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Preface to Second Edition

The first edition of this book was published in 1980 in the LMS Lecture Note Series, and
a Russian translation by V.V. Peller and A.G. Tumarkin, made under the direction of V.P.
Havin, the editor, appeared in 1984,

Both versions of the book are now out of print, and for the past couple of years people
have been asking me how they might procure a copy of it. The Cambridge University
Press has therefore decided to put out a second edition, and I am grateful to Dr. David
Tranah, the Press’ senior mathematics editor, for his having arranged to issue it in somewhat
improved typographical format as a Cambridge Tract.

In preparing the first edition I had tried to make the exposition as accessible as I could
by concentrating on what I thought were the main ideas in the subject rather than on
including as many results as possible. The readers I had in mind were those with some
training in analysis who were trying to gain a secure foothold in the theory of H, spaces,
whether with the aim of eventually doing serious work in that subject or for the purpose of
understanding its applications in other areas (e.g. in operator theory — some of the material
is now even used in electrical engineering). I have been guided by the same concern while
working on the second edition and have for that reason tried to preserve the book’s original
character. That has especially meant refraining from attempting to turn it into what it was
never intended to be — an all-encompassing treatise.

My first and main preoccupation has been to put to rights the first edition’s many
troublesome misprints, oversights and actual mistakes. I am grateful to the people who
have called some of these to my attention, and their names are cited in the appropriate
places. There were at least two serious errors in mathematical reasoning: at the end of §F
in Chapter IV and in §G.1 of Chapter X. The proof of the lemma in Chapter II, §C.2, while
not actually wrong, was certainly incomplete. An effort has been made to remedy these
defects and several other less serious ones; I hope it has been successful.

Some new material that I consider really important has been added. Lindelof’s second
theorem on conformal mapping can now be found in the new §C.3 of Chapter II. That
result is one of the two main ingredients in the proof of Kellogg’s theorem, included in the



xii Preface to Second Edition

new §F of Chapter V. The simple geometric construction of Chapter VIII, §D.1 is used to
obtain the atomic decomposition for RH; given in a new §E of that chapter, the old §E
having become §F. This decomposition is then applied to give an alternative proof of the
hard part of Fefferman’s duality theorem in a new §G of Chapter X; the former §G is now
§H.

The old appendix on Wolff’s proof of the corona theorem is now Chapter XI. Where it
used to stand there are two new appendices by V.P. Havin, on Peter Jones’ interpolation
formula and on Havin’s proof of the weak sequential completeness of L;/H;(0). The first
edition of this book had already gone to press when I learned about the former topic, and
time had not permitted my inclusion of the other one. Professor Havin was kind enough
to write appendices on both for the Russian edition, and it is his appendices that are
reproduced here, in my translation. These are included with his permission; he has read
them and made certain suggestions that have been adopted. In making the translations I
have tried to hew as closely as I could to Havin’s own style, considerably different from
mine.

The reader will probably also notice some differences in style between the new passages
written by me and the older parts of the book. I cannot help that, for I am no longer able
to write as I did in 1980.

I have been encouraged over the years by people with whom I was in large part
unacquainted, who let me know in various ways that they liked one of the earlier versions
of the book. I thank all of them for that encouragement, which strengthened my motivation
to go on writing about mathematics.

Argenteuil County, Queébec, near Boileau. October 10, 1993



Preface to First Edition

These are the lecture notes for a course I gave on the elementary theory of H, spaces
at the Stockholm Institute of Technology (tekniska hogskolan) during the academic year
1977-78. The course concentrated almost exclusively on concrete aspects of the theory in
its simplest cases; little time was spent on the more abstract general approach followed, for
instance, in Gamelin’s book. The idea was to give students knowing basic real and complex
variable theory and a little functional analysis enough background to read current research
papers about H), spaces or on other work making use of their theory. For this reason, more
attention was given to techniques and to what I believed were the ideas behind them than
to the accumulation of a great number of results.

The lectures, about H, spaces for the unit circle and the upper half plane, went far
enough to include interpolation theory and BMO, but not as far as the corona theorem.
That omission has, however, been put to rights in an appendix, thanks to T. Wolff’s recent
work. His proof of the corona theorem given there is a beautiful application of some of
the methods developed for the study of BMO.

For Carleson’s original proof of the corona theorem the reader may consult Duren’s
book. I have not included the more recent applications of the geometric construction
Carleson devised for that proof, such as Ziskind’s. Work of Douglas, Sarason, S-Y. Chang
and Marshall on the algebras lying between H,, and L is not treated either.

Time did not allow me to cover the work of Hunt, Muckenhoupt and Wheeden on
weighted mean value inequalities for harmonic conjugation. I did, however, give the proof
of the Helson-Szegd theorem. Marshall’s theorem (on the uniformly closed convex hull of
the set of Blaschke products) is included although I did not lecture on it, and my lecture
treatment of Lindelof’s theorem (on behaviour of the conformal mapping function near a
point of tangency of the boundary) has been expanded.

In general, the notes stay quite close to the lectures as they were given. The style is
loose and informal. Precise bibliographical references are not given in the text, nor the
historical outlines at the end of each chapter that one has come to expect. A very partial
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bibliography is included; its purpose is to suggest further reading rather than to cover the
subject thoroughly or to give due credit to all the workers in the field.

Topics not covered here, as well as the further ramifications of those I do cover, are
treated in Garnett’s extensive monograph now in the process of final revision. That book
is reccommended to the reader who wishes to go further.

I want to thank Harold Shapiro, Mats Essén and Magnus Giertz of the Stockholm
Institute of Technology mathematics department for having helped me get an appointment
to give this course. I want to thank the students and auditors for having successfully
supported an extension of the course’s length from the one semester originally planned to
a full academic year. These were the students: Jockum Aniansson, Mats Lindberg, Lars
Svensson and Anders Ostrand. Bjérn Gustafsson audited most of the lectures and Dr.
Stormark attended many. I was honoured by Dr. G.O. Thorin’s presence at all of them. To
all these people, my best wishes and warmest regards.

Los Angeles May 26, 1979



Functions Harmonic in |z| < 1. Rudiments

A. Power series representation
Let U(z) be real and harmonic in |z| < R. (This means U(z) is infinitely differentiable there
and satisfies
ru U _
oax? o oayr
We write throughout z = x +iy.) Then we can construct another real function V(z),
harmonic in |z| < R, such that

F(z)=U(z) + iV (2)
is analytic there. This function V is frequently called a harmonic conjugate of U. The
construction of V is completely elementary; one way of doing it as follows:

We want a function V, infinitely differentiable in |z| < R which, with U, will satisfy the
Cauchy-Riemann equations*

ov._ oU
ox 0y
v ouU
dy  ox’
(Then we will automatically have
Vikd 2L 4
72 4+% 2 o
a2t =0
Such a function ¥V can be found by second year calculus if the differential
ou ouU
E dx — e dy

* E. Trubowitz observed that these were incorrectly written in the first edition!
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is exact in |z] < R. But it is since
*U
==+ oU_ 0!
ox2 ' 0y?

Again by second year calculus, any two functions ¥V which we can find will differ by a
constant. Frequently the constant is chosen so as to make V(0) = 0.
Once V is found, we have, for |z| < R,

U(z) = RF(z)

with F(z) = g asz", the power series expansion being uniformly convergent on compact
subsets of |z| < R. That’s because any function analytic in |z] < R has such a power series
development.

Writing z = re'

, we easily find
0
U(re?) = ZA,.r'"'ei”e,
-0

with

Ay =1a_,, n<o0.
Thus, any function U(z) harmonic in |z| < R has a series representation

[e9]
U(re"?) = 2 Ayrien?
—0

uniformly convergent on compact subsets of |z| < R.

B. Poisson’s formula
The formula derived in the last section can be put in closed form. If R > 1 we easily find,
forr<1,

n @
U(re?) = % / U(e")Er'"'emw_t) dt.
—n —0

By summing two geometric series we get

= 1—r?
Mgind — =~ if0<r<Ll
_z“;r ¢ 1412 —2rcos¢ nusT

Thus we have derived Poisson’s representation: If U(z) is harmonic for |z| < R, if R > 1,
and if 0<r<1,

n
; 1 (1 =r2)U(e")
i0 = —
Utre™) 2n / 1+7r2—2rcos(d —1t) dr.

-

This formula is basic for the whole course — we shall soon see that it holds under much
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more general conditions than the one stated above. We call
1—r2

Pr(6) = 14+r2—2rcosf

the Poisson kernel for |z| < 1.

C. Poisson representation of harmonic functions in various classes
Suppose we merely know that U(z) is harmonic in |z] < 1. It is remarkable that some
version of the Poisson representation will frequently hold for U in that circle.

Theorem Let p > 1, let U(z) be harmonic in |z| < 1, and suppose the means
n
/ [U(re)P do
at!1

are bounded for r < 1. Then there is an F € L,(—n,n) with

i 1 [ 1—r2
0y __
Utre™) = 2n / 14r2—2rcos(f — t)F(t) de

forr <1.

Proof For p>1, L, is the dual of L,, where 1/p+1/q = 1. The functions

Un0)=U ((1 - 1) e"")
n

(instead of 1 — 1/n, any sequence of r, tending to 1 from below will do!) have Uull, < C
(Il ll, is here taken over [—m, =], of course!), so, by the Cantor diagonal process, we can
extract a subsequence Uy, of them such that

n
LG = lim/G(G)U,.J(B) de
Jj—0
—n
exists for G ranging over a countable dense subset of L,. Since ||U,,J||p < C, this limit, LG,
will actually exist for all G € L, (easy exercise), and LG is then a bounded linear functional
on L. So, since L, is the dual of L,, there is an F € L, with
n
LG = /F(B)G(O)dﬁ
et
for all G € L,.

Now for each n,

is harmonic for



4 I: Functions Harmonic in |z| < 1. Rudiments

so,if r<1,

n n
w re) = o= / PO 1) (") dt = o / P60 — U, (1)dr

-7

Fix any r < 1 and any 0, and use G(t) = P,(§ —t); G € L,. Then

jow
—n

n n n
lim [ P(0 —t)Uy (t)dt = LG = / G(t)F(t)dt = /P,(G — t)F(t)dt.
The leftmost member is
im 2nu,,}(re'v) = 2nU(re").

J

Thus,
1 n
U(re®) = — / P.(6 — t)F(t)dt,
2n
—n
where F € L,. QE.D.
Remark The same result holds, with the same proof, for p = oo, if we change the

statement slightly:

Theorem If U(z) is harmonic and bounded in |z| < 1, there is an F € L(—m,m) with

Ulre®) = - / 1—r? F(t)dt
T 2n) 142 —2rcos(0—1) '

—-n

If I am not mistaken, this result was proved by Fatou, in his famous thesis, Séries
trigonométriques et séries de Taylor, published before the First World War. The result is
indeed the starting point of the whole subject treated here. Many of the ideas in the first
half of this book have their origin in Fatou’s thesis.

What if p = 1? L{(—=n,n) is, unfortunately not the dual of anything. But M - the space
of finite signed measures u on [—n,n] — with ||u|| = total variation of u — is the dual of
%[—n,n] — the space of continuous functions on [—=n,n]. If p € Li[—n, 7], we can associate
to p a signed measure u, by putting

[ éwrdmto = [ ooy

—n
then ||u, |l = Ipll;.-
Here, then, the argument used in proving the first theorem of this section gives:

Theorem If U(z) is harmonic in |z| < 1 and the means

/ |U(re'”)| dg
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are bounded for r < 1, there is a finite signed measure p on [—mn, ] with

. 1 7

U(re?) = 5 /P,(G —t)du(t), 0<r<l.
—n

Corollary (Evans) Let U(z) be harmonic in |z| < 1 and positive there (here and henceforth

‘positive’ just means ‘non-negative’). Then there is a finite positive measure u on [—n,n] with

DN
U(re®) = 2—17!- / P(0—t)du(t), O0<r<l1.
Proof For r < 1 (using, e.g., the expansion
o«
Ure?) = Z a,r'"le™
—C

valid in |z| < 1), we have

2rU(0) = / U(re®)do = / |U(re'®)| do,
—n —n

since U > 0. Now just apply the theorem. The measure u is positive because here (look

again at the proof of the first theorem in this section)

n

/ G(1) dyt)

—n

comes out positive for each positive G € € — it’s the limit of positive things!

D. Boundary behaviour
If we have one of the representations

Ulre?) = j 1—r? F(t)dt
T 2n) 14+ —2rcos(8—1)

4
n
; 1 1—12
i6 - d
vere™) =5 / 572 —2rcosie —p) MO
—n

derived in the previous section, we should examine the connection between U(z) and the
function F(t) or the measure du(t).

1. Integrability properties; functions given by Poisson’s formula
We first obtain some crude results which are sufficient for many investigations.
The Poisson kernel

1—12 hd ;
P, — = |nl ,ing
@) 14r2—2rcos¢ Z;r ¢

has the following properties:
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(a) P(¢p)>0, r<l1
(b) P.¢+2n)=P,(¢)
(c) Foreachr <1,
/P,(t)dt =2n.
—n
Of these, (a) and (b) are evident, and (c) follows from the series development for P,(¢).
If F € Ly[—n,n], it is convenient to suppose F defined on all of R by periodicity,
F(t 4 2n) = F(t). We henceforth assume this. First we have converses to the representation
theorems given in Section C.

Theorem [fp>1and F € L)[—n,n] and

U(ré?) = L P,(0 — t)F(t)dt,
2n

then U(z) is harmonic in |z| < 1 and
n
/ |U(reé?)|P d6 < const., r < 1.
—n

Proof Let

1

n
— / e ™F(r)dt = A,.
2n

T

Then, for0<r<1,

”
Ure”) =) Aprie™,
-
which is harmonic in |z] < 1 by inspection, because the series converges uniformly in
the interior (meaning uniformly on compact subsets — complex variable language!) of that
region. (If F is real, the series is clearly the real part of an analytic function which can be
easily written down.)
Given r < 1, by property (b) and 2zn-periodicity of F we can also write

n
; 1
U(ré’) = o / F(0 — s)P,(s)ds.
-7
Now take G € Ly[—mn, 7], ||G||q = 1, so that (with any given fixed r — of course G will
depend on r)
n 1/p b
[ / IU(reio)lde} = / U(re”)G(0) dO.
-7 -

By Fubini’s theorem, the integral on the right is

i%(//P,(s)F(B—s)G(B)des
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which is in modulus
n
1
< 5 [ P IFI g1, ds = 1IF,
—n

by choice of G and property (c).
In fine,

/ UGre?)P d6 < |IFII2
-7

and we are done.

Theorem Let u be a finite signed measure on [—mn,n]. Then
n

Ue’) = o / PL(6 — 1) du(t)

—-n
is harmonic in |z| <1 and
n

/ |U(re)|df < const., r<1.

-
Proof Harmonicity is established as above. Given r < 1, let G € Lo, [|G]|,, = 1, be such
that

/ U(re®)| df = / G(0)U(re") do.
The right-hand integral is, by Fubini’s theorem, equal to

% / / P,(0 — )G(0) O du(t)

—n -7

which, by properties (a), (b) and (c) is modulus

< %//P,(G—t)IIGHO0 do |du(t)| = HGHoo/ld/t(t)l =/Idu(t)|.

—n —n

We are done.

2. Elementary study of boundary behaviour
The Poisson kernel P,(6) has a fourth property:

(d) Given any § >0,
P.(0) > 0 uniformly for 6 <|@|<n asr—1.
This is obvious from the formula for P,(6).

Theorem Let F be continuous on R and F(t + 2n) = F(t). Let

U(re®) = % / P,(6 — t)F(t)dt.

—-n
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Then U(z) — F(¢) as z — €'®, and the convergence is uniform in ¢.

Proof The result goes back to Poisson himself, who thought it showed that the Fourier
series of a function converges to that function (it doesn’t show that!). Write

U(re?) = % / F(0 —t)P,(1)dt
Given any ¢, we have, by property (c),
1 n
-5 [F@rar
Therefore
. L]
U(re’) — F(¢) = I /(F(G —t)— F(¢)) P,(t)dt

Let 6 < /2 be such that |F(s) — F(¢)| < € for |s — ¢| < 26; 6 depends only on € and not

on ¢ here by (uniform!) continuity of F.
Write the last right hand integral as a sum of two:

|U(re") |<— |F(0 —1t) ()| P,(t)dt
"
1
o / IF(0 1)~ F@)IPA0) d
s<lt<n

If |0 — ¢| < 4, the first integral on the right is

€
< — .
<5 /P,(t)dt<e

It|<6
Let M be a bound on |F(t)|. Then the second integral is

/ P,(t)dt

ol
which is < e, say, if r is close enough to 1, by property (d).
So |U(re®) — F(¢)| < 2¢ if |§ — ¢| < § and r is close enough to 1. Q.ED.

Remark  Properties (a), (b), (c) and (d) together constitute the so-called approximate
identity property of (1/2mn)P,(0). The above theorem holds good because of them — all kinds
of other kernels besides the Poisson kernel would work to yield similar theorems.

Theorem Let F € Li(—n,n), and suppose F(t) is continuous at 6. Then
U(re?) = / P.(0 — t)F(t)dt

tends to F(6y) as re® tends to e%.
Proof Similar to that of the above theorem.
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Theorem Let F € L, 1 <p <o (sic!) and let

U(re?) = % / P,(0 — t)F(t)dt

Then

/ |U(re"y — F(0))"d§ — 0

asr — 1; ie., U(re'®) approaches F() in L, normasr — 1.
Proof Write F,(0) = U(re'’); then

F.(0) — F(6) = / [F(6 —t)— F(6)] P.(t)d

Using properties (a) and (c) (we think of F,(G) F(6) as a limit of convex combinations of
the functions F(6 — t) — F(0), taking t as a parameter and 6 as the variable), we have, by
an evident generalization of the triangle inequality

m 1/p LAV 1/p
(/ |F,(0)—F(9)|”d0) < % / (/ |F(9—t)—F(9)|"d9) -P,(t)dt

That is, if we write
n 1/p
= ( |F(0 —t)— F())F de) s

1
IF = Fll, < 5 [ @0R0d

But ®(t) —» 0 as t — O ! That is because translation is continuous in the L, norm for
1 < p < co. This, in turn, follows from the rudiments of real variable theory as follows: given
F € Ly(—n,n) and € > 0O take a continuous G, periodic of period 2n, with ||F — Gll, <e.
Then

/ |G(0 — t) — G(6)|P do

is obviously < €? for |t| < 8, say, by uniform continuity, so
[|IF(0—t)—F(O)ll, <3e for [t] <d.
In particular, ®(¢) is continuous at O where it equals zero.
So, by a previous result, ||F, — F||, > 0asr — L.

If p = o0 all we have is weak™ convergence:

Theorem IfF € L., and

U(re®) = % / P,(0 — F (1) dt,
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then U(re?’) — F(8) w* as r — 1.

Proof* Take any G € Li(—n,n). We are to prove that
/ U(re?)G(0)do — / F(0)G(6)d0

for r — 1. But this is true. because (P,(¢) being even!)

/G(H)P,.(H ~1)df = /P,(t — 0)G(9)do

-7 -7
tends in L; norm to G(t) as r — 1 by the preceding theorem. We need then only apply
Fubini’s theorem.

Similarly

Theorem Let
; 1
i0 - _
Ure”) = o= [ PO =) dute)

with (t a finite signed measure on [—n,n]. Then U(re®)d0 — du(f) w* as r — 1, ie., for
any continuous G(8), periodic and of period 2m,
/U(re‘”)G((})dH—» /G(H)dy(())

asr — 1.

Proof Use Fubini’s theorem together with the first result of this subsection.

3. Deeper study of boundary behaviour; Fatou’s theorem
If U(z), harmonic in |z| < 1, has one of the representations

Ure?) = % /P,(e —tF(t)dt, FelL,  Ure’)= % /P,(e —t)du(t),

-7 -n

we have still to discuss the pointwise behaviour of U(z) as z tends to points ¢ on the
boundary of the unit circle. Study of such behaviour cannot proceed on the basis of the
approximate identity properties (a)-(d) alone, but requires a more detailed examination of
P,(6).

Both representations written above for U(re’) are subsumed in the second one, for if
F € Ly(—=,n), and we take du(f) = F(0)d0, then p is in fact a finite signed measure on
[—m,x]. In dealing with such a measure, it is convenient to introduce the function u(6) of
bounded variation on [—n, ] given by

0
u(0) = / du(t)
1]

(with usual interpretation of the integral if 8 < 0). Then we have the
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Theorem (Fatou) Let —m < ¢¢ < m and suppose that the derivative u'(¢o) exists and is
finite. Then
: 1 7
i0 - —nd
Utre") = - [ PO 0dute)
-n
tends to 1 (¢o) for re? tending to &%, from within any region*® of the form |0 — ¢o| < c(1—r).

Remark 1 Thus, z = re? is required to tend to % from within sectors of opening < 180°

having vertex at ¢'%°, and symmetric about the radius from 0 out to ¢'%. We frequently say
that U(re?) — u'(¢o) as re? tends to ¢ non-tangentially, and write

U(re®) — u/'(¢o) for re? - e,

et

Remark 2 A similar result holds for ¢p = = provided p/(¢g) exists in a properly defined
sense there. Let the reader figure out what this sense should be.

Proof To simplify the notation, take ¢9 = 0. Then, if x'(0) exists and is finite, and
18,] < ¢(1 —r), let us show that

s )~ )
J— —
2n J 14r2—2rcos(t—6,) H #

as r — 1. Without loss of generality, assume 4'(0) = 0; otherwise work with du(t) — x'(0)dt
instead of du(t);

17 ,
ﬂ/aw—wwm

-7
is equal to u'(0).
Let § > 0 be such that |u(t)] < e|t| for |t] < 6. If 1 —r is very close to O, so that 2|6,| is
much smaller than 6,
. s
1 1—r2 1 1—r?
) T+r2— 2r cos(t — 0,) du(t) = o(1) + 2 / 14712 —2rcos(t—6,) du()

e s

* Strictly speaking, such a region is not a sector with straightsides and vertex at ¢'%e. But
it becomes asymptotic to such a sector - of opening < 180° — near the point e'%o,
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where o(1) — 0 as r — 1. Integrate
s

1 1-r du(t)
2n ) 1+71r2—2rcos(t—0,)
=5
by parts to get an integrated term (is o(1)) plus
§
1 2(1 —r3yrsin(t — 6,)
— de.
2n ) (1412 —2rcos(l—9,))2'u(t) ‘

=5
Assuming, without loss of generality, that 6, > 0, we break up the last integral as

1 2r(1 — r?ysin(t — 6,)u(t) _
2—[/ / /} (1+r2— 2rcos(t—6))2dt_I+H+HI’

say. Then
17 a0 4¢63 4
< — r_. Y 23
=< 27r/(1—r)3 etdi< TP <Ce
0
since 0 < 0, < ¢(1 —r). For 26, <t <4, |u(t)] < et < 2¢(t —6,), so

§—0,

)
2(1—r2)rsin(t— ) € 2r(1—r2)sint
_gydi= & [ FUZr)smt
s S [ ot = [ s
20, Or

e
2r(1 — r?)si
< _E_ / _w_tdt
n ) (14+r%—2rcost)?
0
This last is integrated by parts (in the opposite direction to our first integration by parts!)

to give
n
€ (1—r?)de _
T |:0(1)+/ 1+r2—2rcost:| =e+ol).
0

Similarly |I| < /24 0(1). So I+ II +1II| < (4c*/n +3/2)e +o(1) as r — 1, and since € > 0
is arbitrary, we are done.

Remark  What makes the above proof work is the monotoneity of P,(6) on each of the
intervals [—=, 0] and [0, x].

Theorem (Fatou) If —n < ¢o < 7 and if i (¢o) exists and is infinite, then, for

U(re”) = % / P.(6 —r)du(),

—n

U(re'®) — u/'(¢o) as r — 1.
Remark  Thus, even when u'(¢o) is infinite, we still have

U(z) = (o)

when z goes out radially to e'%.
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Proof Take ¢o = 0 and assume /(0) = +oc. Choose 6 > 0 so small that u(t)sgnt > M|t|
for |t| < 6. Then, computing as in the proof of the preceding theorem,
s
. 1 2(1 —r)rsint
Ulr) = o) + 2 / (1+r2 —2rcost)2u
5
Doing the reverse integration by parts, this last is seen to be o(1) + M for r close enough
to 1.

)
1 2(1 —ryrsint
> M s
(t)dt_()(l)'i'7I /(1+r2—2rcost)2
0

Scholium  Can we replace ‘z — /% radially’ by ‘z — €'%°’ in the theorem just proved? We
can, if U(z) > 0 for |z] < 1, i.e. if p is a positive measure.

Lemma (Harnack’s Theorem) Let U(z) be positive and harmonic in |z| < 1. Then

1 —1z|

U(0).

U(z) > 5] 0)
Proof
- 11— 1 1 1
—r —r —r
U(re’) = — d c— [ du() =
(re™) 2n/1+r2—2cos(9—t) uie) 2 1+r 2=n ue) 1+rU(O)’
“n —r

since here du(t) > 0.

Now, assume U(z) > 0 and U(r) — oo for r — 1. If S is any sector with vertex at 1,
symmetric about the positive real axis, of opening < 180°, let S’ be a similar but slightly
larger sector:

If 0 <r < 1, let K, be the circle about r tangent to the sides of S, and K| be the circle
about r tangent to the sides of S’. Clearly y = radius of K, /radius of K| is independent of
rand < 1. Then, U(z) is positive in K}, so, if z is in K/, by the lemma,

Uz) > %U(r),

proving U(z) — oo as z — 1 from within S.
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However, a complete generalization of the second Fatou theorem for non-tangential move-
ment of z out to the boundary is false.

That is the content of the following problem.

In order to simplify the computations, we have made a change of variable corresponding
to the conformal representation
0 i—z

itz
which makes the upper half plane y > 0 correspond to the circle lw| < 1 and z = 0
correspond to w = 1.

Then, if e = (i — t)/(i + t), it is easily checked (see pp. 106-108) that

w=re

, z=x-+Iiy,

1—r? y

14+ r2—2cos(d —1) dvlo) = (x —1)2 + y2 dult),
where
2du(ty
m = dV(‘L').

Problem 1 To construct a signed measure g on [0, 1] such that 4/'(0+) = oo, but if

1
- Y i
Ute) = [ g duio
0

U(x + ix) does not tend to o as x — O+.

Procedure Obtain inductively the positive numbers to = 1, xo = 1/2, t1 < Xo,
x; < t, ta < xy, etc, and construct x4 on each of the intervals {t1,20], [t2,t1), [t3,t2), - - -
one after the other.

1 is to be a discrete measure, and when constructed will satisfy

() wey=r, 0<r<1;

) pg (e, temn)) = (-t — &) and p_([tx, ti-1)) = 8(\/ti—s — /tx), where p; and p-
denote the positive and negative parts of p.

Start by taking t; < xo/10 so small that 9./t; <1 — /t; = Ay, say, and, on [y, to], put
du(t) =9A,ddé(t — t1) — 8A; dd(t — xo),
where 6 denotes the unit point mass at 0. Show that, if, at the end of the construction, u

satisfies (2), then
1

/ Xo d ([)< 3A1 < 3
J to—r 42 M E T ST A

Next, take x; < t; so small that
1
/ i du(t) < i — Jx1
(t=—x1)2 +x3 HE= Vi !
n
(on (t1,1], u is already constructed!). Assuming that p will satisfy (2) at the end of the
construction, how should we choose t, < xy, and how should we define i on [t2,t1) so as to
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ensure
2A 1
/ 740 < e,
(x; —l

0
writing Ay = /i — \/1,?
Show how the construction can be carried out so as to get a measure p on [0, 1] satisfying
(1) and (2) with 4'(04) = o but
1

/L (1) < ——
e AN

Let F € Ly[—n,n], p> 1 and let

1 n
=5 /P,(e —t)F(t)dt.

A classical theorem of Lebesgue* says that
d .
E/F(t)dt exists a.e. and equals F(0).

In conjunction with the first theorem of this subsection we thus see that, a.e. in ¢,
U(re’) > F(¢) asre? — ad
Combined with a theorem of Section C, we thus have

Theorem Let 1 < p < oc (sic!) and let U(z) be harmonic in |z| < 1, with
1/p

/ [U(re'®)P d()) <C

for 0 < r < 1. Then, for almost all §, U(z) tends to a finite limit, say U(e"), as z - e
U(e?) € L,(—n,7), and, for 0 <r < 1,

U(e®) = i/n L-r U(e") dt
“I = 14712 —2rcos(@ —t) ’

Notation U(e®) is called the (non-tangential or £) boundary value function for U(z); we
frequently write

0

U@?) = lim U(z) ae.

Jreu]

In future, whenever we have a function U harmonic in |z| < 1, satisfying the hypothesis of

* For a proof, see the scholium at the end of Subsection B.1 in Chapter VIII.
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the above theorem (for p > 1), we assume it to be automatically extended a.e. to |z| = 1 in
the manner described.

In case p =1 the theorem is not completely true. In that case we have a measure du(0).
A decomposition theorem of Lebesgue says that then the derivative p/(6) still exists and is
finite a.e., that y'(8) € Lyi(—n, =), but that du(f) is not in general u'(9)d6. Instead,

du(0) = 1/(6)do + da(0)

where ¢ is a singular measure, i.e., one supported on a set of Lebesgue measure zero.
Thus, if we only know that the means

/|U(rei6)|d6
are bounded for r < 1, we still have a.e. existence of the finite non-tangential
lim U(z) = 4/(6),
z?e‘”
but we cannot recover U(z) from this boundary value function. Instead, we have
o 1T 1]
0y _ ’ i —nd
U(re) e /P,(H ' () de + 7 /P,(H t)do (1)
with some singular measure o.

The simplest cases show that a representation with nonzero ¢ can actually occur; one
such is the ordinary Poisson kernel

U(reig) = —1 =r !
T 14r2=2rcosf
Indeed,
lim U(z)=0
zTe“’

save for 8 =0, and

U(re'?y = L / P,(0 —1t) - 27 dSo(t)
2n
where Jy is the unit point mass at 0.
This distinction between the cases p =1 and p > 1 is one of the fundamental complications
of the theory, and will be seen to have deep and far-reaching implications in its further
development.

E. The harmonic conjugate
Given a function U(z) harmonic in |z| < 1, having one of the representations studied in
this chapter, we proceed to investigate the pointwise boundary behaviour of its harmonic
conjugate. At the beginning of this chapter, we said that a harmonic function V(z) is a
harmonic conjugate of U(z) if U(z) + iV(z) is analytic in |z| < 1. Harmonic conjugates are
only defined to within an additive constant; working in the unit circle, it is customary to



I:E The harmonic conjugate 17

require V(0) = O; the resulting harmonic conjugate V(z) of U is denoted by U(z). The tilde
notation is customary in the designation of harmonic conjugates.

1. Formula for the harmonic conjugate
Suppose that

0
U(re”y = ZA,,r’"'ei"G, 0<r<l1,

then

@w®
Ure?y = — Zi sgnn A,r"en?,
-0
where sgn 0 means 0.
Inc{eed, U(re'®) is harmonic in |z| < 1 by inspection (the series converges absolutely there),
and U(0) = 0. And also

lee)
U(re”) + iU(rey = Ao + Z 24,r"e"
1

is analytic (by inspection!) in |z| < 1.
Now if

. 1 7
U(re?y = > / P.(6 — t)du(r)

with a measure u on [—=,=n], then the above series development for U is valid with

coefficients
n

1 —int
= — in d .
Ar 2n /e ult)

-n

Looking at the series development for U, we see that
. 1 [ .
Urey = 5 / ;i sgnnrie™0=0 dy(t).
Call
hd .
— Zi sgnnre™ = 0,(6)
-

the conjugate Poisson kernel. By direct summation of two geometric series, we find

2rsin @
20 = 1+7r2—2rcosf’

Thus:

Theorem If

Ure®) = L / 1—r? dul(t)
2n J/ 1+4r2—2rcos(@—t) H
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with a measure y, then the harmonic conjugate U of U is given by

S 1 2r sin(f — t)
oy _
Utre™) = 5 / 472 = 2rcos(f —p) MO

—n

2. Harmonic conjugate near an arc where original boundary function has a continuous
derivative
We are especially interested in the boundary behaviour of U(z) when

U(re®) = i / P.(6 — )F(1)dt

with a function F (belonging, say, to L,(—n,n), p > 1).
Assuming, as usual the definition of F to be extended to R so as to make F 2n-periodic,
we have

1 i 2rsin(6 —t)
14712 —2rcos(f —1t)

—n

U@re) = F(t)dt

n
1 rsins
=) ->° —s5)—F(6 ds.
n/1+r2—2rcoss(F(0 $) = F(0+s)) ds
0
We have
rsins _ 2rsin(s/2)cos(s/2)

1+r2—2rcoss (1 —r) + 4rsin¥(s/2)’

so if

s

/" IF(O—5) = F0+3)
S

0
we clearly have, for r — 1,

o o 1 [FO—s)—F(0+5)
Ure™) = ﬂ/ tan(s/2) ds,
0

the integral on the right being absolutely convergent.

This certainly happens if F'(6) exists and is finite.

Indeed, if F'() is continuous for « < 6 < B, say, then U(z) has a continuous extension up
to any closed subarc of the open arc {¢”;0 < 6 < B} on |z| = 1, and for such 0,

F(6 0+t
U(’”)—th /(Ztant/2 )dt,

the integral being absolutely convergent.

Problem 2  Prove the statement just made. (Hint: The mean value theorem for derivatives
comes in here.) Also prove the following:
If F > 0 is 2n-periodic and continuous as a mapping into [0,00] (that is, F is allowed to
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take the value co, but if F(8y) = co, then F(8) — oo for 8 — 6y), and if F € Ly(—m,n), then
U@re?) = / P.(6 —t)F
extends continuously up to |z| = 1 as a mapping to [0, ).

3. Behaviour near points of original boundary function’s Lebesgue set
It turns out that the radial boundary value

1/"F(9—t)—F(9+t)

ooy _ L
v =2 2tan(t/2)
0

dt
of

. 1 r

U(re?) = 2—n/Qr(0—t)F(t)dt

exists a.e. in 6 for very general functions F. No differentiability is really required for F. Of
course, the integral

jF(B—t)—-F((?-i—t)dt

2tan(t/2)
must be interpreted properly. Just taking it as the limit of

/"F(e—r)—F(9+t)

Tane2) O

for € — 0+ will, as we shall see, be enough.

Definition Let F be 2n-periodic, and in Li(—n, ). We say 6 is in the Lebesgue set for F if

/|F9+t 0)|dt -0

ash — 0.

Theorem (Lebesgue!)  Almost every 0 is in the Lebesgue set for F.
Proof Given any rational number r, the function |F(t) — r| is in L;, hence equal to the
derivative of its indefinite integral a.e. That is, for almost all 6,
: 0+h
im — —r|dt =|F(0) —
tim 3 [ 1P~ rlde = 1F0) =
o

holds simultaneously for all rational r as long as 0 ¢ E, say, E being a set of measure zero.
Let 6 ¢ E and € > 0 be given; if r is a rational number with |F(0) —r| <, then

9+h 0+h

/|F9+t)—F(9)|dtSﬁ/|F(t —rldt+|F(@)—r|<e+ - /|F(t )—rldt.
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The thing on the right tends to € + |F(6) —r] < 2e as h — 0, so

h
. 1
11msupz/|F(9 +1t)—F(9)|dt < 2e
h—0

0

if 6 ¢ E. Since e is arbitrary > 0,
h

%/|F(9+t)—F(9)|dt—> 0

0
as h — 0, and this holds for all # ¢ E, i.e., for almost all 6.

Now we have the basic

Theorem Let F(t + 2n) = F(t), F € Li(—=n,r). Then
e n
1 rsint 1 FO—t)—F+1)
- —————F@0 —1t)dt — — _———d
n / 1 +r2—2rcost ( ) n / 2 tan(t/2) !

—n I—r

tends to zero as r — 1 for all 8 in the Lebesgue set for F, i.e., almost everywhere.

Remark The idea is that

1]F(0—t)—F(6+t)
Rl Gl e i o 2P

T 2tan(t/2)

€

can, for almost all 8, be compared with U((1 — ¢)e'’) — a value of the harmonic conjugate
inside the unit circle — when € is small.
Proof rsint/(1 +r* —2rcost) is an odd function of t, so the difference in question is
unchanged if F is everywhere replaced by F — F(6).

Do this replacement. Then the difference breaks up into two parts, of which the first is

1—r

1 rsint
I=-— ————(F(@ —t)— F(0))d:.
n / 1+r2—2rcost(( 9 )
—(1—r)
We have
rsint | sint| 1
< <
1 +7r2—2rcost 1—=r? " 1-r

for |t] < 1 —r, therefore

1—r
i< [ IFe-n-FeOid,
n(l—r)

~(1-r)

which — 0 as r — 1 if 8 is in the Lebesgue set for F.

It is convenient to write A = 1 —r. Then the rest of our difference is
1 rsint sint
I=- - F(6 —t)— F(0)) dt.
n / {AZ + 4rsin’(t/2) 4sin2(t/2)} (F(6—1)=F(6)

A<t

The expression in braces works out to

—AZsint
4 (A? + 4rsin’(¢/2)) sin®(1/2)
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which, for r > 1/2, say, is in absolute value < C(1 —r)?/|t]>, C being a numerical constant.
Thus,

2 —
|m<££ / E@%%Jﬂmm

A<|t|<n

To evaluate, for instance,

>

w [ EOD=FO)
A

integrate by parts, getting

/|F —) ldt——/|F )= F@)|dt +
« [IF(0—1)— F(60)|dt

+34° / 0 - ds.
N

A
The first two terms obviously tend to 0 as A — 0, 6 being in the Lebesgue set for F.
Given € > 0, pick a fixed n > 0 such that

§/|F(9—t)—F(9)|dt <e
0

for 0 < s < 5; the last term is then

<3A2/—d +3A2/ /IF —1)— F(6)|dtds

2A? 3nA?
<—e+ r /|F —1) (0)| dt

M
=2e+ A=
1

when 0 < A < 5. This is < 4¢ if A is small enough, so, since € is arbitrary, we see that

w [ 100 —FO) 4,
A

and hence II, tends to 0 as A — 0.
The theorem is completely proved.

4. Existence of f(0) for f in L,. Discussion
Now we shall use material from Sections C and D together with the comparison theoremn
of Subsection 3 above in order to show that

16— f+1)
e—»0+/ 2tan t/2) d
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exists a.e. whenever f € Ly(—n,n) ! This is the first really deep theorem in the whole
chapter.

First, a quick remark. The relations

n
i einﬂe—ime do = 0, n # m
2n I, n=m
-
show, together with absolute convergence, that if
[ee]
Ure”) =) Ar'"e™
—%

is harmonic in |z| < 1,

7 o]
[10eetyp a0 =203 14y

for 0 < r < 1. From this relation together with material of Sections C, D we immediately
get the

Lemma [f U(z) is harmonic in |z| < 1, one has

. 1 1—r?
0N _
Utre™) = 2n/1+r2—2rcos(0—t)F(t)dt

with F € Ly(—n,n) iff

D
U(re?) = ZA,,r""e‘”"
-0
with

fvel
> 1A < oo,
-

Theorem Let F € Ly(—n,n) be 2n-periodic. Then
| [F(O—1t)—F(O+1)

F(6) = lim — a2 o
exists for almost all 6, F € Ly(—n,n), and ||F||; <||F||,.
If
. 1 f
0y _ _
Ulre) = 5 / P,(6 — 0)F(t) dt,
then

U(re?) = % / 0.(0 —)F(t)dt

is also equal to

1 [ N
%/P,(B—t)F(t)dt.
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Proof By the lemma,
o
U(re?) = Z Ayr!gin?
—0o0

with

«

Dl <o,

—0
so therefore, again by the lemma,

[ee]
U(re®) = —iz sgn n Apri e
—0
must in fact equal

1 n
e / P.(0 —t)G(t)dt

for some G € Ly(—n, ).
By Section D,
U(z) > G(6) asz—> et
for almost all 0, in particular,
lim Uré”y = G) ae.
By the last theorem of Subsection 3 we now see that

1 [FO—t)—F0+10)
p / Tty

-r
must also tend to G(0) for almost all 6 as r — 1. So most of the theorem holds already if
we just write F(0) = G(0) !

It remains to check the norm inequalities. But that’s easy. By work in Section D,

n
IFI = lim [ V(e do
r—
—n
which equals 21 }°* |4, |> according to the computation done above; at the same time,

Il =11m/|U (re?)2df = 2m ) " A,
n#0
(remember sgn0 =0 !) That does it.

Discussion Where it exists, the limit

F(0 —t)—F(+1)
Fo) = l‘l% n ) 2tan(t/2)

_ Fydr
i { / / } 2tan((0 — 1)/2)"

dt

is the same as
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This exhibits it as a Cauchy principal value. We frequently write

= l [ F(t)dt
Hm—nfémMW—ﬂﬂ)

to emphasize that the expression is evaluated by omitting a small interval having 6 as its
midpoint, and then having the width of that interval shrink to zero. The symmetry is crucial

here;
1/ F)dt
%f?mmw—nﬁ)

is usually not an integral in any ordinary sense.
We also write

de.
n

0+

| nF(H—t)—F(9+t)
”m__/ 2tan(t/2)

Although F(8) is obtained from F by such a delicate limiting process (the symmetry of
the omitted interval which shrinks down to 0 !) see how strongly it is bound to F, in the
metric sense! For F depends linearly on F, and ||F||; < [1F[[, !

Taken by themselves, the statements about F(6) constitute a purely real variable result.
Yet we used a lot of complex function theory (harmonic functions and their conjugates) to
establish it, for we made the passage

F - Ul(z) - U(z) - F
harmonic in harmonic in boundary
unit circle unit circle function

during its proof. And we used a differentiability property of something related to F in order
to compare U((1 — €)e’?) with

1]Fw—n—Fw+n
L Bk bkl G s TS

n 2tan(t/2)

Altogether, a most intricate business. At the beginning of this century, Lusin wanted to
find a more direct proof — one which didn’t bring in complex variable theory. He thought
that doing this would lay bare more of the real mechanism of the interference of translates
of functions on the real line which must be operating in order to make

]Fw—n—Fw+n

2tan(t/2) de

0+

exist a.e. For it is indeed a real process of interference which is taking place here (see next .
subsection!).

The n'h partial sum of the Fourier series of F(f) is essentially given by

sin(nt)

/F(G - t)f dt

—n

— an expression very like the one for F(0), except for the factor sin(nt) in the integrand.
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Lusin thought that if one could really see why the limit defining F(0) exists a.e., one might
stand a chance of proving that the Fourier series of an L, function converges a.e. In a way,
he was right. Carleson’s celebrated proof of this convergence (published in 1966) depends
greatly on delicate properties of the operation taking F to F.

Long before Carleson did this, real variable proofs of the existence of F(8) were found.
Lusin himself obtained one. They are harder than the classical one given above.

5. Existence of f(6) really due to cancellation
It was said in the last subsection that the existence a.e. of the limit

/f(9—t)—f(9+t) 0
2tan(t/2)

is deep, and comes from some comphcated interference phenomenon. The existence of the
limit really comes from cancellation of positive and negative contributions, and not from the
smallness of |f(8 —t) — f(0 + t)|, even when f is continuous. This is shown by the following

Theorem There exists a continuous function G, periodic of period 2n, such that
n
/ GO +t)— G0 —1)]
t

0

dt =

for every 6.
Proof By contradiction, using the Baire category theorem.

Denote by ¥ the space of continuous functions of period 2n. Using the usual norm
[If1] = supg |f(8)], € becomes a complete normed space.

Assume that for every f € € there is at least one 0 with

/" F0+10)— £(0— 1)
t

dt < o0;

we shall arrive at a contradiction. For each n = 1,2,3,... let
ud — —
= {f € ¥, for at least one 0, / o+ ; U] dt < n}.
0

By hypothesis, UPE, = ¥. Now each E, is closed in the norm topology of ¥. Indeed,
suppose fy € E, and ||fx — f]| -0 with f € €. We prove that f € E,. For each f; there
is a 6, with

[ 1fil + 1) — fuO — )]
t

dt <n.

By 2n-periodicity, we may take 0 < 6, < 2r, and then there is no loss of generality in
assuming Bk—k>0, 0 < 0 < 2n (otherwise just go to a subsequence). We have

[(f(6 +1t) — £(6 — 1)) — (fi(Ok + 1) — fi (6 — 1))
SOk +0) = f(O — 1) = (Fu(Ok + 1) — fx (B — 1))
+1f(0+1t)—f(O +1t)—f(O —1t) + f(O + 1)
which -0 uniformly in ¢, since f € €. In particular,

0 +0)= (0~ 1)) = Jlim [£i(Bi + 1) — fe(0k — )
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for all ¢, so, by Fatou’s Lemma,

JECS )1dt<hmmf/|fk 840 =10 =0

which is < n. So f € E,.

Because UTE, = &, closure of the E, implies, by the Baire category theorem, that at
least one E, contains an entire sphere. That is, there is an F € ¥ and a p > 0 such that
f €% and ||f —F|| <2pimply f € E,. Pick an F; (e.g., a trigonometric polynomial) with
[IFo — F|| < p such that Fy(0) exists everywhere and is finite. If, say, ||Fj|| < K (K may of
course be enormous!) we have

dt < 2nK

/" IFo(0 + 1) — Fo(6 — 1)
t

0

for all 0 by the mean value theorem.
Now let g € €, and let ||g|| < p. Then ||Fo + g — F|| < 2p, so Fo + g € E,. In view of the
previous inequality, this means that there must be at least one 0 with

/Ig(0+t):g(9—t)l dt < n+ 2K,

ie., |lgl| < p implies that for at least one 0,

/ lg(6 + t):g(G — 4l dt < some fixed number, say M.

But this cannot be. Take any continuous function h of period = such that h(6+t)—h(6 —1)
is not identically zero in t for any 0. Here is an example of such a function:

h(®)

- 0 I 2n 3n 0

Then for all 0,

/ |h(8 +t) — h(6 — t)| dt
0
is > say a > 0. Given m = 2,3,4,..., let 6,, € [0, 7] be such that mf — 6,, is a multiple of
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7. Then

/" [Hm(® + 1)) — him(©@ = ) . _ 7|h(em +9) = hOn=9)|
t N
0 0

n 2n
1
2/|h(0,,,+s)—h(9,,,—s)|ds+§/|h(0m+s)—h(0,,,—s)|ds+...
0 n

mn
1

e 1(0 + 5) — h(Oy, — 5)| ds

(m—)r
2a<1+1+... +l> ~alogm .
2 m
Taking such an h with ||h|| < p, we see that for g(t) = h(mt) there is no 0 with

/Ig(9+t):g(9—t)l dr< M,
0

provided m is large enough. This contradicts our previous statement, and proves the
theorem.
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Theorem of the Brothers Riesz.
Introduction to the Space H;

A. The F. and M. Riesz theorem
Let 4 be a (signed or in general complex-valued) Borel measure on [—n,7]. In 1917, in
the proceedings of the fourth Scandinavian mathematical congress (this is a paper every
analyst should read!), F. and M. Riesz published the celebrated

Theorem If

e

/e’"o du(@) =0 for n=1,2,3,...,

-7
then u is absolutely continuous with respect to Lebesgue measure.

The theorem is not only deep, but is also the basis for much of the following work. We
shall go through three proofs of this theorem, two here, and a third in Chapter IV.

1. Original proof

The original proof of F. and M. Riesz is perhaps the simplest, and goes as follows.
Suppose u is not absolutely continuous. Then there is some set E = [—n, ] of Lebesgue

measure zero but such that

/e"" du(8) + 0.

E
Let, indeed, v be the complex valued Borel measure given by

v(E) = / e du()
E
for Borel sets E. Then

WE) = / 0 dv(6)

E
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for such E — to check this, approximate ¢’ uniformly by Borel functions of modulus 1
taking only a finite number of values. But then, if v(E) = O for every Borel set E with
|E| =0, we also have u(E) = 0 for each such E.

Notation As is customary, we henceforth denote the Lebesgue measure of a set E by |E|.

From elementary measure theory, we know that we can take E to also be closed.

This being granted, we proceed thus. Denote the (disjoint) open intervals complementary
to E — the so-called contiguous intervals — by (a,, Bs) — there are at most countably many
of them. We mean by this that the arcs {¢¥; ay, < 6 < Bn} are disjoint, and that, together
with {€; 0 € E}, they precisely fill up the unit circumference |z| = 1.

Because |[E| =0, >, (fn —an) = 27m. Let Pn—, py > 0, but in such fashion that
S~ p PnlBn — s} < co. Such a sequence can always be found. Then define a function F(0) as
follows
(i) F(842n)=F(0);

(i) F(8)=o0,0 €E;
(i) fa,<6<py
l'l

F—O—p)?”

where I, = (B, — ax)/2 and y, = (Bx + 2n)/2.
Then

F(H):pn

By

[ Ferd8 =mp,

U
so F € Li(—n, ) by choice of the p,, since |E| = 0. F(0) is also continuous from R to [0, 0]
(with oo included). Indeed, if 6y € (ap, B) for some n, continuity of F at 6y is obvious. If
0o € E, and a sequence of s tends to 6, then we can split the sequence into two parts:

One part lying in finitely many of the complementary intervals (a,, ) — ultimately, in
at most two of them — and tending to some common endpoint of them. For this part of the
sequence it is clear by the formula in (iii) that F(8) — cc.

Another part running through infinitely many of the (an, f,). Since, by construction,
F(0) > p, on (ap, B,) and p, — co, we again have F(6) — co. (That’s the reason for the
introduction of the p, !)

We now put

2

1 1—r
10 - F
Utre™) 27r/ 1+r2—2rcos(f —t)

-n
which we can do since F € L;. By part of Problem 2 above (Chapter I, Section E),
U(z) = F(9) for z — ¢, i.e., U is continuous from |z| < 1 into [0,oc]. We also take

N ,.,,_L/" 2rsin(f — t)
Utre™ = T3+ —2reos(o — g D4

(t)dt,

—-n
By the same Problem 2, U(z) extends continuously up to each open arc {€?;a, < 8 < B},
for F(8) is %, (and even %-.) on each such open arc.
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Now put

oz = BT
U(z)+iU(z)+ 1
Since F(0) > 0, U(z) > 0, so ¢(z) is analytic in |z| < 1, and |$(z)| < 1 there. It even extends
continuously up to |z| = 1. For if 6y ¢ E, we have just seen that U(z) and U(z) tend to
continuous limits as z tends to points in some small arc about &%, And if 6 € E, U(z) — 0
as z — "%, so, independently of how U(z) behaves,

U(z)+iU(z)
Uz) +i0(z) + 1
. For 0 ¢ E but tending to a point 6y of E we also clearly have for the boundary

o(z) =

for z — e'

limit ¢(e?),

F(0) + iF(6)
F(0)+iF(0) +1
since F(#) — . Taking ¢(z) to be thus extended by continuity up to |z| = 1, we now see
that |¢(z)] < 1 everywhere for |z| < 1 (sic!), save when z = ¢ with 0 € E, where ¢(e) = 1.
And this function ¢ is continuous on |z| < 1 and analytic in |z] < 1. The first construction
of such a function was essentially made by Fatou in his thesis — the Riesz brothers just
used it. (But Fatou never thought of the theorem they proved by its help!)

Let k = 1,2,.... Then [¢(z)]* is also analytic in |z| < I, continuous in |z| < 1, so

[p(re”)]* — [p(e”)}*

uniformly for r — 1*. Hence for each k,

¢(e”) =

)

/ [D(re”Ye” dpu(6) — / [6(e")]*¢” du(o)

asr — 1.
Now for r < 1, by analyticity,

0
d’(re Zan re™ s

the series being uniformly convergent in 6.
So, by the hypothesis of the theorem to be proved,

/ [b(re? )} e du(B) = 0

Making » — 1, we have

n

/ [B(e*)] e? du() = 0, k =1,2,... .

-7

But now, by construction, ¢p(e'?) =1 for 6 € E whereas elsewhere, |¢(e'’)] < 1. Therefore,

* The presentation at this point has been improved thanks to the criticism of M.-Y. Couture.
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by bounded convergence,
Jutenter auey~ [ e auo)
- E

as k — =, ie., fE edu(f) = 0 for any closed E with |[E| = 0. Since, as stated at the
beginning, if u were not absolutely continuous we could get such an E with [, e9du(8) + 0,
we have reached a contradiction, proving the theorem.

2. Modern Helson and Lowdenslager proof
Here is a modern proof of the F. and M. Riesz theorem, due to Helson and Lowdenslager,
ca. 1958.

Given a finite positive measure v on [—7, 7], we let L,(dv) be the Hilbert space obtained
by defining

(.8} = / F()g@ dv(6)

for continuous 2mn-periodic functions f and g, and then forming the completion in the usual

way, using the norm [|f||, = /{f, /)y

(1) Write du(8) = h(0)d6 + ds(f) where h € L; and s is singular, and suppose

T

/e""” du(@) =0, n=1.2,...
—n
Our main object is to prove that
n

/e""’ds(e) =0, n=1,2,...

i

Take
dv(0) = (1 + |h(0)|)d6 + | ds(P)|.

We consider 2 = the closed subspace of Ly(dv) (sic!) spanned by {¢"0;n=1,2,...}.
Let F € 2 be the element of 2 making

/(1 — F(6)* dv(6)

as small as possible. Since dv(8) > db,

/ 11— F(8)7 dv(6)

-7

> inf {/ll — P(0)]*d8; P(0)=a1ei0+aze3’”+...+a,,e"""} =2m.

By elementary Hilbert space geometry, in Ly(dv), 1 — F L 2, in particular
L —F L1~ F(9) in Ly(dv)
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for n=1,2,.... Therefore
mn
/ H—F@)e™dv9)=0, n=1,2,...,

so, since dv(0) = 0, by conjugation,

\|1— ()P dv(0) = cdb.

By the previous, ¢ > 0.

(i) From |1 — F(8)> dv(8) = cd0, |1 — F(#)*> dv(6) is absolutely continuous, so
|1 — F(0)]?|ds(8) =0, or F(0)=1 ae. |dsl.

Therefore
[1 — F(0)* dv(8) = |1 — F(0)]*(1 + |h(6)|) dO

Thus |1 — F}(1 4 |h|) =¢, or

1 1+ 1h|
—  — =———€[L(d
T—Fp - €Ll 0),
O
1
—— €L
T—F <™
and

C

(iii)  Since F(#) =1 ae. |ds|,

(1 —=F(8)dv(8) = (1 — F(O))(1 + |(6)]) b
Now 1 — F L 2 in Ly(dv) makes, with this,

/ei”o[l—F—(G—)](1+|h(9)|)d9=0a n=12.. .

ie., since 1/(1 —F) = (1 = F)(1 + [h(0))),

n
1 inf
71 —_ —123... .
/1 F(9)e do 0, n 52,3,

—n

With 1/(1 — F) € L, this last implies there is a sequence of polynomials G,(z) with

6 1
Gn(e )_ 1—F(9) s

n

(iv) From [" e du(f) =0, n=1,2,... and F(8)’s being in the closure of the set
linear combinations of the ¢, n > 1, in Ly(dv) with dv() > | du()], we surely have

/e”‘"(l—F(O))d#(G):O’ k=12.. .

—~1
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But du(0) = h(0)d0 + ds(f), and 1 — F(68) =0 a.e. | ds(0)|.
So

/eik(J[l —F(0)]h(6)d0 =0, k=1,2,...

—n

By (ii), (1 — F)h € L,, so, if G, is the sequence of polynomials from (iii), by Schwarz,

n

ik _ f ik 1 —
/e h(e)de_/e 71_17(9)[1 F(0)]h(8) db

—~T —n
n

= lim 0G,(¢°)(1 — F(0))h(6) df.

But each of these last integrals is zero by previous boxed remark, the G,(z) being polynomials
in z.

Conclusion
1

/e“‘"h(())d9=0, k=12,... .

-7

(v)  The result just obtained shows, with the hypothesis, that

/e"""ds(e)=0, k=1,23,... .
Since F € 2 is in the closure of the set of linear combinations of €?, ¢%?, etc. in Ly(dv)
where dv > |ds|, we have

/nF(G)ds(G) =0,
ie., ffﬂ ds(8) =0, since F(0) =1, a.ein|ds| by step (ii). We thus see that we even have
/neika ceds(0)=0 fork=1,2,3,...
Now apply the arg:;r!nent in steps (i) to (iv) using a new measure p given by
du(f) = e~ ds(8). Since this p is already entirely singular, we will obtain for it

n
/eikﬂefio du(@) :0, = 1,2,3,..‘ .

-n

/eikoe—Zil? ds(@) =0, k=1,2,3,....

Taking now a new (singular) u given by du(f) = e~2? ds(#) and repeating the process, we
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see that
n

/eikﬂe~3i0 ds(0) =0, k=1,2,3,....
—n

By repetition, we thus have

n

/ e ds(0) =0
—n
for all integers I, whence ds(0) = 0.
We have thus proven that, for our given original u, du(f) = h(8)d6. Thus p is absolutely
continuous. Q.E.D.

B. Definition and basic properties of H,

Admission of complex valued harmonic functions into the discussion is rather straightfor-
ward — we simply denote by that name any complex linear combination of ordinary (real
valued) harmonic functions. (This notion was avoided up to here because we wanted to
be able to say that a harmonic function was the real part of an analytic one!) It becomes
convenient now to consider complex valued harmonic functions because we can look upon
an analytic function as harmonic. The representation theorems of Chapter I, Section C and
the boundary behaviour theorems of Chapter I, Section D do, of course, hold for complex
valued harmonic functions — their extension is trivial.

Definition F(z), analytic for |z| < 1 is said to be in H; if

n
/ |F(re®)|d8 is bounded for r < 1.

1. Poisson representation for functions in H
Let F € Hy. Since F(z) is, in particular, harmonic for |z| < 1 we have, by a theorem in
Chapter I, Section C,

mn
1 1—r2
F(re') = — du(t
(re”) Zn/ 1+r2—2rcos(f —1t) uo)
—n
for some measure u (here complex valued!) on [—mn, n]. By Chapter I, Section D,
F(ré®)do — du(d) w’
as r — 1. Since F is analytic in |z| < 1, Cauchy’s theorem (or straightforward manipulation

with a power series!) here yields, for r < 1,
4

/einOF(relo)dG =0, n=12,...

—T

Therefore
n

/ei"odu(0)=0, n=123,...

-
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Now the theorem of the Brothers Riesz, given above in Section A, guarantees that u is
absolutely continuous, i.e., du(0) = h(0)d0 for some h € Li(—mn,m).
So in this case we really have

n
F(re’) = L / P, (0 — t)h(t) dt
2n
—n
with a function h. The distinction between this case (for analytic F) and the more general
one treated in Chapter 1, Section C (F merely harmonic) is very important for the whole
development of the theory.
By Chapter I, Section D we now have F(z) — h(f) a.e. for z —e
at the end of Chapter I, Section D, we call

F(e") = lim F(z)
L

0 so if, as mentioned

we have

n
i 1 1—r? i
0y — it
(re) 2n / 1472 —2rcos(§ — t)F(e ydi
—n

for F € Hy.

2. L; convergence to boundary data function
From the boxed formula in Subsection 1, and the elementary approximate identity property
of P,(6) (Chapter I, Subsection D.2):

/|Fre F(€%)|d0 -0 asr— 1.

3. Cauchy’s formula
By Cauchy’s formula, for |z| < R < 1,

1 [ F©
F(z)_%/C_ng.

[¢I=R
Now if |z| < 1 is fixed and we make R — 1, we conclude from Subsection 2 that

Fia)= 5 / )d(e)

which is Cauchy’s formula for functions in Hj.

C. Digression on conformal mapping theory
A simply connected region whose boundary contains more than two points can be mapped
conformally on the interior of the unit circle. This is the Riemann mapping theorem, whose
proof belongs to the basic course on complex variable theory.
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It is also true that if the simply connected region’s boundary is a Jordan curve, then the
function mapping the region onto {|z| < 1} has a continuous one-one extension up to the
boundary, which it takes onto {|z| = 1}.

This fact is often given without proof in complex variable courses. Because we use it
sometimes in the present book, we give a complete proof in Subsection C.1 below. The
proof uses the Jordan curve theorem, here assumed known, but is otherwise self-contained.

1. Carathéodory’s theorem

Definition A Jordan curve is a continuous one-one image of {|{| = 1} in C. The continuous
one-one function mapping {|{| = 1} onto the Jordan curve is called a parametrization of
the curve.

By means of its parametrization, any Jordan curve has a natural order defined on it, in
an obvious fashion. We can thus speak of arcs on a Jordan curve, and so forth.

Definition A Jordan arc is a continuous one-one image of an interval of R (with or without
endpoints) in C.
A Jordan curve can be a very complicated object:

We admit without proof the following Jordan Curve Theorem. Let I' be a Jordan curve.
Then C ~ T consists of two connected components, ¢ and Q, one of which contains all z with
sufficiently large modulus. If w € T, any neighbourhood of w has in it points of @ and points
of Q.

Definition Let Q be the component of C ~ I" which contains all points of sufficiently large
modulus. Q is called the outside of I'. The other component, ¢, is called the inside of T'.

In complex variable theory, one uses the following definition:

A connected open set in C is called simply connected if, whenever any Jordan polygon TI
lies in the open set, the inside of IT also lies in it.

(A Jordan polygon is a Jordan curve made up of straight segments, i.e., a simple closed
broken-line path. The Jordan curve theorem is elementary for Jordan polygons (although
not trivial), and can be proved by induction.)

Lemma Let T be a Jordan curve, and O its inside. Then O is simply connected.

Proof Assume not. Then there is a Jordan polygon IT < ¢ whose inside, ¢, is not in ©.
Therefore there is a z € (' with z € T or z € Q, the outside of T. If z € T, let 4" be a
neighbourhood of z with 4 = (¢0". By the Jordan curve theorem, 4" contains a point z’
of Q. So in any case, if the result is false, (¢ has in it a point z’ € Q. Since a connected
open set is arcwise connected, we can join z’ to co by a path A lying in Q, in particular, not
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touching T. Since z’ € (', inside of TI, A must touch II, say in z’. Then z” € €. But A joins
z”’ to oo without touching I, which is impossible. So the lemma is true.

Remark  The above argument will be used again in what follows. We shall refer to it as
the Jordan curve argument.

Let now I' be a Jordan curve, and let & be its inside. The Riemann mapping theorem
says there is a conformal mapping ® of |z} < 1 onto & since, by the lemma, & is simply
connected. Our problem is to show that ® can be continuously extended up to {|z| < 1} so as
to take {|z| = 1} in continuous one-one fashion onto T

Lemma There is a function n(0) defined for all sufficiently small 6 > 0, with n(é) — 0 as
6 — 0, such that, given a,b € " with |a — b| < 0, there is one and only one arc of T having
endpoints a and b whose diameter is < n(9).
Proof Let y(e") be a parametrization of T, and let §o > 0 be so small that whenever
[ () —w(")] < do, [{ ='] < 2. For { and {’ with |w({) — w({')| < by, let ¢ be the (unique!)
shorter arc of {|z] = 1} having endpoints { and {’, and call y = w(s). By continuity of p
and its inverse, diamy — O uniformly for {p({) — w({’)] — 0, whatever { and {’ we take on
the unit circle with |p({) — w({")] < dp. So for § < dy, call

n(8) = sup{diamy; |p({) — ()| < 6}
Then n(8) - 0 as 6 — 0. Let 8; < dp be so small that #(d;) < (diamT')/2. Then the lemma
holds for ¢ < é;.

Definition Let a,b € I" with |a — b| sufficiently small. The unique arc of I' with endpoints
a and b having diameter < #(|a — b|) is called the smaller arc of T joining a to b.

Lemma Let ® map {|z| < 1} conformally onto & bounded by the Jordan curve T. Let
|¢] = 1. Then lim,_,; ®(z) exists and is on T.

This is the main part of the solution of our problem, and will be done in a series of steps.

(i) Without loss of generality, { = 1, and, instead of looking at @, we look at a conformal
mapping F(z) of 3z > 0 onto 9. We are to prove that lim,_o F(z) exists and is on I'; this
will be enough. With v, the half-circle re®, 0 < 8 < w, consider the (un-ended) Jordan arc
F(y,) € €. We have :

length F(y,) = / |F'(re®)|r d6.
0

Also,

T

oo > area P = / IF(z)?dxdy = //|F’(re‘0)!2rd6dr,
0 0

Jz>0
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and this by Schwarz’ inequality is

[ llength F(
t v
, [l rer
0
So
F1
/;[length F(y,))dr < co.
0

Since for any p > 0, fo” dr/r = oo, there must be a sequence r, | O with length F(y, ) — 0.
(N.B. Examples show that it is not true that length F(y,) — 0 for r — 0 !) Choose such a
sequence {r,} once and for all, and call y, = vy,.

(i)  As soon as length F(y,) < oo, the limits

a = lim F(r,é®) and b= Jim F(rye')
exist. They are on I'. Assume that, e.g,, a € Z, and let A" be a neighbourhood of a with
N = D. Let zg = F~Y(a); 3zy > 0, and choose A" so small that F~'(4") has compact
closure in 3z > 0. This is possible because F~1is continuous! Then, for § > O sufficiently
close to 0, F(r,e’) is in A", so rye®® is in F~}(4"), which is false for 8 close enough to 0. So
a and b are on I'. We adjoin a and b to F(y,) in an obvious fashion so as to get either:

(a) A closed Jordan arc F(y,) if a # b;
(b) A Jordan curve if a = b.

In case (a), |a — b| < length F(y,) is small if # is large; therefore by the above lemma there
is a unique smaller arc Ty, of T going from a to b. In this case F(y,) and Ty, form, together,
a Jordan curve. The proof of this consists in writing down a parametrization for F(y,) U Tz
in terms of a readily available one for F(y,) and the one for I', and is so straightforward
and routine that we omit it.

(iii) Let ¢, be the inside of the Jordan curve F(y,) UT,, in case (a) above, or of F(y,) in
case (b) above. Then 0, = 2.

Proof Note that F(y,) = 2, and repeat the Jordan curve argument already used in proving
the first lemma.

(iv) Let n be sufficiently large, and let S, and T, be the regions shown in 3z > 0:

0

Then F(S,) < Oy, the inside of F(y,) UT 4 (or of F(y,) if a = b).

Proof By (iii), ¢, = 2. Take any wy € (,, then wy = F(z) where 3z, > 0. Since
wo & F(yn), 20 € Sy or 29 € Ty
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(a) If zg € Sy, F(S,) S O, and we're done. Indeed, S, is open and connected, so F(S,) is
also. F(S,) = 2(= C~T)and S, Ny, =0, so F(S,) lies entirely in the complement of the
Jordan curve bounding 0, (F(y,) or F(y») U T as the case may be). F(S,) has a point in
common, namely wo, with the connected component @, of that complement. Therefore F(S,)
must lie entirely in that component, ie., F(S,) € O,.

(b) If zg € T, then we prove as in (a) that F(T,) = ¢,. However, this we now show to be
impossible for sufficiently large n. Indeed,

area F(T,) = (area 2 —area F(S,)) > areaZ as n —

since N,S, = @. On the other hand, if length F(y,) = 8,, we have §, — 0 by (i), and
|a —b| <, so surely Iy, has diameter < 5(d,) which — 0 as n — oo, by the second lemma.
(We count Ty, as {a} if a = b. Of course, a and b and Ty, depend on n, but we do not show
this dependence in the notation, in order to have easier symbols to read!) For any given
large n, let A, be a disc of radius J, +7(d,) about the end a of F(y,); then the whole Jordan
curve F(y,) U Ty lies in A,:

From this it follows that the inside @, of F(y,) U 'y also lies in A, — this is proven by a
repetition of the Jordan curve argument.
Soarea 0, < n(é,,+n(5,.))2—n>0 as n — oo, whilst, as we have seen, area F(T,)—area 9 >

0. Therefore, for sufficiently large n, F(T,) < O, is impossible, and we must have F(S,) S Op.
Q.E.D.

(v) We have S, 2 Sp4+1 2 .... By (iv), for sufficiently large n, F(S,) < 0,, and as we saw in
proving (iv),
diam 0, < 6, + n(é,,)——n—>0.

Now suppose 3z > 0 and zk—k—>0. The sequence {F(z)} is eventually in every F(S,)
and diam F (Sw)—0. Therefore F(z) converges to a definite limit, w, say, by Cauchy’s
convergence criterion, and w is independent of the particular sequence {z;} chosen of points
tending to 0. By the proof in (iv), the distance of any point in F(S,) S €y to T is < 8, +#(dn)
which —0, so w € T. (This could also be seen by the argument at the beginning of (ii).)

We have completed the proof of our third lemma.

Go back to @(z) which maps {|z| < 1} conformally on 2. The lemma just proven shows
that for each ¢, |{| =1, lim,_; ®(z) exists and is on T.

Notation Call lim,—; ®(z) = ®({) for |{| = 1.
Lemma ®((), as thus defined, is continuous on {|{| = 1}.
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The proof is easy and routine, so we omit it.
Lemma ®({) is one-one on {|{| = 1}.

Proof Assume not. Then for, say, « and § on the unit circle, @ # B, we have ®(a) = ®(B).
Let ¢ be the path shown, and consider ®(s).

a

Since @ is one-one in {|z| < 1}, it is easy to see that ®(c) is a Jordan curve lying entirely
in 2 except for the one point, ®(x) = ®(F) which lies on I'. A repetition of the Jordan
curve argument shows that the inside, 0, of ®(c) lies in 9. Let S and T be the two sectors
shown of {|z| < 1}. The argument used in step (iv) of the proof of the third lemma shows
that ®(S) = O or ®(T) = ¢. Without loss of generality, let ®(S) = €. Then, if z € S and
|z| = 1, we must have ®(z) — ®(«). Indeed all the limit points of ®(z) must be on I if
|z] = 1, by the argument in (ii) above. Also, ®(z) stays in ¢ whose only limit point on I is
®(a). (Proof: @ = 2 so if w is a limit point of ¢ which is on I' (hence not in Z), w is surely
¢ ¢, so w is on the boundary of ¢, ®(s). But the only point of ®(s) which lies on T is
®(a) !) So ®(z) necessarily — D(a).

Since the boundary of S includes a whole arc of |{| = 1 (from « to ), and ®(z) is analytic
in |z| < 1, it must in fact be constant in {|z| < 1} and equal to ®(«). This is absurd, and the
lemma is proven.

With @(z) extended as indicated above to {|z| < 1}, it becomes continuous on that closed
disc and takes {|z| = 1} in one-one fashion into T

Lemma @ takes {|z| =1} onto T.

Proof Let wy € T'. By the Jordan curve theorem there is a sequence of points w, € &
with wp——wo. Let zy, |zy| < 1, be such that ®(z,) = w,, then d>(z,,)—n—+wo. Without loss of
generality, z,—zo, |zo| < 1. But |z9| < 1 is impossible, for then wo = lim,_.c, ®(z,) = D(2o)
would be in 2. So |z9| = 1, and, by the above-described extension of @, ®(zy) = wy.

Theorem The conformal mapping ® of {|z| < 1} onto the inside @ of T has a continuous
one-one extension up to {|z| = 1} and when thus extended takes {|z| = 1} onto T

Proof Combine the last 4 lemmas.

Remark  The result is due to Carathéodory, ca. 1912 or 1914. The above proof I learned,
in part, from my teacher, Rafael Robinson — he gave the analytic argument of (i) in his
course in Berkeley, in the autumn of 1951. I suspect that the whole argument consists of
very well-known ideas.

2. Lindel6f’s first theorem on conformal mapping

Suppose 2 is a connected region bounded by a Jordan curve I', and suppose, without loss
of generality, that 0 € . Suppose f(z) maps {|z| < 1} conformally onto Z; as we have
seen, f has a continuous one-one extension up to |z| = 1, and, when thus extended, takes
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that circumference onto I, yielding a parametrization of I'. We suppose, without loss of
generality, that f(1) =0:

r

In 1917 (in the same Scandinavian Congress proceedings where the famous paper of F. and
M. Riesz appeared), Lindelof published a theorem about the case where I" has a tangent at
0. This theorem states that for |z|] < 1, z — 1, we have

arg f(z) — arg (1 — z) — constant.

It means that the conformal images of sectors in |z| < 1 with their vertices at 1 are
asymptotically like sectors in @ of the same opening with their vertices at 0:

r

Let us, for the moment, grant the following:
Lemma arg f(z) is bounded in |z| < 1.

Then the proof of Lindelof’s theorem runs as follows:

Since f(e') is continuous and f(e'?) # O for € # 1 (the Jordan curve I' being simple),
arg f(e'’) (defined as lim,_ 0 arg f(z)) is continuous for e away from 1; the lemma says it’s
bounded.

For I to have a tangent at 1 means that arg f(e') tends to a certain limit, say «, as 6 — 0+,
and tends to o + an odd multiple of = as § — 0—. It is reasonable from considerations
of orientation that this multiple be simply n; granted this (which will be proved after the
lemma), we see that arg f(e’) — arg (1 — ) is continuous at 0, where it equals « + (7/2).
Since arg f(z) — arg(l — z) is harmonic and bounded in |z| < 1, we have, by Chapter I,
Section C,

n
. . 1 1 =72 et
arg f(re’) —arg(l —re?) = 2—n/ s ! jarg [lf(—e)”} de

—2rcos(f —t
for |z| < 1. The above-mentioned continuity now shows that
T
argf(z) —arg(l —z) - a + 3
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as z — 1, by a theorem in Chapter I, Subsection D.2.

To make this argument rigorous, the lemma and the statement about arg f(e**) must be
proved. A rigorous proof uses the Jordan curve theorem.

Assume without loss of generality that the tangent to I' at O is vertical. Then, given
n > O there is a 6 > 0 such that all points w = f(¢%) on T" with |w| < 6 lie in one of the
two sectors |argw + (n/2)] < n:

(=]
O
<U
3 vt S
(o2
>

r

There are points P on the x-axis arbitrarily close to 0 with P ¢ £. Indeed, let ® be
a conformal mapping of |z| > 1 (sic!) onto the outside of I', and consider the curves
yn = ®(4,), where 4, is a sequence of small arcs about 1 lying in |z| > 1, whose radius tends
to

Yn

T

Since @ is continuous and one-one up to |z| = 1, each y, is a Jordan arc lying in the outside
of T, except for its two endpoints, which are on I'. These endpoints are distinct, and equal
to points ®(er™®) say, where a > 0 is small if 1, has sufficiently small radius. ®(e”) is a
parametrization of T, so, since ' has a vertical tangent at 0, ®(¢’*) and ®(e~*) must lie
on opposite sides of 0 in the union of the two vertical sectors |argw * (n/2)] < n, if a > 0
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is small. That means that vy, starts on one side of the x-axis and ends on the other side.
Therefore it crosses it at, say, P, so P lies in the outside of T.
Now if we do this construction with radius A, sufficiently small, we get 0 < |P| < 4.

y
T
Yn
~
0 Y /P J§ X
r

If, then, P > 0, the whole sector |argw| < (n/2) —n in |w| < J lies in the outside of T, for
any w there can be joined to P by a line not touching I'. A similar statement of course
holds if P < 0.

Since {|z| < 1} is simply connected, and f(z) analytic and # O there, we do have single
valued branches of logf(z) in that open disc. It is claimed that any one of those has
bounded imaginary part there. This imaginary part is a determination of arg f(z) for |z| < 1,
so establishment of the claim will prove the lemma.

Fix any one of the points P # 0 just found on the x-axis, with |[P| < § and P ¢ @
(indeed, P ¢ @ since P ¢ T'). Without loss of generality we may assume P > 0 as in the
above figure; then the interval (0, P] on the x-axis is also disjoint from T

Since our point P lies outside of ', there is a broken line path going out from P towards
o0 (straight where sufficiently far out) which never touches I'. Taking A’ to consist of the
segment [0, P] followed by that broken line path, we get a polygonal curve from O out
towards oo, touching I" only at 0. Let us now cut off (one by one) any loops A’ may have
at the points where it crosses itself. The result is a new path A without self-intersections
consisting of a segment [0,Q], 0 < @ < P, followed by a broken line ¢ from Q (sic!) out
towards oo which never touches I'. The whole path A, except for O, lies in the outside of T
Therefore & ~ {0} lies in the complement of C ~ A.

That complement is, however, a simply connected domain not containing 0, so we have
analytic single-valued branches of logw defined therein. Since Z ~ {0} = C ~ A, any
single-valued analytic determination of logw in & extends to one in C ~ A by analytic
continuation. For |z| < 1 and z # 1, we can thus substitute w = f(z) (€ 2 and # 0) into
one of the functions logw just described and get a continuous single-valued determination
of log f(z) for such z, analytic for |z| < 1. And any such determination of log f(z) in
{lz| < 1} is obtained in this manner from a suitable branch of logw defined in C ~ A. The
lemma will therefore follow if we show that each such determination of logw has bounded
imaginary part on @ ~ {0} = C ~ A.
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The portion o of A has positive distance
e from 0, 0 <& < Q. LetS be the slit
disk consisting of the w, 0 < |w| < ¢, with
w ¢ (0,¢); then (C ~ A)N {lw] < & = S.
Since S is connected, the imaginary part of
any determination of logw in C ~ A must
be bounded in S — see figure. The intersec-
tion (Z ~ [0})N(C ~ S) is a compact subset
of C ~ A. Any (analytic!) determination of
logw in C ~ A is therefore bounded on that
intersection, and its imaginary part is also. Ev-
ery determination of logw in C ~ A thus has
bounded imaginary part on Z ~ {0}, and the
lemma is proved.

The argument just made shows also that any given continuous determination of arg f(z)
for |z| < 1 (which must be Jlogf(z) for one of the above determinations of log f(z)) is
not only bounded there, but in fact has a continuous extension to {|z| = 1} ~ {1}. Such an
extension gives us values of arg f(e") for 0 < |0] < m.

Supposing always a vertical tangent, let us see why arg f(e™"’) = arg f(¢¥) + n if 6 > 0
is small. We have just seen that for |z| < 1, |z — 1| < e, say, the variation of arg f(z) is at
most 7 + 27, because then |f(z)] < 6 and f(z) is confined to a sector of opening 7 + 27. So,
since |arg f(e¥?) 4+ (n/2)] < (modulo 2x) if § is small, and T has a tangent at 0, the only
two possibilities are

argf(e™) = arg f(e”) +n

and

argf(e™") = arg f(e") —m.

We must confirm the first possibility and invalidate the second.

f(z) is a conformal mapping of |z| < 1 onto &, therefore, if P ¢ 2 and r < 1, the
variation of arg (f(z) — P) around the circle z = re' is zero. Since f(z) is continuous up to
|z| = 1, we can make r — 1, and we see that

Ararg(w —P)=0, P ¢ 9.

Since, on the other hand, f(z) is conformal, by the principle of argument, if P’ € &, for
r < 1 sufficiently close to 1 the variation of arg(f(z) — P’) around z = re” is 27. Making
r— 1, we get

Ararg(w — P') =2n

if PleZ.

We just saw in the proof of the lemma that there are P ¢ 2 with O < |P| arbitrarily small
and P on the x-axis; without loss of generality let these points be on the positive x-axis.
Then, the whole circular sector |argw| < (n/2) — 5, |w| < 4, lies outside 2. An entirely
similar argument shows that there are points P’ in & on the x-axis with |P’| arbitrarily
small — these must then lie on the negative x-axis. We see that a circular sector of the form
(n/2)+n < argw < (3n/2) —n, |w| <9, lies in D.
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Now take a small fixed @ > 0, and put Q = f(e*), Q' = f(e™™). Let I'; be the arc of T
from Q' to Q (corresponding to —a < 0 < o) and I'; the complementary arc corresponding
toa< 0 <2m—oa Let P >0, P small, then

Ararg(w — P) =0,
Ararg(w + P) = 2m,
as we have just seen.
So
Ar,arg(w — P)+ Ar,arg(w — P) =0,
Ar,arg(w -+ P)+ Ar,arg(w + P) = 2m.
If P is close to zero, the two second terms are sensibly equal — I', stays away from O —, so
we find

Ar,arg(w + P)— Ar,arg(w — P) — 2n
as P — 0+.
Now if Q' = f(e™™*) lies below 0 in the double sector
n
larg w+ —2-‘ <n

and Q = f(e*) lies above, then for P close to 0,
|Ar,arg(w + P) —n| < 2
and
|Ar,arg(w — P)+m| < 2.
Whereas, if Q' lies above 0 and Q lies below it,
|Ar,arg(w + P)+ x| < 21,
|Ar,arg(w — P) —m| < 2#.
The first possibility gives
Ar,(arg(w + P) —arg(w — P)) = 2,
and the second
Ar,(arg(w + P)—arg(w — P)) = —2m.
So the first is correct
f(e™) lies above 0
and
fe™y  below.
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Since points on the negative x-axis close to 0 are in 9, we see that, corresponding to an
appropriate branch of log f(z) defined in {|z| < 1}, we have

Jarg f(e) — 2| < 20,

—iot 3n
arg f(e™) — 5| <,

and, since # is finally arbitrary, arg f(e %) — arg f(e™) — 7 as « — 0+
Lindelof’s theorem is thus completely proved.

An important application is the establishment of boundary behaviour results for certain
functions analytic in regions bounded by rectifiable Jordan curves. A rectifiable Jordan
curve has a tangent at almost every one of its points.

Therefore, at almost every boundary point of such a region (ie., one bounded by a
rectifiable Jordan curve), the notion of non-tangential limit transfers over from the unit circle
by conformal mapping. Such a conformal mapping takes a sector of opening < 180° in the
unit circle, with its vertex at the pre-image of a boundary point, to a subdomain which is
asymptotically like a sector of the same opening having its vertex at the boundary point.

This fact, together with the important theorem of F. and M. Riesz to be proved in
Section D below, enables us to extend many of the results proven in the next chapter
about boundary behaviour of functions analytic in |z|] < 1 to corresponding results about
boundary behaviour of functions analytic in a region bounded by a rectifiable Jordan curve.

3. Lindelof’s second theorem on conformal mapping

We continue with the discussion begun in the last subsection, but assume now that the
Jordan curve T" has a tangent at each of its points. The line tangent to I" at w thereon
will be denoted by T,,. As before, f(z) is a fixed conformal mapping of {|z| < 1} onto the
domain 2 bounded by I.

Under the present circumstances, f(z) (continuous, as we know, up to {|z] = 1} and
one-one even there) has, at every point ¢ on the unit circumference, the property estab-
lished above. This means that for each such point, any continuous single valued determi-
nation of arg(f(z) — f(e®)) in {lz] < 1} is bounded there, and extends continuously up to
{lz] = 1} ~ {¢'%}, and that after making that extension,

Jim arg(f(e”)—f(e*) and  lim arg (")~ f(e™)

both exist, with the second limit equal to © plus the first one. Either of those two limits can
be taken as the argument of a vector parallel to Tyue); the two vectors thus specified point
in opposite directions.

We wish to specify a tangent vector pointing in the direction ‘of increasing 6. That we
do by making the

Definition p(e'®) will denote the complex number of modulus 1 with argument equal to
. 0y _ £0,i0
Jim arg (7(e”) — (™)
(using any one of the single valued determinations of arg (f(e'?) — f(e'%)) just described).

We now further restrict our attention to Jordan curves I' having continuously turning
tangents. By this we mean curves I' having a tangent at each of their points such that,
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for w and w’ anywhere on T, the smaller angle made by T,, and T, tends to zero whenever
[w—w|—0.

Lemma If T has a continuously turning tangent, p(e®) is a continuous function of 6.
Proof We may, without loss of generality, take 6y = 0 and f(1) = 0 with p(1) =i (ie., Tp
vertical) as in the discussion of the preceding subsection. Let us show that then p(e) — i
for 8 — 0+; the argument for 6 — 0— is the same.

Fix a small # > 0; then, as in the passage referred to, w = f(e) will lie in the sector
largw — (m/2)| < 7 for all sufficiently small 8 > 0 (and in the sector |argw — (3n/2)| < 5 for
all f < 0 close enough to zero). This gives us an o > O such that (for suitable specification
of the argument) |arg f(e”®) — (n/2)| <  when 0 < 6 < &. The hypothesis says that if & > 0
is small enough, Ty ey will also make an acute angle < n with the vertical (direction of Ty)
for0<f<a

The second property shows us at once that p(e) is close to i or —i when 0 < 0 < «,
and the lemma will be proved if we show that the first possibility must hold. Assume then,
reasoning by contradiction, that there is a 8;, 0 < 0; < o, with |arg p(¢®1) + (n/2)| < 5 (for
suitable specification of the argument).

Using a suitable continuous determination of
arg (f(z) — f()) on {|z| < 1} ~ {€'} we have, how-
ever,

arg (f(¢*) — f(€)) — arg p(e™)
for 8 — 6;+, and then, by the result proved at the end
of the last subsection,
arg (f(¢”) — f(¢*)) — argp(e™) + 7
for 8 — 0;—. Thence, and by the previous relation,

arg (f(e”) — f(e") — 5| <21

for all § < 0 (sic!) sufficiently close to 6;. This means
that for such 0,

w2

3f(e") > 3f(e™), /

n > 0 having been chosen small.

At the same time, for 6 =0, /

3If(1) =0 < 3f ().

since 0 < 8; < o (making |arg f(¢') — (n/2)| < 7).

There must therefore be a 6, 0 < 0, < 6, where
3f(e?) attains its maximum for 0 < 0 < 6. But then, 0
at wy = f(e®®), Ty, is horizontal, and hence makes
angles of 90° with T,. This contradicts the fact that
T,, can only make an acute angle < n with Ty, since
0<6, <.

We must therefore have nn

larg p(e”) — (n/2)] < n

(for proper specification of the argument) when 0 < 6 < o, and see that p(e??) - i = p(1)
for # - 0+. Done.
Lemma Suppose that T has a continuously turning tangent. Then, given any ¢ > O there
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is an a > O such that, if we take, for any 0, any one of the continuous determinations of
arg (f(z) — f(e")) on the set {|z| < 1} ~ {€"}, we will have, for 0 < h < «,

arg (f(e""*") — f(¢")) = lim arg(f(e”) - f(e"))| <.

Remark  Crudely stated, this says that the convergence of arg (f(e) — f(e?)) to its limit
for 8/ — 0+ is uniform in 6.

Proof of Lemma  The function p(e'?), continuous on the unit circumference by the preceding
lemma, must there be uniformly continuous. Given ¢ > 0, without loss of generality ¢ < 7/2,
there is then an a > 0 such that |p(e? ) — p(e®)| < 2sin(e/2) whenever |6’ — 0] < a. It is this
o which will do the job.

Fixing any 6 and any continuous determination of arg (f(z)— f(e'®)) for |z| < 1, z # &%,
we write

A= 11m arg (f(e") — f(e'™)),

60— °+
making surely

larg (£(e”) — f(e™) — A <
for all 8 > 6y sufficiently close to 6. What we have to do is prove that this inequality
persists, as long as 0 < 6 — 6 < a.

Assume that it does not. Then there is a least value of 0, 8y < 6 < 6y + @, where
larg (f(e!®) — f(ei%)) — A| becomes equal to ¢, say for § = 6;. Denote then by £ the
(infinite!) straight line through f(e®) and f(e'®'), and observe that then there must be a 65,
6o < 0 < 01, for which Ty e, is parallel to #. This is indeed obvious if f () lies on % for
By < 0 < 6;; otherwise there is a 6, 8y < 6 < 0y, for which f(e) is as far away as possible
from & (for this range of values of ), and then 6, may be taken equal to that value of 6.

Suppose without loss of generality that

arg (f(e”) — f(e™) = A +e.
Then the unit vectors e“@+?) and —ei“+) are parallel to the line %, so p(¢'®?) must coincide
with one or the other. We have, however, p(e'®) = ¢ by definition. Thence,
Ip(e®) — p(e™)] = |1 £ €| = 2sin(e/2),
¢ being < n/2. Here,
|62 — Bo| < 61— 60 <,

and the choice of a is contradicted. This means that the inequality in question must remain
valid for 8y < 0 < 6y + «, and the lemma holds.

We can now give a result that is fundamental for any further study of how the curve I'’s
regularity induces regularity properties of the conformal mapping f(z). Since f'(z) # O for
|z] < 1, single valued analytic branches of log f'(z) are defined there, and any two of them
differ by a constant integral multiple of 2zi. These branches give us the various continuous
determinations of the (harmonic) function arg f'(z) in {|z| < 1}.

Theorem (Lindelof)  If the curve T has a continuously turning tangent, each harmonic
determination of arg f'(z) in {|z| < 1} has a continuous extension to the closed unit disc.
Proof Fix for the time being any small h > 0 (so as to ensure the behaviour guaranteed
by the last lemma) and look at the ratio

flehz) - f @)

gn(z) = elhy — 7



I1:C Digression on conformal mapping theory 49

When z — 0, this tends to the value f'(0) # 0. The mapping f(z) is actually continuous
and one-one on {|z| < 1} as we know, so gx(z) cannot vanish for 0 < |z| < 1. That function
is therefore continuous and # 0 on the closed unit disc. It is also analytic for |z] < 1, so we
have analytic branches of logg,(z) there. Our first task is to show that any one of those
branches has a continuous extension up to {|z| = 1}. That we do by a tiling and patching
construction.

Look at the function

Fy(s) = f(&*™) — (&)

for Rs < 0 and close to 0 and for 0 < Js < 2n. We T
will frequently write s = ¢ + it with ¢ and 7 real.

Fu(s) is continuous for Rs < 0, and Fy(s + 2ni) =
Fu(s). Fy(it) is also bounded and bounded away from
0 for real t. We therefore have a 6 > 0 such that, on
any small square bordering the t-axis of the form 2n

Op=1{s; 6<0<0, b<t<b+d},

single valued continuous determinations of log Fp(s) are
available. Two such determinations on the same Q, I
differ thereon by a constant integral multiple of 2mi.

We may just as well take 6 = 2n/N, with N a large
integer. Then the strip {s; —6 <0 <0, 0 <7< 2n}is
precisely covered (‘tiled’) by N non-overlapping squares
Qp, with b taking successively the values 0,2n/N, 4n/N, 47t/N
..,2(N — 1)n/N. The squares lie one above the other,
and two adjacent ones have a horizontal side in com- Qo
mon. Choose now a continuous determination of
log Fu(s) on each of these Qp in such fashion that the
determinations on any two of them that have a hori- 9
zontal side in common coincide along that horizontal
side. One may, for instance, pick a determination on the
lowest square Qp at pleasure, then take on Qy,/x the de-
termination matching the former one where t = 2n/N,

2n/N

—2n/N 0 o

and so forth. This gives us a continuous determination of log Fy(s) on the whole strip
{s; 2n/N<0<0, 0<7<2n},

analytic in the interior of that strip.

For such a determination we have

log Fu(o + 2ni) = 27i + log F(0).
Indeed, f(e"'z) — f(z) vanishes precisely once in {|z| < 1}, namely, for z = 0, so any
continuous determination of
log Fi(s) = log(f(¢"") — f(€%))

must, by the principle of argument, increase by 2ni when 7 = Js does and ¢ = Rs is held
constant < 0. This must remain true for ¢ = 0 by continuity.

On account of this property of log Fy(s), we obtain a continuous single valued determination

of

o (122 s
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on the closed ring {e"/N < |z| < 1} by putting that logarithm equal to log F(s) — s for

z=¢’, —2n/N < Rs <0, 0 < 3s < 2. This gives us a continuous determination of

f(eihz)—f(z))
V4

log g4(z) = log ( ~logle® — 1)

on that closed ring.

We have at the same time the branches of log g,(z) analytic for |z| < 1, each of which
is continuous on the closed disc {|z| < e~™N}. Taking such a branch which agrees with the
preceding determination of loggy(z) on the intersection of that closed disc with the above
closed ring (agreement of the two logarithms at one point of the intersection is already
enough for this!), we obtain a continuous single valued determination of log gn(z) for |z| < 1,
analytic in {|z| < 1}. Any other branch of log g,(z) analytic for |z| < 1 must differ from the
one just found by a constant integral multiple of 2xi, and hence also have a continuous
extension up to {|z| = 1}.

We now fix our attention on one of the determinations of loggu(z) continuous on
{|z] < 1}; it gives rise to a determination of arg gx(z) = Jloggn(z), continuous on the closed
unit disc and of course harmonic for |z| < 1. This particular determination is henceforth
denoted by

Arg gn(z).

With its help we proceed to obtain a continuous determination of arg(p(e”®)/e®) on the unit
circumference under the assumption that h > 0 was fixed small enough to begin with. Here
p(e'?) is the complex number of modulus 1 figuring earlier in this subsection, pointing in
the direction ‘of increasing 6’ along the tangent to I at the point f (e“’)._

To the determination Arggy(z) corresponds one of arg (f(€/?+") — f(e'?)) for 0 < 6 < 2x,
namely

Arg (£(e M) — f(¢)) = Arg gu(e”) + 0 + arg (" — 1);
here we may take arg (e — 1) = (n + h)/2. For each 6, 0 < 6 < 2m, we now let
Arg(f(2) = f(¢*))

be the continuous determination of arg(f(z) — f(e')) on {|z] < 1} ~ {€"} which agrees with
Arg (f(e'®+1) — f(€'%)) (as just defined) for z = &¥+h. Existence of this determination is
guaranteed by the work in the last subsection. If ¢ is any quantity > 0 (and without loss

of generality < n/2), we know by the second of the above lemmas that for a suitable initial
choice of h > 0,

|Arg o(£(£*9) — 7(e") — lim Argo(f(e”) — f(e")] <e
for 0 < 0 < 2n. Writing
A0) = Jim Argy(f(e”) —f(e))
for 0 < 0 < 2r, we thus have
|Arg (£(e09) — 1)) — 4(6)| < ¢
on that interval.

However, p(e?) = ¢ by definition. A(f) is thus a determination of argp(e) for
0 < 0 < 2w, and we now put

i0
Arg ("(:w )> =A(0)—06, 0<0<2m;
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it is claimed that the left side is continuous (and single valued) on the unit circumference.
By the preceding relations, we have

h
Arggi(e”) + T — @) +6| <o

for 0 < 8 < 2n, with Arggy(e”) continuous (and single valued!) on the unit circumference.
Here A(6) is at each 6 a possible value of argp(e®®), where p(e'?), of modulus 1, is a
continuous function of 6 by the first of the above lemmas. Therefore, since any two such
values must differ by an integral multiple of 27 and ¢ < n/2, A(0) must also be continuous
for 0 < 0 < 2n. By the same token, A(6) — 6 must take identical values for 6 = 0 and
for 8 = 2m, since that is true of Arggu(e”?). Continuity of Arg(p(e'?)/e?) on the unit
circumference is thus established, and we have

el - n+h
Arg (p(eio )) — Argga(e") — 5 <e
thereon.

Because Argg(z), continuous for |z| < 1, is harmonic in {|z| < 1}, we have there

—lz)? i
Arggi(s) = 5- / T A 40

by Poisson’s formula. This and the precedmg relation now yield

ih Tiozp o
}Arg (f(e _Z)—f(z)) +£__1_ ! |z,| Arg (p(:e)) dﬁ‘ <8+g

ehz —z 2 2n) |z—éY?
0

for |z| < 1.

Consider now what happens if we start with some other small value H' > 0 of h, corre-
sponding to a value ¢, 0 < & < /2, of the ¢ figuring in the second of the above lemmas.
By going through exactly the same reasoning, we get, corresponding to a continuous de-
termination Arg'gy(z) of arggy(z) on the closed unit disc, some continuous (single-valued)
determination Arg’(p(e®)/e?) of arg (p(eio)/e“’) on the unit circumference, with

— 2l o (P K
Arg'gn(2) + 5 2n/ = e’0|2 o0 dB‘ <e +5

for |z| < 1. Of course Arg'(p(e ‘0)/e"’) need not agree with Arg(p(e)/e?) on the unit
circumference, but since both are continuous there, they must differ by a constant integral
multiple of 2n. Adding such a multiple to Arg’gy(z) gives us a new continuous determination
of arggy(z), which we may denote by Arg gw(z), on {|z| < 1}, and we have then

4 ¥ - |Z|2 p(e”) W
Arggn(z T3 / |z — e’912 ( et df)‘ <&+ 2
for |z] < 1.

We take finally a sequence of values h, > 0 of & tending to zero (corresponding to values
of ¢ tending to 0) and get, in the way just described, determinations

Argg, (z) = Arg <f—(elhnz) — f(z))

ez — z
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of arg gy, (z) tending uniformly to

2n
1 1—|z)? ( ‘0)
7 |z—e'9|2Arg do — 5
0
for |z| < 1. The limit of the functions Arggy (z) in {|z| < 1} must, being finite (and
harmonic) there, coincide with some determination of the argument of
ity oy
i L€ =10 _
n—»xn ez —z
for |z| < 1. Denoting that determination by Arg f'(z), we have, for |z| < 1,

_ —|Z|2 P(elo)
Argf'(z /|z AT ( &0 ) df — 5

which exhibits a continuous extension of Arg f'(z) to the closed unit disc, equal, for z = ”,
to Arg (p(e'?)/e’) — n/2. Any other harmonic determination of arg f'(z) in {|z| < 1} differs
there from the present one by a constant integral multiple of 27, and hence also has a
continuous extension up to the unit circumference. The theorem is proved.

Remark The boxed formula obtained at the end of the last proof has its uses; it is

usually written
—zI? n(e)
Argf 2n/|2 e;o,z ( eif dB,

with n(e'’) = p(e?)/i designating the unit outward normal to the curve I" at the point f(e).
The theorem itself (as well as the formula) will be applied in Section F of Chapter V

in conjunction with other material of that chapter, so as to obtain some results about the

conformal mapping function f(z) depending on the smoothness properties of T

D. Domains bounded by rectifiable Jordan curves
Consider now a domain 2 bounded by a rectifiable Jordan curve I'. Let @ be a conformal
mapping of {|z| < 1} onto 2:

By Carathéodory’s theorem, proved in Subsection C.1, ® has a continuous one-one
extension up to |z| = 1 and maps that circumference onto I'. So surely, if [eifo, e, .., elr]
is a partition of {|z| =1}, [®(e%), B(e™),...,D(e"%)] is a partition of T.
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1. Derivative of conformal mapping function is in H;
Theorem ®'(z) € H,.
Proof (Beckenbach) Let ¢ = ¢2™/" Then, for |z| < 1,
S(z) = |®(ez) — D(z)| + |D(e?z) — D(ez)| +. . . + |D(e"z) — D" '2))|
is subharmonic, and S(z) is continuous for |z|] < 1 because ®(z) is. So by principle of
maximum, if |z| < 1,
S(z) < max S({).

[gl=1
But if || = 1, the points
[D(), Del), BEL),..., D))
form a partition of T, so by definition of curve length(!)
S(¢) <lengthT < .
Therefore if |z] < 1, S(z) < lengthI". Now fix r < 1. We will have

> 1®(e'r) — @ 'r)| = S(r) < length T.
k=1

Making n — oo and using continuity of @'(re®®) in 0 for r < 1, we get in limit
2n
/ |®'(re?)|r d6 < length T,
0
and since this is valid for all r < 1, ®'(z) € H;. Q.E.D.

2. Image of a set of measure zero on unit circumference
By Subsection C.1, if A is an arc of I, ® maps some arc J of {|z| = 1} in one-one
bicontinuous fashion onto A. The very definition of arc length now gives us

length A = / | dd(e)).
J

Theorem (F. and M. Riesz) If J is an arc of the unit circle and A = ®(J),
length A = / |D' ()] do.
J

Proof By the theorem of the preceding section @'(z) € H;, so by Subsection B.2,
n
[@'(e?) — @' (re'?)|dO — 0

forr — 1.
If an open arc J is given, we can find a continuous function T(8), |T(8)| < 1, vanishing
identically outside J, such that

/ T(0) d®(e”) — / | dd(e?)|
J J

<g,

/ T(0) e’ () do — / I<I>'(e‘(')]d()’ <e,
J J
& > 0 being arbitrary. To see this, choose T'(6) so as to have
[1r@-vesee) <.

J
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where U() is the Borel function of modulus 1 making

| dd(e)| = U(0) dD(e?).
Because J is an open arc, we can get such a T(#) vanishing outside J. Note that |®'(¢'®)| d§
is just the absolutely continuous part of |d®(e'?)], and ie?®'(¢9)dg that of d®(e). Here,
we can even take T(0) to be continuously differentiable. Then, integrating by parts,

/ T(0)dd(e) = — / ®(%)T'(0)do = —lim / O(re®)T'(0) d6
J J J
by the theorem of Subsection C.1. But, for each r < 1,

- / O(re®)T'(9)do = / ire®®'(re)T(9)d8,

J J

which, by the remark made at the beginning, must tend to
/ ie?®' (®)T(0) do
J

as r — 1. This is, by choice of T, within ¢ of [, |®'(¢)| df, whilst the quantity we started

with, which is equal to it, is within ¢ of [, |d®(e?)|. Since this last is the same as length A,
we get the theorem on making ¢ — 0.

Arc length on I can be used in an evident fashion to define linear measure on I'. First if
0 = T is (relatively) open on I', @ is a disjoint countable union of open arcs A, of I', and
we take |0] = >, length A¢. Then, for E = I' arbitrary, we take |E| to be
inf{|0|; ©® 2 E,0 open on T'}.
Using the one-one bicontinuity of ® as a mapping from {|z| = 1} to I it is now easy to
build upon the above theorem and see that

|O(E)| = [ |@'(e)|do
/

for Borel sets E on the unit circumference.
We have especially the important

Theorem (F. and M. Riesz) If E is on unit circumference and |E| =0, then |D(E)| = 0.
Proof Let the Q, be open sets on {|z| = 1}, Q, > Q11 = ..., Q, > E, such that |Q,[—0.

Then |D(E)| < |®(Q,)| for all n. But by the previous theorem and the discussion immediately
following it,

0(@,) = [ 10/,
Q,
which goes to zero as n — oo because |Q,,|—n—+0 and @'(¢"%) € Li(—n, 7). Q.E.D.

3. Taylor series of mapping function converges absolutely in closed unit disk

Theorem (Hardy) The power series of ®(z) converges absolutely up to |z| = 1.
Proof By Subsection 1, ®'(z) € H,. Also, since ® is conformal, ®'(z) never =01in |z] < 1.
Therefore we can define an analytic ¥(z) = ./®(z) in |z| < 1. Now write, for |z| < I,

oK
D(z) = anz".
0
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Then we have

feel
W(z) =) buz".
0
with
b(z) =ag, bibg+boby =a;y, bybo+biby + boby =ay, etc.
Since ¥'(z) € Hy,

/ |®(re'?)>do

is bounded for r < 1. By Parseval, this yields

[ve}
Z |bn|* < o0.
0

Now write
[ee)

w(z) =) lbalz".

0
By Parseval,

/ p(re®)[? do

is bounded for |z| < 1.
Let O(z) = [p(2)]* = 3-8 Anz", say. Then, on the one hand, ©(z) € H;, and on the other,

A, = 20: 1B |bn_i] > Xojbkb,,_k

= |ay|.

We have

5

50 to prove absolute convergence of power series of @(z) up to |z|] = 1, we need to show
Z |an|
n+ 1

The above computation guarantees this if ZA,, /(n+1) < oo.
0

Now for |z| < 1, using the principal determination of the logarithm,

n n
-3 < 3log(l —z) < 5

and
o0 z"
log(l - Z) = —Z 79
1
so that
Slog(1 —z)= ! ’Si‘:‘" plnl gind

—0
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for z = re'?, 0 < r < 1, whence, with ©(z) = > o Anz", using absolute convergence and
orthogonality,

2n

—ni Z Ay / eI log(l — re?)do

0

and this is in absolute value
2n

< %/|®(rei9)|d9

0
which is < M independently of r < 1. Since A4, > 0, we get, making r — 1,
YF Au/n < M/, as required.

Problem 3 Let I be a rectifiable Jordan curve bounding a domain 2. If f(z) is analytic
in Z and continuous on %, prove that [ f(z)dz = 0. (Hint: use conformal mapping.)
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Elementary Boundary Behaviour
Theory for Analytic Functions

A. Existence of non-tangential boundary values a.e.

Recall, from Chapter II Section B (or simply from the general results of Chapter I):
If F(z) e H;, F(°) = lim; .0 F(2)

exists and is finite for almost all 6.

In particular, we have the

Corollary (Fatou) If F(z) is regular and bounded in {|z| < 1}, it has non-tangential bound-
ary values almost everywhere on the unit circumference.

B. Uniqueness theorem for H; functions

Theorem Let F(z) € Hy and suppose, for a set E of positive measure, that F(e”) = 0 for
0 € E. Then F(z) =0.

Proof Without loss of generality, 0 < |[E| < 2zn. Put, forO0<r < 1,

. 1 1
h=—— [P(H—-t)dt — ——— —de
U(re”) IIE] /P(H ) 3% —1E) / P.(60 —t)dt
E [0,27]~E
Then U(z) is harmonic for |z| < 1 and

1 1

—— <U(z) < —

-5 =V =g

there.
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Besides, U(0) = 0 and especially
1 io
U(Z) - ETC——|E| as z _? e
for almost all 8 in [0,2n] ~ E. Using U(z) to denote the harmonic conjugate of U(z), we
see that

@(x) = exp[U(z) +iU(2)]
is bounded in |z| < 1, |@(0)| = 1, and for almost all 6 € [0,2n] ~ E

10N _ 1
lp(e )I—exp< —2n_|E|>-

(A.e. existence of (') is guaranteed by Section A above!)

Since ¢(z) is bounded, for each k, [¢(z)]*F(z) € H;. Suppose F(z) % 0; we may, without
loss of generality, suppose that F(0) # 0; otherwise we just work with the H; function
F(z)/z™ instead of F(z), m being the order of the zero F has at the origin. By Chapter 11,
Section B we now get

[p(O)F(0 / [o(e*)FF() df = - / [o()*F(e") de,
[02n]~E
since F(e'®) = 0, § € E. From this,

— k _l_ _ k i0
IFO) = 1O)FO)] < 5 exp< 2n_|E|) YL

[0,27]~E

which tends to zero as k — oo ( F(€'%) is in L1!). So F(0) = 0, a contradiction. We are done.

C. More existence theorems for limits

1. Analytic functions with positive real part

Theorem If f(z) is regular in |z| < 1 and Rf(z) = O there, lim, et f(z) exists and is finite
for almost all 6.

Proof (Titchmarsh) F(z) = 1/(1 + f(z)) is regular and bounded in |z| < 1 so, by Section
A, F(z) — a finite limit F(¢”) for almost all § as z — €. Since f(z) = (1/F(z)) — 1,
f(2) tends to the finite limit (1/F(e)) — 1 as z — ¢ unless F(e) = 0. Since, for F # 0,
|F(e')| > 0 ae. by Section B, we are done.

2. A.e. existence of F(0) for F in L,
Recall the notation of Chapter I, Section E, where (Subsection E.4) we proved existence of
F(0) ae. for F € Ly(—n, ).

Theorem Let F(6 +2n) = F(0) and F € Li(—n,nt). Then the principal value

1
)= U[z tan(@ -2
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exists and is finite a.e.

Proof (Titchmarsh)  Without loss of generality, F(6) > 0. Then, put

n

U(re?) = % / P.(6 —)F(1)dt,

—n

and let U(z) be the harmonic conjugate of U(z).
f(z) = U(z) +iU(z) is regular in {|z| < 1} and Rf(z) > O there. So by Subsection 1
above, f(z) — f(e') finite for almost all 0 as z — ¢ In particular, for almost all 6,

lim U@rey = 3f ()
exists and is finite. By Chapter I, Subsection E.3,

1 F(1) ~
I / 7&1“((9_[)/2)& — U@e’) —» 0

1—r<|t—0j<n

as r — 1 for almost all 6. This does it.

D. Privalov’s uniqueness theorem
1. Privalov’s ice-cream cone construction

Definition If [{| =1,

1 Fis
5 = {z, B> T larelC =2l < Z}'

Sy is the shaded region shown in the following figure:

We make a series of obvious remarks:

(@) Uper Spis all of {1/42 <z < 1},

(b) If1/y2 <zl <1forsomez {{;|{|=1&z€ S} is the (open) arc {1,/\{2 of the
unit circle constructed as follows:
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g, 45°

d
N
4

°

) IfJ = C:Cz is an arc of the unit circle with opening < 90°, the set of z,
1/\/5 < |z] < 1, such that an S; contains z only for some { € J, consists of the
closed curvilinear triangle T constructed upon J in the following manner:

This follows very easily from (a) and (b).
If the arc J subtends more than 90°, the set of z, l/ﬁ < |z| < 1, with z € S¢ only for
{ € J is the closed curvilinear trapezoid T constructed thus:

Now we can describe Privalov’s construction.
Given a closed set E on the unit circumference, let {J;} be the (at most countable) set of
arcs on that circumference contiguous (complementary) to E. Using each arc J; as a base
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construct upon it the triangle or trapezoid Ty according to the recipe in (c) above. Take
the closed domain

Z={z1 <} ~JT ~ e
k k

{The superscript ° denotes interior and the bar denotes closure.)
Our domain 2 has the following important property:

Every z € Z of modulus > 1/4/2
is in an S; for some { € E.

This follows directly from remarks (a} and (c) above.
This is a picture of 2:

Note that 62 is a Jordan curve. Indeed, if {y denotes the single point where the ray
from 0 to €9 hits 09, {y is a continuous one-one mapping from the unit circumference
onto 8% . This boundary of @ is even a rectifiable Jordan curve, because, for each k,
perimeter T, < C|Ji|, where C is a geometric constant whose value we need not calculate.

We denote by @ the interior of 9. We see that the results of Chapter 11, Sections C, D
all apply to 2.

Remark  Besides being used to prove Privalov’s theorem below, & (or its analogue for
the upper half-plane) comes up in Chapter VIII in the study of maximal functions and of
Carleson measures.

2. Use of Egoroff’s theorem

Theorem Let f(z) be analytic in |z| < 1, and put, for |{| =1,
My () = sup{lf(2)l; z € S}

Then My({) is Lebesgue measurable.

Proof For n > 3, take r, =1 —(1/n) and put, for || =1,

M, ({) = sup {lf(z)l; <zl <1y & Jarg(ral —2)| < —Z—} .

1
ﬁ
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S;

Because f(z) is continuous for |z| < r,, M,({) is continuous. Since clearly M, ({) — M;({)
pointwise in {, M;({) is Lebesgue measurable.

Theorem Let f(z) be regular in |z| < 1. Suppose there is a set G of positive measure on the
unit circumference such that

zlgn{ f(z)=0
for each { € G. Then there is a closed set E, |E| > 0, such that f(z) — 0 uniformly for
|z} = 1 und z in the union of the S; with { € E.
Proof Forn>3and|{|=1 put
Py({) = sup{lf(2)l; z € St & |z] = 1 — (1/m)}.

The argument used in the proof of the previous theorem shows that each P,({) is Lebesgue
measurable; so, then, is the set G’ of { for which P,({) — 0.

By hypothesis, Po({) — 0 for { € G, and |G| > 0. Therefore |G| > 0, and Egoroff’s
theorem gives us a measurable Eq = G/, |Eg| > 0, with P,({) — 0 uniformly for { € Eq.
Taking a closed E = Ey with |E| > 0, we have the theorem.

3. Privalov’s uniqueness theorem

Theorem (Privalov, ca. 1917)  Let f(z) be analytic in |z| < 1 and suppose there is a set G
of positive measure on the unit circumference with

lim f(z)=0 for{ €G.
z

Then f vanishes identically.

Proof By Subsection 2 we can find a closed E, |E| > 0, on the unit circumference with
f(z) = O uniformly as |z| — 1 if z is in the union of the S;, { € E. This means that if we
make Privalov’s construction, described in Subsection 1, starting from E, we will obtain a
domain Z < |{|z| < 1} with f(z) — O uniformly for |z| - 1,z € &.

Looking at the construction in Subsection 1, we see that < consists of some segments
in {|z] < 1} going out to points of E on the unit circumference, together with the set E
thereupon. Therefore, if we define f(z) to be zero on E, we get a function continuous on @
whose restriction to & is analytic.
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As explained in Subsection 1, 02 is a rectifiable Jordan curve. Take any conformal
mapping ¢ of {|w| < 1} onto & and, for jw| < 1, put F(w) = f(¢(w)). By Carathéodory’s
theorem (Chapter II, Section C) ¢ actually extends continuously up to {|w| = 1} and maps
that circumference in continuous one-one fashion onto dZ. This means that F(w) extends
continuously up to {|w| = 1} since f(z) extends continuously up to éZ. Let S = ¢~ !(E).
Then F(w) =0 for w € S. Since |E| > 0, E has positive linear measure as a subset of the
rectifiable curve 0. So by a theorem of F. and M. Riesz (Chapter 11, Section D), |S| > 0.
Since F(w) is regular in {|w| < 1}, continuous on the closed unit circle, and zero on S, it
therefore follows that F =0 by Section B. So f(z) =0. Q.E.D.

Remark 1  Privalov’s theorem is valid for functions f(z) which are merely supposed
meromorphic in |z| < 1. Indeed, the theorems of Subsection 2 hold (with the same proofs)
for such functions, and we can proceed as above at the start of the proof of Privalov’s
theorem, getting a domain 2 such that f(z) — O uniformly for |z| — 1, z € Z. That means
we can certainly find an r < 1 such that f(z) has no poles in & for |z| > r. So the only
poles of f in & must be for |z| < r. But, f being meromorphic in the whole unit circle, its
poles in |z| < r are finite in number, say zi,...,z,. Then
g(z) =(z—z1)(z = 22) " (z — zw)f(2)
is regular in 9, continuous on 9, and zero on E < 0. The remaining part of the proof

of Privalov’s theorem is now applied to g instead of f, and one sees as before that g =0,
hence f = 0.

Remark 2 In the statement of Privalov’s theorem (where no growth restrictions are
imposed on |f(z)| for |z| — 1) it is crucial that non-tangential boundary values (on the set of
positive measure where these limits are supposed to vanish) and not merely radial ones be
involved. One can, indeed, construct non-zero functions f(z) regular for |z| < 1, for which*

limf(re”) =0 ae, 0<0<2m

We do not give such a construction here. One can be found in Privalov’s book on boundary
properties of analytic functions, whose second Russian edition came out around 1950.
There is a German translation. More recently, the construction given in that book has been
simplified, I believe, by Rudint.

E. Generalizations of the Schwarz reflection principle
1. Schwarz reflection for H, functions
Theorem Let F € H; and suppose that IF({) = 0 a.e. for { belonging to an arc J of the unit

circle. Then F(z) can be continued analytically across J into {|z| > 1} by putting F(z") = F(z)
for |z| < 1, where z" denotes 1/Z.

Proof By Chapter II, Section B, for 0 <r < 1,

F(ré'y = % / P,(8 — t)F(e")dt,

* | thank P. J. Rippon for having pointed out to me that ‘a.e’ was missing from the
following relation in the first edition.
+ His simplification is reproduced in the book by Collingwood and Lohwater.
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whence

n
. 1 .
JF(ré’y = ——-/P,(G —1)JF(e") dt,
2n
which reduces (with slight abuse of notation!) to
1 .
— P.(0 — t)3F (") dt
[ Po-o3FE
[~=m,a)~J
by hypothesis. From Chapter 1, Section D we now see that, as r — 1, SF(re?y —» 0
uniformly for e® ranging over any proper closed subarc of J.
The result now follows from the classical Schwarz reflection principle.

2. A theorem of Carleman
Here is a result of Carleman on analytic continuation which has some applications in
harmonic analysis.

Theorem Let F and G be in Hi, let J be an arc of the unit circle, and suppose that

F({) = G({) ae. for { € J. Then F(z) can be analytically continued across J by putting,
for |z| < 1, F(z") = G(z), where z" = 1/zZ.

Proof For |z| < 1, write S(z) = F(z) + G(z) and D(z) = F(z) — G(z); S and D are in Hj,
and by hypothesis,

IS¢ =0 ae, (€J,
RD({)=0 ae, (€.

Therefore by Subsection 1 the functions S(z) and D(z) can be analytically continued across
J by putting, for |z| < 1 and z" = 1/Z,

S(z") = S(z2),
D(z") = —D(z).
Therefore F(z) = (S(z) + D(z))/2 also continues analytically across J by putting, for |z| < [,
F(z") = (S(z) — D(2))/2 = G(2). QED.

Problem 4 Let U(z) be harmonic in |z] < 1, and let V(z) be a harmonic conjugate of
U(z) (in |z| < 1). Suppose there is a measurable subset E of the unit circumference such
that lim27; U(z) exists and is finite for every { € E. Show that lim, ;V(z) then exists
and is finite for almost every { € E. A fairly concise solution is required.



IV

Application of Jensen’s Formula.
Factorization into a Product of
Inner and Outer Functions

A. Blaschke products
If0<|z4l < 1, n=1,2,3,.., and the infinite product

H |z Zn—z
Z, 1—-z2,z —Zuz
converges absolutely* for |z| < 1, it represents a certain function, analytic there, called a
Blaschke product. We can even allow a finite humber of the z, to be zero, in which case the
factors corresponding to

feal 22—z

zn 1 —Z,z
are simply replaced by z.

1. Convergence criterion

We have
n - 11— z,—(1 n L 1 n
E Zn _Z = |z] (Z_/Zn) = |za] + (Zn—( /f Mznlz = |z| |z, - |z |z.
z, 1 —7Z,z 1 1—-Z,z 1—-Z,z 2z
Therefore
|zn| Zn — (|zn| + 1)z
— =1 =1l ——— -z,
Zn l—z,l +{lzl =1} 1+ zn(l —Z42) :

so the infinite product converges absolutely for z = 0 iff

> —lz) <.

n

* see Subsections 1 and 2 below
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But if 3, (1 — |zu]) < o0, by the same formula just found,
zn| + 1)z,
5 | (R
n n

1ol =z

zp 1 —Zpz

21— 2,2) z} =
for |z| < 1, so the infinite product converges absolutely in {|z| < 1} (and indeed uniformly
on compact subsets of that disk) when Z (1 —|z4|) < o0. Thus:

H |zn] zn —
- 1= converges absolutely in
n

{lz2| < 1} iff Zn(l —lzal) <0

2. Boundary values have modulus 1 a.e.
Let 3°,(1 — |z,]) < oo, so that
H |2n] 2z —z
Zn 1 —2Zuz

converges absolutely and uniformly on compact subsets of {|z| < 1} and represents a
function B(z) analytic there. By elementary complex variable theory, each factor of the
product is in modulus < 1 for |z| < 1, so |B(z)| < 1 for {|z| < 1}.

Therefore, for almost all {, |{| =1, B({) = lim B(z) for z —> { exists (Fatou’s theorem,
Chapter III, Section A). i

Theorem |B(¢')| =1 ae.

Proof Without loss of generality, all |z,| > 0 (otherwise work with B(z)/z* instead of
B(z)). Then log|B(0)| = 3_,log|z,|. Now because ), (1 —|z,|) < o0, )_,log|z,| > —c0
(N.B. log|z,| < O for each n !). Let 0 < r < 1, with r not equal to any |z,|. Then, by the
most elementary form of Jensen’s formula,

log|B(0)| = 3 log <'"'> = /1og|3(re"’)ld0

|zn|<r Zn
1€.,
Zlog|zn| =>lo g<| "') +2—/log|B(re )| d6.
|zn|<r Ju
That is,

—/long(re“’ |d6 = Zlog<| |> Zl g

|za|<r
Pick any fixed p so that ZDP log(1/|z,]) < €, and take r < 1 so close to 1 that |z,| < r if
n=1,2,...,p. Then, the previous relation yields

n
1/ 0 L <r> ? 1
— [ log|B(re”)|d8 =) log| — | — ) log— —¢,
5= | log|B(re”) 21: el 21: B
—-n
or, making r < 1 close enough to 1,

n
1 i
2_n/10g |B(re"”)| d0 > —2e.
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That means

lim sup Zin / log |B(re®®)|d6 = 0

r—l—

since € > 0 is arbitrary.
But B(re’’) — B(e') ae. as r — 1 and

log |B(reé?)| < 0.
Therefore, by Fatou’s lemma (use a sequence of r’s tending to 1)

i/logw(e“’nde > 0.
2n

Since |B(e'?)| < 1, we have log|B(e'?)] =0 a.e. Q.ED.

B. Factorizing out Blaschke products

1. Formation of a Blaschke product having same zeros as a given analytic function

Theorem Let F(z) % O be regular in {|z| < 1}, and let the z, be its zeros there, |z,| < 1.
Suppose that

/ log |F(re'%)| d§
—n

is bounded above for r < 1. Then

D (A —lzl) < o0,

n

so that
H ‘Zn| Zn —
z, 1 —2Z,z
converges absolutely for {|z| < 1}, and we have F(z) = B(z)G(z) where G(z) is regular and
has no zeros in {|z| < 1}.

Proof Without loss of generality, F(0) # 0 — if not, work with F(z)/z* instead of F(z).
Then, if 0 <r < 1, and no |z,| = r, by Jensen’s formula:

Zn

log |F(0)| = Z log | —

lzul<r

+—/log|F (ré* %) d8,

i.e., by hypothesis,
< M —log|F(0)|,

Z log

|z, <r

where M is independent of r. Making r — 1, we get, for any fixed p,

P
> log - < M~ logIF(O)L
1

Zn
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SO

Zlogﬁ < cC.

The existence of B(z) now follows by Subsection A.l. Defining, in {|z|] < 1},
G(z) = F(z)/B(z), we're done.
2. The class H,. Factorization
Definition If p > 0 (sic!), H, is the set of F(z) analytic in {|z| < 1} with
sup /lF(re‘a)l”dG < o
O<r<l

(Hy is a special case of this definition).

Theorem Let F(z) # O belong to H, Then there is a Blaschke product B(z) and a
G(z) € H, with F(z) = B(z)G(z), G(z) wnhoul zeros in {|z| < 1).

Proof 1f r < 1, by the inequality between arithmetic and geometric means,
1 0 1 10
— [ plog|F(re®)|df <log =— [ |F(re”)|?do
2n 2n

which by hypothesis is < log C independent of r. So, by Subsection 1, if the z, are the
zeros of F(z) in {|z| < 1}, >, (1 —|z4|) < oo and the Blaschke product B(z) can be formed.
If G(z) = F(z)/B(z), G( ) has no zeros in ‘Jz} <1}.

Write

|Zn| -
Bu(z) = H - 1—2,,

The product for B(z) converges absolutely in {|z| < 1} and, for r < 1, By(z) - B(z)
uniformly on |z| < r. Pick such an r for which no |z,| = r.

Then
/ |G(re?)|P d8 = Jim /

F(z)
Bn(z)
is regular in |z| < 1, so |G (z)|? is subharmonic there and, for fixed r < 1,

rex/))
By(rei)

But for each N,

Gn(z) =

/IGN(re’o)ll’dGSIimsup/IGN(Re’0)|”d9.
. R—1

However, for fixed N, as is easily seen, |By(Re'’)| — 1 uniformly as R — 1, so

lim sup/iGN (Rey|P df = hmsup/!F(Re’")\” de
R—1
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which by hypothesis is < 2nC, say. Thus, for each r < 1,
/!GN(re‘O)}” d6 < 2xC
for all N, and finally, by the previ_ous,
/"|G(re‘0)” dé < 2=C.
Since r < 1 is arbitrary, G € H,. ) Q.E.D.

Scholium We see that, in the above factorization,
sup / |G(re®))P do = sup / |F(re)|P do.
r<i o,
For the argument at the end of the above proof ylelds
sup / IG(re®)Pd8 < sup / |F(re®)|P de.
r<l r<l .
Since, however, F = BG and |B(z)| < 1 in {|z| < 1}, the reverse inequality must also hold.

Corollary If f # 0 belongs to H,, we can find g and h € Hy, g(z) and h(z) without zeros in
f Vi
Hzl < 1}, with

/ lg(e%)] db < / 1f(e)] 6,

/ lh(e”) 6 < / 1£()] 6,
and such that f =g + h.

Remark This is a useful technical device, because many inequalities for H, are easier to
prove for functions without zeros in {|z| < 1}.

Proof Let B(z) be the Blaschke product formed from the zeros of f(z), then, by the
theorem, f = BF where F(z) has no zeros in {|z| < 1}, F € H; and

/|F(e"0)|d0 < /If(e”’)ldH-

g(z) = 3(1 + B(2))F(z)
h(z) = —4(1 — B(z))F(2),

because, by direct inspection (or the strong maximum principle),
z) <1 forlz] < 1.

Now the result follows with

Corollary Let f # 0 belong to H,. Then we can write
f(z) = B(2)[g()]'*
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where B(z) is a Blaschke product and g € Hy has no zeros in {|z]| < 1}.
Proof f = BF with F € H, having no zeros in {|z| < 1}. Take g(z) = [F(z)]”, |z| < 1; the
p™™ power is defined and regular in {|z| < 1} because F never equals O there.

C. Functions in H,

Definition If F € H, and p > 1, we write
P 1/p
IIFIl, = sup / |F(re”) d0
r<li B
—n

If0<p< 1, we write

n
IFl], = sup / F(re")|? d6
r<l
-
(without the p'" root!).

Then || ||, satisfies the triangle inequality (hence yields a metric for H,) in all cases, but
is positive homogeneous (i.e., a norm) only for p > 1.

1. Boundary data function. Norm

Theorem If p >0 and F € H,, for almost all e, lim F(z) for z — ¢ exists and is finite,
and if we call that limit F(e"),

/lF(e"”n"de —IFll,. 0<p<l,
—n

n
/|F<e'0)|”d0= IIFIb, p=>1.

Proof Wec may as well assume F # 0. Then, by the scholium of Subsection B.2, F = BG
where B is a Blaschke product, G(z) has no zeros in {|z| < 1}, and

[1F1l, = 1IGl, -

Now write G(z) = [h(z)]'/?, as in the second corollary of Subsection B.2. Then h € H,, and
by Chapter 11, Subsection B.2,

n T
|I]l, = limsup /|h(re‘0)|d0= /lh(e’(’)ld(),
r—l . .
- —n

where the £ boundary value h(e') of h(z) exists a.e. (Chapter II Subsection B.1). Since we
are assuming that F # 0, we have, by Chapter III, Section B, h(e') # 0 for almost all 0.
Therefore, for almost all 0, lim G(z) = lim[h(z)]"/? exists as z — ¢'”. Call this limit G(e'").

Then, since B(z) — B(¢’) as z —> ¢ for almost all 0, F(z) — B(¢Y)G(e"), which call

F(e'"), for almost all 0 as z — e,
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Finally, if 0 < p < 1,
IFll, = 1161}, = |||

= /lG(em)V’dH:/|F(e”’)|”d()
because B{e) =1 ae.

If p > 1, we get the same result, but the integrals in the above chain of equalities, and
[{hl],, are affected with pt" roots. We're done.

= (clearly) = ||h||, :/ lh(e)) do

2. Convergence in mean to boundary data function
Theorem If f € H,

/' () — F(e")P d6 - 0

asr — 1, where f(€) is the £ boundary value of f(z) which, by the previous theorem, exists
a.e.

Proof If f # 0 and B(z) is the Blaschke product formed from the zeros of f(z), f(z) =
B(z)F(z), where F € H, and F(z) is without zeros in {|z] <1}. If r<l,and 0 <p < 1,

/|f 0y~ f(re”)lP d < /|B re’)P[F(e") — F(re”)| d6
+ / IB(e?) — B(re®)P|F(e")? dO

< / |F(e?) — F(re)|P do + / |B(re'’) — B(e)|P|F ()P d6.

th

For p > 1, similar inequalities hold, save that the integrals are affected with p'™ roots.

Now |B(z)| < 1, B(re) - B(e'’) ae. as r — 1, and |F(e)|? € L,.
Therefore

/ IB(re") — B(e")P|F(e")P d — 0

as r — 1 by dominated convergence.
It is thus enough to prove that

/ |F(e?) — F(re”)|P do — 0

as r — 1 if F € H, is without zeros in {|z| < 1].
Now, if p > 1, this is easy, because, by Chapter II, Subsection B.1,

n

F(réy = % /P,(H —t)F(e")dt,

—n
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since, in particular, F € H,. By Subsection 1, F(e*) € L, if F € H), so, by the approximate
identity property of P,
n
/|F(e’0) — F(r®)?df — 0

asr — 1.

Suppose p > 1/2. Using a clever trick of Zygmund, we put G(z JF(z); the square
root is well defined here because F(z) never = 0 in {|z| < 1}. Then G € H, with 2p > 1.
We have:

/ |F(re'’) — F(")? d8 = / [[G(re?) — G(e)][G(re) + G()]|” dO

which, by Schwarz, is

n n
/ |G(ret?) — G(ei%)[2» df / IG(ret) + G(e)| dO

<C / |G(reil) — G(ei0))2r dO

with C independent of r since G € H,,. But now, since 2p > 1, this last expression — 0 as
r — 1 by what has been proved above. So the result holds for p > 1/2.

If, now, p > 1/4, we make again the substitution G = \/I? and argue as above, using the
result just proven.

In this way we prove the theorem successively for p > 1/4, p > 1/8, p > 1/16, etc., and
we GET DONE.

Scholium The ideas of the above proof can be modified so as to obtain a new proof of
the celebrated theorem of the brothers Riesz (Chapter II, Section A).

First of all, the theorem just given is elementary for p = 2. Indeed, if f(z) = >°§ A4,z"
in H, we have

/ f(re ) d = nZ A 21

by absolute convergence and orthogonality, so Z [A4,]? < oo
0

By the Riesz-Fischer theorem, there is a function f(e"’) € Ly(—n, n) having the Fourier
series > Ane™’ It is now easy to check by direct calculation that, for r < 1,

flre')y = — / P,(0 —1)f(e")dt
(work with the series!), so that, in fact,
f(z) > f(e") ae. for z —> ¢
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and
s
/ If(re”) — f(e”)*d6 — 0

as r — 1, by the basic material in Chapter I, Section D.
Granted this result, we can prove the F. and M. Riesz theorem as follows. Take any
(non-zero) measure yu on [—n,n] with

/eml) d/»‘(g) — 0’ n= 1, 2, 3,
-n

and put
i0 L]
F(re™) = 5= [ P60 —1)du(1)
2n
for 0 <r < 1. As we easily see,

»
F(rey()) — 2 :anrneml},
0

where
a, = -l— /e‘i"od;t(B)
n 27[ ) il
—n

so F(z) is regular in {|z| < 1} — by Chapter I, Section C, F € H,. As at the beginning of
the proof of the the theorem given above, we can now write F(z) = B(z)G(z) where B(z)
is a Blaschke product and G € H), G(z) without zeros in {|z| < 1}. Therefore we can write
G = f? for an f(z) analytic in {|z| < 1}; it is practically evident that f € H,. So use the
special case of the theorem just proved; put F(e'’) = B(e'?)[f(¢?)]?; then F(e'’) € L(—n, n).
Now

/ |F(re’) — F(e”)|d6 < / |B(re'”) — B(e")| |f(e”)]* dO

+ / IBre)| - [(f(re))? — (F(e”))?] do.

As r — 1, the first integral on the right goes to zero by dominated convergence. The second
is

< / 1L (re ) — [f ()12 do;

this is now shown to — 0 as r — 1 by the argument of Zygmund’s trick, using the already
known fact that

/ If(re?) = f(e)Pdo -0, r— 1.
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In fine,
/IF ré”y — F(e”)|do —» 0, r— 1.

But by Chapter I, Section D asr — 1,
F(re?)do — du@) w".
So du(#) = F(e'")d0 and u is absolutely continuous, proving the F. and M. Riesz theorem.

3. Smirnov’s theorem
Theorem (Smirnov) Let f € H,. If p’ > p and f(e?) € Ly, then f € Hy.
Proof Taking f to be # 0, we have f = BF where B is a Blaschke product and F(z)
without zeros in {|z| < 1}. Since |B(z)| < 1, it is enough to prove that F € Hy, if F(e"?) € Ly.
F being without zeros, write

G(z) = [F(2))".
Then G € H; and G(¢) € L,,, with p'/p > 1. It is enough to prove that G(z) € H,,,. But
now use the result of Chapter 11, Subsection B.1:

G(re) = 2in / P,(0 — 1)G(") dt,

and the fact that G(e”) € Ly, with p'/p > 1 to show that
/ |G(re)"' /P do < / IG(e'?)|”/? 4B
n —n

for r < 1. We're done.

D. Inner and outer factors

1. A condition guaranteeing absolute continuity

Lemma Let O(x)/x — o for x — oo, where ®(x) > 0. Let f,(t) =0,
n

/ ®(f, (1) dt < C,

and fy(t)dt — du(t) w* where p is a measure on [—n,n). Then p is absolutely continuous.
Proof For K > 0, denote by nx the supremum of x/®(x) for x > K. Then nx — 0 as
K — o. Let E € [—n,n] be compact and |E| = 0: to show that u(E) = 0. With ¢ > 0
arbitrary, take (¢ open o E with [(| < e, and let () be continuous on [—n, 7], 0 < p(t) < 1,
w(t) = 0 outside ¢, and p(¢) =1 on E. Since fu(t)dt — dpu(t) w',

WE) < /lp(t du(t) = hm /w )fn(t)de

< llmsup/f (t)d

n— L
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Let, for given large K, and any n,
O(K,n)={te C; ft) <K}.
Then

n
/fn(t)dl < K|OK,n) + / fa(t)de < KIC“I-I-'?K/(D(fn(t))dt
¢ C~C(Kn) n
K|O| +nkC < Ke+ Crk.

Given 6 > 0 choose first K so large that Cng < 6/2, then take € > 0 so small that
Ke < 6/2. One finds u(E) < 4. Since 6 > 0 is arbitrary, u(E) = 0. Q.E.D.

IA

2. Boundedness of means of |]og |F(re‘0)||

Lemma [f F(z) is regular in {|z| < 1} and

n
/ log* |F(re)| do
-7

is bounded for 0 < r < 1, then, if F %0,

n

/ |log |F(re”)|| r d6

-7

is bounded for 0 <r < 1.*

Remark  This is an important result in the theory of functions.

Proof Without loss of generality, F(0) # 0 (otherwise work with F(z)/z* instead of F(z)).
Then, by Jensen’s inequality,

n
—o0 < log|F(0)] < % / log |F(re')| dO

— 1 f + i0 1 [ 10
= ﬂ/ﬂog |F(re')| do 2n/llog|F(re ) de
—r —n
for 0 < r < 1. Therefore

n
/ |log |F(re'”)||d8 < 2 / log* |F(re'®)| df — 27 log |F(0)).
—n -

The result follows.

3. Expression of an analytic function in terms of its real part
First, an identity:
1—r2 2irsin  (1+re")(1—re™) 14re’
14r2—2rcos® ' 1+r2—2rcosf (1 —rel)(1—re0) 1 —rel

* An oversight in the first edition’s statement of this lemma was observed by Kanghui Guo.
When F(0) = 0, a factor of r in second integral is necessary in order to keep it bounded for
r— 0.
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Thence, and from Chapter I, if F(z) is regular in a region including {|z| < 1} in its interior
and 0 <r < 1,
% i(0—t)
F(ré”) = 2% / % - RF(e")dt + ic,
—n
where ¢ is a real constant (= JIF(0) !).
We usually write:

n

1 it 10
Fire') = 5 / E:—;;,w(e")dwl‘sn()).

4. Factorization into inner and outer factors

Theorem Let F(z) # 0 belong to H,, p > 0. Let B(z) be the Blaschke product consisting
of the zeros of F(z). Then there is a singular measure ¢ > 0 on [—mn,n] with

n n
1 [e'+z ,-C 1 [e'+z ;
F(z) = B(z)exp <_2_n/ da(t)) e - exp Z/mloglF(e’)ldt

et —z

—-n —n

for |z| < 1, where ¢ is a real constant.

Proof By Subsection B.2, we can write F(z) = B(z)G(z) where G € H, and G(z) has no
zeros in [|z|] < 1}. Thus, we can define ¢(z) = log G(z) so as to be analytic in {|z| < 1}.
Now for 0 < r < 1, by the inequality between arithmetic and geometric means,

n n n
1 ' + 10 L/ UNTS L/ 0y p
Z‘/plog |G(re'")|do < o log [IG(re”))” + 1] df < log . (IGre")? + 1)do < C

—n —n -

because G € Hj, so
/ log* |G(re')| dO
is bounded above for 0 < r < 1. Therefore by Subsection 2 (here |G(0)] > 0 !),

/ [log|G(re)|| d@
-1

is bounded above for 0 <r < 1.

Notation  Write log™ |G| = |log|G|| — log® |G|. (Therefore log™ |G| >0 )

Therefore, we have a sequence of v, — 1, r, < 1, and measures puy, p_ on [—n,n], duy >0,
du_ >0, with

log* |G(r,e")|df — dus(0) W’
log™ |G(r,e”)|df — du_(0) w’
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Now by the formulas in Subsection 3 with a change of variable, if z, |z| < 1, is fixed,

b(r,z) = i3¢(0) + % / CH Rp(re) de

el —z
—T
. 1 i et 4z "
=i3P0) + — log |G(r,e")| dt.
2n ) et —z

-0
By the aforementioned w™ convergence, the right side tends to

1 * it
3000+ 5 [ S 0 - dutol,

and the left side tends to ¢(z). So
- 1 T e+ z
#(2) = 13000) + 3 [ T2 40— d (o)
Here, pi is absolutely continuous. Indeed, since G € H,, we can apply the lemma of
Subsection 1 — we have
log* |G(rve”)| df — du.(6) w’
whilst

n
/ |G(r.e®)|P d < c,
-7

so surely,
/exp (plog™ |G(r,e”)]) dO < ¢ + 2m,
and (exp x)/x — = for x — co. We therefore have
d/,l+(0) = h+(9) d9, h+ S L].
However, all we can say about u_ is that
du_(0) = h_(6)d0 + da(0)

where h_ € Ly and ¢ > 0 is singular, not necessarily zero.
Therefore, with h =h, —h_ € L,
7 1
b(z) = i3p(0) + 2L / € 2 ey de — do(r).
n) et—z

This yields, in particular (taking real parts — recall Subsection 3!)
1—r?
1+4+r2—=2rcos(@ —t)

log [G(re")| = Rep(re") = 2% / [h(t)dt — da(t)).

Therefore, by Chapter I, Subsection D.3, at any 6 for which ¢'(0p) exists and the derivative
of the indefinite integral of h(t) equals h(6y),
0

log|G(z)| — h(e™) + ¢'(6p) as z — e™.
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But, ¢ being singular, ¢'(0) = 0 a.e. Also, G being € H,, the £ limit G(e") exists a.e. and
is # 0 a.e. (Subsections A.2, B.2, and Chapter II1, Section B). So it makes sense to talk
about log|G(e'")| ae., and since |G(e)| = |F(e")| a.e., we have the identification for the
values of the real L, function h:

h(e) = log |F(e?)| ae. .

We’ve thus proven

1 n 1t 5
$(2) = 13900 + 5 [ S llog et de — do(o).
Finally, )
F(z) = B(2)G(z) = B(z)e®®,

and our desired representation is established. Q.E.D.

Scholium  As a by-product of the above proof we have log|F(e")| € Ly(—=, =) for non-zero
F € H,,. This is a quantitative form of the theorem in Section B of Chapter IIL. The result
also follows more quickly from Subsection 2 and Fatou’s lemma.

Definition The formula

1 it ) 1 i it
F(z) = B(z)exp <_2n]f’ +zd0(t) e exp (2 /e te log |F(e")| dt

s —n

is called the canonical representation of the function F % 0 in H,. We call (after Beurling)

et +z

i 1
IF(Z) =6LB(Z)eXp .—-2_71.'—/@” do ([)
the inner factor of F(z), and

n

it
Op(z)—exp{ 21 / ¢tz 2 log | F(e")| dr
the outer factor of F(z).

Note that |Ip(z)] < 1 for |z] < | (since do = 0 !), and by the above discussion,
Ir(0) =1 ae., |{| = 1. (Cf. argument showing that Rep(z) — h(e'’) a.e. for z — ¢))

E. Beurling’s Theorem

1. Polynomial approximation

Lemma Let p > 0. Then, if F € Hy, there exist polynomials P(z) with ||F — P||, arbitrarily
small.

Proof By Subsection C.2, ||F(z) — F(rz)||p < e if r < 1 is sufficiently close to 1. But the
Taylor series of F(rz) converges even uniformly for |z] < 1; cutting it off far enough out,
we get a polynomial P(z) with ||[F — P[], < 2e.
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2. General Smirnov theorem

Lemma (Generalization of Smirnov’s theorem) Let F and G (both % 0) belong to ( perhaps
different ) H, spaces. If the ratio of their outer factors k(z) = Op(z)/0¢(z) has k(e?)y e Ly,
say, then Op(z)/Og(z) € Hy.

Proof For r < 1, by the inequality between arithmetic and geometric means

n - )
(N.B. 1/ ! de=11),

2n /] 14+r2—2rcos(0 —1)
2 2 it
w0y _ P 1—r F(e")
plog lk(re)] = 2n/1+r2—2rcos(9—r) g‘G(e") d
/ 1—r? F(e")|”
<log — ,
2z J 1 +r2—2rcos(f —t) | G(e")

—T

S

r

0
P 1l 1—r F(e")|” [ F(e")
i0\p < _ = —_
/'k(re I do < 2n//1+r2—2rcos(0—t) Gleny| 44 /‘G(e”)

“nn —n

which is enough.

3. Beurling’s theorem in H,

Theorem (General case due to Srinivasan and Wang; for p = 2 this is due to Beurling)
Let F =1IpOf € Hy, p > 0. The closure of F(z)  {polynomials in z} in H, is precisely Ir - H,.
Proof (a) The closure is not more than Ip - H,. Indeed, let G € Hp, and let the Py(z)
be polynomials with [|FP, — G|, —— 0. We may, without loss of generality, assume that
[|FPy — FPuyill, < 27" Then, since ()| = 1, a.e., by Subsection C.1,if 0 < p < 1,

n

J108& 1P, = Or(E Pyt 06 < 27
and if p > 1, a similar inequality holds with the integral affected by a p" root. Since
Or € H, if F is (cf. proof in Subsection 2 above!), OrP, € H, and by Subsection C.1,

[|OF Py — Op Py Hp < 27", By inequalities like those used in Subsection 2, it is easy to see
that

Or(2)P1(2) + > _[0r(2)Prs1(2) — OF(2)Pa(2)]
n=1
converges uniformly in the interior of {|z| < 1} to an analytic function R(z), say, and by the
triangle inequality for || I, (N.B. valid also for 0 < p < 1!) we have, for r < 1, (assuming
p < 1;if p > 1, the integral has a p'" root):

n=1

[ 1R#e"7 40 < 104 Pl + 3 101 Prr = O5Pull, <

so R € H,.
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Now

n—1
FP,=1p0pP, = IF (OFP] +Z(OFPm+] “OFPm)> -0 IgR.

m=l

So, since ||FP, — Gll, — 0, we have G = IgR, a member of IrH),.

(b) The closure is at least I - H,. Since [Ir(z)] < 1 for |z| < 1, it is enough to show that
Oy - |polynomials} is dense in Hp,.
First, suppose p > 1. Then we can argue by duality. Let
1 1
-t - = 1’
q D
assume that k € L, is not zero a.e., and that
n

/ em()OF(eiU)k(g)dg =0 forn=0,1,2,... .

It is enough to show that then

0= / G(e) k() do

—n

for any G € H,. Since O(e”)k(0) € Ly,

/ e‘""op(e’”)k(@) dd =0 forn=0,1,2,...

makes Or(e)k(0) = e’ H(¢") where H € H| is (here) # 0. Therefore

oy 0, Or(€”)
k(0) = e"Ig(e )Op(e"")’
and
On(e”)|
o | = KON € Ly

So by Subsection 2, Oy /Op = R is in H,, and k(0) = eIy (e'")R(e"). Therefore, if G € H,,
G(e)e(0) = e“11(e")G(e?)R(e") with I4GR € Hy, so

/e*'"”k(e)(;(e'“)de =0 forn=0,1,2,... .
We're done in case p > 1.

Now, using Zygmund’s idea, suppose that F € H, with p > 1/2. Clearly we can take
F(z) = JOr(z) and then Fi(z) € Hj, with Of, = F;. Therefore, if G is any element of H,,
we can find a polynomial P with ||[FiP — Gll,, < € by the ubove. Using Schwarz, we then
get

HOFP — FiGlj, < /110Fll, /e

p =
(or another variant, depending on whether or not p > 1).

In particular, if Q is a polynomial we can find another polynomial P such that
0P — F1Qll, < 9, say, 0 > 0 being arbitrary. Now, given H € H,, use first the re-
sult of Subsection | to find a polynomial R with ||[H — R|| < J. Then, as remarked above,

r—
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we can find another polynomial Q making ||F)Q — R|[,, as small as we like — using Schwarz,
we see that we can choose Q with ||[F;Q — R||, < . Finally, we have the polynomial P with
[l0rP — F1Ql|, < 6, whence

|H — O¢P|l, < |IH —RIl, + IR — FiQll, + IF1Q — O¢P||, < 36.

This extends the result we are proving to all values of p > 1/2.

The same argument may now be used to extend it to values of p > 1/4, then to values
> 1/8, etc.

We're done.

F. Invariant subspaces
Let # be a Hilbert space with orthonormal basis
{en; n=0,+1,42,43,...},
and consider the unitary transformation ¥V defined on # by putting
Ve, = eu1;.
The problem is to study the invariant subspaces of V.

We map # isometrically onto Ly(—m, ) by making e, correspond to e/ /27; then V
corresponds to multiplication by €.

Theorem Let a closed subspace E of Ly(—mn,n) be such that ¢’E = E. Then E = y4L,
where x4 is the characteristic function of some measurable set A = (—n, ).
Proof If E < Ly(—m,7) properly, then 1 ¢ E. Otherwise ¢ and therefore ¢*”, ¢, etc.
would be in E. Also, from ¢’E = E we get e ’E = E, so from 1 € E we would get
e ¢ E, e ¢ E, etc., and finally E would = L,.
So let ¢ be the closest element of E to 1. Then, arguing as above,
"y eE, n=0+142,...,
S0
1—¢ Le"p, neZ.

Therefore
n

/ M(B0) — OO =0, neZ,

bt 14
s0 ¢ = |¢p|? ae., and, finally, ¢(0) = 1 or 0 a.e., so ¢ = y4 for some measurable 4. Therefore
¥4 € E s0 yaL, € E. y4L, is clearly a closed subspace of L,. If y4L, is not all of E, there
is a v € E which is orthogonal to y4L,.
In particular,
n

/ 24(0)p(0)e™' d0 =0, neZ,

Zn
so wys = 0, so p = 0 ae. on A. But at the same time "y € E for n € Z, so since
l—ya=1—¢ LE,

n

/ (1 — 24(O)p(0)™ d0 =0, ne Z.

—-n
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ke

/XNA((J)w(e)eM” dd=0, necZ

So p =0ae. on~ A. Sop =0 ae, a contradiction, and y4L, = E. Q.E.D.

Theorem Let E be a closed subspace of L, and suppose that ¢’E < E properly. Then
E = wH,, where |w(8)] =1 ae.

Proof €E is also closed. Let w € E be # 0, o L ¢E. Then in particular,
wleé®y, n=1,2,...,
S0

n
/!w(@)lze"‘e d6=0, n=1,2,...,
-
and by conjugation
/;w(e)ﬁeﬂ"" d0=0, n=12,...,

so finally |w(0)] = const. a.e. Without loss of generality, |w() =1 a.e.

Now w, ¢’w, e®w,...etc. are all in E so wH> < E. I claim wH> = E. wH, is closed
in L,, because |w(0)] = 1, and the orthogonal complement of wH; in L is e~ w(0)H,, as
is easily seen by direct calculation.

But if F € E and g is a polynomial in ¢, gF € E so ¢’gF € ¢E, and then w L ¢?gF
by choice of w. That is,

/ e g (B)w(0)F(0)do = 0.
This in fact must hold for all g € H, because polynomials in e are || [l,-dense in H,
(Subsection E.1) and |w(0)| = 1 a.e. Thus, e ®wH, L F and, F € E being arbitrary,

e Pw(0H, LE.
In other words, P € L, and P L wH; imply P L E. Therefore E < wH,. So E = wH,.

Corollary Let E be a subspace of Hy and satisfy ¢’E S E, E # {0}. Then E = wH, where
w is an inner function®,

Proof If é°E = E, then ¢"’E = E for n = 1,2,..., so E = (" e" H,. But this intersection
consists only of 0. So ¢’E < E properly. Therefore E = wH, where |w(f)] = 1 a.e.
w € E = H,. So w is an inner function. Q.E.D.

Corollary Let f, = 1,04, with each I, inner and each Oy outer in H,, and suppose that

| et +z
Ior(z) = Ba(Z)eXp —'2_n /E daa(t) >

* je., one whose outer factor is identically 1.
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with Blaschke products By and singular do, > 0. Let E be the invariant subspace of H,
generated by the f,; in other words, let E be the smallest closed subspace of Hy containing
all the f,, such that ¢’E < E.
Then E = wH, where
1 i’ it +
e +z
w(z) = B(z)exp _E/ E——zdg([)
—n

Here, B(z) is the greatest common divisor of the B,(z), and do > 0 is the largest measure <
all of the da,.

Proof E is, by the preceding corollary, of the form wH,, where w is an inner function
whose constant factor e’ we may just as well take equal to 1.
Each f, € E, so fy = 1,0, 1s of the form wg, g € H,. Therefore if we write
n
1 it
w(z) = B(z)exp | — /e 2 4oy |,

2n ) et —z
bt 14

we certainly see that B|B, and do < do, by taking into account the inner factor of g.
Now suppose that there is a Blaschke product G and a singular measure ¢’ with
B|every B, and do' < every da,. Then each f, is in QH,, where

1 [el4z ,
Q(z) = B(z)exp _2—11/ - do'(t)

Therefore E = QH,, i.e., wH, < QH,. This makes B|B and d¢’ < do by the preceding

reasoning, and w is as specified in the statement of the corollary. Q.E.D.

Problem 5

(1) Let the fu,(z) be outer functions in some H, p > 0, and suppose that
p
If1(2)] = 1f2(2)] = If3(z)] = ... for |z] < 1. Suppose that

falz) = f(2)

uniformly in the interior of {|z| < 1}. Prove that if f(z) is not identically zero, it is
outer.

(2) If f(z) € H, and Rf(z) > O for |z| < 1, f(z) is outer. (Hint: consider the functions
(1/n) + f(2).)

(3) Let w(z) be a non-constant inner function. For which complex « is w(z) — « an outer
function? (Hint: In case |a| < 1 look at (w(z) — a)/(1 — &w(z)).)

G. Approximation of inner functions by Blaschke products

Definition H, denotes the set of functions analytic and bounded in {jz| < 1}. If F € H,,
we put

If1l, = sup{IF(z)l; lz| < 1}.
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Most of the results of Sections A-D hold for H.. if || I, 1s replaced by || |[,..

A notable exception is the theorem of Subsection C.2
saying that HF(re’”) — F(e’0)| |p —>0asr—1if
F € H,. This is in general false for F € H,, if we use

the norm || .. !

Indeed, if F € H, and we have ||F(e) — F(re’)||, — 0 as r — oc, then F(e) is continuous.
And there are plenty of F € H,. with F(e"’) not continuous!
However, we do have, for F € H.,,

|IFIl,, = esssupy [F(e")].

(If F € H,, F isin every Hp, so the Z boundary value F(e") exists a.e.!) The material in
Section D also applies.

Proofs that all this work carries over to H.. are left to the reader — they follow easily
from the results presented thus far in this book.

A special class of functions in H.; is constituted by the inner functions, i.e., those whose
outer factor is equal to 1. An inner function w(z) has the property that |w(e’’)] =1 a.e. The
importance of these functions is already seen in Sections E, F above.

As we see from Subsection D.4, an inner function w(z) has the representation

n
- it
w(z) = e“B(z) exp ——i / e—-'_——z—do(t)

2n ) et —z
-7

where ¢ € R, B(z) is a Blaschke product, and do > 0 is a singular measure on [—n,n].

Lemma An inner function w(z) is a constant multiple of a Blaschke product iff
n

/loglw(re“))l dd -0 asr—1.

Proof By the work of Subsection A.2,

/ log|B(re'’)|d0 — 0 asr — 1

—n

for the Blaschke product factor B(z) of w(z). As for the ‘singular’ factor,

x 1t
S(z) =exp —L/E—_f——ida(t) N

2n ) et —z
- 12
0y —
log S(re®)l = 2n/l+r2—2rcos(()-—t) dale).
SO
ud n
/long(re’”)|d() =— / da(r)

as r — 1, and since do > 0, this last expression is zero iff ¢ =0, ie, iff S(z) = 1.
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Now there is the remarkable
Theorem (Frostman, rediscovered years later by D. J. Newman) Let w(z) be any inner
function. Then, given any € > O there is a Blaschke product B(z) and a real ¢ with

Hw —e"'BHI <e

Remark  Thus, the measurable function e*B(e') is (a.e.) uniformly within € of w(e?).

Proof Let the number o satisfy |w| < 1, and let 0 < p < 1.
Then we have the elementary formula

1 — pe
I /log ‘%‘ d¢ = max(log p, log|wl).

—

Putting w = w(re”) and integrating again,

/ w(re”) — pe't
1— pebuw(reit)

—n -7

dpdr = /max(logp, log|w(re™)|)dt

But |w(re')| < | and logjw(re'")| — log|w(e®)] =0 ae. as r — 1. So (logp > —w0 )

/max(logp, log |w(re"))dt — 0

as r — 1 by bounded convergence.
Therefore, by Fubini’s theorem,

n s . .
1 w(re') — pe'®
i log |V P PE
2n / 8 ‘ 1 — pe~Pw(ret) de
—n

—n

dp - 0 asr— L

Since
— pe't
log —w(z) .p ¢
1 — pe~w(z)
the inner integral in the above expression is < 0, and, by Fatou’s lemma applied to

(1/2m) [°.( )dg,
—/ llmsup/log
r—1

Now, since 0 < p < 1, for each (/),

<0,

w(re') — pe'®

—————— | dt ) dp =0.
1 — pe~®w(rett) Lo do

w(z) — pe'®
wylz) = 1 — pe%w(z)
is regular and bounded in {|z| < 1}, ( |w(z)| < 1 there ) and is indeed an inner function,
because |wg(e")| = 1 ae., due to the fact that |w(e')] =1 ae.
The lemma (and its proof) shows that

lin*]l / log |wg(re')| dt

—n

exists, and that if it's zero, wglz) is a constant multiple of a Blaschke product. By the
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calculation made above, this limit must be zero for almost every ¢. So almost every wy is a
constant multiple of a Blaschke product.

Finally, if |z| < 1,
pe' — pe " (w(z))? 2p

l—pewiz) |~ 1—p°

lw(z) — wy(2)l =

and this is < e (for all z, |z| < 1) if p > 0 is sufficiently small.
We are done.

Scholium This result has several applications in the deeper study of H.. (e.g., Carleson’s
proof of the corona conjecture, not given here, but to be found in Duren’s book and in
Garnett’s more recent one).
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Norm Inequalities for
Harmonic Conjugation

A. Review: Hilbert transforms of L, functions
Recall, from Chapter I, Subsection E.4, the

Theorem Let f(0) € Ly(—n, n) and write, for 0 <r <1,

U( e"")—i/n 1-r f(t)de
A 14+r2—2rcos(f —t) (ndt,

—n

Y _L/" 2r sin(0 — 1)
Utre™) = 2n 1+r2—2rcos(9—z)f (B dt,

—n

so that U(z) is a harmonic conjugate of U(z), and U(0) = 0.
Then (taking f(0 + 2n) equal to f(6))
- .1 t
1) —11_13(}; / {f(@—t)/2tan§} dt
e<|t|<n

exists ae., ||f]|, < Ifll, and

1 =2 .
0y _ _©
Ulre®) = 2n/1+r2—-2rcos(0—t)f(t)dt’

-7
so that U(z) — f(8) a.e. for z — el
The Cauchy principal value defining f(6) in this theorem is usually written

1 f0—1)

7] 2tan(t/2)

Given f(0) € Ly(—n, ), it follows immediately from the theorem that F(z) = U(z)+iU(z)
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is in H,. The boundary values F(e") satisfy F(e”) = f(0) + if () ae., so if f € L, is real,
we have a way of constructing F € H, with RF(e”) = f(0) a.e.

Now we saw in Chapter III, Subsection C.2 that as long as f € L;(—=n,n) and
[0+ 2=) = f(0),
L[ f0—1)
7 2tan(t/2)

—n

fo)=

exists and is finite a.e.

Definition f(0) is called the Hilbert transform of f(0). Sometimes, by abuse of language,
we call it the harmonic conjugate of f(0), on account of the theorem quoted at the beginning
of this section. It would be better to call it the function conjugate to f(6).

The inequality ||f||, < |If]], has a valid analogue for other L, spaces.

B. Hilbert transforms of L, functions, 1 < p < oo

1. An identity

Lemma Let U(z), V(z) be harmonic in {|z| < 1}, and let U(z), V(z) be their harmonic
conjugates with U(0) =0, V(0) =0. Then, if 0 <r < 1,

/ Ulre")P(re)d0 = / TU(re”)V (re) do.

—n -
Proof If
“
U(rem) = ZA,,r'"'ei"o,
— L
e
V(rei0) — Z B"r|n|em0’
—©
we have
* .
U(re’o) = Z(—i sgn n)A,,r"‘le”‘o,
—Q0
o

V(re’) = Z(—i sgn n)B,r"e™.
—
All the series here are absolutely convergent if r < 1, so that the desired relation may be
verified directly by termwise integration.

2. M. Riesz’ theorem

Theorem (M. Riesz) Let f(0) € Lp,, 1 < p < o0, (sic!) and let

Ure) = - / nls f(0)de
T 2n) 1+r2—2rcos(d —1) ’

-n
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with U the harmonic conjugate of U satisfying U(0) = 0. Then ( taking always f as
2m-periodic)

fO—0)—fO+0)
i = / 2tan t/2 d

exists a.e., f € L,, and
1 1—r2 .
U 0y
(re™) 2n / 1+7r2—2rcos(f — t)f(t) d

bt/

Sor r < 1. There is a constant K, depending only on p with H}Hp <K,lIfll,

Proof For p = 2, this is the result quoted in Section A, so we may suppose that 1 < p <2
or2<p<oo.

As remarked in Section A, existence of f(0) a.e. was already proved in Chapter III,
Subsection C.2 under the assumption that f € L;; this is certainly fulfilled for f € L,,
p > 1. It is thus enough to show that

/ T(re®)P o < (K, [If1],)7

for 0 < r < 1, for then, by Chapter I, Section C there is a g € L,, llgll, <K, 1], with

. 1 1 —r?
iy __ ©
Ulre™) = 2n / 1 4+7r2—2rcos(f — t)g(t) de

-7

and we can argue as in Chapter I, Subsection E.4 to show that g(8) = f(f) ae. (The
argument of Chapter I, Subsection E.4 also furnishes a proof, valid under the present
circumstances, that f(0) exists a.e. — and is equal to g(6). So in fact, we do not really require
the theorem of Chapter III, Subsection C.2 at this point!)

We first prove that

[1oenrao < &, iy, o<r<i,

in the case that 1 < p < 2. Afterwards, we'll use the lemma of Subsection 1 and a duality
argument to obtain the same result for 2 < p < co.

The following argument is due to Katznelson. (It is, however, essentially an elegant
manner of presenting reasoning already found in the second edition of Zygmund’s book.)
It is enough to prove the desired inequality for the case f(6) > 0, for in the general case we
can break up a real f € L, into the difference of two positive ones, and use the triangle
inequality for L, norms, together with the fact that

NG = UE I+ 12 = Cp (1f 41l + D-1)”

forf=f,—f_,iffr - f-=0ae. ~
Assuming f(8) = 0, and f % 0 (!), write F(z) = U(z)+iU(z) for |z] < 1. RF(z) = U(z) > 0
for |z| < 1, so F(z) is free of zeros there, and we can take the analytic function G(z) = (F(z))".
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Since F(0) = U(0) > 0, we have, for 0 <r < 1, by Cauchy’s theorem
/ RG(re?) df = 2nRG(0) = 2n(U(0))? > 0.

Now, for given r < 1, we break up [—n, 7] into two complementary sets, E; and E,. Take
ay,0<vy<n/2 such that /2 < py < pn/2 < m. There is such a y, because 1 < p < 2.
Then, let

Ey={0; —y < argF(re”) <y}
and
E; = {0; y < |arg F(ré®)| < n/2}.
Since RF(z) > 0, larg F(z)| < n/2, so E, UE; = [—n,n].

We now have
*) / RG(re) do + / RG(re) df — / RG(re?) db > 0.
E, E, —n

For 0 € E,;, RG(re'’) is negative and < —|G(re®)|| cos py| — look at the second of the
above two diagrams. So by (*),

|cospy|/ 1G(ré)| dﬂs/ RG(re) do.
Es £

For 0 € E; (first of the above two diagrams!)
|F(re”)| < [U(ré?)|/ cosy,
SO
IG(re””)| < cos Py |U(re?)?,
which, substituted in the previous, yields
/ |G(re'®)] d < |secpy| / |G(re’®)| d@ < (cos™ )| sec py| / |U(re)|P do.
E, E, E,

We also see that
[ 1666100 < cosry [1wep .
E] El
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Since E; U E; = [—n, n] and E; N E; = 0, we have, adding the above two inequalities,

/lG(re"")|d9< 1*(')2j°y”y'/|u %P do,

whence, a fortiori,

n
/\U(ref9)|!’d9< 1+ [secpyl /\U (re®)|? do,
cos?P y

since G(z) = (U(z) +iU(z)). Finally,

1 + | secpy|
cosPy

/ |T(re®) do < 11,

by the properties of P,(0) (Chapter I, Subsection D.1), and we are done in case 1 < p < 2.

Remark  This very clever idea is like the one used in Chapter IV, Subsection D.2 to show
that " [log|F(re”)||r d0 is bounded if [* log* |F(re?)|d0 is.

In case 2 < p < o0, we prove

n n
/ |U(ré®)|Pdo < C, / |U(re)|P do

in the following manner. Let 1/q = 1 — (1/p), then 1 < g < 2, and by Holder,

n 1/p
[TGe?)]|, = ( TP de)

n

/ Ure”)T(re'®)do

U

is the supremum of

taken over all finite sums

T(ré%) = Z B,r'"e
n

1/q
[| T(re? ( |T( re*9)|qd0> <.

However, since 1 < g < 2, for any such T, by what has just been proven,
|[Fre, < Ky ||T0"

with

therefore, by Subsection 1,

U U(re®)T(re%)do

T

= l Ure®)T(re)do

< [|Tee||, [Uee)], < Ko [|T@en)]| [[Ure?)]], < Ky |[UGeR]]



92 V: Norm Inequalities for Harmonic Conjugation

and
1D0e)]], < Ky |[Utre)],

for 2 < p < =, as required. We are done.

C. f(0) for f in L;

Let f(0 +2r) = f(0), f € Li(—n,n). By Chapter I1II, Subsection C.2,

Lo 10—
1O =5 tan(z/2)

exists and is finite a.e.

1. Definition of m,(1); Kolmogorov’s theorem

Definition If & is a measurable function defined on [—=, n], we write*, for 4 > 0,
my(A) = |{0 € [—n,w]; |K(0)] = A}l

Clearly mu(0) = 2n, mu(4) decreases, and my(4) — 0 as 4 — oo if h(0) is finite a.e. my, is
called the distribution function of h.

Theorem (Kolmogorov) If f € Ly and 1 >0,
K
mi(d) < S

where K is a constant independent of f and A.

Proof (Carleson, via Katznelson)  Suppose f(6) = g(8) + h(6). Then, if |f(0)| = A we must
have g(6)] = /2 or |h(8)) = 4/2, so m](/l) < mg(4/2) + my(4/2). Therefore it is enough to
prove the theorem for the case where f(6) > 0, since, by our observation, we can extend it
therefrom to general f by taking a larger constant K.

So assume f(f) > 0; since harmonic conjugation is linear, we may, without loss of
generality, take ||f||, to be 2n, then we’re done if we show that

2n

For |z| < |, write

e
it
P = 5 [ S 20

then RF(z) > 0, and, from Chapter I, Subsection C.2, for almost all 8,
F(z) > f(0) +if(0) asz—> €.

Given 4 > 0, let

F(z)— 4

P(z) =1 +W.

* |E| denotes the Lebesgue measure of the set E
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Observe that w— 1 4+ (w — 4)/(w + A) is the following conformal mapping:

In this mapping, 0+— 0, 1+ 2/(1 + A), and the semi-circle joining il to —id goes onto the
diameter from 1 +i to 1 —i. We surely have |¢(z)| < 2, |z] < 1, so by Chapter II, Subsection
B.1,

214(0) = / (") db,

n

2nRP(0) = / Re(e?)do

—n

0)———/f dt—mzl

b~y assumption, since f(t) = 0, therefore, ¢(0) = 2/(1 + 1). Also Rep(e’) > 0. Finally, if
If(8) = 4 we have |F(e)] = A so Rep(e) > 1. Thus, from

i : 4n
Rep(e”)df =
/ ¢ df = 7=

Now

we get
, 4n
1{0; R(e”) = 1} < .
ie.
4n
mf(}) < 1 T }v,

more than what was needed.
We are done.

Scholium If f > 0 but ||f||, # 2=, we can make a change of variable in the more precise
result found at the end of the above proof to obtain

_ anIf
"D S T am
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Finally, if f is merely real, f = fy — f_ with fo, f_ >0, lIfll; = [If+Il; +1If-1l,, we use
my(d) < mz (1/2) +m; (4/2)
and the result just found to get

, 4 llf 41l 4l
mz(d) < .
) Ifally + =4 - (If2ll + =l
Observe that for fixed 4, x/(x 4+ mA) is an increasing function of x > 0, so for f real in L;,

87 |If 1,
lf1ly +n4

mf(']“) <

Sometimes this more accurate version of the above theorem is useful.

2. Proof of M. Riesz’ theorem by Marcinkiewicz interpolation

We use the result in Subsection 1 together with that quoted in Section A to give a new
proof of M. Riesz’ theorem (Subsection B.2) in order to show an example of Marcinkiewicz
interpolation for linear operations. As the duality argument at the end of Subsection B.2
shows, the version proved below actually covers all values of p, | < p < oo, if we throw in
the easy case p = 2, given in Section A.

Theorem (M. Riesz) If 1 < p <2 there is a constant K, depending on p with
||U(rem)|‘p <K, ||U(re[0)|‘p
if r <\ and U(z) is harmonic in {|z| < 1}.
Proof  Write f(0) = U(re®®); then f(0) = U(re'?). Here, f and f are both continuous, so by
the definition of integrals,

IFO0)Pdo = — [ 27 dmy(2),

Jora--]
IF(0)1P 46 = — [ 27 dmj ().

Jora==]

Our job is to estimate the second integral in terms of the first. Since f(6) is here continuous,
mz(4) =0 for 4 large enough, and integration by parts gives

/ If(0)) do = p / ¥ my(4)da.
—-n 0
Suppose f = g + h. Then, as we argued in Subsection 1, f =g + h makes
mz(4) < mg(4/2) + my(4/2).
Marcinkiewicz had the crazy idea of using this inequality to estimate mz(4) by breaking up f
as g + h in a way depending on 1!
Given A > 0, take:

)= {[O 17O <s

0 otherwise.

_Jo if1f(6) <4
h() = {f(B) otherwise.



Section V-:C f() for f in Ly

The idea here is that g is not large, so g € L.
Indeed, by Section A,
ik < gl = [ if@Pdo =~ [ 2 amo,
170)< 0

SO
A

/s2 dmg(s).

0
For h, we use the result of Subsection 1, which says that

2K
m;, (1/2) < l|h||1 — / 6)|do = —w/sdmf(s

If(é)\>/I

y< — 0/5 dmy(s) ——lsdmf(s)-

4 5
me(/2) < 5 IIEl < —

rN| N

Therefore, finally,

\)

Now we have:

/|f9)l”d9—p//1”’ (3)d

. ks

< -_4p/}J’ 3/5 dmy(s)di — 2Kp/ip 2/Sdmf( )da.

0 0 A
By Fubini’s theorem:

/lp3/sdmf ///1”32d/1dmf)

i 7

=—— P—Z S

Py sP7%s% dmy(s) 2_p/s dmg(s)
0 0

il
= 2——p
because —2 < p—3 < —1.
Similarly,

% %~ w s
_/ipfz /Sde(S) dl = — / / 2642 dWlf(S) = —ﬁ /sp dml(S)
0 0 0

A
AR
- Lh

s

because —1 < p—2<0.

95
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So finally,
- > K )
171y < 20 | 52 + 25 g

Q.E.D.

3. Zygmund’s Llog L theorem

It turns out that f € L, is not enough to guarantee f € L;. The theorem which applies here
is due to Zygmund:

Theorem (Zygmund) There is a constant ¢ with
/ 7(0)]d0 < ¢ / FO)I(1 +log* 1£(6)])d6 + 2,
Zn —n

and a similar inequality holds with f(0) replaced by U(re'’) and f(6) replaced by U(re?).

Remark  x(1 + log* x) is convex for x > 0 so, since P, > 0 and

1 n
E/P,(t)dt= 1,

n
; 1
Uty = 5 [ Po—or(dr
2n
we have, for r < 1, by Jensen’s inequality,

/ U(re)|(1 + log* |U(re)]) b < / FO)I(1 + log* 1£(8)]) db.

Therefore |f(0)|log™ |f(0)| € Li(—n,n) guarantees that

s

1 el 4z
PGy = 5. [ S2r0)@ < H

—T

Proof of theorem We use the estimate for my(4) obtained in Subsection 2 (boxed formula)
to get a bound on

P

/ If(0)do = — /ldmi(}y) = /mj(i)d/l <2n +/m}(l) dz

0 0 1
( m;(i) < 2z for all 4> 0!). We have, by the formula in Subsection 2,

4 s 7 L. ya
/m}(/l)d/l < —4 /ﬁrzfszdm,(s)dz—zK/;;" /sdm,(s)d;..
1 9 0 | %
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Since dmy(s) < 0, this is

< 4//;— my (s)di — 2K// A dmy(s)
0 0
4// dAdmg(s) — 2K/slog sdmy(s)
0

s

— /(4s + 2K slog™ s)dm;(s)
0

- / (014 + 2K Tog* |(6)]) de.

This does it.
4. Converse of Zygmund’s theorem for positive f
In case f(#) = 0, the above theorem has a converse!
Theorem (M. Riesz) Let f(0) = 0, let
1 el +z
F) = 5 / jwd
7

elt
—n

and suppose F € H,. Then
f(0) 1og™ If(6)] € Li(—m, 7).

Proof Let G(z) =1+ F(z); then RG(z) > 1 for |z| < 1 and G(0) = 1 4 F(0) is real. So we
can define a regular branch of log G(z) in {|z| < 1} with log G(0) real and > 0.
By Cauchy’s theorem, for r < 1,
G(0)1log G(0) = % / G(re”Ylog G(re'’) do,

i.e., the left side being real,

G(0) log G(0) = % / [sRG(re“’)log |G(re®)| — 3G(re)arg G(re‘“)} 0

In the present case, RG(z) > 0, so —n/2 < arg G(z) < 7n/2, and

/ RG(reYlog|G(re')| df < 2nG(0)log G(O / I3G(re'”)| deo.

Asr — 1,
RG(re")log |Gre™)| — (1 + f(0)log |1 + f(6) + if (0)] ae.,

whilst

n

/!SG(re'”)ldO <|IF|};.

—n
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So by Fatou’s lemma, we get

[+ s0t0g11 + £i0) + Fi@)1 00
< 2m (1 + |IFIl;) log (1 + 1IFIl}) + (=/2)IF]l,
using a trivial estimate for G(0) = 1 + F(0). Since f(0) > 0, this is enough.
5. Another theorem of Kolmogorov

Using the result of Subsection 4, it is easy to construct examples of f € L; with f(6) not in
Ly on any interval. However,

Theorem (Kolmogorov) If fe L,
/lf(6)|”d6 <w

whenever 0 < p < 1, 50

n

1 it
F(z) = E/e. 2y de

et —z

-
belongs to H, for 0 < p < 1.
Proof By the result in Subsection 1, if 0 < p < 1,

/ F(0)P do = — / AP dmy(2) = p / A 'ma(4) d2
—-n 0 0

s2n+p/ﬂ*'m](,1)d,1s2n+Kp\|f||l/Ach
1 1

1
=2n+Kplifll;- T—p

Q.ED.

Remark  Using the inequality actually proved in Subsection 1, and given in the scholium
there,

8 [If1];
Sl + =

(valid for real f), we obtain a better inequality of the form

mi(/l) <

/ FOrde <C . 0<p<1.
—n
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Indeed,

e a0 aKQ
- _ AHIA, da
IF(0)° do = /)J’ Tm(1)dA < 8n /—4_
_Z 7 7 P ¥

Pl

P! ds
=3 p [
wlflE [ e
0

the integral being finite for 0 < p < 1.
There is, however, a much easier way to establish the same result. Taking, without loss
of generality and as usual, f(6) > 0, form the analytic function

n

1 it
Fo =5 [ S0

—n
then apply Cauchy’s theorem to (F(re'”))?, 0 < p < 1, observing that |arg F(z)| < n/2. The
desired inequality comes out quite easily.

D. f(8) for bounded f and for continuous periodic f(6)

1. Integrability of exp Alf|
Theorem [If f(6) is real and
Ifll,, = ess sup|f(f)| <

—n<f<n

3

N a

then

n
/ A0 4g < ;.
—n
a constant depending on A alone, for each 4 < 1.

Remark Thus, although f € L, does not imply f € L., f still has very strong
boundedness properties.

Remark  The theorem cannot be improved to cover the case A = 1, as is seen by considering
the example where

n L . .
f0) = 3 % the characteristic function of an interval.

Proof Write

n

1 it
F(z) = — / C A,
2n et —z

then, if f is real and |f(t)] < n/2, |RF(z)| < n/2 and JF(0) = 0, hence, if 0 < 1 < 1,
by Cauchy,

/ exp (—iAF(re")) df = 2me™ "),

T



100 V: Norm Inequalities for Harmonic Conjugation

Taking real parts,

/ ‘.RCXp (—ilF(rem)) de < 27Z|67’)'\']‘F(0)| = 2.

-7

But
|arg exp (—lﬂF(re‘o)) I < gﬂ
)
/ lexp (—iAF(re”))| cos —) do = / exp (A3F(re”)) cos —J de
< / Rexp (—ilF(reé”)) dO < 2r,
and finally,

n

/exp (A3F(re")) d < 27t/COS %X.

-7

Similarly, using exp(iAF(z));

/exp( —A3F(re”)) do < Zn/cosg}..

—n

Since IF(rei’) — f() ae. as r — 1, the theorem follows by Fatou’s lemma.

2. Case of continuous periodic f

Corollary If f(8) is continuous of period 2n, and real, exp A|f(8)] is in L, for all .
Proof Given e > 0, we can find a finite sum

9) _ ZAnemO

\ivith g(0) = f(8) — S(0) satisfying ||g(8)l]., < e. Then exp A|{g(0)| is in L for A < n/2e. But
F(0) = &(6) + S(0), and S(0), being a finite sum of the same form as S(6), is bounded.
Q.E.D.

E. Lipschitz classes
It is useful to know:

Theorem (Privalov) Let f(0) be 2n-periodic and Lipa, 0 < o < 1. Then f(8) is Lipo.
Proof  First of all, if h > 0,

f(O—1)~f(0+1)
10y~ / 2 tdn oy ¢

h
1 /lf(o—t)—f(0+t)l
- dt
t

h

/ % dt = O

0

IA
Al —
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for 0 < a < 1. So we may work with

l/f —0)—f(0+1)

Stan2) 00

say, instead of (8), if we wish to estimate f(6 + h) — 7(6).
We may also assume f() =0, since f(¢) and

%/U(¢—t)—f(¢+t)]cot§dt
3h

don’t change if f(s) is replaced by f(s) — f(6). Thus, we may assume |f(0 —t)| < C|t|*. Now

f9+h—t —fO@+h+r) f—t)—f(O+1)

tan(t/2) de— / anie2) O
_/[f(9+h—t) fo— f0+t)—f(0+h+t)dt
N tan(t/2) tan z/z tan(t/2) )

We evaluate the first integral on the right, the second being handled similarly. The first
integral is
T 69 - Tre-n . fre-o
—s —t —t
ds — dt — dr
/ tan ((s + h) /2 / ((s+ h ) s tan(t/2) tan(t/2)
h

2h 2 n—h

=0 + / £ —1) <cot # —cot %) dt + o(h)
2h

since |f(6 — t)] < O(t*). The integral is in absolute value
n—h

o

0
h t*de
< const - /ta'TdtSCOUSt'/ >— = const - h*
5 sin“(t/2) ) t
2

since 0 < a < 1.
We are done.

F. Return to conformal mapping
We consider again, as in Chapter II, Subsection C.3, a conformal mapping f(z) of the unit
disc onto the domain bounded by a Jordan curve I" with continuously turning tangent.

Theorem If f(z) maps {|z| < 1} conformally onto the region bounded by a Jordan curve T’
with continuously turning tangent, f'(z) and 1/f'(z) belong to all the spaces H,, 0 < p < 0.

Proof By the theorem of Chapter II, Section C.3, each harmonic determination of arg f'(z)
in {|z| < 1} (these are available since f'(z) never vanishes there) has a continuous extension
up to {|z| = 1}. Any such determination comes from an analytic branch of logf'(z)
defined in the open unit disc, so log|f'(z)] = Rlogf'(z) is a harmonic conjugate there of
—3Jlog f'(z) = —arg f'(z), equal to log|f'(0)| plus the usual harmonic conjugate studied in
this chapter.
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The corollary in Subsection D.2 (or rather a combination of its proof with the one of
the theorem in Subsection D.1) now tells us that the integrals

2n

/ exp(-Alog |f/(re”))) d6

0

are, for any 1 > 0, bounded for 0 < r < 1. But this means that f'(z) and 1/f’(z) are both in
H, for any A > 0. We are done.

Corollary Under the hypothesis of the theorem, I" is rectifiable.

Proof By the fundamental theorem of Chapter II, Subsection C.1, f(e'?) is a parametriza-
tion of I'. Let us check that for any partition 0 = 6y < 0; < ... < 6, = 27 of [0,2x],
we have

n
D IE™) = fEe® I < [If ;-
k=1
According to the result referred to, the sum on the left is equal to
n
: i0) _ 01
gn;kz_l If (re™) — f(re™)),
and for each r < 1, the present sum is

. 0 2n
> /fl(reio)'ireiede < /|f/(’ei0)|d9 < If'lly-
0

k=1 0r

Since ||f’]]; < o by the above theorem, our corollary follows.

Under the conditions of the theorem, f'(z), as a function in every space H,, 0 < p < oo,
has finite Z boundary values a.e. on the unit circumference.

Notation This boundary value at z = ¢ is denoted by f'(¢?).

Corollary Under the conditions of the theorem, if J is an arc of the unit circumference and
f(J) the corresponding arc of I we have, for any p, 1 < p < o,

A lJIP < lengthf(J) < B,lJ|'/?

where A, and B, are constants depending on I' (and the particular conformal mapping f)
with A, > 0, B, < o0.

Proof By the preceding corollary and the first theorem in Chapter II, Subsection D.2,

length f(J) = / If'(e")] 6.
J

Taking 1/q = 1 — (1/p), this relation yields, by Holder,
length f(J) < If"|l, 177

with ||f’||q < oo by the above theorem.
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Again, still by Holder,
U= [ 17 et a0

1/p 1/q

IA

J
2
[irenice) | [ireorerao
J 0
Raising to the p* power and using the previous relation, we get from this
length f(J) = A4,|J|?
with
—p/q

2n
A= | [ir@raran) >0
0

according to the above theorem.
This does it.

The observation following the first theorem of Chapter II, Subsection D.2 enables us to
extend this corollary from arcs J of the unit circumference to Borel sets E thereon. If, for
such E, we denote by |f(E)| the linear measure of f(E) on I', we still have

wm=/mﬂwa
E

and thence, by the reasoning used to prove the corollary,
A,|EP < |f(E)| < By|EI'V?.

It is important to note that one cannot conclude from the hypothesis of the above theorem
that f'(z) € Hy, nor can one take p = 1 in the last corollary. Possession of a continuously
turning tangent by I is thus not enough to guarantee that f'(z) extends continuously up to
{lz] = 1}.

For that, still more regularity is required of I". One of the best known results concerning
this is due to Kellogg.

Because I' is rectifiable (by the first of the above corollaries), its arcs have finite length.
For w and w’ on T', we denote by

length - (w,w')
the length of the shorter of the two arcs on I joining w to w. We also denote the line
tangent to I" at w thereon by T,, as in Chapter II, Subsection C.3. Then we have

Kellogg’s Theorem Let 0 < o < 1 (N.B.!), and suppose that for ', with a continuously

turning tangent, the acute angle between T,, and T,, is < const - {length  (w, w')}* whenever

w and w', on T, are sufficiently close together. Then, if f(z) is a conformal mapping of {|z| < 1}

onto the domain bounded by T', f'(z) extends continuously up to the unit circumference, and
If'(€”) — f'(¢)| < const - |6/ — O)".

Proof Fix any harmonic determination of arg f'(z) in {|z| < 1}. According to the theorem
of Chapter II, Subsection C.3, that function extends continuously up to {|z| = 1}; we write

u(6) = lim arg f'(2),
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making u(0) continuous and periodic, of period 27n. In proving the theorem just referred to,

it was seen that
u(0) = ar pe’) z
TAB N\ 2

(for suitable determination of the argument), where p(e”) denotes a unit vector tangent to
T at f(e), pointing in the direction ‘of increasing 6, and hence parallel to T(ev). For small
values of |§' — 6], the acute angle between T, and Ty is therefore equal to the one
between p(e’’) and p(e'?). However, by the continuity of arg (p(e’)/e'’), that acute angle
must be

}arg (p(ei"')/ei0'> —arg (p(e”)/e") + ¢ — 9};
the hypothesis hence makes this last expression

< const - {lengthr (f(e"ol),f(em))}a
when |6 — 0| is small. Since, by the second of the above corollaries, we have
length - (f(e), (")) < const - |6/ — 9]/
(say), the observation just made implies that
|u(6') — u(0)| < const - |6’ — 8]*/2,
first for |6’ — 0] small, but then (by cooking the constant) for all values of § and 0'.

We proceed to run through the same argument twice. The last relation and the theorem
of Section E yield

[2(6") — 5(8)| < const - |6 — 0]*/2,

with the Hilbert transform #i(0) of u(f) now evidently continuous, and periodic as well, of
period 2n. But log|f’(z)| is, on {|z| < 1}, a harmonic conjugate of the bounded harmonic
function —arg f'(z) having, at z = ¢, the (continuous) boundary value —u(6), so

— |z

1og|f(z|~log|f(0|~—/, o) ds

for |z| < 1. Thence, by the continuity and periodicity of #(6), we find that log|f’(z)| has a
continuous extension up to {|z| = 1}. The boundary value |f'(¢’)| is in particular bounded
(and also bounded away from 0).

Denoting by M an upper bound on |f'(e'")| we now get, as in the proof of the second of
the above corollaries,

length - (f(e”), f(e")) < M|0' — 0.
From this, we see that in fact
|u(0") — u(f)| < const - |0 — 0|*
(with exponent « on the right, and not just a/2). Appealing again to the theorem of Section
E, we find, since 0 < o < 1, that
|l#(0') — ii(0)| < const - |60' — 0|*.
From the above Poisson representation of log|f'(z)| we obtain, for that function’s con-

tinuous extension to the unit circumference, the value log|f’'(0)] — i(0) at z = €. As
we know, arg f'(z) has at the same point the continuous boundary value u(6). Therefore
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log f'(z) = log |f'(z)| + iarg f'(z) extends continuously up to {|z| = 1} and takes, at z = ",
the boundary value
log |f'(0)] — @(6) + iu(0).
Writing log /(¢ for that boundary value, we get, by the last two relations,
[log f'(€'%) — log f'(¢)] < const - |0 — 6]".

By exponentiation, we see from this result that the boundary value f'(e) of f/(z) exists

everywhere and is continuous, and that
If'(¢) = f'(?)| < const - |6/ — 0]%,

e” being uniformly Lip 1 in W on any bounded region of the W-plane.

The theorem is proved.

Remark In the course of the proof it was seen that |f'(e'%)| is bounded away from zero,
as well as being bounded. Therefore, under the conditions of the theorem, we have, with a
constant M depending on T (and on the particular choice of the mapping f(z)),

M™E| < |f(E)| < M|E|

for Borel subsets E of {|z] = 1} — cf. the observation following the second corollary above.
This result is useful in the estimation of harmonic measures.

The last theorem is no longer valid for « = 1. The reader is invited to obtain a substitute
for that case after perusal of the proof in Section E. He or she is also invited to look for
a substitute in the case « =0, i.e,, for a condition on the variation of T, as w moves along
I' which is weaker than that in the theorem’s hypothesis (for every o > 0), but still strong
enough to guarantee continuity of f'(¢?’) and the relation stated in the last remark.
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H, Spaces for the Upper Half Plane

In order to study certain classes of functions analytic or harmonic in 3z > 0 we make
the conformal mapping
i—z
i+z
onto the unit circle {|w| < 1} and apply the results already obtained in previous chapters.

Z W=

A. Poisson’s formula for the half plane
If 3z > 0 and ¢ is real, z corresponds in the above conformal mapping to

i—z ;
w=—— =re?,
i+z
say, and t corresponds to
i—t ;
w = — == e""’
i+t
say.
We want to work out the Poisson kernel
1—r? 1 —|w? do

T4+ —2rcos@—7) °  w—-olP o
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Now
2i
w = — 1,
i+t
SO
2idt
d A
R T v
and
do  2dt  2dt
iw (-t 241
Thus,

. 2
1—2Z
1w do _ 1—‘—i+z) 24t
w—ow] i ‘i—z_i—_tz 2+ 1
¥z iFt

|z + i’ —]z — i

2dt

Lo AT T2
Sy L
[2i(z —t)| |z —t|
Then by theorems of Chapter I:

i+ 0(—2)—(i—0i+2P ML
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Theorem Let V(z) be harmonic and bounded for 3z > 0. Then the limit V(t) = lim V(z)

for z — t exists a.e. for t on R, and for 3z >0

V(z) = / o +y2 V(t)dt.

Theorem Let V(z) be harmonic and > 0 for 3z > 0. Then there is a constant o > 0 and a

measure x> 0 on R with

such that, for 3z > 0,

1 [ ydu()
(x —1)2 +y?

—L

V(z) =uay + -

Proof If, in the correspondence z +— w = (i — z)/(i + z), we let U(w) =

n
1 1—r2
10y __
Ulre™) = 2n ) 14+r2—2rcos(f —1) dv(®)

—n

where v is a (finite) positive measure on (—n, 7). For
it
i+t

it

V(z), we have
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du(t) is given by
du(t) = 3(1 + ?)dv(x).
o is simply the point mass (1/2n){v({—n}) + v({n})}, if there be any.

Remark It is common to think of na as ‘the mass at oo’

What is the harmonic conjugate of

0
1 y
V@) =5 / mdu(t) ?
—0
Observe that
y i(x—t) i
(x—02+yr  (x—t)2+y? z—t
is, for each t € R, analytic in 3z > 0.

So one choice for the harmonic conjugate of
V(z) would be

1 @0
x—t
| o
—0

This particular choice is frequently used.

The boxed formula is applicable as long as

f1d
| du(t)| o,
1+t

—0

But in the most general situations, all we know is that

o0
| du(t)|
1+

—0

(cf. above theorem for the Poisson representation of positive harmonic functions).

In that case we use the harmonic conjugate

1 i xX—t t
E,/((x—t)2+y2 +t2+1> duo)

Here, the integral is absolutely convergent as long as

[ 1du(o)
ult
LH2<

—0
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1 n
So, for V(z) = - / m du(t) we have the

bt/

following two choices for the harmonic conjugate:
2]
1 x—t
; m d[l(t) and

—0

1 7 x—t t
;/ ((x—t)2+y2+t2+1) dul).

B. Boundary behaviour

Theorem Let

[y
V(Z)—;/md#(t),

where p is a signed measure on R with

oo}
| du(r)|
1+1¢2

—o0

Then, at any ty where u'(to) exists and is finite, V(z) — 1/ (to) as z — to.
Proof If

i—z _ i i—t it
i+z 7 i+t
then
17 -
Viz) = 0y _ 1 -
(z) = u(re™) 2 / 1472 —2rcos(f — 1) dv(z),
-~
where the relation between v and u is given by
2dp(r)
dv(t) = el

We also have dr = 2dt/(1 + t?), so
dv(r)  du(r)

de ~ dt
By Chapter I, wherever v'(q) exists and is finite,

u(w) = v'(tg) for w - e,

So our result follows by direct carrying-over.

Remark It is also instructive to go through a direct proof of this statement, keeping the
kernel y/[(x — t)* + y?] but following the procedure of Chapter I (integration by parts). It



110 VI: H, spaces for the upper half plane

will be found that the computational details are simpler here!

In fact, this is generally the case — so much so
that frequently results for {|w| < 1} are proved by
first going over to the half plane 3z > 0.

y x—t
d
=+ M G-ty
are just easier to handle than

1 —r? and 2rsin(f — 1)
1 +r2 —2rcos(d —1) 14712 —2rcos(f — 1)

respectively!

Similarly, by translation from Chapter I:

Theorem Let
[se}

1 y
V(z)= p / m du(t),
—®©
where
[ du(®)l
142

—00

< 0.

If 1 (to) exists and is infinite,
Vitg+iy) = t/'(ty) asy —0+.

Theorem Let

and let

-~ 1 7 x—t t
V(Z)=E/((x—t)2+y2+t2+l>F(t)dt"

Then, for almost all x € R,
1 / < ! 4t )F(t)dt — Vix+iy) - 0

n x—t £2+1
lt—x|=y

as 'y — 0, where y' = tan(y/(1 + y)).*
Remark In case

[F(®)]
It +1

—w0

dt < o0

* Here, one can just as well replace y’ by y. That is most easily seen when the direct
procedure suggested in the preceding remark is followed.
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we have simply

i —t 1 F
—/ x F(t)dt — — / FO 4 50 ae
T x_t T xX—t

[t—x|=y’
as y — 0, with y’ as above.
Thus, existence of the principal value

fF([) t=lim / PO 4,
xX—t yv—0 T x—t
% jt=x|=y

is here equivalent almost everywhere to existence of

x—t
i1_r,r(1)7t / i F(t)dt.

There is a coarser kind of boundary behaviour which is easy to verify.

Note that
1 o’
! / .
s (x— t)2 + y?
that
y
>0
=P+ =
and that
! / J dt—0 a 0
— _ — —
n (x—1)? + 2 5y
Jt—x]=6
for any 6 > 0.

From this we get easily, by the usual arguments:
Theorem If ¢(t) is bounded on R,

1 o@“

+ | Gond > gix)

—%
for z — xo, xo being any point of continuity of ¢. If ¢(t) is uniformly continuous, the
convergence is uniform.

Theorem Let u be a totally finite measure on R and write
1 r y
dpy(x) = - / TETERT du(t) ¢ dx

Jor y > 0. Then duy(x) — du(x) w* as y — 0.
Proof By the preceding and duality!
Theorem Let F € Ly(—o0,0), 1 < p <oco. Let
1 f y
F = [ — .
y(x) =~ / o +y2F(t)dt

— L
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Then ||Fpr < ||Fll, for y >0 and ||F, —Fll,»>0asy—0

C. The H, spaces for 3z > 0

Definition F(z), analytic for 3z > 0, is said to belong to H,(3z > 0) or, just H, if we know
we are dealing with the upper half plane, provided that there is a constant C < co with

/ |[F(x +iy)Pdx < C

for all y > 0. We use this definition for all p > 0.

Remark H,(3z > 0) is not just obtained from
H, for {|w| < 1} by conformal mapping! There is a

factor (depending on p) which also comes in!

Lemma [f F € H,, |F(z)| <k/y'/? with a constant k depending on F.

&

Proof 1f 3z > 0, by subharmonicity of |F(x)|? for p > 0,

1 2n .
|ﬂﬂVs—1/wu+pWWW¢
2
0

for 0 < p < y. Therefore, integrating p from 0 tor < y,

r 2n

2 1 _
Mst—//wHWMww@
2 2r

0o 0

1 X+r y+r
= 2 / / [F(E +in)lPdndS  (see picture),
7
X—r y—r
which, by hypothesis, is (change the order of integration)

SLC27=Q,
27 T

so |F(z)|? < 2C/rnr. Make r — y. Done.
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Lemma Let F€ H, p>1, and let h > 0. Then

o
1 [ yF(t+ih)

—®
Proof By Cauchy’s theorem.
Let T'g be the contour shown below, with R very large, and let Rsin 6y = h. Then

o1 F({)
Fz+ih) = 2m/z;—(z+ih)dC
Tr
1 F(O) 1 Ferimde 17 F(Re®
= [ %) qr= - Fe+imdr 1 _ FRe™) o0
_2ni/(C—ih)——de—2ni / t—z +27ri/ Re"o—ih—lee dé.
Tz —Rcos 6y 0o

For very large R, the second integral is bounded by

0

n—0,
1 )
J=5 / |F(Re?)|(1 + O(1/R))do.
6o

R

Now use |F(Re®)| < k(Rsin 0)~/?, proved in the above lemma. If p > 1, we get immediately
J < K'RV/? since
n
/(sin 077 do < o0
0
forp> 1. If p =1, use sin @ > const.f on (6, /2] and sin @ > const.(x —8) on [/2, =T —0)
to get

n/2
J < k_” ﬁ = k_” ogi < Eﬁ]ogL — K]ogﬁ.
- Ro 0 R 200 - R 25in90 R 2h
(1]
This also tends to 0 as R — .
So
R/ .
F(z +ih) = lim i./—F(“”h)dt.
R—o0 2mi ) t—z
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Now Z + ih is outside T'g, so, again by Cauchy’s theorem,

FO 1 T Fermde 1" FRe)
= = — L_E _ _—el i0
2711/( th—z ~ 2mi / f—z +2m’ / Reie—ih—ElRe do.

—Rcos Uy 0o
By the argument given above the second integral tends to 0 as R — co. So finally

R
0= lmL/F(t-*_lﬁ)dt.
R’—mo27tl t—2z
—R'

Subtract this from the previous boxed relation and note the important identity
1 1 2iy 2iy

t—z t—z |t—zP (x—1t)2+y?

We get

J:4
Fz + ih) = 1 lm yF(t+th)dt

T R— (x—1)2 +)?
—R’

QED.

Remark We define H,, to be the set of functions
analytic and bounded in 3z > 0. Then the above
lemma still holds for p = oo.

Note that here we cannot prove that

7 FRe") [ _Fre")
€ Re® € Re®
_ T Reidd _\reJ
/ Re —ih —z Re"df and / Rel® —ih — z dé
0o o

separately go to zero as R — oo. But their difference does, because
1 1
Re —ih—z Re? —ih—z

is O(R™?) for large R !

Remark  If, in the above proof (for 1 < p < o0) we add instead of subtracting, we get

il

i [ (x—0F(+ih)d
F(z+ih)=l/(x(xtlt()§':’y2) ‘

—0

the integral being absolutely convergent for 1 < p < co. This fails if p = o0

Theorem Let F(z) € H)(3z > 0), p = 1. Then, for almost all t € R,
zll%)nt F(z) = F(t) exists,

F(t) € Ly(—o0,00), and
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1 7 y -
F(Z)—E/mF([)dt, 3z > 0.
—30

Proof 1If p > 1, we can get a sequence of h > 0 tending to zero such that the
Fu(t) = F(t + ih)

tend weakly to some F € Ly(—o0,00) — for ||Fy|[, < C, h > 0, by hypothesis. Substitute in
the formula derived in the above lemma: for fixed z, 3z > 0, we have

XD A
1 y 1 y
F(z +ih) = n/(x—t)2+y2Fh(t)dt — n/(x—t)2+y2F(t)dt
— —0

as h — 0 through the the particular sequence of values given. Since F(z + ih) — F(z) also,
we get the above boxed formula.
Now F(t) € Ly(—0,0), p > 1, so if
X
o0 = [ PO
0
¢ (x) exists and equals F(x) a.e. Observe that de¢(t)/(1 + £2) = F(t)dt/(1 + 2) is absolutely
integrable, so a theorem of Section B teaches us that F(z) — F(xq) for z — x ae. in
xo € R. We are done in case p > 1. (N.B. Including for the case p = oo, by a preceding
remark!)
Now for p =1 all we know is that

Fu(t)dt — du(t) w*

as h — 0 through its sequence, where u is some complex measure on R with
o0

/ | du() < oo.

—a0
The above argument then yields

I

But now we can apply the theorem of F. and M. Riesz.

If 3z > 0, the second boxed relation in the proof of the above lemma reads, for h > 0,
0D

t—z

—o0
*

Therefore, since Fy(t)dt — du(t) w",

/ du®d _ 6 50,
it

Take z = ik, k > 0; we see that

=0, k>0
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Differentiating successively with respect to k we get

du(r)
(t + ik)

—00

=0, n=12,...

Finally, we have

ol
/md#(f)=0, n=12,...
—

Now, in the conformal mapping

i—z i—t
- s t— —
I+z 1+t
define a measure v on [—=n, ] by dv(r) = du(t)/(i —t). Then, forn =1,2,...

n

/ e dv(t) = / %dum

—n —0

which can be rewritten in the form
Z / du(t)
k b
pe (i+t)

_ T

Z N

and is hence equal to 0. So
n

/e’A”r dv(r) =0, n=1,23,

—n
and by the F. and M. Riesz theorem, dv(t) is absolutely continuous. So du(t)/(i —t), and
hence du(t) is; du(t) = F(t)dt for some F € L;(—o0,0). We now conclude the proof as in
the case p > 1. Q.E.D.

Theorem IfF € H, 1<p<oo, (sic!)and 3z >0, then

! Fit) dt = F(z) and / M =0.

i t—z t—7Z

- —L

Proof By the two boxed formulas in the proof of a preceding lemma,

F(z+ih)=2Lﬂ/M,

t—z
-0

o / Fu(t)de

t—2z
e

where Fj(t) = F(t + ih). But by the above theorem

1 hF(t)dt
Fix) / x —t)2 + h?
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where F € Ly(—o0,00). So by a result of Section B, ||F} — F||p — 0 as h — 0. Substitution
into the preceding formulas gives the desired result.

The first of the above two theorems has its analogue for harmonic functions.
Theorem Let U(z) be harmonic in 3z > 0O and suppose that, for some p > 1,
/lU(t+iy)|"dt <C<w

—0

independently of y. If p > 1, then

o0
1 y ~
Uz) =~ / T yzu(t) dr, 3z>0,
—00
where u(t) € Lp(—o0, ).
Ifp=1,
[ee)
U()—lf Y du(t), 3z>0
=7 (x—1)2 +y? Hh, =2
—o0
where
o0
[ 19uwi <
—0

Proof |U(z)|P is subharmonic, as is easily verified from the mean value formula of Gauss
and Holder’s inequality — therefore the argument of the first lemma of this section can be
applied to it, and we see that [U(z)| < C/y'/? for 3z =y > 0.
In particular each function Uy(z) = U(z + ih), h > 0, is bounded (and harmonic!) for
3z > 0. Now we can use the conformal mapping
i—z

i+z
put Un(z) = U;,( w), and use the known representation (Poisson’s formula) for functions
U;, w) harmonic and bounded in {|w| < 1}. If we go back to the z-plane, the Poisson
formula for U;,(re ) in terms of U,,( ) goes over into one for Uy(z) in terms of U(t), t € R.
The calculation has already been carried out in Section A, and we find

_L[ U
o= | o

—0

U(z +ih) = 1/ yU;,
x—t

The rest of the argument consists in passing to the limit 4 — 0 and is exactly like what was
done in proving Poisson’s formula for H, functions above. We’re done.

Remark  The above proof works also when p = o0 (U(z) bounded in 3z > 0).
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Theorem If F(z) € Hy(3z > 0), p = 1, and, for w = (i — z)/(i + z), f(w) = F(z), then
f(w) € Hy(lw| < 1).
Proof By the first of the above theorems,

1 0

y
n/lz—t|2F(t)dt’
-0

where F(t) € Ly(—o0,0). The change of variable z — w was carried out in Section A where
we found

1 1= .
gy — _~ it
f(re?) = 2n / 1 +7r2—2rcos(¢ — ‘t)f(e )z,

—T

F(t) = f (21—3 .

/lf 1t)|pd1, /ZIF( )P de <2/|F([)|Pdt<00,

putting

Now

1+

/ ()P dg

are bounded. So f € Hy(|w| </1). Q.E.D.

so, by Chapter I, the means

Remark The computation used in proving the above
theorem shows that the converse

fw) € Hy({lw| < 1}) = F(z) € Hy(3z > 0)
is false!

The correct equivalence is obviously, for

i—z
f(m) = F(2),

F(z)
(z + 0P

fw) € Hy({w| < 1}) iff € H,(3z > 0).

Theorem If0 <p <1 and F(z) € Hy,, f(w)€ Hy({Iw| < 1}) for

i—z
= F(z).
! (i + z) @
Proof |F(z)|P is still subharmonic, so we still have |F(z)] < K/y'/P, and in particular
|F(z)|, and hence |F(z)|P, is still bounded in each half plane 3z = h > 0. Therefore
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|Fi(z)|P = |F(z + ih)[?, being bounded and subharmonic in 3z > 0, is there majorized by the
bounded harmonic function taking the same boundary values on R, i.e.

1 [ yIFoPde
F(z+ih))P < = / AN AN i
|F(z + i) i
Now
R
[iR@ras<c, n>o
—L
so, making h — 0 we find, in the usual way, a measure g,
[14uor <
—o0
with

1 7 y
Z)lpS;/lz—_—t-lgdﬂ(t)
f(t—z)

1 1—r2
f(re) 5_ / 14+r2—2rcos(@ —1) dv(e),

where, for (i — t)/(i +t) = €7,

Going over to

we get

dv(e) 290

1427
Therefore
[du(®)]
/Ifre l"d0<2/ s
—0
by Fubini’s theorem, for any r < 1. But
[ 1 du()
1412

—0

So done.

Because of these theorems, functions % 0 in H,(3z > 0) can be decomposed into inner and
outer factors.

Theorem Let F(z) # 0 belong to Hy(3z > 0). Then, for 3z >0,
F(z) = Ir(z) - Op(2),

where
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(i)  Ig(z), the inner factor of F, is

) 1 i it i
— ol _ iaz
Ir(z) = " B(z)exp - / (z—t+—t2+1> da(t) | e
with
(a) y real
(b) B(z) a Blaschke product for 3z > 0,

i, 22
B(Z)=H<e i—fi)’

k
where the z;, are the zeros of F(z) in 3z > 0 and the real oy are so chosen that

i——Zk

eifx;\ .o = > 0’
1—Z
(c) do(t) <0 a singular measure on R with
XK
[ da(t)]
1+ w’

(d) o = 0 (the ‘mass at oo’ is —mat);
(ii) the outer factor of F, O, is

Op(z) = exp %/( ! + ! >loglF(t)|dt

z—t 241

—L

Proof Take the corresponding factorization for functions f(w) in H,({|w| < 1}) and change
the variables in it:
i—z o Lt
W= S =Fe), =i
The calculations have mostly already been made in Section A.

Scholium In terms of the z, the necessary and sufficient condition for the convergence of
the Blaschke product B(z) is that only a finite number of z, equal i and that

II z:;’; > 0.
2
This can be written more easily as follows: Firstly,
iz 2= |z + 12— |z — i _ 43z
i—7z |z + 12 |ze + 12
Therefore
i—zg

1l

i—Z

converges iff

S prme
|2 + il

k
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This is usually stated as follows:

The Blaschke product H(ei“*(z — zx)/(z — Zx)) is convergent in
k

3z>0iff Y Jz<owand Y Iz/lal’ < oo

Jzel< |zk|21

The following picture shows that it is much easier to visualise Blaschke products for the
upper half plane than for the circle:

From this it is manifest why the individual factors have modulus < 1 precisely in 3z > 0 !

Scholium Of course, if F(z) € Hy(3z > 0),

/IIOgIF(t)IIdt<OO
142

—C
This follows from the corresponding result for the circle (Chapter IV) by a change of
variable.

Remark The above given factorization for the half plane is sometimes credited to

Nevanlinna. Most of the obvious analogues of Beurling’s theorem (Chapter IV, Section E)
hold.

D. M. Riesz’ theorems for the Hilbert transform
If u(t) € Ly(—o0,0), 1 < p < oo, we can form the function, harmonic in 3z > 0,

Uz) = %/ yu(t)de

(x—1)2+y?’

such that U(z) — u(t) for z — t a.e. in ¢ (Section B).
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If, also, p < o (sic!), we can form the harmonic conjugate

N OO(x—r)u(t)dt
U(Z)“E/(x—t)“yz

(Section A).
The function U(z) + iU(z) is analytic in Iz > 0.

fF(t) dt=0.

/OOF(t)dt_o
t+iN

Lemma If F(z) € H|(3z > 0),

Proof By a theorem in Section C,

—0

for each N > 0. Since F € Hj, by Section C, F(t) € Li(—o0,0), so

oo} [re]
. iN
/ F)dt = lim [ =G F()di=0. Q.ED.
—00 —a

Lemma Let 1 <p <2, let u € Ly(—o0,0), and let U(z) and U(z) be related to u(t) by the
above boxed formulas. There is a constant K, depending only on p such that, for each h > 0,

(v} o0
/ |U(x + ih)P dx < K, / |U(x + ih)|P dx.
—0 —0
Proof Clearly there is no loss of generality in assuming u(t) real, since the general case
follows from this, with perhaps a worse value of K.

We can also assume that u(t) has compact support. For, in general, we can find u,(t) of
compact support with [|uy — u||, — O, so that, if

w0 0
1 [ w0 S 1T (= Ouo)de
U,,(z) = p 'z — [|2 and Un(Z) = p / W
-0 —00

we have for each fixed h, h > 0,

>

0 >8]
/ |Up(x + ih) — U(x + i)]P dx < / lun(t) — u(®)/P dt —> 0,
—0 —o

whilst Uy (x 4 ih) — U(x + ih) v.c.c. in x, whence, by Fatou’s lemma,
[ee] [ee]
/ [T (x + i) dx < liminf / [Tp(x + ih)P dx,
n—o0
0 —0

and the validity of the inequality for each n would imply the same for U/ and U.
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So, henceforth, without loss of generality, we assume that u(t) is of compact support.

We now assume also that u(t) >0 and uz0.

Let F(z) = U(z) + iU(z). Then, for h > 0, U(z) = RF(z) is > 0 for Iz > h, so F(z) has
no zeros in any such half plane. Therefore
G(z) = [F(z +in)]?
is also analytic for 3z > 0.
Now G(z) € H{(3z > 0). Indeed,

o
/[U(x+iy+ih)]de <C<w
—0
for each y > 0, whilst

|U(z + ih)| is bounded for 3z >0
and now also O(l/z) there because u(t)

is of compact support.

So, since p > 1,
o]
/ |U(x + iy + ih)|P dx < const
—o0

for y > 0. (N.B. The constant depends upon h, but we don'’t care about that now!)
So

0
/ |F(x+iy+ih)fdx<c, y>0,
—0
and G(z) € H;.
Therefore by the previous lemma
Q0
/ G(x)dx =0.
—0

Now we can use the method of Katznelson and Zygmund (Chapter V). We have
G(z) = (Fu(z)/, 1<p<2
with RF, = Uy, > 0, where Fj,(z) = F(z + ih) and Uy(z) = U(z + ih).
Choose ay, 0 <y <m/2, such that /2 < py < pr/2 <m — because 1 < p <2 we can
do that. Let

E = {x € R; |arg Fy(x)| < y}.
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oy e

From the previous boxed relation,
/W(F;,(x))" dx + / R(Fp(x))f dx = 0.
~E E

But for x € ~ E,
R(Fu(x))? < —|Fn(x)|?| cos py|

(see second picture!).
Therefore

We play these two
situations against
each other.

/|Fh(x)|"|cospy|dxS/‘.R(Fh(x))”dxs/th(x)l”dx.
~E E E

But for x € E (first picture!),

Un(x)
|[Fa(x)| < P
SO
/IFh(x)lP dx < coipy/[uh(x)]p dx.
E E

Finally we see that

_ZO IFu(PP dx = (~/E + E/ ) IFu(0P dx

_ 1
< (cosy)™? (1 + |cospy|> E/[Uh(x)]” dx,
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or, since |Un(x)| < |Fu(x)| for Un(x) = U(x + ih),

pe ~ 1 oo}
_Z [Up(x)P dx < (cosy)™? (1 + |cospy|>_é[Uh(x)]pdx’

as desired, in case u(t) > 0.
Now we wish to remove that assumption. Observe that we certainly have

/ |Un(x)]” dx < K, / [u(2)]? de

with

- 1
K, = (cosy)™? (1 + )
P ' | cos pyl

in case u > 0. For a general real u of compact support, we write u = u, — u_, with
[os} o

/lu(t)l"dt /(u+(t )P de + /(u )y dt,

—% —7 —L
where u, and u_ have disjoint bounded measurable supports, and both are > 0.
Then, with obvious notation,

Uh(x) = U;:—(x) — L7’:_(x),
50 ||Tnl|, < 1UFllp + 1Tyl and

w 20 o0
/|l7h(x)|"dxs2"" (/I@(x)lpdx+/l(1~;(x)|”dx

which, by what has already been done, is

%~

2p=1
= cosPy ( lcoswl> (0 de + /(u'(t))pdt

2p-1
/ lu(t)|P de.
= cosPy y | cos pyl

—0

We see that
/lf](x+ih)|”dx < K,,/|u(t)|” de

is now proven for general real u of variable sign and compact support (and hence for real u
without compact support by the preliminary discussion given above). This would suffice for
many purposes.

We wish, however, to prove the lemma as stated.

That is based on a trick with the Poisson

and conjugate Poisson kernels.
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Observe that for fixed real xo and h > 0,

1
z—xo+ih
is harmonic and bounded in 3z > 0, so by Section C,
11 1 y

— = | R
z—xp+ih =w 5——x0+ih|z—-§|2dé
—o0

i.e., changing sign,

Xp— X / Xo —¢ y dé
(xo —x) +(y +h)? o—CP+R E—xP+y2
Therefore
~ 3 N 1 Xo—1 _
Ulxo + iy + ih) = - / gy T su(t)de =

—_ 1 2 7 X()—- y
_<”> // (xp = &)2 + k2 (é_t)z_,_yz“(t)dfdt.

By Fubini’s theorem ( u(f) can be assumed of compact support! ), this works out to

l/—xo—t—U(éHy)dé.

nJ (&—x)+ h?
—o0
Thus,
1 [ee]
~ . 3 x—1 .
U(X+ly+lh)—;/m (t+ly)d[.
—o0

By what has just been proven,

0
/|U(x+iy+ih)|”dxsK,,/|U(t+iy)|”dt
—0 —o0

for all h > 0 with a K, depending only on p. Now, keeping y > 0 fixed, make h — 0 so that
Ux+iy +ih) - Ulx +iy)
u.c.c. in x and use Fatou’s lemma. We find in the limit that

[ 106+ ax <, [ve+mp

the full strength of what was required. Q.E.D.

Scholium In case p = 2, we can say more. For then (F(z))? is regular in 3z > O whether
U(z) is = 0 or not, so

/ (F(x +ih))*dx=0
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for each k > 0, F? being in H;. Taking real parts, we have (in the case of real U)

/ [(U(x + im))? — (T (x + ih))*] dx = 0,

ie.,
/ [0(x + i) dx = / [U(x + il)]? dx.

For p = 2 we have equality!

Now we remove the restriction p < 2 by a duality argument.

Theorem (M. Riesz) Let 1 < p < oo and let u(t) € Ly(—o0,0). Write, for 3z > 0,

U@z) = 1 ‘Zx—__{rzu(t)dt.

—00

Then, for each h > 0,

/ |U(x +ih)|" dx <K, / lu()l” dt.
—0 —00
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Proof If 1 < p <2, the result is contained in the above lemma, so assume 2 < p < o0 and

let
l+l=1;
P 4

then 1 < g < 2. By real variable theory, given any € > 0 we can, corresponding to h > 0,

find a v(t) € Ly(—o0,0) of compact support with

/ lo()4dt =1

such that, for Ux(x) = U(x + ih),

0], —e < / Dh(x)o(x) dx
But now, by Fubini,
T 1 ji OO(x—t t)v(x)
/U;,(x)v n// (x—t)2+h2 dtdx
o0 —00 —00

1OO 7 t—x
=”?E/(/ t—xr+r’ )dx)“(t)dtz—

—0 0

|
8~ 38
=
=
Sz
=
[a%
S
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where V,(t) = V(¢ + ih) with

[ee]
V()= —71; / |zx:ss|2v(s)ds.
—o0

By the lemma, since 1 < q < 2,
l|l7h||q < Kq ||v||q = va

{ / u(t)Vy(t) dt

0

so by Holder again,

< Kqllull, -

Thus, ||Uy| ip —e < K, |lull,- Squeeze €. The theorem is proved. Q.E.D.

This important theorem has many corollaries.

Corollary If u(t) € L,(—00,00) is real valued and 1 < p < o, then

Fz)= / “z(tldtt € Hy(Sz>0)

—0
and RF(z) > u(t) as z —> t ae. int.

Corollary If u(t) € Ly(—o0,0) and 1 < p < o, then

-t [0

e—0 T x—t
|t—x|>€
exists a.e., ||ﬁ||’J <K, ||u||p, and
1 0
~ xX—t
U(z) = - / fi(t) de.
(z) = |z_t|2 iz tlz()

—0

Remark  Thus, when u is real, the H, function

[e¢]
F(z) = i / u(t)dt
T z—t
—00
of the previous corollary has 3F(t) = fi(¢) a.e., whilst RF(t) = u(t).
Proof of second corollary Take U(z) — it is harmonic in 3z > 0. By M. Riesz’ theorem, if
u€ L,
o0

/ [U(x +iy)Pdx<C, y>0.

—o0
Therefore, since 1 < p < oo, by a theorem of Section C, there is a function v(t) € L,(—o0, ),
such that

1 7 yo(t)d
~ yo(r)at
0o =1 [ o
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By Section B, U(z) — v(¢) as z — ¢ for almost all ¢. In particular, lim,_o U(t + iy) exists
and is finite for almost all t € R. So, by another result of Section B, for almost all x,

i L / u(t) dt
e—0 T X —t

|t—x|ze

exists and has the same value as limy_,o U(x +iy) = v(x). So, with the notation for principal

values which is now familiar,
1
_fu(t)dt =uv(x) ae.
T

This is enough.
Definition
1 [u(t)d
_ 1 [u(t)dt
i(x) = n][ x—t

—0

is called the Hilbert transform of u € Ly(—o0,0), 1 < p < o0.

Corollary If 1 <p < oo and u € Ly(—00,00), i = —u.
Proof Without loss of generality, take u to be real, and write

Fo) = _:; / ud:,

z—t

-0

then F € H,, RF(t) = u(t) and IF(t) = u(t). Let

_i'/wﬁ(t)dt
T z—t

—o0

—iF(z) / [t ji”tt)] de _1 / FO 4 = iz

T z—1

G(z

~—

Then

—0

by Subsection 3. So G(z) = ——lF(z). Therefore for almost all x,
fi(x) = lirr(l) IG(x +iy) = — lin(l) RFE(x + iy) = —u(x).
y— y—

Q.E.D.

Corollary If 1 < p <o, there are two constants C, and D, with

Cp llull, < Il < Dy llull»

and the Hilbert transform is an isomorphic mapping of Ly(—o0,00) onto itself.

Proof By the above two corollaries.
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Remark In case p = 2, we have an isometry,

/wuwdx=/mmwdt

It suffices to verify this for real u. Then, u(t) + ifi(t) = F(t) with F € H,, so F? € Hy, so

0
[uwra=o
—00
Take real parts.

Corollary If (1/p)+(1/q9) =1, 1<p<oo, u€ L, and v € Ly, we have

/umumh=/ﬁuwumx
and
/wmmm=—/mmm¢

all the integrals being absolutely convergent.
Proof When u and v are real, we can put

o=t [0 G o0

then F € H,, G € H,, F(t) = u(t) + iti(t) ae. and G(t) = o(t) + it(t) ae. We have
F(z)G(z) € Hj, so by the first lemma of this section,

0

/Fmanm=a

—0
Taking real parts gives us the first boxed relation. Taking imaginary parts gives us the
second. Absolute convergence of the integrals in question follows by Holder’s inequality,
and the result for complex u,v is finally deduced from the real case, using bilinearity.

E. Fourier transforms. The Paley-Wiener theorem
Let F(t) € Lp(—o0,00). The Hausdorff-Young theorem says that if 1 < p < 2 (and in general
for no larger values of p !), and if we write

N
Fy(d) = / eMF(t)dt,
-N

then, as N — oo, the ﬁN(A) tend in L,(—o0,0) to a function I:"(l), called the Fourier



VI:E Fourier transforms. The Paley-Wiener theorem 131

transform of F, where 1/q =1 — (1/p). The Fourier transform F satisfies
I1Fll; < KqlIF,.

If p = 1, these statements are obvious; in that case F () is even continuous and zero at
+o0. For p = 2, they are part of Plancherel’s theorem. These two cases (p = 1 and p = 2)
suffice for many applications.

Theorem Let F(t) € Ly(—o0,0) with 1 < p < 2 be the boundary-value function of a function
F € H,. Then F(1) =0 a.e. for . > 0.

Proof First of all, if p =1, ie., F € Hy, then ¢*F(z) is also in Hy for 1> 0 ( |¢*] < 1 for
3z > 0 then!). So then

[ee}
/ é*F(t)dt =0,
—o0
ie., 1:"(1) =0, by a lemma of Section D.

If we just have F EAH,, for 1 < p < 2, we use Fyy(z) = (ik/(z + ik))F(z) with k > 0.
Clearly Fy) € Hy. So Fgy(4) =0, 2> 0. But now ||Fg) — F||, = 0 as k — o0 so, by the
Hausdorff-Young theorem (or just plain old Plancherel in case p = 2), ||Fy)(4) — ( )||q — 0
as k — oo, where 1/q = 1 — (1/p). Since each F(k)(l) vanishes identically on [0, c0), F 1) =
a.e. there. Q.E. D.

Remark In case p = 2, the converse of the above theorem is true. Namely, if
®(1) € Ly(—o0,0) and ®(4) = 0 ae. for A > 0, there is an F € H, with F(1) = ®(J).
It suffices to take

_ o~ it
- 27'5 lNl—I»g: / o

(Here, Lim. = ‘limit in the mean’ denotes a 11m1t in Ly-norm.)
Indeed, if ®(1) =0 on (0,00) we have

1 zlt
— D(—1)dA
5 )

\z

For each y >0, e *®(—A) € Lj(—o0, ),

(oo}

0
SO
o0
/ el P(—A)dA = / e e VAp(—1)dA
0

0
converges absolutely and defines a function 27 F)(z) regular in 3z > 0. By Plancherel’s
theorem,

(e}

0
o / IFi(x 4+ iy)Pdx = / e DN dA < [0,
“0 0

so Fi(z) € H,.
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Finally,

eV ®(—1) — ®(—4)||, = 0 as y — 0, so by Plancherel again,

o

/ |Fi(t +iy) — F(t)?dt - 0 asy — 0.
Therefore F(t) is the boundary-value function Fi(t) of a function F; € H,. The Fourier
integral inversion formula for L, now shows that F(1) = ®(4).

Theorem (Phragmén-Lindelof)  Let f(z) be analytic in 3z > 0 and continuous in 3z > 0.
Suppose that

(i)  |f(z)| < const.exp (const.|z]) in Iz >0

(i) If(z)l <M, xeR

(iii) limsup,_,., [log|f(iy)l/y] = a.

Then |f(z)] < Me®”, 3z > 0.

Proof Pick any € > 0. In quadrants I and 1, g(z) = €@+ (z) satisfies log |g(z)| < O(|z|)
and |g(z)| is bounded on the boundary of each of these quadrants.

Each quadrant has an opening of 90° < 180°, so, by the ordinary Phragmén—Lindelof
theorem, g(z) is bounded in quadrants I and II. Therefore g(z) is bounded in 3z > 0.
From this, by another elementary Phragmén—Lindelof theorem,

lg(z)] < suplg(t)) < M in3z > 0,
teR

so |f(z)] < Me@*e there. Squeeze .

Definition An entire function f(z) is said to be of exponential type if there are constants
A and B with |f(z)| < 4eB".

Theorem (Paley and Wiener) Let f(z) be entire of exponential type, and suppose that
e
[ 1)) dx < oo

Let

a = limsup log 17 (iy)] b = limsup log |§(U’)|'

- .1 b
Yot Iyl y—oo
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Then
b
1) = / e (2) di,
where
b
/ lp(A)]> dA < o0.
Proof

Step 1. Assume first that we also know f is bounded on R, say |f(t)] < M for t
real. Then, by the above Phragmén-Lindeldf theorem, |¢??f(z)] < M for 3z > 0, ie.,
e f(z) € H,(3z > 0). Therefore, for 3z > 0, by Section C,

|z —t?

[}
¥ f(z) = % / Y et f(e)de.
—0
So, since f(t), and therefore e f(t), belongs to L,(—o0,0), we have, by Section B,

o)
/ [N feip))Pdr < ¢, y>0,
ie., in fact, et f(z) € Hy(3z > 0).
So, by the first theorem of this section,
N
7)) =Llim. [ @b f()] dt
N-oco
=N
is zero a.e. for A—b >0, ie, f() =0ae, 1> b.
Working in 3z < 0 instead of in 3z > 0 we see in the same way that f(l) =0 ae,
A< —a.
The L, inversion formula for Fourier transforms now yields, for x € R,
N

.1 .
f(x)=k1;rx£2—n / e > f (1) dA.
—N

In the present case, this simply reduces to
b
flx) = L / () dA ae
I €.
Because f(/l) € L,, the integral
| b
— / e 77 (2)dA
2n
actually converges absolutely for all complex z and represents an entire function of z. This

entire function coincides a.e. with another, f(z), when z is real. So in fact it is identically
equal to f(z). We are done if f is bounded on R.
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Step 2. But f(x) is indeed bounded on R! We are given the inequality
f(2)] < A’
with two constants 4 and B. For each h > 0, put

h
fulz) = %/ (z+1)d
0

then f),(z) is also entire and satisfies |fy(z)| < Ane®?!, with the same B as before, irrespective
of the value of h.
Since [|f(x)|l, < oo, Schwarz’ inequality now gives

111,
el < g2,
ie., fy is bounded on R, and we also have ||f4||, < ||f]|,. Therefore the result already proved
in Step 1 guarantees that each Fourier transform fh(l) vanishes a.e. for A < —B or for
J. > B. So, by the inversion formula already used,
B

1 o
10 = 5= [ e
P
~B
whence, by Schwarz,

B
B .
Ifa(x)* < |fn(2)? dA.
5]

By Plancherel, the right side equals (B/1z)||f;,(x)||2 which, as we have observed,

is < (B/m) ||f||§. Thus, for real x,
B
4G < 4/ =111

for all h > 0. Since clearly fi(x) — f(x) as h — 0, we finally get |f(x)| < \/B/n||fl|,, and f
is bounded on R.
The theorem is completely proved.

Remark  Clearly, if ¢ € L, and

b
f2) = / () di,

f(z) is entire of exponential type,
o0

J 1007 ax <
—o0
and
If(iy)| < Const.e?” for y — 0,

If (iy)] < Const.e™! for y — —oo,

(assuming, of course, that —a < b !). The Paley—Wiener theorem is a precise converse to this
elementary observation.
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Remark  If, in the hypothesis of the Paley—Wiener theorem, we suppose

/ If(x)]dx < o0
—0
instead of
$D
[ 100 dx <

but keep the rest of the assumptions the same, we still have
: b
- —izA} d
fl@)= - /e f(a)da
—a
where f(l) is now even continuous.
The proof of this variant is that same as that of the Paley-Wiener theorem.

F. Titchmarsh’s convolution theorem

Definition If ¢(1), w(4d) € Li(—o0,00), the convolution ¢ * y is defined by
@0 = [ 901 - s
-0

One proves (by use of Fubini’s theorem) that the integral on the right converges absolutely
for almost all 1 € R, and that ¢ * p € L{(—o0,00). By a change of variable, one shows that
¢ *yp =y * . (I am sorry for the heavy use of Greek letters here. The way this chapter
has gone, Latin letters serve almost exclusively for Fourier transforms of functions in Ly,
especially if these transforms are analytic in some half plane.) As is well known, taking
Fourier transforms converts convolution to multiplication, ie.,

(@ * P)(O) = DY e).

Definition If ¢ € L (—o0,00), by the supporting interval of ¢ is meant the minimal closed
interval (perhaps infinite!) containing the support of ¢, i.e. outside of which ¢ =0 a.e.

Let a be the upper endpoint of the supporting interval of ¢, and b that of the supporting
interval of y. Then direct inspection of the convolution integral shows that (¢ * p)(1) =0
for A > a+b. What is remarkable is that if a and b < oc, no cancellation can take place,
and a converse to the remark just made holds:

Theorem If a is the upper endpoint of the supporting interval of ¢, b the upper endpoint
of the supporting interval of v, and if a and b both are finite (sic!), then the upper endpoint
of the supporting interval of ¢ * yp is precisely a + b.

Proof Calling ¢ the upper endpoint of the supporting interval of ¢ * y, we already know
that ¢ < a +b. We have to prove that a+b < c.
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To this end, use the inverse Fourier transforms
a

f(z) = d(—z) = / (3 di

b
8(z) = P(—z) = / e hp(2) d

—
c

56) = G 9)-2) = [ g P
-0
We have S(z) = f(z)g(z).
Because a, b and c are finite, f(z), g(z) and S(z) are analytic for 3z > 0, and because
¢, v and ¢*yp € L), f, g and S are continuous up to R and bounded on R. In fact, we
clearly have, in 3z > 0,

If(z)] < Ke®, |g(z)] < Le®, |S(z)] < Me?
with certain constants K, L and M.
I say that

lim sup

log [g(iy)]
y—soo y
is precisely b. Call the limsup in question b’; we certainly have b’ < b. Suppose that b’ < b.
For h > 0, call
: h
S 2 .
i) =5, [+ nds
Zh
then ||y —w|l; — 0 as h — 0, and, since Fourier transformation takes convolution to
multiplication,

N sinhz sin hz
Pn(—z) = P P(—z) = e g(z).
But now y,(1) € Ly(—o0, 0), so the Fourier inversion formula for L, gives
N
1. i
wn(d) = 7 lim. e ipy(—t) dt.
N

Observe, however, that for sufficiently large I,

N iz Sinhz
Pu(—z) = " = —g(z)

eil z

belongs to Hy(3z > 0). Indeed,

Jim sup log lg)l _

y—o y
makes |g(z)| < Le®” by the Phragmén-Lindelof theorem of Section E and we see by direct
inspection that e*?{,(—z) is in Hy for | = b’ + h. Therefore, by the first theorem of Section
E, yu(d) =0 ae. for A > b’ + h. Making h — 0, we see that (1) =0 ae. for A > ¥, and
this would contradict our choice of b as the upper limit of the supporting interval of

ift <b.Sob' =b.
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In like manner, we prove that

lim sup
y—0

log |f (iy)l
y

and, indeed,

| .

lim sup 1281 G0 £ )
y—oo y

for any xo € R, are precisely equal to a.

Now, for k = 1,2,3,... let M(k) = sup,cg |g(x + ki)|. Given any ¢ > 0, we must have
Mk + 1)/ M(k) > "= for some k, otherwise, we would have

logle@)l _ ,_ .
y

limsup
y—0
as is easily seen.* So, fixing € > 0, choose a k for which the aforementioned inequality
holds, and take xo € R such that
lglxo+ (k+ DD e
M (k)

Without loss of generality, and to simplify

the notation, we now assume that xo = 0.

We work in the half plane 3z > k. By the Phragmén-Lindel6f theorem of Section E,
lg(z)] < M(k)e?@®) for 3z > k, so e’g(z) is bounded in that half plane and by Section C
we can find a Blaschke product B(z) for the upper half plane with g(z)/5(z — ki) free of
zeros in 3z > k. We see that there is an h € Hy(3z > 0) with ||h||, < 1, h free of zeros in
3z > 0, such that

g(z) = e PCTD M) B(z — ki)h(z — ki) for Iz > k.

In the same manner we find a Blaschke product B(z) for the upper half plane and a
function L(z) € H,(3z > 0), free of zeros in 3z > 0, with

S(z) = e “CMB(z — ki)L(z — ki) for 3z > k.

The ratio S(z)/g(z) = f(z) is regular for 3z > k. Therefore B(z) must have enough zeros
to cancel those of B(z) ! So B(z)/B(z) = Bi(z), another Blaschke product, and

_S@) _ e ib—a)e—ki) Lz —ki) 1 -
flz)= 20 By(z —ki)e ME) iz =KD for 3z > k,
whence
plc—b)y
|f(2)| < COnSt.m for SZ > k

Now h(z) is free of zeros in 3z > 0 and in modulus < 1 there, so log|1/h(z)| is positive
and harmonic in 3z > 0. Thence, by the Poisson representation given near the beginning of

* Then, indeed, the functions g(z + ik)/M(k) would be uniformly bounded for 0 < 3z < 1
by the extended principle of maximum.
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this chapter,

log

/|z 5 du(t) + By for 3z >0,

-0
with a positive measure u and f > 0. By our choice of k,
- < g ((k + 1)i)]
M(k)
(since x¢o = 0 and |(z)| < 1), whence log |1/h(i)| < €. That is,

[ du()
5/t2+1+ﬂge

h(z

< ebjh(i)|

-0

But from this we see that for y > 1
el
1|1 fydu)
Og‘h(iy)‘ o / R
since du(t) > 0 and § > 0. Substituted into a previous relation, this makes

If(iy)] < const. el ey—H)

IA

€y

for y >k + 1, ie,

glf( y)l

limsup ———— —b+e

y—o
However, as we saw above, the lim sup on the left is precisely a. Therefore a < c—b+e.
Squeezing €, we get a + b < c, as required.

We are done.

Corollary (Titchmarsh’s convolution theorem) Let ¢ € L; have the finite supporting
interval [a;,a;] and v € L, the finite supporting interval [by,b;]. Then the supporting interval
of ¢ * v is precisely [a; + by, ay + by].

Proof The above theorem shows that the upper endpoint of ¢ * y’s supporting interval is
a3 + by. The lower endpoint is similarly seen to be a; + by - one way of doing this is to
first make the change of variable A — —2 and then apply the above theorem again.

Remark  The finiteness of a; and b, in order to get a; + b; (and of a, and b, in order to
get ay + by) is essential here. This is easily seen by examples.

Remark Titchmarsh’s convolution theorem is a celebrated example of a purely ‘real
variable’ result proved by complex variable methods. Mikusinski and others have given real
variable proofs. Most of them are harder than the one given above.

Problem 6

(a) Compute
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for the function

0, lt] < e
fe(t) = { 1/t, |t| =z e

(b) If 1< p<coand u(t) € Ly(—o0,00) and € > 0, put
(Te)(x) = = / u(r)de

7 x—t
lt—x|=¢

Using the function k. found in (a), show that there is a C, independent of e such that
I Teull, < Cp llull, -



VI

Duality for H, spaces

A. H, spaces and their duals. Sarason’s theorem

1. Various spaces and their duals. Tables
We consider mainly the unit circle; similar (and in a sense, more symmetric) results holding
for the upper half plane are established by analogous methods, and will be tabulated at the
end of this subsection.

By looking just at the boundary values f(e") of f € H,, we see that H, can be considered
as a || llp-closed subspace of L,(—n,n). This we do from now on.

We define some more spaces:

% = {f continuous on [—n,7]; f(—n) = f(n)};

o/ = %N H, is the set of functions in ¥ which have an analytic extension to {|z| < 1},
yielding continuous functions on the closed unit disc.

We equip % and ./ with the sup-norm || ||,

.# = set of finite complex-valued Radon measures on {|{| = 1},

equipped with the measure norm
n
il = [ 1.
—n

Note that .# is the dual of %, by a classical theorem of F. Riesz.

Notation

H,(0) = {f € H,; /f(ef”)df):()} =zH,.
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Theorem If1 < p < oo and (1/p)+ (1/q) = 1. Ly/H, has dual H,(0) and H, has dual
L,/H,(0).

Remark This slight but troublesome asymmetry is one of the results of working in the
unit circle. It disappears if we work in the upper half plane.

Proof of theorem

(a) Let A be a bounded linear functional on L,/H,. Then A certainly gives a linear
functional on L, with the same norm as on L,/Hy, so for f € L,, we have

A=A +H,) = / f(e")L(&) do,

where L is some function in L, with ||LHP equal to the norm of A (Riesz representation
theorem). We have A(g) = 0 for g € H,, in particular,

/e‘"”L(e"")de =0, n=0,12,...,
so L(¢"%) has a Fourier series of the form
Z AneinG,
1
and, since L(e"?) € L,, L(e®) € ¢?H, = H,(0). Conversely, any L(e") of this form does give
a linear functional A on L,/H, by the above formula.

(b) If L(e) € L, and f € H,(0) is arbitrary, the linear form

n

Ag = (L") + feN]g(e”) do
defined for all g € Hj, does not depend on f € H,(0). So L + H,(0) is a bounded linear
functional on H,.
Conversely, take any linear functional A on H,. By Hahn-Banach, we can first extend A
to all of L,, thus getting an L € L, with

T

Ag = /L(e‘o)g(eio)d(?, g€ L,

Restricted back to H,, A is given by the coset L + H,(0) in the above way. Q.E.D.

Theorem The dual of

L]/H] is HA,;(O)
The dual of

H, is L,/H,0).
Proof By the same argument used above.

Now, however, comes the
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Theorem The dual of
€/« is Hy(0).
Proof Since the dual of € is 4, the dual of €/of is

{ne; /f(eig)du(0)=0 for f € o).

In particular, for i to be in the dual of /<7, we must have
n

/e‘""d#(e)=o, n=0,12,...

—n

Therefore, by the theorem of the brothers Riesz,
du() = g(e®)df with a g € Li(—=,n), and we easily
check that g € Hy(0).

Conversely, any g € H,(0) clearly defines a functional A on €/.</ by putting, for ¢ € ¥,

n

A+ o) = / g(@")¢(c") do.

—n

We are done.

Remark  Using an obvious extension of the above notation, write
A(0) = {ef(e?); f € o).

Then, by the same argument as used in the above proof, we see that /.7 (0) has the dual
H,;. Thus:

@%(0) has dual H, which has dual Le/Hu(0).

In particular, H; is a dual, whereas the larger space Ly is not. This has an important
consequence — the unit sphere in H; is (sequentially) w* compact over ¥ for instance, whilst
the unit sphere in L; has its w* (sequential) closure equal to # (measures!). H; also has
some other properties resembling those of the (reflexive) spaces L,, 1 < p < o, rather than
those of L;. There is a paper of D. Newman in the Proc. A.M.S. from 1963 on that.

Here is a table summarising the above duality results, together with some others, which
are established in exactly the same way:
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For Unit Circle

Space Dual
H, 1<p<o Ly/H,0), L=1-1
q p
1 1
Hy©0), 1<p<oo Ly/Hy ==1—=
q p
1 1
L,/Hy, 1<p<o H,0), - =1-=>
q p
1 1
L,/Hy(0), 1<p<oo Hy, -=1—-
q p
€/ A H,(0)
%/4(0) Hi

Very similar (and more symmetric) results hold in connection with the H, spaces for the
upper half plane, introduced in Chapter VI. Instead of ¥ and ./, the relevant spaces are

here
%o = {f continuous on R; F(x) — 0 as x — +o0}

Ao =%oNH(3z>0);

&/ is the space of functions analytic in 3z > 0, having a continuous extension up to R, and
vanishing at oo in the closed upper half plane.

Both %, and .« are equipped with the sup-norm.
Proofs of the following results, presented in tabular form, are very much like the

corresponding ones for the unit circle.

For Upper Half Plane

Space Dual
1 1
H,, 1<p<w L,/H, —=1-—Z=
! P o/Ho g p
1 1
L,/H,, 1<p<o H,, 5:1_;
(v”o/-‘?ﬁ/o Hl

2. Duality method of Havinson and of Rogosinski-Shapiro
The above duality results give us some theorems about approximation by H, functions. We
mostly just give results for the unit circle; analogous ones hold for the upper half plane.

Theorem Let F € Ly(—n,n), 1 < p < oo, and call
||F —lelp = inf{||F—h||p; he H,,}.
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Then, with 1/q =1—(1/p),
Q) IIF — H,l|, = sup{ u F(e")g(e”) o

i g€ H(0) & Jigll, = 1}.

(ii) There is an ho € H, with ||F — lelp = ||F — holl, (i.e., the minimum is attained ).
(ii) There is a go € Hy(0), l1goll, = 1. with
IF—Hyll, = [ Fg(e) .
(i.e., the sup is attained ).
Proof (i) is a metric restatement of the duality between L,/H, and H,(0).

To prove (i), let hy € H, with ||[F — hyl|, — |[F — H,,Ilp. Then ||k, is bounded, so there
is a subsequence {hnj} converging weakly in L, to a limit ho; one easily checks that hy € H,.
Then F — hy, - F — hy (weakly). From this, it easily follows that

IF = holl, < timinf [|F = h, ||, = IF = Hyl,.

80 ||[F — holl, = |IF — Hp||p. For the beginner, here is the proof : take any € > 0, and take g,
g €Ly, ||g||q =1 with

IIF = holl, <

/ " (F(e”) = ho(e")g(e”) d9] te

—n

The expression on the right, by weak convergence of F —h, to F — hy, is

/ ’ (F(e”) — hy (e”))g(e") d()‘ +e

-7

lim

jo

But
‘/ (F(e?) — hnj(eio))g(ei”)dé)‘ < ||F = hy|

T

S
since ||gl[, = 1.

By going to another subsequence, we get [|[F —hol|, < liminf;, |[F—hnj|‘p + &
Squeeze ¢.

Now we must prove (iii). By the Hahn-Banach theorem, there is a linear functional A of
norm 1 on L,/H, such that A(F + H,) = ||F — H,,Hp. By a previous theorem and its proof,

Af+Hy) = [ f(e”)gole”)dd

for all f € L, and some go € Hy(0) of g-norm 1.
We are done.
Theorem Let F € Li(—n,n). Then there is an hy € Hy with
[[F = Hilly = IF = holl,,
and there is a go € H.,(0) with ||goll,, = 1 and
(F(e”) — ho(€”)) go(e") = |F(e”) — ho(e”)]
almost everywhere.

Proof According to a previous remark, the unit sphere in H, is w* compact over 6, so we
can show the existence of an hg € H; which minimises ||[F — ho||, as in the proof of the last
theorem.
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As in the proof of (iii) in that theorem, we get a go € H..(0) with ||gof|,, = 1 and
IF = Hilly = ||F = holl, = / F(e")go(e"”) db = / (F(e") — ho(e"))go(e") do.

-7
Since |gg(e')] < 1, equality of
e T
IF(e”) —ho(€”)|d0 and [ (F(e”) — ho(e”))go(") d0

-7

shows that go(e”) does the job required of it.
Theorem Let F € €. Then:

@) NF =, =IF=Hgll, = SUP{ / F(“)g(e”)dB
(it) There is a go € Hi(0), llgoll; =1, with

IF = |l = / F(e")ge”) do.

-7

;g€ Hi(0) & gl =1}-

(iii) There is an hy € H,. with
|F(e”) — ho(e”)| = |IF — /||, ae.

Proof H., o .« so surely ||F — H,||, < ||[F—.</||,.. Since Hi(0) is the dual of /., we
get a go € Hi(0), |lgoll; = 1, so that (ii) holds. But

h(e”)go(e”) df = 0

for h € H, so clearly

‘ / F(e”)go(e)do ‘ < llgoll, IIF — Hxll..,

proving, by choice of go, that ||[F — .||, < ||F — Hy|l,., yielding (i).
Now H.,, is a dual (of Ly/H(0)), so by the argument used above (w" compactness here),
there is an hy € H,, with ||F — H,J||, = ||F — hol|,- Then

o0
n

[IF — holl., = IF — Hyll,, = IF — ||, =/ F(e")go(e”) db

s

- / " [F(e%) — hofe®)]gole®) do.

That is, since

|go(e”)1dO = 1,

[F(e”) — ho(¢”)go(€”) 40 = |IF —holl, [ Igo(e)IdO !
So |F(e’) — ho(e")| = |IF — hol|,, a.e. on the support of gy. Since go € H1(0), |gi(?)] >0
ae. by an old theorem (in Chapter III, Section B). So |F(e”) — ho(e?)| = ||F — hy|.,, a.e.
QED.

Scholium If F € 4, there is only one h € H,, with ||[F — h||, = ||F — Hy||,.. For, suppose
there were two, say, hy and hy. Take the go € H,(0) of which the last theorem affirms the
existence. Then we get as in the above proof

/ (F(e”) — hile))go(e”)db = ||F — kil [ Igo(e”)dO
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with k = 1 and 2 so, since |go(e”?)| > 0 a.e., we must have

i i Igo(e™)|
F(e®) = hy(e%) = ||F — hyll,, g‘;(ew)

Igo(e™)]
go(e”)

F(e") — hy(e?) = ||F — hal,,

or, since
[I1F —hill, = IF — hall, = IIF — Hooll oy »

|go(e”)]

i0y _ 0V _||F —
h1(€"”) = F(e”)—[|F — Holl,, go(eia)

=hy(e?) ae,

as required.

If F ¢ €, all we have is the
Theorem Let F € Ly,. Then there is an hy € Hy, with

IF = hollo, = [IF — Hooll, =Sup{ / F(eie)g(eie)df’\; g € Hi(0) & [igll, = 1}-

Proof Existence of hy follows by the w* compactness of H,, and the rest by previous
duality results.

Remark In general, the sup in the above theorem is not attained if F € H,, is not
continuous. The work in the above scholium shows that it cannot be attained (by a
go € Hi(0)) with ||goll; = 1) if F — Hy contains more than one element of norm equal
to ||[F — Hell,, ie., if there is more than one h € H,, which minimizes ||F — h|| . Cases
where there are several h € Hy, minimizing ||F — h||,, are of practical importance in various
questions.

Historical remark The above (duality) approach is due to Rogosinski and H. S. Shapiro
and, independently, to Havinson. It has been often rediscovered by various people who
didn’t know about prior work (e.g., by me!). There is a historical note by A. Shields in the
A.M.S. Translations, Ser. 2, Vol. 32, 1963.

These results are obviously of great importance in studying approximation problems of var-
ious kinds, and continue to have many applications.

If F € Hy is not continuous, the sup in the above theorem may not be attained even
though there is only one h € Hy, minimizing ||[F — h|,.

Example Let E, and E, be two disjoint sets of positive measure on {|z| = 1} adding up to
{|z| =1}, and let

0y 1 on E;
re={L oE
Then there is no nonzero h € Hy, with ||F — h|| , < 1. Neither is there any go € H,(0) with

n
/ F(e)go(e™) d = ||goll, = 1.

—n
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(Ey and E; can even be two complementary arcs, so that F has only two points of discontinuity
of very simple form.)

Proof There is no such gg. Suppose there were. Then we’d have to have
20(€®) >0 ae. on E
20(€?) <0 ae. on E,,

50 go(e”) is real a.e. So since gy € Hy, a generalization of the Schwarz reflection principle
given in Chapter III shows that, if we put

go(z) = go (I—ZZ|—2>

for |z| > 1, go(z) becomes regular everywhere in C (even on |z| = 1). Also, go(0) = 0 makes
go(oo) = 0, so go(z) is bounded everywhere, hence constant, and the constant must be zero,
s0 go = 0. (Another way of seeing this is to observe that 3go(z) must vanish identically, so
go(z) must be constant and hence equal to 0.)

Suppose now that h# 0, h € H,, and |F(e”) — h(¢”) < 1 a.e.

Then, for € € Ey, h(e') is within the (closed) right hand circle, and for e € E,, within the
(closed ) left hand one. By a well-known theorem (Chapter III, Section B), k(e/”) = 0 only
on a set of measure zero, so that h(e'?) takes some values really in the right hand circle
(away from 0) and really in the left hand circle.

All the values of h(z), for [z| < 1, are in these two circles. Indeed, let wy be outside them,
and suppose h(zg) = wo. By Runge’s theorem, we can get a polynomial P(w) with |P(w)| <1
ifjw—1|<1or|w+1] <1 but P(w)=2.

P(h(z)) € H., and by construction |P(h(e”))| < 1. Therefore by the Poisson representation
for H,, functions, |P(h(z0))| < 1. But h(zg) = wo and P{wp) = 2, yielding a contradiction. So
h(z) takes {|z| < 1} into the shaded region,
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and since it has some boundary values to the right of 0 and some boundary values to the left
of 0, it must, in {|z| < 1}, take values in each of the two circles. Therefore, by connectivity,
there must be a zg, |z9| < 1, with h(zo) = 0. By the principle of conservation of domain, h(z)
takes values filling out a neighbourhood of 0 for {|z| < 1}. But it doesn't!

So h # 0 cannot exist, and we are done.

3. Sarason’s theorem
Let us go back to the chain
€/ £(0) has dual Hy which has dual L.,/H(0).

Thus, if B is the Banach space ¢/#(0), B*" is Ly/H,(0). Now B has a canonical
isometric image in B** obtained by identifying linear functionals over B*. In the present
case, the element of L, /H.(0) corresponding to F 4+ &/(0), F € &, is the coset @ + H,,(0),
® € L,, determined by

n n
/F(eie)g(eie)dﬂ =/g(ei0)<I>(ei9)d0
for all g € H. We see that this holds iff ® € F + H,,(0), which is to say that in the canonical
embedding of €/«(0) in L,,/H»(0), F + (0), F € €, corresponds to F 4+ H(0). The
image of //(0) in Ly, /H(0) under this embedding is thus

& ={F+H(0); F € %}.
In particular, & is || ||,,-closed in the quotient space L, /H(0).

Now the canonical homomorphism @ : L, +— L,/H(0) is continuous. Therefore ® (&)
is|| ||,,-closed in Lo,. But ©@~1(&) is €+ Hy(0) which also = €+ H,, since 1 € €. Therefore:

Theorem (Sarason) % + Hy, is || ||,,-closed.
From this we can prove:

Theorem (Sarason) IfF and Ge ¥+ H,, FG €€+ H,, i.e, €+ Hy, is an algebra.

Proof 1t is enough to show that if F € ¥ and G € H,,, FG € € + H,. Let the Fy(e)
be of the form

N
Z Ak(N)eikO
N

such that Fy — F uniformly, then FyG — FG uniformly, so if each FyG € ¥ + H,,
FG € ¢ + Hy, by the above theorem.
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But if

G(z) = Za,,z“ € H,,
0

clearly Gn(z) = Z a,z" € H,, and
N

N
Fr(e")Gn(e”) =Y AN)e"Gr(e”) € H,
-N

because ¢"Gy(e’) € H, for n = —N, —N + 1, =N + 2,... . Finally, Fy(G — Gy), a
trigonometric polynomial, is in €. So FNG = FN(G — Gy) + FNGy € €+ H,., and we're
done.

This proof depends on the fact that H; is the dual of €/.«/(0) and thus, ultimately, on the
F. and M. Riesz theorem. As Sarason first showed, norm closure of € + H,. is independent
of the F. and M. Riesz theorem. (In fact, Sarason presented this in his 1973 Bull. AM.S.
survey, but the idea itself comes from Zalcman.) In a 1974 lecture at McGill University,
Walter Rudin abstracted the Zalcman argument into a general theorem, worthy in its own
right:

Theorem Let B, || || be a Banach space, with E and F norm-closed subspaces of B. Suppose
there is a family T of linear operators on B with the following properties:

i) TN <M<owforal TeZ

() TB<E foreach T € %.

(i) TF<F foreach T € %.

(iv) Ifu€E and e >0, thereisa T € § with ||[Tu—u|| <e.

Then E + F is norm-closed in B.

Proof Let x € norm closure of E4+F. Then we can findu, € E, v, € F, with |ju, +v,|| <27"
for n > 2 and

o0
x = Z(u,1 + vp).
n=1

Write x, = u, + vn. Then x = )_"° | x,, and we have
Xn = (up — Thup + Tnxn) + (Un - Tnvn)

where, for each n, T, € T is chosen so that |lu,— Tl < 27" Now
i, = u, — Tyu, + Tyx, € E and ||T,]] < 27" 4 || Toxall < 271 + M) for n > 2, since
lIxal] < 27" for n > 2. Also, v, — Tyv, = 0, € F, and [|5,]] < ||ia]| + [|%4]] < 24+ M)27"
for n = 2. Therefore Y| i, converges, to, say, u € E because E is closed, and > "9,
converges to v € F because F is closed. So

X=3 Xp=) (ln+0)=u+v€E+F. Q.ED.

1 1

Corollary %+ H, is || ||, -closed.
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Proof Take B= Ly, E=%, F=Hy, andlet T ={Ty ; N=1,2,...} where, if F € L,
and F(e) ~ 3% Ane™,

N
(rpye’) = Y- (1= 51) 4

N
(the Nth Fejer partial sum of the Fourier series of F). Then |||Tx||| < 1 and for each F € %,
|TvF —F||, - 0. Clearly TyLo, = % and TyH,, € H,,. We have the desired result.

Many other similar applications of the general theorem can be given.

B. Elements of constant modulus in cosets of L.,/H,. Marshall’s theorem

1. A result of Adamian, Arov and Krein

Given F € L., we have seen in the previous section that under certain circumstances
(e.g., F continuous), the coset F + H,, contains an element of constant modulus equal to
IIF — Hell -

We are interested in seeing the extent to which elements of constant modulus occur in F+H.,.
Around 1920, Nevanlinna proved some deep results about this, using very “hard” methods.
Complete and definitive results were arrived at some 40 years later by Adamian, Arov and
Krein with the help of operator theory, and Garnett found functional-analytic proofs of
them towards the end of the 1970s. Here is one:

Theorem If F € Ly and ||[F—Hyll, < 1, F + Hy contains an element o with
lw(e®)| =1 ae.

Proof (Garnett) The idea is to look for the w € F 4+ H, with [|w]|,, < 1 which maximises

‘ /_Zw(e"")de ‘

and show that such an @ does the job.
Let

a=sup{‘/ w(eie)d(?‘; w € F + Hy, |\w|\wsl}.

There is indeed an w € F + H,, ||oll, <1, with

/n w(eie)dOi =a

-T

For if we take w, € F + Hy, [|wall, < 1, with

} / wa(e?)do

we can let @ be a w* limit (in L) of some w* convergent subsequence of the w,, and then

llwll, <1 while
‘/ w(eie)de‘ =a

> a,
n

since 1 € L; !



VII:B Elements of constant modulus in cosets of Lq/Hy. Marshall’s theorem 151

We shall henceforth suppose that

n

/w(eie) df = aq,

—-n
which is no restriction, since we can attain this by working with ¢”F instead of F, where y
is a real constant.
Now firstly, ||lwl||,, = 1. For if ||o||, =1 —€ withe >0, w+e € w+ Hy = F+ Hy
(N.B. w € F + H,, because the above w, are, and Hy is w" closed!), ||w + €|, < 1, and

/[w(eie) +¢eldf =a+2ne>a,

a contradiction to the choice of w.
Secondly, |lo — Hy,(0)||,, = 1. For otherwise ||w — Hx(0)||, < 1, and then there is an
h € Ho(0) with |lw —hl|, =1 —¢, €>0. Then —h + € € Hy, s0
w—h+e€F+Hye |lw—h+ell,<]1,
and because h € Hy(0),

n n
/ ((€®) — h(e®) + €)df = / o(€?)df + 2ne = a + 2ne > a,
- - '
again contradicting the choice of @ € F + H,.

Now, since ||@ — Ho(0)l|, = 1, by the above duality theorems, there is a sequence of
fn € H,, ||fn||1 = 1, with

/ w(e®)fa(€?)dd — 1.

-7
We must eventually have |f,(0)| = c for some ¢ > 0. Indeed, if not, then, without loss of
generality, f»(0) = ¢, with ¢, —> 0. Then f, —c, € H1(0), [|fr —call; —— 1, whilst

n

/ o(e®)fu(€?) —cn)df also —> 1.
-7
Therefore, by the above duality theorems, | —Hyll, = 1, ie, ||[F—Hgll, = 1
since @ € F + Hy, contradicting our hypothesis that ||F — Hyl|, < 1. So |f,(0)] = ¢ > 0.
We now show that this last inequality implies |w(e)] = 1 a.e. Assume not. Then, for
some A < 1 there is a measurable E, |E| > 0, with |w(e®®)] < A on E. Without loss of
generality, |E| < 2x so that also | ~ E| > 0. Since in any case |w(e®?)] < 1, we have,

because [[fll; = 1,
f 0()fa(e*)do| < 1 - / ()]0 + (1 - / 1f(e®)] do) ,

E E
and in order for the left hand side to — 1 we must have

/ |Fn(€?)] 46 —> 0.
E

Therefore

L i _1_ i0 ) - —
IEI/EIOngn(e )do < 1°g(|E\/E‘f"(e o) — —oo.
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At the same time,

1 / i0 (an”l) ( 1 )
—— | log|fa(e?®)dO < log| 2L ) = log| —— | < o0,
< E ) g |fa(e”)l g I~ E| g < E|

n
log|fu(e?)] df — —oo.

Therefore the outer factors of the f, already tend to O at the origin, so surely |f,(0)] — O.
This contradicts |f,(0)| = ¢ > 0 just proven, so we must have |w(e?)] =1 a.e,, Q.E.D.

so finally

Corollary Let f € Hy, let ||f]|,, < 1, and let Q be any inner function. Then there is another
inner function, w € f + QH,,.

Proof Apply the above theorem with F(e) = f(e)/Q(”). Then ||F|l, < 1, so
[|F — Hy|l,, < 1, and there is an h € Hy, with |F(e) + h(e?)] = 1 a.e. Then f +Qh € H,,
and |f(€?) 4+ Q(e?)h(e®)| = 1 a.e., so f + Qh is also an inner function.

Remark Adamian, Arov and Krein also proved that if F € Ly, and ||[F — Hy||,, = 1
but F — H,, contains more than one element of norm 1, then there is an w € F — H,, with
|w(e?)] = 1 a.e. Garnett has a functional-analytic proof of this fact also, but we do not
give it in this book.

2. Marshall’s theorem

Around 1975, D. Marshall verified a long-standing conjecture about the uniform approx-
imation of H,, functions by linear combinations of Blaschke products. In order to situate
his result, let us first establish a much easier and very well-known analogous proposition
about L.

Theorem Let f € Lg(—mn,7) and ||f||l, < 1. Then, given any € > 0 we can find
up,...un € Lo with |w(0)] = 1 ae. (so-called unimodular functions) and numbers

Ayeeidn =0, Zk A =1, with
-, <

In other words:

The norm-closed convex hull of the set of unimodular functions in Ly, is precisely the unit

sphere (ball) of Le,.
Proof f can first be uniformly approximated by a measurable function of norm < 1
taking only a finite number of values. This new function can then be uniformly approxi-
mated by convex linear combinations of unimodular functions, as elementary duality theory
(separation theorems for convex bodies) for finite dimensional spaces shows.

There is another proof, which is more instructive here. Without loss of generality,
Ifll, < 1 —(e/2), say; otherwise work with (1 — (e/2))f instead of f and observe that
If = (1 —(e/2))fll, < €/2. Then we may assume |f(6)] < 1 — (e/2) everywhere, so, by
Cauchy’s theorem (!),

it
£0) = - / LA g,
2n J_z 1+ f(B)e"
Now each of the functions
_ 1)
1 +f(B)ei

t
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is in Ly, and |u,(8)] = 1! Also, since ||f|| < 1 — (¢/2), we have
€

[lue —urlly, < 5

if |t — 1’| is less than some positive number & depending on €. So for large N,

n N

1 1 €
b u,dt — NZ“Z"“/N < 5

- k=1 »

Therefore
1 & €
Hf - NZuan/N <3
k=1 o

and we’re done.

The unimodular functions in H,, are just the inner functions, i.e., those having modulus 1
a.e. on the unit circumference. (See Chapter IV, Sections D, E, F and G.) It is very natural
to conjecture that, in Hy, the norm-closed convex hull of the set of inner functions is the unit
sphere of H,. Marshall proved this.

Lemma (Douglas and Rudin) Let u € Ly, |u({)] = 1 ae. for |{| = 1. Then there are
inner functions @ and Q in H,, with

(l )‘
- — < ae., =1.
’u(z) og| < 2o I
Proof (Marshall) If, for k =1,...,N, Ei denotes the subset of {|{| =1} where
2n 2n
W(k —1)<argu(l) < Wk’

the E, are disjoint and add up to the unit circumference. Put
2ki/ N E
w(l) = {e » LEE

1 {¢E, [[|=1
Then each u, is unimodular and takes only two values, and
lu — up-up--- < n
1w unll, < N

So it clearly suffices to establish the result for each factor w, ie., for unimodular functions
taking only two values, because the product of inner functions is surely an inner function.
Thus, let the unimodular function u take only two values, say 1 and v, |y| =1,y # 1,
with
ul)=1, (€E
u({)=7y, (€ ~E (complement in unit circumference).
Using Poisson’s formula, construct V(z) bounded and harmonic in {|z|] < 1}, having
Z boundary values
V({)=0 ae.onE
V()=—-K ae on~E.
Then h = exp(V + iV) is analytic and bounded in |z| < 1, and there takes values in the
openring e ® < |h|<1.0OnE, |h({)|=1ae,and on ~E, |h() =e X ae.
Let @k be a conformal mapping of the ring e® < |w| < 1 onto the infinite domain
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(including o) obtained from C U {00} by removing therefrom the two segments [—e,0] and
[, I'], with
= il;y
L4y
and I’ > I. We furthermore take ®k so as to map [w| = 1 onto [—¢,0] and |w| = e ¥ onto
[L, 1.

Here, € > 0 can be chosen as small as we like, but then ' > [ is not free, but depends on
the radius e X of the smaller circle. Tt is, however, true that I’ — [ as K — oo, for in that
limit @k clearly tends to a conformal mapping of {|w| < 1} onto (C U {c0}) ~ [—e, 0] which
takes O to [. Given e > 0, let us therefore fix K so large that I’ <[ +e.

Having determined K and ®k in the manner described, put

i—®g(w)
YO = o)
for e X < |w| < 1. ¥ takes the ring e X < |w| < 1 conformally onto the complement, in
C U {o0}, of the two arcs

—
i+e€ .
'i_—E,l and Vs ¥
lying on the unit circle.
/”‘——‘\\\ '
e Y
P \
/
II \Y
1 \
—_— Il
v /!
\ L+ &
\ ,
N i
\\ ’
Here,
J = i—V
i+
is close to
i—1
Y =
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by choice of K ; in fact, each of the two arcs

.
i’_-_l-_—g. 4 1 and V7 y,

has diameter < 2e.
By construction of the function h we now see that W(k({)) lies on the arc

for almost all { in E, and on the arc

7Y
for almost all { in ~ E. Therefore |P(h({)) —u({)| < 2¢ ae. on |{| = 1, and W(h({)) is
unimodular, being a.e. in modulus equal to 1 there.

W(h(z)) is meromorphic for |z| < 1. Indeed, ¥ being conformal, there is precisely one
point, say ¢, e K < |c| < 1, with W(c) = oo, and W(w) has just a simple pole at c. Elsewhere
in e® < |w| < 1, ¥(w) is regular. So W(h(z)) is regular at the points z, |z| < 1, where
h(z) # ¢, and has a pole at any z where h(z) = ¢, the order of this pole being the order of
the zero that h(z) — c has there.

The function h(z) — ¢ belongs to Hy,; by Chapter IV, Section D we can write

h(z) — ¢ = Qz)0(z)
with Q(z) the inner factor of h(z) — ¢ and O(z) its outer factor. We have:
0@ =1h(C)—c|=21—]c| >0 ae. for{inE,

0Q) = h(¢)—c| = |c|]—e® >0 ae for{ in ~E.
Thus, |0()| is bounded below ae. on |{| = 1, so, by Chapter IV, Subsection E.2,
1/0(z) € Hy,. In other words, |Q(z)/(h(z) — c)| is bounded above in |z| < 1.

From what we have just seen, it follows easily that w(z) = Q(z)W(h(z)) belongs to H.
This function is surely analytic in |z| < 1 because any poles of W(h(z)) will be cancelled by
corresponding zeros of €(z), the inner factor of h(z) — c. It is bounded in |z| < 1. Indeed,
take any small 6 > 0; if e™® < |w| <1 and |w—c| = 5, W(w) is bounded, hence W(h(z)),
and therefore Q(z)W¥(h(z)), is bounded on the set of z where |h(z) — c| > 6. For \w —¢| < 6,
we have |¥(w)| < 4/|w —c|, say, so if |h(z) —¢| < 4,

1Q(z)¥(h(z))] < AIQ(z)/(h(z) —c)|.

We have, however, just seen that the expression on the right is bounded in |z| < 1.
For almost all {, |{| = 1, we now have

lo(O)] = QDR = 1.

Therefore w € Hy, is also an inner function, like Q. Since

_ o@
YHO) = 5
we have
ul) — % = W) — YHQO) < 2 ae, (=1

The lemma is proved with 2¢ instead of e.
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Corollary Let f € L., |If||, <1, and let € > 0. Then we can find inner functions wy, ..., w,,
Qi,..., Q. and numbers i >0, S| A =1, with

1O =" han(O/u0)| <€ ae, [=1.
Proof Use the lemma and the first theorem of this subsection.

Remark All the Q can be taken equal — just use a common denominator! For the
product of inner functions is an inner function.

Lemma Let f € H,.. Then we can find inner functions Q, w, wy, ..., w, and real constants
a,ai, ..., a, such that

(i) g=(aw+aw +...+a,w,)/Qisin Hy,

) Nf—gll, <2e

Proof Without loss of generality, ||f]|,, < 1. Then, by the preceding corollary and remark,
we get inner functions w, ..., w,,Q, and numbers 4, > 0 with

FO = o)/QA0)| < /2 ae for [[|=1.
1
TRICK. Call
F() = > hex(0)/Q0).
1

Since f € H, (!), the previous inequality shows that ||F — H., ||, < e. Therefore by the
theorem in Subsection 1, there is a g € H,. with [g({) — F({)| = € a.e.! Clearly

IIf —gll, <IIf =Fll. +1IF —gll, <2e
Also,
QL)) — UOF(C) € Hy,
because
QF = Z}»kwk S HA,,
k

So, since |Q({)] =1 ae. for |{| = 1, Q{)g({) — QL)F () must equal ew({) with an inner
function w, being in H, and of constant modulus € a.e. on || = 1. So

o) |, o(0)
=e— § p) .
g(l)=¢e + ] Y00

Q&)

We are done.

Theorem (Marshall) Let f € H,. and ||f]l,, < 1. Given € > 0, we can find inner functions,
uy, ..., Uy and positive numbers, Ly,...,n, 1 A =1, with

I~ X ] <

Proof Without loss of generality, we may suppose ||f||,. < 1 2e, otherwise we may work
with (1 — 2¢)f instead of f. By the preceding lemma, we can find a g € H.. of the very

special form
Z Ay Wy /Q
k
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with real constants a, and inner functions wy, Q, such that ||f —g||, < e. In particular,
llgll, < 1 —e. Now since, for |{| = 1, we have, almost everywhere, |wi({)| = 1, [Q() =1,
it follows that

g) = Za 2c) a.e.

— ™ w0

Let Q; be the product of the wy — it is an inner function. Then, although g({) is usually not
in He, Q(£)g(() is!

To functions g € H,, having this property, we can apply a modification of the Cauchy
integral argument used to prove the first theorem of the present subsection.

lg(0)l < 1 —€ ae, so, by Cauchy’s theorem,

T it
1 [yt 420 4,

g)= 2n~n 1+ 20)yet

y being any number of modulus 1.

Now apply Bernard's trick, and take y = Q;({) !

Then we get

n

(0 - [ Q00

2 ) T+ (e

Each of the functions

it
wit) = O +80)
1+ (g ({)e"
belongs to Hy, because Qy, g and Qg do, and because ||Q,g||,, < 1—e < 1! Since |Q({)| =1
ae. for |{| = 1, we have |u({)| = 1, ae, |{| =1, 1e., the functions u, are inner.
Because ||g||,, < 1 —e¢, we can apply the argument used to prove the first theorem of this
subsection (approximation of the preceding integral by a Riemann sum) to conclude that

1 N
Hg - Nzk=lu2nk/N < €

o0

if N is large.
Therefore

1 N
‘f - Nzk=1 Uank/N

for our f with ||f||., < 1 —2¢; if we only know ||f||, < 1 we get a similar approximation
to f to within 4¢ instead of 2e. Q.E.D.

< 2e
o]

Recall now Frostman's theorem from Chapter IV, Section G. This says that any inner
Sunction can be uniformly approximated by Blaschke products*. Combining this fact with the
previous result, we immediately have

Marshall’s Theorem Let f € Hy, ||f|l,, < 1. Then there are Blaschke products By,...,B,

* N.B. The Blaschke products spoken of here and in the next result are understood to
contain arbitrary constant factors of modulus 1.
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and positive numbers A, Y1 A& =1, with

‘f - ) AB
P

Thus, the unit sphere in H,, is the norm-closed convex hull of the set of Blaschke products.
Truly a most beautiful result.

<

[~}
€ > 0 being arbitrary.

C. Szegd’s theorem
Let u be a finite positive measure on [—=, ], and let 2(0) denote the class of polynomials
P(z) with P(0) = 0, i.e., polynomials without constant term. If 1 < p < oo, we are interested
in how small we can make
n

/ |1 — P(e®)P du(8) for P € 2(0).

-n

Theorem If o is a positive finite singular measure,
inf{/ll —P(®)Pda(6); P e 9’(0)}
—7

Proof Assume the inf is strictly positive. Then, for
1 1

-+ =1,

q9 p

is zero.

there is a G € L,y(do) with
n

/ G(€®)e™ do(0) =0, n=1,2,...,

—n
but

n
/ G(e®) - 1 do(6) > 0.

By Hoélder, G € L(do), so ds(8) = G(e”?) da(0) is a finite Radon measure on [—x, 7], whose
support is contained in that of do(0), i.e, in a set of Lebesgue measure zero. So ds(0) is
singular. But

n

/ef"eds(0)=0, n=12...,

-7

so by the theorem of F. and M. Riesz, ds()

is absolutely continuous!
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Therefore ds(0) must = 0. But on the other hand,

/nl-ds(ﬁ)>0

We have a contradiction. The theorem is proven.

Theorem (Kolmogorov) Let du(0) = w(6)df + da(0), withw e L1, w=0, do >0and o
singular. Let 1 < p < 0.
Then

Pe?(0)

mf /Il—P(e’o)l”w( = inf /|1— (€®)” dp(0).

Remark  Thus, only the absolutely continuous part of u matters.

Proof of theorem Clearly

inf /|1—P(e‘9)|Pw( )dé < inf /|1—P(ei€)|”d,tt(9)

Pe(0) Pe?(0)

so it suffices to prove the reverse inequality.
Let

= inf / 1 — P(e)Pw(6) dO

Pe2(0)

Then there is a P € 2(0) with
n
/|1 — P(e%)Pw(0)dd < K +e.
It suffices to find a Q € 2(0) with

[ 11— eeromierd + doo) < K +46

say.
First of all, by the initial theorem of this section, we can find a P; € 2(0) with

/|1 — P(®)Pda(d) < €
Let Py(e'?) = Py(e"?) — P(e); then we have P, € 2(0) and
/11 — P(e®) — P,(¢®)Pda(f) < e

Take a closed E < support of ¢ with

. o \P
[ (1+1pe1+ 1) doto) <
~E
this is of course possible. Because do is singular, |E| = 0. Therefore by a construction used
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in the first proof of the F. and M. Riesz theorem given in Chapter 11, we can find an h € &
(see beginning of Subsection A.1) with h(e’) = 1 for ¢ € E and |h(e”)] < 1 if ¢’ ¢ E. So
forn=1,2,...,

/ 11 — P(e%) — [(e)]"Py(e”)F do(8) = / 11— P(e”) — Pa(e”)P do(6) < e.
E E
Since in any case |h(€?)] < 1, we see, by choice of E, that
/ 11— P() — [h(e")]"P2(e”)" da(6) < e+ / (1 +1P(e”)] + |Pz<e"”)|)” da(9) < 2e.
—n ~E
Since |h(e'?)| < 1 outside E, hence a..,
1—P(e?) — (h(e?))"Pa(e”) — 1 — P(e”) ae,
whence, since w(f) € L;, by Lebesgue’s dominated convergence theorem,

/|1 — P(e”) — (h(e?))"Py(?)Pw(0)dO —> /|1 —P(e")Pw(0)dd < K +e.
Ther::nis thus an n sufficiently large for -
n
[ 1= P =ty Pw)d0 tobe < K+ 2.
Thence, ﬁnall;:
/ [1 — P(€”) — (h(e®))"Po(e)|P du(f) < K +2¢+2¢ =K + 4e.

Now h(e?) € o7, so h(e”) can be uniformly approximated as closely as we want by a
polynomial

N
E akexkl).
0

We have (Z(I)V ake‘k‘)) Py(e?) € 2(0) since P, € 2(0), and if 3. awe™” is close enough to

h(e™), we will still have
/ 11 — Q)P du(0) < K + 4e
with Q € 2(0) given by - )
Q(e") = P(e") + (XNjakefk0> Py(e").
0

This does it.

Our study thus reduces to the determination of

Pe#(0)

inf / [1 — P(e)Pw(8)d8
—n
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with w € Li(—=n,n), w = 0. This problem is completely solved by the most beautiful and
elegant

Theorem (of Szegé) If1 <p <o,

1 n
P = —
Pe?(O) o /|1 0)Pw(6) do exp (275 /10gw(9)d0> .

Proof Suppose first of all that

n

/log" w(0)dl < oo,

so that
logw(0) € Li(—mn, ).
(Surely |” log™ w(f)df < oo because w € L,.) It is convenient to work with

wi(0) = w(f) - exp (_flr? /logw(z) dt)
l n
K =exp (2—n/logw(t)dt) R

14

/logwl(G)dG =

In the present case, the desired result will follow if we show that

and

so as to have w(8) = Kw,(0) with

PEP(0)

inf /|1 — P(€7)Pwy(8) d8 = 27.
Because logw;(0) € Lij(—n, ), we can form the analytic function

elt+
1) = ﬂfe,, logwi(Ddt, 12| < 1;
-

we have

£(0) = = /logwl( )dt = 0.

Since logw € L;, by the computation in Chapter IV, Subsection E.2, exp(f(z)/p) belongs
to H,. It is outer, and by the material in Chapter I, Section D,
|exp(f(e”)/p)l = wi(0))/7  ac.
If P € 2(0), G(z) = (1 — P(z))exp(f(z)/p) is also in H,, and G(0) = 1 since f(0) = 0. So
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forr <1,
%/lG(rew)l"dOZ 1.
Since G(re') — G(e') in L, norm as r — 1 (Chapter IV, Section C), we get

n
- / G do > 1,

ie.,
/|1 — P(e)Pwi(8)dO = 2=

for any P € 2(0), in view of the relation of f(e') to w(0). We have thus shown that the inf
in question is > 2m.
To prove the reverse inequality, observe that, since exp(f(z)/p) is outer, there is, by
Beurling's theorem (Chapter IV, Section E) a sequence of polynomials Q,(z) with
On(z)exp(f(z)/p) = 1

in H, norm. Because exp(f(0)/p) = 1, we must have Q,(0) —> 1, s0 also
%) @)

exp —=
0.0 p
in H, norm. We can write Q,(z)/Q.(0) = 1 — P,(z) with P, € 2(0), so we surely have

/|1 €9)\Pw,(0)do = /|1 — Po(e®)Ple’")| do —>/1Pd9 =2n,

showing that the desired inf is < 27.
The formula in question is thus proved in the present case.
If now

n

/log w(0)d0 = —o0,
—-n

let us take

wa(0) = max (w(8), 1/n) ;
then each logw, € L. We have

/log wn(0)d0 — —oo.

For each n, w,(6) > w(0) so that

inf /|1— (€%)Pw(0)do < mf /|1—P(e'9)|”w,,(0)d9

PEP(0)
= 2mexp ( /log w,(0 d@)
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by what has already been done. Since this holds for every n, we see, making n — oo, that

: . i0\(p —
Pg})f(m/ﬂ P(e")Pw(0)dO = 0.

But this equals
1 n
21 exp E/logw(())d(?
in this case.
Szegd’s theorem is completely proved. Q.E.D.

Remark The connection with Beurling’s theorem (Chapter IV, Section E) is seen to be
very close, and the preceding discussion could just as well have been placed at the end of
Chapter IV.

D. The Helson-Szego theorem
In a 1960 Bologna Annali paper, Helson and Szegd give a characterization of the finite
positive measures yu on [—m, 7] having the property that

n n
/ |T(0))* du(8) < const. / |T(0) du(6)
—n -7
for all trigonometric polynomials T (0).
A trigonometric polynomial T(9) is simply a finite sum of the form 3, a,e™, and for
such a function T(8), the harmonic conjugate T(0) (Chapter I, Section E) is

—i Z(sgn n)a,e™,
where we put sgn0 = 0.

Definition A positive measure u is called a Helson-Szegé measure if

/ |T(0)? dpu(6) < const. / |T(0))> du(6)

for all trigonometric polynomials T.
Simple direct computation shows that du(f) = df is a Helson—Szegtd measure.

Theorem A Helson-Szegd measure is absolutely continuous.

Proof Suppose E is closed, |E| =0, but u(E) > 0. Fatou’s construction, used in one of the
proofs of the theorem of the brothers Riesz (Chapter II, Section A) gives us an h € .o/ (for
definition see Subsection A.1) with h(e’) = 1 on E and |h(e’)] < 1 elsewhere. We have,
surely, h(0) = a with |a| < 1. Put F,(z) = (h(z))" —d". Then F, € & and F,(0) = 0 so
RF, = —3F,. If u is Helson—Szeg0, we have therefore

/ (RE)()2 dyu(6) < C / (SF)(E)P du(d)



164 VII: Duality for H, spaces

since, because F, € </, there is, for each n, a sequence of trigonometric polynomials T,
with T, (6) — (SF,)(€?) uniformly and T,,(6) - —(RF,)(e®) uniformly. Now, on E,

(RE)(€”) =1—Ra" —> 1,
SO

liminf / (RE)E)P du(6) = u(E) > 0

However,
I(SF)E)] < 1+1al" <2,
whilst, for ¢ € E,
(SF,)(€”) = —3a" — 0,
and for ¢ ¢ E,
(SFa)(e)| < k()" +3a"] — O.
So (IF,)(e"?) — 0 boundedly and everywhere, and hence
n
[ (FIEE aud) o
We have reached a contradiction, and are done.
Theorem A nonzero Helson—Szegd measure is necessarily of the form du(6) = w(0)d0 with

w>0in Li(—n,7) and [* logw()d > —co.
Proof By the previous theorem du(6) = w(0)d6 with w € L; and w > 0. Suppose

/log w(0)dl = —c0;

then we use Szegd’s theorem (Section C) to get a contradiction. For then we have a sequence
of trigonometric polynomials P, belonging to our old friend 2(0) of Section C ( the set of
finite sums of the form 3, o a.¢™ ) such that

/|1 — Po(0)*w(0)d0 —> 0.
Put T,(0) = 1 — P,(0). Then P, = ”f,,, so if w(0)d6 is a Helson-Szegd measure,
/ |P.(0)*w(6) dO = / ITa(0)Pw(6)do < C / I Ta(0)*w(0)do < cz/ I Ta(0)*w(0) d§ — O.
-n - - -n
So
[ perrwora0 o,
and, finally,

/ 12w(0)do = 0,
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or w(f) = 0 a.e. We are done.

Our determination of all Helson-Szegd measures
is thus reduced to the examination of those of the
form w(6)df with positive w € L; and

n

logw(6)df > —oo.

Helson and Szegd introduced an auxiliary operation related to ~.

Definition If T(8) =73, a,e™ is a trigonometric polynomial, call

(TIT)(6) = Z a,e™.

n>0

We use also the following notations:

Lemma
7|l < KITIL,
for all trigonometric polynomials T and some K iff
ITITl, < CIITIl,,
for all such T and some C.
Proof
Step I If ||LIT||, < C||TI|, for all T, observe that for T(6) =3, ane™’,

T_(G—j = Z a_"einé)’

so (IIT) = 3,0 axe™, and finally
T = —ilIT +i(TIT).
Clearly ||T||, = IITIl,, so
[|T]|, <IMT||, +||OT]||, < C|ITIl, + ClIT||, =2C||T||,.
Step 2 1f ||T||, <K |ITIl, for all T, observe that 2I1T = —T +iT, so
K*+K

[Ty, < | T, - Q.E.D.

Lemma w(0)d0 is a Helson—Szegé measure iff there is a p < 1 such that, whenever
P,Q € 2(0),

{SR () e Q(e%w(0)db] < p |PIl, 1Q1l, -

-~
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Proof By the above lemma, w(0)df is Helson-Szegd iff ||[IIT||, < C||T||, for each

trigonometric polynomial T. Any such T can be written as P(f) + ¢?Q(e®) where
P,0 € 2(0) and P = IIT. Because |¢”| = 1, we have for such T,

ITIZ = IIPII; + 1IQI% + 2% / P(e?)eQ()w(8) d.

If, first of all, the inequality in the statement of the lemma holds, this last expression is

= IPIE + 119112 = 2p IIPII,, lIQll, = (L = p) IPII% + (o IIP]I,, — 11QI1,,)?
> (1= pHIIPIE =1 - pH|IIIT1Z,

proving
LTI}, < =7 ITIZ .
Conversely, if ||P||i, < C2||T||fv (where, without loss of generality, C > 1 !), we have,
when ||P||, = [|Qll, = 1, |IT||> = 1/C? so that, using the formula for ||T|2 given above,
1+1+2R / P(®)e " 0(e®)w(0) do ci

R / P(e®)e 0% )w(0)db = — (1 - %) )

-7

Repeating the argument with —P instead of P we get, after changing signs,

1

R / P(®)e Q) w(8)df < 1 — TR

These two inequalities are the same as the one asserted with
1

r=1-3c

The lemma is proved.

Theorem (Helson and Szegd) A measure du such that

] 1T(O) du(6) < C / ITO) du(®)

for all trigonometric polynomials T is necessarily of the form

d[l(g) — eu(9)+ﬁ(9) de

where u and v are real valued, [u(6)| is bounded, and

|()|<——e, e>0.

Conversely, if du() = 4?70 4g

with u and v as stated, the above inequality holds with some C.
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Proof By the first two theorems of this section, we may restrict ourselves to examination
of du(8) = w(f)df with w € L;, and

/logw(B)dB > —o0.

Take any such w, and form

it
6(2) = exp (zin JE =130 dr) :
because w € Ly, ¢ € H; (and is outer!), and by Chapter I, Section D,
lp(e?)> =w(0) ae.

Call

WO _ o

(¢(e?))? '

By the previous lemma, w(8)d6 is Helson—-Szego iff, for some p < 1, P,Q € 2(0) and

1Pl < 1, 12ll,, <1 imply

< p.

m/(ﬁ(eiﬂ)P(eig) . ¢(ei9)e—i9Q(ei9)eiv(9) do

By replacing P with 7P and varying y through all real values, the latter condition is seen
to be equivalent to

d(®)P(e?) - p(e®)e P Q(e) - 7@ dﬂl < pli¢Pll, 160l
for all P,Q € 2(0).

Now by Beurling’s theorem (Chapter IV, Section E), ¢2(0)
is dense in Hy(0) and e~ ¢(e") - 2(0) is dense in H,.

So the previous condition is equivalent to

‘ / e‘”‘*”F(e“’)G(e“’)de\ < plIFI,IG1,

for all F € H,(0) and G € H,.
By Chapter IV, any f € H;(0) can be written as FG with F € Hy(0), G € H,, and

IF]l, = [1Glly = V/IIfIl;-

So finally, w(6)d6 is a Helson—Szegd measure iff, for some p < 1

] [ eos@ras| <o 1 e H©)

By Subsection A.2, this is equivalent to
e — Hi, < p < 1.

Suppose now that wo(0) = ¢’® with

v@)| < = —e€, €e>0.

A
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Then, as we see at once, the corresponding outer function ¢g(e®) satisfies
(do(€?))? = €00, 50 wo(6)/(bo(e”) = &),

Since |v(0)| < (n/2) — €, we have £/ )
|€¥® —sine| < cose < 1, 1COS €
and the constant sine is in H,,, so the above boxed |
relation is fulfilled with p = cose < 1. Then, HTHWO < s;ns

Ko|IT|,, as we saw above. If now w(f) = e“Owo(),
and —c¢ < u(0) < c, we still have

- 2
T, < e* Tl - £
So our condition on w is sufficient.

It is necessary. For if the above boxed relation holds, we get an h € H,, with
w(0)
(¢(e))?
Multiplying by |$(e?)|2 = w(e?), we get, a.e.,
(¢(e”))*h(e"”) — w(8)| < pw(6),
where w(f) > 0 a.e. (because [* logw(0)d8 > —o0.) So the boundary values (¢(e?))*h(e?)
of the H, function ¢*h belong a.e. to the sector |arg W| < arcsinp < m/2, and, by Poisson’s
formula for H; functions (Chapter II), the values (¢(z))*h(z) also belong to that sector for
|z| < 1. In particular, Rp*h = O there, so, by a previous exercise, ¢2h is outer. So ¢?h is of
the form e7e“*® where y is real. We now have |ii(¢"’) 4+ y] < arcsin p, so by Chapter V we
certainly can take the harmonic conjugate
Lo
i+y=—u+u).
Call —a(e®®) —y = v,(8). Then |v(#)| < arcsin p and u(e’’) = 5,(8) + c, ¢ a real constant, so
Ih(e?)llp(e”)? = e <.

—h(e?)| = 1”@ — p(®) < p < L.

Finally,
[€”® —h(e%) < p <1

makes
1 1 1

< — < ,
L+p = |nE?) ~ 1—p

so we can call
eC
ui(0)

— = ¢

|h(e?)|
with a bounded (above and below!) real u;. Then
w(0) = |g(e)]* = e @
with |v;(6)| < arcsinp < 7/2, Q.E.D.

Remark This is a most satisfying result. The above line of investigation has been
continued by Helson and Sarason, and also by me.

Remark In 1970 or 71, Hunt, Muckenhoupt and Wheeden determined completely all
weights w(0) for which

" |T(0)Pw(8)do < ¢ " |T(0)Pw(8)do,
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where | < p < o0. Their solution looks entirely different from that of Helson and Szegd, and,
for p =2, is as follows:

w(68)d0 is a Helson-Szego measure iff, for all intervals I,

1 1 de
{m/,W“”d"}{m/,W} =6

a finite constant independent of I.

Coifman and Fefferman recently published a simplification of Hunt, Muckenhoupt and
Wheeden’s work in Studia Mathematica.

The above boxed condition must be equivalent to the fact that

logw(6) — 3(0) € L.(—m, )

for some v with ||v]|, < /2. Why, is not so evident. The matter is involved with the theory
of BMO (the class of functions of bounded mean oscillation), to be treated in Chapter X. At
about the time I was giving the course on which the first edition of this book was based,
Garnett and Jones found a direct proof of the equivalence, which, however, does not quite

give the precise upper bound n/2 for ||v||,.. Their work is published in the Annals of Math.
for 1978.

Problem 7 Let w(8) € L, (—=n,n) and |w(#)] = 1 a.e. The problem is to show that there
is a nonzero h € H,, such that

(1) |lw(@) —h(0)] <1 ae.
if and only if there is a nonzero f € Hy with
f(6)
2 )= 2L
. =150y

(a) If there is an f € H, satisfying (2), show that h = f/(P 4+ iP) is in H,. and satisfies
(1), where P(0) = |f(0)].
(b)" If there is a nonzero h € H., satisfying (1), show that he?™ € Hj, where v,

T T
— < < —
7 = (o) < 7
is such that
e VOG(O)h(0) >0 ae.

Hence get an f € H, satisfying (2).
HINT:




VIII

Application of the Hardy—Littlewood
Maximal Function

The present chapter is based on some fairly old work in analysis, but nevertheless marks
the beginning of the more recent developments in the theory of H, spaces.

A. Use of the distribution function

In this chapter, we mostly consider only functions which are finite almost everywhere.

Definition If f(x) is complex-valued on R, and finite a.e., we write, for A > 0,
my(A) = |{x; [f(x)| > A}|.
my(A) is called the distribution function* of f.
The function my(A) is clearly decreasing ; there is, of course, nothing to prevent its being

infinite for some or all values of 4 > 0.
By definition (!) of the Lebesgue integral, we clearly have

/ ()P dx = /0 3P(—dmy (1)
+

—0

for p > 0, provided that ms(1) — 0 for A — co. We have, moreover, the

Lemma For 0 <p < oo,
o0 0
/ [ (x)? dx=p/0 A me(4) dA.
—0

Proof By partial integration. There is a slight complication due to the fact that R has
infinite measure.

* In Chapter V, Subsection C.1 we used |h(8)| > 4 in the definition of m;(1). Here we prefer
to use > in order to involve open sets in our discussion; see Subsection B.1 below.
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If, for some ¢ > 0, my(4) > c for all A > 0, then

/ P my(2) di
0

is clearly infinite, but {7 |f(x)[Pdx is clearly > 4? - ¢ for all A > 0, hence also infinite.
So we need only con51der the case where ms(1) — 0 as 1 — oo.
Let 0 < e < R < co. Then

R R
(*) —/ APdms(d) = GPMf(G) — RPmy(R) + p/ lp_lmf(;t) da.
1 If
o0
/ A7 my(2)di < oo,
0
then
p/ P mp(A)dA — 0
0
as e — 0, i.e, since m;(4) decreases,
mf(e)/ pA1dAr -0
0

as € — 0; that is, e?mys(e) — 0 for e — 0.
Again, given ¢ > 0, there is an A4 so large that for all R > 4,

R
p/ }."‘lm/(l)di < 0.
A
Therefore
R
m,(R)/ pAP~'dA = (RP — 4")my(R) < 6,
A

so, for R > A large enough, RPm;(R) < 26. This proves R?my(R) — 0 as R — oo.
Making € — 0 and R — oo in (*), we thus find

p [ tmnar=— [“ram = [*igeopax
0 0+ -

in case the extreme left-hand member is finite.
(ii)  Suppose now that

—-/"lf’dm/(l) <.
0.

+
As remarked above, we may assume my(4) — 0 for 1 — oo, and then
RPMf = -Rp/ de )< —/ l”dmf(,l),

R

so R?m;(R) — 0 as R — c0. Making R — o0 in (*) gives, for € > 0,

e"mf(e)-i-p/ ul”_lmf(l)dl = —/ J}.deI(A)

p / P mp(ydi < — /  Admg(A).
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Making € — 0, we see that

/ l""lmf(l) dA < oo,
0

and we are back in case (i). So the lemma holds.

B. The Hardy-Littlewood maximal function

1. Theorem of Hardy and Littlewood

Definition Let f(x) be measurable on R. The Hardy-Littlewood maximal function, fM(x),

is
M09 = sup. { : / If(t)ldt}

Evidently, if f is bounded, |f™(x)| < |If||.-

Theorem of Hardy and Littlewood

mu(d) < 2 f If(x)ldx, 4> 0.

’f M(x)>2}

Proof Without loss of generality, f(x) > 0. Write
x+h

1 X
fit) = sup / fod,  f) = sup [ e
x—h

h>0

For given 4 > 0, call E; = {x; fi(x) > 4}, E» = {x; falx) > 1}, E = {x; fM(x) > 4};
since

x+h, ot
1
hy + h /hf(t)d‘ - h1+h (hl /hf(‘ ) i +h2( /f(t)dt),

we have E < E; U E, so that mym(A) < my (A) 4 my,(4), and the theorem will clearly follow
as soon as we show that

1
my, (A) = 7 /f(x)dx, my,(4) = % /f(x) dx
E, E

We content ourselves with the proof of the first relation, that of the second being very

similar. Write
= / f()de
0

using the usual convention if x < 0; it suffices to consider the case where F(x) is everywhere
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finite and hence continuous, since otherwise both sides of the above boxed relation will be
infinite for 1 > 0. In that event, F(x) is increasing and E; is a countable union of disjoint
intervals J, (one may be of infinite length), obtained from the graph of F(x) vs. x by the
following construction, due to F. Riesz:

LS

y = F(x)

One shines light down along the top of the graph of F(x) vs. x, in the direction opposite to
that of the lines of slope A. The Ji are the intervals of the x-axis directly below (or above)
the portions of the curve left in shadow.

From the figure, it is manifest that for each Ji,

AlJg] = increase of F on J, = f(®)de
Jk
Hence, adding over the Jj,
llE,|=/ f(o)de,
E
ie.,
mp(A) = |Ei| = 27" [ f()de,

as required.
We are done.

Scholium The theorem of Hardy and Littlewood can be applied to yield a quick proof
of the fact that if f € Ly and F(x) = fox f(t)dt, then F'(x) exists and equals f(x) almost
everywhere (Lebesgue’s theorem).

Indeed, if f € L; we can construct a sequence of continuous functions ¢,(x) with
[|@nll; < 47" for n > 2, such that the series 3¢ ¢n(x) converges to f(x) both in Li-norm
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and a.e. For each n > 2, let 0, = {x; ¢M(x) > 1/2"}, and put Gpm = UpsmOp. If x ¢ Gy,

x+h
> balt)

n>m

dt < > ¢nf(x) < 27,

n>m

1
sup ——
h,h’fo h+n
x—H

50, if Op(x) = ‘Zj ¢dn(x), we have, for x ¢ Gp,
0

D,(x)—2"" < lizzmi(n)'nf%/ foyde < hmsup / f)ydt < ®p(x)+27",
= x

because @p(x) = f(x) — D, On(x) is continuous and therefore

d X
e t)dt
& [ o0
exists everywhere and equals ®p,(x).
Now the Hardy-Littlewood maximal theorem says that

|0n] <27 ||pall; < 27 forn>2,
50 |G,,| < 27™*!. The above calculation shows that if x ¢ Gy, for all m sufficiently large and
im0 @p(x) exists, then F'(x) also exists and equals that limit. But ®,,(x) — f(x) ae,

and G| o Gy > G3 > ..., with G = N5, G,, being of measure zero because |G,,| < 2™™*'. So
F'(x) exists and equals f(x) for almost all x ¢ G, i.e., almost everywhere.

2. Norm inequalities for f™
Theorem If p > 1 (sic!), ||fM||p < G, |If1l, with a constant C, depending only on p.

Proof One can use the obvious relation ||f™|| < [Ifll,, and the Hardy-Littlewood
maximal theorem to set up a Marcinkiewicz argument like the one used in Chapter V,
Subsection C.2 in order to prove corresponding inequalities for the harmonic conjugate f.

Here, however, a simple trick works. Without loss of generality, f(x) > 0. We can
approximate f(x) from below by a sequence of bounded functions of compact support. For
each ¢ of the latter, ¢ (x) is bounded and O(1/|x|) at co. By making the sequence of ¢’s
monotone increasing, we get a sequence of ¢M(x) tending to fM(x) from below, in monotone
increasing fashion, so that ||fM| |p is the limit of the ||¢™ || ,- It thus clearly suffices to show
that ||¢MHP < G li¢ll, for each 4.

Now, however, we are assured that ||¢M ||, < oo because p > 1, ¢M(x) being bounded
and O(1/|x|) at oo, and we proceed as follows. From Section A,

0
6] = » [ 2 mourar

00
<2p / { / b(x) dx} -2dj
0 {pM(x)>2}

by the Hardy-Littlewood maximal theorem. On changing the order of integration (!), this
last is seen to equal

o ¢M(x)

2p / / P 2p(x)dAdx = —— / d(x)(PM(x)) ! dx.

-0 0

which, in turn, is
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Holder’s inequality now shows that the last expression is

2p —1
< oy el 1]l

so we have
2p -1
1%l < =5 lell, ][],
Since ||(1)MHZ_1 < 0, it can be cancelled from both sides (!), yielding

2p

M

16¥[], < 27 e

and proving the theorem, with C, = 2p/(p — 1). Q.E.D.

3. Criterion for integrability of f™ on sets of finite measure

On R, there is no substitute for the theorem of the preceding subsection in the case p = 1.
That’s because R has infinite measure.

Take, for instance
1L Ix<1
f(")_{o, x| > 1;
then, as is easily seen,
const.
|x]
for large |x|, so fM ¢ Ly(R), despite the fact that f belongs to all L, spaces and is of
compact support.
The correct L; substitute is for L;(E) with |[E| < oo, and it is established by a

Marcinkiewicz argument like the one used in proving Zygmund’s theorem (Chapter V,
Subsection C.3).

Theorem If |E| < oo,

Mx) >

/fM(x)dx < 2|E| +4/|f(x)|10g+|2f(x)|dx.

E
Proof Let u(A) = |{x € E; fM(x) > A}

, then

/ M(x)dx < |E| + / A= du(h)
E 1

which, by integration by parts, is seen to be less than or equal (in fact equal) to
o0 o0 [o 0]
|E| + u(1) + /u(l)dl < 2|E|+ /u(l)dl < 2|E| +/mfm(/1)d,1.
1 1 1
To estimate mym(4), we use Marcinkiewicz’ trick and write, for given 4 > 0,
f(x) = ga(x) + ha(x),
where

_ I, Ifx)l < 4/2 _10 If(x)| < 2/2
gilx) = {0, otherwise, ha(x) = { ), 1Ifx)] > 4/2.
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Clearly fM(x) < g}(x) + h}!(x), and ||gill,, < 2/2, so that ||gM|| < A/2. Therefore
M(x) > A implies h¥(x) > 1/2, so

mow(x) < |{x; hy(x)> A/2}]
which, by the Hardy-Littlewood maximal theorem, is

< 55 [mwiex = 5 [ iftlax = 5 [ s-dmyton.
—® {If()1>2/2} /2
Therefore,
" 0 e} 4 o
/f (x)dx < 2|E|+/mfm(l)dl < 2|E|+/{z/ s(—dmf(s))} dA
E 1 A2
@ 2s @
— 2E|+ / / S dA(—dmy(s)) = 2E|+ / (4s1og 25)(—dmy(s))
1721 172

2|E[ +4 / [f()Tog2lf(x))) dx = 2|El+4/|f(x)110g+(2lf(X)l)dx,
{If(x)>1/2}
QED.

Since fM only depends on the modulus, |f(x)|, of f, the form of the known partial
converse to Zygmund’s theorem (Chapter V, Subsection C.4) should lead us to suspect that
the result just proven also has a converse. Despite, however, the length of time that the
above theorem has been known (it is in the first edition of Zygmund’s book!) its converse
was not noticed until 1969, when it was published by E. M. Stein. In fact, the steps in the
above proof can practically be reversed!

Theorem Let f € Li(R) be of compact support. Then

[ e

E
is finite for every E of finite measure only if

/ ()l log* ()] dx < oo,

Proof If f is of compact support, clearly fM(x) < const./|x| for large |x|,
so E = {x; fM(x) > 1} is of finite measure. Finiteness of

[ s
E
with this E will lead to the desired conclusion.
Let us take the partial maximal function
x+h

f1x) —supl / Fo1dt
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already used in the proof of the Hardy-Littlewood theorem (Subsection 1).

fi(x) < fM(x), so

/ fi(x)dx < /fM(x)dx < oo,
{f1(x)>1} E
Now, however,

{f1x)>1}
so the last quantity must be finite.
In proving the Hardy-Littlewood theorem, we actually showed that

m =7 [ Iflex

{f169>4}
SO

f1(x)
dA di
/ f)ldx—= = / /lf(X)lex
L {fi)>4) ne>1 1

my, (4)dA

[ ireantossicoax
{itx)>1}
But fi(x) > [f(x)| a.e., so that the last integral is

> / Fe)llog fi(x)dx = / ()l log [f (0] dx = / f()/Tog* 1 ()l dx.

{f(x)>1} {fx)>1}
In short,

[ niwa / 17(0) log* 11 (x) i,
{f1x)>1}
and if the quantity on the left is finite, so is the one on the right. We are done.

fix)dx = — / Admy,(4) = mp,(2) + / my,(A)da > / my,(A)dA,
1 1 1

177

Then

C. Application to functions analytic or harmonic in the upper half plane, or in unit circle

1. Estimate of Poisson’s integral

Lemma Let

[ 1f)d
t t
1+t2 < 00,

—0

and put for 3z > 0,
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Then
|V(x+iy)| < (' |+2> ™0).

Proof By a calculation which is essentially the same as one already carried out in Chapter
I, Subsection D.3. We may assume f™(0) < oo, since otherwise there is nothing to prove.
Integration by parts yields:

V(x+iy)l / mlf(mdt

_ 1] a0
(e fowne] + 12 )

Because fM(0) < oo, the integrated term is zero. The second term can be rewritten as

17 2p—x)
2 yd
Eéw—t (/UlSdt

ﬂ/mmmSW@
0

—0

with

by definition. We have
2(t—x)t  2y(t—x)? 2p(t —x) - x
(=12 +32)°  (e=xP+y)" (€—x2+2)"
and this is in absolute value

2y + |x|
Sy
Since
o0

1 y
5/(t—X)2+y2 dr=1,
—o0

substitution into the previous expression yields

V(x4 iy) < (2 + 'iy') ™0).
Q.ED.

2. The non-tangential maximal function F*(x), —o0 < x < ©
Definition If F(z) is defined for 3z > 0, put, for x € R,
F*(x) =sup {|[F({ +in)l; 0<|&—x| <n}.

Thus, F*(x) is the sup of |F({)| in the 90° sector Sx, symmetric about the vertical, with
vertex at x:
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R

Any other angle less that 180° could have been chosen instead of the 90°, which we take here
merely for convenience in writing.
F*(x) is frequently referred to as the non-tangential maximal function of F(z).

Theorem Let p > 1 (sic!), let V(z) be harmonic in 3z > 0, and suppose that
HV||Z = sup / |V (x + ih)|” dx
h>0
—o0
is finite. Then

fvel
[reraskv.
—00
with a constant K, depending only on p.
Proof By Chapter VI, Section C there is an f € Ly(R), with [|f]|, equal to the norm ||V]],
defined above (see very end of Section B in Chapter VI), such that

lz—?

V(z)=;lt- / Y __f)de.

By the lemma of Subsection 1, we have, making a translation along the x-axis:
V' (x) < 3fM(x).
But HfM| ’p < G lIfll, by Subsection B.2. So
V1L, <3G, 1If1l, = 3G, IIV1l,.-
Q.ED.

Theorem Let p> 0 and F(z) € Hy)(Jz > 0). Then

[ Fe) e <k

-0

with a K, depending only on p, wh(;,re (in order to follow the usage of Chapter IV), we put

|1, 0<p<l1

Proof By Chapter VI, Section C we can write F(z) = B(z)G(z), where B(z) is a Blaschke
product for the upper half plane (so that, in particular, F*(x) < G*(x) !), G(z) has no zeros
in 3z > 0, and G € Hy(3z > 0) with ||G]|, = ||Fl|,.

Therefore V(z) = (G(z))?/? can be defined so as to be analytic, hence harmonic (complex
valued) in 3z > 0, and

V15 =GP = 1F||.
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We have (F*(x))’ < (G*(x))? = (V*(x))%. Our desired result now follows from the previous
theorem.

Corollary For F(z) € Hi(3z > 0), we have, with U(z) = RF(z) and V(z) = JF(z),
f' U'(x)dx < C||F|l,, / V*(x)dx < C||F]],.

oL bl
3. The non-tangential maximal function f*(0), -1 <6 <=

Definition If f(z) is defined in {|z| < 1} and 0 is real we put
£7(0) = sup{lf(2)l; z € Se},
where Sy is the shaded region shown here:

By arguments similar to those used in Subsection 2, we can establish* the following
results:

Theorem Let p > 1 (sic!), let v(z) be harmonic in {|z| < 1} and suppose that
T
lolly = sup [ e a0
r<l J—n

is finite. Then, with a k, depending only on p,

T

/(u*(e))” d0 < kplloll?.

-

Theorem Let f(z) € Hy(|z| < 1) for some p > 0. Then, with a constant K, depending only
on p,

| o o<k,

n

where (p) = sup(l, p).
Corollary For f € Hy and u = ‘Rf,

/ W (0)d0 < C 1],

* In doing this, one works with the Hardy-Littlewood maximal function corresponding to
x(0)v(e), where y is the characteristic function of [—2n, 27] (sic!) and v(e’) the boundary
value of the harmonic function involved.
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4. The maximal Hilbert transform
Lemma

dt

}Lf)d[_/"“ tf(1)

2

< (1+21)fM(0).
‘-\!|>y t 22 f7(0)

Proof The expression on the left equals

y? Yoef(e)de
‘/m>y l(y2+t2)f([)d[ B L y24r?

[ A oy X
s 5 [ vwis s [ i
Ty M
< Mo S——If(Hldt < (142 0
M0+ sup [ i < 1+ 2mpo)
by the lemma of Subsection 1. Q.ED.

Theorem Let | < p <o (sic!), and f € L,(R). The so-called maximal Hilbert transform

L g,
T Jjt—xj>e X — 1

f(x) = sup

>0

satisfies H]’Hp < KplIfll,
Proof For 3z > 0, put
1 [ x—t
Viz) = — = f(¢
@-1 [ Z=mro
then V(z) is harmonic for 3z > 0, and by Chapter VL, Section D, for each h > 0,
/ Vix + i) dx < C, 117,

s
with a C, depending only on p (M. Riesz’ theorem). Hence, by Subsection 2 above,
1, < Kp llf1l, with some constant K,. Making a translation, we see by the lemma just

proven that
L f@ . ! M
—/H dt — V(x—i—ty)‘ < (E +2> M(x)

T —x|>y xX—1

for each y > 0.
Therefore,

flx) < (% + 2) Mx)+ V' (x).

But we know that l|fMHp < C,,Hfllp here, according to Subsection B.2.  Since
Vl, < Kplifll, we're done.

Remark  An analogous result holds for the unit circle.

D. Maximal function characterization of ‘RH,
If F(z) € Hi(3z > 0) and U(z) = MF(z), a corollary of Subsection C.2 says that
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U*(x) € Li(R). In 1971, Burkholder, Gundy and Silverstein discovered (with the help
of probability theory) that the converse result holds!

1. Theorem of Burkholder, Gundy and Silverstein

Theorem [If U(z) is real valued and harmonic in 3z > 0 and

rT

/ U (x)dx < oo,

—L

then U = RF for an F € H|(3z > 0).

Proof Based on two ideas in Fefferman and Stein’s 1972 Acta paper, and worked up
especially for the course on which this book was based.

For h > 0 and 3z > 0 write Uy(x) = U(z +ih). Note that since U € Ly, ||Usl|, (notation
of Subsection C.2) is surely bounded for h > 0. This being the case, U has a harmonic
conjugate V, given, for any half plane 3z > h > 0, by

b4
x—t

1
V(Z) = ; / ml}h(ndt.

—L

The claim is that U + iV € H,.
In order to prove this, we will show that

7|Vh(x)ldxs47U'(x)dx

for each h > 0. In fact, we will show that
* .
/ [Va(x)ldx < 4/ Uy (x)dx

which is stronger, since U;(x) < U"(x) as the following diagram makes clear:

R

Again, since [” U’(x)dx is < % and therefore [, |U(x + ih)|dx bounded for h > 0,
we have, by Chapter VI, Section C, |U(z)| < const./h for 3z > 0 which, since ||U|], < oc,
implies that in fact

/(U;,(x + iy))2 dx<Cy<x fory=>0.

(Ch, may be enormous if h > 0 is small, but that is of no concern to us here!) By Chapter
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VI, Section D we now see that

/ (Va(x +iy))* dx < C,
for y > 0, so that in fact
U,+ iV, € Hy(3z > 0)

for each h > 0. The function Uy(z) + iVy(z) is continuous in 3z > 0 and tends to zero when
z — o there, since (Chapter VI, Section D)

L

Un(z) + iVi(z) = % /

—0

1

mﬁ Uh/z(l‘) dt

for 3z > 0.
Let, for A > 0,

m(2) = |{x; Up(x) > 2}[,
HA) = I{x; [Via(x)] > A}
We proceed to estimate (i) in terms of m(). Call ¢; = {x; U;(x)> A}, and E, =R ~ ;.
We have |(¢;] = m(4), and clearly
BA) < |ix € Es; Vi(x) > A1 +1¢] = m(A) + |{x € E;; [Vi(x)| > A]].

We proceed to estimate the second term on the right.
¢, is a bounded open set, hence a disjoint union of finite open intervals Ji:

T, Tl T.
AN
‘13 ‘Il ‘12

R

Above Ji, let T}, be the 45° roof constructed as shown, let T = U, Ty, and let I" be the
curve consisting of the Ty and E; = R ~ (;, so oriented that x = Rz increases as z moves
along T in the positive sense:

MM
Since Uy + iV, € Hy and ¢;, hence T, is bounded, by Cauchy’s theorem and the lemma
at the beginning of Chapter VI, Section D:
/(Uh(z)+th(z))2 dz = 0.
-

On taking real parts, this becomes

/ (Uﬁ—V,f)dx+/(U,§—V,$)dx—2/ UpVidy = 0.
E, T T
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Now on each piece Ty of T, dy = +dx, so

2/ UpVidy| < /(U,3+V,$)dx
T T

which, substituted in the previous, yields, on transposition:

/V,fdx < / U,%dx+2/ Ui dx.
E,. E, T

But on each segment of T, |Uy(z)| < A, since any such

such segment has a foot in E; = {x; U;(x) < A}.
(This is the first idea of Fefferman and Stein.)

Therefore

/ Vidx < / (U;)? dx + 242 / dx = / (Up)? dx + 22m(4),
JE, E; T E;

/ dx = |0,| = m(A).
T

since

We have now
Jwirex = [ (wie) x = [ S-amo,
E, (U< 0
hence (and this is the second idea of Fefferman and Stein),
i )
e B > 21 < 55 [0ardr < 5 [ S(-dmis) + 2m),

E, 0

u(i) < i / s2(—dm(s)) + 3m(2).

The lemma of Section A now gives

Ea r: EA ) o0
/|V;,(x)|dx - /u(i)di < //j—z(-dm(s))d}v+3/m(i)di
00 0

—or 0
% L L 52 % ©
= 3/ U;(x)dx-{—//?d}v(—dm(s)) = 3/U;:(x)dx+/s(—dm(s))
- 0 s - 0
= 4/U;,(x)dx,

as required.
The theorem is completely proved.

In like manner we can establish:
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Theorem Let u(z) be harmonic in {|z| < 1}. Then u+ iti € H(|z| < 1) provided that
n
/u'(@) db < 0.

~n

(For definition of u’(f), see Subsection C.3.)

2. Characterization in terms of the radial maximal function
The theorem of Burkholder, Gundy and Silverstein can be sharpened. In order to do

this, we use a remarkable result as a substitute for (lacking) subharmonicity of |u(z)|?
(u harmonic) when 0 < p < 1.

Lemma (Fefferman and Stein, 1972)  Let u(z) be harmonic in the disk {|z| < R}, and let
0 < p < 1. There is a constant C, depending only on p such that
R 2n

[u(©)P < % / / lu(re®)|Pr dr dé.
0 0

Proof By homogeneity considerations, we first reduce the general situation to the case
where R =1 and
2n

1
//|u(re"")|l’rdrd9=1.
00

M(r) = sup |u(re”)|,
[/}

Write, for 0 <r < 1,

and

2n
I(r) =/|u(rei9)|1’ dé.
0

According to our preliminary reductions, we have

1
/ I(r)rdr =1,
0

1
/ 10 <a,
1

/2 r
and, by the inequality between geometric and arithmetic means,

1
1 1 dr j]/z (I(r)/r) dr 4
— = < A B S < -
log2 /1/2 log (r) r = log{ log2 < log <10g2> ’

1

so surely

whence

logl(r)E <K,
172 r

a pure number whose exact value need not concern us here.
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Let o > 1. By Poisson’s formula (Chapter I!), we easily see that for 0 < r < 1,

2n
o 1 i0 1 1—
M) < 0/ re)ldh <~ (M) P10,

Taking logarithms, we get

logM(r*) < (1 —p)logM(r)+logI(r)+10g{n(l_;ra_l)}.

Now (TRICK!) multiply both sides by
dr 1d(r*)

r a 1
and integrate from 1/2 to 1. Putting r* = p on the right, and using the boxed inequality
proved above, we obtain
1

1 1
> [ roemn 2 < a-p [rogmin® +K+/log{—1—}ﬂ.
1/2

a(l—r=) ) r
(/2¢ 1/2

Here,

d
K+/log{ — 1)}Tr=c°‘

1/2
is finite and depends only on a. Now choose a so close to 1 that
! > 1 ;
o b

we can do this since 0 < p < 1. Then we find

1/2 1
! / logM(r)—d—r + (1—(1—17))/10,%'1\4(”E < Co
o r o r

/2y 172
From this we see that there is a number ,, depending only on «, with log M(r) < I, for some
r, (1/2)* <r < 1. Then, by the principle of maximum, |u(0)| < exp l,. Taking C, = exp pl,
after having chosen « as above, we see that the lemma holds as stated. Q.ED.

Definition If U(z) is defined for 3z > 0 and x € R, put
U*(x) = sup |U(x +iy).
y>0

U™ (x) is the so-called ‘radial’ maximal function of U. Clearly Ut < U".

Theorem (Fefferman and Stein, 1972) If U(z) is harmonic and real in 3z > 0 and
U™ (x) € Li(R), then U = RF for an F € H((3z > 0).

Proof We show that UT € L, implies that U" € L, which is enough by the theorem of
Subsection 1.
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Let, for 3z > 0, W(z) = |U(2)|"% The
picture shows thatif x e Rand 0 < |[E—x| < #,
the disc {Z; |Z — (& +in)| <7} liesin Jz > 0,
so, by the lemma, with p =1/2,

) c
W(&f+m)sn-2 // W(Z)dX dY,

{1Z—(E+in)|<n}
where we write Z = X +iY.

Therefore, a fortiori,

c 21 E4n C E4n
W& +in) < 11—2/ W(Z)dxdYy < T/WJ“(X)dX,
0 & =
since W(Z) < WH(X).
R
Thence, if |& — x| < 1,
2 x+2n
W +in) < o / WH(X)dX < 8C(WHM(x),
x—2n

by definition of the Hardy-Littlewood maximal function (for W¥)! Taking the sup over
&4 in with 0 < |€ — x| < 1, we see finally that W*(x) < 8C(W*)M(x). Now, however,
W(z) = +/IU(z)|, so W¥(x) = /JUT(x) is in L, by hypothesis. From Subsection B.2 we get

[[((WHM]||, < K |IWT|l, = K\/l[U[,, so, by the previous relation,

Ul = IW’ll; < 8CK4/IIU*],

proving ||U*|l; < oo if [[UT||; < c0.
We are done.

In the same way one can prove:

Theorem Let u(z) be harmonic in |z| < 1 and let
ut(8) = sup |u(re”)|
O<r<i1
belong to Ly(—n,n). Then u+iu € Hi(|z| < 1).
3. Discussion

Remark  Note the different positions of the absolute value signs in the definitions of the
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two maximal functions

u+(0)—su -l—/n Lu(@—t}d[
—Osrgl 2n J_, 1 +r2—2rcost ’
1 k
uM () =sup —— u(f —t)| de.
(0) =sup g | w0 =)

(Here we write u(s) instead of u(e®).) Obviously, the first of these functions depends in a
much more sensitive manner on the properties of u (possible oscillatory behaviour) than the
second. It is easy to give examples of functions u € L,(—n, ) for which u*(0) € Li(—n, =) but
uM(0) ¢ Li(—n,n). Indeed, by the second theorem of Subsection B.3 together with a corol-
lary in Subsection C.3, any f € Hi(|z| < 1) with u(9) = Rf(e"’) of variable sign, and such that
ulog® |u| € Li(—m,n), provides us with such a u.

One is tempted to define a Hardy-Littlewood maximal function which is more sensitively
related to u by putting, for instance.

1 k
) =sup |—— u(@ —t)de
© h.kE) h+k/—h ( )

In their 1972 Acta paper, Fefferman and Stein show that this definition is not useful. Other
approximate identities besides the Poisson kernel, used in defining u™, can be used, but a
certain smoothness seems to be required of them.

E. Atomic decomposition in ‘RH,
The sawtooth construction used in Subsection D.1 leads to a remarkable representation for
the real parts of functions in H,. That representation, due to Coifman but really based on
an idea of Herz, will enable us to give a simple alternative proof of Fefferman’s duality
theorem in Section G of Chapter X.

What we have in mind is the expansion of any function ‘RF, F € Hy, in a series
of constant multiples of so-called atoms. Such expansions are available for RF with
F € H((3z > 0) and for F € H|(|z| < 1); we discuss the former space first, as the notation
for it is a bit simpler. The treatment for the second space is analogous except for one point,
and there we will omit a good part of the details.

I think the procedure followed here was first used by J.M. Wilson. He has adapted it to
the treatment of H; functions of several variables.

1. Discussion of ‘RH(J3z > 0)
Various specifications of the notion of an atom are used in different circumstances. For the
present treatment, the following one suffices.

Definition An atom of WH,(3z > 0) is a real valued measurable function ¢(x), zero outside
a certain finite interval I < R, with |$(x)] < 1/|I| ae. and f, $(x)dx = 0.

Atoms really are real parts of functions in H,. Indeed, if ¢(x) is an atom and

1 [

T nf x—1t

its Hilbert transform, qﬁ()ﬁ) + i&)(x) = F(x) a.e. for a certain F € H{(3z > 0). Let us first see
that that follows if ¢ + i¢p € Li(R).

P(x)
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In this circumstance, the function

_1I yo()
/u +ﬁ

harmonic in 3z > 0, has there the harmomc conjugate

(x —1)p(r)
Va=2 ) ey

—o0

Here, where ¢ and hence (f) both actually belong to Ly(R), we have by a corollary near the
end of Section D, Chapter VI,
() = L / y¢(t
(x—

Y(p() +id(2))
=1 [

dt.

for y > 0, making

—0o0

for the function F(z) = U(z) + iU(z) analytic in Sz > 0. Provided that ¢ + i € Li(R), this
makes

fee
[iF+imiax < g+
for each y > 0, and then F € H{(3z > 0), and it has the non-tangential boundary value
d(x) + i(x) at almost every x € R.
Now, however, we have the

Lemma If ¢ is an atom, ||$ + id||, < =.

Proof Let I be the interval associated with ¢ in the above definition, and take I* as the
interval with the same centre as I, but having thrice its length. Since |p(x)| < 1/|I] ae.
vanishes outside I, ||¢]|; < 1.

Also,

WW=LWWM+APWWM.

For the first integral on the right we use Schwarz and refer to a remark near the end of
Section D in Chapter VI:

/,- Bealdx < 1V (|B]], = BN Ngll, < GUDAUN/IRY = 3.

In order to estimate

/ 13 dx,
R~I*

we resort to a trick. Because f; ¢(r)dt = O with ¢ vanishing outside I, we may write, for

x¢l,
~ 1 1 1
¢(x)=;/l<x_t—x_c) (1) dr
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where ¢ is the midpoint of I. Using |¢(t)| < 1/|I| a.e., we get from this

CElpe—

st *Eh

and thence,

/ Beldx < 3,
R~I"

R ~ I" consisting of the x with dist(x,I) > |I|.
We thus have HJ)HI < /3 +(1/n), and finally

l|l¢+idl], < 1+3+(/m) < n

Q

Done.

We see by this lemma and the observation preceding it that if the ¢, are atoms and
> nlan| < o« for numbers a, € R, the series

D angn

converges in L;(R) to a function ¢ with ¢ + i¢ € H,(3z > 0) and
o +id|, < 7> lanl.

What is remarkable is that the converse holds! Given F € H,(3z > 0), we can find atoms
¢n and numbers a, € R with

RF(x) = Za,,d),,(x) ae.,

and >, |as| < BI|F||,. Here, B is a certain numerical constant independent of F. The proof
of this result depends on the corollary at the very end of Subsection C.2, and one of its
main ideas is the same as the one involving the ‘tents’ Ty in Subsection D.1.

Let, then F € H{(3z > 0). For x € R, take, as in Subsection C.2, F*(x) to be the
supremum of |F({)| in the 90° sector

Sy ={{; 0 < |RC— x| < 3}
The set
Oy ={x; F*'(x)> 4}

is then open (in R) for any 4 > 0. Indeed, if x € ¢; we have F({) > 4 for a certain { € S;.
Since F is continuous in the upper half-plane, we then have |F({')| > Afor {' = {+x'—x € Sy
whenever |x’ — x| is sufficiently small, so such x" also belong to ¢;.

It is important to realise that R ~ ¢, is always non-empty for 1 > 0. Each interval
component of ¢/, must in fact have finite length, for otherwise

/RF'(x)dx

would be infinite, contradicting the corollary at the end of Subsection C.2. There is, by the
way, no valid analogue of the first statement for Hy(|z] < 1), and that’s the main reason
why the treatment for that space differs from the present one.
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Lemma For each of the interval components I of 0;, A > 0, we have
/ RF(x)dx| < Al
1

Proof LetI = (a, b) with —c0 < a < b < o0, and take the tent T lying above I,

R

consisting of the segments from a and b making 45° angles with the real axis and meeting
above I’s midpoint. If h > 0, we have by Cauchy’s theorem,

/F(C+ih)d£+/ F({ +ih)d{ =0,

i T
where, on I and T, we use the orientation indicated in the figure. Here, since a ¢ (; and

b¢ 0, (), |F({+ih)| < A whenever { + ik belongs to the sectors S,, S, and, in particular,
for { on T and any h > 0. Also, since F € H{(3z > 0),

/|F(x+ih)—F(x)|dx—>0 as h— 0.
R

Using this property on I and bounded convergence on T we see, on making 7 — 0 in the

previous relation, that
/F(x)dx+/ F(O)dC = 0.
1 T

Since |F({)] < 2 on T and length T is < /2 |I|, the second integral on the left is in modulus
< /2 1|. Therefore
/F(x)dx
1

/ISRF(x) dx

we have (at least) the same bound. Done.

<2211,

and on

This lemma gives us a decomposition of RF(x) corresponding to any 4 > 0. For such a
], the set O; is a countable disjoint union of (finite) open intervals Iy, with

/ RF(x)dx| < 24|

I
for each k. (It is of course possible that there are no I ; then 0, is empty and F*(x) < 1 on
R.) We can thus find numbers A, —214 < A < /24, with

(MF(x) — A4)dx =0.
Ik
Define then two functions, G,(x) (thought of as the ‘good part’ of RF(x) corresponding to
the parameter 1) and B;(x) (its ‘bad part’), by putting
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_ | RF(x), xeR~0,
Gl(x)_ {/11‘ x € I,
and
_ [0 xe€R~0,
Bilx) = { RF(x) — X x € L.
(In case 0; is empty, we put G;(x) = RF(x) and B;(x) =0.)
The function B,(x) vanishes outside the union of the I;, and we have
RF(x) = Gi(x)+ By(x).
Since F*(x) < A for x € R ~ @;, we surely have |F(x)| < A a.e. there, and thus |G;(x)| < A
ae., x & 0;. If x € 0, it belongs to some Iy on which G;(x) = A, so then |G;(x)| < \/5,1.
Therefore
|Gi(x)| < ﬁl ae, x€eR.
And our choice of the 1; makes

/ B;(x)dx =0
I

for each k.
From the G; and B; we now form what is called a Calderén-Zygmund decomposition of
RF(x). Taking A =2" withn € Z, —o0 < n < oo (sic!), we write
gn(x) = Gar(x), by(x) = Bom(x),
making
RF(x) = gn(x) + bnlx)

for each n. We have, by the above, |g,(x)| < \/5 2" a.e., sO

g2u(x) > 0 ae asn— —oo.

By the corollary at the end of Subsection C.2, F*(x) < oo a.e., so almost every real x belongs

to
R~ ﬂ O.

According to the above specification of G;(x), this makes g,(x) = RF(x) at almost every
x € R for all sufficiently large n (depending on x). Thus,
N

RF(x) = lim 3 (gni(x) —ga(x) ae,x€R.
n=—N

But

gn+1(x) — gn(X) = bn(x) — bny1(x) ae.
(at least) by one of the above relations! Thence,
N

RF(x) = lim n;N(bn(x) —bpy1(x)) ae,x€eR.
The point here is that each term b,(x) — byi1(x) can be expanded in a series of real
multiples of atoms. Denote, for each n, the interval components of 0y by I,(k). When 4

gets bigger, (0, gets smaller, so for any given n, all the I,4(j) are included in the (disjoint!)
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union of the I,(k) (for the different values of k). For each pair (n,k), let wnx(x) be the
function equal to b,(x) — by41(x) on I, (k) and to zero outside that interval. Then,

| wutxdx=o.
In(k)
To see this, denote the set of indices j for which I,,1(j) < In.(k) by S(n,k):

I1() 5 € S(n, k)

AN

1,(k)

Then we can write

[ owwtidx = [ badx = 3 [ buatex = o
L(k) 1) sy )
(Should S(n,k) be infinite, the expression of the second term on the right as a sum of
integrals is justified by dominated convergence, |b,41(x)| being < |RF(x)| 4+ /2 - 2"
We also have

1ba(x) = bpe1(X)] = |gns1(x) — gu(x)] < /2-3-2"  ae.
Therefore, if we put

Pni(x) = ﬁ 2L R pi(x),

each function ¢y is an atom (assocmted with the interval I,(k)).
Since b,(x) — b,+1(x) vanishes outside O»n, the disjoint union of the I,(k), we have

ba(x) = b1 (x) Z\f 3+ 2 [1a(k)| $rx(x),

with the series on the right convergent a.e. (wherever the left-hand difference is defined and
finite). Thence, by the previous,

j— 1 n
RF(x) = M;)ﬂ;ﬁq; V23 2 1k)| dai(x)  ae., x € R,
and it is claimed that this is a decomposition of the kind sought. To verify that, it will be

enough to show that

EZ\/_32"|I ) < .

n=—0o0 k

Then, the ¢,x(x) being atoms and hence satisfying [|pnxll, < 1 (!), it will follow that the
series

S S V3 3 2K fak)

n=—w k

converges unconditionally in Li(R) ( and necessarily to RF(x) ).
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The sum

> 32 Lkl

n=—x k

can be estimated in terms of ||F||,. For each n, we have

[oe]
D 2K = 2MOn| = 2"|{x; F'(x)>2"}] = 2" |{x; 2™ < F(x) < 2"},
k 1=0
F*(x) being finite a.e. The sum in question is therefore

psl

o8]
DD 2 fxs 2 < Fr(x) < 2,

n=-—0 =0
On changing the order of summation, this becomes

o 11
m _ - . Am . m+1
2 (1+2+4+ )l{x,z < F(x) < 2"
which is obviously

<2 / F*(x)dx.
R
By the corollary at the end of Subsection C.2, we see from this that

e
Yo > V232 L) < BIIF,
for a certain numerical constant B.
Putting a,, = /23 - 2"|I,(k)|, we thus have

>, el < BIFI]

and
RF(x) = an AniPni(x) ae., x €R,

with the atoms ¢,x(x), the series converging unconditionally in L;(R). After converting the
double indices to simple ones, we have the

Theorem (Coifman) To any F in H((3z > 0) there correspond atoms ¢,(x) and numbers
a, € R with

> lal < BIIF]],

and
RF(x) =D axdu(x) ae,

the series being unconditionally convergent in L,(R). Here, B is an absolute numerical constant.

2. Consideration of RH,(|z| < 1)
When dealing with H,(]z| < 1), one uses the ice-cream cone shaped regions Sy described at
the beginning of Subsection C.3 to form the non-tangential maximal function (Sp has its
tip at e’). For F € H,(|z] < 1), we put

F*(0) = sup{|F(z)|; z € Sp}.

The principal difference between the present situation and the one of the preceding
subsection is that here F*(0) has a strictly positive infimum (for 0 < 0 < 2m), except for
the case where F(z) = 0. That is so because each S, includes the whole disc {|z| < 1/./2},
making F*(0) always > the supremum of |F(z)| on that disc.
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It will be convenient in what follows to designate infyF"(0) by 4. For A > 0, we will
take @; to be the set of ¢ with F*(8) > A; then ¢, can be a proper (open) subset of the
unit circumference only for 2 > Ap.

Let us now make the

Definition An atom for RH;(|z| < 1) is a real valued function f(¢"’) supported on an arc
J of the unit circumference (N.B. J being perhaps all of the latter!), with |f(e’%)] < 1/]J]
ae. and [, f(¢)df = 0.

An argument like the one at the beginning of the last subsection shows that every atom
for WH{(|z| < 1) is equal ae. to RF(e?) for some F € H(|z] < 1) with F|l; < 4, an
absolute constant. Here, however, we must have RF(0) = 0, so atoms by themselves cannot
suffice for the representation (the ‘building up’) of arbitrary functions in RH;(|z| < 1). It will
be seen that if we also throw in arbitrary constants, we will have all the building blocks we
need.

Starting with a non-zero F € H;(|]z| < 1), we look at the set *; corresponding to any
A > 1o (here > O by the above). In these circumstances, ('; is a disjoint union of proper
open arcs on the unit circumference, and for those we have the

Lemma If J is any component arc of C; for A > Ao,

/%F(eio)d()} < 241J|.
J

Proof Is like that of the second lemma in the preceding subsection. One takes the
curvilinear triangle or trapezoid T with ‘base’ J, constructed in remark (c) of Chapter III,
Subsection D.1. By Cauchy’s theorem,

/ F(rz)d—z =0
oT z

for any r < |, where 0T denotes the oriented boundary of T. One observes that |F(rz)| < 4
for z on 0T ~ J and makes r — 1; the desired inequality then follows from the facts that
|0T ~ J| < /2|J]| (exercise: check this!), and that |z| > 1//2on aT.

We now follow the procedure of the last subsection as closely as we can. For A > A,
@; is a disjoint union of certain arcs J, on the unit circumference, and the lemma gives us
numbers A, —24 < A¢ < 24, such that

/ {RF(@%)—4}do =0
Ji
for each k. We can therefore put
i0 0 £
Gie®) — RE(EY), € ¢y,
A€ { ks el e Jp,
and
iy 10, e’ ¢ 0,
Bi(e") {YRF(e"’) — iy €€ J
when 4 > Ay, and we will have
RF(¢") = G,(e") + By(e”),
with

|G2(e?) <24  and /B;,(e'o)df):o
Jk
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for each k.
To start the Caldéron-Zygmund decomposition of RF, we take

gn(€”) = Gu(e”),  bu(e”) = Bu(e")
for the n € Z with 2" > 9. We need, however, to specify g, and b, for one more value of n.

Let ny be the largest n € Z with 2™ < Ay (which in the present circumstances is > 0). We
certainly have

2n
/ {RF(e”) — RF(0)} dO = 0,
0

so, on putting
gn(€?) =RF(0),  by(e’) = RF(?) — RF(0),

we see that
2n
/ bny(€9)dO = 0.
0

Again,

|F(0)] < ir(}f F(0) =4
(see beginning of this subsection), so
()l = IRFO)| < Ao < 2%*.
From here on, the work goes very much as it did for RH(3z > 0). We have, for n > n,
gne1(€)) — ga(e”) = bu(€”) = bua(e”) ace,
so for almost all 0,
N
RE(E) = lim gn(e”) = gu(e”)+ lim > {gui(e”) — gi(e”)}

n=ng

[

N
REO) + lim > {bu(e”) — busr(e”)}.

n=ngy

Here, by, (") —by,+1(e") is a constant multiple of one atom whose associated arc is the whole
unit circumference. The atomic decomposition of the remaining terms b,(e’) — b,,1(¢¥)
with n > ny is carried out as before; at the end one uses the relation

2n

[F®o < xir,
0
proved in Subsection C.3, where K is an absolute constant. In this way we arrive at the

Theorem Given F € H((|z| < 1), there are atoms f, for RH(|z| < 1) and real numbers ay,

such that
> lau < BIIFI|,
n

and
RF(E') = RFO)+ ) _aufule”?) ae.,
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the series being unconditionally convergent in Li(0,2n). Here, B is an absolute numerical
constant.

F. Carleson measures

Definition A positive Borel measure u (not necessarily finite) defined in 3z > 0 is called a
Carleson measure iff there is a constant K such that, for all F € H{(3z > 0),

*) [/mmmM)sme.

Jz>0
Carleson measures are important in the next two chapters. Their geometric characteriza-
tion is given by the

Theorem (Carleson) u is a Carleson measure iff, for all x € R and all h > 0,

(%) w((x,x +h) x(0,h)) < Ch

with a constant C independent of x and h.

Proof
Only if Let xo € R and h > 0 be given. The test
function

h
& =G vy "
belongs to H;(Jz > 0) and ||f]|, = 7.
Also, |f(z)| = 1/5hfor z € Qy = (x0, Xo+h)x (0, h),
s0 if (¥) holds %o Xo+h

SH(0) //U|w ) < K,

J3z>0
e, u(Qy) < 5K - h, proving (**) with C = 5nK.

If It is enough to prove (*) for all F € H; of the special form F(x) = fu(z) = f(z + ih),
where [ € H{(3z > 0) and h > 0. Take any such F; by the Poisson representation for f in
the upper half-plane (Chapter VI) it is clear that F(z) is continuous for 3z > 0, and tends
to zero as z — co in the upper half plane. We must establish (*) with a K independent
of F.
To this end, put, for 1 > 0,
MA) = u({z; Iz >0 & |F(z)| > 4}).

Using an idea of Hormander, we prove that M(1) < Cmy-(A) with the C from (**). Here,
F*(x) is the non-tangential maximal function of F (Subsection C.2) and mp-(4) is the
distribution function of F* (Section A).

Let E; = {x € R; F'(x) < A} and ¢, = R ~ E, = {x € R; F*(x) > A} so that
mp-(A) = |0;). If xo € E;, every z = x+iy in the sector Sy, = {z; |x — x| < y & y > 0]
must satisfy |F(z)| < 4, therefore, Q; = {z; 3z > 0,|F(2)| > } must be contained in ', rhe
COMPLEMENT, in 3z > 0, of Us,ek, S,
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In the present case, since F(z) is continuous in 3z > 0
and O at oo there, @0; = R ~ E; is a bounded open set on
R, hence a disjoint union of finite open intervals J,. Let,
for each k, Ay be the open 45° isosceles triangle lying in
3z > 0 with base Ji.

7, Js J, R

What we have here is the analogue for the upper half plane of Privalov's construction,
described in Subsection D.1 of Chapter III. Arguing as in that place, we see that the
set @ introduced above is equal to the union of the A;. Therefore Q; < UiA, and
M(@2) = u(;) < >, u(Ax). But for each k, by (**), u(Ax) < ClJil, so

M) < CY 1l = Cl0i| = Cmp-(d).
k

Now we just bring in the material of Section A.
The lemma of that section is not particular to Lebesgue
measure on the line, but holds (with the same proof) for
distribution functions defined by means of quite general
o-finite measures. Therefore

/ F(2)l du(z) = / M)A
0

3z>0

By the above work, the integral on the right is

[ve) o
< C/mp-(/l)d/l = C/F'(x)dx,
0 —0
again by the lemma of Section A.
But here (F € H; V),

o

[Fwax < cinl

—0

by the second theorem of Subsection C.2. So finally,

/ F(2)ldu(z) < CCy |IFIl
Jz>0

for F € H; of the special form given, hence for all F € H,.
We are done.

In like manner one can prove an analogue of the above result for the unit circle:
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Theorem Let p be a positive Radon measure on {|z| < 1}. Then

[[1r@rane < ki,
lz[<1
for all f € Hi(|z] < 1) iff
u(By) < Ch
for every curvilinear box By, of the form shown:

Problem 8 Let 0 = xp < x; < x3 < ' < x, = | be any partition whatsoever of [0, 1]
into non-overlapping intervals J, = [xi—1,xx]; put |Je] =24, X = %(xk—l + Xi).
If

n

A2
A(x) = —_ ke
) ; (x —%)? + A
show that, for A > 0,

[{x € [0,1]; A(x) > A}| < 24

with a numerical constant C independent of 2 or of the particular choice of the xy. (I think
C = 1/6me works here.)

Hint: If ¢ =1,2,3, -, (1/q) +(1/p)=1, and f € L,(0,1), estimate

/Auvumx

in terms of ||f"]|,, and thence obtain an estimate for
1

/ (A(x))4 dx.
0

epA(x Z (PA(X)

Note that




IX

Interpolation

Definition If 3z, > 0,n=1,2,..., {z,} is called an interpolating sequence for the upper half
plane iff, given any bounded sequence {c,}, there is an F € H.,(3z > 0) such that

F(zy)=c¢y, n=1,23,....

It is possible to describe all interpolating sequences in terms of a simple geometric
condition.

A. Necessary conditions
1. Uniformity lemma

Lemma {z,} is an interpolating sequence iff there is a constant K such that, for any N,
if lenl < 1 for n=1,2,...,N, there is an F € H, with ||F||, < K such that F(z,) = cy,
n=12,...,N (K being independent of N ).
Proof
If Given such a K, let {c,}, n =1,2,... be an arbitrary sequence with |c,| < I, and, for
each N, let Fy € H, with [|[Fy||, < K be such that

Fn(zp)=cy forn=1,2,...,N.

Since ||Fn|l, < K, a subsequence of {Fy} converges u.cc. in 3z > 0 to a function
F € H, with ||F||,, < K. Clearly F(z,) = ¢, for all n.

Only if If {z,} is an interpolating sequence, let, for each L, S; be the subset of I,(N)
consisting of all the sequences | F(z,)} formed from the F € H, with ||F||,, < L. (As usual,
we denote the set of positive integers by N.)

By assumption U/_,S. = I, (N). Also, each S, is closed in I, (N), for if F, € H, and
[|Fell, < L, and if {¢,} € 1, (N) is such that ||{Fx(z,) — ca}ll = sup,en [Fe(zn) — cal goes to
zero with k, then, extracting a subsequence of | F} converging u.c.c. in 3z > 0, the limit, F,
of that subsequence belongs to H,, and has ||F||, < L, with F(z,) = ¢,, n € N. So {¢,} € Sy,
and S, is closed in I, (N).
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The Baire category theorem now says that some S; contains a sphere, say of radius
p > 0, about one of its points, say the sequence {Fo(z,)}, Fo € Ho, ||Fol|,, < L. That is,
if |c, — Fo(zn)| < p for all n, then there is an F € H,, [|F||,, < L, with F(z,) = ¢y, n € N.
Therefore, if |d,| < p for all n, we can find a G € H, ||Gl|,, < 2L, with G(z,) =d,, n € N.
(Just put ¢, = d, + Fo(z,) and then put G = F — Fy with F from the preceding statement.)

It follows that if |a,| < 1, n € N, we can find an H € H,, with ||H[|,, < 2L/p and
H(z,) = a, for all n. The lemma holds with K = 2L/p.

2. [xn I(zn — 2)/(zn — Zk)| must be bounded below

Lemma {z,} is an interpolating sequence for 3z > 0 only if there is a § > O such that, for
each n,
(*) TS 5> 0.

k+#n Zn T 2k
Proof 1If {z,} is an interpolating sequence there is, by the previous lemma, a K such that,
for each n we can find an F € H,, with ||F|| , < K and

1, k=n
F(Zk)—{O, k#n
According to Chapter VI, Section C, we can form a Blaschke product B(z) from the

zeros zx, k # n of F(z), and we’ll have F(z) = B(z)G(z) with a function G € H,, and
1Gll. = IIFll,, < K. We have

50 1 = |F(za)| = |B(za)||G(zs)] < K |B(zy)| immediately yields (*) with & = 1/K.

B. Carleson’s theorem

The necessary condition (*) for {z,} to be an interpolating sequence is also sufficient. This
remarkable result is due to L. Carleson, and goes back to 1958 or thereabouts. Later,
Shapiro and Shields found an easier proof of Carleson’s theorem by making successive
reductions with the help of the duality theory presented in Chapter VII, Subsections A.1
and A.2. This proof is given in the books by Duren and Hoffman.

Here, we give a proof which is more like Carleson’s original one. It is simplified by
applying directly the theorem on Carleson measures given in Chapter VIII, Section F.
Thanks to an idea of Hormander, it was possible to establish that result rather easily.

1. Computational lemma

Lemma If, for every n,

we have, for each n,
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Proof Write zp = xx + iVk, 2n = Xn + iyn; we have

Zn — 2k
Zp — 2k

0< <1

>

and

I KR R ) — 5 — |z — )
Zn — Zk |24 _2k|2
(= x)? A O+ )P = O — Xk — (n — 20)? 4ynyx
- |20 — Z|? Clzm— R

Writing p = |(zx — z)/(2s — Zk)|, we have

1
2Qlog— = log——— > =
P 1—(1—pp) P I

by the calculation just made.
Since Y, 2log(1/px) < 2log(1/6), the lemma follows.

2. A Carleson measure

Lemma If, for all n,

(*) IM12=2]=6>0,
Zy —
k#n
the measure u on 3z > 0 given by
= Z 3z,d06,,(2)
n

(in other words, assigning mass 3z, to each point z,) is a Carleson measure.

Proof We will show that for any xo € R and any h >0

p([x0, X0 + h] x (0,h)) < (H—Slogé)'l;

this makes u a Carleson measure by the theorem of Chapter VIII, Section F.

U o A
m=1 Zn—2k|2,
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Pick any xo € R and any h > 0, and denote the square [xg, xo + h] x (0,h) by S:

xé xob +h R

We have to show that

> 3z, < <1+510gé>h;

z,€8
this will evidently follow if, for every N we have

> 3z < <1+510g%> h.
z,€S n<N

Fix a large integer N. If there are no zx, | < k < N, with zx € S, the desired inequality
is surely true.

Suppose now that there are some z;, € S, 1 < k < N. If, for one of them, say z,, we
have 3z, > h/2, then the desired inequality is true. Indeed, take the result of the preceding

lemma:
1 1
ZSzk —— = 5 log —.
e — zkl 2 é
Observe that if, for k = n, zx € S, we certainly have
3z, 1

|2, — 2|2 = Ton”

because |z, — Zx|* = (xn — x1)* + (¥ + Y& )* < B + 4h? = 5h% whilst 3z, > h/2. Therefore,
by the previous relation,

1 1
— Z 3z < zlog—,
IOthes i 2 é
and, since 3z, < h,

1
> 3z < h+Shlog <,
)
€S
implying the desired inequality (for every N).
It may be, however, that there are zy € S for 1 < k < N, but that none of them has
3z, > h/2. In that case, we decompose the square S into an upper rectangle R and two lower
quarter squares, Sy, Si2, in the manner shown:
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1,1 S12 h2

Xy x0+g Xy +h R

Because there is no z, 1 <k < N, with z, € § and 3z, > h/2, there is no such z; in R,

and therefore (note that §;; NS, #0 1)

Z Sz < (S + X (812),

z; €S 1<k<N

where we write, during the rest of this discussion,

S = Y 3z

€A I1<k<N

If, now, there is a z, € S11, | < k < N, with 3z, > h/4, the above discussion shows
that > (S11) < (1 —|—510g(1/5)) (h/2). And if Sy has no z; in it at all for 1 < k < N,
2 (811)=0.

Similarly, S(S12) < (1 +510g(1/6)) (h/2) if S, has inita z,, 1 < n < N, with
3z, = h/4. If Sy; has no z at all in it for 1 <k < N, then > (§512) =0.

If, now, there are zy, 1 <k < N in S;; but all have 3z, < h/4, we look at the two lower
quarter squares Sy, Si12 in Sy, each of side h/4, and see whether either has in it a z,
1 <n< N, with 3z, > h/8, or else has no z; in it at all for 1 <k < N.

Sl,l,l\\ S

1,1,2

X, Xoth R
We do the same construction in S;, if there are z, | < k < N, in it, but none of them
has 3z > h/4, and we keep on going in this fashion, stopping whenever we first get to a
lower quurter square which either has no zy, 1 <k < N, in it at all, or else has one with
Iz > 1/2 of that quarter square’s side. This process cannot go on indefinitely, because we
are looking at only a finite number (N) of zj.

Here is an example of how the process could work out. In the figure, each shaded lower
quarter square has in ita z,, | <k < N, with 3z, > 1/2 of that quarter square’s side. The
unshaded squares and rectangles have no z in them for 1 <k < N.
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) I, I, I, I, %t R

The construction just described leads to a finite number of non-overlapping intervals, say
I,1,,...,I, inside the interval I = [xo, xo + h], each having length equal to that of I divided
by some power of 2. Each I, is the base of a square, say S®, lying in S, and all the z,
1 <k < N, belonging to S lie in the union of the S®. Each S® hasinita z, 1 <k <N,
with 3z, > § |l

By the discussion at the beginning of this proof, we now have

Therefore

14
S8 < Y (W) < <1+510g31->2|1k| < <1+510g%) 1,

p
k=1 k=1

> Sa < (1+Slog%) h,

zx€S 1<k<N
our desired inequality. The lemma is completely proved.

that is,

3. Proof of sufficiency of the condition (*)

Carleson’s theorem A sequence {z,} in the upper half plane with

(*) 11
k#n

for every n is an interpolating sequence.

Zy— 2z

—|=>d>0
Zp — 2k

Proof By Subsection A.1 it is enough to show that there is a fixed constant K such that,
for any positive integer N and any numbers ¢,, n = 1,2,..., N with |c,| < 1, there is an
F € Hy, with ||F||, < K and

F(Zn):Cn> n=l,2,...,N.
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Having fixed N, let us take the finite Blaschke product

For 1 <n<N,

where

Zn — 2k
ﬂn = H J— >
I1<ksN kegn 21T K

so that surely |f,] > 6 for 1 < n < N if (*) holds.
Given the numbers ¢,, |cy] <1, for 1 <n < N, here is one F € H,, with F(z,) = c, for
1<n<N:

F(z) = Folz) =B(ZZB Z_Z) = 2iB(z Z

Any other F € H,, with F(z,) = c, for | < n < N is of the form Fy + BG where G € H,
and conversely. We therefore proceed to see if ||Fo — BH..||, has a bound independent of
N; if it has one, say K, then there will be an F € H,, with ||F||,, < K and F(z,) = ¢y,
n=1,2,...,N, so we will be done, K being independent of N.

The idea now (due to D.J. Newman) is to use the duality theory of Chapter VII,
Subsection A.2 to compute ||Fo — BH,||.. Since |B(x)| = 1, x € R, (that’s just why we used
B !), we have

3z, Cn

n Z_zn.

|IFo — BHx||,. = inf{||(Fo/B) —Gll.,; G € Ho}.

By the analogue of a theorem in Chapter VII, Subsection A.2 for the upper half plane (see
the table at end of Chapter VII, Subsection A.1), the last inf is equal to

sup{ /_L I;’((;))f(x)dx \ s feH, Il < 1} )
For each f € Hj, we have

o N
/1;)(()()) _ Z / Sz _on fx)dx = —4n;%3znf<zn>.

— L

Since |B,] > & and |¢,| < 1, the last expression is in absolute value < 475! Z,’:’zl Bz,1f(zn)].
But according to the lemma of Subsection 2 above, the measure assigning mass 3z, to each
point z, is Carleson. Therefore, for f € Hj,

L
457"y Szl (zn)| < 4n87' IS,
n=1
so, substituting in the previous relation, we see that ||[Fo — BH.|| , < 4n5-1C, a constant
independent of N.
The proof is complete.

Remark The proofs of the lemma in Subsection 2 and of the theorem on Carleson
measures in Chapter VIII, Section F show that we can take the constant C figuring at the
end of the above demonstration equal to C (1 + 510g(1/6)), where C is a purely numerical



1X :C Weighted interpolation by functions in other H, spaces 207

constant, independent of 8, hence of the sequence {z,}. This means that whenever |c,| < 1
for all n we can find an F € H, with ||F||, < K and F(z,) = ¢4, 1 = 1,2,..., where the
constant K depends on the 6 figuring in (*) like a numerical multiple of (1/5)1log(1/6).

Carleson’s theorem can be carried over directly to the unit circle by conformal transfor-
mation. We just state the result:

Theorem Let |z,] < 1,n=1,2,.... A necessary and sufficient condition that there exist, for
any bounded sequence {c,}, an f € H..(|z| < 1) with f(z,) =cn, n=1,2,..., is that
H z,,—-_zk > some § >0
1 — 7z,

for all n with § independent of n.
It was indeed in this form that Carleson first published his result.

C. Weighted interpolation by functions in other H, spaces

Theorem (Shapiro and Shields) Let | < p < oo and 3z, > 0. The sequences {(J3z,)"/PF(z,)}
fill out 1,(N) as F ranges over Hy,(Jz > 0) iff {z,} is an interpolating sequence.

Proof* By arguing precisely as in the proof of the lemma in Subsection A.1, we see that
the sequences {(3z,)!/?F(z,)} fill out I,(N) as F ranges over H, iff there is a K < oo such

that, for any positive integer N and any ¢,, | <n < N, with 3, |c,|? < 1, we can find an
F € H, with ||F|j, <K and

(32,,)‘/”F(zn) =c,, n=12,...,N.

I claim first of all that if this property holds, then {z,} is an interpolating sequence.
Indeed, fix any n and put

o = 0, k#n,
Tl k=n.

For arbitrarily large N we can find an F € H,, ||F||p < K, with
(32)?PF(zx) =, 1 <k <N.
Clearly, then, F = BG where G € Hy, ||Gl|, < K, and B(z) is the partial Blaschke product

Z — Zy
k#n 1<k<N k

Since 1 = (3z,)"/?|F(z4)| = |B(24)|(324)"/?|G(z,)|, we must have
1
(324)'/7|G(z4))

Zp — Zk

In—2Z
ketn 1<k<N |21 T %k

Because G € H, we can use Poisson’s formula (Chapter VI) and we find, with

* We write out the details of the proof for 1 < p < 0. For p = oo, the result has already

been given, and for p = 1, the arguments below based on Hdlder’s inequality can be
replaced by simpler more direct ones.
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1/g=1—-(1/p),

w 0 1/q

1 [ (3z,)'+VPG(1)dt 1 yaralr
c 1/p = |= " il __ _
@716l = |5 | = | < ol /[wn—nt+ﬁvd‘

0 —0

Now ||G||, < K, and the integral in { } equals

[ee} @

/ 2 / ds
TSR RS

ey -0

a finite quantity, say C4, depending only on p. Hence (3z,)'/?|G(z,)] < n~'K C, for G, <K,
and from the previous paragraph we get
Zy — 2y 775

= —KC,,’

P
ketn 1<k | Zn T %k

independently of N. Making now N — c0, we see that condition (*) of Carleson’s theorem
(Subsection B.3) is fulfilled, so {z,} is an interpolating sequence.
Conversely, suppose {z,} is an interpolating sequence; say

[I

k#n
for all n. Let N be any finite positive integer — fix it — and let numbers ¢,, n = 1,2,...,N
be given with Zf’ lca|” < 1. Write, as in Subsection B.3,

N zZ—2zy,
B(z) = H(:),

n=1

Zn — Zk
ﬂn - H (Zn_2k> '

1<k<N k#n

Zn " Zk >8>0

Zyn — Zg

Put y, = (3z,)""Pcs, n=1,...,N. Then, as in the proof of Carleson’s theorem*,

) =y 3z,
Fo(z) = 2iB(2) Y | [
el n n

has Fo(z,) = yp, i.€., (32n)/PFo(zn) = ¢n, and we will be finished if we can show that there
is a K < oo independent of N and the particular numbers c,, n = 1,2,...,N, such that
||Fo— BH,||, < K.

Since |B(x)| =1 for x € R, we have, by the duality theory of Chapter VII, Section A,

o0

F
|IFo— BH,l|, = Il(Fo/B)— H,l|, = sup m/ﬁ%umt;femeusl

—0

* When p = 1, one should take

N
X . 3z, 3z,
Fo(z) =2iB(2) S :;— (Z_Z - ) .
e P n n
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As in Subsection B.3, for f € H,, [* Fo(t f(t)/B(t)) dt works out to

—47 Z Sz,,ynf(zn)/ﬁn >

n=1

which, in the present case, is seen by Holder’s inequality to be in absolute value

N Up r n V/q
< 4n [ZSan/W} [Zsm(zn)"] :

n=1

Here, 3z,|y4|P = |cq|P and |B4]P = 67, so, since D, |c4|P < 1, the last expression is seen to be

@ 1/q
< 4nd™! [Z Jz,lf (zn)l"] .
n=1

For f € Hy and ||f]l, < 1 we can certainly write f(z) = b(z)g(z) where b(z) is a Blaschke
product (hence in modulus < 1 in 3z > 0) and g € H,, ||gll, = |If|l,, is free of zeros in the
upper half plane. So g9 € Hy with ||g?]|; < 1, therefore, by the lemma of Subsection B.2,

Esmf z)l! < Z Izalg(za)? < Cllg?ll; < C,

n=1

the measure assigning mass 3z, to each pomt z, being Carleson.
We see finally that

IFo — BH|, < 4n57'C'/1,

a number independent of N and of the particular numbers ¢, chosen for 1 < n < N with
>-nlcnl? < 1. The theorem is completely proved.

D. Relations between some conditions on sequences {z,}
In proving the lemma of Subsection B.2 we really showed that if

32,3z
(**) 27| ko < K,

a constant independent of n, for all n, then the measure assigning mass 3z, to each point
z, is Carleson.
The converse is true.

Lemma If the measure assigning mass 3z, to each point z, is Carleson, then there is a
constant K with

Jz,.Szk
K
) Z |25 — Z|? =
for every n.

Proof (Garnett) The test functions F,(z) = 3z,/(z — 2,)* belong to H; and ||F,||, = = for
every n. So by the Carleson measure property,

32,3z,
3" SalFua)l = Z| S <K,
k

— Zi|?

a constant independent of n. Q.E.D.
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Lemma (Garnett) If there is an n > O such that \(z, — z,0)/(zn — Zw)l = 1 for n + m
(in other words, if the hyperbolic distance between different points of the sequence {z,} is
bounded below ), and if

JZnJZk
( ) Z |Zn _Zklz =K
for all n, then
() 2225 >0
Zy — Zk

k#n
with a suitable & for all n, and {z,} is an interpolating sequence.

Proof Take any n and k with k # n, and put for the moment r = |(z, — z)/(z, — Z)|; then
O<r<l,so

1 1 (1 —r2) (l—r m
log= =1 = = .
081 T 8T (1—n [; I r)mZ_o
If r > #, the last expression is
2 - 2ym 1—r2
S A=) (1= = ——.
m=0 n
By the computation in Subsection B.1,
[y — 432,.?2;( ,
|Zn —Zk|2

so we get by the previous calculation
2 > exp (_1 - r2) — exp (_ 432,32z )
- n? nzn —zl?)

2
Zn — Zk

Zp — Zk

Zn — Zk

Using (**), we now find

2
e—4K/r, ,

k+#n Zn 2
proving (*) with & = e~*K/7". We're done.
The last result can now be combined with the lemma of Subsection B.1 to yield the

Theorem For sequences {z,} in the upper half plane, the condition that

(*) HZ"——fk > some & >0
Zn — Zk
k#n
for all n is equivalent to
32,3z
(**
: DG ar <
independent of n for all n plus the umform hyperbolic separation condition
Zp — Zm
> >0, n#Fm.
Zy — Z;m 1 *

It is good to summarize the relations between various properties of sequences {z,} in
3z > 0 by means of the following table:
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32,3z .
H | k 'iz < K independent of n
Zn — Zk

EQUIVALENT TO

> 3z, < Ch for any square

2, ESp __I_ ;n:;m >n>0
Sp = [x0,%0 + h] x (0, h) e
if n#m.

EQUIVALENT TO

> Szl F(z)) < C||F]), for any
k

F € H; (Carleson measure property)

L
.
TOGETHER EQUIVALENT TO

Zn —

I1

ks#n

> 6 > 0 independent of n

Zn — Zk

EQUIVALENT TO

{z,} is an interpolating sequence for 3z > 0 .

E. Interpolation by bounded harmonic functions. Garnett’s theorem
In establishing the following result, we have to consider the average of an expression
(+a) * a; + a3+ ... + an)? for all possible choices of the + and — signs (there are 2V such
choices).
This average is simply

adt+a+add+...+4d,

because the cross terms 2(tax)(+a;) obtained in the squaring operation average out to zero.

Garnett’s theorem (ca. 1970) Let 3z, > 0. Suppose that for any bounded sequence {c,}
there is a U(z) bounded and harmonic (not necessarily analytic!) in 3z > 0 with U(z,) = cp.
Then {z,} is an interpolating sequence for Iz > 0.

Proof (Varopoulos, ca. 1972 or 1973)  If the sequences {U(z,)} fill out [,(N) as U ranges
over the bounded harmonic functions (on the upper half plane), the argument used to prove
the lemma of Subsection A.1 shows that there is a K such that, for any sequence {c,} with
lc,,] < 1, there is a harmonic function U(z) with |U(z)] < K for 3z > 0 and U(z,) = ¢,.

{cn} is real, this holds for a real valued U, for if U(z) is (complex valued) harmonic, so
is ‘RU(z).
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Given any n, let
0, k#n
“= { 1, k z n,
and take a real valued harmonic U with |U(z)| < K in 3z > 0 and U(z) = c¢,. Then
U(z) + K is harmonic and > 0 in 3z > 0, U(z,) + K = K + 1, and U(z) + K = K for
k # n. Harnack’s theorem™ now gives us
K +1 _ U(zx) +K L+ (20 — 2)/(20 — Z)]
K U)+K = 1—-lz—2)/(z—2)’
from which we see that
1

() 72— 7, > 2K+1’k#n'

The equivalences established in Section D show that if we can establish

Z 3z < Ch

2, €Sp
for all Sy of the form [xq,xq + h] X (0, h), we will be done, thanks to (t).
Observe first of all that

® D e <

for any sequence {a,} in [(N). Indeed, we can find numbers c¢,, |c,|] = 1, with
> nl@nl = >, ancy, and then we can get U(z) harmonic in 3z > 0, |U(z)| < K there, with

U(z,) = ¢,. By Chapter VI,
3z,
U(zy) = / 7w — t|2
with |U(t)] < K a.e., so
a3z
Z |an| Zancn = Zanu(zn) ] (Z |Z n_ :|2) U([) dt,
n n n

—oC
K a,3z,
/ 2 |Z — t|2
Writing z, = x, + iy, let Sy be any square of side h whose base, I, lies on R.

We are to show that
Z yn < Ch

2,€Sh
with a constant C independent of & or the position of I on R.
Let the numerical constant M be so large that

K // ds 1
= [ 5 < 5
n 241 4

(M—1)/2

Zn — Zk

a,3z,

which is in absolute value

* To obtain the following relation from the lemma at the beginning of the scholium to
Subsection D.3, Chapter I, make a preliminary conformal mapping of {3z > 0} onto the
unit circle which sends z, to 0.
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Sh
h

h  h

2 2
: — ! R
. Mh/2 I Mh/2 |
AN 3 /7
| M |
1 ]

fix such an M once and for all. Whatever, I, the base of Sy, may be, let IM be an interval
on R having the same midpoint as I, but M times the length of I.
If z, € Sy, our choice of M gives

K 3zn dt < 1+
T lz,—t12 7~ 4 4 2

~IM

as is easily seen by making the change of variable (¢t — x,)/y, = s.

1 1

In order to estimate Z Va, Varopoulos’ idea is to use (§)
2, €Sy

with a, = *y, if z, € Sy and a, = 0 otherwise, then to average

over all possible choices of plus and minus signs!

For technical reasons, we also limit n to the range 1,2,...,N where N is some arbitrary
large integer. Our estimates will not depend on N, so at the end we can make N — co. Thus,
for the time being, in all sums, n is restricted to the range 1 < n < N, but this restriction is
not explicitly stated. From (§), we have

X
K +y?
Sow= Slknl s [ d
2, €8y 7,€S oo 12u€Sk n

As we have just seen, our choice of M makes the last integral

__yn Kyﬂ
< = de
= / Z | T ZS |zn—r|2
+y,l 1
< — - )
= / 2 g Yt g 2
24E€Sh 2,€Sp

Subtracting % >~ yn» and multiplying by 2, we find

2, ESp
2K y2
E < — E +—r
In = T / T lzn — t\2

Zy€Sh 2y ESh

de.

™

Let & denote the operation of averaging over

all possible choices of plus and minus signs.
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Then
D=6 I+l s—/ —"t|2 de.
€Sy Yn€ESy ™
By Schwarz, this last is
1/2 5 1/2
2K
< — dt +
=4 /{ Z—lz—n?}d‘
Zy €S

™
The square of the average is less than or equal to the average of the square, so the preceding
expression is
, ) 12 172
2K / y 2K
< =—=Mh & +—= dt = / ,
n e X
™ ASh M2 €S

using the observation made at the beginning of this Section.

But
4 7 4 dt 7 d
Yn Vn S
—n_ < _n = =
/ |zn — t|4dt / |zn t|4 / (52 i 1) s

™ — —oC
say, where ¢ is a numerical constant whose value need not concern us here.
Substituting into the previous expression and going back to the chain of inequalities from

which it came, we see that
Sow s o fMne s
Yn = p Yn -
2a€8h 2,€S),

As stipulated above, the sum here is really for 1 < n < N, hence it is certainly finite, so,
after squaring and cancelling,

4K2Mc
2 < —mh
T
z,€8y 1<n<N
The coefficient on the right does not depend on N, so, now making N — oo, we have

z n < 4K2Mch

2
z, €Sy
Since (1) also holds, the theorem is completely proved.

Problem 9 In this problem .o/ denotes the subspace of H., consisting of functions
continuous in 3z > 0 and tending to zero for z — oo in the closed upper half plane.
¢o denotes the subspace of I, consisting of sequences tending to zero.

Let 3z, > 0 and z, —— o0,

(a) If, for each {y,} € ¢q there is a ® € /g with O(z,) = y,, then {z,} is an interpolating
sequence.

(by* If {z,} is an interpolating sequence, then, given {y,} € co there is a ® € &/, with
D(z,) = yn-
(Hint: First show how to get a ¢ € .o/ with [|¢l|, < Ksupy|y| such that
[d(z4) — ya| < %supk |yx|. Pay attention to the continuity properties of the Blaschke
product having the z; as its zeros.)
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Functions of Bounded Mean Oscillation

During this whole chapter we do the work for the circle {|z| < 1}. Analogous results (with
similar proofs) hold for the half-plane 3z > 0.

In Chapter VII we saw that H{(0) = {zf(z); f € Hi} has the dual L,/H,. Towards
the end of the 1960s, C. Fefferman saw that the dual of ®RH;(0) could be represented
as an actual space of functions, rather than as a quotient space. The functions in this
space are characterized by a simple geometric property, namely, that of having bounded
mean oscillation. This property was discovered some years ago by Nirenberg and John, in
connection with rather unrelated work on differential equations — it was somewhat of a
surprise to see that it is relevant to the study of H, spaces.

A. Dual of RH;(0)
1. An identity
If w(0) € Ly, is periodic of period 2n, we know from Chapter I, Section E that its harmonic

conjugate
o1 [e0—1
#(6) = 2n ][ tan(t/2) de

exists a.e. and belongs to Ly(—n, ). In fact, we saw in Chapter V that § € L,(—n,n) for
all p < co (and more!).

Lemma Let v € Ly, be periodic of period 2n. Then for each f € H{(0),

n
lim PO)RS(re)do
—n
exists and equals — [ p(0)3f(e?) de.

Proof We may suppose y real — the general case follows from this one by superposition.
Since y + ip € H, for instance (by Chapter I, Section E!), if f € H1(0), for each r < 1,
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the function

(p(6) + ip(0)) f(re”)
certainly belongs to H;(0), so by Cauchy’s theorem,

s

] ((0) + i (6)) f(re®) b = 0.

-

Taking imaginary parts, we find

/@(0)mf(re"")d9 = —/w(e)Sf(re“’)de.

Since f € Hj, we have
n
/ F(re”) — §(€%)d8 —> O as r — 1

by Chapter II, Section B. (Once again we are using the theorem of the brothers Riesz!)
So, since p € L,

/ P(O)37(re®) o — / P(O)3f(e”)do

—n

as r — 1. The lemma is proved.
2. Real linear functionals on H;(0)

Theorem Every real valued linear functional L on Hi(0) can be written in the form
us
Lf = lim [ (4(0)+ p(6) - Rf(re") 0. f € Hi(0),

with real valued ¢ and y belonging to L, and of period 2m.
Conversely, if ¢ and y are real, of period 2, and belong to L, the limit on the right side
of the above formula exists for every f € H\(0) and defines a real linear functional on H,(0).

Proof The converse statement follows directly from the above lemma and the theorem of
Chapter II, Section B used in its proof.
To get the direct statement, let L be a real linear functional on H;(0). Then, for f € H;(0),

Lf = RAS

where A is some complex valued linear functional on H;(0). (Bohnenblust-Sobczyk theo-
rem.) By Chapter VII, A is identified with an element of L. /H, so there is certainly
a 2n-periodic function in L, — call it ¢ + iy, with ¢ and y real — such that

Af = / ($(0) + iw(6)) f(¢")dO, | € Hy(0).

Taking real parts, we get

Lf = / (BORS () — p(O)Ff(e?)) db.
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According to the lemma and the theorem of Chapter II, Section B already used, this equals
s
lim [ ($(6) + P(0)) Rf(re”)do.
We are done.

Scholium There is only one f € H;(0) having a given real part Rf. Therefore we may look
on RH{(0) as a real Banach space with the norm

IRS=1flly, € H(0).
A linear functional on MH,(0) corresponds to a real linear functional on H;(0) and con-
versely.
By the theorem, the (real) dual of RH(0) is thus identified with the set of sums %Lw+ﬁx.
When does such a sum ¢ + { correspond to the zero functional on RH(0)? In other words,
when is

s

lim [ (¢(0) + PO) Rf(re?)do = 0

r—1 _n

for all f € H{(0)? Taking, first f(z) = z" and then f(z) = iz" with n=1,2,3,... we see that
/ (¢(0)+¢(9)){S‘“”9 } 46 =0, n=123....

—x cosnb
so ¢(0) + P(6) = const. The converse statement is also clear. Thus:

The dual of RH,(0) is RL,. + RL,,

modulo the constant functions.

B. Introduction of BMO
A function which can be written as ¢(0) +{(8) with ¢ and v real, 2n-periodic, and bounded
can of course be thus written in more than one way. That’'s why intrinsic characterizations
of such sums are important. Fefferman found such a characterization.
1. Definition of BMO

Notation If G(0) is locally integrable and I is any interval, we henceforth write

G,:i/G(e)de.
1 Jy

G, is the average value of G on I.

Definition A locally integrable 2n-periodic function G(8) is said to be of bounded mean
oscillation, in symbols, G € BMO, provided that

|;—|/|G(9)—G1|d0 < some finite constant
T

for all INTERVALS I = R.
We write, for G € BMO,

1
Gl = sup—/!G(e)—Gllde,
M J;

the sup being taken over all intervals I.
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Comment Although it’s horrible to represent a space of functions by three letters (BMO),
this designation has now become standard usage!

Remark 1 If C is a constant, ||C||, = 0 and ||G— C||, = ||G||. for G € BMO. This is
evident from the definition.

Remark 2 For 2n-periodic locally integrable functions G (the only ones considered
systematically in this chapter), in order

to check that ||G||, < oo, it is enough to verify that
i/|G(0)—G,\d0
1 J;

is bounded above for all intervals I of length < an

arbitrary given 1 > 0.

The proof of this fact, important in applications, is left as an exercise.

Remark 3 In studying the dual of RH,(3z > 0), one deals with non-periodic functions of
bounded mean oscillation. Their definition is formally the same as that of the periodic ones
given above. Of course, in their case, Remark 2 does not apply.

2. If ¢ and y are bounded, ¢ + P is in BMO
Lemma Let I be any interval. Then if C is any constant,
2
—1—/|G(t)—G1|dt < ——/|G(t)—C|dt.
1 J; 1 J;
Proof G(t)— Gy = [G(t) — C] — [G; — C]. But |G; — C| < (1/II]) J; 1G(1) — Cldt , so
" ' 2
L/|G(t)—G1|dt < i/\G(t)—C\dt-HG,—CI < ——/|G(t)—C|dt.
1 J; 11 Jy 1 J
Q.E.D.

Our first connection between the result of Section A and BMO is provided by the

Theorem Let G = ¢ + P, with ¢, v periodic of period 2n and bounded. Then G € BMO.

Proof 1t is obvious that ||¢||. < 2]|¢|l_,, so it is enough to verify that [|§|l. < co. By
Remark 2 of Subsection | it is enough to show that

lj—l/hiz(t)—ﬁuldt < some C < o0
J

for any interval J of length < 2mn/3.
We do this by the rudimentary application of a typical BMOtechnique. Given J of length
< 2mn/3, let J' be an interval having the same midpoint as J, but three times its length:

‘ NI | R
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p), tE ) (J' + 2nn)
i) = n=—c0
0, elsewhere;
Pa(t) = w(t) — (1)
V()
ANALG] FA\¥1) AN §\W10)
V() Ya(1)| VEGH Ya()/ Ya(t)
o 'l“ ’ AP ',"-‘ :,"’-' lf‘.
J'2n T J'+2x J'+4n

= @+ P2
pildt < 7 P10) - W1)J|dt+|J|/|wz(t (2] dt.

Since § = P + P and P, =

L

i[9
J

m/lwl ~@lde < M/m)](mar

By the lemma,
and we use Hilbert’s mequaltty to estimate the right hand side. We have
T

172
Jimna < [ |¢1m|2dt]/
which by Hilbert’s mequahty (part of theor::,m in Chapter I, Subsection E.4) is
wi(t) vanishes outside a set of measure
\/_|J| [lwll,,, and therefore

Since, on [0,27]
)2 =

< [ o e
|J'| = 3]J|, the last expression is < (JJ] - 3|J] ||1p||
—(@)lde < 231yl -

7l /|IP1
)s| dt which, by the lemma, is

We turn now to (1/|J]) f; [P2(t) — (§
2
— Pa(t) — c|dt
< |J|/I1P2() c|
J
0 < a < n/3; then m =0, so ¢ = P,(0) and, on

where, here, we use a constant ¢ equal to {P,(m), where m is the midpoint of J. Without

loss of generality, take J to be (—a,a)
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[—m, 7], wa(t) vanishes on J' = [—3a,3a]. Thus, we are using

_ _ 1 p(1)
¢ = w0 = -5 / tan(t/2)

a<ti<n

We hence have to estimate

1 11 1 1
2 /, pr /M,.g {tan((e —0/2) 1 tan(t/2) } plr)de

which we simply majorize by
a
lwll., /
4no
—a 2a<|tl<n

This computation would be easier if we were working with the harmonic conjugate for the
upper half plane. Be that as it may, we have

dé

1 1

an(@0—072) | tani/z)| 490"

1 1 _ 1+4tan(6/2)tan(t/2) 1
an((0—0/2) " tan(/2)  t@n0/2)—tan(t/2) | tan(/2)
tan(0/2) sec(t/2)

tan(t/2)[tan(6/2) — tan(t/2)]’
whence, for —a < 0 < a,

1 1
/ tan (0~ 0)/2) T tan(t/2)
2a<jt<n
o [ dtan(t/2) 8] [ dr  8ltan(6/2)
= 2|tan> < 8ltanc| [ & - ENO/AN
‘”‘2‘ / tan’(¢/2) — tan(t/2) tan(@/2) — | "2 ) tano
2a<|ti<n tana

so finally,

1 5 - 2 N
m/lle(Q)—(szd@ < m/lwz(G)—CIdH

4||w|lm] 0 4
/wz —pa0ds = AWl [ 8 ap < Ay,

Putting this together with the preceding estimate for (1/[J]) fj |®1(6)—(P1),] d6, we obtain
{7
i [ 0= mide < @45 +@/m) vl
J

valid whenever |J| < 2x/3.
We are done.

Remark The above calculation, in conjunction with the one behind Remark 2 of
Subsection 1 (that one was left to the reader!) shows that

I +dll. < K(loll. +llwll,)

for 2n-periodic functions ¢ and vy, with a strictly numerical constant K.
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C. Garsia’s norm
Garsia has observed that there is another norm for functions in BMO which is easier to
use.

Notation If ¢(0) is locally integrable and 2z-periodic, we put, for |z| < 1,

11—
Uste) = 5- [ ot

e = 2"
Uy is a harmonic extension of ¢(t) to {|z| < 1}.
1. The norm M(¢)
Lemma For |z] <1,

1=z 1—|?

— drds.
|Z _ett|2 |Z _ ets|2

nn
1
Uple) = (Us0) = gz [ [ @60= 07
Proof Multiply out in the integrand.
Definition If ¢ is real valued and periodic of period 27,
) = sup (Ugl) = (Ugla) '}
zl<
We call M(¢p) the Garsia norm of ¢. It is indeed a norm.

Lemma If a is a real constant,

N(ag) = |a|N(¢) and NP + v) < N(P) + N(y).
Proof The first relation is obvious. The second follows from the previous lemma and the
triangle inequality for the Hilbert space norm. For, by that lemma, {Ug:(z)—[Ug(2)]?}!/? can,
for each fixed z, be looked upon as a Hilbert space norm of ¢(s) — ¢(t) on [—=n, 7] x [—x, 7],
using a certain positive measure on that square.

2. Two simple inequalities for 9U(¢)
It will turn out that DM(¢) is equivalent to the BMO norm ||¢||, introduced in Section B.
For the moment, let us just observe how much easier (0) is to work with than ||¢]|,.

Theorem If ¢ and v are real, 2n-periodic, and bounded,
N+ ) < V2019l +lIwll.)-
Proof We see easily (from the first lemma of Subsection 1, for instance), that
N() < V2119l -

Observe now the elementary relation (p + i)? = w? — §2 + 2ipP, which makes
(U,‘L,(z))2 - (U,;,(z))2 harmonic in |z| < 1. Since y + ip € H, for every p < oo (Chap-
ter V), the harmonic function (U,,,(z))2 — (U,;,(z))2 can be recovered from its boundary
values p? — p* by Poisson’s formula, i.e.,

2 2
(Up(2))" = (Upl(2))" = Uprga(z) = Uplz) — Upa(2),
and we thus have the identity

Upe(2) — (Up(2))? = Upe(2) — (Uy(2))*
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From this we see that () = M(); so MP) = N(w) < /2 |lwl|,, by the statement at the
beginning of this proof. Combining the last inequality with that statement, we are done.

The inequality 9%(¢) < const. [|¢||, will be proved in Section F — it is a consequence of
some rather delicate work of Nirenberg and John, the discoverers of BMO functions. The
reverse inequality is, however, completely elementary.

Theorem For ¢ real and 2n-periodic,
oll. < KN(¢),
where K is a constant independent of ¢.

Proof IfI is any interval, by Schwarz’ inequality,

L B i 3 R 172
T fiso-anae < {1 [on-op o)

1 o 12
{2|1|2/I/I(¢(t) (s)) dtds} ,

as is seen on multiplying out the integrands in the two last integrals.

Suppose |I| < 2=, then without loss of generality put I = (—a,a), 0 < « < n. Use the
formula

Ug(r) — (Ug(r))® = / / 1-r 1= 4
¢ o) T g - "1+ —2rcoss 1+r2—2rcost ’

taking for r the special value

I

o
=1—sin=.
r SlI‘l2

For this value of r, and —a <t < a,

1—r2 (1471 —7) 1

14+r2—2rcost (1 —r)? in? 255inoc22753’
+r r cos (1 —r)2 +4rsin“(t/2) («/2)

SO
U¢z(r)—(U¢(r))2 > 50”2“2/ / 2 dsdt

N <5n) 2|1|2// — $(1)) dsdt.

Combining this with the inequality given at the beginning of the proof, we see that

1 Sn
i [1o0-eiar < Foue)

if |I] < 2.

Suppose finally that n is a positive integer and 2nn < |I| < 2n(n+1). Let J = I be an
interval of length 27(n + 1); then

1 n+1 1
i [1e0-sia = 2 [0 -sila < o [0 -l
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But by the 2n-peridocity of ¢, ¢; = (1/27) 02n ¢(s)ds = c, say, and
1 1 [
— = — —cl
5 [wo-eia = 5 [ g0 -dar,

which is < (57/2)9%(¢), as we have just proved.
Thus, by a lemma of Subsection B.2,

1 9 4
m/1|¢(t)—¢1|dts m/II¢(t)—¢,|dts m/Jld)(t)—d),ldtS 10nN(¢) .

We have proved ||¢||, < 10n(¢) (and, incidently, almost completely worked out the
exercise that was ‘left to the reader’ in Subsection B.1 (Remark 2), if he or she has not
already done it by now!). We are done.

Remark  Taken together, the above two theorems provide us with a new proof of the
fact that ||¢ + P||, < C(||9ll, + lwll,,), already shown in Section B. The splitting used in
the proof of Section B, is, however, an important technique which is applied frequently in
studying BMO. That is why we gave that proof.

3. Where we are heading

In the scholium at the end of Subsection A.2 it was observed that the dual of RH(0) is
RL,, + RL,, modulo the constant functions. And as we have now (twice!) seen, ||F||, < oo
for any F in RL,, + ﬁw. What Fefferman discovered is that this relation characterizes the

functions F therein; those are, in other words, precisely the ones belonging to BMO.
This will follow if, for any F € BMO, we can prove that

lim / Rf(re’)F(0)do

exists and has modulus bounded by a constant multiple of ||F||, ||f|[, for all f € Hy(0).
Establishment of that property turns out to be the main difficulty in the present study.

We will explain two different procedures for arriving at the result in question. The first,
close to Fefferman’s original one, is taken up in the next three sections; use of the Garsia
norm () helps us to face the considerable technical complications arising in the work.
That norm alone is involved in the next two of those sections, and the original BMO norm
||pll. is not brought back in until Section F. Another much quicker approach is presented in
Section G. It is based on the atomic decomposition of functions belonging to RH; deduced in
Chapter VII], Section E, and avoids use of most of the machinery developed below as well
as of Garsia’s norm. The reader looking for an easy road to Fefferman’s theorem may thus
skip over Subsections D.1 and D.2, and then pass directly on to Section G after stopping
for the first lemma in Subsection D.3. But by doing so he or she will miss out on the
elaboration of some very useful technical material involving Green’s theorem and Carleson
measures. That material has been and continues to be very important for the investigation
of matters taken up in the present book or related to them; first of all in Wolff’s proof of
the corona theorem (Chapter XI), then in the study of H, spaces of functions of several
variables, of Lipschitz domains, and so forth. For this reason, the reader who has the time
is urged to go through Sections D, E and F.
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D. Computations based on Green’s theorem

1. Some identities

Lemma Let W(z) be €., on {|z| < 1} and let W(0) = 0. Then

jW(e‘o)dG =// (1ogli—|) ViW(z)dxdy.

lzI<1
Notation As usual, VW = W, + W,,.

Proof of lemma Writing z = re'” and taking p, 0 < p < 1, we have by Green’s theorem

// (log%) V2W dxdy = // ((log%) VZW—WVZIOg%> dxdy
p<r<l p<r<l

2n 2n

~ 1w dlog(l/r) ~ / 1ow  dlog(l/r)\

= / (lOg ; —ar W—ar )r=1 do lOg ;——a‘;‘ et WT - pd0
0 0

Since W(0) = 0, W(pe'’) = O(p), and the second integral on the right goes to zero as

p — 0. The first integral on the right is just foz" W(e?)d. The lemma follows on making
p—0.

Lemma Let W(z) = |z|W;(z) with a function W, twice continuously differentiable on

{lz| < 1}. Then
/W(e“’)de =// (1og|i—|) V2W(z)dxdy.

|z|<1
Proof Just like that of the preceding lemma.

Notation At this point, we introduce the (physicists’) vector operator

gl

“ox  *0y’

i and j being unit vectors in the directions of the x and y axes respectively. We use ‘-’ to
denote the dot product of two-dimensional vectors.

Theorem Let u(z) and V(z) be harmonic in {|z| < R} where R > 1, and let u(0) = 0. Then

/u(e“’)V(e‘f’)de = 2// (log%l> (Vu-VV) dxdy.

-7 |z|<1

Y:

Proof W(z) = u(z)V(z) satisfies the hypothesis of the first lemma above. Therefore the

integral on the right equals
// <log%> V(uV) dxdy.

lz|<1
However,
VZwV) = (V2u)V +uV2V +2Vu-YV = 2Vu-VV,
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since V2u = V2V = 0 (harmonicity).
That does it.

2. Expression of H| norm as a double integral

Lemma Let f(z) be analytic in {|z| < R} where R > 1, and vanish only at the origin in

that circle. Then |f(z)| is €. in {0 < |z| < R} and

VRS YRS
i

(Due to P. Stein (not E.M. Stein!), ca. 1933,)

Proof Writing f = u + iv with u and v real and harmonic in {|z| < R}, we have
If] = (u? +v?)'/2 and this is 4., away from the origin because u? + v2 # 0 if we are not
there.

Vi f| = 0<|z]<R.

We see that
olfl  uux + v
ax T e
021 u + 02 Ulhgx 4 V0xy (Uuy +005)7
oxI W)t @)z (2 + 2p2
similarly,
?\f] _ uf + Uﬁ uthyy + ooy, (uuy, + uvy)2
ay? W2+ )72 (2302 (R o2
Since uy = vy, u, = —vy, we have

(st + vug)? + (uuy + m;y)2 =+ vz)(ui + ui).
This relation, together with ux +uy, =0, vy + vy, =0, gives us
A, AN wtw
ox? ayz - (u2+uz)l/2
away from the origin, proving the lemma.

Theorem Let f(z) be analytic for |z| < R where R > 1, and suppose that f has a simple
zero at the origin and no other zeros in |z| < R. Then

/ retvao = ff ( |z|> Wf(zvnmf dxdy.

|z]<1

Proof Apply the second lemma of Subsection 1 with W(z) = |f(z)| = |z| |f(z)/z|. Here
f(z)/z never vanishes in |z| < R and is analytic there, so, by work used in proving the above
lemma, |f(z)/z| is 6 for {|z] < R}. The identity established by that lemma then gives us
what we want.

3. Expressing the property that F generates a linear functional on RH,(0)

We return to the problem of finding an intrinsic characterization of the functions of the form
¢ + P, with ¢ and  real, 2n-periodic, and bounded. We already know from Subsection
C2 that if F = ¢ + P, then N(F) < oo, and now set out along the road of proving
that if M(F) < oo, then F can be written as a sum ¢ + P with ¢, y real, bounded and of
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period 2m. According to the theorem in Section A, this will follow if we can show that
T
lim / Rf(Re®)F(0) do
R-1J_4

exists for every f € H;(0), and represents a linear functional on RH,(0), whenever S(F) < co.
We perform a series of successive reductions.

Lemma
lim / Rf(ReP)F(H) O

exists and represents a linear functional on RH,(0) if there exists a constant C such that, for
any f € Hi(0) and any R, 0 < R < 1,

‘ " Rf(REP)F(0) dO

-7

< Cliflly -

Proof Let f € H{(0) and let € > 0. By what is essentially the theorem of the brothers
Riesz (Chapter II, Section B), there is an R < 1 such that [* |f(e") — f(R'¢?®)|df < e
whenever R < R’ < 1. Let now R < Ry < R, < 1; then, if R = R;/R;, R< R < 1, s0 if
g(z) = f(z) - f(R'z), g € Hi(0) and ||g||; < e. Therefore, if the inequality in the hypothesis
holds,

' ‘.Rg(Rzeio)F(G)dH‘ < Ce,

—-n

ie.,
T n
‘ Rf(R®)F(0)dO — [ Rf(Ri¥)F(0) d()\ < Ce
—n —n
whenever R< Ry < R; < 1.
It follows that the desired limit exists; clearly it is in absolute value < C ||f||,. Q.E.D.

Lemma Let F € Li(—n,n). Then
n
lim [ % f(RE?)F(0)do
1S —n
exists for all f € H{(0) and represents a linear functional on RH;(0) if there is a constant C
stich that for all R and p < 1 and all f € H;(0),

‘ " Rf(Re®)Ur(pe)

( For meaning of the symbol Uy, see the beginning of Section C.)
Proof If R <1, f(Re") is continuous, so, since (Chapter I !)

< Cliflly -

n
|Ur(pe®) — F(6)|d§ — 0 as p — 1,
—n

we have, for any R < 1,

Rf(REV)F(0)dO = lim Rf(Re®)Ur(pe)do.
_n =1 ) _q

The result now follows by the preceding lemma.

Lemma Let F € Li(—mn, ). In order to prove that

lim / Rf(Re)F(0)dO
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exists for all f € H{(0) and represents a linear functional on RH;(0), it is enough to show
that there exists a constant C such that, for all R and p < 1,

m

[ wre Ut a0| < i,

n
whenever f € H;(0) has precisely one simple zero at the origin, and no other zeros in
{lz| < 1.

Proof By a trick already mentioned in Chapter IV. Let f € H;(0), then we can write
f(z) = zB(z)g(z), where B(z) is a Blaschke product, g(z) has no zeros in |z| < 1, and
liglly = IIfll;- We can now put

f1(z) = 32(B(z) — 1)g(z2)

fa(z) = Jz(B(z) + 1)g(2) ;
then f, and f; each have one simple zero at the origin, and no others in the unit circle. We
have f = fi + f, so, if the inequality holds under the conditions stated in the hypothesis,
2

2

k=1
CUf Ny + 1) < 2C TS,

Rfk(Re”)Ur(pe”) do

—n

IA

) I mf(Re"")Up(pe"”)del

A

because [|f1ll; < [If1ly, Ilf2ll; < (Il

Our result now follows by the preceding lemma.

We now combine the last of the above lemmas with the theorem of Subsection 1 to
obtain:

Theorem Let F € Ly(—n,n). In order to prove that
lim / Rf(ReVVF(0) dO
—n

exists for all f € H(0) and represents a linear functional on RH(0), it is enough to show
that there exists a constant C with

/] (log\i—|> <yu-yV>dxdy‘ < il

lz[<1

for u(z) = Rf(Rz), V(z) = Ur(pz) and all R, p < 1, whenever f € H((0) has a simple zero
at 0 and no other zeros in |z] < 1.

E. Fefferman’s theorem with the Garsia norm
We continue, basing our work on the somewhat ungainly theorem in Subsection D.3.
According to that result and the theorem of Section A, given a real 2z-periodic F with
N(F) < oo, we will have F € RL., + RL,, as soon as we prove, with a numerical constant
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K, that

i
’// (logm) (Yu-YV)dxdy‘ < K|Ifll; UF) for

lzl<1

(z) = Rf(Rz), V(z) = Up(pz), R and p arbitrary < 1,

whenever f € H\(0) has a simple zero at O and no other zeros in {|z| < 1}.
The rest of this section, really the heart of the whole chapter, is devoted to the proof of
the boxed inequality.

We continue to let u(z) stand for Rf(Rz) and
V(z) for Ugr(pz), where f € H|(0) and R, p

are arbitrary positive numbers < 1.

1. Use of Schwarz’ inequality

We are interested in the case where f € H{(0) has a simple zero at 0, and no others in
the unit circle. Fefferman had the idea of applying Schwarz’ inequality to the left hand
member of the above boxed inequality, in such a way as to take advantage of the theorem
in Subsection D.2. We have, namely,

// (log%) (Yu~YV)dxdy.
z1<1
1/2
Vu-Vu " i
//( |z\) | (logv?)(YV'YV)'f(RZ)'dXdy

|zI<1 Jz1<1

1/2

The factor |f(Rz)|. which was not even present, has thus been brought in!
Since u(z) = Rf(Rz) with f € H;(0) having a simple zero at 0, and no others in the unit
circle, the theorem of Subsection D.2 says that .

//( |z|> \fg;l xdy = /lf(Re"’ld6 < Iflly »

Jz|<!1

so our boxed inequality will be proved as soon as we show that

* P 2
) /1/. (“’g \z|)<YV YV)f(Re) dxdy < KIIfll; (UF))

for all f € H{(0) of the aforementioned special form, with a purely numerical constant K.

2. A measure to be proved Carleson
In Subsection 1, restriction to f € Hy(0) with a simple zero at 0, and no others in the unit
circle, is on account of the requirement of the theorem in Subsection D.2. That is also why
the third lemma of Subsection D.3 was needed.

Now, however, there is no obstacle to our proving (*) for all f € H{(0). Observe that for
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f € H(0), g(z) = f(Rz)/z is in Hy, and clearly ||g||, < |If|l,. It is therefore enough to show
that

1
[ (itoe ) @v-yvisenaxay < kORI el
Jz)<1
for all g € Hy, with a numerical constant K.

Recall now the definition of Carleson measures (for the unit circle) in Chapter VIII,
Section F. We see that

1
we have to prove that (\zllog m) (VV-VV)dxdy

is a Carleson measure with ‘Carleson constant’

equal to a numerical multiple of (M(F))?.

Part of this program is carried through rather easily.

Lemma [f, _,, (lz[log(1/[z])) (YV-VV)lg(z)l dxdy < K'(O(F))*llgll; for all g € H,
with a numerical constant K'.

Proof For |z| < 3, |z|log(1/]z]) < e ! and |g(z)| < (1/7)ligl};
Again, V(z) = Ur(pz) where 0 < p < 1, 50 (VV)z) = VUr(pz) = VUF,(pz), where

T

—n

n
1
F(0) = F(0) /F(t)dt.
Now by direct differentiation of Poission’s formula, we have, for |z| < %

YUR(p2) < & / Fi(0) dt,

ie.,
n

[VUF,(pz)l < de

_E .

F(B)—%/n F(t)dt

for |z] < .

From the proof of the second theorem in Subsection C.2, we see that the quantity on the
right in the last expression is < 20n0(F). Using this, together with the other estimates, we
find

" 1 1007?
[ (khoer; ) wv-vvie@iaxdy < SO el
z]<1/2
QED.

3. Main lemma
We now come to the main work of this whole chapter, which is to prove that

' 1 "
// (IZIIOE E) (YV-YV)ig(z)ldxdy < K"(N(F)) llgll,

1/2<]z|<1
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with a numerical constant K” for all g € Hy. This proof depends on the fundamental
theorem on Carleson measures given in Chapter VIII, Section F.

Lemma Let 0 < h < % and let S, be any curvilinear box of the form 1 —h < r < 1,

Oo <8 <6+ h.
£iO+h)

%

Then, with a numerical constant C,

1
// <lz| log E) (VV-VV)dxdy < C(ON(F))*-h.
Sh
Proof Without loss of generality 6y = —h/2, so that
Spo= {ré’; 1—h<r<1, —h/2<6<h/2}.
In that case we estimate the integral in question by first making a change of variable z — (,
where (i — {)/(i + {) = z. This is a conformal mapping of {|z| < 1} onto 3( > 0. As usual,
we write { =& + in.
Put V(z) = w({) for z corresponding to { in the above fashion.
We have, for § <|z| <1,

111 1— |z .
Fllog < zlogoy = g (1 b1 =[P §I = 1P 4
2
< (—% < 21 —|z}%).

In terms of { = & +in, |z = (E+0—-1)/(@+0H+1)7), so 1 -z =
/(€2 + (1 +n)?) < 4n, and finally
1

|z|logm < 8pfori<izl<l.

Let now S, correspond to the set X, in the {-plane under the mapping z — (:

eth2

g

e—ih/2
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Then, since the mapping is conformal, the quantity we are trying to estimate,

/s/ (Idlog%) {(%>2+ <%:—>2} dxdy,
/z/ (1ttoe ;) ((%‘g)er (g—:)z> a¢ dn
< [[m (o) + () eeen

by the above boxed inequality.

Since 0 < h < 1, X, is included in the square

By = {(&n); —hj2<E<h/2,0<n<h),

as some simple calculations show. (Actually, it is manifest without any calculation that for
0<hg %, X, is always included in Bey for some numerical constant C, and the reader may
content himself with this evident fact. We take here the permissible value C =1 in order to
combat the proliferation of numerical constants in our formulas!) Here is the situation:

equals

which is

We therefore have

// (|z|logli—|> IVV|*dxdy < 8//n(w§+w,2,) dédn,
S, By

and our lemma will be proved when we show that the quantity on the right is < K”(O(F))*-h
with a numerical constant K".

Now we use a trick. By is entirely contained in the semi-circle |{| < 2h, # > 0, and on
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By, 1—(|{|/2h) > 1/4. Therefore

[ oz +uirazan <4 [ (1—‘—5—') 1?4 w)dz dy.
B,

[C]<2h, >0

The factor (1 — (|C|/2h)) 1 in the right-hand integrand vanishes on the boundary of the region
of integration, and that will help us, as we shall see in a moment.

We have w({) = V(z) with z = (i — {)/(i + {), so w({) is harmonic for 3{ > 0. (Recall
that we are using V(z) to denote Ug(pz) throughout this whole section, with p a fixed but
arbitrary positive number < 1. Recall also that

—|Z
Urlz 2n Iz — e"|2

the Poisson integral of F.) On account of the HARMONICITY of w({), we have the identity

(TRICKY)
0? o?
(8{ 8r]>w_2(w +w)

(The second edition of Zygmund’s book already contains an application of this identity to
the study of a related question.) Our problem thus reduces to the estimate of

-2 [[ (=) (T 5 o

1{|<2h, n>0

in terms of h and J(F).
In Subsection C.1, M(F) was defined as

sup (Up(z) — (Up(2)?) 2,

lz|<1

so if we put P(z) = Up(z) — [Ur(2)]? for |z| < 1, we have
’0 < Pz) < (m(F))Z.‘

Now for z = (i — )/(i + {),

W) = (Ur(pz))* = Ug(pz) — P(p2),
where the term U2 (pz) on the right is harmonic. Therefore, if we put

b({) = P(pz),

6_24_52 w2 = — @_‘_azb
02 on? - agr  onr )’

and the integral we have to estimate boils down to

- LN (8% 3%
- 2// ( ><0é2 anZ)‘Kd”’

|{|<2h, n>0

we have

where

0 < 6O < P |
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62 2
Write V2 e + 5. Applying Green's theorem to the integral just written, we find
J= =2 // b(g)vg<n (1 - @» dédy
[1<2h, 1>0

0 4n (1= e2m)} L1 96
z/r(b(z e —n(l 2h> e ) 1461,

where I' is this contour,

2hi

—2h 0 2h £

and 0/0n; denotes differentiation with respect to distance in the direction of the outward
normal to I' at (.

The line integral around T is negative. Indeed, n (1 — (I{|/2h)) =0 on T (now we see why
the extra factor 1 — (|{}/2h) was brought in!); also, 5 (1 - (\C!/Zh)) > 0 inside T, so clearly

a(n (1 —(1¢1/2h)))/on; < 0 on T. Therefore b({) d(n (1 — (I{|/2h)))/0n; <0 on T in view
of the above boxed inequality, and the line integral around T" does come out to be < 0. (If
the reader has trouble keeping track of signs here, he or she may simply compute

2h
/M (m/ )

using polar coordinates. A value < const.h sup, lb(CH < const.(M(F))%h will be found.)

We thus have
J < =2 // b(()V? (n (1 'C‘>> dédy.

[{|<2h, >0

ld¢|

To evaluate this, use the polar coordinates { = se'®; then
10 0 1 82
2 _ -7 _ [
Vi = o do (600‘( )> t 5 0¢?
and n (1 — (|C|/2h)) = (1 - (o/Zh)) o sin ¢, from which we easily find

V2 (1 (1 = (£1/20)) =~ sin 6

which, substituted into the above integral, yields

2h . p2h
< - / b(ge®)sing o dodd < (‘JI(F))Z/O /0 sing ododg = 12(MN(F))*h

We are at the end of the calculation. Going back to what we started with, we find
" 1
// <|zy log ﬂ) IVV|Pdxdy < 327 < 384(M(F))*h
V4
Sh

and the lemma is proved.
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Combining this last lemma with the theorem on Carleson measures for the unit circle,
given at the end of Chapter VIII, Section F, we find:

Theorem There is a numerical constant K" such that

I ,
// (|zr log H) (VV-VV)lg)ldxdy < K@U gl
1/2<iz1<!
for all g € H.

4. Fefferman’s theorem with 0(F)
Combining the result in Subsection 3 with the lemma of Subsection 2, we see that there is
a numerical constant K such that

/] (nzuogl;l,) (VV-VV) [g@)ldxdy < KOUF)? gl

{z|<t
for all g € H,. In particular, inequality (*) at the end of Subsection 1 holds. The work in
Subsection 1 thus shows that the boxed inequality at the very beginning of this section is
valid, whence, by the theorem at the end of Subsection D.3, we obtain:

Theorem Let F be real valued and periodic, of period 2n. If M(F) < oo,
llziml Rf(ReCVF(0)dO
=S -n

exists for every f € Hy(0), and represents a linear functional on RH,(0).

Scholium The norm of the linear functional on ‘RH;(0) furnished by this theorem is
< const - N(F).

Indeed, the proofs of the lemmas in Subsection D.3 show that the norm of the functional
in question is < 2C, where C is the constant figuring in the statement of the theorem in
Subsection D.3. The boxed inequality at the very beginning of this section is the same as the
one in the theorem, Subsection D.3, with C = KM(F), K being a numerical constant. And
we proved the boxed inequality in Subsections 1-3.

We can, however, say more than this, namely, M(F) is also < a constant times the norm of
the above linear functional!

Indeed, call

Lf = llziir} /_ n Rf(ReYF(0) dO

for f € H{(0), and denote the norm of L by |||L||l. The Hahn-Banach argument in
Section A shows that we can find ¢ + iy periodic of period 27 in L., with ¢ and y real,
and
1o+ iwll, < LI,
such that
Lf =% [ @0+ i) d

s

for f € H;(0). By the lemma in Section A,
Lf = lim / R (Re") (A1) + (1) dt

so that
F(t) = ¢(t) + Pty + ¢
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with a constant ¢, according to the scholium at the very end of Section A.
With the first lemma of Subsection C.1, we see that
N(F) = NP+ P),
but by Subsection C.2, the quantity on the right is

< V2019l +ivll,) < 23219 +ipll, < 24/2[IIL]JL.

Let us combine the above theorem with its scholium, the material in Subsection A.2, and
the first result of Subsection C.2. We get

Garsia’s version of Fefferman’s theorem If F(8) is real and periodic of period 2m, the
following three conditions on F are equivalent:

(i) LRf = limg, ffn(inRe"o)F(G)dB exists for every f € H{(0), and L is a linear
Sfunctional on RH,(0).

(il) F(0) = ¢(0) + P(8), with ¢, p real, 2rn-periodic, and bounded.
(iil) UF) < o0.
Moreover, the norms |||L||| (of L as a linear functional on RH,(0)) and N(F) are equivalent,
N(F) < \/E(Hd)H,L—I—H(pr) with ¢ and y the bounded functions in (ii), and we can find ¢, i,
periodic of period 2n and real valued, such that

F(0)= 1)+ §1(0) + ¢,
¢ a constant, with

lll, + llwill, < M -9UF),
M being a numerical constant.

F. Fefferman’s theorem with the BMO norm
We now show that in the theorem of Subsection E.4, the condition M(F) < oo can be replaced
by ||F||. < o, ie., by the fact that F € BMO. Since we already saw in Subsection C.2 that
[IF|l. < const.9N(F), we have here to establish the reverse inequality, Y(F) < const.||F||,,
proving equivalence of the norms M( ) and || ||.. Proof of the reverse inequality depends
on some deep work of Nirenberg and John.

1. Theorem of Nirenberg and John

Recall first of all the definition from Section B:
1
I1Fll = sup o [ 1FG@)~ Flde
r U

with I ranging over the set of intervals.

Lemma If F € BMO and if I and J are intervals with the same midpoint and I < J, then

J|
Fi—Fil < 2 (tog: 4 1) L
(Here, log, means logarithm to the base 2.)
J
A
- )

~-
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Proof First of all, if [J] < 2]I],
1 1
|Fr — Fy| = —

2
|”jwm—EMrsmzwm—ﬂm:;mﬁwm—BMrsmmu

and the result is true in this case. (Here, we only used the relations I = J, |J| < 2|I|.)

In the general case, argue by induction. If 2"|I| < |J| < 2"*!|I| and the result is proved
for intervals J' with |J’| < 2"|I|, take an interval J' having the same midpoint as I, but half
the length of J, so that I < J' = J. By the induction hypothesis,

/ J!
Fi=F < 20 (log: ] 41)

Since |J| = 2|J’|, by the argument given above, [F, — Fj| < 2||F|l., so

! J/
Fy = Fil < |Fy=Fj|+F;—Fi| < 2||F|l.+2]IF|. <1og2%+1>
J
=ﬂWL@&H+Q,

and the result holds for intervals J with 2"|I| < |J| < 2"+1|1].
We are done.

BMO actually first appeared when the following result was published. In it, the function
F is assumed to be real valued.

Theorem (Nirenberg and John)  For any interval 1 and positive integer n,
{x €l; F(x)—F;>4n||FIl.}| < 27"|I].

Proof (Garnett) By making a change of scale, we may reduce our situation to one where
[|F||. < 1, and, under this assumption, it is enough to prove that

= 2,
xel; F(x)—F >2n}| < 27"|.
A change of variable now allows us to take I = [0, 1]; there is also no loss of generality in
taking F; to be zero.

These reductions made, we shall work with the dyadic subintervals of [0,1] = I. These are
those of the very special form [k/2', (k +1)/2'], with k and | non-negative integers.

Dyadic intervals have the very nice property
that if two of them overlap, one must be

contained in the other.

Let E = {x € I, F(x) > 2n}. By Lebesgue’s theorem (differentiation of indefinite
integrals), almost every x € E is contained in some small dyadic interval J < I with
F; > 2n. Since F; = 0, there must, for almost every x € E, be a dyadic interval J < I and
containing x, of greatest possible length*, such that F; > 1. Let such a J of greatest possible
length containing x be called J(x). After throwing away from E a set of measure zero, we
will have

Ec |JJ.

x€E

* being, we emphasize, properly included in I
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Let & = UxegJ(x). & can actually be written as a non-overlapping union of J(x)’s. Indeed,
if x,y € E and J(x) and J(y) overlap, then J(x) = J(y). For, by the above boxed remark,
either J(x) < J(y) or J(y) € J(x). If, say, J(y) 2 J(x) and |J(y)| > |J(x)], then x € J(y) and
Fy;) > 1 together contradict the fact that J = J(x) is a dyadic interval < I of maximum
length containing x such that F; > 1. So if J(y) 2 J(x) then |J(y)| = |J(x)|, and J(y) must
in fact equal J(x).

We see that we can extract a sequence of points x; € E such that the J(x;) do not overlap
and

GJ(X,‘) = &.
i=1

(This sequence, and the union in question, may in fact be finite or even void. A countable
set of the J(x) already serves to cover & because each J(x) contains an open set.) The
above dissection of & into a countable number of non-overlapping dyadic intervals is called
a Calderéon—Zygmund decompositiont.

Now |&| < %|I|. Indeed, since F; =0,

1
L/F(x)dx < —-/lF(x)—F1|dx < —l—/lF(x)—Flldx < |IF|l, <
1l Js l Js I\ Ji
whilst

L
2 b

1 1
— | F(x)dx = — F(r)d
i J, P |1|Z/J(x,) O de

because the J(x;) don’t overlap, and this equals
1 1 &
] Z (x| Frxy > i Z [J(x)| = 1|I_||
i i

(except when |&] = 0), so in any event |&]/|I| < 1.

Since E < &, our theorem is now proved for the case n = 1.

To prove the theorem for n > 1, we proceed by induction. 1 say that for each i, Fj(x) < 2.
Indeed, given J(x;), let J' be the dyadic interval = I containing J(x;) and having twice its
length. Note that there is onef, and only one such:

J' J'

or

J(xi) Jl (x[)

Then, by the maximal property according to which J(x;) was chosen (and because
F=01,
Fj’ <l1.
By the first part of the proof of the above lemma, with J = J' and I = J(x;), we now have
|Fy — Fyxyl < 21|F|l, < 1,s0 F.I(xi) < 2, as claimed.
Let now E N J(x;) = E,. Since the J(x;) don’t overlap, and cover & 2 E,

E=UE,, and |E|=Z]E,~|.
i i

T Cf. in Section E of Chapter VIII
f recall that J(x;) is properly included in I




238 X : Functions of Bounded Mean Oscillation

If x € Ei, F(x) > 2n, so, since Fjx) <2,
F(X)—FJ(X') > 2(71— 1)
We see that we can make an induction step at this point. For, as just seen,
E; © {xeJ(x); F(x)—Fyx)>2(n—1)},

80, if the theorem is true with n — | in place of n,

—1

IEl < ()7 )l

Therefore, since the J(x;) are non-overlapping and add up to &,

Bl = YCIEL < ()" W6l = ()7e < ()" 4 = ()",

and the theorem holds with n.
We are done.

Corollary If F € BMO and I is an interval,
1
o [IFe—Fiax < ciFE,
i
with C a numerical constant.

Remark  This is like a reversed Schwarz inequality!

Proof Let m(A) = |{x € I, |F(x)— Fi| > A}|; by the theorem of Nirenberg and John just
proven, for every non-negative integer n,

m(A) < 2x (3| if 2> 4n]|F]|,

(the extra factor of 2 coming from the fact that we are looking at the measure of the set of
x where F(x)— F; < —A or F(x)—F; > 4) . Therefore

A
m(d) < 2\I|cxp{- [W} logZ} R

where [t] denotes the greatest integer <t.
By Chapter VIII, Section A, we now have

/'F(")—Fﬂzdx Z/wimu)di < 4II|/7v/lexp (—(mgz)[ ’ D d2
’ ° 0 411FIL

64|1|||F||%/ se M8 45 = ¢ |||
0

with a numerical constant C. This does it.

Remark Clearly much stronger inequalities for integrals taken over I and involving
|F(x) — Fi| are valid.

2. Equivalence of BMO norm and Garsia norm
Lemma Let f(t) > 0. Then there is a numerical constant C such that

n l—rz * (1_r)SZ 1 ’
| a0 s c ((1=r2+9) <2_°‘""f(t)dt> >

Proof (1 —r?)/(1 +r* —2rcost) = (1 +r)(1 —r)/((1 —r)* + 4rsin’(t/2)), and the right
hand side is clearly < k(1 —r)/((1—r)?+¢*) forO<r<land —mw <t <n, wherek is a
suitable numerical constant.
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Write 1 —r = u. Then, if f(t) >0,

1—r2 "
/m(m = Ddfsk/o —zﬁ(f(mf(—t))dt

<k ["arato+seo .

The last integral equals

* ®  2us © 2us s
k[ o+sen [ st = k [ ot [0+ o) aas

uZ + S2
© sl
= 4k/0 —(u2+s2)2 (E ﬂf(t)dt) ds

an expression of the required form.
Theorem If F is real and periodic, of period 2n, we have
N(F) <K ||F]|.
with a numerical constant K.
Proof Using once more the notation introduced at the beginning of Section C, we have
QP = |Szl|1<r; {Up(2) — (Ur(2))*} 5

it suffices to estimate Up:(z) — (Ur(z))? in terms of ||F||,. Since F(x) and its translates

Fu(x) = F(x — h) clearly have the same BMO norm || ||, there is no loss of generality in
taking z = r with 0 <r < 1. By the first lemma of Subsection ClJ,
_ (1 =r?)? (F(s) — F(t))* dsdt
Upe(r) = (Ur()* = 8n2/ / a4+ 2rcoss)(1+r2 2rcost)’

Since [F(s) — F(t)]> > 0, we can apply the above lemma twice to estimate the above
right-hand double integral, and find it to be

2 w0 poo usz . utl L s t 3 5
<C /0 /0 W1 EropR (4st/_s/_,(F(a) F(1)) dO’d‘L’) dsdt,

where u =1 —r and C is a numerical constant.
Now, if I and J are intervals with the same midpoint, we have:

1/2
(m ) Jirer=r d”df)
1/2 12
. B2
< <|J| |I|/;./I[F(a) Fp] dadr) + (|I| |J|//[F dtda)
L e )

1/2 1/2
= (% /I[F(a)-Fl]zda) + (LII—‘/J[F(T)—F,]Zd:) + |F; —Fyl.

By the Corollary to the Nirenberg-John theorem in Subsection 1, this is
< 2JCIIFIl. +|F; — Fy|,
and by the lemma at the beginning of Subsection 1, the expression just found is in turn

< 2JC|IFIL, +2|IF]l. (1+ I )

I

logy =
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We see that for s and ¢ >,0,

1/2
(3 [ (ro =P dod) < 20l + 21110 + Hogsts/.

Plugging this expression into the quadruple integral obtained at the end of the preceding
paragraph, we see that

» w2 || F|I2 (1 + (log(s/t))?)
2 < K
Up(r) — (Up(r / / (u2+sz)2(u2+t2) dsdt,
where K is a suitable numerical constant and u = 1 —r. Making the changes of variable
s/u=x, t/u =y, the integral on the right becomes

©x2y? (1 + (log x — log y)?) dxdy
K|IF / / 3 ’)
(14 x2)2(1 + y2)2
* x2y? (1 + 2(log x)* + 2(log )?) dxdy
< xiri [ [T )"+ logy)’) dxdy.
(1 4+ x2)2(1 + y?)
But the double integral in this last expression is clearly finite, and has a numerical value
independent of u, hence of r. Therefore, with a numerical constant K,
1/2 ~
(U (r) = (UrnP) " < RIIFIL
and finally, W(F) < K ||F]|.. Q.ED.

Corollary The norms || ||, and N( ) are equivalent.
Proof By the above theorem and the second one of Subsection C.2.

3. Fefferman’s theorem

Combining the equivalence of 9 and || ||, established in Subsection 2 with Garsia’s version
of the Fefferman theorem (Subsection E.4), we obtain the fundamental theorem about
BMO, namely:

Theorem (Fefferman)  The dual of RH,(0) is BMO /(constant functions). If F(8) is real,

of period 2n, and locally integrable, the following three conditions on F are equivalent :

(i) LRf = limg [*, Rf(Re?)F(0)dO exists for every f € Hy(0) and L is a linear
Sfunctional on ‘RH,(0).

(ii)  F(0) = ¢(0) + P(0) with ¢ and v real, 2n-periodic, and bounded.

(iii)) F € BMO.

In case F € BMO, the norm of the linear functional L given by (i) is equivalent to ||F||,, the

BMO norm of F, and we can find bounded functions ¢(0), v1(0), periodic of period 2w, such
that

F(0) = ¢$1(60) + 1(6) + const.,
with
P11l + il < ANFIL. < Bllgill, + llwill),
A and B being numerical constants. Thus, BMO = RL, + ﬁ%.
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Remark At the time the lectures preceding the first edition of this book were being given
(in 1978) one could still say that, for an arbitrary F € BMO, no method was known for
actually constructing ¢ and v € L, such that ¢+ = F, and that the only known proof for
this decomposition was indirect, being based on combination of the Hahn-Banach duality
argument of Section A with the inequalities established in Sections D and E and the present
section. Of course, the Hahn-Banach theorem does have a constructive side to it, at least
insofar as linear functionals over separable Banach spaces are considered. Provided the dual
we are looking at is identified with a space of functions, careful examination of what the
steps used in proving the Hahn-Banach theorem signify concretely in a given situation can
sometimes lead to an explicit construction procedure for the function corresponding to the
linear functional in question. Be that as it may, the existence proof given here is certainly
not constructive as it stands.

A constructive procedure for obtaining the decomposition has, however, been found; it
is due to Peter Jones. He was in fact working on it at the same time that this chapter was
being covered in the lectures (late Spring of 1978), and had obtained his result by the time
those lectures were finished!

G. Alternative proof, based on the atomic decomposition in RH,
As promised in Subsection C.3, we give now an easier proof of the Fefferman theorem based
on the results in Chapter VIII, Subsection E.2. The reader should refer to the definition of
an atom for RH¢(|z| < 1) appearing near the beginning of that discussion.

Lemma Let f(e°) be an atom for RH,(|z| < 1) and F(#) € BMO. Then

} i f(€®)F(6)ds| < ||F]l. .

Proof Let J be the arc of the unit circumference associated with f. Then, since f €?)
vanishes for ¢ ¢ J and [ f(e)df = 0, we have

F(@*)F(9)d6 = / F(@*)F(6)d6 = / F(€°)(F(6) — Fy)de.
—n J J
But |f(e%)| < 1/]J] a.e. The right-hand integral therefore has modulus
1
<L / F(0) = F1]d0 < |IF]. .
|1 Js

A

Done.

Corollary Under the conditions of the lemma,

A

"f(e"“’—“)F(e)de} < |IFI.

for each t € R.

Proof When f (e®) is an atom associated to the arc J of ~the unit circumference,
f-(ei?y = f(e® ) is also an atom, associated to the rotated arc ¢*J. Refer to the lemma.
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Adapting the notation introduced at the beginning of Section C, we write, for integrable
functions f(e”),

—lzI?
IZ elt\Z

Us(2) fléhyde, |zl <1.

Lemma If f(¢) is an atom for RH(]z) < 1) and F € BMO, we have
n

/ Up(Re®)F(6)d6| < |IFI.
—-n
for0O<R< 1.
Proof After making the change of variable ¢ = 6 — 7 in the integral used to get Uy(Re),
we find that
[ (1= RY7(e09)
/Uf(Re' JF(6)do = // TR F(0)dzde

b4 —n —7

i (Jreomon) g5

use of Fubini’s theorem being justified by absolute convergence (f is in L., and F in
Ly(—=n,n) !). Apply the preceding corollary.

We can now use the atomic decomposition obtained in Chapter VIII, Subsection E.2 to
establish the fundamental

Theorem If f € H,(0) and F € BMO,
lim / Rf(R®)F(6) db

exists and is in modulus < B ||f||, | Fll., where B is an absolute constant.

Proof According to the first lemma of Subsection D.3 (with the C figuring therein replaced
by B||F]||.), it is enough to show that for every R < 1,

/ Rf(RVF(O) do

From the theorem at the end of Chapter VIII, Subsection E.2 we have, since f(0) =0,

mf(eiﬂ) = Z anfn(em) a.c.

with the series on the right convergent in L;(—nx, ), where the f, are atoms for RH;(|z] < 1),
and the a, constants with

< BJ|F]l. .

> lasl < BIIfI; -
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For each R < 1, Rf(Re') = Ugn;(Re"") (Chapter II, Subsection B.1!), so by the previous
relation,

Rf(RE’) = > a,Up(Re”), R<1,

with the series on the right now uniformly convergent in 8. Thence, since F € Li(—=, ),

/ Rf(Re?)F(6)d Za,, / U;,(Re®)F(6)d
and the sum on the rlght is in absolute value

< Y lallIFIl. < BIIfIl IIFIl.

by the last lemma. This does it.

On combining the result just found with the statement in Subsection A.2 and the remark
at the end of Subsection B.2, we arrive again at the Fefferman theorem of Subsection F.3.
The reader who has any doubts about how everything is put together may refer to the
discussion in the scholium of Subsection E.4.

H. Representation in terms of radially bounded measures

Fefferman’s theorem, given in Subsection F.3, can be combined with the radial maximal
function characterization of ‘RH; (Chapter VIII, Subsection D.2) to yield, by duality, a
curious representation of functions in BMO. This representation has some resemblance to
the decomposition BMO = RL, + RL,, and was important in the development of the
subject because Carleson published a constructive procedure for getting it in 1976, when a
constructive method for decomposing arbitrary BMO functions into a sum of something
in ML, and something else in RL,, was not yet known (see remark at end of Subsection
F.3). It is still interesting in its own right, and shows a connection between the material of
Chapter VIII, Section D and the present chapter.

1. Radially bounded measures
We will be interested in signed measures v on {|z| < 1} which, roughly speaking, can be
put in the form

dv(re') = due(r) do,
with jol |dug(r)| bounded for 0 < 6 < 2. In order to avoid measure-theoretic niceties and
digressions, we simply take the
Definition A real measure v on {|z| < 1} is called radially bounded if there is a constant C
such that, for any sector (nota bene!) S, of the form
Sy o= {re”; 0<r<1,6,<6<6+h},
we have
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/ |dv(z)] < Ch.

The smallest permissible value of C for which this
relation holds (for all S;) is denoted by |v|".

| II" is a norm for radially bounded measures,
and the ordinary measure norm ||v|| = ffz|<] [dv(z)|
is clearly < 2x|v||". By the last theorem in Chapter
VIIIL, Section F a radially bounded measure is surely
Carleson.

Lemma A radially bounded measure v can be written as a sum u+ o, where:

(i) is radially bounded, and carried on the open circle {|z| < 1};

(il) o is carried on {|z| = 1}, and da(e®) = s(8)dO with s € L.

Proof Let u simply be the restriction of v to {|z| < 1}, and ¢ the restriction of v to
{|z] = 1}. Then, if I is any arc of {|z| =1},

/|da| < |v|"-length I,
1

so ¢ is absolutely continuous with respect to linear Lebesgue measure on {|z| = 1} and has
a bounded density with respect to the latter, ie., do(e') = s(0)df with s € L.,

Definition If v is radially bounded and v = u + o with p carried on {|z| < 1} and ¢ on
{lz] = 1}, and if da(e'’) = s(0)d6, we write

2
P,(0) = s(9>+—//| o due).
|z|<1

Remark The integral on the right converges absolutely for almost all 8, and yields a
function in L, [r, ). This is true for any finite measure p on {|z| < 1}.
Indeed,

e [ iz = 5[] [ 2= wnaen = [

-n |zl<1 lz|<] —m |z|<1

We will eventually prove in this section that BMO coincides with the set of P, for v
ranging over the family of radially bounded measures. In the present subsection, let us just
show that P, € BMO whenever v is radially bounded.

Lemma If U(z) is continuous on {|z| < 1} and harmonic in {|z| < 1}, then

[ U(%)P,()de = z)dv(z),
/ /]

—n |lz|<1
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whenever v is radially bounded.
Proof Putv = pu+o where p is the restriction of v to {|z| < 1} and da(e?) = s(6)d8, s € Le;
we have by definition P,(6) = P,(6)+s(8), with [* U(e)s(8)df = [” U(e?)da(e). Again,
by Poisson’s formula (Chapter 1!), for |z| < 1,

A |z}?
B 27 - |Z _ei€|2

U(z) U(£%)do,

from which, by Fubini’s theorem,

/ / U(z)du(z) = / U(e)P,(0)d6.

lzl<1
We’re done.

Theorem If v is radially bounded, P,(8) is in BMO, and ||P,||, < C|v|" with a numerical
constant C.

Proof By the first lemma of Subsection D.3 and the scholium in Subsection EJ4, it is
enough to show that there is a numerical constant C such that

Rf(R”)P,(0)d0 < CIIfIl IvII*

for all f € Hi(0) and all R, 0 <R < 1.
By the above lemma,

n
/ RF(RE®)P,(6)d0 = / Rf(Rz)dv(z),
—n zI<1
since Rf(Rz) is harmonic for |z| < 1 and continuous for |z| < 1. Taking a large integer N,
we put h = 2n/N and break the closed unit disk up into the N non-overlapping sectors

Suin) = {reé’; 0<r<1,nmh<@<@m+1h}, n=0,1,2,...,N—1.

Fixing R, 0 < R < 1, we have

N—-1
. [[#rraoe) < 3 [[ims@aniavean.
n=0 y

lz|<1 Sh(n)
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For each n there is, by the continuity of Rf(Rz) on {|z| < 1}, a z, € Sy(n) with

[ e = ke [ [ 1ava,

Sn(n) Sk(n)
and the right side is in turn < |Rf(Rz,)|||v|*h by definition of |v|*. Writing z, = r,ei
where nh < 0, < (n+ 1)h and 0 < r, < 1, we see that |Rf(Rz,)| < supy.,<; |Rf(Rre)),
and the preceding relations make

/ Rf(Rz)dv(z)

lzl<1

On the right we have a Riemann sum for the integral

2n
/ sup |Rf(Rre%)|do
0

O<r<i1
whose integrand is a continuous function of 6 (since R < 1). For large N, the right-hand
side of the last inequality is hence as close as we like to

2n
vl / sup [Rf(Rre")]dd,
0 O<r<i

N—-1

< ity sup |Rf(Rre®)| - h.

n—0 O<r<

and thus

‘ / Rf(Rz)dv(z)

1z|<1

We therefore have

2n
< ||v||'/ sup |Rf(Rre?)|d6.
9 0<r<i

n n

mf(Re"”)PVw)de{ < Ivl* [ sup [Rf(re”)|do
—n —n 0<r<i

for every f € H(0) and all R < 1, using the formula at the beginning of this proof. By a

corollary at the end of Subsection C.3 in Chapter VIII,

/ sup [Rf(re?)do < C 1],

—n 0<r<1

for f € H,. Substituting this into the previous inequality, we obtain

Rf(R")P,(0)d6 | < CIvI"IIfll; ,

1

and the proof is complete.

Remark  This result only depends on the ‘easy part’ of Fefferman’s theorem.

2. Linear functionals on ‘RH;(0) are generated by radially bounded measures
We now set out to establish the converse of the theorem in Subsection 1.

Lemma* Let [lv|" < M, k = 1,2,3,.... Then there is a subsequence {v} of {w}, a

* A mistake in the first edition’s version of this lemma was pointed out to me by Jim
Thomson.
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constant ¢, |c| < 2nM, and a radially bounded v, |v|* < M, with
dvy, - cdé+dv w

on {|z| < 1}. Here, & is the unit point mass at 0.

Proof By a remark at the beginning of Subsection 1, |v| < 2x|lw|* < 2rnM, so some
subsequence of the v, does converge w* to a measure u on {Jz| < 1} with ||u| < 2zM. Let
v be the restriction of u to {0 < |z| < 1}. Then it is easy to verify that ||[v||* < M. Since u is
a multiple of § plus v, the lemma follows.

Theorem Let F(60), real and 2n-periodic, belong to BMO. There exists a radially bounded
real measure v with

F(6) = P,(8) + constant.
We can take v so as to satisfy
Ivl* < KIIFll. ,
where K is a numerical constant.

Remark Putting u = restriction of v to {|z] < 1} we have, by a lemma of Subsection 1,
1—]z)?

F(#) = const + s(0) + —// T du(z)

|zj<1
with s(0) € L. This looks a little like the basic decomposition
F(0) = ¢(0) + $(0)
with ¢ and y € L.
Proof By the hard part of Fefferman’s theorem (Subsection F.3 or Section G), the function
F € BMO defines a functional L on RH;(0) according to the formula

L(Rf) = Il{i_t}ll /_ " Rf(REO)F(0)d0, f € Hy(0).

We have |||L||] < A}|F]|. with a numerical constant A.
Let, for each M > 0,

Km = {Py; vreal, |v|" < MI|ILIII}.
K is a convex set.
I claim that, for sufficiently large M, L is in the w* closure, over RH(0), of the linear
functionals corresponding to the P, in K.
If v is radially bounded, it is convenient to denote by L, the linear functional on RH;(0)
corresponding to P, : it is given by the formula

L) = Jim [ " Rf(Re"P,(6)d8, f € Hy(0).

We are to prove that if M is large enough, L is in the w* closure of the L,, ||v||* < M|||L|||.

For given M, suppose that L is not in the w* closure of the L,, |v|* < M]||L|||. Then
there is a w*-closed hyperplane separating L from the convex set of these L,. That is,
there is a g € H;(0) with L,(Rg) < L(Rg) whenever |v|* < M]||L||. Now the set of L,
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under consideration contains 0 and is taken onto itself on multiplication by —1. Therefore
|L,(Rg)| < L(Rg) for |[v[|" < M]||L|||, and without loss of generality we can take L(Rg) = 1;
otherwise, use a suitable positive multiple of g in place of g.

Thus, for |v|I" < M||IL]||, |L,(Rg)| <1 whilst L(Rg) = 1.

For the moment, write M|||L||| = B. We can find v with |v|" = B such that L,(Rg) is as
close as we please to
n
B / sup |Rg(ré”)|d6.
—n 0<r<l1
Indeed, we can, by Lebesgue’s monotone convergence theorem first find an R < 1 such that
T
B- / sup |Rg(Rre)|do
—r 0<r<i1

is already within, say, e of the preceding (finite!)  expression. The function
g5 (6) = supgo,< |Rg(Rre?)| now being continuous, we see that the sum

BZ (271: ) 2n

is in turn within € of the previous 1ntegra1 if N is sufficiently large. Let, for 8, = (2n/N)n,
the actual maximum

sup |Rg(Rre'™)| = gi(f,)

O<r<i

be attained* for r = r,. Then the previous sum equals

N
; 2n
\ B 1Rg(Rrae™)|- 7
n=1
Rg(Rz) is unifgrmly continuous for |z| < 1. Therefore, if N is large, Rg(Rr,e®) oscillates
by less than €/ nB when 0 runs from 2n(n — 1)/N to 2nn/N, no matter what the value of
€ [0,1] may be. Thence,

0, .
%‘.‘Rg(anem") —/ ‘.Rg(Rr,.e'o)dG‘ <

n—1

€
NB
forn=1,2,...,N, no matter what the r, are, as long as N is large. Let €, = sgn Rg(Rr,e').
Then

BZ / Rg(Rr,e’) - e,do

differs at most by € from

N 2n
00, .
BE [Rg(Rrne™)| N

n=1

* ry is surely not 0, because g € H;(0) is zero at the origin but does not vanish identically
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hence at most by 3¢ from

B / sup |Rg(re®)| do,

—n O<r<l

if N is large.
For such a large N, which we now fix, let us define a measure v on {|z| < R} as follows:
in the sector 0,_; < 0 < 8,, v is carried on the circular arc |z| = Rry, and on that arc,

dv(Rrpe®) = Be,do, 0, <6 <0,.

Clearly,

N 0,
BY / Rg(Rrne®)e, df = / Rg(z)dv(z),
n=1 V01

lzI<R
and it is evident that ||v|* = B.
Since v is supported on {|z] < R} and R < 1,

/ Rg(z)dv(z) = 11_{1}// Rg(rz)dv(z) = 1i_r}}/n Rg(re®)P,(0)d8,
lzl<1 o

the last relation holding by a lemma in Subsection 1, because, when 0 < r < 1, Rg(rz) is
continuous for |z| < 1 and harmonic for |z| < 1. That is,

L,(Rg) = / Re(z) dv(z).

|z]<1

We have thus found a v, ||v|* = B, such that L,(Rg) is within 3¢ of

B/ sup lmg(rem)|d6,

—r O<r<l1
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proving our assertion.
Because of this, |L,(Rg)| < 1 for ||v]" < M|||L||| = B implies that

s

ML sup |Rg(re”)|do < 1.
1

— O<r<

Now, by Chapter VIII, Subsection D.2,

there is a numerical constant K such that

lgll, < K / sup |Rg(re)|do

—n O<r<1

for g € Hi(0).

On account of this, we see that |||L]||||gll, < K/M.
However, we also had L(Rg) = 1. Therefore |||L||||lg]|, = 1 and 1 < K/M, that is

M<K.

We see that L certainly IS in the w" closure of the L, for |v|" < M|||L||| provided that
M > K, the numerical constant furnished by the result of Fefferman and Stein in Subsection
D.2 of Chapter VIIL. That means that, for such M, we can find a sequence* of measures
v, Ivll” < MI|ILI||, with

ka -k_) L W'.

The lemma at the beginning of this subsection now shows that the dv, belonging
to a subsequence converge W*, as measures, to some du supported on {|z|] < 1} with
dy = cdd + dv and that ||v||* < M|||L|||, ¢ being the unit point mass at the origin. Without
loss of generality,

*

dvy - cdd + dv w

AS MEASURES.
Recall that L was the linear functional on RH,;(0) corresponding to the BMO
function F':

L(®f) = lim / Rf(Re)F(0)dD.
= Jn
I claim that
F(0) = P,(0) + const.
For each n = 1,2,3,... the function z" is in H{(0), so each of the functions r" sz)ns } né is

in ®RH,(0). Take any such function and call it U(z). Because U(z) is continuous on {|z| < 1},
we here have simply

LU = lim [ UGe®)F(0)do — / " Ue®)F(0)do ;

r=1J g —n

* our set of L, is bounded, and RH;(0) separable
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similarly, for each v,
s
LU = / U(e®)P, (0)do.
-

By a lemma in Subsection 1, due to continuity of U(z) on {|z| < 1} and its harmonicity

in the interior thereof,
/ U(”)P,, (8)d / / (z)dvi(z

lz|<1
Since U(z) is continuous on |z| < 1 and dv, - cdd+dv  w" as measures while U(0) =

// (z)dwi(z) - cU( 0)+// U(z)dv(z // (z)dv(z);

lzl<l 251 lzl<1
the integral on the right is, however, [* U(e®)P,(8)df by the lemma already used. That is,

n
LU — [ U(")P,(0)d6.
—n
At the same time, by w" convergence of the functionals L,, to L,
n

LU - LU = [ uE)Fe)s

-7

>

In fine,
n n
/ U(%)P,(6)d8 = / U(%)F(9) do
-7 -7
whenever U(¢'?) is of the form cosn@ or sinnf for n = 1,2,3,... . It follows that
F(68) — P,(8) = const.

Here, ||v||" < MI|||L||| < MA||F||, where 4 is a numerical constant and M is any number
larger than K, the numerical constant furnished by the theorem of Fefferman and Stein
given in Subsection D.2 of Chapter VIIIL

The theorem is completely proved.

Remark Together with the theorem of Subsection 1, we see that BMO is identical with
the set of transforms P,(0) for radially bounded v, and that the norms ||P,||, and |v]|* are
equivalent, if two functions in BMO which differ by a constant are considered to be the same.
Problem 10 Let @(z) be % in {|z| < 1}, not necessarily harmonic there, and suppose that

the radial boundary value ®(e”) exists a.e., and that ™ |®(e?) — D(pe’)| d — 0 as p — 1.
If |V®| dxdy = /@2 + ®2 dxdy is a Carleson measure on {|z| < 1}, show that ®(e") is
BMO.

HINT With F € H|(0), R <1, F(Rz) = u(z) +iv(z) (u, v real) and @,(z) = ®(pz),
p < 1, first show that

/(“’ a0 = [[7 (ai—g%)dxdy.

|z|<1
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Wolff’s Proof of the Corona Theorem

A. Homomorphisms of H,, and maximal ideals
H,, is actually a Banach algebra over C, because if f and g € H,, fg € H, and
lfglle < lIfll llgll.- Because Hy, has this multiplicative structure, it is natural to consider
the algebraic multiplicative homomorphisms of H,, onto C.

Let L : H,, — C be such a homomorphism. Since H,, contains the multiplicative identity
1, we must have L(1) = 1. If f € Hy, and A is any complex number of modulus > ||fl]..,
the function (A — f(z))~! belongs to H,, so, since (A — f(z))~'(A — f(z)) = 1, taking L of
both sides shows that L(A — f) can’t be zero. Letting A range over all complex numbers of
modulus > ||f||,, we see that |L(f)| < I|f|l,; an algebraic multiplicative homomorphism
L of Hy, onto C is necessarily continuous, and of norm < 1 as a linear functional on the
Banach space H,. It is in fact of norm equal to 1 because L(1) = 1. The set of such L is
obviously a w* closed subset of the unit sphere in Hy,’s dual ; as such it is w* compact.

For a multiplicative homomorphism L of H,, onto C, the set m of elements of H,,
taken onto 0 by L is a maximal (proper) ideal in H,, because C is a field. So to every
homomorphism corresponds a maximal ideal. Conversely, to every maximal ideal corresponds
a homomorphism of H,, onto C.

Indeed, if m is a proper ideal in H,, so is m, its norm closure. For if f € H, and
11— fll, <1, then f~! € Hy, so m cannot contain f without 1 = f~'f also being in m. So,
m being proper makes ||I —m||,, = 1, and 1 ¢ @m. From this it is manifest that if m is a
(proper) maximal ideal, we must already have m = m.

Take any maximal ideal m. Since it is norm-closed, the quotient ring H,,/m is a (com-
plete!) Banach algebra over C. It is a field because m is maximal. But now a celebrated
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theorem of Gelfand tells us that the only complete normed field over C is C itself! So
H,/m is indeed isomorphic to C, and the canonical homomorphism L of H, onto
H,/m is in fact one of Hy, onto C; we can define L(f) as the unique complex num-
ber A for which A — f € m — there must be one because Hy/m is isomorphic to C.

In this way the set of multiplicative homomorphisms L of H, onto C is in natural
one-to-one correspondence with the set of maximal ideals m in Hy,.

If m is such a maximal ideal and L is the multiplicative
homomorphism of H,, corresponding to it, it is customary
to write

h(m) for L(h)
when h € Hy,. This we do henceforth.

The set of maximal ideals m is denoted by 9. We take for 9 the topology of pointwise
convergence of maximal ideals m (as multiplicative homomorphisms) over H, — 91 is then
compact for the reasons stated at the beginning of this section.

It now becomes natural to look at H,, as a Banach algebra of functions on its set M of
maximal ideals, associating to each f € H,, the function f(m), m € M. M is called the
maximal ideal space of H. This approach, a rather abstract one, has proven quite fruitful;
it is in fact the main point of view adopted in books like Gamelin’s. One complication is,
however, that the space 901 is very large — so vast is it, in fact, that it has many bizarre
properties.

There is, however, a simple subset of 9 ready at hand. If |z| < 1, the point evaluation

f=1@)

is a homomorphism of H,, onto C! So each point z in the open unit circle corresponds in
obvious fashion to a certain maximal ideal, namely the ideal of functions f € H,, vanishing
at z. We denote that maximal ideal by z, also. If we do this, then we can consider the open
unit circle {|z] < 1} as a subset of M.

The natural question now arises :

Is {|z| < 1} w" dense in IMM? If the answer is yes, there is some hope of being able to
arrive at a more concrete description of the very complicated space 1. The conjecture that
the response is positive was known as the corona conjecture. To prove it or disprove it was
the celebrated corona problem.

Carleson solved the corona problem in 1962, in the positive sense. His proof of what has
come to be known as the corona theoremwas based on an intricate geometrical construction,
of combinatorial character. The construction itself has proved useful for the study of other
problems, especially in the hands of Garnett and his students. It is, however, so difficult to
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master as to discourage many from attempting to go through the details in the proof of the
corona theorem.

This state of affairs has been changed by the work of T. Wolff, done in the spring of
1979. That is why we are able to present a complete proof of the corona theorem in this
chapter.

The corona theorem has two equivalent formulations:
(1) If m € 9 there is a net {z,}, |z, <1, with z, — min M.
2) Iffy,....fn € Hy and
SL’:p |fi(z)] = some & >0

for all z, |z] < 1, there exist functions gi,...,gx € H, such that
figi +fag2+...+ fugn=1on {|z| < 1}.

Let us prove the equivalence.

If (2) is true, let m € Mt and suppose there is no net of z, |z| < 1, which tends w* to m.
By the definition of the w” topology, there exist hy,...,h, € H,, and a § > 0 such that for
each z, |z| < 1, at least one of the inequalities

|h(z) — he(m)| =6, k=1,...,n
must hold. Call fi(z) = h(z) — le(m); fr € Hy. Then all the f,(m) are zero, but for
each z, |z| < 1, some [fi(z)| is = & > 0. Thence, by (2), we get gi,...,8: € Hy, with
gift +...+ gfn = 1. So gy(m)fi(m) + ... + gp(m)f,(m) must = 1! But each fy(m) =0, a
contradiction.

Suppose now that (1) is true, and let fy,..., f, satisfy the hypothesis of (2). If there are
no gi,...,gn € Hy with

gifi+...+gfa=1,
the set of all sums gif, + ...+ gnfn constitutes a proper ideal in H,,. Since 1 € H,, this
proper ideal must be contained in some maximal ideal, say m, by the usual application of
Zorn’s lemma. Then surely fi(m) = 0 for each k. By the truth of (1), we now get a net {z,}
of points, |z,| < 1, with fi(z,) —> fk(m) =0 for k = 1,...,n. The hypothesis of (2) is now
contradicted, so there must in fact be gy,...,8, € Hy, Wwith g1f1 +... + gufn = 1.

Knowing that the corona theorem is true, mathematicians, especially Hoffman, have
indeed been able to obtain a fairly complete description of 91, by getting at the m € I
with nets of points from {|z| < 1}. In this investigation the interpolating sequences studied
in Chapter IX turn out to be of special importance.
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B. The -equation
Wolff’s proof of the corona theorem makes systematic use of the two differential operators

6=l(i—ii> 0= 1(a+ii>

2\ox ady)’ ox  dy/)

A €., function f(z) is analytic if and only if 8f = 0, and then f'(z) = 8f(z). The Laplacian
V2 is equal to 430.

Let g(x) be ¥ and of compact support. Can we solve the equation

0f(z) = g(z)
for |z| < 2, say, with a €, function f (not necessarily of compact support)? We can — one
solution is
/ g(f)dédn dﬁ d'l

where { =& +in.
To see this, let us make the change of variable z —{ = w = u + iv, so that the above
double integral goes over into
/ / d dv.

Since g is of compact support, we can, 1f we restrict ourselves to |z| < 2, rewrite the above

integral as
/ / dudv

|w|<R
with some very large R. Here g is 4, and

/ / dudv
[wi
[WI<R
so the previous expression — call it f(z) — can be differentiated under the integral sign,

yielding
- 1 = dudv
6f(z)=—/ og(z —w) .
n w
[wl<R
I claim that the integral on the right equals g(z). Without loss of generality, take z = 0,

then we have to evaluate
du dv
hm — dg(
p—0 T

p<|w|<R

2

(§u+ (7) (l) =0 forw=#0,

Here, we can replace K] by —l (66 +i ; ) Then, since
0
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the previous expression becomes

Z})‘i%// (au< ww> 6i<

)

p<|w|<R
By Green’s theorem this expression is just
/ du+ldv i / du+tdu
—— lim —
2n p—0 2n
|wl=p =

Now, since R is very large, and g of compact support the line integral around |w| = R is
zero. On putting w = pe'®, the one around |w| = p is seen to be
| 2n
= g(—pe?)do,
0
and as p — 0, this just tends to g(0). So our f does satisfy df(0) = g(0), and in the same
way we get df(z) = g(z). The f given by our double integral is evidently ., since g is.

In what follows we will be interested in solutions f of 8f(z) = g(z), valid in some slightly
larger circle than the unit one, for which sup, |f(e')| is not too large. For this we have the

Lemma (Wolff)  Let h(z) be €, in the circle {|z| < R}, where R > 1. Suppose that, in
f 1
fzl < 13,

(|z|logI |> h(z)* dx dy

and
(1ttog ) oheaxay
are Carleson measures, with ‘Carleson constants’ A and B respectively. Then we can find a
function v(z), % in some circle {|z| < R’} with R' > 1, such that
dv(z) =h(z), |zl <1,
whilst |o(e”)] < 9(\/A + B).

Note For the definition of Carleson measures and their properties, see Chapter VIII,
Section F.

Proof of lemma (As simplified by Varopoulos and Garnett) We may first suppose h(z) to
be redefined for |z| > (1+ R)/2, say, so as to make it €., in all of C and of compact support.
Then the formula described above certainly gives us a €. function vy satisfying

dvo(z) = h(z2).
The trouble is, of course, that |vy(e”)| may get quite large.
If f(z) is analytic in some circle {|z| < R’} with R" > 1, we of course also have
dv=nh
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with v = vy — f in that circle, because 8f = 0. The idea is to choose f so that |v(e?)| does
not get too big.

In the notation of Chapter VII, Section A, vg(e”?) certainly belongs to %. If there is an
f € o (= Hy, N €) such that [|vp— fl],, = S%p lvo(e®®) — f(e®)| < d say, then, if r < 1 is
sufficiently close to 1, ||vo — frlly, is still < d with f,(z) = f(rz), and f, is € in {|z| < 1/r}.
So what we want to find is ||jvg — /|| ; for any d larger than |lvy — 1|, we will have a
solution v, fulfilling the desired conditions and such that |v(e/?)| < d.

By the duality theory of Chapter VII, Section A,

2n
[lvo — |, = sup{ / vo(e€®)F(e)db) ;
0

We may clearly restrict the set of F € Hy(0) over which the above sup is taken to those
having an analytic continuation into some larger circle {|z| < Rp}, with Rr > 1 depending
on F.

For such F, we can apply Green’s theorem as in Chapter X, Subsection D.1, getting

2n
/vo(eio)F(eio)dO =// (log |i—|) V2(vo(z)F(z)) dx dy,
0

|lzI<1

F € Hi(0) and ||F||; < 1} .

because vg(z) is, at any rate, €, in the unit circle and up to its boundary. We have
V2(voF) = 408(vgF) = 40vy0F + 4F30v, because 0F and ddF vanish identically. Also, we
are supposed to have dvy = h, so that ddvy = 8h. Therefore V2(voF) = 4hF’ + 4Fdh, and
the above double integral breaks down to

1 1
4 F(z)0h(z)log — dxd 4 F'(2)h(z)log — dxdy.
[[ Faimitog - axay + 4 [ [ Flamizytop - axdy

|z|<1 |z|<1

Of these two terms, the first is in absolute value

<+ [[%

|z|<1

|0h(z)]|z] log Ii—l dxdy.

Here, since F € H((0), F(z)/z belongs to H, and has the same Hj-norm as F. So, by
the hypothesis, and the definition of Carleson measures, our first term is in absolute value
<4B||F||;.

Regarding the second term, we apply Schwarz’ inequality just as in Chapter X, Subsection
E.1, and see that the second term is in modulus

<[]l s 2

|z|<1 |z|<1

|h(2)|2|z| log ﬁ dxdy.

As in Chapter X, Subsection D.3, we see that it is sufficient to estimate our second term for
F € H,(0) having only a simple zero at the origin, and no others, since any F € H;(0) can
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be written as the sum of two such, each with norm no bigger than its own. But for such F,

FQPE .
//( |z|> Foyy 9 = IF

|z|<1

by a theorem of Chapter X, Subsection D.2. Again,

Ik

|z|<1
for F € Hy(0), by the hypothesis.
We see that, for general F € H;(0), analytic over the closed circle {|z| < 1},

1
|h(z)[|z| log 7] dxdy < A[IF||;

4// F'(z)h(z)log % dxdy| < 8JA4||F||,
lzl<1
(with 8 on the right and not 4 because of the restriction to the kind of F for which Schwarz’
inequality was applied).
Putting the above two estimates together we see that

2n
| wierense| < s/A+ )P
0

for F € H)(0) which are analytic over the closed unit circle. Therefore
llvo — ||, < 8(/4 + B), and the lemma is proved.

C. Proof of the corona theorem

Theorem (Carleson, 1962)  Let fi,...,fs € Hy; suppose ||fell, < 1 for k = 1,...,n and
that for some 6 > 0 we have

sup [fi(2)l > 6

for all z, |z| < 1. There is a number M(3,n) depending only on § and n such that

gifi+gfa+...+gfa=1 on{z| <1}
with some functions g, € Hy, satisfying

gkl < M(6,n).

Proof (Wolff, 1979) The main analytical idea is contained in the case n = 2, which we
proceed to treat first.

It is sufficient to prove the theorem with functions analytic in some slightly larger circle
than the unit one standing in place of the fi. Indeed, once that is done, it will apply to the
functions f")( = fi(rz) where r < 1, giving us some g € H,, with g‘l’)fg’)-l—...-}-g},’)f},’) =1
in |z| < 1. The bounds on the || g(')||OO furnished by the theorem do not depend on r. Therefore,
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on making r — 1, a normal family argument will give us g, € H, (with the ||g||,, admitting
the same bounds) such that
gifi+...+gfu=1.
Here, n = 2, so that we have fy and f, with ||fi|l.,, < 1, |If2ll.. < 1, and, for every z,
lz] <1,
Ifi(z)} > 6 or |faz)] > 0.
Let U(w) be a %, function, depending only on |w|, with
Uw)=0 for |w|<4d/2,
Uw)=1 for |w|>é,
and 0 < U(w) < 1 elsewhere. By the hypothesis, U(f1(z)) + U(f2(z)) = 1 for |z| < 1. Put
U(f(z))
#E) = TR+ U
for k = 1,2. The functions ¢i(z) are clearly €., on some circle {|z| > R} with R > 1, and
¢1(z) + ¢2(z) = 1; in particular, ¢,(z) = 1 wherever ¢(z) = 0 and vice versa. Note also
that each ¢y(z) is zero on the set where |fi(z)] < §/2.
Now

[ $2
—f» = 1.
fr et f2 f2
The trouble is, of course, that ¢;/f1 and ¢,/f2 are not analytic! Here, using an idea that
goes back to Hormander, we look for some new function v(z) which will make

g1=%+vfz and gz=%—vf1

analytic in |z| < 1. Any such v will automatically give us
gifi + &afr =1
in|z| < 1. _ - - -
For analyticity of g, and g, we need 0g; = 0g2 = 0 in {z| < 1. Since df; = df, =0, we

get the conditions

0¢1

i
We have ¢ + ¢ = 1, s0 0¢1 + 0¢2 =0, and therefore the two conditions are compatible,
and equivalent to the single one

+ f200 =

Jf’z f10v =0

. 0,
o = —=.
f1f2
Observe that on the open set where |fi(z)] < 8/2, ¢2(z) =1 so d¢2(z) = 0; on the open
set where [f2(z)] < 6/2, ¢2(z) =0 so d¢pa(z) = 0. Therefore
O 4
- < |0
i 521092]
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on {|z| < 1}, and

0¢a(2)
h(z) = ———
fi(2)f(2)
is a nice %, function defined on some circle {|z| < R} with R > 1.
Now apply the lemma of Section B! We are looking for solutions v to dv = h on some
circle slightly larger than the unit one; as we have just seen, for |z]| < 1,
4 - 4 |U(f1(2)) U (f2(2)) = U(f2(2)) U (f1(2)) |
h(z)] £ —10¢2(2)) = o .
HEI < 521002001 = 55 U(H@)+ UG P
Since U (f1(z)) + U(f2(z)) = 1, this last expression is < K, (|fj(z)| + |f3(z)I) by the chain
rule, where K5 = 46 2sup,, | grad U(w)| depends only on 6. Therefore
1 , , 1
|h(z)*|z|log 7 < 2K; (If1(2)* + If5(2)I?) Iz| log h

But f1,f2 € Hy, are, in particular, harmonic in {|z| < 1}, and |f1(z)| < 1, |f2(2)| <1 there.

The lemmas in Subsections E.2, E.3 of Chapter X now show that
(If1@)F + 1f2(2)1%) IZIIOg ]

is a Carleson measure whose Carleson constant can be taken < some pure number.

dxdy

Therefore

1

|h(z)*|z| log o dxdy

V4
is a Carleson measure whose Carleson constant, 45, can be taken to depend only on 4.
(It is remarkable that the above boxed statement can be proved directly, without appealing
to Chapter X, Section E or the theorem on Carleson measures! Gamelin and Davie first
noticed this — see exercise at the end of this Chapter.)

Now let us look at
_ 002 02 ( _I_f_§>
fifs A2 \fi  f2)°

Of the two terms on the right, the second vanishes identically on the open set where |f;] or
|f2| is < 6/2, and on the complement of that set it is in absolute value

< 8577 sup [ grad U(w)| (If}(2)] + 1132)))°

The first term also vanishes identically on the open set just mentioned, and on its complement
equals

1 2 { U (fZ Z)) }
4f1(z)f2(z) U(fik)+U(faz)) ]~
But V2f(z) = V2f3(z) = 0, so the expression just written only involves f(z) and f}(z) and
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is clearly in modulus < C; (If}(2)* + |f3(2)?), with Cs depending only on 6. We see in this
way that
1 1
[0h(z)]|z| log 7] < Ls (Ifi@)P + 1f5(2)1%) 12| log Ik

By Subsections E.2, E.3 of Chapter X, this makes

1
|0h(z)]|z] log E dxdy
a Carleson measure with Carleson constant, Bs, depending

only on é since |fi(z)| < 1, |f2z)| < 1in {|z| < 1}.

The lemma thus gives us a v(z), %, in some circle slightly larger than the unit one, with
dv = hin {|z] < 1} and |v(e")| < 9( /45 + Bs). The functions
g1 = %+vf2 and g = %_Ufl
will be in H,, — even in & — and satisfy g;f1 + g2f> = 1 in {|z| < 1}. Clearly, for |z] < 1,

BENEIS T, 1< 3,
so fork =1,2,

. 2
lgk(e?) < 5 +9(V45 +Bs),

ie.,
2
llgll,, =< 5 +9(v/As + Bs),
proving the theorem for n = 2.

For n > 2, the situation is more complicated algebraically. Given f1,..., f, with ||fi|],, < 1
and supy |fk(z)| > ¢ for all z in the unit circle, we take the function U(w) used above and
put, fork=1,2,...,n,

U(fi(2))

PO = TR UG+t UG

Each ¢y vanishes identically on the set where |fi| < §/2, and

S tilz) =1
1

for |z| < 1.
Assuming, as we may, each fi(z) to be analytic over the closed unit circle, we search for
analytic functions g, of the form

g = %‘l‘zj:vkjfj
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with certain, as yet unknown, functions v,; which we require to satisfy v; = —uvy,
v =0, so as to automatically have
gifi+...+gufn = 1.
For analyticity of the gi, we need dg, = 0, which means that the v;; must satisfy
0 -
ﬂ +Zf,~6vk,~ = 0.
i ;
This holds if, for instance,
b = i =
——0h; — —L-0¢x,
ffi 7 fife

as may be verified directly using the relations ¢y +...+ ¢, =1, d¢; +...+dp, = 0.
Here, we first solve each of the equations

évkj =

L b =

= g 000
and then put vgj = wxj — Wy, so that v will equal —vj. automatically. The lemma, applied
in the same way as for the case n = 2, shows us that we can get solutions wy(z), ¥, on a
circle slightly larger than the unit one, and satisfying |wk;(e?)] < M5, a number depending
only on ¢. The (analytic) g, obtained from these wy; via the vy; will satisfy

2
llegelle < 5 +2(n—1)Ms,

and g1f1 +g2f2+...+ gnfa =1 on {lz| < 1}.
The corona theorem is completely proved !

Exercise Let f € Hy,. Show directly, without appealing to the lemmas of Chapter X,
Subsections E.2, E.3 or the theorem at the end of Chapter VIII, Section F, that
Lo,

|z| log mlf (z)/* dxdy
is a Carleson measure.
Hint: One may suppose that f(z) is analytic in a slightly larger circle than {|z] < 1}, and
has no zeros there. If F € H{(0) has only a simple zero at the origin and is analytic in a
circle slightly larger than {|z| < 1}, apply the inequality

, I(fF)? |F'|2
’F 2 2112
[(f)Fl < 2if] IF] +2|f] Fl

(idea of A.M. Davie).



Appendix |
by V.P. Havin
Jones’ Interpolation Formula

1. P. Jones has proposed a surprisingly simple and direct proof of Carleson’s interpolation
theorem (Chapter IX, Subsection B.3). We present this proof here, having in mind the
second variant of Carleson’s theorem (i.e., the one for the disk and not the half plane; see
the end of Subsection B.3, Chapter IX).

Let {z,}72, be a sequence of distinct points of the disk D = {|z| < 1}, with

lzi|<lzal <. and Y (I—|zl) < co.

We shall need the Blaschke product

B=]]bn

n=1

where ba(z) = (Izal/2a)(zn — 2)}/(1 —Znz) for z, # 0 (bi(z) =z if z; = 0), and the
products

B, =B/b,.

Suppose that
6 & inf|Bu(za) > O. (1)
n

Carleson’s theorem asserts that under condition (1) there is, for any bounded sequence
w = {w,} of complex numbers, a function f € H,, such that

flzn)=wn, n=12,.... 2)
Let us suppose that we have succeeded in constructing functions ®,, n=1,2,..., analytic
in the disc D and having the following properties:

_J0 k#n _ .
(a) (I)n(zk)—{l’ k= n k,n=12,...;
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def

(b) S(z) 2|¢n(2)| <K <

n=1
for all z in D.
Then a solution to the interpolation problem (2) is given by the function

f2) € 3 w@u(2). (3)
n=]

Indeed, the series (3) converges everywhere in D by (b), and its partial sums are uniformly
bounded in D (by the quantity K sup, |wp|). From this it follows easily (from the theorem
on normal families, for example) that f(z) is analytic in D and belongs to H,. Equation
(2) follows from (a). Moreover, | fll.; < K sup|w,|, which means that the mapping w — f
given by formula (3) defines a linear operator, of norm not exceeding K, taking the space
I, of all bounded numerical sequences into the space H.. and putting every point w € I,
into correspondence with a solution f to the interpolation problem (2).

The existence of a sequence {®,} having properties (a) and (b) was proved (under condi-
tion (1)) by Carleson and P. Beurling (see Chapter 7, §2 in Garnett’s book). Subsequently,
P. Jones pointed out a perfectly elementary procedure for the construction of functions
@, (Jones, 1980). Here we derive a simplified variant of Jones’ formula (i.e., interpolation
formula (3) with the @, defined by equation (4) below), following the work of Vinogradov,
Gorin and Hru$Cev (1981). Other variants and applications to interpolation problems are
given in an article by Vinogradov (1983). E.A. Gorin has pointed out a modification
of the Jones formula useful for interpolation by H,, functions continuous up to the unit
circumference; regarding multiple interpolation in H,. see the work of Martirosian (1981).

Let us put

. % 1 -
e = (2log§) . omlz) = 1:’; (1—1z) ,
k=n 4)
| —|zal?\’ Bu(2) (
O(z) = ( 1_;2) S exp(e(an(z) — 3 (2)

Here ¢ is defined by equation (1). The series defining the function «, converges uniformly
in each disk {|z] <r}, r < L, because

14z 4
+ka (1—lzl®) < — (1 —|z)) forlzl<r, k=12,....
1 — 2z 1—r
It is clear that the functions @, satisfy condition (a). Condition (b) is also fulfilled. Moreover,
S(z) < %e—log ;;2 for |z| < 1. (5)

In order to prove the inequality (5), let us introduce the quantities
_ U=z = 1w
|1 - Zkzn\z
An analogue for the half plane of the following lemma was established in the lemma of
Chapter IX, Subsection B.1.

Zk.n
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Lemma ) /_ Ziy < 1/2¢ forn=1,2,...
Proof Let us check that

L= bz = Zio. ©®)
Indeed:
P 1 — 2,21 (1 — 2nZk) — (20 — 2)(Zn — %)
e = 1 Al (a0 ) G
1 ‘bk(zn)| \1 . ankP |1 - anklz .

One need only remove parentheses and bring together the similar terms in the numerator.
Remember now that t < —log(l —¢) for t € {(0,1). Therefore, by (1) and (6),

1
2logs = —log|Buzn)’ = —) log|b(z,)
k#n
> Z 1—”71( Zn szn = Z Zk,ns
ksn ksn k=n+1

and the lemma now follows from the definition of the quantity € and the fact that Z,,, = 1.

Corollary Ra,(z,) < 1/e forn=12,...

Indeed, if k > n, we have |z| > |z,4| and 1 — |z,)?|zc|* < 1 —|z,|*. Therefore

L4121, 12
Roy(zn) = 3 LEEE (g

— 2
k=n ‘1 ZanI

Zn_z‘i;'\z A T
k=n

IA
m | =

We now complete the proof of (5). It follows from (1) that |B,(z)/Bu(z.)| < 1/6 for
n=1,2,... and |z| < 1. The preceding corollary shows that, for |z| < 1,

e |2n)?
[®nl2)l < < (.1 7.2 ‘) exp (—eRay(2)) . N
Put
& (1= 1alP?
7alz) = ;(“_M>
making
z12\ 2
eyt = (AL2L)
|1 — Zpz|

and y,(z) |, O for |z] < 1. Furthermore,

Lo 21,2
Ron(z) = SOHED (1) 5 0,

— 2
— 1=z

since 1 — |z|?|zx|2 = 1 — |z for |z| < 1. Returning to (7), we get (for the sum S(z) defined
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in the statement of condition (b) — translator)
©
e
S(2) < 5> (m(z) = ynri(2) exp(—epn(2))
n=1

when |z] < 1. Let us use the elementary inequality ¢ < e' —1 with t = € (yu(z) — ya41(2)). We
get

L oL

e _ — e _ e e
S(z) < 5 Z (ee(h(z} Yar1(2)) 1) e~ = 5 Z (e enai(z) _ 4 t'/n(l)) < 5

n=1 n=1

Inequality (5) is proved.

2. ‘A thought, once uttered, is a lie” These words of Tiutchev apply to many important
theorems in full measure. Confined within the narrow limits of its formulation, a theorem
does not tell all of the truth about itself and is perhaps only fit for inclusion in a handbook.
Its true meaning is inseparable from the proof (or proofs, if there are several of them).

Jones’ proof prompts us to try to grasp once more the idea of the ‘old’ proof of Carleson’s
interpolation theorem presented in Chapter IX. It might seem that both lead to one and
the same result — the description of interpolating sequences. But they actually yield the
solutions to different problems.

In order to see this, let us consider a finite subset E of the disk . In that case the mere
possibility of extending a function given on E to one in H,, is obvious on the face of it
(think, for instance, of Lagrange interpolation). But the estimation of such extensions in
terms of properties of the set E is another matter. That is what is involved here. Let us
approach the question from afar.

We denote by Rg(f) the trace of a function f on the set E (i.e. its restriction to E
- translator). Let us agree to denote by B,(X) the set of all functions v : X —» C
with supy || < m where m > 0. It is clear that Rg(B(D)) = B{(E), ( E being, as
before, a finite subset of the disk D). In other words, any function p not exceeding
1 in modulus on E can be interpolated on E by a function f in B{(D); such a func-
tion can even be taken to be smooth. The fact that f coincides with yp on the set
E implies nothing about the size of |f(z)| for z € D ~ E. The matter is completely
different when it comes to analytic extensions. For example, the maximum modulus
principle shows that if E contains more than one point, Rg(B(D) N Hy) # B1(E) (a func-
tion taking the values +1 and —1 on E cannot be represented in the form Rg(f) with
f € Bi(D)n H,). It follows from the simplest estimates for the derivative of a function in
H,, that if p oscillates strongly on E, the modulus of any of its analytic extensions to I
must assume quite large values. Interpolation on the set E by functions in H, N Bi(D) is
‘not completely free’ — it can only be ‘more or less free’.

Let us introduce a measure for this freedom: to each function y: E — C we associate
the quantity

M(yp,E) = inf {|Ifllo; [ € He, Re(f) =y}
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and then put
Carl E = (sup{M(,E); v € Bi(E)})”" .

The quantity Carl E will be referred to as the Carleson index of the set E. It is clear that
Carl E < 1 if E contains more than one point. The closer Carl E is to unity, the ‘freer’
is interpolation on E by functions in Hy, N By(ID). Indeed, Carl E is the largest number
m for which Rg(H,, N B(D)) 2 B,(E). The condition supg |p| < Carl E is sufficient for
solvability of the equation y = Rg(f) for an ‘unknown’ f € H, N B{(D); if on the contrary
Carl E < supg |y| < 1, that equation is generally speaking only solvable when vy fulfills
certain special supplementary conditions difficult of survey.

Study of the Carleson indices of sets is of interest in connection with the problem of
describing interpolation sequences. It is easy to see that a sequence is interpolating if and
only if all of its finite subsets have Carleson indices bounded uniformly away from zero.

It is natural to expect that the Carleson index of a set is the larger, the more widely
‘scattered’ are its points. A fairly nice measure for such ‘scattering’ is furnished by the
quantity

8(E) = min{|BE()|: L€E},
where
z—={¢ _
BE =[]k,  bilo)= % Bf = Bfb;!.
teE
Indeed,
o(E)
Carl E > AW, (8)

where A is a positive absolute constant. This is just the estimate provided by both of
the proofs under discussion of Carleson’s theorem. It can be shown (see Chapter 7, §1 in
Garnett’s book) that (8) cannot be improved — by this it is meant that there are sets E with
arbitrarily small 6(E) for which Carl E < A{6(E)/|logé(E)|.

If we look on (8) as the proof’s goal, the advantages of Jones’ proof are incontestable: it
yields, together with the estimate (8), an explicit formula for a linear operator realizing the
interpolation, besides being incomparably shorter and more elementary.

But the ‘old’” proof’s essence is far from lying merely in the estimate (8)! The point is that
the characteristic 6(E) is still too crude (as we shall see below), and can not, in principle,
be used to give a two-sided estimate of the Carleson index. For that another quantity is
needed. Put

(= 1M1~ In)

Zyg = ———=5—> {,neDb;
" =l !
o(E) = sup{Zz,,,dBf(c)rl; neE}.
{e€E

Here is the result to which the ‘old’ proof in fact leads:
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Theorem For every finite set E = D,

a
TE) < CarlE < @, (9)

where a > 0 is an absolute constant.
This inequality captures, almost without loss, the relation of a set’s Carleson index to its

geometry. From it the estimate (8) follows directly — after all, ¢(E) < (a;/6(E))log(e/5(E))
(see lemma in the first section of this appendix). On the other hand,

1
dE) > —. 10
(B) 2 5o (10)
Indeed, let the point {, € E be one for which 6(E) = \Bg,(ﬁo)\. Then
c(E) = Zgg, [BE(L)| ™ = 1/8(E),
since Zy,;, = 1. From (9) and (10) we get
S(E)
———— < Carl E < §6(E 11
Tog(e/3(E)) (%) (an

(the right-hand inequality can also be deduced directly from Schwarz’ lemma).

There is some ‘clearance’ between the left and right-hand inequalities (the logarithm in
the denominator on the left!). It is impossible to get rid of it. Indeed, we have already seen
(i.e., noted — translator) that there are sets E which ‘practically realize’ the left side of (11).
Consider on the other hand the ‘doublet” E, = {—x, x}, where x € (0, 1).

Simple computations show that Carl E, = x and 6(E,) = 2x/(1 + x?), making

6(Ey)
1+ /1= (8(E))?

For small values of x, the set E, ‘practically realizes’ the right side of (11). Moreover,
Carl E, ~ 0(E) for x — 1. Thus, (9) carries more information than (11).

Let us furthermore point out that the estimate (8), very useful for small values of é(E),
loses content for &(E) close to unity. It can be shown (with the help of Earl’s ‘nonlinear’
method — see Chapter 7, §5 in Garnett’s book) that | —Carl E = 0 (/1 —8(E)) for
O6(E) — 1. V.A. Tolokonnikov has observed that the order of magnitude indicated on the
right is sharp; that can be seen in the doublet example just considered.

Carl E, =

We outline a proof of inequality (9).

By the same considerations as in Subsection B.3 of Chapter IX (‘Newman’s procedure’)
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it is easy to show that if Rg(f) = (for f € H,. — translator), we have*

1
MipE) = sup{ 5 /‘Hf( )Bf())dz CxeH lgl <1}

I\)

fia

= sup{ > w05 KH)s g€ i, llglly sl}
{eE
Therefore
(Carl E)™' = sup{M(y,E); v € Bi(E)}
= SUP{ g(C) IL) s weBIE), g€H, gl < 1}
- sup{/mdw; g€ Hy, llgll < 1}, (12)
where pur = Y.cp (1 —13)/IBEQ))) 6 with 6; the unit point mass at {. Here
def 1
[ = +— lg(2)Il dz].
”g|[ I _ (

Let € D and g,(2) - |;1|2)/(1 —#z)*. We have g, € H; and [|g,|l, = 1, and thus

1
Carl E)~ / d Z —_—
( lgql due 2. ”'ClBgE(C)I
Taking the supremum for 5 ranging through E (or even over D), we obtain the right-hand
inequality in (9).
In order to prove the left inequality in (9) we shall proceed from the following character-
ization of Carleson measures (on D), found by S.A. Vinogradov:

Proposition Let u be a positive Borel measure carried on a subset K of the disk D. The
Jfollowing assertions are equivalent :

(iy  There is a number M > 0 such that

/D\h\zdu < M|y, forh€ Hy;

(i)
(1) —sup{/ |'1|22 ) nGK} is < o0;
11— {7l
(iii)
def — Inf? .

S = su / du(l); ED} 18 < 0.

w0 & sup{ [T a0
* Havin’s norm || ||, for Hi(D) is 1/2n times the one used in the body of this book (see

later this page) — translator
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If (i) is fulfilled, we have s(u) < S(1) < aiM < aps(u), where ay and a, are absolute constants.

S.A. Vinogradov has given a direct ‘Hilbert space’ proof of this proposition, independent
of the geometric characterization of Carleson measures (last theorem in Chapter VIII) and
avoiding any use of the maximal function. His procedure is explained at the beginning
of Lecture VII in Nikolskii’s book. All the proof uses is a certain simple and general
estimate for integral operators (the ‘Vinogradov-Senichkin test’) together with estimates of
the Poisson kernel. The geometric characterization of Carleson measures follows easily
from the proposition (and vice-versa). We emphasize, however, that for proving Carleson’s
interpolation theorem (or inequality (9)), that characterization is not necessary! It is,
in particular, not necessary to resort to the lemma of Subsection B.2 (in Chapter IX —
translator) with its ‘dyadic technique’. The geometric characterization’s graphic clarity is
deceptive: there are situations where the apparently less effective criteria (ii) and (iii) prove
to be much more practical. One such arises in the proof of the left-hand inequality in (9),
to which we now return.

If g € Hy and J|g||, < 1, we have g = bh*> where h € Hy, [lAll, = llgll; <1 and bisa
Blaschke product. By the proposition, with K = E,

[ieidue < [P aue < asue) = deie).

Passing to the supremum with respect to g, we obtain, from (12), the left-hand inequality
(9). The theorem is proved.

Here the almost trivial verification that the measure ug is Carleson has been carried
out according to a scheme proposed by S.A. Vinogradov already in 1974. A far reaching
development of this procedure is given in the article by Vinogradov and Rukshin. There
they also consider interpolation problems (multiple interpolation with nodes of unbounded
multiplicity) where the Jones proof cannot be followed (no kind of linear interpolation
operator exists), but the path leading through duality and Carleson measures arrives at its
goal.



Appendix 11
by V.P. Havin
Weak Completeness of the Space Li/H;(0)

1. A sequence {x,} of points of the normed space X is said to be weakly convergent in
itself if limp_,«, x*(x,) exists for every functional x* € X*. We shall say that such a sequence
converges weakly if there is a point x € X for which lim,—, x*(x,) = x"(x) whatever may be
the functional x* € X" (and in that event we say that the sequence {x,} converges weakly
to that point x).

A sequence weakly convergent in itself need not converge weakly — even in the case of a
Banach space X.

Example Let {x,} be a sequence of functions continuous on the segment [0, 1], with the
property that

. 1, t=0

E&“m“{a o<t<l

whilst sup, |[Xall¢,;y < 1. Then

fim [ xndt = ut(0}),
n—o0
[0.1]

whatever may be the complex Borel measure p on the segment [0, 1]. This means that the
sequence {x,} converges weakly in itself in the space ([0, 1]) (by F. Riesz’ theorem on the
general form of linear functionals on a space of continuous functions). But {x,} does not
converge weakly. Indeed, a weak limit x of the sequence {x,} would have to satisfy the
condition

/x®=MW) (1)
[0.1]
for every Borel measure p on [0,1], and that is impossible (substituting u = §, in (1) with
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t € (0,1] and &, the unit point mass at f, we see that x(t) = 0 on (0, 1]; then, however,
x(0) = 0 by continuity and (1) is violated for u = dy).

Definition A normed space X is said to be weakly complete if every sequence of its points
weakly convergent in itself does converge weakly.

Strictly speaking, our weakly complete spaces should be called sequentially weakly
complete, but here we prefer the shorter term.

The space ([0, 1]) is not weakly complete as we have seen. A broad class of weakly
complete spaces consists of the reflexive normed spaces. Indeed, let {x,} be a sequence
weakly convergent in itself in the Banach space X. Put

O(x") = lim x™(x,) forx™ € X". (2)

By the Banach-Steinhaus theorem (uniform boundedness principle — translator), ® belongs
to the second adjoint space X*". If X is reflexive, there is a point xq € X with

®(x") = x"(xep) forx’ € X".

To that point the sequence {x,} converges weakly.

All the L, for p € (1,00) are in particular weakly complete, as are all of their closed
subspaces (a closed subspace of a reflexive space is indeed reflexive). Therefore the Hardy
spaces H, (for the disk and the half plane) are weakly complete when 1 < p < co (reflexivity
of these spaces also follows directly from the results in Chapter VII).

2. An example of a non-reflexive weakly complete space is provided by L; (here that symbol
designates the space L(T,m) with T the unit circumference and m normalized Lebesgue
measure on T (m(T) = 1), but L, is also weakly complete when formed for general measure
spaces). In this appendix we establish weak completeness of the factor space L;/H,;(0) (and,
in passing, of the space L;).

Let % < L, (= L..(T,m)). We shall say that a sequence {f,} of functions in L(T,m) is
#-weakly convergent in itself if lim,_,.. [ f,y exists for every function y € #. (From now
on, [ F always denotes [, F dm.)

A set # < L, will be called rich if, for each sequence |f,], #-weakly convergent in
itself, there is some f € L; such that

fim [ fuy = [fy (3)
for every y € #. We will prove that the sets L., and H.. are rich. That will imply that the
spaces L; and L;/H,(0) are weakly complete (indeed, (L,)” = L.. and (L;/H;(0))" = H,;
the second isomorphism is established in Chapter VII, see the first table of adjoint spaces
in Subsection A.1).

Let us enumerate four properties of a set % ensuring, as we shall see below, its richness.
Formulation of the first property involves the so-called w-convergent sequences. We say
that a sequence |y,} of functions in L, w-converges to a function y € L. if sup, ||ya|l,, <o
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and lim,_,. Yn(z) = y(z) for almost all (m) z € T. A subset of the space L., will be called
w-closed if it contains the w-limit of each w-convergent sequence of its points.

I. % is a w-closed subalgebra of L, (in particular, % is a norm-closed subspace of L,).

II.  Given any closed subset E = T of Lebesgue measure zero, one can find a uniformly
bounded sequence of functions in ¥ N % converging pointwise (i.e., everywhere —
translator) to yg (the characteristic function of E) on the circumference T; we are
writing € for €(T).

III.  Every function in % is the w-limit of a sequence of functions in ¥ N%.

IV. To each Lebesgue measurable subset E of the circumference T one can assign functions
kg, Kg (belonging to % - translator) in such fashion as to have
(a) lke(2)l + |Kg(z)l < 1forz € T;
(b) supg |Kg — 1| — 0and [|Kg|— O when m(E) — 0;
(c) supg lke] = O and [ |1 —kg| > 0 when m(E) — 0.

The pair Kg, kg is something like a partition of unity for the circumference T; if the
Lebesgue measure of the set E is small, Kg is uniformly close to 1 on E and small ‘in the
mean’, while kg is uniformly small on E and close to 1 ‘in the mean’. Here is the simplest
(and a trivial) example: % = L,,, Kg = xg, kg = y1~E-

Theorem If the set % < Lo, has properties I-1V, it is rich.

Weak completeness of L; (i.e., richness of the whole space L) follows immediately from

this theorem. Property I is obviously enjoyed by L. The continuous functions

mz) & (1-1dist (z,E))", zeT,

form a bounded sequence converging pointwise to xg (when E = T is closed — translator),
so condition II is also fulfilled. Condition III is easy to verify, with the help of Fatou’s
theorem on Poisson integrals, for example, and condition IV we have already checked.

The verification of conditions I -IV for % = H,, requires more work, and we carry it out
below in Section 3. At present we proceed to the proof of the theorem. It is based on a
lemma about regular functionals on L.

Definition Let % = L. A functional ® € (Ly)" is called #-regular if there is a function
f € Ly such that

o(y)=[fy 4
for every y € %.

Example Let us extend (by means of the Hahn-Banach theorem) the functional ‘evaluation
at the point 1’ from % to L. It is easy to see that the functional thus obtained is not
%-regular (and a fortiori not L.-regular).

Lemma Let % be a subspace of Ly, enjoying properties II and III, and let ® € (Lo,)*. The
following assertions are equivalent :
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(i) @ is Y-regular

(ity @ is continuous on ¥ with respect to w-convergence, i.e., lim,_,, ®(y,) = 0 whenever
the sequence {y,} of points of ¥ w-converges to zero.

Proof

(i) = (ii) by Lebesgue’s dominated convergence theorem.

(il) = (i). Put &4 = ® | ¥ N %. By the Hahn-Banach theorem, ®; has a continuous
extension from the subspace € N % of € to all of €. Therefore, by the theorem of F. Riesz,
we get a complex Borel measure v on the circumference T such that ®@(y) = [ydv for
y € € n#. If (ii) holds, v must be absolutely continuous with respect to m. Indeed, let E
be a closed subset of T. It suffices to prove that v(E} = 0 if m(E) = 0. Let then {y,} be a
sequence of functions in % N % corresponding as in condition II to the set E. Then, by (ii),
limy—-, ®¢(yn) = limy_,,, ®(y,) = 0 (since y, is w-convergent to O !). But by Lebesgue’s
bounded convergence theorem (y, tending everywhere to yg — translator),

lim @4 (y,) = lim [y, dv = [ggdv = v(E).
n—x n—oC
Thus, v is absolutely continuous with respect to m, making dv = fdm for a certain

function f in Ly, and (4) is true for each y € # N %. From condition (ii) and property III
of the space # it now follows that (4) holds for any y € #. Q.E.D.

Let us continue with the proof of our theorem. Let {f,} be a sequence #-weakly
convergent in itself. Put (cf. (2))

(I)n(y) = ffny and (l)(y) = limn—ws (Dn(Y)

for y € #. According to condition I, % is a closed subspace of L.,. Therefore the functional
® is continuous on ¥ by the Banach-Steinhaus theorem (uniform boundedness principle
— translator). Let us extend it to all of L., with preservation of continuity and linearity —
the extended functional we continue to denote by the same letter ®. The theorem will be
proved if we can verify that @ is #-regular.

Put 4 ={y € ¥, ||yll, <1}. On B, we define a new metric, setting

def

p(y1,y2) = [y —yal foryi,y, € By.
The sphere % equipped with the metric p turns out to be a complete metric space. Indeed,
if the sequence {y,} of points of % is Cauchy for the metric p, completeness of the space

L (in norm || ||, - translator) gives us a y € Ly with
lim [ [y, —yl =0. (5)

In such case we can extract from {y,} a subsequence w-convergent to y so, by condition I,
y € %; (5) now shows us that y € B, and that lim,_.. p(y,, y) = 0. Completeness of the
sphere 4., with respect to the metric p is established.

Denote by ¢, the restriction of the functional @, to the sphere #.,. Put ¢ =@ [ B,4. It
follows from Lebesgue’s dominated convergence theorem that each of the functions ¢, is
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continuous with respect to convergence in the metric p. (Translator’s note: Suppose that
for some § > 0 and some n we have |@,(yk) — @a(y)| = 6 with y and the y; in 4, and
P(yk,y) = 0. A suitable subsequence {y;, } of {»} is then w-convergent to y — see above —
but that makes @n(yx,) — @a(y) = ffn(yk] —y) - 0 by the theorem of Lebesgue referred
to, and we have a contradiction.) The function ¢, equal to the pointwise limit of the ¢, on
the complete metric space %y, p, is therefore p-continuous at some point b of the sphere
Ay (according to the well-known theorem of Baire whose proof can, for instance, be found
in Yosida’s book).

It is clear (by the bounded convergence theorem — translator) that w-convergence of
points in #., implies their convergence in the metric p. Therefore our point b € %, has the
property that

’}Ln} ®(z,) = ®(b) for any sequence of points z, in the sphere
% p-convergent (or w-convergent — translator) to b . 6)

The italicized words of this statement are most vital. If we could dispense with them, the
proof of our theorem could be completed immediately: taking a sequence {x,] of points in
%, w-convergent to zero, we could write the identity

—O(xp) = —®(b) + D(z)

with z, = b — x,, and thus convince ourselves that lim,_.. ®(x,) = 0 (the z, being w-
convergent to b). The functional ® would turn out to be regular (by the lemma). The
trouble is, however, that the points z, w-convergent to b may leave the sphere %,; on
account of that some work still lies ahead of us.

Two properties of the functional @ are at our disposal: property (6) and ®’s continuity
with respect to the norm for L. Therefore the quantity |®(x)| is small if the vector x € #
is the sum of a fixed number of others, each of which is either very small in L., norm or
of the form +(b — v) with v lying in B4 and close in the metric p to b.

Let then {x,} be a sequence of elements of the space % w-convergent to zero. We
verify that lim,,, ®(x,) = 0. Without loss of generality we may suppose that x, € %y
for n = 1,2,..., for otherwise we could go over to the sequence of points x,/ supy ||xl,,.
Taking a small number ¢ > 0, we put

E, = Ey06) = {z€T; [xu(2)| > (7}~
It is clear that lim,_,., m(E,) = 0. Let us write the following identity:
xu = (Kg,xn +ke,b—b) + (b—kg,b) + (1 —Kg,) xa & (o) = b) + (b— o) + 0. (7)
Here Kg, kg is the ‘partition of unity’ from condition IV. We shall see in a moment that
if n is large, the quantities |[v5?]|_, p(vi",b) and p(vP),b) are small, and that v{") and b
belong to #,. That will enable us to prove that the quantity |®(x,)| is small.

The functions Kg,X,, kg,b (and thus the v$), j = 1,2,3) belong to # since that space is
a subalgebra of L. Let us estimate |[v)|| . Ifz € E,, [pP)(z)| < supg, |1 —Kg,| — 0
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('since m(E,) — 0 ); if, on the other hand, z € T ~ E,, then |v)(z)| < 2|x4(z) < 20.
Thus,

[|[v8]], < 20 for all sufficiently large n. (8)

Inclusion of the v$) in %, for j = 1,2 follows from property IV(a) of the functions
K, ki and from the relations x, € 8., b € %4.
Furthermore,

p(".b) < [IKgl+ [ ke, —1] — 0,
p(v,b) < [l —kg| — 0.
Therefore, by (6), limy—-. ® (v{" — b) = lim,,.. ® (! — b) =0, and by (7) and (8),
<

IA

lim sup |®(x,)|

n—rL

whatever may be the value of ¢ > 0. Thus, lim,_,,. ®(x,) = 0, and the theorem is proved.

I@f limsup [|o]]| < 20(®],
n—ac

3. It remains to verify that # = H,_ enjoys properties I-IV.

Property I holds for H, because (by the bounded convergence theorem — translator)
Fourier coefficients are w-continuous functionals, and membership of a function f € L., in
H., is equivalent to the vanishing of its coefficients with negative index.

Property II is easy to establish with help of the Fatou function ¢ for the (closed —
translator) set E constructed in Subsection A.l of Chapter II; the required sequence is
(d)nl‘/,z .

( PJr"oplerty IIL. If y € H,,, Fatou’s theorem makes y(¢'’) = lim,_,; y(re'?) almost everywhere
(m), where

2n
1 - 1—r2
0y _ it
yire?) = 27t/y(e )1—2rcos(6—t)+r2dt'
0

It is clear that sup |y(re”)] < ||y||,,, while the function z — y(rz), z € T, belongs to
% NH, (forr <1 - translator).

Property IV. Verification of this condition is somewhat more involved. The requirements
placed by IV(c), for example, on the function kg (analytic in I and not exceeding 1 in
modulus there!) are not so easy to impose simultaneously. On the one hand it is to be
close to 1 everywhere on T in the metric p (and that makes it close to 1, in a known sense,
everywhere in D). On the other hand it is to be uniformly small on a set of small but
nevertheless strictly positive measure, and that tends to make it small in D.

Let m(E) > 0. Put fg = (xg +ixg) //m(E), where xg is the characteristic function of
the set E and 7 its harmonic conjugate (see Section E of Chapter I). The function fg
extends from T into the unit disk D as an analytic function with positive real part, and

fe(0) = Jm(E), Rfg =1/ /m(E) ae. (m) on E. Putting i(x) = |logx|~'/? for x € (0,1),
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let us introduce the following function gg, analytic in I):

d__ef ( 1 )Z(IYI(E))
8E 1+ fE '

The function gg (more precisely, its boundary value on T) is already almost our kg, and
1 — g¢ almost Kg. Indeed, R(1 + f£)~! is > 0 in D (which permits us to define a single-
valued branch there of (1 + fg) #™EV). Furthermore, |1 + fg] = 1 + Rfg > 1in D, so all
the values (1 + fg(2))~', z € D, lie in the right half disk D N {Rw > 0}. If the measure
m(E) is small, the exponent A(m(E)) is also small, and the set gg(D) is located within a
narrow sector of the disk D, with bisector [0, 1] (and of opening nA(m(E)) ). This means
that for m(E) tending to zero the set gg(D) is contained in an ellipse &(m(E)) with foci at
0, 1, semimajor axis % + o(1) and semiminor axis o(1), i.e., that

lge(z)l + 11 —ge(z)] < 1+u(m(E)) forzeD, 9)

where u is a certain positive function on (0, 1) with lim,_o u(x) = 0. Let us observe moreover

that when m(E) — 0,
g:(0) = (14 fe(0) " ™EV 1| "
supg |ge] < (m(E)Y™EN2 0

Finally, let us put
ke = 8E ‘ P = 1 —ge )
1+ u(m(E)) 1+ u(m(E))
Condition IV(a) is fulfilled by virtue of (9). The first of conditions IV(c) follows from (10).
To verify the second one, it suffices to show that

flge =11 — 0 when m(E) — 0. (11)

The function |Jgg| is uniformly bounded by the semiminor axis of the ellipse &§(m(E)) and
Rge(z) € [0,1] for z € D, so (11) is equivalent to the relation

/‘Rggdm — /ldm =1,
T T

a consequence of (10) ( since gg(0) = Rgp(0) = [ Rgr ). Property IV(b) of the function Kg
follows in evident fashion from what has already been proven.

Our theorem can thus be applied with % = H., showing that space to be rich and
Ly /H;(0) weakly complete. This fact was established independently and by different methods
in the papers of Mooney (1972) and Havin (1973); see also Amar (1973). Subsequently,
the proof was simplified (Havin, 1974), but the construction of partitions of unity remained
comparatively complicated. Here we have reproduced the very simple construction proposed
by Garnett.

In connection with this appendix see Garnett’s book. The theorem on weak completeness
of the space L, is a classical result (see the theorem of Vitali, Hahn and Saks in Yosida’s
book).
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Postscript
The translations of the above two appendices were submitted to Professor Havin, who
then went through them. Besides suggesting some improvements, he has asked that two
more recent proofs of the result on weak completeness of L;/H;(0) be mentioned. These
are in papers by G. Godefroy and J.L. Fernandez; exact references can be found in the
bibliography.
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