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Preface

Noncommutative geometry is the study of noncommutative algebras as if they were
algebras of functions on spaces, like the commutative algebras associated to affine
algebraic varieties, differentiable manifolds, topological spaces, and measure spaces.
In this book, we discuss several types of geometric objects (in the usual sense of
sets with structure) which are closely related to noncommutative algebras.

Central to the discussion are symplectic and Poisson manifolds, which arise
when noncommutative algebras are obtained by deforming commutative algebras.
We also make a detailed study of groupoids, whose role in noncommutative geom-
etry has been stressed by Connes, as well as of Lie algebroids, the infinitesimal
approximations to differentiable groupoids.

These notes are based on a topics course, “Geometric Models for Noncommuta-
tive Algebras,” which one of us (A.W.) taught at Berkeley in the Spring of 1997.

We would like to express our appreciation to Kevin Hartshorn for his partic-
ipation in the early stages of the project – producing typed notes for many of
the lectures. Henrique Bursztyn, who read preliminary versions of the notes, has
provided us with innumerable suggestions of great value. We are also indebted
to Johannes Huebschmann, Kirill Mackenzie, Daniel Markiewicz, Elisa Prato and
Olga Radko for several useful commentaries or references.

Finally, we would like to dedicate these notes to the memory of four friends and
colleagues who, sadly, passed away in 1998: Moshé Flato, K. Guruprasad, André
Lichnerowicz, and Stanis law Zakrzewski.

Ana Cannas da Silva
Alan Weinstein
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Introduction

We will emphasize an approach to algebra and geometry based on a metaphor (see
Lakoff and Nuñez [100]):

An algebra (over R or C) is the set of (R- or C-valued) functions on a space.

Strictly speaking, this statement only holds for commutative algebras. We would
like to pretend that this statement still describes noncommutative algebras.

Furthermore, different restrictions on the functions reveal different structures
on the space. Examples of distinct algebras of functions which can be associated
to a space are:

• polynomial functions,

• real analytic functions,

• smooth functions,

• Ck, or just continuous (C0) functions,

• L∞, or the set of bounded, measurable functions modulo the set of functions
vanishing outside a set of measure 0.

So we can actually say,

An algebra (over R or C) is the set of good (R- or C-valued) functions on a space
with structure.

Reciprocally, we would like to be able to recover the space with structure from
the given algebra. In algebraic geometry that is achieved by considering homomor-
phisms from the algebra to a field or integral domain.

Examples.

1. Take the algebra C[x] of complex polynomials in one complex variable. All
homomorphisms from C[x] to C are given by evaluation at a complex number.
We recover C as the space of homomorphisms.

2. Take the quotient algebra of C[x] by the ideal generated by xk+1

C[x]
/
〈xk+1〉 = {a0 + a1x+ . . .+ akx

k | ai ∈ C} .

The coefficients a0, . . . , ak may be thought of as values of a complex-valued
function plus its first, second, ..., kth derivatives at the origin. The corre-
sponding “space” is the so-called kth infinitesimal neighborhood of the
point 0. Each of these “spaces” has just one point: evaluation at 0. The limit
as k gets large is the space of power series in x.

3. The algebra C[x1, . . . , xn] of polynomials in n variables can be interpreted as
the algebra Pol(V ) of “good” (i.e. polynomial) functions on an n-dimensional
complex vector space V for which (x1, . . . , xn) is a dual basis. If we denote
the tensor algebra of the dual vector space V ∗ by

T (V ∗) = C⊕ V ∗ ⊕ (V ∗ ⊗ V ∗)⊕ . . .⊕ (V ∗)⊗k ⊕ . . . ,

xiii



xiv INTRODUCTION

where (V ∗)⊗k is spanned by {xi1 ⊗ . . . ⊗ xik | 1 ≤ i1, . . . , ik ≤ n}, then we
realize the symmetric algebra S(V ∗) = Pol(V ) as

S(V ∗) = T (V ∗)/C ,

where C is the ideal generated by {α⊗ β − β ⊗ α | α, β ∈ V ∗}.
There are several ways to recover V and its structure from the algebra Pol(V ):

• Linear homomorphisms from Pol(V ) to C correspond to points of V . We
thus recover the set V .

• Algebra endomorphisms of Pol(V ) correspond to polynomial endomor-
phisms of V : An algebra endomorphism

f : Pol(V ) −→ Pol(V )

is determined by the f(x1), . . . , f(xn)). Since Pol(V ) is freely generated
by the xi’s, we can choose any f(xi) ∈ Pol(V ). For example, if n = 2, f
could be defined by:

x1 7−→ x1

x2 7−→ x2 + x2
1

which would even be invertible. We are thus recovering a polynomial
structure in V .

• Graded algebra automorphisms of Pol(V ) correspond to linear isomor-
phisms of V : As a graded algebra

Pol(V ) =
∞⊕
k=0

Polk(V ) ,

where Polk(V ) is the set of homogeneous polynomials of degree k, i.e.
symmetric tensors in (V ∗)⊗k. A graded automorphism takes each xi to
an element of degree one, that is, a linear homogeneous expression in the
xi’s. Hence, by using the graded algebra structure of Pol(V ), we obtain
a linear structure in V .

4. For a noncommutative structure, let V be a vector space (over R or C) and
define

Λ•(V ∗) = T (V ∗)/A ,

where A is the ideal generated by {α⊗ β + β ⊗ α | α, β ∈ V ∗}. We can view
this as a graded algebra,

Λ•(V ∗) =
∞⊕
k=0

Λk(V ∗) ,

whose automorphisms give us the linear structure on V . Therefore, as a
graded algebra, Λ•(V ∗) still “represents” the vector space structure in V .

The algebra Λ•(V ∗) is not commutative, but is instead super-commutative,
i.e. for elements a ∈ Λk(V ∗), b ∈ Λ`(V ∗), we have

ab = (−1)k`ba .
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Super-commutativity is associated to a Z2-grading:1

Λ•(V ∗) = Λ[0](V ∗)⊕ Λ[1](V ∗) ,

where
Λ[0](V ∗) = Λeven(V ∗) :=

⊕
k even

Λk(V ∗) , and

Λ[1](V ∗) = Λodd(V ∗) :=
⊕
k odd

Λk(V ∗) .

Therefore, V is not just a vector space, but is called an odd superspace;
“odd” because all nonzero vectors in V have odd(= 1) degree. The Z2-grading
allows for more automorphisms, as opposed to the Z-grading. For instance,

x1 7−→ x1

x2 7−→ x2 + x1x2x3

x3 7−→ x3

is legal; this preserves the relations since both objects and images anti-
commute. Although there is more flexibility, we are still not completely free
to map generators, since we need to preserve the Z2-grading. Homomor-
phisms of the Z2-graded algebra Λ•(V ∗) correspond to “functions” on the
(odd) superspace V . We may view the construction above as a definition: a
superspace is an object on which the functions form a supercommutative
Z2-graded algebra. Repeated use should convince one of the value of this type
of terminology!

5. The algebra Ω•(M) of differential forms on a manifold M can be regarded as
a Z2-graded algebra by

Ω•(M) = Ωeven(M)⊕ Ωodd(M) .

We may thus think of forms on M as functions on a superspace. Locally, the
tangent bundle TM has coordinates {xi} and {dxi}, where each xi commutes
with everything and the dxi anticommute with each other. (The coordinates
{dxi} measure the components of tangent vectors.) In this way, Ω•(M) is the
algebra of functions on the odd tangent bundle ◦TM ; the ◦ indicates that
here we regard the fibers of TM as odd superspaces.

The exterior derivative

d : Ω•(M) −→ Ω•(M)

has the property that for f, g ∈ Ω•(M),

d(fg) = (df)g + (−1)deg ff(dg) .

Hence, d is a derivation of a superalgebra. It exchanges the subspaces of even
and odd degree. We call d an odd vector field on ◦TM .

6. Consider the algebra of complex valued functions on a “phase space” R2,
with coordinates (q, p) interpreted as position and momentum for a one-
dimensional physical system. We wish to impose the standard equation from
quantum mechanics

qp− pq = i~ ,

1The term “super” is generally used in connection with Z2-gradings.
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which encodes the uncertainty principle. In order to formalize this condition,
we take the algebra freely generated by q and p modulo the ideal generated by
qp−pq− i~. As ~ approaches 0, we recover the commutative algebra Pol(R2).

Studying examples like this naturally leads us toward the universal envelop-
ing algebra of a Lie algebra (here the Lie algebra is the Heisenberg algebra,
where ~ is considered as a variable like q and p), and towards symplectic
geometry (here we concentrate on the phase space with coordinates q and
p).

♦

Each of these latter aspects will lead us into the study of Poisson algebras,
and the interplay between Poisson geometry and noncommutative algebras, in par-
ticular, connections with representation theory and operator algebras.

In these notes we will be also looking at groupoids, Lie groupoids and groupoid
algebras. Briefly, a groupoid is similar to a group, but we can only multiply certain
pairs of elements. One can think of a groupoid as a category (possibly with more
than one object) where all morphisms are invertible, whereas a group is a category
with only one object such that all morphisms have inverses. Lie algebroids are
the infinitesimal counterparts of Lie groupoids, and are very close to Poisson and
symplectic geometry.

Finally, we will discuss Fedosov’s work in deformation quantization of arbitrary
symplectic manifolds.

All of these topics give nice geometric models for noncommutative algebras!
Of course, we could go on, but we had to stop somewhere. In particular, these

notes contain almost no discussion of Poisson Lie groups or symplectic groupoids,
both of which are special cases of Poisson groupoids. Ample material on Poisson
groups can be found in [25], while symplectic groupoids are discussed in [162] as
well as the original sources [34, 89, 181]. The theory of Poisson groupoids [168] is
evolving rapidly thanks to new examples found in conjunction with solutions of the
classical dynamical Yang-Baxter equation [136].

The time should not be long before a sequel to these notes is due.



Part I

Universal Enveloping Algebras

1 Algebraic Constructions

Let g be a Lie algebra with Lie bracket [·, ·]. We will assume that g is a finite
dimensional algebra over R or C, but much of the following also holds for infinite
dimensional Lie algebras, as well as for Lie algebras over arbitrary fields or rings.

1.1 Universal Enveloping Algebras

Regarding g just as a vector space, we may form the tensor algebra,

T (g) =
∞⊕
k=0

g⊗k ,

which is the free associative algebra over g. There is a natural inclusion j : g→ T (g)
taking g to g⊗1 such that, for any linear map f : g → A to an associative algebra
A, the assignment g(v1⊗ . . .⊗ vk) 7→ f(v1) . . . f(vk) determines the unique algebra
homomorphism g making the following diagram commute.

g
j - T (g)

@
@
@
@
@

f
R
A

g

?

Therefore, there is a natural one-to-one correspondence

HomLinear(g,Linear(A)) ' HomAssoc(T (g),A) ,

where Linear(A) is the algebra A viewed just as a vector space, HomLinear de-
notes linear homomorphisms and HomAssoc denotes homomorphisms of associative
algebras.

The universal enveloping algebra of g is the quotient

U(g) = T (g)/I ,

where I is the (two-sided) ideal generated by the set

{j(x)⊗ j(y)− j(y)⊗ j(x)− j([x, y]) | x, y ∈ g} .

If the Lie bracket is trivial, i.e. [·, ·] ≡ 0 on g, then U(g) = S(g) is the symmet-
ric algebra on g, that is, the free commutative associative algebra over g. (When g
is finite dimensional, S(g) coincides with the algebra of polynomials in g∗.) S(g) is
the universal commutative enveloping algebra of g because it satisfies the universal
property above if we restrict to commutative algebras; i.e. for any commutative
associative algebra A, there is a one-to-one correspondence

HomLinear(g,Linear(A)) ' HomCommut(S(g),A) .

1



2 1 ALGEBRAIC CONSTRUCTIONS

The universal property for U(g) is expressed as follows. Let i : g → U(g) be
the composition of the inclusion j : g ↪→ T (g) with the natural projection T (g)→
U(g). Given any associative algebra A, let Lie(A) be the algebra A equipped with
the bracket [a, b]A = ab − ba, and hence regarded as a Lie algebra. Then, for
any Lie algebra homomorphism f : g → A, there is a unique associative algebra
homomorphism g : U(g)→ A making the following diagram commute.

g
i - U(g)

@
@
@
@
@

f
R

A

g

?

In other words, there is a natural one-to-one correspondence

HomLie(g,Lie(A)) ' HomAssoc(U(g),A) .

In the language of categories [114] the functor U(·) from Lie algebras to associative
algebras is the left adjoint of the functor Lie(·).

Exercise 1
What are the adjoint functors of T and S?

1.2 Lie Algebra Deformations

The Poincaré-Birkhoff-Witt theorem, whose proof we give in Sections 2.5 and 4.2,
says roughly that U(g) has the same size as S(g). For now, we want to check that,
even if g has non-zero bracket [·, ·], then U(g) will still be approximately isomorphic
to S(g). One way to express this approximation is to throw in a parameter ε
multiplying the bracket; i.e. we look at the Lie algebra deformation gε = (g, ε[·, ·]).
As ε tends to 0, gε approaches an abelian Lie algebra. The family gε describes a
path in the space of Lie algebra structures on the vector space g, passing through
the point corresponding to the zero bracket.

From gε we obtain a one-parameter family of associative algebras U(gε), passing
through S(g) at ε = 0. Here we are taking the quotients of T (g) by a family of
ideals generated by

{j(x)⊗ j(y)− j(y)⊗ j(x)− j(ε[x, y]) | x, y ∈ g} ,

so there is no obvious isomorphism as vector spaces between the U(gε) for different
values of ε. We do have, however:

Claim. U(g) ' U(gε) for all ε 6= 0.

Proof. For a homomorphism of Lie algebras f : g → h, the functoriality of U(·)
and the universality of U(g) give the commuting diagram

g
f - h

@
@
ih ◦ f
@@R

U(g)

ig

? ∃!g- U(h)

ih

?
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In particular, if g ' h, then U(g) ' U(h) by universality.
Since we have the Lie algebra isomorphism

g
m1/ε-�
mε

gε ,

given by multiplication by 1
ε and ε, we conclude that U(g) ' U(gε) for ε 6= 0. 2

In Section 2.1, we will continue this family of isomorphisms to a vector space
isomorphism

U(g) ' U(g0) ' S(g) .

The family U(gε) may then be considered as a path in the space of associative
multiplications on S(g), passing through the subspace of commutative multiplica-
tions. The first derivative with respect to ε of the path U(gε) turns out to be an
anti-symmetric operation called the Poisson bracket (see Section 2.2).

1.3 Symmetrization

Let Sn be the symmetric group in n letters, i.e. the group of permutations of
{1, 2, . . . , n}. The linear map

s : x1 ⊗ . . .⊗ xn 7−→
1
n!

∑
σ∈Sn

xσ(1) ⊗ . . .⊗ xσ(n)

extends to a well-defined symmetrization endomorphism s : T (g) → T (g) with
the property that s2 = s. The image of s consists of the symmetric tensors and
is a vector space complement to the ideal I generated by {j(x)⊗j(y)−j(y)⊗j(x) |
x, y ∈ g}. We identify the symmetric algebra S(g) = T (g)/I with the symmetric
tensors by the quotient map, and hence regard symmetrization as a projection

s : T (g) −→ S(g) .

The linear section

τ : S(g) −→ T (g)
x1 . . . xn 7−→ s(x1 ⊗ . . .⊗ xn)

is a linear map, but not an algebra homomorphism, as the product of two symmetric
tensors is generally not a symmetric tensor.

1.4 The Graded Algebra of U(g)

Although U(g) is not a graded algebra, we can still grade it as a vector space.
We start with the natural grading on T (g):

T (g) =
∞⊕
k=0

T k(g) , where T k(g) = g⊗k .

Unfortunately, projection of T (g) to U(g) does not induce a grading, since the
relations defining U(g) are not homogeneous unless [·, ·]g = 0. (On the other hand,
symmetrization s : T (g)→ S(g) does preserve the grading.)
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The grading of T (g) has associated filtration

T (k)(g) =
k⊕
j=0

T j(g) ,

such that

T (0) ⊆ T (1) ⊆ T (2) ⊆ . . . and T (i) ⊗ T (j) ⊆ T (i+j) .

We can recover T k by T (k)/T (k−1) ' T k.
What happens to this filtration when we project to U(g)?

Remark. Let i : g → U(g) be the natural map (as in Section 1.1). If we take
x, y ∈ g, then i(x)i(y) and i(y)i(x) each “has length 2,” but their difference

i(y)i(x)− i(x)i(y) = i([y, x])

has length 1. Therefore, exact length is not respected by algebraic operations on
U(g). ♦

Let U (k)(g) be the image of T (k)(g) under the projection map.

Exercise 2
Show that U(k)(g) is linearly spanned by products of length ≤ k of elements
of U(1)(g) = i(g).

We do have the relation

U (k) · U (`) ⊆ U (k+`) ,

so that the universal enveloping algebra of g has a natural filtration, natural in the
sense that, for any map g→ h, the diagram

g - h

U(g)
?

- U(h)
?

preserves the filtration.
In order to construct a graded algebra, we define

Uk(g) = U (k)(g)/U (k−1)(g) .

There are well-defined product operations

Uk(g)⊗ U`(g) −→ Uk+`(g)
[α]⊗ [β] 7−→ [αβ]

forming an associative multiplication on what is called the graded algebra asso-
ciated to U(g):

∞⊕
j=0

Uk(g) =: Gr U(g) .

Remark. The constructions above are purely algebraic in nature; we can form
Gr A for any filtered algebra A. The functor Gr will usually simplify the algebra
in the sense that multiplication forgets about lower order terms. ♦



2 The Poincaré-Birkhoff-Witt Theorem

Let g be a finite dimensional Lie algebra with Lie bracket [·, ·]g.

2.1 Almost Commutativity of U(g)

Claim. Gr U(g) is commutative.

Proof. Since U(g) is generated by U (1)(g), Gr U(g) is generated by U1(g). Thus
it suffices to show that multiplication

U1(g)⊗ U1(g) −→ U2(g)

is commutative. Because U (1)(g) is generated by i(g), any α ∈ U1(g) is of the form
α = [i(x)] for some x ∈ g. Pick any two elements x, y ∈ g. Then [i(x)], [i(y)] ∈
U1(g), and

[i(x)][i(y)]− [i(y)][i(x)] = [i(x)i(y)− i(y)i(x)]
= [i([x, y]g)] .

As i([x, y]g) sits in U (1)(g), we see that [i([x, y]g)] = 0 in U2(g). 2

When looking at symmetrization s : T (g)→ S(g) in Section 1.3, we constructed
a linear section τ : S(g) ↪→ T (g). We formulate the Poincaré-Birkhoff-Witt theorem
using this linear section.

Theorem 2.1 (Poincaré-Birkhoff-Witt) There is a graded (commutative) al-
gebra isomorphism

λ : S(g) '−→ Gr U(g)

given by the natural maps:

Sk(g) ⊂
τ - T k(g) - U (k)(g) -- Uk(g) ⊂ Gr U(g)

v1 . . . vk - 1
k!

∑
σ∈Sk

vσ(1) ⊗ . . .⊗ vσ(k)
- [v1 . . . vk] .

For each degree k, we follow the embedding τk : Sk(g) ↪→ T k(g) by a map
to U (k)(g) and then by the projection onto Uk. Although the composition λ :
S(g) → Gr U(g) is a graded algebra homomorphism, the maps S(g) → T (g) and
T (g)→ U(g) are not.

We shall prove Theorem 2.1 (for finite dimensional Lie algebras over R or C)
using Poisson geometry. The sections most relevant to the proof are 2.5 and 4.2.
For purely algebraic proofs, see Dixmier [46] or Serre [150], who show that the
theorem actually holds for free modules g over rings.

2.2 Poisson Bracket on Gr U(g)

In this section, we denote U(g) simply by U , since the arguments apply to any
filtered algebra U ,

U (0) ⊆ U (1) ⊆ U (2) ⊆ . . . ,

5
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for which the associated graded algebra

Gr U :=
∞⊕
j=0

U j where Uj = U (j)
/
U (j−1) .

is commutative. Such an algebra U is often called almost commutative.
For x ∈ U (k) and y ∈ U (`), define

{[x], [y]} = [xy − yx] ∈ Uk+`−1 = U (k+`−1)/U (k+`−2)

so that
{Uk,U`} ⊆ Uk+`−1 .

This collection of degree −1 bilinear maps combine to form the Poisson bracket on
Gr U . So, besides the associative product on Gr U (inherited from the associative
product on U ; see Section 1.4), we also get a bracket operation {·, ·} with the
following properties:

1. {·, ·} is anti-commutative (not super-commutative) and satisfies the Jacobi
identity

{{u, v}, w} = {{u,w}, v}+ {u, {v, w}} .
That is, {·, ·} is a Lie bracket and Gr U is a Lie algebra;

2. the Leibniz identity holds:

{uv,w} = {u,w}v + u{v, w} .

Exercise 3
Prove the Jacobi and Leibniz identities for {·, ·} on Gr U .

Remark. The Leibniz identity says that {·, w} is a derivation of the associative
algebra structure; it is a compatibility property between the Lie algebra and the
associative algebra structures. Similarly, the Jacobi identity says that {·, w} is a
derivation of the Lie algebra structure. ♦

A commutative associative algebra with a Lie algebra structure satisfying the
Leibniz identity is called a Poisson algebra. As we will see (Chapters 3, 4 and 5),
the existence of such a structure on the algebra corresponds to the existence of a
certain differential-geometric structure on an underlying space.

Remark. Given a Lie algebra g, we may define new Lie algebras gε where the
bracket operation is [·, ·]gε = ε[·, ·]g. For each ε, the Poincaré-Birkhoff-Witt theorem
will give a vector space isomorphism

U(gε) ' S(g) .

Multiplication on U(gε) induces a family of multiplications on S(g), denoted ∗ε,
which satisfy

f ∗ε g = fg +
1
2
ε{f, g}+

∑
k≥2

εkBk(f, g) + . . .

for some bilinear operators Bk. This family is called a deformation quantization
of Pol(g∗) in the direction of the Poisson bracket; see Chapters 20 and 21. ♦
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2.3 The Role of the Jacobi Identity

Choose a basis v1, . . . , vn for g. Let j : g ↪→ T (g) be the inclusion map. The algebra
T (g) is linearly generated by all monomials

j(vα1)⊗ . . .⊗ j(vαk) .

If i : g → U(g) is the natural map (as in Section 1.1), it is easy to see, via the
relation i(x) ⊗ i(y) − i(y) ⊗ i(x) = i([x, y]) in U(g), that the universal enveloping
algebra is generated by monomials of the form

i(vα1)⊗ . . .⊗ i(vαk) , α1 ≤ . . . ≤ αk .

However, it is not as trivial to show that there are no linear relations between these
generating monomials. Any proof of the independence of these generators must use
the Jacobi identity. The Jacobi identity is crucial since U(g) was defined to be an
universal object relative to the category of Lie algebras.

Forget for a moment about the Jacobi identity. We define an almost Lie
algebra g to be the same as a Lie algebra except that the bracket operation does not
necessarily satisfy the Jacobi identity. It is not difficult to see that the constructions
for the universal enveloping algebra still hold true in this category. We will test the
independence of the generating monomials of U(g) in this case. Let x, y, z ∈ g for
some almost Lie algebra g. The jacobiator is the trilinear map J : g× g× g→ g
defined by

J(x, y, z) = [x, [y, z]] + [y, [z, x]] + [z, [x, y]] .

Clearly, on a Lie algebra, the jacobiator vanishes; in general, it measures the ob-
struction to the Jacobi identity. Since J is antisymmetric in the three entries, we
can view it as a map g ∧ g ∧ g→ g, which we will still denote by J .

Claim. i : g→ U(g) vanishes on the image of J .

This implies that we need J ≡ 0 for i to be an injection and the Poincaré-
Birkhoff-Witt theorem to hold.

Proof. Take x, y, z ∈ g, and look at

i (J(x, y, z)) = i ([[x, y, ], z] + c.p.) .

Here, c.p. indicates that the succeeding terms are given by applying circular per-
mutations to the x, y, z of the first term. Because i is linear and commutes with
the bracket operation, we see that

i (J(x, y, z)) = [[i(x), i(y)]U(g), i(z)]U(g) + c.p. .

But the bracket in the associative algebra always satisfies the Jacobi identity, and
so i(J) ≡ 0. 2

Exercise 4

1. Is the image of J the entire kernel of i?

2. Is the image of J an ideal in g? If this is true, then we can form the
“maximal Lie algebra” quotient by forming g/Im(J). This would then
lead to a refinement of Poincaré-Birkhoff-Witt to almost Lie algebras.
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Remark. The answers to the exercise above (which we do not know!) should
involve the calculus of multilinear operators. There are two versions of this theory:

• skew-symmetric operators – from the work of Frölicher and Nijenhuis [61];

• arbitrary multilinear operators – looking at the associativity of algebras, as
in the work of Gerstenhaber [67, 68].

♦

2.4 Actions of Lie Algebras

Much of this section traces back to the work of Lie around the end of the 19th
century on the existence of a Lie group G whose Lie algebra is a given Lie algebra
g.

Our proof of the Poincaré-Birkhoff-Witt theorem will only require local existence
of G – a neighborhood of the identity element in the group. What we shall construct
is a manifold M with a Lie algebra homomorphism from g to vector fields on M ,
ρ : g → χ(M), such that a basis of vectors on g goes to a pointwise linearly
independent set of vector fields on M . Such a map ρ is called a pointwise faithful
representation, or free action of g on M .

Example. Let M = G be a Lie group with Lie algebra g. Then the map
taking elements of g to left invariant vector fields on G (the generators of the right
translations) is a free action. ♦

The Lie algebra homomorphism ρ : g → χ(M) is called a right action of the
Lie algebra g on M . (For left actions, ρ would have to be an anti-homomorphism.)
Such actions ρ can be obtained by differentiating right actions of the Lie group G.
One of Lie’s theorems shows that any homomorphism ρ can be integrated to a local
action of the group G on M .

Let v1, . . . , vn be a basis of g, and V1 = ρ(v1), . . . , Vn = ρ(vn) the corresponding
vector fields on M . Assume that the Vj are pointwise linearly independent. Since
ρ is a Lie algebra homomorphism, we have relations

[Vi, Vj ] =
∑
k

cijkVk ,

where the constants cijk are the structure constants of the Lie algebra, defined
by the relations [vi, vj ] =

∑
cijkvk. In other words, {V1, . . . , Vn} is a set of vector

fields on M whose bracket has the same relations as the bracket on g. These
relations show in particular that the span of V1, . . . , Vn is an involutive subbundle
of TM . By the Frobenius theorem, we can integrate it. Let N ⊆M be a leaf of the
corresponding foliation. There is a map ρN : g→ χ(N) such that the Vj = ρN (vj)’s
form a pointwise basis of vector fields on N .

Although we will not need this fact for the Poincaré-Birkhoff-Witt theorem,
we note that the leaf N is, in a sense, locally the Lie group with Lie algebra g:
Pick some point in N and label it e. There is a unique local group structure on
a neighborhood of e such that e is the identity element and V1, . . . , Vn are left
invariant vector fields. The group structure comes from defining the flows of the
vector fields to be right translations. The hard part of this construction is showing
that the multiplication defined in this way is associative.
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All of this is part of Lie’s third theorem that any Lie algebra is the Lie algebra
of a local Lie group. Existence of a global Lie group was proven by Cartan in [23].

Claim. The injectivity of any single action ρ : g→ χ(M) of the Lie algebra g on
a manifold M is enough to imply that i : g→ U(g) is injective.

Proof. Look at the algebraic embedding of vector fields into all vector space
endomorphisms of C∞(M):

χ(M) ⊂ EndVect(C∞(M)) .

The bracket on χ(M) is the commutator bracket of vector fields. If we consider
χ(M) and EndVect(C∞(M)) as purely algebraic objects (using the topology of M
only to define C∞(M)), then we use the universality of U(g) to see

g ⊂
ρ- χ(M) ⊂ - EndVect(C∞(M))

��
��
��
��
��
�

∃!ρ̃

*

U(g)

i

?

Thus, if ρ is injective for some manifold M , then i must also be an injection. 2

The next section shows that, in fact, any pointwise faithful ρ gives rise to a
faithful representation ρ̃ of U(g) as differential operators on C∞(M).

2.5 Proof of the Poincaré-Birkhoff-Witt Theorem

In Section 4.2, we shall actually find a manifold M with a free action ρ : g→ χ(M).
Assume now that we have g, ρ,M,N and ρ̃ : U(g)→ EndVect(C∞(M)) as described
in the previous section.

Choose coordinates x1, . . . , xn centered at the “identity” e ∈ N such that the
images of the basis elements v1, . . . , vn of g are the vector fields

Vi =
∂

∂xi
+O(x) .

The term O(x) is some vector field vanishing at e which we can write as

O(x) =
∑
j,k

xjaijk(x)
∂

∂xk
.

We regard the vector fields V1, . . . , Vn as a set of linearly independent first-order
differential operators via the embedding χ(M) ⊂ EndVect(C∞(M)).

Lemma 2.2 The monomials Vi1 · · ·Vik with i1 ≤ . . . ≤ ik are linearly independent
differential operators.

This will show that the monomials i(vi1) · · · i(vik) must be linearly independent
in U(g) since ρ̃(i(vi1) · · · i(vik)) = Vi1 · · ·Vik , which would conclude the proof of the
Poincaré-Birkhoff-Witt theorem.
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Proof. We show linear independence by testing the monomials against certain
functions. Given i1 ≤ . . . ≤ ik and j1 ≤ . . . ≤ j`, we define numbers Kj

i as follows:

Kj
i := (Vi1 · · ·Vik) (xj1 · · ·xj`) (e)

=
(

∂
∂xi1

+O(x)
)
· · ·
(

∂
∂xik

+O(x)
)

(xj1 · · ·xj`) (e)

1. If k < `, then any term in the expression will take only k derivatives. But
xj1 · · ·xj` vanishes to order ` at e, and hence Kj

i = 0.

2. If k = `, then there is only one way to get a non-zero result, namely when
the j’s match with the i’s. In this case, we get

Kj
i =

{
0 i 6= j

cji > 0 i = j .

3. If k > `, then the computation is rather complicated, but fortunately this
case is not relevant.

Assume that we had a dependence relation on the Vi’s of the form

R =
∑

i1,...,ik
k≤r

bi1,...,ikVi1 · · ·Vik = 0 .

Apply R to the functions of the form xj1 · · ·xjr and evaluate at e. All the terms
of R with degree less than r will contribute nothing, and there will be at most one
monomial Vi1 · · ·Vir of R which is non-zero on xj1 · · ·xjr . We see that bi1,...,ir = 0
for each multi-index i1, . . . , ir of order r. By induction on the order of the multi-
indices, we conclude that all bi = 0. 2

To complete the proof of Theorem 2.1, it remains to find a pointwise faithful
representation ρ for g. To construct the appropriate manifold M , we turn to Poisson
geometry.



Part II

Poisson Geometry

3 Poisson Structures

Let g be a finite dimensional Lie algebra with Lie bracket [·, ·]g. In Section 2.2, we
defined a Poisson bracket {·, ·} on Gr U(g) using the commutator bracket in U(g)
and noted that {·, ·} satisfies the Leibniz identity. The Poincaré-Birkhoff-Witt
theorem (in Section 2.1) states that Gr U(g) ' S(g) = Pol(g∗). This isomorphism
induces a Poisson bracket on Pol(g∗).

In this chapter, we will construct a Poisson bracket directly on all of C∞(g∗),
restricting to the previous bracket on polynomial functions, and we will discuss
general facts about Poisson brackets which will be used in Section 4.2 to conclude
the proof of the Poincaré-Birkhoff-Witt theorem.

3.1 Lie-Poisson Bracket

Given functions f, g ∈ C∞(g∗), the 1-forms df, dg may be interpreted as maps
Df,Dg : g∗ → g∗∗. When g is finite dimensional, we have g∗∗ ' g, so that Df
and Dg take values in g. Each µ ∈ g∗ is a function on g. The new function
{f, g} ∈ C∞(g∗) evaluated at µ is

{f, g}(µ) = µ
(

[Df(µ), Dg(µ)]g
)
.

Equivalently, we can define this bracket using coordinates. Let v1, . . . , vn be a basis
for g and let µ1, . . . , µn be the corresponding coordinate functions on g∗. Introduce
the structure constants cijk satisfying [vi, vj ] =

∑
cijkvk. Then set

{f, g} =
∑
i,j,k

cijkµk
∂f

∂µi

∂g

∂µj
.

Exercise 5
Verify that the definitions above are equivalent.

The bracket {·, ·} is skew-symmetric and takes pairs of smooth functions to
smooth functions. Using the product rule for derivatives, one can also check the
Leibniz identity: {fg, h} = {f, h}g + f{g, h}.

The bracket {·, ·} on C∞(g∗) is called the Lie-Poisson bracket. The pair
(g∗, {·, ·}) is often called a Lie-Poisson manifold. (A good reference for the Lie-
Poisson structures is Marsden and Ratiu’s book on mechanics [116].)

Remark. The coordinate functions µ1, . . . , µn satisfy {µi, µj} =
∑
cijkµk. This

implies that the linear functions on g∗ are closed under the bracket operation.
Furthermore, the bracket {·, ·} on the linear functions of g∗ is exactly the same as
the Lie bracket [·, ·] on the elements of g. We thus see that there is an embedding
of Lie algebras g ↪→ C∞(g∗). ♦

11
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Exercise 6
As a commutative, associative algebra, Pol(g∗) is generated by the linear func-
tions. Using induction on the degree of polynomials, prove that, if the Leibniz
identity is satisfied throughout the algebra and if the Jacobi identity holds on
the generators, then the Jacobi identity holds on the whole algebra.

In Section 3.3, we show that the bracket on C∞(g∗) satisfies the Jacobi identity.
Knowing that the Jacobi identity holds on Pol(g∗), we could try to extend to
C∞(g∗) by continuity, but instead we shall provide a more geometric argument.

3.2 Almost Poisson Manifolds

A pair (M, {·, ·}) is called an almost Poisson manifold when {·, ·} is an almost
Lie algebra structure (defined in Section 2.3) on C∞(M) satisfying the Leibniz
identity. The bracket {·, ·} is then called an almost Poisson structure.

Thanks to the Leibniz identity, {f, g} depends only on the first derivatives of f
and g, thus we can write it as

{f, g} = Π(df, dg) ,

where Π is a field of skew-symmetric bilinear forms on T ∗M . We say that Π ∈
Γ((T ∗M ∧ T ∗M)∗) = Γ(TM ∧ TM) = Γ(∧2TM) is a bivector field.

Conversely, any bivector field Π defines a bilinear antisymmetric multiplication
{·, ·}Π on C∞(M) by the formula {f, g}Π = Π(df, dg). Such a multiplication sat-
isfies the Leibniz identity because each Xh := {·, h}Π is a derivation of C∞(M).
Hence, {·, ·}Π is an almost Poisson structure on M .

Remark. The differential forms Ω•(M) on a manifold M are the sections of

∧•T ∗M := ⊕ ∧k T ∗M .

There are two well-known operations on Ω•(M): the wedge product ∧ and the
differential d.

The analogous structures on sections of

∧•TM := ⊕ ∧k TM

are less commonly used in differential geometry: there is a wedge product, and there
is a bracket operation dual to the differential on sections of ∧•T ∗M . The sections of
∧kTM are called k-vector fields (or multivector fields for unspecified k) on M .
The space of such sections is denoted by χk(M) = Γ(∧kTM). There is a natural
commutator bracket on the direct sum of χ0(M) = C∞(M) and χ1(M) = χ(M).
In Section 18.3, we shall extend this bracket to an operation on χk(M), called the
Schouten-Nijenhuis bracket [116, 162]. ♦

3.3 Poisson Manifolds

An almost Poisson structure {·, ·}Π on a manifold M is called a Poisson structure
if it satisfies the Jacobi identity. A Poisson manifold (M, {·, ·}) is a manifold M
equipped with a Poisson structure {·, ·}. The corresponding bivector field Π is then
called a Poisson tensor. The name “Poisson structure” sometimes refers to the
bracket {·, ·} and sometimes to the Poisson tensor Π.
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Given an almost Poisson structure, we define the jacobiator on C∞(M) by:

J(f, g, h) = {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} .

Exercise 7
Show that the jacobiator is

(a) skew-symmetric, and

(b) a derivation in each argument.

By the exercise above, the operator J on C∞(M) corresponds to a trivector
field J ∈ χ3(M) such that J (df, dg, dh) = J(f, g, h). In coordinates, we write

J(f, g, h) =
∑
i,j,k

Jijk(x)
∂f

∂xi

∂g

∂xj

∂h

∂xk
,

where Jijk(x) = J(xi, xj , xk).
Consequently, the Jacobi identity holds on C∞(M) if and only if it holds for

the coordinate functions.

Example. When M = g∗ is a Lie-Poisson manifold, the Jacobi identity holds
on the coordinate linear functions, because it holds on the Lie algebra g (see Sec-
tion 3.1). Hence, the Jacobi identity holds on C∞(g∗). ♦

Remark. Up to a constant factor, J = [Π,Π], where [·, ·] is the Schouten-
Nijenhuis bracket (see Section 18.3 and the last remark of Section 3.2). Therefore,
the Jacobi identity for the bracket {·, ·} is equivalent to the equation [Π,Π] = 0.
We will not use this until Section 18.3. ♦

3.4 Structure Functions and Canonical Coordinates

Let Π be the bivector field on an almost Poisson manifold (M, {·, ·}Π). Choosing
local coordinates x1, . . . , xn on M , we find structure functions

πij(x) = {xi, xj}Π

of the almost Poisson structure. In coordinate notation, the bracket of functions
f, g ∈ C∞(M) is

{f, g}Π =
∑

πij(x)
∂f

∂xi

∂g

∂xj
.

Equivalently, we have

Π =
1
2

∑
πij(x)

∂

∂xi
∧ ∂

∂xj
.

Exercise 8
Write the jacobiator Jijk in terms of the structure functions πij . It is a homo-
geneous quadratic expression in the πij ’s and their first partial derivatives.
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Examples.

1. When πij(x) =
∑
cijkxk, the Poisson structure is a linear Poisson struc-

ture. Clearly the Jacobi identity holds if and only if the cijk are the structure
constants of a Lie algebra g. When this is the case, the x1, . . . , xn are coordi-
nates on g∗. We had already seen that for the Lie-Poisson structure defined
on g∗, the functions πij were linear.

2. Suppose that the πij(x) are constant. In this case, the Jacobi identity is
trivially satisfied – each term in the jacobiator of coordinate functions is zero.
By a linear change of coordinates, we can put the constant antisymmetric
matrix (πij) into the normal form: 0 Ik

−Ik 0 0

0 0`


where Ik is the k × k identity matrix and 0` is the ` × ` zero matrix. If
we call the new coordinates q1, . . . , qk, p1, . . . , pk, c1, . . . , c`, the bivector field
becomes

Π =
∑
i

∂

∂qi
∧ ∂

∂pi
.

In terms of the bracket, we can write

{f, g} =
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
,

which is actually the original form due to Poisson in [138]. The ci’s do not
enter in the bracket, and hence behave as parameters. The following relations,
called canonical Poisson relations, hold:

• {qi, pj} = δij

• {qi, qj} = {pi, pj} = 0

• {α, ci} = 0 for any coordinate function α.

The coordinates ci are said to be in the center of the Poisson algebra; such
functions are called Casimir functions. If ` = 0, i.e. if there is no center,
then the structure is said to be non-degenerate or symplectic. In any
case, qi, pi are called canonical coordinates. Theorem 4.2 will show that
this example is quite general.

♦

3.5 Hamiltonian Vector Fields

Let (M, {·, ·}) be an almost Poisson manifold. Given h ∈ C∞(M), define the linear
map

Xh : C∞(M) −→ C∞(M) by Xh(f) = {f, h} .
The correspondence h 7→ Xh resembles an “adjoint representation” of C∞(M). By
the Leibniz identity, Xh is a derivation and thus corresponds to a vector field, called
the hamiltonian vector field of the function h.
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Lemma 3.1 On a Poisson manifold, hamiltonian vector fields satisfy

[Xf ,Xg] = −X{f,g} .

Proof. We can see this by applying [Xf , Xg] + X{f,g} to an arbitrary function
h ∈ C∞(M).(

[Xf ,Xg] +X{f,g}

)
h = XfXgh−XgXfh+X{f,g}h

= Xf{h, g} −Xg{h, f}+ {h, {f, g}}

= {{h, g}, f}+ {{f, h}, g}+ {{g, f}, h} .

The statement of the lemma is thus equivalent to the Jacobi identity for the Poisson
bracket. 2

Historical Remark. This lemma gives another formulation of the integrability
condition for Π, which, in fact, was the original version of the identity as formulated
by Jacobi around 1838. (See Jacobi’s collected works [86].) Poisson [138] had
introduced the bracket {·, ·} in order to simplify calculations in celestial mechanics.
He proved around 1808, through long and tedious computations, that

{f, h} = 0 and {g, h} = 0 =⇒ {{f, g}, h} = 0 .

This means that, if two functions f, g are constant along integral curves of Xh,
then one can form a third function also constant along Xh, namely {f, g}. When
Jacobi later stated the identity in Lemma 3.1, he gave a much shorter proof of a
yet stronger result. ♦

3.6 Poisson Cohomology

A Poisson vector field, is a vector field X on a Poisson manifold (M,Π) such
that LXΠ = 0, where LX is the Lie derivative along X. The Poisson vector fields,
also characterized by

X{f, g} = {Xf, g}+ {f,Xg} ,

are those whose local flow preserves the bracket operation. These are also the
derivations (with respect to both operations) of the Poisson algebra.

Among the Poisson vector fields, the hamiltonian vector fields Xh = {·, h} form
the subalgebra of inner derivations of C∞(M). (Of course, they are “inner” only
for the bracket.)

Exercise 9
Show that the hamiltonian vector fields form an ideal in the Lie algebra of
Poisson vector fields.

Remark. The quotient of the Lie algebra of Poisson vector fields by the ideal of
hamiltonian vector fields is a Lie algebra, called the Lie algebra of outer deriva-
tions. Several questions naturally arise.
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• Is there a group corresponding to the Lie algebra of outer derivations?

• What is the group that corresponds to the hamiltonian vector fields?

In Section 18.4 we will describe these “groups” in the context of Lie algebroids.
♦

We can form the sequence:

0 - C∞(M) - χ(M) - χ2(M)
h 7−→ Xh

X 7−→ LXΠ

where the composition of two maps is 0. Hence, we have a complex. At χ(M), the
homology group is

H1
Π(M) :=

Poisson vector fields
hamiltonian vector fields

.

This is called the first Poisson cohomology.
The homology at χ0(M) = C∞(M) is called 0-th Poisson cohomology

H0
Π(M), and consists of the Casimir functions, i.e. the functions f such that
{f, h} = 0, for all h ∈ C∞(M). (For the trivial Poisson structure {·, ·} = 0, this is
all of C∞(M).)

See Section 5.1 for a geometric description of these cohomology spaces. See Sec-
tion 4.5 for their interpretation in the symplectic case. Higher Poisson cohomology
groups will be defined in Section 18.4.



4 Normal Forms

Throughout this and the next chapter, our goal is to understand what Poisson
manifolds look like geometrically.

4.1 Lie’s Normal Form

We will prove the following result in Section 4.3.

Theorem 4.1 (Lie [106]) If Π is a Poisson structure on M whose matrix of
structure functions, πij(x), has constant rank, then each point of M is contained
in a local coordinate system with respect to which (πij) is constant.

Remarks.

1. The assumption above of constant rank was not stated by Lie, although it
was used implicitly in his proof.

2. Since Theorem 4.1 is a local result, we only need to require the matrix (πij)
to have locally constant rank. This is a reasonable condition to impose, as
the structure functions πij will always have locally constant rank on an open
dense set of M . To see this, notice that the set of points in M where (πij)
has maximal rank is open, and then proceed inductively on the complement
of the closure of this set (exercise!). Notice that the set of points where the
rank of (πij) is maximal is not necessarily dense. For instance, consider R2

with {x1, x2} = ϕ(x1, x2) given by an arbitrary function ϕ.

3. Points where (πij) has locally constant rank are called regular. If all points
of M are regular, M is called a regular Poisson manifold. A Lie-Poisson
manifold g∗ is not regular unless g is abelian, though the regular points of g∗

form, of course, an open dense subset.

♦

4.2 A Faithful Representation of g

We will now use Theorem 4.1 to construct the pointwise faithful representation of
g needed to complete the proof of the Poincaré-Birkhoff-Witt theorem.

On any Poisson manifold M there is a vector bundle morphism Π̃ : T ∗M → TM
defined by

α(Π̃(β)) = Π(α, β) , for any α, β ∈ T ∗M .

We can write hamiltonian vector fields in terms of Π̃ as Xf = Π̃(df). Notice that Π̃
is an isomorphism exactly when rank Π = dimM , i.e. when Π defines a symplectic
structure. If we express Π by a matrix (πij) with respect to some basis, then the
same matrix (πij) represents the map Π̃.

Let M = g∗ have coordinates µ1, . . . , µn and Poisson structure {µi, µj} =∑
cijkµk. If v1, . . . , vn is the corresponding basis of vectors on g, then we find

a representation of g on g∗ by mapping

vi 7−→ −Xµi .

17
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More generally, we can take v ∈ g to −Xv using the identification g = g∗∗ ⊆
C∞(g∗). However, this homomorphism might be trivial. In fact, it seldom provides
the pointwise faithful representation needed to prove the Poincaré-Birkhoff-Witt
theorem. Instead, we use the following trick.

For a regular point in g∗, Theorem 4.1 states that there is a neighborhood U with
canonical coordinates q1, . . . , qk, p1, . . . , pk, c1, . . . , c` such that Π =

∑
∂
∂qi
∧ ∂
∂pi

(cf.

Example 2 of Section 3.4). In terms of Π̃, we have

Π̃(dqi) = − ∂

∂pi

Π̃(dpi) =
∂

∂qi

Π̃(dci) = 0 .

This implies that the hamiltonian vector field of any function will be a linear combi-
nation of the vector fields ∂

∂qi
, ∂
∂pi

. Unless the structure defined by Π on the regular
part of g∗ is symplectic (that is l = 0), the representation of g as differential oper-
ators on C∞(g∗) will have a kernel, and hence will not be faithful.

To remedy this, we lift the Lie-Poisson structure to a symplectic structure on
a larger manifold. Let U × R` have the original coordinates q1, . . . , qk, p1, . . . , pk,
c1, . . . , c` lifted from the coordinates on U , plus the coordinates d1, . . . , d` lifted from
the standard coordinates of R`. We define a Poisson structure {·, ·}′ on U ×R` by

Π′ =
∑
i

∂

∂qi
∧ ∂

∂pi
+
∑
i

∂

∂ci
∧ ∂

∂di
.

We now take the original coordinate functions µi on U and lift them to functions,
still denoted µi, on U × R`. Because the µi’s are independent of the dj ’s, we
see that {µi, µj}′ = {µi, µj} =

∑
cijkµk. Thus the homomorphism g → C∞(U),

vi 7→ µi, lifts to a map

g - C∞(U × R`)
−Π̃′ ◦ d - χ(U × R`)

vi - µi - −Π̃′(dµi) = −X ′µi .

The composed map is a Lie algebra homomorphism. The differentials dµ1, . . . , dµn
are pointwise linearly independent on U and thus also on U × R`. Since −Π̃′ is
an isomorphism, the hamiltonian vector fields −X ′µ1

, . . . ,−X ′µk are also pointwise
linearly independent, and we have the pointwise faithful representation needed to
complete the proof of the Poincaré-Birkhoff-Witt theorem.

Remarks.

1. Section 2.4 explains how to go from a pointwise faithful representation to a
local Lie group. In practice, it is not easy to find the canonical coordinates
in U , nor is it easy to integrate the X ′µi ’s.

2. The integer ` is called the rank of the Lie algebra, and it equals the dimen-
sion of a Cartan subalgebra when g is semisimple. This rank should not be
confused with the rank of the Poisson structure.

♦



4.3 The Splitting Theorem 19

4.3 The Splitting Theorem

We will prove Theorem 4.1 as a consequence of the following more general result.

Theorem 4.2 (Weinstein [163]) On a Poisson manifold (M,Π), any point O ∈
M has a coordinate neighborhood with coordinates (q1, . . . , qk, p1, . . . , pk, y1, . . . , y`)
centered at O, such that

Π =
∑
i

∂

∂qi
∧ ∂

∂pi
+

1
2

∑
i,j

ϕij(y)
∂

∂yi
∧ ∂

∂yj
and ϕij(0) = 0 .

The rank of Π at O is 2k. Since ϕ depends only on the yi’s, this theorem gives
a decomposition of the neighborhood of O as a product of two Poisson manifolds:
one with rank 2k, and the other with rank 0 at O.

Proof. We prove the theorem by induction on ρ = rank Π(O).

• If ρ = 0, we are done, as we can label all the coordinates yi.

• If ρ 6= 0, then there are functions f, g with {f, g}(O) 6= 0. Let p1 = g and
look at the operator Xp1 . We have Xp1(f)(O) = {f, g}(O) 6= 0. By the flow
box theorem, there are coordinates for which Xp1 is one of the coordinate
vector fields. Let q1 be the coordinate function such that Xp1 = ∂

∂q1
; hence,

{q1, p1} = Xp1q1 = 1. (In practice, finding q1 amounts to solving a system
of ordinary differential equations.) Xp1 , Xq1 are linearly independent at O
and hence in a neighborhood of O. By the Frobenius theorem, the equation
[Xq1 , Xp1 ] = −X{q1,p1} = −X1 = 0 shows that these vector fields can be
integrated to define a two dimensional foliation near O. Hence, we can find
functions y1, . . . , yn−2 such that

1. dy1, . . . , dyn−2 are linearly independent;

2. Xp1(yj) = Xq1(yj) = 0. That is to say, y1, . . . , yn−2 are transverse to
the foliation. In particular, {yj , q1} = 0 and {yj , p1} = 0.

Exercise 10
Show that dp1, dq1, dy1, . . . , dyn−2 are all linearly independent.

Therefore, we have coordinates such that Xq1 = − ∂
∂p1

,Xp1 = ∂
∂q1

, and by
Poisson’s theorem

{{yi, yj}, p1} = 0
{{yi, yj}, q1} = 0

We conclude that {yi, yj} must be a function of the yi’s. Thus, in these
coordinates, the Poisson structure is

Π =
∂

∂q1
∧ ∂

∂p1
+

1
2

∑
i,j

ϕij(y)
∂

∂yi
∧ ∂

∂yj
.

• If ρ = 2, we are done. Otherwise, we apply the argument above to the
structure 1

2

∑
ϕij(y) ∂

∂yi
∧ ∂
∂yj

.

2
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4.4 Special Cases of the Splitting Theorem

1. If the rank is locally constant, then ϕij ≡ 0 and the splitting theorem recovers
Lie’s theorem (Theorem 4.1). Hence, by the argument in Section 4.2, our
proof of the Poincaré-Birkhoff-Witt theorem is completed.

2. At the origin of a Lie-Poisson manifold, we only have yi’s, and the term∑
∂
∂qi
∧ ∂
∂pi

does not appear.

3. A symplectic manifold is a Poisson manifold (M,Π) where rank Π = dimM
everywhere. In this case, Lie’s theorem (or the splitting theorem) gives canon-
ical coordinates q1, . . . , qk, p1, . . . , pk such that

Π =
∑
i

∂

∂qi
∧ ∂

∂pi
.

In other words, Π̃ : T ∗M → TM is an isomorphism satisfying

Π̃(dqi) = − ∂

∂pi
and Π̃(dpi) =

∂

∂qi
.

Its inverse ω̃ = Π̃−1 : TM → T ∗M defines a 2-form ω ∈ Ω2(M) by ω(u, v) =
ω̃(u)(v), or equivalently by ω = (Π̃−1)∗(Π). With respect to the canonical
coordinates, we have

ω =
∑

dqi ∧ dpi ,

which is the content of Darboux’s theorem for symplectic manifolds. This
also gives a quick proof that ω is a closed 2-form. ω is called a symplectic
form.

4.5 Almost Symplectic Structures

Suppose that (M,Π) is an almost symplectic manifold, that is, Π is non-
degenerate but may not satisfy the Jacobi identity. Then Π̃ : T ∗M → TM is an
isomorphism, and its inverse ω̃ = Π̃−1 : TM → T ∗M defines a 2-form ω ∈ Ω2(M)
by ω(u, v) = ω̃(u)(v).

Conversely, any 2-form ω ∈ Ω2(M) defines a map

ω̃ : TM → T ∗M by ω̃(u)(v) = ω(u, v) .

We also use the notation ω̃(v) = iv(ω) = vyω. Suppose that ω is non-degenerate,
meaning that ω̃ is invertible. Then for any function h ∈ C∞(M), we define the
hamiltonian vector field Xh by one of the following equivalent formulations:

• Xh = ω̃−1(dh) ,

• Xhyω = dh , or

• ω(Xh, Y ) = Y · h .

There are also several equivalent definitions for a bracket operation on C∞(M),
including

{f, g} = ω(Xf , Xg) = Xg(f) = −Xf (g) .

It is easy to check the anti-symmetry property and the Leibniz identity for the
bracket. The next section discusses different tests for the Jacobi identity.
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4.6 Incarnations of the Jacobi Identity

Theorem 4.3 The bracket {·, ·} on an almost symplectic manifold (defined in the
previous section) satisfies the Jacobi identity if and only if dω = 0.

Exercise 11
Prove this theorem. Hints:

• With coordinates, write ω locally as ω = 1
2

∑
ωijdxi ∧ dxj . The condi-

tion for ω to be closed is then

∂ωij

∂xk
+
∂ωjk

∂xi
+
∂ωki

∂xj
= 0 .

Since (ωij)
−1 = (−πij), this equation is equivalent to∑

k

(
∂πij

∂xk
πk` +

∂πj`

∂xk
πki +

∂π`i

∂xk
πkj

)
= 0 .

Cf. Exercise 8 in Section 3.4.

• Without coordinates, write dω in terms of Lie derivatives and Lie brack-
ets as

dω(X,Y, Z) = LX(ω(Y, Z)) + LY (ω(Z,X)) + LZ(ω(X,Y ))
−ω([X,Y ], Z)− ω([Y, Z], X)− ω([Z,X], Y ) .

At each point, choose functions f, g, h whose hamiltonian vector fields at
that point coincide with X,Y, Z. Apply LXf (ω(Xg , Xh)) = {{g, h}, f}
and −ω([Xf , Xg ], Xh) = {{f, g}, h}.

Remark. For many geometric structures, an integrability condition allows us
to drop the “almost” from the description of the structure, and find a standard
expression in canonical coordinates. For example, an almost complex structure is
complex if it is integrable, in which case we can find complex coordinates where the
almost complex structure becomes multiplication by the complex number i. Simi-
larly, an almost Poisson structure Π is integrable if Π satisfies the Jacobi identity,
in which case Lie’s theorem provides a normal form near points where the rank
is locally constant. Finally, an almost symplectic structure ω is symplectic if ω is
closed, in which case there exist coordinates where ω has the standard Darboux
normal form. ♦

We can reformulate the connection between the Jacobi identity and dω = 0 in
terms of Lie derivatives. Cartan’s magic formula states that, for a vector field X
and a differential form η,

LXη = d(Xyη) +Xydη .

Using this, we compute

LXhω = d(Xhyω) +Xhydω
= d(dh) +Xhydω
= Xhydω .

We conclude that dω = 0 if and only if LXhω = 0 for each h ∈ C∞(M). (One
implication requires the fact that hamiltonian vector fields span the whole tangent
bundle, by invertibility of ω̃.) It follows that another characterization for ω being
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closed is ω being invariant under all hamiltonian flows. This is equivalent to saying
that hamiltonian flows preserve Poisson brackets, i.e. LXhΠ = 0 for all h. Ensuring
that the symplectic structure be invariant under hamiltonian flows is one of the
main reasons for requiring that a symplectic form be closed.

While the Leibniz identity states that all hamiltonian vector fields are deriva-
tions of pointwise multiplication of functions, the Jacobi identity states that all
hamiltonian vector fields are derivations of the bracket {·, ·}. We will now check
directly the relation between the Jacobi identity and the invariance of Π under
hamiltonian flows, in the language of hamiltonian vector fields. Recall that the
operation of Lie derivative is a derivation on contraction of tensors, and therefore

{{f, g}, h} = Xh{f, g} = Xh(Π(df, dg))
= (LXhΠ)(df, dg) + Π(LXhdf, dg) + Π(df,LXhdg)
= (LXhΠ)(df, dg) + Π(dLXhf, dg) + Π(df, dLXhg)
= (LXhΠ)(df, dg) + Π(d{f, h}, dg) + Π(df, d{g, h})
= (LXhΠ)(df, dg) + {Xhf, g}+ {f,Xhg}
= (LXhΠ)(df, dg) + {{f, h}, g}+ {f, {g, h}} .

We conclude that the Jacobi identity holds if and only if (LXhΠ)(df, dg) = 0 for all
f, g, h ∈ C∞(M).



5 Local Poisson Geometry

Roughly speaking, any Poisson manifold is obtained by gluing together symplectic
manifolds. The study of Poisson structures involves both local and global concerns:
the local structure of symplectic leaves and their transverse structures, and the
global aspects of how symplectic leaves fit together into a foliation.

5.1 Symplectic Foliation

At a regular point p of a Poisson manifold M , the subspace of TpM spanned by the
hamiltonian vector fields of the canonical coordinates at that point depends only
on the Poisson structure. When the Poisson structure is regular (see Section 4.1),
the image of Π̃ (formed by the subspaces above) is an involutive subbundle of TM .
Hence, there is a natural foliation of M by symplectic manifolds whose dimension
is the rank of Π. These are called the symplectic leaves, forming the symplectic
foliation.

It is a remarkable fact that symplectic leaves exist through every point, even
on Poisson manifolds (M, {·, ·}) where the Poisson structure is not regular. (Their
existence was first proved in this context by Kirillov [95].) In general, the symplectic
foliation is a singular foliation.

The symplectic leaves are determined locally by the splitting theorem (Sec-
tion 4.3). For any point O of the Poisson manifold, if (q, p, y) are the normal
coordinates as in Theorem 4.2, then the symplectic leaf through O is given locally
by the equation y = 0.

The Poisson brackets on M can be calculated by restricting to the symplectic
leaves and then assembling the results.

Remark. The 0-th Poisson cohomology, H0
Π, (see Section 3.6) can be interpreted

as the set of smooth functions on the space of symplectic leaves. It may be useful
to think of H1

Π as the “vector fields on the space of symplectic leaves” [72]. ♦

Examples.

1. For the zero Poisson structure on M , H0
Π(M) = C

∞(M) and H1
Π(M) consists

of all the vector fields on M .

2. For a symplectic structure, the first Poisson cohomology coincides with the
first de Rham cohomology via the isomorphisms

Poisson vector fields ω̃−→ closed 1-forms

hamiltonian vector fields ω̃−→ exact 1-forms

H1
Π(M) '−→ H1

deRham(M) .

In the symplectic case, the 0-th Poisson cohomology is the set of locally con-
stant functions, H0

deRham(M). This agrees with the geometric interpretation
of Poisson cohomology in terms of the space of symplectic leaves.

On the other hand, on a symplectic manifold, H1
Π ' H1

deRham gives a fi-
nite dimensional space of “vector fields” over the discrete space of connected
components

23
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♦

Problem. Is there an interesting and natural way to give a “structure” to the
point of the leaf space representing a connected component M of a symplectic
manifold in such a way that the infinitesimal automorphisms of this “structure”
correspond to elements of H1

deRham(M)? ♦

5.2 Transverse Structure

As we saw in the previous section, on a Poisson manifold (M,Π) there is a natural
singular foliation by symplectic leaves. For each point m ∈M , we can regard M as
fibering locally over the symplectic leaf through m. Locally, this leaf has canonical
coordinates q1, . . . , qk, p1, . . . , pk, where the bracket is given by canonical symplectic
relations. While the symplectic leaf is well-defined, each choice of coordinates
y1, . . . , y` in Theorem 4.2 can give rise to a different last term for Π,

1
2

∑
i,j

ϕij(y)
∂

∂yi
∧ ∂

∂yj
,

called the transverse Poisson structure (of dimension `). Although the trans-
verse structures themselves are not uniquely defined, they are all isomorphic [163].
Going from this local isomorphism of the transverse structures to a structure of
“Poisson fiber bundle” on a neighborhood of a symplectic leaf seems to be a difficult
problem [90].

Example. Suppose that Π is regular. Then the transverse Poisson structure
is trivial and the fibration over the leaf is locally trivial. However, the bundle
structure can still have holonomy as the leaves passing through a transverse section
wind around one another. ♦

Locally, the transverse structure is determined by the structure functions πij(y) =
{yi, yj} which vanish at y = 0. Applying a Taylor expansion centered at the origin,
we can write

πij(y) =
∑
k

cijkyk +O(y2)

where O(y2) can be expressed as
∑
dijkl(y)yky`, though the dijkl are not unique

outside of y = 0.
Since the πij satisfy the Jacobi identity, it is easy to show using the Taylor

expansion of the jacobiator that the truncation

π′ij(y) =
∑
k

cijkyk

also satisfies the Jacobi identity. Thus, the functions π′ij define a Poisson structure,
called the linearized Poisson structure of πij .

From Section 3.4 we know that a linear Poisson structure can be identified
with a Poisson structure on the dual of a Lie algebra. In this way, for any point
m ∈M , there is an associated Lie algebra, called the transverse Lie algebra. We
will now show that this transverse Lie algebra can be identified intrinsically with
the conormal space to the symplectic leaf Om through m, so that the linearized
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transverse Poisson structure lives naturally on the normal space to the leaf. When
the Poisson structure vanishes at the point m, this normal space is just the tangent
space TmM .

Recall that the normal space to Om is the quotient

NOm = TmM
/
TmOm .

The conormal space is the dual space (NOm)∗. This dual of this quotient space
of TmM can be identified with the subspace (TmOm)◦ of cotangent vectors at m
which annihilate TmOm:

(NOm)∗ ' (TmOm)◦ ⊆ T ∗mM .

To define the bracket on the conormal space, take two elements α, β ∈ (TmOm)◦.
We can choose functions f, g ∈ C∞(M) such that df(m) = α, dg(m) = β. In order
to simplify computations, we can even choose such f, g which are zero along the
symplectic leaf, that is, f, g|Om ≡ 0. The bracket of α, β is

[α, β] = d{f, g}(m) .

This is well-defined because

• f, g|Om ≡ 0⇒ {f, g}|Om ≡ 0⇒ d{f, g}|Om ∈ (TmOm)◦. That the set of func-
tions vanishing on the symplectic leaf is closed under the bracket operation
follows, for instance, from the splitting theorem.

• The Leibniz identity implies that the bracket {·, ·} only depends on first
derivatives. Hence, the value of [α, β] is independent of the choice of f and g.

There is then a Lie algebra structure on (TmOm)◦ and a bundle of duals of Lie
algebras over a symplectic leaf. The next natural question is: does this linearized
structure determine the Poisson structure on a neighborhood?

5.3 The Linearization Problem

Suppose that we have structure functions

πij(y) =
∑
k

cijkyk +O(y2) .

Is there a change of coordinates making the πij linear? More specifically, given πij ,
is there a new coordinate system of the form

zi = yi +O(y2)

such that {zi, zj} =
∑
cijkzk?

This question resembles Morse theory where, given a function whose Taylor
expansion only has quadratic terms or higher, we ask whether there exist some
coordinates for which the higher terms vanish. The answer is yes (without further
assumptions on the function) if and only if the quadratic part is non-degenerate.

When the answer to the linearization problem is affirmative, we call the structure
πij linearizable. Given fixed cijk, if πij is linearizable for all choices of O(y2),
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then we say that the transverse Lie algebra g defined by cijk is non-degenerate.
Otherwise, it is called degenerate.

There are several versions of non-degeneracy, depending on the kind of coordi-
nate change allowed: for example, formal, C∞ or analytic. Here is a brief summary
of some results on the non-degeneracy of Lie algebras.

• It is not hard to see that the zero (or commutative) Lie algebra is degenerate
for dimensions ≥ 2. Two examples of non-linearizable structures in dimension
2 demonstrating this degeneracy are

1. {y1, y2} = y2
1 + y2

2 ,

2. {y1, y2} = y1y2 .

• Arnold [6] showed that the two-dimensional Lie algebra defined by {x, y} = x
is non-degenerate in all three versions described above. If one decomposes
this Lie algebra into symplectic leaves, we see that two leaves are given by
the half-planes {(x, y)|x < 0} and {(x, y)|x > 0}. Each of the points (0, y)
comprises another symplectic leaf. See the following figure.

-

6y

x

• Weinstein [163] showed that, if g is semi-simple, then g is formally non-
degenerate. At the same time he showed that sl(2;R) is C∞ degenerate.

• Conn [27] first showed that if g is semi-simple, then g is analytically non-
degenerate. Later [28], he proved that if g is semi-simple of compact type
(i.e. the corresponding Lie group is compact), then g is C∞ non-degenerate.

• Weinstein [166] showed that if g is semi-simple of non-compact type and has
real rank of at least 2, then g is C∞ degenerate.

• Cahen, Gutt and Rawnsley [22] studied the non-linearizability of some Poisson
Lie groups.

Remark. When a Lie algebra is degenerate, there is still the question of whether a
change of coordinates can remove higher order terms. Several students of Arnold [6]
looked at the 2-dimensional case (e.g.: {x, y} = (x2 + y2)p + . . .) to investigate
which Poisson structures could be reduced in a manner analogous to linearization.
Quadratization (i.e. equivalence to quadratic structures after a coordinate change)
has been established in some situations for structures with sufficiently nice quadratic
part by Dufour [49] and Haraki [80]. ♦
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We can view Poisson structures near points where they vanish as deformations
of their linearizations. If we expand a Poisson structure πij as

{xi, xj} = π1(x) + π2(x) + . . . ,

where πk(x) denotes a homogeneous polynomial of degree k in x, then we can define
a deformation by

{xi, xj}ε = π1(x) + επ2(x) + . . . .

This indeed satisfies the Jacobi identity for all ε, and {xi, xj}0 = π1(x) is a linear
Poisson structure. All the {·, ·}ε’s are isomorphic for ε 6= 0.

5.4 The Cases of su(2) and sl(2;R)

We shall compare the degeneracies of sl(2;R) and su(2), which are both 3-dimensional
as vector spaces. First, on su(2) with coordinate functions µ1, µ2, µ3, the bracket
operation is defined by

{µ1, µ2} = µ3

{µ2, µ3} = µ1

{µ3, µ1} = µ2 .

The Poisson structure is trivial only at the origin. It is easy to check that the
function µ2

1 + µ2
2 + µ2

3 is a Casimir function, meaning that it is constant along the
symplectic leaves. By rank considerations, we see that the symplectic leaves are
exactly the level sets of this function, i.e. spheres centered at the origin. This
foliation is quite stable. In fact, su(2), which is semi-simple of real rank 1, is C∞

non-degenerate.
On the other hand, sl(2;R) with coordinate functions µ1, µ2, µ3 has bracket

operation defined by
{µ1, µ2} = −µ3

{µ2, µ3} = µ1

{µ3, µ1} = µ2 .

In this case, µ2
1 +µ2

2−µ2
3 is a Casimir function, and the symplectic foliation consists

of

• the origin,

• two-sheeted hyperboloids µ2
1 + µ2

2 − µ2
3 = c < 0,

• the cone µ2
1 + µ2

2 − µ2
3 = 0 punctured at the origin, and

• one-sheeted hyperboloids µ2
1 + µ2

2 − µ2
3 = c > 0.

There are now non-simply-connected symplectic leaves. Restricting to the hori-
zontal plane µ3 = 0, the leaves form a set of concentric circles. It is possible to
modify the Poisson structure slightly near the origin, so that the tangent plane to
each symplectic leaf is tilted, and on the cross section µ3 = 0, the leaves spiral
toward the origin. This process of “breaking the leaves” [163] requires that there
be non-simply-connected leaves and that we employ a smooth perturbation whose
derivatives all vanish at the origin (in order not to contradict Conn’s results listed
in the previous section, since such a perturbation cannot be analytic).





Part III

Poisson Category

6 Poisson Maps

Any Poisson manifold has an associated Poisson algebra, namely the algebra of
its smooth functions equipped with the Poisson bracket. In this chapter, we will
strengthen the analogy between algebras and spaces.

6.1 Characterization of Poisson Maps

Given two Poisson algebras A,B, an algebra homomorphism ψ : A → B is called a
Poisson-algebra homomorphism if ψ preserves Poisson brackets:

ψ ({f, g}A) = {ψ(f), ψ(g)}B .

A smooth map ϕ : M → N between Poisson manifolds M and N is called a
Poisson map when

ϕ∗ ({f, g}N ) = {ϕ∗(f), ϕ∗(g)}M ,

that is, ϕ∗ : C∞(N) → C∞(M) is a Poisson-algebra homomorphism. (Every
homomorphism C∞(N) → C∞(M) of the commutative algebra structures arising
from pointwise multiplication is of the form ϕ∗ for a smooth map ϕ : M → N [1,
16].) A Poisson automorphism of a Poisson manifold (M,Π), is a diffeomorphism
of M which is a Poisson map.

Remark. The Poisson automorphisms of a Poisson manifold (M,Π) form a
group. For the trivial Poisson structure, this is the group of all diffeomorphisms.
In general, flows of hamiltonian vector fields generate a significant part of the
automorphism group. In an informal sense, the “Lie algebra” of the (infinite di-
mensional) group of Poisson automorphisms consists of the Poisson vector fields
(see Section 3.6). ♦

Here are some alternative characterizations of Poisson maps:

• Let ϕ : M → N be a differentiable map between manifolds. A vector field
X ∈ χ(M) is ϕ-related to a vector field Y on N when

(Txϕ)X(x) = Y (ϕ(x)) , for all x ∈M .

If the vector fields X and Y are ϕ-related, then ϕ takes integral curves of X
to integral curves of Y .

We indicate that X is ϕ-related to Y by writing

Y = ϕ∗X ,

though, in general, ϕ∗ is not a map: there may be several vector fields Y on
N that are ϕ-related to a given X ∈ χ(M), or there may be none. Thus we
understand Y = ϕ∗X as a relation and not as a map.

29
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This definition extends to multivector fields via the induced map on higher
wedge powers of the tangent bundle. For X ∈ χk(M) and Y ∈ χk(N), we say
that X is ϕ-related to Y , writing Y = ϕ∗X, if(

∧kTxϕ
)
X(x) = Y (ϕ(x)) , for all x ∈M .

Now let ΠM ∈ χ2(M),ΠN ∈ χ2(N) be bivector fields specifying Poisson
structures in M and N . Then ϕ is a Poisson map if and only if

ΠN = ϕ∗ΠM .

Exercise 12
Prove that this is an equivalent description of Poisson maps.

• ϕ being a Poisson map is also equivalent to commutativity of the following
diagram for all x ∈M :

T ∗xM
Π̃M (x)- TxM

T ∗ϕ(x)N

T ∗xϕ

6

Π̃N (ϕ(x))- Tϕ(x)N

Txϕ

?

That is, ϕ is a Poisson map if and only if

Π̃N (ϕ(x)) = Txϕ ◦ Π̃M (x) ◦ T ∗xϕ , for all x ∈M .

Since it is enough to check this assertion on differentials of functions, this
characterization of Poisson maps translates into Xϕ∗h being ϕ-related to Xh,
for any h ∈ C∞(N):

Xh(ϕ(x)) = Π̃N (ϕ(x)) (dh (ϕ(x))) = (Txϕ)
(

Π̃M (x) (T ∗xϕ (dh (ϕ(x))))
)

= (Txϕ)
(

Π̃M (x) (d (ϕ∗h(x)))
)

= (Txϕ) (Xϕ∗h(x)) ,

where the first equality is simply the definition of hamiltonian vector field.

The following example shows that Xϕ∗h depends on h itself and not just on the
hamiltonian vector field Xh.

Example. Take the space R2n with coordinates (q1, . . . , qn, p1, . . . , pn) and Pois-
son structure defined by Π =

∑
∂
∂qi
∧ ∂
∂pi

. The projection ϕ onto Rn with coordi-
nates (q1, . . . , qn) and Poisson tensor 0 is trivially a Poisson map. Any h ∈ C∞(Rn)
has Xh = 0, but if we pull h back by ϕ, we get

Xh◦ϕ = −
∑
i

∂h

∂qi

∂

∂pi
.



6.2 Complete Poisson Maps 31

This is a non-trivial vertical vector field on R2n (vertical in the sense of being killed
by the projection down to Rn) . ♦

?
ϕ

R
n

q1, . . . , qn

q1, . . . , qn

p1, . . . , pn

6.2 Complete Poisson Maps

Although a Poisson map ϕ : M → N preserves brackets, the image is not in general
a union of symplectic leaves. Here is why: For a point x ∈M , the image ϕ(x) lies
on some symplectic leaf O in N . We can reach any other point y ∈ O from ϕ(x) by
following the trajectory of (possibly more than one) hamiltonian vector field Xh.
While we can lift Xh to the hamiltonian vector field Xϕ∗h near x, knowing that
Xh is complete does not ensure that Xϕ∗h is complete. Consequently, we may not
be able to lift the entire trajectory of Xh, so the point y is not necessarily in the
image of ϕ. Still, the image of ϕ is a union of open subsets of symplectic leaves.
The following example provides a trivial illustration of this fact.

Example. Let ϕ : U ↪→ R
2n be the inclusion of an open strict subset U of the

space R2n with Poisson structure as in the last example of the previous section.
Complete hamiltonian vector fields on R2n will not lift to complete vector fields on
U . ♦

To exclude examples like this we make the following definition.
A Poisson map ϕ : M → N is complete if, for each h ∈ C∞(N), Xh being a

complete vector field implies that Xϕ∗h is also complete.

Proposition 6.1 The image of a complete Poisson map is a union of symplectic
leaves.

Proof. From any image point ϕ(x), we can reach any other point on the same
symplectic leaf of N by a chain of integral curves of complete hamiltonian vector
fields, Xh’s. The definition of completeness was chosen precisely to guarantee that
the Xϕ∗h’s are also complete. Hence, we can integrate them without restriction,
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and their flows provide a chain on M . The image of this chain on M has to be the
original chain on N since Xh and Xϕ∗h are ϕ-related. We conclude that any point
on the leaf of ϕ(x) is contained in the image of ϕ. 2

Remarks.

1. In the definition of complete map, we can replace completeness of Xh by the
condition that Xh has compact support, or even by the condition that h has
compact support.

2. A Poisson map does not necessarily map symplectic leaves into symplectic
leaves. Even in the simple example (previous section) of projection R2n → R

n,
while R2n has only one leaf, each point of Rn is a symplectic leaf.

♦

The example of projecting R2n to Rn is important to keep in mind. This projec-
tion is a complete Poisson map, as Xh is always trivial (and thus complete) on Rn

and the pull-back −
∑

∂h
∂qi

∂
∂pi

is a complete vector field. However, if we restrict the
projection to a subset of R2n, then the map will in general no longer be complete.
The subsets of R2n for which the projection restricts to a complete map are those
which are open collections of full vertical p-fibers.

Here is another justification of our terminology.

Proposition 6.2 Let ϕ : M → R be a Poisson map. Then ϕ is complete if and
only if Xϕ is complete.

Proof. First, assume that ϕ is complete. The hamiltonian vector field Xt for the
identity (or coordinate) function t : R→ R is trivial, and thus complete. Thus the
vector field Xϕ∗t = Xϕ is complete.

Conversely, assume that Xϕ is complete, let h : R → R be any function, and
compute

Xϕ∗h = Xh◦ϕ = Π̃M (d(h ◦ ϕ))
= Π̃M (h′ · dϕ)
= h′ · Π̃M (dϕ)
= h′ ·Xϕ .

More precisely, Xϕ∗h(x) = h′(ϕ(x)) · Xϕ(x). At this point, recall that Xf · f =
{f, f} = 0 for any f ∈ C∞(M) (the law of conservation of energy). Therefore, along
any trajectory of Xϕ, h′(ϕ(x)) is constant, so Xϕ∗h, being a constant multiple of
Xϕ, must be also complete. 2

6.3 Symplectic Realizations

A Poisson map ϕ : M → N from a symplectic manifold M is called a symplectic
realization of the Poisson manifold N .

Examples.

1. A basic example of symplectic realization is the inclusion map of a symplectic
leaf into the ambient Poisson manifold.



6.3 Symplectic Realizations 33

2. A more significant example is provided by our construction in Section 4.2 of a
faithful representation of g. We took an open subset U of g∗ with coordinates
(q, p, c) and formed the symplectic space U × R` with coordinates (q, p, c, d).
The map projecting U × R` back to g∗ is a symplectic realization for g∗.
It is certainly not a complete Poisson map. It was constructed to have the
property that functions on g∗ with linearly independent differentials pull back
to functions on U × R` with linearly independent hamiltonian vector fields.

♦

If a symplectic realization ϕ : M → N is a submersion, then locally there is
a faithful representation of the functions on N (modulo the constants) by vector
fields on M , in fact, by hamiltonian vector fields. Example 2 above turns out to be
quite general:

Theorem 6.3 (Karasev [89], Weinstein [34]) Every Poisson manifold has a
surjective submersive symplectic realization.

The proof of this theorem (which is omitted here) relies on finding symplectic
realizations of open subsets covering a Poisson manifold and patching them together
using a uniqueness property. It is often difficult to find the realization explicitly.
We do not know whether completeness can be required in this theorem.

Example. Let N = R
2 with Poisson bracket defined by {x, y} = x. (This is the

dual of the 2-dimensional nontrivial Lie algebra.)

Exercise 13
Study 2-dimensional symplectic realizations of N . Find a surjective realization
defined on the union of three copies of R2. Show that the inverse image of any
neighborhood of the origin must have infinite area. Can you find a surjective
submersive realization with a connected domain of dimension 2?

We next look for a symplectic realization R4 → N . In terms of symplectic
coordinates (q1, p1, q2, p2) on R4, the two functions

f = q1 and g = p1q1

satisfy the same bracket relation as the coordinates on N

{f, g} = {q1, p1q1} = q1{q1, p1} = q1 = f .

The map (f, g) : R4 → N is a symplectic realization with a singularity at the origin.
To make it a non-singular submersion, simply redefine g to be p1q1 + q2. For this
new representation, we compute the hamiltonian vector fields:

−Xf = ∂
∂p1

−Xg = p1
∂
∂p1
− q1

∂
∂q1

+ ∂
∂p2

.

Exercise 14
Is this realization complete? If we can integrate the vector fields Xf and Xg ,
we have essentially constructed the Lie group with Lie algebra R2, [x, y] = x.

♦
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6.4 Coisotropic Calculus

A submanifold C of a Poisson manifold M is called coisotropic if the ideal

IC = {f ∈ C∞(M) | f |
C

= 0}

is closed under the bracket {·, ·}. Recalling that (TC)◦ is the subspace of T ∗M
which annihilates TC, we can restate the condition above as

Π̃ ((TC)◦) ⊆ TC .

Example. Suppose that (M,ω) is symplectic. Then C is coisotropic whenever

(TC)⊥ ⊆ TC ,

where ⊥ denotes the symplectic orthogonal space. The term coisotropic is linked
to the concept of isotropic submanifolds in symplectic geometry. A submanifold C
is called isotropic if

TC ⊆ (TC)⊥ .

In other words, C is isotropic if i∗ω = 0, where i : C ↪→ M is the inclusion. For
more on isotropic submanifolds, see the lecture notes by Bates and Weinstein [11].
♦

Coisotropic submanifolds play a special role with regard to Poisson maps:

Proposition 6.4 (Weinstein [168]) A map f : M1 →M2 between Poisson man-
ifolds is a Poisson map if and only if its graph is coisotropic in M1 ×M2, where
M2 has Poisson structure given by minus the Poisson tensor of M2.

This suggests defining a Poisson relation from M1 to M2 to be a coisotropic
submanifold R ⊆M1 ×M2. For relations R and S from M1 to M2 and M2 to M3,
respectively, we can define the composition S ◦R by

S ◦R = {(p1, p3) | ∃ p2 ∈M2, (p1, p2) ∈ R, (p2, p3) ∈ S} .

We can then view Poisson relations as generalized Poisson maps using the following:

Proposition 6.5 If R and S are Poisson relations as above with clean compo-
sition [11] in the sense that the composition S ◦ R is a smooth submanifold and
T (S ◦R) = TS ◦ TR, then S ◦R is a Poisson relation.

6.5 Poisson Quotients

Suppose that ∼ is an equivalence relation on a Poisson manifold M such that the
quotient M/∼ has a C∞ structure for which the quotient map ϕ : M → M/∼
is a submersion. Then ∼ is called a regular equivalence relation. We say that
the relation is compatible with the Poisson structure if M/ ∼ has a Poisson
structure for which ϕ is a Poisson map. Equivalently, the relation is compatible
when ϕ∗(C∞(M/∼)) forms a Poisson subalgebra of C∞(M). The manifold M/∼
is called a Poisson quotient. Theorem 6.3 implies that all Poisson manifolds can
be realized as Poisson quotients of symplectic manifolds.
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A regular equivalence relation defines a foliation on M . For the relation to be
compatible, the set of functions constant along the leaves of this foliation should
be closed under the bracket operation. With this notion of compatibility, it makes
sense to refer to ∼ as compatible even if it is not regular.

Let G be a Lie group acting on a Poisson manifold M by Poisson maps. Then the
set of G-invariant functions on M , C∞(M)G, is closed under the bracket operation.
Hence, if the orbit equivalence relation on M is regular, the orbit space M/G
becomes a Poisson manifold, and the quotient map M → M/G is a Poisson map.
When M is symplectic, this gives a symplectic realization of the quotient space. In
fact, we have:

Proposition 6.6 Under the assumptions above, the map M →M/G is complete.

Proof. Given a complete function h ∈ C∞(M/G) ' C∞(M)G and a point
x ∈M , we need to show that the vector field Xh◦ϕ has a full integral curve through
x. We shall suppose that this is not the case and find a contradiction.

Assume that there is a maximal interval (t−, t+) of definition for the integral
curve through x for which t+ is finite (the case of t− finite is essentially the same).
If we project down to ϕ(x), then there is no obstruction to extending the integral
curve σ = σh of Xh through ϕ(x). At time t+, the curve σ reaches some point
σ(t+) ∈ M/G. Because ϕ is a projection, there is some y ∈ ϕ−1(σ(t+)). We can
lift the integral curve σ to an integral curve of Xh◦ϕ through y and follow the curve
back to a lift yt+−ε of σ(t+ − ε). On the integral curve of Xh◦ϕ through x, there is
also a lift xt+−ε of σ(t+−ε), and so there is some element g of G which maps yt+−ε
to xt+−ε. Because Xh◦ϕ is G-invariant, we can translate the integral curve through
yt+−ε by g to extend the curve through x past t+, giving us a contradiction. Thus
t+ must be ∞.

?s s

s s
s s
	

ϕ(x) σ(t+ − ε)

x

ϕ

yyt+−ε

xt+−ε

M

M/G

g

2

Remark. The proof of Proposition 6.6 shows that any vector field invariant under
a regular group action is complete if the projected vector field on the quotient is
complete. ♦
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For any manifold Q, the cotangent bundle T ∗Q has a canonical symplectic
structure. One way to construct it is to take local coordinates x1, . . . , xn on
an open set U ⊆ Q. If π : T ∗Q → Q is the natural projection, then we can
put a corresponding coordinate system (q1, . . . , qn, p1, . . . , pn) on T ∗Q|U such that
qi = xi ◦ π and pi =

〈
·, ∂
∂xi

〉
. We define the canonical symplectic structure by

ω =
∑
dqi ∧ dpi (or by Π =

∑
∂
∂qi
∧ ∂
∂pi

). This expression for ω is preserved by
changes of coordinates on U .

Alternatively, there is a canonical 1-form α on T ∗Q, defined at any element
v ∈ Tb(T ∗Q) by α(v) = b(π∗v). The canonical symplectic form is ω = −dα. One
can check the equivalence of these two constructions by writing α in coordinates:
α =

∑
pidqi. This shows clearly that ω is independent of the choice of coordinates.

If γ : Q1 → Q2 is a diffeomorphism, the natural lift of γ to a diffeomorphism
T ∗Q1 → T ∗Q2 is a Poisson map.

Example. Let Q = G be a Lie group. It acts on itself by left translations and
this action lifts to an action of G on T ∗G by Poisson maps. The orbit space T ∗G/G
is then a Poisson manifold, which can be identified with T ∗eG ' g∗. This gives a
Poisson structure on g∗.

Exercise 15
Show that this Poisson structure on g∗ is the negative of the one constructed
in Section 3.1.

The quotient map T ∗G→ g∗ provides a symplectic realization of g∗ which is, in
general, larger than the one that we found in Section 4.2 (moreover, the symplectic
realization here requires the existence of G). ♦

6.6 Poisson Submanifolds

When a Poisson map ϕ is an embedding, we often say that the image of ϕ is a
Poisson submanifold, although sometimes the term is applied only when ϕ is
also proper. If M ⊆ N is a closed submanifold, then M is a Poisson submanifold if
any of the following equivalent conditions holds:

1. The ideal IM ⊆ C∞(N) defined by

IM = {f ∈ C∞(N) | f |M = 0} .

is a Poisson ideal. That is, IM is an ideal under the bracket multiplication as
well as the pointwise multiplication of functions. In this case, the inclusion
M ↪→ N corresponds to the quotient

C∞(M) ' C∞(N)/IM ←− C∞(N) .

2. Every hamiltonian vector field on N is tangent to M .

3. At each point x in M , Π̃(T ∗xN) ⊆ TxM .

4. At each x ∈ M , Πx ∈ ∧2TxM , where we consider ∧2TxM as a subspace of
∧2TxN .
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Remark. Symplectic leaves of a Poisson manifoldN are minimal Poisson subman-
ifolds, in the sense that they correspond (at least locally) to the maximal Poisson
ideals in C∞(N). They should be thought of as “points,” since each maximal ideal
of smooth functions on a manifold is the set of all functions which vanish at a
point [16]. ♦

Suppose that M and N are symplectic with Poisson structures induced by the
symplectic 2-forms ωM and ωN . For a map ϕ : M → N , the symplectic condition
ϕ∗ωN = ωM does not make ϕ a Poisson map, unless ϕ is a local diffeomorphism.
The following two examples illustrate this difference.

Examples.

1. The inclusion R
2 ↪→ R

4 of symplectic manifolds defined by mapping the
coordinates (q1, p1) 7→ (q1, p1, 0, 0) is a symplectic embedding, but it is not a
Poisson map, since {q2, p2}R4 = 1, while the bracket in R2 of their pull-backs
is 0.

2. On the other hand, the projection R4 → R
2 given by mapping

(q1, p1, q2, p2) 7−→ (q1, p1)

is a Poisson map, but is not symplectic, since ϕ∗ωN = dq1 ∧ dp1 6= ωM .

♦

In general, the condition ϕ∗ωN = ωM requires the map to be an immersion,
while Poisson maps between symplectic manifolds are always submersions.





7 Hamiltonian Actions

A complete Poisson map from a Poisson manifold M to a Lie-Poisson manifold g∗

gives rise to a left action of the connected, simply connected Lie group G with Lie
algebra g on M by Poisson automorphisms, as we will now explain and explore.

7.1 Momentum Maps

Each element v of a Lie algebra g corresponds to a linear function hv ∈ C∞(g∗)
defined by hv(µ) = µ(v). Moreover, this correspondence is a Lie algebra homomor-
phism: {hv, hw} = h[v,w]; see Section 3.1. Given a Poisson map J : M → g∗, the
composition

g
h·−→ C∞(g∗) J∗−→ C∞(M) X·−→ χ(M)

v 7−→ hv h 7−→ Xh

is a Lie algebra anti-homomorphism ρ : g → χ(M) (because the last arrow is
an anti-homomorphism). In other words, J induces a left action of g on M by
hamiltonian vector fields.

Suppose that J is complete. For each v ∈ g, the vector field Xhv ∈ χ(g∗) is
complete. Hence, each XJ∗(hv) is also complete. In this case, the action ρ can be
integrated to a left action of the connected, simply connected Lie group G with Lie
algebra g on M by Poisson automorphisms [134].

Let JM : M → g∗, JN : N → g∗ and ϕ : M → N be Poisson maps such that
the diagram

M
ϕ - N

@
@
@
@
@

JM
R 	�

�
�
�
�

JN

g∗

commutes. Then ϕ will necessarily be compatible with the group actions induced
by JN and JM .

Example. Let M = g∗ and let J be the identity map. The induced action
of G on g∗ is just the dual of the adjoint representation, called the coadjoint
action. In this case, G can be any connected (not necessarily simply connected)
Lie group whose Lie algebra is g. This action of G restricts to a transitive action
on each symplectic leaf O of g∗; thus, the symplectic leaves are called coadjoint
orbits. To understand this, consider the inclusion map ι : O ↪→ g∗. The induced
commutative diagram

O ⊂
ι - g∗

@
@
@
@
@

ι
R 	�

�
�
�
�

id

g∗

shows that the G-action on g∗ restricts to a G-action on O. Furthermore, this action
is transitive: at each µ ∈ g∗, the {dhv | v ∈ g} span T ∗µg∗, so the corresponding

39
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hamiltonian vector fields {Xhv | v ∈ g} span the tangent space to the symplectic leaf
at µ. We conclude that each symplectic leaf O of g∗ is a symplectic homogeneous
space of G given as an orbit of the coadjoint action. ♦

For a Poisson map ϕ : M → g∗, the diagram

M
ϕ - g∗

@
@
@
@
@

ϕ
R 	�

�
�
�
�

id

g∗

shows that ϕ is G-equivariant for the induced action of the corresponding Lie group
G on M and the coadjoint action on g∗.

When g = R and G = R, the induced G-action of a map J : M → R is just the
hamiltonian flow of J . In general, we say that a complete Poisson map J : M → g∗

is a hamiltonian or momentum map for the resulting action of G on M .
In summary, a complete Poisson map

J : M −→ g∗

gives rise to a Lie algebra anti-homomorphism

ρ : g −→ χ(M) ,

which we integrate to a left action of G on M by Poisson automorphisms. The
original map J is G-equivariant with respect to this action and the coadjoint action
of G on g∗.

Historical Remark. Much of the construction above is merely a modern formu-
lation of work done by Lie around 1890. Lie even refers to the “dual of the adjoint”
(see [106] and [164]). ♦

7.2 First Obstruction for Momentum Maps

Given a Poisson map J : M → g∗, we constructed in the previous section an action
on M by Poisson automorphisms for which J was the momentum map. Conversely,
given an action of a Lie group G by Poisson automorphisms on M , we would like
to find a corresponding momentum map.

The sets of Poisson vector fields and of hamiltonian vector fields on M will be
denoted χPoiss(M) and χHam(M).

An action of G on M by Poisson maps can be differentiated to give an anti-
homomorphism ρ : g→ χPoiss(M). The first step in seeking a momentum map for
this G-action is attempting to lift ρ to a linear map J : g → C∞(M) making the
following diagram commute:

C∞(M) - χHam(M) ⊂- χPoiss(M)

I@
@
@
@
@

J ?
�
�
�
�
�

ρ

�

g
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The map ρ lifts to χHam(M) if and only if its image is actually contained in
χHam(M) ⊆ χPoiss(M). Let H1

Π(M) be the first Poisson cohomology of M (de-
fined in Section 3.6). To measure the obstruction, we look at the exact sequence

χHam(M) ⊂- χPoiss(M) - H1
Π(M)

�
�
�
�
�

ρ
�

��
��
��
��
��
�

ρ

*

g

?
6

which induces a Lie algebra homomorphism ρ : g→ H1
Π(M) (here we equip H1

Π(M)
with the trivial Lie bracket). Clearly, ρ = 0 if and only if ρ lifts to χHam(M). This
can be interpreted as a first characteristic class for the action of G on a manifold;
the vanishing of ρ is a necessary and sufficient condition for G to act by hamiltonian
vector fields.

Remark. Recall that in the symplectic case H1
Π(M) = H1(M ;R) with trivial

bracket, since the bracket of any two Poisson vector fields X1, X2 is hamiltonian:

[X1, X2] = −Xω(X1,X2) .

Even in this case, ρ can of course be non-trivial. ♦
Question: Is the vanishing of H1

Π(M) necessary for all group actions to lift to
χHam(M)? More generally, are all elements of H1

Π(M) represented by complete
Poisson vector fields? (Hint: see [172].)

Metaphorically speaking, H1
Π(M) is the algebra of vector fields on the space

of symplectic leaves. It is as if the action of G on M induced an action of G on
the space of symplectic leaves, via the algebra homomorphism ρ : g → H1

Π(M).
The triviality of this action is a necessary and sufficient condition for the lifting to
hamiltonian vector fields. The following simple case illustrates that Poisson vector
fields are not necessarily tangent to the symplectic leaves.

Example. Take R2 with bracket {x, y} = x. The Poisson vector field ∂
∂y preserves

the two open symplectic leaves (the half-planes {(x, y) | x < 0} and {(x, y) | x >
0}), but it is not tangent to the symplectic leaves on the y-axis (the points {(0, y)}),
and acts non-trivially on them. Thus it does not lift to χHam(M), and hence this
Poisson manifold has H1

Π 6= 0. ♦

7.3 Second Obstruction for Momentum Maps

Assume that ρ = 0, so that there is a lift ρ̃ : g→ χHam(M).

C∞(M) - χHam(M) ⊂- χPoiss(M) - H1
Π(M)

I@
@
@
@
@

J ?
�
�
�
�
�

ρ
�

��
��
��
��
��
�

ρ = 0

*

g

ρ̃

6

Because the map C∞(M) → χHam(M) is surjective, we can lift ρ̃ to a linear map
J : g→ C∞(M), but J is not necessarily a Lie algebra homomorphism.
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In any case, define the smooth map J : M → g∗ by

〈J(x), v〉 = J (v)(x)

for all x ∈ M, v ∈ g. This is called a momentum map for the G action by
Kostant [99], Smale [152] and Souriau [153] (though our definition above is more
restrictive). The map J is Poisson if and only if J is a Lie algebra homomorphism.
In that case, J is G-equivariant if G is connected. Conversely, we have the following
proposition:

Proposition 7.1 A G-equivariant momentum map is a Poisson map.

Proof. If J : M → g∗ is G-equivariant, then for any v ∈ g, the hamiltonian
flow of J (v) on M is mapped by J to the hamiltonian flow of hv on g∗, since
J (v) = J∗(hv). By the last characterization in Section 6.1, the map J is Poisson
if, for all functions f ∈ C∞(g∗), J maps the hamiltonian flow of J∗(f) to the
hamiltonian flow of f . But it actually suffices to check this condition for the hv’s
because the collection {dhv} spans the cotangent spaces of g∗. We conclude that J
is a Poisson map. 2

What is the obstruction to constructing a lift J : g → C∞(M) which is a Lie
algebra homomorphism? Here is a test to see whether a given J preserves the
Poisson bracket. For any v, w ∈ g, define

ΘJ (v, w) = {J (v),J (w)} − J ([v, w]) .

We would like to have ΘJ(v, w) = 0 for any choice of v, w. Let β : C∞(M) →
χHam(M) be the map β(f) = Xf . Noting that both β and ρ̃ = β ◦ J are anti-
homomorphisms, we compute

β(ΘJ (v, w)) = β{J (v),J (w)} − βJ ([v, w])
= −[β(J (v)), β(J (w))]− ρ̃([v, w])
= −[ρ̃(v), ρ̃(w)] + [ρ̃(v), ρ̃(w)]
= 0 .

So ΘJ takes values in

ker
(
β : C∞(M)→ χHam(M)

)
= H0

Π(M) .

Since ΘJ is anti-symmetric, we regard it as a map

ΘJ : g ∧ g −→ H0
Π(M) ,

whose vanishing is equivalent to J being G-equivariant, as long as G is connected.

7.4 Killing the Second Obstruction

For a fixed ρ, the definition of ΘJ above does depend on J . As the lift J varies by
elements of H0

Π(M), the corresponding ΘJ ’s can change. The question becomes: if
ΘJ is non-trivial, can we kill it by a different choice of lifting J ?

To answer this question, we start by evaluating

ΘJ (u, [v, w]) =
{
J (u), {J (v),J (w)} −ΘJ(v, w)

}
− J ([u, [v, w]]) .
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The cyclic sum

δΘJ (u, v, w) = ΘJ (u, [v, w]) + ΘJ(v, [w, u]) + ΘJ(w, [u, v])

is called the coboundary, δΘJ , of ΘJ .

Exercise 16
Prove that δΘJ (u, v, w) is 0. You should use the Jacobi identity and the fact
that ΘJ (v, w) is a Casimir function.

Since δΘJ(u, v, w) = 0, ΘJ is called a 2-cocycle on g with values in H0
Π(M).

Suppose that we replace J with J +K, where K : g→ H0
Π(M) is a linear map.

The momentum map K : M → g∗ associated to K is constant on symplectic leaves.
Such a map K is called a 1-cochain on g with values in H0

Π(M). The 2-cocycle
ΘJ+K corresponding to J +K satisfies

ΘJ+K(u, v) = ΘJ(v, w)−K([v, w]) .

We define δK(v, w) = −K([v, w]).

Exercise 17
Using the previous definition of δ for 2-cochains on g with values in H0

Π(M),
show that δ2K = 0.

Let H2(g;H0
Π(M)) be the second Lie algebra cohomology of g with coefficients

in H0
Π(M). We then conclude that the cohomology class

[ΘJ ] ∈ H2(g;H0
Π(M))

is independent of the choice of J and depends only on ρ. Furthermore, [ΘJ ] vanishes
if and only if a lift J exists which is a Lie algebra homomorphism.

7.5 Obstructions Summarized

Given an action of a Lie group G on a Poisson manifold M , there is an induced map
ρ : g→ χPoiss(M). The first obstruction to lifting ρ to a Lie algebra homomorphism
J : g→ C∞(M) is the map ρ : g→ H1

Π(M). If H1
Π(M) is abelian, as for instance

in the symplectic case, then ρ is actually an element of H1(g;H1
Π(M)). We think

of ρ as an action of g on the leaf space of M which needs to be trivial in order to
lift ρ.

When ρ = 0 there is a second obstruction in H2(g;H0
Π(M)).

Exercise 18
Check that

H2(g;H0
Π(M)) ' H2(g)⊗H0

Π(M) .

Interpreting H0
Π(M) as the set of functions on the leaf space, we can view this

second obstruction as lying on “functions on the leaf space with values in H2(g)”.

Questions: Is there a variant for [ΘJ ] that makes sense even when ρ 6= 0? Is
it possible that the two objects ρ and [ΘJ ] be considered as parts of some single
geometric object related to the “action of G on the leaf space”? Can we integrate
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cocycles on the Lie algebra into cocycles on the group? Perhaps some sense can be
made of these questions in the realms of Lie algebroid cohomology or equivariant
Poisson cohomology.

There is some terminology commonly used in these constructions. An action of
G by automorphisms of a Poisson manifold (M,Π) is called weakly hamiltonian if
there exists a momentum map J . If there is an equivariant momentum map J , then
the action is called hamiltonian. In some of the literature, weakly hamiltonian
actions are simply referred to as hamiltonian while hamiltonian actions as we have
defined them are called strongly hamiltonian.

Remark. For a weakly hamiltonian action of a connected group G on a connected
symplectic manifold M , there is a modified Poisson structure on g∗ for which the
momentum map J : M → g∗ is a Poisson map. Consider the map

ΘJ : g ∧ g −→ H0
Π(M)

as an element of (g∗ ∧ g∗) ⊗ H0
Π(M), i.e. as a bivector field on g∗ with values in

H0
Π(M). Because M is symplectic and connected, H0

Π(M) ' R, and thus ΘJ is
simply a bivector field. We then add ΘJ to the Poisson tensor Πg∗ , defining a new
tensor Π′g∗ = Πg∗ + ΘJ , with respect to which J is a Poisson map.

Exercise 19
Show that δΘJ = 0 implies that Π′g∗ is again a Poisson tensor and that with
this Poisson structure on g∗ the map J is Poisson.

♦

7.6 Flat Connections for Poisson Maps with Symplectic Tar-
get

We will classify complete Poisson maps ϕ : M → S, where M is a Poisson manifold
and S is a connected symplectic manifold. The structure of these maps turns out
to be remarkably simple and rigid.

Claim. Any Poisson map ϕ : M → S is a submersion.

Proof. If not, then (Txϕ)(TxM) is a proper subspace V of Tϕ(x)S, and (Txϕ)(Π(x)) ⊆
V ∧ V , contradicting the fact that the image of Π under Txϕ is symplectic. 2

We can say even more if we assume that ϕ is complete:

Claim. Any complete Poisson map ϕ : M → S is surjective.

Exercise 20
Prove this claim.

Example. Let F be any Poisson manifold and let p1 : S × F → S be the
projection onto the first factor. This is clearly a complete Poisson map. ♦

Inspired by this example, the claims above indicate that a complete Poisson
map should be a kind of fibration over S. To formalize this idea, we define a flat
connection for any submersion ϕ : M → S between manifolds to be a subbundle
E ⊆ TM such that
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1. TM = E ⊕ kerTϕ ,

2. [E,E] ⊆ E (that is, sections of E are closed under [·, ·], and so by the Frobe-
nius theorem E is integrable),

3. every path in S has a horizontal lift through each lift of one of its points.

A subbundle E ⊆ TM satisfying conditions 1 and 3, or sometimes just 1, is
called an Ehresmann connection [52]. Conditions 1 and 3 imply that ϕ : M → S
is a locally trivial fibration. Condition 2 is the flatness property, which implies
that the fibration has a discrete structure group.

Theorem 7.2 A complete Poisson map ϕ : M → S to a symplectic manifold has
a natural flat connection.

Proof. Let s = ϕ(x) for some x ∈M and choose a v ∈ TsS. We want to lift v to
TxM in a canonical way. Because S is symplectic, Π̃−1

S (v) is a well-defined covector
at s. Define a horizontal lift

Hx(v) = Π̃M

(
(Txϕ)∗Π̃−1

S (v)
)
∈ TxM .

The fact that ϕ is a Poisson map implies that (Txϕ)(Hx(v)) = v (see Section 6.1).
We need to check that the bracket of two horizontal lifts is again horizontal. On S,
choose canonical coordinates q1, . . . , qn, p1, . . . , pn, and lift their hamiltonian vector
fields

− ∂

∂p1
, . . . ,− ∂

∂pn
,
∂

∂q1
, . . . ,

∂

∂qn
.

The lifts are closed under commutators, hence span an integrable subbundle. Mul-
tiplying these vector fields on S by compactly supported functions if necessary to
make them complete, we obtain a local trivialization of ϕ, because ϕ is complete.
Any path on S lifts to M because any path lifts locally. 2

In particular, if S is simply connected, then there is a Poisson manifold F
such that M and S × F are diffeomorphic as Poisson manifolds. In general, ϕ is
determined up to isomorphism by its holonomy

π1(S) −→ Aut(F )

on a typical fiber F of the map.
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s - S

ss -
F

M

?

ϕ

We thus found a functor from the category of complete Poisson maps M → S
to the category of actions of π1(S) by Poisson automorphisms on Poisson manifolds
F .

We also have a functor going in the other direction. Let S̃ be the universal
cover of the symplectic manifold S; S̃ is a symplectic manifold. Let F be a Poisson
manifold with a π1(S)-action by Poisson automorphisms. On the product S̃ × F
there is an induced diagonal action

γ · (s̃, f) = (γ · s̃, γ · f) for γ ∈ π1(S) .

If we form the quotient by this action, we still get a projection

S̃ × F
π1(S)

ϕ−→ S .

This is a complete Poisson map with fiber F .

Exercise 21
Show that this actually defines a functor from the category of actions of π1(S)
by Poisson automorphisms on Poisson manifolds to the category of complete
Poisson maps from Poisson manifolds to S.

Remark. Comparing the results of this section with the theory of hamiltonian
group actions, it is tempting to think of any symplectic manifold S as the “dual of
the Lie algebra of π1(S)”! ♦



Part IV

Dual Pairs

8 Operator Algebras

In this chapter, we introduce terminology and quote results leading to the double
commutant theorem (Theorem 8.3) proved by von Neumann [127]. Chapter 9 will
be devoted to analogous results in Poisson geometry.

In the following discussion, we denote the algebra of bounded operators on a
complex Hilbert space H by B(H). There are several topologies worth considering
on B(H).

8.1 Norm Topology and C∗-Algebras

The norm of a bounded operator L ∈ B(H) is by definition

||L|| = sup
u∈H\{0}

||Lu||H
||u||H

.

Exercise 22
Check that || · || satisfies the axioms for a norm:

(a) ||λ · L|| = |λ| · ||L||, λ ∈ C,

(b) ||L+M || ≤ ||L||+ ||M ||, and

(c) ||L|| > 0 if L 6= 0 .

This induces a (complete) metric

d(M,L) = ||L−M ||

and thus a topology on B(H), called the norm topology.
On B(H) there is an adjoint operation ∗ defined uniquely by

〈L∗u, v〉 = 〈u, Lv〉

which has the properties

• L∗∗ = L,

• (LM)∗ = M∗L∗, and

• ||LL∗|| = ||L||2.

We say that B(H) equipped with this *-operation is a C∗-algebra. In general, a C∗-
algebra is an algebra with a norm such that the algebra is complete with respect
to the topology induced by the norm and possesses a *-operation satisfying the
properties above. As general references on C∗-algebras, we recommend [7, 36, 45].

Any norm-closed *-subalgebra of B(H) inherits the properties above and thus is
a C∗-algebra. If A ⊆ B(H) is any *-subalgebra, its norm-closure A is a C∗-algebra.
Conversely, we have the following theorem:

47
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Theorem 8.1 (Gel’fand-Naimark [64]) Any C∗-algebra is isomorphic as a normed
*-algebra to a norm-closed subalgebra of B(H).

Example. The collection of all finite rank operators is a *-subalgebra; its closure
is the C∗-subalgebra of compact operators on H – that is, operators L such that
L applied to a bounded subset has compact closure. The identity operator I is
not compact if H is infinite dimensional, as the closed unit ball in H is bounded
but not compact. (For instance, the sequence ai = (0, . . . , 0, 1, 0, . . .), where the 1
is in the ith slot, has no convergent subsequences.) For diagonalizable operators,
compactness amounts to convergence of the eigenvalues to 0. ♦

Let X be any compact Hausdorff topological space, and let C(X) be the al-
gebra of complex-valued continuous functions on X equipped with the sup norm.
Then pointwise addition and multiplication together with the *-operation defined
by f∗(x) = f(x) give C(X) the structure of a C∗-algebra. The following theorem
demonstrates how general this example is:

Theorem 8.2 [63, 65, 64] Any commutative C∗-algebra A with identity is iso-
metrically *-isomorphic to C(X) for some compact Hausdorff space X. One can
take X to be the space of non-zero *-homomorphisms from A to C. (X is then
called the spectrum of A.)

Recalling Theorem 8.1, how can C(X) be regarded as an algebra of operators
on a Hilbert space? Because X is compact, we can find a Borel measure on X
which is positive on any non-empty open set. C(X) is then realized as an algebra
of multiplication operators on L2(X). For any function u ∈ C(X), define the
multiplication operator mu by mu(g) = ug for g ∈ L2(X).

Exercise 23
Show that

||mu||B(L2(X)) = ||u||C(X) .

8.2 Strong and Weak Topologies

A second topology on B(H) is the topology of pointwise convergence, or the
strong topology. For each u ∈ H, define a semi-norm

||L||u = ||Lu||H .

A semi-norm is essentially the same as a norm except for the positivity requirement:
non-zero elements may have 0 semi-norm. We define the strong topology on B(H)
by declaring a sequence {Li} to converge if and only if the sequence converges in
the semi-norms || · ||u for all choices of u ∈ H.

Example. The sequence of operators Li on L2(N) =: l2 defined by

Li(a0, a1, a2, . . .) = (0, . . . , 0, ai, 0, . . .)

converges to 0 in the strong topology, though each Li has norm 1. ♦
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Example. Let Mi be the operator on L2(N)

Mi(a0, a1, a2, . . .) = (0, . . . , 0, a0, 0, . . .) ,

where the a0 on the right is the ith entry. The sequence of the Mi’s does not
converge in the strong topology, yet its adjoint

M∗i (a0, a1, a2, . . .) = (ai, 0, 0, . . .)

does converge strongly (exercise). ♦

Another topology on B(H) is the weak topology, or the topology of con-
vergence of matrix elements. For u, v ∈ H, define a semi-norm

||L||u,v = | 〈Lu, v〉 | .

We say that a sequence {Li}i∈I converges in the weak topology, if ||Li||u,v converges
for each choice of u, v.

The sequences Li, Mi and M∗i in the examples above converge in the weak
topology. In general, any strongly convergent sequence is weakly convergent, and
any norm convergent sequence is strongly convergent, so the weak topology is in
fact weaker than the strong topology, which is still weaker than the norm topology.

By Exercise 23, the inclusion C(X) ↪→ B(L2(X)) given by u 7→ mu is an
isometry; this implies that C(X) is norm-closed when considered as a subalgebra
of B(L2(X)), which illustrates Theorem 8.1. However, if we use a weaker topology
(say the strong or weak topology), then C(X) is no longer closed.

Exercise 24
Construct a sequence of functions in C(X) converging to (multiplication by) a
step function in the strong (or weak) topology. Show that this sequence does
not converge in the norm topology.

The weak (or strong) closure of C(X) in B(L2(X)) is, in fact, L∞(X). Keep
in mind that elements of L∞(X) cannot be strictly considered as functions on X,
since two functions which differ on a set of measure 0 on X correspond to the same
element of B(L2(X)).

8.3 Commutants

A subalgebraA of B(H) is called unital if it contains the identity operator of B(H).
For a subset A ⊆ B(H) closed under the *-operator, we define the commutant of
A to be

A′ = {L ∈ B(H) | ∀a ∈ A, La = aL} .

Exercise 25
Show that A′ is a weakly closed *-subalgebra.

A weakly closed unital *-subalgebra of B(H) is called a von Neumann alge-
bra. [47, 74, 156, 157, 158] are general references on von Neumann algebras. There
is a remarkable connection between algebraic and topological properties of these
algebras, as shown by the following theorem.
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Theorem 8.3 (von Neumann [127]) For a unital *-subalgebra A ⊆ B(H), the
following are equivalent:

1. A′′ = A,

2. A is weakly closed,

3. A is strongly closed.

Corollary 8.4 If A is any subset of B(H), then A′′′ = A′.

For an arbitrary unital *-subalgebra A ⊆ B(H), the double commutant A′′
coincides with the weak closure of A.

The center of A is
Z(A) = A ∩A′.

If A is a von Neumann algebra with Z(A) = C · 1, then A is called a factor.
These are the building blocks for von Neumann algebras. Von Neumann showed
that every von Neumann algebra is a direct integral (generalized direct sum) of
factors [129, 130].

Example. We have already seen some classes of von Neumann algebras:

• B(H), which is a factor.

• L∞(X) (with respect to a given measure class on X), which is a generalized
direct integral of copies of C (which are factors):

L∞(X) = ⊕
∫
X

a copy of C for each point of X .

• The commutant of any subset of B(H), for instance the collection of operators
which commute with the action of a group on H.

♦

8.4 Dual Pairs

A dual pair (A,A′) is a pair of unital *-subalgebras A and A′ of B(H) which are
the commutants of one another. By Theorem 8.3, A and A′ are then von Neumann
algebras.

If A is a von Neumann subalgebra of B(H), then there are inclusions

B(H)

�
�
�
�
�� I@

@
@
@
@

A A′

which form a dual pair. The centers of A and A′ coincide:

Z(A) = A ∩A′ = A′ ∩ A′′ = Z(A′) ,

so that A is a factor if and only if A′ is.
We next turn to geometric counterparts of dual pairs in the context of Poisson

geometry.
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We will discuss a geometric version of dual pairs for Poisson algebras associated to
Poisson manifolds.

9.1 Commutants in Poisson Geometry

We have seen that a Poisson manifold (M, {·, ·}) determines a Poisson algebra
(C∞(M), {·, ·}) and that a Poisson map ϕ : M → N induces a Poisson-algebra
homomorphism ϕ∗ : C∞(N)→ C∞(M).

Suppose that N is a Poisson quotient of M . Then there is a map C∞(N) →
C∞(M) identifying C∞(N) as a Poisson subalgebra of C∞(M) consisting of func-
tions constant along the equivalence classes of M determined by the quotient map.
In the converse direction, we might choose an arbitrary Poisson subalgebra of
C∞(M) and search for a corresponding quotient map. In general this is not possi-
ble. To understand the tie between Poisson quotients and Poisson subalgebras, we
examine examples of commutants in (C∞(M), {·, ·}).

Example. Let M = R
2n, with the standard Poisson structure Π =

∑
∂
∂qi
∧ ∂
∂pi

.
The Poisson subalgebra, Pol(R2n), of polynomial functions does not correspond to
any Poisson quotient manifold. Since Pol(R2n) separates any two points of R2n,
the “quotient map” would have to be the identity map on R2n.

On the other hand, the Poisson subalgebra

π∗C∞(Rnq1,...,qn) ⊆ C∞(R2n
q1,...,qn,p1,...,pn)

does correspond to the quotient π : R2n → R
n. ♦

The different behavior of the subalgebras Pol(R2n) and C∞(Rnq1,...,qn) of C∞(R2n)
can be interpreted in the following manner.

Let A be a Poisson algebra and B ⊆ A a Poisson subalgebra. Define the
commutant of B in A to be

B′ = {f ∈ A | {f,B} = 0} .

Example. For A = C∞(R2n) we have:

Pol(R2n)′ = constant functions

(constant functions)′ = C∞(R2n)

C∞(Rnq1,...,qn)′ = C∞(Rnq1,...,qn)

C∞(Rq1)′ = C∞(R2n−1
q1,...,qn,p2,...,pn) .

The double commutants of these subalgebras are:

Pol(R2n)′′ = C∞(R2n)

C∞(Rnq1,...,qn)′′ = C∞(Rnq1,...,qn)

C∞(Rq1)′′ = C∞(Rq1) .

51
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Since Pol(R2n) does not correspond to a Poisson quotient while the other two
subalgebras do, this seems to indicate that the Poisson subalgebras that correspond
to quotient maps are those which are their own double commutants. ♦

Question. (R. Conti) Is A′ = A′′′ for every subset of a Poisson algebra? (See
Corollary 8.4.)

9.2 Pairs of Symplectically Complete Foliations

Suppose that M and N are Poisson manifolds and that J : M → N is a Poisson map
with a dense image in N . Then the pull-back J∗ is an injection. The commutant
of the Poisson subalgebra

A = J∗(C∞(N)) ⊆ C∞(M)

is
A′ = {f ∈ C∞(M) | {f,A} = 0}

= {f ∈ C∞(M) | ∀g ∈ A, Xgf = 0}
= {f ∈ C∞(M) | ∀g ∈ A, df annihilates Π̃(dg)} .

At a point x of M , we have

{values of hamiltonian vector fields Π̃(dg) at x | g ∈ A} = Π̃(image T ∗xJ)
= Π̃((kerTxJ)◦) ,

where (kerTxJ)◦ is the subspace of covectors that annihilate kerTxJ ⊆ TxM . When
M happens to be symplectic,

Π̃((kerTxJ)◦) = (kerTxJ)⊥ ,

where W⊥ is the symplectic orthogonal to the subspace W inside the tangent
space. (In the symplectic case, taking orthogonals twice returns the same subspace:
(W⊥)⊥ = W .) In the symplectic case, we have

{values of hamiltonian vector fields Π̃(dg) at x | g ∈ A} = (kerTxJ)⊥ .

Exercise 26
Show that

{values of hamiltonian vector fields Π̃(dg) at x | g ∈ A′} = kerTxJ .

Suppose now that J : M → N is a constant-rank map from a symplectic
manifold M to a Poisson manifold N . The kernel

kerTJ

forms an integrable subbundle of TM , defining a foliation of M . The symplectic
orthogonal distribution

(kerTJ)⊥

is generated by a family of vector fields closed under the bracket operation, since
they are lifts of hamiltonian vector fields on N . Hence, it is an integrable distribu-
tion which defines another foliation. This is a particular instance of the following
lemma.



9.3 Symplectic Dual Pairs 53

Lemma 9.1 Let M be a symplectic manifold and F ⊆ TM an integrable subbun-
dle. Then F⊥ is integrable if and only if the set of functions on open sets of M
annihilated by vectors in F is closed under the Poisson bracket.

A foliation F defined by a subbundle F ⊆ TM as in this lemma (i.e. integrable,
with the set of functions on open sets of M annihilated by vectors in F closed
under the Poisson bracket) is called a symplectically complete foliation [104].
Symplectically complete foliations come in orthogonal pairs, since (F⊥)⊥ = F .

9.3 Symplectic Dual Pairs

Example. Suppose that M is symplectic and J : M → g∗ is a constant-rank
Poisson map. The symplectic orthogonal to the foliation by the level sets of J is
exactly the foliation determined by hamiltonian vector fields generated by functions
on g∗, which is the same as the foliation determined by the hamiltonian vector fields
generated by linear functions on g∗ (since the differentials of linear functions span
the cotangent spaces of g∗). The leaves of this foliation are simply the orbits of
the induced G-action on M . We could hence consider the “dual” to J to be the
projection of M to the orbit space, and write

M

	�
�
�
�
�

J
@
@
@
@
@

p

R

g∗ M/G .

Some conditions are required for this diagram to make sense as a pair of Poisson
maps between manifolds, in particular, for M/G to exist as a manifold:

1. J must have constant rank so that the momentum levels form a foliation.

2. The G-orbits must form a fibration (i.e. the G-action must be regular).

In this situation, the subalgebras J∗(C∞(g∗)) and p∗(C∞(M/G)) of C∞(M) are
commutants of one another, and hence their centers are isomorphic. Furthermore,
when J is a submersion, the transverse structures to corresponding leaves in g∗ and
M/G are anti-isomorphic [163]. So the Poisson geometry of the orbit space M/G
is “modulo symplectic manifolds” very similar to the Poisson geometry of g∗. This
construction depends on J being surjective or, equivalently, on the G-action being
locally free. When J is not surjective, we should simply throw out the part of g∗

not in the image of J . ♦

In general, given a symplectic manifold M and Poisson manifolds P1 and P2, a
symplectic dual pair is a diagram

M

	�
�
�
�
�

J1

@
@
@
@
@

J2

R

P1 P2
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of Poisson maps with symplectically orthogonal fibers. Orthogonality implies

{J∗1 (C∞(P1)), J∗2 (C∞(P2))} = 0 .

Sometimes, this relation is written as {J1, J2} = 0.

Remark. For a pair of Poisson maps J1 : M → P1 and J2 : M → P2, imposing
{J1, J2} = 0 is equivalent to imposing that the product map

M
J1 × J2- P1 × P2

be a Poisson map. ♦

9.4 Morita Equivalence

Let J1, J2 be surjective Poisson submersions from a symplectic manifold M to
Poisson manifolds P1, P2. If

J∗1 (C∞(P1)) = J∗2 (C∞(P2))′ and J∗2 (C∞(P2)) = J∗1 (C∞(P1))′ ,

then the J1-fibers are symplectic orthogonals to the J2-fibers:

kerTJ1 = (kerTJ2)⊥.

The reverse implication is not true unless we assume that the fibers are connected,
essentially because kerTJ1 = (kerTJ2)⊥ is a local condition while the hypothesis
was a global condition. If J1 and J2 have connected fibers, then the two conditions
above are equivalent. To require that fibers be connected is appropriate because of
the following property for such dual pairs.

Proposition 9.2 Let J1, J2 be a pair of complete surjective Poisson submersions

M

	�
�
�
�
�

J1

@
@
@
@
@

J2

R

P1 P2

from a symplectic manifold M . Assume that the J1-fibers are symplectically orthog-
onal to the J2-fibers, and that all fibers are connected. Then there is a one-to-one
correspondence between the symplectic leaves of P1 and the symplectic leaves of P2.

Proof. Let Fj ⊆ TM be the distribution spanned by the hamiltonian vector
fields of functions in J∗j (C∞(Pj)). The assumption says that, at each point, the
distribution F1 (respectively F2) gives the subspace tangent to the fibers of J2

(respectively J1); this clearly shows that each of F1 and F2 is integrable. To see
that F1 +F2 is also integrable, note that F1 +F2 is spanned by hamiltonian vector
fields, and that the vector fields from J1 commute with those from J2. So we can
integrate F1 + F2 to a foliation of M .

A leaf L of the foliation defined by F1 + F2 projects by each map Ji to a set
Ji(L), which is in fact a symplectic leaf of Pi (i = 1, 2) for the following two reasons.
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First, by completeness, we can move anywhere within a symplectic leaf of Pi by
moving in the Fi direction in L. Secondly, if we move in the F2 (respectively F1)
direction in L, then nothing happens in the projection to P1 (respectively P2).

Therefore, there is a map from the leaf space of F1 + F2 to the product of the
leaf spaces of P1 and P2. The image R of this map gives a relation between the leaf
space of P1 and the leaf space of P2. Additionally, the projection of R to either
factor of the product is surjective. Because the fibers of J1, J2 are connected, it
follows that R is the graph of a bijection. 2

We say that two Poisson manifolds P1, P2 are Morita equivalent [176, 177] if
there is a symplectic manifold M and surjective submersions J1, J2

M

	�
�
�
�
�

J1

@
@
@
@
@

J2

R

P1 P2

satisfying the following conditions:

• J1 is a Poisson map and J2 is an anti-Poisson map (anti in the sense of being
an anti-homomorphism for the bracket).

• each Ji is complete and has constant rank,

• each Ji has connected, simply connected fibers,

• the fibers of J1, J2 are symplectically orthogonal to one another. Equivalently,
J∗1 (C∞(P1)) and J∗2 (C∞(P2)) are commutants of one another.

Remark. The map J2 in the Morita equivalence is sometimes denoted as a
Poisson map J2 : M → P 2, where P 2 is the manifold P2 with Poisson bracket
defined by {·, ·}P 2

= −{·, ·}P2 . ♦

Remark. In spite of the name, Morita equivalence is not an equivalence relation,
as it fails to be reflexive [176, 177]. ♦

9.5 Representation Equivalence

The Morita equivalence of Poisson manifolds provides a classical analogue to the
Morita equivalence of algebras. Let A1,A2 be algebras over a field K. Define an
(A1,A2)-bimodule E to be an abelian group E with a left action of A1 and a right
action of A2 such that for a1 ∈ A1, a2 ∈ A2, e ∈ E

(a1e)a2 = a1(ea2) .

So we have injective maps

A1 −→ EndK(E)
Aopp

2 −→ EndK(E) .
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where Aopp
2 denotes A2 acting on the left by inverses. A Morita equivalence from

A1 to A2 is an (A1,A2)-bimodule E such that A1 and A2 are mutual commutants
in EndK(E). Morita introduced this as a weak equivalence between algebras, and he
showed that it implies that A1-modules and A2-modules are equivalent categories.

Xu [176, 177] showed that we can imitate this construction for symplectic real-
izations of Poisson manifolds. In particular, if P1, P2 are Poisson manifolds, then we
say that they are representation equivalent if the category of complete Poisson
maps to P1 is equivalent to the category of complete Poisson maps to P2. Xu then
proved the following theorem:

Theorem 9.3 (Xu [176, 177]) If two Poisson manifolds are Morita equivalent,
then they are representation equivalent.

For a survey of Xu’s work and Morita equivalence in general, see the article
by Meyer [118]. For a survey of the relation between Poisson geometry and von
Neumann algebras, see the article by Shlyakhtenko [151].

9.6 Topological Restrictions

The importance of the condition that the fibers of Ji be simply connected in the
definition of Morita equivalence between Poisson manifolds is explained by the
following property for the case where P1 and P2 are symplectic.

Proposition 9.4 Let S1, S2 be symplectic manifolds. Then S1 and S2 are Morita
equivalent if and only if they have isomorphic fundamental groups.

Proof. Suppose that S1, S2 are Morita equivalent. Then, from the long exact
sequence for homotopy

0 = π1(fiber) −→ π1(M) −→ π1(Sj) −→ π0(fiber) = 0 ,

we conclude that
π1(S1) ' π1(M) ' π1(S2) .

Furthermore, the Morita equivalence induces a specific isomorphism via pull-back
by the maps from S.

Conversely, suppose that π1(S1) ' π1(S2) ' π. Let S̃j be the universal cover of

Sj , so that S̃j is a principal π-bundle over Sj . Because π acts on S̃1 and S̃2, there

is a natural diagonal action of π on S̃1 × S̃2 which allows us to define the dual pair

S̃1 × S̃2

π

	�
�
�
�
� @

@
@
@
@R

S1 = S̃1/π S2 = S̃2/π

Exercise 27
Check that these maps have simply connected fibers and that this defines a
Morita equivalence.
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2

Isomorphism of fundamental groups implies isomorphism of first de Rham coho-
mology groups. For symplectic manifolds, the de Rham cohomology is isomorphic
to Poisson cohomology. For general Poisson manifolds, we have the following result.

Theorem 9.5 (Ginzburg-Lu [72]) If P1, P2 are Morita equivalent Poisson man-
ifolds, then H1

Π(P1) ' H1
Π(P2).

Since any two simply connected symplectic manifolds are Morita equivalent, we
are not able to say anything about the higher Poisson cohomology groups.





10 Examples of Symplectic Realizations

A symplectic realization of a Poisson manifold P is a Poisson map ϕ from a sym-
plectic manifold M to P .

10.1 Injective Realizations of T3

Let R3 have coordinates (x1, x2, x3) and (by an abuse of notation) let T3 be the
3-torus with coordinates (x1, x2, x3) such that xi ∼ xi + 2π. Define a Poisson
structure (on R3 or T3) by

Π =
(

∂

∂x1
+ α1

∂

∂x3

)
∧
(

∂

∂x2
+ α2

∂

∂x3

)
.

The Poisson bracket relations are:

{x1, x2} = 1 , {x2, x3} = −α1 , {x1, x3} = α2 .

On R3, Π defines a foliation by planes with slope determined by α1, α2. If
1, α1, α2 are linearly independent over Q, then Π also defines a foliation on T3 by
planes, each of which is dense in T3. This is called a (fully) irrational foliation.
If both α1 and α2 are rational, then the foliation of T3 is by 2-tori, and if exactly
two of 1, α1, α2 are linearly dependent over Q, then the foliation is by cylinders.

In the fully irrational case, the algebra H0
Π(T3) of Casimir functions is trivial; in

fact, the constants are the only L∞ functions constant on symplectic leaves, since
the foliation on T3 is ergodic. There are no proper Poisson ideals. This structure
allows us to regard T3 as being “almost symplectic”. We will see, however, that
its complete symplectic realizations are more interesting than those of a symplectic
manifold.

Exercise 28
If Π defines a foliation by cylinders, are there any (nontrivial) Casimir func-
tions?

First we may define a realization J by inclusion of a symplectic leaf,

R
2 (x1, x2)

T
3

J

?

(x1, x2, α1x1 + α2x2)
?

(mod 2π)

Although J is not a submersion, it is a complete map. There is such a realization
for each symplectic leaf of T3, defined by

Jc : (x1, x2) 7−→ (x1, x2, α1x1 + α2x2 + c) ,

with c ∈ R. For any integers n0, n1, n2, substituting c+ 2π(n0 + α1n1 + α2n2) for
c gives the same leaf. Thus the leaf space of T3 is parametrized by c ∈ R/2π(Z +
α1Z+ α2Z).

The leaf space is highly singular; there is not even a sensible way to define
nonconstant measurable functions. It is better to consider the Poisson manifold T3

59
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itself as a model for the leaf space, just as one uses noncommutative algebras to
model such singular spaces in noncommutative geometry [32].

The map J : R2 → T
3 has a dense image, and thus the induced pull-back

on functions, J∗ : C∞(T3) → C∞(R2), is injective. The following (periodic or
quasi-periodic) functions on R2,

eix1 , eix2 , ei(α1x1+α2x2) ,

are in the image of J∗, and generate such a large class of functions that any function
in C∞(R2) can be uniformly C∞-approximated by them on compact sets. Thus

J∗(C∞(T3))′ = constants and J∗(C∞(T3))′′ = C∞(R2) .

Since the Poisson algebra J∗(C∞(T3)) is not its own double commutant, there can
not be another Poisson manifold P which will make

R
2

	�
�
�
�
�

J
@
@
@
@
@R

T
3 P

into a Morita equivalence. In fact, to form a dual pair, such a “manifold” P would
have to be a single point because each fiber of J is a single point and because of
orthogonality of fibers. The diagram

R
2

	�
�
�
�
�

J
@
@
@
@
@R

T
3 point

satisfies the conditions that the fibers be symplectic orthogonals and that the fibers
be all connected and simply connected. However, the function spaces of this pair are
not mutual commutants. Of course, the problem here is that J is not a submersion.

10.2 Submersive Realizations of T3

Noticing that T3 is a regular Poisson manifold, we can use the construction for prov-
ing Lie’s theorem (Chapter 4) to form a symplectic realization by adding enough
extra dimensions. Specifically, consider the map

R
4 (x1, x2, x3, x4)

T
3

J

?

(x1, x2, x3)
?

where R4 has symplectic structure defined by

ΠR4 =
(

∂

∂x1
+ α1

∂

∂x3

)
∧
(

∂

∂x2
+ α2

∂

∂x3

)
+

∂

∂x3
∧ ∂

∂x4
,
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and T3 has the fully irrational Poisson structure as above:

Π =
(

∂

∂x1
+ α1

∂

∂x3

)
∧
(

∂

∂x2
+ α2

∂

∂x3

)
.

Exercise 29
Check that Π

R4 defines a non-degenerate 2-form on R4 which is equivalent to
the standard symplectic structure

Πstd =
∂

∂x1
∧

∂

∂x2
+

∂

∂x3
∧

∂

∂x4
.

Show that the symplectic structures induced on T4 by Π
R4 and Πstd are not

equivalent, though they both have the same volume element

Π
R4 ∧Π

R4 = Πstd ∧Πstd =
∂

∂x1
∧

∂

∂x2
∧

∂

∂x3
∧

∂

∂x4
.

(Consider 1
2π

times the cohomology class of each symplectic structure.)

To find the commutant of J∗(C∞(T3)) in this case, we examine the symplectic
orthogonals to the fibers of J . First, we list the Poisson brackets for the symplectic
structure on R4:

{x1, x2} = 1 {x1, x4} = 0
{x2, x3} = −α1 {x2, x4} = 0
{x1, x3} = α2 {x3, x4} = 1

and the hamiltonian vector fields

Xx1 = − ∂

∂x2
− α2

∂

∂x3
,

Xx2 =
∂

∂x1
+ α1

∂

∂x3
,

Xx3 = α2
∂

∂x1
− α1

∂

∂x2
− ∂

∂x4
,

Xx4 =
∂

∂x3
.

The commutant of J∗(C∞(T3)) consists of the functions killed byXx1 , Xx2 andXx3 .
Since these three vector fields are constant, it suffices to find the linear functions
c1x1 + c2x2 + c3x3 + c4x4 killed by these vector fields, i.e. solve the system −c2 − α2c3 = 0

c1 + α1c3 = 0
α2c1 − α1c2 − c4 = 0

The linear solutions are the constant multiples of

α1x1 + α2x2 − x3 ,

and J∗(C∞(T3))′ ⊆ C∞(R4) consists of functions of α1x1 + α2x2 − x3.
Given the commutant, we can geometrically define the other leg of a dual pair

to be the map J2 : R4 → R given

(x1, x2, x3, x4) 7−→ α1x1 + α2x2 − x3 .
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Thus we have the diagram

R
4

	�
�
�
�
�

J
@
@
@
@
@

J2

R

T
3

R

Although α1x1+α2x2−x3 is not quasi-periodic, it lies in the closure of J∗(C∞(T3)).
One can check that J∗2 (C∞(R))′ 6= J∗(C∞(T3)), and so this does not define a
Morita equivalence. The obstruction stems from the fact that J does not have
connected fibers; a fiber of J is an infinite collection of parallel lines in R4.

We can factor J through the quotient R4 → T
4, and denote the induced map by

JT4 : T4 → T
3. The commutant of J∗

T4(C∞(T3)) in C∞(T4) should be generated
by the linear function α1x1 + α2x2 − x3 on T4, but this is not periodic on R4 and
thus is not defined on T4. Therefore, the commutant of J∗

T4(C∞(T3)) in C∞(T4)
is trivial, and the double commutant must be all of C∞(T4), which again prevents
Morita equivalence (moreover, fibers would fail to be simply connected). As before,
the other leg of the dual pair would have to be a single point rather than R:

T
4

	�
�
�
�
�

JT4

@
@
@
@
@R

T
3 point

The “dual” to T3 thus depends on the choice of realization, but requiring that
the realization have connected fibers seems to imply that the dual is “pointlike”.

We close these sections on T3 by mentioning that there is still much to investigate
in the classification of complete realizations. For instance, it would be interesting
to be able to classify complete Poisson maps from (connected) symplectic manifolds
to

• T3 with the Poisson tensor Π =
(

∂
∂x1

+ α1
∂
∂x2

)
∧
(

∂
∂x2

+ α2
∂
∂x3

)
, or

• a given manifold M with the zero Poisson tensor.

10.3 Complex Coordinates in Symplectic Geometry

The symplectic vector space R2n can be identified with the complex space Cn by
the coordinate change

zj = qj + ipj .

In order to study Cn as a (real) manifold, it helps to use the complex valued func-
tions, vector fields, etc., even though the (real) symplectic form is not holomorphic.

On a general manifold M , the complexified tangent bundle is

TCM = TM ⊗ C
= TM ⊕ iTM ,
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and the complexified cotangent bundle is

T ∗
C
M = T ∗M ⊗ C

= T ∗M ⊕ iT ∗M
= HomC (TCM,C)
= HomR (TM,C).

Introducing complex conjugate coordinates zj = qj − ipj , we find dzj = dqj +
idpj , dzj = dqj − idpj as linear functionals on TCM , and

dzj ∧ dzj = (dqj + idpj) ∧ (dqj − idpj)
= −2i (dqj ∧ dpj) .

Thus the standard symplectic structure on T ∗
C
M can be written in complex coor-

dinates as
ω =

i

2

∑
j

dzj ∧ dzj .

We linearly extend the Poisson bracket {·, ·} to complex valued functions and
compute

{zk, zj} = 0
{zk, zj} = 0
{zk, zj} = −2iδkj .

By these formulas, the Poisson tensor becomes

ΠR2n = −2i
∑
j

∂

∂zj
∧ ∂

∂zj
,

where ∂
∂zj

, ∂
∂zj

form the dual basis to dzj , dzj , and hence satisfy

∂

∂zj
=

1
2

(
∂

∂qj
− i ∂

∂pj

)
,

∂

∂zj
=

1
2

(
∂

∂qj
+ i

∂

∂pj

)
.

10.4 The Harmonic Oscillator

The harmonic oscillator is a system of n simple harmonic oscillators without
coupling, modeled by (R2n,ΠR2n) with hamiltonian function

hα =
1
2

∑
j

αj(q2
j + p2

j ) .

The coefficients αj are the n frequencies of oscillation. Using complex coordinates,
we rewrite hα as

hα =
1
2

∑
j

αjzjzj .

To compute the flow of hα, we work out the hamiltonian equations:

dzk
dt

= {zk, hα} =
1
2

∑
j

αj{zk, zjzj} =
1
2
αkzk(−2i) = −iαkzk ,

and similarly, dzk
dt = iαkzk. The solution is thus zk(t) = zk(0)e−iαkt.
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If αk = 1 for all k, the flow is the standard action of S1 on Cn, which is free on
C
n \ {0}.

If all the αk are rationally related, then we can assume after a change of time
scale that αk ∈ Z and see that we still have an action of S1. This action on Cn \{0}
will generally not be free, but rather will have discrete stabilizers.

If the αk are not rationally related, then this defines an R-action, as the typical
orbits will not be closed, but will be dense on a torus. From now on, we will
concentrate on this case.

To study the orbit space of the R-action, we start by calculating the commu-
tant. Specifically, we want to find the polynomial functions commuting with the
hamiltonian.

Exercise 30
For a typical monomial z`zm = z`11 · · · z

`n
n zm1

1 · · · zmnn , compute:

(a) {z`jj z
mj
j , zjzj} = `jz

`j
j z

mj
j (2i) + `jz

`j
j z

mj
j (−2i) ,

(b) {z`zm, 1
2

∑
αjzjzj} = i

∑
αj(mj − `j)z`zm .

Thus the monomials in zj and zj are eigenvectors of the hamiltonian vector field
of the oscillator hα. The corresponding eigenvalues are

i
∑
j

αj(mj − `j) .

The commutant of hα in Pol(Cn∗) is spanned by the monomials z`zm with
∑
αj(mj−

`j) = 0.

Example. Suppose that the αj ’s are linearly independent over Q. Then the only
monomials in the commutant are those with mj = `j for all j, that is, monomials of
the form z`z` = (zz)`. In this case, the functions invariant under the hamiltonian
action are just polynomials in Ij = zjzj = |zj |2. Then we can see this roughly as a
pair

C
n

	�
�
�
�
�

Ij
@
@
@
@
@

hα

R

R
n

R

Of course, Ij has a singularity at 0, and its image is only in the positive orthant of
R
n. This also could not be a dual pair of symplectic realizations, as the dimensions

of the fibers do not match up properly unless we delete the origin. Even so, this
example provides some intuition toward our study of dual pairs. ♦

If αj ∈ Z for all j, then calculating the commutant of hα is equivalent to solving
the system of linear equations ∑

j

αj(mj − `j) = 0

over the integers. What makes this problem non-trivial is that we are only interested
in non-negative integer solutions for `j ,mj , in order to study the ring of invariant
functions defined on all of Cn.
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To avoid this difficulty, we look first at the case αj = 1 for all j. Thus our
equation reduces to

∑
(mj − `j) = 0, or

∑
mj =

∑
`j . The set of solutions for

this system of equations is spanned by the monomials zjzk. In fact, the set {zjzk}
forms a basis for the subring of solutions.

Remark. The real part of zjzk is invariant under the hamiltonian action since
it can be expressed as zjzk + zkzj . Similarly, the imaginary part zjzk − zkzj is
invariant under the hamiltonian flow. ♦

The most general linear combination of the basis elements (that is, the most
general quadratic solution) is

ha =
∑
j,k

ajkzjzk , ajk ∈ C ,

and any function of this form is invariant under the hamiltonian flow. Furthermore,
these are all the quadratic invariants. The invariant functions will not commute
with one another, as the basis elements themselves did not commute.

10.5 A Dual Pair from Complex Geometry

To summarize the previous section: on Cn, the hamiltonian h = 1
2

∑
zjzj generates

a flow, which is just multiplication by unit complex numbers. The invariant func-
tions ha =

∑
j,k ajkzjzk generate complex linear flows (i.e. flows by transformations

commuting with multiplication by complex constants), which preserve h as well as
the symplectic form ω.

Hence, transformations generated by ha are unitary. The group of all linear
transformations leaving h invariant is the unitary group U(n). We would like to
show that the flows of the ha’s give a basis for the unitary Lie algebra u(n).

Remark. The function ha is real valued if and only if ajk = akj , i.e. the matrix
(ajk) is hermitian. Thus the set of real valued quadratic solutions corresponds to
the set of hermitian matrices.

Recall that the Poisson bracket of two invariant functions is again invariant
under the hamiltonian flow. Moreover, the bracket of two quadratics is again
quadratic, and thus we can use the correspondence above to define a bracket on
the group of hermitian matrices.

Exercise 31
Check that

{ha, hb} = hi[a,b] ,

where [a, b] is the standard commutator bracket of matrices.

♦

The algebra u(n) is the Lie algebra of skew-hermitian matrices. Denoting the
space of hermitian matrices by hn, we identify

hn ←→ u(n)
a

λ7−→ ia .

For a, b ∈ hn, it is easy to check that

[λa, λb] = λ(i[a, b]) ,
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and thus the bilinear map hn × hn → hn taking (a, b) to i[a, b] is the usual commu-
tator bracket on u(n) pulled back by λ to hn. With this identification of invariant
flows as unitary matrices, we see that the map

hn ' u(n) −→ C∞(Cn)

is a Lie algebra homomorphism. From our discussion in Section 7.2, we conclude
that there is a complete momentum map J : Cn → u(n)∗ ' h∗n corresponding to
an action of U(n) on Cn. This is the standard action of the unitary group on Cn.
We may view J as a map J : z 7→ z ⊗ z ' (zjzk). The value of the function ha at
(zjzk) ∈ u(n)∗ is the inner product of the matrix (ajk) with the matrix (zjzk).

Therefore, we have a pair

C
n

	�
�
�
�
�

J
@
@
@
@
@

h

R

h∗n ' u(n)∗ R ' u(1)∗

Removing the origin in Cn, we get a dual pair for which the image of the left leg
is the collection of rank-one skew-hermitian, positive semi-definite matrices, and
the image of the right leg is R+. A function which commutes with J is invariant
on the concentric spheres centered at 0 and is thus a function of |zz| – the square
of the radius. On the other hand, even though there is a singularity at 0 ∈ Cn, any
function on Cn commuting with h is in fact a pull-back of a function on u(n) by
the map J . In general, functions which are pull-backs by the momentum map J
are called collective functions.

Conjecture 10.1 (Guillemin-Sternberg [76]) Suppose that a symplectic torus
T
k acts linearly on Cn with quadratic momentum map J : Cn → (tk)∗. If the map
C
n → C

n/Tk corresponds to the invariant functions under the torus action, then

C
n

	�
�
�
�
�

J
@
@
@
@
@

p

R

(tk)∗ C
n/Tk

is a dual pair, in the sense that the images of J∗ and p∗ are mutual commutants in
C∞(Cn).

Guillemin and Sternberg [76] almost proved this as stated for tori and conjec-
tured that it held for any compact connected Lie group acting symplectically on
C
n. Lerman [103] gave a counterexample and, with Karshon [93], provided a proof

of the conjecture for (tk)∗ as well as an understanding of when this conjecture does
and does not hold for arbitrary compact groups.

Example. Lerman’s counterexample for the more general conjecture is the group
SU(2) acting on C2 (see [93, 103] for more information). As for the case of u(2)
studied above, the invariant functions corresponding to the collective functions are
functions of the square of the radius. The commutator of these functions are pulled
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back from u(2)∗, not su(2)∗. For instance, the function z1z1 + z2z2 cannot be the
pull-back of a smooth function on su(2)∗, although the function (z1z1 + z2z2)2 can
be so expressed. Thus the pair of maps

C
2

	�
�
�
�
�

J
@
@
@
@
@R

su(2)∗ ' R3
R

is not a dual pair.

Exercise 32
What happens when we remove the origin from each space?

♦





Part V

Generalized Functions

11 Group Algebras

Multiplication on a (locally compact) group G can be coded into a coproduct struc-
ture on the algebra C(G) of continuous real functions on G, making it into a com-
mutative Hopf algebra. Conversely, the algebra C(G) determines the multiplication
on G. Noncommutative analogues of C(G) are studied as if they were algebras of
functions on so-called quantum groups.

11.1 Hopf Algebras

Example. Let G be a finite set, and let C(G) be its algebra of real func-
tions. The tensor product C(G) ⊗ C(G) is naturally isomorphic as an algebra to
C(G×G) via the map

ϕ⊗ ψ 7−→ ((g, h) 7→ ϕ(g)ψ(h)) .

Now suppose that G is a group. Besides the pointwise product of functions,

m : C(G)⊗ C(G) −→ C(G) , m(ϕ⊗ ψ) = ϕψ ,

we can use the group multiplication G×G m→ G to define a coproduct on C(G)

m∗ : C(G) −→ C(G×G) = C(G)⊗ C(G) , m∗(ϕ)(g, h) = ϕ(gh) .

It is an easy exercise to check that this is a homomorphism with respect to the
pointwise products on C(G) and C(G × G). With this product and coproduct,
C(G) becomes a Hopf algebra. ♦

In general, a Hopf algebra is a vector space A equipped with the following
operations:

1. a multiplication

A⊗A m−→ A , also denoted m(ϕ,ψ) = ϕ · ψ ,

2. a comultiplication
A ∆−→ A⊗A ,

3. a unit (or identity),
i : C −→ A ,

4. a co-unit (or coidentity),

ε : A −→ C , and

5. an antipode map
α : A −→ A ,

69
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satisfying the following axioms:

1. the multiplication is associative, i.e.

A⊗A⊗A
m1,2 ⊗ id- A⊗A

A⊗A

id⊗m2,3

? m - A

m

?

commutes, where m1,2⊗ id : ϕ⊗ψ⊗ ρ 7→ m(ϕ,ψ)⊗ ρ, and similarly for other
indexed maps on tensor product spaces,

2. the comultiplication is coassociative, i.e.

A⊗A⊗A �
∆⊗ id

A⊗A

A⊗A

id⊗∆

6

� ∆
A

∆

6

commutes,

3. the comultiplication ∆ is a homomorphism of algebras, i.e.

A⊗A �
∆

A

A⊗A⊗A⊗A

m1,3 ⊗m2,4

6

�∆⊗∆
A⊗A

m

6

commutes, (that is, ∆(ϕ · ψ) = ∆(ϕ) ·∆(ψ) where the multiplication on the
right hand side is m⊗m),

4. the unit is an identity for multiplication, i.e.

A⊗ C ' C⊗A
id⊗ i- A⊗A

@
@
@
@
@

id

R

A⊗A

i⊗ id

? m - A

m

?

commutes,

5. the co-unit is a co-identity for comultiplication, i.e.

A �
id⊗ ε

A⊗A

I@
@
@
@
@

id

A⊗A

ε⊗ id

6

�∆
A

∆

6
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commutes,

6. the unit is a homomorphism of coalgebras, i.e.

C

i - A

C⊗ C
? i⊗ i- A⊗A

∆

?

commutes, where the left arrow is c 7→ c⊗ 1,

7. the co-unit is a homomorphism of algebras, i.e.

C �
ε

A

C⊗ C

6

�ε⊗ ε A⊗A

m

6

commutes, where the left arrow is multiplication of complex numbers, and

8. the antipode is an anti-homomorphism of algebras, i.e.

A⊗A
α⊗ α- A⊗A

A

m

? α - A

m

?

commutes, where m(ϕ,ψ) = m(ψ,ϕ).

9. the antipode is an anti-homomorphism of coalgebras, i.e.

A⊗A �
α⊗ α

A⊗A

A

∆

6

� α
A

∆

6

commutes, where ∆ is ∆ composed with the map ϕ⊗ ψ 7→ ψ ⊗ ϕ.

10. the following diagram involving the antipode commutes2

A
ε - C

i - A

A⊗A

∆

? α⊗ id - A⊗A

m

6

2It is not generally true that the square of the antipode equals the identity map.
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and the similar diagram with the bottom arrow being id⊗ α also commutes.
This is sometimes regarded as the defining axiom for the antipode.

Hopf came across the structure just described while studying the cohomology
rings of topological groups.

11.2 Commutative and Noncommutative Hopf Algebras

When A = C(G) is the algebra of continuous real functions on a locally compact
topological group G, the (pointwise) multiplication of functions extends to a prod-
uct on a topological completion “⊗ ” of the standard algebraic tensor product for
which C(G×G) ' C(G)“⊗ ”C(G) (see [159]). The algebra C(G) is a commuta-
tive Hopf algebra (commutativity here refers to the first multiplication) where

1. the multiplication is pointwise multiplication of functions,

2. the comultiplication is the pull-back m∗ of the multiplication on G,

3. the identity is the function identically equal to 1, or, equivalently, the homo-
morphism C→ C(G), c 7→ ϕ ≡ c,

4. the coidentity is given by evaluation at the identity of G, and

5. the antipode is the pull-back by the inversion map on G.

Exercise 33
Show that the associativity of group multiplication on G translates to coasso-
ciativity on C(G).

Commutative Hopf algebras are closely related to groups: if A = C(X) is the
set of continuous functions on a locally compact Hausdorff space X, then a Hopf
algebra structure on A (with C(X ×X) playing the role of A⊗A) defines a (not
necessarily commutative) multiplication on X which can be shown to satisfy the
group axioms.

A noncommutative Hopf algebra is thus to be thought of as “the algebra
of functions on a quantum group”. There is no universally accepted definition
of a quantum group. Many people restrict the name to the objects obtained by
deforming a Hopf algebra of functions on a Lie group.

Between commutative and noncommutative Hopf algebras lies the category of
Poisson Hopf algebras. A Poisson Hopf algebra A is a commutative Hopf algebra
equipped with a bracket operation making A into a Poisson algebra. We then
require the comultiplication and co-unit to be Poisson algebra homomorphisms,
while the antipode is an anti-homomorphism. When A = C∞(P ) for some Poisson
manifold P , the comultiplication gives P the structure of a Poisson Lie group;
i.e. the multiplication map P × P → P is a Poisson map. Poisson Lie groups can
be regarded as the transitional objects between groups and quantum groups, or as
classical limits of quantum groups. A comprehensive reference on quantum groups
and Poisson Lie groups is [25].
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11.3 Algebras of Measures on Groups

Let G be a locally compact topological group G, and let C(G) be its algebra of
continuous real functions. The dual space C ′(G) consists of compactly supported
measures on G. (The Lie group version of this construction will be presented in
Section 11.5).

Denoting by m the multiplication map on G, we described in Section 11.2 a
coproduct

C(G)
∆ = m∗- C(G)“⊗ ”C(G) , m∗(ϕ)(g, h) = ϕ(gh) .

On C ′(G) we obtain a map

C ′(G) �
∆∗ = m∗

C ′(G)“⊗ ”C ′(G)

defined by
∆∗(µ)(S) = µ(m−1S) ,

where µ ∈ C ′(G)“⊗ ”C ′(G) ' C ′(G×G) is a measure onG×G, S is any measurable
subset of G, and m−1S = {(g, h) ∈ G × G | gh ∈ S}. The map ∆∗ is just the
push-forward of measures by the multiplication map.

Composing ∆∗ with the natural bilinear map (µ, ν) 7→ µ⊗ν from C ′(G)×C ′(G)
to the tensor product, we obtain a multiplication of measures on G. By a simple
diagram chase through the axioms, we can check that ∆∗ is associative. This
multiplication is called convolution, and we will denote ∆∗(µ⊗ ν) by µ ∗ ν. The
following (abusive) notation is commonly used∫

f(x) d(µ ∗ ν)(x) =
∫ ∫

f(yz) dµ(y) dν(z) for f ∈ C(G) .

The space C ′(G) (or a suitable completion, such as the integrable signed mea-
sures) with the convolution operation is known as the measure group algebra of
G.

The diagonal map in the group

D : G - G×G
g 7−→ (g, g)

induces by push-forward a coproduct on measures

C ′(G)
D∗- C ′(G)“⊗ ”C ′(G)

defined by
D∗(µ)(S) = µ(D−1S) ,

where D−1S = {g ∈ G | (g, g) ∈ S}.
The space C ′(G) becomes a Hopf algebra for the convolution product ∆∗ and

this coproduct D∗; the unit is the delta measure at the identity e of G (or rather,
it is the map C 3 c 7→ cδe), the co-unit is evaluation of measures on the total set
G, and the antipode of a measure is its pushforward by the group inversion map.

In summary, we see that the group structure on G gives rise to:

• a (pull-back of group multiplication) coproduct on C(G), and its dual
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• a (convolution) multiplication on C ′(G).

Independent of the group structure we have:

• a (pointwise) multiplication on C(G), and its dual

• a (push-forward by the diagonal map) coproduct on C ′(G).

Remark. Each element g ∈ G defines an evaluation functional δg on G by

δg(f) := f(g) .

This identification allows us to think of G as sitting inside C ′(G). Note that δgh =
δg ∗ δh. Moreover, the push-forward of the diagonal map behaves nicely on G ⊆
C ′(G):

D∗(δg) = δg ⊗ δg .

An element of C ′(G) is called group(-element)-like if it satisfies the property
above. ♦

11.4 Convolution of Functions

If we choose a reference Borel measure λ on G, we can identify locally integrable
functions ϕ on G with measures by ϕ 7→ ϕλ. The map from compactly supported
locally integrable functions to C ′(G) is neither surjective (its image is the set of
compactly supported measures which are absolutely continuous with respect to
λ [146]), nor injective (if two functions differ only on a set of λ-measure 0, then
they will map to the same measure). In any case, we can use this rough identification
together with convolution of measures to describe a new product on functions on
G.

Before we can do this, we need to make a digression through measures on groups.
We define a measure λ to be quasi-invariant if, for each g ∈ G, the measure (`g)∗λ
induced by left translation is absolutely continuous with respect to λ; in other words,
there is a locally integrable function ϕ such that (`g)∗λ = ϕλ. We define λ to be
left-invariant if (`g)∗λ = λ for all g ∈ G.

Theorem 11.1 If G is locally compact, then there exists a left-invariant measure
which is unique up to multiplication by positive scalars.

Such a measure is called a Haar measure.

Remarks.

• For Lie groups, this theorem can be proven easily using a left-invariant volume
form, which can be identified with a non-zero element of the highest dimen-
sional exterior power ∧topg∗ of g∗: use left translation to propagate such an
element to the entire group.

• For general locally compact groups, this theorem is not trivial [149].
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• For some quantum groups, an analogous result holds; the study of Haar mea-
sures on quantum groups is still in progress (see [25], Section 13.3B).

♦

Observe that if λ is a left-invariant measure, then (rg)∗λ is again left-invariant
for any g ∈ G. Thus by Theorem 11.1, there is a function δ : G→ R

+ such that

(rg)∗λ = δ(g)λ .

It is easy to check the following lemma.

Lemma 11.2 δ(gh) = δ(g)δ(h).

δ is known as the modular function or the modular character of G. Due
to the local compactness of G, we also know that δ is continuous. If G is compact,
then we see that δ ≡ 1. Any group with δ ≡ 1 is called unimodular. Notice that
δ is independent of the choice for λ. Also, when G is a Lie group, we can compute

δ(g)λ = (`g−1)∗(rg)∗λ
= (Ad g−1)∗λ
= |(det ad g)|λ .

Thus we interpret the modular function of a Lie group as (the absolute value of)
the determinant of the adjoint representation on the Lie algebra.

Exercise 34

1. Compute the modular function for the group of affine transformations,
x 7→ ax+ b, of the real line.

2. Prove that GL(n) is unimodular.

3. To check the formula above for δ(g) on a Lie group, see whether δ(g) is
greater or smaller than 1 when Ad g−1 is expanding. Is det ad g greater
or smaller than 1?

Let λ be a Haar measure and δ : G→ R
+ the modular function. Given functions

ϕ,ψ ∈ C(G), their convolution ϕ ∗λ ψ with respect to λ is

(ϕ ∗λ ψ)λ := ϕλ ∗ ψλ ,

or, equivalently,

(ϕ ∗λ ψ)(g) =
∫
h∈G

ϕ(gh−1) ψ(h) δ(h) dλ(h) .

When G is unimodular, the δ factor drops out, and we recover the familiar formula
for convolution of functions. We can rewrite this formula in terms of a kernel for
the convolution (cf. Sections 14.1 and 14.2):

(ϕ ∗λ ψ)(g) =
∫ ∫

ϕ(k) ψ(`) K(g, k, `) dλ(k) dλ(`) .

We think ofK as a generalized function, and we interpret the expressionK(g, k, `)dλ(k)dλ(`)
as a measure on G×G×G supported on {(g, k, `) | g = k`}, which is the graph of
multiplication.
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Remark. There is a *-operation on complex-valued measures which is the push-
forward by the inversion map on the group, composed with complex conjugation. To
transfer this operation to functions ϕ ∈ C(G), we need to incorporate the modular
function:

ϕ∗(x) = ϕ(x−1) δ(x−1) .

The map ϕ 7→ ϕ∗ is an anti-isomorphism of C(G). ♦

11.5 Distribution Group Algebras

In Sections 11.2 and 11.3, we realized both C(G) and its dual C ′(G) as Hopf
algebras, with products and coproducts naturally induced from the group structure
of G.

There is a smooth version of this construction. If G is a Lie group, then D(G) =
C∞(G) is a Hopf algebra. The product is pointwise multiplication of functions,
while the coproduct is again the pull-back of group multiplication. The “tensor”
here needs to be a smooth kind of completion, so that C∞(G)“⊗ ”C∞(G) becomes
C∞(G×G).

The dual space D′(G) of compactly supported distributions [148] is called the
distribution group algebra of G. The space D′(G) is larger than the measure
group algebra: an example of a distribution that is not a measure is evaluation
of a second derivative at a given point. As in the case of C ′(G), we can define a
product (convolution) and coproduct (push-forward of the diagonal map) on D′(G)
to provide a Hopf algebra structure.

Remark. At the end of Section 11.3, we noted how the group G was contained
in C ′(G) as evaluation functionals:

g ∈ G 7−→ δg ∈ C ′(G) .

Inside D′(G), the evaluation functionals can be used to define left and right trans-
lation maps:

δg ∗ · : D′(G) −→ D′(G)
ϕ(x) 7−→ (δg ∗ ϕ)(x) = ϕ(g−1x)

and
· ∗ δg : D′(G) −→ D′(G)

ϕ(x) 7−→ (ϕ ∗ δg)(x) = ϕ(xg−1)

♦

Exercise 35
Show that the algebra of differential forms on a Lie group forms a Hopf algebra.
What is its dual?



12 Densities

As we have seen, group algebras, measure group algebras and distribution group
algebras encode much, if not all, of the structure of the underlying group. There are
counterparts of these algebras for the case of manifolds, as algebras of “generalized
functions”.

12.1 Densities

To construct spaces of distributions which behave as generalized functions, rather
than measures, we need the notion of density on a manifold.

Let V be a finite dimensional vector space (over R), and let B(V ) be the set of
bases of V . An α-density on V is a function σ : B(V ) → C such that, for every
A ∈ GL(V ) and β ∈ B(V ), we have the relation

σ(β ·A) = |detA|α σ(β) ,

where
(β ·A)i =

∑
j

βjAji

when A is written as A = (Aij) and β is the basis β = (β1, . . . , βn).

Remarks.

• When α = 1, σ is equal up to signs to the function on bases given by an
element of ∧topV ∗. We often denote the space of α-densities on V by∣∣∧top

∣∣α V ∗ .
In fact, if θ is an element of ∧topV ∗ ' (∧topV )∗, there is an α-density |θ|α
defined by

|θ|α(β1, . . . , βn) = |θ(β1 ∧ · · · ∧ βn)|α .

• A density σ is completely determined by its value on one basis, so |∧top|α V ∗
is a one-dimensional vector space.

♦

Lemma 12.1

1. For any vector space A and any α, β ∈ R, there is a natural isomorphism∣∣∧top
∣∣αA⊗ ∣∣∧top

∣∣β A ' ∣∣∧top
∣∣α+β

A .

2. For any vector space A and any α ∈ R, there are natural isomorphisms∣∣∧top
∣∣−αA ' (

∣∣∧top
∣∣αA)∗ '

∣∣∧top
∣∣αA∗ .

3. Given an exact sequence

0 −→ A −→ B −→ C −→ 0

of vector spaces, there is a natural isomorphism∣∣∧top
∣∣αA⊗ ∣∣∧top

∣∣α C ' ∣∣∧top
∣∣αB .

77
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Exercise 36
Prove the lemma above.

Now suppose that E is a vector bundle over a smooth manifold M with fiber
V . Letting B(E) be the bundle of bases of E, a Ck α-density on E is a Ck map
σ : B(E)→ C which satisfies

σ(β ·A) = |detA|ασ(β) .

In other words, σ must be GL(V )-equivariant with respect to the natural GL(V )-
action on the fibers of B(E), and the action of GL(V ) on C where A ∈ GL(V )
acts by multiplication by |detA|α. Hence, we can think of an α-density on a vector
bundle E as a section of an associated line bundle B(E)×C/ ∼, where (β ·A, z) ∼
(β, |detA|αz), for A ∈ GL(V ). Equivalently, an α-density is a section of the
bundle |∧top|αE∗, whose fiber at a point p is |∧top|αE∗p . Therefore, a density on
E is a family of densities on the fibers. When E = TM , we write |∧top|αM :=
|∧top|α T ∗M and |∧top| M := |∧top|1 T ∗M .

Remark. All the bundles |∧top|αE∗ are trivializable. However, they have no
natural trivialization. ♦

Example. A riemannian manifold carries for each α a natural α-density which
assigns the value 1 to every orthonormal basis. The orientation of the basis is not
relevant to the density. ♦

12.2 Intrinsic Lp Spaces

Suppose that σ is a compactly supported C0 1-density on a manifold M . In [42],
de Rham referred to such objects as odd differential forms. The integral∫

M

σ

can be given a precise meaning (whether or not M is orientable!). To do so, use a
partition of unity to express σ as a sum of densities supported in local coordinate
systems. Thus we can restrict to the case

σ = f(x1, . . . , xn) |dx1 ∧ · · · ∧ dxn| .

Expressed in this way, the density can be integrated as∫
f(x1, . . . , xn) dx1 . . . dxn .

This integral is well-defined because the jacobian of a coordinate change is the
absolute value of the determinant of the transformation.

If λ is a compactly supported 1
p -density on M , then

(∫
|λ|p

)1/p
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is well-defined. Thus there is an intrinsic Lp norm on the space of compactly
supported 1

p -densities on a manifold M . Also, if λ1, λ2 are two compactly supported
1
2 -densities, then we can define a hermitian inner product∫

M

λ1λ2.

Completion with respect to the norm given by the inner product produces an in-
trinsic Hilbert space L2(M). The group of diffeomorphisms of M acts on L2(M)
by unitary transformations.

Trivializing | ∧top |M amounts to choosing a positive (smooth) density σ0, or
equivalently, to choosing a nowhere vanishing (smooth) measure on M . Given such
a trivialization, which also trivializes |∧top |αM for each α, we can identify functions
with densities and hence obtain Lp spaces of functions.

Exercise 37
Show that the Lp spaces obtained in this way are the usual Lp spaces of
functions with respect to the given measure.

12.3 Generalized Sections

Let E be a vector bundle over M . Define E′ to be

E′ := E∗ ⊗ | ∧top |M .

There is a natural pairing 〈σ, τ〉 between compactly supported smooth sections
of E, σ ∈ Γc(E), and smooth sections of E′, τ ∈ Γ(E′), given by the pairing
between E and E∗ and by integration of the remaining density.

Sections σ ∈ Γc(E) define by 〈σ, ·〉 continuous linear functionals with respect to
the C∞-topology on Γ(E′). (Recall that a sequence converges in the C∞-topology
if and only if it converges uniformly with all its derivatives on compact subsets of
domains of coordinate charts and bundle trivializations.)

Denoting the space dual to Γ(E′) by D′(M,E), we conclude that there is a
natural embedding

Γc(E) ⊆ D′(M,E) .

For this reason, arbitrary elements of D′(M,E) are called compactly supported
generalized sections of E. Occasionally, they are called compactly supported dis-
tributional sections or (less accurately) compactly supported distribution-valued
sections. Similarly, generalized sections of E which are not necessarily compactly
supported are defined as the dual space to compactly supported smooth sections of
E′, Γc(E′). In this case, we have

Γ(E) ⊆ Γc(E′)′ .

If E = | ∧top |M , then E′ is the trivial line bundle over M , and we recover the
usual compactly supported distributions on M :

D′(M) := D′(M, | ∧top |M) ⊇ Γc(| ∧top |M) .

Similarly, if E is the trivial line bundle ε, then E′ = | ∧top |M , and so

D′(M, ε) ⊇ C∞c (M) .
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Any differential operator D on Γc(E) has a unique formal adjoint D∗, that
is, a differential operator on Γ(E′) such that

〈Dσ, τ〉 = 〈σ,D∗τ〉

for all σ ∈ Γc(E) and τ ∈ Γ(E′). These differential operators are continuous with
respect to the C∞-topology, and we can thus extend them to operators on D′(M,E)
by the same formula

〈Dσ, τ〉 = 〈σ,D∗τ〉 ,

where σ now lies in D′(M,E).

Example. It is easy to check that on Rn, the operator ∂
∂xi

has formal adjoint
− ∂
∂xi

. To see how this extends to generalized sections, note that, for instance, ∂δ0
∂xi

is defined by 〈
∂δ0
∂xi

, f

〉
=
〈
δ0,−

∂f

∂xi

〉
= − ∂f

∂xi
(0) .

♦

We have shown that we can regard any Lie group G as sitting inside D′(G) (see
Section 11.5). Similarly, on any manifold M , we can view a tangent vector as a
generalized density, i.e. a generalized section of | ∧top |M . Let X ∈ TmM be
any tangent vector. Then, for ϕ ∈ C∞(M), the map

C∞(M)
X·- R

ϕ 7−→ X · ϕ

is continuous with respect to the C∞-topology, and thus X defines an element of
D′(M). In particular, for M = G, we see that both G and g sit in D′(G).

Alternatively, let X ∈ TmM and let X̃ ∈ Γ(TM) be a vector field on M whose
value at m is X. Then X̃ acts on densities by the Lie derivative. Its formal adjoint
can be shown to be the negative of the usual action of X̃ on functions, in the
following manner.

Exercise 38
For a density α, use Stokes’ theorem to verify∫

(L
X̃
α) ◦ ϕ =

∫ (
L
X̃

(αϕ)− α(X̃ ◦ ϕ)
)

= −
∫
α(X̃ ◦ ϕ) .

Let δm be the functional of evaluation at m. Then〈
−LX̃δm, ϕ

〉
=

〈
δm, X̃ϕ

〉
= X̃(ϕ)(m)
= Xϕ ,

and thus we again see X as a generalized density. It is known as a dipole, since

Xϕ = lim
ε→0

ϕ(mε)− ϕ(m)
ε

= lim
ε→0

[
1
ε
〈δmε , ϕ〉 −

1
ε
〈δm, ϕ〉

]
,
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where ε 7→ mε is a path through m with tangent vector X at ε = 0.
If we apply differential operators to δm, then the additional distributions ob-

tained are all supported at m; that is, the action of each of the distributions on a
test function ϕ depends on ϕ only in a neighborhood of m and thus can be obtained
by a finite initial segment of the Taylor series of ϕ at m.

Example. For the case of a Lie group G, inside the distribution group algebra,
D′(G), we have all of the following spaces:

C ′(G) – the measure group algebra
as the set of measures,

C(G) – the group algebra
as the set of continuous functions,

G – the group itself
as evaluation functionals,

g – the Lie algebra
as vector fields applied to δe , and

U(g) – the universal enveloping algebra
as arbitrary differential operators applied to δe .

We will next see how U(g) sits in D′(G); notice already that g is not closed under
the convolution multiplication in D′(G). ♦

12.4 Poincaré-Birkhoff-Witt Revisited

If two distributions on a Lie group G are supported at the identity e, so is their
convolution, and so the distributions supported at e (all derivatives of δe) form a
subalgebra of D′(G). For each such distribution σ, the convolution operation σ ∗ ·
is a differential operator on C∞(G). These operators commute with all translation
operators ·∗δg, hence the distributions supported at the identity realize the universal
enveloping algebra U(g) as a subalgebra of D′(G).

Remark. There is a general theorem that any distribution supported at a
point comes from applying a differential operator to the evaluation function at that
point [148, p.100]. ♦

The following remarks are due to Berezin and can be found in [13]. Consider the
exponential map exp : g→ G on a Lie group G. In general, distributions cannot be
pulled back by this map, since it can have singularities. If we are only interested in
distributions supported at e, though, then we can use the fact that the exponential
map is a diffeomorphism near e to pull back such distributions.

generalized densities on g
supported at 0

�exp∗
U(g) = generalized densities on G

supported at e

The Fourier transform F maps α-densities on a vector space g to (1−α)-densities
on its dual g∗. The Fourier transform of a generalized 1-density supported at 0 ∈ g
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will be a polynomial on g∗:

generalized densities on g
supported at 0

F - Pol(g∗) ' S(g)

δ0 7−→ 1

∂δ0
∂xi

7−→ vi

where (v1, . . . , vn) is a basis of g, and xi is the coordinate function on g correspond-
ing to vi.

Theorem 12.2 (Berezin [13]) The composite map

U(g)
F ◦ exp∗- S(g)

is the symmetrization map (see Section 1.3).

Exercise 39
Prove the theorem. To do so, first prove the theorem for powers of elements of
g and then extend to all of U(g) by “polarization”. See [13] and Chapter 2.

To review our construction, if G is a Lie group, then its differential structure
provides an algebra C∞(G) with pointwise multiplication. On the other hand,
diagonal insertion gives rise to a coproduct on the measure group algebra

∆ : D′(G) −→ D′(G)“⊗ ”D′(G) ' D′(G×G) .

On U(g) ⊆ D′(G), this restricts to a map where the “tensor” is the usual algebraic
tensor product

∆ : U(g) −→ U(g)⊗ U(g) .

For X ∈ g ⊆ U(g), the map ∆ is defined by

∆(X) = X ⊗ 1 + 1⊗X ,

and this condition uniquely determines the algebra homomorphism ∆. This co-
product is co-commutative, which means that P ◦∆ = ∆, where

P : U(g)⊗ U(g) −→ U(g)⊗ U(g)

is the permutation linear map defined on elementary tensors by P (u⊗ v) = v ⊗ u.
Using our isomorphisms of vector spaces S(g) ' U(gε) (Section 2.1), we obtain

deformed coproducts
∆ε : S(g) −→ S(g)⊗ S(g)

satisfying, for X ∈ g ⊂ S(g),

∆ε(X) = X ⊗ 1 + 1⊗X .

In general, the map ∆ε will be an algebra homomorphism with respect to the
algebra structure of U(gε), but not with respect to the algebra structure of S(g).
Whenever g is not abelian, these two algebra structures are different.
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Letting ε approach 0, we ask what ∆0 should be. It turns out that if we identify
S(g) with Pol(g∗), then ∆0 is the coproduct coming from the addition operation
on g∗: ∆0(Σ monomials) = Σ∆0(monomials). For instance,

∆0(µ4
1µ2 + µ3) = (∆0(µ1))4(∆0(µ2)) + ∆0(µ3)

= (µ1 ⊗ 1 + 1⊗ µ1)4(µ2 ⊗ 1 + 1⊗ µ2)
+µ3 ⊗ 1 + 1⊗ µ3

So the product and coproduct of U(g) are deformations of structures on g∗; thus
U(g) can be interpreted as the algebra of “functions on” a quantization of g∗.

In summary, U(g) is a non-commutative, co-commutative Hopf algebra, while
S(g) is a Hopf algebra which is both commutative and co-commutative. Deforma-
tions Uq(sl(2)) of the Hopf algebra U(sl(2)) were among the earliest known (algebras
of “functions on”) quantum groups (see [25, 88]).





Part VI

Groupoids

13 Groupoids

A groupoid can be thought of as a generalized group in which only certain multi-
plications are possible.

13.1 Definitions and Notation

A groupoid over a set X is a set G together with the following structure maps:

1. A pair of maps
G

α ↓↓ β
X

The map α is called the target while β is called the source. 3 An element
g ∈ G is thought of as an arrow from x = β(g) to y = α(g) in X:

r
y = α(g)

r
x = β(g)

g

	

2. A product m : G(2) → G, defined on the set of composable pairs:

G(2) := {(g, h) ∈ G×G | β(g) = α(h)} .

We will usually write gh for m(g, h). If h is an arrow from x = β(h) to
y = α(h) = β(g) and g is an arrow from y to z = α(g), then gh is the
composite arrow from x to z.

r
α(g) = α(gh)

r
β(g) = α(h)

r
β(h) = β(gh)

g h

gh

� �
	

The multiplication m must have the properties4

• α(gh) = α(g), β(gh) = β(h), and

• associativity: (gh)k = g(hk).

3. An embedding ε : X → G, called the identity section, such that ε(α(g))g =
g = gε(β(g)). (In particular, α ◦ ε = β ◦ ε is the identity map on X.)

3Some authors prefer the opposite convention for α and β.
4Whenever we write a product, we are assuming that it is defined.

85
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4. An inversion map ι : G → G, also denoted by ι(g) = g−1, such that for all
g ∈ G,

ι(g)g = ε(β(g))
gι(g) = ε(α(g)) .

r
β(g−1) = α(g)

r
β(g) = α(g−1)

g

g−1

	

�

By an abuse of notation, we shall simply write G to denote the groupoid above.
A groupoid G gives rise to a hierarchy of sets:

G(0) := ε(X) ' X
G(1) := G
G(2) := {(g, h) ∈ G×G | β(g) = α(h)}
G(3) := {(g, h, k) ∈ G×G×G | β(g) = α(h), β(h) = α(k)}

...

The following picture can be useful in visualizing groupoids.
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sg−1

sgh
β-fibers α-fibers

s
β(g) = α(h)

G(0) ' X
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There are various equivalent definitions for groupoids and various ways of think-
ing of them. For instance, a groupoid G can be viewed as a special category whose
objects are the elements of the base set X and whose morphisms are all invertible,
or as a generalized equivalence relation in which elements of X can be “equivalent
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in several ways” (see Section 13.2). We refer to Brown [19, 20], as well as [171], for
extensive general discussion of groupoids.

Examples.

1. A group is a groupoid over a set X with only one element.

2. The trivial groupoid over the set X is defined by G = X, and α = β =
identity.

3. Let G = X ×X, with the groupoid structure defined by

X ×X
π1 ↓↓ π2

α(x, y) := π1(x, y) = x , β(x, y) := π2(x, y) = y ,

(x, y)(y, z) = (x, z) ,
ε(x) = (x, x) ,

(x, y)−1 = (y, x) .

This is often called the pair groupoid, or the coarse groupoid, or the
Brandt groupoid after work of Brandt [17], who is generally credited with
introducing the groupoid concept.

X

X

ε(X)

π1

π2

?

�

�
�
�
�
�
�
�
�
�
�

♦

Remarks.

1. Given a groupoid G, choose some φ 6∈ G. The groupoid multiplication on G
extends to a multiplication on the set G ∪ {φ} by

gφ = φg = φ
gh = φ , if (g, h) ∈ (G×G) \G(2) .

The new element φ acts as a “receptacle” for any previously undefined prod-
uct. This endows G ∪ {φ} with a semigroup structure. A groupoid thus
becomes a special kind of semigroup as well.

2. There is a natural way to form the product of groupoids:
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Exercise 40
If Gi is a groupoid over Xi for i = 1, 2, show that there is a naturally defined
direct product groupoid G1 ×G2 over X1 ×X2.

3. A disjoint union of groupoids is a groupoid.

♦

13.2 Subgroupoids and Orbits

A subset H of a groupoid G over X is called a subgroupoid if it is closed under
multiplication (when defined) and inversion. Note that

h ∈ H ⇒ h−1 ∈ H ⇒ both ε(α(h)) ∈ H and ε(β(h)) ∈ H .

Therefore, the subgroupoid H is a groupoid over α(H) = β(H), which may or may
not be all of X. When α(H) = β(H) = X, H is called a wide subgroupoid.

Examples.

1. If G = X is the trivial groupoid, then any subset of G is a subgroupoid, and
the only wide subgroupoid is G itself.

2. If X is a one point set, so that G is a group, then the nonempty subgroupoids
are the subgroups of G, but the empty set is also a subgroupoid of G.

3. If G = X×X is the pair groupoid, then a subgroupoid H is a relation on X
which is symmetric and transitive. A wide subgroupoid H is an equivalence
relation. In general, H is an equivalence relation on the set α(H) = β(H) ⊆
X.

♦

Given two groupoids G1 and G2 over sets X1 and X2 respectively, a morphism
of groupoids is a pair of maps G1 → G2 and X1 → X2 which commute with all
the structural functions of G1 and G2. We depict a morphism by the following
diagram.

G1
- G2

X1

α1

?

β1

?
- X2

α2

?

β2

?

If we consider a groupoid as a special type of category, then a morphism between
groupoids is simply a covariant functor between the categories.

For any groupoid G over a set X, there is a morphism

G
(α, β)- X ×X

X

α

?

β

?
= X

π1

?

π2

?
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from G to the pair groupoid over X. Its image is a wide subgroupoid of X × X,
and hence defines an equivalence relation on X. The equivalence classes are called
the orbits of G in X. In category language, the orbits are the isomorphism classes
of the objects of the category. We can also think of a groupoid as an equivalence
relation where two elements might be equivalent in different ways, parametrized by
the kernel of (α, β). The groupoid further indicates the structure of the set of all
ways in which two elements are equivalent.

Inside the groupoid X×X there is a diagonal subgroupoid ∆ = {(x, x) | x ∈
X}. We call (α, β)−1(∆) the isotropy subgroupoid of G.

(α, β)−1(∆) = {g ∈ G | α(g) = β(g)} =
⋃
x∈X

Gx ,

where Gx := {g | α(g) = β(g) = x} is the isotropy subgroup of x.
If x, y ∈ X are in the same orbit, then any element g of

Gx,y := (α, β)−1(x, y) = {g ∈ G | α(g) = x and β(g) = y}

induces an isomorphism h 7→ g−1hg from Gx to Gy. On the other hand, the groups
Gx and Gy have natural commuting, free transitive actions on Gx,y, by left and
right multiplication, respectively. Consequently, Gx,y is isomorphic (as a set) to Gx
(and to Gy), but not in a natural way.

A groupoid is called transitive if it has just one orbit. The transitive groupoids
are the building blocks of groupoids, in the following sense. There is a natural
decomposition of the base space of a general groupoid into orbits. Over each orbit
there is a transitive groupoid, and the disjoint union of these transitive groupoids
is the original groupoid.

Historical Remark. Brandt [17] discovered groupoids while studying quadratic
forms over the integers. Groupoids also appeared in Galois theory in the description
of relations between subfields of a field K via morphisms of K [108]. The isotropy
groups of the constructed groupoid turn out to be the Galois groups. Groupoids
occur also as generalizations of equivalence relations in the work of Grothendieck
on moduli spaces [75] and in the work of Mackey on ergodic theory [113]. For recent
applications in these two areas, see Keel and Mori [94] and Connes [32]. ♦

13.3 Examples of Groupoids

1. Let X be a topological space and let G = Π(X) be the collection of homotopy
classes of paths in X with all possible fixed endpoints. Specifically, if γ :
[0, 1] → X is a path from x = γ(0) to y = γ(1), let [γ] denote the homotopy
class of γ relative to the points x, y. We can define a groupoid

Π(X) = {(x, [γ], y) | x, y ∈ X, γ is a path from x to y} ,

where multiplication is concatenation of paths. (According to our convention,
if γ is a path from x to y, the target is α(x, [γ], y) = x and the source is
β(x, [γ], y) = y.) The groupoid Π(X) is called the fundamental groupoid
of X. The orbits of Π(X) are just the path components of X. See Brown’s
text on algebraic topology [20] for more on fundamental groupoids.
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There are several advantages of the fundamental groupoid over the fundamen-
tal group. First notice that the fundamental group sits within the fundamen-
tal groupoid as the isotropy subgroup over a single point. The fundamental
groupoid does not require a choice of base point and is better suited to study
spaces that are not path connected. Additionally, many of the algebraic prop-
erties of the fundamental group generalize to the fundamental groupoid, as
illustrated in the following exercise.

Exercise 41
Show that the Seifert-Van Kampen theorem on the fundamental group of a
union U ∪ V can be generalized to groupoids [20], and that the connectedness
condition on U ∩ V is then no longer necessary.

2. Let Γ be a group acting on a space X. In the product groupoid Γ×(X×X) '
X × Γ×X over {point} ×X ' X, the wide subgroupoid

GΓ = {(x, γ, y) | x = γ · y}

is called the transformation groupoid or action groupoid of the Γ-action.
The orbits and isotropy subgroups of the transformation groupoid are pre-
cisely those of the Γ-action.

A groupoid G over X is called principal if the morphism G
(α,β)−→ X × X

is injective. In this case, G is isomorphic to the image (α, β)(G), which is
an equivalence relation on X. The term “principal” comes from the analogy
with bundles over topological spaces.

If Γ acts freely on X, then the transformation groupoid GΓ is principal, and
(α, β)(GΓ) is the orbit equivalence relation on X. In passing to the transfor-
mation groupoid, we have lost information on the group structure of Γ, as we
no longer see how Γ acts on the orbits: different free group actions could have
the same orbits.

3. Let Γ be a group. There is an interesting ternary operation

(x, y, z) t−→ xy−1z .

It is invariant under left and right translations (check this as an exercise), and
it defines 4-tuples (x, y, z, xy−1z) in Γ which play the role of parallelograms.
The operation t encodes the affine structure of the group in the sense that, if
we know the identity element e, we recover the group operations by setting
x = z = e to get the inversion and then z = e to get the multiplication.
However, the identity element of Γ cannot be recovered from t.

Denote
S(Γ) = set of subgroups of Γ
B(Γ) = set of subsets of Γ closed under t .

Proposition 13.1 B(Γ) is the set of cosets of elements of S(Γ).

The sets of right and of left cosets of subgroups of Γ coincide because gH =
(gHg−1)g, for any g ∈ G and any subgroup H ≤ G.
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Exercise 42
Prove the proposition above.

We call B(Γ) the Baer groupoid of Γ, since much of its structure was
formulated by Baer [10]. We will next see that the Baer groupoid is a groupoid
over S(Γ).

For D ∈ B(Γ), let α(D) = g−1D and β(D) = Dg−1 for some g ∈ D. From
basic group theory, we know that α and β are maps into S(Γ) and are inde-
pendent of the choice of g. Furthermore, we see that β(D) = gα(D)g−1 is
conjugate to α(D).

B(Γ)
α ↓↓ β
S(Γ)

Exercise 43
Show that if β(D1) = α(D2), i.e. D1g

−1
1 = g−1

2 D2 for any g1 ∈ D1, g2 ∈ D2,
then the product in this groupoid can be defined by

D1D2 := g2D1 = g1D2 = {gh | g ∈ D1 h ∈ D2} .

Observe that the orbits of B(Γ) are the conjugacy classes of subgroups of
Γ. In particular, over a single conjugacy class of subgroups is a transitive
groupoid, and thus we see that the Baer groupoid is a refinement of the
conjugacy relation on subgroups.

The isotropy subgroup of a subgroup H of Γ consists of all left cosets of H
which are also right cosets of H. Any left coset gH is a right coset (gHg−1)g
of gHg−1. Thus gH is also a right coset of H exactly when gHg−1 = H, or,
equivalently, when β(gH) = α(gH). Thus the isotropy subgroup of H can be
identified with N(H)/H, where N(H) is the normalizer of H.

4. Let Γ be a compact connected semisimple Lie group. An interesting conjugacy
class of subgroups of Γ is

T = {maximal tori of Γ} ,

where a maximal torus of Γ is a subgroup

T
k ' (S1)k = S1 ⊕ · · · ⊕ S1

of Γ which is maximal in the sense that there does not exist an ` ≥ k such
that Tk < T

` ≤ Γ (here, S1 ' R/Z is the circle group). A theorem from
Lie group theory (see, for instance, [18]) states that any two maximal tori of
a connected Lie group are conjugate, so T is an orbit of B(Γ). We call the
transitive subgroupoid B(Γ)|T =W(Γ) the Weyl groupoid of Γ.

Remarks.

• For any maximal torus T ∈ T , the quotient N(T)/T is the classical Weyl
group. The relation between the Weyl groupoid and the Weyl group is
analogous to the relation between the fundamental groupoid and the
fundamental group.
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• There should be relevant applications of Weyl groupoids in the repre-
sentation theory of a group Γ which is acted on by a second group, or in
studying the representations of groups that are not connected.

♦

13.4 Groupoids with Structure

Ehresmann [53] was the first to endow groupoids with additional structure, as he
applied groupoids to his study of foliations. Rather than attempting to describe
a general theory of “structured groupoids,” we will simply mention some useful
special cases.

1. Topological groupoids: For a topological groupoid, G and X are required
to be topological spaces and all the structure maps must be continuous.

Examples.

• In the case of a group, this is the same as the concept of topological
group.

• The pair groupoid of a topological space has a natural topological struc-
ture derived from the product topology on X ×X.

♦

For analyzing topological groupoids, it is useful to impose certain further
axioms on G and X. For a more complete discussion, see [143]. Here is a
sampling of commonly used axioms:

(a) G(0) ' X is locally compact and Hausdorff.

(b) The α- and β-fibers are locally compact and Hausdorff.

(c) There is a countable family of compact Hausdorff subsets of G whose
interiors form a basis for the topology.

(d) G admits a Haar system, that is, admits a family of measures on the
α-fibers which is invariant under left translations. For any g ∈ G, left
translation by g is a map between α fibers

α−1(β(g)) −→ α−1(α(g))

h
`g7−→ gh .

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�sg s`g(h)

s
β(g)

s h

α−1(β(g))α−1(α(g))
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Example. For the pair groupoid, each fiber can be identified with the
base space X. A family of measures is invariant under translation if and
only if the measure is the same on each fiber. Hence, a Haar system on
a pair groupoid corresponds to a measure on X. ♦

2. Measurable groupoids: These groupoids, also called Borel groupoids,
come equipped with a σ-algebra of sets and a distinguished subalgebra (called
the null sets); see [113, 120]. On each α-fiber, there is a measure class, which
is simply a measure defined up to multiplication by an invertible measurable
function.

3. Lie groupoids or differentiable groupoids: The groupoid G and the
base space X are manifolds and all the structure maps are smooth. It is not
assumed that G is Hausdorff, but only that G(0) ' X is a Hausdorff manifold
and closed in G.5 Thus we can require that the identity section be smooth.
Recall that multiplication is defined as a map on G(2) ⊆ G. To require that
multiplication be smooth, first G(2) needs to be a smooth manifold. It is
convenient to make the stronger assumption that the map α (or β) be a
submersion.

Exercise 44
Show that the following conditions are equivalent:

(a) α is a submersion,

(b) β is a submersion,

(c) the map (α, β) to the pair groupoid is transverse to the diagonal.

4. Bundles of groups: A groupoid for which α = β is called a bundle of
groups. This is not necessarily a trivial bundle, or even a locally trivial bundle
in the topological case, as the fibers need not be isomorphic as groups or as
topological spaces. The orbits are the individual points of the base space, and
the isotropy subgroupoids are the fiber groups of the bundle.

13.5 The Holonomy Groupoid of a Foliation

Let X be a (Hausdorff) manifold. Let F ⊆ TX be an integrable subbundle, and
F the corresponding foliation (F is the decomposition of X into maximal integral
manifolds called leaves). The notion of holonomy can be described as follows.
An F -path is a path in X whose tangent vectors lie within F . Suppose that
γ : [0, 1] → O is an F -path along a leaf O. Let Nγ(0) and Nγ(1) be cross-sections
for the spaces of leaves near γ(0) and γ(1), respectively, i.e. they are two small
transversal manifolds to the foliation at the end points of γ. There is an F -path
near γ from each point near γ(0) in Nγ(0) to a uniquely determined point in Nγ(1).
This defines a local diffeomorphism between the two leaf spaces. The holonomy
of γ is defined to be the germ, or direct limit, of such diffeomorphisms, between the
local leaf spaces Nγ(0) and Nγ(1).

The notion of holonomy allows us to define an equivalence relation on the set
of F -paths from x to y in X. Let [γ]

H
denote the equivalence class of γ under the

relation that two paths are equivalent if they have the same holonomy.
5Throughout these notes, a manifold is assumed to be Hausdorff, unless it is a groupoid.
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The holonomy groupoid [32], also called the graph of the foliation [175], is

H(F) = {(x, [γ]
H
, y) | x, y ∈ X, γ is an F -path from x to y} .

Given a foliation F , there are two other related groupoids obtained by changing
the equivalence relation on paths:

1. The F-pair groupoid – This groupoid is the equivalence relation for which
the equivalence classes are the leaves of F , i.e. we consider any two F -paths
between x, y ∈ O to be equivalent.

2. The F-fundamental groupoid – For this groupoid, two F -paths between
x, y are equivalent if and only if they are F -homotopic, that is, homotopic
within the set of all F -paths. Let [γ]F denote the equivalence class of γ under
F -homotopy. The set of this groupoid is

Π(F) = {(x, [γ]
F
, y) | x, y ∈ X, γ is an F -path from x to y} .

If two paths γ1, γ2 are F -homotopic with fixed endpoints, then they give the
same holonomy, so the holonomy groupoid is intermediate between the F-pair
groupoid and the F-fundamental groupoid:

[γ1]F = [γ2]F =⇒ [γ1]H = [γ2]H .

The pair groupoid may not be a manifold. With suitably defined differentiable
structures, though, we have:

Theorem 13.2 H(F) and Π(F) are (not necessarily Hausdorff) Lie groupoids.

For a nice proof of this theorem, and a comparison of the two groupoids,
see [137]. Further information can be found in [102].

Exercise 45
Compare the F-pair groupoid, the holonomy groupoid of F , and the F-
fundamental groupoid for the Möbius band and the Reeb foliation, as described
below.

1. The Möbius band. Take the quotient of the unit square [0, 1] × [0, 1] by
the relation (1, x) ∼ (0, 1 − x). Define the leaves of F to be images of the
horizontal strips {(x, y) | y = constant}.

2. The Reeb foliation [142]. Consider the family of curves x = c+ sec y on the
strip −π/2 < y < π/2 in the xy-plane. If we revolve about the axis y = 0,
then this defines a foliation of the solid cylinder by planes. Noting that the
foliation is invariant under translation, we see that this defines a foliation
of the open solid torus D2 × S1 by planes. The foliation is smooth because
its restriction to the xy-plane is defined by the 1-form cos2 y dx + sin y dy,
which is smooth even when y = ±π2 . We close the solid torus by adding one
exceptional leaf – the T2 boundary.

Let α be a vanishing cycle on T2, that is, [α] ∈ π1(T2) generates the kernel of
the natural map π1(T2)→ π1(D2×S1). Although α is not null-homotopic on
the exceptional leaf, any perturbation of α to a nearby leaf results in a curve
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that is F -homotopically trivial. On the other hand, the transverse curve (the
cycle given by (c, y) ∈ D2 × S1 for some fixed c ∈ ∂D2) cannot be pushed
onto any of the nearby leaves.

A basic exercise in topology shows us that we can glue two solid tori together
so that the resulting manifold is the 3-sphere S3. For this gluing, the trans-
verse cycle of one torus is the vanishing cycle of the other. (If we instead
glued the two vanishing cycles and the two transverse cycles together, we
would obtain S2 × S1.)

It is interesting to compute the holonomy on each side of the gluing T2. Each
of the two basic cycles in T2 has trivial holonomy on one of its sides (holonomy
given by the germ of the identity diffeomorphism), and non-trivial holonomy
on the other side (given by the germ of an expanding diffeomorphism).

γ inside T2

Nγ(1)Nγ(0)

This provides an example of one-sided holonomy, a phenomenon that cannot
happen for real analytic maps. The leaf space of this foliation is not Hausdorff;
in fact, any function constant on the leaves must be constant on all of S3,
since all leaves come arbitrarily close to the exceptional leaf T2. This foliation
and its holonomy provided the inspiration for the following theorems.

Theorem 13.3 (Haefliger [79]) S3 has no real analytic foliation of codimension-
1.

Theorem 13.4 (Novikov [132]) Every codimension-1 foliation of S3 has a
compact leaf that is a torus.





14 Groupoid Algebras

Groupoid algebras include matrix algebras, algebras of functions, and group alge-
bras. We refer the reader to [101, 135, 143] for extensive discussion of groupoid
algebras as sources of noncommutative algebras in physics and mathematics.

14.1 First Examples

Let X be a locally compact space with a Borel measure µ. Let Cc(X ×X) be the
space of compactly supported continuous functions on X × X. We define multi-
plication of two functions f, g ∈ Cc(X ×X) by the following integral, representing
“continuous matrix multiplication”

(f ∗ g)(x, y) =
∫
X

f(x, z) g(z, y) dµ(z) .

Exercise 46
Check that this multiplication is associative and that the *-operation

f(x, y) 7−→ f∗(x, y) := f(y, x)

is compatible with multiplication:

f∗ ∗ g∗ = (g ∗ f)∗ .

To define our multiplication without the choice of a measure on X, we replace
Cc(X×X) by the space whose elements are objects of the form f(x, y)dy. Such an
object assigns to each point of X a measure on X.

6

-

y

x

f(x, y)dy

These objects have a “matrix” multiplication as written above. Furthermore,
they operate on functions on X by

u(·) 7−→
∫
X

f(·, y) u(y) dy .

However, the *-operation can no longer be described in this language.
When X is a manifold, there is a related algebra on which the *-operation can

be defined intrinsically. Let A be the space of compactly supported 1
2 -densities on

X ×X. A typical element of A is of the form

f(x, y)
√
|dx|

√
|dy| .

We multiply two elements

f(x, z)
√
|dx|

√
|dz| , g(z, y)

√
|dz|

√
|dy| ,

97
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by integrating over z:(∫
z∈X

f(x, z)g(z, y)|dz|
)√
|dx|

√
|dy| .

This algebra no longer acts on functions, but rather on 1
2 -densities on X. The

*-operation is now defined by

f∗(x, y)
√
|dx|

√
|dy| = f(y, x)

√
|dy|

√
|dx| .

Exercise 47
Give a precise definition of a generalized 1

2
-density which serves as an identity

element for this algebra.

Implicit in these formulations is the multiplication law for the pair groupoid

(x, z)(z, y) = (x, y) .

From this point of view, our multiplication operation becomes convolution in the
groupoid algebra, as we shall see in the next section.

14.2 Groupoid Algebras via Haar Systems

Let G be a locally compact groupoid over X, and let ϕ and ψ be compactly sup-
ported continuous functions on G. A product function ϕ ∗ ψ might be obtained in
the following way: for its value at k ∈ G, we evaluate ϕ and ψ on all possible pairs
(g, h) ∈ G × G satisfying gh = k, and then integrate the products of the values.
That is, we write the integral

(ϕ ∗ ψ)(k) =
∫
{(g,h)|gh=k}

ϕ(g) ψ(h) (...) ,

where we need a measure (...) on the set {(g, h) ∈ G × G | gh = k}. If we rewrite
gh = k as h = g−1k, we see that the domain of integration is all g ∈ G such that
β(g−1) = α(g) = α(k). In other words, the product above equals

(ϕ ∗ ψ)(k) =
∫
g∈α−1(α(k))

ϕ(g) ψ(g−1k) (...) .

But in order to integrate, we need measures on the α-fibers. If {λx}x∈X is a family
of measures on the α-fibers, then we define the convolution product of ϕ and ψ
to be

(ϕ ∗ ψ)(k) =
∫
g∈α−1(α(k))

ϕ(g) ψ(g−1k) dλα(k) .

Here, we assume that the family of measures {λx} is continuous in x. To ensure
that this product is associative, we require left invariance of {λx}, i.e. we require
that {λx} be a Haar system (cf. Sections 13.4 and 11.4).

The vector space of bounded continuous functions ϕ on G for which the target
map α restricted to support(ϕ) is a proper map, is closed under the convolution
product. Its completion under a suitable norm is called the groupoid C∗-algebra
associated to the Haar system {λx}. Since the multiplicative structure depends
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on the choice of {λx}, the groupoid algebra is sometimes denoted by Aλ. We refer
to [143] for more details about the analytic aspects of this construction.

The groupoid algebra operates on functions on the base. Let ϕ be a function
on G, and u a function on X. Define

(Op ϕ)u(x) :=
∫
g∈α−1(x)

ϕ(g) u(β(g)) dλx .

Intuitively, if we think of the elements of G as “arrows” on the base space X, then
this integral tells us to look at all the arrows g going into a given point x ∈ X,
evaluate the function u at the tail of each of those arrows, then move back to x and
integrate over all arrows g with “weight” given by ϕ.

Examples.

• G = X × X – The groupoid algebra is isomorphic to the “matrix” algebra
of functions on X ×X (see Section 14.1). If X is finite, it really is a matrix
algebra.

• G = a group – The groupoid algebra is isomorphic to a subalgebra of the
standard group algebra (see Chapter 11). A function on G acts on constant
functions via multiplication by its integral over G.

• G = X, where (f ∗ g)(x) = f(x)g(x) – The groupoid algebra is the algebra of
functions on X (which operates on itself by pointwise multiplication).

♦

14.3 Intrinsic Groupoid Algebras

Suppose that G is a Lie groupoid over X. Denote the bundles over G of 1
2 -densities

along the α- and β-fibers by Ω
1
2
α and Ω

1
2
β , respectively. Letting

Ω = Ω
1
2
α ⊗ Ω

1
2
β ,

the intrinsic groupoid algebra of G is the completion of the space Γ(Ω) of
compactly supported sections of Ω under a suitable norm. The term “intrinsic”
refers to the fact that it does not involve the arbitrary choice of a Haar system.
The multiplication on Γ(Ω) is defined as follows.

Suppose that β(g) = α(h) = x ∈ X ' G(0). There is a natural isomorphism

Ω(g)⊗ Ω(h) '−→ Ω1
α(g)⊗ Ω(gh)

constructed using the identifications

Ω
1
2
α(g)⊗ Ω

1
2
β (g)

1⊗ rh- Ω
1
2
α(g)⊗ Ω

1
2
β (gh)

Ω
1
2
α(h)⊗ Ω

1
2
β (h)

`g ⊗ 1- Ω
1
2
α(gh)⊗ Ω

1
2
β (h)
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together with

Ω
1
2
α(g)

lg−1
- Ω

1
2
α(x)

@
@
@
@
@R

Ω
1
2 (TxG/TxG(0)) = Ω

1
2 (NxG(0))

	�
�
�
�
�

Ω
1
2
β (h) �̀ h Ω

1
2
β (x)

In general, there is no natural isomorphism between Ω
1
2
α and Ω

1
2
β at a given point

in G. However, on G(0) an isomorphism is provided by projection along the identity
section from X into G(0): we can identify both Ω

1
2
α and Ω

1
2
β over x ∈ G(0) with the

1
2 -densities on the normal space NxG(0) to G(0) in G at x.

We use these isomorphisms to determine the product of ϕ,ψ ∈ Γ(Ω). The
product section ϕψ ∈ Γ(Ω) is given at a point k ∈ G by the formula

(ϕψ)(k) =
∫
{g|α(g)=α(k)}

ϕ(g) ψ(g−1k)

where we regard ϕ(g)ψ(g−1k) as an element of Ω1
α(g)⊗Ω(k), and we integrate the

1-density factor over the α-fiber through k.

Exercise 48
Check that, if we instead use the maps

Ω(g)⊗ Ω(h) −→ Ω1
β(h)⊗ Ω(gh) ,

the resulting multiplicative structure on Γ(Ω) is the same.

Remark. The identifications above also provide a natural isomorphism

Ω ' α∗(Ω 1
2E)⊗ β∗(Ω 1

2E) ,

which we will use often. ♦

Let E be the normal bundle of G(0) in G. The smooth groupoid algebra
Γ(Ω) acts on smooth sections of

Ω
1
2E := | ∧top | 12 E∗ .

To see this left action, take ϕ ∈ Γ(Ω) and a section γ of Ω
1
2E. We can think of ϕ

at g ∈ G as a 1
2 -density on the normal space through x = α(g), times a 1

2 -density
on the normal space through through y = β(g):

Ω(g) = Ω
1
2
α(g)⊗ Ω

1
2
β (g) ' Ω

1
2Ex ⊗ Ω

1
2Ey

ϕ(g)
' - ϕα(x)⊗ ϕβ(y)
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Since ϕβ(y)γ(y) ∈ Ω1Ey ' Ω1
α(y) ' Ω1

α(g), we can consider ϕ(g)γ(y) as an element
of Ω1

α(g)⊗Ω
1
2Ex. The new section ϕ · γ of Ω

1
2E is then given at a point x ∈ X by

(ϕ · γ)(x) =
∫
g∈α−1(x)

ϕ(g)γ(β(g))

where we integrate the Ω1
α factor of ϕ(g)γ(β(g)) ∈ Ω1

α(g)⊗ Ω
1
2Ex over the α-fiber

through x.

Exercise 49
Check that this is indeed a left action, i.e. ϕ · (ψ · γ) = (ϕψ) · γ, for any

ϕ,ψ ∈ Γ(Ω), and γ ∈ Γ(Ω
1
2E).

We could just as well define a right action by reversing the α and β roles, namely,

(γ · ϕ)(x) =
∫
h∈β−1(x)

ϕ(h)γ(α(h)) ,

with ϕ(h)γ(α(h)) ∈ Ω1Eα(h) ⊗ Ω
1
2Ex ' Ω1

β(h)⊗ Ω
1
2Ex.

14.4 Groupoid Actions

A groupoid G over X ' G(0) may act on sets M
µ→ X that map to X. Let G ∗M

be the space
G ∗M := {(g,m) ∈ G×M | β(g) = µ(m)} .

A (left) groupoid action of G on M is defined to be a map G ∗M → M , taking
the pair (g,m) to g ·m, with the properties:

1. µ(g ·m) = α(g),

2. (gh) ·m = g · (h ·m),

3. (εµ(m)) ·m = m.

The map µ : M → X is sometimes called the moment map, by analogy with
symplectic geometry.

Remark. The terms “moment map” and “momentum map” are usually used
interchangeably in the literature, with different authors preferring each of these
two translations of Souriau’s [153] French term, “moment”. By contrast, in these
notes, we have used the terms in different ways. Here, a “momentum map” is a
Poisson map J : M → g∗ to a Lie-Poisson manifold g∗, generating a hamiltonian
action of an underlying Lie group G on M . On the other hand, a “moment map”
is a map µ : M → X to the base X of a groupoid G which is acting on M . ♦

Example. A groupoid G over X acts on G by left multiplication with moment
map α and on X with moment map the identity. ♦

Given additional structure on G or M , we can specify special types of actions.
For instance, groupoids act on vector bundles (rather than vector spaces). Suppose
that we have a groupoid G over X and a vector bundle V also over X,

G V
α ↓↓ β ↓ µ
X X
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A representation or linear action of G on V is a groupoid action of G on V
whose maps

g· : µ−1(β(g)) −→ µ−1(α(g))

are linear. For more on groupoid actions, see [110].

rx
r
y�������9

�������9
g·

g

µ−1(y)
µ−1(x)

X

V

We can think of a representation of a groupoid as a collection of representations
of the isotropy subgroups together with ways of identifying these representations
using different “arrows” in X.

Example. If X is a topological space, and G = Π(X) is the fundamental
groupoid, then a representation of Π(X) on a vector bundle V would be a flat
connection of V . By flat connection, we do not yet mean a differential-geometric
notion, but rather a topological one, namely that parallel transport only depends
on the homotopy class of the base path.

To see the flat connection, recall that Π(X) is the collection of homotopy classes
of paths in X. A representation of Π(X) determines precisely how to parallel
translate along paths to define a connection.

With this flat connection, we can look at the isotropy subgroup of loops based
at a point. The fundamental group of X acts on each fiber in the usual sense, and
we thus see that the representation of the fundamental groupoid on V includes the
action of the fundamental group on a fiber of V .

For applications to the moduli spaces used in topological quantum field theory,
see [77]. ♦

As with groups, the notion of groupoid representation can be formalized in
terms of the following definition. The general linear groupoid of a vector bundle
µ : V → X is

GL(V ) = {(x, `, y) | x, y ∈ X, ` : µ−1(y)→ µ−1(x) is a linear isomorphism} .

The isotropy subgroup over any point is the general linear group of the correspond-
ing fiber of V . A representation of G in V is then a groupoid homomorphism
from G to GL(V ), covering the identity map on X.
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The general linear groupoid is a subset of a larger object

gl(V ) = {(x, `, y) | x, y ∈ X, ` : µ−1(y)→ µ−1(x) is linear} ,

where ` is an arbitrary linear map between fibers. This is a generalization of the
Lie algebra gl(n;R) of the general linear group GL(n;R).

14.5 Groupoid Algebra Actions

Example. If G is a group, V is a vector space, and r : G → End(V ) is a map,
then there is an induced map r̃ : C ′(G)→ End(V ) defined by the formula

ϕ 7−→ r̃(ϕ) :=
∫
G

r(g) ϕ(g) dg .

If r is a representation, then r̃ will be a homomorphism of algebras. Hence, group
representations correspond to representations of the measure group algebra. ♦

For a groupoid G, there is a similar correspondence. Given a representation
of a groupoid G on a vector bundle V and a Haar system {λx} on G, there is an
action of the groupoid algebra Aλ on sections of V defined as follows. Let ϕ be any
continuous compactly supported function on G, and let u ∈ Γ(V ). Define

(ϕ · u)(x) =
∫
g∈α−1(x)

ϕ(g) g · u(β(g)) dλx(g) .

We can also describe the action of the intrinsic groupoid algebra.
Recall that, if E denotes the normal bundle to G(0) in G, then the intrinsic

groupoid algebra is (a suitable completion of) the set of sections of

Ω = α∗(Ω
1
2E)⊗ β∗(Ω 1

2E) .

For a vector bundle V over G(0), we define

End(V ) := α∗(V )⊗ β∗(V ∗) ;

that is, End(V ) is the bundle over G whose fiber over each point g ∈ G is

Vα(g) ⊗ V ∗β(g) = Hom (Vβ(g), Vα(g)) .

Given a representation of G on V , the sections of

Ω⊗ End(V )

act naturally on sections of V . We thus build a groupoid algebra with coeffi-
cients in a vector bundle V ,

Γ(Ω⊗ End(V )) .

Remark. In Section 14.3, we found an action of the intrinsic groupoid algebra
on sections of Ω

1
2E. However, this does not generally come from a representation

of G on Ω
1
2E (see below).
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We would have liked that the groupoid algebra acted on 1
2 -densities on G(0) ' X

itself. However, in general, the algebra that acts on sections of Ω
1
2TX is that of

sections of

Ω⊗ End(Ω
1
2TX) = α∗(Ω

1
2E)⊗ β∗(Ω 1

2E)⊗ α∗(Ω 1
2TX)⊗ β∗(Ω− 1

2TX) .

In very special instances, there might be a natural trivialization of

α∗(Ω
1
2TX)⊗ β∗(Ω− 1

2TX)

and we do obtain an action on 1
2 -densities on X. ♦

Alternatively, the intrinsic groupoid algebra itself acts on sections of

V ⊗ Ω
1
2E .

In order to obtain a representation of the groupoid algebra on sections of V , we
hence need a representation of G on V ⊗ Ω−

1
2E.

Examples.

• When G is a Lie group, then E = g is the Lie algebra, and there does exist a
natural adjoint action of G on g. This gives rise to a representation of G on
Ω

1
2E = Ω

1
2 g (and also on Ω−

1
2E = Ω

1
2 g∗).

• At the other extreme, for the pair groupoid over a manifold X there is no
natural representation of G on Ω

1
2E. The normal space E along the identity

section can be identified with TX, the tangent space to X.

6

-

X

X

E

G(0)

�
�
�
�
�
�
�
�
�

A representation of G on E consists of an identification of TxX with TyX for
each (x, y) ∈ X ×X. This amounts to a trivialization of the tangent bundle
to X – that is, a global flat connection (with no holonomy). For an arbitrary
manifold X, such a thing will not exist; even if it exists, there is no natural
choice.

Similarly, to get a representation on Ω
1
2E, we would need a global field of

1
2 -densities. This is equivalent to a global density on X, for which there is no
natural choice.

♦



15 Extended Groupoid Algebras

Extended groupoid algebras encompass bisections and sections of the normal bundle
to the identity section, just as distribution group algebras encompass Lie group
elements and Lie algebra elements.

15.1 Generalized Sections

Recall that for a Lie group G, the algebra C ′(G) of measures on the group sat
inside D′(G), the distribution group algebra (see Section 11.5). Furthermore, we
saw that D′(G) contained G itself as the set of evaluation maps, g as the dipoles at
the identity, and U(g) as the set of distributions supported at the identity element
of G (see Section 12.3).

More generally, we return to the case of a Lie groupoid G over X. The intrinsic
groupoid algebra is naturally identified (see Section 14.3) with the space of smooth
sections of

Ω =: α∗(Ω
1
2E)⊗ β∗(Ω 1

2E) ,

where E is the normal bundle of X ' G(0) in G.
The extended (intrinsic) groupoid algebra, D′(G), is the dual space of the

compactly supported smooth sections of

Ω′ =: α∗(Ω
1
2E∗)⊗ β∗(Ω 1

2E∗)⊗ Ω1TG .

The groupoid algebra is included in D′(G), as we can pair Ω and Ω′ to get Ω1TG =
|∧top | T ∗G, and then integrate a 1-density on G (that is, a section of |∧top | T ∗G) to
obtain a number. Elements of D′(G) are sometimes called generalized sections
of Ω.

We may describe a typical section of Ω′ along the identity section X ' G(0) of
G. First, note that along X the bundle Ω′ reduces to

Ω′|X = Ω1E∗ ⊗ Ω1TG|X .

Although the tangent space of G along X can be decomposed into the tangent space
of X and the normal space E, there is no natural choice of splitting. For densities,
however, we are able to make a natural construction. Using the exact sequence

0 −→ TX −→ TG|X −→ E −→ 0 ,

we see by Lemma 12.1 that

Ω′|X = Ω1E∗ ⊗ Ω1TG|X
' Ω1E∗ ⊗ Ω1E ⊗ Ω1TX
' Ω1TX .

Thus a section of Ω′|X is just a 1-density on X. As a consequence, any measurable
function f : X → R determines a generalized section, namely

ϕ ∈ Γc(Ω′) 7−→
∫
X

f ϕ|X ∈ R .

The inclusion of measurable functions on X as generalized sections is in fact a
homomorphism.

We conclude that, in particular, all smooth functions on X belong to the ex-
tended intrinsic groupoid algebra:

C∞(X) ⊆ D′(G) .
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15.2 Bisections

The previous construction generalizes to other “sections” besides the identity sec-
tion. A submanifold Σ of G such that the projections of Σ to X by α and β are
isomorphisms is called a bisection of G or an admissible section.

Σ

X ' G(0)
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Because we can identify the normal spaces of Σ with the tangent spaces of either
the α- or the β-fibers along Σ, we see that

Ω′|Σ = Ω−
1
2

α |Σ ⊗ Ω−
1
2

β |Σ ⊗ Ω1TG|Σ
= Ω−1NΣ⊗ Ω1TG|Σ
' Ω1TΣ .

where NΣ is the normal bundle to Σ inside G. We can thus integrate sections of
Ω′ over Σ. Therefore, each bisection Σ determines an element of D′(G). Let B(G)
denote the set of smooth bisections of G. We conclude that

B(G) ⊆ D′(G) .

Remark. Before integrating we could have multiplied by any smooth function
on Σ (or X), thus obtaining other elements of D′(G) (see the last exercise of this
section). ♦

Example. When G is a group, a bisection is a group element. The construction
above becomes evaluation at that element. The inclusion of bisections into D′(G)
thus extends the identification of elements of a group with elements of the distri-
bution group algebra, as evaluation maps. The objects generalizing the Lie algebra
elements will be discussed in Sections 15.4 and 15.5. ♦

The inclusion map from B(G) to D′(G) is multiplicative if we define multipli-
cation of bisections as follows.

Given two subsets A and B of a groupoid G, we form their product by multi-
plying all possible pairs of elements in A×B,

AB = {xy ∈ G| (x, y) ∈ A×B ∩G(2)} .

This product defines a semigroup structure on the space 2G of subsets of G. There
are several interesting sub-semigroups of 2G:
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1. This multiplication defines a group structure on B(G). The identity element
of this group is just the identity section X ' G(0).

Exercise 50
Show that:

(a) B(G) is closed under multiplication and that this multiplication satisfies
the group axioms.

(b) Multiplication of bisections in B(G) maps to convolution of distributions
in D′(G) under the inclusion B(G) ↪→ D′(G).

2. There is a larger sub-semigroup Bloc(G) ⊇ B(G) of local bisections. A local
bisection is a subset of G for which the projection maps α, β are embeddings
onto open subsets. Bloc(G) is an example of an inverse semigroup (see [135,
143]).

Example. For the pair groupoid over X, the group B(X × X) can be
identified with the group of diffeomorphisms of X, since each bisection Σ is
the graph of a diffeomorphism. Bloc(X × X) similarly corresponds to the
semigroup (sometimes called a pseudogroup) of local diffeomorphisms of X.

Exercise 51
Show that the identification B(X ×X)→ Diff(X) is a group homomorphism
(or anti-homomorphism, depending on conventions).

♦

3. If we view G ⊂ 2G as the collection of one-element subsets, then G is not
closed under the multiplication above. But if we adjoin the empty set, then
{∅} ∪G ⊆ 2G is a sub-semigroup. This is the semigroup naturally associated
to a groupoid G, mentioned in Section 13.1.

Exercise 52
The subspaces B(G) and C∞(X) of D′(G) generate multiplicatively the larger
subspace of pairs (Σ, s) ∈ B(G) × C∞(X). Here we identify functions on
a bisection Σ with functions on X via pull-back by α (alternatively, β). Let
Σ1,Σ2 be bisections and si ∈ C∞(Σi). Find an explicit formula for the product

(Σ1, s1) · (Σ2, s2)

in D′(G).

15.3 Actions of Bisections on Groupoids

The group of bisections B(G) acts on a groupoid G from the left (or from the
right). To see this left action, take elements g ∈ G and Σ ∈ B(G). Because Σ is
a bisection, there is a uniquely defined element h ∈ Σ, such that β(h) = α(g). We
declare Σ · g := hg ∈ G.
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Σ

G(0)

r
A
A
A
Ar

h

β(h) = α(g)

�
�
�
�
�
�
rΣ · g = hg

�
�
�
�
�
�
rgAAA

A

Similarly, we can define a right action of B(G) on G by noting that there is
also a uniquely defined element α|−1

Σ (β(g)) ∈ Σ. These actions can be thought of
as “sliding” by Σ. See [2].

Σ

G(0)

rAAA
A
A
A
A
A

�
�
�
�

α|−1
Σ (β(g))

r
β(g)
A
A
A
A
A
A
A
A
r���
�

g

rg · Σ

Exercise 53
Check that this defines a group action and that the left and right actions
commute.

Remarks.

• This construction generalizes the left (or right) regular representation of a
group on itself.

• We can recover the bisection Σ from its left or right action on G since

Σ = Σ ·G(0) = G(0) · Σ .

♦

The left action of B(G) preserves the β-fibers of G, while the right action
preserves the α-fibers. On the other hand, the left action of B(G) maps α-fibers to
α-fibers, while the right action of B(G) maps β-fibers to β-fibers.

The left (respectively, right) action respects the α-fiber (respectively, β-fiber)
structure even more, in the following sense. Note that B(G) acts on the base space
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X from the left (or from the right). For a bisection Σ ∈ B(G), the (left) action
on X is defined by taking x ∈ X to α(β−1(x)), where β−1(x) ∈ Σ is uniquely
determined.

X

Σrβ−1(x)

A
A
A
AK�

�
�
��

αr
Σ · x
r
x

It is easy to check that α(Σ · g) = Σ · α(g), and so α is a left equivariant map
from G to X with respect to the B(G)-actions. Similarly, β is a right equivariant
map.

15.4 Sections of the Normal Bundle

As we saw in Section 15.2, the concept of bisection of a Lie groupoid generalizes
the notion of Lie group element, both by its geometric definition, or when such an
element is regarded as an evaluation functional at that element. From this point
of view, we now explain how the objects corresponding to the Lie algebra elements
are the sections of the normal bundle E = TG|G(0)/TG(0) thought of as first order
perturbations of the submanifold G(0).

By choosing a splitting of the tangent bundle over G(0) (for instance, with a
riemannian metric)

TG|G(0) ' TG(0) ⊕ E ,

we can identify the normal bundle E with a sub-bundle E ⊆ TG|G(0) . Under this
identification, a section σ ∈ Γ(E) may be viewed as a vector field v : G(0) →
TG|G(0) . We can find, for sufficiently small ε, a path ψt : G(0) → G defined for
0 ≤ t < ε and such that

ψ0 = identity on G(0)

dψt
dt

∣∣∣∣
t=0

= lim
t→0

ψt − ψ0

t
= v .

At each time t, the image of ψt is a bisection Σt (restricted to the given compact
subset of G). In particular, Σ0 = G(0) is the identity section.

The one-parameter family of bisections {Σt} gives rise to an element, called σ, of
the extended groupoid algebra D′(G) by the following recipe. Let ϕ be a compactly
supported smooth section of Ω′. Each individual bisection Σt ∈ D′(G) = (Γc(Ω′))′

pairs with ϕ to give a number 〈Σt, ϕ〉 as described in Section 15.2. We define the
new pairing by

〈σ, ϕ〉 := lim
t→0

〈Σt, ϕ〉 − 〈Σ0, ϕ〉
t

.
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Exercise 54
Check that 〈σ, ·〉 is a well-defined linear functional on Γc(Ω′), independent of
the choice of E. (Hint: notice how vector fields v ∈ Γ(TG(0)), i.e. tangent to
G(0), yield a trivial pairing.)

We conclude that
Γ(E) ⊆ D′(G) .

Furthermore, these elements of the extended groupoid algebra have support in G(0),
that is, they vanish on test sections ϕ ∈ Γc(Ω′) with (support ϕ) ∩G(0) = ∅.

If we think of σ ∈ Γ(E) as

σ = lim
t→0

Σt −G(0)

t
,

we can give an informal definition of a commutator bracket [·, ·] on Γ(E). Given
two sections of E

σ = lim
t→0

Σt −G(0)

t
, θ = lim

u→0

Θu −G(0)

u
,

we define

[σ, θ] = lim
t,u→0

{
Σt −G(0)

t
· Θu −G(0)

u
− Θu −G(0)

u
· Σt −G(0)

t

}

= lim
t,u→0

ΣtΘu −ΘuΣt
tu

,

or, equivalently, the bracket evaluated on ϕ ∈ Γc(Ω′) is

〈[σ, θ], ϕ〉 = lim
t,u→0

〈ΣtΘu, ϕ〉 − 〈ΘuΣt, ϕ〉
tu

.

Sections of E are in fact closed under the commutator bracket:

[Γ(E),Γ(E)] ⊆ Γ(E) ,

as we will see in the next section where we define the bracket properly.
The distributions on G corresponding to sections of E are sometimes known as

dipole layers. (See the discussion of dipoles in Section 12.3.)

15.5 Left Invariant Vector Fields

Recall from Section 14.4 that there is a (left) action of the groupoid G on itself;
namely, each element g ∈ G acts on α−1(β(g)) by left multiplication.

The β-projection is invariant with respect to this action

β(g · h) = β(gh) = β(h) ,

while α-fibers are mapped to α-fibers

α−1(β(g))
g·−→ α−1(α(g)) .

Let
TαG := kerTα ⊆ TG
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be the distribution tangent to the α-fibers. The action of g ∈ G induces a linear
map

TαG|α−1(β(g))
Tg·−→ TαG|α−1(α(g)) .

Exercise 55
The left action of the group of sections B(G) preserves the α-fiber structure
(see Section 15.3), and hence also induces an action on TαG by differentiation.

(a) Prove that a section of TαG is G-left-invariant if and only if it is B(G)-
left-invariant.

(b) If a section of TG is B(G)-left-invariant, then do all of its values have
to lie in TαG?

A left invariant section of TαG is called a left invariant vector field on the
groupoid G. The set χL(G) of all left invariant vector fields on G has the following
properties.

• χL(G) is closed under the bracket operation

[χL(G), χL(G)] ⊆ χL(G) ,

and thus forms a Lie algebra.

• An element of χL(G) is completely determined by its values along the identity
section G(0). Equivalently, an element is determined by its values along any
other bisection.

• Every smooth section of Tα
G(0)G := kerTα|G(0) can be extended to an element

of χL(G).

Furthermore,
TαG(0)G ' E ,

where E = TG(0)G/TG(0) is the normal bundle to G(0) in G.
Thus we have the identifications

χL(G) ' Γ(TαG(0)G) ' Γ(E) .

The bracket on χL(G) can therefore be considered as a bracket on Γ(E); it agrees
with the one defined informally in the previous section.

The left invariant vector fields on G act by differentiation on C∞L (G), the left
invariant functions on G. From the identification

C∞L (G) ' β∗C∞(X) ' C∞(X) ,

we get a map
Γ(E) −→ χ(X) := Γ(TX) .

It is easy to see that this map is induced by the bundle map

ρ : E −→ TX
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given by composition of two natural maps:

E
' - TαG(0)G

@
@
@
@
@

ρ
R 	�

�
�
�
�

TG(0)β

TX

With this additional structure, E provides the typical example of a Lie algebroid.
We study these objects in the next chapter.

Example. When G is a Lie group (X is a point), both χL(G) ' g and E ' g are
the Lie algebra, and ρ : g→ {0} is the trivial map. ♦



Part VII

Algebroids

16 Lie Algebroids

Lie algebroids are the infinitesimal versions of Lie groupoids.

16.1 Definitions

A Lie algebroid over a manifold X is a (real) vector bundle E over X together
with a bundle map ρ : E → TX and a (real) Lie algebra structure [·, ·]

E
on Γ(E)

such that:

1. The induced map Γ(ρ) : Γ(E)→ χ(X) is a Lie algebra homomorphism.

2. For any f ∈ C∞(X) and v, w ∈ Γ(E), the following Leibniz identity holds

[v, fw]
E

= f [v, w]
E

+ (ρ(v) · f)w .

Remarks.

• The map ρ is called the anchor of the Lie algebroid. By an abuse of notation,
the map Γ(ρ) may be denoted simply by ρ and also called the anchor.

• For each v ∈ Γ(E), we define E-Lie derivative operations on both Γ(E) and
C∞(X) by

Lvw = [v, w]
E
,

Lvf = ρ(v) · f .
We can then view the Leibniz identity as a derivation rule

Lv(fw) = f (Lvw) + (Lvf)w .

♦

When (E, ρ, [·, ·]E ) is a Lie algebroid over X, the kernel of ρ is called the
isotropy. Each fiber of ker ρ is a Lie algebra, analogous to the isotropy subgroups
of groupoids. To see this, let v and w ∈ Γ(E) be such that ρ(v) and ρ(w) both
vanish at a given point x ∈ X. Then, for any function f ∈ C∞(X),

[v, fw]
E

(x) = f(x)[v, w]
E

(x) .

So there is a well-defined bracket operation on the vectors in any fiber of ker ρ, and
ker ρ is a field of Lie algebras. These form a bundle when ρ has constant rank.

On the other hand, the image of ρ is an integrable distribution analogous
to the image of Π̃ for Poisson manifolds. Therefore, X can be decomposed into
submanifolds, called orbits of the Lie algebroid, whose tangent spaces are the image
of ρ. There are are various proofs of this: one uses the corresponding (local) Lie
groupoid, another uses a kind of splitting theorem, and a third proof involves a more
general approach to integrating singular distributions. The articles of Dazord [37,
38] discuss this and related issues.

113
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16.2 First Examples of Lie Algebroids

1. A (finite dimensional real) Lie algebra is a Lie algebroid over a one-point
space.

2. A bundle of Lie algebras over a manifold X (as in Section 16.3) is a Lie
algebroid over X, with ρ ≡ 0. Conversely, if E is any Lie algebroid with
ρ ≡ 0, the Leibniz identity says that the bracket in Γ(E) is a bilinear map of
C∞(X)-modules and not simply of R-modules, and hence that each fiber is a
Lie algebra. (Such an E is all isotropy.)

3. We saw in Section 15.5 that the normal bundle E along the identity section of
a Lie groupoid G over X carries a bracket operation and anchor ρ : E → TX
satisfying the Lie algebroid conditions. This is called the Lie algebroid of
the Lie groupoid G. The isotropy algebras of this Lie algebroid are the Lie
algebras of the isotropy groups of G. The orbits are the connected components
of the G-orbits.

As for the case of Lie groups and Lie algebras, it is natural to pose the
integrability problem (see also Sections 16.3 and 16.4):

• When is a given Lie algebroid the Lie algebroid of a Lie groupoid?
• If the Lie algebroid does come from a Lie groupoid, is the Lie groupoid

unique?

4. The tangent bundle TX of a manifold X, with ρ the identity map, is a Lie
algebroid over X. We can see it the Lie algebroid of the Lie groupoid X ×X,
or of the fundamental groupoid Π(X), or of yet other possibilities; near the
identity section, Π(X) looks like X ×X.

Generally, we can say that a Lie algebroid determines and is determined by
a neighborhood of the identity section in the groupoid, just as a Lie algebra
determines and is determined by a neighborhood of the identity element in
the corresponding Lie group.

5. Suppose that we have a right action of a Lie algebra g on X, that is, a Lie
algebra homomorphism g

γ→ χ(X). The associated transformation Lie
algebroid X × g has anchor X × g

ρ→ TX defined by

ρ(x, v) = γ(v)(x) .

Combining this with the natural projections X × g → X and TX → X, we
form the commutative diagram

X × g
ρ - TX

	�
�
�
�
�

X
?

A section v of X × g can be thought of as a map v : X → g. We define the
bracket on sections of X × g by

[v, w](x) = [v(x), w(x)]g + (γ(v(x)) · w)(x)− (γ(w(x)) · v)(x) .
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When v, w are constant functions X → g, we recover the Lie algebra bracket
of g.

It is easy to see in this example that the fibers of ker ρ are the usual isotropy
Lie algebras of the g-action. The orbits of the Lie algebroid are just the orbits
of the Lie algebra action.

If γ comes from a Γ-action on X, where Γ is a Lie group with Lie algebra g,
then X × g is the Lie algebroid of the corresponding transformation groupoid
GΓ.

6. Suppose that ρ is injective. This is equivalent to E ' ρ(E) ⊆ TX being
an integrable distribution, as the bracket on E is completely determined by
that on TX. A universal choice of a Lie groupoid with this Lie algebroid
is the holonomy groupoid of the corresponding foliation. (It might not be
Hausdorff.)

The case when ρ is surjective will be discussed in Section 17.1.

Exercise 56
Let (v1, . . . , vn) be a basis of sections for a Lie algebroid E such that [vi, vj ] =∑
k cijkvk where the cijk’s are constants. Show that E is isomorphic to a

transformation Lie algebroid.

Historical Remark. Already in 1963, Rinehart [145] noted that, if a Lie algebra
Γ over a field k is a module over a commutative k-algebra C, and if there is a
homomorphism ρ from Γ into the derivations of C, then there is a semidirect product
Lie bracket on the sum Γ⊕ C defined by the formula

[(v, g), (w, h)] = ([v, w], ρ(v) · h− ρ(w) · g) .

Furthermore, this bracket satisfies the Leibniz identity:

[(v, g), f(w, h)] = f [(v, g), (w, h)] + (ρ(v) · f)(w, h) for f ∈ C .

In the special case where C = C∞(X), the C∞(X)-module Γ, if projective, is
the space of sections of some vector bundle E over X. The homomorphism ρ and
the Leibniz identity imply that ρ is induced by a bundle map ρ : E → TX. The
Leibniz identity for Γ(E)⊕C∞(X) also encodes the Leibniz identity for the bracket
on Γ(E) alone.

In 1967, Pradines [139] coined the term “Lie algebroid” and proved that every
Lie algebroid comes from a (local) Lie groupoid. He asserted that the local condition
was not needed, but this was later shown by Almeida and Molino [4] to be false.
(See Section 16.4.)

Rinehart [145] proved (in a more algebraic setting) an analogue of the Poincaré-
Birkhoff-Witt theorem for Lie algebroids. He showed that there is a linear iso-
morphism between the graded version of a universal object for the actions of
Γ(E) ⊕ C∞(X) on vector bundles V over X, and the polynomials on the dual
of the Lie algebroid E. As a result, the dual bundle of a Lie algebroid carries a
Poisson structure. This Poisson structure is described abstractly in [34] as the base
of the cotangent groupoid T ∗G of a Lie groupoid G; it is described more explicitly
in [35]. (See Section 16.5.)
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The most basic instance of this phenomenon is when E = TX. The dual to
the Lie algebroid is T ∗X with its standard (symplectic) Poisson structure (see
Section 6.5). The universal object is the algebra of differential operators on X, and
the Rinehart isomorphism is a “symbol map”. ♦

16.3 Bundles of Lie Algebras

For a first look at the integrability problem, we examine Lie algebroids for which
the anchor map is zero.

A bundle of Lie groups is a bundle of groups (see Section 13.4) for which each
fiber is a Lie group. Bundles of Lie algebras are vector bundles for which each fiber
has a Lie algebra structure which varies continuously (or smoothly). Every bundle
of Lie groups defines a bundle of Lie algebras: the Lie algebras of the individual
fibers. More problematic is the question of whether we can integrate a bundle of
Lie algebras to get a bundle of Lie groups.

Theorem 16.1 (Douady-Lazard [48]) Every bundle of Lie algebras can be inte-
grated to a (not necessarily Hausdorff) bundle of Lie groups. (Fibers and base are
Hausdorff, but the bundle itself might not be.)

Example. Given a Lie algebra g with bracket [vi, vj ]=
∑
cijkvk, we defined in

Section 1.2 a family of Lie algebras gε = (g, [·, ·]ε), ε ∈ R, by the structure equations
[vi, vj ]ε = ε

∑
cijkvk. This can be thought of as a bundle of Lie algebras over R.

There is a bundle of Lie groups corresponding to this bundle: the fiber over 0 ∈ R
is an abelian Lie group (either euclidean space, a cylinder or a torus), while the
fiber over any other point ε ∈ R can be chosen to be a fixed manifold. The fiber
dimensions cannot jump, but the topology may vary drastically. In the particular
case of g = su(2), the bundle of groups corresponding to the deformation gε has
fiber SU(2) ' S3 for ε 6= 0, and fiber R3 at ε = 0. Here the total space is Hausdorff,
since it is homeomorphic to R× S3 with a point removed from {0} × S3. ♦

Example. [48, p.148] Consider now the bundle of Lie algebras over R with fibers
gε = (R3, [·, ·]ε), ε ∈ R, where the brackets are defined by

[xε, yε]ε = zε , [xε, zε]ε = −yε , [yε, zε]ε = εxε .

Here xε, yε, zε denote the values at ε of a given basis of sections x, y, z for the bundle
g := R× R3.

The corresponding simply connected Lie groups Gε are as follows for ε ≥ 0.
G1 is the group of unit quaternions, if we identify the basis x1, y1, z1 of g1 with
1
2 i,

1
2j,

1
2k, respectively. Consequently, exp(4πx1) = e1 is the identity element of

G1. For ε > 0, gε ' g1 under the isomorphism

xε 7→ x1 , yε 7→
√
ε y1 , zε 7→

√
ε z1 .

Taking Gε ' G1, we still have that exp(4πxε) = eε is the identity of Gε, ε > 0. At
ε = 0, G0 is the semidirect product R×R2, where the first factor R acts on R2 by
rotations. Here exp(tx0) = (t, 0), thus, in particular, exp(4πx0) 6= e0.

Therefore, the set of points ε ∈ R where the two continuous sections exp(4π·)
and e coincide is not closed, hence G is not Hausdorff.
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Following this example, Douady and Lazard show that, if we replace the group
G0 by the semidirect product S1×R2 (the group of euclidean motions of the plane),
the resulting bundle of groups is Hausdorff. They then go on to show that a certain
C∞ bundle of semidirect product Lie algebras admits no Hausdorff bundle of Lie
groups. They conclude by asking whether there is an analytic example. The next
example answers this question. ♦

Example. Coppersmith [33] constructed an analytic family of 4-dimensional Lie
algebras parametrized by R2 which cannot be integrated to a Hausdorff family of
Lie groups. The fiber gε over ε = (ε1, ε2) ∈ R2 has basis xε, yε, zε, wε and bracket
given by

[wε, xε]ε = [wε, yε]ε = [wε, zε]ε = 0 ,

[xε, zε]ε = −yε , [yε, zε]ε = xε , [xε, yε]ε = ε1zε + ε2wε .

♦

16.4 Integrability and Non-Integrability

To find Lie algebroids which are not integrable even by non-Hausdorff groupoids,
we must look beyond bundles of Lie algebras.

Example. As a first attempt, take the transformation Lie algebroid X × g for
an action of the Lie algebra g on X (see Example 5 of Section 16.2). If the action
of the Lie algebra can be integrated to an action of the group Γ, then the Γ-action
on X defines a transformation groupoid GΓ with Lie algebroid X × g. Now we can
make the g-action non-integrable by restricting to an open set U ⊆ X not invariant
under Γ. The Lie algebroid X × g restricts to a Lie algebroid U × g. We might
hope that the corresponding groupoid does not restrict. However, one property of
groupoids is that they can always be restricted to open subsets of the base space.

Exercise 57
Let G be any groupoid over X and U an open subset of X. Then H =
α−1(U) ∩ β−1(U) is a subgroupoid of G with base space U .

We conclude that this restriction H of the transformation groupoid X × Γ has Lie
algebroid U × g. ♦

Example. We could instead look for incomplete vector fields that cannot even be
completed by inserting into a bigger manifold. One example begins with X = R

2

and U = R
2 \ {0}, where the vector field ∂

∂x is incomplete. If R2 is identified with
C, then the subspace U has a double cover defined by the map z 7→ z2. If we
pull ∂

∂x back to the double cover, there is no way to smoothly “fill in the hole”
to a complete vector field. Could this then give an example of a non-integrable
Lie algebroid? Unfortunately, this type of construction is also doomed to fail, if
non-Hausdorff groupoids are allowed. ♦

Theorem 16.2 (Dazord [40]) Every transformation Lie algebroid is integrable.

Exercise 58
Find a groupoid which integrates the Lie algebroid in the previous example.
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Historical Remark. Important work on integrability of Lie algebra actions was
done by Palais [134] in 1957. In that manuscript, he proved results close to Dazord’s
theorem, but without the language of groupoids.

The following example of a non-integrable Lie algebroid is due to Almeida and
Molino [3, 4]. It is modeled on an example of a non-integrable Banach Lie algebra
due to Douady-Lazard [48]. Mackenzie [110] had already developed an obstruction
theory to integrating Lie algebroids, but never wrote a non-zero example. ♦

Example. We will construct a Lie algebroid E which has the following form as
a bundle

0 −→ L −→ TX × R︸ ︷︷ ︸
E

−→ TX −→ 0 ,

where L is the trivial real line bundle over X. We define a bracket on sections of
E, Γ(E) = χ(X)× C∞(X), by

[(v, f), (w, g)]
E,Ω = ([v, w]

TX
, v · g − w · f + Ω(v, w)) ,

where Ω is a given 2-form on X. The bracket [·, ·]E,Ω satisfies the Jacobi identity
if and only if Ω is closed.

Each integral 2-cycle γ ∈ H2(X;Z) gives rise to a period∫
γ

Ω ∈ Λ .

If the set of periods of Ω is not cyclic in R, and if X is simply connected, then
one can show that E does not come from a groupoid [3].6 In this way we obtain a
non-integrable Lie algebroid. ♦

Remark. There is still a sort of Lie groupoid corresponding to this Lie algebroid.
As a bundle over X × X, it has structure group R/Λ, where Λ is generated by
two numbers which are linearly independent over Q. There are no nonconstant
differentiable functions on R/Λ, but there is a notion of smooth curves, if one uses
Souriau’s notion of diffeological space [154]. In general, a map M → R/Λ is said to
be smooth if it (locally) lifts to a smooth map M → R.

R

�
�
�
�
��

M - R/Λ
?

Examples of Lie algebroids which are “even more” non-integrable can also be con-
structed [39]. ♦

6For instance, on X = S2 × S2 with projections

S2 × S2

π1 ↓↓ π2

S2

define the 2-form Ω = c1π∗1ω + c2π∗2ω, where ω is the standard volume on S2 and c1, c2 are
rationally independent constants, Then the periods of Ω do not lie in a cyclic subgroup of R.
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16.5 The Dual of a Lie Algebroid

Let x1, · · · , xn be local coordinates on a manifold X, and let e1, · · · , er be a local
basis of sections of a Lie algebroid (E, ρ, [·, ·]E ) over it. With respect to these
coordinates and basis, the Lie bracket and anchor map are described by structure
functions cijk, bij ∈ C∞(X) as

[ei, ej ]E =
∑
k

cijkek

ρ(ei) =
∑
j

bij
∂

∂xj
.

Exercise 59
The Leibniz identity and Jacobi identity translate into differential equations
for the cijk and bij . Write out these differential equations.

Let x1, · · · , xn, ξ1, · · · , ξn be the associated coordinates on the dual bundle E∗,
where ξ1, · · · , ξn are the linear functions on E∗ defined by evaluation at e1, · · · , er.

We define a bracket {·, ·}E on C∞(E∗) by setting

{xi, xj}E = 0
{ξi, ξj}E =

∑
k

cijkξk

{ξi, xj}E = −bij

Proposition 16.3 The bracket {·, ·}
E

defines a Poisson structure on E∗.

Exercise 60
Show that the Jacobi identity for {·, ·}E follows from the Lie algebroid axioms
for E.

Remark. Although the Poisson bracket {·, ·}
E

is defined in terms of coordinates
and a basis, it is independent of these choices. Hence, the passage between the Lie
algebroid structure on E and the Poisson structure on E∗ is intrinsic. ♦

Examples.

1. When X is a point, and E = g is a Lie algebra, then the Poisson bracket on
E∗ = g∗ regarded as the dual of a Lie algebroid, coincides with the Lie-Poisson
bracket defined in Section 3.1.

In general, the Poisson bracket {·, ·}
E

on the dual of a Lie algebroid is some-
times also called a Lie-Poisson bracket.

2. When E = TX, we can choose ei = ∂
∂xi

to give the standard basis of vector
fields induced by the choice of coordinates on X, so that cijk = 0 and bij = δij .

The Poisson structure on the dual bundle E∗ = T ∗X as a dual of a Lie
algebroid is the one induced by the canonical symplectic structure

∑
dxi∧dξi

because
{xi, ξj}E = −{ξj , xi}E = δij .
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3. When E = T ∗X is the Lie algebroid of a Poisson manifold X (see Sec-
tion 17.3), we obtain on the tangent bundle E∗ = TX the tangent Poisson
structure; see [5].

Exercise 61

(a) Let E1 and E2 be Lie algebroids over X. Show that a bundle map
ϕ : E1 → E2 is a Lie algebroid morphism (i.e. compatible with
brackets and anchors) if and only if ϕ∗ : E∗2 → E∗1 is a Poisson map.

(b) Show that the dual of the anchor map of a Lie algebroid is a Poisson
map from T ∗X to E∗.

(c) Use the result of part (a) to suggest a definition of morphism between
Lie algebroids over different base manifolds. See Proposition 6.1 in [111].

Exercise 62
Let x1, · · · , xn be coordinates on X, ∂

∂x1
, · · · , ∂

∂xn
and dx1, · · · , dxn the in-

duced local bases of TX and T ∗X, x1, · · · , xn, v1, · · · , vn associated coordinates
on TX, and x1, · · · , xn, ξ1, · · · , ξn associated coordinates on T ∗X.
Express the Poisson bracket for the tangent Poisson structure on TX in terms
of the Poisson bracket on X given by πij(x) = {xi, xj}.
Check that, although TX → X is not a Poisson map, the map Π̃ : T ∗X → TX
is a Poisson map.

♦

16.6 Complex Lie Algebroids

It can be interesting to work over C even if X is a real manifold. To define a
complex Lie algebroid geometrically, take a complex vector bundle E over X
and a complex bundle map ρ : E → TCX to the complexified tangent bundle.7 The
immediate generalization of our definition in Section 16.1 amounts to imposing that
the space of sections of E be a complex Lie algebra satisfying the (complex versions
of the) two axioms.

Example. Let X be a (real) manifold with an almost complex structure J :
TX → TX, i.e. J is a bundle map such that J2 = −id. The graph of −iJ in
TCX = TX ⊕ iTX is the sub-bundle

E = {v − iJ(v)| v ∈ TX} ⊆ TCX .

The bracket operation on TX extends by linearity to a bracket on TCX. To endow
E with a Lie algebroid structure, we need the sections of E to be closed under that
bracket:

[Γ(E),Γ(E)] ⊆ Γ(E) .

This holds if and only if J is an integrable structure. That is, by the Newlander-
Nirenberg theorem [131], we have a complex Lie algebroid structure on E if and
only if J comes from a complex structure on X. A complex structure on a

7Algebraically, we have changed our “ground ring” from C∞(X) to C∞(X;C).
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manifold is, in this way, a typical example of a complex Lie algebroid. The natural
questions arise: When does such a Lie algebroid come from a complex Lie groupoid?
What is a complex Lie groupoid? ♦

Example. Let X be a manifold of dimension 2n− 1. Suppose that F ⊆ TX is a
codimension-1 sub-bundle with an almost complex structure J : F → F (J is linear
and J2 = −id). As before, define a sub-bundle E of the complexified F to be the
graph of −iJ

E = {v − iJ(v)| v ∈ F} ⊂ FC = F ⊕ iF .

If Γ(E) is closed under the bracket operation, i.e. if E is a Lie algebroid over X,
then (F, J) is called a Cauchy-Riemann structure or CR-structure on X.

To explain the motivation behind this construction, we consider the special
situation when X2n−1 ⊂ Y 2n is a real submanifold of a complex n-manifold Y .
At a point x ∈ X ⊂ Y , the tangent space TxY is a vector space over C. We
denote by JY the complex multiplication by i in this space. Because X has odd
real dimension, TxX cannot be equal to JY (TxX) as subspaces of TxY , and thus
the intersection Fx := TxX ∩ JY (TxX) must have codimension 1 in TxX. Then F
is the maximal complex sub-bundle of TX.

Functions on a CR-manifold annihilated by the sections of E are called CR-
functions. In the case where X is a hypersurface in a complex manifold Y , they
include (and sometimes coincide with) the restrictions to X of holomorphic func-
tions on one side of X in Y .

This construction opens several questions, including:

• What is the Lie groupoid in this case? However, at this point it is not clear
what it means to integrate a complex Lie algebroid.

• What does the analytic theory of complex Lie algebroids look like? It seems
to be at least as complicated as that of CR-structures, which is already very
delicate [87].

• The cohomology theory of Lie algebroids can be applied to complex Lie al-
gebroids. In the examples above, we recover the usual ∂ cohomology and
boundary ∂ cohomology on complex and CR-manifolds, respectively. What
does complex Lie algebroid cohomology look like in more general cases?

♦

Remark. When X is a complex manifold, it is tempting to impose the Lie alge-
broid axioms on the space of holomorphic sections of a holomorphic vector bundle
E. This idea fails in general, for the following reason. In the real case, sections of
E always exist. On the other hand, the only holomorphic functions on a compact
complex manifold are the constant functions. Similarly, it is possible that there
are no non-zero holomorphic sections for a complex vector bundle. It is therefore
more appropriate to look instead at the sheaf of local sections. Atiyah’s (see [9] and
Section 17.1) study of the obstructions to the existence of holomorphic connections
on principal GL(n;C)-bundles over complex manifolds used this approach to the
“Atiyah algebroid”. ♦





17 Examples of Lie Algebroids

Lie algebroids with surjective anchor map are called transitive Lie algebroids,
Atiyah algebras, or Atiyah sequences because of Atiyah’s work mentioned
below. When a corresponding groupoid exists, it will be (locally) transitive, in the
sense that its orbits are open.

17.1 Atiyah Algebras

In 1957, Atiyah [9] constructed in the setting of vector bundles the Lie algebroid of
the following key example of a locally transitive groupoid. Suppose that we have a
principal bundle P over a manifold X

P ←↩ H
π ↓
X

with structure group H acting on the right. The quotient G = (P × P )/H of the
product groupoid by the diagonal action of H is a groupoid over X. An element
g = [p, q] of this groupoid is an equivalence class of pairs of points p ∈ π−1(x), q ∈
π−1(y) in P ; it is the graph of an equivariant map from the fiber π−1(y) to π−1(x).

A bisection of this groupoid corresponds to a gauge transformation, that is, an
automorphism (i.e. an H-equivariant diffeomorphism) of the principal bundle. For
this reason, we call G the gauge groupoid of P . The group of bisections B(G) and
the gauge group G are thus isomorphic. The infinitesimal generators of G are the
H-invariant vector fields. Since H acts on the fibers of π freely and transitively,
H-invariant vector fields are determined by their values on one point of each fiber,
so they can be identified with sections of

E = TP/H

considered as a bundle over X. The bracket on E is that induced from χ(P ); this
is well-defined because the bracket of two H-invariant vector fields is H-invariant.

rx
ry

�������9
g

π−1(y)
π−1(x)

X

P

123
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The projection π commutes with the H-action, and so there is a bundle map
Tπ

E
Tπ - TX

@
@
@
@
@

π
R 	�

�
�
�
�

X

which is surjective. The induced map on sections is a Lie algebra homomorphism.
The kernel kerTπ consists of the vertical part of TP/H. The sections of kerTπ

are the H-invariant vector fields on the fibers. Although each fiber of TP/H is
isomorphic to the Lie algebra h of H, there is no natural way to identify these two
Lie algebras. In fact, kerTπ is the bundle associated to the principal bundle P by
the adjoint representation of H on h.

Exercise 63
Show that, when P is the bundle of frames for a vector bundle V → X, then
the gauge groupoid (P × P )/H of P is naturally isomorphic to the general
linear groupoid GL(V ) (see Section 14.4). Also show that the Lie algebroid
TP/H is naturally contained in gl(V ).

17.2 Connections on Transitive Lie Algebroids

We can use the Atiyah algebroid above to extend the notion of connection from
bundles to transitive Lie algebroids (see [110]).

A connection on the principal bundle P is a field of H-invariant direct comple-
ment subspaces to the fiber tangent spaces. Equivalently, a connection is simply a
splitting ϕ of the exact sequence:

0 - kerTπ - E
Tπ-�
ϕ

TX - 0 .

For any transitive Lie algebroid

0 - ker ρ - E
ρ - TX - 0 ,

we define a connection on E to be a linear splitting

E �
σ

TX

of the sequence above, that is, a cross-section of ρ. The corresponding projection

ker ρ �� E

is called the connection form.
The curvature of a connection σ is its deviation from being a Lie algebra

homomorphism. Specifically, for v, w ∈ Γ(TX), define the curvature form to be

Ω(v, w) = [σ(v), σ(w)]
E
− σ[v, w]

TX
∈ Γ(ker ρ) .
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An application of the Leibniz identity shows that Ω is “tensorial,” i.e.

Ω(v, fw) = fΩ(v, w) .

One can verify that Ω is a skew-symmetric bundle map TX × TX → ker ρ, i.e. Ω
is indeed a 2-form on X with values in ker ρ.

Exercise 64
Show that every (real-valued) 2-form on X is the curvature of a transitive Lie
algebroid

0 - X × R - E - TX - 0 .

(Hint: See Section 16.4.)

17.3 The Lie Algebroid of a Poisson Manifold

The symplectic structure on a symplectic manifold (X,ω) induces an isomorphism

T ∗X
Π̃ = ω̃−1

- TX ,

where ω̃(v) = ω(v, ·). Pulling back the standard bracket on χ(X) by Π̃, we define
a bracket operation {·, ·} on differential 1-forms Ω1(X) = Γ(T ∗X). This makes
T ∗X into a Lie algebroid with anchor ρ = −Π̃, called the Lie algebroid of the
symplectic manifold.

Furthermore, the bracket on 1-forms relates well to the Poisson bracket on
functions. Recall that the bracket of hamiltonian vector fields Xf = Π̃(df) and
Xg = Π̃(dg) satisfies (see Section 3.5)

[Xf ,Xg] = −X{f,g} .

We may pull the bracket back to Γ(T ∗X) by −Π̃, and will denote by [·, ·] the bracket
on 1-forms. From the following computation

−Π̃[df, dg] = [−Π̃(df),−Π̃(dg)]
= [Xf , Xg]
= −X{f,g}
= −Π̃(d{f, g}) .

we conclude that for exact 1-forms

[df, dg] = d{f, g} .

Now let (X,Π) be a Poisson manifold. The Poisson bivector field Π still induces
a map (see Section 4.2)

T ∗X
Π̃- TX ,

though not necessarily an isomorphism. Nonetheless, there is a generalization of
the symplectic construction. This is the content of the following proposition, which
has been discovered many times, apparently first by Fuchssteiner [62].
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Proposition 17.1 There is a natural Lie bracket [·, ·] on Ω1(X) arising from a
Poisson structure on X, which satisfies

• [df, dg] = d{f, g},

• Π̃ : Ω1(X)→ χ(X) is a Lie algebra anti-homomorphism.

Proof. For general elements α, β ∈ Ω1(X), this bracket is defined by

[α, β] := −LΠ̃(α)β + LΠ̃(β)α− dΠ(α, β) .

To check this definition, we first note that the map Π̃ was defined by

Π̃(α)yβ = β(Π̃(α)) = Π(β, α) .

If we then apply Cartan’s magic formula

LXη = Xydη + d(Xyη) ,

we can rewrite the bracket operation as

[α, β] = −Π̃(α)ydβ + Π̃(β)ydα+ dΠ(α, β) .

When α = df and β = dg, it is easy to see that

[df, dg] = dΠ(df, dg) = d{f, g} .

Exercise 65
Show that this bracket on Γ(T ∗X) satisfies the Leibniz identity

[α, fβ] = f [α, β] + (−Π̃(α) · f)β .

It is also easy to show that this bracket satisfies the Jacobi identity if we first
check it for df, dg, dh using [df, dg] = d{f, g}. Since any α ∈ Γ(T ∗X) can be written
in a coordinate basis as

α =
∑

uidfi ,

we may use the Leibniz identity to extend the Jacobi identity to arbitrary 1-forms.

Exercise 66
Check that Π̃ defines a Lie algebra anti-homomorphism from Γ(T ∗X) to

Γ(TX). Using the Leibniz identity, it suffices to check that Π̃ is an anti-
homomorphism on exact 1-forms.

2

It was observed in [167] that the bracket on 1-forms makes T ∗X into a Lie
algebroid whose anchor is −Π̃. This is called the Lie algebroid of the Poisson
manifold (X,Π). The orbits of this Lie algebroid are just the symplectic leaves
of X. The isotropy at a point x – those cotangent vectors contained in ker Π̃
– is the conormal space to the symplectic leaf Ox. The Lie algebra structure
which is inherited from the Lie algebroid T ∗X is exactly the transverse Lie algebra
structure from Section 5.2. Thus the Lie algebroid contains much of the information
associated with the Poisson structure! More on the Lie algebroid of a Poisson
manifold can be found in [162].
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Exercise 67
How canonical is this construction?
Specifically, if ϕ : X → Y is a Poisson map, is the induced map ϕ∗ : Ω1(Y )→
Ω1(X) a Lie algebra homomorphism?

The Lie algebroid T ∗X is not always integrable to a Lie groupoid. However,
when it is integrable, at least one of its associated Lie groupoids carries a natural
symplectic structure compatible with the groupoid structure. Such an object is
called a symplectic groupoid (see [167]).

17.4 Vector Fields Tangent to a Hypersurface

Let Y be a hypersurface in a manifold X. Denote by χ
Y

(X) the space of vector
fields on X which are tangent to Y ; χY (X) is closed under the bracket [·, ·] of
vector fields, it is a module over C∞(X), and it acts on C∞(X) by derivation. The
following theorem asserts that χY (X) is the space of sections of some vector bundle.
This result was probably noticed earlier than the cited reference.

Theorem 17.2 (Melrose [117]8) There is a vector bundle whose space of sections
is isomorphic to χ

Y
(X) as a C∞(X)-module.

This is a consequence of χ
Y

(X) being a locally free module over C∞(X). The
corresponding vector bundle A can be constructed from its space of sections and it
is called the Y -tangent bundle of X.

The Y -tangent bundle A comes equipped with a Lie algebroid structure over
X. To see the anchor map at the level of sections, introduce local coordinates
x, y2, . . . , yn in a neighborhood U ⊆ X of a point in Y , and adapted to the sub-
manifold Y in the sense that U ∩ Y is defined by x = 0.

A vector field

v = a
∂

∂x
+

n∑
i=2

bi
∂

∂yi
, a, bi ∈ C∞(U) ,

over U is the restriction of a vector field in χY (X) if and only if the coefficient a
vanishes when x = 0, that is, if and only if the smooth function a is divisible by x.
Hence, with respect to these coordinates, the vector fields

x
∂

∂x
,
∂

∂y2
, . . . ,

∂

∂yn

form a local basis for χY (X) as a module over C∞(X). Call these local basis vectors
e1, e2, . . . , en. They satisfy [ei, ej ] = 0, just like a local basis for the tangent bundle.

The difference between A and the tangent bundle lies in the anchor map ρ :
χ
Y

(X)→ χ(X), which is the inclusion

ρ(e1) = x
∂

∂x
, ρ(ej) =

∂

∂yj
, j ≥ 2 .

This induces an anchor map ρ at the level of vector bundles. Together, these data
form a Lie algebroid

(A, ρ, [·, ·]) .
8In [117] Melrose handles the case Y = ∂X, the boundary of X, but the idea works for any

hypersurface.
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The orbits of A (orbits were defined in Section 16.1) are the connected components
of Y and of X \ Y .

The isotropy of A, i.e. the kernel of ρ : A→ TX, is trivial over X \ Y . Over Y ,
the isotropy ker ρ|Y is the real line bundle spanned by e1. This is clearly the trivial
line bundle Y × R when Y is cooriented (meaning that the normal bundle NY is
trivial, or equivalently that Y is a two-sided hypersurface). But even if Y is not
cooriented, x ∂

∂x still provides a trivialization of ker ρ|Y , as this section is invariant
under change of orientation of NY over U .

Restricting the vector bundle A to Y , we obtain the exact sequence

0 - ker ρ|Y - A|Y
ρ - TY - 0 .

Therefore, a typical section of ker ρ|Y = Y × R has the form

v = a(y) · x · ∂
∂x

for some bundle morphism a : NY → NY , expressing the rate at which v grows
as we move across Y . We conclude that sections of ker ρ|Y coincide with endomor-
phisms of the normal bundle of Y . Note that A|Y is the gauge algebroid (or Atiyah
algebroid) of NY ; see also the first remark at the end of Section 17.5.

17.5 Vector Fields Tangent to the Boundary

The construction of the previous section extends to the case where X is a manifold
with boundary Y = ∂X.

Recall that the tangent space to X at a point in the boundary is just the usual
tangent space as if the manifold was enlarged by a collar extension so that the point
became interior.

Let ϕ : X → [0, 1] be a defining function for the boundary Y ; i.e.

ϕ−1(0) = Y ,
dϕ 6= 0 on Y , and
ϕ ≡ 1 off a tubular neighborhood of Y .

With respect to the coordinates x, y2, . . . , yn above, we define a map mϕ⊕ 1 on
vector fields by

a
∂

∂x
+
∑

bi
∂

∂yi
7−→ ϕ · a ∂

∂x
+
∑

bi
∂

∂yi
.

We extend mϕ ⊕ 1 as the identity map outside the tubular neighborhood of Y .
Then

mϕ ⊕ 1 : χ(X)→ χ
Y

(X)

is an isomorphism of C∞(X)-modules.
This isomorphism of the C∞(X)-modules χ(X) = Γ(TX) and χ

Y
(X) = Γ(A)

induces an isomorphism between the underlying vector bundles

TX ' A

which we interpret over a tubular neighborhood of Y as TX ' ν ⊕ τ , where ν and
τ are the pull-back to the tubular neighborhood of the normal bundle NY ' Y ×R
and of the tangent bundle TY , respectively.
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Remarks.

1. When Y = ∂X, A is the Lie algebroid of a groupoid over X, namely the
groupoid built from the pair groupoid of X \ Y together with the gauge
groupoid of the normal bundle of Y in X.

Exercise 68
What if Y is not the boundary of X?

2. In general, if the hypersurface Y is not the boundary of X, then the Y -tangent
bundle A might be not isomorphic to the tangent bundle TX.

For example, let X be a circle and let Y be one point. Then the Y -tangent
bundle is a Möbius band rather than the trivial bundle. A similar construction
works when X is a 2-torus and Y is a single homologically nontrivial closed
curve.

Notice that, if Y is two points on a circle X, then the Y -tangent bundle is
again the trivial bundle.

It would be interesting to understand how much of the structure of the Y -
tangent bundle is determined by the cohomology class dual to Y (and the
original tangent bundle).

♦





18 Differential Geometry for Lie Algebroids

A useful way to view a Lie algebroid E over X is as an “alternative tangent bundle”
for X, endowing X with a “peculiar differentiable structure”. The Lie algebroid
axioms allow us to carry out virtually all of the usual differential-geometric con-
structions, replacing TX by E. The reader may wish to keep the example E = TX
in mind during a first reading of this chapter.

18.1 The Exterior Differential Algebra of a Lie Algebroid

Let (E, ρ, [·, ·]E ) be a Lie algebroid over X, and let ∧•E∗ be the exterior algebra
of its dual E∗. Sections of ∧•E∗ are called E-differential forms on X, or simply
E-forms on X.

If θ ∈ Γ(∧kE∗), we say that θ is homogeneous, and furthermore that its
degree is |θ| = k. In this case θ is called an E-k-form.

We define a differential operator taking an E-k-form θ to an E-(k + 1)-form
dEθ, which at E-vector fields v1, . . . , vk+1 ∈ Γ(E) is

d
E
θ(v1, . . . , vk+1) =

∑
i

(−1)i+1ρ(vi) · θ(v1, . . . , v̂i, . . . , vk+1)

+
∑
i<j

(−1)i+jθ([vi, vj ]E , v1, . . . , v̂i, . . . , v̂j , . . . , vk+1) .

The Lie algebroid axioms for E imply the following properties for d
E

:

1. d
E

is C∞(X)-multilinear,

2. d2
E

= 0, and

3. d
E

is a superderivation of degree 1, i.e.

dE (θ ∧ ν) = dEθ ∧ ν + (−1)|θ|θ ∧ dEν .

The triple (Γ(∧•E∗),∧, d
E

) forms a differential graded algebra, like the usual
algebra of differential forms. We can recover the Lie algebroid structure on E from
(Γ(∧•E∗),∧, d

E
):

• the anchor map ρ is obtained from dE on functions by the formula:

ρ(v) · f = (d
E
f)(v) , for v ∈ Γ(E) and f ∈ C∞(X) ;

• the Lie bracket [·, ·]
E

is determined by

[v, w]
E
yθ = ρ(v) · θ(w)− ρ(w) · θ(v)− d

E
θ(v, w)

= vydE (wyθ)− wydE (vyθ)− (v ∧ w)ydEθ

for v, w ∈ Γ(E) and θ ∈ Γ(E∗).

We conclude that there is a one-to-one correspondence between Lie algebroid
structures on E and differential operators on Γ(∧•E∗) satisfying properties 1-3.

Remark. The space of sections of ∧•E∗ can be regarded as the space of functions
on a supermanifold.

131
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In this language, d
E

is an odd (since the degree is 1) vector field (since it is a
derivation), which is integrable because its superbracket with itself vanishes:

[d
E
, d

E
] = d

E
d
E
− (−1)1d

E
d
E

= 2d2
E

= 0 .

Hence, we may say that a Lie algebroid is a supermanifold with an odd integrable
supervector field. This idea permits one to apply to Lie algebroids some of the
intuition attached to ordinary vector fields. See [161]. ♦

The exterior differential algebra (Γ(∧•E∗),∧, d
E

) associated to a Lie algebroid
(E, ρ, [·, ·]E ) determines de Rham cohomology groups, called the Lie algebroid
cohomology of E or E-cohomology.

Examples.

1. When E = g is a Lie algebra (i.e. a Lie algebroid over a one-point space), the
cohomology of the differential complex

(∧•g∗,∧, dg) : R −→ g∗ −→ g∗ ∧ g∗ −→ . . .

is the standard Lie algebra cohomology with trivial coefficients, also known
as Chevalley cohomology.

Notice that the first arrow is the zero map and the second arrow is the usual
cobracket with the opposite sign:

for µ ∈ g∗, dgµ is the element of g∗ ∧ g∗

which at v, w ∈ g gives dgµ(v, w) = −µ([v, w]) .

The higher differentials are determined by the first two and the derivation
property.

2. When E = TX is a tangent bundle of a manifold X, the cohomology com-
puted by (Γ(∧•E∗),∧, d

E
) = (Ω•(X),∧, ddeRham) is the usual de Rham coho-

mology.

♦

Exercise 69
Compute the Lie algebroid cohomology for the Y -tangent bundle of a manifold
X where Y = ∂X is the boundary (see Sections 17.4 and 17.5 and [117],
proposition 2.49).

Remark. There have been several theories of characteristic classes associated to
Lie algebroids. We refer to [85] for a recent study of these with ample references to
earlier literature. ♦

18.2 The Gerstenhaber Algebra of a Lie Algebroid

Sections of the exterior algebra ∧•E of a Lie algebroid (E, ρ, [·, ·]
E

) are called Lie
algebroid multivector fields or E-multivector fields. If v ∈ Γ(∧kE), then v
is called homogeneous with degree |v| = k.
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We extend the bracket [·, ·]
E

to arbitrary E-multivector fields by setting it, on
homogeneous E-multivector fields v, w, to be

[v, w]
E
yθ = (−1)(|v|−1)(|w|−1)vyd

E
(wyθ)− wyd

E
(vyθ)

−(−1)|v|−1(v ∧ w)ydEθ

where θ ∈ Γ(∧•E∗). If θ ∈ Γ(∧kE∗), then [v, w]Eyθ is homogeneous of degree
k − (|v| + |w| − 1). For [v, w]

E
yθ to be a function, the degree of θ should be

k = |v|+ |w| − 1. Therefore, [v, w]E has degree |v|+ |w| − 1, and [·, ·]E is a bracket
of degree −1.

Remark. In order to obtain a bracket of degree 0, we can redefine the grading
on Γ(∧•E), and let the new degree be the old degree minus 1:

(v) := |v| − 1 = k − 1 , for v ∈ Γ(∧kE) .

For the (·) grading, we have(
[v, w]E

)
=
∣∣∣[v, w]

E

∣∣∣− 1 = |v|+ |w| − 2 = (v) + (w) .

♦

The bracket [·, ·]
E

on E-mutivector fields has the following properties:

1. [·, ·]
E

allows us to extend to arbitrary elements of v, w ∈ Γ(∧•E) the E-Lie
derivative operation defined for E-vector fields in Section 16.1:

Lvw := [v, w]
E
.

2. [·, ·]E is a super-Lie algebra (or “graded” Lie algebra) structure for the (·)
grading:

[v, w]E = −(−1)(v)(w)[w, v]E = −(−1)(|v|−1)(|w|−1)[w, v]E .

In words, [v, w]E is symmetric in v and w when both |v| and |w| are even and
is antisymmetric otherwise.

3. [·, ·]
E

satisfies a super-Jacobi identity:

[v, [w, y]E ]E + (−1)(|y|−1)(|v|+|w|)[y, [v, w]E ]E
+ (−1)(|v|−1)(|w|+|y|)[w, [y, v]E ]E = 0 .

4. [v, ·]
E

satisfies a super-Leibniz identity (notice that both gradings appear
here):

[v, w ∧ y]
E

= [v, w]
E
∧ y + (−1)(v)|w|w ∧ [v, y]

E
.

The triple (Γ(∧•E),∧, [·, ·]
E

) is called the Gerstenhaber algebra of the Lie
algebroid (E, ρ, [·, ·]E ), or just the E-Gerstenhaber algebra. We will refer to
the bracket [·, ·]

E
on Γ(∧•E) as the E-Gerstenhaber bracket.

In general, a Gerstenhaber algebra (a,∧, [·, ·]) is the following structure:

1. a graded vector space
a = a0 ⊕ a1 ⊕ . . .

together with
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2. a supercommutative associative multiplication of degree 0

ai ∧ aj ⊆ ai+j

and

3. a super-Lie algebra structure of degree −1

[ai, aj ] ⊆ ai+j−1

satisfying the super-Leibniz identity

[a, b ∧ c] = [a, b] ∧ c+ (−1)(|a|−1)|b|b ∧ [a, c] .

Historical Remark. Gerstenhaber found such a structure in 1963 [66] in the
Hochschild cohomology of an associative algebra (see Sections 19.1 and 19.2). ♦

Remark. For a Lie algebroid (E, ρ, [·, ·]
E

), the pull-back by ρ

Γ(∧•E∗) �
ρ∗

Γ(∧•T ∗X)

satisfies
ρ∗ ◦ d = d

E
◦ ρ∗ ,

hence induces a map in cohomology. On the other hand, the wedge powers of ρ

Γ(∧•E)
∧•ρ - Γ(∧•TX)

form a morphism of Gerstenhaber algebras. ♦

To summarize, from a Lie algebroid structure on E

(E, ρ, [·, ·]
E

) ,

we obtain a differential algebra structure on Γ(∧•E∗)

(Γ(∧•E∗),∧, dE ) ,

and from that we get a Gerstenhaber algebra structure on Γ(∧•E)

(Γ(∧•E),∧, [·, ·]E ) .

This process can be reversed, so these structures are equivalent.
For more on this material, see [84, 98, 162, 179].

18.3 Poisson Structures on Lie Algebroids

Example. For the tangent bundle Lie algebroid

(E, ρ, [·, ·]
E

) = (TX, id, [·, ·]) ,
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d
E

is the de Rham differential and the E-Gerstenhaber bracket is usually called the
Schouten-Nijenhuis bracket on multivector fields (cf. Sections 3.2 and 3.3).9

A bivector field Π ∈ Γ(∧2TX) is called a Poisson bivector field if and only
if [Π,Π] = 0 (cf. Section 3.3). This condition is equivalent to the condition d2

Π = 0
for the differential operator dΠ := [Π, ·].

If Π is a Poisson bivector field on X, then T ∗X is a Lie algebroid with anchor
−Π̃ (as seen in Section 17.3), and dΠ is the induced differential on multivector
fields. ♦

The notion of Poisson structure naturally generalizes to arbitrary Lie algebroids
as follows. Let (E, ρ, [·, ·]

E
) be a Lie algebroid over X. An element Π ∈ Γ(∧2E)

is called an E-Poisson bivector field when [Π,Π]E = 0, where [·, ·]E is the E-
Gerstenhaber bracket.

Example. When E = g is a Lie algebra, a g-Poisson bivector field Π ∈ g ∧ g
corresponds to a left-invariant Poisson structure on the underlying Lie group G.
The equation [Π,Π]g = 0 is called the classical Yang-Baxter equation. ♦

Remarks.

1. The push-forward ρ∗Π of an E-Poisson bivector field Π by the anchor ρ :
Γ(∧2E) → Γ(∧2TX) defines an ordinary Poisson structure on the manifold
X.

2. By the Jacobi identity, an arbitrary (not necessarily Poisson) element Θ ∈
Γ(∧2E) satisfies

d2
Θ + [1

2 [Θ,Θ]E , ·]E = 0 .

Notice the resemblance to the equation for a flat connection.

♦

An E-Poisson bivector field Π ∈ Γ(∧2E) is called an E-symplectic structure
when the induced bundle morphism

Π̃ : E∗ → E

is an isomorphism. As in Section 17.3, Π̃ satisfies

α(Π̃x(β)) = Πx(α, β)

for α, β ∈ E∗x and x ∈ X.
An E-symplectic structure defines an element ωΠ ∈ Γ(∧2E∗) by

ωΠ(v, w) = Π(Π̃−1v, Π̃−1w)

for v, w ∈ Γ(E). This E-2-form on X is non-degenerate and E-closed:

d
E
ωΠ = 0 .

Hence, ωΠ is called an E-symplectic form.

9According to the definitions of Section 18.2, the signs here differ from the conventions of
Vaisman [162].
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18.4 Poisson Cohomology on Lie Algebroids

In this section, we study Poisson cohomology on general Lie algebroids, but the
most interesting case is of course that where E = TM . This “ordinary” Poisson
cohomology, introduced by Lichnerowicz [105], was studied from a general homo-
logical viewpoint by Huebschmann [83].

An E-Poisson structure Π on a Lie algebroid (E, ρ, [·, ·]E ) over X induces an
operator

dΠ = [Π, ·]
E

on Γ(∧•E) (see Section 18.3). The super-Jacobi identity for [·, ·]
E

, together with
the property [Π,Π]E = 0, imply that

d2
Π

= 0 ,

so (Γ(∧•E), dΠ) forms a differential complex. The cohomology of this complex is
called the Lie algebroid Poisson cohomology or E-Π-cohomology. We will
next interpret the corresponding cohomology groups H•

Π
.

For f ∈ C∞(X) and θ ∈ Γ(E∗),

[Π, f ]Eyθ = −Πy(dEf ∧ θ) = −Π(dEf, θ) = Π̃(dEf)yθ = Xfyθ ,

where the vector field
Xf := Π̃(d

E
f)

is called the hamiltonian vector field of f with respect to Π (similar to Sec-
tion 4.5).

The computation above shows that

Xf = [Π, f ]
E

= dΠf ,

so the image of dΠ : C∞(X) → Γ(E) is precisely the space of hamiltonian vector
fields.

Exercise 70
Check that ρ maps the hamiltonian vector field of f with respect to Π to the
ordinary hamiltonian vector field of f with respect to ρ∗Π.

The Poisson bracket of functions f, g ∈ C∞(X) with respect to an E-Poisson
structure Π

{f, g} = Π(dEf, dEg) ,

coincides with the ordinary Poisson bracket with respect to ρ∗Π

{f, g} = (ρ∗Π)(df, dg) .

Exercise 71
Check this assertion.

Hence the kernel of dΠ : C∞(X)→ Γ(E) is the set of usual Casimir functions.
For an E-vector field v, we have

[Π, v]
E

= −[v,Π]
E

= −LvΠ



18.5 Infinitesimal Deformations of Poisson Structures 137

where Lv is the E-Lie derivative (defined in Sections 16.1 and 18.2). We naturally
call Poisson vector fields those v ∈ Γ(E) satisfying LvΠ = 0; these form the
kernel of dΠ : Γ(E)→ Γ(∧2E).

A synopsis of these observations is

H0
Π

= Casimir functions

H1
Π

=
Poisson vector fields

hamiltonian vector fields

The next two sections demonstrate how H2
Π

and H3
Π

are related to deformations of
the Poisson structure Π.

Exercise 72
Compute the Π-cohomology for the following Poisson manifolds:

(a) g∗ with its Lie-Poisson structure,

(b) the 3-torus T3 with a translation-invariant regular Poisson structure
(see [81]),

(c) R2 with {x, y} = x2 + y2 (see [70, 123]).

Remark. Let Π be a Poisson structure on a Lie algebroid E. The operator dΠ

induces a Lie algebroid structure on E∗, hence a bracket on Γ(∧•E∗). The E∗-de
Rham complex (Γ(∧•E), d

E∗ ) coincides with the Π-complex for E, (Γ(∧•E), dΠ).
Therefore, the E-Π-cohomology equals the E∗-cohomology.

The canonical cohomology class [Π] ∈ H2
Π

is zero if and only if there exists
X ∈ Γ(E) such that LXΠ = Π. An element Π ∈ Γ(E ∧E) satisfying LXΠ = Π for
some X ∈ Γ(E) is called exact; X is called a Liouville vector field for Π (as in
the symplectic case). ♦

Exercise 73
Find an example of an exact Poisson structure on a compact manifold (see [81]).

18.5 Infinitesimal Deformations of Poisson Structures

Let Π(ε) be a smooth family of sections of ∧2E for a Lie algebroid (E, ρ, [·, ·]E ).
Write

Π(ε) = Π0 + εΠ1 + ε2Π2 + . . .

as a formal power series expansion.
The equation for each Π(ε) to be a Poisson structure is

0 = [Π(ε),Π(ε)]
E

= [Π0,Π0]
E

+ 2ε[Π0,Π1]
E

+ ε2(2[Π0,Π2]
E

+ [Π1,Π1]
E

) + . . . (?)

Assume that Π(0) = Π0 is a Poisson structure, so that [Π0,Π0]
E

vanishes.
The coefficient Π1 is called an infinitesimal deformation of Π0 when

dΠ0
Π1 = [Π0,Π1]E = 0 .

This is a cocycle condition in the complex (Γ(∧•E), dΠ0
).
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Suppose that
Π1 = dΠ0

v = [Π0, v]E = −LvΠ0

for some v ∈ Γ(E). Then Π1 is considered a trivial infinitesimal deformation
of Π0.

Remark. The term “trivial” is suggested by the tangent bundle E = TX case
with the (local) flow ϕt of −v. For each t = ε, the pull-back ϕ∗εΠ0 is again a Poisson
structure. Furthermore,

d

dε
ϕ∗εΠ0

∣∣∣∣
ε=0

= L−vΠ0 = Π1 .

The infinitesimal deformation Π1 is trivial in the sense that all Poisson structures
Π(ε) = ϕ∗εΠ0 are essentially the same expressed in different coordinates. The inter-
pretation of this infinitesimal triviality for general Lie algebroids (with or without
using an associated groupoid) is not so clear. ♦

We conclude that

H2
Π

=
infinitesimal deformations of Π

trivial infinitesimal deformations of Π

The group H2
Π

is a candidate for the tangent space at Π of the moduli space of
Poisson structures on E modulo isomorphism.

18.6 Obstructions to Formal Deformations

Returning to the equation (?) of the previous section, suppose that [Π0,Π0]
E

=
[Π0,Π1]

E
= 0. To eliminate the ε2 term, we need the vanishing of

[Π0,Π2]
E

+ 1
2 [Π1,Π1]

E
,

i.e. having found Π1, we need to solve for Π2 in the non-homogeneous differential
equation

dΠ0
Π2 = −1

2 [Π1,Π1]
E
.

By the super-Jacobi identity,

dΠ0
([Π1,Π1]E ) = 0 ,

so [Π1,Π1]E determines an element of H3
Π0

. This element is zero if and only if
the solution Π2 of dΠ0

Π2 = −1
2 [Π1,Π1]

E
exists. Therefore, H3

Π0
is the home of

obstructions to continuing infinitesimal deformations.

In general, the recursive solution of equation (?) involves at each step working
out an equation of type

dΠ0
Πn = quadratic expression in the Πi’s with i < n .

Exercise 74
Let Π be a Poisson structure on E.
Show that Π induces, via Π̃ : E∗ → E, a chain map

(Γ(∧•E∗), dE ) −→ (Γ(∧•E), dΠ ) .

Hence, Π induces a map from E-Π-cohomology to E-cohomology.
Show that, if Π is symplectic, then all the maps above are isomorphisms, so
E-Π-cohomology and E-cohomology are the same.
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In view of the exercise, we conclude that, in the symplectic case, the obstructions
to formal deformations of a Poisson structure lie in H2

deRham and H3
deRham (see

below).

The bracket [·, ·]E on Γ(∧•E) passes to E-Π-cohomology. In particular, it gives
rise to a squaring map

1
2 [·, ·]E : H2

Π −→ H3
Π .

This is a quadratic map whose zeros are the infinitesimal deformations which can
be extended to second order in ε.

Exercise 75
Show that the squaring map is zero when Π is symplectic.

The exercise implies that, in the symplectic case, any infinitesimal deformation
can be extended to second order. In fact, since symplectic structures are open in
the vector space of closed 2-forms, there are no obstructions to extending an in-
finitesimal deformation: one may invert the Poisson structure, extend the resulting
deformation of symplectic structure, and invert back.

Remark. If a formal power series Π(ε) satisfies all the stepwise equations for
[Π(ε),Π(ε)]

E
= 0, there remains the question of whether there exists a smooth

deformation corresponding to that power series. It is not known how or if this
problem can be answered in terms of the E-Π-cohomology groups. ♦





Part VIII

Deformations of Algebras of
Functions

19 Algebraic Deformation Theory

Let V be a vector space (or just a module over a ring). We will study product-type
structures associated to V .

19.1 The Gerstenhaber Bracket

For k = 0, 1, 2, . . ., consider the set of all k-multilinear maps on V :

Mk(V ) = {m : V × . . .× V︸ ︷︷ ︸
k

|m is linear in each argument } .

Let Ak(V ) ⊆Mk(V ) be the subset of alternating k-multilinear maps on V .

Candidates for an associative product structure on V lie in M2(V ).
Candidates for a Lie bracket structure on V lie in A2(V ).

For a ∈Mk(V ) and b ∈M `(V ), let

(a ◦i b)(x1, x2, . . . , xk+`−1) := a(x1, . . . , xi−1, b(xi, . . . , xi+`−1), xi+`, . . . , xk+`−1)

where x1, x2, . . . , xk+`−1 ∈ V . Then let

a � b := N ·
∑
i

(−1)(i−1)(`−1)a ◦i b

where N is a combinatorial factor not relevant to our study. The Gerstenhaber
bracket [·, ·]G (see [66]) is defined to be

[a, b]G := a � b− (−1)(k−1)(`−1)b � a .

Theorem 19.1 (Gerstenhaber [66]) The bracket [·, ·]G satisfies the super-Jacobi
identity if we declare elements of Mk(V ) to have degree k − 1.

When a, b ∈M2(V ) are bilinear maps,

(a � b)(x, y, z) = a(b(x, y), z)− a(x, b(y, z))

[a, b]G(x, y, z) = a(b(x, y), z)− a(x, b(y, z))
+b(a(x, y), z)− b(x, a(y, z)

1
2 [a, a]G(x, y, z) = a(a(x, y), z)− a(x, a(y, z))

Writing x · y for a(x, y), we obtain

1
2 [a, a]G(x, y, z) = (x · y) · z − x · (y · z) .

141
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Therefore, associative algebra structures on V are the solutions of the quadratic
equation

[a, a]G = 0 , a ∈M2(V ) .

In terms of the squaring map (similar to the one mentioned in Section 18.6)

sq : M2(V ) −→ M3(V )
a 7−→ 1

2 [a, a]G

the associative algebra structures on V are the elements of ker(sq).

Given an associative multiplication m ∈ M2(V ), [m,m]G = 0, we denote the
multiplication by

x · y := m(x, y) .

We may then define a cup product on M•(V ) by the formula

(a ∪ b)(x1, x2, . . . , xk+`) = a(x1, . . . , xk) · b(xk+1, . . . , xk+`)

where a ∈Mk(V ), b ∈M `(V ) and x1, . . . , xk+` ∈ V .
The associativity of the cup product follows from the associativity of m. Notice

that, while the Gerstenhaber bracket is defined on any vector space V , the cup
product structure depends on the choice of a multiplication on V .

Remark. A•(V ) is not closed under [·, ·]G . However, using anti-symmetrization,
we find a similar bracket on A•(V ) for which the equation [a, a]G = 0 amounts to
the Jacobi identity for a ∈ A2(V ). In the case of symmetric multilinear maps on
V , S•(V ) ⊆M•(V ), we may use symmetrization to obtain a bracket. ♦

19.2 Hochschild Cohomology

Suppose thatm is an associative multiplication on V , i.e.m ∈M2(V ) and [m,m]G =
0. Define the map

δm := [m, ·]G : M•(V )→M•+1(V ) .

By the super-Jacobi identity, we have

δ2
m = 0 .

We hence obtain a complex (M•(V ), δm), called the Hochschild complex of
(V,m).

The cohomology of (M•(V ), δm) is known as Hochschild cohomology. The
cohomology groups are denoted by HH•m.

Remark. For the alternating version of the bracket [·, ·]G , consider δa := [a, ·]G :
A•(V ) → A•+1(V ) where a ∈ A2(V ), [a, a]G = 0. The corresponding complex
(A•(V ), δa) is the Chevalley complex of (V, a) and its cohomology is known as
Chevalley cohomology, or Lie algebra cohomology or Chevalley-Eilenberg
cohomology [69]. For the case of symmetric multilinear maps S•(V ), we obtain
Harrison cohomology [69]. ♦
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Repeating the computations and definitions of Sections 18.4 and 18.5, we find
that:

HH0
m = center of the algebra (V,m)

HH1
m =

derivations of the algebra (V,m)
inner derivations of the algebra (V,m)

HH2
m =

infinitesimal deformations of m
trivial infinitesimal deformations of m

Exercise 76
Check the assertions above.

The groups HH•m have the following algebraic structures:

1. The Gerstenhaber bracket [·, ·]G passes to HH•m, since it commutes with
δm. Notice that [·, ·]G is independent of the algebra structure on V , while
HH•m is defined for a particular choice of m ∈M2(V ) with [m,m]G = 0.

2. In particular, the Gerstenhaber bracket on Hochschild cohomology induces a
squaring map

1
2 [·, ·]G : HH2

m → HH3
m .

This map describes the obstructions to extending infinitesimal deformations
of m as we will see in Section 19.4.

3. The cup product operation on M•(V ), for a fixed associative multiplication
m, satisfies a derivation law with respect to [·, ·]G which passes to HH•m:

[a,b ∪ c]G = [a,b]G ∪ c + (−1)(|a|−1)|b|b ∪ [a, c]G

where a,b, c are Hochschild cohomology classes.

Since, for a, b, c ∈M•(V ), we have

a � δmb− δm(a � b) + (−1)|b|−1δma � b = (−1)|b|−1(b ∪ a− (−1)|a||b|a ∪ b) ,

on cohomology we have supercommutativity

a ∪ b = (−1)|a||b|b ∪ a .

Remark. Notice that the cup product is supercommutative only in co-
homology, whereas the Gerstenhaber bracket [·, ·]G was supercommutative
already before passing to cohomology. ♦

4. The action of the permutation (or symmetric) groups on the spaces
Mk(V ) gives rise to a finer structure in Hochschild cohomology, analogous to
the Hodge decomposition [69].

Remark. There is a groupoid related to HH1 and HH2. It is the transformation
groupoid of the category whose objects are the associative multiplications on V ,
and whose morphisms are the triples (m1, ϕ,m2), where m1,m2 are objects and ϕ
is a linear isomorphism with m1 = ϕ∗m2. ♦
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19.3 Case of Functions on a Manifold

In the case where V = C∞(M) for some manifold M , HH0 is the center C∞(M),
while HH1 = χ1(M), since every derivation comes from a vector field, and the
only inner derivation is 0. More generally, we have the following result, after an
algebraic version by Hochschild, Kostant and Rosenberg [82].

Theorem 19.2 (Cahen-Gutt-De Wilde [21]) The subcomplex of M•(C∞(M))
consisting of those multilinear maps which are differential operators in each argu-
ment, has cohomology

HHk
diff(C∞(M)) ' χk(M) = Γ(∧kTM) ,

and the Gerstenhaber bracket becomes the Schouten-Nijenhuis bracket.

The theorem is saying that:

1. Every k-cocycle is cohomologous to a skew-symmetric cocycle.

2. Every skew-symmetric cocycle is given by a k-vector field.

3. A k-vector field is a coboundary only if it is zero.

The inclusion

(χ•(M), 0) - (M•loc(C∞(M)), δ)

is a linear isomorphism on the level of cohomology, but it is not a morphism for
the Gerstenhaber bracket. Kontsevich has recently [97] proven his formality con-
jecture, which states that the inclusion can be deformed to a morphism of differ-
ential graded Lie algebras which still induces an isomorphism on cohomology. As
a consequence of this theorem, Kontsevich establishes an equivalence between the
classification of formal deformations of the standard associative multiplication on
C∞(M) and formal deformations of the zero Poisson structure on M . We discuss
these issues from a “pre-Kontsevich” viewpoint in the remainder of these notes.

19.4 Deformations of Associative Products

The equation for a formal series in M2(V )

m(ε) = m0 + εm1 + ε2m2 + . . .

to be associative, identically in ε, is

0 = [m(ε),m(ε)]G
= [m0,m0]G + 2ε[m0,m1]G + ε2(2[m0,m2]G + [m1,m1]G) + . . . (?)

cf. Section 18.5. We will try to solve this equation stepwise:
We first need the term m0 to be associative, i.e. [m0,m0]G = 0. Next, for the

coefficient of ε in (?) to vanish, we need

0 = [m0,m1]G = δm0m1 .

Writing
x · y := m0(x, y) ,
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δm0m1 is:

δm0m1(x, y, z) = x ·m1(y, z)−m1(x · y, z) +m1(x, y · z)−m1(x, y) · z .

If m1 were a biderivation (i.e. a derivation in each argument), this would become

δm0m1(x, y, z) = x ·m1(y, z)− x ·m1(y, z)−m1(x, z) · y
+y ·m1(x, z) +m1(x, y) · z −m1(x, y) · z

= −m1(x, z) · y + y ·m1(x, z) .

If m0 is symmetric (i.e. commutative), then every biderivation m1 is a cocycle with
respect to δm0 .

Suppose that m1 is antisymmetric.10 We then have

δm0m1(x, y, z) = x ·m1(y, z)−m1(x · y, z) +m1(x, y · z)−m1(x, y) · z
δm0m1(x, z, y) = x ·m1(z, y)−m1(x · z, y) +m1(x, z · y)−m1(x, z) · y
δm0m1(z, x, y) = z ·m1(x, y)−m1(z · x, y) +m1(z, x · y)−m1(z, x) · y

Writing
{x, y} := m1(x, y) ,

and assuming that m0 is symmetric, we obtain
1
2 [δm0m1(x, y, z)− δm0m1(x, z, y) + δm0m1(z, x, y)]

= x · {y, z}+ {x, z} · y − {x · y, z} .

The vanishing of this expression is the Leibniz identity for m1 with respect to
m0.

Hence, assuming that m0 is symmetric and m1 is antisymmetric, if m1 is a
δm0-cocycle, then m1 is a biderivation.

Similarly, we find
1
2 [m1,m1]G(x, y, z) = {{x, y}, z} − {x, {y, z}} .

The equation for eliminating the ε2 coefficient in (?) is

δm0m2 + 1
2 [m1,m1]G = 0 , i.e.

{{x, y}, z}−{x, {y, z}}+x ·m2(y, z)−m2(x · y, z) +m2(x, y · z)−m2(x, y) · z = 0 .

Assume that m0 is symmetric, m1 is antisymmetric and m2 is symmetric:

x · y = y · x
{x, y} = −{y, x}

m2(x, y) = m2(y, x)

The equation for the vanishing of the coefficient of ε2 of in (?) added to itself
under cyclic permutations (x, y, z) yields:

{{x, y}, z}+ {{y, z}, x}+ {{z, x}, y} = 0 ,

that is, the Jacobi identity for {·, ·}.
We conclude that the extendibility of the deformation to second order, with the

(anti)symmetry conditions imposed above, is equivalent to

[m1,m1]G is a coboundary
⇐⇒ jacobiator for m1 is zero
⇐⇒ Jacobi identity for m1 .

10For local cochains on C∞(M), this can always be arranged by subtracting a coboundary from
m1.
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19.5 Deformations of the Product of Functions

We now apply the observations of the previous section to the case where V =
C∞(M) is the space of smooth functions on a Poisson manifold (M,Π) (see also
Section 19.3).

Let m0 be pointwise multiplication of functions, and let m1 be the Poisson
bracket {·, ·}.

Take a formal deformation of m0 with linear term m1. The formal variable
ε is traditionally replaced by i~

2 , where the symbol ~ plays the role of Planck’s
constant from physics. We redefine m1 = i

2{·, ·}, and take ε = ~ instead. The
formal deformation is then

m(~) = m0 + ~m1 + ~2m2 + . . .

The equation for m(~) to be an associative product for each “value” of ~ is

[m(~),m(~)]G = 0 ,

cf. Sections 18.5 and 19.4.
For these particular m0 and m1, we have

[m0,m0]G = 0 ⇐⇒ m0 is associative
[m0,m1]G = 0 ⇐⇒ m1 satisfies the Leibniz identity

∃m2 : 2[m0,m2]G + [m1,m1]G = 0 ⇐⇒ m1 satisfies the Jacobi identity .

Hence, the coefficients of ~0, ~1 and ~2 in [m(~),m(~)]G vanish. To eliminate
the coefficient of ~3, we need

[m0,m3]G + [m1,m2]G = 0 .

This is equivalent to requiring the δm0 -cocycle [m1,m2]G to be a δm0 -coboundary:

δm0m3 = −[m1,m2]G .

The obstruction to solving the equation lies hence in HH3
m0

(C∞(M)).

Exercise 77
Check that δm0 [m1,m2]G = 0.

Historical Remarks. The program of quantizing a symplectic manifoldM with a
∗-product, that is an associative multiplication on formal power series C∞(M)[[~]],
was first set out by Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer in the
70’s [12].

In 1983 [43], De Wilde and Lecomte showed that every symplectic manifold
admits a formal deformation quantization. Their proof involved rather complicated
calculations which made the result look quite technical.

Some later versions of the existence proof relied on patching together local Weyl
algebras with nonlinear coordinate changes. In [92], Karasev and Maslov gave
further details of a proof, whose first outline was sketched in [91], which reduces
the patching to standard sheaf-theoretic ideas.

Another proof of the existence of deformation quantization which uses patching
ideas was given by Omori, Maeda and Yoshioka [133]. Although their proof still
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involved substantial computations, it used a fundamental idea which is also basic
in the proof of Fedosov (who discovered it independently). Each tangent space of
a Poisson manifold M can be viewed as an affine space with a constant Poisson
structure, so it carries a natural Moyal-Weyl quantization (see Section 20.1). In
this way, the tangent bundle TM becomes a Poisson manifold with the fibrewise
Poisson bracket, and with a fibrewise quantization. To quantize M itself, we may
try to identify a subalgebra of the quantized algebra C∞(TM)[[~]] with the vector
space C∞(M)[[~]] in such a way that the induced multiplication on C∞(M)[[~]]
gives a deformation quantization of M . Such an identification is called a Weyl
structure in [133].

In Chapter 21 we will discuss Fedosov’s proof of existence of deformation quan-
tization on symplectic manifolds.

For the history of these developments, see [14, 60]. ♦





20 Weyl Algebras

Let (E,Π) be a Poisson vector space. We will regard the Poisson structure Π ∈ E∧E
as a bivector field on E with constant coefficients.

20.1 The Moyal-Weyl Product

For local canonical coordinates (q1, . . . , qk, p1, . . . , pk, c1, . . . , cl) (defined in Sec-
tions 3.4 and 4.2), we use the symbols

←−−
∂

∂qj
and

←−−
∂

∂pj

for differential operators acting on functions to their left, and

−−→
∂

∂qj
and

−−→
∂

∂pj

for differential operators acting on functions to their right, so that

{f, g} = f
∑
j

(←−−
∂

∂qj

−−→
∂

∂pj
−
←−−
∂

∂pj

−−→
∂

∂qj

)
︸ ︷︷ ︸

P

g .

Let m1 be the following bidifferential operator on C∞(E):

m1 =
i

2
P =

i

2

∑
j

(←−−
∂

∂qj

−−→
∂

∂pj
−
←−−
∂

∂pj

−−→
∂

∂qj

)
.

The operator P is closely related to an operator on functions on the product
space

P̂ : C∞(E × E) −→ C∞(E × E)

defined in coordinates (q′, p′, c′, q′′, p′′, c′′) on E × E as

P̂ =
∑
j

(
∂

∂q′j

∂

∂p′′j
− ∂

∂p′j

∂

∂q′′j

)
.

Consider the maps

C∞(E)⊗ C∞(E) - C∞(E × E)

f(q, p, c)⊗ g(q, p, c) - f(q′, p′, c′) g(q′′, p′′, c′′)

and

C∞(E × E)
∆ - C∞(E)

f(q′, p′, c′, q′′, p′′, c′′) - f(q, p, c, q, p, c)

149
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The bidifferential operator P is the composition

C∞(E)⊗ C∞(E) - C∞(E × E)
P̂- C∞(E × E)

∆- C∞(E) .

Powers P k are defined by taking P̂ k in this composition. Adding all the powers
(with the usual factorial coefficients), we define the formal power series of operators

C∞(E)⊗ C∞(E) - C∞(E)

f ⊗ g - f ?~ g

by the formula

f ?~ g :=
∞∑
j=0

1
j! (

i~
2 )jfP jg

=: f · e
i~
2 P · g .

This is called the Moyal-Weyl product [122, 174] or simply the Weyl product.

Remark. This exponential series is analogous to the Taylor expansion

f(x0 + ε) = (eε
d
dx f)(x0) ,

which converges for small ε only when f is real analytic. ♦

Similarly, the Moyal-Weyl product will not converge in general, so we must
regard it as a formal power series in ~. The formal Weyl algebra is the algebra
of formal series in q, p, c, ~ equipped with the Moyal-Weyl product defined as above.
Note that, in the formal Weyl algebra:

• the polynomials in q, p, c, ~ form a subalgebra,

• the variables c and ~ commute with everything, and

• qjpj − pjqj = i~
2 ,

whence the following relations:

[qj , pj ] = i~
2 [ci, ·] = 0

[qi, qj ] = [pi, pj ] = 0 [~, ·] = 0

where [·, ·] is the usual commutator bracket.
The affine functions on E

h := E∗ ⊕ R∗ = (E ⊕ R)∗

form a Lie algebra. When Π is non-degenerate, h is the Heisenberg algebra,
with central element ~. The universal enveloping algebra U(h) may be identified
by symmetrization with the polynomial algebra Pol(E ⊕ R).
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20.2 The Moyal-Weyl Product as an Operator Product

Let (E,Π) be a symplectic Poisson vector space with canonical coordinates (q1, . . . , qn, p1, . . . , pn).
The Moyal-Weyl product on (E,Π) (defined in the previous section) can be in-
terpreted as an operator product for operators on R2n. (This is in fact how it
originated [174].)

The following map Op(·) from the coordinate functions (q1, . . . , qn, p1, . . . , pn)
on R2n to operators on Rn equipped with coordinates (x1, . . . , xn):

qj 7−→ Op(qj) = q̂j := multiplication by xj
pj 7−→ Op(pj) = p̂j := ~

i
∂
∂xj

1 7−→ Op(1) := multiplication by 1

satisfies
[Op(qj),Op(pj)] = i~Op(1) = i~Op({qj , pj}) .

Remark. In the language of Dirac and Schrödinger, we are mapping the classical
observables q and p to the corresponding quantum operators q̂ and p̂. The Poisson
bracket of classical observables maps to the commutator of operators. ♦

In order to avoid ordering ambiguity, products of observables qjpj = pjqj may
be mapped to 1

2 (q̂j p̂j + p̂j q̂j). For arbitrary functions f(q, p), a device of Weyl
extends this symmetric ordering. Write f(q, p) in terms of its Fourier transform as

f(q, p) =
∫

(R2n)∗
ei
∑

(qjQj+pjPj) (Ff) (Q,P ) dQdP

where Q and P are variables on (R2n)∗ dual to q and p on R2n. Restricting to
Schwartz functions on R2n, we may set

Op(f) :=
∫

(R2n)∗
ei
∑

(QjOp(qj)+PjOp(pj)) (Ff) (Q,P ) dQdP

since the exponential factor is a unitary operator. The function f is called the
Weyl symbol [174] of the operator Op(f).

We then define
f ?~ g := Op−1(Op(f),Op(g)) .

Here f and g are Schwartz functions, and Op−1 is the map taking an operator to
its Weyl symbol. For this new (noncommutative) product of functions, the map
f 7→ Op(f) is an algebra homomorphism.

Remark. An integral formula for ?~ in the symplectic case was found by von Neu-
mann [128] (well before Moyal):

(f ?~ g)(x) =
(

1
π~

)2n ∫
f(y) g(z) e

i
~
S(x, y, z)dy dz ,

where S(x, y, z) is 4 times the symplectic area of the triangle with vertices x, y and
z.

The von Neumann integral formula gives a well-defined product on various
spaces of functions, including Schwartz functions, smooth functions whose par-
tial derivatives of all orders are bounded, and Λ-periodic smooth functions on E
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where Λ is a lattice, i.e. smooth functions on a torus E/Λ. This product does not
extend to continuous functions on E/Λ, but it is possible to complete C∞(E/Λ)
to a noncommutative C∗ algebra called “the continuous functions on a quantum
torus” [144]. ♦

20.3 Affine Invariance of the Weyl Product

The Weyl product on a Poisson vector space (E,Π) is invariant under affine Poisson
maps, i.e. if A : E → E is an affine symplectic map, then the induced pull-back
map

A∗ : C∞(E)[[~]] −→ C∞(E)[[~]]

is an algebra automorphism for the Weyl product.
By affine invariance, the Weyl product (on the Weyl algebra or any of the

other related spaces of functions mentioned at the end of the previous section)
passes to any Poisson manifold locally modeled on E, as long as we only allow
affine coordinate changes. This condition on E amounts to the existence of a
flat connection without torsion, for which parallel transport preserves the Poisson
structure.

The infinitesimal counterpart of affine invariance is that, for every polynomial
function k on E of degree less than or equal to 2,

{f ?~ g, k} = f ?~ {g, k}+ {f, k} ?~ g .

In words, {·, k} is a derivation not just of the pointwise product (Leibniz identity)
and of the Poisson bracket (Jacobi identity), but of the whole ?-product.

Remark. Dirac’s [44] quantum Poisson bracket

[f, g]? :=
f ?~ g − g ?~ f

i~

satisfies the derivation law

[f ?~ g, k]? = f ?~ [g, k]? + [f, k]? ?~ g

just as a consequence of associativity. The similar property for {·, k} is explained
by the fact that, for a polynomial k on E of degree ≤ 2, we have [·, k]? = {·, k}.

In particular, for k1 and k2 polynomials of degree ≤ 2, we have [k1, k2]? =
{k1, k2}, which shows that polynomials of degree ≤ 2 form a Lie algebra. ♦

20.4 Derivations of Formal Weyl Algebras

Let F (E)[[~]] be the space of formal power series on the vector space E, thought
as an algebra over C[[~]].

A theorem of E. Borel states that every formal power series is the Taylor ex-
pansion of some function. This implies that the space F (E) of formal power series
on the vector space E is isomorphic to C∞(E) modulo the functions which vanish
to infinite order at 0.
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Theorem 20.1 Suppose that Π is a non-degenerate Poisson structure on E. Then
every derivation D of F (E)[[~]] such that D~ = 0 is of the form [·, f ]? for some
f ∈ F (E)[[~]].

Exercise 78
Prove this theorem. Hints:
A derivation D is determined by its effect on generators of the algebra
q1, . . . , qn, p1, . . . , pn. Notice that qi, pi have degree ≤ 2. Suppose that
D = [·, f ]? were a inner derivation. Then

Dqi = [qi, f ]? = {qi, f} = ∂f
∂pi

Dpi = [pi, f ]? = {pi, f} = − ∂f
∂qi

To find the element f , we must solve

df = (Dqi)dpi − (Dpi)dqi

for f . If the right-hand side is closed, then the left-hand side will be determined
up to an element in the center C[[~]] of C∞(E)[[~]]. Let us check that the right-
hand side is closed:

∂
∂qj

(Dqi) + ∂
∂pi

(Dpj) = −{pj , Dqi}+ {qi, Dpj}
= [Dqi, pj ]? + [qi, Dpj ]?

= D[qi, pj ]? = D(δi,j) = 0 .

To finish the proof that D = [·, f ]?, consider the filtration of F (E) by ideals
Ak generated by the homogeneous polynomials of degree k. Show that, if D is
a derivation, then DAk ⊆ Ak−1[[~]].

Let (E,Π) be a Poisson vector space, and let ϕ be an automorphism of the Weyl
algebra C∞(E)[[~]] as a C[[~]]-algebra..

The term in ϕ of 0-th order in ~ shows that ϕ induces an automorphism of
C∞(E), hence a diffeomorphism of E.

The term in ϕ of first order in ~ shows that this diffeomorphism is a Poisson
automorphism of (E,Π).

We hence obtain an exact sequence

1 - I - Aut(C∞(E)[[~]]) - P(E,Π) - 1

where P(E,Π) is the set of Poisson automorphisms of (E,Π). The kernel I of the
third arrow is the group of inner automorphisms of C∞(E)[[~]] corresponding to
invertible elements of C∞(E)[[~]] [59].

20.5 Weyl Algebra Bundles

Let (E, ρ, [·, ·]E ) be a Lie algebroid over a manifoldM , with symplectic structure ω ∈
Γ(∧2E∗). The symplectic E-2-form ω is non-degenerate and d

E
ω = 0; it determines

an E-Poisson structure Π (see Section 18.3) by Π̃ = ω̃−1, and an ordinary Poisson
structure ρ(Π) on TM .

Let WE be the Weyl algebra bundle over M whose fiber at x ∈ M is the
formal Weyl algebra of the symplectic (hence Poisson) vector space Ex. The smooth
sections of WE are those for which the coefficient of each term is a smooth function
on M ; they form an algebra under fiberwise multiplication. We think of Γ(WE)
as “functions on the quantized E”. Locally, we write a typical section as f(x, y, ~),
where x ∈M , y is a formal variable in Ex, and ~ is another formal parameter. (The



154 20 WEYL ALGEBRAS

constant ~ is taken the same on each fiber, just as Planck’s constant is a universal
constant.)

From now on, to simplify, we will analyze the case where E = TM is the tangent
bundle of M . Everything works for the general Lie algebroid case [126].

Interpret Γ(WTM) as the space of smooth functions on the “quantized tangent
bundle”

Γ(WTM) = C∞(QTM) .

The zero section is the map

C∞(QTM) - C∞(M)[[~]]

given by evaluation at y = 0. We may think of QTM as an infinitesimal neighbor-
hood of the zero section.

In the next chapter, we will describe the quantization method of Fedosov, in
which C∞(M)[[~]] is identified with a subalgebra of Γ(WTM). The Weyl product
is then carried back to C∞(M)[[~]] to give a deformation quantization.

Geometrically, a subalgebra of Γ(WTM) annihilated by a Lie algebra of deriva-
tions corresponds to a “foliation” of QTM . The foliation is transverse to the fibers
when the derivations are of the form ∇

X
as X ranges over the vector fields on M ,

defining a flat connection on the bundle WTM itself.
When the foliation is transverse to the zero section as well, parallel sections of

WTM are in one-to-one correspondence with elements of C∞(M)[[~]]. Notice that
a flat linear connection on TM would not work: parallel sections of a flat connection
on C∞(TM) correspond to functions on a tangent fiber, not C∞(M)[[~]] as we need.

Example. Let (M,ω) be a symplectic vector space with coordinates x. Define
the connection by

∇ ∂
∂xi

=
∂

∂xi
− ∂

∂yi
,

where y are the tangent coordinates induced by x. Lift functions u(x) and v(x) on
M to u(x+ y) and v(x+ y) on TM . To evaluate (u ?~ v)(x0), freeze the x variable
at x0, take the Weyl product with respect to y, and then set y = 0 to obtain a
function on M . This recipe reproduces the usual Weyl product. ♦



21 Deformation Quantization

On a general Poisson manifold, if the rank of the Poisson tensor Π is constant, then
by a theorem of Lie the Poisson manifold is locally isomorphic to a vector space
with constant Poisson structure (see Section 3.4). Such Poisson manifolds, which
are called regular, are always locally deformation quantizable using the Moyal-
Weyl product in canonical coordinates; the problem is to patch together the local
deformations to produce a global ?-product.

21.1 Fedosov’s Connection

There is one case in which the patching together of local quantizations is easy.
Since the Moyal-Weyl product on a vector space V with constant Poisson structure
is invariant under all the affine automorphisms of V , we can construct a global
quantization of any Poisson manifold (M,Π) covered by canonical coordinate sys-
tems in the general case for which the transition maps are affine. Such a covering
exists when M admits a flat torsionless linear connection for which the covariant
derivative of Π is zero.

Fedosov overcomes the difficulty of patching together local Weyl structures by
making the canonical coordinate neighborhoods “infinitely small”. To understand
his idea, we should first think of elements of the deformed algebra C∞(TM)[[~]] as
sections of the bundle WTM over M whose fiber at x ∈M is WTxM .

Of course we are most interested in dealing with the case where (M,Π) does
not admit a flat Poisson connection, and this is where the most interesting part of
Fedosov’s proof comes in. He shows (in other terms) that the tangent bundle of
every symplectic (or regular Poisson) manifold does admit a flat Poisson connection,
if one gives the appropriate extended meaning to that concept, namely admitting
“nonlinear quantum maps” as the structure group.

Fedosov’s connection is constructed on the bundle WTM of Weyl algebras.
The “structure Lie algebra” of this connection, in which the connection forms take
values, is WR2n acting on itself by the adjoint representation of its Lie algebra
structure. Since the full Weyl algebra is used, and not just the quadratic functions
which generate linear symplectic transformations, the structure group allows non-
linear transformations of the (quantized) tangent spaces. Since linear generating
functions are included, the structure group even allows translations.

In fact (this idea was also used in [133]), it is not the full Weyl algebra of
R

2n which serves as the typical fiber, but only the formal Weyl algebra F (WR2n),
consisting of formal Taylor expansions at the origin. Geometrically, one can think
of this step as the replacement of the (quantized) tangent bundle by a formal
neighborhood of the zero section

Q

TM .

Remark. Since
Q

TM is an infinitesimal neighborhood of the zero section, parallel
transport does not go anywhere. This step may hence appear to be inconsistent
with the inclusion of translations in the structure group, since these do not leave
the origin fixed. In fact, the effect is to force us to forget the group and to work only
with the structure Lie algebra. A beneficial, and somewhat surprising, result of this
effect is that a parallel section with respect to a flat connection is not determined by
its value at a single point. This situation is very close to that in formal differential
geometry, where the bundle of infinite jets of functions on a manifold M has a flat

155



156 21 DEFORMATION QUANTIZATION

connection whose sections are the lifts of functions on M . (See [160, Section 1] for
a nice exposition with references.) ♦

Fedosov uses an iterative method for “flattening” a connection which is similar
to that used in many differential geometric problems. (See [119] for an example,
and [147] for a recent survey.) Over the domain of a local trivialization of a principal
G-bundle, a connection is given by a 1-form φ with values in the Lie algebra g; the
curvature of the connection is the Lie algebra valued 2-form

Ωφ = dφ+
1
2

[φ, φ] .

If the curvature is not zero, we may try to “improve” the connection by adding
another Lie algebra valued 1-form α. The curvature zero condition for φ+α is the
quadratic equation

dα+ [φ, α] = −Ωφ −
1
2

[α, α] .

Rather than trying to solve this equation exactly, we linearize it by dropping the
term −1

2 [α, α]. The operator d + [φ, ·] is the covariant exterior derivative Dφ, so
our linearized equation has the form

Dφα = −Ωφ .

From the Bianchi identity, DφΩφ = 0, it appears that the obstruction to solving
the equation above for α lies in a cohomology space. This is not quite correct, since
D2
φ = [Ωφ, ·], which is not zero because the connection φ is not yet flat.

Up to now, we have essentially been following Newton’s method for solving
nonlinear equations. At this point, we add an idea similar to one often attributed
to Nash and Moser. (See [155, Section III.6] for an exposition of this method with
original references.) Since the linear differential equation we are trying to solve
is only an approximation to the nonlinear one which we really want to solve, we
do not have to solve it precisely. It is enough to solve it approximately and to
compensate for the error in the later iterations which will in any case be necessary
to take care of the neglected quadratic term −1

2 [α, α]. Such approximate solutions
are constructed by some version of the Hodge decomposition. In the differential
geometric applications mentioned above, the full story involves elliptic differential
operators, Sobolev spaces, and so on, but in the case at hand, it turns out that the
“Hodge theory” is purely algebraic and quite trivial.

21.2 Preparing the Connection

We now start the construction of a flat connection on the bundle of Weyl algebras
by an iteration procedure. All the constructions are intrinsic, but for simplicity we
will describe them in local canonical coordinates.

Step 1 We begin with an arbitrary (linear) Poisson connection on the tangent
bundle of the symplectic manifold M .

The connection induces a covariant differentiation operator on the dual
bundle, i.e. on the linear functions on fibers. In coordinates (x1, . . . , xm)
on M :

∇ ∂
∂xi

∂

∂xj
= Γijkωk`

∂

∂x`
.
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We introduce the coefficients (ωk`) of the symplectic form to lower the
last index. For convenience, we assume that ωk` is constant (i.e. the xi’s
are Darboux coordinates).

If the connection has torsion, we can make it torsion-free by symmetriza-
tion [59]

Γijk  
Γijk + Γjik

2
.

Because this is a symplectic connection, symmetry in the last two indices
comes for free: Γijk = Γikj .

Step 2 The connection form is a 1-form with values in the Lie algebra of the
symplectic group sp(m). The elements of sp(m) may be identified with
linear hamiltonian vector fields on the manifold and hence with quadratic
functions. Thus the connection form can be written as

φ−1 =
1
2

∑
Γijkyiyj ⊗ dxk ,

where (y1, . . . , ym) is a basis of linear functions on the fibers correspond-
ing to the coordinates (x1, . . . , xm) on M .

Step 3 The symplectic connection ∇ lifts to the Weyl algebra bundle. A co-
variant differentiation D on the Weyl algebra bundle is described with
respect to a local trivialization by

Du = du+ ψu

for a local section u, where ψ is a 1-form with values in Der(WTM). We
can rewrite this local expression in the form

Du = du+ [φ, u]? ,

where now φ is a 1-form with values in WTM itself, and [·, ·]? is (1/i~)
times the commutator bracket; the bracket [·, ·]? is the quantum Poisson
bracket of Dirac [44]defined in Section 20.3. The generator φ of this
“inner derivation” is determined up to a 1-form on M with values in the
center C[[~]] of the Weyl algebra.

Step 4 If we consider the form φ−1 (with the yi’s now interpreted as formal
variables) as taking values in the bundle FW (TM),

φ−1 ∈ Γ(T ∗M ⊗ FW (TM))

becomes the connection form for the associated connection on that bun-
dle. Even if this connection were flat, it would not be the correct one to
use for quantization, since its parallel sections would not be identifiable
in any reasonable way with functions on M . Instead we must use for our
first approximation

φ0 = (
∑

ωkjyj + 1
2

∑
Γijkyiyj)⊗ dxk .
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Step 5 To start the recursion, one calculates, using the fact that the connection
is symplectic and torsion free (see [57]), that its curvature is

Ω0 = dφ0 + 1
2 [φ0, φ0]

= −1
2

∑
ωir ⊗ dxi ∧ dxr + 1

4

∑
Rijklyiyj ⊗ dxk ∧ dxl

= −1⊗ ω +R ,

where R is the curvature of the original linear symplectic connection,
considered as a 2-form with values in the Lie algebra of quadratic func-
tions. The term linear in y vanishes because the torsion is zero. The
term −1⊗ω appears even when the linear connection is flat, but it causes
no trouble because it is a central element of the Weyl Lie algebra and
therefore acts trivially in the adjoint representation.

21.3 A Derivation and Filtration of the Weyl Algebra

The coefficients of the connection forms which we are using are sections of the bun-
dle FW (TM). Rather than measuring the size of these forms by the usual Sobolev
norms involving derivatives, we shall use a pointwise algebraic measurement.

In the formal Weyl algebra FW (V ) of a Poisson vector space V , we assign
degree 2 to the variable ~ and degree 1 to each linear function on V . We denote
by FWr(V ) the ideal generated by the monomials of degree r. Because the kth
term in the expansion of the ?-product involves 2k derivatives and multiplication
by ~k, we obtain a filtration of the algebra FW (V ). We will also occasionally use
the classical grading, compatible with the commutative multiplication but not with
the ?-product, which assigns degree 0 to ~ and 1 to each linear function on V .

The Lie algebra structure which we use for the formal Weyl algebra is the
quantum Poisson bracket of Dirac [44] defined in Section 20.3. The factor (1/i~)
makes the quantum bracket reduce to the classical one (rather than to zero) when
~ → 0. In addition, the quantum and classical brackets are equal when one of the
entries contains only terms linear or quadratic in the variable on V , and they share
the property

[FWr(V ), FWs(V )] ⊆ FWr+s−2(V ) ,

so that the adjoint action of any element of FW2(V ) preserves the filtration.
We introduce the algebra

W(V ) = FW (V )⊗ ∧∗(V )

whose elements may be regarded as differential forms on the “quantum space whose
algebra of functions is FW (V )”. The algebra W(V ) inherits a filtration by sub-
spaces Wr(V ) from the formal Weyl algebra, and a grading from the exterior al-
gebra. We can also consider W(V ) as the algebra of infinite jets at the origin of
differential forms on the classical space V , in which case we generally use the classi-
cal grading. In this way, W(V ) inherits the exterior derivative operator, which we
denote by δ. Remarkably, δ is also a derivation for the quantized algebra structure
on W(V ).

We may describe the operator δ in terms of linear coordinates (x1, . . . , xm)
on V . With an eye toward the case where V is a tangent space, we denote the
corresponding formal generators of FW (V ) by (y1, ..., ym, ~) and the generators of
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∧∗(V ) by (dx1, . . . , dxm). ThenW(V ) is formally generated by the elements yi⊗1,
~⊗ 1, and 1⊗ dxi, and we have

δ(yi ⊗ 1) = 1⊗ dxi , δ(~⊗ 1) = 0 , and δ(1⊗ dxi) = 0 .

Notice that δ decreases the Weyl algebra filtration degree by 1 while it increases
the exterior algebra grading by 1.

Since δ is essentially the de Rham operator on a contractible space, we expect
the cohomology of the complex which it defines to be trivial. Fedosov makes this
explicit by introducing the dual operator δ∗ of contraction with the Euler vector
field

∑
i yi⊗

∂
∂xi

. More precisely, δ∗ maps the monomial yi1 · · · yip⊗dxj1 ∧· · ·∧dxjq
to ∑

k

(−1)k−1yi1 · · · yipyjk ⊗ dxj1 ∧ · · · ∧ d̂xjk ∧ · · · ∧ dxjq .

(This operator is not a derivation for the quantized algebra structure.) A simple
computation (or the Cartan formula for the Lie derivative by the Euler vector field)
shows that, on the monomial above, we have

δδ∗ + δ∗δ = (p+ q)id ,

so that if we define the operator δ−1 to be 1
p+q δ

∗ on the monomial above, and 0 on
1⊗ 1, we find that each element u of W(V ) has the decomposition

u = δδ−1u+ δ−1δu+Hu ,

where the “harmonic” part Hu of u is the part involving only powers of ~ and
no yi’s or dxi’s, i.e. the pullback of u by the constant map from V to the origin.
In other words, we have reproduced the usual proof of the Poincaré lemma via a
homotopy operator δ−1 from H to the identity.

When the Poisson vector space V is symplectic, the operator δ has another
description. For any a ∈ FW (V ), [yi, a] = {yi, a} =

∑
j πij(∂a/∂yj). If (ωij) is the

matrix of the symplectic structure, inverse to (πij), we get ∂a/∂yi = [
∑
j ωijyj , a],

and hence

δ(a⊗ 1) =
∑
i

(∂a/∂yi)⊗ dxi = [
∑
ij

ωijyj ⊗ dxi, a⊗ 1] .

It follows from the derivation property that a similar equation holds for any element
ofW(V ); i.e. the operator δ is equal to the adjoint action of the element

∑
ij ωijyj⊗

dxi (which is just the symplectic structure itself).
Of course, all the considerations above apply when V is replaced by a symplectic

vector bundle E and W(V ) by the space of sections of the associated bundle

W(E) = FW (E)⊗ ∧∗(E) .

In particular, when E is the tangent bundle of a symplectic manifold M , the op-
erator δ and its relatives act on the algebra of differential forms on M with values
in FW (TM). These operators are purely algebraic with respect to the variable in
M , with δ being just the adjoint action of the symplectic structure viewed as an
FW (TM)-valued 1-form.
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21.4 Flattening the Connection

Following Section 21.2, we next try to construct a convergent (with respect to
the filtration) sequence φn of connections whose curvatures Ωn tend to the central
element −1 ⊗ ω. Fedosov calls this central element the Weyl curvature of the
limit connection; to simplify notation, we will write Ω̂ = Ω + 1 ⊗ ω for the form
which should be zero, and we call this the effective curvature.

Step 6 As suggested in Section 21.1, we let

φn+1 = φn + αn+1 ,

where αn+1 is a section of W(TM).

The corresponding curvature is

Ωn+1 = dφn+1 + 1
2 [φn+1, φn+1]

= Ωn + dαn+1 + [φn, αn+1]︸ ︷︷ ︸
Dnαn+1

+1
2 [αn+1, αn+1]

where Dn = Dφn = d+ [φn, ·]. Instead of solving

Dnαn+1 = −Ωn − 1
2 [αn+1, αn+1]− 1⊗ ω ,

we drop the quadratic term and look at the simpler equation

Dnαn+1 = −Ωn − 1⊗ ω .

This would solve approximately the linearized equation for zero effective
curvature

Dnαn+1 + Ω̂n = 0 .

Step 7 The operator Dn = Dφn will have the form d + δ + [cn, ·], where cn
is an FW (TM)-valued 1-form. We will try to arrange for cn to lie in
FW2(TM) so that the operator [cn, ·], like d, is filtration preserving.
Since δ lowers the filtration degree by 1, the principal part of the differ-
ential operator Dn will actually be the algebraic operator δ (and not d
as it would be if we measured forms by the size of their derivatives.)

We cannot even solve
δαn+1 + Ω̂n = 0

exactly, because the Bianchi identity gives DnΩ̂n = 0 instead of δΩ̂n = 0.
(The term 1⊗ ω is killed by both operators.) Nevertheless, we define

αn+1 = −δ−1(Ω̂n) ,

and take care of the errors later.

Step 8 From the recursion relation

Ωn+1 = Ωn +Dnαn+1 + 1
2 [αn+1, αn+1] ,

we find after a straightforward calculation using the decompositions

Dn = d+ δ + [cn, ·] and u = δδ−1u+ δ−1δu+Hu



21.5 Classification of Deformation Quantizations 161

that

Ω̂n+1 = δ−1δΩ̂n
+HΩ̂n + dαn+1 + [cn, αn+1] + 1

2 [αn+1, αn+1] .

Using Dn = d+ δ + [cn, ·] again, we can rewrite this as

Ω̂n+1 = δ−1DnΩ̂n − δ−1dΩ̂n − δ−1[cn, Ω̂n]
+HΩ̂n + dαn+1 + [cn, αn+1] + 1

2 [αn+1, αn+1] .

By the Bianchi identity DnΩn = 0, we get

Ω̂n+1 = HΩ̂n−δ−1dΩ̂n−δ−1[cn, Ω̂n]+dαn+1+[cn, αn+1]+ 1
2 [αn+1, αn+1] .

Suppose now that Ω̂n ∈ Wr(TM) with r ≥ 1. Then HΩ̂n = 0 and
αn+1 ∈ Wr+1(TM), so that cn ∈ W2(TM) and hence all the terms on
the right hand side of the equation above belong to Wr+1(TM).

Step 9 Since Ω̂0 = R has filtration-degree 2, we conclude that Ω̂n has degree
at least n + 2, and αn+1 has degree at least n + 3, so the sequence φn
converges to a connection form

φ = φ0 + α1 + α2 + . . .

for which the curvature is Ω = −1 ⊗ ω. This curvature is a central
section, so the connection on FW (TM) associated to φ by the adjoint
representation FW (TM) is flat. Since the adjoint action is by deriva-
tions of the multiplicative structure, the space of parallel sections is a
subalgebra of the space of all sections.

Step 10 The last step in Fedosov’s construction is to show by a recursive con-
struction, similar to the one above, that each element of C∞(M)[[~]]
is the harmonic part of a unique parallel section of FW (TM), so that
C∞(M)[[~]] is identified with the space of parallel sections and thus
inherits from it an algebra structure, which is easily shown to be a de-
formation quantization associated with the symplectic structure ω.

21.5 Classification of Deformation Quantizations

Fedosov [59] showed that his iterative construction of a connection on FW (TM)
can be modified so that the curvature becomes

∑
~
j⊗ωj , for any sequence of closed

2-forms ωj such that ω0 is the original symplectic structure ω. He also showed that
the isomorphism class of the resulting ?-product depends precisely on the sequence
of de Rham cohomology classes [ωj ] ∈ H2(M,R) and in particular is independent
of the initial choice of connection φ0.

In summary, the relevant data for an equivalence class of deformation quanti-
zations on a manifold M is

ω , [ω1] , [ω2] , . . .

A representative of such an equivalence class is called a Fedosov quantization of
M .
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This left open the question of whether every ?-product is isomorphic to one ob-
tained by Fedosov’s construction. A positive answer to this question has been given
by Nest and Tsygan. Using a noncommutative version of Gel’fand-Fuks cohomol-
ogy, they construct in [124] for each deformation quantization a characteristic class
in H2(M,R)[[~]] with constant term ω. In [125], they show that this class deter-
mines the ?-product up to isomorphism and that it agrees with Fedosov’s curvature
for the ?-products constructed by his method. By Moser’s classification [121] of
nearby symplectic structures by their cohomology classes, the isomorphism classes
of ?-products on a symplectic manifold are thus in one-to-one correspondence with
isomorphism classes of formal deformations of the symplectic structure. Other ref-
erences concerning this classification are Bertelson-Cahen-Gutt [15] Kontsevich [97],
and Weinstein-Xu [173].

One consequence of this classification is that there is (up to isomorphism) a
unique deformation quantization whose characteristic class is independent of ~.
Although one might think that this special quantization is somehow the natural
one, there is considerable evidence that the others are important as well. For
instance, [54] suggests that ?-products with nonconstant characteristic classes may
be related to geometric phases and deformations of symplectic forms which arise in
the analysis of coupled wave equations [107].
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géométrique, Université des Sciences et Techniques de Languedoc, Montpel-
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Ann. 104 (1931), 570-578.

[129] von Neumann, J., On rings of operators, III, Ann. of Math. 41 (1940), 94-161.

[130] von Neumann, J., On rings of operators, reduction theory, Ann. of Math. (2)
50 (1949), 401-485.

[131] Newlander, A., and Nirenberg, L., Complex analytic coordinates in almost
complex manifolds, Ann. of Math. (2) 65 (1957), 391-404.

[132] Novikov, S., The topology of foliations, (Russian), Trudy Moskov. Mat. Obšč
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differential geometry, 131
dual, 119
E-differential form, 131
E-Gerstenhaber bracket, 133
E-k-form, 131
E-Lie derivative, 113, 133, 137
E-Π-cohomology, 136
E-Poisson bivector field, 135
E-symplectic form, 135
E-symplectic structure, 135
examples, 114, 123
exterior differential algebra, 131
Gerstenhaber algebra, 132, 133
hamiltonian vector field, 136
history, 115
homogeneous E-form, 131
integrability, 117
Leibniz identity, 113
Lie-Poisson bracket, 119
morphism, 120
multivector field, 132
of a Lie groupoid, 114
of a Poisson manifold, 125
of a symplectic manifold, 125
orbits, 113
Poisson bracket, 136
Poisson cohomology, 136
Poisson structure, 134
Poisson vector field, 137
properties of dE , 131
squaring map, 139

Lie bracket, 6
Lie derivative

Cartan’s magic formula, 21, 126,
159

Lie algebroid, 113, 133, 137
Lie group

modular character, 75
modular function, 75
unimodular, 75

Lie groupoid
definition, 93
Lie algebroid of a, 114

Lie’s theorem, 17
Lie, S., 8, 9, 17, 40

Lie-Poisson bracket
definition, 11
dual of a Lie algebroid, 119

Lie-Poisson manifold
definition, 11
hamiltonian action, 39
Jacobi identity, 13
Lie-Poisson bracket, 11
normal form, 20
rank, 17

linear Poisson structure, 14
linearizable Poisson structure, 25
linearized Poisson structure, 24
Liouville vector field, 137
local bisection, 107
Lu, J.-H., 57

Möbius band, 94
Mackenzie, K., 118
Mackey, G., 89
maximal torus, 91
measurable groupoid, 93
measure

algebras of measures on groups,
73

class, 93
group algebra, 73
Haar measure, 74
left-invariant, 74
quasi-invariant, 74

Melrose, R., 127
modular character, 75
modular function, 75
Molino, P., 118
moment map

groupoid action, 101
vs. momentum map, 101

momentum
phase space, xv

momentum map
definition, 39, 40
equivariance, 42
first obstruction, 40, 43
for a group action, 42
second obstruction, 41–43
vs. moment map, 101

Mori, S., 89
Morita equivalence, 55, 56
morphism of groupoids, 88
Moyal-Weyl product, 149–151
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multilinear maps
brackets, 142
symmetric, 142

multivector field
ϕ-related, 30
definition, 12
Lie algebroid, 132

Naimark, M., 48
Newlander-Nirenberg theorem, 120
Newton’s method, 156
non-degenerate Lie algebra, 26
norm topology, 47
Novikov, S., 95
Nuñez, R., xiii

obstruction
to a holomorphic connection, 121
to a momentum map, 40–43
to deformation of a Poisson struc-

ture, 138
to the Jacobi identity, 7

odd
differential forms, 78
vector field, xv

one-sided holonomy, 95
operator

bounded, 47
compact, 48
product, 151

orbit
coadjoint, 39
groupoid, 89
of a Lie algebroid, 113

outer derivation, 15

pair groupoid, 87, 94
Palais, R., 118
permutation group, 143
phase space, xv
ϕ-related multivector field, 30
ϕ-related vector field, 29
Planck’s constant, 146
Poincaré-Birkhoff-Witt theorem

and group algebras, 81
discussion, 7
proof, 9
statement, 5

Poisson algebra, 6
Poisson automorphism

definition, 29
group of Poisson automorphisms,

29
Poisson bivector field

definition, 135
E-Poisson bivector field, 135
exact, 137
on a Lie algebra, 135

Poisson bracket
differential operators, 149
Lie algebroid, 136
universal enveloping algebra, 5

Poisson cohomology
first, 16
on a Lie algebroid, 136
symplectic case, 23
0-th, 16

Poisson Hopf algebra, 72
Poisson Lie group

definition, 72
non-linearizability, 26

Poisson manifold
almost symplectic, 20
coisotropic, 34
definition, 12
Lie algebroid of a, 125
regular, 17
symplectic, 20

Poisson map
complete, 31
definition, 29

Poisson quotient, 34
Poisson relation, 34
Poisson structure

almost, 12
canonical coordinates, 13
definition, 12
formal deformation, 137, 138
infinitesimal deformation, 137
Lie’s theorem, 17
linear, 14
linearization, 25
linearized, 24
normal form, 17
obstructions to deformation, 138
on a Lie algebroid, 134
structure functions, 13
transverse, 24

Poisson submanifold, 36
Poisson tensor, 12
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Poisson vector field
definition, 15
Lie algebroid, 137
set of hamiltonian vector fields,

40
Poisson’s theorem, 15, 19
Poisson, S.-D., 14, 15
Poisson-algebra homomorphism, 29
Pradines, J., 115
principal groupoid, 90
product

coproduct, 69
of groupoids, 87
star, 151
von Neumann, 151

quantization
classification, 161
deformation, 155
Fedosov, 161
patching from local, 155

quantum
group, 72
operator, 151

quasi-invariant measure, 74

rank
of a Lie algebra, 18
of a Poisson structure, 18
Poisson structure with constant

rank, 17, 20
realization

injective, 59
submersive, 60
symplectic, 59

Reeb foliation, 94
Reeb, G., 94
regular equivalence relation, 34
regular Poisson manifold

definition, 17
holonomy, 24

relation, 88
representation

of a groupoid, 102
pointwise faithful, 8
representation equivalent, 56
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Schouten-Nijenhuis bracket, 12, 135
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section
admissible section, 106
bisection, 106
distributional, 79
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of the normal bundle, 109

semigroup, 87, 106, 107
Smale, S., 42
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spectrum, 48
splitting theorem, 19
squaring map, 139, 142, 143
strong topology, 48
structure constant, 8
structure function

definition, 13
for a Lie algebroid, 119
transverse structure, 24

subgroup
isotropy, 89

subgroupoid
as a relation, 88
definition, 88
diagonal, 89
isotropy, 89
wide, 88

submanifold
Poisson, 36

super-
commutativity, xiv
commutativity of cup product, 143
derivation, xv
Jacobi identity, 133, 141, 142
Leibniz identity, 133, 134
Lie algebra, 133
manifold, 131
space, xv
vector field, 132

symmetric
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group, 3, 143
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dual pair, 53
E-symplectic form, 135
E-symplectic structure, 135
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groupoid, 127
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Lie algebroid of a symplectic man-

ifold, 125
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53
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tensor algebra, 1
theorem

Darboux’s, 20, 21
double commutant, 50
Gel’fand-Naimark, 48
Lie’s, 17
splitting, 19
unique Haar measure, 74

topological groupoid, 92
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of convergence of matrix elements,

49
of pointwise convergence, 48
on bounded operators, 47, 48
strong, 48
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torus
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maximal, 91
quantum, 152

transformation
groupoid, 90
Lie algebroid, 114

transitive
groupoid, 89
Lie algebroid, 123, 124
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transverse

Lie algebra, 24

Poisson structure, 24
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uncertainty principle, xvi
unimodular group, 75
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universal
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universal enveloping algebra
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ϕ-related, 29
hamiltonian, 14, 20
left invariant, 111
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Poisson, 15
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Weyl algebra

affine invariance, 152
automorphism, 153
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definition, 149
derivation, 152
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Weyl product, 150

Weyl curvature, 160
Weyl group, 91
Weyl groupoid, 91
Weyl product, 150
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Y -tangent bundle, 127
Yang-Baxter equation, 135


