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Preface

The international conferences on Integral Methods in Science and Engineering
(IMSE) are a forum for the presentation of frontline research that makes use of
integration in its various guises as a main investigative technique.

The first two IMSE meetings were held at the University of Texas at Arlington
in 1985 and 1990. They were followed by IMSE93 (organized by Tohoku University,
Sendai, Japan), IMSE96 (hosted by the University of Oulu, Finland), and IMSE98,
which took place at Michigan Technological University, Houghton, Michigan. The
IMSE conferences are now a well-established biennial event that offers scientists and
engineers a platform for communicating their latest results and for comparing and
contrasting the merits and applicability of a wide category of important mathemat-
ical methods.

IMSE98 continued the tradition of friendly atmosphere established on previous
occasions, which, as before, was created through meticulous preparation by the Local
Organizing Committee:

B. Bertram (Mathematical Sciences), Chairman,

A. Narain (Mechanical Engineering and Engineering Mechanics),

D. Sikarskie (Mechanical Engineering and Engineering Mechanics), *
A. Struthers (Mathematical Sciences),

M. Vable (Mechanical Engineering and Engineering Mechanics).

The participants are indebted to them all for their efforts, and to the host
institution and other sponsoring agencies for their generosity. Advice and general
guidance were provided by the International Steering Committee.

Plans for future conferences are well in hand. Thus, IMSE2000 will be held in
Banff, Canada, IMSE2002 at the University of California-Berkeley, and IMSE2004
at the University of St. Etienne, France. Details of IMSE2000 can be found on the
Internet at the address http://mece.nalberta.ca/IMSE2000.

This volume contains 3 invited papers and 57 of the contributed papers pre-
sented in Houghton, which have undergone peer review. In each category, the papers
are arranged in alphabetical order by (first) author’s surname.

The editors would like to acknowledge the help of the referees, the secretarial
support effort, and the efficient handling of the publication process by the staff
of Chapman & Hall/CRC. Special thanks are due to George Beckett and Ronnie
Wallace, who, with commendable patience and good humour, employed computer
wizardry to make some of the diagrams electronically printable.

Christian Constanda

* Sadly, David Sikarskie passed away in 1999.
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The International Steering Committee of IMSE:

C. Constanda (University of Strathclyde, Glasgow), Chairman

M. Ahues (University of St. Etienne)

B. Bertram (Michigan Technological University)

H.H. Chiu (National Chen Kung University, Tainan)

C. Corduneanu (University of Texas at Arlington)

R.P. Gilbert (University of Delaware)

A. Haji-Sheikh (University of Texas at Arlington)

V.P. Korobeinikov (Institute for Computer Aided Design, Moscow)
A. Nastase (Reinisch-Westfilische Technische Hochschule, Aachen)
K. Oshima (Japan Society of Computational Fluid Dynamics, Tokyo)
F.R. Payne (University of Texas at Arlington)

K. Ruotsalainen (University of Oulu)

J. Saranen (University of Oulu)

P. Schiavone (University of Alberta, Edmonton)

S. Seikkala (University of Oulu)

D. Steigmann (University of California at Berkeley)

H. Wu (Computing Centre, Beijing)

F.-G. Zhuang (Chinese Aerodynamics Research Society, Beijing)
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A.G. GIBSON

Mathematical modeling of N-body
quantum scattering processes

1. Introduction

Quantum scattering theory is the mathematical modeling of experiments in atomic
and nuclear physics in which a target is bombarded by a projectile and the outcome
is measured. The goal of the mathematical theory is to predict the probability of the
various possible outcomes. It is especially difficult to model the scattering process
in cases where the target breaks up into sub-particles. In this paper we describe
some of the mathematical methods that have been used to model the scattering of N
nonrelativistic particles for N > 2.

A starting point of the theory is the Schrodinger equation. However, since the
boundary conditions are imposed at times ¢ — +o0, it is useful to reformulate the
problem as a system of coupled singular integral equations. For N = 2 there are the
Lippmann-Schwinger equations (cf. p. 135 of [1]), and for N = 3 there are the Faddeev
equations [2].

A new system of integral equations (Eq. (26) below) has recently been rigorously
derived by Colston Chandler and Archie G. Gibson that is valid for all N > 2 (cf. [3-7]
and references cited therein). This system of equations has many nice mathematical
properties such as a compact kernel and existence and uniqueness of solution. Either
product integration or B-spline numerical methods may be used for solving these equa-
tions. The nonhomogeneous and kernel terms are defined by certain high dimensional
integrals, which are approximated by choosing an orthonormal basis on the surface of
certain unit kinetic energy hyperspheres. Two different three-particle test problems
have confirmed that these equations may be solved and yield satisfactory numerical
solutions.

2. Scattering processes

Consider a nonrelativistic system of N particles moving in three dimensions and inter-
acting via short-range pair potentials. A channel « is a specification of a partition of
the particles into n, bound clusters. Let 0 denote the partition into IV free particles,
and let IV denote the set of all N particles. Denote the other possible channels by
a, By,

For example, suppose that an incoming two-cluster channel consists of a deuteron
d (a bound state of one proton p and one neutron n) and an alpha particle a (a bound
state of two protons and two neutrons). After the interaction of the deuteron with the
alpha particle several possible outgoing channels are possible, depending on the total
energy of the system. One possible outcome is d+ a, which is called the elastic channel
if the protons and neutrons remain in the same clusters or the exchange channel if
some protons and/or neutrons have switched clusters. A second possible outcome is
the rearrangement channel >H +2He. At higher energies the breakup channel n+p+«
also becomes possible.

This work was partly supported by the National Science Foundation grant PHY-9505615.
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3. A mathematical model

We begin by assuming quantum mechanics, wherein states are vectors ¢ € Hy =
£2(R3N ), and observables are self-adjoint operators on Hy.
The particular observable that is the total Hamuiltonian of the system is the self-

adjoint operator
N

HNEHO‘i'%EZ +ZVW (1)

=1 my 1<J

where Hy is the free Hamiltonian (a self-adjoint operator) for N noninteracting par-
ticles and Vj; are given pair potentials. The state ¢(t) € Hy evolves in time as a

solution -
P(t) = e™V'P(0) (2)
of Schrédinger’s equation
.0
20— Hyy. ®)

But this equation is solvable only in very simple cases. A serious problem is that the
boundary conditions are at t = +00, not at ¢t = 0. For scattering problems some other
approach is needed.

4. Channel subspaces and P, operators

For each channel o with n, clusters, and the center of mass motion removed, there
is a set of Jacobi momenta that divides into the internal (bound state) momenta

Po = BY,...,pPWV ), and the external momenta G, = (G,...,G"="Y). The
channel subspace H. C Hy is the closed linear span of vectors of the form
Pa(Pa)f(da) » (4)

where ¢, € L2(R3N~")) are products of orthonormal eigenfunctions of the bound
clusters, and f are arbitrary function in £2(R3*"=~1)). The channel projection operators
P, are the orthogonal projections of ‘Hy onto H,. Note that Fy = Iy since the free
partition does not have any bound states.

Each channel « has an associated channel Hamiltonian H,,

na—1 |q(m) |

OB (5)
m=1 2M<(1 )

where ¢, is the threshold (bound state) energy for channel a, and the sum is the kinetic
energy, with u(™ denoting the reduced masses.

5. The scattering operator S

The asymptotic condition of scattering theory says that in the remote past and distant
future the particles behave like noninteracting clusters each of which is in a specific
quantum mechanical bound state, i.e., given a ¢, € H, there exists a ¢y € Hy such
that , :

le=# vty — el || - 0 as t— —oo0, (6)

and given this ¢ € Hy there exists a ¢3 € Hg such that
e ot g — N 0 a5 £ - oo. (7)
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Equations (6) and (7) define the channel wave operators

OF = s—lim "FNte=tHat (8)
t—=doo

which in turn define the scattering operators Sg, from channel o to channel 8 by
s = Spada = QE*Q;%. 9)

The matrix S = [Sg,] is the full system scattering operator.
The asymptotic condition of scattering theory can now be restated in terms of the
scattering operators Sg,, and this is the main problem of scattering theory.

Main problem. Given an input state ¢, € H,, determine all possible output states
O3 = Spa®a € Hp, i.e., find the scattering operators Sg, for fixed o and for all 3.

6. Transition operators

If the projectile misses the target and no scattering occurs, then S acts like the identity
operator I. In practice, therefore, it is better to compute the matrix elements Tz, of
the transition operator T defined implicitly by

S=1-2mT, and Sg, =063y — 2mi1p,. (10)

The operators T' and S have spectral representations (direct integral decompositions)
with respect to the total energy E of the system. Since the total energy is conserved,

it suffices to compute the on-shell transition operator matriz elements Tsq(E) for fixed
E and « and for all open channels (.

The operators Tga(E) are directly related to the physical scattering observables,
such as the cross sections measured in accelerator experiments. The challenge then is

to obtain some solvable equations whose solutions determine T3, (E). The complexity
of the problem increases with the number N of particles.

7. The Lippmann-Schwinger equation (N = 2)
For N = 2 the only open channel is the free channel 0, and
Hy=Hy+ Vg, with Vo= Vi,. (11)
The Lippmann-Schwinger equation in operator form is
Too(2) = Vo + Vo Ro(2)Too(2) (12)

where Ry(z) = (z — Hy)™!, with 2 = E +iy [1, p. 135]. If y # 0, and Vp € L2(R?),
then this equation has a unique solution and a compact kernel. It may be solved

by Fredholm integral equation methods. The on-shell transition operator fOO(E) is
obtained from Tyo(E + iy) by taking the limit y — 0.
Many excellent 2-body calculations have been made using the LS equation.

© 2000 by Chapman & Hall/CRC



8. The Faddeev equations (N = 3)
When N = 3 the total Hamiltonian is of the form

HN:H0+%, with %5%2-}_1/13—‘_‘/237 (13)

where V;; denotes the pair interaction between particles ¢ and j. The Faddeev equation
solution procedure consists of the following three steps [2].

1. First, solve
ta(2) = Vo + Vo Ro(2)ta(2) (14)

for all two-cluster transition operators t,(z), where a ranges over the clusterings
(12,3),(13,2),(23,1), with V,, = Va2, Vi3, Vas, respectively.

2. Next, solve the 3-body system (the Lovelace form of the Faddeev equations)

Usa(2) = Va + %tv(Z)Ro(Z)Uw(Z) (15)

for the transition operators

Uga(z) = (Z — Hg)RN(Z)Va (16)
acting on Hy.
3. Finally,
Tsa(z) = PsUpa(2) P, (17)
and
Tso(E) = lim To,(E + ) - (18)
y—)

The Faddeev equations have unique solutions and the square of the kernel is compact
for y # 0, allowing use of Fredholm integral methods.

Many excellent three-body scattering calculations have been made using the Fad-
deev equations.

9. Yakubovskii’s generalization (N = N)

In 1967 O.A. Yakubovskii, a student of Faddeev, generalized the Faddeev method
to N = N [8]. However, the “tree” structure, and the fact that the unknowns are
on the full space Hy make these equations prohibitively complicated. For example,
for N = 8 distinguishable particles, the final system consists of 1,587,600 integral
equations containing integrals of dimension 18!

A few calculations have been made for N = 4, but there have been no scattering
calculations for N > 4.
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10. The Chandler-Gibson approach (N = N)
Since it is only the operators
Tsa(2) = P3Upa(2) Py = Ps(z — Hg) Ry (2) Vo Ps (19)

that are needed, why use equations for the operators Ug,(2)? Our first step was to
derive the transition operator equations [3]

Tpa(2) = PV P + PM(? P5)™' S " PR (2)Tya(2) (20)

where R (z) = (z — H,)™'. The inverse of 35 Ps in this equation can be avoided by
using the alternative transition operator

Mg, (2) = Ps(z — Hg)(? Ps) 'Ry (2)Vo Py . (21)

Let 850 = 1 — 65o. Our M-equations are then [5]

Mpa(2) = PsVoPu + Z Ps [VVRW(Z) - gﬁa] PyMyo(z) . (22)

Solution strategy. Approximate the P, by a sequence of orthogonal projection
operators II, such that II, 7 P, (strongly). This is equivalent to approximating the
spaces H, by H] = P,’H, C H,, and the total Hamiltonian Hy by H, = P, HyF;,
where P; is the orthogonal projection of Hx onto the closure of the range of > II

11. Approximate transition amplitudes

In our approach it is important to use kinetic energy hyperspherical variables (KEHS)
(i, ky), where

na—1 | =(m)|2
§= Z |q |

(23)

=1 2N(m) ’
is the kinetic energy, and
k, = (f{fj), .. ,l;((l"a_l)), with l;(gm) = qm™ /[2ulm u)V?. (24)

The quantity k., ranges over the unit kinetic energy hypersphere ' in R3«=1 and
i ranges over the half-line R*. The square root of the Jacobian of the transformation

from the variables qq to the variables (k,, ) is denoted by v (s).

For each channel o let {xa;(ka)}, i = 1,2,...,n; be a finite subset of some infinite
bounded orthonormal basis on the hypersphere I‘ Let the corresponding approzimate

on-shell transition operator matriz elements be denoted by Tﬂa(E kg, K,). Then

g ny

T3 (B kg ko) = 373~ X (ks) M ailes, ea)xii(ka) (25)

j=1li=1

with e, = F — €,, where E is the total energy, and ¢, is the a channel threshold
energy.
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12. Half-on-shell equations

The complex-valued quantities M7 (eg, e,) in Eq. (25) are the on-shell matriz el-
B,0i\“B

ements of corresponding half-on-shell matriz elements ngm(/\, o) € L2(RT), and

these half-on-shell matrix elements are the unique solution of the following system of
half-on-shell M™-equations [6,7]:

i o o AT n(A1) i
BrailMea) = Afjai(X, ea)‘*Zly[ =2 () M (0 €0)
oy JO 67 Ui
—im AR, k(N €)1 (e) My oy, €a) | (26)

where + is a Cauchy principal value integral.

13. Properties of the M™-equations

Main assumptions

e V,; € L2(R?) for each pair of particles.

® Yai € L2(T,) N L®(T,) for each channel o and i = 1,2, ..., n;,.
Properties [7,9]

e The kernel of the M™-equations are kernels of a compact integral operator when
considered on a certain Hilbert space of Holder continuous functions.

A solution exists and is unique.

e Sequences of approximate on-shell transition operators {T7(E)} converge
strongly to {T'(E)}.

The M™-equations are of the same algebraic form for all N > 2.

The integral equations have I-dimensional integrals for all N.

The complexity of the equations depends on the maximum number of clusters
rather than the number N of particles.

14. Solution of the M™equations

The system of integral equations in Eq. (26) have Cauchy singularities at the fixed
points e,. A comparison of solution methods for integral equations with fixed Cauchy
singularities was made by Bertram and Gibson and presented at IMSE 1986 [10].
Other investigations of solution methods for these equations were made in [11-16

Some conclusions
e Jacobians. It is better to put in the Jacobians v2(n) as shown in Eq. (26).
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e Intervals [0,00). It is best to use z € [—1,1] and map to 7 € [0, 00) with

n=e (322) 1)

1—2z

e Knots. Our most successful choice of knots was Chebyshev knots on [—1, 1].
o Most Successful Numerical Methods

1. Product Integration [9]. The singularity of the kernel is absorbed into the
weight functions, and piecewise linear interpolating polynomials are used.
The fastest convergence was obtained when product integration was com-
bined with the Atkinson-Brakhage iteration method.

2. B-Spline Collocation Method [12-14]. An approximate basis of 7 + 1 cubic
B-splines B;(z(A)) on [—1, 1] is constructed. Assuming

n+1
ﬂJ m /\ ea Zcﬂm J (28)

the B-spline coefficients c4;- are chosen so that the residual 7"59(/\ ) equals

zero at all collocation points /\] forall j =0,1,...,741, and for all 3 and j.

The integrals containing singular integrals are evaluated using singularity
subtraction.

15. The input terms
The input terms in the M™-equations (26) are of the form

jgj,ai(/\v ) = ggj,ai(/\v ) = 5gj,ai(/\v w)(ea — ), (29)
where ggjm(/\, ) is the kernel of the operator
ggj’m 55 Vabr (the Born terms), (30)
5gj,ai(/\v () is the kernel of the operator
559»’&1 = Opalp;Pm (the overlap terms), (31)

and g7, : Hy — L*(R7T) is the projection operator

(pon’d}N / dpadka 9004 (pa)xaz( Ot)’djN (ﬁav 1;047 M) . (32)
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16. On choosing the {x.;(k)} basis elements

16.1. Two-cluster channels. If the N particles are bound into two clusters, the
KEHS coordinates are

il . i
H = W, and ka = B . (33)
o V2pa’

In this case we choose

~

Xai(ka) = YZm(f(a) 3 (34)
where Y}, (k) are the spherical harmonics.

16.2. Three-cluster channels. If the N particles are bound into three clusters, the
KEHS coordinates are

31q%[* : qa g

_ —‘(1) 2 Q o e

w=1q,’ "+ ——, and k,=|—=, . (35)
91 4 VI Jau/3

The two momenta ") and G determine a plane in R® with Euler angles (a, 3, 7).

We choose . @ L
XBLMNnm(ka) = DMN(dvﬁv F_Y)Z:zn(pv ¢) ) (36)

where DE\’B\, are rotation matrices [17], and Z™ are normalized Zernicke polynomials
in the Dalitz variables (A, p, ¢) [18,19].

The transformation to the magnitudes ¢V and ¢ of GV and @ and the angle
7o between @1 and G2 from the Dalitz variables (), p, ¢) is given by

O = (w/2)* /1 - peos(¢ — ¢a) ,
& = 2u/3)"* 1+ peos(é — da) , (37)

cos(ra) = psin(g — ¢a)/\/1 — p?cos*(d — a) ,
where the angles ¢, are defined by

0, fora=1
o = An /3, fora=2 ; . (38)
—4r/3, fora=3
Then R
Z(p,¢) = 4v/n+ 1R (p)Gn(9) | (39)
where R™l(p) are the radial polynomials of degree n defined for n —|m| an even integer
by
"y n ) o )
=0 pl[(n+Im[)/2 = pl![(n — |m[)/2 — p]!
and the functions ¢s,,(¢) are the normalized Fourier series basis functions defined by

1/\/% , form=0
CSm (@) =< cos(me)/v/m, form >0 5 . (41)
sin(|ml|¢)//m, form <0

RI™(p)
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17. Numerical calculations

The M7™-equations (26) reduce to the integral form of the Lippmann-Schwinger equa-
tion (12) when N = 2, but they are very different from the Faddeev-Yakubovskii
equations for N > 3. It is, therefore, necessary to test these equations. For our tests
we chose two different N = 3 models which have been solved previously using the
Faddeev equations, giving us some results with which to compare.

In our first numerical test we considered the scattering of a nonrelativistic system
of three identical spin zero particles moving in one dimension and interacting through
attractive delta-function potentials [14]. In this case the input Born and overlap
matrices were evaluated analytically, and the M™-equations were solved used the B-
spline collocation method. The computed scattering matrix elements were within
0.5% of the known exact solutions, and the corresponding scattering probabilities
were within 0.001% of the exact probabilities both below and above the three-body
breakup threshold.

‘ {
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0‘“‘
0 ':‘% o 2,
o % ”‘/1/ s
" ’ 0"llll q
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6 o ‘ ,; " ollll //;///J
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Fig. 1. 0(3/2)(E;,0, #) x 10* at Ejp, = 42.0 MeV with n = 6.

In our second test we considered the spin-quartet case (i.e., total spin = 3/2) of
the scattering of a nonrelativistic system of three identical spin-1/2 particles moving
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in three dimensions and interacting via Malfliet-Tjon I-IIT type pair potentials [15,16].
This problem has been used previously by several groups as a benchmark problem

~

[20]. We chose the x,;(k) basis elements as shown in Sec. 16 and evaluated the input
terms in Eq. (29) analytically as far as possible before numerically integrating the final
one- and two-dimensional integrals. We numerically solved the M7™-equations (26)
using the B-spline collocation method. We then computed the approximate on-shell

transition operators Tga(E; f(g,f(a) using Eq. (25), and the corresponding scattering
cross sections defined by

0ha(Es ks ko) = |15, (E; ks, k)| (42)

For example, the quartet scattering cross section at a lab energy of 42.0 MeV for «
equal to the two-cluster channel 1 = (1,23) and 3 equal to the three-cluster breakup
channel 0 = (1,2, 3) is shown in Fig. 1.

The interpretation of the Dalitz plot in Fig. 1 is the following. The z values are not
scaled as probabilities, but they are proportional to the probabilities of the various
outcomes. The 27/3 symmetry is a consequence of the three particles being treated
as identical particles, and a rotation of +27/3 radians corresponds to a permutation

of the three particles. The peak at p = 1 and ¢ = 7 corresponds to q?) = 0, which
means that particle 1 is stationary in the center of mass frame and particles 2 and 3 are
going in opposite directions with equal momenta. This is the most probable outcome
at this energy. The valley at p = 1 and ¢ = 0 corresponds to qgl) = 0, which means
that particles 2 and 3 are going in the same direction and particle 1 is going in the
opposite direction with momentum equal to the sum of the momenta of particles 2 and
3. The valley at p = 0 corresponds to the particles separating with equal momenta at
angles of 27/3, i.e., they form an equilateral triangle. This is the first time that such
a complete “picture” of the breakup channel has been obtained.

Our numerical calculations [15,16] are consistent with the known benchmark results
[20] and establish that the Chandler-Gibson equations are an attractive option for
N-body scattering problems.

Acknowledgments. I am deeply indebted to Colston Chandler for many years of
stimulating collaboration. We have benefited greatly from interaction with Gy. Bencze,

G.H. Berthold, B. Bertram, G.W. Pletsch, H.J. Taijeron, A.J. Waters, and numerous
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S. KIM and I. MUSTAKIS

Microhydrodynamics of sharp corners
and edges

1. Introduction

Sharp corners and edges are ubiquitous on particles that appear in natural and man-
ufacturing processes. Because of the underlying materials chemistry, the corners and
edges may be viewed as “sharp” to atomistic scales. This conference presentation work
provides a framework for the theoretical investigation of the dynamics of such particles
in a viscous fluid, with special emphasis on hydrodynamic interaction between sharp
corners or edges and another nearby surface.

In general, a better understanding of the dynamics of two surfaces in close proxim-
ity is of fundamental importance, whether for the interpretation of the performance of
scientific instruments such as the atomic force microscope (AFM) [3], for mathematical
models of particle aggregation [10], or for the elucidation of the role of particle stresses
in the rheological behavior of suspensions [8]. The physics of hydrodynamic interac-
tions between smooth surfaces have been well understood for over a century thanks
to the pioneering work on lubrication flows by Osborne Reynolds. As summarized in
standard texts [2], strong lubrication stresses in the intervening fluid resist the motion
of smooth surfaces approaching each other. The result is that the hydrodynamic drag
scales as €' times the Stokes drag on an isolated particle; here € is the surfacesurface
gap divided by a characteristic particle size.

In contrast, when a sharp wedge or corner approaches a smooth surface, the in-
tervening fluid “oozes” out more readily from the gap region. We intuitively expect
weaker hydrodynamic resistance to the applied motion than in the case of two smooth
surfaces. The quantitative details will depend of course on the value of the dihedral
angle: a broad wedge will behave more or less as a smooth surface because the escap-
ing fluid is impeded to a considerable degree, whereas a surface with a small dihedral
angle (as in a “knife”) would encounter almost no lubrication resistance in approach-
ing a target surface. Our goal is to quantify these intuitive ideas in the form of simple
scaling relations for the resistance, as a function of € and the dihedral angle.

2. Traction singularities

For very slow and viscous flows the linearized limit of the Navier—Stokes equations,
i.e., the Stokes equations, are the appropriate mathematical model for steady flow:

—Vp+uViv=0, V-v=0, (1)

where v and p are the disturbance velocity, and pressure fields respectively and p is
the viscosity. The double layer representation of the Stokes flow allows the application
of integral equation of the second kind to both the solution of the mobility problem
and the traction problem, Reizs-Rennerb equation [7]. The resolution of the traction
field on particle edges is of great importance since the tractions across the edges have
a singular behavior [4]. On a two-dimensional edge there are three canonical flow
patterns, the symmetric (splitting), antisymmetric, and parallel flow. The application
of the continuation approach [9] on the integral equations for the limiting case very
close to the particles edges allows the analytical extraction of the singular exponents
directly from the Riesz-Rennerb equation. The methodology can even be extended
to the three-dimensional corner. In 3-D corners the traction field ¢;(r, ) exhibits a
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Fig. 1. Symmetric flow u = (—1,-1,—1) on corner (1,1,1).
Tractions across the diagonal of the top plane.

stronger singularity, and the solution can be expressed as a factor »~7 times an angular
dependence h;(6). The angular function h;(#) also has singular behavior, since it should
resolve the traction field across the edges that create the corner. The application of the
continuation approach in this case needs to be augmented by numerical discretization
of h;(f) and leads to a nonlinear eigenvalue problem for ¢g. Only two distinguished
roots for ¢ can be found, corresponding to a flow splitting on the 3-D corner (smaller
eigenvalue) and the flow normal to the splitting vector (larger eigenvalue). The latter
is a double root; by symmetry any flow on the normal plane will satisfy the eigenvalue
problem. Thus the complete picture of the traction field around a corner can be drawn.
A det[a}led analysis of the traction singularity problem can be found in Mustakis and
Kim [6].

3. Numerics

The main advantage of the application of an integral equation of the second kind is
its well posedness and its ability to accommodate simple iterative solution techniques.
These properties however are not always true for particles with sharp corners. The
eigenvalue spectra of the double layer operator is analyzed. As the particle becomes
sharper the gravest eigenvalue moves close to —1, leading to an almost ill-posed prob-
lem (parallelepiped of 10°). The eigenvalue spectrum is also examined for the case
of wall-particle interactions. In this case the value of the gravest eigenvalue moves to
—1 less dramatically, and in proportion to the amount of surface available for close
interaction. These properties lead to the surprising result that an edge-wall interaction
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Fig. 2. Antisymmetric flow, mode II u = (—1,2,—1) on corner
(1,1,1). Tractions across the diagonal of the top plane.

can be solved more accurately than the face-wall one. An iterative method based on
the GMRES [11] has been applied for the solution of the discretized system.

A number of different discretization techniques have been applied to the boundary
integral equation of the second kind. Here we want to distinguish between the traction
solving methods and the solution of the mobility problems. As we have seen, the
tractions are singular and require special attention; however, the double layer density
on sharp corners and edges is just a discontinuous analytic function. The discretization
methods used in this work range from low order boundary elements up to spectral and
B-spline [1] formulations. In the case of the lower order (constant, linear, or quadratic
elements), adaptive discretization has been applied in order to capture accurately the
solution in the edge and corner region. Integration on the boundary elements is always
an important issue in both the speed and the accuracy of the code. This is especially
important in our case, since we are looking at very small separations. We have applied
a mixture of adaptive and fixed point integration [5].

4. Particle-wall interactions

Lubrication theory predicts that flat (in small scale) particles approaching each other
or a wall will experience infinite stresses and are thus restricted from touching in finite
time. For particles with sharp corners and edges these lubrication stresses are no
longer present and the particles will touch-—but how? In this work we examined the
particle-wall interaction for particles shaped as parallelepipeds.
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Fig. 3. Particle-wall interaction. Particle approaching with the
edge: “approaching”.

Due to symmetry, for this geometry we can define three separate fundamental
movements of the particle with respect to the wall:

e The particle is approaching the wall.
e The particle is “skating” along the wall.
e The particle is “scraping” across the wall.

Of course there is yet another separate category where the particle is approaching
with its three-dimensional corner. Numerical simulations of these scenarios have been
done using the boundary integral equation. As expected the approaching velocity is
heavily dependent on the dihedral angle of the particles. As the particle is moving
normal to the wall the “approaching” velocity shows an algebraic decay with the
particle-wall gap. The decay exponent increases as the dihedral angle increases and it
covers an interval between 1 (almost flat surfaces) to 0 (needle like object). Here we
should mention that in the case of the flat surface we can reproduce the lubrication
results. This behavior of the exponent should be expected, since as the dihedral angle
increases the particle surface that is exposed to the interaction also increases and the
fluid between the particle and the wall can escape easier. However, since the decay
exponent is less than 1 the particle will touch the wall within a finite time period.

Now we turn our attention to the remaining two flow modes: “scraping” and
“skating”. In both cases the particle motion is almost unaffected by the presence of
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Fig. 4. Particle-wall interaction. Particle approaching with the
edge: “scraping”.

the wall, since it retains 20% or even 50% of its bulk velocity. For separations less that
0.1 of particle size, sedimentation velocity is insensitive to the gap. The flattening of
the curve is strongly dependent on the dihedral angle. In contrast, smooth particles
sliding across a plane will follow a logarithmic resistance to sliding.

In the case that the particle is approaching the wall with its 3-D corner, the sed-
imentation velocity remains relatively unaffected. The presence of the 3-D corner
means that even less surface is available for squeezing the fluid out of the gap; as
a result the particle retains up to 50% (parallel), 20% (normal) of its bulk velocity.
Clearly the presence of the corner allows touching, which leads to the possibility of
solid-solid friction on any of these cases. Thus any cornered particle will hit the wall
with a finite velocity.

Thus we can distinguish four different interactions between edged particles in a
suspension:

e Face-face interactions where the lubrication forces are dominant.
e Face-edge approaching where the squeezing action is enough to stop the particle.
e Face-edge sliding where the particle will slide with a finite velocity.

e Face-corner interactions where the particles will hit each other with a finite
velocity.
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It is obvious that due to torques developed in a concentrated suspension, the most
frequent interaction will be the face-corner type, leading to particle collisions even in
Stokes flow. Any attempt to model the behavior of such suspensions must include
modeling of such collisions.
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B.D. SLEEMAN and H. CHEN

Acoustic scattering by irregular obstacles

1. Formulation of the acoustic scattering problem

We wish to discuss the problem of scattering of plane incident waves by an obstacle
I' = R™ — (), where (2 is an exterior domain. This is a classic problem of acoustics
with a long and distinguished history; see, for example, [1] and [2]. The problem is
formulated as follows.

Let wo(p, x) represent an incident plane wave propagating in the direction p, and
assume a time-harmonic dependence exp(—i|p|t). Let w;(p, z) be the wave scattered
by the obstacle I'. Then w(p,z) = wo(p, x) + w1(p, z) satisfies the boundary value
problem for the Helmoltz equation

(A+|p[2) wip,2) =0, zeQ, (1.1)
Bw(p,z) =0, z€dl, (1.2)

and wy (p, ) satisfies the Sommerfeld radiation condition to ensure that the scattered
wave 1s outgoing.

The boundary condition (1.2) may be of Dirichlet (sound-soft obstacle), Neu-
mann (sound-hard obstacle), or impedance type.

Of particular interest in this paper is the study of solutions to (1.1), (1.2) for
sound-hard obstacles whose boundary Ol is rough in the sense to be discussed below.
The case of the sound-soft obstacle has been treated previously in [3].

In order to formulate the problem rigorously it is necessary first to develop a
generalised notion of the Neumann boundary condition. This is motivated by the
formal use of Green’s formula

/ {(Au)v + Vu - Vol dr = / (0 - Vu)vds, (1.3)
Q aT

which is valid whenever 9" and the functions u and v are sufficiently regular; here &
is the unit outward normal to OI'. In particular if u satisfies the Neumann condition
on OI', then the right-hand side of (1.3) is zero for all v for which (1.3) holds.

To adapt (1.3) to the case where OI' is arbitrary we follow [4] and begin by
introducing the function spaces

Ly(Q2) = {u : u(x)is Lebesque measurable on  and / lu(z)]?dx < oo} , (1.4)
Q

LQ(A, Q) = LQ(Q) N {’LL : Au € LQ(Q)}, (15)
L%(Aa Q) = L%(Q) N L2(A7 Q)7

where

Li(Q) = La() N {u : Du € Ly(Q) for |af < 1}.

Research supported by grants from the Royal Society of London and the National Natural
Science Foundation of China.
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We now define the generalized form of the Neumann condition.

Definition 1.1. u € L}(A, ) is said to satisfy the generalized Neumann condition
for Q if and only if

/ {(Au)v + Vu-Vu}dr =0 for all v € L3(Q). (1.7)
Q

Note that (1.7) is meaningful for arbitrary domains Q and defines a closed
subspace

LY(A,Q) = Li(A, Q) N {u : u satisfies (1.7)}

in the Hilbert space L3(A, ).

The condition (1.7) is equivalent to the classical Neumann condition if 9T is
sufficiently smooth. In this case the functions v € L(A,2) will have a trace on dI'
and Vu for functions u € Li(A, Q) will have a trace on 8T by the Sobolev imbedding
theorems.

Definition 1.2. Let (2 be an exterior domain. Then the outgoing scattered wave
wi(p, ) for Q and p € R™ is the function characterized by

WO(p, ) + wl(p7 ) € Lév,loc7
which satisfies (1.1), and w; (p, «) satisfies the Sommerfeld radiation condition.

Next we need to establish existence and uniqueness of solution to our problem.
In order to do this we need a local compactness result for 2 as well as a corresponding
limiting absorption principle for obstacles with rough boundaries. The tool needed
for these considerations is an extension of the Rellich selection theorem.

Definition 1.3. (Local compactness property, LC) A domain 2 C R™ is said to have

the local compactness property if and only if for each set of functions S C L%’IOC(Q)
and each R > 0,
lullzi@r) < C(R)

for all u = v|q, with v € S implies that {u = v|q, : v € S} is pre-compact in Ly(Qg),
where Qp =QN{z: |z| < R}.

Rellich’s original selection theorem states that bounded domains with smooth
boundaries are of class LC. In [5], this result is generalized to domains having a
“segment property”. We recall ) has the segment property in the sense of Agmon
if there exists a finite open covering of 9¢2, that is, 9 C O1 UO2 U ... UOp, and

corresponding non-zero vectors (), 2(® ... (™ such that

{x=a0+te, 0<t <1} CQ forevery 29 € QN O;.

While domains having the segment property occur in many applications, there
are, as pointed out in [4], some notable exceptions. For example, the disc

U= {(#1,22,23): 2] +23 <1, 23 =0} C R
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does not have the segment property. To overcome these limitations, Wilcox [4]
introduced the set of domains having the “tiling property”.
To introduce this concept, suppose that there is an open set O C R™, compact

sets K1, Ko, ..., K, C R™ and nonzero vectors (V2 ... 2 such that
oI c O, (1.8)
N
onQc K. (1.9)
j=1

Each set K lies in a curvilinear coordinate patch O; so that
{z=a0+tP:0<t<1} CQ (1.10)

for every x¢p € QNK holds when © = (z1,...,z,) are the corresponding coordinates.

Definition 1.4. (Finite tiling property) An exterior domain ) has the finite tiling
property if (1.8)—(1.10) hold for a suitable set O, compact sets K, and coordinate
patches O;.

Remark. Domains having the finite tiling property embrace many fractal domains
including the well-known Koch Island.

From this we have the following extension of the theorems of Rellich and Agmon.

Theorem 1.1. [4] If Q is an exterior domain having the finite tiling property, then
Qe LC.

From the above definitions we have the following result [4].

Theorem 1.2. Let Q be an exterior domain such that @ € LC. Then for each
p € R" there exists a unique oulgoing scattered wave wi(p,x).

Furthermore, we have an important corollary.

Corollary 1.1. Under the conditions of Theorem 1.2 there is a function 6(n, P) €
C>® (5™ x R*\ {0}) such that

Silpllzl .
w1 (p,x) = |$|(n—_1)/29 (m,P) +q(p, z),

where g(p,x) = O(|z|~("+1/2) as x| — oo uniformly for n = (x/|z| € S*~! and p
in any compact subset of R™\ {0}.

The function 6(n, p) is called the far-field amplitude, or radiation pattern.

© 2000 by Chapman & Hall/CRC



2. The scattering phase

We now introduce the quantity which is the main subject of study, namely the
scattering phase s(\), A = |p|?. This can be defined in several ways. For example one
can use the trace-class perturbation theory of Birman and Krein [6] and Yafaev [7]
using wave operators or, more generally, as in [8], where Kato’s invariance principle
is employed. Alternatively, we can use a traditional approach as modified by Robert
[9] and Christiansen [10]. Essentially, the scattering matrix S(\) : L?(S"71) —
L2(58™71) is given by
S(A) =id + A(N),

where A()) is the operator with Schwartz kernel given by the radiation pattern
6(n,p) as defined above.

Definition 2.1. (The scattering phase) The scattering phase s()\) is defined as

s()) = Qim log det S(N). (2.1)

The first result concerning the asymptotic form of s(\) (as A — oo) for strictly
convex domains was stated without proof in [11]. Then Majda and Ralston [12]
established the form of the first three terms in the expansion of s()) for strictly
convex, smooth domains. For non-convex domains Jensen and Kato [8] obtained the
first term in the asymptotics of s(A) for star-like domains. Petkov and Popov [13]
have established the most complete result for the Dirichlet problem by obtaining
three terms in the expansion of s(\) for all smooth and non-trapping obstacles.

Much more recently, Robert [14] has developed a new trace perturbation formula
for obstacle scattering, which considerably extends the class of obstacles for which
scattering phase asymptotics can be developed. Robert’s results for the Dirichlet
problem are summarized in the following assertion.

Theorem 2.1. For every n > 1, the Dirichlet scattering phase s(\) is given by

s(A) = (27) TPwn [T A2 + Ro(\)  as A — oo, (2.2)

where wy, is the volume of the unit ball in R™, |-|,, is the n-dimensional Lebesgue mea-
sure, Rp(\) = o(N*/2) for arbitrary compact obstacles T', and R,(\) = OA~1)/2)
for smooth compact obstacles.

In addition, if the set of billiard trajectories in Q@ = R\ I' has measure zero in
the cotangent space, then

Rp(N) = [42m)" 1) w1 0T g AD/2 oA D/2), (2.3)

The asymptotic formula (2.2) also holds for the Neumann scattering phase.

The results of Robert have been further developed by Christiansen [10] to de-
termine the asymptotics of the scattering phase for both Dirichlet and Neumann
problems for obstacles with irregular, possibly fractal, boundaries. We return to
these results later in Section 3.
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In 1992 the authors established asymptotics of the scattering phase s(\) for
the Dirichlet problem by different methods to Christiansen, drawing on the intimate
connection between the scattering phase and the counting function N(A) for the
associated interior Dirichlet eigenvalue problem. The methods we use to discuss the
Neumann problem also differ from those of Robert and Christiansen and exploit new
monotonicity properties of s(\).

In order to introduce our results, we first describe the concepts of Minkowski
measure and Minkowski dimension.

Let T’ be a compact obstacle in R™ (n > 2) with boundary 0I'. We define
I.={x€eR":d(z0dl) <e}, >0, (2.4)

where d(-,0I") denotes the Euclidean distance to the boundary OI'. The set T'; is
called the e-neighborhood of 9T". For each positive number £, the numbers

p (0,0T) = lim supe” " "O|T,|,,
e—0+

2.5
iy (£,8T) = lim inf e~ (=91, (2:5)

e—04

are called the f-upper and f¢-lower Minkowski contents of OI', respectively. The
Minkowski dimension of 9", denoted by 6, is defined as

S=inf{l e Ry : p*(£,0T) =0} =sup{l € Ry : u*(¢£,0T) = 0}. (2.6)
Furthermore, we say that OI' is 6-Minkowski measurable if
0 < s (6,0T) = u*(6,0T) < o0, (2.7)

and the common value denoted by u(6,0T") is called the 6-Minkowski measure of OT'.
In the case of the Dirichlet scattering problem the following assertion holds.

Theorem 2.2. [3] Let I' be an obstacle in R™ with boundary OU'. If OT is 6-Min-
kowski measurable with 6 € (n—1,n) and 6-Minkowski measure pu* (6, 0L'), then there
exists a constant Cp s > 0 depending only on n and é such that

|$(A) = Cu| TR AY2| < Gy 1% (8, 8T) A/

as A — 00, and where
C, = (4%)_”/2/1“(1 + %n)

In the case of the Neumann scattering problem we have recently established the
following assertion.
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Theorem 2.3. [15] Let I' be an obstacle (that is, compact with connected comple-
ment 0 = R™*—T') in R™ (n > 2) with boundary 0T, which satisfies the “finite tiling”
property. If § is the Minkowski dimension of L', 6 € (n — 1,n) and p*(6,0T) < oo,
then

(i) if 6 =n — 1 and s(\) is the Neumann scattering phase corresponding to T,
there 1s a positive constant d,, depending only on n such that

|s(A) — Cn|F|n/\”/2‘ < dppt(n—1,00)(1og A2 as A — oo;

y (gii) ifhﬁthe t(n — 1,n) then there is a positive constant d,s depending only on n
and & such tha

|8(A) = Co|T [ A™2| < dnsp™(8,00)0%%  as X — oo.

The proof of Theorem 2.3 depends on a tessellation of domains argument to-
gether with the following monotonicity properties of the scattering phase.

Lemma 2.1. [16] Let 'y, I'y be two obstacles with T'y C 'y, and let sp1(A), sp2(A)
be the Dirichlet scattering phases corresponding to I'y and T'a, respectively. Then

$p,1(A) < sp2(A).

Lemma 2.2. [15] Let I' be an obstacle with Neumann scattering phase sn(A\) and
Dirichlet scattering phase sp(\). Then

SN(/\) < SD(/\) fOT A > 0.

We conclude the above discussion by pointing out that if we know the scattering
phase s(\) as A — oo, then we can determine the volume of the scattering obstacle
I' and the Minkowski dimension § of OI'. In other words, the volume and a measure
of the “roughness” of the surface of an obstacle may be determined from the high-
frequency asymptotics of the scattering phase.

It is also of interest to ask whether the scattering phase reveals any further
geometric properties of the scattering obstacle. We consider this in the next section.

3. Further properties of s(\)

We recall from Theorem 2.1 that if 9T is sufficiently smooth and satisfies the billiard
condition, then the precise form of the second term in the asymptotics of s(A) can
be determined.

The principal tool used by Robert [14] in obtaining this result has recently been
generalized and extended by Christiansen [10] to obtain the asymptotics of s(\) for
somewhat more general domains. We apply Christiansen’s ideas to domains with
fractal boundaries.

Let P be the Laplacian defined on the exterior of a compact set 2 with R™ \ Q
connected. Further, let Q C B(Ry) (the ball of radius Ry), and let T, R > Rg + ayg,

be a flat torus. Next, let P* be the unbounded self-adjoint operator acting on the
Hilbert space

H# = Hp(gr,) ® L* (Tr\B(Ro))
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and given by
P#yu = P(yu) + Ar(1 — x)u, (3.1)

where x € C§°(B(Ro + 3a0)) and x = 1 on B(Rp). Then under certain conditions
Christiansen proves that the scattering phase for 2 is given by

5(\) = =Np(N\) — C, Vol TpA™?  O(\maxi(n=1)/2.d/2}y (3.2)
where C,, = (2m)™™Vol(B(1)), and N, () is the counting function for P# satisfying

Npu(A) = Ny (A = 1) = OA¥?)  as A — oo. (3.3)

The importance of this result is that if we know enough about the counting
function Np%(A), then we may be able to obtain more precise information concerning
3(A). Precisely,

Npu#(X) =# {); : )\; is an eigenvalue of P# with \; < A}. (3.4)

Counting function asymptotics has a long history going back to the work of Weyl,
and over the past two decades has been explored intensively in relation to domains
with fractal boundaries. For reference to this work we cite [17-25] and the titles
therein.

To illustrate a typical result, consider the set Tr \ Q C R? as shown in Fig. 1.

Here Tp \ Q = I\_JZO:O(#Ak)Q;c is a connected set consisting of #A, = k squares Qp

of side a®, 0 < @ < 1, which has small cuts or openings of width €, on each side,

where
aFer—0 ask— .

£
G

Fig. 1.
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Then 2 = Tg \ (Tg \ ) is compact and R? \  is connected. Furthermore, the
Minkowski dimension of I' = 92 is given by

6 =(In3)/1n(1/a)

provided v/3 < 1/a < 3.
From the results of Chen and Sleeman [20] and Fleckinger and Vassiliev [22] we
know that for the set Tr \ ©, Npx(A) can be estimated as

TPy (t 4 0(1)) X2 4 0(A¥/2) < ¢(A) = Now(N) S T 0P (H)X2 £ 0(X%/?), (3.5)

— 00, where t = (In A — 2Iin7)/(21n(1/a)) and ¢(A) is the Weyl term given by

as A
(A) = (1/(4m))|Tr \ Q2. Furthermore,

Py(t) =) a® M py(alF ), (3.6)

where po(r) = (1/4)r? — # {(q1,¢2) € N?: ¢ + ¢5 < r?}.
For this example it can be shown that (3.3) holds with d = § and the result of
Christiansen allows us to claim that

s(A) = (4m) QA + Fa(AX2 £ 0(N/?), (3.7)

where Fy(\) = (47) 7 |71\ QJ2A — N (N)] /X%/2 is a well defined, positive, bounded
and oscillatory function that is left-continuous, its points of discontinuity being dense
in R+.

4. Uniqueness

It is important and natural to ask if the scattering obstacle €2 is uniquely determined
by s(A).

The question of uniqueness of the inverse scattering problem has been studied
extensively in the literature (see [1] and [26]), and the results are generally concen-
trated on reasonably smooth obstacles, that is, Lipschitz domains. In the case of
highly irregular obstacles very little is known. Furthermore, in view of the results
above and in particular the relation been s(A) and N, () as A — oo, it is clear that
uniqueness of our inverse problem is closely related to the classic isospectral problem
for Npx(A).

Let (M,g) be a compact Riemann manifold with boundary, and let A be the
Laplace operator defined on M. The spectrum of M is a sequence of eigenvalues
of A. Two Riemann manifolds are isospectral if their spectra (counting multiplici-
ties) coincide. A fundamental question concerning the relationship between spectral
analysis and geometry raised by Kac [27] is whether two isospectral planar domains
must necessarily be isometric. Despite many results for nonplanar domains being
known for some time, it was not until the ground-breaking work of Gordon, Webb
and Wolpert [28] that Kac’s question received a resounding negative answer. Fur-
thermore, these authors’ work allows one to construct a whole variety of pairs of
isospectral nonisometric planar domains. Following [28], Berard [29] gave a simple
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proof showing that the eigenvalues of two planar isospectral, nonisometric domains
A, B are identical, by constructing a map which takes an eigenfunction of A and
maps it onto an eigenfunction of B for the same eigenvalue. The idea of transposition
maps has been developed further by Buser et al. [30] to generate new examples of
isospectral domains. In [31] and [32] we have developed these ideas further to con-
struct isospectral, nonisometric planar domains with fractal boundaries. The key to
these constructions is a “paper folding” argument due to Chapman [33], which is a
constructive method of realizing the transposition maps of Berard [29] and Buser et
al. [30]. Examples are given in Figs. 2 and 3.

. /
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b ]
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Fig. 2.

(
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Fig. 3.

Figs. 2 and 3 show a pair of (i) isospectral nonisometric domains with piecewise
continuous boundaries represented by the outer curves, and (ii) the first steps in
constructing a pair of isospectral nonisometric connected fractal domains represented
by the domains enclosed by the inner boundaries. The fractals are constructed
following a similar procedure as for creating the Koch island curve based on the
complement of the 1/3 Cantor set.

The upshot of this is that s(A\) does not in general determine the scatterer
uniquely, and this prompts us to ask the following questions:

1. How much information is required of the radiation pattern to determine a
fractal scattering obstacle uniquely?

2. Can one derive stable numerical methods to reconstruct fractal obstacles
from scattered data?
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M. AHUES and A. LARGILLIER

On generalized inverse Steklov problems

1. Introduction

Let p be a positive integer, 2 C IRF a convex polygonal open set. We use the notation
Oiv = Ov/Bs;, = (O1,...,8,). Let II be a polynomial in p variables. We shall
deal with the formal differential operator 11(9). E denotes a suitable Banach space of
(classes of) functions defined in €2 in which we expect to find the (class) of functions
I1(8)v, for v in some subspace of E. Let I be a positive integer, and for each positive
integer ¢ < Z, let b; be a boundary linear form with domain ’D(b ) C E. Similarly, for
a fixed p051t1ve integer d < Z, and for each i such that 1 < ¢ < d, let f; be a boundary
linear form with domain ’D(f,) C E. Weset Dy = NL, D(b;) and Dy = NE, D(f).
We assume (by,...,br) is a linearly independent system in the algebraic dual space
D;. The motlvatlon of this paper is the following eigenvalue problem:

I"ind all nonzero complex-valued functions v € E and all nonzero complex numbers
u such that

@ =pvinQ, fw=pbvforl<i<d bv=0ford<i<7Z,

which we call a generalized Steklov problem.

Problems of this kind are encountered in the control of the digitation effect in
petrol recovery problems (cf. [3]). Certainly, if d = Z then the last Z — d homogeneous
boundary conditions do not appear in the problem.

2. The theoretical framework

Let X be the product ace X = E x €%, endowed with the norm defined by the
formula ||(u, @)|| = maxfluHE, &, } We deﬁne V={ve E : lI(8)ve BE}ND,NDs
and we suppose that V' is not reduced to the null function. We consider first the
operator A : D(A) € E — E defined by Av = I1(8)v, with domain D(A) given by
DA ={veV  :bv=01<i<T}

We : suppose that the operator A has a compact inverse K : E — E. We say in
that case that (II1(8); by, ..., br) is bijective.

We define the operator L: DL)CX — X by

L(v, ) = (@@)v, fv),
where f = (fi,...,f4]" with the domain D(L) given by
D) ={(v.f)e X : veV, fi=bw, 1<i<d;bp=0,d<i<T}.
Proposition 1. D(L) is a linear subspace of X and L is a linear operator.

To prove that L has a compact inverse we consider the following problem:
Given ue E and fe €%}, find vE V such that

H@v=uinQ, bv=Ffor 1<i<d, bv=0ford<i<Z.

Let (p1,...,pz) be an ordered family of linearly independent functions in D, ad-
joint to the ordered system of linearly independent boundary linear forms (b, ..., br),
in the sense that b;(p;) = &;;, the Kronecker delta. The function

d
w=v- 3 Oy
=1
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solves I1(Q)w = u — f: Big; in Q, bjw=0for 1 <i<Z, where
= g; =1(Q)p; for 1 < j < d.
In other words, w solves
Aw =u— Jé B;4;
and hence .
w=Ku-— J§lﬁjgj,
where
gi=Kgifor1 <j<d
The solution v is then uniquely defined by

vEKu+¥ﬂj(pj—gj)- (1)

We define the functionals &;, the matrix of functionals ¢ and the matrix B € €%*¢

as follows: .
51. = fiK1 g = [‘511 o 7€d]T and B(Zaj) = fzpj _€ZQJ‘
We have proved the following assertion.

-,

Theorem 1. If B is invertible, then L has a compact inverse given by T (u, &) = (v, ),

where .
f=B7(E-gw)
and v is defined by (1).

Corollary. The spectrum of L is a countable subset of € consisting of isolated eigen-
values of L with finite algebraic multiplicity.

We call the eigenvalue problem for operator T' a generalized inverse Steklov problem.
A collectively compact approximation T;, to T will allow us to solve this eigenproblem
. numerically.
We can give a precise sense to the matrix B in terms of the following standard
direct Steklov eigenvalue problem (see [2]):
Find all nonzero complex-valued functions v € V' and all nonzero complex numbers
1 such that

H@w=0inQ, fiv=pbvforl<i<d, bhv=0ford<i<T. 2)

This problem is equivalent to the finite-dimensional eigenvalue problem corresponding
to the operator

fe e* s fve ¢
where v is the unique solution of
HAw=0inQ, bv=gforl <i<d bv=0ford <i<I,
d d
that is, v = 3. f;(p;j—g;) so fiv = ¥ (;(fip; —&.9;). Hence, the associated eigenprob-
=1 7=1

-,

lem is precisely the one of matrix B. To each eigenpair (u, 3) of B we can associate a
function v which satisfies (2).
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The preceding remarks lead to the following assertion.

Theorem 2. If (1(3); fi,---, fa,bat1, ..., bz) is bijective, then u = O is not an eigen-
value of (2) and hence B ts invertible.

3. Numerical approximation

We fix the space E to be C°((). Then, the compactness of K is equivalent to the
existence of a positive Radon measure m on Q and a kernel & : @ x Q — € such that
(1) for all s € Q, the function ks t€ Qs k(s,t) € C belongs to L}, m);
(2) the map s € Q — &5 € L}(}, m) is continuous;
(3) the operator K is given by Ku = /S._]n(-,t)u(t) dm(t).
The eigenvalue problem for T' consists of finding all nonzero couples (u,&) € X =

C%Q) x €%! and all complex numbers X such that T'(u, &) = A(u, @). This problem
leads to the following equations in the unknown (u, &@):

& — &u = ABa,
d d
J @) = XY a5 (), )am() + A Y cp; = Xa
=1 =1
The last one may be rewritten as

q
s Dute)am(e) = Mo+ X sl — )

We suppose that « is a continuous kernel and that a numerical quadrature formula
defined with a grid G, of n points G, = {tjn : j=1,...,n} C Q, and weights (w, )7,
is used to approximate the integrals involved here above. Let us denote by A, the
approximate eigenvalue and by (un, &) an approximate eigenvector corresponding to

An. Set @, = [Un(tin), - -, Un(tn,)] " and define the matrices Ky, Cy, and W, by
Kn(i,§) = wipn 6(tin, tin), Cali, 7] = g5(tun) — Pi(tin), Wali,§) = win fiss(1850).
Then the unknowns A, and (wun, &,) satisfy
— Wiy, = M\Bn, Knily = Aty + Crin),

[—vﬁ Tlla]=x[e 5[lz]

If B is invertible, then this generalized eigensystem may be rewritten in the stan-

or equivalently,

dard form
K,+C,B'W, -C,B-! @y | ) Un
-B-W, B! Gn | Oy |
Let @, = a1, - ) Qg ] - Then for each A, # 0 the function u, may be recovered

from its grid values iy, with the natural znterpolatzon formula

nl6) = 5 Sl )+ L ()~ (0.
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The eigenvector (tn, &n) corresponds to an operator T, : X — X defined by
T(w,8) = (v, Ba)

where
En = [:61,111 .. ﬁd n]T W ’LL) 4= [u(tlgﬂ-)7 Tt u(i’":n)]T

and

'Un——zwjn ]TL +Zﬂzn P — gi)

Theorem 3. If B is mvertzble and the quadmture formula converges for continuous
functions then T,, is a collectively compact approzimation to T.

Proof. Polya’s theorem implies that ¢y = sup E |w; | is finite. Since the sequence
W, is pointwise convergent in C°(Q), T, is p01ntw1se convergent to T in X. By the
Banach-Steinhaus theorem, W, is uniformly bounded with respect to n. Thus we can
set c1 = || B7Y|., (1 +sup 1Well ) We must prove that for some integer ng, the set
S = {T(uv, @) : ||ull, < 1, |ldll, <1, n=mne} is relatively compact in X. Fquiv-

alently, we must prove that the set Vs = {ve C%Q) : (v,8) € S} is bounded and
equicontinuous in C°({) and that the set Rs = {f€ €% : (v,8) € S} is bounded

in €. If € Rg then
18l < 1B~ Ul + I Wallollull) < 1,
s0 Rg is bounded. If v € Vs then

o]l < (eo+ex max flgill..) max (s, £)] + e max [|p]l..,

80 Vg is bounded. For s and § in © we have
? Zw] n S t] n; = K’(éi tj,n))u(tjnn)

+ il ﬂl,n(p‘b(s) - pz(g) + gi(g) - gi(s))7
hence )

[v(s) —v(8)| < (cot e {gfs)gllqillm) max |re(s, ) — £(5,¢)|
+a max Ipi(s) — ()]

Bach function p; is uniformly continuous in Q and & is uniformly continuous in £ x Q.
Hence Vy is uniformly equicontinuous.

We recall that the collectively compact convergence of T;, to T ensures the spectral
convergence in the sense of [1]. That is to say, given an eigenvalue X of T that is an
isolated point of the spectrum of T' and whose spectral projection P has finite rank
m, there exists a positive integer ng such that for each n > ny, 7, has a cluster of
eigenvalues whose total spectral projection P, is a collectively compact approximation
to P. This implies that P, has finite rank m, its range converges in gap to the range
of P and the sequence of complex numbers A, = trace(P,T,)/m converges to A.
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4. Example
Consider the model problem )
—Avy = pvin Q, aﬁ =puonl, v=0o0nl,= l—ff?

where 2 = | 0,1 [ % ]0,1[,and I'y = {1} x ] 0,1[. Denoting s; = s, s, = ¢ and
separating variables v{s, t) = y(s)0(t) we find that for each positive 1nteger k we must
find a function y such tlmi

() + (km)Pyls) = py(s), forse |0, 1], (1) =puy(l), u(® =0.

We identify the boundary linear forms by = (1), by = (0) and fiy = ¥'{1).
Multiplying the differential equation by §, then integrating (the first memher bry parts)
and taking into account the boundary conditions, we find ||y/||3+ (k7)?||y)3 = p(l|yllZ+
[»(1)]*), where | - ||2 denotes the Lo(Q2)—norm. If ||y|l» = O then y = O because y is
continuous. Hence 4 = (||y'[|2 + (kﬁ)"'llylliﬁ)/('.iyJIEJr l¥(1)*) € R,

Let us fix & = 1. Svtllng v? =72 — p we find that » must satisfy the equation

(a? — v*)sinhv — veoshwv = 0

W
=

which has a unique positive solution.

The eigenspace corresponding to the unique eigenvalue pe | 0,7° [ is generated
by the eigenfunction y defined by y,(s) = sinh(sy/7 — p).

Setting 1 = o — 7* we find that v must satisfy the equation

veosy — (17 + 7¥)sinw = 0, £4]

which has an infinite countable set of positive solutions.

The eigenspace corresponding to each eigenvalue p€ | 72, +oc [ is generated by
the eigenfunction y, defined by y,.(s) = sin(sy/p — 72).

Let us come back to the Green functien a H) roa.ch dewloped in the proccdmg, sec-

tion. An easy computation gives p(5) = 5, q1(5) = 75, pa(s) = 1—5, qa(s) = #*(1-3),
g =1
The kernel « is the Green function defined by
g ,J__;l____{sinhﬁ(l—l]sin.hsrs fo<s<e <1,
Sl e sinhw(l — s)sinhat f0<t<s<],
1 osh o sinh i sinh s
; il £) = — §) =8 —
B(1,1) = TGinhx’ fu-,t) sinhy ’ (s) = sinhw

In this example, the approximation T;; is buiit with the trapezoidal composite rule
using 41 equally qpacvd points. We have used the Newton-Raphson method to ap-
praximate the unique positive root vg of (3) and the first nine positive roots (r; }1 L of

(4). These values lead to eigenvalues

M=

1
and, for §=1,...,9, X = = 2

7t — I=0 R

which may be considered as being the exact ones. They are compared with the cor-
responding approximate eigenvalues provided by T, with n = 41, in the following
table.
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APPROXIMATE EIGENVALUES

From (3) and (4)
(Newton-Raphson)

Eigenvalues of T;,
{(with n = 41)

O 00 =1 U W N O,

0.3700185516E-00
0.4818214643E-01
0.1963232407E-01
0.9951702595E-02
0.5894213388E-02
0.3868063892E-02
0.27239255630E-02
0.2018419648E-02
0.1554023099E-02
0.1232618216E-02

0.3701147779E-00
0.4823680311E-01
0.1968607326E-01
0.1000484817E-01
0.5947125240E-02
0.3920934498E-02
0.2776865444E-02
0.2071503314E-02
0.1607308060E-02
0.1286153675E-02

These results improve on those obtained by a finite difference scheme applied to the
direct generalized Steklov problem. That scheme proves to be equivalent to a rectangle
composite quadrature formula applied to the generalized inverse Steklov problem, as

shown in [3].

The results of this paper can be easily extended to weakly singular integral opera-
tors. Also, numerical computations can be improved by iterative refinement schemes

based on Newton-like procedures.
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C. AVILES-RAMOS, K. T. HARRIS and A. HAJI-SHEIKH

A hybrid root finder

1. Introduction

Standard root-finding techniques are commonly applied to boundary value problems,
property estimation, etc. They are usually chosen so that the iteration never gets
outside the best bracketing bounds obtained at any stage in the calculation. The secant
and Newton-Raphson methods can violate this condition [1]. The bisection method
does not violate this condition, but it converges more slowly toward the root. Ridders’
method [2] is a variant of the false position method that is guaranteed to stay inside
the bracketed interval and its convergence is superlinear. An algorithm developed in
the 1960s by van Wijngaarden, Dekker and others has superlinear convergence and
stays within the bracketed root [3]. An improved algorithm presented by Brent [3]
guarantees convergence if there is a root inside the bracketed interval.

A hybrid root-finding method is developed that efficiently finds an accurate root.
This method is an application of a high-order Newton’s and the bisection methods.
The information gained while executing the bisection method is preserved to compute
the first and second derivatives. The hybrid root finder has a few unique features.
Except for computation of f(x), it contains no strenuous mathematical relations. The
technique uses the bisection method until it achieves a certain criterion. Below is the
description of the hybrid root finder; it is followed by relevant numerical examples.

2. The hybrid root finder

The objective is to develop an efficient root finder that can produce 10° to 10° ac-
curate eigenvalues in a short time, and with a sufficiently high computational speed.
To accomplish this purpose, the root finder must be free from computationally slow
functions such as square roots and produce accurate results with a few iterations. The
hybrid root finder, developed here, satisfies all these requirements. The root finder
uses the bisection method to find the region where the root is located. Then, it uses a
high-order Newton’s method to compute the root. Meanwhile, central differencing is
used to compute the first and second derivatives of the function under consideration.

Let f(x) = 0 be a function whose root is being sought. The Taylor series expansion

of f(z) = f(xo + h) is

Floo+h) = flzo) + ' @o)h + 5 (w)h? 1)

As short-hand notations, define a = f'(z¢) = (fa — f1)/2Az and b = f"(x¢) = (f2 +

f1—2f0)/Az?* where fo = f(z0), f1 = f(z1), and fo = f(z2). The locations of fy, fi,
fa, and the value of Ax are shown in Fig. 1. Based on Eq. (1), the root is located at

f(x) = f(x + h) = 0; that is,

1
f(#0) + ah + 5bh* = 0. (2)
The bisection method was used to find the approximate location of zy that is used to
calculate fy. Since x1, x2, f1, and fy are readily available from earlier steps, then a

central differencing scheme as in a finite difference analysis yields the values of a and b.
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Fig. 1. A graphical description of parameters in the hybrid root finder.

Once the values of a and b are known, the parameter A points to the location of the
root at x = xy + h. However, to avoid using the square root function, one can set

h=—fo/a+e, (3)

where € < h because € is a slight perturbation of h. Now, it is sufficient to compute €
instead of h. After substituting for h in Eq. (1), one obtains

b(—fo/a+€)* + 2a(—fo/a +€) +2fy =0, (4)
which produces

e = 560 /a) (b — ) )

In the derivation of (5), it is assumed that € < h, hence the term containing € is
deleted. A computer program is written to include the algebra described above. The
computer program is tested using several numerical examples.

Example 1. A simple example is selected to show the methology and convergence
behavior of this root finding technique. Data are processed using an Intel Pentium
processor. The roots of the function sin(x)=0 located between 2 and 4 is computed
by the Newton’s method, Table 1, and by this method, Table 2. The computations
are performed using Fortran 77 with double precision accuracy. For comparison, the
root is located at x = 7=3.14159265358979323, computed using Mathematica.
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Iterations Root Criterion Acceleration | Percent Error
1 3.169401614135062 | -0.278054E-01 | 0.659595E-02 8.85E-03
2 3.136345059787232 | 0.524757E-02 | 0.251164E-03 1.67E-03
3 3.142581331822654 | -0.988678E-03 | 0.893907E-05 3.15E-04
5 3.141627744540093 | -0.350910E-04 | 0.112620E-07 1.12E-05
10 3.141592645261746 | 0.832805E-08 | 0.634324E-15 2.65E-09
15 3.141592653591770 | -0.197696E-11 | 0.357330E-22 6.59E-14
18 3.141592653589780 | 0.130010E-13 | 0.159189E-26 2.26E-15
19 3.141592653589796 | -0.298616E-14 | 0.561637E-28 8.48E-16
20 3.141592653589793 | 0.122461E-15 | 0.255106E-29 2.70E-18
Table 1. Calculated root using the first-order Newton method.
Iterations Root Criterion Acceleration | Percent Error
1 3.167224329702086 | -0.256289E-01 | 0.659595E-02 8.16E-03
2 3.141595438470406 | -0.278488E-05 | 0.164318E-03 8.86E-07
3 3.141592653589793 | 0.122461E-15 | 0.193887E-11 2.70E-18

Table 2. Calculated root using the hybrid root finder.

The first columns in Tables 1 and 2 represent the number of iterations while the second
columns show the computed root. The third column is the value of the function where
the computed root is located. The acceleration factor, ¢, in the fourth column indicates
the behavior of the function, hence

¢ =1"@)/f @/f @)/ f@)] =L@/ f@)]/[f @] (6)

This term indicates the speed that higher terms in the Taylor series become negligible.
The fifth columns in Tables 1 and 2 are the magnitudes of the deviation from .

Example 2. The next example shows the utility of this hybrid rootfinder for a de-
manding application. Many boundary value problems require finding eigenvalues that
are often the roots of transcendental equations. The task of finding many irregularly
spaced eigenvalues is demanding. The computation of Green’s function in a hetero-
geneous medium [4] consisting an orthotropic region 1 and an isotropic region 2 is
one example. The surfaces are located at x = 0, x = a, y = 0, and y = ¢ so that
0 <y < bforregion 1 and 0 < y < ¢ for region 2 for all x values. All boundaries
are insulated. For region 1, the thermal conductivity is ki, in a-direction and ko, in
y-direction whereas ks is the thermal conductivity of region 2. Also, subscripts 1 and
2 will identify the density p and specific heat ¢, in regions 1 and 2, and therefore the
respective thermal diffusivities become oy, = ki,/p1cp, and az = ka/pacye. There is
a perfect contact between regions 1 and 2.
The temperature solution [4] requires finding the roots of equation

tan[n,(c — b)] = —B(vn/mm) tan(v,k,b), (7)
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where § = (k‘lzkly)l/z/kg and k, = ki;/k1,. The variables «, and 7, may be real or
imaginary. They are related to the eigenvalue \,, by the relations

T = /s = (n/a)) /2, (8)
M = \o/ o2 = (nm/a)*]/2. (9)

Equation (7) has infinite roots for a given integer n, therefore the individual roots are
identified by A, m.

In this example, the following parameters are selected: a = 7.5, ¢ = 1, b = 0.9,
kiy = 0.4, ki, = 0.1, ky = 0.001, and picp1 = pacpe = 2.5. The solid lines in Fig. 2
show the variation of the left-hand side and the dash lines demonstrate the variation
of the right-hand side of (7). Equation (7) is satisfied where a solid line intersects
a dash line. The itersections are shown by circles in Fig. 2 and they designate the
location of the eigenvalues. Note that there is an eigenvalue between any two adjacent
asymptotes. This is a useful property that identifies a subregion wherein a particular
eigenvalue is located. Often, only 3 to 4 iterations are needed to achieve an accurate
solution with as many as 16 significant figures. An alternative form of Eq. (7),

f(n,) = sinfn, (¢ — b)] cos(V,.k,b) + B(Vn /M) sin(y,k:b) cos[n,(c — b)] (10)
Q)\ :1 —— Leftside, Eq. (7)
20 \ n=5 {) ---- Right side, Eq. (7)
\ 1 |
10 | N t | |
\ \
\ I | .
20 X 80 | s
0 . .
! 40 | |00
: | v
Imaginar
10} Sy oy
I R | Vo

Fig. 2. Asymptotes of the left-hand side and right-hand side of
Eq. (7) within which the eigenvalues are located.

is a function whose roots are computed by the hybrid root finder by setting f(7,) = 0.
Each function has many roots and the A, ,, is the mth root of f(n,). As an illustration,
for n = 5, the function f(7,) is plotted as a function of A, in Fig. 3. The calculated
first 6 eigenvalues A, ,, for n=>5, that is, m = 1 to 6, are given on the same figure.
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Fig. 3. Location of eigenvalues when n = 5.

3. Conclusion

The hybrid root finder is a useful tool for finding the roots of transcedental equations
one encounters when solving the diffusion equation. An examination of data in Tables
1 and 2 shows that the hybrid root finder has excellent convergence characteristics.
Figures 2 and 3 show that the computation of eigenvalues for demanding application
is possible. In all cases studied, this method accommodates functions with erratic
behavior by simply adjusting the convergence criterion. It was observed that any
convergence criterion must agree with the computer’s word size.

References

1. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical
Recipes in Fortran. The Art of Scientific Computing, Cambridge University
Press, 1994.

2. C.J.F. Ridders, IEEE Transactions on Circuits and Systems, CAS-26, 1979,
979-980.

3. R.P. Brent, Algorithms for Minimization without Derivatives, Chapters 3 and 4,
Prentice-Hall, Englewood Cliffs, NJ, 1973.

4. C. Aviles-Ramos, A. Haji-Sheikh and J.V. Beck, Exact solution of heat conduc-
tion in composites and application to inverse problems, ASMFE J. Heat Transfer
120 (1998), 592-599.

Department of Mechanical and Aerospace Engineering, The University of Texas at
Arlington, Arlington, Texas 76019-0023, USA

© 2000 by Chapman & Hall/CRC



AKBAR H. BEGMATOV
Volterra-type integral geometry problems

1. Introduction

We shall consider the following problem [1]. Let v(z) be a sufficiently smooth function
defined in n-dimensional space (z1,...,z,) and let {S(y)} be a family of smooth
manifolds in this space depending on a parameter y = (y1,...,yx). Suppose, further,
that about the function v(z) we know the integrals

Joy, et ds = £), 1)

where g(z,y) is a given weight function, ds defines the element of measure on S(y) .
The problem of integral geometry (1) is the problem of finding the function v(x) from
its given integrals, i.e., from the function f(y).

Problems of integral geometry arise in a natural way in the study of many mathe-
matical models in domains having extensive applications, such as seismic prospecting,
interpretation of the data of geophysical and aerospace observations, various processes
described by kinetic equations, and so on [2]. The apparatus devised here is the math-
ematical basis of computerized tomography, a promising and intensively developed
direction of modern science [3]. Wide classes of inverse problems for partial differen-
tial equations of various type reduce to the solution of problems of integral geometry
(see [2] and the references given there).

V.G. Romanov obtained rather general results on uniqueness of solutions to Volter-
ra problems of integral geometry in the case when the manifolds of integration have
the form of paraboloids and the manifolds and weight functions of perturbations, i.e.,
additional integrals over the bodies bounded by the manifolds, are invariant under
the group of all motions parallel to some (n — 1)-dimensional hyperplane (see [4]).
In a rather general formulation the problem of integral geometry was investigated by
Yu.E. Anikonov and A.L. Bukhgeim in special classes of functions (see [5,6]). Some
problems of integral geometry in the plane were considered in the author’s article [7].

With the advance of the technical base of computerized tomography and widen-
ing of the field of application of tomography methods the problems of determination
of functions from their integrals over manifolds of rather complicated shape acquire
greater importance. The importance of the problem of integral geometry of rather gen-
eral form is also caused by the intrinsic demands of the theory of ill-posed problems
of mathematical physics and analysis as well as the fact that some inverse problems
for PDE reduce to solving problems of integral geometry.

In the present article, we consider the problem of integral geometry in a three-
dimensional layer on a family of paraboloids with perturbation which represents the
integral over the interior of the paraboloids with a known weight function. We give
a uniqueness theorem for this problem under rather general assumptions on the weight
function. We show that the uniqueness question for the problem of integral geometry
of rather general form reduces to the studying uniqueness of solutions of the above-
mentioned operator equation (i.e., the problem of integral geometry with perturba-
tion). Unlike the mentioned works of V.G. Romanov, we do not suppose that the
manifolds over which we integrate as well as the weight functions are invariant under
the group of parallel translations along some hyperplane.

This work was partly supported by a grant from the State Committee for Science and Technology
of the Republic of Uzbekistan.
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2. Integral geometry problem with perturbation
We use the notation £ € R, z € R?, & = (£,&), & = (z1,22), R: = {z =
(1'171'271'3) - X3 Z 0}
Let {P(x)} be a family of paraboloids with vertices at x that are defined by the
relations
z3— &=z —&f, & >0.

By p(Z) we denote the projection of P(z) onto the plane z3 = 0; by V(z) we denote
the part of the three-dimensional space bounded by the surface of the paraboloid P(z)
and the plane z3 = 0.

Problem 1. Determine a function u(x) given the sums of the integrals of u(z) over
the paraboloids P(x) and the integrals of u(z) with weight function G(z,€) over the
volumes V (z)

[ weyiE+ [ G ue)de = fla), e
p(z) V(z)

for all z from the layer
L:{xERi:ngggl,l<oo}.

Here p = x5 — &.
Theorem 1. Suppose that the function f(x) is known in the layer L, the function

G(z,€) has all continuous derivatives up to the order 2 inclusively and vanishes to-
gether with its derivatives on the surface of the paraboloid P(x).

Then a solution to Problem 1 is unique in the class C3(L).

Proof. Let us consider
fol@) = [ u©)ds, fil@)= [ GaeuE)de
p(Z) V(=)

We introduce auxiliary functions

r3
F(z,t) Z//u(fvﬁfpcow, Ty + Tpsing, &) dyp d¢
0 —m
and 3
t) = =F(z,t
T(e,t) = 5 F(a.t),

where 7 =+/1 —7 and ¢ € [0, 1].
It is easy to see that
F(z,0) = fo(x),

z3

F(x,1) = 277/“(5517552,53) dgs.

0
The function J(x,t) satisfies an equation:

9? 1
al'gatj zlzzj
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Suppose that f(xz) = 0. Then

o 17
8_@‘7(:5’15) - _Zb/Amzzj(l'?T) dr + 90(1")7 (3)
where 1 1
p(z) = —ZAzlzzfo(fU) = ZAzlzzfl(fﬂ)

Uniqueness of the solution of an integral geometry problem with perturbation (2)
is based on using the method of energy inequalities to study (3).

Let us mention that a problem of integral geometry in the plane on parabolas
with a perturbation that is an integral with a weight function over the interiors of the
parabolas was considered in [8].

3. Uniqueness theorem for the general problem of integral geometry

In this part we establish a uniqueness theorem for the general Volterra-type problem
of integral geometry. As we show below, this problem can be reduced to the problem
of integral geometry on a family of paraboloids with perturbation.

We present the formulation of the general Volterra-type problem of integral geom-
etry in the three-dimensional space. Consider the family of surfaces {I'(¢)} in RZ that
satisfy the following conditions:

a) The surfaces {I'(€)} are uniquely parameterized by their vertices &.
b) The surfaces from the family smoothly fill the layer

H:{xERi:Onggh,h<oo}.

¢) Any surface from the family can be smoothly continued to
R? = {z = (z1,19,23) : 3 < 0}.
d) The unit outer normal to an arbitrary surface I'(€) at any point z € I'(€) belongs
to the set
M = {m = (mi,ma,m3) : |m|=1,-1 < k; <m; <n; <1,
i=1,2;0< ks <mz <1}
A surface I'(¢) from this family is specified by the equation
z3 = 9(&, 7).

Problem 2. Consider the problem of reconstructing the function of three variables
f(z), from its integrals over surfaces of the family of {I'(¢)}, with given weight function
a(&,Z), i.e., the problem of solving the operator equation for a function f(x):

/_ a(é, %) f(2)dE = b(&). (4)

G(6)
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Here G(£) is the projection of I'(§) to the plane z3 = 0. We denote by 8G the
boundary of G(§).

Theorem 2. Suppose that a(£,Z) € C*, ¥(€,%) € C° and satisfy the conditions:

¢(€7j) < 537 z 7é g? (5)
77[}(575) = 537 (6)
$(&,3)=0, if T€G(E), (7)
82 82 82
a;gn% “+ 81.1({,;[;.2 VALY + a—;gn% S 62 < 0, (8)
where n = (n1,n2), |n| =1,
a(f,:ﬁ) > 61 > 0. (9)

Then the solution to Problem (2) is unique in the class CZ(H).
To prove Theorem 2, we need the following lemma.

Lemma. If conditions a)-d) and (5)—(9) are fulfilled, then an arbitrary surface from
the family {I'(£)} is uniquely determined by means of 5 parameters introduced above.

From the enumerated conditions it follows that for any point x € H and any normal
m € M there exists a unique surface I'(z,m) which passes through the point z and
has normal m at this point.

Using parameterization of surfaces I'(¢) by means of x,m;, ma, we can reduce the
problem of solving (4) to the problem of solving

a1(x,m,y) f1(y)ds = C1(x,m(€, z)). (10)

T(z,m)

The problem of solving (10) in fact is not overdetermined, because the function
Ci(x,m(€, z)) satisfies two first-order differential equations. Equation (10) is reduced
to the canonical form (see [9]) by means of linear integral operators and a differential
operator.

Thus, we can reduce the general problem of integral geometry (4) to the problem
of integral geometry on the family of paraboloids with perturbation which is an in-
tegral with general weight over the interiors of paraboloids. Then the uniqueness of
the solution to initial problem of integral geometry in the class Cj(H) follows from
Theorem 1.

References

1. ILM. Gel'fand, M.I. Graev, and N.Ya. Vilenkin, Generalized functions. Vol. 5.
Integral geometry and representation theory, Fizmatgiz, Moscow, 1962; English
transl.: Academic Press, 1966.

2. ML.M. Lavrent’ev, V.G. Romanov, and S.P. Shishatskii, Ill-posed problems of

mathematical physics and analysis, Nauka, Moscow, 1980; English transl.: AMS,
1986.

© 2000 by Chapman & Hall/CRC



3. F. Natterer, The mathematics of computerized tomography, Teubner, Stuttgart,
1986.

4. V.G. Romanov, Some inverse problems for the equations of hyperbolic type,
Nauka, Novosibirsk, 1972; English transl.: Integral geometry and inverse problems
for hyperbolic equations, Springer-Verlag, 1974.

5. Yu.E. Anikonov, Some methods for the study of multidimensional inverse prob-
lems for differential equations, Nauka, Novosibirsk, 1978 (Russian).

6. A.L. Bukhgeim, Volterra equations and inverse problems, Nauka, Novosibirsk,
1983 (Russian).

7. Akbar H. Begmatov, On a class of problems of integral geometry in the plane,
Dokl. Akad. Nauk 331 (1993), 261-262; English transl.: Dokl. Math. 48 (1994),
56-58.

8. M.M. Lavrent’ev, Integral geometry problems with perturbation on the plane,
Sibirsk. Mat. Zh. 37 (1996), 851-857; English transl.: Siberian Math. J. 37
(1996), 747-752.

9. Akbar H. Begmatov, Reducing problems of integral geometry in the space to
canonical form, in Mathematical analysis and differential equations, M.M. Lav-
rent’ev (Ed.), Novosibirsk, 1991 (Russian).

Department of Mathematics and Physics, Cooperative Institute, Samarkand,
Uzbekistan

© 2000 by Chapman & Hall/CRC



AKBAR H. BEGMATOV and AKRAM H. BEGMATOV

Inversion of the X-ray transform and the
Radon transform with incomplete data

1. Introduction

In the present article, we study two problems of reconstruction of a function from its
integrals over families of linear manifolds.

In the first problem, we know the integrals of the sought function over a certain
family of straight lines that are generators of cones. Such integral transformations
are called X-ray transforms [1] and have various applications in study of problems of
computerized tomography [2]. Inversion formulas for the ray transform connected with
the cone scanning geometry used in computerized tomography are presented in [3-5]
(see also the review articles [6,7] and the bibliography therein).

Uniqueness and stability theorems in the Sobolev spaces and a rather simple inver-
sion formula for the problem of integral geometry on a family of right circular cones
in an even-dimensional space are given in the second author’s articles [8,9]. The prob-
lem considered in Sections 2 and 3 is connected with an auxiliary problem of analytic
continuation and is strongly ill-posed, unlike those of [8,9]. We obtain a uniqueness
theorem for its solution in the class of continuous compactly supported functions and
a stability estimate of logarithmic type.

The second represents the problem of inversion of the Radon transform on the
plane with restricted range of angles and perturbation. Here we give a uniqueness
theorem for this problem. Such problems arise from consideration of some problems
of integral geometry and computerized tomography (see [2,10]). Operator equations
like those in the Radon problem with perturbation were considered in [11,12] under
different assumptions on the weight function.

2. Uniqueness of a solution to the inversion problem for the X-ray
transform with incomplete data

Introduce the following notation: z,&, XA € R*; Z = (21, 22), £ = (61,&2), A = (A, A2);
O={a:a€e0,2r]}, u= (cosa,sina); Q=R3>x O, D=R?*x 0, Q= {:c Hz) < 1,
|x3|<l,0<l<oo}.

Denote by K(z) the family of two-sheeted cones defined as follows:

K(z) = {f ER’: |23 —&| = |:E—f|}
Consider the operator equation in the function u(z):
/1u(:51—i—scosoz,:cg—l—ssina,xg—l—s)ds:f(x,a). (1)
R

The problem of solving (1) is the problem of integral geometry for a family of
straight lines that are the generators of two-sheeted cones K(z). The sought function
u(-) is a function of three variables. The right-hand side of (1) depends on the four

This work was partly supported by a grant from the State Committee for Science and Technology
of the Republic of Uzbekistan.
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parameters x1, T2, 3, and «. However, as is demonstrated in Theorem 1 below, the
function u(-) is uniquely determined by the function f(-).
The right-hand side of (1) satisfies the following first-order partial differential equa-

tion:
of of of
- — =. 2
o, cosa + o sina + By 0 (2)

We can take another parameterization for the problem (1), using three parameters
21, 22, and «, where 27 = 1 — x3cosa and 23 = x2 — x3sin . It is easy to see that the
function fi(21,22,a) = f(x, ) satisfies (2). Thus, in fact the problem of solving (1)
is not overdetermined.

Theorem 1. Suppose that the function f(xz,a) is known for all (z,a) € Q. Then the
solution to (1) in the class of continuous functions compactly supported in §) is unique.

Proof. Applying the Fourier transform in the variables z; and x5, to both sides of (1),
we obtain

/R1 emisA 'w(Ay, Aa, s + x3) ds = P(\, 23, ). (3)

Here w(\, z3) and (), 23, @) are the Fourier transforms in the variables z; and x
of the functions u(x) and f(z, a), respectively, and (-, -) stands for the inner product.
We can rewrite (3) as

v(A) = e M(), a), (4)

where v(}) is the Fourier transform in the variable z3 of the function w(A1, A2, z3) and
A1 COS + Aysina = —As.
In the space of the Fourier variables, consider the two-sheeted cone

’C = {(/\1,A2,A3) e R3 . |X| = |/\3|}

with vertex at the origin, and denote K = {\ € R?: |A| < |As]}.

Recalling that (4) holds for all « € [0,27] and 9()\, x3, @) is the Fourier transform
in the variables (z1,22) of the function f(z,a), we conclude that the value of the

function v(\) at every A € R3\ K is uniquely determined from (4). Thus, the problem
of finding the function u(x) in (1) reduces to the problem of extending its Fourier

transform v()\) from R3\ K into the interior of the cone K, and the assertion of
Theorem 1 follows from uniqueness of a solution to the latter problem.

3. A stability estimate for a solution to the inversion problem for the X-ray
transform with incomplete data

We furnish the space of functions f(z,a) with the norm

I (z, )|, = Hfl(:gl — T3COSQ, Ty — T3 SN @, a)HC(D).
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Theorem 2. Suppose that the function u(z) belongs to the class C5(Q) and the fol-
lowing inequalities are valid:

lu( ez < 1,

IFOll <&,

with € > 0 sufficiently small.
Then a solution to (1) satisfies the conditional stability estimate

1 -1
In -
I3

lu()lle < a

Y

where ay 1s some constant.

Proof. As mentioned above, the initial problem of finding the function u(z) in (1) can

be reduced to the problem of extending its Fourier transform v()\) from R?\ K into
the interior of the cone K.
In the complex plane, consider the strip

S={z=z+izm:n € R |n| <ar a>0}

and the rays
r={z:—-00 <z < —a, z2=0}

ro={z:a <z <00, y=_0}

Let G = S\ {r1Ury}. In other words, the domain G is the strip S with cuts along

the rays r; and .. Introduce the following notation: E = r; Uy, G is the closure
of the domain G, 0G is the boundary of the domain G, and w = w(z, E,G) is the
harmonic measure of the set E with respect to the domain G.

We essentially use the following assertion in the proof of Theorem 2:

Lemma. The harmonic measure w satisfies the estimate

2
3 <w(z E,G) <L

Remark. We can easily generalize the above results to the case of cones of the form

2

doad(@m—&n)?=Ww—-n? aneR.

m=1
The methods given above enable us to obtain uniqueness and stability results for the
inversion problem for the X-ray transform in the case when the directrices of the cones
are smooth closed convex planar curves.
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4. Uniqueness of the solution of the Radon problem with incomplete data
and perturbation

We adopt the following notation: L = {:c ER*:0<m<l < oo} is a strip in R?,
P(z,m) is the straight line passing through the point z € L with the normal m, where
meM, MCS, ={m=(my,my): |m|=1,my > 0}, and S(x,m) is the half-plane
bounded by P(-) and containing the vector —m.

Let us consider an operator equation

[ owds+ [ Bl,ymyg(y)de = Cle,m) (5)

P(z,m) S(xz,m)

It is easy to see that the first operator on the left-hand side of the equation (5) is the
well-known Radon operator with a restricted range of angles.

Put a = cos™!m,;. Without loss of generality we can assume that 0 < o < 7/2.
Consider the integral operator

w/2

g = [ L (6)

COS (¥ + SIn v

and the differential operator

0 0
L= o o (7)

Let G(-) denote the result of successively applying J and £ to the function B(-):
G, y) = £[J(B(z,y,m))].

For e € R? and q € R3, define a set K(e,q) € R* x R? as follows:

2 2
K(e,q) = {(z,y) : Zeifﬂi + e3> 0, Z%’yi + ¢3 < 0}.

i=1 i=1
Theorem 3. Suppose that the function B(x,y,m) has all continuous derivatives up
to the order 2 inclusively and vanishes together with its derivatives on the P(xz,m);
the function C(z,m) is known for all (x,m): xz € L, m € M. Suppose, further, that
there exist

e€R® (e+e;#0) and qgeR*(¢+¢ #0)
such that
G(z,y) =0 when (z,y) € K(e,q).

Then the solution to (5) in the class of continuously differentiable compactly sup-
ported functions is unique.

Proof. Applying the operators defined in (6) and (7) to both sides of (5) gives the
equation

w 51,552 w 551 52

e +/Gw5 (6)de = F(x), ®)
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where F(z) = £[J (C(:U,m))}, w(z) is a continuously differentiable compactly sup-
ported function.

Equation (8) is a bisingular integral equation with perturbation [13]. Note that
analogous equations in the three-dimensional space are considered in [14]. The results
of [13] imply that (8) has a unique solution in the class of continuously differentiable
compactly supported functions. Therefore, (5) also has a unique solution in the same
class of functions.
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AKRAM H. BEGMATOV

Reconstructing a function by means of
integrals over a family of conical surfaces

1. Introduction

We consider the problem of finding a function from its integrals over a family of one-
sheeted cones in the n-dimensional Euclidean space of an arbitrary odd dimension.
This problem is a Volterra-type integral geometry problem (see [1]). We obtain a sta-
bility estimate for a solution to the problem in spaces of finite smoothness, thereby
demonstrating weak ill-posedness of the problem, and also construct a representation
for a solution. Generally speaking, a uniqueness theorem for a solution can be obtained
by the methods of the articles (see, for instance, [2]) by V.G. Romanov who considered
strongly ill-posed problems of Volterra type. This statement is included in Theorem 1
for completeness. We also prove uniqueness theorem and stability estimates for the
solution to problem with perturbation under rather general assumptions on the weight
function of perturbation.

Analogous problem on surfaces of one-sheeted cones in a space of an arbitrary even
dimension was considered in the author’s articles [3, 4]. The uniqueness theorem was
formulated, a simple representation for the solution was constructed, and the solution
stability in Sobolev spaces was estimated. The problem of reconstructing a function
from its integrals over an n-parameter family of conic surfaces with vertices ranging
over a fixed coordinate axis was considered by S.V. Uspenskii [5]. Similar problems in
operator form were studied by A.L. Bukhgeim [6].

2. The problem of integral geometry for a family of cones

Let us introduce notation: z € R ¢ e R n=2m+1, m > 2.
Consider the following family of manifolds in the layer

Q= {(:c,y) cz € R™ ye[0,h], h< oo}.

Denote by {K(z,y)} the family of the cones having as vertices the points (z,y) and
determined by the relations

n—1
N Em—E&m)’=W-n? 0<n<y.

m=1

Consider the operator equation in the function u(z, y):

L, HE M k= Fa), (1

where dk is the area element on K. The left-hand side of (1) represents the collection
of the integrals of a sought function over the family of the cones K(-) with vertices
at the points (z,y). Solving (1) is a Volterra-type integral geometry problem.

This work was partly supported by a grant from the State Committee for Science and Technology
of the Republic of Uzbekistan.
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We introduce the function

1 iy Jo(|A]y)

_ _JolAlY) P
R'n.—l

where Jy(+) is the Bessel function, A = (\1,...,\,_1), and (A, z) is the inner product.

Theorem 1. Suppose the function f(x,y) is known in the layer Q. Then the solution
to (1) in the class C3"(Q) is unique, the representation

u(z,y) = Cl/y/c

/ (88_7722 _ Ag) " (E+ (-)mAr) £(&.n)

Rn—1

X @a((x = &)y —n)) d§ dnd (3)

s valid, and the inequality

holds. Here .
Ol == 5 T — 1 ) (4)
24tz il (m + 1/2)
9? 9?
A= —+...+ ——
Teg T T ee

Cs is some constant, and E is the identity operator.
Proof. Rewrite (1) as

Y

/dn / u(§,n)ds = fi(z,y), (5)

0 Sn—2(y—n)

where S,_2(y — n) is the sphere of radius y — 7 in the (n — 1)-dimensional space, ds
is the area element on the sphere, and f,(z,y) = f(z,y)/V2.
Applying the Fourier transform in z and the Laplace transform in y to both sides
of (5), we obtain
b p2 + 1A 2\n/2
’U(/\,p) = % ) 90(/\717)7 (6)

where v(A,p) and @(\, p) are the images of the functions u(z,y) and fi(z,y) respec-
tively,
1

b= .
22mam=3T (m + 1/2)

As is known,

7 1
[ e a(Aly)dy =
0

N
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Further, it is easy to see that the function
(p* + IA)™ - (A, p)

is the Laplace transform of

82 m—+1 .
(a 2+|/\|2) - f1(A,m)

with respect to the second variable.

Apply the inverse Laplace transform in p to both sides of (6). Using the Inversion
Theorem and the Convolution Theorem and recalling the properties of the Laplace
transform, we obtain

811592,;;) - 01/ (aaz + |A|2) FOum) I[N (y — n)) dn, (7)

where C is defined by (4).
It is known that the function Jy(J]Aly)) can be represented in the form

Jo(IAly)) = A7 2y 2 o1 (|A]y), (8)

where ¢;(-) is a bounded function, ¢;(0) # 0.
It follows from (2) and (8) that the function

Jo(IA\[(y — 1))
L+ [A[2m

is the Fourier transform of ,(z,y — 1) in the first variable.
Apply the inverse Fourier transform in A to (7). Using the Inversion Theorem, the
Convolution Theorem, and the properties of the Fourier transform, we obtain

=0 0/ / ( Ag)m+1(E+(—1)mA2”)f(€,n)

R»—1

X pa((x — &) (y —n)) d§ dn. (9)

From (9) we obtain the required representation for the solution to (1):

ulz, ) 01/// ( )m+1(E+(—1)’”A2”)f(€,n)

X a((x = &) (y —n)) d€ dn dc. (10)

The inversion formula (10) is of a local nature with respect to y. It is clear from
the condition suppu C € that representation (10) for a solution to (1) is also valid
for I < oo. Then (6) and (10) imply uniqueness of a solution to the original integral
geometry problem (1) in the function class C§(Q).
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Using the properties of differentiation of the Fourier and Laplace transforms, the
triangle inequality for norms, (10) and the conditions on the function u, we arrive at
the estimate

||u(:c,y:|||Wg,m,o,1(Q) < ol f(, y)llw-m )
where (5 is some constant.

By analyzing the proof of Theorem 1, it is not hard to see that the following
proposition is valid.

Theorem 2. Suppose the function f(x,y) satisfies the following conditions:
1) f(x,y) has compact support with respect to the first variable;

2) the function f(x,y) has all continuous derivatives up to the ‘order n inclusive;
k

0
3)— (z,v) akf(:cy) le (k=0,1,...,n+1).
Then there exists a solution to ( 1) in the class of continuous functions finite in the
variable z, and this solution is determined by (3).

3. The problem of integral geometry with perturbation

We denote by Q(z,y) the part of the n-dimensional space that is bounded by the
surface of the cone K (z,y) and the hyperplane y = 0.
Consider an operator equation in the function u(z,y)

/. RGO /Q o, 00 Emu(Em) dg = F(a,) 1)

where dq is the volume element of ().
Equation (11) corresponds to the integral geometry problem with perturbation.

Theorem 3. Suppose the function F(x,y) is known in the layer 2. The function
g(x,y,&,m) has all continuous derivatives up to the order n inclusively and vanishes
together with its derivatives on the surface of the cone K(z,y).

Then the solution to (11) is unique and the following estimate holds:

||u(:c,y]||wg 44444 o1 o < Gsl|F(z, y)llwy-m ), (12)

where Cy is some constant.

Proof. Consider the second summand on the left-hand side of (11):

Lo 9w Eonulé ) da = o). (13)

Recalling the constraints imposed on the weight function ¢(-) and using expressions
for the corresponding derivatives of the function fy(-), we obtain the following estimate
for y < yo, wherein yq is sufficiently small:

ol llwp @) < ellue,)llgo-o1igy 0<e <1 (14)

We denote the integral operators on the left-hand side of (1) and (13) by A and A,.
Then (1) and (11) take the form

Au = f, (15)
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Au+ Aju = F. (16)

From the above we infer that the operator A in (15) has a left inverse A~!. Acting
by the operator A~! from the left on both sides of (16), we arrive at the equality

u+ AT Aju=A"F (17)

The estimates obtained in Theorem 1 and the fact established above imply that the
operator A; defined on the functions u(-) is continuous. Hence, the operator A™'A;
in (17) is continuous on the functions wu(-).

Thus, the operator A=A, satisfies the inequality
AT A <e <1 (18)

for y < yo sufficiently small.

The contraction mapping principle applied to the operator on the right-hand side
of (11) yields uniqueness for a solution to (11) for y sufficiently small. Since (17) is
a Volterra-type equation in the sense of the definition of [1], uniqueness takes place
not only at small y but also in the whole layer €. Thus, inequalities (14) and (18)
and Theorem 1 imply the estimate (12).

Remark. It is obvious that the results of the article can be easily translated to the
case of the more general family of conical surfaces of the form

n—1

Z agn(l'm_gm)zz (y_n)zv OSHSy, am ERI-

m=1
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B. BERTRAM

On the use of wavelet expansions
and the conjugate gradient method
for solving first kind integral equations

1. Introduction

In this paper we investigate the use of the conjugate gradient method in conjunction
with wavelet expansions for the solution of first kind integral equations. Fredholm
integral equations of the first kind with non-degenerate kernels represent some of the
most frequent examples of ill-posed problems [1,2]. Such examples occur in many
imaging problems [3,4,7-9]. We consider

/K(ﬂﬂ —y)fy)dy = g(x), (1)

where (without loss of generality) we may consider the interval of integration to be
[0,1]. If K is compact and non-degenerate, there will typically not be a continuous
dependence of the solution on the input data, that is, f(x) does not depend contin-
uously on g(z). The problem becomes variational in nature and an approximation
to f(x) = K'g(x) is sought (KT is the generalized inverse of K), where typically, K
has a nontrivial null space. Therefore, a best approximation is computed. Sophisti-
cated algorithms for such approximate solutions date back to Tikhonov’s concept of
regularization [3]. In this paper, we use the conjugate gradient method to solve the
discretized system, and the number of iterations can be considered to be the regular-
ization parameter [3]. The wavelet expansions used were Daubechies (orthonormal, of
compact support, once differentiable), quadratic B-splines, and Shannon.

2. The conjugate gradient method

The Conjugate Gradient Method is known as a Krylov subspace method and and can
be used directly to solve KTK f = K g for f. The iterative scheme expresses z = z,—2
in terms of the span of {z, Kz,---, K*712} [1]. This method uses K-Orthogonality:
i.e., z is K-orthogonal to y if (z, Ky) = 0, and at each step, the search direction py
is chosen to minimize ||p — rx_1|| over all vectors p € span{Kpy, Kpy, -+, Kpp_1}+
(where rp_1 = ¢ — Kxy) and
Tp = Tp—1 + QxPk (2)

where o, = plri_1/pl Apy. The iteration is then applied to KT K (Conjugate Gradient
Normal Equations). If we define ||w||x = VwTKw in K norm, then if the condition
number of K in Euclidean norm is nearly equal to one, the method will converge very
rapidly [1] and [5, p. 530]

In contrast, in this work, we expand f in terms of a wavelet basis defined by a set
of scaling functions, (mother Wavelets), {¢:}, with

Za9¢ "r — ), (3)

The author wishes to thank John W. Hilgers, Otto G. Ruehr, and Monica M. Alger for their
time and expertise in guiding and encouraging pursuance of this application of first kind integral
equations.
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where f,,(z) is the projection of f onto the subspace V,, of the multi-resolution analysis
defined by ¢ (see [6]). The scaling functions satisfy the two-scale equation

¢(x) =D cip(2x — i) (4)

for an appropriate choice of wavelet coefficients ¢;, the limits of summation being
defined by the type of wavelet and the interval of compact support. To be specific,
¢(z) is determined from the two scale equation recursively by evaluation at dyadic
points of the form i/27. For each choice of wavelet, we use the length of the interval
of compact support and the length of the interval of integration in following way: Let
[a, b] be the interval of integration and [c, d] be the interval of compact support for a
given scaling function. Then, letting R = d — ¢ we find the limits for the summation
index j using
2% — R| < 7 < [27b].

This procedure will yield the number of indices, m, of the nonzero coefficients a; in
(3). Since m < n+1 (where n is the number of intervals of length 2¢/n characterizing
[a, b]), the resulting system is underdetermined and, hence, to obtain a square system,
we choose n + 1 — m points from the next smallest dyadic level (points of the form
2/(n+1)).

In this paper, we explore the use of three types of scaling functions: Daubechies
(D6) orthonormal (differentiable), quadratic B-spline, and truncated, shifted Shannon;
three types of image functions: twin peaks, three triangles, and parabola; and, in
addition, two kernels: sinc and stove pipe. Details are available from the author.

3. Computational results

In this section we compare the respective errors of the different methods investigated
(see Table 1). All experiments were conducted using n = 6 and using a repeatable
noise vector (no statistical sampling was employed). From our numerical evidence, we
can make several observations.

For the twin peaks object function (a discontinuous case), we find, for the sinc
kernel, that the three types of wavelet expansions produce virtually indistinguishable
errors. On the other hand, for the stove pipe kernel, with a noise level of 0.01 or
below, the Daubechies wavelets are superior. This is to be expected, since the level of
Daubechies wavelets guarantees exact reconstruction in the presence of no noise. How-
ever, this trend does not continue, and at the noise level of 0.1, we see that either of the
other two wavelets is superior. Considering the parabolic object function (infinite dif-
ferentiability), and either type of kernel, both the quadratic B-spline wavelets and the
Shannon wavelet expansions give better results than the Daubechies wavelets. Lastly,
for the three triangles object function (continuous but not differentiable), consider-
ing both kernels, we see that, for the noise levels investigated, the quadratic B-spline
expansions worked best.

It should be noted that there are two obvious deviations of patterns contained in
the table. The first occurs for the stove pipe kernel, the quadratic B-spline wavelet
and a noise level of 0.01. This appears to be an anomaly. However, with an increase in
the level of dyadic points to n = 7, we find a decrease in the error to 0.0566. Secondly,
it should be noted that the errors for the stove pipe kernel, D6 wavelet, and three
triangles object function grow in magnitude at the same rate as the amplitude of the
noise.
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Kernel Wavelet | Noise | Twin Peaks | Parabola | Three Triangles
Level | Error Error Error
sinc B-spline | 0.0 0.1899 0.0019 0.0165
sinc B-spline | 0.001 | 0.2282 0.0036 0.0226
sinc B-spline | 0.01 | 0.2310 0.0043 0.0269
sinc B-spline | 0.1 0.3060 0.0052 0.0319
sinc Shannon | 0.0 0.1898 0.0012 0.1349
sinc Shannon | 0.001 | 0.2278 0.0024 0.1823
sinc Shannon | 0.01 | 0.2294 0.0032 0.2136
sinc Shannon | 0.1 0.2426 0.0035 0.3016
sinc D6 0.0 0.1943 0.1521 0.1315
sinc D6 0.001 | 0.2372 0.2646 0.1623
sinc D6 0.01 |0.2384 0.3077 0.1968
sinc D6 0.1 0.2472 0.3189 0.2005
stove pipe | B-spline | 0.0 0.0115 0.0008 0.0014
stove pipe | B-spline | 0.001 | 0.02486 0.0008 0.0308
stove pipe | B-spline | 0.01 | 0.2233 0.0009 0.0317
stove pipe | B-spline | 0.1 2.0155 0.0007 0.0367
stove pipe | shannon | 0.0 0.0935 (0.0003 0.0013
stove pipe | shannon | 0.001 | 0.1859 (0.0003 0.0178
stove pipe | shannon | 0.01 | 2.4660 (0.0003 0.2646
stove pipe | shannon | 0.1 0.6363 (0.0003 0.3769
stove pipe | D6 0.0 0.00195 0.2262 0.0016
stove pipe | D6 0.001 | 0.00183 0.2262 0.8998
stove pipe | D6 0.01 | 0.3130 0.2262 4.4738
stove pipe | D6 0.1 1.4505 0.2262 50.875

Table 1. Errors for the three wavelets.

We make the further observation that this measurement of error may not always
communicate all the information we would wish. With that in mind, we introduce
Figs. 1-3.

We see from Fig. 1a that the conjugate gradient method (CGNE) with no wavelet
expansion, using the sinc kernel with twin peaks object function, produces a viable
reconstruction with noise levels from 0.00 to 0.01. On the other hand, from Fig.
1b we see that with the stove pipe kernel and the three triangle object function, we
achieve “exact” reconstruction with no noise present. Conversely, with a noise level
of 0.01, none of the wavelets tested produced a satisfactory reconstruction (see Fig.
2a). Fig. 2b suggests that when the smooth parabola object function is coupled with
the sinc kernel, we have very good results for a noise level of 0.1. Finally, Fig. 3
demonstrates that for the sinc kernel and the twin peaks object function, the D6
wavelet produces a viable reconstruction with a definite economy of points used.

The computation was done on an Ultral Sun workstation using Fortran77 and
double precision.
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cg method with various noise levels
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I.V. BOIKOV and A.N. ANDREEV

Optimal algorithms for the
calculation of singular integrals

1. Introduction

In solving numerous problems in mathematics, mechanics, and physics, one is faced
with the necessity of calculating different singular integrals.

Many hundreds of works have been devoted to approximate methods for the cal-
culation of singular integrals since the 1950s and the flow of publications increases.
In this connection, it is necessary to develop criteria for which these methods can be
compared. One of such tests is optimality of algorithms. The optimal methods of
calculating the singular and hypersingular integrals are investigated in [1-5].

This paper is devoted to algorithms which are optimal with respect to accuracy for
the calculation of singular integrals with fixed singularity, Cauchy and Hilbert kernels,
polysingular, many-dimensional singular and hypersingular integrals. We will use the
definitions of optimal with respect to accuracy and complexity algorithms from [2, 3].

Several authors have studied the calculation of singular integrals on various classes
of analytical functions [6,7]. We shall give the quadrature rules for calculation of
singular integrals on one class of analytical functions .

We shall need the following classes of functions. Let 1 < p < oo. Let D be a unit
disk in the complex plane C, v = {z € C : |z| = 1} and define the class of functions

F =H}(D)as F = HJ(D)={f: D — C, f is analytic in D and || /]|, < oo}, where

0

1 21 1/p
15Ol = sup | o= [15OpeDras) i 1<p <o,
<p<1 271'0

£l = sup sup [f7(pe)], if  p=oo
0<p<10<0<2r
If 7 = 0, the class F' = H}(D) is the well-known Hardy class of functions.
Let D; be a unit disk in the complex plane C;,i = 1,2,...,l. Let D* = U._, D;.
Denote v; = {z; € C; : |z = 1},i = 1,2,...,1. Define the class of functions F; =
Hp"(D*) by Fy = Hy"(D*) = {f(z1,...,2) : D* = C, f(z1,..., ) is analytic in

D; with respect to variable z;, 1 =1,...,2, and if 1 < p < o0,
27 1/p
(r) 4,
Sup sup sSup /|f1 (Zlv"'vzi—lvpe 7Zi+17"'7zl)|pdei < 00,
0<p<1 1<l (Z1,...,Zi_1,2i+1,...,zl) 0
(r) i0; \
Sup Sup sup sup |f1 (Zlv"'vzi—lvpe ,Z¢+1,...,Zl,|| < 00,

0<p<l 1<l (Z1,...,Zi_1,2i+1,...,zl) 0<0<2m

if p = 00, where fi(r)(zl, cey2) = Mgi,r_m)}

The work was supported by Russian Foundation of Fundamental Investigation (grant 97-01-
00621) and by a grant from Novosibirsk State University.
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2. Optimal algorithms of calculation of singular integrals

In this section we start by investigating the calculation methods for singular integrals

of the following kind:
Jo = / —(’D(T)dT. (1)
As the method of evaluation we use the quadrature rule (q.r.)

Jp = Z ZPkl@ (2)

—N =0

where —1 <{t_ny < --- <t 1 <tog<t; <--- <ty <1

Calculation of the integral (1) with quadrature rules of the type (2) was con-
structed to be optimal with respect to the accuracy of quadrature rules on W1(1)
and H;(1) classes of functions, and asymptotically optimal with respect to accuracy
and complexity of quadrature rules on Holder class H,(1),0 < a < 1, and Sobolev
W7(1),r =1,2,..., classes of functions [1-4]. The rule was constructed optimal with
respect to the order of accuracy of algorithms of calculation of integrals of type (1) on
Hoélder and Sobolev classes of functions and its stability was investigated in [1].

Here we shall discuss calculation of integral (1) on the class Hj(1),r = 1,2,...,1 <

p < oo. To this end, we construct the spline for approximation of the integrand of (1).
Let us consider a segment [a,b]. Let (, k= 1,...,r, be the roots of Legendre polyno-
mial of degree r. We map the segment [—1, 1] onto segment [a,b]. As a result of this
mappmg the points (i, ..., (, are mapped onto the points (j, ..., . Using the points

¢ty -+, ¢, we construct the interpolation polynomial P,(f, [a, b]) for approximation of
the function f(z) on the segment [a, b]. For approximation of the function f(x1,...,x)
in the cube [aq, b1; ... ;a;, b we use the interpolation polynomial

PT,m,T(f(l'lv s 71’7)7 [alvbl; cee ;alvbl])
= le(Pzz( ..... (PP (f(x1y ... x);[ar, b1)), - - [ar, bi))-

The upper index z;,7 = 1,2,...,1, defines a variable of interpolation.

Let t) = —1,t} = — 1—|—e(k Ny k=1,. NO, No=[N-1In2], t§ 1 = -1,
tgzo,t,z <’fN L k=1,. NO, tNO+1 L =0t = <k—N>v,k:1,...,N0,
o1 = 30 to = 1, t4 =1- e(k Neo g =1,. No, tNg+1 = 3, Where [a] is greatest
1nteger 1n a. The Value v will be deﬁned below Let A} = [tk,tkH] AF = [t3,q, t3],

[t k—l—l] A4 = [tk—i—l? ] k 0717"'7N0-

We introduce the following quadrature rule:

No tll”'l (f No—1 k f AZ

JfZZ/S’“’ Z/S’“’ dr
k=0 1
k k+1
tk+1
,A3 No—1 P, (f,A)) Ad) P (f, [t
k=0

k k+1
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where s* =r+ 1,50 =r, s, = [kv(r+1—-1/p)]+ 1,k =1,2,..., No,v =In(1+1/e).
Theorem 2.1. Let f(t) € H),r =1,2,...,1 <p < oo, v=In(l+1/e), and let n
be the number of functionals f(t%),i=1,2,3,4,k =0,1,..., Ng+ 1 which are used for
construction of the quadrature rule (8). Then Ry[H}(1)] < Ae™ no(r+1-1/p)/2,

Now let L(f,[a,b],n) be a Gauss quadrature rule with n knots for calculation of
the integral [° f(t)dt

We introduce the following quadrature rule:

No—1 No—1
Jf ZL f?Allgvsk + Z L f?A%mSk +ZL f?Alivsk + Z L f?A]‘ivsk)
k=0 k=1 k=0
+L((f() FO)/, [, 1], m + 2) + Ru(f), (4)

where s* =r+ 1,50 =r,5, = [kv(r+1)]+ L,k=1,2,..., No,v = In(1 + 1/(2¢)).
Theorem 2.2. Let f(t) € Hy,r =1,2,...,1 < p < oo, v=1In(l+1/(2¢)), andn
be the number of functionals f(t}),i = 1,2,3,4,k =1,2,..., Ny + 1 that are used for
constructing quadrature rule (4). Then Ry[H}(1)] < Ae™V w(r+1)/2,

1
Next we consider singular integrals of the following kind: Kf = | %dﬂ -1<
41

t <1.Let Aj = [-1,t1], A2 = [t],1], A} = [tk,tkﬂ] AL =ti gt k=1,2,...,N-1,
where t}, = —14eF=Nv 42 = 1 e(k Nk =1,2,..., N, and constant v will be defined

below.
Let t € A;, 0 <j < N —1.(The case when ¢t € AJZ can be considered in a similar

way.) We calculate the integral K f by the next quadrature rule,

1

1
‘t]‘l T‘r—l(f’Agla_l) dT + Nz_:l tk+1 Pnk(f’Alk)dT
T E=LEAT LA o] Tt
t11+2 P 1 1 N-1 k
Kf — + f nk(f’[:_]__tl’t]+2]) dT + E f (fa ) (5@)
1 k=1 ¢2
] 1 k41
fﬂd +Ry, 2<j<N-1,
1 tl
tszr_1(f,[—1,t%],—1) i+ El 7 Putrah) (A Pu (1A o
ki=y T o = (5b)
k
LY [ Eaiab, fT”<f“dT+RN, 0<j<2
k= 1ti+1

where ng = [vk(r —1/p)/(In2—1n(e* —1))]+1, and T,(f, [a,b],¢) = f(c)+ L P (e)(t -
)+ IOt~ -+ H O~

The error of the quadrature rule (5) on the function class Hj(1) is estimated by
the inequality Ry(H,(1)) < A\/ﬁe_\/"(T_l/p)”l"(z/(ev_l)), where n is the number of
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functionals f(t%),7 = 1,2,k = 1,2,..., N, that are used for constructing q.r. (5).
It is impossible to calculate the exact maximum of ¥(v) = vIn(2/(e” —1)). The
approximate value of maxp<,<mm3%(v) is equal to 0.57 with exactness 107°, and v =
0.45.

Theorem 2.3. Let f(t) € H},r =1,2,...,1 <p < oo, v =0.45, and n be the number
of functionals f(t),i=1,2,k=1,2,..., N, that are used for constructing quadrature
rule (5). Then Ry[HJ(1)] < Anl/2e=0752492y/n(r=1/p),

The optimal algorithm (with respect to accuracy and complexity) for the calculat-
ing the singular integrals F f = f; --- f§ (nf (7 sdri...drand M f = f 9(0)f (u du,

(Tl t) “rl(uw)

where G = [-1,1]1,0 = (u — v)/r(u,v), u = (u1,...,u), v = (’Ul,...,’Ul), r(u,v) =

2 211/2 . .

[(ug —v1)"+ -+ (wy— v;)°] " were considered in [1,2,4].

As an example of the integral M f, we describe the construction of the quadrature
rule on the class of functions Fj.

Let AO be the set of points t € G satisfying 0 < p(t,I') < (=N, Let Ay, k =
1,2,.. — 1, be the points t € G satisfying e*=N) < p(¢,T) < elk+1- N)

The dlstance p(t,T") between the point ¢ and the boundary T of the domain G is
calculated by formula p(¢,I') = mmlggl(mmﬂ —1—t|,|1=t])).

We cover the domain A* by cubes Afl ,» €dges of which are equal to hy = e(1=N),

.....

hy = e H1=N) _o(b=N) B =1 ... N -1 Let n be the number of cubes AF by
which the domain G was covered. This number is equal to n =< N¢-1,

Let v € A’;l @...q Lo calculate M f we use the quadrature rule
e (D g AU
Mf Z Z // kyesSeNJd Y TG, qi
k=0 1,..., Gqeedg (u7 U)
N-1 k

g(H)PSk Sk(f7 Ail ”)du
*k N7/ Sk SENS Y Ty, R 6
-+ ]; il;” Tz(u,v) + N>y ( )

where so = 1,8 = [k(r — 1/p)/(In2 —In(e — 1))] + 1,k = 1,2,..., N; X% denotes
the summing with respect to squares, which are those with square A’;l and >**
denotes the summing with respect to other squares.

Theorem 2.4. Let f(t) € Hy~"(D*),r =1,2,...,1 < p < o0, and m be the num-
ber of functionals used to construct quadrature rule (6). Then Ry[HJ"(D*)] <
Am~=1/P/0=D nm In(Inm).

3. Optimal algorithms for calculation of Hadamard finite-part integrals

In this section we investigate calculation methods for Hadamard finite-part integrals
of the following kind

1
Hf:/ %mm:m,... (7)
~1
As the method of evaluation we use the quadrature rule

Hf= Z Zpklf( (tk), (8)

—NI1=0

© 2000 by Chapman & Hall/CRC



where —1 <{_y < - <t <to<ti <--- <ty <L
For approximation of the function f(7) on the segment [vg, vk+1] we introduce a
function f(7, [vk, vk41]) with corresponding formula

3 -1/ £

F (7, [0y vr4a]) Z(f ( s T‘“k)l+Bl5(l)(Uk+1))’
r—1 (1) Uk
Zf (vr)

(7 w)',

8(r) = 1(r) -

=0

where the coeflicients B; are determined from the equality

Til Bj’l’!(’U]H_l - ’Uk)

r—j=1 _ / 1y\r ’
j=0 (T - J - 1)' (Uk+1 B T) - ( 1) RTQ(Ukv hva)v

(vhs1 = 7)" =
P r—1
in which R, (v, hg,7) = 77 + 3 ax7" is the polynomial of degree r of least de-
k=0
viation from zero in the space L,(1/p + 1/¢ = 1) on the segment [vg,vii1], v, =
(k + Vr41)/2, e = Veg1 — g

Theorem 3.1. We set W =W/(1),r > m,1 < p < oo. Among all possible quadrature
rules of type (8), where p =1 — 1, the formula

= M) —m —m
Hf = kz mtfﬂ (1= (=1)Fm)
/tk“ F(t, [tr thia])dt

fe=— Nk;é 1,0 4

_|_

+ Ry, (9)

where ty = +(k/N)rH/Q0+1/a=m) 1 /p 4 1/q =1, k = 0,1,...,N, is asymptotically
optimal. The error is

Ry[¥] = (1+0(1))R,4(1) < r+1/q )T—I—l/q 1

CrVa(rg + DVar!\r +1/g —m N
Let t§ = =1ty = =1+ e*Mv k = 1,... Ny, No = [N = Lin 2]}, =
—L =0t = —e*N k=1 Ny, oy = —3, 8 = 0,8 = e<’f—N>v, k=
L. Noytder = 3, t6 = 1,t,‘§ = 1 ekb=Nv k=1, .. No,tNOJrl =1 Letv =
f) (1 + 1/(2€)). Let Allc = [tllmtllc—l—l]vAIzc = [t,%H,t,%],A,% = [t k> k—l—l] [tk+1v ] k=

.., 4YQ.
We introduce the following quadrature rule:

No—1 No—1

Hf = ZL’QZJ AL, i) + Z Ly, AL s1) +ZL’¢J A3 se) + Z L(v, A}, s)
2 3
+/ P8t gy 4 (), (10)
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where s* = r+qg+ 1,50 = r,s, = [No(r+1-1/p)]+ 1,k = 1,2,..., Ny, and v =
In(1+1/(2€)).
Theorem 3.2. Let f(t) € Hy,r=m,m+1,...,1<p<o0, v=In(l+1/(2e)), and

n be the number of functionals f(t%),i =1,2,3,4,k =1,2,..., Ny + 1 which are used
for construction the quadrature rule (10). Then

RylHE(1)] < An™/ e~/ M p eems=1)
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A.I. BOIKOVA

An order one approximate method
of solution of differential
and integral equations

1. Introduction

Many problems of elasticity theory (theory of thin hulls), electrodynamics (diffraction
on the surface with boundary), aerodynamics, and building mechanics are reduced
to different types of singular integral equations, singular integro-differential equations
and differential equations.

Solving these equations by classical numerical methods (collocation, Galerkin, etc.)
we obtain systems of NV algebraic equations with N unknown variables. The coeflicient
matrices, A, of these systems have N x N elements, most which of are not equal to
zero. Thus, solution of these systems by classical methods (such as Gauss’ method,
etc.) requires O(N?) arithmetical operations. In this paper, we present a method
using only O(N) arithmetical operations.

This paper is devoted to approximate methods of solutions of differential and in-
tegral equations using the characteristic functions of the differential and integral op-
erators as the interpolation polynomials.

Using these interpolating polynomials we investigate approximate solutions of sin-
gular integral equations with constant coefficients of the form

Kz = ax(t) + % / 2(7) dr = f(t); (1)

an approximate solution of a singular integro-differential equation from the diffraction
problem

%_/IMCE(T)th: f(t); (2)

and an approximate particular solution of the equation

d dz
where f(t) € W7 (1), and a is constant, with a £ (I +1),l=1,2,...

The rate of convergence and error of numerical methods for the solution of (1)—(3)
were investigated.

2. Interpolation

Let {P,(x)} be a set of polynomials of degree n, orthonormal on the segment [a, b].
Let ug, k =0,1,...,n, be the roots of the polynomial P, ;(z).
In [1], it is shown that the polynomial

Lf=Y (=

33 R(m) P ) )
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where v, = Y7o P?(ux), is the interpolation polynomial with the knots ug, k& =
0,1,...,n, for ihe function f(z).

Theorem 2.1. [1] The following estimate holds

I f(@) = Ln(f) lle< AE () An,

where E,(f) is the best approximation of the function f(x) by algebraic polynomials
of degree n, N\, is the Lebesque constant of the interpolation by roots of orthonormal
polynomials Pni1(x).

3. Approximate solution of ordinary differential equations
As an example, we apply (4) to Legendre’s equation. We seek a particular solution of

d dx

1— =
where f(t) € W"(1),a is constant, and a#1(l+1),l =1,2... It is known, [2], that
the eigenfunctions of the operator

d dx
dt dt } (6)

are the Legendre polynomials. Therefore, we shall approximate the right-hand side
of (5) by interpolating polynomials built on the knots of the Legendre polynomials of
order n 4+ 1 and seek an approximate solution in the form of a linear combination of
Legendre polynomials of order up to and including n.

At first we turn our attention to interpolation of the function f(¢).

Let us denote by pr(k = 0,1,...,n) the knots of Legendre polynomial P, ;(t) of
degree n + 1. As it was shown above, the polynomial

" 22-l—1

Li=Y )

k=0 Tk i=0

-2

i) f (pr) (7)

where P;(t) is the Legendre polynomial of order ¢, and

" 21+ 1
’Ykzz 5 Pf(ﬂk)

=0

is the interpolating polynomial of degree n with respect to t interpolating the function
f(t) at the nodes puy.
We seek an approximate solution of (5) in the form of the interpolating polynomial

Y1 (& 2+1 1
t)y=)>) — P, Pyt 8
ovlt) = 3 & (2 2 s PR ®)
with unknown values z;, k= 0,1,..., N.

Having replaced f(t) on the rlght hand side of (5 (5) with the interpolating polynomial
fn(t) and finding a solution in the form of the polynomial zx(t), we have z; =
fltr),k=0,1,..., N.

Therefore a particular solution of (5) has the form

on(t) = 3 = (L2 g AR () £ )
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4. Singular integral equations with constant coefficients

Let us consider the singular integral equation

b 1 x(r)
Ke=ao(t)+2 [ Zdr = f(t 10
r=ar(t) 4 [ XD ar =y (10)
with constant coeflicients.
We seek solutions x(t) of (10) where z(t) is contained in the Banach space X =

Hjs of functions satisfying the Hoélder condition with exponent § and norm |jz|| =

maXie[—1,1] | l'(t) | +Supt17$t2 |z ﬁll)_—tz'gzﬂ

The index & of this equation takes the values —1,0, 1 and its solution has the form
x(t) = we(t)z(t), where

we(t) = (1=1)*A+ )", 0<[a|,[B|<1, &= ~(a+h),

and z(t) is a smooth function.
The value « is defined by the formula

a+bctg(ma) =0. (11)
Let us denote by P%? the Jacobi polynomials of degree n orthogonal with weight

(1 —t)*(1 +t)? on the segment [—1,1].
We need the following formula [3,4]:

b [ we(T)PYP(1)dr b o
a3 e € n - _ o,—f3
awe () B0 (E) + T /_1 T—t 28 sin P (). (12)

For (10), below we propose and justify calculating schemes for the indices £ = 0,1
separately.
4.1. The index & =0. First of all let us build an interpolating polynomial for
approximating the function f(¢).

We denote by t; (kK = 0,1,...,n) the knots of the polynomial Pn_fl’_ﬂ(t), input

designations
n

BT =3P w), k=0,1,.,m.

1=0
Then the polynomial
n 1 n o o
Falt) = 3 (=5 X B () B0 (1) f (1)) (13)
k=0 Tk 1=0

interpolates the function f(¢) on knots tx, k= 0,1,...,n.
It follows from arguments carried out in the second section that

I1£(8) = fa)ll < AEL(F)NS >, (14)

where A(~~#) is the Lebesgue constant for interpolation on knots of the Jacobi poly-
nomial P;o=A(¢).
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We shall look for an approximate solution of (10) in the form

n(t) = wWo(t)2n(t),

where

sin amr & Th o= e o
wn(t) = —— Z(WZB “P(tx) P ’ﬂ(t))
Tk =0

k=0

with coefficients z;, to be defined.

Substituting the function z,(t) in (10) and interchanging the function f(¢) with
the polynomial f,(t), we have z = fr, k =0,1,... n.
Theorem 4.1. Let the operator K have a continuous tnverse in the space X. Then
the estimate ||z*(t) — zX(¢)| < AEn(f)néx\g;O{’_m is valid. Here x* is the solution of

(10) and z},(t) = —¥mex 50 (f% 2o Pl_a’_ﬂ(tk)Pla’ﬂ(t)) :

Proof. It is not difficult to see that in the metric of the space X, ||z*(t) — z%(t)|| <
AnPE,(f)A;*=5) and z%(t) is the solution of equation Kz = f,(t). The assertion
follows from these remarks.

4.2. The index € = 1. We denote by uz, k=0,1,...
polynomial P;%(¢) of degree n.

We shall approximate the function f(t) by the interpolating polynomial f,,(¢) built
on the knots g, k = 0,1,...,7n — 1. The method of building the polynomial f,(t) is
described in the previous section. We seek an approximate solution of (10) in the form

,n — 1, the knots of the Jacobi

Tn(t) = wi(t)za(t),

where
2sin amr =1 o o
wn(t) = == Zy—a,gZP“ ue) PSP (1) + €,
k=0

where C is a constant.

Substituting the polynomial x,(t) into equation (10) and replacing f(t) with the
polynomial f,(t), we have z, = fr,k=0,1,...,n— 1.

To find the coefficients z; it is sufficient to take advantage of the additional condi-
tion imposed on the solution of (10): f', z,,(t)dt = A = const. We denote the resulting

solution by x}(t). In the case where £ = 1 a statement similar to that formulated in
Theorem 4.1 is valid.

5. Approximate solution of the diffraction problem

Let us consider a singular integro-differential equation

/ N (U] (15)

dt7r

—1 <t < 1, which describes many diffraction problems.
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In this section we propose a method for writing an approximate solution of (15) in
analytical form. We look for such a solution in the form

k) Uilt), (16)

No1 XMoo
) kzzo 'ykgz-l—l

where U;(t) = [2/(m(1 — t?))]"/? sin[(i + 1) arccos(t)] are the Chebyshev polynomials of
the second kind of order 4, x; are unknown numbers, u;, are the roots of Uy1(t), and

W = it UF (1)
1
It is well known that I f V1 —TZMdT = Ty (kK > 0), where Ti(t) =

(2/7)'/% cos(k arccos t) are the Chebyshev polynomials of the first kind of order k.
Using the formula [5]

d
aTk—l—l(t) = (k + 1)Uk(t)7

we obtain

dm/ Vi ( ) dr = —(k + 1)Ux(t).

Substituting (16) into (15) and replacmg f (t) in (15) by the interpolating polynomial

fN(t)Zi ( ZU (1)U, )

k=0 Yk k=0
we arrive at
N

-3 e S U ITAD) = 2 )= S Uil a7

Tk =0 k=0 Tk =0
So, x, = — f(ur) and (15) has the approximate solution
1 N
an(t) = =D ) = D Us(uw) Uit
k=0 Tk =0
It easy to see that
lz* — 2|l < AEN(f)AN41-
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C. CHIU

A multigrid method for solving
reaction-diffusion systems

1. Introduction

Reaction-diffusion equations have been used successfully to model chemical and biolog-
ical processes that involve pattern formations. Numerical solutions of such equations
are important for computer simulation of patterns and data analysis. In this pa-
per, general two-dimensional reaction-diffusion systems are considered. A multigrid
method is proposed for solving the system. Analysis and applications will be discussed.

It has been known for a long time that pattern formation problems are closely
related to reaction-diffusion equations. A.M. Turing first suggested in 1952 that some
patterns that occur in chemistry are resulted from interaction between chemical re-
action and diffusion. Since then, a substantial amount of research has been done on
this subject. See [10] for a survey of related developments. According to the reaction-
diffusion theory, patterns are formed by the linear instability of the system and this
instability eventually will be controlled by nonlinearity. So ultimate stable patterns
can be obtained [12]. Because of this nature of the problem, highly stable numeri-
cal methods are necessary for computer simulations of these patterns to ensure that
patterns obtained by computer simulations are formed by the instability of the orig-
inal system not by numerical instability. One approach is to use ADI (alternating
direction implicit) type of schemes [6], [7]. Another intuitive approach is using a fully
implicit scheme. However, with the fully implicit scheme, we need to invert a sparse
matrix at each step. Then finding a fast solver for the related linear systems becomes
an important issue. In this paper, a multigrid method is designed for solving this
problem.

Let us consider the following two-dimensional reaction-diffusion system:

(1)

ur = DyAu + f(u,v)
vy = DyAv + g(u,v)

in the minimally smooth bounded spatial domain 2 € R? with Neumann boundary

conditions %‘ = % = 0. Here v and v are considered as two chemical
n {50 n |90

concentrations. 0€ is the boundary of 2. Assume that the initial distributions of u and
v are known as u(z,0) = up(x) and v(z,0) = vo(z). Insystem (1), D, > O0and D, > 0
are two positive diffusion parameters; f(u,v) and ¢g(u,v) are two parameter functions
which simulate chemical reactions. For a general introduction of such systems, see [2].

Reaction-diffusion systems as described above are useful for modeling patterns in
chemistry and biology. A few examples can be found in [5], [8], and [9]. In these exam-
ples, the concentration of nutrient and the concentration of buffer satisfy a reaction-
diffusion system as given in (1).

The main purpose of this paper is to propose an efficient numerical scheme for
solving system (1). The scheme is a fully implicit finite difference scheme together
with a multigrid solver. In Section 2, the finite difference scheme is constructed and
its stability analysis is given. The idea of using multigrid is given in Section 3. In
Section 4, some applications to pattern formation problems are discussed.
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2. Fully implicit discretization

For simplicity, we consider a uniform rectangular mesh on the square [—L, L]* with
mesh size h = 2L/N. Other geometries can be accommodated; however, approxima-
tion of the boundary conditions is less trivial [7]. Let x;; = (aq, a9;) €  be a grid
point then a1 = ay; + h and agjp1 = ag; + h, etc. A time step size " — 7 will be

denoted by At, and we adopt the standard notation uj; ~ u(z45,tn), etc. Letting

The fully implicit finite difference scheme is given by:

+1 —+1 —+1
’LL:L] —ul D Azhu?j + Ayhu?j + f n o ,n
1 = Dy s ~h2 ) (ug> v),
2)
v?"ﬂ'l—vi”i A hv?"ﬂ'l A hvf"ﬂ'l (
k3 i _ TR"¥44 Yynvig n n
S = Dy P s M 5 )+ glug,vy),

where Ay, and Ay, are the centered second-order difference operators such that
(Azn -l-Ayh)u?j = (u?-i—lj — 2u + u?_lj) + (u?jJrl — 2uj; + u?j_l).
The zero flux boundary condition is approximated by

n J— n n J— 7 B y 5
{ Ui = Un_1, Uj_q) = ufy, foralli,n, and

7 - n n _ n . .
UNy; = UN_1j Wiy, = uyj, forall jn.

The boundary treatment for v can be defined in the same way. Let u* = {u{;} and
v™ = {v};} be the vectors obtained by the usual ordering. Then (2) can be written in
the following matrix forms:

([—l—TA)gn—H — Qn-l-Atin (3)
(I+7 A" = "+ Atg" (4)

where 7 = D,At/h* 7' = D,At/h? A is the standard matrix resulting from the
discretization operator, —Ag, — Ay, f* = {f(uf},v5)} and g™ = {g(uf;, v;)}. The
matrix A has the property that it is symmetric and nonnegative definite [6]. All the
eigenvalues of A are real and nonnegative.

The following theorem shows that the above scheme is unconditionally stable. Then
any instability showed in computation should come from the original reaction-diffusion
system.

Theorem 1. Let u™ and v™ be the numerical solution by (3) and (4) with the initial
values: {ug; = ug(xy)} and {v; = vo(2y)}. Let @ and 2™ be the numerical solution by

(3) and (4) with the perturbed initial values: {u;} and {¥};}. Define w = ( = ) and
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SEN~3}

. If the partial derivatives, fy, fo, . and g,, are continuous and uniformly

=

bounded_, then
lw" - 2" < (1+CAY)"||lw” -], (5)

where C > 0 is a constant independent of h and At; || - || is the FEuclidean norm
(2-norm). (Then the general definition of stability for finite difference schemes can be
tound in [11].)

Proof. Because of (3), we have

~n—1

- = (I +7A) 7 (W @) AT+ T AT - ). (6)

Since
fugy, viz) — flag, 07) = ful (G miy)(ug; — ) + fol G mis) (v — 03),

mvf) and (4, 97), (6) can be expressed as

where ({73, 7f) is a midpoint between (u
- = (L) ) )
+ AU +TA) B (W @) + A+ TA) B -8,
where BT, and BY, are diagonal matrices depending on the values of f, and f,. Simi-
larly
vt =" = (T+7A)T T - (8)
+ At(I+7'A)7'BR (u T = @) + At + 7' A) T By, (" - oY),

where B}, and BJ, are diagonal matrices depending on the values of ¢, and g,. Com-
bine (7) and (8), we have

W — ( (I+ SA)‘1 s E’A)—l ) (W — @) (©)

+ At ( ([ +TA)_IB?1 ([ +TA)_IB?2 ) (,wn—l _ ~n—1)

(I+7A)~'BYy (I+7A)~'B}
Because of the properties of A, f., fu, gu, and g,, it is trivial to show that

H( (I+7A)! 0 )

A | e ([ NIV [ =S W)

and

(I + TA)_lB?l (I + 7'A)_1B{Z2 <c
(I+7A)'By (I+7A)'By ’

where C' > is a constant independent of A and At.
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3. Multigrid method

Since the matrix A in (3) and (4) is banded and sparse, the best way for solving (3)
and (4) is using an iterative scheme. Then a multigrid technique becomes a natural
way to accelerate the convergence. There are many iterative methods that can be
used for this purpose. In the following, we will use the Gauss-Jacobi iteration as an
example to introduce the idea of multigrid.

Let I+7A = D — B, where D is a diagonal matrix which consists of the diagonal
elements of /+7A and B =D —1—7A, which consists of the off-diagonal elements
of —(I +7A). Then the Gauss-Jacobi iteration for (3) is given as follows:

v = DYBu+u"+ Atf"™) (12)
Q(J) — D—l(Bu(j—l) + Qn + Atin)
= WY

Such an iteration is known to be efficient for smoothing the high frequency error modes
but not efficient for the low frequency modes. The multigrid technique can be used
for solving this problem. Let {£2;}%2, be a sequence of vector spaces corresponding

to different levels of discretization. (); corresponds to the spatial discretization size,
h = h; = h;j_1/2. Then the low frequency modes in a fine grid become high frequency
modes in a coarse grid. Let Py~! be a projection operator from Q; to Q;_; and Q7_,
be an interpolation operator from €2;_; to ;. Then a two-grid scheme is constructed
as follows:

u(l) — Q(O) _ Q:;_lg’
(I+7A)so1g = PIY I +7A4)u® —u™ — Atf),

un-l—l _ D;l(BJu(l)_l_un_i_Atin)7

13
14
15

(
(
(
(16

)
)
)
)

where (I + 7A); refers to the discretization matrix at J® level grid. Other similar
notations are defined by the same way. This scheme consists of three steps: two
iterations on the fine grid ((13) and (16) at J-level) and one correction on the coarse
grid ((14) at (J-1)-level). Note that equation (15) for finding the correction vector
q is of the same form as (3) at the coarse level. So we can solve (15) by the same

manner as (13)-(16) and going to the next level ((J — 2)-level). Continuation in this
direction results in a full multigrid scheme. The convergence and other analysis of this
technique are given in [1].

Consider a multigrid V-cycle scheme with one iteration sweep on each level. Let
WU be the cost of one iteration sweep on the finest grid. Suppose there are L levels,
then

Computational cost = 2WU(1+272 +---+272F) < gWU.
We know that for the systems (3) and (4), WU = O(N?). So the computational
cost for each time step is of order O(N?). Therefore, fully implicit scheme combined
with multigrid technique is a competitive method for solving reaction-diffusion equa-
tions. Here, details such as choices of Py~ and QJ_, as well as implementation and
comparison with other methods remain to be studied.
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4. Discussion of applications

Pattern formation in chemistry and biology has been an important research area for
a long time, because it is related to many unanswered but fundamental questions in
these fields. Not long ago, mathematical modeling of pattern formation was just a tool
for qualitative analysis. Rapid development in computer science during the last two
decades opens a new direction for mathematical modeling of pattern formation and
other biological events. Fast speed and large storage of advanced computers make it
possible to simulate real biological experiments and to do real time computing. These
computational results can be used as guide to laboratory experiments and other prac-
tical purposes such as medical treatment. Many reaction-diffusion equations arising
in cell growth are of the form given in this paper. Some recent research results in this
area can be found in [3] and [4].
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I. CHUDINOVICH and C. CONSTANDA

Time-dependent bending of plates
with transverse shear deformation

1. Preliminaries

We consider a homogeneous and isotropic elastic plate of density p and Lamé con-
stants A and u, which occupies a region S x [—ho/2, ho/2] C R3, hg = const, where S
is a domain in R? bounded by a simple, closed C%!-curve that divides R? into an inte-
rior domain S+ and an exterior one S~. We write G = S x (0, 00), GT = S% x (0, 00),
and Xt = 95 x (0,00). In the transverse shear deformation model, the displacement
field is of the form (:Ugul(:cl,:Ug,t),xgug(:cl,:cg,t),ug(xl,:cg,t))T, where the super-
script T denotes matrix transposition. Using the classical averaging procedure [1]
and the notation h? = h2/2, u = (u1,u2,u3)T, we can write the equations of motion
in the form

MOZu(x,t) — Au(z,t) = q(z,t), (z,t) €G, (1)

where A is the matrix differential operator

WA 4 (X + )07 — p h? (X 4 1) 0102 — 1
h? (X 4 1) 0102 R Ul + A+ )3l —p —pds |,
po1 pOs pA

M = diag{ph?, ph?,p} and q(z,t) is a combination of the body forces and moments,
and of the forces and moments on the faces z3 = thg/2.

2. Formulation of the problem

Let £ and £7! be the Laplace transformation with respect to ¢ and its inverse, and
let Co ={p=0c+ir€C: o> k}. For k >0 fixed and m, k € R, we consider the
following function spaces.

H,, »(R?) coincides as a set with H,,(R?) but is equipped with the norm
g = [ (4 1 + 1€) " ae) P e,
R2

where 4 is the distributional Fourier transform of u € S’(R?).
ﬁm,p(S) ={ue H,, ,(R?) : suppu C St
Hpmp(S) ={u: Fv € Hpp(R?) such that v|s = u}, equipped with the norm

g = inf .
[[ullim,p;s veHm,p%§2):v|s=u”v”m’p

© 2000 by Chapman & Hall/CRC



Hi/2,(0S) = {u: Jv € Hy,(S) such that yv = u}, where v is the (continuous)
trace operator, equipped with the norm

58 = inf .S
lellyopos = ) ik lelhs

H_y/2,(0S) is the dual of Hy,5,(0S5) with respect to the duality generated by the
inner product (-,-)o.as on L%(8S).

Hpom k. (S) consists of all u(z,p), € S, p € Cy, such that U(p) = u(-,p) is
holomorphic from C, to H,,(S) and

k
s = 50 [ (14 ) U @ d < o
g oK
R

Hpit1/2,k,6(05) consists of all f(x,p), z € 95, p € Cy, such that F(p) = f(-,p) is
holomorphic from C, to H41/2(9S) and

k
||f||2il/2,k,n;as = SL;P / (1 + |10|2) ||F(P)||2il/2,p;as dr < 0.
T 2K
R

ﬁg;_l,k,n(Si) consists of all q(x,p), z € S*, p € C., such that Q(p) = q(-,p) is
holomorphic from C,, to H_;(5%) and

k
a1 = 500 [ (14 BP) 1R dr < o

oK
R

Hymps(G)= L1 [Hg;m,k,,g(S)], equipped with the norm
lw(@, llmk,mc = lu@, D)l ks
Hyp1/25,6(57) = L1 [Hﬁ;ﬂ/m,n(aS)], equipped with the norm
I1f (@, )41 /2,5,0m+ = 1F (@, 2)||£1/2,k0;05-
ﬁr;_l,k,n(Gi) =L [ﬁg;_l,k,,@(Si)], equipped with the norm
lg(z, )l -1,0,6 = llg(@, P)|-1,k,x-

Also, v& : Hrj1 5o (GF) — Hyp1/04,6(5) are the obvious (continuous) trace
operators and (-,-)g.s+ is the inner product on L?(S%).
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We consider the energy bilinear forms [1]

ax(u,v) =2 / E(u,v) da,

g
where
2E(u,v) = h2Eo(u,v) + h2,u(82u1 + O1u2) (0201 + 0172)
+ p[(ur + B1uz)(v1 + O103) + (u2 + Daus) (V2 + 0203)],
Eo(u,v) = (A + 2u) [(O1u1)(0101) + (Baug)(202))
+ A[(81u1)(D202) + (Baus) (B101)].

We assume that A + ¢ > 0 and p > 0, so that both a4 (u,u) are positive quadratic
forms.

The classical dynamic problems with Dirichlet and Neumann boundary condi-
tions for a smooth contour 3S are formulated as follows.

(DD®) Find u € C?(G*) N C1(G?F) satisfying (1) in G and

uw(z,t) = f(z,t) on T, u(z,0) = Oyu(z,0) =0 in SE.
(DN#) Find u € C?(G*) N CL(G?F) satisfying (1) in G* and

Tu(z,t) = g(z,t) on X7, u(z,0) = Oyu(z,0) =0 in ST,

where the boundary moment and stress matrix operator T' is defined by

R2[(A + 2p)v1 61 + pr20s) h2 (pvedy + Avi0s) 0
h2(Ava81 + pv10s) W2 [uv1 01 + (A + 20) 1,205 0
nvy nva /“/aaa

and v = (v1,10)T is unit outward normal to 95.
It is not difficult to construct the variational formulation of these problems.

(DD?) Find u € H,.1,0,(G%) satisfying ytu = f and
o0 o0
/ ay(u,v) — (M1/28uM/8tv05i / V), 5= dt
0 0

for all v € C$°(G*) such that ytv = 0.
(DN#) Find u € H,.1 0.,(G%) such that, for all v € C§°(GF),

oo oo oo
/ ay(u,v) M1/28u M/(‘?tv Osj: / S:tdt:l:/ v)o,0s dt.
0 0 0
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3. Solvability of the variational problems

Applying £ in (1), we arrive at the elliptic system
p*Mu(z, p) — Au(z,p) = q(z,p), €S8, p€Cy, k>0.

The corresponding variational boundary value problems for this system are as fol-
lows.

(D) Find u € Hy ,(S*) such that, Vv € ﬁl,p(Si),
p2(M1/2U, M1/2U)O,Si + a:l:(u7 U) = ((L U)O,Sia

and satisfying vfu = f.
(NE) Find u € Hy ,(S%) such that, Yo € Hy ,(S%),

PP (M2, M1/2U)o,si + a4 (u,v) = (¢,v)o,5= £ (9,v)0,05-

Below we denote by ¢ constants that are independent of p € C, but may depend
on K.

Theorem 1. For any k > 0, p € C,, f € H1/2,(05) and ¢ € H_1 ,(5%), (D)
have unique weak solutions u € Hy ,(S%), which satisfy

||U||1,p;si < C|P|(||Q||—1,p;si + ||f||1/2,p;as)-

Theorem 2. For any k > 0, p € Cy, g € H_1/2,(85) and ¢ € H_y ,(5%), (NE)
have unique weak solutions u € Hy ,(ST), which satisfy

||U||1,p;si < C|P|(||Q||—1,p;si + ||9||—1/2,p;as)-

The proofs for the interior problems are based on the coerciveness and conti-
nuity of a, (u,v) in H; ,(S*). The problems are then reduced to equations whose
operators, by Rellich’s theorem, are compact, and Fredholm theory is applied.

Since Rellich’s theorem is not valid in §—, the proofs for the exterior problems
use a different approach; they are based on the coerciveness and continuity in H1(57)
of the form

a_ o(u,v) = LK2 M1/2u,M1/2v 0.5- +a_(u,v), K>0.
4 2 ’

The problems are reduced to equations with selfadjoint nonnegative operators, on
which spectral arguments are used.

Estimates derived for the solutions of the transformed problems [2], which show
that U(p) = u(-,p) : C., — H;(ST) is holomorphic, enable us to apply £7! in
the appropriate spaces and establish existence results for the originals u(z,t) of the
solutions u(x, p) supplied by Theorems 1 and 2.
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Theorem 3. For any k >0, ¢ € Hy;_11,.(GF), and f € Hy1/01,.(5F), (DDF)
have unique weak solutions u € Hy10,(GE). If, furthermore, ¢ € Hy.—11.x(GF),
f € Hpuaops(EF) and k € R, then u € Hpa p—1,.(GF) and

||U||1,k—1,rc;Gi < C(”Q”—l,k,n;Gi + ||f||1/2,k:,fc;2+)'

Theorem 4. For any k > 0, q € ﬁr;_l,l,n(Gi), and g € Hy,_1/21,(3F), (DNF)
have unique weak solutions u € Hy 0..(GE). If, furthermore, ¢ € Hyp,_1p.«(GF),
g€ Hy_1/0p,(E1) and k € R, then u € Hyap—15(G%) and

lullik—1,ma= < c(llall=1,k.x + N9ll=1/2,5,m55+ )-

4. Integral representation of solutions

Let 0S be a C?-curve. We define the single layer and double layer transformed
potentials by

(Voa)(z,p) = / D(z -y, p)aly, ) ds,,
as

(W,5)(z,p) = / P(x — y,p)8(y,p) ds,.

oS

where P(x —y,p) = [TyD(y - :c,p)]T, D is a matrix of fundamental solutions for

the elliptic operator of the transformed system and « and g8 are density functions.
At the same time, we define the retarded single layer and double layer potentials by

(Va)(z,t) = (ﬁ_lvpa)(:c,p) = //D(l’ —y,t —T)a(y,T)ds, dr,
0 a8

(WB)(z,1) = (LW, 5)(x, p) = / / P(x —y,t — 7)B(y, ) ds, dr.

0 08

If we seek the solution of (DD%) as u = Va, then « satisfies the weakly singular
boundary integral equation

Va=f onXt. (2)

On the other hand, if we seek the solution of (DD¥) as = W, then j satisfies the
singular boundary integral equation

(W) =f onx*. (3)
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Theorem 5. For any k > 0, k € R and [ € Hyj1/95.(57), (2) and (3) have
unique solutions o € Hy._y1/9x_1,(E%) and B € Hy1/9p—2,.(37), in which case
u € Hr1p—1,(GE). If k > 1, then u is the weak solution of (DD%).

If we now seek the solution of (DN%) as u = Va, then « satisfies the singular
boundary integral equation

(TVa)¥f =g on X7. (4)

If we seek the solution of (DN%) as u = W, then 3 satisfies the hypersingular
boundary integral equation

TWBE=g onXt. (5)

Theorem 6. For any x > 0, k € R and g € Hy_1/25,(E7), (4) and (5) have
unique solutions o € Hy._y1/9p—2(E%) and B € Hy1/95—1,6(37), in which case
u € Hr1p—1,(GE). If k > 1, then u is the weak solution of (DN?%).

The ranges of the boundary integral operators generated by V and W are not
closed in the appropriate (natural) spaces, so Fredholm theory cannot be applied.
Instead, the proofs of Theorems 5 and 6 make use of the properties of the dynamic
analogues of the Poincaré-Steklov operators [3], the continuity and injectivity of the
boundary integral operators, and density arguments.

The case of nonhomogeneous initial conditions in (DD*) and (DN#) can be
reduced to the homogeneous one by means of some “initial” potentials [4].
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S.G. CIUMASU and D. VIERU

Polarization gradient
in piezoelectric micropolar elasticity

1. Introduction

We discuss the linear theory of piezoelectric micropolar elasticity with polarization
gradient in the case of quasi-electrostatic approximation. Mindlin [1] generalizes
the classical Voight model including among the constitutive variables the spatial po-
larization gradient as an effect of some results from the ionic crystaline networks.
Nowacki [2] has derived the linear theory of the piezoelectric micropolar thermoe-
lasticity in the case of a quasi-static electric field. In this paper, based on Mindlin’s
and Nowacki’s work, we derive the linear theory of micropolar piezoelectricity with
polarization gradient. We deduce the basic equations of the theory and formulate
mixed problems. We also derive the equations for an isotropic material. We estab-
lish reciprocity relations and new uniqueness results by using a method suggested
by Iesan [3], avoiding the use of the Laplace transform and the incorporation of the
initial conditions into the equations of motion. All considerations are presented in
tensor form.

The motion of the body is referred to a fixed system of rectangular Cartesian
axes Ox;, and e;, 1 = 1,2, 3, are the unit vectors of the axes. Let D be the regular
region of the Euclidean three-dimensional space occupied by the body at time ¢t = 0,
S the boundary of D and n the outward unit normal at a point of S; also, (x,t) is a
point in Dx I, where I = [0,%1), t; > 0, is a time interval, R is the set of real numbers,
RP is the Euclidean p-dimensional vector space, 7, = R3* @ R?--- @ R? is the space
of p-th order tensors (tensors of order p > 1 are in bold type), A-B = tr(ABT)
is the inner product of any two p-th order tensors A and B, B = L[A] is the
linear tensor function of Cartesian components By, = LimpgApg, the superscript T
denotes matrix transposition defined by u-Av = ATu-v, u,v € 73,0V /0L = ¥ (L),
where ¥(L) is a scalar function and ¥ is defined by ¥y (L)-C = (d/ds)(¥(L +
8C))|s=0, summation over repeated indices is understood, subscripts preceded by a
comma denote partial differentiation with respect to the corresponding Cartesian
coordinate, a superposed dot denotes the time derivative and the convolution u * v
of two integrable functions u and v in 7, is defined by

(uxv)(x,t) = /0 u(x,t —7)v(x,7)dr

(u,v may be scalar functions).

2. Basic equations

We consider a micropolar piezoelectric anisotropic body. The quasi-electrostatic
approximation is assumed in the sequel of this paper. The local field equation and
the associated boundary conditions that govern motion are obtained by means of
the generalized formulation of Hamilton’s principle, where the polarization gradient
is added to the set of the independent constitutive variables.
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We introduce the notation

U=(u,wP, o), U:DxI->RP F=(FGE’ —f), F:DxI—RY,

10 (2.1)

T=(tms,—f), T:SxI—->R",
where u,w,P : D x I — T7; are the displacement, microrotation and polarization
vectors, respectively, ¢ : D x I — R4 is the electric potential, F,G,E° : D x I —» T,
are the body force and body couple vectors per unit volume and the given electric

field, f : D x I — R is the volume density of free charge, t,m,s : S x I — 7; are
the stress, couple stress, and surface electric force vectors, and f; : S x I — R is the
surface density of free charge. The inner products of F, U and 7, U are

FU=Fu+Gw+E"P—fo, TU=tu+mw+sP—f. (2.2)

We define the kinetic energy density by K = %pl.l-l.l + w-Iw, where p is the material
density, I = pJ, J = J;;e; ®e;, and J;; are the microinertia coefficients. The inertia
tensor is symmetric and positive definite; that is,

Ja-b=aJb, aJa>0 VabeT7;. (2.3)
The electric enthalpy density is defined by

H =W(e,x,P(VP)T) - 150E-E — E-P, (2.4)
where

e= (V)" +Rw, k= (Vw)T, (2.5)

€K Dx I — T; are the strain displacement tensors, o is the permitivity of vacuum,
E: D x I — 7; is the Maxwell self-field given by

E = -V, (2.6)

and the components of R-w are (R-w),;; = €;ik¢r, where R is the third-order tensor
having the alternating symbols ¢;,; as components and w is the energy density of
deformation and polarization.

The generalized Hamilton principle states that for all admissible variations of
motion of the body we have

t1 t1 11
5/ dt/ (lC—H)dv+/ dt/ f-(sudv+/ dt/T-(SL{dazo, (2.7)
to * to D to S

where ty and t; are two arbitrary moments, D* = DU D’ and D’ is the exterior of
the body, which is vacuum.

From (2.7) we conclude that the equations of motion and quasistatic electric
field are

VT4 F =pit, V" + R[]+ G =T, (2.8)
V-t —Vo+7+E =0, V-P-gVp=/f inD, (2.9)
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and that the boundary conditions are

T

t=7"n, m=u"n, s=7nTn, (¢0<Ve>-P)n=Ff. (2.11)

In (2.8)(2.11), 7 = We(e), p = Wu(k) and 7 = Wigpt(VP)T : Dx I - T

are the stress, couple stress and dipolar electric tensors, and 7 : D x I — 77 is the
effective local electric force vector.

In the linear theory, under the assumption that the body is initially free from
stress and hyperstress, the energy density of deformation and polarization is

W=ie-Ale]+e-A'[k] — e-A’P— e G[(VP)T]+ Lx-B[s] — s B'P — s-G'[(VP)T]
+iP-APP + P-AY(VP)"] + £(VP)T-D[(VP)"] + C[(VP)],

where A,A' B D.G,G!: D - T,, A2 A* B' : D - T; and A®>,C : D — T; are
tensors characterizing the material and electrical properties of the body.
We obtain the constitutive relations

r=Ale]+A'[k]-A’P-G[(VP)T], u=eA' +B[x]-B'P-G'[(VP)T],

r=eA’+xkB'—A*P-A*[(VP)T], (2.12)
' =—eG-kG'+PA*+D[(VP)T]+C.

The coefficients in (2.12) have the symmetries

Aab=aA’d VabeT,

(2.13)
a-A[b] =b-Afa], a-B[b]=Db-B[a], a-D[b]=b-D[a] Va,be 7.

To the system of field equation (2.5),(2.8),(2.9),(2.12) we adjoin the initial conditions
u(x,0) =a'(x), u(x,0)=b(x), wx0)=c(x), Wwx0)=d(x), (2.14)
and, for a mixed problem, the boundary conditions

u=uonS; xI, w=wonS3xI, ¢=¢ onSsxI,
P=P onSy;xI, t"n=tonSxI, pfn=m'onsS,x]I, (2.15)
(c0 (Vo) =P)n=f1on S x I, #'FT =g onSsx1I,

where S, 7 =1,2,...,8, denotes subsets of S such that S1USy = S3US; = S5US¢ =
S7USg = S and Sl ﬂSQ = 53 ﬂS4 = S5 mej = S7ﬂSg = @, and a’,b’, C/, d/, 11/, t/, W/,
m’, ¢, f1, P’ and s’ are prescribed functions.

Suppose that

(1) the characteristic constants (2.3) and (2.13) of the material are continuously

differentiable on D;
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(ii) the external data system {a’,b’,c/,d’,w’,t/,w',m’, ¢, f1,P",s',F, G, E°,
f} is such that F,G,E°, f € CO%D x I), u’ € C*%(S; x I), w € C%0(S; x I),
0 € CO%(SsxI), P € C¥°(S7;x1I),t',m’, f1,s are continuous in time and piecewise
regular, respectively, on S X I, Sy x I, S¢ x I, Sg x I, and &', b’, ¢/, d’ are continuous
on D.

An admissible process in D is an ordered array of functions {u;, i, P;, ¢, €5,
Kij Tijs Mijs T 7Ti1j} that satisfy certain smoothness conditions in D x I, namely, u; €
02’2, Y; € 01’2, Pz € Cl’o, Y e 02’0, €55 € CO’O, Kij € CO’O, Tij € Cl’o, i € Cl’o,
m; € C%0, and 7j; € CHO.

A solution of the mixed problem is an admissible state that satisfies the field
equations, the geometric relations (2.5), the equations of motion (2.8), the equations
of the quasistatic electric field (2.9), the constitutive equations (2.12), the initial
conditions (2.14) and the boundary conditions (2.15).

By means of the method given in [4] and [5], in the linear theory for a homo-
geneous and isotropic elastic solid we obtain the energy density of deformation and
polarization in the form

W = 3heiej; + 5(X2 + As)egjes; + sAseijess — Aaeii Py — Aseij Py
— XeeijPij + 5Mkiiks; + 5 AskKigkij + 5 Aokiikji — Aoijrkig P
+ 5A1 PP + A2 PPy + 513 Py Pri + 5MaPyiPig + COPy. (2.16)
The field equations of the linear theory for isotropic solids are

Qru+ (A1 +A3)grad divu+4Ag curl w— As AP — (A + \g ) grad div P+ F =0,
Qoaw—+ Ag curlu+ (A7 4+Ag)grad div w4+ (Ajg+ A6 —As) curl P—2\ow+ G =0,
AsAu+(Ag+Ag)grad divu—(A11+ X6 — As) curlw (2.17)
—A13AP+ )1 P + grad p—E° =0,
divP—eAp=f,

where {1 = (A2 + A3)A — pd? /0t? and $o = Mg A — 192 /0¢2.

3. Reciprocity theorem and uniqueness theorem

We consider the body subjected to two different external data systems £(®) =
{F(a)’G(a)’EO(a)’f(a)’u/(a)’t/(a)’wx(a)’m/(a) gol(a) fl(a) g/ (@ o)  grl@)  prla)
c’(a), d’(a)}, a=1,2, where H=P ® n with components H;; = P;n,;.

Let S(®) = [u(®) w(®) e(®) x(@) rla) (@) ) P gla) 71(®)} be a solution
corresponding to £(®),

Theorem 3.1. Letr,s € I =0,t1) and

Nogp(r, s) :T(a)(r).e(ﬁ)(s) + M(a)(r).,g(a)(s) _ 7T(OA)(T)_P(Q)(S)
+ B (1) B (s) + (1) (r) — £ (n) (VPP ()T, (3.1)
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where
£ = 6@, gl = 06 (3:2)

If the coefficients A, A®, B, D satisfy the symmetry relation (2.13), then
Nop(r,s) = Nga(s,r) Vrisel, a,=1,2. (3.3)

Proof. Using the constitutive relations (2.12) and taking into consideration the
symmetries of the coefficients, we conclude that (3.3) holds.

Theorem 3.2. Letr,s € I and
Meg(r, s) = /D FO (r)-UP (s)du
— /D(pii(a)(r)-u(m(S) + 1% () w® (s))dv
+ /S (T@)-UP (s) — T (r).HP) (5))da. (3.4)
If the coefficients 1, A, A® B, D satisfy the symmetry relations (2.3) and (2.13), then

Mog(r,s) = Mpa(s,r) Vr,sel, a,=1,2. (3.5)

Proof. Formula (3.5) is obtained by inserting the geometric relations (2.5) in (3.1),
using (2.8), (2.9), (2.15) and the divergence theorem, integrating (3.1) over D, and
applying Theorem 3.1.

Theorem 3.3. (Reciprocity theorem) Suppose that the characteristic constants
of the material satisfy the symmetric relations (2.3) and (2.13). If a piezoelectric

micropolar material is subjected to two external data systems L%, o = 1,2, then
the corresponding solutions 8@, o = 1,2, satisfy the reciprocity relation

/D 0 4 u® 1 g 4w w® 4oy i (B 4 PO _ £ 4 o]y
n / o (TO 1@ — €T, H®)gq
S
_ / 2 4 u® 4 g® 4 w® 4oy (B0 4« PO _ £@) 4 o))y
D

n / o (TO u® — €T 7D gq, (3.6)
S
where

(i) =t, u(t) =1,
f(a) =y % F(a) —|—p(tb/(a) + a/(a))’ g(a) = % G(a) + I(td/(a) + c/(a)).
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Proof. If wetake o =1, =2, r =71, s=1t— 7 in (3.5), integrate with respect to
7 from 0O to ¢ and use the definition and commutativity of convolution, we arrive at

/ FO s y@dy — / (pii™ x u® + 1% W « w)do
D D

n / (TO U@ — €T, H®)gq
S
_ / FO gy — / (i@ xu® 1+ T 5 wl)dy
D D

+ / (TP « ™ = 7@ HY)dq. (3.7)
S

Taking the convolution of (3.7) with v and using the equality (y*1)(x,t) = u(x,t) —
ta(x,0) —u(x,0), the initial conditions (2.14) and the symmetry of I, we obtain (3.6).

Theorem 3.4. (Uniqueness theorem) Suppose that

(i) the characteristic constants of the material satisfy (2.3) and (2.13);

(ii) A%, A* and D are positive definite.

Then the mized problem formulated in §2 has at most one solution if Sy is non-
empty. If Sy is empty, then any two solutions of the mized problem differ only by

their electric potentials, up to a constant on D.

The proof of this assertion is similar to that of Brun’s theorem in linear elasto-
dynamics [6].
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T. COMLEKCI, R. HAMILTON and J.T. BOYLE

Thermoelastic stress separation
via Poisson equation solution by means
of the boundary element method

1. Introduction

Thermoelastic stress analysis (TSA) is a full-field, noncontacting experimental stress
analysis technique. The basis of this technique is the thermoelastic effect that de-
scribes a temperature change in a body due to straining [1]. Kelvin’s formula de-
scribes the thermoelastic effect:

AT = —kTAocy,,

where k = a/pc,, is the thermoelastic constant and o,, = 01+02+03 is the first stress
invariant (sum of principal stresses). TSA is noncontacting since infrared detectors
are used to measure small temperature changes correlated to a stress quantity. TSA
is also full-field, since either scanning mechanisms or sophisticated focal plane array
infrared detectors are used to measure stresses on the full visible surface of a struc-
ture. SPATE (stress pattern analysis by thermal emission) is such a TSA system
based on a single IR detector and scanning mechanism. A review of the theory, prac-
tice and literature of TSA and the SPATE system can be found in [1]-[3]. Although
TSA is a very convenient experimental system due to its full-field non-contacting
nature, one of its main criticisms is that the thermoelastic signal can only be inter-
preted as the sum of the principal stresses for isotropic homogeneous materials [4].
However, engineers designing and testing a structural component ideally require in-
dividual stress components to obtain the Von Mises stress; therefore, a method of
separating the individual stress components is required.

A hybrid stress separation method based on the second-order form of the equi-
librium equations (which are expressed as two Poisson differential equations) has
been demonstrated previously over rectangular regions be means of the finite ele-
ment thermal analogy [3] and boundary element Monte Carlo integration techniques
[5]. Experimental TSA data and the results of an independent stress analysis method
(finite element analysis) were used together in order to separate the stresses. The
current work is on the extension of the hybrid stress separation algorithm to arbi-
trarily shaped two-dimensional domains using the boundary element method (BEM).
Solutions of the Poisson equations over arbitrarily shaped structures are attempted
via the BEM cell integration method (CIM), the dual reciprocity method (DRM)
and the Monte Carlo method (MCM). A benchmark problem of a plate with a circu-
lar perforation under bending and tension load is used to test the stress separation
algorithm. Since experimental TSA scan data were not available, the TSA scans are
simulated by means of boundary element elastostatic analysis results and computer
generated random noise.

This work was funded through an Extra Mural Research Agreement with the National Engi-
neering Laboratory, East Kilbride, UK.
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2. Basic stress separation theory

A deforming two-dimensional component as shown in Fig. 1 is considered in order
to define the basic stress separation theory. The differential equations of equilibrium
are written for a small rectangular element inside the solid in the form

0oy  OTyy

or ay

LY =0, (1)

where X and Y are the body forces per unit volume. Then it is possible to formulate
the stress separation problem as two Poisson equations by differentiating the equa-
tions of equilibrium, neglecting the body force terms and using the relation for the
first stress invariant o, = 0, + oy:

8%0,,

8w8y)’

VQO'd = ( VQTxy = _( (2)

o2 )_( dy? )’

where 04 = 0, — 0, is the stress difference. The derivatives of the stress sum o,
give the right-hand side in the equations (2), for the stress difference and the shear

stress problems.
AN
n=(nyn, )

— Txy ‘_,—“— tx
Gx‘_l T—’Gx
Gy

Fig. 1. A solid with applied boundary tractions.

The boundary conditions for a general curved boundary are given in terms of com-
binations of normal and shear stresses (Fig. 1):

OgNg + TayNy = bz,  TgyNg + TyNy = ty, (3)

where n; and n, are the Cartesian components of the normal to the boundary and
ty and t, are the Cartesian components of the specified boundary tractions. The
boundary conditions for the Poisson equations (2) are the stress difference and the
shear stress values. Free surfaces and experimentally measured stress sum data over
the boundary may be used to separate the stresses on those boundary segments. The
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boundary conditions on the remaining segments of the boundary may be obtained
from an independent elastostatic analysis in a hybrid method.

The Poisson equation is VZu = b , where u = 04 or u = 7, and b is formed by
the right-hand side in (2). The boundary conditions for the stress separation problem
are prescribed as u = w on the complete boundary. Natural boundary conditions
g = Ou/On = G, where n is the unit outward normal to the boundary are not used in
this algorithm. The boundary integral equation required by the boundary element
method can be written as [6]

ciui+/uq*d5'+/ bu*dR:/qu*dS, (4)
S R S

where ¢; are constants and u* and ¢* are the kernel functions. The techniques that
are used here to obtain a boundary element formulation to this boundary integral
equation are CIM, DRM, and MCM. These techniques differ in their approach in
dealing with the domain integral term. CIM requires that the integration domain is
subdivided into cells and on each cell a numerical integration scheme applied. DRM
only requires internal nodes with known values of the function b instead [6].

If the analytic form of b was known, then it would be possible to use particular
solutions where the function w is split into a particular solution and the solution
of the associated homogenous (Laplace) equation, that is, u = @ + @ (here @ is
the solution of the Laplace equation and # is a particular solution of the Poisson
equation). Then V24 = b, and the domain integral term in (4) can be written as

/R bu*dR = /R (V20)u*dR. (5)

This equation is integrated by parts and yields the boundary-only expression

ciui+/uq*d5'—/qu*dS:ciﬁi+/ﬁq*dS—/cju*dS. (6)
S S S S

DRM is a generalization of the use of particular solutions and may be adopted here
since the analytic form of b is not known for the general stress separation problem.
The basis of DRM as described in [6] is the summation of localized particular solu-
tions where the coefficients are to be determined. A series of particular solutions ;
is used, where the total number of nodes n gives the number of particular solutions
in the series. A set of approximating functions f; with initially unknown coefficients
o; are used to approximate b:

b ;. (7)
j=1

The first few terms of the series f = 1 +7 + 72 4 --- + 7™ are used, where r is the
distance between the nodes. The unknown «; coeflicients are calculated from the
known values of b at all nodes. In matrix this is written as b = Fa, where F is a
symmetric matrix formed by vectors of the approximating function f; and o is a
vector to be calculated by solving this system of equations. The particular solutions
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are linked to the approximating functions by the formula V24; = f;; substituting
this in (7) and rewriting the Poisson equation leads to

Viy = Z o (V2i1). (8)

The next step is to express both the left- and right-hand sides of (8) as boundary
integrals:

ciui—l-/uq*dS—/qu*dS:Zaj (ciftij—l—/ﬂjq*dS—/(jju*dS). (9)
S S S S

=1

An alternative method that does not require cells for the computation of the
domain integral is MCM [7]. The technique is based on the idea that the average
value of a function over a domain multiplied by the area of the domain is equal to
the integral of the function over that domain. In practice, a large number (N) of
coordinates inside the domain are randomly generated, and the function f which
involves b and the kernel function is calculated at each point. The true average of
the function can be approximated if the sample is large enough and the coordinates
are distributed in a uniformly random manner. The average value is then multiplied
by the area Ar of the domain to give the integral value

N
Ar

iU * — . = *dS. 1

cu—l—/suqu—l—NEkfk /SqudS (10)

Numerical algorithms for the solution of the Poisson equation are developed starting
from (4), (9) and (10). The next section describes the application of the stress
separation algorithm to a practical example.

3. Numerical tests on a benchmark problem

A rectangular steel plate with a circular perforation is subjected to combined ten-
sion and bending loads as shown in Fig. 2(left). The geometry is modeled using
the ANSYS finite element program with eight node finite elements. The geometry
model is translated into a boundary element model which has 64 quadratic bound-
ary elements, 128 boundary nodes, 832 internal nodes, and 224 cells (represented
as nine-node Lagrangian-type elements). The loads are applied and the problem is
analyzed using the developed boundary element elastostatics program. The result of
the elastostatic analysis is used to simulate noisy experimental TSA scan data from
the complete surface (resolution 210 * 250 scan points) and zoomed-in region of the
circular perforation (resolution 256 * 256 scan points). Computer generated random
noise with a Gaussian distribution is added in the process of TSA data simulation.
The maximum value of the noise added to TSA data is 5 N/mm?, which can be
compared with the maximum equivalent stress at the stress concentration calculated
by the elastostatic analysis as 368 N/mm?. A finite element smoothing algorithm
(see [8] and [9]) is used to combine the two noisy TSA scans and smooth the TSA
data over the cells of the structure. The results of the smoothing include first- and
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second-order Cartesian derivatives of the TSA data, which form the b functions in
the stress difference and shear stress problems.
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Fig. 2. (left) Benchmark problem: a rectangular steel plate with
a circular perforation subjected to tension and bending;
(right) Von Mises equivalent stresses obtained from CIM
separated stresses.

°| T

150

In order to solve the Poisson equations for the stress difference and shear stress
problems, the boundary conditions need to be evaluated. It is possible to use the
results of the BE elastostatic analysis to specify the boundary conditions on the
complete boundary of the domain. Otherwise, the boundary conditions can be eval-
uated partly from the BE elastostatic analysis and partly using the smoothed TSA
data on the boundary with the prescribed traction values. The stresses can then be
separated by means of one of the Poisson equation solution algorithms. The results
of the separated stresses are combined to give the equivalent stresses. A contour plot
of the Von Mises equivalent stresses from a CIM stress separation analysis is shown
in Fig. 2(right). It has been observed that the equivalent stress distributions ob-
tained from the stress separation algorithm compare well with that of the boundary
element elastostatic analysis result.

4. Discussion

The boundary element method for Poisson equation solution has been applied to
separate the individual stress components from TSA data over an arbitrarily shaped
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region. CIM with numerical integration schemes proved to be robust. Since inter-
nal cells are already created automatically with the finite element mesh generation
algorithms of ANSYS, geometry modeling is not too time-consuming. Where stress
separation results are required only at a few internal points, it may be possible to
employ the DRM or MCM techniques more efficiently. However, more research effort
is required to find the optimum number of internal nodes, since that may determine
the accuracy of the stress separation analysis.
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C. CORDUNEANU and M. MAHDAVI

On neutral functional differential
equations with causal operators. 11

1. Introduction

This paper is a continuation of our preceding paper [2], and is concerned with existence
results in various function spaces for neutral functional differential equations of the
form

d
Ze(t) + (Va)(@)] = (Wa)(2), (1)

with V' and W standing for certain causal (abstract Volterra) operators acting on the
function spaces under consideration. In our preceding paper [2], we investigated the
existence (both local and global) of solutions to the equation (1), choosing the space
of continuous maps from [0,7], T > 0, into R™ as underlying space. In this paper we
shall concentrate on the case of spaces of measurable maps. More precisely, we shall
deal with the Lebesgue spaces LP, 1 < p < oo. Of course, the solution will be meant
in Carathéodory’s sense, i.e., almost everywhere on [0, 7], or on a smaller interval (on
which the solution does exist). We shall also consider the case of linear equations of
the form (1), when the existence results are globally valid. To (1) we will adjoin the
usual initial condition

2(0) = 2% € R". (2)

Further discussion of the global existence, in the nonlinear cases, will be conducted in
the last part of the paper.

2. Local existence in LP-spaces

The following conditions will be imposed on the operators V and W in (1), in order
to secure the existence of a (local) solution satisfying the initial condition (2).

(Hy) V and W are causal operators on the space L?([0,T], R"), 1 < p < o0,
(Hy) V is a continuous compact operator, such that for each z € LP one has

lim (Vz)(t) = 6, (3)

t—0+
where 6 stands for the null element of R".
(H3) W is a continuous operator that takes bounded sets of LP into bounded sets.
Before we state the existence result, let us point out that condition (3) is a slight
generalization of the so-called “fixed initial value property” for causal operators. It
was formulated for the first time by L. Neustadt (see [1], [4], for instance). Obviously,

instead of (3), one may impose the apparently more general condition

lim (Vz)(t) = ¢y € R™.

t—0+
But (1) shows that an additive constant is immaterial for V.
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An example of a classical operator satisfying the condition (3) is the Volterra
operator

(Va)(t) = /OtK(t,s,:v(s))ds,

under appropriate conditions on K (so that K (t, s, z(s)) is integrable in s for almost all
t € [0,T], and for any z € L?). The following result can be proven for (1), with initial
condition (3). It is appropriate mentioning that condition (2) has to be understood in
the sense

lim z(t) = 2°. (4)

t—0+t
Theorem 1. Consider equation (1) under initial condition (3). Assume that the
operators V. and W in (1) are satisfying the hypotheses (Hy) — (Hs). Then there exists
a solution of (1,2) on some interval |0,al, a < T, say x(t), such that z € LP([0,a], R™),
while z(t) + (Vz)(t) is an absolutely continuous function.

Proof. First, let us note that the problem (1,2), or (1,4), is equivalent in L? with the
functional equation

z(t)+ (Vz)(t) = 2° + /Ot(W:v)(s)ds. (5)

Indeed, if z(t) is a solution of (1,3) in LP, then (Wz)(t) € LP? € L', and consequently
both sides of (1) can be integrated on any interval [0,¢], ¢ <T (ort < a). Taking (H
into account, the result can be written in the form (5). Since the right-hand side of (5
is absolutely continuous, one can differentiate (5), almost everywhere, and obtain (1).
Also, letting ¢ — 07 in (5), one obtains (4). Therefore, we need to prove the existence
of a solution to (5). Obviously, (5) is equivalent on the interval of definition of z with

2(t) — /0 (Wa)ds — (Va)(t) + 2, (6)

which means that it has the typical form

z(t) = (Va)(t). (7)

Equation (7) constitutes a functional equation of Volterra-Tonelli type (see, for in-
stance, [1,4]), with causal operator, V. From our hypotheses (H;) — (Hs3), one obtains
the existence of a solution in IL? = LP([0,a],R"), a < T, 1 < p < co. Indeed, the
operator V in the right-hand side is acting on the space LP([0,t], R*) according to
our hypotheses. It is obviously continuous and compact (taking bounded sets into
relatively compact sets). While this last property is part of the hypotheses in regard
to the operator V', we have to notice that the (causal) operator

o)~ | (W) (s)ds (8)

is compact on LP. Since the right-hand side in (8) belongs to the space of continuous
functions on [0,7], it is an elementary exercise to prove that the operator defined by
(8) is compact from L? into C. Hence, this operator is compact from LP into itself (the
convergence in C' is stronger than the convergence in LP). At this point in the proof
we can directly apply Theorem 3.4.1 in [1], which leads to the result of Theorem 1.

Remark 1. As shown in [1], the singularly perturbed equation
€te(t) = —z(t) + V) (t) 9)
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is solvable in L? for each positive ¢, sufficiently small. Its solution can be regarded as a
regularized approximate solution to (7), as € — 07. Of course, each z(t) is absolutely
continuous on its interval of existence (which turns out to be common to all z.(¢) with
sufficiently small €).

3. The linear case

If we admit that both operators V and W in (1) are linear operators on LP, 1 < p < o0,
then the existence result stated in Theorem 1 becomes a global result (on the whole
[0,T], or even on [0,T), with 0 < T < 00). In order to obtain this result, we shall rely
on the results of the paper [3] by M. Mahdavi and Y. Li.

We shall return now to 6%, which can be rewritten as

o(t) = (L)(t) + f(t),t € [0,T), (10)

where
(Lz)(t) :/0 [(Wz)(s) — (WO)(s)]ds — [(Vz)(t) = (VO)(?)],

and f(t) = [J(W8)(s)ds — (V8)(t) + z°. The hypotheses (H,) — (H3) must be slightly
reformulated. More exactly, the following conditions will be admitted for the operators
V and W, in order to secure the continuity and compactness of the operator L in (10).

C1) V and W are causal affine continuous operators on LY ([0,T), R"), 1 < p < oo,
0<T < ox.
Cs) V is compact on L? ([0,T), R") and satisfies (3).

loc
Theorem 2. Consider the linear neutral functional differential equation (1), under
ingtial condition (2) or (4). Assume that V and W wverify the conditions Cy and Co
above. Then, there exists a unique solution of (1,2), defined on the interval [0,T),

belonging to the space L, ([0,T), R"™), and such that z(t)+ (Vz)(¢) is locally absolutely
continuous on [0,T).

Proof. The linearity and continuity of L are obvious from its definition. The com-
pactness of V' is assumed by the condition C, (let us point out that compactness on

LP . means compactness on each LP([0,a], R"), for each a < T). The compactness

of the operator z(t) — [J[(Wz)(s) — (W8)(s)]ds, which appears in the definition of
(Lz)(t), on the space LY ([0,T], R™), can be obtained by the same argument as in the
nonlinear case (Proof of Theorem 1). Indeed, the continuity in the linear case assumes
that bounded sets in L? are taken into bounded sets. Now by applying the Theorem
1 in the paper [3], one obtains the result stated in Theorem 2 above. This ends the
proof of Theorem 2.

Remark 2. Instead of assuming the linearity of V' and W, one can obtain the result of
Theorem 2 by admitting a Lipschitz type condition on these operators. For instance,
in case of space L™, a condition of the form

1(Va)(®) = (Vi) (O] < g(t) ess sup [lo(s) = y(s)],

with ¢(t) a nonnegative nondecreasing function on [0,7), can lead to the global exis-
tence and uniqueness of the solution to the problem (1), (2). Similar conditions can
be formulated in spaces ILP, 1 < p < o0.
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Remark 3. In their paper [3], Mahdavi and Li considered the quasilinear case, i.e.,
&(t) = (Lz)(t) + (Nz)(t), where N stands for a nonlinear operator. Their result could
also be used if we assume, for instance, (Vz)(t) = (Vox)(t) + (Viz)(t), with V; linear
and V; a nonlinear component, which has to be “small” in an appropriate sense (see
[3] for details). A similar representation should be assumed for the operator W. Of
course, the terms in the representation must also be causal operators.

4. An application
We shall apply Theorem 2 to the functional differential equation

dit[z(t) + K (t, $)e(s)ds] = (Wa)(b), (11)

in which W is still a “general” causal operator. Of course, we attach to (11) the initial
condition (2).

Assume we choose the space L?.([0,T),R") as underlying space (i.e., p = 2).
Hence, we must provide conditions such that the integral operator

z(t) — /OtK(t, s)z(s)ds (12)

be continuous on L2 ([0,T), R™). Tt is generally known (see, for instance [1]) that the

operator (12) is continuous and compact on L% ([0, T), R") if the matrix valued kernel

K (t, s) is measurable in its domain of definition, 0 < s <t < T, and for each t < T
one has

2 t
/ dt/ K (¢, 5)|2ds < oo, (13)
0 0

where |K (t,s)| denotes any n x n matrix norm. If one compares (11) with (1), then
one sees that we have chosen

t

(Va)(t) = / K(t, s)z(s)ds. (14)

0

As noticed, V is continuous and compact on L7, ([0,T), R™), provided (13) is verified.

Condition (3) is obviously satisfied by V. Hence, the conditions C and C are satisfied
for (11), which leads to the following statement on behalf of Theorem 2:

Theorem 3. Consider equation (11) with initial condition (2). Assume the kernel
K (t,s) is measurable for 0 < s <t < T and verifies (13). Moreover, let W be a causal

linear or affine continuous operator on L% ([0,T), R™). Then there exists a unique
solution x(t) of (11), satisfying the initial condition (2) and such that

2(t) + /OtK(t, s)z(s)ds (15)

is locally absolutely continuous on [0,T).

Remark 4. One can particularize the operator W in different ways. For instance, one
can choose (Wz)(t) = f§ Ki(t — s)z(s)ds + f(t), with K;(t) satisfying the condition
|K1| € L..([0,T), R"), and f € L} ([0,T), R"™). Another possible choice is (Wz)(t) =

i
S Agz(t — t) + f(t), where O z t <ty <--- <ty <T are some fixed numbers,
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Ay are n x n given matrices and f € L2 ([0,T), R"). In this case, one must assign the

solution not, only at t = 0, but on the whole interval [—¢,,,0). In order to assure W
is continuous on L ([0,T), R"), we can assign z(t) = zo(t) € L*([~tm,0), R"), and
z(0) = z° € R™

Remark 5. Since (11), with initial condition (2), is equivalent to
t t
(t) + / K(t, 8)z(s)ds = 2° + / (Wa)(s)ds, (16)
0 0

another approach can be easily described. Indeed, the operator (15) which appears
in the left-hand side of (16) has an inverse on L7 ([0,7), R") that is also linear and
causal (the resolvent operator!). Using this inverse one can reduce (16) to an equation
of the form (10). See the paper [3] by Mahdavi and Li for details, where quasilinear
equations are also investigated. In other words, the operator W in (16) could be a
nonlinear operator on L ([0,T), R"), satisfying a generalized Lipschitz condition.
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N. CRETU, G. NITA, I. STURZU and C. ROSCA

A semi-analytic method for the study
of acoustic pulse propagation
in inhomogeneous elastic 1-D media

1. Introduction

In recent years, particular attention has been devoted to the analysis of propagation of
pulses in media with varying Young modulus. For instance, [2] studies Gaussian pulse
propagation when the Young’s modulus varies linearly with the propagation distance
employing the approximations in [1].

In this paper, we present a general analysis of acoustic pulse propagation in a 1-D
inhomogeneous elastic medium using the equation of motion mentioned in [1]. The
inhomogeneity is specified by functions (from a specific class) of the spatial coordinate
for the Young modulus, cross sectional area, and bulk density.

This semi-analytic method is based on the Fourier transform of the wave equation
in conjunction with Taylor expansions of both the functions describing the inhomo-
geneities and the solution. Numerical computations were performed using a suitable
iterative scheme. The truncation error and the convergence of the iterative scheme are
analyzed.

2. General considerations
We start from the 1-D equation for a longitudinal wave in an elastic bar:

d oV (z,1) 1 OV (z,1)
5 (r0 22 0) - S0 2 o, )
where p(z) and g(z) are two functions which describes the relative inhomogeneities

relative to an homogeneous medium in which the phase velocity of the longitudinal
wave is ¢. The Fourier transform of (1) is

5 (r0 22D gt =0 @)
where
U (z,t) = % / u (z,w)exp (—iwt) dt, (3)
and

w2
a@w)=(2) 9. e
Considering the polar decomposition

u(z,w) :A(wi)exp[i@(wi)]v (5)

This presentation was partly supported by EC Program Copernicus No. CIPACT940132; Ioan
Neculae, General Manager S.C. PRESCON S.A. Brasov, Romania; S.C. TUNELE S.A. Brasov, Ro-
mania; S.C. MALVA S.R.L. Brasov, Romania; Sorin Stegaru, Anton Tone, Ciprian Suciu, friends.
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the general solution of wave-equation, ¥ (z,t), become a linear superposition of w-
monochromatic waves expressed by

Yoz, t) = A(z,w) exp{i[p (z,w) —wi]}. (6)

According to (6), one can define a local wave-vector, local phase-velocity, and local
group-velocity:

o W) . - w . _ [ok(zw -1
k(z,w)= %, Vo (2,w) = gramyy Ve (@,w) = [%} : (7)

These quantities characterize the dispersion of the medium, and can be calculated
after solving (2).

3. A method for controlling and limiting errors

Equation (2) admits, in general, only numerical solutions, which have to be completed
with methods for controlling and limiting the errors. We give in this paper a general
method, based on a property of the solution u (z,w) originally developed in [3].

Introducing the polar decomposition (5) in (2), and integrating the imaginary part
of the equation, one has

F(z,w) =p(z) A* (z,w) k (z,w) = const, (8)
which is nontrivial if the solution is not purely stationary. Equation (8) is useful for

controlling the truncation error.
Given the solution « (z), one may calculate the implied magnitudes using

A(z,w) = \/[Re (u}l]2 + [Im (u)]2

k(z,w)=Im [M} .

u(ww)
The relative deviation of F

F(z,w) — F (zp,w)
F (zg,w) ’

Err(z,w) = (10)

(from its value at the starting point zp) provides useful error control through the
condition
Err (z,w) <¢, (11)

which can be maintained by adjusting the numerical integration parameters.

4. Generalization of a numerical method

We present a generalization to analytical p (z) and ¢ (z) of a numerical method origi-
nally developed in [2] for solving (2) with linear p (z). This method was extended [4]
to harmonic dependence of p (z) and ¢ (z). The technique is based upon the Taylor
expansions of both the solution and inhomogeneities:

u<x>:§0cn<x—xo>"; p(2) =ij:0an<x—xo>" ; q(m)zijjobnw—xo)". (12)
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We have shown [4] that the coefficients ¢, are determined by the recurrence relation

1 n+1
= boc,, + bnCr—m + G (R + 1) (R — M+ 2) ¢ 13
o R LR 4+ 1)( Jenomaal} (13
with initial conditions
c.1=0; co=u(zo); =1 (). (14)

Truncating the expansion at N gives the expressions
N n—1
w(zo+h) =3 ¢c,h", (zo + h) Z negh (15)
n=0
for the numerical solution and its derivative in a neighborhood of 3. The algorithm

can be summarized as follows:

1. Calculate the quantities (8) and (9) at the initial points zg, from w(zg) and
W' (zo).

2. Compute the solution (and its derivative) at zo + h using (13), (14), and (15).

3. Check the quantities (8) and (9) at z¢ + h using condition (11) for a selected
tolerance ¢, adjusting the stepsize h and truncation N if necessary.

4. Use the new values as initial values for the next iteration and advance the solution
through to the end of the desired interval.

5. Numerical results

To illustrate the method, we show some results for a constant Young modulus and
exponential variation of the bulk density. In this case, the medium is described by the
following functions:

plz) =1, g(z) =exp[-n(z — z0)] . (16)
Define the relative magnitude:

w_l

&=

= — 17
2wen Aomp’ (17)

where \q is wavelength of the w-monochromatic solution for the reference homogeneous
medium.

The values of £ distinguishes three distinct cases:

1. £ > 1, the high frequency case;

2. £ =1, the intermediate frequency case;

3. £ < 1, the low frequency case.
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5.1. Error control. We solved (2) for different values of N and different steps h,
throughout a large frequency domain. Better results were obtained by decreasing the
stepsize h rather than increasing the truncation order N. The general conclusion from
this analysis is that N = 5 and A = 0.001, is a good choice for monochromatic solutions
given by ¢ € [0,15]. This choice gave a relative error of less than 10™*% after 5000
iterations.

5.2. Wave-groups. The temporal evolution of wave packets can be studied by
summing several monochromatic components in the Fourier domain of the initial pulse.

For simplicity we chose o = 0 and ¢ = +/E (0) /p(0) = 1, and we are assuming

that, at ¢ = 0, all monochromatic components have the same phase at the starting
point, ¢ (zg,w) = 0. Considering these components as pure monochromatic waves
injected at ¢ = 0 in the starting point z¢, the initial conditions for the studied case

are:
co = A(zo,w); c1 =12 A (2o, w) . (18)

Fig. 1 shows the normalized Fourier sum
Y u(z,w)exp (—iwt)

\Ij(lvt): EU(CU(),(U) )

(19)

at 3 different times, for 64 uniformly spaced high-frequency components corresponding
to & € [5,15]. The amplitudes of these components are a Gaussian shape, centered at

& =10

1.4- 2.0- R
1.0- -
05- M- 1.0-
0.0 .’“ J\. 0,0-—— D,D——/\}
-0.5- A0- -1.0-
- W w -
413 -1.8- -2.5 X

B 1 1 1 1 1 I I I I I - 1 1 1 1 1
0o 1.0 2.0 3.0 40 50 0.0 1.0 20 3.0 40 &0 0.0 1.0 20 30 40 &0

Fig. 1. Evolution of high-frequencies wave-packet, & € [5,15],
exponential bulk density, n = 1.

Fig. 2 shows the law of movement and the spatial behavior of the amplitude and
group velocity of this wave-packet.

The wave-packet’s evolution leads to the conclusion that the studied medium dis-
plays a local dispersion due to the dependence of the monochromatic phase velocities
on both space and frequency. But, in the case of high frequencies, £ > 1, the numeri-
cal results show that the phase velocities of the monochromatic waves are independent,
of the frequency and can be approximate by the asymptotic expression:

Vo (2,w) =V E(2) /p(2). (20)
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Fig. 2. Law of movement, group-amplitude, and group-velocity.

From (8) we have found a general approximation for the monochromatic solutions
which may be used in practical application:

~ Al w p (o) q (2o, w e
u(z,w) =2 Az, )[—p(w)q(ww p[ ] (21)

In the case presented in this paper, the asymptotic equation (21) becomes

u(z,w) = A(zo,w)exp {Z (x —zo) + z%% [1 — exp (—g (z — xo))] } . (22)

Relation (22) has been verified by the numerical results obtained for £ = 10 with
a relative error less then 1%.

6. Conclusions

In this paper we have presented a semi-analytical approach for solving the wave-
equation of an inhomogeneous medium described by two analytical functions.

After Fourier transforming the wave-equations, the problem is reduced to solving
a second-order linear differential equation with variable coeflicients.

We have presented a generalization of an iterative method which solves such equa-
tions by matching Taylor expansions of the solutions and of the functions describing
the medium.

We have found an interesting correlation between the amplitude and the phase of
the solutions that enables us to develop a general method for controlling and estimating
the numerical errors.

Based on the same correlation, we also found, in the case of high frequencies, an
approximate analytical solution which may be used in practical applications.

This results are not specific to the studied case and may be applied to any physical
phenomena described by a linear differential equation of second order with variable
coefficients.

References

1. G.B. Whitam, A general approach to linear and non-linear dispersive waves using
a Lagrangian, J. Fluid Mech. 22 (1965), 273.

© 2000 by Chapman & Hall/CRC



2. R. Oberle and R.C. Cammarata, Acoustic pulse propagation in elastically inho-
mogeneous media, J. Acoust. Soc. Amer. 94 (1993), 2947.

3. G. Nita, About a conservation law specific to the homogeneous linear differential
equation of 2nd order with variable coefficients, Bull. Transylvania Univ. Brasov
2 (1997), 41-44.

4. N. Cretu, P.P. Delsanto, G. Nita, M. Scalerandi, I. Sturzu and C. Rosca, Ul-
trasonic pulse propagation in inhomogeneous one-dimensional media, J. Acoust.
Soc. Amer. 104 (1998), 57-64.

Department of Physics, “Iransylvania” University, Brasov, Romania
e-mail: cretu.c@unitbv.ro, gelu@lim.deltanet.roknet.ro

© 2000 by Chapman & Hall/CRC



L. DELLA CROCE and T. SCAPOLLA

Efficient finite elements for the numerical
approximation of cylindrical shells

1. Introduction

The numerical solution of shell problems involves two main questions: the physical
model assumed to represent the deformation of the structure under load and the nu-
merical method selected for the approximation. In this note, after choosing a reliable
physical model, we deal with the construction of numerical methods based upon effi-
cient and robust finite elements.

Shell models can be derived according to different physical assumptions. When
the fibers are supposed to remain normal to the middle surface after deformation, i.e.,
the Kirchhoff hypotheses are assumed, Koiter’s model is obtained. When the normals
to the undeformed middle plane remain straight but not necessarily normal to the
deformed middle surface, i.e., the Reissner—-Mindlin hypotheses are assumed, another
family of models is derived [1]. In these models the internal energy of the shell is the
sum of bending, membrane and shear energy components.

Finite element schemes for shell problems suffer from so-called membrane locking,
i.e., the finite element approximation of the membrane component of the energy is
unstable with respect to the shell thickness. In the Naghdi model the inclusion of
transverse shear strain introduces an undesirable numerical phenomenon known as
shear locking.

The most common approaches proposed to overcome the locking effect are: the use
of standard displacement formulation with high-order finite elements; modified varia-
tional forms (such as mixed or hybrid); techniques of reduced or selectively reduced
integration. Numerical results show that high-order elements are able to counteract
locking for shell problem in the displacement formulation. However, for very small
thickness and when the degree of the element is not sufficiently high, the numerical
solution exhibits a loss in the rate of convergence that can compromise the quality of
the results.

Our basic idea is to combine the Naghdi model with different formulations. First,
we consider a displacement formulation solved with Serendipity finite elements of hi-
erarchic type, with both full and reduced integration. Then we deal with a mixed
formulation introducing nonstandard finite elements, suitable for numerical solution
with both uniform and distorted decompositions.

To analyze the behavior of the finite elements with respect to membrane and shear
locking, we consider three benchmark problems often used to assess the performance of
numerical approximations. The first is the Scordelis-Lo roof, a membrane dominated
shell problem. The second is the classical pinched shell. The third is an hemicylindrical
shell subject to a peculiar load that makes the shell problem bending dominated.

2. The shell problem and finite elements

In the model proposed by Naghdi the (five) unknowns are the covariant components
{u;}i=1,23 of the displacement @ of the middle surface of the shell and the two compo-

nents {0, }a—12 of the rotation 6 of the unit normal vector to the middle surface. We
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define V' = {v e H'(Q) : v[an, =0} where 6 is a nonempty subset of the boundary

OQ of the middle surface and V® = {(7, %) : v;,%, € V}. Denoting by T the change
of curvature tensor, ¥ the transverse shear strain tensor and A the membrane strain

tensor (see [1] for definitions), a pair (%,6) € V° solves the Naghdi model if

af3vé - - 7 1 E o .
A%Tag(u,H)T75(v,¢) d&1dés + ) /Qaaﬁmﬁla(u,@)Eg(v,zb) d&1d&s

+& [ @ N (@)0s(D) dirde = [ fTd1de: V@D €V, ()

where f = p/t3 is the scaled vector of the external forces p, E the Young’s modulus,
v the Poisson ratio and
s 5 5 v s
a®Pré — 2(113“—”) [amaﬁ + a®afY 4 12__Vaa5a7 } , (2)
where a®7 denotes the components of the inverse matrix of (aq,), giving the first

fundamental form of the midsurface of the shell.
We now introduce the finite elements approximation space

‘/;7. = {(@n&h) . (Uh)iv (¢/1)a € Wp(%z)} C st (3)

where

WlTh) = {w € H'(Q) : wlo, € 5(Qn) Qi € Tr} (4)

and S, denotes the standard Serendipity space of degree p (see [2-4]).

The stiffness matrix is K = K+ K+ K,,, where Kj, is the bending component, K,
the shear component, K,,, the membrane component. The reduced element is obtained
with underintegration of shear and membrane components of the stiffness matrix [5].

To avoid locking we use a mixed formulation modifying the bilinear forms that
describe shear and membrane energy. We introduce a linear operator that weakens
both shear and membrane constraints. We introduce a linear operator P = (Py, Pa),
which takes values in a suitable subspace By of V, x V,,, V, C V, acting on the
strain tensors ¥ and A. We define modified strains: X} = P,(X,), AL, = Pua(Asa),

A}y = 3[Pi(u12) + Paus,1)] and solve the approximate formulation of problem (1)
replacing shear and membrane strain tensors ¥ and A by 3* and A* (see [6] for details).

3. Numerical results

We consider three classical cylindrical shell problems and for each test we present some
numerical results.

1) Scordelis-Lo shell (see Fig. 1): a cylindrical shell known in the literature as a
barrel vault. The shell is loaded by its own weight and is an example of a membrane
dominated problem. In Fig. 2 (displacement vs. d.o.f.) we consider a very thin
shell and we compare the Serendipity element S3 (of degree 3) with the corresponding
mixed element MS3. The elements have been tested on both uniform and distorted
decompositions. The results show that the mixed elements gives better performance
and exhibits more robustness.

2) Pinched shell (see Fig. 3): the shell is simply supported at each end by rigid
diaphragms and singularly loaded by two opposed forces acting at midpoint of the
shell.
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Fig. 1: Cylindrical shell roof
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Fig. 2: Barrel vault test. Computed displacement vs d.o.f. p=3, =.0025
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Fig. 3: An octant of pinched cylindrical shell
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Fig. 4: Pinched cylinder test. Computed normal displacement vs. dof; p=3, t=.6 in.
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Fiq.5: The hemicylindrical shell
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Fig. 6: Scaled energy vs.(-Log t) for p=2 and different meshes
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In Fig. 4 (displacement vs. d.o.f.) we compare the performances of Serendipity S3,
mixed MS3 and Serendipity reduced SR3 elements, all of degree 3. The mixed element
outperforms the other elements. The reduced integration improves the performance
of the Serendipity element.

3) Hemicylindrical shell (see Fig. 5): a structure presented in [7] as an example
of a bending dominated problem. The following load is applied: f; = fo =0, f3 =
(14 &1 /L) cos(282/R), where R is the radius and L the length of the shell. In Fig. 6
we show the scaled energy as a function of the logarithm of the thickness ¢ for values
t/R = 107! to 107*. S2 denotes the Serendipity element of degree 2 and MS2 the
corresponding mixed element. The comparison between the performances of S2 and
MS2 is shown for several N x N decompositions of the domain. As N grows the
Serendipity element is unable to avoid locking, while the mixed element shows the
correct behavior, decreasing its error as N grows.
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J. DING and H. QIU

Error estimates for computing fixed
densities of Markov integral operators

1. Introduction

In this paper we study the convergence rate problem for numerically computing a
fixed density of Markov operators defined by stochastic kernels. Markov operators
are widely used in the study of density evolutions under dynamical systems. For
their general properties and applications, see the monograph [5]. Our purpose here
will be toward obtaining an upper bound of the error estimate for some numerical
methods for computing a fixed density of the Markov operator. Such an estimate is of
practical importance since many problems in applied probability, stochastic analysis,
and ergodic theory and dynamical systems are related to the computation of a fixed
density of Markov operators [5].

A commonly used method for solving an integral equation is the so-called colloca-
tion method, which may not preserve some useful properties of the original operator.
Because the linear operator of our integral equation is a Markov operator, it is natu-
ral and beneficial to approximate it with finite dimensional Markov operators for its
numerical analysis such as in [1].

Let L'(0,1) be the space of Lebesgue integrable functions f on [0,1] with Ll-
norm ||fllox = Jy |f(z)|dz, and let W1(0,1) be the Sobolev space of all absolutely
continuous functions f on [0, 1] with Wh-norm || f|l1,1 = || f|loa =+ f'|lo,1- The Lebesgue
measure of a set A will be written as m(A). Let D denote the set of all densities,
that is, all nonnegative functions f € L'(0,1) such that ||f|lo; = 1. Denote by
M the vector subspace of W'1(0,1) such that fj f(z)dz = 0. A linear operator

P:L'(0,1) — L'(0,1) is called a Markov operator if PD C D. Here we are interested
in a class of Markov operators that are defined by stochastic kernels. In other words,

Pf@) = [ Klw)f@dy, £€110,0), )

where the kernel K : [0,1] x [0,1] — R is nonnegative and satisfies
1
/ K(z,y)dz =1, y € [0,1]] m — a.e.
0

Since P is a positive integral operator of L-norm 1, there is a fixed density of P
by a standard application of the Leray-Schauder fixed point theorem. A direct proof
is referred to [1] in which the convergence of a class of Markov finite approximations
for computing the fixed density has also been shown. Here we want to explore the
convergence rate for such numerical methods.

We give a general error estimate result under some conditions in Section 2 and use
it in Section 3 to get an explicit error bound for numerically computing a fixed density
of (1). Some computational issues will be presented in Section 4.
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2. Error bounds for Markov operators
We first present a general result on error estimates. Let P : L'(0,1) — L'(0,1) be
a Markov operator (not necessarily defined by a stochastic kernel) that satisfies the

condition that PW1(0,1) € W1(0,1) and there are two nonnegative constants a < 1
and @ such that

1P £l < ellfllis + Bllfllos, ¥ f € WHH(0,1). (2)

By the Kakutani-Yosida theorem (see [5]), P has a fixed density f* of bounded
variation. Throughout the paper we assume that f* € W'1(0,1). Now suppose
that a class of numerical methods for computing f* satisfy the assumption that

if P, = Q,P is a sequence of finite approximations of P corresponding to parti-
tions 0 = 29 < 1 < -+ < z, = 1 and correspondm%‘ finite element subspaces
A, C Wh(0,1), then ||Qnfllia < ||f]l11 for all f € W(0,1). Thus from (2), we

have »
2o flln < allflln + Bl fllos, ¥ f € WH(0,1). (3)

The following lemma is basically due to [4].
Lemma 1. Fordll f € M,

170 < 500 @

Proof. It is enough to show that 2||f|lo.1 < ||f'|lo..- Let A and B be the sets on which
f is positive and negative respectively. Then

f@)dz = — [ f@)dz = 2 fllos
/. /, :

since [, f(z)dz = 0. Since m(A) + m(B) < 1,

1 1
m(A) +m(B) > 4.

Hence

/ 1 . Jaf(w)de [ f(z)ds
1f N0 = \O/f > max f(z) - min f(z) > m(A)  m(B)

[ fllox | I flloa
2m(A) T 2m(B) ©

> 2| fllo,

where \/§ f is the variation of f over [0,1].

Theorem 1. Suppose that P satisfies (2) and f* € W11(0,1) is a fived density of P,
and the sequence P, satisfies (3). Let f, € W11(0,1) be a sequence of fived points of
P, such that fol falz)dz =1. If a4+ (/3 < 1, then f* is the unique fixed density of P
in WH1(0,1) and

Nf* = fallia < 1

1 * *
—a——ﬁ/:’,”f — Qnf||11- (5)
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Proof. Let g* € Wb1(0,1) be another fixed density of P. Then, since f* — g* € M,
(2) and Lemma 1 imply that

1f* =gl = P =) <eallf =g s +Blf =g llos
/8 * *
< (04+§)||f — "1,

which is impossible since a + /3 < 1. Hence f* is the unique fixed density of P in
Wh1(0,1). Now from (3) and

f*_fn:f*_Pnf*+Pnf*_Pnfn:Pn(f*_fn)+f*_an*7
”.f* - fn”l,l ”Pn(f* - fn)”l,l + ”.f* - an*”l,l
all f* = fallig + BIf" = fallog + 1f* = Quf™ |11

<
<
Since f) (f*(x) — fu(x))dz = 0 by assumption, from Lemma 1,

1 = Fullis < @+ D5 = Fullis + 1F* = Quf*llun.
3

Therefore (5) follows.

Remark 1. Using a quasi-compactness argument which implies that I — P has closed
range in W1(0, 1) (see [3] for more details), one can show that without the condition
a+ 3/3 < 1,if f* is the unique fixed density of P in W11(0,1), there is a constant C

such that
”f* _fn”l,l S O”f* _an*”l,h Vn (6)

This means that under the Wh!-norm, the error of the numerical solutions f, is about
the same order as the “local error” of the numerical method applied to the exact
solution f*. However, an explicit expression for C in (6) may not be easy to get in
general.

3. Application to Markov integral equations

Now we apply the general result of the previous section to our Markov operators with
stochastic kernels. For this purpose assume that the kernel K in (1) is continuous on
[0,1] x [0, 1] and satisfies the condition:

(I) K.(-,y) € L'(0,1) for y € [0,1] and there is a constant 5’ such that

[ 1K)l < 8,y € [0,1], g

Lemma 2. Under the assumption (I), there is a density f* € W1(0,1) such that
Pf* = f*. Moreover, with 3 =1+ [,

IPflls < Bl flloa, ¥ f € WHH(0,1). (8)
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Proof. The existence of f* is a direct consequence of the Leray-Schauder fixed point
theorem since P : W11(0,1) — W11(0,1) is compact. Now let f € DN W11(0,1) be
given. Then Pf € DN WH(0,1) and

[(Pf)los = / [(Pf)( |d$—/ / K.(z,y)f(y)dy|dz
SAf@@AU@%MMSHAf@@ZH

Hence (8) is true from the definition of the W' !-norm.

Remark 2. Another proof for the existence of f* using the Kakutani-Yosida theorem
[5] was given in [1].

Combining Lemma 2 and Theorem 1, we have
Theorem 2. Suppose that f* € WH1(0,1) is a fized density of (1) in which K satisfies
(7). If B < 3, then f* is the unique fixed density of P and for any sequence f,, of fixed
points of P, with [y fu(z)dr =1,

15 = Flls < 7251 = Quf ©

Corollary 1. If ||f* — Qunf*|l1,1 = O(Kh*), then so is || f* — full11-

Before ending this section, we present a structure-preserving result for computing
the fixed density f*.

Proposition 1. Suppose that K (x,y) > 0 on [0,1] x [0,1]. Then every fived density
f* of (1) is nondecreasing. If in addition the sequence P, not only satisfies (3), but also
maps nondecreasing densities to nondecreasing densztzes then P, has a fired density
fn which is also nondecreasing.

Proof. Differentiating
1
@) = [ K@) @)y

both sides, we have (f*)'(z) > 0 by the assumption. Now let D; be the set of all
nondecreasing densities. Then D; is a closed convex subset of D. By the Brouwer
fixed point theorem, P, has a fixed density f,, in D;.

Remark 3. A similar result can be obtained for nonincreasing fixed densities if
K (z,y) <0.

4. Numerical considerations

In this last section we use one example to illustrate some numerical considerations.
Here the Markov operator P in (1) is defined by the stochastic kernel
ye™

K(J’.?y) = ey _ 1

(10)

If we define K(z,0) = 1, K is continuous on [0,1] x [0,1]. It is easy to see that
Jo |KL(z,y)|de < y. So if we let 3’ = 1, the condition of Theorem 2 is satisfied.
Moreover, since K(z,y) > 1/(e—1), by Proposition 5.7.1 in [5], { P™} is asymptotically
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stable. That is, P has a unique fixed density f* such that lim,,_, ., P"f = f* for any
f € D. Since

2 %y

ev—1

K, (z,y) = >0, Vy>0,
f* is strictly increasing on [0, 1.

We employ Ulam’s piecewise constant approximations method [6] and the method
of piecewise linear Markov approximations [2] to compute f* and to compare their
performances. Divide [0, 1] into n equal subintervals I; = [z;_1, z;] with length h = 1/n.
Denote by A% and Al respectively the corresponding subspaces of (discontinuous)
piecewise constant and continuous piecewise linear functions of L'(0,1). Bases for AY
and Al respectively are

e?(:c) =x(x),i=1,...,n,

e%ﬂzwﬁ;%%i:QLuwm
where x4 is the characteristic function of A and w(z) = (1 — |z|)x[-1,1(2)-
Let f; = ' f(z)dz be the average value of f over I;. Define Q9 : L'(0,1) — A}

and Q) : Ll(O, 1) — Al by
WA} (1)

QLf(x) = el +Zﬁ+““>+n<> 12)

respectively. See [1] [2] [6] for some useful properties of Q. Now for j = 0,1 define
PJ = @} P and solve ' '
Eif=1f feh

to get a numerical solution f} to the original fixed point problem Pf = f. It follows
that the numerical methods are well-posed and the piecewise linear method satisfies
all of the requirements in the previous section, although Ulam’s piecewise constant
method is not convergent in general under the Wh!-norm.

The numerical methods were implemented in C. In the algorithms, the interval
[0,1] was divided into n = 2" equal subintervals with r = 2,3,..., L for some given
L. The integration technique of the trapezoid rule was employed for the evaluation
of the matrix representation of P and P! with respect to the density basis {e?/h}
of AY and the density basis {e}/ ||€1||0 1} of Al 1. respectively. Because of the integra-
tion error, each column of the matrix was normalized so that the resulting matrix
P,{ is a stochastic one. Then the direct iteration was used to find a normalized fixed
nonnegative vector v/ of P/, starting with the unit positive vector of the same com-
ponents. The convergence was obtained after a couple of iterations (less than 10 for
all dimensions in the computation).

The computational results show that for the piecewise linear method, the Wh!-
norm error reduces about the same order as h, which is consistent with our theoretical
result (Theorem 2). Furthermore, the L'-norm error reduces at the order of A%, which

can be explained with the fact that ||f — Q}. fllon = O(h?). On the other hand, al-
though the piecewise constant method does converge in the L!-norm, it is not so under
the Whlnorm since \§(f — Q0 f) > Vg f in general ([3]; Proposition 3.3). Moreover,
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the approximate function values of the piecewise constant and piecewise linear ap-
proximate fixed densities are increasing since ()7, preserve the monotone property of
monotonic functions, which is guaranteed from our theoretical result (Proposition 1).
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J. DING and Z. WANG

A modified Monte Carlo approach to
the approximation of invariant measures

1. Introduction

In this paper we will propose an efficient numerical algorithm for computing absolutely
continuous invariant measures of chaotic discrete dynamical systems. The algorithm
applies the idea of the Monte Carlo method to the implementation of Ulam’s original
scheme to solve the difficult inverse image problem, especially when the mapping of
the dynamical system has complicated expression or the expression is hard to obtain
from physical experiments.

The concept of absolutely continuous invariant probability measures is related to
the problem of studying various statistical properties of orbits of the chaotic dynamics
[2]. Specifically, let us consider a discrete dynamical system

T, =S"(z), n=0,1,...

on a measurable space (X,X). We are interested in the time mean of an integrable
function f € L'(u) = LY(X,Z, n) at @, where u is an ergodic invariant probability
measure. The Birkhoff individual ergodic theorem says that for u-a.e. x € X, this
time mean equals the space mean of f. That is,

1n—1
lim =3 f(S*(z)) = | _fd X p—ae.
fim 57 F(5Hw) = [ S w€ X -

Here the invariance of u with respect to S means that u(S™(A)) = u(A) forall A € X.
The ergodicity means that S~1(A) = A implies that u(A) =0 or 1.

In physical sciences such as statistical physics and neural networks, many problems
are closely related to the problem of the existence of an absolutely continuous invariant
probability measure u of a nonsingular transformation of X € R¥ [2]. That is, u can
be viewed as a physical measure in the sense that there is an f* € L'(m) such that

M(A):/Af*dm, VAEY.

The nonnegative function f* is called the density of . Here m is the Lebesgue measure
on X, ¥ is the Borel o-algebra of subsets of X, and the nonsingularity of S means
that m(A) = 0 implies m(S™1(A4)) = 0.

It is well-known [2] that the density f* of an absolutely continuous invariant
probability measure is a fixed density of the so-called Frobenius-Perron operator P :
L'(m) — L'(m) associated with S, which is defined by

/APfdm: /5-1(A> fdm, YfeLl(m), Aes. (1)

In this paper we are more interested in the numerical computation of the fixed den-
sity f* of the Frobenius-Perron operator P. For S : [0,1] — [0, 1] Ulam [4] proposed a
piecewise constant approximation method to calculate f*, and he conjectured that the
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sequence of piecewise constant approximate densities f, computed from his numerical
scheme should converge in L'(0,1) to f*. In 1976, Li [3] proved this conjecture for a
class of piecewise C? and stretching mappings S : [0,1] — [0, 1].

Numerical experiments have shown that Ulam’s method converges not only for the
class of piecewise monotonic mappings, but also for many other classes of mappings.
But this method has one shortage. That is, the numerical evaluation in implementing
Ulam’s method becomes difficult or even impossible if the mapping .S has a complicated
expression or the expression of S is hard to obtain, which is often the case when S
results from some physical experiment. In this paper we propose a new algorithm to
overcome this difficulty. Here we employ the Monte Carlo approach which was first
proposed by Hunt [1] of the National Institute of Standards and Technology. But
unlike the random choice of points in [1], we use a uniform distribution of points,
so our method can be classified as a modified Monte Carlo method, or quasi Monte
Carlo method. In the next section, we describe the Ulam method and show how it
leads to the problem of evaluating a matrix and solving the resulting linear system of
equations. In Section 3 we introduce the Monte Carlo idea. The numerical comparison
is presented in Section 4.

2. Ulam’s piecewise constant approximations

Now we introduce the idea behind Ulam’s piecewise constant approximations for com-
puting the fixed density of the Frobenius-Perron operator associated with one di-
mensional mappings of the interval. Let us assume that S : [0,1] — [0,1] is a
nonsingular transformation such that the corresponding Frobenius-Perron operator
P:L'(0,1) — L'(0,1) has a fixed density f*.

Let [0, 1] be divided into n sub-intervals Iy, I, ..., I, with equal length h = 1/n.
Let 1, = %1 1, for each 7, where 1;, is the characteristic function of ;. Then each
1; € L'(0,1) is a density with its support supp 1; = I;. Let A, be the n-dimensional
subspace of L'(0,1) spanned by the density basis 11, ..., 1,, i.e., A, is the space of all
piecewise constant functions associated with the partition.

For any function f € L'(0,1), we define its approximation Q,f € A, in the
following way:

n
an = Zcilfm
=1

n
S = hZcili, (2)
i=1
where for 1 = 1,2,...,n,

1

is the average value of f over I;. Now we define the finite dimensional approximation
P,:A,— A, of Pas

Pnf = QnPf
- i:ZI/Iindm-li (4)

= > /. fdm-1
=1 /ST
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In particular, if we write

Pl =Y pilj, (5)

=1

then from (1), (4), and (5) it follows that

mn mn
pl; = / 1.dm - 1.
jgl ij+7 ; s-1(1;) 7 7
We can now obtain

pij = /5—1(1]-) Lidm

_ om(LN S=(I;))
m(I; N S~1(1;))
7 )

Therefore, the finite dimensional operator P, is represented by the n x n matrix
[pi;]. Note that [py;] is a stochastic matriz, i.e., p;; > 0 and 37_, p;; = 1 for all i.
This means that the column vector (1,1,...,1) is a right eigenvector of the matrix
corresponding to the eigenvalue 1. Without causing any confusion, this matrix will
still be denoted by F,.

It is easy to see that if f =37 ; ¢;1; € A, then f is a fixed point of P, if and only
if the row vector (cq,ca,...,¢,) is a left eigenvector of the matrix P, associated with
the eigenvalue 1, i.e.,

(c1,€2y ..o Cn) Py = (c1,¢2,. .., Cp). (7)

From the theory of nonnegative matrices it follows that a normalized nonnegative left
eigenvector must exist. Therefore Ulam’s method is well-posed. In other words, for
any n, there is a piecewise constant density f, such that P, f, = f..

3. Monte Carlo algorithms

Now we introduce the Monte Carlo approach to implementing the basic Ulam method.
In Ulam’s scheme we need to evaluate the entries of the matrix given by (6). But
generally speaking, this is a difficult problem since the inverse image of a subset under
the mapping S is hard to get in many cases, especially for multidimensional mappings.
The Monte Carlo implementation has the advantage of not requiring explicit evaluation
of such entries of the approximate Frobenius-Perron operator P,. In fact since P, is
only an approximation to P, it is by no means necessary to evaluate the entries of P,
exactly if it is time-consuming or difficult to do so. Thus the Monte Carlo method,
which is a probability method, is an ideal means for approximating P,.

The basic idea of the Monte Carlo approach is that within each subinterval I; of
the partition of [0,1], K points are selected which are called {z;;}/_,. For any pair
(¢,7) with 4,5 = 1,...,n, let ¢;; be the number of points S(z;x) in I; fork=1,..., K.
Then we have

g mLiNST())
K h ‘ ®)
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The original Monte Carlo method first proposed in [1] selected the K numbers
randomly. That is, the points z;; are obtained from a random number generator.
Numerical experiments of [1] indicate that the resulting error may be relatively large
compared with the exact method. To get a better approximation in (8), we use the idea
of the quasi Monte Carlo method. Here the test points z; ; are chosen deterministically.
In other words, if I; = [z;_1,x;_1 + h], then

k
Zi’k:l'i_l-i-?h, k:1,2,...,K.

Our numerical results in the next section show that the new Monte Carlo approach,
which may be called a modified Monte Carlo method, is much better than the original
Monte Carlo method.

After the evaluation of the matrix, the main work of Ulam’s method is the com-
putation of a fixed density of the finite dimensional operator P,. In numerical linear
algebra, there are two approaches to solving the linear system (7). One is the di-
rect method such as the Gaussian elimination method, and the other is the iteration
method. Since iterating P, several times usually gives a fixed density of P, from the
theory of Markov chains if S is ergodic, the simple iteration method seems to be a
good choice of the solver to (7) since it takes only O(n?) float point operations. As an
alternative, a Gaussian elimination method is also proposed here for the comparison
purpose. Thus two algorithms using Ulam’s method and the Monte Carlo approach
for a chosen n are as follows.

The Iteration Algorithm (IA):
1. Using the modified Monte Carlo method to evaluate the matrix P,.

T T

2. Select a starting vector ¢ = (¢q,¢2,...,¢,)"; a usual choice is ¢ = (1,1,...,1)".
3. Calculate d = PI'c and Error = ||d — ¢|.

4. Let ¢ = d and repeat the above step until Error < €, where € is a desired tolerance.

The Gaussian Algorithm (GA):

Suppose P, has been calculated by using the Monte Carlo method. To solve (7), we
just need to solve the homogeneous system of linear equations

(I = PHe=0. (9)

In general, the rank of I — P, is n — 1 for large n if S is ergodic. We can use the
Gaussian elimination to find the unique normalized solution.

4. Numerical results
In this section, we present some numerical results. The test mappings are

0 if =0
Sile) = {{%} it 7 £0,

1 1 1/3 1
S = __2 __3) -
2(z) (8 |z 2| _|_27
Ss(z) \/Li_\/ﬂ%—ﬂ if$€[0,\%§]U[l—\/L§7jl_]
3l&) = '
1—%\/1—(1—|1—2x|)2 it v e[k 1- 2]
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Sy is called the Gaussian transformation in which {a} is the fractional part of a, and S,
and Sz are the test examples 77 and 72, respectively, in [1]. The unique fixed densities
of S; are given by

R
fl(x) - E1+$,

1 2
fi@) = 12(e-3)
fi(x) = 2(1—[1 - 22).

The experiments were made on an SAG Pentium Pro computer with C' codes.
In the following two tables, n denotes the number of the equal sub-intervals of the
partition of [0,1]. The L'-error of the computed fixed density f, to the exact fixed
density f* from the original Monte Carlo method (MC) and our modified Monte Carlo
method (MMC) with K = 1000 points chosen in each sub-interval is presented in Table
1. The results of the MC for S, and S3 are about the same as in [1]. However, the
MMC gives much smaller errors than the MC with the increasing number of the sub-
intervals. In fact we have observed that the errors are almost as small as those from
the exact Ulam method in which the entries of the matrix P, are evaluated exactly
(see page 112 of [1] on the error of the exact method for S5).

Sl Sg Sg
n MC MMC MC MMC MC MMC
16 | 2.3132E-2 | 1.3538E-2 | 1.1644E-1 | 1.0254E-1 | 7.7969E-2 | 7.2897E-2
32 | 2.4921E-2 | 8.4698E-3 | 5.7815E-2 | 5.2642E-2 | 5.0783E-2 | 3.8255E-2
64 | 2.2484E-2 | 6.7886E-3 | 3.8867E-2 | 2.5817E-2 | 3.0469E-2 | 1.7884E-2
128 | 2.6148E-2 | 7.1641E-4 | 3.7367E-2 | 1.3436E-2 | 3.1693E-2 | 8.6400E-3
256 | 2.6702E-2 | 6.7251E-4 | 3.3161E-2 | 6.6441E-3 | 2.6904E-2 | 4.4750E-3

Table 1. L-Error comparison of MC and MMC.

Table 2 shows the CPU time (in seconds) comparison for the Gaussian algorithm
(GA) and the iteration algorithm (IA), which shows clearly that the IA outperforms
the GA since the former only requires O(n?) operations while the latter needs O(n?)
ones in solving the linear system of equations.

S1 52 S3
n |[GA|IA |GA | IA | GA | IA
16 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00
32 { 0.01]0.00]0.010.00]001|00
64 | 0.09 | 0.00 [ 0.09 | 0.01 | 0.09 | 0.02
128 1 0.70 | 0.02 | 0.68 | 0.06 | 0.76 | 0.09
256 | 5.64 | 0.14 | 5.53 | 0.30 | 6.28 | 0.47

Table 2. Time(s) comparisons of GA and IA.
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P. DJONDJOROV and V. VASSILEV

Acceleration waves
in von Karman plate theory

1. Introduction

The von Karméan plate theory is governed by two coupled nonlinear fourth-order par-
tial differential equations in three independent variables (Cartesian coordinates on the

plate middle-plane z', 2% and the time z*) and two dependent variables (the transver-
sal displacement function w and Airy’s stress function @), namely

DA*w — e®ePw 50 ., + pw 33 =

)

0,
(1/ER) A%2® + (1/2) e &Pw ppw ,, = 0, (1)

v

where A is the Laplace operator with respect to ' and 2, D = Eh3/12(1 —v?) is the
bending rigidity, £ is Young’s modulus, v is Poisson’s ratio, h is the thickness of the
plate, p is the mass per unit area of the plate middle-plane, §*? is the Kronecker delta
symbol, and €*? is the alternating symbol. Here and throughout the work: Greek
(Latin) indices range over 1, 2 (1, 2, 3), unless explicitly stated otherwise; the usual
summation convention over a repeated index is used and subscripts after a comma
denote partial derivatives, that is f, = 0f/0x", f.; = Of/0x*0x?, etc.

The von Kérman equations (1) completely describe the motion of a plate, the
membrane stress tensor N, moment tensor M8 shear-force vector %, strain tensor
E°# and bending tensor K,z are given in terms of w and & through:

NP = gonefv @, Mo = —D{(1 - v)66% 4 w6206 b,
Q* = M3 + Nvw ,, E = (1/Eh) { (1 + v)ee® — v6996} 8, Kop = W ap.

The theory under consideration has an exact variational formulation, the von
Kérmén equations being the Euler-Lagrange equations [1] for the action functional

I w, &) = / / / Ldz'dz?dz®, L=T —TI,  where (2)

M = (D/2) {(Aw)’ = (1 = v)e™e™w opw 0 }
— (1/2ER) {(A®)" = (1+ ) e™e® B opd b + (1/2)e™ & opw yw,,

is the strain energy per unit area of the plate middle-plane and
T = (p/2) (w3)",

is the kinetic energy per unit area of the plate middle-plane.

This work was supported by Contract No. MM 517/1995 with NSF, Bulgaria.
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2. Conservation laws

In the recent paper [QL all Lie point symmetries of system (1) are shown to be varia-
tional symmetries of the functional (2), and all corresponding (via Noether’s theorem)
conservation laws admitted by the smooth solutions of the von Karman equations are
established. Each such conservation law is a linear combination of the basic linearly
independent conservation laws

m
0% O,

=0 (y=12...,14
ax?) ax“ (] y = ) )7

whose densities ¥(;) and fluxes P(“ ) are presented (together with the generators of the
respective symmetries) in Table 1 in terms of Q% M*#? G*# and F*,

Gag _ (I/Eh) {(1 + I/)(Sa“(sgy _ 1/(5(1’6(5“”} (p,uv _ (1/2) €a“€6’/’w,“w,y, Fo — G?;V.

3. Balance laws

Given a region () in the plate middle-plane with sufficiently smooth boundary ¥ of
outward unit normal n,, a balance law

d
a/@@ﬂf@?+/f@mﬂzza (3)
Q by

corresponds to each of the conservation laws listed in Table 1. It holds, just as the
respective conservation law, for every smooth solution of the von Karman equations.

The balance laws are applicable even if € is intersected by a discontinuity (singular
manifold (on which densities ¥(;) and fluxes PG, may suffer jump discontinuities

provided the integrals exist. We extend the “continuous” von Karman plate theory to
situations when physical quantities may suffer jump discontinuities at a curve.
4. Acceleration waves

Definition 1. A discontinuity solution of the von Karméan equations is a couple
of functions (w, @), defined in a certain region 2, such that the two balance laws
corresponding to the von Karman equations themselves, namely

%/mwmwﬁ—/Q%JE:&/T%JE:Q (4)
Q > >
hold YQ € Q with boundary ¥ of outward unit normal 71,, and (w, @) is a solution

of the (local) von Karmén equations (1) almost everywhere in 2 except for a moving
curve I' at which some of the derivatives of w or @ have jumps.

Definition 2. A discontinuity solution of the von Karmén equations is an acceleration
wave if at the wave front—a smoothly propagating connected singular curve T,

Iyt 2? %) =0, (21,2°) e QC R?, 2? e RY, vy e C'(Q2 x RY),
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w - translations

transversal linear momentum (first von Kédrmén eqn)

X, = S P(O{) = —-Q*, ‘I’(l) =pwgs
@ - translations compatibility condition (second von Kdrman eqn)
X =2 Ply =1, Yay =0
time - translations energy
X _ KN P(4) = —Ww 3Q - Qj’gFOt + w’ggMaﬂ + Qp’g[}Gaﬂ

47 943 Uy =T+11

21 & x%- translations

Wave momeﬂntum

X, = 2 P(z) =610+ wiQ*+ 1 F* —w IBM — & 153G
ozt (2) = —pwWiwW3
X, = 0 Py = 6L+ w Q% + G2 F* — wogM*® — 855G
8T a7 Wig) = —pwowgs
rotations po 2 pa 1Pm(_)l_ment (j)\fl ‘J‘:’h-?- ng\pfe n&gmentum
Xo = 2252 — 2152 6 =¥ P — o Py +efw €

W) = 2° Vo) — ' Y3)

rigid bodz rotations

angular momentum

Xr=a2'5= Poy= M —2'Q% + we™ P, Ll7(7)—p:c w3
Xg = 2?2 PRy = M* — Q% + we" D1, V) = priwy
scaling

L17(5) =zl 1[/(2) + x? l[/(g) — 23 L17(4)
center-of-mass theorem

af _ af
X5 o ’LU’gM Qp’gG

Galilean goost

Xg =27 Pg = —2°Q% Yy =p ($3w,3 —w)
X10 = 551553 g" Py =2 P(7) Vi) = lI/(Q)
Xn = 55255331“ P(11) =T P(8)7 lI/(ll) = lp(g)
X =o' 3845 Py = ' F*— G, Way =0
X13— P(lg)—l' Fe— Ga y lI/(lg):O
Table 1. Conservation laws.
we have

[w] = [@] = [w:] = [2,] =0, [wss] #0. (5)
(Here and in what follows, the square brackets are used to denote the jump of any
field f across the curve I, i.e., [f] = fo — f1, where f; and f; are the limit values of f
behind I" and ahead of T".)

The moving curve I" divides the region 2 into two parts Q" and 2~ and forms the
common border between them. It is assumed that ahead the wave front (in the region
O") we have the known unperturbed fields w*(z!, 22, z%), ¢+(l' %z ) and behind
it (in the region Q~)—the unknown perturbed fields w™ (2!, z* :53) - (z', 2%, 2%). At
the wave front I', we have the jump conditions (5).

The jumps of the derivatives of w and @ across I' are permissible if they obey
the compatibility conditions following by Hadamard’s lemma [3]. Thus, the following
assertion holds.
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Proposition 1. If [wss] # 0, then
[w,aﬁ] = /\nanﬂv [w,a3] = _/\Ona, [’LU,33] = /\02,

where X is an arbitrary factor, C' and n,,

C =~ V47" 07/05°, na = VA" 8v/02%, V4| = +/(87/0x")2 + (87/022)?,

are the speed of displacement and the direction of propagation of the wave front I

Proposition 2. If at least one of the third derivatives of w suffers a jump at T, then
the compatibility conditions for the jumps of the third derivatives of the displacement
field across T' are

NaNgNy + OX/0s (nangty + Natgny + tangny)

[wagy] = A
+ Aa (tatg’fM + tan5t7 + natgtv) y

where t,, is the unit tangent vector to T, \* is an arbitrary factor, while X = [w 45] n®n”
and a = t,0n%/0s, s being the natural parameter (arc-length) of the curve T'.

Proposition 3. If at least one of the second derivatives of @ suffers a jump at T,
then

where w s an arbitrary factor, are the compatibility conditions for the jumps of the
second derivatives of the stress field across T'.

Proposition 4. If at least one of the third derivatives of @ suffers a jump at T, then
the compatibility conditions for the jumps of the third derivatives of the stress field
across I' are

[Dapy] = pnangny + 0u/0s (nangty + natgng + tangny)
+ ua (tat5n7 + tan5t7 + natgtv) y
where = [P 45n°nP and u* is an arbitrary factor.

According to the divergence theorem (see, e.g., [4]), a couple of functions (w, P)
suffering jump discontinuities at a singular curve I' is a discontinuity solution of the
von Kdrman equations in the sense of Definition 1 iff the following jump conditions

Clows] +[Q%ne =0, [F*]na =0, (6)
hold at I'; and a balance law of form (3) holds on this solution iff at I":
C o) - [Pg)] na=0. (7)

Definition 2, Propositions 1, 2, 3, 4 and jump conditions (6) imply the following
assertion.

Proposition 5. If an acceleration wave in the von Kdrmdn plate theory is such that
(W agy] # 0 ([Popy] #0) at the curve of discontinuity T', then \* = —Xa (u* = —pa).
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time - translations energy
Xy = %5 % (D/\2 - E—) = (D/\Xj(wﬁ) EhX4 (@5))

1 & arz translations ) p Wave momentum
X3 =52 (D) - Eh)n2 = - (Dxxg(wﬁ) Ehxg (q5 ))nﬁ
rotations 5 ) 2moment of the wave momentum

—5 nax” ( DA — ) =
Xg = xzail _ xl% B ( Eh) Y (a . 5
—{ DX (%w o + X (wp)) — 4 (%P0 + XF (D)) b0
scaling
3 (z%ng — 2C23) (D/\ 2 Elz) =
X5 = aj 822“ —+ 2.17 7.“ 38
{D/\(wg-l-Xs ’LUg)—E—( ,6+X5 ))}n

Table 2. Jump conditions.

Given a discontinuity solution of the von Kdrman equations, the two corresponding
balance laws (4) being satisfied, the other balance laws do not necessarily hold for this
solution. The jump conditions associated with the most important conservation laws
from Table 1 are derived using (7) and presented on the Table 2, where X7 (w ) and

X7 (9,3) denote the limit values of X;(wg) and X;(&g) ahead of I'.

The center-of-mass theorem holds for any discontinuity solutions of the von Karman
equations. The balance laws associated with the infinitesimal symmetries X7, Xg, X1¢
and Xi; hold iff A = 0, while those associated with X, and X;3 — iff 4 = 0. For this
reason, there do not exist acceleration waves in the von Karman plate theory satisfying
all balance laws.

Obviously, when dealing with discontinuity solutions, from a physical point of
view it seems reasonable that at least the balance of energy should hold in addition to
the balance laws corresponding to the fundamental equations considered. Observing
Table 2 it is evident that for acceleration waves propagating into an undisturbed plate
the balance of energy implies also the balances of wave momentum, moment of wave
momentum as well as the balance related to the scaling symmetry.

5. Examples

As an example, we consider acceleration waves such that behind and ahead of the
wave front the plate motion is described by solutions of the von Kdrmén equations
invariant under the group generated by X3 and X3 + (1/¢) X4, where ¢ is an arbitrary
constant. The most general form of such group-invariant solutions is

w = u(§) = uo + u1€ + uz sinwé + usz coswé,

P = @(£) = o + 1€ + P28® + st?,
where § = 2! — c2?, u;, ¢; are arbitrary constants, and w = ¢y/p/D. Let (u*,o")—an
arbitrary solution of that kind—describe the plate motion ahead of the wave front.

Then, Definition 2 and Propositions 1 to 4 imply that each acceleration wave of the
type considered reads

_JuT+ea(l—coswé), £<0, _ ot +e? €<,
u_{u—i_, §>07 = * §>0 (8)
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where ¢; and ¢, are arbitrary constants, but ¢; # 0; the wave front in this case is the
moving straight line I' : £ = 0. In general, however, an acceleration wave of form (8)
does not satisfy the balance laws other than (4). Indeed, after a little manipulation,
the jump conditions from Table 2 simplify to

DEhw*ci(c; —2uf) = dea(ca + 2¢7), (9)
DEhw?ci(uf +wuf) = 2207, (10)
)

where uf, @f are the constants in u™ and ¢, respectively. The jump condition (9
is necessary and sufficient for the balances of energy, wave momentum and moment of
wave momentum to hold, while the balance related to X5 requires both (9) and (10).
The second relation is treated in a different manner according to the acceleration wave
under consideration. If the wave is such that ¢, = 0, then (10) holds for this wave only
if uf = —wuj. On the other hand, if we consider waves with ¢, # 0, then choosing
the coefficient o in a suitable manner we could satisfy (10) identically (note that
adding a linear function of the independent variables to Airy’s stress function does
not change the membrane stress tensor N®7). Hence, the balance associated with the
scaling symmetry (Xs) holds only for acceleration waves of form (8) satistying (9) and
which are such that either ¢y # 0 or uj = —wuj.

Another example, discussed in details in [2], is an axisymmetrically expanding
acceleration wave composed by solutions of the von Kérméan equations that are joined
invariants of the rotation (Xg) and scaling (X5) symmetries.
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M. EISSA

Dynamics and resonance of a nonlinear
mechanical oscillator subjected
to parametric and external excitation

1. Introduction

We study the dynamics and resonance of a nonlinear mechanical oscillator subject to
combined parametric and external excitation. The governing equation is

X 4 ¢X + (Wi + Beos(vt)) X + aX? =~ cos(wt)

where X is the displacement and the dot represents differentiation with respect to time
t; here ( is the damping coefficient, « the nonlinear spring coefficient, wy the natural
frequency, 8 the parametric amplitude, v the parametric frequency, w the external
force frequency, and v the external force amplitude.

This and similar systems were considered in 1971 by Ness [1], and Troger and Hsu
[2] in 1977, who used averaging methods to obtain steady state or periodic solutions.
Plaut and Hsieh [3] in 1987 and Haquang et al. [4] in 1987 observed chaotic motion in
the system. In 1990, Yagasaki et al. [5] applied averaging techniques to study system
stability and showed chaotic dynamics using Melnikov techniques.

In the present work, a multiple-time scale perturbation technique [MTSPT] is used
to determine the system response, examine the behavior in different resonant cases.
The first section develops a solution of the governing equation through fourth order.
The second section illustrates numerical results for different resonance cases. Results
are compared to previously published work.

2. Mathematical analysis
The single-degree-of-freedom mechanical oscillator is governed by
X + 66X + (wi + 2B eos(vT)) X + eaX? = e cos(wT) (1)

where ¢ is a small perturbation parameter. We assume a solution of (1) of the form

X(t,vf) = Zann(T(J?Tl)? Tl = €T0, (2)

n=0
X(te) = Y e"(DoXy +eDi X, + ) (3)

n=0
X(t,e) = Y e"(DiX, +2eDoDi X, + €*DiX,,), (4)

n=0
Where DO == 8/8T0, D1 == 8/8T1 (5)

Substituting in (2)—(4) in (1) and equating powers of € gives
e: (Di+wi)Xy = 0 (6)
e (Di+w))X:y = ysinwT —2DyD1 X — 6(DyXp) — aXp (7)
g2 (Di+uw))Xe = —DiXy—2DyD1X; — §(D1 Xy + DoX2) — Xocos(vt) (8)
e (Di+w))Xs = —D*Xy—2DyD1 X, — 6(D1X; + DyX3) — X, cos(vt)

—a(3Xo X7 + 325 Xs). (9)
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The general solution of (6) (the overbar denotes a complex conjugate (c.c.)) is
Xo = Ag(Th) €070 + Ay(Ty) e 90To, (10)
Substituting (10) into (7) yields (where f = v/2j)
(Di+wi)X; = v [ej“TO — e 79T _ 95w, (DlAOejonO - le_loe_jonoﬂ
- 6 [jwvoejonO — jwvoe_jonO}
- [Age3j°’°T° + Ade31w0To 4 342 ApeloTo + 3a0A36_j°’°T°} . (11)
For a bounded solution the secular terms must cancel in (11). This gives
2jwoD1Ag = (Jéwy + 3aC)ag, C = ApAy, (12)
with Ao(Ty) = A\e?”T1 \; = const and p; = J6§/2 + 3aC/2wy. Similarly,
Ap = Npe 9271, (13)
Ay = const, py = j6/243aC /2wy, and C; = A A giving the first-order approximation
Xo = AeloTiginy )\, emdwoTog=ipaTh, (14)
Substituting (12)—(14) into (11) and solving gives
X; = Ay (T))e?0 T 4 (o) 8uwd) Ade«nTo [F/(wg — wz)} T 4 c.c. (15)
Substituting (14)-(15) into (8) and eliminating secular terms gives

A(Ty) = [Npd/2jw0(2ion = 1)] &7 = [\ Tp1 /jwn(2jpr = 1)] 7T (16)
= [N2/2jw0(27p2 + 1)] €771 — [6Xafpa/jwo(2502 + 1)] €721 (17)

Substituting into (8) and solving gives the third approximation:
Xy = A(T)e™ + (950 /320]) [AFAL“T | — (350 /64u]) [Afe o]
4 52078 = (a0 4 (1] = (w0 — 0)2)el o]
-+ [jfw/(wg — wz)} e L cc. 4 nst. (18)
where A, and A, are functions of T} only. Similarly, the fourth approximation is

Xy = Ag(Tl)ejono +Ag/2j [ej(3WO+v)To +€j(3wo—v)To}
Ao+ Ay [(§(wg + v)ed@ot)To T — v)edwo=v)To
2j (Wi — (wo+v)?)*  (w§ = (wo —v)?)?
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v ej(w—I—'v)To 6j(u.)—'v)To
TR L«%— S (w-m]
8 ej(%+WO)TO e—j(Qw—wo)To
T 22 [ 073 5 T Ao— 2]
wo — W wi — (2w + wo) wi — (2w — wp)
2f ej(w+2w0)TO ej(zwo—w)TO
— | — AA
R ) l PR — w200 W2 — (2w — w)?
n (204/8w§) (fy 4 ed (dwotw)To i (dwo—w)To
W —w? |0 — (dwo + W) W — (dwp — w)?
2@")/ e_j(%O_W)TO 6—j(2w0+w)T0
B - . +nst. (19
8w (wh — w?) LJ% (2w —w? R = (G rwp| Tee TS (19)

where A3 = A3(77) and n.s.t. contains nonsecular terms containing exponentials of
(£25woTp), (£3jwolp), - - -, (£7weTh). The solution gives the following resonances:

9=

Trivial resonance: a. w O;b. w=w=0c w=v=0d w=wy .
0 3 0 3 3 0
Primary resonance: a. w Z wo; b. wo =2 v;¢c. w=0v;d. v =2 w = wp.

Subharmonic resonance: a. w = 2wy b. w = 3wy; ¢. w = 4wy d. w = Bwy; e v = 2wy
0> 0> 0> 0> 0>
f. = 4(4]0, g. v = 5(4]0, h v = 6(4)0.

Combined resonance: a. v Zwo—w; b. v Zwo+w; c. v = w — wq.

3. Numerical analysis

The equations were approximated using a fourth order Runge-Kutta method. Initial
conditions for all cases are 2(0) = 2/(0) = 0: the output was insensitive to the initial
conditions. The figures plot amplitude x vs. time ¢ or for phase-planes amplitude x
vs. velocity 2’. Fig. 1 shows typical non-resonant output.

w=|lw=|lw=|lw=|lv=|v=|v=|v=|v=|v= v = v =

2wy | Bwo | dwo | Bwy | 2w | 3wy | 4wy | Bwg | bwo | wo —w | w—wo | wo +w
Amp | .8 75 | .6 2 1. 52 | 102|132 |25 | 1.2 1.2 13.2
Ratio

Table 1. Subharmonic and combined resonances.

~Y

Primary resonance, external force w = wy : Fig. 2a-c show double limit cycles or
chaotic behavior.

~Y

Primary resonance, parametric freq. v = wy : Fig. 3 shows slightly increased amplitude
and noise.
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"o " 20 a0 o Fig. 3. Primary resonance wy = v:
¢ =0.2573=005a=02w=2,
Fig. 1. Nonresonant case: { = (.25, wog=v=3,7=10.
6 =0.05a=02w=2,wy=5,v=3.5,
v = 10.
Fig. 4. Primary resonance w = v:
N . ¢ =0.25,8=0.05,a =0.2,
" wp=5w=v=3v=10.
8
§°‘V"VAV . L .

Fig. 2. Primary resonance w = wy: (a)
¢ =0.0056=001,a=02w=114,

AAAAAAAAA

wo=1,v=10.2,7=0.15; Fig. 5. Primary resonance wy = w = v:
(b) Phase plane; (c) ¢ = 0.25, 8 = 0.05, ¢=0253=0.05a=0.2,
a=02w=wy=5v=3.5,7=10. w=wy=uv=3~=10.
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Fig. 6. Subharmonic resonance:
(a) v = 2wq, v = Bwy; (b) v = 2wy;
(¢) 2wy = w.
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Primary resonance, incidence resonance v = w: Fig. 4 shows slightly increased am-
plitude, noise, and a secondary wave.

~ ~Y

Primary resonance, incidence resonance v = w
~ T over the nonresonant case.

wp: Fig. 5 shows amplification of

Secondary subharmonic, and combined resonances: Table 1, Fig. 6. Most interesting:
v = 2w amp ~ 0.4; v = 3wy amp ~ 2.6; v = 4wy amp ~ 5.1; v = dwy amp ~ 6.6;
v = 6wy amp ~ 1.24; v = (wg + w) amp ~ 6.6.

As the external force excitation frequency varies from (w/wg) = 0.1 to 6.0 the
maximum amplitude occurs at the primary resonance w = wy. The behavior is different
for the parametric frequency with the peak amplitude at the sub-harmonic v = 5wy.
The only combination resonance showng significant enhancement is v = (w + wy).

4. Conclusions
Nonresonant results agree with [5]. No prior work was found for resonance. Analysis
suggests avoiding the following resonances: w = wy; 4w < v < dwp; ¥ = W + wy.
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M. EISSA and M.M. KAMEL

On the vibration of helical springs

1. Introduction

Springs are widely used in most engineering applications and biomechanics. In fact,
the spring is a nonlinear mechanical element, and an extension or compression is always
accompanied by torsion and vice versa [1]. In addition, stress-strain analysis of wires,
ropes, and rods can also be based on spring theory [2].

Michell [3] in 1890 showed the existence of independent radial and axial waves
in spring oscillations. Yoshimura and Murata [4], Wittrick [5], and Wittrick and
Pearson [6] contributed complicated equations describing spring vibrations. Castello
[7,8] derived some simple spring vibration theories. Jiang et al. [9] used Laplace
transforms to obtain a closed form solution for the free vibration of a helical spring
and (by modifying the equations) a solid rod.

The present paper solves the coupled partial differential equations describing vi-
brations of a helical spring [10,11] using separation of variables. The effect of different
parameters on the spring and rod response is investigated using well-known numerical
techniques [12].

2. Mathematical procedure

The stress-strain relations [9] for the axial force F' and twisting moment M are
F=ke+ k2907 M = Kse + k4907

where ¢ and ¢ are the axial and rotational strain with stiffness constants k;, i =
1,2,3, 4

ki = mERY/[F*A{1+72(1+v)}], ks = —mERT[4v + (R/r)?]/(4rA),
ky = —mvERY7/(rA), ks = TERYM4(1+ v +72) + (TR/7)%]/(44),
and A = [4(1+V)(14 722 + (B/r {1 = ) + (1 + )} r(1+ 7)1

where R and r are, respectively, the wire and spring radius, E is Young’s modulus, v
is Poisson’s ratio, and 7 is the tangent of helical angle.
The equations of motion, for small deformations of the spring are

klez + k2@zz = 7Utt7 k3Uzz + k4@zz = N@ttv (17 2)

where U(z,t) and O(x,t) are the axial and rotational displacements at time ¢ with
v and g the mass and moment of inertia (about the axis) per unit length. These
equations are solved for free and forced vibrations of helical springs and rods.

Free vibration of a helical spring. The spring is fixed at one end and free at the
other. The initial and boundary conditions are

Ux,0) = uwi O(x,0) = OF Usz,0) = 0 Oyz,0) = 0

U0, = 0 00, = 0 Usht) = 0 Oy(ht) = 0

=8

(3-06)

where z is axial distance from the fixed end (x = 0), up and 6y are the initial axial
and rotational displacements at the free end, and A is the spring length.
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Equations (1) and (2) can be rewritten as
A2Uzz — Uy =D, B2@zz — 04 =D, (77 8)

where A? = (ky /) — (ks/u) & B* = (ky/u) — (k2/v) and D is an arbitrary constant.
We consider solutions of (7,8) of the form

Uz, t) =Y (x,t) + ®(z) and  O(x,t) = Z(x,t) + ¥(x), (9,10)
where Y (z,t) and Z(z,t) are new independent variables and ®(z) and ¥(x) are un-
known functions of z to be determined. Substituting (9,10) into (7,8), and eliminating
D gives:

®(z) = (D2*/2A%) + arx + as and U(x) = (Dz?/2B*) 4+ biz + by, (11,12)

The arbitrary constants a; and b; (j = 1, 2) are determined through the choices ®(0) =
0, ®(h) =0, ¥(0) =0, and V'(h) =0, as a; = —Dh/A? | by = —Dh/B? | as = by = 0.
This reduces to

A*Y,, =Yy and  B*Z,, = Zy, (13,14)

z  D(2hz — z?) z  D(2hz — %)
Y(l’, U) = UOE + T Z(l’, U) = HOE + T (15, 16)
Yi(2,0) = Z4(,0) =Y (0,1) = Z(0,1) = Ya(h,t) = Zy(h, 1) = 0 (17~ 19)

Separation of variables gives the general solution of the BVP (13)-(19)

i[ J'ug  16Dh? ]Sm (M) cos (M) (20)

2n+1)212  (2n+1)3A2n3 2h 2h

16Dh? (2n+ 1)mz B(2n 4+ 1)rt
Z = - in [ ——— — .
Z l 2n + 1 7 @2n+ 1)3Bz7r3] - ( on )" 2h
(21)
Free vibrations of a rod. For the free vibration of the rod, we have

ki =7mER? ky=GIL, v=7R%, p=GlLyp, and ky=k;=0,
G is the shear modulus, I, the polar moment of inertia, and p the density of the rod

material. The above parameters give a* = E/p and B* = G/p. Putting D = 0 in
(7,8) and solving gives the form for free vibrations of the rod

> (8(=)"uy . [((2n+ D)7z (E/p)2(2n + 1)t

U = g 2n T 1) sin ( o, ) cos ( o, ) (22)
X 8(-1" . ((2n4 Dmx (G/p)Y?(2n + 1)t

0 = g on+ 172 sin ( o7 ) cos ( o7 ) (23)

Forced vibrations of a rod. The forced vibration of the rod means a moment M is
applied accompanied by an axial force F' and the rod released with no initial velocity.

The general solution is as in (22,22) except with initial displacement and moment:
uo = hF/AE, 6y = hM/G1,.
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Fig. 1. Free end vibration of the spring.
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Fig. 2. Free end vibration of the rod.
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Fig. 3a. Effect of helix angle on spring:

a = 2.5deg.
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Fig. 3b. Effect of helix angle on spring:
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3. Results and discussion

A finite difference code generated output for the following parameters: A = 1.0 cm,
r=20cm, R=10mm, o = 125° Uy = 0.005 m, and Oy = 0.011 (6, = 0.003
for the rod). Figures 1 and 2 show the wave profile for axial and angular modes of
vibration of the free end of the spring and rod, respectively. Both modes are triangular
with constant amplitude and frequency. For the spring the two vibrational modes are
dependent and for the rod independent.

Effects of the helix angle aof the spring. The helix angle « was varied from 2.5 deg
to 20 deg with all other parameters constant. Figures 1 and 3 show the amplitude and
frequency increase with helix angle due to decreases in both weight and moment of
inertia

Effects of coil and spring radii. The values R = 1 mm, 2 mm, and 4 mm and
r = 20 mm, 40 mm, and 80 mm were investigated. Figures 4a and 4b show that the
period decreases as the radi are increased.

Effects of the spring material. Increasing the Young’s modulus decreases the
period. Figures 1 and 5 show steel and aluminum respectively.

Effects of the distance ratio (x/h). z/h was assigned values 0.1,0.2,---1.0 as z/h
approaches the fixed end, the mode approaches a rectangular profile, as z/h approaches
the free end, the mode becomes more trapezoidal eventually becoming triangular.

4. Conclusions

The free vibration of helical springs and rods with fixed-free boundary conditions are
complex. The main difference between rods and springs is that for springs the two
modes of vibration are dependent, but for rods they are independent. Separation of
variables is a powerful method of solving boundary value problems for helical springs
and rods. The only drawback is that the equations may need to be reformulated and
the assumptions required for the forced helical spring.

A numerically investigation of the two vibrating modes for the helical spring and
rod show that their mode shapes are trapezoidal. This means that the motion of
the particles comprising the spring or rod during each mode is not continuous, but is
frozen for a certain duration of time at the maximum amplitude of the oscillations.
Also, it was found that the amplitude and time duration of oscillations are functions
of the distance ratio x/h of the plane along the spring length or rod.

Where possible the results were compared to those published in [9]. The results
agree for the free vibration of the helical spring and rod.
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M.W. FISACKERLY and B.J. McCARTIN

A two-dimensional numerical model
of chemotaxis

1. Introduction

Chemotaxis is the process by which cells aggregate under the influence of a secreted
chemical substance. This cellular aggregation underlies such physiological processes
as cartilage formation and the acceptance or rejection of donated organs. The Oster-
Murray model [7] of chemotaxis consists of a nonlinear convection-reaction-diffusion
system that cannot be solved analytically. Hence, we appeal to numerical simulations
in order to gain insight into this important biological process. Mathematical analysis
[3] shows that, in order for aggregation to occur, diffusion must not dominate the
process. However, if diffusion is small then the problem becomes singularly perturbed
and standard spatial approximations such as central differences are unsuitable [5,
8]. In the following, we will employ an alternative method of spatial approximation,
exponential fitting [4], show that it permits larger spatial and temporal increments,
and apply it to chemotactic cellular aggregation.

2. Biological model

The model for chemotaxis that is employed herein is due to Oster and Murray [7]
and the interested reader is referred there for a full biological justification of its as-
sumptions. The primary variables of this model are cellular concentration, u, and
chemoattractant concentration, ¢. The cells are presumed to be randomly motile and
to “convect” in response to the gradient of ¢. In addition, the cells are presumed to
secrete the chemoattractant in a fashion described by Michaelis-Menten saturation.
Finally, the chemoattractant is assumed to diffuse and also to decay according to
first-order kinetics.

3. Mathematical model

The above biological model, when codified mathematically, yields the following non-
linear parabolic system for the time evolution of the concentrations, u and ¢ [3,7]:

5 5} b
L~ MAy —aV- (uVe); L~ DAc + g e (1)
ot — — ot e u+h —~—

motility  chemotaxis diffusion seoretion degradation

Note that the cellular concentration equation is of convection-diffusion type while that
for the chemoattractant concentration is of reaction-diffusion type [8].
Before proceeding, we nondimensionalize the system as follows:

v = u/h, ¢ = cu/b, & = zp/Vab, ¥ = yu/Vab,

2
t = tu, D' = Du/ab, M' = Muyu/ab, (2)
yielding the dimensionless system
ou Oc u
— = MAu -V - (uVe); — = DA - 3
5 u (Ve = ct o176 (3)

The authors thank Dr. David Green, Jr. for encouragement and support of this work.
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where we have dropped the primes for the sake of simplicity. Thus, we have reduced
the number of parameters in the problem from six to two.

The key mathematical question for the above system of equations is, can small per-
turbations to a constant state evolve into patterns of aggregation? That is, under what
conditions will constant solutions become unstable? An extension to two dimensions
of the linearized stability analysis of [3, 7] produces the aggregation condition

M(Dg* +1) < af(a+1)* < 1/4, (4)

where 4 is the constant state and ¢ is essentially the frequency of the perturbation.

Inequality (4) essentially says that M and D must be “small enough” for aggre-
gation to occur. In fact, the smaller they are the larger ¢ may be and, consequently,
the more elaborate the resulting aggregation pattern. However, if they become small,
then our problem becomes singularly perturbed and special care must be taken in its
numerical approximation [4, 5, 8. The remainder of this paper will be concerned with
this issue.

4. Numerical model

We next extend our one-dimensional algorithm [1] to two-dimensions [2]. Consider
(3) on the rectangular domain (0, L,) x (0, L,) with initial conditions v = u(z,y)
and ¢ = ¢p(x,y) at t = 0 and subject to homogeneous Neumann boundary conditions
u, = 0 = ¢,, where n is the direction normal to the boundary. Consequently, there
is no flux of cells through the boundary, so that we have conservation of cells. The
numerical approximations developed below will maintain a discrete version of this
conservation law. A constant discretization spacing will be used throughout for each
of the variables ¢, z, and y with Fig. 1 showing the spatial grid topology at spatial
location (x;,y;) and temporal station t;. Complete details are available in [2].

Integrating (3) over the two-dimensional control region, R, and applying the di-
vergence theorem reduces the computation to the evaluation of the flux of v and ¢
through I' := OR. Rather than using central differencing to approximate these fluxes,
we instead utilize exponential fitting [4, 5, 8]. In this mode of approximation, we
treat the flux through each side of I" as an ordinary differential equation with constant
coeflicients that can be solved analytically. This process produces exponential basis
functions, hence the name of this procedure.

Finally, approximating the transient terms by forward differences in time, we arrive
at the discrete equations for cell density:

vy M {B(—p;_ 1 )uf B B B ;
+A_a: { (—p z—%,j)ui—l,j + [ (P )"‘ (=p z—l— y)} Ug; + ( Piy1 g) i+1,j}
At k k k k
+A_yM{B( pz,j_%)ui,j—l + [B(PH__) + B(-p ”+ )} u;; + B( P41 1) i,j+1};
Py = (G = e )/M, Piiet = (G = ym)/M, (5)
where B(z) := z/(e* — 1) is the Bernoulli function, and chemoattractant

k
= (1= Atk + A |t
4,7 7{»3_}_1
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Ay k Az k

N At D. z? ) A—x(cfﬂ,j - Cm') + A_y(ci,j—l—l - Ci,j)
AzAy 2(coshz —1) _%%(Cf;j —ch ;) - 2—2(0% —cfiy)
Azx)? + (Ay)?
S (CEEAETE (©)

The approximations (5) and (6) are explicit in the values for the cellular and
chemoattractant concentrations. Hence, starting from the initial values of the cell and
chemical concentrations, we may “march in time” to simulate their evolution. The
local truncation error of these approximations is O(At + (Az)? + (Ay)?), i.e., they are
first-order accurate in time and second-order accurate in space.

Method of Discretization

Yj+1

¥i

i1

Xj- 1 X Xi+1

Fig. 1. Two-dimensional spatial discretization.

It must be remembered that we intend to use these approximations for small values
of M and/or D. In that case, equations (3) become singularly perturbed and may
possess solutions with boundary and interior layers. Since exponential fitting produces
the exact solution for such steady-state, one-dimensional, linear problems, it tends to
provide superior spatial approximation to that of central differencing even in multi-
dimensional, nonlinear problems, as is widely appreciated in the literature [4, 5, 8].

What is not so widely appreciated is that the use of exponential fitting in space also
permits the use of larger time increments. Performing a linearized stability analysis
[9] on equation (5) yields the time-step restriction

At < {M [B(—zzz):)?(pz) 4 B(_?Z);;?(py)} }—1;

Py = Az -, /M, Py = Ay - cy/M (7)
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for the convection-diffusion equation, while a corresponding analysis of (6) yields the
time-step restriction

2 2 -1
D z3 + 2D 2y .
x)? 2(cosh zz—1) (Ay)? 2(cosh zy—1) ’

2y = Ax/V/D, 2z, = Ay/VD (8)

At <

2
(A

for the reaction-diffusion equation. As long as these restriction are adhered to, the
numerical error should not become unbounded as we step in time.

Inequalities (7) and (8) coincide with the numerical stability criteria for spatial
central differences in the limits M — oo, D — oc:

-1

At<{QM[(Aa:)_Q—I—(Ay)_QH_l; At < {2D[(Az)+ (Ay) ]} . (9)

However, as M — 0 and D — 0, inequalities (7) and (8) approach

-1

lcs| Icyll_l 2D % 2D Zg
At < |22 4 DU AL < z + . (10)
Ax Ay (Az)? 2(coshz, — 1)  (Ay)? 2(coshz, — 1)
—0 —0

respectively, while for central differences

-1

At < 2 Lpf,llij_l_lfﬁ’,l% At < (zf)z"'(zf)zl_ (11)

Thus, in the small diffusion limit, exponential fitting permits a larger time-step
than does central differencing while, in the large diffusion limit, the time-step restric-
tions coincide. Yet, as has been previously noted, it is the small diffusion limit that is
of most direct interest for cellular aggregation within the Oster-Murray model. Hence,
exponential fitting is to be preferred and will be employed in the ensuing examples.

5. Numerical examples

The numerical examples of [1] showed the limited types of aggregation patterns possible
in one-dimension. The two-dimensional examples shown in Fig. 2 clearly demonstrates
the more intricate and complex aggregation patterns possible in two-dimensions [6].
In all four of these cases, M = .001, D =1, L, =1 = L,, Az = .025, Ay = .025,
and At = .000125. The examples differ only in the initial conditions for the chemical
concentration which were derived from [10]. Full numerical details appear in [2].
Despite the rich structure evident in these steady-states, they in no way exhaust
the variety of two-dimensional aggregation patterns hidden within the Oster-Murray
model.
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Fig. 2. Steady-state aggregation patterns.

6. Conclusion

In the preceding sections, we have developed a numerical approximation of the Oster-
Murray model of chemotaxis in two-dimensions. Our scheme is comprised of exponen-
tial fitting in space and forward differencing in time. The resulting explicit algorithm
permits larger spatial and temporal increments than would otherwise be afforded by
central differencing in space. This increase in efficiency permits us to explore more
effectively such exotic aggregation patterns as those presented above. Thus, our em-
ployment of exponential fitting may lead to a better understanding of the underlying
biological process of chemotaxis.
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I.A. GUZ and C. SOUTIS

Asymptotic analysis of fracture theory
for layered composites in compression
(the plane problem)

1. Introduction

There are two different mechanical approaches to describe the deformation behavior
of composites. One of them is based on the piecewise-homogeneous medium model,
where the behavior of each material component is described by the equations of
three-dimensional solid mechanics, provided certain kinematic boundary conditions
are satisfied at the interfaces (exact solution). This enables us to investigate the
mechanical response of the material in the most rigorous way at microscopic level.
However, due to its complexity, this method is restricted to a very small group of
problems. The other approach, or the continuum theory, involves many significant
simplifications. With the continuum theory, a composite is modeled as a homoge-
neous anisotropic material with effective elastic constants, by means of which the
physical properties of the original material and the shape and volume fraction of the
constituents are taken into account. The continuum theory may be applied when
the scale of the investigated phenomenon (for example, the wavelength of the mode
of stability loss [) is considerably larger than that of the material structure (say, the
fibre diameter or layer thickness h), that is, [ > h. The method based on the model
of a piecewise-homogeneous medium is free from such restrictions and is, therefore,
an exact one.

The wide usage of the continuum model, due to its simplicity in comparison to
the piecewise-homogeneous medium model, raises the question of its accuracy and of
its domain of applicability. The answer to this question may be given only by com-
paring the results delivered by both the continuum theory and the exact approach.
The latter imposes no restrictions on the scale of the investigated phenomena and,
therefore, has a much larger domain of applicability than the former. The results
obtained by means of the continuum theory must follow from those derived using the
model of a piecewise-homogeneous medium if the ratio of the scale of the phenomena
and the scale of the structure tends to zero, that is,

hl~t = 0. (1)

If this is the case, then the continuum theory may be considered as an asymptotically
accurate one.

The present investigation is devoted to the substantiation of the continuum
theory applied to predict the fracture of a laminated composite material with a
periodic structure undergoing large deformations in uniaxial compression. Within
the scope of this theory, the moment of stability loss in the structure of the material
(internal instability according to Biot [1]) is being treated as the beginning of the
fracture process [2]. At present, investigations of the continuum theory accuracy
in relation to the model of a piecewise homogeneous medium have been carried
out only for the problems of statics and wave propagation (see [3] and [4]). By
contrast, problems of stability loss in composite structures undergoing finite (large)
deformations have not so far been studied.
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2. Problem statement for the piecewise-homogeneous medium model

We consider very briefly the statement of the stability problems for layered compos-
ites in compression. Suppose that (i) the composite consists of alternating layers
with thicknesses 2h, and 2h,,, which are simulated by incompressible nonlinear
elastic isotropic or orthotropic solids with general constitutive equations; (ii) the
material is compressed in the plane of the layers by “dead” loads applied at infinity
in such a manner that equal deformations along each layer are provided (uniaxial
compression, plain strain problem); and (iii) the most accurate approach is used for
the investigation of stability—the model of a piecewise-homogeneous medium and
the three-dimensional linearized theory of deformable bodies stability (TLTDBS) [5].
Within the exact problem statement on internal instability of laminated compos-
ites undergoing large deformations we have to solve the eigenvalue problem described
below. In what follows, all values corresponding to the precritical state are marked
by the superscript 0 to distinguish them from perturbations of the same values. The
indices » and m show that the value is relevant to fiber or matrix, respectively. The
elongation factor A; in the direction of the OXj-axis for the given loading is

u? = (/\i — 1);@, A; = const, 8% = (/\i - 1)51'3'- (2)

The stability equations for each of the layers are

0
ti. =10

a m

’ 8:1:1 X

where ¢;; is the nonsymmetric stress tensor referred to the unit area of the relevant
surface elements in the undeformed state (in the reference configuration). More
precisely, t;; is the stress component acting in the direction of OX; on the elementary
area with normal OX;. This is the nonsymmetric Piola-Kirchhoff stress tensor, or
nominal stress tensor, according to Hill [6]. Next, we also consider the symmetric
stress tensor S;; which reduces to o;; in the case of small precritical deformations.
For incompressible solids, the stresses are connected with the displacements by the
formulae (p is hydrostatic pressure)

ou _
tij = Klijaﬁa_aj; + 6450, 45 =A; 1 (4)

with the incompressibility condition AYA3A] = 1. The components of the tensor x
depend on the material properties and loading (that is, on the precritical state).
This loading parameter (stress or strain) is the parameter in respect to which the
eigenvalue problem is to be solved. In the most general case,

Kijap = NAQ[(6i56a8A8: + (1 — 6i5)(8iabisij + 6:ia8jatji)] + 6i30;0855.  (5)

The particular expressions of k;;q3 for numerous kinds of constitutive equations were
obtained in [2] and [5]. For example, for general elastic solids

Aﬁa - Aﬁa(fa 8%l)7 HBa — Mﬁa(fa 8%l)7 S’?j = f(8?178(1)27 st 7833)' (6)
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For hyperelastic solids, if ® is the strain energy density function, then

Apa = Aga(@,ggl), UBa = ,Lbﬁa(q),é?%l)- (7)

To complete the problem statement, boundary conditions should be written on each
matrix-fibre interface:

ro_4m ro_4m r___..m r___..m
toa = tao, 12 = l12, Ug = Uy, U = Uy . (8)

It should be emphasised that the approximate approaches do not describe the
phenomenon under consideration even on the qualitative level. They turned out
(see [2] and [5]) to give a huge discrepancy in comparison to the exact approach
and experimental data. For example, even for the simplest case of all linear elastic
compressible layers of a composite undergoing small precritical deformations and
considered within the framework of the geometrically linear theory, Rosen’s formulae
[7] for the shear deformation mode o, = G,,(1 —=V,.)™!, where V,. = h,.(h, + h,,) 7%,
Vin = b (b +hy )71, and for the extension mode o = 2VT(ETEmVTVn;1/3)1/2, are
not worth applying. Indeed, Rosen’s model [7] may give not only critical strains that
are significantly higher than those obtained by the exact approach, but sometimes,
as shown in [2], it may even predict a mode of stability loss different from that
obtained within the exact approach. For more complicated models (such as those
considered in this investigation), one can expect even bigger discrepancies between
the exact and approximate approaches.

The detailed problem statement and solution within the exact approach (as
applied to axisymmetric and non-axisymmetric modes, biaxial and uniaxial com-
pression) have been presented in [8] and [9] for the above materials, and in [2],
[9]-[11] and other publications for materials with other properties.

3. Asymptotic analysis
To perform an asymptotic analysis, we apply the condition of applicability of the

continuum theory (1) to all formulae and calculate the limits analytically; this yields

cosha,n; — 1, coshay,n" — 1,
sinha,n; — a,n;, sinha,n" — ann;”, (9)
a, =0, am—0, where o, =7h It an=7mhy,l"t, j=23.
On substitution of (9) into the characteristic determinants derived earlier (see [8]
and [9]) for the four modes of stability loss, we get (in the case of the plane problem)

the following results:
(i) for the 1st (shear) mode of stability loss,

2 hm
det [|Brs]l = [(n3)* — (n3)7][(n5")" — (775“)2]7;—2AI2 {h—r(f"u%u ~ Kla12)”

h h
- (h_m"éﬁm + "51:[221) ("551112 + h_m"églu)] =0; (10)
T T
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(ii) for the 2nd (extension) mode of stability loss,

det |Brsl = =[(n2)* — 305" = (8" 05 MikGy1akBi1e = 0; (1)

(iii) for the 3rd mode of stability loss,

det [|Brsll = = [(05)* = 03)?1[(n5")* — (n5")?)
roT, M mﬂ-2 2..r m hm
X NaMN3No 13 Z_Q/\1"32112"32112 . +1] =0 (12)
T
(iv) for the 4th mode of stability loss,
det [|Brsll = —=[(15)* — (15)*)[(n5")? — (05" Insm5 AT kh110Kb 19 = 0. (13)

It has been shown that for the above models of layers, the roots of the char-
acteristic equations (that is, the parameters (n})? and (n}")? that depend on the
components of the tensor x and, therefore, on the properties of the layers and loads)
are always real and positive. This means that

(14)

Also, the solutions corresponding to a particular phenomenon of internal instability
must depend on the properties of both alternating layers, in other words, on the
ratio Ay /hy,.

Equations (11), (12), and (13), which correspond to the 2nd, 3rd, and 4th
modes of stability loss, respectively, do not have such solutions and, therefore, do
not describe the internal instability in the long-wave approximation. This also means
that the modes of stability loss, with the exception of the 1st (shear) mode, cannot
be described by the continuum theory.

For further analysis, the components of k can be expressed as [5]

Kji1p = /\%N{m Klgo1 = /\1_2,“1:[2 + (Sgl)ra Klo12 = M2, (15)

m _\2.m m _\—2.m 0 \ym m _ ., m
K112 = ATH13,  Klaog = Ap pis + (S11)™,  Kis12 = Kis-

On substitution of (15) into the characteristic equation (10) for the 1st (shear) mode,
we find that

hm r m
h_r(ﬂu - N12)2
r hm m r hm m m hm r
= |Hi2 + 7, H2 + A7 ((5?1) + h_(S?l) )] (Mu + h—ﬂm) =0. (16)
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Introducing the effective values of the stresses (S¥;) and parameter (u12) by

(ST1) = (S1)"VF + (S1) ™ Vims (p12) = piapd3(W5s Vi + 3 V) ™ (17)

and taking into account that the volume fractions (V,, Vi) and (V¥, V) of the
components in the deformed and undeformed states, respectively, are

. Abh, _ h v
" XAy + APhy, Re thy, (18)
AS R P,
* _ =V,
Yim AShe + ARy, hy + Ay ’
we now find from (16) that
(I )7 = —(ST1) = AT *{ur2). (19)

This coincides with the results derived by means of the continuum theory of non-
linear laminated composites undergoing large deformations, where (II7 )y denotes
the theoretical strength limit.

Thus, it is rigorously proved for laminated nonlinear elastic composites under-
going large deformations in uniaxial compression that the results of the continuum
theory follow as a long-wave approximation from those for the first mode of stability
loss obtained using the model of a piecewise-homogeneous medium. This establishes
the asymptotic accuracy of the continuum theory for such composites.

4. Results for particular models

We can now calculate the accuracy of the continuum theory. Thus, the values of the
critical strains (or other critical parameters, for example, critical stresses) calculated
by means of the most accurate approach (the piecewise-homogeneous medium model
and the equations of TLTDBS) may be found for various types of layered media
as described in [2] and [8]-[11]. Using the above formulae, we easily obtain the
values of the critical strains for the first mode of stability loss under the condition
of applicability of the continuum theory. Comparing these values of the critical
parameters, we can estimate the asymptotic accuracy of the continuum theory of
fracture for layered media in compression and draw proper conclusions about the
viability of using this theory.

It should be noted that for the continuum theory, formula (19) gives the the-
oretical strength limit for nonlinear elastic incompressible composites as a function
of the effective values of the parameter (u32), which is related to the material/ply
properties by (17). This theoretical strength limit is written for the general form
of the constitutive equations for the layers. If we need a concrete expression for a
particular kind of layer properties, then this can be determined by using the for-
mulae in [5], which give p7, and pf% for various particular constitutive equations.
The monograph [2] also contains expressions for the theoretical strength limits for
other layered models. Thus, for example, for the simplest case of all linear elastic
compressible layers of a composite undergoing small precritical deformations within
the geometrically linear theory, we have (II] )r = —{0};) = (G12), where (G12) is
the effective shear modulus of the laminated composite.
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S.M. HAIDAR

Existence and regularity of weak solutions
to the displacement boundary value
problem of nonlinear elastostatics

1. Introduction

Consider a nonhomogeneous isotropic hyperelastic material body which, in its reference
configuration, occupies the open connected bounded subset €2 of B3. The material
particle at z € Q is displaced by the deformation g : 2 — R? to g(z). In the absence
of external forces, the total energy associated with a deformation ¢(-) is given by

9= J(9) = | Wia,Vg(e)) da (1)

where W : Q x M3*? — [0, 00] denotes the corresponding stored energy function and
M3*3 denotes the space of all 3 x 3 real matrices with positive determinants. The
Euler-Lagrange equations associated with Eq. (1) are given by

div [68—‘;/(3:, F)] =0, F:=Veyg). (2)

For the case of homogeneous material, Ball and Murat [3] discuss the questions of
existence and regularity of solutions to the problem

Inf{J(g): g€ Cy}, A>0  where (3)
Cy:={ge WH(Q; R3) : g(x) = Az on 8Q,det Vg(-) > 0 a.e., J(g) < oc}. (4)

Like finite-dimensional minimization problems, the framework for studying the
typical problem (3), (4) has two vital components: 1) compactness, and 2) lower
semicontinuity (in some topological sense). The nonlinear constraint det F' > 0 makes
convexity of W(x,-) totally unrealistic in more than one space dimension as, among
many other reasons, it contradicts the principle of frame indifference. The absence of
convexity makes lower semicontinuity of J(-) a serious problem and obstacle. Since
1950, several attempts to treat this issue have been made, but it is yet to be universally
settled (refer to [1], [7], and [12]).

In Section 2 we present an existence result that extends to the nonhomogeneous case
that of Ball [2] and, like the results of Ball, is partly motivated by the work of Ogden
[8]. In addition, our discussion of the regularity of weak solutions of Eq. (3) represents
a novel approach that does not require the consideration of the delicate phase plane
analysis. In Section 3 we describe the physical significance of the homogeneity property
used for the discussion of regularity in Section 2.

This work was partly supported by a grant from the R & D Office of Grand Valley State University.
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2. Existence and regularity of solutions
Let Q = B(0,1) := {x € R? : |z| < 1}. The class of admissible deformations for
problem (3), (4) that we consider corresponds to radial displacements of the form:

g(x) = ﬁlg;)a:, where R := |z|.

r(R) ‘

0 1 0 A

LaR="

In this case, the stored energy function W can be expressed as a symmetric func-
tion ¢(R,.,.,.) of the principal stretches of Vg(x). In particular, W(z,V € ¢(z)) =
¢(R, vy, v, v3) where the singular values of Vg(z) are v; =1/, v = v3 = r/R (refer to
[9]). Problem (3), (4) becomes

Inf{I(r) : r € Upa} (5)
Uy = {r e WH(0,1) : #(R) > 0 a.e., r(0) =0, r(1) = A, I(r) < oo} (6)

where J(g) = 4rI(r) with I(r) := [} R?¢(R;r',r/R,r/R) dR. The Euler-Lagrange
equation corresponding to the functional I is

d

—R*¢; = 2R¢,. 7
229, = 2R9, )
Following [2, Theorem 4.2], we say that ¢ € W1(B; R®) is a weak equilibrium solution
of (2) if and only if ¥(R) > 0 a.e. R € (0,1), R*¢; and R*p, € L'(0,1), and
R2p, =2 [ pg2(p) dp + const., where

= g—i (R; " (R), T(}f), T(g)) .

To obtain good correlation between theory and experiment, Ogden and J. Ericksen
et al. found that expansions of W () in symmetric forms such as Y- o, ¢ () do a good
job for homogeneous incompressible material. To account for volume change effects
one may then consider the form Y o, ¢ (v,) + h(1112v3). For the nonhomogeneous case,
we present the following result in which W (z,-) admits such expansions.

Theorem 2.1. Let the functions ¢, v, and h be given such that
(HO) ¢(R;vy,va,v3) > 32 (R, v;) + (R, vivpvs) for R € (0,1), v; € (0,+00);
(H1) ¢11(R;v1,v,v3) > 0;

QS’,(R) :

(H2) h:(0,1) x (0,+00) — R is C* and strictly conver in its second argument;
(H3) h(-,0) is nondecreasing;
(H4) lim,_g+ h(R,0) = lim, o A(R,0) /0T = 400, €> 0;
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(H5) 4 : (0,1) x (0,400) — [0,400) is C' and convez in its second argument with
lim, o ¥(R,v) = 400.

Then I attains an absolute minimum on U,q.

Proof. Let p = R* and u(p) = r*(R). Then @ = du/dp = v'(r/R)* = det Vg(z). In
terms of this change of variables, the energy functional takes the form

I(u) = [ f(p,u, ) dp where
f(p:u,p) = & (pP(rhofu)*p, (u/p)'/?, (u/p)'/?) > T2, (p' %, v3) + h(p"/?,40). (8)

Put L :=inf{I(u) : v € Upg} and let {u,},cn be a minimizing sequence for I in U,.
For each integer m > 1, Eq. (8) and (H3) imply
1 1
[ B (m) o)) do < [ h(p ) dp < I(ur) < D,
1/m 0
where D is a constant independent of n. Hence, by (H4), the family {,}nen is
sequentially weakly relatively compact in L'(1/m,1). Define {us,} by ui, = u,
for all n. By De la Valleé Poussin’s criterion we can choose the following sequences
inductively: {um,}52; to be a subsequence of {,_1,}52; with the property that
converging weakly in L'(1/m, 1) to, say, Z,,.
Let Z be the function: Z : (1/k,1) — [0, A] given by Z(p) := Zi(p) where k is
chosen so that p € (1/k, 1). Following [11], put

u(p) = A — /pl Z(t) dt and wy, = U (9)

for all m > 1. For each § € (0,1), choose m large enough so that 6 > 1/m. It is not
difficult to show that wu,, — u in L!(§,1) and thereby conclude that

Uy, — u in WH(8,1). (10)

To establish the (sequentially) weak lower semicontinuity of I(-), we extend the defi-
nition of f to (0,1) X R x R by setting

f(p,u,p) = +oo if u or p < 0. (11)

This makes f(p,-,-) a continuous function from R x R to R for each p € (0,1). Since
f(p,u,-) is also convex we may apply a result from [4] to conclude that

1 1
| 1o i) dp < timind [ £(p,um, i) d.

From this we see that the nonnegative monotone functions ¢ —>f51 flp,u,a) dp
have a least upper bound L. The monotone convergence theorem and the definition

of L now imply fy f(p,u,u) dp= L.

Hypothesis (H4), (9) and (11) imply that a(p) > 0 for a.e. p € (0,1) and @ €
L'(8,1) for each § € (0,1). Moreover f; u(t) dt < X\. The monotone convergence
theorem implies that v € W1(0,1) and Eq. (10) gives u,, — u uniformly. Thus
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u(0) > 0. By (H4), u € WH*¢(0,1) and the Sobolev Imbedding Theorem yields that
u € Cy(0,1), the space of bounded continuous functions on (0,1) and consequently
u(0) = 0. It now follows that u € U,g.

It is natural to ask how regular can this minimizer be? Could it be in a smaller
space? Is it Lipschitz or does it satisfy Eq. (7)? Within this context, very little is
known about this very complex problem. Our new approach to this problem is based
on concepts from the Hamilton-Jacobi theory, field theory of the Calculus of Variations,
and the theory of groups of continuous transformations as established in [5].

Artificial example. Consider
1
A(r) == / (r2 — R)2(#)° dR
0

with 7(0) = 0, (1) = 1. Clearly, r*(R) := R'/? is the absolute minimizer of A(-) in
Wht(0,1) for t < 2. If we restrict competing curves to W1t(0,1) for ¢ > 2, then r* is no

longer admissible. Let V(Ry, ro) denote the value of Inf{A(r)} over all r € W(0, 1)
satisfying r(0) = 0, r(Ry) = ro. The value function V (-, -) provides a lower bound for
A(r) at each point (Ry, 7o) and is given by the Hamilton-Jacobi equation

Ve(R,r)+ f*(R,r,V;(R,7)) =0 V(0,0) =0 (12)

where f*(R,r,z) = sup,[pZ — f(R,, p)] with f(R,r,p) = integrand of A(r). Moreover,
the solution of the o.d.e. 7 = p(R,r) is optimal, where p(R,r) is the value of the
function p(-, -) at which f*(R,r, z) is attained. (Refer to [10], p. 18.) For the functional
A(r), it is easy to verify that p(R,r) = 1/6Y/°- (12 — R)™2/> . V/% and that Eq. (12)
becomes:

—2/5

2
Vi = aR~/5 (ﬁ) _1] V=0, V(0,00=0 (13)

where o = 5/65/°.

The functional A(r) is invariant under the action of the transformations: R =
€R, 7 = €'/2r, € > 0. Accordingly, we construct (similarity) solutions of Eq. (13) of
the form V(R,r) = ho&(R,r) where £(R,r) = rR~'/2. Using these solutions, one may
easily verify that p(R,r) = 3/5rR™! and that #(R) = R is optimal. Moreover, the
solution 7 € W1(0,1) for ¢ € [2,5/2).

Of course, the integrand of A(r) does not serve as an example for the stored energy
function ¢. However, the work shown above can be generalized (see [5]) to lead in a
very natural way to energy functions which are invariant under the action of the group
of continuous transformations: R = e¢R, 7 = €’r with

feR, Er, ) = f(R,r,r'),e > 0,7 € (0,1). (14)
Setting e = + in Eq. (14) yields
f(Ryr,r) =R f(1,r R,/ R™) .= R 'e(P, X) (15)

where X(R,7) = rR™7 and P(R,r’) = " R™. We call the attention of the reader
to the fact that e(P, X) of Eq. (15) is the restriction to the plane X; = Xy = X of
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the symmetric quantity F(P, X1, X3) associated with ¢(R;v1,va,v3). For some A > 0,
observe that an r(-) of the form r*(R) = ARY must be an absolute minimizer for I(r)
in Wt(0,t) for ¢t < (1 —«)~! =: ty because along curves of the form r*(R) = AR"
and in light of Eq. (15) one has I(r) = fj R~'e(\y, A) dR which yields the value zero
only if there is a zero of e(-,-) of the form (A\y, A) in the PX-plane. By restricting the
competing curves to U,aW1t(0,1) for t > t,, the curve r*(-) is no longer admissible. In
this case, it is possible to produce a more regular solution curve of the form #(R) = AR’
for 6 < A but we shall not address it here. Singular equilibria of this form corresponding
to strongly elliptic isotropic energies are established in [6].

3. Physical interpretation of the homogeneity property

The constitutive property Eq. (14) provides for a plausible model of the onset of
fracture in nonhomogeneous elastic materials. Take e(P, X) = (P — X)*(PX)™! and
assume that the material body B(0,1) undergoes a rigid deformation. The stored
energy function ¢ now behaves like R7277 and, consequently, ¢ — oo as R — 0%.
Hence, the material under consideration must be denser (coarser) near the center of
the ball than it is elsewhere (e.g., near R = 1). In general, when the principal stretches
V) = vy = v3 = v = const, ¢ as a function of R behaves like R~2q(R), where q(R) :=
e(vR'™ vR™7). By the natural growth condition (H4) of Theorem 2.1, § — +o0
as R — 07. To account for the possibility of the material to fracture we propose
the following argument: Let us expose the unit bar to expansion or compression and
think of the intensity of this action as propagating through material layers of different
conductivities.

Case 1. Expansion (i.e.,, € > 1). In this situation, one may arrange the layers as
follows:

e’ €7 € €7 1
(Conductivity Distribution)

Since 0 < 7 < 1 the conductivity near the center of the bar is higher than it is
elsewhere. This reflects weaker resistance near the center than elsewhere in the bar.

Case 2. Compression (i.e., € < 1). In this situation, one may arrange the layers as
follows:

€ €7 e’ €7 €
(Conductivity Distribution)

This also reflects weaker resistance near the center of the bar leading to the same
outcome as in Case 1.

The above arguments may easily be adapted for the homogeneous case as well as
for the incompressible case.
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A. HAJI-SHEIKH, F.R. PAYNE and K.J. HAYS-STANG

On convergence and uniqueness
of microscale heat transfer equation

1. Introduction

Classical methods of predicting temperature must be modified when attempting to
find temperature in thin conductors, nonconductors, and semiconductors subjected to
short heat pulses. Known as microscale heat transfer, heat flux and individual body
component temperatures can be briefly in local nonequilibrium. For laser heating
of metal films, the electrons initially absorb the photon energy, raising the electron
temperature, and transfer energy to the colder lattice by electron-phonon collisions
[1], reaching temperature equilibrium in picoseconds. Qui and Tien [1,2] studied the
heating of the lattice due to electron-phonon collisions. Hays-Stang and Haji-Sheikh
[3] showed that the solution for thin metals is directly applicable to nonmetals but
with a different set of parameters.

Mathematical formulations of the energy equation in thin films are valid for a broad
spectrum of materials from conductors to nonconductors. The solution for different
heat conduction models is obtainable from classical solutions of the diffusion equation.
The solution exhibits different convergence characteristics depending on the values of
the input parameters. The completeness of the solution is discussed. A numerical
example is selected to show the solution and to study the convergence of the solution.
For metals, the series solution is well behaved and rapid convergence is expected.
However, for di-electric materials, a special transformation is needed to achieve the
convergence of the series solution.

2. Analysis
The energy equation as derived in [3] is
JKVT(r. )
V- (KT, )] + n A EVTO O g 47, 2200
ot ot
_ o) 8°T(r,1)
T ot + 0T+ 1) o2 (1)

where T is lattice temperature, K is thermal conductivity, r is position vector, t is
time, S is volumetric heat source, and the parameters 7,, 7., and 7; can be considered
as local disequilibrium times. For metals, 7, 7., and 7z can all be nonzero, however T,
is generally several orders of magnitude less than 7, and 7;, and is frequently assume
to be zero. For di-electric materials, » = 0 and 7, = 0.

Solution. The solution of (1) as given in [3] begins by assuming a series solution for
finite bodies of the form

T(r,1) = i balt)Fu (D)ezp(at) @)

where F, (r) is the eigenfunction that satisfies equation
V- [KVE,(r)] = =y Fo(r) (3)
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The boundary conditions are linear and homogeneous. Substituting T" from (2) in (1),
and using the orthogonality condition

/ Fy(r)Fp(r)dV = 0 (4)
leads to the following solution [3]:

T(r,t) =Ti(r,t) + Ts(r,1), (5)

where the contribution of initial conditions is

fj JJe—— {Slnh(“n [ ~ ) / Fo (e Ty(x')dV'
_/ F, () Tyu( dV’] + cosh(w,t /F (r')dV’} (6)

and the contribution of the volumetric heat source is

i/t / Fn(r)Fn(r’)e_%(t_T) e#¢=7) sinh[w, (t — 7)]
= J=0Jv CN, Wy (T4 + Te)

aS(r', 1)
or

x lS(r’, 7+, ] dv'dr. (7)

The symbols 3, A, and w, stand for 8, = v, — (14+7.7) /2(Tg+Te)s A = Y1 =7/ (T4 +
7)]"/%, and w, = (52 — A2)'/2. Moreover, T;(r) = T(r,0) and Tj(r) = 8T (r,t)/0t as
t — 0. The arguments of hyperbolic sine and cosines are real or imaginary but ¢, (¢) is
always real. The nonhomogeneous boundary conditions can be accommodated using
an appropriate transformation [4,5].

When t — 0, (6) yields the relations

o

r')dV’, (8)

Tn( = dvl (9)

Both (8) and (9) satisfy the Bessel inequality [6]. Indeed, these relations, in the
classical sense, satisfy Parseval’s theorem, hence they are closed and complete [6].
They converge if the integrals go to zero as n — oo. However, for a special case, (7)
does not properly converge as will be demonstrated later.

The general (7) exhibits different convergence behavior depending on the values of
T, Te, and 7,. One can show that 82 — A2 is related to 7, — 3, by the relation

5721 - /\721 = (0 — ﬁn)z — Y/ (Tq + Te) (10)
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and accordingly, v, — B, > (82 — A2)!/2. Alternatively, one can show that for the
arguments of hyperbolic sine and cosine to be real, it is necessary to have 52 — A2 > 0.

This leads to the condition

(Tevn) (g + 7e) /7 < [1 + (Tt'Yn)]z/Ll (11)
When 32— X2 > 0, the terms in (6) and (7) decay exponentially, hence the convergence
will be achieved. In contrast, when 32 — X2 < 0, the series may not converge to proper

values. The following example discusses the convergence for metals and demonstrates
the improper convergence for di-electric materials.

/BT/sz()
HEREEEEEEEE LY

q-=49 Siﬂ(\/t)

Fig. 1. Schematic of a thin plate and its boundary conditions.

Example. Figure 1 shows a thin plate of thickness L subject to boundary conditions
0T'/O0x = 0 at x = 0 and at « = L. There is a source of energy at x = 0 that is
described by the relation S = ¢(t)6(x — 0) where §(x — 0) is the Dirac delta function.
For a thin metallic plate, 7, << 7 and 7. << 7, therefore, the inequality given by
(11) is satisfied. The series converge because, at any given time, the coefficients in the
Fourier series go to zero as n increases, that is, exp[—(8, — Va)t] exp[—(52 — A2)1/2¢]
= exp[ynt/(Te + 74)] — 0 as m — oo. In general, when 32 — A2 > 0, the series solution
converges properly.

For di-electric materials such as crystal diamond 7z = 7. = 0. The temperature
solution for a di-electric material, when ¢ = ¢, sin(vt), after considerable algebra leads
to the relation

1 t &2 — bom .
T(x,t) = 50T / . i M cos(mmx/L)e~ "2 sin[w,, (t — 7))g(T)dr
g "= m= m
oo é‘ m
z M cos(mma/L)e” /2 coslw, (t — 7)]g(1)dr (12)

m 1

The temperature at x = L is computed as a function of time for a frequency of
vCI?/K = 40 and K7,/CI? = 0.04 using a nondimensional form of (12). The
series solution is evaluated using 1,000, 10,000, 100,000, and 1,000,000 terms. All
solutions agree, indicating that convergence may have been achieved. However, a
close examination of the data considering the physical phenomenon indicates that the
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solution does not converge to a proper value. To demonstrate this, the solution of the
classical diffusion equation, when 7, = 7. = 7, = 0, is also plotted in Fig. 2 using the
same boundary conditions and the same heat source. A wave with finite propagation
speed, described by (12), should arrive at the = L surface later than that for Fourier
conduction where heat travels at infinite speed; however, this cannot be inferred from
the data in Fig. 2

- 1 I T I 1 I -

0.07 - | —e— 1,000 terms, Eq. (12) -

< 0.06 [ |4+ 10,000 terms, Eq. (12) N
S 006" | _m.- 100,000 terms, Eq. (12) ]
= 0.05 | |--*-' 1,000,000 terms, Eq. (12) .
S - | ==="Solution using Eq. (15) 1
5 0.04 [~ |'='=' Fourier Conduction ]
& 0.03 .
<002} \
~ 0.01} 5
= 0.00 - |
=g - J
-0.01 |- vCL /|K | ]
0.0 01 5 0.2 0.3

Kt/CL

Fig. 2. Solutions using (12) and (15) and comparison with
Fourier conduction.

It is possible to improve the convergence of the solution by examining (12) for the
specific case of di-electric materials. Because of the parameter w = (m*r*K /CL*r, —
1/47'(]2)1/2 in the denominator, the first term in (12) properly converges since w,, — 00
as m — oo. However, the convergence of the second term is not assured because the
exponential term is independent of m and cos|w,,(t — 7)] changes between —1 to 1.

The reason for poor convergence is the appearance of a wave phenomenon in the
solution. To account for the wave effect, it is noted that the function é6(z — £) can be
expressed in the Fourier series as

-3

m=1

2 —

= cos(mmx /L) cos(mmé /L) (13)

where £ is a length scale and g, is the Kronecker delta; éo,, = 1 when m = 0,
otherwise é¢,,, = 0. This relation is subtracted from (18) to obtain a new form of the
temperature solution,

1t & 2= bom :
T(x,t) = 2, /r:O 2 Lw,z cos(mma/L)e” /% sin[w,, (t — 7)]q(r)dr
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5/ { 21 = cos(mma /L) cos(nt /1)

= cos(mmx /L) cos|wy, (t — 7‘)]} et 2a g (Y dr. (14)

The length scale, €, is selected arbitrarily. The best choice of £ is the one that forces
cos(mm&/L) to approach cos[w(t — 7)] as m — oo. Since the parameter w, reduces to
mr K12/ L(Cr,)Y? as m — oo; this requires ¢ to become ¢ = K1/2(t — 7)/L(Cr,)Y2.
This relation implies that ¢ is a distance that a wave travels with speed o if 0 =
K'Y2/(Cr,)Y?; therefore 7, = K/po? and ¢ = o(t — 7). Following integration of the
term that contains the Dirac delta, the final form of the solution is

1 1 t SN2 — bom
T(xz,t) = ae_aﬁ/za + 30T, /r—O Lw,z cos(mmx/L)e~ =7/
X sin[wpm (t — 7))q(T)dT —l— Z = cos(mmx /L)

X {cos|wn,(t — 7)) — Cos(ﬂf/L)} e (t )/ 2qu(7‘)d7‘ (15)

Note that « in the first term is replaced by & to describe multiple reflections of a prop-
agating wave with exponential decay. The energy travels from the surface accepting
the heat input to some point in the heat conducting body in a transit time &/o. The
distance to that point is £. For the first arrival of the wave at the surface opposite the
heat input surface, ¢ is the coordinate x. If t > L /o, the wave is reflected and travels
toward the heat input surface. However, the amplitude of the reflected wave is small
because of the decaying factor exp(—oé/2a). Equations (12) and (15) are derived us-
ing the same partial differential equation and the same boundary conditions. However
they yield different temperature values for a given periodic heat flux at x — 0; hence,
uniqueness is not assured.

In essence, (15) should yield results identical to those of (12). However, the dash
line in Fig. 2, using (15), is quite different from the solution using (12). Notice that
the dash line indicates a delay of the arrival of energy input from z = 0 to x = L. This
is a realistic behavior because the value of 7, = 0, for Fourier conduction, corresponds
to 0 = 00, and therefore the dash line must lag behind the Fourier conduction solution.
This wave-like phenomenon in conjunction with the derivation of the Green’s function
for the thermal wave model is reported in [4].

3. Conclusion

The formulation of a temperature model for microscale systems requires mathematical
efforts that can be demanding. The solution for conductors, e.g., gold, silver, copper,
and other pure metals, shows satisfactory convergence characteristics. The numerical
computations for di-electric materials remain demanding. The appearance of wave-like
phenomenon was demonstrated in a simple one-dimensional example; however, (6) and
(7) describe generalized solutions for three-dimensional energy transport problems.
There is a paucity of information available on the solution for layered materials.
The orthogonality condition that often exists for the Fourier conduction in layered
materials cannot be used to obtain solutions for microscale heat conduction problems
in layered materials. In the absence of a closed-form solution, one needs to consider a
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Volterra-type integral equation to solve for interface conditions of temperature and/or
heat flux.
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W. HAN and M. SOFONEA

On numerical approximations
of a frictionless contact problem
for elastic-viscoplastic materials

1. Introduction

In this paper we give numerical analysis of a mathematical model that describes the
unilateral quasistatic contact of two elastic-viscoplastic bodies. The contact is without
friction and it is modeled by the classical Signorini boundary conditions. Summarizing
accounts of contact problems and their numerical approximations can be found in [5]
and [7].

We consider elastic-viscoplastic bodies modeled by a constitutive law of the form

o=E+G(o,e) (1)

in which o denotes the stress tensor, € is the small strain tensor and &, G are given
constitutive functions. Here and below the dot above represents the derivative with
respect to the time variable.

Rate-type viscoplastic models of the form (1) are used to describe the behavior
of real materials like rubbers, metals, pastes, rocks (cf. [2, 6]). A relatively simple
one-dimensional example of constitutive law of the form (1) is obtained by taking

—lel(O' — f(f:“)) if o> f(éf),
Glo,e) =1 0 if g(e) <o < fle),
koFa(g(e) —o) if o < g(e),

where kq, k2 > 0 are viscosity constants, f and ¢ are Lipschitz continuous functions
with f(¢) > g(¢), and Fy, F; : Ry — IR are increasing functions such that Fy(0) =
F(0)=0

(T)he mathematical model describing the quasistatic unilateral contact without fric-
tion between two elastic-viscoplastic bodies was analyzed in [9]. This model consists
of an evolution equation coupled with a time-dependent variational inequality. The
aim of this paper is to present results on numerical approximations of the mechanical
I[)r]oblem analyzed in [9]. For detailed proofs of these results, readers are referred to
4].

2. The contact problem

Consider two elastic-viscoplastic bodies whose material particles occupy bounded do-
mains Q' and Q2 of R? (d < 3 in applications). In the following, we put a superscript
m to indicate that the quantity is related to the domain ™, m = 1,2. For each
domain Q™, we assume its boundary I' is Lipschitz continuous, and is partitioned
into three disjoint measurable parts I'7", I'* and I'}*, with meas (I'7") > 0. The unit
outward normal to I'™ is denoted by v™ = (v/"). We are interested in the resulting
quasistatic process of evolution of the bodies on the time interval [0,7], T' > 0. As-
sume that the bodies are clamped on I'l* x (0,T"), volume forces of density ¢ act on
Q" x (0,7, and surface tractions of density ¢5* act on I'}* x (0,7"). The two bodies
are in contact along the common part I'} = I's, which will be denoted I'; below. The
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contact is frictionless and it is modeled by the Signorini conditions on I's x (0,7") with
a zero gap function.
The mechanical problem is then the following: For m = 1,2, find the displacement

field w™ = (u") : Q™ x [0,T] — IR and the stress field o™ = (073) : Q™ x[0,T] — Sy
which satisfy, for t € (0,7),
=&Me(u") + G (e, e(u™)) i Q7
DIVO' +¢"=0 in Qm,
u" =0 onl7,
o"v" =y onlY,
ul +u2 <0, 0L =02<0, ol (v, +u?) =0, " =0 on T},

w N

[

SN TN TN TN N
(=) W~
RN N P I

and the initial value conditions
u"(0) =uy', o™(0) =0y in Q7. (7)

Here and below, 1 < 4,57 < d, S; represents the space of second-order symmetric
tensors on IR?. The summation convention over a repeated index is adopted, unless
stated otherwise. In (2)-(7), Div o™ = (07 ;) represents the divergence of the tensor-
valued function o™, e(u™) = (&;;(u™)) denotes the small strain tensor, with &;;(u™) =
5 (u+uJy). The index that follows a comma indicates a partial derivative with respect
to the corresponding spatial component variable. Moreover,

um

m__ m.,m.,m mo__ (..m . mo__ m.m __ _m.m
g , oy =ogvvy, ol = (o7;) with o} = o7V — o)y

.M m
=Uu Yy v g Y3 T 7

k3

denote the normal displacement, normal stress, and tangential stress respectively.
We will use the Hilbert spaces

:{’U:(’Ui) | v,-EHl(Qm), ’Ui:OOHF;n, 1S2Sd}7
= {7 = (1) | 75 € L}(Q™), 1 <i,5 < d},
={reH" |Divr € (Lz(Qm))d},

and product spaces V = V! x V2 H = H! x H* and H; = Hi x H: We will
use the notation e(v) = (e(v'),e(v?)) for v = (v',v?) € V and e = (E'€!, E%?),
G(o,e) = (G(a’l,sl),chrz,sz)) for e = (e',€?) € H, 0 = (6',0%) € H. The dual
of V' is denoted V’ and (:,-) will represent the duality between V’ and V. The set of
admissible displacement fields is U = {v = (v, v?) € V | v! + v <0 on T'3}.

Since meas (I'"") > 0, Korn’s inequality holds:

le(@)|lrm > cllvll(mr@my: Yo e V™. (8)

Here ¢ > 0 is a constant that depends only on Q™ and I'7* (see, e.g., [8] p. 79).
In the study of the mechanical problem (2)—(7) we make the followmg assumptions.
E™M Q™ x S5 — Sy is a bounded, symmetric, positive definite fourth-order tensor:

(a) &Gy € Lo(Q™), 1 <14,5,k,1 < d;
(b) Mo -T=0-&"1, Vo, T €5, a.e. in Q™
(c) There exists an o/ > 0 such that

Emr T >a™T]? V1 €Sy ae. in Q™

9)
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G™ Q™ x S3 X 54— S4 has the properties:

(a) There exists an L™ > 0 such that Vo, 09,€1,62 € S, a.e. in Q™
|Gm(33,0'1,€1) — Gm($,02,€2)| S m (|0’1 — 0'2| + |€1 — €2|);

(b) For any o,e € Sy, x ' —G™(x,0,€) is measurable; (10)
(c) The mapping  +—G"(x,0,0) € H™.

@€ WH(0,T; (LAH(Q™)), @b € Wh(0,T; (L*(T'5"))%); (11)

U = (uévug) el (UOvE(UO))H = <.f(0)7u0>' (12)

For all t € [0,T] let f(t) denote the element of V’ given by
(f@),v) = (p1(t),v") 121y + (91(1), V%) (r202))e
+ (p2(t), v 2y + (P3(1), 02y Vo= (vh0?) eV

The weak formulation of the contact problem is as follows.

Problem P. Find the displacement field w : [0,7] — U and the stress field o :
[0,T] — H; such that

u(0) = ug, o(0) = oy, (13)

and for a.a. t € (0,7),
o(t) = Ee(u(t)) + G(o (1), e(ull))), (14)
(o(t),e(v —u(t))n > (f(t),v —u(t)) Vvel. (15)

The following well-posedness result is proved in [9].

Theorem 2.1. Under the assumptions (9), (10), (11) and (12), the problem P has a
unique solution (u,o) € WH(0,T;U x H;).

3. Spatially semi-discrete approximation

We will discretize the spatial domain by finite elements. Let 7" be a regular finite
element partition of the domain €2 in such a way that if a side of an element lies on
the boundary, then the side is entirely on one of the subsets f;n, f;n and T3. We
then choose a finite element space V* C V for the approximation of the displacement
variable u, and another finite element space Q" for the approximation of the stress
variable . The finite element spaces consist of piecewise (images of) polynomials.
We will assume that for these finite element spaces, there hold the relations

e(Vh c@", G@.Q"Hce" (16)

The relation holds if, e.g., we use linear elements for V" and piecewise constants for
Q". The discrete admissible set is U" = {v" = (v}h, v?") € VI | 0lh 4028 < 0on T3}
Obviously, U" C U. Now the spatially semi-discrete scheme is the following.

Problem P". Find the displacement field w" : [0,7] — U" and the stress field
o™ : [0,T] — Q" such that

u'(0) = ug, 0"(0) =y, (17)
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and for a.a. t € (0,7),

o’ (t) = Ee(u"(t)) + G(a"(t), e(u"(t))), (18)
a"(t),e(v" —u"(t))y > (£ (), 0" —u(t)) Vo' e U (19)

Here, u} € U" ol € Q" are appropriate approximations of ug and o.
The problem P" has a unique solution (u", o) € WbH°(0,T; U" x Q).

Theorem 3.1. We have the error estimate
lo = 0| 0,7:7) + [t = Wl o071 (20)

h h : h
< elllow=oflln+luo —wfllv) e it Sfu = oty

/ 1/2
+ (I fllzorv) + llollzoor0) ' e — vh||L/°o(o,T;v)}'

The estimate (20) is the basis for convergence analysis, following an argument in
[3]. Here we focus on error estimates under suitable regularity assumptions, including

o € L™®(0,T; L*(T3)). (21)

Corollary 3.2. Assume additionally the reqularity (21). Then

lo — o[z 0,m0) + [l = || o0 (22)
< c(llow = agllx + lluo — ugllv)

) R 1/2 hy1/2
tc vheLolol%g,T;Uh){”u = V" ||zeorv) + ||Ui||Lm(O,T;L2(F3))||uV - ||Loo(o,T;L2(F3))}-

The inequality (22) is the basis for deriving order error estimates for the semi-
discrete solutions. We present one sample result. Assume w € L*®(0,T;(H?(2))%)
and u, € L*®(0,T; H*(T3)). Let us use linear elements for V", and piecewise constants
for Q™. We choose the initial values u € U" and o € Q" in such a way that

loo — a5l < ch,  luo — uglly < ch.

Then using the standard finite element interpolation theory (cf. [1]), we have the
optimal order error estimate

lo — o ||z + [ — wP|| ooy < ch
under the regularity assumptions

w € L=(0,T; (H*(Q)Y), u, € L*®(0,T; H*(T3)) and o € L>=(0,T; L*(T3)).
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4. Fully discrete approximation

We use the finite element spaces V" and Q" introduced in the last section, with the
assumption (16). In addition, we need a partition of the time interval [0,7] : 0 =
to <t < --- <ty =T. We denote the step-size k, = t, —t,_1 forn=1,..., N,
and let k = max, k, be the maximal step-size. For a sequence {w,}Y_,, we denote
Swy, = (wy — Wp—1)/ky, for the divided difference. No summation is implied over the
repeated index n. Then a fully discrete approximation method is the following.

Problem P". Find the displacement field w™ = {u*}N_ = C U" and the stress field
he = {ghk1N - C Q" such that

ult =l ol = gt (23)

and forn=1,...,N
boy = E6e(uy®) + Gloylty, e(unty)), (24)
(o e(v" — ul))y > (f,, 0" —u*) Vo' e UM (25)

The fully discrete problem has a unique solution, and the following results hold.

Theorem 4.1. We have the error estimate

e (llom = o2l + lun =l ) (26)
< c(loo = oflln + lluwo — uillv) + ck (lo]| re@orm + @l o,r)
te 1I<naX (”un - 'Uh”V + |<fnvun - 'U?z> - (a'm E(un - 'v?z))|1/2)-

Corollary 4.2. Assume additionally the reqularity (21). Then

max (llon = o2l + luw =ty ) (27)

< (oo = bl + lluo = whllv) + k(& l=0mr0 + il =ov) )

1/2
V|t }-

+ ¢ max inf {ll(tn) - 'Uh”V + ||01||Loo(o:rL2(r3 [l (tn) — L2(T3)

1<n<N phelLee(0,T;UR)

The inequalities (26) and (27) are the basis for deriving order error estimates for
the fully discrete solution. We present one sample result. Let us use linear elements
for the ﬁnite element space V", and piecewise constants for Q". We choose the initial
values ul* € U" and ol* € Qh in such a way that

loo — o™l < ch,  |luo = ug*|lv < ch.
Then, under the regularity assumptions
w € L=(0,T; (H*(Q)%), u, € L®(0,T; H*(T'3)) and o} € L=(0,T; L*(T3)),

we have the optimal order error estimate

max (llon = Bl + un = wlilv) < e (s + h).
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K. HAYAMI and S.A. SAUTER

A panel clustering method for 3-D
elastostatics using spherical harmonics

Despite its advantage of boundary-only discretization, the standard boundary element
method (BEM) involves huge computational costs for large-scale 3-D problems due
to its dense matrix formulation. The situation is even worse for the 3-D elastostatic
problem, where the number of unknowns is three times that of the potential problem
In this paper, we will apply the panel clustering method [2] using multipole expansions
[1] in order to reduce the computational costs for the 3-D boundary element analysis
of elastostatics.

1. The boundary element formulation for 3-D elastostatics

The boundary integral equation for the three-dimensional (linear, isotropic) elasto-
static problem is given by

n@)url@) + b [ i, )u)dlly) = [ (e y)pe@)dr)
(1=1,2,3), (1)

where I is the boundary of the domain under consideration, uy, py are the displacement
and traction components, respectively, cj(z) = %5113 when I' is smooth at x, and the

body force term has been neglected.
uji(x,y) is the fundamental displacement, which is usually given by

1

Uy, = m{@ — 4v)by, + ') } (2)

for the three-dimensional case. u is the shear modulus, v is the Poisson’s ratio, v :=
/

y — z|| and ', := —T, where z = (21,22, 23)7,y = (v1,y2,y3)7. However, it will
K

Y
prove useful to use the alternative expression [3]:
1 1 1 1 1
v L e Ry ymee S el 0 STk () 3
Yk A { e 4(1 - I/)T’lk} 8 { Tt 2(1 - I/)T’lk} (3)
o'
where 7', := ———. The fundamental traction component is given by
’ OyiOyr,

Pi(2,y) = opng = Xugg e + p(ugy, =+ ugj )y, (4)

where n; is the component of the unit outward normal vector at y € T

Next, the boundary integral equation (1) is discretized by discretizing the boundary
I’ into boundary elements or panels 7., (& = 1,...,n). Assuming constant elements,
with point z* representing o, We obtain
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where uf = u(2?), etc. Given the boundary data, (5) is a system of linear equations

for the unknown boundary displacement and traction components uf and pf . Since
its matrix is dense and nonsymmetric, it is usually solved using LU-decomposition,
which leads to O(N?) computational work and O(N?) memory, where N = 3n is the
number of unknowns.

Alternatively, one could use iterative solvers for nonsymmetric matrices such as the
GMRES. Since the system (5) arising from boundary integral equations such as (1) is
usually well conditioned, the method should converge within M < N iterations, with
the use of a suitable preconditioner when necessary. In this method, the dominant part
of the computation is the dense matrix-vector multiplication corresponding to (5) for
the unknown boundary data or iteration vector, which costs O(N?) each. Hence, the
amount of computational work is reduced from O(N?) to O(MN?), but the memory
required is still O(N?), and it is this memory bottle-neck that hinders the solution of
large scale problems using the boundary element method.

2. The panel clustering method

The reason why the matrix in (5) is dense is because the observation point z® on
the element 7, is related to all the elements mg on the boundary through the kernels
uz(k(l'av y) and P?k(fﬂa, y)

The panel clustering method [2] and the multipole expansion method [1] overcome
this problem by approximating the integral kernels using expansions over clusters of
elements which are sufficiently far from x%, thus reducing the amount of computation
and required memory.

In a previous paper [3], we proposed an efficient method for deriving Taylor expan-
sions of the kernels involving uj;, and pj;, in 3-D elastostatics. We showed that the work
for the approximate matrix-vector multiplication and memory for BEM is O(N log® N)
and O(N log* N), respectively, in order that the error due to the approximation by the
expansions is consistent with the error coming from the discretization of the boundary
integral equation using boundary elements [2].

In this paper, we will consider using multipole expansions of the fundamental
displacement wuj;, in order to further reduce the computational costs.

3. Expansion using spherical harmonics
1
Since uj;, is a linear combination of — and second order spatial derivatives of v as in
T
1
(3), the multipole expansion of uj; can be derived from those of — and 7.
T

1
First, we will review the known multipole expansion of — given in [1] and then use

them to derive the multipole expansions of 7/, and finally combine them to derive the
multipole expansion of the fundamental displacement wuj (z,y).

Let x be the observation point, y the field point and ¥, the center of the cluster
7 of boundary elements. From now on, z — y, will be expressed in polar coordinates
(r,0,¢) centered at y, as x — y, = r(sin 6 cos @, sin § sin ¢, cos §)7 .

Similarly, y — y, will be expressed in polar coordinates (p, a, 3) centred at y, as
y —y, = p(sin @ cos 3, sin a:sin 3, cos @) . Let « be the angle between x —y, and y —y,.

Then, we have

" =1 + p* — 2rpcos, (6)
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where cosy = cosfcosa +sinfsinacos(¢p — ). Equation (6) gives
=r(l-2uoc+o )%

P
where o := = and wu:=cosv. Hence, we have
T

[N
~~
)
p—

1 _
== ;(1—2u0+02) ’

3.1. Multipole expansion of 1/r'. For

oom b ly=vl
T ||$ - yT”
we have
1 O
(1-2uo+0°)"7=> 0"P,(u), (8)
n=0

where P, (u) is the Legendre polynomial of order n. Then (7) and (8) give the multipole
expansion

where the truncation error is estimated by

1 1 1 & 1 & 1 oP*!
] D S YOI P sl
r '/ p () (g} rl—o

since |P,(cosy)| <1lforyeR.

3.2. Addition theorem for Legendre polynomials. Next, making use of the
addition theorem for Legendre polynomials

), (cosy) Z Y " (a, B)Y,(0, 9), (10)
where

Y. (0, 9) = —En-l- :ZI; P|m|(0089) ime

are the spherical harmonics, (9) gives

D n
(3) =13 0" 3 ¥V @ar6.6) =3 3 rIN6,8) 5w, )
p n=0

T m=—n n=0m=-n
(11)

so that the contribution from the field point y — y, : (p,, 3) can be separated from
that of the observation point & — y, : (r,6,¢
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Recalling that we want to evaluate / up (2, y)pr(y)dly, over a cluster of elements
T

T = Uj_, 7, where ujy,(z,y) is given by (3), we obtain

/ 6lkpk dF —/pldF ~ Z Z r = 1Ym 6 ¢ pr y (12)

n=0m=—n

where Jy ™™ = / p"Y, ™, B)dT, are the far-field coefficients, and we have used
i
constant elements.

3.3. Multipole expansion of 7’. Next, we derive the multipole expansion for the
distance

=y —z| = r(1 —2uc + 02)%,
which is also necessary for the multipole expansion of the fundamental displacement
uji(x,y) of 3-D elastostatics given in (3).
In order to make use of (8), we note that

dda {(1 — 2uo + 0%)? } — (0 —u)(1—2uo+0%) "7 = (0 — u) i 0" P, (u).

Integrating by o gives

/Oadda{(l—Qua-i-a)

(S

}ds = /Oa(s —u) i P, (u)s"ds,

n=0
ie.,

(1 —2uo + 02)% =1—-uo+ i %n {Pr—a(u) —uPp_1(u)}.

n=2

Further, the recursion

(n+ 1)Poi1(u) — (2n+ DuP,(u) + nPy_1(u) =0

gives
1 1
(1 - 2uo + 0)2 2<2n+3 2n—1) 0" Py (u).
Hence, we obtain
1 P 1 n
=r(l—2uc+0*)2~r Z 2n+3 T 0" P, (u),
where the truncation error can be estimated by
> [2n+3-(2n—1)0? r ot
/ _ / — ’V'LP < .
= Tn:ZpH (2n+3)(2n —1) 0" Fulu)) < 2p+11-0
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Hence, applying the addition theorem of (10), we obtain

/ P 2 1 n = —m m
L TE) (2n0+ 3 2n— 1) o Y Y, a, BY(6,9), (13)

m=—n

so that the contribution from the field point and the observation point can be separated
P

as in (11) for 1/r'. We note that (11) and (13) have only > (2n+1) = (p+1)* and
n=0
2(p + 1)? terms, respectively, whereas the use of three-dimensional Taylor expansions
around y, as in [3] requires O(p®) terms in order to obtain p-th order expansions. Thus,
the required work and memory for the proposed multipole expansion is expected to
be less compared to those of the Taylor expansion.
or or’
Then, noting as in [5] that oa_ , we obtain

8 Yr al'l

/ T,/lkpkdry ~
i

P 1 LIS —n-2ym g t 9 riym "
_7;2714-3 m;na—zl{r n 7¢)}2pkﬁ/7r 8—%{,0 ™ (a, B)}dT,

p 1 n
+nz::0 o — 1 m;n _{ Y0, 9) }pr/7r —{p"Y ™(a, B)}dLy. (14)

Equations (12) and (14) give

n t
/“lkpkdr ~ m 2 [ S Y6, ) pr/w Y, " (a, B)dl

n=0 Lm=—n B=1 s

T 271/)1—3 > —{ Y0, 9) }pr/Tr —{p"+2Y (@, 6)}dly

m=—n

B in_ 1 Z _{ Y0, }210%:;3/7r —{p"Y (a,ﬁ)}dFy” .

m=—n

The multipole expansions for / Pr(x, y)ug(y)dly, can be obtained similarly by using
T

(3) and (4).
By using the proposed multipole expansion, the computational work and memory
is expected to be further reduced to O(N log* N) and O(N log® N), from O(N log® N)

and O(N log* N ) for the Taylor expansion, respectively.
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J.W. HILGERS, B.S. BERTRAM and W.R. REYNOLDS

Extensions of constrained least squares
for obtaining regularized solutions
to first kind integral equations

1. Introduction

It is well known that many imaging problems require the inversion of a Fredholm
integral equation of the first kind,

/K@—yV@My=ﬂ®, (1)

and that such problems are ill-posed in that the solution, f(y), depends discontinuously
on the data g(z). One way to stabilize the problem is to seek a constrained, least
squares solution to (1):

minimize; ||Kf —g|| subject to ||Lf| <, (2)

any solution of which must satisfy

(K*K+aL*'L)f = K*g. (3)

In (2) and (3) L is the regularization operator and «, the regularization parameter,
is really a Lagrange multiplier which depends on r in (2). The norm is taken as the
usual Ly norm. Assuming N(L) N N(K) = {0}, (3) can be uniquely solved as

fo=(K*K +aL*L)'K*g. (4)

The actual problem (1) is invariably encountered in noise-contaminated form,

Kf=g=g+c¢

where € represents additive error in the measured data as well as round-off error due
to finite length computer arithmetic. If the true solution is f,, satisfying Kf, = ¢,
then a problem some four decades old is how to choose « in (4) so that ||fo — fo|| is a
minimum, when, of course, f, is not known.

2. Generalizations and extensions

A number of researchers [1-6] have inquired regarding the optimal choice for L in (4)
as well as a. The following theorem proved in [9,10] provides a partial answer to this
query.

Consider the discretized version of (1)—(4) where K and L will now denote matrix
representations for the kernel, or point spread function, and regularization operator in
(1)—(4), respectively. Equation (4) then is

fo=(K'K +aL'L)"'K'g. (5)

Then the question of how L and « can be chosen for optimal recovery is given, in
one sense, by
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Theorem 1. Let the SVD of L'L be
L'L = NS*N?

where N is orthogonal and S? diagonal with positive entries. Then matrices N and S*
exist such that fo|1 = f, if and only if

{e,9) = €'g > 0.

Note that signal to noise ratio is irrelevant, just the relative orientation of € and g

is pertinent. The theorem was proven in [3].

The main importance of the theorem is that a great deal can be gained by varying
the singular values of L independently, rather than by the same ratio as when « in (5)
is varied.

Exactly, how, or by what strategy, the entries in S? should be determined is the
obvious problem. Several approaches were examined in [9,10]. These provided some
improvement over using (5) directly, but the results were not dramatic, amounting to
only a few percent.

What is clear, however, is that each row of L determines the type of regularization
applied at the corresponding point in the domain of f, and the corresponding entry
in S? dictates the amount of this regularization applied. Depending on the nature of
the true solution, fy, the amount of regularization applied at various places in [a, b]
should be quite different. The way to implement this idea is to use (5) to establish
an initial construction, then take regions of rapid change, which could indicate an
edge, and isolate these points from their complement where f, is slowly varying or
possibly ringing. Thus a two (or more) set partitioning of [a,b] is established, and each
component has its own value of a«. We define L; (i = 1,2), to be L on set ¢ and zero
elsewhere. We see that (5) now becomes

-1
foras = [K'K + onLiLy + oo L Ly] K'g, (6)

and it is clear if a; = s (6) reverts to (5). But the hope is by choosing the partition
wisely, great improvement can be obtained by varying the amount of regularization at
different places in [a,b]. To make this point quantitatively, consider

Example 1. We choose the kernel K(z) in (1) to be .02 for —1/2 < 2 < 1/2 and zero
otherwise. f,(x) is a piecewise constant with values one, two, and four (see Fig. 1b).
The true image, g, is computed and zero mean Gaussian noise with standard deviation
.001 is added. Fig. la shows the optimal reconstruction obtained using (5) with a
discretized derivative regularizer L of size 101 x 101. The optimal a is gy = 107°
and the optimal precision attained is || fopr — fol| = 1.64 (the norm being Euclidean).
Based on Fig. 1la, the regions around the discontinuities should be partitioned away
from the rest of [—1,1]. In particular, L; = L except for rows 18-22 38-42,58-62, and
78-82 which are zero. L, = L except for the complement of the above rows. Then
(6) is used and a minimum sought. Figure 1b shows the solution corresponding to
the minimum with a; = 107* and as = 107'% and || fopt — fol| = .73, an improvement
of over 50%. Note the very small ay. The regularization has been turned essentially
off at the discontinuities and increased two orders of magnitude elsewhere. If a5 is
actually set to zero, the matrix inverted in (6) is singular. Since computations were
done with MATLAB, the 10719 is essentially a double precision eps value.
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Example 2. The same setup as above is used, but this time the even more ill-
conditioned sinc kernel

_ 10sin (20x)
B T

K(x)
is employed. The true function is taken as

folx) = 1002° + 152° — 18z + 71.

Fig. 2a and 2b show the optimal reconstructions obtained using the first and second
discretized derivatives, respectively. In Fig. 2a qy = 1078
and || fopt — foll = 73. In Fig. 2b app = 107° and || fopr — foll = 124.

The ringing apparent in Fig. 2a and 2b is caused by the fluctuation at x = 1.
This, in turn, is due to the way the derivatives are discretized. In the case of the
first derivative the last row of L has only a one in the last column, thus introducing
fa(1) into the penalty function rather than a difference.The least square process tries
to keep this small, which accounts for the drop at z = 1.

To some extent this is endemic to the regularization process. Theoretically, f,
belongs to some Sobolev space which might carry boundary conditions at the end
points. If f, does not satisfy these conditions, ringing can result. These subsidiary
conditions can be removed by enlarging the space (see [8]) although this complicates

3) and (4).

@) Now (wge have another way to confront this problem. Figure 3a shows the optimal
reconstruction using (6) with partitioned rows 1-51 and 52-101. The optimal param-
eters are a; = 107° and ay = 107° with || fopr — fo|| = 61. Note the dramatic way the
ringing generated at the right boundary is eliminated on [—1,0]. Obviously, it makes
sense to move the partition point to the right, isolating the right boundary as much as
possible. If the partition is made with rows 1-95 and 96-101, the optimal parameters
are a; = 107® and ap = 107% and || f,pr — fol| = 32. Again, this is over a 50% reduction
in the norm of the error. The result is shown in Fig. 3b. If the same partition is used
with the second derivative, the optimal parameters are a; = 107® and a2 = 1. The
error norm is || fopr — fol| = 34, down from 124.

3. Summary and future work

The numerical examples demonstrate that a great deal of improvement in reconstruc-
tion quality can be realized by varying the amount of regularization throughout the
interval of interest. There are many directions this idea may be taken to generalize
(6). For example,

1. The regularization operator, L, rather than just «, could be varied on each
component of the partition.

2. Vary the partition itself. In the forgoing the original reconstruction was used to
suggest a partition. But it was the only partition tried. Varying the components
might lead to significant improvement.

3. Refine the partition. We have used only two components. But more could be
tried, although with each new component comes an additional variable.

Finally, in this paper we have used knowledge of f, to show how much improvement
is possible, by varying ||fo — fo||- In the practical problem, the parameter choice
problem is well known, and many methods exist [11,12]. We have had success with
cross-referencing methods [7]. We intend to extend this methodology to the current
multivariable case.
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R. KANNAN, S. SEIKKALA and M. HTIHNALA

Existence and nonexistence results
for some boundary value problems
at resonance

1. Introduction

We shall consider the differential equation

v + mu+ glx,u') = p(x), 0<z<l, (1)
with Dirichlet boundary conditions
u(0) = u(1) =0 (2)
and the differential equation
u" + g(z,u') = p(z), O0<z<l, (3)
with periodic boundary conditions
u(0) = u(1), o/(0)='(1) (4)
or Neumann boundary conditions
u'(0) =d/(1) =0. (5)

In each case we have a boundary value problem at resonance. Indeed, the null
space of the linear differential operator Lu = «” + 7%y with the boundary conditions
(2) is spanned by ¢(z) = v/2sin(7z) and the null space of Lu = v” with the boundary
conditions (4) or (5) by ¢(z) = 1. As it is shown in [1], [2] and [3] for the problem
(1), (2) the conditions for existence, nonexistence and multiplicity of solutions can be
given in terms of the coefficient p of the decomposition

pz) = po(z) + p(z) (6)

where the function p is orthogonal to ¢. There exists an interval (a,b) such that
problem (1), (2) has at least one solution if § € (a,b) and no solution if p /da, b}, under
certain assumptions on g. We shall use a constructive method to find that interval
numerically and also derive a priori bounds for |p| for nonexistence of solutions for the
above mentioned boundary value problems.

2. The alternative method

In each of the above problems let k(z,y) be a modified Green’s function satisfying, as
a function of x, the given boundary conditions and

f’f(fv, y) =6z —y) — d(z)o(y)
Ofk(fv,y)qb(:c)d:c =0 (7)
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where ¢ is the Dirac’s delta function.
Then the problems can be written in the form of a pair of equations,

1

ux() = 2(w) + [ k(. )[5(0) — 9y, v w))ldy, ®)
5N =5~ [ gle,u(@))dz =0 (9)

3. The results

Theorem 3.1. [3] Let g : [0,1] x R — R be continuous and either be bounded and
locally Lipschitz continuous or satisfy the global Lipschitz condition

9(z,u) — g(z,u)| < Mlu-1ul,0 <z <1uueR, (10)

where M < 3. Then there exists an interval [a,b] such that problem (1),(2) has (i)
at least one solution if p € (a,b) and (ii) no solution if p /da,b].

Theorem 3.2. Assume that g : [0,1] x R — R is continuous and satisfies

lg(z,u) — g(z,a)| <my(z)|lu—1a|,0<z<1luueR, (11)
1p(z) — g(z,u)| <mp(x),0 <z < 1lueR, (12)
and
1
|/g(:c, kcos(nzx))sin(mx)dz| < go,0 < < 1,k € R, (13)
0

for some nonnegative functions my,mg € L1(0,1) and for a constant go. Then, if
11
|p| > \/5//mo(y)m1($)|kz(x,y:||sin(ﬂx)dx dy + V2o, (14)
00

the problem (1),(2) does not have a solution.

Proof. If u, is a solution of the integral equation (8),

1

ux(z) = AV2sin(re) + [ k(z,y)[5(y) — 9(y, ua(y))]dy, (15)

0

then
u'\(z) = MW 2 cos(mz) + v(z), (16)
where )
0(@) = [ kel 1)) — 9(,ua(y)]dy (17)
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satisfies, by (12),

1
o@)] < [ k(. 9)lmoy)dy. (18)
0
We write
g(z,u's(x)) = g(2, \W2r cos(mz)) + w(zx) (19)
where
w(z) = g(x, A2 cos(mz) + v(z)) — g(z, M2 cos(mx)) (20)
satisfies, by the Lipschitz condition (11), the inequality
w(@)| < ma(z)|v(z)]. (21)

Now, by using (19), inequalities (13), (21), (18) and inequality (14), we obtain

1

|/g(:c, u'y\(z))sin(nz)dz| < go+/m1(:c)|v(:£)|sin(7m)d:c

11
< ot [ [ molyyms(@) k(e y)| sinre)de dy
0 0

IA

7]
V2
Then

6(A)=p— /g(:c,u,\(:ﬂ))ﬂsin(wx)d:c #0

for all A € R, which means that problem (8),(9) and hence problem (1), (2) cannot
have a solution.

Example 3.1. The boundary value problem

W'+ 1?u+ (z — 1)?sinu’ = pV2sin(nz) +z — 3 (22)
u(0)=u(l)=0
does not have a solution if
8~ 1 1
|p| > 5\/5//(:5 - 5)2|y — §||kz(:c,y)| sin(7x)dzdy ~ 0.003375.
00
Indeed, we now have g(z,u) = (z — 3)*sinwy, go = 0, mo(z) = 3|z — 3| and my(z) =
(x— %)2 in Theorem 3.2. We can also apply Theorem 3.1, since ¢ satisfies the Lipschitz

condition 3.1 (with A = 1). By solving (22) numerically we have obtained that the
interval of existence for p is (a,b) ~ (—0.0014089, 0.0011733).

Next we will consider the differential equation (3),
v+ g(z,u) =p(x), 0 <z <1,
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with periodic boundary conditions (4) or with Neumann boundary condition (5). In

both cases ¢(x) = 1 in the decomposition of p.
Theorem 3.3. Assume that g : [0,1] x R — R is continuous and satisfies

9(z,u)] <mi(z)|ul, 0<2z <1, ueR,

and
p(z) — gz, u)] < mp(z)lu], 0 <z <1, ueR,
for some nonnegative functions mq,mg € L1(0,1). If

11

o> [ / mo(y)mi (@) ka2, y) | dedy,

0

(23)

(24)

(25)

then the boundary value problem (3), (4) does not have a solution. The same result

holds true for the problem (3), (5).

Proof. In both problems a solution (if it exists) satisfies (8) and (9) and is given by

1

un(@) = A+ [ k(z,y)[p() - 9(y, v (v)]dy:

0
Then

— /kz (z,)[Py) — 9(y, ui(v))ldy

and, by (24)
@) < [ [halw, ) mo(y)dy.
0

Using (23) and (25) we obtain

| [ 9l uy@)da| < / mi (2} ()| d

< /m1 / (z,)[mo(y)dyde
=[] otk oy < 5]
00
Hence,
(N = / g(z,u)\(z))dz #0, X € R,
0

which means that the problems (3), (4) and (3), (5) cannot have a solution.
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Example 3.2. For the differential equation

u” + arctanv’ = p+ x — % (26)
with Neumann or periodic boundary conditions we have m;(z) = 1 and my(z) =
H—TW' The Landesman-Lazer condition for the differential equations u” + arctanu = p
with Neumann or periodic boundary conditions would allow |p| < % to ensure the
existence of a solution. But in the case of Eq. 26, using the estimate (25) we obtain
a nonexistence result for the Neumann problem, if |p| > HT“ and for the periodic
boundary value problem, if |p| > % i.e. both under the Landesman-Lazer condition.
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M. KASHTALYAN and C. SOUTIS

Analytic investigation of thick anisotropic
plates with undulating surfaces

1. Introduction

Mechanical failure of structures often results from stress concentration at the mate-
rial surfaces, due to the surface defects inherited from the manufacturing process or
acquired from environmental corrosion and impact loadings. The nominally flat sur-
faces bounding elastically stressed solids appear to be unstable with respect to the
formation of surface undulations of wavelengths greater than some critical value [1].
The nature of this instability reflects the nature of surface evolution dictated by the
competition between surface and elastic energies.

Although the amplitude of surface undulations is usually small in comparison with
their wavelength, they may cause significant stress concentrations near the surface.
Stress fields due to surface undulations in isotropic solids (half-planes and half-spaces)
under tension were analysed by means of the first-order perturbation approach in [2].
The present paper deals with 3-D elastic stress analysis of anisotropic plates with
undulating surfaces under bending loads.

2. Bending of an orthotropic plate (3-D problem)

Suppose an orthotropic plate of finite dimensions 0 < x < a, 0 < y < b has undulating
bottom and top surfaces Sy, S1. These surfaces are treated as being slightly perturbed
from some reference states in which they are perfectly flat. It is assumed that their
geometry can be described by a continuous differentiable (up to any order required)
shape function f(z,y) and a small dimensionless parameter € introduced to characterise
the magnitude of deviation of an undulating surface S; from its reference plane z = h;.
Shape equations for the perturbed surfaces are given by

z=h;+ef(z,y) ho=0,h1 =h (1)

Suppose, the plate is loaded by the normal load Q(z,y) at its top surface, while the
bottom surface remains free. Boundary conditions at S7, Sy are then

OgxtTlg 1 + OytMy,1 + OztNz1 = Qnt,l (2)

OgtNe,0 + Tyt Ny 0 + O2Mz20 = 0 (3)

Given the shape equations (1), direction cosines n;; may be expressed in partial deriva-
tives of the shape function and the small parameter €

G af R of o 1 .
Ngs = _Z% Nyi = A@y Nzi = A ’Z—O,l (4)
where of of
_ 21,9/ 2 OJ vopn1/2
A= +(1+ &G0 + (G )

On the edges of the plate (x = 0,a and y = 0, b), simple support boundary conditions
are assumed to be fulfilled.
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3. Perturbation analysis

Due to the complexity of geometrical shape of the surfaces, 3-D boundary-value prob-
lem (1)-(5) stated above cannot be solved directly. The boundary shape perturbation
method |3] has been applied in order to simplify boundary conditions (2)-(3). Accord-
ing to it, stresses and displacements are sought, and load components and direction
cosines are represented, in the form of series with respect to the small parameter e,

[thv Ug, Q7 nt,i] = Z ep[ajt ) ut ) Q(p nt 7 ] (6)

p=0

It is assumed that stresses and displacements in each approximation a(p and u , if

considered at the perturbed surfaces Sy, S7, can be expanded into Taylor series in the
vicinity of the appropriate reference plane z = h;. Then on S;

oo D
=D ¢ Z ,aq o3t u™ V] o (7)
p: :

[0t

By means of this approach the initial 3-D boundary-value problem for the plate with
perturbed surfaces may be reduced to a sequence of 3-D boundary-value problems for
the plate with the perfectly flat faces z = 0, h. In the 0-order approximation, i.e. for
p = 0, boundary conditions at z = h; take the familiar form

0£)|Z:h =, Ua(cg)|Z=h = 0-1(12)|Z=h =0 (8)

Ugg) |Z=0 — O'Si) |Z=0 — O-?Sg) |Z=0 = (). (9)

In the higher order (p = 1,2,3,...) approximations boundary conditions at the refer-
ence planes z = h; are

Wlecn = -0 + SN 4 N+ NG (1)
g=1
om0 = - Z[ Npfod + NyBoi™ + N o] (11)

where Nt(g) are differential operators which depend on the shape function f and its
derivatives. In the most general form, they are

5 0°
N = 2 Rt (12)
In particular, in the first and the second approximations, differential operators Nt(’f-)
become o/ o/
N _ 2 N 2 (1 __r 7
ot Ox vre 9y f
af 0 2 0 of 0
N® = 2L 2 N® —
e = f Ox 0z vt By Oz
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o? Of., ,0f.
922 - (%) - (a_y) ]
Since the application of the boundary shape perturbation method transforms only

boundary conditions at the perturbed surfaces, equilibrium equations retain their ini-
tial form in all approximations, i.e.

N = [f2

Ollugpzz + Oﬁﬁugpzz (012 + OGG)ngzy (013 + 055) =0
(Cr2 + 066) Uy zy + Ceeugpm + C‘zzuif’zz + (Ca3 + Cug)ul® yz =0 (13)
(013 + 055) z zz (023 + 044) gpyz + 055ugpm + O44ngyy + 03 ugpzz = 0
b= 07 17 27 .

The same is true also for the edge conditions
0-;1;) |z=0,a = 07 u(p) |z:0,a = ng) |z:0,a =0
U§€)|y:0,b = 07 |y 0,b — u |y 0,b — = 0. (14)

4. Solution for wavy surfaces
If the applied load can be expanded in a double trigonometric series

Q(z,y) Z G SID Ay SID Ay, Am = T /a, Ap =7n/b (15)

m,n=1

and the undulating surfaces of the plate are described by a shape function

fla,y) = f(y) = heos =~ (16)

where w is a wave generation parameter, then a solution to problem (10)-(14) in any
approximation can be found analytically, following [4], in the form

p+l o

s=1m,n=1 i=1

p+l o

u(P Z Z Z Ag':?’mz 'g(lfw’mz Z/h) sin \,,x cos /\(p, (17)

s=1m,n=11:=1

p+1

=> > ZAS,’W v®5) (2 /h) sin Ama sin APy

s=1m,n=1i=1

where (in the first three approximations), AP is

AP =an/b NP = (r+w)n/b A = (1= w)n/b (18)
ABD — /b N2 = (m 4+ 20)n/b NP = (7 — 2w)n/b (19)
and Agf;;m are arbitrary constants. The form of functions Ut(fi;m(z/ h) depends on the

type of the roots of the characteristic equation associated with the system of simulta-
neous partial differential equations (13).
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O/ qlo=n O/ qls, Oyy/qlz=h Oyy/ s,
w | (flat top | (undulating | 6,5, % || (flat top | (undulating | 6,,, %

surface) | top surface) surface) | top surface)
2 -16.76 -18.71 11.6 -6.05 -7.58 25.2
6 -16.76 -12.10 -27.8 -6.05 -7.73 27.8
10| -16.76 -11.70 -30.1 -6.05 -7.96 31.5

Table 1. Numerical results.

5. Numerical results

The stress field in the orthotropic plate with the undulating surfaces under bending is
illustrated on the following example. The plate dimensions are h/a = 1/6, h/b=1/12,
and elastic constants of the plate material are taken as

022/011 = 0543, 033/011 = 0530,

c12/c11 = 0.233,  c¢13/cnn = 0.011,

cas/c11 = 0.098,  c¢yq/c1n = 0.267,

css/c11 = 0.160,  cge/c11 = 0.263.
The normal load applied to the plate is

T Y

Q(z,y) = —gsin — sin 5 (20)

The plate has wavy top surface S; and flat bottom surface Sy. It is assumed that no
geometry-induced change in the type of anisotropy has occurred near the undulating
surface. The small parameter is € = 0.2, which corresponds to 20% decrease in plate
thickness at its center.

Numerical results given in Table 1 show dependence of stress values on the wave
generation parameter w at the undulating top surface in the center of the plate. As a
basis of comparison, stress values in the plate of the same dimensions and material, but
with the perfectly flat top face z = h are taken. They are provided by the zeroth-order
approximation.

Stress values at the undulating top surface differ considerably from those at the
perfectly flat top surface. The difference between stress values at the flat and undu-
lating surfaces can be more than 30%, although surface perturbations are very mild,
with the amplitude-to-wavelength ratio less than 0.1.

Two different tendencies for stresses acting in the direction of waving and per-
pendicularly to it are observed . The former decrease by their absolute value with
the increase of the wave generation parameter (or the decrease of the wave-length of
perturbations), the latter increase monotonically.

Approximations up to the second order were used in the calculations. In most cases
this appeared to suffice to obtain the results with acceptable accuracy. Contribution
of the next approximation, estimated using the convergence criterion [3], was not
expected to be more than 3.5%.
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N. KHATTASHVILI

On Stoke’s nonlinear integral
wave equation

The plane fluid flow problem with a free boundary has been investigated by many
authors [1,2,3,4].

In this paper, the planar problem associated with waves in incompressible, heavy
fluids is studied, speciffically, the model suggested by Lavrentiev and Shabat [2].

Assume the bottom of the reservoir is planar and the wave moves linearly with
constant speed c.

We choose the mobile coordinate system, moving with the wave, with axis oy
passing through the maximum point of the wave and the axis ox pointing along the
bottom in the direction of movement.

Let us introduce the following notation: f(z) = ¢ + iy gz = x + 1y) is a complex
potential, ¢ is a speed potential, ¢ is a stream function, f'(z) a complex speed. In
this coordinate system ¢ does not depend on time.

Problem A. Find the periodic curve I' : y = y(z) such that, if f is a conformal
mapping of the area D = {0 < y < y(z)} on the strip {0 < ¢ < ¢, ¢ = const},
f(Fo0) = to0, then Vz € T the following condition holds:

%|f’(z)|2+gy:A (A = const). (1)

Problem A has been investigated by numerous authors [2] when f'(z) # 0.

We consider this problem when f/(Y) = 0, where Y is the maximum point of the
wave. Such waves are called Stoke’s waves: they are peaked at the maximum.

Using a conformal mapping we transform the Problem A to a nonlinear integral
equation which we then analyze.

Let zy be a period of f(z), and let f(2) be a conformal mapping of one period
OABC of the area D on the rectangle O1A;B;C1,

OA y =0, 0<xz<uxg AB : z=xy 0<y<Y;
BC : y=y(x), 0<x < xp; oC : z=0, 0<y<Y,;
014, @ =0, 0<¢<uw AB)  x=w, 0y <g;
BiCy : Y=¢q, 0<p<uw O:1C1 @ =0, 0<9¥<gq

with w a constant.
Consider the function f~'(z1) which is the inverse of z; = f(z). From (1) we find
that the function f~1(21) must satisfy the following conditions:

Im [ (21)|y=0 =0, Im [~ (21)|yp=q = y(2), (2)

)], = (A 2 ) 3)

We assume that at the points z; = ¢+ kw, k = 0,+1, ..., the function f~!(z;) has
an integrable singularity. The function f~'(2;) has an analytic continuation to the
strip —qg < ¢ < q.

© 2000 by Chapman & Hall/CRC



Consider the branch of In[f~'(21)]’ for which In1 = 0. Equations (2), (3) give the
following boundary value problem for ®;(z1) = In[f~!(z1)]’.

Problem B. Find a holomorphic function ®;(z1) in the strip —¢ < y < ¢ satisfying
the boundary condition

Re In[f ™ (21)]'|y_sy = — In /24 — 29 Tm f~1(z1); (4)

the function — In \/ 2A — 2¢gIm f~1(z;) is assumed to belong to the class H introduced

by N. Muskhelishvili [5].
The function

(1) =277(¢), (=¢&+in,

dt + s + 1q, C = const, (5)

¢ 1
21 O =C /

0 \/(az —2) (b — ¢2) 2
is a comformal mapping of the rectangle O;A;B;C; in the upper half-plane, and the
rectangle symmetric to O; A1 B1C; by the axix oy on the lower half-plane of the complex
variable (. A; < (=b,0), B; < (—a,0), C; < (a,0), O; < (b,0) are the corresponding
points, where { = & 41, a, b, C are the constants.

Let D be a plane cut along the segment [—a, a]. By use of (4) and (5) the Problem B
transforms to the following problem.

Problem C. Find the piecewise holomorphic function ®(¢) = f~'(z1(¢)), which is
bounded at infinity and satisfies the condition

Re In®'(Q)[f .0 = In|21(C)] - /24 — 29 Im &() 1. (6)

Assuming that the right-hand side of (6) is known and using the results of the
author [5] we can write:

i a JaZ =2 2
Tt J—a Va2 — t2
/a In|2'(2)|[\/24 — 29 Tm ®(t)] !

—a va? —t2

Asn— 0, —a < £ < a, we obtain

Ind'(¢) = {ln |z'(t)|[\/2A —2¢Im CI)(t)]_l} i dt,

dt = 0.

m®'(¢) = In|}(€)](y/24 - 29Im ®(€)) ™" +

1V -gq -1 1
oy _aﬁ{ln|z(t)|\/2fl—291m<b(t) }mdt‘ (7)

From (7) we get

V() = [24(6)](y2A - 29Im @(€)) !

exp{ ! \/762 {ln|z'(t)|\/2A—QQImCD(t)_l}idt}.
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Then
() = [4(6)|(y24 - 29 Im @ (¢))”!

sm{ ! _i \/asz {ln |z'(t)|\/2A —2g ImCI)(t)_l} % dt}.(S)

If we introduce the notation

(24 — 2gTm ®(£))? = (),

from (8) we get the nonlinear integral equation

u(§) = —3g /j 2 (t) sin Au(t)] dt, ¢ € [—a,al, (9)

where

Vva? —t? /a In|2'(7)| — 2 Inu(r)
T_t W

Since three parameters of the conformal mapping can be chosen arbitrarily let a
be sufficiently small and we can write

sin Afu(t)] ~ Alu(t)].

Alu(t)] = dr.

In the following we will demand that the wave be symmetric, u(§) = u(—£).
Transforming the integral (9) we obtain the integral equation

_ 39 [ ) - 2
u() =~ | ZO[n|Z(0)] - S Inu@)| Kt &) dt, (10)
where y 2
B Ny R a? —t
K(t,¢) =2In N i \ —al €€ [0, a]
Substituting
t=asinb, & = asin b

equation (10) becomes

B —3gC
uolbo) = / Vb2 — a2sin’ @

C 2
In — =Inwue(f) p Ko(0,0)do 11
{ Vb — a2sin®facosh 3 ol )} o6 6o) (1)

/b2 — a?sin? 0y + Vb2 — a?sin® 6 cos? f
Ky(0,6y) =21 1
0(6,6) n /07— a2 + Vb2 — a2sin2 0 +hn | sin(By — ) sin(y + 6)|
where 6y € [0, 2], uo(8) = u(asiné), and b? — a?sin*() > 0.
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Using the representations

sinf = 6 [[2,(1- ng—;),
2
cosfl = ?:1 1-— (27:%)

and the behavior of the singular integral near the ends of the line of integration [5,6]

[ a0 = =4 0l =)+ o ) 0,

2 6y — 0
where -
fr(6) € H[O, 5}, Cy is a constant,
we obtain
u (9)=—L(5—0)1n2a(3—9)+0 Ina(5 — ) + 3 (60)
0\Yo Sﬂm 9 9 0 0 9 0 0\Y0/»
where

. 0
f5(6o) € H[O, 5}
We want to find ug(6p) in the following class of functions which we denote by
M*[0, Z]:
L. uo(fo) € C0, F], uo(6h) < ug(ba), 61 > 03,

Uo(eo)

2.0<m<
(5 —00)1n2 a(5 — )

<M <1.

It is clear that M*[0,7] C C[0,%]. In addition, this set is bounded, closed and
convex ,and the operator on the right hand side of (11) is completely continuous.
Thus applying Schauder’s fixed point theorem we get.

Theorem. There exists a solution of the equation (11) in the class of functions
M*[0,%].

If we introduce the notation

Uo(eo)
(5 — o) In? a(5 — th)

v(0o) =

and the approximation In v = In vy + % —1, where vy = elin}r v, then we get the following
-3
quasi-regular Fredholm approximation of (12)

3gC
47T’UO

(5 = o) 10 a5 — o) uleo) = [ o0 Kolt,b0) dt + fo(6o),

with fo(6y) a known function.
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R.W. KOLKKA and D. MALKUS

Dynamics of the spurt phenomenon
for single history
integral constitutive equations

1. Introduction

The spurt phenomenon for nearly monodisperse, high molecular weight, polymer melts
and concentrated solutions is of critical importance to the plastics processing industry.
These melts and solutions exhibit an abrupt increase in flow rate when the wall shear
stress exceeds a critical value in pressure driven shear flow (Fig 1). Up to the present,

T

Terit

Fig. 1. Steady state response.

melts and solutions have been modeled by differential constitutive equations for the
“extra stress” tensor, T' defined by,

T = Ty + T, D = YVt (V)T) 0
T, = 23D Ty g(Th) + A2t =2 D

T} is the dominant ‘polymer’ stress contribution and 75 is a Newtonian viscosity term
modeling rapid relaxation effects. The particular constitutive model selects g(7") and
the convected derivative D/Dt. The dominant relaxation time A\; and the ‘polymer’
viscosity 77; are experimentally measurable. The Newtonian viscosity 7, is not. Proce-
dures for determining 7, are in [1] for Johnson-Segalman models and [2] for differential
Larson models.

The key property of the differential models is that their steady shear stress vs.
steady shear rate response (Fig 1) is non-monotone. They predict steady flow results
[1,2] in very good quantitative agreement with the renowned Vinogradov [3] experi-
mental data for nearly monodispersive polyisoprenes and polybutadienes.

Numerous differential models (Johnson-Segalman, Larson, Giesekus, etc. ) match
steady-state experimental data with nearly equal precision. The dynamics of the spurt
phenomenon must be investigated, to determine which model is superior. This is the
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focus of [2,4-8] which concluded that all models exhibited similar qualitative dynamics.
Supercritical startup of pressure driven shear flow consists of four distinct phases:

1. An initial “Newtonian” phase with viscous stress dominant. A “spike” in the
velocity develops on a time-scale O(7; /72) ~ 0.01 with amplitude ~ 7, /12 &~ 100.

2. A “latent” phase during which normal stresses build, the polymer stress contri-
butions remains nearly constant, and the velocity profile remains subcritical.

3. A “spurt” phase when the polymer stress contribution drops rapidly to near the
steady-state value, the velocity profile develops high shear layers near the wall
(with plug-like velocity profile). Throughput increases by orders of magnitude.

4. The final “arrest” phase is a gradual relaxation to the steady state.

We investigate single history integral equation constitutive models as an alternative
for modeling spurt. We obtain asymptotics demonstrating that the four dynamic
phases of supercritical startup of pressure driven shear flow are ubiquitous.

2. Shear flow dynamics for single history integral constitutive equations

We analyze single integral models of the Rivlin-Sawyers/K-BKZ, which are based on
the affine Cauchy and Finger strain measures and are given by

T=/[_ m(-t) [¢1(f1, Iy)vp + ¢g([1, I)ve] dt’, (2)
vp=B-1I,9=1-C, B=FFT C=FTF, I,=tr(B), I=1tr(C).

When ¢, = U/ and ¢o = OU/AI, are derived from a viscoelastic potential U, we
have the K-BKYZ class. We also analyze a generalized integral form Johnson—Segalman
model based on a non-affine strain measure yg,

T = / m(t —t')ypadt’  Ypa = E,- ET —1,
where the deformation gradient E, (—1 < a <1 is an adjustable parameter) satisfies

&—(aD—i—Q)Ea:O with Q=

i (Vi — (V)T).

BN —

The standard deformation gradient is recovered for @ = 1. For polymer melts and
solutions, the “fading memory” function m(t —t') is of the form

/

" G
m(t —t') = Z /\— X with relaxation times \; satisfying A, > A\ip1 > 0. (3)

The constants G; are the “shear moduli” of the relaxation modes. For the nearly
monodisperse melts we model the first two relaxation modes are well-separated, i.e.,
A1 > Ay and the other relaxation modes are negligible.

In simple shear flow (Fig. 1), both (2a) and (3a) collapse to

T(z,t) = oo m(s)F(y(t,t = s))ds, Az, t) = [;-m(s)R(y(t,t — s))ds, (4)
Nz, t) = Jgm(s)S(y(t,t — s))ds,
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where T is the total shear stress, A the streamwise normal stress, and ¥ the cross-
stream normal stress. The relative shear strain is,

t Qv -
y(t,t —s) = /_S %(a:, t)dt,

t

(5)

where v is the velocity (Fig 1), and the history variable is, s = ¢ — t’. The total shear
stress and normal stresses can be slightly generalized

T(x,t) = an/ooo mi(s)Fi(y(t,t — s))ds, where my(s) = f—:ex_s (6)

For the nearly monodispersive melts we model, we simply incorporate the first two
modes with F»(y) = v, and drop the subscript on Fi(v) = F(v). We find the model
exhibits the spurt phenomenon if F(v) is non-monotonic. Table 1 gives F(v) for a

Constitutive Equation
J.S. \/ll_—ag sin (m'y)
Larson, PSM .

(Papanastasiou-Scriven-Macosko) | 1437
Doi-Edwards

(Curtiss-Bird)

—1+t%y

1+
VI—228 + i (14 + 492

) @

Lodge rubber-like liquid

2

UCM

Table 1. Common constitutive equations.

variety of models. Note, the Johnson-Segalman, Larson Integral, and Doi-Edwards
(and recent extensions [9]) models all possess this key feature. The Doi-Edwards
model is more scientifically appealling than the others because it is based entirely on
principles from molecular physics. In fact, MacLeish & Ball [10,11] originally proposed
Doi-Edwards as a model for the Vinogradov [3] data. In dimensionless form

T(z,t) =0(z,t) +0.(x,t) where

o(x,t) = [T e *F(y(t,t —s))ds and o.(z,t) = 5 [Cev (y(t,t — s))ds (7)

with € = 79/m; and v = A\y/A;. The limit v — 0, o, gives an approximation which we
will use in the asymptotic analysis for small €

©  _s0v v
. R 2 , h.o.t. ® e=— + h.o.t.
o.(z,t) /0 se E)a:(a: t)ds + h.o.t €3x+ o.t

The dimensionless problem for pressure driven shear flow is described by,

16w 5)_T

EE_E)Q:

(8)

o0 ov
0, T@h)= [ e Fatt-9)ds e @b, (9
9(0,¢) = T(0,t) = 0. The prescribed pressure

For the melts we consider the elasticity number & = i\ /ph? =

with boundary conditions v(—3,t) =
gradient is f(t).
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O(1071%) is completely negligible. The momentum equation, (10) then integrates giv-
ing

ov T—-o
T(x,t)=—f(t)x, — = 10
(1) =~f(r, 0 =— (10)
In supercritical startup the melt is initially at rest when at ¢ = 0 the pressure

gradient jumps to a constant value f, above the model dependant critical value ffrit =

2Tt (Fig 1). We now solve (11) with T' = T'(x) = — f,.

The steady shear stress vs. shear rate response is non-monotonic for € less than
a small model dependent critical value e.g. 0.125 for Johnson-Segalman and 0.0275
for Larson Integral. We obtain asymptotic expressions for the stresses and velocity in
the small € limit. Motivated by the results from the differential models, we expand in
T =t/e near t = 0:

o(z,7) ~do(x,7) +€01(x,T) +-- A= Az, 1) ~ Aoz, 7) + €Ay (z,T) + - --
Yz, 1) ~ (2, 7) + X1 (2, 7) + - - -
(11)

o
by
Substituting (15) into (11) gives the nonlinear Volterra integral equation

G0l ™) = F( [ (T() = 5o(x, ©))de, (12

Differentiating with respect to 7 gives the seperable (and easily solvable for any given
model) o.d.e for the leading order shear stress

do .
o _ P BE)T - 20), (13)
where, F(69) = F~1(6¢). The corresponding normal stress expressions give
Ro(a, ) = R([ (T = 60)de), S0 =S([ (T = 30)dg), (14)
0 0

For the Larson Integral model we find that
. 3 4] o
F(60) = 1- 1—§ 6| and Tc<T<\/§Tc:>T1LI{.1000=T (15)

with a Latent phase following. However if, T > /2T, there is no latent phase with

= T and the solution proceeds directly to spurt. Note v/27T}, is the critical stress for
instability in step-strain flow for the Larson Integral model [11]. Equation (17) shows
that this is true for any model, i.e. in general, if

T.<T<T = lim 6o ="1T.

c,step-strain> ce

When (22) is satisfied the Newtonian phase is followed by a Latent phase during
which the leading order polymer contribution to the shear stress, o, nearly equals T
and remains almost contant while the normal stresses evolve and continue to increase.
For the Latent phase, we employ expansions of the form

o(x,t) =T(x) + eor(x,t) + - Az, t) = Ao(x,t) + eAy(z,t) + - - -
Y(xz,t) = o(x,t) + eXq(x,t) +--- o(t,t —s) ~oo(t,t —s)+eor(t,t —s)+---
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Substituting into (11) gives

T = [Pe Fluoltt—s)ds,  Ao(mt) = [Ze R(nltt—s)ds,
E0(1"7 t) - fOOO e_SS(WO(tvt - 8))d87 FYO(t?t - 8) = - ftjis 0-1(1"7 f)df,
o1(x,t) = =T/ [;7 e *F (yo(t,t — s))ds.

Differentiating and integrating by parts generates differential equations governing the
evolution of the normal stress Ag and 3. The result for Johnson-Segalman is,

dZO . —(1 - (Iz)TZ
d 142

— Zy, where Zy=1/2(1+a)Ao—1/2(1+a)%, (16)

For the Larson Integral model, ¥ = 0, and for Ay, we have,

dAy 2J(t)T
dt  1-LiAo—ZK(t)

- Ao, (17)

where the integrals K (t) and J(t) are given by,

[ eyt t — s)ds [ e Pt t — s)ds
0=, 0+ bt t -9 K= | O lnGi-op Y

The duration of the Latent phase (which is determined from (16-18) [2,4] ) depends
upon how supercritical the stress T is. The ‘Latent’ phase can often last several
relaxation times and would be readily observable in a dynamic experiment.

The Latent phase is followed by the spurt phase whose dynamics cannot be readily
extracted by e asymptotics. One can, however, readily prove that the time dependent
solution tends to one of the family of spurted steady state solutions, as was done
by Aarts [13]. Aarts also performed numerics for the Larson Integral model clearly
depicting all four dynamic phases. In addition, ‘shape memory’ feature [4] in unloading
of the pressure gradient was demonstrated. Note, equivalent asymptotic results for the
Newtonian phase are in [13].

3. Summary and conclusions

In summary, we have shown that the dynamic features for the spurt phenomenon
predicted by the single integral constitutive equations are the same as those predicted
by differential constitutive equations. This suggests that the differential models do
capture the essential underlying molecular physics heretofore soley attributed to the
single integral models. Some of these features, in fact, contain universal relationships,
such as (22), which hold for all models, and connect the dynamic features with critical
stresses in other related shear flows.
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S. LANGDON

A boundary integral equation method
for the heat equation

1. Introduction

Consider the positive definite Helmholtz-type problem
~AU+a’U=0 in{, (1)

where a € R, subject to either Neumann or Dirichlet boundary conditions, and where
() is either a bounded or unbounded simply connected two-dimensional domain with
smooth boundary I". As we shall see in §3, some standard boundary integral methods
for the heat equation essentially consist of the solution by integral equation methods
of triangular elliptic systems, with principle part consisting of the operator in (1), and
o = O(1/V/6t), where 6t is the time step. Accurate boundary integral methods for the
heat equation essentially require accurate boundary integral methods for (1). This is
our goal in this paper.

Using Green’s third identity one can reformulate (1) as a first or second kind
integral equation, where the kernels of the integrals will typically contain logarithmic
singularities. Here we will consider only the second kind integral equations which arise
from (1). Assuming that ' is parametrised by a C*° 2w-periodic bijection v : [0, 27] 1 —
", with the property |¥/(t)| > 0 for all ¢ € [0,27], these take the form

Au(t) + Kqu(t) = f(t), te€]0,2n]. (2)

Here A # 0 is a constant, f a given function on I', and

Kault) = [ { bl

} Y (7)u(r)d, (3)

x=y(t),y="(7)

where 9/0n(y) is the derivative with respect to the unit outward normal at y € T,
and ®,(z,y) is the fundamental solution of the Helmholtz equation, which has a
logarithmic singularity at = y and is highly peaked near z = y when « is large.
See [1] for more details. It is important to develop numerical methods for (2) which
work well when « is large (ie. 6t — 0).

When T is smooth, standard methods for solving (2) involve splitting the kernel
of (3) to remove the logarithmic singularity, and then replacing the operator K, by
the quadrature approximation

t—T1

(Kep)(®) = [ Parlbyalt, o ) log dsin? =7+ Pagla(t, Y0} ()i, ()

where the operator Py is the trigonometric interpolating polynomial of degree M, and
k1,0, k2o are smooth 2r-periodic functions which arise when the kernel is split. The

integrals in (4) are all known analytically [2].

This work was supported by an EPSRC studentship.
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The “splitting” approach can be incorporated within a collocation or Nystrom
method framework. For example the Nystrom method of [2] approximates (2) by

/\UM(t) + Ka’MUM(t) = f(t), t e [0, 277'] (5)
Using this method we have the error bound
1
lu— wssles < C(0) gl )
for all p > 1/2, where || - ||g» is the usual Sobolev norm, and C(a) is a constant

independent of M, but not of a. So, for fixed «, the convergence is superalgebraic with
respect to M. However, the problem is that k; , and k,, both blow up exponentially
in modulus in «a, and so the constant C(«) grows exponentially in a as & — oo. Thus
when « is large, a very large value of M may be needed to achieve an accurate solution.
Alternatively, arithmetic overflow may totally destroy the convergence of the method.
This is true for all methods which employ the splitting (4). A numerical example
demonstrating this can be found in [1].

In this paper we describe in §2 a new discrete collocation method for solving (2),
which avoids the splitting altogether, and is robust when « is large. We also employ
this method to improve a standard boundary integral method for the heat equation
(83). Finally in §4 we present some numerical results, demonstrating the properties of
the method.

2. A collocation method for (2)

Since I" is here assumed smooth it is natural to solve (2) by a global approximation
technique. Such methods are able to exploit the smoothness of the solution, yielding
superalgebraic or even exponential convergence rates. We use a collocation method in
the 2n-dimensional space

T, :=span{¢y : k=0,...,2n — 1},

where
cos kt, k=0,...,n
Pu(t) = { sinfk —n)t, k=n+1,...,2n— 1.
The collocation points will be the equally spaced points tg-n) =gjr/n,j=0,...,2n—1.
The standard collocation method for (2) then seeks a solution
2n—1

Uy = Z a]in)¢k - Tn7
k=0

2n—1

where the coefficients {a,(gn)} iy are defined by requiring that

(N + Koun)(857) = f(57), 5=0,...,2n - 1. (7)

Equivalently the a,(cn) are found by solving the linear system

2n—1
> Dekt) + Ko@) b af” = 1), 5=0,...,2n-1.
k=0
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This method is only semidiscrete and is not practical until we specify how the integrals
Ka¢k(t§~n)) should be computed. These are weakly singular integrals, in fact the kernel

is of order |t — 7|*log |t — 7|, as t — 7 for fixed a. As o — oo this singularity occurs
in an interval of decreasing size.

To achieve a method which is robust when « is large, we use a rescaling technique
to transform the integrals into a more benign form. First note that we can write

2m

(Kav)(t) :/ O(ar(t, 7))w(t, 7)v(r)dr, (8)

0

where 6(z) has a weak singularity at = 0 and decays exponentially away from = = 0,
r(t,7) = |y(t) —y(7)|, and w(t, 7) is a smooth, 27-periodic function (see [1] for details).
Using the periodicity of the integrand we can make the transformation 7 =t — 7/«
in (8) to get

mamo:élZpQWQJ—EDu«apfan—g)ﬁ. (9)

Now as « gets large, the region of integration gets stretched. The integrand has a
weak singularity at 7 = 0, and decays exponentially away from 7 = 0 when « is large,
hence we approximate (9) using a graded mesh with more points near 7 = 0 (see [1]
for details). We then define (dropping the tildes for clarity)

(Kam)(t) = é _O:; O {9 (ow" (t,t - %)) w (t,t - %) } (r)v (t - %) dr, (10)

where for any f : (—o00,00) 1 =R, Q. f is the function which is linear on each mesh
interval, and interpolates f at each mesh point. We then have the following theorem,
proved in [1].

Theorem 1. For all v € Ly there exists a constant C' independent of o, m and v such
that

1
”Ka,mv - KaU”Loo < OW”,U”LT

Crucially, this error estimate is independent of a. Note that in practice v will

always be one of the trigonometric basis functions ¢ (t). Note also that higher order
quadrature rules may be applied, with the result that the 1/m? term will be replaced
by 1/m? with ¢ > 2. Using (10) in (7) we get the fully discrete collocation method

(Mtm + Kmtinm) ) = f(#7),  j=0,...,2n — 1. (11)

For further details we refer to [1] and [3] where the proof of the following result will
appear.

Theorem 2. The solution u,,, of the discrete collocation method (11) satisfies

1 1
o= tnmllze < C{ = lalla + —lulz, (12)

for allp > 1/2, a > 1, where C is independent of a, n, m and u.

In other words the method is robust to large «, and algebraically convergent with
respect to m but still superalgebraically convergent with respect to n.
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3. Application to the heat equation

The application of boundary integral equation methods to the solution of parabolic
PDEs has been widely considered in the literature (see for example [4] and the refer-
ences therein). One particular method of interest to us is that developed by Chapko
and Kress in [5] for solving the heat equation

18u

P = Au, inx(0,7), (13)

for ¢,T" > 0, with Dirichlet or Neumann boundary conditions, a given initial condition,
and a suitable radiation condition if €2 is unbounded. Here we shall consider the
Dirichlet problem, with 4 = f on I'. Discretising (13) in time using the backward
Euler method leads to a sequence of inhomogeneous Helmholtz equations of the form

— Aujyy + Pujy =a®u;, inQ, j=0,...,N—1, where N6t =T, (14)

with u; = f; = f(-,76t) on I', where 6t is the time step and o® = 1/cét. This is the
triangular elliptic system mentioned in §1. Chapko and Kress construct a fundamental
solution {¥;(z,y) : 5 = 0,..., N — 1}, to the sequence (14), and the solution which
also satisties the boundary conditions can then be written as a double layer potential

1 8 '
=-2 /Fqk(?/)ay—(y)q’j—k(fﬂ, y)ds(y), = /& j=0,...,N—1,
k=0

whose densities ¢;(y) can be found by solving the sequence of second kind integral
equations
/ i

~S o —192 gy Ve ds(), w €T, (1)

‘Ifo(w y)ds(y) =

for j =0,...,N — 1. Note that on each time level the integral operator remains the
same and only the right hand side changes.

Up to a constant, ¥y = ®,, and so for each j, (15) is of the form (2). Each ¥,
7 =20,...,N — 1, has a weak singularity at x = y, and will be peaked near z = y
when « is large. In [5], it is proposed to solve (15) using the Nystrom method (5) with
a splitting method similar to (4) to deal with the logarithmic singularities. However,
this leads to problems as described in §1 when « in (14) is large, ie. when the time
step Ot is small. As 0t is decreased, one needs to use more and more boundary nodes
for the solution of the integral equations, and the method rapidly becomes infeasible.
Numerical results demonstrating this are shown in §4.

As an alternative, we propose to solve the integral equations (15) using the method
described in §2, with the obvious extension to the evaluation of the integrals on the
right hand side. Numerical results demonstrating the improved convergence rate of
this method as 6t becomes small are also shown in §4.
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4. Numerical results

We use the same numerical example that appears in [5]. We solve the heat equa-
tion (13) with ¢ = 1, T' = 1, on the two-dimensional domain external to the boundary

curve
I' = {z(s) = (0.2cos 5,0.4sin s — 0.3sin? s)},

with boundary data given by the restriction of the fundamental solution

0 <s<2m,

=

0, t>0
4t), lz| >0, t>0,

1
u(z,t) = T &P

to the boundary I'. We use method (14) with time step 6t = T'/N, and thus we expect
the solution to converge linearly with respect to 6t.

First, we use the Nystréom method (5) to solve the integral equations (15), as
suggested in [5]. Table 1 shows the error at T = 1 between the exact solution and the
numerical solution at the two points = (0.3,0) and xz = (0.6, 0).

z = (0.3,0) z = (0.6,0)
N[ M=16 | M=32 | M=43 M=16 | M=32 | M=48
10 [ 1.964e-3 | 1.912e-3 | 1.902e-3 [ 5.708¢-3 | 5.671le-3 | 5.663e-3
20 || 9.284e-4 | 8947e-4 | 8.880e-4 | 2.575e-3 | 2.537e-3 | 2.530e-3
40 | 4.230e+1 | 2.96le-4 | 2.912e-4 | 1.920e-1 | 7.181e-4 | 7.098e-4
80 || 1.930e468 | 1.911e4+45 | 1.102e+31 || 5.685e+65 | 1.730e+42 | 5.566e+27

Table 1. Errors using the “splitting” method to solve (15).

The linear convergence with respect to the time step can initially be seen, but when
the time step gets small the constant C(«) in the error bound (6) for the solution of
each integral equation gets so large that the error bound is useless, even though the
method still seems to be converging superalgebraically with respect to M. Results
in [1] demonstrate that all convergence may disappear if the timestep becomes too
small.

z = (0.3,0) z = (0.6,0)
N | n=16 | n=32 | n=48 n=16 | n=32 | n=48
10 [| 4.629e-4 | 1.708e-3 | 1.708e-3 || 5.450e-3 | 5.445e-3 | 5.445¢-3
20 || 6.029e-4 | 7.834e-4 | 7.824e-4 | 2.399e-3 | 2.400e-3 | 2.400e-3
40 || 1.230e-3 | 2.567e-4 | 2.558e-4 | 6.531e-4 | 6.552e-4 | 6.552e-4
80 || 1.471e-3 | 4.131e-5 | 4.061e-5 || 6.248e-5 | 6.279-5 | 6.271e-5

Table 2. Errors using the discrete collocation method of §2 to
solve (15).

Next, we use the discrete collocation method (11) to solve the integral equa-
tions (15). Table 2 again shows the error at T' = 1 between the exact solution and the
numerical solution at the two points z = (0.3,0) and z = (0.6,0). Note that here we
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chose the parameter m in (11) to be sufficiently large that the error would be almost
entirely dependent just on N and n. For details of the exact values used see [3].

Provided n is sufficiently large, the linear convergence with respect to the time step
can be seen, although the convergence is a little erratic. It is clear that the method
continues to work well as the time step gets smaller. Whereas the errors in Table 1 are
enormous for N = 80 (or equivalently @ ~ 9 in (14)), the discrete collocation method
continues to work well as 6t — 0.
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Q. LIU and A. NARAIN

Computational simulation and interfacial
shear models for downward annular
wavy-interface condensing flow

in a vertical pipe

1. Introduction

For efficient design and performance of condensers in traditional and modern applica-
tions (air-conditioners, looped heat-pipes in space applications, etc.) a need exists -
from both fundamental [1] and application [2] perspectives - for tools and techniques
that facilitate attainment and accurate predictions of steady annular/stratified internal
condensing flows. This paper develops predictive tools for wavy-interface situations
involving turbulent vapor/laminar condensate flows in a vertical tube. The flow is
quasi-steady - i.e. steady mean flow fields experience wave-induced fluctuations. The
flows are sufficiently fast that the entire flow is ‘parabolic’ - i.e. conditions at any
point are influenced only by conditions upstream. Situations where the vapor flow is
slow and ‘elliptic’ are discussed in the paper [3].

2. 1-D approach: interfacial shear models leading to approximate empirical
closure

The steady mean flow under consideration is depicted in Fig. 1. The 1-D integral
formulation (see Narain et. al. 1997 [4]) leads to the following coupled non-linear
ordinary differential equations for non-dimensional values of average vapor speed (ug,),
film thickness (), average cross-sectional pressure (), and interfacial shear (f):

d
= = &),
x
1 Ja pope
= z, Reg, (Fr)™ !, —, 5= =2, 1
fom e Ren (Fr) 7 5 2L 2 1)
Y(O) = [0,1,0]T,

where y = [r(x),

( +(2),8(2)]T and g = [g1, g2, g3]7 are define in [4]. Resolution of
singularity at x re

Ug
0 requires that interfacial shear f be of the form:
¢
=1 l— ;

model exp (¢) — 1

b = I 2)
fmodel

fasy = [ le~o™ e, (52 ( )/ m dx.

The interfacial shear f in (2) has the required form [4] at  ~ 0 and blends smoothly
with f,,4e] for large z. The model fi, 4e] is chosen to give reasonable agreement

with experiments [4].
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Fig. 1. The physiclal model for 2-D

The literature contains numerous recommendations for f,,qe: Models 1 to 6

defined in [4]; Model 7 Friedel model for air/water two-phase flows [5]; Model 8
Troniewski & Ulbrich model for two-phase flows [6]; Model 9 Lockhart, Martinelli &
Chisholm model for two-phase flows [7,8].

Figs 2&3 (and Table 2 of [4]) show the efficacy of different interfacial shear models
and indicate that only the modified Andreussi model f, a1 6 @0d fi0de] 5 defined

in [4,9] perform well for Experiments I, IT & III in [4].
Having selected fi,0del = finodel 5 /6> We numerically solve equations (1,2) for the

1-D flow variables. These interfacial shear models provide the interfacial shear values
at the interface for 2-D simulations.

Fig 2 compares theoretical average heat transfer coefficients (for Models 1-9) with
values from Experiment I (see table 2 [4]). The performance of Model 5 & 6 are within

-

3. 2-D formulation and numerical approach

The mean steady flow problem for Fig 1 (detailed in [10]) consists of the standard
2-D differential equations (in cylindrical co-ordinates) of continuity, momentum (in
x and y directions), and energy for each phase with interface, inlet, wall, and outlet
conditions. The turbulent vapor is described by a k—e model [11] for the eddy viscosity

pe (e = Cupk?®/€) in the Boussinesq representation —pusu; = p:(du;/dx; + Ou;/01;)
for the Reynolds stress —pu;u;. The interior vapor shear stress values ( &~ (1 + i) %1;2

along planes parallel to the interface) at points Py, P», etc. in Fig. 4 are extrapolated
[10] to the near interface ‘outer-layer’ location P(y = y,). A ‘good’ semi-empirical 1-D
interfacial shear model from section 2 provides a value for this extrapolated stress.

A finite volume (SIMPLER [12]) method is used for the computation. The mean
film thickness A(x) increases monotonically (the 1-D approach gives an initial esti-
mate) allowing the use of the simple computational domain/grid shown in Fig 4 at
each iteration. See [10] for details.
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4. Simulation results and discussions

Fig. 5 describes downflow of R-11 in a tube. Inlet/outlet vapor-phase Reynolds num-
bers of respectively Re;j, = 1.50 x 10° and Reqgyt = 1.22 x 10° ensure the entire vapor
flow is turbulent since lr)loth exceed 2100. The condensate is laminar since the outlet
liquid Reynolds number Reliquid = 774 < 1000. The 2-D liquid velocity profile and

average vapor speed agree with available experimental heat transfer data. Note, the
2-D average pressure 7, drops more than the 1-D model because the 2-D model in-
cludes vapor friction in the interior and at the interface while the 1-D model neglects
vapor friction in the interior.

Fig. 6 shows that film thickness increases with temperature difference AT. For the
fast turbulent vapor flow situations in Fig. 6, it is apparent that thicker films flow at
higher interfacial speeds, higher liquid mass flux, and lower vapor speeds. The lower
pressure drop in Fig 6 slows the vapor to the lower speeds associated with higher A7 .

Fig. 7 shows the effects of changes in inlet speed U. In Fig 7, increases in inlet
speed U with consequent increased interfacial shear cause noticeable thinning of the
film. Although the non-dimensional pressure drop 7T, decreases as the inlet speed
U increases, the physical average pressure drop Ap = p,U?AT increases with U as
expected.

5. Conclusions

e A 1-D approach for identifying good interfacial shear models 7¢ for wavy-interface
annular film condensation in vertical tubes was developed.

e The 1-D approach provides reasonable estimates for the unknown interface lo-
cation and interfacial shear which enhance the convergence of 2-D models.

e A novel 2-D computational scheme for these condensing flows specifying mean
interfacial shear using ‘good’ 1-D models is proposed. The mean interfacial shear
specifications renders the model insensitive to the vapor turbulence model.

e The 2-D model predicts pressure variations in the vapor better than the 1-D
model.

e The 2-D model can be extended to thick condensate and slow vapor situations
described in [3].
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B.J. McCARTIN

Compact fourth-order approximation
for a nonlinear reaction-diffusion equation
arising in population genetics

1. Introduction

Under appropriate assumptions, the transferral of genetic information is governed by a
nonlinear reaction-diffusion equation [2, 4, 7] - the generalized Fisher equation [9, 10,
13]. The present paper is concerned with approximating this equation to a high degree
of accuracy. The method of approach to the numerical solution of the generalized
Fisher equation will be comprised of a hybridization of Mehrstellenverfahren spatial
discretization [3] with Runge-Kutta time stepping [14]. In what follows, the relevant
biological, mathematical, and numerical models will be outlined. The efficacy of this
approach will then be underscored by numerical examples from population genetics.

2. Biological model

We concern ourselves with a single-locus / two-allele genetic trait [10] and seek an
equation for the time evolution of the frequency, u(z,t), of an advantageous gene (A-
allele) within a large, genetically homogeneous population of diploid individuals. We
shall assume that the population mates randomly, i.e. there are no genotype-dependent
mating preferences, and that there are overlapping generations. The viabilities of the
genotypes AA, Aa, aa will be denoted by p, o, T, respectively.

In [12], it is shown that u satisfies the nonlinear reaction-diffusion equation

ou d*u

- = D— 1-— . -9 _ .
ot 2 T u(l—wu)-[(p o -l— Tu+ (0 — 7)), (1)
diffusion reaction

where the coeflicient, D, is assumed constant. The case of variable D may be accom-
modated by a change of dependent variable.

3. Mathematical model

Introducing s := p —7; h := (6 — 7)/(p — 7), we arrive at the desired generalized
Fisher equation

ou 0*u
= Do+ s()ull — w)[A(e) + (1~ 2h(z))ul, &)
where we have made allowance for spatial variation in the selectivity, s(x), and the
heterozygote suitability, h(z). The numerical scheme to be developed below also per-
mits a temporal variation in D, s, and h. However, we shall not have occasion to avail
ourselves of this level of generality in the present work.
It is assumed that p > 7, so that s > 0. Also, we may distinguish the following
biologically important cases whose mathematical properties are described in [1, 6, 8]:
e heterozygote-inferiority: —oo < h <0 (0 <7 < p),
e heterozygote-intermediate: 0 < h <1 (1 <o < p),
e heterozygote-superiority: 1 < h < oo (1 < p < 7).

The author thanks Ms. Barbara A. Rowe for assisting in the production of this paper.

© 2000 by Chapman & Hall/CRC



[ SPATIO-TEMPORAL DISCRETIZATION
4

=1Lt L |

| |l | |

l :
Ka . - -8~ —

1 1

| . 7
* | |
Y — - R |  — -
1 X | Ko s | 3y x

X =N X, K XK R T
N = S

Fig. 1. Spatio-temporal discretization.

4. Numerical model

We next approximate the generalized Fisher equation, Equation (2), with homogeneous
diffusion, D = constant,

e, = D - ug, + s(x) - u(l —u)[h(z) + (1 - 2h(z))u]  (3)

Runge-Kutta Mehrstellenverfahren
subject to the initial-boundary conditions
u(z,0) = ur(x); u(xr,t) =ur(t), ulzr,t) = ur(t). (4)
We commence by defining ¢(x,t) := us(x,t) and rewriting Equation (3) as

D-uy,,=¢g—s-u(l—u)[h+ (1-2h)ul. (5)

— = ~

(
’ STEADY.STATE |

Fig. 2. Steady-state.
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Differentiating Equation (5) twice with respect to x produces

D Uy = Guz — 2[s5u(1 — u) + su,(1 — 2u)] - [hy(1 — 2u) 4+ (1 — 2h)uy)
[$peu(1 — u) + 25, (1 — 2u)u, — 25(uy)? + s(1 — 2u)uy,] - [h + (1 — 2h)y]
— [su(l —u)] - [hee(1 = 2u) — dhu, + (1 — 2h)uy,). (6)

With reference to Figure 1, consider central difference approximation of the diffu-
sion

p. Y+ —(21;:):- Uiy (D-um)rl-%(D'Umm)i"‘o((Aﬂv)‘l) , wi(t) = u(zy,t). (7)

Applying the Mehrstellenverfahren technique [3] by inserting Equation (6) into Equa-
tion (7), rearranging terms, and making additional O((Az)*) approximations yields

_ Giv1 — 29i + gima

12
(Az)? . Np N (5 Uip1 — 2U; + Uiy
1 si{(1 = 2u;)h; + (1 — 2h;)u; (2 — 3u;) } E

Tl ) { +2(52)i(ha)i(1 = 2us) + 8i(haw)s(1 — 2u;) }

v |p+

b B8 — ] silhe)i6 — 6w+ 1)
1o (Wil — Uiy (85)ilhi + 2(1 = 3hg)u; + 3(2h; — 1)u?]
1

Insertion of this last expression into Equation (3) produces (fori=1,...,N —1)

(ug)igr + 10(ue); + (ue)ioa _
12

(Az)? Uipr — 2U; + Ui
[D + 0 si{(1 = 2ug)hi + (1 = 2h;)u;(2 - 3”’)}] (Ax)?

Az { si(hy)s(6uf — 6u; + 1) }

=5 (1 — i) +(52)ilhi + 2(1 = 3hy)u; + 3(2h; — 1)u?] ?)

12

1
+ﬂ(ui+1 — ui_l)zsi[(l — 3}1/1) + 3(2}1/1 — 1)’(141] + s,u,(l — Uz)[hz + (1 — 2}1/1)’&1],

where we have neglected O((Az)*) terms, thus achieving fourth-order spatial accuracy.
Introducing % := [uy,...,uy_1]T, Equations (9) may be written as the matrix
ordinary differential equation
du

M= = F(d), @(0) = . (10)
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Fig. 3. Travelling wave.

This semidiscretized initial value problem may now be approximated to fourth-
order temporal accuracy using the following Runge-Kutta scheme [14]

M-k = F(@@), M-k = F@@*+4t- k), (11)
M-Fs = F@+2.%), M-k = F@+At-k),
. . At - - - o .
7 = gty ?t Ry 4 2%+ 2Fs + Ry, @ = () = d(k- AY). (12)
Note that g p
U ﬂ )
7 ur(t), dt ug(t) (13)

are specified. Since M is tridiagonal (in fact, symmetric Toeplitz), it can be LU-
factored in time O(N) at t = 0, while (11) can be solved by forward/backward sub-
stitution in time O(N) at each time step. The formal order of accuracy of this new
scheme is O((Ax)* 4 (At)?), i.e. we have achieved fourth-order spatio-temporal accu-
racy. For Neumann boundary conditions, the local truncation error is of third-order
at the boundaries. The scheme is conditionally stable with At = O((Ax)?).

5. Numerical examples

For the special case s = .2, h = =2, u(—L,t) = .5 = u(L,t), it is shown in [11]
that there is a unique positive steady-state solution where L = v/2.5cosh™(2.5) =~
2.477327. This exact solution is given by Uezae(x) = 1.2/[.4 cosh (v/.4z) + 1.4], with
Umaz = u(0) = 2/3. Figure 2 displays our numerical solution evolving from u(z,0) = .5
to a steady-state with .., = .66651582. This is accurate to .02%, with Az =
206444 (N = 24) and At = .01, as compared to .075% in [11] using twice as many
grid points.

For the special case s = .5, h = —.5, it is shown in [13] that there exists the
travelling wave solution e (,t) = 1/[1 + e ¥/2V2/V2] " Figure 3 shows our com-
puted solution for this case propagating to the right with negligible distortion near
the predicted speed of ¢ = 1/2v/2, with 27, = —15, zp = 25, Az = .5 (N = 80), and
At = .01.
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For the case of variable coefficients, we take Fisher’s example [5] of a genetic cline
with s(z) = 8z, h = .5 (no dominance, i.e. “additive fitness”). The result is shown
in Figure 4, where we also include the cases h = —2. (heterozygote inferior) and
h = 1. (complete dominance). There, we observe the anticipated effect of varying h:
by decreasing it we steepen the cline. Values of z;, = 0, xg = 6, Az = .2 (N = 30),
and At = .001 were used.

6. Conclusion

The foregoing sections have successfully extended our fourth-order accurate scheme [12]
to the generalized Fisher equation thus accommodating arbitrary heterozygote fitness.
This high order of spatio-temporal accuracy is attained by combining Mehrstellen-
verfahren spatial discretization [3] with Runge-Kutta time stepping [14]. Numerical
computations from population genetics demonstrated the efficacy of this procedure.

\

GENETIC CLINF

Fig. 4. Genetic clines.
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A. MIODUCHOWSKI and P. JANELE

Dynamic deformation of a layered
continuum surrounding a cylindrical
or spherical cavity

1. Introduction

This paper considers the finite amplitude wave propagation which results when a
layered continuum consisting of concentric isotropic compressible hyperelastic layers
surrounding a cylindrical, or spherical cavity is subjected to a sudden, spatially uni-
form application of pressure at the cavity’s surface. The layers have different elastic
constants, and wave reflection at the cavity’s boundary is considered as is wave reflec-
tion and transmission at the interface between the layers. Governing equations for the
above problems are identical, except for a constant multiplier and are expressed as a
system of first order partial differential equations in conservation form. This system of
equations is strictly hyperbolic, for the class of strain energy functions used here, with
three families of characteristics. The numerical scheme used to obtain the solutions
presented here is a finite difference predictor-corrector method which uses the relation
along straight characteristics parallel to the ¢ axis in the (R,t) plane. It is a shock
finding scheme so that the jump relations are not required for implementation of the
scheme. In order to present this method we discuss the finite amplitude cylindrically
symmetric wave propagation in a compressible hyperelastic layered solid. Nonlinear
elastodynamic solutions for similar homogeneous problems have been addressed in
the previous paper [1], in which the hybrid characteristic method - finite difference
scheme was introduced. The results shown here are arrived at by the extension of this
technique and represent the case of radially varying nonhomogeneity.

2. Governing equations

The cylindrically symmetric, composite hyperelastic medium considered here, is ini-
tially in a natural reference configuration. A system of cylindrical coordinates with
origin at the cavity center are used to define the time dependent radial deformation

r=r(R,t), (1)

where r and R are the distances of a particle from the origin in the deformed and
reference configurations, respectively. The inner, center and outer layers occupy the
region Ry < R < Rg,Rp < R < R¢ and Ro < R < Rp respectively, with Rp = o0
for the unbounded medium. The initial conditions are

_or
YT B

where v is the particle velocity. At time ¢ = 07, a spatially uniform pressure p(t) =
qH(t) is applied at R = R4, where ¢ is a constant and H (t) is the unit step function;
consequently o,(Ra4,t) = —p(t) where o, is the radial component of Cauchy stress.
The principal components of stretch in the tangential, radial and axial directions are

r(R,0) = R, (R,0)=0 (2)

r or B or
/\O—Ev /\T_ﬁ’ /\z_lv /\r — 3R’
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for spherically symmetric problems. The non-zero components of radial and tangential
stress are respectively given by

oW 10W
Sy =——, So=———, 4
"TAN T non (4)
where, as in [1], W(A,, Ap, A;) is the Gaussian strain energy function per unit volume,
with n = 1 for cylindrically and n = 2 for spherically symmetric problems.
It is convenient to introduce a nondimensionalization scheme which is based on the
material properties of the inner layer, identified by the subscript 1,

— ST — S@ _ t ) R

ST:E, S@ZE, v :’UM%, T:R—l %, R:R_1 (5)
The governing equations consist of a nontrivial equation of motion and two com-

patibility equations. In terms of the reference coordinates (Lagrangian coordinate

system), deformation of the inner cylinder is defined by

ov 05 (S=S)  on_mm

—0.  (6)

— —7n — = - = -

or  OR R ’ or OR ’ or R
where all variables are nondimensional. For the other layers, the two compatibility
equations are the same as the inner cylinder but the nontrivial equation of motion is

5 4 (S.-3
or Bu OR  [Ba R

where (3;; = p;/p1 is the ratio of material densities relative to the reference configuration
and ¢y = p;/p1. Both 3 and ¢ exist in the governing equations due to the nature
of the nondimensionalization scheme. Note, that the areas of continuously variable
nonhomogeneity are replaced by a series of thin cylinders. The material properties for
each thin cylinder are then treated as radially varying “constants” with the physical
properties averaged for each thin cylinder.

If the concentric cylinders are to remain in contact during deformation, four inter-
face boundary conditions must be satisfied,

o du
— /”L—

/\0 (RE, T) = A@ (Rgv T) )
v (R§,7'> = v (RE,T) :
oy [/\T (Rg, 7') Ao (Rg, 7')} = o, [/\T (Rg, 7‘) Ao (RE, 7‘)} (8)
orat interface < 0, (compression).
where Rp is the radius in the undeformed configuration, at which the inner cylinder
and it’s adjacent cylinder are in contact. R and R} denote the positions at R = Rp

just within each of these media respectively. Similar Interface conditions similar to (8)
apply at R = Rc where the second cylinder is in contact with its adjacent media.
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The interface condition (8a) specifies continuity of radial position in the deformed
configuration since

TB(T):RB*/\Q(RB,T). (9)

The velocity interface condition (8b) is based on the constraint that if the cylinders

remain in contact during the deformation, the velocity must be continuous across the
material boundaries. This is also evident from v = 9r /97 since

v(Rp,T) = %(RB,T). (10)

The stress conditions (8c,d) are based on the physical interpretation that the cylin-
ders remain in contact only if the Cauchy radial stress is continuous (and compressive).
These interface conditions are used in the numerical procedure to determine A,.
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3. Numerical method and results

The numerical method for which results are presented in this paper, is based on a
hybrid finite difference scheme which has been utilized and presented in the previous
paper involving deformation of homogeneous media, [1]. Extension of this method
to handle deformation of multiple concentric cylinders considered here, is relatively
straight forward with the exception of dealing with the change in material properties
and resulting change in equations of motion at the transition between cylinders. At
these transition radii, the forward/backward finite difference scheme must be modified
using the interface boundary conditions given by (2.8) which define the continuity
of v,Ag and o,. It should be noted that the application of the interface boundary
condition which specifies continuity of o,, typically results in a discontinuity in radial
stretch A, when applied to media of differing material properties. Consequently at
each time step and at each of the interface radii, the effective Cauchy radial stress is
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computed and solved for the discontinuity in A, between adjacent cylinders. This is
numerically implemented using a Newton-Raphson iterative scheme.

Deformation, and resulting wave propagation is initiated by the uniform application
of pressure at the cavity’s surface at 7 = 0. The case discussed here is when the
pressure p(7) changes linearly from zero to 1.54; at 7 = 0.25, and is maintained
thereafter - a ramped Heaviside step function. The outgoing wave passes through
the concentric media for which Poisson ratio is const., but different, in the first and
third layer and is changing linearly between these values in the second layer. For
numerical calculations it is assumed that R4 = 1.0, Rg = 1.5 and R = 2 with
the third layer unbounded, Rp = oo . Figs 1-4 show numerical solutions for two
different configurations of material properties: high Poisson ratio, linear transition,
low Poisson ratio and vice versa (v; = 0.475,v3 = 0.3,083; = 1/1.2,¢3; = 1/1.1 or
v = 0.3,’1}3 = 0.475,531 = ].2, and ¢31 = ].].)

The results are quantified by two plots: v(t) at R = Ra, Rp and R¢, and v(R)
at t = 0.125,0.25,...,0.75. These velocity profiles clearly show, that for the “slow-
transient-fast” arrangement of material properties, vs the “fast-transient-slow”, the
initial ramp acceleration waves break very quickly and form shock waves. It should
be noted, that for a spherically symmetric case one is arriving at qualitatively similar
results, as can be deduced from eqs (6) and (7).

References

1. P. Janele and A. Mioduchowski, Solution of some non-linear elastodynamic prob-
lems, in Integral methods in science and engineering, C. Constanda, J. Saranen
and S. Seikkala, eds., Pitman Res. Notes Math. Ser. 375, Addison Wesley Long-
man, 1997, 103-108.

Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta,
Canada, T6G 2G8

© 2000 by Chapman & Hall/CRC



D. MITREA

Boundary value problems for harmonic
vector fields on non-smooth domains

In this paper we undertake a systematic study of natural boundary value problems

for the Laplacian acting on vector fields in R®. Throughout the paper @ € R? denotes
a bounded Lipschitz domain, that is, a domain whose boundary is locally described
by graphs of Lipschitz functions. Also, 7 stands for its outward unit normal and

we set O = Q, Q_ := R*\ Q. For a function u defined in Q4 we let N'(u) be the

nontangential maximal function of u (see, for example, [1]). Besides L?1(0Q), the
Sobolev space of square-integrable functions on 992 whose tangential gradient is also

square-integrable, we also work with L2, (99), the space of tangential vector fields

with square-integrable components on 0f2. Also of interest are the spaces

L2,DiV(aQ) — {fe 1.2 (092); Div fe L2(aQ)},

tan tan

where Div is the surface divergence operator, which we equip with the norm
£l 22 v a0y == IfllL2(00) + 1DV fllz2 (50,

and L2°(00) := {f € LZP™(8Q); Div f = 0}. For a more detailed discussion of

t t
these tglf)ics we refer the reader to [1]. The reader should be aware that, in what

follows, we make no topological assumption on 2. As a consequence, the following
spaces that encode topological information about €2 appear naturally:

H(Q) : = {h € L*(Q); divh =0, curl h = 0in Q},
Ho() : = {h € H(Q); N(h) € L*(09), (@, k) = 0},
Hy () : = {h € H(Q); N(R) € L*(89), @ x h =0},
Ry, : = spang {Xa0; Y bounded connected component of 2, },

Ryq : = spang {xw; w connected component of 90 }.

Similar spaces can be defined in Q_. Finally, b;(€2) and b2(2) denote, respectively,
the 1st and 2nd Betti numbers of 2. Also, all constants involved in our estimates will
eventually depend only on the constitutive parameters used to describe the Lipschitz
character of 2. We now proceed to describe the main results.

Theorem 1. Consider the boundary value problem for i@ = (uy,us,us):
At =01in €,
N (@), N(curl @) € L*(8Q), (@,d) = f € L*(09), (BVP1)

i x (curl@)|aq = § € L2,,(09).
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Then the following assertions hold.
(i) A solution of (BVP1) exists if and only if § satisfies the compatibility con-

dition § € {]'_I:|8Q;]'_?: € He()}, where L denotes the orthogonal complement in

L (09).
(ii) The space of null-solutions is He(S2); its dimension is by (). In particular,
the boundary data determine curl4 and div 4 uniquely and

|V (curl @) 2a0) < (Ifllz2(80) + 1]l z2(09)) -

Also, every solution belongs to H/22(Q).

Moreover, if the compatibility condition described in (i) is satisfied, then the
following regularity statements are valid.

(iii) N(diV ’l_[) € L2(6Q) and ||N(d1V ’J)”Lz(ag) S (||f||L2(8Q) + ||§||L2(aQ))

(iv) N (curlcurl @) € L2(8Q) if and only if § € LEDY(0R); in this case,

IV (curleurl @) 22 (a0) < C||§'||Ltz£iv(am.

(v) curl@d = 0 in Q if and only if § = 0. Furthermore, when § = 0 we can
prescribe periods and have genuine uniqueness. More precisely, for any 3; € R,
j=1,..,b1(Q), there exists a unique solution of the problem

Au=01inQ, curlu=0in Q,
N(i) € L*(09), (i1, i) = f € L*(09), (BVP2)

(i,8;) = Bj, F=1,..,b1(),

T

where {[v;]}j=1,...b; () 5 a basis for Hsling(Q;R), the 1st singular homology group of
Q over the reals, and t; are tangential vector fields to the curves vj, 7 = 1,...,b1(Q).
(vi) curlcurl@ =0 in Q if and only if § € Lféﬂ(@Q).
(vil) divid = 0 if and only if f € Rgmr. In particular, § = 0 forces curli = 0
and we can prescribe periods, in which case (BVP1) becomes

divii =01in Q, curlu =0 in Q,

N (@) € L*(0Q), (i, @) = f € L*(09), (BVP3)

/ (@5 =By, G=1,mbi().
i

J

Formulated in this way, the problem (BVP3) has a solution if and only if f € Rgmr,
and the solution is unique.
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Theorem 2. Consider the following problem for @ = (u1,u2,ug):
Ad =0in Q,
N (@), N(diva) € ( Q), (BVP4)
(divad)laq = f € L*(09), @i xT=7e LE,,(0).

Then the following assertions hold.
(i) A solution of (BVPA4) exists if and only if f satisfies the compatibility condi-

tion f € {(f, E|aQ>; he Hy ()}, where 1 denotes the orthogonal complement in
L?(09Q).

(ii) The space of null-solutions for the homogeneous (BVP4) is Hy (X)), which
has dimension ba(2). In particular, div@ and curl @ are determined uniquely, and

|V (div @)| r280) < C (|| fll200) + 1] 22050)) -

Also, every solution belongs to H/22(Q). ’
(i) N (curl@) € L2(8) if and only if § € L2V (0Q). If § € LEPY(09), then
IV (curl @)||z2a0) < CIfllz2o9) + 120w (50))-

(iv) M(Vdivd) € L2(8Q) if and only if f€ L>Y(89Q).
(v) dive = 0 if and only if f = 0. In this case, we can have uniqueness by
prescribing periods. More precisely, there exists a unique solution of the problem

(BVP5)

where {[s;]}j=1,...b,(Q) 5 a basis for smg(Q R), the 2nd singular homology group
of Q2 over the reals, and 7; are unit normal vectors to the surfaces s;.

(vi) Vdiva = 0 if and only if f € Rpq.

(vii) If § € LEZPY(8Q), then we can prescribe (71, (curl @)|sq) = Div g arbitrarily

in the space Div(LEPY(09)) instead of 7@ x @. This leads to the boundary value
problem

AT =0 in Q,
N (@), N(curl @), N (div @) € L*(09), (BVP6)
(divid)|aq = f € L*(09), (7, (cwrl@)|aa) = f € L*(8).

Hence, (BVP6) is solvable if and only if f € Div(LZPY(6Q)) and f € {(7, E|aQ>; he

tan
Hy ()}, Moreover, the space of null-solutions is infinitely dimensional and the
equivalences (iv)—(vi) above hold for this problem.
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(viii) curl@ = 0 if and only if

ge tan(aQ) N {h|897 h € Hx( )}J_ and f € Ryq.
Furthermore, if ¢ =0, we obtain uniqueness by prescribing periods, namely,

divi =014n Q, curld=01in Q,

N(@) e L2(89Q), @xid=ge L2 (a90), (BVP7)

tan

/ <ﬁ, ﬁ]> = ﬁja .7 = 17"'7b2(Q)7

j
has a unique solution.

Theorem 3. Consider the problem for i = (uy,us,us):

At =01in €,
N (@), N(curl@d), N (div i) € L*(09), (BVPS)
(divil)|sn = f € L*(89Q), i x (curld)|sq = § € L2, (09).
Then the following assertions hold.
(i) There exists solution of (BVPS) if and only if §— fii € {h|aq; h € H(Q)}L,
where | denotes the orthogonal complement in L*(992).

(ii) The space of null-solutions for (BVP8) is precisely H(2). In particular,
divd and curld are determined uniquely and, moreover,

IV (div @) 2 a0y + [NV (curl@)| 2200y < (|1fllz200) + 17llz2050)) -

(il) § € LEPY(8Q) & N(curleurl @) € L2(8Q) & N(Vdiva) € L2(00) < f €
L21(9).

(iv) § € L22(8Q) & curleurl @ = 0 Vdivi = 0 & f € Rag.
(v) § =0« curld = 0.
(vi) f=0<divad = 0.

Theorem 4. The boundary value problem for @ = (u1, ua, us)

Au=01in €, curlcurlad =0 1n Q,
N (i), N(curl @) € L*(99), (BVP9)
(i, @) = f € L*(09), (7, (curlid)|sq) = g € L*(69),

is solvable if and only if g € Div (L faﬂw(am). Moreover, the space of null-solutions

15 finite dimensional.
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Remark. There are appropriate versions of Theorems 1-4 in Q_ = R? \ Q. Also,

similar results can be obtained for the Helmholtz operator A + k2. We postpone the
discussion of the latter topic for a separate occasion.

Using suitable layer potential representations, we can reduce (BVP1)-(BVP9)
to boundary integral equations involving either scalar potentials, which have been
treated in [2], or vector potentials. The latter, together with their relevant properties,
are introdnced and studied below.

For f = (f1, f2, fa) € L?(09), the single layer potential operator S is defined by

—

R f(y) 3
Sf(x) = I Jog |$_y|da(y), x € R”.

Also, the (magnetic dipole) operator M is defined in the principal value sense by

Mf =i x (pv.curlSf) a.e. on 0.

In sharp contrast to the smooth case (cf. [3]), on Lipschitz boundaries M is no
longer a compact operator on the spaces of interest. Its properties are listed below.

Theorem 5. If ) is a bounded Lipschitz domain in R?, then the following assertions
hold.
(i) The operators =11+ M are Fredholm with index zero on each of the spaces

L2 (8Q), LEPY(00) and L2 (0Q). Their kernels on these spaces coincide, and

Ker( & 41+ M; L2, (09)) = {7i x hlaa.; h € Ho(Q1)}.

In particular, dimKer( £ 21 + M; L, (09)) = b1(9).

(ii) Image( + 37 + M; LZ,,(09)) = {E|aQ¢;E € ’H.(Q:F)}l, where 1 is taken
in L2, (09). Similar descriptions are valid for the images of :I:%I + M when acting
on LZPY(8Q) and L2 (69).

(iii) The operators =11+ M are isomorphisms on the spaces

(i X Vianf: f € L2HON)}, LEPY(00)/L20(60), L2, (8Q)/LE° (80),

tan tan tan

L (09) /Ker (£314M), L™ (09)/Ker (£31+M),  Li (09) /Ker (£51+M),

tan

as well as on (7 x L22(80)) ", where L is taken in L2, (89);
(iv) Ax S — (£31 + M)_l (7T X VianS((7,8(+)))) is an isomorphism from the
space {7 x ]'_1:|8Q:F; he He(Qx)} onto {i x hlog.; he He(Q1)}, where the inverse

operator ( + I+ M s taken on 7 x Vian L2 (09).
2

The proof of Theorem 5 follows by combining the results in [4], [5] and [1]
together with the techniques in [6].
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In conclusion, we would like to point out that all our results are valid in the LP
context for arbitrary 1 < p < oo provided that 9Q € C? (see [7] for the scalar case).
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M. MITREA

The oblique derivative problem
for general elliptic systems
in Lipschitz domains

Let M be a smooth, oriented, connected, compact, boundaryless manifold of real
dimension m, and let T'M and T*M be its tangent and cotangent bundles, respec-
tively. We assume that M is equipped with a Lipschitzian Riemannian metric tensor
g = g;kdx;Qdzy, g1 € Lip (M). We also denote det (g,1) by g, so that if dVol stands

for the corresponding volume form, then dVol = \/¢g(z) dx locally.

Consider a smooth vector bundle £ — M endowed with Lipschitzian Hermitian
structures, and let L(x, D) be a second-order differential operator acting on sections
of £. Suppose that, about each point, M has a smooth coordinate system and £ has
a local trivialization with respect to which L takes the form

Lu = Zk 0; A7% (1) O u + ZBj (x)0;u — V(zx)u, (1)

where A% BJ, and V are matrix-valued functions such that
Ak e BieHY, VeL (2)

for some v > 0 and » > m = dim M. Here and elsewhere, H*? denotes the usual
scale of Sobolev spaces.

Following [1], for a Lipschitz domain € in M (possibly the whole of M) we say
that L satisfies the non-singularity hypothesis relative to € if

we Hy*(,E), Lu=0inQ = wu=0in. (3)

Parenthetically, we observe that if L is strongly elliptic, then L — A\, A € R, sat-
isfies the non-singularity hypothesis (3) relative to any subdomain 2 C M provided
A is sufficiently large. This is a consequence of Garding’s inequality, which is valid in
our setting (even though V' may be unbounded). Also, clearly, if L is strongly elliptic
and negative semidefinite, then L — \ satisfies (3) for any A > 0. A concrete example
of an elliptic, formally self-adjoint operator satislying (1)-(3) is the Hodge-Laplacian
corresponding to a Riemannian metric with coefficients in H>", r > m.

Let € be a Lipschitz subdomain of M, and let v € T*M be the unit outward
conormal to 9. In order to formalize the partial derivative operator u+ — Yu+ Au,
where A € L*>°(M,Hom (£,€)) and w is a vector field on M transversal to 0f2 (that is,
essinf (v, w) > 0 on 992), we work with a first-order differential operator P = P(x, D)
on & such that

o(P;v), the principal symbol of P (at v), is scalar and > 0 on 9f2. (4)

The author was supported in part by NSF Grant DMS-9870018.
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Before we state the main result, we introduce some notation. With Q2 as before,
let -|spq be the nontangential boundary trace operator. Specifically, for a section
u:— & we set

ulpa(z) == lim u(y), x € o9, (5)
yev ()

where y(z) C Q is an appropriate nontangential approach region. Finally, N stands
for the nontangential maximal operator defined by

Nu(z) :=sup {|u(y)|; y € 7(x)}, =€, (6)

The main result of this paper is the theorem below, which addresses the solv-
ability of the oblique derivative problem for general second-order strongly elliptic
PDEs in Lipschitz domains. (For earlier results in the flat Euclidean setting and for
constant coeflicient PDEs, see [2] and [3].)

Our arguments, building on an earlier idea of Calderdn [4], make essential use of
the results devised in [5] and [1]. This approach is constructive, in the sense that it
relies on integral equation methods; indeed, we prove global representation formulas
for the solutions in terms of boundary layer potentials. The trend of using such layer
potentials “for general elliptic systems” in the nonsmooth context was suggested by
A. P. Calderén in [6]. For related developments, the interested reader may consult
[5], [1] and the references therein.

In order to state our main result, we recall that VMO(952), the space of functions
of vanishing mean oscillation, is the closure of Lip (02) in the BMO “norm”; see [7]
for a discussion in the context of spaces of homogeneous type.

Theorem. Let & — M be as above, and let L be a strongly elliptic, (formally) self-
adjoint, second-order differential operator acting on sections of £, with coefficients
satisfying (2) locally. Suppose that L satisfies the non-singularity hypothesis (3)
relative to any Lipschitz subdomain of M. Also, let P be a first-order differential
operator such that (4) is satisfied, whose coefficients belong to L>=(0) and whose
top coefficients also belong to VMO(0R2).

Then for any fized Lipschitz domain Q0 C M there ezists € = €(2, L) > 0 such
that for each p € (2 —e,2 4 ¢€) the following holds: for any f € LP(0R,E) satisfying
finitely many (necessary) linear conditions, the oblique derivative problem

u € Clae(Q,€),

ODP Ly =0 1n €, -
( ) N(Vu) € LP(09), (7)

Pulpq = f on 09,

15 solvable and its solution is unique modulo a finite-dimensional linear space.

Finally, the index of this problem is zero, that is, the dimension of the space of
null-solutions coincides with the number of linearly independent constraints required
for the boundary data.

Proof. The construction of a suitable parametrix implies that L : HY?(M,€) —

H~12(M, &) is Fredholm, while the hypotheses of self-adjointness and strong ellip-
ticity allow us to use a deformation argument to imply that L has index zero. Hence,
L:HY (M, E)— H Y2(M, E) is invertible.
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Let T'(x,y) € D'(M x M, EQE) be the Schwartz kernel of L™ : H¥~LP(M, £) —
HrHLP(ME), 0 < u<1,1<p<r. It follows that T € C1T7 (M x M \ diagf ® €)
for some v > 0. Next, we introduce the single layer potential acting on sections
f :0Q — & by means of the formula

Sfia) = / (T(x,y), f(y) dS(y), € M\ o9, (®)

o0

where dS is the surface measure on 9. Also, we set Sf := Sf|sq. The idea is to
look for a solution to the boundary problem (7) expressed in the form

w:=38g in Q, (9)

for some g € LP(09), &) to be chosen later. Clearly, Lu = 0 in Q and, from [1], we
know that ||N(Vu)|lzra0) < CllgllLr(a0,6)- Going further, it has been shown in [1]
that at almost every xz € 9 we have

Pu(x) = —3io(P;v(z))o(L;v(z)) " g(z) + Ty(x), (10)

where T is the principal-value singular integral operator on 92 (in the sense of
removing geodesic balls) given by

Tg(z) = p.v. / (P ©1d,)T(z,9), () dS(y), @ € O (11)
o0

Thus, in order to prove existence for (7), modulo a space of finite dimension, it
suffices to show that

—Lio(P;v)o(L;v) "t + T : LP(89, ) — LP(89, E) (12)

has a finite codimensional range for p close to 2. What we shall prove is that this
operator is Fredholm with index zero.

To begin with, it has been shown in [1] that the operator (11) is bounded for
any 1 < p < oo. Hence, since the quality of being Fredholm and the index are stable
on complex interpolation scales (cf. the discussion in [8]), it is enough to prove this
only for p = 2. Rewriting the operator (12) in the form

[—30(Piv)io(Liv) ' + (T = T*)] + (T +T*) = T1 + T, (13)

we see that, by (4) and the strong ellipticity assumption on L, T is a strictly accretive
operator on L2(99, £) and, hence, invertible. Moreover, we claim that
T> = 3(T +T") is a compact operator on LP(, &), 1<p < oco. (14)

We prove this claim first under the stronger assumption that the top coefficients of
P are Lipschitz continuous on 9€). In this case, the desired conclusion is going to
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be a consequence of the weak singularity of the kernel of T along the diagonal in
00 x 0N).
To see this, we work in local coordinates in a small, open neighbourhood U of
a boundary point xy € 9. Let {0, }, be a local orthonormal frame of £ over U. In
local coordinates, the fundamental solution I' has the asymptotic expansion
1
F(:Bay) - —I‘O(y,a:—y)+R(a:,y), (15)
9(y)

where, for each £ > 0, the matrix-valued residual term R satisfies
Rz, )] + |z = y| - [Va Rz, y)| + |z = y| - [Vy Rz, y)| = Oz —y|7™ 7). (16)
Also, the symmetric matrix-valued function I'g(y, z) is even in z and satisfies
To(pz,y) = |p|~ ™ P To(z,y) for any p € R and z € R™, (17)
as well as the estimates
(V,To)(z,y) = O(|z|~(™=2) as z — 0, uniformly in y, (18)
and
(V.To)(z,9), (V.V,To)(z,4) = O(z| (™" Y) as  — 0, uniformly iny.  (19)
Identifying U with an open subset of R™ and P with a matrix of first-order differ-

ential operators P € Diff { (U x R",U x R™) (where n := rank £), we deduce that the
main singularity in the kernel of T' 4+ T is contained in

P(z,D,)g(y) " *Toly,x — y) + (P(y, Dy)g(x) *To(z,y — 2))*,  (20)

where the asterisk denotes matrix transposition. Now, since the principal part of P
is scalar and I'g is symmetric, the expression

(P(y, Dy)g(z)~*To(z,y — x))* = Py, Dy)g(x) " *To(z,y —x)  (21)
is actually O(|z — y|~™%?); therefore, it suffices to examine
P(z, Dy)g(y) " /*Toly, = — y) + P(y, Dy)g(x)~*To(z,y — @)

= P(z,Dy)g(y) " **To(y, x — y) + P(y, Dy)g(x) Y *To(z,x —y). (22)

To this end, since g € C' and the commutator [P,¢g~1/?] is bounded, the above
expression can be rewritten as g71/2(I + IT + I1I) + {less singular terms}, where

I:=P(x,D)To(y,x —y) + P(x, Dy)To(y, x — y),
I1:= P(y,Dy)To(y,x —y) — Pz, Dy)To(y, x — y), (23)
IIT:= P(y,Dy)To(z, 2 —y) — P(y, Dy)To(y, x — y).
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On account of the smoothness of the coefficients of P and the estimates (18) and
(19), we find that each of the quantities above and, hence, the entire expression (21),
is O(|z —y|~™*"27¢) for any € > 0. Consequently, the proof of the fact that T +T* is
weakly singular is finished by invoking (16). This concludes the proof of (14) when
the (top) coeflicients of P are Lipschitz on 9.

Returning to the general case when the top coefficients of P are just VMO func-
tions, we select a sequence of operators { P; }; whose top coeflicients are Lipschitzian
and approximate the top coefficients of P in the BMO-sense arbitrarily well. The
idea is that, while the term I7 in (23) is no longer O(|x — y|~"%27¢), this kernel
still gives rise to an operator Ky that is compact on LP(9€, &), 1 < p < oo. This
is because Ky can be expressed as a limit of commutators between some Calderén-
Zygmund type operator K; (whose kernels are of the form 9, I'o(y,x — y)) and the
operators Mj, of multiplication by Lipschitz functions b; (arising as coefficients of
P;). By construction, the sequence {b;}; converge to some b in the BMO-sense. In
this case,

K11 = [Kj, My, ]| 20y < Clb; — bllBMO — 0, (24)

where L£(LP) is the space of all bounded operators on LP; see [5] for a discussion.
Since, by the previous piece of reasoning, each [K;, My, | is compact on L?, it follows
that Ky is also compact on LP. Thus, (14) holds. This completes the proof of (14)
for operators P with L™ coefficients and whose top coeflicients are also in VMO.
So far we have proved that, under the assumptions in the theorem, there exists
£ > 0 so that the operator (12) is Fredholm with index zero for each p € (2—¢,2+¢).
It follows that the problem (7) is solvable whenever the boundary datum f satisfies

f€lIm(—3ic(P;v)o(Liv) " + T : LP(99Q,£)) (25)

and the right side (that is, the range of the operator in (12)) is a closed subspace of
finite codimension in LP(992, &) for each |2 — p| < e.

To see that (25) is also a necessary condition for the solvability of (7), let
us observe that, by the results in [1], any section w satisfying Lu = 0 in € and
N(Vu) € LP(09), |2 — p| < e, is representable in the form u = Sg in Q for some
g € LP(09), E). Consequently,

Pulgq = (—3io(P;v)o(L;v)~ " +T)g
€ Im (—Lio(P;v)o(L;v)~' + T : LP(09, €)). (26)
Finally, by essentially the same token, any solution u of the homogeneous version
of (7) has the form u = Sh for some section i belonging to Ker(—1io(P;v)o(L;v) 4+

T : LP(09,£)). Consequently, the dimension of the null-space of the oblique deriva-
tive problem (7) is

dim Ker (—3io(P;v)o(L; V)L T LP(09, £))
= dimIm (—%io(P;v)o(L;v) ™" + T : LP(09),E)).

This completes the proof of the theorem.
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A. NASTASE

Viscous aerodynamic optimal design
of flying configurations
via an enlarged variational method

1. Introduction

The evolution of the shape optimal design (OD) is related to the improvement of
its two stages, that is, of the start solutions: from the reinforced, hyperbolical,
potential solutions, to zonal, spectral solutions of the boundary layer (BL) partial
differential equations (PDE), and of the optimization strategy itself: from the inviscid
aerodynamic OD of the shape of the flying configuration (FC) with given planform,
to the global optimization (including also the optimization of the planform similarity
parameters) and {rom inviscid to viscous aerodynamic OD. The author’s rapid OD
algorithms, used for the inviscid and viscous shape design of a fully-optimized Adela
wing model, are now enlarged and used for the shape design of a fully-optimized,
fully-integrated wing-fuselage Fadet model. Both models present high values of lift
to drag ratio.

2. Inviscid outer flow at the BL edge

The flattened, integrated wing-fuselage (IWF) (that is, with a continuous skeleton
and with the same tangent planes along the wing/fuselage junction-lines), is consid-
ered here as a wing alone, whose surface is discontinuous (in its higher derivatives)
along its junction lines. For flattened thick lifting IWF, at moderate angles of attack
«, the effect of lift can be separated from the effect of thickness. The thin and the
thick-symmetrical IWF components (that is, the skeleton and the thickness distri-
bution of the thick lifting IWF) occur. The skeleton surface Z(x1, x2) of the IWF is
continuous, but the thickness distributions Z*(x1, z2) of the wing and Z"*(x1, x2) of
the central fuselage of the IWF are different. A dimensionless system of coordinates
QOx1ZT223 is used here,
! - L2 ~ L3

Ty = — e p— = — 1
I h17 T2 617 T3 h17 ()
y:g’ g:ga 626_17 B:ngo—l
1 4 hl

where £, hy are the maximal half-span and depth, v = Bf, v = B¢’ are the similarity
parameters of the planforms of the gross wing and fuselage, and M, is the cruising
Mach number. The downwashes w = @ on the thin IWF, w* = w* on the fuselage
(| 7 |< k) and w* = @* on the wing (k <| § |< 1) of the thick-symmetrical IWF,
that is,

N m—1
= Y mekerk |41 (2)
m=1 k=0
N m—1 N m—1
@ =D Y W |1 0= Ty wh ek |91 (3)
m=1 k=0 m=1 k=0
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are superpositions of homogeneous polynomials. The quotient k = v/v is taken
constant and the axial velocities are coupled: u = fu, u* = ¢u*. The coefficients w;;,
wy;, wy; and the similarity parameter v are unknown and are obtained through the

optlmlzatlon process. The axial disturbance velocities u, «* on the thin and thick-
symmetrical IWF with subsonic leading edges and a central ridge are (see [1]-[3])

E(n/2) ) E((n-2)/2) 1
=/ A An2gy™ + Crogi?lcosh™ /= 5, 4
Z Z \/1_7 q; n,2qY 72 (4)
E((n-1)/2)
u —EZN” 1{2 qg [cosh™ LMy +(—1)9 cosh™ M2 |+ Z D 2qy 1—v2g2
g=0
E((n=1)/2) T
~q -1 -1 Yk ~2 -1
+2Gnqy [cosh™ Ry+(—1)% cosh™ Ry [+ Z Cr, 2,97 cosh (7 (5)

_ [0ena vy _ [0+ n0Fv)
M“‘\/ w(1Fg) R“‘\/ 20Fvg)

In (5) the jump of the downwash along the junction lines between the wing and
the fuselage was simulated with two artificial ridges located along these lines. As
in [1] and [2], the coeflicients of u, @ and the coefficients of u* and w* and @*
are connected by homogeneous relations that are linear in the coefficients of the
downwashes and strongly non-linear in v and v. The lift, pitching moment and
inviscid drag coefficients Cy, C), and Cy of the thin IWF are

Cy =8¢ / ur1dzdy, C,, =8¢ / 0z1di1dg, Cq= 8¢ / UWT1dT1dy. (6)
O0AC O0AC O0AC
Cy and Cy, are linear forms and Cjy is a quadratic form in the coeflicients w;; of the

downwash w. C} of the thick-symmetric IWF is a quadratic form in the coeflicients
wy; and wy; of the downwashes w* and w*; specifically,

ij
C; = 8€< / u* 7*$1d331dy + / ﬂ*lﬂ*a?ld.fld?j) . (7)

cch 0A.C,

O

3. Spectral solutions for the boundary layer’s PDE

Let 6T, 67 and 6=, 6 be the dimensionless thicknesses of the upper and lower
BL on the IWF. The slopes of the BL, taken as superpositions of homogeneous
polynomials, and the modified downwashes w; and w7}, wj, due to the solidification
of the boundary layer, and their coeflicients are of the form

_ 86~
1 Z6mk1k|y|k7 Ern

a6+t L

8331 mx_lx

a5t L . 06 . — i

071 le ' Z‘Sj_rz—k—l,k 191%, Er art Om—k—1,k 91",
m=1
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N N
- ~r— ~(1 ~ ~ ~m— ~ 1
T I el YR R 7 LT I Sl SR TN AR 7 L

m=1 k=0 m=1 k=0
N m—1
— % ~m— _* (1 ~ 1 ~
Wi = Z Q;‘T ' wm(—i:—l,k: |y|k7 wz(J) = Wiy + %(6;; — (‘5”), (9)
m=1 k=0
wW =+ 265+ 65), wiY = wh + 165+ 6;)

The modified axial disturbance velocities u; and uj at the edge of BL are obtained
by replacing in (2)—(7) the inviscid coefficients w;; and @}, w;; by the modified

zga
ones w( ) and w*](l), ,;}(1). If we, ve, we are the inviscid Veloc:1tles at the edge of

the BL on IWF (which here replace the parallel undisturbed flow of Prandtl) and
n = [ws— Z(&1,%2)]/6(%1, T2) is a new vertical coordinate, then the author’s spectral
forms of the axial, lateral and vertical velocities us, vs, ws in the BL are (see [2], [3])

N N N
Us = Ue Z win', Vs = Ve Z vin',  Ws = We Z w;n'. (10)
i1 i=1 i=1

The non-slip conditions on the wing surface (n = 0) are automatically satisfied.
The matching conditions BL/potential flow at the edge (n = 1) and the continuity
equation written at P points are linear relations in w;, v;, w; :

N N N

Zuizl, Ziuizﬁ, i(i — u sz—l Zvizl,

i=1 =1 =1 =1
N N (11)
Zivi = Zz i—1)v
i=1 i=1

Eipui + Fip'Ui + Gzpwz) = 0.
In the BL, p = pe(&1,Z2). The physical gas equation and an exponential dependence
of the viscosity u on the temperature T are used to eliminate T from the impulse
equations. These equations, written at K points of the BL, and the equations (11)
form an algebraic system for the coefficients u;, v; and w;; that is,

_MZ
sz

=1

N
5> (A + B0+ Cus) =D + 3 (A w4 B4 O,

= 13 1 i=1
53 0 (A + By + ) WZ A uit Bl v+ Odwi),  (12)
=1 j=1

N N
Z sz Ag’i T B( l)cvﬂ + C( jkt05) ZCfg)wz

i=1 j=1
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The wall shear stress 7, and the friction drag coefficient C((if ) of the TWF are
Tw = fb 68—1:; o = U7 Ue, C(gf) = 8vsuy / UeZ1 AT d7. (13)
0OAC
4. Inviscid and viscous OD of IWF Fadet shape

The OD-shape of the Adela model (for My, = 2) has a high value L/D, but is too
thin for a central fuselage integration. We now optimize the shape of the thin IWF
for a given v, that is, Cj = min, the lift and pitching moment coefficients Cy, C,,
are given, and the Kutta condition uwz—; = 0 on subsonic leading edges (LE) (no
induced drag due to conturnement of LE at cruise) is fulfilled. The optimal values
of w;; and the Lagrange multipliers are, as in [1] and [2], solutions of the linear
algebraic system (LAS) (15), (16)

Ca=t Qb Wi —k—1,kWn—j—1,; = Min, (14)

B N n-—1 ~ N n—l~
¢= Z Z Apjn—j-15 = Ce/t, Cm = Z Lyjln—j—1,5 = Cino /L,
n=1 j= n=1 5=0
F, = Vo Wp—j—1,; = 0, (n=1, N, 0<j<(N-1)),
7=0 (15)

N
Z [Qn,e—i—a—i-l,a,j + Qe—l—a—l—l,n,j,a}wn—j—l,j + Mror1P0r0r1.0 + AV Ao o0
ATy, 001, =0, 1<O+0+1<N, §=0,1,...,(N—-1)). (16)

Now the OD of the shape of the thick-symmetrical IWF for a given v is treated;
that is, C; = min and the relative volumes 7§ = VO/S§/2 and 7} = VO/SS’/2 of the
wing and fuselage are given, the thickness cancels along the leading edges and the
integration conditions along the wing/fuselage junction lines are satisfied as in [1]
and [2]. The optimal values of wy;, w;; and the Lagrange multipliers are the solutions

YK
of the LAS (18)—(21)

N N m-1n-1
* Y * * * * ~
Cd ={ E : E , [(Qnmk]wn—] 1,5 + Qnmk]wn—g—l,g)wm—k—l,k
n=1m=1 k=0 5=0
(M) * ~ % /% — %
+ (Qnmkjwn—]—l,] + Qnmk]wn—j—l,g)wm—k—l k} = min, (17)
N m-—1 N m-1
~k ~k ~k * —% __ —k ok -
T = E mkWm—k—-1,k = To \/Z, T = E mkWm—k—1,k = To \/Z,
m=1 k=0 m=1 k=0 (18)
N m—1 N m—1
nE FR(t) ~x [k ~#(t) / ~x _ -
t = 2 : mk wm—k—l,k_07 Ft = E , Comk (wm—k—l,k - wm—kz—l,k:) =0,
m=t+1 k=0 m=t+1 k=0
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~* (1
= Z Zgrrfk) wm k—1,k — Wy —f— 1k):07 t:0717"'7(N_1)7
m=t+1 k=0

L= Z Zf*(t) W1,k — Wry—g—1,) = 0,

m=t+1 k=0 (19)

i
X

] =

[( nf+o+1,0, T Q(9+o-+1 Mg, a)w:b—j—l,j

3
Il
—
.
Il
o

/% ) * — % (1) ==
+ 8 orot+1,0,5 T QG—l—a—l—l,n,j,a)wn—j—l,j} T U To o410

|2/—\

{ * * (T
+ ('utd05-27+1 o T 'U/tceg‘l-i-l ot 77t9012r+1,a + 77t€05m)7+1,a) =0, (20)

t

i

-
Il
o

~ %

[(© motoitos t v or1nie)Un i 1

] =

n=1j=0
+ (U pror1.05 + Wioiing a)w;—j—l,j} + M(Q)’f5+a+1,a
= (t) *(1) (t)
*(t
Z tc@—l—a—l—l c + ntg@—l—a—l—l,a + nt€0+0+1,0) = 0. (21)
t=0

Here1<#+oc+1<N, 6=0,1,...,N — 1. If now the global optimization of the

thick lifting IWF is treated, the optimal values of the free parameters w;;, wy;, w;

and v are obtained if the inviscid drag C((;) = Cy+C} = min. The above two systems
are non-linear in v and coupled. If the author’s hybrid numerical-analytic method
is used, then the two coupled non-linear systems are replaced by a cascade of LAS
obtained by giving v (0 < v < 1) several discrete values. Each point of the lower limit

curve of the optimal inviscid drag functional (Cy))opt = f(v) is obtained analytically.

The location of the minimum of this curve (v = vopt) is determined numerically If

Vopt, 18 Introduced in the two systems above, then the best values of w;; and w,
wy; are obtained. The fully-optimized, fully-integrated shape of the Fadet model
(Fig. 2) at My, = 2.2 is thicker in its central part than the fully-optimized shape
of the Adela model (Fig. 1) at M., = 2, as required. An iterative OD is proposed
in Fig. 3. The inviscid OD-shape of the IWF' is now the first step in the iterative
viscous shape optimization process. An intermediate computational checking of the

inviscid OD-shape is made with the author’s spectral, zonal potential/BL viscous

solver. The friction drag coeflicient Céf) of the IWF is 30% of the total drag (at
My = 2.2 and o = 0). The inviscid OD-shape, checked also for the thermal and
structural point of view, can lead to additional auxiliary conditions. In the second
step of optimization, the predicted inviscid optimized shape of the IWF is corrected
by also including these additional auxiliary conditions in the variational problem and
the friction drag coeflicient in the drag functional. The corrections of the inviscid
optimized shape of the IWF Fadet after the second iteration of the aerodynamic
viscous OD are not significant, except on the centre of the rear part, which is slightly
more cambered than the inviscid one. The proposed enlarged, variational method is
robust, flexible, evolutive, multidisciplinary, includes friction and is adapted for the
modern subsystems OD strategy with weak interactions, via auxiliary conditions.
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D. NATROSHVILI and Sh. ZAZASHVILI

Interface crack problem for a piecewise
homogeneous anisotropic plane

1. Introduction

We consider the two-dimensional interface crack problem for anisotropic bodies in
the Comninou formulation. It is established that, as in the isotropic case, properly
incorporating contact zones at the crack tips avoid contradictions connected with the
oscillating asymptotic behaviour of physical and mechanical characteristics leading
to the overlapping of materials. Applying the special integral representation formula
for the displacement field the problem in question is reduced to the scalar singular
integral equation. The comparison with the results of previous authors shows that
the integral equations corresponding to the interface crack problems in the anisotropic
and isotropic cases are actually the same from the point of view of the theoretical
and numerical analysis. However, there are described some new effects concerning the
stress intensity coefficients in the anisotropic case.

2. Formulation of the problem

Denote by S© the upper half—plane 22 > 0 and by SO the lower half-plane z, < 0.
We assume that the domains SU) are filled up by anisotropic materials with elastic

constants AH, Au, A13, AZZ, A23, and A%), j = 0,1. The common boundary (x;-
axis) of the above two half-planes will be referred to as the contact line . In what
follows we will use the superscript (j) with the physical characteristics corresponding

to the domain S, We omit the superscript (j) when this causes no confusion.

Consider an interface crack (cut) along the segment [—L, L] on the contact line.
Under the action of uniform tension 7" applied at infinity, in a direction normal to the
interface, the crack opens in the interval (—a, a), where ¢ (0 < @ < L) is an unknown
to be determined in the course of solution. According to the Comninou approach (see
[1]) outside of the cut |z;| > L we have the perfect bond (the rigid contact conditions)
between the two materials. We assume that the crack is closed and its two sides are in
frictionless contact in the intervals (—L, —a) and (a, L). The boundary conditions on
the tractions are that the shear traction must vanish in (—L, L) and that the normal
traction must vanish in (—a, a).

The system of equations of elastostatics in the anisotropic case, sans body forces,
reads as [2]

82 8 Uq 82 82 8 U2 82U2
A 2A A — =
e -+ 24ung -t Ang 022 -+ A 022 -+ Agegg, T A 53
8 Uy 8 (] 8 (3] 82 82’&2 8 U
A A? A
13— 522 + 25, Bra + Aps—— 22 + Asz——- 02 +2A238$16 s + Ap—— 022 =0, (1)

where u = (u,u)" is the displacement vector, A%, = A5 + Ass, and © = (21, 73) €
SU c R?. Here and in what follows the superscript T denotes transposition.

The stress components 0,,, 0,,, Toiz,, and the strain components €,,, £,,, €4,2, are
related by Hook’s law

Oz = An16g; + Ar26s, + A13€010,,  Ozy = Ar26g, + Ansey, + Assesa,,
Teiza — A135z1 + A235z2 + A335z1z27 (2)
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where

8u1 . 8u2 8u1 8u2

- Epyg — = Eqize — -—.
81'1 ’ i 81'2 ’ FiEz 81'2 81'1

The positive definiteness of the potential energy implies that the symmetric matrix
[Apglaxs is positive definite [2]. Let A =det [A,,].

Epy =

Problem (C). Find regular solutions u") to the system (1) in S (j = 0, 1) satisfying
the following interface and boundary conditions on the contact line { (x2 = 0):
D) WO =WV, o1 =00, [T = > L (3)

r1T2 x1T2

i) [T = (0], (0] = 0T, [0 = [HL1 =0, a < Joa| < L, (4

r1IT2 r1T2

i) [o$)" =017 =0, [0 =100 =0, |al<a, (5)

r1T2 x1T2

where the symbols []* and [-]~ denote limits on [ from S® and S| respectively.

By a regular solution to the system (1) is understood a two-dimensional vector
u) = (Wi, (9)) such that:

a) u¥) € C(SU)) N C3(8W),

b) the corresponding stress components 03(693, 03(692, and ng{zz are continuously ex-
tendable on the whole z; axis except the points {—L; —a; a; L} in the vicinity of
which they have integrable singularities,

c) for sufficiently large || = (22 + 22)'/2 the following conditions hold:

u@(z) —u(2) = 0(1), 52 [u?(2) —uld(z)] = O(|z|2),

. —A(j
() =__ T 23 k=12 ) =0, 1. 6
U (@) = oy l Aé?] . I )

Theorem. Let a pair (u®,u™M)) of vector functions u(® = (u§°),u§°)) and vV =

(ugl),ug )T be a regular solution to the homogeneous Problem (C) (i.e. T = 0).

Then u® = (c1,c)7 in S© and vV = (c1,c)" in SU where ¢; and cy are
arbitrary real constants. Moreover, if, in addition, the displacement fields in S© and

S wanish at infinity, then the homogeneous Problem (C) possesses only the trivial
solution.

3. Auxilary problem

In this section by means of potential type integrals we construct a solution to the basic
interface problem for the piecewise homogeneous anisotropic elastic plane S©) U S,
This problem can be formulated as follows [3]: Find regular solutions u?) to the system
(1) in the domains SU (j = 0,1) satisfying on the interface line [ the transmission
conditions

O = M = fen), O =7 091 =00, —0o <@ < +oo,

122

where f = (f1, fo)T € C'*°({) is a given vector function with the following asymptotics
at infinity  fr(x1) = & +0 (|w1|5> fi(z1) =0 (|z1|++5> , k=1,2;here ¢y ande > 0
are some real constants.
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The solution of the above basic interface problem is then representable in the form
(for details see [3], [4])

. 2 . . L. T
ud(z) = K* + 1m 3 £(XO) +iy @) | {0% (7)
k=1 —00 7

where K™ is an arbitrary real constant vector, z;; = 2, -i-oz,(gj):cg, a,(cj) (k=1,2,7=0,1)

are roots of the so-called characteristic equation of the system (1) (see [2])
aﬁ)o/L - Qa%)o;’ + (Qa%) + agé))az - Qa%)a + a%) =0.

Note that this equation possesses only the complex roots. Here [az(i])]gxg denotes the

matrix inverse to [A{)]5xs.

Further, . .
) i Al(cj) Blga) BW AW
®) T TG Bl(cj) O,E” — AW c@ |
where

2
Ay = _Aan (Azzouzg + 2430y, + Asz)dy, a1 = (AxnAss — A%?’)A_l’
By = E(Azga;% + (Arz + Asg)ag + Asg)dy,

2 9 a12
Ck = —A—(Aggak + 2A130[k + An)dk, Ww=—- Re(OélOég),

a1 a11

dl_l = (041 - 541)(041 - 042)(041 - 542)7 dz_l = (042 - 041)(042 - 5‘1)(042 - 5‘2)7

2 2 2
A=2> apdy, B=2Y ajdy, C=2i> di, ky=uw(BC—A*m™,
k=1 k=1

k=1
2 .

Ay By]__im [C A L
IgllBk Ck]_BC—AZlA B]’ m = a1 (1 —w*(BC — A%)).

Moreover,

X© 4iy© = L {(M ) (1)) At

K
m(1)a§11) N ''N

) BOAO) _ A0 A0 A0 _ 40 O)
ToOmm | A0 RO _ AORO BOEM) _ 4040 | T

L el A0 _©) +ﬁ AW _o®
m©@ | BO)  _ A0 m® | g1 _ A0 ’

BOCO) _(40)2 | BOCM _(4M)2

Ay = 25:53)535\1,) +

o) O
B GO 4 BO) (1) _9 4(0) 4(1)
+ 0 m (D) > D

The constant matrices XV +iY(® is obtained from the above formulae for X (©® +iy(©
by the interchange of the superscripts (0) and (1). Note that X© + X = E
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Y© =Y where E stands for the unit matrix. It can be shown that B > 0, C > 0,
BC—-A?>0,w>0,m>0, ky>0.
From (7) we have the following representation formula for the stress components

7( )
[ ] m ¥ & (X0 +iy0) [, )

G _ [ o]0 -1 i | BY A9 ] G
where S(k) = {th [ 1 0 ] - =5 [ _AD o) S(k
4. Reduction to an integral equation

In this section we will essentially use the representation formulae (7) and (8) to inves-
tigate the interface Problem (C).
We look for the solution of Problem (C) in the form

L 0 . (1)
Uy ® Uy )
) £ 0 Lo S ) x) 4 i) S
u(z) =K +u)(z) + =Im > _ Egy (XY +iYW) | =L 06yt , (9
L [ r—— dt

—a

where z € SU_ j = 0,1. Here K* is again an arbitrary constant vector. Note that
in (9) the second summand u{)(z), given by (6), represents the solution of (1). Here
and throughout this section we use the notations u®(t) := [u(®(¢,0)]* and vV (t) =
[u™M)(¢,0)]” for —oo < t < +00.

Clearly, the difference u!” (t)— ne (t) is unknown in the interval (—L, L), while the
difference u{” () — ugl)(t) is unknown in the interval (—a,a) (see (3)-(4)).

It is evident that the conditions

W2 —uV(2L) =0,  u(+a) — ul(a) =0 (10)

are sufficient for the above displacement vectors ©'¥) to be continuously extendable on
the whole contact line { (see [5]). Let

(0) (

u (@) =t (o) = = [ Bi0)dt, (o) — " (@1) = — [ B(t)dt

where B(z1) = (Bi(z1), Ba(x,)) " is the so-called dislocation vector. We require that

| Bu(t)dt = o, I Bat)dt =0, (11)
—L —a

which guarantee the conditions (10).
From (9) it follows that the stress components can be represented in terms of the
dislocation vector

L Bi(dt
liﬁ’&z ] - lo ]+11mi5’,i”(x<j>+iy<”> F o |2
0(92) T L - ®) f fﬁk
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The boundary conditions (3)-(5) together with the formulae (9) and (12) lead to
the system of integral equations

QBl(CU1)

h%h

Q(H(x1 — a) — H(x1 + a))Ba(x1) + &2 f Duldt 4 R f Bad g (13)
|l’1| < L,
where H stands for the Heviside step function, and

N 0) N (1)

Q=L (,ww _ ,50)%&)

AO m(o)an m(l)all
Ry Riz | _ 1 BOcO_(amy2 BO  _A©®
Roi Ry | Do\ mO@mmel —A© ) +
BO (0 _(4(0))2 B _ A
m©m1)g(Y AW oM '

Note that Ry; > 0, Raa > 0, R12 = Ro;. It can be easily shown that in the isotropic
case the system (13) coinsides with the system of equations which has been obtained
and investigated in [6].

Thus, for the unknown functions Bj(z;) and Ba(x1) we have the system (13) of
integral equations with additional conditions (11).

According to the general theory of singular integral equations (see [5]) we can invert
the Cauchy type integral by density B;(t) from the second equation of the system (13)
in the class of functions which are unbounded at the both ends +1.

By the change of variables x = Ls, t = Lr, and retaining the same symbols for the

unknown functions in the new variables, we obtain (where X (s) = (1 — s%)7%/2)

Bils) = ~BRH( = #)By(s) - Gl | S g —al i<l (14

This equation implies that, if By(t) satisfies the second condition of (11), then
B (t) determined by formula (14) satisfies the first condition of (11) automatically.
Substituting B (s) from (14) into the first equation of (13) we obtain

y
1 f %2—)(\/1 —s2 =11 —r)dr =T,W1 -2, |s]| <9,
V2 = Q (R11R22 — R%Q) -1 0, T, = RHT(RHRQQ — R%Q)_l. (15)

Thus, we have obtained the scalar integral equation (15) with the second condition
n (11), to find the unknown B, in the class of functions bounded at the both ends
+v. It is evident that (see [5]), if equation (15) possesses such a solution, then this
solution automatically satisfies the condition By(£7) = 0.

A direct comparison shows that the equation (15) is quite similar to the equation
obtained by M.Comninou [1] for isotropic case and investigated by Gautesen and
Dundurs in [6]. Therefore, the analysis given in [6], can be applied to our case to
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construct the explicit solution of the equation (15) and to determine the unknown
parameter a.

However, more deep analysis of the stress intensity coefficients yields that we have
non-oscillatory singularities at the tip points &=L. Moreover, Tg)m (z;) = O(|L* —
z3|71?) as xy —» —L~ or as z; — L*, and ol (21) = O(|L* — 23|7'/?) as 2y — L.
This latter result is a new effect connected with the anisotropy property of the elastic
materials in question. In the isotropic case the normal stresses are bounded when a
point approaches the end points +L along the cut line from outside (cf. [1], [7]).
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S. NOMURA and H. EDMISTON

Micromechanics of heterogeneous
materials

1. Introduction

The determination of failure conditions for fiber-reinforced composite materials is one
of the most critical subjects in structures research and many empirical as well as
semi-analytical criteria have been proposed (see [1] for example). However, models to
predict composite failure based on micromechanical analysis are few and far between
([2] for example) because of its complicated nature which calls for more extensive study
on failure mechanism of fiber composites.

In this paper, failure envelopes of unidirectionally reinforced composite materials
are derived based on micromechanics. Each fiber is modeled as an isotropic cylinder
embedded in an isotropic medium which renders the whole composite transversely
isotropic. It is assumed that failure of the composite occurs at the interface between
the fiber and the matrix due to the yielding at the matrix phase. The stress field at
the matrix-fiber interface is estimated using the self-consistent approximation [3-4].
The yield condition in the matrix phase expressed by the local field stress is converted
into the yield criterion expressed by the far field stress.

2. Effective medium

The elastic equilibrium equation for heterogeneous materials without body force is
expressed as
V- (C(r)Vu(r)) =0, (1)
where C(r) is the fourth-rank elastic modulus tensor, u(r) is the displacement vector,
V- is partial derivative and tensor algebra is assumed throughout. For example, AB
represents Aj;jrBrimy if both A and B are fourth rank tensors and Az represents
Aijmzg if A is a fourth rank tensor and z is a second rank tensor.
The elastic modulus, C, can be decomposed into a reference part and a fluctuating

part as
C(r)=C*"+6C(r), (2)
where C* is a constant elastic modulus of the reference medium yet to be determined

and 6C(r) is a deviation from that of the reference medium. By substituting equation
(2) into equation (1) one obtains

C*VVu(r) + V- (6C(r)Vu(r)) = 0. (3)
Equation (3) can be solved formally by regarding the second term in the left hand
side of equation (3) as an imaginary body force as

u(r) = uA(r) + / V- (80 Vulr')) g(r — 1)dr, (4)

where u“(r) is the displacement field in the homogeneous medium which has the
stiffness of C*. The integral range in equation (4) is over the whole material points.
In equation (4), g(r — ') is the static Green’s function for elasticity defined as

C*VVg(r—1")+66(r—1") =0, (5)

This paper is based in part on work supported by the Texas Advanced Technology Program under
Grant No.0036556-044.
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where 6 denotes the Kronecker delta and 6(r —r’) is the Dirac delta function. Equation
(4) can be rearranged using integration by parts to

u(r) = uA(r) + / 5C(r\Vu(r' )V g(r — r')dr'. (6)

When the composite contains fibers embedded in a homogeneous matrix phase, the
quantity, 6C(r), can be expressed as

6C(r) = (C™ = C*) + (C7 = C™ )y (r), (7)

where C™ is the elastic modulus for the the matrix phase, Cf is the elastic modulus
for the fiber phase and v¢(r) is the characteristic function of the fiber phase defined
as
~ ] 0 if r € the fiber phase
Vilr) = { 1 if r ¢ the fiber phase. (#)

By taking the ensemble average of equation (6) after substituting equation (7), one
obtains

<u(r)> = u(r)
+ (o™ - c*)/ < Vu(r') > Vg(r — ')dr’

+ (Cf —cm) / < s (r)Vu(r') > Vg(r —r')dr. (9)

The self-consistent approximation is adopted in which C* is chosen such that the
ensemble average of u(r) is equal to u(r) for the medium that has the effective elastic
modulus of C* that yields the same ensemble averaged displacement as the composite
as

< u(r) >=u?(r). (10)
The following replacement of each quantity in equation (9) is adopted as
< Vau(r) > = Vul(r) (11)
< Ys(r)Vu(r) > = va(Cf, C*YVu(r) (12)
<srulr) > = vpd(r), (13)

where vy is the volume fraction of the fiber phase, A(C?,C*) is the proportionality
factor ot the displacement gradient inside the fiber when a single fiber is placed in a
homogeneous medium of C* with the applied strain of Vu# at remote distance (see
[5] for explicit forms).

In equations (9)-(13), the “ergodic assumption” was adopted that the ensemble
average can be replaced by the spatial average. Equations (10)-(13) imply that the
displacement gradient field inside each fiber is approximated by the boundary dis-
placement gradient, u“(r), while the displacement gradient field inside each fiber is
approximated by the displacement gradient field when a single fiber is placed in a
homogeneous medium.

By combining equations (9)-(13), the following equation for C* can be obtained:

C* = C™ 4+ vy (C™ = C™A(CY, C). (14)

Equation (14) is a set of non-linear algebraic equations since A is a function of C7
and C*.

© 2000 by Chapman & Hall/CRC



3. Composite failure

The stress field, o/, inside a single ellipsoidal inclusion in an infinite matrix subject
to a far field strain, € is uniform and can be expressed by the Eshelby’s method [6]
symbolically as

ol = CTA(CT,C™)e, (15)

where A(CY,C™) is the same A in eq.(12) with replacing C* by C™. When there are
multiple fibers distributed in an infinite matrix in a statistically homogeneous way,
the effective elastic modulus, C*, can be used in place of C™ in equation (15) as

of = CTA(C!,C)e. (16)

At the boundary between the matrix and the fiber, the displacements and tractions
must be continuous. However, the strains across the boundary need not be continuous
but may be described in terms of a “jump” parameter, \;, as [7]

ef;‘t — GZZ = \inj, (17)
where € is the strain outside the fiber, €™ is the strain inside the fiber and n; is the
outward unit normal vector to the surface of the fiber.

Equating the tractions at the boundary results in

m _out _pf in
Oijklekl n; = Oijkleklnj' (18)

Substituting equation (17) into equation (18) results in a set of simultaneous equa-
tions for the parameters, A;, as

nglAknlnj = (Oifjkl - C’%z)GZ’?W (19)

Solving these equations for \; allows the calculation of €7 in terms of €.

The stresses outside the fiber may then be calculated from the applied far field
stress, 7, the elastic moduli of the fiber and the matrix, Cf and C™, respectively, and
the fiber volume fractions, vy, as

0_out — Om eout

— 67, Cm, ), (20)

where G(CY,C™,v;) is the proportionality factor to the far stress field. Equation (20)
shows that 0°“* can be expressed as a function of the applied far field stresses.

The interface stresses, 0%, are now substituted into an appropriate failure criterion
for the matrix phase as

F(o™) =0. (21)

This is translated into a failure criterion in terms of & using equation (20) as

F(5)=0. (22)
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Figure 1:Typical failure envelope

Thus, a failure criterion for the entire composite is written in terms of the applied
far field stress.

For example, the von Mises failure criterion is expressed using the interface stresses
as

Ugjo-;j = s, (23)

where o;; is the deviatoric part of the stress and s is a constant.

Substituting equation (20) into equation (23) yields the failure criterion in terms
of the externally applied stress as

GijklOkO45 = 82, (24)

where g;;1; is a fourth rank tensor and is a function of the composite constituents, the
fiber volume fraction and the fiber shape (aspect ratio).

4. Results and discussions

Figure 1 represents the failure envelopes computed for a composite reinforced with
cylindrical fibers aligned unidirectionally. The material is transversely isotropic and
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the envelopes represent the allowable states of axial stress which may act in the plane
of isotropy. The envelopes presented represent composites with fiber volume fractions
of.1,.3 and 6. In the transverse plane the reinforcement is not continuous and the
strength of the material is controlled by the strength of the matrix. The failure en-
velopes represent this characteristic as well as demonstrate an increase in strength
with increasing fiber volume fraction.

The assumption of initial failure at the phase boundary implies that this modeling
technique is most applicable to composites subject to matrix dominated failure. This
technique, however, is not restricted to the von Mises criterion. Any suitable failure
theory can be incorporated into the algorithm to generate the failure envelopes.
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Z.C. OKONKWO

Admissibility and optimal control
for stochastic difference equations

1. Introduction and statement of the problem

Motivated by results in [1], in this paper we study the problem associated with the
stochastic difference equation

z(k +1,w) = A(k)z(k,w) + B(k)u(k,w) + f(k,w)n(k,w) (1)
with the random initial condition
Pyz(0,w) =((w) € Xg C R™. (2)

The first part of the paper is concerned with the boundedness of the solution pro-
cess of the stochastic difference equation (1), (2); in the second part, we prove the
existence and uniqueness of the solution of the optimal control problem described
by (1), (2) and the quadratic cost functional

Cz,u) =<z, >4+ < Qu,u > . (3)

All vectors = {z(k,w)}x>0 take values in R™, all vectors u = {u(k,w)}r>0 take
values in RY, g < m, {A(k)} is a sequence of invertible m x m matrices with real
entries, all {B(k)} are m x ¢ matrices with bounded entries, {f(k,w)} are m x 1

random matrix-valued functions, and {n(k,w)} is a sequence of R' normalized dis-
crete processes, independent of the random initial value {(w) and with a positive
definite covariance matrix Q. The projection Py is defined below. (€2, J,P) is the
underlying complete probability space, J is the o-algebra of the subsets of €2, 7 is
the natural filtration with J, C Jg,1 and P is the probability measure. Throughout
this paper we assume that w € Q, where Q is the sample space. Also, g = {gx }x>0,

o0
is a weight such that g, > 0 for all £k and ) gx < 00, and @ is a self-adjoint positive
k=0
definite linear operator on the sequence space 12(Z, x Q, R?). If for every k > 0
the spectral radius of A(k) satisfies p(A(k)) < 6 < 1, then the asymptotic stability
of the homogeneous equation is assured. When A is a constant m x m matrix, it is
possible to have d eigenvalues inside the unit circle and m — d eigenvalues outside it
(see [2]). In this case, one can expect only partial stability.

Notation. In what follows, (I*)™ = [*(Z, x Q, R™) is the Banach space of

m-dimensional stochastic vector sequences x = {5U(kaw)}k20, equipped with the
norm
||]|1ee = sup = E|z(k,w)| < 0. (4)
k>0

In (4) and in the sequel, F|u| denotes the expected value of p.
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The square of the norm on the Hilbert space (I2)™ is

]y =< z,2 >4= > _trElz(k,w) - (x(k,w)) ]gx < oo, (5)
k=0

Z, =10,1,2,...}, and Ma(R, x Q, R™*!) is the Hilbert space of matrix-valued
random sequences equipped with the norm

1Fllae = > tr BIf(k,w) - (f(k,0))T] < o0. (6)
k=0

Throughout the paper we assume that (1) has an ordinary dichotomy. This
implies that there is a projection Py on R™, a positive constant «, and a positive
integer n such that

T(n+1DPP i +1)|<a, n>j>0, (7)

T(n+1)PY i +1)|<a j>n>0, (8)
where P, = I,,«., — Py and

U(r4+1) = A(r) - A(r — 1) --- A(1) - A(0), (9)

with U(0) = I,,,x,, (the identity m X m matrix).
We note that the homogeneous system

x(k+1,w)=Ak)x(k,w), k>0, (10)
associated with (1) has the solution
zir+1Lw)=9(r+1)z(0,w). (11)
Consider the system
z(j+Lw) = A()z(j,w) + 9(j,w), =0, (12)
and suppose that g(j,w) € I}(Z, x Q, R™). Let P, be the projection of R™ onto
its subspace Xy consisting of the values for £ = 0 of those vectors that are almost

surely bounded solutions of (10) on Z, . The solution of (12) with the random partial
initial condition

Pyz(0,w) =((w) € Xg C R™ (13)
is [1]
z(n+1,w) =U(n+ 1)¢(w) + > ¥(n+ DR (j + 1)g(j,w)
§=0
Z (n+ PP + 1)g(f,w). (14)
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Equality (14) is obtained under the assumption of admissibility of the sequence
spaces { Hm, (loo)m}, and remains valid if we assume the admissibility of the pair
{(l2) (1°°)™}. Since I C 12, (7) and (8) do not guarantee the convergence of the
series in (14). It is essential, therefore, that we strengthen conditions (7) and (8).

2. Admissibility of the pair of sequence spaces {(I2)™, (1°°)™}
The following assertion [1] gives necessary and sufficient conditions for the admissi-

bility with respect to (12) of the pair {(I%)™, (I°°)™}.

Theorem 2.1. Equation (12) has a unique bounded solution almost surely on Z,

(for each w € Q) for every g € (I*)™ if and only if there is a constant v > 0 such
that for everyn > 0

n n+41
DI+ DR G+HDP+ D [T+ DR+ 1) <47 (15)
7=0 j=n+1

Theorem 2.2. Suppose that the assumptions in Theorem 2.1, including inequality
(15), remain valid, and that

Z E{f(j,w)n(j,w)} =0, (16)
ZEIf ((4,w)n(j,w ZtrE FG,w) - (fG,w)T] < 0. (17)

Then problem (1), (2) has a unique bounded solution on Z, almost surely.

3. The optimal control problem

The optimal control problem is to determine a control u satisfying
weU CI*(Z, xQ,RY), (18)

where I{ is closed convex set in the control space [?(Z, x 2, R?) such that

C(z,u) = 131611111 Clx,u), (19)
with
Clz,u) = (z,z)4 + (Qu, u). (20)

Let us characterize the closed convex set . The controls in U are such that
Eu(j,w)(u(j,w))T] < . (21)
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Furthermore,
o
" Blu(j,w)| ZtrE u(j,w) - (u(j,w)T] < . (22)
5=0

We also assume that 6 ¢ Y. The continuous version of assumptions (21) and (22)
can be found in [3]. We note that choosing the initial condition

Pyz(0,w) =0¢€ Xog CR™ (23)

does not diminish the generality of the problem (see, for example, [4]). From (14)
we deduce that, if g(j,w) = h(j,w) + f(j,w)n(j,w) and h(j,w) = B(j)u(j,w), then
(12) and (23) become

z(n+ Lw) =Y T(n+1)R¥ (i + D{B()uj,w) + f(j,w)n(j,w)}
7=0
— > Un+ D)PUTG + D{BG)u(j,w) + f(G,wnG,w)}.  (24)

j=n+1

One can therefore deal with the problem of minimizing C(z, u) subject to (1) and
the initial condition (23). Let

Tu=)Y U(n+1)PU ' (j+ 1)B(j)u(j,w)
k=0

= > U+ PTG+ 1) B()ulj,w),
k=n+1

F=) Un+1)RT(j+1)f(,w)nkw)

o0

— > U+ PTG+ 1) f(f,w)n(dw).
k=n+1

Theorem 3.1. Consider the optimal control problem described by (1), (23) and (3)
i which mlnC(:E u) is to be found, and suppose that

(1) {A(k)} is a sequence of m x m invertible matrices; if we write ¥(r + 1) =
A(r) - A(r = 1)-- A(l) < A0), r > 1, and W)(r) = \If(r + DO + 1), then
sup{||W(r)||, W (r)| < oo; {B(k)} is a sequence of m x q matrices whose entries
are umformly bounded on Z+,

ii) the assumptions in Theorem 2.1, including inequality (15), hold;

ii1) {f(k,w)} is a sequence of m x | random matriz-valued functions satisfying
the conditions in Theorem 2.2, {f(k,w)} € Ma(R, x Q, R™*Y), and {n(k,w)} is a
sequence of R'-valued normalized random processes;
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(iv) g € I} is a weight, while Q is a positive definite self-adjoint operator such
that Q € L(I%,1?);

(v) the control is restricted to a closed convex set U in (12)4.

Then there exists a unique control u = {u(k,w)} € U C (I1*)? such that

C(z,u) = 1316121}(3(:5, u).

Proof. We express the cost functional in the form

where [Tu+F,Tu+F], = (z,z), and [Qu,u] = (Qu,u). Since C(z,u) is continuous
with respect to v in U and U is closed and convex, C(x,u) attains its maximum and
minimum values on Y. Also, since [Qu,u] > 0 and [Tu + F,Tu + F], > 0, we
conclude that C(x,u) is strictly positive. C(z,u) is strictly convex, so its maximum
and minimum values on U are unique. Hence, the infimum of C(x, u) on U is attained

and is unique, and we conclude that there exists a unique control u € U C (12)4 such
that C(z,u) = miZI}C(l', u), where z = Tu + F.
ue
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F.R. PAYNE and K.R. PAYNE

Linear and sublinear Tricomi via DFI

1. Introduction

An optimum computer methodology [6] for nonlinear DE systems, “Direct, Formal
Integration (DFI)”, requires only one numeric approximation (a quadrature) and
has had wide success in nonlinear physics. A partial list of applications include: su-
personics, nonlinear heat conduction, Laplace, 3-D Navier-Stokes, and 4-D turbulent
channel flows. Major DFI modes are “SIMPLEX”, one integration trajectory, and
“NAD?”, a distinct trajectory for each variable. Even second-year students easily cal-
culate NL ODEs by DFI [7]. Prior and current works on Tricomi’s “mixed-type” PDE
[9] are described.

2. DFI methodology

Motivation arose from the fact that computers solve IEs better than DEs because:
1. “Bad” finite arithmetic operations of division and subtraction are avoided.
2. Quadrature accuracy improves to any level, limited only by machine.
Furthermore, one losses no applicability and gains nice features such as:
1. Any DE converts to a Volterra IE/IDE of the second kind.
2. Uniqueness is guaranteed for technology (Tricomi [12]).
3. DFT needs only second-year calculus [7].
DFI Methodology is a Three Stage Process [6, 8, 9, 10):
I. Formally integrate any DE system over any path from an initial point to
an upper limit; Volterra IEs of the second kind result.
II. Study all IE/IDEs for new insights; some arise due to the new forms.
III. IE solution (manual iterations assist understanding and programming).
Three advantages accruing to DFI usage are:
1. Any DE system yields an IE system optimally compatible with digital
machinery as demonstrated by solution of 300 P/ODEs, 1981-98.
2. Under DFT first order DEs require iteration whereas high order DEs often do
not. Computers can solve complex DEs faster than simpler ones.
3. DFI solves IVP via a sequence of “micro” IVPs, BVPs by a double IVP sequence
and ABVPs by a triple IVP sequence.

3. Two sophomore-graduate class examples

To display DFI and machine compatibility, two NL DEs are considered: 1) a first order
IVP that requires iteration, 2) a second order IVP that does not require iteration.

1. Riccati equation (IVP). One form of this oldest of NLDEs is v’ = 1 —u? with
IC as u(0) = 0. A single y-SIMPLEX formal integration yields:

u(t) =t — /Ot u?(s) ds. (1)

Trapezoid rules, with linear predictors, reproduce the exact solution, tanh ().
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2. Boundary-layer flow ODE model (IVP). A second example is a flow model
with viscosity, inertia and pressure gradient:

u'(y) =u? - 1 2)

and u(0) = 0 [“no slip”]; u(y — o0) — 1 [asymptotics]. Dual y-SIMPLEX yields:
/ 2 v 2
u(y) = yu'(0) —y°/2 +/0 (y — s)u?(s) ds. (3)

DF1I accurately reproduces the solution, 3tanh® [y/ﬂ + tanh™! (4 /2/3)} —2. An

advantage is the lag factor (n — s)*/k! [1] which reduces multiple to single in-
tegrals. Choose as starter the low order part or all terms outside the integral.
“Micro”-Picard iterations [6] converge ~ 10 times faster than standard Picard.

4. On-going DFIT studies: Euler flow and Tricomi type equations

1. Euler flow on the unit square (incompressible) [9]
Continuity : V-u =0; Momentum: u-Vu=-VP/p (4)

Natural Anti-Derivative (DFI/NAD) integrates and eliminates all deriva-
tives; continuity and y-momentum become (after 3 integrations each in z and y):

/ [v(t,y) — v(t,0)]dt = / [u(x, s) —u(0,s)]ds (5)
/ [v2(t,y)—v3(t,0)]dt = / [uv(z, s)—uv(z,0)]ds— / [P(t,y)—P(t,0)]dt/p (6)

and a similar equation for uv. Eliminating all derivatives implies that no finite
differences are needed as in SIMPLEX; accuracy and speed are enhanced [9,10].

2. Tricomi’s mixed-type PDE

Early work [9] used a unit circle D offset in the elliptic region, a smooth non-
characteristic boundary. Here we consider, purely for programming expediency,
the domain D = (—1,1) x (—1,1) with the same BC, and proceed to add a
sublinear non-linearity to the problem. This second regime has it origins in
recent analytical work (Lupo and Payne [2]). More precisely, consider:

T(u) = yugy +Uyy =0 in D, u=g onadD. (7)

Mixed type (elliptic-hyperbolic) PDEs are traditionally associated with transonic
flows. Dirichlet BC on D have been discussed by Morawetz [5] and Payne [11];
existence of solutions with isolated singularities at parabolic boundary points
remains open. As a model problem, data ¢ are taken linear with unit jump at
the sonic line end-point, y = 0. Place f(z) = u(z,0) on the sonic line and solve
an elliptic BVP, via shooting, in the sector y > 0. Applying DFI twice gives:

u(@,y) = £(@) + ydyu(,0) = & ["sly = Syulz,s) ds (8)
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o Iterations | u-RMS | x- RMS | A from the initial field
Elliptic 89 812 1075 107° small to x = 0.92
Hyperbolic | 1013 0 0 1076 similar

Table 1. Linear results.

The integrand vanishes at s = 0 and s = y, making numerics docile. The y-
slope of u at the sonic line is “shot”. The hyperbolic region BVP converts to
an IVP [Volterra IDE (8)]. Solutions were inserted into the PDE, differenced,
and squares summed and averaged for RMS deviations. Global residuals were
~ 10719 (elliptic) and ~ 107 (hyperbolic) (below quadrature error) validating
solutions.

In the sublinear case, where we consider
T(u) = u|u|"™? where 0 < p < 1, (9)
the coding changes are minor. Dual y-SIMPLEX gives:
y
u(z,y) = flz)+you(z,0)— {“)i/ s(y — s)u(z,s)ds
0

- sen(w) [(y = 9)lul ds. (10)

The only change from the homogeneous case (8) is the second integral in (10)
requiring two new lines of code, initializing and updating an accumulator. The
linear case [9,10] was re-run on the square as validation. Sublinear p-values in
[0, 0.99] were used. Runs on an Intel PRO200, 200 MHz, took 10-60 sec.

Solution checks were: 1) Insert into the PDE, difference, square, and average for
RMS; 2) Iterate RMS deviations as convergence tests; and 3) Compute the final
solution’s maximal value near the singularity and RMS deviation from the initial
(linear) field. Growth of RMS deviation from the inertial field as p increases are
shown. All cases are ~ linear far from the singularity. The feed-back influence
increases with p over a growing area near the “jump”. Results are summarized
below. DFI allows latitude in field traversing. The algorithm: 1) fills the el-
liptic field with BC interpolations; 2) shoots for the unknown du(x,0)/dy; 3)
increments in x, repeats until the sonic line end; 4) sweeps until errors become
acceptable; 5) inputs elliptic solutions to the hyperbolic solver; 6) solves a series
of IVPs from y = 0 to Ay; 7) increments in y and solves a new IVP; 8) termi-
nates as y reaches the outer boundary and the solution is complete. The elliptic
BVP requires sweeping the entire domain whereas the hyperbolic IVP requires
no sweeping at all.

The linear case, T'(u) = 0, was rerun on a much faster computer than in [9] on a
grid of 512 y- and 128 z-points, adequate for this docile case, and yields AR =
8 (“aspect ratio” = ratio of step size, Az/Ay) as a good numeric compromise.
The results are contained in Table 1, (where o = global RMS deviation, and
x-RMS = transverse values).

Similar grids (512x128) were used for most sublinear calculations; these results
are shown in Table 2. Note the poor o-accuracy versus Table 1.
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D o Iterations | Shoots | uRMS | x-RMS
0.01 | .0219/.044 6/0 4/0 | 107%/0 | 10°%/0
0.10 | .0195/.040 6/0 4/0 | 107*/0 | 1075/0
0.25| .018/.036 6/0 4/0 | 107*/0 | 1075/0
0.50 | .016/.031 6/0 4/0 | 107*/0 | 1075/0
0.75 | .014/.028 6/0 4/0 | 107%/0 | 107%/0
0.90 | .013/.026 6/0 4/0 | 107*/0 | 1075/0
0.99 | .0128/.026 6/0 3/0 | 107%/0 | 107%/0
1.00 | .0127/.0254 6/0 3/0 | 107%/0 | 107*/0

Table 2. Sublinear results; elliptic/hyperbolic ratios.

The authors are not happy with these numerical results in the sublinear case.
Questions as to whether solutions may not exist to the sublinear problem (related
to the overdeterminded nature of the linear problem [5,11]), or the presence of
multiple solutions (as occurs with a symmetrized verson of the problem with
Tricomi boundary conditions [3]) remain. Digital machinery cannot answer such
questions.

DFTI provides great grid latitudes. The primary pattern began at the sonic line
end and was y-swept; then z was incremented and y-sweeps were repeated to
cover the field. One can invert any pattern, yielding four choices, by changing
only two code lines.

NAD was first implemented a decade ago for Euler. NAD was planned here but
the RAM was inadequate; 192MB was required. The Tricomi/NAD equations
are easily obtained; simply integrate (10) twice again but over z:

/z (x — 2)u(z,y)dz = /zl(:c — 2)[f(2) + yOyu(z,0)]) dz=

+ Oy s(y—s)[u(=1,s) —u(z, s)] ds —sgn(u) /_zl /Oy(:c—z)(y—s)|u|p dsdz. (11)

NAD does require a third quadrature to unravel the implicit u-solution. The
only prior cited NAD applications were to Euler (1988) [9] and inviscid Burgers
[10].

Planned additions and modifications to the Tricomi solver include: 1) Replace SIM-
PLEX by NAD; 2) Utilize a finer grid; 3) Develop a Mach line tracer; 4) Consider
shock wave modeling; 5) Return to original geometry [9]; 6) Consider new sonic line
data; and 7) Utilize Romberg quadrature for arbitrary accuracy. In summary, DFT is
a robust, accurate solver of homogeneous Tricomi T'(u) = 0; but, accuracy problems
remain for the sublinear case. Possible causes are: 1) central difference error [O(107%)]
is 64 times the quadrature error due to the required aspect ratio > 4; 2) u-jump on
the sonic line may be incompatible with Tricomi. Some mystery remains.

4.1.“Micro-" Picard iteration [6], DFI’s “life blood”

This Picard modification, similar to Caratheodory iteration cited in [4], makes DFI
competitive. One iterates until converged on an interval and creates a new IVP on the
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next interval. “Micro-” Picard generates a simple solution hierarchy for DEs; coding
is simple; add a FORTRAN “DO-Loop” for each level:

1. IVP = the limit of a sequence of “mini” IVPs

2. BVP = the limit of a sequence of IVPs

3. ABVP = the asymptotic limit of a sequence of BVPs.

4.2. Some new analytical questions concerning Tricomi

1. Why is sublinear accuracy much worse than in the homogeneous case?
2. Is the square geometry incompatible with the Tricomi sublinear case?
3. Why does Tricomi exhibit great sensitivity to the “aspect ratio”?

5. Closure

These examples show DFIs breadth. DE systems yield readily to DFI; integral methods
are more compatible to digital machines. DFI has many major appeals (see [8]): 1)
NAD eliminates all derivatives; 2) Optimum machine compatibility; 3) Iterations are
often unneeded; 4) Uniqueness assured for technology [12]; 5) Multiple algorithms; 6)
Analytics near IP provide new insights; 7) “Micro”- Picard saves CPU time; 8) Easy
global and local checks; 9) Tiny FORTRAN codes: the elliptic solver has 16 lines and
hyperbolic solver has 13 lines. Validation codes are 300 and 200 lines. Total codes are
345 lines (elliptic) and 247 lines (hyperbolic) in length.

Readers are encouraged to add DFI Stages-I and -II to their tool kits. Study of
the new forms [Stage II] provides insights not obtainable any other way. These and
recent experiences with Euler, Lorenz chaos, and Burgers sharpen the dichotomy of
discrete versus continua. Recall Kipling’s (paraphrased) words:

“Discrete is discrete and continua are continua,
and never the twain shall meet” (to arbitrary accuracy).
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R.M. PEAT and A.C. McBRIDE

Multidimensional fractional integrals
on spaces of smooth functions

1. Introduction

In [1], Rubin discussed the multidimensional fractional integrals B and I¢ which
are related to the Riesz potential. In particular he showed that by making use
of expansions in terms of spherical harmonics, we can relate these operators to
the 1-dimensional Erdélyi-Kober operators which were studied by McBride in [2].
Mapping properties of the n-dimensional operators are then inherited from the cor-
responding properties of the 1-dimensional operators which are well-known.

We shall study our operators on spaces which consist of smooth functions and
are n-dimensional analogues of the test function spaces Fj , -(R4) introduced by
McBride and Spratt in [2] and [3]. These spaces provide an appropriate setting for
the study of such operators.

Notation. N is the set of all non-negative integers. R (respectively R, ) is the set
of all real numbers (respectively all positive real numbers). R" = {& = (z1,...,2,) :

zjeRforj=1,...,n}. R" = R" \ {0}. We denote by 3, the unit sphere given by
Y ={x eR": || =1} and |Z| = 27™/2/T'(n/2) is the surface area of X.

For 1 < p < oo and p1 € C we define the weighted spaces Ly, ,(R;) and L, ,, (R
by Lp,(Ry) ={f: || fllp,u < oo} where for 1 <p < oo

n

)

00 d 1/p
e = | [ 1P| ond = esssplt 0 ()

reRy

and L, ,(R") = {¢: ||¢|lp.. < 00}, where for 1 < p < oo
dr 1P
ol = | [ Nt and ol = essup e ool @)
R"™ |‘T| z€R™

The reader should note that we have used the same notation for the norms on the
- n
spaces defined on Ry and R .

2. Preliminaries

The operators that we shall study are n-dimensional analogues of 1-dimensional op-
erators associated with the Mellin transform. We call an operator a Mellin multiplier
transform if it satisfies the relation

[(M(Tf)](s) = m(s)(Mf)(s) (3)
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where f is a suitable function defined on the positive half-line, s is a suitably re-
stricted complex number and M is the Mellin transform given by

dr

r

(M) (s) = / ) (4)

We call the function m(s) the multiplier of the operator T', and many properties
of T can be obtained by studying the multiplier m.

In order to extend this to operators defined on R" we expand functions defined
on R" in the following way.
We can write any suitable function ¢ defined on R" in the form

$(x) = ¢ (r)Y; (@) (5)
7,V
where the numbers ¢;, defined by

b1 (r) = / B(ra')Y;, (o) da’ (6)

are called the Fourier-Laplace coefficients of ¢ and are defined on R .

{Y;.(«')} is an orthonormal basis of spherical harmonics on 3. Here j € N
and v =1,...,d,(j), where d,,(j) is the dimension of the subspace of the spherical
harmonics of order j. Also, ' = x/|x| is a point of the unit sphere and |z| = r.

Finally, we introduce the spaces upon which we shall study our operators. These
spaces are subspaces of the weighted spaces L, ,(R;) and L, N(Rn) and for 1 <p <
oo and p € C are given by by

Fp o Ry ) = {f : "7 (f) < oo}

where for o = 0

) = 168 Fllpu = I 8F £lp, (7)
and .n

Fpuo(RY) ={¢: A\ (¢) < oo}
where for o = 0

AP0 () = sip D5l €N (8)
IS

Here 6§, = r(d/dr) and, for any multi-index v = (71,...,7»), the operator D,
is given by D, = rl71(017/82]* ... 0x7~) where |y| =1 + - + V. The seminorms
and norms for ¢ > 0 and o < 0 can be found in [4] and [5]. We note that the spaces

Fpu.0(Ry) and Fp,u,a(Rn) are Fréchet spaces under the topology generated by the
relevant seminorms. These spaces provide an appropriate setting for the study of
many operators which occur in applied mathematics.
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3. Erdélyi-Kober operators

The 1-dimensional operators that we shall study are homogeneous modifications of
the transforms I§; and K3, defined for Rea > 0, M > 0 and suitable functions f by

B D0 = | (M e M (g gy (9)
o Moy pMya—1,M—1
(K5uf)0) = s [ (0 =r ) (o, (10)

These operators map L, ,(Ry) into Ly, ,—yo(Ry) under appropriate conditions.

Definition 1. Let Rea > 0 and n € C. Then we define

(I £)(r) = r=M=00 I  £(r) (1)
(K3 1)) = PR gr=Me f), (12)

The operators I;” and K}, are the so-called Erdélyi-Kober operators and were

studied by McBride in [2]. We shall find it convenient to study these operators when
M = 2. The reason behind this will become clear in the next section.
We shall first give results for these operators on the spaces Ly, ,,(R4).

Theorem 2. Let1 <p<oo, u € C and Rea > 0. Then
(1) I3® is a continuous linear mapping of Ly ,(Ry) into itself provided that

Re(n +1— 11/2) > 0.
(ii) K3 is a continuous linear mapping of Ly ,(Ry) into itself provided that
Re(n + p/2) > 0.

We now exhibit the Mellin multipliers of these operators.

Theorem 3. Let f € Ly ,(R.), Rea > 0, u, n € C and let s be a suitably restricted
complex number. Then

Tin+1-—s/2)

M1 F)](s) = T(n+a+1-s/2)

(Mf)(s) (13)

with the multiplier existing if Re(n +1— p/2) > 0, and

MUEZle) = o 2 M) (14)

with the multiplier existing if Re(n + u/2) > 0.

We aim to obtain the mapping properties of these operators relative to the spaces
F, 0 (Ry). Since we are working in spaces of smooth functions we can extend the
range of admissible parameters. We do this by using analytlc continuation of the
Gamma functions in the multipliers of the operators IJ’* and KJ'® and we obtain
the following.
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Theorem 4. Let 1 <p<oo, u € C, a € C and g € R.

(i) For — Re(n+1—p/2) /&N, I is a continuous linear mapping of Fy 1.0 (R4)
into itself. If, in addition, — Re(n+a+1—pu/2) /&N, then I* is a homeomorphism
of Fyu0(Ry) onto itself and (IJ*)~1 = It~

(ii) For —Re(n+ p/2) /&N, K™ is a continuous linear mapping of Fy .0 (R4)
into itself. If, in addition, — Re(n + o + u/2) /&N, then KJ** is a homeomorphism
of Fyu0(Ry) onto itself and (K®)~1 = KJte™e,

4. Multidimensional fractional integrals

The n-dimensional operators that we shall study were discussed by Rubin in [1]
and are multidimensional modifications of the usual Riemann-Liouville fractional
integrals.

Definition 5. Let Rea > 0 and v, o = 2/(I'(«)|X]). Then for suitable functions ¢
defined on R" we define the operators BY and B by

R = (15)
e (i = Jz2)°
B = e | BTy (16)

and the operator I* by
P(y)

n o -yl

(P@wz%ﬂé (17

where ¢,,.0 = 277 2T (n — @) /2]/T(a/2), 0 < Rea < n.

We note that I is the usual Riesz potential (see [6]) and that B were in-

troduced in [1] in connection with the inversion problem for Riesz potentials in a
ball.
In the first instance we shall consider the modified operators B and ¢ where

Sp=r""Bi¢ and I% =r""I%¢. (18)

These modified operators commute with rotations and dilations and map the
- n
space L, (R ") into itself under appropriate conditions.

Theorem 6. Let1 < p<oo, Rea>0 and u € C. Then
(i) BY is bounded on Ly, (R™) provided that Rep < n.
(ii) B* is bounded on Lp,u(Rn) provided that Re(pu — 2a) > 0.
(iii) If Rea < Rep < n then I¢ is bounded on Lp,u(Rn) and the following

- n

factorisation holds for ¢ € L, ,(R"):
T%¢ = 27°BY°B*?¢ = 27 B*/* B¢ (19)
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To obtain the mapping properties of these operators relative to the spaces

Fp,u,a(Rn) we need to find an explicit form for the Fourier-Laplace coefficients of
B+. In [1], Rubin proved that (B ¢);,, and (B%¢);, have the form

(BEg)j, = I TI/2 0oy, (20)
(B2¢)s0 = K327, .. (21)

We now see how our multidimensional fractional integrals are related to the
Erdélyi-Kober operators presented in the previous section. In particular we can use
Theorem 4 and equation (19) to obtain the following results.

Theorem 7. Let 1 <p<oo,a€C, o0 €R and u€ C. Then

(i) BY is a continuous linear mapping of Fp,u,a(Rn) into itself if Repu — n /eN.

If also Re(p — 2a) —n /&N, then B is a homeomorphism of Fp,u,a(Rn) onto itself.
- n

(ii) B is a continuous linear mapping of Fp 4 (R ) into itself if Re(2ac—p) /&N.

If, in addition, — Re u /&N, then B* is a homeomorphism of Fp,u,a(Rn) onto itself.

(iii) Z¢ is a continuous linear mapping of Fp,u,a(Rn) into itself if Re(a— ) /&N
and Re(p — n) /&N. If, in addition, Re(u — o — n) /&N and — Rep /&N, then I¢ is

a homeomorphism of Fp,u,a(Rn) onto itself.

We are now in a position to study the original operators B} and I¢.

Definition 8. For 1 < p < 00, « € C and p € C such that Rey — n /EN and
Re(a — ) /&N, define B and I* on Fp,u,a(Rn) by

B} =r**BY and I* = r*I°. (23)

- n - n

The above definition and the fact that r* maps F), , -(R") onto F, ,_ ,(R")
leads us to the following result.

Theorem 9. Let1 <p<oo, a € C and u € C. Then
(i) BY is a continuous linear mapping of Fp,u,a(Rn) into Fp,u_ga,a(Rn) if Re p—
n /&N. If also Re(u — 2a)) —n /&N then B is a homeomorphism of Fp,u,a(Rn) onto

Fp,u_Qa,a(Rn) with inverse B_*.

(ii) B% is a continuous linear mapping of Fp,u,a(Rn) into Fp,’u_ga,a(Rn) if
X0

Re(2ac — p) /EN. If also —Rep /eEN then BE is a homeomorphism of Fp, (R )

onto Fy 4—20.0 R") with inverse B=°.
p?/"" b

(iii) 1% is a continuous linear mapping opr,u,a(Rn) into Fp,u_a,a(Rn) if Re(p—
n) /&N and Re(a — ) /N. If also Re(up — o —n) /&N and —Rep /N then I is a

homeomorphism of Fp,u,a(Rn) onto Fp,u_a,a(Rn) with inverse 1%,
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The corresponding theory for the adjoints of the operators B and I relative to

the dual spaces F}, W,(Rn) can be obtained and used to find distributional solutions

of equations in potential theory. This work will be presented in a future paper.
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A. PEDAS and G. VAINIKKO

Piecewise polynomial projection methods
for nonlinear multidimensional
weakly singular integral equations

1. Introduction

Second kind Fredholm integral equations with weakly singular kernels typically have
solutions which are nonsmooth near the boundary of integration. In this paper, on the
basis of certain regularity properties of the exact solution, the piecewise polynomial
collocation and Galerkin methods on graded grids are discussed to solve nonlinear
multidimensional weakly singular integral equations. The superconvergence effect at
collocation points for the collocation method is studied (Section 3) and global conver-
gence estimates for Galerkin approximations are derived (Section 4).

2. Integral equation

We consider the nonlinear integral equation

/Ka:y, Ny + f(z), x€G, (1)

where G = {(z xp) 0 < ap < by, k=1,...,n} C R" is an n-dimensional
parallelepiped. We shall make the following assumptlons (A1)-(A3).

(A1) The kernel K(x,y,u) is m times (m > 1) continuously differentiable with
respect to x,y and u for x,y € G, x # y, u € IR, whereby there exists a real number
v € (—oo,n) such that, for any nonnegative integer { € Z; and multi-indices o =
(a1,...,an) € Z and B = (B1,...,5Bs) € Z7L with I + |a + || < m, the following
estimates hold:

|DaDz+y (6/6u)l K(a:,y, u)| < ¢1(|u|)7',,+|a|(|a: - y|) ) (2)

|DaDz+y (6/6u)l K(:U,y, ul) DaDz—i—y (6/6u)l K(:U,y, u2)|
< p(max{|uil, [uz[})|ur — u2|Totiel(J2 — y)).

(3)
Here || =g + ...+, for a € 27, |2 = (22 + ...+ 22)3 for z € R”,
= (8/8x))™ ---(8/8x,)*", DBy, = (8/dxy+8/dy)" -+ (8B, + /Dy,

1 for s <0
Ts(t) =< 1+ |logt| fors=0 (s,teR, t>0), (4)
t=° for s > 0

and the functions ¢4:[0,00) — [0,00) and 9: [0,00) — [0,00) are assumed to be
monotonically increasing.

This investigation was partly supported by the Estonian Science Foundation (Grant No. 2999).
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(A2) f € C"™"(G). The space C™"((G) is defined as the collection of all m times
continuously differentiable functions u: G — IR such that the estimates

D2u(@)] < enanin(p(@),  |(0/0m) u(@)| < i (pi(3)),
hold for z € G, || < m, [ = ,m; k =1,...,n, where ¢ and ¢ are positive
constants, pr(x ) = mln{a:k,bk a:k} k= 1,...,n, and p(x) = minj<k<, pr(x) is the

distance from « to 0G, the boundary of G. Note that C™(G) c C™(G).
(A3) Equation (1) has a solution uy € L*(G) and the linearized integral equation

/ Ko(e,y)ody,  Kole,y) = DK (@,y,0)/0]myyy)

has only the trivial solution v = 0 in L>(G).

Remark 1. The assumption (Al) holds, for example, for the kernels K(z,y,u) =
K a:,y,ug|a: —y|™ (0 <v<n)and K(z,y,u) = Ki(z,y,u) log |x —y| (v = 0) where
Ki(x,y,u) is am—+ 1 times continuously differentiable function with respect to x,y, u
for z,y € G, u € R.

Remark 2. From (A1)-(A3) it follows that, for the solution ug € L>(G) of (1), we
actually have uo € C"™"(G) [4].

3. Collocation method

To define the partition of G = {(z1,...,%,) : 0 <xp < by, k=1,...,n} into cells we
choose a vector N = (N, ..., N,) of natural numbers Ny, ..., N, and introduce in each
of intervals [0, ], k = 1,. .., n, the following 2N, +1 grid points 7}, v, 1= 0,1,...,2Ny:

ah oy = (bk/2) (i/Ni)", i=0,1,..., Ny xﬁl;\,“:bk xﬁf;\/, i=1,...,Np. (5)

Here r € R, r > 1, characterizes the non-uniformity of the grid. If r = 1 then
the grid points (5) are uniformly located. Using (5) we introduce the partition of G
into closed cells G377 = {(x1,...,x,) : a:k;,l <ap < apty, k=1,...,n} C G,
jkzl,...,QNk, kzl,...,n.

We determine the collocation points in following way. Choose m points n1,...,1m,
in the interval [-1,1]: -1 < < ... < 1, < 1. By affine transformations we
transfer them into the interval [a:kN , Ty, N} (Gp=1,...,2Ni; k= 1,...,n): f{c’jj\?’“ =

iyt + (g, + Diadty — al*y")/2, ¢ =1,...,m. We assign the collocation points

( {jﬁl,...,gﬂ"’qn) ., Jk=1,...,2Nx; q=1,....,m; k=1,....,n, (6)
to the cells G4»7*. To a continuous function u : G — IR we introduce a piecewise

polynomial interpolation function Pyu : G — IR as follows: 1) on every cell Gg\l,""’j"
(jk = 1,...,2Np; k = 1,...,n) (Pyu)(x1,...,2,) is a polynomial of degree not ex-

ceeding m — 1 with respect to any of arguments x1,...,z,; 2) Pyu interpolates u
at points (6). Thus, the interpolation function Pyu is uniquely defined in every cell
separately and may have jumps on the hyperplains xx = xf v, @ = 1,...,2N; — 15
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k=1,...,n. We may treat Pyu as a multivalued function on these hyperplanes. In
the case m; = —1, n,, = 1, Pyu is a continuous function on G.

Let us denote by En the range of the operator Py. This is a finite dimensional
space of all functions uy € L*(G) that are polynomials of degree< m — 1 with
respect to any of arguments 1, ...,, on each of cells GR"7* C G (jr, = 1,...,2N;
k=1,...,n). If ;3 > —1 or n,,, < 1 then the dimension of Ey is (2m)"Ny---N,. If
m = —1, 9, = 1, then dim By = 2Ny (m — 1)+ 1) --- (2N,,(m — 1) + 1).

We look for an approximate solution uy € Ey to integral equation (1) determing
it from the following conditions:

o) = [ K yuntdy = 1@, =0, .

G
r=1,...,2Ny; ppr=1,....m; k=1,....n

We obtain a system of algebraic equations from (7) choosing a basis for Ey. For
instance, we can present uy € Fy in the form

un (@1, @) = D0 D0 D D IRl (@) el (@) (8)

where N
m T, — Tkt
Jie ks HH’ I-lch <$k<$
Ont (o) = o (& 94 ) (9)
0, otherwise

forgr=1,...,m; jr =1,...,2Ny; k = 1,...,n. Now the collocation conditions (7)
will take a form of a (nonhnear) system which determines the coefficients {cfian

It is shown in [4] how to choose the scaling parameter r in (5) so that the method
(7) might have the best convergence rate in supremum-norm on conditions (A1)-(A3):

m
if n—v<
sup |un(z) — ug(x)| < const ki for TP n—y M nTvEm , (10)
e r>1 it n—v>m
where
hy = max{b;/N1,...,b,/Ny,}. (11)

The following theorem shows how to choose r and collocation points so that for this
method the superconvergence phenomenon at collocation points would take place.

Theorem 1. Let assumption (A3) and the following conditions be fulfilled.

(A1’) The kernel K(z,y,u) and K(z,y,u) = 0K (z,y,u)/du are m + p+ 1 times
(0 < u < m —1) continuously differentiable with respect to x,y and u for x,y € G,
x #y, u € R, whereby there exists a real number v € (—o0o n) such that K(a: Y, u )

and K (z,y,u) satisfy (2) and (3) for |o| + |B| +1 <m+ p+ 1.
(A2) f € Cmtutiy (),
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(A4) The scaling parameter r = r(m,n,v,u) in (5) satisfies the following condi-
tions:

r>m/(n—v), r>m+n—-v)/n—v+1) if n—v<pu+l;
r>m/n—v), r>m+p+1)/(n—v+1) if p+1<n-v<m
r>1 r>m+pu+l)/(n—v+1l) if m<n-—v.

(A5) The collocation points (6) are generated by the nodes ny, ..., 0y, of a quadra-
ture formula

1 m
[9@de~ Y wgln),  —1<m<..<na<l,
—1 ¢=1

which is exact for all polynomials of degree m 4+, 0 < pup < m — 1.

Then there exist Np (k = 1,...,n) and & > 0 such that, for Ny > NP (k =
1,...,n), the collocation method (7) determines a unique approzimation uy € Ey to
ug satisfying |[ux — uol||z(e) < 8. The following estimate holds:

en < const WP 1w n(hn) + B, (ha)], (12)
where
&N = Je=1,...,m; qklillé?.}.(.,m; k=1,...,n |UN($) N uo(aj)|z=(§{,11y\?1""’£i7f\?n)

and hy and 14(t) are defined in (11) and (4), respectively.

Proof. We outline the basic idea on which the proof will be based (cf. [1,3]). Let
up € L*(G) be a solution to the equation (1). The hypoteses (Al’) and (A2’) for K
and f imply that ug € C™T#T1¥(@G) (see Remark 2). Further, we have (see [4, p.144]),

ex < crsup Pyug)(y) — uo(y)ldy| + eallug — Pyuoll7ay, (13)

zeG

‘/3K(iv,gz;%(y)) (
el

where ¢; and ¢, are positive constants not depending on N (on hy). The second term
on the right in the last inequality can be estimated on the basis of Lemma 7.2 in [4, p.
116]: due to uy € C"™HHH(G) and (Ad), [lug — Pyuol|Fe gy < e3h¥", c3 = const > 0.
To establish the estimate (12) we have to prove that the first term on the right in the
inequality (13) can be estimated by csh2[hat Tut1v—n(hn) + %7 (ha)], ¢4 = const >
0. This can be done on the basis of properties of uy € C™**1¥(@3) and assumptions
(A1%) and (A5). We refer to [3] for details. O

Remark 3. If u+ 1 <n or if v > 0 then under conditions of Theorem 1,

en < const A (hy) . (14)

Theorem 2. [3] Let the conditions of Theorem 1 be fulfilled. We assume additionally
that v <0, u+1>n and for || < min{pu+1-n,—v}, 0 <k <min{p+1-—n,—v},
the derivatives D3O* K (x,y,u)/0u™t are bounded and continuous on Gx G x (—p, p)
with any p > 0, including the diagonal x =y. Then the error estimate (14) holds.
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Corollary. Under the conditions of Theorem 1, the iterated approzimation iy (x) =
Jo K (2,9, ux(y))dy + f(z), @ € G, satisfies

sup lan (x) — up(x)| < const h%[h“NﬂTuHJﬂ,_n(hN) + W31 (hy))-
zeG

Under the conditions of Theorem 2,

sup |y () — uo(z)| < const R ().
zeG

4. Galerkin method

Let (-,-) denote the inner product for L*(G) and let T be the integral operator in
equation (1): (Tu)(z) = [z K(x,y,u(y))dy. We look for an approximate solution uy €
En (see Section 2) to equation (1) determing it now from the following conditions:

(UN —Tuy — f, ’UN) =0 Yoy € En. (15)

Choosing a basis for Ey, we obtain from (15) a system of algebraic equations. In
particular, we may use the Lagrange functions (9).
Theorem 3. Assume (A1)-(A3) and let the grid points (5) be used.

Then there exist N (k=1,...,n) and & such that, for Ny > N (k=1,...,n),

the conditions (15) determme a umque approximation uy € Ey to the solution uo of
equation (1) satisfying ||uy — uo||r=() < 6o. The following error estimates hold:

if m<n-—v then sup|un(x) —uo(x)| < c by for any r > 1; (16)
G
if m=mn—v then sup lunx(x) —up(z)| < ¢ Z%(l-i_“()ghND’ r=1 ;o (1)
zeG N> r>1
: B 1< r <m/(n—v)
_ - < N ’ = = (18
if m>n—v then ilelgm]v(a:) uo(a:)|_c{ n r>m/(n —v) (18)

Here r is the parameter characterizing the nonuniformity of the grid (5), hy is defined
in (11) and the constant ¢ is independent of N (of hy ).

Proof. We consider (1) as the equation u = Tu + f in the space L*(G). Let
ug € L™(G) be a solution to this equation. Due to Remark 2, ug € C™(G). Let
Qn : L*(G) — Ex be the orthogonal projection of L*(G) onto Ey, which we will also
regard as a projection operator on L*(G) to Ex. With Qu, we can rewrite (15) as
uy = QnTun + Qn f. Further, we can check that the operators T : L*(G) — L*(G)
and Q, T : L>®(G) — L*™(G) satisfy the conditions (i)—(v) of a general convergence
theorem in [4, p.58], where E = E, = L*(G), h = hy, pr = Qn, T, = QT and
frn = Qn/f. Therefore (see [4, p.58]), there exist N > 0 (k= 1,...,n) and &, > 0 such
that, for Ny, > N (k= 1,...,n), equation uy = QnTuy+Qn [ has a unique solution
uy € Ey satlsfymg ||uN — u0||Loo(G < & and ||luny — uol|z=(@) < ¢ ||uo — @nuollz=(@),

where the constant ¢ is independent of N. Let Py denote the interpolation operator,
introduced in Section 2. Then uy — Qnup = ug — Pyup + Qn(Pyug — up). Now, using
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the corresponding estimates for || Pyug — ||z () from [4, p.115], and the uniformly

boundedness of Qy, ||[@n|| < const, where ||Qy|| denotes the norm of Qx when it is
regarded as an operator on L>(G) to L>*(G), we obtain the estimates (16)-(18). O

Theorem 4. Let the conditions of Theorem 3 be fulfilled with ;(t) = ¢ + cot?P™!
(1 =1,2;t € [0,00);6 —1,¢0 = const where 1 < p < n/v in the case 0 < v < n and
1 < p < o0 in the case v < 0. Assume that the scaling parameter r = r(m,n,v,p
is chosen as follows: v > 14ifm <n—-—v+(1/p) andr > m/(n —v + (1/p))

m >n—v+ (1/p). Then for the Galerkin approzimation uy we have

||UN — UO”LP(G) S Ch% (19)

Proof. In analogy to the proof of Theorem 3, the proof of (19) is based on the
corresponding estimates for ||ug — Pyuo||zr(q) from [4, p. 115] (1 <p < 00). O
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O.G. RUEHR and B.S. BERTRAM

Asymptotics and inequalities
for a class of infinite sums

1. Introduction

We begin by defining, for 26 —1 > a >0 and z > 0,

,,,LOL

This sum is a generalization of one encountered in an extension of Mathieu’s inequality
[1], where, in particular, the inequality S*(1,2) > S(1,3) was stated as an unproved
lemma. Later, two proofs of the lemma were given in [2]. Our goal is to establish the
asymptotic behavior for large, positive x of S(«, 3). As a byproduct we will discover a
generalization of the Alzer-Brenner inequality, namely, (3 — 1)S%(1,8) > S(1,26 - 1).
Finally, we present a general criterion for inequalities of this type.

2. Asymptotics for S for large x

We use a simple Laplace transform to obtain the representation

oo +8—1 e—zt
(o) = [t )
where
Ro(t) = Zlnae_"zt (3)

We will give two derivations for the algebraic terms in the asymptotic behavior of R,
ast — 0T,

NGy T
R, (t) =~ 2~ — 2sin(—
)~ G 2 %

(25 +a+ 12 +a+1) A
jl(2m)2tetl ‘ @)

Term by term integration then yields, for S:

Theorem 1. We have
(et (3 — etl

CMP -2 a2y
T(B)a~"5 2755

Here also we are ignoring terms which are exponentially small as x — oc.

I'(2f +a+ DI+ 5)¢(25 +a+1)
j!(2ﬂ-)2j+a+1]_"(ﬁ)ajﬂ+j

So5() =~

[\)

(5)
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3. Transform method for R, asymptotics

Calculate the Mellin transform of R, term-by-term as follows:

_ oo or
Rals) = [t R0 = 3 )~ De)c(2s - o). ©)
0 Sion
We invert the transform using the standard contour
Ra( T'(s)¢(2s — 7
=5 /t s — a)ds. (7)

Taking account of the poles of the gamma function and that of the zeta function, we
obtain formally o
(=18 ¢(—a — 2j)

2t_ §>0 .7'

(8)

It is important to note that by ignoring the integral on part of the contour we are not
getting the exponentially small terms in the asymptotic expansion. Finally, with the
aid of the reflection formula for the zeta function, [4, p. 19|

4

((1-2)= 2(27r)_ZF(z)C(z)cos(7), (9)
we have
Gy .o —PT(2j+a+1)¢(2) + a+ 1)
R, (t) ~ v 28111(7)% T@n )t : (10)

4. R, asymptotics using an identity
We begin by quoting an identity of Euler

\/7 Z —n 7’I‘2/t (11)
and its generalization, which we re-discovered, (see [2],[3]),

. 2 o 22
5 |n|2ﬁ€—ntzw > RB+1/21/2 ) (12)

n=—oo n=—oo

We outline our proof of (12) as follows.
Define the Weyl fractional integral operator [5, p.201], by

L{B}/F dT)a.

Then we have, with appropriate restrictions, the following results:

Lo{e ™™} =z %™ [5, p. 202 (11)] (13)
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I(p — o)t ?
I'(p)
The generalization can be established with the aid of these identities and an appeal to
analytic continuation. Use (13) on the left side of (11) (z = n?) and use (14) on the
right side of (11) (z = n?x* p = 1/2). Then simplify and take o = —f (by analytic

continuation) to get (12
Rearranging (12) yields
r(etd o -l- 1 —n?r?
ra(t) = S 4 S i s (15)

t2 t

Lo{t e %) = Bilp-asp -] [5,p.203(15)]  (14)

Now insert the well-known algebraic asymptotic behavior of the confluent hyper-
geometric functions, [4, p. 289],

')

F « e ~ - -
1Fle; e —2) I'(c — a)z®

oFp(a,a —c+1;1/2) (16)
Interchanging the order of summation, identifying the Riemann zeta function, and sim-

plifying the various factorial functions, we obtain again the result (10) of the previous
paragraph.

5. A one-parameter generalization of the Alzer-Brenner inequality

Taking o« = 1 and looking at the first term of the asymptotic expansion we attempt
to extend the Alzer-Brenner inequality, S*(1,2) > S(1,3). Clearly we must compare
S%(1,8) with S(1,28 — 1). In order that the dominant terms on both sides coincide,
as * — 0o, we need the factor 8 — 1. This yields the conjecture, (3 — 1)5%(1,5) >
S(1,28 - 1), i.e

Theorem 2. We have

(ﬁ—l)[Z .

n
| > v
= (n? + a:)ﬂ = Z (n? _l_aj)zﬁ—l

n>1

Proof. We will outline a proof subject to the validity of a simple lemma that we have
not yet established. From the integral representation (2), we can write the inequality
as A > 0 where

A =T(BT(B - 1)[(8 - 1)SH(1,8) - 51,28 - 1) 17
= /OOO 771 R, (t)dt /OOO $PIR (s)e M ds — Q /OOO w2 Ry (w)e ™ dw
where I‘(
— B—
@= 25 - 1) / 71— o).

Letting s+t = w in the first pair of integrals and interchanging the order of integration
we get, with a change of scale t — wt, the following representation

A= / —w, 262 / (1 —)]7~2{wt(1— £) Ry (wt) Ry (w(1 — 1)) — ¢ Ry (w) }dtdw. (18)
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We pause to note that it would be sufficient that the bracketed quantity be non-
negative. However, since Rj(w) ~ 1/2w (as w — 07), we get, for the bracket, the
approximation 1/4w — t/2w, which fails. We remedy this situation as follows. Em-
ploying the symmetry in the inner integral, we replace t by 1 — ¢t and add this result
to the original integral and multiply by two to get

4A :/OOO e"”www—?’/ol[t(l — )P 2 {4w?t(1 — t) Ry (wt) Ry (w(1 — t)) — 2wRy (w) }dtdw

(19)
Defining F(z) = 2zR;(x), we see that it is sufficient for our proof to establish the
following:

Lemma 1. For 0 <t <1 and for x > 0,

F(xt)Flz(1 —t)] > F(z). (20)

Fig. 1. Evidence for Lemma 1.

From considerable numerical evidence, as indicated in Figure 1. (where for fixed ¢,
y = F(xt)F(x(1—t)— F(x)), we have no doubt that the lemma is true. It is useful to
recall that, from previous sections, we have the (divergent) asymptotic expansion for

F(z) asz — 0%,

Flz)~1->)_ |B2n|2—7;. (21)

n>1

(Here we are using the familiar formula for {(2n), [4, p. 19] together with the expansion
obtained previously (4).)
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6. General integral representation for Alzer-Brenner type inequalities

The inequalities we seek have the pattern S(w,3)* > @QS(a,b). In order that @ be
constant and that the inequality should hold as  — oo, we require that

b=28—a+ -

: (22)

DO =

and
T2(&)12 (3 — 22)0(h)
2T2(B)T (28 — oo — 1T(%2)

Following the procedure used in the previous section we can write

Q=

(23)

[es) 1
T(8)S(a, B)]2 = / w1 / [#(1 — )P Ro(wt) Ra(w(1 — t))dtdw.  (24)
0 0
To simplify the notation we introduce the definitions

Fu(x) = 2(—R)() (25)

G(a,a,z,t) = Fy(at)F,(x(1 —t)) — F,(x). (26)

Omitting details, we obtain, finally, the representation

S2(a, B) — QS(a,b) = lmf)r /Omww—a—?e—w /Ol(t(1—t))ﬂ—%—%a(a,a,w,t)dtdw.

2I(8)

(27)
For those values of a and a (and, of course, w 2 0 and 0 < ¢t < 1) for which G is
non-negative, we obtain the inequality S*(a, 8) > QS(a,b), b and Q as defined above.

To summarize, we state the following

Lemma 2. for0<t<1landxz >0
Fo(xt)F,(x(1 —t)) — Fy(x) >0 (28)

where

Fo(x) (=) Z i (29)

Preliminary computations indicate that the lemma is true for some pairs (o, a) and
false for others. In this connection, it is appropriate to examine prospective inequalities
near x = 0 (as opposed to x near infinity). For « = 0, S(e, 8) = {(28 — «), so that
from Theorem 2 we would deduce (8 —1)¢*(28 —1) > ((48 — 3). Note that this result
follows from Lemma 1 and is entirely consistent with the behavior of the zeta function
near its pole. More generally, we would have

¢*(26 - @) > QC(48 - 2a - 1). (30)
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Whenever equation (30) fails to be true, so must Lemma 2 for the same parameter
values. While a study of this circumstance is incomplete at this writing, it appears
that (30) is false when a and « are equal and between zero and one-half. In conclusion,
we have both Lemma 2 and (30) to aid in the construction of possible inequalities of
the Alzer-Brenner type.
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C. SAMOILA, R. TEODORESCU and D. CENTEA

A new theorem concerning
the Buckingham Rayleigh methods
and general dimensional analysis

1. Fundamental theorem of dimensional analysis (D.A.)

Considering any quantity, say G, in the units: length L, mass M, time T, we can write:

Let us now consider two states Giand Gy of the quantity G:
g1 = f(l1,m1,t1) and g2 = f(l2,mo, t2). (2)

The exchanges of the measure units with the factor attached: A, u, 7, made as two
state functions become:

g/1 = f(Aly, wmq, Ttq) and g/2 = f(Aly, wma, Tts). (3)

The rapport of state functions, it is evident, is constant, because there is, indepen-
dent of the units system accepted:

2 _ g_/l f(llvmlvtl) _ f(/\llvﬂmlthl) _ (4)
g2 gy [f(layma,ta) [N, umo, Tt2)

Therefore, in general,
f(l,m,t)

It is clear that permuting the symbols I, m, t and A, u, 7 respectively, will in no
way affect the first member of (5) and hence

= KA p,7). (5)

f(l,m,t)'K(/\,/L,T) Ef(/\,/L,T)'K(l,m,t), (6)
. fmt) 07
? m? ) /"L7 T
= = t=u. 7
K(mt) - Kowr) 0 g
As a consequence, (5) becomes:
1
f(/\l,ﬂm,Tt)Ef(l,m,t)Ef(/\,/L,T) (8)
Langhaar demonstrated that a conventional unity value can be assumed for z,
hence
FQAL pm, 7t) = f(L,m, ) - f(A p, 7). (9)
For simplicity, only the derivation with respect to “I” will be considered:
of du Of du
%(/\lvﬂmth)E _%(lvmvt)ﬁf(/\vﬂvT)v (10)
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where Al = u for the first member and | = u for the second member. Multiplying
relation (10) by “I”, in both members and taking account of (9) we have successively

_ f(N, pm, T1)
fOmm) = fll,m,t) ’
of of
'l = [y 2L ) 11
(- 52) O, 70) = (s 5} ) 10, (1)
u Of u Of
. =[=.== 12
u Of
— .2 = =lg. 1
7 Ba const = lg (13)
Separating variables and integrating, (C is an integration constant) we obtain
of ou
—lg.— 14
Inf=Clg-lnuor f=0C; - u'®. (15)

Proceeding similarly for variables m and t, we get the complete shape of the function
f=Cp-1%-m™ .19, (16)

2. Rayleigh’s method

Applied in 1899 for studying one problem of heat transfer, Rayleigh’s method settled
functional dependence between a dependent quantity P and independent variables
which influenced them, expressed by:

P=F(AB,C,..,MN,..). (17)

Function “F” is developed into an infinite series with respect to the powers of the
independent variables, as follows:

P=) K;-A".-B".C% . ,-M™.N" . (18)
from which, Rayleigh keeps consideration of only one product of powers, because all
terms of the infinite series should have the same dimensionality, namely that of the

physical quantity P:
P=K-A*-B*.C°..M™-N".. (19)

either a product of powers, or under similitude criteria product of powers:

=K. 1k (20)
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3. Buckingham’s method (7 theorem)

Let us consider the same physical phenomena, as in Rayleigh’s method (17). This
relation must be independent of choice of the measurement unit’s de. If, for example,
A and B are fundamental physical quantities of the unit system adopted, the other
quantities from equation (17) are derived, and can be expressed, in terms of A and B,
in accord with the dimensional matrix, as follows:

P C D... M N...
Al a, ¢ ag . . - A Qp - . - (21)
B|b, be bg. .. bn b, . ..

On the base of matrix (21) new non-dimensional quantities for all these secondary
quantities are defined:

P C D M

p=——+; llp=——; lIp=—-—-—+; Illy=—-——.
P Aap . Bbp7 ¢ Aac . Bbc7 D Aad . Bbd7 M Aam . Bbm

(22)

Replacing these secondary quantities in (17) by the new dimensionless ones (22), we
have
Ip :f(A7B7HC7Hd7"'7HM7H’n7"‘)‘ (23)

The change of measurement units A and B, to A’ and B’ does not modify dimen-
sionless II and relation (23) becomes:

Mp = f(A, B 1, 1y,... 0,1, ..). (24)

Therefore we find that quantities A, B, can take any value, while II., I, ..., IL, II,,, ...
do not change. Relation (23) is therefore independent of A and B, and can be written:

Hp = @(HC,Hd,...,Hm,Hn,...). (25)

4. General dimensional analysis

C.I. Staicu started from the findings of the Rayleigh and Buckingham methods, which
need laborious experiments for identification of the numerical values of the exponents
and of the proportionality constant value. Staicu proposed to determine values for all
exponents through calculation and to determine the proportionality constant, based
on experimental data.

For the same physical phenomenon (17), dimensional analysis imposes

fi(tM,N,P,...)= fa(A B,C,...) (26)
and the final relation:
A% . BhLCe.
P =R N (27)

This paper tries to demonstrate the compatibility of the Rayleigh, Buckingham, and
general dimensional (G.D.A.) methods.
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5. Background expositions

Consider the pushing force of a ship’s propeller, expressed in accordance with (16), as
a product of powers:

Q =K. pz1 R VLI B2 gzs . 77Z6 (28)

where Q is the thrust of the propeller, [Kg-m/s?]; p- water density [Kg/m?]; V- ship

speed, [m/s|; d— propeller diameter [m]; n— propeller rotation, [1/s|; g-gravitational

acceleration, [m/s?]; 7-dynamic viscosity, [Kg/ms]; K - constant of proportionality.
The dimensional equation of (28) will be:

K . K zZ1 z2 1 z4 z5 K z6
s Il o B o B B B e R
52 m3 s s 52 m-s
and dimensional homogeneous conditions become:
21 + <6 = 17
—3Z1 + 20+ 23+ 25 — 2 = 1, (30)
—29 — 24 — 225 — 2g = —2.

Having six unknowns and only three equations, system (30) yields arbitrary election
for three of the quantities:

Z1:1—Z6,
Z3:4—Z2—Z5—2Z6, (31)
24 =2 — 29— 225 — 5.

With solutions (31), equation (28) takes the form:

e [ ] ] 2

Solution (32) shows the existence of four non-dimensional complexes, of magnitude
exponents: z1, zs, zg, and of a proportionality constant K, all being, unknowns.
The same example, using the II theorem, starts from the implicit

¢lQ,p,V,d,n,g,mn =0. (33)

If the number of variables is x = 7, and if the S.I. system of measurement units
is utilized, fundamental units are M, L, T, (k=3). From the II theorem, we get:
x —k = 4 non-dimensional complexes. Changing the fundamental units: L/L/, M/M/,
T/T', equation (33) becomes:

ML M L 1 M L
V= d'Ll,TL- ﬁ?ﬂﬁ?gﬁ

@ QT,Pﬁ, T =0. (34)

Because function (33) is independent of the given fundamental measurement units, we
can try this elimination by expressing others as a function of three selected, namely,
p, d, n:

M 1
s =1 d -
I3

P
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A | r_ r_ 1
From here: L' = 5, T"=n, M =& and

Q |4 Ui g
— 1. 1.1 35
SD p-d4-n2, Y Y ,n-d,p-dz-n,d-nz ( )
From G.D.A. we find that
At -n®-p? Q" =K -V».g%.p%, (36)

With the same three fundamental measurement units M, N, T, the dimensional matrix
of (36) will be:

Q p VD n g 7
L1 3 1 1 0 1 -1
M|[1 1 0 0 0 0 1
T2 0 -1 0 -1 2 -1

The condition of dimensional homogeneity of (36) requires that

Zy— 325 — Zs+ 2y — Z+ Zr = 0,
Za+ 23— Z7 =0, (38)
—2Z4+ Zs — Zo + 276 + Z7 = 0.

We present eight solutions, in integers, whose exponents have acceptable values:

Din|p|Q|V]Ng|7
2y | 2o |23 |24 | Zs | ZLs | 21
Ri| 3|41 |1 ]|2]|1]2
Ro| 1 | 3|1 |1 ]|1]|1]2
Ryl 1|31 |2]|2]|1]3
Ral 4 | 4|21 ]1]1]3 (39)
Rs| 23|22 |1]1]|4
Rg| 34|22 ]|2]|1]|4
Rl 1312|132 ]|1]5
Re| 4 | 4|32 115
Employing R4 in accordance with G.D.A., we obtain from (36)
dt-nt-pt Q=K -V'-g' -7, (40)
from which the pushing force of a propeller results:
V . g . /’73
Q=K (41)

Does this difference of expression cause us to suspect (41)? To answer this question,
we note that from (32) and (35) we have

Q 14 g

M =—72—; Ih=—:7 I
1 p-d4-n27 2 ’]’L'd’ 3

Ui
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It will be seen that the fact that in these non— dimensional complexes, besides se-
lected fundamental quantities: p, d, n, the other variables enter only one time namely:
Qin Il ,vinIl,, g in II3 and 7 in II4. These variables will be called “non—fundamental”;
their roll in obtaining a demanded answer being illustrated by the following

Theorem. Non-dimensional complexes reduced through restricted dimensional analy-
sis (Rayleigh’s and Buckingham’s methods) distributed directly or inversely propor-
tional to the dependent variable (according to the distribution of non-fundamental
quantities) and raised to the appropriate powers of the same quantities, yields a solu-
tions matrix in conformity with the G.D.A. method. This leads to functional relations
identical to those established through G.D.A.

Applying this theorem to example (28) we obtain for the non-dimensional complex
(42) the power—product function:

I = K - 13 - T - IT, (43)

in which the non—fundamental quantity QQ from II; has exponent Z, =1, V from II, has
exponent Zs=1, g from II3 has exponent Zg, and 7 from Il has exponent Z;=3. There-
fore we have to keep in account the distribution of these non—fundamental quantities
in connection with the dependent quantity Q, concordant with relation (36).

In accordance with the enunciated theorem, relations (41) and (43) must be iden-
tical. Replacing non-dimensional complexes (42) in (43) and simplifying yields

Q 1% g 7 Vg

- K. . . =K—— 44
p-dt-n? n-d d-n* p3-dS-n3’ @ nt - d4 - p?’ (44)

as required.

Faculty of Science of Materials, “Transilvania” University , Brasov, Romania;
e-mail: csam@unitbv.ro
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V.Al. SAVA

Energy decay for a weak solution
of the non-Newtonian fluid equations
with slowly varying external forces

1. Introduction

We are concerned with the asymptotic behaviour of weak solutions to the system of
equations governing the flow of a non-Newtonian fluid [10], [11]

ov I(Av)
—_ -Vv=-V Av + k
gt TV VY TVP VAV ==, (1)
V-v=0, int>0, x€ R?
v(0,x) =v%(x), x€ R (2)

where
v =v(x,t) = (v1(x,1),v2(x,t),v3(x,t)) and p=p(x,t)

denote unknown velocity vector and pressure at point (x,t) € IR? x (0, 00), while

vl =v2(x) = (v](x),v3(x),v3(x)) and f=1(x,1) = (fi(x,1), f2(x,1), f3(x, 1))

are given initial velocity and external force. The material coefficients v and k are
constants and positive.

We shall discuss the energy decay problem of the weak solution to (1) and (2):
|v(t)]|2 — 0 as t — oo. Detailed studies on the initial-boundary value problem for
the equations (1) have been given in [2] and [3].

In this paper, we first extend these results to more general external forces and es-
tablish non-uniform decay. For that purpose, we construct a weak solution which sat-
isfies a generalized energy inequality (see Theorem 3). The Fourier splitting method
([4], [5]) combined with an argument due to Masuda [6] on the generalized energy
inequality for Navier-Stokes equations, yields non-uniform decay.

Throughout this paper, the following notations will be used. Let £2(IR?) and
H3(IR?) denote the completions of C§° (C$° functions with divergence free) in the
L?(IR?)-norm || - ||2 and the Dirichlet (homogeneous H') norm ||V - |2, respectively.
We denote

b 1/q
D019 = {1+ (0,0) % 1 = % WWlzsanen = [ I60Iar) - <o,

and H! = HiN L2 The symbol < -, - > denotes the inner product in L?. Moreover,
we consider [[v(t)|[g = [v(®)lI3 + E[[Vu(®)]3.

2. Results
We first give the definition of the weak solution.
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Definition 1. For v° € H} and T > 0, we call v a weak solution of the initial-value
problem (1), (2) if and only if

(i) v € L(0,T; £2) N L2(0, T; Hb);
(ii) For any 0 < s <t < T, v satisfies

/ —(v(r), ®+(1)) + (Vv (r), V&(r))
T (YY), (V1)) + (v(r) - Vv (r), B(r))] dr

—(v(t), ®(t

) )+ (v(s), ®(s))
—k(Vv(t

(1)) + k{(Vv(s), VB(s)) + / (£(r), ®(r)dr,  (3)

for all test functions ® € C1([0,T];C°).

(4)
(4),V

The external force f is assumed to satisfy the following condition.

A. For xg € IR3) let p = pyo(x) =| x — %o |. Suppose that for 0 < v < 1,
2<p<6/(1+2y)and 0 = 4p/(2py + 3p — 6) we have p?f € L¥ (0, 00; L¥"), where
p’ and €' are the conjugates of p and 6.

Remark 1. These conditions ensure that f is in the dual of the space to which the
weak solution belongs.

Now we establish the existence of a weak solution which satisfies a certain energy
inequality. To this end, we need some a priori estimates for the solution. First we
recall the following lemma, due to T. Ogawa [7].

Lemma 2. Let 0 <~y <1 and2 <p <6/(1+2y). Let f satisfies A. Then for
v e L>®(0,T; L2)NL%0,T;H}) and 0 < s <t < 0o, we have

t t 1/6
/ | (f,v)dr < Ce~ M=) (p) (/ IIVV(T)Ilng) o7 (| x = %0 )| Lorr, (4)

where xo € IR3, e(t) = sup, o||v(T)|3 and A = [3/(1 — )] - (1/2 — 1/p).

Theorem 3. Let 0 < s <t < oo and suppose f satisfies Assumption A. Then for
allv € L*(0,T; L?) N L%(0, T; HY) satisfying the strong energy inequality

t t
IV ()]l + 21// IVv(n)lldr < |lv(s)ll} + 2/ (£(r), v(r))dr, (5)
S S
for almost all s > 0 and all t > s, we have the following a prior: estimate on v:
sup [[v(7)[lx < e, (6)
0<r<t
t
JIvvinigar < e, @
S

where c1 is a constant that only depends on ||[VO||2, [[VVO|2, [|07f|| e, v and k.
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Proof. Note that 2 < # and (1 — X\)(1 —~) <1 in Lemma 2. Hence the a priori
estimates (6) and (7) can be obtained by applying Lemma 2 to (5).

Remark 2. Interpolating (6) and (7) for 1 < ¢ <6 and 3/¢ + 2/0 = 3/2, we have
||V||Lcr,q S Co.

Theorem 4. Let v0 € H} and f satisfies Assumption A. Then there exists a weak
solution v to problem (1), (2) in L°(0,00; L) N L?(0, 00, H) satisfying the strong
energy inequality (5).

Moreover for E € CY (R4, R) with E(t) > 0 and ¢ € C1(IR;C' N L?) the weak
solution satisfies

E@)[vt) * vt)lli < E(s)llw(s) * v(s)llz + /: E ()| ¥(7) * v(r)|zdr
+ 2/:E(’r) | (r (1) #v(7),9(7) % V(7)) = v[|[V(7) + v(T)II3 | dr
+ 2/:(I k(Vpr (1) % v(7), V(1) * V(7)) [ +E(7) [(£(7), ¥ (7) * ¢(7) * v(7)) [)dT
+ 2/:E(’r) | (V(7) - VV(7), (1) * (7) % (7)) | dT (8)

for 0 < s <t<oo. Here (v*¢p)(x)= [

— o0

v(x — y)e(y)dy is the convolution.

Theorem 5. Let E € CY(IR,,IR) and ¢ € C(0,00;L>®) such that (1 — 9?) €

L®(0,00; L?) and VF1(1 — ¢?) € L®(0,00; L%). Then the weak solution con-
structed in Theorem 4 also satisfies

E@) ([0 @)v ) + klIEd@)vt)l13)
< E(S)(||15(8)V||2+k||&5(8)0(8)|I§)+/ E(|[d @)@ +klIEp @) @)]13)dr

+ 2/ E(m) [(m)v(), p VD) + Med, 0V @), Ep@vm) —v[|Ed(r)o(r)|]3 | dr
+ 2/ E(n)[[(v-Vv(7), 1=g*(1))9(r))] + [(E(7),9*(r)¥ (7)) ldr (9)

for almost all s > 0 and all t > 0. (A superposed hat denotes the Fourier transform
f=F(f)= ff(x)e_i<5'x> dx.) In particular, the weak solution satisfies

E@) VD)2 <Es)Iv(s)]3 + / E, (7)|Iv(r)|2dr
2 / E@)(IVv(n)l3= | (), v(r)) [)dr. (10)
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Corollary 6. For a weak solution v and ¢ € L2(IR?) such that VF (o) € L?*(IR?),
we have

. 2D _(t_g) .
g+ V()17 < e =95 v(s)|I}

2 [ || v T BB () | 4] (60, e BTG v | dr, (1)

where ¢ = F~1(p) is the inverse Fourier transform of ¢.

Theorem 7. Let v° € L2, v > Kk and f satisfies A. Then the weak solution v of
(1), (2) constructed in Theorem 4 satisfies the energy decay:

lo@)||x = 0 as t — oc.

Proof. We first show the decay of the low frequency part of the energy. Taking
w(&) = e VIEP/(L+RIE) e have, by Corollary 6 and Plancherel’s identity,

—v|g)? _ . —v|g|? _ R
o ()12 + Ellpea]|2 <[leT e T ()0 (s)]|2 + Kll€e TR T o(5) 9 (s)]|2

+2/ | (v-Vv, eT- s (-T) Q1) xv(T)) | dr

+2/ | (£(7), eT- s (-T) &> (1) * v(T)) | dr. (12)

Since ¢ is a rapidly decreasing function, from the Hausdorff-Young, Holder and
Sobolev inequalities it follows that

(@2 + v - Ty, e v < C ) vl Tv (7). (13)

Hence, by (12), (13) and Lemma 2,

. —v|g|? i . —v|g|? i
v ®))12 < e e ™ o(5)9(5)[[2 + Kllpe T re T po(s) 0 (s)| 2

U%/wwﬂa.u@

t t
+4bwmﬂwﬂwwc&*Wﬂm(|wwma

Since

—vle —vg?
tlﬁglolle—fww (s (s) I =0, Tm [|ge TR o(s)v(s) 3 = 0,

we have, by taking a limit ¢ — oo in (14), that

T (o915 + Higeo(OIF) < supe(®) [ [9v(r) dr
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t 1/0
4+ C supEA-N1-1p) ( / ||p7f||f,id*r) ( / Vv (r ||§d7) . (15)
t s

By Theorem 3, the right hand side of (15) converges 0 as s — 00. )
Next, we shall estimate the high frequency part of the energy. Choose ¢» = 1—¢,
¢ = e VIEP/HRIER) and let y(t) = {£ € R3; | £|< G(t)}. Then (9) yields

E)((1 = )v]3 + K€L = @)¥[13) < E(s) (11 = @) v(s)I3
E|[£(1 — @)V (s)]|3 E'(1)(1 + kG?*(r 1—)V(7) |? dédr
+ k[I1€( 80)()||)+/S (r)(1+ ())/X(T)H @)v(7) " d¢

t
o
E:
t
+2/
E:

w2 B |79, - 1= 9P| + [ E 0= 9P5) ar (0)

(B (r) - 20E(r)G2(r)) / (1= )o(r) P de| dr

R3—x(1)

W) [ 1A P vEE) [ i) df] i

Since F71[1 — (1 — )?] = ¢ is a rapidly decreasing function, we can estimate

/ E(r) | (v- Vv, v(r)) | dr < C()E() / E@|Vv(nlZdr.  (17)
If we choose E(t) = (1 + )%, G*(t) = o/2v(1 +t) in (16) and (17), then

11 = @)v(t)ll3 + klIED = @)V (B)]I5
1+s

< (3 H) (1L = ) ()3 + KIEQL = 99 (s)]2)

+ —)a/S (14+7)* “[ka+2v(1 +7')]/X(T) | (1 —p)v(r) |* dédr

2v(l+t

+Clp)

e [ IV ar

+ C’S}lgp [ (1=)* | / (L+7)% | (E(r), (1= )*¥(r)) |dr.  (18)

(1+1)

Observing that | 1 — ¢ |<v€2 if | £ |< +/2/v, we have
o0

lim oo ([(1 = @) @)1z + KlIE(1 = @) (B)II2) < C’SLtlpg(t)/ | Vv(r)ll3dT

L]
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00 1/6
€ supEANE=D (1) [T o (/ ||Vv<f>||2df) , (19)
t s

where v, p and € are defined in Assumption A. Letting s — oo the terms on the
right-hand side of (19) tend to 0. This proves the theorem.
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V.Al. SAVA

An integral representation
for the solution of 2D non-stationary
flow of micropolar fluids

1. Introduction

It is desirable for some aspects of hydrodynamical problems and for the proof of
existence of solutions, to have integral representations of solutions. With this main
objective in view, we proceed to examine the system of coupled differential equations
governing the motion of slow, non-stationary flow of micropolar fluids.

The integral representation for the solution of equations which govern steady
flow of incompressible micropolar fluids was considered by H. Ramkissoon, S. Ma-
jumdar [1,2] and L. Dragos, D. Homentcovschi [3].

The plan of this paper is straightforward. We state the basic equations governing
the flow, and using the method given in [5], we derive a reciprocal theorem. The
fundamental singular solution is then derived in two-dimensional regions and the
integral representation of the solution of the motion is given.

2. Basic equations and the reciprocal theorem

For slow flow of incompressible micropolar fluids, we have, respectively, the following
equations of motion, linear constitutive law and continuity equation [4]:

ov;
tigo + pf5 = P
ow; (1)

Miji + jiktan + ply = pa® ETRE

ti; = —pbij + (2 + K)dij + Keije(we — we),
M4 = awe,eé‘ij + ﬁwi,j + Yw;j,i;
v =0, (3)

where t;;, m;;, vi, ws, fi, li, denote respectively the components of the stress
tensor, couple stress, velocity vector, microrotation vector, body force and body
couple; p is the pressure, g, is the alternating tensor, é;; is the Kronecker delta;
a, B, v, b, k are constants characteristic of particular fluid under consideration; p
is the density and a? is the microinertia coefficient. Moreover,

We = 3Eckr(Vk,r = Urk)s dke = 3 (Vke + Ve k) (4)

The Clausius-Duhem inequality implies [3] that x, u, v and 3a+ 3+ are each
non-negative.

Equations (1)-(3) reduce to the following system of coupled vector equations in
the case of incompressible slow flows:
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1
(1/+k)Av+kaw—;Vp+f: ov

Ea
5 OW
(a4 B)VVW + yAW + kV x v — 2kw + pl = B (5)
V.-v=0.
To (5) we append the initial conditions
v(x,0) = v'(x), w(x,0)=w"(x), (6)
where v° is solenoidal.

It is easy to obtain the following assertion.

Theorem 1. The functions v;, w;, ti;, mq;, (4,5 = 1,2,3) satisfy the equations
(1) and the initial conditions (6) if and only if

g * tij,i + Fj = p’Uj, (7)

g% (Migi = Ejerter) + Ly = pa’w;, on 2 x [0,00),

where
t

g(t) =1, Fi=plg* fi +v)), Li =plg*li+a*w}), uxv= /“(X,t - T)o(x, 7)dr,
0
and Q is region of space occupied by the fluid.

We shall now give the following reciprocal theorem.

Theorem 2. Let (v(o‘),w(o‘),p(o‘),tz(-?),mE?),F(O‘),L(O‘)), a = 1,2 represent any
two motions of same fluid which conform to (1)-(8) and (6). Let ¥ be a closed

surface bounding any fluid volume Q and v(® w(®) € C1([0,00); QU ). Then the
following reciprocal relation holds:

/(Fj(l) * vj(?) + L;l) * wjz)dx + /g * (t(.l) * v(.2) + mg-l) * wj(?))da

Q
:/(Fj@) o + L xwV) dx+/ e (2 50 4 m® «wP)do,  (8)
Q %
where
t;a) = tz(-?)ni, mg-a) = mz(-?)ni, a=1,2

are, respectively, the surface tractions and surface moments acting on ¥ and n; the
component of exterior unit-normal to 3.

Proof. Using the relations (4), (7) and the divergence theorem, we get
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/g*(<a> 0 L@ el — 20t 4 0®)ax

:/(Fj(cw e +L;a)*wj(ﬁ))dx+/g*(t§a) o 4™ 4 1) dg
@ 5

+ p/(vj(-a) * vj(.ﬁ) +a w(a) * wj(.m)dx.
Q

B
g 6 ol D e ul? —eyol) o uf?)

=g* (tz(]?) * U;}i) 4 mg) N w;,) £jert@ 4 w(l))’
and the reciprocal relation (8) follows.

3. Fundamental solutions

Let us consider the 2D slow flows. The equations (5) reduce to

v 1
a—: — (Vv +k)vags — keapp,g + ;p,a = fo, =12,

0 9
a’ af Y¢,88 + kEapua,g + 2kp =1, )
Va,a = 0,

where £, is the alternating tensor and ¢ is the microrotation.
To obtain the fundamental solution, we first seek the solution

{VI(x,1),¢7 (x, )} = (v (x, 1), v3(x, 1), 7 (x,1)), j=1,2,3,

of
an‘j j 1 . j
v —(v+ k) Uy 5 — keapig + ;pfa =elb(x,t), a=1,2
97 . . , . 10
a’ g; —¥¥lap + keapvy p — 2k’ = e38(x, 1), 1o
vgz,a =0,

where §(x,t) stand for the Dirac measure at the origin and e/ = (e, €}, €}), j =
1,2, 3, are the unit vectors whose j-th components are equal to 1.
If we apply to (10) the Fourier transform with respect to variables x4, o = 1,2,

and then the Laplace transform with respect to the variable ¢, that is,
o
’Ua, Qoa // Vo, P, P Zy wdl'ldl?a UOM QO, /Uaa Qoa wtdt
0
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we obtain (after some calculations)

~f 1 2 YvYe Yol

oy, s) = Sap + k €n~€s0 — , a=1,2,

° stk [y P 777 00y [y P

23 . Al .Y

Ua(Y?‘S) = kzeﬁa Q( )7 p (Y78) = Zﬁa a, p = 1,2, (11)

Lo , y 3 s+ v+k)|yl|? .3

¢ (y,8) = kwaawﬁy), =TT oG y)| | , =12 p(y,s) =0,
where

Q(s,y) =a’s*> + sla®(v +k) |y | +7 |y |* +2k]
+EQUAR) |y P v +E) |y . (12)

To determine the properties of roots of the quadratic expression Q(s,y) in (12), it is
necessary to specify a value for a?, the microinertia coefficient. At present, we have
no physical basis on which to arbitrarily assign a value to a®. However, consider the
limiting case in which

¥ = 3€apVp,a- (13)

Equation (13) implies that the spherical particles present in the fluid rotate at
an angular velocity equivalent to the regional angular velocity of the flowing fluid.
This is, admittedly, a stringent restriction on the microrotation, but it does represent
a physical possibility and will enable us to calculate a value for a? at least as realistic
as one which might arbitrarily be selected.

Substituting the expression for ¢ in (13) into eqs (9) yields, after simplification

a” = . (14)

Introducing the value for a? given by equation (14) into quadratic expression
(Q)(s,y) and taking inverse Fourier and Laplace transforms of (11), we obtain

1 9P Ea\
B(x,t) = — |Héq N — =1,2
Va(%:?) on { pre 76608:578:59 axaaxg] » o T
2v+k  OM p 0 1
3 _ — (] — _ _
(5 (X7 t) = —¢ (X7 t) 27_‘_,_)/ €8a al'g’ b (X7 t) o &ca (111 T)(S(t)a (15)
(2v + k)

1
3 _ 3 _
© (X’t)_%w <G+ M), p°(x,t) =0,

where

(o]
1 Y, —(v4k)u?t
O(r,t) = H(r,t) + M(r,t) + N(r,t), U(rt)=In-—1+ / olrue

T

0

du
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r 2 r 2
H(rt) = ———=e¢" /(4t(u+k))’ G(r,t) = e /(2t(2y+k))’
;%) 2tvVv + k (%) tv2(2v + k)
OOUYO —(2v+k)u?t/2
M) = (emsr ) [l e TR,
u? v
2 Y

du

7 Yo(ru) e—(2u+k)u t/2
U

1 [o%]
I :PF/JO(U /JO du+/J°(u)du,
U U
0 1

Jo(u) and Yy(u) denote the Bessel functions of zeroth order and first and second
kind, respectively, and r = \/z? + z3.

The fundamental solution is

Vo = V0 fs + 03, w=wfu+dl, a=1,2, f=1,2.

4. Integral representation

With the aid of reciprocal relation (8), we shall now derive the integral representation
of the basic solutions.
For the 2D, flows the reciprocal relation (8) reduces to

//(F(gl) « 0@ 4+ LW « p?)dx + fg (11 % 0@ + mY x p?)ds
r

= //(Fo(f) x v + L@ x phydx + fg x (tPD x 0D +m® x phyds,  (16)

where D is a region of (z1,z5) plane, I' its boundary and L = p(g * | + a?¢?).
Assuming in (17) that F = Sapb(x —y,t —7), L) =0, we obtain

vd%ﬂ=fymﬂ&ﬂHﬁ&—%U+L&JH¢%x—%Uﬁx

+féw@@¢wwﬂx—mw+m@¢w¢%x—mwww
N

- fg* (t5(x =y, 1) xvp(x,t) + m*(x =y, t) x p(x,1))dsz, (17)
r
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where

t% (X -Yy, t) = [_pa (X -Yy, t)(SB’Y + (2/1 + "L)Ug,y (X -y, t)
+ (g p(X =y, 1) —ug (X =y, 1) + Kegy 0 (X =y, )]0y, (18)
m(x —y,t) = 1¢E(x -y, t)ng.

Letting now FP =0and LO = 6(x —y,t—71), we find that
p(,t) = [ Faloxt) sod((x = y.0) + Lix )4 (= v, )l
D

+ Pg* (talx,t) * 02 (x —y,t) + m(z,t) x> (x — y, t))ds,

e

— fg * (2 (x —y,t) *va(z,t) + mP(x —y,t) * o(a,1))ds,, (19)
r

where

ta(x =y, 1) = [2u+ 8] s (x = ¥,t) = p(v] o (x = ¥,t) = 03 5(x = ¥,1))
+ Klgaﬁ@?)(x -y, t)] “ng,
m3(x - Y7t) = ”YSO?a(X -y, t) ‘N

The formulae (18) and (19) give the integral representation for the solution of

the system of equations which govern the non-stationary slow 2D motion of incom-

pressible micropolar fluids for arbitrary forces f, couples [, initial conditions v, ¢°

and for bounded domains D in plane.
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Q. SHENG

A monotonically convergent adaptive
method for nonlinear combustion problems

1. Introduction

Given that o, 8 > 0, g > 0, we consider the following nonlinear reaction-diffusion
problem with a singular source term,

U = 0Py, + p(x)uy, +q(x)/(1 — u)ﬁ, O<zxz<l1, ty <t, (1)
u(z,t9) =0, 0 <z <1; u(0,t)=u(lt)=0, to <t, (2)

where 0 < p(z) < b, 0 <a < g(z) <b 0 <z <1 Problem (1), (2) provides a
regularized mathematical model for the combustion of two gases meeting in a gap
between porous walls at distance 1/« apart [1-3,8].

It is observed [4- 6] that, for given p, ¢ and g3, there exists a critical reference a* > 0
such that for @ > o, the unique solution of the combustion problem exists globally.
However, for any « S o, there is a finite quenching time T, > ty such that

tl_l’l%l u(l/2,t) =1, tl_lgi u(1/2,t) = +o0. (3)

Most of existing numerical procedures for computing solutions of (1), (2) are in-
direct, fixed-grid and based on Kawarada’s original frame work [4]. Needless to say,
such computations are often inefficient and unreliable due to the blow-up singularity
(3) involved.

This paper is concerned with a modified adaptive method dealing with problem
(1), (2). Moving mesh mechanisms are achieved both in space and time. Special
monitor functions based on arc-lengths of u; are derived. We show that, under proper
smoothness constraints, the numerical solution generated converges monotonically to
the physical solution.

2. The fully adaptive scheme
Let h = 1/N be the mathematical grid size. Based on the physical coordinate zj =
Tp—1+ hg, k=1,...,N, oy =0, where

Sk

1

b= [l t), 2)de [ (@), 2))d, 2 B =1,
0 Skp—1

pw(ug(z,t), ) = /1 +ui(z,t), to <t sp=sp1+h, k=1,...,N, s50=0,

we consider the following system of nonlinear differential equations generated via the
semi-discretization of (1), (2),

d
% = 02D+D_uk + pr Douy, + gk(uk), 1<kE<N-1, ty<Ht, (4)
up(to) =0, 1<k <N-1, uyy=uy=0, (5)

This work was supported in part by the Louisiana State under Grant LEQSF-(1997-00)-RD-B-15.
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where uy, = u(zr,t), pr = p(zx), gx = q(zx)/(1 — ux)? and Dy, D_, Dy are for-
ward, backward and central difference operators, respectively. System (4), (5) may be
conveniently written into the matrix form

= Au—+g(u), to <t; u(ty) = u®,

for which the formal solution can be expressed as
u(t) = E(tA)u’ +/ (t—1)A)g(u)dr, ty <t,

with E(zA) being the analytic semigroup generated.

Let R(z , i = 2,3, be L-acceptable rational approximations to E and u° = 0. Based
on the above solution formula, we construct the following fully adaptive scheme,

" = R (A" + 7R (1 A)g(u™); (6)
= RY (TmA)u™ + T {(nRgg) (TmA) + (1 — 2/<;)R§3) (TmA)> g(u™)
+ (1= KR (1 A) + (26 = DRP (10 A4) ) g(™) ), m=0,1,..., (7)

where 0 < k <1 and u™ are approximations of u(t,,), tm+1 = tm + T, and

~1/2
Tm = mnax {7‘0, CoT mkin [7‘2 + (ug(hik,t) — ue(hpk, t — 7‘))2} / } ,
R (rmA) = (R2(rmA) = I) (1nA)7!, i=2,3, j=12, m=01,..., (8)
for controlling parameters 0 < 1y, T, co << 1.

3. Accuracy and convergence
Denote [ — A=A, I - 2A= Ay and I + Eﬂ'LA Ajz. Consider rational approx-

imations R((Ji) (TmA) = ATTAS 1A3, i = 2,3. In this case, recalling (8), algorithm (6),
(7) can be reformulated to

A8 = p™, Agc™ = 875 A8y = ¢, AT =P, m=0,1,..., 9)
where
P = Aszu™ + 71——7; (121 — 1,,A4) g(u™), ¢" = Asu™ + 1,7
Y= AAy (KR (1 A) + (1 - 26) RS (1, 4)) g(w™)
+((1 = KR (rmA) + (26 = DEP (10 A) ) g(c™).

Lemma 1. Let u( ,t) be the solutzon of (1), (2) and ey be the local truncation error
between (1), (2) and (9) at xx, k=1,...,N — 1. If |ug| < M, then

er < M (hi + hpg) (042 +thk+1> -
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The conclusion implies that, even if approximations used in (4), (6), (7) and
Rgz), t = 2,3, 5 = 1,2, can be of second order accuracy, the highest order of ac-
curacy of (11) may not exceed one due to comprehensive mesh-moving mechanisms
involved.

Lemma 2. Given that
h, hpy1 < 20°/p,  whenever py # 0. (10)

Then Aq, Ay are monotone and nonsingular. Their inverse matrices are nonnegative
and monotone.
Further, let hk = hk(hk + hk+1), hk = hk—i—l(hk + hk+1), k= 1,2, PN ,N - 1, and
= (1,1,...,1)T be the vector with N — 1 unit components.

Lemma 3. Let )

R=(1—cimn)l + %A(Cgl + A),

where c¢1, co are real constants and ¢q > 0 therewith. If

20 20%

hy < — whenever py # 0 and hiha, hy_1hy < — whenever ¢a > 0,
J4I Co

ot (20% + hy_1pn_2)(20° + hnpn_1) } <1

C1Tym + T2 Max ¢ —— , = =
s {3h1h2 12hn_shn_q

then Rw > 0.

Based on preliminary results given by Lemmas 2 and 3, we can state the following
assertion.

Theorem 1. Let condition (10) hold. If 0 < u™ < 1, Au™ + g(u™) > 0, then the
solution of the fully adaptive scheme (9), {u™}_,,
(i) forms a monotonically increasing positive sequence;
(ii) increases monotonically until unity is exceeded by an element of the solution
vector, or converges to the steady solution of the problem (1), (2).
Further, for0 <& <1, f(&) =2, if

2

2
hy < ¥ whenever p1 #0, hihy, hy_1hy < 20
Y4

romax {1/£,3/2} + rjo max{

1 1 }
— — - <1,
3hihy” 3hy_shn_1
then 0 <4’ <u! < 1.

The proof of the theorem can be divided into three stages. During the first stage
we may show that ¢™ > u™ > 0 for m = 0,1,... Further, we derive v > u™
through inequalities

- (1 - T—’"A) (Au™ + g(w™) >0, m=0,1,...

Flnally, our conclusions can be achieved through a study of properties of functions
u' — w and R which is defined in Lemma 3.
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Fig. 1. The explosive rate function u; with a = 0.5, § = 1.

4. Numerical demonstrations

Let p = 0, we consider the following non-degenerate combustion problem

U = g +2/(1—u)?, 0<a<1, 0<t<T, (11)
u(z,0) =0, 0<x<1; u0,t)=u(l,t)=0, 0<t<T. (12)

The above thermal explosion model has been studied by several authors (see [1,3-5] and
references therein) and an explosive solution is defined as maxpcz<i1{u} > 1, t < oc.
Our computations well match and significantly improve the classical results.

Without loss of generality, we set x = 0 in the computation. The mathematical grid
size in space is chosen to be 0.01, while the initial time step is chosen between 0.001
and 0.01. We observe that, when the numerical solution of (11), (12) is advanced to
be near the thermal explosive point, should quenching exist, function u; becomes very
sensitive and increases rapidly with respect to time. The latter leads to fast decays of
the grid sizes in the space and time. To see more clearly the phenomenon, we let the
spatial adaptiveness be frozen in Figure 1 which gives a 3-dimensional profile of the
numerical solution u; prior to quenching.

In Figure 2, we further show the computed explosive rate function profile at time
levels t = 0.6508, 0.7696, 0.7760, 0.7780, 0.7784, 0.7786, 0.7787, 0.7788, 0.77883
and 0.77888, respectively.

We plot the convergence or explosion/quenching time, T, corresponding to § =
0.5, 1, 2 in Figure 3. It may also be interesting to observe that 7, — +oo as
a — o and T, — cg as & — 400, where ¢ is a constant depending on 3. The later
case, together with other important problems such as relations between the quench-
ing phenomena and singular perturbation theories while & — 0, and post-quenching
characters, still demand extensive investigations.
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Fig. 2. Profile of the rate function u; with o = 0.5, g = 1.
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Fig. 3. The profiles of T, with § = 0.5, 1 and 2 from the left to
right, respectively.
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G.R. THOMSON and C. CONSTANDA

Stationary oscillations of elastic plates
with Robin boundary conditions

1. Introduction

In [1] and [2], classical boundary integral equation methods were used to solve prob-
lems in the theory of time-harmonic plate oscillations with Dirichlet and Neumann
boundary data. We now consider applying these techniques to the corresponding
Robin boundary value problems. More detailed discussions of the results presented
here can be found in [3]-[5].

In what follows, Greek and Latin subscripts and superscripts take the values 1,2
and 1,2,3, respectively, summation over repeated indices is understood, a superscript
T denotes matrix transposition, z = (z1,z2) and y = (y1,y2)-

We consider a homogeneous and isotropic elastic plate of density p and Lamé
constants A and p, which occupies the region § x [—ho/2, ho/2] in R?, where S is a
domain in R? bounded by a closed C?-curve 8S, and ho is the (constant) thickness
of the plate. The bounded domain enclosed by 85 is denoted by S, and we write
S~ =R*\S5+.

The stationary oscillations of frequency w of an elastic plate with transverse
shear deformation are governed by the system [6]

A%y )u(z) = H(z), z€S, (1)

where u = (u1,u2,u3)T characterises the displacements, H = (Hy, Ho, H3)T is re-
lated to the forces and moments acting on the plate and its faces, and A“(9,) =
A¥(0/0x1,0/0z2) is the matrix operator defined by

W {u(A + k3 + (A + )€t} W2 (A + p)érés — €1
A¥(&) = W2 (A + €& P{u(A+k3) + A+ p)é3r  —pée |
f1€1 1€ p(A +K2)

here h? = h3/12, A = &2 + €2, k? = pw?/u and k2 = k* — 1/h2.
A particular solution of system (1) is constructed in [7]; therefore, without loss
of generality, we may consider the homogeneous system

A% (Og)u(x) =0, z€S8. (2)

The boundary stress operator T(9,) = T(8/0x1,0/0x2) is given by [6]

RN+ 2p) 1 & + pnéo} R (peéy + A1 &) 0
T(€a) = h?(Aveéy + p1éa) W {pviér + (A4 2p)eéa} 0 :
[z 12 oo

where v = (v1,12)T is the unit outward normal to 5.
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We assume throughout that
Ap>0, p>0, pw?h?>p.

The reasons for these restrictions are explained in [8].

We denote by B“ the class of functions defined in S~ which, as |z| — oo, satisly
the radiation conditions formulated in [9].

Let F and G be (3 x 1)-vector functions defined on 885, and let o € CH(0S),
€ (0,1), be a symmetric (3 x 3)-matrix function. The interior and exterior Robin
problems are formulated as follows.

(R“*) Find u € C?(ST) N CL(ST) that satisfies (2) in ST and

(Tu+ ou)lps = F. (3)

(R*7) Find uw € C?(S7)NCY(S7) N B¥ that satisfies (2) in S~ and
(Tu+ ou)|as = G. (4)

We denote the homogeneous interior Robin problem by (Rg™). A function u is said

to be regularin S if u € C%(S)NC*(S). If the homogeneous interior Robin problem
possesses a non-trivial regular solution u for a particular w, then that value of w is

called an eigenfrequency of (Rg™) with corresponding eigensolution u.

2. Uniqueness of solution

The properties of the coupling matrix ¢ in the boundary conditions (3) and (4) are

important when considering the uniqueness of solutions of (R“*) and (R“~). We
consider three separate cases:

(C1) Reo positive definite and Imo = 0;
(C2) Im o either positive definite or negative definite;
(C3) Im o positive semidefinite.

The following assertions were proved in [3].

Theorem 1. (i) If (C1) holds, then there exists an infinite set of real eigenfrequen-
cies of (RE™).

(ii) If (C2) holds, then (R®T) has at most one reqular solution.

(iii) If (C3) holds, then (R“™) has at most one reqular solution.

The proof of Theorem 1(iii) relies on various far-field estimates of solutions of (2)

in S~ which were derived in [9]. The result follows from an application of Rellich’s
Lemma.
We remark that in [10] it is shown that the homogeneous interior Dirichlet

problem (D§") has an infinite set of eigenfrequencies.
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3. Single layer and double layer potentials

Let D“(z,y) be the matrix of fundamental solutions for the matrix operator A“(9,)
constructed in [8]. We introduce the single layer and double layer potentials

(V) () = / D (2, y)oly) dsty), (W) (z) = / T(8,) D (y,2)] " o(y) ds(y),
as as

respectively, where ¢ is a (3 x 1)-vector function known as the density.
Some properties of the potentials are collected in the following assertion [2].

Theorem 2. (i) V¥p € BY and W¥p € B~.
(ii) If ¢ € C(8S), then V¥ and Wy are analytic and satisfy (2) in STUS™.
(iii) If o € C%%(8S), a € (0,1), then the direct values V¥p and W§p of V¥
and W« on S exist (the latter as principal value), the functions
V() = (V99)|s+, V7 () = (V29)|s-
are of class C*(8T)NCH(ST) and C>*(S~)NCYH*(S87), respectively, and
TV () = (W™ + 31)p, TV (p) = (W™ — 31y

on 0S, where W§™* is the adjoint of W§ and I is the identity operator.
(iv) If ¢ € CY*(8S), a € (0,1), then the functions

w+ _ (WUJQD)|S+ mn S+} w— _ (WUJSO”S_ mn S_7
W () = { (W§ — %[)go on 0S, W () =

are of class C®(ST) N CH¥(ST) and C*(S~) N CH*(S™), respectively, and the
equality TW“™ (o) = TW*™ () holds on 0S.

We use Theorem 2 to derive boundary integral equations from which we can
then construct the solutions of (R“*) and (R*7).

4. Indirect boundary integral equation method

Seeking the solutions of (R“*) and (R*™) in the form V**(p) and V¥~ (y), respec-
tively, and taking the boundary conditions (3) and (4) into account leads to the
boundary integral equations

(W§* + oV’ + 21 = F, (5)
(We™* +oVy — 5N =G (6)
for the unknown densities. This method is ‘indirect’ in the sense that the unknown

function ¢ has no physical meaning; it is merely a mathematical abstraction.
The solvability of (5) and (6) is discussed in [4].
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Theorem 3. (i) If condition (C1) holds and w is not an eigenfrequency of (Rg™T),
then (R“%) has a unique regular solution for any F € C%*(0S), a € (0,1), which
can be represented in the form u = V< (), with ¢ € C**(d8).

(ii) If condition (C1) holds and w is an eigenfrequency of (R§™), then (R¥Y)
has reqular solutions if and only if

/fT(y)u““)(y) ds(y) =0, k=1,2,....n,
o5

where F € C%*(8S), a € (0,1), and {u(k)};::l is a complete set of linearly inde-
pendent eigensolutions of (R‘(‘)’Jr). FEach of these solutions can be represented in the
form u = V¥ (), with p € C%*(0S).

(iii) If condition (C2) holds, then for any F € C%*(dS), a € (0,1), and any
w, (R") has a unique regular solution, which can be represented in the form u =
Vr(p) with p € CO*(0S).

These results follow from the application of the Fredholm Alternative to (5).

Theorem 4. If condition (C3) holds, then for any G € C*(0S), a € (0,1), and

any w, (R7) has a unique reqular solution. If w is not an eigenfrequency of (D),

then the solution can be represented in the form u = V™ (p) with ¢ € C**(88). If

w 18 an eigenfrequency of (D‘(‘)’Jr), then the solution can be represented in the form
n

u=V"(p)+ > ck{W‘”_(zE(k)) + V"”_(O'?,E(k))}, where ¢, k = 1,2,...,n, are
k=1
constants, @ € C**(38S), and ¢*) € C1*(8S), k=1,2,...,n.

When w is an eigenfrequency of (D§), the solution of (R“~) given by Theo-
rem 4 cannot be constructed from (6) because of solvability problems. The existence

of a unique solution of (R“~) in this case is proved by considering a related inte-
gral equation that is solvable in theory but, unfortunately, cannot be dealt with in
practice. For this reason we turn to an alternative integral equation formulation.

5. Direct boundary integral equation method

We consider only (R¥~). This is the more interesting case because it is known to have
a unique solution (Theorem 4), but the indirect method yields an integral equation
which is not always uniquely solvable.

A representation formula for the regular solutions of (2) in S~ is derived in [11].

If w e C?(S7)NCYS~) N B is a solution of (2) in S~, then

0 in ST,

YU (Tu|as) + We™ (u|as) = {u o G- (7)

We introduce an operator N¢ : C1%(88) — C®%(dS) defined by

Ng o =TW () = TW? (p).
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Substituting the boundary condition (6) into (7), we easily show that
u=W"(p) +V* (0p) =V (9) (8)
is a solution of (R“~) provided that ¢ satisfies

(We' + Vo = 5D)¢ = V0, (9)
(W5™ + 31) (o) + Ng'p = (W™ + 51)G, (10)

where ¢ = u|gs. The solvability of this pair of equations is discussed in [5].

Theorem 5. If condition (C3) holds and w is not an eigenfrequency of (DgT), then
(9) has a unique solution ¢ € CH*(dS) for every G € C%*(0S), a € (0,1). This
solution also satisfies (10).

Theorem 6. If condition (C3) holds and w is an eigenfrequency of (D), then
(10) has a unique solution @ € C1*(dS) for every G € C®%(8S), a € (0,1). This
solution also satisfies (9).

The proofs of these results make use of the Fredholm Alternative together with
composition formulae for the various boundary integral operators.

From Theorems 5 and 6 we see that the pair of equations (9), (10) always has
a unique solution ¢. The unique solution of the boundary value problem (R“7) is
then given by (8).

Instead of considering a pair of integral equations, it would be preferable to
solve a single equation. For this reason, we propose a composite integral equation
formed by taking a linear combination of (9) and (10).

Let A be a symmetric (3 X 3)-matrix, and consider the equation

(W™ + 31)(00) + Nop + MWg + Vieo — 31)¢ = (W™ + 31 + AVg'G. (1)

The existence of at least one solution of (11) is guaranteed by Theorems 5 and 6.
The question of uniqueness is answered by the following assertion (see [5]).

Theorem 7. If condition (C3) holds and Im A is either positive definite or negative
definite, then (11) has a unique solution o € CH*(88S) for every G € CH(88S),
a € (0,1).

Again, the unique solution of (R“7) is given by (8) with ¢ satisfying (11).
Some work has also been done on deriving single uniquely solvable second kind

equations involving a modified matrix of fundamental solutions in a suitable way
(see [12] and [13]).
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F. UNSACAR

Adapter and driver design
for rotary encoders

1. Introduction

Rotary encoders are mounted directly to motors or shafts driven by motors. The
traveled distance of driven table by the shaft is related to the rotational angle of the
shaft. If the shaft stops after rotating n times plus 3 degrees, the angle is

L =2mn + (. (1)

Rotary encoders (RE) measure this angle. Two separate square shaped signals (A
& B) or two separate sinusoidal signals (easily transformed to square) are produced
when the RE shaft rotates. A’, B’, and C signal series are produced in most advanced
REs. A’ and B’ are inverses of A and B, and C is only for counting the number of
completed tours. It does not determin the rotational direction. A’ and B’ provide
easy interface in some cases and are the main signal. C provides direct connection to
the control board without interface when only the number of completed rotations.s
required. When the RE’s shaft rotates in the clockwise direction, B is 90 degrees behind
z(A' and vice) versa, B will be 90 degrees ahead of A if the direction is counterclockwise

See Fig. 1).

Angular velocity, rotational direction, swept angle, the position of table and virtual
speed of table are calculated from these two signals. When the RE shaft completes
one tour, the output of RE will be F' number of square shaped pulses. If we consider
the tours as L degrees as in Equation 1, then the output pulses (K) will be as follows:

K = F(L/360) = F((2mn + 3)/360) (2)

Since every complete tour produces F pulses, each pulse will be equivalent to (360/F)
degrees. The value of F' is between 24 to 5000 for most REs which can provide 18 to
0.072 degrees of accuracy [1]. These considerations are the same for linear encoders.
Since the movements are forward and backward, the traveled distance, position and
average speed can easily be found.

2. Algorithms for finding the traveled distance and rotational direction

There are various approaches for finding direction, position and velocity by utilizing
‘fhe ]two square shaped signals which have a 90 degree phase difference between them
2,5

The most popular method is to use output signals of RE as an input to micro-
processor or microcontroller and calculate the parameters by a program. We have
developed a different approach for this. One of the advantages of this approach is that
it can catch even one single pulse by using only one signal series.

Pa and Pb are the pulses of A and B series respectively, S is the traveled distance.
When there is no rotation PaPb= 0 0 (See fig. 2a and b). When there is a clockwise
rotation; PaPb= 0 0 will be followed by PaPb= 0 1 code. For a counterclockwise
rotation, PaPb= 0 0 followed by PaPb= 0 1 code.

The problem however could be easily solved if the case always started from PaPb
= 0 0 condition. However as the rotational speed always varies, the possibility of
starting condition as PaPb = 0 0 is not always matched in control processes, which
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is held in certain discrete times. One of the solutions in this case is to wait until the
current pulse ends and then catch the next forthcoming couple of pulses and to find
the rotational direction of shaft accordingly.

If the state at the beginning of the control process is Pa = 0 and Pb = 0, the
condition is indefinite and whether the shaft is rotating or not can not be defined (see
Fig.2.a and b). If the state at the beginning of the control process is Pa = 1 and
Pb = 1, when Pa becomes 0 it means that the rotation is in the clockwise direction
(Fig.2.a). If the state is Pb = 1 and Pa = 0, when Pb becomes 0, then rotation is in
clockwise direction (Fig.2.a). If the state is Pb = 1 and Pa = 1, when Pb becomes 0,
then rotation is in counterclockwise direction (Fig.2.b). If the state is Pa = 1 and Pb
= 0, when Pa becomes 0, then rotation is in counterclockwise direction (Fig.2.b).

As can be seen from the above algorithm, for each couple of pulses a program
module (subprogram or interrupt) which consists of five Boole processor commands
must be developed. Running this program takes at least 10y seconds even with the
fastest, widely used MCS51 family microcontrollers. When the speed is Dmax = 5000
rpm, the minimum period of the encoder shaft will be as follows:

T'min = 60/5000 = 0.012sec. (3)

The minimum period of pulse (for only one series considered) will be as follows:

Pmin = Tmin/F (4)

where F is the number of pulses in Tmin of period. As the minimum period matches
to the maximum frequency which we assume as F max = 5000, the minimum period
of the output pulse can be found as follows:

Pmin = Tmin/5000 — 0.012/5000 = 2.4y sec. (5)

We need 104 seconds for doing calculations for one pulse, whereas we should check
the input in less than 2.4y seconds for not losing the next pulse. But in the general
case, the maximum value of F and D can be less than 5000. And the value of Pmin
can be bigger than the required time to complete the pulse related processes. The
above algorithm can securely be used in these cases.

The disadvantage of the above algorithm is that the microprocessor has to wait
until the shaft rerotates when there is logic 1 at one of the outputs of RE after it
stopped. This disadvantage can be prevented by deciding that the shaft be stopped
after waiting a certain amount of time. The easiest solution of this problem is to use
interrupt (See fig. 3)

If we produce C interrupt signal by using AND gate for A and B, and if we use C
interrupt signal to invoke the below interrupt algorithm (see Fig.4) then we can solve
the problem.

3. The adapter for finding the traveled distance and rotational direction

We can use a special counter between the encoder and the microprocessor for the
case when the required time of the microprocessor to process one couple of pulse is
greater than the period of the signal. But there must be an adapter in this case for
defining the counting mode (increase or decrease of content) of counter and finding
the rotational direction. Adapter circuits used in industry [1,2/4,5] generally produce
signals to define the rotational direction and pulse for the traveled distance between
them. These adapter circuits have two disadvantages;
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1. Because RC filters used for defining the rotational direction are very sensitive to
pulse parameters, they can only work in a secure environment which employ delicate
high-tech materials.

2. They are suitable for using asynchron type counters in which the temporary
situations may occur. They may perceive these temporary situations as real situations.

PLD16R8& adapters manufactured by Microchip Technology Inc. for supporting
PIC microcontrollers produce the UP and Down signals for senkron type counters (5).
However, as their working frequence is below 5 MHz. they can only be used when the
following condition is met,

0 < F.Dmaz < 5000000

However there is a need for encoder adapters for supporting the synchron counters
to work safely under the following conditions in the industrial environments,

0 < F.Dmaz < 25000000

We describe below the encoder adapter consisting of only two D type flip-flops
which can work in every range of speed. If the shaft rotates only in one direction,
one of the A or B series would be enough (see Fig.1). But as the shaft rotates in
both directions, the traveled distance increases in one direction and decreases when
the direction is reversed. If the traveled distance is calculated by a synchoron counter,
the pulses should be input into the Up end of the counter while the rotation is in the
clockwise direction and the pulses should be input into the Down end of counter while
the rotation is in the counterclockwise direction. The I (clockwise direction) signal
should be produced form the signal of A to be applied into positive (Up) input of
counter and the G (counterclockwise direction) signal should be produced form the
signal of B to be applied into negative (Down) input of counter (see Fig. 5).

If we connect the A signal to the D input and the B signal to the C input of the D
type flip-flop, we can trigger the Bi pulse which follows Ai pulse with 90 degree phase
difference (see Figures 6.a and 8). But in this case the flip-flop will respond only to
the A signal. Because the flip-flop was in Q=1 state already as these pulses try to
bring the flip-flop into Q=1 state. So the flip-flop will not respond to these signals.
Therefore we should restore the effect of each pulse just after it is lost to provide the
response of the flip-flop. This can be provided by connecting the A pulse into the R
(Reset) input of the flip-flop. (See Figures 6.b and 8) This flip-flop will respond to
only the pulses produced while the clockwise rotation occures. When the rotation is
in the counterclockwise direction, the D input of flip-flop will always be 0, while the
pulses coming into the C input were increasing.

As applying the second flip-flop in the same way described above for the opposite
direction or rotation, (see Fig. 7), we can control the signals produced while the
rotation is in opposite direction. B signals go into the D and R inputs of flip-flop and
the A signal goes into the C input of the flip-flop.

The connections of flip-flop providing the above diagrams can be done as in Fig. 8.

4. Conclusion

In this paper the disadvantages of the adapters used between encoders and microcon-
trollers are explained. The main advantage of the proposed design is its simplicity
and reliability. It can be used for any speed range which may occur in an industrial
environment. It can catch even one single pulse by using only one series of signals.
The designed adapter is still under test in CNC lathes and the system performed very
well.
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F. UNSACAR, S. HALKACI and A. MAJLESSI

Expert system design for fault diagnosing
in CNC machine tools

1. Introduction

The structure of CNC machine tools is quite complex. The most difficult and time
consuming job is to find the source of a fault when it occurs. Correcting the fault
is easy if the source is found. CNC service engineers know this from experience. In
a CNC machine, there are hundreds of cables and connections, even one bad contact
may put the machine into the ALARM state. Finding out the cause of a problem
may take 3-5 hours, depending upon the experience of the service engineer. However
it may take only a few minutes to correct the fault.

In this project the goal is to design an expert system to help CNC service engi-
neers determine the cause of problems, reducing the extent of experience they would
otherwise need.

2. The structure of CNC machine tools

It is necessary to know the structure of CNC machines to approach the subject. Any
CNC machine is made up of the modules consisting of mechanic, hydraulic-pneumatic,
electric, electronic, and computer. These are only simplified modules, the structure of
CNC machines are more complex and detailed, with the computer having full control
over the entire structure. Similar to the human body where the brain senses if the
stomach is empty, the computer senses when the oil level is below a certain level.

The computer or as widely named controller in CNC machines consists of hardware
and software. Software itself consists of the system, ladder, and part program. System
software (base software) and part program are outwith our discussion here. The PLC
program which is called a ladder diagram [1] changes from machine to machine de-
pending on the machine configuration. Service engineers must have a good knowledge
of this. Because when there is a fault the first thing service engineers do is to look for
an explicit alarm message; when there is one then they go there but there may not
always be an explicit alarm message.

If there is a fault with no understandable alarm message, the engineer must check
the diagnostic table (Figure 1) consisting of binary numbers. This table is dynamically
stored in the RAM of the CNC controller. The binary data in the diagnostic table
shows the latest conditions of the real and logic contacts in the machine [2,3].

In this table each bit represents the state of a contact. If the contact is open, the
number is 0, if closed 1. The normal condition of a contact is either open or closed.
This can be seen from the ladder (Figure 2) diagram. The address of each bit in the
diagnostic table is defined by its row and column numbers. As an example the address
of 20.3 show the address of a bit which is in 20th row and 4th column from right to
left. 21.0 address represents the relay of oil sensor, in the above table.

The normal condition of 21.0 is 0. If the oil level decreases below the normal level,
the relay of the oil sensor will close and bit in 21.0 will become 1.

Similarly the address of 21.4 belongs to the Emergency stop button, this bit be-
comes 1 if the button is pressed. The bit in 48.1 will be 1 when the chuck is closed.
The bit in 522.5 will be 1 when the coolant is on. When the above conditions reverse,
all the above addresses will be 0.
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76543210
20 00000000
21 00010001
22 00000000
48 00000010
49 00000000

Fig. 1. Diagnostic table.

()
NS
21.0 2455 Read 21.0
/ OrNot 21.2
2!1_2 Or.Not 552.1
/ Write 245.5
552 1

Fig. 2. Ladder diagram and program sample.

As shown, the latest conditions of the CNC are represented by bits in the diagnostic
table. Real relays were given as examples above but the diagnostic table also contains
logical relays.

These results in the diagnostic table are produced by the PLC (Programable Logic
Controller) program which is widely known as a ladder diagram [1,4,5].

The program part in figure 4 will read the 21.0 21.2 and 522.1 addresses and write
the result into address 245.5. The symbol —||— represents an open contact and —|/|—
represents a closed contact. In the above example, if 21.0 is 0, 21.2 is 1 and 522.1 is 1
the result in 245.5 will be 1.

3. Faults in CNC

There are many fault sources in CNCs, which can be in any one of the modules.
Even with all the modules working properly, a fault can happen due to operator error
sending the machine into the alarm state.
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Some faults have understandable alarm messages. OVERTRAVEL X, LUBRICA-
TION ALARM, SERVO ALARM, etc. But some faults have no alarm message. On
the other hand, alarm messages show only the area of the fault and not the fault itself
or its origin. As an example, the reason for a Lubrication Alarm can be the oil pump
itself or low oil level or low oil pressure, etc. Faults which require service engineer to
solve are generally more complex then the ones given here as examples.

4. Example of a fault finding method in a CNC

In this study, a knowledge based expert system is introduced and a program developed
which will help service engineer with fault finding in CNCs. Let us take one example
to understand the fault finding procedure by following the ladder diagram.

If the bit in 245.5 is 1 the alarm lamp of the CNC will turn on (Figure 3). In this
case the 21.0, 551.6, 552.0, 552.1 addresses need to be checked. Let us assume the bit
in 551.6 is 1 instead of 0. This address belongs to the clamping unit. We shall follow
the fault from this point. The related part of the ladder diagram is shown in Figure 4.
Let us assume the bit in 521.7 is 0 instead of 1. This address belongs to clamping unit
ready signal. The fault must be followed from here. The related part of the ladder
diagram is shown in Figure 5.

| (Y
1 \ /

21.0 245.5

¥
71
551.6

|/l
71

552.0

1]
171
552.1

Fig. 3. The part of ladder diagram.

Let us assume that the bit in 16.0 is 0 instead of 1. This address belongs to the
tailstock end forth switch, which is a real micro switch. The fault originated exactly
from here. The switch itself may be out of order, cables to it may be shorted or a
contact may be loose. All of these possibilities must be examined to determine the
fault.

As can seen in this example finding the source of the fault is impossible without
following the ladder diagram correctly.

5. Development of expert systems for CNC fault finding

5.1. Introduction. Expert systems (ESs) were first introduced with the concept of
artificial intelligence and since 1970 have been applied successfully in medical diagnosis,
chemical analysis, and design of computer system configurations. For example, ES has
investigated 38 medical diagnosis systems [7]. Beside these, shells are developed and
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Fig. 4. The part of ladder diagram belonging to clamping unit.

|| |/ |/l (Y
[ 171 I/ \/
520.1 513.0 16.0 521.7

] ]
71 71

520.1 520.1

||
||
1242

Fig. 5. The part of ladder diagram belongs to tail stock.

used for speeding up trouble diagnosis, making training personnel easier and more
efficient, and as a consulting assistant to experts. Generally the main parts of an ES
are an inference engine mechanism, knowledge base, and data base (working storage).

5.2. Knowledge base design for the expert system. It is clear that the knowl-
edge base of ES trouble diagnosis may be applied in the form “If,... THEN”. Thus it
has been decided to use the production rules method for the knowledge base of the
present ES trouble diagnosis.

In reference to the above (Fig. 3-5) the rules will be as below;

Rule 10: IF 245.5 = 1 THEN CNC = FAULT
Rule 20: IF CNC = FAULT THEN 21.0 =1

OR 551.6 =1
OR 552.0 =1
OR 5562.1 =1
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Rule 30: IF 551.6 = 1 THEN 297.0 = 1
OR 150.5 =1
AND 521.7 =1
OR 551.6 =1
AND 521.7 = 0
Rule 40: IF 521.7 = 0 THEN 520.1 = 1
AND 513.0 = 0
OR 520.0 =0
AND 520.1 =0
AND 16.0 =0
Rule 50: IF 16.0 = O THEN SWITCH = FAULT
Rule 60: IF SWITCH = FAULT THE CABLE = BAD CONTACT
AND SWITCH = SHORT CUT
AND SWITCH = DEFECTED.

All of the rules like these were developed using the ladder diagnostic table [2].

6. Realization of expert system and conclusion

After designing the rules they were converted into a computer program in the Prolog-2
programming language.

It is clear that the ES will work faster than an operator and will not require an
expensive specialist. The developed system has all the advantages of a diagnostic ES
for fault finding. It may help an inexperienced service engineer in environments with
many CNC machine tools.

This study is an initial step towards developing Intelligent Manufacturing Systems
for troubleshooting in CNC machine tools. Similar studies are necessary for other
controllers as their ladder diagrams differ.
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D. URSUTIU, A. DUTA-CAPRA, D. NANU and P. COTFAS

Non-ideal liquid solutions modeling
by means of integral methods

1. Introduction

The non-ideal behavior of liquid solutions influences all other properties and is im-
portant in vapor-liquid equilibrium calculations. Estimating the activity coeflicient
is the most common way to describe nonideality. It can be calculated using integral
methods using an equation of state that allows the calculation of the pure component
properties. Mixture properties are estimated using a set of mixing rules. This paper
presents results obtained for binary hydrocarbon solutions, using the General Equa-
tion of State (GEOS, 1986) and Van der Waals mixing rules . The dependence of the
activity coefficient on temperature and compositions is found to be significant when
the hydrocarbons are very different in size. One of the most important separation
processes, distillation, is the result of vapor-liquid equilibrium, VLE. So, the design of
the devices used in distillation installation is based on VLE calculations. This paper
presents a LabVIEW program, which allows VLE prediction calculation, for binary
systems at high pressures.

2. The vapor-liquid equilibria modelation

The general equilibrium condition is given — for a multicomponent system with NC
components — by the equality of the chemical potential of each component in the
phases that are in equilibrium. For real solutions this condition can be written as the
equality of the fugacity of each component “” in both phases, a, 3 considered to be
in equilibrium:

T, p = const fl) = §o) i=1,NC (1)

In the particular case of vapor liquid equilibrium, we may design « to be the liquid
(L) and § the vapor (V) phase.

An approach used for high pressure phase equilibrium allows the calculation of the
fugacity of both phases using a fugacity coefficient ®; and the molar ratio of the “”
component (X; in the liquid and Y; in the vapor phase), [6-10]

oV x, = oMy, (2)

Additional equilibrium conditions concern the composition of both phases:

NC NC
Y Xi=1 Y Yi=1 (3)
=1 =1

An experimental point is characterized by the parameters: pressure P, temperature
(T), volume (V), and composition (n;). These can be correlated with the fugacity

coefficient using Lewis’ equation:
P T PV
(a ) LN N (4)
ani T,Vinis V

RT
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where R is the gases constant (8.317 J/kmolK).
These parameters (P, T, V, n;) describe the thermodynamic state and can be
correlated using a mathematical relation called equation of state (EOS):

P =P(T,V,n;) (5)

so the derivative in eq.4 can be expressed by choosing a certain EOS.
This paper presents the results obtained when the General Equation of State,
GEOS, [3,4,5] is used. This is a cubic in volume EOS, with four parameters:

RT a(T)
Vb (V_dr+c (6)

where a, b, ¢, d are parameters depending on the components and can be calculated by
using the critical constants (P,, T.). For pure components:

Z31R2T2i - Zc,iRTc,i

P =

4 = —emr A b= —5—"Bj; (7)
ZZ.’sz’ﬂ. ) Z .RT..

o Zeiltlei o, _ Zeltdei b

a’l Pc2,1 O“ d’ Pcﬂ' v

where A}, B}, C} D} are parameters depending on the substance.. They can be cor-
related with Riedel’s criteria, a., the compressibility factor, Z.; = P,;V.;/RT,,; and
the parameter “m” called the “isothermal contraction parameter”:

[ 1 3 1 i
A; _ 2(04, ) 5 lezl— ' -l-m ' (8)
Zc,i (ac,i + mz) Zc,z (ac,z + mz)
2
o (e — 1) (3my +4 — agy) | Dl_1_ (i — 1)
7 4Z02’i (ac,i -+ mi)g’ ’ g Zc,i (Ozc’i + mz)

For mixtures of two components, the parameters are calculated using the parame-
ters of pure components, introduced in Van der Waals mixing rules, [1]:

NC NC 1/2
a=73 > XiXjay; ai; = (i)' (1 — ki) Li=L2 (9

i=1j=1

NC
=1

where k;; is called “interaction parameter” and is proportional with the non-ideal
character of the system.

With the values for the parameters, calculated for each mixture composition (in lig-
uid and in vapor phase) the value of the fugacity coefficient ®F and ®} are calculated.
So, using GEOS, (3) has the particular form:

In® = In v + 'S _<2a+naa) - ( agl)
V—-b V-b on; ] RT RT[(V—d) _,_C}
a dc V—-d PV
- 2 —————— - FE| -In— 12
2RTC( C+n3ni) [(V—d)z—i-c ] Y RT (12)
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where the partial derivatives are the following:

j=

da Ne b oc Ne od
-9 X — = _p — —9 X .o — =4 —
n an, ( 1 Gij a) , N an, b; —b, n B, (; iCij—cl|l,n an, d; — d

(13)
and
1 c . 1 V-D++—c .,

E=—arct f 0, EF= 1 f 0; 14
\/Earch+ch>, 2J—_ch—D—\/—_clc<’ (14)

for ¢ = 0:

b+ nlt 20 + nde a(d+n2d
Ind; = In —— + 3’“—( am)— ( a"lz—lnpv- (15)
V—b V-b RT(V-d) RT(V -d RT

The equilibrium conditions, eq.2,3, can be applied and (P, V,T, X, Y;) sets can be
obtained as “calculated” values.

Usually simplified calculations are required when a number of variables as consid-
ered as known (the experimental value is equal with those calculated) as is shown in
Table 1.

Known data | Calculated data | VLE calculation Type
P,X1,X5 T,Y1,Y, Bubble T
T,X;,X, P,Y,Y, Bubble P
P,Y:,Y, T,X1,X, Dew T
T,Y:,Y, P,X,Xo Dew P

P,T Xl,Xg,Yl,Yg Flash

Table 1. Types of VLE calculations in binary systems.

3. Results and discussion

Predictions were done at high pressures for binary systems of n-alkanes with low
nonideality when the value of the interaction parameter k;; was set null in Bubble
P calculations. The calculation procedure is not new; it foflows the basics given by
Prausnitz, [6-8] and has, as its main comparative source, the FORTRAN program
created by D. Geana, [4-6]. Our calculation can be described as a LabVIEW product
and has the advantage of being a very compact and easy-to-handle program. LabVIEW
allowed as an option, a step-by-step run so, the program can be studied and understand
also by non-chemists.

The results are plotted as dependencies of different parameters vs. compositions
in liquid and vapor phase: P = f(X1,Y7),V = f(X1,Y1),p = f(X1,Y1), etc. The
quality of the results is judged in Bubble P calculations on the P = f(X;,Y)) curve,
therefore, these plots also contain the experimental values for the systems we have
chosen as examples. In Fig.1 we present the VLE curves calculated with our program
for the binary system propane-butane at five different temperatures.

In Figs. 2-4 we plot some other results obtained for a propane-pentane system, at
344.28 K. The same kind of plots can be calculated for any binary systems, [2]; If the
non-ideality increases, the k;; value must be obtained as the result of an optimization
calculation, but this is not tﬁe goal of the present paper.
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Fig. 3. Calculated volumes for the Fig. 4. Calculated densities for
liquid and vapor phases in liquid and vapor phases in
CgHg - C5H12, T — 34428K CgHg - C5H12, T — 34428K

4. Conclusions

The paper presents a new high pressure VLE calculation program written using Lab-
VIEW. As example, prediction calculations are done for some binary systems of n-
alkanes, at different temperatures. The program involves the latest results reported
in high pressure VLE calculations and LabVIEW proves to be a great tool, even for
such scientifically purposes, because the program is compact, easy to follow and the
results can be plotted in the most suggestive ways considered.
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V. VASSILEV

Symmetry groups, conservation laws
and group-invariant solutions
of the Marguerre-von Karman equations

1. Introduction

Marguerre’s theory for large deflection of thin isotropic elastic shells [1] leads to the
following system of two coupled nonlinear fourth-order partial differential equations

DA?w — eePu 50, — e P byp d,,, = p, (1)
(1/BR)A* D + (1/2)e™ ™ wiapwy + e bagwi = g,

in two independent variables — the coordinates on the shell middle-surface F', and
two dependent variables — the transversal displacement function w, and Airy’s stress
function @, with right-hand sides appearing when the shell is subjected to an external
transversal load and nonuniform heating. Here and throughout: ¢*? is the alternating
tensor of F'; b.g is the curvature tensor of F'; D, E and h are the bending rigidity,
Young’s modulus and thickness of the shell, respectively, which are supposed to be
given constants; a semicolon is used for covariant differentiation with respect to the
metric tensor a,g of the surface F'; A is the Laplace-Beltrami operator on F'; Greek
(Latin) indices range over 1, 2 (1, 2, 3), unless explicitly stated otherwise; the usual
summation convention over a repeated index (one subscript and one superscript) is
used.

This theory assumes that the intrinsic geometry of the shell middle-surface F'
should be Euclidean or approximately Euclidean in the following sense. Let (x!, 2%, 2)
be a fixed right-handed rectangular Cartesian coordinate system in the 3-dimensional
Euclidean space in which the middle-surface F' of a shell is embedded, and let this
surface be given by the equation

F:z=f(z',2%), (2, 2%) € Q C R?,

where f : R? — R is a single-valued smooth function possessing as many derivatives
as may be required on a certain domain of interest Q. Let us take z!, 2% to serve as
coordinates on the surface F'. Then, relative to this coordinate system, the components
of the fundamental tensors and the alternating tensor of F' are given by the expressions:

Aap = 604[3 + f,af,ﬂv baﬁ = a_1/2f,a[37 gaﬂ = a—1/2€aﬂ, (2)
where @ = det(ang) = 14 (f1)? + (f2)?; Sap = 6*° is the Kronecker delta symbol; e*?
is the alternating symbol; subscripts after a comma at a certain function f denote its
partial derivatives with respect to the coordinates on F'. If the inequalities

\fal|fsl <e*< 1, &= const,

hold for every point (z',z*) € Q (such a shell is said to be shallow on the domain ),
then the quadratic terms in the right-hand sides of expressions (2) are small compared

This work was partly supported by Contract No. MM 517/1995 with NSF, Bulgaria.
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to unity, they may be neglected, and thus allowing for a relative error of order O (&?)
one may regard the intrinsic geometry of the shell middle-surface F' as Euclidean and
(z',2%) may be thought of as an Euclidean coordinate system on F', in which:

Aop = 604[37 baﬁ = f,aﬂv gaﬂ = 604[37 (3)

and the mean curvature H of the surface F' and its Gaussian curvature K read
H = (1/2)abop = (1/2)6% f o, K = (1/2)e™ ™ bagby, = (1/2)e™ e fopfum (4)

(note that the latter is not necessarily equal to zero within the allowed relative error).

Equations (1) are often referred to as Marguerre-von Karman (MvK) equations to
reflect the fact that they are an extension of the von Karman equations for large bend-
ing of plates [2] (including the latter as a special case corresponding to b,g = 0) to
the shallow shells. Actually (1) describe the state of equilibrium of the shell, but intro-
ducing, according to d’Alembert principle, the inertia force —pw,33 in the right-hand
side of the first MvK equation, w33 being the second derivative of the displacement
field with respect to the time ¢ = 23 and p — the mass per unit area of the shell middle-
surface, one can extend (1) to describe the dynamic behaviour of shallow shells.

Applying the equivalence transformation (z', z?,w, &)1 —(z',z*, W, &), W = w +
f, to the time-independent MvK equations and (z',z?%, 23, w, @) » —(z!, 22,23, W, &)
to the time-dependent ones, one can map [3] the MvK equations to the von Kdrman
equations

DAW — eeP' W 5 8., = P,

(1/ER) A2 + (1/2) e P W 0sW. 0 = Q, )
and
DAZW _ gaﬂgﬂl’wf;aﬁ Qp;/ﬂ/ —l— prg = P, (6)
(1/ER) A2® + (1/2) e®*eP* W 05 W,,0, = Q,
respectively, where
P=2Dae"H,, +p, Q=K-++q. (7)

Hereafter (5) and (6) will be referred to as the time-independent and time-dependent
MvK equations respectively. In both cases, the moment tensor A/*®, membrane stress
tensor N®?, and shear-force vector Q% are given in terms of W and & by the expressions

M — D {(1 — v)a™a + l/aaﬂa“l’} Wy = fn}s

NobB —  gopbv @WV? Q% = M;zu + No# {VV’H _ f;u}7

and the in-plane displacements v® can be found solving the overdetermined system
Va;p + Vg = (2/Eh) {(1 +v)eges - Vaaﬁaw} Dy = {Wia = fia} {Wis — fi8}, (8)

the second one of the MvK equations being its compatibility condition.

© 2000 by Chapman & Hall/CRC



2. Symmetry groups [4]

The following is known [5] for the symmetry groups of the homogeneous MvK equa-
tions.

Proposition 1. The homogeneous time-independent MvK equations (5) admit the
group G sy generated by the basic vector fields (operators)

) ) ) ) ) )
Vi=— V,=—.  V,= — Y:Z—_ 1_~ Y:1_
YTew 2T e P e YT T et T T e T Y o
) ) ) ) ) )
) 2— = — —= 1— —= 2— — 1— 2_
W=ree Ty TV T T aw T g T g

Proposition 2. The homogeneous time-dependent MuK equations (6) admit the group
G (p) generated by the basic vector fields:

9 9 9 9 L0, 0 9

_ _ _ _ _ 3
M T BT M T T T e T g T
0 0 0 0 0 0
2 1 1 .2 _ .3 _ 1.3
X6 JI%—JI%,X7—I'W,Xg—l’W,XQ—JIW?XlO_J:JIW?
0 0 0 0
X = CUZCE?’W’ X = fﬂlf(ffg)a—@v X3 = 5529(553)8_437 X1y = h($3)a—¢,

where f, g, and h are arbitrary functions depending on the time only.
As for the symmetries of the nonhomogeneous MvK equations, we proved that:

Proposition 3. A nonhomogeneous time-independent MvK system is invariant under
a vector fielldY iff Y = 2Y; (j =1,...,10), where ¢? are real constants, and

2Pg, + &P, =0, 2Q¢), +£'Q . =0, (9)

for &* =Y (z*), Y being regarded as an operator acting on the functions ¢ :  — R,
Q C R?.

Proposition 4. A nonhomogeneous time-dependent MvK system is invariant under
a vector field X iff X =C'X; (j =1,...,14), where C7 are real constants, and

for & = X(x'), X being regarded as an operator acting on the functions x : QxT — R,
QCcR? TCR.

The above Propositions imply the following group classification results.

Theorem 1. The time-independent MuK equations (5 ) admit the one-parameter group
G iff G is generated by a vector field Y = Y, and the right-hand sides P and () are
invariants of G (when c'® = 0) or eigenfunctions (when c'° # 0) of its generator Y.

Theorem 2. The time-dependent MvK equations (6 ) admit the one-parameter group
G iff G is generated by a vector field X = C7X; and the right-hand sides P and Q) are
invariants of G (when C° = 0) or eigenfunctions (when C° # 0) of its generator X.
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3. Conservation laws

Both the time-independent and the time-dependent MvK equations constitute self-
adjoint systems and are the Euler-Lagrange equations associated with the functionals

IOW, F] = / / / L) de'ds?, L =TI,

and
DWW, F] = / / / LPdgldzda®, L) = (T - 10),

respectively, where

I = (D/2){(AW)? = (1 = v)e™ e W o5 W, |
(1/2ER) {(A®)? — (1 + )™ e o5 ® 0 | + (1/2) e B s W, W,
- PW-Q9%

is the strain energy per unit area of the shell middle-surface and

T = (p/2) (Wy)",

is the kinetic energy per unit area of the shell middle-surface.

In [6], the variational symmetries of the above functionals with P = ) = 0 are
established and all Noether’s conservation laws admitted by the smooth solutions of
the homogeneous MvK equations are presented (see also Table 1 in [7] where the
conservation laws associated with the time-dependent MvK equations are listed). The
following statements hold for the nonhomogeneous MvK equations.

Proposition 5. A conservation law of flux A‘(lj) and characteristic A‘(lj) (j=1,..,9)

admitted by the smooth solutions of the homogeneous time-independent MvK equations
takes the form

1 2
Al 86 =0, Sy = —Ap P — ARQ, (11)
on the smooth solutions of the non-homogeneous time-dependent MvK equations;
_ AM
56) = Al

iff (9) hold, and then (11) can be written as a divergence free expression (i.e. it becomes
a proper conservation law in the sense appropriated in the group analysis of differential
equations, see e.g. [4]), otherwise it has supply (production) S;).

Proposition 6. Fach conservation law of density ¥, flur P(‘;‘) and characteristic A‘(li)

(i = 1,...,14) admitted by the smooth solutions of the homogeneous time-dependent
MuK equations takes the form

P53 + P{;),u +Su =0, Su = —A%i)P - A%i)Qv (12)
on the smooth solutions of the non-homogeneous time-dependent MvK equations;

Say = Yas + Pl o

iff (10) hold, and in this case (12) becomes a proper conservation, otherwise it has
supply (production) Sg;.

Note that the source therms in (11) and (12) appear due to the curvature of the shell.
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4. Balance laws

Given a region {2 in the shell middle-surface with sufficiently smooth boundary ¥ of
outward unit normal n,, a balance law

/ A2 nadS + / Spydada? = 0, (13)
by Q

corresponds to each of the nine basic conservation laws of fluxes A‘(lj) characteristic A‘(lj)

(7 =1,...,9) admitted by the smooth solutions of the homogeneous time-independent
MvK equations (these conservation laws are listed in Appendix B [6]).

The same holds true for the fourteen basic conservation laws of densities ¥y,
fluxes P(‘;‘) and characteristics A‘(J;-) (1 =1,...,,14) admitted by the smooth solutions of

the homogeneous time-dependent MvK equations (see Appendix A [6] and Table 1
[7]). Namely, to each of them it corresponds a balance low

% [ wada'ds? + [ Ponads + [ [ Seda'datds® <o, (14)
Q % QT

where 7T is a certain time interval.

Both (13) and (14) hold, just as the respective conservation laws, for every smooth
solution of the nonhomogeneous MvK equations.

In the static case the balance laws (13) provide a set of path-independent integrals
inherent to Marguerre’s shell theory. Among them are the counterparts of the well-
known and widely used in fracture mechanics J-, L- and M-integrals. The applicability
of the latter integrals in the analysis of cracked plates is discussed in [8] (see also the
references therein). In the similar way, the path-independent integrals corresponding
to the balance laws (13) can be used in the analysis of equilibrium and stability of shells
undergoing stress concentrations near the tips of cracks and notches since they allow to
compute the stress intensity factors and energy release rates, the former characterizing
the distribution of the stress field in a vicinity of a certain singular point, say the crack
tip, and the latter characterizing the propagation of the crack through the shell.

In the dynamic case, the balance laws (14) provide the theoretical background
for studying the propagation of waves of discontinuity in shallow shells since they
are applicable in the domains where some important physical quantities suffer jump
discontinuities at a certain curve. Using the balance laws (14) one can extend the
“continuous® Marguerre’s shell theory in the same manner as it is done in [7] for the
“continuous® von Kdrmén plate theory. At that Definition 1 [7] should be changed by
supplying the integrals (4) with right-hand sides

/ / Pdz'ds?ds?, / / Qdz' drde®.

QT QT

Then, Definition 1, Propositions 1 to 4 and the jump conditions listed in Table 2
remain the same under the assumption that P and () are smooth functions.
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5. Group-invariant solutions

In the cases when the MvK equations (5) or (6) admit a curtain subgroup of G g or
G(py, respectively, it is worth looking for the corresponding group-invariant solutions.
To obtain such solution one should follow the procedure described in details in [4].
Here, we would like only to notice that the group-invariant solutions to the homo-
geneous time-dependent MvK equations (6) obtained in [6] and shown to determine
acceleration waves in plates can be used for the same purpose in Marguerre’s shell
theory provided (according to Theorem 2) that P and () are joined invariants of the
group generated by the vector fields X4 and eigenfunctions of X5. In this case the
reduced system reads

D(u" —4u' +4u)" + (De* /4 — o " + (De**/2 — " +2p )i = P,
(¢ —4¢' +49)" + Eb(u —u)u = @

where s = (1/2)In(y/p/Dr?/t), r2 = (") + (22)%, u(s) and @(s) are the new depen-
dent variables, and the prime denotes differentiation with respect to the argument s.

As for the group-invariant solutions describing traveling waves in plates discussed
in Section 5 [7], now, according to Theorem 1, P and () are to be joint invariants of
the group generated by X5 and X, + (1/¢)Xy.
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A. VERMA, P.J. HARRIS and R. CHAKRABARTI

Modeling the motion of an underwater
explosion bubble

1. Introduction

In recent times there has been a significant interest in the problem of determining
the motion of an explosion bubble, especially when there is a submerged structure
close to the point of explosion. The phenomenon of jet formation during the collapse
of an underwater explosion bubble in the neighborhood of a submerged structure is
postulated as a possible mechanism for causing damage to the structure. The direction
of this jet is dependent on the geometry of the fluid region in which the bubble exists.

In this paper, we show how the boundary integral method, with an axisymmetric
formulation, can be used to model the motion of a bubble close to a fixed rigid struc-
ture, such as a sphere, cylinder or a plate, immersed in an infinite fluid. Section 2
introduces a simple mathematical model which can be used to study the motion of a
bubble in a fluid. In section 3 we re-formulate the problem as an integral equation
over the surfaces of the bubble and rigid structure, and present a numerical scheme
for obtaining its solution. Section 4 presents the results for the motion of a bubble
close to a number of different rigid structures under the influence of gravity.

2. Mathematical model

This section presents a suitable model for determining the motion of a bubble close
to a fixed rigid structure by making the standard assumptions [5] that the fluid is
inviscid, incompressible and irrotational. Therefore the flow field can be described by
a velocity potential ¢, which is the solution of the Laplace’s equation [7]

Vi =0 (1)

The contents of the bubble (if any) are assumed to be ideal and the thermodynamic
processes are assumed to be adiabatic with a constant . Hence the pressure of the
gas inside the bubble,P, , is given by,

n=n(v) )

where V; is the initial volume of the fluid, V() is the volume of the bubble at some
later time t, and F, is the initial pressure inside the bubble. If we let P, denote the
far-field pressure in the plane z = 0, it is possible to write Bernoulli’s equation for any
point in the fluid as [7]

130, P P,

— + |V + = 4 gz == 3

S 5IVOR+— g = ©
where p is the density of the fluid, ¢ is the acceleration due to gravity assumed to be
directed parallel to the negative z-axis, and P denotes the pressure at the point in
the fluid. Since the fluid pressure at the surface of the bubble must be equal to the
pressure inside the bubble, Bernoulli’s equation yields

O R )
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at all points on the surface of the bubble. There cannot be a fluid flow perpendicular to
the surface of a fixed rigid structure, therefore %f; = 0 on all such surfaces. The initial
conditions of the system are that the initial potential on the surface of the bubble
and the internal pressure of the bubble are known. For a cavitation bubble the initial
potential is taken as the Rayleigh solution [9] and the internal pressure is assumed to
be zero, whilst for an explosion bubble the initial potential is zero but there is a large
excess pressure inside the bubble.

3. Numerical analysis

In this formulation the fluid domain (£2) is assumed to be unbounded and so there are
obvious problems with the use of domain based numerical methods, such as the finite
element method, to solve the underlying differential equation problem. For this reason,
the boundary integral method has proved popular for solving problems such as this,
as the three-dimensional infinite domain differential equation problem is transformed
into a two-dimensional integral equation defined on a finite region, namely the surfaces
of the bubble and the rigid structure. It can be shown that the velocity potential ¢

and the normal derivative of the potential %% must satisfy Green’s second theorem [6]

p(p) ifpe
aa ¢ plp) 1
/S {cb(p)%(p, q) — G(p, Q)%(Q)} dSy = gcb(p) :)ftﬁef “ise . (5)

where S denotes the union of the surface of the bubble and the surface of the rigid
structure and G(p, q) is the free space Green’s function

1

G(p,q) = pram—

(6)
For p € S, equation (5) yields a first kind Fredholm integral equation for %f; if ¢ is
known and a second kind Fredholm integral equation for ¢ if % is known. If p € 5

or p € S,, where b denotes the quantities on the bubble and r denotes the quantities
on the rigid structure, the integrals appearing in (5) can be split to yield

%qbb(p) = /Sb {aﬂb(p)g—i(p, q) — G(p, q)%(q)}dsq

+/ST{¢r(p)g—i(p,q) —G(p,q)%(q)}dsq pES (7)
%cbr(p) = /Sb {m(p)g—i(p, q) — G(p, q)%(q)}dsq

+/ST{¢r(p)g—i(p,q) —G(p,q)%(q)}dé’q pE S (8)

This analysis can be generalized to more than two surfaces. The effects of an
infinite rigid plane on the bubble’s motion can be included by using the modified
Green’s function as used by Blake et al [5]. To further simplify the problem we assume

© 2000 by Chapman & Hall/CRC



that fluid domain and the flow are axisymmetric about the z-axis. The surface of
the bubble and the structure are generated by rotating some appropriate curve about
the z-axis. For the bubble’s surface S, the parametric functions r(s) and z(s) are
interpolated by using clamped cubic splines [3]. Similarly as the value of ¢, is known

at all node points, it can be interpolated by a clamped cubic spline with %f at both

ends. The unknown normal derivative of the potential, v, is approximated by using
a piecewise linear interpolation scheme. For the surface of the rigid structure S, the
generating curves r(s) and z(s) and the potential are interpolated using a simple
piecewise linear interpolation scheme, as is the normal derivative of the potential 1,.
Further details of these approximations can be found in Amini et al [1]. Using the
approximate surfaces, potentials and the normal derivative of the potential described
above, it is possible to discretise (7) and (8) using the collocation method [2] to obtain
a block matrix equation of the form

Lyy,  — My, W \ _ [ My —Le, it} (9)
Lrb _Mrr (I)r Mrb er \Ijr
where @, is the vector of the nodal values of ¢, and ®,., ¥, and V¥, are similarly defined.

The block matrix equation can be solved for ¥, and ®,. Once both the potential and
the normal derivative of the potential are known on the surface of the bubble, it is

possible to compute the components of fluid velocity % and % at each node by solving

op  0¢ )
- — _nr _l. -
on  Or 0z
0 Opor  0¢ 0z
9p _090r 090z (11)
ds Ords 0z0s
where %, % and % are obtained by differentiating the appropriate interpolating cubic
splines and n, and n, denote the r and z components of the unit normal respectively.

The location of the surface of the bubble and the surface potential can now be updated
by a simple Euler’s scheme as described in [8].

T (10)

4. Computational results and conclusions

All calculations are made in terms of the non-dimensional variables [4]. The validity
of the model has been verified [8] by showing that our results are consistent with the
previous work [5].

Figure 1 shows the growth and collapse of a bubble which is 1.0 unit above a fixed
rigid cylinder. The radius of the cylinder is 1.0 unit and its height is 2.5 units. The
entire configuration is in the buoyancy field with a buoyancy parameter, 6 = 0.1. The
figure illustrates that if the bubble is close to the rigid structure then it jets downwards
towards the rigid structure, whereas it would jet upwards due to the buoyancy field if
the structure were not there.

Figure 2 shows the displacement of the centroid of the bubble at different initial
distances above a fixed rigid sphere, in a mild buoyancy field (with the buoyancy
parameter § = 0.1). The radius of the sphere is 3.5 units and the bubble is placed
1.0, 2.0, 3.0, 4.0 units respectively above the rigid sphere. The figure shows that the
motion of the bubble, i.e. towards or away from the structure, is dependent on the
initial distance of the bubble from the structure. The effect is similar to that observed
by Blake et al [5] for a bubble near an infinite rigid boundary.
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Fig. 1a. Growth and collapse of an explosion bubble above a fixed rigid cylinder.
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Fig. 2. Displacement of the centroid of the explosion bubble at
various initial distances above a Fixed rigid sphere.

The boundary element method has shown to be a useful tool in predicting the
motion of the bubble in an infinite and semi-infinite potential flow situation. This
paper has shown how the basic method can be modified to include finite rigid structures
immersed in the fluid close to the bubble. For relatively large structures, the bubble
essentially behaves like a bubble close to an infinite rigid boundary, where as for
structures which are approximately the same size that of the bubble, the interaction
is more complicated.
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N. VIRCHENKO

On some new systems of N-ary
integral equations

1. Introduction

Systems of dual (triple, N-ary) integral equations are found often in the solving of
a wide class of mixed boundary value problems in mathematical physics, elasticity,
etc. [1]. Such systems of integral equations have been investigated in detail. At the
same time systems of dual integral equations with more complicated functions have
not been investigated and therefore are interesting for study.

In this paper, systems of dual (triple) integral equations with generalized Legen-
dre functions, Fox’s H-functions, generalized Watson functions, and with Whittaker’s
functions are solved. These systems are solved by different methods. In particular, the
system of dual integral equations with Whittaker functions W ;, using Weyl fractional
integral and generalized Kontorovich-Lebedev transform is reduced to the system of
linear equation for the unknown functions.

A system of N-ary integral equations with generalized Legendre functions

V2 1ir(cosh @) in the kernel is solved and investigated by using the generalized inte-
gral Mehler—Fock transform. The case N = 3 is considered in detail.

2. The general N-ary system

As is known [1], the system of N-ary integral equations is the set of integral equations
of the following form:

/Zam [y = fi(a), (=T N;j=TLxel), 1)

where Dj and I 7 are intervals of the real axis, ¢r(7) are unknown functions designated

on the set U U D’ K J (1,2) is the i—kernel of j— equation; fij are the given functions
= 1 7j=1

at I 7 and al 7. are the weight functions.

3. A system of triple integral equations

Let us consider the system of triple integral equations:

w(r Z a(T) k(1) Py 4 (cosha)dr = fi(a), (0<a<a),
w(r Z a(T) k(1) P75 (cosha)dr = gi(a), (a<a<b), (2)

w(r Zalk 1/2+”(cosha)d7' = h(a), (a>0b),
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where ¢(7) are the unknown functions; a;(7) are the given functions for 7 €
[0,00); fi(a), gi(e), hi(a) are the given functions for o € [0,a),a € (a,b),a € (b, 00)
correspondingly,

1—m— 1-
w(t) = 2" °T (—ZL Dy z'T) r (——ZL Tn + z'T)

1—m-— 1—m-—
e )

and P, (cha) is the generalized associated Legendre function [2].
Let us suppose that

& 3
/w(T) > a, (7)1 (7) Py )5 1 (cosh @)dr = ni(a), (a < a <b), (3)
0 k=1
Using formulas of the generalized integral Mehler-Fock transform [3] we obtain from
(1):

gla) = /fl(t) sinhtF'(¢, o)dt + /rl(t)sinhtF(t,a)dt + /oohl(t)sinhtF(t,a)dt; (4)

here
. . min(a,t)
Ft, o) = 27" sinh™ asinh ¢ / (cosh o — cosh s)~m=1/2
y ) = I2(1/2 —m) (cosht — cosh s)m+1/2
n—m m+n 1 cosh o — cosh s
X 2F1 y T T — m;
2 2 2 1+ cosha
X o F" n—m m+n 1 mCOSht—coshs J
B 15 T s.
o 2 2 2 " 14 cosht

After transformations, the equation (3) is brought to the form

Ni(a) = /Ml(s)(cosha — cosh s)™™71/2

a

o F m-n m+n 1 " cosh o — cosh s p
_ . 5
271 2 7’ 2 2 " 1+cosha

where

b
M(s) = /Tz(t)sinhm+1(t)(cosht — cosh 8)—m—1/2

) 3 —m;
2 2 2 1+ cosht

o F, (n—m m-i-n.l .cosht—coshs) it
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2m=n oinh™

Ny(a) =

He) T-2(1/2 — m) Gi(@)

’ e n—m m+n 1 cosha — coshr
_/(C()S}la_(:()S}l7_)2 1/22F1< 2 72 ;§—m; 1+ cosh« )dT

B . ©

x [ r;(t) sinh™ ™ (cosh t — cosh 7)1/
n—m m+n 1 cosht — cosht
X o F — p— e dt.
21( 2 7 2 27" 1+ cosht )

Using the solution of the integral equation [4]:

ri@) —9@®)\ .,
W) dt = U() (6)

Withkzm-i-%,p: g = —m;",s:%—m,azﬁ,d: 1,7 = coshz,9(t) = cosht

equation (4) becomes

/zﬁb(t)[r(ff) — )] 2P (I% 4 S;

Mi(s) = W% [(COShS + 1)(n=m)/2 /(coshs — cosh o)™ 1/2 (7)

a

—nl+m-n1 cosh s — cosh
h 1)(m-n)/2 [ (m n .2 . )
x(cosha +1) 2 2 7 2 ,2+m, 1+ coshs
x Nj(a) sinh « da] ) (8)

Thus we define r(t) :

I'=1(1/2 — m)sinh ™™ '¢

nt) = T(1/2+ m)

b
d
XE |:(COSht + 1)(”1—771)/2 /(COShS — cosh t)m—l/Z(COShS + 1)(771—71)/2
¢
m-nl+m-nl _cosh s — cosha

2 7 2 ,2-|-m, 1+ cosht

On the other hand r;(t) can be written in the form:

><2F1< )Ml(s) sinh sds|.

1 1 H,
r(t) = -I'* <§ — m) r-! <§ + m) sinh =" t% (9)

where

b
Hi(t) = (cosht+1)C—m)/2 /(coshr — cosh t)™ /2 (coshr 4 1)(m—m)/2
¢

T m-n l+m-—n 1+ coshr — cosht
2 ome
201 2 7 2 "2 " 14 cosht

) M;(r)sinhrdr. (10)
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After some unwieldy transformations from (5)—(8) we obtain a Fredholm integral equa-
tion of the second kind with respect to M;(s

I'(1/2 —m) 1/2 m)
Ml@:le(S)‘ (1,2 + m) / Mi(r (11)

K(s,r) = (coshr+ 1)/ 2ginhy

a

% /S(T’ T)a(ji [(COSh s+ 1)nmm/ /(COsh s — cosh )™ 1/2
s
0

N F(n—m m+n 1 cosha—coshv')

_ 2

I 2 2 72 " 1l+4coshr

x (cosha 4+ 1)™™™/2(cosh o — cosh 7)™ 2 sinh o da] dr. (12)

Now, from (6), we find r;(«) and applying the inverse formula of the integral
Mehler-Fock transform we obtain immediately:

3 an(r)o(r) = / () sinh tP™7, . (cosh t)dt. (13)

Notice that the equation (11) will be a soluble Fredholm integral equation if the
functions fi(«), gi(a), hy(a) satisty the conditions:

—1/2—m+p1 —
fila) € L0, a),{ fl(ﬁ)( %) ((a(f a)—1/2—m4)rb20;7 o i a, p1 > 0,02 > 0;
(Ch

— 1/2—m—|—71
g(a) € La(a,b), { e Y po— o Y1 > 0,72 > 0;

g(a) =O((b — a)™1/2m+712) o — b,
h(a) € Ly(b,00), bi(e) = O ((ar = b)™/27+) [0 — b, 8, > 0.
4. A dual equation example

Let us consider the system of dual integral equations with Whittaker’s function Wy ;, :

Ofw(k TIWh,ir(2)A(T)®(T)dr = F(2), 0 <2z <aq, 14
w(k, T)Wigpir (@) A(T)®(1) dT = G(2), = > a.

o3

The solution of the system (14) has the following closed form:

o) = A7 ()] / %Wk,iT(:c)F(:v)dw

+/ez/zl,—l—k—uwk’”(w)lg[yk—le—y/ZG(y)]dl}, (15)

where I#[f] is the fractional Weyl integral operator.
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5. A triple equation example

Let us write the solution of the system of triple integral equations with Watson’ func-

tions w, A (z) = 2v/x ?Jl,(t)J,\ (%) t~'dt in the kernel:
0

v— u/\ u[A(D( )] Fl(l')? S (07 (l),
SuaB®(z)] = Ky(z), z € (a,b),
u—l—v /\—I—v[Oq)( )] G3(x)7 T e (bvoo)v
where S\, Sp s Sl, 4+ are generalized Hankel integral operators:

Salf@)] = 2*Sal® (@)
Salf@)] = [walen)f(r)dr

(16)

The solution of (16) can be reduced to a system of Fredholm equations of the second

kind with restrictions:

1

1
y>—§+max{,u, fy7'u2 20 — 20[—1} /\>—§+max{,u,—’y,,u—04},

w+al <2,|y+8/<2,0<y=-8<1,0<pu—a<l.
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G. YU and A. NARAIN

Computational simulations and flow
domain classification for laminar/laminar

annular /stratified condensing flows

1. Introduction

The proposed two dimensional numerical solution scheme for internal and external
flows solves the full Navier-Stokes equations in each phase, locates the phase change
interface while satisfying all the conditions at the interface, inlet, outlet, and the walls.
It is used to solve classical smooth-interface external film condensation problems and
gives results [8] in excellent agreement with classical solutions [12-15]. The research
results show that conditions at the exit of an internal condensing duct flow, unlike
single phase or other non-condensing gas-liquid incompressible flows, often significantly
influence the flow upstream and are responsible for determining the nature of wavy-
interface quasi-steady flows.

Fig 1 shows a typical configuration of condensing flows in an inclined channel. Film
condensation occurs at the lower plate of the channel. A dry slightly superheated
condition is assumed for the upper plate of the channel. We assume the inlet vapor
is at saturation temperature (or slightly superheated), and both the vapor and the
condensate flows are laminar. The flow rates are assumed to be small enough to allow
the assumption of a smooth or nearly smooth interface [1].

2. Governing equations and non-dimensionalization

We denote the liquid and vapor phases in the flow (see Fig 1) by a subscript I: I =
1 for liquid and I = 2 for vapor. The fluid properties (density p, viscosity u, specific
heat Cp, and thermal conductivity k, each with subscript I ) are assumed to take their
representative constant values for each phase (I = 1 or 2). Let 7 be the mean tem-
perature fields, p; be the mean pressure fields, 74(p) be the saturation temperature

of the vapor as a function of the pressure p, A be the mean film thickness, M be
the local interfacial mass transfer rate per unit area, 7,,(x)(< 75(p)) be the known
temperature variation of the bottom plate, vi = Ui+ Vj be the mean steady velocity
fields. (If 7,,(z) is not given, the correct value can be iteratively computed, using ap-
propriate information about the coolant flow, by solving the conjugate problem dealing
with conduction in the bottom plate and convection to the coolant flow underneath.)
The distinction between mean and actual flow variables vanishes for smooth interface
steady laminar flows. Furthermore let A be a characteristic length (the channel height
in this case) for the flow, ¢, and g, be the components of gravity along x and y axes,
po be the inlet pressure, AT = T 4(pg) — 7 ,,(0) be a representative controlling temper-
ature difference between the vapor and the bottom plate, h(}g = hg — hy be the latent

heat of vaporization at the inlet temperature 7 4(py), and U be the average inlet vapor
speed determined by the inlet mass flux. For the results given in this paper, all the
above mentioned property values for relevant fluids (R-113, etc.) were obtained from
the ASHRAE Handbook, SI Edition [2]. With (X, )) representing physical distances
of a point with respect to the axes in Fig 1 ( & = 0 is at the inlet and Y = 0 is at the
condensing surface), we non-dimensionalize the variables as

(X, Y,A,U;, M} {hx, hy, hé,Uuy, Urn} )
V1, Tr1,pr} {Uvr, (AT)br,po + prU?nr}
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The non-dimensional differential forms of mass, momentum (x and y components),
and energy equations for steady flow in the interior of either of the phases are:

Mefo0 wi w5+ ),

w%+v% = B (G ), @
2

wi ol = —(E)+ (Fr) " + g (GF + 5

where Rer = p;Uh/ur,Prr = piCpr/kr, (Fry)™' = g,h/U? and (Fr,)~' = g,h/U>.

After scaling approximations [3], the more exact interface conditions ([4,5]) for
condensing flows reduce to the simpler form [6] appropriate for the flows considered
here. The interface conditions ([7-9]) that apply at y = 6(x), under gentle slope and
other approximations (§'(x)? < 1, etc.) for locations away from z ~ 0, are:

up(z, 6(X)) ug(z,6(z)) = uf(:c), m(z,6(x)) = LEmy(z, 6(x)),
%—1;1 z,6(x)) = ‘Z—j%—?(l’,é(l’ ) =78,
j 6

)% — va(,6(2))] = [wi(x,6(2)) % - wi(x,8)], (3)
= 92(1’,6(1’)) = ﬁTS(pz = 95’(77-(1"))7

where 78 = (1/(u1U/h))(T7) 4, represents the non-dimensional value of interfacial shear
(T sy, and Ja = Cpy AT /RS,

The wall conditions, inlet conditions (e.g. u2(0,y) = U,v2(0,y) = 0, etc.), and
appropriate exit conditions are specified for each flow situation in accord with estab-
lished practice and each of these conditions are computationally handled in standard
ways.

All of the condensing flow problems solved in this paper assume that the vapor
temperatures at the inlet, outlet, and dry walls (if present) are close to the saturation
temperature 7 ;(po). This makes vapor temperature nearly a constant (~ 7 4(po)) at all
points and therefore the energy equation for the interior of the vapor is automatically
satisfied.

An inspection of all the non-dimensional governing equations, interface conditions,
and boundary conditions reveal the fact that the flows considered here are affected by
the following set of non-dimensional parameters:

1
{Rein,Prl,Ja, (F?"z)_l,Ze;(Fry) -1 P2 &} where Z, E/ us(Ze, y)dy; (4)
Pl M1 8(ze)

Z, is the ratio of exit vapor mass flow rate to total mass flow rate, Rey, = poUh/us =
Rez, and the definitions of other parameters are same as in equations (2) and (3). The
normal gravity parameter (Fr,)~! can be ignored for smooth interface condensing
flows but it is important for wavy-interface situations where it-along with a surface-
tension parameter-plays a more significant role of providing restoring forces for the
transverse interface oscillations[10].
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Fig. 2 Sketch depicting the grid and the notations used.

3. Numerical approaches

At each iteration, the computational domains for each phase (I=1 or 2) is defined and
grid is generated in the manner shown in Fig 2. The grid is non-uniform. The smooth
interface can be replaced by a stair-step type surface. The grid generation technique
allows us to choose a denser grid near the flat part of the interface. A control volume
method [11] has been chosen to develop the desired code. Detailed computational
strategy are given in Yu’s thesis [8] and a forthcoming paper [9].
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Fig. 3: Effect of changes in AT. The above predictions are for a vertical (o = 90°) flow of R-
113 specified by: T(py) = 322.6 K, U=0.41 m/s, x, = 46.685, and h=0.004 m. The exit quality
for AT = 3.5 °C, 5 °C, and 6.5 °C are respectively Z, = 0.5824, 0.4587, and 0.3450.

‘
o U0 0

Fig. 4: Effect of different exit prescriptions of vapor quality Z,. The flows are same as
in Fig. 4 and T,, values respectively correspond to Z, values of 0.6645, 0.4388, and
0.3673. We expect some of these solutions (particularly curves 1 and 3 for the liquid
velocity) are likely to be unstable in the sense that smooth-interface solutions will be
replaced by quasi-steady wavy-interface situations.

4. Simulation results and discussion

Some computation results for uniform wall temperature 7, cases are shown in Figs.
3-4. Simulation results show that a typical flow could consist of three zones with
regard to the impact of downstream conditions on the values of flow variables at an
upstream location. Starting from the inlet, these zones (I, II, and III in Fig. 1) are
respectively termed: singularly elliptic, parabolic and elliptic. However, in Figs. 3-4,
parabolic zone II is absent because inlet speeds U are small.
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5. Conclusions

We proposed and successfully implemented a new two dimensional computational
simulation capability for condensing flows.

Within the theoretical/computational framework giving Figs. 3&4, we showed,
for the first time, the role and significance of exit conditions for internal con-
densing flows.

This simulation capability has been used to propose a nearly exactly interfacial
shear model which provides the framework for subsequent modifications appli-
cable to wavy-interface flows [8].
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