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Preface

This book is intended for undergraduate students who are majoring in physics (or other
physical sciences), applied mathematics, or engineering. The goal of the book is to provide
the essential mathematical physics background needed for the study of analytic mechan-
ics and mechanical wave motion, heat and thermodynamics, electromagnetism, modern
physics, and quantum mechanics. In addition, it is intended to provide the necessary back-
ground for advanced work in these areas. Numerous examples and illustrations are given
throughout each chapter, and problems are included at the end of each chapter. Certain
problems are used to introduce new material in a self-contained manner.

Throughout the book, the level of presentation is fairly uniform (with the possible exception
of certain sections of chapters 2 and 12), and the included material should be readily
accessible to undergraduate students who have a working knowledge of general physics and
of differential and integral calculus. The desire to maintain a uniform level of presentation
was used as a guide for the selection of topics to include (and exclude).

The material on essentials of vector spaces, essential algebraic structures, and exterior
differential forms is invaluable for the study of physics today; the inclusion and presentation
of this material at the undergraduate level are among the distinguishing features of this
book.

Chapter 1 contains a standard treatment of vector analysis, fundamental physical quanti-
ties with SI units and dimensional analysis, and vector quantities in orthogonal curvilinear
coordinates and coordinate transformations. Also, Maxwell’s equations in both differen-
tial and integral forms are included, as well as an introduction of the notion of a gauge
transformation.

In Chapter 2, a standard treatment of matrix analysis is presented. Then, essentials
of vector spaces including notions of a function (mapping), a linear operator, eigenvalues
and eigenfunctions, and the matrix representation of a linear operator are covered. Also,
a brief introduction of topological spaces and elementary definitions of Hausdorff space,
Banach space, Hilbert space, a manifold and topology is presented. The development
on essential algebraic structures contains an elementary introduction to groups, rings, and
fields as needed in mathematical physics. The primer on group theory in physics is required
background for further study of applications of groups in physics.

Chapters 3-6 are standard treatments of functions of a complex variable, the calculus of
residues, Fourier series, and Fourier transforms. These topics are introduced early so that
these concepts will be available for use when needed in subsequent chapters, such as in
Chapters 7 and 8.

Chapters 7 and 8 on ordinary and partial differentials contain a standard treatment of
these subjects; in addition, algorithms for the numerical solutions of ordinary and partial
differential equations are developed.



6 PREFACE

Chapter 9 on special functions begins with the Sturm-Liouville theory and orthogonal
polynomials. It is shown that the completeness and orthogonality relations lead to the
expansion of a function in terms of orthogonal polynomials or orthogonal functions; Fourier
series, Legendre series, and the Hermite series are developed as examples of such expansions.
The development of special functions via the power series solutions of appropriate ordinary
differential equations follows the Sturm-Liouville theory. Also, the connections of special
functions with the hypergeometric functions or the confluent hypergeometric functions are
discussed.

A brief and elementary introduction of integral equations is given in Chapter 10; this chapter
ends with the famous Abel problem.

The introduction and applications of the calculus of variations and elementary functional
analysis are given in Chapter 11. Hamilton’s variational principle, Lagrangian and Hamil-
tonian mechanics are treated in some details. Also, the transition from classical mechanics
to quantum mechanics in the Heisenberg picture, Schrédinger picture, and in the Feynman
path integral approach is discussed.

Chapter 12 begins with a brief overview of differential geometry, differentiable manifold,
and coordinate transformations in linear spaces. Then, a treatment of standard tensor
analysis using indices ends with the Einstein equation in general relativity. This is followed
by a coordinate free treatment of tensors involving exterior differential forms.

I am grateful to the many physics students who used many sections of the manuscript.

Charlie Harper
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Chapter 1

Vector Analysis

1.1 Introduction

1.1.1 Background

In valid expressions and equations involving physical quantities, the dimension (a certain
combination of fundamental quantities) of each term must be the same; certain quantities
such as the coefficient of friction are dimensionless. The fundamental physical quan-
tities, definition of SI (systéme international) units, are (1) Length (meter, m); (2) Mass
(kilogram, kg); (3) Time (second, s); (4) Temperature (Kelvin, K); (5) Amount of Substance
(mole, mol); (6) Electric Current (Ampére, A); and (7) Luminous Intensity (candela, cd).
Operational definitions for the seven fundamental quantities are given in Appendix I. Ana-
lyzing expressions and equations by use of concepts in this paragraph is called dimensional
analysis.

Physical quantities that are not fundamental are referred to as derived quantities. The
fundamental physical quantities in mechanics (the study of the motions of physical objects)
are length, L, mass, M, and time,I". For example, 2 m/s + 3 cm/hr is a valid expression
since the dimension of each term is length/time, L/T'; the derived quantity in this case is
speed.

A physical quantity that can be completely specified by giving its magnitude is a scalar.
Here magnitude means a number and a unit; for example, “2 m” (a distance) is a magnitude.
(For dimensionless quantities, only a number is required.). The following quantities are
examples of scalars: mass, density, energy, and speed. Valid mathematical operations for
scalars are the same as those for ordinary numbers and ordinary functions.

A physical quantity that can be completely specified by its magnitude and its direction is
a vector. The quantity “2 m; West” (a displacement) is a vector since it has magnitude,
2 m, and direction, West. The following quantities are examples of vectors: velocity,
acceleration, force, and momentum. In expressions and equations involving scalars and
vectors, each term must be a scalar or each term must be a vector (e.g., all terms in an
equation must be vectors if one term is a vector). Separate mathematical laws (rules) are
needed for vector quantities since the mathematical laws for scalars are not, in general,
valid for vector quantities. Modern vector analysis was developed by Gibbs' during the

! Josiah Willard Gibbs (1839-1903), USA mathematician and physicist who formulated the theoretical
foundation of physical chemistry and statistical mechanics, developed vector analysis, and conducted optical

Analytic Methods in Physics. Charlie Harper
Copyright © 1999 WILEY-VCH Verlag Berlin GmbH, Berlin
ISBN: 3-527-40216-0



14 CHAPTER 1. VECTOR ANALYSIS

period 1879-1884 and independently by Heaviside? during the period 1882-1888.

1.1.2 Properties and Notations

Boldface print is used in most textbooks to designate a vector quantity. In writing, the
tradition is to place an arrow over a letter, A (or A). Note that the magnitude (also called
the length or norm, ||.||) of a vector, |[A| = 4, is a scalar. The magnitude of a unit vector

equals unity, |A| = 1; hence we may write A = AA. A vector with zero magnitude,

|0| = 0, is a null vector.

An arrow is used to represent a vector quantity (e.g., see Fig. 1.1). The direction of
the quantity is indicated by the head of the arrow, and the magnitude of the quantity is
characterized by the length of the arrow. A basic property of a vector is that it may be
moved parallel to itself (without rotation) without changing the vector.

/{\
@ o) © @

Figure 1.1

In Fig. 1.1(a and b), vectors B and A are said to be equal, B = A since they have
the same length and direction, but they may not be equivalent. An understanding of the
concept of vector equivalence is important in the study of mechanics and in other areas of
physics. To be equivalent, vector quantities must produce identical mechanical effects. A
horizontal force F acting on a wheel along a line through the axis of rotation (center of the
wheel) tends to cause the wheel to translate; this force F acting along a line parallel to the
axis of rotation will cause the wheel to rotate.

Vector —A is equal in magnitude to vector A but opposite in direction (see Fig. 1.1b and
c). Multiplication of a vector by a scalar, n, such that nA = An is shown in Fig. 1.1(d);
here, an appropriate diagram could be developed for 0 < n < 1.

1.1.3 Geometric Addition of Vectors

The geometric addition of vectors is achieved by use of the following two steps:

1. Place the vectors heads to tail. Here the basic property of moving vectors is used.

2. Draw the vector from the tail of the first vector to the head of the last vector.

and thermodynamics research.

2Qliver Heaviside (1850-1925), British physicist who made contributions to electricity and magnetism
and to the development of vector analysis. He predicted the existence of the ionized atmospheric layer now
known as the ionosphere.
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The resultant vector (sum vector or net vector) is the vector in step 2 of this rule.
Numerical results for geometric addition are achieved by use of graph paper and a protractor

or plain paper (using a metric ruler to scale lengths of vectors) and a protractor. Geometric
addition of vectors is illustrated in Figs.1.2-1.4.

A X
(a) (b)

Figure 1.2

(a) (b)

Figure 1.3

A+B+C
(a) (b)
Figure 1.4

The commutative, A + B = B + A, and associative, (C+ D) +E = C + (D + E), laws
of addition are illustrated in Fig. 1.5.

Subtraction uses addition and a change in direction since A — B = A + (—B) . The
operation of subtraction is illustrated in Fig. 1.6.

Example 1 A particle travels 2 cm due North then 4 cm in a direction 60° West of North

(see Fig. 1.7). By use of geometric addition of vectors, find the distance and displacement
traveled.

Solution: See Fig. 1.7.
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C+D+E
@) Figure 1.5 ®)
- B
A X A-B
A
(a) (b)
Figure 1.6

1.2 The Cartesian Coordinate System

1.2.1 Orthonormal Basis Vectors: i, j, k

An orthogonal basis for a three-dimensional vector space (see page 72) consists of a set of
three mutually perpendicular vectors. In Fig. 1.8, the i, j, and k set of vectors forms an
orthonormal basis since i, j, and k are mutually perpendicular unit vectors. The i, j, and
k basis vectors are universally understood to be unit vectors and the hat over the letters is
not needed. This system is called a Cartesian® coordinate system.

1.2.2 Rectangular Resolution of Vectors

The position of an object is completely specified by its position vector (sometimes called
radius vector). A position vector is drawn from the origin of a coordinate system to the
object in question. In mathematical physics, both the right- and left-handed Cartesian
coordinate systems are used, and they are illustrated in Fig. 1.8. We, however, will use a
right-hand system throughout this chapter.

The position vector, r, of an object located at P(z,y,2) is shown in Fig. 1.9. In equation
form, the position vector is written as

r=zi+yj+zk. (1.1)

Vectors, zi, yj, and zk are the three components of r; they are the vector representations
of the projections of r onto the three coordinate axes, respectively. Quantities z, y, and 2z
are the magnitudes of the vector components in the three respective directions.

3René Descartes (1596-1650), French mathematician and philosopher; he is considered the originator of
analytic geometry.
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d,
60°
2
‘dl + dzl =53cm d + d
d,
Figure 1.7
Z Z
Right hand Left hand

~
J

Q

Figure 1.8

On using the Pythagorean? theorem in Fig. 1.9, we find that
I = 22 4+ ¢ 4 22 (1.2)

where |r| = r is the magnitude of r.

If the projections of an arbitrary vector A along the three axes of a Cartesian system have
magnitudes A;, Ay, and A,, then vector A in terms of these three magnitudes may be
written as

A=Ai+Aj+Ak. (1.3)

In summary, we say that an arbitrary vector may be resolved into three components with
one component along each of the three Cartesian azes. The magnitude (length or norm) of
A is given by

1/2

|A| = (AZ+ A2 + A2) (1.4)

Note that A/|A| = A is a unit vector in the direction of A; here we say that A is
normalized. The equality A = B means that corresponding components are equal,

A,=B,, A,=B, ad A,=B,.

4Pythagoras of Samos (circa 580~500 BC), Greek philosopher and mathematician.
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_____________ P(x,yz)
’ N\\
N Y
x Zd
ﬁ B

Figure 1.9:

In terms of scalar components, Newton’s® second law of motion becomes

ZF:ma =>2:F’I:maz, ZFyzmay, and ZFz=maz.

Here, we note that one vector equation corresponds to three scalar equations.

1.2.3 Direction Cosines

The line segment from point O to point P makes angles ¢, § , and < with the three
coordinates axes in Fig. 1.9. Here we have

z=rf y=rm, and z=rn (1.5)

where £ = cosa, m = cos 3, and n = cosy. Quantities £, m, and n are called direction
cosines. Hence, the point P(z,vy, z) may be located by giving its position vector, r, or by
specifying r (length OP) and its direction cosines. Combining Eqs.(1.2 and 1.5), we find
that

1=0+m?+n? (1.6)

For an arbitrary vector A, we may write

A
m:icos a+jcos B+ k cos 7. (1.7)
Example 2 Find the direction cosines of the line segment from P,(—1,—4,5) m to
Py(3,-2,2) m.
Solution: In general, we have

£=cos a=Az/d, m=cos 3= Ay/d, and n=cosy=Az/d.

The distance from P; to P, is
d=/(82)® + (Ay)® + (A2)°

= JB+1 +(—2+47+ (-5
= 5.39 m.

5Sir Isaac Newton (1642-1727), English mathematician and natural philosopher (physicist) who is noted
for his laws of mechanics, gravity, heat, and optics.
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We therefore find that the direction cosines are

£=4/539, m=2/539, and n=— 3/539.

1.2.4 Vector Algebra

Addition The subject of vector algebra involves developing laws for the following two
operation: (a) addition (subtraction) and (b) multiplication. The operation of addition
is very simple and straightforward. To find the sum of to vectors A and B, add like
components together; that is,

A +B = (Aji+ A)j+ Ak) + (B:i+ Byj + B.k)
= (A; + Br)i+ (4 + By)j+ (A, + B.)k. (1.8)

For subtraction, use a minus instead of plus in Eq.(1.8).
Example 3 By use of components, solve the problem in Example 1.

Solution: The components of dyand d (see Fig. 1.10) are

d1 = 2cmi
ds = —4cemcos 30°1 + 4emsin 30°§

The displacement from the starting point is the sum of the above two vectors.

D=d, +d;
= —3.46¢cmi + 4emj.

The distance from the starting point is [D| = 5.29¢m and ¢ = 49.1°.

4 cm sin 30° § 60° 4 cm j )

—4 cm cos 30° i d=2cmj —346cm i

Figure 1.10

Example 4 A 10 N object is supported by three cables positioned as illustrated in Fig.
1.11. By use of the appropriate law of Newtonian mechanics and vector addition, calculate
the magnitude of the tension in each of the three cables.
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10N

T,= - 10Nj

Figure 1.11:

Solution: Newton’s second law of motion (3} F = ma) is the appropriate law of mechanics
for this problem.
On applying Newton’s second law to this system at rest (see Fig. 1.11), we obtain

Ts = 10N
z-direction : T5 cos 60° — T; cos 30° = 0
y-direction : 75 sin 60° 4+ T sin 30° = 10V.
The results are Ty = 4.99N, T, = 8.66N, and T3 = 10N.

Example 5 Given A=1i+2j+3k and B =3i+2j—k. Find (a) |A|, () A, (c) A+B,
and (d) A —B.

Solution:

Part A |A| = V124 22 4+ 32 = 3.74;
Part B A = A/|A| = (i+2j +3k)/3.74;
Part C A+ B = (i+2j+ 3k) + (3i+2j — k) = 4i+ 4j + 2k; and
Part D A —B = (i+2j+3k) — (3i+2j — k) = —2i + 4k.
Scalar Product Two kinds of products are defined for vectors, and they are called scalar

product and vector product. The scalar product (also known as the dot product) of
two vectors A and B is a scalar and is defined as follows:

A-B=|A||B|cosd
=A,B,+ A,B, + A,B,. (1.9)
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In Eq.(1.9), 6 is the smaller angle between A and B when they are placed tail to tail.
Note that i-i=j-j = k -k = 1 since the angle between these three unit vectors is 0° and
cos0° = 1. Also, note thati-j=1i-k = k-j = 0 since the angle between these unit vectors
is 90° and cos90° = 0. By use of the definition in Eq.(1.9), it is clear that A-B=B- A
(commutative). The dot product of a vector A with itself is written as A - A = A? where
A? = A2 4+ A2+ A2 . The square of a vector is a scalar; vectors may appear to the first
or second power only.

IBl cos 6
Figure 1.12

As can be seen in Fig. 1.12, the quantity |B|cosf is the projection of B onto A. Hence
the scalar product A - B equals |A| times the projection of B onto A. In summary, note
that A-B

1. is defined as |A||B|cos 8,
2. equals A; B, + A,B, + A,B, ; and
3. equals the projection of B onto A times |A[.

The distributive property, A- (B + C) = A-B+ A . C, of the dot product is illustrated by
use of the diagram in Fig. 1.13 since |A|(b+¢) = |A|b+ |A|c for scalars. In Fig. 1.13,
note that b+ ¢, b and ¢ are the projections of B+ C, B and C onto A respectively.

b c

Figure 1.13

Example 6 Given A =i+2j+3k and B=3i+2j+k. Find (a) A-B and (b) the
smaller angle between the tails of A and B.
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Solution:
Part A A-B=(i+2j+3k)-(3i+2j+k)=10
Part B A-B=|A||B|cosf
= (VE+2+3) (VT 2+ 1) cosf = 14
or cosf=10/14 = 6§ = 44.4°.

The dot product is used throughout physics and is first encountered in general physics in
connecting with the definition of the work done by a constant force. In equation form, this
definition is

W=F.D (1.10)

In Eq.(1.10), F is a constant force acting on the object and D is the displacement of the
object.

Example 7 A constant force with magnitude 20N is applied to a 2 kg block at an angle
of 30° above the horizontal. The coefficient of friction between the block and the horizontal
table is 0.5. In moving the block 1.5 m to the right (see Fig. 1.14), calculate the work done
by the (a) applied force and (b) frictional force.

N
F A F A
L30° N S L3077 —
_frl V< 1.5m >‘
W=-mgj W= -mgj
Figure 1.14

Solution: The displacement of the block is 1.5 mi. The magnitude of the frictional force is
fr = uN where N, the normal force, is obtained by summing all forces in the y-direction,
N = mg+ 20N sin30° . The frictional force is always in the opposite direction of motion
or intended motion. The frictional force is

f, = —p(mg + 20N sin 30°) i.
Part A: The work done by the applied force is

Wr = (20N cos 30°i — 20N sin 30°j) - (1.5 mi)
=2598J (Newton-meter = Joule, J).

Part B: The work done by the frictional force is

Wy = —0.5 (20N sin 30° + 19.6 N) i - (1.5 mi)
=-22.2J.
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Example 8 Cauchy’s Inequality. Note that
(A-B)(A-B)=|A]’|B[*cosf
<|AP|BP.
The above inequality is referred to as the Cauchy (or Cauchy-Schwartz) inequality

and s used throughout mathematical physics; for example, it is used in the derivation of
the uncertainty principle.

Vector Product The vector product, often referred to as the cross product, of A
and B is defined by

A xB=|A|B|sinf h. (1.11)

In Eq.(1.11), 6 is the smaller angle between A and B when they are placed tail to tail.
Unit vector i is perpendicular to the plane of A and B and is in the direction advanced
by a right-hand woodscrew when it is turned from A to B (see Fig. 1.15). The cross
product is not commutative because of the change in direction of 1,

AxB=-BxA.

Figure 1.15

The following cross products can be obtained from the definition in Eq.(1.11):
ixi=jxj=kxk=0.

The above equations result from the fact that the angle between these unit vectors is 0°
and sin0° = 0. Also, note that (see Fig. 1.16)

ixj=k kxi=j, and jxk=1i

An alternate form of writing the three equations above is i x j =k (cyclic, meaning cyclic
permutation; also, see the mnemonic circle in Fig. 1.16).
In terms of the components of A and B, the cross product A x B may be written as

A x B = (A;i+ Ayj + Ak) x (Bgi+ Byj + B.k)
= (AyB, — A,By)i— (A;B, — A,B;) j+ (A:By — A,B:) k
i j k
A, Ay Ay (1.12)
B, B, B,



24 CHAPTER 1. VECTOR ANALYSIS

Figure 1.16

Equation (1.12) results from use of the various cross products of the three unit-basis vectors.
The resulting square array of quantities is called a determinant, and a discussion of
determinants is given in Appendix II of this chapter. The distributive property for the
cross product is valid, Ax (B+C)=A xB+ A xC.

Example 9 Given A=i+2j+3k and B=3i+2j+k. Find (a) AxB and (b) a
unil vector perpendicular to both A and B.

Solution:
Part A:
ij k
AxB=|1 2 3 |=-4i+8j—4k.
3 21

Part B: By definition, A x B is perpendicular to both A and B. A unit vector, i, in
the direction of A x B is obtained as follows.
AxB  —4i+8j—4k

BTTAxB[T T 919

One may verify, using Cartesian components, the following results for triple vector and
triple scalar products, respectively

Ax(BxC)=B(A-C)—C(A-B) (1.13)
and
A A, A,
A-BxC)=|B, B, B, (1.14)
c, ¢, C,

Using properties of determinants (see Appendix II), it can be shown that the following
result is valid for the triple scalar product.

A-BXxC=C-AxB=B-CxA (cyclic).

In the above equation, it is assumed that none of the vectors is the del operator (see page
27). If one or more of the vectors in the above equation is the del operator, the dot and
the cross may be interchanged but the vectors may not (in general) be permuted.
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In mechanics, torque is a twist or tendency of a force to cause rotation about a pivot point
(or an axis), and it is defined by use of the vector product (see Fig. 1.17). In equation
form, we write

T=rxF. (1.15)

Figure 1.17

In Eq.(1.15), r (not to be confused with position vector) is a vector from the pivot (or
axis about which rotation is to occur) to the point of application of the force F. If several
forces act on the object, then the net torque is the vector sum of the torques produced by
forces; it is given by

n
netT = Zl‘,‘ X F,‘.
=1
Angular momentum, L, is another physical quantity that is defined by use of the cross
product; it may be written as

L=rxp. (1.16)

In Eq.(1.16), r (not to be confused with position vector or r in the definition of torque) is
the vector from the axis about which rotation takes place to the particle, and p (p = mv)
is the linear momentum of the particle. The context of the problem determines which
one of the three interpretations for r is involved. In an inertial coordinate system, the total
angular momentum of a system of particles about a point (or axis) is given by

n
netL = Zri X Pi-

i=1
Example 10 A force F = 5i — 2k N acts on an object at the point (0,1,1). Calculate the
torque produced about the point (0,2,0).

Solution:

. r=-j+km

2. F=5i—2kN
i j k

3. T=rxF=|0 -1 1 |=2i+5j+5k]J.
5 0 -2
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Division by a Vector Since division is normally considered to be the inverse process
of multiplication, one would naturally assume that two different kinds of division processes
(corresponding to the two kinds of multiplication processes) exist for vectors. There,
however, exists no unique definition for division by a vector. To understand the difficulty
involved in developing a unique definition for division by a vector, consider the case of
scalar multiplication o = A -B. Note that a/A does not uniquely yield B since we
may write « = A -(B+ D) where D is an arbitrary vector perpendicular to A. Hence
/A vyields an arbitrary quotient. In a similar manner, one can show that the quotient of
A/B is not unique if A=B x C.

1.3 Differentiation of Vector Functions

1.3.1 The Derivative of a Vector Function
A vector field F(s) assigns a vector to each point in the domain of s. Consider the vector
field F(s) where s is a scalar variable. We say that F is a function of s since each

value of s yields a corresponding value for F. The change in F, AF, when s changes to
s+ As (see Fig. 1.18) is given by

AF =F(s+ As) — F(s).

F(s + As) AF = F(s + As) — F(s)

F(s) P

Figure 1.18

If AF/As approaches a limit as As approaches zero, this limit is called the derivative
of F with respect to s; it is written as

ﬂ= lim AF = lim Fls+4s) = F(s)
ds As50\ As

As—=0 AS
_dFs , dF, | dF,
=T Ts d

Derivatives of Certain Vector Functions A summary of some useful relations involving
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derivatives of vector functions is given below.

d(eA) dA
1. =a—; a = constant
ds ds
d[b(s)A(s)] dA db
9. TN _ B0 O
ds & Tt
3 d(A+B) ﬂ_'_ dB
’ ds  ds ds
d(A - B) dB dA
4. 222 A2 45
ds ds + ds
d(A x B) dB d
5. =Ax—+—xB
ds ds + ds
When time is the independent variable, the following relations often occur.
dr
1. v=—=i
v=_=f
v _ . _
2. a= i by
dp
3. netF = Pl ma

The Del Operator The del operator, V, is a differential operator and is of immense
importance in mathematical physics. It is defined by

0 0 0

Si—+j=—+k—. 1.17
0z +']6y + 0z (1.17)
Information concerning the del operator and its use in mathematical physics will be given
in various sections below. The del operator, also referred to as the nabla operator, is
universally understood to be a vector quantity; hence, an arrow is not normally placed
over this operator.

v

1.3.2 Concepts of Gradient, Divergence, and Curl

Let &(z,y,z) be a single-valued continuous function in a certain region of space. If r is
the position vector of an object located at P(z,y,z), then we have r = zi+ yj+ zk and
dr = dzi + dyj + dzk. The total differential of ¢(z,y,2) is defined as

o9 9¢

_0¢ o9

=Vé- dr. (1.18)

The vector function V¢ is called the gradient of ¢ and is sometimes written as grade.
On dividing both sides of Eq.(1.18) by dr, we obtain

%thf)-% or %=V¢'ﬁ where 4=
In Eq.(1.19), the quantity dr/dr is a unit vector in the direction of dr; hence the change in

¢ in a particular direction equals V¢ dotted into a unit vector in that direction. Equation

(1.19)

3
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I
Vo i
dar !
(%)
1) r P(x’ 3 Z) dr
d¢
dr

Figure 1.19:

(1.19) is the definition of the directional derivative. Also, note that V¢ is a vector
whose component in a particular direction, it equals the directional derivative of ¢ with
respect to u (see Fig. 1.19).

Example 11 Find the directional derivative of ¢(z,y,z) = 2z° — 3yz + 6z at the point
(2,1,-3) in the direction of A = 4i — 2j+ 4k.

Solution:

d
1. £ =Vé¢-i (the definition of directional derivative)
2. V¢ =622 — 3zj + (6 — 3y)k
3. V|a1,—s = 24i +9j + 3k

A 4i-2j+4k

4 6= =
|A| 6
5. %2,1,—3=V¢-ﬁ=(24i+9j+3k)-w215.

Example 12 By use of the directional derivative, show that Vr™ = nr"* ’r.
Solution:

r=zi+yj+ 2k

1.
2. r=+22+y% 422
3. F=_

L 3
I

r
The magnitude of Vr™ is given by the directional derivative of r™ which is
@ _
Codr
The gradient of 7™ equals the above magnitude times the unit vector #; the result is

nr!

no_ n—1 E — n—2
5. Vr* = (nr"7) (r) nr*er.
If dr is an arbitrary vector on the surface ¢(z,y,z) = C, then Eq.(1.18) becomes
d¢=V¢-dr=0.

In the above equation, note that the gradient of ¢ is perpendicular to the surface since dr
is on the surface.
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Example 13 Consider the surface ¢ = z*+y%— 2 =1; find a unit vector that is normal
to this surface at point P(1,1,1).

Solution:

1. Vo=2zi+2yj—k

2. V¢l =2i+2j—k; avector normal to the surface at P(1,1,1)
V¢ 2i+2j-k
V| 3
Multiplication involving the V operator is extremely useful in mathematical physics. Two
products denoted by V - F = divF and V x F = curlF are called the divergence of F
and the curl of F, respectively. Their connections with physical problems will be revealed

in later sections. Also, the scalar operator V-V = V2 is very useful in mathematical
physics; it is called the Laplacian® operator. In equation form, it is

o2 8 5
~ o o e
Equation (1.20) results from the fact that i-i=j-j=Xk-k=1 and the dot products of

the cross terms equal zero. Some important partial differential equations in mathematical
physics that involve the Laplacian operator are given below.

3. a=

; a unit vector normal to the surface at P(1,1,1).

V2 (1.20)

Certain Important Equations Important equations involving the Laplacian operator
that are used throughout the book are given below. These equations are called partial
differential equations and are the subject of Chapter 8.

1. V= —p/eo; Poisson’s equation
’ - 0; Laplace’s equation

2 1 9%¢ . .

2. V*¢ = ——-; mechanical wave equation
v? 012

o 10¢ .. . .
3. Vigp= v diffusion (or heat) equation
4. V2§ +k*p =0; Helmholtz’s equation

., OU R, e .

5. th—— = ——V°0 +V(z,y,2)¥; Schrodinger’s equation

ot 2m

The divergence and curl of F are given, respectively, by

OF, 4 OF, + OF,
Oz Oy 0z

V.F=

and VxF= (1.21)

P =
S @|wt
o Plo &

If at point P

> 0, then V has a source at P
V-V { <0, then V has a sink at P (1.22)
=0, then V is said to be solenoidal.

6Marquis Pierre Simon de Laplace (1749-1827), French mathematician and astronomer.
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The vector V is classified as irrotational if V x V =0.

Special care must be exercised in treating vector operations when the differential operator
V is involved. Note that V¢ is a vector function, but ¢V is a vector operator; hence
V¢ # ¢V where ¢(z,y, 2).

Some Useful Relations Involving the Del Operator The relations below may be
verified by writing the vectors in terms of their Cartesian components and carrying out the
indicated operations.

. V- (dA)=A -Vé+¢V-A

VX (pA)=¢V X A-AXxVo
VxVxA=VV-A-V?A

V- AxB=VxA-B=B-VxA-A - VxB

. Vx(AxB)=(B-V)A—B(V-A)—(A-V)B+A(V-B)

S I

Example 14 Establish a physical meaning for the divergence of a vector by use of an
lustration from hydrodynamics.

— A+ 04, dy
A D 0
b= - >y
A, /// (0] F
dz // dx
V4
//
dy G
X
Figure 1.20:

Solution: Consider the flow indicated in Fig. 1.20 where A = pv represents the mass of
fluid flowing through a unit area normal to side ABOC per unit time. The density of the
fluid is denoted by p, and v is its velocity.

The y-component of A through the area ABOC indicated in Fig. 1.20 per unit time is
given by

Ay dzdz.

The flow through the area DEFG per unit time may be represented by the following
Taylor’s expansion:
0A

Ay(y + dy)dzdz = [Ay(y) + 3—yydy +...| dzdz.



1.4. INTEGRATION OF VECTOR FUNCTIONS 31

We will neglect higher-order terms in the above expansion. The net increase in the mass
of the fluid inside the volume element dr = dzdydz per unit time due to the flow through
the two faces is

0A 0A
Aydzdz — [Ay(y) + a—yydy] dzdz = —T;dr.

Similarly, the net increase in the mass of fluid per unit time due to the flow through BEFO
and ADGC is

0A,
0z

dr,

and the net increase in the mass of fluid per unit time due to the flow through FGCO and
EDAB is

0A,
0z

dr.

The total increase in the mass of fluid per unit volume per unit time due to the excess of
inward flow over the outward flow is

The above equation represents the rate of increase of the density of the fluid inside of the
volume element dr. We may, therefore, write

op

—=-V-A. 1.23
& (123
Equation (1.23) is the continuity equation. For an incompressible fluid, we have

i—? =0 or V-A=0 (solenoidal). (1.24)
In this case, the excess of outward flow over inward flow is zero (no source is present).
The physical interpretation of the curl of a vector is connected with the rotation (or circu-
lation) of a vector field; its full meaning will be made clear by its use in later sections.

1.4 Integration of Vector Functions

We begin this Section on the integration of vector functions with an explanation of the
various symbols of integration that will be used throughout the book. The notations dA, do,
and dr will be used to represent an element of length, area, and volume respectively. In
an integrand, these elements of length, area, and volume will be used to indicate single,
double, and triple integrals respectively. The corresponding integrals are denoted by
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/A B(...)d/\ (line integral from A to B)

?{ (..)dx  (line integral around a closed path)
/ (...)do  (integral over an open surface)

f (...)do (integral over a closed surface)

/ (...)dT  (volume integral, triple integral).

The above differential elements in Cartesian coordinates represent (a) dA = dz,dy, or dz;
(b) do = dzdy,dzdz, or dydz; and (c) dr = dzdydz. In addition to d), dr will be used to
denote line (or single) integral. A surface that encloses a volume is said to be closed; an
open surface does not enclose a volume. An integral with a small circle through its center
is used to indicate integration around a closed path or a closed surface, depending on the
differential element in the integrand. An element of surface may be represented as a vector
quantity, do =fide where @i is a unit vector that is normal to the surface (also, called a
unit normal).

1.4.1 Line Integrals

A vector field F(z,y,z) assigns a vector to each point of its domain. The line integral
(tangential line integral), I , of a vector field F along a continuous curve C from A to
B (see Fig. 1.21) is defined as the definite integral of the projection of F onto an element
of the tangent vector to the curve at point P(z,y, z).

4 B
dr F(x
¥ 2)
A P(x, y z)
/ y
X Figure 1.21:

In equation form, we write
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B
L= / F . dr. (1.25)
A

In Eq.(1.25), dr (tangent to the path) is an element of displacement at P(z,y, z). Note that
the line integral from B to A is the negative of that from A to B.
The work done by a variable force F(z,y,z) in moving an object from A to B is

defined as
B
W 5/ F.dr
A

Example 15 Calculate the work done by the force F =2yi+ zyj N in moving an object
along a straight line from A(0,0,0) to B(2,1,0) m.
Solution:

B
W=/ F -dr
A

= /(2zi + zyj) - (dzi + dyj + dzk)
= / (2ydz + zydy)

2 1

= / zdz + 2 f y?dy (since the equation for the path is = = 2y)
0 0

= 2.67 J.

Example 16 Show that the work done on an object of mass m by a net force during a
displacement from A to B equals the change in the kinetic energy of the object.

Solution: The work is given by
B
W= / netF - dr
A
B dv
=m / g dr (by use of Newton’s second law)
A
B
d
= m/ &Y vt (since v = dr/dt)
4 dt

= %/AB d(v-v) (since d(v-v)/dt=2v-dv/dt)

= %(v% — %) (the work-energy theorem of mechanics)
= AK (change in kinetic energy).

The total energy of a mechanical system is conserved if the force (field) is given by

F = —Vé(z,y, z) where ¢ is a single-valued continuous function with continuous derivatives
(a smooth function); the smooth function ¢ is referred to as the potential energy of the
system. The system is said to be a conservative force system (or conservative system) since
its total energy is constant.
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Example 17 If F = —V¢, show that the total energy of the system is conserved (con-
stant).

Solution: Work now becomes
B

= Kp — K4 (by us of the result in the previous Example).

We obtain the conservation of energy principle (the total mechanical energy is constant)
by rearranging terms: K4 + ¢4 = Kp + ¢p.

In a conservative system, the potential energy of a particle located at A(z,y, z) relative
to a fixed point B(zo,yo,20) where the potential energy may be set to zero (the reference
level) is defined by

B

o(z,y,2) = /A F - dr. (1.27)

For a conservative system, note that

W=fF-dr=fv¢-dr:fd¢=o.

The circle in the integral means integration around a closed path. Since the potential
energy is a smooth function, we have V x F = —V x V¢ = 0. In summary, we find that
a conservative mechanical system is characterized by the following three equivalent
equations.

1. F=-V¢;
2. VxF=0; and

3. W=fF-dr=0.
Care is required with the third equation above since conservative force systems are a subset
of forces for which the equation is valid.

1.4.2 The Divergence Theorem Due to Gauss

The normal surface integral of the vector field F(z,y,z) over a closed boundary is
defined as the surface (double) integral of the projection of F(z,y,2) onto a unit normal
to the surface at point P(z,y,2), and it is written as
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Ia=fF-da=fF-f1da. (1.28)

In Eq.(1.28), do is an element of the boundary surface, i is a unit outward normal to this
element of area, and the circle through the integral sign means (double) integration around
a closed surface.

The sign convention for a unit normal to a surface is as follows: (a) For a closed surface
(a surface which encloses a volume), the outward normal is defined to be positive. (b) For
an open surface, the right-hand woodscrew rule is used. The direction of rotation of the
woodscrew is the same as that in which the periphery is traversed, and the direction of the
normal is the direction advanced by the woodscrew.

The divergence theorem due to Gauss’ is as follows: The normal surface integral of a
vector field F over the boundary of a closed simply-connected surface (a surface without
holes and can be shrunk to a point) of arbitrary shape equals the volume integral of the
divergence of F taken throughout the enclosed volume. In equation form, we write

fF cdo= /v . Fdr. (1.29)

To prove this theorem, we first expand the right-hand side of Eq.(1.29) and obtain

/V -Fdr =/ [BFI + oF, + GFZ] dzdydz. (1.30)

oz ' Oy ' 0z

The theorem is valid for an arbitrarily shaped closed surface. We, however, choose the
volume in Fig. 1.22 for convenience; we obtain the following results:

X Figure 1.22

doy = —kdzdy (bottom) doy = —idydz (back)
do; = idydz (front) dos = kdzdy (top)
dos = —jdzdz (left) dos = jdzdz (right)

7Carl Friedrich Gauss (1777-1855), German mathematician, physicist, and astronomer. He is known
for major contributions in each of the three disciplines.
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Integrating the last term on the right-hand side of Eq.(1.30) with respect to z from 2’ to
2", we obtain

1

= OF,
/ £ —/[Fz(x,y,Z”) — Fy(z,y,7)|dzdy
o 02
=/ Fz(z,y,z”)dzdy—/ F,(z,vy, 2")dzdy. (1.31)
a5 a1
Note that
fi; -kdoy = dzdy (bottom) and #ij-kdos = dzdy (top). (1.32)

On substituting Eq.(1.32) into Eq.(1.31), we may write

"

= QF,
/ il —/ Fz(z,y,z")ﬁ5-kda5+/ F,(z,y,2)f, - kdoy
s 0z o

a1

= f F,k - fido. (1.33)

The above equation results from the fact that the integrals over the sides equal zero since
k is perpendicular to dog,dos,doy, and dog. Similarly, it can be shown that

OF, }{ Fi-fdo (1.34)
0z

and

/3 yd’r—f v - Ado. (1.35)

Combining Egs.(1.33-1.35) proves the theorem. The result is

fF -do =/v - Fdr. (1.29")

Example 18 By use of the divergence theorem due to Gauss, obtain the integral form for
Mazwell’s first equation.

Solution: The fundamental equations in electromagnetism, Maxwell’s equations, may be
written in compact form by use of the divergence and curl of vector quantities. In partial
differential equation form, the four Maxwell® equations (in the absence of matter) in SI
units are

8James Clark Maxwell (1831-1879), British physicists who made fundamental contributions to electro-
magnetic theory and to the kinetic theory of gases. He was appointed the first Cavendish Professor of
Physics at Cambridge in 1871.
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1. V-D = p (Gauss’s Law) 3. VXE= _(‘36_]3 (Faraday’s Law)
D
2. VB =0 (no free magnetic poles) 4. Vx H = aa_t + J (Ampeére’s Law)

In Maxwell’s equations, (a) the displacement vector D is related to the electric field
intensity vector, D = ¢¢gE where ¢p = 8.85 x 10712C2N"'m~2 is the permittivity of free
space; (b) the magnetic induction vector B is related to the magnetic intensity vector,
B = ;igH where po = 4m x 107"NA~? is the permeability of free space; (c) J is current
density; and (d) p is volume charge density (in a vacuum, p=0 and J =0). Maxwell’s
equations plus the Lorentz® force law, F = ¢(E + v x B), represent a complete theory for
electromagnetism. By use of Maxwell’s first equation in differential form and the divergence
theorem due to Gauss, we may write (letting F = ¢E, electric field intensity)

fE-da=/V-EdT

1
= / pdt  (by us of Maxwell’s first equation)
0

_ Yenclosed
€0 )

In electrostatics, the above equation is called Gauss’s law (Maxwell’s first equation in
integral form), and the arbitrarily shaped hypothetical surface o is known as a Gaussian
surface.

Gauss’s law, for example, may be used to find the electric field at a distance r from a
charge ¢ (see Fig. 1.23). For convenience, we let ¢ be a spherical surface enclosing the
total charge ¢ and obtain

Efda = FEdnr?

1
= —/pdr: i.
€9 €9

Solving the above equation for E, we obtain the usual expression for the field of a point
charge at distance r from the charge gq.

Example 19 By use of the divergence theorem, obtain the integral form for Mazwell’s
second equation.

Solution: On letting F = B (magnetic induction vector) in the divergence theorem and
using the differential form of Maxwell’s second equation, we obtain § B - do = 0 which is
the integral form of Maxwell’s second equation (Gauss’s law in magnetism).

9Hendrik Antoon Lorentz (1853-1928), Dutch physicist who made fundamental contributions to elec-
tromagnetic theory and special relativity. He shared the 1902 Nobel prize in physics with Peter Zeeman
(1865-1943).
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Figure 1.23: Gaussian surface

Example 20 Develop a relation for the magnetic vector potential and for the electric po-
tential.

Solution : Since V-B = 0 (solenoidal, no source or sink; no free magnetic poles),
the magnetic induction vector B can be expressed as the curl of a vector because the
divergence of the curl of a vector equals zero; we may write B =V x A where A is the
magnetic vector potential.

By use of Maxwell’s third equation and the relation for the vector potential, we may write

_ 0B 9(VxA)
VXE= T Ta

The above equation may be written in the form

0A

Since the electromagnetic field is a conservative force field, we obtain

0A 0A

+ 5 Ve or Ve 5t
In the above equations, ¢ is the electric (scalar) potential. Note that the above
equations for B and E do not determine the scalar and vector potentials uniquely since

for an arbitrary function f(z,y,zt) the following equations

<p—)<p'=<p+% and A—-A'=A-Vf

leave E and B unchanged. The above transformation is known as a gauge transfor-
mation of the second kind. (A gauge transformation of the first kind involves invariance
of the Lagrangian density in quantum field theory.)

In the Coulomb!? gauge (also called the radiative gauge) where V - A = 0, the
divergence of E in the above equation leads to Poisson’s equation as follows.

10Charles Augustin de Coulomb (1736-1806), French physicist who made fundamental contributions to
electricity and magnetism.
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0A

V-E——V-(ch+§)

o(V-A)

— 2 —_— e
=—-V* 5

=-V?%p (Coulomb gauge: V-A =0)

= eﬁ (by use of Maxwell’s first equation).
0

Example 21 An application of the divergence theorem to the problem of heat
conduction. Here we consider the problem of the transfer of heat through an object by
means of conduction. We assume that (a) the temperature, T = T(z,y, 2,t), within the
object is a finite and continuous function; (b) through any point, a surface on which the
temperature is everywhere the same (isothermal surface) may be drawn; (c) the temperature
gradient, VT, and the direction of heat flow are normal to the isothermal surface at the
point in question; (d) VT is a finite and continuous function and is in the direction of
increasing T'; and (e) the rate of heat flow per unit area across the isothermal surface, F,
is given by F = —kVT (Fourier’s Law) where k is called the thermal conductivity
of the substance under investigation and the negative sign indicates that the heat flows from
points at higher temperatures to points at lower temperatures.

Solution : If o is an arbitrary closed surface drawn entirely within a certain region of the
object under investigation, then the total amount of heat flowing out of ¢ in time At is
given by
Q= —AtkaT-ﬁda
= —At/V~ (kVT)dr.

We have used the divergence theorem to obtain the last equation.
The quantity

oT
Q=-At / cpﬁdr
is another representation of the amount of heat flowing out of ¢ in time At provided ¢
is the specific heat of the object, p is the density of the object, and 9T/dt is the rate

of increase in temperature within o. Equating the two expressions for the heat flow, we
obtain

/ [cpaa—j’; -V (kVT)] dr =0.

Since the volume is arbitrary, the above equation implies that
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cp%—j’; =V . (kVT).

The above equation is the heat conduction equation and was first developed by Fourier!!
in 1822.

1.4.3 Green’s Theorem

The theorem due to Green'? is an important corollary of the divergence theorem, and it
has numerous applications in various branches of physics.

Let 9 and ¢ be two smooth scalar functions of position within a certain region bounded
by a closed surface . On applying the divergence theorem to ¥V¢ in this region, we
obtain

fszdS -do = /V- (pVe)dr
- /[¢v-v¢+ V- Vldr
- / V% + Vi - Vldr.

The above equation may be written in the form

d
fwa—Zda = /[¢V2¢ + Vi - Voldr. (1.36)
Equation (1.36) is known as Green’s theorem in the first form.

A second form of Green’s theorem is obtained when the following two equations are con-
sidered.

V. (V) =yV -V +Vy- Ve

and

V. (¢VY) =@V - Vo + Ve - Vi

On subtracting the second equation from the first equation and integrating over an arbitrary
volume, we obtain

] V- (pV— pVy)dr = / V26 — $V2)dr.

1Baron Jean Baptiste Joseph Fourier (1768-1830), French mathematician and physicist who formulated
a method for analyzing periodic functions and studied heat conduction.
12George Green (1793-1841), English mathematician and physicist.
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Converting the left-hand side of the above equation to a surface integral by use of the
divergence theorem, we obtain

9 _ | _ 2 2
}{ [ o ¢3u] do = /[w 6 — $Vuldr. (1.37)
Equation (1.37) is the second form of Green’s theorem.

1.4.4 The Curl Theorem Due to Stokes

A third and equally important theorem involving integrals of vector functions is the curl
theorem due to Stokes!3. The curl theorem is as follows: If the vector field F is a smooth
function, the line integral of F around a closed curve A equals the normal surface integral
of curl F' over an open surface bounded by A. In equation form, we write

fF-d/\=/V><F-da. (1.38)
To prove the curl theorem, we first expand the right-hand side of Eq.(1.38); it becomes
/VxF-ﬁda—/ﬁ-[Vx iF; +V x jF,+V x kF,)do.

The first integral on the right-hand side of the above equation reduces to

/ﬁ- (V x iFI)da=/ [ﬁ.j%i’ —ﬁ-k%—i’] do. (1.39)

Note that the projection of do onto the z-y-plane (see Fig. 1.24) leads to
fi - kdo = dzdy. (1.40)

Let the line segment from P; to P, be the intersection of the surface ¢ with a plane that
is parallel to the z-2-plane at a distance z from the origin (see Fig. 1.24). Along the strip
from P, to P, we have

OF, OF,
dy +

=, W+,

dz and dr = dyj+ dzk.

The vector dr is tangent to the segment from P, to P, at A and perpendicular to fi.
We may therefore write

dr-i=0=dyh-j+dzir-k
or ﬁ'j=—d—zﬁ-k=—d—z(dzdy)
dy dy \ do
or f-jdo = —dzdz. (1.41)

13Gir George Gabriel Stokes (1819-1903), British mathematician and physicist known for his study of
hydrodynamics.
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< Back
P,
P
Front
>y
/ (a)
X
Py(x, y,, 22) Ado A P
Pl (X, Y1, Zl) (b) P (C)
Figure 1.24

On substituting Egs.(1.40 and 1.41) into Eq.(1.39), we obtain

. . OF, OF,
/n (VX iF,)do = —/ [Edz + a—ydy] dz

= —/dz/sz
=_ /[Fm(x,yg,zg) — Fy(z,y1,21)]dz.

The sense of the periphery at P, is positive, dz = d);; at P, i is negative, dz = —d),
(see Fig. 1.24). Hence the equation reduces to

/ 8- (V x iF)do = ] Fo(z, g2, 22)dAs + ] Fy(z,y1, 2)dMs

= f Fod),.

In the above equation, the first integral on the right-hand side is on the back part, and the
second integral in on the front part. In a manner similarly to that leading to the above
equation, we find that

/ﬁ (VX jF,)do = }{Fyd,\y

and

/ﬁ~ (V x kF)do = }{de,\,.
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Combining the above three equations, we obtain

fF-d)\=/VxF-da, (1.38)

and the theorem is proved. The curl theorem is extremely useful in potential theory and in
other areas of mathematical physics.

Example 22 By use of the curl theorem, obtain the integral form for Mazwell’s third equa-
tion, Faraday’s** law of electromagnetic induction.

Solution : On letting F = E (electric field intensity) in the curl theorem, we obtain

fE-d/\=/VxE-da

= —(,%/B -do (VxE=—-0B/0t Maxwell’s third equation)

)
= ——a—t?— where ®p = / B-do (total magnetic flux).

Example 23 By use of the curl theorem, obtain the integral form for Mazwell’s fourth
equation, the Ampére'®-Mazwell law.

Solution : On letting F =B (magnetic induction vector)in the curl theorem, we obtain

fB-dx\:/VxB-da
OE
=uO/J-da+p050/§-da

0%
= uod .
tod + Ho€o 5

The second line results from use of Maxwell’s fourth equation. In the third line, ® is
total electric flux and I is current; they are respectively given by

<I>E=/E-da and IE/J-da.

1.5 Orthogonal Curvilinear Coordinates

1.5.1 Introduction

Thus far, our presentation has made exclusive use of the right-hand Cartesian coordinate
system. Often the solution of a physical problem is made easier by first selecting an ap-
propriate coordinate system. In general, it is easier to solve a problem involving spherical

14Michael Faraday (1791-1867), English scientist who laid the foundations of classical field theory (despite
little formal education).

15 André Marie Ampere (1775-1836), French physicist and mathematician who is known for his work in
electricity and magnetism.
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geometry by use of spherical coordinates than by use of Cartesian coordinates. It is therefore
desirable to develop a procedure for making the transformation from Cartesian coordinates
to other coordinate systems. This Section is devoted to transformations from Cartesian
coordinates to other orthogonal coordinate systems. Note, however, that the various ba-
sic relations in previous sections involving vectors and vector fields remain valid in other
orthogonal coordinate systems.

Let the position of a point in space be completely described by P(u!,u?,u3), where u!,u?
and u?® are three single-valued functions of position. For u’ = constant (i = 1,2, 3), the u’
are three surfaces that intersect at P. These surfaces are called coordinate surfaces, and
the three curves of intersection are called coordinate lines. Tangents to the coordinate
lines at are called coordinate axes. If the relative orientation of the coordinate surfaces
changes from point to point, the u® are called general curvilinear coordinates. If the
three surfaces are everywhere mutually perpendicular, the u! are referred to as orthogonal
curvilinear coordinates.

It is assumed that the following transformations exist.

zl = fl(u17u27u3); x? = f2(U17U2,’U,3); a'nd IE3 = f3(u17u27u’3)
and

u' = Fi(z',2%,7%); o= FRy(z',242%); and ud = Fy(z', 1%, 2P).
In the above equations, the following notation has been used: z = z',y = z%,and 2z = z°.
The position vector of a point P is a function of the v, r = r(u!,u? u3). An element of
displacement is given by

The square of an element of length is an invariant (same for all coordinate systems) and is
given by

ds®* =dr-dr = ZZ Ew —d fdud. (1.42)

i=1 j=1

Note that the Or/0u’ are tangent to the u’ respectively, since Or/8u! means u? and
u? are held constant and r = r(u') is constrained to move along the u' surface. Let the
three coordinate axes be represented by a; where a; = 8r/0u’ (see Fig. 1.25). Equation
(1.42) becomes

3 3 3 3
0 =YY et = 33 i (149
i=1 j=1 i=1 j=1

The quantities g;; = a; - a; = g;; are called metric coefficients, and they characterize
the relative nature of the space. More information on the g;; may be found in Chapter 12.
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a1\

6 - @
|az|
6= @
‘a3|

Figure 1.25

In orthogonal curvilinear coordinate systems, a;-a; =0 for ¢ # j, and the square of an
element of length becomes

ds® = ds? + ds} + ds?
= gi1(du')? + ga2(du?)? + gas(du®)®.

Note that du? = du® = 0 when the element of length ds is along u!; we may therefore
write

dSl = \/gudul = hldul;
dsy = \/gmdu® = hydu?; and
d.5‘3 = ,/g33du3 = h3du3.

In the above equations, the scale factors h; are given by /g;;.

We now develop a scheme for determining g¢; when the z* are known. In Cartesian
coordinates, gi; = g2 = g3 =1 and ds? = (dz')? + (dz?)? + (dz®)?; in terms of the
we write

3
ds® = Z dz*dz*
k=1

3 3 k 3 k
— Ju? s Jut
k=1 i=1 Jj=1
3 3 3
oz* sz) o
= A Ta7 | dutdu. (1.44)
P pat

i
On comparing Eq.(1.43) with Eq.(1.44), we note that

gii = 23: (gzk)Q (1.45)

k=1
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Elements of area and volume are respectively given by
doi; = hihjdu'dy’  and  dr = hyhohsdu'du’du®.

Expressions for the gradient, divergence, curl, and Laplacian in orthogonal curvilinear co-
ordinates will now be developed.

1.5.2 The Gradient in Orthogonal Curvilinear Coordinates

Since di/ds is the component of Vi in the ds direction (see page 27), V¢ is given by

_ L0 O o
Vi = 616—31 8_2 + & 3353
& 0y &0y & Iy

In Eq.(1.46), unit vectors &; are along ds; respectively. Note that (a) & x é; = &
(cyclic); (b) & = h;Vui ; and (c) V- (&;/hehs) = V - Vu? x Vu® = 0; the last equality
results form interchanging the cross and the dot and noting that the curl of the gradient
equals zero. Also, this last equality provided motivation for writing the arbitrary vector V
in the form given in the first equation in the next Section.

1.5.3 Divergence and Curl in Orthogonal Curvilinear
Coordinates

An arbitrary vector V in terms of components may be written as
V= é1V1 +&Vs + ésVs

h2h3V1) h 1hsVa) + ———(hihaV3).

Concept (c) in the previous Section was the motivation for writing V in the form given
in the last step above. The divergence of V is given by

V-V= h V(hehsV1) + h V(hihsV2) + ﬂ— V (hihaV3)
1 [8(hahsVa) (hhsVa)  O(huhaVs)
= Tuhahs [ ol T e T el | (1.47)

The expression for the divergence in terms of curvilinear coordinates, Eq.(1.47), results
from use of the relation V- (pA) = A-V¢o+ ¢V - A and use of concepts at the end of the
previous Section.

In a similar manner to that used to derive the expression for the divergence in terms of
curvilinear coordinates, the curl of V may be written in the form

h1e1 hgég h3é3
1 0 ad 7]
VxV=—| — — —— |. 1.48
hihohs | Ou! Ou?  Oud (1.48)
Vi heVa hsVa
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1.5.4 The Laplacian in Orthogonal Curvilinear Coordinates

The Laplacian in orthogonal curvilinear coordinates is given by

Vi =V.Vy
_y. (80 & &3
=V [h13u1+h26u2+h38u3}

_ 1[0 (hahdw), O (mhdw
- h1h2h3 Ou! hl oul Ou? h2 ou?
0 (hihy OY
o (_h3 %)} . (1.49)

The essential task in determining explicit forms for the gradient, divergence, curl, and
Laplacian in specific orthogonal curvilinear coordinates is that of calculating the scale
factors h; which are related to the metric coefficients.

In the following three Sections, we give the details for three extremely useful coordinate
transformations.

1.5.5 Plane Polar Coordinates (r,6)

In plane polar (or simply polar) coordinates, we have z = rcosf and y = rsind
(see Fig. 1.26).

P (1 6)

x

Figure 1.26

1.5.6 Right Circular Cylindrical Coordinates (p, ¢, z)

P(p, ¢ z)

Figure 1.27

For right circular cylindrical (or simply cylindrical) coordinates, we have z =
pcos¢, y = psing, and z =z (see Fig. 1.27).
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1.5.7 Spherical Polar Coordinates (r, 6, ¢)

In spherical polar (or simply spherical) coordinates, we have p=rsinf, z = pcos g,
y=psing, and z=rcosf (see Fig. 1.28).

3 P(’x9’¢)

—_———— — — — — =

x Figure 1.28

Example 24 Find the gi; (metric coefficients) and h; (scale factors) for cylindrical coor-
dinates.

Solution : The required transformation is z,y,2z — p, ¢, z. From Fig. 1.27, we have

ul=p, u?=¢, and ud =z

Also, we have

z=1z'=pcoso, y =12 = psing, and z =% = 2.
By use of equation for the g;; (see Eq.(1.45)), we obtain

3 2 2 . 2 2
oz* 8(pcos b3} i}
m=3 (ﬁ) _ [ (P(9 ¢)] 4 [ (p;mf/’)] + [_;_Z)]
£\ Qu p p o
=cos?¢ +sin?¢ =1 = h%;

_ 2. (0zF\®  [8(pcosd)]®  [O(psing)]?  [8(z)]>
g‘kz(aT) =[ 36 ] +[ 39 ] +[7a¢7]
= p?sin® ¢ + p? cos? = p? = h;

a=3 (55 = [Aegmt)] s [2esze]”, [20)]
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The scale factors for cylindrical coordinates are hy = 1, h, = p, and hz = 1.

Similarly, it can be shown that the scale factors for spherical coordinates are hy = 1, hy = 7,
and hs = rsinf.

1.6 Problems

1.1 The pressure at any depth h in a fluid at rest is given by P, = Py + phz where p is
the density of the fluid. By use of dimensionless analysis, determine the dimension of the
quantity represented by z; what is the name of this physical quantity?
12Find A+B and A—-B for A=2i—j+k and B =1i-3j—5k.
1.3 Consider two points Pi(—1,—4,5) and P»(3,-2,2).
(a) Calculate the distance from P, to P;.
(b) Calculate the direction cosines for the line connecting P, and P».
(c) Determine the equation of the line connecting P; and P».
1.4 Find a unit vector in the direction of A = 4i+ 3k.
1.5 Show that A =i+ 4j+3k and B =4i+ 2j — 4k are perpendicular.
1.6 Determine the smaller angle between the tails of 2i and 3i + 4j.
1.7 Determine if A =i+ j+k and B = 3i+ k satisfy the Cauchy inequality.
1.8 Find a unit vector perpendicular to i— 2j— 3k and i+ 2j—k.
1.9 Find the projection of 8i+j in the direction of i+ 2j — 2k.
1.10 Show that A =2i—j+k, B=1i—3j— 5k, and C = 3i—4j — 4k form the sides of
a right triangle.
1.11 By use of the determinant form, calculate k x i.
1.12 Calculate A-B x C if A =2i, B=3j, and C =4k.
1.13 Compute (A x B) x C and A x (B x C) directly for A = 2i + 2j, B = 8i, and
C=3i—-j+k
1.14 Write down the three scalar equations corresponding to the Lorentz force law, F =
g(E+v x B).
1.15 By use of Cartesian components, show that
A, A
B, B
C
(b) Ax(BxC)=B(A-C)-C(A-B).
1.16 By use of Cartesian components, show that
(a) V-(¢A)=A-Vo+9¢V - A,
(b) Vx (dA)=¢V x A —A X V¢,
(c) VXxVxA=VV-A-V3?A.
1.17 By use of Cartesian components, show that
(a) V-r=3,
(b) Vxr=0, and
(c) Vr*=nr""’r,

<@
®

and

®

A,
(a) A-BxC=| B,
C,

<@
x_
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1.18 Given: A = z2%i+ (z —y)k, B = zi, and ¢ = zy223. Find

(a) div B,
(b) Curl A, and
(c) grad ¢.

1.19 If V2¢ = 0, show that V¢ is both solenoidal and irrotational.

1.20 If A is irrotational, show that A X r is solenoidal.

1.21 Find the directional derivative of ¢(z,y,z) = 2z° — 3yz at the point (2,1,3) in the
direction parallel to the vector with components given by (2,1, —2).

1.22 Find a unit normal to the surface ¢ = 22+ yz = C at the point (2,1,1).

1.23 Compute the line integral along the line segment joining (0,0,0) and (1,2,4) if
A =2+ yj+ (zz — y)k.

1.24 By use of Maxwell’s equations for a vacuum, show that

E O*E, &’E,
"' VZE_,, =60H0#, and VZEZ = €pMo Btzz'

1.25 In Maxwell’s electromagnetic theory, choose the vector and scalar potentials (A and
®) such that

7]
V- -A+ B—f =0 (Lorentz gauge condition)
and show that

2

A
(a) VzA - 60#06

o — "t and
Py P
2 Zr__r
(b) V% — eopo 82 P

The above equations may be written in the following compact forms

[2A =—ped and [2p=2

€0
where the d’Alembertian'® operator [12 is defined by
1 82
2 ot
Here Maxwell’s equations have been reduced to the study of equations for the vector and
scalar potential.

1.26 By use of Stokes’ theorem, prove that V x VV = 0.
1.27 By use of Green’s theorem, establish the conditions for

/ xV2pdr = / PV ixdr

16 Jean Le Rond d’Alembert (1717-1783), French mathematician and physicist who was one of the leading
scientists of his time.

2 = V2 -
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where x and v are scalar functions of z,y, and 2.
1.28 In the divergence theorem, let F = ¢C (where C is an arbitrary constant vector)

and show that
j{ ohdo = / Védr.

1.29If o is a closed surface which bounds a volume 7, prove that

1.30 In the divergence theorem, let F = B x C (where C is an arbitrary constant vector)

and show that
fﬁXBd(I:/VXBdT.

1.31 Show that the derivative of angular momentum with respect to time equals torque.
1.32 Show that F = zy% + z%yj is not a conservative force field.

1.33 Show that the force in Problem 1.32 is inconsistent with F = —V¢.

1.34 (a) Modify the force in Problem 1.32 so that it becomes a conservative force and find
the expression for the corresponding potential energy. (b) Show that this potential energy
leads to the force in Part (a).

1.35 The gravitational force on mass m at distance r from the center of the Earth is

mM, E
T2
(a) Show that the gravitational force field is conservative. (b) Obtain the expression for
the gravitational potential energy. (c) Repeat Parts (a) and (b) for the Coulomb force law.
1.36 If v is the velocity of a particle whose constant angular velocity is w, show that

V x v = 2w. (Hint: Draw a detailed diagram for the problem.)

1.37 At time t the position vector of a moving particle is r = A coswt + Bsinwt where
A and B are constant vectors and w is a constant scalar. (a) Find the velocity of the
particle at time ¢. (b) Show that r X v equals a constant vector. (c) Show that the
acceleration is directed toward the origin and is proportional to the displacement (simple
harmonic motion, SHM).

1.38 Suppose the radius vector for a particle moving in a plane is given by r = r(¢)# with

polar coordinates (r,f) where || =1. (a) Show that the velocity of this particle is given
by

F=-G

f.

dr de -
vV = Er + TET
where T = —isinf + jcos#. (b) Show that the acceleration of this particle is given by

— &_ d_@ ? i;_|_ @4_2@(1_0 ’i‘
3= e " "\ & T T fwa|
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(c) Identify the radial and tangential components of the velocity and acceleration, re-
spectively. Identify the centripetal acceleration. The Coriolis'” acceleration is given by
2(dr/dt)(d6/dt)T.

1.39 A force with z,y, and 2 components of 3,4, and 12 N, respectively, displaces an
object from the point (1,2,3) to (2,—3,1). Calculate the work done by this force.

1.40 A force with magnitude 6 N acts through the point P(4, —1,7) in the same direction
as the vector with components (9, 6,—2). Calculate the torque of this force about the point
A(1,-3,2).

1.41 Two particles of mass m collide elastically. The initial momentum of particle one is
p1 and its momentum after collision is q;. Particle two is initially at rest. By use of
(a) conservation of kinetic energy, (b) conservation of momentum, and (c) the dot product,
show that the angle between the two particles after collision is 90°. (Hint: Write kinetic
energy in terms of the momentum squared, e.g., KE = p%/2m).

1.42 A particle with initial momentum p;i explodes into two pieces. Piece one moves
vertically upward such that ¢, = 1.5p, where q; is the momentum of piece one after the
explosion. By use of the conservation of momentum principle, calculate the final momentum
of piece two after the explosion, ¢s.

1.43 Supply the steps that lead to Eq.(1.48).

1.44 Write down Laplace’s equation in cylindrical coordinates.

1.45 For spherical coordinates, calculate the scale factors and write down Laplace’s equation.
1.46 In spherical coordinates where z = rsinflcos@, y = rsinflsing, and z = rcosf, we
find that

1
= cos Hﬂ — —sin 02.

oz or r o0

By use of the change of variables rule, express 9/8z and &/8y in spherical polar
coordinates.

1.7 Appendix I: Systéme International (SI) Units
The following seven physical quantities are fundamental in the SI system of units:

1. Length — meter (m)

2. Mass — kilogram (kg)

3. Time - second (s)

4. Temperature — Kelvin (K); K means degree Kelvin
5. Amount of Substance — mole (mol)

6. Electric Current — Ampére (A)

7. Luminous Intensity — candela (cd)

17Gustave Gaspard de Coriolis (1792-1843), French mathematician and scientist who is best known for
the Coroilis force.
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Definitions

1. Meter is the distance traveled by light in vacuum during 1/299, 792, 458 second.
The speed of light is a fundamental constant ¢ = 299,792,458 m/s. (1983)

2. Kilogram is the mass that equals the mass of the Platinum-Iridium alloy cylinder
that is kept at the International bureau of Weights and Measures at Sévres, France.
(1989)

3. Second is the duration of 9,192,631,770 periods of the radiation corresponding
to transitions between the two hyperfine levels of the ground state of Cesium-133.
(1967)

4. Ampeére is the constant current in two straight parallel conductors (of infinite length
with negligible cross section and 1 m apart in a vacuum) that produces a force per
unit length of 2 x 1077 N/m. (1947)

5. Kelvin is the fraction 1/273.16 of the thermodynamic temperature of the triple
point of water which is approximately 0.01°C. (1967)

6. Mole is the amount of substance which contains as many elementary entities as there
are atoms in 0.012 kg of Carbon-12. (1971)

7. Candela is the luminous intensity (in the perpendicular direction) of a surface of
1/600, 000 square meter of a blackbody at the temperature of freezing Platinum under
a pressure of 101,325 N/m. (1967)

1.8 Appendix II: Properties of Determinants

1.8.1 Introduction

This appendix is devoted to a summary of some essential properties of determinants. A de-
terminant is a square array of quantities called elements which may be combined according
to the rules given below. In symbolic form, we write

a; b1 G ... T
ag by ¢ ... To
A= . )
an bn Cn ... T

The order of the above determinant is n. The value of the determinant in terms of the
elements a;, bj, ..., r¢ is defined as

A= Zlqj"_eaibj -..Te (Al.l)

iy
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where the Levi-Civita!® symbol, €;;..¢, has the following property:

+1 for an even permutation of (3,7, ... ,£)
€j.e =4 —1 foran odd permutation of (3,3,...,¥%) (A1.2)
0 if an index in repeated.

For example,

+1 if ijk =123, 231, 312
eijr =< —1 if 4ijk =321, 213, 132
0 otherwise.

On applying Eq.(Al.1) to a third-order determinant

ay bl C1
A = | a2 b2 C2 |,
ag b3 c3
we obtain
3
A= Zeijkaibjck
ijk
3
= Z(eljkalbjck + ngkazbjck =+ egjka;;bjck). (A13)
jk
Equation (A1.3) reduces to
3
A= Z(ellkalblck + €12ka1ba¢k + €13£a1 b3cy
k
+ €211a2b1Ct + €22ka2back + €a3aoback
+ €3icasbick + €sakasback + €33rasbsc). (Al4)

Since €11 = €22k = €33 = 0, Eq.(A1.4) becomes

A = ez101bac1 + €122a1 b5 + €123a1b23
+ €131a1b3¢1 + €132a1b3¢2 + €133a1 b33
+ ea102b1c1 + €212a2b1c2 + €213a2b1C3
+ €a3102b3¢1 + €232a2b3C2 + €23302b3¢3
+ €311a3b1C1 + €312a3b1C2 + €313a3b1¢3
+ €e321a3bac1 + €322a3baca + €323a300¢3. (A1.5)

With the aid of Eq.(A1.2), Eq.(A1.5) reduces to

A= a1b263 - a1b302 - a2b103 + a2b3cl + a3b102 - a3b201 (A1.6)

18Tullio Levi-Civita (1872-1941), Italian mathematician and physicist who is best known for his work on
tensor calculus. He was a student of Ricci.
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c
Ct

The following scheme may be used to obtain the result in Eq.(A1.6): (a) Copy the first
two columns on the left of the determinant. (b) The first positive term results from the
product of the three elements along the main diagonal in the original determinant; the
second positive term results from the product of the three elements along a line parallel
to and above the main diagonal; and the third positive term results from the product of
the three elements along a parallel line above the previous line. (c) The first negative term
results from the product of the three elements along a diagonal starting with ¢; and ending

with a3; subsequent negative terms result from products along lines parallel to and below
the previous line.

ay bl (&} ay b1
az by c2 | az by .
as b3 c3 | a3 b3

The result from this scheme is, of course, the same as that in Eq.(A1.6) and is written as

A = aibocs + bicgas + cragbs — (Clbza:; + ar1cbs + by (1203).

1.8.2 The Laplace Development by Minors
The result in Eq.(A1.6) may be written in the form

A = ay(bycs — bzcz) — aa(bics — bscr) + as(bica — bocy)

by ¢ h h a
= — . 1.
W bs cs bs c3 tas by (ALT)
where 22 22 = bycs — byco.
3 C3

The procedure of expressing A in the form given in Eq.(A1.7) may be generalized to
obtain the value of an nth-order determinant. In Eq.(A1.7), it is seen that the expansion
of a third-order determinant is expressed as a linear combination of the product of an
element and a second-order determinant. Careful examination of Eq.(A1.7) reveals that
the second-order determinant is the determinant obtained by omitting the elements in the
row and column in which the multiplying element (the element in front of the second-order
determinant) appears in the original determinant. The resulting second-order determinant
is called a minor. Thus the minor of a; is obtained in the following manner: eliminate
the row and column containing a;.

ar b ¢ | out
as by c2
az by c3

out

The minor of a; is therefore
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In the general nth-order determinant, the sign (—1)"* is associated with the minor of
the element in the ith row and the jth column. The minor with its sign (~1)**7 is called
the cofactor. For the general determinant

a1 a2 ... Qin
A =detA=]| ,
Qp1 Gp2 ... Gpp
the value in terms of cofactors is given by
n
|4] = Zaiinj for any 1. (A1.8)
j=1

The relation in Eq.(A1.8) is called the Laplace development. Expanding it along the
first row gives 7 = 1. For example,

2
a;y G2 ij
|[4] = 9 am becomes |4 = jz:;aijAw = anA" + appA®?
where
A' = (=1)"*"ag| = a3 and AY = (-1)""|an| = —an. (AL9)

On substituting Eq.(A1.9) into the expression for |A|, we obtain the expected result
|A| = anag — aipag.

Unlike matrices (see page 60), determinants may be evaluated to yield a number.

1.9 Summary of Some Properties of Determinants
The following are properties of determinants which may be readily proved.

1. The value of a determinant is not changed if corresponding rows and columns are

interchanged.
a, b c a; Gz ag
A = | a2 b2 C [ = bl b2 b3
az b3 c3 c1 ¢ €3

2. If a multiple of one column is added (row by row) to another column or if a multiple
of one row is added (column by column) to another row, the value of the determinant
is unchanged.

a bl 5] a;, + kbl bl C a; + Zag bl + eb:; G+ ZC;;
A= as bz C | =|az+ kbg bg C | = ag bg Co
as b3 c3 as + kb3 b3 C3 as bs C3
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3. If each element of a column or row is zero, the value of the determinant is zero.

0 by ¢ a bh
A=|0b c|=|0 0 0|=0.
0 b3 C3 as b3 C3

4. If two columns or rows are identical, the value of the determinant is zero.

a b o G G
A= a9 b2 C | = | Q2 b2 Cy | = 0.
a b o az b3 c3

5. If two column or rows are proportional, the value of the determinant is zero.

ay lca1 C a) bl C1
A=|ay kay o |=]| aa by ¢ |=0.
as lca3 C3 Zag a)g ZCz

6. If two column or rows are interchanged, the sign of the determinant is changed.

a b a a bh a c2 b ap
A=la b a|l=—|c2 by a2 |=|c1 b1 a
as by c3 c3 by ag cs b3 a3

7. If each element of a column or row is multiplied by the same number, the resulting
determinant is multiplied by that same number.

ay b1 kCl Ical kbl kCl ay b1 Cq
A= as bg kCQ = (17 b2 Co =k ao b2 Co
as b3 kCg as b3 C3 as b3 C3



Chapter 2

Modern Algebraic Methods in
Physics

2.1 Introduction

In modern (abstract) algebra, arithmetic operations are generalized and applied to objects
other than real numbers. As with most of pure mathematics, modern algebra is normally
presented as an axiomatic study consisting of theorems and proofs. This axiomatic approach
to the subject may well be responsible for long delays in the use of newly developed modern
algebraic concepts in physics. It is now clearly recognized that certain elements of modern
algebra are invaluable in mathematical physics. Many excellent texts on modern (abstract)
algebra exist, and we make no attempt at an axiomatic presentation. The presentation in
this chapter is intended to define, explain, and give examples of certain modern algebraic
concepts that are use through mathematical physics and will be used in subsequent chapters
of this book.

In quantum mechanics and certain other areas of physics, physical quantities are repre-
sented by linear operators on a vector space. While this approach may seem far removed
from an experimental process, it makes possible the development of these subject areas by
use of rigorous mathematical procedures. Moreover, agreement between calculated results
obtained by use of this formal (or abstract) approach with experimentally measured values
has given credence to this formulation. Mathematical operations involving linear operators
are often carried out by use of matrices since linear operators may be represented by matri-
ces. Hence a knowledge of vector spaces, linear operators, and matrix analysis is required
in many areas of physics. An introductory presentation of matrix analysis with examples
is given in the next Section. Then, basic concepts of vector spaces, including topological
spaces, are explained, and definitions of groups, rings, fields, and algebras are given. A
study of some of the material in the section on topological spaces may be deferred until it
is actually needed in Chapters 11 and 12.

Analytic Methodss in Physics. Charlie Harper
Copyright © 1999 WILEY-VCH Verlag Berlin GmbH, Berlin
ISBN: 3-527-40216-0
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2.2 Matrix Analysis

The term ” matrix”’ was introduced by Cayley!, and matrix theory was developed by Cayley,
Hamilton?, and Sylvester® in the study of simultaneous linear equations.

Matrices were rarely used by physicists prior to 1925. Today, matrices are used in most
areas of physics. A matrix is a rectangular array of quantities,

an aig ... din
o1 Aoy ... adon

e , 2.1)
aAmi Qm2 -.. QOmn

where the a;; are elements (of the ith row and jth column); they may be real or complex
numbers or functions. When ¢ = j, the element is a diagonal element, and the element is
off-diagonal when 4 # j. The above general matrix A has m rows and 7 columns and is
a matrix of order m x n (m by n). If m = n, the matrix is a square matrix. The main
diagonal of a square matrix consists of the elements aj1, @22, ... ,Gnp-

The row matrix is written as

A=((111 a2 ... aln)7

and the column matrix is written as

Two matrices, A and B, of the same order are said to be equal iff (if and only if) a;; = b;;
for all ¢ and j (the symbol V is often used by mathematicians to mean ”for all”). For
example, z = 2 for A = B where

(1) = ne(3)

If a;;j =0 forall sand j(V1,j), then A issaid to be a null matrix. For example, the
2 x 2 null matrix is given by
00
A= ( 00 ) .

The multiplication of a matrix A by a scalar k is given by kA = ka;; for all ¢ and j;

for example,
1 2 2 4
2 ( 3 1 ) - ( 6 2 ) ’

Note that k£ may be negative and/or a fraction as well as complex.

! Arthur Cayley (1821-1895), English mathematician who made important contributions to advance pure
mathematics.

2Sir William Rowan Hamilton (1805-1865), Irish mathematician who made important contributions in
mathematics and physics.

3James Joseph Sylvester (1814-1897), English mathematician who is known for his use of matrix theory
to study higher dimensional geometry. He coined the term discriminant.
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2.2.1 Matrix Operations

Matrix Addition The operation of addition (or subtraction) for two matrices is defined
iff they have the same order. For two n x m matrices A and B, addition (subtraction)
is defined as

C=A+B (2.2)

where c¢;; = a;; £b;; for all ¢ and j; for example,

3 14\ (1 -1 2 " 2 2 2
4 00/ \3 0 1 10 -1)°
Also, the following laws are valid for addition (subtraction) of matrices of the same order:

Commutative law: A+ B=B+ A
Associative law: (A+ B)+C=A+ (B+C).

Matrix Multiplication For matrices A and B, two kinds of products are defined; they
are called the matrix product, AB, and the direct product, A ® B.

Elements of C in the matrix product C = AB are obtained by use of the following
definition:

8
cij =Y Gixbig (2.3)
k=1

where the orders of A, B, and C are m x s, s X m, and n X m, respectively. Note that
the matrix product is defined for conformable matrices only; this means that the number of
columns of A must equal the number of rows of B. As is clear from the above definition
of the matrix product, the commutative law of multiplication is not, in general, valid for
the matrix product, AB # BA. The associative law of multiplication, however, is valid
for the matrix product, A(BC) = (AB)C.

Consider
by b
A= ail Qa2 B= 11 12)_
(021 a2 and ba1 a2

Here the matrix products become

AB = a1l a2 bin b2
a21 Q22 bar b
_ a11b11 + a12bi2 @11 big + G122 )
anbiy + aggbar a2 b1z + G22boo

and

BA = biia11 + bi2ass  briayn + biiaae )
ba1G11 + banai2  b21G12 + bogage
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00 00y (00O d
01)\23)7\23 an
00 00)_ (00
2 3 01/} \o 3/
In this example, note that the matrix product is not commutative. Consider the following
system of linear equations:

For example,

Iz+y+22=3
2t — 3y —z=-3
c+2y+z=4.

In matrix form, the above system of three linear equations may be written as

3.1 2 T 3
2 -3 -1 y | =1 -3
1 2 1 z 4

The direct product (also called tensor product) is defined for general matrices. If A is
an n X n matrix and B is an m X m matrix, then the direct product A ® B is an
nm X nm matrix and is defined by

C=AQ®B where Cik,jp = a,-jbkp. (24)
by b
A= an 012) d B=( 11 12)’
( Ao Q922 an b21 bZZ

B apB
A®B= a1 12
( anB axB

anby anbiz aiebn aibie
anbar aubx ai2bn a2
anbn anbiz abn  axnbn
agbor aoibr Ggebn  anba

If

then

Consider the following two matrices:

01 1 0
01=<10) and 03=(0_1>.

The direct product o; ® o3 is given by

0 X o3 ].Xa'g)

al®03=(1x03 0 X o3
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Division by a Matrix The operation of division is not defined for matrices. The notion
of the inverse of a square matrix, discussed below, is introduced to serve a similar purpose.
The Derivative of a Matrix The derivative of a matrix respect to a variable s equals
the derivative of each element with respect to s separately; for example,

d(z & 2 _ 1 322 0

dz\e® 0 322 )] "\ —e® 0 6z )"
The Integral of a Matrix The integral of a matrix with respect to a variable s equals
the integral of each element with respect to s separately; for example,

z z* 2 z2/2 /4 2z ¢ Cy 3
/ ( e® 0 322 dz = —e?* ¢ + g 0 ¢ /)°
Partitioned Matrices Thus far, we have assumed that the elements of matrices are

numbers or functions. The elements, however, may themselves be matrices. That is to say,
a matrix may be partitioned. The following is one way of partitioning a 3 x 3 matrix:

a;l a2 - M3

A= au a2 Doams | b bip
e .. e Py b21 b22
asy azz 433

The indicated ¥'s are called submatrices. For partitioned matrices, the usual operations
are valid.

2.2.2 Properties of Arbitrary Matrices

The Transpose of a Matrix The transpose of an arbitrary matrix A is written as
AT and is obtained by interchanging corresponding rows and columns of A; if we write
A = a;;, then AT =a;;. For example,

13
A:(é‘olf) and AT=| -1 0
9 1

Note that the transpose (operator) operation reverses the order of matrix multiplication,
(AB)T = BTAT.

The Complex Conjugate of a Matrix For z =z +1y, z is the real part and y is the
imaginary part of z. The quantity i is given by i = /—1. The complex conjugate A*
of an arbitrary matrix A is formed by taking the complex conjugate (changing the sign

of the imaginary part) of each element; hence we have A* = aj;. For example,

(243 4-5i . 2-3i 445
A_( A 4i) and A_( 3 _4i).

If A*= A, then A is a real matrix.



64 CHAPTER 2. MODERN ALGEBRAIC METHODS IN PHYSICS

The Hermitian Conjugate of a Matrix The Hermitian* conjugate A' (also known as
the Hermitian operator, A¥) of an arbitrary matrix A is obtained by taking the complex
conjugate of the matrix (each element) and then the transpose of the complex conjugate
matrix. For example,

(243 4-5i
A‘( 3 4 )

At (2-3 4+5i\ _(2-3 3
- 3 —41 T\ 445 —4i )’
The Hermitian operation reverses the order of matrix multiplication, (AB)! = BtA!.

2.2.3 Special Square Matrices

The Identity Matrix A matrix defined by I = §;; where IA = AI is called an
identity matrix. Elements of the Kronecker® delta, 4;;, have the following property:

_J 1 for i=j c
i _{ 0 for i#j. (2:5)
The 3 x 3 unit matrix is given by
1 00
I=]1010
001

Diagonal Matrices The diagonal alignment of elements in a matrix extending from
the upper left to the lower right is called the principal or main diagonal. The diagonal
matrix is given by D = d;;6;;. The following is an example of a 3 x 3 diagonal matrix:

2 0 O
D=0 -10
0 0 4

Singular Matrices If det|A| = 0, then A is said to be a singular matrix. For

example,
10
A—(O 0) or det|A|=0.

Cofactor Matrices The cofactor matrix is written as AC and is defined by A = AY.
The ij-th element of the cofactor of A% is the determinant of a submatrix obtained by
striking the sth row and the jth column of A and choosing the sign (—1)**7. For example,

a1l G2 3 A AR A8
A= an axn axa and A= | A% A2 AB
as @z as3 A3l A32 433

“Charles Hermite (1822-1901), French mathematician who is known for his work in number theory,
algebra, and the theory of equations.

5Leopold Kronecker (1823-1891), German mathematician who was an advocate of the reduction of all
mathematics to arguments involving only integers and finite number of steps. He is known for the remark
”God created the integers, all else is the result of man”.



2.2. MATRIX ANALYSIS 65

where
a a
All (_1)1+1 Qg2 023 . A2 = (_1)1+2 21 023 ,
azp as3 a3 0433
13 _ 143 | Q21 @22 21 _ 2+1| Q12 @13
A = (-1)t3] 8 , A% =(-1) ,
31 (32 azz 0433
22 _ 242 | G11 413 23 _ 2+3 | @11 (12
A% =(-1) , A¥=(-1) ,
az1 as3 asr asz
A3l — (_1)3+1 a2 @13 A32 — (_1)3+2 a1 3 and
Qo ao3 |’ an ag |’
A% = (—1)3+3 11 Q12
a1 G22

Adjoint and Self-Adjoint Matrices The adjoint of a matrix is written as adjA (or
ACT); it is defined as the cofactor transpose. For example,

(13 c_( 1 -2 or_( 1 -3
A‘(2 1)’ A‘(—3 1)’ A ‘(—2 1)
If adjA = A, then A is said to be self-adjoint. For example,
(-1 0 c_(-1 0
A_(O _1), A _( X _1), and

CT_ . _ _1 U _
A —adJA—( 5 _1)—A.

Symmetric and Antisymmetric Matrices If the transpose of A equals A (AT = A),
then A is said to by a symmetric matrix. For example,

01 01
01=(10) and a’f=(10)=01.

If AT = —A, then A is referred to as an antisymmetric matrix (skew matrix). For

example,
0 —i 0 1
02=(i OZ) and a§=(_i 8):—02.

Hermitian Matrices If the Hermitian conjugate of A equals A, At = A, then A is
said to be a Hermitian matrix. For example,

(0 - 4 o0 0.
2= 0 amd 2=\ 0 )
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hence we have
(o) =al = ( 0 —Oz ) = 0,

In quantum mechanics, observables are represented by Hermitian operators, i.e. Hermitian
matrices.
Unitary Matrices If AA' = I, then A is defined to be a unitary matrix. For

example,
01 . 01
01=(1 0), (al)T=UI=(1 0), and

(0 1Y[(01Y_(10)_
"1"1‘(1 0)(10 =lo1)=h

Orthogonal Matrices If AAT =1, then A is said to be an orthogonal matrix. For

example,
01 01
01=(10), af=(10), and

r (01 01)_(10)_
"1"1_(1 0)(1 0)_(01 =1

The Trace of a Matrix The trace of a matrix is the sum of its diagonal elements and
is written as

TrA=)" ag. (2.6)
k
For example,

2 4
A=(3 7) and TrA=24+7=09.

The Inverse of a Matrix For the inverse matrix A~!, it is required that AA-!=1.
Now, we develop the explicit expression for A~!. In the Laplace development for the value
of a determinant by use of minors (see Appendix II of Chapter 1), we have

Al =) a;A7  or  |Al&; =) ayAY.
j=1 j=1
Let bj = A¥; that is to say, B = A°T. The above equation becomes
n
|A] 8;; = Zaijbjk or I|A|=AB=AA°T where & =I.
=1
On dividing the above equation by |A|, we obtain
ACT
I=4A [—] .
4]
The quantity in brackets must be A~! since AA~! =1,

2.7)
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Example 25 Find the inverse of

A=(;f)

Solution : For A, we have |A|=1-6= -5,
Al A2 1 -2 1 -3
c — cT _
A—(lgl !22>_( 3 1) and A —( 9 1).

The inverse of A is therefore

The above equation for A~! is correct since AA™! = 1.

Example 26 By use of the matriz method, solve the following system of linear equations:

T+3y=2
2z +y = 3.

Solution : In matrix form we write this system of equations as AX = C' where

() 5 () m e (3)

The solution of AX =C is

cT

A -
X=A‘IC=W where |A| = -5 and ACT=( ! 3).

We therefore find that

x_(*® _1/1 -3 2\ _(7/5
“\y /) s5\-2 1 37 \1/5 -
The solutions are x =7/5 and y=1/5.

For a system of linear equations involving n variables and m equations AX = C,
the following three possible outcomes exist: (a) A unique solution exists, and the system
is called consistent. (b) Multiple solutions exist or the system has an infinite number of
solutions, and the system is said to be undetermined. (c) No solution exists, and the system
is called inconsistent.
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2.2.4 The Eigenvalue Problem

The importance of eigenvalue problems in mathematical physics cannot be overemphasized.
The mathematical development of linear operators and eigenvalue equations is presented
on page 73. In general, it is assumed that associated with each linear operator is a set of
functions and corresponding numbers such that Awu; = A;u; where A (also written as A
and can be put in matrix form) is a linear operator, u; are eigenfunctions, and A; are known
as eigenvalues. The matrix form of an eigenvalue equation is AX = AIX or (A—\)X =0
where A is represented by a square matrix; the condition for a nontrivial solution of this
equation is

|A— Il =0. (2.8)

The above equation is called the secular equation (or characteristic equation) of A.
The eigenvalues are just the roots of the secular equation and are obtained by expanding
the determinant

ain — A a2 A1
a2 ap— A - a
A-anj=| "o (2.9)
An1 An2 ot Gua— A

Example 27 Find the eigenvalues of

a=(31),

Solution : In this case the secular equation reduces to

‘ 3;’\ 2i/\ ‘:(3—,\)(2—,\)—2
=(A-1)A-4)
=0.

The eigenvalues are A=1 and A = 4.

The secular equation may be written as |A — AI| = 0 = ¢(\) where ¢(\) is the nth
degree polynomial (nth degree matrix) which can be represented as

(V) = Gl + 1A + ...+ Pu 1 AVTH + PN (2.10)

The well-known Cayley-Hamilton theorem states that A = A satisfies the above nth
degree polynomial. Loosely stated, we say that a matrix satisfies its own characteristic
equation, ¢(A) = 0.

Example 28 Illustrate the Cayley-Hamilton theorem for matriz A where
1 2 0

A=12 -1 0

0 0 1
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Solution : For matrix A, we have

1—X 2 0
2 —1—-X 0 |[=-5+45x+X2-)%
0 0 1—X

$(A) =

The corresponding third-degree polynomial (third-degree matrix) is

P(A) = Gol + 1A + $2)? + $3)°

where ¢y = —5,¢, =5,¢, =1, and ¢3 = —1. By use of the Cayley-Hamilton theorem, we
may write

d(\) = ol + p1A + o A% + $3A> =0

-5 0 0 5 10 0 5 00
= 0 -5 0 +<10 -5 0 +(050
0 0 -5 0 0 5 001
-5 =10 0
+| -10 5 0 .
0 0 -1

2.2.5 Rotations in Two and Three Dimensions

Consider the rotation of the two-dimensional Cartesian system in Fig. 2.1 where

B=6 since 6+y=x/2 and y+f=u/2.

4y
y/
(x,y)
- — — — = (X7Y)
~
// \ l 9 s
- L,\\lcos X
-~
el lllﬁ o
- leiI'lB\
\’ |
xcos @ \,»:l/ﬂ
(7] )
N X

Figure 2.1
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The relations between the prime and unprime axes are
7' =zcosh + (£ + £p)sinf = zcosf + ysin b

and

!

y' = (y — £y) cos = ycosf — zsinf.

In matrix form, the above equations may be written as

z'\ _( cosf sing z -
(y’)_<—sin6 cosﬁ)(y) or X'=RX.

In the above equation, we have

(7 _ cos@ sinf [z
X_(y')’ Rz_(—sinﬁ cosﬁ)’ and X_(y)‘

The matrix R, is called the 2 x 2 rotation matrix.
The above transformation equations may be written as

2
IE: = Z)\ij:vj (’L = 1,2).
j=1

In the above equations, we have
ToT, YTy Tz, y oo, and Ay = cos(z, z;).

In three dimensions, we have

3
T = Z)\,-jmj where \;; = cos(z},z;) (5,7 =1,2,3).
ey

Example 29 Find the transformation equations for a 90° rotation about the T3-azis (see
Fig. 2.2).

Solution : Here the elements, A;;, of the rotation matrix are given by

Ao A2 Az | =] -1 00
Az Az Asg 0 01
The second matrix results from the following relations:
A1 =cos(z],z1) =cos(n/2) =0 Mgz = cos(zh, z3) = cos(w/2) =0
Mg = cos(z},z2) =cos0° =1 A1 = cos(xh, z1) = cos(m/2) =
A1z = cos(z], z3) = cos(m/2) =0 Az = cos(z}, 22) = cos(n/2) =
Aot =cos(zh, 1) =cosm=—1 A3z = cos(z§,z3) =cos0° =
A2 = cos(zh, z2) = cos(m/2) =0
In matrix form, the transformation equations become
.’1,"1 0 10 T T2
z |=(-100 T2 | =| —m
x5 0 01 z3 T3

From the above equations, we have z} = 5, z) = —z,, and z} = 3.
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Figure 2.2

2.3 Essentials of Vector Spaces

2.3.1 Basic Definitions

A vector space (over the real numbers) is a nonempty set, a collection of well-defined
objects, V' for which the operations of addition and scalar multiplication are valid. The
operation of addition is a rule that assigns to every pair of elements u,w € V (the symbol €
is used by mathematicians to means ”is an element of” or is in”) a third element u+w € V.
The operation of scalar multiplication is a rule that assigns to each real number a € R
(where R is the set of all real numbers) and each element u € V an element au € V.
These operations must satisfy the following conditions where v € V and b € R; quantities
u,w, and a are as above.

The Operation of Addition
1. Closure: u+weV

2. Associative law: (v +v) +w =u+ (v+w)

3. Commutative law: v+v=v+u

4. Existence of a zero element: v+ 0=u% and 0+u=1u

5. Existence of negatives: u+ (—u)=0 and —u+u=0

The Operation of Scalar Multiplication

6. Closure: a(u +w),(a+b)u, and abu eV

7. alu+w)=av+aw; (a+bu=au+bu

(ab)u = a(bu); Ou=0; and lu=u
The above properties for scalar multiplication may be extended to complex numbers. The
elements of V are called vectors. The term ”vector”, in this context, is used in an abstract

mathematical sense; it is the generalization of a physical vector discussed in Chapter 1 to
cases of arbitrary dimensions.
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If
n
> au=0 (2.11)
i=1

implies that a; = 0 for all i, then the set of vectors {u;} is said to be linearly inde-
pendent; here {a;} is a set of scalars.

A subset S = {uy,us,...,up} of V is a basis iff:
1. the elements of S are linearly independent and

2. every element of V can be expressed as a linear combination of the elements of S.
We may write
W= 01Uy + GUs + ... + ayu, where {a;} €R and weV. (2.12)

For example, the 1i,j,k unit vectors described in Chapter 1 are the basis for the three-
dimensional Cartesian space (a three-dimensional vector space).

A vector space V is said to be n-dimensional, dimV = n, if it contains a maximum of
n linearly independent vectors. A vector space is called infinite-dimensional if there
exists an arbitrarily large (but denumerable) number of linearly independent vectors in the
space.

2.3.2 Mapping and Linear Operators

A function (or mapping), f : A+ B, from a set A into a set B is a rule that assigns
to each element @ € A an element b € B, b= f(a). A pictorial representation of the map
f:A— B isgiven in Fig. 2.3.

Figure 2.3

In Fig. 2.4, the composite map go f of the maps f: A— B and g: B~ C isillustrated.
The composition of maps is read from right to left since it means map f then map g. The
map f: A— B issaid to be one-to-one (injective, faithful, or 1-1) if each element of
B has at most one element of A mapped into it. This map is called onto (surjective) if
each element of B has at least one element of A mapped into it. A map that is both 1-1
and onto is referred to as bijective.



2.3. ESSENTIALS OF VECTOR SPACES 73

gof

A B C
Figure 2.4

A function T which transforms (or maps) elements in vector space V into elements in
vector space W, T : V — W, is a linear function if T(u +v) = T(u) + T(v) and
T(au) = aT(u) are valid for all u,v € V and for all a € R. The set of all linear functions
on the vector space V is a vector space V* with the same dimension as V, i.e. dimV =
dimV™*. The vector space V* is called the dual of the vector space V.

The case T : V — V is referred to as a linear operator on V. The number A is
an eigenvalue (characteristic value) of the linear operator T if there exists a nonzero
vector u (called the eigenfunction or eigenvector of T) in V' for which T(u)=Au. In
mathematical physics, (a) linear operators are normally differential operators; (b) eigenvalue
equations are differential equations; and (c) eigenfunctions (solutions) form a vector space
and satisfy certain imposed boundary conditions.

Example 30 Show that the linear operator T may be represented by a matriz.

Solution : Consider some basis vectors e; = {ej,ez,...,€,} in the vector space V and
note that the transformation to a new basis e} may be written as

g
! T — e
e;=Te; = E Tjie;.
j=i

The last step in the above equation results from the fact that €] can be expanded in terms
of the original basis, e;. By use of the definition of a basis and use of the above equation,
an arbitrary vector v in V may be written as

8

u= XS: uje;; therefore Tu = 23: u;Te; = Z {iTjiui} ej =u'.
i=1

i=1 i=1 j=1

From the above equation, it is clear that

g
! E :

uj = Tj,-u,-.
i=1

In terms of the original basis, the above equation relates the transformed components wu

to the original components. The set of coefficients Tj; (j-th row and i-th column) form
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the matrix representation for the linear operator 7. The matrix representation of a linear
operator is consistent with the fact that matrix multiplication is not in general commutative,
as can be shown from the definition on page 61.

In order for two n X n matrices A and B to represent the same linear operator T, they
must be related by A = S~'BS where S is an invertible n x n matrix; here, we say that
A is similar to B, and the previous equation is called a similarity transformation.

Example 31 A Quantum Mechanical Illustration of a Linear Operator. Show that the
commutator of z and p, equals ih; that is to say, show that [z,p;] = ih where the
operator © — z and the operator p — —iAV or p, — —ihd/0Oz.

Solution : Linear operators, in contrast to ordinary numbers and functions, do not always
commute; that is to say, AB is not always equal BA where A and B are linear
operators. The difference AB — BA is symbolically written as [A, B] and is called the
commutator of A and B.
In quantum mechanics, linear operators that are Hermitian play a central role, and it is
understood that simultaneous specification of the physical quantities represented by two
noncommuting Hermitian linear operators, [A,B] # 0, cannot be made (uncertainty
principle). The value of the commutator [z,p,] is obtained by operating on some function
1(z); we obtain

[:E,px]’l/) = (zp; — P22)Y = _Zh{g—:ﬁ - %} =ihy

or [z,p;] =ik

The linear function 7' : V — W is said to be a homomorphism if the following two
conditions are satisfied for all u,v eV :

1. T(u+v) =T(u) + T(v),
2. T(uv) = T(u)T (v).

An isomorphism T :V — W from V to W is a homomorphism that is 1-1 and onto
W. In this case, V and W are said to be isomorphic. Isomorphism means that the
properties of V' and W are indistinguishable even though the vectors of V and W are
different. That is to say, T : V — W is 1-1 if it is not possible for two distinct vectors in
V' to be assigned the same vector in W by the linear transformation T; also, note that
dimV = dimW and that every n-dimensional vector space is isomorphic to R", an n-tuple
of real numbers (z',z?,...,z"). An isomorphism of a vector space onto itself is called an
automorphism.

2.3.3 Inner Product and Norm

The inner product on V, denoted by (,), is a function which assigns to each pair of
vectors in V' a real number satisfying the following four conditions.
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—

. (u,u) >0 where (u,u)=0iff u=0;

[N

. {u, w) = (w,u);

w

. {u,w+v) = (u,w) + (u,v); and

=~

a (u,w) = {au,w) where a € R

Operationally, the inner product of two vectors u,w € R® is defined as
n
(v, w) = Z U;W;. (2.13)
i=1

If the inner product of two vectors equals zero, (u,w) = 0, the vectors are said to be
orthogonal. In R3, the inner product equals the dot product to two vectors as defined in
Chapter 1.

The function ||||: V= R is a normon V if the map satisfies the following properties.

1 ||lau| =a|u| forall uw€ V and for all a € R;
2. ||lu+w| < ||u|| + ||w| for all w,w € V; and

3. |lul| >0 for ueV and u #0.

A vector space with a norm defined on it is called a normed vector space. The norm
of a vector u is defined to be the real number given by

lull = v/ w). (2.14)

When ||u|| = 1, u is called a unit vector. The norm on R" is called the Euclidean®
norm, and the normed space (R",|-[|) is an n-dimensional Euclidean space.

2.3.4 The Legendre Transformation

The Legendre” transformation is a very useful mathematical tool for changing an indepen-
dent variable of a function without altering the mathematical or physical contents of the
function. The Legendre transformation transforms functions on a vector space to functions
on the dual space. Here we illustrate the Legendre transformation method by considering
a function y = f(z) such that f "(z) > 0 (a convex function).

The objective of the Legendre transform is accomplished by noting that the curve y(z)
may be represented as the envelop of a family of tangents (see Fig. 2.5b). The equation
¢ = ¢(p), where p = dy/dz is the slope of an arbitrary tangent, completely represents
y(z) in Fig. 2.5a. The equation of the arbitrary tangent in Fig 2.5a is

y(z) = pz + ¢(p)-

SEuclid (circa 365-275 BC), Greek mathematician whose treatment of elementary plane geometry serves
as the basis for most beginning courses on the subject.

7Adrien Marie Legendre (1752-1833), French mathematician who is known for his work on number
theory and elliptic integrals. He invented the method of least squares.
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)\’ y
4 A
) y(x)
()
» X > X
(a) (b)
Figure 2.5

The function ¢(p) is called the Legendre transform of y(z), and it contains the same
mathematical and physical information as y(z). The above equation is normally written
as

_%
T dz’

d
#p) = y(@) ~sp =y(z) ~s.  where
If p # dy/dz, then the Legendre transformation of y(z) to ¢(p) cannot be made. In
simple terms, the Legendre transformation may be stated as follows:

1d functi
new function = old function — (old variable) [d(o d unCthn)] .

d(old variable)

2.3.5 Topological Spaces

The purpose of this Section is to give appropriate definitions and explanation of concepts
needed in the discussion of Lie groups and in Chapter 12. It is placed here because the
material is an extension of elementary concepts of vector spaces. The study of this particular
subsection may be deferred until needed (e.g., used as a reference as needed). We begin
with a some definitions from the theory of sets. A set with no elements is called an empty
set (or null set), denoted by (. The intersection of two sets A and B is, in symbolic
form, written as AN B (A intersects B), and the union of A and B is denoted by
AU B (A union B). These operations are illustrated in Fig. 2.6.

A A

AUB ANB
Figure 2.6
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Elements of AU B are the points that belong to at least one of sets A and B, and
elements of AN B are the points that belong to both A and B. A set of points in a
metric space (see the definition below) M is defined to be closed if the set contains all
its limit points in M; here, the null set is taken to be closed, and the whole of M is
closed. For example, the set of points 0 < z <1 on the Euclidean line is closed, denoted
with brackets [0,1]. A set of points in a metric space M is said to be open in M if every
point of the set has a neighborhood consisting of points of the set alone; here, the null set
is regarded as being open. The set of points 0 < z < 1 on the Euclidean line is open,
denoted parentheses (0,1). Theset 0< z <1 on the Euclidean line is neither open nor
closed, denoted with brackets [0,1).

Let X be a nonempty set and T be a collection of subsets of X such that the following
are valid.

1. Both the empty set and X itself arein T,i.e. 0, X € T.

2. The collection T 1is closed under finite intersections; if #1,ts,...,%, € T, then
tNtN...Nt, €T.

3. The collection T is closed under arbitrary unions; ifeach a € I and t, € T, then
Uerts € T. (It holds that unions of any collection of subsets of T are in T'.)

The pair of objects (X,T), often written as X, is called a topological space (or space).
The set X is said to be the underlying set, and the collection T is called the topology
on the set X. Topology is a study of continuity; more precisely, it is a study of properties
that are invariant under continuous deformation. A collection of subsets of X, {z;}, is
said to cover X if the unions of {z;} are contained in X such that each point of X
is in one of the subsets. The elements of T are called (even defined as) open sets (If all
the points of a set are themselves elements of the set, the set is said to be closed.), and
the elements of X for a manifold are its points. A manifold is the extension of curves
and surfaces to arbitrary dimensions. An n-dimensional manifold (n-dimensional space) is
locally like R™ (or Euclidean space), but it may be very different from R™ globally.

A topological space X is called Hausdorff® space (also known as separated space) if,
in addition to the above three conditions, the following condition is satisfied: If a and &
are any two distinct points of X, then there exists a pair of open sets O, and O, such
that O, N O, for a € O, and be O,. The space X = R" is a Hausdorff space. A space
X is said to be compact if every infinite sequence of points t1,1s,... (¢ € X) contains a
subsequence of points that converges to a point such that the point is in X. For example,
a sphere and a torus in Euclidean space are contained in a finite portion of the space and
would be classified as compact. A paraboloid in Euclidean space, however, would not be
compact.

A chart (an open piece of surface) C of the set X is defined as a subset t of X together
with a continuous invertible map f : £ — R" called the coordinate function. The subset
t corresponds to a local region being like R" for a manifold, and f may be considered the
introduction of local coordinates. Two charts C; and C, with overlapping neighbourhoods
and coordinate functions f; and f; are said to be compatible if the composition map

8Felix Hausdorff (1869-1942), German mathematician known for the introduction of fractional dimen-
sions in connection with small-scale structure of mathematical shapes.
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fiofy' is differentiable. An atlas (system of charts) is a set of compatible charts covering
X. A differentiable manifold M is a Hausdorff topological space with an atlas.

A metric space (X,d) is a topological space where the open sets are provided by a
distance function d(z,y), d : X x X — R, with the following properties for z,y,z € X.
(In this section, the distance function, d(z,y), should not be confused with the letter for
the differential ”d”.)

1. d(z,y) > 0and d(z,y) =0 iff z=y;
y) = d(y, z);
3. d(z, 2) < d(z,y) + d(y, 2).

2. d(z,

For z=(z,Zs,...) and y = (¥1,¥s,...), note that

co

d(z,9) = llo —yll = Y (@ — )" (2.15)

i=1

In a metric space (X,d), a sequence aj,as,... of points of X is called a Cauchy?®
sequence if for each ¢ > 0 there is a positive integer N such that d(ap,am) < €
whenever n,m > N. A metric space X is called complete if every Cauchy sequence in
X converges to a point in X.

As previously explained, a normed space (V,||-]|) is a vector space V together with a
norm ||-|| defined on it. A complete normed vector space with either real or complex
numbers as scalars is called a Banach!® space.

An inner product space (V,(, )) is a vector space V together with an inner product (, )
defined on it. A complete inner product space is called a Hilbert!! space and is extremely
important in many areas of physics, including quantum mechanics.

Thus far, the notations used are those preferred by mathematicians. In quantum physics,
a vector in Hilbert space, the state of a system, may be denoted by [¢), and the inner
product (v,¢) is written as (1| ¢) where |¢) is called the ket vector and (y|, a vector
in the dual space, is called the bra vector. This latter notation is due to Dirac!2. In Dirac
notation, the following relations are valid.

. (W] ad) = a (¥ 9);
- (a¥] ¢) = a" (¥] ¢),
3. (| &) = (8] ¥);

4. (| ¥) = [|l; and

9 Augustin Louis Cauchy (1789-1857), French mathematician and mathematical physicist known for his
work in geometry, complex variable theory, and differential equations.

10Stefan Banach (1892-1945), Polish mathematician known for his work in functional analysis and topo-
logical spaces.

1David Hilbert (1862-1943), German mathematician known for his work in algebraic number theory,
functional analysis, mathematical physics, and the calculus of variations. In 1895, he became Professor of
Mathematics at the University of Gottingen, where he remained for the rest of his life.

12Paul Adrien Maurice Dirac (1902-1984), English physicist who made fundamental contributions to the
development of quantum mechanics. In 1933, he shared the Nobel Prize for physics with Erwin Schrédinger.

[SC R
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5. (Y| Athy) = <Af¢n,‘ ¥y,) for operator A.

In terms of the Schrédinger notation, we have
Wl = [ vE@owds  and
) = [~ v (@) 49(a )iz = (9] Av).

The average (expectation value) of an observable represented by the Hermitian operator A
for a system in state (z,t) is denoted by (A).

2.3.6 Manifolds

The basic ideas of topology evolved during the mid-19th century as a result of studies in
algebra and analytic geometry. Topology is concerned with those properties of geometric
figures that are invariant under continuous transformations (deformations). Two figures are
topologically equivalent if one can be deformed into the other by such processes as bending,
stretching, and/or twisting (but not tearing, cutting, or folding); it is for this reason that
topology is sometimes referred to as ”rubber-sheet geometry”. For example, the following
figures are topologically identical, i.e. homeomorphic: (a) circle and square, (b) sphere
and cylinder, and (c) torus (doughnut shape) and cup. Homotopy is the theory of the
relation between topologically identical spaces.

Geometry (figures) may be reduced to the following three points of view:

1. point set — figures are consider sets of points having such properties as being open,
closed, and compact;

2. complexes (combinatorial) — figures are combinations of simple figures (simplexes)
joined together in a regular manner (e.g., points + line segments = triangles);

3. analytic geometry — here, one assigns equations to geometrical figures; (e.g., z+y =1
is a straight line); and

4. manifolds — coordinates have no intrinsic geometric meaning, and the description of
figures is independent of the choice of coordinates. The main task in the theory of
manifolds is the search for geometric invariances.

Physical problems generally involve continuous spaces (e.g., 3-D space, 4-D space-time, and
phase space), and these spaces have their characteristic geometric properties. In differential
geometry, a systematic study of common properties of spaces is made. The definition of a
differentiable manifold (or simply a manifold) is a mathematical definition of space. More
precisely, a manifold is a topological space in which some neighborhood of each point is
like R* (Euclidean space). Globally (taken as a whole), a manifold may be different from
R"; for example, a one-dimensional manifold is a straight line which is locally and globally
like R'. A circle S%, however, is locally like R!, but it is not like R! globally. (Here,
S' is not related to the S used in the following.) The definitions in this subsection are
background material for Chapter 12.
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2.4 Essential Algebraic Structures

2.4.1 Definition of a Group

In modern (abstract) algebra, the main idea is to abstract from algebra its basic proper-
ties and study the subject in terms of these properties. A group is one of the simplest
and most basic as well as the most widely studied algebraic structure. We begin the in-
troduction of the theory of groups with the definition of a binary operation. A closed
binary operation % on a set S is a rule that assigns to each ordered pair of elements (a, b)
in S (also written as a,b € S) some (since it could be a or b) element in S. Ordered
pair allows for the possibility that (a,b) and (b,a) could be assigned a different element.
Typical binary operations are + (addition) and - or x (multiplication). When the
binary operation is multiplication, the notation ab is normally used for a-b or a x b.
A group (G,x) is a set of distinct elements G such that the following axioms hold.

1. The binary operation is closed: axb€ G for all a,b € G|

2. The binary operation is associative: (axb)xc=ax* (bxc) for all a,b,c € G,

3. There is an identity element e in G such that: exa =a*e = a for all a € G; and
4. There is an inverse element a~!in G such that: a 'xa=a*a ! =e foralla € G.

The notation (G,*) is normally written as G. The symbol E is often used for e (the
identity); use of e or E for the identity element is for the German word Einheit which
means unity. The set of all real integers with addition as the operation (0 is the identity
element and —a is the inverse) is a group. The set of all positive real integers, excluding
zero, with addition as the operation is not a group since there is no identity element or
inverse element.

If G is finite (i.e., it contains a finite number of elements), then G is said to be a finite
group, and the number of elements of G is called its order; otherwise G is an infinite
group. If the elements of an infinite group are denumerable, the group is called discrete;
for example, the set of all integers is a discrete group. An infinite group is said to be a
continuous group if the elements are nondenumerable (e.g., the set of all real numbers).
The elements of a continuous group are characterized by a set of real parameters such
that at least one of the parameters varies continuously over a certain interval. In addition,
continuity conditions are imposed on the elements of the group manifold.

A nonempty subset H of the group G that is closed under the same operation as G
and is itself a group is called a subgroup of G. Note that a group always has at least
two subgroups, the identity and the group itself. A group with no subgroups except itself
and the identity is called a simple group. The Jordan-Hélder theorem (stated in 1869)
shows that simple groups are the foundation for all groups. If all the elements of a group
can be found by taking powers of a single element, the group is said to be a cyclic group
{a,a%,a®,... ,a® = e}. The algebraic structure for which axiom 4 above does not hold
is called a semigroup; for example, the set of all positive integers, including zero, is a
semigroup. Semigroups have many applications in computer science.

Let H be a subgroup of G. The sets of elements of the form aH for all a € G are called
left cosets of H in G, and the sets of elements Ha for all a € G are called the right
cosets of H in G. Note that cosets are not, in general, groups.
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A group G is abelian'? if its binary operation is commutative, axb = bxa. Since ordinary
multiplication is used, all cyclic groups must be abelian. Addition is the binary operation
for the abelian group whose elements are all the real integers where e =0 and a ! = —qa
for all a € G. A group G is non-abelian (with or without the dash) if its binary operation
is not commutative, a x b # b x a. When matrix multiplication is the binary operation, the
corresponding groups are typically non-abelian groups.

Element a of group G is said to be conjugate to an element b € G if there exist an
element ¢ € G such that a = cbc™!. Note that if elements a and b are conjugate to
element c, then a and b are conjugate to each other (i.e., a,b, and ¢ are conjugate
elements). The concept of class refers to elements that are all conjugate to each other and
is useful when treating groups with large numbers of elements. If H is a subgroup of G,
then the set of elements aha™! for any a € G and all h € H is a subgroup of G called
the conjugate subgroup of H in G.If aha ! = H forall a € G and all h € H, then
H is said to be an invariant subgroup in G; note that a second definition of invariant
subgroup may be written as aH = Ha (the left coset equals the right coset) for all a € G.
A map of group G onto group G', ¢ : G = G, is a homomorphism if the following
condition holds.

¢(ab) = d(a)p(b) for all a,b € G. (2.16)

The operation on the left-hand side of Eq.(2.16) takes place in G and the operation on
the right-hand side takes place in G'. An isomorphism is a homomorphism that is one
to one. Equation (2.16) expresses the relation between the binary operations of the two
groups (the structures of the two groups). As is discussed below, these two concepts are
extremely useful when applying group theory the physical problems.

2.4.2 Definitions of Rings and Fields

In this subsection, we consider algebraic structures involving two binary operations. The
integers and real numbers with addition and multiplication as the binary operations are
such structures. Consider the set (R, +, x) with addition and multiplication as the two
binary operations in R. The set R is called a ring if R is an abelian group with respect
to addition and is a semigroup with respect to multiplication; that is to say, (R,+, x) is a
ring if the following three conditions are satisfied:

1. (R,+) is an abelian group with zero;
2. (R, +) is closed (there may be a unit); and
3. multiplication distributes over addition,
alb+c)=ab+ac and (b+cla=ba+ca forall a,b,c€R.

A ring consisting of a single element 0 is called a zero ring.
A field is a set (F,+, X} such that the following conditions are satisfied:

13Niels Henrik Abel (1802-1829), Norwegian mathematician who was instrumental in establishing math-
ematical analysis on a rigorous basis. At the age of 18, he earned wide recognition with his first paper.
(Now, it is common to use a small "a” in the word abelian.)
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1. (F,+) is an abelian group;
2. (F,+) excluding zero, forms a group; and
3. multiplication distributes over addition,
alb+c)=ab+ac and (b+cla=ba+ca foral a,b,ce€F.

Note that a field is a ring, but not all rings are fields. The real, rational, and complex
numbers are familiar fields generally used in mathematical physics.

An algebra consists of a vector space V' over a field F together with a binary operation
of multiplication on the set of vectors of V' such that the following conditions are satisfied
forall a€ F and for all «,8,y€V .

1. (ac)B = a(ef) = a(aB);
2. (a+ B)y=ay+ By, and

3. a(f+7)=af+ .

If (in addition to the above three conditions) the following fourth condition is valid,
then V is said to be an associative algebra over F.

4. (af)y=a(By) forall a,B,y€V.

The algebra V over a field F is a division algebra over F if V has a unity for
multiplication and contains a multiplicative inverse of each non-zero element.

2.4.3 A Primer on Group Theory in Physics

This subsection is devoted to the basic definitions and essential concepts of group theory
needed in physics. From the point of view of mathematical physics, the basic idea of group
theory is a result of comparisons of numerous examples occurring in different subjects such
as (a) groups of geometric transformations, (b) groups of numbers, and (c) groups of per-
mutations. Groups in these three areas all obey the same four basic axioms, and theorems
in abstract group theory apply to all groups independent of the branch of mathematics or
area of physics in which the groups occur. In physics, the meaning of the group elements
is ascertained (the expression ”put in by hand” is often used) from some physical situation
(e.g., a conservation law). The two basic approaches in the study of groups are (a) com-
binatorial: determining the properties of a group by finding all the subgroups of a group
and (b) mapping: a homomorphism of group G onto group G’ that is one to one (an
isomorphism) which means that properties of G may be found from properties of G’, even
if the elements of the two groups have very different meaning.

Concepts of symmetry and invariance permeate many problems in most areas of physics,
and group theory is a tool for the systematic study of these concepts. Applications of
the mathematical theory of groups, however, seems almost an impossible task because
of the extremely large number of groups used in various areas of chemistry and physics.
It is, therefore, extremely useful to understand how to determine the number of distinct
(non-isomorphic) groups that exists for a given order n. In this connection, the group
multiplication table (group table or Cayley table) is useful. In a multiplication table,
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1.

2.

we list the group elements across the top and down the left side and

each element may appear only once in each row and in each column (e.g., the elements
in each row and in each column are distinct).

The general multiplication table is given below.

General Multiplication Table

x|lela |6 [c |d
e |lejla |b |c |d
a |[a|la® [abl|ac|ad
b || b|ba |8 |bc|bd
c |lcleca|chb|c? |ed
d|d|da]|db|dc|d?

We now give a summary of the first six cases.

1.

2.

n = 1; there is only one distinct structure: a group having only the identity {e}.

n = 2; there is only one distinct structure: a group with elements {e,a} where a? = ¢;
for example, {1,-1}.

n = 3; there is only one distinct structure: a cyclic group with elements {a, a?,a® = €} .

n = 4; there are two distinct groups:

(a) a cyclic group with elements {e,a,b,c} where a?=b,a® =c, and a* = e and

(b) a noncyclic group with elements {a, a?,a?, a* = e} where ab=c, bc=a,ca=1b,

and a? = b? = ¢? = e; this group is known as the group V (Viergruppe) or Klein
4-group.

. m = J; there is only one distinct structure: a cyclic group with elements

{a,a?,a% a*,a’® = e} .

. n = 6; there are two distinct groups:

(a) a cyclic group with elements {a,a?,a?, a*,a® a% = e} and
(b) a noncyclic and non-abelian group with elements {a,b,c,d, f,e} where
ad=P=e==f’=¢d®=bac=f,ca=d, bc=d,....

Although tedious, it is possible to extend the above analysis to higher values of n.

The simplest nontrivial group has elements {e, a}; this is an abelian group with ordinary
multiplication as the group operation. The multiplication table for G2 with elements {e,a}
is given below.
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The Multiplication Table for Group G»

X e

e
a|e

The abelian group G4 with elements {e,a, b, c} and ordinary multiplication as the operation
has the multiplication table given below.

The Multiplication Table for Group G4

Xl|lela|b|c |
e |lelal|bd|c
a |lale|c|bd
b ||blclale
cllclble|a

A group with elements {1, 1,4, —4} is an isomorphism onto Gj.

Quaternions were introduced by Hamilton, and they form a four-dimensional vector space
over the real numbers with basis vectors denoted by 1,%,j,k. A quaternion is a vector
T = a+bi+cj+dk where a,b,c, and d are real. The algebraic operations for quaternions are
ordinary addition, scalar multiplication, and quaternion multiplication. The quaternion
product of any two basis vectors is defined by the requirement that 1 acts as the identity
and that

1. 2=352=k?=-1; (ie, 1,4, and k are imaginary) and
2.4j=—ji=k; jk=—-kj=14 and ki=—1ik=].

The quaternion group Qg is the set {1, —1,%, —1, 5, —j, k, —k} with the multiplication table
given as follows.

The Multiplication Table for the Quaternion Group Qg

x | 1| =1 d | =] j|l—j| k|-k
L1 [=1]4 =] jl—-4] k[-k
—1[=1] 1] = i|—=7] 7|k &k
i i | =i =1] 1| k|—-k|—=j| 3J
—i| =il i |1 [=1]-k| K] j|—J
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Also, the quaternion group may be defined by use of the following matrices with matrix
multiplication as the group operation.

(10 (-1 0 (=i 0 (i 0
gL = 01 y G2 = 0 -1 y 43 = 0 i y Q4 = 0 —; )
(0 i (0 =i (01 (0 -1
gs = i 0 y 0o = —i 0 y @7 = -1 0 , g = 1 0 .

The Symmetry Group The set of all transformations that preserve the distances be-
tween all pairs of points of an object and that bring the object into coincidence with itself
characterizes the symmetry of the object. Each of these transformations is called a sym-
metry transformation, and the set of all such transformations forms a group called the
symmetry group of the object. Symmetry transformations are composed of the following
three fundamental types of transformations: (a) rotation through a definite angle about
some axis, (b) reflection (or inversion), and (c) translation (parallel displacement).

The first systematic application of group theory in chemistry and physics involved the
development of the 32 point groups and 230 space groups, symmetry groups, which char-
acterize crystal symmetries. The point groups are composed of combinations of rotations
and reflections (or inversions) about a fixed origin (a point; hence the name point groups)
that leave a crystal lattice unchanged. The space groups are composed of combinations
of rotations, reflections (or inversions), and translations that leave the crystal invariant.

The Symmetric Group Group theory evolved from the study of finite permutations.
A permutation of the set {ai,as,...,a,} is a one to one mapping of the set onto itself
(e.g., 123 — 132); the set S, of all permutations and the operation of composition
of mappings form a group called the symmetric group of degree n. The order of the
symmetric group is the number of ways of arranging n objects which is n!. A subgroup of
Sy, is called a permutation group. Every finite group may be written as a permutation
group since every finite group is isomorphic to a permutation group of its elements. The
symmetric group is widely used in various areas of physics such as quantum mechanics,
atomic structure and identical particles, nuclear physics, and elementary particle theory.
In addition, the symmetric group plays an important role in the study of continuous groups.

Lie Groups Lie!* developed the theory of continuous transformation groups and their role
in the theory of differential equations. While the theory of finite groups is some what self
contained, the theory of Lie groups (i.e., continuous groups) is a fundamental tool in other
areas such as differential topology and differential geometry, number theory, differential
equations, quantum mechanics, and elementary particle physics. A Lie group is a group
as well as an n-dimensional analytic manifold which means that the elements are labeled by
a set of continuous parameters with a multiplication law that depends smoothly (concepts
of continuity, connectedness, and compactness apply) on the parameters. A group is said
to be compact if all its elements are represented by points within a finite region of the
manifold; otherwise it is said to be noncompact. A group is called simply connected
if any closed loop in the manifold can be continuously deformed to a point. Our focus is

4Sophus Lie (1842-1899), Norwegian mathematician who made major contributions in the theory of
continuous groups of transformations and in differential equations.
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applications in quantum mechanics, and the group elements will be considered to be linear
operators that are Hermitian.

Any element of a compact Lie group which can be obtained from the identity by continuous
change in the parameters can be written in the form

exp (z Xn: aka) . (2.17)

In the above expression, the a; are real parameters and X} are linearly independent
Hermitian operators called generators. While all the properties of a finite group can be
obtained from its multiplication table, the commutators of its generators [X;, X;] determine
the structure of the Lie group. That is to say, the commutator [X;, X;] must be a linear
combination of the generators and is written in the form

n
(X, Xj] = Zijlk where i>1 and j<n. (2.18)
k=1

In Eq.(2.18), the constants ij are called the structure constants since commutators
of pairs of generators completely determine the structure of the Lie group. The structure
constants are not unique since the generators of the Lie group are not unique. The gen-
erators of a Lie group is a Lie algebra since the set of all linear combinations aX; is
an n-dimensional vector space V with basis vectors X; and the above equation is a law
of composition between any pair of elements of the space. A linear Lie algebra (matrix
algebra) is a vector space over a field F' on which a commutator is defined such that the
following three properties hold for all z,y,z € V.

1. [z,y] €V;
2. [z,y] = —y,2]; and
3. [z, [y, 2] + [z, [z, y]] + [y, [z, 2]] = 0.

Property 3 is known as the Jacobil® identity. By use of the above three properties and
Eq.(2.18), we find that

Ck=-Ck and CFCr;+CiCri+CiCr;=0; 7=12,...,n. (2.19)

The rank of a Lie group is the minimum number of mutually commuting generators. An
operator that commutes with all the generators of a Lie group is referred to as a Casimir
operator (1931) for the Lie group. It can be shown (a theorem due to Racah, 1950) that
the number of independent Casimir operators of a Lie group equals its rank.

Matrix Groups During the period 1850-1859, Cayley, Hamilton, and Sylvester intro-
duced the concepts of matrices and matrix groups. This subsection is devoted to a discussion
of the general linear group and some of its subgroups that are widely used in physics. The
set of all non-singular n x n matrices over a field F with matrix multiplication as the

15Karl Gustav Jacob Jacobi (1804-1851), German mathematician who founded the theory of elliptic
functions. He worked on determinants and studied the functional determinant now known as the Jacobian.
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binary operation is a group called the general linear group, denoted by GL(n, F'). The
fields normally considered in physics are the real numbers, complex numbers, and quater-
nions. We will restrict this discussion to the complex numbers, and use the notation GL(n)
for GL(n,C) . Here, GL(n) is a 2n?-parameter group. The set of all n X n matrices
with determinant +1 is an important subgroup of GL(n); it is called the special linear
group, SL(n), and is a (2n? — 1)-parameter group.

The set of all non-singular orthogonal matrices (i.e., ATA = I) is a subgroup GL(n)
and is called the orthogonal group O(n), an n(n — 1)-parameter group. In mathematical
physics, the orthogonal group is viewed as the set of all orthogonal transformations in a
real n-dimensional vector space; in this case, we have the n(n — 1)/2- parameter group
O(n,R). The rotation group is a subgroup of O(n,R). Note that the determinant of an
orthogonal matrix equals +1 since

det(ATA) = detATdetA
= (detA)? since detA” = detA
=1

Hence, the parameter space of O(n,C) consists of the two disconnected pieces: (a) +1
corresponds to proper rotations and (b) —1 corresponds to reflections. Only the proper
rotations can be reached continuously from the identity, and this subgroup is called the
special orthogonal group, SO(n,R). The orthogonal group is a continuous, compact,
disconnected Lie group.

The set of all non-singular n X n unitary matrices (i.e., ATA = I) is called the unitary
group U(n,C). The unitary group is a continuous, connected, compact, n?-parameter
Lie group. The elements of the l-parameter Lie group U(1) can be generated by the
transformations (phase change) €™*. In quantum mechanics, the probability that (at time
t) a particle is in the volume element drdydz is given by ¥*Udzdydz. The quantity ¥*W¥
is called the probability density and is associated with a measurement. A transformation
of the wave function may be written as

V' =¢e™¥ and T =e MU
Note that
Uy = (efimalp*) (eima\p)
=U*¥ (invariant).

Because of the above relation, we see that U(l) is a symmetry group for any quantum
mechanical system.

The set of all n xn unitary matrices with determinant equal +1 is a subgroup of U(n,C)
called the special unitary group and is denoted by SU(n,C) or SU(n). The group
SU(n) is a continuous, compact, connected, (n® — 1)-parameter Lie group. Since

dete? = ™4

and U = e is unitary for H Hermitian, we find that SU(n) can be generated by
(n? — 1) traceless Hermitian matrices along with (n? — 1) independent parameters a;.
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When practical, one may choose the (n? — 1) generators (traceless Hermitian matrices)
and add the unit matrix to obtain the n? generators of U(n).

Representation and Realization of Abstract Groups In mathematical physics,
one prefers to work with algebraic structures (e.g., groups and fields) that can be written
explicitly so that calculations can be made. A mapping onto an algebraic structure (e.g.,
a group) that can be explicitly written and described analytically in terms of physical
quantities is called a realization, and a mapping onto a set of matrices is an example
of a representation (group representation). A mapping of one algebraic structure (e.g.,
a group) into a similar algebraic structure is called a homomorphism if it preserves
all combinatorial operations associated with that structure. Homomorphisms permit the
comparison of different groups. For example, a homomorphism of a newly discovered group
in physics and some well-known group from geometry allows much knowledge about the
new group to be ascertained. A homomorphism that is one to one such that a well defined
inverse exists is called an isomorphism. An isomorphism of an algebraic structure onto
itself is referred to as an automorphism.

The theory of group representations may be approached from the following points of view:
(a) representation by a set of non-singular matrices, due to Frobenius'® and Schur!” and
{b) representation module due to Noether!8. The matrix approach is widely used in math-
ematical physics, and we restrict our discussion to this approach. A homomorphism of a
finite group G into a group of n X n non-singular matrices is a representation of G of
degree n if

['(a)['(b) =T(ab) and T(e)=1. (2.20)

In Eq.(2.20), the quantities I'(a), I'(b), and I'(ab) are matrices associated with elements a, b,
and the product ab respectively. If this homomorphism is one to one, the representation
is said to be faithful (or an isomorphism). The transformation,

I'(a) = s7'T'(a)s,

is referred to as a similarity transformation, and it leaves the representation in Eq.(2.20)
unchanged since

I(a)['(b) = {s7'T(a)s} {s~'T'(b)s}
= s7'T'(a)'(b)s
=TI"(ab).

Here we see that the I matrices form a representation since the I' matrices form a
representation. The infinity of such representations for various s are said to be equivalent.

6Ferdinand Georg Frobenius (1849-1917), German mathematician who combined results from the theory
of algebraic equations, geometry, and number theory to obtain important results in abstract group theory.
His representation theory for finite groups has important applications in quantum mechanics. Also, he is
known for work in the theory of differential equations.

17]ssai Schur (1875-1941) was born in Mogilyov, Belarus and is known for his work on representation
theory of groups, number theory, and analysis.

8Emmy Amalie Noether (1882-1935), German mathematician who is known for her contributions to
abstract algebra. She is best known in theoretical physics for Noether’s theorem which proves a relation
between symmetries in physics and conservation laws.



2.5. PROBLEMS 89
2.5 Problems

2.1 Given A= ( i ) and B = ( 2 ) Find: (a) A+ B, (b)B — A, (c) AB, and
(d) BA.

2.2 Does AB = AC imply that B = C? Illustrate by means of an example.

2.3 Show that AB # BA for general A and B.

2.4 For the Pauli!® spin matrices

s (01 (0 =i 4ol 0
1—10702—i0 , an 03_0_17

show that (a) o} = 03 = 02 = I, (b) [01, 2] = 2i03 (cyclic), and (¢) {oj,0%} = 2d;5. The
curly brackets mean anticommutator; for example, {A,B} = AB + BA. In general,
the algebra generated by a set of quantities satisfying the relations {¢,, o, } = 26, is called
a Clifford® Algebra.
2.5 By use of a specific example, show that

d(AB) _ dA

dB
ie ~ ot

where A = A(z) and B = B(z) are two matrices.
2.6 Write the two equations indicated by

s (30) = (oo ) (58)

2.7 The rank of a matrix equals the order of the largest nonvanishing determinant contained
within the matrix. Find the rank of each of the following matrices:

1 2 -1 000
@ [4 1 5 ), ® |[000],
3 -1 6 000
2 4
0 0 2
(c) (0 0 0), and (d) —14 —28

2.8 Where it exists, calculate the trace of the matrices in Problem 2.7.

19Wolfgang Pauli (1900-1958), Austrian physicist who is known for his work in quantum theory and
particle physics. He is best known for the Pauli exclusion principle. He was awarded the Nobel Prize in
physics in 1945.

20William Kingdon Clifford (1845-1879), English mathematician who studied non-Euclidean geometry
by arguing that energy and matter are simply different types of curvature of space. He introduced a
generalization of Grassmann’s exterior algebra, now known as Clifford algebra.
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2.9 Find the transpose of the following matrices:

2 3 2 1
(a) (4), (b) (3 4 —2), and (c) (2 0 —6).
6 1 -6 1

2.10 Of the following matrices, determine which are symmetric and which are antisymmet-

ric:
1 2 5 3
(a') 2 2 -1 ) (b) 4 )
5 -1 3 0
2 -1 =2
@ |1 2 -1}, ad (@ (g i)
2 1 2
2.11 Find the inverse of the following matrix:
3 2
a=(13):
2.12 Find the Hermitian conjugate of the following matrix:

1 2 3+
A= -2 2t 0 .
-34+: 0 -1

2.13 Prove that: (a) Tr(AB) = Tr(BA) and (b) Tr(A + B) = TrA+TrB.

2.14 Prove the following: (a) (AB)T = BTAT and (b) (AB)t = BtAt.

2.15 Prove that (a) A+ Af, (b) i(A— At), and (c) AA! are all Hermitian for arbitrary A.
2.16 If A and B are two Hermitian matrices, prove that AB is Hermitian only if A and
B commute.

2.17If A is a Hermitian matrix, show that e is unitary.

2.18 Given U = e*¥. (a) Show that U is unitary if H is Hermitian. (b) Show that H
is Hermitian if U is unitary.

2.19 Show that detA” =detA.

2.20 Show that dete? = eT4.

2.21 Prove that the eigenvalues of a Hermitian matrix (Hermitian operator) are all real.
2.22 By use of the determinant method, solve the following systems of linear equations:

O W N

(a anx + aprr =k (b) z+3y=4
A91Z1 + Q992 = kg 2T — 2’y =6
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o —dy =2 z+dy+32=1

{c) y_ (d 3z+y+2:=1
2t —y=1

r+2y+2=0.

2.23 By use of the matrix method, solve the systems of equations in Problem 2.22,
2.24 Find the eigenvalues of the following matrices:

(@) (111 _12> ®) (—18 121)’ (©) (é —01> and

13 -3 5
(d) 0 4 0
-15 9 -7

2.25 Verify the Cayley-Hamilton theorem for
01
10/
2.26 By use of the Cayley-Hamilton theorem, compute the inverse of
01
10/
2.27 Solve X' = Ry X for z and y where R, isthe 2 x 2 rotation matrix.

X3

X2 X3 s

X1/

Figure 2.7 X3

2.28 By use of the matrix method, find (a) Rs, (b) |Rsl, and (c) the required transformation
equations for the indicated inversion in Fig. 2.7.
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X3 X3

\J
Y

X2 X2
Figure 2.8

2.29 By use of the matrix method, find (a) Rs, (b) |R3|, and {(c) the required transformation
equations for the indicated reflection in Fig. 2.8.

2.30 Show that the function T : V +— V defined by T'(v) = Av is a linear operator.

2.31 Given u = (-3,1) and v =(2,3). Calculate (a) (u,v) and (b) ||u].

2.32 Given
u= a11 012) and U=(b11 b12).
Gz1 Q22 b1 b2
Calculate (u,v).

2.33If AA = A, then matrix A is said to be idempotent. Calculate the determinant of
a general idempotent matrix.

2.34 If A™ equals the zero matrix for some 7, then A is said to be nilpotent. Prove that
a nilpotent matrix is singular.

2.35 Show that o;/2 are Hermitian for j = 1,2,3. The o; are the three Pauli spin
matrices.

2.36 For the quaternion group, show that the eight matrices, g; for j =1,2,...,8, define
the group with matrix multiplication as the group operation.

2.37 Write down the multiplication table for the third order group with elements given by
{a,b,e}.

2.38 Write down the multiplication table for the fifth order group with elements given by
{a,b,¢,d,e}.

2.39 If matrix A is similar to matrix B, show that matrix B is similar to matrix A.
2.40 Assume that the elements of a group are distinct and prove that elements in each row
and in each column of the multiplication table must be distinct (e.g., appear once in each
row and in each column.)

2.41 Show that the following six matrices form a group.

_(10) ,_ (1 0Y) ,_1
e_(0 1)’ A‘<0—1)’ ~2

o=3( s V' )ie=a( s W) irs( )



2.5. PROBLEMS

242 If
T(6) = ( cosf —sind >,

sind cosf

show that T(01)T(92) = T(02)T(01) = T(Gl + 92).
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Chapter 3

Functions of a Complex Variable

3.1 Introduction

The imaginary number, ¢ = /—1, was introduced into mathematics during the latter part of
the sixteenth century. Imaginary numbers are needed since certain equations, for example
z? +1 = 0, have no solutions that involve only real numbers. In mathematical physics, one
writes the solution of the equation of motion for the linear harmonic oscillator, & +w?z = 0,
in the form z(t) = Aexp(iwt). In modern optics, index of refraction is written in complex
(containing real and imaginary parts) form, and the wave function in quantum mechanics
is often a complex quantity. How physical results are obtained from complex numbers or
functions of a complex variable will be explained below. Complex variables and functions of
a complex variable are used throughout physics; this chapter is devoted to certain features
of complex variable theory that are most useful in physical applications.

3.2 Complex Variables and Their Representations
A complex variable may be written in the general form

z=g+1iy=re’. (3.1)
In Eq.(3.1),

1. z and y are the respective real and imaginary parts of z and are writtenasz = Rez
and y =Imz;

2.  is the argument (phase) of z and is written as 6 =arg z = 6, + 2mn for
n=20,1,2,...; 6, is the principal argument of z and varies from 0 to 2;

3. € = cosf + isind (Euler’s! formula); and

4. 7 = || is the absolute value (magnitude, modulus, Mod z) of z where
r= /22 +y% = +/(Re )2 + (Im z)2.

1Leonhard Euler (1707-1783), Swiss mathematician who is known for his contributions in analytic
geometry and trigonometry, calculus, and number theory.

Analytic Methods in Physics. Charlie Harper
Copyright © 1999 WILEY-VCH Verlag Berlin GmbH, Berlin
ISBN: 3-527-40216-0
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The complex conjugate of z is denoted as 2* (For convenience, Z is sometimes used to
denote complex conjugate.) and is obtain by changing the sign of the imaginary part (or
imaginary terms) of z, 2* = z — éy. In connection with the complex conjugate, we have

1. z2* = (z + iy)(z — iy) = |2|*;
2. (51 +29)* = 21 + 23; and
3. (z1/22)* = 21/ 7.

It is useful to note for physical purposes that z*z is a real quantity. Complex variables
are subject to the same algebraic laws as real variables; they are

1. Associative law of addition: 2 + (23 + 23) = (21 + 22) + 235
2. Commutative law of multiplication: z;29 = 2321;

3. Associative law of multiplication: 2 (2223) = (2122)23; and
4. Distributive law: 2z (22 + 23) = 2122 + 2123.

The algebraic operations for two complex variables are the same as for real variables and
are as follows.

1. Addition (subtraction):

21+ 22 = (21 + 1) + (@2 + i)
= (21 +22) + (%1 + y2)-

2. Multiplication:

21%9 = (.'171 + ’L.yl)(.'L'z + 'tyg)
= (2122 — Y1y2) + H(ZT1y2 + Tay1)-

3. Division (22 # 0): To facilitate the separation into real and imaginary parts, note the
technique of multiplying the numerator and denominator by the complex conjugate
of the denominator.

a_nti _nitiy s-w Tty {u@/_}
23 Tat+iys  Tat+ iy To — il =5 + 93 =5+ 93

A plane is required for the geometric representation of a complex variable; this plane is called
the complex plane or z-plane. In the z-plane, the representation of a complex variable
is done by labeling the z-axis as the real axis and labeling the y-axis as the imaginary axis;
such a rectangular diagram used to represent a point in the z-plane is sometimes referred
to as the Argand? diagram and is illustrated in Fig. 3.1.

2Jean Robert Argand (1768-1822), Swiss accountant and amateur mathematician who is known for his
geometrical interpretation of the complex number.



3.2. COMPLEX VARIABLES AND THEIR REPRESENTATIONS 97

iy
!
Z
r
4 — X
z*
Figure 3.1

Example 32 Given z = (1+1)/(2— 3¢). (a) Put z in the standard form, z +14y. Find
(b) Re z, (c) Im z, (d) Mod z, and (e) arg z. (f) Locate z on an Argand diagram.

Solution : On multiplying the numerator and denominator of z by the complex conjugate
of the denominator of 2, we obtain

Part A:
1+¢ 243 1 )
= : ——— 4+i> (standard form).
*= 93 24s 13 'yg (stendard form)
Part B:
1
Rez=——.
ez 3
Part C:
5
I =—.
SEARET
Part D:
1
Mod 2z = v/(Re2)? + (Im2)?2 = E\/% =r.
Part E:

—reosf=—= and y=rsinf=—
z=rcosf=—72 and y=rsinf=1g

arg 2 =0 =tan™" (%) = tan"'(=5).

Part F: The Argand diagram representation of z is given in Fig. 3.2.
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iy
A

Figure 3.2

Example 33 Show that (a) |z122]| = |21]|22|, (8) arg (z122) = arg 21+ arg z2, and (c) arg
(21/22) = arg z:1— arg 2.

Solution :
Part A: By use of |z| = /22 + 32, we find that

Joa| 22l = /22 + 92423 + 8 = /(@2 + 92 (@} + 1) = |zal.
Part B: By use of z = z = iy = re®, we find that

arg(z12) = arg { (r1€”) (r2e'?)} = arg(riroe™® %)) = arg 2, + arg z,.

Part C: Since z =z + iy = re’, we may write

10,
arg a) = ne.a = TLei(01-02) arg z; — arg z.
z9 7"26l 2 T2

3.3 The de Moivre Theorem
On raising Eq.(3.1) to the nth power, one obtains
2" =1"(cosf +isin0)" = r"e™; 2 # 0. (3.2)

Equation (3.2) is known as the de Moivre® theorem and is valid for positive, negative,
and fractional n; it is often written as

(cos @ + isin )" = con(nb) + isin(nh). (3.3)

3Abraham de Moivre (1667-1754), French mathematician who is known for his work in analytic and
probability theory. He is best known for the trigonometric formula, now known as de Moivre’s theorem.
He was a friend of Newton.
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The de Moivre theorem may be used to obtain certain relations involving sines and cosines of
multiple angles. On considering de Moivre’s theorem for n = 2 and equating corresponding
real and imaginary parts, the following well-known relations are obtained: cos 26 = cos?6—
sin®f and sin20 = 2cosfsind. For n > 2, the binomial expansion

oo

Q+zr=3 M"i—wzn where n! =n(n —1)(n—2)... (factorial)
2 Win— )

may be used to expand the left-hand side of de Moivre’s theorem, Eq.(3.3).
By use of de Moivre’s theorem, the nth root of 2z may be written as

Zm = pl/m {cos (6"_}-72”) + isin (M) } . (3.4)
n

In Eq.(3.4), k=0,1,2,... ,n — 1, the quantity /™ represents the positive nth root of r,
and 0 <0, <27,

Example 34 By use of de Moivre’s theorem, find the square root of 1.

Solution : The square root of 7 is obtained when 7 =1 (since rcos =0 and r sinf = 1),
6, =m/2,and n =2 are substituted in Eq.(3.4); for k=0 and 1 respectively, we obtain

i/ = cos (g) +isin (g) = % where k=0

and

. 3 . 3T 142
172 = — in[ —}=—+ h k=1.
7 cos(4)+zs1n(4> \/5 where

The above two roots may be checked for correctness. The Argand diagram representation
of these roots is given in Fig. 3.3. The procedure used to calculate the square root of ¢
can be applied to calculate the nth root of any quantity z (z # 0).

3.4 Analytic Functions of a Complex Variable

A function, f(z), of a complex variable is itself a complex quantity and may be written in
terms of real and imaginary parts in the following manner:

f(2) = u(z,y) +v(z,y). (3.5)

The representations of z and f(z) in the complex plane are respectively called z-plane
and w-plane diagrams. The number w = f(z) is the value of f(z) at z. A single-valued
function f(z) is said to be analytic (regular, holomorphic) at z if it has a unique
derivative at 2z and at every point in the neighborhood of z5. If a function fails to be
analytic at some point zp but is analytic at points in the neighborhood of zp, then z is
said to be a singular point (singularity) of f(z). In this connection, note that the
function 1/z is analytic everywhere except at z = 0 (singular point).
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Figure 3.3

By analogy with real variables, the derivative of a function of a complex variable is defined
as

f'(z) = lim

Az—0 Az

flz+Az)— f(2)] _ ... [Au+iAv
] - Algylo [Az + iAy] ’

Equation (3.5), where Af = Au +iAv and Az = Az + iAy, was used to obtain the
above equation. In the above equation, there is an infinite number of ways of obtaining
Az — 0 in the z-plane, and the result is independent of the choice. For convenience, we
select the simple scheme illustrated in Fig. 3.4.

r

Figure 3.4

Case 1 Az =0 and iAy— 0.

' 1
filz) = iAIyIBo

Au +1Av __ia_u+3v
- 8y oy

iAy dy
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The partial derivatives are used in the above equation since v and v are functions of both
z and y.
Case 2 iAy=0 and Az — 0.

f3(z) = lim

Az—0

Au+iAv] _ Ou +i ov
Az T8z oz

If f(2) is analytic in the region T (see Fig. 3.4), it is required to have a unique derivative

at every point in the region; therefore, we require that f{(z) = fj(z). As a result of this

requirement, we obtain the following relations:

Ou Ov Ou ov
% = -a—y an % = —a—m (3‘6)

To obtain the relations in Eq.(3.6), we equated corresponding real and imaginary parts of
the equations for f/(z) and fi(z). The relations in Eq.(3.6) are the well-known Cauchy-
Riemann? relations; they constitute the necessary conditions for a unique derivative of
f(z) at each point within the region I', analytic f(z).
On differentiating the equations in Eq.(3.6) with respect to £ and y respectively, we
obtain

Py % 8%u 0%

2% Oz0y an 8y Oydz’

If uand v possess continuous partial derivatives to second order (smooth functions), the
above equations lead to

Pu + Fu _ 0; similarly, we obtain i + O _
or? T a2 Y or? ' oy?

0. (3.7
The equations in Eq.(3.7) are two-dimensional Laplace equations, and functions » and v
(called harmonic or conjugate functions) are, therefore, solutions of the two-dimensional
Laplace equations. The theory of analytic functions is extremely useful in solving problems
that involve the two-dimensional Laplace equation such as problems in electrostatics and
fluid mechanics. Also, note that the function f(z) satisfies the two-dimensional Laplace
equation.

Example 35 (a) Show that v(z,y) = 3x%y — 4 is a harmonic function. (b) Find the
conjugate function, u(z,y). (c¢) Find the analytic function [(z) = u(z,y) + iv(z,y).

Solution :
Part A: If

v v

R R

4Georg Friedrich Bernhard Riemann (1826-1866), German mathematician whose ideas concerning the
geometry of space had a profound effect on the development of modern theoretical physics. He clarified
the notion of an integral by defining what is now known as the Riemann integral. His Ph.D. thesis was
supervised by Gauss at Gottingen.
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then v is said to be a harmonic function. Note that

Ov 8%
o~ oY o
o 9 ., 0%

Adding the above two second derivative terms shows that v is a harmonic function.
Part B: Note that

v

ou ov ou
By -— and — =6zy=—

=3 -3y = Oz Oz oy’

Integrating the two above equations with respect to z and y respectively, we obtain
u(z,y) =2* - 3zy’ +qu(y)  and  u(z,y) = —3zy” + gs(z)

or

7% = 32y + g1(y) = —3zy° + g2(z).

In the above equation, we must have g¢,(y) =0 and g,(z) = z*. The required conjugate
function is therefore given by

u(z,y) = 23 — 3zy%.
Part C: The corresponding analytic function is given by
f(z) = 2® — 3zy® + i(3x%y — o*) = 22
Note that f(z) satisfies the two-dimensional Laplace equation,

8% f(2) N 2%f(z)

Oz? y? =0.

3.5 Contour Integrals

The integral (in the Riemannian sense) of a function of a complex variable f(z) is defined
in a manner that is analogous to the case of real variable theory and may be written as

/ f)dz=  lim { y fE)(z — zjl)} = /Zb f(z)d=. (3.8)
C j=1 Za

|2i—2z-1]—0

In Eq.(3.8), the path (or contour) of integration C is divided into n segments by points
zj, and &; is a point between 2; and z;_; (see Fig. 3.5). In complex variable theory, the
integral in Eq.(3.8) is referred to as the contour integral of f(z) along the path C from
2, to 2. The integral around a closed path is denoted as § f(z)dz. The sign convention
for contour integrals is as follows: When the path of integration is traversed such that the
region of interest is on the left, the integral is considered to be positive.
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iy

Figure 3.5

Regions in the complex plane are classified as either simply connected or multiply connected.
Simply connected regions are regions without holes and possess the following three
equivalent properties: (a) every closed path within the region contains only points that
belong to the region, (b) every closed path within the region can be shrunk to a point (e.g.,
the region can be continuously deformed to a point), and (c) every scissors cut starting
at an arbitrary point on the boundary and finishing at another point on the boundary
separates the region into two unconnected pieces. Regions that are not simply connected
are said to be multiply connected.

Three extremely important relations involving integrals of functions of a complex variable
are (a) the Cauchy integral theorem, (b) the Cauchy integral formula, and (c) differentiation
inside the sign of integration; these integral relations will now be discussed.

The Cauchy Integral Theorem If f(z) is analytic throughout a simply connected
region I' and C is a closed path within T, then

}{ f(z)dz =0. (3.9)
C

The curl theorem (in two dimensions) due to Stokes and the Cauchy-Riemann conditions
can be used to prove this theorem (see Problem 3.13). We, however, apply the following
simple idea from topology to develop a proof of this theorem. Consider two paths I
and T, between points ¢ and b in region I' (see Fig. 3.6). Path Iy may be
deformed continuously into path I'; since the region is simply connected and f(2) is
analytic throughout the region, and we may write

f(R)dz = | f(z)d=.
I 2

If the direction along path TI'; is reversed, the value of the integral along I'; becomes
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P

Figure 3.6

negative, and we obtain proof of the Cauchy integral theorem

—f f(x)dz= | f(2)dz or f f(2)dz =0.
T T2 c

The Cauchy integral theorem applies to special cases that are important in physics where
the value of the integral of a function depends only on the end points and is independent of
the path taken between the end points. The inverse of this theorem is known as Morera’s
theorem.

The Cauchy Integral Formula This formula is another important and extremely useful
relation concerning the integral of a function of a complex variable; it may be written as

f(z)dz .
g m = 27rzf(z0). (3.10)
C C
. <o
T r
Figure 3.7

In Eq.(3.10), point 2 is within C, and f(z) is assumed to be analytic within C; the
integrand, f(z2)/(z — 20), is clearly not analytic at z = 2. Figure 3.7 is used to derive the
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Cauchy integral formula in Eq.(3.10). Note that Fig. 3.7(a) is equivalent to Fig. 3.7(b)
as r approaches zero. Also, note that f(z)/(z — zp) is analytic in the region between C
and C'. Counterclockwise integration around C is positive by convention, and clockwise
integration around C' is negative; hence, we may apply Cauchy’s integral theorem and
obtain

f(z)dz [ f(z)dz _

c R — R ct R — R

0.

Around path C', we set z — 2o = rei®; hence dz = ire®®dd. As r approaches zero, the
above equation reduces to

f(2)dz _ [*" f(z0 +re?)ire’dd
cz—z Jo reif
2T .
= ’I,/ f(Zo + ’r'e'o)dﬂ
0
= 2mi f(2). (3.10")

The above equation establishes the Cauchy integral formula. The first two important
integral relation may be summary as

1 [ f(e)dz _ (=) for z inside C
2mi Jo z—2 | O for 2z outside C.

Differentiation Inside the Sign of Integration The derivative of f(z) with respect

to z is defined by
o= o, L2012

Az—0 Az

On applying Cauchy’s integral formula to the two functions on the right-hand side of the
above equation, we obtain

76 = Jim, { - e+ 82) - 1)}

1 1(€)de 1(6)de
_Aliglo{QniAz[ﬁS—z—Az_ cf—z]}
1 f(§)d¢

" omi c(E—2)%

The above equation results from combining the integrands of the previous two integrals and
finding the limit as Az goes to zero. For the n-th derivative of f(z} with respect to z,
we have

F™(20) = F™(2) lsmse = n 72% (3.11)

2mi

Equation (3.11) is valid when f(£) is analytic within C, 2z is within C and the
integrand is not analytic at 2 = z,. Equation (3.11) will be used below in developing the
Taylor expansion for f(z).
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3.6 The Taylor Series and Zeros of f(z)

In this Section, we develop the Taylor® series for the expansion of a function of a complex
variable and explain the classification of the zeros of f(2) by use the Taylor expansion.

3.6.1 The Taylor Series

If f(2) is analytic in some region I' and C is a circle within " with center at zp, then
f(2) can be expanded in a Taylor series in the form

HOEDY %f‘"’(%) =Y an(z— 20)™ (3.12)

The series in Eq.(3.12) converges absolutely and uniformly for |z — 29| < R where R is
the radius of convergence.

Figure 3.8

Proof: From the Cauchy integral formula, we note that (see Fig. 3.8)
_ 1 [ fe 6.13)

T wmi Jo -2

f(2)

where |z — 2| < Rand R =|¢ — z]|. To prove that the Taylor expansion holds, a series
expansion for 1/(¢ — z) will be developed. For convenience, we set

Z—2
f—Zo'

5Brook Taylor (1685-1731), English mathematician who added to mathematics a new branch known as
the calculus of finite differences, invented integration by parts, and discovered the formula known as the
Taylor expansion.

Ky =
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Subtracting unity from both sides of the above equation yields

z—2z &E—2
1-Kp=1- = :
. E—20 &—2
Inverting both sides of the above equation, we obtain
1 f — 2 e
1_ KT 5_ 2 "Z:; T I Tl

The above equation results from noting that the left-hand side is just the sum of a geometric
series (see the Appendix at the end of this chapter). The required expansion for 1/(¢ — 2)
is obtained by dividing the above equation by & — zy; the result is

5iz=gfzoi(giiﬂ)"=i%. (3.14)

n=0 n=0
Substituting Eq.(3.14) into Eq.(3.13), we obtain
f - f 5) (z — zo)"d¢
% g { _ zo)n+1 }
R f(&)dg
B Z{ = (g ) |
=y (Z ) VR ) ()

3
]
S

or
)
=3 nl 1(z0) =) _ an(z = 20)" (3.12))
n=0 n=0
where a, = f™(z)/n!. Equation (3.12') is the required Taylor series. When z =0, the
Taylor series becomes the Maclaurin® series.

Example 36 Ezpand 1/(1 — 2) in a Taylor series about z = i and find the radius of
convergence.

Solution : The Taylor expansion of f(z) is obtained and applied in a manner similar to
that in real variable theory. We have

f@=(1-27 f@)=(1-27%
@) =20-27 fO)=3-2(1-2)"

The general term is

f™(z) = nl(1 — z)~ "+,

SColin Maclaurin (1698-1746), Scottish mathematician who worked in algebra, geometry, and calculus.
He is best known for using a special case of the Taylor series, now known as the Maclaurin series.
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The required expansion is therefore
00 oC .
(z—9)"
(=) f ) = 3> 22
=25 20

The radius of convergence of the above series where a, =1/(1 — i)™ is

R = lim

n—00

_|1—z|—\[

An41

3.6.2 Zeros of f(z)

Classification of the zeros of f(z) is made by use of Taylor’s expansion of f(z) as follows:

1. If f(2) =0 at z =z, the point 2, is said to be a zero of f(z).

2. If ag=a, =---ay_1 =0 but a, # 0, then the Taylor expansion becomes
o]
f(2) = am(z — 20)™ + Qa1 (z — )™ 4+ -+ = Z an(z — 20)"™.
n=m

In this case, f(z) is said to have a zero of order m at z = 2. A zero of order
unity (m = 1) is called a simple zero. In this connection (m = 1), note that

f(z) _ f(Zo) + (z_ Zo)f’(zo) + (z_zﬂ) f(2)( ) 4o
The conditions

f(20)=0 and f'(z)#0 (3.15)

indicate the existence of a simple zero for f(z) at z = 2.

3.7 The Laurent Expansion

The Laurent” expansion of f(z) has no real variable counterpart and is key in discussions
of singularities and the calculus of residues. If f(z) is analytic in the interior and on the
boundary of the circular ring between two circles C; and C, (see Fig. 3.9.), it may be
represented as a Laurent expansion which has the form

Zan (z — z)" Z L (3.16)

L= (2 — )™

The a, and b, coeflicients in Eq.(3.16) are respectively given by

_ g i@
=g, o (1m0
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Figure 3.9
@ )
Figure 3.10
and
bn, — ]' f(g)dé' (nl — 17 27 )

"= om , (€ — 20) 711

Proof: 1In Fig. 3.9, make a scissors cut from Cj to C; as shown in Fig. 3.10. On applying
the Cauchy integral formula in Fig. 3.10, we find that

o= L 1Ok 1 [ sed

=il e il tes @ TG (3.17)
The functions fa(2) and fp(z) are given respectively by
falz) = L M and fp(z) = L f(f)df' (3.18)

T 2mi fo, -2 C2mi Jg, 2 ¢

Consider f4(z) where £ ison C) and z is inside the region between C; and C,.

"Matthieu Paul Hermann Laurent (1841-1908) was born in Luxembourg and is known for his work in
complex variable theory.
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Using the expansion for 1/(£ — 2) developed in Eq.(3.14), we may write

1 F)de _ < n
fA(Z)=% o E—2 ="X:%an(3—zo) .

The a, coefficients in the above equation are given by

lfﬂ& and |2 — 20| < |€ - 2.
c

" om . (€ — )t

Note that the a, cannot be represented by f™(z)/n!since fa(z) is not analytic at z = 2
as in the case of the Taylor expansion.

Figure 3.11

Now consider the integral over C2, fp, where it is assumed that € isnowon Cjand =z
is inside the ring (see Fig. 3.11). We need the appropriate expansion for 1/(z —§); it is
obtained by use of a method similar to that used in the Taylor series case. Here we set

£ —
z—2

K; =

Subtracting unity from both sides of the above equation and inverting the resulting equa-
tion, we obtain

1 2=z
I—KL_ Z—f -

o0
ZKE where  |Kp| < 1.
n=0

Dividing the above equation by 2z — 2y yields

1 o~ (£ —z0)"
— % )
Z—fz,?:om where |6 — 2| < |z — 2| since |Ki|<1.
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On substituting the above equation into fp(2) in Eq.(3.18), we obtain

fP(Z) 27.” fz({_) 66
- Z{ﬁ% $ 10 - arae
oy L fEde
> o fw e
- L e

= h b = — —_—
Z (z— ZO = zw nere On 2mi Je, (e zo)—n'+1

Hence the Laurent expansion in Eq.(3.16) is established when expressions for f4(z) and
fp(2) are substituted into Eq.(3.17).

The Laurent expansion consists of two series. The first series in Eq.(3.16) is called the
analytic part, fa(z), of the expansion, and it converges everywhere inside C;. The second
series, fp(z), is referred to as the principal part, and it converges everywhere outside Cs.
If f(z) is analytic within C3, the principal part equals zero, and the Laurent expansion
reduces to the Taylor expansion since a, = f(™(z)/n! in that case. In addition to
Eq.(3.16), the Laurent expansion can be written in the following useful forms:

Form 2:

f(z) = g z—zo"+nz1 TR (3.19q)
where
d
aF%fCl% (n=01,..) (3.195)
and
d
a_n=% c(ff—(fj)——% (n=1,2,,...) (3.19¢)
Form 3:
f(2)= D Anlz—2)" (3.20a)
where
- ﬁi% (n=0,+1,£2,...). (3.200)

In Form 3, C is any circle between C; and Cs.
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Example 37 By the direct evaluation of A, find the Laurent expansion for

1
f(z) = =) about zy =0.
Solution : Here we have
f(z) = Z n(z— 20)" Z ApZ"

where

_ 1 (&)d¢
An = 2#@,7((5 2)™H1
f(§)d¢

27-” §n+1

_ 1y A

N %?g EHE(E-1)

1 d¢

T om fi (1 - ¢)

__ 1 1 o

=5 {gmgs }d£ (e < 1).
The A, coefficient therefore becomes

|
27['1 Z% £n k+2 2_7[-i Z 27r16n_k+2’1
k=0

_{ -1 for n>-1

“ 10 for n<-1.
The required expansion becomes
[ o] oo [e o]
I S I
n=—o00 n=—1 n=-1

The problem of developing the Laurent expansion for a function by evaluating the A,
coefficient (or a, and a_,) is, except for simple functions, tedious. It is sometimes ad-
vantageous to use a procedure similar to that illustrated in the following two Examples to
obtain the required Laurent expansion for a function.

Example 38 Find the Laurent expansion for f(z) = 1/z(z — 1) by use of a geometric
sertes.

Solution :

16)= o = l(m)h-zz—_zz (14 < 1).

n=-1

The above result is the same as that obtained in the previous Example.
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Example 39 Find the Laurent ezpansion for f(z) =1/z(z —2) in the regions
(a) 0<|2|<2 and (b)2 < |z| < oo

Solution :
Part A: For the region 0 < |z <2, f(2) =1/2(z —2) may be written as

10=-3: (=) =1 5 &) (5 <x k<)

1 o +2+z3+ 1 1 z 2
Y 2 92 923 )

Part B: In the region 2 < |z| < 00, f(2) = 1/2(z — 2) may be written as

f(z) = (liZ/z Zzz(g> ( <1 |z|>2)

L1422, L, 2,7,
22 z 22 TR AT

The quantity a_; is called the residue of f(z) at z = %z and may be obtained from
Eq.(3.19c); it is given by

1
Note that 2mia_; is the value of the above 1ntegra1. When the residue can be determined
directly, an indirect method of evaluating definite integrals may be developed. We will
exploit this observation and develop indirect methods of evaluating certain classes of definite
integrals. First, the classification of isolated singularities and calculations of corresponding
residues are considered in the next Chapter.

3.8 Problems

3.1 Show that =z + z* is real, whereas z — z* is imaginary.
3.2 Find the real and imaginary parts of:
1 z—1 1

2z z+1’ (d) 22

3.2 Show that |cos@ + isinf| = 1.
3.3 Show that |z| = |2*].
3.4 Find the real part, modulus, and argument of:

@ 5 0 1+ © 1 @ ()

35If z+1/z is real, prove that either Im z =0 or |z|=1.
3.6 Write the following in polar form:

(a) z—24; (b) 2=-2+2.
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3.7 Find and graph all the roots of:
(@ 22=1=0; (b) 3 () V-1, d) V3+4.
3.8 In polar coordinates, show that the Cauchy-Riemann conditions become
ou_1ov | 10u_ v
or —ro0 T ro0 or
3.9 Show that the following are analytic functions of z:

(a) €5 (b) €% (o) e™.

310 If f(2) = u(z,y) +iv(z,y) =22 +32+4, find v and v.
3.11 Show that the following functions are harmonic and find the corresponding conjugate
function:

(a) u=2%-3zy°+3z -3y (b) v=2zy+3y
(c) u=2%-3zy® (c) u=é€"cosy.

3.12 Find A and B so that 2% 4+ Azy + By? is a harmonic function.

3.13 By use of the curl theorem in two dimensions, prove the Cauchy integral theorem.
3.14 Suppose the position of a particle, moving in a plane, is represented by z = re'.

(a) From the expression of the complex velocity of the particle, identify the radial and
tangential components. (b) From the expression for the complex acceleration, identify the
tangential, centripetal, radial, and Coriolis components.

3.15 Show that the sum, s, of n terms of a geometric series is given by

a(l —r"
L _al=r)
1—-7r
where a is the first term and r is the common ratio.
3.16 Find the radius of convergence of the power series
S
>5
.
r
3.17 Find the radius of convergence of
o0
S
n=0

3.18 Find the radius of convergence of

o o]
E nlz".
n=0

3.19 Show that
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and its derivative have the same radius of convergence.

3.20 Develop the Taylor expansion and find the radius of convergence for: (a) In z about
29 =1; (b) In (1 +2) about 20 =0; and (c) 1/(1—2z) about z = —i.

3.21 Develop the Laurent expansion for:

about 2 =0,1; (b)

1
(a) 21— 22 z—2p about z =3
1
© E-nE-2y

Hint for part (c): Use the method of partial fractions and develop: the expansion in the
region |z| < 1.
3.22 Evaluate (select a convenient path) the following:

(L) dz dz
a z*dz; (b f —; (c -
@ [ e 0§50 §5

z n+1 n+1
2N — 4

/ dp= o — A
2 n+1

for all n except n = —1. (b) Discuss the case for n = —1.
3.24 Show that

3.23(a) Show that

L_ 2" Ny = b
2m Jo ’

3.9 Appendix: Series

3.9.1 Introduction

In this appendix, we summarize the essentials of infinite series without detailed proofs since
proofs may be found in standard treatments of infinite series.

Infinite sequences and series are important in mathematical physics. Let wi, ws2,... ,wn, ...
be a sequence of numbers (real or complex). If

k
s= lim s* = lim E Wn,
k—o00 k—o0 !

—

then the series . w, issaid to be convergent. The number s is called the sum (or
value) of the series and is given by

oo o0
s=a+1ib where a=§ u, and b=_$_ vy for w, = un + iv,.
n=1 n=1

If the series
o0
D lwal = [wi| + fwa] +---
n=1

is convergent, then Y. w, is said to be absolutely convergent. If } . wy is conver-
gent but >, |wn| diverges, then Y .o, w, is said to be conditionally convergent.
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3.9.2 Simple Convergence Tests

Comparison Test: If ) a, is a convergent series and u, < a, for all n, then }~ u,
is a convergent series.

If >, b, is a divergent series and v, > b, for all n, then ) v, is also a divergent
series.

Ratio Test: Consider the series ), a,. If

> 1, then the series diverges.

< 1, then the series converges absolutely.
i (an+1)
=1, then the test is indeterminate.

n—oo \ Gy

Limit Test: If

lim a, # 0, then E a, is divergent.
n—00 n
Cauchy Root Test: Let

a = lim |a,|'™.
—00

If

<1, then the series converges.
> 1, then the series diverges.

The Gauss Test: If

h B
=1-—+—=" where ¢>1 and
n nd

Q41
Qn

the sequence {B,} is bounded, then the series converges for n > 1.

3.9.3 Some Important Series in Mathematical Physics

Geometric Series The sequence
sp=14z+22 4 2"

is called a geometric sequence. On multiplying this sequence by z and subtracting the
resulting sequence zs, from s,, we obtain

1_ n
(1-2)s,=1-2" or s,= z

(= #1).)

1-2
The corresponding infinite geometric series converges, for |2] < 1, to

o0

1
R = S
Bl _anoz =1 (F<V.
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The region |z| < 1 is called the circle of convergence of the infinite geometric series.
Series of Functions Consider
8n(2) = U1(2) + Ua(2) + - - - + Un(2)

and

o0
f(z) = lim sn(z) = Z Un(2).
If

|[f(2) — sa(2)| <€ (forall n> N)
where N is independent of z in the region a < |2/ < b and ¢ is an arbitrarily small
quantity greater than zero, then the series s,(z) is said to be uniformly convergent in
the closed region a < |z| < b.

If the individual terms, Uy,(z), of a uniformly convergent series are continuous, the series
may be integrated term by term, and the resultant series will always be convergent. Thus

/  fl)dz = [ " g:lUn(z)dz _ ij: / ’ Ua(2)d.

The derivative of f(z),

dz dz —
equals
o dl,
= dz
only if
du,
U.(2) and 1
are continuous in the region and
i dU,
~ dz

is uniformly convergent in the region.

The Taylor Series Two equivalent forms for the Taylor expansion of a function f(z)
about z = a may be written as follows:
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Form 1:

=3 ) where 0 = T
and
Form 2:

f(;z; + a) = Z Z_Tf(")(a).
n=0

The Taylor expansionof a function f(z,y) may be written in the following forms:
Form 1:

f(zr y) = f(a’ b) + (.’L‘ - a)fz(av b) + (y - b)fy(a’ b)
+ % [(:c — a)? fuz(a,b) + 2(z — a)(y — b) fuy(a,b) + (y — b)zfyy] +-ee

and
Form 2:

f(.’l) + a,y + b) = f(a1 b) + +~'Efz(aa b) + yfy(a, b)
+ % [z2f1:z(a7 b) + Qxyfzy(a, b) + nyyy(a; b)] R



Chapter 4

Calculus of Residues

4.1 Isolated Singular Points

Points at which the function f(z) is not analytic are called singular points (also called
singularities). If f(z) is analytic throughout the neighborhood of a point zy, |2 — 2| < ¢,
but is not analytic at zp, then the point z; is called an isolated singularity of f(z). That
is to say, the singularity at 2, is isolated if a circle, containing no other singularities, can
be drawn with 2z as its center. By use of this definition, we see that z =0 for f(z) =1/z
is an isolated singular point. The function f(z) = 1/sin(1/z) has an isolated singularity
when z =1/(nw) for n=1,2,... . The origin where z = 0, however, is not an isolated
singular point since every neighborhood contains other singular points (an infinite number)
as a result of z = 1/(nw). In other words, the singularities from z = 1/(n7) for n — co
are arbitrarily close to the origin (z = 0).

The Laurent expansion of f(z) with an isolated singula.rity at zp is given by

(2 — 2)" . 3.16
fz) = nzoa z— 2) +Z z—z)"’ ( )
As mentioned in derivation of the Laurent expansion, the above expansion converges for
Ty < |2 — 29| < 1 where 7, is the radius of C; and 7, is the radius of C, in Fig. 3.9.
A singular point, 2y, of the analytic part of the Laurent expansion is called a removable
singularity since f4(z) may be redefined as follows so that fa(2) becomes analytic at
Z = 2p:

ap = lim fa(2).
220

The importance of singularities of this type is not great in mathematical physics. Singulari-

ties of fp(z), however, are of immense importance in the mathematical analysis of physical
problems.

If by, #0 but bpy1 = bpmye = --+-0 in the principal part of the Laurent expansion of
f(2), then fp(z) becomes (see Eq.3.16' above)
brm
fr(2) = L PN
n'=1 (Z - zo)n’ .

Analytic Methodss in Physics. Charlie Harper
Copyright © 1999 WILEY-VCH Verlag Berlin GmbH, Berlin
ISBN: 3-527-40216-0
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In the above equation, f(z) issaid to have a pole of order m at z = 2z;. When m =1,
the singularity at z = zp 1is called a simple pole.

Example 40 Find the pole and its order for

Solution :
@) ="

z—23/31 4+ 28/50 — 2T /T + - -+

A
1 11 z 2
2 3z * 5! 7! o
In this example, we see that f(z) has a 3rd-order pole at z = 0.
The function f(z) is said to have an essential singularity (pole of infinite order) at
z = 7 if there exists no m such that b, = 0 for all s > m. That is to say, fp(2)
contains an infinite number of terms when 2z = z is an essential singularity. The peculiar
behavior of the function f(z) in the neighborhood of an essential singularity is revealed by
a theorem due to Picard!, often called the Weierstrass?-Casorati® theorem. This theorem
states that the function f(z) oscillates so rapidly in the neighborhood of an essential
singularity that it comes arbitrarily close to any possible complex number. In symbolic
form, we write

If(2) —g|<e (for |z— 2| <?)

where € and ¢ are arbitrary positive numbers and g is an arbitrary complex number.
We restrict our discussion of analytic functions to this limited information concerning the
behavior of functions in the vicinity of an essential singularity.

Example 41 Classify the singularity of the function
1
f(2) = zexp =

Solution :

n

n
0

11
14> 4+

3
Il

=7 z 222
1+ 1 + 1
2z 3122

+

There is an essential singularity at z = 0.

1Charles Emile Picard (1856-1941), French mathematician whose study of the integrals attached to
algebraic surfaces and related topological questions constituted an important part of algebraic geometry.

2Karl Theodor Wilhelm Weierstrass (1815-1897), German mathematician who is best known for his
construction of the theory of complex functions by use of power series.

3Felic Casorati (1835-1890), Italian mathematician who worked in complex variable theory and is best
known for the Weierstrass-Casorati theorem.
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A fourth kind of singularity, branch point, which results from the consideration of multi-
valued functions (fractional powers in the Laurent expansion) will be treated in the Section
4.8 on multi-valued functions.

4.2 Evaluation of Residues

4.2.1 m-th-Order Pole

The Laurent expansion of f(z), Eq.(3.19), for the case of a pole of order m becomes

f(2) =2:an(z—z0)"—|-Za__lz0 +-~+(z%_;';)—m. (4.1)

The residue of f(z) at z = z, Eq.(3.21), is given by

1
a_, = Q—Mfgf(z)dz (4.2)

In the above equation, C encloses 2y. Except for the numerical factor 27, the residue of
f(z) is the value the integral of f(z) over C. In those cases where the residue a_; can
be determined directly (without carrying out the integration), we would have a method of
evaluating the definite integral of over C indirectly. We now develop important expressions
for evaluating a_; directly.

On multiplying Eq.(4.1) by (z — 2)™, we obtain

co m
é(z) = Z an(z — 2)™™" + Za_n(z —z)™ "
n=0 n=1
=ap(z —20)" + ar(z — z)™ " + -
+a_1(z—2)™" " +a oz —2)" 24+ a_p. (4.3)

The function ¢(z) on the right-hand side of Eq.(4.3) is given by

$(2) = (z — 20)" f ().

For minimum m, we require that ¢(z;) be analytic and not equal zero. Since ¢(z) is
analytic at 2 = 2, Eq.(4.3) may be thought of as the Taylor expansion of ¢(z) about
z = zp. The coefficient a_; in this expansion must be the coefficient of the (z — zo)'"*1
term. Thus, the general equation for calculating a residue is given by

1 dvig(s)
(m—1)! dzm-1

a-1 =

(4.4)

220

4.2.2 Simple Pole
For a simple pole (m = 1) at z = 2, the residue, Eq.(4.4), of f(z) reduces to

a1 = zlgg)(z — 29) f(2).
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In this connection, suppose the function f(z) can be represented by

fla) = 2

~ h(z)
where g(z) and h(z) are analytic functions. If g(z) # 0,h(z) = 0, but h'(z) # 0, then

h(z) has a simple zero at z = 2y, and f(2) has a simple pole at z = z,. The residue of
f(2) at z =z is given by

[%“)] [h(S - Zo(zo)] B Zfii?)-

The above expression for the residue when m =1 is extremely useful.
The procedure for evaluating the residue of a function f(z) at z = 2z, may be summarized
as follows.

a_ = lim

Jim = lim ¢(2) lim

220 220

1. The general expression for a_; is

1 d™'9(2)
(m—1)! dzm-1

a1 =
220

where ¢(z) = (z — 20)™f(2) and ¢(z) is analytic and not equal zero. The value
of m is required before the general expression for a_; can be used to evaluate
the residue. The above conditions on ¢(z) as z approaches 2z, may be used to
determine the minimum value for m for a certain class of functions.

2. For a simple pole (m = 1), we have

a1 = zll)nzl (z = 20) f(2)-

3. If f(z) = g(2)/h(z) (where g(2) and h(z) are analytic functions, g(2o) # 0, h(z) = 0,
but A'(zp) # 0), then the residue is

a_ =

4. If f(z) is such that its residue at 2 = 2p cannot be obtained by use of the above
procedures, then one must rewrite the function by (a) expanding the transcendental
functions that may appear in f(z), (b) developing a geometric series for the function,
or (c) developing the full Laurent expansion for the function. The classification and
location of the singularities and the value of the residue can always be obtained from
the full Laurent expansion for the function under investigation.

Example 42 Classify the singularities and calculate the residue for

1
22—-1

f(z) =
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Solution : We may rewrite the function as follows:

1 1
)= T = oG
There are poles at z=+1 and 2z = —1. To find m, we write

W) zgrsa = (= D)"(2) = (=)™ (= 1>1<z T2 o

Hence z = +1 is a simple pole (m = 1) since ¢(z) is analyticat z =+1 and ¢(+1) #0.

Similarly, we find that z = —1 is a simple pole. The residues at the two poles are given
by
1 1
Sy =lm(z—1) ==
a1 =lm -1 T = 3
and
1 1

a1 = lim (z+1) Ty T Ty

Example 43 Classify the singularities and calculate the residue for

1
f(z) = EET (where a > 0).

Solution : We may rewrite the function in the following form:

1) = s = :
“= (22 +a2)? " (z4+ia)2(z —ia)?’
There are poles at z =ia and z = —ia. To find m, we write
1 1
\ o im . _ _
9(2)l-1z = (2 — 0) (z +ia)2(z —1a)2 (2 +1ia)?
Hence z = ia is a second-order pole since m = 2, ¢(z) is analytic at z = ia, and ¢(ia) # 0.
Similarly, we find that 2z = —ia is a second-order pole. The two residues are
| d¢(z) 2 1
a_1 .= = = —
Fie dz zZ—ia (Z + 10)3 z—ia 42(13
and
| _ 1
O-1lps—ia = dia3’

Example 44 Classify the singularities and calculate the residue for

zAk

f(z) = o (where 0 <k <1).
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Solution : Note that there is a pole at z = —1 and a branch point at z=0. To find m,
we write

1 1
Wolenn = D™ gy =

Hence 2 = —1 is a simple pole since m = 1,¢(—1) is analytic, and ¢(—1) # 0. The
residue is

— 13 1 _ itk
wu= im0 S| =

Example 45 Classify the singularities and calculate the residue for

where A(z) is analytic and contains no zeros.

Solution : Let h(z) =sinz. Since h(+km) = 0 but A'(+km) # 0, the zeros of h(z) at
z = +km are simple zeros; hence, the poles of the function f(z) at z = +km aresimple
poles. The residue is

_ A(?)

S A(z)
T R(e)

Cos 2

_ A(dim)  A(tkm) _
T coskm  (=1)k (k=0,1,2,...).

z—rtkw z—tkw

Example 46 Classify the singularities and calculate the residue for

sin z
f(z) = i
Solution : Since there is a zero in the numerator of f(z) for z =0, it is not clear from
the use of the general expression for a_; where (and to what order) the poles are located.
To resolve the problem, we expand sinz and obtain
1 2 P A
=555 5)
1 1 n z 28 +
T2 3z 57 '

The above equation is the Laurent expansion for f(z) about zy = 0. From this expansion,
we observe that z =0 is a third-order pole with residue given by

a1 =——.

3

Example 47 Determine the residue for the function in Example 40.
f(z) = ze -
= zexp -.
P

Solution : By use of the expansion in Example 40, we note that the residue of f(z) equals
1/2.
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4.3 The Cauchy Residue Theorem

The Cauchy Residue Theorem If the function f(2) is analytic within and on a closed
region T (except at a finite number of isolated singular points within T'), then

?{ f(2)dz = 2mi Z Res(enclosed residues)
r

=21y a_yy (4.5)
j=1

where zj(j =1,2,...,n) are the enclosed singular points and a_,,; are the corresponding
residues.

iy

Figure 4.1
Proof: Applying Cauchy’s integral theorem in Fig. 4.1, we obtain
y{f(z)dz - ¢ f(z)dz—---— ¢ f(2)dz=0.
r Cy Cj

The value of the circular integral around an isolated singular point (see Eq.(4.1)) is 2mia_;.
Hence the above equation becomes

j{f(z)dz =2mi (A 1z + o1z + -+ C1z,)
r
=2mi Z a1z
j=1

Thus, Cauchy’s residue theorem is established. We will use this theorem below to evaluate
certain classes of definite integrals.
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4.4 The Cauchy Principal Value

Thus far, we have considered contours that enclose and/or exclude singularities. Now, we
consider the case where the path of integration passes through a singularity of the integrand.
In a strict sense, this integral does not exits, and we must choose a path that circumvents
the singularity. Since many physical problems involve the evaluation of integrals in which
an isolated simple pole is on the contour of integration, it is useful to consider the details
of dealing with this situation. We deform the contour to include or exclude the simple pole
with a semicircular of infinitesimal radius as shown in Fig. 4.2.

r r

L {
v

(a) (b)
Figure 4.2:
Counterclockwise and clockwise integrations over the dashed semicircles yield mia_; and
—mia_y, respectively. On using the residue theorem in Fig. 4.2(a) and noting that the
simple pole is now enclosed, we obtain

ff(z)dz +mia_; = 2wia_; or %f(z)dz = Tia_1.
r r

Using the residue theorem in Fig. 4.2(b) and noting that the simple pole is not enclosed,
we obtain

% f(z)dz —mia_; =0 or %f(z)dz = Tia_;.
T r

The net result for Fig. 4.2(a) or Fig. 4.2(b) is that a simple pole on the contour counts
one-half of what it would if it were within the contour, the Cauchy principal value.
For the case of a simple pole on the real axis, it is useful to express the result in terms
of the Cauchy principal value of an integral. The integral of a function f(z) which has a
simple pole at z =z for zo within the closed interval [a,b] may be written as

/ab f(z)dz = 11_1)13 [/amo-e f(z)dz + z:+e
=P / b f(z)dz. (4.6)

In the above equation, P denotes the Cauchy principal value of the integral, and it means
carry out the indicated limiting process. Note that

P/::f(x)dx

f(a;)da:]
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may exist even if
0 a
lim [ f(z)dz+ lim [ f(z)dz
a 0

a—oo [ a—r00

does not exist. For example,

a 2 2
lim [ zdz= lim (a— - a—) =0
a—o0 f_, a—oo \ 2 2

but
Q

lim zdr — oo.
a—0co 0

We will return to the concept of Cauchy principal value of an integral in Section 4.6 on
dispersion relations.
4.5 Evaluation of Definite Integrals

This Section is devoted to the evaluation of certain classes of definite integrals by use of
the Cauchy residue theorem.

4.5.1 Integrals of the Form [ f(sind,cos6)dd

Consider the real integral

2w

I = f(sin @, cos 8)dd (4.7)
0
where f(sin@,cos6) is a rational function (which contains no isolated singularities other
than poles) of sin@ and/or cosf. Let z =e® (unit circle) where dff = —idz/z. For this
case,
0 __ 8710 Z2 -1

- 2i 2z

and

. 0_eio+e""’_z2+1
BSY="TT T

In terms of z, Eq.(4.7) becomes

22—1 2241\ dz
= — —. 4.8
4 fo( 2z ' 2z ) z (48)

unit
circle

The contour is a unit circle in the above equation. Applying the residue theorem in the
above equation, the value of the integral in Eq.(4.8) becomes

II = (—Z)(27I"L) Za_lzj = 27!'2(1_1zj.
j=1 j=1
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Example 48 By use of the residue theorem, evaluate

I_/Z" d8
~Jo 5+44cosé’

Solution : Using Eq.(4.8), we obtain

. dz - dz
I=_’f{z{5+4((z2+1)/2z)}_ 7{(2z+1)(z+2)'

unit uint

circle circle
There are singularities at z = —1/2 and z = —2. The singularity at z = —2 is outside
the unit circle. At z = —1/2, there is a simple pole inside the unit circle since

1 1
9(=) = (z * 5) Tz )+
1
= = 1
219 (for m=1)

and #(—1/2) is analytic and is not equal zero. The residue of the enclosed singularity is

1
a’—liz:—l/z z—l)1H11/2¢( ) 3

By use of the residue theorem, the value of the integral is

= (=i)(2mi) (%) - %’“

4.5.2 Integrals of the Form [% f(z)dz

Consider definite integrals of the form

L= /_ " f@)ds. (4.9)

If f(2) (a) is analytic in the upper half-plane except for a finite number of poles and (b)
has only simple poles on the real axis, and if (c) 2f(z) — 0 for all values of z as |z =0
for 0 < arg 2 <7 where z= Re?, then

I= hm/ f(z)dz + hrn/ f(Re¥) iRe' do

R—oc0
= wzza 12 +27rlZa_z] (4.10)

The contour of integration in Eq.(4.10) is the real axis and the semicircle in the upper
half-plane (see Fig. 4.3). The first term on the right-hand side of Eq.(4.10) results from
simple poles on the real axis, and the second term results from enclosed singularities in the
upper half-plane.
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Figure 4.3:

Note that |z|*> = 22* = R?; also, note that f(Re”)iRe” =if(z)z =0 for R=|z| = oo
by use of condition (c) above. That is to say,

lim / f(Re)iRe' d§ — 0.
R—00 0

Now, Eq. (4.10) reduces to Eq.(4.9), and the value of the integral becomes

o] n m
I, = / f(z)dz = Zﬂizaglzj + i E Gz, (4.11)
—o0 j=1 k=1

Example 49 Using the residue theorem, evaluate

oo}
I=/ dxz.
o 1+2z

Solution : By use of Eq.(4.11), we may write

I 1 Rdz_y{dz_% dz
= o _pl4+z2 1422 (z—i)(z+1)

semi semi
circle circle
Here there are singularities at z = —¢ and z = i. Note that 2z = —i is not within the

semicircle in the upper-half plane. There is a simple pole at z = ¢ since

z—1
Z)= 7~ ~
9(2) (z—1i)(z+71)
where ¢(7) is analytic and is not equal zero. The corresponding residue is
1 1
a1 = —.
YTt

Hence the required value of the integral is

* dx 1
= = 2 3 — =
I /—oo1+$2 (m)(%) T
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4.5.3 A Digression on Jordan’s Lemma

Let T be a semicircle of radius R in the upper half-plane, and let f(z) be a function
satisfying the following conditions:

1. f(2) is analytic in the upper half-plane except for a finite number of enclosed isolated
singularities and/or simple poles on the real axis and

2. f(2) = 0 wuniformly as |z| — oo such that |f(z)|] = 0 for |2| = R — oo where
|7(2)| < M(R) and 0 < arg z < 7.

In equation form, Jordan’s* lemma is
J = lim /f(z)ei'"zdz =0 (for m > 0). (4.12)
R—oo Jp

Proof: For z=Re®?, we have

|eimz{ — {eimR(c050+isin0)| — engsino.

We may therefore write
1J] = ’ / F(2)e™edz
r

T
/ f (Reia)eimR(cos 6+isin @) 1, Rew d0 ‘
0

< M(R)R / g mRsind g
0

In the range 0 < 6 < 7/2, we have 26/7 < sinf < 0 (see Problem 4.7) and may write

T w/2
/ e—mRsinodo — 2/ e—mRsianO.
0 0

The above equation is valid since sinf is symmetric about 6 = 7/2. We may therefore
write the equation for |J| in the form

w/2
1J] < 2M(R)R / e~/ g
0
— M(R)ﬂ'(l _ e—mR)_
m

Hence, |J| 5 0 as R — oo since M(R) — 0 as R — oo, and the lemma is established.

4Marie Ennemond Camille Jordan (1838-1922), French mathematician who was highly regarded by his
contemporaries for his work in algebra and group theory. Sophus Lie and Felix Klein were two of his
students.
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4.5.4 Integrals of the Form [* f(z)e™dz

Consider integrals of the following (Fourier transform form) form such that the Jordan’s
lemma is valid

L= / " F@)e™ds. (4.13)

By use of Fig. 4.3, we obtain for this case

o] P n
I = [m f(z)e™dz + I%I—I»Iolo'] = ﬂi; Q_1zr + 21 Z a iz

j=1
Applying Jordan’s lemma to the above equation, we obtain
oo . n p
I; = / f(z)e™ dz = 2mi Za‘lzi + wiz a_1z,- (4.14)
—co j=1 k=1

In Eq.(4.14), singularities in the upper half-plane leads to the first term, and simple poles
on the real axis give rise to the second term. Equation (4.14) may be put in the following
useful form:

/ f(z)e™ dx = 2mi » Res{f(2)e™}.
—0C0o
On equating the real and imaginary parts on both sides of the above equation, we obtain

f_: f(z)cosmadz = —2r Y _ImRes { f(2)e™}
—m 3 ImRes {£ ()¢} (@15
and
/_: f(z)sinmzdz = 2r ) _ReRes { f(z)e™ }
+ 73 ReRes {{(z)e™} (4.16)

The first sum in Egs.(4.15 and 4.16) is over the enclosed poles, and the second sum is over
simple poles on the z-axis.

Example 50 By use of the residue theorem, evaluate

I=/°° sinmdm.

o I

Solution : On using Eq.(4.16), we write

00 eiz eiz eiz
I= [w 7dz =27rEReRes{7} +7rZReRes{7}.
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In the above equation, the first sum is over the enclosed poles and the second sum is over
simple poles on the z-axis. There is a simple pole on the path at z = 0. The corresponding
residue is

zeiz

@ 1], = lim(z — 0)f(2) =

% z=0

The value of the integral is

® sin i
I= dz = ReR — =T
/_w - T 7r§ e es{z} T

4.6 Dispersion Relations

Dispersion relations (also known as spectral representations, Kronig-Kramers relations,
and Hilbert transforms) result from the analytic properties of the complex representation
of physical quantities and use of the Cauchy residue theorem. Originally, Kronig (1926) and
Kramers (1927) were concerned with the dispersion of light and the relation between the real
(i-e., dispersive) and imaginary (i.e., absorptive) parts of the index of refraction at different
frequencies. The basic idea of dispersion relations is applied in areas of physics ranging
from electronic design to quantum field theory. Here, general forms for dispersion relations
will be presented. For physical quantity x(w) which approaches zero as w approaches
infinity and is analytic in the upper-half plane (see Fig. 4.4), consider the evaluation of the

integral
j{ x(w)dw (4.17)
cW—wo

around the contour shown in Fig. 4.4. Equation (4.17) becomes

o= [ ¢ ps

-Q W — Wo 0+8 W — Wo
N /  x(wo + dei)ide®dd / x(Qe®)iQe?do
. 610 810 — wo )

Note that
0 .
lim z/ x(wo + 6€™)df = —mix(wo)-
§—0 -
Since x represents a physical quantity, we require x(oo) — 0. Hence

lim/ x(Qe”)iQedd
0

Q-0 Qe — wy
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> )
-Q wy— 90 o+ 6 +Q
Figure 4.4:
For Eq. (4.17), we therefore obtain
mix(wo) = lim {/wo;J x__(w)dw + /Q x—(w)dw}
%‘::(0)0 -Q w — Wy wotd W — Wo
_ o { [ X W) / ? x(w)dw
Q—00 —Q W—wo wo W — Wo
~ lim / ¢ x(w)dw
Q—c0 _Q W— Wo
oo
_p / ?;(f—)“z‘:. (4.18)

The P in front of the last integral in Eq.(4.18) means the Cauchy principal value of the
integral. Equation (4.18) may be rewritten as

—x(wo) = %P/jo ———):}(u_))zt. (4.19)

On substituting
X(wo) = U(wo) +iV(wp) and x(w)=U(w)+iV(w)
into Eq.(4.19), we obtain

U(wo) = %P _/oo Vj(f)—ff’ (4.20)
and
V(wo) = _717P / ” Z_(‘é);—““. (4.21)

Equations (4.20 and 4.21) express one part of an analytic function in terms of an integral
involving the other part. In mathematics, the functions U and V are referred to as the
Hilbert transforms of one another. In physics, these equations are usually written as

1 [e o}
Rt = L [ 1Al

(4.22)
_so W — o
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and

1 /‘°° Rex(w)dw.

Im x(wo) = —;P To—w (4.23)

Equations (4.22 and 4.23) are called dispersion relations. In electronics, one has
Z(w) = R(w) + ix(w).

In the above equation, Z is impedance, R is resistance, and y is reactance. Dispersion
relations may be used to express resistance in terms of reactance. Dispersion relations for
light (complex index of refraction 7 = 7, + Zac) yield relations between dispersive power
and absorption. In addition, a large number of definite integrals may be evaluated by use
of the dispersion relations. Dispersion relations applied to f(z2) = cosz + isinz lead to
values of integrals with integrands of forms (sinx)/z and (cosz)/z for limits of integration
from minus infinity to plus infinity.

4.7 Conformal Transformations

An analytic function f(2) = u(z,y) +iv(z,y) for z = x+1iy is completely characterized by
two pairs of variables (z,y) and (u,v). Hence, a four-dimensional space is needed to plot
the real values z,y,u, and v. The mathematical subject of quaternions was developed
by Hamilton and Frobenius to treat such systems. Limited applications of quaternions in
quantum mechanics and in certain other areas of physics have been made in recent years,
but it is not a widely discussed subject in mathematical physics.

Riemann developed a widely used mode of visualizing the relation w = f(z) which uses two
separate complex planes, z-plane for (z,y) and w-plane for the corresponding (u,v). By
use of the two-plane picture, the equation w = f(z) defines the transformation (relation,
correspondence, or mapping) between the two planes. That is to say, w = f(z) may be
viewed as the mapping a set of points (locus, figure) in the 2-plane into the corresponding
figure in the w-plane. For physical problems, the basic idea involves (a) transforming the
geometry of a complicated problem in the 2-plane into a simpler geometry in the w-plane,
(b) solving the problem with the simpler geometry, and (c) inverting the transformation
to obtain the desired solution in the z-plane. The most important class of transformations
used in solving physical problems are those that preserve the angle between two straight
lines (conformal transformations). The angle preserving property of conformal trans-
formations will be illustrated as follows:

1. Assume two lines intersect at z = a in the z-plane and at w = f(a) in the w-plane
with elements of length along two lines given, respectively, by

dz; = |dz;| exp(i61) and  dzp = |dz| exp(ify).

2. The corresponding respective elements of length in the w-plane are

dw; = |dz1| |f'(2)|expi(¢p +61) and dws = |dz||f'(2)| expi(d + 62)

since

dw = dz|f'(2)| exp(i¢).
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3. Note that the direction of the corresponding lines in the w-plane is rotated by ¢, but
the angle between the lines in the z-plane (6, — 6;) equals the angle between the
lines in the w-plane [(¢+ 62) — (¢ + 6,)].

Now, we show the above analytically. On differentiating w with respect to z, we obtain

. Aw\ dw . .
Jim, (A—) =g @ =ae (4.24)
where
a=lreN#{ &
Note that

e, (55 f=oero = (o (53}
Am(arg fw) = fim (erg 42).
We may therefore write
o =¢y — ¢;
since

arg f'(z) = a = Alirilo(arg Aw) (arg Az).

— lim

Az—0
Thus, any line oriented at #, in the z-plane is rotated through « in the w-plane (see Fig.
4.5).

iy v

fe_ ¢WZGZ +

- > U
I I

Figure 4.5

The angle between two lines ¢; and ¢, gives rise to
¢ — ¢ =0, — 6,

Hence the angle is preserved under an analytic transformation; this is referred to as a
conformal transformation (mapping). On taking the modulus of both sides of Eq.(4.24),
we obtain

ldw| = |ae**dz| = a|dz].

The above equation shows that an infinitesimal arc of T'y, is a times the corresponding
arc I', (magnification).
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Example 51 Translation Consider the transformation w = z+ 2z9. In terms of = and
y, we have

w=(z +1iy)+ (To + i) = (z + z0) + (¥ + yo)
or (see Fig. 4.6)

u=z+zy and v=y+ Y.

Iy v

(x, y)

z-plane

Figure 4.6

Example 52 Rotation Consider the transformation w = 2z where z =re® z =
roe’, and w = pe’®. Here we may write

w = pe'® = rore’@*9),
Note that ¢ = 0 + 6y where 6 is the angle of rotation and 1y is the corresponding
modification of r (p = ror).

Example 53 Inversion Consider the transformation w = 1/z, where z = re?® and
w = pe'®. The quantity w becomes
w = pei"’ = le’“’.
p

In this case, we have p=1/r and ¢ = —6.

Now we develop a scheme for transforming a locus (set of points) in the z-plane into the
corresponding locus in the w-plane by inversion. Note that

. 1 1 T — 1ty
wW=ut+w=—-= — = -
zZ xT+w zTHYy

In this case, we have

T u
uw= . = .
z? +y?¥’ u? + 02’

v
:L-2+y2’ u2 + 92
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Example 54 By use of inversion, transform the equation of a circle centered at the origin
in the z-plane, >+ y? =r?, into the corresponding locus in the w-plane.

Solution: : In this example, we obtain

u? v? 9 2

— 2 2 _ 2¢,,2 232 _
(u2+v2)2+(u2+v2)2_r or u'+v'=r(u+v°)° =p

since u+iv = pei®,p? = u? +v?, and p = 1/r. The equation, u? + v? = p?, is that of
a circle in the w-plane centered at the origin with radius p. It is interesting to note that
the interior points of the z-plane circle are exterior points of the w-plane circle.

Example 55 By use of inversion, transform the horizontal line y = ¢ into the corre-
sponding locus in the w-plane.

Solution : Here we have

Simplifying the above equation, we obtain

1\? _ [1)?
e+’ +v=0 or (u—0)2+(v+—) =< )

2c 2%

The last equation is that of a circle centered at (0, —1/2¢) with radius 1/2c in the w-plane
(see Fig. 4.7).

iy iv

w-plane
> U

z-plane

y=c

(0, - 1/2¢)

> X

Figure 4.7

4.8 Multi-valued Functions

In addition to the above transformations, the following transformation is useful in physical
applications: w = 22 which yields w = pexp(i¢) = r’exp(i26) or p=7r% and ¢ =26
with transformation equations given by u = 22 —y? and v = 2zy. Here one finds that a
circle with radius rp is mapped into a corresponding circle with radius R = r%, and 6, is
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mapped into 26;. In potential theory, the two-dimensional Laplace equation is to be solved
with appropriate boundary conditions. Note that the transformation w = 2?2 maps the
right angle in the z-plane into a straight line in the w-plane (see Fig. 4.8) where boundary
conditions may be applied more conveniently.

In connection with the transformation w = 2% (and other multi-valued functions), note that
the transformation is conformal except at w = 0, and it, separately, maps the upper- and
lower-half planes of the z-plane into the whole w-plane (Points z and —z are mapped into
the same points in the w-plane.). The inverse transformation z = y/w cannot be unique.
By use of the de Moivre theorem, the quantity 2z may be written as

z = ./pexp (zg) = ,/pexp (z% +i7rk) , k=0,1,...,n—1. (4.25)
Note that 2z has many values for each w; if 0 < ¢ < 2w, then 2z has only one value
for each w, and this value for z is called a branch of z. In this case, there are two
branches (k = 0, principal branch, and & = 1, second branch). In general, the collection
of all branches is referred to as a multi-valued function.

Figure 4.8

Note that the two values of k in Eq.(4.25) yield opposite signs for z. In describing values
of a unit circle about the origin in the z-plane for k = 0, it is found that (a) z =1 for
¢p,=0and (b) z=—1when ¢, =2n. When k =1, the values become the opposite (a)
z=—1when ¢, =0and (b) z2=1 when ¢, =2r. One may avoid these double values
by assuming a cut (called a branch cut), which may not be crossed, exists from 0 to
oo along the u-axis in the w-plane. A point which cannot be encircled without crossing a
branch cut is called a branch point. In this case, the origin w = 0 is a branch point.
Riemann introduced the scheme of two cut planes (sheets, surfaces) joined edge to edge at
the cut as a way to combine both branches and to eliminate the cut. For example, a lower
sheet contains the set of values for k equals zero and an upper sheet contains the values
for k equals unity (see Fig. 4.9).

The function /w is analytic over the whole Riemann surface (two sheets) except at the
branch point, w equals zero. In summary, it is found that the w-plane is mapped into
two sheets (Riemann surfaces). The concept of Riemann surfaces has broad application in
physics.
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Im
Positive values
Re
cut
A 4
Im
Negative values
Figure 4.9

Example 56 The value of the following integral is important in many physics problems.

Show that
[e ] a—ld
/ 7 ?_ - n 0<a<l.
o 14z sin amw

Solution : Consider the following integral
I ]{ z“‘]dz.
c 1+2

r

Figure 4.10

Note that the integrand of I is single-valued since the contour (see Fig. 4.10) does not
include the branch point of 21, and there is a simple pole at z = —1 within the contour.
By use of the residue theorem, the value of I is

a—1
I=7{z dz=/+/+/ +/ :QWiZRes.
c 1+z r Jy Jou _
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Path T: Around the circle T' (r — 00), we have (a) z = €, (b) dz = riedf, and (c)
20~1 = ro-l¢ia-10  The integral around I reduces to

22 ldz ro=leia—1)0r;ei0 dg reeiad dg
/ = lim - =lim?{ | ——
r 1+z  rooo Jp 1+ 7et ro0 fp 14 re®

[ reeie-10gg
— lim z/ —F— = 0.
r

700 r

Path ~: Similarly, around the circle v (r — 0), we have

/ 2% 1dz . / reeia )
=lim: [ —— =0
y 142z o0 [ 1+47re?

Path C,: Along the upper cut where 6 = 0, we have (a) 2z =re? =r, (b) dz=dr, and
(¢) 2z*' =71, The value of the integral becomes

/ 2 dz /°° ro-ldr

e, 1+2  Jo 1+71°

Path C_ : Along the lower cut where @ = 27, we have (a) z = re*™ =r, (b) dz =dr,
and (c) 2°7! = ro-lg?m(e-1) = pa-le2mai The value of the integral reduces to

za—ldz 0 ,ra—le21raidr
./c_ 1+2z /oo 1+r

The value of the integral I now becomes

2*~ldz o [ reldr
I= =(1- 2mai = 211 Res.
}iHZ (1—em) [T T = 2mi Yo Res

The residue at z = —1 = €i* is obtained as follows
201 201 .
z) =(z— 2) - =(1+2)- = —e™.
¢( %0 ( 0) 142 220 ( ) l1+2 zor2

On substituting the value for the enclosed residue into the equation for I, we obtain

(1 — e2med) /w rrdr omi(—e™).
0

The above equation leads to

© go-ldy 2mie™® 2 T
=- e =T z - .
o l+4+=z 1 — eg?ma €T — e~ T sinTwa

The above result will be used in the development of beta functions in Chapter 9 and in the
development of the solution of the Abel problem in Chapter 11.
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4.9 Problems

4.1 Locate and classify the singular points of the following functions and evaluate the
residues:

@ % O © %
e* sin z cos(sin z)
(d) 7 (e) m (£) “sinz

4.2 Evaluate the residues of the following functions:

22—1 e* 1
(a) 22+1 (b) (2 —2)3 (©) 2+4z+1
1 et 1
(d) (2 —1)3 () 2?2 —q? ® cosz’

4.3 By use of the residue theorem, evaluate the following:

o df T de
7 - f
(a) /0 5—4cosf b) /0 a+bcosd orlal > o

—

2w dg
(©) 3-2 ing’
0 —2cos+sinf

4.4 By use of the residue theorem, evaluate the following:

cos zdz dz dz
) /|z|:2 2 ) /|z|=2 -z © /z|=1 z+2

4.5 Show that:

dg ™ * et dr
= >1 b) P =
(2) /0 a + cos a?+1 (@>1)  (® /-oo z i
®sinmzdr w .
(c) — =3 for m > 0. Discuss the cases m <0 and m =0.
0 x

4.6 Of the following functions, determine the ones that satisfy the conditions of Jordan’s
lemma:

1 . . eiz
—_— d) —.
(a) 241 (b) sinz (c) e (d) P
4.7 Jordan’s Inequality: Show that
%Ssinﬁgo where 0503%.
T
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Hint: Use the fact that the mean ordinate

1 /¢
5/0 cos zdx

of the graph y = cosz over the range 0 < z < 6§ decreases steadily since cosf decreases
steadily as @ increases from 0 to /2.
4.8 Evaluate

2 dx
—-
1

4.9 Show that U(wp) = cos(kwp) and V(wo) = sin(kwo) are a Hilbert transform pair for
k> 0.

4.10 For x(wo) = x(—wo) : (a) Show that U(wo) = U(—wo) and V(wo) = —V(—wp); these
are referred to as crossing relations in collision theory. (b) Develop the corresponding
equations for the Hilbert transform pair which involve integrations over the positive z-axis
only.

iy
A

0 1 2

Figure 4.11

4.11 (a) Refer to Fig. 4.11, and determine Ry, if w = z+(1—2¢). (b) Draw the appropriate
w-plane diagram.

4.12 Show that w = 22 is conformal except at z = 0. Discuss the case for z=0.

4.13 For w = 2% : (a) show that u(z,y) = 22 —y* and (b) sketch the z-plane and w-plane
areas bounded by u=1,v=2,and u =4,v =8.



Chapter 5

Fourier Series

5.1 Introduction

The theory of the representation of a function of a real variable by means of series of
sines and cosines is an indispensable technique in mathematical physics; Fourier analysis is
such a theory. We begin the discussion of the Fourier series with a statement of Fourier’s
theorem. In 1807, Fourier stated without proof and used, in developing a solution of the
heat conduction equation, the following theorem.

Fourier’s Theorem: Any single-valued function f(z) defined on the closed interval
[—, 7] may be represented over this interval by the trigonometric series

o o]
a
50 + Z [a, cos nz + by, sinnz] (5.1)
n=1
provided the erpansion coefficients, a, and b, are determined by use of the Euler’s
formulas,

1 v
an:;/ f(z)cosnzdz (n=0,1,2,...) (5.2)
and
=t [ @snnsis (n=1,2,3,...) (53

For historical reasons, it is important to note that d’Alembert, Euler, D. Bernoulli, and
Lagrange! had previously made fruitful use of the trigonometric series in solving the me-
chanical wave equation for a vibrating string. However, the trigonometric series associated
with a function f(z) by means of Euler’s formulas is known as a Fourier series.

Fourier investigated many special cases of the above theorem, but he was unable to develop
a mathematical proof of it (In fact, the theorem is not valid as stated.). The first step
toward a mathematical proof was made by Dirichlet? in 1829; he proved the following
theorem.

1Joseph-Louis Lagrange (1736-1813) was born in Turin, Sardinia-Piedmont (now Italy). He is known
for his work in number theory and analytical and celestial mechanics.

2Johann Peter Gustav Lejeune Dirichlet (1805-1859), German mathematician who is best known for his
papers on conditions for the convergence of the Fourier series. In 1855, he replaced Gauss at the University
of Gottingen and was himself replaced by Riemann two years later.

Analytic Methods in Physics. Charlie Harper
Copyright © 1999 WILEY-VCH Verlag Berlin GmbH, Berlin
ISBN: 3-527-40216-0
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Dirichlet’s Theorem: If f(z) (a) is defined and bounded in the interval [—m,7),
(b) has at most a finite number of mazima and minima and has only a finite number
of discontinuities in this interval, and (c) if f(z) is defined by the periodic condition
flz+2r) = f(z) for values of x outside of this interval, then

a0 &
=5t Z [an cos Nz + by, sin nz] (5.4)

n=1

Sp =

converges to  f(z) as p — oo at values of z for which f(z) is continuous, and it
converges to [f(z +0) + f(z — 0)] /2 at points of discontinuity.

Quantities f(z +0) and f(z — 0) refer to the limits from the right and left, respectively.
It is assumed that the coefficients in Eq.(5.4) are given by Euler’s formulas. A function
f(z) is said to be bounded if the inequality [f(z)] < M holds for some constant M
for all values of z. The conditions imposed on f(z) by Dirichlet’s theorem are called
the Dirichlet conditions. From a rigorous mathematical point of view, the Dirichlet
conditions are sufficient but not necessary. They, however, are satisfied by most functions
representing the solutions of physical problems, and we will work within the constraints of
Dirichlet’s theorem. Although a rigorous proof of Dirichlet’s theorem is beyond the scope
of this book, we discuss the convergence properties of the Fourier series.

5.2 The Fourier Cosine and Sine Series

If f(z) is an even function (that is to say, f(z) = f(—z)) in Egs.(5.2 and 5.3), then we
obtain the Fourier cosine series which has the form

= % + i ancosnr  (f(z) is even) (5.5)

Equation (5.5) results from the fact that b, =0 for even f(z). Similarly, a, =0 for odd
f(z) (that is to say, f(x) = —f(—1)), and we obtain the Fourier sine series which has the
form

f(z) = Z bpsinnz  (f(z) is odd). (5.6)

The expansion coeflicients in the Fourier cosine and sine series, a, and b,, are given by
the Euler formulas in Egs.(5.2 and 5.3).

5.3 Change of Interval

Thus far, the expansion interval as been restricted to [—m,7]|. To solve many physical
problems, it is necessary to develop a Fourier series that will be valid over a wider interval.
Consider developing the Fourier series expansion for the interval [—£,£]; let

[e o]

flz)= %-{-Z[ancosqﬁz-f-bnsind)m]. (5.7)
n=1
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The object here is to determine ¢ such that f(z) = f(z + 2£). In this case, ¢ = nn/¢;
hence, we obtain

% + i [an cos — + by, sin —] (5.8)

n=1

The expansion in Eq.(5.8) is valid if f(z) satisfies the Dirichlet conditions in the interval
[—£,£). The corresponding Euler coefficients are

£
an:%/ f(z)cos#dm (n=0,1,2,...) (5.9)
.,

and

£
b,,=%/ f(z)sin7$dx (n=1,2,3,...). (5.10)
)

5.4 Complex Form of the Fourier Series

By expressing cos(nwz/f) and sin(nzwz/f) in exponential form, the complex form of the
Fourier series is obtained; we may write

flz)= + Z [an cos 22 4 by, sin m‘;z]
zmrm/l + e—inwx/t o einmz/t _ e—imrz/l
_ +Za,, [—] 30 [T] .
The expansion for f(z) therefore reduces to
o o]
= Z cne™™/t  for [—¢,4] (5.11)

where

ag ay, — by, an + iby,
TT g T

Equation (5.11) is the complex form of the Fourier series. On multiplying both sides of
Eq.(5.11) by exp(—immz/£) and integrating with respect to z, we obtain

/ f —zmm:/ldm Z / th(n—m)/ldx

= Z en2mp = 20ep.

n=-—00
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The coefficients in Eq.(5.11) are therefore given by

1t .
— —inwz/l
=55 /_[ f(z)e dz. (5.12)

Before investigating other mathematical properties of the Fourier series, we consider several
examples so that a working knowledge of the Fourier series can be achieved. In these
examples, it is assumed that (a) the developed Fourier expansions converge uniformly to
the original functions and (b) there is a steady increase in the accuracy of the developed
expansion as the number of terms included is increased. A proof of this convergence is
given below.

Example 57 Ezpand fi(z) = 1> for —7 <z <7 1n a Fourier series.

fi(x)

A

3
o
sbk-—--==

-3r - 3

Figure 5.1

Solution : The graphical representation of f(z) in [—w,n] and its periodic extension
outside of [—7,7] and shown in Fig. 5.1. The expansion coefficients are given by

1 [ 1 [" 2
ag = ;/‘ﬂfl(x)dz = ;/43:%3: = §7r2;

1 [7 2 ("
Gnso = ~ / fi(z)coszdz = = / r*cosnzdzr (by symmetry)
-7 0

iy
4 .

oL

= 2 (-1 = (="

bpso = 71_r/ fi(z) sinnzdz

1 /™ .
== / z’sinnzdr =0  (by symmetry).
T™J -z
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The required Fourier expansion is

[e o]

filz) =22 = % + ,?=1 [an cos nz + by, sin nz]
2 o0
™ (="
= 3 +4 E 2 cosn.

n=1

Example 58 Sawtooth Wave Ezpand fi(z) =z for —m < z < 7 in a Fourier series.

Figure 5.2

Solution : The graphical representation of fy(z) in [—7,7] and its periodic extension
outside of [—m,n] are shown in Fig. 5.2. The expansion coefficients are given by

1/ 1 [7
a0=;/_wf2(m)dm=;/;rzdz=0,

1 (7 1 [7
Gn>0 = —/ fo(z) cos nzdz = —/ zcosnzdz = 0,
TJ-n

71-—7!'

1 [ 1 ("
bnso = —/ fo(z) sinnzdr = —[ T sin nxdz
m -7

T™J-x

2 2
= —Zcosnz = —(-1)"*..
n n
The required Fourier expansion is

ag

o0
5 T Z [an cos nx + by, sinnz)

n=1
X (_1\n+l
= 22 ( 1) sinnzx.
n

n=1

fo(z) =z =
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Example 59 Square Wave Ezpand the following function in a Fourier series:

_JO for —m<z<0
f3(z)_{h for 0=z<m.

Solution : The graphical representation of f3(xr) in [—m,n] and its periodic extension
outside of [—m, 7] are shown in Fig. 5.3. The expansion coefficients are

1 [° L[ 1 [
ay = —/ f3(z)dz + 7/ fa(z)dz = —/ hdz = h,
T - Vs 0 Vs 0

0 1 m
Upso = % / f3(z) cos nzdz + - /0 f3(z) cos nzdx
-

=E[ cosnzdz =0, and
T Jo

1[0 1 [7 h [T
bpso = — / f3(z) sinnzdz + — / fa(z) sinnzdr = — / sin nzdz
TJ _n T Jo T Jo

_h [_cos nz] e=r [ 0 for n even
s n llg=o ~ | 2h/nm for n odd.
f(x)

1\

T
h
}

-3 -2r - 0

Figure 5.3

The required Fourier expansion is

0% |~ -
f3(z) = > + Z [a, cos nz + by, sin nz]

h

2

n=1
o0 .
2h sin nx
T n
n=1
odd

Example 60 Full-Wave Rectifier Ezpand the following function in a Fourier series.

_ | —sinz for —mr<z<0
f4(z)—{ sinz for 0=z <.
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Sa(x)

- X

2t - |0 & 2=:

Figure 5.4

Solution : The graphical representation of fs(z) in [—m,7] and the periodic extension
outside of [—7, 7] are shown in Fig. 5.4. The expansions coefficients are

I 1" 10 L.
ao=— | falz)dz+=| fa(z)dx== | sinzdr+ — | sinzdz
TS 7 Jo TSy T Jo
2 [ 4
= —/ sinzdr = —,
T Jo m

1 I
= —sinz cosnxdr + — sin z cos nxdx
Vs m™Jo

2 /” . —4/m(n*—1) for n even
== sinx cos nxdxr =
0 0 for n odd,

-7
and
2 T
bpso = —/ sin z sinnzdz = 0.
T Jo

The required Fourier expansion is
o0

falz) = % + ; [ay, cos nz + by, sin nz
_2 4icosnz
T o n2—1

even

5.5 Generalized Fourier Series and the Dirac Delta

Function
If the set of functions {4, (z)} is the orthonormal basis for a vector space and F(z) is an
arbitrary function on then (see page 72)

Fa)= 3" et (5.13)

n=—0oo
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The ¢, in Eq.(5.13) are called expansion coefficients. For this set of functions, we have

/_oo Yo (2)Yn(z)dz = . (5.14)

The orthonormality property for this set of functions is expressed in Eq.(5.14) and will now
be used to develop an expression for ¢, in Eq.(5.13). On multiplying Eq.(5.13) by ¥} (z)
and integrating over the range of z, we obtain

/: ¥ (z)F(z)ds = iw - /: Ui (z)¥n(2)dz

= Y Cnbuw = cw. (5.15)

n=-—00

Substituting ¢, from Eq.(5.15) into Eq.(5.13)7 we find that

/ Ve (2)F (2') 3 () dz (5.16)

n=-—00

The expansion in Eq.(5.16) is referred to as a generalized Fourier series. Interchanging
the sum with the integral in Eq.(5.15), we may write

F@)= [ Fe Z e ] /

/ F(z")é(x — z')dz'
where
d(z — a: Z ¥r(z (5.17)

The above quantity d(x —z') is the one-dimensional Dirac delta function, and its most
important property is expressed by Eq.(5.17). The following are the various notations for
the Dirac §-function used in the literature: 6(z — 2'),d8(z), and (z,2'). In terms of the
x variable, the Dirac é-function is defined such that

[:J(z—x')dw’ =1 and §(z—1)= {

The properties of the Dirac é-function listed in Eq.(5.18) make it clear that the Dirac -
function is not a function in a rigorous mathematical sense since the integral (if it exists)
of a function that is zero everywhere except at one point must vanish.

We will develop some other useful relations involving the Dirac §-function since its concept is
extremely useful in analyzing physical properties of certain systems. Consider the following
set of orthonormal functions:

0 for z—2'#0

oo for —1' =0. (5.18)

Unle) = el (5.19)
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On substituting Eq.(5.19) into Eq.(5.17), we obtain

Sz —d) =3 e Z i)/t = Z Ake*@=2), (5.20)

Note that the dimension of the Dirac §-function is inverse length. Quantities in the above
equation are given by k = nn/f and 1/2{ = Ak/27w since An = 1. Here k has the
dimension of inverse length and is called wave vector (more precisely, it is the magnitude
of the z-component k, of the wave vector). If ¢ — co (Ak — 0) in Eq.(5.20), the sum
changes into an integral, and we may write

]. /
5(z — 2’ e* == g, 5.21
@) =5 [ (5:21)
The above expression for the Dirac é-function may be written as
1 L toat
8z —z")=— lim [ e*@=dk
P ) )

— lim sin[l(x — :E')]

500 (T — 1) (522)

Equations (5.21 and 5.22) are two widely used representations for the Dirac d-function. In
three dimensions, we write

3(5) = 5= 1)6E) = e / : e* (5.23)

In the above equation, we have

6(r)=0 (for r#0) and /oo §(r)d*r = 1. (5.24)

5.6 Summation of the Fourier Series

Thus far, it has been necessary to accept, without proof, the fact that the Fourier series
of a function does indeed converge to the function in question. In this section, it is shown
that

1
lim s,(2) = 5 [/(z +0) + (&~ O)];

p—00

that is to say, Dirichlet’s theorem in Eq.(5.4) is valid.
Consider the partial sum of a Fourier series

P
sp(2) = % + Z [an cOs Nz + by, sinnz]
n=1
1 2w

2
f(t) cos ntdt + sinnz / f(t)sin ntdt] .
0
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The above equation reduces to

1 27 1 P
sp(z) = ;/ [5 + ZCOS n(z — t)} f(t)dt. (5.25)
0 n=1
It can be shown (see Problem 5.15) that
_sin (p+1/2)x
= —_— 5.26
+ Z cosm 2sinz/2 (5.26)

On substituting Eq.(5.26) into Eq.(5.25), we obtain the Dirichlet integral

_ 1 ["sin[p+1/2)(z- )] f()
R e e
_ 1 [™sin[(p+1/2)(z - 1)] f(2)
DY sin[(z — t)/2] dt. (5.27)

The last step in Eq.(5.27) is valid since the integrand is periodic in the indicated interval.
Now we make the following change of variable:

T—1

b=—=

(5.28)

On substituting Eq.(5.28) into Eq.(5.27), we find that

l/"/z sin[(2p +1)6] f(z +20)d9.

sp(z) =
o(2) T J_n/2 sin @

The path of integration in the above equation will now be bisected so that

1 {™sin[(2p+1)8] f(z +26)

5(z) = T /0 sin @ df
1 [™*sin[(2p + 1)0] f(z — 26)

tr /0 sinf df-

The above equation reduces to

/2 sin
s,,(:c):%/0 S[(:gl—zl)g][f(z-kw)—}-f(z—%]dﬂ.

The limit of s,(z) as p — oo is given by

Pinl@+ D kLo 4 (o — 26]d0

lim s = lim
proo p(z) = P00 Jo msinf

~ / " 5(60) [f (o +20) + /(& — 20)) .
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Since §(f) is an even function, the above equation may be written as

lim s,(z) = 7 [ " 5(6) [f(z +20) + f(z — 20)] dB

= S @+0)+ f-0)].

In the above equation, f(z +0) and f(z — 0) represent the limits from the right and left
of the point z, respectively. If f(z) is continuous at the point z, then

Jim sp(z) = f(z)-

5.7 The Gibbs Phenomenon

The partial sums of the Fourier series of a function, f(z), approach f(z) uniformly in
every interval that does not contain a discontinuity of f(z). In the immediate vicinity of
a jump discontinuity, the convergence of the Fourier series is not uniform since f(z) —
[f(z 4+ 0) + f(z — 0)] /2. Here the partial sums move progressively closer to the function as
the number of terms is increased, but the approximating curves (partial sums) overshoot,
by about 18% the function at the jump discontinuity. This behavior is known as the Gibbs
phenomenon (1899), although the behavior had apparently been investigated earlier by
Wilbraham (1848) and Du Bois-Reymond (1873).

In 1906, Bocher? greatly extended Gibbs’s results by considering the following specific series.

f(z)= ;Z (0 <z < 2m).

The Fourier expansion of the above function is

s(z) = Z sinn:c.

n
n=1

The partial sum of the above expansion is given by

P .
s 1 1.
3p(x) =Z 1nnnz =sinm+§sin2z+-~-+;smpz

n=1

"
=/ [cosu 4 cos 2u + - - - cos pu] du
0

™ (& 1 ["sin[(p+1/2)u] T
= /(; (;COSTLU) du = 5/0 Wdu - 5

The last line in the above equation results from the fact that

L4 sin[(p+1/2)x
;COSMZ[(P—/)]

2sin(z/2) 2’

3Maxime Bécher (1867-1918), USA mathematician who was awarded the doctorate from the University
of Géttingen. He is known for his papers on differential equations, series, and algebra. His paper on the
Fourier series presented the first satisfactory treatment of the Gibbs phenomenon.
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The remainder, R,(z), is

e e 629

The above remainder may be written as

(p+1/2)z o
T sinu
Ry(z) = 3~ /0 du + pp(z)

sinu

where

po() = /0 ) [M sin [(p + 1/2)u] du.

usin(u/2)
On differentiating R,(z) in Eq.(5.29) with respect to z, we find that R,(z) has maxima
or minima at

2k
2p+1

Ty = (k=0,1,2,...).

The value of Ry(z) at =z is

km :
T sinu 2k
Ry(z) =~ — d —_—).
(z) 2 /0 sin u u+pp(2p+1)

As p — oo for fixed k, p, — 0. Hence the remainder, the deviation of the approximation
from (7 —z)/2 at z; which approaches the point of the discontinuity at = = 0 (end
point), tends to the limit

km :
lim Ry(z) — g —/ 52U du.
0

p—oo sinu

For k=1, we find that

7
lim R,(z)) = = — / MY =T — T(1.179) = —0.281.
2" /o 272

p—00 sinu

Hence the Fourier expansion, as indicated by the negative sign in the above equation,
overshoots the curve for f(z) by about 18% at z = 0, a jump discontinuity.

5.8 Summary of Some Properties of Fourier Series

1. The Fourier series can be used to represent discontinuous functions where all orders
of derivatives need not exist. (This is not true for the Taylor expansion.)

2. The Fourier series is useful in expanding periodic functions since outside of the interval
in question there exists a periodic extension of the function.
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3. The Fourier expansion of an oscillating function gives all modes of oscillation {funda-
mental and all overtones). This kind of representation is extremely useful in mathe-
matical physics.

4. Since limit of sp(x) = [f(z +0) + f(z — 0)] /2 as p — oo, the Fourier series will not
be uniformly convergent at all points if it represents a discontinuous function. In the
vicinity of a discontinuity, the Fourier representation overshoots the function (Gibbs
phenomenon).

5. Term-by-term integration of a convergent Fourier series is always valid, and it may
be valid ever if the series is not convergent. However, term-by-term differentiation of
a Fourier series must be investigated for the series in question; it is not valid in most
cases.

5.9 Problems

5.1 Classify the following functions as even, odd, or neither:

(a) zsinz  (b) €® (c) z*cosnz

(@) |zl () zg(=*) (f) In[(1+2)/(1- )]

5.2 Show that the period of each term in the trigonometric series is 2.
5.3 If f(x) is periodic with period T, show that for arbitrary a and b we have

a+T b+T'
/ f(z)dz = f(z)dz.

b
5.4 By use of the orthoganality property of sines and cosines,

m
/ sinmz sin nxdr = Tomp
-7

T
/ €0s M ¢oS NTdT = Tomn
-

s
/ sinmz cosnzdr =0 for all n,m > 0,
-7

derive the required expressions for the coefficients (Euler’s formulas) in the trigonometric
series.

5.5 Suppose the function f(z) is represented by a finite Fourier series,

P
% + Z [an cos nz + b, sinnz)] .

n=1

A measure of the accuracy of this series representation is given by

21 14
Ap=/0 [f(g;) —% — Y (ancosnz + bypsinnz)| dz.

n=1
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By minimizing A, (0A,/0a, =0) and 98A,/0b, = 0, solve for a, and by,.

5.6 Solve the Example for fy(z) = z by use of the complex form of the Fourier series.
5.7 Develop the Fourier sine expansion for f(z) =z in the half-interval [0,Z].

5.8 Develop the Fourier expansion for f(z) = |z| for the interval [—Z,£].

5.9 From the result in the Example for fi(x) = z2, show that

T
F = Z F.
n=1
Note that
o0 oo
¢(2) =Z;— where ((k) =Z_;n—’c
is called the Riemann zeta function.
5.10 Develop the Fourier expansion for
0 for —7<wt<0
flwt) = { sinwt for O0=wt< .

5.11 A triangular wave may be represented by

@) = z for 0<z<m
1 -z for —m<z<0.

Develop the Fourier expansion for f(z).
5.12 Find the Fourier series expansion for f(z) if

|7 for —w<z<7/2
f(z)—{ 0 for 7/2=z < 7.

5.13 Assuming that the Fourier expansion of f(z) is uniformly convergent, show that

T [o¢]
L / If (z)*dz = % + Z:(a?1 +b2) (Parseval’s relation).
T Jr n=1

5.14 Show that the term-by-term integration of a convergent Fourier series results in a
Fourier series that converges more rapidly than the original Fourier series.
5.15 Show that

1 & sin(p + 1/2)x
2" ; OB = T sin(z/2)

5.16 Show that fy(z) in the Example is convergent and that f’(x) is not convergent.
5.17 Show that the following relations involving the Dirac delta function are valid:

(@) (=) =d(-z) (b) zé(z)=0 (c) &'(z)=—-0'(-2)
(d) z8'(z) =-8(z) (e) 6(az) =d(z)/a for a>0

Hint: Multiply by an arbitrary function f(z) and integrate from —oco to oo.



Chapter 6

Fourier Transforms

6.1 Introduction

In mathematical physics, integrals of the form

b
Fla) = / f(2)K (@, 2)dz 6.1)

often occur. The function F(a) is said to be the integral transform of f(z) by the
kernel K(a,z). Kernels associated with Fourier, Laplace, Fourier-Bessel (Hankel), and
Mellin transforms are respectively given by

Fla) = \/% [_ : f(z)e®dz  (Fourier transform); (6.2)
Fla) = /0 " f@)e-ds  (Laplace transform); (6.3)

Flo) = /0 " f(z)zJs(az)ds  (Fourier-Bessel transform); and (6.4)
Fla) = /0 " H(z)e*ldz  (Mellin transform). (6.5)

The Fourier and Laplace transforms are the most often used in mathematical physics.
The procedure for solving problems by use of the transform method is the same for all
transforms, and we focus on the Fourier transform.

The form of the complex Fourier series is

f@) =Y cae™t for [-£,4] (6.6a)
where
1 [t ;
c,,=—/ f(z)emm=/tdy, (6.6b)
2%/,

Analytic Methods in Physics. Charlie Harper
Copyright © 1999 WILEY-VCH Verlag Berlin GmbH, Berlin
ISBN: 3-527-40216-0
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To make the transition £ — oo, we introduce a new variable which is defined by

nmw
k=7

where (Ak/w){ = 1 since An = 1. Hence we may write Egs.(6.6a and 6.6b) in the
following forms:

f(z) = Z Cee™ Ak  where n = %

n=—00

and

¢
Ce(k) = % /ef(iv)e*“”dz where Cy(k) = E_cn

T

If we let ¢ — oo, we obtain

1 [ ;
Clk) = = f f(z)e*edz (6.7)
21 J_oo
and
flz) = / C(k)e™** dk. (6.8)
—0o0
There are several ways of defining Fourier transforms, but the differences among the various

forms are not significant. To put Egs.(6.7 and 6.8) in the modern form (the symmetric form
most often used in mathematical physics), we let F(k) = v/2xC(—k) and obtain

1 % ikz
and
1 oo —ikz

Equations (6.9 and 6.10) are called the Fourier transform pair. If f(x) satisfies the
Dirichlet conditions and the integral
| 1@l

[ ¢]

is finite, then F(k) exists for all k and is called the Fourier transform of f(z). The
function f(z) in Eq.(6.10) is called the Fourier transform (inverse transform) of F(k).
As a physical requirement, it is usually assumed that f(z) — 0 as z — +oo. Naturally, it
is required that kz be dimensionless since it is the argument of an exponential quantity.
In physics, & (or k;) is the magnitude (z-component) of the wave vector with dimension of
inverse length, and z is a distance. The combination of wt, where w is circular frequency
with dimension of inverse time and ¢ is time, is often used.
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Example 61 Obtain the Fourier transform of the Gaussian distribution function, f(z) =
Nezp(—az®) where a and N are constants.

Solution : On applying Eq.(6.9), we obtain

F(k) = L /00 f(z)eikzdx - N /oo eke—ae® gy
V2T J - V2T J oo
N "0 2 "o0 2
= — e~ cos kxdx + z/ e % sin kxdw}
vV 2w {/—oo —~00
N 2 o0
= ——¢ %M yhere / e~%" cos kzdr = \/Ee‘kz/““.
Vor —00 a

The above final form for F'(k) results from the fact that (a) the second integral in the second
equation equals zero since the integrand is an odd function in the range of integration and
(b) the first integral yields the final answer. Note that both f(z) and F(k) are Gaussian
distribution functions with peaks at the origin.

A Fourier transform pair equivalent to Eqgs.(6.9 and 6.10), where the signs of the exponential
terms are interchanged, is widely used in quantum mechanics. In terms of the wave function
(solution of the Schrodinger wave equation), the Fourier transform pair have the following
forms in quantum mechanics.

kg,t) = t)e == 6.11a
UCURE Y IR z (611c)
and
1 [ .
U(z,t) = — U (ky, t)e*F=dk, 6.11b
@)= 5= [ Wlkthe (6.111)
or
U(pg,t) = U(x,t) e~ P2/ My 6.12a
Get) = 5 | (6-120)
and
v / U(ps, t)e?*/"dp, (6.120)
(z, \/_ (pzt

The above development of the Fourier transform is purely formal. For a rigorous treatment
of the subject, many books on Fourier or integral transforms and operational mathematics
are highly recommended (e.g., see Tichmarsh, 1937).

6.2 Cosine and Sine Transforms

The cosine and sine transform pairs are defined, respectively, by

= \/g/()w f(z) cos kzdz (6.13q)
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and

[/ ) cos kzdk. (6.13b)
= \/gfowf(z) sin kzdz (6.14a)

- \/g / F, (k) sin kzdk. (6.148)
0

Note that the Fourier transform of f(z) in Eq.(6.9) may be written as

and

F(k) = z)e*dx

\/271' /—oof(
1 o0 ..
= ?/_wf(x) [cos kx + isin kz] dz. (6.15)

If f(z) is an even function of z (f(z) = f(—x)), then we see from Eq.(6.15) that the
cosine transform is equal to the Fourier transform. If, however, f(z) is an odd function
of z (f(z) = —f(—xz)), then we see from Eq.(6.15) that the sine transform is equal to the
Fourier transform provided —F(k) is replaced by F,(k).

Example 62 Find the Fourier transform for the boz function f(x) where

f(:c)={01 for —a<z<a

for z| > a.

Solution : By use of Eq.(6.9), we obtain

F(k) = \/%_W /_ ” f(z)e**dz

I e 2sin ka
= [ eaa= 200k

A sketch of f(z) and F(k) are given in Fig. 6.1.

Example 63 Find the cosine and sine transforms of f(z) = e%2.

Solution: Using Eq.(6.13a), we find that

= \/E/wf(z) cos kzdz
=7 [tz = (%)
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f(x) F(k)

T A

2¢

1 a=3

—) - - — &1 X k
3 3 “n | " 2n
3 3 3
Figure 6.1

The corresponding sine transform is obtained by means of Eq.(6.14a). We obtain

2 o0
Fy(k) = \/;/0 f(z)sin kzdz
2 [° 2 &k
—\/;/0 e 31nkxdz—\/;(k2+a2).

The one-dimensional Fourier transform pair of a function of two independent variables are
given respectively by

1 o0 .
F(k,y) = — ,y)e*ed 6.16a
(k0= —2= [ fen)eda (6.160)
and
1 e .
f(z,y) = Tor / F(k,y)e"*dk. (6.16b)
T J -0
The corresponding cosine and sine transform pairs are
2 o0
F(k,y) = \/;/ f(z,y) coskzdzx (6.17a)
0
and
2 [
flz,y) = \/;/ F,(k,y) cos kzdk. (6.17b)
0
2 oo}
Fy(k,y) = \/;/ f(z,y) sin kzdz (6.18a)
0
and
2 o0
flz,y) = \/i/ Fy(k,y) sin kzdk. (6.18b)
T Jo

The above transform pair may be extended in a straight forward manner to functions of
several independent variables.
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The one-dimensional transform theory may be extended in a natural way to the cases of two-
and three-dimensional Fourier transforms. In equation form, the two-dimensional Fourier
transform pair may be written as

1 o0 o0 3
a,f) = %/ / flz, )+ dzdy (6.19a)

y)=% / / F(a, B)e™ @+ dadf. (6.19b)

6.3 The Transforms of Derivatives

Fourier transforms, cosine transforms, and sine transforms can often be used to transform
a differential equation (ordinary or partial) which describes a complicated physical problem
into a simpler equation (algebraic or ordinary differential) that can be easily solved. The
required solution of the original differential equation is then obtained by finding the inverse
transform of the solution of the simpler equation (in transform space). In order to use the
transform method to solve first- and second-order differential equations, the transforms of
first- and second-order derivatives are needed.

We now develop the transforms of first- and second-order derivatives. The Fourier trans-
forms of first- and second-order derivatives will be represented by F()(k) and F®(k),
respectively. That is to say,

F(l) zka:d (620)

-7

On carrying out the integration in Eq.(6.20) by parts, we obtain

Oy = L et _ ik [ f(z)e*ds
F (k)—m{f() =ik [ 1@ d}
ek dy = —ik F (k). (6.21)

m/f

The development leading to Eq.(6.21) made use of the assumption that f(z) — 0 as
T — +o00. Similarly, we find that

1 [ df(x)
Vor oo dz?

where f(z) -0 and f'(z) >0 asz — Foo.
The corresponding relation for F()(k,y) is

afmy

FO(k) = e**dy = —k*F (k) (6.22)

FO(k, ) e*dy = —ikF(k,y) (6.23)

- ).

where f(z,y) — 0 as z — =oo. The Fourier transform for the second derivative,
F(k,y), is given by

& f(z,y)
(2) zka: — 2 .
(k) \/—/ 52 dz kK*F(k,y) (6.24)
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where f(z,y) = 0 and 8f(z,y)/0r = 0 as 1 — Foo.
The cosine transform of a first-order derivative is given

14
= kF,(k) - @f«» (6.25)

where f(z) =0 as z — oco. The cosine transform of a second-order derivative is

d2
F(2) \/7 / (;;2 cos kxdzx

cos kzdx

= —pEK) - 270 (6.26)
where f(z) - 0 and f'(z) = 0 as  — oco. The sine transform of a first-order derivative
is given by

FO (k) = \ﬁ / (@) i kndz = —kF.(k) (6.27)

)y dr

where f(z) = 0 as z — oo. The sine transform of a second-order derivative is given by

FA (k) = \/%/000 d2d];(2w) sin kzdz
= \/gkf(O) — k*F,(k) (6.28)

where f(z) >0 and f'(z) >0 as z — oco.

The choice of using the cosine or sine transform is dictated by the given boundary conditions
at the lower limit. The use of the cosine transform to remove (transform) a first-order
derivative term in a differential equation requires a knowledge of f(0) but a knowledge of
f(0) is not required when the sine transform is used to remove a first-order derivative term.
A knowledge of f'(0) is required to remove a second-order derivative term in a differential
equation if the cosine transform is used. However, only a knowledge of f(0) is needed to
successfully use a sine transform to remove a second-order derivative term in a differential
equation.

The relations for F(k,y), F2 (k, ), F) (k,y), and F$2(k,y) are

FO(k [/ 0f(=,y) cos kzdz

= kE (k1) - f;ﬂo,y) (629)
for f(z,y) > 0 as z — oo;

F@(k,y) [ / ” an cos kzdzx
= —kch(k, y) - \/;fz(oy y) (630)
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for f(z,y) =0 and 3f(z,y)/0z - 0 as T — co.

FO(k \/7/ af sm kxdz = —kF.(k,y) (6.31)

for f(z,y) >0 as z — oo; and

62
EA(k,y) \/7 / s1n kzdz
= \/;k f0,y) — K*F,(k,y) (6.32)
for f(z,y) = 0 and 9f(z,y)/0r > 0 as = — oco.

The various transforms of derivatives will be used in solving ordinary and partial differential
equations in Chapters 7 and 8.

6.4 The Convolution Theorem

In linear response theory, the general equation for the one-dimensional transform, Eq.(6.1),

takes the form
= / f(@)K(a, z)dz
- /‘ " K(o - 5)f(z)ds (6.33)

where K(a — z) is called the response of the linear system, f(z) is the input (signal)
to the linear system, and F'(c) is the output (signal). If K(a — z) = §(e — z), then

- [ : 5(a — 1) f(z)dz

which is consistent with the properties of the Dirac delta function. In this latter case,
K(o — z) is called the impulse response of the system. When Eq.(6.33) is written in the
form

F(z)=frg= \/%r i "z - )g(€)de, (6.34)

it is called the one-dimensional convolution integral (faltung or folding integral) of two
integrable functions f(z) and g(z). The corresponding two-dimensional form of the
convolution integral is
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Let F(k) and G(k) be the Fourier transforms of f(z) and g(z), respectively. For these
functions, the convolution integral becomes

o= re-eaere= o [ o0 { o= [ w0} ae
- % _: {F(k)e‘“" f_ : g(f)eik‘fdé} dk
- \/%71’ [ :F(k)G(k)e‘ikzdlc. (6.35)

In obtaining Eq.(6.35), we have tacitly assumed that the process of interchanging the order
of integration is valid. The result in Eq.(6.35) is known as the convolution theorem for
Fourier transforms. It means that the Fourier transform (inverse transform) of the product
F(k)G(k), the right-hand side of Eq.(6.35), is the convolution of the original functions,
fxg.

6.5 Parseval’s Relation

The integral of the product of two functions f(z) and g*(z), the complex conjugate of
g(z), may be written as

[ Z f(@)g*(z)dz = [ : {\/% [ : F(k)e‘”‘zdk}
X {\/%_W /_ : G*(k’)eik’zcuc'} dz

/_ Z { F(k) { [ Z G ()8 (K — k)dk’}} dk

f " P(k)G* (k) dk. (6.36)

The relation in Eq.(6.36) is known as Parseval’s! relation (or Parseval’s theorem) and
is widely used in optics, electromagnetism, and quantum mechanics.

Example 64 By use of Parseval’s relation, show that

/°° ¢*(pz)9(pz)dpz =1  (momentum space)

/oo Y (z)Y(z)dr =1  (coordinate space).

1Marc-Antoine Parseval des Chénes (1755-1836), French mathematician and royalist who published
only five papers in mathematics and is known for the work now called Parseval’s theorem (or Parseval’s
relation).
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Solution : Parseval’s relation has the form

/_ : (@)g* (@)dz = /_ " F(k)G* (k)dk.

o0
For this problem, we write

¥(z) = \/2%—;1 / blp)e .

On applying Parseval’s relation to ¢ and 1, we obtain
[ waweis= [~ s wmm =1
The above result follows ;:om -
[ v @@ =1.
-

This result is extremely useful in quantum mechanics.

6.6 Problems

6.1 Calculate the Laplace transform of f(z) = e 2.
6.2 Calculate the Mellin transform of f(z) = e *.
6.3 (a) Calculate the Fourier transform (inverse transform) of

_ N —k?/4a
F(k) = me .
(b) Sketch an appropriate diagram for f(z) and F'(k) for large and small a.
6.4 Calculate the cosine and sine transforms of e, where b is a positive integer.
6.5 Calculate the cosine transform of f(z) = e=*"/2.
6.6 By use of the results in second Example, show that

®coskzdk w __. P ksinkzdk w _,,
(a) /0 Tra 2t w0 / et T30

6.7 (a) Calculate the Fourier transform, F'(w), of f(¢) where

£ = g ~iwot for —7/2<t<1/2
10 for [t| > To/2.
(b) Sketch f(t), F(w), and |F(w)|*. The power spectrum is given by |F(w)|.
6.8 Show that the Fourier transform of
o0 inx < <
¢(x):{ - Cne for 0<z <27

n=-oo T
otherwise
does not vanish outside of any finite interval.
6.9 Show that the convolution of f(z) and g¢(z) is commutative, f x g = g * f.
6.10 Calculate the convolution of f(z) = g(z) = e~lol.
6.11 Find the Fourier transform of the box function where a > 0 and

f(:v):{ S for |z|<a

for |z| > a.



Chapter 7

Ordinary Differential Equations

7.1 Introduction

A differential equation is an equation that contains derivative(s) of a function, and it may
be either an ordinary or a partial differential equation. Ordinary differential equations
contain derivative(s) with respect to one independent variable, and partial differential
equations contain partial derivatives with respect to two or more independent variables. It
has now become somewhat standard to use the following abbreviations: differential equation
(DE), ordinary differential equation (ODE), and partial differential equation (PDE).

The order of a differential equation is the order of the highest derivative appearing in the
equation. The degree of a differential equation is the power of the highest derivative after
fractional powers of all derivatives have been removed. If the dependent variable and all
of its derivatives are to the first power without a product of the dependent variable and a
derivative, the differential equation is said to be linear. A differential equation is classified
as nonlinear if it is not linear.

Applications of appropriate physical laws to a large number of problems lead to differential
equations. In general, a physical process is described by use of a differential equation with
appropriate boundary conditions on space and/or initial conditions on time and/or by use
of an integral equation. The boundary and/or initial conditions determine from the many
possible mathematical solutions the one that describes the specific physical phenomenon
involved.

The main purpose here concerns the development of solutions for differential equations
that adequately describe physical processes under investigation. The subjects of existence
and uniqueness theorems for solutions of differential equations will not be discussed in
details. Software packages such as Macsyma, Maple, and Mathematica may be used to
solve differential equations with computers; these software packages are extremely useful
since the solutions of many differential equations (in particular, most nonlinear differential
equations) cannot be obtained in terms of familiar elementary functions. In spite of the
usefulness of these programs, the knowledge for finding analytic solutions of certain classes
of differential equations is indispensable in mathematical physics.

An elementary introduction to the subject of ordinary differential equations, as it relates
to the needs in solving physical problems, can be reduced to that of treating linear (or
reducible to the linear form) first- and second-order differential equations. This chapter
is devoted to the construction of solutions and physical applications of such ordinary dif-
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ferential equations. The solution of a differential equation is sometimes referred to as the
integral of the differential equation, and its graph is called an integral curve (solution
curve). The general solution of an n-th-order ordinary differential equation contains n
arbitrary constants (parameters) and is called an n-parameter family of curves. Boundary
conditions on space and/or initial conditions on time are used to evaluate the arbitrary
constants in the general solution to produce a particular solution that is free of arbitrary
constants.

First- and second-order linear ordinary differential equations have the following standard
forms respectively:

dy

o TP =Q@) o ¥ +p(z)y = Q) (7.1)
and
dzy dy " !
Gz TP@) -t a@y=f(z) or o' +p(2)y +a(z)y = f(z). (7:2)

In Egs.(7.1 and 7.2), the notations y' = dy/dz and y" = d%y/dz? have been used. When
time ¢ is the independent variable, one writes § = dy/dt and § = d?y/dt®. If the
right-hand sides of Egs.(7.1 and 7.2) equal zero, the differential equations are classified as
homogeneous; otherwise, the differential equations are classified as nonhomogeneous
(inhomogeneous).

7.2 First-Order Linear Differential Equations

The formulation (mathematical modeling) of many physics problems leads to first-order
differential equations, and this section is devoted to three methods of finding the analytic
solutions for such problems.

7.2.1 Separable Differential Equations

Differential equations that can be put in the form

9(y)dy = f(z)dz

are called separable differential equations since the left-hand side is a function of y
only and the right-hand side is a function of only z. For example, the integral (general
solution) of dy = f(z)dz is

y=/f(z)dz+C.

Since the general solution of a first-order differential equation results from one integration,
it will contain one arbitrary constant. Similarly, the general solution of a second-order
differential equation will contain two arbitrary constants. Values of arbitrary constants are
determined by use of physical boundary or initial conditions.



7.2. FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS 169

Example 65 In the radioactive decay of nuclei, the process is governed by the following
differential equation:
dN
dt
The number of parent nuclei present at time t is represented by N(t), and the decay
constant A s characteristic of the particular nuclei involved. The negative sign is used to

indicate that the number of nuclei decreases with time. Find N(t) subject to the indicated
wnitial condition.

= —AN where N(t=0)=N,.

Solution : The differential equation is separable, and we write

dN
N - —Adt.

The integral (general solution) of the above differential equation is
InN=-X+C; or N(t)= Coe™ M.

The value of the constant of integration is determined by use of the initial condition N(¢ =
0) = Ny which leads to N(0) = Ny = Co. The specific (particular) solution of the problem
is the following familiar relation:

N(t) = Nye ™.

A graph of N(f) versus time shows an exponentially decaying process.

7.2.2 Exact Differential Equations
The general first-order differential equation, dy/dz = f(z,y), may be written in the form
M(z,y)dz + N(z,y)dy = 0. (7.3)

The total (exact) differential of F(z,y) = C (where F' is continuous with continuous
derivatives, i.e. a smooth function) is defined as
oF oF
dF = —dr+—dy=0.
(z,v) Ee T+ By Y

In the above equation, OF/dz means change in F with respect to z while y is held
constant; change in F' with respect to y while z is held constant is the meaning of the
partial derivative in the second term. Note that the general first-order differential equation
in Eq. (7.3) is exact if

oF oF
Since it is assumed that F(z,y) is a smooth function, we have
O*F  9°F OM _ ON

- = —_— 74
Oydxr  Ozdy or Oy 0z (7.4)

The second condition indicated in Eq.(7.4) is both necessary and sufficient for Eq.(7.3) to
be an exact differential equation.
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Example 66 Determine whether the following differential equation is exact and find its
solution if it is ezact:

dz

422+ 6 2
(4= + zy+y)dy

= —(32% + 2zy + 2).

Solution : The standard form of this differential equation is

(42® + 6zy + y*)dz + (35° + 22y + 2)dy = 0.

Note that
3 2
oM _ 9(42° +6zy +y°) =62+ 2y
Oy oy
and
2
ON _ 9(3z® +2zy +2) — 6242y

bz Oz
The condition in Eq.(7.4) is satisfied, and the differential equation is exact. The solution
of the original differential equation, therefore, has the form F(z,y) = C where

oF
M= P 428 +6zy +9y* or F(z,y)=1z"+ 3%y + 2> + g1 (y)
and

oF
N=%=3z2+2zy+2 or F(z,y) = 32y + zy® + 2y + ga().

Functions ¢i(y) and go(z) are arbitrary functions that arise from integrating with respect
to z and y respectively. For consistency, we require that

a(y)=2y and gy(z) =z*.
The solution of the original differential equation is

F(z,y) = z* + 32%y + zy°

7.2.3 Solution of the General Linear Differential Equation

A good feature of first-order linear differential equations is that a formula for solving the
general equation is this category can be developed; this development is outlined in the
following two steps:
Step 1 Solve the corresponding homogeneous differential equation (i.e., @ = 0)

dyp dys —

dr +p(z)yn =0 or ™ —p(z)dz.

The above differential equation is in separable form, and its solution is

Y = Aexp/p(z)d:v.
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The factor exp [ p(z)dz is referred to as the integrating factor. (If a differential equa-
tion of the form in Eqs (7.1) or (7.3) is not exact, then the result of multiplication by an
integrating factor is an exact differential equation.)

Step 2 Multiply the original differential equation, Eq.(7.1), by the integrating factor; we
obtain

v+ pollexp [ pla)ds = Qo) exp [ pla)da. (75)

Since

% [yexp/P(x)dz] =[y +p(z)y] exp/p(z)dz,

Eq.(7.5) may be written as

= |vew [ 0)te] = @@ exp [ i)

Integrating the above differential equation, we obtain

yexp / p(z)ds = / Q@) [exp / p(:t:)dz] dz +C.

Solving the above equation for y(z), we may write

y(z) = exp (— f p(w)dZ) / Q(z) [eXp / :v(z)dm] dz
+Cexp (— f p(z)dz) . (7.6)

Equation (7.6) is the general solution (general formula) of the general first-order linear
differential equation, Eq.(7.1).

Example 67 Solve the differential equation
y+z= y.
z
Solution : In standard form, the above differential equation becomes
, 1 1
y - y=-c where p(z) — - and Q(z) — —=z.

On applying the formula in Eq.(7.6) to the above differential equation, we obtain

:—exp/ d:z:/zexp[/ )dz]dz-i—Cexp/ p(z)dz

=en? /xe D2dy + Ce® = —z% + Cx.

Example 68 Derive the expression for the current in the circuit in Fig. 7.1.
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“"‘V“
iR
b
E|=s S| E =L di
dt
Figure 7.1:

Solution : By use of the Kirchhoff' loop method in circuit theory, we obtain

L%+IR=E where I(t=0)=0.

The parameters in the above differential equation have their usual meaning. The standard
form for the above differential equation is

On applying the formula in Eq.(7.6) where p — R/L and Q — E/L, we obtain
I(t) = e T/E / %eRt/Ldt +Ce Bl = % + Ce BT,

The initial condition I(t = 0) = I(0) = 0 is used to evaluate the arbitrary constant as
follows.
E E
I0)=0== C=—-—=.
(0) 7t C= 7
The required expression for the current (particular solution) is

1= 2 (1- ).

A graph of the above equation give behavior of the current as a function of time.
In summary,

1. the method in Section 7.2.1. should be used on separable differential equations;
2. the method in Section 7.2.1. should be used on exact differential equations; and

3. the formula in Eq.(7.6) yields a solution to the general first-order linear differential
equation.

It is important to substitute the obtained solution into the original differential equation to
check the correctness of the solution.

!Gustav Robert Kirchhoff (1824-1887), German physicist who was born in Kénigsberg, Prussia. He is
known for his contributions to circuit theory and to black body radiation. He was a student of Gauss.
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7.3 The Bernoulli Differential Equation
The formulation of numerous physical problems leads to differential equations of the form
¥ +p(z)y = Q(z)y" where n # 1. (7.7)

Equation (7.7) is referred to as the Bernoulli? differential equation and is a nonlinear
differential equation. It, however, can be reduced to the linear form, and the technique
used might be useful in solving other nonlinear differential equations. The method for
solving Bernoulli’s differential equation was discovered by Leibniz® and involves making
the following change of variable.

2=yt
On multiplying Eq.(7.7) by (1 —n)y~", we obtain

(1 =n)y™ + (1 —n)y' "p(z) = (1 — n)Q(z).

Since z' = (1 — n)y™™y', we may write the above differential equation in terms of the 2
variable as follows.

2+ (1 - mp(e)z = (1 - n)Q(a). (7.8)

Equation (7.8) is a linear differential equation whose solution may be obtain by use of the
formula in Eq.(7.6); this solution is

Z = exp (—(1 -n) /p(z)d:z:) /(1 — n)Q(z) exp [(1 —n) /p(:z:)dz] dz
+ Cexp (—(1 - n) /p(z)dz) . (7.9)
The solution of the original differential equation is obtained by solving z = y'~™ for .

Example 69 Solve the following differential equation:

4
vy + L=
T

Solution : The standard form for the above differential equation is

1
! T = —-3_
Y+ /=T

2This differential equation is named for Jakob (also known as Jacque or James) Bernoulli (1654-1705);
his brother Johann (also known as Jean or John) Bernoulli (1667-1748) is known for his work in calculus,
calculus of variations, and complex numbers. Daniel Bernoulli (1700-1782), son of Johann Bernoulli, is
often called the first mathematical physicist and is known for the Bernoulli principle in hydrodynamics and
for other work in astronomy, mathematics, and physics. Also, other members of the Bernoulli family are
known for their work in mathematics and in the physical sciences.

3Gottfried Wilhelm Leibniz (1646-1716), German mathematician who is known for his development of
differential and integral calculus.
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The above differential equation is of the Bernoulli form where p(z) — 1/z,n — —3, and
Q(z) = z. On applying Eq.(7.9) to the above differential equation, we obtain

z=exp (—4 / dz/x) / 4z exp (dz/z) dz + C exp (-4 / dz/z)

=4e—4lnm/ze4lnzdz+Ce—4lnz= 2.’1,‘24-2.
3 z?

Since z =y ™™ = y* = 222/3 4+ C/z*, the solution of the original differential equation is

9 C 1/4
y(z) = (§x2 + F) :

Example 70 The motion of a particle in a viscous fluid with Stokes damping, ov, and
Newtonian damping, (v?, is characterized by an equation of motion with the form

b +av=—PFv? subject to v(0) = v,.

The damping coefficients « and (B are constants. Find v(t) subject to the indicated
wnitial condition.

Solution : The indicated equation of motion is of the Bernoulli form where n — 2,Q(t) —
—f, and p(t) — «, and the general solution is obtain from

On applying the initial condition, we find that

c

_a+ Py _ oy
= o and wv(t) = (ot Bug)e — oo’

A graph of the equation for v(f) characterizes the speed of the particle as a function of
time. To obtain position as a function of time, replace v with % and solve the resulting
first-order differential equation for z(z).

7.4 Second-Order Linear Differential Equations

The superposition of solutions principle, stated here in the form of two theorems, will be
assumed valid for second-order linear homogeneous differential equations.

Theorem 1 The set of all solutions of an nth-order ordinary linear homogeneous differ-
ential equation forms an n-dimensional vector space.

For a second-order differential equation, Theorem 1 means that

Y =al + 2y



7.4. SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS 175

is a solution of

y' +p(z)y +q(z)y =0

if y and y, are two linearly independent solutions of the above differential equation and
¢ and cp are two arbitrary constants.

Theorem 2 A necessary and sufficient condition that solutions y, and y, of a second-
order linear differential equation be linearly independent is that a special determinant of
these solutions be different from zero. That is to say,

£0

‘ Y1 Y2
ova
The above determinant is called the Wronskian? of y; and y,, denoted by W (yy,y,); it
will play an important role in connection with Green’s functions.

7.4.1 Homogeneous Differential Equations with Constant Coeffi-
cients

The standard form for the general second-order homogeneous differential equation with
constant coefficients py and gy is

y" +poy’ +qoy = 0. (7.10)

Using the linear operator D defined by D = d/dz, we may write the above differential
equation as

(D? +poD +¢qp) y = 0.
The equation
D? 4+ pyD+qy=0 (7.11)

is called the auxiliary or characteristic equation. Our procedure for solving Eq.(7.10)
involves treating the characteristic equation algebraically and using techniques for solving
first-order linear differential equations. The roots of the characteristic equation (a quadratic
equation in D), may be (a) real and unequal, (b) real and equal, or (c) a complex-conjugate
pair.

Case 1 The roots of the characteristic equation are real and unequal.

Assume the roots of the characteristic equation, Eq.(7.11) are a and b. We may therefore
write the original differential equation, Eq.(7.10), in the following factored form:

(D—a)u=0 where u=(D-b)y.

The above equations are first-order linear differential equations and may be solved by use
of the formula in Eq.(7.6); we obtain

u=ce® and y=ce® / el V%dg + cpeb®.

4Josef Hoéné de Wronski (1778-1853), Polish mathematician known for work that involved applying
philosophy to mathematics. He developed a series expansion whose coefficients were determinants, now
known as Wronskians.
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In this case, the solution of Eq.(7.10) is
Y(z) = apr + Cay2 = 1™ + cpe™”.

Since a # b by hypothesis, the Wronskian of 7; and ys is not equal zero; therefore,
and yo are two linearly independent solutions of Eq.(7.10).

Example 71 Solve y" +y' — 2y =0.
Solution : The corresponding characteristic equation is
D*+D-2=0 or (D-1)(D+2)=0 withrootsequal 1 and —2.

By use of the result for Case 1, the general solution of the differential equation to be solved
is

y(z) = cr€® +coe™ .

Case 2: The roots of the characteristic equation are real and equal.
Since the roots of the characteristic equation are real and equal a = b, we may write the
original differential equation in the following factored form:

(D—a)u=0 where u=(D-a)y.
On solving the above two first-order linear differential equation, we obtain
y(z) = iy + coya = 1z + e

Again, note that the Wronskian of y, and y» is not equal zero; hence, y; and y» are
linearly independent solutions of the original differential equation for Case 2.

Example 72 Solve y" —2y'+y =0.
Solution : The characteristic equation may be factored as follows.
(D-1}(D-1)=0  with solutions a=b=1.

By use of the development for Case 2, the general solution of the differential equation to
be solved is

y(z) = (az + co)e”.

Case 3 The roots of the characteristic equation are a complez conjugate pair.
This case is equivalent to that outlined in Case 1 if we set b = a* where a* means the
complex conjugate of a.

Example 73 Solve y" +9y=0.

Solution : Here the characteristic equation is D? +9 = 0 with roots #3:. The general
solution of the differential equation to be solved is therefore given by

y(l‘) = 616351: +Cz€_3iz.
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Example 74 The Classical Linear Harmonic Oscillator Consider the motion of
a mass m attached to the end of a spring with spring constant k (see Fig. 7.2). For
applied force with magnitude F and restoring force with magnitude —kz, the equation of
motion of this mass when released is Hooke’s® law, F = —kz or mi + kz = 0.

(a) Find x(t) subject to the initial conditions z(0) = Xy and z(0) = 0 . Condition
z(0) = Xy means that initially the mass is a distance Xy from the equilibrium position; this
mazimum distance from the equilibrium is called the amplitude. The condition £(0) =0
means that the mass is initially at rest. (b) Find the period of the motion.

Solution : The standard form of the equation of motion is
F+w’z=0 where w?=k/m.
Part A The corresponding characteristic equation is
D? +w?=0 with solutions + iw.
The general solution of the equation of motion is therefore

z(t) = c1€™* + cpe ™"
= ¢ (coswt + i sinwt) + ¢co(coswt — isinwt)
= Acoswt + Bsinwt.

Applying the initial conditions z(0) = X = 4 and £(0) =0 = Bw or B =0 since
w # 0, we obtain the following solution for the original equation of motion

z(t) = Xpcoswt.

Part B The period of the motion is the time required for the mass to repeat itself (i.e.,time
per cycle); it is determined as follows:

z(t) =z(t+T) where T is the period

SRobert Hooke (1635-1702), English scientist known for his work in optics and elasticity. His claim of
priority over the inverse square law led to a bitter dispute with Newton.
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or

Xpcoswt = Xgcosw(t+T) = Xg(cos wt coswT — sinwt sinwT)
= wl=2m [®=012,...).
The period is given by
2
T= % = 21, / %; n is the mode of oscillation.

Example 75 Consider the motion of a particle of mass m initially at rest and subject to
a restoring force of —kz and a damping force of —az. The equation of motion of this
particle is

mi = —kz —at where z(0) =X, and £(0)=0.
The equation of motion in standard form is
F+20 4w’z =0 where w =k/m and 20 =a/m.
The factor of 2 in the equation of motion is used for convenience. Find the solution of the
equation of motion for the following cases (a) § =0 (no damping), (b) 6 =w (critical
damping), (c) § <w (light damping), and (d) 6 > w (heavy damping).
Solution :
Part A The equation of motion for § =0 reduces to
4wz =0.
The solution of the above differential equation (same as in Example 74) is
z(t) = Xgcoswt for z(0) =X, and z(0) =0.

The motion in this case {§ = 0; no damping) is oscillatory and periodic with constant
amplitude Xj.

Part B For § = w # 0, the solutions of the corresponding characteristic equation are real
and equal, —J. The solution of the equation of motion for critical damping is

z(t) = (et + c)e™® = Xp(0t + 1)e™®  for z(0) =X, and z(0) = 0.

The motion in this case (§ = w; critical damping) is not oscillatory and approaches equi-
librium at a rapid rate.

Part C For light damping ¢ < w, the solutions of the corresponding characteristic equation
are —0 £iA where A =+/w? — §2. The solution of the equation of motion is

)
z(t) = X, (cos At + A sin At) e® for z(0) =X, and %(0)=0.
In this case, the motion is oscillatory with decreasing amplitude, Xye~%, and is not periodic.
Part D For heavy damping § > w, the solutions of the characteristic equation are —§+ A’
where A’ =+/62 — w?. The solution of the equation of motion for heavy damping subject
to initial conditions, z(0) = X, and £(0) =0, is

_ 0+ A"

z(t) = ST

A = §)

Here the motion is not oscillatory and approaches equilibrium at a rate less rapid than for
critical damping.

Xoexp[(=6 + AN t] + (
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7.4.2 Nonhomogeneous Differential Equations with Constant Co-
efficients

The standard form for second-order nonhomogeneous differential equations with constant
coefficients is

¥+ poy' + qoy = f(x). (7.12)
The two widely used methods for solving differential equations in the above category are
1. successive integration and

2. undetermined coefficients, y = y,+7Yy, where vy, is the solution of the corresponding
homogeneous differential equation and y, is any solution of the nonhomogeneous
differential equation. Methods of the above Section are used to find y, and methods
of undetermined coefficients, discussed below, are used to find y,.

Method of Successive Integration
If @ and b are the roots of the characteristic equation corresponding to Eq.(7.12), then
Eq.(7.12) may be written as

(D —a)u= f(z) where u=(D-b)y. (7.13)

The above two first-order differential equations may be solved by use of the general formula
in Eq.(7.6); for u, we obtain

u=e* / f(z)e *dz + c1e™*
= Q(x). (7.14)

On substituting u into the second differential equation in Eq.(7.13) and solving for y, we
obtain

y(z) = € / Q(z)e™"dz + cpe®. (7.15)

The expression for Q(z) is given in Eq.(7.14). While successive integration is a general
method for solving second-order nonhomogeneous differential equations with constant coef-
ficients, it is clear from the appearance of the integrals in the general solution in Eq.(7.15)
that this method can be very tedious to carry out for most functions f(z).

Example 76 By use of the method of successive integration, solve
y" —2y' +y=2cosz.

Solution : The roots of the characteristic equation of the corresponding homogeneous dif-
ferential equation are real and equal, +1. The equation for Q(z) reduces to

Q(.’L‘) =eaz/f($)e—azdx+cleaz

=2¢" /e_z coszdz + c€”

=sinz — cos T + cre”.
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On substituting the above expression for @(z) into Eq.(7.15), the general solution of the
original differential equation becomes

y(z) = / Q(z)e ""dz + c2e”

=¢é° / e ®[sinz — cosz + c1€”] dz + cp€”
= —sinz + (az + c2)e”.

Method of Undetermined Coeflicients Here the general solution of the second-order
nonhomogeneous differential equation with constant coefficients is assumed to have the
form y = yp+y,. Physical problems are often solved by use of the method of undetermined
coefficients since 1y, can often be obtained without difficulty. Systematic methods such
as superposition of solutions principle and annihilation operators for finding y, for any
combinations of three types of nonhomogeneous terms (polynomial, exponential, and sine
and/or cosine) are given in textbooks on differential equations. Below, we summarize the
results for these three cases; values for constants in the assumed expression for y, are
obtained when the appropriate expression is substituted into the original nonhomogeneous
differential equation.
1. f(z) is a polynomial of degree n > 0.

(a) If 0 1is not a root of the characteristic equation, then assume

Yp=Ap+ A1z + -+ Ap2™.

(b) If 0 is a single root of the characteristic equation, then assume
Yp =2 (Ao + A1z + -+ Apz").
(¢) If 0is a double root of the characteristic equation, then assume
Yp=22(Ap+ Az +---+ Apz™).
2. f(z) is of the form Cer=.
(a) If k is not a root of the characteristic equation, then assume y, = Ae*,

(b) If k is a single root of the characteristic equation, then assume y, = Aze?.

(¢) If k is a double root of the characteristic equation, then assume y, = Az2e*®.

3. f(z) is of the form sin kz, cos kz, or sinkzx + cos kz.

(a) If ¢k is not a root of the characteristic equation, then assume

Yp = Acoskz + Bsin kz.

(b) If ik is a single root of the characteristic equation, then assume

Yp = Az cos kz + Bzsinkz.
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Example 77 The equation of motion for a mass attached to the end of a vertical spring
fized at the other end is i +wy = —g where g is the acceleration due to gravity. Find
y(t) subject to y(0) =Y, and y(0) =0.

Solution : The general solution of the homogeneous equation, jj+w?y = 0, is y, = A cos wt+
Bsinwt since the roots of the characteristic equation are +iw. The nonhomogeneous term
is a constant (polynomial form), and we assume that y, = Ay. On substituting y, into
the original differential equation, we obtain A4y = —g/w? or y, = —g/w?. The general
solution (y = yn +¥,) of the original differential equation is

y(t) = Acoswt + Bsinwt — g/w?.

Initial condition y(0) =Y, leads to A =Yj — g/w?, and initial condition g(0) = 0 yields
B = 0. The particular solution, therefore, becomes

g g
y(t) = (Yo + E) coswt — e

A graph of the above equation characterizes the motion, position as a function of time, of
this particle.

Example 78 By use of the method of undetermined coefficients, solve

y"' — 2y +y=2cosz.

Solution : Since the roots of the characteristic equation are both 1 (double root, real and
equal), the solution of the corresponding homogeneous differential equation is

yn = (a1z + co)e”.

The roots of the characteristic equation are not equal ¢k =i (k = 1, in this case; see Case
2 above, exponential form), and the assumed form for y, is

yp = Acoskz + Bsinkz.
On substituting the above equation for y, into the original differential equation, we obtain
— (Acoskz + Bsinkz) + 2 (Asinkz — Bceos kz) + Acoskz + Bsinkz = 2cos z.

From the above equation, it is clear that A =0 and B = —1; hence, y, = —sinz. The
general solution (y =y, + yp) of the original equation is therefore

y(z) = (az + cp)e” —sinz.

The above result is, of course, the same as that obtained in Example 76.
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7.4.3 Homogeneous Differential Equations with Variable Coeffi-
cients

The standard form for homogeneous differential equations with variable coefficients is
¥ +p(z)y +4q(z)y =0 (7.16)

The usual procedure for solving differential equations of the form given in Eq.(7.16) is the
power series method due to Frobenius and FuchsS. Here we concentrate on developing a
solution of Eq.(7.16) near the origin. The Frobenius-Fuchs method, however, can easily be
extended to obtain solutions away from the origin.

The Frobenius-Fuchs theorem yields the following two types of information concerning the
solution of Eq.(7.16): (a) form of the solution as a result of the nature of p(z) and
g{z) and (b) form of the solution as indicated by the nature of the solution of the indicial
equation. We will not make use of the second type of information. Information of the first
kind is as follows:

1. If p(z) and g¢(z) are regular at z = 0, then Eq.(7.16) possesses two distinct
solutions of the form

y(z) = Za,\m’\ (ax #£0).

2. If p(z) and q¢(r) aresingular at z =0 but zp(z) and z2q(z) are regular at
z = 0, then there will always be at least one solution of Eq.(7.16) of the form

y(z) = Za,\z’\““ (ay # 0).
A=0

3. If p(z) and ¢(z) are irregular singular points at z =0 (i.e., zp(z) and z%q(z)
are singular at z = 0), then regular solution of Eq.(7.16) may not exist. In this case,
no general method for solving the equation is known.

Since many problems in physics lead to differential equations in category 2 and differential
equations in category 1 are just special cases of type 2, we only focus on differential equations
in category 2. We now give the details of a simple example to illustrate the power series
method.

Example 79 Consider the differential equation

zy’ + 2y + 2y =0.

By use of the power series method, obtain the (a) indicial equation and its two solutions,
(b) recursion formula, and (c) general solution of the differential equation, y(z).

SLazarus Immanuel Fuchs (1833-1902), German mathematician known for his work in differential equa-
tions and the theory of functions. He studied at the University of Berlin with Kummer and Weierstrass.
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Solution : The standard form of this differential equation is
2
"2 -0
y+oyty=0

Note that p(z) — 2/z and g¢(z) — 1; hence the differential equation is of the type 2
form, and the form the solution is

y(z) = Z axz™*  (ay #0).
A=0

On substituting the above equation into the original differential equation, one obtains

o0 [o o]
Z axA+Ek+1D) A+E)z M2 4 Z axz*F =0,
A=0 par)

The basic plan at this stage is to write the above equation using a single sum. On replacing
A with M +2 in the first sum, the power of z in the first sum becomes the same as that
in the second sum. The above equation now becomes

o) o)
Z axy2 (N +k+3) (N +k+2) 2Vt 4 Z arz Mt = 0.
A=N42=0; A=0
A=-2

Since the sum is independent of the index, A’ (a dummy index) in the first sum may be
replaced with A, and we may write the above equation as

0 = apk(k + 1)z*2 + a;(k + 1) (k + 2)z*"

+ D {ari2 (A +k+3) (A +k+2) +ar} 2
A=0

Terms in the above equation are linearly independent, and we required that

agk(k+1) =0 (indicial equation);
a(k+1)(k+2)=0; and

a2 A+k+3)(A+k+2)+ay=0 (recursion formula).

The indicial equation results from equating the coefficient of the lowest power of the
variable to zero. The recursion (one-after-another) formula is used to evaluate the coef-
ficients for the remaining powers of the variable. In this case, the solutions of the indicial
equation are k=0 and k= —1., When k=0, a; = 0, because (in this case) of equation
between the indicial equation and the recursion formula. The coefficient @, is arbitrary
when k= —1, and two independent solutions of the original differential equation may be
obtained by use of £k = —1 since ay is arbitrary by hypothesis. (Use of k = 0, in addition
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to k = —1, will produce a redundant set of coefficients; see Problem 7.31.) The form of
the solution of the original differential equation becomes

z) = Z ayz L. (7.17)
A=0

Values for the coefficients in the above equation are obtained from the recursion formula

using k = —1. The general expressions for even and odd expansion coefficients respectively
are
(=1)%ao (-1)lay .
) d . ~ 7 = =0,1,2,...).
Q2j (2],)! an @25 41 (2j 1)! (] )

The general solution of the original differential equation is obtained by substituting the
above coeflicients into Eq.(7.17), we obtain

Jw2]+1

_aozﬂ Z 2+1
Jj=

7.4.4 Nonhomogeneous Differential Equations with Variable Co-
efficients

Variation of parameters and Green’s functions methods are normally used to solved nonho-
mogeneous linear differential equations with variable coefficients that occur in mathematical
physics. The standard form for these differential equations is

¥+ p(z)y' + q(z)y = f(2). (7.18)

The method of variation of parameters due to Lagrange will now be used to solve Eq.(7.18)
subject to the conditions given below. Assume the solution has the form

y(2) = vi(z)y1 + va(z)ye- (7.19)

In the above equation, y; and y, are two linearly independent solutions of the correspond-
ing homogeneous differential equation; they can be determined by use of the power series
method developed in the previous Section. Functions v; and v, are unknown parameters
to be determined. We assume that f(z) is continuous in some region of interest a <z <b
and that

VY1 + vhy2 = 0. (7.20)
Note that
y' =wvy) +veyy, and " = vy +viy] + vays + vays. (7.21)

Substituting Eqgs.(7.19 and 7.21) into Eq.(7.18) and using the fact that y; and y, are
solutions of the homogeneous equation corresponding to Eq.(7.18), we obtain

vy + vays = f(z).
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Solving the above equation and Eq.(7.20) for v] and v}, we obtain

Pk
f(2) v vof (z
v1= A 2 :_ZA() where A = Z:Zi Zz
and
HA
yo Lt 1@ | i)
2 A A

The quantity A is just the Wronskian W (y;,y2) of y and y»; it is not equal zero since
1 and y, are linearly independent by hypothesis. Solving the above equations for v, and
vy and substituting the results into Eq.(7.19), we obtain the solution of Eq.(7.18) subject
to the assumption in Eq.(7.20); the general solution of Eq.(7.18) may be written as

= -y / /(@ Wiz / /(@ yldz (7.22)
W (y1,v2) W (y1,92)

Example 80 By use of the variation of parameters method, solve
22y — 22y +2y=zlnz (z#0).
Solution : The standard form for this differential equation is

n 2, 2 Inz
T T

On comparing the above equation with Eq.(718), we find that p = —2/z,¢q = 2/z?, and
f(z)=1n/z. Take y1 =z and y, =z? where W(y1,y2) = z2. The general solution of
the original differential equation is

y(z)=-z/M+$2/M

2 2

/lnzdx 2/ln:vdzv
=-z +z 2
z z

1
=z [5 (nz)?+Inz + 1] — T + cp7?.

Equation (7.22) will now be put in the form of a definite integral that is useful in solving
initial or boundary value problems. Let z be a point in the closed interval [a,b] such
that the first term in Eq.(7.22) is replaced by a definite integral from b to z and the
second term in Eq.(7.22) is replaced by a definite integral from @ to z. In terms of the
two indicated definite integrals, Eq.(7.22) becomes

* y1(t)y(2) f(t)dt b vi(z)ya(t) f()dt
via) = [ RIS 1 [

- / ’ o, 01 (1)t
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The function G(z,t) in the above equation is called the Green’s function for Eq.(7.18)
subject to the appropriate boundary conditions. The Green’s function is defined by

_ (B ye(z)/W(E)=G, for a<t<z
Gl 1) —{ gléz)zz(t))/W((t)) 26 for a<t<h

Note that the Green’s function depends only on ¥y, ¥, and the Wronskian. The quantity
W(t) means W [yi(t),y2(t)]. The value of the Green’s function approach is related to the
fact that initial or boundary conditions are incorporated in the formulation of the problem
in a natural manner. At ¢ =a, G;(z,t) satisfies the boundary condition imposed on y(z)
and Gs(z,t) satisfies the boundary condition for y(z) at t="b.

Example 81 By use of the Green’s function method, find the solution of
y' =6z where y'(0)=y(1)=0, y1=1z, and y2=z—1.
Solution : Here the Wronskian equals 1 and the Green’s functions become
Gi(z,t)=t(z-1) for 0<t<z
Ga(z,t) =z(t—1) for z <t <1

The solution of the differential equation is

y(z) = f: G(z,t)(6t)dt = z° — =.

7.5 Some Numerical Methods

Numerical methods are treated in details in many textbooks on the subject, and a summary
of essential features of numerical methods related to solutions of ordinary differential equa-
tions is given in this section. In general, the numerical solution of a differential equation
consists of a table (or graph) of values of the dependent variable for corresponding values
of the independent variable.

7.5.1 The Improved Euler Method for First-Order Differential
Equations

The basic idea of Euler’s method for solving first-order ordinary differential equations is
to convert the differential equation (which is continuous) to a difference equation (which
is discrete). The general form for a first-order ordinary differential equation will now be
written as

dy
By use of the definition of a derivative, the above equation may be written as
Ay y(z+ Az) —y(z)] _
Ay g = dim [T A | @Y
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The basic idea of the finite difference method involves writing the above equation as

y(zn+1) = y(zn) + f(xm yn)Az. (723)

The result in Eq.(7.23) is the Euler algorithm for solving first-order ordinary differential
equations. The notations in Eq.(7.23) have the following meanings: zny1 = 2, + Az and
Y(Tnt1) = Yns1. To apply Euler’s method, first select the interval size Az, then evaluate
y(z) at zo, and after that evaluate f(z,y) at (Zp,yo). The result for y(z:) is

y(21) = y(zo) + f (2o, y0)Az.

A second iteration with inputs y(z;) from the above equation and f(z1,y1) yields y(z2);
the result is

y((l?g) = y(zl) + f(iL'], yl)A:v

The iteration is continued to yield a numerical solution of the required first-order ordinary
differential equation in the region of interest. A systematic procedure for calculating the
error involved during each iteration does not exist for Euler’s method.

To improve the simple Euler method, the class of first-order differential equations is re-
stricted to those whose solutions can be expanded in a Taylor series. Neglecting terms of
order (Az)® and smaller, one obtains

(Az)? [0f(Zn; Yn)
2 oz

Y(Zns1) = Y(zn) + AZf(ZTn,yn) +

+ f(zrn yn) M:I :

Oy

The above equation is referred to as the improved Euler method and will be used to
obtain solutions of first-order ordinary differential equations.

Example 82 The equation of motion for a certain particle is

Y+av=g; v(0)=0.
For a=0.01 s} and g =9.8 ms™L, the analytic solution of this equation of motion is
g —at
=2 (1- .
v(t) o (1—e)

Find the numerical solution of this equation of motion by use of the improved Euler method.
Solution: The general form of the improved Euler method for the differential equation
v=g—av is

_ (At)z 6f(tm Un) 3f(tn7 'Un)
O(tn41) = v(tn) + Atf(tn, va) + -5 | =5 F [t va) =5 = | -
For arbitrary At in the above equation, the quantities reduce to
_ af(tny 'Un) _ 3f(tnvvﬂ) _ _
(b, vn) = g — av(ty), Y 0, and 5 =

The essential programming statement for calculating the numerical solution of the original
differential equation is

v(n+1) = v(n) + [g — av(n)] [At — a (AL)? /2]
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7.5.2 The Runge-Kutta Method for First-Order Differential Equa-
tions

There exist many methods for finding numerical solutions of first-order ordinary differential
equations, and the Runge”-Kutta® method is probably the most often used method. As
with the Euler and the improved Euler methods, the essential problem is to generate a table
of values for z and y for the differential equation y' = f(z,y) when y(z) at z ==
is given. The problem is to develop a method for finding y; at zo + Az, y, at = + 3Axz,
and successive values for y, throughout the range of interest. For calculating successive
values of y(z,) in the differential equation y’ = f(z,y), the Runge-Kutta methods use a
recurrence formula in the form

vinn =y + Az Y ki (7.24)

=1

Of the many parameters a; and k; in Eq.(7.24), some are chosen arbitrarily and others
are obtained by use of the Taylor series involving one and two variables. The order of the
Runge-Kutta approximation is indicated by the value of n in Eq.(7.24). Evaluation of the
parameters in Eq.(7.24) for n >4 in the Runge-Kutta approximation is straight forward
but involves tedious algebraic manipulations. For h = Az, the formula for the fourth-order
Runge-Kutta method reduces to

1
Yir1 = Vi + 6 (ky + 2k + 2ks + ks) + ¢ (B°) . (7.25)

In Eq.(7.25), ¢ (h®) denotes terms of order A%, and the k parameters are determined by
use of

ki = hf(zi,yi); ko= hf(zi+h/2,yi + k1/2);
ks =hf(z; +h/2,y; + k2/2); k4=hf(:v,~+h,y,'+k3).

Example 83 Find the numerical solution of the differential equation in the previous Ez-
ample by use of the fourth-order Runge-Kutta method.

Solution : The general form of the Runge-Kutta method for the differential equation o =
g—oavis

1
v(n+1)=v(n)+ 8 (kv + 2kg + 2k3 + ky) .

The parameters k£ reduce to

ki = hlg — av(n)]; ko = h[g— a{v(n + h/2) + k1 /2}];
ks = hlg — a{v(n+ h/2) + ko/2}]; k4 = hlg — {v(n + h) + k3}].

"Carl David Tolmé Runge (1856-1927), German mathematician known for his work in the numerical
solutions of algebraic equations and for work in differential geometry.

8Martin Wilhelm Kutta (1867-1944), German mathematician who is best known for the Runge-Kutta
method. Runge presented Kutta’s method.



7.6. PROBLEMS 189

7.5.3 Second-Order Differential Equations

Numerical solutions of second-order differential equations are obtained by first reducing
them to a system of first-order differential equations and applying the methods for solving
first-order differential equations. The general second-order differential equation may be
written as

d?y

i f(z,9,9). (7.26)

For z = dy/dz, Eq.(7.26) reduces to the following pair of first-order differential equations

dz dy

—_= _—= = - 7.27

= f@ye) and  =z=g(zy2) (7.27)
The procedure for solving Eq.(7.26) is to solve the first equation in Eq.(7.27) with condition

y'(0) and use that result as an input for the second equation in Eq.(7.27) to obtain the
solution y(z) with condition y(0).

7.6 Problems

7.1 Classify (order and degree; homogeneous or nonhomogeneous; linear or nonlinear) the
following differential equations:

(a) (£+y))y"+azy'+z=€ (d)§+gsing/L=0
(b) ¥+ @) +zy=0 (¢) ¥ +zy*=0.
© ¥+ @)+ =0

7.2 Verify that the first equation in each set is a solution of the corresponding differential
equation.

(a) 22 =2y’Iny; o =zy/(z? +7?)
(b) 22 +y=zy; Y —2Py+y*=0
(c) y=e"+¢*; y" -3y +2y=0
(d) y=z—zlnz; zy'+z-y=0

() y=ztan(z+c); zy =z +y°+y.
7.3 Test the following differential equations for exactness and solve the exact equations:

(a) (22° — 32y +¢°) dy/dz = 22° — 62%y + 3zy”

(b) 2zydy/dz +y* = a+ 2bz
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(c) z(z®+2y*) dr+y (2° +y*)dy =0
(d) mdv/dt+Vdm/dt=0

() z(y*+2)dy/dz=(z+1)(y*+1).
7.4 Find the general solution for each of the following differential equations:

(@) y=ky (b) ¥'=az+by (c) y—y —zy’=0

d) y¥+2y—z—e2=0 (e) zy'+2y=12z.

7.5 Find the solution of each of the following differential equations subject to the indicated
condition:

(@) ¥'=v% y(0)=1 (b) mo+kv=yg; v(0)=nvp
() ¥=e¥; y(0)=0 (d) v+y=y%" y0)=1

(€ e+ =1 y(0)=1

7.6 If a rocket is projected vertically upward under gravity, the equation describing its
motion is

where V is the speed of the exhaust gas relative to the rocket. Find wv(t) for v(0) =0
and m(0) = M. (The other symbols in the equation have their usual meaning; neglect
external forces.)

7.7 Assume that a spherical drop evaporates at a rate proportional to its surface area. Find
an explicit expression for the radius of the drop as a function of time if r(0) =3 mm and
r(1hr) = 2 mm.

7.8 A certain radioactive material has a half-life of 2 hr. Find the time required for a given
amount of this material to decay to one-tenth of its original amount.

7.9 Five percent of a radioactive substance is lost in 100 yr. How much of the original
amount will be present after 250 yr?

7.10 For v + av = —Bv? where v(0) = vy, find =z(¢).

7.11 (a) Write the appropriate differential equation for the circuit in Fig. 7.3. (Here I,
the current, is the dependent variable, and time is the independent variable.) (b) Solve
the equation in part (a) for I(0) = 0 and constant FE,R, and L. (c) Now, assume
E(t) = Epsinwt in part (a) and solve the resulting differential equation with constant E,
and w.

7.12. A metal ball having a temperature of 80°C is placed into m grams of ice water
at 0° C. After ten minutes, the temperatures of the ball and water are 60° C and 20°C,
respectively. Now, the ball is transferred to another m grams of ice water at 0° C. Calculate
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Figure 7.3

the temperature of the ball at the end of another (a second) ten-minute interval if the only
exchange of heat is between the ball and the water. (Hint: Use Newton’s law of cooling.)

7.13 A raindrop falls from rest at a place where the air resistance is proportional to the
speed, kv. (a) Derive the expression for the speed of the drop as a function of time. (b)
When ¢ — oo, the expression for the terminal speed results. Derive the expression for
the terminal speed of the drop. (c) Derive the expression for the position of the drop as a
function of time.

7.14 Solve the following differential equations:

(@) v'+7y'+12y=0 (b) ¥"+2y/+2y=0 (c) ¥"+6y +9% =0
d (s
(d) = (r’dv/dr) =0; v(a)=v, and wv(b) =,

() ¥+6y+13y=0; y(0)=2 and y(0)=1.
7.15 Solve the following differential equations:

(a) y"-l-y:z (b)ylf_yl_Qy:zS
(© y¥'+y' —6y=12e"" (d) y"+3y' +2y=¢""

(e) y"+ 3y =10sinz; y(0) =y'(0)=0.

716 If y, =z and y; = ze® are two solutions of the homogeneous differential equation
associated with

oy — (2 + 20)y' + (z+2)y =2°,

(a) show that y; and y, are linearly independent and (b) find the general solution of the
differential equation.
7.17 Euler’s differential equation (sometimes called Cauchy’s differential equation),

d Ldr! d
Inﬁ + alz" 1d:12"’—y1 +-+ an—lma—g + nlY = f(.’L‘)



192 CHAPTER 7. ORDINARY DIFFERENTIAL EQUATIONS

sometimes occurs in physical problems. It can be reduced to an nth-order linear differential
equation with constant coefficients by use of a change of variable, z = e®. (a) Show that

d? d
:v2d—zg+z£ —y=Inz
can be reduced to
d?y
P

(b) By first solving the reduced differential equation, find the solution of the original dif-
ferential equation.

7.18 Consider the equation y” + A2y = 0. Find the eigenvalues (restricted values of A;)
and the corresponding eigenfunctions, y,(z), of this differential equation for the conditions
(a) ¥'(0)=0 and y'(r)=0and (b) ¥'(0)=0 and y'(r) =0.

7.19 The Riccati’ equation,

dy

e P(z)y® + Q(z)y + R(z),

is a nonlinear differential equation that is of considerable importance in particle dynamics.
By use of a change of the dependent variable y = —[1/P(z)]dz/dz, show that the Riccati
differential equation becomes

d?z 1 dP\ dz

which is a second-order linear differential equation.
7.20 (a) By use of y = zexp[—1/2 [* p(t)dt], show that

y" +p(z)y +q(z)y =0
transforms into
2+ f(z)z =0.

(b) Determine the expression for f(z). Note that Leibniz’s formula for the derivative
of an integral is useful in solving this problem,

d [ M9 9f(z,a) dh(c)
%/g(a) f(:v,a)dz—/g(a) T+f[h(a),a]w

~ flofe), o))

7.21 The vertical motion of a particle of mass m on a spring with spring constant & is
described by the following differential equation:

mj=—ky+mg; y(0)=y and g(0)=0.

9Jocopo Francesco Riccati (1676-1754), Italian mathematician who is best known for his studies of the
Riccati differential equation.



7.6. PROBLEMS 193

Solve this differential equation for the position of the particle as a function of time.

7.22 A particle of mass m is projected vertically upward with a speed of vy. The particle is
subject to gravity and a force of air resistance that is proportional to v. Find the expression
for the maximum height reached by the particle.

7.23 The steady flow of heat in a uniform rod of length ¢ is described by the equation

T
where «y is a constant which characterizes the material. Find the solution of this differential
equation subject to the indicated boundary conditions.
7.24 If a thin wire of length £ is heated by an electric current, the differential equation for
its temperature distribution has the form

aoT o,

Eﬁ-bT:—k for k>0, T(0)=0 and T(¢) =0.
The coefficient b characterizes the material. Discuss the solution of this differential equa-
tion for the following three cases: (a) % >0, (b) b2 =0, and (c) b < 0.
7.25 According to Kepler’s'® first law, the path of a certain planet about the sun is an
ellipse

re o
" 14e€cosh

with the sun at one focus. By use of the differential equation of orbits

d®u  pF(l/u)

v
ez T T T e

1
h = - d ——=F(r),
where u=—an ar (r)
determine the central force law F'(r) for this motion.
7.26 Consider the motion of a planet such that the force law is

kK ,
F(r)y= 2 + = where £ < k.
By use of the differential equation for orbits (see Problem 7.25), obtain the equation for
the orbit of this planet.
7.27 Consider a damped harmonic oscillator, #+2ad + 3%z = F(t)/m, with an applied force
of Fysinwt and critical damping given by « = 8. Derive the expression for a particular

solution and show that it can be put into the following form:
Fysin (wt — 2¢) 1 (w)
z(t) = ——————; Wwhere ¢g=tan™ [ —|.
0 =" (6% + w?) ¢ B

7.28 The equation of motion for a simple pendulum is mlf = —mgsin@ where £ is the
length, m is the mass of the bob, and g is the acceleration due to gravity. (a) By use of the

10Johannes Kepler (1571-1630), German mathematician and scientist best known for his three laws of
planetary motion.
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small-angle approximation [sinf = tané = 6 (in radians)], find #(¢) and the expression for
the period of the motion. (b) Show that the original equation of motion may be written as

1d(62
d(o") —n2sin®  where n?=12.

27 ds I}

(c) Show that the following integral (elliptic integral) must be evaluated to obtain the
solution of the equation in part (b):

0 -
_,/ (2 cos 8 d29 cosf )1/2 =nt where 6(0)=6y and 6(0)=
- 0

The expression for the period in this general case is
A4 [r 1w in & 337 : o
T= [ tag™ ( )+816 (2)+ ]
2m 00
~—|1+—}.
n ( + 16)
7.29 In the Example involving zy” + 2y’ + zy = 0 on page 182, show that use of £ =0 (in

addition to kK = —1) produces a redundant set of coefficients.
7.30 By use of the generalized power series method, solve

zy" +2y' +2y=0; y(0)=1 and y'(0)=0.

7.31 Solve the Euler-Cauchy differential equation, z?y”+2y' =0, by use of the generalized
power series method.

7.32 By use of the power series method, find the solution of

1d/{ ,dR

Rar (r = ) =4 +1).

7.33 By use of the Fourier transform method, solve the ordinary differential equation for
the forced harmonic oscillator, %+ 2z +wiz = f(t), subject to the initial conditions that
z(¢) and Z(¢) go to zero as t goes to plus and minus infinity.



Chapter 8

Partial Differential Equations

8.1 Introduction

Physical problems involving two or more independent variables are often described (i.e.,
mathematically modeled) by use of partial differential equations. Partial differential
equations contain partial derivatives with respect to two or more independent variables.
Some methods for solving partial differential equations are (a) direct integration; (b) sep-
aration of variables; (c) Fourier and Laplace transforms; (d) Green’s functions; and (e)
characteristics.

There are partial differential equations whose solutions cannot be obtained by use of the
above methods; constructing the solutions for such differential equations is beyond the
scope of this book. However, many partial differential equations used in the mathematical
modeling of physical problems can be solved by use of these five methods.

Appropriate boundary (space) and/or initial (time) conditions must be applied to the gen-
eral solution of a partial differential equation to obtain a suitable solution for the problem
under investigation. Three common types of boundary conditions are

1. Dirichlet: specification of the solution at each point on the boundary;

2. Neumann: specification of the normal derivative of the solution at each point on the
boundary; and

3. Cauchy: specification of appropriate initial value(s), Dirichlet and Neumann condi-
tions when appropriate.

The following equations are examples of important partial differential equations in physics
involving the Laplacian operator.

V24 =0; Laplace’s equation. (8.1)

The function u(z,y,2) in Eq.(8.1) may represent electric potential in a charge-free re-
gion, gravitational potential in a region free of matter, or steady-state (time-independent)
temperature in a region without a heat source.

V2u = f(z,y,2); Poisson’s equation. (8.2)
Analytic Methods in Physics. Charlie Harper

Copyright © 1999 WILEY-VCH Verlag Berlin GmbH, Berlin
ISBN: 3-527-40216-0



196 CHAPTER 8. PARTIAL DIFFERENTIAL EQUATIONS

The function u(z,y,2) in Eq.(8.2) may represent electric potential, gravitational potential,
or steady-state temperature in regions with respective sources denoted by f(z,y, 2).

19
Viu = ;6—1:; heat conduction (or diffusion) equation. (8.3)
In Eq.(8.3), the function wu(z,y,z,t) may represent a time-dependent temperature in a
region without a heat source or concentration of a diffusing substance. The constant ¢ is
called the diffusivity.
162 . .

2u= v—za—tg; mechanical wave equation. (8.4)
The function u(z,y,z,t) in Eq.(8.4) may represent the motion of a vibrating string or
membrane, and v is the speed of the wave motion.

2
{—Qh—mVZ +V(z,y, z)} ¥ = ih%—\f; Schrédinger’s equation. (8.5)

In quantum mechanics, Schrédinger’s (wave) equation is the basic equation of motion of
a microscopic particle of mass m, and ¥(z,y,2,t) is called the wave function. The
potential energy of the particle is represented by V(z,y,z2), and other quantities in this
equation have their usual meaning.

This chapter is mainly devoted to the physical applications of linear second-order homo-
geneous partial differential equations in two independent variables; the general form for
equations in this category is

2 2
%-{-QBau +C@+Da_u+Ea_u+Fu=0. (8.6)

A 0zdy ot? oz Ay

In Eq.(8.6), the coefficients may be a function of z and y, and properties of the solution
of the differential equation depend on the relative magnitudes of the coefficients. Based on
the coefficients in Eq.(8.6), partial differential equations are classified as follows.

> 0; elliptic,
AC — B%2{ <0; hyperbolic, and
=0; parabolic.

The general equation of a conic section (Az? +2Bzy + Cy? =1) representing an ellipse,
a hyperbola, or a parabola is the basis for above classification. According to these classifi-
cations, note that the (a) two-dimensional Laplace equation is elliptic; (b) one-dimensional
mechanical wave equation is hyperbolic; and (c) one-dimensional heat conduction (diffusion)
and Schridinger equations are parabolic. The geometrically related classifications are not
of primary importance when solving the differential equation by use of analytic methods
but do reflect the nature of the boundary conditions. For example, solutions of elliptic
equations must satisfy conditions on a closed boundary. In this Section, the focus will be
on direct integration and separation of variables methods for solving the partial differentials
involved in physical applications. In Section 8.2, the separation of variables and Fourier
transform methods are illustrated.
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Example 84 By use of direct integration, solve

32
aum(—;;y) =71’y; u(z,0)=22 and u(l,y)=cosy.

Solution : On integrating the original partial differential with respect to z, we obtain

0 (Ou) ou 14
% (ay)—xy or @—3xy+f(y)-

Integrating the above first-order ODE with respect to y, we obtain

u(a) = o + [ 1wy +9a) = 3% + Fo) + 9(0)

where  F(3) = [ F(w)d.
Condition 1:

u(z,0) = 2° = F(0) + g(z) = g(z) = 2% — F(0)
u(z,y) = 2%y*/6 + F(y) + z° — F(0).

Condsition 2:

u(l,y) = cosy = y°/6 + F(y) + 1 — F(0)
= F(y) =cosy —y*/6 — 1 — F(0).

The required solution is therefore

1 1
u(z,y) = gzsyz +cosy — gyz — 1422

8.2 The Method of Separation of Variables

The method of separation of variables was introduced and developed by d’Alembert, D.
Bernoulli, and Euler during the middle of the eighteenth century. It is the oldest systematic
technique (and still the most useful) for solving partial differential equations. The two-
dimensional Laplace equation is an example of an elliptic differential equation, and solutions
of the two-dimensional Laplace equation are called harmonic functions. To illustrate the
separation of variables method, we solve the two-dimensional Laplace equation

Fu  Pu
502 6_y2=0. (8.7)

The separation of variables method is illustrated by use of the following three-step process.
Step 1 Assume that the solution u(z,y) can be written as

u(z,y) = X (2)Y (y)
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where X is a function of z only and Y is a function of y only.
Step 2 Substitute the right-hand side of Step I into the original differential equation.

X"Y + XYY" =0.
Step 8 Divide the equation in Step 2 by the right-hand side of Step 1.

XII Yll XII YII
xTy=0 T x= v

Note that the left-hand side of the above equation is a function z of only and the right-hand
side is a function of y only (i.e., the variables have been separated). Since

d XII d YII d XII d YII
w(x)=a(¥)=0 = §(%)-4(F)-.

it follows that

XII YII

=X and > =-A=X"-2X=0 and Y"+2Y =0.

X Y
The parameter A is called the separation constant and is independent of z and y, in
this example. In general, the separation of variables method reduces a partial differential
equation with n independent variables to 7n ordinary differential equations involving
(n—1) separation constants. The above two ordinary differential equations can be solved by
use of techniques developed in the Chapter 7. The general solution of the two-dimensional
Laplace equation is the product of the solutions of the ordinary differential equations for
X and Y, u(z,y) = X (2)Y(y).

Example 85 The electric potential u(z,y) at points inside a rectangle (see Fig. 8.1)
is characterized by the solution of the two-dimensional Laplace equation. For boundary
conditions given by u(z,0) =uy and u(0,y) =u(a,y) = u(z,00) =0, find u(z,y).

VNN

u(0,y)=0 u(a, y)=0

> X
0 a u(x, 0) = u,

Figure 8.1
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Solution : We must find the solution to the following differential equation subject to the
given conditions:

0?u N Pu

0x2 oy
Separation of variables in the above differential equation with separation constant A? (the
square is for convenience as will be seen below) yields

0. (8.7)

EX
PO MX =0 with solution X(z)= Acos\z + BsinAz.
and
d’Y » Y
d—2—/\ Y =0 with solution Y(y)=Ce™ + De™¥.

The general solution of the two-dimensional Laplace equation is
u(z,y) = {Acos Az + Bsin Az} {Ce™ + De ¥} .

Condition u(z,00) = 0 requires that C = 0; condition u(0,y) =0 leads to A = 0, and
condition u(a,y) =0 gives A\, = nn/a for n=1,2,3,.... Now, the general solution
reduces to

u(z,y) = ZB' sin ( ) —nm/e where B! = BnDn.

The final condition is used to determine the values of B] as follows.

u(z,0) =y = gB,’Isin (?) .

The above equation is just a Fourier sine series, and the B], are given by
2 [ . (NTT 4u
B, = —/ Up Sin (—) dz=—-—""for n odd.
aJo a nw

The equation for the potential at points within the rectangle in Fig. 8.1, particular solution,

is therefore
=25 (20 o
odd

The extension of the above analysis to three independent variables is straight forward.
While this presentation made use of Cartesian coordinates, inclusion of other coordinates
systems (for example, cylindrical and spherical) may be carried out in a similar manner.
In general, time-independent equations involving the Laplacian operator may be put in the
form of Helmholtz’s differential equation, V?u + k*u = 0, when the appropriate & is used.
Hence, solutions of Helmholtz’s equation in various coordinate systems apply to all problems
involving the Laplacian operator. In spherical coordinates (r, 8, ¢), use of (a) separation
of variables; (b) the power series method; and (c) the appropriate k for Helmholtz’s
differential equation lead to the following special functions: (a) spherical harmonics; (b)
Legendre polynomials and associated Legendre functions; (¢) Laguerre polynomials and
associated Laguerre polynomials; and (d) spherical Bessel functions. Bessel functions result
when cylindrical coordinates (p, ¢,2) are used in Helmholtz’s differential equation. These
special functions are discussed in Chapter 9.
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8.2.1 The One-Dimensional Heat Conduction Equation

The method of separation of variables will now be applied to separate the space and time
variables in the one-dimensional heat conduction equation.
Pu_10u
02 oot
In Eq.(8,8), substitute u(z,t) = X(z)T(¢) and divide by X7T; the resulting two ordinary
differential equations for separation constant —M? are

(8.8)

2 X
(i? +X2X =0 with solution X(z)= Acos\z + Bsin\z
and
ar ., . . 2
r + AT =0 with solution T(t) = Cexp(—Aat).

The general solution of the one-dimensional heat conduction equation is
u(z,t) = (Acos Az + Bsin Ar) C exp(—2ot). (8.9)

Example 86 Solve the one-dimensional heat conduction equation for the temperature dis-
tribution u(z,t) in a rod of length ¢ such that u(0,t) = u(4,t) =0 and u(z,0) =
T exp(—az?).

Solution : We have shown that the separation of variables method applied to the one-
dimensional heat conduction equation yields the following general solution:

u(z,t) = (Acos Az + Bsin Az) C exp(—A?ot).

The square on the separation constant, —)2, is selected for convenience, and the negative
sign is used in anticipation of an oscillatory solution; boundary and initial conditions will
determine the actual sign of the separation constant.

Conditions u(0,t) = u(f,t) =0 leadto A =0 and A, = nr/l for n=1,2,...
respectively. The final condition yields

)

u(z,0) = Te™® = i B! sin (

n=1

),

The above equation is just a Fourier sine series, and the coefficients B], are given by

2 [* 4T,

B, = -/ Toe"“c2 sin (m) dr = % for n odd.
£ J, ¢l nm

The particular relation for the temperature distribution in the rod is therefore given by

4Ty X1
u(z,t) = TO Z -~ sin (?) e Tt/
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Example 87 By use of the Fourier transform method, solve the one-dimensional heat con-
duction equation for the temperature distribution T (z,t) such that T(z,t) and Ty(z,t)
approach zero as x approaches plus and minus infinity. In addition, the initial condition
T(z,0) = To exp(—az?) for constant a is imposed.

Solution : Here, one transforms out the space variable so that the resulting equation will
be a first-order ordinary differential equation in . On taking the Fourier transform of each
term in the one-dimensional heat conduction equation, one obtains

1 [~ T 11 8 [® .
R ety = T ke .
) 5g2¢ 4= T 6t,/, (z,t)e""dz

[o.¢]
By use of partial integration and the conditions that T(z,t) and Ty(z,t) approach zero
as z approaches plus and minus infinity, the above equation reduces to

T (k, t)
ot

The solution of the above first-order ordinary differential with independent variable ¢ is

+ok®T(k,t) = 0.

2 1 had .
T(k,t) = A(k)e "t = \/T_W/:w T(z,t)e**dz.

Substituting the initial condition T'(z,0) = Tpexp(—az?) into the above equation yields

T 2
M@=7%f““

The solution in transform space (k-space) is therefore

Tt 1+ 4oat

The solution in z-space is obtained when the k-space solution in the above equation is
inverted; the result is

o0
T(z,t) = # / T(k,t)e *=dk

1 [>T 1 +4oat\ ,]) _
- _- v - kz zkzdk
m/w{\/z—e"p[( 4a ) ]}

To e | — az? ]
Vit doat P71 x4oat]

8.2.2 The One-Dimensional Mechanical Wave Equation

Here, we consider the one-dimensional mechanical wave equation characterizing the motion
of a string and use the method of separation of variables to separate the space and time
variables.

u 1 6%
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Assume u(z,t) = X(z)T(t) in the above equation and divide the resulting equation by
XT. The result is

12X 1 1dT
X dz?2 ~ V2T di?’

The above equation leads to the following two ordinary differential equations

ey +A2X =0 with solution X(z) = Acos\z + Bsin Az

and

T
a2 T Mv?T =0 with solution T(t) = C cos Mt + D sin \vt.

The general solution of the one-dimensional mechanical wave equation is
u(z,t) = (Acos Az + Bsin Az) (C cos Avt + D sin Avt) . (8.11)

In our example of the separation of variables in the heat conduction equation and in the
mechanical wave equation, the separation constant is denoted by —\2. The square is used
for convenience as seen above. The negative sign is selected since an oscillatory solution
is anticipated. Boundary conditions, however, will determine the required sign for the
separation.

Example 88 Solve the one-dimensional mechanical wave equation for the motion of a
string fized at the ends u(0,t) = u({,t) =0 with initial configuration such that u(z,0) =
2hz [t for z in the interval (0,€/2) and u(z,0) = 2h(£ —1x)/¢ for z in the interval
(£/2,8). The string is initially at rest which means that the partial derivative of wu(z,t)
with respect to t evaluated at t =0 equals zero, uy(z,0) =0 (see Fig. 8.2).

u(x, 0)
A

t€-——-
by

 J
=

\
X

D |~

Figure 8.2
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Solution : The general solution of the one-dimensional mechanical wave equation is
u(z,t) = (Acos Az + Bsin Az) (C cos Avt + Dsin \ut) .

Boundary and initial conditions will now be used to determined the values of the arbitrary
constants in the above general solution. The first end point condition u(0,#) = 0 in the
general solution leads to A = 0. The second end point condition u(¢,t) = 0 requires that
sin A\l =0 for a nontrivial solution or A, = nw/f where n ranges from unity to infinity.
The solution now reduces to

0 =3 Basin (T52) {ucos (52) + Dusin () }.
n=1

Condition wu(z,0) = 0 substituted into the partial derivative of wu(z,¢) with respect to
t requires that D, =0 for all n, and the resulting solution becomes

= t
u(z,t) = Z B! sin (mrTz) cos (m{r{v ) where B}, = B,C,.
n=1

The final condition for the above equation, u(z,0) equals 2hz/¢ for (0,¢/2) and u(z,0)
equals 2h(¢—z)/¢ for (¢/2,¢), leads to a Fourier sine series from which the B] may be
obtained. The expression for the coefficients is

= %/lf(a:)sin (n%) dz
0
= % [/lﬂzsin (?) da:-l—!f//[ sin (?) dx —/g;zsin (me) da;:l
0 €2
= n82::z sin (%) for n odd.

The particular solution of the mechanical wave equation subject to the given boundary and
initial conditions reduces to

8h 1)(" v/ . (EE) cos nmvt
o _7r2 ? ¢ )

n=1

The motion of the string is such that only odd harmonics occur and is symmetrical about
the midpoint.

Example 89 By use of the Fourier transform method, find the solution of the one-dimensional
mechanical wave equation,

Pu 1 0%u

or? ~ w2 o2’
for a very long (infinite) elastic string subject to the following boundary and initial condi-
tions:

o
u(z,t) > 0 and a—Z—»O as 1z — Foo;

u(z,0) = f(z) and w(z,0)=0.
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Solution : If we write the Fourier transform of u(z,t) in the form

1 ot ;
U(k,t) = \/T—'/r/ u(z, t)e**dz,

then the Fourier transform of the one-dimensional mechanical wave equation subject to the
above two boundary conditions reduces to

1 8*U(k,t
—k*U (k,t) = = (,%)

or?
The solution of the above ordinary differential equation with independent variable ¢ is

U(k,t) = c1e* + cpe 2,

On applying the first initial condition u(z,0) = f(z), we obtain

1 o0 ;
U(k,0) = \/—2_7r,/ u(z,0)e**dz = ¢; + c2
—00

1 o ikz _
= E/_@f(z)e dz = F(k).

The result from the first initial condition is that ¢; + ¢2 = F(k). The second initial
condition, wu(z,0) =0, leads to ‘

1 o0 .
U(k,0) == —/ us(z, 0)e*®dz = ikve, — ikvey = 0.
( ) m - t( ) 1
The result from the second initial condition is that ¢; = c;. The k-space solution is

therefore

F(k) ; F(k) _,
U(k,t) — é )czkvt + g )C—zkut_

The required z-space solution is obtained by taking the inverse transform of U(k,t); the
result is

1 oo .
uat) = = / Uk, )e-*=dk

= \/L?_W {% f_ Z [F(k)e*v] e~ *=dk + % / N [F(k)e ™ e‘“”dk}

—0o0

= %f(z—vt)+%f(z+'ut).

There are many important cases where the above inverse transform would be extremely
difficult to evaluate directly, as was done in this case; in such cases, the convolution theorem
(e.g., see page 165) is used to find the inverse transform of the product of two k-space
functions. We use the above case to outline the procedure for applying the convolution
theorem; the second step above becomes

u(s,t) = %\/L?_w { / : [F(k)e™*] e~k + /: [F(k)e ] e‘””dk}
3= { [ 1Oue-ga+ [ ren-a-oe}.
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The z-space forms of g, (z —£) is obtained as follows.

1 © .
94 (.’L‘ _ &) — o [m [etkut] eﬁk(z_f)dk
1 *
= oS [w e @t dk — \/on6(z — vt — £).
Similarly, we find that

9-(z — &) = V2rd(z + vt - €).

On substituting g, and g_ into the above equation for u(z,t), we obtain

wet)= 5 { [ @0t —ut- e+ [ pie)sta - erac)
= i@ —v) + S F(@+ ).

Use of the convolution theorem, as expected, leads to the same solution as obtained by
use of direct integration. Let us examine the behavior of f(z — vt) at time ¢+ At and
position z + Az; we obtain

flz +vAt —v(t + At)] = f(z — vt).

Here it is seen that f(z — vt) represents a wave motion (signal or pulse) traveling in the
positive z-direction with speed v, and this motion repeats itself at ¢+ At and z + Az.
Similarly, f(z + vt) represents a signal traveling in the negative z-direction that repeats
itself at ¢ + At and = — Az.

8.2.3 The Time-Independent Schrodinger Wave Equation

Here, the method of separation of variables will be used to obtain the time-independent
Schrédinger equation. We had

2 3
{—:—mvz +V(z,y, z)} U= ih%—t; Schrédinger’s equation. (8.5")
Step 1 Assume that ¥(z,y, 2,t) = 9¥(z, y, 2)T(t) in Eq.(8.5)
Step 2 Substitute the right-hand side of Step I into Eq.(8.5")

R _, dT

- T = ilgp——.

{ 2mV +V(x,y,z)} P ihy 7

Step 3 Divide both sides of the equation in Step 2 by the right-hand side of Stepl.
thdl _

v\ 2m A= g = '

Since the left-hand side of Eq.(8.12) is a function of space only and the right-hand side
is a function of time only (Time has been separated from the space variables.), each side
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must equal a constant (separation constant) that is independent of space and time. From
a mathematical point of view, the separation constant is simply an arbitrary parameter
in the general solution. The separation constant is an arbitrary physical parameter when
solving physical problems. In Eq.(8.12), the separation constant has the same dimensions
as energy and is denoted by E. Equation (8.12) leads to

T(t) = Cexp (—%) (8.13)
and
{—%VZ +V(z,y, z)} Y = E. (8.14)

The function T(¢) above is the solution of the time-dependent part of the Schrodinger
equation, and Eq.(8.14) is the time-independent (steady-state) Schrédinger wave equation.
Analyses of solutions of Eq. (8.14) for various potentials and use of the fundamental
postulates of quantum theory form the major part of the study of quantum mechanics.

8.3 Green’s Functions in Potential Theory

In this Section, the three-dimensional Fourier transform method will be used to solve Pois-
son’s equation for the electric potential ¢(r) due to a volume charge density p(r), and the
three-dimensional Green’s function will be defined. Poisson’s equation is written as

vio(e) = -2, (8.15)

The quantity € is the permittivity of free space. The Fourier transform of ¢(r) has the
form

1 [ s
(k) = W /_w o(r) exp (ik - r) d°r. (8.16)

A shorthand notation for triple integral, d*r = dzdydz, is used in the above equation. On
taking the Fourier transform of both sides of Poisson’s equation, its solution in transform
space (subject to the conditions that ¢(r) and 0¢/8r approach zero as r approaches
plus and minus infinity) becomes

o(k) = 1]:2(—:)) (8.17)
The Fourier transform P(k) is given by
. 1 e ikor!
P(k) = @ f_ ) p(r)e™ T d’r. (8.18)
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The inverse transform of ®(k) yields the solution in configuration space, ¢(r); the result is

br) = —_ / " o1)e- Tk

(2m)** J o
- (271r)3 /_oo /_w 2223
e

[ p(r)G(r —r')d3r. (8.19)

N d®kd®r’

- (2m)3

The function G(r — r'), the Green’s function for the operator V2, is given by

n_ [T exp[-ik-(r—1r)] ,
Gr-1)= /_w B k. (8.20)

When spherical coordinates are chosen for the variables in k-space, we have
d3k = k*sin Odkdfde = —k*d(cos 0)dpdk.

The polar axis is in the direction of r —r’. The equation for G(r —r') becomes

G-y = [ [ [ eIl o cont] e )
+1

00 —zklr | _ zklr r'| -
=or / : dk = 4n / sinklr -]
0 —ik |r —r'| o klr—r|

272

— m (8.21)
The final form for ¢(r) is
I SR P e
¢(r) = {(27r)3€0} (27r )/;oo r— 1|
1 p(r)dr!
= /_ e (8.22)

Physically, the Green’s function G(r — r') is the electric potential at point r due to a
point charge located at r’. For a volume charge density p(r'), the potential at r is given
by

/ p(r")G(r — r')d3r. (8.23)
In differential equation form, this analysis may be written as

V2G(r—1') = —4né (r—1'). (8.24)

The above partial differential equation is subject to appropriate boundary conditions for
G(r — r'). The Dirac delta function 4 (r —r') means & (z — z') 6 (y —y') 0 (2 — 2’) with
properties

(@) (r—r')=0 for r—r'#0 and / §(r—r)d®r' =1.



208 CHAPTER 8. PARTIAL DIFFERENTIAL EQUATIONS

For Dirichlet boundary conditions, G(r —r') = 0 on the boundary surface enclosing the
charge distribution p(r’). It can be shown that the Neumann problem requires appropriate
non-zero values for the normal derivative of the Green’s function on the boundary surface.
Use of the Green’s function method simplifies the problem of applying boundary conditions.

8.4 Some Numerical Methods

Numerical methods in partial differential equations form a vast subject and are treated in
details in numerous textbooks on the subject. Here the focus is on essential concepts in-
volved in converting a partial differential equation to its corresponding difference equation
by use of finite difference methods. One should consult the references for a detailed discus-
sion of (a) the various special techniques for finding numerical solutions; (b) convergence
of solutions; and (c) stability of the various methods.

8.4.1 Fundamental Relations in Finite Differences
First differences A;u and Ayu for positive h and % are defined by

A= Usth y}z —u@y) g Agu= u(z,y + ’“Iz —u(z,y) (8.25)

The corresponding second differences are defined by -

_u(z+h,y) — 2u(z,y) + u(z — h,y)

Aggu = % (8.26)
u(z,y+ k) — 2u(z,y) +u(z,y — k
Ayu= (z,y + k) (kZ y+uzy—k) (8:27)

For convenience, Az and Ay are replaced with h and £k, respectively, in the above
finite difference equations, and % replaces Atf in the following two Sections.

8.4.2 The Two-Dimensional Laplace Equation: Elliptic Equation

The two-dimensional Laplace equation in terms of finite differences reduces to
1
'U:(Z', y) = Z {Au‘("E + h‘) y) + ’lL(.’E - h7 y) + u(:”'r y+ h’) + ’LL(.’L', y—= h)} - (828)

The computational procedure involves replacing u(z,y), for example a potential, at a
particular grid point (see Fig. 8.3) by the average value of its four closest neighbors. The
function u(z,y) or its derivative must by specified at all points surrounding a given region.

8.4.3 The One-Dimensional Heat Conduction Equation: Parabolic
Equation

In terms of finite differences, the one-dimensional heat conduction equation becomes

u(z,t+ k)= Z—I; {u(z + h,t) — 2u(z,t) + u(z — h,t)} + u(z,t). (8.29)
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(x—hry) &y) (x+h,y)

«—— /i —»

Figure 8.3

The numerical solution involves determining the initial values of wu(z,t) at various z
locations (see Fig. 8.4 for the space-time grid) and applying the above equation to obtain
the u(z,t) at other times.

8.4.4 The One-Dimensional Wave Equation: Hyperbolic Equa-
tion

The finite difference representation of the one-dimensional mechanical wave equation re-
duces to

2,2

u(z,t+ k) = kTZ {u(z + h,t) — 2u(z,t) + u(z — h, )}

+ 2u(z,t) — u(z,t — k). (8.30)

The starting value for u(z,t+k&) is determined from the initial conditions (see Fig. 8.5),
and remaining values are determined by use of the above equation.
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< ) —>
!
| (x, t+k) ¢
(x—h, t)' ’(x, 1) ‘(x +h, 1)
Figure 8.4

8.5 Problems

8.1 Show that u = cos z cos at is a solution of uy = a?ug,.
8.2 By use of the separation of variables method, solve u, = 4u,; u(0,y) = 8e™%.
8.3 Consider the one-dimensional heat equation,

T 10T
0z~ o Ot
If & is the separation constant, discuss the nature of the solution for (a) % > 0; (b) * = 0;

and (¢) # < 0. (d) Find the particular solution for and

T(0,t)=T(£,£) =0 and T(z,0) = Tysin (’#) (for 0 <z < ¢

if the general solution is

T(z,t) = Ce "% (A cosbz + Bsin bz).

8.4 Solve
PI 201 oI
s =2 +I=0 wh = )
722 k3t+1 0 where I(¢,t)=0 and 9, , ae
8.5 Solve
o1 _ 107
82 o Ot

where T'(z,t — 0) tends to a finite value, T(0,¢) =0, and OT/8z|,—¢ = 0.
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«— /1 —>

(x, t + k)

[ —— x-—P

(x=h1t) [(x,0) (x+h0)

(x, t—k)

Figure 8.5

8.6 The one-dimensional motion of a transverse wave in a string is characterized by
o 10%
0z? 2 o’

(a) Discuss the nature of the solution for &* > 0,k* = 0, and k® < 0 where is the

separation constant. (b) Find the general periodic motion solution of this wave equation.
(c) For

©(0,1) = w6 t) = Bt

show that the solution for periodic motion is

p(z,t) = gYn sin (%) cos (m;vt) .

8.7 Consider the two-dimensional Laplace equation,

e By
W + a—y2 =0.

(a) For separation constant &%, show that the general solution is given by

¢(z,y) = (Acosbz + Bsinbz) (C cosh by + Dsinhby) .
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(b) Find ¢(z,y) subject to the following conditions:

. NI
@(x,0) = (0,y) = v(£y) wdw@@=wwm7ﬁ

8.8 Develop the solution of the three-dimensional Laplace equation in Cartesian coordinates;
for separation constants ¢ and b, show that it can be written as

o(2,9,2) = Y curexp{(-1) vas}exp { (-1)Voy}

p.k=1
X exp {(—1)’C i\/mz} .
8.9 By separating the variables in Laplace’s equation in cylindrical coordinates, show that
u(p, ¢, 2) = P(p)2(4)Z(2)

where Z = AeV® 4 Be V% & = Ccosng + Dsinng and P(p) is the solution of

d*P 1dP n?

@ rp o m) P
8.10 Show that the solution of Laplace’s equation in spherical polar coordinates is

- u= R(r)©(0)2(¢)

where ® = A cosme¢ + Bsinmg, R is a solution of

1d (,dR) _

and © is a solution of

[L’ (€+1)sin?g — m2] © +sin 0% (sin 0@) =0.

8.11 (a) By use of the sine transform method, solve the one-dimensional heat conduction
equation,

T _ 101

0r2 o ot’
subject to T'(z,0) =0 and T(0,t) = Tp where T'(z,t) -0 and 0T/dz — Oas z — oo.
(b) Show that T(z,f) = Tp ast — oo.

8.12 By use of the cosine transform method, solve the one-dimensional heat conduction
equation,

o1 _ 101
0z o ot’
subject to the following conditions T(z,0) = 0 and 8T/0z — Qo as z — 0, where
T(z,0) » 0 and 8T/0z — 0 as z — oo.
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8.13 By use of the Fourier transform method, solve the one-dimensional heat conduction
equation,

o1 _1or
9z~ o ot’

subject to T(z,t) = 0 and 0T/0x — 0 as x — +oo; T(x,0) = e %*" where a is a
positive constant.
8.14 By use of the Fourier transform method, solve the infinite string problem when
u(z,t) > 0 and OGu/dz — 0 as £ — +oo; subject to u(z,0) = f(z) and du/dz = g(x)
as z—0.
8.15 (a) By use of the Fourier transform method, solve the one-dimensional Schrédinger
wave equation for a free particle,

ov h? 92w

et = "mon

(b) Write the solution of Part (a) in the form
Y(z,t) = %/_w ¢(ps) exp [i (poz — pit/2m) /R dp,.

In the above equation, ¥(p,,0) = ¢(p;). (c) For ¥(z,0) = e /2 calculate ¢(p,)-
(d) Obtain the explicit expression for ¥(z,t). The real quantity ¥*¥ has a physical
interpretation in quantum mechanics. (¢) Obtain the explicit expression for |¥|* and
show that the width of this Gaussian form increases with time; that is to say, the wave

packet spreads in z-space as time increases.
8.16 Obtain (a) Eq.(8.28), (b) Eq.(8.29), and (c) Eq.(8.30).



Chapter 9

Special Functions

9.1 Introduction

This chapter is devoted to the theory and applications of a set of higher transcendental
functions that arise naturally in mathematical physics. These higher transcendental func-
tions are referred to as special functions, and they arise (a) when solving, in certain
curvilinear coordinate systems, partial differential equations that are defined by physical
problems and/or (b) when finding eigenfunctions and eigenvalues of differential operators.
The partial differential equations approach to special functions involves use of the sepa-
ration of variables method and (a) the Frobenius-Fuchs power series solutions of one or
more resulting ordinary differential equations or (b) an Infeld-Hull type factorization pro-
cedure for finding eigenfunctions and eigenvalues of second-order ordinary linear differential
equations.

The focus is on a class of physical problems whose differential equation formulation involves
the Laplacian operator, V2. The resulting partial differential equations include the Laplace
equation, heat conduction equation (diffusion equation), mechanical wave motion equation,
and Schriodinger wave equation. After applying the separation of variables method, the
resulting time-independent parts of all these partial differential equations may be written
in the form of the Helmholtz differential equation, V?u + £z = 0. Problems involving
the Helmholtz differential equation in spherical coordinates lead to spherical harmonics,
Legendre polynomials and associated Legendre functions, Laguerre and associated Laguerre
polynomials, and spherical Bessel functions. Problems modeled by use of Helmholtz’s
differential equation in cylindrical coordinates involve the various types of Bessel functions.
Solutions of the Schréodinger wave equation for a linear harmonic oscillator are expressed
in terms of Hermite polynomials.

Special functions such as Hermite polynomials, Legendre polynomials and associated Leg-
endre functions, spherical harmonics, Laguerre and associated Laguerre polynomials and
Bessel functions are widely used in mathematical physics and are the main focus of this
chapter; these special functions are special cases of the hypergeometric functions, o Fi(a, b, ¢; 2),
or confluent hypergeometric functions, 1 F;(a,¢; z). There exist other useful special func-
tions in mathematical physics that are not expressible in terms of /] or 1 Fj. The functions
oF; and |F, may be developed from the following main viewpoints: (a) ordinary differen-
tial equations and the Frobenius-Fuchs power series method; (b) factorization of ordinary
differential equations; and (c) representation theory of local Lie groups.

Analytic Methodss in Physics. Charlie Harper
Copyright © 1999 WILEY-VCH Verlag Berlin GmbH, Berlin
ISBN: 3-527-40216-0
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9.2 The Sturm-Liouville Theory

9.2.1 Introduction

This Section is devoted to a treatment of the Sturm-Liouville theory and orthogonal poly-
nomials since these concepts provide insight into properties of solutions of the second-order
ordinary linear differential equations in which we are interested.

Linear operators are basic to linear differential equations, and the solutions of each of the
differential equations we will consider form a vector space (see page 71). In mathematical
physics, the (a) linear operator is normally a differential operator; (b) eigenvalue equation
is a differential equation; and (c) eigenfunctions (solutions) form a vector space and satisfy
certain imposed Dirichlet, Neumann, or Cauchy boundary conditions. Typically, the actual
physical problem is used as a guide for the formulation of boundary conditions. Sometimes,
however, it is difficult to formulate the appropriate boundary conditions for a problem.
Hence, it is important to understand what conditions are appropriate for a particular type
of differential equation (see, e.g., Chapter 8).

The Laplace equation, the time-independent heat conduction (diffusion) equation, and the
time-independent mechanical wave equation may be put into the form of the Helmholtz
differential equation. The Helmholtz differential equation, V?u + k?u = 0, for constant
k? is an eigenvalue equation where (a) —k? is the eigenvalue; (b) wu is the eigenfunction
and is subject to boundary conditions; and (¢) V2 is the operator. The time-independent
Schrédinger wave equation contains the operator V2 and is an eigenvalue equation of the
form Hv = Ety where H = (—h%/2m)V?+ V(z,y, 2).

The separation of variables method applied to Helmholtz’s differential equation and to
the time-independent Schrédinger’s wave equation in various coordinate systems leads to
ordinary differential equations that may be written in the following general form.

% {p(z)z_z} — q(z)u+ M(z)u =0. (9.1)

The parameter A is a separation constant (In some cases, more than one separation
constant may appear.); we will focus on the case of one separation constant. Equation (9.1)
is the well-known Sturm!-Liouville? equation, and it may be written in the following
operator form.

L(u) + Ap(z)u = 0. (9.2)

The Liouville operator, a linear operator, is defined by use of the following equation.

£ = 1 {p0) %} - a@u (9.3)

For the general differential operator M (u) = p(z)u”+r(z)u’+q(z)u, the operator M (u) =
(pu)" — (ru)’ + qu is defined as the adjoint of M(u). Note that M(u) = M(u) when

1 Jacques Charles Francois Sturm (1803-1855), Swiss physicist who became a French citizen in 1833. He
is best known for the Sturm-Liouville problem. Also, he did work on infinitesimal geometry, differential
equations and differential geometry.

2Joseph Liouville (1809-1882), French mathematician and scientist who is known for his mathematical
work which ranges from mathematical physics to astronomy to pure mathematics.
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p =r,and M(u) is said to be a self-adjoint operator in this case. On applying the
general definition for the adjoint of an operator to Eq.(9.3), we find that L(u) = L(u)
which means that the Liouville operator is a self-adjoint operator. In fact, it can be shown
that every second order differential operator can be transformed to the self-adjoint form
(see Problem 9.16).

In the Sturm-Liouville equation, the function p(z) (also, w(z) and r(z) are used) is called
the density or weight. This name for p(z) is related to the historical origin of the Sturm-
Liouville equation which involved finding the solution for the one-dimensional mechanical
wave equation, [p(z)ug], = p(z)us, representing the motion of a nonhomogeneous string. In
the mechanical wave equation, u(z,t) is the displacement of the string from its equilibrium
position, p(z) is proportional to the modulus of elasticity and p(z) is the mass per unit
length of the string. Separation of variables leads to the following ordinary differential
equations: (pX')'+ApX =0 and T+ AT =0 where ) is the separation constant and
u(z,t) is assumed to equal the product X (z)T'(t) with typical boundary conditions given
by X(a) = X(5) and p(a)X'(a) = p(8) X'(D).

In Eq.(9.1), the functions, p(z), ¢(z), and p(z) are assumed to be (a) real (b) continuous
with continuous derivatives; and (c) nonzero in the region of interest [a,b] . Moreover,
it is assumed that p(z) and p(z) are always positive in [a,b]. The Sturm-Liouville
equation is a generalized form of the usual eigenvalue equation since the eigenvalue is
multiplied by the density function, p(z), which may be different from unity. The sign
convention for ¢(z) in Egs.(9.1) and (9.3) conforms to the usage of Courant and Hilbert;
some authors use a plus sign for in these equations. The function wu(z) is subject to
appropriate boundary conditions. With appropriate substitutions, the following differential
equations are among the list of important differential equations in mathematical physics
that may be put in the Sturm-Liouville form: Legendre and associated Legendre, Laguerre
and associated Laguerre, Schrodinger equation for the linear harmonic oscillator, and Bessel.
Hence, a study of the general properties of the Sturm-Liouville equation is extremely useful
in mathematical physics. A summary of the relations between the differential equations for
many important special functions and the Sturm-Liouville equation is given in Table 9.1.

The problem of determining the dependence of the (a) eigenfunction u(z) on the eigenvalue
A and (b) eigenvalue A on the boundary conditions imposed on wu(z) is often referred
to as the Sturm-Liouville problem. The Sturm-Liouville problem is important in both
classical and quantum theory. Sturm-Liouville theory unites properties of the solutions of
second-order ordinary linear differential equations related to

(a) Hermaitian and self-adjoint operators;
(b) reality of eigenvalues of Hermitian and self-adjoint operators;
(©)

(d) degeneracy of eigenvalues (If N linearly independent eigenfunctions correspond to the
same eigenvalue, then the eigenvalue is said to be N-fold degenerate.);

orthogonality and completeness of eigenfunctions;

(e) the fact that eigenvalues of the Sturm-Liouville equation form a discrete set of values
such that /\1 S)\g S /\3 .
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These properties are important in the study of problems that lead to each of the differential
equations we will analyze in this chapter.

Table 9.1 Relation to the Sturm-Liouville Equation

5 @5} - a@us dt@u =0

Equation o(z) q(x) p(x) A
Legendre, P,(z) 1—2? 0 1 n(n+1)
2
Associated Legendre, P™ (z) 1—2? &7 1 n(n+1)
Laguerre, L, (z) ze™® 0 e~? n
Associated Laguerre, LE (z) ghtle—= 0 zke—® n—k
2
Bessel, J,, (z),Y, (2),Hp (2),... = z z 1
Hermite, H, (z) e’ 0 e’ 2n
Quantum Oscillator, ¥, () 1 22 1 A
. —z? 1-gz)*
Jacobi, P (2) ;0,8 > -1 _l_ﬁz; 0 ( nn+a+p8+1
w @i (-2 (1+2) Qg Plrarird
Chebyshev, T}, (x) (1-2?%) 12 0 (1-2?% TR g2
Gegenbauer, C$* (z); a > -5 (1- zz)a+1/2 0 (1- xz)a_llz n(n+ 2a)

9.2.2 Hermitian Operators and Their Eigenvalues

Consider two twice differentiable functions wu; and wu;. By use of Egs.(9.1 and 9.2), we
obtain

) - 1ol = 4 {p (w52 - w2E) 1. (0.9

In Eq.(9.4), the asterisk is used to denote complex conjugate of the respective functions.
Integrating both sides of Eq.(9.4) over the range of interest yields

b
[ (i tw) - @) wh o

B L, 2
“VP\%e% Y b P\" 4z ™ "ds —a

Note that the above equation results from the fact that £ is self-adjoint. The operator £
is said to be Hermitian if the following endpoints boundary conditions are imposed on the
two functions and their derivatives:

Ldu; du; _ LAduj duj
{p (ui dz Yz ) }Fb - {p (ui iz “dz ) }zza. (9:5)
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By use of the boundary conditions in Eq.(9.5), the Hermitian relation may be written
as

b b
/ {ui L(u;) — [L(wi)]" u;}dz = / [L(u)]” usda. (9.6)

Thus far, the Liouville operator has been assumed to be real. In quantum mechanics,
operators are generally complex (For example, the z-component of the linear momentum
operator is given by p, = —ihd/0z.), and it is assumed that wave functions satisfy the
boundary conditions in Eq.(9.5). The Hermitian relation in quantum mechanics for linear

operator A takes the form
00 Y s o0 " T
/ Y} Ayjdr = / (Ass) wyar. 9.7)
—00 —00

An arbitrary linear operator may be put in matrix form, and the notation A' means (a) to
interchange rows with columns and (b) to take the complex conjugate of each element (this

o t ~
process is called the Hermitian conjugate); in this connection, note that (Azﬁi) =y Al

When an operator satisfies the condition A = A!, the operator is said to be Hermitian.
In the bra and ket vector notation, Eq.(9.7) becomes (3 A"/}j> = <A¢,; ;) .
For solution u; =u; in Eq.(9.6) and use of Eq.(9.2), we obtain

b b
/ [w* L(u) — ul(u)]dz = (A — /\*)/ p(z)u uds = 0. (9.8)

The result in Eq.(9.8) means that eigenvalues of Hermitian operators are real, A = \*.

9.2.3 Orthogonality Condition and Completeness of Eigenfunc-
tions

By use of Eq.(9.2) for distinct eigenfunctions and with distinct eigenvalues, the Hermitian
relation in Eq.(9.6) may be written as

b
[ i) = 1o ) = [ iy + Aipuing] da
= (=) / wjuzp(e)dz = 0.
Since A; # A; and ); is real, the above equation implies that

/b ujujp(z)ds = 0. (9.9)

Equation (9.9) shows that eigenfunctions corresponding to distinct eigenvalues are orthog-
onal in the interval [a,b] with respect to the weight function p(z).

An orthonormal set of Sturm-Liouville eigenfunctions, {ug(z)}, forms a complete set of
functions (cf. Courant and Hilbert, 1953; Chapter 6, Section 3). This completeness property
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means that the following equation is valid for any function f(z) which is at least piece-wise
continuous in the interval [a,b].

2
b n

'}H{.lo j f(z) - ;ckuk(z) p(z)dz = 0. (9.10)

The notation |... |2 means the product of the enclosed quantity and its complex conjugate,

|2|> = 2*2. Equation (9.10) and the orthogonality relation in Eq.(9.9) lead to

oo b
f(=z) =chuk(:z) where ck=/ f(@)ug(z)p(z)dz (9.11)
and
3 Jesf? = / (@) p(z)dz. (9.12)

Equation (9.12) is referred to as the completeness relation. By use of Eq.(9.11) with
the appropriate orthogonality relation and weight, one may obtain series expansions for
f(z) in terms of any complete set of orthogonal polynomials (or orthogonal functions); for
example, the Fourier series, Legendre series, and Hermite series may be written respectively
as

f(.’L‘) — Z cnezmra:/l —f<g<y
N
where ¢, = T, /_lf(z)e””””;

[@)=3 ePula)y —1<z<1
n=0

1
where ¢, = 2n2+ = / f(z)Py(z)dz; and
-1
f@) =Y e z);,  —w<z<oo
n=0
1 o0 e
where ¢, = ot f(@)Hy(z)e ™ dzx

The above expansions are three of a large number in important expansions involving or-
thogonal polynomials that are used in many areas of mathematical physics.
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9.2.4 Orthogonal Polynomials and Functions

The power series solutions of many second-order ordinary linear differential equations in
mathematical physics such as the Legendre, Laguerre, and Hermite differential equations
may be written as an orthogonal polynomial plus an orthogonal function. The set of real
polynomials {f,(z)} is said to be orthogonal with respect to the weight function p(z)
over the interval [a,b] if the following relations are valid.

b .

[ etz ={ o T (9.13)
If h2 =1 for all n, then the system of orthogonal polynomials in Eq.(9.13) is said to be
orthonormal. Note that the weight determines the system of polynomials up to a constant
factor (the value of h,) in each polynomial; the specification of this constant factor for
each polynomial is referred to a standardization (or standard convention). Summarized
in Table 9.2 are some frequently used orthogonality relations.

Table 9.2 Some Orthogonality Relations

f P )dw = 2—1' Jnk

. m m 2 (n+m)
[, Pr{a) P () do = gy 2T 6.
f0°° e *Lp(z)Lpy () dz = bp

et LK (2)IE, () do = (—”(”_’)k ! b

e * Ho(z) Hyn (z)dz = 27n)\/Tnm

Recurrence Formula for Orthogonal Polynomials In many cases, three consecutive
orthogonal polynomials, fny1, fn,and fr_, satisfy a recurrence formula of the form

Anfn+1 (w) = (Bn + Cnx) fn(x) - annfl(l')' (9‘14)

The recurrence relations for some of the frequently used orthogonal polynomials are listed
in Table 9.3.

Table 9.3 Recurrence Relations for Some Polynomials

fnlz) An By, Cn Dy,
P,(z) n+1 0 n+1 n
Pr(z) n—m+1 0 n+1 n+m
Ly(z) n+1 2n+1 -1 n
Lk(z) n+1 n+k+1 -1 n+k
H,(z) 1 0 2 2n
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Rodrigues’s Formula Formulas, involving the n-th derivative of an elementary function,
that can be used to generate orthogonal polynomials, f,, are called Rodrigues® formulas.
It can be shown that the Rodrigues formulas for many orthogonal polynomials may be
combined into the following general Rodrigues formula.

_ 1 d*{p(=)[g(=)]"}
fo= e s . (9.15)

The quantity g(z) is a polynomial whose coefficients are independent of n and the ay, factor
is determined by the standardization of the orthogonal polynomial system. The Leibniz
formula for the n-th derivative of a product should be used to evaluate the right-hand side
of Eq.(9.15); this formula is

dr nl  d"*A(z) d*B(z) } . (9.16)

dz™ Alz)Bla)} = 52:; { (n—s)ls! dzr—s  dz*

Rodrigues’s formulas for some important orthogonal polynomials are given in Table 9.4.

Table 9.4 Rodrigues Formulas for Some Polynomials

1 d"{p(=)[g(=)]"}

fn:

anp(z) dzm
fn (2) Gn g(z) pl2)
Py (z)  2"n! -1 1
Lk (z) n! z zke=
H, (:E) (_l)n 1 e
PP(z) (-1)"2nn 1-22 (1-2)*(1+2z)’
C (@) (-1 2l L gz"‘ll;/(g); ?nilﬁg l—a? (1—g2)*"?
T.(z)  (-1)"2r+t w 1-g2 (1-g2)"

The Generating Function: The function G(z,t) is said to be a generating function
of the sequence of functions {f,(z)} ifthe f,(z) are, up to a constant, the coefficients of
t™ in the expansion of G(z,t) in powers of t. Such an expansion is valid for orthogonal
polynomials and most orthogonal functions, and it may be written in the form

G(z,t) = i an fn(2)E". (9.17)

In Eq.(9.17), the @, are independent of z and t. The generating functions for certain
orthogonal polynomials that will be used in other sections are given in Table 9.5.

$Benjamin Olinde Rodrigues (1794-1851), French mathematician who known for the formula that carries
his name,



9.3. THE HERMITE POLYNOMIALS 223

Table 9.5 Some Generating Functions

G(z,t) = Eanfn ()", R=+v1-—2zt+1t2
n=0

fn (2) an G (z,t)

@) 1 R

L, (z) 1 (1—t) " exp{—=t/ (1 —1t)}
@ 1 (- " expfat/ (- 1))

H, (z) 1/n!  exp (23t —t?)

PP (z) 2728 RI(1—t+R) *(L+t+r) "
¥ (z) 1 R

T, (z) 2 1+ (1-1) /R

9.3 The Hermite Polynomials
The Hermite differential equation,
y" — 2zy' + 2ny = 0; n = constant, (9.18)

is a special case of the Sturm-Liouville differential equation and a special case of the conflu-
ent hypergeometric differential equation. The polynomial, Hy(z), solution of the Hermite
differential equation may be obtained by use of the Frobenius-Fuchs power series method
(see Worksheet in Section 9.9.1 at the end of this Chapter); it has the form

N

Yn(7) = Hy(z) = Z

3=0

(1)’ n! (22)"%
7' (n—25)!

n/2 for n even
(n—1/2) for n odd.

(9.19)

where N = {

The orthogonality relation, recurrence relation, Rodrigues formula, and generating function
for H,(z) are respectively given in Tables 9.2, 9.3, 9.4, and 9.5. A representative sketch
of Hy(z) is given in Fig. 9.1.

Example 90 The Quantum Mechanical Linear Harmonic Oscillator

Solution : The problem of describing the small oscillation of a mass m attached to the end
of a spring with force constant k£ and potential energy V (z) = kz?/2 can be solved exactly
in both classical and quantum mechanics. This system is referred to as a linear harmonic
oscillator and is used to represent and analyze more complex physical systems such as (a)
vibrations of individual atoms in molecules and in crystals and (b) classical and quantum
theories of radiation. The solution of Schrédinger’s wave equation for the linear harmonic
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Figure 9.1: Hermite polynomials H,(z)/n3 (Abramowitz and Stegun, 1964)

oscillator is expressed in terms of Hermite polynomials, H,(z). The equation to be solved
is the one-dimensional Schrédinger wave equation for the linear harmonic oscillator which
has the form

R2 d*  ka?

~5g sz = Ev. (9.20)

Note that Eq.(9.20) is just the one-dimensional Helmholtz equation for which &% equals
2m (E — kz%/2) /K?. Solving a problem in quantum mechanics involves finding the wave
functions, ,, and the corresponding eigenenergy, E,. In dimensionless form, Eq.(9.20)
becomes (see Worksheet in Section 9.9.1)

d*p
P A= y=0 (9.21)
1/2 2
where &= ("%) z, wl= %, and A= %E

On substituting A = 1+ 2n into Eq.(9.21), we obtain the Weber? differential equation,
and the transformation

¥ = exp (—€7/2) y(€) (9.22)

reduces the Weber differential equation to the Hermite differential equation. The transfor-
mation equation, Eq.(9.22), leading to Hermite’s differential equation is motivated by use
of the Sommerfeld® polynomial method (see Schiff, 1968; Section 13, page 66) for solving
certain differential equations. By use of the Sommerfeld method, the solution of Eq.(9.21)
is the product of the physically acceptable asymptotic solution times a polynomial. The

4Wilhelm Edward Weber (1804-1891), German physicist who is known for his work in electromagnetism
and for the Weber equation. He was Chair of physics at the University of Gottingen and collaborated with
Gauss on numerous problems.

5Arnold Johannes Wilhelm Sommerfeld (1868-1951), German physicist who was born in K&nigsberg,
Prussia. He is known for his work in many areas of physics, especially in quantum theory. He developed a
very famous school of theoretical physics in Munich.
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resulting asymptotic, |£| approaches infinity, differential equation is " — ¢%¢ = 0, and
the physically acceptable solution of this differential equation is given by exp (—£2/2). In
this case, the polynomial part of the solution of Eq.(9.21) comes from solving Hermite’s
differential equation. The eigenfunctions and eigenenergy for the linear harmonic oscillator,
Eq.(9.21), are respectively given by

2E,
o
The eigenenergy reduces to the familiar form FE, = fiw (n +1/2). The behavior of ¥, for
the first six values of n is illustrated in the sketches in Fig. 9.2.

/\ o(€) h 1€3) vi(é)
& &

wi(é) va(§) ws(§)
¢ ¢ é

Figure 9.2; Harmonic oscillator wave functions ,,(£)

Un = Npe €2H,(¢) and Ay=1+2n= (9.23)

9.4 The Helmholtz Differential Equation in Spherical
Coordinates

9.4.1 Introduction

The Laplacian operator in spherical coordinates (r,0,¢) has the form

1
V2=V:+ r—zvgﬂs. (9.24)
The radial and angular parts of the Laplacian are given respectively by
10 0
Vi= [P 9.25
Tor2or (T 67") (9.25)

and

0 1 &
2 _ ; . 9.26
Voes = = (Sln0 ) + 7095 (9.26)
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The Helmholtz differential equation in spherical coordinates has the form
1
{Vf + T—zvg,,,,} u+k*u=0. (9.27)

The solution of Eq.(9.27) involves (a) symmetry-type information in terms of the angular
parts 6 and ¢ which is common to all problems with spherical symmetry and (b) dy-
namical information in terms of the radial part which characterizes the particular problem
under investigation. In this connection, the Helmholtz differential equation reduces to the
(a) Laplace differential equation for k2 = 0, (b) time-independent heat conduction (diffu-
sion) or time-independent mechanical wave differential equations for k? = constant, and
(c¢) time-independent Schrédinger wave equation for k2 = (2m/A?) {E — V(r)}. Separat-
ing the angular parts from the radial part in Eq.(9.27) for u(r,0,¢) = R(r)Y (0, ¢), the
corresponding differential equations for R(r) and Y (6, ¢) with separation constant A are

VZR(r) + {k2 - T—’\z} R(r)=0 (9.28)
and
V2 Y (6,8) + Y (6,6) =0. (9.29)

Note that the general solutions of Eq.(9.29) are independent of the specific problem un-
der investigation but are common to all problems that involve the Laplacian operator in
spherical coordinates. The solutions of Eq.(9.29) with separation constant —m? are called
spherical harmonics (also known as surface harmonics of the first kind), Y(0,4). It
is shown in Worksheet in Section 9.9.2 that a replacement of the form A = £(£+1) is
required for square integrable solutions of the theta part of Eq.(9.29). Tesseral harmon-
ics is the name given to Y;*(#,¢) when m < ¢, and the term sectoral harmonics is
used when m = [. Tesseral and sectoral harmonics may be written as Cye!™ PJ*(cos §)
where Pj*(cosf) are associated Legendre functions of the first kind. When m =0, the
spherical functions are called Legendre polynomials of the first kind (also known as zonal
harmonics and Legendre coefficients).

On substituting Eqgs.(9.25 and 9.26) into Egs.(9.28 and 9.29) respectively and separating
the variables in Eq.(9.29) {Y (6, ¢) = ©(8)®(¢) with separation constant —m?}, we obtain
the following three ordinary differential equations.

19 (208 2 L(+1) . .
25\ 3 -—|R= 30
2 or (T Br) + [k 2 R=0 Radial equation, (9.30)
1 8 /. 80 m? ]
Sind 50 (sm Bﬁ) + [Z (£+1) - m] © =0 Theta equation, (9.31)
fi )] ) . .
i +m*®=10. Azimuthal equation. (9.32)

The general solution of the azimuthal equation is ® = ¢, €™ +c,e~“#, In solving physical
problems, the requirement that ®(¢) be a single-valued function is imposed. That is to
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say, we require that ®(¢) = ®(¢ + 27) which leads to the following acceptable values
for m : 0,+£1,£2,..., and the solution may be written in the form ®(¢) = Ae™?.
In quantum mechanics, the single-valued function requirement is referred to as Born’s®
periodic boundary condition, and m is the magnetic quantum number.

9.4.2 Legendre Polynomials and Associated Legendre Functions

Solutions of the theta equation, Eq.(9.31), involve the Legendre polynomials and associated
Legendre functions. The traditional treatment of the theta equation involves introducing
a new independent variable by use of the transformation w = cosf (also, the notation
z = cosf is used; here, z is not the usual Cartesian coordinate); this transformation yields
the associated Legendre differential equation

d’0e do m?2
1—w?) — —2w—+qL(£+1) - =0. 9.33

( w)dw2 wdw+{ (¢+1) 1—m2}e 0 (9.33)
The Legendre differential equation is the result when m = 0 in Eq.(9.33); it is written
as

(1—w)%9—2w—39+£(£+ ne=o. (9.34)
The solution of the Legendre differential equation may be obtained by use of the power
series method, and the solution of the associated Legendre differential equation may be
obtained from the solution of the Legendre differential equation by means of differentiation
(see Worksheet in Section 9.9.2). The general solution of the Legendre differential equation
has the form

O,(w) = AgPy(w) + By@Qe(w); A and B, are constants. (9.35)

In Eq.(9.35), Py(w) are called the Legendre polynomials of the first kind of order ;
the Qu(w) are known as Legendre functions of the second kind and are seldom used
in solving physical problems. The series form for Pj(w) is

z"’:( 1)" (20 — 2r)lwt=2r

2¢r! (E—r (£—2r)! (9.36)

=

£/2 for £ even

where N = { (£—1)/2 for £ odd.

The orthoganality relation, recurrence relation, Rodrigues formula, and generating function
for the Legendre polynomials are given in Tables 9.2, 9.3, 9.4, and 9.5.

The Legendre functions of the second kind, Q,(w), satisfy a recursion relation of the same
form as the one for P,(w). Graphical illustrations of Legendre polynomials are given in
Figs 9.3-9.5, and Legendre functions of the second kind are illustrated in Figs.9.6 and 9.7.

6Max Born (1882-1970), German physicist who is best known for his mathematical description of ob-
servables in quantum theory. He was awarded the 1954 Nobel Prize in physics for his statistical studies of
wave functions.
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Figure 9.3: Legendre polynomials, P, (cos f) (Abramowitz and Stegun, 1964)

Associated Legendre functions result when Legendre polynomials are differentiated m times
(see Worksheet in Section 9.9.2)
d™ Py(w)

PP (w) = (1 - w?)™? e (9.37)

The two linearly independent solutions of the associated Legendre differential equation are
OF(w) = AT P (w) + BPQF(w). (9.38)

The quantities P*(w) and Qp(w) are associated Legendre functions of the first and
second kind respectively. The orthogonality relation, recurrence relation, and Rodrigues
formula for the associated Legendre functions are given in Tables 9.2, 9.3, and 9.4. Graphical
illustrations of associated Legendre functions are given in Fig 9.8.

The radial equation, Eq.(9.30), characterizes the dynamical information of specific prob-
lems or classes of problems. The Laplace equation leads to a simple radial equation when
k? = 0; for this case, the solution characterizes such steady-state problems as potentials
in electrostatics and temperatures in heat conduction. The time-independent Schrodinger
equation results when k? = 2u[E — V(r)/k?] for a class of two-body central force problems;
the reduced mass of such a system is given by p = mymy/ (m, +mp) where m; and my
are the masses of constituent particles.

Example 91 Calculate the steady-state temperature distribution T(r,6) within a sphere
of radius b when the temperature over the surface of the sphere is independent of ¢. That
is to say, T(b,0) = f(0) where f(6) is a known function.

Solution : The general solution of Laplace’s differential equation for this problem is inde-
pendent of ¢ (circular symmetry) and has the form T'(r,0) = R(r)©(6). The radial and
theta equations for this problem reduce to

r?R" 4+ 2rR' —£({+1)R=0 and
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Figure 9.4: Legendre polynomials, P, (z) (Abramowitz and Stegun, 1964)

sin 09" 4 cos 0O’ + £ (£ + 1) sin O = 0.

The general solution of the above equation for R is

B
R(r) = Ar' + = A and B are constants.

The general solution of the above theta equation (the Legendre differential equation) is
Py(cos#). We set the B coeflicient to zero since a finite solution at every point within the
sphere is required. The general solution of the problem is a superposition of the product of
radial and theta solutions; we write

T(r,6) = i AgrtPy(cos 6).

£=0

Values of the coefficients are obtained by use of the boundary condition T'(b,6) = f(6) and
the orthogonality relations for the Legendre polynomials. The specific form for f(f) must
be given if the specific values for are required.



230 CHAPTER 9. SPECIAL FUNCTIONS
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Figure 9.5: Legendre polynomials, P,(z) (Abramowitz and Stegun, 1964)

9.4.3 Laguerre Polynomials and Associated Laguerre Polynomi-
als

The Laguerre’ differential equation,
gy’ +(1—2*)y' +ny=0; n=constant, (9.39)
is a special case of the Sturm-Liouville differential equation as well as a special case of the

confluent hypergeometric differential equation; its solution may be obtained by relation to
1F1 or by use of the Frobenius-Fuchs power series method (see Worksheet in Section 9.9.3),

y(@) =) anztt  a £0. (9.40)
A=0

The indicial equation in the above power series has a double root at &k = 0, and the power
series method yields only one of the two linearly independent solutions of the Laguerre dif-
ferential equation; this solution, however, is extremely important in mathematical physics.

"Edmond Nicolas Laguerre (1834-1886), French mathematician who is known for his work in analysis
and geometry. He is best known for the differential equation and polynomials named for him.
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Figure 9.6: Legendre functions of the second kind, @, (z) (Abramowitz and Stegun, 1964)

The finite solutions of the Laguerre differential equation, L,(z), are called Laguerre poly-
nomials. The solution in series form is

. (=1) nlgd
Ly(z) = ]zzg —(r(;, — ;)! G (9.41)

The orthogonality and recurrence relations for the Laguerre polynomials are given in Tables
9.2 and 9.3; the generating function and the Rodrigues formula are respectively given by

xp [—zt/ (1 —t o Ln(z)t"
§p[+i)] = 2:; (n—') and (9.42)
La(z) = %ez%:ez). (9.43)

Note that L,(0) = 1,Ly(z) = 1 — z, and Lo(z) = 2 — 4z + z*. A sketch of Laguerre
polynomials is given in Fig. 9.9.

Note that the k-th derivative of the Laguerre differential equation yields the associated
Laguerre differential equation,

&L (z) dLy(z)
dz? dz
In obtaining Eq.(9.44), the Leibniz formula, Eq.(9.16), for finding the k-th derivative of a

product was used; note that the associated Laguerre polynomials, L¥(z), are related to the
Laguerre polynomials by use of the following relation
*Ln(z)

z

+ (k+1-12) + (n—k)LE(z) =0. (9.44)
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The orthogonality relation, recurrence relation, Rodrigues formula, and generating function
for associated Laguerre polynomials are respectively given in Tables 9.2, 9.3, 9.4, and 9.5.

Example 92 A Central Force Problem in Quantum Mechanics

Solution : The time-independent Schrodinger wave equation is used to study the mechanics
of two microscopic particles moving under the influence of a central force (that is to say, the
force and potential depend only on the distance between the two particles). This problem
provides the basis for the quantum mechanical treatment of a fundamental class of problems
such as (a) the rigid rotator which is of considerable importance in the study of the spectra
of diatomic molecules; (b) the theory of the hydrogen atom; and (c) the nonrelativistic
theory of the deuteron. For an attractive inverse square force law, we substitute k% =
2u(E — A/r) /R? into the radial equation, Eq.(9.30); the quantity A is a positive constant.
Anticipating use of the well-known solution of the associated Laguerre differential equation,
the following substitutions are made in the radial equation for inverse square force problems.

8u |E| wA  A( p \V?
= 2 = SH1Z 2 _ 2 B 46
E ﬂr7 :B h? ? a*nd ‘Bhg h 2 |E| (9 )
By use of the substitutions in Eq.(9.46), the radial equation, Eq.(9.30), reduces to
d*R _dR & L(L+1)
- 22— -2 - = 0. 9.47
R RN (847)

The symbol £ represents the angular momentum quantum number. Equation (9.47)
is reduced to the associated Laguerre differential equation by use of the following transfor-
mation:

Re(€) = exp (—¢/2) E°L3H1(8). (9-48)

The desired solution of the equation to be solved, Eq.(9.47), is a normalization constant
times Rp¢(£€). A polynomial solution of the associated Laguerre differential equation is
obtained when y=n=/4+k+1 for k=0,1,2,...,n— 1. The principal quantum
number is represented by n.

Example 93 The Hydrogen Atom Obtain the eigenfunction and eigenenergy for the
hydrogen atom.

Solution : The hydrogen atom represents a two-body central force problem in quantum
mechanics where the electron and proton are the two particles under investigation. The
Coulomb potential is the central potential for the hydrogen atom. Here, the total energy
is negative for bound states, E < 0, and the attractive potential energy is given by V =
—e?/ (dmeor) = —A/r where A = e?/4mey. The eigenenergy, E,, is obtain from Eq.(9.46);
we obtain the familiar Bohr® result,

pA?
2h2n2’
8Niels Henrik David Bohr (1885-1962) was born in Copenhagen, Denmark. He is known for his many

fundamental contributions to atomic theory and quantum theory. He was awarded the 1922 Nobel Prize
for physics.

E, =
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The corresponding steady-state wave function is the product of solution of the radial part
and the angular part which is Y;(f,¢) times a normalization constant, C,g; the result is

Y(r,0,¢) = _CMM(f)YIm(67 ¢) (9.49)

The eigenfunction solution, Eq.(9.49), is given in most quantum mechanics books, and the
normalization constant is obtained in the usual manner.

9.5 The Helmholtz Differential Equation in Cylindri-
cal Coordinates

9.5.1 Introduction

Problems in mathematical physics that involve cylindrical geometry are in general simpler
to solve in cylindrical coordinates (p,®, z) than in Cartesian coordinates. The Helmholtz
differential equation in cylindrical coordinates has the form

u Bu 102w u o,
Por T ap ¥ po TP TH=0 (9:50)

By use of the separation of variables method for with separation constants —? and —n?,
the following three ordinary differential equations are obtained.

1422, .
TdR —-A where Z(z) = Acos (Az) + Bsin (Az),
12, .
ad—(b; = —n where ®(¢) = C cos (n¢) + Dsin (n¢), and
p 6221: + P£ + { (k2 /\2) - n2} P=0. (9.51)

Equation (9.51) may be put into the form of Bessel’s differential equation by use of the
following substitutions ¢ = ap and k% — A2 = o®. We obtain

,d?P

'S @ +£—+{§2 n?} P =0. (9.52)

9.5.2 Solutions of Bessel’s Differential Equation

Bessel’s® differential equation,

*y" + 2y’ + (2 = n®)y=0; n = constant, (9.53)

9Friedrich Wilhelm Bessel (1784-1846), German mathematician and scientist whose formal education
ended at age 14 but made major contributions in mathematics and astronomy. Functions now known as
Bessel functions resulted from his work in astronomy.
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may be solved by use of the power series method (see Worksheet in Section 9.9.4); we
obtain

© 3 x 2j+n
Tn(z) = CV (/27" (9.54)

JTn+j+1)"

The gamma function is defined on page 242. Note that J_,(z) = (—1)" J,(z). General
solutions of Bessel’s differential equation when 7 is an integer are

yn(z) = AJ(z) + BN, (z); n integer. (9.55)

The functions J,,(z) and N,(z) are explained in the following sections.

9.5.3 Bessel Functions of the First Kind

The functions J,(z) are called Bessel functions of the first kind; the generating
function, and recurrence relation for J,(z) are respectively given by

exp {%z (t - %)} =Y L@ and (9.56)

n=-—00

Tnor(2) + Jny1(2) = %Jn(z). (9.57)

The orthogonality relation for the interval [0,a] may be written in the following

¢ z z 0fori##j
/(; I ('Bm;) In (ﬂ"’;) zdz = { a2/2 [Jp41(Bnj)]> otherwise. (9.58)

In Eq.(9.58), n > —1, the parameter f,; is the i-th-zero of J,,and 0 <z <a.
The general solutions of Bessel’s differential equation when 7 is not an integer are

Yn(z) = CJp(z) + DJ_p(z); n not integer. (9.59)

Sketches of several Bessel functions of the first kind are given in Fig. 9.10.

9.5.4 Neumann Functions
The Neumann!® functions are defined by

Np(z) = (o) CO;ZZ; J_n(z); n = integer. (9.60)

Sometimes the notation Y,(z) is used to represent Neumann functions. The Neumann
functions are called Bessel functions of the second kind. L'Hospital’s!! rule should be
used to evaluate N,(z). Sketches of several Neumann functions are given in Fig. 9.10.

10Carl Gottfried Neumann (1832-1925), German mathematician and physicist was born in Konigsberg,
Prussia. He worked on topics ranging from applied mathematics to electrodynamics to pure mathematics.

"1Guillaume Francois Antoine Marquis de I’Hospital (1661-1704), French mathematician who wrote the
first book on calculus (1696). He is best known for the rule named for him.
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Example 94 Vibrations of a Circular Membrane. The displacement u(r,0,t) of a
stretched circular membrane with mass per unit area u and under tension T satisfies the
two-dimensional mechanical wave equation in plane polar coordinates (r,0) which may be
written in the following form.

L0 (o), 0 (10u)) _ 10
r \or \/ or 06 \roe )| wv2oer’
The speed of the wave motion s defined by v = \/T/u. Develop the solution of this equation

for a vibrating drum head.

Solution : Separating the variables u(r,0,t) = R(r)©(0)T(¢f) with separation constants
—a? and —n? yields the following three ordinary differential equations.

d’r
T +w?T =0, or T(t)=Acoswt+ Bsinwt where w?=v%?,
2o, .
TR ©=0, or O(f)=Ccosnf+ Dsinnf, and
2
52% +§((ii—1; + (52 — n2) R=0 where £ =ar.

The solution of the above equation is R(¢) = EJ,(§) + FN,(£) since it is of the Bessel
differential equation form. In addition, it is required that the solution be finite at & = 0;
hence, F is set to zero since N,(¢) approaches infinity as § approaches zero. The
general solution for the motion of the drum head is therefore given by

u = [Acoswt + Bsinwt] [C cosnd + Dsinnb] EJ,(§).

Since the membrane is fixed (no vibration, u = 0) around the edge where r = b (radius of
the head), the drum head vibrates in circular modes such that EJ,,(¢§) = 0. The nodes are
located at ar = & where ¢ are the values of ¢ for which J,(¢) has a zero. A single
term in the solution corresponds to a standing wave whose modes are concentric circles,
and the complete solution is obtained by summing over all such modes of vibration.

9.5.5 Hankel Functions

Hankel'? functions of the first and second kind are respectively defined by

HY(z) = —— {7 J,(2) — J_n(2)}

~ sinnmw

= Ju(z) +iN,(z) and (9.61a)
HP(@) =~ = {¢™J(2) ~ T n(2)}
= Jo(z) — iN,(2). (9.61b)

The Hankel functions are independent solutions of the Bessel differential equation, and they
are useful in connection with their behavior for large values of z since they are infinite at
z = 0. Hankel functions are sometimes referred to as Bessel functions of the third kind.

'2Hermann Hankel (1839-1873), German mathematician who worked on the theory of complex numbers,
the theory of functions, and the history of mathematics.



236 CHAPTER 9. SPECIAL FUNCTIONS

9.5.6 Modified Bessel Functions

The modified Bessel differential equation is obtained when z is replaced with (it)
in Eq.(9.53); the result is

Y+t + (P +n?)y=0. (9.62)

The solutions of Eq.(9.62) are called modified Bessel functions of the first kind and are
denoted by I,,(z); they are given by

- t/2 )2tn
L) =i "Ju( Z ; n integer. (9.63)

= J

When n is not an integer, I,(t) and I_,(¢) are linearly independent solutions of the
modified Bessel differential equation, Eq.(9.62). When = is an integer, I,(t) = I_n(2).
The modified Bessel functions of the second kind, K,(t), are defined by

Knt)= T {M} . (9.64)

2 sin nm

The meodified Bessel functions of the second kind are well behaved for all values of n.
Sketches of several modified Bessel functions are given in Fig. 9.11.

9.5.7 Spherical Bessel Functions

Solutions of the radial equation, Eq.(9.30), for k? = constant are obtained by comparing the
radial equation with the Bessel differential equation; these solutions are called spherical
Bessel functions and have the form

T 1/2
R(¢) = Ajn(C) = (i) Jni12(¢) for ¢ =kr. (9.65)

Spherical Bessel functions are often used in quantum mechanics and in other areas of
physics. Sketches of several spherical Bessel functions, spherical Neumann functions, and
spherical modified Bessel functions are respectively given in Figs. 9.12, 9.13, and 9.14.

9.6 The Hypergeometric Function

Important members of a large subset of special functions are related to a class of func-
tions called hypergeometric functions which are solutions of the hypergeometric differential
equation (also known as the Gauss differential equation). The hypergeometric differential
equation has three regular singular points, and it can be shown that any second-order or-
dinary linear differential equation with three regular singular points can be transformed
(reduced) to the hypergeometric differential equation form. The solutions of many physi-
cal problems involve special functions that result from solving second-order ordinary linear
differential equations with regular singular points. It is, therefore, natural to expect a
connection among hypergeometric functions and certain special functions. The hyperge-
ometric differential equation has the form

z(l-z)y" +c—(a+b+1)z]y —aby =0. (9.66)
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Note that Eq.(9.66) has regular singular points at z = 0,1,00. In Eq.(9.66), parameters
a,b, and c¢ are arbitrary constants. The hypergeometric differential equation can be solved
by use of the Frobenius-Fuchs power series method (see Worksheet in Section 9.9.5); here
the form of the solution is

00
y= Z aj.'L‘k+j; ag 7& 0. (967)
=0

In general, the solutions of Eq.(9.66) are the various forms of the Gauss hypergeometric
series; they are {y(z) = 2Fi(a,b,¢;z) = F(a,b,¢;z)}

2Fi(a,b,c;z) = i %z”. (9.68)

The factorial function in Eq.(9.68) is defined by

n
WNa=[O+-k-D=2A+1)(A+2)...(A\+n—1)
k=1
F'A+n)

=T, (9.69)
for A = @a,b, and c¢ respectively. This notation for the factorial function is called a
Pochhammer symbol. The notation ./, means that there are two factorial functions
in the numerator of the series and one factorial function in the denominator of the series
in Eq.(9.20). The gamma function I'()) is defined on page 242.
For convenience, we wiil write F(a,b,c;z) for .Fi(a,b,c;x) since the three parameters
in the parentheses are sufficient to avoid confusion with the notation for the confluent
hypergeometric function. Originally, the notation ,Fj(a,b;c;z) was used to represent
the hypergeometric function. One, however, finds a variety of combinations of commas
and/or semicolons used in the literature to represent the hypergeometric function. We will
use a comma, to separate constants and use a semicolon to separate the variable from the
constants.
The hypergeometric series F(—m,b, —n;z) is not defined if n < m. The hypergeometric
series converges if |z| < 1 and diverges if |z| > 1. For z = 1, the series converges if
¢ > a+b, and it converges for £ = —1 if ¢ > a+b— 1. The hypergeometric series
becomes a polynomial of degree » in z when a or b equals a negative integer.
Note that F(a,b,¢;0) =1 and F(a,b,c;z) = F(b,a,c; z). Also, note that many elementary
transcendental functions may be expressed in terms of a hypergeometric series; two example
are In(l1+z) =zF(1,1,2;—z) and (1 +z)* = F(—a,b,b;—z). The geometric series is a
special case of the hypergeometric series since

[o e}

F(1,1,1;z) = Zz”.

n=0

The numerous properties of F(a,b,c;z) summarized in this chapter as well as in many
other places were developed by Euler and Gauss.
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Solutions of the hypergeometric differential equation that are orthogonal polynomials are
of particular interest in this chapter, and polynomial solutions occur when a or b isa
negative integer. Examples of the connections of F'(a, b, ¢; ) with some special polynomials
of interest are given in the Table 9.6.

Table 9.6 Connections of F'(a,b,c;z) with Special Polynomials

Chebyshev T, (1 — 2z) = F (—n,n,1/2; )

Gegenbauer n!/ (2a), ) (1-2z) = F(—n,n+ 20,0+ 1/2; 1)

Jacobi nl/ (e + 1)nPn°"ﬂ) (1-2z)=F(—n,a+1+8+n,a+1;z)
Legendre P,(1-2z)=F(-n,n+1,1;z)

The Gegenbauer'® (also known as ultraspherical), Legendre and associated Legendre, and
Chebyshev polynomials are special cases of the Jacobi polynomial (sometime called hyper-
geometric polynomial). Chebyshev!* (Tschebyscheff, Tchebichef, and Tchebicheff are other
spellings found in the literature) polynomials involve solutions of separated equations in
spherical, parabolic, prolate, and oblate spheroidal coordinates. Chebyshev polynomials
converge rapidly and have the special property that max T, (z) = +1 and minT,(z) = —1;
because of this property, Chebyshev polynomials are useful in numerical analysis. Gegen-
bauer functions result from separated equations in circular cylinder and spherical coordi-
nates with two regular singular points at £1 rather than at 0 and 1.

We now summarize some of the basic properties of the solutions of the Jacobi differential
equation (see Table 9.1) and express these solutions in terms of oF). The solutions of the
Jacobi differential equation may be written as

y = PN (z) + Q00 (o)

The quantity PP (z) is a polynomial and is called Jacobi polynomial of the first kind.

The quantity QS{"’ﬁ ) (z) is not a polynomial and is called Jacobi functions of the second
kind. In terms of hypergeometric functions, we write

P (z) = (—(%}—)EF(—n,n+a+ﬂ+ lL,a+1;[1 —2]/2) and
QLA (z) = YD Fn+ln+a+1,2n+a+8+2;,2/[1—-2x]).

(z — 1" (z +1)7
The symbol C(c, 8) in the above equation represents the following quantity

et T(nt o+ DT (n+f+1)

Cle ) F2n+a+p+2)(z— 1)’“”’hLl )

13Leopold Bernhard Gegenbauer (1849-1903), Austrian mathematician who is best known for the poly-
nomials now named for him.

14Pafnuty Lvovich Chebyshev (1821-1894), Russian mathematician who is known for his work in number
theory and for the polynomials named for him.
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The standardization for the Jacobi polynomial is given by

peo ) = OF
n.

Rodrigues’s formula and the generating function for the Jacobi polynomial are given in
Tables 9.4 and 9.5 respectively. The form of the recursion formula for the Jacobi polynomial
is given by
2(n+1)(n+a+ﬂ+1)(2n+a+ﬁ)P,5‘:L’f)(z)
=2n+a+8+1)[2n+a+p)(2n+a+p)z+o® — 7] PP (z)
—2(n+a)(n+8)2n+a+ 8 +2) P (g).

The integral representation of the Jacobi polynomial may be written as

1 f1(e-1\"(1-t\*[1+2t)"
pled)(p = L ]{ 1 £, +1. 70
n (@) 2ri Jo2 \(t—=z l—-z l+z dt; = (9.70)

The contour in Eq.(9.70) is a simple closed contour in a positive sense around ¢ = z; the
points ¢ ==+1 are outside of the contour. In Eq.(9.70), the quantities raised to the « and
B power are defined to be unity when ¢ = z. Graphical illustrations of Jacobi, Chebyshev,
and Gegenbauer polynomials are given in Figs. 9.15-9.17.

9.7 The Confluent Hypergeometric Function

The confluent hypergeometric differential equation (also called the Kummer'® differential
equation) has the form

gy’ +(c—2)y —ay =0. (9.71)

Equation(9.71) may be obtained from the hypergeometric differential equation by a merging
(a confluence) of the two upper singular points. In the confluent hypergeometric differential
equation, there is a regular singularity at z = 0 and an irregular singularity at = = oo.
By use of the power series method in the neighborhood of z = 0, we find that one solution
of Eq.(9.71) has the form (confluent hypergeometric functions or Kummer functions)

o) = \Filon) =1+ ZHEEDE > (@ (9.72)

The confluent hypergeometric series converges for all values of z. In Table 9.7, we give the
connection of certain orthogonal polynomials with the confluent hypergeometric functions.

15Ernst Eduard Kummer (1810-1893), German (Prussian) mathematician who worked on function theory
and extended the work of Gauss on the hypergeometric series.
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Table 9.7 Connections of with Certain Special Polynomials

Bessel Functions Jo(z) = (72 /nl) (z/2)" F (n+ 1/2,2n + 1; 2iz)
Modified Bessel Functions I(z) = (e7%/n!) (z/n)" F (n + 1/2,2n + 1;2x)
Laguerre Polynomials L,(z)=F(-n,1;z)

Associated Laguerre Polynomials L™(z) = (n + m)!/n!m!F (—n,m + 1; )

Hermite Polynomials Ha,(z) = (=1)" (2n)!/n!F (-n,1/2; 1?)

The error function and complementary error function are respectively defined by
erf(z) 2 fz ~#dt  where erf(oo) =1 and
Irj\T) = —= € wher ox0) =
v Jo
exfole) =1 -erf(o) = = [ et
xTr) = —€erj\r) = —4— [ .
¢ vl

The Hermite polynomials may be obtained from derivatives of the error function as follows.

dntt 2(-1)"
erf(z) _ (=1) Hn(m)e_’ )
dzn 1 Jr
In addition, the error function is related to the confluent hypergeometric function by use
of the following equation.

erf(z) = \2/—77 B (; g;—zz) .

9.8 Other Special Functions used in Physics

As explained in the introduction of this chapter, the list of special functions is extensive.
The Handbook of Mathematical Functions (Abramowitz and Stegun, 1964) contains a fairly
comprehensive list of special functions and their basic properties. The focus in this chapter
has been on special functions that are widely used in mathematical physics to solve classes
of problems whose formulations involve special cases of the Helmholtz differential equation.
In general, special functions may be classified as Type 1: those special functions that satisfy
a differential equation or Type 2: special functions that do not satisfy a differential equation;
for example, the gamma function is a Type 2 special function. In the sections below, we
summarize some other special functions that are used in mathematical physics but are not
covered in the above sections.

9.8.1 Some Other Special Functions of Type 1

Some other special functions that satisfy a differential equation are (a) Airy'® functions are
solutions of the Airy differential equation which has the form 3" — zy = 0; the Airy
differential equation characterizes constant force-type problems in quantum mechanical and

1$George Biddel Airy (1801-1892), English mathematician and astronomer who is known for his many
contributions to mathematics and astronomy.
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in elementary particle physics; (b) Mathieu!” functions are solutions of the Mathieu dif-
ferential equation which has the form 3"+ (a — 2bcos2z) y = 0; the Mathieu differential
equation results when a cosine-type potential is substituted into the one-dimensional time-
independent Schrodinger wave equation; and (c) parabolic cylinder functions are connected
with confluent hypergeometric functions and with Hermite polynomials; they are solutions
of differential equations of the general form given by " + (az? + bz +¢)y = 0.

Many bound state and collision problems in classical and quantum mechanics as well as in
other areas of physics involve integrals of the form

/ R(z,y)ds. (9.73)

When R(z,y) is a rational function and 42 = ap+ a1+ a22% + a3x® + aqz? where a4 # 0
or ag =0 and a3 # 0, the integral in Eq.(9.73) is called an elliptic integral. Complete
elliptic integrals of the first and second kind are respectively defined as

/2

K (m) = / (1—msin?6)"?df and (9.74)
01r/2 1/2

E(m) = / (1 — msin?6)"/* df. (9.75)
0

Analyzing the motion of a simple pendulum involves an elliptic integral of the first kind.
Elliptic integrals can be evaluated directly by use of series expansions or computers. Their
importance in mathematical physics, however, is related to their appearance when solving
physical problem involving certain nonlinear differential equations. Elliptic integrals are
special cases of the hypergeometric functions since

T 11 T 11
K(m)= EF (i’i’l’m) and E(m)= EF (—5, 1 l,m) .
The Handbook of Mathematical Functions (Abramowitz and Stegun, 1964) is a good refer-
ence for additional information on elliptic integrals.

9.8.2 Some Other Special Functions of Type 2

Some special functions used in mathematical physics that do not satisfy a differential equa-
tion are (a) Einstein and Debye functions which are used in representing the specific heats
of solids due to lattice vibrations; (b) error function; (c) gamma function; and (d) beta
function. The latter two functions are widely used in many areas of mathematical physics
and are now summarized.

The factorial, n!, is defined as

oo}
nl=nn-1)...2-1= / e 't"dt; n integer. (9.76)
0

17Claude Louis Mathieu (1783-1875), French scientist and mathematician known for his work in mathe-
matics and astronomy.
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Note that 0! =1, and n! = +o0o if n equals a negative integer. The gamma function, T,
is a generalization of the factorial to cases of noninteger values for n. The Euler definition
of the gamma function is

[‘(z):/ e 't*7'dt for Re(z) > 0. (9.77)
0

In Eq.(9.77), Re(2) denotes the real part of z = z + éy. Note that I (1/2) = /7.
Evaluating the integral in Eq.(9.77) by parts yields the recurrence relation for the gamma
function, I' (2 4+ 1) = 2T'(2) . If z is a positive integer n, then I' (z+ 1) equals nl.

The gamma function is used to express, in compact form, solutions of many problems
of mathematical physics. The gamma function, however, does not satisfy a differential
equation that is related to a physical problem; in fact, the gamma function does not satisfy
any differential equation with rational coefficients. A sketch of T'(z) for some positive and
negative values is given in Fig. 9.18.

The beta function, B (p, g), is defined by use of an integral, and it involves a simple and
useful combination of gamma functions; it has the form

1
B(Pﬂ])=/ 11 -¢t)""'dt for p>0 and g > 0.
0

It can be shown that B (p,q) = B(g,p). The beta function is frequently used in high
energy particle physics as well as other areas of mathematical physics.

9.9 Problems

9.1 If u(z) is a complex eigenfunction, show that the real and imaginary parts satisfy the
Sturm-Liouville equation. Discuss degeneracy for this case.

9.2 The differential equation p(z)u” + q(z)u' + r(z)u =0 is self-adjoint if ¢ =p'.

(a) Show that a self-adjoint differential equation can be expressed in the Sturm-Liouville
form. (b) Show that if this differential equation is not self-adjoint (i.e., ¢ # p'), it can be
put into the self-adjoint form by multiplying through by exp [[ (¢ — ') dz/p] .

9.3 Show that

Hy1(z) = 2zH,(z) — 2nH,_; ().

Hint: Differentiate both sides of the equation for the generating function for Hermite
polynomials with respect to ¢ and equate coefficients of like powers of .
9.4 Show that

H;(z) =2nH,_(z).

Hint: Differentiate both sides of the equation for the generating function for Hermite
polynomials with respect to z and equate coefficients of like powers of .
9.5 (a) Show that

® _f 2"nly/m for n=m
_/ €™ Hn(2) Hn(z)dz _{ 0 for n # m.

—00
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(b) Evaluate

/oo {Hy(2)}? ze * da.

-0

9.6 By use of the generating function, evaluate

/ e Hy(z)zHp(z)dz.
—00

9.7 Show that the series for H,(z) in Eq.(9.19) satisfies the Hermite differential equation.
9.8 For z = cos#, show that

1 _ 0 for n#m
/_an(:z:)Pm(:E)d.'E _{ 2/(2n+1) for n=m.

9.9 Show that
(8) Po(-z) = (-1)'Pi(a) and (b) LI(0)=n(n—1)/2.
9.10 Show that
T (8) + Jaa(2) = T (a).

Hint: Differentiate both sides of the equation for the generating function for Bessel functions
and equate coeflicients of like powers of &.
9.11 Show that

Jn-1(z) = Jny1(z) = 2J5(2).

Hint: Differentiate both sides of the generating function for J,(z) with respect to z and
equate coefficients of corresponding powers of t.

9.12 Show that J,(—z) = Jyp(z) for n even and J,(—z) = —J,.(z) for n odd.

9.13 Show that N,(z) and J,(z) are linearly independent for n = integer.

9.14 Show that N,(z) is a solution of the Bessel differential equation for n = integer.
9.15 Show that J,(z) = —J}(z).

9.16 Show that the Hankel functions, H,(,l)(z) and H® (z), satisfy the Bessel differential
equation.

9.17 Develop the Wronskian for J,(z) and J_,(z).

9.18 Show that the series in Eq.(9.54) for J,(z) satisfies the Bessel differential equation.
9.19 For the error function, show that (a) erf(z) = —erf(—z) and (b) erf(oo) = 1.
9.20 Show that (a) I'(1)=1 and (b) I'(n) = (n— 1)L

9.21 Show that 2-4-6---2n=2"T' (n+1).

9.22 Show that 1-3-5---(2n — 1) = 21-"T' (2n) /T'(n).

9.23 By use of the definition of the beta function

1
B(p,q)E/ Y (1-t)""'dt p and ¢>0,
0

show that B (p,q) = B(q,p). Hint: Let t=1—u.



244 CHAPTER 9. SPECIAL FUNCTIONS

9.24 Let ¢t =z/(1+z) in the definition for the beta function and show that

B(p,rJ)=/ow(mpl

1 + Z)IH"]'

9.25 Show that B(p,1 —p) = n/sinwp. Hint: See Example on page 139.
9.26 Let t=s+y(z —s) and show that

[ emimar =L vy

1
/0 #:B(l—a,a): .7l'

ye(l—y)'® sinan’

Note that

9.27 Show that B(p,q) =T ()T (¢) /T (p+q).

9.9.1 Worksheet: The Quantum Mechanical Linear Harmonic
Oscillator

The time-independent Schrédinger wave equation for the linear harmonic oscillator with
potential V(z) = kz?/2 is

n &y

k W=E w1

— o g T gke Y = By, (W1)

On making the change of variable £ = az (for constant ¢), note that

d_dgd_ d 4 L _d(dY_ &
dr  drdé Cde i dz \dz) % ae
Equation (W1) reduces to
&y omE . 2mk
el ARl Y =0. w2
Now let
bomh 2Byl 2E
ot =T ad A=F(F) =5
Equation (W2) in dimensionless form becomes
d2
T O-e= (w3)

The plan is to solve Eq.(W3), directly or indirectly, by use of the power series method.
Hence, the dimensionless form is very desirable since there is no need to keep track of
dimensions of the various coefficients involved in the series method.
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Exercise 95

(A) Explore using the power series method directly on Eq.(W3). That is to say, assume
that the solution of Eq.(W3) has the form

Y= zw:arfk"" ap # 0. (W4)
r=0

(B) Write down the indicial equation. (C) Try to write down the recursion formula.

(D) Explain the difficulty encountered.

(E) By replacing A with 1+ 2n for n = constant, show that Eq.(W3) reduces to the
well-known Weber differential equation,

%+(1+2n—£2)¢=0. W)

(F) In Eq.(W5), show that the transformation

Y€)=y (6) (W)
leads to the well-known Hermite differential equation
d*y . dy
—2 — 26— +2ny=0. w17
7 3 a T2 0 (W)

The Hermite differential equation is normally written as y” — 2zy’ +2ny = 0. The solution
of Hermite’s differential equation by use of the power series method is well-known. Our plan
for solving Eq.(W3) is to solve the Hermite differential equation and use the transformation
in Eq.(W6).

Exercise 96

Assume the following form for the solution of Eq.(W7)
y= af*  ay#0.
r=0

(A) By use of the power series method, show that

apk(k—1)=0 indicial equation
arpo(k+7+2)(k+r+1)—2(k+r—n)a, =0 recursion formula.

(B) For k=0, show that the recursion formula may be written as

_ 2(n-r)ar
Grt2 = (r+2)(r+1)
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(C) Show that the case k& = 1 leads to a redundant set of terms; hence, only the case
k = 0 is needed. (D) Show that the general even and odd terms in the series solution may
be written respectively as

(—2Yn(n—2)---(n—25+2)a

Qg5 = 25! ij=0,1,2,... and
(Y m-)(n-3)-(-2%+Da . _
A2j+1 = (2]+1)| J=0,1,2,....

(E) Show that the general solution of the Hermite differential equation, Eq.(W7), has the
form

y(€) =Y af+ ) al
j even j odd
= (-Yn(n-2)---(n—2j+2)¢¥
2 )!
(=2 (n—1)(n—8)---(n—2j+1)¢¥
+a1£ 1+]._§ (2]+1)' .

Note that both terms in the general solution of the Hermite differential equation are infinite
series. We have a physical requirement that y(£) tends to a finite number as ¢ tends to
infinity. To satisfy this physical requirement, we must terminate each series; note that

1. the first infinite series becomes an even polynomial of degree n when n—2j+2=10
and

2. the second infinite series becomes an odd polynomial of degree n when n—2j5+1 = 0.

The even and odd polynomials may be combined to obtain a single polynomial in descending
powers of n; the first term of this polynomial is a,£" and subsequent terms are given by
the recursion formula in the following form

42+ e
" 2(n—r) '

For r =n — 2, we obtain

n(n—1)a,

n(n—l)(n—Q)(n—3)an_
2-2

22.2-4

Qp_o = and @,_4=

The general term is

(—l)jn(n—1)(n—2)---(n—2j+1)an.

o2 = 22.2.4-..2j (W8)
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Exercise 97

(A) Show that

nn—1)---(n—-2j+1)
mn—2)(n—2j-1)---3-2.1 _ nl
(n—2j)(n—2j-1)---3-2-1  (n—2j)"

=nn-1)--(n—-2j+1):

(B) Show that 2-4---2=(2-1)(2-2)(2-3)--- = 245",
(C) Show that the general term in Eq.(W8) reduces to

- (-1) nla,
T 192 (n — 25)!

The polynomial solution (finite) solution is Hermite’s differential equation becomes

N

n

(=1) nlgn-2 _ n/2 for n even
22751 (n — 2)!’ " (n—-1)/2 for n odd.

=0
With the standardization a, = 2",y () becomes the Hermite polynomials
N

Y nl (26 n-2j
- m =)

The solution of the quantum mechanical equation for the linear harmonic oscillator, Eq.(W3),
is Y (&)= Npe €2H, (¢) where the N, are normalization constants. The eigenenergy
is obtained as follows.

A=1+2n= % = E,=hw(n+1/2); n=0,1,2,....
9.9.2 Worksheet: The Legendre Differential Equation

Assume the solution of the Legendre differential equation

de de

has the form

o0
=> auwtt"; ag #0. (W10)
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Exercise 98

On substituting Eq.(W10) into Eq.(W9), show that (A) k(k—1)a, =0 (indicial equa-
tion); (B) k(k+1)a; = 0 (Note that ap and a; are arbitrary for k£ = 0.); and
C

[(k+n)(k+n—-1)+2(k+n)—Aa,
(k+n+2)(k+n+1)

(D) Show that the general solution of Eq.(W9) reduces to

Gpio = (recursion formula).

A, A6-=X) , A(6-X)(20-1X) ,
O (w)=a [I—ﬁw - (4! )w - ( 25‘( )w +]
+a [w+(Q;A)w%(2_’\)5(!12_'\)W5+---].

(E) By use of the Gauss test (see page 116) for convergence (use the recursion formula for
k = 0 as the coefficients), show that the series for O (w) diverges for w = +1. Since
w = cosf, it is important to construct a solution that converges for —1 < w < 1; such a
solution is obtained when ) is replaced with £(£+ 1) and the coefficients are rewritten
in terms of £(£+ 1). (F) For this replacement, show that the recursion formula becomes
nn+1)—L(¢+1)]a, ({—n)l+n+1)a,

N I R CE P IR

(G) For n even, write out a few terms of the above recursion formula and show that the
coefficients of the general term are given by

(—1)L(—-2)(l—4)-- (£—2]+2)(L+1)(£+3)---(£+ 25— 1)ao

(29)! '
(H) For n odd, write out a few terms of the recursion formula and show that the coefficients
of the general term are given by

(-1 (£=1)(—=3)---(L—2j+1) (+2)(L+4)-- (£ +2))a
(27 +1)! )

When £ = 2j, the even part of the solution becomes a finite series (an even polynomial of
degree £)since ay; # 0 but a1 = 0 where £— (2§ +2)+2 = 0. Similarly, the odd part
of the solution becomes an odd polynomial of degree ¢ for £ =2j+1 since agjt1 #0
but a;+3 = 0. A single finite series (polynomial), in descending powers of w, that is valid
for both even and odd ¢ will now be obtained. The first term of this polynomial is asw?,
and subsequent terms are given by the recursion formula
Gin = GG+1)—£(L+1)]a; __(-j+j+1)a
’ G+2)G+1) (G+2)(G+1)

(I) Solve the above equation for a; and write out terms for j=¢—2 and j=¢-4 and
show that the general term is

ag; =

Q2j+1 =

(1) e¢-1)(£-2)---(£—2r+1)a
2:4---2r(2—-1)--- (20— 2r+1)

Qg—2r =

(W11)
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Equation (W11) can be written in a compact form if we note that following three relations

E—1)--(E—2r+1)

_ L (¢-2r)(e—2r-1)---3.2-1
R AR e A A 7w v/ e s v v p
2
==y (W12)
2-4.6---2r=(2-1)(2-2)(2-3)---(2-7) =27 and (W13)
(20 —1)(20—3)--- (20— 2r + 1)
20(20—1)(26—2) (24— 3)--- (24— 2r +1) (20— 2r)!
T uw@e=2)(28—4)---(2—2r+2)  (2¢-2r)!
(20)! _ Lot _

Tw(t—1)-(0—r+1) (-2 22— 2n)@!
By use of Eq.(W14, W13, and W12), the general term, Eq.(W11) becomes

o (2 (22 - 2r)!
ag—2r = (—1) L! (20)! (£ —2r) (£ —7)! o

The solution of the Legendre differential equation now has a finite series part and an infinite
series part and may be written in the form

2 £—2r
= Z 7! 22( — ))l'w +Qe(w)

where N = { (ee_/ 22) /2f0rf0f zvzrzi .
For standardization,

(2¢)!
2 ()%

the finite series part of the solution reduces to the Legendre polynomials of the first kind

ag =

M (—1)" (2¢ - 2r) w7

Py(w) = 2:; rrl(f—2r) (€ =)

9.9.3 Worksheet: The Laguerre Differential Equation
The power series solution of the Laguerre differential equation

zy" + (1 —z)y + ay=0; = constant (W15)
will be developed. Assume the following series form for the solution of Eq.(W15)

(e o]
(z) = Zajzk”; ap # 0.
=0
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Exercise 99
(A) Show that the indicial equation and the recursion formula are respectively given by
k(k—1)+klap=0

and

(k+j—a)a;
k+j+1)(k+)+k+j+1
The indicial equation has a double root, & = 0; this results from the fact that the Laguerre
differential equation has a nonessential singularity at the origin. Hence the power series
method yields only one solution that is finite for all values of z. This solution, however, is
extremely important in physics.

(B) For k = 0, write out a few terms using the recursion formula and show that one
solution of the Laguerre differential equation has the form

aj1 = (

a ala—1) 4 1Y a(@a=1)(a—j+1)z
y(z) =aol—Fz+%!)le IR e V7 2]-!)2( j+hal

mit j =1,2,3,....

The above solution becomes finite (a polynomial of degree n) when a—j+1=0 or «
equals a positive integer. With standardization ay = 1 and « = n, this finite solution
becomes the Laguerre polynomials of order n; they are given by

n

Ln(z):aoz(—1)ia(a—1)...(a_j+1)zj

= (4H?
e~ (-1 nlad
B ZO (n— )G

(C) Differentiate the Laguerre differential equation % times with respect to = and show
that the associated Laguerre differential equation is obtained

d?Lk dLk
z d;ﬁ””) +(k+1-1) %,(n— k) LE(z) = 0
d*L,(z)
where  LE(z) = A

9.9.4 Worksheet: The Bessel Differential Equation
Assume that the solution of the Bessel differential equation
.’E2y” +zy + (:E2 _ n2) y=0

has the form

Yo = St an £0.
j=0
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Exercise 100

Show that (A) (k* —n?)ap =0 (indicial equation); (B) [(k+1)® —n?]a, =0; and (C)

Q52

aj=——3= .
! (k+j)° —n?’

j>2 (recursion formula).

(D) Consider the case k=mn, ap# 0, and a; = 0; write out a few terms of the recursion
formula and show that the general term is

ag; = (=1 a
YT 2 (n4+1)(n+2)--(n+j)
Note that
. . . I'n+1
(n+1)(n+2)---(n+])=(n+])(n+]—1)---(n+2)(n+1)-ﬁ
_T'(n+j+1)
- T'(n+1) °
With standardization
w1
T L (n+1)

the solution of the Bessel differential equation for k¥ =n and n = integer becomes the
Bessel functions of the first kind of order n

_ © (_1).7' 2+
Jn(z) = Z 2247 41T (n + j + 1)

z/2)2]+n
- Z '1" (n+j5+1)

9.9.5 Worksheet: The Hypergeometric Differential Equation

Consider the hypergeometric differential equation
z(1-2)y" +[c—(a+b+1)z]y —aby =0. (W16)

Assume that the solution has the form

T) = Z ™ ap #0.
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Exercise 101

(A) Show that the indicial equation is [k (k — 1) + ck]ap = 0.
(B) Obtain the recursion formula.
(C) For k =0, show that the solution of Eq.(W16) is

ab (a_b) 1+a)(a+d) ,

= 1+ —
% a0[+cz+ 2(+0) 5+

al@+1)---(a+r—1)-b(b+1)---(b+r—-1) .
* rle(c+1)--(c+r— 1) T + . (W17)

The above series is called the hypergeometric series since it reduces to the ordinary geo-
metric series for a =1 and b = ¢; this solution is denoted by ¥y, = aoF (a,b,¢;z).
Note that the right-hand side of Eq.(W17) becomes a polynomial when a+7r—1=0 or
a=1—r=-n (n>0). For k=1-c, the solution of Eq.(W16) becomes

Ya=apr' °F(a—cb—c+1,2—¢1).
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Figure 9.7: Legendre Functions of the second kind, @, (z) (Abramowitz and Stegun, 1964)
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Pl(x)
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“
15+

Figure 9.8: Associated Legendre functions, P!(z) (Abramowitz and Stegun, 1964)
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L,(x)
2
3}

-2 F
Figure 9.9: Laguerre polynomials, L,(z), (Abramowitz and Stegun, 1964)
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-0.38

Figure 9.10: Bessel functions of the first and second kinds, J,(z) and Y,(z) (Abramowitz
and Stegun, 1964)
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Figure 9.11: Modified Bessel functions, K,(z) and I,,(z) (Abramowitz and Stegun, 1964)
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jn(x)
A
0.6 |

0.5
0.4
0.3
0.2

0.1

-0.1

-0.2

-03 F

Figure 9.12: Spherical Bessel functions of the first kind, j,(z) (Abramowitz and Stegun,
1964)
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02r1

-01 7t

-02r1

-03 7

-04 ¥

Figure 9.13: Spherical bessel functions of the second kind, y,(z) (Abramowitz and Stegun,
1964)
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0 1 2 3 4 5 6
Figure 9.14: Modified spherical Bessel functions of the first and second kinds (Abramowitz
and Stegun, 1964)
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Pn(l,S. -0.5) (x)

PZ(I.S, -0.5)

P4(1.5,—0.5)

P,05.-05)

P15.-05)

12)3(1.5v -0.5)
L—

Figure 9.15: Jacobi polynomials, P{"*~%% (z) (Abramowitz and Stegun, 1964)
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T.(x)
A

-1

Figure 9.16: Chebyshev polynomials, T,(z) (Abramowitz and Stegun, 1964)
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Cn (0.5) (x)
ﬁ\
1

(0.5)
C©3 C4
C;O‘S) 3

Figure 9.17: Gegenbauer polynomials, C{* (z) (Abramowitz and Stegun, 1964)
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{-‘4 —TI'(x)

;Is ---1/I"(x)

Figure 9.18: Gamma function, I'(z) and 1/T'(z) (Abramowitz and Stegun, 1964)




Chapter 10

Integral Equations

10.1 Introduction

An integral equation is an equation in which an unknown function is under the sign of
integration. In connection with his study of integral transforms in 1782, Laplace intro-
duced integral equations into mathematical physics. Abel, in connection with a mechanical
problem, and Liouville, in connection with differential equations, made important early
contributions to the development of integral equations. The general form of an integral
equation is as follows.

h(z)u(z) = f(z)+ A . K (z,5) G [u(s), 5] ds. (10.1)

a

In Eq.(10.1), (a) K(z,s) is called the kernel (nucleus or kern), (b) u(z) is the function
to be determined, (¢) k(z) and f(z) are known (given) functions, and (d) A is a real or
complex parameter (also called the eigenvalue when it is real). The classification of integral
equations is given in Table 10.1.

Table 10.1 Classification of Integral Equations

Linear Glu(s),s]=u(s)
Fredholm b(z)=b

volterra b(z)=z

First kind h(z)=0

Second kind  h(z) =1

Third kind h(z) #0,1
Homogeneous f(z) =0

Singular a=-00 and b=o00

The classification of kernels of integral equations is given in Table 10.2.

Analytic Methodss in Physics. Charlie Harper
Copyright © 1999 WILEY-VCH Verlag Berlin GmbH, Berlin
ISBN: 3-527-40216-0
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Table 10.2 Classification of Kernals

Symmetric K (z,s) =K (s,z)

Hermitian K (z,s) = K* (s, )

Separable of degenerate K (z,s) =3 i ,9i(z)¢i(s) n <oo
Difference K(z,s)=K(z— s)

Cauchy K(z,s)=1/(z—s)

Singular K(z,8) 00 as sz
Hilbert-Schmidt fab :|K (z,s)|° dzds < oo

This chapter is devoted to a brief introduction of solutions and applications of one-dimensional
linear integral equations of the first and second kinds. The formulations of many problems
in physics lead to either differential or integral equations. Certain problems (e.g., certain
problems in transport theory) can only be represented by integral equations of the following
general form

u(z)=f(2) + /\/bK (z,s)u(s)ds. (10.2)

Equation (10.2) is an integral equation since the unknown function u (z) appears in the
integrand. Functions f(z) and K (z,s) are to be given, and A is a known parameter
used here for convenience. The function f(z) is called the free term, and K (z,s) is the
kernel. Quantities f(z), K (z,s), and A may be either real or complex but are considered
real in this chapter. Equation (10.2) is a linear integral equation since u is linear. An
integral equation is singular if either (or both) of the limits of integration is infinite and/or
if the kernel becomes infinite in the range of integration. When f(z) = 0, Eq. (10.2)
is classified as a homogeneous integral equation. If the kernel is continuous in the closed
region [a,b], then Eq. (10.2) is classified as a Fredholm! type integral equation of the
second kind. Fourier transforms and dispersion relations are examples of singular integral
equations of the first kind. The equation (where the upper limit is a variable),

u (z) +/\/ K (z,s)u(s)ds, (10.3)

is known as a Volterra? type integral equation of the second kind. Fredholm integral
equations of the first kind have the form

= /bK(z,s)u (s)ds. (10.4)

Volterra’s type integral equations of the first kind have the form

= /I K (z,8)u(s)ds. (10.5)

1Erik Ivar Fredholm (1866-1927) was born in Stockholm, Sweden. He is known for his contributions to
mathematical physics and integral equations.

2Vito Volterra (1860-1940), Italian mathematician and physicist who is known for his work on partial
differential equations and integral equations.
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In summary, classifications are (a) Fredholm type if the limits of integration are fized and
Volterra type if one limit is variable and (b) first kind if the unknown function appears only
in the integrand and second kind if the unknown function appears both in the integrand and
outstde the integrand.

Certain physical problems may be formulated as (a) differential equations with appropri-
ate boundary and/or initial conditions, (b) integral equations, or (c) either differential or
integral equations. An essential difference between the two formulations is that boundary
conditions are imposed on general solutions of differential equations while boundary con-
ditions are incorporated within the formulation of integral equations. While there exist
procedures for converting differential equations to integral equations, use of integral equa-
tions seems more appropriate when (a) formulations of problems lead directly to integral
equations or (b) solutions of the corresponding integral equations are easier to obtain than
those for the corresponding differential equations.

It is important to note that certain problems in classical mechanics, transport and diffusion
phenomena, scattering theory, and other areas of physics can be formulated only by use
of integral equations; the number of such problems is very small when compared to those
leading to differential equations. In general, the theory of solution techniques needed in
solving integral equations is not as familiar to physicists as techniques for solving differential
equations. Integral equations are seldom treated in details in introductory mathematical
physics textbooks but are, however, discussed in advanced books in theoretical physics and
mathematical physics. See the references for some excellent books on integral equations
(e.g., Lovitt 1950, Mikhlin 1964, and Moiseiwitsch 1977). Many integral equations encoun-
tered in physics are normally solved by use of (a) intuitive analytical methods, (b) intuitive
approzimation methods and numerical techniques, or (c) integral transform methods.

Some systematic methods for solving nonsingular linear integral equations are (a) separa-
ble kernels, (b) transform theory, (c) Neumann series, (d) numerical, (e) Schmidt-Hilbert
theory, and (f) Wiener-Hopf theory. The Wiener-Hopf method is a different type of trans-
form method which may be applied to certain integral equations with displacement kernels,
K (z,s) = K (z — s). Schmidt-Hilbert theory is an approach that applies to integral equa-
tions with Hermitian kernels, K (z,s) = K* (s,z). The Neumann series method involves
developing the unknown function, u (z), as a power series in the parameter A. Numerical
solutions of Volterra equations involve (a) reducing the original equations to linear algebraic
equations, (b) successive approximations, and (c) numerical evaluation of integrals. Numer-
ical techniques for Fredholm equations involve solving a system of simultaneous equations.

10.2 Integral Equations with Separable Kernels

A subset of Fredholm equations of the first and second kinds with separable (degenerate)
kernels can be solved by reducing them to a system of algebraic equations. In general,
separable kernels may be written as

K(z,s) = Zgj(:n)cbj(s) n < 00. (10.6)
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In Eq. (10.6), it is assumed that g;(z) and @, (s) are linearly independent functions
respectively. Substituting Eq.(10.6) into Eq.(10.2) yields

n
u(z) = f(z)+ /\Zgj (z) C;. (10.7)
j=1
The C; coefficients are given by

C;= fb &i(s)u(s)ds. (10.8)

The solution of Eq.(10.2) has now been reduced to finding the C; from the indicated
integrals in Eq.(10.8) and substituting the C; into Eq.(10.7).

Example 102 By use of the separable kernel method, find the solution of

u(z)=z+)\-/01:z:su(s)ds.

Solution : The above integral equation becomes

u (1) =z+A/lzsu(s)ds=:z:+)\:z:/lsu(s)ds
=z+ Azé’. ’ (10.9)
The C coefficient reduces to
C= /01 su(s)ds = /01 s(s+ AsC)ds (from Eq.(10.9))

N (10.10)

On substituting C from Eq.(10.10) into Eq.(10.9), we obtain the following solution of the
original integral equation
Az 3z
u(z) =z + AzC x+3_)\ X

Here, it is seen that solutions exist for values of A\ different from 3.

Example 103 By use of the separable kernel method, find the solution of

u(:z:)=:n+%/_1 (s+z)ds.

1

Solution : Here the original integral becomes

u(:zc)=:zc+%/1 (s+z)ds

1

1 N 1!
=z+§/_1(s)ds+§/_lzds

1 1
=z+ 501 + 52)02. (10.11)
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The C; coefficient reduces to

012/_1 su(s)ds

1

1
_2+4G
===

The C, coefficient becomes

! 1 1
= / s (s + 501 + 5302) ds (from Eq.(10.11))

Cg=/_lu(s)ds

1

1
=Ci=>0C,=C,=1.

1
=f (s + %Cl + %SCQ) ds (from Eq.(10.11))

On substituting the values for C; and C; into Eq.(10.11), the solution of the original
equation becomes u (z) = (3z +1) /2.

10.3 Integral Equations with Displacement Kernels

If the kernel of an integral equation is of the form K (z — s), it is referred to as a displace-
ment kernel. Fredholm equations of the first and second kinds with displacement kernels
and limits from minus infinity to plus infinity or from zero to plus infinity can normally be
solved by use of Fourier and Laplace transform methods respectively (see Chapter 6). Here
the Fourier transform approach for solving integral equations with displacement kernels will
be illustrated. Taking the Fourier transform of each term in Eq.(10.2) yields

/_: u(z)e*dz = /_: f(z)e*dz + ,\/_Z (/_: K(z - S)U(s)ds) .

In transform space (k-space), the above equation is
u(k) = F(k) + AK (k)u(k).

The solution in z-space is obtained when the inverse transform of is taken, and the result
becomes

1 [® F(k)e*edk
u(z) = 2w1;31_AKw). (10.12)

10.4 The Neumann Series Method

Consider the set of Fredholm equations of the second kind such that

[1@ra ma [ 1K@
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are bounded. Assume the solution may be written as a power series, Neumann series
(also known as Liouville-Neumann series), with form

u(z) i Auy, (z) . (10.13)

n=0

Terms in the successive approximation are obtained by substituting the Neumann series
into the Fredholm equation, Eq.(10.2), and equating coefficients of like powers of ); the
results are

Ug (III

)= f(z),
b
ul(x)=/ K (z,5)u0 (s)ds, ...,
un (z) = / " K (2,5) s (5) ds. (10.14)

It can be shown that the Neumann series (a) converges for all values of A for Volterra
equations and (b) converges for small values of A for Fredholm equations; techniques exist
for improving the convergence in the Fredholm case. Numerical techniques may be used to
evaluate terms in the Neumann series.

10.5 The Abel Problem

This brief introduction on integral equations is concluded with one of the earliest application
(1833) of integral equations to a physical problem, the Abel problem. The Abel problem
is as follows: Consider a bead sliding on a smooth wire under the influence of gravity and
find the curve for which the time of descent is a given function the initial position.

y

A

(x(), )’0)

> X

Figure 10.1

Let the starting position of the bead be (z9,%) and position of the bead at time ¢ be
(z,y) such that y equals zero at the end of the fall (see Fig. 10.1). The speed of the
bead at (z,y), for an element of arc length along the path ds, is determined from the
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conservation of energy principle and is given by

ds
at 29 (30 — v). (10.15)

If the shape of the curve is u (y), then ds = u(y)dy and the time of descent is given by

T— v u(y)dy
o V29 (% —y)
The Abel problem is to find the curve, u (y), for which the time, T, of descent is a given

function, f (yo), of the initial vertical position, and the result is obtain from the solution of
the following integral equation

(10.16)

Yo u (y) dy

0o V29Wo—y)

It can be shown that the curve in question is a portion of a cycloid (the curve traced out by
a point on the circumference of a circle that is rolling along the z-axis). Equation (10.17)
is called the Abel equation; in general form, the Abel equation is written as

f () = (10.17)

f(x):/z% 0<a<l (10.18)

In Eq.(10.18), f(z) is a known function and u(s) is an unknown function.

The solution of the general Abel equation is obtained as follows. For clarity of notations, we
first replace z with t in Eq.(10.18). Now multiply both sides of Eq.(10.18) by (z — )t
and integrate both sides of the resulting equation with respect to ¢ from a to z; the

result is
© f)d T dt tu(s)ds
/a (?—__;)1__&_/& (:I:—t)l_",/a t—s)* (10.19)

By use of the Dirichlet formula (for changing the order of integration)

/ubd§ {/:p(ﬁ,n)dn} =/abdn{/un<p(§,n)d§}, (10.20)

the right-hand side of Eq.(10.19) may be written as

/az _ _d:)l_a /at Z(f)s‘if, =[u(s) ds/: (:z—t)l_d‘f — (10.21)

On making the substitution ¢ = s+ y(z —s) into the second integral on the right-hand
side of Eq.(10.21), Eq.(10.21) reduces to (see Problem 9.26)

/z dt =/1 dy ___ T (10.22)
s (@=0)@-9* Jo yr(1-y)"* sinom
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Substituting Eq.(10.22) into Eq.(10.21) and substituting this result into Eq.(10.19), we

obtain
T d T
/ (xf_(tg)f_a - / u(s) ds. (10.23)

Applying Leibniz’s formula for the differentiation of an integral with variable limits (see
Problem 7.20), Eq.(10.23) reduces to

™ d [* f(t)dt
T (4 = T Nia
sin am dz J, (z—1t)

Hence, the solution of the general Abel equation is

u(x)=sina7ri/z( f(t)dt . (10.24)

T dz z—t)®

10.6 Problems

10.1 Find the solution of the following integral equation by converting it to a second-order
differential equation and solving the resulting differential equation.

T
u(x)=ez—4x+/ (83— 2z + 2s)ds.
0

Hint: Use Leibniz’s formula for differentiating an integral with variable limits.
10.2 Consider the following integral equation

u(:c)=z+/0$zsu(s)ds=z+zg(z)
where g(z):/ﬁzsu(s)ds.

Find the solution of this integral equation by first finding the solution of the first-order
differential equation for g (z).

10.3 By use of the separable kernel method, solve the following integral equations.
1
(@) uz)=z+ /\/ e*e’u(s)ds
0
1
(b) u(z)=z+ /\/ (zs® +2%s) u(s)ds
0

(c) ux)= /\/1 e®e’u (s) ds.
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10.4 Solve the following integral equations.

() u(z) =z+/0$(t—:z:)u(t)dt

(b) u(@)=1 Jr/;c (t— 2)u (t) dt

2 2 2
3 1, 1 1t
P L — -_—— — t
(d) u(z) 5¢ ~ gTe 2+2/0 tu(t)



Chapter 11

Applied Functional Analysis

11.1 Introduction

Concepts of functions (of one variable) and operators were introduced into mathematics
in connection with the development of calculus during the latter part of the seventeenth
century. In general, an operator applied to a given function yields a new function. The
problem of finding an extremum (maximum or minimum) of a function is carried out in the
usual manner by use of ordinary calculus, but the general problem of finding the stationary
value (an extremum) of certain definite integrals that occur in mathematical physics is the
subject matter of the branch of mathematics called the calculus of variations.

In relation to the calculus of variations, the process of connecting (mapping) each function
y(z) in [a,b] with a number represented by the definite integral ‘

b
/ F (y7 y', LL‘) dr where y’ = d—y
a dz

which depends on y (z) was given the name functional during the end of the nineteenth
century. The basic idea of functional analysis is that problems are often easier to solve
if a function is considered to be a member of a whole space of functions, X. The space
X is assumed (a) to carry a metric, (b) to have a linear space structure, and (c) to
be infinitely dimensional. The concept of a metric involves topological and geometrical
language while linear operators on X involve concepts of linear algebra, and relations
among these concepts constitute linear functional analysis.

A function which depends on one or more functions rather than on discrete variables is
referred to as a functional. The domain of a functional is a space of admissible functions.
More precisely, functionals are continuous linear maps from a normed space into itself or
into some other normed space. The basic ingredient of the various definitions of a func-
tional and of functional analysis is the existence of a linear space with a topology. The main
topics in the previous chapters are technically topics in functional analysis even though the
topology and geometry of the linear spaces involved were not stressed. Mathematically,
a valid argument can be made that the placement of this chapter on functional analysis
is analogous to putting the cart before the horse. This argument, however, neglects the
applications of techniques approach which has been emphasized throughout the book. In
mathematical physics, functional analysis often involves discussions connected with (a) the
calculus of variations, (b) theory of ordinary and partial differential equations, (¢) integral
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equations and transform theory, (d) spectral theory involving eigenvalues, eigenfunctions,
and Fourier series expansion theory, (e) functional calculus used in the path integral formu-
lation of quantum mechanics, quantum field theory, and statistical mechanics, and (f) the
theory of distributions. In mathematics, functional analysis often involves (a) the general
theory of linear normed spaces, (b) the topological structure of linear spaces and continuous
transformations, (¢) measure spaces and general theories of integration, (d) spectral theo-
ries, (e) distribution theory, and (f) number theory. In this chapter, the original problem
of functional analysis (the calculus of variations) and applications of functional integration
to quantum mechanics, quantum field theory, and statistical mechanics will be discussed.

11.2 Stationary Values of Certain Functions and Func-
tionals

11.2.1 Maxima and Minima of Functions

For a continuous function, f(z), to have a maximum or a minimum (an extremum, sta-
tionary value) at zo, it is necessary that its first derivative vanish at zo. The necessary
conditions for a continuous function f (z,y) to have an extremum at some point (Zo, %)
are that

0 0
f((az,y) -0 and f((;”’y) =0. (11.1)
T l@y)=(zo0) Y l@y=(zow0)
This procedure can be extended to functions of several variables f (z',z2,...,z") as
follows:
of of of
1,2 _ 1 2 LYl —
df(z,z,...,x")—a—xldx +a—1:2dz +-- +axndx"—0. (11.2)
For an extremum at some point z, we require that
of of of .
= = L = =0 (i=1,2...,n). (11.3)
Ox! zi=z} Oxz? zi=gi ozn zi=z

Equation (11.3) is valid since the {z'} and hence the {dzi} are assumed to be linearly
independent.

11.2.2 Method of Lagrange’s Multipliers

In certain situations, the variables {z’} may be subject to constraints given by an equation
of the form

o(z',2?,...,2") =0. (11.4)

Because of the existence of an equation of constraints, the dz’ in Eq.(11.2) are not linearly
independent (only n — 1 are linearly independent), and the coefficients of the dz* in
Eq.(11.2) are not all equal zero. The method of Lagrange’s (undetermined) multipliers may
be used to find an extremum of f (z',z?%,...,2") subject to the equation of constraint in
Eq.(11.4). The procedure is outlined in the following two steps.
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1. Multiply the constraint condition, dy, by a parameter A that is independent of the
coordinates. (This parameter is called a Lagrange multiplier.)

Ay = ,\Z a"”d i—0 (11.5)

2. Add the result of Step 1 to the extremum condition

df + My = Z(gf o )d’: (11.6)

In Eq.(11.6), n— 1 of the dz are linearly independent and the corresponding quantities
in parenthesis are equal zero. The parameter A can be selected so the remaining term in
the parenthesis equals zero. The equations

of dp
ozt + /\Bzi

=0

and the equation of constraints, Eq.(11.4), are use to find the independent quantities {z’}
and A. The Lagrange multiplier method, however, fails if one of the partial derivatives of ¢
evaluated at the extremum point equals zero. If more than one equation of constraint exist
(e.g., in statistical mechanics), then Steps 1 and 2 should be executed for each equation of
constraint.

Example 104 A particle moves along the path ¢ (z,y) = y+z> — 1 = 0. By use of the
method of Lagrange multipliers, calculate the minimum distance of the particle from the
origin.

Solution : Here, we want to find the extremum of the distance (or square of the distance)
function f (z,y) = z2+y? subject to the equation of constraint. For this simple problem,
we could eliminate y from the two equations and find the extremum by use of elementary
calculus. We use the method of Lagrange multipliers to illustrate the procedure. We find
z,y,and A from the following equations.

o +/\ =0, of

d = ?—1=0.
e 8:15 % 8y =0, and @(z,y)=y+=z

The above equations reduce to

z=0 or
A=-1

_ y=1/2 when
2y+)\—0{ A= -1

2 y=1 when z=0
Y+ =10 22=1/2 when y=1/2.

2z+)\2m_—0{

The extremum points are (0, 1) for a maximum, and (\/1 /2,1/ 2) for a minimum.
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11.2.3 Maxima and Minima of a Certain Definite Integral

Consider the following definite integral of the functional F (y,y’,z) where F is a known
function of y,y’ (where y' = dy/dz) and =z, but y(z) is unknown

T2
J=/ F(y,y,z)dz. (11.7)
T

1

(xZ’yﬁ

/

(x1, y1)

o m—————

Figure 11.1

A fundamental problem in the calculus of variations (a problem which occurs frequently
in mathematical physics) is that of finding a function such that the functional J is
stationary (an extremum; this will be a minimum in most cases of physical interest). The
basic procedure here is to evaluate the integral for a slightly modified path

y(z,0) =y (2,0) + an(z) where n(z1)=7(z2) =0

and show that the change in the value of the integral due to the change in the path becomes
zero. The condition 7(z;) = n(z;) = 0 means that we consider only paths that pass
through the end points. The function 7 (z) is an arbitrary smooth (continuous with
continuous derivatives) function, and « is a small parameter (see Fig. 11.1). The function
y (z, ) describes neighboring paths where

Sy =y (z,0) — y(x,0) = an (z)

is the variation (hence the name calculus of variations) of y(z,0) at some z. The delta
symbol, §, was introduced by Lagrange to denote a variation (a virtual change, in the
sense of being a mathematical experiment), and it means a change is made in an arbitrary
manner. Both dy and &y denote infinitesimal changes in y(z), but dy means an
infinitesimal change in y(z) produced by dz while dy is an infinitesimal change which
produces y + dy. Operationally, we have

oF

! a_ el l
OF (y,9',2) = 6y+dy,z5
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It is straight forward to show that

d(dy) _ (dy “ “
I :6% and 5‘/“ F(y,y’,m)dav:/zl §F(y,y', ) dz.

In the integrand of Eq.(11.7), we replace y(z) and 3’ (z) with an arbitrary neighboring
path y(z,a) and ¥ (z,c) and obtain

T2
I = [ Fly@0),4 (@,0),51d (118)
1
The condition for an extremum of J (@) is that
aJ .
2al,_, = 0 for n(z) arbitrary.
The above condition may be written as
oJ .
5 o 0J =0 for dy arbitrary.

On differentiating both sides of Eq.(11.8) with respect to c, we obtain
0J (o) _ f” OF 0y OF oy
da ). \9yda  oyaal®
_ [™[oF oF ,
—/zl {6yn(z) + ay,n (z)}d:c. (11.9)

The last step in Eq.(11.9) results from the fact the a-dependence of F isin y and ¥
and that

Oy (z,0) _ oy (z,0) _
Integrating the second term in Eq.(11.9) by parts, we obtain
%2 9F Oy’ OF ™ 2 d (OF
=@ 2 - [T 2 (2) s
o Oy Oz Y., Ja dz \ oy’

_ _[2 n () % (‘;—5) da. (11.10)

1

The last step in Eq.(11.10) results from 7 (z;) =7 (z2) =0 since we consider only paths
that pass through the end points. On substituting Eq.(11.10) into Eq.(11.9), we obtain

aJ 2 (§F d (OF
_ or @ (9 dz =0.
a=0 /a,-l {By dr (3y')}n(x) v

da
Since the expression in brackets is a continuous function of z and 7(z) is an arbitrary
smooth function, the fundamental theorem of the calculus of variations states that

OF d [OF
- (=) =0. 11.11
dy dz (6y’) 0 ( )
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Equation (11.11) is known as Euler’s equation and its solution yields the y(x) that
makes J an extremum (minimum).

An alternate approach of finding the differential equation whose solution is the equation
of the extremum path between z; and z, is the direct use of the variation process as
follows.

T2
6J=6/ (y,9y', 1) dm— [—6y+—6y] dr =0.

On noting that 8y’ = ddy/dx = d (dy/dz) and integrating the second term in the above
equation by parts, we obtain

“[0F d (OF
6J=/ [— ( )]Jydx—o
o L0y oy’

Since dy is arbitrary, the above equation leads to Euler’s equation, Eq.(11.11).
For several dependent variables F (y;,yi,z) where i=1,2,...,n, we obtain

o dy; dyi

Integrating the second term in the above equation by parts leads to

2 [QF OF
6‘]_/“ [ay, iz (6 )]éy,dm—o

From the above equation, we obtain

OF d (OF .

Example 105 By use of the calculus of variations method (Euler’s equation), determine
the equation of the shortest distance between two points (z1,y1) and (z2,y2) tn Cartesian
coordinates.

Solution : The element of distance along the path between the two points is given by

ds = \/dz? + dy2.

The equation for the distance between the two points is therefore

s=/z] V1+ (¥)°dz where y'=3—z.

For F(y,y',z) =4/1+ (y')?, the differential equation whose solution yields the equation

for the shortest distance between the two points, Euler’s equation, reduces to

!
@=A since 3_F=0 and BF——L—;.
1+ (y)

dz By oy
The equation of the shortest path between the two points is therefore that of a straight
line, y (z) = Az + B.
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Example 106 The Brachistochrone Problem The brachistochrone (shortest time)
problem, first formulated and solved by Johann Bernoulli in 1696, is one of the first varia-
tional problems. The problem is as follows: (a) Consider a bead of mass which slides, under
the influence of gravity, down a frictionless wire bent into the appropriate shape. (b) The

goal is to find the equation (shape of the wire) of the path along which the bead travels so
that the time is a minimum.

(x1=0,y1=0)

(x2, y2)

Figure 11.2:

Solution : For convenience, it is assumed that the bead starts from rest at the origin of
a coordinate system (see Fig. 11.2). Since this is a conservative system, the following
relations are valid

(8 Ti+Vi=Ta+Vy; (b) Va=-mgy; (c) Ti=Vi=0;
1
d) To= iva; and (e) v=+/2gy.

The expression for the time required for the bead to travel from the origin to point (z,y)
is therefore given by

/\/dz2+dy
/y2 \/1+ ")dy ,  dz

where z = @

The unknown function y(z) must be determined such that the time is a minimum. On

applying Euler’s equation with
1/2
1+ ()’
o (1+@)
Y
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and independent variable y, one obtains

A '
ydy since 6_F =0 and oF = d

= R A A— - = -
[y — A%y? Oz oz’ y(1+ :1;’)2

On letting A = 1/+/2a and making the change of variable y = a(1 —cosf), the above
integral reduces to * = a (§ —sinf) + constant. The path that yields a minimum time of
travel is in the form of parametric equations z = a(f —sinf) and y = a (1 —cosé),
equations for a cycloid that passes through the origin.

=A

11.3 Hamilton’s Variational Principle in Mechanics

11.3.1 Introduction

Mechanics is the study of the motions (including rest) of physical objects. The laws of
classical mechanics are valid for macroscopic objects (object size of order larger than 10~°
m), and the laws of quantum mechanics are valid in the microworld (object size of order
smaller than 107! m). In this section, the focus is on the study of classical mechanics.
Widely used equivalent formulations of classical mechanics are: (a) Newtonian mechan-
ics (1687), (b) Lagrangian mechanics (1788), (c) Hamiltonian mechanics (1834), and (d)
Hamilton-Jacobi theory (1837).

Formulations of classical mechanics developed since Newtonian mechanics are generaliza-
tions and equivalent forms of Newtonian mechanics. These generalizations do not lead to
new information but offer different ways of approaching problems. Certain problems can
be solved by use of all four approaches with equal amounts of ease (or difficulty). Other
problems are more amenable to solution by use of one approach than by use of the others.
The specific nature of the problem to be solved usually dictates the approach that should
be used. Newton’s second law is the basic equation of motion in the Newtonian picture of
mechanics. In Lagrangian mechanics, Lagrange’s equations are the required set of equations
of motion for the system (particle or group of particles) under investigation. Hamilton’s
canonical equations are basic to Hamiltonian mechanics, and the Hamilton-Jacobi equation
is the foundation of the Hamilton-Jacobi theory. The approach in this Section begins with
Hamilton’s variational principle for conservative systems (where the forces acting on the
system may be derived from a potential function) from which Lagrange’s equations will
be developed by use of the variational calculus method. By use of a Legendre transforma-
tion, the Hamiltonian and subsequently Hamilton’s canonical equations are obtained. The
Hamilton-Jacobi theory will not be treated.

The variational technique used in mechanics was developed mainly by Euler and Lagrange
and is a mathematical formulation of mechanics in which kinetic energy and potential
energy play an essential role. In Newtonian mechanics, forces and other vector quantities
play the central role.

11.3.2 Generalized Coordinates

Linearly independent quantities {gz} = ¢1,g2,... ,¢» that completely define the position
(configuration) of a system as a function of time are called generalized coordinates.
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Quantities {gx} are said to be linearly independent if the sum

n
ZakQIc =0
k=1

implies that a, = 0 for all k. Generalized coordinates may be selected to match the
conditions of the problem to be solved. The number of generalized coordinates that must
be used to uniquely define the position of a system represents the number of degrees
of freedom for the system. The corresponding quantities {qz} are called generalized
velocities.

The simultaneous specification of {gx} and {¢x} for a system determines the mechanical
state of the system at that time, and subsequent motion is obtained from the solutions,
gr (t), of the appropriate equations of motion. The appropriate second-order differential
equations expressing the relations among generalized coordinates, qx, generalized velocities,
gk, and generalized accelerations, ¢y, are called equations of motion for the system under
investigation.

Although the set of generalized coordinates used to solve a problem is not unique, a proper
set of generalized coordinates is that set which leads to an equation of motion whose solution
has a straight forward physical interpretation. No general rule exists for obtaining a proper
set of generalized coordinates.

11.3.3 Lagrange’s Equations

Hamilton’s variational principle asserts that the actual motion of a particle or system of
particles (conservative system) from its initial configuration at time ¢; to its configuration
at time ¢, is such that

t2
6S=46 [ L(gx,qx)dt=0. (11.13)
t1
In Eq.(11.13), L =T —V is defined as the Lagrangian for the system under investigation,
Ldt is called the action, and

t2
S= Ldt
t1

denotes the action integral. The quantities 7 and V are kinetic and potential energy
respectively.

Among the infinite number of trajectories g (t) that connect the end points g (¢1) and
gr (t2), the physical (actual) path yields a stationary value for the action integral. The action
is therefore a functional of the functions g () satisfying the boundary conditions that
all trajectories pass through the end points. By use of the variational technique leading to
Eq.(11.12), one finds that g (t) is obtained from the following set of differential equations.

oL _d 6—{“ =0 k=1,2,...,n. (11.14)
Ogqr  dt \ Og

The equations in Eq.(11.14) are called Lagrange’s (or Euler-Lagrange) equations for
a particle or system of particles. Lagrange’s equations, the equations of motion for the
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system under investigation, are a set of second-order ordinary differential equations. The
general solutions of these equations contain 2n arbitrary constants of integration. The
values of these 2n arbitrary constants are determined when the initial state (values for the
gr and ¢, at t=0) of the system is specified.

Quantities dL/dqy and OL/dg, are defined as canonical momenta (also called conjugate
or generalized momenta) and generalized forces respectively
oL oL
P=5g M M=o

By use of the definitions in Eq.(11.15), it is observed that Lagrange’s equations may be
considered a generalized version of Newton’s second law where generalized forces equal the
rate of change of canonical momenta.

Basic conservation laws of mechanics result from invariance of the Lagrangian under (a)
time translation (homogeneous time) - conservation of energy, (b) coordinate translation
(homogeneous space) - conservation of canonical momentum and conservation of total lin-
ear (mechanical) momentum, and (c) rotation in space (isotropic space) - conservation of
angular momentum. In spite of the important role of the Lagrangian, it is not a unique
function for a system since the equations of motion for the system, Lagrange’s equations,
are unchanged if the time derivative of an arbitrary function, df (gx,?) /dt, is added to the
Lagrangian.

(11.15)

11.3.4 Format for Solving Problems by Use of Lagrange’s Equa-
tions

The following steps should be used when applying Lagrange’s equations.

1. Draw a detailed diagram. Specify the degrees of freedom and the level where potential
energy equals zero.

2. Write down the appropriate expressions for 7,V and L.

3. Write down the specific set of Lagrange’s equation(s).

4. Work out the terms in the set of equation(s) in Step 3.

5. Solve the resulting equation(s) of motion subject to the given initial conditions.

Example 107 By use Lagrangian mechanics, obtain the equation of motion for the linear
harmonic oscillator.

Solution : The linear harmonic oscillator for this Example is illustrated in Fig. 11.3. We
obtain the following quantities.

g1 =z (one degree of freedom)

T =_-mi*® (kinetic energy)

NI

V = k2’ (potential energy)

1 1
L=T-V= émzic2 - 5/63:2 (Lagrangian).

[V
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Figure 11.3

Lagrange’s equation reduces to

B_L_i a_L =0=44+w?
oz dt\az )~ TTY?
oL oL .
where %——kz and %—mz.

The equation & + w?r = 0 is the familiar equation of motion for the classical linear
harmonic oscillator; it is, of course, the same as the equation of motion obtained by use of
Newtonian mechanics (see page 177; Hooke’s law, mi = —kz).

11.4 Formulation of Hamiltonian Mechanics

It has been shown that Hamilton’s variational principle combined with techniques of the
calculus of variations transforms the process of finding the solution of a mechanical problem
to that of obtaining solutions for Lagrange’s equations. Hamilton developed a procedure
for transforming Lagrange’s equations to a canonical form by replacing them (a set of n
second-order differential equations) with a set of 2n first-order differential equations now
called Hamilton’s canonical equations of motion.

11.4.1 Derivation of Hamilton’s Canonical Equations

The Lagrangian is a function of ¢; and ¢y; now the change of variable ¢, — p, where
pr = OL/8¢; will be made. By use of a Legendre transformation (see page 75), one obtains

—H=L-) p. (11.16)
k=1

The negative sign on the left-hand side of Eq.(11.16) is by convention. The new function
H (qx,pr) contains the same geometrical and physical content as L (gx,dx) and is called
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the Hamiltonian of the system. The total differential of the Hamiltonian is given by

OH o0H
d = —dg, + —d
aqk qk apk Pk

6 n
S - + (Y peie—-L\d
qu ( Prk ) dgr . (k:l Prdk ) Dk

oL . .
= "9 ~—dgr + drdpr = —Prdgr + Grdps-
On comparing terms in the first and last steps in the above equations, we obtain

qk=— and Pk = —F«— k=12

O0H o0H
; 2. .n. 11.17
Opx, Oqr ( )

The equations in Eq.(11.17) are referred to as Hamilton’s canonical equations of motion
(or simply Hamilton’s equations). Hamilton’s equations can be used to develop the
specific set of equations of motion for the particle or system of particles under investigation
in terms of the phase space variables ¢; and p;. For a conservative system, it can be
shown that the Hamiltonian equals the total energy of the system, H =T +V.

11.4.2 Format for Solving Problems by Use of Hamilton’s Equa-
tions

In solving problems by use of Hamiltonian mechanics, the following five-step procedure is
highly recommended.

1. Write out the Lagrangian, L =T —V (see the previous Section).

2. Solve the equation p, = OL/dq; for ¢y and eliminate ¢ from the Lagrangian.
3. Construct the Hamiltonian for the system, H = ¢_, prdx — L.

4. Obtain Hamilton’s equations, ¢y = 0H/dp;, and py = —0H/0qs.

5. Solve the 2n first-order differential equations (equations of motion) developed in
Step 4.

Example 108 By use of Hamiltonian mechanics, obtain the equation of motion for the
linear harmonic oscillator (see Fig. 11.3).

Solution : In the previous Example, it was shown that the Lagrangian for the linear har-
monic oscillator is
1

1
[ = ~mi? — - ka?.
2’I'l'L.'L‘ ka

‘We now eliminate £ from the Lagrangian as follows.

oL . . P
P=FT=Mmr—>I=—.
oz m
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The Lagrangian now becomes

The Hamiltonian reduces to

n 2
. 1
H= E PG — L = —;m + 5’6.’1}2 (total energy).
k=1

Hamilton’s equations reduce to

Note that

= % =-Z or itwlz=0 (the required equation of motion).
m

11.4.3 Poisson’s Brackets

The total time derivative of an arbitrary function f (qx,px) is

Z (5 K —pk)
-y (QB_H _ ﬁa_H) = {f,H} (11.18)
k=1

Oqr, Opr  Opy, Ogx

Hamilton’s equations were used in obtaining Eq.(11.18). The quantity on the right-hand
side of Eq.(11.18) is called Poisson brackets. In general, the Poisson brackets of two
functions f(qk,px) and g(gx,px) is defined as

of 8g _ Of 9
U0 =3 (o o)
ax Opr  Opx Ogx
Hamilton’s canonical equations in terms of Poisson’s brackets are given by

o0H oH
o= O e = — " = {p. HY. 11.19
=5 {a,H} and o {px, H} ( )

Two variables ¢ and ¢; are said to be canonically conjugate if
(6.6 =1{vi,0;} =0 and {& p;} = by (11.20)

In the last equation in Eq.(11.20), 4;; is the Kronecker delta function. The quantities ¢
and p; are canonically conjugate variables since {g;,¢;} = {pi,p;} =0 and {g,p;} = é;;;
these three Poisson brackets are referred to as fundamental Poisson brackets.
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11.5 Continuous Media and Fields

Thus far, only conservative systems composed of discrete particles have been considered.
The Lagrangian of a system composed of N free particles may be written as

N

L=""Li(q,d)-

=1

The extension of the above analysis to a system with an infinite number of degrees of
freedom (a continuous medium) is achieved by

1. replacing the subscript k£ with a continuous variable (say x, meaning z,y,2);
2. replacing ¢, with a new function ¢ — Q (x,¢);

3. replacing the sum with an integral }°;, — [ d®z; and

4. replacing canonical momenta with canonical momentum density given by

7 (x) = OL/OQ where L is the Lagrangian density. The quantity @ (x,t) is called
a field. To denote several fields, the notation Qa (x,t) may be used. The parameter o
distinguishes among the different fields. In this context, a field is a set of functions of space-
time, and these functions satisfy a set of partial differential equations. The corresponding
Hamilton’s variational principle is

0= 6 Z L (qky qk
[
~ / [@a (x,0),Qu (x,0)] d'z. (11.21)
physncal

Assuming that fields interact only with infinitesimal neighbors, the Lagrangian density
should be a function of Q4 (x,t), Qa (x,t), and 8Q, (x,t)/dz; in four-vector notation,
we may write these functions as Q4 (z*) and 9,Q« where p = 0,1,2,3. By use of
appropriate boundary conditions, the variation in Eq.(11.21) leads to the following set of
equations of motion

oc oL
= ] =0 =0,1,2,3. 11.22
6Qa # (6 (aﬂQa)) # ( )

The equations in Eq.(11.22) are the Lagrange’s equations for classical fields.

11.6 Transitions to Quantum Mechanics

11.6.1 Introduction

The laws of classical mechanics are not in general valid for the microworld, and new laws
(quantum theory) that are appropriate for the microworld were developed during the period



11.6. TRANSITIONS TO QUANTUM MECHANICS 289

1900-1927. In this Section, the transition from classical mechanics to quantum mechanics
(a) in the Heisenberg picture, (b) in the Schrédinger picture, and (c) by use of the action
functional (path integral) approach due to Dirac and Feynman will be made. For conve-
nience of notations, the discussion is restricted to the case of one non-relativistic particle.
The starting point in both the Heisenberg and Schridinger pictures is Hamiltonian me-
chanics while the Feynman approach (Dirac-Feynman approach) begins with Lagrangian
mechanics.

The postulates of quantum mechanics may be stated as follows.

1. Each state of a physical system corresponds to a normalized vector in Hilbert space
called the state vector, ¥ or |¥).

2. Physical quantities are represented by linear Hermitian operators in Hilbert space.

3. If a system is in a state |), then the probability that a measurement (consistent with
quantum the:ory) of the quantity corresponding to A will yield one of the eigenvalues
ax (where A |¥) = q;|¥)) is given by |(a |¥)|>. The system will change from state
|T) to |ax) as a result of the measurement. The quantity (ax |[¥) is the amplitude.

11.6.2 The Heisenberg Picture
In the Heisenberg! approach, a system is quantized by

1. letting qx and p; be Hermitian operators in a Hilbert space such that gx — §x (in
quantum theory, § normally as qi) and pp — —ihd/0q; and

2. replacing Poisson brackets with commutators, {4, B} — [A, B]/ifi where [A,B|=
AB — BA; in the commutator, A and B are understood to be operators. If
[f,9] = if, the operators f and g are said to be canonically conjugate. The
resulting Heisenberg equations of motion for a quantum mechanical system are

ihpr = [pr, H)  and  ihge = [gx, H]. (11.23)
The equations in Eq.(11.23) are basic for Heisenberg matrix mechanics.

11.6.3 The Schrodinger Picture

From a classical mechanical point of view, the Hamiltonian of a particle subject to conser-
vative forces equals the total energy of the particle, and one may write

2
H=E=2 4 V(z,y, 2). (11.24)
2m

The transition to quantum mechanics is the Schrédinger picture is achieved by use of the
following replacements:

Werner Karl Heisenberg (1901-1976), German physicist who is known for his invention of matrix
mechanics (the first version of quantum mechanics) and for the discovery of the uncertainty principle. He
was awarded the 1932 Nobel Prize in physics for his work on matrix mechanics.
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1. E — ihd/8t and

2. p— ikV.

By use of these replacements, Eq.(11.24) is transformed into an operator equation. Oper-
ating on some function ¥ (z,y,z,t) or |¥) in Hilbert space yields
ov h? a|)
i = —— V20 + VT ih——— = H|T). 11.25
Mot T Tamy T o M %) (11.29)
Schrédinger’s wave equation, Eq.(11.25), is the basic equation of motion of a particle in
quantum mechanics in the Schrédinger picture.

11.6.4 The Feynman Path Integral

The special case of one particle with one degree of freedom is consider here to simplify the
notation and make the explanations clear. Feynman’s? formulation of quantum mechanics
was stimulated by some work of Dirac (1933) and is based on the following two postulates:

1. The amplitude (g(¢") |g(t')) for a particle to be found at ¢ (") at time ¢" if its
initial positionis ¢ (#') attime ¢’ equals a sum of complex contributions (amplitudes)
for each space-time path starting at ¢(¢') and ending at ¢ (2").

2. All paths connecting ¢(¢') and ¢(t") contribute equally in magnitude, but the
phase (weight) of their contribution is exp (iS/f) where S is the classical action
integral for the corresponding paths.

The measure on the functional space of paths is ¢ (t) denoted by D [g(t)], and appropriate
normalization factors for the amplitude are contained in D [q (t)]. Feynman’s interpretation
of the indicated functional integration is as follows:

1. Divide the time interval ¢"—¢' into N equal parts, each with duration € = tx,; —t.

2. In the limit N — oo, it is assumed that the sequence of points g (ty),...,q (t)
approximates the path ¢ (%).

The action functional associated with the classical path joining ¢ (£;) = ¢z and ¢ (tx1) =
Qr41 18

te+1
S [qk+17 qk] = / L (q7Q) dt

tr

2Richard Feynman (1918-1988), USA physicist who is known for his development of a new approach to
quantum mechanics using the principle of least action. In his approach to quantum mechanics, the wave
model was replaced with a model based on particle interactions mapped into space-time; in this latter
context, he introduced diagrams (now called Feynman diagrams) that are graphic analogs of mathematical
expressions needed to describe the behavior of systems of interacting particles. He shared the 1965 Nobel
Prize in physics with Schwinger and Tomonoga.
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Feynman’s postulates thus assert that the amplitude (q(¢") |¢(#')) is a sum of all am-
plitudes for all paths connecting ¢ (t") and g¢(#'), and it may be written as (see Fig.
11.4)

@®)lo@) = tig [ [ iloexp (55 @]

- / / exp [% /t ! L(g, q)dt} Dig(t)]. (11.26)

The normalization factors Aj in Eq.(11.26) are independent of the path from ¢ to gei1
but depend on the mass of the particle and on the time interval e. Equation (11.26) is a
mathematical statement that the amplitude for a particle at ¢ (¢') at time ¢ to move
to ¢ (t") at time t" equals the sum of all possible paths between the two points times
exp (¢S/h); the corresponding probability is the absolute square of the amplitude.

The path integral approach to quantum mechanics can be extended to include formulations
of (a) quantum field theory (a combination of quantum mechanics and special relativity), (b)
the partition function in statistical mechanics, and (c) systems obeying Bose-Einstein and
Fermi-Dirac statistics. The path integral method is the foundation for Feynman diagrams.

11.7 Problems

11.1 In Example 103, use f(z,y) =z*>+y? and ¢(z,y) =y+22—1=0 to eliminate
y and find points where f(z) has an extremum by use of elementary calculus.

11.2 A particle is constrained to move along the path ¢ (z,y) = z2 —y? — 1 = 0. By use of
the Lagrange multiplier method, find the shortest distance from the origin to this particle.
11.3 Show that Euler’s equations

oF d (6F



292 CHAPTER 11. APPLIED FUNCTIONAL ANALYSIS

can be written in the following two forms:

oF d( ,OF

(Form 2) % - E - yia—y:

) =0 where F= F(yi,y,",w)
oF
(Form3) F— y'a—y = constant  where F = F(y,y).

11.4 Consider
J (@) =/ Fly(z,0),y (z,a),z]dz.
z1

Derive Euler’s equation by expanding the integrand in a Taylor series in two variables about
o and setting o =0.

11.5 Prove that the path of shortest distance between two points (ry,6:) and (rs,6:) is a
straight line. (Work in polar coordinates.)

11.6 The kinetic energy of a particle of mass m in Cartesian coordinates is given by

T = m(2%+9*+2%) /2. Show that this kinetic energy is (a) T = m (i2+r292) /2
in plane polar coordinates, (b) T = m (;')2 + @2 +éz) /2 in right circular cylindrical

coordinates, and (¢c) T =m (r'z + 1202 + r2¢? sin 0) in spherical polar coordinates.
11.7 Show that (Euler’s theorem)

n

Z ‘Iig_T =2T  (Euler’s theorem).
" qi
i=1

11.8 For conservative systems, show that the Hamiltonian reduces to the total energy of
the system, H =T + V.

11.9 Develop the equation of motion of a simple pendulum by use of (a) Newtonian me-
chanics, (b) Lagrangian mechanics, and (c) Hamiltonian mechanics.

11.10 Given functions f,g,h, and constant c, show that

(a) {f,.9}=-{9,f} (b) {fic}=0
() {f+g.h}={f,h}+{g,h} (d) {f,g+h}={f.g}+{f A}
() {fg,h}=rF{g,h}+{f,h}g (Leibniz identity)
() {f,{9,h}} +{h,{f,9}} +{9,{h,f}} =0  (Jacobi identity).
11.11 Show that
@ (fod=—gl ad () {hnd= g

11.12 By use of the direct application of d on the phase space variables, show that

to n
§ > gpi—H|dt=0
t i=1

leads to Hamilton’s canonical equations.
11.13 For L' = L + df/dt, show that Hamilton’s variational principle yields the same
equation of motion for L and L'.



Chapter 12

Geometrical Methods in Physics

12.1 Introduction

A review of the Section on topological spaces (see page 76) may be useful for this chapter.
Here we consider the manifold point of view of geometry by use of concepts of differential
geometry. Differential geometry is the branch of mathematics in which differential and
integral calculus are applied to geometry. Problems in differential geometry are classified
as local and global. The derivative of a function is viewed as the tangent line or slope of a
curve, and the integral of a function is interpreted as the area under a curve. The tangent
space at a point and curvature are local problems. The validity of certain local properties
may impose restrictions on the manifold (space) as a whole, and the determination of these
restrictions is a global problem. Topology (more specifically, differential topology) is the
main tool for the study of global properties of manifolds. In general, differential geometry
is the study of a class of spaces called manifolds, defined below.

A set of points is a differentiable manifold if the following properties are valid.

1. M is a topological space;
2. M is provided with a family of pairs {(Mg,dq)};

3. M, are a family of open sets with cover M,U,M, = M; The ¢, are homeomor-
phisms from M, to an open subset of O, of R*, M, : M, — O,.

4. Given M, and Mj; such that M, N Mg # §; the composite map ¢go ¢3! from
the subset ¢q (Ma N Mg) of R" to the subset ¢g(MyN Mg) of R™ is infinitely
differentiable, C™.

The family {(Ma,¢o)} satisfying properties 2, 3, and 4 is called an atlas and the in-
dividual members (M,,d,) are called charts (see Figs.12.1 and 12.2). Properties 1, 2,
and 3 mean M that is a space which is locally Euclidean. Property 4 asserts that when
two patches overlap, the overlap region M, N Ms has two sets of coordinates in R",
g, 7%, .. 2" = {z'} for ¢, (MaN M) and 7',72%,...,7" = {z'} for ¢5(MsN Mp)
respectively. Also, it asserts that the change from one set of coordinates to the other is
done in C* manner. We may therefore write z' = ¢* ({z'}) . These local coordinates have

Analytic Methodss in Physics. Charlie Harper
Copyright © 1999 WILEY-VCH Verlag Berlin GmbH, Berlin
ISBN: 3-527-40216-0
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M R
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Figure 12.1

no geometrical meaning, and the mathematical tool for the study of manifolds must be fur-
nished by concepts (objects) that behave in a simple manner under a change of coordinates;
tensors (tensor fields) are the most important of these concepts.

In developing differential geometry, Gauss, Riemann, and Christoffel' introduced the con-
cept of a tensor. The subject of tensor analysis (absolute differential calculus) was intro-
duced and developed by Ricci? and his student Levi-Civita. Tensor analysis is a technique
for making calculations with indexed quantities, introduced by Ricci. Einstein3 introduced
the term ”tensor” and made extensive use of tensor calculus in his 1916 formulation of
the general theory of relativity. A tensor consists of a set of quantities called components
whose properties are independent of the coordinate system used to describe them. The
components of a tensor in two different coordinate systems are related by the characteristic
transformation laws discussed below.

12.2 Transformation of Coordinates in Linear Spaces

In equation form, we may write the relation between the two coordinate systems mentioned
in the previous Section as

=¢(z"2%...,2"); 1=12...,n (12.1)

The ¢° are assumed to be single-valued real functions of the coordinates and possess con-
tinuous partial derivatives. These assumptions are characteristic properties of differentiable

'Elwin Bruno Christoffel (1829-1900), German mathematician noted for his work in mathematical
analysis and tensor calculus.

2Georgorio Ricci-Curbastro (1853-1925), Italian mathematician and scientist who invented absolute
differential calculus (i.e., tensor calculus).

3 Albert Einstein (1879-1955), German physicist who contributed more than any other scientist to the
modern view of physical reality. He is best known for his theories of special and general relativity. He was
awarded the Nobel Prize for physics in 1921 for his theory of the photoelectric effect.
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Figure 12.2

manifolds. The total differential of Z' may be written as

PR L L
dz* =) 57 107 = 5o (12.2)

The Einstein summation convention (when the same index appears once as a super-
script and once as a subscript, it is understood that a summation is to occur on that index)
is used in the last step of Eq.(12.2). Note that the j index in the denominator of Eq.(12.2)
is considered to be a subscript; in addition, the index ; is called a dummy index since
the letter used for such an index in immaterial. To avoid confusion in notations, an index
must not appear more than twice in any single term or product. Equation (12.2) will serve
as the foundation for the characteristic transformation law for the components of tensors.
On considering Eq.(12.2) in the matrix form X = AX, the solution has the form X =
A7'X where A~! = A°T/det|A|. Hence, the inverse transformation exists if

ozt .. ozt
il | at T 0"
d0tn .. 01"
Era oz

The determinant in Eq.(12.3) is called the Jacobian of the transformation.

Example 109 Find the Jacobian of the transformation for a rotation in two dimensions
(see Section 2.2.5).
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Solution : In this case, we have

' =1'cos@+ 2%sin@ and 7° = —z'sinf + z%cosh.

YN/ cos@ sind z!
2 ) 7\ —sin@ cosf 22 |-

Here, the Jacobian is the determinant of the rotation matrix and is given by

In matrix form, we write

8 8

. ozt ozt
det or'| | 8z 827 _ | cosf sinf | _
oz’ | | oz 9% —sinf cosé
dz' 0z?

12.3 Contravariant and Covariant Tensors

The characteristic transformation laws for tensors will now be discussed. In 1889, Ricci in-
troduced the use of superscripts and subscripts to distinguish between the contravariant and
covariant tensors; also, these indices make the mathematical development of tensor analy-
sis compact. The superscripts, contravariant indices, are used to denote the contravariant
components of a tensor, T, The subscripts, covariant indices, are used to represent the
covariant components of a tensor, T;;. . The components of a mixed tensor are specified by
indicating both subscripts and superscripts, T;7... . Throughout this chapter, this notation
(letters and indices) will be used to denote the components of a tensor or the tensor itself.
The rank (order or degree) of a tensor is the number (without counting an index which
appears once as a subscript and once as a superscript) of indices in the symbol representing

a tensor (or the components of a tensor). For example,

A is a tensor of rank zero (scalar)

B* s a contravariant tensor of rank one (vector)

Ci  is a covariant tensor of rank one (vector)

D;; is a covariant tensor of rank two

T,); is a mixed tensor of rank three.
The components of tensors of ranks less than three can be put into matrix form. In an
n-dimensional space, the number of components of a tensor of rank r is n". For example,
G, has sixteen components in a four-dimensional space, 42 = 16.

12.3.1 Tensors of Rank One

A set of quantities A® associated with a point P having coordinates z¢ is said to be the
components of a contravariant tensor of rank one (a vector) if they transform (z* — z*)
according to Eq.(2.2); for example, the components A’ (z7) and A’ (z') are connected by

At

_ oz o

=25 (12.4)
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To obtain the inverse transformation in Eq.(12.4), multiply both sides by dz*/8z' and
sum over i; we obtain

Oz . Oz* 9z’

A= AT = §F AT = AF
e awar 0 o
N -
Al = —A .
pau (12.5)
The Kronecker delta function is given by
ko 1 for ] =k
% = { 0 for j#k. (12.6)

A shortcut for obtaining Eq.(12.5) from Eq.(12.4) is to remove the bars from originally
barred symbols and place bars on originally unbarred symbols.

If A* are the components of an arbitrary tensor, then the quantities B; are the components
of a covariant tensor of rank provided the following condition holds.

AFB;  is invariant (i.e., a scalar)
A*B, = A*B,. (12.7)

If AF from Eq.(12.5) is substituted into Eq.(12.7), the result is

ok . Oz

AFBy = ——A'By = — A*B
Ko TR T e e
or
— | 5 oz®
k =
Since components A* are arbitrary, the above equation leads to
- O0z®
Bk = ﬁBa' (128)

Equation (12.8) is the basic transformation law for the components of a covariant tensor of
rank one.
In matrix form, we write

a*
Ak=(au“‘) and AkZ( 11)
Note that Aj is the adjoint of A*.

12.3.2 Higher-Rank Tensors

If the n? quantities A** transform according to

= A" (12.9)
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then A*® are the components of a second-rank contravariant tensor. If the n? quantities
Ago transform according to

- Oz¥ Oz
= 357 97 ko (12.10)
then the A, are the components of a second-rank covariant tensor., Similarly,
. 0% 0z
- Ak
Ay = oo A (12.11)
means that AF are the components of a second-rank mixed tensor.
For a general tensor of rank s+ p with n®*? components, we have
Jow 2 0T 0T Do 02 oy (12.12)
» 9zhr Qg 9T Oz P

Equation (12.12) is referred to as the characteristic transformation law for the components
of tensors. Note that by use of the transformation law we find that: If all the components
of a tensor are zero in one coordinate system, they are zero in all coordinate systems. This
property is extremely important when discussing physical quantities.

12.3.3 Symmetric and Antisymmetric Tensors

Tensors A¥, and B are said to be symmetric and antisymmetric (skew symmetric),
respectively, in the indices r and s if

AF = AF or A=A  (symmetric)

B =—-Bf or By*=—-B{" (antisymmetric) (12.13)

The definition of symmetric and antisymmetric tensors can of course be extended, in a
straight forward manner, to higher rank tensors. By use of the characteristic transformation
law in Eq.(12.12), we find that the symmetric (or antisymmetric) property is conserved
under a transformation of coordinates. From a given tensor, one can construct a symmetric
and an antisymmetric tensor in any pair of subscripts or any pair of superscripts; for
example consider the tensor Cp; with symmetric Sg; and antisymmetric Ag; tensors
given by

1
Ski =g (Ckj +Cix) and  Ag; = 5 (Crj — Ci) -

N =

A tensor, for example Cyj, can be written as a sum of constructed symmetric and anti-
symmetric parts as follows:

1 1
Cki = 5 (Crj + Cit) + 5 (Chs = Ciik) -
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12.3.4 Polar and Axial Vectors

In Chapter 1, the components of vectors referred to the projections of vectors on the three
coordinate axes in a right-hand Cartesian system. For clarity, we will call such components
ordinary components of vectors. By contrast, contravariant and covariant components of
vectors as developed in this chapter are not restricted to a specific coordinate system. It is
shown below Eq.(12.26) that components of contravariant and covariant vectors are identical
in Cartesian coordinates. In general, vectors whose components transform according to the
following equations are called polar (true or proper) vectors.

. 0T . S v
et o A=

Polar vectors are used to represent quantities such as displacements and forces.
In Cartesian coordinates, the cross product written in terms of components is

T=AXB=}ﬂj=AiBj—A]'B,'=—Tji.

We see that the components of a cross product of two polar vectors transform like the
components of a second-rank antisymmetric tensor. Vectors like T are called axial
vectors (or pseudovectors) and are used to represent rotational quantities such as angular
momentum and torque (moment of a force). Geometrically, axial vectors correspond to
areas.

12.4 Tensor Algebra

12.4.1 Addition (Subtraction)

As is clear from the characteristic transformation law in Eq.(12.12), two tensors of the same
type (each having the same number of covariant and the same number of contravariant
indices) can be added (or subtracted) to produce a single tensor. In equation form, we
write

Ctlmt’ :An...t., +B?1'-'t5 (12.14)

iy-ip iy -erip i1 eip

k _ Ak 1 BF
For example, Cf = A% + Bf.

12.4.2 Multiplication (Outer Product)
The outer (tensor) product of two tensors with components Af;f.'ff; and B;'-ifff;:’r‘n is
defined by

Ctlmt! il...i.,, — At.l-"f,B‘i.l“'in (1215)

i1dp G1dm i1eeip D1 m ”

For example, C} = A% Bi.
The division of a tensor of rank greater than zero by another tensor of rank greater than

zero is not uniquely defined.
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12.4.3 Contraction

The operation of contraction is the process by which the number of covariant and con-
travariant indices of a mixed tensor is reduced by one; that is to say, a contravariant index
is equated to a covariant index (thus a summation over the index results). For example,
consider the contraction of a mixed tensor with components AY

kmn>

i _ i
Bkn - Akin‘

(12.16)
In Eq.(12.16), the components BJ, are obtained from the components A} by contracting
the indices ¢ and m (¢ = m); by use of the Einstein summation convention, a summation
on i is then understood. In general, the contraction operation enables a tensor of rank
r — 2 to be obtained from a mixed tensor of rank r. Any index of the contravariant set
and any index of the covariant set may be used to form the components of the new tensor.

12.4.4 Inner Product

Inner multiplication is the process of combining outer multiplication and contraction; the
resulting tensor is called the inner product of the two tensors involved. For example, the
inner product of A% and BE_, is

AYBE = CUk =DI . (for k=3s). (12.17)

k
mn

12.4.5 The Quotient Law

The quotient law is a simple indirect test for determining if a set of quantities forms the
components of a tensor. The direct test is, of course, to determine if the set of quantities
satisfies the characteristic transformation law in Eq.(12.12).

Quotient Law If the product (outer or inner) of a set of quantities A;-i',::;‘; with the

components of an arbitrary tensor B;*l'l'.'_"_’;nq ytelds a nonzero tensor, then the gquantities
A;‘l'_','_g; are the components of a tensor. To illustrate the quotient law, consider the specific
inner product of an arbitrary tensor with components B; and quantities A¥* that yield

a nonzero tensor C¥; in equation form, we write
C* = A*B,. (12.18)

According to the quotient law, A®* are the components of a tensor since the B; are the
components of an arbitrary tensor and C* are the components of a nonzero tensor. In the
7' coordinate system, Eq.(12.18) becomes

CF = A*B;. (12.19)

By use of the transformation law for contravariant and for covariant tensors of rank one
(see Egs. 12.5 and 12.8), Eq.(12.18) becomes

=k o
% i - 449 p

— -B,. 12.2
Oz’ ozt ¢ (12.20)
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On substituting Eq.(12.18) into Eq.(12.20), we obtain

03" yoip, = A®
Oxi “

ozr”
327 Ba- (12.21)

Since B, is an arbitrary tensor, we obtain the following from Eq.(12.21).

Atk — a_j"igjjAaj‘

e (12.22)

We see that the components A* are the components tensor since Eq.(12.22) is the basic
transformation for a second-rank contravariant tensor.
For an arbitrary nonzero tensor with components A;, we may form the inner product

Aj =G A (12.23)

In Eq.(12.23), 6% =8z'/8z’. In terms of the Z' coordinates, we write Eq.(12.23) as

71 k k
5= (3”’ A) % 4. (12.24)

=557 \o5 ) = o

Equation (12.24) is just the fundamental transformation law for a covariant tensor of rank
one, and it demonstrates that A; are the components of a tensor. By use of the quotient
law, (5;- are the components of a second rank mixed tensor. Moreover, it can be shown
that 4} = ¢; which means that the components of 6;'» have the same value in all coordinate
systems.

12.5 The Line Element

12.5.1 The Fundamental Metric Tensor

The generalized form of the square of the invariant distance ds® (a scalar, tensor of rank
zero) between two points with coordinates z' and z'+ dz' as defined by Riemann is
given by the following quadratic differential form:

ds® = g;;dz'da’. (12.25)

By use of the quotient law, g;; are the components of the tensor since ds and dz'
are tensors; g;; are called the components of the fundamental metric tensor (or metric
tensor). In Eq.(12.25), it is assumed that (a) the g;; = g;; (z¥) are functions of the z*, (b)
gij = g5 (symmetric), and (c) det |g;;| # 0. In this case, the space is called a Riemannian
space and the quadratic form g;;dz’dz? is called the metric. If rectangular Cartesian
coordinates are introduced in a Euclidean space, we have g;; = d;;, and the square of the
element of length reduces to the familiar form

ds? = (dz')” + (da?)” + (dz*)”.
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12.5.2 Associate Tensors

The tensor associate to A7 is the result of the inner product of A’ and the fundamental
metric tensor; in equation form, we write

Ay =g A (12.26)

The process in Eq.(12.26) is called lowering the superscript, and A; is the tensor associate
to A7. For Cartesian coordinates in Euclidean space, ¢;; = d;; and the contravariant
components of a tensor of rank one (vector) are identical to the covariant components as
can be seen from Eq.(12.26).

Treating the components in Eq.(12.26) as matrices and solving for A7, we obtain

Al =gl A, (12.27)
In Eq.(12.27), the components ¢/ are defined by
\CT

P (12.28)
det |g;;]

The right-hand side of Eq.(12.28) is the inverse of the matrix g¢; where (g;;)°” (means
the cofactor transpose of the matrix g¢;;. On applying the quotient law in Eq.(12.27), we
determine that ¢ is a tensor (the inverse of g;;); it is called the reciprocal tensor to
9ij- The process in Eq.(12.27) is known as raising the subscript. The process of lowering or
raising indices may be performed on tensors of ranks higher than one. For example,

ATk = g Ak (12.29)

Tpmn pmn*

The dot notation is introduced to indicate which index has been lowered (or raised).

12.6 Tensor Calculus

12.6.1 Introduction

Consider the invariant (a scalar) ¢ (') = ¢ (z%); on differentiating both sides of this
equation with respect to Z', we obtain

0 _ 027 8¢

Azt~ 8T 017
Note that Eq.(12.30) is the transformation equation for the components of a covariant
tensor of rank one, 8¢/0z7. We have, therefore, generated a tensor of rank one from a
tensor of rank zero, ¢, by use of ordinary differentiation. If we try to extend this process
to obtain a tensor of rank two by differentiating a tensor of rank one

(12.30)

we find that
0Ai  9af 0zmOAm O
9~ 957 o o | gmaw (12:31)



12.6. TENSOR CALCULUS 303

The right-hand side of Eq.(12.31) is not a tensor because of the presence of the second
term. Hence, the ordinary derivative of a tensor of rank one results in a quantity that is
not a tensor.

The plan now is to develop a scheme for a new kind of derivative, the covariant derivative,
which enables us to always obtain a tensor when we differentiate a tensor of any rank. Since
covariant derivatives make use of the two Christoffel symbols, we begin with the definitions
and a discussion of these two Christoffel symbols.

12.6.2 Christoffel Symbols
The Christoffel symbols of the first and second kinds are defined, respectively, by

. _ 1 (0gx  Ogix 0Ogi
[¢7, k] = 2 (6:1:-7' t B T Bk (12.32)

and
v} =9"1lis k). (12.33)

In the two Christoffel symbols, ¢, 7, and k& are subscripts and p is a superscript. The
summation convention is implied in Eq.(12.33) for the Christoffel symbol of the second
kind. The symbol l"fj is often used for the Christoffel symbol of the second kind; it,
however, is important of note that the Christoffel symbol of the second kind is not always
a tensor as suggested by the notation, I'};.

By use of the definition in Eq.(12.32), we note that the Christoffel symbol of the first kind
is symmetric respect to the 7 and j indices. Hence we may write

i, K] = Lji, k).

The symbol [ij, k] will be used to represent the Christoffel symbol of the first kind in
terms of Z* coordinates; we obtain

o' 027 dz* ozt 0%z
lom: ] = 525 dam g 19 H1 ¥ 5gm B0

Equation (12.34) shows that [ij, k] transforms like a tensor only if the second term vanishes;
when the second term in Eq.(12.34) vanishes, the transformation is said to be affine.

By use of the definition in Eq.(12.33), it is clear that the Christoffel symbol of the second
kind is symmetric in the ¢ and j indices, and we may write

ar=1{
By use of the inner product, we may write
o {5} = 9pm™ [i5, k] = &, [i5, k] = i, m].

The Christoffel symbol of the second kind in terms of the Z* coordinates may be written
as

Py _ 0o o ) 08 o
pmt = gan gzr gzm I T 9zi 9zrOT™

(12.35)
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Note that the Christoffel symbol of the second kind is not, in general, a tensor because of
the presence of the second term on the right-hand side of Eq.(12.35). Inner multiplication
of Eq.(12.35) with 9z" /0877 yields

d%xr  Oz" Oz 927

07P0T™ _ 979 P"‘} {u} ozP O™ (12.36)

Equation (12.36) is an extremely useful relation for the second partial derivative of z" in
terms of the first derivative and the Christoffel symbol of the second kind.

12.6.3 Covariant Differentiation of Tensors

Returning to Eq.(12.31) and substituting Eq.(12.36) for the second term on the right-hand
side of Eq.(12.31), we obtain

o4’ k aA B! z™

To obtain Eq.(12.37), the fundamental transformation equation for tensors was used. Equa-
tion (12.37) is normally written in the following compact form.

. 927 0T™
J - - = n
Al = 25" 5P AT (12.38)
Equation (12.38) is just the characteristic transformation equation for the second-rank
mixed tensor which is referred to as the covariant derivative of A’ with respect to z?;
it is given by
. HAT . .
A=+ {4 (12.39)
By use of a similar procedure, we find that the covariant derivative of B; with respect to
zP is given by

0z 0zF _
5,0 = %5{1;._!’ ik: (1240)
To obtain Eq.(12.40), we use the notation
Bjp = 81:1‘ {]p} B;. (12.41)

The above relations for the covariant derivatives of a tensor may be extended in a natural

way to the case of a general mixed tensor Tz’; ,”, we obtain

J1°-Js
T.71 Js -ty { Jl Js _{ Jl gs o _ ... _la T_jl---js
i1--ip,k o™ i1k qlz ip i2k uqza “ip ip i1q

+{ }Trm gy 2 }Tmts ds 4. i }TJl q (2.42)

11 l, 1-lp 11 I,
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The covariant derivative of a tensor of rank zero (a scalar) is defined to be the same as the
ordinary derivative; that is to say,

_ 04
7 Qad
We have discussed (a) basic tensor notations; (b) the fundamental transformation equation

for the components of tensors; and (c) the algebra and calculus of tensors. These concepts
will now be used in some examples.

Example 110 By use of the electromagnetic field tensor F,,, develop the tensor form of
Mazwell’s equations.

Solution : Maxwell’s equation in differential form are

1. V-:E=p (Gauss’slaw) 2. V-B=0 (no free magnetic poles)
3. VxE=-98 (Faradayslaw) 4 VxB=9E+J (Ampere’slaw)

We have set ¢ =€y = g =1 throughout this Example.
The components of the four-vectors (four-dimensional orthogonal coordinate system Minkowski?
space) for position, current density, and vector potential are

T’ = (zo,wl,zz,xs) = (t,z,y,2)
Jr= (pa Ji, Ja, ']3) = (P, Jz Jya Jz)
AM = (AozAla A27A3) = (A():AzyAyyAz) .

Also, note that

(In this Example, the range of Greek indices is 0, 1, 2, 3 and the range for Latin indices is
1,2, 3)
The electromagnetic field tensor is an antisymmetric tensor and is defined by

_0A, 04,
W dge Bz
=94 -84, (kv=0,123).

In terms of the components of the electric and magnetic fields, the electromagnetic field
tensor reduces to

0 -E, —-E, —E,
E, 0 B, -B
E, -B, 0 B,
E. B, —-B, 0

F, =

“Hermann Minkowski (1864-1909), Russian-born German mathematician who developed a new view of
space and time that provided the mathematical foundation for the theory of relativity.
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Consider the following equation involving the electromagnetic field tensor (which is valid
for an arbitrary antisymmetric tensor)

BFaﬁ O0Fy, + 0F,,
O+ 3 azﬂ
Since F),, isan antisymmetric tensor, it can be shown that only four independent equations

result from the sixty-four possible equation that are indicated by the above tensor equation.
Typical values for, o, 8, and p are

=0 (of,p=0,1,23).

Set 1: 1,2,3; Set 2: 0,2,3; Set 8: 0,3,1;, and Set 4:0,1,2.

The resulting equation for Set 1 is Maxwell’s second equation, V-B = 0. On combining the
results for Sets 2, 3, and 4, one obtains Maxwell’s third equation, V x E+ 9B/t = 0. The
remaining two Maxwell’s equations may be obtained from the following tensor equation:

* 8F,,
prd oz

=J,.

12.7 The Equation of the Geodesic Line

In three-dimensional Euclidean space, a straight line is the shortest distance between two
points (see the Example on page 280). In this section, we generalize this fundamental
concept to Riemannian space.

If the curve z' = z* (u) joins two fixed points P (u;) and Pz (uz), then the distance
along this curve between the two points is given by

s=/ ds—/ zzu]/Qdu

dz* dz’? L do
where F'= g;;— T du and i'= e
The solution of Euler’s equation yields the shortest distance between P, and Ps, geodesic;
Euler’s equation for this case becomes

OF? 4 (6F1/2>

ozt du \ O
_a (1 oFy 1 OF
T du \ F172 95t 2F1/2 §zi

_d( 1 \OF 1 d (0F 1 OF
“w\F2)ox T rrw\s5) " FRos

d (OF\ OF 1 OFdF
ot Ozt  2F Oii du’

(12.43)

If u equals the distance s along the curve in question, then dF/ds = 0 since it is an
arbitrary parameter. In this case, we have
. dT dz'dz?  OF OF i%,,ag,,,,

= — F = _— = .
Y= %ids ds’ 0% = 2g;4%; and Ori Oz
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Equation (12.43) now becomes

: (a—F) _OF _ dQ95%) ;000w
ozt ozt ds ozt
F2) | gyt i1 0g dor

=959 T Bk ds ds 2 8r' ds ds

By use of the Christoffel symbol of the first kind, we may write the above equation in the
form

T ds

2z’
o

j do” de”

ds ds’
ds ds’
Inner product with respect to « in Eq.(12.44) leads to

0=gi

o Ext )
=997 + 9" [, ] (12.44)

d’z*  ,  dz*dz”
——=0. 12.4
ds? * {“" ds ds 0 (12:45)

Equation (12.45) is the differential equation of the geodesic line in Riemannian space.

Example 111 Find the equation of the geodesic line for a three-dimensional Cartesian
coordinate system.

Solution : For Cartesian coordinate in a three-dimensional Euclidean space, we have

|1 for p=v e 1 _ _
gu,,—{ 0 for p#v, {u,,}—O for pu,v=1,2,3.

The equation of the geodesic line in this special case becomes

d?z®

on (a=1,2,3).
S

If we consider an observer traveling with an object that is moving from P, to P, (the
object is at rest with respect to the observer), ds = dt where dt is called the proper
time. Since dv®/dt = A, we obtain z* = At + B where A and B are arbitrary
constants. This is the required equation for the geodesic line; it is the equation for a
straight line.

12.8 Special Equations Involving the Metric Tensor

In 1854, Riemann assumed that the quadratic form ds? = g,,dz*dz” defines the metrical
properties of space and that this form should be regarded as a physical reality. It, however,
was Einstein, in his theory of general relativity, who attached physical significance to g,
by showing that the gravitational potential is proportional to the fourth component of
this fundamental metric tensor. Einstein thus asserted that gravitational phenomena are
intimately connected with the metrical properties of space-time. Space-time in special
relativity is a four-dimensional flat manifold, Minkowskian space, with constant metric 7,,,,
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the Lorentzian metric. In the normal convention, the values for the indices are u,v =
0,1,2,3. This Lorentzian metric with +2 signature is given by

-1 00 0
0 100

N = 0 010 (12.46)
0 001

In general relativity, space-time is a four-dimensional curve manifold. That is to say, the
components of g, are not constant.

It is important to note that the gravitational potential according to general relativity has an
invariant quadratic differential form (a 2-form). Electromagnetic phenomena are governed
by a potential, A,, which has an invariant linear differential form (a 1-form) given by
A,dz*. The existence of these two separate invariant forms is the source of the difficulty
involved in developing a theory which unifies gravitational and electromagnetic phenomena.

12.8.1 The Riemann-Christoffel Tensor

Here, the main purpose is to obtain a tensor that contains g, only by means of differen-
tiation. The covariant derivatives of A, and A,g are respectively given by

Aap = ZA hot Au (12.47)
and
0A,,
Aapn = ax’Yﬂ - {”;a} Aap — {:ﬂ} Aap- (12.48)

On substituting A, (with the appropriate change of indices) from Eq.(12.47) into
Eq.(12.48), we obtain

0 (0A, DA,
Aapy = e (W — {&s} Au) - {3a} (W - {%s} Au)

84,
= {3} (3? —{ta} Au) - (12.49)
Interchanging the indices § and v (8 — v and v — f) in Eq.(12.49) yields
0 dA,
Aagn = s (G2 - (1) - 00} (52 - ) 4
-G (G- e, (1250

Subtracting Eq.(12.50) from Eq.(12.49) yields
Aapy = Aayp = R:,aﬁAu

)

where

Riop= 0ot} - L)+ D () - Gl (). 28)
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Since A, py — Aqyp is a tensor and A, is an arbitrary tensor, Rf/‘,aﬂ is a fourth-rank
mixed tensor by use of the quotient law; this fourth-rank mixed tensor in Eq.(12.51) is called
the Riemann-Christoffel tensor. Note that the Riemann-Christoffel tensor is composed
exclusively from derivatives of the fundamental metric tensor, g,.. If a coordinate system
is selected such that the components of g,, are constants (e.g., Minkowski space), then
all components of the Riemann-Christoffel tensor vanish in that system (and in all other
systems).

12.8.2 The Curvature Tensor

The curvature tensor, R,,qs, is obtained by use of the inner product of the fundamental
metric tensor and the Riemann-Christoffel tensor; we may write

Ryyap = g)\I‘Rfy‘aﬂ' (12.52)

12.8.3 The Ricci Tensor

Contracting the Riemann-Christoffel tensor, Eq.(12.51), with respect to the p and g
indices, we obtain the Ricci tensor

Ro= s (i} - om (G} + Gt (B} -G {5} a2s)

12.8.4 The Einstein Tensor and Equations of General Relativity

The Einstein tensor, G, is defined as

1
G‘W = R,“, — agw,R. (1254)

The curvature scalar, in Eq.(12.54) is given by
R=g¢g"R,,.

Einstein’s equations of general relativity are
1
Guw =Ry — 5g,,,,R =8rT, (pv=0,1,23). (12.55)

In Eq.(12.55), the energy-momentum tensor which describes the distribution of mass and
energy (except gravitational energy) is given by

TMV = (p + P) Uply — guVP + TﬁM (1256)

In Eq.(12.56), wu, and wu, are four velocities, p is density, and P is pressure. In a
vacuum, Ty, =0.

The basic equations of general relativity are (a) Einstein’s equations, Eq.(12.55), which
relate the curvature structure of space-time (the left-hand side) to the mass-energy (through
the energy-momentum tensor, except gravitational fields) contents of space-time and (b)
the geodesic equations, Eq.(12.45), whose solution determines the path of a particle through
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space-time. In the Einstein’s equations, note that the last two terms of the Ricci tensor,
R,., in Eq.(12.53) involve products of derivatives of the fundamental metric tensor; hence
the presence of these two terms in the Einstein tensor, G, means that Einstein’s equations
are nonlinear differential equations. As is well known, there exists no general method for
solving nonlinear differential equations. The twistor theory due to Penrose® is an attempt
to transform the Einstein equations into a twistor space (a complex manifold of three
complex dimensions) with the hope of then finding a solution in this twistor space. The
inverse transform would then provide the required solution in four-dimensional curve space-
time. The successes of Einstein’s theory of general relativity include (a) explanation of the
precession of the perihelion of planets, (b) prediction of the deflection of light rays passing
near a body of large mass, (c) prediction of the gravitational red shift of spectral lines, and
(d) a general theory of cosmology.

12.9 Exterior Differential Forms

12.9.1 Introduction

It was explained at the beginning of this Chapter that the local coordinates {z"} and
{z"} in the overlap region M, N My of the manifold M have no intrinsic geometrical
or physical meaning. In this Section, we introduce a coordinate free development of the
tensor concept.

The idea of a physical vector (in R®; see Chapter 1) as a directed straight-line segment
does not directly extend to a manifold. For a manifold, vectors at a point can be introduced
by use of the notion of tangents to curves passing through the point. Let S be a curve
through the point P of the differentiable manifold M. Local coordinates {z"} can be
used to specify S in the following parametric form: z* = z*(f) for i=1,2,...,n. The
quantities dz'/dt are components of the tangent vector to S at P. Tangent vectors to
all possible curves in M through P generate a vector space (with the same dimensions
as M) called the tangent space TM, (also, the notation T,M is used). The union of
tangent spaces to M at all its points is called the tangent bundle of M and is denoted
as TM. If we consider an arbitrary differentiable function f which assigns a real number
to every point ¢ on S, then

df = dzt d . dz*

In Eq.(12.57), df/dt is the derivative of f along S (the directional deiivative) and
8,f = 0f/0z'. Here d/dt acting on the space of real functions on M contains all the
components of the tangent vector; each component of the tangent vector is associated with
a corresponding partial derivative, J;. By use of the second equation in Eq.(12.57), we may
say that the tangent vector at P is the directional derivative operator d/dt with {9;}
being the natural coordinate basis of vectors for the vector space; an arbitrary vector V

SRoger Penrose (* 1931), English mathematical physicist is known for his contributions to the theory
of relativity and for his study of celestial objects.
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can be expanded in this basis as
V= Z Vig;. (12.58)

In Eq.(12.58), the V? are said to be the components of a contravariant vector. The tangent
space is the natural space in Lagrangian mechanics where the Lagrangian has the following
functional form: L I[g* (t), 4" ()] .

The coordinate free definition of a tangent vector is as follows. If F(M) is the space of
all differentiable real functions on a manifold M, then a tangent vector at P is defined
as V acting on elements of F(M) to produce real numbers: V : F(M) —» R such that

LV (af +bg) = aV(f) +bf(g); and
2. V(fg) =g(P)V(f)+ f(P)V (9) where f,g€ F(M) and a,b€R.

The dual space of TM,, w:TM, = R, is called the cotangent space at P and is
denoted as T*M,. The function w is referred to as an exterior differential one-form (or
simply a 1-form). That is to say, a 1-form on the tangent space to M, T'M,, is a cotangent
vector to M at the point P. The union of cotangent spaces to the manifold at all its
points is called the cotangent bundle of M and is written as T*M. A simple example
of a one-form is total differential df of a function f € F(M); it is defined as the element
of T*M, satisfying (df,V) =V [ forany V € TM,. On setting f =z'and V =9,
one finds that the set {dz'} of total differentials of the coordinates constitutes the natural
coordinate basis for the dual space (cotangent space, T*M,) since (dz*,8;) = 9;z* = 6}.
An arbitrary one-form w expanded in the dual basis becomes

w=Y wd' (12.59)
i=1

The quantities w; are the components of a covariant tensor. In general, tensors are
elements of the tangent and cotangent spaces of the (underlying) manifold M.
Differential forms provide a means of generalizing the basic operations of vector calculus in
R3 (gradient, divergence, curl, and the integral theorems of Gauss, Green, and Stokes) to
manifolds of arbitrary finite dimensions.
Consider the set of totally antisymmetric covariant tensors of type (0,p) at point P of an
n-dimensional manifold M. These tensors are called exterior differential forms of degree
p (or simply p-forms); they span a vector space denoted by APT*M, (or simply APT*).
If p=20, then A’T* is the space of real smooth functions on M, normally written as
F(M). Note that p < n because a form where p > n is identically zero since the only
nonzero components of totally antisymmetric p-tensors are the ones with different indices;
hence, all differential forms of degree higher than the dimension of the underlying space
are zero. The dimension of the vector space . APT* is the number of ways of choosing p
elements from n distinct elements without regard to order and is determined by use of
the binomial coefficient formula

(n) _ n!

p/ pn—pl
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In terms of dimensions, we have the following relations:

dim A’T* =1
dimAT* =n
dim A’T* =n(n—1)/2

dim A-VT* =n
dim A®T™* = 1.

Note that dimAPT* =0 for p > n and that dim APT* = dim A®"~P)T* The Hodge®
star operator for the spaces of p-forms and (p — 1)-forms, * : APT* s A("P)T*  is defined
for manifolds M that have a metric g, and it may be used to construct a relation between
these two spaces. The Hodge star operator is denoted by * in the exponent.

12.9.2 Exterior Product

In 1862, Grassmann’ introduced an algebra of vectors based on a definition of the cross
product of vectors in Euclidean space. E. Cartan® (a) made use of Grassmann algebra in
geometry and in mechanics and (b) discovered that Grassmann algebra applied to differ-
ential forms as elements of the algebra could be combined with a special differentiation
process, exterior differentiation, to produce a very compact notation that is useful in ge-
ometry and in mathematical physics. A p-form is a covariant antisymmetric tensor field of
rank (or degree) p, and exterior differentiation of a p-form is an operation that produces a
(p + 1)-form.

The sum (or difference) of two p-forms is a p-form, and the product of a p-form and a
function f (a O-form) is a p-form. Cartan’s exterior differential product (wedge product
A) of a p-form and a ¢-form is the mapping

A2 APT* x AST* 5 APYOT*, (12.60)

The above definition for two 1-forms «; and as reduces to
a1 Ahag = % (1@ —mQ@a)=—aaAay. (12.61)
Note that the wedge product is a rule for constructing 2-forms from 1-forms since the right-
hand side of Eq.(12.61) is a 2-form. In general, the wedge product of a p-form (an element

of APT*) and a ¢g-form (an element of AYT*) produces a (p + g)-form such that

dAw=(-1)"wAd. (12.62)

SWilliam Vallance Douglas Hodge (1903-1975), English mathematician who is known for his work in
algebraic geometry and differential geometry.

"Hermann Giinter Grassmann (1809-1877), German mathematician best known for his development of
a general calculus for vectors and the invention of what is now called exterior algebra.

8Elie Joseph Cartan (1869-1951), French mathematician who is noted for his work on continuous groups,
Lie algebras, differential equations, and differential geometry.



12.9. EXTERIOR DIFFERENTIAL FORMS 313

The larger vector space AT™* consisting of the direct sum of all the vector spaces APT™*

has dimension given by
" (n
>(2) -
p

p=1

The space AT* together with the exterior (wedge) product is called the Cartan exterior
algebra of T*M, (Grassmann algebra where the objects are differential forms).

12.9.3 Exterior Derivative
The exterior derivative operation maps a p-form into a (p + 1)-form,
d: APT* — APHIT* (12.63)
such that for p-forms w,w; € APT* and ¢-form wy € AIT* the following are satisfied.
1. d(w; + we) = dw; + dws
2. d (w1 Awg) = (dwy A we) + (—1) (w1 A dws)
3. d(dw)=0

Let f and g be functions (0-forms) and let o and B be 1-forms; the following
properties of the exterior derivative are valid.

4. df is the ordinary total differential of f
5. d(fg) = (df) g + fdg

6. d(fa)=df Na+ fda

7. d(aAB)=daNB—aAp.

If the derivative of the p-form ¢ equals zero (dp = 0), then ¢ is said to be closed. If
the form ¢ equals dw (¢ = dw) or ¢ =0, then ¢ is said to be exact.

12.9.4 The Exterior Product and Exterior Derivative in R3

Exterior differential forms in R® with Cartesian coordinates are the integrands of three of
the integrals on page 31. The one-, two-, and three-forms are respectively given by

/ a (line integral); / B (surface integral); / v (volume integral).
In the above integrands, we have
a = a1dz + a2dy + azdz  (1-form)
B = bidydz + bodzdz + bzdzdy
= bldy Adz + bzdz ANdz + bgdl' A dy (2—form)
v = fdxdydz = fdz Ady Adz (3-form).

In the above equations f ,a;, and b; are 0-forms (functions).
The Hodge star operator takes p-forms to (3 — p)-forms in R3. For example, we have
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1. I*=dzxAdyANdz

2. (dzAdyAdz)* =1

3. dr* =dyAdz dy*=dzAdx; dz*=dzAdy

4. (dy ANdz)* =dz; (dz Adz)"dy; (dz Ady)" =dz.

Consider the two 1-forms « = a,dz + aydy + azdz and § = bidz + body + bzdz. The
exterior product a A 3 is given by
a A B = (ardr + axdy + azdz) A (b1dz + bedy + b3d2)
= (02b3 — a3b2) dy ANdz — (a1b3 — a3b1) dz Adz + (a1b2 - ale) dz A dy

The correspondence to a A 3 in vector calculus is the cross product. Note that the cross
product of A = a1i+ asj+ ask and B = bji + boj + b3k equals

A x B = (azbs — asby) i — (a1by — azh1) j + (a1b — a2by) k.

In making this correspondence, note the following: i=jx k (islike dyAdz), j=k xi
(is like dz Adz), and k =1ixj (is like dz A dy). The wedge product of a 1-form and a
2-form corresponds to the dot product; for example, o A 3* corresponds to A - B.

The exterior derivative of the O-form is

0 4o+ gy 4 ¥ g,

9f = Oz 0y 0z

The above equation corresponds to grad f. The exterior derivative of a 1-form ¢ is

da = (%—%)d Adz (%—%)dz/\d:r

dy 0 0z 0Oz
da; Omy
+ (% - 3 ) d A dy

The above equation corresponds to curl A. The exterior derivative of the 2-form represented
by 8= AdyAdz+ BdzAdz+ CdzAdy where A, B,and C are 0-forms reduces to
df = (BA 0B oC

3_y+ az)dw/\dy/\dz.

The above equation corresponds to div V times an element of volume. The above results
are summarized below.

0-Form 2-Form

df grad f ds divergence
1-Forms 1-and 2-Form

a1 Aap  cross product | a A o* dot product
da curl
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By use of d? = dd = 0, we obtain ddf = d(1-form) = curl gradf = 0.

Here we note that the cross product, dot product, grad, curl, and div are just special cases of
the wedge product and exterior derivative of exterior differential forms. It, however, should
be clearly understood that our purpose for introducing exterior calculus is considerably
more important than the demonstration of this correspondence for R3. Moreover, we find
that this correspondence with vector calculus will not be possible for R* where n > 3; for
example, there is nothing that corresponds to a 2-form in R*. That is to say, vector calculus
for spaces with dimensions greater than three is not valid, but the calculus of differential
forms is valid for n arbitrary.

12.9.5 The Generalized Stokes Theorem

We conclude the discussion of exterior calculus by writing down the generalized Stokes
theorem. Let M be a compact oriented smooth k-manifold with boundary OM and let
¢ be a(k—1)formon M. In equation form, the generalized Stokes theorem is

/Md<p: /aMgo. (12.64)

In the above equation, ¢ is a (k —1)-form and d¢ is a k-form. Note that M is a one-
dimensional connected manifold when k =1. If M is contained in R!, then M is just
an interval [a,b]; the boundary OM has dimension zero and is the pair of points a,b.
The function f(z) is a O-form on [a,b], and we have

of

df = %dz = f'(z)dz.

For this case (k = 1), the generalized Stokes theorem reduces to

[a=[r@w=r0-10.

The above equation is referred to as the fundamental theorem of calculus.

The generalized Stokes theorem is one of the most useful tools of the calculus of exterior
differential forms, and it contains, as special cases, all of the integral theorems of vector
calculus and the fundamental theorem of calculus.

12.10 Problems
12.1 By use of the summation convention, rewrite

= gqédac + a—jdy + a—qsdz.

de or o oz

12.2 Determine the number of equations in a four-dimensional space that are represented
by Rig = 0.

12.3 Show that the symmetric (or antisymmetric) property of a tensor is conserved under
a transformation of coordinates.

12.4 Show that g;; =0 for i # j is required for orthogonal coordinate systems.
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12.5 By use of the Riemannian metric, show that g;; = g;i.

12.6 Determine the conditions that must exist for the Christoffel symbols to be tensors.
12.7 Show that the covariant derivative of g;; equals zero (Ricci’s theorem).

12.8 By use of the definition of the components of the four-vector current density,write the
continuity equation.

12.9 Compute T, in (a) Cartesian and (b) cylindrical coordinates.

12.10 For the surface of a sphere (a two-dimensional Riemannian space), compute (a) the
components of the fundamental metric tensor and (b) the two Christoffel symbols.

12.11 Compute the components of the fundamental metric tensor and ds? for the new
coordinate system when the transformation from Cartesian coordinates (z,y, z) to spherical
coordinates (r,8,¢) is made.

12.12 By use of the definition of the Christoffel symbol of the first kind, show that

0gix e .
57 [¢7, k] + [k7,1] .

12.13 By use of the definition of the Christoffel symbol of the second kind, show that

agmk % m im
oz -g* {iﬂ} -9 {;p}'

12.14 By use of the fundamental transformation law for the components of a tensor, show
that the quantities 6":A,, transform like the components of a tensor.

12.15 In Example 110, show that (a) the components of F,, are those given in the matrix
form, (b) Set 1 leadsto V-B =0 (c) Sets 2, 3, and 4 lead to Maxwell’s third equation,
and (d) the equations

’\8F,, _

v =
o or

lead to Maxwell’s first and fourth equations.
12.16 By contracting the Einstein field equations with ¢g*”, show that these field equations
may be written as

1
R‘“, =8r (T‘", - §guVT) .
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Abel problem, 270 chart, 77

adjoint matrix, 65 charts, 293

affine, 303 Christoffel symbols, 303
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analytic, 99 Clifford algebra, 89

angular momentum, 25 closed set. 77

anticommutator, 89

Argand diagram, 96

associated Legendre DE, 227
associated Legendre functions, 228
atlas, 78, 293

automorphism, 74

cofactor, 56

cofactor matrix, 64

commutator, 74

compact, 77, 85

completeness, 219

complex conjugate, 96

complex conjugate matrix, 63
confluent hypergeometrhic DE, 239
confluent hypergeometric functions, 239
conformal transformations, 134
conjugate functions, 101
conservative system, 34

continuity equation, 31

contour integral, 102

contraction, 300

Banach Space, 78
basis, 72

Bernoulli’s DE, 173
Bessel DE, 233
Bessel functions, 234
beta function, 242
bijective, 72

binary operation, 80
bra vector, 78

brachistochrone problem, 281 convolution theorem, 165
branch cut, 138 coordinate function, 77
branch point, 138 Coriolis acceleration, 52

cotangent bundle, 311
cotangent space, 311
Coulomb gauge, 38
covariant derivative, 304

calculus of variation, 275
canonical momenta, 284
Cartesian coordinate system, 16

Casimir operator, 86 cross product, 23

Cauchy integral formula, 104 crossing relations, 142
Cauchy integral theorem, 103 curl, 29

Cauchy principal value, 126 curl theorem, 41

Cauchy residue theorem, 125 curvature tensor, 309
Cauchy sequence, 78 curvilinear coordinates, 44
Cauchy-Riemann relations, 101 cylindrical coordinates, 47
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d’Alembertian operator, 50
de Moivre theorem, 98

del operator, 27

derived quantities, 13
determinant, 53
differentiable manifold, 78, 293
differential equation, 167
differential geometry, 293
diffusion (heat) equation, 29
dimension, 13

dimensional analysis, 13
Dirac delta function, 150, 207
direct product, 62

direction cosines, 18
directional derivative, 28
Dirichlet conditions, 144
Dirichlet formula, 271
Dirichlet’s theorem, 144
dispersion relations, 132
divergence, 29

divergence theorem, 35

dot product, 20

eigenfunction, 73

eigenvalue, 73

eigenvector, 73

Einstein summation convention, 295
Einstein’s equations, 309
electric potential, 38
electromagnetic field tensor, 305
elliptic integral, 241

empty set, 76

error function, 240

Euclidean norm, 75

Euclidean space, 75

Euler’s algorithm, 187

Euler’s DE, 191

Euler’s equation, 280

Euler’s formula, 95

Euler’s theorem, 292

exterior deriative, 313

faithful, 72
Feynman path integral, 290
field, 81

finite differences, 208

Fourier series, 143

Fourier transform, 158

Fourier’s theorem, 143
Frobenius-Fuchs theorem, 182
function, 72

functional, 275

fundamental physical quantities, 13

gamma function, 242
gauge transformation, 38
Gauss’s law, 37

Gaussian surface, 37
general linear group, 87
generalized Stokes theorem, 315
generating function, 222
generators, 86

geodesic line, 307

Gibbs phenomenon, 153
gradient, 27

Green’s function, 186, 207
Green'’s theorem, 40
group, 80

group table, 82

Hamilton’s equations, 286
Hamilton’s variational principle, 283
Hamiltonian, 286

Hankel functions, 235
harmonic functions, 101, 197
harmonic oscillator, 177, 223
Hausdorff space, 77
Helmholtz’s equation, 29
Hermitian matrix, 65
Hermitian relation, 219
Hilbert space, 78

Hilbert transforms, 133
Hodge star operator, 312
homeomorphic, 79
homomorphism, 74, 81
homotopy, 79

hypergeometric DE, 236
hypergeometric functions, 237
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idempotent, 92
identity matrix, 64
indicial equation, 183
injective, 72

inner product, 74, 300
integral equation, 265
integral transform, 157
interating factor, 171
intersection, 76
inverse matrix, 66
irrotational, 30
isomorphism, 74, 81

Jacobi identity, 292
Jacobian, 295

Jordan’s inequality, 141
Jordan’s lemma, 130

ket vector, 78
Kronecker delta, 64

Lagrange multipliers, 277
Lagrange’s equations, 283
Lagrangian density, 288
Laguerre DE, 230
Laguerre polynomials, 231
Laplace development, 56
Laplace’s equation, 29
Laplacian operator, 29
Laurent expansion, 108
Legendre DE, 227
Legendre polynomials, 227
Legendre transformation, 75
Leibniz identity, 292
Leibniz’s formula, 192, 222
Levi-Civita symbol, 54
Lie algebra, 86

Lie group, 85

line integral, 32

linear function, 73

linear momentum, 25
linear operator, 73
linearly independent, 72
Lorentz force law, 37
Lorentz gauge, 50

manifold, 77, 79
matrix, 60

matrix addition, 61
matrix product, 61
Maxwell’s equations, 36
mechanical wave equation, 29
metric, 301

metric coefficients, 44
metric space, 78

metric tensor, 301
Minkowski space, 305

nabla operator, 27
Neumann functions, 234
Neumann series, 270
nilpotent, 92

norm, 75

normal surface integral, 34
normed vector space, 75
null matrix, 60

null set, 76

null vector, 14

one-to-one, 72

onto, 72

open set, 77

orthogonal group, 87
orthogonal polynomials, 221
orthogonal vectors, 75

Parseval’s relation, 156, 165
partial DE,; 195
permutation group, 85
Pochhammer symbol, 237
point group, 85

Poisson’s brackets, 287
Poisson’s equation, 29, 38
polar coordinates, 47
position vector, 16
potential energy, 34

quaternion, 84
quotient law, 300
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radius vector, 16 symmetry group, 85
recurrence formula, 221 Systéme International (SI), 52
recursion formula, 183

residue, 113

resultant vector, 15

Riccati equation, 192

Ricci tensor, 309

Ricci’s theorem, 316
Riemann-Christoffel tensor, 309
Riemannian space, 301

tangent bundle, 310
tangent space, 310
Taylor series, 106, 117
tensor, 294, 311
tensor algebra, 299
tensor associate, 302
tensor product, 299

ring, 81 ;
Rodrigues formulas, 222 topological space, 77
Runge-Kutta method, 188 topology, 77, 79
torque, 25
trace, 66
scalar, 13

transpose matrix, 63
scalar product, 20

Schrédinger’s equation, 29

secular equation, 68 union, 76

series, 115 unit normal, 32
similarity transformation, 74 unit vector, 14, 75
singular matrix, 64 unitary group, 87
singular point, 99 unitary matrix, 66
solenoidal, 29

space group, 85 vector, 13, 71

special functions, 215
special linear group, 87
special orthogonal group, 87
special unitary group, 87
spherical coordinates, 48
spherical harmonics, 226

vector algebra, 19
vector potential, 38
vector product, 23
vector space, 71

structure constants, 86 Weber DE, 245
Sturm-Liouville theory, 216 wedge product, 312
submatrices, 63 work, 22, 33

surjective, 72 work-energy theorem, 33
symmetric group, 85 Wronskian, 175

symmetric matrix, 65

zeta function, 156



