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PREFACE

This book is intended to serve as a text for an introductory course in

numerical methods. Itevolved from a set of notes developed for such a course

taught to science and engineering students at the University of Toronto.
w numerical methods course is to acquaint the student with

fronic computer. A recent and 1mp0rtant tool in this regard is mathematlcal
software—pre-programmed, reliable computer subroutines for solving
mathematical problems. As the title implies, this book is oriented toward
learning how to use this tool effectively, that is, how to select the most
appropriate routine available for solving a particular problem at hand and how
to interpret the results that are returned by it. This approach involves more
than the usual discussion of numerical methods plus a simple citing of the
various software routines that are currently available. In order_to be an
effective user of a subroutine, one must be aware of its capaly[mes and
limitations and this” implies at Teast an intuitive understanding of how t the
underlying algorlthm is desngned and implemented. Hence, while the list of
opics covered in the book is more or less standard for a numerical methods
text, the treatment is different from most texts in that it emphasizes the
software aspects. The aim is to provide an understanding, at the intuitive
level, of how and why subroutines work in order to help the reader gain the
maximum benefit from them as a computational tool.

The mathematical background assumed is two years of college mathema-
tics including calculus, basic linear algebra, and an introduction to differential
€quations. Also, the reader should be Tamiliar wit programming in a
high-level language such as s Fortran. In addition, it is assumm
do the computational exercnses the reader has access to a general-purpose
mathematical software package on the local computing system.

In this regard, a package such as TEAPACK (see Appendix), that is
designed to facillitate experimentation with algorithms, would be very useful.
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This particular package was developed, at Toronto, for use in our numerical
methods courses, and it has been made available for general distribution.

[ am indebted to a number of people for encouragement and assistance
during preparation of the manuscript. They are: Uri Ascher, Cliff Addison,
Steve Cook, Julio Diaz, Wayne Enright, Graeme Fairweather, Ian Gladwell,
Ken Jackson, Steve Ho-Tai, Tom Hull, Pat Keast, Rudi Mathon, Richard
Pancer, David Sayers, Pavol Sermer, Bruce Simpson, and Jim Varah. In
addition, I wish to thank the many students in my courses who suffered
through preliminary versions of the manuscript and, through their criticisms,
helped me to improve it.

R. L. Johnston
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CHAPTER 1
INTRODUCTION

This book deals with the solution of mathematical problems using an
electronic computer. There are two aspects to the subject. One is the
development and analysis of viable computer methods for solving the
various types of problems that arise. Such methods are called numerical
methods and their study is a field called numerical analysis. It is a highly
specialized field requiring a rather sophisticated mathematical background.
The second aspect is the use of these methods in the course of carrying out
scientific computations. The typical “user” of numerical methods is a non-
expert (in numerical analysis) who simply wants to apply the product of the
numerical analyst as a reliable tool to assist in the pursuit of his or her own
field of study. Usually, such a person has no interest in learning all of the
intricacies of a method as long as it solves the problem at hand. However,
since numerical methods are not infallible, a “‘black-box” approach to using
them can be dangerous. In order to avoid difficulties, a user should acquire
a certain level of expertise. For instance, it is desirable to know whether or
not a particular method will indeed compute a solution to a given problem.
Also, whenever there is a choice of methods, it is useful to be able to
choose the most efficient one available. In other words, one should be an
intelligent, rather than a naive, user of numerical methods. The purpose of this
book is to help the reader become an intelligent user.

In order to select a numerical method for solving a particular problem, a
user should (1) know what methods are available, (2) how they work, and
(3) have an appreciation of their relative advantages and disadvantages.
However, instead of the detailed knowledge that a numerical analyst must
have, it is sufficient to have an intuitive understanding of the basic
principles involved. This is the level at which the material in this book is
presented. The mathematical background assumed is that normally
acquired in the first two years of university mathematics—differential and
integral calculus, elementary linear algebra and an introduction to differen-
tial equations—that is, exposure to the various types of mathematical
problems treated here.

In recent years, numerical analysts have produced a new product,
namely, mathematical software—packages of computer subroutines for
carrying out the basic computations of science and engineering. A list of

1



2 / INTRODUCTION

some well-known and widely available packages is given in the Appendix
at the end of the book. Most computer installations have mathematical
software package(s) available in their libraries so that subroutines can
easily be called by a user’s program. These routines are based on up-to-
date numerical methods and their implementations are designed to be as
efficient as possible for the particular machine on which they reside.
Hence, mathematical software is a computational tool that can be of great
benefit to the scientific programmer. Now, it might seem that the availabil-
ity of preprogrammed, state-of-the-art subroutines would allow a pro-
grammer to adopt the black box approach in using them. However, this is
not the case. A perusal of the index of any software package will reveal
that it contains several subroutines for each type of problem. Hence, one is
faced with the question of choosing the most appropriate routine for
solving a given problem. In addition, subroutines are not “‘fail safe,” that is,
sometimes they may fail to compute a solution. Very often a routine will
recognize such a situation itself and return the information. This essentially
eliminates the problem of detecting failure but one must still be able to
understand what caused the difficulty so that an appropriate remedy can be
taken. In other words, one must have an adequate knowledge of the
algorithms implemented in a mathematical software package in order to use
it intelligently. As its title implies, this book adopts a ““software approach”
in that it is intended to help the reader become an intelligent user of
mathematical software.

In each of Chapters 2 to 6, we discuss the numerical solution of a
specific type of mathematical problem. The list of topics is the usual one
for a course entitled “Numerical Methods for Scientists” or some variation
thereof. By and large, each chapter follows a similar format. We begin with
a discussion of the methods that are normally used by software routines
for solving the type of problem under consideration. Following this, a
discussion of some aspects of typical subroutines is given. Specifically, we
consider calling sequences, some ideas concerning design and implemen-
tation, and how to interpret the information returned by a routine. The
exercises at the end of each chapter are designed, for the most part, to
encourage the reader to investigate the properties of whatever software
packages are available on the local computer system. This is in keeping
with the stated goal of learning about mathematical software in order to
prepare the reader for applying it to solve problems in his or her own field
of interest.

This chapter deals with some basic ideas about scientific computing. In
the next section, we develop the concepts of computer arithmetic and
illustrate some of the pitfalls to be avoided. Then, in Section 1.2, we
discuss the process of producing mathematical software.
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1.1. COMPUTER ARITHMETIC AND ERROR CONTROL

In the course of carrying out a mathematical computation, one has to deal

with the problem of errors. There are three ways in which errors can enter
a calculation. First, they may be present at the outset in the orfgmal data
(inherent error). Second, they may occur r as the result of replacing an
infinite process by a ‘finite one (fruncation error). A typical example is the
representatlon of a function by the first few terms of its Taylor series
expansion. The third source of error arises from the finite precision of the
»nuﬁr_nbeLs that can be represented in a computer (round-off error). The latter

"is a topic which is discussed in Section 1.1.2. Each of these types of error
is unavoidable in a calculation. Hence, the “problem of errors” is not one
of preventing their occurrence. Instead, it is one of controlling their size in
order to obtain a final result that is as accurate as possible. This process is
called_error_control. It is concerned with the propagation of errors
throughout a computation. For example, we want to be sure that the error
that results from performing an arithmetic operation on two numbers,
which are themselves in error, is within tolerable limits. In addition, the
propagation, or cumulative effects, of this error in subsequent calculations
should also be kept under control. These questions are discussed in this
section. We remark that there is also a fourth source of error—one caused
by doing an arithmetic operation incorrectly (a blunder). However, we view
this type of error as avoidable, that is, it need not occur at all, and will not
consider it further.

A modern computer is capable of performing arithmetic operations at
very high speeds. As a consequence, large scale computations, which are
intractable by desk calculation, can be handled routinely. However, while a
computer greatly facilities the job of carrying out mathematical cal-
culations, it also introduces a new form of problem with respect to error
control. This is due to the fact that intermediate results are not normally
seen by the user. Such results are useful because they provide indications
of possible large error buildup as the calculation proceeds. In desk com-
putation, all intermediate results are in front of the problem solver.
Consequently, error buildup is relatively easy to detect. On the other hand,
a computer programmer must be able to detect or anticipate any possible
large errors without seeing the warning signals. The examples in this
section illustrate some of the ways that this can occur. Before considering
them, however, we discuss the source of round-off errors.

The mathematician, in devising a method for solving a problem, assumes
that all calculations will be done within the system R of real numbers. This
assumption greatly simplifies the mathematical analysis of problems.
However, when it comes to actually computing a solution, we must do
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without the real number system. This is because it is infinite and any set of
numbers that is representable on a computer is necessarily finite. Actually,
R is infinite in two senses. First, it is infinite in range, that is, it contains
arbitrarily large numbers (of both signs). On the other hand, a computer

number system can, at best, represent only thoseﬁr_g:_a}lﬁ__gumbers*w‘lihln a
given finite interval. Second, it is infinitely dense, that is, the interval
between any two real numbers contains infinitely many real numbers. The
‘absence of this property in a computer’s number system is the source of
round-off error. In order to be more precise, we need to discuss the type of

(finite) number systems used in computers.

1.1.1. Computer Number Systems

Ina computer ‘memory, each number is stored in a location that consists of
a sign (ﬂlus a fixed number of digits. One question that confronts the
designer of the machine is how to use these digits to represent numbers.
One approach is to assign a fixed number of them for the fractional part.
This is called a fixed-point number system. It can be characterized by three

parameters:

B—the number base.
t—the number of digits.
f—the number of digits in the fractional part.

We denote such a system by P(B,t,f). As an example, we consider
P(10,4,1). It contains the 19,999 evenly spaced numbers —999.9,
—999.8,...,999.8,999.9. This set is uniformly dense in [—1000, 1000].
As a consequence, any real number x in this interval can be repre-
sented by an element fix(x) € P(10,4,1) with an absolute error x—
fix(x) of, at most, 0.05 in magnitude. For example, if x = 865.54, then
fix(x) = 865.5 and the absolute error is 0.04. However, assuming x# 0, it is
preferable, instead, to look at the relative error (x — fix(x))/x. In this
respect, the set P(10,4,1) gives an uneven representation of R. For
example, the relative error in the representation of 865.54 is 0.04/865.54 =
0.00005, or 0.005%. On the other hand, if x =0.86554, then fix(x) = 000.9
and the relative error is 4%! Hence, the relative density of P(10,4, 1) is not
uniform in [—1000, 1000]. This weakness is shared by all fixed-point num-
ber systems.

Most computers use a floating-point number system, denoted by
F(B,t, L, U). The four parameters are:
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B  —the number base.
t —the precision.
L, U—the exponent range.

Any nonzero number x € F has the form
x=:t<%l+g—22+' --+%)Xﬁe

written as
x==*.dd,...d xXB°

where the digits di, ..., d, in the fractional part satisfy
1=d<B ~
0=d,<p 2=s=<t

and the exponent ¢ is such that
L=se=sU

Also, the number 0 belongs to F. Its representation is

0=+.00...0xp"

As implied, the advantage of a floating point number system is that, within
its range of values, the relative density in R is uniform. As an example,
consider the system F(10,4,—2, 3). Its range of values is the two intervals
+[.001,999.9] plus 0. Referring to the previous example, the representation
of 865.54 1s .8655 X 10° and, for 0.86554, it is .8655 x 10°. In each case, the
relative error is the same, namely, 0.005%.

To illustrate the comparison between fixed and floating point systems,
we display the 33-number sets P(2,4,2) and F(2,3,—1,2)" in Figure 1.1.

UL

r(z242 EEENEIEEERERERRRENEREARERERRER

—4 -3 -2 -1 0 1 2 3 4

_ UL

s BEEEERERRRLIL lilHHm EEEEEEE

—4 -3 -2 —1——;—%051«21 2 3 4
FIGURE 1.1

'"The representation of the set F(2,3,—1,2) is reproduced from [16] with permission.
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The difference between absolute and relative density is readily apparent. In
effect, the choice between the two types of number systems is one of
choosing between absolute and relative error for the purpose of assessing
accuracy. Relative error is a measure of the number of correct digits in a
number and, as our examples indicate, it is clearly preferable. We remark
that this comparison holds in many other contexts as well. As we will see,
subroutines usually use relative error as a basis for checking accuracy.

1.1.2. Round-off Errors

Now we consider the differences between performing calculations in F as
opposed to R. The source of the differences lies in the fact that F is not
closed under the arithmetic operations of addition and multiplication (and
the complementary operations of subtraction and division as well). That is,
the sum or product of two numbers in F is not necessarily an element of F
also. Hence, to stay within the set, we must replace the “true’ result of an
operation by an element of F and, in the process, incur some error.

There are two ways in which an arithmetic result can lie outside F. First
of all, the exponent e in the result may lie outside the range L <e < U. For
example, consider the system F(2,3,—1,2) illustrated in Figure 1.1. The
product

100x22x 110X 22 =110 % 2} 2x3=6)

is not in F because the exponent 3 is too large. This situation is called
overflow. Similarly, we can have underflow when the exponent is too small,
as is the case with the product

00X 2°x . 110x27'=.110x 22 (Ixi=1

(s

)

The actual result of trying to represent a number that lies outside the
admissible range is highly software and hardware dependent, with little
consistency between different computer systems. We will not attempt to
define an acceptable criterion here. However, we remark that the occur-
rence of either overflow or underflow must be considered as an abnormal
event in a calculation and the programmer should determine what caused
it. Very often, it is an indication of some trouble with the overall algorithm
being used, in which case it should be redesigned. Sometimes, however, the
difficulty arises from the fact that the range of numbers that has occurred
in the computation overlaps one boundary of the admissible range. In this
case, a rescaling of the problem will remedy the situation. We will not
pursue this topic further. In what follows, we assume that the exponent of
a number is within the admissible range.

The second way of obtaining a result outside F is when the fractional

-
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part has more than t digits. Consider again the system F(2,3,-1,2). The
result of the addition

110x2° + .111x2°= 1101 x 2! C+i=9

is not in our set because four (binary) digits are required to represent the
fractional part. Similarly, the product

11X 2% .110x2°=.10101x2°  (¢x3=%)

is not in F. We remark that while this situation does not always arise with
addition, it almost invariably does with multiplication. To define a result
that can be represented in the machine, we select a nearby element of F.
There arz two methods for doing this. Suppose that the actual result of an
operation is .d;...dd1 ... d, X B°. (Recall our assumption that L<e =<
U.) Then the two methods are:

1. Chopping, whereby the digits beyond d, are simply dropped.
2. Rounding, whereby the fractional part is taken to be the first ¢
digits of did, . .. dids+, +3B.

For example, the number in F(2,3,-1,2) corresponding to 1101 x 2! s
110 x2' by chopping, and .111x2' by rounding. For .10101x2’, it is
.101 x 2° by either method. Briefly, the relative merits of the two methods
are that chopping is less expensive whereas rounding produces better
accuracy. Both methods are in common usage on present day computers.

No matter which method—chopping or rounding—is used to obtain a
result in F, there is some error created in the process. We call this
round-off error (even when chopping is done). More precisely, let fi(x)
denote the machine representation of a real number x (whose exponent is
within range). Then round-off error is the difference x — fl(x). For x# 0, we
define the relative round-off error §(x) in fi(x) by

5(x) = =)
X
It can be shown [16, p. 88-9] that

] _ B! for chopping
(1.1)  |8(x)|=EPS {;31"' for rounding

Consider, for example, the system F(10,4,—50,50) with chopping and
suppose x = 12.467. Then fi(x) = .1246 x 10 and

0.007

= ———= — -3
8(x) 12.467.0.00056<EPS 10 0.001

For the same system with rounding, we have fl(x) = .1247 X 10? and
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— 0.003 = = l -3 _
5(x)= 12467~ 0.00024 <EPS = 5 107 = 0.0005
The parameter EPS in (1.1) plays an important role in computation in a
floating-point number system. It is commonly referred to as machine
epsilon and is defined to be the smallest positive machine number such that

f(1+EPS)>1

that is, the machine representation of the sum 1+ EPS is different from 1.
For example, machine epsilon for F(10,4,—50,50) with chopping is
1072 = 0.001 since

P2
.~

fl(1+.001) = .1001 x 10' > 1

and this is not true for any smaller positive number within the system.
Similarly, machine epsilon for F(10, 4, —50, 50) with rounding is 0.0005.
Machine epsilon is an indicator of the attainable accuracy in a floating-
point number system. For this reason, it is often used in subroutines to
determine if the maximum possible accuracy has been achieved. We
discuss this further in Section 1.2.

1.1.3. Control of Round-off Error

So far, we have only considered the round-off error incurred by represent-
ing the result of a single arithmetic operation whereas, in the course of
carrying out a computer calculation, a very large number of arithmetic
operations is performed. Therefore, we must be concerned with the ques-
tion of how these errors propagate and affect the final result. One of the
tasks of the numerical analyst is to provide an answer by performing a
“round-off error analysis.” This is a highly technical process that will not
be pursued here. Instead, we adopt the more pragmatic approach of trying
to minimize the error created in each operation with the view that this
provides less error to be propagated, making the final result as accurate as
possible. ‘

There are several ways in which round-off error in each operation or set
of operations can be minimized. They fall into three categories: hardware
features, software features and careful programming. We discuss one
example of each, using the system F(10,4,—-50,50), with chopping, to
illustrate them.

1. Hardware feature. Suppose that we want to subtract 0.5678 from
12.34. Before subtracting, the machine representations of the numbers
must be adjusted in order to align the decimal points. In the process, some
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of the least significant digits of the smaller number will be lost. The
provision of a guard digit—an extra digit in the fractional part of a
number—in the arithmetic unit of a computer can prevent undue loss of
accuracy in such situations. To illustrate, we have

No guard digit With a guard digit
1234 x 107 .12340 x 10?
.0056 x 102 00567 x 10°
1178 % 10 11773 x 107

The result with the guard digit is closer to the exact result 11.7722. The
slash through the 3 indicates that it is chopped when the result is stored. At
first glance, it may seem unimportant to quibble about a difference of only
one in the last digit of a number. However, in large-scale computations
involving millions of arithmetic operations, there is a potential for round-
off error to accumulate significantly. Consequently, it is important to
ensure that the result of each individual operation is as accurate as
possible. For this reason, the provision of a guard digit in the arithmetic
unit is generally regarded as essential in a computer which is designed for
scientific computation.

2. Software feature. An expression that appears frequently in scientific
calculations is of the form

(1.2) a+b-c

This combination of operations is often referred to as a floating-point
operation or, briefly, a flop. It arises, for instance, in the solution of
problems in linear algebra (see Chapter 2). Due to the precedence of
operations, the multiplication is performed first. This produces a “double-
length” result, that is, either 2t — 1 or 2t digits long. Normally, this would
be chopped to t digits before doing the addition. However, better accuracy
can be assured if the addition is done before chopping. For example, let
a=10.1462, b =12.34, and ¢ =0.5678. Then, assuming a guard digit, we
have

Single length Double length
b-c .70060 x 10? .7006652 x 10
+a .00146 % 10* 00146 x 10?
70208 x 10 70212 X 107

Since flops occur so often in scientific calculations, many compilers are
designed to recognize them within an arithmetic statement and assemble
the appropriate machine code to carry out the addition using the double
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length product. Here, then, is a software feature for helping to minimize
the amount of round-off error created.

3. Careful programming. Each of the preceding examples illustrates a
method for enhancing accuracy. Moreover, since each can be built into a
computer system, one does not have to be conscious of them beyond an
initial check to ensure that the features are, indeed, provided. The user
should, however, be aware of possible error-reducing methods that can be
incorporated into a program. We discuss one example here and leave
others to the exercises.

Suppose we want to compute the midpoint ¢ of the interval [a, b]. We
have the choice of two formulas,

. _atbh o b—-a
(1)c—————2 , or @) c=a+ 5

The first is cheaper to compute because it only involves one addition and
one division, whereas the second requires two additions and one division.
However, on the basis of accuracy, (i) is not necessarily better. Suppose,
for example, that a =3.483 and b =8.765. Then the respective formulas
give:

a+b .1224x10°

: = = 1
() c= 2 2 =.6120x 10" = 6.120
. — 1
(i) c=a+2 5 2= .3483x 10" + ————'52822x 19

.3483 x 10' + .2641 x 10’
6124 x 10" =6.124

Since the correct result is 6.124, the second formula is clearly better. On
the other hand, suppose a = —3.483 and b is the same as before. Then the
results are

(i) ¢ =.2641x10'=2.641.
(i) ¢ =.2637x10'=2.637.

The correct value is ¢ =2.641, in which case the first formula is better.
From these results, we conclude that, to obtain the best accuracy, we
should use either (i) or (ii) depending on whether or not a and b differ in
sign. Hence, we have a third “formula,” which we write in the form of a
program segment:

(iii) IF (sgn(a) # sgn(b)) THEN
c=(a+b)2
ELSE
c=a+((b-—-a)2
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On the basis of accuracy, it is clearly the best of the three possible
formulas. This illustrates how some care in choosing the correct formula
can improve the accuracy of a program.

1.1.4. Pitfalls in Computation

In the previous section, we discussed methods for minimizing the amount
of round-off error that can enter at any stage of a computation. However,
such measures are not sufficient to guarantee an accurate final result. There
are many ways a computation can go awry, as the following examples
illustrate. Two of the examples (2 and 3) are taken from a paper entitled
“Pitfalls in Computation, or Why a Math Book Isn’t Enough,” by G. E.
Forsythe [15]. Indeed, even the title of this section was taken from this
paper. It is recommended reading for further study.

Example 1. We consider the quadratic equation

ax®*+bx+c=0 a0

It is well known that the roots of this equation are given by the formulas

_—b+VbI-4ac _—b—VbI-4ac
(1.3) X = 7a and X2 = 7a

Suppose a=1, b=-320, ¢ =16 and that computations are done in
F(10,4, —50, 50) with chopping and one guard digit. For convenience, we
adopt the usual “E format” notation for elements of F, namely,
+.d1d,d3d,4E e. For example, the number —-320 = —.3200 X 10°€ F is written
as —.3200E 3. Then we have

_ .3200E 3+ V.1024E 6 — .6400E 2

e .2000E 1
_ .3200E 3 + .3198E 3
2000E 1
_6IRE3_
= 3000E1" 3199E 3=1319.9
Similarly,

_ 3200E 3~ .3198E 3

X2 = 2000E 1
.2000E 0

=m=.1000E0=0.1
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The underscores indicate the position of the first incorrect digit resulting
from round-off error. The correct roots, to six significant digits, are

x,=319.950 and x; = 0.0500078

Hence, we have obtained a very good value for x;, but a very bad one for
x,—the relative error is 100%.

It is easy to discover what happened with the calculation for x,. The two
numbers 320.0 and 319.8 in the numerator are almost the same size. Hence,
when they are subtracted, the most significant digits cancel, leaving the
least significant ones to determine the result. In this particular case, the
first three digits cancel and only the last one determines the result. But the
last digit of 319.8 contains some round-off error. Therefore, the result of
the subtraction operation is completely worthless because its most
significant digit is in error. This phenomenon is called catastrophic cancel-
lation. It occurs when two numbers of the same sign and approximately the
same magnitude are subtracted. Its consequence is to increase the level of
error in a computation.

Catastrophic cancellation is, of course, to be avoided. This can be done
by careful planning of the algorithm on which the program is based. In the
case of the quadratic equation, we can do it by considering the alternative
pair of formulas (see Exercise 10) for the roots:

—b — sgn(b)Vb’~4ac
2a

where sgn(b) is the sign (=) of b. Then, for our example, we would
compute x, as before, and

_ 1600E2 _
T319E3 "

With (1.4), we have avoided the possibility of catastrophic cancellation by
eliminating the need to subtract two numbers of the same sign. In this way,
we can ensure that the level of round-off error is not increased
significantly. We will see more examples of avoiding cancellation
throughout this book.

-
and X,=—
axi

(14) X1 =

X3 .5002E -1 = .05002

Example 2. [15] Suppose we want to devise an algorithm to com-
pute the value of the exponential function e* for any given value of x.
Since this function arises very often in scientific computation, it is im-
portant to be able to evaluate it accurately and efficiently. We recall that e*
can be represented by the infinite series

x _ XZ x3
(1.5) e*=1+x SETRETR AR
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which converges for any real (or complex) x. Hence, a possible method on
which to base an algorithm is to truncate the series at some point and
evaluate the resulting finite series. The point at which to truncate will
depend on the size of x and the accuracy desired. Suppose, for example,
that we want to compute the value of ¢ > using the floating point system
F(10, 5,50, 50). We obtain

e 33= 1.0000
- 5.5000
+15.125
—27.730
+38.129
—41.942
+38.446
—30.208
+20.768
—12.692
+ 6.9803
— 3.4902
+ 1.5997

+ 0.0026363

The series was truncated after 25 terms because no subsequent term affects
the sum. Hence, we have a value that is as accurate as possible using this
method and particular number system. But, in fact, ¢ = 0.00408677!
Therefore, something has gone wrong.

It is obvious from the list of terms, that cancellation is once again
involved. We see that the least significant digit in each of the terms that is
greater than 10 in magnitude, affects the most significant digit in the result.
Therefore, since these terms are slightly in error, we should not expect any
accuracy in the final result (and, indeed, there is not). One possible remedy
for this situation is to carry extra digits, that is, do the computation in
F(10,t,—50,50), t > 5. However, this is more costly. A better method is to

compute e¢*>* and take the reciprocal, that is,
1
-5.5
e =
eSS

_ 1
T I+S55+15.125+ - -

= 0.0040865
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There is no cancellation and a good result is obtained. We emphasize that
this example is given strictly for illustrative purposes. The rate of con-
vergence of the series (1.5) is very slow, making it necessary to use a large
number of terms in order to get good accuracy. Hence, any algorithm that
is based on (1.5) will not be very good on grounds of inefficiency. There are
much better methods [19] for evaluating e*.

We remark that this example illustrates the dependence (which is not
always stated explicitly) of a mathematical result on the underlying number
system. In the case of the series (1.5), it converges for arbitrary x € R and
the proof depends on the closure properties of R. However, when these
properties are absent, as they are with a floating-point number system, the
proof breaks down. In fact, it is easy to construct counterexamples as we
have just seen for the system F(10, 5, —50, 50). Therefore, the series (1.5)
does not converge for arbitrary x € F, where F is any floating-point
system.

Before continuing, we give another interpretation of the preceding
examples. The examples illustrate how a method can sometimes be very
sensitive to small changes in a problem. For instance, in the quadratic
equation example, suppose the coefficient b {s changed from —320.0 to
—320.1. Then the formula (1.3) gives a computed root x, = 0.05. Hence, a
change of only 0.03% in one coefficient produces a change of 400% in the
computed result. (The true root has only shifted by 0.03% to 0.0499922.) Of
course, the formula (1.3) for x, is only sensitive for sets of coefficients
satisfying b <0 and b?>4ac. Otherwise, it will give good results.
However, the point is that a method may be sensitive to small pertur-
bations in some problems. Since the creation of round-off error can be
interpreted as introducing a small perturbation into the problem, it is
obviously very dangerous to use a method in situations where it is sensitive
to such perturbations. Instead, one should find an alternative method for
use in such cases.

Example 3. The previous examples illustrate that a method can be very
sensitive to small perturbations in the problem. We now show that it is
possible for the problem itself to be very sensitive to such perturbations. A
classic example, first given by Wilkinson [32], is the polynomial

o

(1.6) px)=x-Dx=-2)...(x=20)=x¥-210x"+---

Its roots are 1,2,...,20. Suppose we change the coefficient of x" to
—(210+27%). This gives a new polynomial that is only slightly different
from p(x). However, the roots of the new polynomial are, to five decimal
places,
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1.00000 10.09527 = 0.64350i
2.00000 11.79363 + 1.65232i
3.00000 13.99236 + 2.51883i
4.00000 16.73074 + 2.81262i
5.00000 19.50244 + 1.94033i
6.00001
6.99970
8.00727
8.91725

20.84691

Clearly, a very small perturbation in the problem has produced significant
changes in the solution. (Note that this phenomenon does not happen with
the polynomial in Example 1.) We emphasize the distinction between the
previous examples and this one. In the former, the methods of solution
were sensitive to small perturbations and the remedy was to use an
alternative method when necessary. Here, the problem itself is sensitive
and, no matter what method of solution is used, round-off error is bound to
introduce perturbations that will make significant changes in the solution.
There is very little one can do in such cases except to identify that the
situation is present and try to reformulate the overall algorithm in order to
avoid the need to solve such a sensitive problem. We discuss this example
further in Section 4.1.3.

Example 4. Another example [31] of a sensitive problem is the system of
linear equations

11x,+ 10x,+4x;=1
12x,+ 11x, - 13x3=1
14x,+ 13x,—66x; =1
The solution is easily seen to be
x =1 Xxy=—1 x3=10

Suppose we perturb each right-hand side element to 1.001, 0.999, 1.001,
respectively. Then, the solution of the new system is, to three decimal
places,

x, =—0.683 x;=10.843 x3 = 0.006

Hence, by perturbing some elements of the system by only 0.1%, we
experience perturbations of about 175% in the larger elements of the
solution. It turns out that, up to a certain point, we can deal with sensitivity
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in linear systems by a process called iterative improvement. This is
discussed in Chapter 2.

Example 5. This example illustrates a phenomenon called instability. It is
concerned with the computation of a sequence of numbers {u,}-, using a
difference equation, that is, a formula that relates the value of u, to
previous terms in the sequence. An important application of difference
equations is in the numerical solution of differential equations, a topic
which is discussed in Chapter 6. Specifically, we consider the following two
difference equations:

(@) u,=4u,_1—3u,_,—0.2

1.7
( ) (b) u, = %(3un—l — Up2t+ 0'1)

If we are given “initial values” for uo and uj, it is clear that either equation
can be used as a formula to generate, successively, a sequence of values u,,
us;, and so on. We remark that each of these formulas was derived as a
possible method for computing a numerical solution, at the points x, =
n/10, n =0,1,..., N, of the differential equation

dy

(1.8) x

=1 with y(0)=0

whose (analytic) solution is easily seen to be the function
(1.9)  y(x)=x

A numerical solution of a problem such as (1.8) is defined to be a sequence
of points {(x,, u,)}n-0, where each u, is an approximation for the true value
¥» = y(xa) of the solution at x = x,. Hence, from (1.9), each of the formulas
(1.7) should generate sequences such that u, =y, =x, =0.1n. It is easily
verified that, given the initial values uo= yo=0.0 and u, = y1=0.1, each
formula produces the correct sequence exactly. Suppose, however, that the
initial value u, is perturbed slightly to u, = 0.1001. Then, as we see in Table
1.1, the two formulas give quite different results. The sequence generated
by (1.7)(a) is not at all satisfactory, whereas the one computed by (1.7)(b) is
quite good.

The previous sources of difficulty are not responsible for the bad results
with (1.7)(a) because the computations were done in exact arithmetic so
that neither round-off error nor bad cancellation could occur. Con-
sequently, we conclude that the error growth must be entirely due to »
propagation of the initial error 0.0001 in u,. Therefore, the question we
seek to answer is why formula (1.7)(a) magnifies this error whereas (1.7)(b)
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TABLE 1.1
(1.7)(a) (1.7)(b)
n X, U, u,
0 0.0 0.0 0.0
1 0.1 0.1001 0.1001
2 0.2 0.2004 0.20015
3 0.3 0.3013 0.300175
4 0.4 0.4040 0.4001875
5 0.5 0.5121 0.50019375
6 0.6 0.6364 .
7 0.7 0.8093
8 0.8 1.128
9 0.9 1.884
10 1.0 3.952 1.0002

does not. To this end, we consider the general solution? u, of the difference
equation (1.7)(a):

(1.10) u,=0.1n+c,+c3"

where ¢, c; are constants that are uniquely determined by the initial
conditions uy, u;. For our example, the initial conditions are uo=0.0,
u; = 0.1001 and, substituting these into (1.10) with n = 0 and 1, respectively,
we obtain the system of equations

ci1+¢;=0.0
¢, + 3¢, =0.0001

whose solution is ¢; = —c¢, = —0.00005. We observe that the first term on
the right in (1.10), that is, 0.1n corresponds to the exact value y(x,) from
(1.9). Therefore, the remaining terms must account for the error e, in u,,
that is,

€=U, — Yo =€+ ¢23" = 0.00005(3" — 1)

From this, we see that the rapid propagation of the initial error is due to the
exponential growth factor 3". Turning to formula (1.7)b), its general
solution is

U, =0.1n + ¢, + ¢,(0.5)"

’The equations (1.7) are linear difference equations with constant coefficients. The method of
solving such equations is analogous to solving linear differential equations with constant
coefficients. For details, see [5, p- 349].
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where ¢; = —¢, = 0.0002 when uo= 0.0 and u; = 0.1001. Once again, we see
that the error contains an exponential term. However, this time it is a
decay factor, rather than a growth factor, so that the error e, in u,
approaches the constant value c,. This behavior is verified by the results in
Table 1.1.

This example shows us the difference between an unstable difference
formula such as (1.7)(a) and a stable one such as (1.7)(b). With the former,
errors are magnified as the computations proceed whereas, with stable
formulas, they are damped out. Quite clearly, one should avoid using an
unstable difference formula to generate a sequence {u,}.

1.2. DEVELOPING MATHEMATICAL SOFTWARE

The task of producing a reliable, efficient subroutine as an item of mathe-
matical software is rather involved. It requires expertise both in numerical
analysis and in computer systems design. In this section, we briefly
describe the development process, and discuss some criteria that a good
software subroutine should satisfy.

1.2.1. Creation of a Software Routine
There are three basic steps in creating a software routine:

i Choosing the underlying method(s) to be used.
ii Designing the algorithm.
iii Producing the subroutine as an item of software.

We define a method to be a mathematical formula for finding a solution for
the particular problem under study. For example, each of the formula pairs
(1.3) and (1.4) defines a possible method for solving the problem of
determining the roots of a quadratic equation. In choosing a method, one
must first assemble a list of possible ones that could be used. This means
searching the literature for existing methods as well as, perhaps, devising
new ones. Next, a detailed mathematical analysis of each method must be
performed in order to provide a sound theoretical basis on which to
compare them. In addition, one should gather sufficient computational
experience with each method to support, and even extend, the analytical
comparisons. After all this work has been done, the most appropriate
method or combination of methods can be determined.

Once it has been decided which method(s) to use, one must make a
detailed description of the computational process to be followed. This
description is called an algorithm. We emphasize the distinction between a
method and an algorithm. The former is a mathematical formula, while the
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latter is a practical, computational formula designed to solve the problem
as accurately as possible on a computer.

The final step is to convert the algorithm into an item of mathematical
software. Just as we made a distinction between a method and an al-
gorithm, it is important to distinguish between an algorithm and a piece of
software. The latter is the physical realization of the algorithm. It is a
computer program, and the task of writing it involves numerous important
and difficult questions with respect to the arithmetic structure used in the
machine, storage allocations, device speeds, and operating software. The
objective is to fully utilize the available computational capabilities of the
system in the most efficient way possible. In addition to the actual writing
of the program, this step includes the testing of it and the provision of
documentation. We discuss these aspects in the next section.

From the preceding description, it is clear that the production of a
software routine requires a great deal of work, and there is a definite
methodology for carrying it out. As part of the development process, one
must formulate design criteria and work toward satisfying them. This is our
next topic.

1.2.2. Design Criteria

The aim in developing a piece of mathematical software is to provide a
useful computational tool for the scientific programmer. In order for a
subroutine to satisfy this goal and gain widespread acceptance, it should
meet certain criteria that are considered to be essential to good software
design. These are accuracy, reliability, robustness, good documentation,
ease of use, validation, and portability.

Accuracy, reliability, and robustness are measures of the performance of
a subroutine. The first two of these are more or less self-evident. The term
robustness is an indicator of the scope of the subroutine. To be more
precise, a numerical method will very often involve some parameters
whose values are determined on the basis of properties of the particular
problem at hand. An example is the choice of stepsize in a quadrature
formula for evaluating a definite integral (see Chapter 5). If the subroutine
is intended for use by nonnumerical analysts, it is preferable (for ease of
use) to make it automatic in that the program will select the method
parameters itself rather than requiring the user to do it. Therefore, the
algorithm should be designed with the capability of analyzing the problem
and assigning values to the parameters accordingly. The analysis process is
usually based on the behavior of “model” problems, that is, typical
problems that generally arise in practical applications. We remark that
accuracy and reliability are measures of the performance of an algorithm
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on all problems that are similar to the model. It is expected, of course, that
the behavior of most problems, that arise in practice, will not differ much
from the model. Nevertheless, a subroutine should be able to deal with
nonmodel problems. It should not necessarily be expected to solve them,
that is, obtain a solution to within the requested accuracy. However, there
should not be a precipitous decline in performance as the problem deviates
more and more from the underlying model. Instead, the performance
should deteriorate slowly and gracefully with such deviation. The extent to
which this happens is a measure of an algorithm’s robustness.

The next two criteria—good documentation and ease of use—need little
explanation. The documentation of a subroutine should give a concise,
easy-to-understand explanation of how it works and how to use it. This is
helpful not only in deciding whether or not to use the routine in the first
place, but it can also be of assistance in diagnosing any difficulties arising
from its use. Clearly, one part of the ease of use criterion is good
documentation, but a more important aspect is the amount of information
that the user is required to supply to the subroutine. An easy-to-use
subroutine is one that only requires, as input, a straightforward definition
of the problem to be solved. Any analysis of the problem for the purpose
of setting method parameters is done automatically by the subroutine
rather than the user.

Validation is a very important phase in the production of a piece of
mathematical software. The purpose of it is to establish that the routine
will, in fact, achieve its intended goal. To begin, we need a clear statement
of this goal, that is, a definition of the class of problems that can be solved
and what is meant by a *‘solution.” For the example of a quadratic equation
having exact roots r,; and r,, a solution would be defined as any pair of
numbers s;, s, such that |s; —ri| <el|r|, i = 1,2, for some specified € >0.
(Usually, e will be expressed as a small integer multiple of machine
epsilon.) Then the goal of a quadratic equation subroutine would be to
solve all quadratic equations whose exact solutions are within the range of
the particular machine’s number system. The process of validation of a
subroutine includes a detailed mathematical analysis of the algorithm, a
proof that the program is a faithful representation of the algorithm and,
finally, extensive testing on a representative set of problems. We remark
that, prior to testing, one must construct a “‘representative’ set of problems
and this, in itself, requires a good deal of effort.

The last criterion on our list—portability—is concerned with changes in a
program’s performance whenever the machine environment is changed.
This is a very difficult question because there are so many factors which
affect performance. To quote from [25],
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... Actual examples exist in which changing from one
FORTRAN compiler to another (both considered good)
can increase execution time by 100%, where rewriting x -+
1.0 as (x +0.5)+0.5 can preserve accuracy, where multi-
plying by 1.0 can avoid unnecessary underflow and a
program stop.

Ideally, a software routine should be completely portable but, in view of
anomalies such as the ones just cited, it is virtually impossible to attain this
goal. There are, however, some measures that can be taken that help a
great deal in achieving uniformity of performance. We discuss three of
them.

One cause of differences in performance is the wide variety of machine
architectures in existence. The usual remedy for this situation is to produce
several versions of a subroutine, each of which is designed for use on a
specific type of machine. Admittedly, this does not make a subroutine
portable in the literal sense of the word. However, it does make the name
of the routine portable and this, in turn, contributes to the portability of the
user’s program.

The second way of helping to eliminate differences in performance is to
write the program in a “‘standard” dialect of the programming language
being used. For instance, with the Fortran language, there is a standard set
down by the American National Standards Institute (ANSI), and published
in [2]. A design criterion for any Fortran compiler is that it must be able
to recognize, and process, statements written in ANSI Fortran. Therefore,
no matter what local dialect of Fortran is used, a subroutine, written in the
ANSI version, will always compile. (Note that the user’s program can still
be written in the local dialect.) A very useful tool for ensuring that a
(Fortran) program conforms strictly to the ANSI standard is the PFORT
verifier program [18]. It will accept, as data, a program written in any of
the common Fortran dialects and check it for deviations from the ANSI
standard.

The third measure for improving portability concerns machine epsilon,
EPS. As we have already seen, the value of EPS is useful for making
decisions concerning accuracy. Therefore, we need a method for making
its value available to a subroutine. Since EPS is machine dependent, we
cannot use a constant to define its value within a routine because this
would severely hinder portability. Another possibility would be to provide
a parameter in the calling sequence so that the user can supply the value.
However, from the standpoint of ease of use, this is also unsatisfactory. A
better method is for the subroutine itself to determine the value of EPS,
that is, it will include some code to compute EPS. A disadvantage of this
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approach is that the code is executed every time the routine is called.
However, the extra cost that this incurs is negligible and there is much
more to be gained in terms of portability and ease of use. A typical Fortran
program segment for computing EPS is

EPS=1.0

1 EPS =0.5*EPS
EPSP1=EPS+1.0
IF (EPSP1 .GT. 1.0) GO TO 1

We observe that this code will not always compute the exact value of EPS
(see Exercise 5). However, it produces an approximation which differs
from EPS by at most a factor of 2 and this is close enough for all practical
purposes.

(1.6)

1.3. NOTATION AND CONVENTIONS

To conclude this chapter, we define some notation and conventions that are
- used throughout this book.

One of the bases for comparing algorithms is computational cost and, as
a measure of this aspect, we use an operations count, that is, an estimate of
the number of arithmetic operations required to solve a problem. The usual
practice is to count additions and multiplications separately since they take
different amounts of time—a floating-point multiply is faster because there
is no need to align the “fractional” point. A typical operations count will be
of the form 10A’s and 5M’s, meaning that 10 additions and 5 multiplications
are required. We use this type of notation throughout. In addition, since
flops (1.2) appear so often in linear algebra algorithms, it has become
common practice to give operations counts in terms of them. We follow
this convention in Chapter 2, and elsewhere.

There are no self-contained computer programs in this book. However,
there are several program segments, each of which is presented in order to
illustrate some concept. In writing these segments, the primary aim was to
give a clear presentation of each point rather than adherence to the
conventions of a particular programming language. It is assumed that, if
need be, the reader can easily translate these segments into whatever
language he or she wishes.

EXERCISES

1. Consider the floating-point number system F(2, 8,~9, 10).
(a) How many numbers does this system contain?
(b) Find the representations of the (decimal) numbers 3.625 and 59.6 in
this system.
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(¢c) Add (in F) the two numbers from part (b) under each of the following
assumptions:

i Chopping and no guard digit.
ii Rounding and no guard digit.
iii Chopping and one guard digit.
iv Rounding and one guard digit.

(d) Multiply (in F) the two numbers from part (b) under each of the
assumptions in part (c).

2. Repeat Exercise 1 wusing the floating-point number system
F(16,2,-7,8). This is an example of a hexadecimal (base 16) number
system. It is usual to denote the 16 units digits by 0, 1,2, 3,4,5,6,7,8,9, q,
b,c,d,e,f.

3. A hexadecimal digit can be uniquely represented by a sequence of four
binary digits. Specifically, we have

0 < 0000
1 < 0001
2 <0010
30011

e 1110
follll

Hence, the digits in a hexadecimal system can be represented by a
sequence of binary digits, grouped in sets of four. This is a convention used in
computers that employ a hexadecimal system.

(a) Show how each of the systems F(2,8,—7,8) and F(16,2,—7,8) can
be represented on a computer with words consisting of a sign () plus 12
binary bits.

(b) Compare these two number systems with respect to their range and
density in R.

4. Determine machine epsilon EPS for each of the systems F(2, 8,7, 8),
F(2,8, -50,50), F(2,16,-7,8), and F(16,2, -7, 8) assuming

(a) Chopping.

(b) Rounding.

5. Determine machine epsilon EPS for the local computer system. Verify
that the program segment (1.6) gives an estimate for EPS that is within a
factor of 3. Will this estimate always be too small or too large? Explain.
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6. Consider the following list of numbers:

3399 567.2 .6848
45.75 4.556 79.93
962.1 67.35 84.40
1.288 821.3 429.2

(2) Working in F(10, 4, —50, 50) with one guard digit and chopping, find
the sum of these numbers by adding them in:

i Given order (by rows).
ii Ascending order.

Compare your results with the exact sum 3403.6588.

(b) Suppose that the sign of each number in the second column is changed
to negative. What is the best algorithm for summing the resulting list?
Explain.

(c) Apply the algorithm in part (b) to sum the series for e in
Example 2.

7. We want to find the value of the expression
[3 - \/5]3
3+V8
In addition to this form, one could use any of the following equivalent
forms:

(17-6V8)y (17+6V8)™?
3-V8)* 3+V8)™®
19,601 - 6930V8 (19,601 + 6930V/8)"!

Working in F(10, 4, —50, 50) with one guard digit and chopping, which
form(s) would be preferable? Explain.

8. When each of the following expressions is evaluated using floating-
point arithmetic, poor results are obtained for a certain range of values of
x. In each instance, identify this range and provide an alternate expression
that can be used for such values of x.

(@ Vi+x-Vi-gx.
(b) 1—cosx.

() e*—1.

(d x—-Vxi-a.
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9. A function f(x) is to be evaluated at each of N equally spaced points in
[0, 1], where N is large. Which of the following pieces of (Fortran) code is
preferable for this task? Explain.

i X=0.0 (i)  H=1.0/FLOAT(N)
H = 1.0/FLOAT(N) DO 10 I=1N
DO 10 1=1,N X = FLOAT(I)*H
X=X+H WRITE(6,*) F(X)
WRITE(6,%) F(X) 10 CONTINUE
10 CONTINUE

10. Show that the formulas (1.4) for solving a quadratic equation are
mathematically equivalent to (1.3).

11. As a project, produce a subroutine for solving quadratic equations.
The steps outlined in Section 1.2 should be followed and there should be an
accompanying report detailing the development, implementation, and tes-
ting of the routine.



CHAPTER 2

NUMERICAL LINEAR
ALGEBRA

Numerical linear algebra, as the name implies, consists of the study of
computational algorithms for solving problems in linear algebra. It is a very
important subject in numerical analysis because linear problems occur so
often in applications. It has been estimated, for example, that about 75% of
all scientific problems require the solution of a system of linear equations
at one stage or another. It is therefore important to be able to solve linear
problems efficiently and accurately.

Compared to other areas of numerical analysis, numerical linear algebra
is well advanced in that there is general agreement as to which are the best
algorithms and why they are best. In addition to the theory, much work has
gone into the implementation of algorithms. The result is that packages of
very efficient and reliable subroutines for the solution of problems in linear
algebra are now widely available. The aim in this chapter is to acquaint the
reader with some of the reasoning behind the selection of algorithms and
the design of subroutines so that he or she can make the most efficient use
of such routines.

We assume familiarity with matrix-vector notation and with the basic
notions and results of linear algebra. The types of problems we will
consider are:

i Solve a system Ax=b of n linear equations in n unknowns,
where A is a given nxn nonsingular matrix, b is a given
n-vector, and x is an unknown n-vector.

ii. Compute the eigenvalues and, possibly, the eigenvectors of a
given n X n matrix A.

iii “Solve” an overdetermined system of linear equations Ax = b,
where A is a given m x n (m > n) matrix, bis a given m-vector
and x is an unknown n-vector.

Of these problems, the first two will be more familiar both in terms of
having studied them in a linear algebra course and by encountering them in
solving practical problems. Overdetermined systems may not be as familiar
but they do arise often. The most notable occurrence, perhaps, is in doing a
linear least-squares fit of a curve to some given data (see Section 2.3.1).

26
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In dealing with each of the above problems, we first describe the basic
algorithms currently in general use and then discuss aspects such as
mathematical validity, numerical validity (effects of round-off errors),
efficiency, and modifications that can take advantage of special features of
a specific problem.

The description of each algorithm will be done in the context of a general
format that is common to all algorithms in numerical linear algebra.

(a) Reduce or transform the given problem to an equivalent one
2.1 which is more readily solved.
(b) Solve the reduced problem.

An equivalent problem is one which has the same solution as the original
one. Within this general format, an algorithm can be described by first
stating the form of the reduced problem and then defining the method for
transforming a given problem to this form. In addition, a method for
solving the reduced problem must be given although, in most cases, this is
a simple, straightforward calculatipn. To illustrate the description of an
algorithm using (2.1), we consider the problem of solving the system of
linear equations

3X1 - 5X2 =1
6x,—Tx,=5

The familiar procedure for computing the solution is first to eliminate the
variable x;, from the second equation, and then backsolve. After the
elimination, we have

3x,—5x,=1

3X2=3

We know this system is equivalent to the original one because the opera-
tions involved in the elimination process do not alter the solution. The
second system is said to be in triangular form and, clearly, it can be solved
quite readily. We obtain x, =1 and x, = 2. Hence, this method of solution,
consists of

(a) Finding, by elimination of variables, an equivalent system which is
in triangular form,
(b) Solving the triangular system.

This description is precisely in the format of (2.1).
We will now discuss, in turn, the three problems introduced earlier.
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2.1 SYSTEMS OF n LINEAR EQUATIONS IN n UNKNOWNS

The problem is to determine the values of the unknowns xi, .. ., x, satisfy-
ing the system of n linear equations

a;, 1% + 01,2X2+ B QA nXn = b]

az 1 X, + 02,2X2+ vt Ay nXp = bz
(2.2) . . .

a,,,1x1+ X,.'2X2+ v o4 QAn nXpn = b,.

where the coefficients a;; and the numbers b; on the right-hand side are
given. In matrix-vector notation, this problem can be written as

(23) Ax=b

where
01,1(11,2...01,,, X1 b]
a1022...0y, X2 b,
A= . . . X=i . and b=
Qn1Gn2... Gy oy Xn b,

2.1.1. The Gauss Elimination Algorithm

We will describe the algorithm that is most often used for computing the
solution of an n X n linear system in terms of the format of (2.1). The form of
the reduced problem will be a linear system Ux = d, where the coefficient
matrix U is upper triangular. As we will see, the reduction process consists
mainly of computing an LU decomposition or, alternatively, a triangular
factorization of A, that is,

A=LU

where L is unit lower triangular (1’s on the diagonal) and U is upper
triangular. U will be the matrix of the reduced problem. In fact, the
algorithm is nothing more than the well-known Gauss elimination and back
substitution method. To see this, we first describe the algorithm in the
traditional way and then show how it can be expressed in terms of matrix
factorization and the solution of two triangular systems. We will describe
the method with reference to the specific 4 X 4 example
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5x14+ 3%~ x5 =11
1

—3X1 +3XZ— 3X3+5X4 = _2

2x +4x3+ x4

6x2—2x3+ 3X4 = 9

or, in matrix-vector notation,

s 3 -1 0 1
2 00 4 1l|x]| | 1
CH |3 3 3 s||xl|7]-2
0 6 -2 3||x 9

Formulation of the general algorithm for an arbitrary n X n system can
easily be done using the ideas brought out in the example.
The first stage is to eliminate x;, from:

Equation 2 by subtracting 2/5= 0.4 times Equation 1 from Equation 2.
Equation 3 by subtracting —3/5 = —0.6 times Equation 1 from Equation 3.
Equation 4 by subtracting 0/5= 0.0 times Equation 1 from Equation 4.

Since each of these operations does not alter the solution, the resulting system
is equivalent to the original one. The numbers 0.4, —0.6, 0.0 are called
multipliers. The divisor used to form each multiplier is called the pivot. In
this case it is the (1, 1) element, which is 5. The resulting system is

5 3 -1 0 X 11

0 -12 44 10| x| | —34
(2.5) 0 48 -36 S0l xs| | 46

0 60 —-20 3.0]|{x, 9.0

Next we can eliminate x, from the third and fourth equations in a similar
manner. This time the pivot is the (2,2) element, namely —1.2, and the
multipliers are —4.8/1.2=-4.0 and —6.0/1.2=-5.0. However, the mag-
nitude or absolute value of (at least one of) them is greater than 1.0 and, as
explained in the next section, it is desirable to have multipliers that are
=1.0 in magnitude in order to minimize the propagation of round-off errors.
This is easily accomplished by interchanging the second and fourth equations
so that the largest coefficient of x,, excluding the first equation, is the one in
the (new) second equation. We note that interchanging the order of equations
does not affect the solution so, again, we obtain an equivalent system. In terms
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of the system (2.5), we simply scan the second column of the matrix from the
diagonal down in order to find the element that is largest in magnitude. This is
called searching for the largest pivot. The row containing this element is then
interchanged with the second row. The same rows of the right-hand side
vector are also interchanged.

503 -1 0 s 1
0 60 ~20 30| x |[_| 90
@O 1o 48 -36 50| x 4.6
0 ~12 44 10 || x, | | -34

Now we eliminate x, from:

Equation 3 by subtracting 4.8/6.0= 0.8 times Equation 2 from Equation 3
Equation 4 by subtracting —1.2/6.0 = ~0.2 times Equation 2 from Equation 4

to obtain
5 3 - 0 x, i1
0 60 -20 30| x| | 90
@D o 0 —20 26 % |=|-ne
0 o0 40 1.6 || x, -1.6

Continuing, we see that the largest pivot for the third column is in the
fourth row, so we interchange the third and fourth rows.

s 3 -1 0 I x 1
0 60 -20 30| x| | 90
@® 1o o 40 16llm|™| 16
0 0 -20 26]lx| |-26

Finally, we eliminate x; from
Equation 4 by subtracting —2.0/4.0 = —0.5 times Equation 3 from Equation 4

which gives the upper triangular system

s 3 -1 o x 1

0 60 -20 30(lx| | 90
@D 1o o 4o aellxl=|-1s

0 0 0 34 X4 '—3.4

This system is equivalent to the original one (2.4).

The solution of (2.9) is easily determined. From the fourth equation, we
have
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X4 = 1.0
Substituting this value into the third equation, we get
4.0x;+ 1.6(-1.0)=—1.6 or x;=0.0
Substituting the values of x3 and x, into the second equation gives

6.0x,—2.0(0.0)+ 3.0(-1.0)=9 or x2=2.0
Finally, substituting into the first equation, we have
5%+ 3(2.0) - 1(0.0) + 0(—1.0) = 11 or x,=1.0

Therefore, the vector x =[1.0,2.0,0.0, —1.0]" is the solution of the original
system (2.4).

The first part of the algorithm is called (forward) elimination with partial
pivoting'. It consists of the computations leading to the system (2.9). The
second part is known as back substitution. It should be clear how the
algorithm fits into the format of (2.1). The elimination part corresponds to
the reduction of the original problem to an equivalent system (2.9) while
the back substitution corresponds to solving the reduced problem.

Now we show how the elimination part of the above algorithm can be
expressed in terms of the computation of an LU decomposition of A.
Actually, the equation A = LU mentioned above is not correct because it
does not include partial pivoting. The correct equation is

(210) PA=LU

The matrix P is called a permutation matrix. It has exactly one 1 in each
row and column and all other entries are 0. The effect of multiplying A on

the left by such a matrix is to permute or interchange the rows of A. For
example

1 000 5 3 -1 0 5 3 -1 0
_]o 0 0 1 2 0 4 1| | 0 6 -2 3
(2.11) PA= 010 0{|-3 3 -3 5| | 2 o 4 1
0010 0 6 -2 3 -3 3 -3 5

"It is possible to do complete pivoting. This involves column as well as row interchanges. One
must search the entire subblock of the matrix below and to the right of the pivot position for
the largest element and then interchange rows and columns to make this the pivot element.
For instance, in the example we have been following, the initial pivot would be 6 and, putting
it into the (1, 1) position would necessitate interchanging rows 1 and 4 and then columns 1 and
2. Compared to partial pivoting, there is considerably more work in complete pivoting since
there are a lot more entries to be searched. This would be worthwhile if we could be assured
of a correspondingly significant gain in accuracy. However, it has been found that, in most
cases, there is not a sufficient improvement in accuracy so complete pivoting is not considered
worthwhile.
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This particular P turns out to be the one that incorporates the pivoting
strategy that was used in the reduction (elimination) of the system from
(2.4) to (2.9). If the equations of the original system (2.4) were reordered
according to the right side of (2.11), then the elimination could be done
without interchanges and the multipliers would all be <1 in magnitude.

Constructing P is very simple and it can be done during the elimination.
We start with the identity matrix I and interchange its rows in cor-
respondence with those of A as the elimination proceeds. For our example,
we would have

1000 (0.1) 1000
[=|0100|°” "f0100
10010 10010
0001 0001
29 0007|5000
10010 0100 [P
0100 0010

(Note that each of these matrices, including the identity, is also a per-
mutation matrix.) The ordered pair (i, k;) indicates which rows are inter-
changed at the ith stage of the elimination, namely, rows i and k. In
practice, it is not necessary to store the complete matrix P. The purpose of
P is simply to record the pivoting strategy and this can easily be done by
recording the successive ordered pairs (i, k;). To do it, we set up a pivot
vector, say NPIV, of length n (the number of equations). Then, at the ith
stage of the elimination, we set NPIV(i) = k,, which records the ordered
pair (i, k). Actually, there are only n— 1 stages of the elimination pro-
cedure (there were 4—1=3 stages in our example) so NPIV has an extra
element, NPIV(n). It is usual to utilize this element in the following way.
Initialize NPIV(n) = +1 at the outset and then change its sign whenever an
interchange of rows is made, that is, whenever k;#i. We will see in a
moment how the value (+1 or —1) of this element can be used in computing
det(A), the determinant of A, if this value is needed. For our example,
NPIV would be formed as follows:

Slan) MHes| Heaw| ]
NPIV=| | — I B S 4
+1 +1 -1 +1

Note that only n storage locations are required for NPIV whereas n? are
needed if P were stored completely. Since both contain the same in-
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formation, it is much more efficient to use a pivot vector to record the
pivoting strategy.
For our example, the matrices L and U in (2.10) turn out to be

1 0 0 0 5 3 -1 0
Lo 00 1 0o of L 0 60 -20 30
04 —02 1 0 0 0 40 16
-06 08 —0.5 1 0 0 0 34

The subdiagonal elements of L are simply the multipliers used in the
elimination process. The first column contains the multipliers from the first
stage, the second column contains those from the second stage, etc. The
order in which they appear down a column depends on the pivoting
strategy and will be explained shortly [following (2.12)]. The matrix U is
just the coefficient matrix of the reduced system (2.9). To verify that (2.10)
holds, we have

1 0o o o075 3 -1 0

Lu=| 00 1 0 010 60 -20 30

04 —02 1 0 [0 0 40 16

-06 08 -05 1 J[0 0 0 34
5 3 -1 0
0o 6 -2 3
12 o0 4 1
-3 3 -3 s

which is the matrix PA in (2.11).

We digress a moment to show how the last entry of NPIV can be used in
computing the value of det(A). From (2.10) and the well-known result that
the determinant of the product of two matrices is the product of the
individual determinants, we have

det(A) = aal(—}T) - det(L) det(U)

Now it is easy to show that det(P) = +1, where the positive sign is to be
used if an even number of row interchanges is made during the elimination
and the negative sign if an odd number is made. But this is precisely the
information recorded in NPIV(n). Therefore, det(P)= NPIV(n). In our
example, det(P) = NPIV(4) = +1. It is also easy to show (Exercise 1.3) that
if T is either an upper or lower triangular matrix, then det(T) is just the
product of the diagonal elements of T. Now, since L is unit lower
triangular, this means that det(L) = 1, and we have
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det(A) = +—11- (1)X(5 % 6.0 x 4.0 X 3.4) = 408.0

Therefore, all we have to do to compute det(A) is calculate the product of
the diagonal elements of U and attach the correct sign, which is contained
in NPIV(n).

Our discussion so far illustrates that, for the problem of solving Ax = b,
there exists a factorization of the form (2.10). In addition, it also indicates
how the factorization can be determined. The latter point should be
emphasized. This is that the method for computing P, L, and U is precisely
the Gauss elimination with partial pivoting procedure originally described,
that is, reducing the matrix in (2.4) to that of (2.9). Computing P (or NPIV)
and L merely amounts to recording, respectively, the pivoting strategy and
the multipliers. In order to illustrate how a computer subroutine carries out
the procedure we must make some remarks on the efficient use of storage.
First, we observe that only the subdiagonal elements of L need to be
stored explicitly since the 1’s on the diagonal and 0’s above it can be
understood. Similarly, we do not need to store the below-diagonal 0’s of U.
Hence L and U can be stored in the same array with U occupying the
upper triangular part including the diagonal and L in the strictly lower
triangular part. Second, there is a one-to-one correspondence between the
formation of a multiplier and the creation of a zero below the diagonal of
A. Since these zeros are actually the below-diagonal zeros of U, we do not
need to store. them. Instead, we can store each multiplier (element of L) in
the location of its corresponding zero. Most computer subroutines will take
advantage of these facts to do the elimination on A “in place.” By this we
mean that if A is stored in the array AMAT, the elimination procedure will
successively overwrite AMAT at each stage so that, at the conclusion, it
will contain both L and U. To illustrate, we show the evolvement of NPIV
and AMAT for our example. For reading convenience, the elements of L
are underlined.

- 5 3 -1 0 177 s 3 -1 0
2 0 4 1 -l 04 -12 44 10
@) .3 -3 5 1 - ||-06 48 -36 5.0
+11l 0 6 2 3 +1|{ 00 60 -20 3.0
1 s 3 -1 0
41| 00 60 -20 390
> -0.6 08 -20 26
-1]| 04 -02 40 16
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1 5 3 -1 0

4 00 60 -20 3.0

4 04 -02 4.0 1.6
+1 || -06 08 -05 34

The connection between the Gauss elimination with partial pivoting pro-
cedure originally described and the computation of P, L, and U for the
triangular decomposition (2.10) can be seen by comparing the coeflicient
matrices in (2.4), (2.5), (2.7), and (2.9) with the respective stages of NPIV
and AMAT in (2.12).

One or two remarks should be made at this point. First, in showing the
correspondence between elimination and the LU factorization, we omitted
the right-hand-side vector b whereas, in going from (2.4) to (2.9), the
elimination was done on A and b simultaneously. This omission was
intentional. It turns out to be advantageous to do the elimination on b
separately. Second, since the elimination is done in place, the original
matrix A is overwritten. If A will be needed at some future point in the
overall calculations being done, then a copy of it should be made before
beginning the elimination. Finally, we observe in (2.12) that when a row
interchange is made, it is applied to the whole array AMAT. This means
that those elements of L that have already been recorded are also inter-
changed. In this way, we can automatically determine the correct order in
which the multipliers should appear in the columns of L.

In reality, a computer subroutine implementation of Gauss elimination
does not quite follow the algorithm indicated by (2.12). The difference is
that when a row interchange is made, it is not applied to the portion of
AMAT currently containing elements of L. If, for example, rows i and k;
(i = k;) are to be interchanged, we only do it for columns i through n, that
is,

AMAT(, j) <& AMAT(k, ) i=iLi+l,...,n
Hence, instead of the final form in (2.12), AMAT and NPIV will be

1 s 3 -1 0
41l 04 60 -20 30

213 1 4ll-06 08 40 16

+1 0.0 ~02 -05 34|

The interpretation of this representation in terms of matrix factorization is
somewhat complicated, but a brief explanation will be given. A more
detailed account can be found in [16]. The below-diagonal elements
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in, say, the second column of (2.13) are the multipliers, in order, from the
second stage of the elimination. We form the unit lower triangular matrix

I 0 0 0
o 1 00
M=o 08 1 o0

0 —02 0 1

and similarly for M, and Ms. Now define P, to be the permutation matrix
corresponding to the interchange (2,4), which was made at the second
stage of the elimination, that is,

1 000

0 001

0010

0100

Similarly, we define P, and P;. (In our example, P,=1 because no

interchange was made at the start.) Then it can be shown (Exercise 1.4)
that

Pzz

P1P2P3 =P
and
(214) P1M1P2M2P3M3 = P—lL = PTL
1 0 0 o0
04 -0.2 1 0
-06 08 -05 1

0.0 1 0 o0

Now, the below-diagonal elements in (2.13) can be interpreted as
representing the matrices M,, M,, and M;—the first column corresponds to
M,, and so on. In addition, each P; is represented by NPIV(i), i=1,2,3.
Therefore, given the array (2.13) and the pivot vector NP1V, it is possible
to construct L from the relationship (2.14). While this explanation is a little
involved, a computer implementation is relatively straightforward. Essen-
tially, all we need is a mechanism for relating the location of a multiplier
(element of L) in (2.13) to its position in (2.12). This can be done via the
pivot vector NPIV [based on (2.14)]. Admittedly, this results in some
overhead when accessing the elements of L but we have saved some work
by not having to interchange them during the elimination. It has been found
that, on average, the savings outweigh the extra cost, so the form (2.13) is
preferred for implementation. On the other hand, it is much easier to
discuss the algorithm on the basis of (2.12). Therefore, we will continue
with it on the understanding that an implementation will use (2.13).
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We now see how the LU factorization is used to solve the system (2.3).
First, we premultiply both sides of the equation by P to get PAx= Pb.
Then, using the factorization (2.10) of PA, we have LUx = Pb, which can
be written as

(2.15) Ld=Pb
where the vector d is defined by
2.16) Ux=d

Assuming that P, L, and U have been computed, there are two unknowns
here—the vectors d and x. The latter is the one we want but, in order to
compute it (as the solution of (2.16)), we need to know what d is. But d can
be found by solving (2.15). Therefore, given P, L, and U, we can determine
the solution x of the system Ax =b by first solving (2.15) for d and then
(2.16) for x. With this, we can restate the complete algorithm in the form

DCOMP i Decompose PA = LU,
ii Solve Ld=Pbford,

2.17
SOLVE { ili Solve Ux=d for x back substitution

} elimination

The notations on the right indicate the correspondence with the elimina-
tion and back substitution parts of the algorithm as originally described.
Those on the left indicate how it is implemented by computer subroutines. We
will look at this shortly.

It probably is not immediately obvious as to why we say that steps (i)
and (ii) in (2.17) correspond to the elimination process. We have already
noted that step (i) is actually the elimination process, but applied only to
the matrix A. Therefore, step (ii) should correspond to performing the
elimination on the right-hand-side vector b. To see that it is, we write down
the system

1 0 0 0] d 11
_| 00 1 0 0|jd]|_| 9|_
@18 Ld= 94 02 1 o d; 1| ~FP
0.6 08 —-05 1]{ds -

We remark that the right-hand side is obtained by taking b and applying the
successive row interchanges that were recorded in NPIV. The system
(2.18) is lower triangular and the solution can easily be computed as
follows:
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d] =11 =11
2.19) d= 9— (0.0)(11) = 90
dy= 1-— (0.4)(11)—(—0.2)(9.0) =-1.6

dy=—-2-(-0.6)(11)— (0.8)(9.0)— (—=0.5}(—1.6)=—3.4

Since this is precisely the set of computations carried out in the elimination
on the right-hand side in (2.4) to (2.9), step (ii) does, in fact, correspond to
doing the elimination on b. Finally, we note that the system Ux =d in step
(iii) is exactly the reduced system (2.9), so step (iii) is the back substitution
part of the algorithm.

It was mentioned previously that it is advantageous to do the elimination
on b separately from that of A. In fact, it is usual to divide the whole
procedure into two separate subroutines, say DCOMP and SOLVE, as
indicated on the left in (2.17). The reason for doing this is because steps (ii)
and (iii) are independent of A. In situations where there is more than one
system, Ax =b,, Ax =b,, etc., each having the same coefficient matrix, we
would only call DCOMP once to compute the LU factorization. Each
individual system can then be solved by simply calling SOLVE. An im-
portant instance where this situation arises is in iterative improvement
(Section 2.1.3). Another is in the computation of the eigenvectors of a
matrix by inverse iteration (Section 2.2.3). The savings in using this idea
can be quite. substantial since the bulk of the work in solving a linear
system consists of computing the LU factorization of A. To see this, we
look at the operations count.

We assume that A is n X n. During the elimination, we observe that each
time an entry in A is changed, we must perform an operation of the form

a<—a—-m-b

For example, in (2.5), the (2, 3) element of the matrix is obtained as the
result of the computation

40~-04-(-1N=44
Therefore, each change of an entry of A requires the execution of one fiop
(see Section 1.1.3). At each stage, the number of such changes is

(n~1)’ during the 1st stage.
(n—2)* during the 2nd stage.

1> during the (n — 1)th stage.

We have not counted the zeros that are created below the diagonal since no
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d,= 11 =11
2.19) d= 9— (0.0)(11) = 90
dy= 1- (0.4)(11) - (—0.2)(9.0) =—16

di==2=(-0.6)(11)— (0.8)(9.0)— (—0.5)(—1.6) = —3.4

Since this is precisely the set of computations carried out in the elimination
on the right-hand side in (2.4) to-(2.9), step (ii) does, in fact, correspond to
doing the elimination on b. Finally, we note that the system Ux=d in step
(iii) is exactly the reduced system (2.9), so step (iii) is the back substitution
part of the algorithm.

It was mentioned previously that it is advantageous to do the elimination
on b separately from that of A. In fact, it is usual to divide the whole
procedure into two separate subroutines, say DCOMP and SOLVE, as
indicated on the left in (2.17). The reason for doing this is because steps (ii)
and (iii) are independent of A. In situations where there is more than one
system, Ax=b;, Ax = b,, etc., each having the same coefficient matrix, we
would only call DCOMP once to compute the LU factorization. Each
individual system can then be solved by simply calling SOLVE. An im-
portant instance where this situation arises is in iterative improvement
(Section 2.1.3). Another is in the computation of the eigenvectors of a
matrix by inverse iteration (Section 2.2.3). The savings in using this idea
can be quite substantial since the bulk of the work in solving a linear
system consists of computing the LU factorization of A. To see this, we
look at the operations count.

We assume that A is n X n. During the elimination, we observe that each
time an entry in A is changed, we must perform an operation of the form

a<—a—-m-b

For example, in (2.5), the (2,3) element of the matrix is obtained as the
result of the computation

40-(0.4)- (1) =4.4

Therefore, each change of an entry of A requires the execution of one flop
(see Section 1.1.3). At each stage, the number of such changes is

(n—1) during the 1st stage.
(n—2)* during the 2nd stage.

1> during the (n — 1)th stage.

We have not counted the zeros that are created below the diagonal since no
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dl = 11 =11
2.19) d,= 9~ (0.0)(11) = 9.0
dy= 1- (0.4)(11)—(-0.2)(9.0) =-1.6

dy=—=2—(—0.6)(11)~ (0.8)(9.0) - (—0.5)(—1.6) = —3.4

Since this is precisely the set of computations carried out in the elimination
on the right-hand side in (2.4) to (2.9), step (ii) does, in fact, correspond to
doing the elimination on b. Finally, we note that the system Ux =d in step
(iii) is exactly the reduced system (2.9), so step (iii) is the back substitution
part of the algorithm.

It was mentioned previously that it is advantageous to do the elimination
on b separately from that of A. In fact, it is usual to divide the whole
procedure into two separate subroutines, say DCOMP and SOLVE, as
indicated on the left in (2.17). The reason for doing this is because steps (ii)
and (iii) are independent of A. In situations where there is more than one
system, Ax = b;, Ax=b,, etc., each having the same coefficient matrix, we
would only call DCOMP once to compute the LU factorization. Each
individual system can then be solved by simply calling SOLVE. An im-
portant instance where this situation arises is in iterative improvement
(Section 2.1.3). Another is in the computation of the eigenvectors of a
matrix by inverse iteration (Section 2.2.3). The savings in using this idea
can be quite substantial since the bulk of the work in solving a linear
system consists of computing the LU factorization of A. To see this, we
look at the operations count.

We assume that A is n X n. During the elimination, we observe that each
time an entry in A is changed, we must perform an operation of the form

a<a—m-b

For example, in (2.5), the (2,3) element of the matrix is obtained as the
result of the computation

40-04)-(-1)=44

Therefore, each change of an entry of A requires the execution of one flop
(see Section 1.1.3). At each stage, the number of such changes is

(n— 1)’ during the  Ist  stage.
(n—2)* during the 2nd stage.

1> during the (n — 1)th stage.

We have not counted the zeros that are created below the diagonal since no
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computation is actually done for them. In addition, there are (n — 1)+ - -+
2+ 1= n?*2- n/2 multipliers to be formed, each of which requires 1D. We
should also count the work necessary to search for the largest pivot at each
stage. This will be a total of (n —1)+---+1=n?2-n/2 comparisons of
pairs of numbers. The execution of DCOMP therefore requires

3
= n—+0(n2)

n® n® n
3727673

n—1
2 _n(n—D2n—-1)_

2 6
flops plus (n?/2—n/2)D’s and the same number of comparisons. Now, as
n increases, the terms in n” and n become insignificant compared to the n’
term, so it is usual to ignore the lower-order ones and say that DCOMP
takes n’/3+ O(n?) flops. Turning to step (ii) of (2.17), it follows from (2.19)
that

solving for d, requires no work at all.
solving for d, requires one flop.
solving for d; requires two flops.

solving for d, requires (n — 1) flops.

For step (iii), the number of operations is the same since it also consists of
the solution of a triangular system. Actually, there are n additional
divisions in step (iii) since the diagonal of U does not, in general, have 1’s
on it. However, as was the case with forming the multipliers, this number
of operations turns out to be insignificant, so we ignore them in our count.
Therefore, the execution of SOLVE requires '

2. :i=2-n(nT—1)=n2—n =n?+0(n)
flops.

To illustrate the difference in the amount of work done by DCOMP and by
SOLVE, suppose n=50. Then DCOMP requires about 42,000 flops
whereas SOLVE only requires about 2500. If, say, we had three such
systems Ax, =b,, k=1,2,3, to be solved, we could compute their solu-
tions by making one call to DCOMP and three calls to SOLVE. The total
amount of work would be about 50,000 flops whereas, if the two parts of
the algorithm were not separated, the cost would be about 135,000 flops.
The difference is quite substantial and, of course, is even more pronounced
for larger n. Therefore, by splitting the algorithm into the two parts,
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significant savings can be made in the case of more than one system witt
the same coefficient matrix A.
The parameter list for a decomposition subroutine is usually of the form

DCOMP(N,NDIM,NPIV A IND),
where

N is the order n of the system.

NDIM is the row dimension of the array A exactly as specified in
the dimension statement of the calling program (see explanation
below).

NPIV is a vector, of length at least n, which, on return, will contain the
pivot vector.

A is a two-dimensional array, of size at least n X n, containing, on
entry, the matrix A and, on return, its LU factorization.

IND is an indicator of numerical singularity.

Numerical singularity means that, in a relative sense, at least one of the
pivots encountered during the elimination is very small. If the routine
indicates, via IND, that A is numerically singular, it is not advisable to
proceed with the back substitution because there is a strong possibility that
an overflow condition will occur due to division by a relatively small
number.

The parameter NDIM in the calling sequence is necessary for subroutines
that are written in the Fortran language. We explain its purpose with the
following example. Suppose a program begins with the declaration

DIMENSION AMAT(4,3),BVEC(6)

and that we want to solve a 2 X 2 linear system with coefficient matrix

_[-7 8

A ‘[ 4 5]
Fortran represents a two-dimensional array as a vector by columns.
Therefore, the matrix A would be stored in AMAT in the following way:

Clearly, in order to locate the elements of A in this representation, it is
necessary to know how many rows were assigned to AMAT in the dimen-
sion statement. The parameter NDIM is the mechanism for passing this
information to DCOMP. This is a standard device for (Fortran) subroutines
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that have to work with two-dimensional arrays. For our example, a call to
DCOMP would take the form

CALL DCOMP(N,4,NPIV,AMAT IND)
or else

NDIM = 4
CALL DCOMP(N,NDIM,NPIV,AMAT IND)

We remark that the argument NDIM is not needed at all with a programming
language such as Algol, which does dynamic allocation of storage. With
this feature, the space for storing a matrix A is not allocated until
execution time so that the amount set aside need only be enough to store
the particular matrix being processed at the time—four locations for our
example. Consequently, the value of N is the only information required in
order to access individual elements. The Fortran language does not have
this feature. Space is allocated at compile time (before the actual size of A
is known) and, as a consequence, the amount allocated must be sufficient to
handle a matrix of the maximum size permitted by the dimension state-
ment. The advantage of dynamic allocation is programming convenience,
while the disadvantage is extra computational cost as a result of having to
manage storage allocations during execution. Sometimes, the extra cost can
be significant.

A further remark on the difference between Fortran and Algol is that the
latter stores two-dimensional arrays by rows (instead of columns). Hence,
if NDIM were necessary with Algol, it would have to specify the column
dimension of AMAT—it is 3 in our example. A more important aspect of
the difference in storage methods concerns efficiency of a program. To
illustrate, we refer to the Gauss elimination procedure. The algorithm can
be described as follows:

FORk=1TO n-1
search for largest pivot and, if necessary,
interchange rows
FORi=k+1TOn
form the multiplier m;
FOR j=k+1TOn
aij—ai;tmgayg **)
END
END
END

The statement labeled (**) lies in the innermost part of a triple-nested loop
structure and is executed about n3/3 times. Therefore, any means of
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decreasing its execution time will significantly improve the overall
efficiency of the algorithm. To this end, we look at the process of accessing
elements a;; of A. Due to differences in storage methods, the location of
a;; in the vector representation of AMAT is given by

NDIM-(j—D+i in Fortran, and
NDIM-(i—1)+j in Algol (with NDIM = n)

Hence, in order to access an element of A, we must compute the correct
subscript for AMAT. We emphasize that this kind of computation must be
made every time a two-dimensional array is accessed. It is, of course,
transparent to the user because the compiler will generate the appropriate
code. Nevertheless, it is an overhead cost of which the user should be
aware and make every effort to minimize. For our present algorithm, we
note that the value of i is fixed within the innermost loop. Therefore, the
Algol version can be made more efficient by only computing NDIM - (i — 1)
once for each execution of the loop—a saving of n —k — 1 integer multi-
plies ‘each time. A so-called “optimizing” compiler will recognize this fact
and automatically generate code accordingly. In effect, this saving is
possible because our algorithm does the elimination across rows so that it
accesses, in order, a;y+1, @ik+2, .-, ain. Since Algol stores a matrix by
rows, these elements are adjacent in AMAT and it is only necessary to
compute the location of the first one in the sequence. In order to make the
same kind of savings possible in a Fortran version of Gauss elimination, it
is clear that we must reorganize the algorithm to make it ‘“‘column orien-
ted.” This turns out to be quite easy. The alternate version is

FORk=1TOn
search for largest pivot and, if necessary,
interchange rows
FORi=k+1TOn
compute the multiplier m;
END
FORj=k+1TOn
FORi=k+1TOn
Qi j<— Qi+ M Ay
END
END
END

An optimizing Fortran compiler would be able to achieve savings with this
form of the algorithm (but an Algol compiler would not) because it
accesses, in order, the elements ay,y j, ays2,j, . - -, Gn; down a column that
appear in sequence in AMAT. Hence, a Fortran version of DCOMP would
be based on this form of the algorithm.
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The subroutine for completing the solution of a linear system will be of
the form

SOLVE(N,NDIM,NPIV,LU,B)
where

N, NDIM, NPIV are as before.

LU is a two-dimensional array, of size at least n X n, containing
the LU factorization of A.

B is a vector, of length at least n, containing, on entry, the right-hand
side vector b and, on return, the solution vector x.

If our matrix A is stored in the array AMAT and the vector b is in BVEC,
the program segment

CALL DCOMP(N,NDIM,NPIV,AMAT,IND)
IF (IND indicates singularity) THEN
(2.20) stop
ELSE
CALL SOLVE(N,NDIM,NPIV,AMAT,BVEC)

would compute the solution of Ax = b.

Many users have no need for the flexibility offered by the separation of
the algorithm into two parts, so the necessity to make two subroutine calls
is an inconvenience. Consequently, software packages also contain “black
box’’ routines for solving linear systems. A typical calling sequence is

(2.21)  LINEQ(N,NDIM,AMAT,BVEC,IND)

Such routines consist, basically, of the program segment (2.20). Note that
the pivoting strategy is transparent to the user.

In most subroutine packages, the argument B in the SOLVE routines is a
two-dimensional array rather than a vector. This is in order to facilitate the
simultaneous solution of, say, Ny systems Ax, = by, 1 <k < n,,,, having the
same coefficient matrix A. We can rewrite this set of systems in the form

AX =B

where X and B are n X ny, matrices whose columns are, respectively, x,
by, 1=k =ng,. In this context, the Gauss elimination algorithm (2.17) is
basically the same except that vectors are replaced by matrices. Hence, the
algorithm for solving several systems simultaneously is a simple extension
of (2.17). The calling sequence for routines with this feature would be of
the form

SOLVE(N,NDIM,NSYS,NPiV,LU,B)

The only difference from the previous form is the addition of the argument
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NSYS for specifying the number of systems to be solved. In the case of only
one system (NSYS = 1), it is usually permissible to call the routine using a
one-dimensional array BVEC for the argument B. In this way, a user is not
inconvenienced by having to declare BVEC as a two-dimensional array. We
note that the calling sequence for the LINEQ subroutine would be expanded
similarly to include the argument NSYS.

2.1.2. Errors

The Gauss elimination algorithm that we have just described can easily be
shown to be valid mathematically. That is, it can be proved that the
solution of the reduced problem Ux =d is identical to that of the original
problem Ax=b assuming that all computations are done using infinite
precision. The proof simply involves establishing that the solution of
Ax=b is invariant under the types of operations’ used to reduce the
system to triangular form. Our aim in this section is to look at the
numerical validity of the algorithm, that is, what happens when the com-
putations are done using finite precision arithmetic. Let % denote the
computed solution. Then we would like to be able to obtain some estimate
as to how good a solution % is. This will involve defining what is meant by a
“good” solution and then developing some practical measure of this
property.

A natural method for assessing an approximate solution X would be to see
how close it is to the true solution x. However, since we do not know the true
solution, it is impossible to compare % with x directly. An alternative would be
to see how well % satisfies the original equations by substituting it into the
system and seeing what is left over. But this can be very misleading as the
following example [15] illustrates:

[0.780 0.563][x.] _ [0.217]
0913 0.659]] x; 0.254
Two possible solutions are

) _[ 0.999] d 4 =[ 0.341]
=~ 1.001 n X2= 1-0.087

The correct solution is x = [1, —1]7, so %, is clearly better than %,. In fact, %,

’In the mathematical literature, these operations are called elementary row operations.
Specifically, they are:
i Interchange two rows.
ii Multiply a row by a constant.
ili Add one row to another.
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is ridiculously bad. But if we compute the residual vectors r; =b — Ax; and
r;=b— Ax, by substituting x, and %, respectively, into the system, we get

- [—0.001243] —0.000001]
' [-0.001572 0

which leads to the incorrect conclusion that %, is the better solution.
Therefore, the residual vector r is not necessarily a good indicator of
accuracy in X. The reason why it is important to realize that this sort of
situation can arise is that the Gauss elimination with partial pivoting
algorithm (2.17) is designed to produce an approximate solution % for which
the corresponding residual r=b— A% is small, that is, it will yield a
solution like %, rather than %,. But this is not to belittle the algorithm. The
trouble, as we will see, lies in the problem itself. Admittedly, this example
was made somewhat extreme in order to illustrate a point. In many (but not
all) cases, a small residual will, in fact, imply that % is close to x but the
difficulties still remain. How can we tell when the computed solution is not
particularly good, and is there anything we can do to get a better one?

In discussing these problems, we will need to compare vectors with
respect to their relative “sizes.” Let x=[x,,..., x,]7 be an n-vector and
define the norm

(222) |l|= ") = (X, + jxP + - - -+ |x, DY

and rn= [

which is the well-known Euclidean length of x. Note that the absolute
value signs are used so that the definition still applies if the entries of x are
complex numbers. For example, if x=[2,—-1,1+i]", then |x|=
(4+1+2)”=+V7. The notion of a vector norm provides us with the
desired means of comparing vectors in that we can say that x is ‘“‘smaller”
then y if |ix|| <|lyll. For example, if x=[2,1]" and y =[~1,3]", then x is
smaller than y since x| = V5<V10 =|y].

Equation (2.22) is not the only way of defining the norm or “length” of a
vector (although it is the only one we will use here). For instance, we could
have defined ||| to be?

2.23) @) Il = Ixi] + |xo + - - - + x|, or
®)  Jixll- = max|x|.

*These are special cases of the so-called €, vector norm
Ixlle = (xil? + - - + |xa )"

where p = | is an integer. The definition of ||l is the limiting case as p - ®. The norm defined in
(2.22) is the special case p = 2.
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In fact, any definition of ||-|| satisfying the following properties (which have
been abstracted from the notion of length) qualifies as a vector norm and
can be used to compare vectors:

i x| =0, with equality if and only if x=0.
(2.24) i |lcx| = |c]|-|x}l, where c is any constant.
iii |x+yll=<|}x||+|y| (triangle inequality).

It is easy to verify that each norm defined in (2.22) and (2.23) satisfies these
conditions.

We also need to have the concept of a matrix norm [|A|| in order to be
able to compare matrices. This is defined in terms of the vector norm
(2.22):

225 || =sup Al
b

where “‘sup” means supremum or least upper bound. Again, there is a
variety of ways of defining a matrix norm. As with vector norms, any
definition of ||A| that satisfies the following properties is defined to be a
matrix norm:

i ||A[|=0, with equality if and only if A=0.
ii |JcAl=]c|-)Al, for any constant c.
iii [lA+Bjj=||A]+]|B].
iv [|A- B =|\A]-[B].

The definition (2.25) of ||A|| does not lend itself to easy computation. But
fortunately, we will not actually have to compute matrix norms. It will
suffice to have a feeling for the idea of the “length” or norm of a matrix
and that it provides a means of comparing matrices. Before proceeding, we
make note of a result which will be useful later.

(2.26) ||Axl|=||A|l-lIx|  for any x

This follows immediately from the definition (2.25) of ||A|.

Let us return to our discussion of determining the accuracy in an
approximate solution x. We defined the error to be the amount by which %
differs from x, the true solution. This can be expressed as the error vector

e=x—X

Then to measure how good an approximation % is, we use the relative error
lelllixfl, that is, the size of the error vector relative to the size of the solution
vector. This gives an indication of how many digits are correct in the
components of x. Since there is no way of computing the relative error
explicitly, our problem is to estimate its size with reasonable accuracy.
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In the preceding example, we saw that the residual vector r is not a
reliable indicator of accuracy in %. Nevertheless, r has two important
virtues. The first is that it is very easy to compute. The second was alluded
to in the discussion of the example, namely, that the Gauss elimination
with partial pivoting algorithm (2.17) is designed to produce an % for which
the relative residual ||r||/||bfl is small’. Because of these features, it turns out
that r can be a very useful tool in assessing the accuracy of x after all. But
it must be used judiciously. In order to understand how and why, it is best
to look at a geometric interpretation.

Consider the case of two equations in two unknowns.

L|: a,v|x|+a|,2x2=b,
Lz: az,,x|+a2,2x2=b2

Each equation represents a straight line and the solution x =[x, x,]7 is
their point of intersection. Now, if & = (%), %2]7 is the computed solution,
then the components of the residual r = [ri, r2]7 satisfy

r=by~(a X+ ay %,)
r2= by~ (ay, 1% + aj,2%7)

The situation is pictured in Figure 2.1. The values Iri] and |ry| represent,
respectively, the distances from % to the lines L, and L,. Hence, Il =
(Iri?+|r")" is a measure of how close % is to the original lines whereas [le]l
is a measure of how close % is to the true solution x.

FIGURE 2.1

*“The relative residual is

Iirll _ [b— Ag]
[T

It can be viewed as a measure of the size of the residual vector relative to that of the problem
itself.
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Another way of interpreting % uses the fact that it is the point of
intersection of the lines L, and L,. Since we can view these lines as slight
perturbations of the original lines L; and L,, % represents the exact solution
of a slightly perturbed or shifted problem. This perturbation is caused by
round-off error incurred because the computations are done in finite
precision. Hence, by doing everything we can to minimize the growth of
round-off error as the computations proceed, we can minimize the resulting
perturbation of the system. Partial pivoting is the way we accomplish this.
To see why, we again look at the typical computation done during the
elimination

Qij < Qi) — My

The idea of partial pivoting is to ensure that each multiplier m;, is no
greater than 1 in magnitude and, in view of the discussions in Chapter 1, it
is not hard to see how this in turn will ensure that the number of correct
digits in the new value of a;; is as large as possible. Geometrically, this
means that the corresponding hyperplane (in n-space) represented by the
kth equation is shifted as little as possible. We remark that there will be a
further perturbation introduced by round-off error during the back sub-
stitution, but this will be relatively insignificant compared to that of the
elimination. Referring again to Figure 2.1, it follows that, by minimizing the
shift in the problem during the computations, the values of r; and r, will be
kept small in magnitude so that |r|| is small.

To recapitulate, our goal is to obtain a computed solution x for which the
relative error |le]|/|x|| is small. However, we have no convenient way of
computing e or estimating its norm |le/. On the other hand, the residual r is
something we can determine explicitly. Moreover, we know that it is going
to be small. But, as we have already seen, the residual r is an unreliable
indicator of the size of the error e. The troublesome cases turn out to be
when the lines are more nearly parallel as shown in Figure 2.2a. Here we

(a}

FIGURE 2.2
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see that even a small shift from L, and L, can produce a large shift in %
from x. At the other extreme is the case where L, and L, are orthogonal (at
right angles) as in Figure 2.2b. In this situation, since |l and || are
approximately equal, a small residual will, in fact, guarantee a small error.
Of course, we could encounter anything between these two extremes but
the point is that the closer the lines are to being parallel, the less sure we
are of having a small error e even though the residual r may be small.

A word or two about the above discussion is in order at this point. The
idea of “looking backward” from the computed solution % to the problem
for which it is the exact solution is a very important concept in numerical
analysis. In Figure 2.1, we viewed % as the exact solution of a perturbed
problem. It can be written as (A + E)X = b, where the matrix E represents
the perturbation in the system. We also saw that partial pivoting ensured
that the amount of perturbation is minimal, that is, |E| is small. Therefore,
from a backward error analysis point of view, we will always do very well
because we are guaranteed to obtain an X that is the exact solution of a
problem that is very close to the original one.

Geometrically, we have seen that a small perturbation in the system
ensured that r would be small. This can also be shown algebraically. We
know that x satisfies each of the equations

r=b-— Ax
0=b-—(A+E)x

By subtracting, we get
r=Ex

Then, taking the norm of each side and applying the inequality (2.26), we
have
Il =[|E]|-

Therefore, since a small perturbation in the system means that ||E|| is small,
we see that |[r| must also be small (relative to ||%[). This is why we say that
the Gauss elimination with partial pivoting algorithm is designed to produce
an X for which the corresponding residual r is small. The fact that such a
small shift in the problem can produce a large shift in the solution, as in
Figure 2.2, is no fault of the algorithm. It is a difficulty with the problem
itself. Such problems are called ill conditioned. On the other hand, systems
like the one depicted in Figure 2.2b, where a small r does indeed guarantee
a small e, are well conditioned.

The foregoing analysis was done only in the 2 x 2 case but the ideas
introduced apply equally well for larger systems. Geometrically, the solu-
tion of an n X n linear system represents the point of intersection of the n

%
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hyperplanes defined by the equations. If two or more of the hyperplanes
are nearly parallel, then a small shift in the problem could produce a large
shift in the solution, that is, the system is ill conditioned.

The above discussion gives an explanation of the reasons why difficulties
in solving a linear system can occur. But we are still faced with the more
practical problem of recognizing when they are present in a problem.
Usually, it is not obvious by inspection and drawing a picture is certainly
not practical. (It is well nigh impossible if n > 3.) We therefore need some
computational means for detecting ill conditioning. Another question we
would like to resolve is, given that the system is ill conditioned and we
obtain an % for whick |le] is not small, is there any way of correcting ¥? The
next section deals with these questions but first we need to express the
above ideas algebraically.

A relationship between e and r is easily obtained as follows. We have

Ax=b
and
Ax=b-r
Subtracting gives Ae =r, or
e=A"r
Taking the‘;lorm of each side and applying the inequality (2.26), we have
lell = HA" - firl
We also have
IIbll = AT - [
and, combining these, we obtain the inequality

2.2 Ms A Al
C2D = condA) o

where
(2.28)  cond(A)=|A]-]|A7Y|

is called the condition number of A. The inequality (2.27) provides us with
a means for estimating the relative error ||e||/ix]. The components of the
bound are the relative residual and the condition number. The former is
easily computed but the latter is not, so we have to estimate it. We will see
how to do this in the next section.

As its name implies, the condition number is a measure of the ‘“‘con-
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ditioning™ of the matrix A. The range of values it can assume is given by
I=<cond(A) =+

The lower bound follows from the fact that AA™' = I and, taking the norm
of each side, we have

I=|I=JAA™ <] AJA™] = cond(A)

The upper “bound” on cond(A) can be explained by referring to the
inequality (2.27). We have seen that the relative error lell/lix]] can be
arbitrarily large depending on the degree of parallelism in the system. On
the other hand, the relative residual [Irl/ibll is always small. Therefore, if
lell/llx]] is large, the only way that (2.27) can be satisfied is for cond(A) to
be suitably large also. The more nearly parallel the system is, the larger
cond(A) must be (with no upper bound). Thus, the condition number
provides an algebraic way of expressing the degree of ill conditioning in a
system. If cond(A) is near unity, the system is well conditioned and vice
versa.

2.1.3. Iterative Improvement

Let X, be an approximate solution to the system Ax =b. Then the iterative
improvement algorithm for computing an improved solution %,,, is as
follows:

i Compute the residual r, = b — AX; (using extended precision).
(2.29) ii Solve the system Az, =r, (and obtain z,).
iii Compute x,,, =%, + 2..

The process can be repeated until a specified stopping criterion is met (see

below). Note that it is important that the residual vector be computed using

extended precision arithmetic. This is in order to avoid bad cancellation in

taking the difference b—A%,. We also remark that the system Az,=r, in

step (ii) has the same coefficient matrix A as the original system. There-

fore, step (ii) can be done simply by calling a subroutine such as SOLVE.
As an example, we consider the system

1.23 456 9.87 || x, 4.12
-9.61 6.02 11.1 Xy |= 5.34
7.31 289 504 || xs —3.56

whose solution, correct to three digits, is x = [~0.449, —4.74, 2.66]". Using
three-digit arithmetic with one guard digit and chopping, the Gauss eli-
mination algorithm (2.17) yields
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-0.127 0.713 1 0 0 1.64

2
NPIV=| 3
+1

and %, =1—-0.430,—4.78,2.70]". Then one iteration of the iterative im-
provement algorithm (2.29) gives us

4.12000] [ 123 4.56 9.87“—0.430}

1 0 0 -9.61 6.02 11.0
L=|-0.760 1 0 U= 0 746 134

ri=| 534000 |- |-9.61 6.02 11.1 || —4.78
| -3.56000 | | 7.31 2.89 5.04 | 270

[ 4.12000 [ 4.32330 —0.203
=| 5.34000 |—| 5.32670 | =| 0.0133

| —3.56000 | | ~3.34950 —-0.210
[ —0.0192 ] —0.449
7= 0.0383 and X,=|—-4.74
| —0.0362 | 2.66

which is the correct result. We remark that, if double precision is not used
in the computation of r;, we would get

—-0.220 —-0.207 -0.637
r=| —0.0300 z;=| —0.0137 and x; = |—4.79
—-0.260 -0.0134 2.68

We begin our discussion of the algorithm by establishing its mathemati-
cal validity. This is easily done. Assuming exact arithmetic, so that Z, = z,
in part (ii), we would have

X1 =X +2Z, =%, +A7r, =%, +A7'(b- A%,)=A"D=x.

Hence, given any approximate solution %,, the iterative improvement
algorithm (2.29) will produce the exact solution x. Therefore, the algorithm
is valid mathematically. In practice, however, we do not do exact arith-
metic and X, will again be an approximate solution. But is it a better solution,
that is, is the iterative improvement algorithm valid numerically?
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The answer to this question is a qualified yes. The qualification has to do
with the conditioning of the problem and the number of digits being carried
in the computation. We will try to explain.

Let us assume that the conditioning of the matrix A is such that the
Gauss elimination algorithm (2.17) produces an approximate solution that
has, say, at least two digits accuracy in each of its components. Now let X
be any approximation for x [not necessarily the one produced by (2.17)].
By our assumption, the correction vector z; will be accurate to at least two
digits since it is obtained using (2.17). This means that the first two
incorrect digits in %, will be corrected. For example, if %, is accurate to
three digits, then %, will be accurate to at least five digits. Continuing, the
correction 2, will again have at least two digits accuracy, %; will have at
least seven digits accuracy, and so on. The process can be repeated until,
say, the rth stage where %, has the required accuracy, that is, ||z is
sufficiently small.

The above analysis depends on the assumption that Gauss elimination
will give a solution accurate to two digits. Of course, if A is better
conditioned, more accuracy is achieved in the 2,’s and convergence is
faster. Similarly, it will be slower if A is not as well conditioned and, in the
extreme when A is so badly conditioned that Gauss elimination gives no
accuracy whatever, convergence will not take place at all. In the latter
case, we say that the algorithm is numerically invalid. On the other hand,
this difficulty can be overcome if we are prepared to use greater precision
in the computations. The reasoning, of course, is that the round-off level
will be much smaller, which implies that the perturbed system obtained
after computing the LU decomposition will be closer to the original one.
This, in turn, means that the approximate solution z, of Az, = r, is closer to
the exact correction vector z,, that is, it is more accurate. In Figure 2.1, for
example, if the perturbed lines L., and L,are closer, respectively, to L, and
L,, then x will be closer to x. Hence, we can always assure convergence (or
numerical validity) of iterative improvement provided we use sufficiently
high precision in the computations. The amount of precision required at
any time depends on the conditioning of the problem at hand. But if we are
only prepared to use a specified precision, then there will certainly be cases
where iterative improvement will not converge. This is the meaning of the
“qualified yes” to the question of numerical validity.

In practice, it is not apparent, at the outset, how much precision will be
required to assure convergence. However, in the case of a subroutine
library, the choice has been made by the designers of the computer and of
the subroutines. By and large, routines, in “‘production” software packages
such as LINPACK, IMSL, and NAG work to machine hardware pre-
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cision’. This is generally sufficient to solve most problems that arise in
practice. If it turns out that the problem being solved is too badly
conditioned to be handled, then one should go back and try to reformulate
the overall computation avoiding the need to solve such an ill-conditioned
system. We will see an example of this in Section 2.3 on solving over-
determined linear systems using the normal equations method.

From our discussion, it is apparent that iterative improvement can be
very useful. For well-conditioned systems, it provides peace of mind in
that it gives assurance that Gauss elimination has produced a good solu-
tion; for less well-conditioned problems, one or two iterations will give a
better solution (and similar peace of mind); while for badly conditioned
systems, it can inform us of the fact so that an appropriate remedy can be
taken rather than proceed with the overall computations using an incorrect
result. The usual test for convergence goes as follows. First, we compute
the relative correction

(1%

This number gives an idea of how many digits in %, are correct. For
example, if RELCOR = 3.2E-3 = 0.0032, we can assume that the elements
of %, are accurate to about two digits since the first digit affected by Z; is

the third one. Hence, given a value TOL for the error tolerance, a stopping
criterion for iterative improvement would be of the form

RELCOR =

Condition Action
RELCOR <TOL stop—convergence achieved
TOL <RELCOR <1 continue iterations
1 <RELCOR stop—conditioning is excessive

In the latter case, we should stop because all of the digits in X, are being

’If full machine hardware precision is used, there will be a problem in calculating the residuals
r. since they must be computed in extended precision. However, many computer systems
provide such a facility so that programming this part of the computation will present no real
difficulty. For example, full machine precision on an IBM 3033 is double precision (i.e., 14
hexadecimal digits). The H-level Fortran compiler for this machine has a facility for quadru-
ple precision arithmetic and one need only declare this precision for the appropriate
variables. But it should be kept in mind that this capability has to be provided by system
microprograms (for each of the arithmetic operations). Hence there is a considerable overhead
cost in doing computations beyond hardware precision. But with regard to computing the
residuals rs, this is a relatively small part of the overall computation, so the extra overhead is
relatively insignificant.
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“corrected,” which means that %, or z, (or both) have no accuracy at all®.
The cause of the trouble is that A is so badly conditioned that Gauss
elimination cannot give any accuracy within the precision being used. We
say that A is numerically singular (with respect to this precision).

An estimate for cond(A) can be obtained from the results of the first
iteration of (2.29) in the following way. From the inequality (2.27), we have

-1
llﬂll] lledf]
. =cond(A)
[Ilbll ol

We assume that |r|l/|[b|| is roughly at round-off level, that is, its size is about
B~', where B is the base of the floating-point number system of the machine
being used and t is the number of digits carried. Also, we use the
approximation

€1ff . Z)

Il %l
which is reasonable even if %, has only one or two digits accuracy.
Therefore, with these approximations, we have the approximate lower
bound

A~

Z; [

H - B '=cond(A)

In practice, this is almost always an underestimate and it is often a
somewhat conservative one at that. Nevertheless, it does give some in-
dication of the magnitude of cond(A) and this is really all that is needed.
As a rough rule of thumb, if cond(A) = 107, then the last p (decimal) digits
in the solution X, may be in error.

Now we consider the efficiency of iterative improvement. We have
talked about the virtues of it but what is the cost and is it worth it? 1t turns
out to be relatively cheap. Let us look at the cost of each step in the
algorithm (2.29). We have:

i n?flops+ overhead for extended precision.
ii n’+ O(n) flops, assuming the LU decomposition of A is available.
ili nA’s.

(2.30)

The total work is about 2n? flops, which is not much compared to the n*/3

°It is possible that this situation can hold and yet RELCOR < 1. To distinguish it, we note that
if improvement in x; is actually made at each iteration, then RELCOR should decrease at a
more or less constant rate. Hence we can assure that convergence is indeed taking place by
monitoring the rate of decrease of RELCOR.
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flops required to solve the system in the first place. Of course, this count
depends on the fact that the LU decomposition does not have to be
recomputed. We remark that, since both A and LU must be stored, n?
additional storage locations are needed. But, since the cost of this is
relatively insignificant, we ignore it. Hence, the cost of iterative improve-
ment is relatively low if it is done properly. Here, then, is a case where
peace of mind comes at bargain rates.

The parameter list for an iterative improvement subroutine is typically of
the form

IMPRV(N,NDIM,NPIV,A,LU,B,X,CONDA,IER)

The routine will iterate until either machine accuracy in the solution is
achieved or it has been determined that A is too ill-conditioned for
convergence to occur. The parameter |ER is used to indicate whichever
situation holds. CONDA is used to return an estimate for the condition
number. The (lower) bound (2.30) is generally used to compute it. As we
saw, this also indicates the accuracy in the initial solution X;. Note that
both A and its LU factorization are required by IMPRV. Consequently,
before calling DCOMP, a copy of A must be made and similarly for b
before calling SOLVE. Suppose A is stored in the array AMAT and b in
BVEC. Then, to solve the linear system Ax = b with iterative improvement,
the following sequence of steps should be followed

make a copy of A in LU
make a copy of b in X
CALL DCOMP(N,NDIM,NPIV,LU,IND)
IF (IND indicates singularity) THEN
stop
ELSE
CALL SOLVE(N,NDIM,NPIV,LU,X)
CALL IMPRV(N,NDIM,NPIV,AMAT,LU,BVEC,X,CONDA|ER)

The final improved solution will be returned in X. We remark that “‘black
box” subroutines such as LINEQ in (2.21) cannot be used with IMPRV
because the pivoting strategy NPIV is not available from LINEQ.

We make a final remark concerning the implementation of algorithm
(2.29).This is with respect to the computation of the residual vector in step
(i). Suppose that one iteration of (2.29) has been done and it is decided that
a second iteration is needed. The residual r, is

n=b-Ax=b- A(X,+2) = (b— A%, — Az,

A

=r— Ai
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The latter representation tells us that r, can also be viewed as the
residual error in the approximate correction vector ;. Mathematically, the
two representations are equivalent but, numerically, they can be different.
Assuming that X, is a better solution than %, it follows from the geometrical
arguments in the previous section (see Figure 2.1) that the components of
r, will be smaller than those of r;. Hence, if we use b— Ax, to compute r,,
the cancellation will be worse than it was in computing r;, and r, will have
fewer correct digits. On the other hand, with r,=r,— A%;, we can expect
the same number of correct digits as we got for r;. If a further iteration is
necessary, we should compute r; using r,— Az, instead of b— A%,, and so
on. Therefore, step (i) of algorithm (2.29) should be rewritten as

b — Ax, if s=1
rs—l_Ais—l if s>1

’

i compute r; =

2.1.4. Special Properties

Sometimes the coeflicient matrix A will have some particular property that
can be exploited in order to make the Gauss elimination algorithm (2.17)
more efficient. If this property occurs often enough in practice, it is
worthwhile writing a special subroutine that takes advantage of it. In this
section we discuss three such properties and indicate the advantages that
can be gained from them.

The first property is symmetry, that is, a; ; = a; ;. Obviously, we can make
some savings in storage by simply storing the upper (or lower) triangle of
A. However, there is no facility for defining a triangular array in storage.
(We would still need a rectangular array to store the upper triangle.) We
therefore store the elements of the triangle as a vector by columns. For
example

a
a.;
i Q2 ay; a,,
A=la. @y a5 |>| 4 |=APAC
Ay Qzs Qs 02'3
Qs s
Then
APAC()=a,;  where) =HU=D ;. i,

2

This is known as the packed form for storing A.
Unfortunately, the symmetry property alone is not enough to save us
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anything. This is because the LU factorization process destroys symmetry
so that we still need a full n X n array to store the LU decomposition.
However if, in addition to being symmetric, A is positive definite’, it can be
shown [6, p. 164] that

if A is real, symmetric, and positive definite, then there exists a real
upper triangular matrix R such that

2.31) A=RTR

This is called the Cholesky factorization of A. Since R is upper triangular,
RT is lower triangular. Therefore (2.31) is simply another triangular
decomposition of A. But the key point is that we can represent this
particular decomposition by R alone, that is, in the same amount of space
required to store A (in packed form). In other words, the Cholesky
decomposition (2.31) preserves symmetry. As a simple example, we have

BT R
2 5111 2j{o 2
It turns out that, as with the LU decomposition, we can successively
overwrite the entries of A in computing R so that we do not need any more
storage than the n(n + 1)/2 vector APAC containing the upper triangle of A.

There is, of course, the problem of knowing, at the outset, whether or
not a given real symmetric matrix is positive definite. It usually is not
obvious by inspection. However, very often it is known to be true from the
context of the overall problem being solved but we will not concern
ourselves with this matter here.

We will not go into the details of how to compute the Cholesky
decomposition (2.31). It turns out that savings in computation time over
computing the LU decomposition can be made in two respects. First, it
can be shown that it is unnecessary to do pivoting. This saves the time
required to search for the largest pivot and also to do row interchanges.
Second, the number of operations required is n*/6+ O(n*—half that for

Gauss elimination. However there are also n square roots to be com-
puted in the Cholesky decomposition but we ignore them as being a

"An n X n real symmetric matrix A is positive definite if, for any vector x # 0, it is true that
xTAx >0, Alternatively, A is positive definite if all of its eigenvalues are positive. (Recall that the
eigenvalues of a real symmetric matrix are always real, never complex. Therefore, it is
meaningful to talk about all the eigenvalues being positive.)
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relatively insignificant part of the computation. Therefore, the operations
count to solve a symmetric positive definite system is:

i Compute the decomposition A = RTR—n?/6 flops.
ii Solve the system R"d=b —n?/2 flops.
iii Solve the system Rx=4d —n?/2 flops.

Hence the cost is about half that of the general algorithm in the amount of
work. In addition, we save on not having to do pivoting.

The second property has to do with the pattern of the nonzero elements
of A. Specifically, we are interested in the case where they appear only in a
band about the main diagonal. More formally, A = (a;;) is a band matrix
whenever there exist integers k, k = 0 such that, for 1 =< i,j<n,

if either i—j>k or j—i>k,  then g;=0

The number k=k+k +1 is called the band width of A. An example of a
6 X 6 band matrix with k=1and k=2 is

ar 42 a4y 00 0 0 aiy Gy Gps
az1 Q32 Q3 azs O 0 azy G2 O3 Oy
0 Q32 Gys Gss azs 0 A2 M3 Qs Gss
A= 0 0 Q43 Qa4 Qa5 Qg - Q3 Qag Q45 Qi =APAC
0 0 0 as,4 Qss5 Qs as4 ass dasg 0
_0 0 0 0 Qe, s a6,6_ | Q6,5 Qg 6 0 0 B

The usual way of storing a band matrix in packed form is indicated by the
array APAC. We use a rectangular array of size k Xn and store each
diagonal in the band as a column of this array. For this example, it is
apparent that not much space has been saved but, in many applications, it
is usual to have k <n so that the savings in storage are very worthwhile
(kn locations as opposed to n?. But the real saving with band matrices
comes in the operations count. In the elimination part of the algorithm, we
can exploit the fact that there are already zeros below the band (below the
kth subdiagonal) so there is no point in going through the elimination
procedure on these elements. Similar savings can also be made during the
back substitution. An operations count for each part of the algorithm is

i Decompose PA=LU—=<(n— Dk(k—1).
ii Solve Ld=Pb —=(n-1k
iii Solve Ux=d —=(n-1)k-1).



60 / NUMERICAL LINEAR ALGEBRA

The bounds represent the worst case in which pivoting may be necessary at
each stage with the result that k can increase to k — 1. To illustrate the
savings one can achieve, suppose n =100 and k = k = 3. Then k =7 and
something less than 2700 flops are required if we exploit the band structure
whereas the full Gauss elimination algorithm would require over 330,000
flops! If, in addition, A is symmetric, positive definite then further savings
can be made. Therefore, it can be exceedingly worthwhile to use a special
band matrix routine—symmetric or not, as the case may be—when the
structure is present in a problem.

The third property is sparseness. By this we mean that only a very small
number (=5%) of the elements of A are nonzero. Large band matrices with
very small band width are certainly sparse but we will exclude these from
consideration and assume that the pattern of the nonzero entries is more or
less random. This type of matrix occurs frequently in the numerical
solution of partial differential equations using the so-called “finite element
method.” Since a sparse matrix has so few nonzero elements, there is an
obvious potential for savings on computation costs and on storage. To
store A, we can save a lot of space by storing only the nonzero entries.
However, in the absence of any structure in the pattern of nonzero
elements, we must also record the location of each element as well as its
value. This is done by using rather sophisticated data structures such as
doubly linked lists. But a disadvantage of such data structures compared to
simple two-dimensional arrays is the overhead in managing them.
However, we are willing to put up with some extra overhead in this respect
as a small price for substantial savings in storage and computation costs.
The crucial factor affecting the amount of the saving is the fill-in, that is,
the number of nonzero elements in the LU factorization minus the number
in A at the outset. The idea is that some of the entries that start out as zero
become nonzero during the elimination and usually remain nonzero. Not
only do we have to access these additional elements during the com-
putation but there is also the problem of inserting them into the data
structure at the time they arise. In the case of a doubly linked list, for
example, we must record the value of the new element and also adjust the
linkages (pointers) in order to record its location in the matrix. The latter
operation takes some time. Therefore, one of the goals of a *‘sparse matrix
algorithm” is to try to keep down the amount of fill-in as much as possible.
This is accomplished through the pivoting strategy.

Up to now we have only considered one criterion for determining the
pivoting strategy—to ensure that the multipliers are <1 in magnitude. This
was in order to minimize the growth of round-off error. We will now use
the criterion of trying to minimize the amount of fill-in. To illustrate the
difference in fill-in, consider the following 6 X 6 example.
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(x x 00 x 0] [x 0000 x]
x0xx0x 0x00x0
0x00x0 _|x0x000
A=1%x0000x and  PA=|4  0x00
x0x000 xx00x0
_OxOxOO_ x0xx0x

[ 4]

3

NPIV = 3

n 6

6

-1

The matrix PA is identical to A except that the rows have been inter-
changed using the pivoting strategy defined by NPIV. Note that x’s have
been used because we are only concerned with the locations of the nonzero
entries and not with the actual values. If we do Gauss elimination (in place)
with no pivoting on each of A and PA, the resulting LU arrays would have
the following configurations, respectively, of nonzero entries

[x x 00 x 0] [x 0000 x]
x 8 xx 8 x 0x00x0
0O0x88x8 x0x008
x880688x 0x0x80
x8x08088 xx00x R
_Oxﬂxﬂﬂ_J X 0 x x 8 x|

The fill-in is indicated by the “‘8” entries. It is 16 for A and only 4 for PA.
The criterion we used for determining the pivoting stregy was to put the
row with the most number of nonzero elements at the bottom and work up
so that the (new) top row has the fewest number of nonzero elements. The
reasoning is that, by eliminating with the sparser rows first, we are more
likely to keep the amount of fill-in down. Unfortunately, this strategy does
not always work out (see Exercise 1.18) so we are faced with the question
as to what is a good strategy for minimizing the amount of fill-in. It turns
out that a method for determining a pivoting strategy that is “‘optimal” in
the sense that the fill-in is minimal is known. It is based on a result—the
minimal degree algorithm—from the field of graph theory but it is beyond
the scope of this book. In any event, it is not a practical method because it
requires 0(n’) operations so there would be no savings over a standard
Gauss elimination method. Consequently, sparse matrix routines back off
from trying to determine the optimal pivoting strategy and settle for some
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extra fill-in in exchange for a relatively quick determination of a pivoting
strategy that can generally be expected to keep the fill-in down to a
tolerable level.

We note that, since the criterion for determining the pivoting strategy is
based entirely on the locations of the nonzero elements and not on their
specific values, the strategy can be determined and applied at the outset.
This is what a sparse subroutine will do. It is called a “‘preprocessing”
stage. After this, the Gauss elimination algorithm is invoked. According to
the above discussion, it should be done without pivoting so as not to negate
the preprocessing effort to control fill-in. However, there is still a danger of
too much round-off error being introduced if the multipliers are allowed to get
too large. Therefore it is usual for a sparse routine to monitor the sizes of the
pivots and allow some row interchanges during the elimination in order to keep
them under control. In this way, the routine tries to strike a reasonable balance
between accuracy and cost.

A final word is to emphasize that, since sparse routines use complicated
data structures (which substantially increases access time for elements of
the matrix) and spend some time preprocessing the matrix, such routines
are only advantageous for very large (sparse) systems. In this regard, such
systems do not arise in a very wide variety of problems so a general
purpose software package will not normally contain sparse routines. In-
stead, they can be found in specialized packages such as those for finite
element analysis.

2.1.5. Subroutines

By and large, the linear-equation-solving algorithms that are found in
subroutine packages are designed on the basis of the foregoing ideas with
one possible exception. This is that iterative improvement may not have
been included in the package. The LINPACK package is an example. The
reasoning for this is as follows. Iterative improvement requires an exten-
ded precision capability in order to compute residuals. Therefore, assuming
that full machine hardware precision is used for the Gauss elimination and
back substitution, the use of extended precision will depend on the
availability of it through system microprograms. But, since not all com-
puter systems have such a facility, the designers of a package are faced
with the problem of whether or not to provide a subroutine which depends
on a system facility that is not always available. Due to this fact and its
implication with respect to portability of programs from one system to
another, the designers of LINPACK decided not to implement iterative
improvement. However, in the LINPACK Guide [10, p. I4], it is indicated
that if extended precision is available, an iterative improvement routine
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[implementing (2.29)] can easily be written and an example is given. On the
other hand, both the IMSL and NAG packages do have iterative im-
provement subroutines. In the case of NAG they are built into “‘black box”
routines that give ‘‘high accuracy” solutions.

For packages that do not.provide iterative improvement, there is the
problem of estimating the condition number of A in order to assess how
good the approximate solution % is. This is usually done within the
decomposition subroutines. Hence, a parameter list for such subroutines
will be of the form

DCOMP(N,NDIM,NPIV,A,CONDA)

The argument CONDA is for returning the estimate of cond(A). It can be
used to test for numerical singularity similar to the use if IND in (2.20). The
method for estimating cond(A) is beyond the scope of this book. Briefly, it
involves the solution of two linear systems having A as the coefficient
matrix so that the extra cost will be about 2n? flops—the same as one
iteration of iterative improvement. Although this is insignificant compared
to the n’/3 flops required for the LU factorization, it still costs something
and, on those occasions where one does not want an estimate for cond(A),
a saving can be made by omitting it. Hence, it is usual to find decom-
position routines in pairs—one that computes an estimate for cond(A) and
one that does not. The user is expected to choose the more appropriate one
for his or her particular application.®

Finally, we remark that the special subroutines for solving symmetric
systems generally assume that the matrix A is stored in packed form. This
can be an inconvience and so, to facilitate the use of such subroutines, a
software package will often provide utility subroutines for converting from
one storage mode to another. A routine for converting a symmetric matrix
from full to packed form would be of the form

CONVFS(N,NDIM,A,APAC)

where A is a two-dimensional array containing the matrix in its standard
form and APAC is a vector of length at least n(n + 1)/2. On return from
CONVFS, APAC will contain the original matrix in a form suitable for use
by symmetric linear equation subroutines. The price one pays for this
convenience is extra storage. However, one still gains the reduction in
computation time for solving the system and, in any event, this is the more

®If, for instance. iterative improvement has been implemented by the user, then estimating
cond(A) during the LU decomposition is redundant. Admittedly, this estimate is usually
better but all we get is the estimate, there is no improvement in x.
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significant saving to be gained by exploiting symmetry. Similarly, there are
utility subroutines for converting band matrices to packed form.

2.2. EIGENVALUES AND EIGENVECTORS

We now turn to the problem of computing the eigenvalues and eigen-
vectors of an n X n matrix A. The methods for doing this are reasonably
easy to describe but subroutine implementations of the methods are
exceedingly complex. This is because there is such a variety of special
cases that a routine must be able to recognize and handle automatically—
clustered eigenvalues and defective matrices® are examples. The methods
for dealing with these special cases are beyond the level of this book.
Therefore, we limit ourselves to describing the basic algorithms.

2.2.1. The QR Algorithm

The QR algorithm is a method for computing the eigenvalues of a matrix.
As a means of motivating its description, we first discuss, in the context of
the general format (2.1), the underlying idea of computational methods for
eigenvalues.

The eigenvalues of an n X n matrix A are defined to be the roots of its
characteristic polynomial p(z) = det(zI — A). For example, if

_[3 -6 . _[z-3 6
A—[l _4] then  zI A—[_] Z+4}

and p(z) = z+ z — 6, so that the eigenvalues of A are z = 2, —3. Hence, the
eigenvalues of a given matrix can be found by determining the charac-
teristic polynomial p(z) and then computing its roots. However, except in
the case of 2X 2 matrices, it is an exceedingly difficult job to determine
p(z) explicitly. To do it on a computer would require the use of a symbol
manipulation system and this can be very expensive. In addition, once p(z)
has been determined, there is still the problem of finding its roots. But

’A matrix is defective if it does not have n linearly independent eigenvectors. Consider, for
example, the matrices

30 [
A—[O 3] and B—[_4 5]

Each has eigenvalues u1 = p2 = 3. A has two linearly independent eigenvectors a; = [1,0]" and
a2=[0, 1]7. On the other hand, b={1,2]7 is an eigenvector of B and all others are a constant
multiple of it. Hence B is defective. This feature is equivalent to ill conditioning and can be
troublesome in computing both the eigenvalues and eigenvectors.
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there is a case where all this work is unnecessary. This is when A is quasi
upper triangular.'® For example, suppose we have the matrix

O O e o -
S DDA W

2i5 -1i3_0: 6

0:1 _156 -39 A A As A
A= 0.1 152 40 0|_| 0 Az Ay Ayl

00 0:4 1;-3 0 0 A Asg

00 0i6 3i 1 0 0 0 Ag

0i0 0i0 0.-8

then it is easy to compute the characteristic polynomial

p(z) =det(zl — A, ) det(zI — Az,) det(z] — As 3) det(z] — Ay 4)
=(z=2(z* -2z + 222 =Tz + 6)(z + 8)

Moreover, since p(z) is conveniently factored as the product of linear and
quadratic terms, there is almost no work required to compute its roots.
They are z=2, 1%i, 1, 6, —8, where i = V—1. Similarly, the same kind of
result holds for arbitrary n X n quasi-upper-triangular matrices. The sim-
plicity of solving the eigenvalue problem in the quasi-triangular case makes
this form a good candidate for the “reduced” problem in (2.1) and, indeed,

"YAn n x n matrix A = (ai)) is upper triangular if all of its below-diagonal elements are zero,
that is,
ai;j=0 i>j

For a quasi upper triangular matrix, we relax this definition a little by permitting a few
elements on the first subdiagonal to be nonzero also. The restriction is that we do not allow
adjacent nonzero elements along this subdiagonal, that is,

if aii1#0 then both a;-1,;->and ai+1.; =0

In other words, A can have some 2 %2 nonzero submatrices along its diagonal. The matrix
above is an example.

Similar definitions can be made for lower triangular and quasi lower triangular matrices.
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this is the form that is used in practice. The reduction process [step (a)]
uses the concept of similarity transformations. An n Xn matrix B is
defined to be similar to A if there exists an n X n nonsingular matrix S
such that

B=S"AS

A well-known result in linear algebra states that if A and B are similar,
then their eigenvalues are identical. Hence, the basic idea of a com-
putational algorithm for finding the eigenvalues of an n X n matrix A is to:

(a) Find a quasi upper triangular matrix B that is similar to A.
(b) Determine the eigenvalues of B.

As we will see, the process of reducing A to quasi-triangular form is quite
involved. Therefore, since step (b) is essentially a trivial calculation,
virtually all of the computational effort is expended on step (a).

Unfortunately, the reduction of a matrix to quasi-triangular form cannot
be accomplished in a finite number of steps. We therefore settle for an
algorithm that will produce a matrix B whose elements below the “quasi-
diagonal” are sufficiently small. An iterative procedure is used whereby
matrices A;(=A), Ay, As, ... are generated successively. Each is similar to
its predecessor (so that the eigenvalues are the same). In addition, each is
closer to a quasi-upper-triangular matrix in that the sum of squares of the
elements below the quasi-diagonal is smaller than that of its predecessor.
The QR algorithm, or some variant of it, is a procedure for accomplishing
this. In order to describe it, we need to introduce some concepts.

We begin with a definition. An n X n matrix Q is orthogonal if QTQ =1,
that is, Q" = Q7. Note that QT is also orthogonal and, if Q,, Q, are both
orthogonal, then so are the products Q:Q; and Q;Q,. The type of ortho-
gonal matrices we shall be concerned with are based on the form

cos 0 —sin 0]
sin cos 0

o]

where 6 is an arbitrary real number". We can construct an n X n ortho-
gonal matrix Q;; by taking the identity matrix and inserting Qg in the ith

"In the language of linear transformations on vector spaces, Qg corresponds to a trans-
formation which simply rotates vectors in the plane through the angle 6.
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and jth rows and columns. For example, if n =6, i =5, j =2, we would
have

1 0 00 0 0

0 cosbs2, 0 0 —sings, O

o 0o 10 0 0
Q2= | 0 0 1 0 0
0 sinfs, 0 0 cos s, O

0 0 00 0. 1]

In six-dimensional space, Qs corresponds to the transformation that
rotates vectors in the plane generated by the xs- and x,-axes through the
angle 65 ,.

The QR algorithm is based on the QR factorization of a matrix:

Given an n X n matrix A, there exists an orthogonal matrix Q and
an upper triangular matrix R such that A = QR.

We remark that the upper triangular matrix R in this factorization of A is
not the same as U in the LU factorization discussed in the previous
section. The following example illustrates how Q and R can be determined.
Computations are done using three-digit arithmetic. Let

(2.32)

First we annihilate the (2,1) element of A. To do this, we form a 4 4
orthogonal matrix Q,, as indicated above, choosing 6,1 so that the (2,1)
element of the product

cosf,; sinf,, O

T _ ~sin 02, 1 cOs 02,1 0
Q2,A 0 0 i
0

0 0

- oo
(=R BV I N
|
SN ONW
|
W 0N
HAO 00

is zero,.that is,
~a sin 02'1 + a  Cos 02_1 =0

From this, we have 6, ; = tan™'(a;,,/a, ,) = tan™'(5/4) and

az

5
e = —— = (.781
\/(a.,,+a“) \/41

sin 8, ;=
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a1

4
cos 6, , = =——=0.625
"' Vial, +aly Va4l
Then

" 0625 0781 0 0[4 3 2 1
r ._|-0781 0625 0 0|5 6 -7 8
Q2.4 = 0 0 1 0ll0 -2 1 o9
0 0 o 1llo o 3 -4

[6.41 656 _—4.22 6.87
_| 0o L4 —5.941 422
0 @\ 1

i 9
L 0 0*‘§J~4

Next, we annihilate the (3, 2) element by forming Q; , and choosing 6; ; so
that the (3,2) element of QJxQ7;A) is zero. We find that 6;,=

tan"'(a;;‘ 2/02‘ 2) = tan"(—2/1.41) so that sin 03,2 = —0.816 and cos 03'2 =(.576.
Then we have

10 0
T v | 0 0576 —0.816
Q:xQaaA)= 1| 0.816  0.576
0 0 0

6.56 —4.22 6.87

141 —5.94 422

-2 1 9
0 3 -4

—_—_o O O

[6.41 6.56 —4.22
|0 244 —424 -491
0 0 427
0 0

L ~

Note that the (2, 1) element remains zero. This point is an important aspect
of the process: those elements that were previously annihilated remain so.

Finally, we form Q. ; with 6,3 =tan"'(3/—4.27) and premultiply to get the
upper triangular matrix R:

~ L_nzi
10 0 0 L
T AT AT ar_| O 1 0 0 vt T
Q4.3(Q3.ZQZ,1A)_ 0 0 —0818 0.575 \.’/j ENPA
0 0 —-0.575 -0.818

41 656 —422 687
<| 0 244 -424 —491
0 0 -427 863
0 0 3 -4
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6.41 656 —-422 687

4

| 0 244 -424 —491|

=l 0 o 522 -936|=R
0 0 0 —1.69

Now if we define the (orthogonal) matrix Q = Q,,Q3:Q.3, then QT =
Q::Q7,0Q7, and the last line can be rewritten as

Q"A=R or A=QR

which is the factorization we sought. We emphasize that this is a fac-
torization of A and not a similarity transformation. The eigenvalues of R
(which are simply its diagonal elements) have no direct relationship what-
ever with those of A. We can, however, use this type of factorization to
compute easily a matrix that is similar to A. This is the idea of the QR
algorithm.

As stated above, the QR algorithm is an iterative process. We define
A;= A. Then, given the matrix A, from the sth iteration, we

i Factor A; = Q.R..

(2.33) ii Compute A, = R,Q..

The iterations are to continue until a convergence criterion is met. Note
that the second step is simply a matter of reversing the order of multi-
plication of the factors computed in the first step. This is the QR algorithm.
Each iteration of it involves a QR factorization of a matrix [step (i)] and
then a matrix multiplication.

The mathematical validity of the algorithm is easily established. We must
show that the eigenvalues of A are retained through each iteration. Noting
that R, = QT A,, we have

(234) As+l = Rst = Q’:I‘Ast = Q:—‘Ast

Hence A can be viewed as being obtained from its predecessor A by a
similarity transformation so it will have the same eigenvalues as A,. The
transformation (2.34) of A, to A, is generally referred to as the QR
transformation. In the same way, A, is similar to A,_;,, and so on.
Therefore each A.:; has the same eigenvalues as A, = A.

For numerical validity, we must consider the effects of computing in
finite, rather than infinite, precision. Since the relationship (2.34) between
Asr1 and A, will not hold exactly, there will be a perturbation of the
eigenvalues in each iteration of (2.33). We want this perturbation to be as
small as possible and herein lies one of the virtues of the QR algorithm.
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Each iteration is effectively an orthogonal transformation which, from a
numerical analysis point of view is very stable, that is, the perturbations due
to round-off are minimal. This is because, mathematically, orthogonal
transformations are length and shape preserving”. Numerically, they will
have almost the same property so round-off errors from one stage are less
likely to be magnified in subsequent computations.

We have yet to consider the question of convergence of the successive
iterates A, to quasi upper triangular form. This is an important point since
there is no use in doing all the computation if we cannot be guaranteed that
we will ultimately arrive at the “simpler problem™ of (2.1). The mathema-
tical proof of convergence of the QR algorithm consists of showing that
the sum of squares of the elements below the quasi-diagonal of A,,, is less
than that of A;. In the case that all the entries of A are real, this result has
been established (see [33] or [29]). However, for complex matrices, a rigorous
proof is not yet known. Nevertheless, since wide experience with the method
indicates that it does indeed converge in the complex case, subroutines have
been written for it.

We remark that, for complex matrices, the reduction is to upper trian-
gular form. The quasi upper triangular form is used for real matrices in
order to avoid the need to do complex arithmetic. Suppose, for example,
that A is real but some of its eigenvalues are complex. We know that there
exists an S (not necessarily orthogonal) such that ST'AS =B is upper
triangular. The diagonal of B consists of the eigenvalues of A so B must be
a complex matrix and, consequently, S will be complex too. Therefore, in
order to reduce A to upper triangular form by similarity transformations it
is impossible to avoid the occurrence of complex numbers unless A has
only real eigenvalues. On the other hand, the reduction to quasi upper
triangular form can always be done in real arithmetic after which any
complex eigenvalues can be found by applying the quadratic formula (using
real arithmetic). Since the cost of complex arithmetic is at least twice that
of real arithmetic, the savings from using the quasi upper triangular form
for real matrices are significant.

“Let Abeannxn matrix, let O be an n X n orthogonal matrix and set B = OTAO. A and B
can be viewed as linear transformations on an n-dimensional vector space V,. The length-
preserving property means that

IIBx{| = || Ax]| for any x€ V,

where ||| is the ¢, vector norm (2.22). This result follows from the fact that {|O|? = 1 (see Exercise
2.3). From (2.25), we will therefore have ||B| = ||A|| (i-e., the two matrices have the same length).
By shape preserving, we mean that if K is some geometrical shape in V,, then in the image space,
the new objects AK and BK will be similar in shape. This combined with the length-preserving
property, means that AK and BK are congruent.
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2.2.2. Subroutine Implementation

The QR algorithm turns out to be very efficient if the matrix A is in upper
Hessenberg form, that is,

a;=0 ifizj+2

In words, this means that all elements below the first subdiagonal are zero.
The matrix (2.32) is upper Hessenberg. Of course, it is not often that this
form arises in practice but we will discuss this point later. First we look at
the reasons why the Hessenberg form makes the algorithm efficient.

Step (i) of each iteration (2.33) of the QR algorithm consists of the QR
factorization of A;. The procedure for doing this was illustrated in our
example, that is, the successive premultiplication by suitably chosen
orthogonal matrices in order to annihilate the below-diagonal elements of
A, It follows from the example that premultiplying by, say, QF.; only
alters the elements in rows i and i +1 of A. Each new element in each of
these rows is the result of a computation of the form

a=bcos@+csinb

which requires the execution of 1 flop and IM. Now if A, is upper
Hessenberg, there are only n — 1 elements below the diagonal that need to
be annihilated. Referring to the example again, we can see that the number
of elements changed when premultiplying by

Q{l is n +(n-1)
Ql, is(n—-1D+@n-2)

Q;f,n—l is 2 + 1

The total is n?—1. Noting that the computation of sin 6, ; and cos 6;,, ; at
each stage requires the evaluation of a square root, we have the result that

If A is upper Hessenberg, the operations count for step (i) of the
QR algorithm is n? flops and M’s plus (n — 1) square roots.

By way of comparison, if A; were full, there would be n(n - 1)/2 elements
below the diagonal to annihilate and this would require about n?/3 flops and
M’s plus n(n — 1)/2 square roots.

The second factor in the efficiency of the QR algorithm is the invariance
of the upper Hessenberg form under the QR transformation (2.34), that is,
if A is upper Hessenberg then so is A,,,. Hence, if A, is upper Hessenberg
in the first place, we are assured that this form is retained by each
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subsequent A;. To illustrate this invariance, we again refer to the example.
The orthogonal matrix Q is

0.625 —-0.450  0.521 0.366
0.781 0.360 -0.417 -0.293
0 -0.816 —0.471 —0.331
0 0 0.575 -0.818

which is upper Hessenberg. (This will always be true when A is upper
Hessenberg.) Then, from step (ii) of (2.33), A1 = RQ; is the product of an
upper triangular matrix times an upper Hessenberg matrix and it is easy to
show that the result will be upper Hessenberg. For our example,

6.41 6.56 —4.22 6.87
0 244 —424 -491
0 0 522 —9.36
0 0 0 -1.69

Q= Qz,an,sz =

RQ=

0.625 —-0.450 0.521 0.366
0.781 0.360 -0.417 -0.293
0 —-0.816 —-0.471 -0.331
0 0 0.575 -0.818

913 292 654 -3.80
191 434 -1.84 4.70
0 —-426 -7.84 5.93
0 0 -0.972 1.38

In practice, the matrix Q is not formed at all. It turns out to be more
efficient to multiply, successively, on the right of R by each Q;;; in the
appropriate order. Since multiplication on the right by Q;,, ; will only affect
the ith and (i + 1)th columns, we have, by an analysis similar to that above:

If A is upper Hessenberg, then the operations count for step (ii) of
the QR algorithm is n? flops and M’s

Therefore,

Assuming upper Hessenberg form, the operations count for each
iteration of the QR algorithm is 2n’ flops and M’s plus (n—1)
square roots.

Now we consider the assumption that our matrix is in upper Hessenberg
form at the outset. This is rarely true but it can be shown that,
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Given an arbitrary real matrix A, there exists an orthogonal matrix
O such that A;= OTAO is upper Hessenberg.

We will not describe the algorithm for computing A except to say that the
underlying idea is similar to the one for computing a QR factorization, that
is, the successive annihilation of elements of A below the first subdiagonal.
The difference is that when we multiply on the left by QF;, we also have to
multiply on the right by Q;; in order to retain similarity. Actually, a more
sophisticated technique— using what are known as Householder trans-
formations—is employed whereby all elements down a column below the
first subdiagonal can be eliminated simultaneously. The amount of work in
reducing A to Hessenberg form A, in this manner turns out to be Sn®/3 +
O(n? flops. Again, since orthogonal transformations are used, the process
is very stable.

From the above discussion it is evident that an eigenvalue subroutine
based on the QR algorithm consists of three stages:

1. Reduce A to upper Hessenberg form A;.
(2.35) 2. Apply the QR algorithm to A,.
3. Compute the eigenvalues.

If we assume that m iterations of QR are required in step (2), the
operations count is

1. 5n*/3+ O(n? flops.
2. 2mn?® flops and M’s plus m(n — 1) square roots.
3. A few square roots, perhaps.

Since it is usual to achieve convergence in at most n iterations, we
generally say that QR requires about 4n® flops plus n? square roots.

2.2.3. Special Properties

As in the case of linear equations, considerable savings in time and storage
requirements can be made if A has some special form, so special subrou-
tines that exploit these features have been written. Symmetry is one such
property. (It is not necessary for A to be positive definite too.) The
reduction to Hessenberg form A, = OTAO will preserve symmetry so A,
will be tridiagonal—a band matrix with bandwidth 3. This structure will be
preserved by the QR iteration (2.33). By using these facts, it turns out that
each iteration of QR only requires about 8(n — 1) flops and M’s plus (n — 1)
square roots. The reduction to tridiagonal form will require about 5n’/6
flops. We note that, due to the substantial savings from exploiting the
tridiagonal structure for the QR iteration, the latter cost is the only
significant factor in the total.
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On the other hand, there is no advantage to be gained from sparsity
unless there is a special structure such as bandedness. The reduction to
Hessenberg form will usually produce an A, that is not sparse. However, if
A is banded, A, will be also. If the bandwidth is small relative to the order
n of the matrix, then it is worthwhile using a special subroutine which
assumes a band structure. For general sparse matrices, research work is
currently underway on the development of algorithms based on methods
that retain the sparsity pattern of A.

2.2.4. Eigenvectors

The method generally used for determining eigenvectors is called inverse
iteration. It is based on the so-called power method, which we describe
briefly. Suppose B is an n X n matrix with eigenvalues By, 1 <k < n, which
are ordered as follows:

(2.36) B> 1B =|Bs| = - - - =Bl

that is, B is a strictly dominant eigenvalue. Let b, 1=k =<n, be the
corresponding ‘“‘normalized” eigenvectors, that is,

Bhb, =g, with b=1 1sk=n

Now, let y®# 0 be any initial vector and define x® = y®/[|y®|. Then, the
power method iteration is

y(r) — Bx(r—l)
2.37) r=12,...

X0 = e (r)
Y
It can be shown [6, p. 209] that, due to the dominance of B,

lim X(') = ab;

r-w

where « is a constant. The name ‘‘power method” comes from the fact that
x(') = chx('_l) = crc’_lex('_z) = .. = CB ’x(o)

where ¢, = |y"’|”', and so on. In words, x” can be viewed as being obtained
directly from x by multiplication by a (normalizing) constant ¢ and the rth
power of B. The rate of convergence of x” to b, turns out to depend
directly on the rate at which the ratio (|8,}/|81])" = 0 as r increases. There-
fore, if |B] <|Bl, that is, if By is ““very” dominant, convergence will be very
fast.

Let us return to the problem of finding the eigenvectors of an n X n
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matrix A. We assume, for simplicity, that the eigenvalues py, 1 <k =< n, are
distinct and reasonably well separated. Let the (normalized) eigenvectors
of A be a,, 1 =k =n. Suppose we have obtained (by the QR algorithm)
approximate values fi, for the eigenvalues. Choose one of them, say s,
and form the matrix A - fi,JJ. Now consider the inverse matrix B, =
(A—fi,)”". We observe that

i The eigenvalues of B, are B, = (u — i)™, 1=k <n.
ii The eigenvectors of B, are b, =a,, 1 <k <n.

From (ii), we see that application of the power method to B; will yield an
eigenvector of A. The particular one that we get will be the one cor-
responding to the dominant eigenvalue of B, Now, from (i) and our
assumption about the distribution of the w,’s, it follows that the dominant
eigenvalue of B; is B, = (u, — fi;)”". Hence, the iteration (2.37), applied to
B, will yield the eigenvector a; of A corresponding to ws. Finally, since B,
is the inverse of a matrix, the power method iteration (2.37) can be written
in the form
-4 (1) — (r=1)
(2.38) (A Msll)y X
x")=M-y(” r=1,2,...

and x”— a,. This iteration must be done for each s = 1,2,...,n in order to
find all the eigenvectors of A.

Instead of each iteration consisting of a matrix-vector multiplication plus
a normalization &s in (2.37), we must solve a linear system of equations
each time an iteration of (2.38) is performed. This seems bad but there are
savings that moré than compensate. First, notice that the coefficient matrix
(for fixed s) is the same for each iteration. Therefore, we only need to do
one LU factorization of B,. But even this is too expensive—there are n
such factorizations to compute, each of which requires n*/3 flops for a total
of n*/3. We can do much better if we compute the eigenvectors of the
upper Hessenberg form A, of A. Let ¢, be an eigenvector of A; cor-
responding to u, that is,

A 1€s = HsCs

But, since A, was obtained from A by the orthogonal transformation
A= O0TAO, we can rewrite the eigenvalue equation as

OTAOc¢, = p;c, or A(Oc¢,) = u(Ocy)
from which we conclude that the eigenvectors a, of A are given by
(2.39) a, = Oc; l=s=n

Therefore, a more practical algorithm is as follows:
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i Compute the eigenvectors ¢; of A, using (2.38) with A replaced
by Al
ii Compute the eigenvectors a; of A using (2.39).

The advantage of using the Hessenberg form in (2.38) is that each LU
factorization only requires n?/2 flops for a total of n?/2. The price we pay
for this saving is the n matrix-vector multiplications (2.39): n® flops.
Altogether, then, the cost is only 3n%/2 flops (compared to n*3). A big
saving from using (2.38) is in the number of iterations required for
convergence. Assuming that g, is a good approximation for u,, the eigen-
value B; ;= (us — ;)" will be exceedingly dominant so that we will not
need to do very many iterations. Typically, convergence is achieved in only
one or two iterations. There is, of course, a potential danger with the
method due to the fact that the matrix A,— g, is almost singular. But it
has been shown (see [33]) that accuracy will not be affected if some care
is taken in choosing the initial vector y®. Fortunately, a method for
choosing it can be automated so this aspect can be built into a subroutine.
The operations count for computing each eigenvector is about:

i n?2 flops to compute the LU factorization of A;— il
ii m,n’ flops, assuming m, iterations of (2.38).
iii n’flops.

Assuming that each m; =2, the total count is about 7n3/2 flops. This is
almost as much as the cost of finding the eigenvalues alone. It is for this
reason that a software package will contain subroutines that find the
eigenvalues only and separate ones for finding both the eigenvalues and
eigenvectors. The latter should only be used when the eigenvectors are
actually needed to solve a problem.

2.3. OVERDETERMINED LINEAR SYSTEMS

We now consider the problem of “solving” a system of linear equations
Ax=b, where A is an m X n (m = n) matrix, b is a given m-vector and x is
an n-vector of unknowns. To illustrate the ideas in this section, we will use
the example

10 0 0 5.00
1.0 06 0.565 |x, 6.66
(2.40) 1.0 1.2 0932 |[x,|=|753
1.0 1.8 -0.751 X3 7.10
1.0 24 0.675 5.30

1.0 3.0 0.141 2.56
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Since there are more equations than unknowns, it is impossible, in general,
to find a vector x that will exactly satisfy all of the equations. Our first
concern, then, is to define what is meant by a “solution.” After doing this,
we will examine the problem of computing it.

2.3.1. Least-squares solution
We first define the residual vector
(2.41) r(x)=b- Ax

Then the solution of the overdetermined system Ax =b is defined to be the
vector x* that minimizes the ¢,-norm (2.22) of the residual, that is,

m 1/2
242 el = minfeeol = min [ 3 o]

x* is called the least-squares solution of the system. The term least squares
comes from the fact that the norm of a vector is the square root of the sum of
squares of its components.

We remark that the definition of x* in (2.42) depends on the particular
vector norm being used. We happen to be using the Euclidean or é,-norm
(2.22), which produces the least-squares solution, but there are other
choices that are sometimes used in practice. If, for example, the underlying
vector norm is the €.- or “uniform” norm (2.23b)

el = max |r
then x* would be the so-called “minmax”’ solution satisfying
[lr(x*)]J.. = mxin max |r;(x)|
Another possibility is the ¢;-norm (2.23a)
Ieli = 3

Each of these definitions leads to a different x*. The choice of which
particular norm to use in a problem depends on the type of solution desired
and how much one is willing to pay for it. For instance, the x* from the
uniform norm (2.23b) will give a residual r(x*) all of whose components are
guaranteed to be (uniformly) small whereas the ones from the ¢,- and
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¢,-norms may have residuals in which a component or two is a good deal
larger than the others™.

The different choices [(2.22), (2.23a and b) for defining an x*] lead to
different methods of computing it. As a general rule, least squares is the
easiest (cheapest) one to compute so it is the one that is most commonly
used. It is the only one that we discuss here. However, very good
subroutines for the other two cases are widely available.

Returning to the least-squares solution, the following result characterizes
x*:

If Ais areal mXn (m=n) matrix and b a given m-vector, then
the least squares solution x* of Ax =b satisfies the n X n linear
system

(2.43) ATAx = ATb

The system (2.43) is called the normal equations. We remark that AT
cannot be canceled from each side because this would be the same as
multiplying by (AT)™!, which is not defined since A is rectangular. It is
instructive to see how this result is established. Let x be any n-vector.
Then we want to show that |r*|| <|lr|, where r* = b— Ax* and r =b— Ax.
First of all, we have

r=b-— Ax
=b— Ax*+ Ax* — Ax
=r*+ A(x* —x)

and, from (2.43),
ATr*=AT(b—- Ax*) =0
Therefore,
el =rTr
=[r* + A(x* —x)]T[r* + A(x* — x)]
= [Ie*| + 2* = x)T(ATr*) + JA(* — x)|]?
= [Ie* I + JAG* — )

=||e*|?

BOn the face of it, this seems to be a bad feature but very often it is a desirable one. For
example, in the fitting of curves to data (see Section 3.2), there may be one or two bad data
points as a result, perhaps, of inadvertent errors in the recording measurements. The ¢- and

¢-norm solutions will more or less ignore such spurious data items whereas the €~-norm
solution will not.
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We remark that if A is of full rank, that is, r(A) = n, where r(A) is the
rank' of A, then x* is unique. This is evident in the second last line of the
proof because A(x*—x)=0 if and only if (x*~x)=0, that is, x* =x.
Moreover, if r(A) = n, then ATA is nonsingular (see Exercise 3.4) and the
normal equations have a unique solution. On the other hand, if r(A)<n,
then they will have an infinite number of solutions, each of which mini-
mizes the residual.

2.3.2. Algorithms

We discuss three algorithms for computing the least squares solution x*.
1. Normal equations (NE). This is a straightforward implementation of
(2.43). We

i Form ATA and A7b.
ii Solve the system ATAx = ATb.

For our example, the normal equations are, to three digits,

6.00 9.00 1.56 X1 34.1
9.00 198 2.15 X2 | = | 46.2
1.56 215 223 || xs 9.39
The solution is
[—1.83
- 020
x*={-0.790 with residual r¥ = )
0.189 1.84
’ 0.241
-1.92

As a measure of how well x* satisfies the system, we use the root mean
square error

1 12
(2.44) RMSE = [; (rTr)J = 1.45

It can be interpreted as the “average” least-squares error in each equation.
We remark that the value of RMSE in this example does not look

“The rank r(A) of a matrix is the number of linearly independent columns (or, equivalently, rows)
that it has.
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particularly small but, according to the theory, any other x would have a
larger value.

For this method to work, we must have ATA nonsingular or,
equivalently, A must be of full rank. In most practical applications, this
turns out to be the case anyway so it is not a serious restriction. On the
other hand, the conditioning of ATA is very often a problem but we will
discuss this point in Section 2.3.3.

Turning to the efficiency of the method, we first note that ATA is
symmetric, positive definite. This follows from the fact that, for any
n-vector x # 0,

x"(ATA)x = (Ax)T(Ax) = |Ax|* >0  since r(A)=n

Therefore, by exploiting this property, the operations count for the method
is

i mn(n+1)/2 flops to form ATA and mn flops for ATb.
ii n*/6 flops to solve the normal equations.

The total is about mn?/2+ n*/6. In many applications, it is usual to have
m > n so we often say that the amount of work is about mn?/2 flops—the
work required to form the normal equations. The storage requirement is
mn + n®[2 locations.

2. Modified Gram-Schmidt (MGS). This algorithm is in the spirit of the
general algorithm (2.1) because it consists of reducing the normal equations
to a simpler form. It is based on the following mathematical result.

Let A be a given m X n (m = n) matrix with r(A) = n. Then there

exists a unique m X n matrix Q with Q'Q = D, an n X n diagonal

matrix, and a unique n X n unit upper triangular matrix R such that
(2.45) A=0QR

We remark that this is not the same QR factorization that we discussed
in Section 2.2 on eigenvalues.

The reduction of the normal equations to a simpler form is done by
substituting the factorization (2.45) into (2.43),

RTQTQRx =R™Q"b

Now RT is unit lower triangular so its inverse exists. Hence, upon
multiplying both sides by (R7)™' and using the fact that QTQ = D, we have

(246) Rx=D"'Q"b

Since R is unit upper triangular, this system is quite easy to solve.
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Therefore, the algorithm is:

i Compute the decomposition A = QR.
ii Compute the vector D™'Q7b.
iii Solve the triangular system (2.46).

For our example, the QR decomposition of A is

10 o 0
1.0 06 0.565
|10 12 0932
A= 1.0 1.8 -0.751
1.0 24 0675
1.0 3.0  0.141 ]
(1.0 ~1.5 -0.307 ]
o 7 [0 15 0250
S I . : 0 1.0 —-0.0317 |=0QR
1.0 03 —1.00 o 0 10
1.0 09 0442 :
1.0 1.5 —0.0730
with Q"Q = D = diag(6.0, 6.3, 1.81). The solution x* is, of course, the same
as before.

We will not discuss the specifics of computing the matrices Q and R. The
method consists, in effect, of orthogonalizing the columns of A. The
classical method for doing this is the Gram-Schmidt (GS) orthogonalization
process. However, numerically speaking, this method is not very satis-
factory because it is very sensitive to ill-conditioning. (We discuss ill-
conditioning in Section 2.3.3.) But there is a variant of the method, called
the modified Gram-Schmidt (MGS) process, which does not suffer from
this defect so it is the preferred method to use. Basically, the difference
between the two methods is the order in which things are done—in GS, the
clements of R are computed column by column whereas they are com-
puted row by row in MGS. Mathematically, the two methods produce the
same result but, numerically, they can be quite different.

The operations count for MGS turns out to be:

i mn’ flops to compute the QR decomposition.
ii mn flops to form D'Q"b.
iii n?/2 flops to solve the triangular system.
The storage requirement is about the same as NE. Therefore, on the
basis of efficiency, the NE method is superior. However, it turns out that
MGS is less sensitive to ill-conditioning, an advantage that can well

outweigh efficiency considerations. An explanation for this will be easier
after we introduce the final method for finding x*.
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One final remark about the MGS method is that, like the NE method, it
assumes that A is of full rank. However, it is possible to drop this
requirement by altering the algorithm a little. There are several pos-
sibilities, each of which finds a different x* (from among the infinite
number which exist in the rank deficient case). One is to find the “‘shortest™
x*, that is, the one for which |x*| is smallest. Another uses the idea that if,
say, the kth column a, of A is found to be dependent on the others, we
simply set the corresponding component x} of x* to zero, which effectively
removes this column from consideration.

3. Singular value decomposition (SVD). This is also a method for
reducing the normal equations to a simpler form in the spirit of (2.1). It is
based on yet another factorization of A. The basic result is as follows.

Let A be a given m X n (m = n) matrix. Then there exists an m X m
orthogonal matrix U, an n X n orthogonal matrix V, and an m X n
matrix £ such that

(2.47) A=UzVT
where
!_Sl 0 ... 0]
0 s 0
(2.48) S=10 0 s | = [%]
0 0 0
0 0 0 |

with each 5; = 0.

The factorization (2.47) is called the singular value decomposition of A. The
numbers s,, ..., s, are the singular values of A. Now

(249) ATA=(UZVHTI(UZVT)=VSvT

where S is the n X n diagonal matrix defined in (2.48). Therefore, since V is
orthogonal, ATA is similar to S?= diag(s?,..., s2) and it follows that the
singular values of A are the positive square roots of the (nonnegative)
eigenvalues of ATA.
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Using the SVD factorization of A and noting (2.49), the normal equations

can be written as
VS*VTx=VETUh

Then the solution x* is given by

250) x*=V='UTp=A'p

where £'= S72 =7 is the n X m matrix defined by
~

st 0 00 ... 0]
0 55! 00 0
+
z =
0 0 s5'0 ... 0
with the understanding that
s._l:I/S,' lf s,-#O
g if =0

The matrix A"=V Z'UT is called the pseudo inverse of A. As the name
implies, it is an extension of the usual definition of an inverse for square
matrices. Note, however, that AA"# A'A since one is m X m while the

other is n X n.
For our example, the SVD of A is

—0.089 0.688 0307 * * *|[49 0 0
~0.210 0242 0485 * * = 0 112 o
~0.327 -0.106 0552 * * =* 0 0 1.49
-0.395  0.562 —-0.512 * * 0 0 0
—0.536 —0.310 0.140 * =* = 0 0 0
—0.631 —0.211 -0.289 * * *f| ¢ 0 0

[—0.442 0771  0.458

x| —0.890 —0.310 —0.335

—0.117 -0.556  0.823

Only the first n columns of U have been specified. The remaining columns
are not necessary because they will be multiplied by zero in forming the
product U =. An SVD subroutine will usually take advantage of this fact in
order to save on storage—only an m X n array is required for U instead of

an m X m one. This is significant if m > n.
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The operations count for computing x* using the singular value decom-
position is
i Compute U, =, V—2mn?*+ 4n> flops.
ii Compute x=V ='U"b—mn? flops.

In (i), the extra 4n> flops is an estimate of the work required in the iterative
phase of computing the SVD. (The method used is somewhat akin to the
QR iteration for eigenvalues.) The total amount of work is 3mn?, which is
much more than either NE or MGS. In addition, 2mn + n” storage locations
are needed and this again is much more than the other methods. However
SVD has the advantages of stability and the fact that A does not have to be
of full rank. [If r(A) < n, then at least one singular value is zero. But, since
=" is well defined, an x* can still be found using (2.49)].

2.3.3. Comparison of Algorithms

The comparison of algorithms is done on the basis of efficiency and
stability. For efficiency, we look at the operations counts and storage
requirements. Assuming m > n, these are:

NE — mn?%2 flops and mn + n?*/2 storage locations.
MGS— mn® flops and mn + n?/2 storage locations.
SVD—3mn? flops and 2mn storage locations.

The NE method is clearly the most efficient. However, on the basis of
stability, it turns out to be poor. We shall try to explain.

Stability (numerical validity) of a method is concerned with sensitivity to
the fact that the calculations are done in a floating-point number system
rather than the reals. To discuss this, we again need the concept of the
“conditioning” of a problem. Actually, the definition of the condition
number of a rectangular matrix is analogous to the one we defined for
square matrices. It is

(2.51) cond(A) = |A| - ||A']

Both A and A' are rectangular but their norms are still well defined by
(2.25). We merely have to note that if x is an n-vector, then Ax is an
m-vector. Their respective norms are well defined and, therefore, so is the
quotient ||Ax||/j}x|, provided that x # 0.

From the singular value decomposition (2.47) of A and the fact that
U] =|V]l=1 (because they are orthogonal—see Exercise 2.2), we have

lAl= U = VT =}z|

and
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=l =luTav=|A|

Therefore Al == and, similarly, |A"|=|='|. But it is easily seen from
(2.25) that

=)= max s; = Spax
I<j=n

(2.52)
1 1

£ = max s7'= —
I=<j=n mins; Spip
5;#0

Therefore, from (2.51), we have

cond(A) = M

min

In words, the conditioning of a least-squares problem is given by the ratio
of the largest to the smallest nonzero singular value of the coefficient
matrix A.

Now in the NE method, we must solve the normal equations (2.43). Since
ATA=VS®VT" it follows that the conditioning for this method is given by

s 2
cond(ATA) = [ATA]-[(ATAY| = S22

Smin

that is, it is the square of the condition number of A. Herein lies the
disadvantage of the NE method: the normal equations can easily be very
badly conditioned as a result of the squaring of the condition number of the
original problem which may only be mildly bad. For example, if cond(A) =
10°, then cond(ATA) = 10°. On the other hand, since neither the MGS nor
SVD methods involve an operation like the formation of ATA, the con-
ditioning for these methods is just cond(A).
To briefly summarize the comparison of the methods, we can say that

NE is the fastest but least dependable.
MGS is the next fastest and is dependable.
SVD is also dependable but is the slowest.

The NE method should only be used in those cases where the condition
number of A is very low. In many applications, however, cond(A) is not
particularly small so, as a general rule, one should use MGS instead. The
SVD algorithm, although it is the slowest, has the advantage of giving the
user some insight into the problem through the singular values. Their
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comparative sizes can sometimes give an indication of the relative im-
portance of different components of the solution. The SVD method can,
therefore, be quite useful as an experimental tool.

EXERCISES

Section 2.1

1.1. Consider the matrices

i 63 0.0 ii 382 -1.56 0.135
| -24 0.11 —4.02 1.08  9.11
3.59 -5.67 -—6.61

iii [0.50 033 0.25 0.50
0.50 0.25 020 1.0
10 10 10 1.0
Lz.o 30 1.0 5.0

iv [ 867 215 -411 38 0 -551
629 0 271 516 —4.04 9.12
—415 357 —-1.15 0 289 —6.69
987 1.16 433 0 511 487
-346 -287 0 247 986 2.14
| 465 1.88 844 —635 -475 824

In each case, use a decomposition subroutine to:

(a) Compute the matrices P, L, and U in the LU factorization and
verify, by multiplication, that PA = LU.

(b) Compute the determinant det(A).

1.2. For each of the matrices in Exercise 1.1, solve the linear system
Ax = b, where:

i b=[48,-3.5]"
ii b=[-6.72,10.1,-3.85]"
iii b=[13.0,11.5,40.0,75.01"
iv b=[5.81,-4.27,7.72,6.84,—1.19,3.02]"

1.3. Let A=(a;;) be an n X n upper triangular matrix, that is, a,;=0 if
i >j. Show that det(A) = a; 1az2... An n-

1.4. Verify (2.14) for the example illustrated.
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1.5. According to the well-known Cramer’s rule, the components of the
solution of Ax =b can be expressed as

X = det(A,)

' det(A)

where det(A;) is the determinant of the matrix formed by taking A and
replacing its ith column by the right-hand side vector b. Show that the
operations count for this method is n*/3 +0(n®) flops, making it much less
efficient than Gauss elimination.

1<i=n

1.6. The Gauss-Jordan method is another well-known procedure for
solving a linear system. It is the same as Gauss elimination with the
modification that elimination is done above the diagonal as well as below.
In other words, it reduces the problem Ax=b to the equivalent one
Dx=gq, where D is a diagonal matrix. Thus, the reduced problem is
especially easy to solve. But the overall algorithm is less efficient than
Gauss elimination because the operations count is n’/2 + 0(n?) flops. Verify
this count.

1.7. The ith column of the inverse A™' of an n Xxn matrix A can be
determined as the solution of the linear system Ax = e;, where e; is the ith
column of the n X n identity matrix.

(a) Compute A~ for each of the matrices in Exercise 1.1.

(b) Another method for solving Ax=b is first to compute the inverse
A7" and then the solution x = A™'b. Show that the operations count for this
algorithm is 4n°/3 + 0(n?) flops.

1.8.  Show that Gauss elimination with complete pivoting is equivalent to
finding two permutation matrices P and Q such that

PAQ=LU
where L is unit lower triangular and U is upper triangular. Using this

factorization of A, what is the algorithm corresponding to (2.17) for solving
Ax=h?

1.9. Let A be a given n X n matrix and consider the problem of solving
the system Bx=b, where B = A’+ BA + yI, with B and v arbitrary con-
stants.

(a) Sketch an algorithm for solving this problem. What is the operations
count and storage requirement?

(b) Suppose that B and y are such that B is a perfect square, that is,
B = (A + uI)’. Show how this property can be exploited to produce a much
more efficient algorithm.
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(¢) Solve the system Bx =b, where g = —10, y =25, A is the matrix of
Exercise 1.1(iii), and b is the vector of Exercise 1.2(iii).

1.10. Let x=[1,-3,8]" and y = [-9, -2, 1]". Compute the norms |x, and
lyll, for each of p =1,2,». How do the vectors compare in “length” with
respect to each norm?

1.11. Let D =diag(d,,...,d,) be an nxn diagonal matrix with each
diagonal entry d;# 0.

(a) Show that ||D|| = max|d;].
I=i=n
(b) Let ||| be the ¢, vector norm (2.22). Show that ||| defined by

Ilo = D]

satisfies the conditions (2.24) so that it is also a vector norm.

1.12. Show that |x—y|=]|x|—[yll|. Similarly, show that ||A-B|=
[lAl~1B].

1.13. Consider the n X n linear system Ax=b, where the elements of A
and b are given by

a,;=j' 1=ij=n and b= (-1)"a; 1=i=<n
i=t
The exact solution is x=[1,—1,...,(=1)""']". For example, if n =3, we
have
2 3 2 1
A= 4 9 b=| 6 and x=|-1
8 27 20 1

This is an instance where cond(A) increases very rapidly with increasing n,
that is, A is more nearly singular as n increases.

(a) Generate the system in the case n =4 and solve it using a DCOMP-
SOLVE pair of subroutines. Compute both the relative error lell/lIx]| and the
relative residual ||r{/|bj. Repeat with n =5,6,... until the computed solu-
tion X has no accurate digits. Verify that the relative residual always
remains small.
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(b) Is the value of det(A) a good indicator of ill conditioning? We know
that A is badly conditioned if it is almost singular and that, mathematically,
A is singular if and only if det(A) = 0. Hence, the original question can be
rephrased as follows. Is A badly conditioned if and only if det(A) is almost
zero? Give an explanation for your answer. [To gain some insight, compute
det(A) for each of the matrices in part (a). Also look at the individual
diagonal entries of U in the LU factorization.]

(c) A curious thing about this example is that, provided sufficient pre-
cision is used to store the elements of A exactly, one can get a perfect
solution by solving the system without doing partial pivoting. Explain why.
[Hint: Solve the 4x 4 system in part (a) by hand.)

1.14. Solve each of the systems in Exercise 1.1 and 1.2 to an accuracy of
6 significant (decimal) digits. In each case, obtain an estimate for cond(A).

1.15. Repeat Exercise 1.13(a) using iterative improvement. How large can
n be before iterative improvement fails?

1.16. Consider the following algorithm for solving Ax = b:
i Compute the LU factorization of A.
ii  Choose an initial guess x© for x.
iii Using iterative improvement, generate x, x@, ..., until done

(a) Provide a suitable criterion for ‘“‘until done.”

(b) Try the algorithm on Exercises 1.1 and 1.2(iii) with x© = 0.

(c) Is there any restriction on the choice of x®?

(d) Compare the efficiency of this algorithm with the “normal” Gauss
elimination, back substitution and iterative improvement procedure.

1.17. Let
2 -1 ) (1]
-1 2 -1 1
A= -1 2 -1 . and b= 1
-. N —1 .
L 1]

be, respectively, n xn and n X 1. For each of n = 50,75, 100, solve the
system Ax = b using subroutines designed for each of the following cases:
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i General real matrices.
ii Real symmetric positive definite matrices.
iii Real symmetric positive definite band matrices.

Record the respective execution times. Do the comparative times agree
with those predicted by the operations counts?

1.18. Suppose A has the following sparsity pattern

- OO K O

0
0
0
0
X
0

ookkox

0
X
0
0
0
0

X x
00
0 x
x 0
00
x 0x

-

(a) Find a pivotmg strategy based on the criterion of putting the sparser
rows at the top. What is the fill-in?

(b) Is your pivoting strategy in part (a) optimal? If so, explain why you
think it is. If not, can you find an optimal strategy?

Section 2.2
2.1.  Find the eigenvalues of each of the following matrices. In each case,
be sure to select the most appropriate subroutine available.
i 3 8 —6 i [ 4 240 =3+5i]
0 3 9 6 9i 0
L -4 5 3 T—i -5 6 +7i_
i [ 4 -1 -1 0] w [ 3 1+i 6-5i
-1 4 0 -1 1—i 8 4
-1 0 4 -1 | 6+5i 4 2 |
L0 -1 -1 4
v]i2-1 0 0o o
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
L 0 0 0 -1 2

2.2. Let O be an n X n orthogonal matrix.

(a) Show that, for any vector x, [|Ox| =
norm (2.22).

Ix|l, where ||| is the ¢ vector
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(b) Using (2.25) and the result of part (a), show that ||O] = 1, where ||| is
the matrix norm (2.25) induced by the ¢, vector norm.
(c) Let A be an n X n matrix and define B = OTAO. Show that ||A| = ||B|.

2.3. Let A be an n X n real symmetric matrix. Then a well-known result in
matrix theory says that there exists an n X n orthogonal matrix O such that
O"AO =D, where D =diag(wy,...,pu,) is a diagonal matrix whose
diagonal entries are the eigenvalues of A.

(a) Using this result and those of Exercises 1.11 and 2.2, show that
|All = |t max|, Where pimax is the largest (in magnitude) eigenvalue of A. (This
result does not hold for general real matrices. Why?)

(b) Show that, if A is also nonsingular, then cond(A) = |wmax/smin/, Where
Kmin 1S the eigenvalue of A that is closest to the origin.

(c) Use the result of part (b) to compute the condition number of the
matrices (iii) and (v) in Exercise 2.1.

2.4. Let A and B be n X n matrices.
(a) Show that, if both are upper triangular, then so is the product AB.
(b) Show that, if A is upper Hessenberg and B is upper triangular, the
product AB is upper Hessenberg. What about the product BA?
(c) If both are upper Hessenberg, what form does the product AB take?

2.5. Consider the following algorithm for solving an nxn system of
equations Ax =b:

i Compute the QR factorization of A.
ii Compute the vector d= QTb.
iii Solve the system Rx=d for x.

(a) Show that this algorithm is valid mathematically.
(b) What is the operations count? (Do not assume that A is upper
Hessenberg.)

2.6. When the underlying vector norm, used in (2.25) to define a matrix
norm |A|, is the ¢,-norm, it turns out that
Al = p"(ATA)
where
p(B) = max {u(B)| wi{B) an eigenvalue of B
I<i=n

is the spectral radius of B. (In words, p(B) is the radius of the smallest
circle, centered at the origin, which contains the eigenvalues, or “spec-
trum” of B.) As an example,
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. [t -2 - _[10 10]
1fA—[3 4] then A'A=

10 20

The eigenvalues of ATA are pu,=26.18 and u,=3.82, so ||A]|=V26.18=
5.12. Note that A'A is symmetric and that u,, u, are both positive.

(a) Describe an algorithm for finding the f-norm of a matrix. The
algorithm should use existing subroutines including utility routines for
finding the transpose of a matrix and doing matrix multiplication.

(b) How much work is required to compute ||A|?

(c) Implement the algorithm of part (a) and use it to compute the norm of
each matrix in Exercise 1.1.

2.7. The algorithm from Exercise 2.6 can be used to compute the con-
dition number (2.28) of a matrix. How much work is required to compute
cond(A) in this way? (Compare with the amount required to estimate it
with iterative improvement.) Determine cond(A) for each of the matrices in
Exercise 1.1. How do the results compare with the estimates obtained in
Exercise 1.14?

2.8. Find the eigenvectors of each matrix in Exercise 2.1.

2.9. The power method (2.37) will determine the dominant eigenvalue B,
of the matrix B as well as the eigenvector b,. The underlying result is that

(rN.

where (x); denotes the ith component of the vector x.

(a) Prove this result assuming that x” - ab,.

(b) Outline an algorithm for finding B, and b, by the power method.
Under what condition(s) is it guaranteed to converge? Give an operations
count for it. Are there any situations where the power method would be
preferred to QR?

Section 2.3

3.1. Prove the relationships (2.52).

3.2. Consider the overdetermined linear systems

0 5
2 —_

i 3
-1 2
6 1 B‘—|= 0
0 2 1
7 3

15
1
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ii [0.4900 1.0 0.70] 1.61]
0.4624 1.0 0.68 1.64
0.4356 1.0 0.66 1.40
0.4761 1.0 0.79 || xi 1.54

0.5476 1.0 074 || % |=]2.10
0.4900 1.0 070 || X | 1.64
0.3969 1.0 0.63 1.26
| 0.5184 1.0 0.72 [ 1.72 ]

-

In each case, do the following.

(a) Compute the best least-squares solution x*. What is the value of the
root mean square error RMSE defined by (2.44)?

(b) Find the value of cond(A).

3.3. Suppose A is an n X n matrix. Explain the differences between the
QR factorization used in the QR algorithm (2.33) and that of (2.45) used in
the MGS algorithm.

34. Let Abean m Xn (m=n) matrix with rank r(A) = n. Show that ATA
is nonsingular.

3.5. For the case where m =3 and n = 2, the residual vector (2.41) is

b, — (al. X1+ al‘zxz)
r=b—Ax=| by—(ax\x1+ az,2x3) | = r(x;, x7)
by — (a3, 1x; + a3, 2x7)

Let S(x;,x2)=r"r. Now, from the result established in Section 2.3.1, we
know that the best least-squares solution x* satisfies the normal equations
(2.43). On the other hand, we could proceed to find x* as follows. S is a
function of the two variables x;,x,. A well-known result states that a
necessary condition for S to have a minimum at x* = [x¥, x¥]” is that x*
and x% satisfy the system of equations

6S

6—x,-=0 ]=1,2

Write out this system and show that it is exactly the normal equations.

3.6. In the description of each algorithm in Section 2.3.2, the case where
m = n is permitted. Therefore, a least-squares subroutine can be applied to
solve an n X n system of equations.

(@ If m=n and r(A)=n, the normal equations will reduce to the
original system Ax=b. Why?
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(b) Verify that a least-squares routine will work for an n X n system by
solving, say, Exercise 1.1 to 1.2(jii) in this way.

(c) Let
-5 -6 1 4 -4 6
-6 0 7 3 _ 2 _ 6
A= 1 8 7 6 b, = —6 and b, = 9
3 4 -2 1 3 3

Solve each of the systems Ax=b;, and Ax=b, using a least squares
subroutine. (The matrix A is singular so a subroutine that can handle rank
deficiency should be used.) Compute the residual r* = b— Ax* in each case
and give an interpretation of the results.

(d) How well does a least-squares routine handle ill-conditioned sys-
tems? To answer this, try solving some of the systems of Exercise 1.14 and
compare the results with those obtained using Gauss elimination with
iterative improvement.

(e) Compare each of the least squares methods of this section with
Gauss elimination on the basis of operations counts and stability or
sensitivity to ill conditioning.



CHAPTER 3

INTERPOLATION AND
APPROXIMATION

In this chapter, we deal with the problem of fitting a curve to a given set of
data points {(x;, f)}{,. Curve fitting plays an important role in the analysis
and interpretation of such data. For example, the set of points may have
come from observations or measurements taken during an experiment and
the approximation (or fitted curve) can be used for predicting values at
intermediate points or else in formulating a mathematical model to describe
the process being studied. Alternatively, the data points could be viewed as
points on the graph of a known function, say y = e*, which is difficult to
evaluate. In this case, an approximation that is accurate and easily evalu-
ated could be useful as the basis for a subroutine for evaluating the
function in question.

A general formulation of the type of problem we will consider is as
follows:

(3.1)  Given a set of m data points {(x; f;)}™, in the plane and a pres-
cribed set of functions ¥, find a function g* € ¢ that best represents

this data according to some predefined measure of “goodness of
fit.”

A familiar example is linear regression, that is, the least squares fit of a
straight line to some data. The set ¢ is all possible functions g(x) of the
form

g(x)=ax+b

that is, straight lines. The measure of goodness of fit is the least-squares
function

Sxa, b)= 21 [fi = (ax; + b))
Then g* corresponds to the values a* and b*, which minimize S,. We

discuss this example in more detail in Section 3.2. Thus, the class € can be
interpreted as defining the form of the “‘mathematical model” that will be

95
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used to represent the data. The measure of goodness of fit is used to obtain
the particular model within the class that gives the best interpretation of
the data. We remark that, in general, there may be more than one g*ey
that best fits the data, but this situation will not arise in the types of curve
fitting we consider here, that is, g* will be unique.

In the above formulation, we are free to choose both the class 4 of
functions and the measure of goodness of fit. This provides us with a wide
variety of possibilities. However, as a general rule, ¢ should be restricted
to types of functions that are easy to evaluate while the definition of the
measure of fit should be such that g* is not too difficult to compute. We
discuss and compare some of the more common choices in practical use
today. The aim is to show how to select the most appropriate type of
approximation to use in a given situation. Comparisons of the different
types will be based on the following three criteria:

i Cost of computing g*.
ii Cost of evaluating g*.
iii Accuracy.

Of the two costs, the second is usually the more important. This assumes,
of course, that g* will be used (evaluated) more than just a few times so
that the single cost of determining it is relatively insignificant compared to
the total cost of all the evaluations of it. Therefore, in our discussions, we
will place more emphasis on the second and third criteria.

The organization of the chapter follows a standard format. In Section
3.1, we discuss interpolation and in Section 3.2, we consider ap-
proximation. The method of presentation is to consider various ways of
defining the class ¢ and the measure of goodness of fit in (3.1), as well as
methods (subroutines) for computing and evaluating g*.

3.1. INTERPOLATION

Interpolation is a well-known method of curve fitting. When we say that a
function g(x) “interpolates™ a set of data points, we mean that its graph
passes through each one of the points. In terms of the general formulation
(3.1), this means that g*(x) must satisfy each of the equations

(3.2) g*x)=fi I=i=m

that we call the interpolation conditions. This is the measure of goodness
of fit, that is, the error must be zero at each data point. Note that nothing is
said about intermediate points.

We consider two different classes 4 of interpolation functions—poly-
nomials and piecewise polynomials. For convenience, it will be assumed
that the x;’s are distinct, that is, x; # x;, if i# j.
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3.1.1. Polynomial Interpolation

Let the class of functions ¥ be the set &, of all polynomials of degree <n,
that is, g(x) € ¥ = P, has the form

(33) gxX)=p.(x)=apx"+a;x" '+ -+ a,_1x+a,
=(..((ax+a) x+a)-x+---+a._)x+a,.

We will soon specify how large n must be. The latter form of p,(x) is
called the nested form. It is preferable for computational purposes since it
only takes n flops to evaluate whereas, for the other, more usual form, n
flops plus nM’s are needed.

Polynomials are the classical type of interpolating function found in the
mathematical literature, mainly because they are easy to manipulate
mathematically—add, multiply, differentiate, and integrate. However, as
we will see, they have some serious shortcomings from the point of view of
accuracy and efficiency. Nevertheless, it is important to understand some
of the ideas and algorithms for polynomial interpolation so we will discuss
them in detail.

First, let us determine the size of n (degree of polynomial) needed to
ensure existence and uniqueness of g*. We will do this both geometrically
and algebraically. For the geometric derivation, we first consider the simple
case of only three data points, that is, m = 3. It is clear from Figure 3.1 that
a quadratic polynomial (the solid curve) can be made to interpolate the
three data points. Moreover, there is only one such polynomial. Of course,
we can also make a higher degree polynomial interpolate the same data but
then we will lose uniqueness'. For instance, in Figure 3.1, the dotted curves
illustrate two different cubics (n =3) that interpolate the three points.
Therefore, to guarantee existence and uniqueness of g* € #,, we need to
choose n =3—1=2. (The inequality allows for redundancy in the data,

FIGURE 3.1

'Strictly speaking, there is no need to require uniqueness. Any g* that satisfies the interpolat-
ing conditions (3.2) should be acceptable. But we must also consider efficiency, that is, we
want a g* for which the computational cost is a minimum. For polynomials, this implies that
the degree n must be as low as possible in which case g* is unique. The converse is also true
(i.e., uniqueness implies minimal degree). Hence, by requiring uniqueness, we get efficiency.
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that is, the possibility that the data points lie on the same straight line.)
This argument can easily be extended to include more data points. In
essence, it asserts the well-known fact that there exists a unique poly-
nomial of degree =m — 1, which passes through m given points. Therefore
we should choose n = m — 1.

Now we look at an algebraic derivation of the same resuit. Again, we
first consider the case m = 3. Suppose that we choose n =3—1=2. Then ¥
is the set 2, of all polynomials pax) of degree =2

pAx) = aopx*+ aix + a,

and we want to determine a3, a¥, a}, which define p%. Now the interpolat-
ing conditions (3.2) are

pAx)) = apxi+ ayx;+ ar = fi
Pax)) = apxi+ ayxs+ ay = f,
PA(x3) = apx3+ aix; + a; = f

This is a system of linear equations in the unknowns ay, a;, a;. In matrix-
vector form it is Aa=1{, or

xf Xi 1 ay f]
3.9 x3 x 1||a|=|F
x% x3 1 a, f3

Noting the one-to-one correspondence between vectors a=[ay, ai, a;]" and
polynomials py(x) of degree =2, it follows that there is a unique p% e @, if
and only if the linear system (3.4) has a unique solution. In turn, the latter
condition will be true if and only if the coefficient matrix A is nonsingular.
But we have

(33 detA=(x,~ x)(x—x)(—x) = [T (xi—x)

ij=1
i<j

so A is nonsingular (det A# 0) if and only if x;# x;, i# j. Therefore, there is
a unique interpolating polynomial p% € ®, if and only if the x;’s are distinct.
Since we have assumed the latter condition to be true, the existence of p%
follows. With this analysis, it is clear why we must choose n =2. If n > 2,
the linear system corresponding to (3.4) is underdetermined—there are
more unknowns than equations—and there is no unique solution, that is, p*
is not unique. On the other hand, if n <2, the system is overdetermined
and a solution will not exist at all unless the three data points lie on the
same straight line. Now, for the general case of m data points, the
argument is similar. We choose n = m — 1 and the interpolating conditions
generate an m Xm linear system Aa=t# analogous to (3.4), where a=
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[ag, ..., am-1])". The coefficient matrix A has a form similar to the matrix in
(3.4), that is, the elements of each column are the x;’s, each raised to the
same power. Specifically,

a,-,,-=x,’""j ISl,jsm

This is called a Vandermonde matrix (see [6, p. 369]) and its determinant is
given by the formula on the right side of (3.5). From this, it follows that A
is nonsingular, that is, p%_, exists and is unique, if and only if the x;’s are
distinct. We will refer to this result later.

The determination of p*_;(x) is our next consideration. To illustrate the
various methods of constructing it, we shall use the set of four data points

(3.6)  {=1,=D.(1,7),2,-4),(5,35)}..
An obvious way of determining p%*., is to construct the m X m linear

system as described above and then solve it. For the example data (3.6), we
have

-1 1 -1 1 ay -7
11 1 1|la | | 7
8 4 2 t|]a| | -4
125 25 5 1]]as 35

Solving the system gives a* =[2,—10, 5, 10]” whereupon the interpolating
polynomial is

3.7  pix)=2x>-10x*+5x+ 10

This is not a very good method for several reasons. First, it requires m?*/3
flops, which, as we will see, is much more than is necessary. Second, the
linear system is very often poorly conditioned—even for our small exam-
ple, cond(A) =215.

We now describe two other ways of computing p%_;(x). These are based
on two different representations of it—the Lagrange and Newton forms. It
turns out that, for computational purposes, the Lagrange form is less
efficient. However, it is a useful form for deriving other mathematical
results. In particular, we will use it in deriving the Gauss quadrature
formulas in Section 5.1.2.

Lagrange Form of p*_,(x)

We illustrate the derivation of p%_, for the data (3.6). From this it will be
clear how to extend the ideas to the general case. First, we define the
polynomials

__x=-D&x-2)x=-5 _ 1 _ _ _
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(x + D(x —2)(x—5)_1
1+1D)1-2)1-5 8

_(x+1)(x—1)(x—5)__1 _ .
13(x)—(2+1)(2_1)(2_5)— 9(x+1)(x (x —5)

Cx+1D(x - 1)(x—2)__i
LX) = a6 DG =2) ~ 72

Then the Lagrange form of p¥ is
G8) P = A3+ () + () + L) = 3 0

= (=Dh(x) + (Dh(x) + (= Hl(x) + (35)l4(x)
(=2x*> - 10x2 + 5x + 10)

L(x) =

(x+D(x-2)(x-5)

x+Dx-1D(x-2)

In order to verify that this is, in fact, the interpolating polynomial we seek,
we have to check that it has degree <3 and satisfies the interpolating
conditions (3.2). To this end, we note two properties of the [j(x)’s:

i Each [j(x) is a polynomial of degree 3.
. 1L ifi=j

b =0 i
From property (i), we see that p% is a sum of polynomials, each of which
has degree 3, so degree p% <3. Satisfaction of the interpolating conditions
follows from property (ii). For example, '

P3(x2) = (=7 i(x2) + (Da(x2) + (—4)3(x2) + (35)1a(x2)
=0+7(1)+0+0
=7

We emphasize that, by the uniqueness of pk_, established above, the
polynomial (3.8) must be the same one that would be generated by the
linear equations method. Therefore, (3.8) is simply a different represen-
tation—the Lagrange form—of the interpolation polynomial.

The main disadvantage of the Lagrange form of p}_, arises when one
tries to add an extra point to the data. The new interpolating polynomial
p=(x) cannot be obtained easily from Pr-1(x). In our example, suppose we
wish to add the point (4,20) to the data (3.6). In addition to having to
determine a new Lagrange polynomial I¢x), the formulas for
L(x),...,l{x) must also be changed. Another disadvantage of the
Lagrange form is inefficiency. The representation (3.8) requires about m?
flops to evaluate—there are m li(x)’s and each requires m — 1 flops. But
this is a little misleading because there is an alternative representation of
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the Lagrange form which is much cheaper to evaluate. Let

m

() =] (x — x)

i=1
and

ai=1](—-x) I=j=m
i#j
Then the Lagrange polynomials can be written in the form

L(x) = Ym(x)

1=j=m
(x = x)) - q !

and (3.8) becomes

m f
* = ‘ —
pra(x) = ¢m(x) = (x~Xx) - a

Using this representation, p%_,(x) only requires about 3m flops to evaluate.
Note, however, that the difficulty in adding new data points remains.

Newton Form of p%_,(x)

To construct this form of the interpolating polynomial p_,, we build it up
successively from lower order interpolation polynomials. We illustrate the
process by constructing p3 for the set of data points (3.6). The points are
taken in reverse order because this is the most convenient in terms of
algorithm design. Suppose we have determined

pT(x)=35+13(x-5)

which interpolates the last two data points (2, —4) and (5, 35). To find p3%,
which interpolates (1, 7), (2, —4), and (5, 35), we write it in the form

p3=pT+ hy(x)
=35+ 13(x — 5) + hy(x)

and the problem is to determine what h,(x) must be. Now we know that p%(x)
must be of degree <2, so deg hy(x) < 2. Also, from the interpolation property
for both p% and p3%, we must have

—4=p3Q)=pTQ+h()=—4+ h(2)> h(2) =0
35=p3(5) = pT(5) + ho(5) = 35+ hx(5) > hy(5) = 0
Hence, hy(x) must be of the form

ha(x) = Ay(x — 5)(x = 2)
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where A, is a constant to be determined. We define A, by requiring that p%
interpolate the new data point, that is, p¥(1) = 7. With this condition, we
get A, =6 and

P3(x)=35+13(x —5)+ 6(x — 5){x —2)
=35+(x—5)-[13+6(x—2)].
Continuing in the same vein, we find that

pI(x) = p3(x) + hy(x)
=p3(x) +2(x = 5)(x — 2)(x — 1)
=35+(x—5)-[13+(x—-2)-[6+2(x—D]]
(3.9 = Ast+(x = xg) - [As+ (x — x3) - [Az+ Ay(x — x)]]

By construction, this polynomial has degree 3 and it satisfies the interpolation
conditions. Therefore, it must be the unique interpolating polynomial p% in
yet another form. This is the Newton form. Again, the nested version (3.9)
is more efficient for evaluation.

The computation of the Newton form of p%-1 can be done very
efficiently. First of all, we note from (3.9) that it can be characterized by
the pair of m-vectors (x, A), where x =[x,,...,x,]7 and A = [A,, ..., Al
Therefore, given the data points {(x; f;)}™,, all we have to do is compute
the A’s. The most convenient way of doing this is to form a divided
difference table. We illustrate such a table for our example.

R 1,1 L1 L,
B
ER=7
% 1 7 2 =—6
] -1 Seh=2
3 2 —4 6
| 13
b5
!

The computations that are shown in the table illustrate how to determine
the entries. The column headed f[] consists of the y-coordinates of the

data points. The elements in the column headed fl,]are determined by the
formula

flx, x;.]= [x;:j:xi[""] with fx;]=f;
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These are called first divided differences. The next column is the second
divided differences
fIXis1, Xisa] — fIXi, Xie1]

Xiv2 — Xi

flxi, Xy, Xis2] =

and so on. The important thing to note about the table is that the last entry
in each column (underlined) is a coefficient A; in (3.9). This, in fact, is true
in general. Therefore, to find the Newton form of p¥%_,, we only need to
compute the divided difference table and retain the last entry in each
column.

The amount of effort required to compute the Newton form of p¥_, can
casily be determined. All of the work is in forming the divided difference
table. Each entry requires 2A’s plus 1D and there are (m — 1)+ (m —2)+
-+ ++1=m(m —1)/2 entries. Hence, the work is substantially less than that
for the linear equations method. Storage of the Newton form of p¥_;
requires 2m locations—the x;’s and A;’s. It is worthwhile to point out that
we do not need to provide storage for the entire difference table. We can
start with a vector containing the f;’s and successively overwrite elements
until it finally contains the A;’s. For our example, we would have

fi ~7 7 -6 2
PoA_j 7 11| & | ¢
f3 -4 13 13 13
fa 35 35 35 35

To illustrate how easy it is to add new data, suppose we want to add the
point (3, —27). All we have to do is insert the new point at the bottom of
the table and compute the new divided differences. The equivalent changes
in the f vector representation of the table would be

fi 2 2 2 2 1
f2 6 6 6 6 6
fal=f B3> 1BB|->| 18 = 18 |—>| 18
fa 35 31 31 31 31
fs -27 -27 -27 =27 =27

The new interpolating polynomial will therefore be
pa(x)=-27+(x—-3)- 31+ (x -5 -[18+(x—-2)-[6+1-(x— DI

To evaluate p}%_,, the nested version (3.9) of the Newton form requires
2(m —1)A’s and (m — 1)M’s. This is a little more than for the standard
(nested) form (3.3) but we have the advantage of considerably less work to
determine p%_,. In addition, there is the fact that new data points can easily
be added with the Newton form, that is, if a new point (X, fm+:) is added,
we can obtain the new polynomial p¥* from p*_, with very little work.
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There is one more factor concerning polynomial interpolation that should
be discussed. This is the question of error. The criterion for goodness of fit
was defined to be the interpolating conditions (3.2). Since we can construct
a p#-i that satisfies these conditions exactly, there is no error at all except
for the inevitable bit of round-off error. However, this does not take
intermediate points into consideration, which is important if we plan to use
ph-1 to predict values of f at intermediate points. Therefore, we define
another measure of error. Suppose that the data points are values of a
specific function f(x). For convenience, we let x;=a and x,=b, and
assume that each x; € [a, b], 1 =j = m. We define the new measure of error
(in any function g(x)) to be

E(g)= ggélf()c)—g(x)!

Of course, this definition does not lend itself to easy computation. Never-
theless, it is a useful analytical tool for comparing different types of
interpolating functions.

An expression for the error at intermediate points can be derived in the
following way (see [5, p. 52]). Let t €[a, b] be any point different from
X15 .-+, Xm. Then the Newton form of the polynomial p%(x) that interpolates
f(x) at the m + 1 points x, ..., x,, t is

Pr(x) = pri(x)+ flx1, . .oy Xy 1] % (%),
where f[x),...,xn, t] is the mth divided difference with respect to the

indicated points, and

¢m(X)=(x—x1)..-(x—xm)=lml(x—xs)

i=)

Evaluating p*(x) at x = t, we have

f(t) = Pﬁ(t) = Pﬁ—l(t)*'f[xh veas Xmy t]* ll’m(t)

Since t is arbitrary, we can, for notational convenience, replace it by x, and
we have

(3.10) f(x)— pﬁ-n(X) =flx1, .00y Xony X1 % P (x)

where x# x;, 1<i=<m. An alternative expression for the error at inter-
mediate points can be obtained from this by making use of the following
result [S, p. 65], which shows the relationship between divided differences
and derivatives.

Suppose f is k times continuously differentiable on [a, b] and let
Xi,..., X1 be k+1 points in [a, b], distinct or not. Then there
exists a point 6 € [a, b] such that



INTERPOLATION / 105

f*(0)
k!

Note that, if k = 1, this result is the well-known mean-value theorem for
derivatives. Using this relationship, we can replace the divided difference
in (3.10) and obtain

(3']1) f[xl’-~~’xk+|]=

£(6)

m!

B.10) f(x)—pra(x)= * Y (x)

where 6 €[a, b] depends on x. From this, we obtain the bound

E(pk-) = max lﬂy max ﬁ (x—x;)

=< .
a=x<b i=1

as=x=<b

Now, we are interested in what happens to E(p*-;) as m increases, that is,
as more data points are added (within [a, b]). The reasoning here is that, by
adding more data points, we make use of more information about f to
derive the approximating function so we should expect to get better
accuracy. In other words, E(p%_,) should decrease as m increases. Un-
fortunately, this does not always happen. Consider, for example, the
function f(x)=1/(1+x% on the interval [-S5,5]. Using equally spaced
points and estimating E(p%_|) by computing the maximum error at 100
(equally spaced) points, we have

m E(p%-)
2 6.5E-1
4 4.4E-1
8 1.0E 0

16 1.4E 1

Geometrically, the reason for such behavior is evident in Figure 3.2. By
increasing m, the oscillations of the interpolating polynomial between data
points will increase in amplitude. For an algebraic interpretation of this
phenomenon, we look at our bound for E(p%*_,). Despite the factorial term in
the denominator, the first factor does not necessarily decrease with in-

FIGURE 3.2
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creasing m. The function f(x) =tan x on the interval [0, w/4] is a case in
point. Therefore, we have no guarantee that this term in the bound gets
small as m increases. The same is true for the second factor. Its size and
behavior as m increases depends on the locations of the x;’s. The optimum
choice of points (which gives the smallest possible value for this term) is
the so-called Tchebycheff points [, p. 104] defined by

o 2l +a)~(b—a)-cos[w(2i — )/2m])

2 I=si=m
For these particular x;’s, it can be shown that
max (x—x) SZ(b_a)
asx=b | 4

The behavior of this bound as m increases depends on the size of (b — a)/4.
If it is small, then the bound goes to zero very rapidly. However, if it is
greater than one, the bound will increase in size as m increases. For
“non-Tchebycheff” points, the corresponding bound is larger but its
behavior with increasing m still depends on the size of [a,b]. To sum-
marize this discussion, we cannot guarantee an arbitrarily small bound for
E(p%-) by taking m sufficiently large. Therefore, we do not necessarily
obtain a progressively better approximation of f by using polynomial
interpolation of higher and higher degree. In fact, we usually get the
opposite effect—as the degree of polynomial is increased beyond a certain
value, the accuracy decreases. In practice then, one should use polynomi-
als for interpolating only a relatively small number of data points. This, in
fact, is the underlying idea used in the next section.

As a final point, we remark that it is possible to interpolate derivative
values in addition to function values. The process is called osculatory
interpolation. To illustrate, suppose we are given the data

{(07 —6), (2’ 12)’ (2, 41), (2, 92)9 (2’ 162)’ (3’ ]35)}

In this case, we have x; = x3=x,= x5 =2, which, of course, violates our
initial assumption about having distinct x;’s. But suppose we view the
corresponding values fs, fs, fs as the values of, respectively, the first,
second, and third derivatives of f at x,. To say that a function g(x)
interpolates such data, we mean that it passes through each of the points
and, at the second one, its first three derivatives must assume the values
specified. Hence, the interpolation conditions are

8(0)=—6 g@= 12 gB3)=135
g@= 41
g'@)= 92
g"(2) =162
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There are six conditions so, if we consider polynomial interpolation, we
must choose n = 6 — 1= 5. The linear system derived from the interpolating
conditions is

0 0 0 0 0 1|[a =3
32 16 8 4 2 11|a 12
80 32 12 4 1 0f|la| | 4
160 48 12 2 0 0| as| ™| 92
240 48 6 0 0 0| a, 162

[ 243 81 27 9 3 1]|as] [135

Once again, the coefficient matrix is nonsingular if x,# x, # x3, so p% is
unique. It is
pEx)=x"—2x*+3x—4x*+5x -6
For computational purposes, it is preferable to use the Newton form of
p¥(x). As before, its definition is
PI(X) = A+ (x ~xe) *[As+ - - *x[Ar+ (x —x) * A)]. . ]
where the coefficients are divided differences, that is,
A}'=f[Xj,...,X(,] 15].56

which can be determined by constructing a difference table. However, the
rules for forming the table must be modified because the x;’s are not all
distinct and, as a consequence, some of the divided differences will have
zero denominators. To describe the modification, we first assume that the
data is ordered in such a way that

If x,=x,,., k=0, then x,=x,,,=---=x,, and f,,,=f"(x,),
O0=sj=<k

Suppose that, in forming the rth column of the difference table, we find
that x; = x,4,. Then, instead of forming the usual divided difference table, we
simply set

f[st, L ) xs+r]

flxs, .oy x40l = ;

This modification is motivated by the relationship between divided
differences and the derivatives. If, in (3.11), x; = - - - = X,4, then the kth
divided difference of f at x; satisfies

GAY flxe... 5] = L0

From the assumption on the ordering of the data, it is clear that our
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modification wiil produce these values. For our example data, the
difference table is as follows.

i X; f[] f[9] f[;,] f[,,a] f[9,,s] f[,,’,,]
1 0 -6
9
22 12 16
41 15
3 2 41 46 6
92 ¥=27 1
4 2 92 2= 81 9
2 = 162 F=36
5 2 162 F =g
=R VX]
6 3 135

Hence, we see that the Newton form of p*(x) is

pH(x) =135+ (x —3)*[123+ (x —2)

*[82+ (x—2*[36+ (x —2)*[9+ 1 *x(x —2)]]]]

We remark that the method of selecting the coefficients (A;’s) from the
table must be altered in the case where derivative data is given for the last
point, that is, when x,-, = - - - = x,. The interpolating polynomial is derived
in the same way, but the last k coefficients A;, k —n = j < n, will be defined
by (3.11)" and these are not the last elements in each column. To illustrate,
suppose that the point (3,135) in our example data is placed at the
beginning of the list. The resulting difference table, with the A;’s under-

lined, is

i Xi f[] f[,] f[n”,]
13 135 )

2 0 -6 ; 38

3 2 12 16 22

4 2 a A e s 7 1
5 2 92 92 o 27 6 -
6 2 162 162




INTERPOLATION / 109

From this, we have

pi(x)=12+(x —2)*[41+(x — 2)
*[46+ (x —2) *[27 + (x —2)*[6 + 1 * (x — O)]1]]

Finally, we comment that, despite the apparent complexity in describing
this modification, it can easily be incorporated into an interpolation al-
gorithm. For details, see [5, p. 68].

3.1.2. Piecewise Polynomial Interpolation

We now look at the idea of using a continuous piecewise polynomial rather
than a single polynomial to interpolate a set of data points. As the name
implies, a continuous piecewise polynomial consists of segments of several
different polynomials, joined together to form a continuous curve. In what
follows, the continuity will be understood and we shall simply use the term
“piecewise polynomial.”” The points at which the segments are joined are
called knots or joints.

Piecewise polynomials have become a very popular form of function to
use for curve fitting. As we will see, they have very desirable properties
from the point of view of accuracy and computational efficiency. There is a
wide variety of possible types of piecewise polynomial that one could
choose for the class 4 in (3.1). We will discuss three of the more common
choices. For convenience, we assume that the x;’s are distinct and ordered,
that is, x; <x,<---<xp,.

1. Piecewise linear polynomials. A piecewise linear polynomial g(x) is
the simplest form of piecewise polynomial. Each piece is a straight-line
segment, that is, a polynomial of degree 1, and joining them gives a
“sawtoothlike’ curve as illustrated in Figure 3.3. Our problem, then, is to
find a function g}(x) of this form that interpolates the data {(x;, fle,. To
do this, we consider the subintervals I, = [x;, xi,,], 1 =i=m — 1, of [x,, X].
(Recall that the x;’s are assumed to be ordered so there is no overlapping of
subintervals.) Now each I; contains two data points—(x;, f;) and (Xi.y, fi+)—
so we construct the line segment that interpolates them. Then, since these

FIGURE 3.3
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points are at the ends of each subinterval, the resulting set of line segments
will automatically join together, as shown in Figure 3.3, to form a con-
tinuous piecewise linear function that interpolates the data.

A more precise definition of g%(x) can be given as follows. First of all,
let #1(x) denote the class of functions that we are considering. It can be
characterized as the set of all functions g,(x) of the form

(3.12) gi(x)=pydx)=coilx —xi)+ cy,;
if x €L =[x, Xi+1] I=si=m-1

that is, the class of all piecewise linear polynomials with knots® at x =
[x1,x2,...,%a]". Then g¥(x) is the function in %,(x) that satisfies the
interpolation conditions (3.2). For the example data (3.6), we have

Tx+1)—7 x=1
3.13) gt ={-11x-1D)+7 l=x=2
13(x —2)—4 2=x

From this we see that, in general,

co,i = fIXi, Xpa1 :)):::__); and ¢, =i
Note that the definition of the first segment is extended from the subin-
terval [—1,1] to (=, 1] and similarly for the last segment. This is a
common practice in order to define g%(x) on the whole real axis.

Turning to computational aspects, we can represent the piecewise linear
function (3.12) by the pair (x, C), where x is an m-vector containing the knots
x; and C is a2 X (m — 1) matrix containing the coefficients ¢, ;. The ith column
of C contains the coefficients for the ith piece of g,(x). For example, the g¥(x)
of (3.13) can be represented as

1
1 7 -11 13

T2 C‘[—7 7 -4
5

To determine g%, we have to compute the entries of C. The only work
involved here is in the computation of the divided differences for the first
row. There are m —1 of them and each requires 2A’s and 1D. Putting it

2’I‘echnically speaking, the endpoints x; and x. are not knots, that is, they are not places
where two pieces of gi(x) are joined. But, in (3.12), the knots are used to define the
subintervals [x;, xi;1] and, in this context, it is convenient to refer to x; and x. as knots also.
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another way, we only have to compute the first row of the divided difference
table so, compared to the Newton form of p}_,, computation of g* is much
cheaper.

The evaluation of a piecewise linear polynomial is done in two stages.
First, we must determine the correct piece of g/(x) to be evaluated and
then, second, evaluate it. Suppose we want to compute the value of g(x)
at, say, x = 5. To determine which piece of g,(x) to use, we must decide
which subinterval I; contains s. An efficient method for doing this is a
binary search procedure. Let d = [(m + 1)/2] be the greatest integer that is
less than or equal to (m + 1)/2. (For example, if m = 14, then d = 7.) We
can infer that either

s € [x1, x4] or s € [Xg, Xm]

depending on whether s =< x; or not. Whichever subinterval was found to
contain s is again split into two, and so on until the correct subinterval I is
found. The corresponding column of C is then selected for evaluation at
X =s.

The cost of evaluating a piecewise linear polynomial g,(x) is measured
by the number of comparisons® necessary to determine the correct subin-
terval I; plus the work required to evaluate the piece p, ;(x). Since each
stage of the binary search procedure reduces the set of possible subin-
tervals by half, the number of comparisons required will be the smallest
integer k such that 2* = m or, equivalently®, k = log, m. The evaluation of
p1i(x) requires only 2A’s and 1M. On the assumption that a comparison is
equivalent to an add operation, the following table shows a comparison of
evaluation costs of g} and the Newton form of the interpolating poly-
nomial p¥%_;:

A M

gT(x) log,m +2 1
proa(x) 2(m—-1) (m—-1)

*We assume that a comparison (to see which of two numbers a, b is the larger) is done by
computing the difference a — b and recording the sign of the result. Thus a comparison is
roughly equivalent to an add operation.

*More precisely, k=[1+1log:m], where the square brackets denote the greatest integer
function. The usual practice, however, is simply to write k = log: m with the understanding
that we always round up to the next integer. For example, if m = 12, we take k to be 4. We
adopt this convention in any subsequent discussions.
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If, for example, m = 12, the cost for g7 is 6A’s and 1M whereas, for p%_, it
is 22A’s and 11M’s. Hence, on the basis of computational efficiency,
piecewise linear polynomials with m knots are superior to polynomials of
deg m — 1. To confirm their overall superiority, we now analyze the error in
piecewise linear interpolation.

A bound for the error E(g7) can be obtained by first looking at the error
in each subinterval. Within I, we are interpolating two points with a
polynomial. Consequently, a bound for the error in the ith piece of g% is

My A
E(pl,i) = 2 4

where M, ; is a bound on f” in I; and A; = x;y, — x; is the length of I From
this it follows that

M,A?
8

(3.14) E@Y)=max E(p,) =

where M, is a bound on f” in the whole interval [x;, x,,] and A = max; A, is
the maximum subinterval length. In order to make a comparison with
polynomial interpolation, we will investigate the behavior of this bound as
m increases, that is, as more data points are added. Now the only term in
(3.14) that is affected by a change in m is A. Clearly, we can always ensure
that A decreases with increasing m simply by making sure that the new
data points are placed in the longer subintervals. Hence, as m increases,
we can guarantee that the bound (3.14) for the error in piecewise linear
interpolation goes to zero, that is, g7(x) can be made to approximate f(x)
as accurately as we like. Therefore, compared to the discussion of the
bound for polynomial interpolation, it follows that piecewise linear func-
tions have a much better ability to approximate f at intermediate points. In
all (practical) respects, then, they are superior to polynomials.

Finally, we describe the definition of g} in a more general way. The
purpose is to provide a setting for extension to other types of piecewise
polynomials. Any g,(x) € (x), the class of piecewise linear polynomials
with knots at x,, . .., x,,, must satisfy the conditions

i gi(x)is linear in each subinterval I, 1 <i<m — 1.

(3.15) il g(x) is continuous in [X;, Xn].

From the first condition, we conclude that g,(x) must have the form (3.12).
Therefore, since each g,(x) has 2(m — 1) parameters ¢, ;, we need this many
conditions to ensure the existence and uniqueness of g*(x). We derive
them from the interpolating conditions (3.2) and continuity condition
(3.15)(ii). Specifically, we have
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No. of
Conditions
Interpolation at
all knots gitx) = 1. l<i=m m
Continuity at
interior knots pT,,-_l(xi) = pT,i(xi) 2<i=m-1 m-2

The total is 2(m — 1), the required number. We will shortly be defining a
specific form of piecewise polynomial called a “spline” function. Since the
definition (3.15) is a special case of it, a piecewise linear polynomial is
sometimes called a “linear spline.”

2. Piecewise cubic polynomials. One possible criticism of piecewise
linear polynomials is that they are not smooth enough, that is, they are not
sufficiently differentiable. In fact, they are not differentiable at all at the
knots x;. In order to obtain more smoothness, we must go to higher-order
piecewise polynomials. Piecewise quadratics g,(x) are the immediately
obvious choice but, for reasons that we shall point out later, they are not
used much in practice. The next choice, then, is cubics. In each subinterval
I, a piecewise cubic polynomial g;(x) will have the form

(3.16)  g3(x) = p;.i(x)
= Co,i(x =X + €1.i(x — X)* + Coi(x — X)) + 3
if i <x=<xi I<=i=m-1

There are 4(m — 1) parameters so we need to impose this many conditions
in order to guarantee the existence and uniqueness of g¥(x). There are
several ways in which one can define a set of conditions. We discuss two
of them here.

2. (a) Piecewise cubic Hermite polynomials. This form of piecewise cubic
uses Hermite interpolation, that is, it interpolates first derivative values as
well as function values. (It is a special case of osculatory interpolation
discussed in the last section.) Suppose that we are given the data
{(xi, fi, f)}Z1. To construct g%(x), we proceed as we did in the piecewise
linear case by considering each subinterval I; separately. There are four
conditions to interpolate in each I: (x;fi), (x;, 9, (Xis1 fir1), (Kier, fin)-
Hence, each (cubic) piece p3 i(x) of g¥(x) can be uniquely determined trom
these conditions. Since the conditions are imposed at the endpoints of each
subinterval, the resulting set of cubic polynomial segments will automatic-
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ally join together to form a continuous piecewise cubic function whose first
derivative is also continuous.

In terms of the more general setting described above, we can verify the
existence and uniqueness of g%(x). There are 4(m — 1) conditions to be
imposed and this is done as follows:

No. of
Conditions
Interpolation at
all knots g3(x) =fi I=i=m m
g¥(x;) = fi 1=i=m m
Continuity at
interior knots  p¥i(x)=piix) 2=<i=m-—1 m—2
p;’i—l(xi)::p;ti(xi) 2=i=m-1 m-2
4dm —4

We can represent a piecewise cubic by the pair (x, C), where, as before,
x is the m-vector of knots x; and C is the matrix of coefficients ¢, ; in (3.16).
This time, however, C will have four rows, that is, it is 4 X (m — 1). Hence,
the storage requirement for g% is Sm —4 locations. The computation of g%
uses 8A’s and 4M’s per piece p;f.- for a total of 8(m — 1)A’s and 4(m —
DM’s. The cost of an evaluation is k =log, m comparisons (to find the
correct I;) plus 6A’s and 3M’s to evaluate the appropriate piece p;i (in its
nested form). Note that evaluation is only a little more work than for
piecewise linear polynomials.

2. (b) Cubic splines. The major disadvantage of piecewise cubic Hermite
interpolation is that the data must include derivative values as well as
function values. A way of avoiding this difficulty is to use cubic splines as
the form of interpolating function. To distinguish this type of function, we
will use the notation s3(x). A cubic spline is a piecewise cubic polynomial
s3(x) with the property that s, s3, and s% are all continuous. (Note the extra
degree of smoothness compared to Hermite cubics.) The name “spline”
derives from the same word employed by draftspeople for a flexible piece
of metal used in drawing curves. Referring to Figure 3.4, we visualize the
knots of s3(x) as fixed pins and thread the flexible strip through them as
indicated. Then the resulting curve that is formed is approximated by a
cubic spline. The determination of the interpolating cubic spline s% is
somewhat different from the previous cases because there are not enough
interpolating conditions to completely determine all the coefficients. In-
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Pl

FIGURE 3.4

stead, we have to use the continuity conditions directly. To explain, we
first state the conditions which define s%(x). These are

Interpolation at
all knots s¥(x) = f; 1<i=m m

Continuity at

interior knots s;. {x) = s¥i(x) 2=i=m-1 m~—2
S:; 1) = s¥i(x) 2=i=m-1 m-2

Sg, l(x.)—53.(x,) 2<i=m-1 m-—2

dm -6

However, since we need 4m ~4 conditions to guarantee existence and
uniqueness of s%, we are two short of the requirement. The usual practice
for imposing the extra conditions is to ask that

G sTx)=fi  and  s¥(xa)=fn

that is, require that the derivative of s* interpolate the derivative of f at
the endpoints. If f] and f;, are not known (which is usually the case), we
can substitute divided differences for the derivative values and get the
conditions

(.17 s¥(x) = Lzh and s¥(xm) = f'"_f"' .
X2— X Xm-1

If the derivative conditions are used, the resulting s% is often called a
spline with “‘clamped” boundary whereas, if the divided difference con-
ditions are used, it is called a spline with “free” boundary. Motivation for
these terms can be found in the analogy with the draftsperson’s spline. For
example, the clamped boundary is anlogous to clamping both ends of the
(draftsperson’s) spline at specified angles.

The computation of s%(x) can be done very efficiently. We give a brief
derivation of the algorithm for doing it. Referring to the formula (3.16) for
the ith piece p; i(x), it follows from the interpolating condition at x; that

3.18) c3i=fi l=si=m-1

For convenience, we denote
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(3]9) szi=d,' Il=si=m-1

We remark that d; is the slope of s; at x = x; since, from (3.16), p} i(xi) =
¢2,; = di. Now the continuity of s; and sj at an interior knot x = x; gives

CoimiAl it AL +dis A+ i =

3¢, imAL + 2¢im Ao + diy =d;
where A;; = x; — x;;. The unknowns in these (linear) equations are cg -,
€1,i-1, di-1, di. Solving for the first two in terms of the others, we get
Cri= flxi, XiA+.1] —d CoilA;
(3.20) ' l<i=m-1
_ digt di —2f[x;, Xi41]
Co,i = A?

where f[, ] is a divided difference and, for notational convenience, we have
increased the subscripts by one. Consequently, given the x;’s, fi’s and d;’s,
we can determine all of the coefficients. Therefore, the problem is reduced
to one of finding the d;’s. To this end, we use the continuity of s3 at the
interior knots, that is,

6C0‘,'_|Ai_1 + 2C|‘,'_| = 2C|_i 2=i=m-1

Upon substituting the expressions (3.20) for ¢q i, €1.i-1, €1,; into these
equations and doing some manipulation, we get the m —2 relationships
between the d;’s

(3.21) Ay +2(Ai + A)di + Ainydis
=3(Aioif[xi, xi1 ]+ Af [ x4, X:]) 2=i=m-1

This is a system of m —2 linear equations in the m —2 unknowns
dy,...,dn-. Note that d, appears on the left side of the first equation
(i = 2). But, as we have already noted, this value represents the slope of s3
at x =x,. Consequently, d, is prescribed by either (3.17) or (3.17).
Similarly, in the last equation of (3.21), we know the value of d., the
(prescribed) slope of s3 at x = x,,. Therefore, the d;’s can be determined by
solving® the system (3.21). After this is done, computing the coefficients ¢ ;
for s% is a simple matter of substituting into (3.18), (3.19), and (3.20).

At this point, it is instructive to look at an example. We use the following
data

{(_ ], —7)5 (]’ 7)’ (2, _4), (3’ - ])’ (5’ 35)5 (6’ 30)}

*It can be shown [24, p. 76] that this system will have a unique solution, that is, the coefficient
matrix is nonsingular if each A;# 0. Alternatively, a solution exists if the x;’s are distinct.
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which is the data (3.6) with two points added. To set up the system (3.21),
we first compute the A;’s and f[, ]’s. These are

i X; A; fi Fxiy xi11]

1 -1 2 =7
2 1 7 _]Z
3 2 1 -4 3
4 32 - 3
5 5 1 35 s
6 6 30

Using the conditions (3.17), we have
di=flx;,x;]=7  and de = flxs, xg] =—5
Then the system (3.21) is

6 2 0 0][4d; ~45-7 —-52
1 4 1 0||ds| | -24 | 24
0 2 6 1||ds] 72 T 72
0 0 1 6{]ds 24+ 10 34

We observe that the coefficient matrix has a band structure—it is tridi-
agonal—so the system can be solved very efficiently. In fact, it is clear
from (3.21) that the tridiagonal structure will always be present. This is a
very important feature because, by exploiting it, this part of the com-
putation of s% can be done very efficiently—4(m —2) flops rather than
(m —2)’/3. The solution of the system, to three digits, is

d=[-5.99,-8.03,14.1,3.31]7

Finally, knowing the A;’s, f’s, f[,1’s, and d;’s, we substitute into (3.18),
(3.19), and (3.20) to get

—3.25 7.98 0.0960 —4.64 8.31

C= 6.49 —13.0 10.9 1.2 -16.6
| 70 =599 -8.03 14.1 3.31
=7.0 70 -40 -1.0 35.0
whereupon

—3.2521 +6.4923+7.00z,— 7.0 if x=1

7.9823—13.023-5.992,+ 70 if 1=x=<2

(3.22) s3(x)=10.0960z3+10.922-8.032;— 40 if2=<x<3

~4.64z3+ 11225+ 14.124— 1.0  if3=x<S$5
8.3122—16.622+3.312,+350 if S5=x

where z;=x—x, 1 =i =<35.
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With this example as a model, we can easily analyze the amount of work
required to compute s*%(x). The successive stages in the process and their
approximate costs are:

A M

i Compute A;’s and f[, ]’s. 2(m—1) m-—1
ii Set up the linear system (3.21). 3(m —2) 2(m —2)
iii Solve the linear system (3.21). 4m—-2) 4(m —2)
iv  Compute the ¢ ;’s. 4m-1) 2m —-1)

13m Om

Note that the cost of step (iii) assumes that we take advantage of the
tridiagonal structure of the linear system (3.21). The total cost is a little
more than for the other types of interpolating functions we have con-
sidered. However, as we have already pointed out, the cost of determining
s% is not too important provided, of course, that it is not excessive, which
is certainly the case here. In any event, the little extra work is well worth
it. The interpolating cubic spline has good accuracy—the error bound is

* M4A4
E(s3) =735

where M, is a bound on the fourth derivative f% of f on [xi, x..], and
A =max; A. It is also quite smooth since it is twice differentiable. In
addition, the cost of evaluating s% is very cheap—log, m comparisons plus
6A’s and 3M’s.

In summary, piecewise polynomial interpolation has every computational
advantage over polynomial interpolation. The choice between linear and
cubic depends, basically, on the degree of smoothness desired. Cubic
splines cost a little more to determine and to evaluate but are much more
accurate and much smoother.

It is, of course, possible to use higher degree piecewise polynomials.
Splines are the type considered most commonly. They are defined by
imposing continuity conditions on derivatives of sufficiently high order. For
example, quintic splines ss would have 6(m — 1) parameters ¢, ;, defined by
imposing the interpolating conditions at all knots and the continuity of ss(x)
and its first four derivatives at interior knots. This specifies 6m — 10
conditions, leaving four degrees of freedom that can be used to define
conditions at the endpoints as we did with cubic splines. We could go on to
even higher-degree splines but it is rare that one would need so much
smoothness. In this regard, cubic splines are usually quite adequate for
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most practical purposes. They certainly are the ones that are most com-
monly used.

Finally, we remark on why piecewise quadratics g»(x) were not con-
sidered. A piecewise quadratic has 3(m — 1) parameters to be defined. For
guadratic splines, we would impose the interpolating conditions at all the
knots and continuity of g, and g3 at interior knots. Since this gives 3m —4
conditions, there is only one degree of freedom remaining. But if we use it
to define some condition at an endpoint as we did with cubic splines, the
resulting quadratic spline would have a certain lack of symmetry. In other
words, there is no natural or convenient way of disposing of the extra
degree of freedom.

3.2. APPROXIMATION

There are many curve-fitting problems where the use of interpolation as a
criterion for goodness of fit is inappropriate. For example, in situations
where m is large, the requirement that g* pass through every data point
will very often obscure some of the overall characteristics such as the
general trend of the data. Another instance is when the data is subject to
error, as is often the case when taking measurements or readings in an
experiment. In this situation, it does not make sense to require that the
approximating function g* interpolate such data exactly. Instead, it is
preferable for g* to reflect the general behavior of the data as a function of
x. In other words, it is usually better to find a g* that approximates the data
in some sense rather than one that reproduces it exactly. We will now
consider ways of defining and computing such approximating functions.
For convenience, we will assume that the x;’s are distinct and are contained
in the interval [a, b], thatis,a=x;=b, I =si=m.

We will be looking at approximation using various types of functions—
polynomials, piecewise polynomials, exponential functions, and so on. It
turns out that all of these are special cases of a general theory of
approximation using functions from what is called a “linear® function
space.” (The name may seem a bit overwhelming but the ideas involved are
not particularly complicated.) The approach taken here will be to develop
some of the concepts of the theory first (Section 3.2.1). This will provide a
general framework from which we can easily describe and compare
specific types of approximation (Section 3.2.2). In Section 3.2.3, we discuss
the specific case of periodic functions.

“The term “linear” in this context does not mean that we are restricted to approximating by
straight lines. Instead, it refers to the way of representing the different types of functions as
linear combinations of functions from a specified set.
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3.2.1. Linear Function Spaces

We recall that, in the general formulation (3.1) of the curve-fitting problem,
we are free to choose both the class ¢ of functions and the definition of
goodness of fit. Let us look at the choice of ¥ first.

In order to motivate some of the ideas involved, we will begin by
considering, as the choice of %, the set ?; of all polynomials of degree < 3.
We define the specific set B = {1, x, x2, x%}, each of which is an element of
P?;. Then it is clear that any py(x) € %, can be expressed as a linear
combination of members of B, that is,

(323) pix)=c -1+ cox + c3x2 + cax®

We can characterize any p;(x) by the pair (c, B), where ¢ = [c1, €2, €3, ca]T is
the vector of coefficients in (3.23) and B is the “generating set” defined
above. In other words, given the set B, every pi(x) has a unique represen-
tation given by its corresponding vector ¢. We remark that it may seem
redundant to have to include B in the characterization of pi(x). After all, it
is easily understood that ¢; is the coefficient of x'', 1 =j =4. However,
there are many other possible sets that will do the job of “‘generating” P,
and, for any given polynomial, the corresponding ¢ that represents it will
depend on the particular set B that is used. For example, consider the
polynomial (3.7)

p3(x) =10+ 5x — 10x2+ 2x?
With respect to the set B above, this polynomial has the representation
¢ =[10,5,-10,2]". But two other possible generating sets (see Exercise 2.2)
are

{1, x, x2—1/3, x> - 3x/5)
(3.24) and

{1(x), 1:(x), 15(x), 14(x)}

the Lagrange polynomials of (3.8). The representations of the polynomial
(3.7) with respect to these sets are, respectively,

[2,-10,31/5,20]7 and [-7,7,-4,35]"

The latter representation was given in (3.8). Therefore, in order to charac-
terize p; precisely, we must specify both ¢ and the set B used to generate
the class ?;. From this, it follows that the problem of finding a best
approximation p% € % to some given data consists of two steps:

i Define a generating set B for ®,.
ii Compute the vector c* corresponding to p¥ relative to B.
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An obvious question is whether or not it makes any difference which set is
chosen. For computing c¢*, the answer is ‘“‘not much.” We will elaborate on
this later. On the other hand, for evaluating p%, it does make a difference.
For instance, the representation (3.23) is clearly cheaper to evaluate than
the corresponding representations with respect to either of the sets (3.24).
Therefore, if p% will be evaluated quite often in any subsequent com-
putation, an appropriate choice of B could result in significant savings.

With this example in mind, we now formulate a general setting for the
approximation problem. Let B = {$i(x), $2(x),..., ¢.(x)} be a set of n
specified functions. Then the class ¢ of approximating functions will be
defined to be the set of all functions g(x) of the form

(3.25)  g(x) = c1d1(x) + Capa(X) + - - + Caa(X)

that is, g(x) is a linear combination of functions ¢;(x) from the generating
set B. Hence, the choice of the class 4 of approximating functions is
effectively made by specifying the set B = {¢;(x)}]-;. Any g € 4 can be
characterized by the pair (¢, B), where ¢= {cy,...,ca]T is the vector of
coefficients relative to B. Therefore, given B, the problem of determining
the best approximation g* is equivalent to computing the corresponding
vector c*.

The example of the class %; of cubic polynomials is clearly a special
case of this formulation. Indeed, polynomials of any degree r can be
described in this way by taking n=r+1 and ¢j(x)=x""', 1=j=n. As
another example, we let n =4 and define B ={l, x, sin(x), e *}. Then 4 is
the class of all functions of the form

(3.26) g(x)=c+cax +cysin(x)+ cge™

From this it is clear that polynomials are only one of many possible classes
defined by (3.25). In fact, as we will see in the next section, even piecewise
polynomials can be described in this form. Therefore, this theory can be
used to describe a very wide range of types of approximating functions.

At this point, we need to introduce some terminology. The class ¢ of
functions g(x) defined by (3.25) is called a linear function space. This name
is meant to reflect the analogy with linear vector spaces for, if we
substitute vectors x; for the functions ¢;(x) in (3.25), we will have the usual
definition of an element x of a vector space. This analogy is continued in
the following definitions of other terms.

We will assume that the set B = {¢;} is linearly independent. A formal
definition of this term is:

A set of functions {¢j(x)}}= is linearly independent on [a,b] if
there exists at least one set of n distinct points s;,..., s« E[a, b]
such that the relationships
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(327) Cld’l(sk) +---+ Cnd’n(sk) =0 I=k=n

imply that ¢, =---= ¢, =0. Otherwise, the set is linearly depen-
dent.

The analogy with the corresponding concepts in vector spaces is easier to
see in the case of linear dependence. As a simple example, we consider the
set {1, x, 3x — 2}. Quite clearly, ¢3 = —2¢, + 3¢, s0 we have

2¢1(x) = 3dxx) + Px(x)=2(1) - 3(x)+(3x—2)=0  for any x

Therefore, it is impossible to find a set of distinct points s, s2, 53 satisfying
the above definition and we conclude that this set of functions is linearly
dependent (on (—, +x), the whole real line). On the other hand, any pair
of functions—{1, x}, {1, 3x — 2} or {x, 3x — 2}—from the set can be shown to
be linearly independent. For instance, with the first pair, we can choose
s; =0, s, =1 and the equations (3.27) are

51=0: ¢, =0
=1 ¢;+¢=0

which are satisfied if and only if ¢;=c,=0. Now, returning to the
development of terminology, the set B = {¢;}]-; of linearly independent
functions is called a basis for 4 and each member of it is called a basis
function. We also say that the basis B generates 4. The dimension of 4 is
dim(%) = n, the maximum number of linearly independent functions in it.
Again, for the example of cubic polynomials, we have dim(%;) = 4.

We now discuss the choice of the measure of goodness of fit. Again, we
use a simple example in order to motivate the ideas involved. Consider the
set of data given in the following table

i X; fi
1 0.1 1.97
2 0.2 3.81
(3.28) 3 0.3 5.40
4 0.5 7.85
5 0.7 9.51
6 1.0 11.1
7 14 12.3
8 2.0 13.3
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which was generated from the function y = 10 tan™' x. Suppose we want to
approximate this data by a polynomial of degree <1, that is, a straight line.
As a basis for the space ?,, we will use B ={l,x} so the form of
approximating function is

g(x)=c +cx

Now, in order to define a measure of goodness of fit of g(x) to the entire
set of data, we need a measure of the error at each individual data point
(x:, f). To this end, we define the errors or residuals

(3.29) ri(e)=fi—g(x)
= fi ~ [C1u(x:) + c202(xi)]

= fi —[c1 + caxi] 1<i<8§

Note the dependence of r; on the vector ¢ =[c;, c,]7 of coefficients of g(x).
Geometrically, as Figure 3.5 illustrates, each r; is the vertical distance from
(xi f:) to the graph of g(x). We remark that, theoretically, one could
measure the errors in any one of a variety of directions. In particular,
either the horizontal or perpendicular (to g) direction could be used.
However, in terms of defining a good fit to the data, there is no particular
reason to favor one method of measurement over another. Therefore, the
choice is based on computational considerations and, in this respect, the
vertical direction is by far the most convenient. We are now ready to define
a measure of the goodness of fit to the data. There is a wide variety of
possible measures that could be defined, but only three are ever used in
practice:

Se) = |nl+[r+ - -+ |rg = Z‘ ||
m 12
(3.30)  Syc)=[r2+r3+---+ri= [Z ,g]

S(c) =max{|r|,|rs, ..., |rsl} = ‘m_ax |ril
=i=m

(x; . glx;}}

FIGURE 3.5
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Of these, the second one is by far the most commonly used since it leads to
a relatively straightforward algorithm for computing c¢*. But, whichever
measure Si(c) is chosen, we define the best approximation p* to be the
element of @, corresponding to the vector ¢* that minimizes Si(c). For
example, if we use the measure Sy(c), then ¢* is the vector satisfying

m 12
(3.31)  Sy(c*) = min Sy(c) = min [2 [fi—(c:+ Cin)]z]‘
< c i=1

For obvious reasons, the corresponding p¥ is called the best least-squares
fit in 2, to the data. We discuss the existence and uniqueness of c* below.
We remark that ¢* will be different for each measure. In other words, the
best approximation depends on the method of measuring the goodness of
fit.

It remains to specify a method for computing c*. In order to do this, it is
convenient to reformulate the above ideas in matrix-vector notation. For
the example data, the relationships (3.29) defining the residuals form a
system of eight linear equations in the two unknowns c,, c;. We can write
them in the form

— -

r] 1977 [1 0.1
r 3.81 1 0.2
r 5.40 1 03
re |_| 785 | |1 05 [Cl:l
rs || 9.51 1 0.7 ]]|c¢2
re 11.1 1 1.0
r 12.3 1 14

L rs | [133 |1 2.0

or, simply,

3.32) r(e)=f—-Ac

In other words, the equations (3.29) can be viewed as defining the residuals
in the overdetermined system of linear equations Ac =f, where A and f are
given above. With this formulation, each of the measures (3.30) can be
expressed as a length or norm of the residual vector r(c). Specifically, we
have

S =lr@l S =|r@)l  Sule) = lIr(©)ll

where the respective vector norms are defined by (2.22) and (2.23). Again,
taking S; as an example, the best approximation p¥ corresponds to the
vector ¢* that satisfies

(3.33)  Sic*)= mjn”l'(c)”z
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But now we observe that (3.32) and (3.33) are precisely the same as (2.41)
and (2.42) in Section 2.3, which deals with the solution of overdetermined
linear systems. Therefore, the problem of computing the best least-squares
approximation c¢* is exactly the same problem as that of computing the best
least squares solution of the overdetermined linear system Ac=£ In
Section 2.3, we have already discussed algorithms for solving the latter
problem. Hence, all we have to do to compute c* is set up the system
Ac = f and then call a least-squares subroutine for solving it. Doing this for
our example data, we get c¢* = [3.68,5.77]", from which it follows that the
best least-squares approximation in %, relative to the basis {1, x} is

(3.34) p*=3.68+5.77x

Similarly, using either of the norms |-, and ||-|l. as the measure of goodness
of fit, one can define the best ¢, or ¢. approximations to the data. However,
as we pointed out in Section 2.3.1, the least-squares approximation is the
easiest (cheapest) to compute so it is the one that is most commonly used.
Therefore, as in Section 2.3, we restrict our discussion to least squares.

Starting with the set of data (3.28), the actual procedure for computing c*
is quite simple. First, we form the matrix A and vector f, and then call a
subroutine for solving the overdetermined linear system Ac =f in order to
compute c¢*. The formula for forming A is quite simple. Referring to the
equations (3.29), it is evident that the jth column (j=1,2) of A should
consist of values of the jth basis function ¢;(x) at each of the x;’s. Hence,
recalling that ¢,(x) = 1 and ¢»(x) = x, we have

a1 =di(x) =1 and a2 = da(x) = x; I=i=8

We note that, if another basis set B is used, the matrix A will be different.
For example, we illustrate three different sets B and their corresponding
matrices A:

{1,3x -2} {x,3x -2} {1,x,3x -2}
Tl -1.77 01 —1.77 1 01 —177
1 —-14 02 -14 1 02 —14
1 —-1.1 03 —1.1 1 03 -1.1
1 -0.5 0.5 -0.5 1 05 —0.5
1 01 07 0.1 1 07 0.1
1 1.0 1.0 1.0 1 1.0 10
1 22 14 22 1 1.4 22
L1 404 L20 40l 1 20 4.0

The respective ¢*’s are

[7.53,1.92]" [11.29,-1.8417 [3.68,5.77,0.0]"
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The first two of these illustrate the uniqueness of p*. For instance, with the
first one, we have

pT(x)=7.53+1.92(3x —2)=3.68 + 5.76x

which is the same polynomial (3.34) that we originally obtained. (The
discrepancies in the last digit are due to rounding of the ¢;’s «, three digits.)
The third example is also interesting. We have already seen that the set
B ={1,x,3x—2} is linearly dependent and this is reflected in the cor-
responding matrix A. It has rank = 2, that is, only two of its columns are
linearly independent—col(3) = —2-col(1) + 3 -col(2). In effect, this means
that there is an infinite number of least-squares solutions ¢* = [c¥, c%, ¢%]”
corresponding to this (linearly dependent) set. Each of them will be
equivalent to (3.34), that is,

ci+ceix+ci(Bx—2)=3.68+5.77x

The particular choice ¢* =[3.68,5.77,0.0]" amounts to ignoring the last
function of the set B.

By now it should be clear how to proceed in the general case. Given the
data {(x;, fi)}, and the set of n basis functions B = {¢;(x)}}-;, we define the
residuals

ri(c)=fi — g(x;)
=fi—lcidi(X) + - - - + Catpn(x:)] I=i=m
or, in matrix-vector notation,
r(c)=f— Ac
where A is an m X n matrix and f is an m-vector defined by
(3.35)  a;;= ¢i(x) and & =f I=si=m l=j=n

Then the best least-squares approximation g*(x) relative to the basis B is
characterized by the vector c¢*, which is the least-squares solution of the
overdetermined linear system Ac=f. The existence and uniqueness of
g*(x) follow from the existence and uniqueness of ¢* established in Section
2.3.

To summarize, the steps for finding a best linear least-squares ap-
proximation to some given data are as follows:

1. Select the (linear) class %, that is, the form of the approximating
functions to be used.
2. i Select a basis {¢;} for 4.
ii Form A and f according to (3.35).
iii Call a subroutine to compute the least squares solution of the
overdetermined system Ac = f.
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This breakdown is intended to illustrate how much of the work can be done
automatically by a subroutine for performing curve fitting by least-squares
approximation. Such a subroutine will be based on a specific choice %4 of
approximating functions so a suitable basis can be assumed by the routine
itself. Hence, once the data is provided, the job of forming A and f can be
done by the subroutine. In addition, it can also do the subroutine call in
step (2)(iii). Therefore, a least squares curve-fitting subroutine can perform
all of step (2). This leaves the user to do step (1). In effect, it amounts to
choosing an appropriate subroutine. This is the topic of the next section.

At this point, a few comments about the choice of basis are in order. We
have already mentioned that the choice is important with respect to the
evaluation of g*. We now look at the effect on the computation of c*
(corresponding to g*). The ideal basis is a set {¢;}}-;, which is orthogonal
with respect to the x;’s, that is,

(3:36) 3 Bilxu(x) = 0

In terms of the matrix A, we see from (3.35) that this is really the inner
product ala, of the jth column of A with the kth column. Hence, if the
basis is orthogonal with respect to the x;’s, we will have ATA=D =
diag(d,, ..., d,), a diagonal matrix. Then, as we saw in Section 2.3, the
computation of c* will be very easy because the normal equations ATAc =
ATf will be a diagonal system Dc= ATf. Now the job of finding an
orthogonal basis at the outset is not easy but, in effect, it is done for us by
the modified Gram-Schmidt (MGS) process (see Section 2.3.1). It computes
the decomposition A = QR, where Q is an m X n matrix such that Q7Q is
diagonal and R is an n X n upper triangular matrix. Consequently, the MGS
algorithm can be viewed as a process of transforming to an orthogonal
basis, solving the least-squares problem with respect to it, and then
transforming back (via R) giving the solution in terms of the original basis
B. Therefore, with respect to computing c*, it does not particularly matter
which basis is selected.

Finally, we observe that, if m = n, the linear system Ac=f is square.
Consequently, provided A is nonsingular, the system can be satisfied
exactly [i.e., r(c*) =0]. In other words, g*(x) passes through each of the
data points. But this is the definition of interpolation. Therefore, we can
view interpolation as a special case of approximation.

if j=k
otherwise

3.2.2. Forms of Approximation

We are now ready to discuss some specific forms of functions for use in
approximation. In the previous section, we saw that, no matter which class
% is used, the problem of computing the best approximation g* € 4 is the
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same. Moreover, using the connection with overdetermined linear systems,
we know how to compute g* efficiently. The only stipulation is that ¢ must
be a linear space. Consequently, in order to describe the various forms of
approximation, we only have to show how they fit into the mold of linear
function spaces. In this regard, it is sufficient to demonstrate a basis B that
generates a specific class 4 via (3.25). We will survey some different types
of approximation first, defining a basis for each and stating the computation-
al costs, and then compare their respective advantages and disadvantages.

In analyzing the computational costs, we consider the cost of determin-
ing g* separately from the cost of evaluating it. With respect to the former,
there are two components—the cost of forming A and f, and that of solving
the overdetermined linear system Ac=f. Assuming that MGS is used for
the second component, we already know from Section 2.3.2 that this
requires mn? flops.

1. Polynomials. The examples in the previous section illustrate least-
squares approximation using polynomials quite well and there is no need to
elaborate here. With regard to the choice of basis for 2,_, (whose dimen-
sion is n), it is usual to use B ={1,x,...,x""'}. This not only produces a
form of p;_, that can be evaluated efficiently but it also is a convenient
form for manipulating mathematically. In particular, it is easy to differen-
tiate and integrate. The computation costs are:

Determination of p,_,

Form A mn-2)-M
Solve Ac =f by MGS mn? flops

Evaluation of p,_, n — 1 flops

Note that the first two columns of A require no work at all to determine
them. The evaluation cost assumes that p:‘_. is in the nested form (3.3).
2. Exponentials. The general form of this type of function is

g(x) — ep,,_,(x) — ec|+c2x+»-~+c,,x"“‘

Now, this is not of the form (3.25) but we can easily make it so by taking
the natural logarithm of each side to get

Ing(x)=ppi(x)=ci+cpx+ -+ -+ cpx™

In effect, then, this form of approximation is equivalent to doing a
polynomial fit to the modified data {(x;, In(f:))}L, and it is sometimes called
a “semilog” fit (with polynomials). The computation costs are the same as
those for polynomials with the addition of some calls to the logarithm and
exponential functions. Assuming that these cost about 10 flops each, the
computational costs are:
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Determination of g*

Form A m(n —2) flops
Form f (compute In(f;)’s) 10m flops
Solve Ac =f by MGS mn® flops
Evaluation
Evaluate p;_, n—1 flops
Exponential evaluation 10 flops

We remark that it is rarely necessary to choose n > 3. Hence, the logarithm
and exponential evaluations are significant factors in the respective costs.

2. Trigonometric and other forms. This category is intended to include
various ad hoc forms of functions such as the example (3.26). Some other
possible examples are

g(x) = ¢1+ ¢, sin(x) + ¢3 sin(2x) x€l-m, 7))
8(X) = 1+ CoX + c3fx + cafx?
g(x)=c1+ e *(c2+ C3x + cex?)

In each case, it is obvious how to define an appropriate basis B. The first of
these examples is useful when the data displays periodic tendencies. In
fact, this form is nothing more than a finite Fourier series with odd terms
only (no cosines). We will discuss this particular type of approximation in
Section 3.2.3. The functions x* in the second example are a good alternative
for the exponential form e™* if x >0, because they are much cheaper to
evaluate

Analysis of the computational costs will depend on the particular form of
g(x) used and the cost of evaluating the corresponding basis functions. We
omit the details.

4. Piecewise polynomials. In Section 3.1, we introduced the concept of
piecewise polynomials and saw that, as interpolating functions, they have
many advantages. It turns out that they are also a good form of function to
use for approximation. But it is not at all obvious that they fit into the
format of linear function spaces. For example, the cubic spline (3.22) is not
in the form (3.25) of a linear combination of basis functions {¢;}. Con-
sequently, in order to show that they do, in fact, fit into the theory, we
must reformulate the way of representing a piecewise polynomial. We do
this for linear and cubic splines. In both cases, we assume that there are n
knots whose x-coordinates are denoted by t;, 1 <j =< n. These will be fixed
with a=t,<t,<---<t,=b. Welet t=[t,...,t,]7 and use the notation
Z\(t) and F5(t), respectively, for the classes of linear and cubic splines with
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knots at these specified locations. In keeping with the notation of Section
3.1.2, we use s5,(x) and s3(x) to denote, respectively, linear and cubic
splines.

Linear Splines

In practice, linear splines are not used very often because cubics are much
better. However, they provide a good vehicle for introducing the concept
of least squares spline approximation. With each knot t, 1<j=n, we
associate the function

X — - .
'r‘——t"—l if x € I,'_l = [t,'_|, t,‘]
i bt

(B37) ox)= %‘—:-t’i if x € I = [t ty]
i+ i

0 otherwise

In the cases j =1 and n, it is understood that we omit the portion of the
definition that involves x outside [t,,t,]=[a, b]. The graph of oi(x) is
illustrated in Figure 3.6. Due to their shape, such functions are often called
“roof” functions. They form a basis for a function space of linear splines,
that is, any continuous piecewise linear function s,(x) with knots at ¢,
1 =j =n, has a representation in the form

(3.38)  si(x) = c1o(x)+ c209(x) + - - - + Cao(X)

where the oj(x)’s are defined by (3.37). To see how this reconciles al-
gebraically with the form (3.12) of a linear spline used in Section 3.1.2, we
consider an example. Let n = 4 with knots located at t=[-1, 1,2, 5]", and
define

(3.39)  si1(x) = ~To(x) + Taxx) — 4o3(x) + 3504(x)

Now, suppose that x =z € I, = [t,, t;] = [1,2]. Then, from (3.37), we have
o(z2) = 04z) =0, and

R iy gl

FIGURE 3.6
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51(2) =ToAz) —4o3(2)

2—z z-1
‘7[2-1]—4[2—1]
- —11z+18
-z =1)+7

In the same way, we can obtain corresponding expressions for s, in either
of the other subintervals I, and I defined by the knots t;. Consequently, the
form (3.39) for s,(x) is equivalent to

—-To+ Toy= Tx+1)—-7 if x=1
six)=9 To3— do3=—11(x—-1)+7 fls=x=2
~403+3504= 13(x—-2)—4 f2=x

which is precisely the piecewise linear polynomial (3.13). For the general
case of a linear spline with n knots, we can show in the same way that the
“basis” representation (3.38) is equivalent to the “‘piecewise’ form (3.12).
Therefore, the class ¥(t) of linear splines with knots at t=[t;,...,t,]" isa
linear function space and the set {o;(x)}}-; of roof functions (3.37) forms a
basis for it. ]

As usual, there is a variety of possible bases for ¥,(t). However, the
roof functions (3.37) are the most efficient for computational purposes
because

Each g;(x) is nonzero on the subinterval [, ;4] only,

that is, the o;(x)’s have (relatively) small support within [a, b]. Alter-
natively, we say that the set {o;} is a local basis. In order to see how this
property contributes to computational efficiency, we consider an example
using the data (3.28). Suppose we choose n =4 and put the knots at
t =[0.0,0.35, 0.8,2.0]". The graphs of the o;’s are shown in Figure 3.7. The
formulas for computing the entries of A are given by:

(0.35—x)/0.35 = g(x)

If x €[0.0,0.35], { (x - 0.0)/0.35

] = ox),
rcuson 20500
] = o3(x)
2.0-x)/1.2

If x €[0.8,2.0], { 0812 = 04(x)
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o, {x) 0, {x) 04 (x)

\<‘\ ,”,’\\\\ o B
XL
v /’, \L"..
4 i, X3
FIGURE 3.7

From these formulas, we can easily compute the entries of A, whereupon
the overdetermined linear system is

[0.714 0286 0 0 7 ©1.97

0429 0571 0 0 3.81

0.143 0857 0 0 c 5.40

0 0667 0333 0 c2 7.85

G40 1 5 022 0718 0 |le |T| 951
0 0 0833 0.167 || ca 11.1

0 0 05 05 12.3

0 0 00 10 | (133

Finally, on calling an MGS subroutine, we get c*.

The first, and most obvious, feature of this example is that the matrix A
has a band structure—each row has only two nonzero entries (which are
adjacent). As Figure 3.7 indicates, this is a direct consequence of the
“local” property of the o;’s. Therefore, in order to form A, we only need to
perform m - (3A + 1D) operations. The second property to note about A is
that, as a consequence of the band structure, the columns are “nearly”
orthogonal. For instance, the first column is orthogonal to all but the
second one, that is, ajas=afa,=0. We remark that, in terms of the
definition (3.36), this is equivalent to saying that the roof function oi(x) is
orthogonal to both o3(x) and o4(x). Now, recalling that the MGS process is
essentially one of orthogonalizing the columns of A, it is evident that some
computational effort can be saved by exploiting this “‘near-orthogonality™
feature. In fact, it is possible to solve the system in about 2mn flops
(instead of mn?). Hence, a subroutine for doing a least-squares fit by linear
splines would contain its own MGS algorithm, specially adapted to take
advantage of the band structure.

For evaluating s7(x), the local property of the roof functions can again
lead to savings because only two of them have to be evaluated at any one
time. (Actually, we only need to evaluate oj(x) because oj.1(x) = 1 - g;(x),
for x € I;.) Therefore, the work required is

log, n comparisons plus 3A+3M
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On the other hand, if s¥(x) were expressed in the piecewise form (3.12), the
work to evaluate it would be

log, n comparisons plus 2A+ 1M

Since the cost of converting from the representation (3.38) to (3.12) is only
2n - A’s, it does not take many evaluations of s% before savings from using
the latter form are realized. Consequently, an algorithm for doing a least-
squares fit by linear splines would compute s%(x) in the *‘basis” form (3.38)
and convert to the “piecewise” form (3.12) for subsequent evaluation.
Therefore the approximate computational costs will be:

Determination of s¥(x)

Form A m-(3A+1D)
Solve Ac=f 2mn flops
Convert to the form (3.12) 2n-A

Evaluation of s¥(x)
Locate the correct [ty, ty41] log; n comparisons
Evaluate p; «(x) 2A+ 1M

Finally, to facilitate the description of cubic splines, we introduce a more
general approach. The idea is to begin by determining the dimension of
&i(t) in order to find out how many basis functions have to be found. Now,
in the characterization (3.12) of a piecewise linear polynomial, there were
2(n — 1) coefficients to be determined. Viewing these as 2(n — 1) degrees of
freedom, we use n —2 of them to ensure continuity at the interior knots.
This leaves n degrees of freedom, that is, a linear spline s,(t) with n knots
can be uniquely defined by specifying the remaining n coefficients. In other
words, using the language of linear function spaces, we need exactly n
basis functions in order to uniquely determine a linear spline in the form
(3.38). Therefore, we conclude that the space %(t) of linear splines with n
knots has dimension dim $(t)=n and this is the number of linearly
independent functions we must find in order to define a basis.

Cubic Splines

First, we determine the dimensionality of a function space ¥i(t) of cubic
splines with n knots. From (3.16), a piecewise cubic polynomial has
4(n — 1) coefficients or degrees of freedom. But the continuity requirements
of a cubic spline—each of s;, s and s% must be continuous at each interior
knot—use 3(n — 2) of them. Therefore, there are 4(n—1)-3(n—-2)=n+2
degrees of freedom remaining, that is, dim %;(t) = n + 2, and we must find
n +2 basis functions. We denote them by B;(x), 0=j=n+1, so that any
53(x) € &5(t) has a unique representation in the form
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b=

FIGURE 3.8

(3.41)  s53(x) = coBo(x) + C1B1(X) +*  + + CaPu(X) + Cri1Brsr(X)

The most efficient basis for computational purposes is the so-called *B-
splines” or bell-shaped splines illustrated in Figure 3.8. In the case where the
knots t; are equally spaced, each B;(x) is defined by

v'l4 y=&x—t-2/h x €l
(A+3y+3y2-3y%)/4 4 =(x— t;i-)/h x €l

G42) B =1 (1+3y+392-3y)4  y=(th—x)lh x€l
y'l4 Y =(tj2— x)/h X €Iy
0 otherwise

where h = t;,;—¢; is the (uniform) distance between knots and I = [t;, t;4].
If the knots are unequally spaced, the expressions for Bi(x) are quite
complicated. Howeyer, the precise formulas are not important because, in
practice, the equations for B;(x) can easily be computed by interpolating
the values indicated in Figure 3.8 using the technique described in the
previous section. By construction then, B;(x) is an element of ¥s(t). Now,
in the case of linear splines, we were able to associate a basis function
o;(x) with each knot ¢; and then it was obvious that the set {o;} was linearly
independent. The subscripts used in (3.41) are intended to imply that we do
the same here with the addition of two fictitious knots ¢, tn+1 to the left and
right, respectively, of [t,,t,]. Noting that the support of each Bi(x) is four
subintervals—[t;_,, tj;)]—it is understood that, in the cases j=
0,1,2,n—1,n,n+1, we omit the portions lying outside [t,,t,]=[a, b]).
With this one-to-one correspondence between a function Bi(x) and a knot
ti, it is clear that the set {B;(x)}}2} is linearly independent on [a, b).
Therefore, it must form a basis for %5(t).

The computational aspects should be readily apparent by analogy with
the case of linear splines. The matrix A will be m x (n + 2) and, because the
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support of each B;(x) is four subintervals, it will only have four nonzero
entries per row. Therefore, it has a band structure that can be exploited in
the MGS algorithm for determining s%(x). For evaluating s¥(x), it is again
more efficient to convert to the piecewise form (3.16). Hence the ap-
proximate computational costs will be:

Determination of s3%

Form A m - (10A + 6M)
Solve Ac=f 4mn flops
Convert to the form (3.16) 4n-A

Evaluation of s%

Locate the correct [, tx.1] logan comparisons
Evaluate cubic piece 3 flops

This completes our survey of the various forms of approximating func-
tions.

We now discuss some factors to be considered in choosing a particular
form of approximation. One of these is accuracy. To measure the accuracy
of an approximation g*, we often use the root mean square error

1o 12
043 RMSE=[L 3 jerc)- £

which is an indicator of the average deviation of g*(x) from each data
point. By itself, however, accuracy at the data points is not a sufficient
criterion on which to base a choice. To illustrate, consider the data {(x;, )},
where

xi=—1+(—-Dh 1<i=<50 with h=3%

fi=(1+25x)"

In Table 3.1, we show some results from using polynomials and cubic
splines, with equally spaced knots, to approximate this data. The results
give the RMSE computed with the 50 data points and also on a denser set
of 200 equally spaced points, that is, the original 50 points plus some
intermediate ones. For polynomials, we note the significant difference in
the RMSE between the two sets of points indicating that the approximation
of f(x) at intermediate points is not very good. This is due to the oscillating
behavior of polynomials. Cubic splines, on the other hand, are much
smoother functions and, as the results indicate, they give a much better
approximation at intermediate points. We recall a similar comparison in the
case of interpolation and our conclusion is the same here, that a higher-
order polynomial is an unsatisfactory form to use as an approXimating
function.
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TABLE 3.1
Polynomials Cubic Splines
RMSE RMSE
Deg. 50 pts. 200 pts. No. of knots 50 pts. 200 pts.

2 0.040 0.223 3 0.080 0.130
4 0.027 0.151 5 0.048 0.078
6 0.020 0.102 7 0.024 0.039
8 0.016 0.069

10 0.012 0.046

Another aspect we should consider is efficiency. Again, we have already
discussed this with respect to interpolation and the same conclusion holds
here, that is, cubic splines are more efficient. Therefore, on the basis of
both accuracy and efficiency, cubic splines are a better choice than poly-
nomials.

Now the above example is relatively simple but the conclusion that the
cubic spline is a good form to use in approximation has been found to hold
as a general rule. Consequently, software packages usually contain a
subroutine for least squares approximation by cubic splines. Sometimes, in
fact, this is the only (linear) least squares routine in the package. A typical
calling sequence is of the form

where

LSCSFK(N,M,X,F,XKNOT,C,MODE,RMSE,WK),

N is the number n of knots (so there are n + 2 basis functions).

M is the number m of data points.

X, F are vectors, of length at least m, containing the data.

XKNOT is a vector, of length at least n, containing the x-coordinates
of the knots.

C is a two-dimensional array, of size 4 by at least n, used to return the
coefficients of s¥(x).

MODE is a parameter for specifying what the subroutine is to do
(see below).

RMSE is used to return the value of RMSE defined by (3.43).

WK is a work area of size atleast m X n (containing, on return, the QR
factorization of A.)

The parameter MODE is a device to facilitate the modification of the set of
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knots—add new ones or delete some—without having to repeat the entire
calculation’. This feature allows the user to eXperiment with the number
and placement of the knots at minimal expense.

With respect to experimenting with the location of the knots, it would be
useful if a subroutine could automatically place them itself so that all the
user has to do is specify the number n to be used. This can, in fact, be
done and software packages usually contain a subroutine for “least squares
approximation by cubic splines—variable knots.” A typical calling
sequence is

LSCSVK(N,M,X,F,XKNOT,C,RMSE,WK)

The only difference from the fixed knot case is that the parameter MODE
is missing. Seemingly, this is a very useful type of subroutine but it has a
major disadvantage—cost. It is substantially more expensive to use than a
fixed-knot subroutine. In the latter case, s% can be determined in a
straightforward way by solving a linear system of equations. But when the
locations of the knots must also be determined, the normal equations
become nonlinear and this greatly increases the complexity of determining
s*. Now the extra expense of a variable-knot subroutine would be worth-
while if there is a sufficient benefit in return but this is seldom true. One
can usually get satisfactory approximations by using a larger number of
(fixed) knots and the cost is much less. The only possible increased cost in
this procedure is in evaluation. There will be more intervals to be searched
but if a binary search is used, this only amounts to one or possibly two
extra comparisons. In this connection, we quote from [8, p. 272].

It (variable knots) is warranted only when precise placement of
some knots is essential for the quality of the approximation (e.g.,
when the data exhibit some discontinuity) and an approximation
with as few parameters as possible is wanted. Otherwise, an ap-
proximation with two or three times as many well chosen knots is
much cheaper to obtain and, usually, just as effective.

Finally, there is the problem of evaluating an approximating function
g*(x) after it has been determined. A software package will provide

"This is made possible by retaining the QR factorization of A (in the array WK) between calls
to LSCSFK. If a knot is deleted from the set, the corresponding column of Q is deleted and
the remaining columns are still orthogonal. Therefore, provided the (old) QR factorization of
A is available, the deletion of a knot amounts to nothing more than recomputing some of the
entries of R, solving the (revised) triangular system Re= Q"t and converting to the *piece-
wise” form (3.16). The process of adding a knot is the same except that a column is added to
Q and it must be orthogonalized with respect to the old ones.
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subroutines for this purpose. They are designed to use the representation
of g*(x) produced by the generating routine. This is very convenient
because the user does not have to be concerned about specific details of
the representation of g*. For example, suppose the routine LSCSFK is
used to generate a cubic spline approximation s%(x). On return, its
representation is contained in the variables N, XKNOT, and C. Therefore,
an evaluation subroutine will have a calling sequence of the form

S3VAL = CSEVAL(Z,N,XKNOT,C)

where Z is the evaluation point and the remaining arguments are the same
as for LSCSFK. The same routine can be used to evaluate a cubic spline
generated by LSCSVK or an interpolation subroutine.

3.2.3. Periodic Functions

We now discuss the approximation of periodic functions, that is, those
which satisfy the condition

fx+p)=f(x) forall x

where p is a fixed number called the period of f. Periodic functions arise
frequently in scientific applications. They are used, for example, to model
physical phenomena such as sound and light, which can be described by
wave theory. It is important, therefore, to be able to represent periodic
functions efficiently and accurately.

The simplest types of periodic functions are the sine and cosine func-
tions so we choose, as the form of approximation, the trigonometric
polynomial

B.44) t(x)= %%— > (a; cos jx + b; sin jx)
i=1

The coeflicients a;, b; can be real or complex, depending on the type of
function to be represented. We assume, for convenience, that the period of
f(x) is p=2m, the same as t,(x). [If not, we can approximate the 2u-
periodic function g(x) = f(px/(2m)) by t,(x), after which the approximation
for f(x) will be t,(2wx/p).] Instead of (3.44), it is more usual to consider the
equivalent complex form

(.45 tux)= 2 ce™ i=V-1

j=-n
The connection between the two representations is via Euler’s formula
(3.46) e*=cosx+isinx

We have
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cie™ + c_ie™" = (¢; + c-j) cos jx + i(c; — c-;) sin jx
Hence the representations (3.44) and (3.45) are equivalent with
(347 a=citcy bj=i(c;—c) i=0,1,...,n
or
(347 c;=%(aj—ib;) c;=aj+ib) j=0,1,...,n

The trigonometric polynomial (3.45) is closely related to the well-known
Fourier series. If f(x) is piecewise continuous with period 2, then it has a
Fourier series representation (see [6, p. 409])

(3.48) f(x)= i cie™

j=—o

where the Fourier coefficients ¢; are given by
27
— i —ijx .
(3.49) =7~ If(x)e dx for all j
0

Hence, (3.45) can be interpreted as a truncated, or finite, Fourier series. In
this context, there are two obvious questions that we would like to answer.
First, how large does n have to be in order for t,(x) to be a good
approximation for f(x), that is, how fast does the Fourier series (3.48)
converge? Second, how do we compute the coefficients c; for t,(x)?

With respect to. the latter question, the obvious answer is to make use of
(3.49). C]ear]y, we cannot use it directly because f(x) is not known explicitly.
However, a simple way of computing an approximation ¢ for ¢ is to
replace f(x) under the integral sign by an interpolating function that can be
integrated easily. Specifically, we subdivide [0,27] by the N + 1 equally
spaced points x, =2wk/N, k=0,1,...,N, and interpolate f(x) at these
points by a piecewise linear polynomial g,(x). Then, substituting into (3.49)
and integrating, we get

2w

2 1 —ijx 1 & —ijx,
(3.50) G F&=5- I gi(x)e™" dx=-ﬁk2_0f(x0e o
0

where we have used the periodicity assumption f(2w)=f(0), that is,
f(xn) = f(xg). This approximation is, in fact, the well-known composite
trapezoidal rule (see Section 5.1) for approximating an integral. It follows
from the bound (3.14) for piecewise linear polynomial interpolation that
each ¢; can be made as accurate as we like provided N is taken sufficiently
large. (For details, see the discussion in Chapter 5 on the accuracy of the
composite trapezoidal rule.)
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subroutines for this purpose. They are designed to use the representation
of g*(x) produced by the generating routine. This is very convenient
because the user does not have to be concerned about specific details of
the representation of g*. For example, suppose the routine LSCSFK is
used to generate a cubic spline approximation s%(x). On return, its
representation is contained in the variables N, XKNOT, and C. Therefore,
an evaluation subroutine will have a calling sequence of the form

S3VAL = CSEVAL(Z,N,XKNOT,C)

where Z is the evaluation point and the remaining arguments are the same
as for LSCSFK. The same routine can be used to evaluate a cubic spline
generated by LSCSVK or an interpolation subroutine.

3.2.3. Periodic Functions

We now discuss the approximation of periodic functions, that is, those
which satisfy the condition

f(x+p)=f(x) for all x

where p is a fixed number called the period of f. Periodic functions arise
frequently in scientific applications. They are used, for example, to model
physical phenomena such as sound and light, which can be described by
wave theory. It is important, therefore, to be able to represent periodic
functions efficiently and accurately.

The simplest types of periodic functions are the sine and cosine func-
tions so we choose, as the form of approximation, the trigonometric
polynomial

(3.44) t(x)= 229+ > (ag; cos jx + b; sin jx)
i=1

The coefficients a;, b; can be real or complex, depending on the type of
function to be represented. We assume, for convenience, that the period of
f(x) is p=2w, the same as t,(x). [If not, we can approximate the 2-
periodic function g(x) = f(px/(2m)) by t,(x), after which the approximation
for f(x) will be t,(27x/p).] Instead of (3.44), it is more usual to consider the
equivalent complex form

(345) t"(x) = i C]_eiix i = \/'__—]‘

j=-n
The connection between the two representations is via Euler’s formula
(3.46) e*=cosx+isinx
We have
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cie™ + c_je™™ = (¢;+ cj) cos jx +i(c; — ¢j) sin jx
Hence the representations (3.44) and (3.45) are equivalent with
(347) aj=c¢j+c b; =i(c;—c_j) i=0,1,...,n
or
(347 c¢;=3aj—ib) c;=33a+ib) j=0,1,...,n

The trigonometric polynomial (3.45) is closely related to the well-known
Fourier series. If f(x) is piecewise continuous with period 2, then it has a
Fourier series representation (see [6, p. 409])

(3.48) f(x)= ,-;n_m cie™

where the Fourier coefficients c; are given by
2@
1 e .
(349 ¢ =5 J’ f(x)e ™ dx for all j
0

Hence, (3.45) can be interpreted as a truncated, or finite, Fourier series. In
this context, there are two obvious questions that we would like to answer.
First, how large does n have to be in order for t,(x) to be a good
approximation for f(x), that is, how fast does the Fourier series (3.48)
converge? Second, how do we compute the coefficients c; for t,(x)?

With respect to. the latter question, the obvious answer is to make use of
(3.49). Clearly, we cannot use it directly because f(x) is not known explicitly.
However, a simple way of computing an approximation ¢ for ¢; is to
replace f(x) under the integral sign by an interpolating function that can be
integrated easily. Specifically, we subdivide [0,27] by the N +1 equally
spaced points x, =27k/N, k=0,1,...,N, and interpolate f(x) at these
points by a piecewise linear polynomial g,(x). Then, substituting into (3.49)
and integrating, we get

2

A | i RS ix

(3.50) CFé=5~ J’ gi(x)e™ dx=I—\l—k20 f(xi)e "
0

where we have used the periodicity assumption f(27)= f(0), that is,
f(xx) = f(xg). This approximation is, in fact, the well-known composite
trapezoidal rule (see Section 5.1) for approximating an integral. It follows
from the bound (3.14) for piecewise linear polynomial interpolation that
each & can be made as accurate as we like provided N is taken sufficiently
large. (For details, see the discussion in Chapter 5 on the accuracy of the
composite trapezoidal rule.)
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An alternative derivation of (3.50) uses some of the ideas developed
earlier concerning interpolation by orthogonal functions. Suppose we in-
terpolate f(x) by the trigonometric polynomial (3.45) at the N data points
{(x, fi)}R=0. Since there are 2n + 1 coefficients c; to be determined, we take
N =2n+1. The x,’s are assumed to be equally spaced in [0, 27] so

= 2km

(351) Xk N

k=0,1,...,N -1
The interpolating conditions (3.2) are

(3.52) 2 ce®N=f  k=0,1,..., N—1
j=-n
or Ac =f, where the entries of A are

ay ;= ek

For example,if N=3(n=1)

1 1 1 1 1 1
A — e‘l'21rl3 ] ei21r/3 = e—i21rl3 1 ei21r/3
e —idn/3 1 e 473 e i2nf3 1 e —i2nf3

Now, from the Euler formula (3.46), we see that A is a complex matrix. But it
has an interesting property:

(3.53) % A*A =]

where A* is the conjugate transpose® of A. With respect to the set
{e"}/-_» of functions, this is the complex analogue of the orthogonality
property (3.36), that is,

o N ifr=s
i2n(r-s)kIN _
(3.54) ,(Zo € 0 otherwise

For our 3 X 3 example, we have

1 2B iz
A*=| 1 1 1
1 e 273 gi2nB3

and it is easily seen that A*A = 31. From equation (3.53), it follows that

¥The conjugate transpose A* of a complex matrix is obtained by taking the complex conjugate
ai; of each element a;; of A and then the transpose, that is, A*=(A)". If A is such that

A*A = I, we say it is unitary. This is the complex analogue of the orthogonality property for
real matrices.
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A7'=(1/N)A*. Hence, the solution of the linear system (3.52) is given by
¢ =(1/N)A*, or

1 Ng! 1 N N
G55 ¢= N kZO ay,ifx = N kZO fre kN -n<j=n

which is precisely the formula (3.50) with x, = 2kw/N. Hence, the ap-
proximate Fourier coefficients can also be obtained by interpolation of f(x)
at N equally spaced points x, in [0, 27] using the set of orthogonal basis
functions {e’™}"_,.

We stated that, by taking N sufficiently large, it is possible to make each
¢j as accurate an approximation for c; as we like. But there is another
factor that must also be considered. This is an aliasing effect. From (3.49),
we have, for any integer s,

27
Ciesn = % f fx)e " dx
0

Using (3.55), its approximation is

N-1
2 fke—i2(j+sN)k1rlN
k=0

z[-

Ci+sN =

— 1 —i2jknIN ,—i2ska _ 1 —i2jkn/N
=N 2 fieT e = 2 fie

where we have made use of periodicity, that is, for any integer r,
e =cos 2rw +isin 2rm = 1

In words, this result says that the approximations for any of the Fourier
coefficients c¢j,n, § =0, x1,..., cannot be distinguished from each other,
that is, they are ‘‘aliases” for one another. Now the whole purpose of
performing a Fourier analysis on a set of data is to find out which
frequencies are present in the data and in what strength, that is, which
terms are present in (3.48) and how significant each one is. Hence, the
aliasing effect is undesirable since it prevents us from distinguishing which
particular frequency corresponds to each approximate coefficient ¢;. Alias-
ing results from periodicity and cannot be eliminated. However, we can
minimize its effects by taking N sufficiently large. In this way, the aliasing
coefficients will correspond to frequencies of sufficiently high order that
they will be neglected anyway, with the result that each ¢; corresponds to
only one frequency (in which we have any interest).

The foregoing discussion explains why we must use a large number of
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data points in performing a finite, or discrete, Fourier analysis. Typically,
N must be in the hundreds and, sometimes, in the thousands. But this
introduces a new problem—cost. From the matrix-vector formulation ¢ =
(1/N)A*, it follows that N2 flops® are required to compute the ¢;’s. This in
itself is not prohibitive but, in many applications, a large number of data
sets must be analyzed with the result that the overall cost can be quite
high. For example, if N = 250 and there are 100 sets of data to be analyzed,
the work required is 6.25x10° flops. Fortunately, we can reduce this
number significantly by using the so-called Fast Fourier Transform (FFT).

In order to explain the underlying principle of the FFT, we consider the
case N =18=3Xx6. Let

—i2n/18

w=e
k=3k1+k0 where k0=0,1,2, and k1=0,1,...,5
i=6ii+io where jy=0,1,...,5 and j1=0,1,2
Then
R k1 S w GirtioBktko)
6 =152 " =1g 2N
5
— _il_ ki_ 6j1ko+igko (2- f}k,+knw3k‘jo) (since w 18itk1 = D
1< ;
5 2 ko)w’k“
where

A 5 . '
(3.56)  C(jo, ko) = % kzo frpiW™ i 0=<jo=5 0=ko=2
~

Hence, given the C’s, each ¢ requires only three flops to evaluate. In turn,
each C requires six flops. Consequently, the total work requirement is
18 - (3 + 6) = 162 flops instead of (18)> = 324. A further improvement can be
made by noting that the formula (3.56) is of the same form as (3.55) with
N =6=2x%3 so that, in a similar fashion, each C requires only 24+3=5
flops rather than 6. Therefore, using this procedure, the ¢’s can be
computed in 18- 3+ 3+ 2) = 144 flops.

In the general case of N data points, we determine the prime fac-
torization of N, that is,

N=pips...p: where each p; is a prime.

Then, by repeated use of the FFT idea Just descnbed it follows that the
¢’s can be computed in only N -(pi+p,+---+p,) flops instead of N2,

*Even though the operations may be complex, we still use the term ‘“‘flop” to mean a
multiply-add combination.
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Again, if N =250=2X5% the work requirement is 250-(2+5+5+5)=
4250 flops (as opposed to 62,500) and 100 such computations only costs
4.25x% 10° flops. From this analysis, we conclude that the maximum savings
occur for any number N that has a lot of prime factors. In this regard, the
“optimum”’ choices are N = 2™. For example, if N = 256 = 28, then the cost
is 256-(16) = 4096 flops, less than that for the case N =250! On the
other hand, N =241 is a bad choice because its prime factorization is
241 =13 x19.
The calling sequence for an FFT subroutine is of the form

FFT(N,F,WK)
where

N is the number N of data points.
F is a vector, of length at least N, containing the data.
WK is a vector used as work area.

On return, F will contain the coefficients ¢;. The routine begins by factoring
N into primes and then applies the FFT algorithm. The work area is
needed both for factoring N and computing the coefficients. Since the
choice N =2™ is favored by many users, a special routine for this case is
also provided by most packages. The calling sequence will be of the form

FFT2(M,F,WK)

where M is the power of 2, that is, N = 2™, In using this special routine, we
save by not having to compute the prime factorization of N. In addition, it
turns out that, instead of factoring N by 2’s, the FFT process can be made
more efficient by using a factorization into 4’s. (If M is odd, we do one
stage using a factor of 2.) For example, we would factor

N=128=2"=2x4*
and
N=256=22=4"

A routine like FFT2 would make use of such special procedures.

EXERCISES

Section 3.1
1.1. Consider the following tabulated function

x |13 45
f)l15 1 -1 0
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(a) Find both the Lagrange and Newton forms of the polynomial p%(x)
that interpolates the data.
(b) Find the coefficients c; for the representation

p3(x) = coPo(x) + ¢, Pi(x) + c2Po(x) + c3P3(x)

where {P;(x)}}-q is the set of (Legendre) polynomials (3.24)(a).

(c) Add the point (2, 4) to the data and compute both forms in part (a) of
the new interpolating polynomial p%(x).

(d) Find the linear spline s%(x) that interpolates the original data and
then with the new point (2, 4). Is there much difficulty in modifying s% to
include the new point?

(e) Estimate the value of f(3.5) using both forms of p% from part (a) and
also the linear spline that interpolates the original data.

1.2. Consider the function f(x) = e *? over the interval [0, 2].

(a) Find the clamped cubic spline s%(x) that interpolates f(x) at the
points where x = 0.0, 0.25, 0.5, 1.25, 2.0.

(b) Estimate the accuracy of s%(x) by determining the maximum error at
101 equally spaced points in [0, 2], that is, compute the value of
= * _ 1

Ensx= max |f(x)=s3()  xi=55
How does this compare with the bound given in the text?

(c) Write down a representation for the derivative ds%(x)/dx as a pie-
cewise (quadratic) polynomial and verify that it is continuous. How well
does it approximate f'(x)? (Compute the maximum error as in (b).)

1.3.  Verify that (3.22) is a cubic spline.

1.4. The following data has been collected from an experiment.

x 0 1 2 3 4 6 8 10 15 20
f 40 47 49 53 61 67 69 72 7.1 75

Interpolate the data with

i A polynomial p¥%(x).
ii A cubic spline s¥(x).
Evaluate each of the interpolants at the set of points x; = i/5, 0<1i <100,

and plot the results. (Use a plotting subroutine.) Which interpolant gives
the better representation of the trend in the data?

1.5. Given a set of data Do={(x; f)}X,, it is desired to find an ap-
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proximation for f“(x). This is to be done by generating a new set of data
D, = {(x;, f)}’=, and then interpolating it with a cubic spline. Two possible
ways of generating the set D, are as follows.

i Interpolate D, with a cubic spline s%(x) and evaluate its second
derivative at each x;, that is, f= (d’s’;/dxz),a‘.. (In terms of the
matrix representation C used for (3.22), f1=2C(2,1).]

ii. Use a ‘“spline-on-spline” technique (see [1, p. 43]). Interpolate
the data D, as before but, this time, generate the data D, =
{(xi, f)}r=1, where f;=(ds%/dx),_,. Now interpolate this set of
data with another cubic spline §¥ (x) and then generate D, by
setting ' = (d§%/dx)c-s,

Compare these two methods with the following data Dy:

X; f. Xi fl

0 0.0 6 -0.2794
1 0.8415 7 0.6570
2 0.9093 8 0.9894
3 0.1411 9 0.4121
4 —0.7568 10 —0.5440
5 —0.9589

The data is derived from the function f(x) = sin(x) so it is easy to check the
accuracy of the approximation for f"(x).

1.6. The following data has been collected on the movement of an object
during an experiment:

Time t .0 1 2 5 10 15 20
(sec)

Distance s(t) 0 27 58 162 352 535 704
(cm)

Velocity  o(t) 25 29 32 37 38 35 32
(cm/sec)

(a) Use osculatory interpolation to find the polynomial p%(x) of deg 5 that



146 / INTERPOLATION AND APPROXIMATION

interpolates the data s(0), s(2), v(2), s(10), s(15), v(15). [Use the fact that
v(t) = ds(t)/dt.]

(b) Interpolate the complete set of data using a piecewise cubic Hermite
polynomial.

(c) Interpolate the data for s(t) using a clamped cubic spline.

(d) Repeat part (c) using a spline with free boundary.

(e) Use each of the above interpolants to estimate the distance traveled
and velocity at time t = 8. (The correct values are s(8) = 276, v(8) = 38—
see Exercise 1.10, Chapter 4.)

(f) Use each interpolant to estimate the acceleration a(t) (= dv(t)/dt) at
time t = 8. Which of the interpolant(s) could not be used to estimate a(10)?
Why?

Section 3.2

2.1. Find the best least squares fit to the data in Exercise 1.4 using

i A polynomial of deg 1.
ii A polynomial of deg 2.
jii A function of the form g(x) = c;+ ¢,x + cs/x.

Which one gives the best fit?

2.2.  Show that each of the sets defined in (3.24) generates the set 2; of all
polynomials of degree < 3.

2.3. Verify (3.53) in the case N = 6.

2.4. Show that Bi(x) defined by (3.42) satisfies the definition of a cubic
spline.

2.5. Consider the data in Exercise 1.4.
(@) Write down the overdetermined linear system Ac=f for a least

squares approximation by a straight line for each of the cases where the
basis B is

i {1,x}
i {10-3x,5x + 1}

(b) Find c* for each case in (a). Verify that they produce the same
polynomial p %(x).

2.6. Consider the following data
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x f(x) X f(x)
0 0.72973 3.00 —0.45920
0.25 1.2952 3.25 —0.98761
0.50 0.90196 3.50 -1.2517
0.75 0.30183 3.75 -0.61894
1.00 0.040571 4.00 ~0.13183
1.25 0.20050 4.25 -0.072410
1.50 0.36808 4.50 —0.31776
1.75 0.089530 4.75 —0.30720
2.00 —0.47661 5.00 0.14550
2.25 —0.83513 5.25 0.69583
2.50 —0.58981 5.50 0.78317
2.75 —0.31261 5.75 0.43508
6.00 0.31600

(a) Find the best least-squares cubic spline approximation to the data
with knots located at t = [0.0, 1.0, 2.4, 4.5, 6.0]". What is the RMSE?

(b) Estimate the value of f(3.1).

(c) Compute a new spline approximation with the same set of knots except
that the knot at 4.5 is moved to 4.1. Does this give a better approximation?
(d) Use a variable knot subroutine to compute the best least squares
spline approximation with five knots. Compare the accuracy with that of

the splines from parts (a) and (c).

2.7. Verify (3.54) for the case N = 5.

2.8. Consider the following functions defined on the indicated intervals:

f(x)=x,0=<x <2m.

fx)=

I, 0=x <.
-1, m=x<2m.

f(x)=sinx/2,0=<x < 4.

f(x) =sinx/2,0=x < 2.
v f(x)=sin"'[}(sin 5x +2 cos x)], 0= x < 2.

In each case, generate the data {(xi, fi)}k=c, where xi = pk/N, with p = period
of f, and interpolate with a trigonometric polynomial using an FFT subrou-
tine. Use N = 64.



CHAPTER 4

SOLUTION OF NONLINEAR
EQUATIONS

We return to the problem of solving a system of n equations in n
unknowns but this time we drop the assumption that each equation is linear
in each of the unknowns. Such systems of equations are called nonlinear
and can be written in the general form

41 f(x)=0

where x=[xi,...,x.]" is an n-vector and f is an n-vector whose ith
component is the nonlinear function

4.2  fi=fix)=filxi, ..., Xa) 1<i=<n

For example,

i) _ [4x}+9x3— 16x, — 54x,+ 617 _
(a) f(X) - [f2(X)] - [ XXy — ZX] -1 ] =0
(4.3) or
fi(x) X2X§ + x3e* sin (x;X3)
(b) fx)=| fAx) | = x;x3— e%cos (x1x3) | =0
f3(x) 2X1X,x3+ X2 sin (x;X3)

We begin by discussing the relatively simple case of a single equation in
one unknown (n = 1) such as

(a) f(x)=9x*-20x2+16x+4=0
b) f(x)=e*sin(2x)—x=0

One reason for doing this is that many of the methods for solving single
equations have natural extensions to systems and it is much easier to grasp
the concepts involved by looking at the simpler case first. A second reason
is that the problem of solving a single nonlinear equation arises very
frequently in practical applications, making it worthwhile to implement
special subroutines that take advantage of the simplifications when n = 1.
Therefore, the solution of a single equation is not merely a (relatively)
simple case of a more difficult problem. Instead, it is an important problem
in its own right.

4.4)
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In Section 4.2, we discuss single equations separately and then, in
Section 4.3, we consider systems. But first we shall make a number of
preliminary remarks about nonlinear equations (single equations and sys-
tems) and subroutines for solving them in order to introduce some of the ideas
involved.

4.1 PRELIMINARIES

In Chapter 2, we considered the problem of solving a system of n linear
equations in n unknowns. Dealing with this topic was a relatively simple
matter. The solution of a linear system can be expressed in closed form in
any one of a number of 'ways—Gauss elimination with back substitution,
Cramer’s rule, etc.—each of which defines an exact method (assuming
infinite precision arithmetic is used) for the direct computation of the
solution. Therefore, within the limitations of machine precision, there was
no worry about being able to compute the solution. Instead, the main
concern was to determine the most efficient way to compute it. By
contrast, the situation for nonlinear equations is quite the reverse. In
general, there is no way of expressing a solution in closed form so there are
no exact or “direct” methods'. Instead, we have to use approximate
methods. But the disadvantage of an approximate method is that it will
sometimes fail. Therefore, the main concern when solving nonlinear equa-
tions is to ensure that a solution can, in fact, be computed. The efficiency
with which it can be done, though still an important consideration, will
necessarily be secondary.

Solutions
A solution or root of (4.1) is defined to be any vector r that satisfies each
equation of the system. There is often more than one solution but the
number varies from problem to problem. For example, the system (4.3)(a)
has two (real) solutions:

N [0.37308]

'™ 14.68036

and i[4.75621]
27 12.21025

'Occasionally, closed expressions for the solutions can be found. However, with only one
notable exception, these expressions usually turn out to be so complex that they are
impractical to use for computational purposes. The example (4.3)(a) is a case in point. The
exceptional case is the quadratic equation

f)=ax’+bx+c=0

The formulas for the solutions of a quadratic are well known. They are not complicated and
can be evaluated easily. In fact, since this problem arises with some frequency, it is not
unusual to find that a software package will contain a special subroutine for solving quadratics
(directly).
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On the other hand, if the second component of f(x) were the function
f2(x) = x,x,—3x,+5, the resulting system would have four solutions. If,
instead, fi(x) = x,x,+ 3x,— 1, there would be no (real) solution at all. There
can even be an infinite number of solutions as is the case with the single
equation (4.4)(b). For a given problem, the exact number of solutions is
usually not known at the outset, nor is it easy to determine the number.
Therefore, we usually have to proceed without knowing how many solu-
tions there are to be found. While this is not a really serious complication,
it can be somewhat annoying at times.

Methods of Solution

The methods used to compute solutions of nonlinear equations are of
iterative type. Starting with an initial approximation x, for a solution r, an
iterative method is a rule for computing, successively, a sequence of
approximations X, X;, Xa,.... The aim is to choose an x, that generates a
sequence that converges to a solution r, that is,

(4.5) }(im"xk -r|=0

A single application of an iterative rule (to obtain the next approximation in
the sequence) is called an iteration. Sometimes this term is also used to
refer to the entire sequence of approximations itself. In the following, both
definitions are used freely. However, taken in context, there will be no
difficulty in distinguishing which meaning is intended.

To illustrate the use of an iterative method, we will solve the single
equation

f(x)=x*4+2x-3=0
using the method defined by

x,z(+2xk -3

(4.6) Xk+1 = Xk + xE— [

By way of a slight digression, the derivation of this iterative rule is based
on the following idea. Rewrite the equation f(x) =0 in the form x — g(x) =
0. Then any root r of f(x) is also a fixed-point of g(x), that is,

@7y if f(rn=0 then r=g(r)
To find a fixed-point of g(x), we can use the iterative method defined by
4.8 X = g(xx)

and, in view of the relationship (4.7), this will also be a method for finding
roots of f(x). It is called, appropriately, fixed-point iteration. The rule (4.6)
was derived from (4.8) by defining g(x) to be of the form
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TABLE 4.1

k X Xk Xk Xk

0 -50 0.0 1.5 5.0

1 —4.4000 0.6000 0.6818 6.6000
2 —3.8735 0.9103 0.9401 7.9942
3 —3.4480 0.9944 0.9974 9.2996
4  -3.1587 1.0000 1.0000 10.552
5 -3.0261 1.0000 1.0000 11.769
6  —3.0008 12.960
7 —3.0000 14.131
8 -3.0000 .

gx)=x+ —z—xf (i)s

Obviously, this is not the only iterative rule that can be derived in this way.
We can define different forms for g(x) to produce other rules. For instance,
we might have
_3-x? _ o X +2x-3_ f(x)
g(x)= 5 or gx)=x— D) X T
As a matter of interest, the latter form leads to the well-known Newton-
Raphson method (Section 4.2.1).

Returning to our example, we have to choose an initial guess x. Unless
we have some knowledge about the approximate location of the roots, our
guess must be more or less arbitrary. Let us assume that we know nothing
about the locations of the roots and see what happens with various choices
for xo. In Table 4.1, we show some results. With xo = —5.0, 0.0, and 1.5, the
resulting iterations converge quite nicely. It is easy to check that the
limiting values —3.0 and 1.0 are, in fact, roots of the equation in question.
[Note that when a fixed point of g(x) is found, it is still necessary to check
that it is a root of f(x), because the implication in (4.7) is only in one
direction.] These are “good” initial guesses because their respective itera-
tions tell us something about the roots of f(x), namely, each one locates a
root’. On the other hand, the initial guess xo= 5.0 is “bad”. The iteration
starting with it tells us nothing whatsoever about the roots of f(x) (except

2Admittedly, there is some duplication of effort here in that both of the initial guesses 0.0 and
1.5 lead to the same root. However, the redundancy can easily be eliminated by using a
process called deflation (Section 4.2.2).
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that 5.0,6.6,... are not any of them). It is a complete waste of com-
putational effort. Obviously, it would be nice to have some mechanism by
which we can avoid choosing bad initial guesses in the first place, but this
is easier said than done as we shall now see.

Guarantee of Convergence

We now explore the idea of trying to choose an initial guess that is
guaranteed to be good. To this end, we look to the mathematical literature
for results specifying conditions on x, that will guarantee convergence to a
solution. Typically, such results run to the effect that convergence to a root
r can be guaranteed if xo € N;(r), where N;(r) is a neighborhood of r,
satisfying conditions of the form

i re N;().
4.9) ii The iterative method maps N;(r) continuously into itself, that
is, if xx € N;(r), then x;.; € N5(r) also.
ilil A “‘convergence” condition (which depends on the method
being used).

8 is called the diameter of Ny(r), that is,
If x,y € N;(r), then [x—y||< &

We remark that the diameter is a useful measure for comparmg iterative
methods. A method for which § is relatively large is said to be more

“globally convergent.” This is a nice property to have in a method since it
decreases the likelihood of choosing a bad initial guess.

The first two conditions of (4.9) ensure that, when convergence occurs, it
will be to a root of f(x). The third condition ensures that convergence will,
in fact, take place. Consider, for example, the fixed- -point iteration (4.8) for
single equations. It can be shown (see [5, p. 44]) that convergence to the
root r is guaranteed for any xo € N;s(r) = [a, b] provided

i rela,b].
(4.10) ii g(x) is continuous on [a, b] and, if x € [a, b], then g(x) €[a, b]
also.

iii |g'(x)| <1, for all x €[a, b).

Applying this result to the specific iterative method (4.6), we find that:

Convergence to r = 1 is guaranteed if x,€ I, = [—1.69, 1.37].
Convergence to r=-3 is guaranteed if x, € I, = (—o, —2.77].

If xo€1I, or I, then it is guaranteed to be a good initial guess. Note,
however, that any xo & I, or I, is not necessarily bad. For example, xo= 1.5
lies outside I, and I, and yet, from Table 4. 1, we see that it is a good guess
after all.
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The disadvantage of results like (4.9) and (4.10) is that they are not very
useful from a practical point of view. First, they presuppose knowledge
about the location of r which, of course, is begging the question. Moreover,
they are conservative, as the example with xo = 1.5 illustrates. Second, the
computation of the diameter & is usually so long and complicated that it is
not worthwhile trying to do. For instance, in the example above, the
determination of the intervals I, and I, required considerably more work
than was needed to compute the whole of Table 4.1. From this we conclude
that it is not practical to try to accept or reject an initial guess at the outset.
Instead, it is better to choose an xq, start an iteration with it, and continue
until a decision can be made. Then choose another x, and so on until all the
roots have been found. There is, of course, the possibility of continually
choosing bad initial guesses but, in most practical situations, this will not
happen if we exercise a little care and make use of any information that is
available. Indeed, there are many situations where, in the context of the
overall problem being solved at the time, the general vicinity of the roots is
known or can easily be inferred and one can make “‘educated” initial
guesses. It is always a good idea to take advantage of such information
whenever possible.

Stopping Criteria

We now turn to some comments about subroutines. From the above
discussion it is clear that a rootfinding algorithm will consist of more than
just a straightforward implementation of an iterative rule for computing
successive approximations. It must also be able to decide automatically
whether an iteration has succeeded or failed. The usual procedure is to
make a test after each iteration to see whether or not:

1. Convergence to a solution has taken place yet.
2. Or else the number of iterations performed so far has reached a
specified maximum, say, ITMAX.

These tests are called the stopping criteria. Whenever the answer to either
one is ‘“‘yes,” the iteration should be stopped and the appropriate result
returned. In the case that (1) is satisfied, the result will be the value x4, of
the most recent iterate computed. We will discuss the design of tests for
convergence in the next paragraph. On the other hand, if (2) is satisfied
(and (1) is not), the presumption is that the iteration will fail to converge
and the result that is returned will indicate this. We remark that this may
seem like a naive and inefficient test for nonconvergence, that is, simply let
the iteration run its course until k = ITMAX iterations have been done and
then, if (1) has still not been satisfied, surmise that it will never be so. On
the other hand, if we were to include a specific test for divergence such as
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xk+1_xkl> 1

|xk - xk—tl

then we could recognize a bad iteration much earlier and avoid a lot of
unnecessary work. Consider, for example, the iteration starting with xo =
5.0 in Table 4.1. With the above test, termination would occur after only
two iterations. But the disadvantage of using such a test is that it will cause
premature termination in those cases where an iteration seemingly diverges
for a while before ultimately converging. To avoid this difficulty, we could
try waiting until, say, k =5 before applying the test. Alternatively, we
could require that the test holds for, say five successive iterations before
concluding that the sequence diverges. However, even these modifications
can cause premature termination surprisingly often. It turns out that, on
balance, (2) is a better strategy. This assumes, of course, that ITMAX is
not excessively large.

Convergence Tests

Let us consider, for a moment, the form of the test (1) for detecting
convergence to a solution. In essence, we want to determine the error in
xi+1 and stop when it is sufficiently small, that is, when

(4.11) x| = IXess — £ = XTOL - (1 + ir]))?

where XTOL is some specified error tolerance. Now, since r is not known,
we must look for an alternative test. One possibility is to approximate r by
X, in (4.11). The resulting test would be

4.12) ||€k+[” = "Xk+1 - Xk" =XTOL - 1+ "Xk")

that is, stop if two successive iterates are sufficiently close to each other.
There is, however, some danger in concluding that a sequence of numbers
has converged just because two successive terms in it are close enough to
each other. For instance, consider the example method (4.6) again. Suppose
that, for some reason, we choose xo=2.23 and use the test (4.12) with
XTOL = 5.0E — 3. The results would be as follows.

*It is usual to think in terms of testing for the relative size of ex.1, that is,
flex+ill = fixe+1 — vl =< XTOL - jir]

However, if r is near 0, there can be a problem due to the possibility of either never being able
to satisfy the inequality or underflow occurring in the evaluation of the right-hand side. In this
case, it is better to test for the absolute size of e+, that is,

Nexsall = fixeer — r|= XTOL

The test (4.11) is intended to combine both of these into one, that is, depending on the size of
lirll, we effectively get one or the other.
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k Xx [Xhe1 = Xi] XTOL*(1+ |x,|)
XTOL =5.0E-3 1.0E-3

0 2.23 2373 0.016 0.003

1 —235.1 1.0 1.18 0.236

2 —-234.1 1.0 1.17 0.235

3 —233.1

After three iterations, the test for convergence is satisfied but the result
x3=—233.1 is incorrect. Hence we have another case of premature ter-
mination. (If allowed to continue, the iteration would converge, albeit
slowly, to the root r = —3.0.) We can easily avoid this difficulty by using a
smaller value for XTOL, but choosing it too small can have the opposite
effect, that is, termination may not occur soon enough and this downgrades
the efficiency. Hence, in choosing XTOL, one has to strike a balance
between reliability and efficiency, which is not easy to do because we
cannot predict how an iteration will behave.

Another possible test for convergence is one that uses the residual
Pr+1 = f(X41), that is, stop when

4.13)  |peasll = Jixie)]) = FTOL

But, once again, we have the problem of choosing the tolerance in order to
strike a balance between reliability and efficiency. We have to make FTOL
reasonably small in order to prevent early termination. But choosing it too
small can delay termination unnecessarily. In Figure 4.1, we illustrate the
difficulties for the case of a single equation. The function f(x) in Figure
4.1a is quite flat* near the root r so py+; is small in which case (4.13) causes
termination unless FTOL is very small. But the error €., = Xx., — r is not
small so termination at this stage is premature. On the other hand, if FTOL
is too small, termination may not occur soon enough as we see in Figure
4.1b.

While neither of the above tests is very satisfactory by itself, it turns out
that they complement each other in the sense that if one of them fails (to
detect convergence) the other will succeed. Let us see why this is true. For

“This is an example of ill conditioning in the root r. Any small shift in f(x), say f(x) + €, causes
a large shift in r. In Figure 4.1a, such a shift moves the graph of f(x) in a vertical direction
and, since f is almost horizontal in this region, r will shift substantially. We emphasize that it
is the root r that is ill conditioned and not f. f can quite easily have other roots that are well
behaved. A discussion of the effects of ill conditioning is given in Section 4.2.3. Finally, note
the similarity between this concept and the corresponding one for linear equations.



156 / SOLUTION OF NONLINEAR EQUATIONS

Pheq
// /

— Xpsa Xy Xk

{a) e

FIGURE 4.1

convenience, we shall refer to (4.12) as the “X-test” and (4.13) as the
“F-test.” Again referring to Figure 4.1b, the F-test may fail to detect
convergence if FTOL is too small. However, the X-test will succeed, even
if XTOL is relatively small. Similarly, the F-test will usually succeed where
the X-test fails. Therefore, it is usual for a subroutine to use both tests and
terminate the iteration when

(4.14)  Either the X-test or the F-test is satisfied.

By choosing XTOL and FTOL reasonably small, we can minimize the risk
of premature termination on either test and, at the same time, be confident
that there is no delay in detecting convergence. The documentation for a
subroutine will usually suggest appropriate values for XTOL and FTOL.

We remark that there is still the possibility of early termination using the
test (4.14). Hence, there is the question of testing for this occurrence. As a
general rule, a subroutine will not perform such a test explicitly. This is
because XTOL and FTOL can be chosen sufficiently small so that only
somewhat contrived or pathological problems can cause difficulties. The
routine would certainly not have trouble with most problems that arise in
practical applications provided, of course, that XTOL and FTOL are
suitably chosen. Therefore, a user need not be concerned about testing for
early termination unless he or she has reason to suspect that the problem is
somewhat pathological. If a test is considered necessary, then early ter-
mination on the X-test can easily be detected by checking the size of
f(x,+1). To see if the F-test was at fault, one should look at the size of
€1 = Xg+1 — Xk In case this information is not available on return from a
subroutine, an alternative is to test for ill conditioning (of the root r) by
perturbing the system a little and, after re-solving, seeing how much the
roots have shifted. Since the latter test can be expensive, we emphasize
that, unless there is reason to suspect difficulties with a problem, there is
no great need to build such tests into a program.
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Calling Sequence
The general format of an algorithm for solving nonlinear equations is:

1. Choose an initial guess Xo.

2. FORk=0,1,2,... UNTIL stopping criteria satisfied,
compute Xy, .

3. RETURN with the result.

From the foregoing discussion, we see that it is virtually impossible to
automate such an algorithm to the point where it can choose its own initial
guess and stopping criteria. These must be left for the user to specify.
Hence, a typical calling sequence for a root-finding subroutine called, say
ROOT, is of the form

CALL ROOT(F,XO,XTOL,FTOL,ITMAX,IND)
where

F is the name of a (user-supplied) subprogram for evaluating the
function f(x).

XO is the initial guess.

XTOL, FTOL, ITMAX define the stopping criteria.

IND indicates (on return) which test caused termination.

On return, XO will contain the value of x4, and ITMAX will be set equal to
k, the number of iterations performed. In addition, many subroutines will
also return the values of |xis1— x|l and |f(xi+1)]| in XTOL and FTOL,
respectively. Combined with the value of IND, this is plenty of information
in case we want to check the reliability of the results. We remark that
ROOT will only find one root and then exit. If several roots of a function
are desired, the routine must be called repeatedly with different initial
guesses. It would be more convenient if the subroutine itself had this
capability so that all the user would have to do is specify the number of
roots desired. This, in fact, can be done. We discuss the details in Section
42.2.

Comparison of Methods

In Section 4.2.1, we describe and compare various iterative methods. The
bases for comparison will be (1) guarantee of convergence and (2)
efficiency. We have already mentioned the former. The diameter & of the
neighbourhood N;(r) satisfying (4.9) provides a good means for defining a
measure of this property but, as we have seen, it is difficult to use in
practice. For any given method, it is well nigh impossible to determine a
general expression for 8, let alone trying to compare such expressions for
different methods. Instead, we rely on inferences gathered from experience
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and/or analysis of a method. Based on this, it is usual to make statements
to the effect that, as a general rule, one method is more globally convergent
than another one. In other words, for most problems, the § for one method
appears to be greater than the & for the other one. In the following we
make such statements without trying to justify them mathematically since
they are based on experience rather than rigorous analysis.

By efficiency, we mean the total amount of computation required to
calculate a good approximation for r (disregarding any unsuccessful itera-
tions). This is determined from the amount of computation per iteration
times the number of iterations required. The former is usually measured by
counting the number of times (per iteration) that we must evaluate f(x)
since this is usually the predominant factor in computing x.,. As to the
number of iterations required, this is strongly dependent on the behaviour
of the function f(x) in question and also on the closeness of x, to r. But we
would prefer to use an indicator that is more or less independent of these
factors. To this end, one can usually perform some analysis on a method
and establish an asymptotic relationship, between successive errors of the
following form: if x, is sufficiently close to r, then

(4.15)  lexsil = Cllex|lP as k increases

where C = Cy(f) depends on both the particular method M under con-
sideration and the function f(x). The number p, on the other hand, depends
only on the method and this is what we want. We call p the rate of
convergence. It is used to compare the number of iterations required. To
illustrate its significance, suppose that |leo] = 0.1 and C = 1. The following
table shows the effect of different rates of convergence.

k p=1.62 p=2.0

1.0E -1 1.OE -1
24E -2 1.0OE -2
24E -3 1.0E -4
5.6E -5 1.0E -8
1.3E-7

W —-0

From this, we might conclude that a method with a higher rate of con-
vergence is better because fewer iterations will be required. But this can be
misleading. We are actually interested in how much computation is
required to find a root. Suppose, for example, that the p = 1.62 method
requires one function evaluation per iteration while the p =2 method
requires two. Then the total number of function evaluations needed by
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each method to achieve an accuracy of 1.0E-6 is 4 and 6, respectively, so
the slower method is better after all. Therefore, to measure efficiency, it is
important to consider both factors—rate of convergence and amount of
work per iteration.

We make one further remark on comparison of methods. Almost invari-
ably it turns out that, if a method is superior with respect to guarantee
of convergence, it will usually be relatively slow, and conversely.
Therefore, in choosing a method, one must decide which property is the
more important at the time. If, for example, we have no idea about the
locations of the roots, then we will prefer a method which is slower but
less likely to diverge.

We are now ready to examine some specific methods and algorithms.

4.2. SINGLE EQUATIONS

In this section, we consider the problem of solving a single nonlinear
equation f(x) =0 in one unknown. A software package will usually contain
several subroutines for solving this problem and we discuss various aspects
of some typical ones. Our aim is to provide a basis for choosing the most
appropriate routine for a particular problem at hand. In order to assess a
subroutine properly, one should know something about the rootfinding
method(s) on which it is based. Therefore, we first discuss, in Section 4.2.1,
some commonly used methods. Then, in Section 4.2.2, we look at the
subroutines themselves. In Section 4.2.3, we consider special routines for
the case where f(x) is a polynomial.

4.2.1. Methods

We first survey and compare some methods, and then discuss their in-
corporation into subroutines. The derivation of each method is done from a
geometric point of view since this provides a good basis on which to
discuss the method’s advantages and disadvantages. Algebraic details have
been Kept to a minimum. For simplicity, we assume that f(x) is continuous
and real valued. By the latter, we mean that if x is a real number then f(x)
is also real. Note, however, that f can still have complex roots.

1. Bisection

Suppose that we have an interval [a;, bi] over which f(x) changes sign an
odd number of times, that is, sgn f(a) # sgn f(bi). Then, by continuity,
[as, bi] contains at least one root of f(x). [a, bi] is called a bracket. An
iteration of the bisection method consists of two steps. First, we compute
the point
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+b 1
=ak—2_‘£=ak+i'(bk'—ak)

4.16) ¢
which bisects [a, bi]. The second form is the preferable one to use®. We
then determine a new interval [ax.1, by.1] according to the rule

[a, c] if sgn f(ay) # sgn f(cx)

4.17) a1, bl = {[Ck, bil otherwise

Again, by continuity, [a;,,, by.;] contains at least one root so it is a bracket
also. Continuing, we compute the midpoint ¢, and decide which subin-
terval will be the new bracket, and so on. The process is illustrated in
Figure 4.2. Of course, if some ¢, is such that f(c;) =0, then it is a root and
we are finished. Otherwise, the iteration continues until one of the stopping
criteria is met. Hence, given an initial bracket [ao, by, the method com-
putes a sequence of nested brackets [aq, by] C [a;, b;]C ..., each of which
is smaller by half than its predecessor. At the kth stage, we use the
midpoint ¢, as an approximate value for the root so the method can also be
viewed as generating the sequence of approximations ¢y, ¢y, . . . .

The main virtue of bisection is guarantee of convergence. Given an
initial bracket [aq, bo], the method is absolutely guaranteed to find a root
because, by halving the length at each stage, we can always make the
bracket as small as we like (subject, of course, to the limitations of

— ! L | |
% : : i b
a E 1:/ ! b1 °

P
I :
[
% i ' bz
a i b,
|
a, b,
FIGURE 4.2

*We recall from the example in Chapter 1 that the second form should only be used when
sgn (ax) = sgn (bx). Otherwise, we should use the first form. However, in the present context,
it is not necessary to make a choice because, unless the root in question is zero, the iteration
will eventually reach a stage beyond which the signs always agree. Prior to this, there is no
need to be concerned about minimizing round-off error because it is insignificant compared to
the total error in the current approximation for the root. For these reasons, the second form of
(4.16) is preferred.
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machine precision) from which it follows that ¢, —>r. We even get precise
bounds for the root—a, <r =<b,, where n is the number of iterations
performed.

A major disadvantage of the bisection method is inefficiency. The rate of
convergence in (4.15) is only p=1. (This follows from the fact that
|exs1] = |ex}/2.) To illustrate how bad this is, suppose XTOL =1.0E—-6=
2-2 Then the number of iterations required to achieve this accuracy will be
the smallest integer n satisfying

(bo—ag = pARD 1+ |Co|)

For example, if [ao, bo]l = [0.0, 1.0], then n = 20. Since the method requires
one function evaluation per iteration plus two to begin, a total of 22
evaluations will be needed. As we will see, this is quite excessive.

There are some other aspects of the bisection method that should be
noted before we go on to other methods. First of all, finding an initial
bracket [ao, bo] in order to get started can sometimes be troublesome. For
instance, difficulties can arise in the case of “clustered” roots. Suppose, for
example, that f(x) has two roots that are close together, say r;=1.10 and
r,=1.15. Then, to find either one, we will need a bracket having an
endpoint lying between them and this may not be a very easy thing to do
without any prior knowledge about their locations. This leads us to the
second point—the method cannot locate roots that are of even multiplicity.
For example, consider the function

f(x)=x4+2x3-—2x2—6x+5=(x—1)2(x2+4x+5)

which has a root of multiplicity m =2 at the point x = 1. This situation can
be viewed as an extreme example of clustering. The two roots at x = 1 are
so tightly clustered that it is impossible to separate them. Geometrically, as
Figure 4.3 illustrates, the graph of f(x) touches, but does not cross the
x-axis at x = 1 so there is no sign change in f. Therefore, even if this root
does lie in an initial bracket [ao, bo], the method will never converge to it at

1
FIGURE 4.3
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all. Similarly, the method will fail to find any root r whose multiplicity is
even since f will not change sign at r. As a final point, we note that the
bisection method will not locate complex roots cither. Again, this is
because f(x) does not change sign at a complex root. We remark that the
foregoing comments apply to any ‘‘bracketing method,” that is, any method
that uses the idea of computing a sequence of nested brackets. We shall be
discussing two others methods of this type—regula falsi and Brent—and it
will be understood that these comments apply to them as well.

2. Regula Falsi

The regula falsi method is a modification of bisection. The formula (4.16)
used to compute ¢ in the bisection method can be written in the more
general form

4.18) c=ac+w-(by—a)

where wy is a weight satisfying 0 < w, <1 so that a, < ¢; < b;. For bisection
we had each w, =1 but now we use a different definition:

fla)

4.19 =

D TPy %)

The motivation for this choice is as follows. First of all, we again assume
that [ay, bi] is a bracket, that is, sgn f(a;) # sgn f(bi). Then it follows from
(4.19) that

0<we=3 if |f(a)]=|f(by)
and
I<wi<l1 if [f(a )} > |f(by)|

Now, in Figure 4.3, we observe that |f(ax)| <|f(b)| from which we con-
clude that r is probably closer to ax than it is to b,. Hence, instead of the
midpoint of [ay, bi], a more appropriate choice for ¢, would be some point
closer to where r is more likely to be. Quite clearly, this is precisely what
the weight (4.19) will do. By choosing ¢ in this way, we hopefully can
achieve convergence in significantly fewer iterations than bisection.
Therefore, the definition of the regula falsi method is, given a bracket
Lax, bi],

i Compute ¢, using (4.18) with weight (4.19).

ii Define a new bracket [ay1, bis1] according to 4.17).

The process continues until one of the stopping criteria is met. The points
Co, €1, €2, . . . @re successive approximations to a root r of f(x).
A geometric derivation of regula falsi will explain how the form (4.19)
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for the weight w, was derived. Consider, as illustrated in Figure 4.4, the
straight line through the two points (ay, f(ax)) and (by, f(by)) on the graph of
f(x). The line is called the secant line to f at these points. Its equation is

y— flay =L@ 1B ()
a,— by

Then it is easily verified that the x-intercept of this line has coordinates
(cx, 0), where ¢ is given by (4.18) with wy defined by (4.19). In other words,
regula falsi uses the x-intercept of this secant line as an estimate for the
location of r. We remark that the method can also be described in the
language of the previous chapter, that is, we approximate f(x) in the
neighbourhood of r by a simpler function and then take ci to be the root of
it. For the regula falsi method, the approximating function is the straight
line that interpolates f(x) at (a, f(a)) and (bx, f(bi)). We will see this idea
again in the description of other methods.

The motivation for considering regula falsi was to improve on the
efficiency of bisection. The amount of work per iteration is the same—one
function evaluation—so any improvement must come from the rate of
convergence. Let us consider the example

420) f(x)=x>—6x2—2x+12=(x*—2)(x—6)

In Table 4.2, we show the results of two iterations using regula falsi. The
initial intervals were I, = [0, 4] and I, = [—4, 0], each of which contains one
root of f(x). The a’s and b’s beside the ¢ columns indicate which endpoint
is replaced by c;. (The final brackets are given at the end of each column.)
The convergence test was (4.14) with XTOL = FTOL = 1.0E — 3. In both
cases, termination was on the X-test. For comparison, we note that the
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TABLE 4.2
k Ci f(ew) Ci fer)
[0.0, 4.0] [—4.0,0.0]
1 1.200 a 2.688E 0 —-0.3158b 1.200E 1
2 1.445b —4.010E -1 ~-0.6067 b 1.078E 1
3 1.413 a 1.574E -2 —0.8493 b 8.758E 0
4 1414 a 2.770E -3 —-1.035 b 6.534E O
. [1.414, 1.445] -1.167 b 4573E 0
14 —-1.411 b 6.728E -2
15 -1412 b 4.637E -2

[—4.0,-1.412]

bisection method would require 11 iterations starting with the same initial
brackets. Hence, in the case of I;, regula falsi gives a very significant
improvement in efficiency. On the other hand, with I,, it is worse than
bisection. On closer inspection, we observe that the left endpoint remained
the same throughout the iteration whereas, with I,, both left and right
endpoints were changed at one stage or another. Geometrically, the reason
for this can be seen in Figure 4.4. If the graph of f(x) does not change
concavity over [ay, bi], that is, f has no point of inflection within the
bracket, then ¢, will consistently lie on one side of r. When this happens,
the rate of convergence of the method is p =1, the same as bisection®.
Hence, any improvement in efficiency is entirely dependent on the parti-
cular equation f(x) =0 being solved at the time’. Unfortunately, there is no
practical way of telling, beforehand, whether there will be any improve-
ment or not.

We make one further remark about Table 4.2. We have already noted
that, in the iteration with I, both endpoints of the bracket were changed.

®For a proof of this result, see [6, p. 230].

"Whenever two methods have the same rate of convergence, the difference in the number of
iterations required for each method will lie in the value of C in the relationship (4.15). For
bisection, we have Cy =1 while, for regula falsi, it is shown in the above reference that if e, is
sufficiently small,

C = Cre|f"(6)/2f'(6") where ac <6, 0’ < by

Hence, if f is such that Crs <3, then regula falsi will be faster, and conversely. But the
comparison depends entirely on f(x).
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The reason is that, since there is an inflection point at x =2, the ¢;’s will
not necessarily all lie on one side of the root r = V2. However, when k =3,
the bracket no longer includes this point and f is concave upward
throughout [as, bs]. Up to this stage, the speed of convergence is quite good
but, for any subsequent iterations, it will deteriorate to p = 1. This would
have been evident in Table 4.2 if we had carried, say, eight digits and
continued the iteration beyond k = 4.

From the foregoing discussion, one would conclude that, at least in the
vicinity of a root, regula falsi is not a particularly good method. However,
it is possible to make the method more viable by introducing a
modification. The idea is to somehow prevent the c’s from falling on only
one side of r. One modification that is sometimes used is to keep a record,
after each iteration, of which endpoint was replaced by ¢ in (4.17). If, say,
ax is replaced twice in a row then we presume that f is concave upward so
we replace f(by) by f(b)/2 in the computation (4.18) of ¢;. As Figure 4.5
illustrates, the aim is to try to make ¢ fall to the right of r. If it does not
work, we repeat on the next iteration and so on until we succeed. Using
this modification, the iteration with I, in Table 4.2 would become the
following.

k ai fa) by f(by)
0 —40 —1.400E 2 0.0 1.200E 1
1 — — —0.3158 1.200E 1
2 — -7.000E 1 —-06067 1.078E 1
3 — -3500E 1 —1.060 6.187E 0
4 -1502 —1921E 0 — —
5 — — -1.397 3.579E ~ 1
6 — —9605SE—1 —1.413 2.543E -2
7  -1432 —-3.762E -1 — —
8 —1.421 —1.428E —1 — 1.272E -2
9 —1417 —5851E-2 — 6.358E —2
10 -1415 —1.650E-2 —_ 3.179E -2

We see that the modification does, in fact, give faster convergence.
However, near the root, it evidently can still be quite slow.

3. Secant

The secant method is similar to the regula falsi method in that it also uses a
secant line to approximate f(x) in the neighbourhood of a root. The
difference between the two methods is that the secant method does not use
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the idea of brackets. Since the method is based on secant lines, we need
two points on the graph of f(x), say (xi-y, fi_1) and (x;, fi), where f; denotes
the value of f(x,). The equation of the line through these points is

y —fk = fk _.fk—l

T (x X
Xk~ Xk-1 )

and the x-intercept will be (x;,,, 0), where

4.21) xpp=x— _fk (X — xi-y)

fi=fi
Hence, given two initial guesses xo, x;, the secant method computes a
sequence Xo, X1, X3, . . . using the rule (4.21).

The secant method is much easier to get started than the previous
methods. All we need is two points x, x, and they do not have to form a
bracket. On the other hand, the convergence properties of the method are
erratic and unpredictable. Aside from the fact that it can diverge al-
together, it will very often wander about for a while before ultimately
converging. It may even converge to a root that is some distance away
despite the fact that the initial guesses x,, x; were close to some other root.
To illustrate, we apply the method to the equation (4.20). In Table 4.3, we
show some results. None of the iterations shown in the table converges
directly to a root. Moreover, the third one has skipped over the root at V2.
The source of this erratic behavior is quite easy to pinpoint. From (4.21), it
is clear that there will be a large change between x; and x,,, if the weight
wi = fil (fx = fx+1) is large and this, in turn, will be true if |f = fxei| is small.
Therefore, if we are unfortunate enough to choose xo, X; such that [f, — fo| is




SINGLE EQUATIONS / 167

TABLE 4.3
k Xk fi Xk I Xk f
0 0.0 1.20E 1 -0.1 1.21E 1 -0.25 1.21E 1
1 0.1 1.17E 1 0.0 1.20E 1 0.25 1.11E 1
2 4.6332 —-266E 1 8.6331 191E 2 6.0047 1.60E — 1
3 1.4879 —-9.65E -1 —0.57882 1.L10E 1 6.0886 3.11E 0
4 1.3695 5.76E -1 -1.1393 SO01E 0 6.0001 3.40E-3
5 1.4138 S36E-3 —1.6120 —-4.56E 0 6.0000 0.0
6 1.4142 1.76E—4 —1.3869 S5.65E —1
7 -1.4117 5.26E-—-2
8 -1.4143 —1.81E-3
9 —1.4142 1.69E —4

small, we could experience erratic behavior such as that in Table 4.3.
Geometrically, the difficulties arise whenever the slope of the secant line is
close to zero. As we see in Figure 4.6, this will certainly happen if x,-; and
x, lie in a region where f(x) has a relatively small slope. We conclude,
therefore, that direct convergence to a root r can only be guaranteed if
Xo, X, € [a, b] satisfy conditions of the form:

i rela,b].
4.22) i If x-y, xx €[a, b], then so is Xy4y.
iii |f'(x)l=C for all x €[aq, b], where C >0 is sufficiently large.

Again, we emphasize that the method will not necessarily diverge if
Xo, X, € [a, b]. It simply means that we cannot predict what will happen.
Let us now look at the efficiency of the secant method. Again, the
amount of work per iteration is the same as before—one function evalua-
tion—so any improvement in efficiency over the previous methods must be
in the rate of convergence. It can be shown [6, p. 229] that, when
Xk-1, Xk € {a, b] defined by (4.22), the rate of convergence is p = 1.62, which

ko

FIGURE 4.6
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is much faster than either regula falsi or bisection. The emphasis, however,
is on “when.” If xp, x, &€ [a, b}, we may still get convergence but, as we
have seen, the iterations may diverge for a while at first and the overall
efficiency will not be so good. In summary, the secant method is quite
good provided x,, x, are close enough to r. We remark that this conclusion
might suggest a combination, or “hybrid”’, method whereby we start with,
say, bisection and then switch to the secant method when it is “safe” to do
so. This, in fact, is part of the idea behind Brent’s method, which will be
discussed shortly.

4. Newton-Raphson

The Newton-Raphson method is also based on the idea of approximating
f(x) locally by a straight line but this time it is a tangent line. Let x, be an
approximation for a root r. Then the equation of the tangent line to f(x) at
(xx, fi) is given by

Yy—fu="Ffk (x—x)

and the x-intercept is (x,.,, 0), where

423) x=x -
fi
The process is illustrated in Figure 4.7. Hence, the Newton-Raphson
method starts with an initial guess x, and computes the sequence
Xg, X1, X3, . .. according to the rule (4.23).

Before discussing the method, it is interesting to note its connection with
the secant method. The derivative f; in (4.23) can be approximated by the
divided difference

fp’(i fk _fk—l

Xk — Xk—1

Substituting this into (4.23) and doing some manipulation, we get the

] ]
/ ’ T &

FIGURE 4.7
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formula (4.21) for the secant method. Hence, we can view the secant
method as an approximation to the Newton-Raphson method. In this
respect, the secant method is a natural alternative to the Newton-Raphson
method whenever it is inconvenient to provide an explicit representation
for f'(x). Such might be the case when the functional form of f(x) is very
complicated, or when f(x) is only given in tabular form as, perhaps, data
from an experiment.

From the geometry of the method, it is clear that, like the secant method,
the Newton-Raphson method can be erratic in regions where f(x) has a
small slope so we can only guarantee direct convergence to a root r if xg is
sufficiently close to r. Actually, it is possible to establish a convergence
result that is more precise than (4.22) is for the secant method. This arises
from the fact that (4.23) can be expressed as a fixed-point iteration (4.8)
with

- _fx)
g(x)_x fl(x)

Therefore, convergence is guaranteed for any x, € [a, b] satisfying (4.10)
with condition (jii) written as

lg'(0)| = f-gfi)&—)(;ﬁ—) <1 forall x €[a, b]

Note that this agrees with our geometric intuition, that is, if |f'(x)| is too
small, we cannot guarantee convergence. Hence, like the secant method,
the Newton-Raphson method is only dependable when we are sufficiently
close to r.

A significant disadvantage of the method was mentioned above. This is
the requirement for an explicit representation of the derivative f'(x). In
many instances, this is a great inconvenience. Moreover, since f'(x) is
usually a more complicated function than f(x), it is more costly to evaluate.
It turns out (see below) that the method offers very little in return for the
extra work and inconvenience involved so it is not usually implemented in
a software package. We remark, however, that if f(x) is a polynomial, this
disadvantage vanishes and the method does have some practical value. We
discuss this in Section 4.2.3.

The main advantage of the Newton-Raphson method is the rate of
convergence. It is quadratic (i.e., p = 2). However, each iteration requires
two function evaluations—f(x) and f'(x)—so, as we have already seen, it is
not necessarily more efficient than secant. To illustrate, we again consider
the example (4.20). The following table shows two comparative iterations
(with XTOL = FTOL =5.0E —4). Even though the Newton-Raphson
method converged in only three iterations, it nevertheless required more
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Secant Newton—-Raphson

k X i X fe

0 0.5 9.63E 0 0.5 9.63E 0
1 1.0 5.00E 0 1.8276 -559E 0
2 1.5405 —1L66E 0 1.4257 -1.49E -1
3 1.4055 L13E -1 1.4142 1.76E — 4
4 1.4141 147E-3

5 1.4142 1.76E — 4

work—eight function evaluations compared to six for secant. In the
vicinity of a root, the method gives very rapid improvement in accuracy
due to the quadratic rate of convergence. For example, the improvement
from x; to x; in the above iteration is three significant digits. But we
observe that the secant method is just as efficient in the same vicinity. Now
this is only an isolated example but the results are typical. As a general
rule, we can say that the efficiency of the two methods is about the same in
the vicinity of a root. Hence, the quadratic convergence of the Newton—
Raphson method is, in effect, countered by the extra cost of evaluating
f'(x). This, combined with the inconvenience of having to use f'(x), makes
it an unsatisfactory method for practical purposes.

We remark that the statement concerning the quadratic convergence of
the method has to be qualified by the condition that the root r is simple
[i.e., f'(r) # 0]. Actually, on the face of it, one may wonder why the method
works at all for multiple roots since f’(x;) will be small when x, is close to
such a root and this may cause overflow problems in computing the
“correction term” fi/fi. To see why this is of no concern, suppose that r is
a triple root of f(x). Then we can write f(x) = (x — r)*q(x), where q(r) # 0.
Now, if some x; = r, then f'(x,) =0. But f(x;) =0 also and the iteration
would be stopped on the (correct) conclusion that a root has been found.
Therefore, there is no danger of division by 0 in (4.23). If, on the other
hand, x, is close to r, say x, — r = ¢, then (4.23) would take the form

- €’qx) _, _€ 2
4.24) X=X T390+ €7 m) -3+ O(e?)
Therefore, even though the denominator f'(x,) is small near a multiple root,
the numerator is even smaller—by a factor of e—and the division is no
problem. This analysis also helps explain why the rate of convergence is
slower for a multiple root. In the case of a simple root [i.e., f(x)=
(x = na(x)], with q(r) # 0, the equivalent of (4.24) is
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- €eqx)  _ 2
A ey o ey Sl O + O(¢?)
Neglecting the higher-order terms in ¢, we see that the improvement in x; is
by the amount € whereas, in (4.24), it is only /3.

One further point about the Newton-Raphson method is that, although
we have only talked in terms of finding real roots, it can also be used to
find complex roots. One simply has to start with a complex initial guess in
order to get the iterations off the real axis—if x, is real then so are f, fi
and, from (4.23), it follows that x,,, is also real.

5. Miiller

We have looked at different ways of approximating f(x) in the vicinity of a
root by a straight line. We now move to approximation by a quadratic.
Miiller’s method is based on interpolation of f(x) locally by a quadratic
curve, that is, a parabola. Since it takes three points to define a quadratic
uniquely, we assume that we have three approximate values x;_s, x;_1, X«
for r along with their respective coordinate values f,_s, fi-1, fi. Now there
are two possible forms for the quadratic:

y=ax*+bx+c and ay’+by+c=x

The former is the equation of a parabola that opens up (or down) while the
latter opens to the right (or left). Miiller’s method uses the first form
because it turns out to be better with respect to guarantee of convergence.
(The second form is called the “inverse” form. It is used in Brent’s method
which will be discussed next.) But, as we see in Figure 4.8, a dilemma
arises with this form of the quadratic, that is, it has two roots and we must
pick only one of them as the next approximation x,,,. The choice is
resolved in the following way. In the computation of the roots of the
quadratic, there is an expression of the form u =Vv. We simply choose
the sign of the square root to agree with that of u. Note that the choice is
desirable from a numerical point of view since it avoids loss of significance

FIGURE 4.8
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due to cancellation. Since the algebra of the method is quite messy, we
omit the details. A good reference is [5, p. 74]. Suffice it to say that, given
three initial guesses X, x;, X, the method generates a sequence
Xo, X1, X2, X3, . . . of approximations. At each stage, the new approximation is
derived from the three most recent ones by quadratic interpolation.

Miiller’s method is the best yet with respect to guarantee of con-
vergence. It is essentially global in the sense that, for almost all problems,
it will converge to a root starting with almost any set of initial guesses
Xo, X1, X3. Any problem where it fails to converge will usually be somewhat
contrived or pathological and not likely to arise in practical applications.
As a result, a subroutine implementation of the method will very often
require only one initial guess. The other two will be generated by the
subroutine itself since their precise locations are not critical. For example,
if we let xo = o, then the routine might set x, = 0.9¢ and x, = 1.10.

An additional feature of the method results from the fact that the
interpolating quadratic can have complex roots, that is, its graph may not
cross the real axis. Therefore, Miiller’s method has the capability of finding
complex roots even if the initial guesses are real. However, in a way, this
can be a disadvantage because the method has to be implemented using
complex arithmetic in order to handle the possibility of complex x,’s. For
the same reason, the user-supplied function subprogram for evaluating f(x)
must also be programmed in complex arithmetic. Since arithmetic opera-
tions for complex numbers take at least twice the time as those for real
numbers, this penalizes the efficiency somewhat in the case of finding real
roots. On the other hand, it can be considered a relatively small price to
pay for the near-global convergence of the method. We discuss this point
further in Section 4.2.2.

The rate of convergence of Miiller’s method is p = 1.84 which is almost
as fast as the Newton-Raphson method. It is true that only one function
evaluation per iteration (plus three to begin) is required but this is essen-
tially negated by the fact that we must use complex arithmetic. We also
note that each iteration of Miiller has to perform a square root but this is
usually insignificant compared to an evaluation of f.

6. Brent

In discussing the secant method, mention was made of the idea of devising
a “hybrid” method from two or more separate methods. The aim is to
produce an algorithm that possesses all the good features and, hopefully,
none of the bad ones of each individual method. Brent’s algorithm
[17, p. 161] is an example of such a hybrid. It combines the bisection,
secant, and inverse quadratic interpolation methods. The latter one, as its
name implies, is based on interpolating f(x) locally using the inverse form
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ay’+ by + ¢ = x of the quadratic. In contrast to the form used by Miiller’s
method, the inverse form has only one root (at x = ¢) and it is always real
(if ¢ is real). An iteration with the inverse method is less work than
Miiller’s method because it uses real arithmetic and no square root has to
be taken. Moreover, the rate of convergence is the same, that is, p = 1.84.
On the other hand, it does not have anything approaching the global
convergence properties of Miiller. Therefore, it is not a particularly good
method by itself.

Brent’s algorithm is an attempt to gain the advantages of inverse
quadratic interpolation and compensate for the lack of global convergence
by combining it with secant, which has better global convergence proper-
ties but is slower, and bisection, which has guaranteed convergence but is
even slower. The specific details of the algorithm will not be given here.
Briefly, the idea is to use inverse quadratic interpolation primarily, revert-
ing to secant and, ultimately, bisection when, and only when, it is neces-
sary to do so in order to achieve convergence. The result is a fast, efficient
method with guaranteed convergence. The following table shows the
results of applying the method to solve the example problem (4.20).

k Cx fi Ci fi
[0.0, 4.0] [—4.0,0.0]

1 1.200 269E 0O -0.3158 1.20E 1

2 1.516 —134E 0 —-0.9723 735E 0

3 1.411 4.17E -2 -1.340 1.50E 0

4 1.414 2.77E -2 —1.420 -1.22E -1

5 —-1.414 4.48E -3

Compared to the results using regula falsi, these are much better. Finally,
we remark that Brent’s method uses bracketing and the previous comments
with regard to roots of even multiplicity and to finding an initial bracket
apply.

4.2.2. Subroutines

There are normally two types of rootfinding subroutines contained in
software packages. One is the general-purpose type, designed to find roots
under almost any circumstances—for example, both real and complex
roots, and bad initial guesses. The other type is special purpose where
advantage is taken of knowledge about the type and location of the roots in
order to find them very efficiently. From the discussion in the previous
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section, Miiller’s method is clearly an ideal method to use in the former
type, while Brent’s method is a good example of a special-purpose method.
We briefly discuss their implementations.

A general-purpose subroutine should provide as much flexibility as
possible in the ways it can be used. Among other things, this means that it
should be capable of finding a specified number of roots of f(x) with a
single call to it. Suppose a user wants to determine, say, s TOOtS ry,..., I
of f(x). Now it is easy to design an algorithm that will do s sets of
iterations of a method but, as we saw in Table 4.1, there is a danger of two
or more of the iterations converging to the same root. To avoid this
possibility, we use a process called deflation whereby, once a root is
located, it is removed as a possible root for future iterations to find. The
idea is as follows. Suppose we have found a root r,. Then we *“‘deflate” f(x)
by dividing by the factor (x — ry), that is, we define the new function

fitx) = "x_—f(_xZI)

Proceeding, we apply the root-finding method to fi(x) and find a root r,
which, clearly, is also a root of f(x). Deflating by the factor (x —r;), we
obtain the new function

) fz(x)z(fl(x) — f(X)

x—r) (x—r)x—ry)

and so on. We note that, since r, is not a root® of fy(x), fa(x), ..., fs-1(x),
there is no possibility of it being found more than once and similarly for
ry,ry,...,rs.

We remark that an implementation of this process usually employs a
modification in that each iteration is split into two parts. For example, to
determine the root r,, the algorithm begins by trying to locate it as a root of
fm-1(x). Then, when the iteration has converged sufficiently, it switches to
f(x). The presumption here is that, when the iteration is close enough to rp,
the change to working with f(x) can be done with no danger of the iteration
being attracted to another root (that may have been found already). In
effect, then, the purpose of working with the deflated function f,_i(x) is
simply to provide a good initial guess for an iteration with f(x). The reason
for using this modified procedure is for numerical stability. In evaluating
the deflated function f.(x) at, say, x = x;, we are effectively scaling the
value f(x;) by the factor [(x—r)...(x —r,)]"" and this can sometimes

®In order for this statement to be true, r; must be a simple root of f(x). To account for a root
of multiplicity m > 1, we permit repetitions in the list of roots of f(x). For example, if r has
multiplicity m = 3, then we will say that r, = r, = r; so that each one is found only once.
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produce misleading results. Suppose, for example, that three roots of f(x)
are r,=1, =2, ry = 100 and, having found the first two, we define

- I
PO ===

If, in the iteration for r;, we arrive at the point where x, =102 and
f(102) = 0.02, then

0.02 .

(oz-naoz-2 E-6
Hence, if FTOL = 5.0E — 6, termination of the iteration would occur on the
F-test with a result that is only accurate to two digits. If, on the other hand,
the iteration is switched to f(x) before this stage is reached, the difficulty
will not occur. But there is still the question of determining when to switch.
If it is done too soon, the iteration may be drawn to another root. This
problem is resolved by the designer of the subroutine so it need not be of
concern to the user. However, we remark that, as m increases, the scaling
effect from deflation gets progressively worse and it is increasingly difficult
to determine an appropriate point to make the switch. Therefore, the
possibility of failure to converge increases as the number of roots removed
by deflation increases. The conditioning of the problem (see Section 4.2.3)
is a significant factor in the rate of increase.

The calling sequence for a general-purpose subroutine (based on Miiller’s
method) will be of the form

RTMLR(F,XO,NK,NN,XTOL,FTOL,ITMAX,ITER,IND)

f(102) =

where

F is a complex function subprogram for evaluating f(x).

XO is a complex vector of length =NK + NN.

NK specifies the number of known roots of f(x) (stored in
XO(), . . . , XO(NK)).

NN specifies the number of new roots to be found.

XTOL, FTOL, ITMAX define the stopping criteria.

ITER is an NN-vector used to return the number of iterations
required for each (new) root.

IND is used to indicate whether or not failure to converge occurred
for any of the NN iterations.

This calling sequence provides a good deal of flexibility for the user. If, for
example, we initially want to compute two roots of f(x), we can do it by
calling the routine with NK = 0 and NN = 2. Then, if we subsequently want
to find three more roots, we can reenter the routine with NK=2 and
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NN = 3. The subroutine will assume that the known roots (as computed
from the original call) are contained in XO(1) and XO(2), and immediately
remove them from consideration by means of deflation. Initial guesses for
the new roots are to be contained in the next three components of XO. In
this regard, since Miiller’s method has near-global convergence properties,
it is possible to make the specification of initial guesses for the routine
optional. In this case, another parameter-—say, NG-—specifying the number
of roots for which initial guesses are supplied, must be added to the calling
sequence.

We emphasize that, in order to use a subroutine like RTMLR, the
subprogram F for evaluating f(x) must be complex. But in situations where
the user only wants to locate real roots, this feature is both inconvenient
and inefficient. Now in the previous section, we said that this is a small
price to pay for the advantage of near-global convergence. Nevertheless,
since such situations arise with some frequency, it would be desirable to
have a special subroutine which eliminates the need for complex arith-
metic. There is, however, a difficulty in that we want the routine to retain
the near-global convergence feature. This means that we need a root-
finding method that has this property and, at the same time, is limited to the
real line. Such a method is not known. Therefore, we consider an alter-
native, namely, modifying Miiller’s method by restricting it to the real line.
One such modification is as follows. Recall that each approximate root x,
generated by Miiller’'s method is defined to be a root of an interpolating
quadratic. Suppose that the roots of it are u = Vv, where u, v, are real.
Then, since x, is complex if and only if v, <0, we modify the definition of
X to read

xz{ukt\/v_k if v, >0
T lu if v, =<0

This clearly eliminates the need for complex arithmetic. With respect to
guarantee of convergence, we would not expect this modified method to be
as good as Miiller’s method. However, it turns out to be reasonably good.
Moreover, it can even be enhanced with one or two additional
modifications. Therefore, given the savings from using real arithmetic, a
subroutine that is based on this modification of Miller’s method can be
very useful. An example of such a routine is ZREAL] in the IMSL package.

A subroutine based on Brent’s method will be more or less a straight-
forward implementation of the method as outlined in the previous section.
There is no need to include deflation since there is no danger of an iteration
going outside the current bracket. A typical calling sequence is

RTBRT(F,A,B,RT.XTOL,FTOL,ITMAX,IND)
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where

F is a real function subprogram for evaluating f(x).

A, B are the endpoints of the initial bracket on entry, and those of
the final bracket on return.

RT is used to return the approximate root.

XTOL, FTOL, ITMAX, IND are the same as for RTMLR.

4.2.3. The Special Case of Polynomials

Let us now assume that the function f(x) is the polynomial

(425) p(x)=apx"+ax" '+ -+ apaX +an
=(..((apx +ay)-x+a) x+-- cH+ Ap ) X+ a,

where the coefficients a, are real numbers. The second form, called the
nested form, is computationally more efficient, as we saw in Section 3.1.1.
Polynomial equations arise very often in practice, and special subroutines
for solving them are generally included in software packages. These
routines exploit the special features of polynomials, some of which we now
discuss.

First of all, a polynomial p(x) can be uniquely represented in a computer
by the pair (n, A), where n is a positive integer specifying the degree of the
polynomial and A is an (n + 1)-vector containing the coefficients g;, 0 =i =
n, in order. To find the value of p(x) at, say x = s, we form numbers b as
follows:

b= a,
4260 FORk=12,...,n
bk=s-bk-1+ak

Then b, = p(s). The justification for this procedure is quite simple. We
have b, = s - ag+ a,, that is, b, is the value, at x = s, of the term within the
innermost set of brackets of the nested form of (4.25). Similarly, b, will be
the value of the term within the next set of brackets, and so on. For
example, we consider the polynomial (4.20)

p(x)=x>—6x*—2x+12
=((x=-6)-x—2)-x+12

To find the value p(2), we have
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bo= ay = 1
by=2by+a;= 20)+(-6)= —4
b,=2bi+a,= 2(-4)+ (-2)=-10
b;=2b,+a;=2(-10)+ 12 = —-8=p(2)

Actually, this is nothing more than the familiar process of synthetic
division [6, p. 16]. Since the procedure is the same for all polynomials, it
can be incorporated directly into a subroutine and the user does not have
to supply a function subprogram for evaluating p(x). All one has to do is
define the polynomial by specifying n and A. Hence, the calling sequence
for a polynomial rootfinder will be of the form

CALL ROOT(N,A,XO,XTOL,FTOL,ITMAX,IND)

We remark that this feature is more in the way of providing user con-
venience. It does not necessarily increase the efficiency of the algorithm.

The next feature does contribute to efficiency (as well as user con-
venience). Any polynomial rootfinding subroutine that uses a method such
as Newton-Raphson will require values of the derivative p’(x). Suppose we
want the value of p' at x = 5, the same point used in (4.26). This can be
done very efficiently by using the numbers b,. We can write p(x) in the
form

427) p(x)=(x-s)-q(x)+b,
where
(4.28) q(x) = box"_' + b1x"_2+ R b,._zx + bn—l

is a polynomial of degree (n— 1) whose coefficients are given by (4.26).
This result follows easily by noting that, from (4.26),

aps= by and ay =by— 5 by, k=1,...,n

and then substituting into the first form of (4.25). Now, by differentiating
(4.27), we get

p'x)=qx)+(x—s5) q'(x)

and it follows that p'(s) = q(s). In other words, to find the value of the
derivative p'(x) at x = s, all we have to do is evaluate the polynomial g(x)
at x = 5. This can be done at the same time as we find p(s) by expanding
the program segment (4.26) to the following:
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bo = a,
co=by
429y FORk=1,2,...,n—1
by=s b+ ax
k=S8 cx+ by
b,=s b,_y+a,
Then b, = p(s) and c¢,_, = p'(s). For our example, we have
b= 1 Co= 1
b, 20+ (=6)= -4  ¢;= 2+ (—4)= -2
b= 2(-4)+(-2)=-10 :=2(-2)+(—10)=—-14
b;=2(-10)+ 12 = -8

Therefore p(2) = —8 and p'(2) = — 14. The amount of work required is n flops
for p(s)and (n — 1) for p'(s). By comparison, if we represent p'(x) in the usual
way
P'(X)=naex" '+ (n— Dax" 2+ - - - + 200X + Qp-y
=[L..[napx+(n—Da]x+---+2a,5]x + an_,

then, even in the nested version, an extra n — 1 multiplications are required
to evaluate it. Again, since the program segment (4.29) is the same for any
polynomial, it can be incorporated directly into a subroutine, making it
transparent to the user.

Quite clearly, the above ideas can be extended to evaluation of higher
order derivatives and this opens up the possibility of considering methods
which use them. We discuss one such method which is often used.

Laguerre’s Method
Suppose that the roots r; of p(x) are real and ordered such that

nsnp=---<r,

with strict inequality at least once, that is, they are not all equal. Let x; be
an approximation to a root and suppose that x, € I;, where

I,'= [r,-, r,'+|] O<i=n with o= —© Ypi) = +®©

Then the idea of Laguerre’s method is to construct a parabola having the
following property:

Both of its roots are in I; and at least one of them is closer to a
root—r; or ri.—of p(x) than x; is.
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Now in general, it is impossible to construct a quadratic having this
property without prior knowledge about the locations of the roots.
However, in the case of polynomials with real roots, it turns out to be
possible. There are an infinite number of such quadratics but the method,
in essence, considers only a one-parameter family of them. It chooses,
from this family, the one that has a root that is as close as possible to a
root of p(x). The actual derivation of the method is very involved and is
not given here—a good reference is [24, p. 380]. However, the resulting
iteration is quite easy to state. It is

430)  Xip =X — —— B
( ) k+1 = Xk pLi\/H(xk)

where

pr = p(X1), pk=p'(x)
and

Hx)=(n—Dl(n—D(E'Kx))— np(x)p"(x)]

The sign of the square root is chosen to agree with that of pi. Not only
does this choice avoid loss of significance through cancellation, it also
makes |Xx+) — x| as small as possible. Now the derivation of (4.30) relies on
the assumption that all the roots of p(x) are real. But there is nothing to
prevent us from applying the method to any polynomial. In fact, we note
that, if H(x,) <0, then x,., will be complex. Therefore, the method has the
potential for finding complex roots and, in fact, it will do so. Moreover, like
Miiller’s method, an iteration can start on the real axis and move into the
complex plane on its own. One could, of course, consider dropping all
restrictions on using (4.30) and try applying the method to solve general
nonlinear equations. However, apart from convergence considerations, it is
usually very inconvenient having to provide subprograms to evaluate each
of f, f’, and f".

Under the assumption that p(x) has real roots only, Laguerre’s method is
globally convergent, that is, it will converge to a root for any choice of
initial guess. Moreover, it will locate a nearby root, that is, if xo € I;, then
the method is guaranteed to converge to either r; or ri.y. (If i =0 or n, then
convergence is to r, or r,, respectively.) By contrast, we have seen that the
Newton-Raphson method will not necessarily converge to a root which is
nearby. The results in Table 4.4 illustrate this comparison. Again, this
discussion assumes that p(x) has only real roots. If p(x) has complex roots,
Laguerre’s method is no longer globally convergent. However, empirical
evidence indicates that nonconvergence is exceptional. Therefore, subrou-
tine implementations of the method do not usually restrict application to
the case of real roots only.
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TABLE 4.4
Miiller Newton—Raphson Laguerre
k Xy X Xx X Xx Xi
0 0.0 0.5 0.0 0.5 0.0 0.5
1 1.2581 1.3647 6.000 1.8276  1.1369  1.3426
2 1.3926  1.4109 14257 14124 14142
3 14139 14142 1.4142 1.4142
4 1.4142
No. flops 21 18 10 20 18 18
No. sq. rt. 4 3 3 3

Turning to efficiency considerations, Laguerre’s method is cubically
convergent (p = 3) for simple roots, which is exceedingly fast. For multiple
roots, the rate deteriorates but it is still better than the other methods we
have considered. On the negative side, it requires three function evalua-
tions per iteration—p, p’, and p". Actually, since we are dealing only with
polynomials, the precise number of operations can be determined. Assum-
ing that the suggested method of polynomial evaluation is used, the
comparative amounts of work per iteration are:

Miiller: n =n flops + 1 square root.
Newton-Raphson: n +(n—1) =2n—1 flops.
Laguerre: n+(n-1)+(n-2)

=3n -3 flops + 1 square root.

By combining these results with the respective rates of convergence, it
appears that, from an efficiency point of view, Laguerre’s method is at least
competitive. Table 4.4 illustrates this. The example used is the polynomial
(4.20), which has roots r,=-V2, r,=V2, and r;=6.0. Note that both
initial guesses 0.0 and 0.5 are in [r,, ). However, both of the Newton—
Raphson iterations go outside this interval. Moreover, the iteration with
xo = 0.0 converges to r;. (The fact that it gets there in only one iteration is
purely fortuitous.) In summary, Laguerre’s method is very good. Its main
advantage is global convergence which, incidentally, is not offset by
relatively poor efficiency. It is only our lack of understanding of its
behavior in the case of complex roots that has prevented it from gaining
more widespread use.

Returning to our discussion of special features, the nature of the roots of
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a polynomial equation can also be exploited in designing a subroutine. For
one thing, we know that, counting multiplicities, a polynomial of degree n
has exactly n roots so there is never any question about when to stop
looking for more roots. More important is the fact that, since p(x) has real
coefficients a;, complex roots occur in conjugate pairs. That is, if r = s + it
is a root, then so is its complex conjugate 7 = s —it. Hence, whenever a
complex root is found, we automatically have another one without doing
any extra work—two for the price of one, so to speak—which helps to
compensate for the need to do complex arithmetic. We return to this point
shortly.

The process of deflation is particularly efficient with polynomials. In fact,
it need not involve any additional work at all. Suppose that r is a root of
p(x). Then we want to find the deflated polynomial p(x)/(x —r). With s =r
in (4.27), we have

But, since r is a root, it follows that b, = p(r) = 0. Therefore, by using
(4.26) or (4.29) for evaluating p(x) at s = r, we also obtain the coefficients b;
of the deflated polynomial. A subroutine can take advantage of this fact in
the following way. Each iteration will compute the value of p(x.,) for use
in the F-test for convergence. We simply save the b;’s from the evaluation
process. If the iteration has converged, then x,., = r and we automatically
have the (approximate) coefficients for the deflated polynomial. If the
iteration continues, then we overwrite the current b;’s with the next set of
them, and so on. Therefore, deflation can be done for the small cost of an
additional n — 1 memory locations and storing data (b;’s) in them.

A further point concerns the need to do complex arithmetic. Suppose
that r is a complex root. Then the deflated polynomial q(x) = p(x)/(x —r)
will have complex coefficients. However, since we know that (x — 7) is also
a factor of p(x), we really want to determine the polynomial

- px) ___ pkx)
t(x)_(x—r)(x—f')_xz—ax +p?

where a=2Re(r) and B=|rl* It follows that t(x) will have real
coefficients since the quadratic in the denominator is real. The deflated
polynomial is

t(x)=Cox" 2+ i x" P+ -+ Cp3X + Cna

where
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Co= Qo
C=a,+ acy

Cx = Ay + aCx—y — BCr-2 2=<k=n-2

We remark that these formulas can be derived from (4.29) with s replaced
by § in line 5, that is,

k=S5 + Cp—y+ by

Therefore, deflation can be done without having to use complex arithmetic.
Now this does not mean that complex arithmetic can be avoided altogether.
If an iteration converges to a complex root, then it is inevitable that
complex arithmetic must be done from some stage on. However, by
retaining real coefficients, we can revert back to real arithmetic to find the
next root (at least until such time as the iteration for it moves into the
complex plane). Therefore, the efficiency of an algorithm can be enhanced
by having two implementations of the iterative rule—one in real arithmetic
and one in complex. The latter is used only when necessary.

Finally, in view of the above comments, we should reexamine the calling
sequence for a polynomial root-finding subroutine. Since we know that
p(x) has n roots, we can request that a subroutine find n, =n of them.
Moreover, the roots could be complex. Therefore, a typical calling
sequence is of the form

CALL RTPOLY(N,ANR,XREAL XIMAG,XTOL,FTOL,ITMAX,IND)
where

NR specifies the number of roots to be found.

XREAL, XIMAG are NR-vectors, On entry, they will contain the
initial guesses and, on return, they will contain the real and
imaginary parts of the roots. Note that, if the routine uses Miiller
or Laguerre, then we need only specify XREAL on entry.

The other arguments are as before.

Finally, we discuss the concept of ill conditioning as it applies to
nonlinear equations. For simplicity, we restrict the discussion to poly-
nomials. A polynomial is ill conditioned if small changes in its coeflicients
produce large shifts in its roots. An example is the polynomial (1.6)
discussed in Chapter 1. We saw that a very small perturbation in just one
coefficient produced very large changes in some of the roots. However, not
all of the roots were badly affected. In fact, any shift induced in the first
few of them by the perturbation was too small to be noticeable within five
digits. Due to such differences in behavior, it is usual to talk about the
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conditioning of individual roots rather than the polynomial itself. Suppose
ri is a simple root of the polynomial (4.25). Then its condition number
cond(ry) is defined to be

2 Qi+ Dan_ir||
431) cond(r) ="
@30 condm) ==
We observe that this number will be large whenever p'(r;) is small, that is,
whenever p(x) has a cluster of roots very close to ri. Hence, the condition-
ing of a root depends on its separation from the others. But the roots of the
polynomial (1.6) are 1,2,...,20, which would seem to be nicely separated
whereas we know the larger ones are badly conditioned. For instance, the
root riy= 14 has condition number cond(r,)= 1.35% 10", On the other
hand, the polynomial

(432) p(x)=(x-2Nx-2D...(x~2"

has roots that are seemingly not well separated and yet it can be shown [6,
p- 246] that all the condition numbers are bounded by 3.83 x 10°. However,
instead of looking at the absolute separation of the roots, we should be
considering the relative separation. This is not an easy concept to define
algebraically but, for our two examples, a suitable definition might be

_ 5 riqiy— L
=110

A small value for s would indicate poor relative separation. For the
polynomials (1.6) and (4.32), we have, respectively, s =8.2x 10™"® and
s = 1. Hence, although the roots of (4.32) are close in absolute terms, they
are relatively well separated, and conversely for the polynomial (1.6).

4.3. NONLINEAR SYSTEMS

Let us now consider the general problem of solving the system (4.1) of n
nonlinear equations in n unknowns. This is a much more complicated
problem than single equations due to the higher dimensionality—for a
single equation we have to deal with a one-dimensional curve whereas, for
a system, it is an n-dimensional hypersurface. In fact, much of the material
on the topic is beyond the level of this book. Nevertheless, the problem of
solving a nonlinear system is one that arises with increasing frequency in
applications so it is becoming more important to have at least an intuitive
understanding of some of the main ideas involved in solving such prob-
lems. The brief introduction to the topic given here is intended to ac-
complish this end. More detailed (and more mathematical) treatments can
be found in [9] or {5, Chapter 5].
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4.3.1. Methods

In the case of single equations, it was convenient to derive and discuss
methods in the context of their geometric interpretations. For systems, this
approach is not so convenient. Instead, it is better to view a method as an
n-dimensional analogue of the algebraic formula for a method for single
equations. This is the approach we take here.

To begin, it is relatively easy to contemplate an extension of the
bracketing idea to n dimensions. However, the resulting methods turn out
to be very impractical from an efficiency point of view so we will not
discuss them at all.

Newton’s Method

Perhaps the best known method for solving a nonlinear system is Newton’s
method. It is an extension of the Newton-Raphson method. We can rewrite
(4.23) in the form

433) xa=x- (ff()_‘ “f
and it follows that, in order to extend the method to higher dimensions, we
need an analogue of the derivative f'(x). To this end, we note that the
derivative of f(x) at x = x, is a number f} that satisfies the condition

k '
fihe

Xk — Xp k

-0 as Xp = Xk

where f, = f(x,). Alternatively, we can write this in the form
@34) |(fi—fo) = fi- (e —x,)| =20 as Xp ~ Xy

Then the analogue of fi in n dimensions is an n X n matrix J,, which
satisfies the condition

4.35)  |lf — £,) — Jk(xx = x,)[| =0 as Xp = Xi

where f, = f(x,). Moreover, this condition must be satisfied by Ji in-
dependent of the direction or path that x, takes in approaching x,. 1t turns
out that we can determine J, by evaluating the Jacobian matrix J(x) whose
entries are the partial derivatives
_ 3f,'(X) . .
(J)"’—_——ax,- I=ij=n

Then J, = J(x,) satisfies (4.35). In other words, J(x) corresponds to f'(x) in
the sense that each is a formula for determining the value of the “‘deriva-
tive’ at a specific ‘‘point.”” As an example, suppose

4x%+9x%—16x1—54x2+61] d _[ 3]
XX — 2%, — 1 an =1

f(x)= [
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Then

Xy—2 X 3 3
With this definition, we have, as the analogue of (4.33),
(4.36) X1 =% — () 'K

J(x) = [8x1 —16 18x,- 54] and J = [_8 —72]

where fi = f(x,) and J, = J(x,). This defines Newton’s method for nonlinear
systems. Actually, for computational purposes, an iteration of the method
can be considered to consist of the following steps:

i Compute f; and J,.
(4.37) ii Solve the linear system J, hy = f; for h;.
iii Compute Xi+1 = Xg — hy.

The convergence properties of Newton’s method are similar to those of
the Newton-Raphson method. We saw that the latter method behaves
erratically in regions where |f'(x)| is small. The corresponding property in n
dimensions is near-singularity of the Jacobian matrix J (x). Newton’s
method will behave erratically if x, lands in a region where J(x) is nearly
singular. This is a far more significant disadvantage than it was for single
equations because, as we shall see, the cost of each iteration is quite high.
Therefore, we want to avoid, as much as possible, any erratic behavior of an
iteration. But, in order to ensure direct convergence, a particular problem may
require a very good initial guess x, and this can also be a difficulty.
Consequently, as with the Newton-Raphson method, Newton’s method is not
a good method for general use.

A major disadvantage of Newton’s method is efficiency. Like the New-
ton-Raphson method, the rate of convergence is quadratic whenever x, is
“sufficiently close” to r but, once again, this is very often outweighed by
the amount of work required to perform each iteration. Let us see how
much is involved. In step (i) of (4.37), we must evaluate f(x), and J(x), each
component of which is a “scalar function” g(x) = g(xy,...,x,). Since f has
n components and J has n?, there is a total of n2+n = n(n + 1) scalar
functions to be evaluated. (We assume that the cost of evaluating each is
the same.) Looking at it another way, J has n times as many components
as f so the cost for an evaluation of J is roughly equivalent to n evaluations
of f. Therefore, the cost for each step of (4.37) is:

i n+1 evaluations of f,
(or n(n + 1) scalar function evaluations).
i n’/3+0(n? flops.
iii n additions.
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The total is the cost for each iteration of the method. We remark that this
result also gives the cost per iteration for the Newton-Raphson method
(n = 1). The following table shows some comparative costs (in number of
flops). We have assumed that each scalar function evaluation uses 10 flops
so that an evaluation of f requires 10n flops.

n 10 25 50

Step (i) 1,100 6,500 25,500
Step (i) 400 5,500 44,500
Total 1,500 12,000 70,000

The costs for-step (iii) were not included because they are insignificant.
From these results, we conclude that, if n is not large, Jacobian evaluations
contribute most to the cost. However, as n increases, the cost of solving
the linear system in step (ii) accounts for an increasing proportion of the
total. In any event, the total cost of an iteration is quite substantial and,
overall, Newton’s method is relatively inefficient. We remark that, sub-
sequently, we will be looking at variations of Newton’s method that are
aimed at decreasing the cost of an iteration. It is evident from the above
results that we will have to effect a decrease for both steps (i) and (ii) in
order to achieve a significant reduction in cost.

Another aspect of Newton’s method that should be mentioned is the fact
that it requires an explicit formula for evaluating the Jacobian. Hence, any
subroutine that uses the method will require that the user supply a
subprogram for evaluating the n? components of J(x). Quite obviously, this
can be a formidable task. Therefore, this feature is an important disad-
vantage of the method.

We should not be entirely negative about Newton’s method. There are
times when f has some special property which can be exploited to make the
method very efficient. One such property is a sparse Jacobian. This will
occur if each component f; of f is dependent on only a very small number
of the unknowns x; For example, suppose n =50 and, say, the seventh
component of f(x) is

fa(xi, ..o, xs0) = X3 XaX38
Then the only nonzero components in the seventh row of J are
(J)7,4=3x5— X3 and (J)r38= —Xx4

If each of the other components of f also depends on only two or three of
the x;’s, then J will have relatively few nonzero entries (i.e., it will be
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sparse). In this event, the amount of work to evaluate J is equivalent to
only 2 or 3 evaluations of f rather than 50, which is a significant saving.
Moreover, it would be relatively easy to write a subprogram to evaluate
J(x). In addition, we can use sparse matrix methods to solve the linear
system in step (ii) and greatly reduce the amount of work in this part of the
method. In this respect, a significant saving can be made by noting that
each J, has the same sparsity pattern so that the preprocessing stage of a
sparse matrix algorithm only has to be used once. Problems with sparse
Jacobians do not arise sufficiently often to justify inclusion of a separate
subroutine in a general purpose software package such as IMSL or NAG.
Such subroutines do exist but they usually reside in special purpose
packages that do not normally have wide distribution. One particular type
of application where nonlinear systems with sparse Jacobians arise is in
chemical reaction problems. Any software package that is designed to
handle such problems will usually contain a special subroutine that exploits
sparsity of J.

Quasi-Newton Methods
This is the name of a whole class of methods based on the idea of
approximating the Jacobian J in order to avoid the computational effort
required to evaluate it. In the case of a single equation, the secant method
fills this role for the Newton-Raphson method since it is based on approxi-
mating the derivative f'(x). Hence, a quasi-Newton method can be regarded
as an n-dimensional analogue of the secant method.

In what follows, we use B, to denote an approximation for J, = J(x,).
Then a quasi-Newton method is characterized by its particular definition of
By Each iteration of such a method will consist of the following steps:

i Compute f; and B,.
(4.38) ii Solve the linear system Bys, = f, for s,.
iii Compute x,,;=x, — Sk.

As a general rule, quasi-Newton methods have convergence properties
analogous to those of the secant method. They behave erratically in
regions where J(x) is nearly singular and the rate of convergence is
superlinear (i.e., 1 <p <?2). Having said this, we will limit our presentation
to describing some methods and discussing the efficiency of them.

Perhaps the most obvious way of defining B, is to use a finite difference
approximation for each component of Ji, that is,

(B, = fi&xi) = fi(xi-y) - (af;(x)) )

()i — (xe-p); — \ 9x;

The resulting method is often called the finite difference Newton method. It
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is easy to see that B, can be determined at a cost of n’D’s plus 2nA’s.
Hence, the total cost of one iteration is approximately:

i One evaluation of f plus n?D’s.
(or n scalar function evaluations plus n?D’s).
ii 7’3+ 0@ flops.
iii Insignificant.

The following table illustrates some costs (in number of flops). Again, we
assume the cost of a scalar function evaluation is 10 flops.

n 10 25 50

Step (1) 150 500 1,800
Step (ii) 400 5,500 44,500
Total 550 6,000 46,300

Comparing these results with the corresponding ones for Newton, we see
that there is a sizable reduction in cost. However, all the savings come
from not having to evaluate J(x). There is no reduction in the cost of step
(ii). Indeed, we see that this is now the predominant factor in the total cost
of an iteration. One technique for trying to reduce this cost is to hold B,
fixed for a given number of iterations. Then the LU decomposition part of
step (ii) in (4.38) need only be called when B, is changed. Each subsequent
iteration (until B, is changed again) would only require 2n? flops. This idea
is useful when the Jacobian does not change very rapidly but it is difficult
trying to decide how long to held B, fixed.

We consider one other quasi-Newton method, namely, Broyden’s
method. For single equations, an approximation by for f; can be defined by
setting x, = x,—; in (4.34) and equating to zero. This gives

by - (xx — xk-1) = fi — fi-1
that is,
fx = fii

,
fis b =—"—
Xk = Xk~1

the familiar finite difference approximation that defines the secant method.
For systems, we can derive an analogous condition for B, from (4.35), that
is,

(4.39)  By(xx — xx-1) = fx — £y

But now we observe that B, is not uniquely defined. It has n* components
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whereas (4.39) only specifies n conditions for them. Therefore we have
n*~n=n(n—1) degrees of freedom. By contrast we note that, when
n =1, b is uniquely defined. In this context, we see why there is a whole
class of methods that can be considered as extensions of the secant method
to n dimensions.

In order to complete the definition of By, we need to use the idea of
direction. A more precise interpretation of (4.39) is that it is a condition for
B, to approximate J; in the direction of the vector s; = x; — x,_;. Now recall
that J, must satisfy (4.35) independent of the direction of Z= Xy — Xp.
Therefore, we must also prescribe how By is to approximate J; in direc-
tions other than s,. Broyden’s method is characterized by its definition of
B, in these other directions. In essence, it says that if z is any direction
which is orthogonal (perpendicular) to s, (i.e., z's, = 0), then it does not
matter how well we approximate J in this direction. Therefore we might as
well complete the definition of B, with an eye to ease of computation.
Specifically, we let By be the same as B,_; in any direction orthogonal to s,,
that is,

(4.40) Byz= B, iz for any z such that z's, =0

To see that this specifies the remaining n(n — 1) conditions for B,, we
observe that z lies in an (n — 1)-dimensional hyperplane that is orthogonal
to s, (see Figure 4.9). Suppose {z1,...,z,-;} is a set of n-vectors that
generates this hyperplane. Then (4.40) will hold if and only if it holds for
each z; that is,

Bizi = By-yzi l=i=n-1

Each of these equations specifies n conditions on B, for a total of n(n — 1).
Therefore (4.39) and (4.40) define B, uniquely.
To summarize so far, Broyden’s method uses conditions (4.39) and (4.40)

FIGURE 4.9



NONLINEAR SYSTEMS / 191

to define B,. It turns out that B, can easily be determined by using the
formula

1
4.41) By=Bi i+ (i~ Bi_isi)sk
Sk Sy

where y, = f; —f,_; and s, = xx — x4—,. For example, suppose

1 8 7 2 M 1]
Bk_1=924 Y = -1 S~ 0
6 5 3 1 | -1 ]
Then
1 8 7 1 8 71 17
Bi=|9 2 4|+3||-1|-19 2 4 0| [1,0,—1]
6 53 1 6 5 3 L-1]
1 8 7 4 0 -4 5 8 3
=19 2 4|+|-3 0 3i{=|6 2 7
6 5 3 -1 0 1 55 4

The *‘correction” term on the right in (4.41) is often called an update (of
B;-1). In the example, we note that it is singular. In fact, it has rank 1 since
the second and third columns are simply multiples of the first. This can
easily be shown to be true in general. Hence, (4.41) is an example of a
rank-one update method.

To start an iteration with Broyden’s method, we need both x, and B,.
Then x; = X, — Bj'fo, and so on. The question is how do we choose B,? Now
B, only influences B, through the condition (4.40). But this condition is
aimed at computational convenience, that is, it does not affect the way in
which B, approximates J; (in the direction of s; = x; —xo). Therefore, we
can also choose B for computational convenience. The only condition is
that it should be nonsingular. In particular, it should be well conditioned. In
this regard, it is usual to choose By = I. But the important point is that the
choice of By is not critical to the rate of convergence. Hence, a subroutine
can define B, itself and a user need not worry about it.

The amount of work to compute By is about 2n? flops. On the surface, it
appears that we are still faced with the n’/3 flops for step (ii) of (4.38), but
this is not so. It turns out that Bi' can be determined explicitly if Bil; is
known. That is, given B!;, we can update it to B;'. The formula is of the
same form as (4.41) so the work requirement is about 2n® flops. If By’ is
known, step (ii) only requires n’ flops. Therefore, a table of comparative
costs corresponding to the previous tables is
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n 10 25 50

Step (i) 300 1,875 7,500
Step (i) 100 625 2,500
Total 400 2,500 10,000

One can therefore do several iterations of this method in the same time it takes
to do one Newton iteration.

The calling sequence for a subroutine for solving nonlinear systems is
essentially the same as for single equations. It will be of the form

RTSYS(N,F.XO,XTOL,FTOL,ITMAX,WK,IND)
where

N specifies the number n of equations in the system

F is a subroutine for evaluating f(x).

XO is an n-vector used to supply the initial guess and to return the
solution.

XTOL, FTOL, ITMAX define the stopping criteria.

WK is a workspace.

IND is used to indicate which stopping criterion caused ter-
mination.

The maximum or €.-norm is usually employed for both the X- and F-tests.
That is, the X-test (4.12) would be

max [x,,, —x,[<XTOL - (1+max|x,],)

I<i=n I<i=<n

and similarly for the F-test (4.13). In other words, the tests are applied
componentwise to the respective vectors.

EXERCISES
Section 4.1
1.1. Consider the function
_[In(x+1D—xcscx if x#0
seo={17 if x=0

Define
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g(x)=sin(x)In (x+1)

Show that any root of f(x) is also a fixed point of g(x) but that the
converse is not true. (Hint: Try an iteration (4.8) with xo=1.0.)

1.2. In Table 4.1, the iteration using x, = 5.0 does not converge and yet
|g'(5.0)| < 1, that is, condition (iii) of (4.10) is satisfied. Which condition is
not satisfied?

1.3. Discuss the suitability of the following as a stopping criterion for an
X-test:

|Xk+l _xkl =4-EPS- |xk| + XTOL

where EPS is machine epsilon.

1.4. In order to locate the root of f(x) = e™ —cos x which is near 7/2, we
could use a fixed-point iteration (4.8) with xo = m/2, where g(x) is one of the
following:

i g(x)=cos'(e™).
ii g(x)=~In (cos x).

e —cosx
iii g(x)=x T

() In each case, verify that any root of f(x) is a fixed-point of g(x).
(b) Using the conditions (4.10), determine which of the three iterative
methods will converge for xo = w/2. Verify the answers.

1.5. Consider the function
fx)=(x—1De™ +x"

It is easy to see that, for any n, f(x) has a root in the interval [0, 1]. Find
this root, to five significant figures, for each of n = =1,25,+10,+12. In
each case, state the values of XTOL and FTOL that were used. Note that,
as n >0 increases, the graph of f(x) in [0, 1] gets increasingly closer to the
x-axis similar to the illustration in Figure 4.1a. Correspondingly, as n <0
decreases, the graph of f(x) is like Figure 4.1b. Therefore, care must be
taken in specifying XTOL and FTOL in order to get the requested
accuracy.

1.6. Consider a fixed-point iteration for nonlinear systems,
Xk+1 = g(Xk)

Formulate convergence conditions corresponding to (4.10).
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Section 4.2

2.1. Find the real roots, to five significant figures, of each of the following
functions:
i f(x)=tanx —sin2x + «.
ii fx)=3"—Inx.
iii  f(x)=cosx —xe*.
iv f(x)=In|x*~5x + 8] — " sin 2x.
(There are an infinite number of real roots. Find the five
that are nearest zero.)
v f(x)=x’—2x*+3x"—4x2+5x —6.

2.2. Consider the function
fx)= (x*+ 1) sin x — eYP(x — 1)(x2 = 5).
(a) Find the smallest positive root of f(x).

(b) Does f(x) have any complex roots?

2.3. Consider the function f(x) = x - sec x — cot x.

(a) It is easy to verify that f(w/4)<0 and f(37w/4) > 0. However, the
interval [m/4, 37r/4] is not a bracket. Why? How does a rootfinding subrou-
tine that uses brackets behave with this interval as an initial guess?

(b) Find the four real roots of f(x) that are closest to the origin.

2.4. Consider the polynomial
p(x)=x"—3.01x*+31x’+ 387.31x2 + 1366.94x + 1571.22

and the matrix

00 0 0 —-1571.22
1 0 0 0 —1366.94
C=/01 0 0 -38731
0010 -31.0
00 01 3.01

(a) Show that the characteristic polynomial of C is p(x), that is, p(x) =
det(xI — C). C is called the companion matrix of p(x).

(b) Given an arbitrary polynomial (4.25), show how to form its com-
panion matrix.

(c) The connection between a polynomial and its companion matrix
suggests another algorithm for finding the roots of a polynomial, that is,

i Form the companion matrix C.
ii Find the eigenvalues of C.
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Find the roots of the polynomial p(x) above in this way.

(d) Compare the companion matrix method with Laguerre’s method on
the basis of efficiency and reliability. Does C have a special form that can
be exploited to enhance efficiency? To assess reliability, try each method
on an ill-conditioned polynomial such as in Exercise 2.5.

2.5. Experiment with root-finding subroutines to see how well they per-
form on ill-conditioned problems by finding the roots of

n

po(x)=I](x-D)=(x—Dx—-2)...(x—n)
i=1

for n=5,6,.... [Note that n=20 gives the polynomial (1.6).] For
general-purpose root-finding subroutines, the subprogram F for evaluating
p» can use the factored form above. However, a special-purpose subrou-
tine designed for polynomials will require the coefficients a; in (4.25). These
can be generated from the roots r, 1=<j=mn, in the following way. Two
vectors A(l) and R(J) of length =n +1 are required. At the outset, it is
assumed that

A(1)= 1.0,

A{l)= 0.0, 1=I=N+1,
R(J)=r; 1=J=<N,

R(N+1)=1.0.
Given this initialization, a program segment for computing the a;’s is
NP1=N+1
DO 1J=1N
NP1MJ=NP1-J

DO 2 K=1,NP1MJ
A(K + 1) = A(K + 1) — R(K)*A(K)
R(K) = R(K + 1)
2 CONTINUE
1 CONTINUE

The array A will contain the a;’s with A+ 1)=a;, 0=<i=n. Note that the
array R containing the roots is overwritten.

2.6. Verify that the polynomial (4.32) is not badly conditioned by repeat-
ing the experiment of Exercise 1.5 with the polynomials

pal(x) = H (x—27)
i=1

for n =5,6,..., and comparing the results of the two experiments.
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2.7. A root-finding subroutine can be used to find the eigenvalues of a
matrix by finding the roots of its characteristic polynomial. Let A be an
n X n matrix and denote its characteristic polynomial by

¢ (x)=det(xI — A)

There is no need to obtain an explicit representation for ¢(x) in order to
evaluate it. Instead, to obtain the value of ¢ at x =x,, we can form the
matrix x;J — A and then compute its determinant. (An efficient method for
computing determinants was discussed in Section 2.1.1.)

(a) Use this idea to find the eigenvalues of each of the matrices of
Exercise 2.1 in Chapter 2.

(b) Comment on the efficiency and reliability of this procedure.

2.8. We stated that the Newton-Raphson method has a quadratic rate of
convergence only in the case of simple roots. That is, if r is a root of
multiplicity m > 1, the method converges at a rate p <2. However, the
quadratic rate can be restored by modifying the definition (4.23) of the
method to

yi
fi

(@) Explain why this modification gives quadratic convergence when r
has multiplicity m. (Hint: see the discussion of equation (4.24).) Is this a
practical idea? Why?

(b) Verify that the modification works by applying both the unmodified
and modified Newton-Raphson methods to find a root of

p(x)=x®—6x>+ 10x*—32x + 32

Xk+1 =X — M

which has a root of multiplicity m =4. In each case, use x,=4.0 as the
initial guess.

2.9. Find, to five significant figures, values of x and y satisfying the
equations

x =sinhy
2y = coshx

2.10. The data for the distance s(t) given in Exercise 1.6, Chapter III was
derived from the expression

()= 25 = 6428 (24 1) + 64e'

At what times t >0 does s(t) = 276 and 1000?
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2.11. For turbulent flow of fluid in a smooth pipe, the following relationship
exists between the friction factor ¢; and the Reynold’s number R:

\/Cl = 0.4+1.74-In (RVT)
f

Compute ¢, to four significant digits, for each of R = 10, 10* and 10%.

Section 4.3

3.1. Find all the roots of each of the following systems:

M2
. _ x1+4x1+4x2—25]
i = | x34+4x,—4x,—9
o2 2
s — X|+3IX2""64X2—32]
i f(x) | 2x.x,—2x34+ 32
sss _ —SX%+ZX|X2+IZX|—2.X2+4
i f(x) = [ 2x3 + 2x1x5 — 4x; + 10x, + 12]

3.2. Consider the system given in (4.3)(b). Find the solution which is closest
to the origin.

3.3. Verify that the definition of B, in (4.41) satisfies both (4.39) and
(4.40).

3.4. Let f(z) be a complex function of the complex variable z = x + iy. We
can write f = u + iv, where u = u(x, y), v = v(x, y) are real functions of the
real variables x,y. Consequently, the (complex) equation f(z)=0 is
equivalent to the (real) system of two equations

u(x,y)=Re(f)=0

v(x,y)=Im(f)=0
One can therefore find the roots of f either by using a routine like RTMLR

or by forming the equivalent system of equations and using an appropriate
subroutine to solve it. Use both methods to find the roots of

i f(z)=2+1-2i)2°+2z— (4 +5i).
i f(z)=1-3%

3.5. [4, p. 319] Find two solutions of the nonlinear system

1' _ﬁ—ﬂz
ism(xlxz) i 2 0

1
(1—E>(e2"'—e)+%—2—2ex,=0
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3.6. [4,p.321]In the study of a chemical equilibrium problem, the following
system of equations arises.

1 1 Xe_
2x1+x2+2x3 x7—0

2
X3+X4+ZX5‘“X—=O
7

1
xl+x2+x5-—=0
X7

—28,837x, — 139,009x, — 78,213x; + 18,927x, + 8427x;s

¢ B4y g9 g
X2 X7

X1+ X+ X3+ x4+ x5=1
400x,x3 — 178,370x3x5 = 0
X1x3— 2.6058x,x, =0

Find a solution of this system.



CHAPTER 5
QUADRATURE

The topic of quadrature is concerned with the problem of obtaining an
approximation for the value of the definite integral

b
6.1 I a,b)=ff(x)dx

From the calculus, one learns that the value of the integral is given by
1(f; a,b) = F(b)— F(a), where F(x)=[f(x)dx is the antiderivative of
f(x). For instance, if f(x)=cosx, then the antiderivative is F(x)=
sinx + C, where C is an arbitrary constant of integration. Hence, the
problem is one of finding an expression for F(x), and then evaluating it at
the limits of integration. There are, of course, a variety of rules for finding
F(x) but none of them applies universally, that is, each one applies only for
certain specific forms of the integrand f(x). Consequently, integration is
essentially a process of recognizing the form of f(x) and then using the
appropriate rule to find F(x). Now, from the point of view of designing a
general-purpose subroutine to approximate I(f;a,b), this approach is
clearly an unsatisfactory one to use. For one thing, it would require the use
of a symbol manipulation system which can be expensive. Also, since each
integration rule is specialized, one would, in effect, have to implement a
complete table of integrals in order to be able to handle a wide variety of
the forms of the integrand f(x). But even if this were done, there are still a
good many integrals, which commonly arise in practice, that cannot be
handled in this way because no integration rule for finding F(x) exists. Two
examples are the beta and gamma functions

1 ©
B(m,n)=jx"'(1—x2)" dx F(m)=fe-*x'"" dx
0 0

respectively, which cannot be integrated exactly (by any known method)
unless m and n are positive integers.

An alternative approach to approximating the value of I(f; a, b) is to use
an n-point quadrature rule or formula

n

(5.2) Q) = arf(x) + aaf (x2) + - - - + auf (xa) = 2, af

199
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where f; = f(x;), that is, a linear combination of values of the integrand f(x)
taken at the quadrature points x, 1<i=<n. In terms of designing a
subroutine, this is a much more viable approach. In the first place, (5.2) is
very easy to implement on a computer. Moreover, since quadrature rules
are generally not restricted to specific forms of the integrand f(x), they are
better suited for general-purpose subroutines. For these reasons, then,
quadrature is the approach taken to computing an approximation for the
value of I(f; q, b). ‘

While we will be discussing various different quadrature rules, our main
interest is in subroutines—their design and use. To make things easy for
the user, a subroutine to evaluate a definite integral normally only needs to
be supplied with a subprogram to evaluate the integrand f(x), the limits of
integration a and b, plus an error tolerance TOL. That is, the calling
sequence would be of the form

QUAD = INTGL(F,A,B,TOL)

The subroutine will attempt to compute, as efficiently as possible, a value
for I(f; a, b) that is accurate to within the specified tolerance. The design
of such a subroutine is by no means easy. One must decide on the
quadrature rule(s) to be used but this is a comparatively minor con-
sideration. The difficult part is building, around the rule(s), an overall
algorithm that achieves the goals of efficiency and reliability. By reliability,
we mean that the approximate value of I(f; a, b) returned by the routine is
guaranteed to have the accuracy requested by the user. As we will see,
these two goals are virtually impossible to meet simultaneously and there
will be the familiar tradeoff between speed and reliability.

In the next section, we survey some quadrature rules that are often used
as bases for subroutines. Then, in Section 5.2, we look at some of the ideas
involved in designing an algorithm for such subroutines.

5.1. QUADRATURE RULES

The mathematical literature abounds with a great variety of quadrature
rules that one might use. Rather than selecting a few for detailed dis-
cussion, we will try to give an overview of how formulas can be derived. In
this general context, the comparison between various rules will be rela-
tively easy. There are two classes of rules—Newton-Cotes and Gauss—
that we will consider, but first we must develop some ideas about quadra-
ture rules in general.

The derivation of rules of the form (5.2) can be viewed in a very simple
way, namely, that we replace the integrand f(x) by the polynomial p,_,(x)
of degree n-—1, which interpolates f(x) at the n quadrature points
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ftx)

FIGURE 5.1

Xi...,X, and then integrate p,_,(x) exactly. In other words, I(f;a,b)=
Q.(H)=I(p._i; a, b). As an example, let n =2 and set x,=a, x;=>b, the
endpoints of the interval of integration. Then the interpolating polynomial
(in Newton form) through (x,, f1) and (x,, f) is the straight line

fl_fZ

X1— X2

pix)=fot flx, x]-(x —x)=fo+ (x — x3)

and

63 I¢:ab)=1piab) = [ p(0 dx=5-(i+ )= T()

X

where h = (b —a). This, of course, is the well-known trapezoidal rule,
so-called because, as we see in Figure 5.1, it computes the area of the
trapezoid ABCD, which approximates the area represented by I(f; a, b)—
the region bounded by the graph of f(x), the x-axis and the lines x = q,
x = b. Since we will refer to this rule quite often, it has been denoted by
T{).

From (5.2), it follows that a quadrature rule can be characterized by
specifying the number of terms n in it, along with the coefficients a; and
the quadrature points x;. In point of fact, though, the a;’s depend on the
location of the x;’s so it is only necessary to specify the latter. This
dependence is not altogether clear in the above derivation of the trapezoi-
dal rule but it would have been so if we had written the interpolating
polynomial p,_;(x) in its Lagrange form (3.8). Briefly, given the points
Xy, ..., X, we define the polynomials

L(x) = XX O 7 X )X Xig) - (X Xn)
' (i —xp) .o (X = Xim) (X = Xig1) - - (X — Xn)

1<i<n

which are of degree (n — 1) and have the property that
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. _0 ifisj

(5.4) li(xj)=8i;= 1 if i=j

where §;; is the well-known Kronecker delta. Then the Lagrange form of
pa-i(x) is

Paci(X) = LX) - fr+ b(x) - fat -+ + LX) - f =§: L(x) - f;

Upon integrating this form of p,_,(x) over [a, b], we see by comparison
with (5.2) that

G55 a =Il,-(x) dx l=i=n

Hence, each g; is directly dependent on the locations of all of the x;’s. For
example, with the trapezoidal rule, the Lagrange form of p(x) is

(X x2) f xl) f2

Pl(x)_ 1 (x2 X))

from which we obtain

X2

_{ x—xj) __ﬁ _ [ x—xy)
al~f(x1‘x2)dx_2 and az_j(xz xl)d _2
X1

Therefore, a quadrature rule is completely characterized by specifying the
locations of the quadrature points x;, 1 =<i = n. Consequently, to define a
class of rules, all we have to do is describe the means of deciding how to
place the x;’s. As a final point, we emphasize the distinction between
specifying a quadrature rule and representing it for efficient use in a
computer. Although the g;’s depend on the x;’s, it is better to store them
explicitly rather than implement (5.5) in order to compute them each time
the rule is used. Therefore, the rule (5.2) will be represented by the triple
(n,x,a), where x=[x,...,x,]" and a=[a,,...,a,]”, even though it is
sufficient to specify n and x only.

5.1.1. Newton-Cotes Rules

For this class of rules, the quadrature points are defined by

—a
-1

xi=a+{—-Dh I<i=<n where h=t:l

That is, the points are equally spaced throughout the interval [q, b] with
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x; = a and x, = b. Note that we must have n = 2. The simplest case, n =2,
gives the trapezoidal rule (5.3). Another well-known quadrature formula in
this class is Simpson’s rule, which is obtained by choosin =3\The
quadrature points are x, = a, x, = (a + b)/2, x; = b and the rule

- qa

2

(5.6) I(f;a,b)#S(f)=%(fl+4f2+f3) where h =2

It gives the area bounded by the quadratic that interpolates at (xi, f1),
(X3, f2), (x3, f3) as shown in Figure 5.2.
We now turn our attention to analyzing the quadrature error

E.(f)=1(f;a,b)~ Qu(f)

An expression for E,(f) is easily obtained by using the connection with
interpolation. Using the expression (3.10) for the error in polynomial
interpolation, we have

E.(N=1(;a,b)-Q(f)=1(f;a,b)—I(pn-1;0a,b)

=I(f_—pn—l;as b)
b
5.7 =If[x,,...,x,.,x]-l/1,.(x) dx
where flx,,..., X, x] is an nth divided difference, and

(58)  Yn(x)=(x—x)x—x2)...(x—x,) =[] (x—x)

i=1
is a polynomial of degree n whose roots are the quadrature points x. Now,
by the mean-value theorem for integrals, if f(x) is n times continuously
differentiable and y,(x) is of one sign on (a, b), we can write
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5.9 E.(f)= f (O)I P (x) dx for some 6 € (a, b)

But it is clear from (5.8) that y,(x) is of one sign on (a, b) only for the case
n =2 so it appears that this line of analysis will go nowhere. However, it
can be shown [24, p. 119] that (5.9) does, in fact, hold whenever n is even.
If n is odd, it turns out that

(5.10) E.(f)= %)(1‘;, j xUa(x)dx  for some 0 € (a, b)

From these results, it is possible to obtain bounds for |E,(f)| and use them
to compare different formulas. However, it is more instructive to pursue an
intuitive approach as we shall now do. \

As a measure of the “size” of E,(f) for a given quadrature rule, we look
at the size of the class of functions € for which the rule is exact, that is,
E.(f)=0 for all f € €. Since this depends heavily on what type of func-
tions one is willing to allow in 4, we simplify matters by restricting
ourselves to polynomials. We define € to be @, the set of all polynomials
of degree =m and quadrature rules will be compared by looking at the
maximum degree m of polynomial for which each rule is exact. For
example, the trapezoidal rule has m = 1, that is, it will be exact if f(x) is a
straight line.

We digress for a moment to remark that this approach to measuring the
error seems to imply that we will get more accuracy by taking n larger, that
is, by using a formula based on a higher-order interpolation polynomial. On
the other hand, this flies in the face of the comments in Section 3.1.1. about
the accuracy of interpolation using higher-order polynomials. Specifically,
as n increases, the accuracy at intermediate points deteriorates due to
oscillations in p,_ ,(x). However, integration is a ‘“‘smoothing” operation
because, as indicated in Figure 5.3, errors due to oscillations in p,_; tend to

FIGURE 5.3
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cancel each other with the result that accuracy will indeed improve with
increasing n. It is easy, however, to construct integrands f(x) where the
positive and negative errors do not cancel so nicely. This usually happens
when f(x) fluctuates quite rapidly at an inopportune time—behavior that is
very ‘“‘unpolynomial” in nature. By and large, therefore, one should only
use higher-order formulas when f is reasonably smooth.

An alternative to using higher-order formulas is to interpolate f with a
piecewise polynomial s,(x) and integrate it exactly. This is equivalent to
subdividing [a, b] by the points (knots) a=x,<x,<---<xy=b and
applying an n-point rule in each subinterval [x;, x;,(], 1=j= N—-1. Such
rules are called composite rules. For example, the rule corresponding to
piecewise linear interpolation is the composite trapezoidal formula. As-
suming equally spaced points x; = a + (j — 1) - h, with h = (b — a)/(N — 1), itis

5.1 TN(f)z"zl(fl+f2)+"21(fZ+f3)+' : '+g(fN—l+fN)
=h- (%fl+f2+f3+‘ : '+fN—1+%fN)

Note that the second version is more efficient because it avoids double
function evaluations. (This type of saving can be made with any composite
Newton-Cotes rule.) Again, carrying over the comparison of polynomial
versus piecewise polynomial interpolation, it generally turns out to be
better to use a composite rule based on a low-order formula (small n) and
many subdivisions (large N) in order to get a more accurate approximation
to I(f; a, b).

We now return to the analysis of the error E,(f). Given a quadrature rule
Q.(f), we want to determine the maximum degree m of polynomial for
which it is exact. Now it is obvious, from the interpolation aspect, that if
f(x) is any polynomial of degree = n — 1, an n-point formula will integrate it
exactly so we have m =n — 1. Geometric intuition might suggest that m
cannot be greater than n — 1 but sometimes it can. To see why, we use the
fact that if f(x) is a polynomial of degree k, then

& a polynomial of deg k —s if s <k
a?=[ K, a constant if s=k
0 if s>k

Therefore, it follows from (5.9) and (5.10) that

_ o [if nis even and degree f =n —1
E(f)=0 {if n is odd and degree f <n

From this we conclude that an n-point Newton—-Cotes rule will be exact for
all polynomials of degree = m, where

4
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m={n—1 if n is even
n if n is odd

In effect, then, we get a bonus whenever an odd number of quadrature
points is used. For example, if three points are used, the corresponding
formula—Simpson’s rule—will integrate any polynomial of degree <3
exactly, and the four-point formula cannot do any better. By way of
verification that Simpson’s rule (5.6) will integrate cubics exactly, we
consider the integral

2
(.12) I(f;0,2) = j (2x* = 3x2+ 5x — 6) dx = —2
0

Then h = (2—-0)/3—1)=1 and
S() =1-6)+35(-2) +1(8) = -2

which is the exact answer.

5.1.2. Gauss Rules

We first illustrate the ideas used in the placing of the Gauss quadrature
points by deriving a simple two-point rule. It is convenient to assume that
the interval of integration [a, b] is [—1, 1]. This is no real restriction since
the simple change of variables

b—a
2

(5.13) x=a+ a+1 —-1=t=l

maps [a, b] onto [—1, 1] and we have

b—a

b 1
1G0,0)= [ j0 dx =252 [ gy ar =25
a -1

a LJp—
S I(g;—1,1)

where g(t) = f([a + (b — a)(t + 1)/2]). Therefore, there is no loss of general-
ity in dealing with the integral I(g;—1,1).
Consider the set {Py(t), P (t), Po(t)} of polynomials defined by

Pt)=1 P(t)=t  Pyt)=13t"-1)
On the interval [—1, 1], these polynomials have an interesting property, that

is,forl<r,s<2,

1
_ K, s a constant ifr=s
(5.14) f P(OP,(t)dt =" if r#s
-1

This is called an orthogonality property. (It is the continuous analogue of
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the definition (3.36) of orthogonality with respect to a discrete or finite set
of points.) In addition, if h(t) is any polynomial of degree =< 1, it has a unique
representation in the form

(5.15)  h(t) = coPo(t) + c1Py(t)

That is, the set {Py, P} forms an (orthogonal) basis for the linear function
space P, of all polynomials of degree < 1. Finally, we note that the roots
= +1/V3 of Py(t) are in [—1,1].

Now we are ready to derive the Gauss two-point formula for ap-
proximating I(g; —1, 1). Suppose that g(x) is any polynomial of degree < 3.
We will show that it is possible to select the quadrature points ¢, {, so that
Ey(g)=0. (Recall that the Newton-Cotes two-point formula—trapezoidal
rule—is only exact for polynomials of degree=1.)) We know that the
divided difference g[ti, t,, t] will be a polynomial of degree<3—-2=1 so,
using (5.15), the expression (5.7) for the quadrature error Ei(g) can be
written in the form

1
Ex®) =3 | LeoPu(t)+ ciP(0)1uatr) ds

-1

Now, if it could be arranged to have ya(t) = K, Py (t), where K, is any
constant, then by the orthogonality property (5.14), we would have

1 1
Ex(g) = coK: I Po(t)P(t) dt + Clef Pi(t)P(t)dt =0

-1 -1

But this is easy to accomplish. Noting the form (5.8) of ¢(t), we simply
factor P,(t) and define

dlt) = (t — 1)t — t2) = 3Py(t)

From this argument, it follows that the quadrature points {;, t, should be
the roots of P,(t), namely,

V3
Then, using (3.3), the coe¢flieients will be
and
whereupon

I(g; —1,1)=1-g(t)+1-g(t2) + Exg)

where E,(g)=0 if g(t) is any polynomial of degree <3. For the more
general integral I(f; a, b), we use the transformation (5.13) to get
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(5.16) 1(f; a,b)= 22 [f(x) + f(xl + Exf)

where

b—a 41y

2 |

_ ., b~a _
Lx,—a+ 2 (;1+1)‘ lxz—a+

and Ex(f) =0 if f(x) is any polynomial of degree < 3. The quadrature points
X1, X, are the images in [a, b] of the “Gauss points” ¢, t, under the
transformation (5.13). To illustrate the exactness of the formula for degree
3 polynomials, we apply the rule to the example (5.12). In this case, since
a =0 and b =2, the transformation (5.13) is x = { + 1. Then

fGx)=f,+ D =2(t;+ 1)’ =3(t; + 12+ 5(t,+ -6

-1-Gv3)

and similarly for f(x;). Hence,

0= [ 7N (—1+ 1) ] = -
14:0.9 == [( : 3\/§>+< 1+3\/§>] :
which is the exact answer. Note that it is more efficient to compute
x; =1+ 1 and evaluate f(x,) rather than work out the expansion g(t) =
213+ 312+ 5t -~ 2 and evaluate it at t = 1,.

A comparison of the Gauss rule (5.16) with Simpson’s rule (5.6) is useful
at this point. On the basis of our measure of error, the two are equal since
they are both exact for polynomials of degree <3. But, on the basis of
computational effort, the Gauss rule comes out ahead because it only
requires two evaluations of f(x) whereas Simpson requires three. Hence,
the Gauss rule is more efficient. We remark, however, that the correspond-
ing composite rules turn out to be comparable. If [a, b] is subdivided by

=x;<--+-<xy =b, then the composite two-point Gauss rule will require
2(N —1) function evaluations while composite Simpson will need 2(N —
1)+ 1. The latter figure results from savings on combining function evalua-
tions at the endpoints of each subinterval. No such savings can be made
with the Gauss rule because it does not use the endpoints.

In Figure 5.4, we illustrate why the two-point Gauss rule (5.16) is more
accurate than the two-point Newton—-Cotes or trapezoidal rule (5.3). The
curve f(x) is a quadratic and we see that, by interpolating at the Gauss
points 1,, ,, the area under the resulting line is the exact result due to
cancelation of the errors. On the other hand, with the trapezoidal rule
(broken line in Figure 5.4), there is no canceling effect.

The theory for deriving Gauss rules in general is a relatively simple
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extension of the above ideas. Instead of (5.1), we now suppose that our
integral is of the slightly more general form

b

(5.17) 1(f;a,b)=f w(x)f (x) dx

a

where w(x) is a weight function that is restricted to being of one sign (+ or
—) on [a, b]. Up to now, we have had w(x)=1 but, as we shall see, the
extra generality can be very useful. The underlying idea of Gauss quadra-
ture is to make use of orthogonal polynomials. Suppose that we can find a
set of polynomials {P,(x)}i-o such that

i degPi(x)=k O<k=n
(5.18)

b
i [ w@POP@ =K, .5, 0=rs=n

a

where 8, is the Kronecker delta defined by (5.4) and the K, ’s are
constants. The set {P,(x)} is said to be orthogonal on [a, b] with respect to
the weight function w(x). There art many examples of orthogonal poly-
nomials in the mathematical literature and we will enumerate a few of them
shortly but first we show how to use (5.18) to generate quadrature rules.

We suppose that f(x) is a polynomial of deg=2n—1. Then its nth
divided difference f[x;, ..., x., x] is a polynomial of degree=(2n—1)-n =
n — 1. Now, by property (5.18)(i), the set {P,}i-6 is linearly independent on
[a, b]. Therefore, it forms a basis for &,_|, the set of all polynomials of
degree = n — 1, and we can write

flxs. .oy Xn X1 = coPo(x) + C1P(x)+ - - -+ CpoyPa_i(x).

so that the expression (5.7) for the quadrature error will be
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b

Eu(f) = [ wlOlesPox) + - - -+ co-iPaci() W) dx

a

Finally, using the orthogonality property (5.18)(ii), it follows that E,(f) can
be made identically equal to zero if we choose the quadrature points
Xi,...,Xn to be the roots of P,(x), that is,

PYa(x) = (x — X)X —X3) . . . (X — Xn) = KpPr(x)

It can be shown [22, p. 203] that the roots are real and lie in [a, b].
Next, with the quadrature points defined, we determine the coefficients a;.
For the integral (5.17), the formula corresponding to (5.5) is

_ w(x)P, (x)
(519) &= n(xl) I (x - xl dx

It turns out (see [22, p. 333]) that the coefficients are always positive,
which is good from a round-off error point of view.

To summarize, the steps in deriving a Gauss n-point rule to approximate
the integral (5.17) are as follows:

i Define a set {Px(x)}}-o of polynomials on [a, b] that are ortho-
gonal with respect to w(x).
(5.20) ii Find the zeros x;,..., x, of Pa(x).
iii Determine the coefficients g; using (5.18).

From this we obtain
b

G20 [wfe dx =3 af + B

a

with E,(f)=0 if f(x) is a polynomial of degree =<2n — 1. Note that the
weight function does not appear explicitly in the quadrature formula itself.
Instead, it is contained implicitly in each of the coefficients a;.

It remains to illustrate some of the rules that can be generated using
various types of orthogonal polynomials. We do this by simply listing them
in Table 5.1. Details concerning the polynomials cited can be found in most
books on engineering mathematics or on numerical analysis. For a parti-
cular type of rule, the derivation of the x;’s and a;’s can be done as
indicated in (5.20), but it is easier to simply consult a book that tabulates
them (such as [30]).
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TABLE 5.1
Name [a, b] wi(x) P(x)
1. Legendre [-1,1] 1 ! [—di(xz—l)“]
St ’ 2%k 1 [ dx*
2. Tchebychev 1 -1
> -1,1 — cos(k -cos™' x)
first kind [ ] Vi-x
dk
3. Laguerre [0, +c<] e* et [IxT (e""x“)]
- -x2 k,x2 dk -x2
4. Hermite [0, +00] e (—De [Ex—,;(e )]

For Gauss-Laguerre quadrature, the interval of integration is [0, —],
which can be very useful. The points and coefficients for a two-point rule
are, to five digits,

X = 0.58579 a; = 0.85355
and
x2=3.4142 a, = 0.14645

The theory says that this rule is exact for all f € ;. Indeed, we have
J e~*x* dx = a;x3+ a,x} = 6.0001
0

which is correct except for a small amount of error due to the fact that the
» X:'s and a;’s are not exact. Incidentally, this type of quadrature rule gives a
nice method for evaluating the Gamma function. The above example is
I'(4) =31
We remark that each set of polynomials listed in Table 5.1 is orthogonal
on a specific interval [a, bi. If the interval over which the integral is defined
is different, then a transformation like (5.13) will have to be performed. For
example, the interval [5, +] is mapped onto [0, +«] by the transformation
x =t + 5 and then
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ac ©

J e *sinxdx = f e sin(t +5) dt

5 0

©

=e J e”' sin(t + 5) dt
0
= e [ay sin(t; + 5} + - - + + a, sin(t, + 5)]

where t;,. .., 1, are the zeros of the Laguerre polynomial of degree n.
One further remark concerns the case where the integrand f(x) has a
singularity. For example, consider the integrals

1 1

Ix‘”z dx and Jx“ dx

0 0

In both cases, the singularity is at the endpoint x = 0 so any Newton-Cotes
rule will have problems. On the other hand, Gauss-Legendre rules will not
encounter this difficulty since they do not need to evaluate the integrand at
an endpoint. Now this is all right for the first example but it is totally
misleading for the second one because this integral does not even exist!
These are examples of improper integrals, which are discussed in Section
5.3.

5.2. QUADRATURE ALGORITHMS

We now consider the problem of taking a quadrature rule or combination
of rules and devising an algorithm suitable for implementation as a quadra-
ture subroutine. The basic idea of any such algorithm is to subdivide [a, b]
into N —1 subintervals [x,-, Xi+1], where xi, =x+ hi, l=si=sN-1, with
x;=a and xy = b, and then apply a composite quadrature formula. Note
that the subdivision is not necessarily uniform. For example, the composite
trapezoidal rule, with unequal subdivisions, is

62 Tw =g+ B e+ B G

=.’ﬂfl+(ﬁ_';_h2>f2+...+(m;2*_h_u>m_l+h;;l N

i.f, with ho=hy =0

Now, given the step sizes h;, the task of evaluating a composite formula
such as (5.22) is straightforward so there is no difficulty with this aspect.
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On the other hand, choosing an appropriate set of h;’s is a more intricate
process. As we will see, the choice of step sizes directly affects the
reliability and efficiency of a subroutine so it is important that the “‘step-
size choosing algirithm” should strike an acceptable balance between the
two measures of performance. We will consider two methods for choosing
step sizes—Romberg integration and adaptive quadrature—and discuss
their merits and implementation in subroutines. Both methods are based on
the idea of starting with a subdivision of [a, b] and successively refining it
until the composite quadrature formula being used produces the required
accuracy. The methods are distinguished by the way in which they do the
subdivision refinement.

Before considering the methods in detail, we briefly discuss the accuracy
of a composite formula. Again, using the composite trapezoidal rule as an
example, we have

I(f;a,b) = Tn(f) + Ex(f)

where Ex(f) is the composite quadrature error. Now, assuming that f(x) is
twice continuously differentiable on [a, b], it follows from (5.9), that a
bound for the quadrature error in each subinterval [x;, x;.1] is

Yencp,
[E(f; xi, Xisp)] < h.f12(0,) for some x; < 6 < x4

Summing these individual bounds and using the continuity of f” on [a, b],
we get the bound

(b —a)M,

(523) |EN(f)| = h%nax 12

where hn. = max; h; and M, = max, ) |f"(x)|. For composite rules based on
other quadrature formulas—Simpson’s rule, two-point Gauss-Legendre,
etc.—the corresponding error bounds have the same form, that is, |E|<
KhPE.x, where K > 0is a constant that is independent of the step sizes h;, and p
is a positive integer. Therefore, it is clear that the accuracy of a composite rule
can be controlled through the choice of hy.. For example, with the composite
trapezoidal rule, it follows from (5.23) that any h,,, satisfying the inequality

12
=M, T

will ensure that |Ey (f)| = TOL. But this is not a very satisfactory procedure
for choosing step sizes. In the first place, it requires knowledge of a bound M,
on |f"|, which can be very inconvenient. Moreover, the bound (5.23) is often
quite pessimistic with the result that h,,,, is unnecessarily small. This makes
the algorithm inefficient because some needless evaluations of the integrand

OL

2
hmax =
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f{(x) will have to be done. We remark that this illustrates the tradeoff between
reliability and efficiency in choosing the h;’s. We will encounter it again in
discussing other algorithms.

5.2.1. Romberg Integration

We assume an initial subdivision of [a, b] into N —1 equal subintervals
[xi, xi+1], where x; = a + (i — 1)h, 1 =< i =< N, with h = (b — a)/(N — 1). (The size
of N is not particularly important as long as it is =2.) First, we describe a
simple algorithm, based on successive halving of the step-size h, for
computing an approximate value for I(f;a, b) to within a prescribed
accuracy. We begin by computing the composite trapezoidal rule ap-
proximation Tn(f) on the given subdivision. Next, we halve the step size and
compute the approximation T,n(f)—composite trapezoidal rule with 2N
equally spaced points. If the two values agree to the required number of digits,
we assume that we have sufficient accuracy' and take T,y as our ap-
proximation for I(f; a, b). If they do not agree, we halve the step size again,
compute T,y and compare with Toy, and so on until sufficient agreement
between successive approximations has been attained.

We digress for a moment to make some general comments. The above
procedure follows the pattern mentioned previously, namely, it is based on
successive refinement of an original subdivision of [a, b] until convergence
is achieved. The basic ingredients of the method, which are typical also of
most quadrature algorithms, are as follows:

1. A method for refining the subdivision,

2. A composite quadrature rule for computing approximate values Q(f)
for I(f; a, b).

3. A means of estimating the error in Q(f).

4. A stopping criterion.

The algorithm is iterative in that it computes successive approximations for
the value of I(f;a,b). Hence, in analogy with iterative algorithms for
solving nonlinear equations, we see that the stopping criterion is a critical
factor affecting reliability and efficiency. We remark that this is still in line
with the previous comment to the effect that the choice of step sizes h; is
the critical factor in the performance of an algorithm. This is because we
can also view our algorithm as a method of determining an appropriate step

'The difference Ty — Ton is really an estimate for the error in Ty. This idea is a common
device in numerical algorithms. It is often referred to as the one-step, two half-step method
for estimating the error.
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size. In effect, it tells us that a suitable one is h = (b — a)/{2*(N — 1)}, where
k is the number of times the subdivision is halved. The particular value of k
is, of course, determined by the stopping criterion.

One disadvantage of the above algorithm is that the rate of convergence
is too slow. As a remedy, we can use an extrapolation procedure due to
Romberg [26]. The underlying mathematical result on which it is based is
as follows:

If f(x) has 2s + 2 continuous derivatives on [a, b], then
(5.29) I(f;a,b)= Ty + Cth*+ Coh*+- - - + C,h* + O(h**?)

where C,,. .., C, are independent of the step size h and Ty is the
composite trapezoidal rule approximation with uniform step size
[that is, the rule (5.11)].
To see how this kind of result can be used, suppose that we have
computed Ty and T,y using step sizes h and h/2, respectively. Using the
expansion (5.24) with s = 1, we have

1(f; a,b) = Tn + Cih*+ O(h*)

and
2
1 a,b)= Tov + G, (5) + 01"

The h? term can be eliminated by multiplying the second equation by 4 and
subtracting the first one from it. We get

I(f; a,b) = Tan,1 + Cy 1h* + O(h)
where

(5:25)  Tony = Tono+ 1259000

the notation Ty, for Tx having been adopted for reasons of consistency.
What we have done here is show how to take the two values Ty, and Tan,o
that have h? errors and extrapolate on the basis of (5.24) to form a new
approximation T,y,; whose error expansion has leading term of order h*.
(In fact, it can be shown that T,y is actually the composite Simpson’s rule
Sx on the original subdivision.) Continuing, we again halve the step size,
compute T,y o, and extrapolate using this value and T, to obtain Ty, ).
But it turns out that, with s = 2 in (5.24), we can also extrapolate from Tay;
and T,n ; to obtain a value Tyn,, Whose error expansion begins with h® and
so on. In this way we form a triangular array, called the Romberg table:
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h2 h4 h6 . . . h2k+2

T(0,0)
T(1,00 T(,1)
(526) T@2,00 TE, 1) T2

o

T(k,0) Tk 1) T(k,2) I T(k, k)

where

+T(k,m—1)~-T(k—1,m—1)

(5.27) T(k,m)=Tynm=T(k,m—1) 1

m=12,...,k
k=1,2,...

The process continues until a stopping criterion is met. As an example, we
consider the integral

3

I(f;0,3)=fx2cosxdx¢—4.952
0

Using N = 3, the first six rows of the Romberg table are

m
k 0 1 2 3 4 5
0 -5.579
1 —5.104 -5.495
(5.28) 2 —4.990 -4.952 —-4.952
3 —4.962 —4.952 -4952 -4.952
4 —4952 —-4.952 -4952 -4952 -4952
5 —4.952 —-4.952 —4.952 -4.952 -4952 -4.952

From the description, it follows that the entries in the table should be
computed row by row. A new row is begun by halving the current step size
and calculating a new trapezoidal rule approximation. Then the rest of the
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entries in the row are determined using (5.27). Note that it is only
necessary to store the latest row of the table at any one time since this is
all that is needed to compute the entries in the next row.

The calculation of the entries in the first column of the Romberg table is
equivalent to the simple algorithm described at the beginning of this section
since it consists of successive trapezoidal rule approximations by interval
halving. The remaining columns are the extrapolated values obtained by
using (5.27). Noting that an evaluation of (5.27) requires very little com-
putational effort—2A + 1M + 1D, assuming that 4m! is calculated by
4-4™2_we see that there is virtually no additional work in computing the
Romberg table compared to the previous algorithm. Therefore, a saving
can be made if convergence is achieved at some stage in the table before it
occurs down the first column. For instance, in the example (5.28), con-
vergence is achieved along the third row (k = 2) whereas it does not occur
down the first column until the sixth row (k =5). Hence, the Romberg
method will save a considerable amount of work by not having to compute
T(@3,0), T4,0), and T, 0).

We now consider the question of a stopping criterion. Looking at the
example (5.28), we see that convergence can occur along rows, down
columns and down diagonals. It turns out to be more convenient to check
along rows since this is the way we calculate and store the table. In any
event, we expect faster convergence along rows because the error terms in
this direction should behave like h%, h*, h®, ..., whereas down, say, the
first column they are like h? h%/4, h?/16,.... Assuming that h <1/2, the
former sequence tends to zero much faster. Therefore, in addition to being
convenient, it makes sense on theoretical grounds to check for con-
vergence along rows. We define the row difference

d(k,m)=Tk, m)—Ttk,m —1)

Then a possible stopping criterion would be when a relative row difference
becomes small enough, that is,

(5.29) |d.(k, m)| <TOL -|T(k, m)| for some m <k

where TOL is a specified error tolerance. We will refer to this as a test for
row convergence. Another possible criterion would be to wait until we have
row convergence in two successive rows, that is,

“(5.30) |d.(k -1, m)|=TOL-|T(k -1, m)|
and  |d.(k, m)|=TOL-|T(k, m)|

At first glance, this may appear to embody a certain amount of overkill but
we would like to guard against the possibility of the stopping criterion
being fooled. For example, consider the integral
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2
f(O.S + X sin x) dx = 0.3634
0

With N =2, the first four rows of the Romberg table are

m
k 0 1 2 3

0 1.000

1 1.000 1.000

2 0.5000 0.3333 0.2889

3 0.3964 0.3619 0.3638 0.3650

Using (5.28) with TOL = 1.0E — 4, the Romberg process would have been
terminated after computing only two rows and the answer (1.000) returned
would be incorrect. On the other hand, using (5.30) with the same
tolerance, six rows would be computed and a correct result produced. Of
course, it is easy to see how to fool (5.30). We need only concoct an
integrand for which both d,(k — 1, m) and d,.(k, m) are zero at an early
stage. An example is f(x) = 0.5+ x sin 27x over [0, 2]. But this anomaly can
be prevented by using a test based on row convergence in three successive
rows, and so on. Of course the reliability increases in that the counter-
examples become more pathological. On the other hand, the efficiency
deteriorates because extra rows must be computed in order to ensure
convergence and, for many problems, this is not necessary. Here, then, is
where one must strike a balance between reliability and efficiency. It has
been found that, for most integrals that arise in practice, the two-row
convergence check (5.30) is adequate and this is the criterion commonly
used in subroutines.

Implicit in the preceding discussion is the assumption that the error
expansion (5.24) holds, that is, it contains only even powers of h. To
illustrate what can happen when this condition is violated, we consider the
simple example

1
(5.31) I(f;0, 1)=f\/§dx =2
0

In this case, f'(x) is not continuously differentiable on [0, 1], which violates
the conditions for the expansion (5.24) to hold. The first eight rows of the
Romberg table (with N =2) are shown in the following table. Com-
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putations along each row were terminated when convergence was detected.

m

k 0 1 2 3
0 0.5000
1 0.6036 0.6381
2 0.6433 0.6565 0.6577
3 0.6581 0.6630 0.6634 0.6634
4 0.6636 0.6654 0.6656 0.6656
5 0.6656 0.6663 0.6664 0.6664
6 0.6663 0.6665 0.6665
7 0.6667 0.6668
8 0.6667 0.6667

Using the stopping criterion (5.30) with TOL =5.0E —4, the algorithm
would terminate at k =4 and return the answer 0.6656 which, of course,
does not have the requested accuracy. Hence, whenever the condition
(5.24) is violated, we cannot rely on the Romberg integration algorithm to
give accurate results. The difficulty lies in the fact that the formula (5.27)
for extrapolation is derived from (5.24) so the extrapolation process is not
valid. Therefore, we need to devise a means of detccting when this
situation is present and dealing with it.
We define a column difference

d(k,m)=Tk,m)—T(k—-1,m)

Now, assuming that (5.24) holds, it follows that the extrapolation (5.27) will
yield values T(k, m) such that

h 2m+1) .
I(f; a, b)_ T(k,m): Cm+1 (2—k) +O(h2(m+_))
Hence
2m 2m
dc(k, m-—1)= Cn (%%) — Cm (Epklfl) + O(h2(m+|))
= thZM(] _ 4M) . 4—km + O(hZ(m+l))
and

de(k —1,m — 1) = Cuh?™(1 —4™)- 474" + O(h*™*")

Therefore



220 / QUADRATURE

d(k-1,m—-1) 4~ tk=Dhm
de(k,m —1) 47km

Consequently, before computing T(k, m), we should first check that the

ratio (5.32) of column differences approximates 4™. In this respect, it is
sufficient to have agreement to one digit so a typical test will be of the form

di(k—-1,m- 1)‘ _gm
d.(k,m—1)

(5.32) =4" as k increases

(5.33)

=0.1-4"

If the test fails, we should stop computing elements in the current row and
begin a new one. A Romberg algorithm that includes a test like (5.33) is said
to do cautious extrapolation [12]. For the examples (5.28) and (5.31), the
respective ratios in the first column are

(5.34) 4.17 2.61
4.07 2.68

2.69

2.75

2.86

(Only two ratios are shown for (5.28) because the stopping criterion (5.30)
terminates the algorithm after computation of four rows.) Hence, with
m =1 in (5.33), we see that extrapolation to the second column in the
example (5.28) using the formula (5.27) is valid whereas, in (5.31), it is not.
In the latter case, a cautious algorithm will only compute the first column
of the table and convergence (to the correct answer) will be detected at
k = 8. This raises a further point—that the stopping criterion based on the
row convergence test (5.30) is no longer adequate. We must also check for
column convergence. A suitable test is
(5.35) |de(k—1,m)|<TOLT(k—1,m)

and |d.(k, m)| = TOL - T(k, m)
Again, the double check is intended to obtain a reasonable tradeoff be-
tween reliability and efficiency.

In summary, a cautious Romberg integration algorithm will employ a test
of the form (5.33) to check for the validity of each extrapolation. The
stopping criterion will consist of (5.30) and, whenever necessary, (5.35).
Termination will occur if either one is satisfied. As the example (5.31)
illustrates, the ‘‘cautiousness” aspect greatly increases the reliability of
Romberg integration. Since the additional cost of performing the tests (5.33)
and (5.35) is negligible, we gain the extra reliability with almost no
additional cost.

Finally, we discuss the efficiency of the Romberg process. As already
indicated, we measure cost by counting the number of function calls
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(evaluations of f) required. Now the number of function calls to compute a
trapezoidal rule approximation T(s,0) is 2’N +1 and, for T(s+1,0), it is
251N + 1. But there is a good deal of duplication of effort here. First, since
the step size is halved at each stage, the points used for T(s+1,0) are
precisely those for T(s,0) plus the midpoints of each subinterval. There-
fore, we should be able to use the function evaluations already made in the
computation of T(s,0). Secondly, we note that the coefficients in the
formula for T(s + 1, 0) are simply one-half those for T(s, 0). Consequently,
instead of implementing (5.11) to compute T(s +1,0), it is more efficient to
use the formula
1N

(5.36) T(s+1,0)=4T(s,0)+ hesr D, fla+ Qi — Dheuil
i=1

where .y = hy2 = (b — a)/[2°*'(N — 1)]. Note that the value of T(s,0) is
the only piece of information needed from the previous level. Therefore,
even though we are making use of previously calculated values of f(x), we
do not have to retain them in storage. Given T(s, 0), the cost of computing
T(s +1,0) by (5.36) is 2°N function evaluations. Therefore, the total cost
of computing the first k + 1 rows of the Romberg table is

(N+1D+N+2N+2N +---+2"'N =2"N +1

the same as for computing T (k, 0) alone.

5.2.2. Adaptive Quadrature

The Romberg method, as described, is a good way of automatically
choosing an appropriate step size h. But it is not necessarily the most
efficient way of computing the value of I(f). This is because it uses a
uniform subdivision of [a, b] at any stage. Consider, for example, the
situation in Figure 5.5. Within the region marked I, the graph of the
integrand f(x) does not fluctuate very much so h would not have to be very
small in order to obtain good accuracy. On the other hand, it is clear that a

FIGURE 5.5
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much smaller h would be necessary in the region marked II. The trouble
with an algorithm based on a method such as Romberg extrapolation,
which refines the subdivision uniformly, is that the smaller h for region II
must be used over the whole interval [a, b] so a lot of unnecessary function
evaluations are made in region 1. Therefore, it would be useful to have an
algorithm which is based on a nonuniform step size and automatically
“adapts” by choosing step sizes according to the behavior of f(x). Al-
gorithms which do this are called, appropriately enough, adaptive quadra-
ture algorithms.

The idea of adaptive quadrature is as follows. Subdivide [a, b] by
a=x;<---<xy=b and choose a basic (not composite) quadrature for-
mula to be used in each subinterval. Take the first subinterval [x, x2] and
apply the quadrature formula on it. Now before moving on to the next
subinterval to the right, we want to decide if we have achieved sufficient
accuracy on the present one. In order to make this decision, we need an
error estimate and, again, we use the “one-step, two half-steps” idea. We
divide [xy, X,] in half by x, 5 = x, + (x,— x,)/2 and apply the basic quadrature
formula on each half. If the sum of the values over the two half-intervals
agrees sufficiently with that over the whole subinterval, we accept this
value and move on. If not, we repeat the process on the subinterval [x;, 3],
with [x,s, x,] becoming the “next subinterval to the right,” and so on. The
process of subdivision continues until either a subinterval is “accepted” or
its width is too small to permit further refinement within machine precision.
In the latter case, this is usually a sign of trouble such as a singularity in
the integrand. Each time the value on a subinterval is accepted, it is added
to a running total which ultimately becomes the approximate value for I o).
In effect, then, this type of algorithm is a composite rule using variable step
sizes h;, which are determined dynamically rather than being preassigned.

Some remarks about the design and implementation of an adaptive
algorithm should be made. First, an adaptive algorithm can be fooled into
premature acceptance of a subinterval in much the same manner that
Romberg integration can be fooled. A possible remedy might be to use a
“one-step, two half-steps, four quarter-steps” acceptance criterion in the
same spirit as requiring two-row convergence for Romberg. But, again,
even this is not foolproof. In any event, it doubles the amount of work
required which, for most integrals arising in practice, is not necessary. A
better way of detecting problems is to look at the number of function
evaluations used or else the minimum step size used. If they seem un-
usually low or high, respectively, the computation should be repeated using
a finer subdivision of [a, b] at the start.

With respect to implementation of an adaptive algorithm, we need a
method for keeping track of which subinterval is “next to the right.” The
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usual mechanism employed is a stack that operates on a last-in, first-out
(LIFO) basis. There is some overhead cost in managing the stack but this is
a small price to pay for the potential savings to be gained from the adaptive
feature. Actually, the most elegant way to implement an adaptive quadra-
ture algorithm is to write a recursive subroutine—one that can call itself.
When a subinterval is halved, the routine can call itself twice in order to
integrate over each half, and so on. This is not to say that recursion is more
efficient than using a stack. It simply makes the implementation easier to
understand. However, recursiveness is not available in Fortran which is the
programming language used in most scientific computations, so there is, in
effect, no choice. The stack structure is generally used.

An interesting idea that is sometimes used in adaptive algorithms is
“banking.” When a subinterval is accepted, the error estimate may be
significantly below the tolerance permitted for it. The difference can then
be saved against a rainy day. That is, if some subinterval along the line
presents problems, then, rather than doing more subdividing in order to
meet the required tolerance on it, we simply accept the interval and deduct
the excess error from the savings in the bank. This is a good idea but
devising a satisfactory banking strategy is not particularly easy. There are
many decisions that must be made. For instance, should overdrafts be
allowed, that is, should we tolerate some excess error at the outset in the
hope that there will be savings to be made later on? If so, what overdraft
limit shall be set? What is the maximum size of withdrawal to be permitted
at any one time? Satisfactory answers to questions like these can only be
found after extensive testing of various strategies over a wide range of
problems.

5.2.3. Adaptive Romberg Integration

As the title of this section implies, it is possible to combine the Romberg
integration method and adaptivity in one algorithm. Basically, the idea is to
begin the integration using Romberg with N =2, that is, no subdivision of
(a, b]. If convergence does not occur within, say, kmax rows of the table, we
superimpose an adaptive procedure in the following way. The interval
[a, b] is halved and the Romberg method is applied on the left half until
either convergence occurs or else kg rows have been computed. In the
latter case, we halve the subinterval and apply Romberg on the left part,
and so on. When convergence of Romberg occurs on a subinterval, we
“accept” it, move on to the next subinterval to the right and continue. The
rationale for such an algorithm lies in the fact that Romberg integration
involves less overhead than an adaptive algorithm. Hence, for the same
number of function calls, Romberg is cheaper. Now the two methods will
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use the same number of function calls in any region where f(x) is
sufficiently regular, that is, has no bad fluctuations. Since the degree of
regularity is indicated by the rate of convergence in the Romberg table, it
follows that the adaptive Romberg algorithm just described is a means of
delineating the subregions where Romberg integration (with a uniform step-
size) can be applied effectively.

The best-known implementation of an adaptive Romberg algorithm is a
subroutine called CADRE—Cautious ADaptive Romberg Extrapolation. It
has proven to be a reliable, efficient routine and is widely available. (It is
included in the IMSL package. In fact, it is the only general-purpose
subroutine for one-dimensional integration contained in that package.) As
the name of the routine implies, it uses cautious extrapolation. An ad-
ditional feature is that it attempts to determine the error expansion
automatically and modifies the extrapolation formula accordingly. To illus-
trate, we saw in the table for (5.31) that the extrapolation formula (5.27) is
not valid when f(x) = V'x. This is because the error expansion is not in
powers of h? as in (5.24). Instead, it is

(5.37) I(f;a,b)=Tn + Ch**+ Oh?)
Therefore, instead of (5.25), the correct extrapolation formula to use is

Tono— Tho

(5.38) T, = TzN.0+_—2372—_T’—

Using this formula for our example, the element T(1,1) of the Romberg
table will be 0.6603, which is much better than 0.6036. Now, comparing
(5.25) and (5.38), the only difference is in the power of 2 used in the
denominator of the correction term. Moreover, the appropriate power to be
used is the same as the power of h in the first term of the error expansion.
Therefore, given the latter, we can modify the Romberg extrapolation
formula (5.27) suitably and make the algorithm effective for a wider class
of integrals. The only difficulty with this idea is that the powers of h in the
error expansion are not usually known. However, they can be estimated by
taking the ratio of successive column differences as in (5.32). Indeed, we
cee from (5.34) that these ratios approach 2% =283 for the example
f(x)=Vx. This is the kind of procedure used by CADRE in order to make
the correct extrapolation automatically.

5.3. IMPROPER INTEGRALS

An improper integral is one where either the integrand has a singularity
within the range of integration [a, b], or one (or both) of the limits of
integration is infinite. The two integrals at the end of Section 5.1.2 are
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examples of a singular integrand. If the singularity is at x = ¢, then such
integrals are well defined if

b

(5.39) 11113[1 f(x) dx + j £(x) dx] exists

cte

In this case f(x) is said to have a “removable” singularity at c¢. For
example, the integral [ x™'2 dx has a removable singularity at x = 0. The
value of the integral is 2. On the other hand, the integral Jo x”'dx is not
defined because the limit (5.39) does not exist. The problem, then, is to
recognize when such an integral is defined and to approximate its value. It
would be nice if some standard procedure for doing this was known but,
unfortunately, this is not the case. Consequently, quadraturce subroutines
are not designed to handle improper integrals of this type. Instead, the user
must devise an individual means of dealing with them. We list some
suggestions that can be useful. In each case, the idea is to rearrange things
in order to make use of quadrature routines for proper integrals.

1. Remove the singularity by subtracting it out. We illustrate this idea
with the following example taken from [7]

1 1 1

dx 1 1 dx
(5.40) jwdx—’—‘j(wg—wg) dx + T+—x|"?,
0 0

The first integral on the right side has a singular integrand but we can easily
perform the integration analytically—the value is 0.3. The second integral
can be evaluated using a quadrature subroutine. To see why the singularity
has been “subtracted out,” we have

1 1 1 x"M—
xl/2+xl/3 xl’3(1+xl/6) 1+x1/6 xl/3

2. Modify the definition of the integrand. As an example where this can
be applied, we consider the integral

2 3
J’smx dx
x
0
Noting that (sin x)/x - 1 as x >0, we redefine the integrand as
sin x

fx)y=4 *
1 ifx=0

if x#0
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This gives an integrand that is well defined everywhere in [0,2] and no
difficulty will arise in evaluating it.

3. Use a Gauss-Legendre method. In each of the above examples, the
difficulty with the original form of the problem is that the integrand has a
singularity at an endpoint of the interval of integration. Therefore, al-
gorithms such as CADRE (which are based on a Newton-Cotes type of
formula) will run into difficulty. We have already noted that Gauss—
Legendre formulas do not use the endpoints as quadrature points. Con-
sequently we could consider rewriting an integral like (5.40) as

ff(x) dx =ff(x) dx +ff(x) dx
0 0 d

for some d near 0—say, d = 0.1. The first integral on the right side can be
evaluated by an n-point Gauss-Legendre formula (with n chosen
sufficiently large to achieve the required accuracy). The second integral can
be evaluated by a standard routine. We remark that, in order to use this
idea, it is desirable to have a Gauss-Legendre subroutine available.

4. Ignore the singularity. Consider the integral

4
f dx

(x _ 7,‘_)173
1

The integrand has a removable singularity at x = 7. If we use a Romberg
algorithm to approximate the integral, the integrand will not have to be
evaluated at this point because it will not be a quadrature point.

We now consider improper integrals where the limits of integration are
infinite, that is,

ff(x) dx  or f f(x) dx
o e

Such integrals are defined if
R
lim f f(x) dx
0

exists, and similarly when both limits are infinite. We list two suggestions
for dealing with this type of problem.

1. Use a Gauss-type formula. In Section 5.1.2, we discussed such for-
mulas in some detail. If f(x) can be written in the form w(x)g(x), where
g(x) has polynomial-like behavior, this is a very useful method to use. A
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particular advantage is that it avoids evaluations of the exponential
function. For example, suppose we have the integral

®
J e sin x dx
0

If we use Gauss—Laguerre quadrature, the function evaluations will only be
for g(x) = sin x.
2. Make the range of integration finite. We write the integral as

(5.41) I=jf(x)dx=Jf(x)dx+Jf(x)dx
0 0 R

where R is such that
U f(x) dx‘ <TOL
R

In effect, the value of I is found (to within an accuracy of TOL) by
evaluating the integral over the finite interval {0, R]. Now a suitable value
for R is not known but we can determine one in the following way. Choose
a set of numbers 0 <R, < R,<:--. Then evaluate, successively, the in-
tegrals

R, R, R,
j f(x) dx, J f(x) dx,...,J f(x)dx,...
0 Ry

Ry,

and keep a running total of their values. The process continues until the
value of the integral over, say, [R.-i, R.] does not make a significant
contribution to the total. At this point we conclude that the integral over
[R., ] is also insignificant so no further change in the total will be made. In
other words, we take R, as a good value for R in (5.41). The “‘running
total” will be the value of the integral. We remark that nonconvergence of
this process can be used as an indicator that the integral is not defined.

EXERCISES

Section 5.1
1.1. Find the coefficients for the quadrature rule
I(f; =1L D)= af(-H+ af @

What is the maximum degree of polynomial for which it is exact?
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1.2. Use the formula (5.5) to derive the coefficients for Simpson’s rule
(5.6). (Hint: Let ¢ = (a + b)/2. Then the formula for, say, a, will be

c+h

a, = f (x—c)(x—(c+h))dx
c—h

(=h)(=2h)

1.3. The so-called Lobatto type of Gauss quadrature formulas fixes two
of the quadrature points at the endpoints, that is,

I(f; a, b) = a\f(a) + axf (x2) + - - * + @pyf(Xa-1) + auf (b)
The locations of x,,. .., x,, are determined in the usual way by requiring
the rule to be exact for as high degree a polynomial as possible.

(a) What is the maximum degree of polynomial that can be integrated
exactly by an n-point formula of this type?

(b) Assume that {a, b] =[—1, 1]. Find the three- and four-point Lobatto
formulas for this interval.

(¢) Write down the composite four-point Lobatto rule for approximating
I(f; a,b). (Be sure the formula has no duplicate function evaluations.)
Compare the accuracy and efficiency of this rule with the composite
trapezoidal, Simpson, and two-point Gauss-Legendre rules.

1.4. In Table 5.1, the formula for generating Tchebychev polynomials
T,(x) is given.

(a) Determine To(x), ..., Ts(x).

(b) The roots of each T,(x) are real and contained in [—1, 1]. Prove this
result. Verify it for the particular case of Ts(x) by finding its roots (using a
root-finding subroutine).

(c) Prove the orthogonality property (5.18)(b). Verify it for the case
n=5,r=2,s=>5 What are the values of the constants K, ,?

(d) Find the three-point Gauss-Tchebychev formula and use it to ap-

proximate each of the following integrals:
1
i dx
V1-x2
-1

1
i dx
V1-x2
0

1
COS X

i ——dx
V1-x?
0

1.5. Consider the Hermite polynomials H,(x) defined in Table 5.1.
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(a) Determine Hy(x), ..., Hs(x).

(b) The roots of each H,(x) are real. Verify this for Hs(x).

(c) Verify the orthogonality property (5.18)(b) in the case r=2, s = 3.

(d) Find the three-point Gauss-Hermite quadrature formula and use it to
approximate each of the following integrals:

i j e~ dx

. —x2
i x%e™ dx

§—— g

asse —x2
jii cos xe = dx

i‘;%g

1.6. Consider the quadrature formula given by
1
Ig;-1,0= [ g(t) de + ¥g@+ g +g(-2)]
-1

(a) Show that this formula integrates polynomials of degree =3 exactly.
(b) Derive the corresponding formula for the general integral

b
I(f;a,b)=jf(x)dx

(c) Show that the corresponding composite rule is

I3 0, b) = g [(f 1+ o)+ 26061+ )+ 3003+ -+ fn-2)

+26(fn-1+ fn)+ (Fner + fna2)l
where f; = f(x;), with x;, =a+ih, -1=i=N+2,and h =(b—a)/(N - ]).
(d) What restrictions must one place on the integrand f(x) in order to
apply this formula? (Hint: Try applying it to the integral f (1—x%"dx.)
(e) Compare the accuracy and efficiency of this composite rule with the
composite Simpson and two-point Gauss-Legendre rules.

Section 5.2

2.1. Find values, correct to five significant digits, for each of the following
integrals:
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2

i j sin 5x dx
-1
2

ii j e * dx

iii j e* cos (3—72&> dx

iv J\/l —0.25 sin’ t dt

0
1

v jx‘zdx
0
w2 .
vi J'_Ismx dx
1+x

0

2.2. In order to investigate the performance of a quadrature subroutine, it
is usual to apply it to a set of test problems that exhibit a variety of
difficulties. The following integrals are examples of such test problems.
Each of them illustrates a particular difficulty that can be made arbitrarily
bad by varying a parameter. Use these examples to experiment with a
quadrature subroutine. Collect statistics on accuracy. and efficiency (num-
ber of function calls). The examples are taken from [12].
(a) Integrand with a peak that is much narrower than its height:

[ rrigyr e =4 [t (L8) i (B)] f

where o =27* The peak is located at B and its width and height are
determined by k. Try k =1,2,...,8. Choose a value of B so that it will be
a quadrature point and then a value which will not be one.
(b) Highly oscillatory integrand:
1
J’ x* sin max dx
0

Try k=0,1,2,3 and m =5, 10, 15, 20, 25.
(c) Integrand with jump discontinuities:
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2

i J sin 5x dx
-1
2

ii j e * dx

j x 3mx
iii e* cos (T) dx

iv jx/l —0.25sin’ t dt
0
1

jx"z dx

0

<

w2
. sin x
Vi |iiad
0

2.2. In order to investigate the performance of a quadrature subroutine, it
is usual to apply it to a set of test problems that exhibit a variety of
difficulties. The following integrals are examples of such test problems.
Each of them illustrates a particular difficulty that can be made arbitrarily
bad by varying a parameter. Use these examples to experiment with a
quadrature subroutine. Collect statistics on accuracy, and efficiency (num-
ber of function calls). The examples are taken from [12].
(a) Integrand with a peak that is much narrower than its height:

1

J’m dx = % [tan‘l (—I%E> + tan™! (g)]
0

where o =27% The peak is located at B and its width and height are
determined by k. Try k=1, 2,...,8. Choose a value of B so that it will be
a quadrature point and then a value which will not be one.
(b) Highly oscillatory integrand:
1
J’ x* sin mmx dx
0

Try k=0,1,2,3 and m =5, 10, 15, 20, 25.
(¢) Integrand with jump discontinuities:
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2

i J sin 5x dx
-1
2

ii j e ¥ dx

iv f\/1—0.25 sin’t dt
0

1
x2
v j x* dx
0
w2
vi —_jSin X dx
1+x
0

2.2. In order to investigate the performance of a quadrature subroutine, it
is usual to apply it to a set of test problems that exhibit a variety of
difficulties. The following integrals are examples of such test problems.
Each of them illustrates a particular difficulty that can be made arbitrarily
bad by varying a parameter. Use these examples to experiment with a
quadrature subroutine. Collect statistics on accuracy, and efficiency (num-
ber of function calls). The examples are taken from [12].
(a) Integrand with a peak that is much narrower than its height:

jﬁ =4 [t (L22) 4 (B)]

where o =27% The peak is located at B and its width and height are
determined by k. Try k=1,2,...,8. Choose a value of B so that it will be
a quadrature point and then a value which will not be one.
(b) Highly oscillatory integrand:
1
J’ x* sin marx dx
0

Try k=0,1,2,3 and m = §5, 10, 15, 20, 25.
(c) Integrand with jump discontinuities:
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1
j[mxjx"" dx
0

where [mx| is the integral part of mx. For example, [15.83} = 15. Try the
same values of k and m as in (b).
(d) Integrand with a (removable) singularity in the interval of integration

==

Try o =0.5, 0.6, 0.75. Choose B as in (a).

2.3. Compute the value, to five significant figures, of the integral
1
I= j y(x) dx
0
where y(x) is defined implicity by the relation
x2+x = ye’
2.4. Derive the formula (5.38) assuming the expansion (5.37). -
2.5. In an experiment to study a certain quadrature formula, the formula

is used to evaluate an integral for which the exact result is known (from
which the error can be determined precisely). The results were

Step size h I 2 | 273 | 278 I 277

Error E I 3.50E—-6 I 5.35E —7| 7.56E —8 l 1.00E -8

What appears to be the order of the formula? (A rule is of order p if
E = Ch*® + O(h**"), where C is a constant.) Using this estimated value of p,
devise an appropriate extrapolation formula for Romberg integration. What
appears to be the order of the extrapolated formula?

2.6. Recompute the second column of the table for (5.31) using the formula
(5.38). Determine the appropriate formula for extrapolating to the third
column and then compute it also.

2.7. The integral

X

E(x)=j\/1—k’sin’tdt 0<k<l1
0
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is called an “elliptic integral of the second kind” (see [21, p. 179)). It arises
in computing the arc length of an ellipse. Find, to five significant figures,
the values of x € [0, #/2] for which E(x) = 1.5 when k = 0.25, 0.5, 0.9, 0.95,
and 0.99. Note: Efficiency can be greatly enhanced by making use of the
fact that

X|+XZ

E(u+x5) = E(xp) + j VI—KEsin®T dt



CHAPTER 6

ORDINARY DIFFERENTIAL
EQUATIONS

An ordinary differential equation is an equation involving derivatives of an
unknown function of one independent variable. A solution of such an
equation consists of an analytic expression for the function in question.
Some example equations, along with their solutions, are:

Equation Solution
i y(x)=2x y(x)=x*+c¢
i y'(x)=2y y(x) = ce*
iy =3 y(x)=Vxite
iv. y'(x)=-y y(x)= ¢, €cos X + ¢, sin x
v )’"(X)=5)"_6)’ y(x)=C|e3x+C282x

The ¢’s in each solution are arbitrary constants (of integration), that is, the
given formulas are solutions of the corresponding equations no matter
what values are assigned to the constants.

As a mathematical form, the ordinary differential equation is a very
important tool. It is used in the modeling of a wide variety of physical
phenomena—chemical reactions, satellite orbits, vibrating or oscillating
systems, electrical networks, and so on. In many cases, the independent
variable represents time so that the differential equation describes changes,
with respect to time, in the system being modeled. The solution of the
equation will be a representation of the state of the system at any point in
time and one can use it to study the behavior of the system. Consequently,
the problem of finding the solution of a differential equation plays a
significant role in scientific research. In this chapter, we discuss various
means for solving this problem. We begin with some general remarks
concerning the form of a problem and methods of solution.

6.1. MATHEMATICAL PRELIMINARIES

Each of the solutions in the above examples is a general solution, that is,
any solution of the corresponding equation will necessarily be of the form

233
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indicated. In examples (i) to (iii), there is one arbitrary constant c. Hence,
in these cases, the general solution can be viewed as a one-parameter
family of particular solutions. Each member of the family corresponds to a
specific value of c. However, in most applications, we only want one
particular solution. Therefore, an extra condition is needed in order to tell
us which member of the family to select, that is, which value to assign to c.
For instance, we could ask for the solution of equation (ii) that passes
through the point (0, 3). In other words, we want to solve the problem

y(x)=2y  y(0)=3
Upon substituting this extra condition into the formula for the general
solution, we obtain ¢ =3, whereupon the (unique) particular solution of
this problem is

y(x)=3e*

We note that equations (iv) and (v) are of second order—since the
highest-order derivative involved is second order—and the general solu-
tions contain two arbitrary constants ¢, and c,. Consequently, two con-
ditions must be given in order to specify a particular solution uniquely. For
instance, in equation (iv) we might have

y"= 5y — 6y with y©0)=0 y'(0)=-1

Substituting these conditions into the general solution and its derivative,
we obtain the system of algebraic equations

yO= ¢+ ;=0
y'(0)= _3C1_2C2= -1

whose solution is ¢, =1, ¢, = —1. Therefore, the (unique) solution of this
problem is

y(x) — eSx _ er

In general, we could be given an mth-order equation—involving derivatives
of y(x) up to, and including, mth-order-—and an extension of the preceding
discussion will show that we need to specify m conditions in order to have
a unique solution. We will consider problems in this form, that is, a
differential equation plus the required number of conditions so that the
problem has a unique solution. There is, of course, the question of the
existence of a solution in the first place. However, since this topic is ade-
quately covered in mathematical texts, we will not pursue it here. Instead,
we simply assume that the appropriate conditions for the existence of a
unique solution are present, and concentrate on the problem of finding it.
So far, we have only discussed differential equations for which we can
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write down a general formula for the solution. Unfortunately, there are
relatively few equations where such a procedure is possible. Therefore, the
above method for selecting a particular solution can rarely be used and we
must resort to methods of approximating it. The usual approach found in
most mathematics books is to construct a series representation for the
solution. This technique is universal in that it can be applied to any
equation. Therefore, it is worth considering as a basis for a general-purpose
subroutine to approximate the solution of a differential equation. However,
for many problems, it turns out that the method is not very efficient. To
illustrate, we consider the example problem

y'=xi+y?  y0)=1
In order to construct a series solution about the point x =a, we assume an
expansion in the form

y(x)=bo+ by(x —a)+ biAx —a)+---

where the coefficients b; are to be determined. To this end, we note that the
Taylor series expansion of the solution about the point x = a is
, " a
y0) = (@) + (@) - )+ S (= apre -
and it follows that by = y(a), b,= y'(a), b= y"(a)/2!, and so on. If, for
example, a =0, then successive differentiation (of the differential equation)
and substitution gives:

‘ —

y' =x1+y? y'(©0)=1
y'=2x+2yy’ y"(0)=2
y'=2+2yy"+2(y'Y y"(0)=8
y©@=2yy"+6y'y" y*“(0) =28

Therefore, the series expansion of the solution about the origin is
YxX)=1+x+x2+3x3+ x4+ -

One difficulty with trying to use this idea in a computational method is that
it requires a symbol manipulation system, or at least an extensive pre-
processing step, in order to determine expressions for the higher deriva-
tives, and this can be very expensive. Another disadvantage arises when
we want to determine a value of the solution at some point lying outside
the radius of convergence of the series. In our example, for instance, the
series we constructed cannot be used to find the value of, say, y(0.1)
because it only converges within the region |x| < 0.069. Now it is true that
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continuation could be used in this situation but, since this would amount to
a repetition of the whole procedure (with the new known value, a, set equal
to some point within the radius of convergence), the cost increases
significantly. A third disadvantage is the cost of evaluation. Often, the rate
of convergence of the series is very slow with the result that a large
number of terms must be used in order to attain a required accuracy.
Therefore, until a way around these disadvantages can be found, it is quite
clear that the series method of solution will not be very useful as a
general-purpose computational method so we will not consider it further.
Instead, we look at techniques for computing a numerical approximation to
the solution.

In discussing the numerical solution of differential equations, we dis-
tinguish between initial-value problems (IVP’s) and boundary-value prob-
lems (BVP’s). Examples of the two types are

IVP: y'(x)=-y with y(0) =2 y'(0)=-1
BVP: y'(x)=-y with y(0)=2 y(37w/2)=1

The distinction between them lies in the locations where the extra con-
ditions are specified. For an IVP, they are both given at the same value of
x, whereas in the case of a BVP, they are given at two different values of x.
We note that both example problems have the same solution, that is,

y(x)=2cos x —sinx

In each case, the solution is easily determined by taking the formula for the
general solution, substituting the conditions, and solving the resulting
system of equations for ¢, and c¢,. In this situation, it does not matter
whether we have an initial-value problem or a boundary-value problem.
However, it turns out that the numerical methods for each type of problem
are quite different so that they require separate treatment. The subject of
boundary-value problems is quite extensive and a good deal of the material
is beyond the level of the book. Therefore, we limit our discussion to
initial-value problems.

In this chapter, we will consider the problem of solving the mth-order
differential equation

Y=y, ¥,y YY)
with initial conditions
Y =Yo Y= yo... ¥y xo) =y

However, rather than deal with an initial-value problem in this form, it is
usual to rewrite the differential equation as an equivalent system of m
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first-order equations. Suppose, for example, that we have the third-order
initial-value problem

Y"(x)=£0x, 3, ¥, ") = =y (x)y"(x) + (x + y'(x))’
yoO=1 y@©@=2 y(0)=-1

We define new dependent variables y,(x), y:(x), ys(x) by
=y =y yp=y

Then the original problem is equivalent to the system of three first-order
differential equations

Y=y = fi(x, Y1, y2, y3)
Y2 =y = fax, y1, Y2, ¥3)
Y3= —yays+ (X + y2)* = fa(x, y1, ¥2, y3)
with initial conditions
=1 y0)=2  y0)=-1
We write such systems in vector form
6.1) y@x)=1£xy) y(xo)=yo

where, in this particular case,

yi(x) filx, y) 1
y(x)=| yxx) f(x, y) = fiAx,y) and  yo=| 2
y3(x) f3(x,y) -1

As a general rule, subroutines for solving initial-value problems assume
that the problem is in the form (6.1) of a system of first-order equations rather
than as a higher-order equation. This is because it is easier to standardize a
procedure for afirst-order system. In any event, since higher-order equations
can easily be reduced to this form in the manner illustrated, the assumption is
not a significant restriction. Therefore, we only consider first-order systems
(6.1) of differential equations. In fact, to make the analysis as simple as
possible, we restrict our discussion to the special case m = 1, that is, a single
first-order equation

(6.2) y'=f(x,y) y(xo) = yo

There is no loss of generality in doing this because the numerical methods
that we discuss for solving (6.2) can be directly extended to the system
(6.1).

The exact solution of (6.2) is a curve in the xy-plane passing through the
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FIGURE 6.1

point (xo, yo). We define a numerical solution to be a set of points
{(xn, un)}n=0, Where uo =y, and each point (x,, u,) is an approximation for
the corresponding point (x,, y(x,)) lying on the solution curve. (For nota-
tional convenience, we will henceforth use y, to denote y(x,).) The
situation is pictured in Figure 6.1. Note that the numerical solution is only a
set of points. The process of determining a numerical solution generally
proceeds from the initial point (x,, ue) and computes, successively, (x;, uy),
(x3, uz), and so on. Again referring to Figure 6.1, this can be viewed as
trying to track the trajectory of the true solution y(x).

A subroutine for solving the initial-value problem (6.2) will normally be
designed to compute a numerical solution over a specified interval [xg, Xendl
and return the single value u..4 of the numerical solution at the right-hand
endpoint. That is, given the values X;, Xena, and uo, it will compute uenq. A
calling sequence for such a routine might therefore be of the form

DEIVP(FCN,X,XEND,U,TOL)
where

FCN is a function subprogram for evaluating f(x, y).

X, XEND are real variables used, on entry, to specify the left and
right endpoints, respectively, of the interval of integration and,
on return, X will contain the x-coordinate corresponding to the
approximate solution returned in U (so that, on a normal return,
X = xend)'

U is a real variable used to specify the initial value u, on entry and
to return the approximate solution u.qq On exit.

TOL is an error tolerance.

Actually, this is a rather simplified calling sequence. As we will see in
Section 6.3, it is necessary to have a more elaborate one in order to provide
sufficient flexibility to the user. Nevertheless, the above sequence illus-
trates the basic information that must be provided to a subroutine.

In order to compute u.4 to within the specified accuracy, a routine
subdivides the interval [xg, Xenal bY Xo<x;<: - <Xy = Xenq and suc-
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cessively applies a formula for advancing the solution a single step from a
given point x, to the next one x,,,. But such a routine consists of more than
a straightforward implementation of a particular formula. It must also
decide on an appropriate subdivision of [xo, Xens) in order to balance the
conflicting goals of reliability and efficiency. We recall that similar ideas
were considered in the discussion of quadrature subroutines in Chapter 5.
In fact, our treatment of initial-value problems will parallel that of quadra-
ture. In Section 6.2, we discuss some particular formulas and then, in
Section 6.3, we consider the design of algorithms for implementation as
subroutines. Before proceeding, we comment that, in order to obtain the
numerical solution of (6.2) at a prescribed set of points t;, 1 =j =M, we
must call an IVP subroutine M times. Let T and U be (M + 1)-vectors and
suppose U(0) and T(j), 0=j =M, are initialized to their specified values.
Then a program segment for computing the u;’s with DEIVP is:

uJ = U(0)
XJM1 = T(0)
DO 10 J=1M
XJ=T()
CALL DEIVP(F,XJM1,XJ,UJ,TOL)
U(J)=UJ
10 CONTINUE

After execution of this segment, the vector U will contain the values u; of
the numerical solution at the points t;.

6.2. NUMERICAL FORMULAS

As in the case of quadrature rules, the literature abounds with a great
variety of numerical formulas for solving initial-value problems. Again,
rather than selecting a few for close scrutiny, we will try to give an
overview of how to derive and assess formulas in general. To assess a
formula, we use three criteria, namely, that it must

i Give a unique (numerical) solution.
(6.3) ii Give an accurate approximation.
iii Be easy to implement.

In order to illustrate these points, we look at a very simple (but not very
practical) formula called Euler’s formula. First, we derive it.

Suppose we have computed the value u, in the numerical solution. Then
an equation for the next value u,,, can be obtained by approximating the
derivative in the differential equation (6.2) by a difference quotient, that is,
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Up+1 — Un
— = f{Xn, U
xn+1 — xn f( ns n)

or
(6.4) Ups) = U, + hu,,

where h = x,.1— X, is the step size, and u},= f(xn, u,). This is Euler’s
formula. We illustrate its use with the example problem

6.5 y =y-—2sinx yoy =1 v,

whose analytic solution is y = sin x + cos x. Taking h =0.2 and applying
(6.4) successively, we obtain

o= 1.0 ub=£(0.0,1.0) = 1.000

up = 1.000+ (0.2)(1.000) =1.200  uj=f(0.2,1.200) = 0.8027
Uy = 1.200+ (0.2)(0.8027) = 1.361  u3 = f(0.4, 1.361) = 0.5822
us= 1361 +(0.2)(0.5822) = 1477 uj=£(0.6, 1.477) = 0.3477
e = 1.477 +(0.2)(0.3477) = 1.547 u}f; £(0.8,1.547) = 0.1123

and so on. More results are tabulated in Table 6.1. It is easy to see that, for
any fixed h# 0, this formula satisfies criteria (i) and (iii) of (6.3). In order to
check the second criterion, we must first define what is meant when we say
that a numerical formula gives an ‘‘accurate approximation.” To do this,
we need to discuss errors.

First of all, we define the difference

' |
i }
(66) En+1 = yn+1 — Un+1 C/;J’JL’(

between the true solution and the numerical solution at x = x,,, to be the
global error in u,.;. Then the value u,., in the numerical solution will be
considered accurate if its global error E,., is sufficiently small. Of course,
our ultimate goal is to compute an accurate numerical solution, but the
present concern is to assess the performance of a numerical formula, not
the accuracy of a numerical solution. At first glance, these two aspects may
appear to be indistinguishable, but there is a difference and it is a very
important one. We illustrate with the above example. Consider the step
from x;=0.6 to x,=0.8 and suppose, for the moment, that we want to
determine the value of the global error E, in u,. Now, in this particular
example, we can use (6.6) to compute the global error directly because the
true solution y(x) is known explicitly. We obtain

Eq=y(0.8)— us=1.414—1.547=-0.133
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FIGURE 6.2

But since it is not realistic to assume that the true solution is known, we
should try to estimate E, by some other means. To this end, we consider
the one-step, two half-steps idea that was suggested for estimating the
error in adaptive quadrature. That is, we compute the value U+ from u,
using Euler’s formula (6.4) with step-size h, and then compute another
value ii,.; using (6.4) twice with step-size h/2. The difference Upe1— Unst
between the two values will be an error estimate. For our example, we
obtain uss = 1.512 and i, = 1.534, giving

g~ ug=—0.013

which is not even close to the correct value. Obviously, this is not a good
way to estimate the global error. The reason is that the difference #ns—
u,.; is only an estimate for the error committed in taking the single step
from (xn, Us) tO (Xns1, Uns1) and takes no account whatever of the error that
is already present in u, Actually, it is best to view #,,; as an aproximation
to the solution, at x = x,+1, of the local problem

6.7 zZ'(x)=f(x,2) Z(xy) = u,

where f is the same function as in the original differential equation (6.2). In
Figure 6.2, we illustrate the situation. The point (X..1, Zn+1) 1S the true
solution of the local problem (6.7) at x = x,.1. Consequently, the difference

lin+1— Uney 1S actually an estimate for the local error
T
(6'8) €ni1 = Zn+1 ™ Uny)

that is, the error that is created by assuming that the value u, is correct and
applying the numerical formula to compute u,., from it. In other words, the



242 | ORDINARY DIFFERENTIAL EQUATIONS

local error e, is an indicator of the performance of a numerical formula in
taking a single step, rather than a reflection of the overall error in the
numerical solution. Hence, recalling criterion (ii) of (6.3), we say that a
formula “‘gives an accurate approximation” if its local error can be made
sufficiently small, that is, if it gives an accurate approximate solution to the
local problem.

To summarize the foregoing discussion, we have two definitions of
error—the local error e,,; and the global error E,,;. The global error
has two components, namely, the local error e,,, and the difference
E,..1— e.,;;. The latter component is often called the propagated error
because, as we see from Figure 6.2, it can regarded as that part of E,,,
resulting from the propagation (by the solution of the differential equation)
of the global error E, from the previous step. In the step-by-step com-
putation of a numerical solution of (6.2), we are interested in controlling
the global error at each point. However, from our discussion, it is evident
that this must be done indirectly through control of the local error in each
step. As we will see next, the local errors are relatively easy to control. The
difficulty lies in deciding, in advance, how small to make each e; so that the
global errors are within a specified tolerance. We examine this problem in
Section 6.3. For the present, we only consider the control of local errors.

An expression for the local error can be obtained by a comparison of the
formula for u,+, with the Taylor series expansion of the local solution z(x)
of (6.7) about the point x,. Again, we illustrate the idea with Euler’s
formula. Assuming continuity of z”, the Taylor expansion is

2
Zns1 = 2(X, + h) =z, + hz,’,+h2- z"(6,)

h2
=z, + hf(xm zn) + 7 Z”(O,.)

h2
= up + hf(x,, un) +7 z"(6n)

where x, < 8, < x,+. Subtracting (6.4) from this and using the fact that z" is
bounded on [x,, x.;1] {since it is continuous), we obtain

2
(6.9)  €ni1=Zny1— Ups1 = % z"(6,) = O(h?)

From this result we see that the local error e,,; in each step of Euler’s
formula (6.4) can be made as small as we like, provided the step-size h is
chosen sufficiently small. Consequently, according to our interpretation,
Euler’s formula satisfies criterion (ii) of (6.3).

The preceding type of analysis can be applied to other numerical
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formulas for initial-value problems. In general, we can show that the local
error of a formula is e,,, = O(h"*"), where p is a positive integer depending
on the particular formula under consideration. We say that the formula is
pth-order accurate. For example, Euler’s formula is first-order accurate.
The order of accuracy provides us with a means of comparing various
numerical formulas. Roughly speaking, if the value of p for one formula is
greater than that of another one, then the former will be considered
superior on the basis of accuracy.

Another aspect of a numerical formula that we must consider is com-
putational cost. This is usually measured by counting the number of
evaluations of the function f(x, y) required to take one step. Actually, we
are interested in the total cost of computing u..q starting from (xy, ug). This
is determined by multiplying the cost per step times the number of steps
required. The latter factor is dictated by the size of the step-sizes h, which,
in turn, depends on the order of the formula being used. However, this
topic is not considered until Section 6.3. For now, we only discuss the cost
per step. We define a step as the computation of both u,., and an estimate
for the local error e,.;. As we will see in Section 6.3, the latter is important
because it is useful for determining an appropriate step size. The usual
procedure for estimating e,., is to compute an additional value i,.,;, which
is more accurate than u,., that is,

|Zns1 = Gnst] <|Zns1 = Un+i]
and then use the approximation
(610) €n1 = Zn+1— Uni = ﬁnﬂ — Un+1

We have already illustrated this idea with respect to Euler’s formula. In
that example, i1,., was generated by taking two half-steps so that the total
cost of a step was two functions evaluations—one for computing u,,, and
one for i+, assuming that the value of u, = f(x,, u,) is retained from the
computation of u,,.

We now discuss some other numerical formulas. There are two distinct
classes of them—Runge-Kutta and multistep—which we discuss
separately.

6.2.1. Runge-Kutta Formulas

We begin by showing how to derive the simplest formulas in this class.
These are of the form

(6.11)  upsy = u, +(wik; + wiky)

where
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ky = hf(xn, un)
kz = hf(x,, + ah, u, + bkl)

The parameters a, b, w;, and w, are chosen in order to make the formula as
accurate as possible, that is, to make the order of accuracy as large as
possible. To this end, we substitute the true values z,, z,,, of the local
solution into the formula (6.11) and expand about the point x,. The
parameters are then chosen to make the resulting expansion agree as much
as possible with the Taylor series for z,,, about x,. Upon substituting into
(6.11), we first obtain the expansion

ko= hf(x, + ah, 2, + bk DL
= [+ h(ag, + b

2
+ 1'2— (a¥fs + 2abffoy + b2f,,) + O(h3)]

where the subscripts on f denote partial derivatives with respect to the
indicated variables, and the subscript n on the square brackets indicates
evaluation at the point (x,, z,). Hence, the expansion of (6.11) is

Zne1=2Zn t+ h[Wlf(xna Z,.) + sz(xn + ah, z, + bkl)]
(6.12) =2z, + h[(w, + wo)f]n + hzwz[afx + bffy]n

3
+ B e+ 2abff.y + B fy)a + O

The Taylor expansion of z,.; about x, is

h? h?
Zns1 = 2Zp + hz,’,+—2—- z’,§+-5—'- z"+ O(h%)

(613) =Z,.+hfn +h72(fx +ffy)n

= Rt 2f Pl + 1+ D+ O

We can make these expressions agree up to, and including, terms in h? by
equating coefficients of like powers of h. Doing this, we have

hf wi+wy=1
h*f, ©  aw,=3

h*f,:  bwy=3
This is a system of three (nonlinear) equations in the four unknowns
a, b, wy, w,, and its solution can be written in the form
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1

=3a wi=1-w,

b=a W,
where a# 0 is arbitrary. Hence, (6.11) defines a one-parameter family of
formulas, each of which is second-order accurate. We remark that it is not
possible to obtain any better accuracy with formulas of the form (6.11)
because it is impossible to equate all of the coefficients of h, h%, and h* in
(6.12) and (6.13). This is evident from the fact that (6.12) does not contain
terms in either h’ff, or h’ff3, which are present in (6.13). Hence, we
cannot obtain agreement of (6.11) with the Taylor expansion of z,,; to
terms in h’.

Taking a = 1 in (6.11), we get the particular formula

(6.14)  Upsy = Uy + (k1 + k)
where

ki = hf(xn, un)

ko= hf(x, + h, u, + ki)

Some results from applying this formula to the example problem (6.5) are
given in Table 6.1. It is interesting to look at a geometric interpretation of
the formula. First, we rewrite it in the form

(6.15)  tps1 = Uy + AL (Xny Un) + [ (Xns1, Uns1)]

where v+ = u, + ki = u, + hf(x,, u,). Hence, u,., is obtained by taking the
previous value u, and adding h times the average of two values of f(x, y).
As shown in Figure 6.3, the point (X4, Us+1) Where the second evaluation
takes place is obtained by moving a distance h, in the horizontal direction,
along the line through (x,, u,) with slope m;= f(x,, u,). At this point, we
compute another slope mis= f(x,4;, va+y). Finally, we determine u,,, by
moving a (horizontal) distance h along the line through (x,, u,) with slope
m = (m, + mj)/2, that is, the average of m, and m,.

X /(.xnﬂ’unﬂ)
ma
24/1/—
5\09 /,— ””” (an vn+1)
(xy u,)

FIGURE 6.3
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Higher-order (more accurate) Runge-Kutta formulas can be derived in a
similar way. The general form of such formulas is

Uni1 = Uy + (Wik + woka+ - - -+ wiky)
where
k; = hf(x,, + a,-h, u, + b;_ |k1 +-.--+ b,',,'_|k,'_|) l=i=<s

We remark that (6.11) is of this form with a, = 0 and a, = a. The parameters
a;, b ; are chosen to give as high order accuracy as possible. If a pth-order
accurate formula is desired, we must take s large enough so that a
sufficient number of degrees of freedom (parameters) are available in order
to obtain agreement with the Taylor expansion of z,;, truncated after
terms in h*. A table showing the minimum s for given p is

p | 2|3 |415]|6 .
s 1 21 31 4161 7

Since s represents the number of evaluations of f, this table shows the
minimum amount of work required to achieve a desired order of accuracy
with a Runge-Kutta formula. We observe that there is a jump in s from 4
to 6 as p goes from 4 to 5. This means that there is a fourth-order accurate
formula that only requires four function evaluations whereas, to get
fifth-order accuracy, at least six evaluations are needed. The extra work
required (half again as much) to obtain the extra-order of accuracy has
traditionally been considered not worth the extra effort so that fourth-order
formulas have been quite popular. The classical fourth-order formula is

(616) Ups1 = Uy +%(k1+2k2+ 2k3+ k4)

where

kl = hf(xm un)

k2= hf(xs +1h, u, +1ky)

k3 = hf(xn + %h, Un + %kZ)

ke= hf(x, + h, u, + ks)

We now turn to the problem of computing a second (more accurate)

value ii,,; in order to estimate the local error e,+;. For Runge-Kutta
formulas, using the one-step, two half-steps procedure can be very expen-

sive. Consider, for instance, the fourth-order formula (6.16). TheA cost of
each step would be 11 function evaluations—4 for u,.,; and 7 for u,,. The
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following table shows the minimum cost per step for pth-order accurate
formulas using two half-steps to compute fp1:

IS ER NN
Mo e Tl [

A better procedure, known as Fehlberg’s' method, is to compute i+ using
a Runge-Kutta formula of higher-order accuracy than the one used for
u,.,. This may seem inefficient but the key is to use a pair of formulas with a
common set of k;’s. For example, the Runge-Kutta-Fehlberg fourth-order
pair of formulas is

25 1408 2197 1 )
5

Unst = Un ¥ (ﬁk‘+§%k3+4104k‘_§k

Wlth €nsy = O(hs)

6.17)
o 16, . 6656 , 28561, 9 . 2
L1 = U (135 kit 13 g5 Kt Seiaz0 K 50 %5 55 k")
with é,.,= O(h®)
where

kl = hf(xm un)

1 |
ks = hf (x,,,+zh, u"+zkl>

_ 3 342
k3—hf (x,,+8h,u,.+32k|+32k2)

hf (xn + % b u, + 1932 7200 7296 k;)

k1 ky, +

ke 2197 °' 2197 2197
_ 439 3680 845
ks = hf (x,,+h,u,,+mkl—8k2+—5]—3—k3—4104k4)
_ 1 _8 _ 3544 1859, 11
ke = hf (""*2"’ Uy = 57 ki + 2k = 35es ks 7y ke 40"‘)

We remark that, despite the complicated appearance, this pair of formulas
is considered easy to implement since it can be coded in a straightforward
way. Looking at efficiency, we observe that the formula for un. is
fourth-order accurate and requires five function evaluations, which is more

"The idea for the so-called Runge-Kutta-Fehlberg formulas was first proposed by Merson
[1957). It was refined and popularized by Fehlberg [1969, 1970].
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expensive than the formula (6.16) for the same order of accuracy.
However, #,,, can be obtained at the cost of only one more function
evaluation (to compute k¢). Therefore, the total cost of a step using (6.17) is
only six function evaluations compared to 11 for (6.16) using two half-steps
to compute ii,+,. In addition, since (6.17) gives a ii,,, that is significantly
more accurate than u,,,, we get a more reliable estimate for e,.;. The
following table shows the cost per step for a pair of formulas of order p
and p +1:

p,p+1 | 2,3 | 3,4 | 45| 56|
No. eval. of f l ‘ ‘ ’ ‘
per step 3 4 6 8

Comparing this with the previous table, we see that Fehlberg-type pairs of
Runge-Kutta formulas are much more efficient than single formulas of
comparable accuracy. For this reason, they are the preferred Runge-Kutta
formulas for use in subroutines.

6.2.2. Multistep Formulas

This class of formulas is based on the idea of making use of previous
values of the solution and its derivative in order to extrapolate to the next
one. We begin by discussing a particular subclass called Adams-Bashforth
formulas. The general form is

k
(6.18)  tps1 = up+ h 2 buus iy,
i=1

where u;= f(x,, u;). This is called a k-step formula because it uses in-
formation from the previous k steps. We note that Euler’s formula (6.4) is
of this form—it is a one-step formula (k = 1) with b, = 1. The coefficients b;
in (6.18) are chosen in the familiar way, that is, by assuming that the past
values of u are exact, and equating like powers of h in the expansion of the
formula (6.18) and of the local solution z,,; about Xx,. We illustrate the
procedure in the case of a three-step formula

Un+1 = Un + h(bius+ brus i+ bsu,_y)
Substituting values of z into this and expanding about x,, we have

3
Zn+1 = 2o + hz(by+ by + b3) — h?z%(b, + 2b3)+-’217 zZy (b2 +4b3)+ - - -

The Taylor series expansion of z,.; is

h? h’
Zp+) = z,.+hz,’,+—2-? z;{+—§? P4
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and, on equating terms in like powers of h, we obtain the system of (linear)
equations

hZ,’. :b1+b2+b3= 1
hizy:  by+2by=-1
hBZ',:, . b2+4b3 = %

The solution of the system is given by b; = B b= —¥ b= &, whereupon
the Adams-Bashforth three-step formula is

(6.19)  Upsy = Un +%(23u,’.-— 16u,_1+ Sun—3)

with error e,,; = O(h). Some results from applying this formula to solve
the problem (6.5) are given in Table 6.1.

A difficulty with multistep formulas is that they are not self-starting. For
instance, in (6.19), we need values for us, uo, i, and u} before we can begin
using the formula to compute a numerical solution. Actually, the problem is
to compute the ‘‘starting values” u; and u, because, once these are
determined, the required derivative values can easily be obtained by

TABLE 6.1
COMPARATIVE NUMERICAL SOLUTIONS OF y'=y— 2sinx, y(0) =
1.0 WITH STEP-SIZE h = 0.25

Runge- Adams- Adams-
Kutta Bashforth  Moulton
Euler  Second- Three-step  Three-
n Xn Ya (6.4) order (6.12)  (6.19) step PC
(6.21)
0 00 1.000 1.0 1.0 1.0 1.0
1 025 1.216 1.250 1.219 (1.219) (1.219)
2 050 1.357 1.439 1.365 (1.357) (1.357)
3 075 1.413 1.559 1.429 1.412 1.413
4 1.00 1.382 1.608 1.408 1.378 1.381
5 125 1.246 1.589 1.304 1.257 1.263
6 150 1.068 1.512 1.125 1.057 1.066
7 175 0.8057 1.391 0.8837 0.7894 0.8028
g 2.00 0.4932  1.247 0.5974 0.4704 0.4894
9 225 0.1499  1.104 0.2867 0.1198 0.1451
10 2.50 —0.2027 0.9910 —0.0255 -0.2418  —0.2089
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substituting into the differential equation. The traditional technique for
computing starting values has been to use a Runge-Kutta formula (of
comparable accuracy) since it would only require the initial value u, in
order to get started. An alternative procedure, which turns out to be more
efficient, is to use a sequence of s-step formulas, with s = 1,2, ... , k. The
computation is started with the one-step formula in order to provide
starting values for the two-step formula. This, in turn, is used to provide
starting values for the three-step formula, and so on until the desired k-step
formula is reached. (For details, see [28].) This is the kind of procedure
currently used in multistep subroutines.

We note that the problem of starting values also arises whenever the
step-size h is changed from one step to another. Suppose, in our example,
that we want to change the step-size from 0.25 to 0.125 after computing
u,=u(1.00). Then, in order to compute the value u;=u(1.125), the
formula (6.19) needs the values of u’(0.75), 1'(0.875) and u'(1.00). Con-
sequently, we cannot proceed until a value for u'(0.875) is obtained. Again,
this problem has traditionally been resolved by using a Runge-Kutta
formula to compute u(0.875), and then evaluating f. But the cost of doing
this is four function evaluations—three for u(0.875) (assuming a third-order
accurate Runge-Kutta formula is used) and one for u’'(0.875)—which is
quite high compared to the cost of a single application of (6.19). As before,
there is a more efficient procedure that is used in present-day subroutines.
Briefly, the idea is to employ k-step formulas whose coefficients (b;’s)
depend on the past step-sizes h,=x,—x,.;, s=n,n—1,...,n—k+1.
(Again, see [28] for details.) However, while this turns out to be a less
expensive procedure, the important point is that step-size changes with
multistep formulas will inevitably involve some extra computational cost.

Now we consider the question of how to compute an additional value
41 in order to estimate the local error e,.;. To begin, the one-step, two
half-steps procedure seems reasonable since it would only require one
extra function evaluation for #,,, giving a total of two evaluations per step.
However, since this approach compounds the cost of changing the step
size, it is not very satisfactory after all. A better procedure is to use a
“corrector” formula to compute i,,;. We consider the class of Adams—
Moulton corrector formulas, that is,

k
(6.20) un1=u,+h Z bip 14
i=0

Comparing this with (6.18), we see that the only difference is the additional
term hbgu,,, in (6.20). Let us discuss the particular case k = 2, that is, the
two-step formula
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Uns1 = Up + h(bolbns1 + bittn+ batts1)

As in the derivation of (6.19), we choose the b;’s in order to obtain as much
agreement as possible with the Taylor expansion of z,.;. Doing this, we
arrive at the formula

(621) Up+1 = 2(5un+1+8un un—l)

with error e, = O(h*). Now a complication with using this formula is the
occurrence of Ul = f(Xps1, Un+1) ON the right-hand side. In other words,
U,+, is defined implicitly in terms of itself so that (6.21) is not an easy
formula to use on its own. Instead, we combine it with (6. 19) to form a
predictor-corrector pair of formulas. We use (6.19) to obtain a ‘‘predicted”
value u®), and then compute a “corrected” value i, usmg (6.21) with the
value of u’y; on the right-hand side approximated by U®Y = f(xns1, uPy).
The combination (6.19) and (6.21) is called an Adams—Mouiton predictor-
corrector pair of formulas; it has third-order accuracy. We illustrate its use
with the example problem (6.5). Taking h = 0.25 and computing the starting
values u; and u, as before, we have

up=1.0
uw= 1.216
u; = 1.357
. 0. 25
uf =1357+—"+ [23(0 3981) — 16(0.7212) + 5(1.000)] = 1.412
0.25
us =iy = 1. 357+—-—[5(0 0487) + 8(0.3981) — (0.7212)] = 1.413

uf =1.413 +Q§[23(0 497) — 16(0.3981) + 5(0.7212)] = 1.379

o=y = 1.413+ 025[5( 0.3039) + 8(0.0497) — (0.3981)] = 1.381

and so on. Again, more results are tabulated in Table 6.1.

The cost of computing ii,+; by (6.21) is one extra function evaluation.
Therefore, the total cost per step of the formula pair (6.19)-(6.21) is two
function evaluations. One can embellish the procedure by using the cor-
rector formula more than once. Initially, we determine a predicted value
u®, using (6.19) and then compute, successively, the corrected values u$l;,
s=1,2,..., using (6.21) with u$; on the right-hand side. The process
would continue until convergence occurs. We denote the procedure by
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PECEC..., where P represents a computation using the predictor for-
mula, E represents an evaluation of f, and C represents a computation
using the corrector formula. i,,; is taken as the most recent corrected
value. For most problems occurring in practice, convergence generally
occurs within one or two iterations so that, rather than worry about testing
for convergence, a subroutine implementation usually performs a fixed
number of corrections. Suppose the number is two. Then, in our notation, a
single step with the formula pair (6.19) and (6.21) would consist of the
sequence P(EC)? and the cost per step is three function evaluations.

We have yet to consider the actual computation of an estimate for the
local error. We observe that the error in each of the formulas (6.19) and
(6.21) is O(h*). Therefore, the difference fi,,; — u,+; would appear to be a
poor estimate for e,,,. However, it turns out that we can use i+, to obtain
a reasonable estimate. Let us see how. It is possible (see Exercise 3) to
determine more precise expressions for the errors in each of the formulas
(6.19) and (6.21). These are, respectively,

(6.22) en1=3h'y(6,) and &y =—%hy(6,)

where x,-2 < 6;, 6. <x,.1. Let us assume that, at least for small h, 6, = 6, =
6. Then, subtracting the two error expressions (6.22), we have

5 — — 4,4
€nt1— €pe1 = Upp1— Ups1 = _%h y( )(6)

Solving for h*y“(6) and substituting into the expression for &,.,, we
obtain the estimate

(6-23) bri1= ’116(12”1 = Un+1)

for the local error in f,.;. Note that this is an error estimate for the more
accurate value so that ii,,; can be used in our numerical solution rather
than u,,;. We remark that this type of analysis is not used in the case of
Runge-Kutta formulas because the error expressions are very complicated
and difficult to manipulate in the above fashion.

The preceding discussion was concerned with various aspects of the
three-step Adams-Moulton formula pair (6.19)-(6.21). The same ideas
hold for any k-step predictor-corrector pair of formulas, the only difference
being that a k-step formula will be kth-order accurate and the formula for
estimating &,., corresponding to (6.23) will have a different constant.

Finally, a word about general multistep formulas. These are of the form

' k k
(6.24)  upy = Z: Qi+ h Zo biusp-i+

Both of the Adams k-step formulas (6.18) and (6.20) correspond to the case
a;=1and ay=---=a,=0. If by=0, (6.24) is a predictor formula. Other-
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wise, it is a corrector. Since there are 2k + 1 parameters (in the case of a
corrector), we might expect to obtain a (2k + Nth-order formula. That is,
we can obtain agreement with the Taylor expansion of the local solution
Znse; Up to terms in h?*!. However, it turns out that we must impose some
other restrictions (see [24, p. 181]) on the parameters in order to get a
useful formula so that the best we can do is (k + I)th-order accuracy, which
is no better than a k-step Adams-—Moulton formula. For this reason, along
with the fact that their formulas are simpler than (6.24), Adams-type
formulas are generally preferred for multistep subroutines.

6.3. SUBROUTINES

We now consider the problem of taking a formula or combination of
formulas and designing an algorithm for a subroutine. The basic idea of
such an algorithm is to subdivide the interval [xo, Xena] Of integration by the
points {x,}i~o and apply the formula to compute, successively, the values
Uy, U, . . . , Uy of the numerical solution subject to the requirement that the
final value un = Uena is sufficiently close to the true one Yena = ¥(Xena), that is,
the global error Eyq is sufficiently small. But this is easier said than done.
As we have already seen, the global error can only be controlled indirectly
through control of the local errors e,. The difficuity lies in predicting the
cumulative effect of the local errors in order to determine appropriate
limits for their sizes. Assuming these limits are known, the rest is more or
less mechanical. Since the size of e, depends directly on the step-size
h, = Xns1— Xn, We simply have to adjust the step sizes in order to ensure
that the estimates for the e,’s are sufficiently small. We consider this aspect
first.

6.3.1. Stability and Step-size Control

The mechanism for adjusting the h,’s is called a ‘‘step-size choosing
algorithm.” Such algorithms attempt to strike a reasonable balance be-
tween accuracy and efficiency. The step sizes should be such that the local
errors are within a given tolerance to ensure accuracy. On the other hand,
they should not be too small or else efficiency will be adversely affected by
having to take extra steps unnecessarily. Consequently, an algorithm
should continually monitor the local error and, by step-size adjustments,
attempt to keep its magnitude at a specified level. We describe a typical
algorithm. Suppose we want the magnitude of the local errors to be less
than a fixed-value TOL. Let h,—; = X, —X.—1 be the step-size used to
compute u, (for which |e,| = TOL) and assume that the formula being used
is pth-order accurate. Then the algorithm for selecting h, is as follows:
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Hp+1)
1. define i = min [h,._, : (TI?_IL> , .,.a,]
2. IF h/h,-;1<1.25 THEN
3. set E = h,._|
4. compute a trial value ii,,, using step-size h and estimate the local
€ITOT €4
5. seth,=h
6. DO WHILE (Jé,.;|>TOL)
7. seth=h- (I.O——L) Hon
_ Ien+l|
8. IF h < hpin THEN
9. RETURN to the calling program with XEND = x, + h, and
UEND = i1,
10. Compute a new trial value il,,; using step-size h and estimate
the local error &,
11. seth,=h
12. END

The first step (line 1) in the algorithm is to compute a trial value h for the
new step-size h,. The reasoning for the particular formula used is as
follows. We can write

enni = O(hP") = Kpoth”*! + O(h?*Y)

where K, is a constant that is dependent on f. Since we would like to
have e,,; = TOL, it follows that we should choose

N TOL WHp+1)
hn - (lKnHl)

but now the problem is to estimate K,.;. To this end, we use the analogous
expression for e,:

= 1
€ = Knh‘r:il

which can easily be solved for K,. Hence, if we assume that K, = K,, we
obtain the approximation

_ TOL\ Vo+b

hn h n-1 Ienl

and take the minimum of this value and hg,, as the trial step size. Note

that, since |e,| = TOL, this is an attempt to increase the step size. We recall

that, in the case of multistep formulas, step-size changes are costly.

Therefore, the step-size should not be increased unless the resulting

savings are at least sufficient to compensate for the additional expense.
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This is the purpose of lines 2 and 3, namely, to leave the step size unaltered
unless it can be increased by at least 25%. {The precise amount of this
minimum increase will vary between subroutines.) On the other hand, for
Runge-Kutta formulas, there is no extra cost in changing the step-size.
Therefore, lines 2 and 3 will not normally be included in Runge-Kutta
subroutines. The DO WHILE loop (lines 6 through 12) is more or less
self-explanatory. Its purpose is to find a step-size h, that satisfies both the
reliability and efficiency criteria discussed previously. The formula used in
line 7 for modifying h is designed to achieve this purpose. Its form, and
derivation, is similar to the formula used in line 1. The values hmax and hpin
in lines 1 and 8, respectively, are limits on the permissible size of any h.. A
subroutine will normally give the user the option of either specifying them
or using default values set by the routine. The default size for huin is
usually in the neighbourhood of machine epsilon. We will discuss the
problem of assigning an appropriate value for hna shortly.

Let us now consider the question of controlling the global error. In order
to gain some insight, it is instructive to investigate what happens with the
simple problem

(6.25) y'=cy y(0) =y,

whose solution is y(x) = yee*. Suppose we use Euler’s formula (6.4) with
uniform step-size h to compute a numerical solution. From (6.25), each
component of the solution will be given by

(6.26)  Ups1 = U, + hf(xp, U,)
= (14 hc)u, = (1+ he)tpy=- - -
= (] + hC)'Hlu()
In other words, applying Euler’s formula to solve (6.25) is equivalent to

using the expression (1+ hc) as an approximation for the exponential
function e".

Let us assume, first, that ¢ <0. Then the true solution of the problem
(6.25) satisfies

Y(Xns1) = Yoe™ P >0  as n increases

and it is reasonable to require that our numerical solution should exhibit

the same behavior. From (6.26), this implies that we must have

627) |1+he|<1 or h<%
In Table 6.2, we show some results for the problem (6.25) with ¢ =—10
and yo= 1. In this case, the condition (6.27) requires that h <0.2 and the

. results verify its necessity.
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TABLE 6.2

n h =0.05 h=0.15 h =0.25

0 1 1 1

1 0.5 -0.5 -1.5
2 0.25 0.25 2.25
3 0.13 -0.13 -3.38
4 0.06 0.06 5.06

The need for h to satisfy (6.27) can be motivated in an alternative way,
that is, by showing how the error that is introduced at any stage can
propagate as the computation proceeds. Suppose, for example, that the
initial value y, is not representable exactly as a machine number. Then, as
an initial value for the numerical solution, we must use uo = fl(y,), and it
will contain some error ey = y, — uy. Now, from (6.26), we have

Uner = (14 he)"™ ug= (14 he)™ (o — ep)
so that the global error in u,., is given by

Epi1 = Yos1— Unny
— yoe(nﬂ)hc _ (] + hc)n+l(y0_ eo)
(628) — [e(n+l)ht_(]+hc)n+l]y0_(]+ hC)"He()

Hence, the global error consists of two components. First, there is the
error that results from the Euler formula approximation (1+ hc) for e™.
The second component is the propagation effect of the initial error e,. Quite
clearly, if |1+ hc|>1, this component will grow without bound as n
increases and, no matter how small ¢, can be made, this term can even-
tually become the dominant part of E,,. We remark that the same
phenomenon was the subject of Example 5 in Section 1.1.4. There will also
be a similar propagation of the local errors introduced in previous steps
and it will not take long for these terms to completely swamp the cal-
culations. To avoid such problems, it follows that the step-size h must
satisfy the condition (6.27) so that the propagation effects of previous
errors will remain bounded rather than be magnified. This condition is
called a stability condition because, if it is not satisfied, the numerical
solution will eventually exhibit unstable behavior such as the results in
Table 6.2 for h = 0.25.

It is evident from the foregoing discussion that the stability condition
should dictate the size of hp., in the step-size algorithm. However, this
only points out the difficulty in choosing an appropriate value for hp,,
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because the stability condition is both problem dependent (through the
parameter ¢ for the problem) and formula dependent. The condition (6.27),
for example, was derived from the particular approximation (1+ hc), used
by Euler’s formula, for e". A different condition holds for the Runge-
Kutta—Fehlberg formula (6.17) because it corresponds to the approximation

(he) , (he)’ , (he)’

he -
e =1+hc+ 2 30 2l

In this case, it is difficult to give an explicit formula for the stability
condition, but we can say that it is the set of values h for which the
magnitude of the polynomial on the right-hand side is less than 1. We note
that it will also depend on the value of c.

Now suppose that ¢ >0 in the problem (6.25). Then, since both eln+Dhe
and the approximation (1+ hc)™*' >+ as n increases, there is evidently no
concern about stability. However, this is misleading. It is clear from (6.28)
that, since (1+ hc)>1 for any h >0, the effect of local errors on sub-
sequent steps will always be magnification. In other words, it is impossible
to make the formula stable. But this time the instability is not apparent
because the dominant part of the error expression (6.28) will be the first
component. No matter how small we choose h, the difference [et+Dhe —
(1+ he)"*'] will always be large relative to (1+ he)™! once n is sufficiently
large. Problems of this sort are said to be ill conditioned. The difficulty lies
in the problem itself and there is nothing that can be done except to detect
its presence.

The preceding analysis carries over to the more general problem (6.2).
The constant c in (6.25) corresponds to the partial derivative of f(x,y) with
respect to the second variable, that is, df/dy. Hence, roughly speaking,

<0 local errors will decay if the h,’s satisfy the
If f, = of stability condition
Yy {>0 local errors are magnified no matter how small
the h,’s are chosen

In many problems, f, changes sign over the interval [xg, Xena] SO that we
alternate between decay and magnification of the local errors. It may seem
like a good idea to monitor the sign of f, in order to determine which
situation holds. However, in the case of a system of m differential
equations, this not very practical. The analogue of f, for systems is the
Jacobian matrix J,, whose components are

(Jy)i,j — afi(xs Y)

1=i,j=n
ay; !
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and ill conditioning may be present when any of the eigenvalues of J, has
positive real part. Hence, the cost of checking for ill conditioning is quite
prohibitive because it involves an eigenvalue calculation each time a check is
made. '

6.3.2. Stiff Equations

We now turn to a phenomenon called “stiffness” of a differential equation
or system of equations. This has to do with the restriction on the size of h
imposed by the stability condition. An equation is said to be stiff if h must
be prohibitively small in order to ensure stability, a situation that arises, for
example, in many chemical reaction problems. Again, we use the simple
problem (6.25) to illustrate the procedures for dealing with stiff equations.
If, for instance, ¢ = —1000 in (6.25), the step-size h for Euler’s formula
would have to be <0.002 so that a considerable amount of effort would be
required to advance the solution from x = 0 to, say, x = 1. We remark that,
since the exact solution y(x) = yoe ™™ will generally be very close to zero
over most of the interval [0, 1], there does not seem to be much point in
carrying the numerical solution so far. However, in the case of a system
of equations, some components of the system may be essentially zero
while others are not, and the integration has to be taken some distance in
order to track the latter. Consider, for example, the system

Y] —2y1—998y2] _[2]
y [yé] [ 1000y, yO=

It is easy to verify that the solution is given by
yl(x) _ e—Zx + e—1000x

ya(x) = e71%

The term e™'®" decays exceedingly fast, but e~ does not. In computing a
numerical solution for such a problem, we want to carry the computations
some distance in order to track the component yi(x). However, the
difficulty is that the stability condition is imposed by the second component
yx). Even after it becomes essentially zero, the stringent stability
requirement must still be enforced. In order to avoid this type of situation,
we consider developing a formula that is unconditionally stable, that is, one
for which there is no condition on h to ensure stability. Consider the
following approximation for e*:

. 1+ chf2 (ch)*  (ch) o

If ¢ <0, this approximation is <1 for any h >0, that is, it is uncondition-

(6.29)
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ally stable. To translate this approximation into a numerical formula for
solving differential equations, we again look at the simple problem (6.25).
We take the solution z,+; = z,e" of the local problem and, replacing z’s by
u’s and using the approximation (6.29) fpr e, we obtain

(1= 3he)up.y = (1+3hc)u,

from which we infer the general formula
h
(6.30)  Une1 = Un+ 5 [f(Xnsr, Unir) + f(xas ua)]

It is called the trapezaidal rule formula because, if we integrate y' = f(x,y)
from x, to x,+1, we have

Xn+1

Yus1= Va + f f(x, y(x)) dx

Xn

and approximation of the integral by the trapezoidal rule produces the
formula (6.30).

From (6.29), we see that the local error in the trapezoidal rule formula is
O(h?), which is better than Euler but not as good as, say, the Runge-Kutta-
Fehlberg fourth-order formula (6.17). On the other hand, (6.30) is stable for
any h >0, which is a decided advantage. However, the price we must pay
for this luxury is quite high in terms of computational cost. We see that
(6.30) is a corrector-type of formula, which immediately suggests a predic-
tor-corrector iteration to compute u,.;. But it turns out that convergence
considerations reimpose the severe restriction on the step-size h that we
were trying to avoid in the first place. To explain, we rewrite (6.30) in the
form of a nonlinear equation

(6.31)  F(uns1) = Unn1 _%hf(wih u)—C=0

where C = u, + 3hf(x., u,) is a constant that is known. Then the predictor-
corrector iteration PECEC. .. with (6.30) as the corrector is equivalent to
finding a root of F(u+)) =0 using the fixed-point iteration (4.8) for non-
linear equations. That is, we write F(uys1) = Un+1 — 8(Uae1) and compute,
successively,

uGHd = g(ull) = 1hf (xner, u)+C
In this context, the condition for convergence of the iteration is given by
(4.10)(iii), namely,

gl = hf,l<1  or "<%l
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which, in the case of our simple problem (6.25), is precisely the stability
condition (6.27). In other words, if we use a predictor-corrector scheme to
compute u,,; in (6.30), the advantage gained from the unconditional stabil-
ity feature of the formula will be lost.

As an alternative method for computing u,.; in (6.30), we consider
applying the Newton-Raphson method (4.23) to solve the corresponding
nonlinear equation (6.31). The convergence condition for this method is

'F . FII

Y <1

and, although this still imposes a condition on h, it is not nearly so
restrictive. In fact, for our simple problem (6.25), there is no restriction on
h at all because F”"=0. Hence, in this particular case, the unconditional
stability feature of (6.30) is retained by the Newton-Raphson iteration for
computing u,,,.

We recall that the Newton-Raphson method is not very efficient.
Moreover, it requires an explicit representation for F’'. Consequently, to
avoid these difficulties, the usual practice is to use the secant method
instead. The method requires two initial guesses and these are normally
taken to be the previous value u, and a value u?), obtained by using a
predictor formula. Normally, these are quite good initial guesses and only
two or three iterations are required in order to achieve convergence. The
cost per step is one function evaluation for the predictor plus one for each
iteration of the secant method. Assuming convergence is achieved in three
iterations, the total cost per step is four evaluations of f. This does not
seem like much but we must remember that the method is only second-
order accurate. Since we have already seen that there are (conditionally
stable) second-order formulas which require less work, it is evident that the
unconditional stability feature involves some extra expense. In the case of
a system of m>1 differential equations, the additional cost is quite
significant because each step requires the solution of a nonlinear system of
equations. Assuming a quasi-Newton method (see Section 4.3) is used,
each iteration requires one function evaluation plus the solution of an
m X m linear system of equations. If, as before, convergence is achieved in
three iterations, the total cost of a step is four evaluations of f(x, y) plus the
work required to solve three m X m linear systems. Quite clearly, then,
formulas such as (6.30) should only be used when the differential equation
is so stiff that the stability requirement makes “nonstiff” formulas im-
practical. Unfortunately, there usually is no sure way of detecting stiffness
by just looking at a problem. One either knows it will be stiff from the
context of the particular application or else finds out by experience in
trying to use a nonstiff subroutine.
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6.3.3. Calling Sequences

From our discussion, it is evident that the calling sequence for DEIVP
described earlier must be expanded in order to include parameters that
allow the user some control over the integration process. For instance, we
have already seen that there should be provision for specifying the limits
homin and hpmax 0N the step size. Also, in the case of a nonstiff subroutine, it is
useful to have a mechanism for limiting the total number of evaluations of
f(x,y) as a safeguard against using a nonstiff routine for a stiff problem.
(hmin can also be used for this purpose.) As a consequence of the variety of
possible parameters, the calling sequences of many routines tend to be long
and there is no “typical” sequence. An effective means of avoiding this
problem is to combine all of the control information into a communications
vector so that only one argument is needed. An additional advantage of this
approach is that the vector can be turned “on” or “off,” giving the user a
choice between communicating the control information to the routine or
else using default values set by the routine. The former option is useful for
experimental purposes, while the latter makes the routine easy to use for
“production” work. The subroutine DVERK in the IMSL package makes
use of this idea. Its calling sequence is

DVERK(N,FCN,X,Y,XEND,TOL,IND,C,NW,W,IER)
where, briefly,

N is the number of equations in the system.

FCN, X, XEND, TOL are as before.

IND is used to turn the communications vector on or off.

C is a communications vector.

NW is the row dimension of W as specified in the calling program.
W is a workspace matrix.

IER is an error indicator.

DVERK will only handle nonstiff problems, but sometimes a routine is
designed for both stiff and nonstiff ones. This is done by implementing two
different sets of formulas in the routine and adding an argument to the
calling sequence for selecting the desired set. While this is convenient, the
user is still required to decide whether the problem is stiff or not.

The parameter TOL is a tolerance for the local errors les|, whereas we
are interested in ensuring that the global error is sufficiently small. Suppose
that we want to compute a numerical solution for which | Ecndl < ERR. Then
we must decide how to set TOL in order to achieve this accuracy in Uen. As
a rough rule of thumb, we should set

TOL=h-ERR
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where h is an “‘average™ step size. Again, we use the simple problem (6.25)
and Euler’s formula with constant step-size h to motivate the reasoning for
this statement. Assuming that the stability condition (6.27) is satisfied, we
can neglect the second component in (6.28) so that

Eena = Ex ={e™ — (1+ hc)"}yp
={[1+ nhc +in*h%?*+ - ]
—[1+ nhc +4n(n — h%c?+ - - “1}yo

= {% h202+ .. .} yo

where K, is a constant depending on ¢ (from the problem) and the length
nh of the interval of integration. Now we have already seen that each

le] = Ile™ — (1 + ho)lwi| = K;h2+ O(hY)  1<is<n
Therefore, by assuming that K, = K,, we have
'eil =h- ,Eendl

and it follows that we should choose TOL = h - ERR. We emphasize that
this is only a guideline for setting TOL. It will not guarantee that | Eend| <
ERR.

EXERCISES

1. Find the series expansions, to terms in x°, of the solutions of each of
the following initial-value problems.

(@) y'=1-x’-y y(0)=0.
(b) y=x+siny, y(0)=0.
(©) y"+y=0,y0)=0, y(0)=1.
2. Derive the Adams-Moulton two-step corrector formula 6.21).

3. Derive the error expressions (6.22).

4. Derive the trapezoidal rule formula (6.30) using Taylor expansions in
the manner discussed in Section 6.1.2.

5. The general Runge-Kutta formula involving three evaluations of f(x,y)
is of the form



EXERCISES / 263

Ups1 = Uy + Wik + woky + wsks
where

ky = hf(xa, Un)

k2 = hf(x, + ash, u, + by 1ky)

ks = hf(x, + ash, U, + b3 1ki+ b3 2k2)

(a) Show that, in order to be third-order accurate, the parameters in this
formula must satisfy the following system of nonlinear equations.

b, 1= a;
b =as— bs 2
wi+ wr+ wi=1
AW+ azw; =1
aiw,+ aiw; =1
ab; w3 =14

[Hint: Use the expansions (6.12) and (6.13).]
(b) The system in part (a) has six equations in eight unknowns. Let
a; =1, a; =1, and solve the system. Write down the resulting formula.

6. An interesting problem that can be used for experimentation is
y'=cly(x)—g(x)]  y(x0) = g(x0)

where ¢ is a constant and g(x) is an arbitrary function. The analytic
solution is y(x) = g(x).
(a) Let ¢ =10, x,=0, and

i gx)=x
ii g(x)=sinx
jiii gx)=e™
In each case, compute a numerical solution at the points x, = 0.1n, 1=n =
50, and compare with the corresponding values of the analytic solution.
Use a tolerance TOL = 1.0E — 4 for the local error. Explain the results.
(b) Repeat part (a) with ¢ = —10.
(c) Repeat part (a) with ¢ =—200. Use both a nonstiff and a stiff
subroutine and compare the respective efficiencies (number of function
calls).
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A good source of “typical” nonstiff initial-value problems that arise in
applications is contained in [20]. The collection of problems in this paper
was assembled for the purpose of evaluating algorithms for solving (non-
stiff) initial-value problems. Exercises 7 to 16 were selected from this
collection. In each case, compute a numerical solution over the interval
[0, 20] using a tolerance (for the local error) TOL = 1000 - EPS (machine
epsilon), defined by (1.1). [A program segment for computing an ap-
proximation for EPS is given by (1.6).] Estimate the global error by
computing a new numerical solution using TOL = 100 - EPS and comparing
the two solutions. If more than one nonstiff subroutine is available on the
local computer system, use each one and compare the respective efficien-
cies (number of function calls). For more information on the source of
each problem, see [20].

7. Oscillatory problems
Yy =ycosx y(0) =1 (solution: y = ¢%"*)
8. Logistic curve

y'= % (1 _%) y(0) =1 (solution: y =ITI%OF’Z)

9. Spiral curve

y—
y+x

y(0) =4 (solution, in polar coordinates:

r= 4e1rIZ-0)

y'=

10. Simple predator-prey model
Yi=2(y1~ y1y2) y1(0) =1
y2=~(2=y1yd)  y0)=3

11. Linear chemical reaction

Yi=—=n+ty yi(0)=2
Yi= Yi—2y,ty; y2(0)=0
yi= Y2—¥3 »(0)=1

12.  Euler equations of motion for a rigid body
Yi= Y23 y1(0)=0
Y= =y1y3 yx0) =1
yi==05ly;y,  yx0)=1
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13. Radioactive decay chain

yi -1 N 1
y3 1-2 y2 0
2 -3 y(0) =
. . _9 .
Yio 9 0 Yio 0

14. Orbit equations. Let x(t) and y(t) be the coordinates, at time ¢, of an
object, such as a satellite, orbiting a large body, such as the Earth, that is
located at the coordinate origin. Then the position of the satellite with
respect to the Earth is determined by solving the following system of
differential equations:

x"(t)=—5%) x@O=1-€¢ x(0)=0
—

+e€
1-€

yiy=-22  yo=0 y© =+

r

where r*=Vx?+y? and € is the eccentricity of the orbit. The analytic
solution is given by

X=COoSU—€ y=VI1-¢€’sinu

where u — € sin u —t = 0. Consider the cases € = 0.1, 0.5, and 0.9.

15. Bessel’s equation of order 3 with the origin shifted one unit to the left
(x + D?y"+ (x + Dy’ +((x + 1)’~0.25)y = 0
y(0) = J (1) = 0.6713967071418030
y'(0) = Ji,(1) = 0.0954005144474446

16. Linear pursuit equation
1+ ('Y =25~ x)(y")
y0)=0 y'@©@=0
17. Consider the orbit equations in Exercise 14. In the case € =0.3,

determine to three significant figures, the time required for the satellite to
complete two orbits.

A collection of stiff initial-value problems is contained in [11]. Again, this
set of problems was assembled for the purpose of evaluating algorithms.
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Problems 18 to 21 were selected from this collection. In each case,
compute a numerical solution over the interval [0, Xenal. Use tolerances
TOL = 1.0E -3 and 1.0E — 5 in order to investigate the global error. Also,
try solving the problems using a nonstiff subroutine and compare the
respective number of function calls.

18. Simple linear system
yi=-0.5y, »n0)y=1
yi=-y y2(0) =1

y3=—100y, »(0)=1
yi=—90y, y4(0)=1

19. Chemical reaction

y{=—-0.13y1—1000y,y3 »no)=1

= —2500y,y, y0) =1

yi=—0.13y, — 1000y,y; — 2500y,y; y:(0)=0
Xend = 40

20. Reactor kinetics
y1=0.01—-{1+ (y,+1000)(y, + 1)}(0.01 + y, + y,) (0 =0
y2=0.01=(1+y)(0.01+y,+y,) y(0)=0
Xend = 100

21. Circuit theory

yi = —1800y, + 900y, yi(0)=0
Yi= Yi-1 = 2yi+ yin =0 i=2,...,8
= 1000ys— 2000y, + 1000  yo(0) =0
Xend = 120

- 22. Consider the two-point boundary-value problem

i —-y'+y=x y@=0 y1)=0
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One way of computing a numerical solution is to use an initial-value or
shooting method. Briefly, we consider the initial-value problem

w'+w=x w(@) =0 w(l)=s

where s is a parameter to be determined. Denoting the solution of this
problem by w(x;s), it follows that we want to compute the value s* for
which w(1; s*) = y(1) = 0. In other words, we want to find the root of the
function g(s)=w(l;s)—0. For the problem (i), find s* to within three
significant digits and then compute a numerical solution, with the same
accuracy, at the points x, =0.1n, 0 < n < 10. (The analytic solution of the
problem is y = x + e(e™ — e*)/(e?—1).) Also solve the following problems
by the shooting method:

i —y'+y=x y®)=1 y3)=1-¢?
i —(xy)Y+(Q+xPy=2—¢* y0)=5 y(1)=-3
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APPENDIX

SOURCES OF
MATHEMATICAL
SOFTWARE

In this appendix, we briefly discuss sources where mathematical software can
be obtained. First, there are software packages. These are collections of
subroutines for solving a variety of mathematical problems that commonly
arise in scientific computations. Such packages are distributed in machine-
readable form and can usually be obtained for a relatively modest charge to
cover development and maintenance costs. Many computer installations
acquire this type of mathematical software and make it available, on-line, to
their users. This is certainly the most convenient way of making software
routines accessible. Hence, before consulting other sources, it is a good idea
to determine what packages are available on the local computing system.
Listed below are some of the more widely distributed packages.

A second source of subroutines is the scientific literature. A great deal of
research activity in recent years has been devoted to software development
and, as a result, many excellent subroutines have been written. For the most
part, these routines are of a special-purpose nature and it is seldom that they
are included in widely distributed packages. Therefore, in order to publicize
such work, authors will usually submit it for publication in a scientific journal.
One journal that is dedicated to publishing this type of material is Trans-
actions on Mathematical Software (TOMS), a journal of the Association for
Computing Machinery. The high standards imposed by TOMS ensures that
the algorithms published in it are reliable and well documented. Therefore,
TOMS is an excellent source of subroutines for solving problems not
specifically covered by commercially available packages.

Following is a list of some of the major software packages presently
available.

GENERAL-PURPOSE Packages

IMSL (International Mathematical and Statistical Library)

This package contains subroutines for solving problems in each of the areas
discussed in this book. Other areas covered are optimization and, as its name
implies, statistics. The routines are written in ANSI Fortran.

270
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SOURCE: IMSL Inc., NBC Building, 7500 Bellaire Blvd., Houston, Tex.
77036.

NAG (Numerical Algorithms Group)

The N AG package also covers the basic areas of mathematical and statistical
computations. Like IMSL, NAG covers all of the topics discussed in this
book. In addition, it contains subroutines for problems in optimization,
integral equations and partial differential equations. The package is available
in any one of three languages—ANS]I Fortran, Algol 60, or Algol 68.

SOURCE: NAG Library Service Co-ordinator, Numerical Algorithms
Group Ltd., NAG Central Office, 7 Banbury Rd., Oxford OX2 6NN, United
Kingdom. In North America: NAG (USA) Inc., 1250 Grace Court, Downer’s
Grove, I11. 60515.

SPECIAL-PURPOSE Packages

In this section, we list some packages that deal with a specified problem area.
We have restricted the list to packages that deal with topics discussed in this
book.

EISPACK

This package contains subroutines for computing the eigenvalues and/or
eigenvectors of a matrix. The routines in EISPACK are written in ANSI
Fortran. They have been subjected to rigorous testing ata number of different
computer sites and, as a result, the package is regarded as very reliable,
high-quality software.

SOURCE: National Energy Software Center, Argonne National Labora-
tory, 9700 S. Cass Ave., Argonne; IlI. 60439. It is also distributed by IMSL.

LINPACK

A package for solving linear systems of equations and linear least-squares
problems. As with EISPACK, the routines in LINPACK have been
thoroughly tested at a number of different computer sites so that it is a
reliable, high-quality software package. It is written in ANSI Fortran.
SOURCE: National Energy Software Center, Argonne National Labora-
tory, 9700 S. Cass Ave., Argonne, 11l 60439. It is also distributed by IMSL.
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B-Spline

A package of subroutines for performing calculations with piecewise
polynomials (see [8]). It is distributed by IMSL.

MINPACK

A package of subroutines for solving systems of nonlinear equations and
nonlinear least-squares problems. It is distributed by IMSL.

QUADPACK

This is a collection of routines for evaluating a definite integral. Many of the
QUADPACK routines have been included in the quadrature chapter of the
NAG library.

EDUCATIONAL Packages

These packages were developed to provide a vehicle for experimentation and
learning how algorithms perform. Since their primary design goal is education
rather than efficiency, they are not recommended for “production” com-
puting.

MATLAB (Matrix Laboratory)

This is an interactive facility, intended to be used as a “‘laboratory’” for matrix
computations.

SOURCE: Prof. Cleve Moler, Department of Computer Science, Uni-
versity of New Mexico, Albuquerque, N.M. 87131.

TEAPACK (Teaching Package)

A complete package, designed to complement a numerical methods course
based on the type of material in this book. It is written in ANSI Fortran.

SOURCE: TEAPACK Co-ordinator, Department of Computer Science,
University of Toronto, Toronto, Ont. M5S 1A7, Canada. TEAPACK manual
is published by John Wiley.
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Accuracy, 19
Adams-Bashforth formulas, 248
Adams-Moulton formulas, 250
Adaptive quadrature, 213, 221
Adaptive Romberg quadature, 223
Algorithm, 18
Aliasing effect, 141
ANSI Fortran, 21
Approximation, 119
by exponentials, 128
by piecewise polynomials, 129
by polynomials, 128
by trigonometric and other forms, 129

Back substitution, 31, 37
Backward error analysis, 49
Banking, 223
Basis, 122

local, 131

orthogonal, 127, 207
Basis function, 122
Beta function, 199
Binary search, 111
Bisection method, 159
Boundary-value problem, 236
Bracket, 159
Brent’s method, 172
Broyden’s method, 189
B-spline, 134

package, 272

Cancellation, 12
Cautious Romberg integration, 220
Characteristic polynomial, 64

Cholesky factorization, 58
Chopping, 7

Column convergence, 220
Communications vector, 261
Condition number, 50, 84, 184
Convergence, 150

Cramer’s rule, 87, 149

Definite integral, 199

Deflation, 151, 174, 182

Diameter, 152, 157

Difference equation, 16, 17

Differential equation, 17, 233
general solution, 233
numerical solution, 16, 238
particular solution, 234
series solution, 235

Dimension, 122

Divided difference, 103, 168, 203
and derivative, 104
table, 102

Documentation, 20

Doubly linked list, 60

Dynamic allocation, 41

Ease of use, 20
Eigenvalue, 26, 64
dominant, 74
Eigenvector, 26, 38, 74
EISPACK package, 271
Elimination, 31, 37
in place, 34
Elliptic integral, 232
EPS, 8
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Equivalent problem, 27
Error:
absolute, 4, 154
in approximation, 123, 135
global, 240
growth, 48
inherent, 3
in interpolation, 104
local, 241
propagation, 29, 242
qQuadrature, 203
relative, 4, 7, 46, 154
round-off, 3, 7
tolerance, 54
truncation, 3
Error control, 3
Error vector, 46
Euler’s formula:
for differential equations, 239
for eiX, 138
Exponent, 5

Fast fourier transform, (FFT), 142
Fehlberg’s method, 247

Fill-in, 60

Finite difference Newton method, 188
Fixed-point, 150

Fixed-point iteration, 150, 169, 259
Fixed-point number system, 4
Floating-point number system, 4
Flop, 9

Fourier coefficient, 139

Fourier series, 129, 139

Fractional part, 5

F-test, 156

Function space, 119, 120, 207

Gamma function, 199, 211
Gauss elimination and back substitution,
28, 31, 149
algorithm, 37
Gauss-Jordan method, 87
Gauss quadrature, 206, 226
points, 208
rules, 206
Generating set, 120
Global convergence, 152, 180
Goodness of fit, 95
Guard digit, 9

Hermite polynomials, 211

Hessenberg matrix, 71
Hexadecimal number system, 23
Hybrid method, 168, 172

Ili-conditioned, 49, 155, 183, 257
Improper integral, 224
IMSL package, 270
Initial condition, 16, 236
Initial-value problem, 236
Instability, 16
Interpolation, 96
conditions, 96
by cubic splines, 114
osculatory, 106, 113
by piecewise cubic Hermite, 113
by piecewise linear, 109
piecewise polynomial, 109, 205
polynomial, 97, 201
Inverse iteration, 38, 74
Inverse quadratic method, 171,172
Iteration, 150
Iterative improvement, 16, 38, 51
Iterative method, 150

Jacobian matrix, 185, 257
Joints, 109

Knots, 109

variable, 137
Kronecker delta, 202
K-step formula, 248, 252

Laguerre polynomials, 211
Laguerre’s method, 179
Least-square:
approximation, 124
solution, 77
Length-preserving, 70
Linear combination, 120, 121
Linear dependence, 122
Linear equations, 26, 28
overdetermined, 26, 76
Linear independence, 121
LINPACK package, 271
Lobatto rules, 228
Local problem, 241
Local solution, 242
LU decomposition, 28, 31

Machine epsilon, 8, 21
Machine hardware precision, 54
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Mathematical model, 95
Mathematical software, 1
MATLAB package, 272
Matrix:
band, 59, 132, 135
companion, 194
conjugate transpose, 140
defective, 64
determinant, 32, 33
eigenvalue, 64
eigenvector, 74
Hessenberg form, 71
orthogonal, 66
permutation, 31
positive definite, 58
quasi-triangular, 65
rank, 79
similar, 66
singular value, 82
sparse, 60, 187
symmetric, 57
tridiagonal, 73
unitary, 140
unit triangular, 28, 36
Vandermonde, 99
Matrix-vector notation, 28
Mean-value theorem:
for derivatives, 105
for integrals, 203
Method, 18
Minimal degree algorithm, 61
Minmax solution, 77
MINPACK package, 272
Modified Gram-Schmidt (MGS), 80, 127
Multiplier, 29
Multistep formulas, 248
Miiller’s method, 171

NAG package, 271
NDIM, 40
Neighborhood, 152, 157
Newton-Cotes ruler, 202
Newton-Raphson method, 151, 168, 260
Newton’s method, 185
Nonlinear equation, 148
Norm:

Ip, 45

I, 17

12, 45

of matrix, 46

uniform, 77

of vector, 45
Normal equations, 79
Numerical singularity, 40, 55

One-step, two-half steps, 214, 222, 241, 250
Operations count, 22
Order of accuracy, 243
Orthogonal, 49 .

basis, 127, 207

functions, 140, 206, 209

matrix, 66
Overdetermined linear system, 26, 76, 124
Overflow, 6

Packed form, 57, 59
Period, 138
Periodic function, 138
Piecewise polynomial, 109
cubic Hermite, 113
cubic spline, 114
linear, 109
quadratic, 113
Pivot element, 29
Pivotting:
complete, 31
partial, 31
strategy, 32, 60
Pivot vector, 32
Polynomial, 177
Hermite, 211
Lagrange form, 99, 120, 201
Laguerre, 211
Legendre, 144, 211
nested form, 97, 102, 177
Newton form, 101, 201
Tchebychev, 211
trigonometric, 138
Portability, 20
Power method, 74, 92
Predictor-corrector pair, 251
Premature termination, 154
Preprocessing, 62
Prime factorization, 142
Propagation effect, 256
Pseudo inverse, 83

QR:
algorithm, 64, 69, 84
factorization, 67, 80
transformation, 69
QUADPACK package, 272
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Quadratic equation, 11, 149
Quadrature, 199
adaptive, 221
adaptive Romberg, 223
algorithm, 212
composite rules, 205
error, 203, 209, 213
Gauss rules, 206
Newton-Cotes rules, 202
Romberg, 214
points, 200
rule, 199
Quasi-Newton methods, 188, 260

Rank-one update method, 191

Rate of convergence, 158

Real valued function, 159

Recursive, 223

Regula falsi method, 162, 165

Relative correction, 54

Relative density, 4

Relative separation, 184

Reliability, 19

Removable singularity, 225

Residual, 45, 123, 124
relative, 47

Robustness, 19

Romberg integration, 214

Romberg table, 214

Roof function, 130

Root, 149

Root mean square error, 79, 135

Rounding, 7

Row convergence, 217

Runge-Kutta formulas, 243

Scalar function, 186

Secant line, 163, 166

Secant method, 165, 168, 188, 260
Semilog fit, 128

Separation, 184

Shape preserving, 70

Shooting method, 266

Similarity transformation, 66
Simpson’s rule, 203, 206

Singular value decomposition (SVD), 82
Sparse matrix algorithm, 60
Spectral radius, 91
Spline;
basis form, 131
clamped boundary, 115
cubic, 114, 133
free boundary, 115
linear, 113, 130
piecewise form, 131
Spline-on-spline, 145
Stability condition, 256
Stable, 18
Stack, 223
Starting values, 249
Step, 243
Step-size, 240
algorithm, 213, 253
Stiffness, 258
Stopping criterion, 51, 54, 153, 217

Tangent line, 168

Tchebychev polynomial, 211
TEAPACK package, 272
Trapezoidal rule, 139, 201, 214, 259
Triangular factorization, 28
Triangular form, 27

Trigonometric polynomials, 138

Unconditionally stable, 258
Underflow, 6

Unstable, 18

Update, 191

Validation, 20

Validity:
mathematical, 44
numerical, 44

Vector space, 121

Weight, 162
Weight function, 209
Well-conditioned, 49

X-test, 156



