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Preface

Lie's group theory of differential equations, which 1s more than a hundred years old, has had a rebirth in
the last twenty years as people have again begun to appreciate its virtues, namely: (1) that it unifies the
many ad hoc methods known for solving differential equations, and (2) that it provides powerful new
ways to find solutions. The theory has applications to both ordinary and partial differential equations and
1s not restricted to linear equations. What is needed now is a short, simple, introductory text to spread the
word.



I am not satisfied that recent books fill this need. Like many modern mathematics books, they are
written in an encyclopedic style that makes them hard to read. In striving for rigor and generality right
from the outset, their authors make the underlying ideas not only difficult to understand but sometimes
even difficult to identify. The book that we want should be, to borrow a phrase of Jacques Barzun's,
'simple and direct.'

A short monograph similar to the well-known Methuen monographs seems perfect for this purpose.
These monographs have roughly 150-200 9 cm x 14 ¢cm pages of 10-point type and are intended as an
mtroduction to a single subject. Their purpose, for which I esteem them, 1s to get the reader 'up and
running' as quickly as possible. To do this here, I have sacrified not only pantological completeness but
rigor and generality in favor of clarity and immediacy of understanding.

To work with less than complete rigor and generality, even if only for a time, 1s to swim against the
current of modern

Page x

mathematics. But there 1s good authority for it in the writings of a mathematician of unassailable
reputation, George Polya. In his book How to Solve It, Polya calls attention to the value of what he terms
incomplete proofs, which he describes 'as a sort of mnemotechnic device . . . when the aim is tolerable
coherence of presentation and not strictly logical consistency.' After all, he says, 'the facts must be
presented in some connection and in some sort of system, since isolated items are laboriously acquired
and easily forgotten. Any sort of connection that unites the facts simply, naturally, and durably, is
welcome here . . . proofs may be useful, especially simple proofs’ (italics added). One goal of this book,
then, 1s to explain matters so that the the reader can see them, as Polya puts it, 'at a glance'.

I do not think that Polya intended for his phrase 'at a glance' to imply 'without much thought'. Instead 1
think he meant that with study and thought, a clear, unified picture would emerge with which the reader
could thereafter think about the subject fluently. In this connection, it is probably worth taking as a
caveat to Polya's dictum Einstein's quip that 'things should be made as simple as possible, but not
simpler'. Consequently, some sections of this book are harder than others. As a help to the reader, I have
marked the more difficult sections with a star. These sections may be omitted on a first reading; the
reader may thereby gain an overview of the subject before coming to grips with the more complicated
details.

A second goal of this book is to give the reader some hint of what to do once he has found a group
under which his differential equation is invariant. As a practical matter, what to do next is as important
in finding a solution as finding a group in the first place. It has been my observation that in practice the
most frequently occurring groups are stretching (affine) groups, translation groups, or combinations of
the two. Often the simpler equations are invariant to an entire family of such groups. Such great
symmetry (as group invariance 1s often termed) allows some rather general theorems about the solutions
to be derived, and such theorems are discussed and their use 1llustrated.
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There are problems at the end of each chapter which I have included as an aid to learning. It has been
said of piano playing that 'nobody ever learned to play the piano by reading books on how to play the
piano'. The same 1s true of mathematics: reading a book 1s not enough; doing 1s essential to mastery.
Therefore, 1 exhort the reader to solve the problems. I have also included my own solutions to the
problems. If the reader gets stuck, I recommend that he read just far enough in my solution to get past
his block and then continue his own efforts. In this way, he can maximize the instructive value of the
problems.

I have written this book in comparative collegial isolation, following my own thoughts wherever they
led me. Nevertheless, I owe a debt of thanks to Professor Barbara Schrauner for encouraging me over
the years to remain engaged with the subject of Lie groups. I should also like to express my thanks to my
editor, Mr Jim Revill of Institute of Physics Publishing, for bringing this book into the light of day, and
to his anonymous referees, whose enormous critical labor helped greatly to improve the book.

LAWRENCE DRESNER
OAK RIDGE, TENNESSEE
JULY 1998
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Conventions Used in this Book

As already mentioned in the Preface, as a help to the reader, | have marked the more difficult sections
with a star. These sections may be omitted on a first reading; the reader may thereby gain an overview of
the subject before coming to grips with the more complicated details.

Interspersed throughout the text are examples, which are introduced by the word 'Example' and end with
the symbol .

There are notes at the end of most chapters that contain additional discussion of points raised in the main
text.

Frequent use 1s made of the subscript notation for partial derivatives. Thus the ordinary diffusion
equation de/dr = @*c/dz® is written ¢,, = ¢, for the sake of economy in typesetting. Similarly

Newton's notation for the ordinary derivative is often used in place of Leibniz's; thus for the function y
(x), ¥ =dy/dx and y = d2y/dx2.
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Dedication

To the memory of my father
Max Dresner

1905-1973

and

my father-in-law

Ben Hershman

1908-1995

Now go, write it before them in a table, and note it in a book, that it may be
for the time to come for ever and ever.
Isaiah 30: 7-8



One-Parameter Groups

1.1 Groups of Transformationst

We begin by considering sets of transformations

x'=X(x,y:)) (1.1.1a)
y =Y(x. y; 1) (1.1.1b)

that depend on a continuous parameter A. Any particular value of
A determines one transformation of the set. Each transformation
of the set may be looked upon as mapping any point (x, y) in the
unprimed plane into an image point (x’, y') in the primed plane.
An example of such a set of transformations is

"= xcosA— ysini (1.1.2a)
y = xsinA + ycos A (1.1.2b)

These transformations are called rotations because the position of
the image point (x’, y’) can be determined by rotating the radius
vector to the source point (x, y) counterclockwise through an
angle A. (This can easily be seen by setting z = x + iy and
noting that Eqgs. (1.1.2a, b) are the real and imaginary parts of
the equation z’ = ze'*.)

j The transformations (l.1.1) are point transformations, which are the only
transformations dealt with in this book. Other, more general transformations have

been studied by Lie and by others, but their consideration is beyond the scope of this
introductory book. Some references to them are given in the epilog.
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One-Purameter Groups

The rotations (1.1.2a, b) have certain properties not
possessed by every set of transformations. In the first place,
two rotations carried out in succession are equivalent to another
single rotation. Thus, if we apply (1.1.2a, b) to the source point
(x’. ¥') using the value A’ of the angle, we obtain an image point
(x", ¥") that can be obtained from the original source point (x. y)
by a single rotation through the angle A" = A + A".

If A" = —A, then the second image point (x”. y”) coincides
with the source point and the first two rotations are inverses
of one another. Furthermore, their resultant is the identity
transformation for which the source and image points coincide.

When a set of transformations has these three properties,
namely, (1) two transformations carried out in succession are
equivalent to another transformation of the set;' (2) there is an
identity transformation for which the source and image points
coincide; and (3) each transformation has an inverse; the set
is said to form a group. The property (1) is often called the
group property. In this book, we shall only consider groups of
transformations.

1.2 Infinitesimal Transformations

Let us denote by Ay the value of A for which the transformation
(1.1.1a, b) becomes the identity transformation, i.e. the one for
which x = X(x,y:X) and v = Y(x,y:X). If we expand
(1.1.1a, b) in a Taylor’s series around the point A = X,, we find
to first order,

eaxr (Y oo+ (1.2.1a)
= _ — Z. 1la
X X ax . 0
, JY
Vey+ (=) (=2 +... (1.2.1b)
A/ i,

The partial derivatives (9X/dA),_;, and (8Y/9Xr),_,, are
functions of x and y, which we denote, respectively, by £(x. y)
and n(x, v). For sufficiently small A — Ao we can then write the



Infinitesimal Transformations 3

coordinates of the image point (x', ¥') as

X' =x+EK.¥)(A—Ap) (1.2.2a)
Y =y+nx )= 1) (1.2.2b)

where we have now dropped terms of second and higher order
in A — Xo. This first-order transformation is known as the
infinitesimal transformation.

If we apply the infinitesimal transformation (1.2.2a, b) to
the point (x'. y') we obtain the coordinates of the second image
(x". ¥

x"'=x"+E& YY) = Xo) (1.2.3a)
Y=y +n y) = Xo) (1.2.3b)

Because of the group property, the point (x”, y”) is also an image
of the original source point (x, y). Continuing in this way, we
can advance by infinitesimal steps from the source point (x. y)
to its remote images.

The infinitesimal transformation (1.2.2a, b) is Euler’s finite-
difference algorithm for solving the coupled differential equations

dx dy
Ex,y) n(x.y)
The trajectory through the source point (x.y) defined by
Eq. (1.2.4) is the locus of all the images of the source point
(x,y). This locus is called the orbit of (x.y); it is, clearly
enough, the orbit of any other point on the locus, so we may
speak unambiguously of the orbits of the group.

We shall call the functions £(x,y) and n(x,y) the
coefficients of the infinitesimal transformation (1.2.24, b). Their
usefulness arises from the fact that often we have an explicit
formula for them whereas we do not often have an explicit form
for the functions X and Y. The latter, of course, can be obtained
from &(x,y) and n(x,y) if we can integrate the differential
equations (1.2.4).

da (1.2.4)

Example: For the group (1.1.2a, b), Ay = 0 and &(x.y) =
—y, n(x,y) = x. Thus (1.2.4) becomes
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d dy
S AR (1.2.5)
y X
The first of this pair of equations can be integrated to give
x? 4+ y? = a?, where a® is a constant of integration. Then the
second equation of the pair (1.2.5) can be written

(a®> — yH) " dy = dx (1.2.6)

Eq. (1.2.6) can be integrated to give

arcsin (1) =A+b (1.2.7)
a
where b is a second constant of integration. It follows then that
x =acos(A +b) (1.2.8a)
y = asin(A + b) (1.2.8b)

which is equivalent to (1.1.2a, b) if we take

X =acosh (1.2.9a)
y=asinb (1.2.9b)

as the coordinates of the source point.l

1.3 Group Invariants

A group invariant is a function u(x, y) whose value at an image
point is the same as its value at the source point:

u(x',y) =u(x,y) (1.3.1a)

or
(X (x,y;A), Y(x,y: M) = u(x.y) (1.3.1b)

Thus it is constant along an orbit although it may have different
values on different orbits.
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The left-hand side of Eq. (1.3.1b) is a function of A while the
right-hand side is not. If we differentiate Eq. (1.3.1b) partially
with respect to A and then set A = Ao, we find

E(x.y)uy +n(x,y)u, =0 (1.3.2)

where we have used the conventional subscript notation for the
partial denivatives (i.e. we have abbreviated du/dx as u,, etc.).

The characteristic equation} associated with the linear, first-
order partial differential equation (1.3.2) is

dx  dy
E(x,y)  n(x.y)

and the general solution of Eq. (1.3.2) is an arbitrary function
of an integral of Eq. (1.3.3). This arbitrary function is then the
most general group invanant.

This result is not surprising because the trajectories defined
by Eq. (1.3.3) are the orbits of the group (cf. Eq. (1.2.4)). An
integral of Eq. (1.3.3) is a function that is constant along any of
the trajectories; thus it is a function that is constant on any orbit
of the group. For the rotation group (1.1.2a, b) such an integral
is x2 + y? so that any function of it, F(x? + y?), represents that
group’s most general group invariant.

(1.3.3)

1.4 Invariant Curves and Families of Curves

An invariant curve C is one whose points, considered as
source points, map into other points of the curve C for all
transformations of the group. Thus C must either be an orbit
or a locus on which the infinitesimal coefficients &£(x.y) and
n{x, y) simultaneously vanish.

A one-parameter family of curves can be represented
parametrically by the equation

o(x,y)=c (1.4.1)

t The theory of linear, first-order partial differential equations is summarized in
Appendix A. The reader unfamiliar with it must now consult Appendix A because
the remainder of this chapter depends heavily on this theory.
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where ¢ is the function defining the family and ¢ is a parameter
that labels different curves of the family. The family is said to
be invariant if the image of each curve of it is another curve of
the family. The condition for this is that for any fixed value of
A the image points (x’, ¥') satisfy

P Y)=d(X(x.y:A). Y(x.y:A) = (1.4.2)

when the source points (x. y) satisfy Eq. (1.4.1). Here ¢’ is a
parameter different from ¢ whose value depends on ¢ and A. If
we now differentiate Eq. (1.4.2) partially with respect to A and
then set A = X,, we find

ac’
E(x. ) +n(x.y) ¢, = (ﬁ)x:x” (1.4.3)

The right-hand side of Eq. (1.4.3) is a function only of c; call it
F(c¢). In view of Eq. (1.4.1), Eq. (1.4.3) can be written

E(x.y) b +n(x.y) ¢ = F(¢) (1.4.4)

The representation (1.4.1) of the family of curves is not
unique and any other representation

Vi(x,y) =q (1.4.5)
for which y is a function of ¢, i.e. for which
v =G(¢) (1.4.6)

is equivalent to the representation (1.4.1). It follows from
Eq. (1.4.4) that

EVe+ny, = (§é + ¢)dG-dGF(¢) (1.4.7)
X r) y — X ’7 ) dd) - d¢ B 28
Since we can choose the function G at our pleasure, we could
choose, for example,
d
G(¢>):f—"S (1.4.8)
F(¢)
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for which choice the right-hand side of Eq. (1.4.7) becomes 1:
Y.+ ny, =1 (1.4.9)

The choice of the function F is up to us; different choices
correspond to different ways of parametrizing the family of
invariant curves; the family in its entirety remains the same.

Example: Let us continue the example of the group (1.1.2a, b)

for which £ = —y and n = x. The characteristic equations of
the linear partial differential equation (1.4.9) are
d d
D gy (1.4.10)
y X

These equations have two independent integrals, and the most
general solution for v is obtained by equating to zero an arbitrary
function of these integrals. Integrating the first of this pair of
equations, we find as before, x>+ y* = a’, where a’ is a constant
of integration. If we now substitute (a*>—y?)'/? for x and integrate
the second equation we find

\//—arcsin(z> =b (1.4.11)
a

where b is a second constant of integration. The two integrals of
Egs. (1.4.10) that we seek are then

u=x>+y’ (1.4.12a)

)

v=1y — arctan(i) (1.4.12b)
X

The most general solution for  is obtained by setting v equal
to an arbitrary function H of u:

Y= H(x*+ yz) + arctan(z) (1.4.13)
X
The interpretation of Eq. (1.4.13) is simplified if we write it
in polar coordinates:

Yy =H@r)+6 (1.4.14)
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It is now easy to see that the group (1.1.2a, b) transforms the
curves of the family (1.4.5): ¥ = ¢, into one another. If we
rewrite Eqs. (1.1.2a, b) in polar coordinates, they become

r'=r (1.4.15a)
0'=0+4A (1.4.15b)

Then
v(x'.y)=H(@*)+6 = H(rz) +04+A=c+Ar (14.16)

Thus the image of the curve labeled by the parameter ¢, is the
curve labeled by the parameter ¢, + 2.0

1.5 Transformation of Derivatives: the Extended
Group

Since the transformations (1.1.1a, b) for fixed A determine the
image C’ in the primed plane of any curve C in the unprimed
plane, it must be possible to calculate the slope y' = dy'/dx’
of C’ from the slope y = dy/dx of C. If P:(x.y) and
Q: (x +dx, y+dy) are neighboring points on C, the coordinates
of their images P': (x', ¥') and Q": (x' +dx', y' +dy’) on C’ are
given by

x'=X(x,y; ) (1.5.1a)
Y =Y(x, yi ) (1.5.1b)
and
X' +dx'=X(x+dx,y+dy; A) (1.5.2a)
y+dy =Y(x +dx.y+dy;A) (1.5.2b)
To lowest order,
dx' = X, dx + X, dy (1.5.3a)

dy =Y, dx + Y, dy (1.5.3b)
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Thus,
Y, +7Yy

= ‘XI + ijy

./

y (1.5.4)

Equations (1.5.1a, b) and (1.5.4) specify a set of extended
transformations of the quantities x,y and y. Geometrically
speaking, x.y and y define an infinitesimal line element at
the point (x,y) having the slope y. The set of extended
transformations thus carry one such line element into another.
Do these extended transformations form a group? When the
transformation law for y is Eq. (1.5.4), they do,” and the group
is called the once-extended group.

The coefficient of the infinitesimal transformation of the first
extended group corresponding to ¥y’ = dy’/dx’ is the derivative
(3y'/0A)s=s,- Noting that when A = A,.Y, = X, = 0 and
X, =Y, =1, we find from Eq. (1.5.4) that

_ (o
m= ax -

’71 + n\y . gr + E\ ).. ]
=l — Yx + Y\' Y v <5
[Xx + X,y ( ) X+ X,9) 1,
= (nx +nyy) — y(Ec +6,y) (1.5.5a)
or
dp . d&
m= i )’a (1.5.5b)

Here the two terms in parentheses in the previous line have been
written as total directional derivatives in the direction whose
slope is y. Equation (1.5.5) is somewhat easier to remember
when written with these total derivatives. The importance of
Eq. (1.5.5) is that it is possible to find the coefficient n, of the
infinitesimal transformation

Y =y+m@, y, )X — i) (1.5.6)

directly from the coefficients &£ and 7.
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1.6 Transformation of Derivatives (continued)
The formula (1.5.5) for the coefficient n, can be derived more

easily if we start not with the finite transformations (1.5.1a, b)
but with their infinitesimal form

X' =x 4+ E = Ag) (1.2.2a)
Y =y+nk -1y (1.2.2b)
Then
dx' =dx +dE — Ayp) (1.6.1a)
dy =dy +dn(A — Ap) (1.6.1b)
Upon dividing these equations, we find
L dy . dn dt -
Y= =y —A =) || 1+ = =2
== fo-a]1+ o)
. dnp . d§
)+(dx )dx)( 0) ( )

Because the infinitesimals d¢ and dn are the differences of & and
n, respectively, between the points Q and P, the derivatives on
the right-hand sides of Eq. (1.6.2) are total directional derivatives
in the direction y. The quantity in parenthesis is the infinitesimal
coefficient n,.

Since the transformations (1.1.1a, b) for fixed A determine
the image C’ in the primed plane of a curve C in the unprimed
plane, it must also be possible to calculate the kth derivative
v*® = d*y'/dx* of C’ from the kth derivative y*' = d*y/dx* of
C. We can adapt Eq. (1.6.2) to find the infinitesimal coefficient
e corresponding to y*' as follows. Since

dy® = dy® 4+ dn (A — Ao) (1.6.3)

it follows that

. dyW d d -
ye = 2 [y‘”” + 20— AO)][l + i(x - Ao)]

dx’ dx

_ y“‘*” + (%’% _ _y‘“”%)(k — Xo) (1.6.4)
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Thus

dn, (k+1)dS
== _ = 1.6.5
Mert = 4o y ax ( )

The evaluation of the total derivative dn,/dx in Eq. (1.6.5)
requires a bit of discussion. One can see inductively that n, is a
function of x. y. y, y®, y® . ., y®_  Therefore,

dny  Omx Om . Omk (o
—_— = — 4+ —y+ —y
dx  ox oy’ T ey

d on
+ - y(3)+‘_.+ Mk y(k+l) (1.6.6)

Because of the profusion of terms appearing in these total
derivatives, the expressions for the n, rapidly become very
complicated as k increases.

Example: For the rotation group, which we have been using as
an example, £ = —y and n = x, so that 5, = 1 + y>. This can be
verified by direct calculation from the polar form (1.4.15) of the
group. For, in the primed plane, the angle ¢’ which the tangent
to C’ at P’ makes with the x’-axis is just ¢ + A, where ¢ is the
angle which the tangent to C at P makes with the x-axis. Thus
the slope m’ = tan ¢’ is given by
m +tan A

m =tan(p +\) = ——— (1.6.7)
] —mtan A

where m = tan ¢. Expanding in powers of A, we find
m=m+r(1+m?)+... (1.6.8)

which agrees with the result 5, = 1 4+ y*.m

1.7 Invariant Differential Equations of the First Order

An invariant of the once-extended group is a function u(x, y, y)
of x, y and y whose value at an image point is the same as its
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value at the source point:
ulx'.y. y)y=u(x.y.y) (1.7.1)

If we differentiate Eq. (1.7.1) partially with respect to A and
then set A = X,, we obtain the following first-order linear partial
differential equation for u

Eu, +nuy +nu; =0 (1.7.2a)
the characteristic equations of which are

e dy  dy
E(x.¥)  nlx,y)  nm(x.y.»)

(1.7.2b)

These equations have two independent integrals and the most
general solution for u« is an arbitrary function of these two
integrals.

A first-order ordinary differential equation is a function
v(x,y.y) of x,y and y set equal to zero. If the function v
has the property (1.7.2a) when v = 0, the differential equation it
defines is said to be invariant to the group with the infinitesimal
coefficients £, 7 and 7.

Example: Consider the stretching group x' = Ax,y = Afy,
where g is some fixed number and A, the group parameter, takes
all positive values. Then & = x,n = By.n = (B — 1)y. Two
independent integrals of Egs. (1.7.2) are y/x? and y/x?~!. Thus
the most general first-order differential equation invariant to this
stretching group can be written y/x?~' = F(y/x?), where F is
an arbitrary function.®

Notes

Note 1: Property (1), called the group property, says that if x’ = X (x, y: &),
¥y = Y(x,y;A) and x" = X(x',y; A2, ¥/ = Y(x'.y; &,), there is a value
of the parameter A. A3, for which x” = X(x.y;;), ¥ = Y(x.¥: X3). The
value A3 is a function g(A;, A;) of the values A, and A,. In the case of
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the group (1.1.2) of rotations in a plane, g(A,,22) = A, + ;. In general,
g(A;. A2) # g(x:. X)), which means that in general the final image point
(x”, ¥") depends on the order in which two transformations are carried out. In
other words, the transformations of the group are not generally commutative.
Groups like the group (1.1.2) for which the transformations are commutative
are called Abelian groups.

Although group transformations are not necessarily commutative, they are
associative: if three transformations (call them 1, 2 and 3) are carried out in
succession, it does not matter which pair is carried out first as long as the order
123 is maintained. This means that function g is constrained by the condition

&A1, g(Xz, 23)) = g(g(Ay, A2), A3).

Note 2: To prove that the set of extended transformations (1.5.1a, b) and (1.5.4)
form a group we begin by verifying the group property. Let us consider carrying
out in succession the transformations x, y, y — x', »’. ¥’ that corresponds to

-1

parameter A; and x', ), ¥ — x”,y"”, " that corresponds to parameter A,.
Denote by P and Q two points on the infinitesimal line element at (x. y). Let
the images of P and Q under the transformation with parameter A, be P’ and
Q' and let the images of P’ and Q' under the transformation with parameter
A, be P” and Q". By the manner in which Eq. (1.5.4) was derived, it must
yield ' = slope(P’Q’) and y" = slope(P"Q"). Since the transformations
(1.5.1a, b) alone form a group, we know that there is a single transformation
with parameter A; that carries P into P” and Q into Q”. Again, Eq. (1.5.4)
must yield ¥ = slope(P"Q"). Thus the single extended transformation with
parameter A3 is equivalent to the extended transformations with parameters A
and A, carried out in succession.

In a similar fashion, the remaining group postulates can be verified. Thus
the set of extended transformations does indeed form a group, the once-extended

group.

Problems for Chapter 1

1.1 Do the transformations y = F[F~'(y) — ], x' =
G[G~'(x)+A] form a group? Here F~'(x) is the function inverse
to F(x), which means that if y = F(x) then x = F~'(y).

1.2

(a) Use the differential equations (1.2.4) to calculate the
directional derivative d f/dA of an analytic function f(x, y)
along an orbit of a group with infinitesimal coefficients

§(x, y) and n(x, y).
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(b) Use the result you have obtained in part (a) to calculate the
second derivative d* f/dA?.

(c) Now generalize, construct a formula for the nth derivative,
and write a Taylor series for f(x', y') in terms of f(x.y)
and its derivatives, where the points (x’, y’) and (x, y) lie
on the same orbit and correspond respectively to values A’
and A of the group parameter.

1.3 Apply the Taylor series you found in part (c) of problem 1.2
to the rotation group whose coefficients are £ = —y and n = x
and find the formulas (1.1.2a, b) for the group transformations.

1.4

(a) Find a condition that £ and n must satisfy in order that the
images of the orthogonal trajectories of the orbits are also
orthogonal trajectories.

(b) If £ is a function of y only and n is a function of x only,
what are the orbits of the group?

(c) If £ is a function of x only and n is a function of y only,
what are the orbits of the group?

1.5 The coefficients u& and wn, where u is a function of x and
v, determine the same orbits as the coefficients £ and n. If we
insert «& in place of £ and un in place of n in the condition
of part (a) of problem 4, we find a first-order partial differential
equation for w. If it has a solution u, then the coefficients & and
un determine a group having the specified orbits which carries
the orthogonal trajectories of the orbits into one another. Can
you find a very simple way to show that there is always such
a group? Hint: consider how families of curves are represented
parametrically by Eq. (1.4.1).

1.6 Find the transformation equations for the groups having the
following coefficients:

@ &=1/x,n=-1/Q2y),
(b) §=y,n=x;
() £ =x% n=uxy,
d E=x—y,n=x+y.



2

First-Order Ordinary Differential
Equations

2.1 Lie’s Integrating Factor

The general solution of a first-order ordinary differential equation
is a one-parameter family of curves (called integral curves). 1If the
differential equation is invaniant to a group, it takes the same form
in the primed variables as in the unprimed variables as explained
in section 1.7. This means the family of integral curves must be
the same in the primed plane as in the unprimed plane, which is
to say that the family of integral curves is an invariant family. As
shown in section 1.4, such an invariant family may be represented
parametrically by an equation of the form ¥ (x, y) = ¢ with the
function y satisfying the partial differential equation (1.4.9).
The differential equation satisfied by the family (1.4.5) is

Yodx +y,dy =0 (2.1.1)

but an equivalent form, obtained by dividing Eq. (2.1.1) by an
arbitrary function u(x, y), is

M(x,y)dx + N(x,y)dy =0 (2.1.2)

Since Eq. (2.1.2) is not generally a perfect differential, we
need the function w@(x, y) to integrate it and find the function
. The function u is called an integrating factor' of Eq. (2.1.2)
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and because it has been defined as the ratio of Eq. (2.1.1) to
Eq. (2.1.2), we must have

Y, =uM and Y, = uN (2.1.3)

If we substitute Egs. (2.1.3) into Eq. (1.4.9), which { must
satisfy, we find that

pw=EM+gN)™! (2.1.4)

This is Lie’s expression for an integrating factor for a differential
equation invariant to the group whose infinitesimal coefficients
are & and n.

Example: We can use Lie’s integrating factor to solve the
differential equation

2 —
y = _M (2.1.5a)
X2
or its equivalent
y(y' = x)dx +x*dy =0 (2.1.5b)

This differential equation is invariant to the once-extended group

y =A%y (2.1.6a)
x' = Ax 0<Xi<oo (2.1.6b)
y =Aa""2y [see Eq. (1.5.4)] (2.1.6¢)

for, if we imagine Eqs. (2.1.54, b) written in the primed
form and substitute for the primed quantities their values given
in Egs. (2.1.6a-c), we again obtain Egs. (2.1.5a, b) in the
unprimed form. The coefficients £ and n of the infinitesimal
transformations are £ = x and n = y/2. According to Lie’s
theorem, Eq. (2.1.4), an integrating factor is

2 -1
u= (xy3 - xzy) 2.1.7)
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so that

2.\ !
wx = ”’M = .V(,V2 - x)(xy3 - xZ‘)
1 1

=4 — 2.1.8
T x=2) A

which can be integrated to give
v =Inx +In(x —2y") + F(y) (2.1.9)

The constant of integration, F(y), is an arbitrary function of y
since the derivative with respect to x in Eq. (2.1.8) is a partial
derivative. If we differentiate Eq. (2.1.9) partially with respect
to y and use the second of Eqgs. (2.1.3) for y,, we find

2 -1

dF

xz(xf — 2) —uN = —dy(x =2y + —  (2.1.10)
2 dy

It follows from Eq. (2.1.10) that dF /dy = —2/y so that F(y) =

—2Iny + c,, where ¢, is a constant of integration. With this

value of F, Eq. (1.4.5) can be rearranged to read

y =x2x +¢)7? (2.1.11)

where ¢ = exp(c; — ¢;). As expected this family of curves is
carried into itself by the transformations of the group (2.1.6), the
image of the curve labeled by the parameter ¢ being labeled by
the parameter Ac.H

2.2 The Converse of Lie’s Theorem

The converse of Lie’s theorem states that if p is an integrating
factor of the differential equation M(x, y)dx + N(x, y)dy =0
and ¢ and n are any two functions satisfying u = (§M +nN)™',
then the differential equation is invariant to the group whose
infinitesimal transformation has coefficients £ and n.
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To see this, observe that if u given by Eq. (2.1.4) is an
integrating factor, then Eqs. (2.1.3) can be written

V.= MEM+nN)™! and v, = N(EM +nN)™!
(2.2.1)
Then it follows that

Ev+ny, =1 (2.2.2)

which, according to Eq. (1.4.9), means that the family, ¥ (x, y) =
constant, of integral curves is invariant to the group whose
infinitesimal transformation has coefficients £ and n. Invariance
of the family of integral curves means invariance of the
differential equation since they are logically identical.

Example: We can use the converse of Lie’s theorem to find a
second group different from the stretching group of Eq. (2.1.6) to
which Eq. (2.1.5) is invaniant. Equation (2.1.5) has the integrating
factor 4 = y~* which can be discovered by seeking a solution
w1 that depends only on y to the partial differential equation
(uM), = (uN),. If we arbitrarily choose £ = 1, then Eq. (2.1.4)
gives n = y/x. Using these values of £ and 5, we can solve
Eq. (1.2.4) and find y == ¢;x, x = A + ¢;, where ¢; and ¢, are
constants of integration. If we choose ¢, to be the ratio y/x for
the source point and ¢, to be the x-value of the source point,

these last equations are equivalent to the transformations

A
y = _v(l + —) (2.2.3a)
X
X =x+Ax (2.2.3b)
From these equations it follows that (cf. Eq. (1.5.4))

L. Alxy—y
y=y+ # (2.2.3¢)
X
A straightforward calculation verifies that if we write Eq. (2.1.5a)
in the primed form and substitute for the primed variables from
Egs. (2.2.3a, b), we obtain Eq. (2.1.5a) in the unprimed form.
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Finally, as required, the group (2.2.3) carries the family (2.1.11)
into itself, the image of the curve labeled by parameter ¢ being
labeled by parameter ¢ — 2A.1

2.3 Invariant Integral Curves

From the converse of Lie’s theorem comes the surprising
conclusion that there are infinitely many groups that leave a
given first-order differential equation invariant. These can be
partitioned according to the integrating factor they correspond to.
As we shall see next, all groups (£, n) having the same integrating
factor u, given by Eq. (2.1.4), leave the same integral curves of
Eq. (2.1.2) invariant.

An invariant curve (an orbit) of a group (£. n) is given by
the coupled differential equations (1.2.4). If such an orbit is also
to satisfy the differential equation (2.1.2), we must then have

(EM +nN)dA =0 (2.3.1)
or, since dA is arbitrary,
w'=EM+9N =0 (2.3.2)

Therefore, all groups having the same integrating factor u leave
the same integral curves invariant and these curves can be found
by setting u=' = 0.

Example: In this example, we determine the integral curves of
differential equation (2.1.5) that are left invariant by each of
the two groups (2.1.6) and (2.2.3) under which the differential
equation is invariant. The group (2.1.6) has the integrating factor
(2.1.7) and so must leave the integral curves y = 0 and y =
(x/2)"7? invariant. These curves are those of the family (2.1.11)
for which ¢ = Fo00 and ¢ = 0, respectively. These are the
only values of ¢ left unchanged by multiplication by A; thus the
integral curves that correspond to them are the only ones that are
carried into themselves by the transformations (2.1.6).
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The group (2.2.3) belongs to the integrating factor u = y=*

and thus should leave only the integral curve y = O invariant.
Only ¢ = o0 is left unchanged by subtraction of 2X, so only
the integral curve that corresponds to it, namely y = 0, is carried
into itself by the transformations (2.2.3).8

Groups exist that leave any particular integral curve ¥ (x. y) = ¢
invariant. The most general integrating factor v of Eq. (2.1.2)
has the form

v=uFy) (2.3.3)

where u is some particular integrating factor and F is an arbitrary
function of . If u~' does not already equal zero for the
integral curve, we can make v~' = 0 by choosing F so that
F(co) = oc.

2.4 Singular Solutions

General as the work of the last two sections may seem, it is
nonetheless based on the tacit assumption that at each point of
the (x, y)-plane, except for those at which M and N vanish
simultaneously, there is but one slope. There are first-order
differential equations that do not have the form (2.1.2) for which
this is not so. A good example is the differential equation

yE—2y+4y—4x =0 (2.4.1)

for which there are two real slopes y at each point (x.y) for
which y < x + 1/4, one at points for which y = x + 1/4, and
none at other points. It can be shown by direct substitution that
the one-parameter family

y=c—(x—c¢) (2.4.2)

where ¢ is a constant, —o0 < ¢ < 00, satisfies
Eq. (2.4.1). Points (x,y) for which y < x 4 1/4 lie on
two curves of the family (2.4.2), points for which y =
x + 1/4 lie on one curve, and other points on none.
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Figure 2.4.1. Curves of the family y = ¢ — (¢ — x)? and their envelope
y=x+1/4.

Thus the form ¥ (x,y) = ¢ where ¥ is a single-valued
function is inadequate to represent the family (2.4.2) (see
figure 2.4.1).

The family (2.4.2) has the envelope

y=x+1 (2.4.3)

The envelope of a family of curves is a curve that is tangent at
each of its points to a member of the family. The envelope,
which is not itself a member of the family, also satisfies
the differential equation of the family u(x.y,y) = 0. At
any point of the envelope (x,y) its slope y is the same as
that of one of the curves of the family and thus satisfies
u(x,y, y) =0. Thus Eq. (2.4.3) must also satisfy the differential
equation (2.4.1); direct substitution shows that it does. This
solution, like any other solution that is not a member of the one-
parameter family of integral curves (2.4.2), is called a singular
solution.
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The differential equation (2.4.1) is invariant to the once-
extended group

X =x+x
YV =y+A —00<A<o0 (2.4.4)
V=y

This group carries the curve of the family (2.4.2) labeled
by ¢ into the curve labeled by ¢ + A, but it carries the
envelope (2.4.3) into itself. In fact, any group that leaves
the differential equation (2.4.1) invariant must also leave the
envelope invariant. For the group permutes the curves of
the family among themselves and thus leaves the family as a
whole unchanged; therefore it leaves the envelope of the family
unchanged. An envelope, if it exists, is thus invariant to all the
groups that leave the differential equation invariant.

2.5 Change of Variables

Lie proposed a second method of solving first-order differential
equations that are invariant to a group, which involves using
the group to find new variables z(x, y) and y(x, y), in terms
of which the differential equation becomes separable. (As
Cohen points out in his book [Co-11], this method of Lie’s
was published in 1869, five years before Lie published the
formula (2.1.4) for his integrating factor, and so in chronological
order this is Lie’s first method, not his second.)

Let the new variables x and y be related to the old variables
x and y by the equations -

z=F(x,y) (2.5.1a)
y=G(x.y) (2.5.1b)

When the point (x, y) is carried into its image (x’, y’) by a
transformation of the group, its new coordinates (x, y) are carried
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into new image coordinates

= F(X(x,y; 0. Y(x,y: 1)) (2.5.2a)
"=G(X(x,y; X)), Y(x,y: X)) (2.5.2b)

< IS

We find the coefficients (g, Q) of the infinitesimal transformation
in the new variables by differentiating Eqs. (2.5.1a, b) with
respect to A and setting A = Aq:

§=E(F +nF,=Uz (2.5.3a)
n=£§G,+nG,=Uy (2.5.3b)

where U is an abbreviation for the differential operator £ 9/dx +
na/ay.

Suppose now that we choose the functions F and G so
that {(z.y) = 0 and n(z,y) = 1. Then n(z.y) = 0 and

Eq. (1.7. 2a) becomes

du
— =0 (2.5.4)

9y
The quantities £ and gy are two independent integrals of
Eq. (2.5.4)t and thus the most general differential equation
invariant to the group (£, n) is

§=H) (2.5.5)

where H is an arbitrary function. Now Eq. (2.5.5) is clearly
separable, so if we can solve Eqgs. (2.5.3a, b), which now take
the form

EF, +nF, =0 (2.5.6a)
£G,+nG, =1 (2.5.6b)

1 If one or more of the £, 7 and r)l are zero, as in the case of Eq. (2.5.4), some
authors write the characteristic equations (1.7.2b) with zero denominators. In the case of
Eq. (2.5.4) the characteristic equations would then be written dz/0 = dy/l1 = dy/0.
Strictly speaking zero denominators are not permissible, but the zero denominators
are meant only to identify variables that are integrals of the partial differential
equation (1.7.2a). When understood in this way, the zero denominators always lead
to correct results.
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for F and G, we can make a change of variables that will cause
our differential equation to become separable.

Example: In this example, we use Lie’s second method to solve
the differential equation (2.4.1). As noted earlier, the differential
equation (2.4.1) is invariant to the translation group (2.4.4)
for which & = 1 and 5 = 1. The characteristic equations
corresponding to Eqgs. (2.5.6qa, b) are then, respectively,

dx = dy (2.5.7a)

and
dx =dy =dG (2.5.7h)

The difference y — x is an integral of Eq. (2.5.7a) so F can be
any arbitrary function of y — x. Two independent integrals of
Eq. (2.5.7b) are G — y and y — x so that G equals y plus an
arbitrary function of y — x. Thus one satisfactory choice of new
variables & and y is

(2.5.8a)

y —
y (2.5.8b)

e I8
]

From Egs. (2.5.8a, b) it follows that y = y, x = y — z, and
y = y/(y—1) so that upon substitution, Eq 2.4. 1) takes the
separated form

y=1x1-4x)"? (25.9)
Integrating Eq. (2.5.9), we find

y=z+i(l—4z)'” +c (2.5.10)

where ¢ is a constant of integration.  Substituting from
Eqgs. (2.5.8a, b) for x and y, we find, after rearrangement

y=-l= e+ PP+ @si

which is identical to Eq. (2.4.2).m
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Another choice of § and 7 that will cause the variables to separate
is § =z and n= 0. Then n = —Q and Egs. (1.7.2) become

=—-—= (2.5.12)

The quantities zy and y are integrals of Eq. (2.5.12) and thus the
most general differential equation invariant to the group (§. n7) is

zy = H(y) (2.5.13)

which is also separable. So if we can solve Eqs. (2.5.3a, b),
which now take the form

EF +nF,=xz=F (2.5.14a)
(G, +nG, =0 (2.5.14b)

for F and G, we can make another change of variables that will
also cause our differential equation to separate.

Theorem 2.5.1. If X(x,y;X) = Ax, ie. if the transformation
of x by the group is a stretching, then & = x and we can
satisfy Eq. (2.5.14a) by choosing F = x. The function G is
a group invariant (see Eq. (1.3.2)). Thus for groups in which the
transformation of x is a stretching, introducing a group invariant
as a new variable in place of y and leaving the variable x
unchanged results in a new differential equation that is separable.

Corollary 2.5.2. Similarly if X(x.y;X) = x 4+ A, ie. if the
transformation of x by the group is a translation, then & = 1
and we can again satisfy Eq. (2.5.14a) by choosing F = e*.
The function G is again a group invariant (see Eq. (1.3.2)) so
that introducing a group invariant as a new dependent variable
in place of y and using e* as the other new variable also results
in a new differential equation that is separable. After the new
variables are separated we can again use x in place of e*. Thus
for groups in which the transformation of x is a translation,
introducing a group invariant as a new variable in place of y
and leaving the variable x unchanged results in a new differential
equation that is separable.
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These theorems are convenient because stretching and translation
groups are quite common in practice. The theorems apply as well
to the cases in which the variable y is stretched or translated.

% 2.6 Tabulation of Differential Equations

The theory outlined in section 1.7 shows how to find the most
general differential equation that is invariant to a given group.
To get an explicit representation of this differential equation, one
must find explicit representations of two integrals of Eqs. (1.7.2).
One of these two explicit integrals also provides a solution (at
least in the form of an integral) to Eqgs. (1.2.4). Thus we can
find the finite form of the group (again, at least in the form of
an integral).

Example: Let us consider groups for which & is a function of x
and 7 is a function of y, i.e. groups for which

§=P(x) and n=0() (2.6.1)

According to Eq. (1.5.5),

dg dpr
=yl ——-— 262
m y(dy d.x) ( )
Two integrals of Eqgs. (1.7.2) are then

dx d y P
/ T2 ad (2.63)

P Q Q
The most general differential equation invariant to the

group (2.6.1) is thus

o) dx dy
P(x)F(/ 7_/ E) 269

where F is an arbitrary function. Integration of Eqgs. (1.2.4)

.
I
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yields the finite form of the group, namely,

x

ar (2.6.54)
/P(t) — 6.5a

oy (2.6.5b)
. o)

The following are some interesting special cases of these
formulas:

Case I: P =a, Q = b, where a and b are constants. Then

. b _(x 'y b
y=-F|-— 7 =G(cx —y) where ¢ =~ (2.6.6a)
a

a \a
X =x+ar=x+pu where u =ak (2.6.6b)
"=y+bi=y+cu (2.6.6¢)

and F and G are arbitrary functions. The group is a pure
translation group.

Case 2: P = ax, Q = by, where a and b are constants. Then

b 1 1 b
-)'):_')/_F(E_H)ZZG(1> where ¢ = -
ax a b x x€ a

(2.6.7a)
x' = xe” = ux where p =e* (2.6.7b)
y =yet = puy (2.6.7¢)

This group is a pure stretching group.
Case 3: P =a/x, Q = by, where a and b are constants. Then
b
y = xyG[yexp(—cx?)] where ¢ = o (2.6.8a)
a

X =@+  where u=2ak (2.6.8b)
y =ety (2.6.8¢)
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I have added this last case to show what complexity may follow
from a comparatively simple choice of £ and n.B

There are other choices of £ and n for which Egs. (1.7.2) and
(1.2.4) are integrable, and it is possible to build up tables of
differential equations and groups that leave them invariant. One
such table may be found in Cohen’s book [Co-11].

Notes

Note 1: 1 note here some useful and well-known facts about integrating
factors. The differential equation (2.1.2) has infinitely many integrating factors
corresponding to the infinitely many ways that its family of integral curves
may be parametrized in the form (1.4.5). Each integrating factor u satisfies the
partial differential equation (uM), = (uN),. If p and v are two integrating
factors and one is not a constant multiple of the other, then the family of
integral curves of the differential equation is given by v/u = ¢, where ¢ is a
parameter labeling the integral curves. Finally, if i is an integrating factor and
the integral curves are parametrized as in Eq. (1.4.5), then: (I) v = uF(y),
where F is an arbitrary function, is another integrating factor; and (2) every
other integrating factor v has the form u F (). These results can be found in
any standard text on differential equations, for example, [Fo-33].

Problems for Chapter 2

2.1 Find by inspection a group under which the differential
equation 2x*yy + 4x*y? 4+ 2x = 0 is invariant, calculate Lie’s
integrating factor and find the general solution of the differential
equation.

2.2 Find a group which leaves the differential equation y =
xy(1 + Iny + x?) invariant, and using Lie’s integrating factor
find the general solution.

2.3 The linear, first-order, inhomogeneous differential equation
y + P(x)y = Q(x) has the well-known integrating factor
exp(f(; P(z)dz). (Here z is a dummy variable of integration. The
choice of the lower limit of integration will not affect the results
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and I have arbitrarily chosen it to be zero here for definiteness.)
Use the converse of Lie’s theorem (section 2.2) to find the
transformation equations of two different groups to which this
differential equation is invariant.

2.4 Find a group under which the differential equation y =
ax + by + ¢ is invarant, calculate Lie’s integrating factor and
find the integral curves of the differential equation.

2.5 Verify that the differential equation y = (In y—e*) exp(x+e")
is invariant to the group x’ = In(e* + A), ¥’ = Ay. Use Lie’s
second method (section 2.5) to determine a change of variables
that separates the variables and find the form the differential
equation takes in the new variables.

2.6 Prove that the differential equation u(x, y, y) = 0 satisfies
Eq. (1.7.2a) if its family of integral curves y (x, y) = c satisfies
Eq. (1.4.9). Thus prove that the differential equation is invariant
if its family of integral curves is an invariant family. Can your
proof be inverted to prove the converse, namely, that if the
differential equation is invariant then its family of integral curves
is invariant?

2.7 Goursat gives the integrating factor v = x”y? for the
differential equation y(a + ax™y")dx + x(b 4+ Bx"y")dy = 0,
where p and g are determined by the simultaneous equations
bp—aq=a—-band Bp —aqg =a(n+1) — B(m + 1) [Da-62].
Find a group to which Goursat’s differential equation is invariant,
calculate Lie’s integrating factor p and, if it is not a multiple of
Goursat’s, use it to find the general solution by setting p/v = ¢,
an arbitrary constant. (Remember that the ratio of two integrating
factors which are not constant multiples of each other gives the
general solution when set equal to an arbitrary constant.)

2.8 Davis [Da-62] states that the function u = (x*+ y?)~! is an
integrating factor for the equation (y+xF)dx —(x—yF)dy =0
where F = F(x2+y?). Prove this by calculating the most general
differential equation of the first order, invariant to the rotation
group £ = —y, n = x, showing that Lie’s integrating factor for
this most general differential equation is u = (x?> + y*)~!, and
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finally showing this most general differential equation is identical
with Davis’s equation.

2.9 Chrystal’s differential equation, y> + Axy + By + Cx* = 0,
has a singular solution for certain values of the coefficients A, B
and C [Da-62]. Find a group to which Chrystal’s equation is
invariant, use the group to determine this singular solution, and
find a necessary condition that the coefficients A, B and C must
obey for a singular solution to exist.

2.10 A curve C, is said to be parallel to a curve C, if the
distance from C, along its normal to the curve C, is the same
for all points of C,.

(a) Prove that any normal to the curve C, is also normal to the
curve C,.

(b) Imagine the (x, y)-plane filled with the one-parameter family
F of curves parallel to C,. Denote by C; the curve parallel to
C, at a distance & from C,. Define the set of transformations
T, of points P: (x, y) into images P’: (x', y') in the following
way. Through the point P passes a curve C, of the family
F. Take as the image point P’ of P under the transformation
T, the point (x’, y') lying at a distance A from P along the
normal to C,. Using the result of part (a), show that the
set of transformations {7}, —o0 < A < oo, form a one-
parameter group G.

(c) If the differential equation of the family F is M(x, y)dx +
N(x.y)dy = 0, show that the coefficients £ and n of
the infinitesimal transformation of the group G are £ =
M/(M?>+N?*'"?and n = N/(M*+N?'”2. Show, therefore,
that Lie’s integrating factor for this differential equation
is u = (M?> 4+ N»)7'72. (According to Cohen [Co-11,
p. 69], Lie derived this integrating factor for the differential
equation of a family of parallel curves by purely geometric
considerations, apparently without the use of his theory of
groups.)

(d) The converse of part (c) is also true, namely, if u =
(M? + N?)7'? is an integrating factor of the differential
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equation M(x, y)dx + N(x, y)dy = 0, then the integral
curves of this differential equation are parallel to one another.
Can you prove this result, too?

2.11
(a) Show that u = e* is an integrating factor for the differential
equation
M(x,y)dx + N(x,y)dy = Bx’y + y* + 6xy) dx
+3(x> 4+ yHdy=0

Hint: consider the partial differential equation (uM), =
(UN),.

(b) Find the y-coefficient n of the infinitesimal transformation
of a group G that leaves the differential equation invariant
and for which the x-coefficient £ = 0.

(c) Determine the transformation equations of the group G.

2.12 The integral curves of the Clairaut equation y = xy + (1 +
372 form a family of straight lines that define an envelope.

(a) Show that this differential equation is invariant to the rotation

group § =y, n = —x.
(b) Use this group to show that the envelope is the circle of unit
radius centered on the origin.

2.13 The integral curves of the differential equation
y2—8x'y +16x%y =0

define an envelope. Find a group that leaves the differential
equation invariant. Determine from the group the equation of
the envelope.

2.14
(a) Use the fact that the differential equation

@2x*y —x*—y)dx +xdy =0

is linear to find an integrating factor for it (see problem 2.3).
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(b) Use the results of part (a) to find a substitution for y that
separates the variables in the equation.

(c) Use this new variable to determine the coefficients £ and n
of the infinitesimal transformation of a group G under which
the equation is invariant. [Hint: consider Egs. (2.5.6).]

(d) Determine the coefficients & and n directly from the
differential equation and thereby check the result of part (c).

2.15

(a) If the transformation equations (1.1.1a, b) of a group G can
be algebraically manipulated into the form

u(x',y)y=ulx.,y) (1a)
v(x' y) =vlx,y) + A (1b)

show that introducing # and v as new variables in any
first-order differential equation invariant under G yields a
differential equation in ¥ and v in which these variables
separate.

(b) Find a group that leaves the differential equation

)'_y"-i-exp(—yz)(yz—lnx)'/2=0 (2)

invariant.

(c) Use the result of part (a) to determine the new variables u
and v and find the transformed differential equation in the
variables u and v.

2.16 The substitution y = u'/"~" linearizes the Bemoulli
equation
dy
—+ P(x)y=Qx))y"
dx
(a) Using the integrating factor for linear equations (see
problem 2.3), find a substitution for u that separates the
variables. Thus find a substitution for y that separates the
variables in the Bemoulli equation.
(b) Use Egs. (2.5.6) to calculate & and n for a group that leaves
the Bernoulli equation invariant.
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(c) Determine relations that the coefficients £ and n must obey
directly from the Bernoulli equation and use them to check
your results from part (b).

2.17 Find a group which leaves invariant both the integral curve
y = coe* of the elementary differential equation y = y and the
differential equation itself.



3

Second-Order Ordinary Differential
Equations

3.1 Invariant Differential Equations of the Second
Order

An invariant of the twice-extended group is a function
w(x,y,y.¥) of x,y,y and y whose value at an image point
is the same as its value at the source point:

wx', y. Yy, V) =wx. y, ¥, ¥) (3.1.1)

If we differentiate Eq. (3.1.1) partially with respect to A and
set A = X, we obtain the following first-order linear partial
differential equation for w

Ew, + nw, + qwy; + nw; =0 (3.1.2a)
the characteristic equations of which are

dx  dy  dy B dy
E(x,y) n(x.y) mx.y,y) mx.y.yy)

(3.1.2b)

These equations have three independent integrals and the most
general solution for w is an arbitrary function of these three
integrals.
A second-order ordinary differential equation can be written
in the form
wx,y, y.y) =0 (3.1.3a)
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If the function w has the property (3.1.2a) when w = 0, the
differential equation is said to be invariant to the extended group
with the infinitesimal coefficients &. n, n, and .

Differential equations of the second order can always be
written as a pair of coupled differential equations of the first order
by setting u = y. Then the differential equation w(x, y.y. y) =
0 becomes the coupled pair

y=u (3.1.3b)
wx, y,u,u) =0 (3.1.3¢)

These two equations must be solved simultaneously. If the
second-order differential equation is invariant to a group (€. n),
Lie has shown how to reduce the problem of solving it to that
of solving two first-order differential equations one at a time
successively. Lie’s way of doing this is explained in the next
section.

3.2 Lie’s Reduction Theorem

The equations (3.1.3b, c¢) determine a two-parameter family of
curves in the three-dimensional space whose coordinates are x. y
and u. (Consider the direction field of infinitesimal vectors
dx,dy = ydx, du = udx determined by solving Eqs. (3.1.3b,
c) for y and u. These vectors define curves in space that can be
labeled with their intersection with some surface; thus the curves
comprise a two-parameter family.)

When the differential equations (3.1.3b, ¢) are invariant to
the once-extended group (£.7n,m), the transformations of the
group carry each of these curves into other curves of the family.
Thus each curve belongs to a one-parameter subfamily, the curves
of which map into one another under the one-parameter infinitude
of transformations of the group. Each such one-parameter family
of curves defines a surface in (x, y,u)-space, and from the
manner of its definition we see that each such surface maps into
itself under the transformations of the group.
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These invariant surfaces form a one-parameter family which
we denote by the equation

d(x,y.u,c)=0 3.2.1)

The invarniance of each individual surface of this family means
that

0=,y . u'.c)=d(X(x,y: ). Y(x,y;: M), U(x, y,u; X)), c)

3.22)
If we differentiate Eq. (3.2.2) with respect to A and set A = A,
we find

Ed’x + nd)y + 771¢u =0 (323a)
the characteristic equations of which are
dx d d
Y ‘ (3.2.3b)

E(.y)  n(x.y)  moy.w)

If p(x.y) and q(x, y.u) are two integrals of Egs. (3.2.3b), the
most general solution for ¢ is an arbitrary function G of p and
q. Thus the family (3.2.1) can be represented by the equation

G(p.q.c)=0 3.2.4)

The function p(x,y), being an integral of the first pair of
Eqgs. (3.2.3b), is a group invariant. The function q(x, y, u) =
q(x.y.y), which is an invariant of the once-extended group, is
called a first differential invariant.

Equation (3.2.4) represents a one-parameter family of curves
in the (p. q)-plane and, as we have already seen, a one-parameter
family of curves is equivalent to a first-order differential equation.
What we have proved so far is Lie’s reduction theorem:

If we adopt the invariant p and first differential invariant
q as new variables, the second-order differential equation
w(x,y.y,¥) = 0 will reduce to a first-order differential
equation in p and q.

If the (p.q) differential equation, henceforth called the
associated differential equation, can be solved explicitly, we can
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obtain an explicit representation of the function G in Eq. (3.2.4).
Since the first differential invariant g involves the variable y,
Eq. (3.2.4) is, in fact, a first-order differential equation for y
in terms of x. Furthermore, since both p and ¢ are group
invariants, Eq. (3.2.4) is invariant to the group (. n). Therefore,
we can apply to it the techniques developed in the last chapter, i.e.
separation of variables or construction of an integrating factor.

It is worth noting here that if the transformation functions
X and Y in Egs. (1.1.1) are explicitly known, it is possible
to calculate the invariant p by algebraic manipulation and the
first differential invariant ¢ by differentiation and algebraic
manipulation. This is proved in Appendix D.

Example: The Emden—Fowler equation

2

y+ % +y'=0 (3.2.5)
arises in the study of the equilibrium mass distribution in a gas
cloud held together by gravitation; the exponent n is related

to the adiabatic exponent y of the gas by y = (n + 1)/n.
Equation (3.2.5) is invariant to the twice-extended stretching

group

x'=Ax (3.2.6a)
y =y (3.2.6b)
y =11y (3.2.6¢)
§ = AP (3.2.6d)

where B = 2/(1 — n). If we write Eq. (3.2.5) in the primed
form and substitute from Egs. (3.2.6) for the primed variables,
we again obtain Eq. (3.2.5) in the unprimed variables.

An invariant p and a first differential invariant g are

p = (3.2.7a)
xB

Y
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The choice of these invariants is not unique, and any function
of p could be used as an invariant and any function of p and ¢
could be used as a first differential invariant. Let us now calculate
dp/dx and dg/dx:

d ! y -

dp_y _ Py _a=Fp (3.2.8a)

dx xf  xFH! x

dg v y

2= - —1)= = — B-2/8

= 7 - B DG ==[B+Da+p"]/x (3.280)
Here we have replaced y by its value in terms of x,y and y
obtained from the Emden-Fowler equation (3.2.5). Dividing
Eq. (3.2.8b) by Eq. (3.2.8a) we obtain

dg _ —[(B+ g+ p'] (32.9)

dp q—Bp

which is a first-order differential equation, as expected.
When n = 5(8 = —1/2), Eq. (3.2.9) can be integrated
directly to give
3¢ 4+3qp+p°=a (3.2.10)

where a is a constant of integration. In terms of x, y and y, this
last equation can be written

3xty? +3x%yy + x*yt =a (3.2.11)

Equation (3.2.11) is invariant to the group (3.2.6), as it must
be. Because this group is a stretching group, we can use
theorem 2.5.1 which states that the introduction of a group
invariant as a new dependent variable will cause Eq. (3.2.11) to
become separable. For this purpose, the invariant s = p? = xy?
is convenient. The most interesting solutions of Eq. (3.2.11)
are those for which ¢ = 0 because y, being the gravitational
potential, must be finite at the origin and have zero derivative
there. Then Eq. (3.2.11) becomes

de 303 \ds
— =Y (-] = 3.2.12
X 2 (4 s) 5 ( )
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which can be integrated with the help of the substitution 5 =
(/3/2) sin @ to give

3bx
= — 3.2.13
Ty (-2.13a)
where b is a constant of integration, or
3b 1/2
=(——— 3.2.13b
y (xz I 3b2) ( )

This solution is well known [Da-62].8

3.3 Stretching Groups

When the differential equations (3.1.3a—¢) are invariant under
a stretching group, the group can be used to determine
the asymptotic form of certain solutions that are important
in applications. Knowing their asymptotic behavior greatly
simplifies determining the solutions. Since stretching groups
occur frequently in practice, a detailed discussion is warranted.
The most general stretching group in two variables x and y

is
x'=ix (3.3.1a)

, 0<A<oo
y = APy (3.3.1b)

where B is a constant. No generality is lost by choosing the
exponent of A in Eq. (3.3.1a) to be 1. Then

=x (3.3.2a)
n=pBy (3.3.2b)
m= 8-y (3.3.2¢)
m = (B - 2)§ (3.3.2d)

It follows therefore that the most general second-order
differential equation invariant to the group (3.3.1) is an arbitrary



40 Second-Order Ordinary Differential Equations

function of three independent integrals of the characteristic
equations (3.1.2b), which now take the form
dx d dy dy
Ty _ Y D (3.3.3)
x By (B-Dy (B-2)y
The functions y/x?, y/x#~! and y/x#~? are three such integrals,
so the most general second-order differential equation invariant
to the group (3.3.1) must have the form

¢(i_JL.2L)=o (334)

xB xB-17 xB-2

where ¢ can be any function.

From Eq. (3.3.4) it follows that there are real power-law
solutions of the form y = Ax? when A is a real constant that
satisfies the algebraic equation

$(A, BA,B(B—1)A) =0 (3.3.5)

Under circumstances outlined below, one of them gives the
asymptotic behavior of positive solutions on the half-line x > 0
that vanish at infinity.

The value of y at x = 0 specifies one of these solutions. (The
determination of such a solution is called a two-point boundary-
value problem. Here the boundary values at the two points x = 0
and x = oo are y(0) = a, a constant and y(oco) = 0.) All of
these solutions are images of one another under the group (3.3.1).
Since any image of the point (0, y,(0)) is (0, A¥y,(0)), we can
always find a value of A for which A#y, (0) = y,(0). Furthermore,
since the point x = oo transforms into the point x' = oo, we
see that y,(0o) = APy (00) = 0. Hence the solution y,(x)
obeying the boundary conditions y,(0) = a, and y;(o0) = 0 is
an image of the solution y,(x) obeying the boundary conditions
»1(0) = @, and y,(co0) = 0, the value of A corresponding to the
transformation being (a,/a,)"/?.

Because y,(x) and y,(x) are images of one another,

y(x)  nx)
x'B - x#

3.3.6)
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where x’ = Ax. Thus the limit of y(x)/x? as x — oo is the
same for all members of the family. Call it B. So far we know
nothing about B: its value can be infinite, finite or zero; and we
can go no further using purely group-theoretic arguments. But if
we add some additional hypotheses, we can determine the value
of B.

For some differential equations for which 8 < 0 it happens
that the solutions y(x) that vanish at infinity are ordered
according to their values at x = 0. This last statement means that
if y(0) > y,(0) > 0, then y,(x) = y,(x) > 0 for all x. If the
solutions are ordered, then the power-law solution y, = A,x?,
where A, is now the smallest positive root of Eq. (3.3.5), is
greater than each of them since y,(0) = oo and y,(c0) = 0
(remember that now 8 < 0). Since the solutions of the family
are bounded by y, from above and increase monotonically for
fixed x as their initial value y(0) = a increases, they must have
a limit as a — oo. This limit, being arbitrarily close to solutions
of the family, must also be a solution. Furthermore, it must be
invariant to the group (3.3.1) since the group carries the family
of solutions into itself. The limit curve must therefore be of the
form y;, = Cx?, C > 0, since y/x? is the group invariant.
Because Cxf = y;, > y(x), C must equal A, since A, is the
smallest positive root of Eq. (3.3.5). Thus the power-law solution
y. = A,.x# is the limit of the family of solutions as @ — oo and
is approached uniformly from below.

Now we are poised for the final step of the proof, which is
to show that the limit B = A,. Consider a particular solution S
belonging to a fixed value of a. Let us focus our attention on a
particular set of images (x’, y') of the points (x, y) of S, namely,
those for which A = c¢/x, where c is a constant:

x' =C (33761)

B
y = (5) y (3.3.7b)

X

These images all lie on a single vertical line at x" = c¢. The image
point (x', y') also lies on the curve belonging to the initial value
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a = (¢/x)?a. Thus as x — 00, a’ — 00 (remember B < 0).

This means as the point (x, y) moves out along the solution §

toward x = oo, the image point (x’. y') moves steadily upwards

along the vertical line x’ = ¢. Then, since y/x? = y'/x?,
B=Iim(—y‘;) as x —> 00

X

- 1im(i) as d — oo = A, (338)

x’B
which completes the proof.

Example: The differential equation
45 +9xy*? =0 339

arises in the study of heat transfer in superfluid helium. It is
invariant to the group (3.3.1) with 8 = —2. Substitution of the
form y = Ax~? into the differential equation yields A = 4/(3,/3)
so that y, = (4/[3./3])x72

To show that the positive solutions for which y(oco) =
0 are ordered, we set u = 4Jy, the difference between two
infinitesimally close neighboring solutions. To first order, the
difference u obeys the differential equation

4ii + 15xy**u =0 (3.3.10)

In this equation, the quantity 15xy?? is treated as a known

function of x. A single integration of Eq. (3.3.10) shows that
u always has one sigh. If ©(0) > 0 and u(ococ) = 0, then u < 0.
Thus «(x) > 0 for all x, for if it were less than zero anywhere,
somewhere further on it would have to climb with a positive
slope in order to reach u(oo) = 0. This is sufficient to prove the
ordering of the positive solutions for which y(oo) = 0.

Equation (3.3.9) has been picked as an example because it
is explicitly solvable. A short calculation shows that

— __i_ _ 2 2y-1/2
y—(3\/3az)[1 x(x*+a’)~’"] (3.3.11)
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where a is an arbitrary constant, is the solution that vanishes at
x = oo. If we expand the right-hand side of Eq. (3.3.11) in
reciprocal powers of x, we find that for large x the leading term
is (4/[3/3])x"%, as anticipated. Note that this asymptotic limit
is the same no matter what the value of y(0), as was already
evident from the general proof given earlier.®

Example: The Thomas—Fermi equation
yo=x"12yM2 (3.3.12)

arises in atomic physics, where the solution that is sought obeys
the two-point boundary conditions y(0) = 1 and y(oc) = 0.
The differential equation is invariant to the group (3.3.1) with
B = —3. Substituting y = Ax~? into the differential equation
yields A = 144. If we can prove that the positive solutions for
which y(o00) = 0 are ordered, then y = 144x~* is shown to be
their asymptotic form.

The differential equation for the infinitesimal difference
dy=uis
gx—l/Z

=3 y'2u (3.3.13)

where u(oo) = 0. We wish to show that if u(0) > 0, then
u(x) > 0 for all x. We do this by reductio ad absurdum. 1If
u(x) were negative anywhere, it would have to have a negative
minimum somewhere since it starts out positive and is zero at
infinity. But at a negative minimum, ¥ < 0 and ¥ > 0. Since
(3/2)x~1/2y1/2 > 0, these conditions violate Eq. (3.3.13). Thus
the assumption that u(x) is negative leads to a contradiction.
This is enough to prove the ordering.

If we choose p = x’y and ¢ = x*y as an invariant and a
first differential invariant, we find

d
xa" =4g + p¥° (3.3.14a)
d
xap=3p+q (3.3.14b)
dg  4g+ p?
9_%+r (3.3.14¢)

dp ~ 3p+gq
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The associated differential equation (3.3.14c¢) cannot be solved
explicitly, so how shall we proceed? This is an important
question because in many applications of Lie’s reduction theorem
the associated differential equation cannot be integrated in closed
form. We must then turn to numerical integration; but it is
not yet clear which among the infinitude of integral curves of
the associated differential equation is the one to calculate. The
analysis given below suggests a way to determine this integral
curve. The method employed applies to many applications
including the one described below.

The general solution of the first-order differential equa-
tion (3.3.14c¢), like that of any first-order differential equation, is
a one-parameter family of curves ¢(p,q) = c¢. Only one curve
of this family corresponds to the family y(x) of positive solutions
of the Thomas-Fermi equation (3.3.13) for which y(oo) = 0; for
any one of these curves y(x) is uniquely determined by its value
y(0) at x = 0. An image y'(x") of y(x) has the value A7*y(0)
at x’ = 0 and also vanishes at x" = oo. Thus all the positive
solutions y(x) that have finite values at the origin and vanish at
infinity are images of one another under transformations of the
group (3.3.1). Now since x”y" = x*y and x*y’ = x*y, any image
y'(x") of y(x) determines the same locus in the (p, g)-plane as
the curve y(x) itself.

The desired curve in the (p, g)-plane can be determined
by studying the direction field of the associated differential
equation (3.3.14c¢). (The direction field, the reader may recall,
is obtained by drawing a short line segment having the slope
dg/dp given by the differential equation at each point (p, g) of
the (p. g)-plane.) Since we expect p > O (since x and y are > 0)
and g < O (since y < 0), we concentrate on the fourth quadrant,
shown in figure 3.3.1.

The curves on which dg/dp = 0 or dg/dp = xoo divide
the plane into regions in which the algebraic sign of dg/dp is
constant. The locus of zero slope Cy is the curve 4q + p*? =0
and the locus of infinite slope C,, is the line 3p + g = 0. The
intersections of these loci are the singular points of the differential
equation. They are a node at the origin O: (0, 0) and a saddle
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qg A

\J

P:(144, —432)

Figure 3.3.1. The fourth quadrant of the direction field of differential
equation (3.3.14¢). C; is the locus of zero slope and C. is the locus of
infinite slope.

point at P: (144, —432). In the lenticular region between these
two loci, the slope dg/dp < 0; to either side of this region
dg/dp > 0 as shown in the diagram. A few integral curves are
sketched in the figure.

Since y(0) and y(0) are finite, when x = 0, p = 0 and
q = 0. Thus the origin O lies on the integral curve we seek in
the (p, g)-plane. But since O is a singular point, many integral
curves pass through it. Now the asymptotic behavior y = 144x 3
corresponds to the single point P in the (p, g)-plane. Thus the
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integral curve we want is the separatrix S joining O and P.

We must calculate this curve numerically. To do so we must
first find the slope of S at the saddle point P. This we do by
applying I’Hopital’s rule to the right-hand side of Eq. (3.3.14¢).
If m = (dq/dp)p, then

_4m+18

= — 3.3.15

" 3+m ( )

The negative root of Eq. (3.3.15) is m_ = (1 — J/73)/2 =
—3.772002. ... To integrate numerically from P to O we choose
as our starting point p = 144 — g, q = —432 — m_g, where ¢ is

a suitably small number. Integration in the direction P to O is
stable because of the convergence of the integral curves entering
the origin in this direction.

When y(0) = 1, the slope y(0) = lim(q/p*?) as p — 0.
Because of the singular nature of the associated differential
equation near the origin O, it is necessary to integrate very close
to the origin in order to get good convergence of this limit.
According to Davis [Da-62], E. D. Baker has given the value
1.588 588 to six places of decimals for this limit. Once y(0) has
been determined, we have two boundary conditions at x = 0 and
so have converted the original two-point boundary-value problem
to an initial-value problem.m

3.4 Singularities of the Associated Differential
Equation

In the example of the Thomas-Fermi equation, Eq. (3.3.12), we
have seen how the singularities of the associated differential
equation played an important role. In this section, we prove
two related theorems that apply when the singularities are saddle
points. These theorems describe certain useful properties of
the solutions y(x) whose images in the (p,q)-plane are the
separatrices passing through the saddle points.
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The power-law solution y = Ax? to Eq. (3.3.4) (for which
y = BAxP~!) corresponds to the single point (p.g) = (A, BA)
if we take p = y/x? and ¢ = y/x#~'. Now

x%q = f(q, p) (3.4.1a)
dp
xax— =q—Bp (3.4.1b)

where the function f(g, p) is determined by the original
differential equation (3.3.4) in x and y. For the power-law
solution y = Ax?, neither p nor g varies as x varies. Therefore
the left-hand sides of Eqgs. (3.4.1a—c) vanish. Now when p = A
and g = BA, the right-hand side of Eq. (3.4.1b) vanishes, so A
must be determined by the equation f(A, BA) = 0. Since

d 1)

da _Jt@.p (3.4.1¢)
dp q-8p

it is clear that the point P: (A, BA) is a singular point in the

(p, g)-plane.
If the singular point P is a saddle point, two separatrices

pass through it. In the neighborhood of P, each separatrix can
be approximated by a straight line

qg—BA=m(p—A) (3.4.2)

where m is the slope of the separatrix at P. Then on such
a separatrix (which is an integral curve in its own right),
Eq. (3.4.1b) can be written

dx dp dp

= = (34.3)
x q9—Bp (m—pB)(p—A)
Equation (3.4.3) can be integrated to give
x = const x (p — A)V/"=H (3.4.4)

Thus
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Theorem 3.4.1.

If m > 8, then x > 0 as p > A, whereas if m < 8, then
x —> o0o0as p— A

We can see now from figure 3.3.1 (in which 8 < 0) that the
separatrix S has a more negative slope m than the slope g of
Cx:q — Bp =0. Thus m < B8 and as we approach P along the
separatrix S, x — o0o. Thus we determine S as the integral curve
we want in the (p. g)-plane and furthermore determine that the
solutions y(x) that correspond to it have the asymptotic behavior
y = Ax?.

It may happen occasionally that it proves more convenient
to take p = F(y/x?) and ¢ = G(y/x?, y/x?~"), where F and G
are functions suitably chosen to make the associated differential
equation take a convenient form. Then Egs. (3.4.1a—c) take the
more general form

d
2~ hig. p) (3.4.5a)
dx
dp
£ _ . 3.4.5b
xqo =84 p) ( )
so that d " )
4 _ . %4p (3.4.5¢)
dp glg,p)

The singular point P that now corresponds to the power-law
solution has the coordinates (pp, gp) = (F(A), G(A, BA)).
If the singular point is a saddle point, we again approximate
its separatrices near P with the straight lines
q—qp=m(p— pp) (3.4.6)
Then since g{gp. pp) = 0, Eq. (3.4.5b) can be written near P as
d d
= P (3.4.7a)
x  g(p—pr)+8,(q—aqr)
which becomes on a separatrix

dx _ dp
x (g +mg,)(p ~ pp)

(3.4.7b)
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Here the partial derivatives g, and g, are evaluated at P.
Integrating Eq. (3.4.7b) we find

x =const X (p — pp)'/ &t (3.4.8)

Now g, + mg, is the directional derivative of the function
g(q. p) along the separatrix S. At the point P, g(q. p) = 0.
Thus if g, + mg, > 0, then as we pass along S through P in the
direction of increasing p, we pass from negative values of g to
positive values of g. Furthermore, if g, + mg, > 0, thenx — 0
as p — pp. On the other hand, if g, + mg, < 0, then as we
pass along S through P in the direction of increasing p, we pass
from positive values of g to negative values of g. Furthermore,
if g, + mg, <0, then x — oo as p — pp. To summarize:

Theorem 3.4.2a.

In the (p, g)-plane, as we pass along S through P in the
direction of increasing p

if g increases, x =0 at P

if g decreases, x = oo at P.

In the case g(q, p) = q — Bp as in Eq. (3.4.1b), this result is
identical with the earlier result that if m > 8, then x — 0 as
p — A, whereas if m < §, then x — oo as p — A. Similarly,

Theorem 3.4.2b.

In the (p, g)-plane, as we pass along S through P in the
direction of increasing g

if h increases, x =0 at P

if h decreases, x = oo at P.

Using these rules, we can at once select the curve S joining O
to P in figure 3.3.1 as the integral curve we want in the (p, q)-
plane since O must correspond to x = 0 and P to x = oo.
The procedure outlined in this section is an alternative to the
procedure of section 3.3.
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3.5 A Caution in Applying Theorems 3.4.1 and 3.4.2

One must be careful in applying theorems 3.4.1 and 3.4.2 to be
sure that the singularity arises from the simultaneous vanishing
of the numerator and denominator of Eq. (3.4.1¢) and is not a
point at which the numerator becomes infinite. An example in
which precisely this happens is the differential equation

3 d(yy)

+2xy—y=0 3.5.1)

which arises in the theory of nonlinear diffusion. Again we seek
solutions positive on the half-line x > 0 that vanish at infinity.
Equation (3.5.1) is invariant to the stretching group

x' = Ax (3.5.2a)
y =A%y (3.5.2b)

so that 8 > 0. Thus the solutions we seek cannot vanish
at infinity proportionally to xf. Furthermore, the power-law
solution has A = —1/6 and thus cannot represent the asymptotic
limit of a positive solution.

We can find the solutions we seek from an analysis of the
direction field of the associated differential equation in the (p. q)-
plane. If we set p = y/x? and q = y/x, we find

d —29—-3¢°>-3
x—q— = f(q.p)= P 4 9 & (3.5.3a)

dx 3p

dp

—=q-2 3.5.3b
XS =42 ( )

so that ) 307 -3
d9 _p—29-39"~3rq (3.5.3¢)

dp 3plg —2p)
Figure 3.5.1 shows the fourth quadrant of the direction field of
Eq. (3.5.3c). We are only interested in this quadrant because
p > 0and g < 0. (It follows from Eq. (3.5.1) that y = 1/3
at extrema, where y = 0. Therefore, the only extrema possible
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9

P: (0,-2/3)

Co

Figure 3.5.1. The fourth quadrant of the direction field of differential
equation (3.5.3c). C, is the locus of zero slope and C is the locus of infinite
slope.

are minima. Positive solutions that vanish at infinity cannot have
only minima and hence must be monotone decreasing. Thus

y < 0.) The locus of zero slope C; is given by the equation
2g + 34
= :’j—32 (3.5.4)

The locus of infinite slope C,, has two branches, one in the
first and third quadrants due to the vanishing of ¢ — 2p and
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a second, the g-axis, at which the function f(gq.p) becomes
infinite. Thus the singular point P: (0, —2/3) is not the kind of
singularity discussed in section 3.4.

Now if we approach the point P along the line

q =mp — % (3.5.5)

then it follows from Eq. (3.5.3a) that to leading order

dg 4 2m (3.5.6)
x— = —
dx 3
as long as m # —3/2. Then, integrating, we have
q+2/3
xX=ux —_ 3.5.7
' ‘Oe"p(1+2m/3 (3:3.7)

If we apply I’Hopital’s rule to the right-hand side of Eq. (3.5.3¢),
we find that the separatrix S has the slope —3/4 at P. Thus x = x,
a constant, at P.

At x = xo, ¥(xo)/x; = pp = 0 so that y(xo) = 0.
Furthermore, at x = x4, y(xo)/x¢g = gp = —2/3 so that
v(xg) = —2x,/3. These two conditions provide initial conditions
for a backward integration of Eq. (3.5.1) starting from x = x,
and going to x = 0. Because the slope v(xq) is negative, a
backward integration produces a positive solution on the interval
(0. xo). Beyond x the solution is negative and thus unacceptable.
Hence, we have found solutions to Eq. (3.5.1) that are positive
on the interval (0, xo) and fulfill the requirement that they vanish
at infinity by vanishing for all x > x,.

Since y'(x;) = 0 and y'(x;) = —2x;/3, solutions that
are distinguished from one another by different values of x,
are images of one another under the transformations of the
group (3.5.2). Hence, to find them all, we have to integrate
Eq. (3.5.1) numerically only once. Now the point P in the (p. g)-
plane corresponds to x = xo, so integrating from x = .x, towards
x = 0 means moving along the separatrix S away from P in the
direction of positive p. (Since p = y/x* and ¢ = y/x, if ¥(0)
and y(0) are finite, p and ¢ become infinite as x approaches zero.)
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Figure 3.5.2. The integral curve of Eq. (3.5.1) for x, = 1 obtained by
backward numerical integration using the boundary conditions y(xg) = 0,
vi(xg) = =2xy/3.

Because the integral curves converge in this direction, we expect
the numerical integration to be stable. Shown in figure 3.5.2 is
the integral curve for xo = 1 obtained in this way.

3.6 Other Groups

The examples of sections 3.2 to 3.5 all dealt with stretching
groups, and sections 3.3 to 3.5 focused on problems on the semi-
infinite interval (0, oo). The differential equation

_d dy ‘
xV—[x'—=—})=¢ (3.6.1)
dx dx

known as the Poisson-Boltzmann equation, provides an example
of a problem on a finite interval in which the group is not a
stretching group.
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The Poisson-Boltzmann equation describes the concentra-
tion y of small, mobile ions (e.g. Na* ions) inside a solvent-
filled cavity with walls charged oppositely to the charge of the
mobile ions. The value of v is 0, 1 or 2 according to whether
the cavity is the slit between two charged planes perpendicular to
the x-direction, the interior of a cylinder of which x is the radial
coordinate, or the interior of a sphere of which x is the radial
coordinate, respectively.

The Poisson-Boltzmann equation (3.6.1) is invariant to the

group

x = Aix (3.6.2a)
y=y—2Ini (3.6.2b)
the infinitesimal coefficients of which are £ = x and n = -2.

As invariants we choose p = x%¢* and ¢ = xy; then
dg _p+(0-v)g
dp plg +2)

When v = 1 (cylindrical geometry), the variables p and ¢ in

Eq. (3.6.3) can be separated and Eq. (3.6.3) can be integrated at
once to give

(3.6.3)

(g +2)* = 2p + constant (3.6.4)

Now the solutions we seek are those for which the concentration
of mobile ions at the origin is finite and has a finite derivative.
Thus at x = 0, p = ¢ = 0 so that the constant in Eq. (3.6.4)
equals 4. Rewritten in terms of x, y and y, Eq. (3.6.4) becomes

[(2x%e* +4)'/? —2]dx —xdy =0 (3.6.5)

As noted in section 3.2, this first-order differential equation is also
invariant to the group (3.6.2). Then according to Lie’s theorem
of section 2.1, an integrating factor is

EM +nN)"" = [x(2x’e" + 4!/ (3.6.6)
Integration of Eq. (3.6.5) then yields

8b?



Other Groups 55

where b is an as yet undetermined constant of integration. The
condition that fixes the constant b is the specification of the
derivative dy/dx on the wall of the cavity, this derivative being
determined by the surface charge density on the wall.

So far this example is not any more instructive than the
example of the Emden-Fowler equation for n = 5 given in
section 3.2. When v = 0 or v = 2, on the other hand,
it appears that Eq. (3.6.3) cannot be integrated in terms of
elementary functions. As most readers will recognize, when v =
0, Eq. (3.6.1) is a second-order differential equation in which the
independent variable x does not appear explicitly. The classical
procedure for such equations is to choose ¢ = y and p = y as
new dependent and independent variables, respectively, in which
case the differential equation reduces to one of first order in y
and y. This is clearly an application of Lie’s reduction theorem
in which the underlying group is the translation group

y=y (3.6.8a)
x'=x4+Ax (3.6.8h)

to which the differential equation (3.6.1) is also invariant (when
v = 0). Thus when v = 0 the differential equation (3.6.1) is
invariant to two groups.

The associated differential equation arising from the group
(3.6.8) is easily solvable because, as we shall see in the next
section, the group (3.6.2) supplies an integrating factor for it. A
second integration is then possible, the integrating factor for it
being supplied by the group (3.6.8). These integrations lead to
the solution

=1In ¢ sec? (3.6.9)
y= 3 > 6.
that is nonsingular at the origin'. Here ¢ is a constant of

integration again related to the derivative dy/dx at the walls
of the slit.
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3.7 Equations Invariant to Two Groups

If a second-order differential equation is invariant to two groups,
then its solution becomes a matter of quadrature, i.e. a matter of
performing indefinite integrals. Let us see how this idea works
out in the v = 0 case of Eq. (3.6.1). The invariants 1 of any
group are the solutions of the partial differential equation (1.3.2),
which we shall write here as Un = 0, where U is the first-order
differential operator
d

+7n
x

U=¢- 3.7.1)

oy
The operator U is often called the infinitesimal transformation of
the group because for any function f(x, y)

o af af
F&L) = fleoy) + (E,— + n‘—)x (3.7.2a)
ax ay
= fx.y)+AUf (3.7.2b)

to first order in A. Although U is called an infinitesimal
transformation it does not contain the amplitude A of the
transformation as a factor. It is the directional derivative of f
along the orbit of the group through the point (x, y):
Ly —- Ly 0 0
im & = fxy) L9 f

—+n—=U 3.7.2¢
lim 3 Eax+"ay f 372

The infinitesimal transformation of U, of the (first) group (3.6.2)
is thus ,
Ul =X — 2— (373(1)

d
U, = — (3.7.3b)

Now these infinitesimal operators can be multiplied by
constants, added, and applied in succession. If we apply them in
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succession, then the order of the derivatives appearing increases,
e.g.

82 82
U,U, = -2 3.74
2T 5 T Toyox (374
0? a 0?
U7U1 =X -— - (374h)

+
- ox?  Ox dxady

If we subtract Eq. (3.7.4a) from Eq. (3.7.4h), we eliminate the
second derivatives and obtain

U2U| —U1U2: i:(/2 (375)
ax

If p is an invariant of group 2, U,p = 0. Equation (3.7.5)
shows that U,(U, p) = 0 so that U, p is an invariant of group 2.
Therefore U, p can be written as a function of p; call it Z(p).
Similarly, if g is a first differential invariant of group 2, U,q = 0,
U,(U,q) = 0, U,q is a first differential invariant of group 2, and
U,q can be written as a function of p and ¢; call it H(p. g).
Thus for any function f(p,q) of p and g,

Uf= (Ulp).d—f + (Ulq)f)_f
ap g
= E(p)f)—f + H(p. q)f)—f (3.7.6)
ap aq

Thus Z(p) and H(p, g) are the infinitesimal coefficients of U,
written in terms of the variables p and q.

The associated differential equation in the invariants p and
q of group 2 can be written as M(p,q)dp + N(p.q)dq = 0.
Since this associated differential equation is in reality another
way of writing the original second-order differential equation,
it must also be invariant to group 1. Therefore the quantity
(EM + HN)~! must be an integrating factor for the associated
differential equation M(p, ¢)dp + N(p, q)dg = 0 of group 2.

Let us now work these things out in detail for the
infinitesimal operators in Eq. (3.7.3). Invariants of group 2 are
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p=yandg=y (=1 n=0.n =0). Thus

a ad
E(p)=U1p=U1y: X‘——Z.—— _\’:—2 (377([)
ax ay

H( Yy=Ugq=U,y = 9 2 9 .9, =—y=
pP.q)=U,g =U,y = Xax dy Y 3y y=-y=-q
(3.7.7h)

The associated differential equation in the variables p = y and
g=yis
e’dp—qdg =0 (3.7.8)

Now this differential equation is immediately integrable, but our
goal here is to verify that the infinitesimal coefficients Z(p)
and H(p. q) of U, supply an integrating factor, which should be
(—2e” + g*)~" according to Lie’s theorem. A short calculation
shows that Eq. (3.7.8) can be integrated using this integrating
factor to give ¢(p, g) = constant, where

¢(p.q) = —3In(g” — 2e") (3.7.9a)

Thus

2¢

g’ — 2e” = e * = constant (3.7.9b)

which also follows directly from Eq. (3.7.8).
Equation (3.7.9b) is equivalent to

y2—2e* = —¢? (3.7.10)

where the constant has been written as —c?. If the origin x = 0
is chosen to lie in the midplane between the walls of the slit,
the solution we seek is symmetrical. Then, because y(0) = 0
by symmetry and ¢ > 0, ¢ > 0 and c is real. Since p =y
and ¢ = y are invarants of group 2, Eq. (3.7.10), which is
the same as Eq. (3.7.9b), is invariant to group 2. According to
theorem 2.5.2, ‘for groups in which the transformation of x is a
translation, introducing a group invariant as a new variable and
leaving the variable x unchanged also results in a new differential
equation that is separable’. Equation (3.7.10) is separable just as
expected from this statement, and integrating it yields Eq. (3.6.9).
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3.8 Two-Parameter Groups

The key point in the argument of the last section is Eq. (3.7.5),
which says that the quantity U,U, — U, U, called the commutator
of U, and U, is equal to one of them. The argument would
even apply if the commutator U,U, — U,U, were equal to a
linear combination oU, + BU, of U, and U,. Here o and S
are constants, either or both of which can be zero. If we set
V =aU, + BU,, then

u,v -vUu,=-8V (3.8.1a)

and
U,V - VU, =aV (3.8.1b)

Furthermore, we can multiply Eq. (3.8.1a) by y and Eq. (3.8.1b)
by & and add, obtaining

WV — VW = (a8 — yB)V (3.8.1¢)

where W = y U, + §U,. Using any of the equations (3.8.1) as a
starting point, we can carry through the procedure of the previous
section.

Note that not every pair of infinitesimal transformations has a
commutator that is a linear combination with constant coefficients
of the pair. For example, if

a d
U =x— —by— 3.8.2
1 xax Y dy ( a)
and
U, = 9 J (3.8.2b)
2 = ax Cay 0.2
then
d d
U2U| - Ul Uz = +bC—— (3820)
dx ay

which is only proportional to a linear combination of U, and U,
(with constant coefficients) if c =0 or b = —1.
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Lie proved that the commutator of U, and U, is a linear
combination with constant coefficients of U, and U, if and
only if U; and U, are the infinitesimal transformations of a
two-parameter group, x' = X(x.y:A, @), ¥ = Y(x,yi i, p).
Indeed, he proved a generalization of this theorem for
transformation groups that depend on more than two parameters
and involve more than two variables. If we look upon the
commutator as a generalized product, the set of infinitesimal
transformations is then closed under addition, multiplication and
multiplication by constants. Such a structure is known as an
algebra, and the algebras of the infinitesimal transformations are
called Lie algebras. Lie algebras have an extensive literature, but
in this introductory book we go no further into their theory. For
additional information regarding their application to differential
equations, the interested reader may consult Symmetries and
Differential Equations by G. W. Bluman and S. Kumei (Springer,
New York, 1989). For applications in quantum theory, the reader
may see Classical Groups for Physicists by B. G. Wybourne
(Wiley-Interscience, New York, 1974) or Linear Algebra and
Group Theory by V. I. Smirnov (McGraw-Hill, New York, 1961,
translator: R. A. Silverman).

3.9 Noether’s Theorem?

If the first-order differential equation that arises from application
of Lie’s reduction theorem (the associated differential equation)
can be integrated explicitly, the resulting solution, represented
here by Eq. (3.2.4), is a function of x. y and y that is constant
on the as yet unknown integral curves. Any such function
of x.y and y that is constant on the integral curves is called
a first integral of the differential equation. Because it is not
always possible to integrate the associated differential equation
explicitly, it is not always possible to display a first integral.
Noether has identified a class of differential equations for
which it is always possible to display an explicit first integral.
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These differential equations arise in the calculus of variations{
and are the Euler-Lagrange equations of invariant functionals.
We begin by considering the functional

b

J =/L(x,y.y)dx (3.9.1)

a

which we suppose is invariant to the group (1.1.1) for all intervals
(a.b). (The quantities a and b, being values of x, transform
according to Eq. (1.1.1a).) Invariance of the functional means
that
b
J =[L(x’. Y. y)dx' (3.9.2)

where J is the same number as in Eq. (3.9.1).

If we now change the variable of integration in the integral
to x, we obtain

b

’ ’ 'de
J=/L(x.y,y)

’

dx (3.9.3)

a

where x’, ¥ and y’ are given, respectively, by Egs. (1.1.1a),
(1.1.1b) and (1.5.4), and dx'/ dx is given by Eq. (1.5.3) as

dX—X—F'X 394)
d.x— X ,Y A 2.7,

Differentiating Eq. (3.9.3) with respect to A and then setting
A = Ag, we find

b

d
0= f(éLx +nLy+mL; + d—SL)dx (3.9.5)
X

a

t The reader unfamiliar with the calculus of variations may consult Appendix C for a
brief introduction.
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Since Eq. (3.9.5) is an identity in a and b, its integrand must
vanish. Therefore

dx dx dx

where we have used Eq. (1.5.5) for n,. Equation (3.9.6) is the
condition on the Lagrangian L(x, y, y) for the functional (3.9.1)
to be invariant.

The trajectories y(x) that make the functional (3.9.1) an
extremal obey the Euler-Lagrange differential equation

d d d
EL.+nL, + (—"—5’—5)L}.+—EL:0 (3.9.6)

d(L,)
— — L, = 39.7)
dx !
On such a trajectory, Eq. (3.9.6) becomes
d[L+E(L yL)] =0 (3.9.8)
relL yL)] = 9.

so that the bracketed quantity N(x, y. y) is a first integral of the
Euler-Lagrange equation (3.9.7).

The charactenistic equations of the partial differential
equation (3.9.6) are
dx dy dy dL

& n om0 Ldg/dx
the integrals of which are p(x. y), an invanant, g(x. y, y), a first
differential invariant, and £ L. Thus the most general form for
the Lagrangian that makes the functional (3.9.1) invariant is

3.9.9

L(x,y,y)= Glp.q) (3.9.10)

§

where G is a arbitrary function.

Example: The classical example of Noether’s theorem is ordinary
mechanics, for which the Lagrangian L is
my?

L=T—U(y) (3.9.11)
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The Euler-Lagrange differential equation of this Lagrangian is
my+U(y) =0 (3.9.12)

A group that leaves the functional invariant is the translation
group x' = x + A, ¥y = y for which & =1, n =0and n, = 0.
Thus p = y and ¢ = y are suitable invariants and L must have
the form G(y, y) as does Eq. (3.9.11). Noether’s first integral is

then .
L—5yL, =—mTy—U(y) (3.9.13)
the constancy of which along a trajectory is simply the law of

conservation of energy.l

Example: We can find the first integral (3.2.11) for the Emden—
Fowler equation (3.2.5) when n = 5 using Noether’s theorem.
The Emden-Fowler equation (3.2.5) is the Euler-Lagrange
equation of the Lagrangian

XZ)'}Z x?.y

2 n+1
Can we write this in the form (3.9.10) if the group is the stretching
group (3.2.6)? Then L must have the form
G B y/xP!
L= SOy (3.9.15)
x
For these last two equations to be the same, G must be chosen
equal to

Y 2 n+1
G( y 2 ) 4 Y (3.9.16)

XB' xF1) T 232D T (n  1)xPntD
We see that B(n+1)+1 must equal —2 and 28— 1 must equal —2
for the powers of x in each term of Eq. (3.9.14) to be the same
as in the corresponding term in Eq. (3.9.15). Thus 8 = —1/2
and n = 5. Noether’s first integral for this case is then

n+1

L= (3.9.14)

X2py  xdpE x3ys
2 2 6
which is the same result as given in Eq. (3.2.11).1

3.9.17)
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*3.10 Tabulation of Differential Equations Using
Noether’s Theorem

We can use Noether’s theorem to tabulate differential equations
for which an explicit first integral can be displayed. If Noether’s
first integral (3.9.8) is also a group invariant, it can be integrated
again by the methods of chapter 2. Thus the solution of
the tabulated differential equation can be reduced to a single
integration.

In the preceding two examples, Noether’s first integral N
is a group invariant, but this is coincidental and not a general
property of N. To see that N is a group invariant in the two
examples, let us begin by substituting Eq. (3.9.10) for L into the
bracketed expression for N in Eq. (3.9.8):

N:G—i—[(g—j’)q\]Gq (3.10.1)

Since G and G,, being functions of the invariants p and g only,
are, by their construction, invariants, N will be an invariant if
the bracketed quantity in Eq. (3.10.1) is invariant.

In the first example, n = 0, £ = 1 and ¢ = y. The bracketed
quantity in Eq. (3.10.1) equals —q, which is clearly invariant. So
in this case, N = G — q¢G,, an invariant.

For the stretching group considered in the second example,
¢ =xand n = By, p = y/x# and g = y/xP~'. Then the
bracketed quantity in Eq. (3.10.1) equals Bp — g, and N =
G + (Bp — q9)G,, an invariant.

On the other hand, for the rotation group (1.1.2), § = —y
and n =x, p=x+y?and g = (y — xy)/(x + yy). Then the
bracketed quantity in Eq. (3.10.1) equals x/y 4 g, which is not
invariant because x/y is not.

It can be shown (see problem 3.16) that if & depends only on x,
then N is an invariant.

The tabulation procedure begins by picking a group (&, ). For
the sake of a definite example let us choose the stretching
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group (3.2.6). Then the Euler-Lagrange equation (3.9.7)
corresponding to the Lagrangian (3.9.15) is
. | G, G -q)G
i»=xf"-[ v BGy  Br—q)
G‘I‘l G‘I’/ G‘I‘I

M- l)q] (3.10.2)

where p = y/x? and ¢ = y/x?~'. Equation (3.10.2) represents
a class of differential equations of second order, invariant to
the stretching group (3.2.6). For these differential equations,
Noether’s first integral is

N =G+ (Bp—-q)G, (3.10.3)

and thus is an invariant. This means that Noether’s first
integral is an invariant first-order differential equation that can
be treated by the methods of chapter 2. Thus the solution of
the differential equation (3.10.2) can be reduced to a single
quadrature (integration). As we have seen above, for the Emden—
Fowler equation of order 5, 8 = —1/2 and G = ¢°/2 — p®/6.
Another group for which a similar conclusion holds is the
mixed stretching—translation group
x' = ix (3.10.4a)

yV=y+pBInx (3.10.4b)
For this group, £ =x,n =B, p=e¢'/xP and ¢ = xy. Then
N=G+ B —-q90G, (3.10.5)
which is invariant. The Euler-Lagrange equation (3.9.7) is
Gyyx§ + (Guy + PGup)§ = (BGyy + G2 =0 (3.10.6)
The special case of Eq. (3.10.6) when 8 = —2 and G = q*/2+p
is the Poisson—Boltzmann equation (3.6.1) when v = 1.

3.11 The Determining Equations

One question that has been dealt with only obliquely so far is
how to find groups to which a differential equation is invariant.
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In section 2.6, Lie's method of tabulation was mentioned, and
in principle this method could be used to create an extensive
dictionary of differential equations that are invariant to various
groups. Again in the previous section, 3.10, Noether’s theorem
was used to tabulate differential equations that were not only
invariant to particular groups but for which a first integral could
be explicitly displayed.

In the method of tabulation, one starts with a group and
determines the invariant differential equations that belong to it.
But in practice, the differential equation is forced upon us, so
to speak, by other considerations, and if it does not happen
to be tabulated already, how can we find groups to which it
is invariant? There is a systematic approach to answering this
question, but it involves extensive computation, especially for
partial differential equations. In the remainder of this section, the
basic ideas of the method are explained by working the example
of the simple differential equation y = 0.

For this differential equation, Eq. (3.1.2a) becomes n, = 0.
Now using Eq. (1.6.5), we find

M =na+ .‘.‘(2'7!\ - gu) + ﬁ'z(n\‘ - ?-Sn) - )"}(5\))
+ V(n, — 26— 3y¢)) (3.11.1)

Setting y = n, = 0 gives
Mo+ 52nn — &0 + 320, — 26,) — ¥ (E,) =0 (3.112)

Equation (3.11.2) is an identity in x, y and y, that is, it holds for
any arbitrary choice of x, v and y. Since § and n are functions
of x and y only, the coefficients of the various powers of y
must vanish separately. Thus Eq. (3.11.2) is equivalent to the
following four equations:

N = 0; &-\\ =0; S(r - 7'],(\: hy = 951\
(3.11.3)
These equations are called the determining equations.
According to the first two determining equations,

E=AWX) v+ E(x) and n=I()x+0() 3.114)
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where A, E.I and O are functions yet to be determined.
According to the second two determining equations

A y+E@ =21y and T x+ 0() =24A%)
(3.11.5)
It follows by differentiating the first equation partially with
respect to y and the second with respect to x that A(x) = 1) =
0. Now because x and y are independent variables, it then
follows that E(x) = 71(y) and 0(v) 2A(x) are constants.
Thus, finally

£ = c1x% 4 c3xy + c3x + ¢4y + ¢5 (3.11.6a)
n::c2y2+c,xy+c6x+C7.V+cg (3.11.6b)

where the coefficients ¢, through cg are constants. The coefficient
functions £ and n belong to an eight-parameter group whose
infinitesimal transformations (3.7.1) can be obtained by taking
one of the coefficients ¢, through cg to be 1 and the rest zero.

Bluman and Kumei [BI-89] have tabulated expressions for
the coefficient functions of extended infinitesimal transformations
of various orders for both one dependent and one independent
variable and one dependent and several independent variables.
These latter expressions are useful in obtaining the determining
equations for partial differential equations.

Notes

Note 1: By working backwards from the solution (3.6.9), the author found
the following solution in parametric form of Eq. (3.6.3) when v = 0, namely,
p =2z*sec’z,q = 2zlanz.

Note 2:  The treatment of Noether’s theorem given here follows that of
Courant and Hilbert [Co-53, pp. 262-266] and is restricted, as is the rest of
this introductory book, to point transformations in the (x, y)-plane. In her
original paper [No-18], Noether considered more general transformations in
which the infinitesimal coefficients & and n could depend not only on x and
y but on y and higher derivatives as well. Furthermore, the transformations
she considered were both multidimensional and multiparameter so that most
generally the coefficients of the infinitesimal transformation depend on the
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independent variables, the dependent variables, and the partial derivatives of
the dependent variables of both first and higher orders. Recently, even more
general kinds of transformations (non-local transformations) have been studied
in which the infinitesimal coefficients £ and 7 depend on integrals of functions
of v and v [Go-95|.

It seems to me that in an introductory book such as this one, too high
generality may complicate matters so much as to obscure the underlying
idea. Therefore, the treatment in this book is restricted to the one-parameter.
one-dimensional point transformations given in Egs. (1.1.1q, b). It may be
noted here, however, that the derivation in section 3.9 goes through without
change even for more general one-parameter. onc-dimensional transformations
1 which & and 5 depend not only on x and y but on ¥ and higher derivatives
as well. It follows again exactly as in section 1.6 that , = dn/dx — y(d& /dx).
With the help of Eq. (1.6.1d), we can pass at once from Eg. (3.9.3) to
Egs. (3.9.5) and (3.9.6) and from therc to Eq. (3.9.8). Thus the bracketed
quantity in Eq. (3.9.8) is again constant along a trajectory y(x) that satisfies
the Euler-Lagrange equation (3.9.7).

The interested reader may find quite complete treatments of Noether’s
theorem in her original paper [No-18] as well as in the books of G. W. Bluman
and S. Kumei [BI-89] and Pcter J. Olver [OI-86].

Problems for Chapter 3

3.1 The differential equation 1+ y? = k*(a — x)?y* arises in the
calculation of curves of pursuit when the pursued travels along
the straight line x = «a [Da-62]. Find a group to which it is
invariant, use Lie’s reduction theorem to reduce its order, and
integrate twice to find the general solution.

3.2 Langmuir used the differential equation 3yy + y> —e' =0
in his theory of current flow from a hot cathode to an anode
in a high vacuum [Da-62]. The differential equation has the
singular solution y = e'/?. Find this solution by finding a group
to which Langmuir’s differential equation is invariant, using Lie’s
reduction theorem, and determining the singular points of the
associated equation.

3.3 What is the most general differential equation of the second
order that is invariant to the stretching group x" = Ax, ¥ = Ay
and the translation group x’ = x + A, ¥y = y + A?
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3.4 Bessel’s equation of order zero, x’y + xy + x*y = 0, like
all homogeneous linear equations, is invariant to the stretching
group x’ = x, y' = Ay. Find an invariant v and a first differential
invariant v and use Lie’s reduction theorem to reduce the order
of the differential equation. The associated equation is not, of
course, integrable in terms of elementary functions, but when
x > 1, it can be manipulated into an integrable form correct to
order 1/x. (Hint: derive a differential equation for v + 1/(2x)
by adding to or subtracting from the associated equation suitable
terms of order 1/x? or smaller.) Integrate the differential equation
you have found, and then integrate again to find the asymptotic
form of the Bessel functions of order zero.

3.5 Prove that the inhomogeneous linear differential equation
of second order y + P(x)y + Q(x)y = R(x) is invariant to
the group whose infinitesimal coefficients are £ = 0, n = Y (x),
where Y (x) is a particular solution of the homogeneous equation,
i.e. where ¥ + P(x)Y+ Q(x) Y = 0. Find an invariant and a first
differential invariant and use Lie’s reduction theorem to reduce
the order of the differential equation.

3.6 Find a stretching group to which the differential equation
xy — y + 4x’yy = 0 is invariant. Determine the form of
possible power-law solutions and find them by direct substitution
of this form into the differential equation. Use Lie’s reduction
theorem to reduce the differential equation to first order. Draw
the direction field and using theorem 3.4.1 show that this power-
law solution gives the asymptotic form of the family of solutions
that obey the boundary conditions y(0) > 0, y(oo) = 0.

3.7 Show that the solutions mentioned in problem 3.6 are ordered
according to their values at x = 0.

3.8 The differential equation d(y?y)/dx+xy = 0, which arises in
the applications of high-temperature superconductors, is invariant
to the stretching group x' = Ax, y' = Ay. The quantity u = y/x
is an invariant and the quantity v = y is a first differential
invariant. But any function of u is also an invariant and any
function of u and v is also a first differential invariant. A
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more convenient choice is # = y/x and v = y(y/x)>. Using
these latter invariants, apply Lie’s reduction theorem to obtain
a first-order equation. In practice we are interested in positive,
decreasing solutions y(x) that vanish at infinity. In what part
of the (u.v) direction field do such solutions lie? Consider
the integral curve of the associated equation that passes through
the origin and lies entirely in that part of the direction field.
What can you say about the solutions y(x) which correspond to
it?

3.9 The differential equation 3y + xyy — y?> = 0 arises in the
study of the expulsion of a heated compressible fluid from a long,
slender tube. We are interested in positive, decreasing solutions
that vanish at infinity. Find a stretching group to which this
differential equation is invariant, construct an invariant ¥ and a
first differential invariant v, and use Lie’s reduction theorem to
reduce the order of the equation. Draw the direction field of the
associated equation and determine which integral curve in the
(u, v)-plane corresponds to positive, decreasing solutions y(x).
What is the asymptotic form of these solutions? Prove that they
are ordered according to their values at the origin. This being
s0, could you have found the asymptotic form without drawing
the direction field?

3.10 Generalize the reasoning of section 3.2 to prove that if a
third-order differential equation is invariant to a one-parameter
group G, using an invariant p and a first differential invariant
g as new variables reduces the differential equation to one of
second order in p and q.

3.11 What is the most general differential equation of the second-
order invariant to the group whose infinitesimal coefficients are
& = x?, n = xy? What variables can you use to reduce the order
of the equation? What is the associated equation?

3.12  An old rule for reducing the order of second-order
differential equations y = f(x,y,y) is this: if either x or y
is absent from f, choose the other as a new independent variable
and choose y as a new dependent variable. Show that this rule
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follows from Lie’s reduction theorem by choosing appropriate
groups that leave the differential equation invariant.

3.13 Find two groups G, and G, to which the differential
equation x>y + xy — 1 = 0 is invariant. Calculate their
infinitesimal transformations U, and U, and show that they
commute, i.e. that their commutator U, U, — U,U; = 0. Using
Gy, reduce the order of the differential equation by means of
Lie’s reduction theorem. Then use G, to find Lie’s integrating
factor for the associated equation. Integrate the associated
equation and find a first integral of the original second-order
differential equation. Show that this first integral is invariant
to G;. Integrate it to find the general solution of the original
second-order differential equation.

3.14 If we set G = ¢?/2 + Inp in Eq. (3.10.6) we obtain
the second-order differential equation of problem 3.13, namely,
x%y + xy — 1 = 0. Calculate Noether’s first integral (3.10.5). Is
the value of 8 fixed in this particular problem? If not, what use
can you make of its arbitrariness?

3.15 (Do this problem before problem 3.16!) Show that the
quantity (n/& — y)qy appearing in Eq. (3.10.1) is an invariant of
any group for which & depends only on x and n depends only
on y.

3.16 Prove that a necessary and sufficient condition for the
quantity (n/& — y)g; appearing in Eq. (3.10.1) to be a first
differential invariant is that & = 0, i.e. that £ depend only on x.

3.17

(a) Find the condition on & and »n for the group of
transformations (1.1.1a, b) to preserve area. (Preserving area
means that if C is any closed curve in the (x, y)-plane and
C’ is its image for any fixed value of A, then the area inside
C’ equals the area inside C.)

(b) Find the most general expressions for £ and n of the area-
preserving groups whose orbits are the family u(x. y) = c.



4

Similarity Solutions of Partial
Differential Equations

4.1 Introduction

The aim in the foregoing chapters was to find the general solution
of ordinary differential equations. Finding the general solution
of most of the partial differential equations of science and
engineering is too difficult. Instead, we are usually satisfied to
find particular solutions defined by specific initial and boundary
conditions. If the partial differential equation is invariant to a
group, then among its solutions may be some that are their own
images under transformation (in general, the image of a solution
is another solution). These invariant solutions are generally easier
to calculate than other solutions; often they may be calculated
by solving an ordinary differential equation. If these invariant
solutions also describe situations of practical interest, they may
provide us with simple answers to seemingly difficult questions.

In this chapter, we confine our attention to certain partial
differential equations in one dependent variable (call it ¢) and
two independent variables (call them z and ¢) that are invariant to
the following one-parameter family of one-parameter stretching
groups:

¢ =A% (4.1.1a)
t = M\t 0<Xi<oo (4.1.1b)
2 = Az (4.1.1¢)
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As before, )\ is the group parameter that labels different
transformations of a group; « and B are family parameters that
label different groups of the family. The partial differential
equations considered here are invariant to every group in the
family, but not every pair of values of o and 8 is admissible: for
each partial differential equation, the family parameters « and 8
are coupled by the linear constraint

Ma + N =L (4.1.2)

where M. N and L are fixed constants determined by the structure
of the particular partial differential equation. Thus only one of
the family parameters a and 8 can be chosen independently. As
we shall see, the values of o and 8 in a particular problem are
determined by the boundary and initial conditions.

The restrictions described above permit some useful
theorems to be proved while still allowing many partial
differential equations of practical interest to be treated. Among
such partial differential equations are

(1) the ordinary diffusion equation ¢, = c_.,
(2) the heat diffusion equation in superfluid helium, ¢, = (c:”});:

(3) the equation cc, = c¢,, which arises in the theory of
expulsion of a compressible fluid from a long, heated tube;

(4) the equation ¢, = p + c,. fo] (c2/2) dz, which arises in the
theory of motion of a shock-loaded elastic membrane;

(5) the equation ¢, = (c"),,, which describes magnetic diffusion
in high-temperature superconductors;

(6) the coupled partial differential equations u, = v., v, = V?u.,
which describe the stretching of a long, elastic wire; and

(7) the coupled equations h, + (vh), = O.v, + vv. + h, = 0
of problem (4.1.2), which describe the motion of water in a
long, narrow, open channel.
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4.2 Similarity Solutions

Each solution ¢(z. t) of a partial differential equation represents
a surface S in (c. z. t)-space. If the partial differential equation
is invariant under a group G, then the image surface of S,
composed of the images (c¢'.z'.t") of the points (c, z,r) of S,
generally represents another solution of the partial differential
equation. But if the solution c¢(z, ¢) itself is invariant under the
transformations of G, then the surface S is its own image.
Let the surface S be represented by the equation

F(c,z.t1) =0 “4.2.1a)
If it is its own image, then
F(c'.zZ.1)=0 (4.2.1b)
as well. Equation (4.2.1b) can be written
F(Ac. Az, APt) =0 (4.2.2)

If we differentiate Eq. (4.2.2) with respect to A and then set
A =1, we obtain the linear partial differential equation

acF.+zF, + BtF, =0 (4.2.3)
whose characteristic equations are
de dz dt dF

=—=—= — 4.24
ac b4 Bt 0 ¢ )

Three independent integrals of Eqs. (4.2.4) are
F.x=z/t"" and y=c/t"* (4.2.5)

The most general solution of Eq. (4.2.3) is F = f(x.y), where
f is any arbitrary function. Since the surface S is designated by
f(x.y) = F = 0, we can solve this last equation for y in terms
of x and write: y = y(x) where y(x) is an arbitrary function of
x only. Written in terms of ¢, z, t, the relation y = y(x) becomes

c=1"y(z/1"P) (4.2.6)
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which is the most general form of a solution which itself is
invariant to a group of the family (4.1.1). A solution of the
original partial differential equation of the form (4.2.6) is called
a similarity solution.

If Eq. (4.2.6) is substituted into the partial differential
equation, an ordinary differential equation for y must result
because y is a function of only one argument, namely, z/t"%.
A convenient name for this ordinary differential equation is
principal differential equation. Because similarity solutions can
be found by solving an ordinary differential equation, they are
much simpler to calculate than other solutions of the partial
differential equation. Unfortunately, not every problem, i.e. not
every set of boundary and initial conditions, leads to a similarity
solution. For example, one can see at once that the form (4.2.6)
restricts the boundary value ¢(0, #) to powers of r. Furthermore,
if Eq. (4.2.6) is to represent a solution that spreads out as time
increases, B must be positive. In spite of these restrictions, many
problems of practical interest do lead to similarity solutions.

Example: The superfluid diffusion equation ¢, = (c!?). is
invariant to the family (4.1.1) withM =2, N = —3and L = —4,
i.e. with 2o — 38 = —4. If we substitute Eq. (4.2.6) into this

partial differential equation, we obtain the following ordinary
differential equation for y:

d(y'™
dx

ﬁ + X_).' —ay = 0 (427)
where, as usual, y stands for the derivative of y with respect to
its argument, that is, dy/dx. We investigate three different sets
of boundary and initial conditions.

(a) The boundary and initial conditions ¢(0,¢) = 1, ¢(oco,t) =0
and ¢(z.0) = 0 correspond to what I call the clamped-
temperature problem: here ¢ is the temperature rise in a
semi-infinite pipe initially filled with cold superfluid helium
[c(z, 0) = 0] the temperature of whose front face is clamped
so that ¢(0,t) = 1 for t > 0. The condition ¢(0,t) = 1
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requires a to be zero, so that 8 = 4/3. Then the differential
equation (4.2.7) takes the form (3.3.9) discussed previously.

(b) The boundary and initial conditions c¢.(0.t) = -1,
c(0o.t) = 0 and ¢(2.0) = 0 correspond to what I call the
clamped-flux problem: here ¢ is the temperature rise in a
semi-infinite pipe initially filled with cold superfluid helium
[¢(z.0) = 0] the heat flux of whose front face is clamped so
that ¢.(0.t) = —1 for t > 0. The condition ¢.(0.t) = —1
requires o to be 1, so that § = 2. Then the differential
equation (4.2.7) takes the form

’)d('{'m) + xy 0 (4.2.8)
2 Xy—y= 2.
dx y—J

(c) The boundary and initial conditions c(co.t) = 0 and

¢(z.0) = 0 and the conservation condition [~ cdz = 1
correspond to what I call the pulsed-source problem: here
¢ 1s the temperature rise in an infinite pipe initially filled
with cold superfluid helium [¢(z. 0) = 0] subjected to a unit
heat pulse in the plane z = 0 at + = 0. The condition
J~_cdz = 1 requires o to be —1, so that 8 = 2/3. Then
the differential equation (4.2.7) takes the form

L40")

+3(xy+y)=0 (4.2.9)

These three examples illustrate how the boundary and initial
conditions determine the values of the family parameters o and
pB. Furthermore, the specific form of the principal differential
equation changes from case to case: Eq. (4.2.7) is analytically
integrable when @ = 0 or —1 but not when o = 1. Finally,
one should note that the principal differential equation (4.2.7) is
invariant to the stretching group

y =A%y (4.2.10a)
x = Ax (4.2.10h)

Thus it can be treated by the methods of chapter 3. This
invariance 1s no coincidence as we see next.l
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4.3 The Associated Group

The principal differential equation that arises from the family of
stretching groups (4.1.1) is invariant to the associated stretching

group

y =AMy (4.3.1a)
x = Ax 4.3.1h)

where L and M are two of the coefficients in the linear constraint
(4.1.2). To prove this we follow the form of argument used in
section 3.8.
The infinitesimal transformation X of the group G of the
family (4.1.1) labeled by the family parameters o and B is
X 9 9 .3 4.3.2
sacg  HAIg iy (4.3.2)

The infinitesimal transformation X,, defined by

d 0 d
X, =a,c 3e + ﬂ,‘ + P (4.3.2b)

where o, # o and B, # B and Mcx* + NB, = L, also leaves
the differential equation invariant. A simple calculation shows
that the commutator of X and X, vanishes. Since Xx = 0 and
Xy = 0 by the definition of x and y as invariants of X, it follows
that X (X,x) =0 and X(X,y) = 0. Therefore, X,x and X,y are
invariants of X and so can be expressed as functions of x and y
only. According to the chain rule, then, the action of X, on any
function of x and y is given by

X, =(X, x) + (X. y)— (4.3.3)

We can calculate the functions X,x and X,y explicitly from
Egs. (4.2.5) and (4.3.2b):

X.x = (’3 — ﬂ‘)x (4.3.4a)
B

X,y=(@)y (ﬂ ﬂﬂ )ﬁy (4.3.4b)
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_(PZPN( O L0 :
N (T R

The transformations of the group G, generated by X, in (x, y)-
space are obtained by solving the differential equations
dx dy  da

x  Ly/M &

Thus

4.3.5)

They are Egs. (4.3.1).

Because X, is an infinitesimal transformation of the group
(4.1.1), it must carry one solution of the partial differential
equation into another. Therefore, the transformations of G,
in (x, y)-space carry one similarity solution y(x) belonging
to the family parameters « and B into another similarity
solution y’(x’) belonging to the same family parameters. The
totality of similarity solutions belonging to a particular set
of family parameters then forms an invanant family. This
demonstrates that the principal differential equation is invariant
to the associated group (4.3.1) for any choice of the family
parameters « and B.

4.4 The Asymptotic Behavior of Similarity Solutions

If L/M < 0 and if the positive solutions of the principal
differential equation that vanish at infinity are ordered according
to their values at x = O, then by the theorem of section 3.3
the positive similarity solutions y(x) that vanish at infinity are
asymptotic to the exceptional solution y = AxYM with the
smallest positive value of A. In terms of ¢, z and ¢, this
asymptotic behavior can be written ¢ = AzYt=V/M_ The value
of A can be found directly by substituting this last form into the
partial differential equation.

The solutions y(x) of the principal differential equations
belonging to the illustrative partial differential equations (1), (2)
and (3) given at the end of section 4.1, are ordered according
to their values at x = 0. This is because the solutions c(z, t)
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of the partial differential equations obey the following ordering
theorem.

Theorem 4.4.1.

Ifc,(0,1) > ¢5(0, 1) and ¢, (00, 1) > ca(oo. ) forO <t < T,
and ¢,(z.0) > ¢3(z,0) for 0 < z < oo, then ¢|(z.1) >
c(z.t)forO<t <Tand 0 < z < o0.

We prove this theorem in the next section; here we take it for
granted and explore its consequences.

The three problems discussed in the example at the end of
section 4.2 all have the partial boundary and initial conditions
c(0co, 1) = 0 and ¢(z,0) = 0. For two solutions ¢,(z.?) and
c,(z, t) fulfilling these conditions, if ¢,(0,1) > ¢,(0,¢) for 0 <
t < T,then ¢;(z,t) > ca(z,t) for0 <t < T and 0 < z < o0.
If ¢, and ¢, are similarity solutions belonging to the same « and
B, then ¢,(0,1) > ¢,(0,t) means y,(0) > y,(0) and ¢,(z.?) >
cy(z.t) means y,(x) > y,(x). Thus the similarity solutions
have the asymptotic behavior given in the first paragraph of this
section, namely, y = AxY/M ie ¢ = Azl/M=N/M,

The asymptotic behavior ¢ = AzY/Mr=N/M extends to other
solutions of the partial differential equation besides similarity
solutions. By way of illustration, let us return to the superfluid
diffusion equation discussed at the end of section 4.2. Since M =
2, N=-3,L=—-4and A =4/(3,/3), the similarity solutions
defined by the partial boundary and initial conditions c(oo,t) = 0
and ¢(z,0) = 0 are asymptotic to [4/(3/3)]z"*+¥%. Consider
now the solution c(z,t) defined by the boundary and initial
conditions ¢(00,t) = 0, ¢(z,0) = 0 and ¢(0,¢) = 1 4 tanhzt.
Since 1 < 1 + tanht < 2, by the ordering theorem c(z. )
is sandwiched between the two clamped-temperature similarity
solutions (o« = 0, 8 = 4/3) for which ¢(0,¢) = 1 and ¢(0.1) =
2, respectively. Since both of these similarity solutions are
asymptotic to [4/(3+/3)1z27%Y% so is c(z. 1).

There are some limitations on « and B8 imposed by the
constraint (4.1.2) and by the requirement that § be > 0 in order
that the similarity solution spread out as time increases (the
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usual case of interest). In the case of the superfluid diffusion
equation, these constraints require that « > —2. When 8 > 0
and -2 < o < 00, —00 < a/Bf < 3/2. Thus any solution
for which ¢(00.t) = ¢(z.0) = 0 and for which ¢(0, r) can be
sandwiched between two powers of ¢ with exponents < 3/2 has
the asymptotic behavior [4/(3./3)]z 722

4.5 Proof of the Ordering Theorem

The illustrative partial differential equations (1), (2) and (3) given
at the end of section 4.1 all belong to a class of equations called
conservation equations, which have the form

S(c)e,+g. =0 4.5.1)

where, most generally, g is a function of z,r, ¢ and c¢,. To
prove the ordering theorem of the last section, we further assume
that S(¢) > 0 and d¢g/dc. < 0 and use the style of argument
employed earlier in connection with Eq. (3.3.9). Let ¢; and ¢,
be two infinitesimally close neighboring solutions of Eq. (4.5.1)
and suppose that ¢,(0.1) > ¢»(0,¢) and ¢,(Z.1) > ¢ (Z.t) for
0 <t < Tand ¢,(2.0) > ¢3(z,0) for 0 < z < Z. Define
u =c; —c¢>». Then u(0,t) >0and u(Z.t) >0for0 <t < T
and #(z,0) >0for0 <z < Z.
The difference « obeys the partial differential equation

a a9 ] ds 20
Su, = — al u,, — ——q+—£ u, — ——c,+——q u
oc. ) dz0dc. odc| - de az dc

(4.5.2)
Equation (4.5.2) has been obtained by subtracting Eq. (4.5.1)
written for ¢, from Eq. (4.5.1) written for ¢,. The mean value
theorem' has been used to evaluate the differences S(c,)c,, —
S(ca) ey and g.(2.t. ¢y, ¢1:) — q.(2. 1. c2, ¢3;). As a consequence,
S.q and their derivatives are evaluated for arguments lying
between ¢, and c,. But because ¢, and ¢, are infinitesimally
close, this causes no difficulty.
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Figure 4.5.1. The rectangle used in the proof of the ordering theorem of
section 4.5.

To show the ordering of ¢; and c; we must show that « > 0
everywhere in the rectangle OABC of figure 4.5.1. The proof
depends on finding where the smallest value of u can lie. To
clarify the logic of the argument let us first consider a function
w of one variable s that is positive at the endpoints of an interval
a < s < b (see figure 4.5.2). If the smallest value of w on
the interval occurs at an interior point P of the interval, then
(dw/ds)p = 0 (curves 2 and 3). On the other hand, if dw/ds does
not vanish anywhere on the interval, then the smallest value of
w occurs at an endpoint (curve 1). In case 2, where the smallest
value is positive, w > 0 on the entire interval. In case 1, where
the endpoint values are positive, w is likewise > 0 on the entire
interval. What we try to do is use the partial differential equation
to eliminate a case like 3, where the smallest value is negative.
With these considerations in mind, we begin by trying to prove
that # cannot attain its smallest value in the interior of rectangle
OABC if that value is negative.

For if it were so 1 would have a negative minimum at a point
P in the interior of rectangle OABC. Then u_.(P) = u,(P) = 0,
u(P) < 0 and u,,(P) > 0. If the bracketed quantity in the
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w A

Figure 4.5.2. An auxiliary diagram used in the proof of the ordering theorem

of section 4.5.

last term on the right-hand side of Eq. (4.5.2) were positive,
these conditions would be inconsistent with the partial differential
equation (4.5.2). This would provide a contradiction that refutes
the assumption that u had a negative minimum at P.
Unfortunately, we do not know the sign of the bracketed
quantity. But Protter and Weinberger [Pr-67] describe an artifice
due to Hopf by which the foregoing argument can be saved. Let

v=ue " (4.5.3)

where y is a positive constant yet to be determined. Then
v(0.1) > 0and v(Z,t) > 0for0 <t < T and v(z.0) > 0
for 0 < z < Z. Furthermore, v obeys the partial differential
equation

aq d dqg 0g ds d dq
Svy=—— .- | ——+—|v.— | —a+——+¥S
° (ac,)v“ (82 Bcz+8c)v“ (ch +82 Bc+y v

(4.5.4)
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Now since § > 0, if we choose y large enough the bracketed
quantity in the last term on the right is positive. Therefore, v
cannot attain its smallest value in the interior of OABC if that
value is negative.

Furthermore, v cannot attain its smallest value at an interior
point Q of side AB if that value is negative. For then v would
have a negative minimum at Q and thus v.(Q) = 0, v(Q) < 0
and v.,(Q) = 0. Then Eq. (4.5.4) requires that v, > 0, which
means that yet smaller values of v lie inside OABC just below
Q, again a contradiction.

Now only two alternatives are left: either v attains its
smallest value in the interior of OABC or in the interior of
segment AB, in which case that smallest value is > 0, or v attains
its smallest value somewhere on sides OA, OC or CB, in which
case that smallest value is again > 0. Thus v > 0 everywhere
in rectangle OABC and on its perimeter. Since e™" > 0, u > 0
everywhere in rectangle OABC and on its perimeter as well,
which was to be proved.

4.6 Functions Invariant to an Entire Family of
Stretching Groups

Whereas the similarity solution (4.2.6) is invariant to one group
of the family (4.1.1), the exceptional solution ¢ = AzL/Mt=N/M
is invariant to every group of the family. In other words, if we
write ¢’ = Az'M/Mp'=N/M and substitute Egs. (4.1.1) for the primed
variables, we obtain ¢ = AzY/¥t=N/M for any @ and B obeying

Eq. (4.1.2).

Furthermore, the solution ¢ = Az!/Mt=N/M s the only
solution invariant to the entire family (4.1.1). To see the
uniqueness of the solution ¢ = AzY/Mt~N/™ we need only

assemble some results already obtained. In the first place,
a totally invariant solution must be an invariant of both
the infinitesimal transformation X of Eq. (4.3.2a) and the
infinitesimal transformation X, of Eq. (4.3.2b). Now the most
general invariant oi X is F(x, y) as noted after Eq. (4.2.5). Since
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F(x,y) must be invariant to X, given in Eq. (4.3.4¢), it must
have the form G(y/x%™) [cf. Eq. (3.2.7a)]. A totally invariant
solution must therefore have the form G(y/x%/™) = 0, which is
equivalent to y = AxY™ or ¢ = AzH/M=N/M,

Besides determining the asymptotic behavior of solutions
under conditions already discussed, totally invariant functions
can be used to determine other useful information. The
following example occurs in the theory of stability of uncooled
superconductors. Consider the one-dimensional heat diffusion
equation with a temperature-dependent source on the infinite
interval —o0 < z < o0:

¢ = ¢+ Q) (4.6.1)

Let the temperature rise c(z,t) = 0 for t < 0, and at r = 0 let
a heat pulse g be introduced at z = 0. This initial condition of
a localized pulsed source can be represented analytically by the
requirement that for very short times, at which the source Q has
yet to make itself felt,

c= q(47rt)_'/zexp(—z—t) (4.6.2)

For commercial superconductors, Q(c) is often taken to be
a step function

Q)=0 c<a (4.6.3a)
Q)=0b c>a (4.6.3b)

Now, if ¢ is small enough, the temperature ¢ eventually
returns to zero, whereas if g is too large, ¢ eventually diverges
without limit. We want the bifurcation value of g, i.e. the largest
value of ¢ for which c still returns to zero.

The problem just posed is one of a class of problems, which
class is invariant to the family of stretching groups

= Xc =24 7 = Az (4.6.4a)
q' = A1ty b'=Ar"p a’ = X)a (4.6.4b)
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For every problem of this class ¢ is determined only by a and
b. Therefore, F(q,a,b) = 0 for some function F(q.a.b) that
is the same for all problems of the class and thus is an invariant
of the family of stretching groups given by Eq. (4.6.4b). If we
set u = A%, we can write Eq. (4.6.4b) as

q' =u’q b=uPb d=upa (4.6.4¢)
where « = (6 + 1)/8 and B = (6 — 2)/5 so that

20+ 8=3 (4.6.4d)
Thus M =2, N = 1 and L = 3. Therefore,
q= AatMp=NM — Ag¥?p~172 (4.6.5)

where A is a constant independent of a and b that can be
determined by solving the problem numerically for one particular
choice of a and b. Thus we see from group-theoretic arguments
that only one such solution is necessary to determine the
dependence of g on a and b, whereas it appeared at the outset
that the problem might have to be solved repeatedly for each
choice of a and b.

%4.7 The Shock-Loaded Membrane

As noted at the end of section 4.1, the equation

1
C1,=P+sz/
0

arises in the theory of motion of a shock-loaded elastic
membrane. Shown in figure 4.7.1 is a cross-section of such a
membrane in the form of a long elastic ribbon rigidly clamped
at its sides z = 0 and z = 1. (We work here in special, rescaled
units in which the mass per unit length of the membrane, its
width, and its Young’s modulus are all equal to 1. The derivation
of Eq. (4.7.1) can be found in the author’s earlier book [Dr-83].)

[¥]

o
~

dz (4.7.1)

0|
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c A

Direction of increasing time t

Ny

z=1/2

Figure 4.7.1. Sketches of the deflection ¢ of the left-half of the membrane for

several times 1 > 0.

At r = 0, the membrane, which is initially taut but
unstrained, is exposed on one side to a sudden, uniform pressure
rise p. Also shown in figure 4.7.1 are sketches of the deflection
¢ of the membrane for several times ¢+ > 0. For very short
times, the central part of the membrane accelerates as though
unconstrained; there ¢ = pr?/2. At the edges z = 0 and
z = 1, the membrane is clamped and ¢ = 0. Since Eq. (4.7.1)
resembles the wave equation, we surmise that for short times
a front propagates from the clamped edges towards the center
behind which the deflection c is less than pr?/2. If the location
of the left-hand front is z = Z(¢), then Eq. (4.7.1) becomes

Z(1)

i =p+cy, f cldz (4.7.2)

which must be solved with the boundary and initial conditions
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c(z,0)=0 (4.7.3a)
c(0,1)=0 (4.7.3b)
c(Z,t) = % (4.7.3¢)

The factor 2 has disappeared from the integral in Eq. (4.7.2)
because there are two fronts, one at the left-hand edge and one
at the right-hand edge, which make equal contributions to the
integral in Eq. (4.7.1).

Equations (4.7.2) and (4.7.3) are invariant to the family of
stretching groups

= Me (4.7.4a)
1 =AY (4.7.4b)
7 =Xz (4.7.4¢)
Z' =1Z (4.7.4d)
p' =21 p (4.7.4¢)

which embeds the problem posed (for a fixed value of p) in a
class of problems of the same kind. The location of the front Z
is determined by p and ¢, which means that F(Z. p,t) = 0O for
some function F(Z, p, t) that is the same for all problems of the
class and thus is an invariant of the family of stretching groups
given by Eqs. (4.7.4b, d, e). If we set u = A¥3, Egs. (4.7.4b,
d, ¢) can be written as

"=z (4.7.5a)
t = ubr (4.7.5b)
p'=up (4.7.5¢)

where @« = 1/(36 — 3) and 8 = (3/2 — 8)/(35 — 3) so that

3a —68=2 (4.7.6)
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Thus M =3, N = —6 and L = 2 so that
Z = Apl/M=NIM — Ap¥3p? 4.7.7)

where A is a constant yet to be determined.

The integral [ = foz(” c’dz is likewise determined only by p
and ¢ through an invariant functional relationship G(/, p.t) = 0.
Now it follows from Egs. (4.7.4a, ¢, d) that I' = A%*~'[. Thus

G is invariant to

I'=p°l (4.7.8a)
t = ubt (4.7.8b)
p'=up (4.7.8¢)

where again u = A% but now o = (26 — 1)/(36 — 3) and
B =(3/2—8)/(36 — 3) so that

30 — 68 =4 (4.7.9)

Thus
I = Bpl/M=N/M — Bp4/32 (4.7.10)
where B is another constant. Since I plays the role of the squared

velocity in the wave-like equation (4.7.2), we set I = (dZ/dt)?,
which yields B = 4A%. Thus Eq. (4.7.2) can be rewritten as

ey = p+ (4A7p* )¢y, (4.7.11)

Now if we consider one particular problem of the class, i.e.
if we hold p fixed, then Eq. (4.7.2) or (4.7.11) and Eq. (4.7.3)
are invariant only to the single group

¢ = Ac (4.7.12a)
t =" (4.7.12b)
7 =2z (4.7.12¢)

which is the § = 1 group of the family (4.7.4). The similarity
solution then has the form

c=12y(z) (4.7.13)

I
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If we substitute Eq. (4.7.13) into Eq. (4.7.11) we obtain

2UXZ—XD)F+xy—y = —-’21 (4.7.14)
where x = z/t* and X = Ap*? = Z/t? in view of Eq. (4.7.7).
The boundary and initial conditions (4.7.3) become

y©0)=0 (4.7.15a)
y(X) = g (4.7.15b)

Now Eq. (4.7.14) is an inhomogeneous, linear, ordinary
differential equation of the second order. A special solution
is y = p/2. To this we must add the general solution of the
homogeneous equation, one solution of which is y = x. The
second solution of the homogeneous equation can be found by
making d’ Alembert’s substitution y = xv, where v is an auxiliary
unknown. After a lengthy but straightforward computation
(involving integration by parts), we find

b
-172
y= g 1= (X*—x)x172 4 XX2 f(x2 —u?)"* du
) (4.7.76)
as the solution obeying the boundary conditions (4.7.15).
If we insert the similarity solution (4.7.13) into Eq. (4.7.10)

we find that
X

[yzdx = 4X? 4.7.17)
0

Substituting solution (4.7.16) into Eq. (4.7.17) yields after
another lengthy but straightforward computation (again involving
integration by parts) the result

B 1{[27{‘/21"(]/4)

1/3
= —271 =0.4035185970. ..
4 r'(3/4)

(4.7.18)
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The solution just obtained applies until the waves
propagating in from each clamped edge of the membrane reach
the middle. As a last word, let me point out that Eq. (4.7.7),
which gives the trajectory of the wave front, has been derived up
to an undetermined constant without any detailed computation
purely by group-theoretic arguments.

4.8 Further Use of the Associated Group

The invariance of the principal differential equation to
the associated group (4.3.1) has other ramifications besides
determining the asymptotic behavior in some cases. It follows
from Eqgs. (4.3.1) that the ratio

¥(0)

being invariant under transformations (4.3.1), is the same for
all similarity solutions belonging to the same values of o and
B. Remember, the actual function y(x) is different for different
values of o and 8 because the form of the principal differential
equation changes as o and B change; compare, for example,
Eq. (4.2.7). Thus C = C(a, B).

It follows from Egs. (4.8.1) and (4.2.6) that

c:(0.1) = C(a. B)t~ME[e(0, )] M/t (4.8.2)

In the case of the clamped-flux and clamped-temperature
problems of the superfluid diffusion equation (cf. the end of
section 4.2), Eq. (4.8.2) can be interpreted as a relation between
the heat flux g(0.t) = —[c,(0,1)]'* at the front face and the
temperature c(0, t) there. Because M =2, N = -3 and L = —4
for the superfluid diffusion equation,

q(0.1) = —[C(a, §))'"*1™"/*[c(0, )" (4.8.3)

In the clamped-temperature problem for which o« = 0 and
which is analytically integrable, —[C(a, 8)]'* = (3/3/8)/¢ =
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0.9306.. ., whereas in the clamped-flux problem for which o =
—1 and which is not analytically integrable, —[C(a. 8)]'/? =
1.095. In the clamped-temperature problem in which ¢(0.¢) is
independent of time, ¢ (0, 1) ~ ¢t~'/%; in the clamped-flux problem
for which ¢(0. t) is independent of time, ¢(0, 1) ~ t'/%.

We can extend the idea just illustrated. Suppose, for
example, we wish to know the width of the temperature
distribution in the problems just discussed as measured by the
average

> zedz
(2) = ——fff’w oy (4.8.4a)
0
From Eq. (4.2.6) it follows that
*xydx
(@) =1"* Lo xydx (4.8.4b)

f;cydx

Now according to Eq. (4.3.1), the quotient of the two integrals
in Eq. (4.8.4b) (call it R) transforms according to R’ = AR so
that
R’ _ R
Ly (@)1= [y(0)]M/-
is the same for all similarity solutions belonging to the same
value of o and B. Thus

=Ci(a. B) (4.8.5)

(z) = Ci(a, Bt [c(0. N]M* (4.8.6a)
which in the case of the superfluid diffusion equation is
(z) = Ci(a, Hr'*[e(0. D] (4.8.6b)

Combining Eq. (4.8.6b) with our earlier results, we find that
(z) ~ t¥% in the clamped-temperature problem and (z) ~ t'/? in
the clamped-flux problem. One consequence of Eq. (4.8.6b) that
might at first appear puzzling is that in the clamped-temperature
problem, (z) is smaller at any fixed time, the larger the value
at which ¢(0,t) is clamped. This paradoxical result can be
explained by remembering that the solution ¢,(z, t) for the larger
value of ¢(0, t) and the solution ¢,(z, t) for the smaller value of
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c(0. 1) both have the same asymptotic behavior [4/(3,/3)]z7t*>
(see figure 4.8.1). From this figure it is clear that curve 1 weights
small values of z more heavily than curve 2.

c

Cy

C2

N

Figure 4.8.1. An auxiliary diagram showing that curve 1 weights small values

of z more heavily than curve 2.

4.9 More Wave Propagation Problems

The homogeneous wave equation ¢,, = V?c,. can be separated
into

u, = v, (4.9.1a)
v, = Vi, (4.9.1b)
if we set u = ¢, and v = ¢,. In the homogeneous form of

Eq. (4.7.11), V turned out to be proportional to the time ¢, and
this proportionality to a power of ¢ caused it and Eqs. (4.9.1)
to have similarity solutions. If V is a power of u, Egs. (4.9.1aq,
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b) also have similarity solutions, to which physical meaning can
be ascribed by interpreting Eqs. (4.9.1a, b) as describing the
stretching of a long, elastic wire [Dr-83]: v is the flow velocity of
the wire elements, u is the strain in the wire, z is the Lagrangian
coordinate of the wire elements and 7 is the time. The squared
velocity V2 = (do/du)/p, where p is the initial density of the
wire material and o (u) is the strain-dependent tensile stress in
the wire. If the near end of the wire is suddenly pulled, a wave of
elastic disturbance runs down the wire, and before it reaches the
far end of the wire, its progress may be described by a similarity
solution (if the near end of the wire is pulled in the right way).

Let o, the stress in the wire, vary as a power k of the strain
u, i.e. let o = pl*u*, where U is a fiducial velocity that is a
material property and appears so that ¢ will have the correct
physical dimensions (remember, strain is dimensionless). Then
Eqgs. (4.9.1) are invariant to the one-parameter family of groups

v =A% (4.9.2a)

u' = Au (4.9.2b)

t' =)\t (4.9.2¢)

7 =2z (4.9.2d)

with the family parameters «, 8 and § subject to the constraints
k—-—Dla+k+DB=k+1 (4.9.3a)
k—-1)5+28=2 (4.9.3b)

The infinitesimal transformation X of a group G of the
family (4.9.2) labeled by the family parameters «, 8 and § is

X 0 4 a+ﬁta+ i (4.9.4)
=aqv— u— — — .9.
av " Mau TP T
The invariants of X are
x=z/t"F, g=v/1*" and h=u/t¥P 4.9.5)

so that similarity solutions take the form g = g(x) and A = h(x),
where g and A are functions yet to be determined.
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When u = rPh(z/t'"?) and v = 1Pg(z/t'P) are
substituted into Egs. (4.9.1), the following coupled, first-order,
ordinary principal differential equations are obtained:

g8 Y s (4.9.6a)
—_ X— = .>7.0a
dx dx

d . .dh
xail’ + BRUH T = = ag (4.9.6b)

If we write the subsidiary constraints (4.9.3) in the form

Ma+ N =1L (4.9.7a)
M§+NB=L' (4.9.7b)
then we can prove with the technique of section 4.3 that the

principal differential equations for the functions g and h are
invariant to the associated group

g =utMg (4.9.8a)
h = ut'™h (4.9.8b)
x' = pux (4.9.8¢)

If X, is another infinitesimal transformation of the form (4.9.4)
belonging to family parameters «, # «, 8. # B and 8, # 4§, then
X. and X commute. In (x, g, h)-space,

B—BN/ & L a8 L a)
X, = L A 499
( ] )(x8x+Mg8g+M’ oh (4.9.9)

which generates the associated group (4.9.8).

The proof of Lie’s reduction theorem given in section 3.2
can be used with only minor changes to show that if we introduce
the invariants p = g/x*™ and ¢ = h/x*/™ of the associated
group (4.9.8) into the coupled principal equations (4.9.6) for
g and h, these equations then reduce to a single, first-order
associated differential equation in p and g. In the case of
Egs. (4.9.6), the resulting associated equation is too complex for
further analysis, and to continue our discussion, we specialize on
a specific problem in the next section.
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%4.10 Wave Propagation Problems (continued)

First let us take ¥ = 1/2; the stress o is then an increasing,
concave-downward function of the strain u, a realistic behavior.
Let us further assume that the wire is long and fastened above to a
rigid ceiling. At its lower end (z = 0), a large weight is fastened.
At = 0, the weight is dropped so that thereafter v(0, t) = —got,
where g, is the acceleration of gravity. This boundary condition
requires that «/8 = 1. Thus « = 8 = 3/2 and § = 2. The
other boundary and initial conditions are v(oo. t) = u(oco.t) =0
and v(z.0) = u(z, 0) = 0, which require the similarity solutions
to obey the boundary condition g(oco) = h(oco) = 0. Finally,
for simplicity, let us choose a system of special units in which
8o = U = 1. Then

dp  27pg~"2 —36p + 12¢'7
PP PHI4” _Gpg)  (4101a)

dx 9g-1/2 -8
dg 36g'° —48q +18p

where now p = x'g and ¢ = x*h. Division of Eq. (4.10.1a) by
(4.10.1b) gives the following associated differential equation in
p and g:

dp  27pq~'? —36p+ 129"
dg ~  36¢'/2—48q + 18p

Figure 4.10.1 shows the direction field of Eq. (4.10.1¢) in the
fourth quadrant of the (g, p)-plane. (Since v < 0 and u > 0, it
is the fourth quadrant that interests us.) The singularities of the
right-hand side of Eq. (4.10.1¢) are O: (0, 0) and P: (1/4, —1/3).
When x = 0, p = g = 0, so O corresponds to the value
x = 0. The rule of section 3.4 given on page 49 shows that
the singularity P corresponds to the value x = oo. Therefore,
for large x, g ~ pp/x* = —x73/3 and h ~ gp/x* = x74/4.
Inserting these asymptotic forms into Egs. (4.9.5) we find

(4.10.1¢)

T and A, > (4102
v —3—23 and u 4—24wen x_t27>> (4.10.2)
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P

o

A

P: (1/4,-1/3)

Co

Figure 4.10.1. The fourth quadrant of the direction field of differential
equation (4.10.1¢). C, is the locus of zero slope and C. is the locus of
infinite slope.

The asymptotic forms (4.10.2) are exactly the exceptional
(totally invariant) solutions v = AzYMr~¥M and u =
A'ZL/M=N/M - We could have showed that these exceptional
solutions describe the asymptotic behavior of solutions of the
wave equations (4.9.1) by adapting the work of sections 4.4
and 3.3. This adaptation differs from the earlier work only
in the proof of the ordering theorem, which takes a different
line for wave propagation equations than it does for diffusion
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equations.

To show the ordering, we use Riemann’s method of
characteristicst [Co-48]. If we multiply Eq. (4.9.1a) by £V and
add it to Eq. (4.9.1b), we find after some minor rearrangement
that

u u

v:i:/Vdu) —(:i:V)(v:i:deu =0  (4.103)
0 ! 0

Equation (4.10.3) means that the quantities v £ f; V du are
constant along the curves dz &+ Vdr = 0. The quantities
v+ j;)"Vdu are called Riemann invariants and the curves
dz £ V dr = 0 are called characteristics.

Figure 4.10.2 shows the first quadrant of the (z. t)-plane with

the boundary and initial conditions v(occ.t) = u(oo.t) = 0
and v(z.0) = u(z,0) = 0 explicitly displayed. On every
negative characteristic dz = —V dr, for example, characteristic

PQ, v+ fO" V du = 0. Since a negative characteristic joins every
point in the first quadrant with a point on the z-axis, at every
such point v = — fO" Vdu. On every positive characteristic
dz = V dr, therefore, the quantity v — [ Vdu = —2 [ Vdu
is conserved. Since V is a function only of u, this means that
on positive characteristics «, v and V are constant. The positive
characteristics are therefore straight lines.

In the problem at hand (in the special units in which g, =
U=1), 0 =pu'? sothat V = (4u)~"*. Since v(0.1) = —t,
u(©,1) = (31/2/2)*?* and V(0,1) = (3r)""/*. Thus V(0.1)
is a decreasing function of 7. This means that the positive
characteristic lines, whose equations are z = V(0,1)(t — 1),
spread apart fanwise as shown in figure 4.10.2.

Consider now two solutions (u;, v;) and (u,, v;) such that
Vi(0, 1) and V,(0, r) are decreasing functions of time for which
Vi(0,1) < V,(0,1). We prove V(z,1) < V5(z,t) by supposing
the opposite, namely V,(z,t) > V,(z,r), as at point R in

t The reader unfamiliar with Riemann’s method of characteristics will find a brief
introduction in Appendix B.
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th

=0

= Ufw, 1)

(=, )

0 viz,0)=u(z,0)=0

Figure 4.10.2. The first quadrant of the (z,r)-plane showing a negative
characteristic and several positive characteristics.

figure 4.10.3, where the lines AB and A’B’ are the positive
characteristics of solutions 1 and 2 that pass through the point
R. Then V2(A") = V»(R) < Vi(R) = V,(A) < V2(A) which
contradicts the hypothesis that V;(0, 1) is a decreasing function
of time. Thus the values of V are ordered according to their
values V (0, r) at the origin. As long as V is a monotone function
of u (either decreasing or increasing), both # and v are ordered
according to their values u(0, t) and v(0, t) at the origin.

The Riemann method can provide a direct route to the
asymptotic forms of u and v. When r is sufficiently large
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Figure 4.10.3. An auxiliary diagram showing the first quadrant of the
(z. t)-plane used in the proof of the ordering.

compared with 1y, V (0, 1y) ~ z/r. Now since V(0. ty) is the value
of V on the entire characteristic, if V = f(u«) is the connection
between V and u, then

t

u~ (5) (4.10.4)

In the problem at hand, V = (4u)~'?, so that Eq. (4.10.4)
becomes Eq. (4.10.2). More generally,

z 2/(k=1)
2. Jk (k+1)/(k=1)
v~ _(_—kil>(t—§/;> (4.10.5b)

Equations (4.10.5) can only obey the conditions v(oco.t) =
u(oo,ty = 0 and v(z,0) = u(z.0) = 0 if k < 1. This
also follows from the form of the exceptional solutions v =
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AZMe N and v = AZE/MNIM gince L/M = N/M =
(k+1)/(k—1)and L'/M' = N'/M’' = 2/(k — 1).

%4.11 Shocks

In figure 4.10.2, corresponding to k¥ = 1/2, the positive
characteristics diverged fanwise. But for k& > 1, the positive
characteristics converge.  For then (still in special units),
V = (Vhu* "2 and v = —[2/k/(k + 1)]u*"/2 5o that if
v(0.1) = —1, V(0.1) = Jk[(k + 1)1/(2/k)]*1/&+D  When
k < 1, V(0.1) is a decreasing function of ¢+ and the positive
characteristics diverge; when k& > 1, V(0,7) is an increasing
function of r and the positive characteristics converge. It should
be noted that this conclusion depends on the boundary condition
v(0,1) = —1.

Now, as is well known, two positive characteristics cannot
intersect, for if they did, the two Riemann invariants would
be over-determined by the two positive and one negative
characteristic through the point of intersection. Instead, a shock
front forms across which «# and v jump discontinuously and to
either side of which only two characteristics pass through each
point.

The velocity U of the shock front is connected to the
magnitudes of the jumps in «# and v, and the connection depends
on the differential equations (4.9.1a, b). Both of these equations
are in the form of conservation equations, the generic form of
which is Eq. (4.5.1), but with S(c) = 1. Here ¢ is best thought
of as a concentration (having, for example, the dimensions of
moles m ) and ¢ as its flux (having dimensions moles m™ s ').
Suppose ¢ and g have the respective values ¢; and g, to the
left and ¢, and ¢, to the right of a shock front propagating
from left to right with velocity U. In a frame of reference
stationary with respect to the shock (i.e. moving to the right
with velocity U), material with concentration ¢, appears to be
approaching the shock front with a velocity —U and material
with concentration ¢, appears to be receding from it with the same
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velocity. Conservation of material at the shock front requires that
q?_'—Uszql—UCl (4]]10)

The expression on either side is the total current of material in
the shock-stationary frame. Thus

Ag
T Ac
where the jumps Ag and Ac are taken in the same direction.

If we consider solutions for which v = u = 0 before the
shock front, this being the way in which the conditions are
fulfilled v(oo.t) = u(oo,t) = 0, then for Eqs. (4.9.1a, b) the
shock relations are

(4.11.1b)

U=—— (4.11.2a)
u

“y2g
yo Vi (4.11.2b)
v

where v and u are the values just behind the shock front. Since
V? = ku*-', Egs. (4.11.2a, b) become

U=—=—— (4.11.2¢)

If the conservation equation ¢, + g, = 0 is invariant to the
family of groups ¢’ = A’c, ¢’ = A¥%q, t' = A*t, ' = Az, then
according to Eq. (4.11.1b), U’ = A¥~*U. But the invariance
of the conservation equation requires £, ¢ and « to obey the
constraint ¢ —k = ¢ — 1. Thus U’ = A'™*U, just as a velocity
should. Conversely, if we take U’ = A'™“U because U is a
velocity, then the jump relation (4.11.1b) is invariant to the same
group as the conservation equation.

For similarity solutions of the form given by Eqgs. (4.9.5), the
shock front has the trajectory z = Xt'/#, where X is a constant
yet to be determined. Then U = (X/B)t"~#/# and the jump
conditions (4.11.2¢) become

X gX) _ O

(4.11.3)

B~ hX)  gX)
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If we choose a value of X, we can calculate values of g(X) and
h(X) from Eqgs. (4.11.3) and so have sufficient initial conditions
for a backwards numerical integration of the principal differential
equations (4.9.6). If the value of g or h at the origin so obtained
is not correct, we can scale the solution using the associated
group (4.9.8) to make it correct. Thus only a single integration
need be undertaken.

Notes

Note 1: The mean value theorem for integrals is used to evaluate S(c¢)) ¢, —
S(ca) ¢y as follows:

2 )
Steyey = Step) ey = (— / S(e)de = (—Eu 4.11.4)
at ar
«
where the underlined quantity S stands for S(c¢) evaluated at some undetermined

value intermediate between ¢; and ¢; and u = ¢, — ¢;. Furthermore, according
to the chain rule

)
;—t§u =S,u+Su, =8 cu+ Su, (4.11.5)
«

which is the form needed for the derivation of two of the terms in Eq. (4.5.2).
The mean value theorem is used to evaluate ¢.(z.f.c¢p.¢;) —
¢-(2. 1, ¢, ¢2;) as follows:

1]
g2 tocr. o) — g2t e, ) = T[q(z. Lo ) — gLzt e, c2:)l
az

D (dqg By
= —\Z>u—-—u,
az \ dc de. 7

where again the underlined quantities are evaluated at some undetermined value
intermediate between ¢; and ¢; and u = ¢; —¢2. The indicated z-differentiation
yields the remainder of the required terms in Eq. (4.5.2).

Problems for Chapter 4

4.1 An engineer conducts heat transfer experiments in a long rod
(taken as semi-infinite) by measuring the temperature rise c(z. t)
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at various points z on the rod as a function of the elapsed time 7.
In each experiment, he increases the temperature rise c(0, t) at
one end of the rod proportionally to a power of the time, these
powers being different in different experiments. When he plots
his data, he notices that far from the heated end the temperature
rise in all experiments falls as the same power a of 7 at each
fixed time and rises with the same power b of  at each fixed
position. He guesses that the temperature rise is described by
a similarity solution like Eq. (4.2.6). To check his guess, he
deduces from his data taken far from the heated end that the
temperature c¢(0,t) at the heated end and its space derivative
c.(0. 1) should obey a relation [c(0, t)]*c.(0.t) ~ t™ that is the
same for all his experiments. What are the exponents £ and m
in this relation in terms of the measured exponents a and b?

4.2 Determine the coefficients M, N and L in the linear
constraint equation (4.1.2) for the illustrative partial differential
equation (3): cc, = ¢, (see section 4.1). Find the coefficient
A of the exceptional solution ¢ = Az"M;=N/M by direct
substitution. Now substitute the similarity form (4.2.6) into
the partial differential equation and determine the form of the
principal ordinary differential equation. Check to see that it is
invariant to the associated group (4.3.1qa, b). Choose the invariant
u = y/x™ and the first differential invariant v = y/xt/M-!
and use Lie’s reduction theorem to reduce the order of the
principal differential equation. Find the singularities of the
reduced equation and so determine the coefficient A in the
exceptional solution in a second way. When @ = —1/2, the
principal differential equation is easily solvable for the family of
solutions that vanish at infinity. Find this family. Does it have the
asymptotic form expected from the exceptional solution? What
curve in the (u, v)-plane does the family of solutions correspond
to? Show that this curve is a solution of the reduced differential
equation.

4.3 Suppose that for a particular problem the exponents « and 8
in the transformation equations (4.1.1a—c) have the fixed values
a = «a°, B = B°. If we transform the similarity solution
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c = 1%/ y(z/1""% ) with the group of transformations of the
famnily corresponding to @ = «°, B = B° it remains unchanged.
What happens if we transform it with a group of transformations
of the family for which ¢ # «°, 8 # B°? (Remember that
Ma+ NS =L and Ma®+ NB° = L.) Can you use the resulting
expression to prove the existence of the associated group (4.3.1)?

4.4 Pattle [Pa-59] has studied the diffusion equation ¢, =
(D(c) ¢;). when the concentration-dependent diffusion constant
D(c) = c. In this special case, the partial differential equation
is invariant to the family of stretching groups (4.1.1a—c) with
M =1, N =1 and L = 2 as the coefficients in the linear
constraint (4.1.2). Determine the principal ordinary differential
equation obeyed by the function y(x), x = z/r'/#, in the
similarity solution (4.2.6). Using the invariants u = y/x/M,
v = y/xYM-1 of the associated group and Lie’s reduction
theorem, reduce the principal ordinary differential equation to
first order.

When a = —1, the principal equation is easily solvable for
a family of positive, decreasing solutions that vanish at infinity.
Solve it. To what curve C in the (u, v)-plane does the family
correspond? To what point Q on the curve C does x = 0
correspond? To what point P on the curve C does y = 0
correspond? When y = 0, how are x and y related? (Hint:
consider the value of vp.)

Sketch the direction field of the first-order reduced equation
when o = 1/2 and 8 = 3/2. Locate the singularities. Positive,
decreasing solutions y(x) correspond to curves in the fourth
quadrant of the (u, v)-plane. Is there a singularity in that quadrant
from which you can determine simultaneously a value of x, y and
y? Could these values serve as a starting point for a numerical
integration of the principal equation? What values would y
have for values of x larger than the starting value? How many
numerical integrations would you have to carry out to determine
the entire family of positive, decreasing solutions that vanish at
infinity?

4.5 The pulsed-source problem in an infinite medium for the
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nonlinear diffusion equation ¢, = (c"c.), is defined by the
boundary, initial, and conservation conditions c(*oc,t) = 0,
t > 0:¢(z,0) = 0,Jz] > 0; [ c(z.)dz = 1, ¢+ > 0. Find an

explicit formula for the solution c(z. t).

4.6 The linear diffusion equation ¢, = c,. is invariant to the
one-parameter family of stretching groups ¢’ = A%, t' = A’t,
Z' = Az, where o can have any value. This family has the
form (4.1.1) with the coefficients M =0, N =1, L = 2 in the
linear constraint (4.1.2). When M = 0, the equation (4.3.1) for
the associated group involves an inadmissible division by zero.
Can you develop a simple, heuristic argument that enables you
to guess the actual form of the associated group? Check your
guess for the principal ordinary differential equation of the linear
diffusion equation. Now adapt the reasoning of section 4.3 to
prove your guess. Finally, use Lie’s theorem and reduce the
order of the principal differential equation.

4.7 Sometimes it is easier to solve the principal differential
equation directly than to use Lie’s theorem to reduce its order.
The principal differential equation 2y + xy — ay = 0 of the
linear diffusion equation of problem 4.6 is a good example. It
is easily solved when ¢ = 0, —1 and 1. Find the solutions that
vanish at infinity for these values of «. (Hint: when a = —1, the
linear principal differential equation has the particular solution
y = x. Use the method mentioned in problem 3.5 to complete
the solution.)

4.8 Does the ordering theorem of section 4.5 hold if we replace
the condition ¢,(0, 1) > ¢,(0.1) for 0 < t < T by the condition
1,(0,1) < c,(0.t) for 0 <t < T?

49 Barenblatt and Zeldovich [Ba-72] studied the nonlinear
diffusion equation ¢, = (cc,), in a half-space with the boundary
condition ¢(0,t) = e’. They noted that the partial differential
equation is invariant to the one-parameter family of one-
parameter groups ¢ = A, t' = t + Blnk, 7 = Az
Write an expression for the similarity solutions and using the
approach of section 4.3 find the associated group. Determine
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the principal ordinary differential equation and verify that it
is invariant to the associated group that you have found.
What value of 8 does the boundary condition ¢(0.t) = e
determine?

4.10 Find a family of groups that leaves invariant the partial
differential equation ¢, = (e‘c.).. Write an expression for the
similarity solution. Use the reasoning of section 4.3 to find the
associated group. When the boundary and initial conditions are
c0.t)=a,t >0; c(oo, 1) =b,t >0, c(z.0) =b, z > 0, what
form does the similarity solution take? If y is the dependent
variable in the principal ordinary differential equation, use the
associated group to show that @ — b is a function of y*(0)e“.

4.11 In the struck-membrane problem of section 4.7, use the
method outlined in Eqs. (4.7.4)-(4.7.7) to find the dependence
of ¢.(0.1) on p and r. Check your answer by referring to
Egs. (4.7.13) and (4.7.16).

4.12 The motion of water in a long, narrow, open channel is
described by the coupled partial differential equations

h, + (vh), =0 (la)
v, +vv.+h, =0 (1b)

where z is the longitudinal position coordinate, t is the time, A
is the height of the water above the channel floor and v is the
longitudinal flow velocity.

(a) Find a one-parameter family of groups like that in
Egs. (4.9.2a-d) to which Egs. (la, b) are invariant.

(b) Write expressions for the similarity solutions.

(c) Consider the solution h(z,t), v(z, t) that corresponds to the
initial conditions v(z,0) =0, —o0 < z < 00; h(z,0) = h,,
z>0; h(z,0) =0, z < 0. These initial conditions describe
a semi-infinite channel filled on one side with still water of
depth h, and empty on the other side. At time t = 0, the
restraining dam at z = O ruptures. The partial differential
equations (1) determine the subsequent motion of the water.
What form do the similarity solutions now take?
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(d) Determine the associated group [see Eqs. (4.9.8a-d)].

(e

Determine from the associated group the form of the
dependence on A, of the coordinate ;, > O of the front
separating the water set in motion by the breaking of the
dam from the undisturbed water upstream of the dam (where
v is still 0 and & is still A,).

Find explicit expressions for the similarity solution. How
far downstream (z < 0) does the disturbance extend?
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Traveling-Wave Solutions

5.1 One-Parameter Families of Translation Groups

Chapter 4 is devoted to exploring similarity solutions of partial
differential equations invariant to the family (4.1.1) of stretching
groups. As the reader will recall, the similarity solutions are
those which are invariant to one group of the family (4.1.1). The
present chapter is similarly devoted to exploring certain solutions
of partial differential equations invariant to the following family
of translation groups:

c=c (5.1.1a)
I'=t+A —0 <A <X (5.1.1b)
?=z4ar (5.1.1¢)

Here again A is the group parameter that labels different
transformations of a group and « is the family parameter that
labels different groups of the family. As in chapter 4, the
solutions we shall study are those that are invariant to one group
of the family. For reasons noted below, solutions invariant to
one group of the family (5.1.1) are not called similarity solutions
but rather traveling-wave solutions.

Because of the complexity that arises in the study of
traveling-wave solutions, we restrict our attention in this chapter
to a single, important equation invariant to the family (5.1.1),
namely, the one-dimensional heat diffusion equation with a
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temperature-dependent source, Eq. (4.6.1):
6 = ¢ + Q(0) (5.12)

This equation occurs in many applications, among them applied
superconductivity (as mentioned in chapter 4), the propagation of
epidemics, and the growth and migration of populations. It is the
focus of our attention in this chapter because, as the reader will
see subsequently, detailed study of its traveling-wave solutions
already uncovers many of the problems involved in determining
the traveling-wave solutions of any partial differential equation
invariant to the family (5.1.1).

A solution c(z,t) of the partial differential equation that
is invariant to a group of the family belonging to the family
parameter «, obeys the condition

d@ )y =c(z.1) (5.1.3a)
which can be written
cz+ar, t+A)=c(z.1) (5.1.3b)

If we differentiate Eq. (5.1.3b) with respect to A and then set
A = 0, we obtain the linear partial differential equation

ac, + ¢ = 0 (5]4)
whose characteristic equations are

dz dr dc

= = — (5.1.5)

a 1 0
Two independent integrals of Egs. (5.1.5) are

xX=z—at and c (5.1.6)

Thus the most general solution of Eq. (5.1.4) is

c=y(z—at) (5.1.7)

where y is an as yet undetermined function of the argument
X =z—dat.
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A solution of the form (5.1.7) is called a traveling-wave
solution.  Such solutions interest us for two reasons. First,
being invariant solutions, they are generally easier to find than
other solutions. And second, they often represent the late-time
asymptotic behavior approached by solutions arising from quite
different initial conditions.

If we substitute the form (5.1.7) into the original partial
differential equation, we obtain the principal ordinary differential
equation for the function y(x). We now prove that this principal
differential equation is invariant to the associated group

vi=y (5.1.8a)
, —00 < U < OO
X=x+4+u (5.1.8b)

We follow the procedure of section 4.3. The infinitesimal
transformation X of a group G of the family (5.1.1) belonging
to the family parameter « is

X 9 9 5.1.9
—aaz + a1 (5.1.9a)
Note that the coefficient of 9/dc in X is zero. Besides
the infinitesimal transformation X, there are other infinitesimal
transformations that leave the original partial differential equation
invariant, namely,

X, =o,— + — (5.1.9b)
Z

where @, # a. The commutator of X and X, vanishes. Since
Xx = 0 and Xy = 0 by the definition of x and y (= ¢) as
invariants of X, it follows that X(X,x) = 0 and X(X,y) = 0.
Therefore, X.x and X,y are invariants of X and so can be
expressed as functions of x and y only. According to the chain
rule, then, the action of X, on any function of x and y is given
by

R 0
X, = Xx)— + (X,y)— (5.1.10)
dax dy
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We can calculate the functions X,x and X,y explicitly using
Eq. (5.1.9b) and the definitions x = z — af and y = ¢. Thus

X, x=a,—« (5.1.11a)
X, y=0 (5.1.11b)

since the coefficient of d/dc¢ in X, is also zero. Therefore
a
X.= (. —a)— (5.1.11¢)
0x

The orbits of the group G, generated by X, in (x. y)-space are
obtained by solving the differential equations

dx dy
et L (5.1.12)

They are Egs. (5.1.8a, b), as claimed.

Because X, is an infinitesimal transformation of the
group (5.1.1), it must carry one solution of the partial differential
equation into another. Therefore, the transformations of G, in
(x, y)-space carry one traveling-wave solution y(x) belonging to
the family parameter « into another traveling-wave solution y'(x")
belonging to the same family parameter. The totality of traveling-
wave solutions belonging to a particular family parameter then
form an invariant family, which demonstrates that the principal
differential equation is invariant to the associated group (5.1.8)
for any choice of the family parameter a.

5.2 The Diffusion Equation with Source
If we substitute the form (5.1.7) into the partial differential
equation (5.1.2), we obtain the principal differential equation

y+ay+Q(y)=0 (5.2.1)

which is, as expected, invariant to the associated group (5.1.8).
The quantity y is an invariant of the associated group and the
quantity u = y is a first differential invariant. According to
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Lie’s reduction theorem (section 3.2), if we use y and u for
new variables, Eq. (5.1.1) reduces to a first-order associated
differential equation, which turns out to be

du B o)

dy u

i (5.2.2)

This is as far as we can go in general terms without
specifying something about the source function Q(y). A number
of different forms have been investigated. In the case of
population growth and migration, the function

Q(c)=c(l —c¢) (5.2.3)

has been used, in which case Eq. (5.1.2) is called the Fisher
equation [Mu-89]. In applied superconductivity the form Q(c) =
yW(c) — c is quite often used for superconductors cooled with
liquid helium [Dr-95]. Here

0 0<c=<c (5.2.4a)

W(c) = ; - z" co<c<l1 (5.2.4b)
— (o

1 1 <c (5.2.4¢)

and y is a constant. The form Q(c) = yW(c) is used for
uncooled superconductors. Sometimes the following simplified
form is used for W(c):

W(c)=20 O0<c<1 (5.2.5a)
=1 1 <c (5.2.5b)

5.3 Determination of the Propagation Velocity «

Since x = z — «t, the family parameter « is the velocity at
which the traveling wave (5.1.7) propagates in the direction of
increasing z. In chapter 4, the family parameters were determined
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directly from the boundary and initial conditions. In this chapter,
too, the boundary conditions determine the family parameter,
although, as we shall see, not as straightforwardly as in chapter 4.
But first we must decide what boundary conditions to consider.

y h

x

Figure 5.3.1. A traveling-wave shape that is flat far ahead of and far behind

the wave front.

We expect the interesting traveling-wave solutions y(x) to
look like the curve shown in figure 5.3.1. Far ahead of the wave
front and far behind it, y(x) is flat. In those regions where y(x)
is flat, y = y = 0, from which it follows that ¢, = ¢,, = 0. Then
the partial differential equation (5.1.2) reduces to Q(c) = 0. Thus
the flat asymptotes of the traveling-wave solution must be roots
of the source function Q(c).

Suppose for the sake of argument we choose (for the
remainder of section 5.3) Q(c) = yW(c) — ¢ where W(c) is
given by Egs. (5.2.5). If y < 1, there is only one root, ¢ = 0.
If y > 1, there are three roots, c = 0, ¢ = 1 and ¢ = y (see
figure 5.3.2). Thus if y < 1, there can be no traveling-wave
solution of the kind depicted in figure 5.3.1. So let us further
assume for the remainder of section 5.3 that y > 1.

Of the three flat steady solutions, c =0, ¢ =1 and ¢ = y,
the first and the third are stable against small perturbations, while
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QA

Y >
1 y c

igure 5.3.2. The function Q(¢) =

= yW(c) — ¢ when W(c) is given by

Eq. (5.2.5)and y > 1.

u

A

/ R:(1,0) ] \%P:(v. 0) R
=7

Figure 5.3.3. Part of the direction field of differential equation (5.2.2).
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the second is unstable. We consider here perturbations that
depend on time alone; a complete treatment is given in note 1 at
the end of the chapter. Let ¢ = ¢ + &(t), where ¢ is a root of
Q(c) =0and e(t) < 1. Then to first order, Eq. (5.1.2) becomes

de . Q
@ —s(dc)czg (5.3.1)

An initial perturbation will decay if (dQ/dc).-, < 0 (¢ =0 or
¢ = y) and grow if (dQ/dc).-, > 0 (c = 1){. Since only stable
asymptotes can endure in nature, we are interested in traveling
waves for which y(—o00) = y and y(o0) = 0.

Figure 5.3.3 shows the right half of the (y, u)-plane. The
vertical line u = —Q(y)/« is the locus of zero slope (u = 0).
The y-axis (u = 0) is the locus of infinite slope (u = oo). The
intersections of these loci at O: (0, 0), R: (1, 0) and P:(y, 0) are
the singular points of the differential equation (5.2.2). The loci
of zero and infinite slope divide the (y, u)-plane into regions
in which # has one algebraic sign. Some integral curves of
Eq. (5.2.2) have been sketched in figure 5.3.3. The curves in
each region show the sign of u there. Note that because of the
Jjump in Q(y) at y = 1, u is not continuous there. Because y > 0
and u = y < 0 for the traveling wave of figure 5.3.1, the wave
corresponds to the integral curve in the fourth quadrant joining
point O with point P; it is a separatrix S. We can find this integral
curve and the propagation velocity « to which it corresponds as
follows.

When y < 1, Eq. (5.2.2) with Q(c) = yW(c) —c and W (c)
given by Eq. (5.2.5) becomes

ii=—a+2 (5.3.2a)
u
The solution with ¥ = y < 0 that vanishes at the origin is
u = —k;y, where «, is the positive root of
K*—axk—1=0 (5.3.2b)

i This demonstration is sufficient to prove the instability of the second root but not to
prove the stability of the first and third roots, for which the more general procedure of
note 1 is required.
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namely
Ky = [a+ (@*+4)'7%/2 (5.3.2¢)
as can be shown by direct substitution (see note 2 for further
details).
When y > y > 1, Eq. (5.2.2) becomes

¥y =y
u

u=—-a—

(5.3.3a)

The solution with « = y < O vanishing at y = y is u =
—k_(y—y), where «_ is the negative root of Eq. (5.3.2b), namely

k. =[a — (@*+4)"?]/2 (5.3.3b)

The two partial solutions just obtained must be equal at
y = 1. (Note, however, that because of the jump in Q(y) at
y = 1, their slopes need not be the same there.) Therefore

K =x_(y =1 (5.3.4a)
from which it follows that
-2
N Vi) (5.3.4b)
(y —1D'”

If 1 < y < 2, then @ < 0 and the wave propagates from
right to left (state ¢ = y collapses) whereas if y > 2, thena > 0
and the wave propagates from left to right (state ¢ = y grows).
When y =2, a =0.

The value y = 2 for ¢ = 0 can easily be obtained from
Eq. (5.2.2) by writing Eq. (5.2.2) in the form uu = — Q(y) when
a = 0. Then integrate with respect to y from 0 to y. If we note
that uu is a perfect differential and that u(0) = u(y) = 0, we
see that

Y
f Q(y)dy =0 (5.3.5)
0

when o = 0. This means that the positive and negative lobes of
Q(c) in figure 5.3.2 have equal areas from which it follows that
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y = 2. In applied superconductivity, Eq. (5.3.5) is known as the
equal-areas theorem of Maddock, James and Norris [Ma-69] and
is applied to source functions Q(y) more complicated than those
being studied here.

In applied superconductivity, traveling waves that span the
steady, flat states ¢ = 0 and ¢ = y are actually created in
helium-cooled superconducting wires (here interpret c as the local
temperature of the wire). On the other hand, a traveling wave
that spans the steady, flat states ¢ = 0 and ¢ = 1, though it exists
mathematically, cannot be maintained in the laboratory because
it is unstable. For such a traveling wave, y = | for x < a
and y = u = —«_y so that y = exp[—«,(x — a)] for x > a.
Similar unstable traveling waves connect the flat, steady states
¢ =1 and ¢ = y. For such a traveling wave, y =1 for x > a
while for x < a, y = y + (1 — y)exp[—«_(x — a)]. Unstable
traveling-wave solutions of the latter two kinds exist for all «.

5.4 Determination of the Propagation Velocity: Role
of the Initial Condition

Let us now consider a case in which Q(¢) = y W(c¢) with W(c)
still given by Eq. (5.2.5). Now the equation Q(c) = 0 has roots
for all values of ¢ for which 0 < ¢ < 1. These roots behave as
though they are stable in the sense that a small perturbation does
not grow, but instead spreads by diffusion, so that its amplitude
decreases while its integrated strength remains constant. One can
prove by direct calculation that there is no traveling wave of the
kind depicted in figure 5.3.1 spanning two flat, steady states each
with a value of ¢ in the interval 0 < ¢ < 1. But there are other
traveling-wave solutions as we now show.
When Q(c) = y W(c), Eq. (5.2.2) becomes

u=—u y<l1 (54.1a)

i=—a-Y  y>1 (5.4.1b)
u

Shown in figure 5.4.1 is the right half of the (y, u)-plane. When



118 Traveling-Wave Solutions

o
<

e e
I
|

y=1

Figure 5.4.1. Part of the direction field of differential equation (5.4.1).

y<1l,u=—a. Wheny>1,u=0on the lineu = —-y/a,
which is itself an integral curve. As before, the y-axis (u = 0) is
the locus of infinite slope. Each of the integral curves sketched
in figure 5.4.1 represents a possible traveling-wave solution.

From this plethora of traveling-wave solutions, one solution
stands out. This one we identify by considering how, in the
laboratory practice of applied superconductivity, one creates
traveling waves in an uncooled superconducting wire. An initial
temperature rise c(z, 0) similar to that sketched in figure 5.4.2(a)
is established in the wire. If it is large enough, then as time
advances, it rises and broadens as shown in figure 5.4.2(a). If
we plot u = ¢, versus y = ¢ for the right halves of the profiles
of figure 5.4.2(a), we obtain figure 5.4.2(b).

If we assume that eventually the initial distribution matures
into two traveling waves moving in opposite directions, then the
profiles of figure 5.4.2(b) must approach those of figure 5.4.1.
Now since ¢(0,1) = ymnu keeps increasing, the y-u profiles
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Figure 5.4.2. (a) The temporal development of an initial temperature rise
¢(z, 0) (right half). (b) The profiles of u = ¢, versus y = c¢ for the temperature
distributions shown in Fig. 5.4.2(a).

grow continuously until they approach the line u = —y/a for
y > 1. Furthermore, for the profiles of figure 5.4.2(a), as
z—>00,y=c— 0and u = ¢, > 0. Hence, for y < 1,
the profiles must ultimately pass through the origin and thus
approach the line # = —ay. Since the lines ¥ = —y/a and
u = —ay must join at y = 1, we find at once that

a=y'? (5.4.2a)
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Since y = u = —ay when y < 1, we find by integrating that
y =expl—a(x — a)] y <1 (5.4.2b)

where a is a constant of integration. Furthermore, since y = u =
—y/a when y > 1,

y=1-— Z(x —a) y > 1 (5.4.2¢)
o

where the constant of integration is again equal to a so that
Egs. (5.4.2b, ¢) both yield y = 1 when x = a. The value of the
integration constant a depends on the location of the origin of z
and the choice of the zero of time 1.

In contrast to the problem of section 5.3, where the boundary
conditions determined uniquely the traveling-wave solution, in
the problem of this section we also needed to consider the initial
condition in determining the traveling-wave solution.

5.5 The Approach to Traveling Waves

The assumption made in the last section that a sufficiently large
initial distribution c¢(z, 0) eventually matures into two traveling
waves moving in opposite directions is commonly made but
nonetheless deserves to be studied in some detail. We can do
this with relative economy of labor by choosing Q(c¢) = yc, in
which case the partial differential equation (5.1.2) is analytically
solvable on the infinite interval —oo < z < oo. Furthermore, if
we redefine the units of z and ¢ by replacing y'/?z by z and yt
by t, we need only deal with the case y = 1, which we do in
this section and the next.
First, let us determine the traveling-wave solutions. The
associated differential equation now takes the form
= —a—2 (5.5.1)
u
for all y, 0 < y < oo. Shown in figure 5.5.1 is the direction
field of Eq. (5.5.1). If we restrict our considerations to traveling
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Figure 5.5.1. Part of the direction field of differential equation (5.5.1). Cy is
the locus of zero slope.

waves y(x) that vanish at infinity (where ¥« = y must also
vanish) then we want solutions passing through the origin O of
the (y, u)-plane. In the fourth quadrant, these solutions fall into
three subfamilies separated by two separatrices, which have the
equations

U= —Kyy (5.5.2a)

where k4 are the roots of the quadratic equation
kK*—ak+1=0 (5.5.2b)

It follows from Eq. (5.5.2b) that x, +x_ =« and k,.k_ =1 s0
that
Kik_ 1

- - (5.5.2¢)

Ky +k_ o



122 Traveling-Wave Solutions

Thus 1
Ky > Ko > — (5.5.2d)
o

The separatrices are drawn in figure 5.5.1 in accordance with
Eq. (5.5.2d).

Each integral curve of the subfamily that lies above the
upper separatrix 4 = —«_y represents a traveling-wave solution.
Again, one solution stands out. Suppose again that an intial
temperature rise c(z, 0) like that in figure 5.4.2(a) is established
in a superconducting wire. Then as time advances it rises and
broadens as shown in figure 5.4.2(a). If we plot u = cz versus
y = c for the right halves of the profiles of figure 5.4.2(a)
we again obtain figure 5.4.2(b). If, as before, we assume that
eventually the inital distribution matures into two traveling waves
moving in opposite directions, then the profiles in figure 5.4.2(b)
must approach those in figure 5.5.1. Thus they continuously

approach the separatrix u = —«_y. This separatrix defines the
traveling-wave solution
y =exp[—«_(x — a)] (5.5.3a)

which propagates with speed o related to x_ by
ko =[a—(@*—4"1/2 (5.5.3b)

Note that « must be > 2. If @ < 2, no separatrices appear in
the direction field (5.5.1) and the integral curves wind around
the origin O. Then they correspond to oscillatory solutions y(x),
which, in applied superconductivity at least, play no role.

Even though we have used the initial condition, we are still
left with an infinitude of traveling-wave solutions. Even more
subtle considerations are required to determine what value of the
propagation velocity a actually occurs in practice.

5.6 The Approach to Traveling Waves (part 2)

When Q(c) = ¢, Eq. (5.1.2) can be written as the ordinary
diffusion equation
ec), = (7o), 5.6.1)
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It follows that the Green’s function (the solution for a pulsed
delta-function source §(¢) §(z) at the origin) is
c=4me)™'? exp(T + :) (5.6.2)
The time-dependent solution (5.6.2) is simple enough that
we can study analytically how it is related to the traveling-
wave solutions of the previous section. The local velocity of
propagation v of a fixed value of ¢ is given by
p=——t (5.6.3a)
CZ
and when c is given by Eq. (5.6.2),

2t—1+ Z
V= —
Z 2t

When ¢t > 1/2, v has a single minimum when plotted against z.
This minimum, which occurs at

(5.6.3b)

Zmin = [2021 — 1)]'? (5.6.3¢)

2t — 1\
vmin=2( o ) (5.6.3d)

The breadth Az of this minimum is of the order 2¢, and the
minimum itself corresponds to a value of ¢ given by

e \ 2
Crnin = (—) (5.6.3¢)

has a value

4mt

Thus when ¢t > 1, there is a broad minimum in v for z =~ 2¢
over which v has values rather close to v, ~ 2.

To make the situation completely transparent, figures 5.6.1a—
f give plots of ¢ versus z, v versus z, and v versus ¢ fort =5
and ¢+ = 20. These plots show that there is a steadily broadening
z-region in the expanding c-profile for which the propagation
velocity v draws ever closer to the value 2. Over the central
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Figure 5.6.1a. A plot of ¢ versus z for t = 5. The straight line segment is
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Figure 5.6.1b. A plot of v versus z for t = S.

part of that z-region c is proportional to e just as it is in the
traveling-wave solution corresponding to v = 2. Furthermore, if
we track one particular value of ¢ (as is done in experiments
in applied superconductivity), it advances with a propagation
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Figure 5.6.1d. A plot of ¢ versus z for t = 20. The straight line segment is
proportional to e?.

velocity that asymptotically approaches 2. When y # 1, this
asymptotic limit is 2y /2,

The most noteworthy thing about this example is the
somewhat unusual way in which the time-dependent solution is
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Figure 5.6.1f. A plot of v versus ¢ for r = 20.

related to the traveling-wave solution, which seems to develop
in the middle of the time-dependent solution and grow outwards.

We can extend the foregoing reasoning to initial conditions
¢(z,0) more general than the pulsed delta-function source
8(t)6(z) at the origin as follows. Since Eq. (5.1.2) is linear
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when Q(c) = ¢, we can use the Green’s function (5.6.2) to write
the solution ¢(z, t) corresponding to any initial condition c(z. 0)
in the integral form

oo

c(z. 1) = @mt)~ Ve f exp[—

—0oC

2
%]c(z'.mdz/ (5.6.4)

If the initial condition c(z, 0) is confined to a finite interval of z,
which for convenience we take to be 0 > z > —a, then we can
write for z > 0,

Z2

0
a +t) /c(z .0)dz (5.6.5)

—a

c(z, 1) < @mt) 2 exp(

If we now track one particular value of ¢, then, by an extension
of our earlier argument, it cannot advance with a propagation
velocity that asymptotically exceeds 2y'/%.

It is also possible to extend the reasoning of this section
to more general source functions Q(c) in the following way.
The solutions of the partial differential equation (5.1.2) obey
the following ordering theorem: let ¢,(z, t) and c,(z, t) be two
solutions of Eq. (5.1.2) on the interval a < z < b belonging,
respectively, to source functions Q,(c) > Q,(c). If ¢, and c;
have the same boundary and initial conditions c(a,t), c(b,t)
and c¢(z, 0), then ¢,(z,t) > ¢,(z,t). The proof of this theorem
follows the procedure outlined in section 4.5; some details are
given in note 3 at the end of the chapter. Thus, if the source
function Q(c) can be bounded from above by yc¢ and if the
initial condition is confined to a finite interval a < z < b,
then when we track one particular value of ¢, it cannot advance
with a propagation velocity that asymptotically exceeds 2y'/2.
The specific formulas (5.4.2a) and (5.3.4b) (for y > 2, which
corresponds to an advancing wave front) both conform to this
result.
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5.7 A Final Example

If O(c) = cW(c), with W(c) still given by Eq. (5.2.5), it turns out
that there are no traveling-wave solutions that vanish at infinity.
Then, Eq. (5.2.2) becomes

n=—-a y<l1 (5.7.1a)
uH=—o-— Y y>1 (5.7.1b)
u

Figure 5.7.1 shows the direction field of Eq. (5.7.1) when a > 2.
When y > 1, the separatrices are again

U= —Kiy (5.7.2a)
where k4 are the roots of the quadratic equation
k?—ak+1=0 (5.7.2b)

Suppose again that an intial temperature rise c(z,0) like that
in figure 5.4.2a is established in a superconducting wire. By
repeating our earlier reasoning, we see that if a traveling-wave
solution is approached asymptotically, its velocity must be such
that the two solutions ¥ = —ay and ¥ = —«_y are equal at
y = 1. But there is no solution to the equation a = k_. So there
is no traveling-wave solution for which y(co) = 0 when o > 2.

When o < 2, Eq. (5.7.2b) has no real solutions, and the
separatrices # = —«4y disappear in the direction field (5.7.1).
All of the integral curves of Egs. (5.7.1) in the fourth quadrant
of the (y, u)-plane then eventually intersect the y-axis (u = 0)
at some value y > 1. (For a proof of this, see note 4.) We see
therefore that there is no traveling-wave solution y(x) for which
y(o0) =0 and y(—o0) = 0.

What then happens to our initial temperature distribution
c(z.0) as time goes on? If we track very large values of c,
it should not matter that Q(c) vanishes when ¢ < 1. Thus we
expect large values of ¢ to propagate with the asymptotic velocity
v = 2. If smaller values of ¢ propagated with smaller asymptotic
velocities, eventually large gradients ¢, would be created that
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Figure 5.7.1. Part of the direction field of differential equation (5.7.1) when
a > 2. Cy is the locus of zero slope.

would tend to push these small values of ¢ to higher velocities.
It is my surmise that the situation is not qualitatively different
from that described in section 5.6.

5.8 Concluding Remarks

In the problem of section 5.3, stability considerations led us
to consider traveling-wave solutions y(x) having specified flat
asymptotes. The existence of these asymptotes was enough
to determine a unique traveling-wave solution. In a different
problem, dealt with in section 5.4, traveling-wave solutions y(x)
were identified that do not have a flat asymptote at x = —oo. By
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choosing physically plausible initial conditions c(z, 0) confined
to a finite interval of z (figure 5.4.2), only one of these solutions
was shown to be possible. Implicit in the qualitative arguments
presented in both sections 5.3 and 5.4 is the assumption that the
initial distribution c(z, 0) eventually matures (if it does not decay)
into two traveling waves moving in opposite directions without
change of shape. This assumption was studied in sections 5.5
and 5.6. In section 5.5, many traveling-wave solutions were
identified, all of which were consistent with initial conditions
c(z,0) confined to a finite interval of z. But in section 5.6, it
was shown that the time-dependent solutions connected with such
initial conditions have the following property: if we track one
particular value of c, it asymptotically advances with the unique
propagation velocity 2y /2.

There are two practical advantages of traveling-wave
solutions. The first is that, like similarity solutions, they are
comparatively easy to calculate. The second advantage is that
initial distributions c(z, 0) that do not immediately decay may
eventually mature into two traveling waves moving in opposite
directions without change of shape.

Notes

Note 1: The stability treatment based on Eq. (5.3.1) is too narrow because
it deals only with spatially uniform perturbations (). If, more generally, we
subsitute ¢ = ¢ + €(z, ¢) into Eq. (5.1.2), we obtain, to lowest order in ¢,

s,=elz+s<g) (N1.1)
de /.,

If we Fourier transform Eq. (N1.1) with respect to z, i.e. if we set

x

ek, 1) = /e(z,t)exp(—ikz)dz (N1.2)

-

g = [—kz + (2) ]g (N1.3)
de /.o,

we find
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As before, if (dQ/dc).—, < 0, all Fourier components decay and thus all
initial perturbations decay. If (dQ/dc).—, > 0, then Fourier components for
which k? < (d@/dc) -, grow. If (dQ/dc).~, > O, then initial perturbations
that contain only frequencies for which > > (dQ/dc)._, decay. But the
perturbations caused by random thermal fluctuations can hardly be expected
to have such a special character. Thus we continue to conclude that the state
¢ = ¢ is stable or unstable according to whether (dQ/dc).-, is < 0 or > 0,
respectively.

Note 2: By sketching the direction field of Eq. (5.3.2a) near the origin O,
the reader may convince himself that the origin is a saddle-point singularity at
which two separatrices intersect at the origin. None of the other integral curves,
which are divided into four subfamilies by the separatrices, pass through the
origin. By direct substitution, we find that the curves u = —«.v, where «.
are the roots of Eq. (5.3.2b), satisfy Eq. (5.3.2a) and pass through the origin.
Thus they must be the two separatrices. The one we seek here is that for
which ¥y < 0, namely, u = —«, y. Similar reasoning applies to the solution
u = —«k_(y —y) of Eq. (5.3.3a).

Note 3: As in section 4.5, let u = ¢; — ¢; and subtract Eq. (5.1.2) written for
¢y from Eq. (5.1.2) written for ¢;:

Uy =uz + Qi1(c)) — Qalca) (N3.1)
Now

Q1)) = Qa(ca) = Q1(c)) — Qi) + Qi) — @a(c2)  (N3.2a)
- (d_Q_')u +60 (N3.2b)
dc
where §Q = Q,(c2) — Q2(c2) > 0 and dQ,/dc is evaluated at an argument
lying between ¢, and c¢,. If as before we introduce v = ue "', we obtain

d
v = U, + (% - y)v +8Qe™ (N3.3)
c

Since §Q > 0, the argument of section 4.5 now goes through without change.

Note 4:  Equation (5.7.1b) is invariant to the stretching group u’ = Au,
y' = Ay. It can therefore be integrated with the help of Lie’s integrating factor
(section 2.1). When a < 2, the result is

2u + ay

¥ = In[(W? + auy + y)'?] — a(4 — a?)'/? arclan[
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where ¥ is a constant that labels the various integral curves. When u = 0 and

Y = Ymaxs

. 2072, a
v =In Ymax — {4 —a”) / arclan[m] (N4.2)
so that each integral curve intersects the y-axis as noted earlier.
The integral curve that joins the line u = —ay at ¥ = 1 has the value of
¥ given by
_ IRV V- o«
V. =a(d —a”) aruan[(4_ az)'/z] (N4.3)
so that for this integral curve
Ymax = CXP(ZW.) (N44)

Thus we have shown by direct calculation that there is no traveling-wave
solution y(x) for which y(oc) = 0 and y(—o00) = co.

Problems for Chapter §

5.1 Determine the traveling-wave solutions of the source-free
diffusion equation ¢, = ¢,,. Use formula (5.6.3a) for the local
velocity v of propagation of a fixed value of ¢ to show that v = o
for all values of ¢ for a traveling wave solution.

5.2 What condition must V satisfy for Egs. (4.9.1a, b) to have
traveling-wave solutions?

5.3 Determine the traveling-wave solutions of the wave equation
¢y = .. Is there something peculiar about the principal
differential equation? Construct infinite-medium (—oc0 < z <
oo) traveling-wave solutions that correspond to the initial
conditions ¢(z.0) = u(z), ¢,(z,0) = 0. Now construct infinite-
medium traveling-wave solutions that correspond to the initial
conditions ¢(z,0) = 0, ¢(z,0) = v(z). If you add these
solutions you get d’ Alembert’s classical infinite-medium solution
of the wave equation for the intial conditions c(z,0) = u(z),
¢ (z,0) = v(2).

54 1. D. Murray [Mu-89] has used the equation ¢, = c(1 —
¢) + (cc.), to model density-dependent population diffusion with
logistic population growth. Verify that it is invariant to the
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family of groups (5.1.1a—c). Find the principal differential
equation of the traveling-wave solutions and using the associated
group (5.1.8a, b) and Lie’s reduction theorem, reduce the order
of the principal equation. Murray shows that the singularities
of the reduced equation are at O: (0, 0), P: (1,0) and Q: (0, —a).
Murray tells us that for a certain value of a there is a straight-
line solution of the reduced equation joining P and Q. Find it and
determine the traveling-wave solution to which it corresponds.

5.5 Suppose a partial differential equation is invariant to the
family F of groups (5.1.1a-c) as well as to another group G.
Derive sufficient conditions on the coefficients of the infinitesimal
transformation of G that allow the existence of another group
invariance of the principal differential equation of the traveling-
wave solutions besides invariance to the associated group (5.1.8a,
b).

5.6 Find a group of stretching transformations that leave
Egs. (5.4.1a, b) invariant. (You need to transform the eigenvalue
« and the constant y as well as the variables u# and y.) Using this
group, show that « is proportional to y'/? (as the result (5.4.2a)
of an exact calculation shows). Can you generalize this argument
to Eq. (5.2.2) when Q(y) is replaced by y Q(y)?

5.7 According to Murray [Mu-89], a model for the motion of
a colony of bacteria moving into a food source on a long, thin
tape and consuming it as they go is

b,:(bz—anz) n, = —b )
2

n

where b is the density of bacteria, n is the density of nutrients,
z 1s the position coordinate and ¢ is the time. This system of
equations is invariant to the family of groups

b'=b n'=n =t+x I =z+ak 2)

Write the ordinary differential equations corresponding to the
traveling-wave solution b = B(x), n = N(x), where x =
z — at. These ordinary differential equations are invariant to
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the associated group (5.1.8a, b). Equations (1) are also invariant
to the group

’

i =12 t

’

=t n' =in b =xb 3)

Do the infinitesimal operators of groups (2) and (3) commute?
What is the action of group (3) on the principal ordinary
differential equations of the traveling-wave solution? Find
explicit expressions for the traveling-wave solution.

5.8 Sketch the direction field of Eq. (5.2.2) when Q(c) is given
by

Q(c)=0 c <1

Q@)=c—1 c>1

How does the asymptotic form of c(x), x = z —at, when ¢ > 1,
depend on o?
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Approximate Methods

6.1 Introduction

As mentioned previously, the advantage of invariant solutions
is that they are easier to calculate than other solutions. In the
comparatively simple cases dealt with in this book, the invariant
solutions are calculated by solving ordinary rather than partial
differential equations.

Invariant solutions seem to have a disadvantage, however,
for if there is the slightest variation in the conditions they require,
they no longer apply. For example, in the clamped-temperature
problem of the illustrative example given in section 4.2, if the
pipe is not semi-infinite but, rather, finite and of length L, so
that then the boundary and initial conditions are ¢(0.¢) = 1,
c(z,0) =0 and c(L, t) = 0, then the invariant similarity solution
of Eq. (3.3.11) is no longer correct. However, for early times,
i.e. for small enough ¢, the disturbance from the initial condition
¢ = 0 caused by suddenly clamping the temperature at the front
face (z = 0) at the value ¢ = 1 is substantial only close to z = 0.
In an anthropomorphic manner of speaking that is often used to
describe this situation, we may say that for small enough ¢, the
partial differential equation does not yet know that the pipe is
finite. So we expect that for short enough times, the similarity
solution for an infinite pipe will be a good approximation to
the solution for a finite pipe. It is, so to speak, an early-time
asymptote.
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For late times, on the other hand, the solution of the clamped-
temperature problem approaches the steady-state solution of the
superfluid diffusion equation, namely, ¢ = 1 — z/L, which is
therefore a late-time asymptote. These two asymptotes then
can be used to determine the early- and late-time behavior of
any quantities of interest. For example, the heat flux at the
front face [—c.(0, 1)]'/* is given by (3/41)"/* for early times and
(1/L)'? for late times. If we interpolate graphically between
these two asymptotes we can obtain an engineering estimate of
[—c.(0. 1)]'/? for all ¢.

The traveling-wave solutions of the previous chapter may
also be considered as late-time asymptotes and thus tell us
about the behavior of solutions that, on account of their initial
conditions, cannot strictly be traveling waves.

If the partial differential equation admits ordering theorems,
the invariant solutions may provide bounds on other solutions that
produce useful information. We have seen an example of this in
section 4.4 concerning the asymptotic behavior of solutions and
another example in section 5.6 concerning bounds on the velocity
of propagation.

The use of invariant solutions as asymptotes or as bases
for comparison greatly extends their practical utility. But there
are yet further situations in which invariant solutions may give
us valuable information about the true solution. Consider, for
example, the clamped-temperature problem for the superfluid
diffusion equation ¢, = (c!*), in a semi-infinite pipe in which
c(0,1) = f(t), where f(t) is a slowly varying function of
time. If f(t) were constant, the solution would be the similarity
solution of Eq. (4.2.7). If f(r) is slowly varying, we may surmise
that this similarity solution is close to the correct solution. We
show in the next section how to use the similarity solution as a
jumping-off point for calculating an improved solution.
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6.2 Superfluid Diffusion Equation with a Slowly
Varying Face Temperature

When the face temperature c(0. t) is clamped, c(z. ) equals y(x)
where x = z/t** and y(x) satisfies the differential equation

4d(y'

y = 6.2.1
3 e +xy=0 ( )

and vanishes at x = oo. When ¢(0,1) = f(t), a slowly varying
function of time, we try a solution of the form

cz,1) = f(t)y[——z—] (6.2.2)
p(1)

where y(x) is the function determined by Eq. (6.2.1) and p(¢) is

a function yet to be determined.

The trial solution (6.2.2) obeys the boundary and intial
conditions ¢(0,t) = f(z), c(z,0) = 0 and c(co.t) = 0, but it
does not, indeed it cannot, obey exactly the superfluid diffusion
equation

o = (), (6.2.3)

But if we substitute the trial solution (6.2.2) into Eq. (6.2.3) and
drop terms of the order of d f/dr compared with terms of order
f (since f is a slowly varying function of time), we obtain the
equation
d(p*?)
d

from which we can determine p(r) in terms of f(r). As we shall
see subsequently, however, this direct substitution procedure is
less accurate than the following procedure, in which we integrate
Eq. (6.2.3) over z from 0 to oo to obtain an integral relation
sufficient to determine p(r) in terms of f(r), namely

f (6.2.4a)

oC

a(—j;/cdz = [—c,(0,N]"? (6.2.4b)
0
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When we substitute Eq. (6.2.2) into Eq. (6.2.4b) we find

y(©0) f()

p()

1/3
g 1" 629

d o0
— f(t)p(t)f.v(x)dx = [—
0

Now it follows from integrating Eq. (6.2.1) over x from 0 to oo
and then integrating once by parts that

o0

/ y() dx = -y (6.2.6)

0

so that Eq. (6.2.5) becomes

1/3
SUOpo = [%] (6.2.7a)
or after a slight rearrangement
2/3
: d(f »_3 (6.2.7b)

4

Equation (6.2.7b) can be integrated subject to the boundary

condition p(0) = 0 (since for small t we expect p = t¥%) to

give

oty = Mol P
f @)

Using this value of p(t) we then find from Eq. (6.2.2) that the

heat flux at the front face is

(6.2.8)

' —1/4
(0,00 = (=3O O | [t ar

(6.2.9)

It follows from the solution (3.3.11) that when y(0) = 1,
[y (O] = 3/H"*.

We can check the accuracy of formula (6.2.9) by comparing

it with the results in problems we can solve exactly. These
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latter problems are precisely the similarity solutions themselves.

Suppose therefore that f(t) = t*f.  Then according to
Egs. (6.2.2) and (6.2.9)
c(0,t) = t*/2y(0) (6.2.10a)
1/4

[—c.(0,D]" = H““’“ﬂ[—y(O)]'”(l + %) (6.2.10b)

it should be remembered that here although o and 8 can have
any values consistent with the linear constraint (4.1.2), y(x) is the
similarity solution belonging to the clamped-temperature problem
(Eq. (3.3.11)). Thus

[—c.(0.0]' (3/3 + 2a)”“[—y'(0)1'/-‘t_1/4
[cc0,n]72 ' 38 [y(0)]'72

Owing to the invariance of the principal differential equa-
tion for y(x) to the associated group (4.2.10), the ratio
[—y(013/[y(0)]'/* is independent of y(0) and is the same for
all similarity solutions belonging to a particular choice of family
parameters « and 8. When « = 0 and 8 = 4/3 (clamped-
temperature problem), this ratio is (3/4)'* (cf. Eq. (3.3.11)).
Thus, finally, our approximate formula (6.2.10c) becomes

(6.2.10¢)

[-c.0.01'” _ (3p+2a\"* 62.11)
[cO.0172 —\ 48 -
The exact result for the same problem is
_ ¢ 173 Y 1/3
[-.0.01'" _ [-3O1" _,, 62.12)

[c(0, D12~ [y(0)]'~

where now y(x) is the similarity solution belonging to the family
parameters a and . Thus the approximate form (6.2.11) has the
right functional dependence and differs at most by the value of
the constant. The direct substitution procedure mentioned at the
beginning of this section leads to a similar formula, namely

[—c.0. 01" _ (3ﬁ - Za)”“,-w

[c(0, £)]'/2 48 (6.2.13)
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Table 6.1. The exact coefficient [—3(0)]'/*/(y(0)]"? and the approximate
values given by Eqgs. (6.2.11) and (6.2.13).

o B Exact Equation  Equation
(6.2.11)  (6.2.13)

0 4/3 09306 09306 0.9306
1 2 1.0958  1.0000 0.8409
2 8/3 11614 1.0299 0.7825
4 4 12189 1.0574 0.7071
10 8 1.2700  1.0829 0.5946

In another work [Dr-90], 1 have calculated, by numerical
integration of the associated differential equation, the exact
coefficients [—y(0)]'*/[y(0)]'/? of t~'/* for several problems
with various values of o and 8. These results, together with the
approximate values from Egs. (6.2.11) and (6.2.13), are shown in
table 6.1. As noted at the beginning of this section, the integral
method is more accurate than the direct substitution method.

As a final word in this section, let me point out that similarity
solutions other than that for the clamped-temperature problem
can be used as the jumping-off point for calculating an improved
solution. The one chosen should, of course, be the one that most
closely matches the conditions of the problem.

6.3 Ordinary Diffusion with a Non-Constant Diffusion
Coefficient

The problem of the last section involved an invariant partial
differential equation but a non-invariant boundary condition. The
technique of solution explained there can also be applied to
non-invariant partial differential equations that are ‘close’ to
invaniant partial differential equations. Consider, for example,
the diffusion equation with a temperature-dependent diffusion
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constant:
¢ = (D(c)c ). (6.3.1)

We shall be interested in solutions that obey the partial boundary
and initial conditions c(0o,t) = 0 and ¢(z.0) = 0.

When D = 1, the similarity solutions of Eq. (6.3.1) are given
by

c=1"?y(x) (6.3.2a)

where x = z/t'? and y(x) is a solution of the principal
differential equation

2y +xy—ay=0 (6.3.2b)

The solutions y(x) that vanish at infinity obey the following
integral relation obtained by integrating Eq. (6.3.2b) over x from
0 to oo and then integrating once by parts:

oo

—2y0)=(a+1) / ydx (6.3.3)
0
If we now integrate Eq. (6.3.1) over z from O to oo, we find

oo

d

o /cdz = —Dy(t) c.(0.1) (6.3.4)
0

where Dy(t) = D[c(0, t)]. Let us now choose a trial solution of

the form

Z
1) = — 6.3.5
c(z, 1) q(l)y(p(t)) ( )
Then we find
c(0,1) =q(1) y(0) (6.3.6a)
q(1) .
c;(0,1) = —y(0) (6.3.6b)
p()
and

d _ q
E(‘”’) = (a + 1)Do(t)5 (6.3.6¢)
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Equation (6.3.6¢) can be integrated to give

[/}, Dog?dr']”?

6.3.7
q(t) ¢ )

p(t) =(@+ 1"
since p(0) = 0 (we expect p(t) ~ t'/2 for small t). According
to Egs. (6.3.6a, b) the ratio of the heat flux to the temperature
rise at the front face is

_ Dy(1) c:(0, 1) _ [Do(t)][_y(o)]
c(0.1) p(t) y(0)

The ratio —y(0)/y(0) is independent of y(0) since the
principal differential equation is linear and thus the ratio depends
only on the family parameter o of the base similarity solution

y(x).

(6.3.8)

6.4 Check on the Accuracy of the Approximate
Formula (6.3.8)

We can check the accuracy of the approximate formula (6.3.8)
by finding a solvable problem to compare it with. One such
problem is the clamped-temperature problem (c(0, ) = 1) when
D(c) = e‘. Now when a = 0, the base solution is c(z,t) =
y(x) = erfc(x/2). Thus according to Eq. (6.3.7), since g(z) = 1,
p(t) = (et)'/? since Dy = e. Since —y(0)/y(0) = 7~/
the right-hand side of the approximate formula Eq. (6.3.8) is
(e/m)'?1=12 = 0.93019:~'/2.
The partial differential equation

¢ = (e°c,), 6.4.1)
is invariant to the family of mixed stretching-translation groups

c=c+alni (6.4.2a)
t = APt (6.4.2b)
7 =Az (6.4.2¢)
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where
The invariants of any group of the family are
X = tl_/ﬂ (64361)
o
y=c— —Int (6.4.3b)
B
The principal differential equation is
d(e’y) .
—a=0 6.4.4
B P +xy—a ( a)
The clamped-flux problem ¢(0,7) = 1 is characterized by the
family parameters « = 0, 8 = 2 so that for this problem
Eq. (6.4.4a) can be written
d(e’y) . z
2 dx + Xy = 0 where X = []7 (644b)

Equation (6.4.4b) must be solved with the boundary conditions
y(0) =1 and y(o0) = 0.

If x > 1, then y « 1, and the factor e” in the first term of
Eq. (6.4.4b) can be neglected. It follows at once that

y ~ Cerfc(x/2) for x> 1 (6.4.5)

where C is a constant of integration. To determine C we must
undertake a backwards numerical integration of Eq. (6.4.4b) using
Eq. (6.4.5) to calculate starting values of y and y at some large
value of x. The quantity C must be chosen so that y(0) = 1
and some trial and error is unavoidable because the associated
group is of no help here. A short calculation similar to that in
section 4.3 shows that the associated group is

y=y+2ni (6.4.6a)
x'=Aix (6.4.6b)

and we cannot use this group to rescale the value of C if our
intial guess is wrong. Four iterations yield C = 1.58178 and
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y(0) = —0.28900 when y(0) = I and y(oc) = 0. Then

_ Do(t) C:(Ov t) — e—.\'}(o)t_l/z
c(0.1) y(0)

=0.78558¢7'"2 (6.4.7)

since Do(t) = e. The approximate answer 0.93019¢'/2 is thus
18% higher than the exact answer (6.4.7).

Problems for Chapter 6

6.1 Derive an approximate formula for c,(0,¢) when c(z.t)
satisfies cc, = c¢,. and ¢(0,t) = F(), t > 0; c(oo,1) =
0:¢(z.0) = 0,0 < z < oo, where F is a slowly varying function
of t.

6.2 For the partial differential equation of problem 6.1, calculate
an approximate formula for ¢(0, ¢) if the boundary and intial
conditions are ¢,(0.t) = —G(t),t > 0; c(00,1) =0; ¢(z.0) =0,
0 < z < oo and G is a slowly varying function of ¢.

6.3 A restricted form of the ordinary diffusion equation in
cylindrical coordinates is ¢, = (rc¢,),/r. This partial differential
is invariant to the family of groups

¢ =A% =21 r'=ar

The solution corresponding to the boundary and initial conditions
¢(R,t) = —q,t > 0; c(oo,1) =0; ¢c(z,00) =0, R <r <
is not invariant to the transformations of the family because the
source position R changes.

(a) If we add to the family the transformations
q’=)\°‘_'q R = AR

we embed the problem in a class of problems all of the same
kind. For all of these problems C = c¢(R, t) is a function of
only g, R and 1, i.e. C = F(q. R,t). Determine the most
general form of the function F.
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(b) The boundary condition ¢,(R,t) = —gq is equivalent to the
condition [*rc(r.t)dr = Rqt (prove it!). When t > 1
and the c-distribution has spread far from r = R, the value
of the integral should be little affected if the lower limit
is set equal to zero. With the new boundary condition
JSre(r.tydr = Rqt replacing the boundary condition

¢, (R.t) = —q, the solution becomes a similarity solution.

Calculate it.
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Now that the reader has studied the text carefully, it is perhaps
worth summing up what has been presented and saying a word
about what has not.

The presentation in this book revolves around three
central themes: Lie’s integrating factor for first-order ordinary
differential equations, Lie’s reduction theorem for higher-order
ordinary differential equations, and the calculation of invariant
solutions of partial differential equations. The great advantage
of Lie’s methods is that they do not depend on the differential
equation’s being linear. Consequently, I consider Lie’s theory
to provide the only widely applicable, systematic treatment
available for nonlinear differential equations.

One question of prime importance that has been touched on
at various points in the text is the difficult question of how to find
groups which leave a given differential equation invariant. For a
differential equation with an uncomplicated structure, it is often
possible to find, more or less at a glance, a simple group to which
the equation is invariant. Lie’s method of tabulation, mentioned
in section 2.6, is a way of making a dictionary of model ordinary
differential equations invariant to groups with various assumed
coefficient functions. Sections 3.9 and 3.10 present a method
based on Noether’s theorem of creating a collection of second-
order differential equations for which an explicit first integral is
known.

Inspection and tabulation have a hit-and-miss character. The
method of determining equations touched on in section 3.11 is a
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direct method for finding groups to which a given differential
equation is invariant. Sometimes the method of determining
equations can be streamlined (see problem 2.2). It is perhaps
worth noting here that the determining equations do not always
have a solution: Cohen [Co-11] gives an example of a second-
order ordinary differential equation that is not invariant to any
group!

Some of the simpler group invariances are connected with
the physical symmetry of the underlying problems. For example,
when there is no preferred orientation of the coordinate axes, the
differential equation is invariant to the rotation group. When
there is no preferred location for the origin of a coordinate,
the differential equation is invariant to the group of translations
of that coordinate. And when there is no preferred scale for
a variable (for example, no preferred length in a diffusion
problem in a semi-infinite or infinite medium), the differential
equation is invariant to the group of stretchings of that variable.
Because these physical symmetries are present in wide variety of
interesting technological problems, the rotational, translational
and stretching groups occur quite often.

When partial differential equations are involved, a similarity
solution, such as those discussed in chapters 4 and 5, is often
the solution to the problem we face. When it is not, it is
sometimes possible to reformulate the physical problem in such
a way that its solution becomes a similarity solution. An
example of this occurs in the application of the high-temperature
superconductors: certain problems can be made invariant to
stretching groups by assuming the voltage—current curve of
the superconductor to be a power law. While not exact, this
assumption is close enough to be useful, and the resulting
similarity solution provides valuable information with a minimum
investment of calculational labor.

As mentioned in section 6.1, similarity solutions often
represent the short-time behavior of more complicated problems.
The entrance-region solutions of fluid flow and heat and mass
transfer in pipes are typical short-time asymptotes. Sometimes,
an acceptable solution may be won by combining short-time and
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long-time asymptotic solutions graphically. Also mentioned in
section 6.1 is the use of similarity solutions to bound the solution
of a more complicated problem. The rest of chapter 6 is devoted
to the use of similarity solutions as the jumping-off point for
improved solutions.

A lot of attention has been paid in chapter 3 to the reduction
of second-order ordinary differential equations to first order using
Lie’s reduction theorem and the subsequent study of the first-
order equation by means of its direction field. Even when the
solution ultimately must be found by numerical integration, such
a study is an invaluable prelude that often shrinks the required
calculational effort. Because many of the differential equations
of classical physics are second order, this situation is a common
one. The same may be said of the similarity solutions treated
in chapter 4, where invariance of the partial differential equation
to a family of stretching groups makes the principal ordinary
differential equation invariant to the associated group and thus
reducible to a first-order equation.

The groups considered in this book are groups of
point transformations (see Egs. (l.1.1a, b)). Lie himself
considered more general kinds of transformations, called contact
transformations. The reader interested in pursuing the Lie
theory of differential equations further may find a simple, direct
treatment of this subject in chapter VII of Cohen’s book [Co-11].
More extensive, modern treatments of contact transformations
(as well as the entire Lie theory of differential equations) can
be found in the books of Bluman and Kumei [B1-89] and Olver
[O1-86]. Recently, even more general kinds of transformations,
non-local transformations, have been the subject of study (see,
for example, reference [Go-95]). Although these matters are
both practically useful and theoretically important, they are,
regrettably, beyond the scope of this introductory book.
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Linear, First-Order Partial
Differential Equations

A.1 Introduction

In this book, we are interested in linear, first-order partial
differential equations in one dependent variable z and two
independent variables x and y. The general form of such
equations ist

P(x,y.2)z + Q(x,y,2)z, = R(x.y,2) (A.1.1)

A solution is a function z(x,y) that satisfies Eq. (A.l1.1)
identically. Such a solution may be given implicitly in the form

f(x,y,2) = ¢, where ¢ is a constant. Since z, = — f,/f, and
zy = —fy/f., Eq. (A.1.1) is equivalent to the more symmetric
equation

Px,y.2)fi+0(x,y.0)fy +R(x,y,0)f, =0 (A.1.2)

t Formally speaking, Eq. (A.1.1) is quasilinear because although it is linear in the partial
derivatives z, and z,, the variable z appears in the functions P, Q and R. Only if z did
not appear in the functions P, 0 and R would Eq. (A.1.1) be called linear. The theory
developed in this appendix applies to quasilinear equations, a class which includes the
strictly linear equations.
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A.2 Characteristic Curves

If the points O: (x, y, z) and O": (x +dx, y +dy, z +dz) both lie
in the solution surface S: f(x, y,z) = ¢, then to lowest order

fide+ fidy+ f,dz=0 (A.2.1)

Since this relation holds for all infinitesimal vectors (dx, dy, dz)
tangent to the surface S at point O, the vector (f;. f,. f, ) must
be normal to S at O. But then, according to Eq. (A.1.2), a vector
whose x-, y- and z-components are proportional to P, Q and R,
respectively, lies in the solution surface S. Thus the characteristic
equations

dx dy dz

P Q R
trace out curves that all lie in the solution surface S. These curves
are called characteristic curves.

The equations (A.2.2) define a characteristic curve through
every point (x, y, z) in space. These curves form a two-parameter
family (we could label them, for example, according to their
intersections with some surface, say, the (x, y)-plane). Any
continuous, one-parameter family of such curves defines a surface
S g(x,y.z) = ¢ and, as we prove next, such a surface is
a solution surface of the partial differential equation. For, at
every point of such a surface the direction (dx,dy,dz) of the
characteristic curve through that point lies in the surface. In that
direction,

(A2.2)

8 dx +g,dy+g,dz=0 (A.2.3)

But since the increments (dx, dy, dz) in a characteristic direction
are given by Eq. (A.2.2), Eq. (A.2.3) becomes

Pg.+Qg, +Rg, =0 (A2.4)

so that the surface S: g(x, y, z) = c is a solution surface of the
partial differential equation.

Thus, solution surfaces are ruled with characteristic curves
and conversely surfaces ruled with characteristic curves are
solution surfaces.
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A.3 Integrals of the Characteristic Equations

An integral of the characteristic equations is a function u(x, y, z)
that is constant along a characteristic curve. Practically speaking,
such functions are found by integrating Eqs. (A.2.2). For
example, if P = x, Q =1, and R =z, u = x/z, v = xe™°
and w = ze™ are all integrals of the characteristic equations;
but only two of them are independent, for v = uw. In general,
Egs. (A.2.2) have only two independent integrals; call them
u(x,y, z) and v(x, y, 2).

Every characteristic curve is thus labeled by a pair of values
(a, b) that are the respective values of « and v on it. A one-
parameter family of such curves is then given by any functional
relationship F(a, b) = 0 between a and b. However, such a one-
parameter family of characteristic curves forms a solution surface
and vice versa. Thus, the solutions of the partial differential
equation are given by

Flu(x,y,2),v(x,y,2]=0 (A3.1a)

where F is an arbitrary function. By solving Eq. (A.3.1a) for v,
we may write
v(x, ¥, 2) = Glu(x, y, 2)] (A.3.1b)

where G is another arbitrary function.
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Riemann’s Method of Characteristics

B.1 Introduction

Riemann invented the method of characteristics in the middle
of the last century during his study of compressible gas flow.
The method is generally applicable to problems involving the
propagation of disturbances with finite velocity. Such problems
are qualitatively different from diffusion problems, in which a
disturbance at one point instantaneously produces some effect
everywhere. In propagation problems, space is divided into
different regions some of which the propagating disturbance has
already reached and some of which are still undisturbed. These
regions are separated by moving interfaces on one side of which
the quantities of interest (e.g. pressure, density, flow velocity)
have been disturbed from their initial values and on the other
side of which the quantities of interest still have their undisturbed
values.

To show the essential features of Riemann’s method, an
example will be worked below, namely, the motion of water
in a long, narrow, open channel. This introductory description
suffices for this book. Readers interested in further study
of Riemann’s method may consult reference [Co-48], which I
recommend highly.
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B.2 The Motion of Water in a Long, Narrow, Open
Channel

The motion of water in a long, narrow, open channel is described
by the coupled partial differential equations

h, + (vh), =0 (B.2.1a)
v +vy,+h, =0 (B.2.1b)

where z is the longitudinal position coordinate, ¢ is the time, h
is the height of the surface of the water above the channel floor,
and v is the longitudinal flow velocity (assumed independent of
depth). These equations have been written for simplicity in a
system of units in which the water density and the acceleration
of gravity equal 1.

Riemann starts by multiplying the first of these equations
by an as yet undetermined function ¥ and adding it to the other
equation:

v+ (kh+v)v, +kh, + (kv +1)h, =0 (B.2.2)

Now, for any function f(z,t) the linear combination af, + bf,
is proportional to the directional derivative of f along a curve
in the (z, t)-plane whose local slope is dz/dt = b/a. For by the
chain rule, along the curve z(7)

d dz b af, + bf,
—f=f:+fz — =+ 1| =—f /. (B.2.3)
dr dr a a

Riemann'’s idea is to choose k so that the directional derivatives

of vand h in Eq. (B.2.2) are in the same direction. This requires

kv +1
K

Kkh4+v= (B.2.4)

which is satisfied only if k2h = 1 or ¥k = +h~!2. With
these values of «, the only possible common directions of
differentiation of both v and h are given by dz/dt = v £ h!/%.
Combining the directional derivatives of v and A we find

(vE20"%), + £ A (W20, =0 (B.2.5)
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Equation (B.2.5) says that the directional derivatives of the
quantities v & 2h'/? in the respective directions given by dz/dt =
v & h'/? are zero. Thus the quantities v & 2h'/? are conserved
(i.e. are constant) along curves with respective slopes dz/dt =
v+ h'/2. The conserved quantities v & 2h'/? are called Riemann
invariants and the curves given by dz/dt = v + h'/? are called
characteristics. The curves with dz/dt = v + h'/? are called the
positive characteristics and the curves with dz/dt = v — h'/? are
called the negative characteristics. Note carefully that the slope
of the positive characteristic is not necessarily positive nor is
that of the negative characteristic necessarily negative; the words
positive and negative refer to the sign between v and h'/2.

The solution of certain problems is facilitated by Riemann’s
formulation (B.2.5) of the partial differential equations (B.2.1).
Consider, for example, the problem obeying the initial conditions
v(z,0) =0, —00 < z < 00; h(z,0) = h,, z > 0; h(z,0) =0,
z < 0. These initial conditions describe a channel with a dam
at z = O filled on one side with still water of depth h, and
empty on the other side. At time ¢+ = 0, the restraining dam
ruptures. The partial differential equations (B.2.1) determine the
subsequent motion of the water.

To see how the solution develops, we plot the characteristics
in the (z, t)-plane (see figure B.2.1). Such a plot, in which z
is the abscissa and ¢ the ordinate, is called a wave diagram.
Since the disturbance starts at z = 0 and ¢+ = 0 and propagates
both upstream and downstream it can be represented by a fan
of positivet characteristics separating two regions of uniform
properties. Region R, represents water behind the dam not yet
reached by the disturbance, and region R, represents a region of
space not yet reached by water released by the breaking dam.

The positive characteristics in the fan are straight lines, a
result not generally true but true in this problem, as we now
show. The negative characteristic through any point in the fan if
prolonged in the direction of decreasing time eventually intrudes

t If the fan had been chosen to consist of negative characteristics, then the method
outlined below would yield v = —2h'/2 < 0 everywhere in the fan, which does not fit
the physical conditions of the problem.
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t

Figure B.2.1. A wave diagram showing a fan of positive characteristics
radiating from the origin.

into the region R,}. Therefore, at any point in the fan
v—2h"%=—2p!" (B.2.6)

Since v+ 2h'/? is constant on any positive characteristic, we see
that both v and A are constant on any positive characteristic in the
fan. Thus the direction (dz/dt), = v + h'/? of the characteristic
is also constant.
On a positive characteristic radiating from the origin we can
now write z
o= +h'/? (B.2.7)

since the positive characteristics are straight lines. Solving
Egs. (B.2.6) and (B.2.7) for v and A, we find

2 )
v = 5(; - h,'/-) (B.2.8a)
1/z2 12 ?
h=g(5+2ny (B.2.8b)

1 Note that the slope of the positive characteristic (dz/dr), = v + h'/2 is greater than
the slope of the negative characteristic (dz/dr)_ = v — h'/.
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When z/t = h!/?, we have v =0 and h = h,, so that z/1 = h!/?
is the equation of the limiting characteristic that separates the fan
from region R;.

The solution (B.2.8) cannot be extended into the region R,
continuously in both v and h; for beyond the limiting locus
z/t = —2h!/? on which h = 0, h would begin to increase again
from zero. On this locus v = —2h)/2, so that the disturbance
moves downstream with a velocity equal to the flow velocity.



Appendix C

The Calculus of Variations and the
Euler-Lagrange Equation

C.1 Introduction

The problem that originated the calculus of variations is the so-
called brachistochrone problem. A frictionless bead slides down
a curved wire joining the fixed points A:(a, y,) and B:(b. y»)
(see figure C.1.1). What shape must the wire take in order that
the time of transit be a minimum?

This problem is a generalization of the usual minimax
problems of differential calculus because the quantity sought is a
function y(x) rather than a single value of x. But, as we shall see,
the problem is treated in a way analogous to the way minimax
problems are treated in the ordinary differential calculus.

If g is the acceleration of gravity, the velocity of the bead at
any point P: (x, y) is given by v?> = 2g(y, — y). The increment
of time dr it takes the bead to traverse the interval dx at x
is dt = ds/v = [(ds/dx)/v]ldx = (1 + y*)"?dx/v, where s
represents the arc length along the curve y(x). The total time of
descent T is then given by

b o 172
T = (2g)_'/2/(l+_yy) dx (C.1.1)

a

It is this quantity that we must minimize by correctly choosing
a curve y(x) that obeys the conditions y(a) = y, and y(b) = y.
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Bib, y,)

Figure C.1.1. A sketch to explain the brachistochrone problem.

C.2 The Euler-Lagrange Equation

Instead of continuing now with the solution of the brachis-
tochrone problem, we turn instead to a more general treatment
of a whole class of problems that includes the brachistochrone
and is associated with the names of Euler and Lagrange. The
quantity in Eq. (C.1.1) is of the form

b

Alyl] =/L(x,y,5’)dx (C.2.1)

a

where the notation on the left-hand side using square brackets
signifies that A[y] is a functional, that is, a quantity whose
value is a number but whose argument is a function y(x). The
function L is known as the Lagrangian. We seek a function
y(x) for which y(a) = y, and y(b) = y, and that makes A[y]
an extremum.

We proceed by first converting the problem to one of
ordinary calculus as follows. If Y (x) is the sought-for solution,
Euler and Lagrange consider the family of trial functions y(x) =
Y(x) + e u(x), where ¢ is a numerical parameter and u is an
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arbitrary function except that u(a) = u(b) = 0. Then Eq. (C.2.1)

becomes
b

Aly] = / L(x.Y +eu, Y +en)dx (C.2.2)

so that now A depends only on ¢ and may be made an extremum
by the ordinary method of differential calculus. If we differentiate
Eq. (C.2.2) with respect to ¢ and set ¢ = 0, dA/de should be
zero since € = 0 is an extrermnum of A. Thus

b
dA .
0= I = /(uL\. 4+ ul;)dx (C.2.3)
. ) :

If we integrate the second term in Eq. (C.2.3) by parts we obtain

b
O—/ (L —d ")dx+ LT (C2.4)
= fJu|L, - ul, 2.
: dx T g

a

The integrated term on the right-hand side vanishes because
u(@) = u(b) = 0. Now if L, —dL;/dx is not zero for all
x,a < x < b, then by choosing u(x) to have the same sign
as L, — dL;/dx we can achieve a positive integral and thus a
contradiction. Therefore,

—L,=0 (C.2.5)

which is the celebrated Euler-Lagrange equation for the
extremizing function Y (x).

C.3 The Brachistochrone Concluded

In the case of the brachistochrone problem,

L=+ y)".—y)"" (C.3.1a)
Ly =y(1+ 3"y, — y)'"? (C.3.1b)
L,=X1+y)"(y, —y)™? (C.3.1¢)

—2
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so that the Euler-Lagrange equation is

diy(1 + y»)'"* (v, — y)~'4)
dx

I i i -— b
-5+ ) ya—y) =0
(C.3.1d)

Equation (C.3.1d) is invariant to the translation group x’ =
x + A,y = y, the invariants of which are y and y. We can
rewrite Eq. (C.3.1d) in terms of these variables and so reduce the
order of the differential equation by dividing by y:

diy(1 + 3" (ya = 0]

1/2(yu_y) . _
dy y

1(l +5%)
5 y
This last equation can be rewritten as

d
20y + 37 (v, — Y)“'/Z]E[Y(l + 37 (v — )7
=0 -y (C.3.2b)

where now we consider y to be a function of y. Integrating
Eq. (C.3.2b), we now find

VA+) ' 0= ==y = C? (C.3.3)

where C? is a constant of integration. Solving first for y, we can
finally write Eq. (C.3.3) as

CHy, —y) ]‘/2
dx = —| ——2¢ 27 | d C3.4
[1 —Cy, — ) Y ¢ )

We have taken the minus sign in the square root in Eq. (C.3.4)
because when dx > 0, dy < 0. If we set C*(y, — y) = sin’9,
we find after a short calculation

x =a+ (2C*7'[260 — sin(20)] (C.3.5a)
y =y, — (2CH ™1 — cos(20)] (C.3.5b)
The value of C? as well as the value of 6y, are determined by

the boundary condition y = y, at x = b. Equations (C.3.5) are
the parametric equations of a cycloid.
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The brachistochrone problem, proposed as a challenge
problem in 1696 by John Bemnoulli, was solved by him, his
brother James, Leibniz, Newton and I’Hopital. It opened the
way for the development of a vast field known as the calculus
of variations. The interested reader may find an excellent
description in chapter IV of volume I of [Co-53]. The brief
summary given above suffices for the purposes of this book.



Appendix D

Computation of Invariants and First
Differential Invariants from the
Transformation Equations

The modemn style of referring to groups is in terms of their
infinitesimal transformations (3.7.1) rather than in terms of their
transformation equations (1.1.1). Indeed, in order to display
the transformation equations when one knows the infinitesimal
coefficients £ and n one must integrate Egs. (1.2.4). To calculate
an invariant u(x, y) and a first differential invariant v(x, y, y),
on which the application of Lie’s reduction theorem depends,
it is necessary to integrate the characteristic Eqs. (1.7.2b).
But when the transformation equations are known explicitly:
(1) an invariant can always be calculated by purely algebraic
manipulation; and (2) a first differential invariant can always be
calculated by differentiation and algebraic manipulation.

Proof:

(1) We begin by eliminating A from the transformation
equations (1.1.1a, b) to obtain a relation among x’, y'. x and
y in which A does not appear explicitly:

F(x',y,x,y)=0 (D.1)

Now the relation (D.1) must hold for a fixed (x, y) as (x', y")
varies over the entire orbit on which (x, y) lies. We show next
that the function F can be rewritten as G(u(x'. ¥'), u(x, y)),
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where u(x, y) is an invariant, thus allowing us to identify u(x. y)
by purely algebraic means.

If we hold x and y fixed and let (x’, y') move along an
orbit O, we then find

Fodx' + Fody =0 (D.2)

where the infinitesimal vector (dx’, dy’) is tangent to the orbit O
at (x’, y"). The orbit O is also described by the equation

u(x'.y)—c=0 (D.3)

where ¢ = u(x, y) (remember the point (x.y) is being held
fixed). Thus
ugdx' +u,dy' =0 (D.4)

In order that Egs. (D.2) and (D.4) have a nonzero solution for
(dx’, dy’), the determinant of the coefficients must vanish:

Fouy — Foup =0 (D.5)

Eq. (D.5) is the condition that F and u be functionally dependent.
Therefore,

F&x',y,x,y)=Hwux', y), x,y) (D.6a)

Since we could have held (x’, y’) fixed and allowed (x, y) to
vary over O, it is clear that

F(x', ¥y, x.y)=Gux', y), ulx.y)) (D.6b)

as was to be proved.

(2) In the case of a first differential invariant, we must add
Eq. (1.5.4) to the transformation Egs. (1.1.1a, b). We denote
the right-hand side of Eq. (1.5.4) henceforth by P(x.y, y).
The calculation of P(x,y,y) involves only differentiation.
Eliminating A from Eqgs. (1.5.4) and (1.1.1a) we find

F(x',y , x,y,9) =0 (D.7a)
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while eliminating A from Eqs. (1.5.4) and (1.1.16) we find

G(&y.y.x,y.,y)=0 (D.7b)

If we now eliminate y’ between Egs. (D.7a) and (D.7b) we obtain
K&x'.y,x,y,y)=0 (D.3)

If we now fix x, y and y with their values at some specified point
P on the orbit O and let (x’, y’) vary along O, we see by the same
reasoning as before that

K(x'.y.x.y.9)=Lukx y). x. y.y) (D.9)
Solving K =0 for u, we find
c=ulx,y)=M(x,y,y) (D.10)

Since Eqs. (D.10) hold no matter what point P on O is originally
chosen to be held fixed, we see that we have found a first
differential invariant M (x, y, y) by differentiation and algebraic
manipulation.

Example: x' = e*x.y = (y*> + A)'/?, which extends to y' =
yy/[e*(y* + A)2]. It follows straightforwardly then that y? =
v2+ A=y +In(x’/x) or y? —Inx’ = y?> — Inx. The equation

y = yy/le*(y* + A)'/?] can be rewritten as y'y’ = yy/e* or
x'y'y =xyym



Solutions to Problems

Chapter 1

1.1 We demonstrate the group property as follows:

x"=G[GT'(X) + X1 =G[GT(G{G"(x) + A}) + 1]
=G[G'(x) + A+ 1]

Y'=F[F'(y)=A1=F[F ' (F{F'(y) - 1)) — ]
= F[F'(y) = A= 1]

The transformation with the group parameter —A is the inverse
of the one with the group parameter A; G~ '(x) + A = G~ '(x")
so that x = G[G~'(x') — A] and similarly for y. Finally, the
value A = O of the group parameter corresponds to the identity
transformation.

1.2

(a) Let P:(x + dx, y + dy) and Q: (x, y) be two neighboring
points on a particular orbit corresponding to the values
A + dx and A of the group parameter. Then dx = &di
and dy = nda so that

daf fx+dx,y+dy) — f(x,y)
- = hmd}—»O
dx dxr

of of
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(b)
d*f _ dIE@S/9x) + n(3f/3y)]
da? dxr
(3 BN(3 O
- ("’&ax +n8y)(§8x +"ay)
) 9 \>
= (sa + nd_y) f
(c)
IS (2,2
da (sax +'7ay) f
’ 'I_OO i i" ()"/_)")”
foly) = ;(sax +nay> fOep)T——

1.3 Abbreviate the linear differential operator £(3/3x)+n(3/dy)
by U. When f(x, y) = x, the Taylor series can be written

[o o] )"n
x' = ZO(U x)m

Now Ux = —y, Ux = U(=y) = —x, U'x =y, U%x = x, and
cyclic repetition hereafter. Thus

, N }\2 )\.3 )&4
X =x —Ay— ax-}— §y+ mx%—..,
lZ }\4 )\'3 )\'5
=x(l—5+4—!+...>—y(k—3—!+§—!—...)

= XCOSA — ysinA

and similarly for the equation for y’.
1.4

(a) The slope of the trajectories orthogonal to the orbits is —& /n.
If P’ and P are two neighboring points on an orbit, then if



(b)

()
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the image at P’ of the orthogonal trajectory through P is also
an orthogonal trajectory, we must have (to first order in dA)

n n n dx npdx

Now,
& =t+d UE and n=n+diUn

where U is again the linear differential operator £(9/dx) +
n(a/ay). Thus

£ %‘(1 dr(U§) d)»(Un))
—2 =2 + —
£ n
Equating the right-hand sides of Egs. (1) and (2) and
rearranging, we find

2§§+(1_€_z)§:2§_§2_(1_§;)_3_77 3)
n ax

2

’

n n

n ox ay naoy

If £ is a function of y only and n is a function of x only,
Eq. (3) reduces to the equation d§/dy = —dn/dx in which
the variables are separated. Integrating, we find that most
generally & = ay + by and n = —ax + b,, where a. b,
and b, are constants, each choice of which determines a
different group. The orbits of any of these groups must take
the form (a/2)(x* + y?) + biy — bax = ¢, where c is the
parameter labelling the orbits. These orbits are concentric
circles; their orthogonal trajectories are therefore the family
of rays emanating from the common center of the orbits.

If £ is a function of x only and »n is a function of y only,
Eq. (3) reduces to the equation & /dx = dn/dy in which the
variables are again separated. Integrating, we find that most
generally £ = ax + b, and n = ay + b,, where a. b, and b,
are constants, each choice of which determines a different
group. The orbits of any of these groups must take the form
ay + b, = c(ax + by), where c is the parameter labelling the
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orbits. The orbits are thus a family of rays emanating from
the point (—b;/a, —b,/a) and their orthogonal trajectories
are a family of concentric circles.

1.5 Suppose a parametric representation of the orbits is
¢ (x, y) = ¢; and that of the orthogonal trajectories is ¥ (x, y) =
¢>. The values of the functions ¢ and ¢ together determine the
position of a point (x, y). We can imagine moving along an orbit
then by keeping the value of ¢ fixed and changing the value of
Y. This suggests that the transformations

p(x'.¥)=¢x,y) and Y&, Y)=v¥&E y)+1r (1)
may form a group. This supposition is easily verified:

P Y)Y =dX' y) =@ (x,y) (2a)
Yy Yy)Y=y Y)Y+ =y y) + A+ (2b)

Equations (2) verify the group property. The identity
transformation is that for which A = 0 and the transformation
corresponding to —A is inverse to that corresponding to A.

The reader should note that nowhere have we used the
hypothesis that ¥ = ¢ denotes the orthogonal trajectories of
the orbits. Thus it should be clear that any pair of functionally
independent functions ¢(x, y) and ¥ (x, y) can determine an
additive group like (1). The functional independence is necessary
in order that the equations £¢, + n¢, = 0 and £y, + ny, =1
obtained by differentiating Eqs. (1) with respect to A and setting
A = 0, have a nontrivial solution for § and 7.

1.6

(a) In this problem, Eqgs. (1.2.4) are xdx = —2ydy = dA.
The first pair of these equations can be integrated to give
x?/2 4+ y? = c; the second pair can be integrated to give
y? + 2 = a. Here ¢ and a are constants of integration.
Combining the last two results we find x* = 2[c —a +A]. If
we take A = O to be the identity transformation, we then
find for the transformation equations x’ = (x? + 24)'/2
Y =0 =0



(b)

()

(d)
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Equations (1.2.4) are now dx/y = dy/x = dA. The first
pair can be integrated to yield x> — y? = ¢?. By substituting
x = (y? + ¢?)"/?, we can integrate the second pair to give
y = csinh(: + a). These two results can be combined to
give x = ccosh(A+a). If we take x = ccosha, y = csinha
and A = 0 to be the identity transformation, we find
x' = xcoshA + ysinhXx,y" = ycoshA + xsinhX for the
transformation equations.

Equations (1.2.4) are now dx/x*> = dv/xy = dA. We find
from the first pair that y = cx. Substituting this value
of y into the second pair, we can integrate the latter to
give 1/x + A = a. According to the first of these results,
y'/x' = y/x. If we again take A = 0 to be the identity
transformation, the second result gives, after rearrangement,
x" = x/(1 — Ax). Combining it with the first result we find
y' =y/(1—Aix).

Equations (1.2.4) are now dx/(x — y) =dy/(x + y) = dA.
The first equation of this pair can be cleared of fractions to
give the homogeneous equation (x + y)dx — (x — y)dy =
0, which has the integrating factor 1/(x? + y?). (If the
reader is not familiar with integrating factors, he may delay
reading the rest of this solution until after the next section,
section 2.1). Then, if the family of solutions is represented
as ¢(x, y) = c, we must have

¢ x+y a¢ y—x
— = and —= N
ax  xT+4y? dy xr+4y?
The first of these equations can be integrated to give
_ 2 23172 X
¢ =In(x"+y)" "+ arctan(;) + F(y) 2)

where the arbitrary function F(y) acts as a constant of
integration. Inserting this value of ¢ into the second equation
of the pair Eq. (1), we find by comparing the left- and
right-hand sides that dF/dy = 0 so that F is a constant.
We can absorb the constant F into the constant ¢, so that
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the orbits are given by constant values of the function
¢ = In(x2 + y*)'? + arctan(x/ y).

The function ¢ is greatly simplified by the introduction
of polar coordinates, which is strongly hinted at by its
form. If we set x = rcos6 and y = rsiné, we find
¢ =Inr+(n/2-0). Thuslnr'+(r/2—6") =Inr+(n/2-06)
or r'/r = exp(8’' — 8). This strongly suggests that the group
transformations have the form ' =6 + A, r' = re*.

To verify this supposition, we use the chain rule to calculate
the coefficients £ and n:

£ = ox’ (X or' + dax’ 36’
“\or/,_, \orax 80 ar/),_,

=rcosf —rsinf=x—y

_ () _ (e dy o
T=\oxn )., " \arax " 90 r ),

=rsinf@ +rcosf =y+x

Chapter 2

2.1 A suitable group is the stretching group y' = y/A. x" = Ax
for which § = x and n = —y. By rewriting the differential
equation in the form of Eq. (2.1.2), we find that M = 4x*y? +2x
and N = 2x*y. Lie’s integrating factor is then (2x%y? 4+ 2x%)~!.
If the integral curves are parametrized as in Eq. (1.4.5), then

4x3y? 4+ 2x
(= — 1
i 2x4y? 4+ 2x2 (1a)
2xty x%y )
v, - = (1b)

- 2x*y? 4+ 2x2 x2y? 41

Integrating Eq. (1b), we find ¥ = (1/2) In(x*y? + 1) + F(x),
where the as yet unknown function F(x) serves as the constant
of integration. Differentiating this expression for y partially with
respect to x and comparing the result with Eq. (1a), we find that
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dF/dx = 1/x so that F = Inx + a, where a is a constant of
integration. Absorbing a into the constant value of ¥, we find the
integral curves of the differential equation are given by constant
values of the function ¥ = (1/2) In(x*y? + x?) or equivalently
by constant values of the function x*y* + x*> = e* = c.
Solved explicitly for the variable y, this expression becomes
y=(c—xH)"2/x%

2.2 In this problem, in contrast to problem 2.1, the group is not
easily found by inspection. Let us look for groups for which
the quantity Iny + x? is a group invariant. Let us also note that
if any of these groups leaves the differential equation invariant,
then y/xy must be a first differential invariant of that group.
According to Egs. (1.3.2) and (1.7.2a), the invariance of these
two expressions leads to the conditions

0 oxe (1a)
y
. n
m =)’(§+—) (1b)
Xy
Using Eq. (1.5.5), we can write Eq. (1b) as
an , .(dn 9§ 20§ .(E n)
- A T =R )
3x+y<8y Bx) Y ay Y x+y 2)

Since in the determination of a group having the specified
invariants, no connection is implied among x,y and y, Eq. (2)
is an identity in y, i.e. holds for all values of y. Thus we must
have

an —

ok _& n

3y ox x + y (3)
3 —

2y = o)

According to Eq. (3¢) £ must be a function only of x and
according to Eq. (3a) n must be a function only of y. Thus
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we see at once from Eq. (la) that § = ¢/(2x) and n = —cy,
where ¢ is a (separation) constant that we can choose at will; we
make the choice ¢ = | for convenience. That these expressions
for £ and n satisfy Eq. (3b) can easily be verified. Now we are
in a position to calculate Lie’s integrating factor. [Although not
required for finishing the problem, the transformation equations
for the group we have just found are y’ = ye™, x’ = (x2+1)"2]

The coefficients M and N in the form (2.1.2) of the
differential equation are M = xy(1 +Iny +x*) and N = —1. If
the integral curves are parametrized as in Eq. (1.4.5), then

14+Iny+x?
= 2xe—— T 4
v x3+lny+x2 (4a)
-2
¥, (4b)

T Yy3+Iny+x)

If we integrate Eq. (4b), we find ¢ = —2In(3+In y+x?)+ F(x),
where F(x) serves as an arbitrary constant of integration. If we
differentiate this last expression partially with respect to x and
compare with Eq. (4a), we find dF/dx = 2x so that F = x? +c,
a constant. Absorbing this constant into the constant value of
Y and rewriting, we find that the integral curves are given by
constant values of the function

. exp(x?d)

T B4+1Iny+x2)? (%)

2.3 Writing the differential equation in the form (2.1.2), we see
that M = P(x)y — Q(x) and N = 1. Then according to the
converse of Lie’s theorem,

E[P(x)y — Q)] +n= exp(—[ P(z) dz) (1)
0

(a) Try & = 0. Then n = exp(— f; P(z)dz) so that Egs. (1.2.4)

become
dy

4 _ - = dA
0  exp(— f, P(z)dz)

(2)
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Equations (2) can be integrated to give x = ¢, y =
Aexp(— f, P(z)dz) + a, where ¢ and a are constants of
integration. If we choose A = 0 to denote the identity
transformation and take (c, a) to be the coordinates of the
source point, we obtain the transformation equations

x' =x y’=y+kexp(—/P(z)dz>
0

(b) Try n = 0. Then & = exp(— f; P(z)dz)/(Py — Q) and
Egs. (1.2.4) become

| d
dx(Py — Q)exp(/ P(2) dz) - Fy — di
0

which can be integrated to give

y==¢

A+a= y/ P(w)exp(/ P(2) dz)dw
[ 0

- f Q(w)exp( / P(2) dz) duw
0 [

These equations lead to the transformation equations
y=y

x’ w

A= y/ P(w)exp(/ P(z)dz)dw
0

X

—[Q(w)exP(/ P(z)dz)dw
x 0

2.4 The translation group x' = x + A,y = y — (a/b)A leaves
both sides of the differential equation y = ax+by+c unchanged.
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Thus £ =1 and n = —a/b. Since M = ax+by+cand N = —1,
Lie’s integrating factor is 1/(ax + by + ¢ + a/b). If the integral
curves are parametrized as in Eq. (1.4.5), then

v, = ax+by+c
T ax+by+c+a/b
’ a/b (1a)
= — a
ax+by+c+a/b
-1

ax+by+c+a/b
If we integrate Eq. (1a) with respect to x and Eq. (1b) with
respect to y, we find, respectively,

1
¢=x—gln(ax+by+c+%>+f(y) 2a)
v = —%ln(ax +by+c+ %) + gx) (2b)

where the arbitrary functions f(y) and g(x) serve as constants
of integration. Comparing Eqgs. (2a) and (2b) we see that

1
W:x—;ln(ax-{—by-{-c-i—%)

2.5 In order to show that the differential equation

v(x,y,y) = (Iny —e“)exp(x +e') —y =0 (1)
is invariant to the group
x'=InE*+ 1) y = Ay (2)

we show that v(x, y, y) satisfies Eq. (1.7.2a) when v(x, y, y) =
0. By direct calculation we find the infinitesimal coefficients of
the group to be £ = e and n = y; from Eq. (1.5.5) we find that
m = y(1 +e~*). A straightforward calculation now shows that
Ev, =exp(x +e")[(1 +e ™ )(Iny —e*) — 1] (3a)
nv, = exp(x +¢*) (3b)
mvy = —y(l +e™)
=—exp(x +e)(Iny —e")(1 +e™) 3¢)
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where we have substituted for y from Eq. (1). Thus Eq. (1.7.2a)
is satisfied.

To calculate the new variables z = F(x,y) and y =
G(x, y), we must solve Egs. (2.5.6), for which the characteristic
equations are, respectively,

d d
efdr=— and e'dr =2 =dG @)
y y
From these equations we find that F and (G — Iny) are arbitrary
functions of In y—e*. Therefore, a simple choice of new variables
is
x=Iny —¢' and y=Iny (&)

When inverted, these equations read
x = ln(lng — ) and y = exp(y) 6)
From (6), we determine after a short calculation that
v =9y —z)exp(y)/(y — 1) (7

Substituting (6) and (7) into the differential Eq. (1), we finally
find the separated equation

z

y=- (8)

-z

2.6 If we eliminate by differentiation the constant ¢ from
the parametric representation Y (x,y) = c¢ of the family of
integral curves, we find the differential equation u(x, y,y) =
y + ¥ /¥, = 0. With this definition of u, the left-hand side of
Eq. (1.7.2a) becomes (after some rearrangement)

s(‘//xx‘//)' - llfx)"l’x) + '7(%)-1//)- - ‘//)',\"//x)

Vs v\’
il gt = (1) & (1)
which can be written
a x y 0 x y
v, Gy +nyy) . Gy +nyy) @)

dx dy
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In view of Eq. (1.4.9), the two partial derivatives in Eq. (2)
vanish individually, which shows that expressions (2) and (1)
both vanish and thus completes the proof.

Conversely, if the quantity in (1) vanishes then so does
the quantity in (2), which then becomes the following partial
differential equation for the function ¢ = £y +ny,: ¥,d¢/0x—
Y. d¢/dy = 0. The characteristic equations are then dx/y, =
—dy/¥. = dp/0. The functions y and ¢ are two independent
integrals of these equations, so the most general form for ¢ is
F(y), where F is an arbitrary function. But this means that
Y satisfies Eq. (1.4.4), so that the family given by ¢ = ¢ is
invariant.

2.7 The stretching group y’ = A™™/"y x' = Ax, for which
& = x and n = —my/n, suffices. Lie’s integrating factor is
uw™' = xy[(@a — mb/n) + (@ — mB/n)x™y"] so that the general

solution is p/v = ¢ as long as the ratio p/v is not constant.

2.8 For the rotation group £ = —y and n = x, so that n, = 1+y>.
Equations (1.7.2b) then become —dx/y = dy/x = dy/(1 + y?).
From the first equality we find that x*> + y?> = ¢?, where c is a
constant of integration. Substituting x = (¢* — y?)'/?, we find
from the second equality the integral arctan y —arcsin(y/c). Thus
the most general solution of Eq. (1.7.2a) is

y

tan y — arcsin| ———————
arctan y — ar ([x2+y2]'/2

)=Gu”+f) (1)
where G is an arbitrary function. By moving the arcsin to the
right-hand side of Eq. (1) and taking the tangent of both sides,
we find

. y+xF
= 2
Y= T Fy ()
where F = tanG is also an arbitrary function of x? + y2.

Eq. (2) is identical with Davis’ equation as was to be shown.
Since M = y +xF and N = x — Fy, Lie’s integrating factor
w = (EM + nN)' = —(x*> + y*)7!. Because any constant
multiple of an integrating factor is also an integrating factor,
(x2 4+ y»)~! is an integrating factor.
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2.9 Chrystal’s equation is invariant to the stretching group
y" = A?y.x’ = Ax an invariant of which is y/x2. Since the
singular solution is an invariant of all groups which leave the
differential equation invariant, it must have the form y = Dx?,
where D is a constant yet to be determined. Substituting this
form into Chrystal’s equation, we find that D must satisfy the
quadratic equation 4D*+ (2A+ B)D+C = 0. In order that there
be real solutions for D, the discriminant 4A?+4AB + B> — 16C
must be > 0.

2.10

(a) Let 6 be the angle between the x-axis and the normal PQ to
C, at the point P: (x, y), and let § be the constant length along
this normal to the point Q: (x’, y') of C, (draw a sketch!).
The coordinates of Q are then

y =y +8sinf (1a)
x'=x+8cosb (1b)

Now if Py: (x + dx, y + dy) is a point adjacent to P on C,
and Q;: (x’ +dx’, y' +dy’) is the point at which the normal
to C, at P, intersects C,, then

y' +dy =y +dy+8sin(® + do)de (2a)
x'+dx’ = x +dx + §cos(@ + do) do (2b)
Thus
dy’ =dy + 8cos8 Ba)
dx'=dx — §siné (3b)
so that

dy’ dy[l+dcos6(df/dx)/(dy/dx)]

dx' ~ dx [1 — §sin6(d6/dx)]
Now tanf = —1/(dy/dx) since the slope of the normal is the
negative reciprocal of the slope of the tangent. Substituting
this value of dy/dx into Eq. (4), we find that (dy'/dx")y =
(dy/dx)p. This means that curve C, is perpendicular at point
Q to the normal to curve C, at P, as was to be proved.

4)
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(b)

(©)

(d)

Solutions to Problems

From the result of part (a) it is clear that the orthogonal
trajectories of the family F are a family of straight lines. The
images under the transformations 7, of the point (x, y) all
lie on the same one of these straight lines as (x, y) itself (call
this line L). The image (x’. y') under the transformation T,
lies at a distance A from (x, y) along L. The image (x”, y")
of (x', ) under T, lies a distance p from (x', y’) along L
as well. So (x”, y”) lies on L a distance A + u from (x, y).
In other words, T,T, = T,,,, which is the group property.
Similarly, we see that T_, is inverse to T, and Tj is the
identity transformation. Thus the collection {7;} forms a
group G.

If the differential equation of the family F is M(x, y)dx +
N(x.y)dy =0, then tand = —1/(dy/dx) = N/M so that
cosf = M/(M? + N?)'? and sinf = N/(M? + N2 If
we insert these values into Egs. (1a, b) and replace § by A,
we have

, AN
y=y+ M1 N (5a)
, AM
x'=x+ —(M2 TN (5b)

Differentiating each of these equations with respect to A, we
find

N
TS M NOR ©
M
R DI (©b)
Then Lie’s integrating factor becomes
p=(M*+ N ™
Conversely, if Eq. (7) is an integrating factor, then
M
Y, =uM = m (8a)
N
Yy =puN = ————— (8b)

(M? + N2)\)2
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so that [Vy| = (Y2 + ¢2)'/? = 1. Since the gradient vector
Vy is always normal to the level curves ¥ (x.y) = c, in
this example it is a unit vector in the normal direction.
Now if P: (x. y) is a point on the level curve C;: ¢/ (x, y) = ¢
and Q: (x + dx, y +dy) is a nearby point on the level curve
Cyy¥(x +dx.y+dy) =c +dc, then

Yrdx + 1//‘\- dy =dc 9

If the vector (dx, dy) also points in the direction of Vi =
(Y«. ¥,), i.e. if the point Q is the intersection of the normal
to curve C, at P with the curve C,, then

[(dx)? + (dy)*]"/? = dc (10)

so that the normal distance from C; to C, has the constant
value dc. Thus C; and C, are parallel.

2.11

(a) When u = e¥, the partial differential equation (uM), =
(uN), becomes M, = N + N,, which straightforward
computation shows is satisfied when M = 3x’y + y* +
6xy, N =3(x* + y?).

(b) Since EM +ngN = u~', when & =0, n = u'/N =
e v /3(x* + y?).

(¢) The transformation equations of the group are found by
solving Egs. (1.2.4), which in the present problem take the

form
dx/0 = 3e" (x> + y}) dy = dx (1)
Two integrals of these equations are
3
x=a 3e“(a2y+y?):)»+b 2)

where a and b are constants of integration. If we let A =0
denote the identity transformation, Egs. (2) are equivalent to
the transformation equations

13 3
x' =x 3e" (xzy’ + %—) =i+ 3e‘(x2y + -‘3—) 3)
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2.12

(a)

(b)

2.13

Solutions to Problems

If we differentiate the differential equation
y=xy+(1+y)" (1)

with respect to the group parameter A and set A =
Ao, the group parameter corresponding to the identity
transformation, we find

n=E&y+xm+ym(l+y) "2 (2)

When & = y and n = —x, it follows from Eq. (1.5.5b)
that n;, = —(1 + y?). These values of £, n and n, satisfy
Eq. (2) when x. y and y satisfy Eq. (1), which shows that
the differential Eq. (1) is invariant to the rotation group.

Since the envelope is an invariant curve of any group that
leaves Eq. (1) invariant, it must be an invariant curve of the
rotation group. Such curves obey the differential equation
dx/§ = dy/n or dx/y = —dy/x. This last equation can
be integrated immediately to give x> + y> = ¢?, where ¢
is a constant of integration. The envelope must also satisfy
Eq. (1); substitution of the solution x>+ y* = ¢? into Eq. (1)
leads to the value ¢ = 1.

The differential equation y*>—8x*y+16x?y = 0 is invariant

to the stretching group y’ = A%y, x’ = Ax, the invariant curves of
which have the form y = cx* where c is a constant of integration.

The

envelope, which must be an invariant curve, also satisfies the

differential equation. Substituting y = cx* into the differential
equation, one finds that ¢ = 1.
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2.14

(a) If we rewrite the differential equation (2x2y — x* — y)dx +
xdy = 0 in the form y + (2x — 1/x)y = x°, we see that
exp(x?)/x is an integrating factor.

(b) Using this integrating factor, the differential equation can be
written in the form d[y exp(x?)/x]/dx = x exp(x?). We see,
therefore, that the substitution y = wuxexp(—x?) separates
the variables « and x.

(c) If we identify x with & = F(x, y) and u with y = G(x. y)
in Egs. (2.5.6), we find that £ = 0 and n = x exp(—x?).

(d) If we differentiate the differential equation in the form
y + (2x — 1/x)y = x? with respect to the group parameter
A and set A = A, the group parameter corresponding to
the identity transformation, we find n, + (2§ + £/x%)y +
2x — 1/x)n = 26x. When & = 0 this relation becomes
dn/dx + (2x — 1/x)n = 0; here we have used Eq. (1.5.5)
for n,. This last differential equation can be solved to give
n = Cxexp(—x?), where C is a constant of integration.
The constant C can be absorbed into the group parameter A
(consider Egs. (1.2.4)), so we have the same result for n as
in part (c).

2.15

(a) If we differentiate Eqs. (1a, b) of the problem statement with
respect to the group parameter A and set A = A, the group
parameter corresponding to the identity transformation, we
find

Eu +nu, =0 and Eve + v, =1 N

so that u and v satisfy Egs. (2.5.6) and thus can be identified
as new variables that separate when substituted into a first-
order differential equation invariant under G.

(b) We resort again to the method of problem 2.2. We look for
a group for which y?> — Inx is an invariant and for which
yyexp(y?) is therefore a first differential invariant. As in
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the solution of problem 2.2, the invariance of these two
expressions leads to the conditions

§=2xyn (2a)
1
N + .\)[n,\ —& 4+ n(2y + ;)] —y% =0 (2b)

Since in the determination of a group having the specified
invariants, no connection is implied among x.y and y,.
Eq. (2) is an identity in ¥, i.e. holds for all values of y.
Thus we must have

n.=0 (3a)

£ =0 (3b)
1

n)‘—§‘+n(2y+;) =0 (3¢)

According to Eq. (3a), n is a function of y only. Then
from Egs. (3b) and (2a) we find that (yn), = O so that
n = c/y, where c is a constant. Then & = 2c¢x. Finally,
these expressions for & and n satisfy Eq. (3¢).

Now Egs. (1.2.4) can be written

dx

— =2ydy =dAi 4)

x
where we have subsumed a constant factor 2¢ in the group
parameter A. Equations (4) can be integrated to give the
redundant transformation equations

y? —Inx' =y’ —Inx (5a)
Inx'=Inx+ A (5b)
Yi=y+A (5¢)
If we choose
u=y>—Inx and v=Inx (6a)

which when inverted give

y = (u+v)'? and x=¢e" (6b)
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then Egs. (la, b) in the problem statement are satisfied. To
Eqgs. (6b) we add the equation

1 +u d
y=(@w+ v)_'/ze_”—_i_ﬁ where = (7N
2 dv

Substituting Eqgs. (6») and (7) in differential equation (2) of
the problem statement, we find

du + Qu'?e™ + 1)dv=0 ®)

in which the variables 1 and v are clearly separable.

2.16

(a) When we make the substitution y = u'/'=" in the Bernoulli
equation, we obtain the following linear equation

g—;‘+(1 —nm)P(x)u=(1-n)Q(x) M

An integrating factor for this equation is u = exp[(l —
n) [ P dx]; multiplying Eq. (1) by u yields

d{u exp[(1 — n) [ P dx]}
dx

= (l—n)Q(x)exp[(l—n)/de]
(2)

Thus if we make the substitution

v = uexp[(] —n)/ de] =yl exp[(] —n)/ de]

3)
for y in the Bernoulli equation, the new variables x and v
separate.
(b) If we use the variables x and v for F and G, respectively,
in Egs. (2.5.6), we find that

y = y"exp[(n — 1) [ Pdx]

Il —n

£E=0 and ®
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(c) If we differentiate the Bernoulli equation with respect to the
group parameter A and set A = X,, the group parameter
corresponding to the identity transformation, we find, taking
into account that £ = 0,

m+Pn=nQy 'n )
Also when & =0,

m=n+yn =n+(Qy" — Py)n, (6)

so that Eq. (5) may be written

N+ (QY" = Py)n, + Pn=nQy" 'y @)

Direct calculation now shows that n given in Eq. (4) satisfies
Eq. (7).

2.17 If we write the differential equation y = y in the
form (2.1.2) then M = y and N = —1. The integral curves
y = ce' may be written in the form ¥ = ¢, where ¥ = ye™".
Now the differential equation is invariant to the extended group
X =x.y =iy =Ay. Thus £ =0.np = y and n;, = »y.
Therefore u = (M + nN)™' = —1/y so that according to
Eq. (23.3), v=—F(ye™")/y.

We would like to find a group that leaves the curve y = coe"
invariant. We do this by finding an integrating factor whose
reciprocal vanishes on the curve y = coe*, as explained in
section 2.3. Try F(z) = (z — ¢)~". Then v™! = y(co — ye™%)
and this must equal €M + nN = &y — n. If we take & = c,,
then n = y’e~ " and n, = (2yy — y?)e™*. (This group does in
fact leave the differential equation invariant, the condition for
this being n = 1, when y = y.)

The finite form of this group is found by integrating
Egs. (1.2.4), which now take the form dx/c, = dy/y’e™ = dA.
The first equality yields —e™ + ¢o/y = a’, the second x =
cor +a”, where a’ and a” are constants of integration. If we take
A = 0 to correspond to the identity transformation and choose
a’ = xgand @’ = —e " 4+ ¢4/ yo, We find that the finite group can
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be written x' = x + coA, ¥’ = colco/y + [exp(—Aco) — 1]e ™}
When y = ce*, y' = exp(—Aco)[co/c + exp(—rco) — 117'e", s0
that ¢’ = co[1+exp(rcy)(co/c—1)]"". Thus when ¢ = ¢, ¢’ = ¢o
so that this group does in fact leave the integral curve y = coe'
fixed.

Chapter 3

3.1 A suitable group is x' = x, y’ = y+A, which extends to y' =
vy and ¥ = ¥. An invariant is ¥ = x; a first differential invariant
is v = y. Thus dv/du = dv/dx = y. Therefore, 1 +v> = k’(a —
x)?(dv/dx)?. The variables separate in this equation, and it can

be integrated to give arcsinhv = —(1/k) In(a — x) + Inc, where
c is a constant of integration This last equation can be rewritten
as y = v = (1/2)[c(a — x)""* — (1/c)(a — x)'/¥], which can be

(a—x)/kpb,

1 ; — (k— |)/k
mtegrateq to give y = 55 k)(a —-X) ,(“H)
where b is a second constant of integration.

3.2 A suitable group isx' =x+Ink, y =A%y, which extends

to y' = A2y and y' = A'/2§. An invariant is u = y%e™%; a first
differential invariant is v = y/y. Then
dv y y (1/u—v? 2
— == |5 )=V (la)
dx y y? 3
and
du D yie-t 2e-5 _ o (1b)
— = et —ye "t =2uv—u
dx yy y
so that
dv 1 — 4uv?

du  322u—1) (o)

Equating the numerator and denominator of Eq. (l¢)
simultaneously to zero, we find that ¥ = 1 and v = 1/2 are
the coordinates of the singular point, which corresponds to the

solution y = e*/? in view of the definitions of v and v.

3.3 If the differential equation is written w(x, y, v, ¥) = 0, the
function w must satisfy Eq. (3.1.2a) for both groups. For the
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stretching group, & = x, n = y, n, = 0, n, = —y; for the
translation group, £ =1, n =1, n, =0, n. = 0. Hence,

xw, + yw, — yw; =0 (la)

and

w,+w, =0 (1b)
The characteristic equations of Eq. (la) are dx/x = dy/y =
dy/0 = —dy/y; three independent integrals are y/x.y, and
xy. Thus the most general form of w satisfying Eq. (la) is
w = F(y/x.v.xy). Then

—x1 Fy + 3 Fy _hk

w=—""" and w, (2)
X ’ X

where x; = y/x, x, =y, x3 = xy and F; = dF/0x,, etc. Thus
according to Eq. (1), F obeys the partial differential equation
(I =x)Fi+x;F;,=0 (3)

The characteristic equations of Eq. (3) are dx;/(1 — x;) =
dx,/0 = dx;/x;. Two independent integrals are x;(x;, — 1) =
y(y — x) and x, = y. Thus

w= F[y(y —x).y] “4)
The differential equation we are seeking can then be written
yy —x)=G() &)

where G is any function whatever.

3.4 It follows from the given transformation equations that
¥ = Ay so that « = x is an invariant and v = y/y is a first
differential invariant. Then we find

dv 3 7\’ v
—='——('—) =—— —1 -1 nH
dx y y x

by differentiating and substituting for y from Bessel’s equation.
For large x Eq. (1) can be written correct to terms of order 1/x

as
2

d[v+l/2x]_ 1\°
—'T—I-F(U‘FZ) (2)



Solutions to Problems 187

which can be integrated to give

1
arctan (v + —) =—x+4+c 3a)
2x
or _ |
Y = —tan(x—¢) — — (3b)
y 2x

where ¢ is a constant of integration. Equation (3b) can be
integrated again to give finally

y =ax " cos(x — c) 4)

where a is a second constant of integration. Equation (4)
describes the asymptotic behavior of the Bessel functions of order
zero.

35 If we write the differential equation in the form
u(x,y,y,y) =0, where u(x,y,y,y) = y+ P(x)y + Q(x)y —
R(x), then u must satisfy the condition &u, +nu, +nu,+nu; =
0. The infinitesimal coefficients of the group are § =0, n =7,
m = Y and n, = Y. Direct substitution now shows that
Euy+nuy+mu;+nu; = Y+P(x)Y+Q(x)Y = 0 as required.

To determine a differential invariant and a first differential
invariant we must find two integrals of the characteristic
equations dx/0 = dy/Y = dy/Y. It follows from the first
equality that x = ¢, a constant. Substituting this value of x
in the second and third terms tells us that we can treat ¥ and ¥
as constants when integrating the second equality. Then we find
that yY — yY = a, a second constant. Thus ¥ = x is an invariant
and v = yY — yY is a first differential invariant. Differentiating,
we find dv/dx = y¥Y — y¥Y = RY — Puv, which is the desired
associated equation of first order.

3.6 The stretching group with its first two extensions is x’ =
Ax,y = A7y y = 173y, y = A~*). Power-law solutions, if
they exist, must then have the form y = A/x?; substitution of
this form into the differential equation shows that A = 1. An
invariant is 4 = x’y; a first differential invariant is v = x%y.
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Then
d
xav::3x3_\'v+x4j}:4v(l—u) (la)
d , .
x£=2,r_y+x3_v=2u+v (lb)
dx
so that )
dv 4v(l — u)
—_— (o)
du 2u4v

The loci of zero slope (dv/du = 0) are the u-axis (v = 0)
and the vertical line « = 1. The locus of infinite slope
(dv/du = o0) is the oblique line 2u + v = 0. The singular
points are the origin O:(0,0) and the point P:(1, —2). The
slope of the integral curves is negative in the triangular region
bounded by the w-axis, the line u = 1, and the line 2u + v = 0.
All integral curves but one emanating from the origin O either
intersect the line # = 1 or the line 2u + v = 0; the one exception
is the separatrix passing from O to P. Applying I’Hopital’s rule
to the right-hand side of Eq. (I1¢), we find the quadratic equation
m? + 2m — 8 = 0 for the slope m of this separatrix the roots
of which are m = —4 and m = 2. We want the negative root
m = —4. Then according to theorem 3.4.1, since m < 8 = =2,
as we approach the singular point P from the origin O along the
separatrix, x — 00. (A similar use of ’Hopital’s rule shows that
the slope m of the separatrix at O is zero. Since then m > 8,
as we approach the origin O from the singular point P along
the separatrix, x — 0.) Therefore, the asymptotic behavior of
the family of solutions y(x) corresponding to the separatrix is
y~up/xt=1/x>

3.7 The reasoning is exactly the same as that used in connection
with Eq. (3.3.13). The differential equation for the infinitesimal
difference ¥ = 8y between two neighboring solutions is

xii + u(4x*y — 1) + 4x*yu =0 m

We wish to show that if 1(0) > 0, then u(x) > O for all x > 0. If
u(x) were negative anywhere, it would have to have a negative
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minimum somewhere since it starts out positive and approaches
zero at infinity. At a negative minimum, & > 0.4 = 0 and
u < 0. These three requirements contradict Eq. (1); thus the
assumption that u(x) is negative anywhere is false and u(x) > 0
for all x > 0.

Note that this argument also requires us to know that y < 0.
Since y(0) > 0 and y(oo) = 0, y must be < 0 somewhere.
Now if y were > 0 somewhere else, then y would have to
be O somewhere. But when y = 0, y = 0, and the only
solution fulfilling these conditions simultaneously is y = 0,
which contradicts the hypothesis that y(0) > 0. Thus y < O
everywhere.

3.8 Differentiating 4 and v with respect to x we find

dv 2y2y  1d(y?y) v
— = - — = -2v—y=-2v— — 1
X . + T v—y v (1a)
du y . v
X—=—"=4y=—-u+— (1b)
dx x u?
so that

dv vl +2u?) |
du W —v te)

Positive, decreasing solutions must have v > O and v < 0
and so correspond to curves in the fourth quadrant of the (u. v)-
plane. In the neighborhood of the origin, where u and v are small,
the term 2u? may be neglected compared to 1. Then Eq. (1¢)

becomes
dv v

= ()

du w—v

This equation is not immediately integrable, but we may study
with profit the three mutually exclusive possibilities: (i) u* < v;
(ii) u? ~ v; and (iil) ¥* > v as u and v approach the origin
along an integral curve. The first assumption leads to v = —u,
which is self-consistent, i.e. does not contradict itself when « and
v are small. Assumption (ii), which means v = ku?, where k is
a constant, leads to v = ku/(1 —k), and so does contradict itself.
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The third assumption leads to v = cexp[—1/(2u?)], where c is
a constant and is also self-consistent.

On the integral curve that enters the origin with a slope of
—1, y?y/x? = —~y/x when u and v are small. Thus when u
and v are small, y> + x> = a’, a constant. Furthermore, when
u is small, y must be small (since x cannot exceed a). Thus
the solutions y(x) that correspond to the integral curve entering
the origin with a slope of —1 all vanish at some finite value of
x = a and are zero thereafter. In the neighborhood of x = a,
y = (a’ — x*)"/?, and this form can be used to compute starting
values for a numerical integration backwards from x = a towards
x =0.

3.9 The stretching group with its first two extensions is x’ = Ax,
y = A%y, v = A7y, ¥ = A7%j. Power-law solutions, if
they exist, must then have the form y = A/x?; substitution of
this form into the differential equation shows that A = 6. An
invariant is ¥ = x’y; a first differential invariant is v = x%y.

Then

S P SN L (la)
x—=3x"y+x'y=3v+ — - — a
dx yry 33

d

XEM =2x2y+x'y=2u+v (1b)

so that
dv 9 + u? — uv

— = (1)
du 32u +v)

Positive, decreasing solutions correspond to u > 0, v < 0,
i.e. to the fourth quadrant of the direction field of Eq. (1¢). The
locus of zero slope (dv/du = 0) in the fourth quadrant is the
curve v = u?/(u —9). The locus of infinite slope (dv/du = oc0)
is the oblique line 2u + v = 0. The singular points are the origin
0:(0,0) and the point P: (6, —12). The slope of the integral
curves is negative in the lenticular region bounded by these two
loci. All integral curves but one emanating from the origin
O either intersect one locus or the other; the one exception is
the separatrix passing from O to P. Applying I’Hépital’s rule to
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the right-hand side of Eq. (1¢), we find the quadratic equation
m? +m — 8 = 0 for the slope m of this separatrix. We want
the negative root m = —[1 + ,/(33)]/2. Then according to
theorem 3.4.1, since m < B = —2, as we approach the singular
point P from the origin O along the separatrix, x — oo. (Since at
O, m > B, as we approach the origin O from the singular point P
along the separatrix, x — 0.) Therefore, the asymptotic behavior
of the family of solutions y(x) corresponding to the separatrix is
y~up/x*=6/x>.

To prove ordering, we consider the differential equation for
the infinitesimal difference u = &y between two neighboring
solutions, namely

i+ xyu+ (xy—=2vu =0 (2)

We wish to show that if u(0) > 0, then u(x) > O forall x > 0. If
u(x) were negative anywhere, it would have to have a negative
minimum somewhere since it starts out positive and approaches
zero at infinity. At a negative minimum, i > 0,4 =0andu < 0.
These three requirements contradict Eq. (2) since the quantity
xy — 2y is negative for positive, decreasing y(x). Thus the
assumption that u(x) is negative anywhere is false and u(x) > 0
for all x > 0.

Knowing the solutions are ordered allows us to employ
the results of section 3.3 for stretching groups to find that the
asymptotic form of positive, decreasing solutions is given by the
power-law solution y = 6/x2.

3.10 A third-order differential equation may be written as
w(x,y,y, 9, y?®) = 0. By introducing the new variables u = y
and a = # = y, we may write the third-order differential equation
as the set of coupled first-order equations

= (la)
nw=a (1b)
w(x,y,u,a,a)=0 (1o

The equations (la—c) determine a three-parameter family of
curves in the four-dimensional space whose coordinates are
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x,y.u and a. (Consider, as before, the direction field of the
infinitesimal vectors at points (x, y, #. a) having components dx,
dy = ydx, du = ndx, da = adx, where a is determined
from Eq. (l¢). Integrating the three first-order equations (la—c)
involves three constants of integration, which label the integral
curves.)

If the original differential equation w(x, y. y.y. y*) =0 is
invariant to a one-parameter group G, the transformations of G,
twice extended, carry each of these curves into another. Thus
the transformations of G partition the curves into one-parameter
subfamilies, all the curves of which map into one another. Thus
each subfamily is invariant.

These subfamilies, which form a two-parameter collection,
can be denoted by two equations of the form

¢(x.y,u,a,a)=0 and Yx,y.u.a,B)=0 2)

where o and B are the two parameters that label the subfamilies.
Since the subfamilies are invariant to G, the functions ¢ and v
must satisfy the equations

Ex. ) +n(x, y) ¢, +mx, y,u)d, + mx.y.u,a)¢p, =0

(3a)
Ex. Y+ ) ¥ +mlx, y u) Yo + ma(x. y u.a) ¥, =0
(3b)
The characteristic equations are
dx d du da
> @)

E(x.y) - n(x.y) - mx,y,u) - n(x, y, u,a)

If p.q and r are, respectively, an invariant, a first differential
invariant and a second differential invariant of G, we see that ¢
and Y must be functions of p, ¢ and r only. Thus

¢=E(p.q.ra)=0 and v =F(p.q.r.8)=0 (5

If we eliminate r between these equations, we find that the
invariant subfamilies are represented by a relation of the form

H(p.q.a.8) =0 (6)
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Now the relation (6) represents a two-parameter family of
curves in (p, g)-space and thus is equivalent to a second-order
differential equation. Therefore, if we adopt the invariant p of
G and the first differential invariant ¢ of G as new variables, the
third-order differential equation w(x, y.y. ¥, y?¥) = 0 reduces
to a second-order equation in p and q.

It should be clear that this reasoning is capable of
generalization to any order of the original differential equation.
Thus the introduction of an invariant and a first differential
invariant as new variables always reduces the order of an
invariant differential equation by one.

3.11 If¢ =x*and n =xy,n, = y—xy, and n, = —3x§. Then
Eqgs. (3.1.2b) are

dc dy  dy dy
== - = - (1)
x xy y—xy —3x¥

The equality of the first and second terms gives, upon integration,
y = cx, where ¢ is a constant. If we substitute cx for y, the
equality of the second and third terms gives upon integration
a = x(c—y) = y—xy, where a is a second constant. The
equality of the first and last terms gives upon integration x*y = b,
another constant. Thus the most general solution of Eq. (3.1.2a)
can then be written

x3y=F(X.y_xy) )
X

To reduce the order of the equation, we introduce the
invariant u = y/x and the first differential invariant v = y — xy.
Then

,du .
X'—=—=y+xy=—v (3a)
dx
d
2o —F(u,v) (3b)
dx
so that
dv F(u,v)
= - (3¢)

du ~ v
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3.12 x absent: The group is y' = y, x’ = x 4+ A with the obvious

extensions y' = y, ¥ = y. An invariant is « = y and a first
differential invariant is v = y. Then
dv
— =y = f(y.y) = . 1
x-=yV= 0.9 =f v (1a)
du
X—=y=v 1b
el (16)
so that g Flu )
v u, v
— =1 (10)
du v

v absent: the group is x’ = x, ¥y’ = y + A with the obvious

extensions y' = y, ¥ = y. An invariant is 4 = x and a first
differential invariant is v = y. Then
dv
— =y = f(u.v) (2)
du

3.13 G, is the group x' = x, y' = y + A for which & = 0,
n=1,n =0and U, = 9/dy. G; is the group x' = Ax, y' =y
for which ¢ = x,n =0, n = -y and U, = x9/9x — yd/dy.
Since U, involves variables independent of those of U, it is
clear at once that U, and U, commute. An invariant and a first
differential invariant of G, are p = x,q = y. The associated
equation in p and q is

dg d¢g . 1-xy 1-pq
dp dx x? p?
or
(1 - pg)dp — p*dg =0 (1b)

This equation is invariant to G,. A short calculation (cf.
Eq. (3.7.6)) shows that

d . ad
Ep)=Up=|x——=y—=|x=x=p (2a)
dx ay

9 9 .
H(p.q) = Uyg = (x— - .9—.).9 =-y=-q (2b)
dx ay
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Using the infinitesimal coefficients £ and H, we find that Lie’s
integrating factor for Eq. (1b) is

p' =8P - pg) +H(p.g)(=p) =p 3)
Using this integrating factor, we integrate Eq. (1) and find
—Inc=Inp—-pg=Inx —xy 4)

where ¢ is a constant of integration. The differential equation (4)
is invariant to G, which could be used to help solve it; but since
its variables separate easily, we solve it directly as follows:

dx
dy = In(cx)— = In(cx)d{In(cx)] (5a)
X

[In(cx)]?
= — + a
Y 2
where a is another constant of integration.

3.14 Noether’s first integral (3.10.5) is N = —(xy)?/2 + y +
B(xy — Inx). Since the differential equation does not involve B8
(this is a coincidence), the value of B is arbitrary. This means
that the quantities —(xy)?/2 + y and xy — In x must separately
be constant along a trajectory in order for N to be constant along
the trajectory. Thus

(5b)

@)
2

where a and ¢ are constants. If we eliminate y between these
last two equations, we obtain y = [In(cx)]*/2 + a, as in the last
problem.

3.15 According to Eq. (1.5.5)

xy—Inx=lInc and +y=a (1)

m=ne+ (y — £y — 2%, = v(:—;’ - %) M)
since by hypothesis & = £(x) and n = n(y). The characteristic
equations (1.7.2b), which in this case take the form,

3 = dy = dy )
& n y(dn/dy —d§/dx)
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lead to

dy dy (dn d&) _dydn dxdé

y n \dy dx ndy & dx
dn  dg
=— - — (3)
n &

It follows from Eq. (3) that £ y/n is a particular first differential
invariant. The most general first differential invariant ¢ is an
arbitrary function F of p, a particular invariant, and £v/n:

q= F(n );f_y) )
n

n . n  \é
——yl)g, == - 2Eh=((-q)F 5
(S .»)q (é 'y)n (1-qg) 5)

which is invariant. Here F, signifies the partial derivative of F
with respect to its second argument.

Then

3.16 Let us introduce the abbreviations B = (n/§ — y)q, and
w = n/& — y. The condition that B be invariant is then

§B.+nB,+mBy =0 0]
or
gy (Ewe + nw, + mwy) + w(éqie + 095y +mg;,) =0 (2)
Because ¢ is a first differential invariant
£q.+nq, + mqg; =0 3
If we differentiate Eq. (3) partially with respect to y we find

an
§q: + 09,y + mqys + (Iya—).; =0 4)
(Remember £ and n are functions of x and y only.) Substitution
of Eq. (4) into Eq. (2) yields

Ew, +nw, + nwy —wn;y =0 =)
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Now w, = —1 and n, = n, + (n, — &)y — 2y%,. Substituting
these expressions into Eq. (5) and using the definition of w, we
find after reduction

n” o 2ny L\
5,\'(252— £ +))—0 (6)

>

Because Eq. (6) is an identity in y, we must have & = 0, that
is, £ depends only on x, as was to be proved.

3.17

(a) In view of the group property of the transformations (1.1.1a,
b), it is sufficient to require invariance of the area under
infinitesimal transformation, i.e. to require

J
o o= [ T o
_ 9 [alx,y) ,
‘}[/ax[au,w]k%ﬁXd) o
C

Since the closed curve C is arbitrary, Eq. (1) implies that

i[a(x”y')] =0 )
a(x, y) |,

The Jacobian d(x', y')/d(x, y) is given by

00%Y) _ x v, - x,¥, 3)
a(x,y) ‘ '
Thus
a[alx',y)
P - = &x ¥ 4
[an]-M St @

so that the condition sought for is

gx + ny = 0 (5)
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(b) If the orbits comprise the family u(x, y) = ¢, then according
to Eq. (1.3.2)
N (©)
3 u,
Thus, most generally,
E=u,G(x.y) and n=—-uG(x.y) N

where G(x, y) is an arbitrary function of x and y. If we
substitute £ and n from Eq. (7) into Eq. (5), we find

u, G, —uG, =0 (8)

which is the condition for the functional dependence of G
on u: G(x,y) = g(u), where g(u) is an arbitrary function of
u. Therefore,

§=u,gu) =F (u) and n=—u.gu)=—F(u)
)

where F(u) = [ g(u)du is an arbitrary function of u.

Chapter 4

4.1 The measured relationship of the temperatures far from
the heated end is ¢ ~ z°t*. Since this is the same in all
experiments, the engineer guesses it to be the exceptional solution
c = AzU/M=N/M_ Thus L/M = a and N/M = —b. Then
the linear constraint (4.1.2) can be written & — b8 = a. Now
c(0,1) = t*#y(0) and c.(0,1) = t“"Y/Fy(0). Since a and B
differ from experiment to experiment, we must combine in a
product the power k of c(0, t) with ¢,(0, t) so as to eliminate o
and 8. Now

[c(0, )]*c.(0, 1) = ' *+Da=B[y,(0)]* y(0) (1)

Now since the linear constraint « — b8 = a can be written
(a¢/a—1)/B = b/a, we see that k + 1 must be 1/a. Thus

[c(0, )], (0. 1) = t"*[y(0)]" =/ 1 (0) )
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4.2 The coefficients are M = 1|, N = —1, L = —2. The
exceptional solution thus must have the form ¢ = Az™%r; direct
substitution shows that the only nonzero value for A is A = 6.
If ¢ = 198 y(z/1'#), then

ay —xy Z
¢ = t“/f’“(—y—)) where x = — (1a)

Coz = t(a_z)/ﬂy (lb)

Then substituting these values in the partial differential equation
we find

By +xyy—ay’=0 2)
This is the principal differential equation. The aseociated
group is x = Ax, y' = A2y, with the extensions y’ = A~

y o= A4y, Clearly each term in Eq. (2) varies with the
same factor of A=* on transformation; this shows that Eq. (2)
is invariant to the associated group.

The invariant « = x?y and the first differential invariant
v=xy. Then

dv o uv

xa=3x39+x4ﬁ=3v+guz—? 3a)

xd—u =2u+v 3b)
dx

dv  3v+ (a/B)u*—uv/B

— = (30)

du 2u+v

The singularities of Eq. (3¢) are determined by setting the
numerator and denominator of the right-hand side separately
equal to zero. We find then that these singularities are the origin
0O: (0, 0) and the point P: (6, —12). The value of the coefficient
A in the exceptional solution of the partial differential equation
is the same as the coefficient up in the exceptional solution of
the principal differential equation, namely, 6 in this problem.

When o = —1/2 (and 8 = 3/2), the last two terms in
Eq. (2) become the perfect differential d(xy?/2)/dx. Then we
can integrate Eq. (2) to obtain 3y + xy?> = 0 for the solutions
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that vanish at infinity. This equation is easily integrated again to
give y = 6/(x? + ¢*), where ¢ is a constant of integration. The
family thus has the expected asymptotic behavior y ~ 6/x?.
The family v = 6/(x> + ¢?) has the differential equation
3y+x)* = 0 which when multiplied by x* becomes the equation
3v + u® = 0. This result satisfies Eq. (3¢) when o« = —1/2 and
B = 3/2. The curve is a separatrix passing through O and P that
separates those integral curves in the fourth quadrant that pass
through the locus of infinite slope from those that do not.

4.3 Transforming Eq. (4.2.6) with the transformations (4.1.1a—c),
we find
AT
—aL _ (aByya /B
A% = (A7) y[(k'ﬂt’)'/ﬂ ] (1a)

which is the same as

o = A —a BB g B y[<[_j_ﬂ))\—<ﬂ -8B ] (1b)
Now since Ma + NS = L and Ma°® + NB” = L, it follows that
(@B —a“B)/(B°—B)=L/M. If weset u = A# ~#/# Eq. (1b)
becomes ,
= putMye y(x—) (2)
"
Now since Eq. (2) also represents a similarity solution of the
partial differential equation, the function u“/* y(x'/u) = y'(x') is
also a solution of the principal differential equation. It is easy to
see that the function y'(x") is obtained from the function y(x) by
the transformations of the associated group x’ = ux, y' = u*/My.
Thus the image of any solution under the transformations of the
associated group is another solution, and therefore the principal
differential equation is invariant to the associated group.

4.4 By partially differentiating the similarity solution (4.2.6) with
respect to ¢ and z, we find

(ay — xy) b4

— ga/p—1 17 - —

¢, =t 5 (x_ tl/ﬂ) (la)
¢ = t(a'l)/ﬁy (1b)
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2yp 403

(cc). = 1‘2”_"/"& (1)
dx

so that the principal ordinary differential equation is

ﬂm+xj)—ay=0 )
dx

The linear constraint (4.1.2) is «+8 = 2. The invariant u = x 2y
and the first differential invariant v = x~'y. Then

dv 4y 4 o v v? (3a)
X—=-v =—v+-—-—-—-—-— a
dx Y B Bu u
dv
x—==-2u+v (3b)
dx
dv  —v+a/B—v/(Bu) —v/u
— = (3¢)
du —2u+v
Whena = —1 and 8 = 3, the principal equation (2) becomes
d(yy) .
3—— =0 4
o +xy+y 4)

The last two terms in Eq. (4) are the perfect differential d(xy)/dx
so that Eq. (4) can be integrated at once. Integrating we find
3yy+xy = 0 for those solutions that vanish at infinity. Thus y =
—x/3, which can be integrated again to yield y = (a* — x?)/6,
where a’ is a constant of integration. The constant a can be found
from the conservation condition f:: c(z,t)dz = 1 which takes
the form [T y(x)dx = 1 when a = —1; it is a = (9/2)'".

The family of solutions y = (a* — x2)/6 corresponds to the
curve v = —1/3 in the (u, v)-plane, as can easily be seen by
multiplying the differential equation of the family y = —x/3 by
x~'. The point Q in the (u, v)-plane corresponding to x = 0 is
thus the point (00, —1/3) (remember, u = x~2y and y(0) > 0).
The point P in the (u, v)-plane corresponding to y = O is thus the
point (0, —1/3). When y =0, x = a and y = —a/3 (remember,
v=x""yand vp = —1/3).
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When ¢ = 1/2 and 8 = 3/2, the reduced equation (3¢) has
three singularities, the origin O: (0, 0), the point R: (—1/6. —1/3)
and the point P: (0, —2/3). The singularity P can thus correspond
to the conditions y = 0, x = a and y = —2a/3, which can
serve as the starting point of a backward numerical integration
of the principal differential equation towards the origin. For
x larger than a. y could be taken as zero, thereby achieving a
positive, decreasing solution that vanished at or beyond x = a.
Only one numerical integration would have to be undertaken,
the remaining members of the family of solutions being obtained
from the calculated one by scaling with the associated group
4.3.1

4.5 By partially differentiating the similarity solution (4.2.6) with
respect to ¢t and z, we find

P Gl k2 VY (VU (la)
! B /8
c, =1y (1b)
(c"c.). = l+ha-2/p d(y"y) (10)
T dx
so that the principal ordinary differential equation is
d(y"y :
B ;ix')+xy—ay:0 ne+8=2 2)
The conservation condition ff:: c(z.t)dz = 1 requires a = —1

so that 8 = n + 2. The boundary condition c(£oo0,t) = 0,
t > 0 then becomes y(£o00) = 0 while the conservation condition
becomes f_’:” y(x)dx = 1. When a = —1, the last two terms in
Eq. (2) are the perfect differential d(xy)/dx so that Eq. (2) can
be integrated at once. For solutions that vanish at infinity, we
find

By'y+xy=0 3)
which can be integrated again to give
Gt LN (4a)
= | — X|<a a
Y| Tmra

y=0 |x] > a (4b)
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Here a? is a constant of integration. From Eq. (4), we find

2 L2428 V/n
c(z, 1) = ’_l/mw[n(azn—ig)] Iz| < ar'’?
(5a)

c(z.t) =0 Iz| > at'/?

(5b)

Note that this solution also satisfies the intial condition ¢(z, 0) =
0, z] = 0.

The constant a may be found by substituting Eq. (4) in the
conservation condition f:r;o y(x)dx = 1. We note its value for
completeness:

6

2n 44\ TG +2)/2n)) |
a = T /2

n I'l(n+1)/n]

where T is the gamma function.

4.6 If M # 0, the associated group (4.3.1) can also be written
"=y, x =uMtxifwesetu =AM, Nowif welet M — 0,
we find that the associated group has the form y" = uy, x" = x.
The principal differential equation of the linear diffusion
equation is 2y + xy —ay = 0, where x = z/t'/? and y = c/1%/>.
It is clearly invariant to the associated group just found.

The infinitesimal transformations X and X, of section 4.3 are
given by Eqgs. (4.3.2a, b) with 8 = 8, = 2. The quantities x and
y are invariants of X; direct computation shows that X,x = 0 and
X.y = (a.—a)y. The transformations of the group G. generated
in (x, y)-space by X, are obtained by solving the differential
equations dx/0 = dy/y = du/u and are y' = py, x’ = x, as
was to be shown.

4.7 a = 0: the principal differential equation can be written
y/y = —x/2, which can be integrated twice to give y =
—cexp(—x?/4) and y = cfxwexp(—x2/4) dx = cmr'?erfc(x/2),
where erfc is the complementary error function and c is a constant
of integration.
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o = —1: the principal differential equation can be written
2y + d(xy)/dx = 0, which can be integrated twice to give
y/y = —x/2.y = cexp(—x?/4), where ¢ is a constant of
integration.

a = 1: the linear principal differential equation is now
2y + xy — y = 0, which has the particular solution y = x.
It is noted in problem 3.5 that the differential equation is
invariant to the group G whose coefficients are £ = 0 and
n = the particular solution = x. The invariants of this
group are u = x and v = xy — y and reduce the principal
differential equation to dv/dx = —xwv/2. This last equation can
be integrated to give xy — y = v = —cexp(—x?/4), where c is
a constant of integration. This last differential equation is also
invariant to G; Eqgs. (2.5.6a, b) then tell us that use of the new
dependent variable s = y/x separates the variables s and x: x?
(ds/dx) = —cexp(—x?/4). Then one more integration shows
that y = c[exp(—x?/4) — (7'/*x/2) erfc(x/2)].

48 Yes! The new condition means that . (0,t) < 0 for
0 <t < T. The argument of section 4.5 goes through unchanged
until the very end where it must be shown that v cannot attain its
smallest value somewhere on the side OA. Now if it did, because
v.(0,t) < O there would be yet smaller values inside OABC, a
contradiction.

4.9 The invariants of the family of groups are x = ze™'/#
and y = ce ¥/, The similarity solutions then take the form
c = e¥Py(ze”'/P). Substituting this form into the partial

differential equation, we find the principal ordinary differential
equation Bd(yy)/dx + xy — 2y = 0, where x = ze'f.

The infinitesimal transformations X and X, of section 4.3
now have the form

d 0 d
X =2c— — — 1
C8c+ﬂ8t+28z (1a)
) a )
X, =2c—+B.—+272— (1b)

dc ot 9z

The quantities x and y are invariants of X; direct computation
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shows that
X.x = (l ~%)x and X*_v=2(l —%)y (2)

The transformations of the group G, generated in (x. y)-space
by X, are obtained by solving the differential equations dx/x =
dy/2y = du/u and are y’ = u’y, x’ = ux. The principal
differential equation found above is invariant to this associated
group.
The boundary condition ¢(0, t) = e’ requires 8 = 2.

4.10 The group is the mixed stretching—translation group ¢’ =
c+alni, t’ = A1, 7/ = Az, where a + 8 = 2. The invariants
of the family are

x =z/t"? and =c- ((—x—) Int (1)
B
so that the similarity solutions have the form

o Z
= (5)m () “

where the function y(x) is yet to be determined. The infinitesimal
transformations X and X, of section 4.3 now have the form

X 0 + ta + 0 3a)

= — —_ _—
ac P at Zaz (3a
X ) + ta + ) 3b)

x = Oy — xb T 17—
dc p ar ' ‘oz (
The quantities x and y are invariants of X; direct computation
shows that
X, x = (l - &)x (4a)
B

wom(eog)=20-5) @

The transformations of the associated group G, generated in
(x, y)-space by X, are obtained by solving the differential
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equations dx/x = dy/2 = du/un and are y' = y + 2Iny,
x" = px. This group has the first extension y' = u~'y.

The boundary condition ¢(0,t) = a,t > 0, requires that
a = 0. The similarity solution then has the form ¢ = y(z/t"#).

The quantity y(co) = b depends only on the quantities
y(0) = a and y(0), which for convenience we abbreviate with
the letter s. Thus b = F(a. s). Since this relation holds for any
solution of the principal differential equation, we also must have
b = F(a'.s’). Now because the points x = 0 and x = o©
transform respectively into the points x’ = 0 and x’ = oo,
b=b+2Inpu,a’ =a+2Inp and s’ = u~'s. If we differentiate
the equation b’ = F(a’. s") with respect to i and set u = 1, we
obtain the linear partial differential equation

2 =2F, —sF, (5a)
the characteristic equations of which are

dFr d d

a_da_ % (5b)

2 2 s
Two integrals of Eqgs. (5b) are a — F and s’e“. Since F = b, the
most general solution of Eq. (5a) is a — b = f(s%e*) where f is
an arbitrary function.

4.11 According to Egs. (4.7.4),

(0, 1"y = A", (0, 1) (la)
t =AY (1b)
p'=2r""p (1c)

If we set u = A¥~?, these equations become

c, 0,1y = p'c,(0,1) (2a)
t = u(3/2—5)/(35—3)t (2b)
p'=up (20)

The coefficients M, N and L of the linear constraint (4.1.2) must
obey the relations M /3+N(3/2—68)/(36—3) = L for all values of



Solutions to Problems 207

3; therefore we must have N =0 and L/M = 1/3. This means
that ¢.(0. 1) ~ p'/* and is independent of ¢. This conclusion also
follows from Eq. (4.7.13), which implies that c.(0.t) = y(0),
and Eq. (4.7.16).

4.12

(a) The group is v' = A%v, h' = A*h, ' = APt, 7/ = Az, with the
subsidiary conditions @« + 8 =1 and § + 28 = 2.

(b) The similarity solutions have the form v = r*/#U(z/1'#),
h =18y (z/1'/P).

(c) The initial conditions given require 8 = 0. Therefore
B =1 and ¢ = 0. Thus the similarity solutions become
v=U(z/t), h =Y(z/1).

(d) The associated group is U’ = pU, Y = u’Y, x' = ux,
where x = z/t. Now x, = z,/t can only depend on
h,, thus x, = E(h,). This relation must be invariant
to the associated group since it holds for all solutions.
Therefore x, = E(h!), where h!, = pu’h, and x, = pux,.
Differentiating with respect to i and setting 4 = 1, we find
E(h,) = x, = 2h,E(h,). This last equation is easily solved
to give x, = E(h,) = chl/.

(e) Partially differentiating, we find v, = r~'(—xU) and v, =
t7'U and analogous formulas for h. Then the partial
differential equations become

(U—-x)Y+YU =0 (1a)
Y+ WU -—x)U=0 (1b)

In order for these equations to have a nonzero solution, the
determinant of the coefficients must vanish; thus

(U—x)}=Y ()

Now when x = x,, U = v =0and Y = h = h, so that
x, = h}/?. This is the form expected from part (d). It should
be noted that the group-theoretic argument of part (d) cannot
determine the constant c.
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Eliminating Y between Egs. (1a) and (2) we find 3U =2,
which we can integrate to obtain

U=3(x-h" 3)

where the constant of integration has been chosen to satisfy the
boundary condition v = 0 at x, = h'/2. We finally find from
Egs. (3) and (2) that

2hl/2 2
y = ZH2h) 4)
9
The downstream boundary occurs at x = —2h}/?, where h = 0.

These results are the same as those found in Appendix B,
where the same problem has been treated by Riemann’s method
of characteristics.

Chapter 5

51 If ¢ = y(x), x = z — at, then y = —ay. The general
solution of this differential equation is y = Aexp(—ax) + b,
where A and b are constants of integration. Equation (5.6.3)
says v = —¢,/c; = —(—ay)/y = a.

52 Ifu= U(,x) and v = Y(x) x = z — at, then Egs. (49 la,
b) become —alU = Y and —aY = V2U. Thus V2 = a? so that
there can only be traveling-wave solutions if V is constant.

53 If ¢ = y(x), x = z — at, then y = a?y. Thus a® = 1
so that « = £1. Furthermore, the equation puts no constraint
whatever on y(x), which can thus be any function of x. Taken
alone neither the function y(z — t) nor the function y(z +t) can
satisfy the initial conditions ¢(z,0) = u(z), ¢,(z.0) = 0. For
y(@) = ¢(z.0) = u(z) and —ay(z) = ¢, (z.0) = 0, which are
contradictory unless u(z) is a constant. We therefore try a linear
combination

c(z.)y=Ayz—t)+By(z+1) )
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The initial conditions are then

Ay(@) + By(z) = u(2) (2a)
—Ay(2)+ By(x)=0 (2b)

According to Eq. (2b), A = B. If we incorporate the constant A
into the function y, we find that y(z) = u(z)/2 so that

u(z—t+u(z+1)

c(z. 1) = 5 3)

When ¢(z,0) =0, ¢,(z. 0) = v(z) we again try a solution of
the form (1). The initial conditions are now

Ay(z) + By(z) =0 (4a)
—Ay(D) + By(2) = v(2) (4b)
Thus A = —B and incorporating B into the definition of y, we

have y(z) = v(z)/2 or y = (1/2) f; v(z')dz". Thus

2+t -t
c(z.t) =3 f v(Z')dz’ — / v(z) dz’
0 0
2+
=%fv(z') dz’ (%)

z—t1

54 If c = y(x), x = z—at, thend(yy)/dx+ay+y(1 —y) = 0.
The invariants of the associated group are ¥ = y and v = y. Then

dv . vV4+av+u(l —u) a
dx_y— u a)
du___ b
& r=Y (1b)
dv Vi av+u(l —u)

— = (1c)
du uv
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The straight line joining P:(1.0) and Q: (0, —@) is v =
a(u — 1). Substituting this straight-line solution in Eq. (lc¢)
we find the latter can only be satisfied if « = 27'2. Then
vy = 27"%(y — 1). Integrating this equation once more, we find
y(x) =1 —exp(2™'/?x) when 0 < u < 1(x < 0) and y(x) =0
otherwise (x > 0). The constant of integration has been chosen
so that the wave front is at 7 = 0 when r = 0 and the traveling-

wave solution obeys the boundary conditions y(—oo) = | and
y(00) =0.
5.5 The infinitesimal transformation of the family F is
X = oti + 2 1
dz ot
Suppose the infinitesimal transformation of the group G is
Y=<:i+r£+yi 2)
a9z at ac

If the commutator of X and Y is a linear combination of them,
then, as we have seen in section 3.7, the principal differential
equation in the invariants y = ¢ and x = z — at of F is also
invariant to G. Now

9 2 a
XY -YX =(§. +8)— +(at. + 1)~ +(ay. + ¥)—
0z at dac

(3)

For this commutator to be a linear combination of aX + bY, we
must have

al. + & = aa + bt (4a)
oT. + T, =a+ bt (4b)
ay. +y, = by (4¢)

Since Egs. (4a—c) are identities in «, these three expressions
become the six equations

:=4a & =bt (5a)
.=0 T, =a+ bt (5b)
. =0 v =by (5¢)
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Several possibilities exist that depend on whether a is zero or not
and b is zero or not.

5.6 In order to keep y = 1 as the breakpoint between the two
forms of the differential equation we need to take v' = y. If we
choose 1’ = Au then &' = Au. Next we must have o’ = Aa since
o must transform like u. Finally y must transform like uu so that
¥y’ = A%y. Now « can only be a function of y and the functional
dependence must be the same for all pairs of these parameters.
Thus o’ = f(y’). Differentiating with respect to A and setting
A =1, we find ¢ = 2y(df/dy ). Now since ¢ = f(y), we find
the simple differential equation d f/f = dy /(2y), the solution to
which is @ = f = Cy'/2, where C is a constant of integration
that cannot be determined by group-theoretic arguments. The
argument goes through without change for Eq. (5.2.2) when Q(y)

is replaced by y Q(y).

5.7 If b = B(x), n = N(x), where x = z — at, then

dB _ d (dB 2BdN o
Ya&x T dx\dx N dr “
dN

=B (1b)

aO— =
dx

The infinitesimal transformations of groups (2) and (3) in
the problem statement are, respectively, X, = « d/dz + /9t
and X; =nd/dn+ b d/ob. These operators commute since they
involve entirely different variables. This means that the Eqgs. (la,
b) must be invariant to the transformations N' = AN, B’ = AB,
as they clearly are.

We can integrate Eq. (1a) to obtain

dB 2BdN
—aB=— — - 2)
dr N dx

Here the constant of integration has been taken to be zero because
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when B =0, d¥/dx = B/a =0 and dB/dx = 0t. Dividing (2)
by B separates the variables; a second integration yields

N=[l4e"]" and B=ae "' [I+e™]% (3

The constants of integration have been chosen to make
N(—o00) =0 and N(o0) =1 and N(0) = 1/2.

5.8 The fourth quadrant of the direction field resembles the
direction field in figure 5.5.1. There are two straight lines
radiating from the point (1, 0) which have slopes —«, the roots
of Eq. (5.5.2h). Now an integral curve starting at the origin with
slope —a must eventually approach the curve u = —«,(y — 1)
asymptotically; here «, = [a + (o’ — 4)'/?]/2. Thus y =
—k4(y — 1) so that y ~ exp(—«,x) when y > 1; this occurs
when x is large and negative.

Chapter 6

6.1 The partial differential equation cc, = c,, is invariant to
the family of groups (4.1.1a—c) with the subsidiary condition
a — B = —2. The principal differential equation obeyed by the
similarity solutions ¢ = t*#y(z/t'%) is By + y(xy —ay) =0,
x = z/t'7. When the boundary and initial conditions are
c0,t) =1, t > 0; c(oo,t) =0, ¢(2.0) =0,0 < z < o0,
a =0, g =2, the similarity solution has the form

C:yQ&) (1a)

and the principal differential equation becomes

2y +xyy =0 (1b)

t According to Eq. (la), dB/dx must be continuous; for if it were not and had a finite
jump anywhere, the right-hand side of Eq. (la) would be infinite whereas the left-hand
side would not. Far ahead and far behind the moving colony B(x) is flat and equals
zero. Thus when B =0, dB/dx = 0.
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When ¢(0., ¢t) = F(t), we try a solution of the form

Z
=F 2
c(z, 1) = (t)»[ ()] (2)

where y(x) is the solution of Eq. (1b) that satisfies the boundary
conditions y(0) =1, y(oc) = 0.
If we integrate the partial differential equation with respect
to z from zero to infinity, we find
o
d d 0.1 3)
— | —=dz=—c¢, R
dt =

1]

If we substitute Eq. (2) into Eq. (3), we find

oo

d y? Fy(0)
— | F? —dx | = —— 4
5 | F°p f > dx > 4)

0

Now from Eq. (1b) we find that
257+ / xyydx = ~25(0) / Yoo ®
0
0

where the second equality is obtained by an integration by parts.
Thus

i(2F2P) =F/p or ’szi(sz) =F'" (6
dr T T

Integrating we find

(P )"

TP @

which obeys the condition p ~ ' for t « 1 that follows from
the similarity solution corresponding to constant F. Finally, then,

F3©) _ F50)
p (f, F? dt)”2

p:

(8)

(0,1 =
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6.2 We use as a basis for approximation the similarity solution
to the principal differential equation when ¢ = 1 (and 8 = 3).

Then
Z
c =tl/3y(117) (1a)

3 +xyy—y’=0 X =— (1b)
y(0) = -1 y(o0) =0 (1c)
When ¢.(0.t) = —G(t), we try a solution of the form
z
D =G@) pty| — 2
c(z. 1) (1) p( ))[P(f)] (2)

As before,

/ % = —¢.(0.1) 3)

Q—lo_

which now becomes

o<
2

d V-
o Gzp"/?dx =G 4)

0

Integrating Eq. (1b) from zero to infinity and then integrating by

parts, we find
y?_
/? = (5)
so that
. 1/3
d 1
a(G-p~‘)= G or p= —G—szdt (6)
0
and
, 1/3

c(0,1) = y(0) G/ Gdr @)

0
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6.3 The infinitesimal transformation of the group C' = A*C,
t'=A%,q = X""'q, R" = AR corresponding to the parameter «
is

X Ca+( 1) a+R8+218 ()
=aC— + (a — — — —
aC Tog T oR T T o
Independent invariants of X are
R q C
= = = 2
= $1/72 v= Ra-1 w= 1al? )

The infinitesimal transformation corresponding to the parameter
o, is

X e =g+ R 4o 3)
« =0, 0— A, — - P P
aC T " "or T 7ot

Direct calculation shows that
Xu=0 X.v=(a, —a)v Xw=(,—a)w (4

so that in (u, v, w)-space

B d
X. =(a*—a)(v£+w£) &)

the invariants of which are ¥ and w/v. Thus most generally
w/v = f(u), where f is an arbitrary function. Substituting
from Egs. (2) we find this latter equation reads C/r*/? =
(q/R*")f(R/t'?) and can be rewritten as

2N\t R . ( R
C=qt"2(7) f(m)=qt'/'g<tl/2) (6)

where g, too, is an arbitrary function.

The boundary condition f0°° rc(r, t)dr = Rgqt requires that
o = 0 in group 1 of the problem statement. The similarity
solution now takes the form ¢ = y(x), x = r/t'/>. Then the
principal differential equation becomes

1
'y‘+y'(—+f):0 )
x 2
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with the boundary conditions [;° yxdx = Rq and y(c0) = 0.
Equation (7) can be integrated to give

X

where & is a constant of integration. If we integrate fooo yxdx =
Rq by parts, we find f;°x?ydx = ~2Rq from which we can
determine that k = —Rq. Then one more integration shows that

> 2 ,2

r

where E,(x) is the tabulated exponential integral f:oe“/x dx.
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Symbols and their Definitions

Some of the symbols used in this book are used consistently
throughout and these symbols are defined below. Occasionally,
some of these defined symbols are used differently in different
places. When these different uses occur throughout the book,
the places where they occur are noted in the definitions given
below. The different uses are always made clear in the text.
Symbols used only once for a specific purpose or to show
functional dependence or as arbitrary constants are not defined
below but are always defined in the text where they are used.
As mentioned in the section entitled Conventions Used in this
Book, use is made of the subscript notation for partial derivatives.
Thus the ordinary diffusion equation dc/dr = d%c/dz° is written
¢ = c¢;; for the sake of economy in typesetting. Similarly
Newton’s notation for the ordinary derivative is often used in
place of Leibniz’s; thus for the function y(x). y = dy/dx and
¥ = d?y/dx?. Furthermore, the prime always denotes the image
of a variable under transformation; thus x’ is the image of x
under transformation.
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Symbols and their Definitions

Roman Symbols

n
8
h

P

=~ U Y

>~ &

R

HlR I8 <

coefficient in the exceptional solution v = Ax”

dependent variable in chapter 4 [see Eq. (4.1.1a)] and chapter 5
[see Eq. (5.1.1a)]

diffusion constant

slope of either separatrix at a saddle point singularity; §3.4

right-hand side of Eq. (3.4.5b); similarity variable, Eq. (4.9.5)

right-hand side of Eq. (3.4.54); similarity variable, Eq. (4.9.5)

Lagrangian, §3.9; coefficient in the linear constraint Eq. (4.1.2)

coefficient in the first-order differential equation (2.1.2); coefficient in
the linear constraint Eq. (4.1.2)

coefficient in the first-order differential equation (2.1.2); Noether’s
first integral, §3.9-3.10; coefficient in the linear constraint
Eq. (4.1.2)

group invariant, chapter 3, §4.10; pressure rise, §4.7; scaling trial
function, §6.2

first differential invariant, chapter 3, §4.10; function appearing in the
conservation equation (4.5.1); coefficient in the pulsed-source formula
Eq. (4.6.2); scaling trial function, §6.3

source term in the diffusion equation (4.6.1)

radius vector

cocfficient in the conservation equation (4.5.1)

independent (time) variable

group invariant, Eq. (1.3.1a), Eq. (1.7.1); u = y, §3.1-3.2, chapter 5;
u = 8y, the infinitesimal difference between two neighboring solutions,
Egs. (3.3.10), (3.3.13), (4.5.2); variable in the wave-propagation
equations (4.9.1)

infinitesimal transformation, Eq. (3.7.1); potential, Eq. (3.9.11);
shock speed, §4.11

auxiliary variable introduced in Eq. (4.5.3); variable in the wave-
propagation equations (4.9.1); local velocity of propagation, §5.6

group invariant, Eq. (3.1.1)

source function defined in Egs. (5.2.4) and (5.2.5)

Cartesian coordinate in the plane; similarity variable, Eq. (4.2.5)

transformation for x, Eq. (1.1.1q); infinitesimal transformation,
Eq. (4.3.2), Eq. (5.1.9a); value at the front of the similarity variable z/1°,
§4.7 :

Cartesian coordinate in the plane; similarity variable, Egs. (4.2.5)
and (5.1.7)

transformation equation for v, Eq. (1.1.1b)

new variable, Eq. (2.5.1a)

new variable, Eq. (2.5.1b)

independent (space) variable
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Greek Symbols

o exponent in the c-transformation equation (4.1.1a), chapter 4;
coefficient in the z-transformation equation (5.1.1¢); chapter 5

B exponent in the y-transformation equation, chapter 3; exponent in
the -transformation equation (4.1.1b), chapter 4

y scale factor used in chapter 5

n y-coefficient function

n y-coefficient function in the extended group, Eq. (1.5.5)

M y®_coefficient function in the extended group, Eq. (1.6.5)

6 polar angle

A group parameter

Ao value of A, the group parameter, for the identity transformation

n Lie’s integrating factor, Eq. (2.1.4); group parameter in Egs. (4.9.8)
and (5.1.8)

v integrating factor of Eq. (2.1.2) given in Eq. (2.3.3); parameter in
the Poisson-Boltzmann equation, Eq. (3.6.1)

£ x-coefficient function

¢(x.y) function used to represent a family of curves, Eq. (1.4.1),
Eq. (3.7.9a)

Y(x,y) function used to represent a family of curves, Eq. (1.4.5)



Index

A

Abelian group, see group, Abelian
algebra, Lie, 60

associative law, 13

asymptote, see asymptotic behavior

asymptotic behavior, 39-53, 78-80, 95-9, 135-6, 147-8

B

bifurcation, 84
boundary-value problem, two-point, 40, 43, 46

brachistochrone, 157-61

C

calculus of variations 157- 61

channel, open, flow in, 73, 106-7, 153-6

characteristic curves, 150
characteristic equations, 5, 150-1
zero denominators in, 23

characteristics, 97, 154
clamped-flux problem, 76, 90-1

clamped-temperature problem, 75, 90-1, 136-40

coefficient functions, see transformation, infinitesimal, coefficients of

commutative law, 13
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commutator, 59-60
compressible fluid, 70, 73, 152
conservation equation, 80, 100-1
curves of pursuit, 68
curves

integral, 15, 45-6, 60

parallel, 30

D
derivative, directional, 9-11, 153
determining equations, 65-7, 146-7
differential equation
associated, 36, 44, 46-53
Bernoulli, 32
Bessel, 69

Chrystal, 30

Clairaut, 31

Emden-Fowler, 37-9, 63, 65
Fermi-Thomas, 43-6

first-order, invariant, 11-12, 15-33

Fisher, 112

Goursat, 29

Langmuir, 68
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linear, 28, 69
linear, first-order, partial, 5, 149-51
Poisson-Boltzmann, 53-5, 65

principal, 75, 90, 103-5, 110-11, 132-3, 148

second-order, invariant, 34-71

tabulation of, 26-8, 64-5, 146
diffusion equation, 73, 104

with source, 84, 108-34

linear, see diffusion equation, ordinary

magnetic, 73

nonlinear, 50, 104-5, 140-4

ordinary, 73, 105, 123, 132, 144

superfluid, 73, 75-6, 79-80, 90, 136-40
diffusion, nonlinear, 50

direction field, 44, 50,95, 114, 118, 121, 129, 131, 134, 148

E
elastic membrane, see membrane, shock-loaded

elastic wire, 73, 92
envelope, 21-2

Euler-Lagrange equation, 61-5, 158-9

F

first integral, 60, 147

functional, 61, 158

G



group, 2

group invariant, 4, 34, 36, 162-4

group property, 2, 12-13

group
Albelian, 13

associated, 77-8, 90-1, 94, 103-6, 110-11, 133, 148

extended, 8-11

Lie, ix, 1, 60, 148

once-extended, 9, 13

one-parameter, 1-13

rotation, 1, 147

stretching, 12, 25-7, 39-53, 65, 72-107, 147
translation, 25-7, 108-34, 147
twice-extended, 34

two-parameter, 59-60

H
helium, superfluid, heat

transfer in, 42, 73
I
identity, 2
image point, 1-2

integral curves, see curves, integral



integral of the characteristic equations, 151
integrating factor, 15, 28
Lie's, 15-16, 146
invariant curves, 5
invariant families, 5-7
invariant integral curves, 19

invariant

first-differential, 36-7, 162-4

group, see group invariant

Riemann, 97, 154

iverse, 2

J

jump conditions, 101

L

Lagrangian, 62-5, 158

L'Hopital's rule, 46

Lie's integrating factor, see integrating factor, Lie's

Lie's reduction theorem, 35-7, 44, 55, 94, 103-5, 111, 133, 146, 148

Lie's theorem, converse of, 17-18

linear constraint, 73

M

mean-value theorem, 80, 102

membrane, shock-loaded, 73, 85-90, 106
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N

node, 44

Noether's theorem, 60-8, 146

o

orbit, 3

ordered solutions, 41-3, 79-83, 96-8, 127, 136

ordering theorem, see ordered solutions

P
parameter

family, 73, 76, 108, 112-13

group, 73, 108

partial differential equations, linear, see differential equation, linear, first-order, partial

propagation velocity, 112-30

pulsed-source problem, 76, 104

R

Riemann method of characteristics, 97, 152-6

rotation group, see group, rotation

rotations, 1-12
S

saddle point, 44, 46-9

separatrix, 46-9, 115, 121-2, 131

shock relations, see jump conditions
shocks, 100-2
singular point, see singularity

singularity, 46-53, 103, 133




solution
asymptotic, see asymptotic behavior

exceptional, 78, 83-4, 95-6, 103
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power-law, 40, 47-8
similarity, 72-107, 147
singular, 20-1

totally invariant, 84
traveling-wave, 108-34, 136

solutions, ordered, see ordered solutions
source point, 1-2

stability against small perturbation, 113-15, 117, 130-1

superconductivity, 112, 117-18, 126

T
trajectory, orthogonal, 14
transformation
identity, see identity
infinitesimal, 2-3, 56, 59
infinitesimal, coefficients of, 3, 9-11
Inverse, see Inverse
transformations

contact, 148



extended, 9, 13

groups of, 1-2

non-local, 68, 148

point, 1
traveling waves, see solution, traveling-wave
\Y%

variables

change of, 22-6

separation of, 23-6

W

wave
diagram, 154-5
equation, 92, 132

propagation, 92-102



