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EDITORIAL INTRODUCTION

This book is a valuable introduction to the theory of finite Hankel
and Toeplitz matrices. These matrices are characterized by the pro-
perty that in one of them the entries of the matrices depend only on
the sum of indices, and in the other only on the differences of the

indices.

The book is dedicated in general to the algebraic¢ aspect of the
theory and the main attention is given to problems of: extensions, com-
putations of ranks, signature, and inversion. The author has succeeded
in presenting these problems in a unified way, combining basic material

with new results.

Hankel and Toeplitz matrices have a long history and have given rise
to important recent applications (numerical analysis, system theory,

and others).

The book is self-contained and only a knowledge of a standard course
in lincar algebra is required of the reader. The book is nicely
written and contains a system of well chosen exercises. The book can

be used as a text book for graduate and senior undergraduate students.

T would like to thank Dr. Philip Thijsse for his dedicated work in
translating this book and Professor 1.S. Iohvidov for his assistance

and cooperation.

I. Gohberg



PREFACE X

mation on Hankel matrices and forms can be obtained from the monograph
"Theory of Matrices" of F.R. Gantmaher ([3],Ch.X,§ lo and Ch.XVI,§ 10)
practically all known Russian or translated courses on linear algebra
and matrix theory make no mention of Toeplitz matrices and forms, ex-
cept for the literally few lines devoted to them in the book of R. Bel
mann (2]. As to the well-known monograph of U. Grenander and G. Szegd
"Toeplitz forms and their applications” [7], that is on the whole de-
voted to analytic problems. The term “Toeplitz form" itself is, in
spite of the general definition given to it by the authors in the pre-
face, used in this book almost exclusively in the sense in which it
entered in the literature following the works of C. Carathédory,

O. Toeplitz, E. Fischer, G. Herglotz and F. Riesz (in the years 19o7-
1915) . Namely, they deal basically with forms with coefficients which
are connected with certain power series, Laurent series or Fourier se-
ries, and not at all with forms of general shape and their purely alge

braic properties.

To date, a large number of results relating to the algebra of Hanke
and Toeplitz matrices and the correspcnding forms has been accumulated
in the journal literature, and these results combine already to form a
sufficiently well-structured theory. It originated in the memoires of
G. Frobenius [19,20] (from the years 1984 and 1912), but further re-

sults, which enter into the present book, were only found in our days.

Highly remarkable in our view, are the deep analogies and also di-
rect relations, which were discovered only in the later years between
the two classes of matrices (and forms) to which this book is dedica-
ted. These analogies and connections, namely, were the orientation
which enabled us to clear up many questions which remained, until now,

in the shadow, in spite of the venerable age of the considered theory.

The reasons delineated above constitute, in all probability, suffi-
cient justification for the purpose adopted in the writing of this
book: to restiict it in particular to the algebraic aspest of the thec
ry, but to reflect this, if posstble, completely. We note, that the
first part of this formula, to set aside all kinds of applications, a:
long as these are presented in other monographs in a sufficiently com-
plete way, is (just as the second part) not wholly sustained with due
consequence -~ we could not resist the temptation to adduce if only the

simplest application of Hankel and Toeplitz forms in the theory of the
separation of the roots of algebraic equations, which, besides, does
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not really violate the algebraic character of the book, mentioned in
its subtitle. The special Appendix I is dedicated to this matter, whe-
reas Appendix II touches, albeit also only in the same elementary way,
the deep connection between our subject and the classical moment pro-
blem.

As to the basic text of the book, it is, with the exception of Chap-
ter I, entirely devoted to the algebraic properties of Hankel (Ch. II)
and Toeplitz (Ch. III) matrices and forms, and also to the various
transformations of these subjects, among them the mutual transformations
of matrices and forms of each of these two classes to matrices and

forms of the other class (Ch. IV).

Let us linger in some detail on the contents of Chapters II - IV,
The core of the whole theory is the so-called method of singular exten—
sion of Hankel and Toeplitz matrices (§§ 9 and 12 respectively) and the
notions of characteristics which are developed on this basis. These no-
tions which allow, respectively in §§ 11 and 15, to establish compara-
tively rapidly fundamental theorems on the rank of Hankel and Toeplitz
matrices separately, are then combined in § 17 to one single systems of
characteristics, covering both considered classes of matrices. In
8§ 12 and 16, respectively, signature rules are established - the well-
known rule of Frobenius for Hankel forms and a new rule for Toeplitz
forms; this and the other are obtained by the same method of singular
extensions and characteristics. Section 18 is entirely devoted to the
problem of inversion of Toeplitz and Hankel matrices, and § 19 to trans-
formations which transfer into each other the forms of the two Classes

which interest us.

Chapter I plays an auxiliary role., In it information from the gene-
ral theory of matrices and forms, which is necessary for the subsequent
chapters, is gathered. Some of this material is presented in traditio-
nal form but another part, however, had to be presented in a new way in
Order to make the reading of the book, if possible, independent of the
direct availability of other texts. This relates in particular to

"§§ 6 and 8, which deal with truncated forms and the signature rule of
Jacobi (and its generalizations), respectively. Somewhat distinct is
§ 3, which contains purely technical but, for the construction of the
entire theory, very important material - a lemma on the evaluation of
one special determinant and its consequences.

Of the reader is required the knowledge of the elements of mathema-



PREFACE xii

tical analysis and algebra, and also the knowledge of a basic course in
linear algebra and matrix theory to the extent of, for example, the
first ten chapters of the treatise of F.R. Gantmaher [3], to which this
book is, actually, presented as a supplement. Such minimal general pre-
paratory requirements of the reader has forced us to exclude from the
book the theory of infinite extensions of Hankel and Toeplitz forms
with a fixed number of squarxes with a certain sign. This theory, de-~
veloped in the papers [3o, 42, 33, 43, 31] and others, is in this book
represented only in two exercises in §§ 12 and 16 respectively, since
it requires the application of tools from functional analysis (opera-
tors on Hilbert spaces with an indefinite metric). In addition the stu-
dy of the asymptotics of the coefficients of the mentioned infinite
extensions necessitates the engagement of the appropriate analytical
apparatus.

The original text of the book was completed as a manuscript of spe-
cial courses which the author held in the years 1968 - 1970 at the
Mathematics Department of the VoroneZ State University and at the De-
partment of Physics and Mathematics of the Voronef Pedagogical Insti-
tute. Subsequently this text was significantly extended by the inclu-
sion of new results, both published and unpublished, and also in favour
of examples and exercises, which conclude each section of the basic
text and both appendices. The range of these exercises is sufficiently
wide - from elementary numerical examples, provided either with detai-
led calculations or with answers, to little propositions, and sometimes
also important theorems, not occurring in the basic text. The most dif-

ficult among the exercises are accompanied by hints.

In the book continuous numeration of the sections is adopted; the
propositions, and also the examples and exercises are numerated anew
in each section; the items, lemmata and theorems, and also the indivi-
dual formulae have double numbers (of which the first number denotes
the section). The references to the literature in brackets [] lead the
reader to the list of cited literature at the end of the book.

For his initial interest in Toeplitz forms, and also in other pro-
blems of algebra and functional analysis, the author is obliged to his
dear teacher Mark Grigorevié KreIn. In this book (especially in the
Appendices I and II) the reader will repeatedly encounter some of his

ideas and results, relating to our subject.

The text of this book reflects the valuable suggestions of
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V.P. Potapov, expressed by him at the earlier stages of its preparation,
when the idea of the book was barely thought out. At the final stage of
the work the interest shown in this project by the collaborators of the
chair of algebra of the Moscow State University, O.N. Golovin,

E.B. Vinberg, E.S. Golod and V.N. Laty¥ev was a great stimulus for the
author.

T.Ya. Azizov and E.I. Iohvidov, students in the special courses in
which the book “"originated”, did indeed extend invaluable help to the
author in the realization of the manuscript. In particular T.Ya. Azizov
undertook the unenviable task of reading the complete text and veri-
fying all exercises and calculations, which resulted in the insertion
of numerous corrections and improvements. Useful remarks during the
presentation and the reworking of the lecture courses were made by
F.I. Lander.

To all those mentioned here the author wishes to express his sincere
gratitude.



Chapter I

SOME INFORMATION FROM THE GENERAL THEORY OF MATRICES AND FORMS.

§ 1 THE RECIPROCAL MATRIX AND ITS MINORS

m

1.1 We shall consider arbitrary square matrices A = "aij"i =1
3=

of complex numbers. If

11 < iZ € see < ip; j1 < j2 < eee < jp

are two sets of p indices (1 £ p £ n) from the indices 1,2,-**,n, then
we denote, as usually, through

i, di,...i
a 1 2 ©

31 jz...Jp
the minor, consistingof the elements on the intersection of the rows

with mmbers 11,12,-.-,ip and the columns withnumbersjl.jz,-~’,jp of A,

i.e.,
i i -0°d
A |t 2 Py Cgetla, . NP .
5 PR PEEED | 13, wevst
1 2 P
Evidently,
1 2---n
= |al,
1 2«..n

the determinant of the matrix A.

We agree to denote the n-p indices remaining after taking from the
set {1,2,...,n} the indices il'iz""'ip (jl'j2""'jp) through
kl.k2,~'°,kn_p (ll,lz,fov.ln_P) (here the indices are always written in
increasing order). Then

kg k2'“kn-p

A
% 12"’1n—p
is, by definition, the complementary minor to the minor
i, i e..d
a |12 P
Jl jz"'Jp
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Evidently, complementary to the minors aij = A(;) of the first order
are the determinants

1 2.¢ei=1 i+leeen -
A H aij (i'j-ilz"'°'n)l
1 2---3-1 j+1...n

and the numbers Aij = (-1)1+j:ij represent the cofactors to the elements
aij in the matrix A, respectively (i,j=1,2,...,n).
1.2 Diverging somewhat from more extended terminology, we shall,

following [3], call the matrix

-~ ~ n

A= "aij|li,j-1
consisting of the minors of order n-1 of A the reciprocal matrix with
respect to the matrix A. We establish a rule for the computation of

minors of the reciprocal matrix.

THEOREM 1.1. For an arbitrary natural number P (1 S p S n) one has

~ i ijeeed k, kgjee-k__
A 1 2 P = |A|P'l a 1 2 n-p

jl jz"’jp 21 2

(1.1
2"'En-p

Here, in the case where p = n, formula (1.1) should be understood as

[ 2¢een n-t
lal=a = |A) . (1.2)
I 2¢een

-1
and for p = 1 and Al = O one should assume 1AI°7" = 1.

PROOF. Without loss of generality one can restrict oneself to con-
sidering minors of the shape
. 1 2-+¢p
A (1 spsn),
1 2-..p
as the general case is obtained from this easily by appropriate permu-
tation of rows and columns. Now formula (1.1) takes the form

- 1 z-oop _ p+[...n
A = APt a (1.3
1 2---p ptle-+n

In order to establish this, we multiply in the determinant

i1 2. 211 %1277 "%
A Pl =2, a8,
1 2...p sk

a 3 _e.ea
*pt %p2"""%pp
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the i-th row with (-1) (i=1,2,...p) and the j-th column with (~1)J
(3=1,2,...,p) It is easy to understand that by such a transformation

the value of the determinant doesn't change, and the determinant itself
takes the form

"o 2... A1 BBy
~1 14 itj~ . p _|a A,....A
A = det Il (-1) aijlli j=1 = 21 “22 2p

1 2...p ’ . o e

A, A....A
pl pZ PP

It is convenient to assume that this minor has the shape of a deter-

minant of order n (in thecasep = n the next step is, clearly, not

necessary):

Mg o B [P, pe1 0 B
A21 veoor Azp A2,p+l eoe Azn
~ |1 2...p
i I R . ..
A ess A A eee A
1 2...p p1 PP | P.pHl pn
0 ...o 1 A
o) aea O (o] ees 1

We multiply both sides of this equality with the determinant

ayy rer Ay al,p#l cer @
ay e 4 32'p+1 eeay
lal = a a a a !
ol Tt 3 et T %pn
2o+1,1° " %p+1,p ap+l,p+l"'ap+l,n
an1 "'anp an,p+l ***%m

where we shall develop the product of the determinants on the right-
hand side through the "row on row" method. Then, taking into account
the well-known properties of the cofactors Aij' we obtain

1 2...p

a . lal =
1 2...p
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|al o .ee0 [o] .o sO
[o} |al ...0 o AN o]
o

_ ..lal o ...0

21,p+1 22,p+17 "%, pr1| Ppr1,pe1” %0, prt

. . s o - cee o

aln dzn ...apn ap+1,n ...ann
p+l -+ n
= |alP.a . (1.4)
p+1 eee N

We observe at once that, for p = n, it is simple to obtain that

~[1 2..n n
a } . |lal = |al™. (1.5)

1 2...n
If the matrix A is nonsingular (|A| #0) then formula (1.3) (resp.(1.2))
follows immediately from (1.4) (resp.(1.5)). In the case where |A| = O
the identity (1.3) (resp.{1.2)) is obtained by a standard limit transi-
tion. Namely, the matrix Ae = A+¢E - where E is the identity matrix
on order n - is considered. The determinant IAel is a polynomial in €.
Therefore, in an arbitrarily small neighbourhood of zero there can be
found values € fotwhichIAel#O. Having noted that for such ¢ the
identity in formula (1.3)(resp.(1.2)) is wvalid for A (strictly
speaking for the minors of the reciprocal AE) we take the limit for
€ = O over those values of ¢ for which 'Ae| # O. Hereby the minors of
Ae and A€ go to the respective minors of the matrices A and A we obtain
the identity (1.3)(resp.(1.2)).

EXAMPLES AND EXERCISES

1. Let
3 0 -1
A= 2 7 =2 .
-3 4 O

Whithout constructing A we evaluate i(; §). Here p = 2,
lal = 3.8+(-1)(29) = -5,

1alP~! = _s, A(?) = -3.

With formula (1.1)



THE SYLVESTER IDENTIFIES FOR BORDERED MINORS /5

- 12
a ] = 1aP7! a
23

3
] = (-5) (-3) = 15, (1.6)
1

2, For the matrix A of example 1 we evaluate IAl. Wwith formula (1.2)

(Kl = 1Z1™! = (=52 = 25,

We note, that the matrix A itself has, in the given case, the form

8 -6 29
A= fa4 -3 12 .
7 -4 21
Returning to example 1 we verify the result (1.6):
- 1 2 -6 29
A = = =72 + 87 = 15,
2 3 -3 12
3. If the matrix A is "lower triangular",
all o [o] (¢]
A= | %21 222 % - ° ,
n1 *n2 %n3 °°° Zmn

i.e., aij = 0 for j > i, then the reciprocal matrix A is "upper trian-

gular"”,
;11 512 §1n
5. 0 3yttt Ay
0 0 ...a
i.e., ;jj =0 for i > j.

4, Is the converse of the statement, for lated in example 3,

correct?

§ 2 THE SYLVESTER IDENTITIES FOR BORDERED MINORS

.

2.1 We consider in the matrix A = "aile: j=1 (n 2 2) the minor
5=
1 2 ...
P (18p<n)
1 2 ... p

and we shall border it, adding any row and any column from the remai-
ning n-p rows and n-p columns, i.e., forming the minors

brs =a { 1 2 ...p
1 2 ...p s
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With these minors we construct the matrix

n
B = "brs“r,s=p+1

of order n-p and we set ourselves the aim to evaluate its determinant
1 «een
B P+ .
ptl «.eo n
THEOREM 2.1 (SYLVESTER). The following identity holds:
ptl ..o n il [ 1 2 ...p n-p-1
= |al | A . (s
ptl eeun 1 2...p )
PROOF. Since for m = p-1 formula (S) is trivial, we shall assume
1 S p < n-1. We consider the matrix a, reciprocal with respect to A,
and some of its minors, namely
~ fptl «ec r=1 xr+l ... n
c = A

rs = ptl «2e $-1 S41 ..o n
(r,s = p+l,+++,n). (2.1)

According to Theorem 1.1 (formula (1,1)) we have

1 2 ...p r -
= lmln—p«-2 A ‘ l = 1a® P‘2b

1 2 see P S rs
(g,s = ptl,...,n). (2.2)
. n
Now setting up the matrix C -Ilcrsllr ,s=pt1 of order n-p,we calculate
from (2.2) its determinant |Cl:
e - p-l-] ese N
lel = 1a) (P2 (n-P) a( (2.3)
p*l ... n

The determinant (2.3) can be evaluated also in an alternative way
taking advantage of the fact, that by the definition (2. 1) of the numbea

c, 4 the matrix C is the reciprocal for the matrix na . Taking

rs t s=p+1
this into account, we have on the basis of (1.2)

~ +1 ... n-p-1
Icl = [A P ] ] P
ptl ... n
ptl ... 1

ptl ... 1
brackets we obtain, again by formula (1.1},

1 2 ...p) n-p-1

Now, having evaluated the minors A standing between the

tel={1a1®P 1, {

1 2 «.. p
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1 2 ... p n-p-1
(n-p-1)?
= lal A l ] (2.4)

1 2 ...p
It remains to equate the expressions(2.3) and (2.4) for € and in
the case |Al # O we obtain, after cancellation, the Sylvester identity
(s). If Ial = 0, then the proof is completed by means of the same
method, which was exploited above for the analoguous case in the

ascertainment of Theorem 1.1.

2.2 We shall often have to use the'Sylvester identity, mainly in
two special cases, which we consider in detail.
Let p =n-2. Then formula (S) is reduced to the identity

1 2 +es n=2 , n-1 n
IRLA {1y 5 o2 Blni n
or, more explicitly,
1 2 eee n-2
LA 1 5 a2 -

1 +«s n-2 n-1
=A 1 ... n=2 n-1

1 «eon=2 n
A 1 ... n=2 n -

1 ... n=2 n=1 1 .e.n=2 n }
- A l 1 .o.n-2n l A { ev. n=2 n-1 . (2.5)

It is easy to make clear to oneself the structure of the minoxs

appearing in (2,5), having considered the diagram n
1 2 ... n=2 n:l by
Bly 2...n-2 Do
Ial = P
S I 53 T

By a simple permutation of rows and columns one obtains from formula

(2.5) another variant, which is very conyenient in a series of

computations
2 3 ... n-i]
al & l2 3 ov. el =
1 2 ...n-1 \ 2 3 ...n
I T RO | Ala s n) )

1 e n=2 n-l) 2 veim-1n ]
- A 2 ...n-1 n Aly ... n-2n-t (2.6)
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Here the related diagram is derived as

(-1) -24-(=2) (-3)

(-1) (-42)-0 = 42,

= (9-11-11%2 -

1 2 n-1 n
..E..;....................I etes 1
N N I
_ . ees D=1 .
1Al = : l“[z 3 ... n-1 I :
cesene PO n-1
et eeeraoranctrereecreeesnceanae n
EXAMPLES AND EXCERCISES
1. let
3 -2 1 0
A= 4 -1 2 3
o 3 1 5
7 -4 2 6
By rule (2.5)
3 -2 1] |3 -2 o
Ial ‘3 :f' =}l4 -1 2| |4 -1 3
o 3 1| |7 -4 s
3 =2 o] |3 -2 1
- la -1 3] [4 -1 =
o 3 s{|7 -4 2
i.e., 5 IAl = =30, Al = -6.
By rule (2.6)
3 =2 1] |-1 2 3
apdmt 2o fe -t o2 3 s
301 o 3 1] -4 2 6
-2 1 ofle -1 2
- |-t 2 3flo 3 1| =
3 1 s5{}{7 -4 2
i.e, |al = -6.
2. Let
3 1-i 2+45i
a= ||l 141 3 14 .
2-5i 1+i 3
By rule (2.6)
3 i-1]3  1-i
3 1al = |1+i 3 hes 3
i 2+5if |1 3
3 1-i f[2-58 1+i
e 1 (1-1)2-3(2+51) 12 = 72-|1-2i-1-6-1511° =
- 49-1-6-17i1% = 49-325 = -276,
i.e., |A|l = -92.

=30,
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3. Generalize identity (S) in the following way:
. 1112...1q]=A 12‘-‘p1112...1q) [A(12u~P)CI‘1
kl K, oeo kq 12 pky ky oon kq 12 ...p

2
. (2.7)
il < i, < ses < iq

<n

where

p< kl < k2 < wes < k

HINT. Apply identity (S) to the determinant

. L 12..vp il iy ere lq
12 e pkyky ooe kq
4. (Kronecker [47]).Let (in the notation of § 1.1) the minor

a 12 ...p

12 .- p * O for the matrix A, but let all bordered minors

brs =0 (r,s = ptl,-++,n). Then the rank of the matrix A is equal to p.

HINT, In oxder to prove that all minors of order m > p are equal to

zero, use the Sylvester identity (S) (or (2.7)) in connection with the
matrix

all oo alp aikl Y alkm
a R - a ees @
A= pl PP pky pky
a cee A [e] ... O
ill ilp
a «eoa, plo ... O
iml in
where
11 < iZ € eoe € 1
1= S n.
< < see <
k1 k2 k
NOTE.

1 .
) For the notation applied in this and'the next diagram see the note

to formula (3.3) below.

§ 3 EVALUATION OF CERTAIN DETERMINANTS

3.1. In this section the problem will be to evaluate certain deter-
minants of a special form. These determinants will occur repeatedly in
the Chapters II and III.

n .
Let A = "aij"i,jzl be a matrix of order n and let p and r be natu-
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ral numbers, where p+r < n. We consider two sets of indices

i, < < ... i

iy lptr

(15) < < (Sn)
:ll jz cee jp+r

From the set {11,i2,~--,ip+

r} of ptr indices we choose some set
("1'"2""'"p}
consisting of p indices, indexed here in arbitrary order, and in the
same way a set
(Vlovzl“‘o\’p}
consisting of p indices from the set {31'j2""'jp+r}’ Let
@) <@y < eee <a and 8l < Bz < ee. < Br be the complements of the
sets {ul,uz' ”.'up) and {\’l,\’zgvoc'\’p) in the sets {11'12"”'lp+r}
and {jl'jz"°"jp+r}' respectively, and

a, @, r-- @
A-A‘l 2 x
4

Bl 82 CERS Br

the minor of order r of the matrix A (see § 1.1)

%)

Further we denote through A the matrix, obtained from the matrix

A through the substitution of its entries a a eere,a by
M,V [TPRY [TIRY

171 272 PP

numbers g 1,; 2,...,;9, respectively, and we consider of the matrices

A and A(;)the Corresponding minors of order p+r
(x) i1i2"‘1pn)
N R T .
P 3; 3, pir
i, i, ... 1
u @) - a® lj‘ A 3.1)
P 172 ptr

LEMMA 3.1 If r 18 the rank of the matrix

a=la, "

135, 5=17

and o, and o, are the mumber of inversions in the sets

{U1 Myt ce.U 'al '02' [ER) oar)

P
{\’1'\’2'.”'\’p'sl'BZ'...'er}

respectively, then the determinant M;r)
the rule n

and

(5} (see (3.1)) is evaluated by

P
n (;w-uu\) )o

g +0
M@ = - ¥ Va
P w=1 W W

r

PROOF. This is particulary clear in the special case where u =i,
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\’m = jm (w=1,2,...,p), i.e. 2
[4 a vee @ ee. A,
1 443, 443, i3pr
a 4 ces @, -
1,3y 2 i3 idper
M;t)(t) = |* . ves o ere o . (3.3)
a a, . eee & cee &,
ipj 1 1932 p iiper
a, . oay ;oeee @y B a
p+rJl p+t32 ptr'p
Th . (x) = ulT)
e polynomial Mp (¢} = Mp (;l,;z,---cp) in the parameters

cl,;z,...,;p vanishes if one replaces any of these parameters, for

example Cq' by the element a, 3 of the matrix A which place this para-
q7dq

meter occupies. Indeed,with g =a, 5 in the determinant M;t)(c) of or-

q9°q

der p+r, there appear r+l of the rows (columns) of the original matrix

A, which are linearly dependent, as this matrix, by assumption, has

rank r. Thus the polynomial Mér)(c) is divisible without remainder by

the product
t, -a (g, -a, . YeeelT =-a, . ).
1 iljl 2 12j2 P ipjp
It is clear, that the quotient under this dQivision will be the leading

coefficient of the polynomial, i.e., the coefficient of the product
CI;Z"'CP' But from (3.3) it is evident that the minor Ar is this
coefficient, i.e.,

M(1:)

P
b (C).Ar l;l(l; -a Y.

w=1 ° lmjm

Since in the present case oucsoi)a o, o“(soj)- 0, formula (3.2) is
established for the special case under consideration.

The reasoning we followed is also applicable in the general case
with only this difference, that now the coefficient of the product

Clcz...;p in the determinant M;r)(t) is distinguished from Ar by a

factor * 1, depending on the location of the entries Tyrbgetteity in the

ninoxr M(r)(t), i.e., of thg elements a v 2 RARATL N in the minor
( P PR PN MoV
r
"p )(see (3.1)). But, as is known from the theory of determinants,
g +6

this factor is (-1) ¥V Lemma 3.1 is proved.

The shape of formula (3.2) permits to deduct from Lemma 3.1 this

COROLLARY. The value of the determinant ns‘f’ (z) doesn't vary, if
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arbitrary elements of the matrix A, with exclusion of

a (w=1,2,...,p) and elements which enter in the structure of the
W W

minor Ar,arechanged in such way that the rank of the matrix A always

remaing equal to r.

3.2. We shall mainly have to apply Lemma 3.1 in two special cases on
which we shall go into some detail. The first of these is the case,
where (here, it is convenient to substitute the index p by the index k)

A ecetsssencssscatesanne

D R R R R RN

M]ir) - voe cen an-k#l,n

ves | @ see A
n,n-k+1 nn

teterrscrsesacecsrae
A | ciieiesecncssancnas

DR A A A I I IR I )

T 4
(r) !

M (¢) = .

i.e., when

u, = n-k+w, v, = ntl-0 (w=1,2,++4,k).

We note, that now (see Lemma 3.1) the complementary indices

a<%<u~wruemﬂhtmmanuwmnlﬂnumhtMimm%

1
B1 <82 <ove <Br smaller all A (w =1,2,+--,k), and the sets
vy < oeo <uk and vy > e > v, are monotonous. Hence in the set of
indices

ulluzl o 'ruklallazr . "'at
the numer of inversions is equal to

ou = r+r+...+r = kr,

k times
and in the set

VI.VZ"-',vk'Blpﬁz: “’vBr

the number of inversions is equal to
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o, = (k=142)+(k=2+r) .o (1) 4r = kr + EE1)

3 .
Thus, in the given case, formula (3.2) takes the form
B [ ererereereeneaenns
X Tescescancnocncncese -
"lit)(;) = eoo bo oo o 1;1 -
e ;k ... an.
k
k(k-1)/2
= (-1) A mgl (1;m an-kﬂu,n-uﬂ)' (3.4)
In particular, for an-k+m,n-w+l Za(w = 1,2,-+,k) and ;1=c2= .ee =znsz;
(so, namely, it will be in Ch, II) we have
- k
wF @ = *ED/2 g g (3.5)

We make now the following remark, important for the application of
formulae (3.4) and (3.5). In the corollary to Lemma 3.1 there were
indications on the possibility of variation within specific bounds of
some entries of the determinant Mir)(;), without changing its value.

In the present case this statement can be sharpened, having noted, for
example, that

19, The determinant ")Er) () is not changed if all its entries,

standing in the righthand lower corner under the diagonal ¥ AR in
diagram (3.4) are substituted by arbitrary rumbers.

Indeed, we partition the last column of the determinant M;r)(c)
(see (3.4)) in two parts

(o] *
o *
- +

C1 an-k+1 n an-k'rl +0|
0 *
o :
(o] »

where all other entries in the partitioned column (i.e. of the matrix
A) are denoted by asterikses, and, corresponding to this, we shall
partition the determinant M;r)(c) in two terms:
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* O .. @ 0
A e e see .
r
* * ... (o]
(r) vee * % ... T, -a
M, () = 1 "n-k+1,n +
. e * ® ..
P S .
* s ®|T % L. * (o]
k
LK S ]
Ar o o see o . r+1
ce. ®®
+ * .. I

Since in the second of these one has r +1 rows which are part of the
corresponding rows of the matrix A of rank r, this determinant is equal
to zero, and this moreover identically relative to the entries of all
remaining rows and, in particular, to arbitrary values of the entries,
standing in the righthand lower corner, below the diagonal

8-k, 527"t e by Thus

(x) (r+1) (r+k)
Mo ()=(-1) (;l-an-k+1,n) *...% | = ...z

2
.ee ® oo #
k-1
P P
* ... W * L. W
Cx
\,—w

and repeating the same method another (k-1) times, we are convinced

that proposition 19 is correct.

REMARK. Incidentally, we obtain a new, independent proof of formula
(3.4). The simple verification that the signs in frontof the product

do coincide we leave to the reader as an exercise (cf.l40])).

3.3 Another case of an application of Lemma 3.1 is found if one
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considers the minor "(r) of the matrix A, which has the form
() _ . (r)
MP - Mkrz
k b4
e ,—-—-ﬁﬁ—-5
Ay, ey, . eses o al,t e ay
. ves o o ees : : 2
ali coe azk « eas o al,T cee aln
=
. A . r (3.6)
r
ac',1 e ao,k . cee s ao'T cee ao'n
. : ¢ vee o | . k
ay el e eee an,t cee

(r)

(where o=n-k+1, t=n-2+1),and the corresponding minor M () of the

matrix A(C). Here (cf. Lemma 3.1)
p=k+£>0,k20.£20,
ul = n-k+1, u2 = n-k+2,..., uk =n,
Ve = 1o Wyp = Zeccme By, = b
v, = 1, v2 = 2,000, vk =k,
Vgey = PmBL Vo = a2 v 20
such that

coe < ceee € < < € oo
Mot < Pge © S Mgyg SS9 TS a Tt My

Vl < “2 € ves € vk < 31 < 32 € ses < 3r < “k+1 < vk+2 < see < “k+2 .
Hence
ov = k(2+r), o, = fr
and formula (3.2) yields (ecf. [37])
(r) G )
Mp () = Mk, (g,n) =
08 R 1 S B IR T
ap, e A s al,r cee My
. A
) 4
£l AL R ao,r ttT ao,n
anl e €k « . . an,r e ann
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L

) M (ngmay o) (3.7)
wel

k!.+r(k+k.)A

= (-1) r

k
n (£u~a

w=1 n-k+w,w

(where o=n-k+1, Tt=n-2+1).

In particular, for an-k+m,w H a,;w = E (w=1,2,-+,K); au,n-t+w z b,
nw =1n (w=1,2,...,2) (this case will be met in Ch. III)
w5 g = (OFMERE, (g X (np) L, (3.8)

This formula take an even more simple shape when the matrix A is
HERMITIAN and k=%, Then b=3, and if, besides, one assumes n=f, then we
obtain

uif;(z,ii = w0 =0 te-al®, (3.9)

In an analogous way, in the case of a (complex) symmetric matrix A for

k=% and n=f{ we have instead of (3.8)
(r) (x)

M k(B8 = M

In conclusion we note that, quite in analogy to proposition 1¢, one

© = -0 -2 (3.10)

obtains the proposition

29, The determinant M;f;(&,n) i8n't changed if all its elements stan-
ding in the lefthand lower and righthand upper corner, respectively
below and above the diagonals Eyereeily and Nyeseeem in diagram (3.7)
are interchanged by arbitrary numbers.

It is clear, that this result expands, in particular, the sphere of
application for formulae (3.8)-(3.l0).

EXAMPLES AND EXERCISES

1. Let
-1 3 o 4 -5 2 1
3 2 -2 s 7 o0 -4
2 5 -2 9 2 2 -3
A= 1 8 -2 13 -3 4 -2 .
-4 1 2 -1 =-12 2 5
-3 9 o0 12 -15 6 3
5 7 -4 14 9 2 -7

Here n=7,r=2 (all rows are a linear combination of the first two inde-
pendent rows). Let (r=2), p-2,il=2,12-4.i3-6,i4=7,31=1,j2=3,33-5,j4-6
i.e.(see (3.1))

3 -2 7
(r) _ .(2) 2 467 1 -2 -3

M =M = A =
o 2 L3 s 6 3 o -15
5 -4 9

VO e o

Let
Wy =ig =7 =iy =2, v =3y = Lvy =33 =5
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l1.e.
cl = i2 = 4, 02 = i3 =6; 81 = j2 3, B2 = j4 =6,
a, a
e - 1 %2} _ 14 s -2 a4 _ _
A =R, =A [81 6, } Ay ) = I o 6 I 12,
Now, on one hand
3 -2 a2 © 2 O ga+3 -4
(2) 1 -2 -3 4 1 =2 -3 4
M@ -3 0 -15 6 -3 o -15 &
4 -4 9 2 g1-2 o} 15 -6
2 Taz+3 -4
= =2 -3 -15 6 =
Lq4=2 15 -6

—2[-(£2+3) (18-674+12) =4 (~45+15Z4-30) ] =

2 [(22+3) (30-674)+4(15L4-75)] =

2 [-6(52+3) (£1-5)460(T4-5) ] = =12(L4-5) (La+3-10) =
-12(g4-5) (52-7) .

on the other hand, in the sets
(ulluz.aluﬁz} = {(7,2,4,6}, {Vltvzrﬁlrsz} = {1,5,3,6}

the number of inversions is equal to: ou =3, g = 1. In this way (see

v
formula (3.2))
Uu'l-ov a
(-1) Ar(cl_a71)(;2-°25) ={-1) (~12)(C1'5)(C2-7) = -12(5175)(§2-7)

completely in accordance with Lemma 3.1.

2, Evaluate (without developing it!) the determinant

-1 o] q N1 2 1
3 =2 S 7 nz -4

A= 2 -2 9 2 2 na
1 =2 13 -3 4 -2

-4 2 -1 -12 2 S

£1 -4 14 9 2 -7

Solution: 8 = 24(51-5)(n1+5)n2(n3+3).

. (r) _ ,(2) - 1
HINT. Consider the minor Mk,a = Hl,3 A ' i

matrix A of example 1 and yse formula (3.7).

7
l of the

345
4567

w N

3. Find, not carrying out a calculation, the roots of the third
degree polynomial
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3 o 4 -5 2 1
2 -2 § 7 o -4
8 -2 13 -3 4 -2
LY 1 2 -1 -12 2 a |-
9 (o] 12 =15 A -8
7 4 14 A 11 -3

Solution. *, =5, Xz =6, A, = 9.

1 3
HINT. Again, starting with the matrix of example 1, use formula

(3.4) and proposition 1°.,

4. Evaluate (without developing it) the determinant

1 i -1 & 0

-4 1 i -1 T

A= -1 - 1 i -t
£ -1 -i 1 i

-2 £-1 -i 1

. N
Solution. 8 = l&-il .
HINT. Having selected the corresponding matrix A, use Lemma 3.1 in
the shape of formula (3.9) and proposition 2°,

5. Generalize proposition 1° and 2°, having noted that in their con-
ditions the requirement that the elements, which are intexchangable
with arbitrary numbers, are located strictly on one (but still complete-
ly defined) side of the diagonal ;1,-~~,;k in diagram (3.4) and of the
diagonals 51,..., Ek and Nyseeerny in the diagram (3.7) is unessential.

NOTES .
(r)

1 The minor Hp

(see (3.1)) is under the conditions of Lemma 3.1
equal to zero, as its order p+r>r, and r is the rank of the matrix A.

2 In diagram (3.3) we use a certain abbrevation for shortness of no-

tation, replacing a well-defined “"part" or "block" of the matrix of the
determinant M(t)

P
ber Ar' but the matrix, related with the minor Ar. Such a notation is

(L) by the symbol Ar' not meaning, of course, the num-

used several times, alsc in the sequel (in this respect we follow [3])
in all cases, where it cannot cause misunderstanding. Actually, above
we used it already in the Qiagrams of § 2.2,

§ 4. MATRICES AND LINEAR OPERATORS. SPECTRUM.

4.1 We recall that eigenvalues or eigennumbers (in a different termi-
nology characteristic numbers) of the matrix A = llaijllz'j___1 are called’
the roots xl,xz,....xn (here each root is repeated according to its
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multiplicity) of the characteristie polynomial,

ali-x °12 oo aln
aoel = | T2 a7 =0 2 _
a anZ eee ann-A
= O™+ (e tag,t e ta 10" e kAl 4.1

of this matrix. We note (this will be essential to us in the sequel)
that because of the abovementioned definition the eigenmumbers of a
matrix are a continuous function of ite elements v,

The eigenvalues of a matrix have a simple geometrical meaning. Let
E" be the complex n-dimensional linear space, and (el,ez,...,en} a ba-
sis for it., To the matrix A = Naijll;":‘:1 and to this basis, as is
well-known, one can put in connection a linear operator A, working in
the space En, defined through its elements on this basis (and thus also
on the whole space Y by the formula 2

Aej = ajlel + aj2e2 + oo + ajnen {(j=1,2,--+,n). (4.2)

Then the rumbers ) ,\,,.--,\  defined above, and they only, are the
eigenvalues of the operator A, i.e., for such X = Aj(jzl,z,o-.,n) there
exists a vector
x = Elel + €2e2 + eee + gnen (¥ 0}

from E" such that Ax = Ax.

This statement is obtained immediately, if one notes, that the
equation Ax = Ax is equivalent to the system of linear homogeneous
equations

(aii-l)zl + a + ... 4+ anlcn = 0,

21%2
a8 * (A E + e taE =0,

e o e s 8 s e e s B 4 s+ e s e s e e

an51 Tty t et (ann-x)gn =0

which admits a nontrivial solution x = (51,52.-",€n) if and only if )
is a root of the equation IA-AE| = O. The vector x is called in this
case an eigenvector of the operator A, corresponding to the eigenyalue X.
From (4.1) it is clear among other things, that
Adye-ed = Al (4.3)

4.2, Thus, the totality of all eigenvalues of the matrix A, or its
Spectrum coincides with the spectrum c(A) (the set of all eigenvalues)

9f the linear operator A induced by this matrix on some basis
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We shall present, for the sake of completeness, a variant of the
proof of proposition 3°. At first we consider some eigenvector £, of
the operator A, belonging to the eigenvalue xl (see Sec. 4.1). Without
loss of generality one may assumeé this vector to be normed i.e., assume
(fl'f1) = 1 (in the opposite case one must take instead of 61 the eigen-
f

vector , which belongs to the eigenvalue Al as well).

We consider the so-called orthogonal complement in E" to the vector
f1 {exactely formulated, to the onedimensional subspace spanned by the
vector f1)' It consists, by definition, of all vectors orthogonal to fl’
As is well-known (see, for example {9],Sec.80) it will be some (n-1)-
dimensional subspace li:"-1 of the space E". Take a vector x € En—l' i.e.,
(x,£,} = 0. Then
(Ax, £ R Af ) = (%A ) = Al(x,fl) =0,

ice. Ax € E™ ). This fact is expressed through the words: ™! is an

invariant subspace of the operator A,

In the subspace En-l the operator A acts again as a Hermitian opera-
tor, and it is clear as well, that all eigenvalues and corresponding
eigenvectors of the operator A as operator in En—l are, respectively,
eigenvectors and eigenvalues of A as operator in E". Now we choose a
new orthonormal basis {g‘,qz,---,g } having for its flrst element the

vector 9, = f, and with its remaining elements form N (this is always

1
possible - see [3), p.237), Then in representation (4.5) for i = 1

appears Ag1 = Algl,x.e., b11 = Al' b12 = b13 = eee = bn = 0 (we note

that, although not essential for us, also b21 = b31 B e = bni = 0,

as the operator A is Hermitian}. This means, that the structure of the
- n

matrix B llbu llL 3—1

(4.11)

where B is the matrix which induces (on the basis {92,93,-.-,gn}) the
operator A in the invariant subspace En-l_ But from (4.11) it is ob-
vious, that the characteristic polynomial for the matrix B is obtained
from the characteristic polynomial of the matrix B, i.e., (see (4.7))},
from |A-AE| by division through the binomial x -X. Hence the eigenvalues
of the operator A in E" will be the numbers X XB,---,Xn.

Now, having chosen in " -1 a normalized eigenvector f2 of the operator
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A, belonging to the eigenvalue X2' we can repeat the same Xeasoning ha-
ving constructed in li:n'1 a subspace En'2 (of dimension n-2), orthogonal
to fz, invariant with respect to the operator A, and so on,

It is clear, that this procedure will completed through the con-
struction in n steps of the desired orthonormal system of eigenvectors
fl‘fz""'fn (Afi = Aifi), which forms, because of its linear indepen-

dence ([9],Sec.78,Theorem 1), a basis of the space E".

EXAMPLES AND EXERCISES
1. Let a matrix A = "aijl|: jm1 0 be given. We consider the adjoint
r
matrix K Ha* §®
ij i, i=1
* - . . . R
vhere aij = aji(l:l =1,2,+++,n). Then, if Al,l2,°°°,An is the spec-
trum of the matrix A (taking into account the multiplicity of the ei-
- = - »
gennumbers), then Al.lz,'--,xn form the spectrum of A .
Symbolically *
c(d’) = o(A).
*
2. The matrices A and A (see exercise 1) define on a fixed ortho-

normal bases {ei,e ,-o-,en) of the unitary space E” the so-called ad-

2
joint linear operators A and A*, respectively, for which

(Ax,y) = (x,A*y) for all x,y € e, (4.12)

Thus a Hermitian operator A, corresponding to a Hermitian matrix
*
A (=A%) is nothing else than a selfadjoint operator:A = A",

3. Invert the first statement of exercise 2: if A and A* are adjoint
operators (in the sense of definition (4.12)), then on an arbitrary
orthonormal basis correspond to them the adjoint matrices A and A’,
respectively.

4. 1£ AA" = A%A then the linear operator A (and also A*) is called

normal, Generalize proposition 22 to normal operators.

5. The matrix A of a normal operator A (on an orthonormal basis) is
: . . * *
rormal, i.e., it commutates with its adjoint: AA" = A A, The converse

of this statement is also true (formulate and prove it!).

6. Generalize proposition 3° to normal matrices.

NOTES
Indeed, the coefficients of the characteristic polynomial are, as is

obvious from (4.1), entire rational, and therefore continuous functions
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of the elements of the matrix. The roots of every polynomial

Pn(X) = aoln + ulkn-l + oo +an_ll+an(a°#0) dependend continuously on
its coefficients. The correct meaning of the latter statement is as
follows: if for fixed values Gelyrece,a, the different roots
ll,xz,---,)«r of the polynomial Pn(A) have the multiplicities

S1eSy00 0008, respectively (sl+s2+. ets = n), then for arbitrary € >0
there exists § >0 such that forl&' -a, | <& (i=0,1,+++,n) in an e¢-neigh-
bourhood of each of the number J\ there are exactly sk (with regard to
multiplicity) roots of the polynomial P (2) -a A ia lx +--.+an_1)\+un
(k=1,2,++-,r) - for a proof see, for example [11], § 73.

2 Clearly, the converse holds as well: if a linear operator A on the

space E" is given, then formulae (4.2) relate to it and to a chosen

. . . n
basis {el,e2,~--,en) in a unique way a matrix A = "aij "i,jsl .
3)

Here we leave aside the deeper question of the relationbetween the
mulitplicity of the eigennumber X as root ¢of the characteristic
equation |A-AE| = 0 and its so-called eigen- or geometrical multipli-
city as eigenvalue of the operator A (see [3], ch. vII).

§ S. HERMITIAN AND QUADRATIC FORMS. LAW OF INERTIA. SIGNATURE

5.1 Now we can procede to consider the Hermitian form
n

A(x, s } =2a . 3= '2 ere, .
{x,x) o 1a giEj' aj ai) i,3=1,2, n) (5.1)

where 51,£2nn.5n are complex parameters and a (1,5=1,2,+++,n) coeffi-
cients. Each such form is, evidently, entirely defined by a (Hermitian)
matrix A = || aijlllz' j=1 through its coefficients and conversely. The
order n and the rank r of the matrix A are called, respectively, the
order and the rank of the form A(x,x).

One of the important tasks of the theory of Hermitian forms is reduc-
tion of the form to a “sum of squares", i.e., to the shape

n
A(x,x) = £ aklnklz, (5.2)
k=1

where
nk = Lk(x) = c1k£l+c2k€2+--‘+cnk§n (k=1,2,+-+,n). (5.3)

are some linear forms 1)

+and the uk are real numbers. Usually, one is
only interested in those representations in which the linear forms
(5.3) are linearly independent. The latter is, as is well-known, equi~

valent to the nonsingularity of the matrix C = llcikl i,ke=1"

The reduction of the form A(x,x) to a sum of squares by a linear
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transformation of the type (5.3) can be realised in different ways
and, in particular, it follows from a geometrical interpretation of the
form (5.1), for example. If, again as in § 4, one considers in the
space E" some basis{el,ez,u-,en}. then every vector x € E" is repre-
sented in the form x = Elel +£2ez + o +£nen. The matrix A defines on
this basis an operator A which will be Hermitian with respect to the
scalar product (4.8). Having compared the representations (4.2), (4.8)
and relation (4.9), we convince ourselves that

n
A(x,x) = L a
i,j=1

Now we remember, that on the base of proposition 3% of § 4 there

ijgigj = (Ax'x) (5.4)

corresponds to the eigenvalues Al,kz,---,xn of the matrix A (i.e., of

2)

the operator A) a system of etgenvectors f 1,fz,v-- ,fn which one can

take as new basis of the space E” where

Afi = Aifi;(fi,fj) = Gi (i,3=1,2,-+-,n). (5.5)

3
These two bases of the space E" are connected by some nonsingular trans-
formation. Consequently

& = Gy fy Pty t et L, (k=l,2,0000m)
where Q = “qij "‘i‘,jﬂi is some nonsingular matrix {(IQl| #0). Now for an

. n
arbitrary vector x € E have

n n n n n n
x= Cfe = £E ELq.f,= L(Lq.E), = £n,f,
ket KK ot K gmg K3 gy gy KD oy T
where
"j -qu£l+q2j£2+...+qnjgn (3=1,2,+++,n) (5.6)

are linearly independent linear forms.
Taking into account (5.4) and (5.5) we obtain

Ax = nlx1f1+n2). £+ ~~-+nnxnfn,

22
n n n 2 (5.7
A(x,x) = (AX,x) = ( En A, f,, Zn.£)= L Xxln.l
.i-llili=1li j.=1ii

1.e., the form A(x,x) is reduced to the sum of n independent squares.

We note that in fact in this sum (5.7) there can be less than n terms,
as some of the eigennumbers 11'*2"""‘:1 can be equal to zero. It is not
difficult to clarify, exactly how many terms the sum contains which are
different from (identically) zero. Indeed, we have seen (see proposi-

tion 3% from § 4) that on the basgis (fi’f2""'fn) the linear operator A
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sum of independent squares, which we shall call a canonical 3)representa-

tion. These numbers, like the rank of the form, do not change under ar-
bitrary nonsingular transformations(5.3) of the parameters {Theorem 5.1)
or, as one says,they are Znvariants under such transformations.

We note, that in fact, we are not dealing here with three invariants
(c,m,v), but merely with two, for example m and v, since r = m+v. In-
stead of these two invariants one often considers two other invariants;
r and ¢ = T-v. The latter value ¢ is called the signature of the Hermi-
tian form A(x,x)}. It is clear that the signature ¢, like the values r,m
and v, is an integer, but, in contrast to these, it can take negative
values as well. From the formulae

r =m+vy, ¢ = K=V, T = %{r+u), v = %(r—o)

it is clear, that the pairs of numbers (w,v) and (r,c) mutually define
each other and that the integers r and o alwaye have the same parity.
From the law of inertia and the arguments of Sec. 5.1 (see (5.7))
follows the propostion
29 The number nw of positive squares and the number v of negative
squares in an arbitrary canonical representation of the form A(x,x) are
equal to the number (with respect to the mulitplicity) of positive and

negative eigenvalues of the matrix A = fla, j":
4

j=1" respectively.

The eigenvalues xl,xz,...,xn of the Hermitian matrix A are also cal-
led the etgenvalues of the corresponding Hermitian form A(x,x). In accor
dance to this the determinant |A| = Al Azo-o An {see (4.3)) is called
diseriminant of the form A(x,x). Hence, to nonsingular matrices corres-
pond, by definition, nondegenerate (or regular) forms A(x,x) with a
discriminant which is different from zero (|Al #0)}, and to singular ma-

trices - degenerute {(or singular) forms (lA| = 0).

5.3 We show yet one simple, but for the sequel important proposition

39 If the Hermitian form A(x,x) of order n and rank r (>0) is repre
sented through whatever method in the shape of a sum of exactly r
squares: r

AGX) = £ el 01,
k=1

then the forms
N =L ) =c & +cy by ket B (k=1,2,.--,r) (5.12)
are linearly independent, i.e. the given representation is canonical.

Indeed, by assumption, the rank of the form A(x,x), i.e., the rank
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n
of the matrix A llaij"i,j=l
ar independence of the forms (5.12) means that the rank of the (generally
i=1,2,.¢.,n
speaking, rectangular) matrix C = llc, My=1.2....0r is also equal to r,
i.e., maximal. Now we notethat

is equal to r. The assertion of the line-

b b 4
2
AGx,x) = Lo lL (x)1" = L “k'cklgl"°kzgz“”‘*°kn5n'2 =
k=1 k=1

n r _ _
= ¥ (Zac.c  )EE,.
5,921 kmp X KLTKITTLTS

Comparison of this identity with the oxiginal shape of the form

n
A(x,x) = £ a,.E.T
i,j=l ij i j
shows that
r _ ro.
aij = akckickj = T cikakckj (i,3=1,2,+++,n) (5.13)
k=1 k=1
where ct = 1t §¥=1+2:+-++T ig the transposed matrix with respect to C.
ik i=1,2,...¢0
But relation (5.13) is egquivalent to the jdentity
al o
t —
A=C e, c, (5.14)
o ‘ ar
—_ - - eeeynl
where C = "ckj‘liﬂi:g:...:r’

Assuming now, that the rank of the matrix C (and therefore also of
ct and C) is less than r, we would obtain from (5.14) (see[3],p.22)
that the rank of the matrix A were less than r, but this would contra-
dict the assumption.

A completely analoguous reasoning shows that the following helpful

proposition is also correct:

n
4° If the form A(x,x) = E a, & Ej of order n and rank r i8 repre-

i,j=t i3
’
sented in the shape of a sum of squares
n
= 2 2
A(X,x) = Elqlek(x)l (ak< o)

then in this sum not less than r terms ave different from identically
zero,

We note that here the linear forms
Mg = I =GBy Foby e g8
are not subject of any restriction (in particular, it is not assumed
that they are linearly independent), but the statement again
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follows straight from the identity

n

where A =||ai K,i=1°

n =
jlli'j=1 . and € ={lc I

5.4. The Hermitian form A(x,x) is called nonnegative, if A(x,x) 2 O
for all x=={§1,£2,---,§n} and posttive definite if A(x,x) > O for all
X #0 (i.e, 151+ [5)) +eetlg | >0).

Here we shall confine ourselves just to those facts concerning these
classes - from which the second one is, evidently, contained in the
first one - which are absolutely necessary for further intelligence
(for more details see, for example, [3]).

THEOREM 5.2. The Hermitian form A(x,x) £8 nonnegative if and only if
all its etgenvalues are nonnegative, and it is posttive definite if and
only if all its eigerwalues are positive.

PROOF. If all eigenvalues ) -oo,ln of the form A(x,x) are non-

X
1l 2'
negative, then it follows from representation (5.7) that the form A(x,x)
Kk >0 (k=1,2,-++,n) then it is evi-

dent from the same representation that A(x,x) > O for x # O, since un-

is nonnegative. Moreover, if all A

der this condition it is impossible that all (linearly independent)

forms NysNge-ee,my become zero simultanuwously (see (5.3)).

Conversely, even if only one of the number xk is negative, say
xn < 0, then, substituting in (5.3) parameters 51,52,...,gn such that
n=n,=-.-mn _,=0andn =1 (the latter is possible because of
the linear independenceof these forms), we obtain from (5.7) that for
the £,,£,,-++,§ we mentioned

A(x,x) = An <o,
i.e., the form A(x,x) is not nonnegative.

Finally, if A(x,x) is a positive definite form, then, for that reason,
all Ak 2 O (k=1,2,-++,n). If thereby only one eigenvalues is equal to
zero, say An = 0, then, substituting again 51'52""'En such that
Ny =N, = ="n-l = 0 and n, = 1 we would obtain the identity A(x,x) =0
for x # 0, which was impossible.

Theorem 5.2. is proved.
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COROLLARY 1. A nonnegative form A(x,x) is positive if and only if it
18 nondegenerate.

PROOF. This follows from Theorem 5.2 and the relation (see(4.3))

Ial = 11"2“"‘n‘

COROLLARY 2. An arbitrary representation (5.2) of a nonnegative form
A(x,x) in the shape of a sun of independent squares contains no negati-
ve squares. The presence in such a canonical representation of exactly
n positive squares (where n i8 the order of the form) is mecessary and
suffieient for the positive definitess of the form.

This statement is obtained if one combines representation (5.2),
Theorem 5.2 and the law of inertia.

5.5. In conclusion of the present section we consider the case where

A=Na,.N

i is a real symmetric matrix: a

n i = e
i,4=1 —ajitl,j 1,2, n) It

i)
is natural to consider in this case instead of the Hermitian form
n

T nijsiij a quadratic forr 4

i,j=1 n

A(x,x) = i,§.1aij€i£j
where the ;i(i=1,2,---,n) are real parameters. In this situation, as

one easily sees, all propositions, stated in the present section, re-
main valid, with the difference that for the geometrical interpreta-
tion one must now consider the real Euclidian space E” in which the scalar
product (4.8) of the vectors x = 51e1-+§2e2-+ ceo 4 Enen and

y = nlel + nye, LIRS nnen is defined by the formula
(X.Y) = Cln! + £2n2 toeve + gnﬂn'

and representation (5.2) is written in the form

2

n
A(x,x}) = Z aknk

k=1
where
+ = e
N = B =0 84008 o s, (k=l2,eemum)
are real linear forms.

We note that in the sequel (see §§ 6-8, below) all results,even if
we formulate them for Hermitian forms, remain valid for quadratic forms
as well; we shall not especially memorate this by that time,

EXAMPLES AND EXERCISES

1. Find the rank r and the signature ¢ of the Hermitian form
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2 - = - -
A(x;x) = 3'51' +£1£2+€1£2+21E153-2151€3 .

Here
3 1 24 3-2 1 2
A= 1 0 ojr=2, |IA-XEl=| 1 -2 o =
-2i 0 © -2i O =)

= —21021) -2 00%--1) =2P 4 2+ 5,

The eigenvalues are : Al = %(3+ vY29) >0, x2=%(3-/§3) <0, A, = 0., Thus

3
(see proposition 2°) m=1, v=1, so the signature 0=0.
2. We consider a so-called Hankel (real) quadratic form (to such
forms § 12 below is dedicated)
n-1
Z s £.E (5.15)
3, k=o j+k’j5°k
of order n with the matrix

S s $
o

1 n-1
PR TIV b N B R n
n-1""%3+x " §,k=0 . . .
Sa-1 % San-2

If, in particular, the numbers so'sl"”’s2n—2 form an arithmetic
sequence

s =a, s, =atd, s

° 1 =a+2d, -

, Sy _p=at(20-2)4,

2
then the rank r of the form (5.15) for d=0 is, evidently, equal to 1,
if a ¥ O (but what value has the signature in this case?) and O if a=0.
For @ ¥ O the situation is different. Prove, that in this case for ar-
bitrary a (and for arbitrary n 22) the rank of the form (5.15) is r=2

and its signature 0=0, i.e., ®=v=1.

3. Is the representation of the Hermitian form A(x,x) of order 3 in
the shape of the sum of squares

Ao = 18, 46,07 - 128 €17 + 125, 46,17

canonical? which rank and signature has this form?

Solution. No, r=2, 9=0.

4. For what values of the real parameter a is the quadratic form
A(x,x) = (a2 +1) E,'f + Z(a-l)gl.{z
nonnegative? What are rank and signature of the form A(x,x) for these a
and for all other values of the parameter a?

Solution. a=1, r=g=1; for a#*1l: r=2, g=o
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NOTES

In the notations A(x,x) and Lk(x) the symbol x represents, as in
§ 4, a set of n numbers (vector): x = (El,gz,no,en). Relation (5.2) is
understood as an identity with respect to the parameters 51,52,-",5“.
2)

1)

We note that in proposition 3° from § 4 there was proved only the
existence, but by no means the uniqueness of such a systen.

3 Besides, sometimes more sSpecial representations, on which we shall

not dwell here, are called canonical representations.

4) Sometimes under a quadratic form is understood an expression

n

L a,.E.E., where it is not required that the coefficientsa
i, =t 13773 13

parameters Ei are real. However, we shall always assume that these con-

and the

ditions are satisfied.

§ 6. TRUNCATED FORMS

6.1 Along with a given Hermitian form

n
A(x,x) = L a

£, L.
i,9=1 137473

of order n with discriminant |A| we must often consider the so-called

truncated forms

Kk
A (x,x) = 1,§.1a15€i£j

of order k (k=1,2,.-.,n) (induced by the given form) with discriminant

A = det IIaijllk (k=1,2,+-+,n-1).

k i, j=1
It is natural to put An(x,x) = A(x,X), An = |al. Moreover, it will be
convenient to assume
AO B

The numbers Ao'A 17850 s++,8 are called the suceessive principal minors
of the form A(x,x).

In the sequel the comparison between "adjacent" truncated forms
Akﬂ(x,x) and A (x,x) (k=1,2,--+,n-1) will play an especially important

role.

LEMMA 6.1 (THE BASIC IDENTITY). The form
k+1

(x,x) = L a,

Ak+l 1,3=1 i

of order k+1 is connected to the truncated form

1545y



34/ GENERAL THEORY OF MATRICES AND FORMS

Ak(x

n
X)) = I a, .t t,
1,4=1 13 i’3

of order x (k=1,2,++-,n-1) through the identity
Ak+1(x,x) = Ak(x,x) +

PROOF .

Having

we obtain

COROLLARY. If the rank of the forms A

to o,

1
*3

]
N

This is reduced to a direct calculation:

1
2
1
2
1
2

x

N

&

("'m" —

1

N
&
=
+
—

———

8!

Lttt W o
o

k
Z
i=1

k+1,1

k151t

1
Akt A S T S A e T DE

1
2,018 T T A 1Bt T Ak

1
TR TS L TR P LI S W b LS

Ketsr T

+

“
yn
=

’

EISLYR

PR
i

25, k+15:1554k

oo 4a

see + 3

1
Kokt 15k T G 2 k1 F D S

ML B

+l)gk+1~ x
L R

k1, k7 Y2 ek P D 8| -

1
o k15t 5 Ak

1
Akt 2 B ke T D By

- 1 —
k0 T T ek T Y k+1]

k

+ L

i_lakd-l,igkﬂgi AL PR O L

added to this sum the form

k+1
L a
i,j=1

o s

k
A (xx) = i,?-laijgigk

ijgigj = A (x,x).

k+1

, ad £, respectively, then

L rk s 2.

1

2

(6.1)

(x,x) and A (x,x) are equal

6.2)

Indeed, from comparison of the matrices Ak+l and Ak of the conside-

red forms it is clear, that r 2 r, , but from identity (6.1) and pro-

k+1 k

positions 1° and 4° of § 5 it follows that

T+t

- s 2.

6.2 Unlike the absclutely elementary algebraical Lemma 6.1, the next
Lemma has an analytical nature and it relies on facts from the analysis.
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Lemma 6.2.2) If under contimuous variation of the coefficients of 3

the form K
A{x,x) = L a

EE.,
i,3=1 137473

tts rank r remains invariant, then the signature o doesn't change either.

PROOF. The rank r of the form A(x,x) is equal to the number of its
eigenvalues which are different from zero, taking into account their
multiplicities (§ 2, proposition 29), Let for some fixed value of the
coefficients of the form among its eigenvalues there be © positive and
v negative (r = m+v, 0 = ®-v) and the remaining d(=n-r)} equal to zero.
As the eigenvalues of the form depend continuously on its coefficients
(Sec. 4.1), then for a sufficiently small variation of these the eigen-
values which are different from zero retain their own sign, but none of
those which are equal to zero becomes different from zero, as this would
cause an increase in the rank of the form, which would contradict the
conditions of the lemma.

Thus in a small neighbourhood of an arbitrary set of coefficients the
signature of the form remains constant. Hence, since a segment is connec-
ted, the signature remains constant if the coefficients of the form are
continuous functions on a segment [to,T] and the rank doesn't vary on

{to,T] (cf. note 3)).

6.3 Returning to the truncated forms, we can now, using the Lemmas
6.1 and 6.2, provide a more precise description of the character of the
variation in the signature at the transition to the form A +l(x,x) from

k
the truncated form Ak(x,x) and conversely.

The answer to these questions is given in the next three theorems.

THEOREM 6.1 If in relation (6.2} equality does hold, t.e., if
Trel = rk-rz, then the signatures of the forms ak+1(x,x) and Ak(x,x)

cotneide: = .
%%+1 T %

PROOF, We assume that on the righthand side of the basic identity
the form Ak(x,x) is represented in the shape of a sum of r independent
Squares (§ 5, proposition 1°). Then (6.1) turns into a representation of
the form %ﬁl in the shape of a sum of rk+2 squares. But as rk+2=rk+l'
by assumption, these squares are, according to proposition3® of § 4,
linearly independent. Returning again to identity (6.1), we see that
the form Ak+1(x'X) has gained in comparison to Ak(x,x) one positive

and one negative square, whence, according to the inertia theorem, also
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r+1 for at least one t==to, because otherwise it would follow from

(o) (1)

Lemma 6.2 that the signatures of B (x,x) and B (x,x) which are ok-rl

and ok-l, respectively, would coincide. We use the method of the proofs
of the propositions 3° and 4% of § 5, and set

L. (x) = c 5 + «ee + ¢ t

3 3.k + cj'k+1£k+1 (j=1l2l'°'lr)l

£

g, +.e0+cC

P{x) =c 1,157 r+2,1%1 &

1’ N(x) = c

Sr+1,k+1 k+ r+2,k+17k+1"°

1 =1 2,...,k+1

Note that ¢ 3:1 2,000,422’

§.k+1 =0 (j=1,2,+++,r). Let C = Hc

~ i=1,2,...,k+1
C = "cj ”j -1 2:...:r+l' Note that

B(t) = Ct "u °

o r

ol

(6.4.a)
(1-t)
t

As the forms Ll,Lz,o--,L , P,N are linearly dependent, the rank of C is
r+l

r+1, and there exist ul,o.-,ur,pr+1 such that cr+2 i = jcji
’
j=1

Let Eo be the (r+2)x(k+1)-matrix obtained by adding a row of zeros

to E. Then we have

0 - -

= - = MC

¢ o 1 % o
LR S} !

Multiplying the diagonal matrix in (6.4.a) on the lefthand side with
Mt, and on the righthand side with the complex conjugate ﬁ} and crossing

out the (superfluous} last row and c¢olumn in this product we obtain

-tu.u Ty
oy —tu, iy Ly’ L
" TRy apThLl,
plth = ¢ : : : C
phR o LY @ ~th by B R
St TRy e e Sty (et By

CtK(t)C As both C and C have maximal rank r + 1, one sees that the

(t)

rank of B is equal to r+1 if and only if
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&y tugy “EM M
A% =get k% cget . )
"My (=) -t 1P et

is nonzero. Evaluating At (using L % 0) yields

t 2 r 2
AT = (ul-az---ar-((l-t)-tlur+1| )) +t(t=1) jﬁl u1-~ouj_llujl a

o 1 2 _ 2,0 o
Note that A~ = LIRC PR NN A" = -al---urlur+ll = '|"r+1| A, As A and

Al have opposite signs, and At is polynomial in t of degree 2, it follows
t
that there is exactly one to between O and 1with A © = 0. This comple-

4417 "%

tes the proof.

REMARK. The Theorems 6.1-6.3 can be considered as special cases of
common facts from the (variational) theory of eigenvalues of linear
bundles of Hermitian forms (see, for example,[3], ch. X, §§ 7,9).
However on one hand, in none of the accounts of this theory known to
us did we find the ready-formulated Theorems 6.1-6.3, which are necessa-
ry in order to obtain the basic result of the Chapters II and III,and
on the other hand, it seems attractive to introduce the direct proofs
of these Theorems, using a minimum of tools, without references to the
theory of bundles.

6.4. In conclusion we introduce, following [3], yet one useful pro-
position concerning truncated forms.
19 If the successive principal minor of order r of the form A(x,x)

of rank r is different from zero (Ar#O), then the truncated form
r

A (x,x) = L a, EFT,
r i,3=1 ijci’)

has the same rank and the same signature as the complete form A(x,X).

Indeed, the statement on the rank is trivial,as (O#%) Ar is the dis-
criminant of the form Ar(x,x). If r=n, then the assertion on the sig-
hature is trivial.

Now let r < n, and *

r

2

A(x,x) = T a llk(x)l (6.5)

r
k=1

be a representation of the form A(x,x) in the shape of a sum of inde-

pendent squares.

In (6.5) we insert
Enxgn_la cee = E
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Then on the lefthand side the form A(x,x) turns into Ar(x,x) , and on
the righthand side one obtains a representation of the form Ar(x,x) in
the shape of a sum of r squares. But as the rank of the form Ar(x,x) is
equal to r (Ar # 0), it follows from proposition 3° of § 5 that the-
se squares are linearly independent. But since (§ 5, proposition 1°9)
ak¢0 (k=1,2,...,r) the signature of Ar(x,x) is also that of A(x,x).

EXAMPLES AND EXERCISES

1. We consider the form (cf. example 1 of § 5):
= = 2 T it
A3(x,x) = A(x,x) BIEII + E1€2 +'§lgz + 216153 - 215153
and we shall represent it with help of identity (6.1). Here
(setting 53 = O) we have
2 - =
A, (%,x) =3|El| +EE,* 5152.

and as a,, = 2i, a

13 =0, a

= 0, then (see(6.1))

23 33

1 2 1 2
A3(x,x) -Az(x,x) +§»l2i§1 +£3l -§'|2:i.€1 -£3| .
Is the last representation canonical? What are the ranks rl,r 2,r3
and the signatures ol 10,104 of the forms Al (x,x),Az(x,x) ,A3 (x,x) re-
spectively? Compare the results with the Theorems 6.1, 6.2 and 6.3.
2. We consider the Hermitian form

n-1 _

L c gg (C_ =E ’ P"O:l:"‘;n‘l) (6.6)
pyq=o PAP P P

of order n (such a form is called a Toeplitz form, § 16 is dedicated &«
these forms). Let n=4 and let the matrix of the form (6.6) have the

-1 -2 a3
o S %-2
=
C [o] [«
o
€2 % S

i.e., the form (6.6) is reduced to
A4(x"‘) = i£°£3+15053

shape

-i

(2]
(<]
Q O
[e]
N

[¢]

[2]
W N e
—
U
-
= 0 O O
o 0 O O
o 0 O ©o
o

2]

(take notice of the unusual way in which the parameters are indexed;
however,we have already seen this in exercise 2 of § 5).

what is the signature ¢ 4 of this form and how does it change under
transistion to the (Toeplitz) form

A (x,x) =iE E, +1E £, - i, E, + 1 £, +TE E + (E &,
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with the matrix

© o0 o0 -i T
(¢ Q o] O -i
(o] 0 (o] (o] Q .
i 0o 0o o o

4 i o o o

where { is an arbitrary complex number? How do the rank g and the sig-

nature 05 of the form As(x,x) depend on the parameter {?

3. Is it possible to determine the signature 9, of the (Hankel
- see § 5, exercise 2) quadratic form

Ay bm) = £ - B2 v £ v S - 28k, v 2608,

with the matrix

1 o -1 o

A4 = o -1 o 1 ,
-1 o} 1 (o}
(¢} 1 o 1

by considering a somehow more simple quadratic form?
HINT. Apply proposition 1°.
NOTES

D The stated corollary represent in itself a very special case of a

general proposition: if an arbitrary (even rectangular) matrix is bor-
dered by a row and a column the rank of the newmatrix is either the
original rank or it exceeds it with not more than two units. And this,
in turn, follows from the evident fact,that under the addition of one
arbitrary row (or column) to an arbitrary matrix the rank of this ma-
trix cannot increase by more than one unit.

2 paken from (3], p.28o. But the proof mentioned in [3) is to our

mind presented in an insufficiently convincing way.

3 The exact meaning of this condition is the following: the coeffi-
cients aij(=3313(i,j-1,2,---,n) are continuous functions of a real pa-
rameter t, which runs trough some segment [to,T]. From the proof of the
lemma the reader will see, how one can generalize this condition and at
the same time Lemma 6.2. Indeed, the proof of Lemma 6.2 shows that the
signature is locally constant on X, if the coefficients of the form are
continuous functions on the topological space X, and the rank of the
form is the same for each value of t € X. 1f, X is, in addition connec-

ted, then the signature will be constant on X {in coordination with the



42/ GENERAL THEORY OF MATRICES AND FORMS

author the present text of note 3), just as the proof of Lemma 6.2, was
somewhat modified compared with the original-translator).

4 The present proof differs from the proof in the original, as the ori-

ginal argument was not entirely convincing [Note of the translator].
5 The method of constructing "intermediate" forms we use in this proof

is called a homotopy, and the forms B'" (x,x) and B>’

(x,x) are called
homotopic.
§ 7. THE SYLVESTER FORMULA AND THE REPRESENTATION OF A HERMITIAN

FORM AS A SUM OF SQUARES BY THE METHOD OF JACOBI.

7.1 We return to the Hermitian form

n
A(x,x) = L a, £ E.=A (x,x)
i,4=1 ij=i’) n
with discriminant (Al = An and to the truncated forms Ak(x,x) with dis-
criminants
k
= t = s N= z .
b =detlla,Jll; . (k=1,2,:--,n=1), 8 21
For the simplification of subsequent notations it is appropriate to
il'iz""'ip
exvand somewhat the use of the syvmbol A , introduced in
jlljzt"'ljp

in the beginning (see § 1.1), denoting in this way furtheron any deter
minant of arbitrary order p(zrn, consisting of the rows of the matrix

A with index il'i2""'ip and the columns with index jl'jZ""'jp' Here
in neither set the indices are nessesarily arranged in increasing order

and recurrences are possible (and for p > n, clearly, inevitable).

THEOREM 7.1 (SYLVESTER FORMULA). If for some r{l < r S n) we have

Ar * O then
* a1 %12 Ay A )
. 21 222 ar A, (x)
Ax,x) = - — . . . . +
Ar a a a A_(x)
rl r2 rr r
Al(x) Az(x) “ e . Ar(x) o}
1 n 1 2, .. r i _
+ = Za £.£ (7.1)
A i,3m1 1 2... ¢ 3 | i1
n
where the Aj(x) = aijgj (j=1,2,+++,n) are linear forms.
i=1

PROOF. For the ascertainment of the Sylvester formula (7.1) we mul-

tiply both sides with AY and we bring the first term on the righthand
side to the left. On the lefthand side we obtain



Applying to the last determinant the addition theorem, we partition it

. 2
in n” terms,

31
221

arl

an

each of which has the form

31

222

2r2

352

a
1

a
2r

a
rr

a.
ixr

alj
aZj

. £,
a_.

)

a,.
1]
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an a, a . Al(x)
21 %22 3¢ B, (x)
A(xlx)Ar + . . . R =
2n ar2 rr A (x)
Al(x) Az(x) Ar(x) o}
1 ... 8y | MW a5 T IS A
ay, Ay .- a Az(x) a, a.
= 1. . . . +] . . .
31 8o - - 2rr Ar(X) ar1 2r Ar(X)
o o . . A{x, x) A (x) ... A (%)
1 r
251 2 Ir A )
31 223 2r R, (x)
ar1 axZ arr Ak(x)
AI(X) Az(X) A!(x) A(x,x)
n —
a a Za, k.
11 12 ir jop 13
n —
221 %22 S2r L a8
=1
n —
21 22 2 § arjE)
j=1
n n n n
L a,k L a,,t L a,t L a,.t
i=1 1°i i=1 i2°i -1 ir’i i,9=1 ij

(i,3=1,2,+--,n).

The sum of these expressions over all i and j gives

n

L
i,3=

o

2 ...
2

r i

j, it




44/ GENERAL THEORY OF MATRICES AND FORMS

which was to be proved.
We note, that for r=n all terms of the sum (7.2) are equal to zero
and for r<n all terms in it vanish for which at least one of the indi-

ces i,j does not exceed r.

COROLLARY. Let the rank of the form be equal to r and Ar 40 Then

a1 3y 3y A
a1 %2 dr B

1

A(x,x) = - ™ . . . .

x (7.3)
arl ar2 arr Ar(x)
A, (x) Az {x) Ar (x) o]

In the literature this relation is known as the Kronecker identity.

7.2 If the rank of the Hermitian form
n
A(x,x) = L a
i,j=1

is equal to r (1S r S n) then this form (see § 5, propostion 1°) can be

i jgi 3 (7.4)
represented in a sum of r independent squares. In some cases such a re-

presentation can be realized in a very simple way through standard for-

mulae. In particular, we shall consider the Jacobi method.

THEOREM 7.2. Let the rank of the Hermitian form (7.4) be equal to r
and Alto. 8,%0, ---, Ar#o. We denote xl(x) =2 (x),

%11 %12 f1,k-1 %k
21 352 3,k-1 22
X (0 =]. . . . (k=1,2,++,r).
k
%-1,1 %-1,2 ° ° ° Zk-1,k-1 %k-1,k
A () A, (x) A _, 00 Ak(x)
Then ro1x 0
A(x,x) = L (7.5)

k=1 Ak-lAk

PROOF. Starting with the pattern the Kronecker identity provides, we

define the Hermitian forms

TP Gk P
22 P22 A Ax
Bk(x,x) = - A_ . . . . (k=1v2r"'1r)

k

a, a,

k1 K2 Ak
Al (x) az(x) %(X)
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We multiply both sides of each of these equations with (-Ak) respecti-
vely, and then we apply to the determinant on the righthand side the
Sylvester identity in the shape of (2.5) (see § 2), where k +1 plays
the role of n in the given case. We obtain

-Bk(x,x)AkAk_l = Ak(-Bk-l(x'x)Ak-l) ~ xk(X)xk(x) (k=2,3,¢-+,r).

We rewrite this sequence of identities in the form

1%, (0 12
Bz(x.x) = Bl(x,X) My v e
172
1%, () 12
B,(x,x) = B_(x,x) + ———— ,
3 2 A2A3
IX_(x) |2
B (x,x) =B__ (x,x) + .
r r-1 At-lAr
Supplement it further with the directly verifiable identity
IX, (x) 12

B, (x,x) =
1 A°A1

and add all the extracted identities termwise. Then, after simplifi-
cation, we obtain

r ka(x)l2
B (x,x) = L —F/——F—
LA x=1 “k-1%
it remains to note that, because of the Kronecker identity (7.3),

Br(x,x) = A(x,x).

REMARK. On the strength of proposition 3° In § 5 the linear forms
Xl(x),xz(x).---,xr(x) are linearly independent; it is not difficult to
convince oneself of this dQirectly.

EXAMPLES AND EXERCISES
1. Let the Hermitian form

2 = F 2T o
AGe,x) =205, 15+ (14008, E, + (1-0)8 8, + 18,07+ 26 T, + 2E &,

with the matrix

2 1+i 2
A= 1-i o) o
2 (o] 1

be given. Represent A(x,x) through the Sylvester formula (7.1) for r=2
(here 45 = -|1+i!2 = =2 % 0).
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2. For the form
2
I

—_— - 2 - = - .=
A(x,x)=2|!;l +(1+x)§1§2+(1-1)glg3+|53] +2§1£3+2 1§3+§2£3+§253

with the matrix

2 141 2
A= 1-i (e} 1
2 1 1

which is a slight modification of the form in exercise 1, the identity

2 1 +1i 22'1 + (1+i)Ez+233
- 1 L= =
A(x,x) = 3 1 -1 [o} (1-1)51 +€3
2EI+ (l-i)Ez+253 (1+i)51+£3 (o]

holds. How can one check it without developing the determinant on the
righthand side?

3. Prove, that for the real (Hankel) quadratic form

n-1
A{x,x) = L s..,E.8
jrk=0 JTRTI7K
of order n(22) with the matrix
R Sy - - - sn_1 a a+d a+{n-1)d
s S, « +« . S a+d atad . . . a+nd
1 2 n -
S-1 Sp v - - sZn—2 a+(n-1)d a+nd . . . a+(2n-2)d

the canonical representation

-1 2 n-1 n-1 12
[2 (a+jd)£.] [a L {a+(j+1>d}£j - (a+d) & (a+jd)£j
j=o ) 3=0 j=o /

A(x,x) =

a ad2
is correct for a#Q and d#0O. In particular, for n=2,
_ g2 2_1 2_42.2
A(x,x) =aE_ +2(a+d)g £, + (a+28)€] = Jlag + (a+d)g |7 - 7.

HINT. Use the result of ex. 2 in § 5 and the Jacobi method (Thm. 7.2

§ 8 THE SIGNATURE RULE OF JACOBI AND ITS GENERALIZATIONS.

8.1. In various propositions in the theory of Hermitian and quadrat].
forms the problem often arises to determine the signature =7 -v of th
form A(x,x) (see Sec. 5.2) without representing it as a sum of indepen-
dent squares. In this section rules are proved, which in some cases
allow to determine the numbers 7 and v if the rank r and the successiv

principal minors (12} 8 _,A,,°* /8, of the form A(x,x) are known.
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First of all we shall formulate a direct consequence of Theorem 7.2.

THEOREM 8.1 (SIGNATURE RULE OF JACOBI). If the rank of the Hermitian
form n
A(x,x) = T a
i,j=1

135155
s equal to r and the successive principal minors Bysdyr-veid _y 08 are
different from zero, then

m = P(I'A1'A2I"']Ar)l v = V(llAloAzl""Ar) (8.1)

where the symbols Pand V denote, respectively, the number of sign
permanences and the number of sign changes 1in the set standing between
the parantheses behind these symbols.

PROOF. This is derived immediately from formula (7.5) and the remark

on Theorem 7.2 1

8.2. For all its attractiveness the rule of Jacobi has the evident

defect, that it relies on the highly restrictive conditions

8,40, 8,%0,---,8_ %0, A _#O. (8.2)

2 1
The violation of only one of these already deprives not only formula
{(7.5), from which we have derived the rule of Jacobi, of its meaning
{this obstacle, as is evident from the note 12 can be
avoided) but also expression (8.1), Therefore, still in the last cen-
tury, the question arose whether it is possible to preserve rule (8.1)
also in those cases where some of the minors AI'A2'°"'Ar are equal to
zero., The exact statement of such a question is:
If the signs plus or minus are known of those from the minorse
(1) Ao'Al'A2'°"'Ar—l‘Ar (8.3)

which are different from zero, can one under this condition prescribe
signs plus or minus for the other minors of (8.3) (i.e., for those
equal to zero) in such a way, that identity (8.1) remoins valid?

In order to show the nontriviality of this question, we shall start
with a negative result, which is usually cited in textbooks (see [3]).

EXAMPLE 8.1. Let a and b be real numbers, a%b, ab #0; we consider
the quadratic form
2 2 2
Alx,x) = af +af, +bE, +2a(g £ +E B+ E,8,) (8.4)

of order n=3. Its matrix
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a a a
A= a a a
a a b

has rank 2, whereas

Ao =1, Al

a a

= a(#0), A2 = |a a

=0 (i.e., Ar = 0).

It is easy to transfoxrm the form (8.4) to a sum of independent squares,
writing it in the form

AGex) = a(E, +8, 487 + (b-a)E’ (8.5)

we fix, for example, a >0, Thus in the set Ao, A1, Az are fixed the de-
terminants Ao’ A1 and (a forteriori) their signs. Meanwhile , choosing
b>a we see (from (8.5)) that the signature ¢ of the form A will be
equal to two (®=2, v=0), If b<a, then =0 (=1, v=1).

In this way, if Ar = 0, then even if all other minors AO,A LRI

1’ r-1
are different from zero, their signs cannot, in general,z) define the
signature of the form A(x,x). Therefore, searching a generalization of
Jacobi's rule at the expense of relaxation of conditions (8.2}, the

last of these (Ar¢o) always remains in force.

8.3. Already in the second half of the XIX-th century at first
S. Gundelfinger [26] and later G. Frobenius [19] succeded to generalize
Jacobi's rule to the case where in (8.3) there are isolated zeros, i.e.,
K = o, Ak-l * 0 (S. Gundelfinger) or isolated
k-1 * 0, Ak = Ak-l =0, Ak+2 % O (G. Frobenius)., We
present the rules which correspond to these cases, deriving them from
the Theorems 6.1-6.3 (cf.[38]).

for example 4, _, %O, A
pairs of zeros: 4

THEOREM 8.2 (GUNDESFINGERS RULE)B) Let in the set

(li)Ao,Al,Az,o--,Ar_l,Ax (8.6)
of successive prineipal minors of the Hermitian form
A{x,x) = E a
i,3=1
of rank r (1sSxr$n) one of the minors be equal to zero, but the two
adjacent minors different from zero:

by ¥0, 8 =0, 8, %

Then by 8,4 <O and the signature rule of Jacobi remains valid,
whatever sign (plus or minus) is written for the (vanishing) minor L
PROOF. We consider the truncated forms
k-1 k

x,x) = L a €€, AGx = L a &,
Ae-1 £,5a1 152510 A £, 5a1 1°1%3

135153 (8.7)

0. (8.8)
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k+1 _

A,y (Kex) = 1'§‘1°1351 3

with discriminants Ak-l' Ak and Ak+1' respectively. The rank of the
(nondegenerate) form Ak_l(x,x) is equal to k-1; such is also the rank
of the degenerate (Ak = 0) form Ak(x,x)4). The rank of the "extended"
(and again nondegenerate) form Ak*l(x,x)is k +1. So Theorem 6.1 allows
to assert, that the signatures of Ak_l(x,x) and Ak+1(x,x) coincide, and
as two units makes their ranks equal, the form Ak+1(x,x) has exactly
one positive square (i.e., one positive eigenvalue) and exactly one ne-
gative square (i.e., one negative eigenvalue) more than the form
Ak_l(x,x). Since the discriminants Ak-l and Ak+1' respectively, are
equal (see(4.3)) to the products of all eigenvalues of the truncated
forms, the signs of these discriminants are opposite (in the composition
of the factors forming Ak+1' there enters one "extra“negative eigenvalue):
Bg-18%41 <O

It remains to note that, having written for the minor Ak an arbitra-
ry sign, we obtain in the set

(1=) Ao.Al,oo-,Ak_l,Ak,A)d_l
exactly one change of sign and one permanence of sign more than in the
set

(1) Ao'Al'.."Ak-l'
i.e., for the form Ak+1(x,x) Jacobi's rule remains valid. This rule is
also correct for the whole form A(x,x) = An(x,x) if all further “exten-
ded" forms Ak+2(x,x),...,ar(x,x) are nondegenerate. Then at each transi-
tion from Am+1(x,x) to Ah*z(x,x) (m2 k) there emerges either just one
positive eigenvalue (if Am+14m+2 > 0) or just one negative eigenvalue
(if Am+lAm+2 <0).

From the preceding reasoning it is clear that Gundelfingers rule can
be applied also in the case, where in (8.6) there are several "isolated"
2eros, i.e., if situation (8.8) is repeated for several values of the
index k.

THEOREM 8.3 (FROBENIUS' RULE). Let ¢n the set (8.6) for the form
(8.7} two successive minors be equal to zero, but the two netghbouring
minors of this pair be different from zero:

Ak-l + O, Ak - Ak+1 =0, Ak+2 + 0.

If ore writes for the minors A, and Ak+1 (arbitrary) identical signs
when b _48y4p €O and (arbitrary) opposite signs whenak_lnk+2 > 0, then
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(o} -142i (o}
A= -1-2% 1/2 -3-i .
(o] =3+i -1
Here
- 12 - 2 _
Ao =1, Aiso, A2--|-1+2:.I =-5, A3-|—l+2il =5,

Hence the form A(x,x) has rank r equal to 3 (is a nondegenerate
form). Since the group of successive principal minors Ao =1, A1 =0,
A2 = -5 contains the isolated zero Al’ one has (completely in accordan-
ce to Gundesfingers rule) that A°A2 < 0, and, having written an arbi-

trary sign for A1 we have
P(a,.a,18,:85) = 1, V(byi8,48,08,) =2
i.e.(by Theorem 8.2), T =1, v=2, ¢ = %=y = =1,

Check this calculation by a direct representation of the form A(x,x)

in canonical way.
3. Determine the signature o of the Hermitian form
2 2 - = - = - = - =
ACGLX) =208 174 18,17+ E T 4T 8,4 8 B, + T 8, + 6,8, +T,6, +£,8, + T80

Solution. o = 2
HINT. Use Frobenius' rule (Theorem 8.3).

Notes
D Wwith help of Theorem 6.3 one easily obtains another proof of the
sign rule of Jacobi. Indeed, if (AO 1), AI * O, A2 * 0, *°-, Ar + 0,
where r is the rank of the form A{x,x), then for kK £ r the transition
from the form Ak_l(x,x) to Ak(x,x) is accompanied with an increase in
the rank of one, and hence, because of Theorem 6.3, the form Ak(x,X)
aquires in comparison to Ak_l(x.x) either a positive square (i.e.,

according to proposition 2° of § 5, it gains one additional positive

eigenvalue), and then, following (4.3), Ak-lAk > 0, or a negative square;
and then Ak-lAk < 0. Thence follows the rule of Jacobi as well.
2)

For the reason of this stipulation see below at the end of Sec. 8.4.

3 For the case of forms of order three, this rule was already known

to Gauss (5].

4 Hence\the signatures of the forms Ak—l(x'X) and Ak(x,x) coincide -

see Theorem \<2.



Chapter II

HANKEL MATRICES AND FORMS

§ 9 HANKEL MATRICES. SINGULAR EXTENSIONS

9.1

of the shape Hn-l =

n-1i
85451, 5120

A Harkel matrix of ordler n(=1,2,+-++) is the name for a matrix

where the s, are arbitrary complex num-

bers (k=0,1,2,..-,2n-2). One can write more explicitly:

n-1

Sh-2

*n-1

From the structure of Hn-

%1 2
S2 S
%3 S4
sn—l sn
sn sn++1

sn-2
sn-l
s

n
sZn-4
%2n-3

sn-l
s

n
sn+1
s2n-3
SZn-Z

1 it is clear, in particular, that a Hankel

matrix is always symmetric. (Mloreover, its auxiliary diagonal (some-

times called second diagonal) .and also all diagonals parallel to it con-

sist of equal (the same for eaxch diagonal) elements). Hence the matrix

H is Hermitian if and only if it is real. Sometimes we shall also

n-1

consider infinite Hankel matriices H_ = IIs

shall study finite matrices H

9.2, An extenston of the Hainkel matrix B

matrix

m-1

H = ||s

n-1+v

"n-1+v
i+j 'i,3=0

i+

-1

o
i,j=0
and their so-called extensions.

But at first we

is called each Hankel

(v=1,2,...),

of which the left upper corner' ("block") consists of the given matrix

n-1

n-1 = "si+j"i,j=1

H

l.ln-1+\) =

. In diagram:

s
n=1+v

53

-
.
.

.

$2n-242v
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A singular extension of the matrix H _, is called such an extension
of it, that the rank of the extension coincides with the rank of the
matrix Hn—l’
Below will be explained a method for studying Hankel matrices by

means of the construction of singular extensions of some of its "blocks"
and of the comparison of the given matrices with these singular exten-
sions, For the development of the indicated method, however, one must
first of all clarify whether for the given matrix Hn-l there exist al-
ways singular extensions (if only of order n+l) and what kind of "supply"”
of them. This problem is most simply solved for nonsingular Hankel ma-

trices H “Hn-ll *0).

-1
For shortness of notation we introduce the symbol

- k =
Dk=det: "si+j"i,j~0 (k =0,1,.+2),

1)

such that D_ is a determinant (a successive principal minor) of order
k+1. Moreover, we put

D, = 1.

THEOREM 9.1 (PIRST EXTENSION THEOREM). If H _, s a nonsingular
Hankel matrix (o, _, #0), then it has infinitely many singular exten—
stons of order n+l.

PROOF, The problem is to determine extensions Hn of order n+1 and
rank n. We consider the function of two variables

%o Sy sn—l sn
s, s, Sn+1
D (x,y) = . . . . .
n-1 °n Son-2 ¥
s, S 41 x v

The problem, evidently, is reduced to solving the algebraic equation

Dn(x,y) =0, (9.1)

and after that it suffices to substitute s = x,

2n-1 s2n = y and the

desired extension will be obtained.
After evaluation of the determinant Dn(x,y) the equation (9.1) ta-
kes the form (a,b and ¢ are some coefficients)
Dn_1y+ax2+bx+c = 0, (9.2)
and from this equation follows (since Dn- # 0) that the theorem is

1

correct. Moreover, we see that for an arbitrary choice for x = Son-1
one finds a unique y(=s2n), which together with x defines a singular

extension of the matrix Hn—l' and all these extensions are characteri-
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zed by equation (9.1).

REMARK. In the special case were the matrix Hn- is real, one is in-

terested in its real singular extensions. Since 1n1this case all the
coefficients in (9.1) are real, the equation (9.2) defines in the
(x,y)-plane a parabola for a# 0O and a straight line for a=0. From the
structure of the determinant Dn(x,y) one sees, among other things,
easily that a = -Dn_z.
9.3 The solution of the problem on the singular extensions of sin-

gular Hankel matrices Hn_ (D 1 =0), which is more important to us, is

1 'n=-
somewhat complicated.

THEOREM 9.2 (SECOND EXTENSION THEOREM). Let H
2)

be a singular Han-
f #0, then
there exists a unique pair of numbers Son-1' Son’ defining a singular

extension Ho of order n+l of the matrix B

-1

kel matrix and its rank o (<n). If the principal minor D o-

s

PROOF. In the case p =0 the theorem is evidently valid: Son-1=52n =9
Now let p > O, We write down in detail the matrix Hn_lz
s, sy S o1 S $n-1
s, S, s, R sh
s, s, S i1 c .. s S 41
Se-1 5p $20-2 | " * Prnep-3  Snep-2
H = . (9.3)

0 [sp‘l . e e s2p_1 C et Spie2 sn+p_1J

ISPH Spu2 t t t Sop . .. sn+p_1’ S0

. . e e s . o o

n-1 n sn-t- p=2 s

2n-3  Sone2

Since Dp-l * O, the first p rows of the matrix Hn are linearly inde-

pendent, and the remaining ones are (as the rank oé Hn-l is equal to p)
a linear combination of these. In particular, we write the (p+1)st row
as linear combination of the first p rows, obtaining (v=p,p+1,--+,n+p-1)
p=1
We prove that the same formula also holds for v=n+p,n+p+l,---,2n-2,
We turn to the (p+2)nd row of the matrix Hn-1' All its elements,

except the last (sm_p), stand also in the previous row (with a shift to
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the right of one position, as marked in the diagram (9.3)), and hence
for these entries formula (9.4) is true. Now we shall verify its vali-
dity for the element sn+p as well. To this end we multiply the second
row of the matrix Hn-l with “p-l' the third with °p-2' and so on, final-
ly the (p+1)st row with ar we add the resulting rows termwise and we
subtract the result from the (p+2)nd row. If one has considered the

‘formula (9.4), then it is clear, that after such a transformation

(which, clearly, does not change the rank) the matrix Hn-l turns into
* * »
Hp-l . . .
* * »
~ s s .
Hn-l = P p+1 sn+p-2 sm-p-l A
o o o t
* * »* *
* * * »
where Hp—l is the "block” of the matrix Hn-l for which det Hp_l =
=D # O; here by asterisks are marked the elements of the matrix

p-1
which are not subject to the transformation and have no further signi-

ficance, and

=8 0~ %Snep-1 " alsm»p-2 Tt T %1%y

The rank of the matrix H is equal to p. Hence its minor

‘ *
“ = Dp-l

is equal to zero, as is each minor of order p+i. But as D‘:‘_1 * O,
t must be zero, and thus formula (9.4) is verified for v = n+p. It is

.

o %

clear, that we can extrapolate formula (9.4) also to v=n+p+l,...,2n-2
by repeating this step.

Now, if there exists a singular extension Hn of the matrix Hn-l'
then the same reasoning could be extended, i.e., to obtain formula (9.4)
for v=2n-1,2n as well:

S

.

2n-1"%%2n-2 T *1%on-3* T * % 1Sonp-1

Foeee + 0 {9.5)

S2n "%S2n-1 *%1%0n-2 0-1%20-p
By this it is proved, that the desired extension, if it exists, is de-
fined uniquely by formula (9.5).

It remains to prove the converse reasoning; namely: define numbers
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Son-1' S2n through formula (2.5) and verify that they define a singular
-1+ But formulae (9.5), together with for-
mula (9.4), established above for v=p,p+l,...,2n-2, show that also in

the extended matrix Hn each row is a linear combination of the prece-

extension Hn of the matrix Hn

ding p rows, i.e., in the end they are all a linear combination of the
first p (linearly independent!) rows. So the rank of the matrix Hn is
equal to p.

The Theorem is proved.

COROLLARY. Under the conditions of Theorem 9.2, the formula (9.4)
for v=2n-1,2n;2n+1;2n+2; --+ defines recursively an infinite sequence

of pairs of numbers Son-1'52n"52ne1 " Sone2’ " whieh provide singular
AL of the matrix Ho -

Thus an infinite sequence of elements so.sl,s

extension l-ln,H

2°" "S- 2 %217
is defined, i.e., an infinite Hankel matrix H_, which, loosely speaking,

can be considered as a singular extension of the matrix Hn—l' if one
ascribes to the matrix H,, the rank p 3 .
EXAMPLES AND EXERCISES
1. For the Hankel matrix (of order n=3)
1 (o} 1-i
H, = o 1-i -3
1-i =3 2+4i
we consider the extensions
o 1-i| -3 |+ 0 1a| 3fom
B = o 1-i -3 |2 |l 5, = o 1-i -3 |2+ ]| O
1-i -3 2+4i o 1-i =3 2+i ¢] 1
-3 24i o 1 r =32+ O 1 i
2+i O 1 i -5
1 o 1-1 -3 1 0 1-i| =3] 2+i
;;3 = O 1-i =3 | 2+i , H = O 1-i -3 ]2+ o
1-i =3 2+i (o) 4 1-4 =3 2+i| O [¢]
—_—
=3 2+i (o] o =3 2+i (] (o] o
2+i O (o] o (o]
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1 o 1-i -3| 2+i] o
0o l-i -3 2+i (o} [s)
He = 1-i -3 2+ ) o} o
-3 2+i o o o
24i © o o} o
o o o o o
1 o 1-i -3
ga - 0 1-i -3 241
1-i -3 2+i o
. 14 46
-3 2+4i o] 17 + '1-7—

It is easy to see, that H, is also an extension of the Hankel matrix

4
H3, that the matrices H4 and Hs are extensions of H3 and that the ma-
trix H_ is an extension of the matrix H

5
2, Verify, that in Example 1, det H

4"
==-4+i #0, i.e,, the rank p of

the matrix Hz is equal to 3., Convince iourself, that D3 = det H3 % 0,
1 e., that H3 is not a singuiar extension of Hz‘ et the same time

3 = det H3 = 0Q, i.e., rank H3 is equal to 3 and H3 is a singular ex-
tension of Hz.

3. Evaluate in Example 1 the determinant det ﬁa = D, and convince

3
yourself that D, # O (just as D? + 0); compare these results with the
identity D

3

3 = 0 and Theorem 9.1,

4. The ranks of the matrices 53 and §3 of Example 1 coincide and are

equal to 4. Hence the ranks of their extension H, and §4 (respectively)
are not less than 4, so these are not singular extension of Hz. Are
they singular extension of H3 and 53, respectively?

of H,?

What kind of extension is the matrix H 4

g Of Hy, of i

5. We consider the real Hankel matrix of order two

3'

and its extensions

O = O~
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o 1 o 1 o}
1 0 1 o 1
H, = o1 of1]o
1 o 1 [o] 1
o 1 o 1 o
o 1 o o 1 (o] [¢]
g = 1 o}o0 H = 1 0jo}o
By ’ Hy
o 0 o [¢] [o] o]
o O (o] (¢}
o
o]
H4 = 0 y e,
o
0
~ O 1] O ~ 0 1| 0| o
Hy = 1 o o s Hy = 1 o| Oof 1
O O 1 o o 1 [}
o 1 (o] o}
It is clear, that the matrices H2,H3,H4,-»-, as well as §2,H3,H4,-o-

are singular extensions of the matrix H, (their rank, like that of the

1 -3
is equal 3, so H

%
matxix HZ' is equal 2). Rank H is not a singular ex-

2

tension of Hl' The rank of the matrix §3

=~ (o4
this!) so Hy is a singular extension of H

The matrices H

2
is also equal to 3 (verify

3
2 (but not of Hl’)

3,H4,--- are also singular extensions of Hz, and as
such (but by no means as singular extensions of Hll) they are uniquely
defined (Theorem 9.2): here n=3:ss-1,56=0;s7=1,s8 itcc.

An analoguous situation holds for the matrix fH, and its singular ex-

=Q;+++. Com—

2

tensions 53,54,~-~: here again n=3, but s_=0,s,.=0;s_=0,s

S 6 7 8
pare these examples with the result, derived below in exercise 7.
6. Show, that the coefficients uj (j=0,1,+-+,P-1) appearing in rela-

tion (9.4) are given by the formulae

where 8,827t ep__, and Bp {=DD_1*CH are the cofactors of the elements
o-
s ,s ‘e i i =
0" Sp41t '529-1 and 520 in the last row of the determinant Dp (=0),
respectively.
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ristic for a Hankel matrix. In the sequel this characteristic will play

the role of a very helpful instrument for the investigation of Hankel

matrices.
n=-1 :
Let H , = "si+j"i,j-o be an arbitrary Hankel matrix of order n
(>0) and rank p (O£p<n) and let
(12) D_,,D_,D ,**,D__,,D ,**+,D (1o.1}

be all its successive principal minors. Let in the set (lo.1) the last
minor (reading from left to right) which is different from zero be the

minor Dr . Thus is defined an tntegral constant r (OSr Sp):

' Dr—l + O, D“_1 =0 (v>r). (10.2)
Clearly, for r=n(=p) the second of these relations isn't important.
Now we introduce another integral constant k in the following way:
for r=p we set k =0. We note, that the identity r =p, in particular,
always holds for p=0 and p=n.
If, however, r < p, then we consider the "truncated” matrix

so sl sr-l sr
51 52 sr Sr41
H = . . . .
r
Sp-1 S¢ 52r-2 szr-l
Sy St S2r-1 S2r

Its determinant is equal to zero (because of (10.2)), but its rank is
equal to r, as Dr-l * O. Thus the matrix Hr satisfies the conditions of
Theorem 9.2. Hence, (see the Corollary to Theorem 9.2) there exists a

uniquely defined infinite sequence of numbers

L] L] . ’ A - e
Sor+17%2r427 S2r43'%2p44’ ’ {10.3)
- . . . .
giving singular extensions Hr+1'Hr 2 of the matrix Hr.
Parallel to (10.3) we consider the finite set
(lo.4)

Sore132r42’ Sor+3'S2res’ 777 S2n-37%2p-2
of elements of the original matrix Hn-l' We note, that this set is non-
empty, as r < n-1 (since r< p <nj.

Now we compare the set (lo.4) with the sequence (1o0.3). If s, = s&
(v = 2r+l,+++,2n-2) then it would follow that p=r, in contradiction
to our assumption. Hence there exist a uniquely defined natural number
k such that

-3 s S

Sor+1 " Z2r+1

= “ee =g ! '
2042 = S2r42¢ * Sonk-2 "% 2n-k-2" S2n-k-1*% 2n-x-1
(1o.5)
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Thus, in the given situation
0<%k s$2n-2¢ - 2, (10.6)
and here equality on the right i1s realized if and only if already
.
Soe+1 ¥ Sorere
Here it is useful to make the meaning of the constant k understood

by means of the diagran

It is clear, that in this Qiagram the number k indicates the "distan-
ce", i.e., the number of diagonals,l)
to the location of the first (moving from the left to

from the righthand lower corner of
the matrix Hn-l
the right) "wrong" diagonal after the "block" Hr’ i.e., the diagonal in
which the elements (for the first time!) do not coincide with those
which define a singular extension of Hr. In this interpretation the
case k=0 (r=p) is not excluded - the "wrong"” diagnonal is simply ab-
sent. The abovedefined pair of integers (r,k) shall be called the (r,k)-

2)

characteristic or simply characteristic of the Hankel matrix H

X
10.2 as will be explained in the sequel, the parity of the constant
k plays a very important role in the (r,k)-characteristic of a Hankel
matrix Hn-l' At first we consider the case of even k : k = 2m > O (for
k =0 the argument which follows becomes empty). The "truncated” matrix

Hn-m-l has the shape
so s1 sn-—m-l
gy = %y S2 *n-m (16.7)
Sn-m-1 ®n-m $2n-2m-2

i.e., (as 2n-2m-2 = 2n~-k-2 < 2n-k-1) it doesn't yet contain the "wrong"

diagonal, and hence it is a singular extension of the matrix HrB): the

Yank of the matrix Hn 1 is equal to r and its (x,k)-characteristic

-m-
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has the shape (r,0). For the extension H of the matrix H y i.e.,
n-m n-m-1

for the matrix

so s1
1 S2
H = .
n-m
sn-m-l sn-m
s
S n-m n-m+1

this characteristic will be (r,2) already. It is clear, that at each
further step of extension, i.e., at transition to the matrices Hn-m+l'
Ho 42 and so on (as long as the size of the matrix Hn_l;nrmits it), in
the characteristic only the second component will change, and also at
each time it will increase by two units,

The situation turns out to be somewhat different for odd k = 2m-1(>0)
The matrix Hn—m-l (see(lo0.7)) again has the rank r (since 2n-2m-2 =
= 2n-k-3 < 2n-k-1) and the characteristic (r,0). As to the matrix Hn-m'
this now has the shape

o 1 n-m-1 n-m
s1 s2 sn—m sn-m+1
H = .
n-m . (16.8)
Sp-m  Sn-mt+l $2n-2m-1 $2n-k-1

i.e., its (r,k)=-characteristic turns out to be (r,1). At the transi-

tion to further extensions H «++ this characteristic will

n-m+1 Hn-m+2'
change into (r,3), (r,5) and so on, since again at the addition of one
more row and column the “"wrong™ diagonal, consisting of the element
Sy ek-1' will be moved away from the righthand lower corner each time
by two additional positions,

Summing up this, one can state that is proved

THEOREM lo.1 Let in the (r,k)-characteristic of the Harnkel matrix
H _, the mumber k > 0. We denote m = [-l-h;—l ] there [a] is the entire
part of a). Then the rank of the matrix W _ . 18 equal to r and its
characteristic has the shape (x,0). For the extension H o of the ma-
triz Ho ooqr derending on the evenness or oddness of k, the characte-

ristic has the shape (x,2) for k=2m or (r,1) for k = 2m-1. For all
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further extensions H__ (0<vsm-1) the characteristic for even or

m+v
odd x has, respectively, the shape (r, 2+2v) or (r, 1+2v).

EXAMPLES AND EXERCISES.

1. We consider the Hankel matrix (see example 1 in § 9)

1 (o] 1-1 -3
§3 - o 1-i -3 2+i .
1-1 =3 2+i o
14 46
-3 241 [o] Te-*l—71
Here
1 ) 1-i
Sz =1 0 1-i -3 = -4+i#%0, but ‘133 = det 53 =0,

1-i -3 2+i

bl
so r =3, As, evidently, for H, the rank P is also equal to 3, one has

3 ~
k=0, i.e., the (r,k)-characteristic of the matrix H, has the shape(3,0).

3
2. Verify, that for the Hankel matrix

io 1 o 1 o
- 1 o 1 o 1
H, =fo0 1 0o 1 o
1 0 1 o o
0O 1 o0 o o

the (r,k)-characteristic has the shape (2,2).

HINT. Compare H, with the matrices HI'HZ'H and H, of Example 5 in

4 3 4

§ 9 and use the conclusions of this example.

3. Find the (r,k)-characteristic of the Hankel matrix

o 4 o 1
Hy = 4 o 1 o
o 1 o 1/4
1 o0 1/4 -6

Solution, (2,1).
HINT. In order to Qdetermine the constant k one can use formulae (9.4)
and the results of exexcise 6 in § 9.

4. Find the (r,k)-characteristic of the Hankel matrix

1t o 1 o 1 o
©c 1t o t o 1
w = §1 0 1 o 1 o
5 0 1t o 1 o 21
1 0 1 o 21 1-4i
0 1 o 21 1-4i 3

Solutton.. (2,3).
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HINT. For the calculation of the constant k use the result of exer-
cise 7 in § 9.

5. Construct a Hankel matrix with (r,k)-characteristic (0,5). Find
the shape of all Hankel matrices of order six with (r,k)-characteristic
{0,5). Idem that of a Hankel matrix of order n (2 1) and with (r,k)-cha-

racteristic (O,m), where O £ m < n,

: _ n-1
6. Let in the (r,k)-characteristic of the matrix H = “si+j|li,j=0
the component r satisfy the condition I 2 r < n. Then the (r+l1}-st row
of the matrix is a linear combination of its first r rows [3].

HINT. Use relation (lo.2) and apply the result of exercise 11 in § 9.

7. (Frobenius [19]),see also [3], Ch. X, § o, Lemma 2 and Theorem 23).
Under the condition of exercise 6 we consider the bordered minors
(cf. § 2)

Srav
Dr—l ’
bNV = (u,v = 0,1, ¢4+ ,n-r=-1)
S2r+v-1
sr+u c ot s2r+u—1 c 52r+p+v

and the numbers

b
uv (u,v = 0,1,+-+,n-r-1).

t =
w Dr-l
Then thematrix T = 1t I1"T"! s a Hankel matrix and all elements
n-r-1 ¥V u,v=0
situated on its auxiliary diagonal and above it are equal to zero, i.e.,
Cuv = Eupy WV = Obccnmmrsl)y k=t St 2T e 7O
(o] o [s} (o]
o o (o} t
n-r
T = ° n-r tn-r-c-l
n-r-1
Son-2r0-4  F2n-2r-3
o tn-r t2n—2r—3 t2n-2r-2
p-1
HINT. Consider the truncated matrix Tp_1 "tuv"v,v=0 (p=1,2,+--,

n-r), apply induction to p and use the Sylvester identity (S) (§ 2);

also, use the result of exercise 6.

REMARK. In the original memoir of Frobenius [19] the result,
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mentioned above in exercise 7, is adjoined (more precisely, is preceded)
by a whole row of propositions, which represent an independent interest.
We shall adduce these in the following exercises.

8. Let

"n-l
i,3=0

be a Hankel matrix, let p £ n and

H = lls

n-1 i+j

xo'xl'..o'xp3 Yo'yllooo'yp) z

arbitrary numbers. Then the identity

%5 sp-l Yo so sp—l ¥y

sp_l .. . 2p-2 -1 sp_l sZp-Z yp

x X z x x 2

1 P o p-1
S sp2 *5 Yo
sp_1 52P—3 xp_1 yp_1 (10.9)
s s x
P 2p-2  p o
holds,

HINT. Use the fact that the difference between the righthand and
lefthand side of formula (10,9) is a linear form in the parameters
xo,x1,°~-,xp,z in which the coefficients for xo,xp and z are equal to

zero, so that in fact, it depends only on the p-1 parameters xl,--»,xp_iz
\H‘l'.”'s\)*p—l' and
(v = 0,1,-++,p-2) all three determinants

at the same time, substituting for these parameters s

X, = S, xp = sp+v
in (lo.9) vanish.

2T Yo

REMARK, Identity (10.9) is a special case of the more general pro-
position (see [19]):

For the minors of order p+2 (Sn) of each symmetric matriz

A = n-1 . .
"aij"i,j=0 holds the identity
A O 1 +e. p-2p-1p+l | 1 2 +¢-p-1 p ptl -
1 2 ... p=1 p pt2 O 1 ... p-2 p-1 p+2

0 t ... p-2 p-1 p

SR l1 2., p-t ptl pe2 (1o.10)

9. To what matrix A should one apply identity (l10.10) in order to
obtain (10.9) from it?

||na1 the minoxr D be

lo, Let in the Hankel Matrix Hn i+311i, =0 p-1

- s
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different from zero, and let the bordered minors with the shape

Sp'v
ov - =0
S2pt+v-1
o o o S
2pty (v=0,1,**,mSn-p-1).

Then buv = O for py+v < m and

b {(4,v = 0,1, m).

w = Pusy

HINT. For p>0, apply (10.9), having chosen xo,n-,xp, yo,'w.ypsz,
and make use of exercise 4 in § 2, on the strength of which the rank
of the matrix

o p-1 % T

.

%2p-2 %2p-1 * ' pim-2
a
P 2p-1 %2p 22p+m-1

is equal to p; for p=0 the statement is trivial,

11. (Kronecker [48]). We consider in the Hankel matrix

n-1
Ho = |Isi+j "i,j=0 the minor Dp_1 and the bordered minors
Sp+\’
_ D
buv = p-1
s21:v+v-1
s . .. 8§ e .. S
phu 2pru-t vl ,v=0,1, - ,n-p-1)

and we let D * O.

p-1
Then, if

b°°=b°l = =bom-o (m & n-p-1)

then
D =D = eee = D = Q
p pti pto

(i.e., in the (r,k)-characteristic of the truncated matrix H is the

ptm
component r equal to p}. Conversely if
Dp = Dp'bl 2 ecee = Dp'l'm =0,

thenb =b» = ...=b =0,
[o]e] ol om
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HINT. Use the Sylvester identity (S) of § 2 and the result of exer-
cise lo.

12. Obtain an affirmation of exercise 7 from the results of the exer-
cises 11 and lo.

NOTES .
D In Sec. 11,1 it will be shown, that always r+k S n, i.e., a forte-
riori k £ n; hence one can speak here of rows or columns instead of
diagonals. This fact is reflected in the presented diagram.

2 We note, that the important role of the constant r was already re-

vealed by Frobenius [19]. The other constant k as introduced here was
defined at first in [39] (see on this point the Note to Theorem 11.2.
below) .

3) We recall that from (10.6) follows the inequality 2n-2m-2 2 2r

§ 11. THEOREMS ON THE RANK.

11.1 Our immediate aim is to clarify, what are the connections bet-
ween the (r,k)-characteristic of a Hankel matrix and its rank

LEMMA 11.1 If H _, 78 a Hankel matrix with a given (r,k)-characte-
ristic then t+k S n and the minor b ., of order x+k, consisting of
the first r lines (rows and colums) of the matrix H o, and the final k

of ite lines, <8 different from zero.

PROOF. Although for r =k =0 both statements of the Lemma become mea-
ningless we may also in this case formally given a meaning to it, put-
ting, by definition

D,=D,=1%0.

Now let r+k > O, We note, that for k=0 both statemants of the Lem-
ma are trivial, since by the definition of the constant r (see Sec.
1o. D = .
©0.1) we have r £ n and Dr-l Dt-l $0

In the case k >0 we assume at first, that the inequality r+k £ n
is already proved. Then



70/ HANKEL MATRICES AND FORMS

* » B
D . . RN
r-1 * * .
L I AR Szn-k-l
Pror = | I I,
B . « o e e Szn_k_‘ e e e e
oo ¥ Skt

where all other elements of the final k lines of the matrix Hn-l
(which don't interest us now) are denoted by asterisks. In order to eva-

luate the determinant 5r+k-1 we use the results of § 3. Namely, we con-

the singular extension of the matrix Hr (with
(x) . '

X of the pmatrix Hn-l

ding to the diagram (3.1) where the minor Dr-l plays the role of Ar:

sider the matrix H;-l'

rank r} and we construct the minor M (= a) accor-

D . o . . ¢ e o

r-1f. e e e e e

o o e ] e « &« o+ S

(r) _ .
M K = R I . (11.1)

1 ’
© ot 1%am-k-1 " " -2

(here, for r=0, the lefthand upper corner, i.e., D , is nonexistent).

r-1
Here by the symbols SG (v = 2n-k-1,--+,2n~2) are denoted those elements

of the sequence (10.3), defining all singular extensions of the matrix

Hr' which occur in the structure of the minor Mir) {(we note,that becau-

se of formulae (10.5) all other elements of the minor Mir) belong to the
n-l)' (r)
Now we replace in the determinant M (see diagram (11.1)) the dia-

original matrix H

gonal consisting of the elements sl2n-k-1' by the corresponding diago-
n-k-1" Taking
into account proposition 1° of § 3, we do not change the value of the

nal of the original matrix Hn-l' i.e., by the elements s

new determinant M;r)(s ), obtained in this way, (see (3.4)) if we

2n-k-1
interchange all its other elements, i.e., the elements situated in its

righthand lower corner beneath the diagonal sén-k-l’ also by the cor-
responding elements of the original matrix Hn-l’ But in the latter case
we obtain (see the conditions of the Lemma) the minor Dr+k-1’ so that,
taking into account Lemma 3.1 in the shape of (3.5), we have
k(k=1)
Sr+k-l = M;r)(SZn-k-l)' -1 : Dr-l(SZn-k-l-sén—k—l)k’ (11.2)

It suffices to recall, that D:-l % O and that by definition (10.5)



THEOREMS ON THE RANK /71

%+ 0, and the inequality Br % O is obtained.

s - s!

2n-k-1 2n-k-1 +k=-1
From this follows yet the conclusion, that for k > O the identity

r+k = n is impossible, since it would imply the relation

Dn—l = Dr+k—l = Dr+k-1

* 0,
i.e., p=n=r, which contradicts the condition k > O (see the defini-
tion of the constant k in Sec. lo.1).

For the completion of the proof of Lemma 1i.1., we only have to ex-
clude the possibility of the inequality r+k > n for k > 0. To this end
we recall that (see (lo.6))

O0<k S 2n-2r-2.
We truncate the matrix Hn-l' by taking away the final r+k -n of its
lines.l) We obtain a Hankel matrix Hﬁ'-l of order
A=n-(r+k-n) =2n-r -k 2 2n-r-(2n-2r-2) = 2+r.
Hence it follows, that Hﬁ-l is, in any case, an extension of the matrix
l-lr {(and a forteriori of the matrix Hr-l) and in the (r,k)-characte-
ristic of the matrix l-lﬁ_1 the component r is equal to r, and as
r+k=n < n one has
K=k -2(r+k-n) = 2n-2r-k 2 2 > O,

But then +k = 2n-r-k = n and this is, as was shown above, impossible.

11,2, Lemma 11,1 permits, in combination with the results of § lo,
tc establish the following fact, which is fundamental for the entire
theory we consider.

THEOREM 11.1 (FUNDAMENTAL THEOREM ON THE RANK). If H _, ¢8 an arbi-
trary Hankel matrix with a gtiven (r,k)-characteristic, and p 18 the
rank of the matrixz, then
p=x + k.
PROOF. For r =p the statement of the Theorem is trivial, since in
this case k =0, by definition.
Let r < p, i.e., (see (10.6)), k > O. We introduce, as also in

Theorem lo.1, the quantity m = [l-%l-] Because of Theorem to.1 the "trun-
Ccated" matrix Hn-m-l has rank r, but the matrix Hn—m has a rank which

already surpasses r. But because of the Corollary of Lemma 6.1 this
rank can be equal to r+1 or r+ 2.

For even k{(=2m), again because of Theorem 1o0.1, the characteristic
of the matrix H - has the shape (z,2). But then it follows from Lem-
ma 11.1 that the matrix Hn-m contains a nonzero minor of order r +2,

and therefore its rank is equal to r + 2. Each further step of extension,
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i.e., transistion from En-m to H H yeee, will, by

n-m-1 ,Hn-m+2' © e nemty

Theorem lo0.1, give matrices with characteristic (r,4),(x,6},+*-,
(x,242v) ..., and the rank of these will be equal to r+4,r+6,---,
r+2+2v,+++, respectively. The process is finished through the complete
=H

reconstxuction of the matrix Hn_ 1)’ the rank of which is

i n-m+ (m-

calculated by this rule as
p=r+2+2(m-1) =r+2m = r+k,
If, however, k is odd (k =2m-1), then the characteristic of the ma-
trix Hn-m has the shape (r,1). Because of Lemma 11.1 the rank of the

matrix Hn—m is not less than r+ 1. But it is exactely equal to r+1, as

l"nml N
H .
n-m =

s2n-k-'1.

and the rejection of the last row reduces it to rectangular matrix not

containing the “wrong® element s (see Sec. 10.2), but inculuding

the block l-l“-m_l (and a forteri.orinl'i:){ Hence the rank of the rectangu-
lar matrix is equal to r, and so the rank of the matrix Hn—m doesn't
surpass r+1.

Again it remains to apply the same method of constructing extensions
Hoem+ 1 Pn-me2e " Bnomeye
(r,1+2v),--. . Because of Lemma 11,1 the ranks of these extensions will

.-+, with characteristics (r,3),(x,5),---,

be equal to r+3,r+5,.-+,r+1+2v, ..., respectively. Therefore, the rank

of the matrix Hn- is equal to

1= B -
p=xr+1+2(m-1) = r+2m-1 = r+k,
Theorem 11.1 is proved.
11.3 Theorem 11.1 on the rank yields on its own an entire row of
corollaries. First of all is directly obtained from it

THEOREM 11.2 (FROBENIUS). If H__, is a Hankel matriz of rank o, and
the rumberr 18 defined according to (10.2), then the minor Bp_l (of
order p) of this matrix, consteting of the firet r and the final p-r
of its lines, t8 monzero.

PROOF. This is evident, since p -r =Kk, and Theorem 11.2 simply para-
phrases Lemma 11.1.2)

Theorem 11.2 was the starting point in the theory of Hankel matrices
constructed by Frobenius (see the memoir by Fr%l:;enius [19], or, for
"

example, the presentation of this theory in [3 . In our construc-

tion it is, on the contrary, a "by-product”.
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We note that already in this theorem by Frobenius was contained,
basically, an algorithm for the determination of the rank of a Hankel

matrix, 4 namely

THEOREM 11.3. Let H__, be a Hankel matrix and let the number r be
given by relation (10.2). If r=n, then the rank of the matrix Ho Z8
equal to n: p=n. Now, if x<n, then, having adjoined to the minor
D, (*0) (and in the case r =0 simply having taken) at first the final
row and column of the matriz H _, we form the minor D, of order r+1;
next we adjoin to D .4 the last two rows and the last two colums of
the matriz W, and we form the minor Snl of order r +2, and o on,
as long as the relative sizes of the matrix H o, and the minor D._
permit this.

1

We congider the maximal (with respect to the order) one of the mi-

nors D__ .o (v=0,1,2,--+) which ts different from zero (D _ =D _,)
Then

. max v=k
l"’r-l-r\)"‘o
and r+k=0p is the rank of the matriz B __, .

Another almost immediate conseguence of Theorem 11.1 is

THEROREM 11.4. If in the (r,k)-characteristic of the Hankel matrix
B _, of rank p the number k >0, then an arbitrary extension H. of the
matrix Hn_l(vl.e., an extension of order n+1, defined by an arbitrary
pair of numbers 52n-1'52n) has rank p = p+2.

PROOF. If the matrix Hn is nonsingular (l)n = det Hn % 0), then

p = n+1. Further,since k > O, D4

P £Sn-1. But ;-p S 2 (see the Corollary of Lemma 6.1), so that p=n-1

= O (see Sec. 1o0.1) and hence

and 3 = p+2. Now, if Dn = 0, then in the (;,l?)-cha.racteristic of the
matrix Hn we have r = r and k = k+2, i.e., p = r+k = r+k+2 =p+2,
From Theorem 11.4, in turn, one obtains a general criterium for the
existence of singular extensions (see § 9) of arbitrary Hankel matrices,
namely
THEOREM 11.5. The Hankel matriz M _, of rank p allows singular ex-
tenstons if and only if Dp—l * 0.

PROOF. The sufficiency of the condition was already proved in the
Theorems 9.1 and 9.2. The necessity follows from Theorem 11.4, as for
D p-1 = O in the (r,k)-characteristic of the Hankel matrix H _, necessa-

rily k > 0 (as r < p), and hence there are no singular extensions of



74/ HANKEL MATRICES AND FORMS

Hn- 1: an arbitrary expansion I-In of order n+1 already has always rank
p+2.

From this is, in particular, obtained a well-known theorem of
Kronecker on infinite Hankel matrices. Just as for finite matrices we
agree to ascribe to an infinite Hankel matrix the finite rank p (p 20
is an integer), if all its minors of order p+ 1 are equal to zero, but
among the minors of order p there are some different from zero, Essen-
tially, we have already used this definition in § 9 (see the Corollary

to Theorem 9.2).

THEOREM 11.6 (KRONBCKER).S) If B_ is an infinite Hankel matrix of

finite rank o, then its minor Dp_1 g different from zero.

PROOF. We consider the truncated (finite) matrices Hn n of order

n(= 1,2,.+.) obtained from H_. By assumption, the matrix Hn-l will have

the rank p for sufficiently large n. If it would turn out that Dp_1 =0
then because of Theorem 11.4 the matrix Hn would already have the rank
p +2, which is impossible.

The theorem is proved.

In view of Theorem 11.1 one can now, among other things, also take
a look at Theorem lo.l1., For convenience of future references we refor-
mulate it in the form of the following theorem.

THEOREM 11.7 (ON THE JUMP IN THE RANK BY EXTENSION). If Zn the (r, k)
characteristic of the matrix By the number k>0, and m = [% , then
the truncated matrixz B _ _, has rank r. The matrix B has the rank
r+2 for k=2m, and the rank r+1 for k =2m-1. At each subsequent step
of extenston of the matrix oo (until the complete reconstructiov of

the matric Hn-l) the rank increases by itwo units,

il1.4 With Theorem 11.7 (or Theorem lo.1) is closely connected the
question on the determination of the general shape of a Hankel matrix
H _, by its (r,k)-characteristic with r 20 and k >0.
Let be given entire numbers r, k and n which satisfy the conditions
rz0, kx>o0, n > r+k. (11.3)

We take an arbitrary nonsingular Hankel matrix Hr of order r (for

-1

r =0 this step is left out). Further, in agreement to Theorem 9.1., we

_p fall

such extensions are described by equation (9.1) for n=r). For r=0 we
H = .

put H (o)

We denote,as before, m = [

construct an arbitrary singular extension Hr of the matrix l-lr

%—1-] From (11.3) it follows that
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n 2 r+k+1, and hence
k+1
n-m-12r+k- m-r+k-l ]

We shall construct a Hankel matrix Hn-m-l' If n-m=-1 = r, then this

matrix Hn—m-l = Hr was already chosen above. If n-m-1 > r, then the
«,H

matrices H are the singular extensions of the matrix

e+17Bre2e” n-m-1
Hr’ In this capacity they are defined in a unique way by means of Theo-
rem 9.2, as the matrix I-Ir satisfies the conditions of this theorem.
Theorem 9,2 guarantees the existence of a unique pair of numbers (we
shall denote these with sZ(n—m) 1 52(n m)) giving a singular extension

(we denote it with H' ) of the matrix H m=1 (and of I-l ).

2(n-m)-1* S2(n-my-1} 2nd an

arbitrary S (n-m’ e obtain a matrix Ho o of rank r + 2. Indeed, if

If k = 2m, then, havmg chosen any s

Dn—m # 0, then the rank of the matrix Hn-m is equal to its order n-m+1,

and our claim follows from the Corollary to Lemma 6.1 (since Dn-m-l =0

and, therefore, the rank of the matrix Hn-m-l of order n-n is, by con-

struction, equal to r, which satisfies the inequality rsn-m-1). If, ho-
wever Dn-m = O as well, then the statement follows directly from Theo-

rem lo.l (or Theorem 11.7), applied to the matrix Hn-m (instead of Hn-l)’
By exactly the same reasoning it is shown, that for arbitrary choi-

ces of the further elenents sZ(n-m)+l'.."s2n-3,52n-

‘~,Hn_2,}!n_1 will be equal to r+4,-++,r+2(m=1),

5 the ranks of the

matrices H .
n-m+1°

r+2m(=r+k), respectively.

In the case of odd k = 2m-1 we put s and for

.
2(n-m)-1 = 52(n-m)-1
s we take any number different from s . Then the rank of the

2 (n-m) 2(n-m

matrix Hn-m is equal to r+1 (only the last diaqonal, consisting of the
single element sZ(n-m) is "wrong"). At further extensions of the matxix
Hn-m by arbitrary elements

the matrices Hn—m+1""'Hn-2’Hn-l will be equal to r+3,...,r+2m-3,
r+2m=1(=r+k), respectively. This is obtained again from Theorem 11.7

and the Corollary to Lemma 6.1.

S (n-m)+1’ " *S2p-3+53p-2 the ranks of

Since for an arbitrary Hankel matrix Hn—l of order n and rank p with
given (r,k)-characteristic (r+k =p} the conditions (11,3) are, as is
easily seen, always realized for p > r, the construction, followed in
the given situation, yields the complete description (the general sha-

Pe) of all Hankel matrices for which in the (r,k)-characteristic the
number k > O, i.e., p > r.

Thus we have proved

THEOREM 11.8, The general X = n-t
g al shape of a Hankel matrix H o, Ilsi-l-j"i,j:o
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of given order n (22)and with given {(r,k)-characteristic r20, k>0,
n>r+k ts determined in the following way:

1) to r21 is assigned an arbitrary nomsingular Hankel matrix H o,

of order r (for r =0 this step drops out);

2) as H_ 8 taken an arbitrary singular extension of the matrix H_
(for r =0 weput H = (0));

3) if one sets m = k—;-l—}, then n-m-1 2 xr,. For n-m-1 > r matrices

are defined in a unique way as singular extensions

-1

BB B

of the matrix H (forn-m-1=r the matriz o, 18 already defined);

4) further is defined in a unique way the pair of numbers s (n-m)-1"

sé(n_m) giving the singular extension H {of order n-m+ 1) of the

matrix H .
S) for k = 2m the element 85 (n-m)~1 7 Hpp 08 replaced by an arbi-
trary but different number s

2(n-m)-1" and s, may be replaced by an

2(n-m)

. 7 = - '
; Tn the case k = 2m-1 the element 3 (n-m) -1

18 replaced by an arbitrary rum—

arbitrary number s
(£ Sy nemy-1) %8 retained but ) (n-m)

ber 2 (n-m) which 18 different from it; in both cases we obtain a new

matriz H o .of order n-m+1,

2{n-m)

6) for k = 1 we have m = 1, and the construction of the matrix is

completed; for k > 1 the remaining elements S (n-m)+1"52 (n-m)+2° "

s are chosen arbitrarily.

2n-2

EXAMPLES AND EXERCISES,

1. For the Hankel matrix (see exercise 2 in § 10)

o1 o1 O
1 01 o1
I-l4 = o1 01 0O
1 01 o o0
01 0 0 o
with (r,k)-characteristic (2,2) the minors Dr_1 and 5r+k-1 are, respec-
tively, equal to
o 131 0
o 1 - . 1 ol o 1
= ™ - = = = 1 (o)
Per = D Il ol = b D137 5 0 o *0)
o 1 o O

(Lemma 11.1)

Here p = x+k = 4,

2. For the matrix (cf. exercise 3 in § lo)
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o 4 O 1
q = 4 o 1 o
3 o1 o 1/4

1 0 1/4 -6

with (r,k)~-characteristic (2,1) we find

o 4

D 4 o

r~1

=p, = = 96 (+0)

, =16, Dy =0 "

o 1
4 [8)
1 -6

QO »

(Lemma 11.1)
Here p = r+k = 3.

3. We consider the Hankel matrix of order six

1 0 o1 0 O

o 01 o o0 1

H = o1 o0 o1 o

5 1 0 01 0O

o 0 1 0 0 1

o1 0o 0o 1 1
We see immediatiely, that D, = 1, b, =0, D, = -1, D3 =D, =D, =0,
Thus r = 3, Dr-l = D2 (=-1) # O, The constant k (and with it the rank

p = r+k) and the minor Sr+k-1 (# 0) we shall find simultanuously, by app-

lying the rule of Theorem 11.3. At first we border the minor

o

L}
OO0+
- 00
O =0

with the final row and the final column of the matrix HS:

i 0 oo
~ _x o 0 i 1 -
D2+1 = 1:)3 = o1 olo 1 (¥0) .
o1 0 1
Next we use for the bordering of D2 the last two rows and the last two
columns of the matrix Hsz
1 o 6jo0o O
= - o1 1101 _
242 "0 = o101 o =0
o o0 1 o 1
o1 o0 1 1
As Dyy3 = Dy = Dy = 0, one has, according to Theorem 11.3
k=max v=1, p=ux+k =4, D =D, = -1.
D 40 r+k=-1 3

24V

4. FPor the matrix H5 of example 3, foxr which the (r,k)-characteris-
tic has the shape (3,1), trace the jumps in the rank atthe construction
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of extension of the "block" Hr—l = 32:

1 o 0 1 O
1 o o é g ? é 0 o1 0 O
HZ-OOI,H3-0100,H4=01001
o 1 o 1 0 o 1 1 o 01 O
0O 01 o o

1 0 o1 0 o0

0O ot 0 0 1

H = o1 oot o

S 1 0 01 0O

o0 1 0 o0 1

o1 o 0 1 1

Compare the result with Theorem 11.7.

S. Prove the following (cf. [40], Theorem 4):

If for the Hankel matrix Ho_y the rank ts p and in the (r,k)-charac-
teristic the number k > O (r<p<n), and the defect of the matrix is
equal 4 (=n-p>0), then after 4 steps of extenston of this matrix R by
arbitrary pairs of numbers

S20-1"%2n"%2n+1'%2n+2* """ 320+ 2(a-1)-1"52n+2(a-1)
we obtain (for the first time) a nonstngular matrix H
HINT. Apply the Theorems 11.4 and lo.l.

n-1+d°

6. We shall illustrate exercise 5 with a numerical example. Let be

given the Hankel matrix of order n=4:

i 1 -i -1

1 -i -1 i
Hy = -i -t i 1
-1 i 1 2

Here p=2, r=1 (verify this!), i.e., d=n-p =2, For arbitrarxy exten-
sions "of one step” by means of elements «,B and “of two steps" by means
of elements o,B,v,8 we have, respectively

i 1 =i =1 i i 1 «i =1 i 1
1 -i -1 i 1 1 -i -1 i 1 2

-i -1 i 1 2 =0, -i -1 i 1 2 a * 0.
-1 i 1 2 a -1 i 1 2 a B
i 1 2 a B i 1 2 a B v
1 2 o B v §

Verify this!

7. For the case r 2 1 prove Frobenius' Theorem 11.2, not relying on
Lemma 11.1 and Theorem 11.1 ([3], Ch.X, § 1o, Theorem 23).
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HINT. With help of the Sylvester identity (S) of § 2 prove the rela-

tion
~ _ n_p+1 ssen-y
Dp-l D47 [n-p+l~'~n-r}'
where T = T is the matrix, introduced in exercise 7 of § 1o, and

n-r-1
therenpon apply the result of this exercise,
8. Kroneckers Theorem 11.6 deals with infinite Hankel matrics H_ of
finite rank p. Prove that the infinite Hankel matrix

H = "si+j”i,j=0

has finite rank p if and only if there exists p numbers ao,a1,~'-,a
such that

p-1

p-1
s. = L oa.,s_ . (v=p,p+l,-°) (11.4)
v j=o j v-j-1
and p is minimal under those integers which has this property (cf£.[3],
Ch. XVI, § 10, Theorem 7).
HINT. Apply Theorem 11.6 and also Theorem 9.2 (formula (9.4)) and
its Corollary.

9. Conversely, show that Kroneckers Theorem 11.6 is also obtained as
corollary of the result of exercise B (this is the way it is derived in
[3], where the result of exexcise 8 is established independently of

Kroneckers Theorem) .

lo. Derive Kroneckers Theoxrem 11.6 from his Theorems, which we pre-
sented in exercise 11 of § 1o and exercise 4 in § 2 (19],
HINT. Use here, that if p (>0) is the finite rank of the matrix

- si+jﬂ

o«
i,j=0'
then not all its elements are equal to zero, and thus (because of the

Hankel structure) not all Dv- (v=1,2,--+) are equal to zero; consider

1

the maximal v (<p) for which Dv- # 0, and, having applied the mentio-

1
ned theorems of Kronecker, prove that v=p.

11. If in the infinite Hankel matrix Hw the minor Dp-l * 0, but
Dp = Dp+1 = «»+ = 0, then the rank of the matrix H_ is finite and equal

to p (19). Prove this.

12. Let be given a proper rational quotient

R(2) = g(z)/h(z)
where
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m m-1 -

h(z) = aoz + alz + + a (ao * 0),
m-1 m=-2

g(z) = blz + bzz + e 4 bm.

We expand R(z) in a series of negative powers of z
s

2) _ % 1 2
R(2z) =g(—z-)—ﬂ—z-+—§'+—3 e (11.5)

N
N

(it converges, evidently, outside an arbitrary disc lzlg R which con-
tains all poles of the function R(z) [lo], i.e., those values of z for
which R(z) becomes infinite).

Prove, that the infinite Hankel matrix

o = sy 07

has finite rank o £ m.

Conversely, if the rank of H_ is finite and equal to p, then the
function R(z) defined by (11.5), is rational, and the number p coinci-
des with the number of poles of R(z), counting each of these as many
times as its order is (for the meaning of this concept see, for example,
(10]).

HINT. Write down the identity involving the coefficients au (w=0,1,
" (k=0,1,2,+--), starting with (11.5), and
note, that they generate relations of the type (11.4) for p=m (more
explicitly, see [3], Ch. XVI, § lo, Theorem 8).

cee,m), bv (v=1,.--,m) and s

NOTES
2 i.e. of its rows and columns. We note, that the inequality r+k-n s
$ n-2 follows from (10.6). Moreover, r+k-n <k, as r<n (for r=n
one would have k =0).

2 In paper (19) Frobenius introduces, besides the constant r, for

each Hankel matrix also a constant k, defined (somewhat formally, as is
clear now) by the identity k =p-r.

3 See also Exercise 7 at the end of this Section.

9 That was only noted for the first time in {4o]. As T. Ya. Azizov

correctly observed to the author, it is, for values of r which are
small compared with n, economical not to lock for the rank p =r+k of
the matrix Hn-i by this rule but to calculate directly the component k
in the (r,k)-characteristic by the methods of § lo.

5) See, for example, [3], p. 469; there is also presented a proof which
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is different from ours (see exercise 9 in the present section).

6) Here we formulate somewhat loosely, but the reader will understand

that the construction of extensions H of the matrix

nem+1 " Hnoafng
H is meant.
n-m

n Here we use again the loose formulation already mentioned above.

§ 12. HANKEL FORMS

12.1. A Hankel form of order n (>0) is the name used for the quadra-
tic form

n-1
Hn_l(x,x) = ; si+j£1£j (12.1)
i,j=0
with the corresponding Hankel matrix b
= n-1
Haeg = 085450 gm0 (1z.2)

The regularities in the structure of Hankel matrices, which was revea-
led in §§ 9-11, allows to establish rather quickly a rule of Frobenius
for the determination of the signature of the form (12.1), emerging

{for this special class of forms) as a generalization of Jacobi's rule.
This generalization is complete in the usual sense, as it extends to
arbitrary forms (12.1) without any restriction of the kind usually im-
posed on their succesive principal minors Do,Dl,-w,Dp_1 (p is the rank
of the matrix Rn_l). As we have seen in § 8, difficulties arise here,
when in the sequence of numbers

DO'D.I 2" 'Dp-l

(12.3)
there occur groups which contain more than two successive zeros, and
also in the case Dp-l = 0. We shall show how these difficulties are sur-
mounted for Hankel forms (12.1). Por facilitation of our investigation,

we shall divide it into several steps.

12.2 As usually, we shall consider along with the form (12.1) the
truncated quadratic forms

v
H (x,x) = L's .8 (v = 0,1,+**,n-1)
v i,j=0 i+3~i’j
with the matrices Ho'"l""'Hn-l and the discriminants Do'D1'°'°'Dn-1’

respectively.

10 Let the sequence (12.3) contain an isolated group of p zeros

(D _,#¥0),D =D, =""" =Dpip-1 =9 (Dh+p#0), (12.4)
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where p s an odd number: p = 2q-1 (q 2 1). Then the truncated forms
Hh_l(x,x) and Hh+P(x.x) have the same eigna:ture. Explicitly: the form
H +p(x,x) containe in a canonical representation q positive and q nega-

tive squares more than the form H x) .

h-1(x'
Indeed, for q = 1| (p = 1) proposition 1° was established (moreover,
not only for Hankel forms, but for arbitrary quadratic and Hermitian
forms) already in § 8 (Theorem 8.2). Hence let g > 1. As the rank of
the matrit Hh+p with determinant Dh+p * O is equal to its order h+p+l,
the rank p of the matrix Hh+p-1~
Lemma 6.1). But Dh+p-1 = Q, so0 p = h+p-1 and the (r,k}-characteristic
of this matrix has the shape (h,p-1) (Theorem 11.1). From the condi-

is not less than h+p-1 (Corollary to

tion @ > 1 it follows that p-1 > O, and hence the matrix H satis-

h+p-~1
fies all conditions of Theorem 11.7. Because of the theorem the ranks

h+p-2'Hh+p-1 of the matrix H, _, will, in the

process of construction, be increased only at the fipal m = g-1

of the extensions H ,..-,H

{k=p-1=2q-2) steps of extensions, and the each time by two units. As

explained above, the last transition from H to H is also accom-

h+p-1 h+p
panied by a jump in the rank of two units, Hence (see Theorem 6.1) fol-

lows the validity of proposition 1°,

COROLLARY ., Under the eonditions of proposition 1° one has for even
q=2s{s >0)

sign Dh+p = sign Dh_1 (12.5)
and for odd q=2s-1(s >0)
sign Dh+p = =sign Dh-l’ (12.6)

This follows from (4.3) and proposition 2° of § 5.

20 Let in relations (12.4) the number p be even: p=2q>0. If

sign D, _, = sign Dh+p, then for even q the form Hy +p has g+1 positive

squares and q negative squares and for odd q it has q positive and q+l
negative squares more than the form B (%), In the case, where
sign D _, =-sign Dh-p one must interchange the roles of the positive
and negative squares in the previous formulation.

Again, for the proof it is only necessary to consider the transition

from Hh_l(x,x) to H (x,x), since the final step - from Hh+p~1(x’x)

h+p-1

to Hh+p(x,x) - is just as above accompanied by a jump in the rank of

two units. Taking into account that the (r,k)-characteristic of the ma-
trix Hh+p-1 has the shape (h,p-1), where p-1=29-1>0, we apply Theorem

11.7 again, because of which at the transition Hh+q-1 - Hh+q the rank
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(for the firxst time) increases, and by one unit, and at each for the

subsequent q-1 steps of transition form H )

het tO (H

h+2g-1 = Hh+p-l it

increases by two units.

Hence the increase of the rank on the whole way from Hh_ltx,x) to
Hh +p(x,x) will be accompanied by the appearence of q "new" squares of
one sign and g+1 squares of the opposite sign. It is clear (see (4.3)
and proposition 2° of § 5) that for sign D, -4 = sign Dh+p and even g
there appear q negative and g+l positive squares, and for odd q, on the
contrary, q positive and q+l negative squares. It is alsc evident that
for sign Dh-l = -gign Dh+p the situation is exactly the opposite.

12.3 Now really just a little is needed to establish the following
rule.

LEMMA 12.1. Let for the real Hankel form H__, (x,x) of order n the
sequence of successive principal minors contain an tsolated group of
p(2 1) zeros:

(D

g #0), B =D =eee=D =0, (

1 hep-1 +0). (12.7)

Dh+p
We prescribe for each of the zeros the sign plus or minus according to

the rule

signp,_ . = 0DV 2 gignn  ve 12,0, (12.8)
Then the number of sign permanences P(Dh-l'Dh" +eDy +p) and the number
of sign changes V(oh_l,o '“"Dh+p) in the set D, _y#Dpertee hep will
respectively be equal to the amount of positive and negative squares

which addittonally emerge at the transition form the form B x)

h-1 s
. " o
to i1ts "extemsion Hh +p (x,x).

PROOF. For more clearness we shall consider the following tables:

I.p =29q~-1,q>0

I.a)g=28,s >0 (p=4s - 1)

v = ﬂl|2|3|4|S|-~~I4s-2'4s-1‘

v{v=-1)
(Dh_l)(-l)—z— = ul -1 |~1 |1 ‘1 || -1‘ 1|0
I.b) gq=2s ~«1, 8>0 (p=4s - 3)
v = ll IZ |3 |4 ‘S I»--I4s-4|4s-3|
vlv-1)
)0 2 = '1 ‘q I—x ‘1 |1 'I 1 ‘ 1oy,
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If one considers the relations (12.5) and (12.6), respectively, it
is easy to see from the tables Ia) and Ib) that, having prescribed for
the zero determinants Dh' X "Dh +p-1 signs according to rule (12.8), we
obtain

P(Dh—l‘D ,c-.,DMp) =gq, V(Dh_l,o ""'Dh+p) = q.
Comparing this with proposition 19, we obtain the validity of the Lemma
(for the case of odd p = 2q~1).

In the case of even p, we consider again tables

II. p=29,. 9> 0
ITa) g=2s,8>0 (p = 4s)

v-lli2|3|4|5l~- 4s-1|4s[
v(v-1) ' '
o, * = ﬂ1 l-1 RN EW R | -1 ’1 L)
ITb) gq=2s ~1,s>0 (p=4s - 2)
v = |l |2 3 '4 S ' 4s-3 |4s-2l
v({v-1) 1 '
(o, _pt-n % = H1 l-: -1 |1 1 I 11 ] oy,

From the tables Ila) and IIb) it is clear, that rule (12.8) leads to
the following results
if sign Dh+p = sign D then

PO,y Dpr Dy, ) = at L

o - } for even g{=2s) -
V(Dh_loD ’ 'Dh+p) q

P(D. .,D,,---.D,. ) =dq,
-1'"h h+
V(Dh ID .-e,D p) =g+ 1 } for odd q(=2s-1) ;
h=1""h'"""Phep) T 4

if sign Dh+p = -sign D -1’ then

q+1

P(Dh"l'D '...'Dh'i'P) =g

V(Dh D ,-° )

- D } for even gq(=2s} ,
-1'"h “hip

P(Dh_loD '.“'Dhi»p) =q + 1'

for odd q(= 2s-1) .
V(Dh-'i)o '.”'Dh‘*p) =q }

Comparing these results with proposition 2° we come to the conculusion,
that also in the case of even p(= 2g) the validity of the Lemma is pro-

ved.
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REMARK. Following F.R. Gantmaher (3], one may write down the result
of Lemma 12.1 briefly in the shape of te following table:
p odd p even

= prl | prite
Ph'P P(Dh-l IDh' 'Dh+p) 7 2
- prl pti-e
Vh'p Vo, _ D, Do |22 >
P -V | o] | €
h,p h,p
p/2 Dh+
e = (-1} “gign 2B | (12.9)
D,
h-1
12.4 Somewhat complicated is the analysis of the case, where D =0,

p-1
i.e., where in the (r,k)=-characteristic of the matrix Hn_1 we have

k>0,p=r+k > r,

3° Let ue in the (r,k)-characteristic of the matrix H ) (see (12.2))
of the form (12.1) have k > O, i.e., p = r+k > r. Then for even k = 2m
the forms H,_, (x,x) and an_l(x,x) have the same signature. Explicitly:
the form H o, (x,x) has in a canonical representation m positive and m
negative squares more than the form H _, 06,%).

Indeed, at the reestablishment of the matrix Hn-l from the matrix
l-lr_1 by means of the step by step construction of extensions, the total
increase in rank from r by p —r (=k) units takes place (see Theorem 11.7)
only in the final m steps - with two units each time. Hence it follows
(Theorem 6.1), that this increase will be accompanied with the appea-

rance in the form (12.1) of m new positive and m new negative squares

49 Let all conditions of proposition 3% be satisfied, except that
B : .k = op - ' ’ vee
the rumber k 28 odd: k = 2m - 1. We denote through Sop+1S arsa’ R
Son-1-k (See (10.3)) the elements of the singular extensions H Ly
Hlyartr+ Of the matrix W _. Then the form H _ (x,x) will have for
Son-1x > Sén-l-k m positive squares and m-1 negative squares more than

the form H__ (x,x); in the case where s we have m-1 new

‘ 2n-1-k < $2n-1-k
Positive squares and m new negative squares.

For the proof we note above all, that again because of Theorem 11.7
the total increase in rank of k (=p-r) units at the transition from
Hr-l to Hn—l is made up of a first jump of one unit (at the transition
from H-p-y t© B ) and m-1 further jumps of each two units. Hence it
follows, that Hn-i(x'X) in comparison to Hr_j(x,x) contains additionally

B squares of one sign and m-1 squares of the opposite sign.
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For the more precise question of which sign will be the m squares and
of which sign the m~1 squares, we shall return to formula (10.8), which
is valid for odd k = 2m - 1. From this is clear, that the form Hn_m(x,x)
can be represented in the shape of the sum

Hn_m(x,x) = Hﬁ-m(x'X) + (s (12.10)

, 2
2n-1-k ~ 52n-1-k’*n-n

where na-m(x'X) is the form of rank r with the matrix

%n-m
H' = H :
n-m n-m-1 .
S2n-2-k

L) ’
Son-2-k  S2n-1-k

If H;_m(x,x) is reduced to the canonical shape, i.e., to a sum of r in-
dependent squares, then (12,10) is reduced to a representation of the
form Hn-m(x'X) in the shape of a sum of r+1 squares, which are indepen-
dent, since the rank of the form Hn_m(x,x) is exactly equal to r+l

(§ 5, proposition 3°). Hence follows, that for s the

L}
2n-1-k ~ S2n-1-k
form Hn_m(x,x) gains in comparison to the form Hn_m-l(x,x) which has
the same rank and signature as the form H;_m(x,x) (see Theorem 6.2},

one new positive square, and for s one new negative
2

L]
n-1-k < $2n-1-k
square, Since all further extensions, in m-l1 steps, of the form

Hn_m(x,x) to the complete reestablishment of Hn (x,x) (here we use

-1
again a loose formulation) do not change the signature because of
Theorem 6.1 (the jumps in the rank are each egqual to two units), propo-

sition 4° is proved.

12.5 From the combination of propositions 3° und 4° with formula
(11.2) is now obtained

LEMMA 12.2. Let for the Hankel quadratic form B, (x,x) of rank p in
the (r,k)-characteristic of its matrixz the number x > 0 (i.e. p=r+kdr).
We introduce in the considerations the minor 59_1, defined in Lemma 11.1
and different from zero, and we prescribe for the zero determinants
D =D, =:+=D = 0 8igns according to the rule

1 p=2

v(v-1)/2

sign D =(-1) sign D, _ (v=1,2,+7,k-1). (12.11)

1
Then the number of positive squares of the form By (%) and the num-
ber of its negative squares surpass the corresponding mwnbers of the

r-1+v

form H__, (x,x) by the quantities P(Dr-l'Dr""'Dp-z'Bp-l) and
V(Dr-1'Dr“"'Dp-2'sp-1)' respectively.?

PROOF. Because of formula (11.2}
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~ - (-3 ot 2m
Dp-l (-1) Dr-l(szn-l-k ’2n-l-k) (12,12}
for even k = 2m and
ot = (o1 - 2m-1
Doy = 17 7 D185tk ™ Sone1x) (12.13)
for odd k = 2m -1.
Thus, for even k = 2m (see 12,12))
sign Ep‘l = sign Dr-l {(n even), (12.14)
sign Dp-l = -sign Dr_1 {m odd).
For odd k = 2m -1 each of the relations
sign 59-1 = signD__, (m even), (12,15)
sign Dp_1 = -gign D, (m odd) (12.16)
is valid if and only if (see (12.13))
Son-1-k < 52n-1-k°
To the opposite inequality
S2n-1-k > S2n-1-k
is equivalent each of the relations
sign 50_1 = -sign D__, (m even) (12.17)
sign Dp_1 = sign Dr-l (m odd). (12.18)

Now, as in the proof of Lemma 12.1 it remains to consider the tables

I.k=2m,m>0
Ia)m=2t, t >0, (k = 4¢t)

vl ]2ls|a]s] -] a2 4t}

v(v=1)
- 2 =|1 -1 i-l |1 1 ' -1l SH RGN
Ibm=2t-1,t>0 (k =4t - 2)
el L2 ls Jals | ooe] aeea] ases]
v(v-1)
(-t 2 = '1 '-1 -1 l1 1 l 1 S NGRS

From the tables Ia) and Ib), if we have considered relations (12.14),

we see, that, having preseribed for the zero determinants

D ,p ess,D

v 'Pryy s -2 signs according to the rule (12.11), we obtain

r-

p(D l'Dr'“.'Dp-Z'?ip-i) =m,
V(Dr-l'or"'

i) D—?'Dp-l) =m,

and this coincides, because of 3%, with the statement of the Lemma.
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II.k=2m -1, m>0
ITa)m=2t, t >0 (k = 4t - 1)

v=|1| 23 ]afs || 4t-3l4t—-2l
v(v-1)
(D,_,) (-1 2 =l1 -1 |—1 Il '1 'l 1l -1 B
IIb)m=2t-1,¢t>0 (k = 4t = 3)
ve 1| 2 |3 |a|s || aes| aea]
v{v-1)
-1y 2 = “1‘-1 l»1 |1 1| -1l LB,

(we note, that table IIb) for t =1, i.e. for m=k =1, loses its mea-
ning, but in this case it is not needed, since the statement of the
Lemma then directly follows from proposition 4° and formula (12.13)).

Again having compared IIa) with (12.15) and (12.17) and IIb) with

s .
(12.16) and (12.18) we are convinced, that for s, ., . > 85 . .

P(Dr—l lDrl e le_zon_i) =m,

V(Dr-l'Dr"“'Dp-Z'Do-l) =n-1,

]

and for Son-1-k < Syn-1-k
P(Dr-l'Dr"”'Dp-Z'Bp-l) =m -1,
V(Dr-l'Dr"..'Dp-z'Dp-l) =m,

i.e. (see 4°) of the correctness of the statement of Lemma 12.2.

REMARK 1. Comparing the reasoning, applied in the proofs of the Lem-
mas 12.1 and 12.2 (respectively of the proposition 1°,2°,3% and 4°)the
attention is drawn to the seeming noncorrespondence in the rules for
the cases of even and odd p on one hand and for even and odd k on the
other hand. But this noncorrespondence disappears at once if one con-
siders that in Lemma 12.2 (respectively in propositions 3° and 4°) it
is not k that plays the role of the number of zeros p in Lemma 12,1
(respectively in propositions 12 and 29) but k - 1: namely, the number

=D 2 e =D =0, D

-1"Pr = Pray e+k-2 rek-1 ($0)-
In particular, as we have seen above, this is feasible also in the case

of zeros in the set (O%) Dr

k = 1, when the mentioned set is reduced to the pair Dr-i'Dr(-Dr+k-1)'

i.e., in general contains no zero.

REMARK 2, With regard to Remark 1 one can, having denoted k -1 =p,
r = h, express the result of Lemma 12.2 by the same table (12.9) (with
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the substitution of Dh#p by Bp—l) as the result of Lemma 12.1. We lea-
ve it to the reader to convince himself of this independently.

12.6. Now it remains only to make some observation in order to
establish the fundemental Theorem of Frobenius.

Let {we preserve the same notation as in the previous subsections)
in the set D_i(El),Do,o»-,Dp_l, moving from the left to the right, for
the first time be met a group of zeros

(p,_, ¥ 0D =D, =--- =Dpyp-1 =0 Ppyp * o). (12.19)
This means that D_IDO-“Dh_1 % 0, and hence holds for the form Rn_l(x,x)

Jacobi's rule (Theorem 8.1), because of which the amount of positive
and negative squares of this form is equal to P(D_I,Do,~~-,Dh_1) and
V(D_l,Do,‘°°. h-1) ¢ respectively. Because of Lemma 12.1 this rule re-
mains valid also for the form Hh+p(x’X)' if only to the zero determi-
nants of the set (12.19) one prescribes signs according to the rule
(12.8).

Advancing further, i.e., going over to the minors Dh+p+l'°h+p+2""
(respectively to the forms Hh+p+1(x,x),Hh+p+2(x,x),--») we can again
apply Jacobi's rule as long as these minors are different from zero
(see the footnote to the proof of Theorem 8,1 (Jacobi's signature rule)),
and meeting the next (isolated) group of zeros, again apply Lemma 12.1
and so on.

Continuing this reasoning, we either reach the minor Dp-l * O and we
will have calculated by means of our generalized rule of Jacobi the
signature ¢ = n - v of the form Hn_l(x,x) {equal, because of proposi-
tion 1° of § 6 to the signature of the form Hp_l(x,x), as these forms
have one and the same rank p), or we find a final group of zeros

(Dr-l * 0), Dr-Dr+1=... .Dp-l =0,

on vwhich one must apply Lemma 12,2,

Consequently is proved 3

THEOREM 12,1 (SIGNATURE RULE OF FROBENIUS). Let the rank of the real
Hankel form Hn_l(x,x) be equal to p = r +k, where (r,k) ts the characte-
ristic of the matriz B, of this form. We consider the set

= LR *
(1 )D-I'DO'DI' le_2'Dp_l

tn which for k = 0 (r = p) s put D;-l =Dy_y and in the oppostite case
D;—I = Bo-l {see Lemma 11.1). To the zero determinants Dyl0s3<p-1),
If such are present, we prescribe signs according to the rules (12.8)

arnd (12.11). Then the signature o = m - v of the form H o, (x,x) 8 de~
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fined by the formulae

= P(D_llDOr"'t p¥ ).

Dp-2'Pp-1
v = V(D_I,Do, .o -,Dp_z,D:_l) .
As useful exercise we leave it to the reader to verify,that the rule
formulated in Theorem 12.1, can be reformulated in an equivalent way as
follows:

FROBENIUS' RULE 4

*
We choose from the set D 17Pg7 D D5 4
only the minors

cee D ,D*
D_llDalpalDY' IDn' ;' p-l

which are different from zero; we consider all differences of neigh-
bouring indices
a-(-1) ,B-a,v-B,*°*,5-n, (p-1)-¢

and retain of these only the odd ones; then (with D:_l instead of Dp_1
for u = p-1)

o= £ (-3 sign(d,

12 (u-1)odd

In particular, if in the righthand part of formula (12.20) not a single
swmmand t8 found, then ¢ = O.

D). 12,2
u) ( )}

The PROOF is without great difficulty obtained by means of the Lem-
mas 12,1 and 12,2.

12.7 The abovementioned rule of Frobenius allows to reveal some new
regularities in the distribution of zeros and plus and minus signs in

the set of successive principal minors of a Hankel form,

THEOREM 12.2 Let, aé usual % and v be the rumber of poeitive and
negative squares, respectively, of the Harkel form H _, (x,x) of rank
p=n+v, and let 6 = % -v be its signature. We denote

« = min{w,v}.
Then in the set of successive principal minors

(1=)D_,,D_,D,*--,D

b1 (12.21)

1
of the form H _, (%,x), there are for Dp_1 * 0 not more than 2« zeros,
If there are exactly 2x zeros, then, after removal of these from the
get (12.21), the gigns in each of the remaining groupe of numbers
(not congidering rumbers which stand isolated ) alternate strictly for
k=7 ard coincide for x=v.

PROOF. 1) If there would be not less than 2k+! zeros in (12.21),
then, after these have been crossed out the set

D_1,Du,DB,Dy,---,D ,D_,D (12.22)

n g p-1
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would be obtained, which consists of not more than p+1 - (2x+1) =p = 2k
numbers, and hence in the sum
o= £ eI o DD, . (12.23)
15 (u-A)odd ¥
there would, a forteriori, be left not more than p - 2k - 1 nonzero sum-
mands. As their absolute value is always equal to one, one would have
It=v| = lol s p=2¢-1. (12.24)
on the other hand,
{a*p-2v=21r-p
-0 =p =27,

Hence
{lol 2p - 2v
lol 2p - 28

lol 2 p -2 min{®,v}=p -2«.

i.e.,

2) For k=% we have 7 S v, i.e.,
02T -v=g=2T-p=2K -p.

But if there are exactly 2x zeros in the sequence (12.21), then the se-
quence (12.22) contains exactly p - 2k + 1 numbers, -and in the sum (12.23)
there are not more than p - 2k summands different from zero.

We note, that the identity O = o(= 2k - p) is impossible, since it
would mean that in (12.22), which contains, as calculated above, exact-
ly p =2k +1 pumbers, there wouldn't remain a single minor, but this con-

tradicts the inequality Dp__1 * 0.

So, 6 < 0. Then ¢ = -{p - 2x) and, therefore, there are in the sum
(12.23) exactly p - 2x summands different from zero (and, moreover, all
equal to (-1)). This means (see (12.23)) that the signs inside each of
the nonzero groups in (12.21) are strictly alternating, as in these
groups u-Xi-1=0,

The case, where k=v (T 2v) is treated in an analogouous way.

EXAMPLES AND EXERCISES
1. We consider the Hankel form of order n=6
.2 . 2 2
' Hs(x.X) = 60 + 25053 + 25152 + 63 + 25165 + 26254 + 25455 + 55
with the matrix (cf. example 3 of § 11)
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1t 0 01 0 O
0O 01 0 01
a = 010010
S 1 0 60t 0 o
0 01 o 0 1
o1 o o0 1 1
Here D-l.l’ Do-l, Dl-o, Dzz-l, D3aD4-DSBO. Thus r =3, In order

to establish the rank p and the minor D;-l (see Theorem 12.1) we use
the result of example 3 of § 11, according to which the matrix H; has

rank p equal to 4 and D:_l = D'; = -1, so that

{p_,,d_,D,,D,,D}} = {1,1,0,-1,-1}. (12,25)
Hence, by rule (12.20) {since Dp-l =D3 =0 one cannot apply the rules of
§ 8)
¢ = sign(1-1)+sign(-1)(-1) =2,
i.e. = %(p+0) =3, v= -;—(p+0) =1.

2. We consider the Hankel form
2 2
H3(x.x) = 2§°E3+2£1€2-252-4g1£3+3£3.

Here
o (o] o) 1
H3 (o] (o] 1 =2 '
o 1 -2 o
1 =2 (o] 3
i.e., D_l=1, DO-D1=02=0, D3=l. Thus p=n=4 and by Frobenius' rule

o =0 (the difference of the indices 3-(-1) =4 is even, and therefore
there are in the sum (12.23) no summands different from zero). Hence
T=v=2,

We note, that none of the rules described in § 8 can be applied di-

rectly to the present example (three successive minors Do'D ,D, are

1772
equal to zero).

3. Find the rank p and the signature ¢ of the Hankel form
2 2
H3(x,x) = 2gl -25051 + 12£2+ 245153 +
2
+ 450.52 - loglr,z- 105053 -585253-3§3.
Solution. p = 3, ¢ = -1,

4. Prove, that Theorem 12.2 also remains valid for D__

o 1=0, if one
substitutes in it 2c +1 for the upper bound 2k.

S. The upper bound 2k in Theorem 12.2 (for Dp_ # 0) is sharp. This

1
is already clear from the simple example
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2 o 0 1
H (x,X) = 28 E_+E°, H, = 0 t O .
2 o2 1 2 1 0 o

Here p=3, D =1, D =D, =0, 02-1. By formula {12.20) (or Theorem

-1
8.3) 0=1, so that a=2, k=v=1, Hence 2k =2, and the set D—i'Do'D1'D2

contains exactly two zeros, i.e., the bound is sharp.

6. Devise an example, which confirms that for D _

o 1'0 the bound 2x+1

(see exercise 4) is sharp as well.

7. Show, that Theorem 11.8 admits for real Hankel matrices the fol-
lowing refinement: besides the parameters n{22),r20, k>0(n>r+k)

one can choose in advance the signature of the form Hn_l(x,x) =
T n-1
= L s, .§ i;j with matrix l-ln_

i+3°1 , taking for ¢ an arbitrary integer
$,3=0

1

from the segement [-r,r] with the same parity as r+k. To this end one
should, in the case of even k =2m, choose the nonsingular matrix Hn-l’
of order r in step 1) of Theorem 11.8 at once in such a way, that the

corresponding Hankel form Hr_.l(x,x) hag signature 6. For odd k=2m+ 1
one should choose the signature of the form I-I‘:_1 (x,x) to be equal to

0-1 (or o+ 1) and take s < s! ) in

> 85 $2(n-m) < %2(n-m)

2(n-m) (resp.

2(n-m)
step 5) of Theorem 11.8.

HINT. Use proposition 3° and 4°.

8. If in the (r,k)-characteristic of the Hankel form
n-1

Hn-l(x"‘) = ' L s

i,j=o

with rank p the number r <p, then the change of variables

1435455

Ny =8orMy =gereromy, =847

o
En-p-ﬂ:‘+l ecreem

n =¢ oot = Enct?
np=€ronp+1 =€r+l"“'nn-1 =g

r n-p+r'nr+l =
n-p+r-1
reduces the form Hn_l(x,x) to the shape
n-1
Ho _ex) 2 A 0x,x) = I &g 4NNy
i,j=o

Prove, that now in the set of successive principal minors of the ob-
tained form the minor of order p, i.e.

p-1

det "aij'li,j-o

coincides with.'isp_l, i.e, with the minor which occurs in Frobenius'

rule (Theorem 12.1, see also Lemma 11.1) [3) S)-
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9. Convince yourself that the Hankel form
2.2 2
Hy (X,X) =8 + 83+ 85+ 2(E B3+ 818+ 8185+ E8y + 84l
under the change of variables, suggested in exercise 8, turns into a

form As(y,y) which is not a Hankel form
HINT. Use the data of exercise 1.

lo. The infinite sequence of real numbers
A @)
belongs, by definition, to the class P , Lf for sufficiently large

m(>N) all Hankel forms
m-1
H (x,x) = L s, .§ &,
m-1 i,i=o it3°i7j

have in their canonical representation exactly x positive squares,

If the Hankel form
n-1
H . {x,x) = L s, k&
n-1 i,9=o i+3°1

of rank p has k positive squares, then, in order that the set

3

SoS1r " eSon-2
of its coefficients admits an extension to an infinite sequence {s } in
the class P( ), it is necessary and sufficient that Dp * O, If thls
condition is satisfied, then for p < n the mentioned extension is defi-
ned uniquely but for p =n there are infinitely many of such extensions
(for references to the literature see below § 16, the note to exerci-
se 8).

NOTES
n Ingstead of the quadratic form (12,1) one can consider a Hermitian
n-1
form sl+j€lEj (it is also called a Hankel form with the same ma-
i,j=o

trix (12.2), cf. below § 19). It is easy to trace, that all theory, de-
veloped in § 12 for the quadratic forms (12.1), remains also valid for
Hermitian Hankel forms.,

2) For k =1 this rule becomes empty, but the statement of the lemma

remains valid.

3 1a (3] a different proof of this theorem is adduced (Ch.X, § lo,

Theorem 24), of which the conclusive part (the case, where r <p) is,
unfortunately, not correct (cf.exercises 8, 9 in the present section).

4 In this form, indeed, it was presented in the original memoir of

Frobenius [19].
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5) This result is used in [3] on p. 310 in the proof of Frobenius' rule
for the reduction of the case r <p to the more simple case r=p, which
is analysed first. However, at this one overlooks the fact that the
new form An_l(y,y) is, in general, not a Hankel form (see exercise 9),
i.e. the conclusions, drawn earlier for Hankel forms with p =r, cannot
be applied to it (cf. Note 3).

REMARK, For the further development of the concept of the characte-
ristic of Hankel matrices, and also for new applications of the theory
of Hankel matrices and forms, see (2],(3],(7].(8],[14] of the additional

list of references.



Chapter IIl

TOEPLITZ MATRICES AND FORMS

§ 13 TOEPLITZ MATRICES. SINGULAR EXTENSIONS .

13.1 A Toeplitz matrix of order n(=1,2,.-+) is the name for a ma-
trix of the shape

n-1
T = |lc 13.1
-1 ] p-q”p,q o ( )

where the cp(p==o, 1, ... ,%(n-1)) are arbitrary complex numbers.

More explicitly:

%  ©a Son+2 Con+t
% €_n+3 Sone2
T =
n-1 . . . .
“n-2 °n-3 o -1
cn-l “n-2 °1 co

As is clear from the structure of the matrix Tn—l' it is, in contrast
to Hankel matrices, in general not a symmetric matrix (here all ele-
ments standing on the same diagonal parallel to the main diagonal - in-
cluding the main diagonal itself -~ are identical, cf. Sec. 9.1). Only
under the condition 5 =E_P(p =0,1,+++,n-1) the Toeplitz matrix T__,
will be Hermitian, and in this case it generates a Hermitian Toeplitz

form
n-1 _

T .{x,x) = E c_ EE.
n-1 -q
p.q=0 P4 P4

To the investigation of such forms § 16 below is dedicated. But until
there we are concerned with the investigation of Toeplitz matrices in

general (without the condition of being Hermitian).

13.2 Just as with the Hankel matrices, the method of extension, al-
ready known to the reader, will be developed here.

An extengion of the Toeplitz matrix T,y ©One calls each Toeplitz
matrix

n-1+v
T = =1,2,°""
legglpgmo (V12700

n-i+v
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for which the left upper corner ("block") coincides with the original

-1
matrix T = lle ne .
n-1 = MgV, a0
A singular extension is such an extension of the matrix Ty that

its rank coincides with the rank of the matrix Tn-l' We shall also con-

- . . s L 4
sider infinite extensions T_ = Ilcp_qllp'q‘o of finite matrices Ty
among these also singular infinite extensions (if such exist), defining

in this case the rank of an infinite matrix in the same way as in § 9.

Just as in § 9, we consider at first all extensions of the matrix

Tn_l "by one step®, i.e., the matrices
<o .1 €on+t Ic-n
c, o € _ne2 € _n+1
T = - . . *
n
n-1 "n-2 © €1

As we see, each such extension is defined by a pair of numbers (cn,c_n).
We recall, that also for Hankel matrices the analoguous extensions re-
quired that two numbers were given, but in the extended matrix these
numbers were located completely differently - they filled out its lower
righthand corner. This circumstance, but also the absence, in the ge-
neral case of a Toeplitz matrix, of symmetry with respect to the main
diagonal complicates to a certain extent the proofs of the extension
theorems for Toeplitz Matrices, for which, in respect to the formula-
tion and the general diagrams, the reasonings are completely analoguous
to Theorems 9.1 and 9.2.

13.3 Again we bring into the considerations the successive principal

minors of the matrix Tn

- k _ =
Dk = detllcp_qllp'q.d-(k-—o,l, n=1), D_1 =1,

1:

THEOREM 13.1 (FIRST EXTENSION THEOREM). If the matrix Ty
stnaular (D1 #0), then it has infinitely many singular extensions T,
of order n+1.

i8 non-

PROOF. The determination of singular extensions T of the matrix
Tn_1 is reduced to solving the equation
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s €1 © v Sz Coper | Y
€1 o © ot Sone3 Cone2 | Sapet
(Dn(X'Y)E) - : ) ° ‘ = 0. (13.2)
a-2 | Sn-3 * 0 0 S €1 €2
Sh-1 | 2t 0 G i ‘o1
x Syt v S c, <,

Applying to the determinant Dn(x,y) the Sylvester Identity in the shape
of (2.6) we have

CH co . c_m‘2 «:_1 cen <:_m_1 y
2 . . PR c ves C© c
Dn(x,y)Dn_z--Dn_1 - . . . o -n+2 “-n+l|., (13.3)
n-1 “n-2 : :
X C oy +*e € Cho2 *** S, <,
We denote
, € te- C_pun €y e i
atx) = |° A , by 2| %o 0t Cone2 | Conetfl13.0)
€1 . Chog tee S . cee W .
x CNERENECA Cpo2 "o 4 L

It is clear, that for D, # O both the functions a(x) and b(y) are li-

2

near (with the coefficient Dn- for x and y, respectively), and for

Dn-2 = O they do not depend onzx and vy, i.e., they are equal to the con~
stants a(0) (#0) and b(0) (#¥0) (we recall that Dn-l * 0). Therefore,
for Dn-2 % 0 equation (13.2) which now because of (13.3) and (13.4) ta-
kes the shape

2
a(x)b(y) - Dn-l =0 (13.5)

has infinitely many solutions {x,y}. If however, Dn_2 = 0, then equa-

tion (13.2) becomes linear:
™% 0)x + -1 2a0)y + D_(0,0} = 0 (13.6)

As a(0) # O and b(0) # O, this equation has again infinitely many solu-
tions {x,y}.

Thus is proved that both for D, * O as well as for D=0 the

-2
matrix Tn-l has infinitely many singular extensions Tn.

REMARK 1. If the Toeplitz matrix T __, 18 Hermitian, then under the
conditions of Theorem 13.1 there exist amona the gimgular extensions T,
infinitely many Hermitian extenmsions.

Indeed, in this case all the minors D _,D,,:-+,D _, are real., If we
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substitute x=r, y=C in (13.3), we obtain instead of (13.3) the rela-
tion

61 Co C-n+2
_ 2 2 % Cem3 |,
D (5, Z)D _, =D, - I . . |
Caet Cp-2 " ° %
[ 4 Cn_1 e o o« C

For Dn-2 ¥ O the equation Dn(;,z) = O therefore takes the shape

2
Dn-l'

2
“Dn-z - zO! (13.7)

where z = -a(0) (cf.(13.4)).
Further, from formula (13.4) it is clear that in the considered case
b(T) = a(E) and, in particular,

10™%0) = -D™%0) = o

Therefore, for Dn‘_2 = 0 the equation Dn(c,i_;') = O, corresponding in this
case to (13.6), turns into

af+al+y=0 (y=1y 2D (0,00, (13.8)
where o # O, Since the equations (13.7) and (13.8) define in the complex
z-plane a circle with radius !Dn-l/Dn-Zl and a straight line, respecti-
vely, our claim is proved.

REMARK 2. In the sapectial case, where the matrix T s real, it
has, under the conditions of Theorem 13.1, infinitely many real singular
extensions.

This is clear from the relations (13.4) - (13.6) in which all coeffi-
cients now are real.

REMARK 3. If Too1 18 a real and Hermitian (symmetric) matrix, then
it is also possible, under the conditions of Theorem 13.1, to construct
singular extensione T of it, retaining these properties, but not in mo-
re than two different ways for D _,*0 and in only one way if D

Indeed, equation (13.7) now takes the shape

2 2
(zD -zo) =D _,

., =0

n-2 (zo’zo' Dn-Z‘O)'

1

when, -
ce & = Dn-z

+
o _ 1+z).

In the case D“-2 = O one must solve equation (13,8), which now has
tha shape

2a +Yy=0 (ax=a#%o0),
vhence { = -y/(2a).

13.4 In the case where the matrix Tn—l is singular there holds
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THEOREM 13.2 (SECOND EXTENSION THEOREM). Let T _, be a singular
Toeplitz matrix with rank o (<n). If the principal minor Dp_1 * 0, then
there exists a unique pair of numbers Sy which defines a eingular

extension T  of the matriz T _,.

PROOF. For p = O the verification of the theorem is trivial:
€ =C .= O. Therefore, let p > O. Since each p +1 columns of the ma-

trix T, .1 are linearly dependent, this implies, in particular, for
the first p+ 1 columns the existence of a nonzero system of constants

a ,a,,**+,a such that
ol 1' r p'

aocp+ aicp_l + oo +°pcp-p =0 (p=0,1,--+,n-1). (13.9)

Restricting here to the values p=0,1,+++,p, we note that the numbers
ao,al,-u,ap are proportional to the cofactors of the elements of the
first (and also of the last) row of the determinant I:'p (cf. exercise 6
in § 9). Hence is follows, in the first place, that a, ¥ 0 and ap + 0
(since D‘)_1 # O) and next, that the quotients av/ao (v=1,2,---,p) are
determined uniquely by the elements of the minor Dp, i.e., by the num-
bers cv(v=0.: 1, 2,--.,% p).

If Tn is the desired singular extension of the matrix Tn-i' i.e., it
retains the rank p, then formulae (13.,9) must remain valid also for p=n

i,e., the element

2 ! 3
c =-—c¢ -—=c - sse = c
n ao n-1 ao n-2 ao n-p (13.10)

is defined in a unique way.
A completetely analoguous reasoning can be applied to the rows of

the matrix Tn- and the desired matrix Tn' which leads to

1

):>o<:q+l>1<:q_1 + ..-’:bpcp\‘p =0 (q=0,-1,+*+,-n+1), (13.11)

where the coefficients bo,bl,- .. ,bp areproportional to the cofactors of
the elements of the first (and also of the last) column in the determi-
nant Dp, so that again bo * 0, bp %+ 0 and the element <_. of the desi-

red matrix Tn is defined uniquely:
b b b

- -1 -2 . e - R
c_n B S _pet 5 c_l_”.2 5 c-n+p . (13.12)
) o )

Now it remains only to verify, that the numbers c, and C_n’ obtained
through formulae (13.10) and (13.12), define a gingular extension Tn‘
But the rank of the rectangular matrix
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cy c_y C et
. ¢4 <, C_pe2
T = . . . (13.13)

. o+ .

n-1 cn-2

o
Cr1 Cn_l o o . [+
is equal to p, since it follows from (13.9) and (13.10) that the last
row of this matrix depends linearly on the preceding p rows (which be-
long to the matrix Tn-l)’ and that all rows of the matrix Tn_1 depend
on its independent first p rows.

Thus, as the rank of the matrix T is equal to p, all columns of

this matrix are also linearly dependent (since D % O0) on its first

-1

p columns. Having joined to T just one column . we obtain the

matrix T and from formulae (13.11) and (13.12) we conclude, that this
column also depends linearly on the previous p, and hence on the first
p of its columns, i.e., the rank of the matrix 'rn is equal to p.

The Theorem is proved,

COROLLARY, Under the conditions of Theorem 13.2 there exist two
uniquely defined sequences of numbers

c (13.14)

nlcn+ll"" H c-n'c-n-l"
such that all correspording extensions

n=-1+v
T -
n=1+v "cp-q"p'q=0

are gingular (i.e., they retain the rank p).
The sequences (13.14) are recursively defined through the relations

(v=1,2,+40)

aocp+a1cp—1+“°+°pcp-p.o (p=n,n+l,.-¢)

b °q+blcq 1 “'+bp°q+p-° (@=-n,-n-1,.-.)

vhere the ccefficients (0%) a ordye it trdy (#0) (respectively (0%)

b 2 I b (#¥0)) are proportional to the cofactors of the elements in
the fwst row (respectively the first column) of the determinant Dy

in particular, for p=0 we have ¢, =0 (v=12%n, £ (n+l),++e).

In other words, the Corollary to Theorem 13.2 guarantees under the
conditions of this Theorem the existence and unicity of an infinite
singular extension T, of the matrix Tn-l' which is defined through the
formulae (13.10) and (13,12).
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REMARK 1. If the matriz T _, is Hermitian (c_p=Ep, pP=0,1,--+,n-1),
then one can, urder the corditions of Theorem 13.2, evidently assume
that aj = Ej (j=0,1,+++,p) . Hence follows for p=n, q=-n from the re-
lations (13.9) and (13.11) that L =¢¢ putting then p=n+l, g=-n-1,

n
we obtain ¢_ , =c ., and so on, i.e., the singular extension T, will

also be a Hemitia: matriz,

It is clear, that an analoguous statement holds for a symmetric
(complex) Toeplitz matrix.

REMARK 2. For a real matrix Toot the extension T_ by Theorem 13.2
will, evidently, be real; in particular, it follows from Remark 1, that
a real symmetric matrix 'I‘n_1 determines under the conditions of Theorenm

13.2 a singular extension T, which turns out to be real and symmetric.

13.5 The formulae (13.9) and (13.11), which were established in the
course of the proof of the second Extension Theorem (Theorem 13.2)
allow to obtain a recurrence relation for certain minors of order p of
the Toeplitz matrix Tn_1 of rank p (>0). To this end we consider in the

matrix

o I <:_1 . o o c_‘wl Ic_p l ¢ v St
< < .« e . c_p+2 c_‘w1 e v Ceo
Th17 Cp-l -2 " % | | D c-n+p
cp I <:‘:,_1 e e . € Jco l « e . c_mpﬂ
cn-l Cn-1 cn-o cn—p-l co

of rank p (>0) the minors of order p of the shape

u Cu-1 Cuw-p+1
A;”) =%+ Sy Cu=p+2 (-n+psSwsn-p). (13.15)
cm+p- 1 cw+p-2 cw

We shall assume, that p<n, since for p=n we have w=0, A:‘O) -Dn_

’
and further considerations are superfluous. We note, that always '
A‘go) = Dp-l’ Since the rank of the matrix Tn-l is equal to p, formulae
(13.9) and (13.11) hold, and, further, if Do_l*o. then in these for-
mulae ao*o, ap#o. b°¢0, bp#o. Moreover, as was noted in Sec. 13.4,
these coefficients are proportional to certain cofactors of the elements

of the minor Dp, namely (in the just adopted notation):
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a a a, a
() = L P*2, (1) L ev2, (17~ j{o1’ (13.16)
P P p 4
b b b b
o P o p
= - = H (13.17)
A(°) (-l)°+2A( 1) (- l)p+2 (1) A(c>)
4 P D "]
From formulae (13.16) (and also from (13.17)) follows the relation
(1), (-1) (o) |2
= .18
Ap Ap lAp ] (13.18)

In particular, the condition (D -) A;O) %0 implies the inequalities
(1) #0 and A( b #0 (cf. in this connection exercise 6 at the end of

this section)
Now we consider an arbitrary integer w (-n+pSwsSn-p-1). We assu-

*0, and
(w)

me for definiteness that w < 0, and we express (assuming Dp 1
hence a +0) the last of the columns used in the determinant A

(cf. (13 15)) by means of formulae (13.9) through the preceding p colunmns

of this matrix D
a a a

c =-2¢ -—l—c -----p—'lc (p=uw+l w2, ,0+p)

+
PP a, P a p-1 a p-ptl

(here we have restricted ourselves to those values of the index p which
are necessary to provide on the lefthand side of the formula all ele-

(w)

ments of the last column of the determinant A ). After imserting the-

se expressions in A( w) and applying the addit:on Theorem we obtain

c

a o w-1 Cu-p+2 | Swt1 a
e - L A" Cu-pt3  Cut2| = (-1)PF2 2 pletl)
2] a . a p
[ . . . .« . p
Cutp-1 cw+p-2 Cu+l : cw+p

Taking into account relation (13.16) we obtain the recurrence formulae

A(o) A(-l)

wy _ "p (w+l) W _ _p (w+l)

N _—A(l) Ap or Ao ——A(O) Ap (13.19)
[ 4

where w = -1,-2,++,-n+p. These formulae hold also for w = O, when the
first of them is trivial, and the second one turns into (13.18).

Now if (n-p-12)w > O, then we arrive at same formulae (13.19),
using the relations (13.11) and (13.17).

So is established:

10, If the rank of the Toeplitz matrix Too1 8 equal to p (0<p<n)
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and (A;O) =)D, 0, then 840, 8 40 and

4 2]
(w) , (1) (w+l) (o) (w), (o) (w+l), (-1)
= A = - -—) -
Ap Ap Ap 5 3 Ap Ap Ap Ap (=n+pSwsSn=p=1) (13.20)

For generalizations of this proposition cf. exercise 6 and 7 at the
end of this section.

From proposition 1° we derive as an evident consequence:

29, Under the conditions of proposition 1° we have for arbitrary w
(-n+pS w S n-p)

A e (o) e
A _ | Do ) _ 1o | a0 40 (13.21)
P N2 [ Ay P

(4 P

(cf. exercise in § 9).
We need this proposition, which one could call the Lemma on the

;o)),in §§ 14 and 15.

translation (of the nonzero “rank"-minor A

EXAMPLES AND EXERCISES

1. The rank of the Toeplitz matrix of order 4

o o -1 o]
T3 - 2 0 -1
o 2 ©0
o © 2
is equal to 3. According to Theorem 13,2 the matrix T3 with the minor
o o -1
D2 = 2 0 O = -4 %0
o 2 o]
admits a unique singular extension Tq. Find it.
o o -1 o} [¢]
2 0 o -1 o
Solution, T, = 0O 2 0 o0 -t
o O 2 (o]
-4 0 (o] (o]

HINT. Apply formulae (13.10) and (13.12).

2. For the Hermitian Toeplitz matrix (of order n=2)

-2 5 + 4i
5 - 4i -2

'I'1=
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the matrices

-2 5+4i -3
2% |s-48i  -2§ s+as
31 5-41 -2
-2 5+4i -3 7
Ty=jQs-4i -2 5 + 4i -3if
34 5 -4i -2 | s5+4i
7 34 5 - 41 -2
- -2 5 + 4i -4,5 - 1,5i
Ty = S - ai -2 5 +4i
-4,5+ 1,55 5 -4i -2
-2 5+ 41| -4,5 - 1,54 -4
T, = 5 - 43 -2 5+ 48 -4,5 - 1,54
-4,5+ 1,51 5 - 4 -2 S + 41
i -4,5 +1,5i 5~ ai -2

are all Hermitianextensions. Moreover, T3 is an extension of the ma-
trix T, and ‘1"3 an extension of the matrix 'rz. For T, the matrix T, is a
singular extension (verify this!).

HINT. The evaluation of the determinant 52 = det :1"2 is most easily
carried out (because of the Hermitian and Toeplitz structure of the
matrix 52) through the Sylvester Formula (2.6) - cf. Remark 1 to Theo-
rem 13.1.

3. How many real singular extensions of order 4 has the Toeplitz
matrix

© w O

Find them.

4. Let the Toeplitz matrix Tn_! be (complex) symmetrical: ¢__ = ¢
(p=0,1,-..,n-1). Prove, that under the conditions of Theorem 13.1, the
matrix '1‘“_1 allows for D _, ¥ 0 mot more than two and for D,_,=9 only
One symmetrical singular extension (cf. Remark 3 to Theorem 13.1).

HINT. Substitute in (13.2) (respectively in (13.13)) x=y = and re-
vise relations (13.4), (13.5) and (13.6) for this case.

5. Prove, that formula (13.18), developed above under the assumption
(D ) A(o)

o N +#0Q, also remains valid for A;o’ =0 (cf. the hint to exer-
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cise 8 in § 9).,
6. Adduce an example, where for a Toeplitz matrix with rank p and
A;O) =0 one of the determinants A;” or A;-l)

for Hermitian or (complex) symmetrical matrices (even not necessarily

is nonzero. Show, that

Toeplitz matrices) this is not possible - cf. the hint to exercise 8
to § 9.

7. Prove, that formulae (13,20), eveloped under the assumption
(o)
A

o *#0, just as their analogon for Hankel matrices (see formulae (9.7))

can be generalized for the case, where (Do_l =) A(O) =0,

P
HINT. For A;“ = A;I) = O the statement is trivial; if one of these

determinants is nonzero (see exercise 6), then apply formulae (13.9)
and (13.11).
8. In proposition 29 it is, in particular, established, that from

the inequality l)p_1 $#0 {p is the rank of the Toeplitz matrix Tn-l) fol-
(w)

4
analoguous conclusion doesn't hold - cf. exercise 9 to § 9).

low the inequalities & #0 (-n+p SwSn-p) (for Hankel matrices the

Prove, that a similar statement doesn't extend to arbitrary minors

(0f order p) of the matrix Tn-l’ i.e., for Dp-l +0 some minors of order

p (not equal to the special minors A;w ycan be equal to zero.

NOTE

D The negativity of the index w here guarentees the availability in
of these p columns. However, to this end it suffices
(w)

4
., and our reasoning doesn't

the matrix T
n-1

already that w<n-p. Now, if w=n-p, then the minor 4 occupies the

lefthand lower corner of the matrix Tn-].
apply.

§ 14 THE (r,k,2)-CHARACTERISTIC OF A TOEPLITZ MATRIX,

14.1 As in the case of Hankel matrices we shall develop the theory
of Toeplitz matrices, starting with their entire-number-valued charac~
teristic, which in the given case is also somewhat complicated because
of the absence (in the general case) of symmetry.

For an arbitrary Toeplitz matrix Ty of order n and rank p (OSpsSn)
we consider the set of all its successive principal minors

(1=) D_y#D #Dys =D 44Dy s =Dy 4+
Let in this set Dr-l be the last (reading from the left to the right)

nonzero minor. In other words the entine constant r (0SrsSp) <8 defi-
ned, just as in the case of Hankel matrices (cf. § lo) by the relations
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Dl"'l\‘o' DV'I-O (v>r),

from which the second one for r =n(=p), clearly, drops out.

We introduce two further entire constants, k,£ in the following way.
For r=p, by definition k=£ =0, Thus, in particular, k=£=0 for p =0,
since then r =0, and also for p =n, when also r=n.

Now, let r<p (0<p<n)., We consider the "truncated" matrix

b
T = |
r = g gllp,qm0.

The matrix Tr is singular (Dr=o) , its rank is equal to r (Dr—l *0),
Because of the second Extension Theorem there are two uniquely defined
infinite sequences

c;+1,cz'_+2,‘~'; c_'_r_l,c:r_z,‘" , (14.1)
giving the singular extension T; of the matrix Tr' and also its "inter-
mediate" (finite) singular extensions T;:w (v=1,2,--¢) (it is clear
that for r =0 we have T, =0).

Alongside with (14.1) we consider the finite sets of entries

c

vee

*Contt (14.2)
from the matrix Tn-l' Each of these sets is nonempty, as r<n-1 (since
r<p < n).

c cee . <
41" Cre2’ *Cn-1? -r=1’"ar-2'

Comparing the sets (14.2) with the sequences (14.1) we define the
constants k and £ through the relations

c = c' +c!

LY = . -
e+l T Cre1’ " ' %nak-1 T “n-k-1’ Sn-x T p-x’

(14.3)
Copmt "Clpmat” " Cpater T Slnaar’ Copet ¥ c—'n+£’
Thus, for r <p we have
osk,€sn-r-1, k+&>0. (14.4)
We stress that, though each of the numbers k and £ may individually
turn out to be equal to zero, now k+£ >0, since for k=£ =0 the rank p

of the matrix would coincide with r, contrary to the assumptions.

14.2 Just as in the case of Hankel matrices the meaning of the con-
stants k and £ can be much better understood from the diagram
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. (14.95)

[o]

If one calls the entries <, (v=0,1,°"*,n-1) of the matrix Tn-l which do
not coincide with the corresponding entries c\', of the matrix T! "wrong"
entries, then the numer k denotes at what "distance" (in the sense of
the number of diagonals) from the lefthand lower corner of the matrix
one finds the "wrong" diagonal which is nearest to the block Tr' In
complete analogy one defines "wrong" elements in the set c_, (v=0,1,
«++,n~1), and the constant £ denotes the "distance®” from the first
{after the block Tr) "wrong" diagonal to the righthand upper corner

of the matrix T _ . In particular, for k=0 (respectively £=0)the left-

hand lower (respectively the righthand upper) corner of the matrix Tn-l

LI " H = ’ e 0o = . i -
contains no "wrong" entries: c +1 Cret? . cn_1 AN (respective
- ' cee ’ =

ly € yey = iy vl " C-n+1)‘ If, moreover, also r =0 then,
since in this case T! = O, we have
L Q- [ = ' = eee
el ctl 012 =0 (14.6)
and for k=0 (£>0}
O 0O ¢+ O\C
[¢] O soe [o]
T, = 0 0...0 . (14.7)

o o 8 s 0 o .

o 0...0 0 0 .0

An analoguous image is obtained for r=£=0 (k>0).

We call the ordered triple (r,k,f) of the above-defined constants the
(r,k,L)-characteristice or simply the characteristie of the Toeplitz ma-
trix T _, and the quantities r,k,£ the components of the (r,k,L)-charac-
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teristic. From Remark 1 to Theorem 13,2 it follows, that for Hermitian
and symmetric Toeplitz matrices Toet always k=£, so in this case one
can speak of the (r,k,k)-characteristic or, shorter, of the (r,k)-cha-
racteristic.

Finally, we note this obvious (see diagram (14.5)) fact:

10 If in the (r,k,L)-characteristic of the matrix T _, the component
k > O (respectively £ >0) then, at the transition of the matrix Toot
to an arbitrary extension T, of it with det T, =0, the first component
r of the characteristic doesn't change but the second k (respectiviy
the third L) increases by one. (For det T # O the characteristic of
the matrix 'rn will have the shape (n+1,0,0) - see Sec. 14.1).

14.3 In conclusion of the present section we use diagram (14.5) for
the proof of another proposition which is needed in the sequel:

2° In a matriz T _, (see diagram (14.5)) with (r,k,£)- characteristic
in which ¥ >0, 18 an arbitrary mnior Ai“’) of order r with the shape

w Cu-1 Cu-r+l
A {(w) - Cutl Cw cw-r+2
r . . !

c cen
Cutr-1 w+r-2 e

nonzero, when the entire number v satisfies the inequality

-n+f+r-1<w<n-k-r+1t,. (14.8)
Indeed, for r =n the statement is trivial, since in this case k=£=0,
so that w =0 and Aff") - A:’) =D _, # 0. Now let r<n. Conditions
(14.8) give

w+r-1<n=-k, w-r+1>-n+f.

Comparing these inequalities with diagram (14.5), we convince ourselves,
that the minor A!(.‘”) doesn't “touch" t_:he marked corners in diagram (14.5),
l.e., it doesn't contain "wrong" entries of the matrix Tn—l' But then
One may consider it as a minor of the matrix T; (or, if desired, of the
"truncated” matrix 'r;‘_l which is obtained from it) of rank r. We substi-
tute now p =r and we note, that from (14.8) follows the condition

-n+r $wssn-r,
under which the lemma on the translation (§ 13, proposition 29) is ap-

(w)

Plicable. Because of this lemma Ar * 0,

EXAMPLES AND EXERCISES

1. For the Toeplitz matrix
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0O 0 0 O 3-i
0O 0 0 0 O
T4= 0O 0 0 0 o
Si 0 0 0 o©
/2580 0 o
is in the (r,k,£)-characteristic, obviously, r =0, since D =D, =D, =
= D3 = D4 = 0. Hence the corresponding matrix T (see Sec. 14.2) con-
sist only of zeros. But then follows from the shape of the matrix T4

(see (14.3) and diagram (14.5)), that for this matrix k=2, £=1. So
the characteristic of the matrix 'r4 looks like: (0,2,1).

2. which is the (r,k,f)-characteristic of the Toeplitz matrix

0o o0 -1 0 o
2 0 0 -1 (o]
T4 = 0 2 O o -1 ?
oo 2 0 o
o 0 O 2 0

Solution. (3,1,0)
HINT. Cf. example 1 to § 13.

3. The Hermitian Toeplitz matrix

1 i -1 -i 1

has rank p = 1 (why?). Hence, clearly, also r=1 and since r=p,
k=4£=0.

4, Find the (r,k)-characteristic of the symmetric Toeplitz matrices

o1 01 1
. 1110 1 0101
110 11 11
. o101 0
T, =3 e T3= gy o1 g fr Ta T
. 1 0101
o i o1 1 1
1 1 0 1 O

Solution. (3,0}, (1,1), (2,1).

5. Calculate the (r,k,£)-characteristic of the Toeplitz matrices
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i -2 ai - 2 -4
= | 3 -t -2 A
44 - T
i 02 at i 2 -ai
;2. -% i 2 $2= -—;— i 2
S 4 s

Solution. (1,1,0);(2,0,0);(1,0,1);(1,0,0).

6. let the matrix Tn-l { El-ln_l) be a Toeplitz- and a Hankel matrix at
the same time. Which (r,k)-characteristic can this matrix have:
a) as Toeplitz matrix; b) as Hankel matrix?
Solutton, (0,0),(1,0),(2,0) (in both interpretations)

7. If T _, is a Toeplitz matrix with the characteristic (r,k,2), then

1
for the transposed matrix (Tn-l)t the characteristic has the shape

(r,£,k). Prove this.

§ 15 THEOREMS ON THE RANK.

15.1 Just as in § 11, at the root of the present section there lies,
in analogy to Lemma 11.1, a proposition on a nonzero minor, which now,
génerally speaking, turns out to be not a principal minor, i.e., it is
not necessarily situated symmetrically with respect to the main diago-
nal of the initial matrix., Nevertheless, as will be clear from the
Lemma 15.1 presented below, it can always be selected to be symmetrical-
ly situated (and so, because of the Toeplitz structure, to be symmetric)

relative to the initial (and its own) auxiliary diagonal.

LEMMA 15.1. Let T __, be a Toeplitz matrix of order n with a given

(r.,k,L)-characteristic. Then
r+k+2&<n

and the matriz T has some nonzero minor rsifi of order r +x +&. Thie
minor can be chosen, generally speaking, in various ways, in particular
the entries can be obtained from the following lines of the original
matrix To_1®

a) from the first k +r colwms and the final £ colwms, the first £
rows and the final r +k rows;
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b) from the first k columns and the final r + £ columns, the firs
r + ¢ rows and the final k rows.

PROOF. Let the rank of the matrix Tn-l be equal to p., For r=p ¢
verification of the lemma is trivial, since in this case, by defini
k=£=0, and M;‘:L D,_, =D,., (#0) is the desired minor of order
r(+ O+ 0) (one can replace it by a minor, taken according to rule a)

b) from the formulation of the lemma, by means of proposition 2° fr

§ 14 if r>0). We note, that for p=r=0 (then also k=£ =0) the st

ment of the lemma doesn’'t make sence. In this case we agree to unde
(o)

stand the "minor" D 1 = 1 to be the desired minor Mo o
- ,

So, let 0<p<n and r <p. We assume at first, that the condition
r+k+£<n is realized. This means that the matrix T4 =

n-k-£(2r)
e, NN
o "ot Tondled

Chx-1 .. N
(15.1)
contains at least one minor A;w) of order rof the shape
cw cw-l cw—rﬂ
A:“") = Cott Cu * et Syore2 (15.2)
Cotr-1 Swir-2 * ° ° u

where wtr-1<n-2k, w-r+1>-n+2€, i.e.
(-n+L+r-1 8) -n+28+r-1 <w <n-2k-r+1 (s n-k-r+1)
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(in diagram (15.1) this minor is entirely situated in the hatched part).
But then A(m) % 0 (§ 14, proposition 2°).

Now we consider the minor

PO c .. ¢
% C_n+l -n+1

. IO . :

. « o 0 o o o . o o+ e C_n*l
(r)  _ . C e 2@ . e e I
", 2 . r . .

c P . e . “ e e .

n-k

C . c v e e Y

Che1 *** “n-k °

(in the case r =0 the square Ai"’) is absent here). Applying proposition

2° of § 3 and formulae (14.3) we can consider Hlifi not as a minor of the
matrix 'r -1 but as being composed (see Theorem 13.2) from the matrix
'r 1’ wh:.ch 13 a singular extension of the matrix ‘1‘ (of rank r), as a
determinant Hk l (§,n) (see Lemma 3.1 in the shape of (3.7)), in which
the numbers § = Sk and n = C_o el replace the elements cn-k and c-n#l
of the matrix Tr'x-l' respectively. But then using the result of Lemma

3.1 in the shape of (3.8), we have

(£) | yio) -
Y, e £ n- k'c—n+l)
k&+r (k+£)  (w) e k
1) A n-k cn-k) (c
whence because of (14.3) M{t‘)z * O.

Now we note, that the minor A )(#0) of the shape (15.2}, which en-

(e -n+ cln-fl)z. (15.3)

ters into the structure of the determinant M;lz. can be arbitrarily
<¢hosen in the part, which is hatched in diagram (15.1). In particular,
having taken it in the lefthand lower (righthand upper) corner of this
part, i.e.,, putting w=n-2k -r (respectively w=-n+2f+r) we obtain
rule a)(respectively rule b)) from the formulation of the lemma.

The obtained result indicates, among other things, the fact, that
the identity

r+k+4&=n (15.4)

cannot hold in the considered case. Indeed, in the opposite case we
would have
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i.e., p=n=r,

It remains to consider the case, where r +k+£>n, which, as we
shall see, also turns out to be impossible (cf. the proof of Lemma
11,1), Indeed, assuming the opposite, we might throw out of the matrix
T the final (r+k+4£ -n) rows and columns (because of (14.4), whence

n-1
r+k+£-n S n-2). The matrix T =T, which will be ob-

n=1-(r+k+£-n)
tained as result, would have the order
n=2n-r-k-£ 2 2n-r-2 max{k,&} =
= 2[n -max{k,£}] -r 2 r (15.5)
(here we used n-mxik,l) 2 r, cf. diagram (15.1)), so that in its

characteristic (r,X,2)
rer, k=k « (r+k+f-n) = n-r-£ (15.6)
L= - (r+k+f-n) =n-r-k

where (see (14.4)) k>0, £>0, i.e., then rank p of the matrix Tx_
surpasses ¥ (=r) (see Sec. 14.1). But from (15.6) follows

1

T+k +2 = r+ (nex-£) + (n-r-k) =

=2n-r-k-£=n

which is, as we know (cf. {(15.4)), not possible for r < p.
Lemma 15.1 is proved.

15.2 Some facta, which were discovered in the course of the proof of
Lemma 15.1, allow to establish two propositions, which will show to be
useful in the sequel.

We consider the quantities

c-nq.p c'ﬂ"‘p“‘l o« v e c‘l’ﬂ'l
- c SN
3_1 =1, Bp-l = -n+pt+l c-n-fp Cons2 (p=1,2,++,n)
Cen+2p=1 Sent2p-2 * * ° Cantp
or, in the notation of § 1
1 2 « + +» P
Boe1 " Tnet Cnprt nepr2z ... n! (p=1,2,-:0m).

Thus, through (1%) E'I'Eo"”'sn-l
cessive principal minors (1) D—l' o'Dl"”'Dn-l moving (in contrast to

are denoted the analoga to the suc-

the mentioned minors) not from the lefthand but from the righthand upper
corner of the matrix Tn-l .
19 For a Toepltts matrix T -1 with characteristic (r,k,&) one has
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always

Br+£-l * 0, Ep-I =0 (p=x+l+l, -+ ,n).

Indeed, the minor Er+£-l is because of its definition obtained from
the minor H]iré, found in Lemma 15.1, if the latter is choosen accor-
’
ding to rule b) of this lemma (i.e. for w=-n+2£+r) and then from it

are discarded the first k columns and the final k rows:

e .. €
) Contl -n+1
. : -
. o« v . v o e . e . C-n+£
. “ e . . e
(r) (w)
= A
W . » ,
. . . - * - . .
c o o . e . . . .
n-k *
.
: cer Sk I
c ¢
w-£ Conil+1 | Consl -n+1
. . . .
e s . € . e s . C
E = Cu-1 w=-xr -n+f
r+l-1 P p P p
w Tt Twer+l Wer c ot -n+f+1
cw+r-1 * v . Cu cl‘)-l o« o o C_n+£+r
w=-n+28+r,
c
) C o _n+28+r -n+28+1
A = . .

Copt2f+2r-1 ° ° ° Sont2lar

(r)
Thus, Er -1 has exactly the same shape as "k ] for k =O. But this means,

’
that one can calculate E by the same rule 1 (15.3) as M;r‘)&‘
L4

r+£-1

_”rlA:-mzti-r)

= . L
Er+£-l = (C_n*z'C_n*_t) ¥ o.

It remains to explain, why li:p_1 =0 for p > r+£. In this case the

structure of the determinant Ep-l is as follows:
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p-(r+f) r 2
r—— N ———, /‘h/\_.--‘\
C-mp o e . « e e C_n+£ o e o c-n+1
. N e 2
. « o o « o . o v . C_n_'.t
(w)
Ep—1= . Ar . r
c
a « o e . e
. R I p-(r+l)
c [+
, -n+2p-1 . . 0| . .. . c-n+p

where w=-n+2€+r, and 0 = =-n+p+r+4£. For ¥ = p, where p is the rank
of the matrix Tn-i (in this case k={ =0) the order p of the minor lE:p_1

exceeds p (p>r+& =p+2f), i.e., Ep_ = 0, Now, if r < p, then as is

evident from the proof of Lemma 15.1,lr‘+k-+£ < n. Hence (we remind in
addition, that p $ n)

g=-n+p+r+L < p-k S n-k,
i.e., the numbers Cqr standing on the diagonal in the lefthand lower
corner of the determinant, are "correct" elements of the matrix

T ¢ Cy = ct" (see (14.3)). But then, if one considers proposition 2°

of § 3, the calculation of Ep-l in accordance to Lemma 3.1.,i.e., by a

formula which is analoguous to (15.3), yields Ep-l = 0.

The ascertainment of proposition 1° suggests an "asymmetry" between
the components k and £ of the (r,k,£)-characteristic of the matrix Tn-l‘
However, this apparent disparity between them disappears, if one intro-

duces just another set of successive minors of the matrix Tn- , star-

1
ting the progression through it from the lefthand lower corner.

n-q+1 n-q+2 n

F =1, F =T ( 1 2 a

-1 q-1 n-1

®n-q Ca-1-1 ¢ c cn-2q+1
°n-qt1  n-q ®n-2g+2

(q=1121°"'n).

n-2 cn-q

It is clear, that for these minors an analogon of proposition 1°
holds, namely 2):
20 For a Toeplits matrix Tt with characteristic (r,k,L) one alvays

hae
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+ O, o (gq=x+k+l,«++,n).

Fq_1 =
15.3. To begin, we note that Lemma 15.1 is formulated (and proved)

Frek-1

much more easily in that case, where the matrix Tn- is Hermitian (or

1
symmetrical). This relates also to the next propositions, to which we
now come, postponing a more detailed consideration of Hermitian Toeplitz

matrices to Sec. 15.5.

THEOREM 15.1 (FUNDAMENTAL THEOREM ON THE RANK). If T _, <s a Toeplits
matrix with a known (r,k,£)-characteristic then ite rank p can be found
through the formula

p=r+k+2 . (15.7)

PROOF. For r=p formula (15.7) is trivial, since in this case k =£ =0,
Let r < p, i.e., k+£ > 0. Clearly one can, without loss of genera-

lity, assume k 2 £. Because of (14.3) all matrices 'l'\’_1 -Ilcp_qll;:;’o
for v=r,r+1,°**,n-k have rank r, but the matrix Tn-k has a rank

T, > r. On the basis of the cOroilary of Lemma 6.1, £, equals either
r+l or r+2,

If k = £ then by Lemma 15.1 the matrix Tn-k' which has the characte-
ristic (r,1,1), contains a minor of order r+1+1 = r+2, which is non-
zero, i.e, r, = r+2. With the same reasoning (cf. § 14, proposition 19)
at the next step of extension of the matrix Tn-k by means of the ele-
ments c

) and ¢ 1 (=c_ n+k-1) (here we use again the

n-k+1=Cn-£-1 -n+l-
loose formulation already mentioned in Ch., II) the rank again is raised
by two units, and so on. As result after kX (=f) steps of extension we
find that p = r+2k = r+k+4&.

Now if k > £ (for £ > k the reasoning is analoguous), then (the rank
of the matrix 'rn_k) r, = r+1, since all rows of the matrix Tn—k' ex-
cept the last one, can be expressed linearly through the first r of its
rows (not containing "wrong" elements). So the characteristic of the ma-
trix has the shape (x,1,0). If k = £+ 1, then the matrix Tkl will
already have (see § 14, Proposition 1°) the characteristic (r,2,1), and
its rank surpasses rl (=r+1) by two units (not more, because of the
Corollary to Lemma 6.1, and not less, because of Lemma 15.1). In the

case, where k > £+ 1, all rows of the matrix T with exception of

k+1’
the last two, can be expressed linearly through the first r of its rows,
i.e., the rank of the matrix T _ksq G0esn't exceed r+2 =r +1. At the

Same time the characteristic of the matrix 'rn-k +1 in this case has the

shape (r,2,0), i.e., on account of Lemma 15.1 the rank of this matrix

is exactly equal to r+2 = r +1.
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Continuing this reasoning we find that'at each of the first k-4

steps of extension of the matrix Tn-k-l

P IPARAPK(

by the pairs of elements

). (e )

Cpx’Conex’ * Cnoker* Copek-1 ©p-1"C-n+1
the rank of the corresponding matrices will be increased by one unit,
and at each of the final (concluding) £ steps by two units. Hence fol-

lows, that the original matrix 'rn_ has the rank

1
p=x+(k-£) +28 = r+k+&,
The theorem is proved.

15.4. Now we consider some consequences of the fundamental Theorem
on the rank.

THEOREM 15.2. 3 If in the (r,k,L)-characteristic of the Toeplitz
matric T,y of rank p the component r < p, then an arbitrary extenston
T, of the matriz Toe1 by means of an arbitrary pair of elements (e ec_p)
has rank P, > 0. More precisely, <f k& > 0, then Py = p+2; if k=0,
£ > 0 (respectively k > 0, £=0) then (in the notation of § 14) for
e *cl (respectively c_, *¢p) also p, =p+2, but for c, = ¢, (respec-
tively .= c_'n) py=p+ 1.

PROOF. From the condition r < p (k+£>0) follows, that the matrix
Tn-l is singular, i.e., its rank p is not more than n-1 : pSn-1, Hen-
ce, if Tn is a nonsingular matrix, i.e., its rank pl = n+1, then, be-
cause of the Corollary of Lemma 6.1, p=n-1, and pltp+2. We note,
that here either k€ > O or k£ = O. In the latter case let, for example,
k = 0, £ > 0. Then necessarily e #c.

Indeed, for ¢ = ¢ the matrix T  would have (n+l) - (€+1) = n-2&
(>p-£=r) rows which do not contain "wrong" elements, i.e, rows,
lying in the matrix T;. of rank r, and therefore linearly dependent. But
then det T, = O in contrast to our assumptions.

Now, let 'I‘n be a singular matrix and let its characteristic have the
shape (r,k,£). Then for k€ > O
=1, k=k+l, £=2+1,

i.e., the matrix T _has rank p, = r+k+f =r+k+8+2 =p+2,

1f, however, k = 0, £ > 0, then we have for < * cl"
=r, k=0, £ =20+1,
i.e., oy = r+f+1 =p+1.

"2

In the case k > 0, £ = O the reasoning is analoguous.
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From Theorem 15.2 one obtains immediately a general criterium for
the existence of singular extensions (see § 13) of arbitrary Toeplitz
matrices, namely:

THEOREM 15.3. In order that the Toeplitz matrix T .y of rank p admtts
a singular extenston it 18 necessary and suffictent that the eondition
D1 # 0 I8 satisfied,

PROOF. The sufficiency of the condition was established in the Theo-
rems 13.1 and 13.2. The necessity follows from Theorem 15.2, since for
Dpoy = O in the (r,k,£)-characteristic of the matrix T, the component
r necessarily satisfies the inequality r < p, and hence Tn-l has no sin-
gular extension ('rn has already the rank p+1 or p+2).

From this result follows in turn the analogon of Kroneckers Theorem
(see Theorem 11.6):

THEOREM 15.4. If the infintte Toeplitz matrix T_ = |l has

g

c

p-q p,q=0
the finite rank p, then D * 0,

p-1
PROOF. This is completely analoguous to the proof of Theorem 11.6,

15.5. We dedicate the final part of this section to the case, where
the Toeplitz matrix is Hermitian, keeping in mind, in particular, appli-
cations to the theory of (Hermitian) Toeplitz forms.

At the end of Sec. 14.2 it was noted, that for a Hermitian Toeplitz
matrix T . the (r,k,L)-characteristic always has the shape (r,k,k),
i.e., one can speak about the (r,k)-characteristic. Hence the statement
of the fundamental Theorem on the rank p for a Hermitian Toeplit2z matrix
now looks like

p = x+2k, (15.8)

Thus, the nonzero minor "lir}. which emerges in Lemma 1S.1 now {(for k =4£)
.

can be chosen such, that it would be a principal minor, i.e., symmetri-
cal with respect to the main diagonal of the matrix Tn-l (for this it
suffices to take the minor A:_‘") in formula (15.2) with v = O and situa-
ted in the hatched part of diagram (15.1), symmetrically with respect
to the auxiliary diagonal). Then, clearly, Az(-O) - D:-l and since (see
Remark 1 to Theorem 13.2)

ask = Censk! Sn-k T Clnek
the minor Ml:fl)c turns out (see (3.9)) to be:

The structure of the minor M’?) admits in the case of a Hermitian

12, (15.9)
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matrix T _, (k =£) a new interpretation. Indeed, this minor now must
consist of the principal minor Dr-l’ bordered to the left and above with
the initial k rows and columns and to the right and below with the fi-
nal k rows and columns of the matrix Tn-l‘ But since the matrix Tt is
a Toeplitz matrix, the minor D':_1 can be chosen also such, that (see
diagram (15.1)) it stands adjacent to the initial k rows and columns
i.e. (in the notations of § 1) such that

k+1 k+2 -+« ker

Dit ™ Tnot (kat kb2 oo kr )
or in a diagram
i Cx+1| Cx k-] St Con+t
Cq v vt S . c e e . - .. S
o ) ce o€y <, oo e ey S, +1
"’k =1, . . (D) . . e e e o
Seeg ¢ 0 Sy co SRIEA Cots © ° ° Crar
<. e e e . “ e e . c, coe e S
®n-1 €t €ot-1 Coper| k-1 ° * %
where ¢ = r-~-1, T = -n+Kk, w = -n+ 2k. But this is, clearly, also the
same as the minor, consisting of the first r +k rows and columns of the

matrix T ., bordered with its final k rows and columns. This is in turn
equivalent to a bordering of the minor Dr-l' taken in the lefthand upper
corner of the matrix T __,,with the k rows and columns of the matrix T __,
which are next to it, and then with its final k rows and columns:

[+] o o o [o] C (o] (o]
° -r+1] € Cortk-1| S-ntk -n+1
. D . . .
(®_,)
c o o e Cc . o o .
r-1 o c-n+r
c e e ... . .
r CO
M}Er) -
c e . .. . .
k-1 %o
c e e . . R c R
n-k (]
C « o . . . . . . [
NG IR =31 IS IS
X k

This final variant of the interpretation of the minox Mﬁr), namely,
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allows to formulate the following rule (algorithm} for discovering the

rank p of the Hermitian Toeplitz matrix Tn- . It is the analogon to

1
Theorem 11.3,

THEOREM 15.5. Let T _, be a Hermitian Toeplitz matrixz, and let the
number ¥ be defined through the relations

Dr—1 * O, Ds =0 (s 2 r). {15.10)

If r = n (i.e., the second of relations (15.10) s meaningless), then
the rank of the matrix Tpoi ¢ also equal ton : p =n. Now, 2f r < n,
then, having bordered the minor D__, . standing in the lefthand upper
corner of the matrix Ty with the next row and colwm and the final
row and colum of this matrix, we form the minor Sﬁl of order r+2,
then we form the minor Br+2 of order r + 4, having bordered D__| with
the next two rows and colwme and the final two rows and columns of the
matrix T 1 and 8o on, as long as thie is possible, in view of the sizes
of the minor D__, and the matriz T __,
(with respect to the order) under the minors D

. We consider the maximal one
(v=0,1,2,+--,

r—-1+2v
D = D_ ,) which Z8 nonzero. Then
r-1 r-1
., max vak
Dr-1+2v *o
4)

and r+2k = p i8 the rank of the matrix T __ .
Further, since for r < p we have (£=) k > 0 for a Hermitian matrix,
in Theorem 15.2 always the case kf (=k2) > 0 occurs, and so

3% An arbitrary extension T, of a Hermitian Toeplita matriz T
with x < p by an arbitrary pair (cn,c_n) of (not necessarily complex
conjugated) numbers has rank Py =Pt2. 3

In an analoguous way, one now would only have to consider the simple
case (k=4£) in the proof of the fundamental Theorem on the rank. In
view of the importance for the applications the reasoning used in this
case (see the proof of Theorem 15.1) and in particular, its result, de-

sexves to be presented in a separate proposition:

THEOREM 15.6. (ON THE JUMPS IN THE RANK OF A HERMITIAN TOEPLITZ
MATRIX AT EXTENSION). If in the (x,k)-characteristic of the Hermitian
Toeplitz matrix T the component k > 0, then the truncated matriz
Tn-k—l has rank r, and the matrices ToxT

+Ty_, have respecti-
vely the ranks r+2,r+4,+--,r + 2k,

n-k+1’ """
i
In other words, at the transition by means of extension from the ma-

trix T,_y of rank r to the matrix T4 oF rank p (>r) the vank increa-
Ses only at the final k steps of extension, where each of these k steps
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8 accompanied by an increasee inhe rank of two units.

It is suggested to the remader © verify, as an exercise, that the
Theorems 15.5 and 15.6, and alsoxoposition 3°, also hold for (complex)
symmetric Toeplitz matrices.

In conclusion (also as exeercig) it is suggested to establish, in ana-
logy to Theorem 11.8, the vallidit; of the following proposition:

THEOREM 15.7 [32]. The gemerashape of a Hermitian Toeplitz matrix
T,y = Ilcp_qll::;w of given. orde n (23) with a given (r,k)-characte-
ristie (r20, k>0, n > r +2k) trdetermined in the following way :

1) for r 2 1 i8 asstgned can avitrary nonsingular Hermitian Toeplitz
matric T,y of order r (for x =0:his step drops out);

2) for T i8 chosen an axbitxry singular extension of the matrix
Ty (for r=0 we set T, = (@)

3) the matrices T, ,.T  ...**+2 _, , are determined uniquely as sin-
gular extensions of the matr~iz T;

4) the number ok’ which giv:'a' the next singular extension T
(of order n-k+1) of the matriz: , is determined in a unique way;

. R . « a . .
S) this element Crox T Ty = replaced by an arbitrary -k (#cn_k)

k
and correspondingly, Cllek = Cmu’® replaced by €k the matriz, which
18 obtained as result, is demnote:by Tk’

6) for k=1 the construct=ton = the matrix T, %8 completed; for

k > 1 the remaining elementsz St k1)’ Cnex+2=Conr-2

Cpep = C_peq QY@ chosen arbiitrar.y.
It is clear, that an anal.oguas theorem can be formulated and proved

also for (complex) symmetric:. Toelitz matrices.

EXAMPLES AND EXERCISES

1. For the Toeplitz matri x (s2 exercise 2 of § 14)

o o -1 o
2 0 0o -1
'I'4 = o 2 0 O
o o 2 (o}
o 0 o 2

of order 5 with (r,k,£)-characteistic (3,1,0}, a nonzero minor of or-

der 4 (xr+k+£ =3) can be chossem arording to Lemma 15.1, for example, as
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200 -1
© 20 = 16 (variant a) of Lemma 15.1)
o 0 2
o 0 O 2
or as
0 -1 0 o
z2 ot = 4 (variant b)).
o (o) o -1
°© 0o 2 o

The rank of the matrix T, is equal to p = r+k+{ = 4 (verify that
D, = IT4I =0).

Further, in connection with propositions 1° and 2° we have

-1 o o0
Er+£-1 '-Ez = o -1 e} = -1 % Q;
o o -1
0o -1 0o o
E, = o o -t =0, B, =D, = 0;
2 o] o -1
[s] 2 o o
2 (o] [o] -1
[o] 2 (o] (o]
F =F, = =16 ¥ 0, F, = Db, = O,
r+k-1 3 o o P 4 4
[o] o [o] 2

2. Convince yourself, that in the Toeplitz matrix (of order 6)

1 1 1 B vy &
1 111 8 ¥
7, = 11 11 1 8 @*1, B+ 1)
11 1 1 1 1
1 1 1 1 1 1
a 1 1 1 1 1
the minor of orxder 5
1 1 8 y 8
1 11 B «v §
11 1 1 8
1 1 1 1 1
a 1 1 1 1
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is nonzero. Compare this fact with Lemma 15.}], having calculated the
(r.k,£)-characteristic of the matrix Ts beforehand. Study the conduct
of the successive minors Eq—l and Fq-l of the matrix Ty and explain it
with the point of view of propositions 19 and 2°.

3. Calculate the rank p of the symmetric Toeplitz matrix of order 5

o 1 o 1 1
1 O 1 0 1
T4- o 1 o 1 o
1 0O 1 0 1
11 o1 0
with the rule of Theorem 15.5. Here D° =0, Dl = -1, D2 = D3 = D4 = 0O,
Thus r = 2,
o 1
D =D = A
r-1 1 1 o

Border this minor with the row and column next to it, and then with
the final row and column of the matrix '1‘4. We obtain

1 1] 01

~ 1 0|11

D3= = 1(%0),
o1 0 o
11 0 0

As the size of the matrix doesn't allow further continuation of this
algorithm, we have p = 4. Compare this result with the last of the ans-

wers in exercise 4 of § 14 and formula (15.8).
4. Find the rank p of the Hermitian Toeplitz matrix
4 4i O 2i =5
-4i 4 4i O 21
T, = O -4i 4 4i o
-2i O -4i 4 4i
-5 -2i O -4i 4

Solution. p = 3.
5. For the Toeplitz matrix T, of example 1 (order n = 5, (r,k,{)-

>

characteristic (3,1,0), rank p = 4) we consider the extension
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00 -1 0 0 vy
2 0 o -1 o (o]
Ty - 02 o0 o0 -1 o
o 0 2 6 o -1
o 0o O 2 o O
x 0 0 0 2 o

Convince yourself, that for arbitrary x,y the matrix TS has rank o > 4.
For what values of x,y will 5 = 5?2
HINT. Use Theorem 15.2,

6. FPor the matrix

1 i =1 -i -1 i
-i 1 i -1 -i -1
-1 -i 1 i -1 -i

i -1 =i 1 i -1
-1 i -1 -i 1 i

-1 -1 i -1 -i 1

(which is Hermitian and Toeplitz), is, as is not difficult to verify,
in the (r,k)-characteristic the component r =1, and b _, = D, = 1.
Trace the jumps in the rank at the construction of the successive ex-

tensions of the matrix T =T, = ( % i) (of rank r = 1):
r 1 -i 1

1 i -1
=l i1 i, Ty B S
4 -1 1 -1 -4 1 i

and so on, until the complete reconstruction of the matrix Ts and com-
pare the result with Theorem 15.6. What is the value of the component k?
Solution. k = 2.
7. Prove the proposition (see [31], Theorem 4):
If for the Hermitian (or symmetric) Toeplitz matriz T, °f rank p
in the (r,k)-characteristic k > © (r<p<n) and the defect of the matrix

©8 equal to d (=n- p),then after A steps of extension of this matric 6)

b meas = oo

y ng of arbitrary elements <, c_n © €y = c_n_i, P
€_n-q+y (respectively c = = c-n' Cart = Sone1’"""7 nea-1 = Cop-art’

we obtain (for the first time!) a nonsingular matriy T _1sa

HINT. Apply Theorem 15.2 (or its consequence - proposition 3°) and
proposition 190 of § 14.
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8. Do there exist singular extensions of the Toeplitz matrices:

-4 -2 4i
e, = © 3-2%f, T o= 172 -t -2 ,
1 o o 2
-i/a  1/2 -i
-i 2 -ai i 2 ai
62 = 172 -i 2], ?} =f-172 i 29§ ,
-ifa  1/2 -i -i/4 -1/2 1
P T 1o
2 1111
To={-1/2 i 21, T, =
2 3 1111
-i/4 -1/2 i
o1 1 1

(cf. Exercise 5 of § 14)?

HINT. Apply Theorem 15.3.

9. FPormulate and prove a generalization of Theorem 15.7 for arbi-
trary Toeplitz matrices.

NOTES

1) .
For r = £ = O we have, by definition, E 44 =B =1 1fr=0,

but £ > 0, then, as is clear from definition (14.1) and relations(14.3),
=0 (p<4&), and c_

.
we have c_ * c_n+£ = 0, so that in

= ¢!
n+p -n+p n+{

that case
£
Epvg-g = Bpy = Cpyp) *O

(see diagram (14.7)).

2)Ptopositionsl° and 2° will afterwards (see § 17) be used for the con-

struction of a common theory of the characteristics of Toeplitz and
Hankel matrices.

3 In the first publication on this Theorem ([37] Theorem 4, Corollary)

the hypotheses were, unfortunately, misprinted; this was, however, cor-
rected in the english translation.

4) Just as for Hankel matrices (see the note to Theorem 11.3) it is for

small (in comparison to n) values of r easier to find the rank p = r+ 2k
through a direct calculation of the component k in the (r,k)-characte-
ristic by the method of § 14.

2 In fact, this proposition (see [31], Theorem 2) was originally fun-

damental for the whole theory of Hermitian Toeplitz matrices (and forms),
developed in [31] and {32].



HERMITIAN TOEPLITZ FORMS /127

6) Cf, exercise 5 to § 11 and the note to it.

§ 16 HERMITIAN TOEPLITZ FORMS .

16.1.For an arbitrary Hermitian Toeplitz form

n-1 _
T (x,x) = £ ¢ EE (c _=¢c,p=0,1,++-,n-1) (16.1)
-1 -
n p.g=o PAPQ P P
with matrix Tn-l -‘Hcp_q";:;=o of order n(21) and rank p we occupy

ourselves again with the study of the signature and we undertake to
establish an analogon to the results of Frobenius in the theory of real
Hankel forms (cf., § 12) (It is not difficult to trace, that all re-
sults of this § 16 remain valid for real quadratic Toeplitz forms as
well). In our investigation there will emerge two, closely related,
curious circumstances. In the first place, the distribution of possible
zeros in the set of successive principal minors

(1=) D—l'Do'Di""'Dp—l (16.2)
now turns out to be subject to some "restriction", which we didn't en-
counter before (i.e., in the theory of Hankel forms). Secondly, preci-
sely because of this restriction the theory turns out to be more well-
proportioned and simple and finally its result - the signature rule -
is absolutely elementary (and nevertheless it remained undiscovered un-
til recently).

16.2, Following the same scheme as in § 12, we start with the case,
where in (16.2) one encounters an isolated group of zeros arranged in
succession

LEMMA 16.1. If tn the set (16.2) there & a group

(Dpoy #0)s D =D = oo =D, =0 (B, +0) (16.3)

of p (>0) zeros, standing isolated, then the number p is odd.

PR . ” " vee
OOF. If one considers the "truncated" matrices Th-l'Th' 'Th+p-l'
Th+p of which the determinants appear in (16.3), then it is clear that

the i
rank of~the matrix Th+p is equal to h+p+l, and the matrix Th+p-1
has a rank p equal to h+p-1 (see the Corollary of Lemma 6.1).

In the (r,K)-characteristic of the Hermitian Toeplitz matrix Thep-i
is, clearly, T = h, and 2k = 3-; = (h+p-1) -h = p-1. Hence follows,
that p = 2k +1 is an 0dd number. .

RE : s .
MARK. The transition Th+p-1 > Th+p is accompanied by a jump in

the rank of two units. For p> 1 (i.e. for kK > O the transitions

Thet =2 Th > 0 T Ty
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will, because of Theorem 15.6, cnly at each of the final i = (p-1)/2
steps be accompanied by an increase of the rank and then at each time
by two units. Thus, in the arbitrary case (p 2 1) if we put p = 2g-1
(@ > 0), then the complete transition from Th—l to Th+p yields an in-
crease of the rank by 2g units.

COROLLARY 1. The stignutures of the Hermitian forms T, _y (X,x) and
Th+p(x,x) (with the matrices Tyo1 and Th+p' reapectively) coineide.
In this connection the form T

h+p
gative squares more, than the form T

(x,x) has exactly q positive and q ne-

hot (XeX) (p=2g9-1).

This statement follows directly from Theorem 6.1 and Lemma 16.1.

Thence is in turn, with regard to formula (4.3), obtained
COROLLARY 2. If p = 2q -1 then

e (139 <
sign Dh+p {=1}" sign Dh-l'

(16.4)
In connection with this topic we note, that the restriction, imposed
by Lemma 16.1, doesn't exist for Hankel matrices. Indeed, already the

simple examples

o
Hy=| 0 1 + Dy =1;D =D =0; D, =-1(p=2},
1 00
00 o0 1
f, - oo 1o} D,=1;D =D =D, =0;Dy=1 (p=3)
01 oo
1 000

show, that for Hankel matrices the number p can be even as well as odd.

We note also, that the restriction, imposed by Lemma 16.1 neither re-
mains valid for non-Hermitian Toeplitz matrices, which is clear even

from the example

o 1

T, = o] =1;D°=DI-O;D=1 (p=2).
1

2 -1 2

o
o 1 ’ D
o o
16.3. We proceed to consider the case where in the set (16.2)
Dpoq = ©-
LEMMA 16.2. Let for the Hermitian Toeplitz form (16.1) the (r,k)-
characteristic of its matrix Ty be known. Then the truncated form
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T _, (X/%) and the "complete” form T__, (x,x) have the same signature,
where the form T__, has exactly k positive and k negative squares more
than the form T__, (x,x).

PROOF. If the rank of the form Tn-l (x,x}) is equal to p and r = o
(k=0), then the statement of the lemma is evident (see proposition 1°
of § 6). Now, if r < p (k>0), then, by Theorem 15.6, the rank increa-
ses at the transition by extension from Tr«-l to Tn—l only at the final
k steps of extension, and by two units at each step. It suffices to
apply Lemma 6.1,

16.4. From Lemma 16.1 and 16.2 one obtains without difficulty the

simple signature rule for Hermitian Toeplitz forms:

THEOREM 16.1 (FUNDAMENTAL SIGNATURE THEOREM). The gignature o of the
form (16.1) can be calculated from the set of its successive principal
minors

(1=) D_y,D /Dy, ,D, 5D (16.5)
of this form by means of the rule
n-1
g = \y,=:o sign (Dv-le) {(sign 0=0) (16.6)

PROOF. We consider the (x,k)-characteristic of the matrix T _, of
the form Tn,ltx,x). If therein the component k = O (i.e. r = p, the
rank of the form), and Dv # 0, (v=0,1,"++,p-1), then rule (16.6) simply

coincides with Jacobi's rule (see Theorem 8.1),

n-1 p~1 X
E Slgn(pv-inv) = L sxgn(Dv_IDv) = I sign(Dv_le).
v=o0 v=o0 v=o

Now let k 2 O, i.e., r $ p. We assume, that in the set (16.5) the
first (reading from the left to the right) group of zeros has the shape

(D,_, #0), D =D, hipe1 = @ (Ppyp 0.

Then by Lemma 16,1 p = 2q-1 (q >0),and the form .

rollary 1 from Lemma 16.1 the same signature as Th-l (x,x). But for the

= ecees =

Dh+p
p(x,x) has by Co-

latter, according to Jacobi's rule, the signature is equal to

h-1 h+p
z s:.gn(Dv_IDv) = L sign(Dv_le) .
v=0 v=0

If here h+p = r -1, then from Lemma 16.2 follows fcémula (16.6). Now,
if h+p < r-1, then for Dv # 0 (h+psSvsr-1) the signature of the
form Tr~1 is equal (cf. the note to the proof of Theorem 8.1) to
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-1 n-1
b sign(Dv_IDv) = I sign(Dv_IDv).
V=0 v=0
and, because of Lemma 16.2, that is also the signature 0. In the case

where between Dh+P * O and Dr-l

zeros we arrive at the same result after renewed application of Lemma
16.1,

* O there are still further groups of

The theorem is proved.

REMARK. In rule (16.6) the following two peculiarities attract the
attention. In the first place, in the way it is written down it is ab-
solutely identical to Jacobi's rule, but in contrast to the latter, it
can be applied without any restriction on the minors Dv (v=0,1,++<,n),
Further, unlike the rules of Jacobi (Theorem 8.1) and Frobenius (Theo-
rem 12.1) it does not require the rank p of the form Tn_l(x,x) to be
known. The Toeplitz forms excluded, we do not know of any class of Her—
mitian of quadratic form for which it is possible to discover the sig-

nature o from the set (16.5) without knowing the rank of the form.

16.5. It is clear, that knowledge of the signature ¢ of the form
Tn_l(x,x) , in combination with the knowledge of its rank p (found, for
example, by means of Theorem 15.5), allows to find out the numbers
ne= % (p+0) and v = % (p —0) of its positive and negative squares,
However, just as in the case of Hankel forms the numbers 7 and v can
(knowing p)} be found also directly by means of a Theorem, which is the
analogon of 12.1.

Indeed, by using Corollaries 1 and 2 of Lemma 16.1, we obtain

19, Under the conditions of Lemma 16.1 we write for the zero minors
from the set (16.3) the sign plus or minus according to the rule

v(v-1)/2

sign Dh = (-1) sign (16.7)

Ph-1
Then the numbers of positive and negative squares of the form T +p(x,x)
exceed the corresponding rumbers for the form Ty g (%0%) by

-14+v

P(Dh-l'Dh"..'Dh+p) and U(Dh'l'o '.“'Dh+p)’

respectively (see §§ 8 and 12 for the notations P(-++) and V(:--)).

The proof is, because of the fact that p = 2g-1 (q >0), quite iden-
tical to the proof of Lemma 12.1 in its elementary part I, if we consi-
der, that the relations (12.5) and (12.6) used there coincide with
(16.4).

2°, Let in the (r,k)-characteristic of the matrix T -1 of the form
(16.1) r < p (k>0). We write for the zero determinants in the set
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(b,_,#0), D =D = = D,.p = O signs according to the rule

. v(v-1)/2
SO0 D14y -1

and we replace the minor D__, .. (= Doy = O by the nonzero minor

~ (r)
Dp-l M (see (15.9) of order o.

Then the nwnbere m and v of positive and negative squares of the form

= (-1) sign Dr (v=1,2,---,2k~-1), (16.8)

T,y (XX} exceed the corresponding numbere for the form Tpoy (XeX) by

P(Dr-l'Dt' ¢ 'le_lep_t)

and

ID ¢e**.D D )

V(D 0-2' -1

r-1
respectively,

Here again the proof is, because of formula (15.9), in nothing dif-
ferent from the considerations in the simple case I a) of the proof of
Lemma 12.2 (we leave the comparison of the different netations, occur-
ning in our proposition 2° and those in the mentioned proof of Lemma
12.2 to the reader as an exercise).

Now, summing up propositions 19 and Xwe obtain a rule, which is the
analogon of the statement of Theorem 12.1:

THEOREM 16.2. Let the rank of the Hermitian Toeplitz form Ty (o)
be equal to p=r+2k, where (r,k) is the characteristic of the matrix
We consider the set

(1=} D_llDOIch"'le 2

o (r-p) we substitute D; 1 = D -1t and in the opposite
case D2 = Sp-l - (Mk ') (see proposition 2°) . For the zero determi-

T
n-1"°
ID* 1!

where for k

nante Dj_1 (0S j Sp-1), ZIf euch exist, we write signs according to the
rules (16.7) and (16.8). Then the nwnbere ® and v of positive and nege-
tive squares of the form T4 (X.X) are respectively determined by the
identities

* = P(,D,Dy," Dp z'D* ) (16.9)
v = V(1,D ,Dl,u» o- 2, - 1).

REMARK. In the first publications [32,34] of the rule, formulated in

v(v-1}/2

Theorem 16.2, there appeared, instead of the factor (-1) (i.e.,

the same, as in Frobenius®’ rule for Hankel forms) the coefficient
(-1)“(\"’“/2. It is easy to understand, that precisply because of Lem-
Mma 16.1 and the relation p=r + 2k these different factorsyield in for-

mulae (16.9) one and the same result.
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EXAMPLES AND EXERCISES

1. We consider the Hermitian Toeplitz form (of order n = 5)
2 2 2 2 2 = = -
T, (x,x) =4(1E 1"+ TE T+ 1E,17 + IE3I + 15,1 yHALE & +E E +EEL+
*ERE) AL E +T L)+ T+ ELE) + 20 T +ET ) - AT E, 5 +
- SR E TS,
with the matrix (cf. exercise 4 to § 15)

4 41 o 2i -5
-4i 4 4i O 2i
T, = O -4i 4 4i O

4
-2i 0 -4i 4  4i
S -2i O -41 4
Herxe
b, =1,D_ =4,
4 4o
D, = _:i :i =0 D, =| -4 4 41| = -64,
o -4i 4

and D, = D4 = 0, as the matrix T, has rank 3 (cf. exercise 4 to § 15).
Hence, in accordance to Theorem 16.1 (formula (16.16)) the signature is
equal to

o= sign(D_lbo) = sign(4) = +1.

As p=3,0nehas m =2, v=1,

2. Calculate the signature of the real symmetric Toeplitz form (of
order n = S)
e R R A AR R O
Solution., ¢ = 0.
REMARK. With regard to the result of example 3 to § 15 (p = 4) we

have 7 = v = 2,

3. Prove the analogon of Theorem 12.2 (cf. [37], Theorem 6):

Let 7 and v be the rumbers of positive and negative squares of the
Toeplitz form 'rn_l(x,x), respectively, and x = min {n,v}. Then in the
get of successive principal minors

(1=) D_]rDolDIv"’ (p = mT+V) (16 .10)

'Dp-l
of the form Tyoq (%) there are for D -1 + O not more than 2k -1 zeros.
If there are exactly 2« -1 zeros, them, after these have been removed
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from (16.10), the signs inside each of the remaining groups of numbers
(not regarding the numbers which stand isolated) are strictly alterna-
ting for x = m and for x = v they do not vary.

HINT. Follow the way of the proof of Theorem 12.2, applying formula
(16.6) instead of (12.20).

4. Prove, that the Theorem of exercise 3 also remains valid for
Dp_.1 = 0, if the upper bound 2c¢ - 1 is replaced by 2x (cf. exercise 4
to § 12).

S. Devise an example, which shows that the bounds 2x - 1 and 2x in
the exercises 3 and 4 respectively are sharp (cf. exercises 5 and 6
to § 12).

6. Show, that in Theorem 15.7 one can, besides the parameters n (23),

r20, k>0 (n>r+ 2k), assign in advance the signature o of the form
n-1

T . (x,x)= L c_ EE
-1
n prg=o P"E P4

with the matrix Tn-i’ choosing for ¢ an arbitrary entire number of the
same parity as r (and the same also as p = r + 2k) from the segment

[-r,x]. For the construction of such a matrix Tn- it is necessary and

1

sufficient to select in step 1) of Theorem 15.7 the matrix Tr-l such
that is satisfies the condition: the signature of the form Tr_l(x,x) is

equal to ¢ (cf. exercise 7 to § 12).
7. Verify the validity of the remark to Theorem 16.2.

8. The infinite sequence of complex numbers

(;O =) colcl'czl v

belongs, by definition, to the class PﬁT), if for sufficiently large
m(>N) all Toeplitz forms
m-1 _ _
T (%x,X) = £ c £ & (c =c¢c , p=0,1,+-,m1)
m-1 —
prg=o P79 P P P

have in the canonical representation exactly x positive squares.

If the Hermitian Toeplitz form
n-1
L

pP,g=o

of rank p has k positive squares, then in order that the finite set

CP'QCPE

c ,C,,°**,C
o' 1’ ‘“n-1 §

of its coefficients allows the exension to an infinite sequence

«x
{Cp}p=° of the class P:T), it is necessary and sufficient, that the mi-
nox Dp_1 # 0. If this condition is satisfied, then for p < n the men-
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tioned extension is defined uniquely, but for p = n, there exist infi-
nitely many of such extensions [31] (cf. exercise lo to § 12).

HINT. Use in the "necessary"-part proposition 3° and Theorem 6.1,
and in the “sufficient"-part the Theorems 15.3, 6.2, 13,2 and 13.1.

REMARK. For more complete information on sequences of the class
PiT) (classification, integral representation, asymptotic behaviour,
connections with the classical problem of mowents etc.) and also for a
detailed investigation of the extension problem, which was touched only
in exercise 8, see in [31,33,36,42,43,51). The analoguous information
on the class PiH) (see exercise 1o to § 12), is,though in considerably
less extent, contained in [22,50,41]. For the continual analoga to the-
se problems see [45,54,21-23,59].

REMARK. For the further development of the concept of the characte-
ristic of Toeplitz matrices, and alsc for new applications of the theo-~
ry of Toeplitz matrices and forms see [S5),[9] and [16] of the additio-
nal list of references.



Chapter 1V

TRANSFORMATIONS OF TOEPLITZ AND HANKEL MATRICES AND FORMS

§ 17 MUTUAL TRANSFORMATIONS OF TOEPLITZ AND HANKEL MATRICES.
RECALCULATION OF THE CHARACTERISTICS,

17.1, Over the full length of Ch. III we have traced the analogy
between the properties of Toeplitz and Hankel matrices, and also the
analogy in the behaviour of the corresponding forms, not forgetting, in
truth, to underline also the scometimes essential differences which have
turned out. The mentioned analogy becomes natural (at least in the

aspects which touch the matrices) if one notes that each Toeplitz ma-
trix

€ €ttt Sone2 Sanwt
<y <, s s s C43 Cua
T ={ - . . .
®n-2 Sn-3 o €1
®n-1 Sp-2 ¢ %

by a simple rearrangement of the columns (rows) can be converted into
a Hankel matrix and the other way round.

Indeed, it suffices, for example, in the matrix Tn-l to rearrange
the colums in the reverse order, i.e., the last column on the first
place, the penultimate one on the second place, and so on, and we ob-
tain the Hankel matrix

c
c-n+1 ~n+2

-1 (<]
1 Cont2 ez v 00 S <
H =f. . e e e . . (17.1)
n-1 c c ¢
-1 o) ** Tn-3 "n-2
o ¢ ot Sz Spa

The analoguous maniplulations on the rows of the fatrix Tn-l also lead
to a (in general, different) Hankel matrix
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n-1 n-2 1 10

€2 -3 c, c-1
HH, = . . . .

% o C_n+3 -n+2

oA <y c e Cv2 Spt

If one introduces the notations

I - I n-1 n-1
= - = [
e S 10834l mor B2y = Us My Sos
then one easily notes that
s = , sH= (3=0,1,2,+--,2n-2) . (17.2)

3 - %5-n-1)" 357 “~34(n-1)

It is clear that one can, conversely, starting with a given Hankel

matrix
So 51 Sp-2  Sp-1
51 % Sh-1 %n
Hn_1 = . B . . ,
®n-2 Sn-1 * * * Sopq Sop-3
Sn-1 3p S2n-3 ®2n-2
obtain, with aid of the formulae
1 + +
= . - = E - * oo, = o~
cp Sp+n_1' Cp s-pﬂ'\-l (p=0,%1, ,= (n-1)) (17.3)
two Toeplitz matrices
Sn-l Sn-Z Sl so
S s . s S
el gt o i ’
n-1 p-q4 p,q=0 : : : : ‘
*2n-3  ®2n-4 *n-1 ®n-2
S2n-2 s2n-3 sn sn-l
®n-1 Sn-3 *2n-2
- %n-2 °n-1 S2n-4 %2n-3
T H = - = R . . .
1 llcp_qllp'q=0 ’
1 52 *n-1  %n
so sl sn-2 sn-I

which are mutually the transpose of each other

t 1 I .t _
YomT e (T ) =T

s n-1

fol (17.4)

1
The transformations (17.2) and (17,3) can be described by means of

the multiplication of the given matrices with the fixed matrix Jn of
order n
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- 1
3 P . (17.5)

Indeed, one verifies directly the relations
I

"~ - -
B =T _J., BY =J3T . (17.6)
I

- =
Ty =H I TH =JH . (17.7)

It is even more convenient to use these formulae, because the matrix J

has remarkable properties: it is Hermitian (real and symmetric) and
unitary at the same time:

#*=atayg, st =0 (=)
n n n n n n
and hence an tnwolution
2
= . 7‘
Jn E (17.8)

In particular, the relation (17.4) follow from (17.7) and the symmetry

of the matrices J and H , (J°=J , HS ., =H_ ).
n n- n n n- n-1

1 1

17.2. In connection with the transformations introduced in Sec. 17.1
there arises the natural question: how are these transformations re-
flected in the characteristics of the respective matrices? Exactly for-
mulated: is it possible to calculate from the given (r,k,£)-characte-
ristic of the Toeplitz matrix Tn—l the (rI,kI)-and (r™ ,x"™)-characte-
ristics of the Ha?kel matrices Hz_l and Hn:3 and conversely? A positive
answer to the first of these questions is obtained with help of the re-
sults of Sec. 15.2.

So, let the (r,k,£)-characteristic of the Toeplitz matrix

c N -]
-r T -n+1

- . .
r-1 . .

c ..

r ° s

. cT

Tn_1 = . . , (17.9)

c .

4

. ‘-

c « s o C c

n-1 (4 o

be known, where 0 = n-k, v = -n+4£, By the definition of the (r,k,&)-

characteristic (see Sec. 14.1) we have in the set of successive princi-
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pal minors
D (1), D_ . =det llc. N*! (v=1,2,+",n)
-1 ¢ Pt p~q p'q.o X3 .
that Dr-l * 0, but Dv—l =0 (v>r).

Now we consider the sequence of minors (counting from the righthand

upper corner of the matrix Tn- )

1

c-n+p c~n4-pr—1 €on+t
E(E1LE, ) = C-ntpt1  Sonep Cent2| (p=1,2,-++,m), (17.10)
c-n+2p-1 c—n+zp-2 c-n+p

introduced in Sec. 15,2, As was shown in proposition 1° of § 15

Er+£_1 * 0, Ep-l =0 (p>r+d). (17.11)

Now we note, that after rearrangement of the columns of the matrix Tn-l
in converse order, i.e., after the transformation
I

Boe1 = Tn—lan'

-1 (p=0,1,+-+.n) coincide (up to the
signs) with the corresponding successive principal minors of the Hankel

the minors E of the matrix T
p-1 n:

matrix . (see (17.1)). But then it follows from forulae (17.11)
(see the definition in Sec. lo.1) that the Hankel matrix Hz_l has in
its (rI.kI)-characteristic a component rI equal to

el =+t (17.12)

In order to determine the other component kI it suffices to note, that

the rank p of the matrix HIII- is, clearly, the same as that of the ma-

1

trix Tn-l and hence, according to the Theorems 11.1 and 15.1,
p= erext - r+k+f,

i.e., (see (17.12))

x! = x.

Thus we have established the proposition
10, If the Toeplitz matrix T with characteristic (r,k,L) is con-
nected with the Hankel matriz HL_, through the transformation
.

n-1 Tn-lJn
(see (17.5)), then the (x',k})~characteristic of the matriz H. | can be
caleulated by the rule
farel, K=k (17.14)

In complete analogy (applying proposition 2° from § 15 instead of
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proposition 19 of the same section) one proves the proposition.
2°, If the Toeplitz matrix T o with characteristic (r,k,L) Zs con-
nected with the Hankel matriz H™ | through the transformation

B =g (17.15)

(see (17.5)), then the (r*H,k™)-characteristic of the matrix B, ean
be calculated by the rule

m=r+k, kM =2 (17.16)

since k 2 0, £ 2 O follows from proposition 1° and 2°
COROLLARY. Under the transformations (17.13) and (17.15) one always
has ¥ 2 r and tH2 x, respectively.

17.3. For the solution of the converse problem, i.e., the calcula-
tion of the characteristics of the Toeplitz matrices, obtained from a
Hankel matrix l-ln_l with a given (r,k)-characteristic trough the trans-
formations of the shape (17.7), we must introduce additional tools. In-
deed, already simple examples demonstrate, that the (x,k)-characte-
ristic of the Hankel matrix Hn—l on its own doesn’t, generally spea-
king, determine the (rI ,kI ,ZI)-characteristic (respectively the

{(r™,k ", 2") - characteristic) of its transforms i.e., of the Toeplitz

R S "o
matrix Tn-l Hn-lJn (respectively Tn_1 Jan—l)‘
EXAMPLE
o110
H, = 1 0o ,r=2,k=0(p=r+k =2);
o 0 o
(n=23)
o 1 o
=l o o , i =0, kT =0, £ =2
2 I I I
o 0 o p=r +k +2£4 =2).
o 1 1
H2= 1 1 1 , =2, k=0 (p=xr+k = 2);
1 1 1
(n=3)
1]t o
SR RUR U ,et=1, k =0, £l =1
11 1 to=rl +xF+ 2822,

S¢ the Hankel matrices Hz and §2 {both of orflexr 3 and rank 2) having

the same (r,k)-characteristic (2,0), turn into the Toeplitz matrices

I
'1'2 and ?; with the different characteristics (0,0,2) and (1,0,1),
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respectively.

Considering Ts‘ = (T;)t and 65‘ = (Ti)t, we obtain again Toeplitz
matrices with the different characteristics (0,2,0) and (1,1,0), re-
spectively.

Here has appeared a qualitative difference between the characteri-
stics of Hankel- and Toeplitz matrices, defined in Chapter II and III,
respectively. Indeed, the (r,k,f)-characteristic of the Toeplitz matrix
Tn—l reveals the "dynamics of the behaviour" of its elements at progress
in two directions: along the main diagonal (the component r) and along
the auxliary diagonal (the components k and £). At the same time both
components of the (r,k)-characteristics of the Hankel matrix Hn-l tell
of the "dynamics of the behaviour™ of its elements at movement in one
direction only: along the main diagonal.

It is not difficult to eliminate the mentioned deficiency. Besides
(and in analogy to) the component r 2 in the (r,k)-characteristic of
the Hankel matrix Hn-l we introduce another nonnegative numerical con-
stant Ey. defined in the following way. We consider in the Hankel ma-
trix

%o %1 n-p n-2 Sh-1
St %2 Sn-ptt * ¢ 0 a5y
Tn-1 s s s s s
p-t p ' """ "n-t n+p-3 “n+p-2
%n-1 °n SZn-p—l Son-3  S2n-2

the successive minors of order p, already known to us (cf. the same
considerations for Toeplitz matrices in Sec, 15.2, and also in (17.10)):

sn-p sn--2 sn-1
-3 « e o S -
- - n-p+1 n~-1 n
E-l =1, Ep-l . . . (17.17)
%n-1 Snep-3  Snep-2

(P = 1,2,¢*+,n),
situated along the auxiliary diagonal, starting at the righthand upper

corner of the matrix. The constant rt is now unigquely defined (cf.

(10.2)) thxough the relations

E ] = 7.18

Os rl S
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where p is the rank of the matrix Hn-

.

1

If one now transforms the Hankel matrix Hn-l into the Toeplitz ma-

. I <
trix Tn—l = Hn-lJn' i.e., rearranges the columns of Hn-l in reverse or

der, then one concludes, that-the number r, is the component rI in the
(rI,kl,ll)-characteristic of the matrix T'Il_ . Further (see (17.8)),

1
n-1 = Tn-17n’

1
H

whence k = xI (proposition 1°), But since

r+k = (p-)::1+k14~£I Y

1
one has
& ar-r 2) .
1
Completely analoguously one can consider in the Hankel matrix Hn_ 1
the successive minors (introduced in Sec. 15.2 for Toeplitz matrices)

“starting” in the lefthand lower corner of the matrix

5h-p Sh- et Sh.1
s s s
= = -p+ -
F_1 I,F‘p__1 n-p+l “n-p+2 n
%n-1 *n sn'!'p-Z

(p=1,2,-++,0),
which in the present case, because of the symmetry of the Hankel matrix
relative to the main diagonal, coincide with the corregponding E :

p-1
Fp-l = Ep_l (p =0,1,--+,n).

But after rearrangement of the rows of the matrix Hn- in reverse order,

1
i.e., at transition to the Toeplitz matrix

H =
Tn- 1 Jnﬂn- 1,

the minors Fp-l {p = 0,1,°++,n) turn (up to the signs) into the corres-
ponding successive principal minors of the matrix Tntl' whence follows
that in the ¢ ¥,k ,£" -characteristic of this matrix the number =z,
Moreover, proposition 2° states (if one considers (17.8)) that £ =k,
so that

r+k (=p) = r e+ x"+L" = r +k™ 4k
and

kH=r - r,.

Thus is proved the proposition §
3°. If for the Hankel matrix®__,, besides its (r,k)-characteristic,
also the quantity r, i8 introduced, given by the relations (17.17) and

(17.18), then for the transformed (Toeplitz) matrices
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I

T =H and 7=y

H

n n-1

the respective (X kT, 2% - andlxH k" &7 ) ~characteristics can be cal-
culted from the formulae

n-lJn

rI-rl, kI=k, ZI-r-r:1 and r* =r, x*" =r-r,, £ =k (17.19)
respectively.
REMARK. Formulae (17.19) indicate also that (in the notation used in
proposition 39)
I
R R LB AN TR (17.20)

But this was clear before, since (see 17.4)
o = (TI)t
(cf, exercise 7 to § 14).
17.4 The arguments, applied in Sec. 17.2 and 17.3, suggest that the
theory of the characteristics of Hankel- and Toeplitz matrices, develo-

ped in §§ lo and 14, respectively, is not the only possible one. 3

Indeed, propositions 1% and 22 allow us to consider for the Toeplitz

matrix Tn- instead of the usual (r,k,£)-characteristic two other cha-

racteristiés of it, namely the pairs of numbers (rI,kI) and (r™, X" ),
respectively, defined through these propositions. Starting with any of
these pairs one can develop a theory of extension of the matrices Tn_l
(and their "corner blocks") "to the left and down" or “to the right and
up"” and a theory of the rank (p) (for example, the rule for the con-
struction of a nonzero minor of order p - ¢f. Lemma 11.1) similar to
that, which was established in §§ 9-11 for Hankel matrices.
In turn, one can for a given Hankel matrix Hn-l' instead of its

(r,k,)-characteristic, consider any of the triplets

kD el) ana (rm k"L (17.21)
defined in proposition 3°, and on the basis of each of these construct
a theory with §§ 13-15 as model. To this end, clearly, it will again be
necessary to consider the extensions of the matrix Hn-l (and its corner
blocks), but now not "to the right and down™ but "to the left and down"
and "to the right and up" respectively.

We note once again, that components of the characteristics(17.21) sa-
tisfy the relations (17.20), i.e., in fact the characteristics differ
only from each other in the mutual permutation of the second and the
third components (see the remark to proposition 3°).

In order to obtain complete symmetry in the results it remains to
note that so for we have only used three of the four corners of both
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Hankel and Toeplitz matrices for the introduction of characteristics.

In order to fill out this gap we consider for the Hankel matrix

%o 51 R o R o S S |
51 S T sn-2 Sn-1 ®n
H = . . . - -
n-1
Sp-3 | Sn-2 Son-6 “2n-5 Son-4
Sp-2 | Sn-1 Son-5 | ®2n-a S2n-3
Sn-1 | %n Son-4 | S2n-3 | %2n-2
its successive minors
s2n-p s2n-p-2 s2n-p-1
G, 21,6, =
-t p-1 Son-p~2 Son-4 %2n-3
Sonp-1 ° ° ° 5213 Son-2

(p=1,2,°°°,n),
moving "to the left and up" from the lower righthand corner of the ma-

trix and we define the nonnegative integer tr through the relations

G +0,G (> o).

=0
r-1 p-1
It is clear, that
0 < tr £ 0,

where p is the rank of the matrix Ho 1 and that the pair

1
t
e (k=0 - o)
itself represents the usual characteristic (in the sense of § 10) of
the Hankel matrix

Son-2 S2p-3 n Spa1
. Son-3 ®2n-g n-1 p-2
B ) = . . . .
n-1
Sn Sn-l 82 S
sn-l sn-2 s so

the "antitranspose" (i.e., the mirror image with respect to the auxilia-

ry diagonal) related to the matrix H which, incidentally, also ex-

n=1’
plains our notation.

But one sees easily, that the transition from Hn to t(Hn_l) can, in

-1
the present case, be realized with aid of the matrix Jn (see (17.5)) in

the follwing way:
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This allows us to compare, with the help of the proposition 2° and 3°,

the usual (r,k)-characteristic of the matrix Hn with its (tr,tk)—cha—

-1
racteristic. To this end we consider at first the "intermediate”" Toe-

plitz matrix

I
n-1 = HnetIn

for which the (rI,kI,ZI)-characteristic is determined (proposition 3°)
through the formulae
rI=r, kI=k, £I=r-r
and then we note, that
t I

(Hn-l )= JnTn-l )

Now, on the basis of 2°
Y = rTakt, o= gt
i.e., finally

t.'1: =rI+k, tk = r—rI (tr+tk- r+k = p)

(we recall, that rI = r1 is determined through relations (17.18)).
We sum up all the facts discovered above in the shape of two theo-
rems.
THEOREM 17.1. To each Hankel matrix H o, of rank p there correspond
four eets of nuwmbers
k), e, %%, efkEeh, wm L xR, e,
of which the first two characterize respectively H and its antitrans

posed matrix ¢

(B _,) a8 Hankel matrices (in the sense of the definition
in § 10) and the other two characterize (in the sense of the definition
of § 14) the Toeplitz matrices Tl = B .3 and T H=JH . (see (17.15)
respectively. The components of the mentioned characteristics are con-—
nected through the relations.

tr = rI+kI, t:k = r-rI; kI-k, ZI = r—rI;

r-s= rI,k""- ZI,LH= kI;
rek = rak = ekl el m r kLN p-

THEOREM 17.2. To eqeh Toeplitsz matrix 'I‘n_1 of rank p there corres-
pond four sets of numbers

rx0, 555 kb, @k,
of which the firet two characterize respectively T and ite transpo-—
sed matrix (Tn-l)t as Toeplitz matrices (in the sense of the definiti-
ons in § 14}, and the other two characterize (in the semse of the defi-

pn . I _ H o
nitions of § 1o) the Hankel matrices B, _, =T _,J and B 7Y = 3 T
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(see (17.5)), respectively. The components of the mentioned characte-
rigtics are connected through the relations
rt--r, kt=£, !.r‘=k;
1 I
r =r+&, X =k; xM=1r+k, kM= {;
rak+2 = r 4kt et = pTaxT o p i K a p.
EXAMPLES AND EXERCISES

1. We consider the Toeplitz matrix

1]

-

1
1
! (@1, B=*1)
1
1
1

(=3 - s

- e = e e
b s = e = D
— o = e D <
—- = == T < (-3

from exercise 2 of § 15 with the (r,k,{)-characteristic (1,1,3). The
rearrangement of its columns in reverse order gives the Hankel matrix

I
Hy = TgJg

= = e D < O
- e [ = D =
- e | = =

[ S S

1
1
1
1
1
1

I R I

Q

It is not difficult to find out that its successive principal minor of

order four is nonzero:

Or

§ vy B 1 Yy B 1 Yy B 1
ye 11y 81t el ]
B 1 1 1 B 1 1 1 by
11 1 1 1-8 0 0 ©

=-@-02 B - -@-n3+o,

but that all minors which follow it are equal to zero. Hence rI =4

(=r+£), and k=1 (=k) (verify this!) - in accordance to proposition

10,

2. If one rearranges in the matrix TS of example 1 the rows in rever-
Se order, then one has for the obtained Hankel matrix
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o 1} 1 1 1 1
1 131 1 1 1
ST 111 1 11
11 1 1 1 B8
1 1 1 1 B vy
1 11 B v §

as is easily seen, that v = 2 (=r+k).Verify, that ¥' = 3 (=£) - in

accordance to proposition 20,
3. We consider the Hankel matrix

o 1]lo|1 o
1 o|l1 |o 1

O 1 O 1 ©
t o 1 o 0
c 1

@]
(o]
o]

with the (r,k)-characteristic (2,2) (see exercise 2 to § lo). Accor-

ding to the definitions (17.17) and (17.18) one has for this matrix

1 of.
E,=0, E =, =1, E,=E,=E, =0,
i.e., r, = 2,
For the Toeplitz matrix

o 110 1 ©

1 of1 o 1
I

T4 = H4J5 = o1 0 1 o

o 0 1 o0 1

O 0 0 1 o

one has rT = 2 (=r1), kT =2 (=kx), £I =0 (=r -zl) - in agreement with

proposition 3°. Rccording to the same proposition the Toeplitz matrix

o 1l o 0 O
1 of 1 o]

H = =
TS JcH, o1 01 0
1 01 0 1
o1 0 o]

has r == 2 (=Il)' kH= 0 (=r-r1). Lr=2 (=k).

, 4. Find for the Hankel matrix (cf. exercise 3 of § lo)
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o 4 o 1

n, = 4 0o 1 o
o 1 o 1/4
1 o 1/4 -6

all four characteristics which were mentioned in Theorem 17.1.
Solution. (r,x) =(2,1),(%r,%k) = (3,01,
(tIlkIlzl) - (2lllo)l (rH k™ ItH) =(2,0,1).

5. Find all four characteristics (see Theorem 17.2) of the Toeplitz

matrix
i 2 4
T2 = -1/2 i 2
-i/4 -1/2 i
Solution. (r.k,L) = (1,0,1), (x%,kx%,2%) = (1,1,00;
1, k%) = (2,00, (zH,k") = (1,1).
NOTES.

D) e recall, that already Frobenius [19) payed attention to the role

of the constant r for the first time {(cf. note 2

2)

to § 1o).

. N . I.
From this formula follows, in particular, that r & r, (since £° & O).

1

However (if one considers that r, = rI) this fact was already noted

1
above in the Corollary to propositions 1° and 2° (we just recall, that
in the present case the notations r and rI have interchanged their
roles).

3 The fact, namely, that it initially appeared in that shape (cf.[29,

30,27)), psychologically stems from a tradition which goes back to

Frobenius.

§ 18. INVERSION OF TOEPLITZ AND HANKEL MATRICES.

18.1. It is commonly known that the problem of the inversion of ma-
trices, i.e., of determing for a given nonsingular matrix A (|Al # 0)
its inverse matrix A-l, is one of the central and difficult problems in
matrix theory. The importance of its solution if only for individual
classes of matrices both on the level of theory as well as in applied
problems (the solution of systems of lineag equations) is undoubted.
Unfortunately, in spite of extensive liter;ture, dealing with this

1) . .
uestion , the problem requires in many of its aspects a further and

profound investigation.



148/ TRANSFORMATIONS OF MATRICES

In this section we explain at first recently obtained results of
1.C. Gohberg and A.A. Semencul (25} , and also of 1I.C. Gohberg and
N.Ya. Krupnik [24] on the inversion of Toeplitz matrices T, (for our
convenience we work here, following the mentioned autors, with matrices
of order n+1). Then we use these results for the solution by means of
the methods of § 17 of the problem of the inversion of Hankel matrices
l'ln.

18.2. Central in the theory presented below is

THEOREM 18.1 (GOHBERG AND SEMENCUL). If the Toeplitz matrix

n

T = lle

n l P‘Q“P"Fo
n

Zc x =3§ (p=0,1,°**,n) (18.1)
q=quq pPo

18 such that each of the systems of equations

n
z

q=0

Cp_qu_n = Gpn (p=0,1,°**,n) (18.2)

is solvable and satisfies the condition x *0, then the matrix T, ie
nonsingular and its inverse matrix '1';1 i8 constructed through the for-

mula 2
X o o Yo Yoy oo Y,
T-l _ x-l X xg (o} o ¥, Y_ne1 _
n o
xn xn-l e xo o o° yo
o o o ... O (o] o xn xn_1 e xl
Y_on (o] [o] vese O (o] 0o O xn x2
- Y_one1 Yon o .es O (o} .. B . (18.3)
. . B cee o . 0o o X
n
Y_q Y, Y3 e-¥, O oo o o

PROOF. For n = 0 is the statement of theorem trivial {we just note,
that in formula (18.3) the subtrahend between the braces is absent in
this case). S0, let n > O. We prove the nonsingularity (invertibility)
of the matrix Tn by contradiction.

Let I'rn| = det T = O. Then the rows Pp = (cp’,cp_i,u-,cp_n) of the
wmatrix 'rn {p = 0,1,--+,n) are linearly dependent. Since the system
(18.1) is solvable, and in its first equation (for p = O) the righthand

side is equal to one, the first row I‘o of the matrix 'rn cannot consist
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of zeros only: Fo ¥ O. Thence and from the linear dependence of the
rows follows, that at least one of the remaining rows rl,rz,--.,rn can
be expressed linearly through the preceding rows. We denote with m (21)

the largest of the numbers, for which
m-1

Fm = Zal,
p=0 PP
where ao,al,---,am_l are some complex numbers. We shall show, that
m = n. Let m < n. Since
m-1

c (q-olll”'ln)'

e - Lac _

9 peo P P9
we obtain, after performing the index transformation p = p'-1, g = q'~-1
and then returning to the previous notations, that

m
La

_ (@q=1,2,--+,n). (18.4)
p=1 F

“mt1-q © 1%p-q

Because of the solvability of the equation system (18.1) we have for

each of its solutions (xo,xl,---,xn), taking into account that
2sm+1l 8 n:

n n m
o=3 = Lc x = Le¢ x - Zao .8 =
L0 o MHITa mel-ga o, p-lpo
n m n
Zc x - e Le Xx =
gm0 1m¥a Pl P
m n m
=1(c - Ze¢ ¢ )x + E(c , - La .C )x_.
m+1 p=1 p-1"p " "o =1 e L em1Tpma g

Because of identity (18.4) and the inequality X, # O follows thence,
that

c = Z o

(18.5)
m+1 p=1 P

lcp‘
Now combining (18.4) and (18.5) we obtain
m
Tm+1 = pflap-lrp

but this contradicts the choice of the number m.

So, m = n, and, consequently,the final row rn of the matrix Tn can
be expressed linearly through the preceding rows.But this, in turn, con=-
tradicts the solvability of the system of equations (18.2), in which
all righthand sides, except the last one, are equal to zero, and the
last one equals one.
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Thus, we have proved that the matrix Tn is inyertible. Hence follows,
that the solutions {xo,x1.~.-,xn) and {y_ +v_ .,

{(18.1) and (18.2), respectively, are uniquely defined. In particular,

,...,yo) of the systems

x =y = Po-rf (18.6)
o o lTn! '
where |T | is the determinant of the truncated matrix
n-1
T =llec__ N .
n-1 P-q p.,q=0
We denote through B = |Ib nt the matrix on the righthand side

jk " j, k=0
of identity (18.3). Using the multiplication rule for matrices, one

easily verifies that the elements b,, can be expressed through the for-

jk
mula min (3 k)
ik = ”;1 E %y _g¥sk ~Y_n-14j-s*ne1+s-k’
3 s=0 J (18.7)
(j,k=0,1,---,n)
where for the uniformity of notation we have used X1 =Yoot < 0.

Now we transform this expression for bjk in the following way. We
isolate from the sum on the righthand side the summand, corresponding
to the value s = O of the summation index, and in the remaining sum we
carry out the index transformation s = s' - 1. Then we obtain

-1
bjk =x (xjy“k).y

)+ (J,k=1,2,++-.n). (18.8)

Py1,k-1
Moreover, substituting in formula (18.7) for bjk the index j = 0 (k = O}
we have, with regard to identity (18.6)

-n-1+5"n+1-k

bok = Y_k: bko = xk (k = 0,1,2,+++,n). (18.9)
Then, Substit:uting j = n, we find
-1 k
bnk =x silo(xn_sys_k =Y 1-gXnt14s-k) =
e P . o .
T %o n¥ox T Yr%natek T a1k T V-2 ne2x
cee + xn_k+2y_2 ’Y_k+lxn_1 -0-4\(“_k".1y"1 -Y-kxn +
X Yo T Y kX)) = X (ke =0.1,2,-004n),

where we have used identity (18.6) and x = O, This result and its

n+1
analogon (obtained for kX = n) we combine in the shape of the formulae

b

ok = *nek’ Pkn = Yeen (6 = Ocloceem). {18.10)

We must verfiy that TnB = E. At first we show, that the matrix

n
A=TB= |la
n " Pq"P:CI'-'O
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is a Toeplitz matrix. Indeed, by means of identity (18.8) we have for

p.q =1,2,"*,n
n
apq = I cp-sbsq
s=0
n

-1
= cp»boq + sflcp-s[bs-l,qu +xo (xsy-q.-y-n-1+sxn+l—q

)],

Converting this expression with regard to the formulae (18.6), (18.9)
and (18.10), we obtain

n
-1 -1
apq =X cpboqxo + Sfocp—s-le,q-l N bn.q-lcp-l—nyo +
n n-1
+x ! ! Le

o Poq s£1°p~-sxs_xo ®h.g-t smo p-1-s¥5-n"

Combining here the first summand with the fourth and the third with the
£ifth, we have

n _ n 4 !
a = Lc¢ b +x b Lc x =-x Le Yol
= p-1-s s,q-1 ©oq _ Ps's To (p-1)-ss=n

i.e., taking into account (18.1) and (18.2),

a a
pa = %p-1,a-1

But this means, that A is a Toeplitz matrix.

(p'q =1,2,*++,n).

It remains to note, that with help of the identities (18.9) and
(18.10) in combination with (18.1) and (18.2) respectively

n n

apo = T cp'SbSO = Xz cp_sxs = Gpo'
s=0 s=0
n n

apn =z cp-sbsn = L cp-sys—n = lspn'
S=0 S=0

i.e., the first and the last column of the matrix A coincide with the
corresponding columns of the unit matrix E = ‘lapq";,q=o' Hence follows,
because of the Toeplitz structure of the matrix A, that these two ma-
trices coincide completely: A = E.

The theorem is proved.

The condition X # O in Theorem 18.1 is essential - cf. for this the

exercises 3-6 at the end of the present section.

18.3. It is easy to see (see (18.6)) that, if the conditions of

Theorem 18.1 are satisfied, then also the “truncated® matrix
n
c I
P-q I P,g=0
is invertible. Moreover, it turns out, that its inverse matrix T;ll can

Tn-1 =1
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be constructed from the solutions of the equation systems (18.1) and
(18.2) as well.

THEOREM 18.2. (GOHBERG AND SEMENCUL). If there exrist solutions
(xo%yoXgp-eopx Y and {y_ oy_ . occc.¥ )} of the systems (18.1) and
(18.2) and the condition x, %0 18 satisfied, then the matrix

T =He_ N 1_ is znvertzble and its inverse is constructed by the
n-1 pP-q p,q=0
formula
1 %o Yo Y4 -» Ypu
'I‘-1 = x-1 o 0 ° Yo Y ne2 -
n=-1 o]
ey o® 5 ee. x Qo O Y,
Y-n (o] o -1 °C° x1
- Yoper ¥Yop =00 © *2 (18.11)
Yy Y_ 5 eer ¥_o xn'
PROOF. Let us denote through D = "djk k ! the matrix on the right-~
hand side of (18.11). A direct calculatlon gives (cf. (18.7))
-1 nin(j,k)
djk =ixo Sfo (xj-sys-k..Y—n+j-sxn+s-k) (18.12)

for all j,k = 0,1,+++,n-1, Thence we find, using the identity X, =Y,
(see (18.6))

X

-1 1
4 = xk-xo X Yy _n dok =Y TR Y X (k=0,1,*--.n=1) (18.13)

ko

4, =4 +x Nx
[}

Jk j_1 k-1 ) (jlk =1,2,*++,n-1) (18.14)
'

3¥-k ~ Y-n+3*n-k

(cf. the analoguous calculations for b,, in the proof of Theorem 18.1).

ik
Further, we have from identity (18.12) for j = n-1 that for
k=0,1,°+,n-1

k
-1
dn—l,k = % So(xn-l-sys-k T Yo1-s¥nes—k)

= x-l(x

o Fnat¥ox = Y ¥ ¥ Xpoo¥iok T ¥o¥paex T

e R KLY T VX Y Koo T Vi) T

-1
k=1 = %o *p¥ok-1°

We write down this result together with its analogon, obtained from
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(18.12) for k=n-1, seperately:

d = x - %, 1x WY =y -x-ly
n-t,k n-k-1 -xk-1? dk,n-l -n+k+1 ~ %o Y-n*k+1

(k = 0,1, ,n=1). (18.15)
Now we convince ourselves,that the first and the last column of the

matrix T 1D z I]ejk ; ; coincide with the corresponding columns of
the unit matrix E = uajk”j k o Indeed, taking into account (18.13),

{(18.1), (18.2) and (18.6) we have
n-1 n-1 n-1

-1
e, = Le¢ .4 = Lc, -x"x Lc, Y _
jo 7 L 3k %ke T = 3Kk T Yo ¥ - Cy-k¥kn

n n
= -1
Ze, %X -¢,_ X =-x 'x EZc,,.y, _+X xc . y
k=0 JTKk j-n"n °o"n _ 3Kk-n o *n®3-n¥o
= -1 = vse -
= %50 ™ % %%y = 830 (3 =0,1,°°+,n-1).

Analoguously (using formulae (18.15) as well) we obtain

n-1 n-1 -1
e, .= Lec,_ 4= Zoe (y_ -x_Y_ )
jons1 T 23 x%,n-1 yoo 3K Yentket T Yo nk+1
n n
= L c -1

ot 3+1-x"k-n ~ %o Y-n kfl°j+1-k”k -

n n

1
k§o°j+1—kyk-n T %541¥n T *o Yn k£°°j+1-k“k"” 'y n®j+1%o

-1

= 6j+11n - xo Y'n6j+l,0 = sj,n-l (j = 0,1,+,n-1).

For the completion of the proof it remains to prove, that the matrix
llejkng-;_o is a Toeplitz matrix. But from (18.14), (18.15) and (18.13)
’
follows, that

n-1
e.. = Lc, 4
jk emo IS Sk
n-1
= cjdok + Elcj s[ o-1'k-1 * x (x ook Y-n+sxn-k)] =
n-2 -1 n-1
= z cj 1-s s, k-1 + cjdok-+xo y_k s£1cj‘5xs -
x 1 s
o *n-k __ “3-s¥s-n =
n-1
= I c, -c, d + c.4 +

ano I71- -89, k-1 j=n"n-1,k-1 3%k
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-1 n-1 -1 n-1
X Yk sflcj-sxs T ¥o *nk sElcj-sys-n =
n-1
-1
= sfocj—l-sds,k-l T C5anFpx T %o e S
-1
+c,ly . - x-‘y x_ )+ x-ly nz ¢, % =
j =k © “=-n"n-k o “-k s=1 j~-s"s
1 n-1 -1 n
-x'x . Lo,y __ =e ., 6  +x 'y, Zc¢. . x -
o “n-k s=0 J s’ s-n j=1,k-1 o “~k s=o J s’'s
n
I Le, ¥
¥5 *n-x j~s“s-n’
s=o

whence, because of (18.1) and (18.2) follows
ik = ®4-1,k-1 3.k =1,2,++,n-1).
The theorem is proved.

18.4. Turning to the problem of the inversion of arbitrary Toeplitz
matrices T, , we note that if itsinvertibility(ITn|=k0) is known a prio
ri, then the equation systems (18.1) and (18.2) are automatically uni-
quely solvable, and the sole restriction, imposedby Theorem 18.1 for
the construction of the inverse T;l from these solutions consists of
the conditon X, # 0, or, which the same (see (18.6)),

IT 4! *# 0.

However, Theorem 18.2 gives the possibility to aveid the last restric-

tion,i.e., to construct the matrix T;l even in the caseWherelTh_ll =0
To this end we consider the matrix
co -1 c—n ¢
€ co -n+1 -n
Tn¢l(;) = . . ,
“n n-1 ) -1
n+1 cn ¢ co
where €1 is some fixed number, and { a complex parameter.
10, If the matrix T, 18 invertible, then the matrix Tn+1(c) s also

invertible for all values of C with, possibly, one exception.

In fact, this proposition was already established in Chapter III in
the proof of Theorem 13.1. Indeed, if one increases by one the order of
all matrices and determinants considered there, then in the thus revi-

sed notations (13.4) the equation ITn+1(C)I = O can be rewritten for
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lTn_1 # Ol (cf. (13.5)) in the shape

2
a(cn+1)b(§) - |Tn| =0,

where a(g) and b(Z) are linear functions where the coefficients for ¢
are in each equal to lTn_ll(#O). Hence follows that the equation

lTn+1(C)I = 0 has not more than one root ¢ = 3

Now, if ITn-ll = 0, then the functions a(f) and b(f) are nonzero
constants a(o) and b(o), and the equation ITn+l(c)l= 0O takes the shape
(cf. (13.6))
b(o)cn+1 + a(o)g + C=0
where C is some constant, i.e, this time (since a(o) # O) it has exactly
cne root.

Thus, for all §, with exception, perhaps, of one, the matrix T (g)

n+l
is invertible and it satisfies all conditions of Theorem 18.2 (since

lTnl # 0). But thenthe matrix T, can be inverted by the rule, stated in
this theorem.

18.5. With the help of Theorem 18.1 one can also find another method

for the inversion of Toeplitz matrices.

THEOREM 18.3 (GOHBERG AND KRUPNIK). If the Joeplitz matrix

n .
T = is such, that each of the systems
n Ilcp_qllp'q'_o N f Y
n
Zec = =0,1,""*,n 18.16
=0 p_qxq po (p ely )n) ( )
n
£ cog®q = %p1 (p = 0,1,°*+,n) (18.17)
q=0
‘s solvable, and the condition x # O is satisfied, then the matriz T
8 tnvertible and ite inverse is constructed by the formula 3
X X X X x2
on “on-1 (e}
-1 -
T =x 1 *1*n *1*n-1 *1% +
n n
H X xnxn_l xnxo
z, [¢) o o X xn_l X, X
+ zl zo ees O o o xn x3 x2 _
z z z o O (o] (¢] X
n ‘n-1 [} c 0 o o o
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o) Z Zq v %5 %y
X o [¢]
[+ o o zn z3 22
- 1* % ° ... .. (18.18)
‘ ‘ ‘ (o] [o] o z
X x x n
n " n-1 Q 0O 0O o [e]

PROOF. For n = o the theorem is trivial, therefore, let n 2 1. Again
we prove the invertibility of the matrix 'r by contradiction. Let the
rows I‘q = (cq,cq_l,-
ly dependent and let m be the least number such that the row Fm is a

) {q =0, 1,“‘,n) of the matrix T be linear-

m+2
solutions of the systems (18.6) and (18.7) follows, that neither of the

linear combination of the rows I‘m+1.l‘ .»wl‘n- From the existence of

first two rows I‘o and I‘1 is a linear combination of the remaining rows.

So, m 2 2, For this m is, by assumption

n
r = ¢t ul‘m
p=m+lp

or
n

¢ = L ac (g =0,1,-.+,n) (18.19)
n-q p=m+1 P p~q .
Now we extract from the system (18.16) the equations, corresponding
to the values p = m,m+l,-++,n-1 of the index (for which, conseguently,
Gpo = 0), having multiplicated each of them with a_ . :

P+l
n
apﬂ q): cp-q q =0 (p = m,m+l,+++,n-1),
Having added all these identities, we obtain
n-1 n n n-1
0= Za Lec x z La x =
p=m P*! g=o P74 q a=o ( p+l p-<) q
n n n-1 n
=£( Zuc_-)x-ZCm _1x +xn }:ac_n_
=0 p.mHPPq q q--o'q q p,m“PP

We make it clear, that in the last of these identity transitions we used
(for g = 0,1,+++,n-1) relations (18.19) (for q = n one cannot use these
because of the index shift of one unit, and therefore the respective

summand is written sperately). Now we note, that with help of the rela-

tion (see (18.16))
n
z cm_'q_'lxq = Gm-l,o =0
gq=0

{(we recall that m z 2) the identity obtained above can be rewritten as
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n
-c X+ X L ac = 0,
m-n-1"n n 41 P P10 1
and since xn + O, we obtain at last
n-1
c .= X ac .. (18.20)
m-n—1 pem+1 p p-n-1

From identities (18.19) and (18.20) we find
n-1

¢ = Lo

meg-l -~ Pt (@=01,eeom)

c

17p-q
n-1

T = La

T .
-1 1
o p=m prip

which contradicts the assumtion regarding the number m(its minimality).
So, the matrix Tn is invertible.

For the derivation of formula (18.18) we use Theorem 18.1, applying
it to the perturbation
Tn(e) = Tn - €E
of the matrix Tn' where £ is a real parameter. We denote the entries of
the Toeplitz matrix T (e) by cp(e) t(p=0, 1, .-, T n). We choose
§ > O such, that for 0 <g<§ the conditions

ITn(e)I =det T (¢} #0, IT _ (e)l=det T _ (e} =

n-1
= det *0 18.21
e "cp-q(:)"p,q-o ( )

are satisfied. Such a choice is possible, since the polynomials
ITn(e)l and ITn_l(cH have only finitely many roots (cf. Sec. 1.2). Con-
ditions (18.21) guarantee for arbitrary € (0 < € < §) that the systems

qgocp-q(e)xq(e) = Gpo (p=0,1,:--,n),
n
qfocq_p(:)y_q(e) = Gpo {p=0,1,--+,n)
are solvable and that the condition
IT _, (e
xo(t) = yo(e) = _T;;TETT— * 0 (18.22)

is satisfied, i.e., that Theorem 18.1 can be applied (we point out, that
the second of the linear systems written down differs from its “model”

(18.2) only by the reversed order in which its successive equations are
entered).
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According to Theorem 18.2 (see its proof) the elements bjk(e) of the
matrix

(r_(en”! = by 1 o ©<e<8
are defined by the identities
min(j,k)
by (€) EXC) SEO s (I (8] = Y yese1 (O %pigkar (8))
(3,;k = 0,1,-+-,n),
in which was assumed
Xt =y__,(e) 0.

But here it is convenient to us to rewrite these identities in the some-
what different shape

min(k,j) min(k,])
bjk(c) = RO IEO xj_r(e)yr,k(e) - rfl Yj_n_r(e)xn_k*r(e)

{3,k =0,1,--+,n) (18.23)
where in the case k = j = O the second sum between the brackets must

be read as zero. In particular, it follows from (18.23) that

b (e) =y_,(e) (18.24)
and

-
by = Xy (€

[xj(e)y_l(e) + xj_l(z)yole} - yj_n_l(e)xn(e)J
(3=1,2,---,n). (18.25)
Inserting (18.24) into (18.25), we make an index transform, and, taking

(18.22) into account, we obtain

1
bn+l-j,l(E) = ;;TET [xn+1_j(e)bol(z) + xn_j(s)xo(e) - xn(e)y_j(e)]

(j =1,2,°*°,n).
Consequently,

y_j(e) = ;;%ET [xn+1_j(e)b°1(e) + xn_j(c)xo(e) - xo(c)bn+1_j11(e)]
(3 =1,2,-++,n). (18.26)

We point out, that by reducing (if necessary) § > O, one can assume
xn(e) #0 (0<e€e< @), as xn(o) = x % O by the assumptions of the theo
rem, and the functions xj(e),y_j(c) (j = 0,1,---,n) depend continuously
on € in a neighbourhood of zero. From (18.22) it is clear, that the
functions bjk(e) are also continuous in a neighbourhood of t?i point
€ = O, and the bjk(o) (=bjk) are the entries of the matrix Tn
(3,;k =0,1,---,n).

We note, that because of (18.22), formulae (18.26) remain valid also

for j = O, if only we assume bn () (Exn+l(e)) £0, what we shall do.

+1,1
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We use formulae (18.26), inserting the expression for Y4 (3 =0,1,---,
n) given by them into (18.23):

nin(k,3j) N
Pik T %@ L %ieet® xn(:)Exn+1+r-k(€)bol(e) *
*x g lE)x () - xo(e)bn+l+r_kll(e)] -
min(k,j) 1
=B Xager® E'TET[X1+j-r(°’bo1‘e’ * Ry )%, ()
x=1 n
= x(Edby_ (e b Gk =01,
[
where, we recall it, always is assumed that L = Q, It is convenient
r=1

to us to extend this convention, by setting in the sequel generally
B
I =0 for o > B.
o
Transforming the obtained expression with regard to the accepted

convention, we find

1 min(k,3j)
bjk(e) = ;;TET xj(c)xn_k(e) + rii xn-k+r(°)bj-r+1,1(°) -
min(k,3j)
R S e S
r=0
1 min(k,3j)
+ —_— £ x (e)x (e)b_,(e) -
xo(e) r=0 j-r n+l+r=k ol
1 mn(klj)
- — T x (eyx, . (e)b_ (e)| =
xo(e) =1 n-k+r 1+q.r ol
{ min(k.j)-l
= x (e)x__, (€) + z x . .ceb, (&) =
xn(t) 3j n-k x=0 n-k+r+1 j-r,1
=X OB 1,19 T ®5omingk, 9) 9 Pnemin(x, §) k+1,1 S *
1
¥ % M3-nin(k,3) S *nemin e, 5) ket (P01 (&)

(jlk = oll""'n)-
Now we note, that for j 2 k the last two summands between the braces va-

nish i i = =
(since, because of our conventions, bn+1'l(e) 0 and xn+1(e) o),

and for j < k these summands yield the sum

Xnaj-k+1 (81061 (E) = X (€)B) g piq,y (€0

Taking into account, that
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min{j,k-1) for k £ j
min(j, k-1)-1 for kX > j

min(k,j)-1 =

we can finally rewrite the expression for bjk(c) as

) min(j,k-1)
bjk(c) = X7 xj(c)xn_k(e) + z xn-k+r+l(e)bj~r.1(6) -
n r=0
- xj_r(c)bn_k+r+l'l(e)] {3,k = 0,1,++,n). (18.27)

As was already recorded, xj(o) = xj (j = 0,1,-+-,n). Now we note,
that, due to the specific shape of the righthand part of the equation
system (18.17), its solution (zo,.--,zn} coincides with the second co-

lumn (i.e., with the column with number k=1) of the matrix Ilbjkllg X=0"
4

which is the inverse of the matrix Tn:

o L TR ®-n

€ 442 1 oCy Con+l

Cn v c-j+n+1 o c-j+n-1 e S
z, = =b., =Db  (0)

] |t l i1 i
i'n

(3 =0,1,:°+,n).

Setting € = O in (18.27) we obtain (assuming Z = bn+1,1 = 0)
1 min(j,k-1)
P =% %%k * £ X-ksrs1Z§or " xj-rzn-k+r+l)}
n r=o

(J,k = 0,1,+-+,n).
But this identity is equivalent to formula (18.18).

The theorem is proved.

18.6. Just as Theorem 18,1 allowed to draw the conclusion, that un-
der the conditions of this theorem not only the matrix Tn but also the

truncated matrix Tn- is invertible, Theorem 18.3 permits to make

1
an analoguous inference in relation to the Toeplitz matrix (of orxder n)

€1 S R € _n+2
©" . €2 G o Cone3 ||,
n-1

“n cn-l €n-2 cl

which is obtained from T, by rejecting from the matrix Tn the first row
(i.e. the row with index o) and the last column (with index n). Indeed,
the solvability of the systems (18.16) and (18.17) together with the
condition xn % O, 18, clearly, equivalent to the relations
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det T_ # O and det TO'" # 0.
n n-1

In analogy to Theorem 18.2 one can here also state a more complete
o,n -1

expression in relation to the matrix (Tn-i) B

THEOREM 18.4 (GOHBERG AND KRUPNIK). If there exist solutions
{xo,xi.-o-,xn) and {zo.zi,'-»,zn} of the systems (18.16) and (18.17),
respectively, and the condition x *0 t8 satisfied, then the Toeplitz
matrie T::? 18 invertible and its inverse matrix is constructed through
the formula

z (o] X X
o n n-1 1
o,n, -1 1 z z (o] x x
(T ) = — 1 o n 2 -
n-1 xn . . . . . .
X
zn_‘ zn_2 z° o [o} n
5 [o] (o] zn zn_1 cee z1
- x1 xo o (o] zn oo z2 . (18.28)
xn_l xn_2 xo (o} (o} zn

PROOF. We form the square nonsingular matrix of order n+1:

b4 1 O o
°©
x o 1 o
M= (Get M = xn * 0).
X1 o o 1
X o O (o}
n

It is easy to see, that because of the identities (18.16)

1 co c_l oo c_n+l
o]

T M= .

n . n=-1
o

Consequently, by the rule on the inversion of block-"quasi triangular®
matrices (see [3],ch. 11, § 5)
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EIRRNEE

o]
-1, -1 _ ° (Oen,—1
M Tn = . ‘Tn-l) (18.29) -
(¢}

where, as usual, the elements which don't play an important role in the
sequel, are denoted by asterisks. Identity (18.29}) will be used for the
derivation of formula (18.28).
According to Theorem 18.3 the matrix T;l can be represented as
-1 1

T = -~ (K+R-8),
n X
n
where (see (18.18))
n
K ”xjxn—k “j,k=o'
2z, [o] [o] (o) X, xn-l x1
R = z1 zo o} o O xn x2
2 z 2z o O o o
n n-1 o
X, [o] zn zn_1 z1
S = X xo o] o o0 zn 22
x X x o o0 (¢] [o}
n n=1 o

The matrix M | looks like

x o «ee O -X
o

-1 1 n
M= o x o |-x (18.30)
x n 1
n
o (o] X -X

n n-1

as is easily verfied by forming the product M-lu. One can also verify
directely, that in the matrix M-IK the entries of all rows, except the
first one, are equal to zero. Finally, one is easily convinced, that
the difference R-S has the shape
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where B is a square matrix of order n, which coincides with the right=-
hand side of formula (18.28).

Taking into account the identity (18.30) and the shown properties of
the entries of the matrices M-IK and R-S we obtain (again using the rule
on the product of block matrices)

-1-1 _ -1, 1 -1
MT =M xn(Rs)+M

sxl“

*
(o]
o

.

o]

Comparing this result with (18.29), we arrive at the identity

o,n, -1 -
(Tn_i) B,
i.e., at formula (18.28).

The theorem is proved.

18.7. The analogy between the Theorems 18.2 and 18.4 extends even
further. Namely, we can apply the latter Theorem (just as Theorem 18.2
was applied in Sec. 18.4) for the inversion of arbitrary nonsigular
Toeplitz matrices T, = He Nl

n
pP-q9 P,q=0
the Toeplitz matrix (of order n+2)

(ITnl * 0). To this end we consider

C_l C_2 cee C_n_i 7 n
c c c c
7 o= [} -1 -n n-1
n .
cn cn-l co c-1

where c-n—l is some fixed complex number, and n a complex parameter, The
function det Eﬂ is linear with respect to n with the coefficient
ITnl(*o) for n and hence it becomes zero only for one value n. For all

Other values n the matrix in satisfies all conditions of Theorem 18.4,
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N
-1
18.4 here is taken by the also nonsingular matrix Tn. Consequently, the

as it is invertible itself, and the role of the matrix 'rz of Theorem

matrix Tn can now be inverted with help of formula (18.28).

18.8. Comparison of the Theorems 18.1 and 18.3 shows that in each of

them for a nonsingular Toeplitz matrix Tn = llc_ 1" the inverse

-1 P-4q pP,q=0
matrix T~ is defined by the solutions {xo,xl,...,xn}, {zo'zl""’zn}
of systems of the shape
n n
Zc z =286 v
g=o P99 p

Ze x =4 ,
q=o P92 pu

(p=0,1,-*,n; p#¥v) (18.31)

(in Theorem 18.1 for w=0, v=n, in Theorem 18.3 for p=0, v=1). But
in each of these theorems one had to subject these solutions to some
additional condition (xo # O in Theorem 18.1, xn *® O in Theorem 18.3 -
cf. exercises 3-6, 11 at the end of the section).

The natural question arises whether one cannot choose for each non-
singular matrix Tn = Ilcp_qllg'q-o indices u and v (0Su<vsn) (for
each matrix its own), such that the solutions of the systems (18.31)
define uniquely the inverse matrix 'r;l without any additional condition.
A positive answer to this question would require the matrix T, itself,
i.e., all its elements °p (p=0,t1,---,%n) to be uniquely defined by
the solutions of (18.31). But already a simple example shows, that this

is not always the case.

EXAMPLE. [24). Let

O o 1 1

T, - 0001 7,1 + o. (18.32)
1 000
1100

Assuming, let us say, p=0, v=3 (in accordance to Theorem 18.1) we are
convinced, that the system (18.31) has in the present case the shape

x2+x3=l, 22+z3=0,
x3=0, 23-0,

x =0 zo =0,
x°+x1 =0 zo-lzI =1,

-0.x2=l,z°-22=23-0,21-1.

If one now uses the found solutions as coefficients, then the same

.e. =x
ie,xo 1
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equation systems (but related to the unknown cp, p = 0,%1,%2,%3) reap-

pear as
2 = 1, €y = o,
1 " o, , ¢, = o,
€, = o} cl = 0,
c1 = 0; c2 =1,

i.e., in this way not all the elements of the matrix T. are determined,

namely c_3 and c3 remain arbitrary. By this is, in parzicular. demon-
strated that the here violated condition x # O in Theorem 18.1 is es-
sential.

It is left to the reader to verify, that also for arbitrary other
choices of p and v (0Su<vs3) we discover a similar phenomenon: the
matrix T3 in (18;?2) cannot be reconstructed from the corresponding
systems (18.31) .

18.9. In Theorem 18.1 is, by the first and final column of the ma-
trix, which is the inverse of the given Toeplitz matrix Th, the comple-
te inverse matrix T;l reestablished. One can raise the problem of re-
establishing by these data the original matrix T, - Here holds the fol-
lowing result [25].

THEOREM 18.5. Let XooXyrtee o Xy and Y oYt e, be given systems

of complex nwmbers and x_ + 0. For the existence of a Toeplitz matrix

n

T = llcp_qllp'1=° such, that
n n
e x =48 , Zc_ Y =§ (p=0,1,"*,n), (18.33)
g0 P¥a po’ _ p-a'q-n  “pn

it {8 necessary and sufficient, that the condition

xo = Yo (18.34)

is satisfied and that the matrix

Yo Y14 Yoo Yon+t| Yon ° ° °
° yo Yo Y_ne2 y-n+1 Y_on ° o
0O O o} T A Y_y Y o eec Yoo Yoo
P =
*n *a-1 *n-2 o X, , © cee O °
n xn—l xl o Lo} o]
(o} (o] (o] X
n xn-l *n-2 X xo
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is nonsingular. If these conditions are fulfilled then the matriz T, 8
nonstngular and can be uniquely reestablished by fornula (18.3).

PROOF. The NECESSITY of condition (18.34) was established in Theorem
18.1. We show that the matrix P is nonsingular. To this end we divide

it in four square blocks:

Y U
SAHE
where
(<] ° Yo Yo1 °o0 Yo
X = o s, Y= ° Yo y—n+2 )
*n-1 *n-2 *o ° o Y
Y, © see O X Kg e Xy
y-n+l y_ (e} 0 x X
U = n , v = n 2
Y, Y, Yo °© o x,

By virtue of some proposition in the theory of determinants (see [3],
ch. 11, § 5)

det P = det X - det(y -UX lv)
(since X * O, the matrix X is invertible). It is easily verified, that
the matrices X and U commute. Hence

det P = det (XY - UV).
Thence is clear, that P is nonsingular if and only if XY - UV is nonsin-
gular. But the nonsingularity of the latter was established in Theorem
18.2 (see formula (18.11),

SUFFICIENCY. One can rewrite the equation systems (18.33), after

carrying out the index transformation p = n+3j, 4 = n+3j -k in the se-

cond and p = j, ¢ = J-k in the first system, as a system of 2n+2

equations in the 2n +1 unknowns c c_n+1,-'.,c_1.c°,cl,---,cn_l,cn:
j+n
kEij_kck = Gjo (j = -n,-n+1,---,0),
(18.35)
J
L x c =86, (j=0I1I."In)-
k=3j-n -k k jo

The matrix Q of this system has the shape
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Yo ¥You Yoo et V¥ong Y, © ° ©

O Y5 Yo stV Yo Yop o0 © © ©
o o© o e Yo Yy Yo o0 Y_pou Yo, o

Q = 0 (o] (o] eee O Yo Y_l oo Y_n+2 y_n+1 Y_n *

XX g X o oees Xy %, (o] ... O o o
¢} X, X1 ot X%y x, X, (o} [} (o
o o o e X Xy Xpg eer ¥y X, °
o O o [} xn xn_1 o x2 x1 xo

If one discards in this matrix the (n+1)-st row, which is marked in the
diagram, then a matrix is obtained with a determinant equal to X, "

-det P#0 (this can be calculated by developing it to the entries of the
final column)., Consequently, the rank of the matrix Q is maximal (=2n+1).

Having joined with the matrix Q the column of the righthand sides of
the systems (18.35), we obtain the augmented matrix 5. We calculate the
determinant of this matrix 5 by developing it to the entries of the
last column, which consists of zeros and two ones in the rows with in-
dex n+1 and n+2. We obtain

det Q (- )n+1+2n+2x det P + (_1)n+2+2n+2y° det P =

n
= (-1) (y°<-x°) det P.

Because of (18.34) we have det 6 = 0, i.e., the rank of the matrix 6 is
the same as that of Q@ and by the Kronecker-Capelli-Theorem the system
(18.35) is uniquely solvable. The remaining statements of Theorem 18.5

concerning the matrix T, = et follow from Theorem 18.1 5).

P-4 PpP,g970
It is clear,that a problem, similar to the one solved by Theorem
18.5, can be formulated, not starting from Theorem 18.1 but from its
analogon - Theorem 18.3. Now the question is to reestablish the matrix
T from the first and the second column of its inverse matrix T;i.
Here holds
THEOREM 18.6 [24]). Zet x o' Xy 1

¢f complex numbers and let x * 0. Fbr the eztstence of a Toeplitz ma-

SRR and z o'Z N be given systems

PavRd n
irix =
T Hcp_qllp'q_o such, that”
n n
z =4 2 8 1,00 .3
gq=o cp-qq po’ q=ocp-qzq' pt (=0l (18.36)

.

it 18 necessary and sufficient, that the condition
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z = x
n n-1

is satisfied and that the matrix

xn -1 X 1 xo o (o]
xn x2 xl 5 (¢} o
N < (o] [¢] oo xn xn-l xn_2 xr‘_3 .. xo
zn zn_ PRERER zl zo (o] [0} .o o
o zn z, z, z (o] o
c o z, zn- 1 zn-2 zn.- 3 zo

(18.37)

s nongingular. If these conditions are fulfilled, then the matrix T,
8 invertible and it can be uniquely reestablished by forrula (18.18).

PROOF. The NECESSITIY of condition (18.37) follows from Theorem

18.3, by which the matrix 'rn is nonsingular, and hence the systems

(18.36) uniquely solvable, and it remains to evaluate z,

Cramers rule.

-1

by

We show the necessity of the condition det N # 0. By Theorem 18.3

(formula (18.18))

T—l
n
where
z o]
(<]
B = 2 (<]
zn zn—l
D=
o zn zn.1
o z
n
F = o .
o 0 O
o 0 O

1
X {BC - DF}

n
(s}
(o]
' C =
Z
o
X o eee
¢}
xl %o

e e

1
n
o]

n-

o X

n
%
2y
z2
n
vee ©

o O

As BD = DB, we have, applying again some rule for the evaluation of de

terminants of block matrices ([3], ch. 1I, § 5)
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det (B F) = det (BC-DF).

D C
But
B F
det (D C) =

zo o ] -xn zn - xn_1 zn_1 - xn_.2 z1 - xo

zl zo vee O [o] o zn ves 22

zn-l -2 o) (8] (o] o zn
. zn zn_1 cee 2 (¢ [o} o e

o .o ..

*o ° ° *n *a-1 *

xl xo .ee O o (o] xn “ee x2

x g e X o o [o} cee O

Developing this determinant to the entries in the (n+2)nd column, and

thereupon moving the first column to the last place, we have

B F l =
w(® )

zo o |0 zn z, zl
zn-l ese zo (o] (o] ces zn
= Ix I'! [) vee O x| x s x =
n n n-1 o]
xo oo [e] o] xn eee 2 xl
xn-l xo [¢] (o] (o] xn

= Ixﬂ!2 |det NJ.

Thus
1 1 S
ldet N| = 5 ldet (BC-DF)} = 5 ldet T 7| * 0.
Ix | x, n

SUFFICIENCY. Let det N # O and Z, =Xy Just as in the proof of

Theorem 18.5, we consider the identities (18.36) as a System of 2n+2

equations in 2n+1 unknowns ¢_ ,¢

6) n*Cone? TS 10Coe € et e C g oGy Wit

the matrix
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x X x [¢] o
n “n-1 1 (<]

(o] xn x2 x1 xo [0} o
.- o ©° ess O X X1 xn_2 .o xo

Zy Zpy e Zy Zg o ces O

o =z ce. 2z, 2z, 2 0 ..

n 2 o
o o o zn zn-l LI zo

If one discards in the matrix G the marked (n+2)-nd row, then the de-
terminant of the remaining matrix will diffexr from det N(+0) only by a

factor x - Hence the rank of the matrix G is maximal (=2n+1).

The augmented matrix G of the system (18,36), obtained by joining to
G the column of the righthand side, has the shape

n n-1 1 xo o ° !
n 5% °
. o O cee O X XDy X o e o o . P | 0
z oz cee 2z, Z 0 [¢) cee ofl” *
n n-1 1 fe] R | S
(o] T zi zo o] 1
o (o] [o] zn zn-l zn_2 zo

As PR = RP, one has again ([3], ¢ch. 11, § 5)

det G = det (PS - RQ).
But in the matrix PS - RQ are, as one, applying (18.37), easily computes,
all entries on the first row equal to zero, so that det G =o0.
Thus, the system (18.36) is uniquely solvable in relation to the num-—
bers ¢_ (p = 0,%1,...,%n). Having compiled from these the Toeplitz ma-
P n
trix T = He I

p-q p.g=0
vertible and it can be reestablished by formula (18.18).

, we see, that by Theorem 18.3 this matrix is in-

18.10. Turning to the problem of the inversion of Hankel matrices,
we recall, that after multiplication of such a matrix on the right with

the matrix

00 ... 01

00 ... 1 O

1= . - - - o - .
n+ 1 ... 00
1 0 ... 00
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(see Sec. 17.1), also of order n+1, we obtain the Toeplitz matrix

H = =
Winet T Th = Mepg gm0

where the entries c; are connected with the elements Sy appearing in

the matrix Hn through the formulae (cf. (17.3))

c; =S, (P =0l ). (18.38)

We note further, that the invertibility of the matrix Hn is equiva-
lent with the invertibility of Ti, and moreover (see (17.8))
I,-1 _ -1 -1
n

) = Jn+lHn '

or

H =J (r") . (18.39)

Thus, one obtains for Hankel matrices as a direct corollary of Theorem
18.1.

THEOREM 18.7. If the Hankel matrix H o= ] <8 such, that

s, M
j+k " j, k=0
each of the equation systems

n

LS qnXq = $po (P = 01,02},
q=o

n

z {p=0,1,---,n)

s +ny-n=6n
quo PI A p

s solvable and the condition x_ + O ie satisfied, then the matriz H
i8 nonstingular, and ite inverse ie constructed by the formula

o o vese O xo yo Yoq oo y_n
l-l-1 = x.l | ° o xo * ° Yo Y pe1] -
n [«] l

X, X Xy X o O Y,
(0] o o xn xn-l ceos xl
o [¢] y_n o O x, X,

- o 0 o vy Yool - - . .

o o [} xn
o Y oo Y_3 y_2y_1 o o© o

The PROOF reduce to the insertion of the expressions (18.38) for cI
(instead of cp) in the systems (18.1) and (18.2) and the multiplication
of both sides of foxmula (18.3) (in agreement with (18.39)) on the
left with the matrix Jn+l (i.e.,to the rearrangement in reversed order
of the columns of the lefthand factors of both products, standing
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between the braces in formula (18.4)).

It is clear, that one could (see Sec. 17.1) from the matrix H turn,

not to T but to the Toeplitz matrix

H =
T, SIS ||cp‘qllp'q_°
with the elements (cf. (17.3))
cg* = s_p+n (p=0,%1,:-,%n). (18.40)

Then we would arrive at Theorem 18.7' (the "dual™ of Theorem 18.7),
which is obtained from Theorem 18.1, if the expressions (18.40) for cpr
are inserted in the formulae (18.1) and (18.2) instead of cp, respecti-
vely, and the rows of the righthand factors in each of the two products
standing between the braces of formula (18.3) are written in reverse order
We suggest to the reader to reformulate independently for Hankel ma-

trices the Theorems 18.2 - 18.4, and each in two variants, using the

T 8)
= = (=]
formulae Han+1 T and Jn+lan T resprectively .
EXAMPLES AND EXERCISES
1. For the Toeplitz matrix
o 1 -1 i
T, = io -1
o i o} 1
o O i [0}
we write down the systems (1S.1) and (18.2):
X = X, +ixy = 1, Yo~ ¥, +tiy =0,
ixo + x2 - X3 =0, iy-a + Y_l = YO =0,
ix, + %X, =0, iy_, ty, =0
ix2 = 0; iy_l = 1.
Its solutions are as follows:
1 1 _ i.
X =T XT3 X =0 Xy = -5

i i . 1
IR R A AT
The condition X # 0 is satisfied. Hence (see (18.3))
-1/2 0 -1/2 =i -i/2 1+i/2
T-i 1/2 -1/2 (¢] -1/2 -i -i/2
1/2 -1/2 o -1/2 -4
-i/2 o 1/2 -1/2 [o] -1/2



INVERSION OF TOEPLITZ AND HANKEL MATRICES /173
o -i/2 o 1/2

(o} 0 -i/2 o

(e}

o) (o} (o}

1+i/2 © [}

-i/2 1+4i/2 © o o o -i/2
o

-1 -i/2 1+i/2 [o] [o] (o] (o]
1/4 i/2 i/a  -1/2-i/4
- -2 -1/4 -i/2+1/4 i/4 1/2+i/2 _
[} ~1/4 -i/2+1/4 i/4
1/4 -1/2 -1/2 -i+1/2
o] o) o) o -1/2 -i =-i/2 1+i/2
o -i/2+1/4 o 1/2+4¢i/4 - 1/2 o -i/2 -i/2
0 -1/4 -i/2+1/4 ~i/4 o 0 O -i
0 -1/2 -1/4 -i+1/4 -i/2 0 1/2 ~-1/2
Verification:
o1 -1 -1/2 -1 -i/2 1+1/2 1 0 0 0O
T3T;1= i 0 1 0 -i/2 -1/2 o1 0 O
o i [} (o] o 01 0
o o i -i/2 O 172 -1/2 o0 0 o 1

2, For the matrix of example 1 we consider the truncated matrix

o 1 -1
T2 = i © 1
o i ©
Construct, using the data of example 1, the matrix TEI by rule (18.11).
-i -i 1
Solution. T;l =fo o -i
-1 0 -4

3. Shosr, that in Theorem 18.1 the condition X, * 0 is essential
= adduce an example, where the systems (18.1) and (18.2) are solvable,

but X, = O and the matrix T, turns out to be singular.

HINT. Such an example is already possible for n = 2, i.e., for Toe-
Plitz matrices of order three.

4. Show, that for n < 2 it is not possible to construct an example,
3s required in exercise 3. !

5. The condition X, % 0 in Theorem 18.1 is already essential in that
respect, that, if it is violated, the matrix T, €an turn out to be non-
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singular, but its inverse matrix T;l may not be determined by the solu-
tions of the systems (18.1) and (18.2). This was already shown at the
end of Sec. 18.8 (see (18.32)) by the example of the matrix

o 0o 1 1
T3 = o 0 o 1
1 o o o©
1 1 0 0O

Construct other examples of such kind.

6. Convince yourself, that for the nonsingular Toeplitz matrix

although X, = O, this matrix (and thus, also its inverse) is neverthe-

less completely determined by the solutions of the systems (18.1) and
9)

(18.2)

7. Invert the matrix 'I'3 of example 5 by the method, explained in
Sec. 18.4.

o 0 1 o
Solution. Tgl -0 ©° 1
1 -1 0 o
o 1t oo

8. Invert the matrix 'I'3 of example | by the method of Theorem 18.3
(by formula (18.18)).

9. Invert by the method of Theorem 18.4 the matrix

0.3

1 01
5 = o i o
0 0o i

(induced by the matrix T3 of example 1)

-i o 1
Solution. (rg'3)'1 = o -i o
0 o -i

lo. Invert the matrix T, of example S5 by the method, explained in
Sec. 18.7.
Solution. See exercise 7.
11, show. that the condition *, # O in Theorem 18.3 is essential
(cf. the exercises 3 and 5).
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NOTES

n The extend of the present monograph doesn't allow to reflect the

results, relating to the numerous methods for the inversion of Toeplitz-
and more general (the so-called block-Toeplitz-)matrices. These results
have mainly an applied character (the construction of algorithms for

the inversion of matrices on computers) and in most cases they are con-
nected with the theory of filtration and extrapolation of scalar- and
vector stationaryrandom processes, where the correlated matrices are
precisely also Toeplitz matrices (in the vector case block-Toeplitz ma-
trices). Por the orientation of the reader we refer here to the papers
of N. Levinson [53], P. wittle [61,62) , J. Durbin [17], V. Trench [60],
S. zohar [63], L.M. Kutikov [49] and the quite recently appeared paper
of S. Akaike [13]. We note, that in all these papers there are imposed
on the Toeplitz matrices to be inverted rigidrestrictions of the type of
positive definiteness or the somewhat weaker requirement of strict non-

singularity, i.e., that all successive principal minors are nonzero, and
n-1

for block Toeplitz matrices of the shape HTp_qu'q=o, where the
Tj(j =0,%1,---,%(n-1)) are arbitrary square matrices, that all “trunca-
ted" matrices |IT Hk (k = 0,1,---,n-1) are invertible.
p-q p.,g=o
2)

For a nonsingular matrix Tn the numbers (x_,x sre4x) and

’
(yo,y_l,-~-,y_n), are, as is clear from the formul;e (18.1) and (18.2),
the entries of the first and the last columns of its inverse matrix T;i.
The fact, that the matrix'r;1 is determined by these of its columns,

was, apparently, ascertained for the first time (by transcendental me-
thods) by G. Baxter and I. Hirschmann [14], who also obtained an expli-
cit formula (different from (18.3)) for the reconstruction of the ma-
1t
x ) and (yo,y_l,*‘°,y_n) were subjected to an additional restriction:
the polynomials

. -1
trix Tn from these columns. But in their paper the numbers (xo,x

n 5 n
x(¢) = L xjc and y(g) L y_j;

j=o j=o

3

are not allowed to become zero in the unit circle lZ| < 1. Under the
same restrictions formula (18.3) was discovered by A.A. Semencul [58],
@ result which was fundamental in the corresponding section of the book
of I.C. Gohberg and I.A. Fel'dman£[6] (Ch. III, § 6). In the redaction

cited in the text, Theorem 18.1 and its proof where adopted from [25].
3)
Thus, unlike in Theorem 18.1, here the question is to reconstruct the
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matrix T;l not from its first and last but from its first and second
columns (cf. note 2 above) .

4 Recently, A.L. Sahnovi& [55] published a method for the inversion of

Toeplitz matrices by the solutions of equation systems of the type of
(18.31), but with a different right side. Moreover, there was no addi-
tional restriction at all imposed on the solutions. Curiously, in the

given case the direction of the development was inverse in comparison
to that mentioned in the begin of the introduction of this book:

A.L. Sahnovi& obtained his own result for matrices in analogy to cor-
responding results of L.A. Sahnovié [56,57] for integral equations.

S)As was remarked in [25], Theorem 18.5 was in the case of Hermitian

Toeplitz matrices proved in an equivalent formulation but by a diffe-
rent method by M.G. Kreln [46]. The connection between this group of
problems and the paper of M.G. KreIn [46] is traced in more detail in
the book of I.C. Gohberg and I.A. Fel'dman [6] (Ch. ITI, § 6).

6)of course, the reader has noted, that in comparison to the system

(18.35) here (if one only deals with the lefthand side) only the order
of succession of the equations and the notations on the side of the
coefficlents have changed, and that this is also reflected in the dif-
ference between the matrices G and Q.

7 It is interesting, that the rearrangement in reverse order of the

rows (columns}, i.e., the multiplication of the matrix on the left
{right) with the matrix Jn+1, is applied in a broad fashion for the in-
version by other methods of proper Toeplitz matrices and block-Toeplitz
matrices (see, for example in the papers [63],{13], already mentioned

R 1)
above in note ).

® At the same time (already after the publication of the papers [24,

25)) another approach to the Theorems 18.1 and 18.3 and the correspon-
ding results for Hankel matrices was discovered. This approach, based
on the notion of the Bezoutiant of two polynomials, which is well-knowr
in the algebra (see [8]), was developed by F.I. Lander [52].

9 Thus, the condition x, % O is, although it is essential, not necessad

ry, and that not only for the invertibility of a Toeplitz matrix Tn
(with was already clear from example 5), but also not for the fact, that
the solutions of the systems (18.1) and 18.2) determine the inverse
matrix.
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§ 19, MUTUAL TRANSFORMATIONS OF TOEPLITZ AND BANKEL FORMS.

19.1. The results of § 17 concerning the mutual transformations of
Toeplitz and Hankel matrices suggest their application to transforma-
tions of their respective Hermitian and quadratic forms, But on this
way a disappointment awaits us. Before all we note, that for an arbi-
trary Hermitian Toeplitz form (of order n)

n-1
Th-g (Xex) = 2_ cp-qcpeq (c_p = p=0,1,""*,n-1) (19.1)
pP.q=o
the matrix Toeq = Hcp_qH;:;=° after the transformations (see Sec. 17.1)
I H o=
Hhet ® Tnt%nr B0y JnTn-l

reduces to Hankel matrices Hi_l, H;:I which are nonreal (and moreover,

non-Hermitian - see Sec. 9.1), if the matrix T _, is nonreal. So we

1
cannot, in the general case, form by means of H;-l (or Hn:3) a Hankel

Hermitian or real quadratic form and compare it with the form (19.1).

Hence we restrict ourselves to real quadratic Toeplitz forms, i.e.,

forms
n-1
T (x,x) = £ ¢ EE (¢ _=c,p=0,1,---,n-1) (19.2)
-1 - -
n p.q=o P-a’P’q P )
n-1
ith ls ic Toeplitz matrices = |ic . Now the Han-

with real symmetr ep rices T _, = i p-q"p,q'o

R § n-1
1 F 8y T B T s ke

metric) and hence it defines a quadratic Hankel form

kel matrix H is real (and as always, sym-

n-1
L s_,..Nn.Nn (19.3)
5. k=0 4k '3k
of which the coefficients sk are connected to the coefficients ¢_ of

the form (19.2) through the simple relations (see (i7.2) and (17.3))

S (k = 0,1,+-+,2n-2);

k T %k-(n-1) T S(n-1)-k

°p = Sprin-1) T S-prn-1)  (p = 0,%1,---,t(n-1)).
Thus, : - n-1
us, the matrix Hn-l ||Sj+k"j.k~o is symmetric not only with respect

to the main diganonal but also with respect to the auxiliary diagonal.

Hence, we must restrict ourselves in the forms (19.3), namely, to those
with such matrices, if we want to move also in the reserve direction -

from Hankel to Toeplitz matrices.”

It is necessary to raise the question: how are the basic invariants
of the forms - rank and signature - transformed under the above indica-

ted transformations, after what rules are they recalculated? But
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such a formulation turns out to be incorrect. Already simple examples
show, that the rank and the signature of, let us say, the form (19.2)
do, generally speaking, not determine the signature of the correspon-
ding form (19.3) (the ranks of the forms (19.2) and (19.3), it is clear,
of these forms differ

do coincide, since the matrices Tn- and Hn

1 -1
from each other only in the order of succession of their rows (columns}).

EXAMPLE. Let the Toeplitz form Tz(x,x) (of order n=3) be defined by

the matrix
1 1 o
T2 =01 1 1
o1 1
with the successive principal minors D_1 =1, Db =1, D1 =0, 02 = =1,
Its rank and signature are respectively equal to: p = 3, oTz = 1 (by ru-
le (16.6) or Theorem B8.2). The corresponding Hankel matrix Hz = J3T2
has the shape
ot 1
H, = 1.1 11,
1 1 o0
its successive principal minors are equal to:
p,=1,D =0 D =-1,D, =1,
so that (by Frobenius' rule (12.20) or Theorem 8.2) ouz = ~1.
Now we consider the Toeplitz matrix
1 0o 2
T,=fo 1 o
2 01
with again the order n = 3 and the rank p = 3. The signature of the
corresponding form i(x,x) (since D_1 =1, Do =1, D1 =1, 02 = =3) is
equal to: OT = 1, just as that of the form Tz(x.x).

2
But the Hankel form ﬁz(x,x) with the matrix

L 2 0 1
(33T, =My = 1o 1 o
1 o 2

=2, D, =3 has

and the successive principal minors D_ P

=1, Do =2, D

1 1

signature equal to: o. = 3.
Ha
19.2. The negative result, found in Sec. 19.1, shouldn't discourage

us. In reality, it turns out that there exist nonsingular linear trans-
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formations of independent variables, transforming arbitrary Hermitian
Toeplitz forms into Hermitian Hankel forms and backwards (here we admit
a somewhat loose formulation - for the exact formulation see below). We
mean the transformations of E. Fischer and G. Frobenius, to which we
turn right now.

Let a and b be arbitrary complex numbers, different from zero, and
n a natural number. We assign a linear transformation of (complex) pa-
rameters (;p,;l.-~-,gn_l) to (complex} parameters (no,nl"",nn_l) in
the following way. We consider the identity

2 n-1 _
Eo + gle + gzc +oeee + gn_1s H

-1

= (a+ae)” n, * (a+3e)n'2{b+r—>e)n1+-.-+(b+Be)n-ln (F.-F.)

n-1
of two polynomials, in which € is an independent parameter. If we open
up in the polyncmial, standing on the right, all parentheses, and there-
after compare the coefficients of the equal powers of € on the left-

hand and righthand side, then we obtain relations of the shape
n-1
E = Za_.n (p = 0,1,°*", n-1) (19.4)

P juo PI3

giving the desired linear transformation, which we shall call the trans-

Fformation of Fisher-Frobentus D (abbreviated the transformation
(F.-F.)).
10 If the condition
Az ab-ab*o0 (19.5)

is saitiafied, then the transformation (19.4) ig nonsingular.
Indeed, under the condition (19.5) the mutually inverse linear-frac-

tional transformations

b +be ad -b
8 ==—"T. €=
a+ae€ b-ad

make sense, by means of which the relation (F.-F.) can be rewritten as

n-1 n=1 _

(ab-amy™ ! reln. = 5 5-20)""1P(as-1)Pc . (F.-F. bis)
j=o p=o P

Comparing here the coefficients of the equal powers of 6, we obtain the

relations
n-4
n.= L8

13
I p=o PP

(3 = 0,1, ,n=1) (19.6)

which yield the inverse of the linear transformation (19.4).

19.3 Now we find explicit expressions for the coefficents apj of the
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transformation (19.4).

20 The coefficients of transformation (19.4) can be calculated by
the formula

n—l-
. -u
o, e E ok ()
P) u=o
(p,j = 0,1,+-,n-1), (19.7)
where
¢t . T (s-0yt Jor ' (19.8)
o for all other s,t.

Indeed, we insert expression (19.4) in the equations (F.-F.) which
generate it:
n-1 (n-1 n-1 - ne1-3 _ s
z ):ajn. e - L {a +ae) J(b#bc)’nj.
p=o \j=o P} j=o
Changing the order of summation on the lefthand side and comparing the

corresponding coefficients for arbitrary values n. we obtain

j
LS = on-1-3 = 5
La e’ = (a+ae) (b +be) (3 = 0,1,+++,n=1) (19.9)
j<a]
p=o
or
n-1 n-1-j

-1~ ‘ AY
ga P =ald s et -3‘ )"e“}:c(, ev.
p=o PJ L=0
Now we carry out the multiplication on the right hand side and compare
the coefficients of e¥ on both sides:

. - n-ubj"“’gcu ( ) (
pj u=0 V=0 1= j 3

(p+v=p) (p,j = 0,1, *,n-1).
It remains to substitute p-u for v, and then, taking into account the
convention (19.8), we obtain (19.7).
In the case, where A = ab - ab # O, one can, in an analoguous way,
calculate the coefficients ij of the (inverse) transformation (19.6).

3¢ There hold (vith the notations (19.8)) the formulae

n-1- p . -
o L _gnlep P33 g M du(abid
Bip = -1 ® R TG o)
(3;p = 0,1, ,n-1). (19.10)

For the proof we insert in (F.-F. bis) the expressions (19.6)

Ly D=1 n-1 =1
A [Me el el = £ Boae)™ P ras- Pg .

j=o i p=o ip p} p=o
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Comparison of the coefficients of £p yields

n-1 . 1
LB, 8=

- 5-30" " Plag -p)® (e = 01,0001 (19.11)
j=o e An

whence (19.10) is obtained without difficulty 2).

From formula (19.7) one easily discoveres a property of the coeffi-
cients apj and ij of the transformations (19.4) and (19.6), respecti-
vely, which is useful for further calculations.

4% For p,j = O,1,+--,n-1 one has

*n-1-p,3 = “p3
8 B (19.13)
ip

For the proof of relations (19.12) it suffices to substitute every-
where in formula (19.7) n-1-p instead of p, and then perform the trans-

(19.12)

jin=1-p =

formation of the summation indices: yp' =n-1-j-u. It is somewhat compli-
cated to derive (19.13) from (19.10) (cf. exercise 5 at the end of this
section), but one can obtain it at once from 19.12, if one remembers,
"n-l and I8 "n-l are mutually inverse

3 p,I=o0 jp j,p=o
(since the transformations (19.4) and (19.6) are such). This simple ve-

that the matrices HaP

rification is also left to the reader. Finally, one can obtain both
foxmulae (19.12) and (19.13) without resorting, in general, to the ex-
plicit formulae (19.7) and (19.10) for the coefficients apj and ij -

see exercise 6 at the end of this section.

19.4 Now we shall explain, how an arbitrary Toeplitz form

n-1
T (x,x) = L c £ & {19.14)
-1 -
n p,g=o p-a'p'qa
where
=c =0,1,*+,n~1 19.15
C‘P P e ! ! ! ¢ )

transforms as result of the parameter change (19.4). To this end we in-
sert the expressions (19.4) into (19.14):

n-1 n-1 n-1_ _ n-1 _
Tn_l(x,x) -p'gsocp_q oncpjnj kfoaqknk 'j'£=°sjk"j“k’ (19.16)
vwhere n-1 )
sjk .p'g;ocp-qupjan (jok = 0,1,°°*,n~-1).
Hence is clear at once, that the matrix Ilsjk";:;_o is Hermitian. In-

deed in view of (19.5), we have
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- n-1 _ _ n-1

s,, = L c a_ .a = T
k k

3 p,a=o P9 P g psqe=o

Now we show, that this matrix is a Hankel matrix. To this end we

¢ a_ . = j,k = 0,1,+++,n-1).
Q‘Paqkup j Sk j (J ’ ’ )

calculate an explicit shape for the coefficients sjk' using formulae
(19.7). We have
. n-1
Sy = a"1Tpign kgt Ty cpgp ETVEY
P.q=0C
n-1-3 sn ) n-1-k o [l v
x £ ¢t ™ (‘—’.’) Lo o (3’3)
p=0 33 ab v=0 ab

in-1-k

In the latter of the sums z we perform the transformation of the

v=o

summation index: v = n-i-k-v' and we use the formula

ct - cs-t
S s

(which holds for arbitrary numbers s and t because of (19.8)). Then, re
turning to the original designation of the summation index (and taking
(19.8) into account all the time), we obtain

. n=-1
5. = a"TlTi g ikgk o o pmPrddgPra
J p.a=o0
n=1-3 p-u jap) v ALK, n-1-g-v [ab| n-1-k-v
x z Cn-l-'cj —c z cn-1~kck =
=0 3 ab v=o ab
T _ _y n=1-j n-1-k i=
- 221 =(34k) J+k-(nal)gn-1 "o . C:-1- cv_l-k 5;3_) why
u=0 v=o0 in ab
n-1 b -1-g-v
x L ¢ 2| PTa cPrichita (3.k = 0,1, ,n-1
. P-g \b 3j k
P.9=0

n-1
Now we group together in the latter of the sums( z ) the terms, in
which the difference p.q=0

p-q {(Z0)
retains one and the same value. We obtain
2(n-1) {b) j+k [BY n-1 PRI pel7k ab futv
s = a - - z E ¢ .C - X
jk a b n-i-j n-1-k{ ap
n=1 u=0 v=0 5
X z Z c[?-ucl;-l-q-\)) 4 (E) ¢
o=-(n-1) | p-q=0 3
(j'k = 0'10"‘ln-l)0

For the calculation of the sun z ), standing between the paren-
p-q=0 ’
theses we use the formula

O, 1 m-1 o © _ m 17
crc: * crcs M + cgcs cr+s (19.17)
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well-known from combinatorics (see, for example, [12), p. 56). If we
take into account (19.8) and then the fact, that p,q = O,1,+++,n-1,
then it follows from (19.17) that
P cp-ucn-l-q-v =%t (n=1)=(n+v)
i Tk j+k
p-q=0
(3,k = 0,1,¢04,n~1; p=0,1,¢.-,n-1-j; v = 0,1,-++,n=-1-k;
g =0,%],---,¥(n-1)).

Thus
- n-1 -
- - o
sjk = a2(n n (2 I+k (%,n t b <, (%} x
o=-~(n-1)
n-i-j n-i-k = 1y
T e ) e
u=0  v=0 3 ab 3

(jlk = olll°"' n-1).
Now grouping on the right the terms with the same summation indices y

and v (p+v3r) and again applying formula {19.17), we obtain

_— L2(0-1) { ]ﬁk[ )n- B ( )

2(n-1)=-(j+k)

x £ i s ¥ o ‘ (ég) r cc+(n-l)-r
oo ( v S Co-1x | | o J4k
2(n-1)(]j+k()n- c(%c y
UO-(n-l)
« 2(n-l)£(j+kér o+(n-1)-r {ab\ r
oo 213K Crek =] (19.18)

i.e., the coefficients sjk of the transformed form (19.16) depend only

on the sum j+k of the indices j and k.

n 1
In particular, since the matrix 'Isjk 3 k=0

thence, that all coefficients sjk are real (cf. Sec. 9.1; see also exer-

cise 11 at the end of this section).

is Hermitian, it follows

Thus is proved the proposition
S®  Every Hermitian Toeplitz form (19.14) s by a transformation
(19.4) transformed into a Hermitian Hankel form.

19.5 We now take an arbitrary Hankel form
n-1
H (y,}= E. s
n-1 j,k=o

j+knjnk (19.19)

with real coefficients

sj+k = sj+k (j,k =0,1,*++,n=1)
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and we apply to it a transformation (19.6), induced by the identity
(F.-F. bis) whexe & = ab - ab * O, We obtain

n-1 n-1 n-1_ n-1

yy) = L s LB, & LB E=L c £F,
1 +k 13
Hn- j,ksoj p,ojppqzo qqp,q__opqpq
where n-l
c = (p,q = O,1,:++,n-1}.
2 k=° 3+k jp kq

. n
Hence is clear at once, that the matrix llc_ |l

is Hermitian,
Pd pP,q9=0

Indeed,

n-l n-l

= 8.8 =¢ (p,g = 0,1,°++,n~1).
ap jk,oj*rk 1dkp jk,°j+k jaxp - pa "

Now we show that this matrix is a Toeplitz matrix. We apply at first

proposition 4°, namely formula (19,.13). We have

n-1

¢ = LI s, ,B.

(p,q = 0,1,°*,n=-1).
BT g, ke I

ip By n-1-q

Here we insert the values of the quantities B, p (and correspondingly

Bk n-1 _q), obtained in 3° (see (19.10)), and we transform the obtained
’

expression through the same method as in the proof of proposition 5°

(in particular, we use formula (19.17) twice). We obtain

B P () Pl Ptd Ml 4K
Cpq ™ 2(n-1) 344k X
L A 3.k=0
n-1-p - n=1=(p=q) _, ,n=1l+p-q
SR A ) ot ("4 : Toot)
u=o PP ab v=0 q - A
n-1-p q n-1 -
x 5oz ( }uw " (-b\ Ik Jugky
=0 v=o P q J P -q
n-1-(p-1) n-1+p-q
<5 2 (:?; )
a%tm
n-1-p ¢q = 2n=-2 §
x & £cb o (2 )‘”‘" > ( £ MY | s, (3-
=0 V=0 P q r=o \j+k=r P -
. sn-—l-(p—q) (_b)n-1+p—q .
a2(n-1)
2(n-1) n-1-(p-1) -
RN = L NI - Lo AR
r=o =0 n+v=o P qf} ab P=q
n=1-(p-q) n-1+p-q¢ 2(n-1)
- ® Toa) (f%' T
A {n-1) reo T
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n-1-(p-q) )
£ C
x om0 D-1-(p~) n-1+(p-q) (

(p.q = 0,1, ,n-1), (19.20)
i.e., the coefficients cPq depend only on the difference p-q of the in-
dices p and q.
Thus is proved the proposition
69 Every Hermitian Hankel form (19.19) <s by a transformation

(19.6) transformed into a Hermitian Toeplitz form.

19.6. Summing up the proposition 5° and 6° we formulate the basic
result of the present section, which is contained in them:

THEOREM 19.1. Let a and b be complex numbers and A = ab ~ ab * 0.
Then the linear transformation (19.4) of Fischer-Frobenius, induced by
the identity (F.-F.), i8 nonsingular. This transformation and its in-
verse trangformation (19.6) (induced by the identity (F.-F. bis)) de-
termine one - to - one relations between all Hermitian Toeplita
forms of order n and all Hermitian Hankel forms of the same order n.

A result of such type was established for the first time by E, Fi-
scher [18] (for a = 1/2, b = -i/2) for nonnegative Toeplitz forms of a
special shape.

For arbitrary a and b G. Frobenius [20] extended this result {pre-
cisely, the result, formulated above in proposition 5°) to arbitrary
nonnegative Toeplitz forms. In its full generality Theorem 19.1 was
established in [41] in two ways (both different from the straightfor-
ward calculation adduced above). We shall present one of these in Sec.
19.7., in view of its methodical interest. At this it will be necessary
to rely or two classical theorems on the polynomial - and trigonometri-
cal moment problem, For the sake of completeness the proof of these Theo-
rems is presented below in Appendix II (see Theorem A.II.1 and A.II.2).
There the reader also will find some helpful transformations of real
quadratic Toeplitz forms into sums of Hankel forms (see Theorem A.II.3).

19.7. For the case of positive definite forms propositions 5° and 6°
might be obtained much faster through the application of well-known re-
sults from the theory of moments (polynomial - and trigonometrical).

So, let be given a positive definlte Toeplitz form
n-1

(x,x) = L ¢ EFE
p.g=o P4 P4

We perform on its independent parameters 50,51,--»,£n_1 the transforma-

Tn-l
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tion (19.4), induced by the identity (F.-F.) (see Sec. 19.2). The coef
ficients cp of the positive definite form Tn_l(x,x) allow, by Theorem
A.IL.2, the following representation:

n
¢, = I zkci’, £, >0, lgl =1 (k=1,2,-2n; p=0,l,° ", t(n-1))
k=1

Introducing this expression into Tn_l(x.x), and taking (F.-F.) into
account, we obtain

n-1 _ n-1 n _ n n-1 P n-1_ —
L ¢ _E& = L Er,eP T = o, TEef 2EEl=
pogmo PAP D L o yap KK PGy K PR ek
n n-1 - nel- _ - - ne1
= Lxr L (atae) P(bwek)p(amek) - x
k=1 P.g=0
x (b+be = I
( k) Moy p'qgoqunpnq'

n-2-(p+q)(b.';ck)9+q

where

s = rkéz'l(anfsckf (p,g = 0,1,+-,n-1),

PI =t

i,e., each coefficient s = s
ot ptq
indices p and q and is, as one easily verifies, a real number. The

depends only on the sum p+q of the

latter, however, one can establish very simply, not using the positive
definiteness of the form Tn-i(x'X) and in general not resorting to any

kind of formula for the coefficients cp (see exercise 11 at the end of
this section) 3).
Conversely, let
n-1
H .(y,¥} = I s
n-1 3 k=0

be a positive definite Hermitian Hankel form. We insert into it trans-

j+k"j"k, sk = sk (k = 0,1,+-.,2n-2)

formation (19.6), induced by identity (F.-F. bis), where A =ab - ab#o0.
By Theorem A.II.1 the positive definiteness of the form Hn-l(Y'Y) is

equivalent to the fact, that its coefficients allow the representa-

tion 4
n

k
sk = I pvov' pv >0, 0

= 3\, (v=1,2,*++,n; X=0,1,"**,2n=2)
v=1

v

Introducing this expression into the form Hn_l(y,y). and taking
(F.-F. bis) into account, we have

n-1 n-1 n n n-1 n-1 k
— k - j — =
£ s..nn = T Lo el 7 = £po, £nel £he
L S & i P R
1 n n-1

- - n_l_p P
- _._-.._ e ho (b_ae ) ‘ae _b) E X
p2m 2% v v P
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n-1 n=l-g - _ n-1 _
x L (-a0)" " "@p -b) qEq = L oc gE,
q=0 p.g=o

-)pa n -14p-q = ~ n-1-(p-q
fe] = ..(_L)__ z [} (ae _b)n 1+ (ae -b)n i (p )
Pad ,2(n=1) TV v

where

(p.q = 0511""“‘1)-
Hence is clear, that ¢ = ¢__ (Sc_ ) depends only on the difference
qp P p=a
p~q of the indices p and q.
The results established above allow to give a new proof of
Theorem 19.1.

Indeed, the coefficients s, of an arbitrary form, obtained through

a linear transformation of a ;teplitz form Tn_l(x,x), are linear func-
tions (forms) of the coefficients cp of the original form. In particu-
lar, for the case of the linear transformation (19.4) these linear forms
were written down explicitly above (see formula (19.16) and the next).
Now we fix in the form Tn_1(x,x) all coefficients cp with p # O, and

the coefficient ¢  we choose positive and so large, that all successi-

ve principal minors

S c-l c-n+l
co S c c c
D = ceesD = 1 o -n+2
o = co'Dl c, c |’ ""n-1
1 o cetcseenrsessess eceee
c < .. C
n-1 "n-2 ° o

of the form Tn_l(x,x) become positive. This is possible, since
DO,DI,---,Dn_1 are polynomials in <, with leading coefficient egual to
one, But then the form Tn_l(x,x) becomes, because of Theorem 8.1 and
Corollary 2 of Theorem 5.2, positive definite and, as was shown above,
the transformation (19.4) turns it into a Hankel form with real coeffi-
cients. This means, that the real numbers sjk (the coefficients of the
obtained Hankel form) depend only on the sum j+k of the indices j and k,
i.e.,

sj+1,k = sj,k+1 (j,;k =0,1,°**,n=1; j+k < 2n-2).

But the last relations remain, as equations between linear functions in
S, (all other coefficients cp are fixed), which hold for all sufficient-
1y large c_r evidently identities for arbitrary c,r i.e., for arbitrary

forms Tn_l(x,x). Thus the first statement of Theorem 19.1 is proved.

Now we insert the transformatfon (19.6), which is the inverse with
respect to (19.4), into the arbitrary Hankel form
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n-l
_yyv.y) = n.n
1 i k=o S 445N
We obtain
n-1 n-1 n-1 n-1_ n-1
L s..n.n L s LB, & LB E = L c EE ,
j+k k T . +k ki
j,keo I1*K3 Jokmo K o PP o KATA T L, PAPA
where n'l _
c = 8 (p,gq = 0,1,°°*,n-1).
= S k=o j+k Jp kq
Hence is clear, that the matrix |lc "n-l is Hermitian:
Pd p.q=0
¢ =c - pig =0,1,°°,n-1),

<
9p P4

and its entries are linear forms in the parameters 8 1Sy "yS

1’ 2n-2°
Moreover, we know, that in the case of a positive definite form

Hn_l(YlY)
cpq = cp-l,q-l’ (P:q = 1121""11‘1)- (19.21)
We fix in the form Hn_l(y,y) coefficients 51'53'."'52n-3' and the
coefficients s ,sz,---,szn_2 we replace so, that the form Hn-l(y'y) be-

comes positive definite. Namely, we choose at first, and then we fix

(D =) s > O. Since
o o

we have Dl > O for sufficiently large (positive) 8, We fix such a s

and a positive s

2!
we choose so large, that

4
¢ %1 %2
D2 = 51 52 53 = 54D1 + ¢ >0
5y %3 %4

and so on, As result we obtain for certain sufficiently large s '52’
San-2

Do >0, D, >0, ¢+, D > 0,

1 n-1

where it is clear from this reasoning, that such a set s ,sz,-u,s2n 2
can be composed in infinitely many ways, such that all the values of
all parameters s or8ar T Sy o ATE changed at once. But for all such
sets hold, as we know, the relations (19.21), in which both sides (for

fixed p and q) are linear function in 50,52,---,5 So, these rela-

2n-2"
tions are realized identically relative boso,sz,-.-,szn_z, i.e., for
arbitrary Hankel forms Hn_l(y,y).

Theorem 19.1 is proved.
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EXAMPLES AND EXERCISES

1. (F.I. Lander). Prove that transformation (19.4) can be rewritten
in the equivalent “symbolic" shape

n-p~1

£, = Cp_y(a+b) @+bw)?  (p=0,1,-05,n-1),

where one must perform on the righthand side, after expanding the paren-
theses, the substitution

b] 1
3

w” = ﬂj (3 =0,1,°*",n-1).

cn- 1

HINT. Put nj = Ci‘le () =0,1,°**,n-1) in (F.-F.) and calculate the

successive derivatives to € in the point € = O.
2, Derive formulae (19.7) from the result of exercise 1.

3. Establish in analogy to exercise 1 for the transformation (19.6)
the equivalent "“symbolic" form

1 (n-1)1
n=1 (n-3-1) 13!

n. =
I

where A = ab -ab, and after expanding the parentheses on the right the
transformation

6 -be) " 1 (a0 -3)3 (3 =0,1,%++,n-1),

Wp= 1 g (p=0,l,"’,n‘l)

is performed.
4. Derive the formulae (19.10) from the result of exercise 3.
S. Derive formulae (19.13) directly from (19.10).

HINT. Having substituted n-1 -p instead of p in (19.10), perform on
the righthand side the transformation of the summation index u to
u' =j-u, and take into account (19.8).

6. Derive formulae (19.12) and (19.13), not using, in general, the
direct expressions (19.7) and (19.10) for the coefficients upj and ij,
respectively.

HINT, Use respective the identities (F.-F) and (F.-F. bis), assuming
lel =1, 8 =8 in them.

7. (E, Fischer [19].) Prove, that the parameters NgsMyetttol 4 in
the transformation (F.-F.) are resi if and only if the parameters
§or€ys-0€ _, satisfy the condition

£ 3 (p = 0,1,°*+,n~1).

n-1-p = °p
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HINT. Use formulae (19.12) and (19.13).

8. As one easily perceives directly from the identity (F.-F.), the
formulae (19.4) appear as follows:

for n = 2
£, = an, *+ bn,,
g, =an + bn;
for n = 3 ¢ - azn s abm. bzn
o ) 172 _
gl = 3;an° + iab-+a?;nl + 2bbn2,
§, =a’n  + abn +b'n,.
Compare these equations with the direct formulae (19.7) for the coef
ficents o . of transformation (19.4).

o]
9. In analogy to exercise 8 we find from the identity (F.-F. bis),
that formulae (19.6) can be rewritten as (A = ab - ab):

for n 2

1 -
n, =g (b€ - bE),
1 -
Ny = F (-ag_ +ag));

]
w

for n

- = 2
(b - bbg, + b)),
(-2bago + [ba+ba]£l - 2bag,),

=2 - 2
n, (a EO - aaf, +a 62)-

3
—
L]

Compare these equations with the direct formulae (19.10) for the co-

efficients ij of transformation (19.6) and also with note 2) below.
. n-1
lo. Verify that the matrix llsjkllj'k=° is real and the matrix

lle "n-l Hermitian, where the matrices are defined by the formulae
Pd P.9=0
(19.18) and (19.20), respectively, starting directly from these formula

(cf. with exercise 11).

11. In the begin of Sec. 19.4 was shown, that after the transforma-
tion (19.4) the form (19.14) turns into the Hermitian form (19.16):
Ejk =S, (3k = 0,1,+++,n-1). Show, not using (19.18), that the coef-

ficients are real: gjk = sjk (j.k = 0,1,...,n-1).

HINT. Use the relations (19.12).
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NOTES
n The relation (F.-F) was suggested by G, Frobenius [20}. He generali-
zed a transformation, introduced earlier by E. Fischer [18], which is
obtained from (F.-F.) for the particular values a = 1/2, b = =-i/2,

2) It suffices to compare the formulae (19.9) and (19.11) in order to

observe, that for the transition from the first to the second (and so,
also from (19.7) to (19.10)) one must insert on the lefthand side the
factor A"} and then replace the letters: ¢ for 8, a for 8, j for p,

p for j, a for b, a for {-a), b for {-b) and b for a.

3) From the remark to Theorem A.IX.2 follows, that the whole followed

argument is also applicable to nonnegative (degenerate) forms Tn_l(x,x).

1) pere is everywhere, by definition, 0° = 1. We note, that in [41] by

mistake only nonnegativity of the form Hn_l(y,y) was required (cf. be-
low the remark to Theorem A.II.1).

REMARK., For new methods and numerical results concerning the inver-
sion of Hankel- and Toeplitz matrices (both normal and block matrices),
and also for the algebraic structure of spaces of such matrices and new
transformations, defined over Hankel- and Toeplitz matrices, see [1],

(4],(6]1,[10],[21],(12],[13] and [16] of the additional list of referen-
ces,
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I. THE THEOREMS OF BORHARDT-JACOBI AND OF HERGLOTZ-M. KREfN ON THE
ROOTS OF REAL AND HERMITIAN-SYMMETRIC POLYNOMIALS.

1. We show here one of the spheres of direct application of the re-
sults concerniné the signature of Hankel- and Toeplitz forms, presented
in §§ 12 and 16. We mean the problem of the distribution of the roots
of a real polynomial

B0 =an+an™ e ra Ava (@ =a k=0,1,0r0,0) (A1)

or a Hermitian-symmetric polynomial

n n-1 - e
Qn(h) = boJ\ +b1>x +eee+b A +bn(bk =bn_k;k =0,1, ,n)(A.1.2)

with respect to the real axis or the unit circle, respectively.

n-1

We recall, that the roots of the polynomial Pn(A) (see (A.I.1)) are
alvays symmetrically distributed with respect to the real axis, where
the nonreal complex-conjugated pairs (if they exist) consist of roots o
the same multiplicity. A quite analoguous picture is valid for the root
of the polynomial Q. (\) (see (A.1.2)), but with the unit circle substi—
tuted for the real axis, i.e., instead of real roots one must speak of
roots with modulus one, and instead ©f complex-conjugated pairs - of
pairs of the shape (B,8%), situated mirror-like (symmetrically) with re
spect to the unit circle:

B* = &
Both these statements, which are quite well-known in the algebraic theo
ry of polynomials, are also easily verified directly (see the exerci-
sis 1,2 below).

2, we consider the real polynomial Pn()\) (A,I.1), and let LTRL YRR
be all its xoots (here each root is repeated according to its multipli-

city). We put together the Newton sums n
k k k
S, =@ +a, t ctel (kx = 0,1, ) (A.1.3)
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(here the symbol O° is considered to be equal to 1), and use these as

coefficients of the Hankel quadratic form
n-l

H_ xx) = ;s k j+k£jzk (A.1.4)

(we recall, that because of the properties of the roots of the polyno-

mial Pn(A) all sums s, are real).

k
THEOREM A.I.1 (BORHARDT-JACOBI). If m i3 the nwmber of positive
squares and v the number of negative squares of the quadratic form
H _, (x,x) (see (A.I.4)), then the polynomial LY has v different
patrs of complex=conjugated roots and o = m -v different real roots.

PROOF. The form Hn_l(x,x) can easily be represented as a sum of
squares

n-1 n-1
j+k . j+k 4k
H (xx)= L[ 8, EE = L (o +a +eevtal VEE =
n-1 jxmo JHCITR Ty LT 2 n '3k
n-1 (ol 3 3
= T E 6 + a f.a z + *** +a g o E ),
j,k=o 123%1% 2°3%25%k n"3°n°k
i. €.,
n-1 2
(x,x) = 2 (5 + °k€ + €2 + oeee 4+ o En-l) . (a,I.5)
k=1

One cannot yet call the representation (A.I.5) canonical, (see Sec.
5.2), as among the roots @yeGypere,0 there may be multiples, i.e., the
linear forms corresponding to these are dependent (they simply coinci-
de, and in representation (A.I.5) their squares are repeated as many
times as the multiplicity of the corresponding root).

1f among the roots CRLPYRRNT N there are p different real and q
different pairs of complex-conjugated roots, then after the reduction
of similar terms on the righthand side, the representation (A.I.5) turns
out to be a sum of squares of p+ 2q linear forms, which (over the field
of complex numbers) are linearly independent; the matrix of their co-
efficients (see Sec. 5.1), now consisting of the nonnegative entire
powers of the p+2gq diff;rent roots of the polynomial pn(x>, has a rank
which is exactly equal to p = p+2q, since the corresponding Vander-
monde determinant is nonzero.

But also the thus transformed representation (A.I1.S) is, if q % O,
still not canonical, since the real quadratic form H

n-1
represented as the sum of the squares of p real and 2q nonreal linear

(x,x) is here

forms. To each of these 2q squares of nonreal forms of the shape

(M(x) + iN(x)]z,
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where M(x) and N(x) are real linear forms in the parameters go,gl,-.-,

13

n-1 there corresponds in the same sum a square

[M(x) - iN(x)]z.

Combining corresponding terms, we obtain
(MG + N0 )7 + (M0 - N )2 = 2[mea )2 - 2N 12,

By performing this on all nonreal squares we "reorganize" represen-
tation (A.I.S5) such, that it now will have p+q positive and q negative
squares., It is easy to understand, that all linear forms, which are
used for these squares, are independent, since we obtained them from
p + 29 independent forms through a simple transformation: we substitu-
ted for q pairs of independent forms of the shape

{M(x} + iN{x), M{x) - iN(x)}
their half-sums M(x) and their - by 2i divided - half-~differences N(x).

So, if ¢ =7n-v is the signature of the form Hn_l(x,x), then m = ptq

and v=q, whence
p=mT-v=0, q=yv,
The theorem is proved.

3. In analogy to Theorem A.I.1 there arises

THEOREM A.I.2 (HERGLOTZ - M. KREYN). Let RN be all diffe-
rent roots of the Hermitian-symmetric polynomial Q. (A} (see (A.1.2)},
which lie on the unit circle, with the nulitplicities °l'°2""'°p' re—
spectively. Let further (81,8’;},{82,8;},“',{Bq,ﬂg} be all different
pairs of roots of the same polynomial Qn(x), which are arranged symme-
trically (8} = 1 /Ek. k =1,2,--+,9) with respect to the unit circle,
with the corresponding multiplicities Gyr0pett 0. Through Sy
(k = 0,1,2,+++) we denote, just as in Theorem A.1.1, the Newton sums of
the roots (each repeated with its multiplicity).

If the Hermitian Toeplitz form
n-1

T .(x,x) = I s, E.E
n-1 j,k=o 3-k’37k

has n positive and v negative squares, thern the polynomial 2. has
n-v(=p) different roots e, with modulus 1, and v{=q) different pairs of
roots {Bk,B:) which lie symmetrically with respect to the circle Al =1.

(A.1.6)

PROOF. Above all, we note that the Newton sums s, now have the shape
p q

_ k k | xk

s, = }:p:u+ Zov(Bv+Bv

K ) (k =0,1,2,--°). (A.I.,7)
u=1 v=1

But since
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&=k, B B;k

" u (M =1,2,°*,p; V= 1121"'0q)'

then -

x = Sk (k = 0,1,2,¢°°),

so that the form (A.I.6) is, in fact, Hermitian.
According to formula (A.I.7)

P . q .
j=k j=k *#3-k
s = Lpe + Lol8 + 8 ]
ko ME vt VY v
p q .
Jzk Ig*k | ghg*
= £p &4 £o (a8 B.71.
u=t wue o oV vy v v
Hence
n-1 - p | c - 1|2
T _ (x,x} = I s, &, = Lop lE + 54....4.5
n-1 j'kxojkﬂk p=y M oe 1 n-1%u
+§: +E B +#ce0 4 “L (2 + g.,....+g B“‘"l) +
V:lov(zo E1 v gn- 5 5

-1

q
+ Do (B +E B4+ ThE vEB e+ BT

vel n~1 v

Now we consider the p+2q independent linear forms

n -1
n-l u

n-l
n-l v

*n-l
n-l v

x”(X) = So + Eleu + eee + § (W =1,2,---,p)¢

Y (X) =E +EB + o0 + §
v o 17y (v = 1,2,+44,9)
*
Zv(x) - Eo + €1Bv + cee +
We see, that

p s 4 - -
'rn_l(x,x) = uilp Ixu(x)l + \Elovlvv(x)zv(x) + zv(x)YV(x)l =

= T p Ixu(x)l + ):20“IUV(x)| - ZZOvIVV(x)I

p=1 v=1 v=1
where
1 t
U (x) = =Y (x) +2 ()],
v f v v (v = 1.2."'.q).
v, (0 = E[Yv(x) - Zv(x)]

Thus, the form Tn_l(x,x) is represented as sum of p+q positive and q
negative (independent!} squares, whence the full statement of the Theo-

rem follows.
’

4, As historical information we note, that Theorem A.I.1 was ini-
tially established by Borhardt [15] in a different (more restricted)
formulation: the number of differeni pairs of complex—conjugated roots
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of the real polynomtal (A.I.1) i8 equal to the number

V(I'DI'D l"'oDn_l)

of sign variations in the sequence of successive principal minors of
the form (AR.I1.4). Here it is assumed that all

Dk#o (k =1,2,°*,n~1)
(cf. Theorem 8.1).

In the general formulation Theorem A.I.1 was established together
with the proof adduced above, by Jacobi and only after his death pu-
blished by Borhardt {16].

The history of Theorem A.I.2 is also not quite trivial. Being esta-
blished at first (by a more complicated method) by Herglotz [27], it
was a few years later proved independently by M.G. Krein [44], moreover
with an elementary method, in complete analogy to the method of Jacobi
and that presentd by us in the text.

We note, that we have restricted ourselves in the present Apppendix
I to just the very first theorems on the application of Hankel- and
Toeplitz forms in the theory of the distribution of the roots of alge-
braic equations. These applications are very multiform, and in the firs

third of our century there was an extensive literature devoted to them.

An extensive survey of this one can, probably, find only (at least
in the Russian language) in the brochure of M. KreIn and M. NeYmark [8]
which became already long ago a bibliographical rarity.

EXAMPLES AND EXERCISES
1. The roots of the real polynomial

n n-1 -
PLAA)Y =a X +ad’ “4eccta Ata, (3 =as k=0,1,n)

are symmetrically distributed with respect to the real axis, since to-
gether with a root A = p the number U is also a root of the polynomial
Pn(X): ) .

Pn(u) = Pn(u) = 0.
The multiplicities of the nonreal roots p and y coincide, since after
division of Pn(l) by the real polynomial

(=) (A=i) = A% = 2(Re WA+ Iyl
we obtain again a real polynomial.
Prove the analoguous statement in relation to the roots of a Hermi-
tian-symmetric polynomial
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_ n n-1 -t
Qn(x) = box + blx + oeee 4 bn_1A + 1:>n (bk bn-k‘

substituting the pair (u,u) of numbers, symmetrically with respect to
the real axis, by the pair (p,1/p) of numbers which lie mirrorelike
(symmetrically} with respect to the unit circle.

k’=0,l,"-,n)

HINT. Use identity § (A) = A"Q _(1/A) (the symbol R()) denotes the
substitution of all coefficients of a polynomial by their complex con-
jugates) and the fact, that (for bo # 0) A = 0 is not a root of Qn(A).

2. Verify that each of the two theorems which form together exerci-
se 1, can be obtained from the other by means of linear-fractional
transformation (cf. Sec. 19.2)

o - 2BE (ab - 3b + 0)
a+ac
transforming the unit circle lel = § inte the real line 6 = 8, and its
inverse transformation
_ ab-b
b-ap

HINT, After performing the appropriate substitution in the polyno-
mial Qn(x), consider separately the case of even (n=2m) and odd

(n =2m~1) Qegree of the polynomial Qn(X).

3. We consider the real polynomial

P,(0) = PCAPYC I PR

It is asked to determine how many among its roots ¢, ,a,,0, are real.
Clearly, this number can be 3 or 1 (see exercise 1). Here (cf. exerci-
se 4 below)

al+a2+a3-4
a0, + a0 + o,a, = 7
a1a2a3 = -1,
Hence the Newton sums of these roots are as follows:
2 2 2
s° = 3, s1 =4, s, = oy + a, + a3 =

2 = -— =
= (ul+az+03) - 2(a1a2+a203+a3al) = 16 -~ 14 2.

Since

it is here not necessary to calculate the further sums S48

minox Dz.

4 and the
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Indeed, already
V(l,Do,Dl) = V(1,3,-10) =1,

i.e, (Theorems A.I.1 and 8.1), the polynomial PS(A) has a pair of com-

plex conjugates roots and, sSo, only one real root.

4. Let it be required to find out, whether the Hermitian-symmetric
polynomial

o, =2t - six> ‘373‘2 +SiA 4+ 1

has roots which lie on the unit circle. We note its roots by LIRLIYLNT

Their Newton sums are

_ 2.2 2. 2
so = 4, sy 5i, s2 = al + ®, + a3 + 04 =
2
= (a1+a2+a3+a4) - 2(a102+a1a3+a1a4+a2a3#a204+u3a4) =
_ g2 33, _ B__17
=8| - 2(--3-) = =25 + 3 5 -
Hence
- _ |4 -5i - _ - o
(D_1 1), Do = 4, D1 = |si 1 i 16 - 25 9
4 -8i =17/2 1 2
D, = | si a4 -5 | =2 (81-]-25+34|%) =0
-17/2 51 4

{calculated through Sylvester's formula (2.6)).
The minor D, (and so the sum 33) needs not to be calculated, as by
3

rule (16.6) the signature of the form L s_ £ £ is equal to

\ poqmo PP
o = L sign(D _ D) = sign(1.4) +sign(4-(-9) ] +sign[(-9)-0] +
V=0

+ siqn[o'D3] = 0.

So (Theorem A.I.2), the polynomial Q4(A) has no roots on the unit
circle.

However, if one must find out whether this polynomial has one (multi-
ple) pair or two (different) pairs of roots which lie mirror-like with
respect to the unit circle, then one must also know the minor D3, i.e,,
also calculate the sum S3e

To this end we apply Newton's formulae,already mentioned in Note

below (cf., for example, [11], § 125, for their derivation).

1}

If an arbitrary polynomial f()) of degree n is written in the shape

n n-1 n=2 n
f(A) = A - fll + fzx - eve 4+ (-1) fn'
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then there hold for the Newton sums sk of its roots the recurrence re-
lations

k - LIRS
-fl k~1+f23n+k-2""+ (-1)’kf,. =0 (k=1,2, ,n=1)

Sk k

and
- o - n - - sew
s —fls l-l+£25 k-2 +(-1)f 5, o (k =0,1,2, ).

In particular, for n = 4 we cbtain from these formulae

s, = ¢

1 1’
s, = f?-Zfz,
s3 = fi -3f1f2+3f3,
s4 = f:—4fff2+4fl£3+2f§ -4£4

(we note, that we have already used the second of these formulae twi-
ce - in this and in the previous exercise).

Returning to the polynomial Q4()\) we have

- (siy3 33 o 19c; 2395 L . _ _ 65
sy = (51) 7 - 3(54)¢( 2 ) +3(-51) 1251 + 2 i-15i = 2 i,
So (calculating it again by formula (2.6))},
17 65 .
4 51i 5 i
5i T =) -
D. = 2 =
3 LA S5i 4 -5i
2
65 17
-2 i -5 5i 4
17 65
51 - 5 T i ,
1 [ .2 17 _
Aol E ]
Si 4 =51
1 i 2_ (289 325 2_4 -
3°3% (=25 +34)" ~ T-T’ (16-25)' —45(81 -81) 0.

Thus, in the present case the form (A.I.6) is degenerate and for its
rank p we have: 2 £ p £ 3. But since its signature g(=0) is even, one
must have p = 2, f.e., T = v =1, and according to Theorem A.I.2 the

polynomial Q4 has (v=1) one pair of roots (of multiplicity two), which
lie mirror-like with respect to the circle (Al = 1.

5. How many different real roots and different pairs of complex-con-

jugated roots has the polynomial

P, = Maeadiandian s
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Solution, One (double) real root and one pair of
conjugated roots,
HINT. Use Newton's formulae.

6. How many different roots on the unit circle and different pairs
of roots which lie mirror-like with respect to it has the polynomial

a1 + (1o-101)22 = 2522 + (lotloi) A - 417

Solution. Two (different) pairs which lie mirror-
like with respect to the unit circle.

7. Formulae (A.I.3) allow, since k = 0,1,2,°+*, to construct besides
the Hankel form {A.I.4) of order n (= the degree of the polynomial
Pn(l)), analoguous forms of arbitrary order. Prove that for all these
forms -1

H l(x,x) = 5 z s)+k£jgk (m =n,n+l, ")

we have one and the same rank p and one and the same signature ¢, i.e.,
= p+2q - the number of (all) different roots of the polynomial Pn(x),

and ¢ = p - the number of different real roots,

' HINT. For arbitrary m = n,n+1,+-+ one can repeat all arguments from

the proof of Theorem A.I.1,

8. Formulate and prove the analogon of the result of exexcise 7 for
the forms (A.I.6) (replacing n in it by m = n,n+l,+<+).

8

9. The Cauchy index IQR(A) of the real rational function

a A raa™liiiiia a+a
[] 1 n-1 n
ROV = ™ m-1
bol +blx +-.-+bh_lx+bh

on the interval (o,B) is the name for the difference between the number
of discontinuities of R(A) with a transition from == to += and the num-
ber of its discontinuities with a transition from += to -«, varying the
argument A from o to B (a <A<B).
Prove, that for the rational function
.
R(A) = %
n
where P (A) is the real polynomial (A.I.1) and P (A) is its derivative,
I R(l) = g, where o is the signature of the form (A.I.4).
HINT. Use Theorem A.I.1.
REMARK. The result, formulated in exercise 9, is a special case of

a more general Theorem:
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Let R(2) be a ratiomal function and
s s

m
R(z) =5_ 2 +°°-4s 25  +—=+ —+:c (m20)

1
its series expansion (converging outside an arbitrary circle with cen-
tre in the point O and containing all poles of R(z) [10]). The sequen-
ce s 15,8, 0" defines an infinite Hankel matrix

j+k"j.k=o

of finite rank p (cf. exercise lo to § 11).
Then the signatures of all Hankel forms

n-1

H (x,x) = I s, E&.& (n 2p)
n-1 j,k=0 I+k >3k

coinecide, and if we denote them by o, then

B = lls

+o
I“R(l) = g.

This theorem was proved by Hermit [28] for the case where all poles
of R(2) are simple [lo], and in the general case by Hurwitz [29]. a
different proof is presented in [3] (Ch. xvI, § 11, Theorem 9). There,
see also (Ch. XVI, § 12) the application of this result to the well~
known Raus-Hurwitz problem.

NOTE

1 1n the theory of symmetrical functions (see, for example, [11],

§ 125) is proved that the sum (A.I.3) can be expressed by the well-know
Rewton formulae through basic symmetrical functions in @y spseecy
o and these, in turn, through the coefficients of the polynomial Pn(h)

(see above, exercise 4).

II. THE FUNCTIONALS S AND C AND SOME OF THEIR APPLICATIONS.
1. Let be given a fixed set
S 1S ¢80 Sy (s)
of real numbers. By means of this we define the linear functional S on
the space of the (generally speaking, complex) polynomials
m
cm(x) Ao + nlx + + AmA

of degree not exceeding m through the formula

S(Gm) =AS tAs, 4o+ Amsm.

In a similar way one defines, by means of fixed complex numbers
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o (=) reyiCy e ticy (c)
on the space of trigonometrical polynomials
o k it
'I‘m(z) = Zz Iﬁ‘z (z=e )
k=-m

of order not exceeding m the linear functional C:

m
C(Tm} = T Ac,
k=-m
where
c-kzck (k = 1,2,¢00,m).

In particular, if Tm(eit) is a real trigonometrical polynomial, i.e.,
A, = ik (k = 0,1,*+,m}), then the value C{Tm} of the functional C on
this polynomial is a real number.

In our further considerations such functionals S and C will appear
which are generated by sets (s) and (c) which consist of the coeffi~
cients of real Hankel- and Hermitian Toeplitz forms, respectively.

2, As a first application of the functionals S and C we present, al-
beit in an incomplete, but for our purpose sufficient form, two theo-
rems from the classical moment problem (the polynomial- and the trigono-
metrical moment problem). This is the more useful, since the book of
N.I. Ahiezer and M.G. Kreln (1], from which we have taken this material,
did appear quite long ago (1938)1) .

THEOREM A.Il.1. In order that the (real) Hankel quadvatic form
n-1

(x,x) = ; }fmsj'*kgjgk (A.II.1)

is positive, it 18 necessary and sufficient that its coefficiens s

Hn- 1

k
allow a representation
n
s, = Zo8s  (k=0,1,00",202) (A.I1.2)
vy
val
(here again 0° = 1), where

Dv >0, {(v=1,2,++-,n), -°°<01<02<‘“<0n<4‘°.

PROOF. SUFFICIENCY. From representation (A.II.2) it follows that

n-1 n-1 n 34k
H . {x,x)= L s, §& = L L p 0 EE =
n-1 j.k=o0 AL jok=o v=1 ¥V Ik
n n-1 k 2
= Lo,t Z¢8 >0
v=1 k=o

for all x = (50,5‘,. ..,gn_l) # 0, since the simultaneous identities
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n~1 X
) Ekev =0 (v=1,2,--°,n)
k=0
are impossible. Indeed, in the opposite case the Vandermonde deter-
minant
n-1
1 61 01
n=1
1 02 82
n-1
1 On en

would (since x # O) be equal to zero, which is impossible, as all
ev(v =1,2,++-,n) are different.
Thus, Hn‘l(x,x) is a positive definite form (Sec. 5.4).

NECESSITY. We start with a useful definition.
A polynomial Q (1) $ 0 of degre s k is called a quasi-orthogonal
polynomial of rank k if it has the property

Ste M%) =0 (3 =01, " k=2; kSn) (A.I1.3)

where S is the functional defined in Sec. 1, and the sequence (s) which
determines it is the sequence of coefficients 8 ,s,,<*,s, . of the
form (A,II.1).

It is convenient to extract the following fact as an indenpendent
proposition:

1° For a real quasi-orthogonal polynomial Q () all roots are real
and simple.

Indeed, let el,ez,...,ep be all those real different roots of the
quasiorthogonal polynomial Qk(x) of rank k, which have odd multiplicity
(if such exist). Then for a suitable choice of the factor ¢ = 1 the
product

GO = €0=8)) (1-8,) =+ (x-6 )0, (A} (+0)

is nonnegative for all real A, As is well-know (see exercise 1 below),
an arbitrary nonnegative real polynomial is the square of the modulus

of some complex polynomial, in particular

n-1 2 n-1 + n-1

O I AR U P A N S T K R L
u=a H U, V=0 W, veo
(£u=£u'nu="ui u=0,1,--",n-1}.

But then under the assumptions of the theorem
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n-1 n-1
S{c(n)}y= = s EE + L s nn >0
+ +
" u+vucv v, u+v 'y v

(we recall, that G(A) *# O, so that at least one of the systems of num-

bers {50,51,-‘-,€n_1} and (50,61,‘-~,En_1} is nonzero)z).

If we now assume, that p £ k-2, then, according to the definition
of quasi-ortogonal polynomials (A.II.3), S(G())) = 0. Sop 2 k~-1, and
none or the roots 01,92,'--,Bp can be multiple, since in the opposite
case, as by assumption these multiplicities are odd, the degree of the
polynomial Qk(l) would turn out to be larger than k. Since Qk(X) is a
real polynomial, the number p must be exactly equal to its degree.

Proposition 19 is proved.

Now we consider an arbitrary polynomial G(X) of degree £ 2n-2,

Let Qn(l) be a real quasi-orthogonal polynomial of degree n (such a po-

3) pelow) and 8, < 8. < -+ < 6 all its

lynomial exists, see Note 1 5

roots. We represent G(A) in the shape

G(A) = Qn(A)q(A) + (i) (A.II.4)
where g()) is a polynomial of degree £ n -2 and the remainder r(}A) a
polynomial of degree S n-1.
Substituting X = ev, we obtain

r(ev) = G(ev) (v =1,2,--+,n). (A.II1.5)

We represent r()) through the interpolation formula of Lagrange ([11],

sen 4.
n Qn(A)
r(d) = L -——-———r(ev). (A.II.6)

voy (A-8)07(8 )

In combination with (A.II.5) this yields
n Qn(l)
r(d)) = L ——————1G(8 ). (A,I1.6")
vl (A ev)Qn(ev) v
Now we apply the functional S to both sides of (A.11.4). Because of de-
finition (A.II.3) we have, taking (A.II.6') into account,

n
S{e)} = S{x(M)} = L p GO, (A.1I.7)
v=1

where the quantities

n Qn(l) }

P -Si—_—-—-,—— (v =1,2,°"*,n)
v (A ev)Qn(ev)

do, evidently, not depend on the choice of the polynomial G(A). Using
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this, we insert into formula (A.II.7) in turn:

2 e, |2
G(A) = qk(l) 5 T (k = 11210'.131)-
(l-ek)Qn(l)
We have
2 T2
S(qk(k)} = L quk(ev) = Ok {(k = 1,2,"’,").

v=1
But the polynomials G(A) = qi(l) are nonnegative, and none of these is
identically zero, and for such polynomials, one has, as we have seen
(see the beginning of the proof of proposition 19), because of the po-
sitive definiteness of the form (A.II.1)

b = S{Z (M} >0 (k = 1,2,+++,n)

It remains to note, that for G()\) = Ak (k = 0,1,+++,2n-2) formula
(A.II.7) turns into (A.II.2).

Theorem A.II.1 is proved 3) .

REMARK. As follows from a theorem of E. Fischer [18]) (see also (1],

p. 13), Theorem A.II.1 can, for the case of nonnegative (degenerate)
n=-1
I

forms (A.IX.1), i.e., such, for which Dn-1 = det Ilsj+k 3,k=o" be modi-
fied in the following way (see also below exercise 4).
Let for the nonnegative form (A.I1I.1) D _, =0, but D _,*oO. Then

the coefficients s (k= 0,1,::+,2n-2) allow a, moreover unique, re-

presentation
n-1 k
s = Lp# (k = 0,1,°*+,2n-2) (A.1I1.8)
k y=t ¥V

where

1

For the converse of this proposition see below, exercise 5.

e, >0 (v = 1,2,-~~.n-l),-<el<02<~-<0n_ < 40,

3. An analogon of Theorem A.II.1 holds also for Toeplitz forms. Its
Proof is in many aspects analoguous to the proof of Theorem A.II.1, and
in connection with it we formulate, as a preliminary, some auxiliary

propositions which are the analoga of the results, used above in Sec. 2.

Ingstead of the common polynomials, considered in Sec. 2, we now deal
with real trigonometrical polynomials

n
ikt =
T (e”7) kz ae (ak =a., k =0,1,°-+,n) (A.11.9)
=-n
of order n (if a % O) and, in particular, with polynomials (A.II.9)

which do not assume negative values,



206/ APPENDICES

20 (THEOREM OF FEJER - F. RIESZ). If the polynomial (A.II.9) ig non-
negative (0Sts2m) then it allows the representation

2
n n
Tn(eit) -z Ekeikt - T e1(p-q)t€ B . (A.II.10)
k=0 P,q=0 Pq

For the proof we consider the “quasi-polynomial”
n
T (2) = Z:azk
n k
k=-n

which, after multiplication by 2" turns, evidently, into the common po-

lynomial

2n-1 2n

G(z) = zn'l‘n(z) =a__+a 2+ eecta L2 +anz (A.IT.11)

n -n+1 n-1

which is, by assumption, Hermitian-symmetric (a = Sk, k = 0,1,*++,n).
Hence (see exercise 1 to Appendix I) its roots are mirror-like distri-
buted with respect to the unit circle with the only exception that in

the present case some of its roots can be equal to zero: there are exact-

ly r (20) such roots if a = an—l = eee = an_r“ =0, an-r % O.
Thus
k }a 10
G(z) = ¢z K (2-C ) I (22 )(z - rl R (A.II.12)
u=1 s v=1 v zv
where

g |l = 1; u= 12,000 k; 0 < 12} < 1,
v=1,2.+-,(x+k+2£ £ 2n), C = const,

and any two of the three polynomials following C in representation
(A.IX.12) may be lacking.

Representation (A.II.12) can be rewritten as

k L
G(z) = C'zﬁ'z M (z-z ) N (z=z) {l -z ) .
-1 v=1 v |z v
et o
where c' = (-1)7¢ =— . Hence
v=1 %y
T _ .-n .S k L
n(z) =2 G(2) =C'z" K (2= ) I (z-zv) z " va .
pu=1 V=1
2
where s =r+f-n. As here the last polynomial { T | is nonnegative on the
v=1

circle z = ej't' (0OsSt <£2m7) and 'I'n(elt) has the same property, it follows

that also the function
e*t-7) (A.II.13)
1 [}

£(t) = cretsSt

N ==

it
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is nonnegative, whence follows, that the multiplicity of each of the
roots l;u is even. Indeed, if among them there is found a root, say

it k
1;1 =e 1, with maltiplicity 2m+ 1, then the product | I | on the right-
u=1 ’
hand side of (A.II.13) would contain the factor

t+t
it,y 2m+l 1‘ et
[eit_e 1) . (21)2m+1ei(2m+1)(—2 o1 2m1 {_2_1) .

But then the real function

£(t) / sin 5

is nonzero on a sufficiently small neighbourhood of the point tl' and,

2m+1 (ﬁ)

because of continuity, it retains the same sign. But the numerator of
this quotient is always nonnegative, and the denominator changes sign

in a neighbourhood of the point t.: a contradiction!

12
So, one can write

k k/2 .
mit-z) =1 (e“-;u)z. (A.I1.14)
u=1 s u=1
But then it follows from (A.II.11), (A.II.12) and (A.II.14) that
it 2
. . . k/2 eft-2
051 (') = | ('] = oe™® | = Je| 1 |e**-¢ |2 1 L
p=1 v=i  |%v|
Now it suffices to form (recalling that k/2+£<n)
k/2 L . n .
[of 1/2 I (eit-g )y I (e"t-z )= £ ¢ elt'
p=1 M v=1 v p=© P
n ]zv|

v=1
in order to obtain representation (A.II.l10).
Proposition 29 is proved.
Let C be the functional, considered in Sec. 1, defined on the trigo-

nometrical polynomials (of order not above n)
n

T (eit) I eikt:
n
k=-n
through the formula
n
C{r) = T ac, (R.II.15)
k=-n

where ) = E-k (k = 0,1,-+-,n) are the coefficients of a given (fixed)

Toeplitz form
n

£ c_ EE. (A.IT.16)
o,q=0 P-I°P
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3° In order that the value C{T } is nomnegative (positive) for all
nonnegative trigorometrical polynomiale which are not identically zero,
it 18 necessary and suffictent that the Toeplitz form (A.II.16), which
determines C, ie nomnegative (positive definite).

Indeed, because of proposition 22 can each nonnegative trigonometri-
cal polynomial Tn(eit) be represented as

. n
Tn(elt) - r Cpf ei(p—q)t:
P.g=0 q
so that
n

C{Tn) =
p.g=0
whence statement 3° follows as well.

®p-q°p®

THEOREM A.II.2. In order that the Hermitian Toeplitz form

n
T ,(x,x) = £ c_ EE (A.I1.17)
-1 p-
" pig=o T1 P4

ts positive definite, it is necessary and sufficient that its coeffi-
eients c, (=E-p) allow a representation

n

¢y = v::.lxvel\j (p = 0,%1,*++,%(n-1)), (A.I1.18)

in which
x, >0, levl =1 (v=1,2,.0,n)

and all €, are different.,

PROOF. The SUFFICIENCY of the condition is clear from the fact,

that a form (A.I1.17) with coefficients (A.II.18) can be rewritten as

n-1 2

Z cf,’&;
p=o ' P
from which follows, that T__, (x,x) > O for x = (Eo,gi,u-,ﬁn_l) % 0.

n-1 n -q _ n
Tn_l(x.x) = T Zre £EE =L r,

p,g=o \ v=1 vy Pa

Since all r, >0 and all €, are different (v = 1,2,.++,n) (cf. the
proof of the sufficiency of Theorem A.II.1).

NECESSITY. For a positive definite form (A.II.17) is the determinant
Dn- = det llc lln:l % O (Corollary 1 of Theorem 5.2)., We choose an

arbitrary § = °n on the circle (see Remark 1 to Theorem 13.1) so that
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co c-l -n+1 ¢

1 o -n+2 T-n+l

. . . . = o,
®n-1 n-2 S €1

¢ °n-1 cl Co

Then the homogeneous linear system
n

pZ cp-quq o} (@ =0,1,**+,n) (A.IX.19)

allows a nonzero solution {uo,ul,o~-,un_1,un}. Replacing in this system

p by n-p and q by n-q, we convince ourselves that the numbers

{ﬁn'ﬁn_l,'-~,al,ﬁo} solve the same system
n -
.Ocp.qun_qao (@ =0,1,*+,n).

But since Dn-l * 0 and y # 0 it follows that u *# 0 and w # 0 and
that the solution of the considered system is determined up to multi-
plicative constant, so that for some € # 0O

un = euo, un_1 = eul, eee, u1 = eun_i, uo = eun.

Since ueuy # 0 it follows that |e| = 1. So, at the expense of multi-
plying all uq (g =0,1,*++,n) with some factor one can achieve, that
€ = 1. We shall assume, that this has been done, i.e., that

u__=u = 0,1,---,n).
n-q a (q rls ,n)

We consider the Hermitian-symmetric polynomial
n -
Un(z) =u tuz+ceotuz (uo u, $0).
If we multiply it with z 3 and apply for z = e't the functional C (see
(A.IX.15)) to it, then we obtain, because of (A.II.19)
Clu_(e'He 1) =
= c_qu°4-cl_qu1-+»-» +c -qun =0 (q=0,1,+-,n) (A.II.20)
We shall prove, that all roots of the polynomial U (z) are different
itl ltz ie?
and have modulus equal to 1. Let e ;e PREEIY -] ™ phe all different
roots of odd multiplicity of the polynomial Un(z) which lie on the cir-

cle |zl = 1. We define apolynomial G(z) of degree m through the formu-
la

—-—";’" ;(t teheeert ) dE it
G(z) = (z-e ")ece(z~e ) formz21

m

T form=0
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If the polynomial Un(z) has roots which are not situated on the cir-
cle |z| = 1, then these lie mirror-like with respect to it in pairs
(SL'UEC} (£ =1,.--,8), so that their total number, counted with their
mulitplicity, is even. Even is, clearly, also the total number of roots
of even multiplicity which lie on the circle |zl = 1 (each root counted
with its mulitplicity). Hence one easily concludes that the number
n-m = 2k is even as well.

Now U n(Z) can be represented in the shape

v_(z) = cc(z)l((z)f(-;-)zk (A.II.21)

6)

where K(z) is a polynomial of degree k and C a constant. But then

the quasi-polynomial

C

ez =S8 2 (A.11.22)
2

turns for z = eit into a real trigonometrical polynomial. Indeed, be-

cause of (A.II.21) we have

n( = Ici’6@E K @ED)

ae’® = 1ci%ateHaeHx(ettixielh).
Moreover, hence is clear, that the trigonometrical polynomial H(eit) of
order m+k = n-~-k is nonnegative. At the same time, H(eit) $o0ifk>0
(recall thatm 2 0)}. But since the form (A.II.17) is positive definite,
is because of proposition 3°
C{n} > o.

But this contradicts, if one considers the structure (A.II,22) of the
polynomial H(z ), the identity (A.II.20) (we recall that the degree of

G is equal tom, and m+k = n-k < n).
it
Sok =0, i.e., m = n and all roots tv =e Y (ve1,2,--,n) of the

polynomial Un(z) are different and lie on the unit circle,

Now we consider an arbitrary polynomial Q(2) of degree = n and re-

present it in the shape n

n
Q(z) = I Q(e )h (2) + const.U(z),
vt vy
where
U, (=)

—_— (v=1,2,"+,n) (A.II1.23)
(z—ev) (Jl'l ( ev)

h,(z) =

are polynomials of degree n-1 (for n=1 we have hl Z1+40). But since
C{Un) = 0, because of (A.II.20), onhe has
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n
C{Q} = L r o(e ), (A.IX.24)
v Y
v=1
where
r, = C{hv} (v =1,2,°**,n).
If we insert Q(z) = zF into (A.II.24) (p = O,1,--+,n-1) we obtain
n
cP B vilrves (p =0,1,°°"yn-1),

and it remains only to prove that
x, >0 (v=1,2,+++,n).

To this end we note, that hv(ev) = 1 and hence
iy l oy - hee ) o v
hv(e_) = hv(ev) = h(ev) =1 (v=1,2,",n.
So,
B -1=(z-eng
vz v Izl

where gv(z) is a polynomial of degree n-1 (v =1,2,+++,n). But then
(see (A.II.23))
s 1

hv(z)hv(zé - hv(Z) =

1 1 _ .
T e Un(Z)gv(—z') (v =1,2, en).
n v
Substituting here z = e * and applying to both sides the functional C,
we obtain, with regard to (A.II.20)¢

ity _ it - -it _ .
ry = C{h (e")} = C{h (e""}h (e "7} (v =1,2,--+,n).

But since the trigonometrical polynomials
- - 2
h“(eit)hv(e ity o |hv(eit)] (v = 1,2,-+*,n)
are nonnegative and not identically zero, one has by means of 3°
r, >0 (v=1,2,c-°,m).

The theorem is proved 8).

REMARK, One can prove, that in the case where the form (A.1I1.17) is
nonnegative and degenerate, and its rank ig equal to p (<n), the coef-
fieients o allow a representation

[
c = £r¢eP (p = 0,1,+,n=1), (A.I1.25)
P v.IV\’

(Which 18 unique at that), where r, > o0, 'evl =1 and all e, (v=1,
2,°++,p) ave different (see [1], part. I, Ch. I, Theorem 12).

As we see is here, in contrast to (A.II.8), the appropriate repre-
sentation obtained without the additional requirement Dn—2 % O.
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4. The functionals S and C, introduced in Sec. 1, which act in the
spaces of polynomialsand trigonometrical polynomials, respectively, al-
low in the case of real Toeplitz forms to construct another interesting

transformation, which has a row of applications on the moment problamg)’

For the simplification of the notation we shall consider a Toeplitz

form of order n+1, namely, the real quadratic form

p'§=°cp_qu£q (c_p = cp, p=20,1,--,n). (A.1I1,.26)
We are interested in the transformation generated by the formulae
1 k
s, = ;? IEockck or (k = 0,1,++-,n). (A.IX.27)

We recall, that the linear functional C, corresponding to the form

(A.I1.26), relates the trigonometrical polynomial

n
T(2) = LAz (2= el
p=-n

of order not above n to the number

n
C{t = L Ac.
{ (@)} E oo

Hence the formulae (A,II,.27) can be rewritten as

Sy = C{_lk'(z +%)k) (z = eit’ k =0,1,-*-,n), (A.11.28)
2
since X
(z+‘i')k- zc,szr (k = 0,1,+,n).
r=o

We recall, that the functional S, determined by some set of real num-

bers s oSyt eSy (see Sec, 1), relates the polynomial

1'
k
G(u) = L a,u (A.II.29)

of degree not above n to the number

n
S{Gu)} = = as, .
k=0

Combining this identity with (A.II.28) and (A.II.29) we have

z+z l }

-1 i
${G(u) )= r a, C{EZ— C{c(z+z )} (z = e (A.II.30)

k=0
Returning to the form (A.II.26), we note that
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n n n
T c £€ = £ C2PUgeg =0 £ g PN -
pag=o PIPY oo pq p.q=o P°d

-1 - .
= Ol +8y27 +r HE TG FE 2+ e 4E 2)) (z=e'%)  (A.11.31)

We convert the trigonometrical polynomial which stands between the
braces:

n - n n 3 2 n o 2
T () = IEe ikt | ¢ gkeikt - [ ge ikt|2 _ I » Ekei(n/2 k)t
k=0 k=0 k=0 k=0
(since leinc/zl =1).

First, we consider the case of even n=2m. Then

2n 2
b gk[cos(m-k)t + i sin(m-k)t]l =

T (2z) =
n k=0

= |(g +&, Jeos mt+ (£ +E, )cos(me1lt+ -+ (E  +E  }cos t+E +

+1((g -€, )sin mt+ (£, ~E,  sin(m-Dt+ e +(E  -E  )sin ]2 =

{ m 2 [ m 2
_ 2 sin kt
= ( kionm_k cos kt) + sin"t (kflnm+k oin © ) ’ (A.I1.32)

where we have introduced the independent linear forms

M= Cm Mo =€k T Smak "tk = Smek ~ Smek (k=1,2,-++,m). (A.IL.33)

Now we use the fact that for arbitrary k (=0,1,2,+++) cos kt is a
real polynomial of degree k in cos t, and sin kt/sin t for k = 1,2,
also a real polynomial in cos t, but of degree k-1. Hence

m m

k
kionm_k cos kt = ki‘.oxkcos t,
(A.II.34)
m m-1
in kt k
£ 828 2 - LY cost,
ko M*k sin t Keo X
where
xk = Xk(noml.“'mm) (k =0,1,++-,m), (A.1I.35)

Y = Y pyy Mg "7 o) (k= 0,1,00 0 m-1)
are 1linear forms in their parameters.

Inserting the expressions (A.II.34) into (A.I1I.32), we obtain
n 2 i m-1 2
sz(z) = ( p) Xkuk + (l-uz) z quk .
k=0 k=o
where

it 24271
z=e ", u=7—-=cos t.
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Hence we have, taking (A.II.30) into account
2 2 m-1 X 2
C{Tz(z)}=S Zxku + S (l-u)(ZYu .
m k
\k=o0 k=0

But the lefthand side of this identity coincides on the basis of
(A.II.31) (for 2m=n, z=e") with the original form (A.II.20), The

righthand side is equal to

m m-1

S xk + S z uJ+kY Y - h> uj+k+zy v,
i, k—o 3 3,k=o0 ] j,k=o 3k
vm=1
= ; i_o 345 5% * i, kso(sj+k-sj+k+2)¥j'y

wherein these two Hankel forms are independent in the sense, that the
parameters xk (k = 0,1,--+,m) are in no way connected with the parame-

ters Yk (k = 0,1,*++,m-1), which is clear from (A.I1.35), and the forms

nj (j = 0,1,°++,n) are independent.

For odd n = 2m -1 the calculations are analogucus. Now (leaving out
the details) we find for z = elt

P cos {k-llt 2
T (z) = cos — z 21 +
2m-1 2 Cm-k t
k=1 cos 2
i 1 2
m sinfk-=]t
+ Sinz E. T ; _'—21_ )
2 +k .t
k=1 sin &
2
where
Pak = Cmk T fmek-1, Smek T Smk T Smek+t
(k = O,%,+++,m). (A.II.36)

The forms

=X (L ,5,,°°,¢ — )
xk k' ’0’’1 m—-1 (k = 0,1, ,m-1)

Y, =Y (

k 't

m+2’ """ S om)
are here induced by the identities

m+1

m cos 'k-— ' t m-1 k
g = z xkcos t
m—
k=1 cos 5 =
(A.11.37)

m sin (k - ] m-1 "

rec - = LYcos t

k=1 m+k sin% k=0 k

respectively. Then
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1 m-1 " \ 2 1 m-1 X 2
Top-q(2) =3 (1+w) | EXu ) +3 (-w{ Ly (A.11.38)
k=0 k=0
where, as before,
242!
u = 2 = cos t.

Thence and from (A.II.30)

-1 2 fm-1 2
1+uf "0k 1-u K
C{T ooy (22} =S T{k’f % ) }* S{T z % ) }
=0 =0

Here the lefthand side coincides (for n = 2m-1, z = elt) again, be-
cause of (A.II.31), with the original form (A.II.26), and the right-
hand side is equal to

m-1 n-1

P u’”‘xj& v+
Jjsk=0 3. k=0

s uj +k+1

D] e

ijk +

m-1 n-1
o wyy oLl 5 ket

j,k=o ik 2 u

’

1
+ 38) =
3.k Yjvk =

m-1 m-1
z

1
(sj+k+sj+k+l)xjxk + 2 5 i‘_o(sj«tk ’sj+k+1wj¥k'
’

N

j.k=0
i.e., to the sum of two independent Hankel forms.
Thus we have proved.
THEOREM A.II1.3. The real Toeplitz quadratic form

n

L c EE
p'q.op‘qpq

can for n=2u be transformed into a sum of two independent Hankel

forms
m m-1
L s, X + L (s -s Y.y ,
5o THK"3 T smo 3t S3ce2 5K
where the parameters X, (k =0,1,*--,m) and ¥, (k = 0,1,--. m-1)depend
on the original parameters gp (p = 0,1,++-,2m) through the transforma-

tions (A.I1.34) and(A.11.33); for n = 2n -1 this forms is transformed

into the sum of the two independent Hankel forms lo)
1 m-1 1 n-1
5 Z (s +s )X, +> L (s -s YY.Y
e LR T ¥t 2 R T e R L

where the parameters X ¥, (k =0,1,---,m-1) depend on the original pa-
rameters €p (p = 0,1,+++,2m-1) through the transformations (A.11.37)
@d (A.11.36). In bothcases the coefficients c (=c_,) and s,

k
(k = 0,1,++-,n) are connected to each other through formulae (A.11.27).
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EXAMPLES AND EXERCISES.

1. Each real nonnegative polynomial Pn(A) is the square of the mo-
dulus of some {generally Speaking, complex) polynomial. Verify that this
fact, unlike its nontrivial analogon for trigonemetrical polynomials
- the Theorem of Féjer - F. Riesz (see above proposition 29), directly
follows from the symmetry of the roots of the polyncmial pn(x) with re-
spect to the real axis (exercise 1 to Appendix I).

2. Let be given the real Hankel form

n-1

L s, . E.E,
j,k=o j+k’37k
for which the successive principal minors DO,DI."'.Dn_2 are different

from zero, For this form we construct the corresponding functional $
(see Sec. 1 above).

We consider the polynomials

so 54 sk
s Sy Sp+1
pk(x) = . . . (k =1,2,+°,n-1), po(x) = 1.
k-1 %k S2k-1
1 A ¥

Verify, that the Pk(l) are polynomials of degree exactly k, which
satisfy the conditions
S, (N} =0 (5 =0,1,0-0,k1; k S n-1).
Such polynomials are called orthogonal polynomials of degree k (on the
real axis).
In particular, we see that each orthogonal polynomial is also a
quasi-orthogonal polynomial of rank k in the sense of definition

(A.II.3). The converse statement is not true - present an example.

3. Prove, that each orthogonal polynomial of degree k (see exerci-
se 2) is equal to a Pk(X), where a is a constant.

4. Obtain Theorem A.II.1 as corollary of the proposition, formula-
ted in Sec. 2 above (in the Remark to Theorem A.II.1).
HINT. Use Theorem 9.1.

5. Show, that the proposition, stated in the Remark in Sec. 2 abo-
ve, has the converse:
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if
n-1 "
sk = Zp ® (k = 0,1,+++,2n=-2)
vt ¥ v

where ey >0 (v=1,2,--+,n-1), == < el <6 < 4=, then

the Hankel form

< -+ <0
n-

2 1

n-4
Z s

S om0 3435

is nonnegative, degenerate (D__, = 0), and D__, % O.

6. Convince yourself, that the real trigonometrical polynomial

T4(eit) - e4it-+6-+e-4it

is nonnegative, and represent it according to the Theorem of Féjer and
F. Riesz (proposition 2°).
Solution (one of the possibilities)

-r4(eit) = LZZ_- 1'/72- 2 4 2 (14i)

V2 V2| -2it]?
+ {—2—- 1—2- e .
HINT. Use the fact, that
'r4(e“t) = 8(cos4t+sin4t) .

7. Let be given the Hermitian Toeplitz form

n-1
L
P,9=°

. —
p-a®p"a’

where the minors Do,Dl,ou,Dn_2 are nonzero, For this form we construct
the corresponding functional C (see above Sec. 1). We consider the po-
lynomials

o ¢ “k
-1 % k-1
Wk(Z) = . . . (k = 1,2,-~,n-1),w°(z) = 1.
Cok+1 Cext2 ¢
1 2 zk

Verify, that the Wk(z) are polynomials of degree exactly k, which sa-

tisfy for z = eit the conditions

C(Wk(z)zj) =0 (3 =0,1,+--,k-1, k € n-1).

Such polynomials are called orthogonal polynomials of degree k on
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the unit circle. (In particular, it follows from (A.II.2o) that the po-
lynomials Un(z), constructed for the proof of Theorem A.II1.2, are poly-
nomials of order n which are orthogonal on the unit circle with respect
to the functional € constructed from the form

n
e £¢& (c_=7),
p,qeo P13 P Q n
with the matrix llc_ I which was defined above just before
P-q pPrg=0

(A.I1.19)).

8. Prove, that each polynomial of degree k which is orthogonal on
the unit circle (see exercise 7) is equal to a wk(z), where a is a

constant.

9. Obtain Theorem A.II.2 as corollary of the proposition, formulatec
in Sec. 3 above (in the Remark to Theorem A.II.2).
HINT. Use Theorem 13.1,

1o, Show, that the proposition which was the subject of exercise 9,

has the converse:

if
P p -
cp = \,§1r\'en (p = 0,1,+++,n-1), p <n,

where r, >0, levl =1 and all €, (v =1,2,-2-,p) are different, then
the Toeplitz form

n-1 _

L e EE

p,q=o pP=q'p

i8 nonnegative, its rank is equal to p and D,_y * 0.
11. We transform the Toeplitz form of order n+1 =5 (n=2m, m=2)
Tqlxex) = 2068, +E 83+ E 8+ 884+ Ea83 * 858

in accordance with Theorem A.II.3. The matrix of this form has the

shape
o1 o010
1 01 01
'l"1 = o1 o 1 Oof .,
1 o1 o0 1
o1 o1 o
i.e., co =C,, = c14 = O, €4 = c13 = 1, By formula (A.II.27) s, = o,

1 = = =1 = =
= -2—(c1+c_ ) =1, s, o, Sy 8(0:34-3c1+3t:_1+t:_3) 1, s 0.

4
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Hence (Theorem A.II.3)

2 1
T,(x,x}) = £ s,.X + L (s, -s JY.Y = 2X X, + 2X,X_ = O,
a 5.)m0 ¥ 3% 5o 3 Tpee2 5k X1 1%2

where the forms
Xo = xo(rlolrllrrlz)l xl = Xl(nomlmz) x2 = x2(nocnl'n2)
are defined through the relations (see (A.II.34))

2
+ + + .
nz*nlcos t nocOs 2t = xo xlcos t xzcos t

As cos 2t = coszt - 1, one has
Xy =My~ Mgr Xy =ngs X, = 20,
Next (see (A.II.32))
n, = 52, n o= €l+£3a n, = §°+€4:
so that
Ko = 8278, = 8,3 X = 6 483, Xy = 26, +2¢,.
Verification:
2% %, +X,X)) = 206, =& =E ) (€ +&5) + (E +Ey) X
x (25°+2£4)] = 2(§, + &) (€2+€O+E4) = T4(x,x).

12, Transform in accordance to Theorem A.II.3 the real Toeplitz form
of order n+1 = 4 (n=2m-1,m=2)
T,(x,x) = 2(E°£2+E°£3+€1§3)
. 1 3.2 1 1.2
Solution. Ta(x.x) =3 (xc’x1 +;1-xl )+ 7 (41!1 -YOYI) ’
{ xo = 81+€2-E°-£3’ YO = £°-£3+El-£2;
where

X, = 206 +Ey)s ¥, = 205 -E4).

13, The transformation, considered in Theorem A.II.3, is based on
formula (A.II.27), which makes sense also for an infinite sequence

co,cl,cz,... (c_p

generating a corresponding infinite sequence of real numbers

= cpi p=0,1,2,--),

S oS cee
o 1052:

Show ([1], p.34), that these two sequences are connected through
the formal identity of the two series

\/ 2 5 51 . S 2 14?
x—1{7+—2+—3+--- =c°+2c1w+2c2w + e+ x Sw .

X X

where x > 1 (0 <w < 1), V‘xz-l > 0.
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HINT. Apply (for k = 0,1,2,+++) formulae (A.II.28), which are equiva-

lent to (A.II.27), to the coefficients of the series standing on the
(1-w?) z
(z=w) (1=wz) "'

course of the calculation, into two partial fractions (with respect to

lefthand side. Next decompose the quotient which results in

the parameter z), and expand, in turn, each of these into a geocmetri-
cal series.

NOTES .

2 Note, that an English translation of this book appeared in 1962.

2) Through this was, in fact, proved some general proposition (cf.[1],

article I, Ch. 1, Theorem 1) which is the analogon of proposition 3°,
presented above.

3) "n-l

54", k=o0 is invertible. So

aAs Hn-l(x'x) is positive, the matrix lIs
n-1

the system of equations I s

v=0 n

solution {qo,ql,'-’,qn_l). Then the polynomial Q@ (A} = X +a

j+qu = '5n+j' j=0,1,-++,n-1 has a unique

lx"'l +
+ oeee 4 1q1‘+q° is quasi-orthogonal (cf. also exercise 2 above).

4 Besides, formula (A.II.6) is evident, since (see (A.II.5)) the poly-

nomial r(}) of degree £n-1 coincides with the polynomial, standing on
the righthand side of (A.II.6), in the n different points el.ez,-..,en.

5) Theorem A.II.1 itself represents only a part of a much more complete

theorem (see {1], article I, Ch. 1, Theorem 3).

6) v

M H v
Here K(z) = (z-a;) '++{z-0a)) “(z-8)) '+-e(z-8) =, where

|ajl =1(=1,2,+++,x}, 0< lel <1 (£ =1,2,¢44,8), Hy +U2‘*"'+

- k = - 1 T
FU VAV by = k. But then z X(1/2) cl(z al) oo (z ar)
(2-1/8) Yeei(z=1/B) %, where C = -1*3-3F, -8
1 : ! o+ wWhere Ly TR DAL A
7 Here the interpolation formula of Lagrange (cf. A.II.6) was used
again; the obtained relation can, however, be verified directly.

8 Theorem A.II.2 itself represents only a part of a more complete

statement (see [1], article I, Ch. 1, Theorem 9).

» See [1], article I, Ch. 1, § 4, from where the transformation, pre-

sented in Sec. 4, was taken as well.

to) In the book [1] on p., 35 the coefficient 1/2 in front of both these

formulae is omitted, which stems from a corresponding error in the for-

mula which appears as (A.II.38) in our text.
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