7 < t < 7 }. In general,
a plane curve is a mapping from some interval [a, b)] € R into R% A
space curve is a mapping from some interval [a, b] € R into R3. In either
case, the domain of the curve mapping [a, b] may be open, half-open, or
closed, and may be the entire real line or may be bounded above and/or
below. We thus follow modern tradition that a curve is a mapping, and not
a point set; however, we often use language that confuses the graph of a
curve with the curve mapping itself. The parametric representation of (the
graph of) a space curve is not unique. The circle above can also be rep-
resented by x;(h) = (1 — h?)/(1 + h?) and x,(h) = 2h/(1 + h?) for
—00 < h < 00; this follows by introducing tan(z/2) for h.

Exercise 2.1: Show that, for 0 < A < 1, each intermediate curve
{C,) | Ax+y—=2)+(1 =2)(x*+y?—1) = 0} lying “between” the
curves, defined by x + y = 2and x?> + y?> = 1 withx > O and y > 0,
is a circular arc.

We usually assume that the component functions of a curve are contin-
uous in the interval of interest, so that the curve itself is continuous there;

32 2. Curves

we shall disallow the case where all the component functions are constant,
since this would yield a curve whose graph is a single point. If the com-
ponent functions x;(¢), x,(t), and x3(¢) of a space curve x in R3 are con-
tinuous periodic functions with a common period, then the curve x is a
closed curve when a sufficient range of ¢ is specified. If the three equa-
tions x(t) = ¢ have at most one solution ¢ for any vector ¢, the curve x
is simple, i.e., non-self-intersecting. If there are only a finite number of
distinct vectors ¢ such that x(¢) = ¢ has more than one solution ¢, and if
x(t) = c has a finite number of solutions ¢ for all vectors ¢, then x is a
semi-simple curve.

Exercise 2.2: Explain how a real-valued function of a single real ar-
gument f : [a, b] = R defines a plane curve.

Exercise 2.3: Explain how an equation relating two real variables of
the form g(x, y) = 0, where g : R* — R, defines a plane curve.

Solution 2.3: LetC = {(x,y) | gx,y) = 0}. When we can solve
g(x,y) = 0 for y, so that we have y = f(x) for some function f,
then (¢, f()) is a parametric representation of C. If there are several
solution functions y = f1(x), y = f2(x), etc., then each corresponding
parametric form (¢, f;(¢)) generates a part of C.

Exercise 2.4: Explain how mwo equations relating three real vari-
ables, of the form g(x, y,z) = 0 and h(x, y,z) = 0, define a space
curve. Hint: the intersection of two surfaces in R? generally determines
a space curve.

Exercise 2.5: Show that (x;(2), x2(), x3(¢)) = (ajcos(t) + bysin(t),
axcos(t) + basin(t), azcos(t) + bssin(t)) for 0 < ¢ < 2 is an ellipse
embedded in a plane in 3-space, when (ay, a2, a3) and (by, b, b3) are
linearly-independent.

Exercise 2.6: Does a plane curve, x : R — R?, exist such that R? is
“covered” by x, i.e., such that the graph of x is R2.

2.1 The Tangent Curve

The direction of the line tangent to a space curve x at a point x (¢) corre-
sponding to the parameter value ¢ is the same as the direction of the vector

2.1 The Tangent Curve 33

x'(t) where the derivative vector x'(¢) := (x{(t), x5(t), x3(¢)). If, however,
x'(t) = 0, we have no information about the tangent line (without con-
sidering lim,_,, x'(h)) even though it may well exist. The vector x'(¢) is
called the tangent vector of x at t. We shall usually assume that whenever
we write the derivative of a function, we are implicitly postulating that the
specified derivative exists. Note that if x intersects itself at x(¢), so that
x(t) = x(t;) for some value #; # t, then it is not precise to speak of the
tangent line of x at x(¢); rather we should speak of the tangent line of x
at ¢t. Usually, we will assume that the point x(¢) is a simple point of x,
i.e., x(¢) is not a self-intersection point of x, so that either usage makes
sense. Note that x’ is a space curve, just as x is. We often will be inter-
ested in the unit tangent curve associated with the space curve x defined
by u(t) = x'(t)/|x'(¢)|. Note that u does not exist when = [x'| = 0.

Exercise 2.7: Show that x'(¢) is parallel to the line tangent to x at the
point x (¢).

Solution 2,7: The point (1—A)x(¢)+hx (¢ +) lies on the line through
x(t) and x (¢t + 8) for any choice of A. Thus, taking # = 1/8, we have
that x(t) + (x(t + &) — x(¢))/8 lies on line[x(t), x (¢t + 8)] for § # 0.
Then, in the limit as § — 0, we have that x(¢) +x'(¢) lies on the tangent
line to x at x(¢).

Exercise 2.8: Show that the extended chain differentiation rule:
x(g(®)) = x'(g(t))g'(¢t) holds where x : R - R*andg: R — R.

Exercise 2.9: Let x := (xy(t), x2(¢)) be a plane curve. Show that
n := (x5(t), —x,(¢)) is a normal vector of (x;, x2) at x(¢), so that line
[x, x + n] is perpendicular to the tangent line line[x, x + x'] in R2.

Solution 2.9: When x is a plane curve, the 90° rotation of the tangent
vector of x at x(¢) is a normal vector of x at x (¢); equivalently the inner
product ((x;, x3), (x3, —x7)) is 0.

Exercise 2.10: Let x := (x;(t), x2(¢)) be a plane curve. Compute a
companion offset curve y such that the curve y consists of those points
that are o units perpendicularly displaced from x.

Solution 2.10: Let u(z) = x'(¢)/|x'(t)|. Let v(t) = (—uz(t), u1(t)).
Note (u(t), v(¢)) = 0. Then the plane curve x + av is the a-west offset

34 2. Curves

curve of x and the plane curve x — av is the a-east offset curve of
x. In general, these offset curves will contain loops and/or cusps in
neighborhoods where the curve x turns sharply.

Exercise 2,11: Let x(¢) be a point on the space curve x which is
closest to a given point p among all the points on the trace of the curve
x. Show that the vector p — x(¢) is perpendicular to the vector x’(¢).
Hint: determine ¢ so as to minimize |p — x(¢)|°.

2.2 Curve Parameterization

For a space curve mapping x(t) with ¢t € [a, b], as ¢ increases continu-
ously from the value a to the value b, the uncountably infinite sequence of
points (x(¢t) € R? | @ < t < b) is produced. We call this sequence the
(ordered) trace of x. The set of points present in the trace of x coincides
with the graph of x, but unlike the graph of x, a point may occur more
than once in the trace of x when x is non-simple. We say that the curve x
is parameterized by the parameter ¢ and that x(¢) is a parameterization
of the trace of x. There are infinitely many curves, each with an associ-
ated parameter ranging over some interval, that produce the same trace as
the trace of the curve x; each of these curves can be considered to be a
reparameterization of the curve x.

Exercise 2.12: Given the trace sequence and the indexing parameter
interval [a, b] of an unknown space curve mapping x, is the mapping x
uniquely determined?

Solution 2.12: No, the trace of x suppresses the magnitude of the
tangent vector x’.

A well-behaved space curve has a tangent line everywhere except at
cusps. The only reason that x’(¢) = 0 can hold is for x to fail to be a
so-called regularly parameterized curve at t; x(t) may be interpreted as
the position at time ¢ of a moving particle with velocity vector x’'(¢); we
may have an ill-behaved velocity vector, where the particle may come to
rest and then reaccelerate; it may even exhibit retrograde motion, where
the moving particle retraces part of the path that it has already traversed.
(It is useful to define the non-retrograde trace of a space curve x to be the
trace of x with the retrograde sections removed. If we choose a non-halting
parametrization with a constant length velocity vector, or at least with a

2.2 Curve Parameterization 35

non-zero-length continuous velocity vector, however, then x'(¢) = 0 can
never occur. A regularly parameterized curve x is a parameterization of
the trace of x such that x’(¢) exists for almost all values of ¢ in the asso-
ciated domain interval and satisfies x’(z) # 0 whenever x'(¢) exists. The
derivative vector x'(¢) then, of course, fails to exist at cusps in a regularly
parameterized curve x. But for an irregular parameterization, cusps can be
hidden so that x’ may be zero at a cusp. For example, the planar curve
x(t) = (¢, t*>) hasacuspatt = 0 and x'(0) = 0.

Note that smooth component functions are no guarantee that we have
a regular parameterization; the velocity vector of a curve may reverse it-
self smoothly, but the result is still not regular. The points on a regularly
parametrized curve x where x’(¢) exists are called regular points of x and
the points where x'(¢) fails to exist are called singular points of x. In ad-
dition to cusps, singular points can be points of discontinuity (if discon-
tinuous component functions are allowed) or points where one or more of
the component functions is not differentiable. We generally disregard these
latter two cases and assume that they do not arise.

Exercise 2.13: What is a cusp? Hint: consider the piecewise defined
curve x(t) = (12¢,9¢,0)for — oo <t <1, and x(t) = (4t + 8, 3¢t +
6,0)forl <t < oo.

Exercise 2.14: If x is a continuous curve whose trace does not exhibit
retrograde motion, is x a regularly parameterized curve?

Solution 2.14: Almost, but x'(¢) = 0 is not ruled out.

Exercise 2.15: Carefully define the non-retrograde trace of a curve.
Does the trace of a regularly parameterized curve x coincide with its
non-retrograde trace?

Solution 2.15: Not necessarily. The curve x may be explicitly piece-
wise defined so as to exhibit retrograde motion. For example, define
x()=y(t)for0 <t <landx(t) =yR2—1t)forl <t < 2, where
y is a regularly parameterized curve. Then x is a regularly parameter-
ized curve and x(1) is a singular point of x. (Note the left and right
derivatives of x exist at 1, but are not identical).

Exercise 2.16: If the trace of x is non-retrograde, is it necessarily free
of sections of overlap?

36

2. Curves

Exercise 2.17: Explain when the trace of a planar curve x is an iso-
metric transformation of the graph of a real-valued function of a real
variable.

Solution 2.17: If the trace of x is non-retrograde and there exists a
line L through the origin in the plane of x such that all the vectors x’ lie
to the same side of L in the plane of x, then the trace of x is a rotation
of the graph of a function that maps R to k.

Note that a space curve x which is defined so that x'(t) = 0 for at most

finitely many values t; < t; < ... < t, is then regularly parameterized

in

between the non-regular points x(t), ... ,x(t;). A non-regular point

of a space curve may or may not be exhibited as a singular point when a
completely regular parameterization having the same trace is examined.

2.

Exercise 2.18: Let x(¢) witha <t < b be a regularly parameterized
space curve and let r : [c,d] — [a, b] be a real-valued function of a
real argument. Note {x(r(h)) |c < h <d} C {x(¢) |a <t < b}. What
are conditions on r which ensure that x(r(#)) withc < h < disa
regularly parameterized space curve? What conditions on r ensure that
X)) |lcch<d)={x@)|a <t <b)?Hint:let y(h) = x(r(h))
and consider when y’(h) = x'(r (h))r’(h) can be zero.

Solution 2.18: If r is a continuous strictly increasing function on
[c, d] withr(c) = a and r (d) = b, then y(h) := x(r (h)) is a regularly
parameterized space curve with the same trace as x. Indeed, the class of
all such space curves obtained by choosing r to be a continuous strictly
increasing function on [c, d] with r(c) = a and r(d) = b is exactly
the class of all regularly parameterized space curves which are equiva-
lent to x in that they have the same trace. If x is irregularly parameter-
ized, however, it may be that no curve of the form x (r (h)) is a regular
parameterization. For x and y to have the same graph, it is only neces-
sary that {r(h) | h € [c,d]} = [a, b].

3 The Normal Curve

Locally, a turning space curve x, which we take to be regularly parame-
terized, bends away from its tangent line in a particular plane called the
osculating plane at x(¢). The tangent line of x at x(¢) lies in the osculating
plane at x(¢), and the vector x(¢) + x”(¢) also lies in this osculating plane.

2.4 Envelope Curves 37

This is because x” is in the direction of the change of x'. The osculating
plane at x(¢) also contains the so-called principal normal line to x at x(¢).
There is an entire family of lines in R that are normal to the tangent line of
x that passes through x (¢); the principal normal line at x (t) passes through
x(¢) and is parallel to the principal normal vector of x at x(t), which is
the unit vector in the direction of the vector component of the vector x"(¢)
normal to x’(¢). The principal normal vector of x at x(¢) is denoted by n(¢).
If n(¢) = 0, the curve x is straight at x(¢), with no unique osculating plane
there. Such a point is called an inflection point of x.

Exercise 2.19: Show that the osculating plane of x at x (¢) is plane(x,
x+x',x +x".

Exercise 2.20: What is the plane P(¢) that is normal to the space
curve x at x(¢)?

Solution 2.20: P(t)={veR?®| (v —-x(@)) -x'(t) =0}.

Consider n(t), the principal normal vector of x at t. When x” # 0, n is
the unit vector in the direction of the component of x” normal to x'. Thus
n=x"xx"yxx'/|(x xx"yxx'| =& xx"yxx'/|x" xx"|-|x'|. When
x" =0, n is determined by continuity or, if necessary, arbitrarily. Note that
the osculating plane of x is plane(x, x + u,x + n).

Exercise 2.21: Let x be a regularly parameterized space curve. Show
that the associated principal normal vectorn = [| x’ | x" — (x', x")]/ ||
x' | x” —(x',x") |. (The vector (x", u)u — x" is the centrifugal force
acting on the particle tracing out the curve x with the velocity x’, where
u is the unit normal vector of x.)

Let b = u x n. The vector b(t) is the binormal vector of x at x(t). Note
|b] = 1, when x” # 0. The normal plane of x is plane(x,x + n,x + b)
and the rectifying plane of x is plane(x, x + u, x + b) when x” # 0.

At any value of ¢ in the domain of x, the vectors u, n, and b form a
left-handed coordinate system in left-handed 3-space (and a right-handed
coordinate system in right-handed 3-space) called the moving trihedral on
the curve x. Noteu =n xb,n=b x u,andb = u x n.

2.4 Envelope Curves

Consider a family F of regularly-parametrized space curves continuously
depending on a parameter p, F := {x, | a < p < b}. Suppose v(p) is a

38 2. Curves

space curve such that each point of v lies on some curve in F' and moreover
that every curve in F shares at least one point and associated tangent line
with v. That is, for each p € [a, b], v(p) = x,(t) for some particular
value ¢+ which may depend on p; moreover, v’(p) is also a tangent vector
for the curve x,, at the point x,(¢), i.e., v'(p) = ozx;,(t) for some non-zero
scalar . Then v is called an envelope curve of the family F. Note that
every regularly parametrized space curve x is itself an envelope curve of
the family of tangent lines of x.

Note that an envelope curve of the family F may be determined as
v(p) = x,(r(p)) where r(p) is a root value ¢ such that the inner prod-
uct ((3,xp)(t), np(t)) = 0, where n () denotes the normal vector of x, at
xp(t), and (3,x,)(¢) denotes the derivative vector of x, with respect to the
parameter p, evaluated at ¢.

Exercise 2.22: What is the envelope curve of the family of principal
normal lines of a space curve x?

Exercise 2.23: Does every one parameter family of regularly param-
eterized space curves have an envelope curve? Hint: consider a family
of circles.

2.5 Arc Length Parameterization

The length of a curve is called its arc length. A curve is called rectifiable
if its arc length exists and is finite between any two points of the curve.

Exercise 2.24: Show that the length of the rectifiable curve x, starting
at the point x (/) and ending at the point x (k) is f,<,<h [x'(8)].

Let x = x(¢) with 0 < ¢ < a be a regularly parameterized space curve.
The arc length of x for 0 < ¢t < h is given by the function s(h) :=
Jo<i<p 1X'(®)]. x" is the tangent vector of x and s’ = |x’|. Recall that u =
x'/|x’| is the unit tangent vector of x at ¢. Note x’ = s'u.

It is convenient to consider a curve x parameterized by arc length, so
that x(¢) is such that s(¢) = ¢. When x is a regularly parameterized space
curve, we can always define the arc length parameterized curve, X (h) =
x(s~1(h)). It is also generally convenient to suppose that x has no inflec-
tion points whereat x” = 0. Note that X(s(h)) = x(h) and thus x" = X;s’
where the subscript s denotes differentiation with respect to the arc length
argument of X. Of course, X’ = X, but in this case we often use the sub-
script notation for emphasis.

2.6 Curvature 39

Now, when x is an arc length parameterized curve, |x'| = s’ =1 and
u = x’. Also x" is perpendicular to x’ since x’ is a curve on the surface of
the unit sphere and x” is its tangent vector which is always normal to the
radius vector x’. Thus (x’,x”") =0and n = x"/|x"|.

Exercise 2.25: Prove algebraically that ((x/|x|)’, (x/Ix|)) = 0.
Solution 2.25: (x/|x|) = x'/|x| — (x,x")x/|x}>.

Exercise 2.26: Show that if x is an arc length parameterized curve,
then s’(h) = |x'(h)| = 1, and conversely.

Solution 2.26: First compute s'(h) = |x'(h)|. Then observe that, by
definition, s(h) = h when x is an arc length parameterized curve, so
that s'(h) = 1. Alternatively, when x is merely a regularly parame-
terized curve, then (k) = x(s~(h)) is an arc length parameterized
curve, and [#/(h)| = |x'(s7'()s™ ()| = ' (sT'm))IsTV(h) =
s'(sTHm)s TV (h) = (s(sT Y)Y =R =1,

Exercise 2.27: If x is an arc length parameterized curve, is x’ also an
arc length parameterized curve?

2.6 Curvature

The way that a space curve x(¢) turns in space is described by a real-valued
positive function K (¢) called the curvature function of x. The curvature of
a circle is the constant function equal to the reciprocal of the radius of
the circle. We shall show below that, when x”(t) # O, there is a circle
lying in the osculating plane which is tangent to x at x(¢) and which has
the same curvature as the curve at x(¢). This is the osculating circle at
x(t) whose radius is 1/K(t), where K(t) = [|x’(®)]?|x"(t)|> — (x'(¢) -
x"(£))2]12/1x'(t)|? is the curvature of the curve at x (¢).

Let x(s) be an arc length-parameterized curve. In this case, the curva-
ture function, K (s), of the arc length-parameterized curve x at x(s) is com-
putable as K = |x”|. Note |x”| > 0. The curvature |x”| measures the rate
of turning of the tangent vector, x’, and the tangent line turns most sharply
at a point of maximum curvature of x.

We may follow Spivak [Spi75] to see that 1/K is the radius of the oscu-
lating circle at x. Suppose that K 3 0 and recall that the osculating circle
is tangent to the tangent line of x at x(s) and lies in the osculating plane,

40 2. Curves

plane(x,x +x’, x +x"), so the center ¢ of the osculating circle lies on the
line, line[x,x + x”]. Thus there exists a scalar a such that ¢ = x + ax”.
Now we may construct the osculating circle as the limit as m — s of
circles defined by three necessarily non-colinear points x(s), x(s1), and
x(s2), with s < 57 < 52 < m. In each such circle, the distances from x (s),
x(s1), and x(s2) to the circle center ¢ are identical, so, if we consider the
function f.(h) = |e — x(h)|, there exist particular values, h; in the inter-
val (s, 51) and h; in the interval (s, 52), such that f (k) = f,(hy) = 0.
But then, similarly, there exists a value r in the interval (hy, h2) where
f.'(r) = 0. Thus, in the limit, as h,, h, and r are all squeezed together,
we have e — c and f/(s) = 0 and f/'(s) = 0. Now fi(s) = |[c — x(s)I'

and fJ(s) = |c — x(s)|", so we have [c — x| = 2(x",x —¢) = 0 and
lc—x|" =2(x', x") +2(x", x — ¢) = 0. The radius of the osculating circle
is |c—x| and since ¢ = x+ax”, |[c—x|” = Oyields —a(x",x") = —(x', x').
And, because x is an arc length parameterized curve, (x’,x’) = 1, so

a = 1/|x"|> and hence |c — x| = 1/|x"| = 1/K where K = |x"|.

Now for the arc length parameterized curve x with K # 0, the principal
normal vector n = x"/|x"|,son = x"/K, x" = Kn, and the binormal
vector b = x’ x x”/K. Note n is directed “inward” so that x + n lies in
the osculating plane on the same side of x as the osculating circle. As x
changes from being convex to being concave (with respect to some fixed
axis vector), the osculating circle and the normal vector switch from one
side of x to the other in the osculating plane. The vector K n is called the
curvature vector of x.

Exercise 2.28: Show that the center of the osculating circle of x at
the point x(¢) is x(¢) + n(t)/K (¢).

The curvature function K (¢) of a space curve x(¢) changes its apparent
algebraic form as x is reparameterized. But K is an intrinsic property of x
in the sense that the curvature associated with a given point in the trace of
x is the same value under every regular parameterization of x, so that the
change in algebraic form is only apparent, and can always be simplified
to a common expression independent of the regular parameterization being
employed.

Exercise 2.29: Let K(s) be the curvature function of the arc length
parameterized curve x. What is the curvature function of the reparame-
terized curve x (f(¢))?

Solution 2.29: K (f~(r)).

2.7 The Frenet Equations 41

For a regularly parameterized curve x, The curvature K at a point x (¢)
can be computed as K = [|x’|2|x”|2 — (x’,x")?]"/?/|x’|>. Note that for
a regularly parameterized curve, (x’, x”) is not necessarily zero, as it is
for the arc length parameterized form of x. This expression for K follows
from repeated use of the chain rule with the identity x’ = xs’, where the
subscript s denotes differentiation with respect to arc length, s.

Exercise 2.30: Show that the curvature K for a regularly parameter-
ized curve x can be computed as K (£) = [|x'|2]x"|2—(x", x")2]/2/|x"|>.

Solution 2.30: s’ = |x| so X; = x'/|x'|. |Xss| = [(x'/s)/s'| =
|(x” — (x",x"/|x'[)x"/|x’[)/|x’||. Note this numerator is the component
of x” normal to x'.

Exercise 2.31: Show that K = [x’xx"|/|x’|* for a regularly parameter-
ized curve x.

Exercise 2.32: Show thatx” = s"u+s2Kn for a regularly parameter-
ized space curve x.

LY

Solution 2.32: x' =s'u =s'%;,s0x =s'u's"+s u,andu’ = Kn,

thusx =s u +s2Kn.

2.7 The Frenet Equations

Let us consider the moving trihedral unit vectors u, n, and b, as functions of
arc length, s. Since |u| = |n| = |b| = 1, u(s), n(s), and b(s) are all curves
on the surface of the unit sphere, and so (u’, u) = (n’, n) = (b', b) = 0, and
alsou = nxb,n = bxu,and b = u xn. We may compute u’, n’, and b’ as
follows. Firstu’ = x”,sou’ = Kn.Now b’ = (uxn) =uxn'+u' xn =
uxnsinceu xn=Knxn=0.Thus (b',u) = 0and (¢',n) = 0.
But (b, u) = 0 and (b’, b) = 0 implies that b’ is parallel to n,so b’ = Tn
for some scalar function T (s). Following DoCarmo [DoC76], the function
T (s) is called the torsion function of the arc length parameterized curve x
atx(s). |b'| = |T| measures the rate of turning of the osculating plane, just
as [u'| = |K| = K measures the rate of turning of the normal plane. Note
at an inflection point where x” = 0, we have K = 0.

Finallyn' = (b xu) =bxu' +b xu=>bx(Kn)+ (Tn) xu =
K (—u)+T(—b). We thus have nine differential equations called the Frenet

42 2. Curves

equations:
u' Kn
n = —Ku-Tb
b = Tn.

These equations, with given initial conditions: u(0) = ug, n(0) = ny,
b(0) = ugy x ng, determine an arc length parameterized space curve in-
trinsically in terms of the scalar curvature and torsion functions. We can
include the three additional differential equations x’ = u with x(0) = xg
to explicitly obtain the arc length parameterized curve x.

Exercise 2.33: Is the torsion T(s) of an arc length parameterized
curve x necessarily a positive function?

If K =0, x is a straight line. If T = 0, x is a planar curve, and if T = 0
and K is a positive constant, x is a circular arc. If T is a constant value, x
is a curve spiraling around a central curve, y, whose torsion is 0, and x is
an involute of y. If K /T is constant then x is a helix.

Exercise 2.34: Show that if K = 0, then the torsion function T does
not influence the straight line space curve defined by the Frenet equa-
tions. What does T influence in this case?

Solution 2.34: When K = 0, the equations n’ = —Th and b’ = Tn
determine how the translated normal and binormal vectors x + n and
x + b rotate in the normal plane as we move along the straight line space
curve x.

Exercise 2.35: Show that if we start with u(0) = ug, n(0) = ng and
b(0) = bg such that (ug, ng, bg) form an an orthonormal basis of R,
then u(s), n(s), and b(s) as determined by the Frenet equations always
form an orthonormal basis for every value of s.

Solution 2.35: (J. Eastham Jr.) Let Vrow 1 = u, Vrow 2 = n, and
V row3 = b. Thus V(s) is a 3 x 3 matrix with V(0) having the or-

0 K 0
thonormal rows ug, ng and by. Let H = —K 0 -T |. Thus
O T O
H (s) is a skew-symmetric matrix such that HT = — H. The nine Frenet

equations may now be written in terms of the matrix derivative V' as

2.8 Involutes and Evolutes 43

V' = HV. Note that V(0)TV(0) = I = V(0)V(0)T. We wish to
show that V evolves so that V(s)V (s)T = I, that is so that the rows of
V (s) are orthonormal for all s > 0. But the rates of change (VTV) =
VIV + VTV = VIHTV £ VTHV = VTI(HT + H)V = 0. Thus, V
evolves via the Frenet equations so that V(s)TV(s) = V(0)TV(0) = I,
and thus V(s)V(s)T = I as well.

The torsion T can be computed as T(¢) = —(x’ x x”) - x"'/|x’ x x"|?
for a regularly parameterized curve x at x(¢). When x is an arc length
parametrized curve, T = —(x’ x x”) - x"/K?.

Exercise 2.36: Letx(f) = a + bt + ct?, where a, b, ¢ € R>. Com-
pute the curvature K (¢) of x and draw a graph of K (¢) vs. ¢ for some
interesting choice of a,b, and c. Also compute the torsion T(t) of x.

Exercise 2.37: Show that K = (u',n)/|x’| > 0and T = (n’, b)/|x’|
for a regularly parameterized curve x for which x” # 0.

Exercise 2.38: Show that the center of the osculating sphere of the
arc length parameterized space curve x is x +n/K +bK'/(K*T). Hint:
define the osculating sphere by the equation | x — ¢ |*= «. Differentiate
three times to obtain three equations, and then solve for (ci, ¢3, ¢3).

2.8 Involutes and Evolutes

Any curve x that cuts the tangent lines of a curve ¢ orthogonally (i.e., such
that (x’, ¢’) = 0) is an involute curve of c, and if x is an involute of c, then
c is an evolute curve of x. In general, a curve has an infinite number of
evolutes and involutes. Several curves may have a common evolute curve
or a common involute curve, whence they are all involutes or evolutes of
their common evolute or common involute.

We may follow Wardle [War65] to construct explicit formulas for the
involutes and evolutes of a space curve x. Let the space curve i be an in-
volute of the arc length parameterized curve x. Then each tangent line of
X is cut orthogonally by i, so i(s) = x(s) + a(s)x’(s) for some func-
tion & which may variously assume a positive or negative value depending
on where i cuts the tangent line line[x,x + x']. Note s denotes the arc
length parameter for x; i is not generally arc length parameterized by the
arc length parameter of x. Thus, i’ = x’ + o'x’ + ax”. But x” = Kn,
soi’ = x' +a'x’ +aKn. And (i’,x") = 0, so, since (x’,x’) = 1 and

44 2. Curves

(x’,n) =0, we have 1 +«’ = 0. Hence, « = —s + 8, where § is a constant
of integration. Thus i = x + (8 — s)x’ is the general form for an involute
of x; different choices of & result in different involutes. Note again that the
involute i is parameterized with the arc length parameter of x; the curve
x(s) + (8 — s)x’(s) is not generally arc length parameterized, nor even
necessarily regularly parameterized.

Now suppose that e is an evolute of the arc length parameterized space
curve x, so that x is an involute of e. Then (x'(s), €'(s)) = 0 and the point
e(s) that corresponds to the point x(s) on x must lie in the normal plane
of x taken at the point x(s). Note s denotes the arc length parameter for
x; e is not generally arc length parameterized. The normal plane of x is
plane[x,x + n,x + b], so e = x + An + ub for particular functions A(s)
and pu(s). Also, the line segment segment{e, x| coincides with the tangent
line of e, so the tangent vector ¢’ has the same direction as the vector x —e,
and thus ¢’ = p(An + ub) for some particular function p.

Now we differentiate e to write ¢’ = x'+A'n+in’+pu'b+ub’, and using
the Frenet equations for x yields ¢’ = x'+A'n—A(Ku+Tb)+u'b+uTn =
A+ 2K+ XN +uT)n+ (W — AT)b. Butsince x’ = u and (¢, x") = 0,
we have 1 — LK = 0. Also, since ¢/ = p(An+ ub), we have ' +uT = pA
and ' — AT = pu.

Butthen A = 1/K,and u(A" + uT) = A(u' — AT). This latter equation
is equivalent to Ap’ — ur’ = (A2 + u?)T. We recall that (u/1) = (A’ —
uA)/A2, 50 (u/A) = T (A2 +u?) /A% Thus (u/A) /(1 + (u/A)?) = T. Let
f(s) = wu(s)/As) = K(s)u(s). Then f//(1 + f3) = T and f[f'/(1 +
fHlds = [[1/A + fA)Jdf = tan~'(f) + B, where B is a constant of
integration. But then 8 can be chosen so that tan™'(Ku) + 8 = [Tds,
where the indefinite integral f Tds here denotes a function F(s) such that
F' = T.Now u = tan(F — 8)/K, and thus an evolute curve of x has the
form e = x + [n + tan(F — B)b]/K; for each choice of the constant 8,
we obtain a different evolute of x. Note that K is the curvature function of
x; and the argument of e is not the arc length parameter of e; rather it is
the arc length parameter of x. Also note that the arc length parameterized
curve x has associated evolute curves defined only at points where K # 0
(and n # 0.)

When x is a planar space curve, with the associated torsion function 0,
choosing 8 = 0 yields the evolute curve ¢ := x +n/K. This evolute space
curve ¢ is formed by the locus of the centers of the osculating circles of
x, and is called the central evolute curve of the planar space curve x. Note
that the central evolute of the planar space curve x is the envelope of the
family of normal lines of x; the study of this envelope curve is the genesis

2.9 Helices 45

of the more general notions of evolute and involute curves for an arbitrary
space curve.

Exercise 2.39: Is every evolute curve of a planar space curve x pla-
nar?

Exercise 2.40: Compute the central evolute of the ellipse given by
x(t) = (a - sin(t), b - cos(t)).

Exercise 2.41: Show that the envelope curve ¢ of the family of lines
normal to a planar space curve x is the central evolute curve of x and
show that ¢’ = n, i.e., the tangent vector of c is the normal vector of x.

2.9 Helices

A T-cylinder surface is created by extruding or sweeping a simple planar
closed curve I" along a line parallel to a central axis line. A I"-helix is ob-
tained by wrapping a wire about a I'-cylinder with a uniform pitch angle.
Thus a helix is a curve with the property that each of its tangent vectors
is at a fixed angle to a particular fixed direction, which is the direction of
extrusion of the corresponding cylinder. Now we shall drop the require-
ment that the generating planar curve I is simple, or even closed; so, for
example, a I'-cylinder may be a plane or other variety of surface beyond
those immediately considered to be cylinders. Indeed, a cylinder can now
be described as a parallel ruled surface, and an associated helix is a curve
that cuts these rule-lines at a fixed angle.

Exercise 2.42: Show that a regularly parameterized space curve x is
a helix if and only if K/T is constant.

Solution 2.42: If x is a helix, then (u,d) = cos(«), where u is the
unit tangent vector of x and where d is a unit vector parallel to the
central axis of the associated cylinder. Then (u, d) = (Kn,d) =0, so
d and n are perpendicular, and hence d = 8u + y b for some scalars,
8 and y, such that §2 + y2 = 1. Therefore cos(a@) = (u, d) = 8. But
differentiating (n,d) = 0 yields (n’,d) = (—Ku — Tb,d) = 0, so
0 = (—Ku —Tb, cos(a)u £sin(a)b) = ~Kcos(a) & Tsin(«), and thus
K/T = £tan(a), which is constant.

Conversely, if K/T = tan(a), for « fixed, then K cos(a) = Tsin(a)
and Kcos(a)n = cos(a)u’ and Tsin(e)n = sin(a)b’, so cos(a)u’ —

46

2. Curves

sin(ar)b’ = 0, and integrating this equation yields cos(a)u — sin(a)b =
d where d is a constant unit vector. Now (u, d) = cos(a), so u forms
a constant angle, ¢, with a fixed direction, d, and hence x is a helix.
Note this solution shows how the direction of the central axis can be
computed, given the helix x, and it also exhibits the fact that each prin-
cipal normal vector of a helix is orthogonal to the central axis of the
associated cylinder.

Exercise 2.43: Show that a regularly parameterized space curve x is
a helix if and only if the binormal vector b of x always makes a fixed
angle o with a particular direction d.

Exercise 2.44: Why do we require that the generating curve I' of a
cylinder be planar?

2.10 Signed Curvature

The signed z-directional curvature of an arc length parameterized curve x
is defined as the rate of change of the angle 8,(s) formed between the tan-
gent vector u(s) and the xy-plane. This is the derivative of 8, with respect
to arc length s, which is 8, = (Ip|'(u, p) — |pl(u, p))/(|p|-|u x p|) where

p = (u1, u2,0). 0, is positive when the curve x is turning up and negative

when x is turning down with respect to the z-axis direction. The notion of a
z-directional curvature can be generalized to refer to an arbitrary direction.

Exercise 2.45: Show that, in the case where the curve x is a plane
curve defined by a twice-differentiable function fasx(¢) = (¢, f(¢), 0),
the signed (0, 1, 0)-directional curvature of x is the functional signed
curvature of the function f defined as f”/(1 + (f)*)%/>.

Exercise 2.46: Let x(t) = (x1(¢), x2(t)) be a regularly parameter-
ized plane curve. Show that the curvature of x is K =| x;x; — x5x{

/((x)? + (x3)%)%? and show that at the point x(¢), x is turning left (so
that x is concave to its left and convex toward its right at x(¢)) when

x;()x35(t) — x5(t)x{(t) > 0, and x is turning right when x; (£)x; () —
x5()x{(t) < 0.

Exercise 2.47: Show that the natural unsigned curvature K is a di-
rectional curvature, but with respect to the dynamically varying normal
vector n. The space curve x is always turning up with respect to the
direction of »n, which is consistent with K > 0.

2.11 Inflection Points 47

Exercise 2.48: Show that the torsion T is the dynamic directional
curvature with respect to the varying binormal vector b.

Solution 2.48: T(s) = limy_olangle(u(s + h), plane(O, u(s),
n(s))) — angle(u(s), plane(0, u(s), n(s)))]/h. Also, angle(u(s),
plane(0, u(s), n(s))) = 0.

2.11 Inflection Points

Recall that a point x(¢) is an inflection point of the arc length parameterized
space curve x when x”(t) = 0. The point x(¢) is a simple inflection point
of the arc length parameterized space curve x when there exists a direction
specified by a unit vector d such that the signed d-directional curvature
6;(s) changes sign at s = ¢, ie., there exists a value € > 0 such that
07(t—8)0,(t+38) < 0for0 < & < €. Alternately, x(¢) is a simple inflection
point of x if the curve x + x” “cuts across” the curve x at the single point
x(t) so that x”(¢t) = 0 and the tangent lines {x(¢) + ax'(¢) | @ € R} and
{x()+B(x'(1)+x"(t)) | B € R} intersect at the single point x (¢), in which
case x'(¢) and x"’(¢) are linearly independent vectors. Inflection points are
places where the curve is linear, at least momentarily, i.e., coincides in the
direction with its tangent line. In general, inflection points can be classified
as crossing inflection points and touching inflection points. The inflection
point x(t) is a crossing inflection point if the curve x crosses its tangent
line {x(¢) + ax'(t) | @ € R} in the associated osculating plane. Otherwise
the inflection point x(¢) is a touching inflection point. Note that a simple
inflection point is a crossing inflection point.

Exercise 2.49: Show that in the case where the curve x is a plane
curve defined by an infinitely-differentiable function f as x(r) =
(r, f(r), 0), the point x(¢) is a crossing inflection point when f’ is lo-
cally maximal or minimal at ¢; ie., f”(¢) = 0 and the next-higher
derivative of f which is non-zero at ¢ is of odd order, so that there ex-
ists an odd integer & > 2 such that f®(t) = 0fork =2,... ,h —1
and fM(t) # 0.

Exercise 2.50: Show that a plane curve x does not possess a simple
inflection point if the side of the directed line defined by the vector x'(z)
in which the point x”(¢) lies is the same for all values of . Show that a
quadratic space curve has no inflection points.

48

2. Curves

Exercise 2.51: If x(¢) is a vector function of the scalar ¢, then the vec-
tor x has an instantaneous axis passing through the origin, about which
the vector x is rotating at the parameter value ¢. This axis is orthogonal
to x and x’, and we shall call the vector a = (x x x')/(x, x), which
coincides with the instantaneous rotation axis of x, the spin vector of x.
The length of the spin vector a is the angular rate of turn of x about a.
Show that, if x is a regularly parameterized space curve, then the spin
vector of u is b, the spin vector of b is —u, and the spin vector of n is
Kb—Tu. The vector Kb — Tu is called the Darboux vector of x. Show
also that u’, n’, and b’ are all orthogonal to Kb — Tu.

The points of the space curve, x, where K’ = 0, are the points of sharpest

turning. Such points are called vertices of x. Each point of a circle is a ver-
tex, a parabolic space curve has only one vertex, and any simple planar
closed curve has at least four vertices. At a vertex where K # 0, the curve
is at an extreme point in the direction —n, opposite from the principal nor-
mal vector.

Exercise 2.52: (J. E. Kiefer) Find a non-planar simple closed curve
which has fewer than four vertices.

Solution 2.52: Consider a cycloid of the form ¢(¢) = ¢ and r(¢) =
1 + 2cos(t) in polar coordinates with 0 < ¢t < 27 and the interpre-
tation that a polar point (r, ¢) with r < 0 denotes the opposite point
(—r, ¢ + 7). This is not a simple curve. The curvature is least at t = 0
and greatest at ¢+ = 7 and monotonic in between, so there are only two
vertices. Now lift the cycloid curve into 3-space, slightly separating the
two branches of the curve at the origin, so that it becomes a simple
closed curve in 3-space; it still has just two vertices. In cartesian coor-
dinates, we have the space curve (r(¢) - cos(¢(t)), r(t) - sin(¢(t)), .1 -
sin(t/2)), where r (t) = |1+2cos(t)| and ¢ (¢t) = ¢t +m(cos(t) < —1/2),
with0 <t < 27m.

Exercise 2.53: Show that if a space curve x can be projected onto a
plane so that the resulting projection of x is a line segment, then x is a
planar curve.

Exercise 2.54: Show that if a closed curve in 3-space is simple in
every projection onto a plane, except one, then it is itself a simple planar
closed curve.

2.11 Inflection Points 49

Exercise 2.55: Given a curve x(¢) witha < t < b, propose an al-
gorithm to compute the points of x closest to a given point p. Hint:
consider |p — x(¢)|>.

Exercise 2.56: Given the component functions: x;(¢), x2(t), and x3(¢)

for a space curve, x, with the parameter ¢ specified to be in the range

to <t <1, and given the values ry,r2,...,ry, where g < ry <r; <
. <r, < ty, write programs to do the following.

1. Draw a graph of x and the osculating circles of x at the points
x(ry), x(ra), ..., x(ry).

2. Draw a graph of x and circles of radius h, which are centered at
x(r1), x(r2), ..., x(rp), and which lie in the normal planes of x at
these points.

3. Draw a graph of x with directed branches (line segments) of length
[at x(ry), x(r2), ..., x(r,), where the branches lie in the corre-
sponding osculating planes and form random angles between g
and o radians with the normal vectors.

3

Surfaces

A surface in R? can be defined in several ways in terms of functions of
several variables. For a surface S, we may have a real-valued function
f:R® > R,such that S = {(x,y,2) | f(x,y,2) = 0}. Alter-
natively, we may have a vector-valued function p : Q € R? —» R3,
such that S = {p@u,v) | (u,v) € Q € R?}. The component func-
tions of p are identified separately as p;(u, v), p>(u, v), and ps3(u, v).
We thus have the surface S defined parametrically in terms of three sep-
arate coordinate functions of two independent parameters, u and v, as S =
{(p1(u, v), p2(u, v), p3(u, v)) | (u, v) € Q € R?}, where the coordinate
functions p, p2, and p; map from Q C R? into R. The variables u and v
are the coordinates of a parameter point in Q C R?, and we can imagine
the surface S is formed by distorting the region Q. The variables « and v
can also be considered to be coordinate values of a point on the surface S
located with respect to a curvilinear coordinate grid inscribed on the sur-
face. This coordinate grid is composed of the space curves p(u, v) with u
or v fixed and the remaining variable v or « changing in order to trace out a
grid curve on S. When S is a so-called single-valued surface, then there is a
real-valued function z, such that S = {(x, y, z(x, y)) | (x,y) € U € R?},
where z : U € R? — R. By single-valued, we mean that a line parallel
to the z-axis intersects the surface at most once. This latter case is a triv-
ial form of parametric representation with p,(u, v) = u, pa(u,v) = v,
and p3(u,v) = z(u, v). Generally, we shall suppose that all the partial

52 3. Surfaces

derivatives of the functions we consider exist, and that all mixed partials
are invariant with respect to the order of differentiation.

For example, let a(¢) and b(t) be two space curves with 0 < ¢ < h. Let
pt,A)=(1-Xa(t)+rb(t). ThenS = {p(¢, 1) | (¢, 1) € [0, K] x [0, 1]}
is a parametrically represented homotopic mixture surface defined by a and
b. Note we can obtain other homtopic mixture surfaces by replacing A by
any adequately smooth monotonically-increasing function m()) for which
m@0)=0and m(1) = 1.

With some caveats, we can convert between the surface representations
introduced above. Given the scalar-valued function z(x, y) and the point set
U, we have p(u, v) = (u, v, z(u, v)) and Q = U. Given the vector-valued
function p(u, v) and Q, we have f(x, y, z) =if (x,y) € Q then p3(x,y)—
z else 1. Given f(x,y,z), we have p(x,y) = (x,y,root, f(x,y,2)),
where root, E(2) denotes a value r such that E(r) = 0, and Q is the set
of (x, y)-points for which root, f(x, y, z) exists. Given the vector-valued
function p(u, v) and the point set Q, we may, in principle, solve for u and
v in terms of variables x and y by solving p;1(u, v) = x and ps(u, v) =y,
to obtain u = &(x, y) and v = v(x, y) for certain functions & and v. When
such solution functions exist uniquely, then the corresponding surface S
is the single-valued surface {(x, y, z(x,y)) | (x,y) € U C R?}, where
z(x,y) = p3(u(x,y), v(x,y)) and U = {(x,y) | x = p1(u,v),y =
p2(u, v), (u,v) € Q € R?).

Exercise 3.1: Let r(¢) be a space curve, let n(t) denote the unit nor-
mal vector space curve associated with r, and let b(¢) denote the unit
binormal vector space curve associated with . Consider the function
p : R? — R3 defined as p(s, t) = r(t) + d(cos(s)n(t) — sin(s)b(t)),
where d is a constant. Describe the surface {p(s,#)|0 <s < 2n, t €
[e, B] € R}

3.1 The Gradient of a Function

Consider a differentiable function z(qy, . .., g,) = z(q) € R. The function
z maps R" into R and the graph of z is a surface in R"*!, Define the
gradient of z at q as the vector (Vz)(q) = (812(q), ..., 0.2(q)) € R",
where 9;z denotes 3z/3q;. The symbol V denotes a functional suggestively
defined by V = (3/9q, ..., 3/3q,). The operator V necessarily has a
binding priority such that Vz(q) = (Vz)(q). Note that when the domain
of z is R!, the gradient Vz is just the 1-element vector consisting of the
derivative z'.

3.1 The Gradient of a Function 53

Let x(s) be an arc length parameterized curve in R" and let the function
z : R" — R be given. Then z(x(s)) is a real-valued function of a single
real variable, s, and (z(x))’ = Vz(x) - x’ by the chain rule. This is the
rate of change of z at x(s) in the direction x’(s), so, in general, the v-
directional derivative of z at g is appropriately defined to be Vz(q) - v,
where |v| = 1. This is just the length of the component vector of Vz(q)
in the direction v. Thus the direction in R" that has the maximum rate of
positive change of z at q is just Vz(q), since Vz(q) - (Vz(q)/|Vz(q)|) =
|Vz(q)| = max,=1Vz(g) - v. Similarly, the direction in R" that has the
maximum rate of negative change of z at q is just —Vz(g). The vector
Vz(q) is the steepest ascent direction in R" and the vector —Vz(q) is the
steepest descent direction in R".

Exercise 3.2: What is the direction of the minimum rate of (positive
or negative) change of z?

Exercise 3.3: What is the meaning of the statement Vz(q) = 0?

Solution 3.3: If Vz(q) = 0, the surface S = {a&z(a) | a € R"}
in R"*! is flat at the point q. Thus the point g&z(q) is a local mini-
mum, a local maximum, or a saddle point of the surface § embedded
in R"*! defined by the function z, with respect to the direction e, ;.
(The vector-valued binary operator & denotes concatenation: a&b =
[a b])

Consider the surface, S = {g | f(g) = 0} C R?, and consider a
regularly parametrized space curve x embedded in S. Then f(x(s)) = 0
for all s, s0 V f(x) - x’ = 0 and therefore V f(q) is normal to the tangent
vector at g of every regular space curve embedded in S and passing through
q. Thus V f(q) is parallel to the line normal to S at the point g € S. When
V f(g) = 0, the point g € S is a singular point of S; there is an embedded
curve in S which has a cusp or other singularity at q.

Let the surface S be variously represented by {g | f(g) = 0} or {q |
q=pu,v),uv)e QSR }or{qg|q=(x.y,2(x,y), (x,y) eU}.
A downward directed normal vector of S at the point ¢ € S is
Vz(q1, g2)&(—1) when S is defined as (x, y, z(x, ¥)), s0 Vz(q1, g2)&(—1)
is a multiple of V f(q). Also, the vectors V f(g) and p,(u, v) x p,(u, v),
where p(u, v) = g, are both normal to S at g, so they are both multiples
of each other. Here p, denotes the derivative gf and p, denotes g‘j In fact,
if a(r) and b(t) are any two regularly parameterized simple space curves
embedded in S which pass through the point g, then the tangents of a and

54 3. Surfaces

b at g are tangents of the surface §, perpendicular to the corresponding
surface normal at g, so that V f(q) and a’(tp) x b'(t;) are multiples of
each other, where a(fg) = b(f;) = q. The special case a(u) = p(u, v)
and b(v) = p(u,v) was used above in constructing the normal vector
Pu(u, v) x p,(u, v). (In the case where a’(tp) and b'(t,) are parallel, 0 is the
multiple of V f(g) that equals a’(t) x b'(t;)). If p,(u, v) x p,(u,v) =0,
the point ¢ = p(u, v) is a singular point of S.

Consider a curve C in the xy-plane defined implicitly by C := {(x, y) |
g(x,y) = 0}. Then C is the intersection of the surface S := {(x, y, 2) |
g(x,y) = z} and the xy-plane. A normal vector n to the curve C at a point
p € C can be obtained as the projection of a normal of S at the point p&0
into the xy-plane; thus n = Vg(p). The tangent line of C at the point p is
thus {v+ p | Vg(p) - v =0} C R2

Exercise 3.4: What is the plane that is tangent to the surface § =
{a]|flg@)=0}atpes?

Solution3.4: {veR?}|(v—p)-Vf(p) =0}

3.2 The Tangent Space and Normal Vector

It is convenient to restrict our attention to parametrically defined surfaces
so that we may define a surface as a mapping from a domain Q C R?
into R3. Now given the surface S = {p(u,v) € R® | (u,v) € Q C
R?), we may define the unit normal vector of S at the point (¥, v) € Q
corresponding to the point p(u, v) € S as N, := (py X py,)/ | pu X pv |.
Note the direction of N, is independent of the “shape” of S at p(u, v); the
direction of p, x p, is the same as the direction of —N,,.

The tangent space, T,, of the surface S = {p(u,v) € R | (u,v) €
Q C R?} at the point (4, v) € Q corresponding to the point p(u, v) € S is
plane(0, p,(u, v), p,(u, v)] = subspace[p,(u, v), p,(u, v)] C R>. The
tangent plane of S at the point p(u, v) is the flat T, + p. More generally,
the tangent space T, = {a | a - N, = 0}.

A surface S viewed in the neighborhood of a point p in the surface S is
not necessarily convex with respect to any direction; there may be space
curves embedded in S and passing through p which have principal normal
vectors at p directed to either side of S — p. This occurs for a saddle-shaped
surface for example. There is thus no “natural” direction for a principal
normal vector of the surface analogous to the case for a space curve. Not

3.3 Derivatives 55

only may the normals of the embedded space curves vary in direction, but
their curvatures at p may likewise form a spectrum of values. Part of the
differential geometry of surfaces consists of defining useful notions of cur-
vature for a surface at a point; unlike space curves, a surface will generally
not have a single number characterizing its curvature at a point. Again, a
saddle-shaped surface exhibits the difficulty. Curvature of a surface S at a
point p can be defined in terms of the curvatures of the embedded section
space curves which are those planar space curves that lie in planes that
contain the normal line of S at p. An alternate equivalent approach is to
define curvature in terms of the rates of change of the normal vector of S
at p in various directions.

Exercise 3.5: Describe a way to determine if a surface S is convex at
a point p.

Solution 3.5: Consider every space curve xy embedded in S that
passes through the point p (it suffices to consider only planar space
curves.) Let ny denote the principal normal vector of xy at p. If the pro-
jection of ng on the surface normal vector N, lies on the same side of
the tangent space hyperplane T, of S at p as all the other such projec-
tions, then § is convex at p in the direction (ng, N,)N,,.

3.3 Derivatives

Let us consider the function F : R" — R™. The derivative of F at
x € R" is the linear transformation F’(x) described by the n x m matrix

o Fi(x) O Fxx) ... 01Fn(x)
[F'(x)] := 9, F1(x) BzF.z(x) BzF,.,,(x) , where 9; F; denotes
o F1(x) . ver OFn(x)

the partial derivative function Z—ff- Note that [F'(x)] col j = (VF; eN'.
Note that, like F, F'(x) mapé R"toR™.Forn =1andm =3, F is
a parametric space curve whose tangent vector F’ is [3; F} 0; F2 9 F3]; the
linear transformation F'(x) maps values in R! into the one-dimensional
subspace parallel to the tangent line of F atx. Forn =2 andm =3, F is
a parametric surface whose tangent space at the R2-point x corresponding
to the R3-point F(x) is rowspace([F'(x)]). In general, the tangent space
of F: R" — R™ atx € R" is defined as Tr(,) := rowspace([F'(x)])
R™, and the normal space of F at x is the orthogonal complement subspace

56 3. Surfaces

T = nullspace([F'(x)[") = {y e R™ | y[F'(x)]" =0} C R™.

Since rowspace([F'(x)]) = range(F'(x)) € R™ is the tangent space
of F at x, the matrix [F'(x)] is the matrix of the linear transformation
F'(x) with respect to the canonical bases of R” and R™ that maps R" onto
the tangent space of F atx, ie., y[F'(x)] € Try) € R™ fory € R".
Note that we take vectors to be row vectors, so linear transformations are
applied by means of matrix-multiplication on the right. The matrix [F'(x)]
representing the derivative of F is called the Jacobian matrix of F at x.
Note that form = 1, [F'(x)] = (VF (x))T.

Exercise 3.6: Note thatdim(TF)) = 1 when F : R! > R3isareg-
ularly parameterized space curve, and dim(Tfr()) = 2when F : R >
R? is a non-degenerate surface. What can you say about dim (Try)) in
general? When does Tr) = {0}? When does Tr() = R™?

Exercise 3.7: Let F : R" — R"™ be defined by F(x) = xA where
A is an n x m constant real matrix. Show that [F'(x)] = A. What
is F”(x)? Since [F'(x)] is a matrix, why isn’t F”(x) described by an
n x m zero matrix for all functions F?

Solution 3.7: For F(x) = xA, F"(x) is represented by the n x m zero
matrix O, xm, butin general F”(x) is represented by a triply-subscripted
array of the functions 9;9; Fi. Although F'(x) is a linear transformation,
it is a different linear transformation for each distinct vector x, and the
argument vector of the linear transformation F’(x) is not x; rather it
is a distinct n-vector, say y. As a function of y, the function defined
by y[F'(x)] can be differentiated with respect to y to yield the matrix
[F’(x)], but this is not F"(x).

Exercise 3.8: Let F : R' — R™ be defined by F;(x) = y; f1;(x) +
coo+ Yufaj(x) for 1 < j < m, where fi; : R — R is a real-valued
differentiable function of the single real argument x for 1 <i < n and
1 < j < m. Note that F(x) = y[fij(x)] where y = (y1,... , y») and
[fij(x)] denotes the n x m matrix whose (i, j)th element is f;;(x) .
Show that [F'(x)] = y[f{;(x)]. Whatis F"(x)?

Exercise 3.9: Let F : R" - R™ and G : R¥ — R" be given
functions. Then the G, F composition function F o G : R¥ - R™ is
defined by (F o G)(x) = F(G(x)). Show that the matrix [(F o G)'(x)]
equals the matrix product [G'(x)][F'(G (x))]-

3.3 Derivatives 57

Exercise 3.10: What is the line in R> which lies in the tangent plane
of the surface S defined by the function z : R? — R at the point
g&z(q) € S C R? and which passes through the point g&z(q) in the
direction of steepest ascent?

Solution 3.10: Let p(q) = (q1,92,2(q1,92)),50 S = {p(q) | q €
Q C R?}. Then the line of steepest ascent in R? is obtained by trans-
lating the image under the linear transformation [p'] of the subspace de-
fined as the multiples of the vector Vz. Thus, we have line[p(q), p(q)+

(Vz@@)[p' @]l

4

Function and Space Curve
Interpolation

The first general problem we wish to consider below is how to construct
an interpolatory space curve which passes, in order, through given points

P1, P2y ---, Pn iIN R? or R3, perhaps along given associated directions
my,my,...,m,, With |m;| #0fori =1, 2, ..., n. Indeed, we could elab-
orate the interpretation of the direction vectors, my, ..., m,,sothatm; =0

would be taken to specify a sharp corner or cusp at p;.

We may select one of the infinite number of admissible interpolatory
curves by requiring that various additional constraints such as a fixed arc
length or mimimal curvature or k-fold continuous differentiability be hon-
ored.

It is often desirable that the solution be independent of the choice of or-
thogonal coordinate system, so that the shape of the interpolatory curve is
similar to that obtained after any sequence of translations, rotations, and
uniform scale transformations of the data. Thus we may desire our inter-
polation process to be invariant under a euclidean rigid motion transforma-
tion.

Sometimes constraints on curvature must be honored in order to satisfy
requirements such as the requirement of a convex interpolation function for
convex data. Moreover, it may be desirable that certain curves like straight
lines or circles be exactly recovered when points of such curves are inter-
polated.

60 4. Function and Space Curve Interpolation

Another property of interest is linear combinability. When direction vec-
tors are not given, an interpolatory curve algorithm is linearly combinable
if the sum of the curve C,(t) obtained for the points py, ..., p,, and the
curve C,(¢) obtained for the points gy, ..., g, is equal to the curve pro-
duced for the points p; +qy, . .., pn+qn, Where the range of the parameter
t is the same for Cy and C,. If Cy(¢) and C,(¢) are expressible as weighted
averages of the points being interpolated, with the same weight expres-
sions in both cases, then C,(t) + C»(¢) is also such a weighted average of
the points p1+qy, - .. , Pn+qn, and C;(¢)+ C2(¢) interpolates these points.

Exercise 4.1: Devise reasonable conditions for an interpolatory curve
algorithm to be linearly combinable when direction vectors my, ... ,m,
are given, as well as points py, ..., pn.

Exercise 4.2;: Show that if C,(¢) and C,(¢) both interpolate the points
Pis--- 5 Pn With 0 <t < 1 where C1(0) = C2(0) = p; and Cy(1) =
C2(1) = py, then aC () + (1 — a)Cx(t) also interpolates the points
Pi>---, Pn,Wherea € R.

We will consider the problem of interpolating between two points with
associated directions below. Curves that are solutions to this problem can
be the basis for a piecewise solution to the n-point problem by joining such
two-point interpolatory curves. Note that even in the two-point case, and
even in two dimensions, the general interpolatory curve problem is not the
same as the more specialized problem of finding a suitable single-valued
function y(x), whose graph passes through two given points with given
slopes.

Exercise 4.3: When does the two-dimensional two-point problem
with directions reduce to a single-valued function interpolation prob-
lem?

Solution 4.3: Place the point p, at the origin and place the point p;
on the positive x-axis. The direction vectors m; and m; are now fixed
by the requirement that this transformation be a rigid motion. If both
the resulting m; vector and the resulting m, vector lie in the positive
x half-plane or if the resulting m, vector and the resulting m, vector
both lie in the negative x half-plane, then there exists a single-valued
continuous function which interpolates the two transformed points with
tangent vectors in the given transformed directions. (Remember that

4. Function and Space Curve Interpolation 61

the vectors m; and m are just points in R2.) The essential point here
is that tangent vectors (i.e., directions) are a more flexible constraint
mechanism than slope values on determining curve shape.

D

2D-Function Interpolation

A 2D-function is a function whose domain and range are both included
in R, and whose graph thus lies in R?. The initial interpolation prob-
lem we will consider is that of 2D-functional interpolation: given points
of the graph of an otherwise unknown 2D-function g, we are interested in
constructing another 2D-function which interpolates the given points and
which serves as an estimate of the function g.

5.1 Lagrange Interpolating Polynomials

The Lagrange interpolating polynomial of degree n or less for the n + 1

R2-points (xg, o), . . ., (Xn, yn) Withxg < X; < --- < X, is
y(x) = qo(x)yo/vo+ -+ qn(x)yn/va, where
gi(x) :=]_[(x —x;) and
5
vi = gi(x).
Note that v; # O aslongas xo < x; < --- < x, holds. It is easy to

check that the polynomial y satisfies the n + 1 equations y(x;) = y; for
i =0,1,...,n. No other polynomial of degree n or less exactly passes
through the given points (xo, Y0), - .., (Xn, yn)-

64 5. 2D-Function Interpolation

solid = Lagrange interpolant, dashed = cubic spline

Exercise 5.1: Let the Lagrange interpolating polynomial for the points
(x0, Y0), .- -5 (Xn, yn) With xg < x; < --- < x, be defined in terms of
its coefficients cg, ... , ¢, as y(x) = cp + ¢1x + - - - + c,x". Show that
the coefficients cy, . .. , ¢, satisfy the linear system

1 xp xg X(’)' Co Yo
1 X1 xlz X;’ C1 M
. = 3
1 2 ... n
Xn X, X, Cn Yn

and show that these n + 1 linear equations have a unique solution.

The figure above shows that the Lagrange interpolating polynomial for
n + 1 points may ‘oscillate’ through the points, that is, it can markedly
deviate from the piecewise-linear interpolatory curve for the n + 1 points.
Thus it may be unsuitable for use in many cases. (Compare the Lagrange
interpolating polynomial with the dashed-line cubic spline curve.)

Exercise 5.2: Compute the quadratic polynomial, y(x) passing
through three points (xy, y1), (x2, ¥2), (x3, y3) withx; < x2 < x3.

5.3 Cubic Splines for 2D-Function Interpolation 65

Solution 5.2: y(x) = y1 + b(x —x1) + c(x — x;)?, where

b - (X3—X1)2(yz—-y1)—(xz—xx)z(ya—yl)’ and
(2 = x1)(x3 — x1)(x3 — x2)
G2 —x)(y3 —y1) — (x3 —x)(y2— y1)

(x2 = x1)(x3 — x1)(x3 — x2)

Exercise 5.3: Define z;(x) € R®fork = 0,1,... ,n,and i =
0,1,...,n — k as follows.

Zio(x) = (x;,) fori =0,1,...,n,and
Xitk — X X — X;

Zig(x) = ——Zik—1(X) + ————Zip14-1(x)
Xivk — Xi Xi+k — Xi

fork=1,2,...,nandi =0,1,... ,n—k.

Show that zg,(x) = y(x), the Lagrange interpolating polynomial
for (xp, yo), - - - , (Xn, yn)- This recursive construction of y(x) is called
Aitken’s algorithm.

5.2 Whittaker’s Interpolation Formula

Another exact method of interest for 2D-functional interpolation is Whit-
taker’s interpolation formula. For an odd number of data points (xo, yo),

.., (Xn, yn), with equally spaced abscissa values, x; = xo + ip/(n + 1),
Whittaker’s interpolation formula is: y(xo + x) = 205 j<nY jsin(m (px —
D)/ (T (px — j)), where p = (x, — x0)(n + 1)/n, and we take sin(0)/0 =
1. The resulting interpolating function y is the unique continuous band-
limited periodic function of period p which exactly satisfies y(x;) = y;
for 0 < i < n, and which has no spectral components with frequencies
outside the band [—n/(2p), n/(2p)]. Whittaker’s interpolation formula is
a consequence of computing the inverse discrete Fourier transform of a
square wave of width n/p and expressing its convolution with the discrete
function being interpolated. (See [DM72].)

5.3 Cubic Splines for 2D-Function Interpolation
Given the points (xy, ¥1), ..., (Xn, Yn), With x; < X2 < ... < x, and as-

sociated slopes my, mz, ..., m,, we may use a piecewise cubic polynomial
curve to interpolate the n given points with the specified slopes. Such an

66 5. 2D-Function Interpolation

interpolatory curve, which is made up of n — 1 cubic polynomial segments
joined together with common slopes at the data points, is called a Hermite
cubic spline. (In mechanical drawing, a spline is a thin flexible strip that
can be bent to interpolate a given set of points). When, as here, the slopes
are explicitly specified initially, we have a local cubic spline, in contrast
to a global cubic spline where slopes are not specified, but are instead
computed from imposed continuity conditions. Note that the class of cubic
polynomials includes the quadratic and linear polynomials as special cases.
The main focus of this book will be centered on cubic splines and various
generalizations thereof.

We are interested in piecewise-defined low degree curves because we
have seen that a single high degree polynomial that does not oscillate un-
acceptably can be difficult to construct; putting many low degree polyno-
mials together is a device to avoid the potential bad behavior of high de-
gree polynomials. Cubic polynomial segment curves are a natural choice,
since a cubic polynomial u(x) has four coefficients that can (almost al-
ways) be uniquely determined to obtain a curve that connects two given
points (xy, y;) and (x2, y2) with specified slopes m; and m at these points.
This is clear because we have four equations thus specified: u(x;) = y;,
u'(xy) = my, u(xz) = y2, and u’(x2) = mj.

Exercise 5.4: When does a cubic polynomial u(x) that connects two
given points (xy, y;) and (x3, y2) with specified slopes m, and m, at
these points fail to exist? When such a cubic polynomial does exist,
when is it unique?

The ith cubic polynomial u;(x) which connects (x;, y;) with slope m; to
(xi+1, Yi+y) with slope m;; as x ranges from x; to x;+1 is

ui(x) = a;+bi(x —x)+ ci(x —x;)* + di(x — x;)°, where
a = Y,
bl‘ = m;,
¢ = 3(yi+1r — Yi)/ (Xivy — Xi) = 2m; — myy and
(xXi41 — xi)
g = Mitmin - 2(yis1 — yi)/(Xivy — Xi)
l (Xip1 — Xi)?

Exercise 5.5: Show that u;_(x;) = u;(x;) = y; and u;_,(x;) =
u;(x)=mijfor2<i<n-1.

5.3 Cubic Splines for 2D-Function Interpolation 67

Cubic Polynomial Spline Segments

3
22 |
1.4 F
0.6
-0.2 f
-1 1 1 1 -
0.5 1.3 2.1 2.9 3.7 4.5

Exercise 5.6: Describe the graphs of cubic polynomial functions
f({t) = a + bt + ct? 4+ dt. Hint: consider lim o0 f(2), lim,;_o0 f(2),
and those points where the slope of f(¢) is 0.

Note that u;(x) can be written as

—x)? — X3
wx) = (1 3(x —x;) + 2(x — x;))”

B (i1 —x)2 (xig — x0)°
2x =x)? | -x)P
* ((x —x) - (ig1 —x) (xigy ~ xi)z) m,
(3a—mf zu—mf)
+ Vit

(i1 —x)2 (g — x)3

((x — x;)? (x —x)°)
- Mmiyy.

(i1 — X)) (Xipr — Xi)?

Thus u; (x) is a linear combination with the four coefficient values y;, m;,
Yi+1 and m;; multiplying four corresponding expressions that do not con-
tain these values. This fact will be seen in the sequel to have far-reaching
consequences; in particular, this means that u; (x) is an element in a vector
space of functions that contains the four functions of x appearing as factors
in the sum above.

68 5. 2D-Function Interpolation

Exercise 5.7: Show that the Hermite cubic spline function piecewise-
defined in terms of the cubic polynomials u,, ..., u,_.; satisfies the
fourth order differential equation y”” = 0, except possibly at the join

POimS (XZ’ yZ): ceey (xn—] ’ yn—l)'

5.4 Estimating Slopes

Often we are given only the points (xj, y1), ..., (x4, yn), and we must
estimate the slopes m,, ..., m,. Define the line slopes, s;, as s; 1= (yj4+1—
¥i)/(xj+1—x;), with special choices for s_y, o, s, and s, 41, perhaps based
on linear or quadratic extrapolation, as well as special choices for xo, yo,
Xnt1, and y, 4 so that our formulas for m; and m, will always make sense.
Akima [Aki70] suggests that the interpolation slopes m,, ..., m, can then
be chosen based on the line slopes within five point groups as

(si—1 +5i)/2 if 511 =s; and 5,y = 5,2,
mi =\ Isiq1 — Silsi—1 + |si—1 — si—2|si
ISiz1 — il + [Si-1 — si-2|

otherwise.

We can also try the following slope estimators for a Hermite cubic spline
function in the xy-plane.

1. m; = (S,'_l +S,')/2.
2. m; = tan((atan(sj—;) + atan(s;))/2).
3. m; = ((xj41 — xi)si—1 + (i — xi—1)8i)/ (xige1 — Xi—1).

4. m; = (|pi+1 — pilsi-y + |pi — pi-1lsi)/|pi+1 — pi-1l, where p; =
(xj,yj)for0<j<n+1.

S.mp = (yigr — yi-1)/Xig1 — xi—1).

Another way to estimate the values ms, ..., m,_; is to determine the
unique quadratics g;(x) for 1 <i < n — 2 where g; interpolates the points
(i, ¥i)s (Xit1, Yi+1), and (Xi42, yi+2), and then choose m; = q;_,(x;) for
2 <i < n— 1. Also, we may choose m; = q,(x;) and m, = q,_,(x,).

Exercise 5.8: Give the explicit formula for the quadratic interpolation
function g;_;(x) in terms of x;_y, xi, X;j+1, yi-1, Yi, and yi+1-

5.5 Monotone 2D Cubic Spline Functions 69

Exercise 5.9: (L. Schumaker [Sch83]) Show that, given the points
(x1,¥1), --., (x1, yn), With Xx; < X2 < --- < x,, there are always
choices for the slopes my, . .. , m,, such that there exist quadratic poly-
nomials qy, ..., g.~1 that satisfy g;(x;) = yi, gi(xi+1) = Yyi+1, and
q/(x;) = m; and g/(x;+1) = m;4; for 1 < i < n — 1. Hint: impose the
conditions m; + m;+y = 2s;.

5.5 Monotone 2D Cubic Spline Functions

Suppose we are given monotonic data points (xy, y1), ..., (Xx, y,) with
X] <X2 <---<Xxp,s0thaty; <y, <.--<y,0ry; >y >+ > yp.
We want to devise a slope estimation method which ensures that the corre-
sponding Hermite cubic spline function is similarly monotonic on [xy, x,].
Let us consider the monotone increasing case where x; < x; < --- < X,
and y1 < y2 < -+ < yn. Lets; = (i1 — yi)/(xig1 — xi) = 0 for
1 <i < n-—1 Defines, := sp_1, and s,41 := s,. We have 5; > 0 for
1 < i < n+ 1. The local Hermite cubic spline segment u; connecting
(xi, yi) and (x;41, yi+1) is monotonically increasing on {x;, x;41] exactly
when u; is non-negative on [x;, x; +1], that is, when

mi+2[3S,' —2m; —m,-+1]- (u)

Xiy1 — Xi

2
+ 3[m, +m; — 25,] . (u) >0
Xi+1 — Xi
forx; <x < xiyy.

This inequality is satisfied whenm; > 0,m;,, > 0,and m;+m;; < 2s;.
(When m; > 0 and m;,; > 0, choosing m; + m;.; — 2s; < 0 forces
the cubic spline curve segment connecting (x;, y;) and (x;+1, yi+1) tobe a
non-decreasing segment of a cubic polynomial that grows toward —oo or
at least remains bounded as its argument approaches co. Such a cubic poly-
nomial has only one such section occurring between its two local extreme
points. Imposing the constraints m; > 0, m;.; > 0, and m; + m;,; < 2s;
thus ensures non-decreasing monotonicity).

Thus the local cubic spline segments u,, ..., u,_; are all individu-
ally monotonic when the slopes m;, ..., m, are chosen so that m; > 0,

.smy, > 0,andm; +m;y < 2s; forl < i < n — 1. One way to
choose my, ..., m, is to take m; = s; and then take m; = min((s; +
85i-1)/2, 2si,2s;i—1 — m;_y) for 2 < i < n. When this algorithm results in

70 5. 2D-Function Interpolation

m; > 0for1 < i < n, the resulting cubic spline function is monotonic on
[x1,x,]. When we can enforce the additional conditions that m; > m; .,
when s; > siyy and m; < m;;; whens; < s;., then the local convexity
and concavity of the data will be preserved.

Exercise 5.10: Devise a slope estimation method that ensures that
local minima and local maxima in the data are also local minima and
local maxima in the corresponding Hermite cubic spline, so that there
will be no undershoot or overshoot at such points.

Solution 5.10: Use slope 0 at local minima and local maxima.

Exercise 5.11: In the case where m; > 0 and m;,; < 0, what is
[maxy,; <x <y, 4i(x)] — max(y;, yi+1)? That is, how much overshoot oc-
curs in the segment u;?

Exercise 5.12: How should we choose the slope values m; and m;,
so as to make the value v; := max,, <x<x;,, |#;(x)| as small as possible?
How should we choose my, ..., m, so as to make max<;<,—1 V; as
small as possible?

Exercise 5.13: A function f is convex-upward on [xy, x,] if f” in-
creases monotonically on [x, x,]. Suppose the data points (x1, y1), - .- ,

(xn, yn) have line-slopes that satisfy sy < s, < ... < s,-;. Show
that the Hermite cubic spline that interpolates the points (xy, y;), - .. ,
(Xn, ¥) 1s convex-upward on [x;, x,] whenever m,, ... , m, satisfy the

relations 2m;_y +m; <3s;,_yandm;_y +2m; > 3s,_for2 <i <n.

Exercise 5.14: (F. Fritsch and R. Carlson [FC80]) Define A; := m;/s;
and w; = m;y;/si. Show that the cubic spline segment function u;
connecting (x;, y;) and (x; 1, yi+1), with the respective slopes m; and
m;1, is monotonic if and only if (A;, w;) lies in the monotonicity region
M defined by {(A,) | A >0, > 0,204+ pu <3}U{(A,un) | 2 =
0,0 >0, A4+2u < 3YU{(h,) | A2+ Apu+u>—6(A+un)+9 <0} M
is the union of two triangular regions and an ellipsoidal region. Make a
graph of the region M and show that {(A, u) [A =0, u =20, A+ pu <
2)CMandthat {(A, 1) |0 <A <3,0<u=<3}CM.

Solution 5.14: Suppose s; # 0 and A; > 0 and u; > 0. Then u;
is monotonic on [x;, x;4+1] exactly when u; has no roots in [x;, xi+1];

5.5 Monotone 2D Cubic Spline Functions 71

this is the case when f(2) := A; +2(3 — 2A; — 1)z + 3(Ai + i —
2)z2 has no roots in (0, 1). (Note that u!((xi+1 — X))z +x;) = f(2)s;.)
Now, f(0) = A; > Oand f(1) = u; > 0. When A; + u; < 2,
f is convex-downward on [0, 1] and does not extend below the line
line[(0, A;), (1, ;)] When A; + ; > 2, f has a local minimum at
2p = —%(3—2)\,- — i)/ (A +u; —2), and f might have a root in (0, 1)
if zo € (0,1). But zg € (0,1) only if 2A; + &; > 3 and A; + 2u; > 3.
When zg € (0, 1), f has aroot in (0, 1) only if f(z¢) < 0; but f(zp) =
—1OF+hipi +p? — 64 — 61 +9)/(A; + i — 2), and thus f(zo) < O
exactly when A,.z + Aiu; + ,u,-z — 6A; — 6u; +9 > 0. Note that the
conditions (A;, ;) € [0,3] x [0,3] for 1 < i < n are equivalent to
the conditions m; < 3 min(s;_1, s;) for 1 < i < n with sy := 57 and
Sp 1= Sp-1.

Davis and Dowden [DD87] proposed a slope estimation scheme suit-
able for most monotone data. Their scheme uses ratios of simple slope esti-
mates. The Davis-Dowden slope estimation scheme defines m; =
si—105i /[(yi+1 — Yi-1)/(xig1 — xi-1)]) for 1 < i < n, with special choices
for m; and m, such as m; = s; and m, = s,_;. When y;, y2, and y3
are monotonic, then m; = slz/[(y3 — y1)/(x3 — x1)] is recommended, and
similarly, m, = s2_,/[(¥n — Ya-2)/(Xa — Xn—2)] is recommended when
¥Yn-2+ Yn-1, and y, are monotonic. Whenever s;_;-s; < 0, the special choice
m; = 0 can be imposed.

Exercise 5.15: What happens when the Davis-Dowden scheme is
used for choosing m; when s;_; - 5; < 0?7

Exercise 5.16: Show that the cubic spline interpolation function for
the points (xy, y1), --., (Xn, yn) Withx; < X2 < ... < x,and y; <
Y2 < ...< y,0ory > y; > ... > y, with slopes estimated via
the Davis-Dowden scheme is monotonic on [x3, x,—;] when (x;4; —
Xi—1)/(xi — x;—y) < 3and (xj42 — X;)/(Xi42 — Xj4+1) <3for2 <i <
n-—2

Exercise 5.17: Propose a slope estimation scheme that produces a
monotonic cubic spline interpolant for any given monotone data.

Solution 5.17: (F. Fritsch and J. Butland [FB84]) Define s, := sy and
Sn := Sy—1 and define 57" := min(s;_y, 5;) and s/"** := max(s;_, 5;).

Then choose m; = 3s{""s/"** /(s["** + 2sM") for1 < i < n.

72 5. 2D-Function Interpolation

Cubic spline with Davis-Dowden tangents

1.6 -

0.8 r

Hyman [Hym83] has proposed a scheme for enforcing monotonicity in
a cubic spline interpolant for monotonic sequences of data points which
works by “filtering” a given sequence of slope values 4, ... , h, associated
with the data points (xy, y1), ..., (x5, yn) Where x; < x3 < ... < x,.
Let the additional slope value sy be chosen arbitrarily to correspond to the
slope at an invented point occurring prior to (xy, y1), and let the additional
slope value s, be chosen arbitrarily to correspond to the slope at the point
(xn, yn). Hyman chooses m; = sign(h;) - min(|h;|, 3 min(|s;-4], |s;])) for
1 < i < n so that his scheme will produce a monotonic cubic spline
interpolant for monotonic data provided that sign(h;) = sign(s;) whenever
si—1-8i > 0.

5.6 Error in 2D Cubic Spline Interpolation Functions

In general, a Hermite cubic spline approximation to a 2D-function f based
on given discrete points from the graph of f (and associated known or
estimated slopes) is a good approximation if f doesn’t “surprise” us in-
between the given points by oscillating rapidly or becoming very large or
very small. We cannot know, without additional information, that f is well-
behaved, but we can use the derivatives of f as a measure of how much f
can rise or fall in an interval, and it is thus possible to state how good a

5.6 Error in 2D Cubic Spline Interpolation Functions 73

Hermite cubic spline approximation is with an error bound involving the
derivatives of f. If slopes are correctly given, the error bounds we can
obtain involve only the second and higher derivatives of f.

Let f denote the function being approximated by the cubic polynomial
segments uy, ..., uUn—1, 0 that f(x;) = y; for 1 < i < n. If our slope
choices are correct, so that m; = f'(x;), then

1 4 ne
—y: < ——(x: — ¥
xe{i,‘-i’,i, | f(x) —ui(x)] < 384 (Xip1 — xi) xer;:ﬁr),:_,] [(x)].
More generally, if the slope choices m; are not correct, then
MaXeelx; i) | £) = 4 ()| < 353y — x)* MaXeep, [£ 0]
+ xip1 — xi| max(|m; — f'(xi)|, |mipy — f'xig))).
See DeBoor [DeB78] for a discussion of these inequalities.

Exercise 5.18: Show thatif x, ..., x, are equally spaced values with
Xip1—X;i = (X, —x;)/(n—1), then maxye(x, x,) | f (X)—u(x)| < kn™* for
some value k, where u(x) = u;(x) on [x;, xi+1], and where k depends
upon f and x; and x,, and my, ..., m,, but not upon n.

6

A-Spline Curves With Range
Dimension d

All forms of splines we shall consider for 2D-functions and 3D-space
curves will be A-splines as now introduced. Let A be a class of vector-
valued functions which map R to R?, such that no two functions in A are
identical on [rg, rn,—1]. Given the real valuesrg < ry < ... < rn_y, the
parametric function s(¢) defined on the interval [ro, r,—1] is called a A-
spline of join order k with respect toro,ry, ..., rn-1 ifs(t) = gt —ri_y)
forri.; <t <riand1 <i < n— 1, where each function g; is a func-
tion in A, and if s is C* continuous at ry, ... ,r,_2, i.e., s is continuous at
ry,...,rn-—2 and s has at least k successive derivatives that are continuous
atry,...,r,—2. The A-spline function s is also said to be C*-joined at the
points s(ry), ... , s(r.—2), called the join points of s.

Let C*[ro, r,_1] denote the class of functions which are continuous and
have at least k successive continuous derivatives on [rg, r,—1]. (Functions
which are continuous and have at least k successive continuous derivatives
on the entire real line are often called C*-functions). If A € C¥[ro, ra-1]
and s is a A-spline of join order k with respect to rg, ... ,r,_1, then s €
CHiro, rn-1), i.e., the A-spline function s is continuous and has at least
k successive continuous derivatives everywhere in the interval [ro, rn-1]-
The function s is defined piecewise in terms of the segment functions
81,...,8n—1. The A-spline s(t) is of range dimension d when the func-
tions in A are mappings from R to R4.

76 6. A-Spline Curves With Range Dimension d

Exercise 6.1: Show that if s : R — R9 is a C* function, then so are
all the component functions sy, ... , S4, and conversely.

The class of A-splines of join order k& and range dimension d with re-
spect to ro, ..., I, is denoted by Ag,,), with d and ry, ..., r,—; under-
stood. The particular parameter values ry, ..., r,—; are often called knot
values. Note that range dimension 1 A-splines are real-valued functions,
range dimension 2 A-splines are plane curves, and range dimension 3 A-
splines are space curves.

When we take A to be the class of cubic polynomial functions that map
R to R and we define r; = x;,; where xy, ... , x, are the abscissa values
of the points to be interpolated, then the 2D-function-interpolating Hermite
cubic splines described above are the class AY;, of A-splines of join order
1 and range dimension 1 with respect to the knot values rg, ry, ... , ry—y.

When A is a vector space of dimension m, Aj, is also a vector space,
and when the knot values ro, ry, ... , r,—1 are distinct values, dim(Aj,) =
(n —2)(m —dk — d) +m, since this corresponds to n — 1 A-curve segments
each with m degrees of freedom subject to d(k + 1) continuity constraints
at each of the n — 2 interior knot values.

Exercise 6.2: What is the dimension of the vector space of join order
1, range dimension 1 Hermite cubic splines with respect to the distinct
knot values ro, ry, ... , Fn-1?

Solution 6.2: 2n.

7

Cubic Polynomial Space Curve Splines

We may construct interpolating cubic splines for points in 3-space by us-
ing a parametric representation for such splines. Given the sequence of
points py, p2, ..., p, in 3-space, together with the associated 3-space tan-
gent vectors my, m,, ..., m,, and given the positive real parameter limit
values ty, t3, ..., t,—1, We may interpolate between the points p; and p;
with the Hermite cubic polynomial space curve x;, defined parametrically
asx;(t) = (xj(8), xi2(), xi3()) for0 <t <t;and1 <i <n — 1, where

xi(t) = a;+bit +cit* +d;t* and
x;0) = pi,

xi(t) = pi+1s

x/(0) = m;, and

x[(t) = mi.

Thus the 3-tuple vector coefficients are:

a = pi

bi = m,

¢ = 3(pis1— p)/tf — @m;i +m;y)/t;, and
di = 2(pi— pir1)/ 8 + (mi +miy) /e,

Note that each of the cubic polynomial component functions x;y, x;2,
and x;3 are Hermite cubic splines; for j = 1, 2, 3, the cubic polynomial

78 7. Cubic Polynomial Space Curve Splines

1P

Pin

segment component function x;;(f) with 0 < ¢ < ¢ joins the R?-point
(0, pij) with slope m;; to the Rz-point (i, pi+1.;) with slope m; .y ;.

We may relax the conditions that the parameter limit values ¢y, ... , t,—1
be positive when we desire. The space curve x(t), made up by the piece-
wise joining of the segment curves xy, ..., X,_1, is the Hermite cubic
spline space curve that interpolates the points p;, ..., p, with tangent
vectors mj, ... , m, and the argument-range parameter limit values 7, . .. ,
tn—3. The points p; = x1(t1) = x2(0), ..., pro1 = Xn_2(ta—2) = x,-1(0)
are the interior join points of the Hermite cubic spline x(¢).

Let H be the set of functions corresponding to cubic polynomial curves
in 3-space with a scalar parameter ¢ and all possible coefficient vectors. H
is a vector space of dimension 12. The Hermite cubic polynomial interpo-
lating space curve splines defined above are members of H},, where H,
is the class of join order 1, range dimension 3 H-splines with respect to
the knot values rg, ry, ... , rp—y Wherero = O0andr; = £, +... +1¢; for
1 < j < n. These particular splines also depend upon the additional vec-
tor parameters, py, ..., p, and my, ..., m, chosen freely from R3. When
n > 1 and the values 11, ... , t,—; are constrained to be positive, (*1) is a
vector space of dimension 6a.

For a cubic spline x € H(}), made up of the piecewise joining of the
cubic polynomial segments x;, fori = 1,2,...,n — 1, we may define
rj =Y y<<j > Withro = 0, and then define the truncated segment func-
tions X;(t) = ifri_y <t < rithenx;(t — r;_y)else 0. Then x(¢t) =

7. Cubic Polynomial Space Curve Splines 79

Y 1<i<n Xi(t) forrg < t < rn—; stated more directly, x(t) = x;(t — ri_y)
fort € [ri_y, ri]. Often we choose to define x outside the interval [ro, r,—]
by defining x(¢) = x;(¢) for ¢ < ro and x(t) = x,;(¢) for t > rn—s.

Exercise 7.1: Is a cubic polynomial space curve regularly parameter-
ized?

Solution 7.1: Not necessarily. Consider ((t — 1)3, (¢ — 1)%,0) for
0 <t < 2. However, at most three non-regular points may occur.

A cubic polynomial space curve segment has more defining parameters
and thus more freedom than a 2D cubic polynomial function segment. The
2D function u; given above, which interpolates between (X;, y;) with slope
m; and (X; 41, ¥i+1) with slope /1,1, is duplicated by the cubic polynomial
space curve segment x; with p; = (X;, yi, 0), pi+1 = (Xi41, Yi1,0), m; =
a,m;,0), miyy = (1,m;11,0), and t; = X;11 — X;. Note x; is in fact a
planar curve. However there are infinitely many other cubic polynomial
planar space curve segments that interpolate between (X;, y;) with slope
m; and (X; 4, _;’i+l) with slope mqy.

Exercise 7.2: Give several other cubic polynomial space curve seg-
ments that interpolate between (X;, y;) with slope m; and (X1, ¥i+1)
with slope m; ..

Exercise 7.3: An equidegree cubic polynomial space curve h is one
whose three scalar component polynomials have the same degree, i.e.
h satisfies degree(h,) = degree(h;) = degree(hs). Show that “in the
large,” an equidegree cubic polynomial space curve “looks like” a line
or a ray. More precisely, show that for an equidegree cubic polynomial
space curve h(t) = a + bt + ct®> 4+ dr® with a,b,c,d € R>, there
is an associated unit vector u such that A (¢) asymptotically approaches
the line {ou | @ € R} ast — oo and ast — —o00. Also show that
every unit vector u has three corresponding equidegree cubic polyno-
mial space curves which asymptotically approach the line defined by u.
Hint: Consider the combinations of the casesd =0, ¢ =0, and b = 0.
What about non-equidegree cubic polynomial space curves?

Sometimes we may want to extrapolate forward or backwards outside
the curve between p; and p,. We may use the cubic polynomial space
curve x;(¢t) with ¢t < 0 to extrapolate points before p;, and we may use
the cubic polynomial space curve x,_;(¢t) with t > t,_; to extrapolate

80 7. Cubic Polynomial Space Curve Splines

Hermite Blending Functions

0.5 F

points after p,; however, these curves sometimes bend sharply “outside”
the intervals they are selected for. Alternatively, we may use local linear or
quadratic extrapolation beyond the end points. It is sometimes useful for
fine control to add two additional points with associated tangent vectors
at each end and use the new induced cubic polynomial segment curves to
effect the extrapolation calculation which is now converted to an interpo-
lation calculation.
The Hermite cubic polynomial segment curve, x;, may be written as

x;(t) = yi(t/t;) where
yis) = (1-3s*+25°)p;i + (3s* = 28°)piy
+ (s — 282 + sHem; + (s* = s2)m;i 4y,
so that {x;(¢) | t betweenOandt;} = {yi(s) | 0 < s < 1}. In addition
to being an effective round-off error reducing formula for computing x; (¢),
this shows that x;(¢) is a linear combination of the vectors p;, pj.1, tim;,

and t;m; +y; the functions of s that appear as the scalar coefficients in this
linear combination are called the Hermite blending functions.

Exercise 7.4: The orthogonal projection of a Hermite cubic spline
space curve onto a plane produces a planar curve. Is this curve isometric
to a plane Hermite cubic spline?

Exercise 7.5: Show that x;(0) = m; and x/(t;) = m;;.

Note that a curve in the xy-plane can be embedded in the complex plane
with the correspondence (x(t), y(¢)) — x(t) + iy(t) and described with

7.1 Choosing the Segment Parameter Limits 81

the complex-valued function of a real argument: z(¢) = x(¢) + iy(?).

Thus we may express the cubic spline segment curve in the plane which
interpolates between the point a with tangent vector p and the point b with
tangent vector g as a complex-valued function z(¢) of a real argument ¢
with 0 < ¢t < 1. Let us write a, p, b, and g as complex numbers; then
2(t) = (1 =32 +2)a 4+ 32 = 2b + t(1 — 1)?p + £2(t — 1)q. If we
wish, we may write a, b, p, or q in polar form to explicitly exhibit their
magnitudes and polar angles. For example, if p = re’? and g = se’®, then
z(t) = (1 =324 2t3a + (32 = 2)b + t (1 — 1)?re® 4+ 12(¢ — 1)se'®.

Exercise 7.6: Show that {ei“’z(t) | 0 <t < 1} is the rotation of the
curve segment {z(t) | 0 < ¢t < 1} about the origin in the complex plane
by the angle .

7.1 Choosing the Segment Parameter Limits

The arc length of the interpolating curve segment x; between p; and p; 4,
is bounded below by the value |p;+; — pi| and is directly related to the
values |m;|, |m; 41|, and |¢;|, although the exact relationship is complicated.
As a heuristic, we may choose each parameter limit value ¢, for1 < i <
n — 1, as the desired arc length of the corresponding interpolating curve
segment between p; and p; .1, or as an approximation thereof, such as t; =
|pi+1 — pil or t; = 1. Another choice is to take t; = |p;4+1 — p;i|'/?; this is
the so-called centripetal parametrization proposed by E. Lee [Lee89]. An
alternate way to choose the values ¢y, ... , t,_y is via the maximum norm
distance; take t; = | max(pi+1.y — pi.1> Pi+1.2 — Pi.2> Pi+1.3 — pi.3)|. That
is, #; is the largest of the distances between p;,; and p; in each coordinate
direction. A variation on this idea is to use the sum of the distances between
Pi+1 and p; in each coordinate direction as the value for ¢;.

Exercise 7.7: If #; is used in the definition of the segment curve x; to
approximate the arc length of x; between p; and p; 41, isn’t it necessary
that & > |pi41 — pil?

Solution 7.7: No, because the coefficients of the terms in x; take the
magnitude of ¢ into account.

Exercise 7.8: What happens if p; = p;,1? Consider both the special
cases m;jy; = m; andm; 1 = —m;,

82

7. Cubic Polynomial Space Curve Splines

Exercise 7.9: What is the trace of x;(¢) for p; = p;+1,m; = m;, and
t; = 17 Can a planar cubic spline segment form a figure-eight shaped
curve?

Exercise 7.10: What is x/(0) in the case when m; = 0? Hint: look at
x;(0). What happens when m; ,; = 0?

Exercise 7.11: Graph the cubicsplineforpy = p, =...=p, =0
with t; = ... = t,_; = 1, with various choices for the tangent vectors

my,... ,my.

Exercise 7.12: Experiment with choices of #;. What happens if one
or more of the f;-values are negative? What happens when ¢; is small?
What happens if t; = 0 when we use the cancellation convention that
0/0 = 1? What if we take 0/0 = 0?

Solution 7.12: When¢; = 0, x;(0) = p;+1, with the convention 0/0 =
1. Thus a discontinuity is introduced when t; = 0 and p;,; # p;. When
t; = 0 and p;41 = p;, but m; # m;,, we generally obtain a cusp at p;.

Another way to choose ¢y, ... , t,—1, proposed by Yamaguchi [Yam88],

is to base the choice of ¢; on the lengths of suitable circular arcs that locally
fit the data points. Let a; be the arc length of the circular arc between p;_»
and p;_, on the circumference of the circle C; that is defined by the three
points p;_2, pi—y, and p;. Let b; be the arc length of the circular arc between
pi—1 and p; on the circle C;. Then we can define #; = a3, t,_y = b,, and
tj = (@j42 + bji1)/2for 2 < j < n — 2. This same idea can be carried
out using parabolic arcs, but the required arc length calculations are more
difficult.

Exercise 7.13: Devise a method to compute #; so that ¢ is the true arc
length of x;(¢) between p; and p;;.

Solution 7.13: Initially estimate t,.(o) = |piy1 — p;il. Then for k =

. k+1 L Lk
1,2, ..., until convergence, compute t,-() = fogﬂm |x/(¢; t,.()|, where

x;(t; t,-(k)) is the Hermite cubic polynomial space curve based on p;, pi+1,
m;,m; .y, and t,(k). Alternatively, use Newton’s method to solve for ¢; in
the equation t; = [y, _, Ix/(t; 1i)].

Exercise 7.14: What is the relationship between ¢; and the arc length
&) = foci<y XD

7.1 Choosing the Segment Parameter Limits 83

Solution 7.14: The function g; is concave. When ¢ is small, x; is
nearly a straight line, so in general, g;(#;) > t; when f; is small enough.
As t; increases, a point is reached where g;(%;) = t;, and beyond this
point g;(#;) grows slower than f;. The cubic spline segment x; is never
an arc length parameterization, even when g;(f;) = ¢;, unless x; is a
straight line.

Exercise 7.15: Show that, whent; = 1for 1 < i < n, then

a; 1 0 0 0 Pi
bi | _ 0 0 1 0 Di+1
a || -3 3 =2 =1 || m
d; 2 -2 1 1 miq

Recall that the Hermite cubic polynomial segment curve, x;, may be
written in terms of Hermite blending functions as

xi(t) = yi(t/t;) where
yi(s) = (1-3s+25%p; + (3s* = 25°) piss
+ (s — 232 + s3)t,~m,- + (33 - Sz)t[mi.H,

so that {x;(¢) | t betweenOand¢ } ={yi(s) |0<s <1}

Let C(pi, pi+1,mi, mi1, ;) = {x;(¢) | t between 0 and ¢; }, with ¢; pos-
itive or negative. Then, by referring to the Hermite blending function rep-
resentation of x;, we see that

C(pi, pi+1.mi,mi 1, ;) = C(pi, Pi+1, tim;, timjgy, 1).

Thus choosing the parameter limit value % amounts to selecting a scalar
multiplier for the tangent vectors m; and m;.;; therefore for the single
cubic segment x;, the limit value 4 may be fixed, say at ; = 1, with
no loss of generality, since m; and m;,; may be compensatorially scaled.
This also shows that choosing £; < 0 amounts to reversing the directions
of m; and m;,. Nevertheless, the freedom to choose ty, ..., t,—; is valu-
able since it, in effect, allows the spline segments x; and x;;, which join
at p;4 to have separately controllable arc lengths or flatness, while still
having tangent geometric continuity at the join point p;y;. (A curve x
is tangent geometrically continuous at a point x(t) if the left entry and
right exit tangent vectors x”_(¢) = limso(x(r) — x(t — 8))/8 and x/.(¢) =
limg o (x (¢ + &) — x(t))/8 have the same direction, but not necessarily the

84 7. Cubic Polynomial Space Curve Splines

same magnitude. The curve x is tangent algebraically continuous at x(t) if
x_ () = x/,(¢)). Because of the effect of the parameter limit value ¢; on the
segment x;, ¢, is sometimes called the tension of x;. (Perhaps f; should be
called the inverse tension or slackness of x;, since the smaller #; becomes,
the more taut the curve segment x; becomes).

Exercise 7.16: Directly verify that C(pj+1, pi, =M1, —M;, ;) =
C(Pi, Pi+l ,Mi, My, tl')‘

Exercise 7.17: Show that C (x; (¢), pi+1, X/(¢)/ti, m; 41, ;) S
C(pi, Pi+1- Mis M1, ti) forO <t <.

Exercise 7.18: Let x;(¢) be the Hermite cubic polynomial segment
curve for the points p; and p;;+, with the tangent vectors m; and m;
with 0 < ¢t < ;. Let X;(¢) be the segment curve for the points p; and
Pi+1 with the tangent vectors 717; and ;4 and with the same parameter
range 0 < ¢t < t;. Show that x;(¢t) + X;(¢) is the segment curve for the
points p; + p; and p;1 + p;,, with the tangent vectors m; + m; and
m;y + m;y with0 <t < ¢;, and thus show that Hermite cubic spline
interpolation is a linearly combinable interpolation scheme.

Exercise 7.19: Study the closed curve g whose graph is given by
the set C(p;, piry, m;,m;iyy, 1) U C(pit1, pi»m;yy, m;, 1) in both the
2-space and 3-space cases. Characterize the convex hull of the graph
of g.

Exercise 7.20: Show that if x is a regularly parameterized tangent
geometrically continuous curve, then at each point x(¢) with 0 < ¢ <
1, there exists a function A(¢) such that the reparametrization of x :
X(s) := x(h(s)) is tangent algebraically continuous. Hint: h may be
chosen to yield an arc length parametrization.

Exercise 7.21: How can we generate a sequence of parameter values
0 = ug, uy, ..., up_y, up = t; which result in approximately equally-
spaced points x;(0), x;(uy), ..., xi(ux—1), x;(t;) on the space curve
segment x;?

Exercise 7.22: What is x;(¢) in the case where m; = a(pi+1 — pi)
and m;yy = B(piy1 — pi)?

7.2 Estimating Tangent Vectors 85

Cubic splines with; = .05, .2

1.3

1.04

0.78

0.52

0.26

Solution 7.22: x;(¢t) = p; + v(¢)m where m = p;,y — p; and v(¢) =
at + (3 — Qo + Bt/ + (@ + B)ti — 2)t3 /6. Whena = 8 = 1,
v(t) =1t.

Exercise 7.23: Under what conditions can x;(t) = 0 occur? Give
examples of values for p;, pi+1, m;, mj 41, t; and ¢ for which x;(¢) = 0.

7.2 Estimating Tangent Vectors

We may choose the tangent vectors my, ..., m, for a cubic spline space
curve interpolating the points py, ..., p, using a local definition such as
m; = (u; + u;—1)/2, where u; = (pj+1 — pj)/|pj+1 — pj| with special
choices for ug and u,. Each vector u;, j = 1,...,n, is the unit tangent
vector parallel to the line segment between p; and p;, directed from p;
to p;.;. Generally, we will want to scale the tangent vectors my, ... ,m,
to have what we deem to be suitable magnitudes, either explicitly or im-
plicitly by our choices of the parameter limit values ¢, ... , t,—;. We want
to control the magnitudes of our tangent vectors in order to control the arc
lengths of the individual spline segments, which should generally be longer
as the distances between the interpolated points increase.

For the special case of a planar curve where p; = (x;, y;, 0), Akima
[Aki70] suggests: m; = |pi+1 — pil(ri, vi, 0)/|(ri, v;, 0)|, where r; =

86 7. Cubic Polynomial Space Curve Splines

hiai_y + giai, vi = hibj_y + gbi, hi = |aibj+y — ai+1bil, g = laj—2b;i—y —
a;j_1bj_2|, and a; = x;y — x;, b; = yi4+y — y; with special choices of x_;,
X0, Xn+1, Y—1, Yo, and yp 1.

We can also try the following tangent estimators for a Hermite cubic
space curve spline, where u; := (p;j+1 — p;j)/|pj+1 — pjl. In all cases,
special rules must be imposed to specify m; and m,.

1. For plane curves in the xy-plane, we may take m; = (cosé;, sin6;),
where 6; = (atan2(p;2 — pi-1.2, Pi1 — Pi-1.1) + atan2(pi412 ~
Pi2s Pi+1.1 — Pi.1))/2. Recall that atan2(y, x) is the angle by which
the vector |(x, y)|(1, 0) must be rotated counterclockwise to coin-
cide with the vector (x, y) in the xy-plane. Such angle-based tangent
estimators can be extended to be used for space curves by separately
mapping each three points p;_;, pi, pi+1 to and from the xy-plane
with a rigid motion.

2. m; = |pis1 — pil(lpi+1 — pilui—1 + |pi — Pi-1|ui)/|pis1 — pi-1l.
3. m; = |piy1 — pilui—y + | pi — pi-1lu;.
4. m; = |piy1 — pil(pi+1 — pi-1)/1Pi+1 — Pi-1l.

S. m; = (pi+1 — pi—1)/2. This is often called the Catmull-Rom or the
chordal tangent estimator.

6. mj = (1 —c;)uj_y + ciuj where ¢; = |ujpy —ui_2|/(lui—y —uj_2| +
|jry—ui|) when |u;y—ui|+|ui_y—u;_>| > 0and ¢; = 1 otherwise.
Take u_;, = uy and uy = u,, and take u,,y = u, to define m; for
1 < i < n. This is based on Akima’s tangent estimator for planar
curves, given above.

The options (1) and (6) given above specify unit length vectors, and
will, in many situations, need to be scaled; some approaches for computing
suitable scale values are discussed below.

Exercise 7.24: Show that, when m; and m; ;, are defined by (3) or (5)
above, then the spline segment x; (t) becomes a.x; (t) when p; and p; 41
are replaced by ap; and ap; ;.

Exercise 7.25: Consider the following scheme for computing an esti-
mate form,. Letu = (p2—p1)/|p2— p1l, andlet v = (p3— p1)/2. Now
define m, in terms of the euclidean inner product as m; = 2(v, u)u —v.

7.2 Estimating Tangent Vectors 87

Explain the idea of this estimation formula, and state the similar for-
mula for estimating m,,.

Solution 7.25: m, = 2(b, a)a—b, wherea = (pp—1—Pn)/|Pn—1— Pn|
and b = (pp—2 — pn)/2.

Note that any slope estimation scheme for 2D functional (x, y) data can
be employed in estimating tangent vectors for 3D (x, y, z) data by using
the 2D slope estimation method for the x, y, and z component data sepa-
rately with a common sequence of parameter limit values determined by
any means desired taken as the (independent) argument values. Also, any
2D curve interpolation scheme can be applied to univariate functional data.
In this latter case, however, it is not guaranteed that the resulting curve will
be the graph of a function. In the case of functional data, it is often appro-
priate to transform the tangent vectors my, .. ., m, by scaling m; by 1/m; 1,
so that our tangent vectors all have 1 as their first component.

Exercise 7.26: What do you think of the following procedure to ex-
tend a 2D tangent estimation method to 3D data points p;, ..., pn?
Take the mean of the three sequences of tangent vectors obtained by
estimating the 2D tangent vectors in the xy-plane for the (p;;, pi2) data
(promoted to 3-space), and the estimated 2D tangent vectors in the xz-
plane for the (pi1, pi3) data (promoted to 3-space), and the estimated
2D tangent vectors in the yz-plane for the (pj2, pi3) data (promoted to
3-space).

Exercise 7.27: If m; = 0, does the Hermite cubic spline curve x have
a well-defined tangent vector at the point p;?

Exercise 7.28: Show that the Hermite cubic spline for py, p2, ..., p»
andm; = my; = ... = m, = 0 is the piecewise linear interpolant
connecting py, pa, ..., pn in that order. What happens when an isolated
tangent vector, m;, is 0, with m;_; # 0 and m; .y # 0?

The shape of the Hermite cubic polynomial segment curve x; depends
upon the parameter limit value # and upon the directions and the mag-
nitudes of the tangent vectors m; and m;,. Let uy, uz, ..., u, be n unit
vectors, and let us choose m; = fy;u; for 1 <i < n as the tangent vectors
used to determine the space curve polynomials xi,...,x,_;. The scalar
f is a non-negative real number called the overall tension or flatness pa-
rameter, and 1, ..., ¥ are additional non-negative local tension control

88 7. Cubic Polynomial Space Curve Splines

Chordal-tangent space-curve spline, f = .4, 1, 3, 10

i

1
0.1 2.2 5.4 8.6 11.8 15

—

variables to be chosen as desired. The values fyy,..., fy, determine the
magnitudes of the vectors my, ..., m,, and the unit vectors uy, ..., u, de-
termine the directions of my, ..., m,. A general Hermite cubic space curve
spline is determined by p1, ..., Pn, Uty .-y Uny Y1seevs Vs ts s ltnets
and f. For a fixed value of f, the greater y; is, the more the curve x;
hugs the ray, ray[p;. pi + u;], and in the same way, the greater y;, is, the
more x; hugs the ray, ray[pi+1, pi+1 + ui+1]. The arc length of x; between
pi and p;, increases as |y;y;4+1| increases. When y; and y,., are both
large enough, the curve x; loops for suitable directions u; and u;.y. If u;,
uj+1, pi and p;4 are coplanar, then x; is planar, and any loop entails the
self-intersection of x;. It is also possible for x; to have a solitary cusp as a
kind of degenerate loop. A rough heuristic for choosing the magnitudes
ofmy,... ,m, istoaim for |[m;| + |miyi| = 2| p;yy — p;| withg; = 1.

The choice of the values ¢, t2, ... ,t,_1 and 34, ... , ¥, and f can dras-
tically affect the spline curve that is generated for interpolating given points
P1s ... , Pn With the unit tangent vectors uy, ... , u,. If some of these val-
ues are too large, you will see baroque shapes, while if some are too small,
the tension of the corresponding parts of the resulting spline will be too se-
vere. Also, the “extrapolated” parts of the curve can behave in unexpected
ways, Consider the above spline curves using the same tangent estimation
method, and varying only the value of the flatness scale factor f.

Exercise 7.29: Determine a way to predict when a planar Hermite
cubic spline segment will form a loop.

7.2 Estimating Tangent Vectors 89

Exercise 7.30: How can we introduce tension multipliers for 2D func-
tional interpolation using degree 3 Hermite polynomials?

Solution 7.30: Use 2D space-curve interpolation with tension mul-
tipliers to obtain the parametric functions x(¢), y(¢). The tension mul-
tipliers must be chosen so that a function graph is obtained; there can
be no loops or retrogression. Then, given an x-value xo, find the corre-
sponding y-value by first solving x (¢9) = xo for the value #, and then
use this value £y to compute y(f). This entails computing a root of a
cubic polynomial.

Exercise 7.31: Show that if x; is the Hermite cubic polynomial seg-
ment curve defined by p;, pi.1, mi, mi.1, and ¢;, then ax; + g is the
Hermite cubic polynomial segment curve defined by a p; +¢q, @ pi+1+9,
am;,am; ., and t;.

Exercise 7.32: (J. Chou [CP92]) Given the cubic polynomial space
curve x(t) = (1=3t242t3) py +(3t2=2t3) py + (¢ =212+t Yau, + (£ -
t3)Buy with |uy| = 1, |uz] = 1,x(0) = p1,x'(0) = auy, x(1) = p,,
and x'(1) = Bu,, and given a point g € R?, devise a way to choose
the scalars v, o and 8 such that x(v) = g and 0 < v < 1 when this is
possible. Also state the conditions for which no such values v, a and 8
exist.

Exercise 7.33: Let Q be a 3 x 3 rotation matrix, Show that if x; is the
Hermite cubic polynomial segment curve for p;, piy1, m;, m;yy, and
t;, then x; Q is the Hermite cubic polynomial segment curve for p;Q,
Piv1Q,m;Q,m; 1 Q,and t;,

Exercise 7.34: Compute the unit normal vector v(¢) for the Hermite
cubic polynomial segment curve x; at the point x; ().

Exercise 7.35: Suppose we are given two points p; and p; to be con-
nected by a cubic spline segment curve x(¢) for 0 < ¢ < 1. Instead of
having the tangent vectors m; and m,, we are given the normal vectors
n; and n; such that, when x is correctly determined, (n;, x'(0)) = 0
and (n3, x'(1)) = 0. Devise a satisfying way to estimate m, and m; so
that the cubic spline segment curve based on py, p;, m;, and m; has
(nl, ml) = (ny, MZ) =0.

90

7.

7. Cubic Polynomial Space Curve Splines

Solution 7.35: (G. Nielson [Nie74]) Determine m, by taking m; +
p1 = the intersection of the line line(n,+ py, p;) with the tangent plane
pi1+{p | (ny, p) = 0}. Similarly, determine m by taking m,+ p, = the
intersection of line(n, + p;, py) with the plane p, + {p | (n2, p) = 0}.

Exercise 7.36: Given the cubic spline segment x;, explain how to
compute the smallest axis-aligned box B containing the curve trace
C(pi, Piv1-mismigy, b)) = {xi(¢) | 0 < t < ;). Also explain how
to compute the smallest sphere S containing {x;(¢) | 0 <t < t;}.

Exercise 7.37: Compute the curvature function, K (¢}, and the torsion
function T (¢) of the Hermite cubic polynomial space curve segment
x;(t), excluding any non-regular points.

Exercise 7.38: Lett,,...,!,—; be non-negative real numbers. Define
ri :=t+t,+---+t; forQ0 <i < n—1, and show thatif p; = z(r;_;) and
m; = 2'(r;_y) for 1 <i < n, where z(t) = a + bt + ct® + dt3, then the
Hermite cubic spline interpolation function, x, basedon ty, t2, ... , t,—1,
pt, P2, .., pnand my,...m, is identically z.

3 Bézier Polynomials

Cubic spline segments are often introduced via the so-called Bézier form
[B74]. The Bézier cubic polynomial space curve for the control points
P1, P2, D3, and py is just the Hermite cubic interpolating polynomial space
curve for the points p; and p, with the corresponding tangent vectors
3(pz — p1) and 3(ps — p3) whose parameter ¢ runs from 0 to 1 to gen-
erate the curve between p; and p,. Thus the Bézier cubic for the control
points p;, p;i +m;/3, piy1 — m;y1/3, and p;,; is the same as the Hermite
cubic polynomial x; for the points p; and p;,; with the associated tangent
vectors m; and m; ., whose parameter ¢ runs from 0 to 1.

Exercise 7.39: Show that the osculating plane of the Hermite cubic
polynomial space curve segment x; (), with 0 < ¢t < 1, at x;(0) is the
flat p; + plane(0,m;/3, pi.y — pi — m;4+1/3). Can m; /3 be replaced
by m;? Can m;,/3 be replaced by m;,? What is the osculating plane
of x; at x; (1)?

The Bézier cubic polynomial form can be written using the Bernstein

basis polynomials as blending functions, where the ith degree-k Bernstein

7.3 Bézier Polynomials 91
basis polynomial denoted by Ny is Nk (¢) := (4)t7(1 — £)*~1. We have

xi(t) = piN+o(@)+(pi+m;/3)N31 () +(pi1—miy1/3)N32(t)+ pi 11 N33 (2).

Exercise 7.40: What is the relationship between Bernstein polynomi-
als and the binomial theorem?

Exercise 7.41: Let b = p;, b9 = p; + m; /3,03 = pjy1 — miy;/3,
bS = piyy. Define b¥(z) = (1 —)b~ (1) +1b¥] (¢) fork = 1,2,3 and
i=0,1,...,3—-k

Show that bg(t) = x;(t), where x; is the Hermite cubic polyno-
mial for the points p; and p;,; with the associated tangent vectors m;
and m; .y whose parameter ¢ ranges from O to 1. This construction of
x;(t) by repeated convex combination linear interpolation is called de
Casteljau’s algorithm. Computing x;(¢) with de Casteljau’s algorithm
is numerically more stable (introduces less round-off error) than com-
puting x;(¢) directly (with Horner’s rule). In practice this difference is
rarely troublesome.

Exercise 7.42: Show that {x;(¢) | 0 <t < 1} is contained in the vol-
ume in R3 whose boundary is convexhull({p;, p;+m;/3, Pis1, Pi+1—
mi.1/3}). The polytope (or polygon when x; is a plane curve)
convexhull({p;, pi +m;/3, pi+1, pi+1 —mi+1/3}) is called the Bézier
polytope (or the Bézier polygon when x; lies in R?) of the segment
curve x;. Hint: use knowledge of N3y, N3y, N33, and N33 to show that
x;(t) is a convex combination of p;, p;+m;/3, pit1,and pir1—m;1/3.

Note that the Bézier cubic space curve for the control points pi, p2, p3,
and p, connects p; and p, while generally only passing close to the points
P2 and ps; thus the Bézier cubic is not an interpolating curve. Rather it
may be considered a smoothing curve. The Bézier degree n smoothing
polynomial bj(¢) for the points py, ..., payr is

ba(t) = me (?)tf(l —)" " for 0<t<1.
i=0

As ¢ ranges from 0 to 1, bi(¢) joins the points p; and p,,; and passes
“near” the points pz, ..., p,. Indeed, if p;y1 = (3, f (%)) for some recti-
fiable continuous function f, then bj(t) — f(t) asn — oo fort € [0, 1],

7. Cubic Polynomial Space Curve Splines

0.8

0.6

0.4

0.2

0.6

0.2

-0.2

-0.6

-1

i
1 1.6 2.2 2.8 3.4 4

B zier polygon and spline segment

B zier polygon and spline segment
[}

2
-3 -1.6 -0.2 1.2 2.6 4

7.3 Bézier Polynomials 93

and the function b is a kind of “kernel estimator” for the function f, where
(")t ="~ fori = 1,...,n + 1 are the kernel functions with the
argument ¢ and the parameter n.

8
Double Tangent Cubic Splines

We may construct a more general class of cubic space curve splines called
double tangent splines by introducing two tangent vectors at each point p;.
Let m,, ..., m, be the exit tangent vectors at py, ..., p,, and letly, ..., 1,
be the entry tangent vectors at py, ..., p,. We intend that our double tan-
gent spline will asymptotically enter the point p; along the line parallel to
the vector /; and exit from the point p; along the line parallel to the vector
m;. Now we define the double tangent cubic spline space curve segment x;
which defines the spline between p; and p; . as follows:

xi(t) = a; +bit +c;t* +d;t>, where
a; = D
b = m,
¢ = 3(pi1— P/} — @mi + i)/,
di = 2(pi — pis))/ 5 + (mi + L)/t

The curve x; is the local Hermite cubic polynomial curve segment such
that x; (0) = pi, xi(t;) = pis1, x;(0) = m;, and x/(t;) = li;1. Then the
associated double tangent cubic spline is defined as x(¢) = x;(t — r;_;) for
t e [r,~..1, riywithrg:=0andr; := h+...4+¢.

If the vectors ; and m; are not identically directed, x;_; joins x; at p;
with a cusp at p;. Even when /; is a multiple of m;, x;_; does not join x;

96 8. Double Tangent Cubic Splines

at p; with an algebraic continuous tangent vector unless /; = m;, thus we
may have tangent vector geometric continuity, i.e., directional continuity,
without having tangent vector algebraic continuity. When /; = m; for
1 < i < n, the segments xy, ..., x,—; form a continuously differentiable
Hermite cubic spline curve (often called a C' cubic spline curve). Note /;
and m, are unused in defining the double tangent spline on [rg, r,—;).

Thus it is possible to introduce a discontinuity in the derivative of a dou-
ble tangent cubic spline interpolating space curve at any desired data points
by suitably choosing the two sequences of tangent vectors: my, ..., m,,
and Iy, ..., I,. The vectors I; and m; may be chosen to be unequal in di-
rection, or length, or both, and different effects can be achieved in each
case.

Reducing or increasing the magnitude of the tangent vector m; affects
both the segment curve x;_; and the segment curve x; in a single tangent
cubic spline, while changing the parameter limit value ¢; affects how both
m; and m;,; govern the shape of the segment curve x;. Double tangent
splines are often useful because a double tangent spline allows us to over-
come these coupling constraints and control the tension and shape of the
individual segment curves independently. In particular, we can specify a
spline curve which enters the point p; along the line {p; + al; | @ € R}
and exits along the line { p; + Bm; | B € R}, but which “hugs” these lines
to differing degrees depending upon the magnitudes of the vectors /; and
m;.

Exercise 8.1: How should the double tangent spline x be extended so
as to be defined on (—00, rg) and on [r,_;, 00)?

8.1 Kochanek-Bartels Tangents

Kochanek and Bartels [KB84] have proposed that the exit and entry tan-
gent vectors m; and /; at the point p; be chosen as:

m; = (1—-a;)1+ 61 —y)(pi— pi-1)/2
+ (1 —a;)1 = B + ¥)(pis1 — pi)/2, and
L = Q-+ 8)A+vi)pi—pi-1)/2

+ (1 —a))d = B —¥)pis1 — P)/2

for2 < i < n — 1, with special choices for m; and /,. The scalar values
ai, Bi, and y; may be chosen separately for each point p;. The value o;

8.2 Fletcher-McAllister Tangent Magnitudes 97

affects the tension of the segment curves x; and x; 41, near p;; the value of
B; affects the bias near p; which is the amount the curve segments x; and
x;+1 shift asymmetrically near p;; and the value of y; affects the tangent
vector continuity of the segment curves x; and x;; joining at p;. Tension
near p; is increased when «; approaches 1 and decreased as «; decreases
toward —1; o; = 0 corresponds to neutral tension. Bias near p; is neutral
when B; = 0, shifted to the entry side of p; when B; approaches —1
and shifted to the exit side when B; approaches 1. Finally the spline curve
has an increasingly-pronounced sharp corner (i.e., a discontinous tangent)
toward one side at p; when y; approaches —1 and toward the other side as
y: approaches 1; y; = 0 corresponds to neutral tangent continuity.

Exercise 8.2: Experiment with various choices of my, ..., m,_; and
L, ..., 1,. Hint: it suffices to consider just two adjacent spline segments
with a common join point.

8.2 Fletcher-McAllister Tangent Magnitudes

Fletcher and McAllister [FM86] have suggested a useful heuristic for choos-
ing the magnitudes of the exit tangents m,,... ,m, and the entry tan-
gents /;, ..., 1, for planar geometrically continuous double tangent cu-
bic splines which we generalize for py,..., p, € R>, as follows. Let
uy,...,u, be any desired choice of unit vectors which we take to spec-
ify tangent directions at py, ..., p,. For example, we may choose u; =
(Pis1 — pi-1)/|Pis1 — pical for 1 < i < nwithuy := (p2— p1)/|p2— p1l
and u, := (pn — Pn-1)/1Pn — Pa-1l- Let f denote a uniform scale factor
used to control the overall tension imposed on our double tangent cubic
space curve spline.

Now fori = 1,...,n — 1, we may determine the entry and exit tangent
vectors m; and /; associated with the segment curve x; by applying the
following procedure.

La<u; b<u vepia—pi

2. If a and b are linearly dependent, and a and v are linearly indepen-
dent, replace b by its reflection about v in subspace(a, v),ie., b «
2[(b, v)/(v, v)]v — b.

3. If a and b are still linearly dependent, set ; « |v|/2 and set 841 «
|v|/2, and go to step 10.

98 8. Double Tangent Cubic Splines

4. Let T denote the 3 x 3 matrix for the projection onto subspace(a, b)
and let w = vT.If w = 0, set o; < |v|/2 and set B;1 « |v]|/2,
and go to step 10.

5. Let R denote the 3 x 3 rotation matrix that rotates plane(0, a, b) onto
the xy-plane such that wR = (Jw|,0,0).a « aR; b « bR; w «
wR.

6. Ifa; < 0,seta «— —a.

7. If by <0,setb « —b.

8. If (ay)(by) > 0, set a; « —as.

9. Leto; and B;41 be scalar values such that o;a + 8;.16 = w.
10. m; « fa;ui; Ly < fBis1uigr, and stop.

The scalars B; and «, and the vectors m, and /; may be chosen arbitrar-
ily; for example, we may choose m, = |l,|u, and I} = |m;|u;.

Exercise 8.3: Experiment with the above algorithm for n = 2 and
n = 3 witht; = r, = 1. What happens when u; = (p2— p1)/|p2— p1l?

Solution 8.3: In general, if u; or u; ., are multiples of p;,; — p;, the
spline segment x; reduces to the straight line segment joining p; and
Pi+1. Forexample, if u; = (pi+1— pi)/|pi+1— pil and u; 1 is chosen to
be linearly-independent of p; .1 — p;, then x; and x;; have join order O
at p;,, and there will be a cusp at p; . (unless p; > and u; - are chosen
exactly so that the traces of x; and x;.; lie on the same straight line.)
If such cusps are not wanted, the Fletcher-McAllister double tangent
estimation scheme may be modified by establishing a lower bound for

the exit and entry scale factors ay, ... ,a, and B1, ... , Bn.
Suppose py, ..., py and uy, ... , u, all lie in the xy-plane; choose the
parameter limit values t; =, = ... =t,_; = 1. Now suppose «; B+ > 0

such that o;u; + Bi+1ui+1 = piy1 — pi- Fletcher and McAllister have

shown that, in this situation, the planar segment curve x; has no inflection
points between x;(0) and x;(1) when the tension scale factor f satisfies
f < 3. They demonstrated that the segment curve x; (t) between x;(0) and
x;(1) posesses no inflection point as follows. Recall that when a and b
are points in the xy-plane, the point a lies to the west of the directed line
defined by the vector b when ajb; — a;b; > 0 and a lies to the east of

8.2 Fletcher-McAllister Tangent Magnitudes 99

the directed line defined by the vector b when ayb2 — a2by < 0. Thus, if
[x/(O]i[x (]2 — [x; (®)]2[x; (¢)]1 never changes sign for 0 < ¢ < 1, then
x; does not possess an inflection point between x;(0) and x; (1)

Letq; := piv1—pi- Then x/(t) = m;+2t[3q; —(2m;+1i 1 1)]+3t*[—2g;+
m; + lix1] and x['(¢t) = 2[3g; — Cm; + Li)] + 6t[—2g; + m; + [;14].
Also we have m; = fa;uj, liyy = fBiqlis1, and o;u; + Bijiuivy = q;,
so x/(t) = (1 —20) fosui + [2¢(3 — f) + 3t3%(f — 2)]g; and x'(t) =
[6t(f —2) —2f +6lq; — 2 fa;u;.

Thus [x!(O1 [x] 2= [x/ O L[x/ O = [2— B2 =3t+1)+1]2 fo;
(giz4i1 — gi1u;2), and this expression changes sign as ¢ ranges over [0, 1]
only when 3 < f < 6, since the maximum value of 3t — 3¢t + 1 for
t € [0, 1]is 1 which occurs whent =0or¢ = 1;and (2— f)-1+1 > Ofor
f < 3. Note when f = 3, the planar segment curve x;(t) has 0 curvature
whent = 0Oandwhent = 1. For 3 < f < 6, the curve x; has two inflection
points between x;(0) and x;(1). When f = 6, x; hasacusp att = .5, and
when f > 6, x; forms a loop and has no inflection points.

Note that when «;8;;; > 0 such that oju; + Bir1ui1 = piy1 — pi and
0 < f < 3, the triangle with the vertices p;, p;+1, and p; + o;u; covers the
Bézier polygon of the segment curve x;. Also note that when py, ..., p,
are R2-points of the graph of a convex-upward function, and u;, ... , u,
are the corresponding unit tangent vectors, the corresponding Fletcher-
McAllister double tangent spline with f < 3 will also be a convex-upward
function.

Exercise 8.4: (G. Y. Fletcher and D. McAllister [FM86]) Suppose
P1s--- Do and uy, ..., u, all lie in the xy-plane and choose the pa-
rameter limit values t;, = ¢, = ... = t,_; = 1. Now suppose ;i >
0 such that o;u; + B;(1u;41 = piy1 — pi- Show that when f = 2, each
component of the segment curve x; is a quadratic function.

Exercise 8.5: (G. Y. Fletcher and D. McAllister [FM86]) Suppose
Pl,...,pnand uy, ..., u, all lie in the xy-plane and choose the pa-
rameter limit values f;, =, = ... = t,-1 = 1. Now suppose a;8;;1 <
0 such that o;u; + Big1uir1 = pic1 — Di- Show that the intersection
point of the segment curve x; and the line segment segment (p;, pi+1)
is x;(.5). Also show that x;(.5) is the single inflection point of x; be-
tween x;(0) and x; (1) when the tension scale factor f satisfies f < 6.

Exercise 8.6: Study the following method for extending the Fletcher-
McAllister double tangent estimation procedure for 2D data points and

100

8. Double Tangent Cubic Splines

tangent-directions to apply to space curves. For the interpolation points
Dis ... pn € R?, with associated parameter limit values ¢y, ... , t,_,
and chosen initial tangent directions given by unit vectors u,, ... , u,,
define the three auxillary sets of plane interpolation points and asso-
ciated unit tangent direction vectors constructed by neglecting, in turn,
the first, second, and third components of the points py, ..., p, and the
vectors uy, ... , U, with the common parameter limit values ¢y, ... , £,_;.
Compute the Fletcher-McAllister o; and B; coefficients for the entry
and exit tangent vectors at each plane interpolation point for each of the
three auxillary sets of component data. Now take the averages of these
three a-values and three 8-values associated with each point p; to ob-
tain the final ¢; and B; coefficients that will then be used to determine
the entry and exit tangent vectors for the original 3-space interpolation

points py, ..., Pn.

9
Global Cubic Space Curve Splines

As we have seen, a cubic spline that interpolates given points py, ... , p,is
determined by choosing associated tangent vectors my, ... , m,, together
with particular parameter limit values ¢y, ... , f,_;. Instead of determining
each tangent vector m; locally in terms of p; and its immediate neighbors,
we may choose the tangent vectors my, ..., m, in a global manner by re-
quiring second derivative continuity of the curve segments x, X2, ..., X,
at the data points p,, ..., p,_1, together with any of a variety of special end
conditions. Thus we may require that x;'(t;) = x/,,(0), x{(t;) = x;,,(0),
and x; (%) = x;.1(0) = p;41, together with some particular choice of end
conditions such as x;'(0) = 0 and x,_, (t,—1) = 0.

One reason we may want to compute a global cubic spline is that its
derivative is a curve with a continuous derivative (i.e., a global cubic spine
is a C? curve), unlike the second derivative of a local cubic spline, which
will in general have discontinuities. The derivative of a C' curve will usu-
ally have cusps at the join points; such cusps are uncommon for C? curves.

Possible global spline end conditions that produce the various types of
global cubic splines listed below include:

1. A clamped spline: x{(0) = u and x,,_,(t,—1) = v, where u and v are
specified vectors.

2. A natural spline: x{(0) = 0 and x,_,(t,—1) = 0.

102 9. Global Cubic Space Curve Splines

3. A quadratic end condition spline: x{(0) = x5(0) and x,_,(t,-1) =
x, _,(t,—2). Here x; and x,_, reduce to quadratic curves.

4. Acyclicspline: x;(0) = x,_,(t,—1) and x{'(0) = x,_,(t,—1). A cyclic
spline is suitable for closed cycles or periodic curves.

5. Ananti-cyclic spline: x; (0) = —x, _,(t,—1) and x{(0) = —x_, (t,_y).
When p; = p, an anti-cyclic spline produces a closed cycle with a
cusp.

6. A third derivative-constrained spline:
x{'(ty) = x5'(0) and x," ,(t,_1) = x,(0). This is called the “not-
a-knot” condition because the cubic segments x; and x; are adjacent
parts of the same cubic curve, i.e., they agree in the values of their
first three derivatives at their common point p,, so that p, can be dis-
carded from the data, and, with this cubic spline interpolant between
P and p;3, the point p; will be reconstructed. The same situation
occurs for p,_;; the cubic segments x,_, and x,,_; are adjacent parts

of the same cubic curve.

Exercise 9.1: How can we demand that the entering and exiting sec-
ond derivative vectors at the points ps, ..., p,—; be equal, when the en-
tire spline is determined by just the first derivative vectors my, ..., m,?
Solution 9.1: The conditions x;(#;) = x;, ,(0) only specify that
x;(t;) = m; and xi’+l(0) = m,, and this is not enough to obtain m;
itself; thus further conditions, such as x;'(t;) = x;,,(0) are required.

The second derivative continuity conditions x/'(;) = x/,(0), with
xi(t) = a; + bjt + c¢;t* + d;t? as defined above, yields 2¢; + 6d;t; =
2¢j,y for 1 < i < n — 2, and substituting for ¢;, d;, and ¢;;; produces
6(pir1— Pi)/t? —2m;4+m; 1)/t +12(pi — pip1) /17 +6(m; +mi 1)/t =
6(Piv2— Piy1)/t3 —2(2miy 1 +m; 2)/t;11. This set of n — 2 linear vector
equations specifies that the vectors my, ..., m, must satisfy the following
vector equations involving vector-scalar products, where the scalars are el-
ements of upper-triangular band width 3 matrices; such a matrix has the
property that removing the first and last columns results in a diagonally-

9. Global Cubic Space Curve Splines 103

dominant tridiagonal matrix.

f 2(2+ 1) n m
f3 2+ b m>

th—1 2(tn--l + tn—Z) th-2 mp

2 nz_1 n
1 1 . 7] 7] P
- B _n n
2 9] 13 13 P2
=3.
Y R
Ih-2 In-2 In-y In-y pn

Define the (n — 2) x n matrix C as:

2 _1 n
n n t [}
n’ oo R
C _ 3 . 12 12 13 13
ey Il B2 B2
In-2 In-2 In—1 In—1

Define the (n — 2) x n matrix D as:

L 2t+1) 4
I3 23+) tn

In—1 2(£n—l+tn—2) th—2

In matrix notation, we have Dm = Cp, where m and p denote n x 3 ma-
trices whose rows are the vectors my, ..., m, and py, ..., pp, respectively.

In order to solve for the vectors my,...,m,, we must add two more
suitable vector equations. For the global clamped spline, with x;(0) = u
andx, _,(t,_1) = v, we obtain the equations: by = u and b,_1+2¢,_1t,—1+
3d,_t}_, = v, which reduce tom; = u and m, = v.

Exercise 9.2: What are the additional equations for the cases of a
global natural spline, a global quadratic end condition spline, a global
cyclic spline, a global anti-cyclic spline, and a global third derivative-
constrained spline as defined above?

Solution 9.2: For a global natural spline, we have 2m; + m; =
3(pz — p1)/t1 and mp_y + 2m, = 3(pp — Pn—1)/ta—1. For a global

104 9. Global Cubic Space Curve Splines

quadratic end condition spline, we have: 2m; + m3)/t; — 2m; +
my)/ty = 3(p3 — p2)/t; — 3(p2 — p1)/t, and my_3/ta_2 — Cm,_y +
Mn)/ta1 = =3(Pn-1 = Pn-2)/t7_; = 3(Pn — Pnu-1)/t7_,. For a global
cyclic spline, we have: my — m, = 0 and 2(¢; + t,—)my + t,_1m2 +
tim,_2 = 3(p2 — pi)ta—1/ti — 3(Pa—1 — Pn)t1/t,—1. For a global anti-
cyclic spline, we have m; + m, = 0 and 2(¢y + t,_1)my + ta_1my —
timu_2 = 3(p2 — p1)ta-1/t1 + 3(Pu—1 — Pn)t1/ts—1. For a global third
derivative-constrained spline, we have 2(p; — p2)/ tl3 +(my+my)/t? =
2(p2 — Ps)/t23 + (m2 + M3)/t22, and 2(p,—2 — pn—l)/t3_1 + (mp_2 +
mn—l)/t3_1 = 2(pp-1 — Pn)/t,:,; + (mp_y + mn)/t,%-

A procedure for computing m;, my, ..., m, for a clamped global cubic
spline for the points p;, ps, ..., p, and the associated parameter limit
values ty, t>, ..., t,—1, With m; = u and m, = v, is given below.

{ri<1;t0 < 0;my <« u;m, « v;

fori «2:(n—-1)do
[s « &i/ti—y;
m; < 3(=spi_1 + (s — 1/8)p;i + pis1/s) — (ti/ri-1)mi_1;
ri <206+t — @G/rictiz2 s

fori «(n—1):2dom; « (m; —m; 1t;i_1)/r;)

The first loop reduces the tridiagonal system of equations for my, ...,
m, to upper-triangular form by successively subtracting multiples of equa-
tion i — 1 from equation i. During the first loop, the array m holds the
successively-modified righthand-side values. The second loop computes
the desired solution by successive back substitution.

Exercise 9.3: Can you reprogram the above algorithm to avoid using
the array r and/or avoid using two loops?

Exercise 9.4: Suggest several ways of choosingm; = uandm, = v
for the case of a clamped global cubic spline. Hint: consider linear and
quadratic interpolation.

Tridiagonal linear systems of equations arise frequently in various con-
texts related to cubic splines. We can solve a general n x n tridiagonal non-
singular system of linear equations Az = b via Gaussian elimination as fol-
lows. Since A is tridiagonal, A;; = Ofor [i—j| > 1fori =1,2,... ,n—1.
We subtract an appropriate multiple of equation i from equation i + 1 in
order to make the element A; ;1 ; = 0; the final result is an upper triangu-

9. Global Cubic Space Curve Splines 105

€2 cubic splines with clamped end tangents

lar bidiagonal matrix such that no zeros appear on its main diagonal. This
transformed system of equations can now be easily solved by using z, to
compute z,_j, and so on, until z; is determined; this process is called back
substitution. It is generally convenient to arrange that each element of the
main diagonal in the transformed coefficient matrix be 1.

This transformation process can be described as:

{fori «1:(n—-1)do
[A oW i « (A row i)/A;;
b; « bi/Ai;
Arow (i +1) « (Arow (i + 1)) — Aj1.;(A row i);
bit1 < biy1 — Aiibil;
Arown « (Arown)/Aum; by <« by/An, }

Then z,, ..., z, are computed as z, = b, and z; = b; — A; ;112;41 for
l1<i<n.
An explicit program for computing 2y, ... ,z, in Az = b, where A is an

n x n non-singular tridiagonal matrix is given below.

{d « Az « by
fori «1:(n—-1)do
[ci « Aiin/d; z; « z;/d,
d < Aitri+1 — Aig1iCis Zigr < biy1r — Ajgizi]
2, < 2./d;
fori «(n—1):1doz <z —¢;ziy1)

106

9. Global Cubic Space Curve Splines

C? natura] cubic spline

0 2 4 6 8 10

Exercise 9.5: Show that the program given earlier for computing the
vectors my, ... ,m, for a clamped global cubic spline is a correctly
modified instance of the just-given general program for solving a tri-
diagonal non-singular system.

Exercise 9.6: Why do tridiagonal linear systems arise in contexts re-
lated to cubic splines?

Exercise 9.7: State conditions for an n x n tridiagonal matrix A to
be non-singular, and show that when A is non-singular, the general pro-
gram given above never involves a divide-by-zero operation.

Exercise 9.8: Give a program for computing the tangent vectors
my, ... ,m, for the natural global cubic spline that interpolates the

points p;, ... , Dn.

Solution 9.8:

(d«2sm «3(p2—p1)/ti; 00 < Lty < 15
fori «1:(n—-1)do

[C,‘ « t,'_l/d; m; <—m,-/d;

d «2(tiq +5) — i

if(i <n—1)then j « 2else j « 1;

S < tig1/ti; migy — 3(=spi + (s = 1/8) pis1+ Pivj/s) — tiyimi];
m, < mn/(z —Cn-1)}
fori «~(n—1):1dom; «m; —cim; ., }

9. Global Cubic Space Curve Splines 107

Exercise 9.9: Let x be the natural global cubic spline for the points
p1, --- » Pn With the parameter limit values t;, ..., t, and let y be
the local cubic spline for the same points py, ..., p, with the same
parameter values ¢y, ... , t; and the tangent vectors m; = p;.y — pi_i
for2<i<n-—1andm, = p, — pyandm, = p, — p,—1. What is
MmaXo<i<n—1 MaXo<i<y |Xi (¢)—y;(¢)|? That is, how different can a natural
global cubic spline and a chordal tangent local cubic spline be? Hint:
consider p; = (0,0,0), p» = (1,0,0), p3 = (2,0,0), py = (3, v,0),
ps = (4,0,0,), ps = (5,0,0), and p; = (6,0, 0), and consider the
situation where v — 00.

Exercise 9.10: Compute the natural global cubic spline that interpo-
lates the two points py and p;.

Exercise 9.11: Compute the natural global cubic spline that interpo-
lates the points p; = (0, 0, 0), p>» = (2,0,0), and p; = (1, 0, 0) in this
order, with¢; =2 and #, = 1.

Exercise 9.12: Compute the natural global cubic spline that interpo-
lates the points p; = (0,1), p» = (1,1.5), p3 = (2,2), and p; =
(3, 2.5) in this order, with f;, = .333333, r, = .333333 and t; =
.333333. Also compute the natural global cubic projection functional
spline that interpolates the points (0, 0), (.333333, 1), (.666666, 2), and
(1, 3) in this order, and the natural global cubic projection functional
spline that interpolates the points (0, 1), (.333333, 1.5), (.666666, 2),
and (1, 2.5) in this order. Graph these curves on the interval —.2 through
1.2. Compare the results you get with the corresponding splines using
explicit tangent vectors, constant for each curve, that specifies the slope
of the straight line data being interpolated.

Exercise 9.13: Explain how to estimate the slope values that define
the natural global cubic spline function which interpolates the points
(x1, y1), (x2, ¥2), ... (xn, y,) in this order, withx; < x3 < ... < X,,.

Exercise 9.14: Can you always choose the values ¢y, ... , t,_1, x;(0),
and x/_,(t.~1) so that the graph of the resulting global C? cubic spline
is monotonically-increasing in the planar case where the data points
Pis...,pnsatisfy piy < pyy < ... < pay,and py2 < pp2 < ... <
Pn2s andpa=pn=...= pn3 =0?

108 9. Global Cubic Space Curve Splines

Note the vector equations Dm = Cp given above, augmented with suit-
able end condition equations, say for p; and p,, can be used to solve for
the points py,..., p, in terms of the tangent vectors my, ..., m, and the
t1, ..., tn_y values. Applied iteratively, this leads to a method for solving
a system of first-order ordinary differential equations with boundary value
conditions. We use estimated solution points given for each given differen-
tial equation defined function to compute the corresponding solution func-
tion slopes sy, ... , Sy, and then construct the tangent vectors my, ... ,m,
as m; = (1, s;,0). Then, for each differential equation, we solve for new
points using the vector equations above. Then we reiterate this entire pro-
cess until we converge.

9.1 Second Derivatives of Global Cubic Splines

Exercise 9.15: Fix x/(0) = z; and x,_,(t,_1) = 2. Impose the
conditions x;"(t;) = x/,;(0) for 1 < i < n — 2. Compute the tangent
vectors my, ... , m, for the global cubic spline x that interpolates the
3-space points py, ... , p, with the specified second derivative vector

values z; and z, at the ends.

Solution 9.15: x{(0) = 2¢; and x]_,(t,—1) = 24—y + 6dn_1ta—1
where x;(t) = a; + b;t + c;t* + d;t3. Thus we may append the vector
equations

z1 = 6(p2—p))/tf —22m; +mx)/ty and
zp = —6(p,— Pn—l)/t3_1 +2(mp—y +2my)/th1

to the n — 2 vector equations given above. The resulting n vector equa-
tions define the tangent vectors my, ... , m, of the global cubic spline
for the points py, ..., p, with specified second derivative vector values
zy and z,, at the ends in terms of z;, z,, and py, ..., pa.

Exercise 9.16: The space curve x” associated with a cubic spline
x as defined above is a piecewise linear curve consisting of n — 1
line segments continuously joined end-to-end so as to connect # points
21, ... » Zy. What are the points zj, ..., 2, in terms of the points py,

. » Dn, the tangent vectors my, ... , m,, and the scalars ¢, ... , t,_;?
Does a global cubic spline curve x always exist such that x; (0) = p; and

xi(ti) = piv1forl <i <n—1,and x/(t;) = x{,,(O)for1 <i <n-2,

9.1 Second Derivatives of Global Cubic Splines 109

and x/'(0) = z; for1 <i <n —1andx;_(t,-1) = 2, where py, ...,
DPns s - -+ 5 tay, and 2y, . .. , 2, are specified?

Solution 9.16: z; = 6(p;y1 — pi)/t? — 2(2m; + miyy)/t for 1 <
i <n-1landz, = —6(py — pa-1)/t2_y + 2(Mn_y + 2my)/to_y.
Given ty, ... , t,—1, these n vector equations can be solved formy, ... ,
m, in terms of zy, ..., z, and py, ..., p, in order to determine the
corresponding cubic spline function; this cubic spline is a global spline
if the associated second derivative relations hold. (These equations also
yield n — 1 independent vector equations that relate py, ..., p, to my,
ee.,mpandzy, ..., 2,.)

:zé 5
2
5 5
Define the n xn rank n — 1 matrix A := .
-6 6
22
n—-1 n—1
6 =6
2 2
— 1 oy
- 4 2 -
t t
Y4 22
2 9]
Define the n x n matrix B := :
-4 =2
In-1 In-1
In—1 -1 _J

Then, in matrix terms, we have z = Ap + Bm.

For a global join order 2 cubic spline, recall that Dm = Cp where D
and C are (n — 2) x n matrices defined above. Thus a global cubic
spline exists for given points py, ..., p, and given second-derivative
vectors zj, ... ,z, whenever the n — 2 vector equations DB~z =
(C + DB~'A)p are consistent; and in this case, the tangent vectors
my,...,m, are givenbym = B~1(z — Ap).

Letro =0,andr; :=t;+...+¢t; for1 < j < n—1. Then the piecewise-

linear curve x”(¢), with x”(r;) = z;41 for j =0, ... ,n — 1, is defined on
[ri—l»ri] by

') =zi(ri =0/ (ri —ric1) + zig1(t —ric1)/(ri — ricy),

110 9. Global Cubic Space Curve Splines

Let
0 fort <r;_
1,(6) = (t—rj_z)/tj_l forrj_25t<rj_1
d (rj—t)/tj forrj_15t<rj
0 forrj <t
and take r_; := =1, r, ;= r,-1+ 1,4 = 1, and ¢, = 1, so that the

tent functions l; are defined for j = 1,... ,n. (Why is /; called a ‘tent
function’?) Then

x"(t) = 2114@) + z2L(t) + . .. + 2,1, (2).

Exercise 9.17: Let H{, be the set of join order 2, range dimension 3
global cubic splines with respect to ro, ry, ..., rs—1 Where ro = 0 and
rj =t +---+t;. Show that H3, is a vector space of dimension 3n +6.

Exercise 9.18: Deduce a system of linear vector equations which re-
late z4,2,, ... ,2, and py, pa, ..., p, for a global natural cubic spline
where z; =z, = 0.

Solution 9.18: Append the natural global spline end condition equa-
tions 2m; +my = 3(p2— p1)/ty andm,_y +2m, = 3(pn — Pn-1)/ta-1
to the linear vector system Dm = Cp given above to obtain the n x n
linear vector system Dm = C p. Then substitute E_lfp for m in the
n x n linear vector system z = Ap+ Bm to obtain z = (A +B5_1_C—)p.
We may also obtain z = (AC ' D + B)m by substituting C_ Dm
for p.
Following Lancaster and Salkauskas [Lv86], we may obtain several use-
ful relationships from the identity

X”([) = zj(rj - t)/tj +zj+l(t _rj—l)/tj

withr; <t <r;jforj=1,...,n—-1
By integrating twice we have an equation for the global spline x with
ri-p <t <rj:

zj(rj =0 zjp (t—rj-1)’
6 ¢ 6 L

where a and b are 3-tuples whose components are constants of integra-
tion. We may use the vector equations x(r;_y) = p; and x(r;) = pj1

+at+b,

x(t) =

9.1 Second Derivatives of Global Cubic Splines 111

to determine a and b; these equations are: z,-t]?/6 +ar;_y+b = pjand
ziat?/6+ar; +b=pju.
Thus,
1 2 1 ,
at +b= 6(617] - thj)(rj - t)/tj + g(6pj+1 - Zj+ltj)(t - rj_l)/tj.
Now, we may use the continuity of x” at the knot values r; via the equations
lim¢ o x'(r; — €) — x'(r; 4+ €) = 0 to obtain equations relating zy, . .. , z,
topl,... s Pn-
Differentiating x yields
b 2i(rj -0z (=)’
2 t; 2 ¢

1 1
- 8(6171' -zt /[t + 6(6Pj+1 - ziat})/1

forrj_y <t <r;.
Thus, using this equation for x’ in the two adjacent intervals [r;_;, r;]
and [rj, rj;+1] to compute x'(r;), we have

1 1
S%iti = 6_t,-((6pj - thf) + (6pj+1 — Zj+lt]?))
1 (rjs1—r;j)? 1 2
—=z - 6pj o1 — 2jml
2214_1 ™ 6t,—+1((Pi+1 — Zj+1liyy)

— (6pj+2 — Zjsat}y1))
or

1 1 1 1 1
Etjzj+§(tj+tj+l)zj+l telinZin = E(Pj+2—Pj+1)— t—_(Pj+1—Pj)
J J
forj=1,...,n-2.
These n — 2 identities form the (n — 2) x n vector system:

n (g4 n 7
6 3 6 1
73 p+n) 13 P
6 3 6 2
-2 (n-2+l-1) Ip—y z
6 3 6 n
1 _ (1,1 1]
151 (11 + 12) 12 Pl
1 (141 1
- L (12 + 13) <] P2

1 (1 1 1 Pn
In-2 (’n—Z + ’n—l) In-1

112 9. Global Cubic Space Curve Splines

LetG =
Q Un_2+tn—1) a1
[1,1 ° 1 ’ ° 7]
o (+a) i
S T T

Then, we have the n — 2 vector equations: Gz = Hp.

Exercise 9.19: Let x(¢) be the natural global cubic spline for the

points py, ..., p, with =t = ... = t,-1 = 1. Show that

fo Ix"(r)|>dr = min [|g”(r)|*dr, where g ranges over all possible
g

local cubic splines for the points py, ..., p, with each component
parametrized as a piecewise cubic polynomial. Thus the approximate
energy integral fo' |g”(r)|?>dr is minimal for g = x.

9.2 Third Derivatives of Global Cubic Splines

Let (£)+ := max(0, t). The function (¢) is called the (negative) truncation
of t. A global cubic spline has an interesting representation in terms of
cubes of truncated linear expressions. The basic reason that C? splines can
be usefully described with powers of the function (¢), is that the constant
function 0 on [—o0, 0] joins the power function ¢* on [0, oo] at 0 with join
order k — 1, and ((¢).)¥ is just a name for this piecewise combination.

Exercise 9.20: Let f(t) = [(¢),.]F with k > 0. Show that f is a
C*~! function, i.e., f is continuous and f has k — 1 continuous deriva-
tives.

Letro = 0,andletr; =t +...+¢;for1 < j < n— 1. Asusual,
we let x; denote the ith cubic polynomial space curve segment function
of the global cubic spline x where x; connects the points p; and p;,; for
i=1,....,n—1.Letx;(¢t) = x;(¢t —r;i_1),fori =1,... ,n— 1. Then the
global cubic spline x coincides with x; on [r;_1, r;].

9.2 Third Derivatives of Global Cubic Splines 113

Let A;(t) = %41(t) —x:(¢) fori = 1,...,n — 2. Then A;(r;) = 0,
Ai(r;) = 0, and A (r;) = 0, and hence r; is a root of multiplicity 3 of
each component, A;; (t), A;2(t), and A;3(¢), of the cubic 3-tuple. Therefore
A;i(t) = e;(t —r;)? for some constant 3-tuple ¢; € R3. Thus X;,,(t) =
%(t) + et —r)’, andrg = 0 and X; = x4, 50

S =x(t) +et —r) + -+t —r;).
Now since (t —r;), = 0 fort <r;, we can write
E(®) =x1(0) + et —r))l + -+ enalt —ras2)l

forr; <t <r;yandfori =0,...,n— 2;and moreover, without restric-
tion,
x()) =x1(t) + eyt —r)} + -+ enalt —ra2)3.

Exercise 9.21: Show that x () = x;(t) +e;(t —r)2 +--- +e,_2(t —
ra=2)2 + €n—1(t — ry_1)>. on [ro, ra—1] for any choice of e,_; € R>.

Recall that the coefficient vectors a;, b;, ¢;, and d; are defined so that

xi(t) = a; + bit + ¢;t* 4+ d;t>. Then x} (t) = 2¢; + 6d,t. Since ro = 0, we
can define ey := d so that x[(t) = 6e¢(t — ro) + 2c;. Then we can write

n—1
x"(t) =2c1+) _6e;(t —r))s.
=0

This is in contrast to the expression obtained before:

_zlr—n + Zj1(t —rj_y)

rj—rj_l rj—rj_l

x"(t)

for tefrj_1,ry] and j=1,...,n—1, wherex"(r;_y) = z;.

But then x”(¢t) = Z’};(l) 6e;(ift < rjthenOelse 1), so x"(r; + &) —
x"(r;—¢€) — 6ej as e | 0. Also let us define x"'(r;) := lim, ;o x"'(rj +¢).
Then, by differentiating x”(¢) above, x"'(¢) = (zj41 — z;)/(r; —rj-1) on
irj-1, r ;). Therefore, if we take r_; := —1,r, := r,—; + 1, and define zg
such that 6d1 = (z2 — z1)/r1 + (21 — 2z9)/r-1, and define z,,; such that
(Zn+1 —2n)/(rn —rn1) — (2, — Zp—1)/(Fn—1 — rn—2) = 6€,_1, we have

_Zj+2 T Zj41 Zj41 — 2

be; = - for j=0,1,...,n—-1.
SRt Gl S T g

114 9. Global Cubic Space Curve Splines

Let wj := (zj41 —2;)/(rj —rj_y) for j =0, ... ,n. Thus w; = x"'(¢t)
fort € [rj_y,r;),ande; = (wjyy —w;)/6fori =0, ..., n— 1. Recall that
every component function of x” is a piecewise-constant step function and
every component function of x” is a piecewise-linear continuous function,

Exercise 9.22: Can a global cubic spline space curve have a cusp?

Solution 9.22: Yes. For particular choices of py, ..., p,, a cusp may
occur in a segment curve x; at a join point p; or p;4;, or at at most
two non-join points between p; and p;; the value of x” at such a cusp
point is 0. The C? continuity of x does not imply that x is regularly
parameterized. Such a cusp may usually be removed by reducing the
values of ¢;_, t;, and ;.

9.3 A Variational Characterization of Natural Splines

We may define the approximate energy or smoothness functional J (f) :=
fr;"" | f(¢)|? dt. Here the space curve f must be a member of the class
F of 3-tuples of twice differentiable functions which correspond to space
curves that interpolate the points p;, ..., p, so that f(r;_;) = p; for
i =1,...,n. (And the class F must be restricted to hold only functions f
for which J (f) exists.) Following Schoenberg [Sch46] [Sch67] [Sch64b]
[Sch64a] [Yam88], we can show that the natural global cubic spline x that
interpolates py, ..., p, With x"(rg) = zy = x"(r,_y) = z, = 0 mini-
mizes J. The value J (x) is an approximation of the potential energy of the
“bent” curve x, where x’ is approximated by 1. This tells us that a natural
global cubic spline nearly (but not exactly) minimizes the energy stored
therein as it is “bent” to interpolate the given points py, ... , p,, when the
amount of bending is modest. Later we will discuss in more detail how
J (x) approximates the actual potential energy due to bending.

Let f = (fi, f2, f3) € F. Write f(¢) = x(t) + [f({t) — x(¢)]. Then, in
terms of the vector dot product operation (-), we have

J(H) = f " {IE"@OF + @) = x"OIF +2x"@) - [f(0) = x"(0)]} dt

o

=/n—l |x,,(t)|2dt+/"‘ '[f”(t) —x"(t)]|2dt

ro ro

+ Zfrn—l x”(t) . [f"(t) _ x"(t)]dt.

ro

9.3 A Variational Characterization of Natural Splines 115

And f,;"" x"(¢) - [f'(t) — x"(t)]dt = 0, so f must equal x in order for
J (f) to be minimal.

Let g = f — x. The value fr:)"" x" - g"dt can be seen to be zero as
follows. Using integration by parts, we have [;"" x" . g'dt = [g@) -
x”(t)]:ig" - fr:)"" x" - g'dt. And x"(rg) = x"(r,_1) = 0, so fr:)"" x" .
g'dt=— fr;"" x"-g'dt.

Recall thatfor j =0, ... ,n,x"(t) = w; = (zj41 — 2;)/(rj —rj—y) for
terjo,rj)withry =-landr, =r,_; + 1. Also &; = (w;j 41 — w;)/6
for0 <i < n—1. Wehave z; = z, = 0. Here we may take zo = 0 and
Z,+1 = 0 so that wy = 0 and w,, = 0. Then

aeio n=2 pri
—/ X gdt = —Z/ w,-+1-g'dt
ro i=0 vFi

n—2
= - Z Wiy - [g(t)]::::“
i=0
n—2
= - Zw,-+1 -[g(risr) — glri)]

i=0

—

= g(ri) - [wizy — wi]

3

3 -
[
- O

= 6e; - g(r:).

i

1]
=]

Butg(r;) = f(r;) —x(r;)) =0fori =0,...,n—1,since both f and x
match py, ..., p, atthe knot values rg, . .. ,7,_;. Thus fr:)"" x".g'dt =0,
and hence fr:)"" x"-g"dt =0.

Note the computation above makes no use of the form of the space curve
g until the last step; we have shown that for any twice differentiable space
curve g, we have

0

rp-1 n—1
f x// . g”dt — Z6e‘. . g(r'.)_
r i=0

Exercise 9.23: What is the value J (x), where x is the natural global
cubic spline that interpolates the points py, ... , pp?

Solution 9.23: J(x) = ¥/=16e; - pp1 = Y 6pisrel.

116 9. Global Cubic Space Curve Splines
9.4 Weighted v-Splines

We have shown above that if we ask for the space curve x that interpolates
the points pi,..., p, for which J(x) is minimal, then x is the natura]
global cubic spline for the points py, ..., p,.

G. Nielson[Nie86] and T. Foley[Fol87] have suggested that we consider
the cubic spline x that interpolates the points py,..., p, with the knot
values rg, ... ,r,_; and minimizes the functional

n—1 ri n
N(x):=)" f ol O de +) vilx' (oI
i=1 vYri-1 i=1

This functional is inspired by the approximate energy functional J associ-
ated with natural global cubic splines. In order for N to have a minimum,
the scalar values wy, ... , w,—1 and vy, ... , v, must be non-negative.

Note the individual segment curve second derivative integrals appear-
ing in N are weighted by the weights @, ..., w,_;, and also note that
the shared first derivative tangent vector magnitudes at the knot values
ro, ... ,rn—1 are weighted by the weights vy, ... , v,. Nielson originally
took wy = --- = w,—; = 1 and called the resulting spline a v-spline, and
Foley calls the generalization where the weights w;, ... , w,—; do not have
to be identical a weighted v-spline. The effect of increasing the weight-
value w; is to shorten the arc length of x between the points p; and p; 1,
making x increasingly taut there. The effect of increasing v; is to cause
a reduction in the magnitude of the tangent vector x'(r;_;) = m; at the
point p;, so that x hugs its tangent line at p; for a shorter span, thus per-
mitting rapid turning in the case when the data points p;_;, p;, and p;4+1
are not colinear. Thus Foley calls w; the interval tension control parameter
for the curve x between p; and p;,,, and calls v; the point tension control
parameter for the curve x at the point p;.

Exercise 9.24: Suppose vy = - -- = v, = 0. Show that the associated
weighted v-spline is a C! function, but need not be a C 2 function.

We wish to determine the weighted v-spline x with given weight
values wy, ... ,w,_y, and vy, ... , v, that interpolates the points py, ... , pn
with the knot values ry, ... , 7,_; and the associated parameter limit values
ti, ..., th—1,and which satisfies particular end conditions, such as x" (r¢) =
0and x"(r,_y) = 0, or x'(rg) = a and x'(r,—1) = b. (Recall thatry = 0
and rj = Y, t.) Foley recommends using the modified natural end

9.4 Weighted v-Splines 117

conditions ey lim, o x”(ro + &) = vix'(rg) and w,_; lim, ;o x"(ro — &) =
—Unx'(rn-—l)-

In order to compute x, we consider the segment curves xi,... , X,
of x: x;(t) = fot/t)pi + fit/t)pivy + 2@/t)tim; + f3(t/t:)tim;y,
fori = 1,...,n—1,and fo(s) = 1 — 3s5% 4+ 253, fi(s) = 352 — 253,
fa(s) =s —2s* + 57, and fa(s) = —s? + s> Then

n—1 ri n—1
NGxy:=) f Xt = ri)Pdt +) wlx{ O + valx,_y)
=1 Y7i-1

i=1

and we want to determine the tangent vectors my, ... , m, that minimize
N.

Since N is to be minimal, subject to our chosen end condition
constraints, we may augment N with Lagrange multiplier terms for these
constraints and then seek to compute the vectors my, ... , m, and Lagrange
multiplier values that minimize N and correspond to a critical point of this
augmented functional N.

To be specific, let us impose the clamped end conditions x'(rg) = m; =
a and x'(r,—1) = m, = b, where a and b are given vectors. Then our
augmented functional is

n-—1
N(x) = Zf

i
=1 vY7ri-1

n—1
wilx](t = ri)Pde +) vilx[O + vl (ta-r)
i=1

+A1- (x5 (0) —a) + A2 - (x,_1(ta-1) — b)

ri

|

i=1 ri—
where A; and X, are vectors in R whose components are the Lagrange
multipliers corresponding to the six scalar constraints specified by m; = a
andm, = b.

n
wilx! (¢ —ri_)Pde+ Y vilmi P+ 2y Omy —a) + A2+ (m, = b),
1

i=1

Now to compute the 3n + 6 values that comprise my, ... ,m, and A, and

A2, we may form the 3n + 6 equations aﬁ/am,-,- =0fori=1,...,nand
j=1,2,3,and 9N /dx,; = 0and N /dxr; = O for j = 1,2, 3.

Solving these equations provides us with the vectors my, ... , m, which
minimize N. These tangent vectors determine the weighted v-spline x with
the given weight values wy, ..., w,_y, and vy, ... , v, Which interpolates
the points py, ... , Pn With the knot values rq, . .. , r,_; and the associated

118 9. Global Cubic Space Curve Splines

parameter limit values f1, ... ,t,_;, and which satisfies the clamped end
conditions x'(rg) = a and x'(r,_1) = b.

Let us write N /dm; = (3N /dm;y, 3N /dm;2, 3N /dm;3). Then, by
substituting fo(t/6)p; + f1(t/t)pivs + f2(t/t)timi + f3(2/t:)tim;yy for
x;(t) in N, and forming the vector equations dN/dm; = 0 fori =
1,..., n, together with the similar vector constraint equations 3N /r, =0
and 8N /3, = 0, we may obtain the n + 2 vector equations that define

my,...,mp.Fork=2,...,n—1, we have
N k i ox;'(t —ri_
0= —= f 2w,-'(—'1) -x,f'(t —ri—)dt + 2vimy
3mk aMk

i=k—1V7i-1

=1 9x, (8 —re—z)

k—1 -2

= 2w f _— -x,"'_l(t —re_p)dt
re-2 amk

rk a ”n t — _ ,
+ 2wy f M <X, (t = re=1)dt + 2vemy.
[amk
But dx;_,(t — r¢-2)/3my is a 3 x 3 diagonal matrix of the form g;_,/,
where
t—re> 2

1 ¢
-1 = —fi()=6
Le—1 L1 tkz_l L1

~ T2

1 f,,(t —rk_l) 6[— rip—y 4 6t 6rk_1 4
k= - = ——_=s - -
& ' g 12 4 12 t %

Using integration by parts, we have the formulas
ﬁ ! ’ ’
f x/t—y)dt = xj(B-—y)—xia—y)
a

8
and /tx,f’(t—y)dt = Bx{(B—y)—axi(@—y)
—xi(B—y)+xi(a—v).

9.4 Weighted v-Splines 119

Thus, fork=2,...,n—1,

6 , ,
0 = zwk—l(tz_[rk—lxk_l(tk—l)_rk—zxk_l(o)

k-1
= Xp—1(te—1) + x,—1(0)]
Tie—2

2
= (65— + —)[x_y (1) — x,_, (O]
Gt e

6 ,
+ zwk(t_z[rkxl:(tk) = 11X, (0) — X () + x,(0)]
p

- 4
- (6k_2l + =)t — X (O)]) + 2vemy
tk Iy

Wy 1
2——(—[recimi — re—omi_y — pi + pi—1]
by By
Fie
— (6222 4+ 2)[my — miy])
b1

Wy
+ 2t—(t—[’kmk+1 — I'k—1Mi — Pis1 + Pk
e L

Te—1

- (6t_ + H[mpsr — mi]) + 2vemy.
%

Now, define a; := w;/t;. Thus, since ro = Oandrj_y = r; —t;, we
have,fork=2,... ,n -1,

20 ymy_1 + (Ve—y + 4oy + da)my + 20my
= 604 (Prs1 — P/t + 604 1(Px — Pr—1)/tk-1.

By similar manipulations, we have

ON o ax"(t
0 = — =] 2w X
aml ro om

. x;'(t) dt +2vimy + A

w; 6
= +2t_ll(t—l[’1m2—P2+P1]—4[m2—m1])+2U1m1+M-

So, (vi + day)my + 2a1mz 4+ 11/2 = 6a,(p2 — p1)/t.

120 9. Global Cubic Space Curve Splines

Further,
aN Tn-1 ax!_,(t
0 = o = f 2w,,_1—L) cxp_y () dt + 2vumy, + Ay

my, Fn-2 a’nn

Wp—1 6

= 2[(t [rn—lmn —Fn_2Mp_y — Dn +Pn—1]
n—-1 n—~1
rn_2
— (6 + 2)[mn - mn—l]) + 2vym, + Az.

n—1

So, 2aq_1my—y + (vp + 4atp_1)m, + A-2/2 = 6(1,,_1(1),, - Pn—l)/tn—l-
Also,
0=—= - d0=—= -b
aA] mi a an akz mp

so we recover the constraints m, =a and m, = b, and the equations
corresponding to N /dm; = 0 and N /dm, = O reduce to (v; + 4ay)a +
20ymay+Aiy/2 = 62y (p2—~ p1)/t and 20 _ympy_ 1+ (Vp +4ap_1)b+22/2 =
6¢,.1(pn — pn-1)/ta—1- Together with the n — 2 vector equations

20 _1mp—y + (Vg + 4oy + 4o)my + 20my
= 6a,(Pr+1 — Pi)/ e + 601 (P — Pr—1)/ -1,

fork =2,...,n— 1, we have just enough independent equations to de-
termine the vectors ms, ... , m,_y, and Ay and A,. Only the latter n — 2 vec-
tor equations given above are needed to obtain m,, ... , m,_y; they form
a diagonally dominant tridiagonal system of n — 2 linearly-independent
linear vector equations. Thus, given m; = a and m, = b, we can easily
solve this system to obtain m5, ... , m,_; as well. (Note that we may allow
t, = 0, if we specify that y/0 =0fory e R.)

Exercise 9.25: Show that the equations m; = a, m, = b, and

200 _ymy_y + (Vi—y + dag_y + 4o)my + 204my iy
= 60, (et — Pi)/ b + 6ax—1(Px — Pr—=1)/tk—-1,

ork =2,...,n— 1, reduce to those that define a clamped global C?
cubic spline whenw) =--- =wy,—y=landy; =---=v, =0.
Exercise 9.26: The weights wy, ... , w,—; only appear in the form

w;/t; in the equations that define a clamped weighied v-spline. Does

9.4 Weighted v-Splines 121

this mean that wy, . . . » @s—1 are superfluous because suitably choosing
t, ... »t,_; suffices to obtain the same values for ay, ... , @,_; which
we can get by choices of wy, ... , w,—1? Hint: look at how #; appears.

Exercise 9.27: What are the equations that define the weighted
v-spline that minimizes N with no special end conditions?

Exercise 9.28: What are the defining equations for the tangent vectors
my, ... ,m, of a weighted v-spline when we impose the natural end
conditions x”(rg) = 0 and x”"(r,_;) = 0?

Exercise 9.29: Foley [Fol87] shows that the weighted v-spline with
modified natural end conditions that minimizes N is, in fact, the min-
imizer of N among all twice differentiable functions that interpolate
P1s - - - » Dy With the associated parameter-valuesry, . .. , r,_; for which
N exists. Follow the classic proof that the minimizer of J is a natural
global cubic spline and write an analogous proof of Foley’s result.

10
Smoothing Splines

Let fi, f2,..., fa be real values. Suppose we consider the data points
(ro, f1), (r1s f2)y ... s (ra=y, fu), Withrg < r; < ... < r,_y, to be points
of R? sampled with error from the graph of some unknown function f :
R — R suchthat f; = f(rj_y) + ¢ for j = 1,...,n. If the form
of the function f were known, except for some unknown parameter val-
ues, we could then determine those values by the least squares method,
where the desired parameter values are those parameter values that mini-
mize F = Z;=1 Ai(fi — f(rj_,))2 where Ay, ..., A, are weight values
that are inversely proportional to the variances of the errors in the points.
When the function f is not known, we may seek a smooth function x that
“fits” the data points without regard to any particular functional form. A
cubic spline can fit the data exactly, but we may obtain a less oscillatory
approximating function if we take x to be the function that minimizes the
functional E(f) + pJ (f) over all suitable functions f, where p is a posi-
tive constant and

E(f) =) a(fj = forj-0).
j=1

Here J(f) = [;7~' | f"(t)|?dt acts as a “penalty” term which favors func-
tions with small second derivatives. The effect of J can be increased or
diminished by suitably choosing the multiplier p.

Now suppose x is a function for which E (x) + pJ (x) is minimal. Let

124 10. Smoothing Splines

pj = x(rj—1) € Rfor j = 1,...,n. Whatever function we have for
x, only its values at rg,ry,... ,r,—y affect the value E(x). And what-
ever the values py, ..., p, are, the corresponding function x, for which
E(x) + pJ (x) is minimal, is a natural global cubic spline that interpolates
the points (rg, p1), ..., (rn—1, Pn), since this choice minimizes J while
having no effecton E.

Thus we need only determine the scalar values py, ... , p, that define a
corresponding natural global cubic spline x with knot values rg, ... ,r,_;,
such that E (x)+pJ (x) is minimal over all choices of the values py, ... , p,.
The spline x is then our desired smooth approximating function for the
points (ro, f1), ..., (rn—1, fn) with the weights 1y, ..., A,. The natural
global cubic spline x is called the optimal smoothing spline for the points
(ro» f1), ..., (rp—1, fo) with the weights A, ..., A, and the smoothing
parameter p [DeB78].

Exercise 10.1: What is the optimal smoothing spline for two points?

10.1 Computing an Optimal Smoothing Spline

Lancaster and Salkauskas [Lv86] have given an elegant algorithm for com-
puting the optimal smoothing spline function x : R — R for the n > 3
points in the xy-plane (rg, f1), ..., (ry—1, fo) Withrg <ry < ... <rpy.
(We may replace every group of points having identical x-coordinates by
their average in order to obtain a reduced set of data points for which
ri < riy1.) We can generalize this algorithm to produce an optimal smooth-
ing spline for points in R> with knot values rq, ... ,r,_1, but this is not
necessary; once we know how to compute a simple functional optimal
smoothing spline, we can compute the optimal smoothing spline space
curve for points in 3-space by computing the 3 component real-valued op-
timal smoothing spline functions individually.

Let A be the n x n diagonal matrix diag(Xy, ... ,A,). Then E(x) =
(p—FTA(p—fywhere p=[p1,...,pa]" and f =[fi,..., f]". We
are seeking the values py, ..., p,, where p; :==x(r;_y)forj=1,...,n.

Also, let L(t) = [I1(t), ..., 1,(&)]", where I;(¢), ..., L,(¢) are the tent
functions defined above, such that x”(¢) = z;,;(¢) + ... + 2,1, (¢t) where
here zy, ... , z, are real values, not 3-tuples. Let z = [z, ... , z,]7. Then
x"(t) = ZTL(t), and

'n-1 n-1
J(x) =f |x"(t)|2dt=/ ZTL(t)L 1) z dt.

ro 0

10.1 Computing an Optimal Smoothing Spline 125

Now recall the n — 2 equations Gz = Hp given above, where here z and p
are column n-vectors; and G and H are both (n — 2) x n matrices defined
in terms of the values ¢y, ... , t,_; where t; = r; — r;_;. For the case of a
natural global cubic spline, z; = z, = 0, so we may drop the first and last
columns of G to obtain the (n — 2) x (n — 2) symmetric matrix G:=G
col 2 : (n — 1) and write Gv = Hp where v := [z,... ,z,,_,]T. Then
v=G 'Hp,andsince z; = z, = 0,

J(x)=fH(Fal)Tf(t)f(t)T(E_'Hp>dt
ro
where L(t) = [L(t), ..., L1 ()]

Note 6_” = 6_1. Thus,

J(x) = pTHTE“[f " L)L ()7dt)(G ' Hp).
ro

Now f,; "L L)L (t)Tdt is the (n — 2) x (n — 2) matrix whose (i, j)th ele-
ment is fr ro"" li11(0)lj 41 (¢) dt, and this matrix is just the symmetric matrix
G! Thus, J(x) = pTHTG ‘GG Hp = p"H'G Hp.

Now to compute p such that £(x) + pJ (x) is minimal, we differentiate
E(x) + pJ (x) with respect to py, ..., p, and equate these derivatives to
zero to obtain

1d _ _
5;1;[(p—f>TA(p—f)+ppTHTG "Hp] = A(p—f)+pHTG 'Hp =0.

Since Gv = Hp, we have HA™Y(Ap — Af + oHTG 'Gv) = 0, so
Gv — Hf + pHA'HTy = 0. Thus, (G + pHA'HT)v = HFf, so
v= (G +pHA'HT)'Hf. Thus, A(p — f) + pHTG Gv = A(p —
D+pHTv=0,s0p=f—pA~'HTv.

Now z = [0, vy, ... , Up-2, O]T, and given p and z, we can compute the
optimal smoothing spline x using

x(t)——[z](r] 1) +zjp(t—r;j- D3 +(6p] z]t])(r] 1)
o) +(6pj+1—2j 41t} Ht—ri_)] for riy<t<r;.

This process involves solving the single (n — 2) x (n — 2) linear system
(G+ pHA~'HT)v = Hf which is given in terms of known matrices, i.c.,
G ' is not directly involved.

Note that py, ... , pn are linear functions of the values fi, ... , f,, since
p = Mf where the n x n matrix M is defined as (A + pHTG H)"'A.

126

10. Smoothing Splines

Optimal Smoothing Splines, p = .1,1

(dashed-line curves = derivatives)

Exercise 10.2: Show that when o approaches 0, then p approaches
f» and when p approaches 00, p; approaches s(r;_;) where the graph
of the function s is the best fitting line for the points (rp, f1), ...,
(rn-1, fn) in the least squares sense, with the weights Ay, ..., A,.

Exercise 10.3: Let s(¢) be the best-fitting line for the points (ry, f1),

., (rn—1, fn) in the least squares sense, with the weights Ay, ... , A4,
and let c(¢) be the natural global cubic spline for these points. Criticize
the smoothing function ab(¢) + (1 — a)c(¢).

Exercise 10.4: Show that if f is an nx3 matrix whose rows are points
in R3 with f row i corresponding to the parameter value r;_y, then the

3-tuples z;, ... ,2, and py, ... , p, that determine the parametric opti-
mal smoothing cubic spline space curve with the parameter knot values
ro<ri <..<rpjaregivenbyz =z, =0,v={[z2,...,2z,1]T =

(G+pHA'HTY 'Hf,and p = f — pA~'HT v. Hint: define
Ex) = trace[(px — f)T A(px — f)] and

J(x) = trace[f "_lszL(t)L(t)szdt]
ro

where p, = [x(rq), ..., x(ra_)]” and z; = [x"(ro), ... , X" (ra=1)]’.
(Recall that trace(M) is the sum of the elements of diag(M).)

10.2 Computing the Smoothing Parameter 127

10.2 Computing the Smoothing Parameter

As mentioned above, the positive constant p determines the amount of vari-
ation exhibited in the optimal smoothing spline x. In order to choose a
value for p, we may use the method of cross validation [Wah90]. Let

En(f)= Y M(fi— forio),
w

and let x;(t) denote the natural global cubic spline with the knot val-
ues rqg, ... ,ri-2,is ... » I'n—y that minimizes E; (f) + pJ (f) when f =
x;i)- Note that the limits of the integral defining the functional J are al-
ways the values rg and r,_;. The function x,(¢) depends upon p; it is
the optimal smoothing spline with the weights Ay, ..., Ai—1, Aigt, -2, Ag
and the smoothing parameter p for the data points (rg, f1),... , (ra—1, fa)s
excluding the point (r;_y, f;). We will write x;(¢; o) to indicate this de-
pendence on p. Now define the cross validation objective function u(p) =
Z:'=1 Ailfi —xuy(riey; p))2. Then we may choose p to be that value which
minimizes u(p).

Exercise 10.5: Show that the optimal smoothing spline for the points
(ro, fi),--., (ra—y, fn) with the weights A4, ... , A, and the smoothing
parameter p is x; when A; = 0.

Wahba [Wah90] has derived a more amenable formula for u(p) involv-
ing only the smoothing spline function x instead of the functions x, ... ,
X(ny. Let h(t) be the choice for the function g(¢) that minimizes A;(z —
gric))? + E iy (g)+ pJ(g). Note that & depends on i, z, and p, as well as
its argument ¢. Let us write k() as h(¢; i, z, p) to indicate this dependence.

Let f, := Xxyy(ri—1; p); this is the cross validation estimate of the “left-
out” value f;. Now note that k(t; i, f,-, p) = xy(t). This is because A, (f, -
Xy (ri)) +E oy () +0J (iy) = E ey +0J (xiy) < E iy (8)+0J (8)
for any C? function g # X iy, SO X(jy minimizes A,-(f,- —gric)Y +Epn(g)+
pJ(g).

Now consider o; (p) := (f; — x(ri_y; o)/ (fi = f), where x(t; p) is the
optimal smoothing spline for the points (rg, fi), ..., (rn—1, f») With the
weights A, ..., A, and the smoothing parameter p. Note that h(r;_y; i,
fis p) = x(ri_1; p) (!) Then

ai(p) = (h(ri_s i, fio) = hricys i, £ P))/(fi =).

128 10. Smoothing Splines

Thus a;(p) is a forward difference estimate (if f; < f,-) or backward differ-
ence estimate (if f; > f,-) of the slope of h(r;_y; i, z, p), taken as a function
of z, at the point z = f;.

Recall that p; = x(r;_1; p) = Mis fi+...+Mi, fy, expressed in terms of
the nxn matrix M = (A+pHTE_1 H)~ ! A.Now if we consider x (r; _1; p)
as a function of f; and denote this function as x(r;_;; p)[f;], then we see
that x(r;y; p)[f;] is a linear function of f; with dx(ri_1; P)[fi]/8f; =
M;;. Buth(ri_y; i, fi, p) = x(ri—1; P)[fi], 0 3h(ri_1; i, fi, p)/3f; = M.
And since h(r;_y; i, f;, p) is a linear function of f;, the difference estimate
a;(p) is exact, and o; (p) = M;;(p), where we now explicitly write M;; as
a function of p to show its dependence on p.

Now o;(p) = Mi(p) = (f — x(rii; O))/(fi = f)y 50 fi — fi =
(fi =x(ri=1; p))/(1—M;;(p)). Thus the cross validation objective function
w(p) = S0 Ai(fi = x(rimi; P)/(1 = M;i ()% We may now compute
the smoothing parameter o by minimizing this expression for w(p).

Exercise 10.6: Explain how to compute diag(M).

Wahba recommends [Wah90] that we instead compute p by minimizing
the generalized cross validation objective function: U (p) := 3 _i_; ;i (fi —
x(ri_1; P))2/(1 — d(p))?, where d(p) := trace(MA) = MMy + ... +
AnMp, Wwith Ay 4+ ...+ A, = 1.

Exercise 10.7: Show that

U(p) =| AU = M) f | /(1 — trace(AM))?.

An alternate somewhat less costly approach to determining p is to first
choose adjusted points (ry, fl), N (R f,,) which are points we “pre-
fer” the smoothing spline to pass through or near. For example, we may
determine these adjusted points by means of another distinct smoothing
process such as a weighted moving average or moving median _process.
Let f == [fir..., fa]". Now we may choose p such that |f — f +

A'HT (p~'G + HA~'HT)~'Hf| is minimal.

Note that (0~'G + HA'HT)"1H f can be computed by solving the
(n — 2) x (n — 2) linear system (0='G + HA"'HT)y = Hf for the
vector y; this can be efficiently done by means of Gaussian elimination.
Iterative conjugate gradient methods may be used to save space, but this is
not necessary if we exploit the banded nature of the matrices involved.

10.3 Best Fit Smoothing Cubic Splines 129

Exercise 10.8: Show that =!G + HA™'HT is a symmetric matrix
of bandwidth 5.

Exercise 10.9: Letn(o) = |f— f+A ' HT (o 'G+HA'HT)THf%.
Show that n(p) is minimal exactly when n(p)!/? is minimal. Show that

if n'(0) = 0, then n(py) is minimal. Show that 5’ (0) = =2[f — f +

ATVHT (07 'G + HAT'HTY 'HFT [AT'HT (o7'G + HAT'HT)™!

(0™G)(p™'G + HA'HT)'Hf] = =2[f - f + A”'Hp (G +

pHAT'HDY T VHF [ATYHT(G+pHA'HTY 'G(G+pHA'HT)™!
H f). Hint: differentiate A=A = I to obtain a formula for (A~')’. Ex-

plain how to compute n’'(p) by sucessively solving two linear systems

in place of computing matrix inverses.

10.3 Best Fit Smoothing Cubic Splines

Often it is useful to compute a real-valued non-optimal smoothing spline
function for the data points (s, f1), ..., (S, fx) as a range dimension 1
cubic spline x with the fixed knot values ro < r; < ... < r,_1, where
ro <s <s2 <...<5 =<rn_,for which ZL,(f,- — x(s;:))? is minimal.
Generally n << k.

We shall describe how to compute such an associated range dimension 1
join order 1 non-optimal smoothing natural cubic spline function x for the

data points (s1, f1), - - -, (S, fx)- For the fixed knot valuesry, ... ,r,_1, the
spline function x is determined by the real values py, ..., ppandmy, ...,
m,, so we want to determine real values py, ..., p, and my, ... ,m, cor-
responding to the knot values ry, . .. , r,—1, such that Zf=l(ﬁ —x(s;))? is
minimal.

Let t; = r; — r;_;. The cubic spline polynomial segment function x; de-
fined on [r;_1, r;] so that x; (r;_;) = p;, xi(r;) = pit1, X;(ri—y) = m;, and
x,f(r,-) = m; 4 can be written in terms of the Hermite blending functions as
xi(t) = fo((t—ri-))/t)pi + it =ri_))/) P + ot —ris))/t)tim; +
[= ris)/t)tmi g where fo(t) = 1 — 362 4 213, fi(t) = 3t% — 213,
L) =t =22+ 3, and f(t) = —2 +¢3.

For 0 < i < n — 2, let k; be the number of data points (s;, f;) such
that r; < s; < ri4, let k,_; be the number of data points (s;, fj) such
thatr,_» <s; <rp_y1andleth; = ko + k; + ... + k;_; with hp = 0 and
hpy =k Thusrg <s1i <...<sp, <rn <spy1 <...<sSp, <rn <

o S Shyo41 = oo S8k =g
Forq = 1,...,n — 1, let C; denote the k; x 4 matrix whose

130 10. Smoothing Splines

ith row is [Cgi1, Cgia, Cgi3, Cgia] Where Coiy = fol(Sh,_y4i — Fg—1)/1g),
qu2 = tqu((shq_,+i - rq—l)/tq): qu3 = fl((shq_1+i - rq—l)/tq): and
Cyia = tq [3((Sh,_,+i—Tq-1)/1g). Thus (Cq 10w i)[pg, my, Pgr1, Mg’ =
X(Sh,_y+i)-

Now define the k x 2n matrix X such that X;; = 0, except that the X row
((hg—1+1) : hg)col (2q—1) : (29 +2))=C,forg=1,... ,n—1. Then
Z,{;,(f,- —x(s)? = |Xv— fl®where v = [pymyps ma... p.m,]’.
Then v = X* f minimizes |[Xv — f|*> where X+ denotes the Moore-
Penrose pseudo-inverse of the matrix X. Thus we have determined the
real values py, ..., p, and my, ... , m, as required.

Exercise 10.10: Suppose s; < s; < ... < s;. Explain how n and
ro, ... s 'n—1 can be chosen so that the spline x exactly interpolates the

points (s1, f1), ... » (Sk» fi)-

Exercise 10.11: Explain how to determine x as the global range di-
mension 1 join order 2 natural cubic spline function with the fixed knot
valuesry < r; < ... < r,_; which minimizes ZLl(f,- —x(s;))>.

10.4 Monotone Smoothing Splines

Suppose we have a sequence of points (xy, y1), ..., (X, yo) With x1 <
X2 < ... < X, that are known to be noisy samples from the graph of a
“hidden” monotonic function m, with y; = m(x;) + €;, and suppose the er-
TOIS €, ... , €, cause the sequence yy, y2, ... , ¥ to fail to be monotonic.
We may adjust the values yy, y2, ... , y, by adding various positive or neg-
ative numbers dy, ds, ... ,d, to define z; = y; + d; for 1 < i < n, where
we will choose dy,d,, ... ,d, suchthaty, +dy < yo+dy < ... < y,+d,,
i.e., so that the points (x4, zy), ... , (x,, z;) are monotonically increasing.
(The monotonically decreasing case proceeds in a parallel manner). We
may say that we have monotonized the data points (xy, y1), ... , (xn, ¥n)
This is a form of smoothing of the data points [Har91].

Generally, we want to choose dy,d, ... ,d, to minimize d? + d? +
... + d2, subject, of course, to the n — 1 constraints y; + dy < y, + da,
y2+ds < y3+ds, ..., Yn—1 +dn_1 < yn+d,. The solution to this linearly-
constrained minimization problem is the pointd = (dy, dz, ... ,d,) in the
constraint region {v € R" | y1+v1 < y2+v2 £ ... < y, + v,} thatis
closest to (0,0, ... ,0).

10.4 Monotone Smoothing Splines 131

Exercise 10.12: The ith constraint y; + d; < y;.1 + d;+1 corresponds
toc;-d < b;,whereb; = y;,;—y;and¢; =(0,...,0,1,-1,0,...,0),
i.e.,¢;j = Oexceptc;; = land¢;;4y = —1. Let the n x (n—1) matrix C
be defined by C coli = c,.T . Then our constraints can be written in ma-
trix form as dC < b. Now we may delete those columns of C and the
corresponding elements of the vector b where the matching constraints
are satisfied; this yields the reduced set of active constraints dC < b.
Is d = bC* the desired solution of our linearly-constrained minimiza-
tion problem? Recall that d = HC* is the vector of least length that
minimizes | dC — b |.

Algorithmically d, ds, . . . , d, can be computed by repetitively replac-

ing every pair of adjacent values y; and y;; for which y; > y;,; with
their average (y; + y;+1)/2 until no such pairs are present. Although this
process may never terminate, the values y;, ..., y, will approach limit-
ing values. The following program jumps directly to those limiting val-
ues and constructs the monotonizing correction vector d for the vector

y=1 .. Yn)

o N N N AN

.setz <y, setj « 1.
.seti « j,setj « j+1,if j > n go to step 8.

.ifz; < z; gotostep 2.

.seta «— (i +...+z))/(j—i+1).

.ifi —1>1andz;_, > a {seti < i — 1 and go to step 4}.
.if j+1<nanda > zj, {set j « j + 1and go to step 4}.
.setz; «-a,setz;y) < a,...,setz; < a and go to step 2.

.setd; «z; —y; for1 <i < n and stop.

Exercise 10.13: Revise the algorithm above to avoid repetitive calcu-
lation in the computation of the average in step 4.

Exercise 10.14: Show that at step 8, the mean of the values yy, ... , y,
and the mean of the values zy, ... , z, are identical. What can you say
about the mean of the original error values ¢y, ... , €,?

!
Exercise 10.15: Explain how to solve the linearly constrained mini-

132 10. Smoothing Splines

mization problem of minimizing | d; | + ...+ | d, | subject to the con-
straints y; +dy < y2+d2,y2+d2 < y3+ds, ..., Y1 +dn-1 < Ya+dn.

We may now construct a monotone smoothing spline for the points
(x1, y1)s - - - » (xn, yn) by first monotonizing these data points, then com-
puting the points py, . .. , p, for the ordinary optimal smoothing spline and
monotonizing them, if necessary. Then we can compute the natural global
cubic spline function slopes for these points and adjust these slopes with
Hyman’s monotonizing slope adjustment scheme discussed earlier, if nec-
essary. Now the resulting points and slopes define our desired monotonic
smoothing spline function.

Exercise 10.16: s the optimal smoothing spline function for a
sequence of monotonic data points monotonic?

Exercise 10.17: Explain how to use monotonic smoothing splines to
estimate the density function for a random variable that is assumed to
have a unimodal density, given a sequence of independent samples of
this random variable.

Monotonic Optimal Smoothing Spline, p =.5
2.6 ™

1.58

0.56

-0.46

-1.48

0 1 2
(circles = monotonized data points)

wp
£
(%]

11

Geometrically Continuous
Cubic Splines

Recall that we can construct a double tangent cubic spline which is tangent-
vector geometrically continuous at its join points by choosing pairs of en-
try and exit tangent vectors at each point p;, where each pair may have
differing magnitudes, but the same direction. It is common to call a tan-
gent vector geometrically continuous curve a G! curve, in the same way
that a tangent vector algebraically continuous curve is commonly called a
C! curve. A C° curve is merely a continuous curve, and in general, a C*
curve has k or more successive continuous derivative vectors. A G° curve
is just a C° continuous curve. A G! curve has a continuous unit tangent
vector curve, and a G2 curve also has a continuous curvature function. A
regularly parameterized C* curve, whose tangent vector does not vanish, is
necessarily also a G¥ curve. We often wish to focus on a particular point
x(t) of a space curve x and consider whether x is G¥ continuous at that
point.

A general definition of G* continuity is that a curve c is G* continuous at
the point c(¢) if there exists a regularly parameterized curve whose trace is
equal to the trace of ¢ and which is C* continuous at c(¢). In particular, we
can always look at the arc length parameterization ¢ of c; if ¢ is a C* curve
at c(t), then c is a G* curve at ¢(¢). Thus, a G¥ continuous curve would be
be a C* continuous curve, if not for an “unfortunate” parameterization.

Recall that a global cubic spline is not generally a regularly parameter-
ized curve and it may exhibit isolated cusps; that is, a global cubic spline

134 11. Geometrically Continuous Cubic Splines

x may have a discontinuous unit tangent vector at points where x’ = 0.
However, a join order 2 global cubic spline is a C* continuous curve be-
tween join points and is a C? continuous curve everywhere. We will seek to
modify this property at the interior join points ps, ..., p,—1 and only ask
for G* continuity at the interior join points (generally with & = 2). Thus
we want a global cubic spline which is C* continuous between join points
and which is G¥ continuous at the interior join points; we shall call such a
spline a G* joined spline.

Exercise 11.1: Show that a cubic spline curve is C* continuous
everywhere except at its join points.

Clearly then, a G!-joined cubic spline curve x has the property that there
exist n — 2 positive constants By, ... , B,_2, such that gix;(t;) = x;_,(0)
forl1 <i <n-1.

A G? curve x is a G! curve with the additional property that the cur-
vature of x, |x’ x x”|/|x’], is a continuous function. For a G joined
cubic spline curve x, this need only be checked at the interior join points
P2, ---, Pa_1. In order for the curvature of x to be continuous at p;,;,
x;(t;) x x,-”(t,-)l/lx,f(t,-)|3 = |x;,,(0) x x,f'_‘_l(O)I/Ix,fH(O)Iz' must hold. Sup-
pose the scalar §; > 0 is the value such that g;x/(t;) = x/,(0) holds as
a consequence of the G! continuity of x at p;,;. Then x is G continu-
ous at piyq if BIlx[(¢) x x['(t)| = Ix[(t;) x x/,,(0)]; this will be true
if ﬂizx,f'(t,-), plus any multiple of x;(#;), equals x;’ , (0). A multiple of x;(¢;)
may be included because the cross product of two vectors that are multiples
of each other is 0. Let y, ... , ¥,—2 be any desired real multiplier values.
Then BZx;(t;) + yix!(t) = x!,,(0) together with B;x/(t;) = x],,(0) for
1 <i < n — 1, are sufficient conditions for x to be G2 continuous at the
interior join points ps, ..., p,—1. A slightly deeper analysis reveals that
these are necessary conditions as well.

Given a non-retrograde space curve x, not necessarily regularly param-
eterized, we seek conditions on x, such that x is guaranteed to be a G*
curve. Let X(s) denote the arc length parameterization corresponding to
the space curve x. By definition, x is a G* curve if and only if £ is a C*
curve.

Let us focus on the behavior of x at a point x(#;) = X(s;). Suppose x is
a G* curve at x (1) and that, in the neighborhood of the point x(#), x can
be defined piecewise as the joining of two space curves a and b at the point
Xx(t1), sothat x(¢) = a(¢) fort < t; and x(¢) = b(t — ;) tor ¢t > t;. Now
suppose further that there exist two real valued functions « and v such that

11. Geometrically Continuous Cubic Splines 135

the arc length parameterization of x satisfies X(s) = a(u(s)) fors < s
and x(s) = b(v(s)) for s > s;. When these assumptions hold, we can
deduce conditions that determine that x is a G* curve at x (). Basically,
the smoothness with which the arc length parameterized forms of a and b
join determines the algebraic continuity of X at x (1), and the smoothness
with which the curves a and b, with their parameterizations inherited from
x, join determines the coefficients in the associated geometric continuity

relations.

Exercise 11.2: Show that the above assumptions do hold when x is a
regularly parameterized curve.

Since £ is a C* curve at x(t;), the left derivative, defined as lim, ;o (£ (s1)—
X(sy — €))/€, equals the ordinary derivative [a(u(s))]' [s=5, and the right
derivative, defined as lim, o(X(s; + €) — X(s1))/¢€, equals the ordinary
derivative [b(v(s))] |s=s,; and this same correspondence holds up to the
kth derivative.

Now, by the chain rule,

[a((s)] ls=sy= u'(s1)a’(u(s1)),

and

[BWSH] Is=s,= V' (s1)b (v(s1)),

SO
u (Sl) ’

v()

a'(u(s))) = b'(vis1)).
Similarly,
[a@(s))]” |s=s,= 4" (s1)@’ (u(s1)) + ' (s1)%a" (u(s1)),

and
[BOEN] ls=s,= V" (51D (v(s1)) + V' (51)%0" (v(s1)),

SO

u(1)2 " ” ”
G)2 a”(u(s)) + [u"(s1) — V(s 1) ,()
Now the space curves a and b can be adjusted so that u'(sy), v'(sy),
u”(s1) and v”(sy) can be any desired non-zero values. Thus the relation

‘l‘,—gha (u(sy)) = b'(v(sy)) can be written Ba’ (u(Sl)) = b'(v(s;)), where 8

is an arbitrary positive constant. Similarly, the relatlon —L%a”(u(s)+

]a (u(s1)) = b"(v(s1)).

136 11. Geometrically Continuous Cubic Splines

[u”(sy) — v”(s,)'lj:%:-;]a'(u(sl)) = b"(v(sy)) can be written B%a" (u(sy))) +
va'(u(s1)) = b"(v(sy)), where B is the positive constant in the prior rela-
tion and where y is an arbitrary constant.

Finally, a¥)(u(s;)) = x¥(#;) and 6D (v(sy)) = x{(1y) for j = 1, 2,
..., k,where x(_j)(tl) denotes the jth left derivative vector of x and xg_j)(t,)
denotes the jth right derivative vector of x. Thus Bx’ (t;) = x/ (t;) when-
ever x is G! continuous at x(;), and in addition, B2x” (t;) + yx_(t;) =
x! (¢;) whenever x is also G? continuous at x(;). By repeated differentia-
tion and use of the chain rule, we can obtain a set of necessary conditions
that must hold for x to be G* continuous at x(¢;). The two such conditions
given here for G? continuity at a point are exactly the sufficient conditions
for G2 continuity of a spline curve at a join point obtained earlier.

Exercise 11.3: Given the points py, ... , py, the entry tangent vectors
Iy, ..., I, the exit tangent vectors m;, ... , m,, and the parameter limit
values t;, ... ,t,—1, suppose that the associated double tangent cubic

spline x is a G! joined space curve. Propose a method to adjust the
magnitudes of the entry and exit tangent vectors so that x becomes a
C! joined curve. Can this be done by adjusting only the parameter limit
values ¢y, ... ,t,—1?

Exercise 11.4: Given the points py,..., p,, the tangent vectors
my, ... , my, and the parameter limit values ¢y, ... , f,_ that determine
a cubic spline space curve x, construct a procedure to compute x(s),
where X (s) is the arc length parameterized version of x.

Solution 11.4: We can compute x(¢t) forO <t <ty +t2+ ...+ 1,1y,
and thus we can compute the arc length /(¢) along the curve x from x(0)
tox(t)for0 <t <ty+t6+...+t,_yasl(®) = f(; |x"(t)|dzr. Now
to compute x(s), we first determine the integer i such that I(¢; + £ +
..+ tis)) <s <Il(ty+ 12+ ...+1). Then X(s) is a point on the cubic
segment curve x;; this point may be determined by solving the equation

fri+rz+...+r.<_n |x'(t)|dt = s for the value ¢. Then x(s) = x(¢).

11.1 Beta Splines

Barsky [BB83] [BBB87] has proposed several distinct families of G2 joined
global splines called beta splines. We shall present a method for comput-
ing one form of beta spline represented as a double tangent G2 joined

11.1 Beta Splines 137

global cubic spline that interpolates a sequence of points py, ... , p,. Such
curves include the C? global cubic splines as a special case.

A G? joined global cubic spline must satisfy the G continuity condi-
tions at the interior knot values ry, 2, ... , r,—2 corresponding to the join
points ps, ..., pp—1, Wherer, = t; + ...+ t;. Thusforl <i < n -1,
we have Bix/(4) = x{,,(0) and Bfx/(t;) + yix[(t;) = x/,(0) for some
values 8y > 0,8, >0,...,8,—2 >0and y, ..., yn—2. When B; = 1 and
yi =0forl <i < n— 1, we have an ordinary C 2 global cubic spline.
As with C? global cubic splines, two additional vector end conditions must
be postulated to completely determine a particular G2 joined global cubic
spline that interpolates the points p;, p2, ..., pa.

Yetm,,m,, ..., m, be the exit tangent vectors at points p;, Pz, ... , Pn
andletly, I3, ... , I, be the corresponding entry tangent vectors at the points
P1, P2, - - - » pn. Thus, x/(0) = m; and x;(t;) = l; ;. We want to determine
2n — 2 vectors that define a double tangent cubic spline, such that the 2n —4
G? continuity condition equations that ensure G? joining at py, ..., p,_y
hold, together with two additional end condition equations.

Recall that the ith segment curve of a double tangent cubic spline is
xi(t) = aj + bt + cit* +d;t?, so that x/(t) = b; +2c;t +3d;t? and x/'(t) =
2¢; + 6d;t for 1 < i < n where a; = p;, b = m;, c; = 3(pis1 — pi)/t? —
@mi+li+1)/ti,and d; = 2(pi—pi41)/ 1 +(mi+li11)/ 1} The G2 continuity
condition B;x;(t;) = x;,,(0) is equivalent to the relation g;_;/; = m;, and
the G? continuity condition B2x/(t;) + vix](t;) = x/',,(0) is equivalent to
the relation B(2¢; + 6dit;) + vi(b; + 2¢it; + 3d;it?) — 2¢i4 = 0.

Let h; := 2(B? + v;t;) and let k; := 682 + 3y;t;. Then we may eliminate
a;, b;, ¢;, d;, and l; in the equations above to obtain

2k; — 3h; 6 3h; — 2k; 6
7 Ptz Tt | P T | a | Piv2
i tita t i+1

_[Zhi—k,'—}/i:lm. [4 +k,'—h,':|m‘ _[2 :Im.
L ' i1 L Bi i+ liv1Bit1 i+

forl<i<n-1.

These n — 2 vector equations constitute an (n — 2) x n tridiagonal system
of linear vector equations whose solution requires that values for the con-
stants By, ..., Bn-1 and y1, ..., ¥»—2 be known. Thus, when we choose
the constant B,_; in addition to By, ..., B,—2 and 1, ... , ¥a—2 and add
two additional independent equations which specify m, and m,, we may
then compute my, ... ,m, and then compute /5, ... ,I, via the relation
l; = m;/Bi—1. The double tangent cubic spline defined by the computed

138 11. Geometrically Continuous Cubic Splines

exit and entry tangent vectorsmy, ... ,m,_yand s, ... ,l,isa Gz-joined
global cubic spline that interpolates the points py, ..., p,; this spline is
the principal beta spline defined by Barsky. The 2n — 3 shape control pa-
rameters By, ..., Bu—1 and ¥, ... , Yn—2 may be chosen to obtain any of a
variety of shape effects not available with a C? global cubic spline.

Exercise 11.5: Experiment with choicesof 8y, ..., ,—1and y, ...,
Yn—2- What happens if 8; = O or if 8; < 0 for some i?

Exercise 11.6: Does having the freedom to choose the parameter limit
values 1, ..., t,—1 allow any new curves to be had beyond those ob-
tained by fixingt) = t; = ... = t,—; = 1 and varyingjust By, ... , Bs-1
and y1, ..., ¥a_2?

Exercise 11.7: Suppose we specify a G2 joined double tangent cubic
spline x by requiring that, fori = 1, ... ,n — 1, the ith segment curve
x; with the parameter limit value ¢; satisfies x;(0) = p;, x;(t;) = pis1,
x;(0) = atju;, and x;(t;) = 8i1ui+1, Where u; and u; 4 are unit vectors,
and o; and §;,; are positive constants; moreover we specify that the
curvature of x be continuous with specified values K; at the join points,
so that |x/'(0) x x(0)|/1x/(0)]° = K; and |x/'(t;) x x}(&)|/Ix}(@)* =
Ki+1. Show that the valuesay, ... , o,y and 6, . .. , 8, satisfy the 2n—
2 equations:

I6(pi+1 — Pi)/ti — 28iy1tis1] X ui| = o} K;t;, and
[6(pi — pi+1)/ti + 20tiu;] X ujy1| = 82, Kiati,

fori = 1,...,n — 1. Thus when these equations can be solved for
ay, ... ,0y—1 and &y, ... , 8, in terms of the specified points py, ... , Pn,
the specified parameter limit values #y, ... , f,—1, the unit tangent vec-
tors uy, ... , u,, and the positive curvature values K, ... , K,, we can
explicitly obtain the G2 joined double tangent cubic spline curve with
specified unit tangents and specified curvature values at the interpola-
tion points pi, ... , Pn-

12

Quadratic Space Curve Based
Cubic Splines

Exercise 12.1: Show that a quadratic space curve q(t) = a + bt +
ct? is a planar curve, and thus prove that a cubic is the lowest degree
polynomial space curve which has non-zero torsion.

Exercise 12.2: Show that a quadratic space curve q(¢) = a + bt +ct?
is a parabola.

Solution 12.2: A parabola is the only conic section that is the graph
of a quadratic function. We have q(t) = [t? t 1]A where A row 1 = c,
Arow2 = b,and Arow 3 = a. Any real m x n matrix A can be
written as A = LQ, where Q is an n x n orthogonal matrix and
L is an m x n lower triangular matrix. Thus, we may write g(¢) =
[¢2 ¢t 1]L Q. Now since Q and Q™! are orthogonal matrices, q(t)Q !
has the same curvature and torsion as g(t). But q)Q ' = [t2 t1)L =
(L1122 4+ Lyt + L3y, Lyst + L3z, L33). Now changing the parameter-
ization with s = Lyt + L3;, we obtain the identical curve g(s) :=
q((s —L32)/L22)Q 7" = (L1y[(s — L32)/L22]* + La[(s — L32)/L 2] +
L3y, s, L33). This is clearly a planar quadratic curv® defined by a quad-
ratic function, and thus a parabola.

Exercise 12.3: Find the parametric quadratic space curve which passes
through the point a, with the tangent vector v, and which passes through
the point b, based on a parameter ¢ € [0, h].

140

12. Quadratic Space Curve Based Cubic Splines

Solution 12.3: g, (t; a, v, b) = gu(t) = a+ vt + ((b—a —hv)/ h*)t?
with g,(0) = a, g,(0) = v, and g,(h) = b. This family of parabolas
is related by g, (ah; a, v, b) = g,(ar;a, (h/r)v, b), so that different
choices of h are equivalent to fixing & and adjusting the magnitude of
the vector, v. Differentiating g, shows that g, is not a uniform veloc-
ity parameterized curve for any 4, so that no choice of & gives the arc
length parameterized parabola. The coefficient vector (b — a — hv)/ h?
is parallel to the principal axis of the parabola g,. The point of great-
est curvature on gy is g,(—(c, v)/(2(c, ¢))) and that maximal curvature
value is [2c|, where ¢ = (b —a — hv)/h?.

Exercise 12.4: Find the parametric family of parabolas which passes
through the three distinct points py, p2, and p3 in R>.

Solution 12.4: For each choice of parameter values g and 4 such that
0 < g < h, we have the quadratic space curve, g(t) = a + bt + ct?, for
—00 <t < 00, where a = py, b = —gp3/(h(h — g)) + hpa/(g(h —
8))—(h+g)p1/(hg),and ¢ = p3/(h(h—g))— p2/(g(h—g))+ pi/(hg).
The corresponding space curve q satisfies g(0) = py, q(g) = p,, and
q(h) = ps. a + bt + ct? is not an arc length parameterized constant
velocity representation for any admissible choice of g and h. We can
show that q’(g) = 3gp3/(h(h—g))+(h—2g) p2/(g(h—g))+(g—h)p1,
and, when h = 2g, we have q'(g) = (p3 — p1)/(28).

Exercise 12.5: How many numbers determine a quadratic space
curve?

Solution 12.5: Seven numbers and one bit are sufficient to determine
a quadratic space curve. Three numbers and a bit suffice to specify the
plane of the curve, and one number is the angle with respect to the
projection of the positive x-axis (or positive y-axis if the plane is nor-
mal to the x-axis) which determines the direction of the principal axis
of the parabola. Finally, choose this principal axis direction as the di-
rection of the y-axis in the plane of the parabola and take the x-axis
to be perpendicular, with both axes passing through the projection of
the origin in the specified plane. Then three further numbers corre-
sponding to the values y(—1), y(0), and y(1) for the planar parabola:
y(x) = ax?+bx +c (which has a point for every value of x) determine
the coefficients a, b, and ¢, and hence, in total, seven numbers plus one
bit determine a parabola in 3-space.

12. Quadratic Space Curve Based Cubic Splines 141

Exercise 12.6: Compute the curvature function of the quadratic space
curve g(t) = a + bt + ct?.

We may estimate the tangent vectors for a cubic spline by using the tan-
gents of quadratic curves. Let py, ... , p, be the points interpolated by the
cubic segment curves Xy, ... , X,—; with parameter limit values 1, ... , ,_;.
Consider the quadratic space curve g;_;(¢) which satisfies g;—;(0) = p;_,,
qi-1(ti-1) = pi, and gi—1(tiy1 + ;) = piyy, for2 < i < n — 1. We may
then estimate the tangent vectors my, ... ,m,_y by m; = g{_,(t;_;). We
may use the special choices my = q;(0) and m, = q,_,(t,_2 + t,—1). This
tangent estimation method produces so-called Bessel tangents, and the cor-
responding cubic spline is called an Overhauser spline [Ove68].

Quadratic space curves may be “mixed” together to achieve an inter-
polating curve which passes through two points, p; and p;;, with the
given tangent vectors, m; and m;;, respectively. One such mixture is:
xi(t) = [pi + mit + (pipy — pi — m)E2J(L =) + [piy1 — mip (1 —
1) + (pi — pis1 +mip1)(1 — 1)*]t, for 0 < ¢ < 1. The mixture x;(t) co-
incides with the Hermite cubic polynomial which passes through p; with
the tangent vector, m;, and through p;,; with the tangent vector, m;., and
whose parameter range is 0 < ¢ < 1 between p; and p;;.

This same convex combination mixing device may also be employed
with any other interpolating curves. Mixing the two circular arcs which fit
Di-1, Pi> Pi+1 and p;, piy1, piv2, respectively is sometimes a useful way
of computing an interpolatory curve in 3-space.

Another mixing of quadratics is to compute the interpolated point be-
tween p; and p;,; as a mixture of the quadratic space curve g;_;(t) which
satisfies g;_1(0) = pj-1, gi—1(gi-1) = pi, and g;—1(hi—1) = pi1, and the
quadratic space curve g;(t) which satisfies q;(0) = p;, gi(g/) = pi+1, and
gi(h;) = pi+2. The parameter limit values gy, ... ,g,—2and hy, ... , h,
are chosen to satisfy 0 < g; < h;. This mixture is x; (t) = (1—1)g;-1(gi-1+
(hij—y — gi—1)t) + tq;(git) for 0 < ¢t < 1. Since this is a cubic form, it is
identical with the Hermite cubic polynomial which passes through p; with
the tangent vector [h;_; — gi—1]9/_,(gi—1) and through p;, with the tan-
gent vector g;q;(g;), whose parameter range is 0 < ¢t < 1 between p; and
Pi+1- In effect, we have estimated the tangent vectors ’for the cubic spline
segment x; by m; = [hi_1 — gi-1lg;_,(8i-1) and m;.; = gq;(g;). We may
use the special choices m; = ¢;(0) and m, = q,_,(hn_2). Let us call this
cubic spline the mixed quadratic cubic spline.

Exercise 12.7: Show that the above mixed quadratic cubic spline that

142

12. Quadratic Space Curve Based Cubic Splines

interpolates the points py, ... , p, is a G! joined double tangent spline,
and explain its relationship to an Overhauser spline.

Exercise 12.8: Suggest a method for choosing the parameter limit
values g1, 82, --. , 8n—2 and hy, ..., h,_; to be used in defining the
quadratics qy, ... , g,—2 to be used to compute the entry and exit tan-
gents for the mixed quadratic cubic spline.

Exercise 12.9: Study the mixture of the quadratic space curves ¢g;_;
and g; defined as fo(t)gi-1(gi-1 + (hi-1 — gi-1)t) + f1(t)qi(g;t) for
0 <t < 1 where the non-linear mixing coefficients are given as fy(t) =
1—3t2+23and fi(r) = 3¢% — 213

Exercise 12.10: Study the double tangent quadratic spline that inter-
polates the points py, ... , p,, where the quadratic segment curve x; is
defined as the mixture of ¢;_; and g; as x;(t) = [gi-1(gi-1 + (hi=1 —
8i—1t)+qi(git)]/2. Can you modify this spline to obtain a related cubic
G!-joined spline?

Exercise 12.11: Devise weight values «, 8, and y for the cubic spline
tangent estimation procedure: m; = aq;_,(hi_2)+Bq;_,(gi-1)+vg;(0).

Exercise 12.12: Given the points py, ... , p, with the associated knot
valuesrg < r; < ... < r,_, define j;(¢t) to be the cubic polyno-
mial space curve that satisfies j;(r;_y) = p;, ji(ri) = piy1, Ji(riz1) =
Pi+2, and J;i(riy2) = pipafor 1 < i < n — 3. Note (j;), is the La-
grange interpolating polynomial for the points (r;_y, p;), (i, Pit1.4),
(ris1s Pi+2.k)> (Fig2, Pis+3 k)

Define and study an interpolant piecewise-composed of segment
space curves, where the ith segment curve x; (¢) that connects the points
pi and p;,; ast ranges from r;_; to r; is constructed as a mixture of the
polynomials j;_,, ji—1, and j;. Resolve the definition of this interpolant
at the boundaries of the sequence of data points p1, ... , p,. Hint: first
form a mixture of j;_; and j;, and then mix this with j;_;; the result
will be a piecewise quintic.

13

Cubic Spline Vector Space
Basis Functions

Finding a basis (¢y, ..., ¢,) for a d-dimensional vector space of cubic
splines allows us to express any element x of the vector space as x =
ar¢y+...+agp, where ay, ... ,ay € R. For the case of a vector space of
cubic spline functions, some basis sets can be developed by focusing on a
representation of the cubic polynomial spline segments as component-wise
linear combinations of fixed functions.

A Hermite cubic polynomial, x;(t), with 0 < ¢ < 1, satisfies x;(0) = p;,
x;(0) = m;, x;(1) = pi,1, and x;(1) = m;,y. The curve segment x; is
based on four vectors: p;, m;, pi+1, and m;1; and x; can be written as a
linear combination of these four vectors: x;(¢) = fo(t)p; + fi(t)piv1 +
fym; + fs(¢)m; .y, where 0 < ¢t < 1, with fo(¢) = 1 — 312 + 213,
fi(t) = 32 =23, fo(t) =t — 2t + 13, and f3(t) = —t? + 3. These
coefficient functions fo, fi, f2, and f3 are called the blending functions
for the Hermite cubic polynomial interpolating between the points p; and
Di+1, With tangent vectors m; and m;;) respectively, with the parameter
range [0,1]. If we use shifted forms of such blending functions to write each
segment curve x; as a linear combination of (shifted) blending functions,
we may obtain an overall representation of the corregponding spline x as
a linear combination of shifted blending functions. This will lead to an
explicit representation of a basis for the space of Hermite cubic splines.

144 13. Cubic Spline Vector Space Basis Functions

Exercise 13.1: Show that fo(t) + fi(t) = 1, fo(1 —t) = fi(t), and
@) =—=fo(1-1).

Exercise 13.2: Show that fo(t) pi+ fi(®) i1+ o()mi+ f5(8)m; 1 =
fol=t)ping+ 1 =0)p; — f2(1 = t)m;iyy — f3(1 =)m;.

Solution 13.2: The Hermite cubic spline segment connecting p; to
i1 With the tangent vector m; at p; and the tangent vector m;; at p; .,
and having the parameter ¢ in [0, 1] is the same curve as the Hermite
cubic spline segment going in the other direction, from p;; to p; with
the tangent vector —m; 1 at p;j+; and the tangent vector —m; at p;.

Exercise 13.3: Consider the space A* of join order 1, range dimension
1 h-splines with respecttorg < r; < --+ < ry_1, where r; = i and
where A is the set of cubic polynomials which map R to R. Show that
h* is a set of single-valued functions from R to R. Also show that, in
this case, the blending functions: fy, fi, f2, and f3, are a basis for A
interpreted as a vector space but are not a basis for A* unless n = 2.
Finally, show that 4* is a vector space of dimension 2n.

13.1 Bases for C! and C? Space Curve Cubic Splines

Consider the vector space H(‘i) of join order 1, range dimension 3 cubic
polynomial splines with respect to the knot values ro, ry, ... , r,—; Where
ro=0andr; =t + --- + ¢; for arbitrary positive values of the segment
parameter limits ¢;,. .. ,¢,_;. The space H(‘i) is a vector space of dimension
6n. A basis for this vector space called the Hermite blending function basis
can be determined as follows.

Given ty, ..., th_1, take tg := 1, ¢, := 1 and define the generalized

Hermite blending functions

fiot) = 1=3(/t)*+2(t/1)°,

fi (@) 3(t/1)* — 2(t/4)°,

fia(t) it/ —2(t/6)* + ¢/6)%), and
fa) = (=@/t)?* + (t/6)%),

for0 <i <n.

13.1 Bases for C! and C2 Space Curve Cubic Splines 145

Now take r_y := —1,r, :=r,-1 + 1, and define
0 fort <ri_y
Fij(ty = § fij(t —ri-1) fort €[ri_1, 1)
0 fort > r;

for0 < j <3and 0 < i < n. Then an element x of H(‘i) determined by
the points py, ..., p, with the tangent vectors my, ... , m, can be written
as

x(0)= Y [Fio)pi + Fa(t)piy + Fia(®)m; + Fis(m;]

l<i<n

Thus,

x(0)= Y [(Fim1a() + Fo@)pi + (Fi-13() + Fi2(t))m;].

1<i<n

Let Gj1(t) := Fi_j1(t) + Fio(t) and G;2(t) := F;_13(t) + F2(¢) for
1 < i < n. Note that G;, corresponds to 0, joined with F;_;,, joined
with Fjp, joined with 0, to form a join order 1 piecewise cubic polynomial
spline which is zero outside the interval (r;_;, r;), and G;; corresponds
to 0, joined with F;_; 3, joined with F;,, joined with O to form another
join order 1 piecewise cubic polynomial spline which is zero outside the
interval (r;_z, r;).

Now,

x@) = Z [Pi1(Gi1(2), 0,0) + pi2(0, Gix(2), 0) + pi3(0,0, Gix ()

1<i<n

+m;1 (Gia(t), 0, 0) + miz(0, Gia(t), 0) + m;3(0, 0, Gia(1))],

and so the 6n join order 1 range dimension 3 cubic polynomial spline space
curves (G;;,0,0), (0,G;;, 0, (0,0,Gjy), (Gi2,0,0), (0,G;3,0), and
0,0,Gj,) for1 < i < n form a basis for H(*l).

This basis has been obtained by constructing shifted forms of the gener-
alized Hermite blending functions, extending them to 3-tuples, and deter-
mining that these 6n 3-tuples are multiplied by the 6n “free-parameters”

P11: P12, P13, -+« s Pty P2, Pn3s M1, M1z, M3, oo, Ma1, M2, Mp3 in the
expression for a general cubic spline in H},.

Exercise 13.4: Show that G;; and G, are join order 1 piecewise cubic
polynomials on (—00, 00). Note that there are three join points to be
considered. Draw graphs of G;; and G;5.

146 13. Cubic Spline Vector Space Basis Functions

Note that G;; and G;; are 0 outside the interval [rj_2, r;); this interval is
called the support of G;, and G,. Since this support interval is as small as
possible, we say that the functions G;; and G;; have small support.

Due to the small support property of the functions G;; and G;;, the ba-
sis summation expression for computing a spline in H}, involves many 0
terms which need not be explicitly computed. Avoiding computing these 0
terms is equivalent to computing a Hermite cubic spline by computing the
individual cubic polynomial segment curves xy, ... , X,_1.

When the 3n components of the tangent vectors m;, ..., m, are deter-
mined as linear functions of the 3n components of the interpolated points
P1, - -- » Dn, the resulting vector space of cubic splines is a 3n-dimensional
subspace of H,. In simple cases, where a non-singular n x n matrix M
specifies the relationship in the form of # vector equations as

then a basis for the corresponding subspace can be determined as the 3n
vector components of

[(G11,0,0), ... ,(Gp,0,0)] 4+ [(G12,0,0), ... ,(Gn2,0,0)]M, and
[(0,G11,0),....(0,Gp1, 0)] +[(0, Gy2,0),...,(0,Gpa, O)]M, and
[(Ov Ov Gll)v ey (Ov O’ Gnl)] + [(Ov O’ GIZ)v R (Ov O, GHZ)]M'

This basis thus consists of the 3n space curves:
(Gll + [GIZ’ cee G,,z][M col]], 0, O), ceey
(Gn1 +[Gi2, .. , Gp2][M col n], 0, 0), and
(O, Gll + [GIZ’ cee G,,z][M col 1], O), ceey
©, Gu1 +[G12, ... , Gu2][M col n], 0), and
(O, O, Gll + [GIZv cee s G,,z][M col 1]), ey
(O, O, Gnl + [GIZ’ cee s G,,z][M col n])

In particular, we can use this schema to produce a basis for any of the
3n-dimensional subspaces consisting of the join order 2 range dimension 3
global natural splines, global quadratic end condition splines, global cyclic
splines, global anti-cyclic splines, or global third derivative constrained
splines.

For example, the n x n matrix M that can be used to construct a basis

13.1 Bases for C! and C? Space Curve Cubic Splines 147

for the global natural splines for n knot values is D~'C, where

2 1
 2(t2+th) 4
D= f , and
by 2(£n—l+tn—2) th-2
I 1 2
[=L 1 7
I 4]
2 o _t n
4] n 5] 5]
cC=3
| In—1 In-2 In_2
Ih-2 In-2 In-1]
— 1
b In—1 e

Y

Exercise 13.5: Show that the basis for the subspace of global natural
splines constructed above consists of join order 2 functions (i.e., C?
functions.)

Exercise 13.6: Use the above defined shifted generalized blending
functions Fjp(t), F;1(2), Fi2(t), and F;3(t), each supported in the in-
terval [ri—y,r;) for 0 < i < n,withr_y := —landr, :=r,_y + 1,
to express the double tangent local cubic spline x with the knot val-
ues rg, ... ,r,—; that interpolates the points py, ..., p, with the exit
tangent vectors my, ... , m, and the entry tangent vectors /4, ... , I, as

x(t)=Y_ (Fiona(®)+ Fo)pi+ D Fa®mi+ Y Fi130k.

1<i<n I<i<n 1<i<n

Then write the 9n — 6 3-tuples which specify the space curves that
form a basis for the (9n — 6)-dimensional space S$* of double tangent
join order 0 local cubic splines with range dimension 3.

Define the n x n matrices N and Q from the n — 2 equations that
relate the array of interpolation points p to the array of exit tangent
vectors m for a G? joined global cubic spline, together with the two
additional natural spline end condition equations 2m; + m; = 3(p2 —
p1)/tvandmu_1+2m, = 3(Py— Pu—1)/tn—1,suchthat Np = Qm. The
elements of N and Q involve the parameter limit values ¢y, ... , t,—,
and the beta spline shape parameters By, ..., B,—1 and 1, ..., Ya_2.
Now define the n x n diagonal matrix L = diag(Bo, Bn_1); then
the array of entry tangent vectors / is defined by / = L~'m.

148 13. Cubic Spline Vector Space Basis Functions

Now write an element x of $* in terms of the # x 3 matrices p, m
and / as

x(t) = [Fo1(t) + Fio(t). ... , Fay.1(t) + Fao(t)]p
+[F12(t)7 L) Fn—l.Z(t)9 O]m + [07 Fl3(t)9 LIRS Fn—l.3(t)]l9

and substitute Q!N p for m and L~'Q~'Np for [to obtain a basis for
the 3n-dimensional subspace of G? joined double tangent global cu-

bic splines with the parameter limit values t,, ... , t,_; corresponding
to the knot values rg, ... ,r,—1, and the beta spline shape parameters
Biroo s Ba-rand i, ..., Yn-2.

13.2 Cardinal Bases for Cubic Spline Vector Spaces

Exercise 13.7: Present a basis for the 3n-dimensional subspace of join
order 2, range dimension 3 clamped global cubic splines with m; = u
and m, = v.

Solution 13.7: Let C[py, ..., pn](t) be the global clamped cubic
spline with m; = u and m, = v that interpolates p;, p2, ..., Pn.
Then one basis for the global clamped cubic splines consists of the 3n
spline space curves:

C[(1,0,0), (0,0,0). ... ,(0,0,0)],...,C[(0,0,0),.... (L0, 0]
C[(0.1,0), (0,0,0), ... ,(0,0,0)],C[0,0,0),(0,1,0]
C[(0.0, 1), (0,0,0), ..., (0,0,0)], ..., C[(0,0,0),..., 0,0, D]

This basis is called the cardinal basis for the global clamped cubic
splines.

Consider a vector space V of splines of range dimension 1 with re-

spect to the knot values rg < r; < ... < rp_1, such that the points
(ro, ¥0), - -- , (rn—1, ya—1) are interpolated by a unique function f,(¢) in
V for any choice of scalar values yy, ... ,y,-; for the components of

the vector y € R". Let e; denote the n-vector whose jth component
is &8;;. Then the function f,, denotes that function in V that interpolates
the points (rg, 0),. . .,(ri—2, 0), (ri=1, 1),(r;, 0),. .. ,(rn—1, 0). The functions
fers feys - -+ » fe, are called the cardinal functions of V and they form a ba-
sis for V called the cardinal basis of V. Like all basis functions, f,, € V,
so f., must possess the same join order properties that all the functions in

13.2 Cardinal Bases for Cubic Spline Vector Spaces 149

V possess, i.e., f,; must be at least as smooth as the least smooth function
in V. In order to explicitly state the cardinal functions f,,, fe,,... , fe,, we
must be able to compute the functions that solve the associated interpola-
tion problems whose solutions then make up the cardinal basis.

Exercise 13.8: Take V to be the space of piecewise linear functions

with joints at the knot values ro < r; < ... < r,_;. Show that the
cardinal functions constituting a basis for these piecewise-linear range
dimension 1 splines are defined fori = 1, ... , n by the tent functions:
0 fort <ri_;
£(0) = L) = (t—ri2)/(ricy —ri2) forriy <t <rjy
“ ’ (ri—8)/(ri —ri-1) forriy<t<r
0 forr; <t
withr_y:=—landr, :=r,_1 + 1.

Given the space of range dimension 1 splines, V, a corresponding space,
V4, of range dimension d splines, can be formed by taking each of the
d component functions of an element of V¢ from V. The cardinal func-
tions f,,(t),..., fe,(t) can then be used to express any function z in vd
as z(t) = ay fe, (1) + ... + a, fe,(t) where ay, ... ,a, are d-tuples. This
is the cardinal function representation of the spline function z € V. This
representation leads directly to a basis for V4. For example, when d = 3,
the set of 3n functions mapping R to R? given by (f,,0, 0), (0, f.,, 0),
0,0, fe)s --+» (fe,»0,0), (0, fe,, 0), (0,0, f,) forms the cardinal basis
for V3, and a similar construction applies for any range dimension d.

Not every range dimension 1 interpolation scheme having an associated
vector space V of interpolation functions for the knot values rq, ... , rp_y
admits a set of cardinal functions; V must have dimension ». If the inter-
polating function f, is not uniquely determined by the n-tuple y for all
y € R”, then there are many choices for cardinal functions and a basis is
not determined by the chosen functions. In such cases, however, there is
always a dimension n subspace of V which has a cardinal function basis.

We can generalize by considering a vector space V of splines of range
dimension 1 with respect to the knot values rg < ... < r,_1, such that there
is a unique function f, () € V so that, for the fixed sequence of integers
mo>0,m; >0,...,m,_; > 0and any choice of values yq, y1, - .. , Yn-1
for the components of the vector y € R", f{"(ro) = yo, f"(r1) =
y1,...,and 7D (1) = Y1, Where f™ denotes the mth derivative

150 13. Cubic Spline Vector Space Basis Functions

of fy and f\” := f,. Then the functions f,,,..., f., are the cardinal
functions of V with respect to the derivative orders (mq, ... ,m,_;), and
fers -+ s fe, form a basis for V; in particular f,(t) = yof,,(¢t) + ...+

Yn-1 fe,, (t)

Exercise 13.9: Show that ﬂ(,.m’)(rj) = §_yjforl <i < nand
O0<j=<n-1

We have already obtained above the cardinal functions Gy, G132, ... ,
G .1, G2 for the vector space of join order 1 range dimension 1 cubic
splines with respect to the knot values rg, ro, r1, 71, - - ., F'n—1, F'n—1 and the
derivative order sequence (0,1,0,1,...,0, 1), and used them to obtain
the associated cardinal basis for the space H},.

Given a set of data points, computing an interpolating spline in a vec-
tor space V of range dimension 1 splines which admits a set of cardinal
functions can be characterized as a projection operation onto V. Let V
be the space of range dimension 1 splines with respect to the knot val-
ues ro < ... < rp_1, such that there is a unique function f,(t) € V so
that, for the fixed sequence of integers mo > 0, my > 0,... ,m,_; > 0
and any choice of values yp, y1, ... , Ya—1 for the components of the vec-
tory € RrR", f}f"’“)(ro) = Yo, f}f”")(rl) =y ..., and fy(m"_l)(r,,_l) =
Yn-1- (Recall that the Oth derviative function f* is just f, itself.) Let
m := max(mg,...,m,_1), and let C,, be the class of m-times differ-
entiable functions on R. Note that V C C,,. Then we can define the
projection operator P, such that every function g € C,, which satisfies
g (ro) = yo, gV (ry) = y1, ..., and g~V (r,_y) = y,_; is mapped
to f, € V by P, so that gP, = f,. That is, gP, satisfies (gP,)(t) =

;';01 fe,.+l(t)g(”'")(r,~). Note that the restriction of P, to V, P,|V, is the
identity operator on V, and thus Pj = P,.

Exercise 13.10: Show that P, is a linear transformation on C,,.

Exercise 13.11: Suppose we have a spline function f in an n-dimen-
sional space of splines V' with the knot values rq,ry, ... ,r,—1 given
in terms of a particular basis (B, B3, ... , B,) for the space V, so that
f@) =c1By(t) + - - - + c, By(t); and suppose that (Gy, G, ... , G,) is
another basis for the space V. Explain how to represent f with respect
to the basis (G, G2, ... , G,), i.e., explain how to compute the coef-
ficients dy, da, ... ,d, so that f(t) = d1G(t) + --- + dnG,(¢). Hint:
consider the generalized Vandermonde matrix

13.3 The B-Spline Basis for Global Cubic Splines 151

Gi(ro) Ga(ro) ... Gaulro)

Gi(rn) Galry) ... Gu(ra)

13.3 The B-Spline Basis for Global Cubic Splines

The vector space H, of join order 2 range dimension 3 cubic polynomial
splines without definite end conditions with respect to the knot values ry,
.-,y Whererg =0,andr; =t +--- + t; is a (3n + 6)-dimensional
subspace of H(‘;) where ty, ..., t,_; are arbitrary positive values. A fa-
mous basis for this subspace is the set of so-called B-spline basis functions
[DeB78][Far90][BBB87].

The bases for the various spaces of global cubic splines presented above
involve component functions that do not have small support intervals; thus
the computation of a global cubic spline via its basis representation in-
volves the summation of many terms. The functions that constitute the so-
called B-spline basis do have small support; however the B-spline basis
usually need not be used, since an effective method for computing a global
cubic spline that interpolates the points pj, ..., p, consists of solving
the appropriate linear system for the tangent vectors m, ... , m, and then
computing the individual segment curves xj, ... , x,. (If the requirement
for interpolation of the data points is suitably relaxed, a linear system need
not be solved, and the direct use of the B-spline basis becomes attractive;
the B-spline basis is particularly valuable in this context when we wish
to recompute a global cubic spline curve after changing only one control
point; then only the terms involving that point need be removed and recom-
puted).

The global cubic spline basis based on the particular join order 2 piece-
wise polynomials known as B-splines (B stands for “basis”) is developed
by starting with a simple basis for piecewise constant (degree 0) functions.
We may then employ linear combination “mixing” similar to the mixing
device used above in constructing cubic spline segments from quadratic
spline segments. By mixing the degree 0 B-spline basis functions, we ob-
tain the degree 1 B-spline basis functions, then we take linear combinations
of these degree 1 functions to obtain degree 2 B-spline functions, and fi-
nally, the degree 3 B-spline basis functions are constructed as mixtures of
the quadratic B-spline functions. The initial degree 0 B-spline functions
have limited support, and this property is preserved for the higher degree
B-spline functions.

152 13. Cubic Spline Vector Space Basis Functions

Let us fix the sequence of knot valuesrg < ry < --- < r,_; where
ro=0andr; =t +t,+--- +t;. To construct the degree k B-spline func-
tions, we must add k& new knot values at each end of the interval [rg, r,—1];
these knot values r_4, r——1), ..., F—1 and ryp, Fpyy, «+. , Fngk—1 €an be
arbitrarily chosen, subject to the constraint that r; < r; wheneveri < j.
To be concrete, we may define r_j :=ro— j and r,_y;; :=r,—y + j for
jz L

Now define the degree 0 B-spline functions with respect to the knot val-
ues ... ,r—1,70y--- srn—15rn, ... aS

0 fort <r;
Bjo(t) = 41 fort €[ri,risy)

0 fort>riy.

Then the following recursive linear combination mixing of the degree k— 1
B-spline functions defines the degree k B-spline functions:

t—r; Fivk+1 — ¢
Bix(t) = ——— - Bj41(t) + —————— - Bit1.4-1(0),
Fivkw — Ti Fitk+t —Tig1
fork >0andi=...,-1,0,1,...,n—1,n,..., where we impose the

convention that v/0 = 0.

In [BBB87], Bartels, Beatty and Barsky give a thorough step-by-step de-
velopment of the B-spline functions. You can see from the above recursive
definition that the function B;, is a spline composed of k + 1 degree k poly-
nomial segments, each defined on an interval between two knot values, and
supported on k£ + 1 adjacent intervals between knot values; outside these
k + 1 intervals, B;; is 0.

Exercise 13.12: Explicitly write the degree 1 B-splines B;; for
i =...,=-3,...,n—2,...; graph several of them, and show they
have join order O (i.e., are continuous) at the knot values rg, ... ,ry_1.
Explain why B;; has join order k — 1 at its knot values.

B-splines for uniformly spaced knot values have beautiful properties,
and are richly interconnected with other mathematical topics, such as Whit-
taker’s interpolation formula touched on previously. DeBoor [DeB87] and
Chui [Chu88] discuss these topics in their various works.

The above recursive definition is useful for computing the value B, (¢).
Note that computing B;3(¢) involves computing values of B;; and B;j ;.2
which, in turn, involves computing values of Bji, Bj,1.1, and B;,24. It is

13.3 The B-Spline Basis for Global Cubic Splines 153

possible to explicitly state the k + 1 degree k polynomial segment functions
that comprise B;; [Chu88], but for k¢ = 3, it is more convenient and efficient
to use the recursive computation.

Exercise 13.13: Explicitly compute the degree 3 B-splines B;3 for
i=...,=3,...,n=2,... (Eachinvolves at most 5 cubic polynomial
segments). Draw graphs of B_33, B_»3, B_13, Bos, and B3, where we
have n = 3 original knot values.

Since the degree k B-spline function B, is zero outside the support inter-
val [r;, ri4x+1) and is positive in its interior, exactly Bj, Bi_1.4, - .- , Bi—k.k
are positive in (rj, rj+1). Also, Z,._ksjsi B (t) = 1fort € [ri,ris1]

Exercise 13.14: Show that Z_ksk“k By (t) = 1fort € [ro, rn—1]-

The B-spline function B;, is k — 1 times continuously differentiable, so,
in particular, B;o is discontinuous, B;; is a join order O piecewise linear
continuous function, and B;3 € H5 fori = -3,-2,...,n—1,n-2.

The piecewise-polynomial B-spline functions B, fori = ..., -1,0,
1, ..., are linearly independent. In particular, the n + 2 functions B_s 3,

. , By_23 form a basis for the (n+2)-dimensional vector space of join or-
der 2 range dimension 1 global cubic splines with the knot value sequence
Yo, r1s - - - »’n—1- Thus the 3n + 6 space curves (B3, 0, 0), (0, B;3, 0), and
0,0, B;j3) fori = —3,...,n — 2 form a basis called the B-spline basis
for the subspace of global cubic spline space curves H . Some authors
call any global cubic spline written with respect to the B-spline basis a
B-spline.

A global cubic spline x that interpolates the 3-space points py, ..., Pa
with the associated knot values r, ... , 7,—1 can thus be written in terms
of 3-tuple coefficients a_s, ... ,a,_2 as

x(t) = Z a;B;3(t) where B;3 is 0 outside [r;, i 4).

—3<i<n-2
In this formulation, the B-spline functions, B;3, fori = —3,... ,n—2, act
as blending functions that blend the vectors a_s, . .. , a,_3.

The vector coefficient values a_s, ... , a,_z can be determined from the
n vector equations

x(rjy= Y aBi(r)) = p;.

=3<i<n-2

154 13. Cubic Spline Vector Space Basis Functions

for j = 1,...,n, plus two more vector equations corresponding to the
desired end conditions. The solvability of these equations demonstrates
that the B-spline basis functions are indeed a basis. For example, for a
natural global cubic spline with x”(rg) = 0 and x"(r,—;1) = 0, these two
additional equations are

Z a;B/3(ro) =0 and Z a;Bj3(r,-1) = 0.

—3<i<n~2 —3<i<n-2

Computing a global cubic spline x(¢) via its B-spline basis representa-
tion is often recommended because, like the de Casteljau algorithm for the
Bézier form, the computation is numerically stable when we tabulate the B-
spline basis functions using their recursive linear combination definitions.

Given the sequence of points p;, ... , p,, we may adjoin two additional
points pp and p,.; at each end which serve, in essence, to determine the
tangent vectors at the adjacent points p; and p,. Then we may form the
space curve

b(t) = Z Pi+3Bis(t).

=3<i<n-2
This space curve b(t) is called the B-spline smoothing curve for the con-
trol points pg, p1, ..., Pns Pny1 With the knot values r_3, r_3,... ,rpe2;
the curve b(t) passes close to the points py, ... , pa, but, in general, does
not interpolate them. Global cubic splines are often introduced as B-spline
smoothing curves, and interpolation is disregarded in favor of approxima-
tion.

Exercise 13.15: Show that if two adjacent knot values, r; and r;,;,
among ry, ... , r',—2 are equal, then the cubic spline represented with
the B-spline basis that interpolates the points py, ..., p, has only one
continous derivative at r; when p; # p;,;. What happensifr; =r;; =
ri+2? What happens ifr; = rj .y =riz2 =rius?

Exercise 13.16: Show that { (1,0, 0), (0, 1,0), (0,0, 1), (¢,0,0),
0,1,0), (0,0,1), (£2,0,0), (0,£%,0), (0,0,¢%), (£,0,0), (0,¢3,0),
0,0,) YU{(t=r)3,0,0) | j=1,...,n=2}U{(0, (t—rj)3,0) |
j=1,...,n=2}YU{@©0,0,¢¢—rp)>) | j=1,...,n—2}isabasis
for Hj,.

Exercise 13.17: Show that 1, ¢, t2, £3, |t — ri|>, ..., |t — rp_2)? is
a basis for the vector space of join order 2, range dimension 1 global
cubic splines with the knot value sequence rg <ry < --- < rp_j.

13.3 The B-Spline Basis for Global Cubic Splines 155

Note we can use a basis representation of a natural global cubic spline to
solve the problem of determining the 2D-smoothing spline for the points
(ro, f1)s -+, (ra—1, fn) with the weights Ay, ..., A, and the smoothing
parameter p which minimizes the previously introduced functional E (x) +
pJ (x). Let {¢y,... ,¢,) be a basis for the vector space of join order 2,
range dimension 1 natural global cubic splines with the knot values rg, r;,
eor 9y Tn—1. Write x(t) = a1 (¢) + ... + a,¢,(¢). Then the minimizer x (¢)
of E(-) + pJ(-) can be determined by solving for the coefficient values o,
... ,a, that minimize E (a1¢1 +...a,¢,) + oJ (011 +. .. +a,¢,). When
it is convenient, we can use a basis of n + 2 functions for the global cubic
splines with undetermined end conditions by solving an under-determined
minimization problem. Indeed this same device can be used with any finite-
dimensional space of functions to obtain the minimizer of E (-) + pJ(-) in
that space.

14
Rational Cubic Splines

A cubic polynomial curve in the xy-plane, (x;(¢), x2(¢)), whose cubic term
has a coefficient of 0 reduces to a parabola in this special case; but a
cubic polynomial cannot represent other conic section curves such as a
circular arc, an elliptic arc, or a segment of an hyperbola. It is an interesting
fact, however, that an elliptic or hyperbolic arc in R can be parametrically
represented by three component functions ¢ (¢), c2(¢), and c3(¢), where
each component function is a ratio of two quadratic polynomials.

Let A be the class of space curves which are ratios of cubic polyno-
mials in each component; this includes ratios of quadratic polynomials
as a special case. Then the corresponding class of A-splines are called
rational cubic splines. When the knot sequence being used may be non-
uniformly spaced and when the cubic polynomials involved are expressed
in the B-spline basis, then these rational cubic splines are often called
NURB-splines (for Non-Uniform Rational B-splines).

Although rational cubic splines have additional degrees of freedom, they
seem to have little practical added value over ordinary cubic splines, except
for their ability to exactly produce conic section curves. In some cases this
latter property is more easily achieved by using the desired conic section
curve directly.

The reason that a space curve whose component functions are ratios of
quadratic polynomials can be a conic section curve is because a parabola is
specified parametrically by quadratic component functions (e.g., (1, £, t%)),

158 14, Rational Cubic Splines

and the perspective projection of a parabola in R* onto a suitable plane in
R3 can yield any desired conic section curve ¢ in that projection plane. This
is clear by taking the center of projection to be the vertex of a cone of which
the parabola is a section; then the cone itself determines the mapping of the
parabola section to another section of that cone in any chosen sectioning
plane. A perspective projection maps a space curve with cubic or quadratic
component fuctions to a space curve with a ratio of such polynomials as
component functions. Thus rational cubic splines can match any desired
conic section curve.

15

Two Spline Programs

Two packages of C functions are given below. The first package is con-
tained in a file entitled gspline.c and provides a routine called cin-
terpolate that can be used to compute a variety of different interpo-
lating cubic spline curves (or their derivatives or integrals) which differ in
the choice used of the tangent estimation method. The second package is
contained in a file entitled ssp . ¢ and provides a routine called smooth-
spline that can be used to compute an optimal cubic smoothing spline
curve (or the associated derivative or integral) using a user specified or
program estimated smoothing factor.
The two source code files given here can be downloaded from

www.birkhauser.com.

15.1 Interpolating Cubic Splines Program
/* FILE gspline.c REVISION DATE: April 7, 1997 */

This file contains the routine:
(export) cinterpolate(double *hp, double *vp,
double £, intlé k, double *mp,
intlé tansw, intlé6 idsw)
which may be used to compute an

160 15. Two Spline Programs

interpolation curve or its integral or
derivative in 3-space or in the plane,
given a set of data points and, possibly,
associated tangent vectors,

and the ancillary routines:

(private) allocharray(int32 nr,int32 nc)

(private) dist(intl6 a, double *hp)

(private) curve(double *hp, intlé Jj, double p,

double *dest, double £, intlé idsw)

/* macros used to improve

readability */ #define intl6 short int

#define int32 long int

#define EQ ==

#define NE I=

#define AND &&

#define OR ||

#define NOT !

#define XOR ~

#define private static

#define forward

#define import extern

#define export

#define MAX(x,y) ((x) > (y) ? (x) : (y))

#define MIN(x,y) ((x) < (y) ? (x) : (Y))

#define ABS(x) (((x)<0)?-(x):(x))

/**********SYSTEM GLOBALS ****************************/
#include <Clib.h>

/*Clib.h defines the C-library fcts, e.g. sqrt, exp */

[**kkxkxxk* FILE GLOBALS ****kkkkkkkhhhkhkkkkkohoohkkkkhhok
** (usable by all the functions in this file) ******x/

/* macros for accessing the bounds of header-augmented
arrays (harrays)*/

#define harrayrows(m) (*((int32 *)(m)))

#define harraycols(m) (*((int32 *)(m)+1))

/* macros to access linear arrays as 2-D matrices */
#define DNC(i,Jj) (((i)-1)*(nc)+(3J))
#define DQ(1i,J) (((1)-1)*(qa)+(3))

/* macros for computation */
#define 2(x) ((x)?x:1.0)
#define S(i,j) ((hp[DNC((i)+1,(3))]1 \

15.1 Interpolating Cubic Splines Program 161

-hp[DNC((1),(J))1)/2(dist((i),hp)))

/* forward declarations. */
forward private void
curve(double *hp, intlé j, double p,
double *dest, double £, intl6é derivsw);

forward private double dist(intl6 a, double *hp);

private double *m;
/* matrix of tangent vectors allocated in
cinterpolate() if no matrix of tangent vectors
is supplied */

private double *pa;
/* estimated arc length or user-given parameter

values for the curve */

private int1é

nc, /* number of columns in hp */

d, /* number of dimensions of data points */
n, /* used in curve() to index dest[] */
prevj; /* used in curve() to see if the cubic

coefficients need to be recalculated */

private double *allocharray(int32 nr,int32 nc)

allocharray() gets space for a matrix of doubles of
size nr by nc, and fills-in the 0th double in the
array with the row and column sizes and returns a
pointer to this space,

___ */
{double *d;

d = (double *)calloc(nr*nc+1l,sizeof(double));

/* install the row and column sizes in the zero

element of the matrix */

*((int32 *)d)=nr; *(((int32 *)d)+1)=nc;

return(d);

}
/*===*/

export double *cinterpolate(double *hp, double *vp,
double £, intl6 k, double *mp,
int16 tansw, intlé idsw)

162 15. Two Spline Programs

double *hp;
hp is a matrix pointer. The matrix hp[1l:nh,1l:nc]
contains data to be interpolated in sequential order.
The matrix hp is an harray (i.e. the first 32 bits of
*hp contains the number of rows nh, and the second 32
bits contains the number of columns nc); The element
h{i,j] is accessed by writing h[DNC(i,j)], where
DNC(i,j) = (i-1)*nc + j. There are five different
forms the data can take:

(1) nc = 2 and k = 1: the data hp[] is a set of
points in 2-space

(2) nc = 3 and k = 1: the data hp[] is a set of
points in 3-space

(3) nc = 3 and k = 0: the data hp[] is a set of
points in 2-space with a 3rd column containing
parameter values for each point,

(4) nc = 4 and k = 0: the data hp[] is a set of
points in 3-space with a 4th column containing
parameter values for each point.

(5) nc = 2 and k = 0; the data hp[] is a set of
points in 2-space from the graph of a
2D-function with column 1 used as the
associated parameter values.

For all cases it is assumed that the data is sorted by
parameter value, but only cases (3), (4) and (5)
contain the parameter values. Cases (1) and (2) use
implicit estimated arc-length parameters.

double *vp;
vp is a matrix pointer to an harray vp[l:nv,1:1]. If
k=0, vp contains the parameter values for which a point is
desired, or if k=1, vp contains arc length values relative
to the length of the curve for which a point is desired.
That is, let the curve have total length 1, with the
relative arclength values being in between.

double f£;
f is a flatness parameter used to scale all tangent
vector magnitudes. Generally f should be 1 when case
(5) above holds.

intlé k;

15.1 Interpolating Cubic Splines Program 163

k determines what vp and hp represent. k = 0 means a
range of explicit parameter values are given in hp[],
and vp[] contains such parameter values in the same
units. k = 1 means relative polygonal(straight line)
arc length from 0 to 1 over the span of the data in
hp[] is the parameterization, and vp[] contains
relative polygonal arc length values.

double *mp;
mp is a matrix pointer to an harray mp[l:nh,l:q]. mp[]
contains tangent vectors for each data point. This
input is optional; if mp = NULL, the procedure will
estimate the tangent vectors, according to tansw.

intl6é tansw;
If mp = NULL, tansw determines the method used to
estimate the tangent vectors at each point.
Otherwise, tansw is ignored.
If tansw=0, the tangent vectors (m[i,1l),m[i,2),m[i,3))
at each point i, with 1<i<nh, are estimated using the
following formula, when point(i-1) != point(i) !=
point(i+1),

m[i,j] = .5*[(dist(i)*s(i-1,3j) + dist(i-1l)*s(i,j))]

for 1<i<nh, where dist(i) is the distance between
point i and the adjacent point i+l of hp[] and s(i,3j)
is the jth component of the unit vector from point i
to point i+l1. The tangent vectors at the end points,
m[l,*) and m[nh,*), are set to be the vectors
dist(1l)*s(1,*) and dist(nh-1)*s(nh-1,*), respectively.
This is a form of the ’'distance-weighted adjacent
tangents method’ of tangent-estimation.

If tansw=1l, the tangent vectors (m[i,1l),m[i,2),m[i,3))
at each point i, with 1<i<nh, are estimated using the
following formulas.

mi1i,j] = (hpr2,j1-hpri,3jl,
minh,j] = (hp[nh,j]-hp[nh-1,j]), and
m[i,j] = (hp[i+l,j]-hp[i-1,3])/2 for i = 2,...,nh-1.

This is a form of the ‘chordal method’ for tangent-
estimation.

164 15. Two Spline Programs

If tansw=2, the tangent vectors (m[i,l),m[i,2),m[i,3))
at each point i, with 1<i<nh, are estimated using the
following formula. Let g(i)=pa(i)-pa(i-1), let
h(i)=pa(i+l)-pa(i-1), and let d(i)=pa(i+l)-pa(i) for
1<i<nh where pa(i) is the given or computed parameter
value associated with the point i. (Usually pa(1)=0.)

m[1,j] = -g9(2)hp[3,31/(h(2)d(2))+h(2)hp[2,71/(g(2)d(2))
-(h(2)+g(2))hp[1,31/(h(2)g(2)),

m[nh,j] =-g(nh-1)hp[nh,j]/(h(nh-1)d(nh-1))
+h(nh-1)hp[nh-1,3j1/(g9(nh-1)d(nh-1))
-(h(nh-1)+g(-nh-1))hp[nh-2,5]1/
(h(nh-1)g(nh-1))
+h(nh-1)hp[nh,j]/(h(nh-1)d(nh-1))
-h(nh-1)hp[nh-1,3]/(g(nh-1)d(nh-1))
+h(nh-1)hp[nh-2,3j]/(h(nh-1)g(nh-1)), and

m[i,j] = -g(i)hp[i+1,j1/(h(i)d(i))
+(h(i)-29(i))hp[i,j1/(g(i)d(i))
-d(i)hpri-1,3jl, for i = 2,...,nh-1,

This is the ’‘Bessel-tangents method’ for tangent
estimation.

If tansw=3, then for i=2,...,nh-1, if hp[i,j] is
greater than both hp[i-1,]] and hp[i+l1,j] or hp[i,]j]
is less than both hp[i-1,j] and hp[i+1,]], then m[i,]]
is set to 0. Otherwise, hp[i-1,j], hp[i,j], and
hpri+1l,j] are a monotonic triplet, and then the
tangent vector component m[i,j] is computed as:

m(i,j] = [(hp[i,j]l-hp[i-1,]j])/(pa(i)-pa(i-1))]*
[(hp[i+1l,j]1-hp[i,j]1)/(Pa(i+l)-pa(i))]*
[(pa(i+l)-pa(i-1))/(hp[i+1,]j]-hp[i-1,7]1)]

where pa(i) is the given or computed parameter value
associated with the point i,

The tangent vectors at the endpoints, m[1l,*) and
m[nh,*), are set to the following:

m[1,j] = [(hp[2,J]1-hp[1,j])/(pa(2)-pa(l))]~2 *
((hp(3,31-hpl1,3]1)/(pa(3)-pa(l))

15.1 Interpolating Cubic Splines Program 165

m[nh,j] = [(hp[nh,]j]-hp[nh-1,]])/(pa(nh)-pa(nh-1))]°2
*(hp[nh,j]-hp[n-2,j])/(pa(nh)-pa(n-2))

This is the ‘Davis-Dowden method’ for tangent
estimation. It is particularly suitable for monotonic
data.

If tansw = 4, then the C"2 global natural cubic spline
tangent vectors are computed and used.

If tansw = 5, then the C"2 global clamped cubic spline
tangent vectors are computed and used, where:

mi1l,j] = [(hp[2,j]-hp[l,]])/dist(1)
m[(nh,j] = [(hp[nh,j]-hp[nh-1,]j])/dist(nh-1).

Here dist(i) denotes the euclidean distance between
the points hp row i and hp row (i+l).

intl6é idsw;
idsw<0 when we want to compute the tangent vector
(i.e. the derivative) of the spline curve. idsw>0
when we want to compute the integral of the spline
curve. idsw = 0 when we want to compute the spline
curve itself.

This procedure takes as input an harray matrix hp[]
that represents a set of points in 2-space or 3-space,
sometimes accompanied by a set of associated parameter
values and also accompanied by a set of associated
tangent vectors mp[] or by a switch tansw that
specifies a tangent estimation method. It also takes
an array vp[] of explicitly given parameter values (if
k=0) or of relative arc length values (if k=1).
Relative arc length is 0 at the first point of the
curve and 1 at the last point of the curve. Below is
a table of the types of inputs accepted by this
routine.

(1) Points on a space curve with parameters. The
matrix hp[] has 4 columns; x , y and 2z coordinates in

166 15. Two Spline Programs

the first three columns, and parameter values for each
point in the fourth column. In this case, k must be 0
and the array vp[] must contain parameter values for
which coordinates on the curve are desired. The
output is a three-column matrix dest[] that contains
nv points corresponding to the parameter values in

vp[].

(2) Points on an xy-planar curve with parameters. The
matrix hp[] has 3 columns; x and y coordinates in the
first two columns, and parameter values for each point
in the third column. As in case 1, k must be 0 and
the array vp[] must contain parameter values. The
output is a 2-column matrix dest[] that contains nv
points corresponding to the parameter values in vp[].

(3) Points on a space curve only. The matrix hp[] has
3 columns containing x , y and z coordinates. The
points must be in the parameterized order for the
routine to work. 1In this case, k must be 1 and the
array vp[] must contain relative arc length values
(the arc length value is 0 at the first point of the
curve and 1 at the last point). The output is a
3-column matrix dest[] that contains nv points
corresponding to the arc-length values in vp[]

(4) Points on an xy-plane curve. The matrix hp[] has
2 columns containing x and y coordinates. As in case
(3), the points must be in correct order for the
routine to work. k must also be 1 and the array vp[]
must contain relative arc length values. The output
is a 2-column matrix dest[] that contains nv points
corresponding to the arc length values in vp[].

(5) Points on a two-dimensional function y=f(x). This
is similar to case (2), except that the parameter
values are identical to the x values of the input
points. As in case (2), k must be 0 and the array
vp[] must contain x values for which y values are
desired. The output is a 2-column matrix dest[] that
contains nv points having the x values from vp[] and
y values corresponding to these x values.

The input also includes a flatness parameter, f, that
determines how much the interpolation curve follows

15.1 Interpolating Cubic Splines Program 167

the straight lines between the points. If £ = 0, the
interpolation curve is merely a set of straight line
segments connecting the points. As f increases the
curve becomes "looser."

If no points are input, all output coordinates are 0.
If the input is one point with no tangent vector, the
curve that the interpolated points will be on is the
line defined by the vector consisting of the single
input point. 1If the input is one point with a tangent
vector or 2 points without tangent vectors, that is
enough to define a line to interpolate points on. All
other cases, including the case of two points and no
tangent vectors, are handled by the general algorithm.

The result is a pointer to an allocated harray
dest[l:nv,1:q]. dest[] is a matrix in which
coordinates of points matching parameter values or

arc length values given in vp[l:nv] are returned.
These will be spline function values if idsw=0,
derivative values if idsw<0, and integral values if
idsw>0. The global value g=nc if we have a function,
and g=nc-1+k if we have a curve. Thus q is the number
of physical dimensions of data points.

{double temp,ti,til,ti2,
vpval,
dest, / the result harray pointer */
di,dz2, /* used to calculate m */
a; /* the estimated arc length of the
entire curve */

double *ra, /* temporary working arrays for */
ta, / back-substitution, parameter- */
da; / limits and diagonal values */
intl6 nh, /* number of rows in hp */
nv, /* number of values in vp */

funcsw, /* 1 if we have 2-column functional
data, else 0 */

v, /* indexing offset */
i,3; /* loop control variables */
nh=harrayrows(hp); /* nh = number of rows in hp */

nc=harraycols(hp); /* nc = number of columns in hp */

168 15. Two Spline Programs
nv=harrayrows(vp); /* nv = number of rows in vp */

/*funcsw=1 means: hp col l=the explicit parm. vals.
in place of hp col 3 */
funcsw=(k EQ 0 AND nc EQ 2);
g=(funcsw)?nc: (nc-1+k); /* q = physical dimension
of the data points */

/* allocate the result harray, dest. */

dest=allocharray(nv,q);

/* If no points are given as input, set all
coordinates to 0 */

if (nh EQ 0) {clearharray(dest); return(dest);}

/* If the input is one point without a tangent
vector, use the point itself as the tangent vector
and interpolate on the line thus determined. If
the input is one point with a tangent vector,
interpolate on the defined line */

if (nh EQ 1)

{if (funcsw) a=hp[l]; else a=(k EQ 0)?hp[nc]:0.0;
for (i=1; i<=nv; i++) for (j=1; j<=q; j++)
{if (mp EQ NULL) temp=hp[j]; else temp=mp[]j];
if (idsw <0) di=temp;
else {dl=hp[jl+(vp[i]-a)*f*temp;
if(idsw>0) dl=(vp[i]-a)*(dl+hp[]j])/2.;}
dest[DQ(i,J)1=4d1;
}

return(dest);

}

/* Allocate and load the parameter vector pa[l:nh] */
pa=allocharray(nh,1);
/* If k=1, use estimated arc length as the
parameter-value */
if (k EQ 1)
{/* calculate polygonal ’'arc length’ values */
pal[l1]=0.0;
for (a=0.0,1i=2; i<=nh; i++)
pa[i]=(a+=dist(i-1,hp));
for (a=2Z(a),i=2; i<=nh; i++) pa[i]/=a;
}
else
/* The explicit parm. vals. are in hp col j in
increasing order. */

15.1 Interpolating Cubic Splines Program 169

{j=(funcsw)?1:(q+l);
for (i=1; i<=nh; i++) pa[i]=hp[DNC(i,J)]1:}

/* If mp is not given, compute the estimated tangent
vectors; otherwise take m[] as the given input
matrix mp[]. */

if (mp != NULL) {m=mp; goto fixslopes;}

m=allocharray(nh,q); /* allocate m[l:nh,l:q] */

switch (tansw) /* compute tangent-vector estimates */
{case 4:/* tansw=4: natural C”2 spline tangents */

/* Compute m[l:nh,1:q] = global C"2 tangent vectors
for a natural global cubic spline, using the nh
data points in hp[l:nh,1:q] and the associated
parameter values in pa[l:nh] to determine the
component slopes m[l:nh,l:q]. Here ‘natural’
means we specify the second-derivative vectors
at the endpoints, hp[1l] and hp[n], to be 0.
(hp[j,k] is accessed as hp[DNC(j,k)].) */

ra = allocharray(nh,1); /* allocate space for the
working space array ra.*/
da = allocharray(nh,l); /* allocate space for the
working space array da.*/
ta = allocharray(nh,1); /* allocate space for the

working space array ta.*/
da[l]=2; ti=1; ta[nh]=1;

for (i=1; i<nh; i++)
{rari]=ti/da[ij;
ti=pa[i+l]-pa[i]; ta[i]=ti;
if ((i+l) EQ nh) ti1i=1;
else til=pa[it+2]-pa[i+l];
da[i+1]=2*(til+ti)-til*ra[i];
}

for (j=1; j<=q;j++)
{m[DQ(1,j)]1=3*(hp[DNC(2,]j)]1-hp[DNC(1,])])/ta[l];

for (i=1; i<nh; i++)
{/* elimination-loop:
convert to upper triangular form */
m[DQ(i,Jj)]/=da[i];

170 15. Two Spline Programs

if ((i+1) EQ nh) {v=1; til=1;}

else {v=2; til=ta[i+l1l];}

temp=til/ta[i];

m[DQ(i,j)]1=3*(hp[DNC(i+v,])]/temp
+(temp-1/temp)*hp[DNC(i+1,3)]
-temp*hp[DNC(1i,7)])
-til*m[DNC(i,3j)];

}

m[DQ(nh,j)]/=2-ra[nh-1];

for (i=nh-1; i>»=1; i--) /* back-substitution-loop*/

m[DQ(i,j)] -= m[DQ(i+1,]j)]*ra[i];
}

free(ra); free(da); free(ta);
break;

case 5:/* tansw=5: clamped C~2 spline tangents */

/* Compute m[1l:nh,1:q] = global C"2 tangent vectors
for a clamped global cubic spline, using the nh
data points in hp[l:nh,1l:q] and the associated
parameter values in pa[l:nh] to determine the
component slopes m[l:nh,l:q]. Here ‘clamped’
means we specify the tangent vectors at the
endpoints, hp[l] and hp[n], explicitly as the
unit vectors in the directions (hp row 2)-
(hp row 1) and (hp row nh)-(hp row (nh-1)).
(mp is ignored.) Thus there are n-2 unknown
vectors to find. (hp[J,k] is accessed as
hp[DNC(],k)].) */

ra = allocharray(nh,1); /* allocate space for the
working space array ra.*/
for (j=1; Jj<=q;j++)
{m[DQ(1,3)]1=S(1,3); m[DQ(nh,j)]=S(nh-1,3);}

ra[l]=1.0;
til=pa[2]; ti2=0;
for (i=2; i<nh; i++)
{/* elimination-loop:
convert to upper triangular form */
ti=pa[i+l]-pa[i]; temp=ti/til;
for (j=1; j<=q; j++)

15.1 Interpolating Cubic Splines Program 171

m[DQ(i,J)]1=3*(hp[DNC(i+1,]j)]/temp
+(temp-1/temp)*hp{DNC(i,j)]
-temp*hp[DNC(i-1,3)1)
-(ti/ra[i-1])*m[DNC(i-1,3)];

ra[i]=2*(ti+til)-(ti/ra[i-1])*ti2;
ti2=til; til=ti;
}

for (i=nh-1; i>1; i--) /* back-substitution-loop */
{til=pa[i]-pa[i-1];
for (j=1; j<=q; j++)
m[DQ(4i,J)]1=(m[DQ(i,J)]-m[DQ(i+1,j)]*til)/ra[i];
}

free(ra);
break;

/*tansw=0: compute distance-weighted ave. tangents */
case 0
for (i=2; i<nh; i++) /*compute tan. vectors 2:nh-1 */
{/* note: if point[i-1] != point[i] = point[i+1]
then tangent[i] is in the direction S[i-1].
If point[i-1] = point[i] != point[i+l1l], then
tangent[i] is in the direction S[i].
If point[i-1] = point[i] = point[i+1] then
tangent[i]=S[i](= 0). */
dl=dist(i-1,hp); d2=dist(i,hp);
for (j=1; Jj<=q; j++)
m[DQ(i,j)] =.5*(d2*s(i-1,])+d1*S(1i,]));
}

/* Go assign the first and last tangent vectors
m[1l] and m[nh]. */
goto setends;

case 1: /* tansw=1l: compute chordal tangents */

for (i=2; i<nh; i++)

/* compute m[1l:nh,1l:g]=chordal tangent vectors */

for (j=1; j<=q; j++)
m[DQ(i,Jj)]=.5*(hp[DNC(i+1,j)]1-hp[DNC(i-1,3)1);

setends:
/* Assign the first and last tangent vectors
m[1l] and m[nh] */

172 15. Two Spline Programs

for (j=1; j<=q; j+t)
{/* compute m[1,j] */
m[j]=(hp[DNC(2,j)]1-hp[]j]);
/* compute m[nh,j] */
m[DQ(nh, j)]=(hp[DNC(nh,j)]-hp[DNC(nh-1,3)1);
}

break;

case 2: /* tansw=2: compute Bessel tangents */
for (i=2; i<nh; i++)
{/* compute m[l:nh,l:q]=Bessel tangent vectors */
ti=pa[i]-pa[i-1];
til=pa{i+l]-pafi];
ti2=pa[i+l]-pa[i-1];
for (j=1; j<=q; j++)
m[DQ(i,j)]=(ti2—2*ti)*hp[DNC(i,j)]/
(ti*til)-til*hp[DNC(i-1,3)]
—ti*hp[DNC(i+1,3)]1/(til*ti2);
}

/* Assign the first and last tangent vectors
m[1l] and m[nh]. */
ti=pa[2]-pa[1l]; til=pa[3]-pa[2]; ti2=pa[3]-pa[l];
for (j=1; j<=q; j++)
m[j] = -ti*hp[DNC(3,3)]/(ti2*ti1)
+ti2*hp[DNC(2,3)]1/(ti*til)
—-(ti2+ti)*hp[DNC(1,3j)]/(ti2*ti);

ti=pa[nh-1]-pa[nh-2];

til=pa[nh]-pa[nh-1];

ti2=pa[nh]-pa[nh-2];

for (Jj=1; j<=q; j++)

m[inh,j] = -ti*hp[DNC(nh,j)]/(ti2*ti1)

+ti2*hp[DNC(nh-1,3j)]/(ti*til)
—(ti2+ti)*hp[DNC(nh-2,3j)]/(ti2*ti)
+ti2*(hp[DNC(nh,j)]/(til*ti2)
-hp[DNC(nh-1,3)]1/(ti*til)
+hp[DNC(nh-2,3)]1/(ti*ti2));

break;

case 3: /* tansw=3: compute Davis-Dowden tangents */
/* set tangents at relative maxima and relative
minima to 0 */
for (i=2; i<nh; i++) for (j=1; j<=q; Jj++)
{d1=hp[DNC(i,j)]-hp[DNC(i-1,7)1;

15.1 Interpolating Cubic Splines Program 173

d2=hp[DNC(i+1,3j)]-hp[DNC(1i,3j)];

if (SIGN(d1l) != SIGN(d2)) m[DQ(i,j)]1=0.0;

else m[DQ(i,J)]=(d1/(pa[i]-pa[i-1]))*
(d2/(pa[i+l]-pa[i]))*

((pa[i+1]-pa[i-1])/(d1+d2));
}

/* Compute the tangent vectors at the endpoints
m[l,*] and m[nh,*]. */
for (j=1; j<=q; j++)
{temp=(hp[DNC(2,j)]-hp[DNC(1,j)])/(pa[2]-pal[l]);
m[DQ(1,Jj)]=temp*temp*
((hp[DNC(3,3j)]-hp[DNC(1,3)1)/
(pa[3]-pa[l]));
temp=(hp[DNC(nh, j)]-hp[DNC(nh-1,3)1)/
(pa[nh]-pa[nh-1]);
m[nh, j]=temp*temp*
(hp[DNC(nh,j)]-hp[DNC(nh-2,3)])/
(pa[nh]-pa[nh-2]);
}

} /* end switch(tansw) */

fixslopes:

/* 1f we are interpolating a function, scale each
tangent vector m[i] to be of the form
(1,slopeval), except if any m[i,1l] = 0, we will
produce (1,0) as a result.*/

if (funcsw)
for (i=1; i<=nh; i++)

{if (m[DQ(i,1)] t= 0.0) m[DQ(i,2)]/=m[DQ(i,1)];
else m[DQ(i,2)]=0.0;

/* Note we divide out the flatness factor so
that this will be restored to 1 when we
multiply by £ in curve(). */

m[DQ(i,1)]=1.0/f;

}

/* Now compute the output array dest[l:nv,l:q]. */
n=1; /* start by setting n to row 1 of dest[] */

/* Setting prevj=-1 will cause us to calculate cubic

coefficients in curve() the first time through */
previj=-1;

174 15. Two Spline Programs

/* vp[] contains a list of parameter values (k=0), or
a list of relative arc length values(k=1). Take
vp[] and use curve() to find the coordinates
associated with each vp[]-value and place them in
the output array dest[]. That is, for each
parameter in vp[], find which two points it is
between, or if it is before the 1lst or beyond the
last point, and then call curve(). */

for (j=i=1; i<=nv; i++)
{/* loop for each parameter-value in vp[] */
vpval=vp[i];
while ((j>1) AND (vpval<pa[jl)) j--;
while ((j<nh-1) AND (vpval>=pa[j+1])) j++;
/* Now pa[j] <= vpval < pa[]j+1], or
j=1 and vpval < pa[l], or j=nh-1 and
vpval>=pa[nh-1]. */
curve(hp,j,vpval-pa[j],dest, f,idsw);

}

/* If we have functional data, place the parameter
values vp[l:nv] in dest col 1 */
if (funcsw EQ 1)
for (j=1; j<=nv; j++) dest[2*j-1]=vp[]l;

free(pa); if (mp EQ NULL) free(m);
return(dest);

}

/*===*/
private double dist(intl6 a, double *hp)

dist(a,hp) returns the distance between points
hp row a and hp row (a+l).

___ */
{int16 i;

double t,temp = 0.0;

for (i=1; i<=q; i++)

{t=hp[DNC(a,i)]-hp[DNC(a+1,1i)]; temp+=t*t;}

return(sqgrt(temp));

}
/*===* /

private void curve(double *hp, intlé j, double p,
double *dest, double f, intl6é idsw)

15.1 Interpolating Cubic Splines Program 175

double *hp; matrix of points on curve.
intl6 j; index of the data point defining the
curve segment to be used for p.
double *dest; matrix to place coordinates
of parameter values and corres-
ponding interpolated values in.
double p; parameter value at which to
interpolate coordinates for.
double f£; flatness parameter that modifies
all tangent vector magnitudes.
intl16 idsw; idsw<0 when we want to compute the
tangent vector (i.e. the derivative)
of the spline curve. idsw>0 when we
want to compute the integral of the
spline curve. idsw = 0 when we want
to compute the spline curve itself.
This procedure takes a scalar parameter value p
and returns in dest[] the coordinates of the
corresponding point on the spline curve (if
idsw=0) or on the derivative (if idsw<0) or on the
integral (if idsw>0). We use cubic polynomial
space splines. Given points hp[1l,*],...,hp[nh,*]
and corresponding tangent vectors
m(l,*],...,m[nh,*], the curve between the two
points i and i+l is interpolated with the Hermite
cubic polynomial space curve with vector coefficients
ai, bi, ci, and di, parametrically defined by

xi(p) = ai + bi*p + ci*p*p + di*p*p*p
where ai = hp[i,*)
bi = m[i,*)
ci 3 * (hp[i+ll*]_hp[il*])/
(t*t) - (2*m[i,*]+m[i-1,*])/t
di = 2 * (hp[i,*]-hp[i+1,*])/(t*t*t)
+ (m[i+l)+m[i,*])/(t*t),
and t is (parameter value of point (i+1))
- (parameter value of point t).

The flatness parameter, f, is also used herein.
Each tangent vector m[i,*] is multiplied by f.

{intl6 i,k;
double t,sv,r;

176 15. Two Spline Programs

static double ival[(4]; /* previous integral values */
static double a[4],b[4],c[4],d[4]; /* coefficients
of cubic polynomial */

/* Note for 1<j<nh-1, the modified parameter value
p+pa[j] lies in [pa[]j],pa[j+1]], and if j=1,
p+pa[jl<pa[2], and if j=nh-1, pt+pa[j]>=pa[nh-1].

When we are to compute an integral value, we need

to accumulate the integral values for every spline
segment 1,2,...,j-1 correponding to the intervals

[pa[l],pal2]]),...,[Pa[j-1],pa[]j]]. If prevj != -1,
the values ival[l:3] holds the component integral

values over the interval pa[l] to pa[prev]j].

k = j; /* ptpa[j] ‘‘'belongs’’ to the cubic for
(pa[j]l,pa[j+1]]. if idsw<=0,
we keep k=j. otherwise, we will reset k
appropriately so that we add the integral
from park] to pa[j] to ival[1l:3]. */
if (idsw > 0)
/* If this is the first entry, or if we are given
a "back" parameter value, then we will recompute
the prior integral starting from pa[l].*/
{if (J < prevj) prevj=-1;
if (prevj EQ -1)
{ival[l]=ival[2]=ival[3]=0.; k=1;}
else k=prevj;

}

if (prevj EQ j) goto calc; /*don’t compute
coefficients unless needed */
prevj = j;
/* compute currently-needed spline coefficients,
and if k<j, compute any additional integral parts
needed first.*/
for (; k<=j; k++)
{/* set t to the parameter or relative
arc length difference value
covering the curve part to be used.
The parameter value p to be
interpolated at is in [0,t]. */
t = park+l]-pa[k]; r=t;
if (t EQ 0.0) t = 1.0; /* avoid zero divide */
for (i=1; i<=q; i++) /*calculate coefficients */

15.1 Interpolating Cubic Splines Program 177

{a[i] = hp[DNC(k,i)];

b[i] = f*m[DQ(k,i)];

c[i] = (3.*(hp[DNC(k+1,i)]-a[i])/t
-(2.*b[i]+£*m[DQ(k+1,1)]))/t;

dri] = (2.*(a[i]-hp[DNC(k+1,i)])/t

+ b[i]+f*m[DQ(k+1,1)])/(t*t);

if (k < j) /* 1If k<j, then idsw > 0! */
ival[i] += (a[i]+(bri}/2
+(c{il/3+(d[i]1/4)*r)*r)*r)*r;

}

calc:/* calculate coordinates of spline pt. at p */
for (i=1; i<=q; i++)

{if (idsw > 0)

sv = ival[i] +(a[i] +(b[i]/2
+(c[i1/3 +(d[1]/4)*p)*pP)*p)*p;

else if (idsw<0) sv = (b[i]+(2*c[i] +3*d[i]l*p)*pP);

else sv = (a[i]+(b[i]+(c[i]+d[i]1*P)*P)*P);

dest[DQ(n,i)] = sv;

}

/* For functions, the x-parametric part is a straight
line, with all its estimated slope entries (in
dest col 1) equal to 1/f; often we want to replace
these 1/f values with the given x values found in
vp when we are computing the derivative of a
spline model for functional data. [This
replacement is done in cinterpolate()!]

When £ EQ 1 then dest[n,1] = hp[],1]+p. Note f
should be 1 for the x-curve when a function is
being interpolated, and placing v[l:nv] into
dest col 1 and scaling mp col 2 by 1/f prior

to entering this routine enforces this. */

n++; /* advance to next output row of dest[] */

/*==* /
/* end of file gspline.c */

178 15. Two Spline Programs

15.2 Optimal Smoothing Spline Program
/* FILE ssp.c REVISION DATE: May 7, 1997 */

This file contains the routine:
(export) smoothspline(double *hp,double *L,
double r,double *vp,intlé idsw)
which may be used to compute an optimal
2D-smoothing spline or its integral or
derivative, with the smoothing parameter
specified or estimated,
and the ancillary routines:
(private) allocharray(int32 nr, int32 nc)
(private) ox(intl6é i,intlé j,intl16 h, intlé w)
(private) bandsolve(double *A, double *b)
(private) dnu(double r)

/* macros used to improve readability */

#define intl6é short int

#define int32 long int

#define EQ ==

#define NE !

#define AND &
I
!

— o |

#define OR

#define NOT

#define XOR

#define private static

#define forward

#define import extern

#define export

#define MAX(x,y) ((x) > (y) ? (X)

#define MIN(X,y) ((x) < (y) ? (X)

#define ABS(X) (((x)<0)?-(x):(x))

/*************SYSTEM GLOBALS ************************/

#include <Clib.h> /*Clib.h defines the C-library
functions, e.g. sqrt, exp */

(y))
(y))

import double *cinterpolate(double *hp, double *vp,
double f, int16 k,
double *mp, intl6é tansw,
int1l6 idsw);

/* See the MLAB manual for details on mmean */
import double *mmean(double *M, int32 x, int32 vy,
int32 2z, double *f);

15.2 Optimal Smoothing Spline Program 179

/* See the MLAB manual for details on mmedian */
import double *mmedian(double *M, int32 x, int32 vy,
int32 2z, double *f);

/**************FILE GLOBALS khkhkdkhkhkhkhkkhkhkkkhkhkkhkhkhkkhkkkkkk
** (usable by all the functions in this file) ****xx/

/* macros for harrays */
#define harrayrows(m) (*((int32 *)(m)))
#define harraycols(m) (*((int32 *)(m)+1))

/* macros to access l-dimensional matrices as
multi-dimensional matrices */

#define DNC(i,J) (((i)-1)*(nc)+(J))

#define DQ(i,]) (((1)-1)*(q)+(3))

/* band-matrix access macros */
#define GbarM(i,j) Gbar[ox(i,j,1,n2)]
#define HM(i,j) H[ox(i,j,2,n)]
#define 1htM(i,j) lht[ox(i,j,2,n)]
#define qfM(i,j) qf[ox(i,]j,2,n2)]
#define AM(i,j) A[ox(i,j,2,n2)]
#define ZM(i,3j) 2[ox(i,]j,2,n)]

/* Gbar, qf, £d, lht, hf are all file globals computed
in smoothspline() and used in dnu(). */

private double *Gbar;

private double *qf;

private double *fd;

private double *1lht;

private double *hf;

private double *A;

forward private intlé6 ox(intl6é i,int16 j,intl6 h,
intl16 w)

forward private double *bandsolve(double *A, double *b)

forward private double dnu(double r)

/*===* /
private double *allocharray(int32 nr,int32 nc)

allocharray() gets space for a matrix of doubles
of size nr by nc, fills in Oth double in the array
with the row and column sizes and returns a

180 15. Two Spline Programs

pointer to this space.

{double *d;

d = (double *)calloc(nr*nc+l,sizeof (double));

/* install the row and column sizes in the 0Oth
element of the matrix */

*((int32 *)d)=nr; *(((int32 *)d)+1)=nc;

return(d);

export double *smoothspline(double *hp, double *L,
double r, double *vp,
intl16é idsw)

double *hp,

hp[l:n,1:2] is a 2-column matrix. Each row of hp
represents a data point in the xy plane, and the

two columns hold the x and y coordinates of the

data points for which we want to compute the
interpolation points, p, for the optimal smoothing

spline curve. The rows of the matrix hp[] are assumed to
be sorted in increasing order on column 1.

double *L,

L[{1l:n,1:1] is a l1-column harray of weight values
for the data points in hp. These weights are
taken as the reciprocal variances for the data
points in hp[]. If L=NULL, then L[] is taken to
be an n-vector of 1's.

double r,

r is the smoothness factor. If -1<=r<0, then r is
to be computed by minimizing the difference
between a moving mean curve for the data and the
r-parameterized smoothing spline. If r<-1, then a
moving quantile is used instead of a moving mean.
A non-negative r value is used as-is. r=0 implies
a perfect-fitting natural global cubic spline.

double *vp,

vp[l:m,1:1] is a l1-column matrix containing the

X values whereas we want values of our smoothing
spline computed and returned. If vp=NULL then vp
is taken as hp col 1.

15.2 Optimal Smoothing Spline Program 181

int16é idsw,

idsw is the integral/derivative control switch.

If idsw<0, then we want points of the derivative
of the smoothing spline to be returned. 1If
idsw>0, then we want points of the integral of the
smoothing spline to be returned. If idsw=0, we
want points of the smoothing spline itself to be
returned.

This procedure computes the optimal smoothing

spline for the 2D functional data points given in

the rows of hp[l:n,1:2] with the associated

weights L[1l:n], and the smoothing parameter r.

This is done by computing the points p[l:n,1:2]

for which the natural global cubic spline c that
interpolates the points in p[l:n,1:2] is the
minimizer of sum(i,1,n,L[i]*(hp[i,2]-c(hp[i,1]))"2) +
r*integral(x,hp[1,1],hp[n,1],|c’ ' (x)]|"2).

Given p[l:n,1:2], the optimal smoothing spline c

is determined. We return the points on the graph

of c(x) (if idsw=0), or the derivative c’(x) (if
idsw<0), or the integral integral (s,hp[l,1],x,c(s))
(if idsw>0) for x=vp[l],vp[2],...,vP[m], as the rows
of a matrix dest[l:m,1:2].

Let x[1:n] = hp col 1, let f[1:n] = hp col 2, and
define the (n-l)-vector t[l:(n-1)] so that t[i] =
x[i+1]-x[i] for i = 1,...,(n-1).

To compute the actual interpolation points p[l:n,1:2]:

1) compute v[1l:(n-2)] in (Gbar+r*H*L"(-1)*H’')v = Hf,
where £ = hp col 2.

2) compute p[l:n] as f-rL"(-1)H'v.

3) return the matrix x&’p, where x = hp col 1.

Let al t row 1:(n-1), let a2 = t row 1l:(n-2),
let bl = t row 2:(n-1), let b2 t row 2:(n-2).

Gbar[l:(n-2),1:(n-2)] is the symmetric tridiagonal
matrix whose lower diagonal is (b2/6), whose main
diagonal is (a2+bl)/3, and whose upper diagonal is
(b2/6).

182 15. Two Spline Programs

H[l:(n-2),1:n] is a matrix with a main diagonal

and two upper diagonals. The main diagonal is 1/a2,
the first upper diagonal is -((1/a2)+(1/bl)), and
the second upper diagonal is 1/bl.

L[{l:n,1:n] is a diagonal matrix whose diagonal
element L[i,i] is the weight (reciprocal variance)
for the i-th data point hp row i.

{int16 1i,j,k,n;

intl16 vpsw=0, Lsw=0;
int16 k1l,kh,jl,jh,n2,winsize;
double s,c,d;

double *H;

double *v;

double *t;

double *b;

double *p;

double *f;

double *dest;

/* Get the number of data points, n, in hp[l:n,1l:2],
remember hp is assumed to be sorted on col 1. */
n = harrayrows(hp); n2 = n-2;

/* Get the vector of interpolation x values, vp,
whereat we want points. */
if (vp EQ NULL) /* create vp = hp col 1 */
{vpsw=1; vp=allocharray(n,1);
for (j=1; j<=n; j++) vp[]] = hp[DX(j,1,2)];
}

m = harrayrows(vp);

/* If n<=2, we have a simple straight-line
interpolating spline which will be handled
by cinterpolate(). */

if (n < 3) goto c2spline;

/* Get the weight vector L[1l:n] */
if (L EQ NULL) /* create L = 1°"n */
{Lsw=1; L = allocharray(n,1);
for (j=1; j<=n; j++) L[j] = 1.0;

}

15.2 Optimal Smoothing Spline Program 183

/* Now begin to compute the harray of desired actual
data points p[l:n,1:2] for the global natural
cubic spline which is our final desired optimal
smoothing spline. */

/* Construct the local harray vector t[1l:(n-1)]. We
assume that no t[i]-value will be zero! */

t = allocharray(n-1,1);

for (i=1; i<=n-1; i++)
t[i] = hp[Dx(i+llll2)]_hp[Dx(illlz)];

/* Construct the file global harray
Gbar[1l:(n-2),1:(n-2)].
Let al = t row 1:(n-1), let a2 = t row 1:(n-2),
let bl = t row 2:(n-1), let b2 t row 2:(n-2).
Gbar[1l:(n-2),1:(n-2)] is the symmetric tridiagonal
matrix whose lower diagonal is (b2/6), whose main
diagonal is (a2+bl)/3, and whose upper diagonal
is (b2/6).*/

Gbar = allocharray(3,n2); /*size [1:n2,1:n2],

symmetric with 3 bands */

for (i=1; i<=n2; i++)
{GbarM(i,i) = (t[i]+t[(i+1])/3;
if (i !'= n2)
GbarM(i+1,i) = GbarM(i,i+1) = t[i+1]/6;
}

/* Construct the local harray H[1l:(n-2),1l:n].
H is a matrix with a main diagonal and two upper
diagonals. The main diagonal is 1/a2, the first
upper diagonal is -((l1/a2)+(1/bl)), and the second
upper diagonal is 1/bl.*/
H = allocharray(3,n); /*size [1:n2,1:n], with 1
main-diagonal and 2 upper-bands*/
for (i=1; i<=n2; i++)
{EM(i,i) = 1/t[i];
HM(1i,i+1) =((1/t[i])+(1/t[i+1]));
HM(i,i+2) = 1/t[i+1];
}

/* Construct the file global harray (n-2)xl1 vector
hf = H*f, where £ = hp col 2 */

hf = allocharray(n2,1);

for (i=1; i<=n2; i++)
{kh = MIN(n,i+2);

184 15. Two Spline Programs

for (s=0.,k=i; k<=kh; k++)

s += HM(i,k)*hp[DX(k,2,2)];
hf[i] = s;
}

/* We need the file global harray A[l:n2,1:n2] in
dnu(), and also later, so we allocate it now. */
A = allocharray(5,n2); /*diagonals -2,-1,0,1,2
of A[1:n-2,1:n-2] */

/* If the smoothing factor r is given, use it.*/
if (r >= 0.) goto computespline;

/* If r < 0, compute r by minimizing the difference
between the moving mean smoother(when -1<=r<0) or
the moving median smoother (when r<-1) and the
optimal spline smoother.

To do this, we must:

1) compute fbar = the moving mean of the vector
of values f or moving median of f.

2) compute the matrices H*L"(-1)*H’, Gbar, fbar-f,
L°(-1)*H’, and H*f for reuse in the subroutine
that computes -.5 times the derivative of our
objective function denoted by dnu(r), where
dnu(r) = (fbar-f+r*L"(-1)*H'*

(Gbar+r*H*L"~ (-1)*H’)~ (-1)*H*f) ' *
[L™(-1)*H'*(Gbar+r*H*L"~ (-1)*H’) " (-1)*
Gbar* (Gbar+r*H*L" (-1)*H')" (-1)*H*f)

To compute dnu(r):

1) solve for x in (Gbar+r*H*L"(-1)*H’)*x

2) compute y = Gbar*x.

3) solve for z in (Gbar+r*H*L"(-1)*H')*2z = y.

4) compute dnu(r) = (fbar-f+r*L"(-1)*H’'*x)’'*L"(-1)*
H'*z.

H*f.

We wish to solve for r in dnu(r) = 0.
The function dnu() given above depends upon the
file global arrays Gbar, qf, f£fd, 1lht, hf, which
are computed below.

*/

15.2 Optimal Smoothing Spline Program 185

/* Compute the file global harray n x (n-2) matrix
lht = L°(-1)*H’. 1lht is stored in a 5-row,
n-column diagonal table. */

lht = allocharray(5,n);

for (i=1; i<=n; i++)

{kl = MAX(1,i-2); kh = MIN(i,n2);
for (k=kl; k<=kh; k++)

1htM(i,k) = HM(k,i)/L[i];
}

/* Compute the file global harray (n-2) x (n-2)
matrix qf = H*L"(-1)*H’. Note H*L"(-1)*H’ is a
bandwidth 5 symmetric (n-2)x(n-2) matrix. gqf is
stored in a 5-row n2-column diagonal table. */

qf = allocharray(5,n2); /* gqf is stored as 5

diagonals (initially zero)*/
for (i=1; i<=n2; i++)
{j1 = MAX(1,i-2); jh = MIN(n2,i+2);
for (j=3jl; j<=jh; j++)
(k1 = MAX(i,3);
kh =kl+2-ABS(i-j);
kh = MIN(kh,n);
for (s=0.,k=kl; k<=kh; k++)
s += (HM(i,k)/L{k])*HM(F,k);
afM(i,]) = s;
}
}

/* Compute the file global harray (n x 1) vectors £
and fd = fbar-f, where fbar is computed via a
moving mean computation.*/

f = allocharray(n,1l); /* construct £ = hp col 2 */

for (i=1; i<=n; i++) f[i] = hp[DX(i,2,2)];

winsize = n/10;

if (winsize < 5) winsize = 5;

if (winsize > n) winsize = n-1;

winsize= winsize | 1; /* OR to make winsize odd */

allocharray(winsize,1); /* set-up triangular
weight vector */

P
j = (winsize+1)/2;

for (i=1; i<j; i++) p[i] = p[winsize+1l-i] = i;
p[j]l = 3-1;

186 15. Two Spline Programs

/* 1f -1<=r<0, then compute the moving-mean curve
via the externally-supplied subroutine mmean(),
otherwise r<-1, and we want to compute the
moving-median curve via the externally-supplied
subroutine mmedian(). In either case, we use the
window size winsize and the weights
p[l:winsize,1:1]. */

if (r<-2.) fd = mmedian(f,winsize,0,-1,p);

else fd = mmean(f,winsize,0,-1,p);

free(p);

for (i=1; i<=n; 1i++) fd[i] -= £f[i];

/* Compute r as the solution to dnu(r) = 0 via a
binary search bracketing. We assume (safely) that
dnu(0)<0 and we search for a value d such that
dnu(d)>=0. Our starting interval is thus [0,d].*/

for (d=10.; dnu(d)<0.; d+=10.);

for (c=0.,d=10.; (d-c)>.0001;)

{r=(c+d)/2.; s=dnu(r); if (s<=0.) c=r; else d=r;}

/* Free the no-longer-needed global harrays. */
free(qf); free(lht); free(f); free(fd);

computespline:

/* construct the file global harray (n-2)x(n-2)
matrix A = Gbar+r*H*L"~(-1)*H’. Note H*L"~(-1)*H’
is a bandwidth 5 symmetric (n-2) x (n-2) matrix.*/

A[l] = 0.; /* A is reinitialized to zero */

for (i=1; i<=n2; i++)

{jl = MAX(1,i-2); jh = MIN(n2,i+2);
for (J=Jjl; j<=jh; j++)
{kl = MAX(i,j); kh =kl+2-ABS(i-j); kh= MIN(kh,n);
for (s=0.,k=kl; k<=kh; k++)
s += (HM(i,k)/L[k])*HM(], k);
AM(i,j) = GbarM(i,j)+r*s;
}
}

/* compute the local harray vector v[l:(n-2)] in
(Gbar+r*H*L"(-1)*H')v = Hf, where £ = hp col 2.
Do this by calling bandsolve(A,hf) to xreturn
the vector v such that A*v = hf.*/

15.2 Optimal Smoothing Spline Program 187

v = bandsolve(A,hf);

/* compute the local harray p[l:n,1:2], where
pcol 1 = hpcol 1, and p col 2 = f-r*L"(-1)H'v.*/
p = allocharray(n,2);
for (i=1; i<=n; i++)
{p[DX(i,1,2)] = hp[DX(i,1,2)];
kl = MAX(1,i-2); kh=MIN(i,n2);
for (s=0.,k=kl; k<=kh; k++)
s += HM(k,i)*v[k];
p[DX(i,2,2)] = hp[DX(i,2,2)]-(r/L[i])*s;
}

/* free all unneeded allocated temporary arrays */
free(Gbar); free(H);

free(hf); free(dA);

free(t); free(v);

c2spline:

/* Compute the desired points (specified by vp[]) of
the global natural C"2 spline (or its derivative
or integral) for the nx2 matrix p */

/* Compute dest[l:m,1:2] = the desired output. */
dest = cinterpolate(p,vp,1.,0,NULL,4,1,idsw);

/* If idsw !=0, copy vp into dest col 1. (it’s
already done for idsw=0) */
if (idsw) for (Jj=1; j<=m; j++)
dest[DX(j,1,2)] = vp[]l;

/* Free p if needed, and free L and/or vp if we
created either. */

if (n > 2) free(p):;

if (Lsw) free(L);

if (vpsw) free(vp);

return(dest);

}

private intlé ox(int16 i, intl16 j, intl6é h, intlé w)

Given a banded matrix M[l:nr,l:nc] with 2h+1
bands, we can save space by storing these bands in

188 15. Two Spline Programs

an array D whose rows correspond to the diagonals
of M which may contain non-zero elements.

ox(i,j,h,w) returns the l-origin index of the
element in the Diagonal Storage array D that
corresponds to the banded matrix M. The values i
and j are assumed to be in the correct ranges:
1<=i<=nr and 1l<=j<=nc. This computation does not
require accessing the actual storage area, so the
address D is not provided as an input.

The matrix M is assumed to have diagonals
h,h-1,...,1,0,-1,-2,...,-h, where the main
diagonal is diagonal 0, and the numbers of lower
diagonals are negative, and the numbers of upper
diagonals are positive. Thus M has bandwidth
2h+1. (Actually, the list of stored diagonals may
be truncated if they will not be accessed! 1i.e.
if diagonals -h and -(h-1) are not accessed, they
need not be stored. But the diagonals that are
stored must be contiguous and must include the
main-diagonal 0 and diagonal 1.

The diagonals h,h-1,... of M[l:nr,l:nc] are stored
in the successive rows of an associated diagonal
storage array D[0:2h,1l:w]. For k=0,1,...,h, the
diagonals k and -k are stored with k zeros
prefixed. The argument w is the "width" of D
(i.e. the number of columns), which is that value
needed to completely hold the zero-padded stored
diagonals; w depends upon the values nr and nc.

For example, in the functions below, we access the
matrix element Gbar[i,j] of the matrix
Gbar[1l:n-2,1:n-2] via ox(i,j,1,n-2), and we access
the matrix element H[i,j] of the matrix
H[1l:n-2,1:n] via ox(i,j,2,n). Macros are given
above for all the matrices which involve the use
of ox().

{if (ABS(j-i)>h) return(l); /* 1 indexes a 0-valuel*/
return(w* (h+i-j)+MAX(i,3j)); }
/*===* /

private double *bandsolve(double *A, double *b)

15.2 Optimal Smoothing Spline Program 189

Solve for and return x[l:n] in A*x=b, where A is a
bandwidth 5 symmetric n x n matrix.

{intl1l6 j,i,i1,i2,n,n1,jl,jh;
double mv,2ii;

double *x;

double *3Z;

Z = copyharray(A);
X = copyharray(b);
n = harrayrows(b); nl=n-1;

/* For i=1,...,n:
divide [A&'b] row i by A[i,i].
if i<n, subtract A[i+1,i]*([A&'b] row i)
from [A&’b] row i+1.
if i<n-1, subtract A[i+2,i]*([A&’'b] row i)
from [A&’'b] row i+2.
Now A is upper-triangular with ones on its main
diagonal and 2 upper diagonals. Back-solve to
compute x such that Ax=b.
*/
for (i=1; i<=n; i++)
{il1=i+1; i2=i+2; /*jl = MAX(1l,i-2);*/
jh=MIN(n,i2);
Zii = 2ZM(i,i); x[i] /= Zii;
for (j=il; j<=3jh; j++) zZM(i,]) /= 2ii;

if (i < n)

{mv = ZM(il,i); x[il] -= mv*x[i];
ZM(il,il) -= mv*2ZM(i,il);

if (i<(nl)) 2ZM(il,i2) -= mv*2M(i,i2);

}

if (i<(n1))

{mv = 2M(i2,i); x[i2] -= mv*x[i];
ZM(i2,il) -= mv*ZM(i,i1);
ZM(i2,1i2) -= mv*2M(i,i2);

}

}

for (i=nl; i>0; i--)
{jh = MIN(n,i+2);
for (j=i+1; j<=jh; j++) x[i] -= ZM(i,3)*x[]);
}

190 15. Two Spline Programs

free(2);
return(x);

}

private double dnu(double r)

dnu(r) is -.5 times the derivative of our objective
function.
dnu(r) = (fbar-f+r*L~(-1)*H'*
(Gbar+r*H*L"~ (-1)*H') ~(-1)*H*f) ' *
[L"(-1)*H'*(Gbar+r*H*L"(-1)*H') " (-1)*Gbar*
(Gbar+r*H*L"~(-1)*H') "~ (-1)*H*f].

We are given Gbar, and gqf = H*L"(-1)*H’, fd =
fbar-f, lht = L"(-1)*H’, and hf = H*f. The
harrays Gbar[l:n-2,1:n-2], qf[l:n-2,1:n-2],
fd[1l:n], lht[1l:n,1:n-2], and hf[1l:n-2] are all
file globals. We are also given the file global
array A[l:n-2,1:n-2] to use to hold Gbar+r*qgf
(computed for each call during root-finding.) The
arrays A, qf,Gbar, and lht are all stored by
diagonals and accessed via the gnomin-based index
function computed in ox().

To compute dnu(r):

1) solve for x in (Gbar+r*qf)*x = hf.

2) compute y = Gbar*x.

3) solve for z in (Gbar+r*qf)*z = y.

4) compute dnu(r) = (fd+r*lht#*x)’*1lht*z.

{int16 n2,kl,kh;
int16 i,j,k,n;
double *x;
double *y;
double *z;
double nuv,s,t;

n = harrayrows(fd); n2 = n-2;

/* Compute A=Gbar+r*qf */
A[l] = 0.; /* To be sure there is zero there. */
for (i=1; i<=n2; i++)

{kh = MIN(n2,i+2);

15.2 Optimal Smoothing Spline Program

for (j=i; j<=kh; j++)
{t = GbarM(i,j)+r*qfM(i,j);
AM(i,]j) = t;
if (i t= 3j) AM(j,i) = t;
}

}

x = bandsolve(A,hf); /* x is (n-2) x 1 */

/* Compute y=Gbar*x */
y = allocharray(n2,1);
for (i=1; i<=n2; i++)
{kl = MAX(1,i-1); kh = MIN(n2,i+1);

191

for (s=0.,k=kl; k<=kh; k++) s += GbarM(i,k)*x[k];

y[i] = s;
}

2z = bandsolve(A,y); /* z is (n-2) x 1 */
/* compute dnu(r) = (fd+r*lht*x)’*lht*z. */

for (nuv=0.,i=1; i<=n; i++)
{kl = MAX(1,i-2); kh = MIN(n2,i);

for (s=0., k=kl; k<=kh; k++) s += 1lhtM(i,k)*x[k];

t = fd{i]+r*s;

for (s=0., k=kl; k<=kh; k++) s += lhtM(i, k)*z[k];

nuv += t*s;

}

/* clean up allocated arrays */
free(z); free(y); free(x);

return(nuv);

}

*/

/*
/* end of file ssp.c */

16

Tensor Product Surface Splines

In this section we will construct various parametric functions piecewise-
composed of bicubic functions that map from R? to R3. These functions
are bicubic surface splines analogous to the cubic space curve splines that
we studied above. Again we want to construct spline surfaces that con-
tain given points in 3-space, and, generally, that have specified directional
derivatives or directional tangent vectors at these given interpolation points.

16.1 Bicubic Tensor Product Surface Patch Splines

Suppose we are given four distinct points bgo, b1o, bor, and by; on a para-
metrically defined surface S = {Sw,v) | u,v € R} C R?, where S
is a function mapping R? into R> such that by = S(0, 0), byo = S(1, 0),
boy = S(0, 1), and by, = S(1, 1). The surface S need not be single-valued,
i.e., a line parallel to the z-axis may intersect S several times, and S may
even be self-intersecting. The four surface points by, b1, b11, and by, are
the corner points of a so-called quad-patch Q on the surface S whose
boundary is determined by connecting by to by, by to b1y, by to by, and
byo to by by certain suitable curve segments on the surface S. The four
surface points by, b1o, b11, and by; are thus listed in cyclic order according
to their occurrence on the complete boundary curve 3Q of the patch Q.
Explicitly, the quad-patch @ = {S(»,v) |0 <u < 1,0 < v < 1}. Usually

194 16. Tensor Product Surface Splines

we have only partial geometric information about the patch @, and the
defining two-argument vector valued function S is not known.

Exercise 16.1: What are the boundary curves of the quad-patch Q?

Leth(t,a,b,c,d) = fo(t)a+ fr(t)b+ fo(t)c+ f3(t)d, where fo(t) =
1=3624283, fi(t) =32 =203, fo(t) =t =22+ 1%, and 13(¢) = — 1%+ 13,
h(t,a,b,c,d) is the Hermite cubic interpolating polyomial space curve
segment with the parameter limit value 1, based on the control vectors a,
b, ¢, and d, where c is the tangent vector at the point a = h(0, a, b, c, d),
and d is the tangent vector at the point b = h(1, a, b, c,d). If we specify
tangent vectors at the points bgy and b for the boundary curve segment
of the patch Q from by to by, to be denoted by by at the point by and
by b3 at the point byo, we can take the Hermite cubic space curve segment
{h(u, bgg, bro, b0, b3p) | 0 < u < 1} as an estimated boundary curve
segment of Q between by and byg. Similarly, we may specify starting and
ending tangent vectors for the O-boundary curve from the point by, to the
point by, where the tangent vector at the point by, is denoted by b;; and
the tangent vector at the point by, is denoted by b3;, and we may then take
{h(u, bor, b1, ba1, b31) | 0 < u < 1} to be an estimated Q-boundary curve
segment between by, and by;.

The so-called tensor product bicubic patch Q that serves as an estimate
for the patch Q is now formed by sweeping the curve segment {h(u, by,
byo, b0, b30) | 0 < u < 1} through space while deforming it so that
it matches the curve segment {h(u, bo1, b1y, b2, b31) | 0 < u < 1} at
the end of the sweep [Far90]. The deformation is achieved by making
the points and tangent vectors, which define the cubic segment estimated
boundary curve between by and by, that is being swept, smoothly change
from bgg, b1o, b2o, and bsg, into by, by, b2y, and bs; during the sweep.
This can be done by defining the cubic interpolation functions b;(v) =
h(v, b;o, b;1, bi2, b;3) such that b;(0) = b;g and b;(1) = b;, fori =0, 1, 2,
3. In order to do this we must introduce the 8 tangent vectors b;; and b3
which allow us to define the b; (v) curves. Note that by(v) is the estimated
boundary curve between by and by, and b, (v) is the estimated boundary
curve between by and by;.

Recall that h(t, bjo, bix, biz, biz) = fo(t)bio + fi(t)bn + f2()biz +
f3(t)bis where fo(t) = 1-3t24213, fi(t) = 3t2=283, fo(t) = t =212+,
and f3(t) = —t? + t3. Then the control vectors b;(v) of the spline seg-
ment being swept are b;(v) = 205j53 fi(wbij fori = €, 1,2, 3. Thus,
b; (v) = h(v, bio, b1, biz, b;3) is a space curve cubic spline segment which

16.1 Bicubic Tensor Product Surface Patch Splines 195

connects the point b,y with b;;, having the tangent vector b;, at the point
bio and the tangent vector b;3 at the point b;;. Remember that b;(v) and
b3 (v) define tangent vectors at the points by (v) and b; (v).

The parametric tensor product bicubic patch interpolation function for
the patch Q is thus defined as

xg(u, v) = h(u, bo(v), by (v), bo(v), b3(V)) = Y fiw) Y fi (Wb,

0<i<3 0<j<3

and Q = {xo(u,v) | 0 <u < 1,0 < v < 1} is an estimate of the patch
Q. The patch Q coincides with the patch Q at the points by, big, boi,
and by, and, as shown below, has the same u- and v directional derivatives
and mixed partial derivatives there as are assigned to the patch Q. The
term “tensor product” is a description of the algebraic form of this double
summation expression. Note xg maps R? into R, so that xg(u, v) € R>.

The surface defined by x¢(u, v) corresponds to sweeping the associ-
ated cubic spline segment { h(u, bo(v), b1(v), b2(v), b3(v)) | 0 < u < 1}
through space by varying v between 0 and 1. Thus, v is the sweep param-
eter and u is the deformation parameter. As the following exercise shows,
the roles of u and v can be reversed.

Exercise 16.2: Suppose we sweep the spline segment {h(v, by, bo,
bo2, bo3) | 0 < v < 1} while deforming it to end up with {A(v, by, b11,
bi2,b13) | 0 < v < 1} based on the 8 additional control vectors by,
b2y, b3, ba1, b2z, bas, b3z, b33. Show that we get the same bicubic patch
interpolation function that is defined above.

Solution 16.2: This construction yields:

xo(u,v) = 205,‘53 fi(v) 205:53 fi()b;;.

Exercise 16.3: What is the “diagonal” space curve xo (¢, t) for 0
t < 1? Is this curve the intersection of the patch {xp(u,v) |0 < u
1, 0 < v <1}and a plane?

Exercise 16.4: Show thatxp(u, v) = [1uu?u?|CTBC [1v1? v3]T,
where B is the 4 x 4 matrix of 3-vector components with B;; = b;; and

10 -3 2
00 3 -2
¢= 01 -2 1
0 0 -1 1

196 16. Tensor Product Surface Splines

If we precompute the matrix of vectors A = CTBC, then we can eval-
uate xp for any arguments 4 and v via Homer’s rule for evaluating a
polynomial with the following procedure. The value of xo(u, v) ends
up in s.

s« 0
for(i «3:0:-1)
{r < As;

for(j «<2:0:-1)r «<r -u+Ai;
s—s-v+r}

Note that the blending functions fy, fi, f>, and f5 satisfy fp(0) = 1,
f1(0) =0, £200) =0, f30) =0, and fo(1) =0, fi(1) =1, f2(1) =0,
Q1) = 0, ie., fi(0) = 8 and f;(1) = &;;. Thus, the bicubic patch
interpolation function x¢(u, v) satisfies x(0,0) = bgo, x0(0, 1) = by,
XQ(l, 0) = blo, and XQ(l, 1) = bu.

Let us compute the partial derivative functions (xg)., (xg)v, and (xQ)uy
of the bicubic patch interpolation function xo (4, v). (We use the common
subscript notation for partial derivatives, so that 3F/3z = F,.) Note that
f5© =0, f{(0) =0, £;0) =1, f;(0) = 0, and f5(1) = 0, f{(1) =
0, £,(1) = 0, f5(1) = 1. Thus, the bicubic patch interpolation function
xg(u, v) satisfies (xg),(0,0) = by, (x0)u(0,1) = by, (x0),(1,0) =
b3(), and (XQ),,(l, 1) = b31. Slmllarly, (XQ)U(O, 0) = b02, (XQ)U(O, 1) =
bo3, (x0)v(1,0) = by2, and (xg),(1, 1) = by3. Also, (xg),w(0,0) = bz,
(xQ)uv(0, 1) = b3, (x@)uu(1, 0) = b3z, and (x@).y(1, 1) = bsa.

When the (unknown) parametric surface function S(u, v) associated with
the patch Q is such that by = S(0,0), bo = S(1,0), boy = S(0, 1),
bu = S(1,1), bp = S5,(0,0), byp = S5.,(1,0), by = S,(0,1), by, =
Su(1,1), boz = S$5(0,0), bos = Su(1,0), bz = S$,(0,1), i3 = Su(1, 1),
b2 = $,,(0,0), b3y = S,,(1, 0), bz = 5,,,(0, 1), and b33 = S,,(1, 1), the
parametric tensor product bicubic patch interpolation function x¢ for the
patch O matches the unknown function S, its u- and v directional deriva-
tives and its mixed partial u v-derivatives at the parameter value pairs (0, 0),
(1,0), (0, 1), (1, 1)[Fer64].

The mixed partial vectors ba2, b23, b3z, and b33 used at the corners of the
quad-patch Q are called the corner twist vectors of the bicubic patch func-
tion x¢ and the patch Q. The bicubic patch function x is thus determined
by 48 numbers which form the 4 corner points, the 8 corresponding u di-
rectional and v directional tangent vectors, and the 4 corner twist vectors
of the quad-patch Q. These same 16 vectors have been identified above as

16.2 A Generalized Tensor Product Patch Spline 197

those vectors defining the sweeping and deforming of a patch boundary cu-
bic spline curve segment to the opposite patch boundary cubic spline curve
segment. The figure above is useful, but somewhat deceptive; the tangent
and twist vectors are shown translated from the origin; thus, for example,
the point shown as by, should be labeled by, + bgo.

Exercise 16.5: Compute the unit normal vector n(u, v) for the tensor
product bicubic patch interpolation function xy corresponding to the
point xg (u, v).

Exercise 16.6: How must we choose the 12 control tangent and twist
vectors to insure that the components of x ¢ (u, v) satisfy xp (u, v)) = u
and xg (4, v)2 = vV?

Exercise 16.7: Describe the locally extreme points of the bivariate cu-
bic spline patch function xg(u, v). How many distinct isolated locally
extreme points can xp have? What are the possible loci of the non-
isolated locally extreme points in the various cases where such points
arise?

16.2 A Generalized Tensor Product Patch Spline

In order to obtain a geometrically pleasing estimate for the unknown patch
Q, it is usually necessary to control the lengths of the spline curves that

198 16. Tensor Product Surface Splines

form the boundary of the patch Q. Since the length of a cubic spline seg-
ment depends on the parameter limit value used and on the magnitudes of
the starting and ending tangent vectors, we have several options for con-
trolling the individual boundary curve lengths; we can individually scale
the various tangent vectors by, boz, bz, b1, b3y, bi2, bi3, bao, and b3 used
in defining 0, or we can introduce variable parameter limit values.

Note that in the preceding development, we have restricted the five cubic
spline segment functions by(v), by (v), b2(v), b3 (v), and h(u, by(v), by (v),
b2(v), b3(v)) that define our tensor product bicubic patch interpolation
function to all have their parameters 4 and v range between 0 and 1 as the
spline curves range from their starting interpolation point to their ending in-
terpolation point. We can remove this restriction by introducing individual
parameter ranges for 4 and v as follows. Replace the basic Hermite blend-
ing functions with the following 2-argument generalized Hermite blending
functions:

fot,d) = 1-3(t/d)* +2(t/d)’,
file,d) = 3@/d)? —2(/d),

fo(t, d) d(t/d —2(t/d)* + (t/d)*), and
fit,d) = d(—@/d)*+ (¢/d)’).

In evaluating f;(0, 0), we may choose 0/0 to be either O or 1, as long as
the same choice is used consistently.

Now we may introduce the parameter limit values #, and ¢, and ex-
press the generalized parametric tensor product bicubic patch interpola-
tion function as

X, v)= > filu,t) D fi(v.)b,

0<i<3 0<j<3

Then Q = {xp,v) |0 <u <1t,0 <v <t} is an estimate of the
patch Q. (Beware: the subscripts ¥ and v in the symbols ¢, and ¢, do
not denote differentiation as might be expected at first glance; ¢, and ¢,
are merely mnemonic symbols for particular constants.) The patch 0 co-
incides with the patch Q at the points bog, big, bo, and by, and has the
same u- and v directional derivatives there. The boundary splines xo (u, 0)
and xg(u, t,) have the common parameter limit value f,, and the boundary
splines x¢ (0, v) and x¢(#,, v) have the common parameter limit value ¢,.
Note that even with individual parameter limit values ¢, and ¢,, xo (u, v)
is not necessarily a close estimate of the associated unknown parametric

16.3 Regular Grid Multi-Patch Surface Interpolation 199

surface function S, since the parameterization of S is not known, and hence
the parameter limits for the patch Q defined by S need not coincide with the
parameter limits ¢, and ¢,. Thus we are estimating a patch, not a function.

16.3 Regular Grid Multi-Patch Surface Interpolation

Suppose we have nm surface points belonging to an unknown surface in
R3, together with associated u- and v directional tangent vectors and corner
twist vectors corresponding to the regular grid of nm pairs of parameter
values (u;,v;) withO <i <n—-1and0 < j < m — 1, where uy <
Uy < - < up—jand vy < v < --- < v,-1. Explicitly, this grid is the
set (4o, --- ,Up—1} X {Vg, ... , Um—1}. We Wish to construct a surface which
interpolates the given points and whose corresponding tangent vectors and
twist vectors match the given tangent and twist vectors. This surface can be
computed by computing the (n —1)(m — 1) individual quad-patch estimates
for the (n — 1)(m — 1) unknown surface quad-patches. Moreover, given the
underlying grid, we can also specify a uniform parametric function that
defines our overall estimated surface and which may serve as an estimate
of the unknown two-argument vector valued function defining the surface
being estimated.

The nm parameter value pairs (4;, v;) form a regular grid of points in
the uv-plane which underlies the given 4nm data vectors. Such a grid of
parameter value pairs constitutes the set of 2-dimensional knot values asso-
ciated with the nm data points in direct analogy to the simpler situation of a
sequence of 1-dimensional knot values. The parameter value pairs (u;, v;),
(U, vj41), Mit1, Vj41), and (u;4, v;) in cyclic order are the corners of the
i, j-th grid rectangle for0 <i <n—1and0 < j < m — 1. The i, j-th
grid rectangle has the associated u-parameter limit value u;1 — u; and the
associated v-parameter limit value v;41 — v;. Note the u-parameter limit
value is the same for each grid rectangle that shares the same u-parameter
range, and the v-parameter limit value is the same for each grid rectangle
that shares the same v-parameter range.

The 16 data vectors and two parameter limit values associated with the
i, j-th grid rectangle thus defines the corresponding generalized paramet-
ric tensor product bicubic patch interpolation function xg,; for the asso-
ciated 4-cornered quad-patch Q;; of the unknown surface function being
interpolated. These (n — 1)('n — 1) generalized parametric tensor product
bicubic patch interpolation functions join with C!-continuity across their
common boundaries and define the generalized parametric tensor product

200 16. Tensor Product Surface Splines

bicubic spline interpolation function x for the union of the (n — 1)(m — 1)
individual quad-patches. For (u, v) € [ug, un—1] X [vo, Um-1], the vector
x(u, v) is computed by determining the integers i and j such that (4, v) €
(i, uiy1] X [vj, vj41] and then computing x(u, v) = xg, (4 — u;, v — vj)
where Q;; is the quad-patch corresponding to the i, j-th grid rectangle.

Note that each of the real valued two-argument component functions
x1, x2, and x3 is a parametric bicubic spline function for nm points on a
single-valued surface, namely: { (4;, v;,2;;) |0 <i <n—-1,0<j <
m—1},whereug < Uy < --- <up_jandvyg < vy < --- < vp_) are the
given values that define the underlying grid, and where z;; € R, and the z;;
values are variously the first, second, or third component values of the nm
given data points.

16.4 Estimating Tangent and Twist Vectors

In order to construct a continuously differentiable bicubic spline interpola-
tion function x for a network of 4-cornered patches, each defined by four
surface points, we want to specify the remaining 12 control vectors for each
patch, such that the cross boundary tangent vectors for adjacent patches are
identical to what we have done above, and so that the corner twist vectors
shared between patches are also identical. Let p;; denote the 3-tuple data
point associated with the parameter value pair (;, v;). In general, we can
use any one of the tangent estimation methods available for univariate cu-
bic splines to estimate the required 2nm cross boundary tangent vectors at
the various patch corner points by estimating n tangent vectors for the se-
quence of points pg;, ... , pp_1.j for eachvalue j =0,1,... ,m — 1 and
estimating m tangent vectors for the sequence of points pjo, ... , pim—1 for
eachvaluei =0,1,... ,n - 1.

Cormner twist vectors may be estimated in several possible ways. One
way is to treat all the u direction tangent vectors for a fixed u-value u; as
a set of points on a space curve and take estimated tangent vectors for this
set of points as the corresponding estimated corner twist vectors. We may
similarly use the v direction tangent vectors for a fixed v-value v; to obtain
associated estimated corner twist vectors; finally, we may use the average
of the corresponding vectors in these two groups to get an improved esti-
mated corner twist vector at each parameter value pair («;, v;).

Exercise 16.8: A bicubic join order 1 spline, defining an interpolating
surface for (n — 1) (m — 1) quad-patches corresponding to an underlying

16.4 Estimating Tangent and Twist Vectors 201

regular grid defined by the parameter value pairs {(u4;,v;) |0 < i <
n—1,0<j<m-1},whereug<u; <---<up_jandyy < v, <

- < Um-1, can be considered to be an element of a vector space of
such two-argument bicubic spline functions of dimension 12nm, since
there are four 3-vectors to be specified at each parameter value pair.
Find a basis for this vector space.

Exercise 16.9: Given nm points on a single-valued surface S over
a regular grid as { (4;,v;,2;;) |0 <i <n-10=<j<m-1}
where ug < Uy < -+~ < uy,_yand vy < vy < .-+ < V-, are given
values that also define the underlying grid, and where z;; € R, we may
estimate the 4 and v directional tangent vectors at the nm surface points
using global second derivative continuous univariate cubic splines with
specific choices of end conditions. Suppose the corner twist vectors
are arbitrarily specified non-zero vectors. Does the resulting bicubic
interpolation surface function x (u, v) for the entire net of (n —1)(m—1)
quad-patches have continuous second derivatives Xy, Xyp, Xuys Xuuvs
Xuvy, and X,y everywhere? Hint: recall that x (u, v) is defined here in
terms of join order 1 Hermite blending functions.

We may compute estimated corner twist vectors for a single patch Q with
the corner points by, byo, b11, and by, by using the mixed partials of the
bilinear interpolation surface for the points by, b0, b11, and by, defined
by the parametric function: S (4, v) = bgo(1l — u)(1 — v) + byou(1 —
v) + bor (1 — u)v + byjuv. At the junction of four patches we may use the
average of the four separately determined bilinear surface twist vectors at
that junction point.

Another approach to estimating the u- and v directional tangent vectors
and the twist vector associated with each of the points in a given collec-
tion of nm points p;; over an underlying regular grid { (u;,v;) | 0 <i <
n—1,0<j<m-1},whereug<u; < ---<upjandyy< v <--+ <
Um-1, is to use the biquadratic vector valued functions B;;(u, v) defined so
that B;; fits the set of 9 points centered at the point associated with the pa-
rameter value pair (u;, vj),for1 <i <n—2and1 < j <m — 2. The set
of 9 points “centered” at the point p;; with the associated parameter value
pair (4;, v;) consists of the 3 x 3 array of points p;_y j_1, pi.j—1, Pi+1.j-1,
Di-1.js> Pi.js Pi+l.j> Pi-1.j+15 Pi.j+15 Pi+1.j+1 With the associated param-
eter value pairs (u;_, v,-_l), (u;, vj_l), (Uip1, vj-1), (Ui-1, v;), (u;, vj),
(Wit1, Vj)s (Ui-1, Vi), (Wi, Vjg1), (Uigrs Vjg1)-

Forl <i <n-—2and1 < j < m — 2, the u directional tangent vector

202 16. Tensor Product Surface Splines

associated with the surface point p;; is estimated by (B;;).(u;, v}), the v
directional tangent vector associated with the surface point p;; is estimated
by (Bij)y(u;, vj), and the twist vector associated with the surface point p;;
is estimated by (B;;). (u;, vj).

The tangent and twist vectors at surface points associated with param-
eter value pairs at the boundary of the grid can be estimated from the bi-
quadratic functions centered at the nearby interior parameter value pairs
of the grid. Thus for 1 < j < m — 2, the u directional tangent vector
associated with the surface point po; is estimated by (B);).(uo, v;), the
v directional tangent vector associated with the surface point py; is esti-
mated by (B,), (uo, vj), and the twist vector associated with the surface
point po; is estimated by (By;),v (4o, V}).

For1 < j < m — 2, the u directional tangent vector associated with
the surface point p,_, ; is estimated by (B,_2 ;). (un—1, v;), the v direc-
tional tangent vector associated with the surface point p,_; ; is estimated
by (Bp-2,j)v(4n-1,vj), and the twist vector associated with the surface
point p,_; ; is estimated by (B, _2.)y (#n-1, v}).

For 1 <i < n — 2, the u directional tangent vector associated with the
surface point p;q is estimated by (B;;),(4;, v1), the v directional tangent
vector associated with the surface point p;g is estimated by (B;y),(u;, vy),
and the twist vector associated with the surface point p;g is estimated by
(Bi)uw(u;i, v1). For 1 < i < n — 2, the u directional tangent vector as-
sociated with the surface point p; ,_; is estimated by (B; m—2). (Ui, Vm-1),
the v directional tangent vector associated with the surface point p; ,,_; is
estimated by (B; ,—2),(u;, vm—1), and the twist vector associated with the
surface point p; ,_; is estimated by (B; m—2)uv (4, Um-1)-

For the surface point pg, the u directional tangent vector is estimated by
(B11)u(uo, vo), the v directional tangent vector by (Byy), (4o, Vo), and the
twist vector by (By1)n (4o, vg). For the surface point p,_; o, the u direc-
tional tangent vector is estimated by (B,_2.1)s(4n-1, Vo), the v directional
tangent vector is estimated by (B,-2.1)y(#,-1, Vo), and the twist vector is
estimated by (B,,_2.1)uv(4n-1, Vo). For the surface point pg -1, the u direc-
tional tangent vector is estimated by (B} m-2)u (40, Um-1), the v directional
tangent vector is estimated by (B1.m-2).(40, Um-1), and the twist vector
is estimated by (B} m-2)uv(#0, Vm-1). For the surface point p,_i m_1, the
udirectional tangent vector is estimated by (B, -2.m-2)u (Un—1, Um—1), the v
directional tangent vector is estimated by (Bp—2.m—2)v(#n-1, Um-1), and the
twist vector is estimated by (B —2.m—2)uv Un—1, Um-1).

Forl <i <n-2and1 < j < m — 2, the vector coefficients in the

16.5 Tensor Product Cardinal Basis Representation 203

biquadratic function

2,2 2 2 2 2
Bij(u,v) = cijou v+ cjjgu”v + c;jj7uv” + cijeut” + Cijsv

+Cijalv + Cij3u + Cijav + Cij1

centered at the 3 x 3 array of points p;_1.j_1, Pi.j-1, Pit+l,j-1> Pi-1.js
Di.j» Pi+1.j» Pi-1.j+1s Pi.j+1> Pi+1,j+1 With the associated parameter value
pairs (#;—1, vj-1), (Ui, vj-1), Uiy, vjo1), (Uio1, V), (Ui, V)), (Uig1, V)),
(ui-1,vj41), (Ui, Vi), (Uig1, vj41) are computed as the solution to the
system of 9 linear vector equations: ¢;jou,2vs% + cijsu,2vs + Cij7u, Vs> +
Cijolr®+CijsVs® +Cijally Vs +Cij3y +Cijavs +Cijy = prs forr =i—1,i, 1+1
ands=j—-1,j j+1.

Exercise 16.10: Suppose we are given nm points on a single-valued
surface S over a regular grid as { (u;,v;,2;) |0 <i <n-—-10<
j<m—1}whereug<u; <---<upjandvy < vy < -++ < Upy
are given values that also define the underlying grid, and where z;; € R
withzij > zijforO0<i <n—-1,and0 < j <m—1andz . > z;j
for0 <i <n-1and0 < j < m — 1. Thus the surface points are
monotonically increasing in both the u direction and the v direction.
Devise a method for estimating u direction and v direction tangent vec-
tors so that the resulting two-argument tensor product cubic spline is
itself monotonically increasing in both the u direction and the v direc-
tion. Try to extend to the case where z;,1,; > z;j and 2; j+1 < zij, S0 as
to obtain an interpolation surface which is simultaneously monotonic-
ally increasing in the u direction and monotonically decreasing in the v
direction.

Exercise 16.11: How can we compute a two-argument smoothing
spline function for given data points { (4;, v;,2z;) |0 <i<n-1,0<
j<m-—1},whereup <u; <:--<uypjandvg < vy < -+ < Up—y
are given values, and where z;; € Rfor0 <i <nand0 < j < m,
analogous to the one-argument smoothing spline introduced above?

16.5 Tensor Product Cardinal Basis Representation

Let A be a vector space of univariate splines of range dimension 1 with
respect to the knot values ug < u; < ... < u,_;, such that there is
a unique function f;(u) € A so that, for the fixed sequence of integers
ko > 0,k1 =0,...,k,_; > 0, and any choice of values xq, X1, ... , Xy_1

204 16. Tensor Product Surface Splines

for the components of the vector x € R”, the k;-th derivative f,(k’) satis-
fies f,,(k’)(uj) = xj for j = 0,1,...,n — 1. Thus the cardinal functions
feys + -+ s fe, form the associated cardinal basis for A. Here the subscripting
vector e; is the n-tuple such that (e;); = §;; for 1 < j < n, where §;; is 1
when i = j and is O otherwise.

Let B be a vector space of univariate splines of range dimension 1 with
respect to the knot values vp < v; < ... < vp_1, such that there is
a unique function g,(v) € B so that, for the fixed sequence of integers
hg>0,hy =0,...,h,_1 =0, and any choice of values yg, y1, ... , Ym-1
for the components of the vector y € R™, the i -th derivative g;hj) satis-
fies g;hj)(vj) = yjfor j =0,1,...,m — 1. Thus the cardinal functions
8ey» -+ - » 8en form the associated cardinal basis for B. Here the subscripting
vector e; is the m-tuple such that (¢;); = §;; for1 < j <m.

Now we may form the n x m grid of two-argument knot value pairs
{(uj,vp))I0 <i <n—-1,0 <j <m—1}and the n x m derivative order
matrix o with w;j ;== k; +hjfor0<i<n-1,0<j<m-1.

Consider the nm two-argument functions f, ()g.;(v) for 1 < i <
n,1 < j < m. These functions have the property that f, (up)ge,(vy) =
8i—1.p8j-1.4- The vector space of two-argument range dimension 1 func-
tions spanned by this two-argument cardinal basis is the tensor product
space A X B; the space A x B is composed of those two-argument splines

of the form
n—1 m-1

@@, V) = D> Bij forry U)8ey, (V)

i=0 j=0
which satisfy
i

W(“h vj) = Bij

At (Ui V) =
forO0 <i <n-1and0 < j < m — 1. The real valued function a(u, v)
is uniquely determined by the values B;;. The surface {ar(u, v) | up < u <
Up_1, V9 < U < vp_1} is the surface corresponding to the two-argument
spline « defined by the §;; values.

Each component function of the bicubic spline for a single quad-patch
Q originally presented above belongs to the tensor product space h x h
where h is the space of cubic polynomial segments with respect to the knot
values 0, 0, 1, 1, and the derivative orders (0, 1, 0, 1).

One benefit of having a basis representation for a two-argument spline is
that we may, in principle, obtain an interpolation spline for any given data
points for which associated knot value pairs are given. This can be done by

16.7 Triangular Patches 205

forming an appropriate system of linear equations and solving them in the
least squares sense.

16.6 Bicubic Splines with Variable Parameter Limits

Fletcher and McAllister [FM87] have proposed an extended form of the
generalized parametric tensor product bicubic spline interpolation function
for a rectangular patch Q with the underlying grid rectangle [0, 1] x [0, 1]
which permits each edge of the estimating patch Q to have a distinct as-
sociated parameter limit value. This is done by making the parameter limit
value in the u direction, t,, be a function of v and making the param-
eter limit value in the v direction, ¢,, be a function of u. For example,
let the parameter limit values be denoted by ug, vy, u;, and vo; define
t,(v) = ug(1l — v) + uyv and define ¢, (u) = vo(1 — u) + v u. Then the ex-
tended generalized parametric tensor product bicubic spline interpolation
function for the rectangular patch Q is

xo,v) = D fit)u, £,(®) Y fi6@)v, ()b,

0<i<3 0<j=<3

and Q = {xo(u,v) |0 <u <1,0 < v < 1} is an estimate of the patch Q.
The patch Q coincides with the patch Q at the points by, by, b1, and by,
and has the same u- and v directional derivatives there.

When we are given such a set of four surface points determining the four
corners of the quad-patch to be estimated, we may choose the parameter
limit values ug, 41, vp, v; corresponding to the four sides of the quad-patch
as the straight line distances between the pairs of corner points that define
the edges of the quad-patch.

16.7 Triangular Patches

Note that for an extended generalized parametric tensor product bicubic
spline, the control vectors and parameter limit values can be chosen so that
one or more of the patch boundary curves degenerates to a single point.
For example, we may choose b1y = b;; with the parameter limit value v,
for this edge equal to 0 so as to form a triangular patch as shown below.
Generally, in this case, the tangent vectors b2 and b3 for the degenerate
curve at the common point should be identical, as should the twist vectors
b3z and bs3. The tangent vectors by and b3, on the other hand, need not

206 16. Tensor Product Surface Splines

be colinear. However the vectors by, by3, b3g and bz, should all lie in the
same (tangent) plane.

Exercise 16.12: What does our estimating bicubic patch look like if
the parameter limit value for the degenerate edge is not 0?

One way to choose the three usually distinct tangent vectors at the sur-
face point used as a “degenerate” comner in a patch is to estimate the tangent
plane at the given surface point, perhaps by a nearest neighbor method; and
then choose all the needed tangent vectors at the surface point to lie in the
tangent plane determined for that surface point.

This ability to construct either a quadrangularly shaped surface patch
(i.e., a patch with four given distinct corner points) or a triangularly shaped
surface patch (i.e., a patch with three given distinct corner points) means
that extended generalized tensor product bicubic spline interpolation can
be used in cases where we have a collection of interpolation points in
R3 belonging to an unknown surface such that these points can be orga-
nized as the comner points of a network of unknown possibly degenerate
quad-patches to be estimated. Each possibly degenerate quad-patch is de-
termined by four corner points from our collection of interpolation points,
where at most two of these points may be identical. Each such quad-patch
is assigned an underlying set of four parameter limit values, together with
associated corner tangent vectors and corner twist vectors. (Generally the
parameter limit value for a degenerate O-length edge is taken to be 0.) We
can then compute points on each estimating quad-patch for the network

16.8 Parametric Grids 207

of quad-patches that make up the surface; we cannot, however, in general
construct an explicit parametric surface vector valued function for this net-
work of estimating quad-patches without introducing a globally applicable
consistent bivariate parameterization.

16.8 Parametric Grids

In order to construct an explicit parametric function for our interpolating
surface, we must establish a suitable planar domain for the parameters,
upon which we will impose an appropriate grid of parameter knot value
pairs. This can be easily done when our guad-patches are arranged in a
regular a x b grid of patches; then the associated parameter domain is the
rectangular region [0, a] x [0, b]. This case often arises when we have a
rectangular grid for a domain wherein we have solved for the points on a
surface defined by a system of partial differential equations corresponding
to the underlying grid parameter value pairs.

When we cannot establish an underlying regular grid domain for param-
eter knot value pairs associated with the network of possibly degenerate
quad-patches, whose corners are our given interpolation points in R, such
that the underlying domain is partitioned into disjoint subregions corre-
sponding one-to-one with the possibly degenerate quad-patches that make
up our network, we can still construct an interpolating surface, one patch
at a time. But we cannot present an associated parametric function, since
we have no effective way to define an overall parameterization. Even when
such an underlying grid domain is established, we may need to introduce
mappings that map the domain partitions associated with individual quad-
patches to rectangles for computational purposes.

In the case where we have a set of n points P = {(u;, v;, fi)) | 1 <i <
n} € R3 taken to be points on a single-valued surface S defined by a func-
tion S such that S(u;, v;) = f;, we can construct an explicit domain D for
parameter value pairs that enables us to prescribe an explicit overall param-
eterization for the extended generalized bicubic spline interpolation func-
tion x which defines an interpolating surface for the points P. In particular,
the parameter domain D can be chosen as the region convexhull({(u;, v;) |
1 < i < n}). The set of points K = {(u;,v;) | 1 <[< n} are the knot
points associated with the surface points in P. Now let us introduce a trian-
gulation of the points P; this triangulation induces a matching triangulation
of the points K in D such that the triangles form a partition of D. Let wr
denote a mapping which maps the triangle 7 in R? onto the unit square in

208 16. Tensor Product Surface Splines

R2, except possibly for a segment of its boundary. We may use this family
of mappings to map the triangles in D to the unit square on which the basic
extended generalized bicubic spline function is directly defined.

Exercise 16.13: Explicitly state the mapping wy postulated above.
Hint: consider barycentric coordinates for R? with respect to the tri-
angle T. Use this mapping to explicitly state the extended general-
ized bicubic spline interpolating function x defined on D such that
x(u;,v;)) = fiforl<i<n.

16.9 3D-Function Interpolation

Heretofore we have studied the general case of constructing an interpolat-
ing surface for an arbitrary set of points in R>. Just as in the R? case, in
order to specify an explicit parametric vector valued interpolation function
whose graph is the desired interpolating surface, it is necessary to establish
a domain for parameter values and an assignment of particular parameter
points (knots) to the given surface points. In the R? case, this imposes a
definite organization of the given surface points as the corners of a definite
network of possibly degenerate quad patches. For points in R?, it is rela-
tively straightforward to devise effective ways to assign suitable parameter
values to the data points. In R, we want to assign suitable parameter pairs
to the data points, but it is harder to devise effective general schemes for
doing this assignment. Although this can be difficult to do, it is an unavoid-
able requirment if we want to construct an explicit complete parametric
interpolation function.

Let x : R?> - R3 be a parametric bicubic spline. Note that each of
the real valued two-argument component functions x,, xz, and x3 is a non-
parametric bicubic spline function for a 3D single valued surface. But the
necessary parameter points to associated with x;, x; and x3 are missing.

When, however, we do have points taken from the graph of a non-para-
metric function f mapping R? to R, the parameter knot value pairs we
need are given a priori as the x and y coordinates of the data points. How-
ever, the regular grid structure we desire may be lacking. We can easily
construct a suitable regular grid of parameter value pairs by using the cross-
product of the set of distinct x values and the set of distinct y values, but
then we may be faced with estimating values of the unknown function f at
various generated grid points as needed to obtain a complete set of surface
points associated with our regular grid of parameter value pairs.

16.9 3D-Function Interpolation 209

Let us suppose we are given the set of p points P := { (xx, yk, &) |
0<k<p-—1} Letuy < u; < --- < u,—) be the distinct values among
X0, ... ,Xp—y and let vg < v; < .-+ < v,_; be the distinct values among
Yos.-.yYp—1-Then G = {(u;,v;) |0<i<n-1,0<j<m-—1}isa
regular grid of parameter value pairs such that every parameter value pair
in{(xg, y) |0<k < p—1}isfoundin G.

We want to construct nm points on a single-valued surface, namely:
{(ui,vj,zi)) |0 <i <n—-10<j<m-—1}, where ugp < u; <

- < uppand vy < v; < --- < vUy_) are the given values that define
the underlying grid G, and where z;; € R. Of these nm 3-tuple points, p
of the nm z;; values are known to be the originally-given g, values. The
remaining nm — p z;; values are not known and must somehow be esti-
mated. Once we have obtained these estimates, we have a set of points on
a surface together with a regular grid of parameter value pairs from which
we can construct an interpolating spline function.

Our problem is now reduced to the particular interpolation problem of
estimating values of an unknown real valued function f defined on R? cor-
responding to particular parameter pairs in the grid G, where we are given
the particular points P contained in the graph of the unknown function f.
Given these estimated function values, we can then further estimate slopes
and mixed partial values and construct a bicubic spline interpolation func-
tion for the data points given in P. There are a variety of ways to approach
this problem.

One effective way to estimate a value of f at a parameter pointg € R? is
to compute the desired estimate as a weighted average of the function val-
ues associated with the & nearest neighbors of the point q in the parameter
pairset { (xx, k) |0 <k <p -1}

Exercise 16.14: Propose a suitable weighting scheme for the 4 func-
tion values associated with the nearest neighbor parameter pairs of the
point q.

After estimating the unknown z;; values on the grid G, we can obtain
smoother estimates by computing smoothing splines in the x direction and
in the y direction, and then replacing each estimated value associated with
a parameter value pair (4, v) € G by the average of the two values that
predict the unknown function value at (#, v) which are generated on the
two smoothing splines that we expect to “intersect” at the point determined
by (u, v).

17

Boundary Curve Based Surface
Splines

The device of sweeping a cubic polynomial space curve through space
while simultaneously deforming it so as to match a second cubic polyno-
mial space curve at the end of the sweep can be generalized so that we can
sweep and deform any given initial boundary curve so that it matches any
given final boundary curve at the end of the sweeping process. This sweep-
ing can be characterized as forming intermediate curves by interpolating
between each corresponding pair of points on the initial and final curves.
A. R. Forrest gives a thorough review of this methodology in [For72]; there
much of this work is credited to Steven Coons.

17.1 Boundary Curve Based Bilinear Interpolation

Suppose we are given the boundary space curves xo(¥) = S(u, 0), x1(u) =
S(u, 1), yo(v) = S(0, v), and y;(v) = S(v, 1) for the quad patch Q of the
surface § = {S(u, v) | u,v € R} with the corner points by, b1g, b11, and
bo in cyclic order, where the parametric surface function S : R? - R? is
such that xo(0) = bgo, x0(1) = big, x1(0) = bo1, x1(1) = b1, yo(0) = boo,
yo(1) = bo1, y1(0) = byg, and y;(1) = by;.

Consider the so-called ruled surface formed by connecting each pair of
points xo(#) and x;(u) on the opposite boundary curves x¢ and x; of the
patch Q with a straight line; this surface is defined by the parametric func-

212 17. Boundary Curve Based Surface Splines

tion S, (u, v) = xo(u)(1—v)+x;1 (u)v. Note S; maps R? into R>. The ruled
surface (S, (u, v) | u, v € R} is called the linearly lofted surface between
the curves xo and x;. Similarly, the linearly lofted ruled surface between
the curves yo and y,, formed by connecting each pair of points yp(v) and
y1(v) on the opposite boundary curves yo and y; of Q with a straight line,
is defined by the parametric function S, (u, v) = yo(v)(1 — u) + y;(v)u.

When the boundary curves xo, x1, Yo, and y; are themselves straight
lines, the linearly lofted surfaces defined by S, and S, both coincide with
the so-called bilinear interpolation surface for the patch Q with the comer
points bog, b1o, b11, and by, . The bilinear interpolation surface is defined by
the parametric function: S; (¥, v) = bgo(1 — u)(1 — v) + bjou(1l — v) +
b1 (1 — u)v + byuv.

Exercise 17.1: Draw the partition of the unit square defined by the
vertical and horizontal lines through the point (u, v) and identify the
areas corresponding to the points bgg, b1g, bo1, and by in the bilinear
interpolation function Sy (u, v).

Now, if we examine the sum S, + S, of the linearly lofted surface
functions S; and §,, we see that S, contributes the straight line segments
segment[xy(0), xo(1)] and segment[x;(0), x1(1)], together with the curves
{yo(v) | 0 < v <1}and {y1(v) | 0 < v < 1}, to the boundary of the sur-
face patch ¥ = (S;(u,v) + S,(u,v) |0 < u <1,0<v <1} C
R3; S, contributes the straight line segments segment[yy(0), yo(1)] and
segment[y;(0), y1(1)], together with the curves {xo(u) | 0 < u < 1} and
{x1(u) | 0 < u < 1}, to the boundary of the surface patch X. Thus, sub-
tracting the bilinear interpolation surface function S; from S; +S, removes
the straight line segments of the boundary of the patch ¥ contributed by
S« and S, and leaves the patch {S,(u, v) + S, (u, v) =S, (u,v) |0 <u <
1,0 < v < 1}, which has the boundary {xo(#) | 0 < u < 1} U {yo(v) |
0<v=1UxWw |0=<u=<1lU{nw|0=<v <1}, which
is the same as the boundary postulated for the patch Q. The parametric
function Sg(u, v) = S, (u, v) + S, (u, v) — S (u, v) is called the bilinearly
blended patch interpolation function for the patch Q with the boundary
{xou) |0<u <1}U{yo(») 0= v < 1JU{x1(u) | 0 <u < 1}U{»(v) |
0<v<l1}

Leth(t,a,b,c,d) = fo(t)a+ fi(t)b+ f2(t)c + f3(2)d, where fo(t) =
1-3e24263, fi(t) =362 =20, fo(t) =t =202+, and ;3(¢) = — 12 + 13
h(t,a, b, c,d) is the Hermite cubic interpolating polyomial space curve
segment based on the control vectors a, b, ¢, and d, where c is the tan-

17.2 Boundary Curve Based Bicubic Interpolation 213

gent vector at a, and d is the tangent vector at b. The bilinearly-blended
patch interpolation function for the boundary {xo(u) | 0 < u < 1} U
oM | 0=<=v=1}UxW |[0<u=<1}U{y®)|0=<v=<1}
in the case where xo(u) is the cubic spline curve h(u, by, b1o, b2o, b3o),
x1(u) is the cubic spline curve h(u, boy, by, b21, b31), yo(v) is the cubic
spline curve h(v, bgg, bo1, boz, be3), and y;(v) is the cubic spline curve
h(v, byg, b1y, b1z, b13), is identical to the tensor product bicubic patch in-
terpolation function for the control points bgg, 19, bo1, b11, b20s boz, b21,
b12, bo, bos, b2z, b3y, by3, b3z, ba3, b3, With by = b3y = by = b33 = 0.

17.2 Boundary Curve Based Bicubic Interpolation

Suppose we are given cross boundary tangent vectors at each point on the
boundary of the patch Q of the surface S in addition to the boundary curves
S(u, 0), S0, v), S(u, 1), S(1, v). Thus, suppose we are given the partial
derivative space curves S,(u,0), S,(u, 1), S,(0, v), and S, (1, v) which
specify the cross boundary tangent vectors along the boundary curves
S(u, 0),Su, 1), S0, v), and S(1, v), respectively. We can then form the
cubically lofted surfaces between the curves S(u, 0) and S(u, 1), and be-
tween the curves S(0, v) and S(1, v). If we sum the functions that define
these two surfaces and correct the sum by subtracting the tensor prod-
uct bicubic patch interpolation surface function x¢p for the control points
bgo = S(0,0), bigp = SQ,0), bgy = SO,1), by; = S(1,1), byy =
S.(1,0), bz = 5,(1,0), byy = 5,(0,1), bz = 5,(1,0), byo = S.(1,0),
bos = $,(0,1), bz = 5,,(0,0), b3y = S, (1,1), biz = S,(1, 1), b3z =
Suv(1,0), bsz = S,,(0, 1), and b33 = S, (1, 1), we will obtain the bicubic-
ally blended patch interpolation function for the patch Q[Gor69].

We will define the cubically lofted surface between the boundary curves
given by S(u, 0) and S(u, 1) via the cubic spline blending functions fy(t) =
1-3824283, fi(t) =362 =283, fo(t) =t =212+, and f3(2) = —12+ 13,
as {S;(u, v) | u, v € R} where S;(u, v) = fo(v)Sw,0) + fi(v)Swu,1) +
£2()S,(u, 0) + f3(v)S,(u, 1). Similarly, the cubically lofted surface be-
tween the boundary curves given by S(0,v) and S(1,v) is
defined as {S,(u,v) | u,v € R} where Sy(u,v) = fo(w)SO,v) +
H@SA, v)+ f2(u)S, 0, v)+ f3(u)S, (1, v). Thus the bicubically blended
patch interpolation function for the boundary {S(u,0) | 0 < u < 1} U
S,V |0=<v<1JU{SW, 1) |0<u<1}U{S1,v)|0<v<1}with
the cross boundary tangent vector functions S, (0, v), S,(1, v), S.(u, 0),
and S,(u, 1) is Sg(u, v) := S (u,v) + Sy(u, v) — xo(u, v). The surface

214 17. Boundary Curve Based Surface Splines

{Sp(u, v)|0 < u < 1,0 < v < 1} is often called a Coons patch in com-
puter graphics [Co067].

Exercise 17.2: Show that the cubically lofted surface functions S,
and S, are both identical to the tensor product bicubic patch interpola-
tion function x for the control points bgg, b10, o1, b11, b20, boz, b21, b2,
b3o, bo3, b2z, b1, b3, b3z, bas, bz in the case where the boundary curves
and the cross boundary tangent vectors that define the cubically lofted
functions S, and S, are determined by cubic spline segment functions
as S(u,0) = h(u, by, byo, b2, b30), S, 1) = h(u, boy, b1y, b21, b31),
$(0, v) = h(v, bog, bor, boz, bo3), S(1, v) = h(v, by, b1y, br2, b13),
Su(u,0) = h(u, by, b2, byz, b32), Sy(u, 1) = h(u, bos, by3, b, b33),
S.(0, v) = h(v, b, b2y, bz, b23), and S, (1, v) = h(v, bag, b3y, b3z, bs3).

Exercise 17.3: Show that the bicubically blended patch interpolation
function for the boundary {S(x,0) | 0 < u < 1} U {S(1,v) | 0 <
v<1}JU({S, 1) |0=<u<1}U{SA,v) | 0 < v < 1} formed of
cubic polynomial space curves with S(u, 0) = h(u, by, by, b20, b30),
Su,1) = hu,boy, by, b2y, b31), S0, v) = h(v, by, bor, boz, bo3),
and S(1, v) = h(v, by, b11, b12, b13), and with the cross boundary tan-
gent vector functions S, (0, v), S,(1, v), S, (4, 0), and S, (u, 1) defined
as the cubic polynomial space curves S, (4, 0) = h(u, byz, by2, b2, b32),
Sy(u, 1) = h(u, bg3, b3, bz, b3z), $,(0, v) = h(v, by, b2y, b2z, b23),
and S, (1, v) = h(v, bsg, b31, b3z, b33), is identical to the tensor product
bicubic patch interpolation function x¢o for the control points bgo, b10,
bo1, b11, b2o, boz, ba1, bz, b3o, bos, b2z, bay, bz, b3z, bas, bas.

Exercise 17.4: Reprise the above material and develop the general-
ized bicubically blended patch interpolation function for the patch Q
with the underlying grid rectangle [0, ,] x [0, ¢,] replacing [0, 1] x
[0, 1].

Exercise 17.5: If the boundary curves that crisscross a regular net-
work of patches associated with a regular grid of knot value pairs are
C? functions, is each component of the resulting overall bicubically
blended interpolation function a C? function of two arguments? Hint:
look at the derivatives of the Hermite blending functions at ¢ = 1.

17.3 General Boundary Curve BasedSpline Interpolation 215

17.3 General Boundary Curve Based
Spline Interpolation

General blended two-argument splines can be defined in terms of car-
dinal basis functions, analogous to the way that such expressions were
found for general tensor product two-argument splines. Let f,,..., fe,
be the cardinal functions for a vector space of splines of range dimension
1 with respect to knot values rg < r; < ... < r,_; and derivative orders
(ko, ... ,ky—1). Similarly, let g, ..., g, be the cardinal functions for a
vector space of splines of range dimension 1 with respect to knot values
s0 <81 <...=<sp-1 and derivative orders {hg, ... , Ap,—1).

Let F, denote the projection operation corresponding to the cardinal
functions f.,, ..., fe,,thatis, (YF,) () = fo,(1)y*0(ro) + fe, 0)y*V(r))
+... 4 fo, (0)y*=1(r,_;). Note F, maps real valued univariate functions
to range dimension 1 univariate splines with knot valuesro < ... <r,_;.

Let G,, denote the projection operation corresponding to the cardinal
functions ge,, - - . , 8, that is, (YG) (£) = ge, (1) (50) + ge, (1)y "V (s1)
+...48e, () y¥m-1)(s,,_1). Note G, maps real valued univariate functions
to range dimension 1 univariate splines with knot values sp < ... < 5,,_;.

Now given the space curves S,y (4, S0), . . » S, thm_1) (U, Sy—1) and also
S, (ro, v), ... , S, ks (ry—1, V), Which we imagine to be derived from an
unknown surface function S, let S;(v) = S(u, v); we treat u as an auxillary
parameter in S,. The F,-lofted surface corresponding to the given space
curves is defined by the vector valued function S, (4, v) where

S (U, v) = [S2F,), v) = fo, @)S,up (ro, v) + ...

+ fe,,(u)su(*n—l'(rn—lv v).

We thus extend the projection operator F, to apply to the vector valued
two-argument function S by taking S as a function of its second argument,
so that SF, := S, F,.

Let S)(u) = S(u, v); we treat v as an auxillary parameter in S;. The
G .-lofted surface corresponding to the given space curves is defined by
the vector valued function S, (4, v) where

Sy(u, v) :=[$1G (U, v) = ge, (V)S hp (u, $0) + . ..

+ 8ep (VIS thm—p (U, Su—1)-

We thus extend the projection operator G, to apply to the vector valued
two-argument function S by taking S as a function of its first argument, so
that SG,, := 51G ..

Recall that the two-argument generalized parametric tensor product spline
for the control points

216 17. Boundary Curve Based Surface Splines
S"(ki,v(hj)(r,', Sj) withO<i<n-—1land0<j<m-1lis:

n—1m-1

Sey@,) = D3 for oy 0)8e;s (VIS ty 0 i).

i=0 j=0

Note that S,, (1, v) = [(§Gn) F,](u, v) = [(SF,)G] (u, v), i.e., the pro-
jection operators F,, and G,, commute when applied to a two-argument
function,

Now, the (F,, G,)-blended interpolation function for the boundary
curves Sv(ho)(u, So), Sv(h,>(u, S]), ey Sv(h,,,_l)(u, S,,,_l) and Su(ko)(ro, v),
Su(k,>(r1, v),. oy Su(k,,_,>(r,,_1, v) is

Sp(u,v) = S;(u, v)+S,(u, v) —Sxy(u, v) = [S(Fy, +Gp — F,Gp)](u, v).

When we can construct join order 2 cardinal functions f,, ..., fe,, and
8e,s - -+ » 8em» NOte that the resulting (F,, G ,)-blended interpolation func-
tion Sp is also a join order 2 bivariate function. Since we have presented
several bases for spaces of join order 2 splines, we can explicitly construct
such a join order 2 bivariate interpolation function. For example, we can
use the B-spline basis functions for n knot values, and for m knot values,
with specific fixed end conditions imposed, and write the explicit compu-
tational recipes for f,..., fe, and ge,, ..., g, in this case. When we
use B-spline bases, these recipes involve solving n + m systems of linear
equations.

18
Physical Splines

Let p1,..., p, € R>. A flexible springy wire of length A pinned at the
end points p; and p,, and passing through the points p,, ..., p,—; with
or without specified directions is physically determined to have one of sev-
eral stable shapes, each corresponding to a locally minimal energy value.
We may seek these minimal energy shapes; such a curve will be called a
physical spline curve. Although a cubic spline may be a good approxi-
mation to a physical spline, this is often not the case, and moreover the
length constraint applied to a cubic spline segment is difficult to honor. It
is important in various engineering applications to be able to compute the
exact physical spline curve of a given length that satisfies given boundary
conditions.

Our first step is to compute the energy in a thin circular cross section
physical spline bent in the shape of an arc length parametrized space curve
x of length h. Malcolm [Mal77] reports that this idea goes back to Daniel
Bernoulli circa 1742. We will model the spline by a sequence of n seg-
ments bent in circular arcs and adjoined end-to-end to approximate the
space curve x. Each segment is of length L = A/n. A segment is modeled
by a bundle of elastic length L fibers arranged to form a cylinder of length
L. Each fiber behaves as a spring that is compressed or extended in length
with a force proportional to the change in its length according to Hooke’s
law.

As each cylindrical segment of fibers is bent into a circular arc, the length

218 18. Physical Splines

ty

lengthL+y @
length L

of the central fiber is unchanged in length, the fibers closer to the inside of
the arc are compressed, and the fibers on the outside of the arc are extended.
The potential energy stored in all these compressed and extended fibers is
the energy of the segment, and the sum of the energies of the n segments
approximates the energy in the spline bent to follow the space curve x.
When we consider the limiting case where n — 00, we obtain the desired
energy of the physical spline; this will also be defined to be the energy of
the space curve x.

The potential energy e in a length L spring fiber compressed or extended
to the length L + A is the work done to change the length from the 0-energy
length L to the length L + A. This work is the quantity fLL+A F(x)dx
where F(x) is the force needed to compress or extend the spring to length
x. By Hooke’s law F(x) = g(x —L)/L when x is not too different from L,
where ¢ is the modulus of elasticity of the spring material. Thus the energy
eis &A%

Now let us consider the length L cylindrical segment of fibers bent in
a circular arc of a circle of radius r as shown above. The origin is shown
placed at the center of the cylindrical segment.

The central fiber of length L is shown. A coordinate axis is established
by which we may measure the distance y above or below the central fiber.
A representative non-central fiber of length L + 0y is also shown.

The values r, L, and 6 are related by r6 = L. The curvature of the
central fiber is 1/r. In general, the length of a fiber offset vertically by
the distance y is (r + y)8. The energy of the fiber offset vertically by the
distance y is thus £(y8)2/(2L).

18. Physical Splines 219

Let A denote the circular disk of diameter d centered at (0, 0) in the
xy-plane. The total energy stored in the entire cylindrical segment is now
obtained as the integral

fs(y@)z/(ZL)dxdy = iOnyzdxdy.
A 2L Ja

But [, y?dxdy is a constant which we call I; in fact is the so-called
moment of inertia of the disk A about the x-axis. Thus the energy in our
bent segment is 5-6% = £ - & Since 1/r is the curvature of the central
fiber, we may write the energy of the segment as % - Lk? where k = 1/r
denotes the curvature of the segment.

Now define the arc length parameter value s; := (i — 1)L + L /2. Let
K (s) denote the curvature |x”(s)| of our given arc length parametrized
space curve x at s.

Place n length L cylindrical segments along the space curve x with the
ith segment centered at x(s;). The ith segment is taken to be bent in a
circular arc whose curvature matches the curvature value K(s;). When n
is large, the circular end faces of the adjacent segments will approximately
join.

The total potential energy E in all n segments is then

> S KL

1<i<n

Now, if we let n — o0, then L -> 0 such that nL remains equal to
the curve length A, and the summation expression for £ is seen to be a
Riemann sum which converges to the integral %’ foh K (s)?ds. Thus the
energy in a diameter d circular cross section physical spline bent to follow
the space curve x is £ foh K (s)*ds. We see that a physical spline with an
infinitesimal cross section diameter has an infinitesimal energy; however
we shall depart from physical reality and assign the value foh K (s)?ds to
be the mathematical energy of the length h space curve x.

Note that the shapes of two physical splines composed of circular cross
section wires of two different materials that have the same boundary con-
ditions will be essentially identical, although the actual energy in each will
be different due to their differing moduli of elasticity. Also note that the
torsion of x does not directly affect the potential energy stored in x as
would be the case for a physically realized bundle of fibers bent to follow
the curve x. This is because we assigned no energy budget to account for
joining the length L circular arc shaped segments in a non-planar (twisted)

220 18. Physical Splines

fashion in the construction given above. This is appropriate for a small
cross section diameter spline, since the energy due to torsion is negligible
as the cross section diameter approaches zero. Of course, the torsion can
adversely affect the curvature, so the torsion is implicitly constrained in a
minimal energy curve.

Exercise 18.1: What is the potential energy in a diameter 4 circular
cross section physical spline of length 4 whose central fiber follows the
space curve x, taking the torsion of x into account?

Note that a ruled surface composed of a rectangle of stiffly flexible mate-
rial which admits a family of parallel rule lines, bent according to uniform
constant boundary conditions along two opposing edges formed by rule
lines assumes the same shape in any individual cross section curve. That
shape is the shape of a (planar) physical spline curve determined by the dis-
tance between the two opposing edges and the slope boundary conditions
at those edges.

Exercise 18.2: How can we define the energy of a finite area surface
S?

Solution 18.2: One possiblity is to let e,(9) be the energy of a curve
embedded in the surface S within a small disk D,(r) of radius r cen-
tered at the point p, where the curve passes through p in the direction
8. fo(r) := = [e,(8)d9 is the total energy of the surface S in the
disk D,(r). Then prS lim, .o f,(r) is the energy of the surface S.

Alternatively, we may define the energy as the combination of all the
energies of all the parallel curves in some fixed direction that are em-
bedded in the surface and whose union form the surface, together with
the energies of all the parallel surface curves in the orthogonal direction.
This solution admits a physically based model formed with a rectangu-
lar grid of springs and hence is to be preferred. Various models have
been proposed for defining the energy of a surface; however, unlike a
curve, the energy depends on the modes of bending and distortion we
shall admit that are applied to construct our surface, and the problem is
more complex than that of defining the energy in a curve.

Recall that the curvature of a real valued function f : R' — R!is
[f71/Q + (f’)z)%. When f’ is small, the curvature of f is approximated
by | f”|. Since a cubic polynomial that passes through two given points

18. Physical Splines 221

with given slopes minimizes f (f")?, we see that when f’ is small, a cubic
polynomial spline segment is a good approximation to a physical spline x
that satisfies the same boundary conditions and minimizes [K2 where K
is the curvature of x. When f’ is not small, however, this approximation
can be very poor.

Now we may consider the problem of computing the shape of the physi-
cal spline of length 4 which interpolates the given points py, p2, ..., p, in
this order. We may optionally impose tangent vector direction constraints
at some or all of these points. The desired space curve x can be defined as
that curve which has minimal energy, subject to the required constraints.
In the simplest case, x is to be chosen so that the functional

e . a ” 2
= mn 3 [e

1j2ipj41-pj) for 1< j<n lsisn—1

is minimal, subject to the constraints: {p = 0, a; = & + --- + t; and
x(a_y) = pifor0 <i <n-1,and fov |x'(s)|ds = vfor0O < v <h,
or equivalently, |x'(s)] = 1 forO < s < h. This latter set of constraints
forces x to be an arc length parameterized space curve of overall length A
for which the curvature K(s) = |x”(s)|. If a tangent vector constraint that
x'(a;) = m;/|m;| is to be imposed, then it must be added to the primary set
of constraints just given.

We may drop the constraint that x is an arc length parameterized curve
by using the general formulation K (s) = [|x'[2[x"|? — (x/,x")?]"/?/|x"|>.
However then the other constraints that define ay, . .. , a,—; must be corre-
spondingly reformulated and the constraints that specify the arc length of
x between pj,; and p; to be ¢; must be added.

Each space curve x corresponding to a local minimum of £ is a stable
shape for the length A physical spline interpolating the points p,, ..., p,.
Every initial space curve in a small-enough neighborhood of x as defined
by the functional £ will relax to the shape x with an accompanying loss of
energy.

Exercise 18.3: Given an arc length parameterized space curve x of
length h, deduce the energy stored in x as follows. Consider a se-
quence of n points p,, ... , p, equidistantly positioned along x, so that
|pi+1 — pil is a constant L fori = 1,...,n — 1. The piecewise linear
interpolating curve £ that interpolates the points py, ..., p, approxi-
mates the space curve x. Imagine that a spring S; is attached connecting
the point (p; + p;-1)/2 with the point (p; 41+ pi)/2for2 <i <n-—1.

222 18. Physical Splines

The natural uncompressed length of each such spring is L. The curve x
may bend so that the angle angle(p;_,, p;, pi+1) at p; is smaller than
7, and then the spring S; is compressed. Define the energy of the piece-
wise linear curve x to be the sum of the potential energies stored in the
springs Sz, . .. , S,—1. Take the limit as n — 00 to obtain the energy of
the space curve x.

There are several approaches to computing the physical spline space
curve x that minimizes £(x). One approach, due to Mehlum [Meh69],
[Meh74], is to define x by its curvature and torsion functions via the Frenet
equations, and then to deduce defining conditions on the curvature K and
the torsion T which reduce the problem to that of estimating a collection of
scalars that minimize the energy of a curve defined in terms of an instance
of the set of Frenet differential equations, together with the equations for
the curvature and torsion functions obtained from the Euler differential
equations that define x via the calculus of variations. Mehlum’s equations
are discussed in detail below.

Yet another approach is to approximate x by a cubic spline curve x made
up of m — 1 cubic polynomial segments[Mal77]. Write X = ot;¢p; + ... +
aq g where (¢, ... , ¢4) is a basis for the chosen space of splines contain-
ing x. Then we may compute X by computing ¢, ... , @y as the solution
to the equations: 8 (a1 + ... + az¢4)/3a; = 0for 1 <i < d subject to
the associated arc length constraint.

For both this latter method and Mehlum’s approach, we can only pro-
ceed when we have the reduced problem where we have just two points
(n = 2) to be connected by a physical spline curve x of length 4. Nev-
ertheless, when the basic 2-point problem is solved, we can, in principle,
compute the interpoint lengths ¢y, ... , t,_; which partition 4 and minimize
£ by solving the n — 1 derivative equations 3€(x)/dt; = 0, where x is
piecewise computable; this requires that many subsidiary solutions of the
basic two-point problem be generated, so the entire process is extremely
computationally demanding.

18.1 Computing a Space Curve Physical
Spline Segment

To derive Mehlum’s equations for a length & physical spline, let x(s) =
(x1(s), x2(s), x3(s)) be the minimal energy arc length parameterized space
curve such that x(0) = a, x(h) = b, x'(0) = ¢, and x'(h) = d where

18.1 Computing a Space Curve Physical Spline Segment 223

a,b,c,d € R?and |c| = |d| = 1. Then x must satisfy |x'(s)| = 1 for
0 < s < h and must minimize fo |x”|ds.

Let us associate the Lagrange multiplier A(s) with the constraint |x'(s)| =
1; thus the ensemble of A(s) values constitute a Lagrange multiplier func-
tion A : [0, h] — R, which we take to be contmuously differentiable. Then
the physical spline x minimizes the functional fo F(g. g, g")ds among
all smooth length h space curves g which satisfy the specified boundary
conditions, where the functional F is defined for space curves u, v, w
by F(u,v,w) := |w|* + A(s)(|v|*> — 1). That is fo F(x,x',x")ds =
fo [1x”1? + A(s)(|x'|* — 1)]ds is minimal. Note we have replaced the con-
straint |x’| = 1 with the equivalent constraint |x'|? = 1.

The Euler differential equations associated with the varlatlonal problem
of determining the function x : [0, A] — R?> for which fo F(x,x', x")ds
is minimal are given as the three differential equations:

2

d d
8 F e, x', x") — 0, F(x. 6", x") +
A

o —— 0, Fx, x' x")=0,

fori = 1,2, 3 [Buc56].

Exercise 18.4: Show that, for any smooth functional of the form
S Fu, v, w)ds, if x : [0,h] — R?is a space curve for which
foh F(x,x’,x")ds is minimal for x ranging over a class of suitable
smooth functions, then x satisfies the three differential equations

d . d? ', on
8y, F(x,x',x") — —8,,F(x,x',x") + =8y, F(x,x',x") = 0,
! ds ds?
fori =1,2,3.

Solution 18.4: Suppose the function x : [0, /] — R? is chosen so
that [F(u, v, w) ds is minimal. Let y : [0, k] — R be an arbitrary
smooth space curve with y(0) =0, y(h) =0, y'(0) = 0 and y'(h) = 0.
Form the function z = x + ay and consider the function

h h
gla) := / Fx+ay,x' +ay,x" +ay’yds = / F(z,2',2")ds.
0 0

Since g(0) is minimal by assumption, g’(0) = 0. Computing g’(0) then
yields the Euler equations. We have

224

18. Physical Splines

R 3
ga)= / [Z o F(z,2,2")y + 0, F(z,2,2")y
0 =1

+ 9, F(z,7,2")y"]ds,
50,

n o3
g = / [Z O F(x,x',x")y + 8, F(x,x', x")y'
0 i=]

+ 3y, F(x, x', x")y"ds.

Now recall the integration by parts rule: fab pq’ = p(b)q(b)—p(a)q(a)—
b . . .
[. p'q. Applying this rule yields

h
/ 8, F(x,x',x")y'ds = 8, F (x,x', x")y {2
0

h
- / 3y, Fx,x',x")'yds.
0

But y is chosen to satisfy y(0) = y(h) =0, so

h h
/ 3y F(x,x',x")y ds = —f By, F(x,x',x")) yds.
0 0

Also, we may apply integration by parts to write

h
/ 3w F(x, x', x")y"ds = 8y, F(x,x", x")y' |3=h
0

h
- f (8, F(x,x",x"))y ds.
0

The function y is chosen so that y'(0) = y’(h) = 0. This results in
3w, F(x,x',x")y" |{Zh= 0. Then we may again apply integration by
parts to obtain

A
—f Bu F(x,x', x"))y' ds = =8y, F(x,x",x")) y Iizg
0

h
+f (B, F(x,x',x"))"y ds.
0

18.1 Computing a Space Curve Physical Spline Segment 225

But y(0) = y(h) = 0, so altogether, we have

h h
/ Oy, Fx,x',x")y"ds = / (8, F(x,x',x"))"y ds.
0 0

Thus,

h 3
0= g/(O) = / y[z 3u,~F(x,x',x”) _ (BU,F(x,x',x"))’
0

i=1
+ (B, F(x,x',x"))"] ds.

Since this is true for every admissible choice of y, each term of the
integrand factor

3
Z[Bu,F(x, x',x"y = 3y, Fx,x', x")) + (8w, F(x,x", x"))"]

i=1
must be identically zero! Thus we have the Euler equations
3y F(x,x',x")y = 0y, F(x,x",x")) + (8, F(x,x",x"))" =0

fori = 1,2, 3. Any space curve that corresponds to a minimum value
of foh F(x,x', x")ds must satisfy these differential equations. (How-
ever, satisfying the Euler equations is only a necessary condition on x.
There may be various solutions corresponding to distinct local minima
and local maxima of f(;' F(x, x', x")ds, or there may be other functions
that satisfy the Euler equations which do not correspond to an extreme
value of f(;' F(x,x',x")ds, or it may be that the Euler equations have
no solutions among the class of admissible functions).

Exercise 18.5: What are the Euler equations for the function x where
F(u,v,w) = w|2?

The Euler equations associated with minimizing foh F(x,x' x")ds,
where F(x,x',x") = |x"|?> + A(|x'|*> — 1), reduce to the vectorized dif-
ferential equation

d
- Zx//l — 2A, !/ = .
ds[¥1=0
A space curve x must satisfy this differential equation in order to be a

minimal energy curve, but this is not a sufficient condition. In particular,
curves for which the energy is only locally minimal may arise as solutions.

226 18. Physical Splines

Exercise 18.6: Show that there is no maximal energy length h curve
that connects the points @ and b.

Exercise 18.7: Consider all the smooth functions f : R! — R!
that connect two given points with given slopes. Show that the Euler
equation for that function for which fol | £” | is minimal is f"" = 0.

Let u denote the unit tangent vector x'. Then our vector Euler equation
[2x”—2Xx'] = O can be integrated to obtain u” —Au = e wheree € R’isa
vector of constants of integration and A is an unknown Lagrange multiplier
function.

Since the vector cross product of a vector with itself is 0, we can elimi-
nate the unknown function A by computing the cross product of the above
equation with 4 to obtain (u” — Au —e) x u = u” x u — e x u = 0. Note
that (' x) = u” x u. Thus u” x u = (' x u)’ = e x u, and integrating
(W xu) =exuyieldsu’ x u = e x x + f where f € R? is a vector of
constants of integration.

Exercise 18.8: Show thata-(b xc)=b-(cxa)=c-(a xb) =
—a-(cxb)=-b-(axc)=—c-(bxa).

Now computing the dot product of 4’ with the equation u” x u = e x u
yields (u” x u) - u’ = (e x u) - u’, and the vector triple product identities
in the above exercise yield u - (4’ x u”) = e - (u x u’). Recall that the
curvature K and the torsion T of an arc length parameterized space curve
x satisfy K2T = —x’-(x" x x"). Thus our physical spline curve x satisfies
KT=-e-(uxu)=e-(exx+f)=e-(exx)+e - f=e- f.Let
g:=e- f.Then K*T = g.

Now computing the dot product of u’ with our earlier equation u” —
Au — e = Qyields the identity u’ - u” —Au' -u —e-u' =0.Butu’ - u" =
L' -u'y, and, for an arc length parameterized curve, u -u’ = 0, so we have
;(u’ -u') = e-u'. Also, for an arc length parameterized curve, K = |u/|,
so K? = u’ - u',and thus e - u' = 3(K?)". Now we may integrate this
equation to obtain K% = 2e - u + g, where q is a constant of integration.
Thuse-u = %(K2 —-q).

Exercise 18.9: Prove the triple product identity [a - (b x ¢)]* = (a -
a)(b-b)(c-c)—(a-a)b-c)c-b)y—(a-b)yb-a)c-c)—(a-o)b-
by(c-a)+ @-b)y(b-c)(c-a)+ (a-c)(b-a)(c-b).

18.1 Computing a Space Curve Physical Spline Segment 227

Recall the relation 4’ x u = e x x + f obtained above. Taking the dot
product of this equation with eyieldse- (' xu) = e-(exx)+e- f =g.
Thus, from the above exercise, the square of the identity e - (4’ x u) = g is

(e-&)u-u)u -u')—(e-e)(u-u)? — (u-u)e u')

— W uw)e - w?+2e -u)u-u)e-u) =g

Letm> = e-e. Then,sinceu -u = L,u-u" = 0,u -u = K?,
e-u=3(K?—gq)ande-u' = 1(K?)' = KK', we have

. 1
m2K2 —KZKZ-KZ(E(KZ—q))Z =g2.

This reduces to the following differential equation for K 2 as a function of
s
(KZ)/ = Z[K2(4m2 _ (K2 _ q)Z) _ 4g2]%’

where z(s) variously equals 1 or —1. We may assume that K2 is a contin-
uously differentiable function; thus the function z changes value between
1 and —1 only at a finite number of separated values of s in the interval
[0, 4] and, at each such change point, K?(4m? — (K2 — q)?) — 4g> = 0.
Since K?T = g, we know the torsion T when we know K2 and g.

Exercise 18.10: Show that, if (K (s)%)’ = 0, then either K(s) = 0
or K'(s) = 0, and if K is ever 0, then the constant g is 0. Then show
that if K is ever 0, then T = 0, so a twisted space curve physical spline
where T # 0 also has K > 0 fors € [0, A].

Exercise 18.11: Show that there at most 3 values of K for which
z can have a corresponding sign change. What can you say about the
maximum number of times that z can change sign, in both the case
where T # 0 and in the case where T = 0? When is K a periodic
function?

Exercise 18.12: Show that, when g = 0, K" = —1 K> + %K.

The arc length parameterized physical spline x is thus defined by the
Frenet equations

u = Kn,
n = —Ku-Tb,
b = Tn, and

228 18. Physical Splines

augmented by Mehlum’s equations

(K? = z[KX(4m*® — (K? —q)) — 4g?]?, and
T = g/K?

together with the boundary conditions x (0) = a, x(h) = b, x'(0) = u(0) =
c, and x’(h) = d where a,b,c,d € R? and |c| = |d| = 1. In order to
compute the curve x as the solution to an initial value problem, we must
determine the initial normal and binormal vectors n(0) and b(0), and the
scalars K(0)?, g, g, and m?. Note n(0) and b(0) must satisfy |[n(0)| =
|b0)| = 1,n(0)-c =0,b(0) - c =0, and n(0) - b(0) = 0. And g, g and
m? must satisfy K(5)*(4m?* — (K (s)* — q)z) —4g>>0for0 <s < h.

Exercise 18.13: Show that the energy E(s) in the space curve x of
length s that connects the points x(0) and x(s) satisfies the differential
equation E’ = K2 with the initial condition E (0) = 0. Is it true that
E’(h) = 0? Hint: E (h) is minimal over all suitable choices of the space
curve x. Also, K > 0.

The Frenet-Mehlum equations require 13 initial values and 3 parameter
values subject to 6 orthogonality and unit length constraints. We are given
12 specified values as the components of the vectors a, b, c, and d, subject
to 2 unit length constraints. Thus, in principle, we have a non-degenerate
problem with a finite number of separated points in 16-space where the
space curve x is determined with locally minimal energy, and one of these
points corresponds to the globally minimal energy curve. After establishing
the initial conditions x(0) = a and u(0) = ¢, we have ten values to be
determined with five applicable constraints, and the remaining vectors b
and d constitute six given boundary values which have the one applicable
constraint |d| = 1.

Now a set of five independent parameters can be computed by curve
fitting x to the point (h, by, bz, b3) and u to the point (h, d), d2, d3), i.e., by
computing the parameter values b,, b,, bs, d;, d2, and d3 so that (x; (h) —
b1)2+ (x2(h) —b2)*+ (x3(h) —b3)*+ (u1 (h) —d)?+(u2(h) —d2)* + (uz(h) —
d;)? + (d? + d? + d? — 1) is minimal. This involves repetitively solving
the Frenet-Mehlum differential equations, and that is complicated by the
need to resolve the unknown function z. The function z can be resolved by
combinatorial trials: at s = 0, and at each potential switching point where z
could switch values between 1 and — 1, we follow both possibilities, and we
finally choose z so that the energy of x is minimized. This combinatorial

18.1 Computing a Space Curve Physical Spline Segment 229

resolution of z in the context of an iterative minimization procedure makes
computing the general two-point physical spline curve extremely difficult.

It may be somewhat easier to define x via the Frenet equations aug-
mented with the equations K2 = 2e - u + q and T = g/K?. This intro-
duces four parameters and removes three parameters, so we now have a
total of 17 values to be determined. However, even though this parameter
estimation problem is potentially degenerate, we may fare better than when
we tackle the non-degenerate combinatorial curve fitting problem based on
Mehlum’s equations directly. We can introduce another condition by forc-
ing the energy E (h) to be as small as possible; this can be done by fitting
E to the point (h, 0).

Note that we may, in principle, allow the tangent directions ¢ and 4 to
vary so as to obtain the length & overall minimal energy physical spline for
all possible choices of ¢ and d subject to |[c| = |d| = 1.

Exercise 18.14: Does it make sense to allow the length & to vary in
order to obtain the absolutely global minimum energy physical spline
connecting the points a and b? Hint: Does this depend on the choice of
the directions ¢ and d? Consider the case where the curve x approaches
a circle as h > oo. (Note that there are cases where there is a finite
length which produces an locally minimal energy less than the energy
for other slightly different lengths: consider @ = (0,0,0) and b =
(1,0,0) with ¢ = g%, %2,0) and d = (75, =75+ 0)- Although the
corresponding physical spline has minimal energy when & - 00, the
graph of energy versus A is not monotonically decreasing.)

Exercise 18.15: Suppose x is the length A mimimum energy arc
length parameterized space curve that connects the points a and b with
the associated unit tangent directions ¢, and d. Is the associated en-
ergy function E (s) minimal at each value s € [0, h] with respect to all
suitable choices of length s space curves that connect the points x(0)
and x(s) with the associated unit tangent vectors x'(0) = ¢ and x’(s)?
What about the case where the tangent directions at @ and b are freely
assignable?

Exercise 18.16: Show that the shape of the length 4 minimal energy
physical spline space curve x that connects a and b with the associated
tangent directions ¢ and 4 is invariant with respect to a uniform scaling
transformation. That is, show that ax is the length ¢k minimal energy
physical spline space curve that connects the point aa to the point ab
with the associated tangent directions ¢ and d.

230 18. Physical Splines
18.2 Computing a 2D Physical Spline Segment

Kallay [Kal86] and Jou [Jou95][JH90] have studied the more tractable case
where our physical spline lies in the xy plane. In this case, we consider the
problem of computing the shape of the minimum energy physical spline
x(s) where x : R — R?is of length & and connects the two given points
a = (ay, az) and b = (by, by) with the tangent angle ¢ at s = 0 and the
tangent angle d at s = h. Note here ¢ and d are scalars.

Now, to compute the real valued functions x; and x; that define the
minimal energy length A planar physical spline x, we may proceed as fol-
lows. Let 8(s) denote the direction angle of the tangent vector of the arc
length parameterized planar curve x at s. Then the signed curvature of x
is ', and the curvature of x, K, is |6’|, so the corresponding energy is
E = [}6'(s))?ds.

Note x;(s) = cos(8(s)) and x;(s) = sin(d(s)). Thus

h h
f x1(s)ds = x;(h) —x,(0) =f cos(8(s))ds, and
0 0

A A
/ x5(8)ds = x2(h) — x2(0) = f sin(4(s))ds.
0 0

We wish to find the function 8 that minimizes E subject to the direc-
tional constraints: 8(0) = ¢ and 8(h) = d, together with the constraints:
f(;' cos(6(s))ds = b, —a; and f(;' sin((s))ds = b, — a,. Given the function
8, we can compute the curve x as the solution to the differential equations
x1(s) = cos(8(s)) and x5(s) = sin(8(s)), with x1(0) = a; and x,(0) = a..

Kallay [Kal86] and Jou [Jou95] have computed the Euler equation that
defines 6 to be

8" + mysin(8) — mycos(8) = 0,

with the boundary conditions 8(0) = ¢ and 8(h) = d, where m; and m;
are unknown Lagrange multipliers to be determined.

This differential equation arises in a specialized form in describing the
shape of a bent beam in structural engineering. There we have a beam of
length A with one end fixed at the origin with slope 0, and with a load or
force f applied at the other end of the beam. Then the angle of the tangent
along the beam, 9, satisfies the differential equation 8" = —5005(9) -
%sin(@) with 6(0) = 6'(0) = 0. The value € is the modulus of elasticity of
the beam material and I is the moment of inertia of the cross section of the
beam about its horizontal axis. Solutions of this differential equation have
been obtained in terms of incomplete elliptic integrals [Jou95].

18.2 Computing a 2D Physical Spline Segment 231

1.0994

.85948 [

.61961

37974

.13987 -

1
-0.5 -0.18 0. 14 0.46 0.78 1.1

Exercise 18.17: Show that 8’ = mx; — mx; + mg where mg, m,,
and m are constants.

We are given the vectors a and b, and the scalars ¢ and d, and we want
to compute the values 6(0), 8(0), x;(0), x2(0), m, and m, which yield
the desired curve x. Of course, x;(0) = a;, x2(0) = a; and 6(0) = c.
Then 6'(0), m, and m, can be determined by curve fitting x; to (h, b;)
and x, to (A, b;) and 8 to (h, d); this is equivalent to solving the equations
x1(h) = by, x2(h) = b,, and 8(h) = d for the values of 8'(0), m, and
m3. Jou [Jou95] gives a survey of planar physical splines and groups them
corresponding to the values of m, and m; this provides a strategy for ob-
taining initial guesses for m; and m,. The physical spline curves shown
in [Jou95] are often unexpected and always interesting. The graph above
shows the five planar physical spline curves of length 2.5 that connect the
point (0, 0) to the point (1, 0) with the entry angle O where the exit angle
from (0, 0) ranges through {7, 2, Z, Z, 0}.

Exercise 18.18: What planar curve results when the angles ¢ and/or
d are chosen outside the range (-7, 7]?

Exercise 18.19: Describe how to compute the minimal energy

232

18. Physical Splines

hermite cubic polynomial spline segment space curve x of length A
with the parameter limit value ¢ that satisfies x(0) = a, x(¢;) = b,
x'(0)/|x'(0)| = c and x'(t;)/|x'(t1)| = d, where a, b, c and d are given
3-component vectors with |c| = |d| = 1.

Solution 18.19: Define x(z) = y(¢t/t1) where y(r) = (1 — 3r2 +
2r3a+ Gr2=2r)b+ (r = 2r2 +r¥)nac + (3 — r¥)1 Bd, and define
the curvature K (¢) = [|x'(£)|2|x"(£)|2 — (x'(¢) - " (£))2]2 /|x' () |*. Now
compute « and B to minimize the energy fO" K (t)?dt subject to the
constraint (fo'l |x'(t)|dt — h)? = 0.

References

[Aki70]

[B74]

[BB83]

[BBB87]

[Bucs6]
[Chu88]

[Co067]

Hiroshi Akima. A new method of interpolation and smooth
curve fitting based on local procedures. Journal of the ACM,
17(4):589-602, October 1970.

Pierre E. Bézier. Mathematical and practical possibilities of
unisurf. In Computer Aided Geometric Design (editors: Robert
E. Barnhill and Richard F. Riesenfeld), pages 127-152. Aca-
demic Press, NY, 1974.

Brian A. Barsky and John C. Beatty. Local control of bias and
tension in beta-splines. ACM TOGS, 2(2):193-218, April 1983.

Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An
Introduction to Splines for Use in Computer Graphics and Geo-
metric Modeling. Morgan Kaufmann, Los Altos, CA, 1987.

R. Creighton Buck. Advanced Calculus. McGraw-Hill, N.Y.,
1956.

Charles K. Chui. Multivariate Splines. Soc. for Indust. and Ap-
plied Math., Philadelphia, 1988.

Stephen A. Coons. Surfaces for computer aided design of space
forms. Technical Report Project Mac-TR-41, Mass. Inst. of
Technology, 1967.

234 References

[CP92]

[DD87]

[DeB78]

[DeB87]

[DM72]

[DoC76]

[Far90]

[FB84]

[FC80]

[Fer64]

[FM86]

[FM87]

[Fol87]

Jin J. Chou and Leslie A. Piegl. Data reduction using cubic ratio-
nal b-splines. IEEE Computer Graphics and Appl., 12(3):60-68,
May 1992.

M. Davis and J. Dowden. Interpolation by a local taut cubic
polynomial. Computing, 38(1):299-313, 1987.

Carl DeBoor. A Practical Guide to Splines. Springer-Verlag,
NY, 1978.

Carl DeBoor. B-form basics. In Geometric Modeling (editor:
G. Farin), pages 131-148. Soc. for Indust. and Applied Math.,
Philadelphia, 1987.

H. Dym and H. P. McKean. Fourier Series and Integrals. Aca-
demic Press, NY, 1972,

Manfredo P. DoCarmo. Differential Geometry of Curves and
Surfaces. Prentice-Hall, Englewood Cliffs, NJ, 1976.

Gerald Farin. Curves and Surfaces for Computer-Aided Geo-
metric Design: A Practical Guide (2nd ed.). Academic Press,
NY, 1990.

FE. N. Fritsch and J. Butland. A method for constructing lo-
cal monotone piecewise cubic interpolants. SIAM J. Sci. Stat.
Comp., 5(2):300-304, June 1984.

F. N. Fritsch and R. E. Carlson. Monotone piecewise cubic in-
terpolation. SIAM J. Numer. Anal., 17(2):238-246, April 1980.

J. C. Ferguson. Multivariate curve interpolation. J. ACM,
11(2):221-228, April 1964.

G. Yates Fletcher and David F. McAllister. Natural bias
approach to shape preseving curves. C.A.D., 18(1):48-52,
Jan./Feb. 1986.

G. Yates Fletcher and David F. McAllister. Methods for
convexity-preserving interpolation. Computer Graphics and
Appl., 7(8):7-14, Aug. 1987.

Thomas A. Foley. Interpolation with interval and point tension
controls using cubic weighted v-splines. ACM Trans. on Mathe-
matical Software, 13(1):68-96, 1987.

[For72]

[Gor69]

[Har91]

[Hym83]

[JH90]

[Jou95]

[Kal86]

[KB84]

[Lee89]

[Lv86]

[Mal77]

[Meh69]

[Meh74]

References 235

A. Robin Forrest. On coons and other methods for the represen-
tation of curved surfaces. Computer Graphics and Image Pro-
cessing, 1:341-359, 1972.

William J. Gordon. Spline-blended surface interpolation
through curve networks. J. Math. Mechanics, 18(10):931-952,
April 1969.

Wolfgang Hardle. Applied Nonparametric Regression. Cam-
bridge University Press, NY, 1991.

James M. Hyman. Accurate monotonicity preserving cubic in-
terpolation. SIAM J. Sci. Stat. Computing, 4(4):645-654, 1983.

Emery D. Jou and Weimin Han. Minimal energy splines: 1. plane
curves with angle constraints. Mathematical Methods in the Ap-
plied Sciences, 13:351-372, 1990.

Emery D. Jou. Minimal energy splines. Technical Report Ph.D.
Thesis, University of Maryland, 1995.

Michael Kallay. Plane curves of minimal energy. ACM Trans-
actions on Mathematical Software, 12(3):219-222, 1986.

Doris H. U. Kochanek and Richard H. Bartels. Interpolating
splines with local tension, continuity, and bias control. Com-
puter Graphics (SIGGRAPH 84), 18(3):33—41, July 1984.

Eugene T. Y. Lee. Choosing nodes in parametric curve interpo-
lation. Computer Aided Design, 21(6), 1989.

Peter Lancaster and Kestutis Salkauskas. Curve and Surface
Fitting: An Introduction. Academic Press, London, 1986.

Michael A. Malcolm. On the computation of nonlinear spline
functions. SIAM J. of Numerical Analysis, 14:254-282,1977.

Even Mehlum. Curve and surface fitting based on variational
criteriae for smoothness. Technical report, Central Institute for
Industrial Research, Oslo, Norway, Dec. 1969.

Even Mehlum. Nonlinear splines. In Computer Aided Geomet-
ric Design (editors: Robert E. Barnhill and Richard F. Riesen-
feld), pages 173-207. Academic Press, NY, 1974.

236 References

[Nie74]

[Nie86]

[Ove68]

[RFS63]

[Sch46]

[Sch64a]

[Sch64b]

[Sch67]

[Sch83]

[Spi75]

[Wah90]

[War65]
[Yam88]

Gergory M. Nielson. Some piecewise polynomial alternatives to
splines in tension. In Computer Aided Geometric Design (edi-
tors: Robert E. Barnhill and Richard F. Riesenfeld), pages 209—
235. Academic Press, NY, 1974.

Gergory M. Nielson. Rectangular v-splines. IEEE Computer
Graphics, 6(2):35-40, Feb. 1986.

A. W. Overhauser. Analytic definition of curves and surfaces
by parabolic blending. Technical Report SL 68-40, Ford Motor
Co., 1968.

Robert B. Leighton Richard P. Feynman and Matthew Sands.
Lectures on Physics, Vol. 1-3. Addison-Wesley, Reading MA,
1963.

Issac J. Schoenberg. Contributions to the problem of approxi-
mation of equidistant data by analytic functions. Quarterly of
Appl. Math., 4(1):45-99, 112-141, 1946.

Issac J. Schoenberg. On interpolation by spline functions and
its minimum properties. Int. Ser. of Numerical Analysis, 5:109-
129, 1964.

Issac J. Schoenberg. Spline functions and the problem of gradu-
ation. Proc. Nat. Acad. of Science, 52:947-950, 1964.

Issac J. Schoenberg. On spline functions. In Inequalities (edi-
tor: O. Shisha), pages 255-291. Academic Press, NY, 1967.

Larry L. Schumaker. On shape preserving quadratic spline in-
terpolation. SIAM J. Numer. Anal., 20(3):854-863, Aug. 1983.

Michael Spivak. A Comprehensive Introduction to Differential
Geometry. Publish or Perish Press, Boston, 1975.

Grace Wahba. Spline Models for Observational Data. SIAM
CBMS-NSF Conf. Series in Applied Math., No. 59, 1990.

K. L. Wardle. Differential Geometry. Dover Pub., NY, 1965.

F. Yamaguchi. Curves and Surfaces in Computer-Aided Geo-
metric Design. Springer-Verlag, NY, 1988.

Index

Aitken’s algorithm, 65
Akima, Hiroshi, 68, 85
algebraic continuity, 96
anti-cyclic spline, 102
arc length, 38, 81, 83, 88

arc length parameter limits, 82
arc length parameterization, 39

B-spline, 151, 152, 157
banded matrix, 128
Barsky, Brian A., 136, 152
Bartels, Richard H., 96, 152
barycentric coordinates, 208
basis, 8
for natural splines, 147
B-spline, 151, 152
cardinal, 148
of vector space, 143
Beatty, John C., 152
Bellman, Richard, xi
bent beam, 230
Bernoulli, Daniel, 217
Bernstein polynomials, 90

Bessel tangents, 141
beta spline, 136
bias, 97
bicubic patch, 195
bicubic, extended, 205
bilinear interpolation, 201, 212
bilinearly blended, 212
binormal vector, 37, 40, 47
biquadratic function, 201
blending functions, 80, 129, 143,
196
bivariate, 204
cardinal, 204
Hermite, 80
boundary conditions, 223
boundary curve, 194, 211
Butland, J., 71
Bézier polygon, 91, 99
Bézier Polynomial, 90
Bézier polytope, 91
Bézier, P., 90

C* continuous, 75

238 Index

C* curve, 133
C* function, 75
C programming language, 159
cardinal basis, 148, 204
cardinal functions, 148, 215
Carlson, R. E., 70
Casteljau de, Paul, 91
Casteljau’s algorithm, 91
centripetal parameter limits, 81
chain rule, 33, 135
Chou, Jin J., 89
Chui, Charles K., 152
circular arc parameter limits, 82
Civilized Software, xi
clamped spline, 101, 104
clockwise rotation, 25
closed curve, 32
component function, 77
concatenation, 53
concavity, 70, 83
conic, 158
constant of integration, 226
continuity
k-fold, 75
algebraic, 84, 96
bicubic patch, 199
curvature, 133
geometric, 83, 96, 133
tangent, 83
control points, 90, 154
control vectors, 194
convex combination, 141
convex hull, 84
convex-combination, 91
convex-upward, 70, 99
convexity, 70
Coons patch, 214
Coons, Steven, 211
coordinate systems, 24
coordinates, lefthanded, 24

coordinates, righthanded, 24
corner twist vectors, 196
counterclockwise rotation, 25
cross product, 26
cross validation, 127
cubic polynomial, ix, 65
cubically lofted, 213
curvature, 39, 133, 138, 140, 219,
221

directional, 46
curvature function, 39, 43
curvature vector, 40
curve, 31

Ck 133

G*, 133

arc length, 38

central evolute, 44

closed, 32

conic section, 158

continuous, 35

embedded, 53

energy, 218

envelope, 38

evolute, 43

family of, 37

helix, 42

involute, 43

minimal energy, 223

normal, 40

offset, 33

parabola, 139, 157

parameterization, 34

planar, 44, 139

plane, 31

quadratic, 139

rectifiable, 38

regular, 34

semi-simple, 32

simple, 32

space, 31

tangent, 33
trace, 34
vertex of, 48
cusp, 35, 82
cusp, in spline, 88
cyclic spline, 102
cycloid, 48

Darboux vector, 48
Davis, M., 71
DeBoor, Carl, 73, 152
deformation, 194, 195, 211
density function, 132
derivative

directional, 53, 205

left, 135

mixed partials, 196

partial, 196

right, 135
derivative of a function, 33, 55
derivative, of spline, 101
Descartes, Rene, 3
differential equations, 108
dimension, of a vector space, 8
direction, of a vector, 4
discontinuity, 96
distance between two vectors, 11
DoCarmo, Manfredo P., 41
dot product, 12
double tangent spline, 95, 133, 136
Dowden, J., 71

elastic fiber, 217

ellipse, 32

elliptic integrals, 230

end conditions, of spline, 101

energy, of spline, 112, 114, 217,
219, 222

engineering applications, 217

entry tangent vector, 95, 137

Index 239

envelope curve, 38, 45
equidegree, 79

error, 72

estimation, of slopes, 68
estimation, of tangents, 200
estimation, of twists, 200
Euclid, 3

euclidean distance, 11
euclidean length, 11
euclidean space, 3

Euler equations, 222, 225
evolute curve, 43

exit tangent vector, 95, 137
extended bicubic, 205
extrapolation, 79

Feynman, Richard, 25
flatness, 83
Fletcher, G. Yates, 97-99, 205
Fletcher-McAllister tangent esti-
mation, 97
Foley, Thomas A., 116
force, 218
Forrest, A. Robin, 211
Fourier transform, 65
Frenet equations, 42, 222
Frenet-Mehlum equations, 228
Fritsch, F. N., 70, 71
function, 63
ck, 75
B-spline, 152
bicubically blended, 213
bilinear, 201
biquadratic, 201
complex-valued, 81
component, 77
Lagrange multiplier, 223
spline segment, 78
surface interpolation, 208

240 Index

functions
cardinal, 148

G* curve, 133

G? joined, 136

G? oined, 134

generalized bicubic, 198, 200
geometric continuity, 83, 96, 133
global cubic spline, 66, 101, 103
global spline end conditions, 101
gradient, 52

graph of a function, 31

grid, 204, 207

grid rectangle, 199

grid, regular, 199, 208

helix, 42, 45
Hermite blending functions, 80,
129, 143, 198
Hermite cubic spline, 66, 68, 76,
77, 80, 194
differential equation for, 68
Hermite, Charles, 66, 68
Hilbert space, 7
Hooke’s law, 217
Homer’s rule, 91, 196
Hyman, James M., 72
hypotenuse of a triangle, 1

inflection point, 37, 41, 47
crossing, 47
simple, 47
touching, 47
inflection point, spline, 98
inner product, 12
integration by parts, 224
interpolation, 59
bicubic patch, 195
bilinear, 201
biquadratic, 201
constraints, 59

function, 65

functional, 63

Lagrange, 63

linear scheme, 84

monotonic, 69

oscillation, 64

polynomial, 63

quadratic polynomial, 64

two-point, 60

Whittaker’s formula, 65
intersection of two surfaces, 32
involute curve, 43

Jacobian matrix, 56
join order, 76, 109, 149
join points, 75, 78, 134
Jou, Emory D., 230

Kallay, Michael, 230

Kiefer, James E., 48

knot values, 199, 204

knot values, 76

Knuth, Donald E., xi

Kochanek, Doris H. U., 96

Kochanek-Bartels tangent estima-
tion, 96

Lagrange interpolation, 142
Lagrange multiplier, 117, 223
Lagrange, Joseph L., 63
Lancaster, Peter, 110, 124
Lee, E., 81

lefthand screw rotation, 25
lefthanded coordinates, 24
length of a vector, 11

linear combinability, 60
linear combinations, 6

linear dependence, 8

linear independence, 8
linear transformation, 55, 56
lines, 6

local cubic spline, 66
lofted surface, 212, 213, 215
loop, in spline, 88

Malcolm, Michael A., 217
maximum norm, 81

McAllister, David F., 97-99, 205
Mehlum’s equations, 222, 228
Mehlum, Even, 222

minimal energy, 223
minimization, 131, 155

mixed quadratic spline, 142
MLAB program, xi

modulus of elasticity, 218
moment of inertia, 219
monotonic interpolation, 69
monotonic smoothing spline, 130
monotonic spline, 71, 72
monotonicity region, 70
Moore-Penrose inverse, 130
moving trihedral, 37, 41

natural spline, 101, 107
basis, 147

nearest neighbor method, 206

Nielson, Gregory M., 90, 116

normal plane, 37, 44

normal space, 55

not-a-knot condition, 102

nu-spline, 116

nullspace, 56

NURB-spline, 157

offset curve, 33

optimal smoothing spline, 124

orientation of coordinate systems,
24

origin, 4

orthonormal coordinates, 24

osculating circle, 39, 40

osculating plane, 36, 90

Index 241

osculating sphere, 43
Overhauser spline, 141
overshoot, 70

parabola, 139, 157
parallelogram, 5
parameter limits, 77, 81, 87, 199
arc length, 82
bicubic patch, 198
centripetal, 81
circular arc, 82
parameterization,39
arc length, 39
parametric representation, 31, 157
parametric spline, 77
patch, 193
bicubic, 195
adjacent, 200
bicubically blended, 213
boundary curves, 193, 205,
211
continuity, 199
Coons, 214
degenerate, 207
derivatives, 196
diagonal, 195
extended, 205
generalized bicubic, 198
network, 206
normal vector, 197
parameter limits, 198
tangent vectors, 195
triangular, 205, 206
twist vectors, 196
perspective projection, 158
physical spline, 217, 221, 229
computation, 222
curvature, 222
energy, 221
planar, 230

242 Index

torsion, 222
piecewise-defined, 66, 75, 78, 193
planar curve, 44
plane, 6

osculating, 36
plane curve, 31
point

inflection, 37

non-regular, 36

regular, 35

singular, 35
points, 3
polygon, Bézier, 91
polynomial

cubic, 65, 67

oscillation, 66

quadratic, 157

segment, 78
polytope, Bézier, 91
potential energy, 218
principal normal, 37, 40
product space, 204
program

cinterpolate, 159

smoothspline, 159
projection, 48, 150, 215

perspective, 158
pseudo-inverse, 130
pythagorean theorem, 2

quad-patch, 193, 199, 206
quadratic curve, 139, 157
mixing, 141

quadratic end condition spline, 102

random variable, 132
range dimension, 75, 76
rational spline, 157
rectifiable, 38
rectifying plane, 37

regular grid, 199, 208
regular parameterization, 34, 36,
133
retrograde motion, 34, 35
righthand screw rotation, 25
righthanded coordinates, 24
rotation, 81, 89
clockwise, 25
counterclockwise, 25
rotation operation, 25
rowspace, 55
ruled surface, 45, 211, 220

Salkauskas, Kestutis, 110, 124

scalar, 3

scalar vector product, 4

Schoenberg, Issac, 114

Schumaker, L. L., 69

second derivative conditions, 102

second derivative
of spline, 108

segment function, 78

segment polynomial, 80

semi-simple curve, 32

similar triangles, 1

simple curve, 32

single-valued surface, 51

slope, 60, 68
Akima’s estimation, 68
Davis-Dowden estimation, 71
estimation, 68, 87
Fritsch-Butland estimation, 71
Hyman estimation, 72
quadratic estimation, 68

small support, 146

smoothing parameter, 124, 127
estimation, 128

smoothing spline, 91, 123, 154,

155, 269

best fit, 129

computation of, 124
monotonic, 130
smoothness functional, 114
space curve, 31
space-curve spline, 77
span
of a set of vectors, 7
spin vector, 48
Spivak, Michael, 39
spline, ix, 66
Ck, 133
G? joined, 134, 136
G*, 133
v, 116
anti-cyclic, 102
arc length, 88
B-spline, 151, 157
beta spline, 136
bias, 97
Bézier, 90
cardinal basis, 148
clamped, 101, 104
complex representation, 81
component function, 77, 149
cubic, 217
cubic polynomial, 65
cusp, 82, 88,99, 114
cyclic, 102
derivative, 101
differential equation, 68
double tangent, 95, 133, 136
end conditions, 101
energy, 112, 114
error in, 72
first derivative, 66, 68, 79, 85
generalized bicubic, 200
global, 66, 101, 103
Hermite cubic, 66, 68
inflection point, 98
Lambda, 75

Index 243

linear, 60

local, 66

loop, 88, 99

mixed quadratic, 142

monotonic, 69-72, 107

natural, 101, 107

normal vector, 89

NURB, 157

optimal, 124

osculating plane, 90

Overhauser, 141

parametric, 77

physical, 217

piecewise-defined, 66, 68, 78

quadratic end condition, 102

rational, 157

second derivative, 102, 108

segment polynomial, 80

shape, 87, 138

smoothing, 91, 123, 155

space curve, 77

tension, 84, 97

third derivative, 112

third derivative-constrained,
102

vector space dimension, 76

vector space of, 143

weighted, 116

subspace, 7

orthogonal complement, 55

support, 146
surface, 51, 193, 199

bilinear interpolation, 201
curvature of, 55

energy of, 220

lofted, 212, 213

normal vector, 53
parametric, 193

patch, 193
representations of, 52

244 Index

ruled, 211, 220
single-valued, 51 193, 207,
209
tangent vectors, 200, 206
twist vectors, 200
sweep, 194, 195, 211

tangent vector, 33
Akima’s estimation, 85, 86
Bessel’s estimation, 141
Catmull-Rom estimation, 86
chordal estimation, 86
cross boundary, 200
curve, 33
entry, 95, 137
estimation, 85, 200
exit, 95, 137
Fetcher-McAllister estimation,
97
Kochanek-Bartels estimation,
96
line, 32, 43,44, 55
plane, 54
space, 54
tension, 84, 88, 97
tensor product, 195, 198
tent function, 110, 124
third derivative, of spline, 112
third derivative-constrained spline,
102
torsion, 139, 219
torsion function, 41-43, 47

trace of a curve, 34

trace, non-retrograde, 34

triangular patch, 206

triangulation, 207

tridiagonal systems, 104

triple product, 28

triple product identity, 226

twist vectors, 196
estimation, 200

undershoot, 70
unit vectors, 12

Vandermonde matrix, 64, 151
vector difference, 5
vector product, 26
vector space, 6, 76
cardinal basis, 148
of splines, 143
vector sum, 4, 5
vector triple product, 28
vectors, 3
vertices, 48

Wahba, Grace, 127
Wardle, K. L., 43
weighted spline, 116

Whittaker’s interpolation formula,

152
work, 218

Yamaguchi, F., 82

