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PREFACE

This volume of LECTURE NOTES IN MATHEMATICS contains the proceedings of a
research Seminar-Workshop on recent progress in the Analytic Theory of Continued
Fractions held at Loen, Norway from June 5 to June 30, 1981. In recent years there
has been a renewed interest in the subject of continued fractions. This is due in
part to the advent of computers and the resulting importance of the algorithmic
character of continued fractions. It is also due to the close connection between
continued fractions and Padé approximants and their application to theoretical
physics. Primary emphasis at the Workshop was on the analytic aspects of the
subject; however, considerable attention was also given to applied and
computational problems. These interests are reflected in the Workshop proceedings.

The sessions at Loen were devoted not only to reports on recent work but also
to the development of new results and the formulation of further problems. The
authors whose papers appear in these proceedings either attended the Workshop or,
if unable to attend, had their work presented and discussed at Loen.

The Seminar-Workshop was organized by Haakon Waadeland of the University of
Trondheim and was made possible by grants from the Norwegian Research Council for
Science and the Humanities (NAVF) and from the University of Trondheim. Support
for travel expenses of the American participants came from the United States
National Science Foundation, the University of Colorado at Boulder, Colorado State
University, NAVF, and Fridt jof Nansen's and Affiliated Funds for the Advancement of
Science and the Humanities. The latter also supported a visit to the University of
Colorado for follow-up discussions of research topics. The University of Colorado
provided a small grant for expenses related to publication of the proceedings. We
gratefully acknowledge these contributions.

We also wish to thank the director and staff of the Alexandra Hotel in Loen
for providing excellent working facilities and a cordial atmosphere for the
Workshop. The professional assistance of the technical typists, Burt Rashbaum and
Alexandra Hunt, at the Mathematics Department of the University of Colorado is
greatly appreciated. Finally, we would like to thank Professor B. Eckmann, ETH
Zurich, for accepting this volume for the Springer series of LECTURE NOTES IN
MATHEMATICS.
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To help unify the contributions to this volume we have asked all authors to
use the same notation for certain basic concepts. These concepts and their
definitions are listed here so as to avoid unnecessary duplication in the
introduction to various articles. The complex plame shall be denoted by € . For

the extended complex plane, that is €{J[*] , we use the notation & .

The continued fraction algorithm is a function K that associates with

ordered pairs of sequences <{an} ,{bn}> »with a €€,a #0 for n>1 and

b € ¢ for n> 0, athird sequence {fn} with f ¢ € . A continued fraction
18 an ordered pair
<<{an} , {bn}> . {fn}> N

where the sequence {fn} is defined as follows. Let {sn} and {Sn} be

sequences of linear fractional transformations (l.f.t.) defined by

(DiN1a) so(w)=b0+w, sn(w)=b—.:w,n=1, 2, 3,...
n
and
(DND) So(w) = so(w) . Sn(w) = sn-l(sn(w)) ,n=1 23 ... .
Then
(DN1e) £,=5(0 ,n=0,1,2,... .

The numbers a and bn are called the n th partial numerator and n th

partial denominator, respectively, of the continued fraction <<{an} ’{bn}> ,
{fn}> 3 they are also called the elements. fn is called the n th approximant

of the continued fraction. If f = lim fn exists in @ s, we say that the
e

continued fraction is convergent and that its value is £ . If the limit does not

exist we speak of a divergent continued fraction.

More generally we shall also be interested in sequences of 1l.f.t.'s {Sim)}
defined as follows:

),y .
S (W) = w ,
(DN2)

Sim)(w) =g ° 8

1 1, 2, 3,0..,

o eee o g (W) n =
w2 mtn ‘m=0, 1, 2)....
Here the symbol ¢ denotes functional composition; that is, for functions g and
h, ge° h(w) = g(h(w)) , provided that the domain of g contains the range of h .

It can be seen that



Sx(,m)(W) = Zon

mtl -2
bm+2 + .
+ Zmtn .
bur+n + w

One also obtains the following

(DN3) s (W) = sy ° (D) =5y o8 o oo o8 @ ,n=0,1,2..,
so that

= = o (0) =
(DN4) £ =5 (0 =s,°50 ,n=0,1,2.. .

Thus when bo = 0 (so that so(w) =w ), we have

§,(w) = Sio)(w) and £ =5 (0) = s£0)(0)

Since Sn(w) is the composition of non-singular 1l.f.t.'s, it is itself a
non-singular 1l.f.t. It is well known that Sn(w) can be written in the form
A +wA
S(wy=_n_____ o7l pn=0,1, 2,...

n B +w3B

n n-1
where the An and Bn (called the n th numerator and n th denominator,
respectively, of the continued fraction) are defined by the second order linear
difference equations

(DN6a) A =1,A,=b,, B » By ,

An = bn An—l + a An—Z ,n=1, 2, 3,...,

(DN6D)
B,=b B _ +a B_,,n=1,2 3. .
For simplicity a continued fraction <<{an} , {bn}> s {fn}> will be denoted by the

symbol

* a
(DN7) b+ K ()
o" . '%
n=1 n
or
a a a,
(DN8) b0+_1 A
b + b, + by +

The symbols (DN7) and (DN8) may be used to denote both the continued fraction and
its value when it is convergent.
The notation (DN8) shall also be used for finite combinations. Thus we write

am+2 XX aurl-n , T >0 .

+ bm+2 + + bm+n + w

a
si“) (W) = mtl
mt+1
We shall call the continued fraction



a a a

mtl m+2 wt3 cee, (m0)
bm1+bm+2+bm+3+

the m th tail of (DN8) and we denote its n th approximant by fim) « Thus
fim) = sim)(O) sn=1,2,3,..0, m=0, 1, 2,e0. .

If 1lim fim) exists in & , then the m th tail is convergent and its value is
n>e
denoted by f(m) . One thus has, for m > O,
(DN9) f(m)g a1 ) 23 ess
bm_|_1+bm_|_2+bm_|_3‘+
An important role is played in continued fraction theory by the expression hn

defined by

~1
hn sn =) Bn/Bn-l °

It is easily shown, from the difference equations (DN6), that
a a a
(DN10) h, =1 and h =b + B w1l e 22 5202 3 4,... .
1 nonp +b o+ +b
n-1 n~-2 1
In some cases the a bn are functions of a complex variable z . To

emphasize this dependence on z we sometimes write
a () , b(2) , s w , A (), B (=), £, £M(a), ete.

If in a continued fraction all bn =1 or all a = 1 , the notation outlined
above shall nevertheless be employed. If two or more continued fractions are

considered at the same time
*

* * x k
s Sn(m) s f (m) see« might be used for K(an/bn) and

s, ng)' , £ L for K(a!/b!) .



SURVEY OF CONTINUED FRACTION METHODS
OF SOLVING MOMENT PROBLEMS

AND RELATED TOPICS
William B. Jones and W. J. Thron

1. Introduction. There is a constellation of interrelated topics:
Orthogonal polynomials;
Gauss quadrature;
Integral representation of continued fractions;
Determination of functions having given power series as asymptotic expansions;
Expansions of functions in series of orthogonal polynomials;
Solutions of certain three~term recurrence relations.

Today most of these topics are usually studied without reference to continued
fraction theory. Nevertheless, all of them either arose or received important
impetus from the theory of continued fractions. Thus Szego [20, p. 54] asserts
that: “historically the orthogonal polynomials {pn(x)} originated in the theory
of continued fractions. This relationship is of great importance and is one of the
possible starting points of the treatment of orthogonal polynomials.”

Wynn in two statements [25, p. 190,191) attempts to delineate the role of
continued fractions even more sharply. His first statement 1s: “many theories
originating from the study of continued fractions have, upon reflection, been found
to have little to do with them.” He next asserts: “The theory of continued
fractions has been preeminently an avenue to new and unexpected results....” The
results to be described here provide a further confirmation of Wynn's thesis.

The interrelations in the constellation are intricate but, unfortunately,
confusing. This is in part due to the fact that many mathematicians have made
contributions using the tools, the language and the outlook of their trade, be it
continued fractions, orthogonal polynomials, functional analysis or others. Not
surprisingly they were, with few notable exceptions, somewhat narrow in their
knowledge of the literature and quite ignorant of the earlier history. We too
must plead guilty of such narrowness, although we are attempting to acquire a wider
point of view and to learn more about the beginnings of the various topics in the
constellation. However, at this writing our knowledge is still much more
fragmentary than we would like it to be.

Arising from an investigation of correspondence and convergence properties of
general T-fractions, we have been 'led to formulate strong Stieltjes and Hamburger
moment problems (SSMP and SHMP, respectively). We showed that certain sequences of

Laurent polynomials (L-polynomials), closely related to the denominators of the



approximants of the positive T-fractions, are orthogonal with respect to a
distribution function which can be derived from the positive T-fraction. 1In
addition we were able to obtain new results for other topics in the constellation.

To facilitate the description of our results we first make a series of
definitions.

A general T-fraction is a continued fraction of the form

F. z F, z
(1.1a) 1 2

1+ G1 z+ 1+ Gz

Fy z cee
z+1+ G3 z +

where Fn # 0 for all n . It can also be written in the following equivalent

forms:
F F F F
(1.1b) - 1 2 - 3 4 voe |
z + G1 + 1+ Gzz + z + G3 + 1+ sz +
(l.1c) Z, ) Z 5 Zz see
ey + 1 2 + e2 + 2z + e3 + d3z +

where en # 0 for all n . Here

n-1 n
(1.2a) e. =1/F, , e, .= 10 F,/ I F, ., n=2,34,...,
1 1 Cm-1 T T2 L T2kl
n n
(1.2b) e, = M F, ./ I F, , n=1,2,3,...,
2n k=1 2k-1 kel 2k I
(1.2¢) a = Ge, » n= 1,2,3... .

If all Fn >0 and Gn > 0, then (l.l1a) (and all forms equivalent to it) is
2n-1 >0, ®n >0 and e dn are real
for all n= 1 , then (l1.1c) (and all forms equivalent to it) is called a semi-

called a positive T-fraction. If 4

positive T-fraction.

For a function £(z) holomorphic at z = 0 , let us denote by Ao(f) its
Taylor series expansion at O . Let
®
I o 2
k=0
be a formal power series, and let {Rn(z)} be a sequence of rational functions

holomorphic at z = 0 . Then we say that the sequence {Rn(z)} corresponds to the

series I akzk at z = 0 1if the formal power series AO(Rn) -La has the

K%
form

@ Kk mn mn+1
R LI
k=0 n n
where LN +® ag n+ @, A continued fraction K(an(z)/bn(z)) 18 said to

correspond to a series if the sequence of approximants corresponds to the series.




Analogous definitions are used for correspondence at z = a and, in particular,
for a ==,

A general T-fraction (l.la) (at least if all Gn # 0) corresponds to formal
powers series Lo at z =0 and L, at z =« . It is convenient to write these
series as

s k 5 Kk
(1.3) L. = X -c,z and L_ = X z ¢
0 km1 K > o X

By Qc(a,b) we shall mean the family of all real-valued, functions ¢(t)

defined on a < t < b, which are bounded, monotone non-decreasing with infinitely

many points of increase on (a,b) , and for which the integrals

b
(1.4) ey =, (=" au(e)

exist for all integers n > 0 . (This additional condition is meaningful if
a = - and/or b = 4+ , poggibilities which we do admit.) The family of functions
¢ € Qc(a,b) for which the <, in (1.4) also exist for all negative integers n
we shall denote by &(a,b) . The functions ¢ G'Qc(a,b) or &(a,b) are called
distribution functions and the ch defined by (1.4) are called moments with
respect to the distribution ¢ .

The classical Stieltjes moment problem defined by Stieltjes in 1894 consists

in finding conditions on the moments {cn}; which would insure the existence of a
function ¢ € 8°(0,») for which (l.4) holds, for all n = 0,1,2,..., with a = 0 ,
b ==, Stieltjes found necessary and sufficient conditions for the existence of
such a ¢ . He also found necessary and sufficient conditions for the ¢ to be
unique. In 1920 Hamburger extended the problem to the interval (-=,») . This is
the classical Hamburger moment problem. In the solutions to the two problems
Harkel determinants Hém) =1,

n Smb1 " Cmbk-1
(1.5) m . c . v k=1,2,3
g B mH o m+k ’ O
Cobk-1 Cartk Cot2Kk-2
as well as J-fractions
k k
(1.6) 1 k2 3 cee
11 + z - 12 + z - 13 + z -

are of importance.

We return now to the main themé of this article. General T-fractions (l.la)
with all Gn # 0 correspond to formal power series (1.3) at z =0 and z = « .,
Thus associated with a general T-fraction (with Gn # 0) 18 a double sequence

{cn}jo of numbers and it makes sense to ask whether a function ¢ € &(0,«)



exists for which the <, with n =0, %1, $2,... are the moments with respect
to ¢ . This is the strong Stieltjes moment problem (SSMP). It was posed and
solved by Waadeland and the authors in [13] by means of positive T-fractions.

They also showed that a positive T-fraction has an integral representation of the
form

®

G(z) = f zd¢(t) .

0 z+ ¢t
where ¢ € ®(0,») , and that the function G(z) has the power series (1.3) (to
which the positive T-fraction corresponds) as asymptotic expansions at 0 and = ,
respectively. In a later paper [12] the present authors identified and studied the
orthogonal functions associated with the SSMP. They turn out to be laurent

polymonials (L-polynomials)

-n n
(1.7) a,x + + ay X .

Let the n th denominator of the positive T-fraction in the form (l}lb) be
denoted by Vn(z); then the orthogonal L-polynomials are given by Qo(z) =1,
(1e8) Q1 (2) = (1), (-2), Qu(2) = (1), (-2), n=1,2,3,... .

To pose the strong Hamburger moment problem (SHMP) is the natural next step.

It is defined and solved, but without the use of continued fractions, by Njgstad
and the authors in [9]. Only a partial solution of the SHMP can be obtained using
continued fractions. This was also worked on jointly with Njﬁstad and is in.

the process of being written. We present here an outline of the solution in terms
of semi-positive T-fractions, various ramifications such as'integral
representations, and the question when does correspondence imply asymptoticity. In
addition, generalized approximants, which play a role in resolving the question of
uniqueness of the solution to the SHMP, are also discussed. The generalized
approximants arise from a "modification” (in the sense of [23] in these
Proceedings) of semi-positive T-fractionms.

An overview of the contents of this article is as follows. In Section 2 we
give a summary of the historical background of the topics to be discussed here. In
Section 3, general T-fractions, their correspondence to power series at z = 0
and z = ® , as well as the partial fraction decomposition of semi-positive T-
fractions are presented. In that section the generalized approximants are
introduced and convergence of semi-positive T-fractions are taken up.

In Section 4 the results of the preceding section are used to obtain integral
representations for all convergent subsequences of generalized approximants of
gemi-positive T-fractions.

Section 5 is devoted to solutions of the SSMP and SHMP. In Section 6
L-polynomials, orthogonality, Favard's theorem on recurrence relations, and related

topics are considered. In particular, the identification of sequences of



orthogonal L-polynomials with the denominators of positive T-fractions will be
described.

Section 7 1is concerned with Gaussian quadratures and convergence results that
can be obtained from them. In Section 8 the discussion shifts back to semi-
positive T-fractions. Here sufficlent conditions for 1limit functions of
convergent subsequences of generalized approximants to have the series L. and

0
L_  as asymptotic expansions will be derived.

2. Summary of early history. Even though Legendre discovered the sequence of

polynomials named after him in 1782, and was aware of the orthogonality property of
the sequence with even subscripts as early as 1785, it was really Gauss who got the
subject started.

In an article in 1812, Gauss studied hypergeometric functions and obtained,
among other results, a continued fraction expansion for ratios of hypergeometric
functions. In a second paper in 1814 he posed and solved a new quadrature problem
(earlier work had been done by Cotes and Newton among others), namely, to find an

approximation to an integral

+1
[ f()ae
-1
of the form
n
n n
@2.1) I A g™y
k=1
where hﬁn) and Tin) are to be determined in such a way that the approximation
is exact for all polynomials f£(t) of degree not greater than 2n-1 . The proof

makes use of the continued fraction expansion

+1 2 2
(2.2) f dt o log ( z + }. ) = 2_ lzla 2 z[3‘5 3 z[5‘7 see |
z - - - -

-l z+ ¢t z -
which was known to Gauss from his work in 1812. Let Kn(z)/Ln(z) be the 2n th
approximant of (2.2). Then the roots of Ln(z) are all real and distinct and

(2.3) ol
Ln(z) k=1

where the Kin) and 1£n) are exactly the constants needed in (2.1). Thus the
Gausslan quadrature formula can be proved and the constants involved in it can be

obtained from continued fraction considerations. Gauss actually computed some of

the kﬁn) and tﬁn) .

Gauss considered this work important and expected that it would be used
extensively in practical problems. As it turned out Gaussian quadrature and its
generalizations were found to be of considerable theoretical interest throughout
the 19th century. After the advent of computers it again attracted the attention
of applied mathematicians.



Jacobi in a series of papers, proved the quadrature formula without using
continued fractions. In the second of his papers he pointed out that the Ln(z)
are indeed the Legendre polynomials.

The people who extended the Gauss quadrature formula during the nineteenth
century, among whom Christoffel, Heine, Tchebycheff ann Stielt jes are probably the
most notable (but Mehler, Radon, Markoff and Posse should also be mentioned), made
esgential use of continued fraction considerations.

The pattern developed as follows (using the notation introduced by Stielt jes
only toward the end of the period). To obtain an approximation to

b
[ £(e) ae(e) ,
a

where ¢(t) € Qc(a,b) , one obtains a J-fraction (1.6) which converges to the

integral

1)

az+t
for z ¢ [-b, —a] . Let Kn(z)/Ln(z) be the n th approximant of this J-

fraction. The constants Aén) s rin) in the quadrature formula

b § oA @)
IPEORUORNP RN GRS

k=1

are determined by the partial fraction decomposition of K (z)/L (z) as in (2.3).

(n) depend on ¢ , but are independent of f .

In the general case, the kin)
The approximation is exact if f(z) is a polynomial of degree at most 2n-1 .
Using the correspondence between the integral and the J-fraction, ome then.

can prove the following:

b
(2.4) [t L (-t) d(t) =0, k<m, m=1,2,3,...,
a

b n
(2.5) fa L, (-£)L (-t) d¢(t) = vE1 k, 5n,m .
where én o is the Kronecker 8 . One also has

b L -L
(2.6) f __sz___£_52d¢( t) .

If one sets Pn(z) - (-l)nLn(-z) , it follows that {Pn(z)} is a sequence of
orthogonal polynomials with respect to ¢(t) , normalized so that the coefficient
of 2" 1in Pn(z) is 1 . It is for this reason that (to paraphrase

Gautschi {5, p. 82]) throughout the 19th century orthogonal polynomials were
generally viewed as the denominators Ln(z) of the nth approximant of a

J-fraction. It is now easily seen that

2.7 P(2) = (z=2 )P 1 (2) ~ kP (2) , n=23,... ,



10

where kn >0 and ln € R . The result, that a sequence {Pn(z)} satisfying
(2.7) 1s the sequence of orthogonal functions with respect to some ¢ , 18 usually
attributed to Favard who stated it in 1935. There are other claimants to having
been the first to have obtained this result. However, as Chihara [2, p. 209)

puts it very well: "This multiple discovery is not surprising since the theorem is
really implicitly contained in the theory of continued fractions. It seems quite
likely that mathematicians who worked with continued fractions were well aware of
the theorem, but never bothered to formulate it explicitly. Nevertheless; the
explicit formulation was a real contribution since most workers in orthogonal
polynomials tend to avoid continued fractions whenever possible."

A very detalled survey of Gauss—Christoffel quadrature formulae was recently
given by Gautschi ([5] .

We now turn to other major topics in our constellation. One of these is the
expansion of functions (both real-valued as well as analytic) in series of
orthogonal polynomials (or as Blumenthal in 1898 still said, “continued fraction
denominators™).

Expangions of this kind are important for many reasons. One of these where
continued fractions enter “"naturally” is an interpolation problem of Tchebycheff of

1858 which involves determination of the finite J-fraction equal to the sum

oA
I —— .
=l HTV

The interpolation problem can then be answered in terms of a finite sum Xchv(z) ,
where the Lv(z) are the "continued fraction denominators”. Tchebycheff also
considered the limiting situation where one determines the infinite J-fraction
which is equal to an integral of the form

fb $(ti)dt

a z+t
at least in certain special cases. Other mathematicians who worked on this problem
during the 19th century were Heine, Pincherle, Darboux and Blumenthal.

R. Murphy in 1833-35 was probably the first to study a moment problem. He
referred to it as "the inverse method of definite integrals”. 1In this context he
encountered polynomials satisfying the orthogonality conditionm. Recognizing the
importance of the condition, he used the term "reciprocal functions™ for what we
call today orthogonal functions. He was not as we mistakenly stated in [11, p. 6]
the originator of the name “"orthogonal”. According to Gautschi [5, p. 78] , "The
name 'orthogonal' for function systems came into use only later, probably first in
E. Schmidt's 1905 Gottingen dissertationj...” Murphy was interested, among others,
in the following problem. If

1y
foc f(t)dt = 0 , k =0,1,2,000,0-1 ,

what can be said about f(t) ? Clearly this is the question, to what extent a
finite set of moments determines the function f£(t) . Tchebycheff starting in 1855



1

took an interest in moment problems. (Some of our information is taken from the

brief historical review in the book, The Problem of Moments by Shohat and

Tamarkin.) Among others, he was interested in the question whether from

® n ® n -x2
[ x'p(x)dx = [ xe dx , n=0,1,2,... ,
-—Cl -—-Cl

2
one could conclude that p(x) = e . According to Shohat and Tamarkin,
“Tchebycheff's main tool 1s the theory of continued fractions which he uses with

extreme ingenuity.” He also obtained the approximation for
f:f(t)dt , a<x<b
given the moments
fbtnf(t)dt .
a

Stieltjes in 1894 was able to pull together the work on moments of his predecessors
in a very satisfying manner at least as far as the interval [0,®) was concerned.
He used and refined the tools which had been introduced by the mathematicians we
have mentioned here. Stieltjes found necessary and sufficient conditions for the
existence of a solution ¢ € Qc(o,w) . He also described a way to obtain the

solution by first obtaining a continued fraction expansion of
-]
G(z) = ae(e)
( [, 8,

valid for all z not on the negative real axis. By an inversion process he then
arrived at ¢(t) . It was not until 1920 that the general moment problem was
solved by Hamburger using J-fractions. Further work on the moment problem by

M. Riesz, R. Nevanlinna, Carleman, and Hausdorff in the early nineteen twenties
does not make use of continued fractions.

Another motivation of Stieltjes' work was the "summing” of the divergent
series to which the continued fraction corresponds. The divergent series then
becomes an asymptotic expansion of the function (represented by the integral) to
which the continued fraction converges. Stieltjes had written his thesis in 1886
on asymptotic series (he called them semi-convergent)the same year in which
Poincare wrote a fundamental paper on the subject.

The history of integral representation of continued fractions is sketched in

Section 4 .

3. Semi-positive T-fractions. In [13] we gave references for the history

of general T-fractions. In that article we also proved the general theorem for
corregpondence, which, in terms of Lo and L, of (1.3) , and without

loss of generality, can be stated as follows.

Theorem 3.1. Let
m -m
Ly = I - c gz and L = ¥ c z
m=1 m=0

be given. Then there exists a gemeral T-fraction
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@
( Fo® ) F_#0 G #0 =1,2,3
nf]. 1+an , n s n » N seyFyeee

corresponding to Lo at 0 and to L, at = if and only if the Hankel
determinant (defined in (1.5)) satisfy

Hg-n+1) # 0 and Hi_n) #0 , n=0,1,2,... .

When these conditions hold, the F.ooad G gare given by

g1 g(~m3) (-n)
(3.1a) P, = - %1) » F o=- '%Eiiii'%‘"i » n=2,3,4,... ,
-n
HO Hn—l Hn—l
gD g(~m2) (-n)
(3.1b) 6 == y Go=--Bl B on=2,3,4,... .
7(0) g{rtl)(-ntl)
1 n n-1

In [13] we derived integral representations for positive T-fractions.
Here we shall obtain similar representations for semi-positive T-fractions.
Semi-positivity can be characterized in three different ways. The conditions
defining semi-poeitivity arose naturally in our investigation of the SHMP. It is
an interesting speculation whether, without this connection, one would have thought
of these conditions which are so useful in establishing that general T-fractions
satisfying them have integral representations. Whether there are other classes of
general T-fractions for which there are integral representations (with the
integral extending over the real line) is an open question.

In the sequel Fn,Gn,dn,en and <, will always be assumed to be real numbers,
Further since Fn’cn shall be different from zero, so shall dn #0 and e #0 .

Iheorem 3.2. The general T-fraction (1.la) is semi-positive if and only if
>0 , k=1,2,3,... ,

(3.2) >0 and F

Faxk-1¥2k 2k-17%2K-1
or if and only 1f, in terms of the coefficients of the corresponding power series,

(3.3) H§;2n+1) 0, ng;if‘l) 0, Hg;if) >0, Hé;zn) >0, n=0,1,2,... .

Proof. From (1.2) one deduces for n> 1 ,

n-1
M (F,, .F. )
2k-1¥2k’ ¢
. - -k KT S
(3.42) 421 ™ ®2p-1%0-1 = 3 —(FAaL)
( I F2k_1) 2n-1
k=1
(Tr, P/m
(3.4b) e, =(mF, ) /0(, F ) .
2" 2 ST

From these formulas one concludes, inductively, that

(3.5) >0 , >0 , n=1,2,3,...

d2n—1 ®n
implies (3.2) . Conversely, (3.2) implies (3.5) . From (3.1) one obtains
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H('2) H('2k+4) (-2k)
3.6a) F.F. = _2 F F. = _2k=3 2k k= 2.3 ...
¢ 12 © U2k D262 (-2k42) >0 ’
1 2k-2 2k-1
(=2k+4) (-2k+2)
Pl ag®  Foey _Hpes THy -
(3.6b) —= = H R , k=23,... .
Gy G2k-1 (H(-2k+3))2
2k-2
Hence (3.3) implies (3.2) . The equations (3.6) can also be used to show that
(3.2) implies (3.3) . s

To study the value behavior of semi-positive T—fractions it is convenient to

consider them in the form (l.lc) . Let cn(z) , Dn(z) be defined by

(3.7a) Colz) =0 , C_(z) =1 , Dy(z)=1 , D_(z)=0 ,
(3.7b) Cn(z) - (en+dnz)cn_1(z) + zcn_z(z) , n=1,23,... ,
(3.7¢) Dn(z) = (en+dnz)Dn_1(z) + an_z(z) , n=123 ... |,

go that Cn(z) and Dn(z) are the nth numerator and denominator,
respectively, of (l.l¢) . Then Cn(z) and Dn(z) are polynomials in z
of degree n and

Cn(z)+wcn_1(z)

(se (DN5)) .
Dn(z)+an_1(z) see

(3.8) §,(z,w) =

The nth approximant of (l.le) , in particular, becomes

Cc (z)
,0) = n .
Sn(z ) X0

n

We now define

Vo(z) = [w3: -t +arg z < argw < arg z] for O0<argz<n ,
and

Vo(z) = [w: arg z < argw< n+ arg z] for -n < arg z<0 .

For all 2z not on the real axis Vo(z) is thus defined to be an open
half-plane. Vl(z) is defined to be the upper half-plane if z is in the
upper half-plane and the lower half-plane if z 1is in the lower half-plane.

In terms of these regions we now have, for any semi-positive T-fraction and

for z not real,

(3.9a) &0 + d2nz [ Vo(z) .

3.9b — e V1 (2)

( ) egntdonz+Vo(z) 1 g

(3.9¢) € -1 + d2n-lz € Vl(z) .

(3.94) z c Vo(z) .
ezn_1+d2n_1z+vl(z)

The conclusions are still valid 1f, on the left in (3.9) , Vo(z) and

Vl(z) are replaced by their closures. Since 2zt , T real, are the boundary
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points of Vo(z) and since the real axis is the boundary of Vl(z) , one

concludes that

(3.10a) Syn(2:72) € Vo(2)
(3.10b) Syn-1(z7) € Vo(2) ,
for all non-real z and all real t . In particular,
C (z)
L__ eV (z) for z4¢R .
D (z) O

It follows that all zeros of Cn(z) and Dn(z) must be real. The same 1is

true for the zeros of

C2k(z) + rzCZk_l(z) , if n=2k ,
c,(z,7) =

cZk—l(z) + cmk_z(z) , 1f n = 2k-1 ,

DZk(z) + 1zD2k_1(z) , 1f n =2k ,
Dn(z,r) =

Dyp-1(2) + if n = 2k-1 ,

for all real < .
The quotients
€, (z,7)
Dn(z,t)

we shall call the generalized approximsnts of the semi-positive T-fraction.

To prove that all zeros of Dn(z,r) » T real, are simple, we consider

the partial fraction decomposition of the generalized approximants

()
C (z,7) T 1 (1) 2 k¥
(3.11) n = 2 v + v + eee 4 Vv ] .
Dn(Z,T) v=l Z-tv (z_tv)Z (2=t )mv
v

Here the tv are the (distinct) zeros of Dn(z,r) (for fixed T ) and

hence they are real numbers. It follows that the ksu) are also real. We now
sketch the argument that m = 1 and kv >0 for t, >0 . A similar argument
can be given for tv £ 0 . (Zero can be a zero of Dn(z,r) only if n=2k -1

and v = -e,, ., .) Set
k-1 in/2mv
z =t + ce , E>O0 .

Then for & sufficiently small the term
(m )

v
k z
v

m
(==t ) "

is the dominant term in Cn(z,r)/Dn(z,r) . Hence

i1t/2mv (m,) (=)
Cn(tv+ee »T) tvkv - -itvkv .

in/2m m m
Dn(tv+se s T) [ Vei“/2 [ v
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i1t/2mv (m )
Since this value must lie in the region Vo(tv+ee ) , we conclude that k
in/m
must be positive. Repeating the argument for z = tv + ee , for- m, >1
(m )
we are led to the conclnsion that kv V' <0 . Hence m, > 1 1is impossible and

all zeros of Dn(z,t) are simple. There are in general n zeros (except when

n=2k and T = -d The partial fraction decomposition thus becomes

2% )
¢ (z,%) M

L=z —_— t. real, k >0 V=1,2,ee,0 =
D (z,7) val Z-t, * v > ’

v

We also note that

R16)) C_(z,7%)
Tk = lim B =1/d; >0 .
vl zH Dn(z,T

We have proved the following result.

Iheorem 3.3. For the generalized approximants of a semi-positive T-fraction

the following partial fraction expansion is valid
n(z)

Cn(z,t) . kv

LA =z
Dn(z,t) y=1 27t

n(7)
Here k, >0 , v=1,2,..0,0(0) , ) k,=1/d) >0 , and t  1s real for
=
v=12,...,0(7) - n(t) = n unless n = 2k and 7T = -de .

Since positive T-fractions are semi-positive, all results for semi-positiva
T-fractions apply to positive T-fractions. However, for positive T-fractioms
stronger results are valid. Thus for positive T-fractions it can be proved (as
was done in [13]) that all t, are ne ative.

To study the convergence of (l.lec) 1t 18 desirable to transform the general
T-fraction to the form 61K(1/bn) and use one of the convergence criteria
developed for that case. For 2z in the upper half-plane we can write 61 = -z
and

-1
z  + idzn s

- 1z2d

b, = (e z):l.z-.1 = ie

2n 2n+d2n 2n

b

-1 " (82pm1¥dpa D) = ~ley ) -1
Then Re(bn) >0 for all n>1 , so that if one imposes additional

conditions so that either

, n=1,23... ,

(3.12) -n/2 + & < arg b2n-1 < /2 - €
or
(3.13) -n/2 + e, <arg b, < /2 - € » m=1,2,3,.0. ,

then by [17, p. 66] (see also [11, p. 90]) either the odd part or the even part
of the semi-positive T-fraction (l.lc) converges. Sufficient for (3.12) to
hold 1s |e2n_1| <Kd, . ,and (3.13) will be satisfied if |d2n| <Kyep -

The case in which 2z is in the lower half-plane can be treated in a similar
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manner. We have proved the following theorem.

Theorem 3.4. The odd (even) part of the semi-pogitive T-fraction (l.lc)

converges if there exists a positive constant K1 (Kz) such that, for all n > 1

IeZn-ll < K1d2n--1 (lenl < K2e2n) *

From Theorem 4.32 of [l0] one concludes that (l.le) will converge if

[ ©
Z e, == or if d = o , for in that case condition (C) of that theorem
1 2V 1 2v-1

will hold provided z ¢ R . This establishes the next result.

Theorem 3.5. Sufficient for the convergence of the semi-pogitive T-fraction
(l.1¢) for z 4 R is either

«© «©
Legymooor [y, == .
v=l vl
The continued fraction may converge even if neither of the two series diverges.

As was shown in [13] a much stronger result holds for positive T-fractions.
Then the divergence of one of the series 2 dv ) 2 e, is necessary and

sufficient for the convergence of the continued fraction.

4. 1Integral representation of semi-positive T-fractions. That some

integrals of the form

(4.1) P £ ge

a z+t
have continued fraction expansions was certainly known to Gauss. In the middle of

the 19th century, Christoffel, Heine, Tchebycheff, Posse and Markoff made further
contributions. The emphasis appears to have been on showing that integrals of the
form (4.1) with more and more general f£(t) had J-fraction expansions.

Tchebycheff also considered J-fraction expansions for series

6,
(4.2) ]k

z+tk

both finite and infinite. By introducing what are now called Stieltjes integrals,
Stieltjes in 1894 unified both of these concepts. He also looked at the problem

from the other direction, that is, to determine which continued fractions have
integral representations. This question 18 of course closely related to finding
solutions of the moment problem.
Stieltjes expressed the nth approximant of the continued fraction as an
integral by first showing that it had a partial fraction decomposition
I ALY
n
An(z) - kv ’
Bn(z) v=l z+t$n)
(n) ", (n)
in which kv are all positive, 21 kv = ¢ 18 independent of n , and the
e (n)
v v
that

are algso all positive. Assuming the subscripts of the ¢t are chosen so
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(n) (m) , ... (n)
£ <ty < <ty

n
he defined
0 , for OstSt{n)
- (n) (n) (n)
¢n(t) v§1kv , for tu <t < tp+1 s B+ 1 <my
c , for t(n) <t K= o
m
n
Then clearly

An(z) - d¢n(t)
Bn(z) 0 z+t

The question then becomes whether there are subsequences {¢ } such that ¢ =+ ¢

and such that

Sdb ()
Un [ k- [ d(©)
ks O zHt 0 =z+t

Stielt jes was able to provide the necessary proofs in the case of S-fractions, in
part because he was able to analyze their convergence behavior completely.

For J-fractions the situation becomes considerably more complicated. In this
case the tsn) may not be positive, but they are still real. Also relatively
little is known about the convergence behavior of J-fractions. Thus one must
first of all show the existence of convergent subsequences. This was done by
Grommer in 1914 by a selection process. For the main idea of this process, Grommer
gives credit to Hilbert, whose student he was. The process allows him to assert
the existence of a subsequence {¢_ } which converges to a monotone,
non-decreasing bounded function ¢(t) on =2 < t < +» . In a different context,
Helly in 1912 had given a simpler approach to such a selection process. Helly had
a second result which insured that

b b
lim [ £y, (0 - JEOLUO)

koo 8
for a large class of functions f£(t) . However, this theorem is valid omnly for

finite intervals (a,b) . Grommer was able to prove that

L e (1)
n [ Tk - du®)
ko —® z+t - z+t

The proof was later simplified by Hamburger. In 1966 the present authors [10]

obtained an integral representation for ordinary T-fractions

K(—2—)
1+d_2z
n
with dn >0, n>1 . This was done by using the, by now familiar, patterm
of obtaining a partial fraction decomposition of the nth approximant and then
following the Stielt jes~Grommer-Helly path to an integral representation. In 1980
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Waadeland and we [13] derived integral representations for positive T-fractions
by the same method.

The results of Section 3 now allow us to obtain integral representations for
convergent subsequences of semi-positive T-fractions. To this end we state a
general theorem which brings out the essential ingredients involved in deriving an
integral representation. It should be pointed out that there are a number of
factors which play no role in the proof of the theorem, even though they may be
important in other respects. These are:

(a) The Rn(z) being approximants of a continued fraction;

(b) Increasing degrees for the denominators; _

(d) Correspondence to a formal power series at = (and possibly at O );

(e) Existence of moments.

Theorem 4.1l. Let {Rn(z)} Eg_g_sequence of rational functions such that each

Rn(z) has a partial fraction decomposition of the form

k (n)
o
R (z) = 2 __ESL___.,
" v=l z + t(n)
v

(n) *a  (n) (n)
where Hv >0 for v = 1,2,...,kn , 21 H2 £ B . Moreover, the tv for

v=1,2,...,k_, are all real and distinct. Then there exists a subsequence {nm}

n
and a monotone non-decreasing, bounded function b(t) on - < t {® sguch that

Um R (z)-fa ae(e) |

e 'm z+t

uniformly for z in a bounded region with a positive distance from the real axis.

The proof is essentially contained in [17, p. 207-211] and so will not be

repeated here. Ituses Stieltjes' idea of writing Rn(z) as an integral

= dgy®
- z+t
the Helly-Grommer selection process and the Grommer-Hamburger proof that
. 4o (B
o [ —D = [ 4O |
mro —° z+t —o z+t
The integrals
“ d¢n(t)
el z+t

are really not improper and thus there is no question about their existence. That

the integral
[0 de(e)
- z+t
exists follows easily from the monotonicity and boundedness of ¢(t) on

=t

From Theorem 3.3 and 4.1 we can now conclude:
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Theorem 4.2. Let Cn(z,r)/Dn(z,T) be the generalized nth approximant of a

semi-pogsitive T-fraction. Then for every sequence {Tk} s TR ER there

exists a sequence {nk} and a monotone non-decreasing, bounded function ¢(t) on
- £ t <+ guch that
I — Cn (Z,Tk)
m k= zfﬂ° do(e)
e D (2,7) -zt
M

uniformly with respect to =z in any bounded region & with a positive distance

from the real line. If {Cn (z,7 )/Dnj(z,rj)} converges for all 2z € § , then it

t 1
converges to an integra -
2f doe)
- z+t

5. Solution of Strong Moment Problems. By the strong Stielt jes moment

problem (SSMP) we mean the following: For a given double sequence of real
numbers C = {cn}fm , does there exist a distribution function ¢(t) € &(0,=)
guch that

(5.1) L I: (-£)"de(t) , n = 0,+1,%2,... ?

Such a function ¢ 18 called a solution to the SSMP for C . Using continued
fraction methods similar to those described in Sections 3 and 4 , Waadeland and
the authors [13] proved the following:

Theorem 5.1. Let C = {c_ } be a given double sequence of real numbers

and let Hﬁm) denote the Hankel determinants associated with C (see (1.6) ).
Let L0 and L Eg formal power series defined Ez (1.3) . Then the

following three statements are equivalent:

(A) The strong Stieltjes moment problem for C has a solution.
(B) !Es following determinant conditions hold:

(-2n) (~2n) -
(5.2a) By ©>0 , By V>0, n=0,1,2,... ,
(-(2n-1)) (=(20+1)) -
(5.2b) Hy >0 , Hy .y <0 , n=0,1,2,... .

(C) There exists a positive T-fraction (l.la) corresponding to L0 at 0 and

to L, at =.

By a further utilization of integral representations of positive T-fractions,
Waadeland and the authors [13] obtained the following result on the uniqueness of
the solution to the SSMP .

Theorem 5.2. Let C = {cn}jm be a double sequence of real numbers for which

there exists at least one solution to the strong Stieltjes moment problem. Then

the solution 1s unique if and only if the positive T-fraction (l.la)

corresponding to L0 at 0 and to L, at = (see (1.3)) is
convergent; that is, if and only if
(-]

(5.3) Je == or Jd == ,
o=l ° n=1 °
where the positive coefficients, e, and dn are defined by (1.2) .
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The strong Hamburger moment problem (SHMP) 18 defined as follows: For a

given double sequence of real numbers C = {cn}fm , does there exist a
distribution function ¢(t) € &(-=,») such that

(5.4) L fa(—:)“d¢(:) , no=0,¥1,#2,... ?

Such a function ¢ 18 called a solution to the SHMP for C . The use of
continued fractions in the study of the general SHMP appears not to be possible.
This is due in part to the fact that the related orthogonal L-polynomials (see
Section 6) do not always satisfy three-term recurrence relations. Nevertheless,
using orthogonal L-polynomials, Gaussian quadrature and two theorems of Helly
(referred to in Section 4), Njdstad and the authors [9] have proved the
following:

Iheorem 5.3. Let C = {cn}tu be a given double sequence of real numbers and

(m)

let denote the associated Hankel determinants (see (1.6)) . Then the

strong Hamburger moment problem for C has a solution if and only if conditions

(5.2a) are satisfied.

Necessary and sufficient conditions for the uniqueness of the solution to the
SHMP are not yet known. However, two other methods for proving Theorem 5.3 have
recently been called to our attention. One due to Christian Berg [l] employs a
Hahn-Banach argument. Another proof, which we believe is due to W.B. Gragg, makes
use of the classical moment theorem of Hamburger. A sketch of the latter proof is
included here. We consider only the proof of sufficiency of condition (5.2a) .

am=2k there exists a

By the Hamburger moment theorem, given a sequence {cn}

distribution function vk(t) € Qc(—w,w) such that

(5.5) —t)mdvk(t) , m=20,1,2,...

Cookdm T Ia (
if and only if
(5.6) ng‘Zk) 50 , §=1,2,3,.0. .

Using Jacobli's identity

Hik—1)3§k+1) - B(k+1)E(k—1) - [H

(k),2
n-1 il n ]

and an induction argument or properties of quadratic forms, one can show that
(5.6) 1is implied by (5.2a) . Let uk(t) be defined by
t 2k
(5.7) w(e) = l, s (8) , k=0,1,2,... .
Then from [23, p. 12] and (5.5) 1t follows that
® ~2k+m ® m

(5.8) IRGD! dpy (£) = lm( £)dv (t) =c 0

for k= 0,1,2,... and m = 0,1,2,... .
In particular, (5.8) implies

(5.9) i:dpk(t) =cy » k=0,1,2,... .
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Thus the total variation of each uk(t) is N > 0 . Thus by Helly's
selection principle there exists a subsequence {uk } and a bounded non—

3

decreasing function p(t) such that

1lim B (t) = u(t) for -» <t >
ke

Then by a modification of Helly's second theorem referred to in Section 4 ,

k>

hj
This together with (5.8) implies that

lin fm(-fc)“duk (®) = [ (-0)%u(t) , n=0,41,%2,... .
- j -0

(5.10) c = fm(—t)ndu(t) , o= 0,21,%2, ... .

Using (5.10) and properties of quadrature forms it can now be shown that p(t)

has infinitely many points of increase. This completes the proof.

6. Orthogonal L-polynomials. A function R(z) of the form

¥,
(6.1) R(z) = z r.z , T
o ] 3
is called a (k,m) Laurent polynomial (or L-polynomial) in the complex variable

ER , o< k {m{(+

z . The set R of all L-polynomials forms a linear space over R with respect
to the usual definitions of vector addition and scalar multiplication. A basis for
R is given by the sequence 1,1/z,z,1/zz,zz,... + We let R,  denote

the subspace spanned by

-m -mtl
z ,z seeeslyZyeee,2

and Rz 1 the subspace spanned by
m-
, -mtl m-1

yZ seveslyZyeee,2 .

Theorem 6.1. If d¢(t) € &(-=,=) , then

(6.2) (®,8) = [ROS(EMKE) , RS €/

defines an inner product on R .

Proof. Linearity, symmetry and homogeneity follow directly from properties of

the Riemann—-Stielt jes integral. To prove positivity we note that if Q € g , then
® 2
Q@ = [ [a()]7de(e) > 0 .
Moreover, since ¢ has infinitely many points of increase, (Q,Q) = 0 4if and only
if Q(t) =0 . a
It is clear from Theorem 6.1 that, if d¢(t) € &(a,b) , where
-» £ a { b{+=» , then

b
(6.3) (R,8) = faR(t)S(t)dcb(t) , R,S €ER

defines an inner product on R . In this case ¢ can be extended to (-=,@) by

setting ¢(t) =0 4if t ¢ (a,b) . Let IMIRN = (R,R)]'/2 denote the norm of R.
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Theorem 6.2. Let ¢(t) € 2(a,b) with -=<a<b<+> , let C= {c}7

where
b n

(6.4) e, = [ (-©)dee) , n=0,t1,#2,..,
a

and let Hém) denote the Hankel determinants associated with C . Let {Rn(z)}

denote the sequence of L-polynomials denoted by

c—2n cee c—]_ (-z )_n
(6.5a) R, (2) = 1%-%23 1 Tt S (—z)“‘1 s n=0,1,2,...
2n <o ose Cyn-1 (—z)n
€-2n-1 €4 2
al e . N
(6.5b) R, .. (2) = L("%Ei t Cp (72) , n=0,1,2,... .
Hytl o R T

Then: (A) The L-polynomials {Rn(z)}; are orthogonal with respect to ¢(t) and

2 _ H(—Zn) ) E(—(2n+2))
(6.6) IR, 17 = _20fl R, 0" =202 4 20,1,2,... .
2n E(—zn) 2n+l E(_zn)
2n 2n+l
(B) 1f
5 1 § .3
6.7) Rzn(z) = 2 r2n,jz s R2n+1(z) 2 2n+1 j » 31=20,1,2,... ,
j=-n J=-n-1
then
(6.82a) an,n = r2n+1’_n_1 =1 , n=0,1,2,... ,
and
(=(2n-1)) (-(2n+1))
(6.8b) r e P r - fown 7 n=0,1,2
‘ 20,-n ( 20) ’ 2ntl,n (-2n) ’ Ltk R
2n 2n+1

Proof: Using (6.4) and (6.5) one can show that, for each n = 0,1,2,... ,

(6.9a) (zk,Rzn) =0 , -n<k<nl ,
T T

(6.9¢) Ry , ) =0 , n<k<n ,

(6.9d) I'R2n+1"2 = Rypa1sRoneg) = ( —n_l’R2n+1) = né;i§“+2))/ug;i?) .

By Theorem 5.1(B) , the Hankel determinants in (6.6) are all positive. This
proves (A) . The proof of B 1is immediate from the Hankel determinants involved. B
It can be seen from (6.8) that

(6.10) r2n,—n # 0 and r2n+1,n #0 , n=0,1,2,...

if and only if
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( (2n~1)) (-( 2n#1))
2n #0 and H2n+1 .

We note that (6.11) 4is implied by (3.3) . 1In the following we shall assume that

(6.11) n=0,1,2,... .

\
(6.11) holds. In this case it is convenient to normalize the orthogonal
L-polynomials of Theorem 6.2 , obtaining orthogonal L-polynomials Qn(z) as

follows:

(6.12) an(z) = (1/x )Rzn(z) , Q2n+1(z) = R2n+1(z) , n=0,1,2,... .

2n,-n
We shall write the Q (z) 1in the form

n
23 3

.13 = = , o no=0,1,2,... .
(6.13) 1, () j_ganH 2 Q) j__En_lqzm,jz n =0,1,2,
We obtain then

Theorem 6.3. Let ¢(t) € ®(a,b) with -*<a<b<+» and let C = {cn}ja

be defined by (6.4) . Suppose that (6.11) holds and let {Qn(z)} be defined by
(6.12) where {Rn(z)} is defined by (6.5) . Then:
(A) {Qn(z)} is a sequence of orthogonal L-polynomials with respect to ¢ ,

normalized such that

(6.14a) =1 , n=0,1,2,c0. ,

(-(2o0+1)) , (~2n)

2ot /By’ 0
n=0,1,2,...

q2n -n = q2n+1 -n-1

(6.146) q, = n( 2“)/3( (20-1)) L ¢ , =

92041 0

(B) The Qn(z) satisfy the system of three-term recurrence relations

(6.15a) Q2 =1 , Q=) =z + (e /ey ,
(6.15b) Q2n(z) = (1—G2nz)Q2n_1(z) - FZann_z(z) , n=123 ... ,
(6:150) Qp (@) = (2 16y 00y (2) = By 10y (=) 5 n=1,2,3,ee

where the Fn and Gn are defined by (3.1) .

(c) If Vn(z) denotes the nth denominator of the general T-fraction
(L.1b) , then

(6:16) 0y (2) = (1), (-2) , Q. (2) = D™y, (2) , n=01,2,... .

(D) For each n>1 , Q,, (z) has exactly 2n zeros; they are real,

(E) For each n >0 , Q2n+1(z)
distinct and all but at most one of them lie in the open interval (a,b) . If ©

has exactlz 2nt+l  zeros; they are real and

is not in (a,b) , then all zeros of Q (z) 1lie in (a,b)
28 nor o =aen a-° 28198 oL Y =L

Proof. Part (A) 1is an immediate consequence of Theorem 6.2 . (B) can be
verified by the orthogonality of the Qn(z) with a standard argument for
orthogonal polynomials. (C) follows by comparing (6.15) with the difference
equations satisfied by the denominators Vn(z) of (1.1b) . It is clear from
(6.13) and (6.14) that, for each o> 1 , Qn(z) has exactly o =zeros.

We shall prove (E) ; the proof of (D) 1is analogous and hence omitted. We showed



24

in Section 3 that the roots are real and simple but not necessarily in (a,b) .
Let n be a given positive integer and let A denote the number of distinct real
zeros of odd order of Q2n+1(z) that lie in the open interval (a,b) . Denote
these by CI’CZ”"tA . First we consider

b ﬁ n—-2
Ty = fann-1(t) (1t /e /e du(e)
=1
b A 9
= Sppey () I (L-t/e )7/t
=1
Here SZn_l(t) is a polynomial in t that does not change sign on (a,b) ;

2n_2d¢(t) .

hence the integral does not vanish since ¢(t) has infinitely many points of
increase on (a,b) . On the other hand IZn—l can be written in the form

b -m+2 -n+3 A2
L S fann_l(t)(t ta_ Lt heestay ot a(e) .

Thus by orthogonality IZn—l would be zero if A-n+2<n-1 ; i.e.,

A< 2n -3 . It follows that A > 2n - 2 and hence that an_l(t) has at

least 2n - 2 distinct zeros in (a,b) . Since the complex zeros of an_l(t)
occur in conjugate pairs, the one remaining zero must be real. This proves the
first part of (E) . To prove the second part of (E) we suppose that 0 { (a,b)
and let A be defined as above. Then consider

1 b A n-1
Ll = fann_l(t)jEI(l-t/tj)/t de(t)

b A ~
=[5, () T (1-t/e )2 7e2 ™ Lagce) .
a 2n-1 3j
J=1
Again Szn_l(t) is a polynomial in t that does not change sign on (a,b)

and, since 0 ¢(a,b) , t2n—1

Iin—l # 0 , since ¢(t) has infinitely many points of increase on (a,b) . On

also does not change sign on (a,b) . Therefore

the other hand, Ién—l can be written as
b -mtl -nt2 A-n+l
1 = LR 1
oy = Qg (O byt ety T 0
Hence by orthogonality Ién—l would be zero if A-n+1<n-1 ; f.e.,

A< 2n-2 . It follows that A= 2n -1 , which proves the second part of (E) .
One can say even more about the orthogonal L-polynomials Qn(z) of
Theorem 6.3 when ¢(t) € &(0,~) . This case is considered in the following:

Theorem 6.4. Let ¢(t) € ®(a,b) where 0 <a <b <+ and let the
orthogonal L-polynomials Qn(z) with respect to ¢(t) be defined as in
Theorem 6.3 and (6.13) . Then: (A) In addition to the assertions of Theoren

6.3 we also have

(6.17) >0 , <0 , n=0,12,...

q2n,n q2n+1,n

and
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(6.18) Fo >0 , 6, >0 , n=12,3,... .
(B) F¥or each n>1 , Qn(z) has exactly n zeros tgn) , n=12...,n.

They are distinct, positive, real numbers ordered such that

0<a<e™ e uenc ™y
- 1 2 n

(C) Let An(z) and Bn(z) denote the nth numerator and denominator,

respectively, of the positive T-fraction (1l.la) . Then An(z) and Bn(z) are

(n)
polynomials in 2z of degree n . The zeros Tj of Bn(z) are given by
rgn) = -tgn) sy J=1,2,e00,m . The nth approximant of (l.la) has a partial

fraction decomosition of the form

(n)
A n
(6.20) n(®) | ) o , n=1,23,... ,
Bn(z) =1 z+t§n)

where
(6.21) 3™ 28 /6 and 1™ >0 for 1<j<n
. L7y 1/6; and 7y for 14J<m

Proof. (A) and (B) are immediate consequences of Theorems 5.1 and 6.3 .

(C) 1is proved in [13, Theorem 3.2] . -

As shown in Section 3 there 1s also a partial fraction decomposition in
Theorem 6.3 . Our next theorem is the converse of Theorem 6.3(B) when
0<a<d<b<+ . It is the analogue of a theorem for classical orthogonal
polynomials attributed to Favard [3] .

Theorem 6.5. Let {Qn(z)}; be any sequence of L-~polynomials satisfying a

system of three—term recurrence relations of the form (6.15) where Fn >0 ,

Gn >0 for all n >1 . Then there exists a distribution function
=or a2 - Z - s
¢(t) € ¥(0,®) such that {Qn(z)}0 is the sequence of orthogonal L-polynomials

with respect to ¢(t) normalized as in Theorem 6.3 .

Proof. The numbers Fn , Gn determine a positive T~fraction
(l.1la) . 1If An(z) and Bn(z) denote the nth numerator and
denominator, respectively of (l.la) , then by the determinant formula
[11, p. 20] one obtains

An+1(z) _ An(z) n ntl

= (1) =z
B r1(z) B (2) B (2)B ., (z)

From this it is clear that the positive T-fraction (1.la) corresponds to formal
power series of the form (1.3) at 0 and <« , respectively. Moreover, by

Theorem 3.1 the Fn , Gn and c, are related to each other by (3.1 ) . By

Theorem 5.1 the strong Stieltjes moment problem for C = {cn}fcD has a solution
¢(t) € $(0,*) ; hence

(6.22) c, = fo(-t)“d¢(t) , m=0,%1,%+2, ... .
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Therefore (6.3) defines an inner product for { . It can be seen that the
Qn(z) satisfy (6.16) , by comparing (6.15) with the difference equations
satisfied by the Vn(z) . It can also be seen that' the Qn(z) can be

written in the form (6.13) and satisfy the normalization (6.14a) . It follows
then from Theorem 6.3(C) that the Qn(z) are orthogonal with respect to ¢(t) . B

We conclude this section with the following result which shows that the
denominators of a positive T-fraction give rise to a sequence of orthogonal

L-polynomials.

Theorem 6.6. Let Vn(z) denote the nth denominator of a positive
T-fraction (1.1b) with F >0, G >0 forall n>1 . Let {Q (=)} be
defined by (6.16) and Qo(z) =1 . Then there exists a distribution function

¢(t) € &(0,=) such that {Qn(z)}; is a sequence of orthogonal L-polynomials with

respect to ¢(t) normalized by (6.13) and (6.14a) .

Proof. The difference equations satisfied by the Vn(z) insure that the
Qn(z) satisfy (6.15) . Hence the assertion is an immediate consequence of
Theorem 6.5 . ]

7. Gaussian Quadreture. We present here a new case in the development of

Gaussian quadaratures which also is suggested by continued fractions.

Theorem 7.1. Let ¢(t) € $(a,b) with 0 {a<b<+>. Let n be a
positive integer and let Qn(z) denote the nth orthogonal L-polynomial with

respect to ¢(t) normalized as in Theorem 6.3 . Let r_g") s J=1,2,00eyn ,
denote the zeros of Q“(z) « Then:
(A) For every F(z) € RZn 1
n
(7.1a) Craus = JviPre(™)
a =1
where the Christoffel numbers wgn) are defined by
b (t)
(7.1b) I RS S L P P P S
3 Q.(t(n)) a _ (m)
n ] J
(B) Let {P“(z)}; denote the sequence of L-~polynomials defined by the recurrence
relations
(7.2a) Po(z) =1 , Pl(z) =-F,
(7.2b) Py (2) = (1=C, 2)P, . (2) = Fyp By (2) , m=1,2,3,... ,

-1
(7.2¢) P2n+1(z) = (z -GZIH-I)PZn(z) - F2n+1P2n-1(z) , n=1,273 ... o

Here the F“ and Gn are determined by ¢(t) as in Theorem 6.3(B) . Then

w(“) ) Pn(t(n))

(7.3)
T el

y 3 =1,2,.00n

£

n
(7.8) wg“) >0 for §=1,2,000,n , 1§1w§n) -r/c
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and

(7.5) DA i T
Q. (2)  j=1 z_tgn)

Proof. Let F(z) € RZ be given and let

n-1
(7.6) Ln’j(z) = Q“(Z) y 3=1,2,.c0,n .

(=t $epe{™)

Then it can be seen that

.7 Lom1,5$2) €Rppy > Lo, 5(2) €Rypy
and
(7.8) n,k(tgn)) = 6kj (Kronecker delta).
Let

3 (n)
(7.9) R(z) = kzlL"’k(Z)F(tk )

so that R(z) € Rn and

(), . § (0)ypp (D)) _ o (n) -
(7.10) R(tj ) kzan’k(tj YF(t, ) R, 3=1,2,00000

Therefore F(z) - R(z) 1is in R2n-1 and has zeros at tin),tgn),...,tin) . It
follows that there exists S(z) € Rn-l such that
(7.11) F(z) - R(z) = Q (2)5(z)

To see this note that

n
F(z) -~ R(z) = z nP(z) I (z-t(n))
=3
where P(z) 1is a polynomial in z of degree at most n-1 . If n is even (i.e.

n = 2m ), then for some constant ¢

F(z) - R(z) = Q (2)F(2)z "~ 3

hence S(z) = cP(z)z_nE R2m-1 = Rn-l A similar argument holds if n 1is odd.
Now using (7.11) we have

b b b
(7.12) IaF(t)d¢(t) - faa(t)d¢(t) + faS(t)Qn(t)d¢(t)

The second integral on the right in (7.12) wvanishes by orthogonality since

s(t) € Rn-l Thus by (7.6) and (7 9) we obtain

f P(0)A0(E) = ) F(t(“))f L, j(6)46(e)
=] o,

n
_ (n),, (n)
2 wj F(tj )

which proves (A) . To prove (B) we first show that

(7.13) P (2) = zf _(z.)i(_t)dcp(:) , n=20,1,2,...
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In fact, if we let §n(z) denote the right side of (7.13) , then it can be
shown by induction (using orthogonality and (6.15)) that the §n(z) satisfy
the recurrence relations (7.2) . Thus (7.13) follows since the Pn(z) are
completely determined by (7.2) . From (7.13) we obtain
b Q (t)
Pn(tgn)) - tgn)f 0 CAg(t) , § = 1,2,00e,n
a

_.(n)
£

This together with (7.1b) gives (7.3) . Now let Ah(z) and Bn(z)

denote the nth numerator and denominator, respectively, of the corresponding
positive T-fraction (l.la) , and let Un(z) , Vn(z) denote the nth
numerator and denominator, respectively, of the equivalent positive T-fraction

(1.1b) . Then it is readily shown that for m = 0,1,2,...

(7.14) Pyu(z) = (1)U, (-2) = 2 Ay (~2) ,

m+l ~m-1
(7.14b) Py (2) = (F1)7 70, L (2) = 2 Ay 2
(7.14¢) Q, (z) = (—1)'“V2m(—z) = z_mBZm(-Z) >
(7.140) Quyy () = CD™V, 2 = 2 B, L ()

Thus by Theorem 6.4(C) we have , for n = 1,2,3,... ,

P2 A % 2™

(7.15)
Q, (2) Bn(-Z) 3=1 z+rgn)

so that P_(z)/Q (z) has the same form as (7.5) . It follows from this

that tgn) = —rgn) , 3J=1,2,.0.,n . It remains to show that
(7.16) ngn) - wg“) , §=1,2,0e0m .
It follows from (7.15) that ngn) is the residue of Pn(z)/an(z) at
z = -Tgn) = tgn) « Therefore
) (n)
O (z-tgf P (2) P (") NON
3 e (™) 2Q, (2) g")Q (t<")) i
so that (7.4) then follows from (6.21) . .

An application of Theorem 7.1 and [20, Theorem 15.2.2] gives the folowing

convergence result which is the analogue of a theorem proved by Stieltjes [19] .

(n)

Theorem 7.2. Let ¢(t) € ®(a,b) with 0 < a < b < +> and let tj and

g“) be defined as in Theorem 7.1 . Then

(7.17) f F(t)d¢(t) = lim

n>e §=1

2 (n) gn))

holds for every function F(t) for which the Riemann-Stieltjes integral on the
left side of (7.17) exists.

The next result of this section is obtained an an application of Theorem 7.2

It is the analogue of a theorem of Markoff [14] .
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Theorem 7.3. Let ¢(t) €%(a,b) with 0<a<b<+ . Let {F} and {6}

denote the sequences of positive coefficients defined as in Theorem 6.3 and 6.4,

Then: (A) For every complex number z 4 [-b,~a) we have

(7.18) TS W L L LN
a z+t 1+Glz + 1+Gzz + 1+G32 +

(B) The positive T-fraction on the right side of (7.18) converges uniformly on

every compact subset of D = [z : z ¢ [-b,~a]] to the holomorphic function defined
by the integral in (7.18) .
Proof. (A): Let 2z € D be fixed and set

F(t) =—2- , a<t<b .
z+t - -

By Theorem 7.2 and (7.15) we obtain

(n)
b o A
(7.19) zf 498) = 14m ¥ 1 = 1im n(%)
a ztt n>w _-]=1 Z+t§n) N30 Bn(z)

where An(z)/Bn(z) is the nth approximant of the positive T~fraction in
(7.18) . This proves (A) . To prove (B) we let K be an arbitrary compact
subset of D . Then there exist constants B(K) and &(K) such that, for all
z € K, we have 'z' < B(K) and |z+t§n)| > 8(K) for j=1,2,...,n and
n=1,2,3,... . Thus by (7.15) and (7.4)

n
A(z) ZJ__LJ__ ...(_)__1 for all z¢K , n>1 .,
B (2) < 3= l +t(n)' 3(K) ¢, -

It follows that {An(z)/Bn(z)}1 is a normal family of holomorphic functions in D .
Therefore by the Stielt jes-Vitali theorem ([21, Theorem 20.15 and Remark 20.2] or
[8, Theorem 5.3.1]) the sequence {An(z)/Bn(z)} converges uniformly on K . [

The coefficients Fn’Gn in (7.18) can be computed in terms of the

moments
b
(7.20) by = (—1)kck = fatkdd»(t)

by means of the following algorithm due to McCabe and Murphy [16] (see also
[11, Section 7.3]).

FG-Algorithm. Given e s P~ 2<{k<p-2 , compute

(m) _ (m) _ _ _
Fy 0, 6 =wp 4w, » P<m<pl

and then, for n = 1,2,...,p~1 , compute

ng = pr(l““ll cr(l“'ﬂ) - cr(lm) , npl<m<pnl ,
(™
c(m (m-1)
_._._.c
n+1 (m-l) n
P+l

, n-p {m < pn-1 .
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An application of this algorithm produces a triangular table of the form shown
in Table 1 . The entries in the central row give the desired coefficients Fn

and Gn as follows:

0
(7.21a) FL=bg . F = Fi ) n=2,3,..0,p

(7.21b) G = cﬁo) , n=1,2,00,p

If 0<a<b <+ , then the operations in the FG-Algorithm can always be
Table 1. Triangular array of output from FG-Algorithm.

0 = Fi-p) c{'P) Fé-p)
« p(~P+l) (-p+l) (-pt+l) (~pt+l) (-p+1)
0=F 6, F, G, Fy
= (0 (0) (0) (0) & it e s s eneap® (O
0=F 6, F, G, LN EN
- ¢(P~2) (p-2) (p-2 (p-2)
0= Fy Gy F, G,

- p(p~1) (p~1)
0=F 6,

(m~1)
n+l *0

. Therefore Theorem 7.3 together with

carried out; in other words the denominator F so that there is no danger

(m)
nt+l
the FG-Algorithm provide an efficient method for obtaining rational approximations

of dividing by zero when computing G

of functions that can be expressed in the form of the Riemann—Stielt jes integral in
(7.18) . 1t should be noted that these rational approximations (the approximants
of the positive T~fraction in (7.18) ) are two~point Padé approximants. Some
appications of this type will be described in a subsequent paper on joint work with
0. Nj;stad.

We conclude this section with examples of Gaussian quadrature formulas
(Theorem 7.1) for the distribution function ¢(t) and Interval (a,b) given by

—t—l/tdt

(7.22) dp(t) = e » (a,b) = (0,=) .

Calculation of the moments (7.20) for this distribution is facilitated by the

recurrence relations

(7.23) M ™ By =K 3 W, k = 0,+1,%2,,...
and by the series
(7.24a) b, o= ) 2%(kl)
k=0 (k,)Z
(7.24b) Bo= E - (o=l (-1yo+L E V(e )V (neHl) |
D k=0 k! k=0  k!(n¥k+l)!

where ¥(z) = T'(z)/I'(z) can be computed by
~¥(1l) = y = 0.5772 15664 90153 ... (Euler's constant)

(k1) = ¥(k) + 1/k , k = 1,2,3,...
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(see for example [7, p. 307-341]). The moments By and p, can be

computed from (7.24) and all remaining moments can be obtained from (7.23) .

wgn) (n)

Some values of b, are given in Table 2 . The weights and abscissas tj

in the quadrature rule (7.la) can then be computed by methods described in [4] ,

[6] or [18] . Values of wg“) and tg") for §=1,2,...,n and

n=12,...,10 are given in Table 3 . These quadrature rules have been applied

-r.-1/tdt

Table 2. Moments w = fotke , -1 <k<10 , with at least 24

significant decimal digits.
k My

0.22778 77454 99066 87130 54396
0.27973 17636 33044 85456 91973
0.50751 95091 32111 72587 46369
1.29477 07818 97268 30631 84711
4.39183 18548 23916 64483 00502
18.86209 82011 92934 88563 86719
98.70232 28607 88591 07302 34097
611.07603 53659 24481 32377 91299
4,376.23457 04222 59960 33947 7319
35,620.95259 87440 04164 03959 7€8
324,964.80795 91182 97436 69585 64
3,285,269.03218 99269 78530 99816 2

to approximate the following three improper integrals:

Case (a)
fot-alze-t-lltdt - /T e 2 = 0.23987 55439
Case (b) © 2 =
B [an e(t2ml)e t 1/t - by = 0.22778 77455 ,
0 2
Case (c)

fm fn t e—t-l/t -0
0 t
The approximations of these integrals by the quadrature rule (7.la) are given in

Table 4 . Also included are the errors of the approximations and the number of
significant digits obtained. The mumber of significant digits SD(n) for an
approximation GQ(n) of an integral I s calculated by the standard formula

SD(n) = -loglolllg%ﬁﬂll .

Since I =0 in Case (c) , one cannot compute significant digits.

For comparison we computed approximations of the integrals
[ £(t)e tar
0

using (Gauss) Laguerre quadrature, where we chose f(t) to be

Case (a) f(t) = t-3/2e-1/t

2 ...
Case (b) £(t) = tn t(E=D)e Ve

t
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-1
Case (c) f(r)y =20t e & .
t

Using n~point Laguerre quadrature approximations with n = 1,2...,10 , we were

able to obtain at most one correct decimal for all three cases. We conclude that

Table 3. Absissa tgn) and weights wgn) for the quadrature formula
© e n
Crere e » 7 wlpe™)
0 i1 3 3
J
Numbers in parentheses are exponents of 10 for floating decimal representations.
(n) (n) (m) (n)
t t
i v i Y3
n=1 n=38
1.22803 69298 2.79731 76363(-1) 0.10203 25541  3.19761 43435(-6)
0.19050 32807 5.29569 68101(~4)
n=2 0.37369 77285 1.25641 87975(-2)
0.78269 03126 7.57838 99121(-2)
1.19015 08379 1.83490 01084(-1) 1.66590 79073 1.27456 88683(~1)
3.65830 37862 7.71368 98019(-2) 3.36093 44269 5.73535 39217(-2)
6.27628 96489  5.95859 44147(-3)
n =3 11.19788 85165  8.18887 76326(~5)

0.36370 40428 1.91048 54778(-2
1.19015 08379  1.83490 01084(-1) n=9
3.65830 37862 7.71368 98019(-2)
0.08785 32104  5.26861 18479(~7)

n =4 0.15502 69936 1.21261 51548(-4)
0.28426 63184  4.05414 49297(-3)
0.25095 39244  3.64236 63312(-3) 0.55693 55447  3.72184 24659(-2)
0.69811 57495 8.67465 27365(~2) 1.13958 30771 1.08856 48912(-1)
1.96057 07663 1.65110 86597(-1) 2.28927 30575 1.00218 04558(-1)
5.04848 00675 2.42320 03963(-2) 4.30405 62309  2.73854 52461(~2)
7.55474 84601  1.86025 20524(-3)
n=>35 12.82707 79281 1.71664 57849(-5)
0.18750 47193  6.53027 20937(-4) n =10
0.45584 46302  2.96585 73142(-2)
1.16729 49502  1.45122 03973(-1) 0.07694 33775  8.59510 44467(-8)
2.88169 12907 9.77101 52507(-2) 0.12959 25714 2.67128 51817(-5)
6.51287 66175 6.58797 10401(-3) 0.22454 60615 1.20584 51046(-3)
0.41341 96516 1.56467 90887(-2)
n=26 0.80564 92987  7.11476 87220(-2)
1.59121 12511 1.15327 14160(-1)
0.14783 36197 1.13132 72631(-4) 3.01222 54997  6.43152 00696(-2)
0.32252 18957 8.51276 55623(-3) 5.32754 94863  1.15191 27969(-2)
0.74995 75105 8.11564 55820(-2) 8.88591 74089 5.39692 31390(-4)
1.77588 33321  1.43440 25334(-1) 14.48082 84476  3.47903 89245(~6)

3.92341 42339  4.48825 14049(-2)
8.03341 29026 1.62664 21354(-3)

n =7

0.12109 26307 1.91710 69928(~5)
0.24232 84362 2.19890 67702(~3)
0.51467 87975  3.47491 37223(-2)
1.15144 90395 1.23314 12683(-1)
2.51266 73178 1.01686 82087(-1)
5.06117 00695 1.73888 84764(-2)
9.59792 84128  3.74716 11203(-4)
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the quadrature method described in the present paper is much better suited for the

types of Integrals chosen in these cases.

~t~1/t

o«
Table 4. Approximation of I = fOF(t)e dt by quadrature formula

n

GQ(n) = 2 wgn)F(tgn)) . SD(n) denotes the number of significant digits in
=1
GQ)n) given by SD(n) = -log10|(I—GQ(n))/I .
~3/2

Case (a): F(t) =t I = 0.23987 55439

n GQ(n) I~GQ{(n) SD(n)
3 0.23944 665 4.29(~4) 2.75
4 0.23971 613 ~9.61(~5) 3.40
5 0.23984 978 2.58(~5) 3.97
6 0.23988 337 -7.83(~6) 4.49
7 0.23987 293 2.61(~6) 4.96
8 0.23987 648 =-9.40(~7) 5.41
9 0.23987 518 3.59(~7) 5.82
10 0.23987 569 ~1.44(-7) 6.22

2
Case (b): F(t) = %n t(E—ilJ , 1 =0.22778 77455
t

n GQ(n) I~GQ(n) SD(n)
3 | 0.22871 474 ~9.27(~4) 2.39
4 | 0.22764 616 1.42(~4) 3.21
5 | 0.22781 639 -2.86(-5) 3.90
6 | 0.22778 079 6.96(~6) 4.52
7 | 0.22778 967 -1.93(~6) 5.07
8 | 0.22778 N5 5.91(~7) 5.59
9 0.22778 794 -1.97(~-7) 6.06
10 0.22778 768 6.90(~8) 6.51

Case (c): F(t) =4t | 1 =0.0
t

n 6Q(n) 1~6Q(n) SD(n)

3 0.00105 818 ~1.05(=3) not defined
4 |-0.00025 178 2.52(~4)

5 0.00006 996 ~7.00(-5)

6 |~0.00002 176 2.18(~5)

7 0.00000 738 ~7.38(~6)

"8 |[~0.00000 269 2.69(-6)

9 0.00000 104 ~1.04(~6)

10 |~0.00000 042 4.20(~7)

Acknowledgement. The authors wish to express thanks to Allan Steinhardt and Robert

Jones for able assistance with the computations discussed above.

8. Correspondence and asymptotic expansions. We first show that the

generalized approximants of a general T-fraction (with Gn # 0) also
correspond to a formal power series L, at O (and L_ at « ). L, and L,

0 0
are defined in (1.3) . Let

= ~c_,z =~ *** ~C_z .

(n) ~n
L0 1 n



Then
(2n) (2n)
€y (2 _ 120 ) - [c, (2)-1,""p, (2)Jezlc, (z)-Ly ™D, ()]
(8.1) D2n(®»™ Dy (2)+72D, 1 (2)
20H 2n
< fam® PMRagamr o el L,
D, (z)+zD, _, (z) 20+l

except for two values of <t for which the power of 2z 1s reduced by one. A
similar argument holds for odd generalized approximants as well as for the
correspondence of generalized approximants at <« .

Next we can prove:

Theorem 8.1. For T € R and z fixed, z € R , the (2m~1)th generalized

approximant Szm_l(z,t) of a semi-positive T-fraction describes the boundary of a
circular disk sz_l(z) whose radius pZm_l(z) is given by

|z|2m—1
(8.2) Pyp-1 €2) = .
IR IR T [N TSN L L P
vl 2v=1|"2v-2 2v~2{"2v~3
It is also true that
Szm(z,zr) € TZm_l(z)

and hence

Ca (#70)

m ETZm_l(z) s for nk?_Zm—l R rkgm .

Wk

Proof . z,7t) 1is the image of R under a linear fractional

S (
2m—1
transformation and hence is a circle (or straight line). Using an idea of Thron

[22] we have, for the circumference of this circle (in between steps are omitted),
= ]
2mp, , (2) f_m|s2m_1(z,r)|dt

- [P2a1 20 (2 Dpy (2)Cpp (2] ["_at
[y (2| 10Dy (23D 5 (22) | T1ie

2

anZZm—ll

IDZm-l(z)BZm-Z(z)-6

2me1 (0202 (2|
A recursion formula applied to the denominator then yields (8.2) . The other
assertions of the theorem follow from the formulas (3.9) .

For small 'zl , z# 0 , we have
|z|2m-1

(z) ~ —
P 2|tm(z)|¢d, _,[D, _.(0) LI D, ,(0) 2
2m~1| 2m-1 2m~2{ 2m-3

2m~2
" lzl
M im(z)/z
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Thus if IIm(z)/zI > A , then

(8.3) Pomn (2 < 2| P/ for |2 <5 .
Now assume that
C_ (z,7,)
k
(8.4) Tk ° sRz) , zeR .
D (z,7,)
nk k
Then F(z) € sz_l(z) , m>1l , and hence
[ (z,tk)
(8.5) x5 ro)| <20, 2y <2 | 2|2,
D, (z,7,) 2m-1
"

for o > 2m-1 and 'z < 6m s |Im(z)/z] > A . A formula similar to (8.3)
can be derived for Izl > Mm N IIm(z)/z' >X . One has
2m-1 -(2m-2)
I I < Gm!z!
by

(8.6) Pom=1 (Z) ~
2|1m(z)|d2m 1|92m_2(z)|
We are now ready to prove that Lo(z) is the asymptotic expansion of F(z) at

z = 0 with respect to either
+
Ry = [z : In(z) >0 , IIm(z)/zl > A)
or
R; = [z : Im(z) <O, IIm(z)/zI >Al .

The very simple proof was suggested by the proof in a theorem of B.C. Meyer [15] .
We have
¢ (z, T )l c (z T )

(n) s
|F(z)—L (z)l = |F(z) -

0 D, (z,7) D (z,t )
nk | nk k

- Lén)(z)

T)m(l't)|z|ﬂ+1 + Yn|z|n+1

for n > 2m(n) - 2 2a+ 1, as a consequence of (8.5) and (8.1) . The
proof that F(z) has Lm(z) as its asymptotic expansion at « follows a
similar pattern making use of (8.6) . We thus have

Theorem 8.2. Let
[ (z,rk)

F(z) =lm —%X——_ , zdR, 1, €R, k>1 ,
ks D_ (z, Tk) k -

"k

where C (z,tk)/D (z,7,) is a generalized approximant of a semi-positive

T-fraction. Then F(z) has Lo(z) (Lm(z)) as its asymptotic expansion at z = 0

(z = ») with respect to either R{ or R; , AD>O0 .

We conclude this section with the remark that formula (8.2) for

pzm_l(z) may be useful in determining when the SHMP has a unique solution.
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We hope to be able to prove that this is the case if and only if pn(z) +0 .
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MODIFICATIONS OF CONTINUED FRACTIONS,
A SURVEY.

W. J. Thron

Haakon Waadeland

1. Introduction. By a modification of a continued fraction bo + K(an/bn) we
shall mean a transformation of its sequence of approximants {Sn(O)} into a
sequence {Sn(wn)} for some sequence {wn} . Without further restrictions, in
particular on the sequence {wn} the concept is too broad as the following choice

of {wn} will illustrate. Let {xn} be an arbitrary sequence in & and set

-1
w = Sn (xn) .

Then the modification of {Sn(O)} is {xn} , which is surely undesirable. What
will constitute reasonable restrictions will be discussed in Section 2, where we
shall mainly be concerned with the question whether it would be advantageous to
redefine convergence of continued fractions following a suggestion of Hamel [11].
‘Supporting evidence from the work of Weyl, Hamburger, Hamel, Schur and Phipps will
also be discussed in this section.

In Section 3 we shall briefly survey the topic of converging factors.

If, as is done throughout most of these Proceedings, a continued fraction
is thought of as being generated by a sequence of 1l.f.t., then the idea of a
modification at least in the simple form LA , for all m > 1 , is a natural
one. Even if continued fractions are considered in terms of three term recursions

relations one 1s easily led to a modification as follows: if b, + K(an/bn)

0

converges to f then

b 1
£f=by+ =+ +

n »
by b +£(™
n

where f(n) is the n th tail (DN9) of the continued fraction. Thus an
(n)

approximation w ~ f could be expected to yield in

a a
b, + L+ eec 1
0 b_+w
1 n n
a value closer to f than the n th approximant. This idea of accelerating
convergence was used by Glaisher [8], Wynn [41], Hayden [12], Phipps [21] and
recently by Gill [3,6,7], the authors [30,33] and L. Jacobsen [14]. It shall be
discussed in more detail in Section 5. It is probably in this context that the

interpretation of a modification as a method of summability [17,p.327] is most

appropriate.
The limit points of the sequence {hn} (DN10) play an important role in the



theory of modifications because
(f - f w
- = n-1 n’ n
Salte) = 8o (D = = oA
n n
In Section 4 the behavior of {hn} for limit periodic continued fractioms is

analyzed. It proves to be convenient to look at this problem in the framework of
linear difference equations as worked out by Poincaré [24], Pincherle [22] and
Perron [19].

Possibly the most interesting use of modifications is for the purpose of
analytic continuation. The initial work was done by Waadeland [34,35,36,37,38,39]
and Hovstad [13]. The process was also analyzed by Gill [5]. Recently, the
authors [31,32] have made some further contributions to the subject. Here, what we
call the “wrong” modification plays a critical role. This will be discussed ia
Sections 6 and 7.

Section 8 contains some speculations on possible future applications of wrong
modifications. The results of Jacobsen [14] involving auxiliary continued
fractions look promising in this context.

2. A new look at the definition of convergence. After some initial hesitation

(see [17,p.10]) mathematicians soon settled on the definition that a continued

fraction is convergent if lim A“/Bn exists in € . Since it was then not
nree

generally assumed that a # 0 for all n , one had to worry some about Ad/Bn
being meaningless for an infinite number of n . This can be taken care of by
requiring that Bn # 0 for all but a finite number of n , or by assuming that
this is implied if we say that 1lim An/Bn exists, or, finally, by assuming as we
do here, that a #0 for all n 21 . A minor change was made a few years ago

and that is if 1lim A“/Bn = o then the continued fraction is considered to be
nree
convergent. Previously it was called unessentially (unwesentlich) divergent in

that case.

In 1918 Hamel [10,11] published two papers involving continued fractioms,
which did not receive much attention from workers in the field. When one of us
(Thron) found out about these articles around 1960 he was mainly interested in the
fact that Hamel used the 1.f.t. approach to continued fractions. That Hamel
suggested a new definition of convergence [11,p.42] somehow did not seem to be
important. However with the various applications of modifications that are now
known as well as certain other arguments that we shall mention below, it now seema
desirable to pay a little closer attention to what Hamel had to say. His proposal
was that a continued fraction b0 + K(an/bn) be called convergent if {Sn(wn)}
converged for all sequences {wn} with v € V({an},{bn}) « The dependence of
Vv on {an} and {bn} was not specified. Surprisingly, he also did not require
that all sequences have the same limit, nor that the convergence be uniform.

Possibly it was because of this vagueness that his remarks were not considered
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seriously at that time. More recently Phipps [21] also criticized the clasical
definition.

Hamel was led to his recommendation by encountering two situations where it
seemed more natural to work with sequences {Sn(wn)} than with the sequences of
approximants {Sn(O)} « He therefore complained that to insist on the convergence
of {Sn(O)} is really very arbitrary ("ist doch eigentlich sehr willkurlich").

One of the situations concerned the representation of functions bounded in the unit
circle. Here he found that it was much simpler to write every such function as the
limit of a sequence {Sn(wn)} (the a  ,b are now functions of z ) than as

1lim Sn(O) « Schur [25] had met with the same phenomenon somewhat earlier except
n>e
that he used a "continued fraction like" algorithm rather than continued fractions

themselves.

From quite a different direction Hamburger [9] in 1920 was led to introduce
the concept of complete (vollstandig) convergence for J-fractions as follows: A
continued fraction converges completely if {Sn(tn)} converges uniformly to the
same value for any choice of {tn} » as long as the t = are all real. He was
interested in characterizing uniqueness of the solution of his moment problem in
terms of J-fractions. It turned out that considering only the ordinary
approximants of the J-fraction was inadequate to "span” all possible solutions of
the problem. By adding the so called generalized approximants Sn(tn) >t real,
it became possible to do so.

The use by Weyl [40] as early as 1910 of iterated sequences of 1l.f.t. Tn(z) =
t1° eve o tn(z) , where the limiting behavior for all z in a circular disk played
an important role, may have had an influence on Hamel and Hamburger also.

Possibly even more important is that many useful continued fraction expansions
(among others for ratios of hypergeometric functions) are obtained from three term

linear recursion relations (see [17, Chapter 5])

n n ntl n nt2
from which one obtains
Pn/Pn+1 = bn + an/(Pn+1/Pn+2) ’
and recursively
Po/By =S (P /P o) -

It then may turn out, as was illustrated by Phipps [20], that 1lim Sn(O) is not
n>e

equal to Po/l’] .

Finally, it appears that further light can be thrown on all aspects of the
theory of modifications by analyzing the possible behavior of {Sn(w)} . As our
illustration in the beginning of this survey indicated the behavior of {Sﬁ(wn)}
is too varied to allow classification unless a substantial restriction is imposed

on {wl}.
n
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A good deal has been known for some time about the possible behavior of
sequences of 1l.f.t. {Tn(z)} (see [23],[1],[18},[2]). From (23] and [1] we can
deduce that for sequences {Sn(w)} , that is those satisfying the condition

Sn(w) = sn_l(o) » only three cases can occur, in which the sequence converges for

)

at least one value w The three cases are:

(a) {Sn(w)} converges for all w € €. Only two values ¢ and c, are taken

on by the limit function. The value c¢, is taken on at only one point w .

2

* *
(b) {S_(w)} converges only for w and w+ with 1lim S (w ) = c, , 1im S (w+) =
n n 1 n
noo noo
Sy s ¢ # cy -

(c) {Sn(w)} converges to only one value for all w €D # ¢ .
To analyze the cases (a) and (c) further let us assume that
tin 5_ @) = 1m s w1y = ¢ .
n n
n+oo n+e
Then we have

- (1_ (0
Sn("’(O)) - Sn(W(1)) _bh (- ) vy

r t
(hn + w(o))(hn+ w(l)) "

where r + 0, and

- fn_l)(w(o)— w)

h (f
(2.1) s 0 -5 (%) - n%n
(h +w)(h_ + w9

@D wyw_+ W)

(h, + W) @D _w(O))'
It is then clear that for w ¢ & {Sn(w)} converges to ¢ if w gL = [z:z is a
limit point of {—hn}] « We also note that this is true even if = ¢L . If
w=0o (and = g L ) the statement is also true. Thus the set D contains ¢ ~ L.
That D actually may be bigger than € ~ L (and herein lies the difficulty of

characterizing all possible D ) can be seen as follows. Let h + —w' , then

{Sn(w')} will still converge to ¢ if r_/(h_ + w') » 0 , which is certainly
™ %k
possible.

We now turn to the question when Sn(wn) * ¢ uniformly (that is independent

of the choice of {wn}) . An analysis analogous to the one given above shows that

this will be the case if, for all n > 1 , and some d > O
v €8® =y @ce~t, 2| <1/d 1 =e1

It is also clear that we have uniform convergence only if {wn} [~ H(d) for some
d> 0. Since L 1is a closed set €~1 is open so that, unless & = L , there

will be H(d) # § for sufficiently small d . These results extend somewhat a

theorem of Hayden [12,p.296]. He only considers the case W(o) =0, w(l) = o

0)

The point w = 0 1is a special point in our theory since Sn(O) + ¢ implies

Sn(”) + ¢ . The theorem is as follows.
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Theorem 2.l. Let the continued fraction bo + K(an/bn) be such that for two

points w(o) and w(l)
b 8@ - e - e
Define

L = [z:z is a limit point of {-hn}]

and assume that L # € . Then for d > O and sufficiently small
(d

" )=[z:Nz(d)nL=¢,|z|<1/d 1f ® €L ]

is non empty and Sn(wn) *> ¢ uniformly, if v € H(d) for all n > 1 and some
d>o0.
On the basis of this result it seems reasonable to formulate a definition of strong

convergence .

Definition 2.1. A continued fraction bo + K(an/bn) is called strongly convergent

to ¢ if there exist w(o) N w(l) such that
1lim Sn(w(o)) = 1im Sn(w(l)) =c,

n>e n>e
and if L # € . The sets H(d) c€~1L ,d>0 will be called the associated

convergence sets of the continued fraction.

We conclude this section with an open question and a discussion of the
relation between ordinary convergence and strong convergence.
1))

The open question is: Can L be an arbitrary closed set independent of w ,

w(l) and {rn} + 0 7 To the best of our knowledge the question is still open even

if w(o) =0, w(l) = w , A related question is can case (b) ever occur for
continued fractions?

Under (a) Sn(O) + cy is not possible since then Sn(”) > ey - Thus in this
case strong convergence and ordinary convergence coincide. Case (b) never occurs
with ordinary convergence and by our definition it is not subsumed under strong
convergence either. In case (c¢) ordinary convergence implies that O , ®* € D but
they need not be in € ~L . 1In particular if é = 1 then the continued fraction
does not converge strongly but does converge in the classical sense. Finally, if

0, gl) then the continued fraction may converge strongly without converging in

the ordinary sense.

3. Converging factors. The expression "converging factor” was first used in

continued fraction theory by Wynn [41] in 1959. The term had previously appeared
in connection with other infinite processes. To Wynn a converging factor is an
approximation to the tail of the continued fraction. The term was used by Gill [3]
in 1975 for the attractive fixed point of a limit periodic continued fractionm,
which makes the fixed point an approximation to the tail.

In 1978 Gill [4] sketched a more general theory of converging (or modifying)
factors by dividing the set of sequences {un} for which 1lim Sn(un) exists into

nre




equivalence classes according to the rule

{fpl~{wlte lims (n) =1im S_(w_) .
n n e BT i DD
Any sequence {zn} ~4{un} then is called a sequence of modifying factors of
{Sn(un)} . Clearly, the number of equivalence classes is equal to the number of
possible limits. Since for every ¢ € é there is a sequence u= S;l(c) so that

lim Sn (un) = ¢ , it follows that there is an infinite number of equivalence
n>e

classes. Gill then proceeds to restate the theorem of Hayden (generalized in
Theorem 2.1 of this article) in terms of converging factors equivalent to {0} for
convergent continued fractions. He thus arrives at sufficient conditions for {zn}
to be a sequence of converging factors equivalent to {0} . A theorem of Phipps
[20] which states:
If bo + K(an/bn) converges to ¢ and if {wn} satisfies
L 1+ v /o) Ye £ D =d%o0

then 1lim S (w ) = c + d;
_— n'n
n>c

can be used to decide when {wn} ~ {0} . That there can be at most two equivalence
classes containing constant sequences {w} follows from the classification
discussed in Section 2.

A natural question that now presents itself is: how do regions for converging
factors relate to value regions and how do the latter relate to regions H(d) . In
general value regions {Vn} are defined with respect to element regions {En}

(and only for continued fractions K(anll)) by requiring

(3.1) Sn (Vn) c Vﬂ_1 , for a € En ,n>1l
and
(3.2) E CV 4 -

Since we are concerned here only with a single continued fraction rather than with

a whole class, it is reasonable to take En = [an] for the element regions and

then simply speak of a sequence {Vn} of value regions for the continued fraction
K(an/l) if (3.7) holds. We shall omit condition (3.2) so that our value regions

are what sometimes are called pre-value regions.

We begin by investigating the sets H(d) . Each H(d) contains only a finite

number of —hn . Hence
-h ¢ c1a??y for >k (), d>0.
(Here C1(A) stands for the topological closure of A.) Thus = € Sn (H(d)) is

impossible — since it is equivaleant to —hn = S;l(”) € H(d) — for an >k ) .

Beyond this it can be shown that Sn (H(d)) is a bounded set in € . This is



44

(d)

useful information but it falls short of H being a value region.

Now assume that {Vn} , with V0 bounded, is a sequence of value regions for

the continued fraction K(an/l) . Then —hn "4 Vn so that, if we set

(3.3) Dk = N vn .
n=k

then -h_ ¢ Dk for n) k. It follows that Int D, NL = ¢ . (Here Int A is

k
the topological interior of the set A.) We thus have the following result.

Theorem 3.1. Let {Vv_} , with V., bounded, be a sequence of value regions for the
] R n o — —— ———— —

0
continued fraction K(an/l) . Assume that for some ko Dk (as defined in (3.3))
0

has the property that Iat Dko #¢ . Then

Int Dko NL=¢g.

For converging factors {un} ~ {0} one has the following result.

Theorem 3.2. Let {Vn} be a sequence of value regions for the continued fraction

K(anll) . If in addition O € Vn » 1>k and the sequence {Sn(vn)} of nested
sets shrinks to a point then a permissible choice for the =a th converging factor
b in {un} ~ {0} is w €V ,a>1l.

A concrete instance of this general result is given by Gill [7] in these

Proceedings. The choice

V= [v: Iv-+ 1' > JT;;T]

n
does indeed give a sequence of value regions since, if V € Vn , then
a
M
1 +v
so that, slnce it is assumed that
V|an| + Ian_ll <1,
we have

a
n

1+v

] = |2t < faf <1 - fary] -

Hence
A i ]
|1+v'>1 'v') 'an_ll.
If all Vn = V we simply speak of a value region for the continued fraction
K(an/l) .

Assume that V is an open bounded value region and assume that

lim sn(w(o)) = lim sn(w(1>) =c,

nre . n>e

where w(o) # w(l) .

It follows from Theorem 3.1 that VN L = @ so that for any
wEv {Sn(w)} converges. Since {Sn(w)} already converges to c¢ for at least

two values and since V contains an infinite number of points it now follows that
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Sn(w) + ¢ for all w& V. Hence ¢ €Cl V . We thus have Sn(w) + ¢ for all

w € V and possibly for other values also ( in particular w(o) and/or w(l) may
be outside of V ). It is possible that there be one value w* g V  such that
Sn(w*) + c* # ¢ .« It is also possible that the sequence diverges for all w for
which it does not converge to c . The additional possibilities are: (a) that the
sequence converges for two values only but that the limits are different, or (b)
that the sequence converges for at most one point. Case (a) can happen for a
periodic continued fraction with two fixed points of equal modulus, where V can
be one of the invariant circular disks. Whether case (b) can occur is not known.
We now have proved the following result.

Theorem 3.3. Let the open bounded set V be a value region for the continued

fraction K(anll) Then the following possibilities exist:
a) {Sn("’)} +c€ClV for all we V ,

or

B) {Sn(w)} converges for two points only to different limits,

or

Y) {Sn(w)} converges for at most one W .

It may be of interest to recall [28,p.120] that case o can occur even though the

sequence of nested regions {Sn(V)} does not shrink to a point.

4) Applications of the Poincaré - Pincherle - Perron theorem and the convergence
of {hn} in the limit periodic case. In 1885 Poincare [24] considered m + 1

term difference equations

(n) (n) veerd® -
(4.1) P+ B b P, Hee4C P =0 ,ndm
where lim cén) =c k=1 ,°°¢, m .
nre
He showed that
(4.2) Un P /P ) =5y,
n+o

where yj is one of the roots of the characteristic equation

(6.3) yU 4 ey 4o =0,

provided all roots are of different absolute value. Poincaré conjectured that "in
general™ the limit would be the root with the largest absolute value. Later
Pincherle [22] and Perron [19] also investigated the subject and showed among
others, that for each Y5 (provided ¢, * 0) there is a solution {ng)} such

that Péj)/ Pﬁfi + yj » The situation becomes considerably more complicated if
some of the roots are of equal modulus.
The theorem and its various extensions and improvements are of interest to us

not only because we want to know
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1im h_ = 1im B_/B
e D o n n-l

for limit periodic continued fractions a result which clearly is a special case of
the PPP theorem, but also because some of the tools employed in the proof may be
helpful. Thus we note (see also [17, Sec. 5.3]) that the space of solutions of a
gystem of m+ 1 term difference equations is a linear vector space of dimension
m over € .

Moreover, in the case where all

= C

cén) K * k=1 ,¢*s,m;n>1l,

it 1s easy to see that all sequences {yE} are solutions of the system (4.1) and
hence the most general solution is (the * indicates the pure periodic case)

* m n
(4.4) P_= | vy .

L) ak k

If the ¥ are arranged in order of decreasing absolute value

72| >[5zl >+ |5l

then 1t is clear that (4.2) holds for that value j for which a,  # 0 , o =cce=

h| 1

aj-l -0 .
For the limit periodic case one would expect formulas similar to (4.4) but
with additional error terms.
" In our paper [32] these ideas are in the background. It might have helped the
understanding if we had mentioned this material in that article. So we have in the

periodic case
* n-1 n-1 n n
Ay =-yyp(yy - ooty ) T eyt ey
where ¥y » ¥o are the solutions of the equation

2
Y‘by—a:O,

w 172, -a "
and %y yr v 2Ty
2771 Yo 27N

Similarly
* n n n n
By= Gy #eetyy) = By F Byyy s
where
4!
- > "2 ~
1772 1772

In the limit periodic case we obtained for

n
B Y Bl T Yy

where § =a -a,n =b -b.
n n n n
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This is an example of our earlier assertion that for the limit perlodic case one
would exﬁect,formulas similar to (4.4). It is also of interest to know which
solutions of the difference equation have y; as their major term.

To apply these ideas to limit periodic continued fractions with 1im a =a,
1lim bn = b, we first note that the fixed points of the transformation
(4.5) w>a
btw
are the solutions of the equation

x2 +bx-a=290

while the equation we get from (4.3) with ¢ = -b , ¢, *-a,n= 2 is

y2 -bx-a=0.

We therefore have
1EN KB,

In the periodic case

B* B* B* n
n_ - vy w.n_ 1n = Y2

* * n-1 n-1
Bn—1 Bn—l B1y1 + B2y2

n -—
«(22y 7%
¥y n
1-(22)
b4
the attractive fixed point of (4.5) then —(b+x1) 1s the

If we denote by x

repulsive fixed point provided

e U [P
b+x1
Then X = 7Y, and ¥y = b+ % (this is a change from the notation mentioned

above) so that one gets

b+ 2
So- e = (1) e
Pa-1 b))

1

Making use of this formula we can now prove the following result, where bn =b=1

Theorem 4.1. For the limit periodic continued fraction K(anll) with

1im a =a# 0, 'arg (a+1/4)' <%, a#-1/4 , there exists a d(a) such that for
ny>e

d =max | a -a] <d(a),n>1,
“mzn'“‘ |
¥ a-v
'hn - (1+x1)' < K(a,p) v§1 P,

where
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! <p<1l.
1+x
1
In particular it follows that lim hn =1+ Xy .

nr*e

Proof: From (4.6) it follows that
*

h =1 + 2 feeed 2
n 1 1
satisfies
1+2x X. n
- (1+x )I l_____l . 1 .
1-p 1+x
1
Now define
&n =h - (1+x1) , 5n =a -a,
set

q= 'xl/(1+x1)|

and introduce q
that

so that q < q' <1 . Then one can find an n' = n (a,q’') such
. <L a-anf+
|§n.|=| - e} <L gL+ x| -
Next, there exists a dl(a,q') such that for 'am - aI < d1 for m=2,3,***,n'
|€at| = |Par - (x| < =g + x|
For n > n' , and assuming IEn_ll < '1 + xl' , one has (using the fact that
a= x1(1+x1))

|g|-|1+x1—(1+____aﬁ__)|
" B+
| x(x) +x B ) - x (I4x)) - anl
| Thx, +E |
<l 5 II Eat l ,
AR
We next show that
(4.7) |£n| < (1-q") ' 1+x |

will hold for all n > n' provided dn is appropriately restricted. We have

|En' 5}' * '(l—q')' 1+X1 ' + dn

Q' |
d
(58 | [ oy

< (1-q") |1+x1’
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provided (4.7) holds with n replaced by =n-1 , and provided

d
D < (1-q') '1+x ’ {q'-q) .
q' 1+x1 1 q'

Hence (4.7) will hold if dn < d2 (a,q') = (l—q')(q'—q)' 1+ x1 '2 for n > n' .
Setting p = q/q' so that 0 < p < 1 one now can show that
ti' Vga g > n'
'En' < K(a,p) ok P , for m>na' .

That En‘ satisfies the inequality can be assured by a proper choice of K(a,p) .
Now assume that (4.8) holds for n -1 > n' . Then (we shall also assume that
K = K(a,p) > 1/q" '1 + xll)

[5 0] faal * 4 I | é
EE 1= | fignﬂlns [, [a" [ | |1+":lq'
<K nil n-v-1 - 2 n-v
< pv-lp d_+Kd_ szlp d_ .
Finally, we show that § pn-'V dV + 0 provided dn +0 and 0<{p<1l. Let
v=1

d > d for all n > 1 and let € > 0 be given. Note that

n-k
I "V a < Pt .
v=1 1-p

Determine k so that

k
pd¢eE.
l1-p 2

Next determine n, so that d < e/2k for n > a,, 0 {m<k. It then
follows that

T oa-v otk n-v k-1 0
vzl P dv = vzl P dv + p dn-k+1 +eeet+ p dn
k
<Pd4+yq +eeet d CE4 Eag,
= 1-p n-k+1 n 2 )

This completes the proof of the theorem.
For a = -1/4 the following theorem can be proved.
Theorem 4.2. If |5n| < 1/16n(n-1) , n>3, ’52' £1/8 and a = -1/4 + Sn then
n, =h, -1/2 satisfies
n -2|<¢<3,n>2.
n 8n 8n -

Proof: Define H = [2: ,z - 5/8n| < 3/8n] . Next observe that



- - s
no=h -la 1/4"'5:1__1_._1_.,_ 1/448
n
n 2 hn_1 2 2 nn_1+1/2
a Mn-1 + 25n .
2n _1+1 Znn_1+1
We then have for vE€ H _,
v - 5|¢3-__1 .
20+1  8n 8n  4n(2n-1)
This result is most easily obtained by checking on the images of the real axis of
the values v = 1/4(n-1) and v = 1/(n-1) in Hn_1 . Now
25, 2 +2(n-1) . 1
Znn_1+1 16n(n-1)(2n-1) 4n(2n-1)

since

' m + 1| >1 4+ 2 = 2(2n-1) = _2n-1
n-1 4(n-1) 4(n-1) 2(n-1)

Hence the theorem follows by induction if it can be shown that N, € H2 . We have

and therefore

3 Ao S+ [ <L+l 3,
"2 16

16 16 16 2 8 16

5. Acceleration of convergence. To determine {wn} so that {Sn(wn)} converges

substantially faster to f than {Sn(O)} is, at least historically, the main
reason for studying modifications of continued fractions.

Glaisher [8] appears to have been the first to have suggested a modification
for the purpose of accelerating the convergence of the continued fraction

(5.1) 1 4L l:2 .. n(nzl) ...
1+ 1 + + 1 +

s
which is known to converge to %/2 . He suggested choosing v, =n. The reason
for his choice is that w,o=n is an approximate solution of the recurrence
relation

(5.2) W= ®n ,

n 1+wn+1

which the tail of the continued fraction must satisfy.

Wynn [41] in 1959 extended the method by suggesting that one obtain
approximate solutions of (5.2) of the form
(5.3) w o= ] djnj .
-k
Solutions are not in general unique and in particular if one happens to hit on

w, o~ -hn one obtains a "curious unwinding procedure” where Sn(wn) + o | gince

—hn - S;l(w) . This is the explanation suggested by Hayden [12,p308]. Hayden
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claims, incorrectly, that the —hn (his “"critical” points) form a solution of
(5.2). The actual situation is that v, = -1 —hn_1 is a solution of (5.2) so that
1f one 1is dealing with a situation where a > sufficiently fast, one may indeed

have L ~h, _, @and thus obtain the unwinding procedure.

1
Apart from the difficulty of determining which choice of the d, is likely

to lead to a good approximation for the tail, there also has not beenja systematic
study of the acceleration of convergence one can expect to obtain. Finally, we
know of no investigation which addresses the question of how large should one take
the m in (5.3). Nevertheless the method seems to work in some cases, in
particular some involving a, + 0 and a, o,

Phipps [21], from a somewhat different point of view and more recently and
quite systematically L. Jacobsen [14] have studied the problem of approximating the
tails of continued fractions of a more general nature. One of the cases they treat
is that of limit periodic continued fractions of period k > 1 . An account of
Jacobsen's work is contained in these Proceedings. Very briefly, she studies

- ]
continued fractions K(anll) , where 'an a) ’ + 0 and where the auxiliary

1]
continued fraction K(aé/l) as well as all of its tails f(n) are assumed to

converge. It is further required that all f(n)' are explicitly known. The
modification then is {Sn(f(n)')} , which, under reasonable conditions, can be
shown to converge faster to f than {Sn(O)} does.

The most accessible case has been that of limit periodic continued fractions
‘K(anll) of period one. Of the possible cases of 1lim a =a, the present
authors [30] treated arg (@a+1/4)| <®m,a#0,®; and a=-1/4 . We shall
describe their results below. The case a = 0 is studied by Gill [6] in these
Proceedings. We know of no systematic work on the case a = ® , beyond the special
cases investigated by Glaisher and Wynn.

The approach in [30] is to use the attractive fixed point % of

w2
l+w

for v in the modification. In the case a = -1/4 we use the single fixed point
-1/2 for LA If a = 0 the attractive fixed point is zero so that the
modification is the same as the original sequence. By choosing the attractive
fixed point of w * sn(w) Gill [6] was able to obtain some acceleration of
convergence. It appears that this approach might also be useful in case a * .
We now consider the case arg(a+1/4)' <{w a*0 , >, -1/4 . From (2.1) one

deduces easily

f -5 (x;) h X
(5.4) n 1 = n | ’ 1-_1 1.
f - Sn(O) hn + X f(n)
For x, to be the attractive fixed point of (5.2) it suffices that x, be a

1
solution of

1

(5.5) X" +x-a=20
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and satisfy

X
(5.6) | 1 | <1 .
1+x
1
We note that —(1+x1) is the other solution of (5.5) and is the repulsive fixed
point of (5.2).

From Theorem 4.1 we know that 1lim hn =1+ x, and we also know how fast the

1
limit is approached. This allows us to improve somewhat on the bound on
'hn/(hn + x1)| . For all the results that follow we need to have fairly

substantial restrictions on dn = max 'a - a| . In other words our theorems are
mwn
true for tails of the limit periodic continued fraction.

In [30] we obtained

h 2
(5.7) n 51+_|_§1_|.,

n+x1

where
(5.8) D = D(a) = |a+x1' - |x1| s

which is positive because of (5.6). Using Theorem 4.l (see also [30,pl61]) we can
conclude that
1+x

h
1im o = 1
n*oe hn""X 1+2x

=Ll (1+ 2 .
1 1 2 ( /1+ha )

Since it is assumed that Re Y1+4a > O it then follows that for n sufficiently
large h
F =’._n|>L.
n h_+x 2
n 1
It is also clear that there is no upper bound on lim Fn = F(a) .

For the factor ' 1-x / f(m) ' the estimate obtained in [30] is

< hdn N
- < ,m>n
£(m ]xlln(a)
One thus arrives at the following result
F - S (x,) d
.(_____n__l_ G(a) —0_ ,
f - Sn(O) D(a)

provided dn < d(a) , for all n > 1 . The constant G(a)/D(a) can become quite
large for a near the critical ray z =-1/4 -t , t € [0,®) .
The case a = -1/4 , x) = -1/2 differs from the general case in a number of
respects. Among others it is not known when K(anll) will converge. That
(5.9 a - (-1/4) 5—-1—2—,n21,
4(4n"-1)
is sufficient for the convergence of the continued fraction follows from a result

of Pringsheim [17,p.94] of 1899. Strangely enough Szasz [26] seems not to have
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been aware of this since he gave a weaker result around 1920. In another article

[33] in these Proceedings we consider the bestness of (5.9) and obtain some partial
results.

While in the previous case we were able to show that Fn 1s bounded for a
fixed a , this is not the case here. From Theorem 4.2 (in a sense an improvement
of Lemma 3.2 of [30]) it follows that

h
—_1 | <2n+1.
h - 1/2
n
Nevertheless the modification {Sn(—1/2)} will converge faster than {Sn(O)} at

least in three cases which were studied in [30]. The results are as follows.

r __ﬁ 1+ ﬁ + ZE__ ) , for d < -—__E___

20° 4(4n>-1)
£ o5, <J 4d“+1 nt2) | for 4 ¢ —d «€>1,d>0
f - 5_(0) = n=""gn ’ ’
n (n+1) -2d 2n

, 0<r<1l.

mtl
SrHET (240) , for 4 < £®

(1-r)(1-4c"11y

It is possible to accelerate convergence even more by an iteration of

modifications. To accomplish this we [33] derive a continued fraction

b0 + K(an/bn) whose nth approximant Sn(O) is Sn(wn) , where {Sn(wn)} is a
modification of the continued fractions K(an/bn) « In the article ([33], which is
a part of these Proceedings, various consequences and applications of this
construction are developed for special cases.

There has been little work done so far in the important area of combining
truncation error bounds with results on acceleration of convergence. The only case
in the literature we know about is given in [29]. Here Stieltjes fractions, that
is continued fractions of the form

K(bnzll) R bn >0,n>1,

are studied. The result we are referring to is the following.
Let K(bnzll) be a limit periodic Stieltjes fraction with 1lim bn =n>0.

mre
Set
g8, = max ,b - ' .
Then for all z , with 'arg z| < n/z
n 2
£(z) - Sn(z,xl(z))' <HGL2g, T (—2—) .

m=2 J/k_+ /1l+k
m m

Here H(bl,z) is a positive quantity depending only on b1 and z ,
xl(z) =-1/2 + /1/4 + bz ,

and
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x = (coe 1/2 z 2 .
n 4b z
n
Since the results for limit periodic continued fractions discussed here are

usually only valid if the dn = max ’a —al are sufficiently small, it is true
: m>n
that in most applications these results would apply only to certain tails of the

continued fraction under consideration. The question thus arises how can the
knowledge we have about the behavior of the tails be utilized to make statements
about the speed of convergence of the whole continued fraction, or its
modification.

The question is taken up both in [17,Theorem 8.13] and in [30,pl66]. Not
surprisingly a satisfactory answer depends on knowing the location of hk for
fairly large values of k .

Finally, it would be of interest to know when, if ever, for a given K(an/bn)

there is a Yo € é'v L , provided L # ¢ , such that

Sn(Vo) -c
Sn(v) -c

+0

for all v # Voo V € €-L . It is not even clear that in the limit periodic

the attractive fixed point of w + 2 .

case V) = X,
btw '

0

6. Wrong modification. Background and motivation. Given a periodic continued

fraction of period one

(6.1) a a a ,,,,a#0.

b+b+db+
Let X and X, be the fixed points of the linear fractional transformation
(6-2) W"-a_,

btw
that is the two roots of the quadratic equation
w? +bw-a=0.
It is well known [17, Thm.3.1l] that the continued fraction (6.1) converges if
'Xll * Ile or x1 = x2 ’
and diverges if
= # R
|x1' 'xz’ and % xz
In case of convergence the value of the continued fraction is equal to the fixed

point of smallest absolute value, the attractive fixed point.

Since
a=-xx and b = —(x1 + XZ)
the continued fraction (1) can be written in the following way:

6.1") *1%2 X L. %2
—(x+%,) + “(x 4%,) + 4 “(x +x,) +




Prom this we immediately see that

(6.3) Sn(xl) =%

which in case of x being the attractive fixed point, is the value of the
continued fraction. Using Sn(xl) instead of Sn(O) then represents a "short-

cut” to the value of the continued fraction. This observation is the basis for the
method of using the attractive fixed point in accelerating the convergence of a
llEiE periodic continued fraction, as already described earlier in the present
article.

But also if X is the repulsive fixed point, or even in the case lei =
lle s ¥ + X (6.3) holds. A natural question to ask is if the property that
{Sn(xl)} converges 1s carried over to limit periodic continued fractions, also
when %) is not the attractive fixed point. As we shall see later the answer is
"yes, under certain strong conditions on the rate at which a *a and bn + b ."
(Keep in mind that in case of the attractive fixed point no such condition was
needed for K(an/l) »a >a. In the parabolic case a = -1/4 , however,
additional conditions were needed.)

Following the established tradition we shall call {Sn(xl)} the right
modification i1f x  is the attractive fixed point of the limiting linear

1
fractional transformation w * 3%; and the wrong modification 1if X is the

repulsive fixed point. Also in the parabolic case we shall use the word right
modi fication, whereas in the elliptic case we shall use neither.

In the periodic case ii: Sn(xl) is not the value of the continued fraction
when x is repulsive, and there is no reason to believe that it is the value in

the limit periodic case except in Vvery special cases. But what is then the reason
for computing such a value? Is the value useful for any purpose having to do with
the continued fraction? In order to answer these questions we shall go back (in
time) to a special case where a certain convergence problem was handled in a way
where fixed points were not mentioned, which, however, turned out to be a "fixed
point method” of the type we shall discuss here.

In the paper [34] from 1964 are studied T-fractions

6.4 1+dz+ K Z
(6.4) o? n=1(1+d)

nZ
introduced by Thron ([27] in 1948. It is proved that if a function F 1is
holomorphic in a sufficiently large disk zl <R,R>1, FO) =1, and

(6.5) |r(z) - 1| <K 1in |z| <R

for a sufficiently small K > 0 , then the corresponding T-fraction (6.4) is limit
periodic with dn *-1 as n* >, Furthermore, the T-fraction converges to

F(z) uniformly on any compact subset of the open unit disk z| <1 . In the
first version of the theorem one had to take R > 2 and K < % -1, but some
improvements are made in the paper. On the other hand it is proved that no R < 1
works. Hovstad [13] proved in 1975 by a refinement of the method, that any R > 1
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works when matched with a sufficiently small K . The convergence statement of the
theorem, that is that the domain, where the T-fraction converges to F(z) , is
the open unit disk, can not be improved, as the example F(z) =1 shows. This
function satisfies (6.5) with any K in any R-disk, whereas its T-fraction

expansion

(6.6) 1-z+-2. -z ...
1-z + 1-z +

converges to 1 (=F(z)) in 'z' <1l but to =-z(#F(z)) in 'zl > 1 (in both cases
uniformly on compact subsets). The unsatisfactory situation that rather strong
conditions in a disk lzl <R, R>1, imply convergence properties only in the
the unit disk was taken up in the paper [35] from 1966. The basic idea of this
paper can be described as follows: Computing the value of (6.4) 1is to compute

1im Sn(O) , where

n+0
6.7 S (0) =14d .z + 22— _—Z LX) —Z_ .,
(67 n 0 1+d,z + 14d z + +1+d z
1 2 n
This means to “"cut off the tail”.
(6.8) z z cen
1+dn+1z +~1+dn+2z +

or to "replace the tail by 0" (as one does in computing partial sums of a series).
But rather than replacing the tail by O it should be replaced by what the tail

"looks more and more like”, namely

(6.9) 2 EZ _Z_ 4ees
1-z+ 1-z + 1z ’

or better: by the value (6.9) converges to in 'zl <1, namely z . This leads
to the following modified approximant:

(6.10) S (z) = 14d z + Z z con z
n 0 1+d1z +14d,z + +1+(dn+1)z

(Observe that in the particular case of (6.9) with 1 - z in front, all Sn(z)
are equal to 1 , and hence S Sz) > 1 in the whole plane in this case.)
It turns out that this modification leads to an increase in the region of
convergence to the "right" function F . The first result is that
lim Sn(z) = F(z)
nire
uniformly on any compact subset of lz' < R (under the same conditions as in the

paper [12]). The paper contains an improvement to lzl < % R , and in 1975 Hovstad

[13] extended it to amy R' < R, again matched with the proper strength of the
boundedness condition. See also [37].

In [35] the emphasis was on the extension of the convergence region, and
nothing was stated explicitely about acceleration, but it is an immediate
consequence of the formulas (2.3), (2.4) and the Lemmas 1 and 2 in [35] that

F(z) - Sn(z) .

-— as n**® in |z| <1l
F(z) - Sn(0)~
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80 actually there are two benefits of the transition from Sn(O) to Sn(z)
acceleration of convergence and extension of region of convergence.

Fixed points are not mentioned in [35], but as we shall see, the method used
is a fixed point method. The limiting linear fractional transformation is (since

dn + -1)

(6.11) w2z .
1-z+w

This has the fixed points z and -1 . In |z| <1, z is the attractive and -1

the repulsive fixed point, in |z| > 1 , -1 is attractive and z repulsive. (For
z = -1 the transformation is parabolic, for lzl =1, 2z#%*-1 it is elliptic.)

Hence the modifications are as follows:

(Sn(Z) is the right modification ’//)7y
|z| <1 ¢

Sn(-l) is the wrong modification
\

S (z) wrong modif.
S,(-1) right

/444;;9 modif.

: 'n(Z) right modif. ‘
H

]

1

(
Sn(z) is the wrong modification S ( 1) wrong modif. l]

> /

ksn(-l) is the right modification
We observe: When Sn(z) is the right modification, it leads to acceleration

2£ convergence, when it is the wrong modification (or a modification that is

neither right nor wrong), it leads to analytic continuation of the function

represented by the continued fraction (6.4). The use of Sn('l) for the two
purposes is not mentioned in [35], but is briefly touched upon in the paper [36].
There it is proved that if a function G , holomorphic in a domain lzl >p (p < %)
except for a pole of order 1 at infinity, and subject to a sufficiently strong

boundedness condition
6(z) +1 ] <K for lzl >p,
z

then it has a corresponding T-fraction (6.4) (correspondence at *« ) with

dn *> -1 , that converges to G(z) uniformly on compact subsets of the upper
Riemann hemisphere z} > 1 . The use of Sn(—l) in this case will accelerate the
convergence to G(z) in |[z| > 1 and extend the region of convergence to G(z)

Izl > p' for some p'€ (p, 1).

The above discussion of convergence of T-fractions provides an answer to the
questions about the purpose of the wrong modification. At least in the special
cagse discussed it increased the region of convergence and led to analytic
continuation of the function represented by the continued fraction. In the next
section we shall see some newer and more general results on the use of the wrong

modification. Observe that (at least so far ) the use of the wrong modification
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heavily depends upon the existence of a variable in the continued fraction. This
i1s not the case for the use of the right modification.

7. Analytic continuation and singularities by use of the wrong modification. In

general, if we have a limit periodic continued fraction where the elements are complex
functions of a complex variable, the fixed points of the limiting linear fractional
transformation, xl(z) and xz(z) are functions of that variable. We may then
have a situation related to the one described in the preceding section: In one
part A of the plane xl(z) is attractive and xz(z) repulsive, in another part B
it is the opposite. In "nice cases” le(z)l = 'XZ(Z)I on a separating curve
between A and B . The use of Sn(xl(z)) hence represents the right

modification in A (with acceleration of convergence as a possible benefit) and the

wrong modification in B (with extension of the region of convergence from A to
parts of B as a possibility), all under certain more or less strong conditions.
John Gill seems to have been the first one to suggest use of the repulsive
fixed point more generally for analytic continuation. In the paper [4] he
introduces, in the study of sequences of compositions of linear fractional

transformations, the concept of modifying factor (modifying sequence) and points

out that the modifying process in some instances may be regarded as a summability
method, that "“not only suma a divergent continued fraction, but causes it to
converge to the 'right' function”, and illustrates this with the example

Rz 4 =Rz 4 ZRZ 4ees, R > 0 ,
Rtz Rtz Rtz

with z as a modifying factor. (This is essentially the same example as the one
mentioned in the remark after (6.10).) In the paper [5] he continues along the
same line and proves among other things Theorem 1 below for compositions

Tn(w) = tl o t2 o eses o tn(w)

of non-parabolic linear fractional transformations tn with finite fixed points

a , B , so that
n n
w) - a w-a

tn( ) n = n

_ n y — ’
tn(w) Bn w Bn

and such that e *a, Bn > B, Kn + K, where o and B are finite and

distinct:
THEOREM 7.1. SuEEoseIKI <1, or lKI =1,K#*1 and 1 |Kn| =0 . If
=1
there exists an ho > 0 such that "
-]
(i) nzl Ian - an-ll {=,
(1 nzl ['Bn - Bn—l'. I 'Kj-ll 1 <=,

h0+1
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.. K31 =0

(111) lim [l“n -8
h0+1

n*e

n

are all satisfied, then 1im T (u ) exists.
== — e nn —

The relevance of this to our present discussion may be indicated as follows.
If we, for simplicity's sake, restrict ourselves to the case lKl <1:a and B
are the fixed points of the 1limit transformation t = lim t, , @ the attractive,
B8 the repulsive one. The conditions (i) and (ii) have to do with how fast one

wants o togoto a and Bn to B . (Observe the stronger conditions on the

repulsive fixed points.) The condition (iii) has to do with the modifying sequence
{un} itself. It obviously tends to B8 , and Tn(un) may be regarded as a

“generalized wrong modification". If the tn's are linear fractional

transformations of the form an/(bn+w) , that is, transformations that generate
continued fractions, and we take (if possible) W, s B , we have the wrong
modification in the earlier described sense. Based upon this and an example
related to the one mentioned earlier from [5,p78] he “suspects that, in the case of
certain continued fractions, the use of the repulsive fixed point as a modifying
factor might analytically extend a function from 2 dinto T ." (2 and T being
the same as A and B in the beginning of our present section.) Gill points out,
that in the T-fraction-case described in Section 6 of the present article
convergence of {Sn(z)} to a continuous function in the annulus 1 < Izl < %. is a
simplg consequence of Theorem 7.1. One difficulty with Theorem 7.1 is that it, in

many cases, cannot "help us across the border” between A and B . 1In smooth

-]
cases the limit transformation is elliptic on the border, and, unless il lKn’ =0,
this case is not covered in the theorem. A simple illustration is the 2oitinued
fraction
2+ 2+ oeee
1-z 1-z
For this continued fraction it is easily seen, that with u = z for all n the

conditions of the theorem are satisfied in [z} > 1 . Hence {Sn(z)} converges
there. On the other hand the theorem fails to work on Izl =1.

In two articles [31] andd [32] from 1980 and 1981 we studied the wrong
modification for limit periodic continued fractions.

a
(7.1) K (2), with a_+>a, b +b.
a=l b n n
n
The two papers have a different approach. In the paper [31] we do not aim
directly at the convergence of {Sn(x)} » X being a fixed point of the limit

transformation, but only at boundedness. This is obtained by putting strong
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conditions on the rate at which a, > a and bn *b . The following lemma on

boundedness is one of the two crucial points in the proof of the results in [31].

LEMMA 7.2. Set

§ =a —-a, d < max ’6 ' s

n n n v
van

nn = bn -b, e, > max ’nvl .
v2n

and let x be one of the solutions of the equation

Finally, set

If there exists a Q , 0< Q<1 , QP <1, so that
d + (|x|+|b + xl de,, = an“ ,nz1,

where Z
n=

kn converges, then there is an my independent of N , such that
1

mHl ®
ISlgm)(x)—xl = ) kn » W EWy .
bx n=1
Observe that this result is not restricted to the repulsive fixed point, but covers
the other cases as well. This 1s important in the application for analytic

continuation, since one needs to operate in a connected part of the plane having

nonempty intersections with both A and B . (We even need more than that.)

The other crucial point is correspondence. In the paper the investigation is
limited to two types of continued fraction expansions, general T-fractions and
C-fractions. 1In both cases it is proved that the sequence of modified approximants
corresponds to the formal power series to which the continued fraction in question
corresponds.

From the boundedness and the correspondence the convergence follows by using a
recent result of Jones and Thron [16] to the effect that if a sequence
{Rn(z)} of functions holomorphic for z €D is uniformly bounded on compact
subsets of the region D , if further O €D and if finally the sequence
corresponds to a formal power series L at z = 0 , then {Rn(z)} converges,
uniformly on compact subsets of D , to a holomorphic function f(z) with
L= Lo(f) .

Before stating the main result of [31] for general T-fractions some
motivating remarks indicating why we are studying such general T-fractions may be
of use. We first recall that under certain conditions there exists for a pair

*
(L,L ) of formal series



61

a general T-fraction
F z
n

14G z
n

n=1

* *
corresponding to L at 0 and L at infinity. If L and L  happen to be
*
expansions of functions f and g , we shall write L = Lo(f) , L =1L_(8) -
In two recent papers [38,39] Waadeland studied the behavior of general

T-fractions
(7.2) K
n=1

F 2z
n_),F #0,G #0,nz1,
1+an n n

and obtained results analogous to the one for ordinary T-fractions. In the first
paper he proved that if L = Lo(f) R L* =L_(g) , where f(z) and g(z) satisfy
certain boundedness conditions at z = 0 and z = ® , respectively, then there
exists a general T-fraction which corresponds to L at z =0 and to L* at

z = © , The general T-fraction satisfies

lim F_ = 1im (-G ) = F # 0 ,
nre o n>* o

and converges to f(z) for Izl < 1/|F| and to g(z) for 'zl > 1/F .
The second result is the following. Given 1 < R' < R there exists a
K(R,R') > 0 such that if (here we have normalized F to be 1)

(7.3) 'Fn - 1| < K/R" IGn + 1| <K/R", nz 1,
then the general T-fraction (7.2) whose elements satisfy (7.3) corresponds at
z=0 toan L=Lyf) , vhere £(z) 1is holomorphic for |z| <R' and
corresponds at z =% to an L =1L (g) , where g(z) 1is holomorphic for
lzl > 1/R' .

The main result in [31] for general T-fractions is:

THEOREM 7.3. Let the general T-fraction

K
n=1

F z
n ,F #0,6 #0,ne2l
1+an n n

satisfz
IFn—ll <K/Rn,'Gn+1| <KMR" ,nzl,

%
for some R >1 and K> 0 . Let L and L Dbe the formal power series to which

the T-fraction corresponds at 0 and = , respectively. Then

L = Ly(f) ,

where f(z) 1is meromorphic for all Izl <R, and
f(z) = 1im S _(z,z) , lz' <R .
e O

Similarly,
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*
L = Lm(g) ’ |

where g(z) 1is meromorphic for 'zl > 1/R , and
g(z) = lim s _(z, -1) , 'zl > 1/R .

mo

For limit periodic regular C-fractions K(anz/I) N an > a +# 0 we may without
loss of generality assume o =1 . The two modifications are in this case
Sn(x(z)) , Where

x(z) = - L+/1 4+, ,
2 4

with + for right and - for wrong modification. Here + /v shall mean the root
in the right half plane (including the positive imaginary axis but excluding the

negative imaginary axis). It is proved that under the conditions

-1|=YnQn.0<Q<1, ] v. =0,

(7.5) Ia L

n

"D sufficiently small” we can find a sector with vertex at z = -1/4 and with a
non-empty intersection with the sets {z : Imz > 0 , Re z < -1/4} and {z : Im z
< 0, Re z < -1/4} such that in the sector the modification {Sn(x(z))} with +
in (7.4) for Imz > 0 and - for Im z < 0O converges uniformly on compact
subsets of the sector to a holomorphic function. In the upper part of the sector
this 1s the right modification and hence the value of the continued fraction, in
the lower half plane it is the analytic continuation of that function. 1In a
similar way we can obtain an analytic continuation "from below"” across the ray
x € =1/4 of the negative real axis. The condition "D sufficiently small” can be
replaced by D < » at the cost of replacing the continued fraction by a tail of
the continued fraction, in which case the value of the continued fraction itself is
meromorphic. This result in turn leads to one of the rare results on the location
of singular points of an analytic function defined in terms of continued fractions:
Under the above conditions the meromorphic function to which the continued fraction
converges in € ~T (T = {z : real and 2 < -1/4}) has a branch point of order 1
at z =-1/4 .

That limit periodicity alone is not sufficient for this conclusion to be valid
is i1lustrated by

log(l+z) = Zz R

1+ K (Bn z/1)

n=1
where

=1 1 E
Pont1 4+8n+4’n'0’

=1l- __1 _ . nz1
Pon 4 8+ 4’ ’

which has a logarithmic branch point at z = -1 .,
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In the paper [32] the approach is different. The key result there is that if
x and -—(b+x) are the fixed points of the limit tranformation

s(w) = 2
) b+ w

and satisfy a condition
r<|_X_'<l.
b+w r
for some positive r , then the conditions

lam- an' < Ya ™ , lb - bn' < Yo rn R

z Yo <D, D sufficiently small,
n=1
imply convergence of the sequence {Sn(x)} « Purthermore an estimate of

1im Sn(x) - x' is given. This in turn implies essentially the same results on
n>e
general T-fractions and regular C-fractions as in the paper [31].

In computing the wrong modification one often runs into trouble because of
instability. Under the above conditions only very mild additional conditions are
needed to make {Sn(w)} tend to the value of the continued fraction for all w # x
the repulsive fixed point. In trying to compute Sn(x) , where x 1is the
repulsive fixed point, a slight roundoff error in x may cause convergence of the
process to the value of the continued fraction instead of the “"wrong value”. 1In
the paper [33] the Examples 5.2 and 5.3 illustrate this.

8. Possible further development. The right modification, as used for convergence

acceleration, has been extended to more general cases by L. Jacobsen in [14]. Here
a certain sequence {f(n)'} of tails takes the place of the attractive fixed
point. The following questions arise quite naturally: 1Is it possible to
generalize the wrong modification in a similar way? And will it serve any
meaningful purpose? So far nothing has been done towards answering these
questions. Before we can indicate any direction in which to go, we must make up
our mind about what a wrong modification should mean in a more general setting.
One point of view would be to regard {Sn(un)} as a modification for any "useful”
sequence {un} (the term useful being left undefined). This is essentially what
G111l does in the limit-periodic case in studying rather generally {Sn(un)} for
sequences {un} converging to one of the fixed points a@ or B . Here we shall,
however, adopt another point of view, namely the one upon which the generalized
right modification in [14] is based, to generate the sequence {un} by using an
auxiliary continued fraction. If in the description we stick to the continued
fractions K(an/l) , an auxiliary continued fraction would be K(a;/l) , where

a - a; +0 as n > =, and where we know "very much” about the auxiliary

n
1]
continued fraction. In [14] By is chosen to be f(n) , the nth tail of the

auxiliary continued fraction. This gives the technical advantage of having at our
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£ - (e @Dy

disposal the recursion formula It seema to be a good

an/
‘idea to require by = g(n)' , Where the g's satisfy the same recursion formula.
This 18 in accordance with the modifications for limit periodic continued
fractions, in which case the auxiliary continued f;ac?ion is the periodic one with
g n)

a; =a for all n , a = lim a . In this case is the attractive or

nxe
repulsive fixed point of the transformation w * a/(l+w) , and in both cases the

recursion formula holds. But there is an infinity of sequences for which the
recursion formula holds. Which of them should be chosen to make a meaningful wrong
modification? Here we can only give a partial answer by means of examples. Out of
several we shall restrict ourselves to two.

l. The continued fraction K(an/l) is "near” a k-periodic continued
fraction K(a;/l) in the sense that a - a; >0 as n *> <, Take the latter to
be the auxiliary continued fraction. (We assume that it converges, and also that
the quadratic equation that determines its value has distinct roots.) The right
modification is given by taking (L equal to the nth tail, the wrong one by taking
Ho equal to the nth "wrong tail”. The right and wrong tails are the two roots of
the quadratic equation determining the value of the nth tail. Which one is the
right and which one is the wrong one is told in [17, Thm. 3.1]. For k = 2 it is

easy to see, that the continued fraction can be written in the form
—xy + —(xHl)(yH) 4 =Xy 4+ =(xtL)(FH) tese
1 1 1 1

Its value, if it converges, is x or y . Assume it is x . Then for the right

modification we have to use for {un} the sequence

x , —(1+y) , x , —(1+y) ,e
and for the wrong modification

Y, —(1+x) , y , ~(l+x) 00
in both cases starting with ko * (In [5] useful relations between right and wrong
tails of k-periodic continued fractions are given.) It is likely that under
certain conditions on the rate at which a - a; + 0 the wrong modification will
converge. It is also likely that for regular C-fractions of this type ("near"” a
k-periodic regular C-fraction) similar results on analytic continuation and
singularities as in the limit periodic case can be proved.

2. Por ratios of certain hypergeometric functions we have limit-periodic
C-fraction expansions. The C-fraction expansion K(an/l) of log (1+z) may
serve as an example. The tails are also ratios of hypergeometric functions and the
"wrong tails" are their analytic continuations. This is a simple consequence of th
recursion formulas (6.1.7a) and (6.1.7b) in [17]. For a C-fraction K(anzll) suc
that « n B n* 0 sufficlently fast (geometric at a certain rate may suffice?) we
use K(an/l) as an auxiliary continued fraction and the sequence of "first wrong
tails”, the sequence of "second wrong tails” and so forth as the sequence {p } .

It seems likely that we can obtain results of the following type: A C-fraction
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“sufficiently close to” the C-fraction of 1log(l+z) represents a function with a

logarithmic singularity at z = -1 .
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CONVERGENCE ACCELERATION FOR CONTINUED FRACTIONS
K(an/l) WITH 1lim a =0

John Gill

Converging factors, {un} , of the continued fraction

(1) e N} %n
L4+ 1+ soo+ 14 soe

where each a is a non-zero complex number, are complex numbers such that
ifz Sn(un) = iiz Sn(O) =f ,

provided the latter limit exists.

Various investigations have revealed that in the case in which (1) is
limit-periodic (i.e., lim a =a ) and a ¥ 0 , convergence can be accelerated by
the judicious application of converging factors. See, for instance, [1], [2], [3],
and [4].

Thron and Waadeland [3] developed

Theorem 1. Let a >a#0, 'arg(a + %)I < T . Assume that for all n > 1,

o = 3 <otn Bea+ 1 4L fa]y , fa]/23 -

Set dn = maxfa - al , a =oa(atl) , where Ia’ < ’a+1, . Then
mn
T L 1
R
n 2l G+ [+ el - e

Thus, under certain conditions, uy = a guarantees an acceleration of
convergence of (1) when a # 0 .

The following theorem [2] provides a fundamental sufficiency condition with
regard to the selection of converging factors of limit-periodic fractions of the

form (1).

Theorem 2. Let 1lim a =a= a(a + 1) , where 'a' < la + 1' . If

lim BT (o + 1)' > 0, then Hys Hy,oc®  are converging factors of (1).

If a=0, then a =0 and no benefit ensues if u = a . However, there
are circumstances in which the choice u_= o 21, 1is of value. Here,
a = an(an +1), ’anl < ’an + 1' . Theorem 2 guarantees 1lim Sn(an+1) =
= . > = efe -
lim sn(o) f If a >« 0 somewhat reluctantly (e.g., @ an+1' < 'anl) R
then f 1lies in a small disc, De' centered at % [2]. 1In additionm, Sl(az)

may lie in De' closer to f than o« whereas SI(O) may lie outside D_ . 1In

1' €
the pursuit of this geometrical idea through the chain of Sn -compositions, one 1is

led to the following theorem.
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Theorem 3. If (1) $§§ lam - am+1| < En'an+1| , n=1,2,e00 where 0 S,Enﬁ 1, and
(i1) o < ’a , o < l., m>n, n >l , are satisfied, then
m n-=75 = = _— e =

'Sn(“ ¢ nfn_ . 'Sn(o) - £,

(1-50n)

n+1) - f|
where 1lim o =0 .

o B
Proof: With hn as defined in (DN 10) the following equation is easily obtained

(see [3]).
g _

2) £ - sn(an+1)| ctn+1 . hn I
£ -5 (0) | () h + an+1|
Let us first consider the expression lf(n) - an+1' in (2). Set
= g(m1) _ - -
Po-1 f & d 'am+1 + 1' ,aml
g =}fa(a -a ), D = min d , and G _ = max g,
m m' m mtl ' m>n n m>n
m>1,n>1.
Then
3) |onan | = %% J_g'(l | Il (A D .
m-1 -
1+ £@ 1 o] | Pl
As in [3], we wish to find R > O such that fon| <R, for m>m.

Assuning Ipm, < Rn in (3), we have

BNRETEETETY

1|

2
The expression on the right is < Rn provided % £d = n - Rn . Since
g G and D <d for m>n, g <dR - R2 if G_ DR =~ R2 . This last
m-= n n— m = m— mn n n—"nn n

last 1inequality is satisfied if Rn = GnDn/(Di - ZGn) , as can be routinely

1 2
verified by showing that Iuﬂ, < 5 implies 4Gn < Dn .
=0 and lim a =0 41imply 1lim pm = 0 . Hence, there exists

Now, lim f(n)
n+l
n*® n>® m>®

k>0 for fixed m and n (m > n) such that { m+k{ < R . Then {pm—ll <R ;

!
Aa,I?MiL%/fﬁ,ﬂZﬂ.

Turning now to the first factor in the right side of (2) , one obtains

-a
ntl

n)

g(m)

£
g _

e 1.

a
ntl

Clearly



f(n) T %ah1 < Rn
%l - ' %ol l
maxf{oa -
< m>n' m+ll * maxja | Dn
- nH mn p? - 26
n
1

since 1 -20 <D_<1 and G_< 202 .
n-— n-— n— n
Therefore,
f(n) - a € G

%) ntl| ¢ nn
f(n) 1 - 5S¢

Inverting the second factor in (2), one has '
hn + o
h

n

>1- [T:+1] >1 - 2|un+1, >1- 20,
n

since 'hn’ > %. in the Worpitzky circle, a ¢ {z:lz'( %} , ([5], page 60), and

5)

condition (1i) implies lan' < %-. Combining (4) and (5) gives the conclusion of

Theorem 3.

Example. Let 'all < 10-3 and o

1

(.52)n-1a1 for n > 2 . Then

10-3 for n > 2 . Theorem 3 gives, e.g.,

X

- n-1
en < 9.3 x 10 and Un (+52)

|s5¢ay) - £| < 4.9 x 10'4|sz(0) -1,

and
-6
ls1o(“11) f| < 2.6 x 10 l $10(9) - f| .
In general, if the a_'s are quite small, then an improvement on the order of

magnitude of la1| occurs in the first calculation.
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TRUNCATION ERROR ANALYSIS FOR CONTINUED FRACTIONS

K(a_/1), WHERE /l:n_ + /|an ' <1

-1
John Gill
The value of the convergent continued fraction
1) s R 2n

—]_+-—1+ coe +_1+ cae
where the an's are complex numbers, may be written
lim s

n+0
Each linear fractional transformation, sn(z) = an/(1+z) » n>1 , has an isometric

lo szo LYy osn(o) = f .

circle: .
1= {z:|z+1| 5'/l_an—l}’

([1], pages 23-27). These circles can be used to develop simple truncation error
estimates for the approximants of (1), under conditions appearing in a classical

theorem of Pringsheim ([2], page 258).

Converging factors of (1) are complex numbers Bis Hoseees such that
1lim Sn(un) = f . The geometrical analysis leading to error estimates of (1), in
addition, reveals a large class of converging factors, some of which improve

convergence of (1).
Theorem 1. If

1) /Fi]+/|an_1|51,n>2,

and

(11)

are satisfied then:

(A) (1) converges.

(B) Complex numbers L satisfying lun + 1' > Vlanl are converging factors of
(1.
(c)
n a
s(u)-f|<2/’a|n -1l ,a>2.
n n n =2 2 -
2 a-Yah
Proof: In is the isometric circle of sn(z) ([1], Pages 23-27). 1Its radius is
lanl . Geometrically, the action of s, upon 2z consists of (a) an inversion
in In' (b) a reflection in the line {z:Re(z) = -1/2} , and, usually, (c¢) a

rotation about z = 0 .

I1f un ﬁ In then sn(un) lies in the inverse circle I& = {z:'z| S.Vlan’} ,
because of (a). The condition (1) guarantees that sn(un) ¢ In—l and, more

! =
generally, that In n In—l ¢ .
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tn-2” -1 (T

L}
Now, both sn(O) and sn(un) lie in In . Hence, 8p-1 ° sn(O) and

s e g (u) lie in I’ . The image of the circle I' under s is a
n—-1 n''n n-1 n n-1

1 1 .
circle sn_l(In)c: In—l' (see Fig.). Similarly, s

contained in 15_2 . From (a), we have

1]
=2 ° 8p-1 (In) is a circle

Rad[sn_2 o sn—l(I;)]
V]2
(/]an_z' o U ay,| + oy, + 2Radls DD

= Rad[sn_l(I;)] .

< Rad[s__, (I)] * |an'2l
n— n
('lan—Z + °n—2)2
< Rad[s__ (ID] * |2g-a|

— 2
ag,] + 40

Rad[sn_l(lh)] . ___1fﬂ:2l______ .
a - Yo,

Repeating this process gives

1(ID1 nﬁl __intiLL___. .

Since Rad[sn—l(lr'l)] < /'-:n—" . .(_lJa_n_LlI/_W , we have
- a

n

Rad[Sn_l(Ii)] < Rad[sn_
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n
Rad[S __, (ID)] < /' l I __l_n__J____
== a
1 1 L] 1
Sn(un) € Sn—l(In) ’ Sn(o) € Sn—l(In) ’ Sn(1n+1)C: Sn—l(In) 4
and Rad[Sn_l(I;)] *0 as n* * imply
= = '
lim Sn(un) lim Sn(O) fec Sm—l(Im) ,m>1 .
n+e nre
This concludes the proof of Theorem 1.
1 =
Consider a_'s of the form a an(an+1) ,
where 'a l < ’a + 1' for n>1.
n n =
In addition, we shall refer to a complex number, a # O , in the vicinity of
wea;s,mdﬁﬂlnta=uw+1),muelﬂ(lu+q
The following minor theorem (whose proof is omitted) shows that some of the

converging factors displayed in Theorem 1 actually improve convergence.

Theorem 2. If (1) there exists a fixed n > 0 such that , , +n<Ll for
n>1l, (ii) there exists a complex number a # O such that ' ’ <1l T
3lu
(111) sup 'a - a| <e (< ——__-J_J———_—., n>1l, then n 1is a converging factor
m n - - =
wn 1001 + ’u' 1
of (1) and

lSn(u) - fl < Z% snlu"z .

Sn(O) - £ for n2>1.

Example, Consider (1) with ,an - %., < 1o'k , k>2 ; then u = KIEE:_Q., and
Theorem 2 gives
S (W) - £| <4 x 102~ ls ) - f' ,n>1.

If a + u , then Theorem 2 implies actual acceleration of the convergence

. ; 2
process. In general, significant improvement in convergence occurs 1if En <<lul
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A METHOD FOR
CONVERGENCE ACCELERATION OF
CONTINUED FRACTIONS K(a /1)

Lisa Jacobsen

1. Introduction. A continued fraction

a. a a

(1.1) g(m) =1 22 23
(1) T+ 1L+ 1+ e+
is said to converge, if 1ts sequence of approximants {fn} converges, possibly

to ® . Here

a a, a
(1.2a) £ =1 2 - =3 (0) , where
n 14 1+ eo0+ 1 n
1.2b) S (w) = 1 %2 ®n ;o n=1,2,3
(1. n 1 +—1-+ eer + 14w H 3Lty

The value of K(an/l) is then f = K(an/l) = 1lim fn . In some special cases
->-00

this value is easy to determine, as for instange in the periodic case, or for some
continued fraction expansions of known functions. But in most cases one has to
compute the value numerically; i.e. to compute Sn(O) for a sufficiently large n .
( n can be determined by truncation error estimates.)

Since the work required to compute fn increasei with n , it will in
certain cases be of importance to find a sequence {fn} that converges
substantially faster to £ than {fn} ; that is 'f-f:'/'f-fn' +0 .

This is not a new idea. 1In 1873, Glaisher [4] found that for a certain
continued fraction K(an/l) where a + ® _ the sequence {Sn(xn)} converged
much faster to the value f of K(an/l) than {Sn(O)} , for an appropriate
choice of {xn} . In 1959, Wynn [15] extended this idea to other convergent
continued fractions K(an/l) . In 1965 Hayden [5] presented methods of finding
appropriate {xn} in some of these cases. Beginning in 1973, Gill [1, 2, 3]
studied, among other things, the convergence of limit periodic continued fractions

K(an/l) » a,*a . He observed that {Sn(xl)} , where x. = K(a/l) , in some

1
cases converged faster to f = K(an/l) than {Sn(O)} . In 1980, Thron and

Waadeland [14] proved that

£-S (x,)
lim __._r;| =0
nro f-Sn(O)
for any continued fraction K(an/l) where a, *a€c € - (-°,- %J , and for some
K(an/l) where a > - % . They also quantified the improvement by deriving upper
bounds for lf—sn(x1)|/|f-sn(0)| . -

By (1.1) and (1.2b) we see that f = Sn(f ) where

-]
£M _ %nn jrav's = X (iE)
1+ 1 4 wee m=ntl 1

is the nth tail of the continued fraction K(an/l) . Hence, it seems feasible
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* (n)' (n)' -
to try f_= 8 (f ) where f for n = 0,1,2,... are the known tails of an
n n

1
n

satisfy: (an - a;) + 0 . In this article we prove (Theorem 2.4) that the

auxiliary continued fraction K(a&/l) such that the elements a and a

1
sequence {Sn(f(n) )} under certain mild conditions, converges substantially
faster to f than {f } , that is
n (n)l
f-s (f )
(1.3) im|l—2 | =
n+re f—Sn(O)
1
Therefore Sn(f(n) ) will in most cases approximate f with the desired accuracy

for a smaller value of n than fn = Sn(O) .

Example 1.1. The continued fraction of period five given by

A
k(’n) =8 12 8 6 11
17 14+ LH+1+14 1+ oo
has the following tail values:
£ o (viT357 - 35)/33 eGP (/11357 - 3)/38
1 ' e
OGO L (3711957 - 65)/74 £O™D! o (3/1T257 - 99)/164

f(5n+4)'

(V11257 + 2)/31
n=0,1,2,3,.00 =

This continued fraction may be used as a tool for improving the convergence of the
ar'l+0.3n

continued fraction K(an/I) = K[ ) . Table 1.1 shows the improvement

1
obtained by using the modified approximants Sn(f(n) )

Table 1.1.
(n)*
n s (0) s (£ )
1 8.3 2.23
0.6 2.223
2.8 2.2265
10 2.13 2.22649360
20 2.2236 2.22649361320389
24 2.225 2:22649361320389408

50 2.2264935

75 2.22649361321

100 2.226493613203892
117 2.22649361320389408

We find that Sn(f(n)') gives the value of f with 8 significant digits when
n=10 , and with 18 significant digits when n = 24 , whereas the same accuracy
in Sn(O) requires n =50 and n = 117 , respectively. (This computation

was done on UNIVAC 1108, RUNIT, The University of Trondheim.)
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2. Sufficient conditions. In this section we try to answer the question: under

what conditions will (1.3) be satisfied? When An . Bn denote the nth

numerator and denominator of the continued fraction K(anll) respectively; and

Sn(w) is as defined by (DN 1) we get

(n)
A B -A B f -w
|f—S(w )|=.S (f(n))-s(w).=|n—1n nn—l” n'
n n n n n (n)
|B+B £ “B+B w,
n n-l n n-ln
for any sequence {wn} from € . Therefore
A
£=s (£(M"y | B g(n)_g(n)? h (D) _p(m)
v | rem - il - el
n BB f £ h +f £
where, as in (DN 10)
B a a a
h =_10_=1+_0 _0-1 2 5 n=1,2,3,...
n 3 1+ 1 + eee+ 1
n-1
b
(K (anll) =0 when b < a)
n=a
Hence, we see at once that requiring
h
(2.3a) - 'n <M ; =n=1,2,3,.. for some M < * and
| +£(™) “f(“),
n
1
(2.3b) um,f(“)—f(“) =0
n+o

is sufficient to satisfy (1.3) . Using this idea, we get Theorem 2.4 . Before
stating this theorem, we make the following definitions:

<0
Definition 2.1. We say that {En}

a=l 6+E - {olc ¢ , is a uniform sequence

o
of convergence regions (us.s.c.) , if there exists a sequence {)‘n}n=1 of

positive numbers converging to O , such that a € E for all n > 1 insures

that K(anll') converges and that

Rl N
(2.4) | K (a_/1) - K (an/1)| <y 3 N=1,2,3...
n=1 n=1
If we also have, for any such continued fraction, that
0 p+N
(2.5) K (a /1) - K (a /1| L ;s N=1,2,3,...
.n=p+1 n n=p+l n l AN

for all p€ N , we say that {En}:=1 1s a totally uniform sequence of

convergence regions (t.u.s.c.).

Hence, {En} is a t.u.s.c. 1f {Er(lp)}:=1 are u.s.c.'s for all

p € {0,1,2,...} 1in such a way that the same sequence {)\n} can be used for all

(p)
p , Wwhere En =En+p 35 n=1,2,3,.00, p=0,1,2,00. .
o a
Definition 2.2. {Vn}n=0 ; @+ VnC € , is a sequence of value regions
P +SeCe [
corresponding to a2 u.s.c {En} if En Vn—l and En/(1+vn) < Vn_1 for

n=1,2,3,... . If besides VnC V;l for n=0,1,2,... for any sequence {Vr'l}
of value regions corresponding to {En} , we say that {Vn} is the best sequence

of value regions corresponding to {En} .
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Definition 2.3. {En}:=1 1s a CA-sequence if the following three conditions are
satisfied:

(1) {E} is a t.u.s.c.

(2.6) (11) 0¢ cif U (Cl(V )+ W )] where {Vn} is the best sequence of value
n=1
regions corresponding to {En} , and W = {hn €C;a, €E, for 2<ks n};

(111) U woois bounded
n=1
( CL(A) denotes the closure of the set A .)

In particular, when E_ = E s n=1,23,... we say that E is a simple
n 1 1 simple
CA-region, and when EZn—l = El N EZn = E2 s n=1,2,3,... , we say that

<E1 ,,E2> is a set of twin CA-regions. ( CA 1is an abbreviation of convergence
acceleration.) (The definition of u.s.c., value regions and best value regions
are in accordance with [10, p. 64] , where it also is stressed that the term
region is used loosely to mean any subset of € and & respectively.)

The theorem stating sufficient conditions for convergence acceleration of
continued fractions K(anll) by using an auxiliary continued fraction, then 1is the

following:

Theorem 2.4. Let K(anll) and K(ar’lll) be two convergent continued fractioms

such that 1:I.m(an - ar'l) =0 . Furthermore let f be the value of K(an/I) and
n+o

(n)',=
{f }n=0 be the values of the taills of K(a'/l) . If {an} 1is bounded and has

no limit point at O , and there exists a CA-sequence {En} such that
a ,a; EEn s n=1,2,3,... , then
1
f-s_(£¢M")
lim|— 2o
nre!  £-5_(0)

In the proof of this theorem we make use of the following theorem:

(2.7)

Theorem 2.5. Let {En} be a t.u.s.c. such that U E  1is bounded and
n=1
En—ﬂe*ﬁ for all n>1 and some € > 0 , where S€={z; 'zlﬁe} .

Furthermore let K(anll) and K(ar'lll) be continued fractions such that

,an € E s n=1,2,3,... and 1:I.m(an - ar'l) =0 . Then
nre

(2.8) 1m(e(™ - My _ o

n+e

n
>

L
where f(n) and f(n) are the values of the nth tails of K(anll) and
K(ar'lll) respectively.

Proof. We first prove by induction that

A
(2.9) lim(f(n) - f(n) ) =0 for any m € N .,
n>e m m
+m
(m _ T % - () _ (' _ - a
(fm = k=§+1[ 1) .)e For m=1 we have f1 f1 a ali +0 . For

m>1l we get
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(2.10) If(“) - fi“)'l S_Ian+1'a$+1| + 'f;n)'ljfggtl)'féfrl)ﬁ
" |+ fé'_‘{l)

t
Here we have lfsln) l <X for all mn > 0 and some K < * because for any

continued fraction K(anll) where a, € E; for all n eN ,

,f(n) - fin), - If(n) - an+1. <A = |f(“), <L+M and

lf(n) - f;n)l <A = If[(n“). < lf(“)l +L.< 2L + M vhere

o
(2.11) L=sup{A ;n>1l} , M= sup{lzl; z € UE }
n = pol ™
and {)‘n} is a sequence of positive numbers corresponding to the t.u.s.c. {En} .

This means that when {Vn} is the best sequence of value regions corresponding to

o
{En} , then UVn is bounded. In addition, since En+1/(1+vn+1) eV,  and

n=0
En - Se # ¢ for all n > 1 , there exists a & > 0 such that (1+Vn)ﬂ 06 =@
(n+l) (n+l)
for all n >0 . Therefore, since f ,“‘& V ., , we have |1 + £ > 8
for all m,n>1 . So, by (2.10) we get the following implication:
A 1
g0 _ ()Y L o yitdes that [£(0) - £(M7) 50 when n > ® . Induction
m-1 m-1 m m

on m will then give (2.9) .

We now prove (2.8) . Let € > 0 be arbitrarily chosen. Since An +0 ,
there exists an m € N such that )‘m £ €/3 for every m > my Choose a fixed
m > L By (2.9) we then know that there exists an 0, € N such that

L]
'f;“) - f;“) ' < e/3 for every mn > n, - Since

e | ¢ [ 4 el | 4 e e e 5 ndng

= m m m m = =0

we then have lim(f(n) - f(n)') =0 . [ ]
n*e

Now it is easy to prove Theorem 2.4.
Proof of Theorem 2.4. Consider equation (2.1) . Since hn € wn and
1
hn + f(n) € Wn + Cl(Vn) , the first factor on the right side 1s bounded. (This

follows from the definition of CA-sequences). In addition, lf(n). > &/ (1+L+M)
where € = inf{'anl ; n € N > 0 because {an} has no limit point at 0 ,
a, #0 ,and M and L , defined by (2.11) , are real numbers. Besides, we

must have En - Se/z # ¢ since a € En - Se/z , and we can choose {En} such

]

that |J E is bounded since {an} is bounded. Therefore, by using Theorem 2.5,
n=1

(2.7) follows. [ ]

Remarks.
1) It is sufficient to require an,aI"l € En for n > 2 in the theorem since hn

*
is independent of a, . But if that is satisfied, then {En} , where

1
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3
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EI = El u {al,ai} and E: = En for n > 2 , will also be a CA-sequence.
The conditions of Theorem 2.4 arose from the conditions (2.3) . Clearly
these are not necessary conditions.

The applicability of Theorem 2.4 1is dependent upon easy ways to describe
CA-sequences. The simplest way 1is the following: If {E:} is a CA-sequence

*
and En<: En for all n € W , then {En} is a CA-sequence. Therefore it

is of interest to have examples of CA-sequences.

Example 2.1. The sequence ° {En} given by E =P n ﬂM 3 n=1,2,3,... where

a,n

-12 2
(2.12) Pa,n ={z€e¢ ;Izl - Re(ze % SEZgn(l—gn+1)cos a} ;3 n=1,2,3,...
and
(2.13) 8 ={z€¢; 'z' <M}

M

was proved by Thron [12] to be a wu.s.c. provided that la' < g- y, M=

0 <k < 8, <1l=k ; n=1,2,3,... , and that the series

© K

(2.14) ] om(—-1)

k=1 n=1 8,4,

diverges. He also proved [12] that {Vn} given by

(2.15) Vo= {z €€ ; Re(ze ™% > g,

is a corresponding sequence of value regions. By choosing 8, = %(1—6) ;

1coscl} 5 n=0,1,2,...

3

n=1,2,3,... , wvhere 0<8§<1 , we get a simple, uniform convergence region

(2.16) Bq = {z €6 ; |2| - Re(ze™?%) < L1-6")cos?a} Ny
with a corresponding value region -
(2.17) = { ; “loy oL

. v, z €C ; Re(ze ") > E(l—&)cosa} .

*
Since the best value region Vcl corresponding to Ecl is contained in Vcl n ih*

* *
where M = 2M/(1+8)cosa , and Wn C11+Vcl for all n > 1

, ( Wn defined by

(2.6) ), and

inf{|1+x+y' 3 X,y € Va} =8§>0

we have that Ecl is a simple CA-region.

Example 1.1 continued. All the elements a, and a& ; n=1,2,3,... are

contained in the simple CA-region Ecl defined by (2.16) with a =0

g

M =12 , and & arbitrarily chosen from (0,1) .

Example 2.2.

(2.18) E

1 {z¢g ¢ ; lzl <P -

(2.19) By = {z€ ¢ |z] > wore)® N4

where 0 < p<p+ ¢ <1 and qﬂ is defined by (2.13)

2

» 1s a set of twin
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CA-regions with a corresponding set of value regions

(2.20) v, = {w; 'wl < p-e} ,

o = {w ; 'wﬂ' > ptel .

1
The reasons for this are as follows:

1) <E1 ,E2> and <V0 ,V1> are corresponding element and value regions because:

}i:1 2_2

L =v; 'wl <Pze} =y

1+V1 - pte 0
and 1f 2z = rei¢E E2 and w = rel? € Vo then

ll +.2z | >r-1-R > (1+p+e)2-(1+p-e) >p+e .
1+w - R+l T 1+p-¢€
E
That means: .17‘27_ CV1 « Furthermore, El CVO since pz - 82 = (p+e)(p-e) <
0

p-€ , and EZC V1 since (1+p+e)2 >l +p+e .

2) <E1,E2> is a t.u.s.c. because

*
E, CE ={z;z=v2and Ivl_(_p}
and
*
E, CE ={z;z=v2and.vii|29}

* %
where <E1 ,E2> was proved by Thron (see [10, Theorem 4.46]) to be a set of uniform

twin convergence regions. Furthermore, <E,,E,> also is a set of uniform twin

2°71
convergence regions. This follows from the fact that for any continued fraction
K(an/l) where anE En+1(mod2) for all n , any x EEl , x/(1+K(an/1)) will
will be a continued fraction such that
® a Lt P
|*|+ x (—fln) - K (—f;);
|f-f| ml m=1 <A+ 0
o a n-l o Ppseo
1+ Kk | 1+ K [_m)l
m=1 w1 1
Thereby
bt n-1 2
a a (14K)"A
K(_m]—x(_m)'_g o »0
m=l 1 m=1 1 'x' n+e
where

K=sup{M ;w=f§11) , a,€E , v, m=1,2,3,...} <=

v(mod2)

because when <Ul,U > are the best value regions corresponding to <E1,E2> N

2
E E
then U, = E, U —2 y——2_ 1s bounded since E, is bounded, -1¢ E , and

2
LE L E
1+U1
(‘El)ﬂ(_‘,!,(l"'ul) =0 .
3) W, < 1+ V1 > Wy © 1+ Vo 5 o= 1,2,3,... ( W defined by (2.6) ),

and

:I.nf{'z+w+1| jzEV, ,wevl=20>0 .

For further examples, see [6] .
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3. Truncation error bounds. The next question we want to answer is: how much

t
better is the convergence of the modified approximants {Sn(f(n) )} compared to
that of the approximants {Sn(O)} ? Upper bounds for the ratio (2.1) will serve

as a measure for the improvement.

Theorem 3.1. Let K(anll) be a convergent continued fraction whose value f one

wants to approximate, and K(a&/l) a convergent continued fraction where all the

1]
values {f(n) }:=0 of the tails are known. If

o

(i) There exists a t.u.s.c. {En} such that |J En is bounded, En - ﬂe + ¢
n=1

for all n and some € > 0 where Se ={ze¢C; ’zl < e} and an,a; €E for

all n € N ,

. (i1) there exist constants D,u > O and a bounded sequence {tn}:=0 of numbers

2 u such that
1 L
tn+1|1 + g0 | - tnlf(n) |3D ; n=0,1,2,... and

- Aty =
(111) lim(an an) 0 and

nre
— at 2 v R =
Ian an. < min{D"/4T,T, , 'anl/z} ; n=1,2,3,...
where
T = sup{tm ;m>n} ; n=0,1,2,...
then
(n)’ (n)' (n)’'
f-5 (f £ f T T d
.1) . n ) <(1+ l ! (2 + 4 l l ntl mt?) ?+1 :
£-5,(® s (£ Dor1tnt [2an
for n=1,2,3,... , where
d = sup{'am - &I ;m>n} ; n=1,2,3,...
- (mtl) 'y _ 'y . . -
D = inf{tm_lll+f | - et | ;m>n} 3 n=0,1,2,...

Sn(f(n)') = inf{'z + f(n)'l ; z € Wn} 3 n=1,2,.4.

and W = {hn€ C;a EEm , M= 2,000,0} 3 n=1,2,000 .

Before presenting the proof, we shall make some remarks:
1) We do not know, within the conditions of the theorem, that (3.1) converges to
0 - not even the left hand side. However, the right hand side of (3.1) may
converge to 0 even if the conditions of Theorem 2.4 are not satisfied. 1In that

case {dn} must converge to 0 sufficiently fast to compensate for possible limit

L}
points at O for Gn(f(n) ) or {a;} .
2) Which convergent continued fractions K(a;/l) satisfy condition (ii) in the

1]
theorem? We see at once that 1+ f(n+1)

>8 3 n=0,1,2,... for some § >0
is necessary. Furthermore, it can be shown that K(a;/l) , k-periodic, always

satisfies (1i) unless Si(x) has coinciding fixed points (see [7]) . In



82

particular, when K(a&/l) is 1l-periodic (a; = a'ﬁ (=0, - %J for all neEN) ,

we can choose t, = 1 for all n > 0 . (Thereby the result coincides with that of
Thron and Waadeland [14].)
3) The actual choice of the sequence {tn} , when it exists, should be made such

that TnTn+1/Dntn is kept as low as conveniently possible. That means for

instance in the k-periodic case, that

kip-1  j ktp-1
(3.2) Gy =t = ) (1 [ECER RO
PP o oimpH i=3H1

for p=0,...,k-1 and n =0,1,2,... , 1s the best possible choice for {tn} »

because then

k-1 (my" k-1
(3.3) D=D=]I'1+fm'—n
n=0

'f(‘“)'l ; n>0

n =0

1]
4) The computation of Gn(f(n) ) depends on the choice of {En} . If {En} is

o
a CA-sequence, we know that 0 & C&( LJ(Cl(Vn) + wn)) , where {Vn} is the best
n=1
L]
sequence of value regions corresponding to {En} . Since f(n) € Cl(Vn) H

n=1,2,3,.. , that means that there exists a § > 0 such that

s <nflfnty] 5 x eV Ly €W, k= 1,2,3.0) <8 ™

for 211 n > 1 . By replacing Gn(f(n)') by 8 1in (4.1) , we have a value
which 1is valid for any continued fraction K(aé/l) where a; € En s n=1,2,...
An alternative lower bound for Gn(f(n)') 1s easy to get if we know a sequence
{W:} of regions (or subsets of E ) such that Wn CiW; s n=1,2,3,... , namely
the value we get by replacing Wn with W: in the expression for Sn(f(n)')

*
(Such a sequence {Wn} is for instance known in the Examples 2.1 and 2.2 )

5) Ordinarily Tﬁ+l and Dn+1 in (3.1) may be replaced by the constants TO

and D respectively without significant loss of accuracy.

Proof of Theorem 3.l1. Since

' (n)'
_f(n) 'Sl+ f

n_+e (™’
n

(3.4) s n=1,2,3...

sl - I S
h +f s (")
we only have to establish upper bounds for the second factor on the right hand side

of (2.1) . Now
£ _ @ Cryymopy) - (g (D (T ()
g™y 4 () ()T

S0

(3.5) |f(m) - f(m)" < J&H-al;ﬂl + lf(m+1)_f(ur+1)'”f(m)vJ
|1+ DT - e(mD)

when ll * f(m+1)’l > lf(m+1) - f(m+l)'| If we let



(3.6) R =__onotl . 4=0,1,2,...

T ntl

nTn+1
(mtl)!
we have %,1 + f ) l > Rn/tm—i-l for m>n . And by using (3.5) we get: If

' R
f(m+1) _ f(m+1) . {—1_ when m > n then:
— t e

ol
R '
d * : If(m) I R
' t
3.7 ,f(m) _ f(m) ls mtl <-n
L+ f(“’”)'l - %
t
mtl ]
2
(because this inequality is satisfied when Rn RnDn+ drﬂ-ITnTrﬂ-l £ 0 which is

true when Rn is given by (3.6), because then

2 d .T T
- = - ntl n ntl) =
Rn RnDn+ dn+-1TnTn+1 Rn[Rn Dn + R )
n
R d 2
= n ntl [~
DZ [ DnMdMITnTrﬂ-I] <o
. n__ -
Dn [T T 2dn+1)
n ol

]
by condition (1ii) of the theorem.) Since f(m) - f(m) + 0 (by Theorem 2.5) ,

1
we can find to any fixed n € N a m > n such that ,f(m'ﬂ) - f(m+1) < Rn/t:urH
Repeated use of the implication then gives
[ R D d
M - fM ¢ Ta n ntl ; n=0,1,2,...
~t, 2
[n - 24 ]
t -
n ntl
TnTn+1
Therefore we get
(n)', . (n+l) _(nt+l)'
L -t - -—
g(M)_g(m) ! _ !(an+1 al) - f (f £ )I
1] - 1]
£ 2t gy T )
(2)"|R
nt+l
dn+1+|f 'c d |f(“)" D_,.d
< ntl = 9 o+l 4 o9 . ntl nt2
- 1,1 ' ' 2
_.an+1. 'an+1| 'an+1.tn+1 D
2 ntl - 2d
nt2
Tet1 T2
(n)'
<(2+4 lf lTn+1Tn+2) dn+1 - a

Dot tat o+l

Ia
As an example of the use of this theorem, we may look again at the continued

fractions of Example l.l:

Example 1.1 continued: Choosing {tn} as described in (3.2) , we get
ts, ™ 458 , t

ts 15 =703 , t ~ 310 ,

=403, tg . %349,
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T =¢, =703 , D =D=450 for all n>0 .
n 3 n Z

In view of the comments on Example 1.1 1in Section 2 , we may replace
Sn(f(n)’) in (3.1) by 1 without violating the inequality. Therefore
we get, by Theorem 3.1 :

(n)' 2j ()
f-s (f ) 1 to|f o+l n+l
(3.8) e L |f‘“’ (2 +4 | J)Oé = Q0.3
£-5,(0) Dt n Ian+1
for n=1,2,3,... , where
Qo = 1142 5 Qquy, = 12,9, Qg 5 = 816,
Qoppgq = 137 4 Qqpug = 10.0 5 n=0,1,2,...

By Table 1.1 we see that the actual values of the ratio, for different values of
n , are as given in Table 3.1 . There is no need for being so careful in

choosing {tn} . We see easily that for instance the following values will
work:

* _14 * _* _2 * _* -1
totl L% s B T B T2 s sy T =13

*
for n=0,1,2,... . We then get D = 0.6 , and thereby the upper bounds
given in the following table:

Table 3.1
n 1 2 5 10 20
(n)’
f-s _(f ) - -
n 7 0.0006 0.002 0.00001 107’ 1.4.10712
£-S_(0)
n
nt+l -5 -10
Qn'0.3 1.01 0.35 0.007 1.8°10 1.0°10
Upper bounds
* -5 -10
with {tn} 2.07 0.71 0.013 3.23-10 1.90-10

The result- of Theorem 3.1 can also be used to estimate truncation error bounds for
L
the sequence of modified approximants {Sn(f(n) )} in those cases where truncation

error bounds for the approximants {Sn(O)} are known.

Examgle 2.1 continued: For continued fractions K(an/I) where a E;En for all

n€ N , and {En} is given by
-i(y +y¢ 1)

n -

E = {z ; 'z' - Re{ze

) S_kan_l(coswn - pn)} n SM

iy
n_1 1.
where M <*® , 0<k<1l , P, >0 , 'pne 7 5_5. € , forall n>0 ,
and 0 < €X< %- , the following truncation error bounds are valid [10, Theorem
8.4, p. 305]
|a1 ' (cos¥;-p,)

> n = 2,3,4,...
(1 + 2=kt
M

|f-fn|5
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By choosing wn =a , p_ = %coga , k= 1-52 where la' < g- , 0<86<K1 , we

n
get En = Ea for all n , where Ea is defined by (2.16) . Besides,
k=1-6¢€(,1) , p >0 and
by ia 2 2 22
p e - Ll = 'lcosae - 11 = [(lcos o - l) + (lcosasina) ]
n 2 2 2 2 2 2

= %Jsinal < %.— € for €= %{1 - lsinal]

where 0 < € < %. « Therefore, truncation error bounds for continued fractions

K(an/l) where a_ € E, for all n>1 , are given by

(3.9) |- £ < |2 [cose s ono=2,3,4,...

2 < 2 n-1
2(1 + 5§71 I;lnal )

If we know an auxiliary continued fraction K(aé/l) such that a - a; > 0 and

a; € Ea for all n , then we get the following truncation error bounds for the

. (n)!'
modified approximants Sn(f )

(n)!
'Tn+1Tn+21 |31'°°s“ dhr

'
f f
£ -5 (f(n)')l <1+ | l)(z + AI
n - 8 D_,,t 2, 2 n-1 'a' |
ol §°(1-|sinal) 1l
21 £07|stneD)
M
for n = 2,3,4,...
with the same notation as in Theorem 3.1 .

Example 1.1 continued: For the continued fraction in Example 1.1 we get

1 -_
£ - Sn(f(n) ) S.Qn°0'3n+1' 8'coso2 - = 0'36Qn.(222)n 1
n~
i+ )

0.36Q_+0.29""1
n

where Qn is as defined earlier.
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SOME PERIODIC SEQUENCES OF CIRCULAR CONVERGENCE REGIONS

Lisa Jacobsen

1. Introduction. When dealing with continued fractions K(an/l) the following

concepts are very useful:

Definition 1l.1. {En}:=1 is a sequence of element regions for continued fractions

K(a_ /1) , and {Vn}n=0 is a corresponding sequence of pre-value regions if
(1) 8+ E c€ ; n=1,2,3,...
(ii) ¢ +# Vn ; n=20,1,2,

(i11) E /(4 ) eV . ; n=1,2,3,...
If besides Enc v

- {o
~
S 17

-1 > B = 1,2,3,... , we say that {Vn} is a sequence of

value regions corresponding to {En} . Furthermore, if K(an/l) converges when-

ever a €E ; n-= 1,2,3,... , we say that {En} is a sequence of convergence

regions for continued fractioms K(an/l) .

(This definition is given in accordance with [4, p. 64] (for pre-value
regions see [5]) where it is also pointed out that the term region is used loosely
to mean any subset of the complex plane, extended if necessary.) In particular the
terms convergence regions and value regions have proved to be advantageous.
Convergence regions for their useful way of describing convergence criteria for

continued fractions, and value regions for the following property: When a € En

for all n € N , then f,fl“)gvn for all n>0 and m>1 .
In this article we shall prove that certain k-periodic sequences of element

regions

(1.1) E ={z¢¢; 'z-—I‘p' gpp} ;

Ekn+p T
p=1l,eee,k and n=20,1,2,... are sequences of convergence regions. In addition
we are going to prove that the tails {f(n)} of any continued fraction K(an/l)

with a € En for all n € W , are contained in certain corresponding pre-value

regions {V_} 3 f(n) [ ; n=20,1,2,... . The notations in this article are
n n

in accordance with ([1] .

2. Main results. When weconsider the special case of (l1.1) where p_ =0 ;

p=1l,...,k , the "regions {En} will all be one—point sets Ekn+p = Ep = {Pp} H

p=1l,eee,k , and n = 0,1,2,... . Hence a eEn for all n € N implies that
K(an/l) is the k~periodic continued fraction K(Tn/l) where rkn+p = Tp for
p=1l,ese,k and n=0,1,2,... . For such continued fractions we have the

following results:

Theorem2.1. Let K(an/l) be a convergent, k-periodic continued fraction
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(akn+p ap 3 p=1l,..0,k and n €W .) Furthermore, let x ,y denote the two
fixed points of S(n)(w) such that x_ = f(n) ; n=0,1,2,... . Finally let
polnts oi n 2lna 1y et

(2.1) D= '1 + f(“)l 'f(“)‘

n=0 n=0

k~1 k-1
(2.2) g= 1@+ £y ¥ e®

n=0 n=0

Then we have:

() D>0
where the equality sign holds if and only if X =¥y
(nt+l) (n-l)
- - _k-1 k- =
(B) Ya -Tn)-—(l +xn+1) » l+y = (n) X for n=0,1,2,... .
k~1 k—l
n
© x -y, =ﬁ/B( ) ; n=0,1,2,... .
(D) the sequence {tn}n=0 given by
k+ J p 1
(2.3) tkn+p = tp = E If(i)|
i=p 'p+1 i= j+1
for p=0,...,k-1 and all n ¢ W , is such that
2.4) €t + f(“+1)| - tn'f(n)l =D ; n=0,1,2,.0. .
(E) the sequence {vn}n=0 given by
k+ —1( k+p-1 )
(2.5) v, =y = 1 +y y s
kntp p 17p 1_p+1' i' i= j+1' i'
for p =0,...,k-1 and all n € N , is such that
(2.6) v 'y l - vn+1|1 + yn+1| =D ; n=0,1,2,.00 .
n n
'B( )I <t 'B( ) v '9' >D 3 n=0,1,2,... .

(G) For any integer p > O , we have

sg)(wp) > {xp} when n + ® |

when W is any region such that W .
when W = is any reg v, €9,

Proof: (A) By [4, p. 47) K(an/l) converges if and only if one of the two
conditions

@ % =7

(1) |s, + Bk_1y0|/|3k + Bk_1x0' <1 and 5_(0) #y, for m=1,2,0.0,k

is satisfied. Since (see [3] )

2.7) x, + b/ (Ak 1 Bk)/Bk-l

m
(2.8) B+ Bm_lf(m) =+ £y ;5 on=1,2,3,...
n=1
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m
2.9) A - Bmf(o) = "™ 5 noo,1,2,...
n=
implies that
-1
(n)
nlt
B, + y ' l
(2.10) Bk m zk‘l 0' = .
X
k= k-l ol |1+f(n)'
n=1
statement (A) follows.
(B) follows by straight forward computation by using the following formulas [3]
+1
(2.11) AW = o 3D an - 0,12,
n n+l n+2
(2.12) B; ) . ; 1 ) + an+23§r2 ) ; n=20,1,2,... , m=1,2,3,...
n
(2.13) B,fl“) - B;fz *a, B i—; S m=0,1,2,00e , m=1,2,3,.0. .
(C) By (B) we have that
(nt+l)
- = k-1
¥ TV T Xa b = xy) -
Br-1
Since we have (by (3] ) that
g(7tD) N G0 N
(2.14) k 1 1+ X ) Bn—l a- 8
this gives us statement (C) .
(D) follows by straight forward computation.
(E) Straight forward computation gives
k k
(2.15) vn'yn' - vn+1|yn+1 + 1' = I Iym' - |1 + ym'
Then (2.6) follows by use of (B) .
(F) By [3] we know that
k+n-1 _ j k+n-1
(2.16) R IS P G I
j=n i=mtl i=31
ktn-1 ] k+n-1
= ™ n awyy ny,
j=n i=n+l i=f+1
which gives that 'B(n) < t 'B(n)l < v, '9' > D follows directly from
the expressions (2.1) and (2. 2) .

N

(G) Let w € wp be arbitrarily chosen. Then |w - yp' >8>0 and

p) (p) (p)y, () (p)
(p)(w) _ ( )+A% ) fk hk ) + fk v
p P (p
kn v hkn o
By Galois' theorem [4, Theorem 3.4, p. 56] we know that lim hég) = -y .
P

Therefore, since 1lim f(p) = x
e B P

As mentioned in this proof,

continued fraction converges or not.

n*e

this proves the theorem.

it is always easy to see whether a k-periodic

Suppose now that we start with a k-periodic
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continued fraction K(Fn/l) . Then we pick an element a, from a certain
neighborhood of Fn for all n € W . What can now be said about the convergence
of K(an/l) ? Will it converge if we pick a close enough to Fn ? The
following theorem gives one answer to this question. It takes care of the case
where the neighborhoods are disks centered at Tn . In other words, we increase

the radii of E ,...,E

1 k

Theorem 2.2. (A) The k-periodic sequence {En} given by

(2.17) Bt = Bp = (7 €€ 'z-I‘piSpp} 5 p=1,...,k 3 n=0,1,2,...

is a sequence of convergence regions when T are complex numbers such that

LreeesTy

(1) T #0

(ii) the k-periodic continued fraction K(T,/1) converges;

rmk+p = Pp s p=1l,ee,k 3 m=1,2,3,...
(iii) the fixed points X, and Yn of the linear fractional transformation
(2.18) s(M* gy = font RN
k 1 4+ eov 4+ l4+w

are distinct; x_ 1is the n? tail of KT /1) , n=0,1,2,... and

2o
=p =DM  p=1,...,k ; n=0,1,2,...

(2.19) Protp ~ Pp n >
P
(2.20) Kp = Amax{tptp_l,v vp—l} s p=1l,eee,k
k+§—1( 3 ktp-1
(2.21) t =t = 1+x s p=1l,ee0,k 3 n=0,1,2,...
katp  p 4o 1_p+1l li=j+1' i'
K+ K+p-1
(2.22) v =y = E 14y y 5 p=1l,..0,k 3 n=0,1,2,...
5 L o
k k
(2.23) D 1+x |- 1fx ,
n=1' n' n=1 n'
(2.24) 0<u<D .
(B) The k-periodic sequence {Vn} given by
(2.25) Ventp = Vp = {wec; 'w—xp' SRY 5 p =0kl s on= 01,2,

is a sequence of pre value regions corresponding to {E,} when

(2.26) Rkn+p=Rp=2D‘_tE 3 p=0,..0,k-1 ;3 n=0,1,2,...
p

(¢y If a € En for all n € W , then

(1): f(“‘)gvm ; m=0,1,2,..., and

(2.27) (11): kn+p( (p))l < Qn.n_;(}i s p=1l,eea,k 3 n=0,1,2,...
where ' ' | I
ko ¢ ji+x,] + ¢ X, -
Q= 1n 1 i 1l §-1 R
(2.28) j=1 tj|1+xj' + tj_llxj_ll +u



91

(p)y= 4k (»)
and {{wn }n=0}p=1 is an arbitrary sequence such that w °’ ¢ Vp for all n> 0

and pe {1,...,k} .
- *
(D) The k~periodic sequence {En} given by

* *
(2.29) Ekn+p = Ep = Ek—p+1 s p=1l,...,k 3 n=20,1,2,...
*
is a sequence of convergence regions. The k-periodic sequence {Vn} given by
* *
(2.30) an+p = Vp ={wecg; 'w+1+yk_p| < rk_p} s p=0,...,k-1 ; n=20,1,2,...

*
1is a sequence of pre-value regions corresponding to {En} , when

- Dy

2.31 r =r
( ) knt+p P 7v

5 p=0,.00,k-1 ; n=0,1,2,...

*
If an€En for all n € N | then

*
@: £™ ev forall m»0 , and
(2.32)

(p)* *in,p-
II): |f-s < [} bk S = 1,000,k } =0,1,2,...
(1D) e 0| £ @) L n

where
(2.33) Q* - vty v |yaa] -
g1 VafEa] * v ]

*_ oo * *
and {{w(p) 1 }k_ is an arbitrary sequence such that w(P) V_ for all
anc n n=0"p=1 =28 q n € Vp Iorail
n>0 and p ¢ {1,...,k} .

Remarks.
ool 2e.9:4

(1) By Theorem 2.1 (C) , x #y for all n whenever x #y for one special
n n n, n,
L Furthermore, by Theorem 2.1 (A) , D >0 .

(2) vp’tp # 0 for all p , because X # 0,-1 for all n , when Fl-o-Fk 0.
By Theorem 2.1 (B) , we therefore also have Yn # 0,-1 for all n .

(3) Condition (i) in (A) is not necessary. If Pl---Pk =0 , we let

T

r
x = .pil otk for p=20,...,k-1 . Under the condition that x_ # ~1
p 1 4+ eee+ 1 P

for all p , we get D > 0O (since xp = 0 for at least one p ¢ {0,...,k-1} ),
and the conclusions of Theorem 2.2 are still valid (partly by a proof that
follows the same pattern as that of Theorem 2.2 , partly by noticinérthat the
disks El""’Ek are contained in some slightly larger disks with centers slightly
shifted.)

(4) Conditions (iii) may also be abandoned. But if D = 0 (the only other
possibility by Theorem 2.1 (A)), the disks El""’Ek will degenerate to one-
point sets {Fl},...,{Pk} (when we allow u =0 ). And K(Fn/l) is known to
converge.

(5) The conclusion in (B) is still valid if {Rp}:=0 is replaced by {R;)};;O
given by

(2.34) R1'<n+p=R' =DV 5 =0,...,k-1 ;3 n=0,1,2,...

p 2t
p
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where -p {v<{p . Furthermore, we may have 1 = 0 without altering the
conclusion of (B) . Finally, (B) is still true when Kp is replaced by
4tptp_1 3 p=1l,ss.,k in the radii of the disks El""’Ek .
(6) The theorem generalizes the k-periodic continued fraction. It considers
continued fractions K(an/l) that are nearly k-periodic in the sense that the
elements {an} are picked from k disks, periodically.
(7) Part (D) generalizes Galois' theorem [4, Theorem 3.4, p. 56] , because

*

{En} may be looked upon as the dual of {En} .

(8) For k =1 we have v, = tn =1 . For k =2 we have

ta T 1+ xn+1' + 'xn+1' = 'yn| + '1 + yn+2‘ = Va+1
So, in those cases K_ = 4t t =4v v_ ..
P ppl p p-l

The proof of Theorem 2.2 is based on a lemma:

Lemma 2.3. Let {t_ } be a sequence of linear fractional transformations such that
=t = n == 22 s

1) 'rn(m)|5q ;i n=1,2,3,... for some q <1 , and
(ii) Tn(U) cU ; n=1,2,3,... where

(2.35) v=1{z¢eq; 'z| < 1}

Let Gn = Tl ° T2 o esse o Tn for all n € N . Then

(2.36) lim 6 (z. ) =G € U
o0 n n

1 A
for any sequence {zn} such that 'zn' < q' for all n¢ W and some q' <1 .
( 6 is independent of the actual choice of {zn} D)

This lemma is a strengthened form of Lemma 4.38 in [4] . We leave out the
proof here, since it is almost identical to that of Lemma 4.38 in [4] .
When we prove Theorem 2.2 , we first prove part (B) , because that result is

used in the proof of (A) .

Proof of Theorem 2.2. (B) Conditions (i) and (ii) in Definition 1.1 are
clearly satisfied. To prove condition (iii) , let =z = Pn + rei¢ € En and

w = xn + Reie € Vn for some fixed =n > 0 . Then
i

£}
re "—Xx Rei p_ + lx |R
n n n-1{"n

-1
8] — |1+xn’ - R

Z. -x
14w n-1

1+ x +Rel
n

Dz—u2+2tn_1|xn_1'(D—u) B

= _D-p = R 1
> —— n-
Ztn_l[Ztn'l+xn| (-1 2t
by using Theorem 2.1 (D) , since xn-l(l + xn) = Tn and
- = _1 - (D~
(2.37) |1 + xn' R T[2cn|1+xn| (D-w)]
n

1
- F[tn'1+xn' + tn_1|xn_1| +ul >0 .
n



93

(A) When u=D , we have E = {Pn} for all n so therefore {En} is clearly
a sequence of convergence regions (since K(Fn/l) converges). Suppose in the
following that 0 < p <D .

Let K(an/l) be an arbitrarily chosen continued fraction where a € En for
all n € N . In order to prove that K(an/l) converges (and thereby that {En}

is a sequence of convergence regions), we shall first use Lemma 2.3 to prove that

(2.38) lim S

n+e

0, .
kn(wn ) Fe V0

for any sequence {wso)} from V0 « ( F 1is independent of the actual choice of
w9} ).
n
Let v(z) be a linear fractional transformation such that v(U) = Vb and

v(®) = § when U 1is defined by (2.35).
(2.39) ve=1{wee; lw—xO' < D=(u=-8)}
- 2t0

R 2t
where 0 < & < min{u, Rk_l 0”0 } » and

|"k—1' ]

® when 0 ¢ Vk—l

1+x R
% + 0 (R Rk—l 0 )
e B T

(The existence of v 1is insured by the fact that & ¢ Vé .) By repeated

(2.40) g

when 0 £ Viep

application of (B) , we get

. g(ok) . -
(a): Sk (VO) = V0 s n=0,1,2... ,
and

. (nk) [} [
since

2 2
(2.41) a ¢k _cE ={z€¢C; 'z—I‘n' suﬁ:é)_} 5 no=1,2,3,...
n

1 A 1 = . = . =
and E!/(14V!) S V! by (B) . (Rigyp = Ky 5 P = Lyeerk 5 0= 0,1,2,..0)

P
= o1 (nk) =
Let L A Sk v 3 n=20,1,2,... . Then {Tn} is a sequence of linear

fractional transformations such that Tn(U) S U and 'Tn(w)l £ q for some q <1

n=20,1,2,... . To see that 'Tn(w)l £ q , we have to consider the following two

possibilities: ~
Case 1: 0 € Vk—l . We know that
EL _Ek:l_ cV

L+ oeoe + 140,

where dist(bVo,bvé) = E%- > 0 . Therefore, since Sénk)(i) = S(nk)

1 (@ € vy,
there exists a q <1 such that |Tn(m)| £q for all n .

Case 2: 0 ¢V

k~1

a
. Then _IK cy for all n € N because
1+ k1
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RoRi-1
P * Rol%ey | + %] ]'—"“‘—_
;Lg - xk-l' kS et e SR

R,R
1+ R, + 0 k-1
[+ ol % (%] = Rt
where the last inequality follows by
R
e bl * Pl R el el o )

ga—l—l(nz—u% - 20w + (-2 - (>-w?]
o1
= - ._]-.__[D—u]2 <0

4tktk_1

since 0 < ¥ < D . Therefore, by the same argument as in case 1 , we get that
there exists a q <1 such that
oy = (o1 (nk) R T SN €19 g e
'Tn( )I 'V ° Sk (E)' = 'V Sk—l (—-1—_'_-&—') Laq
By Lemma 2.3 we know that there exists a G € U such that
lim(t, °o T
nre 0

for any sequence {zn} such that 'znl £q' <1 for all n . In particular,

1 o esese o Tn(zn)) =G

this is true when q' < 1 1is chosen such that v_l(Vo) clzece; 'zl £ q'} .

Then, since

=5 o s{k) o ees o gDk
Sk T Sk Sk C ° Sk
=‘V°V_1 °Sk°V°V—1 °Sl((k)°v° LR XN ov—l osl((n-l)kovov_l
-1
=vo1:oo1:10 o---o'[n_lov H n=1’2’3’.._
we see that
0y, _ -
1im Snk(wn ) = v(G) F
n+e

when {wr(10)} is any sequence from V0 . That F € V0 follows from the fact that

Snk(w\:fO)) € V0 for all n , and V0 is closed. This proves (2.38) .
This result is also true if we consider a tail K (an/l) of the continued
n=mt+l

fraction; that is, we get

(2.42) Lin s® @™y - ¢ ®e v
when {wr(xm)} is any sequence from V , for m = 0,1,2,,.. . Furthermore, we
get
Lim s (™P)y o 14 50 (Cminkil ménktp )
- nk+p " n - © nk 1 + eee + 1+w(m+p)
n

(m), *y _ (m), (m)y _ (m)
= lim Snk (wn) = rll.ilg Snk (wn ) =F € V“1

n>e
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for p=0,...,k-1 and m = 0,1,2,... , because

W = Cmnk+l lminktp €y 5 mo=0,1,2,... .
n cee m
1 + + 1+wI(1m+p)
Therefore
(m) _(mtn), _ _(m)
(2.43) lim 5% (w )=F e v

n+e
s0 {F(m)}:=0 satisfies the condition

(2.44) F®a 4§ m=0,1,2,00 .

mH
We shall use the results (2.43) , (2.44) to prove that K(an/l) converges.

By (2.42) we see that {Sﬁ:)}:=1 is a sequence of linear fractional trans-
formations which in the limit maps Vm onto a point F(m) » This is what 1is
called the limit point case in Thron's work on convergence of such sequences {61 ,

which states that when {Tn} , defined by

+G
T (z) = —2 'c ’ <1 3 n=1,2,3,... ,
G z+1
is such that 1lim T (U) = {c} U= {z; ’zl <1} ),then 1lim T (z) = ¢ for
e 2 - oo D

every z that is not a limit point on the sequence {- 1/G .
Transformed to our situation, it says that 1im S(m)(z) = F( ) for every =z

nre
that is not a limit point of (z)}n=1 , since
Al@®
@42 S22 = s —eet”
m m
nk + B nk—1
and
g(@
a a
(2.46) ﬂ_=n§“‘)=1+4n+_m =2 . 5 >0 , nd>1 .
2(m n 1+ see + 1 = =
kn-1
Since
a a
lim 51(1:-); (z) = _mkl mhp
L R s{7P) ()
n*e n
= 2o+l _amj-_L = F(m)

1 4 ees ¢ 1+ F(m+p)
by (2.44) , the following statement is true:

Statement: If K(cn/l) i1s a continued fraction such that c € En for all ne¢ IN
t
and {hé:) }:=1 has no limit point at O for any m € {0,...,k-1} , where

(2.47) n™' =1 4 Swin Sm2
n 1 + eee + 1

[ - [ . =
then K(cn/l) converges to F iiz Sn(wn) € V0 where v € Vn s n=1,2,3,...



1
and SI'1 = 51(10) and

c c
2.48)  s™'(uy = “mtl mwn ,  n=1,2,3,... ; m=0,1,2,...
n 1 + e + lt+w
*
By Galois' theorem [4, Theorem 3.4, p. 56] , we know that 1lim hl(::;) ==y,
nre

m= 0,1,2,... , where

T T
(2.49) h(m)* -1 + _mn mn-1 m2 . o= 2,3,4,...
n

1 + 1 4 eee + 1
Therefore, we can find an N0 € N such that

(m)* = -
(2.50) hk(No-1)+ym < L for m= 0,1,¢..,k-1

>

where L is defined by (2.31) . Let K(cn/l) be the continued fraction given

by:
(2.51) x‘n 3 -0
51 c_ =
n .
an—Nok ;5 n > Nok
Then K(cn/l) is a continued fraction such that

(a) cne En for all n€ IN , and

(m)’ : : (m)'
(R) {hkn } has no limit point at 0 for any m ¢ {0,...,k-1} , when h
is defined by (2.47) because

(m)’

1) Ihk(No-l)

+ym’5rm for m = 0,...,k-1 by (2.50).

(i1) 1f 'hgm) + V| < T+ them

|hr(:]). Y| =1 * c'm+“—“n+% * (‘1 + ——“FMMI)

h" Y mtn

n

"hr(lm)' * Y|

- 'hgm)'

¢ Pmntr * |1 * Yurnnr

Iym+n| + ym-l-nl
< Potntl T '1 +ym+n+1| “Tatn

ym+n| " Tt

2 2
D +2Vm+n+1|1+ym+n+1|(D'") -

< r
- - m+ntl
29 41 2V Yiptn| (0]
by use of Theorem 2.1 , since
- =_1 -
(2.52) Iyn' r E;_[:zvn'yn' D+ 1)
n

- E%;[vn'yn’ + vn+1|1 + yn+1| +ul >0

(iii) By induction

(2.53) hgm)' <r for all n > k(Ny-1)

* Yon| S Tmn
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1
for m= 0,...,k-1 . So by (2.52) {hgm) } will have no limit point at 0 for
any m € {0,...,k-1} .

Therefore, by the previous statement, K(cn/l) converges. In particular, the

kNZh tail of K(cn/l) » which is K(an/l) , converges. And, since a €En was

arbitrarily chosen for all n , this proves (A) .

(C.1) If we continue the last argument in the proof of (A) , we also know that

- e (0)', (n)
nKl(c /1) = F' = iiz Sn (wn ) € Vo

where w(m+n) € Vp4p for all ne W . By (2.44) we know that
t 1]
F@' 4 gD : m=0,1,2,... when F™' - 1p s

n>e
1
m= 0,1,2,... . Since the tails {f(n) } of K(cn/l) satisfy the equations:
t
£ .

) =c (m)’ (w (m+n)) H

f(m)'(1 . f(m+1).) ce s meOLen.

(mtkNp )

t 1]
we mst have £™' = F™' for 211 m . And since £™ - ¢ , (C.I)

follows.

(C.11) To prove (2.27) , we use the fact that f ¢ Vo and S(m) (w(P+m)) eV

kn+p m
when w(p+m) €Ev ptm Then
£-5 . (v (p))' I _ a; I
“nro |1+f(1) 1+s{1) 1(w("))'
(»
s
= Pt @ ) BRSNS
1+ £ P
'xo + g:ﬂ
t 1) _ 1) 6]
< e - £ P
- l1+x1, - D-u Skmtp-1 l
2¢)
I b § I i IR DI DR O
t t1|1+x1 + to|xyf+u kotp-1""n
n_j.(nk) _ (ok), (p) n, = o . D-u
<Q 'f NN )| <Q"2R) = Q -
M) Let
(2.54) ro=r¥ar s p=1,..,k 3 n=0,1,2,...
kn+p P k-pt+l

(that is K(Y;/l) is the dual of K(Ynll) .). By Galois' theorem [4, Theorem 3.4,

%
p. 56] , we know that the tails of K(Ynll) are given by

* %* ®
(2.55) g(* x, = kK (T
m=n+1

Since K(Yn/l) is the dual of K(T

/1)='1'Yk H n=o)1)29"'

/1) , we also get that the repulsive fixed

S % B %

i * £
point yn [}
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* *
r r
(2.56) slg“)*(w) - _nHl Stk
1 + voe + 14w
is given by
(2.57) y; = -1 - Kn 3 BT 0,1,2,...
Furthermore,
* % Kt —1( 3 %, ktp-l
(2.58) t =t = § 1+x,| *
kn+p P jep 1= pﬂl ' 1= IHI 1'
k+§—1 3 k+ k+p-1 2k-p-1 2k-3-1
- y 1+Y_)=E Hy'HlHy)
jp 1= p+1, Zk= 1, 1I 2k i' i=p i=2k—j| i' 1=k-p+ i'
2k-p~1 j 2k-p-1
- ( |y, 7P = vy
J=k-p 1= k—p+1 i= ;]+1
In the same way
(2.59) * * k+E_1( j k+§)1—1 * )
. v =v_ = 1+y y =t
kntp P 1=p i-p+1 I 1’ 1=3+1 ' i k-p
Finally
2 ST - P,
(2.60) D = |1+xn' - n=1|x“' = lyn' - =1'1+yn, =D

*
Therefore part (D) follows by using Theorem 2.2 (A) , (B) and (C) on {En} .
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SOME USEFUL FORMULAS INVOLVING TAILS OF CONTINUED FRACTIONS
Lisa Jacobsen

Haakon Waadeland

In the use of auxiliary continued fractions for the purpose of convergence
acceleration {2, 3, 7, 10] or analytic continuation [8, 9, 10], the tails of the
auxiliary continued fraction are of vital importance. Since the method heavily
depends upon knowledge of the tails, it seems to be a good idea to express other
quantities connected with the problem in terms of the known tails. The purpose of
the present paper is to list some formulas of this type and in some cases to
indicate some previous and present use of them. Although the formulas are very
elementary we have not found them in the literature (except in the few cases we
refer to). This may partly be due to the fact that tails were less interesting
earlier than they are now, partly that some of the results may be folklore among
people working with continued fractions.

The proofs are in most of the cases straightforward induction, and shall be
omitted. Rather than giving such proofs, we shall devote the space to comments.
For definitions and notations we refer to [l], in particular to (DN5), (DN6a),
(DN6b) and (DN9). Since in the proofs the only tail-property used will be the

recursion relation

(n) _ 344 -
L g = 0 n=0,1,2,....
1+g(n+1)

the formulas will be valid not only for tails, but also for any sequence {g(n)}
satisfying (1), which also means that we are not restricted to convergent continued

fractions. 1In view of the possible applications this general setting makes sense.

Proposition 1. For a given continued fraction K(an/l) let {g(n)}:=0 be a

sequence of complex numbers such that

a -
(1) g™ - ol 0,1,2,...
1+g(n+1)
Then the following formulas hold for =»n=0,1,2,... n
n
) a+a g™ =g 1 (1™,
n n-1
m=1
(n) - (m)
3 B +B g™ = 1A,
n
) a -8 -t g™
n n
m=0

The proofs are trivial verifications (inductions using [1,(DN6)] and (1)).

The case one thinks of first is when the continued fraction converges and

g(n) = f(n) are the tail values (all assumed to be finite). In the particular

case of a T-fraction formulas:of the type (2) and (3) were used in [11, 12]. See
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{12,(1.11) and (1.12)]. Actually, in that particular investigation {g(n)} is the
sequence of tails iIn one part of the plane and a sequence of "wrong tails” in
another, leading to analytic continuation of the function represented by the
T-fraction. For periodic continued fractions of period one with g(n) = the
"right” or “"wrong" root the formulas are particularly simple. This case occurs iIn
the paper [9] in connection with analytic continuation of functions represented by
continued fractions. The formulas [9,(2.2) and (2.3)] are valid for limit
periodic continued fractions, but reduce to the periodic case in the obvious way.
Also there they lead to analytic continuation of functions, represented by
continued fractions.

The formulas (2), (3), (4) and several of the subsequent formulas are used in
[4]1.

Using the formulas (2) and (3) we easily get

Proposition 2. With g(n) as in Proposition 1 we have
ntl _ n p-1

5) a =g T O™ on g ase™y)
p=2 v=p v=1

and

= n—i:l _ n p-l

6) B = 1 D™ o g any

P=1 v=p v=1

We can of course get similar formulas for An(m) and Bn(m) . (For definition,
see [1,(DN 5,6)] and the definition of S_™ , also in [1].)
n

mn+l 1

_., mwtn P-
(s") a ™ = g® T cy™m e gy ™)
p=mr+2 v=p v=mtl
wntl __ mén p-1
6" B ™= ™o My arg™y)
p=mtl v=p v=m+1

And from these equalities, we get the following result:

Bn(m)g(m+n+1) + Bn(m+1)(l+g(m+1))

n

mn+1 mhn+l
T gt 1 g™V
v=mrtl v=m+1

In the special case when K(an/l) is convergent and k-periodic, we get the

following proposition:

Proposition 3. Let K(an/l) be a k-periodic, convergent continued fraction.

Let ?<n) denote the repulsive fixed point of Sk‘n) (w) + Then
K K
(8) BIS‘“) £ 4 D) Dy o g Ol ypy® o ¢
-1 k-1
v=1 v=1
(9 5™ T 4 B ™)y - Tkt 1 7Y

v=1 v=1
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k k
= -1 (M)t @ g
v=1 v=]1
(@ _ Tw) k ™ 1 5 (v
(10) £ - f =1 (e Y+ I £7)
(@ =1 v=1
k-1
k k 2
(n) _ o(n).2 (n) ,(n) _ (V) o 1 k1 v)
(11) () - BT+ A = vzl +£ V(1) \:1 £

independently of =n .
Here (8) follows directly from (7), by using the facts that {f(n)} is k-periodic

and
f(n) - 2+l

1+f(n+1)
(9) follows in a similar way, using in addition
(12) Bl(:_'if(n) = - Bl(:_"{'l)(1+'f‘(n+l))

~ +1 +1

a3 B(FM - - g ()
by [4,Thm. 2.1] where {Bi&i}:=o also 1s k-periodic. (10) follows by combining
(8) or (9) with (13) or (12) respectively. (11) is a direct consequence of (10),
since f(m) and ;(m) are solutions of the quadratic equation

x = S(m) (x) = Aﬁm) + (Tix
k (m) , (m)_
Bk + Bk—lx

In the theory of continued fractions, the quantity hn =B /B is of great

n n-l
importance [5, (4.1.3)]. The following proposition is a direct result of (3) and
(4):

Proposition 4. Let K(an/l) be a convergent continued fraction. Then

n
r (™)

() o (y?L m=1 . (f -
(14) h o+ f -1) %__1____ (£-£ )
n g™
=0
- f
= f(n) . fn—l n
f - f
n
as) P O B =
n £-f

These formulas contain some useful information on hn , and combining them can give
further equalities.

Another useful concept in the theory of continued fractions 1is the concept of
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contractions: Let K(anll) be any continued fraction, convergent or not.
-]
Furthermore, let {nv}o be an increasing subsequence of the non-negative integers.

Then bg + K(a;/b:) is a contraction of K(an/l) with respect to {nv}z i1ff

f: = f“v for all integers Vv > O . Such contractions may be used to simplify the
study of some continued fractions K(an/l). For instance in the special case when
K(anll) is k-periodic and n =v- k for all . v > 0, we get l-periodic
contractions. Since the behaviour of tails is of growing importance, it is also
interesting to see what the tails of a contraction of a continued fraction look

like.

Progosition 5. Let K(an/l) be a convergent continued fraction. Let

* * %
bo + K(an/bn) be the contraction given by [6, p.ll]

A
(16) b= 20 p¥ap
o 3 o,
%o
B(n‘)_z+1)
* n_-n -1
(17) b = \)—\)—2 HIR 2’3’4,-....
v (n_ +1)
B v-2
“v-l'“v-z'l
(n0+1)
18 % ) n, n -n -1
(18) 3 = D }177%% 1 Ty
%o
. (n1+1)
* ™o n. n,-n,-1
19 a, = (-1 a eeeg o0 2 1
19) 2 D no+2 n1+1 (n0+1 )
nl—no-l
. B(n‘)_1+1)
% Dy 1 My2” n -n_ -1
(20) a =1 UV, gttt vl
P2 fy-1 B(n"'2+l)
nv—l_n\)—Z_l
where {nv}u\;o is an increasing subsequence of the non-negative integers. Then
n
% n-n_ ,-1 v
(21) f* gy v oVt T £ ™ a1,
m=n__ .+l
v-1
* %o "o
(217 O - op ™
Bn m=0
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(nv_1+1)1 nv_1+1
* % n_-n -
(22) by + £* - el RPRCON
n
B V=2 anv_2+2
By Pyp7L
for v=2, 3, 4, ...
*
*
(22") by + £ -t
n,+1
« (¥ g Mo (m
(22") b, + f =B T o+e™y
1 -n. -1
M mel

Proof (outline): By [6, Satz 1.6],

* * % ™
bo + K(an/bn) is a contraction of K(an/l) with respect to {nv}v=o .

* *
Furthermore, it follows from the construction of the coefficients {bn} s {an} ,

that
A
23) ar= o 8o
( o B_ 3 o ?
%o
% %
(24) A = An R Bn = Bn s v=1,2,3,...
v v
Since
(n)
- % (\))* _ v
f Sv (f ) = Sn (f )

v

the proposition follows, by use of a generalized determinant formula, {6, p.l,
formula (9)], and (23), (24).

% * %
A contraction b0 + K(an/bn) *of a continued fraction K(an/l) with respect
to {nv}:=o is not unique. In fact, any continued fraction equivalent to

* * %
bo + K(an/bn) will be such a contraction, since two continued fractions are

equivalent iff they have the same sequence of approximants, (by definition [5, p.

' 1 ' % * %
31]1). By [5,Theorem 2.6] , bo + K(an/bn) is equivalent to bo + K(an/bn) iff
1] * A *
a =r_r a ,b =1r_ b
n n n-1 "n n n n

for all n , some sequence {rn} of non-zero constants with L 1.

But what happens to the tails under equivalence transformations?

1 ] ]
Proposition 6. Let b, + K(a /o) and b, + K(a_/b_ ) be equivalent continued
— 0 n' n/ ~— "0 n' "n’ —
fractions such that

(25) a =71 a ,b =r b ,r,=19.

n n n 0o

Then
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(26) M) _ o ()
n

This 1is essentially stated in [6, Satz'l.Z], although the word tail does not enter
into that context. And it fully shows the importance of emphasizing which one of
the contractions we are looking at.
Since the contraction given in Proposition 5 is the only one with the property
that
(27) A* = A , B* = Bn 3 v=1,2,3,...
v v

we shall call that one the principal contraction of K(an/l) with respect to

{nv}:=0 . Then Proposition 5 may be rewritten;

Proposition 5'. The principal contraction of a convergent continued fraction

bo + K(an/bn) with respect to an increasing sequence {nv}v=0 of non-negative

integers, is unique and has tails given by

f(v)* - (_l)nv_nv—l_l E f(m)

m=nv_1+1
* (v)*
Furthermore, if bv + f is the quantity of interest, one may study the

1 1 1
equivalent continued fraction bo + K(an/bn) given by (25) with

B(nv_2+1)
n -n -1
(28) rn=L"'2; n=1,2,3,%°
(nv_1+1)
nv—nv_l—l
since in that case
n +1
R f v-1
(29) b+ FACORN | (1+£™)
m=n_ .+2
V-2

Finally, we mention that for equivalent continued fractions (using the
notations from Prop. 6) the following formulas hold
mHn

t

A™ L™y

n n j=m J
30

@' gm , P

Bn =B . I r, .

D gemn J

Observe that for m = 0 the r-products are equal, since r_ =1 .

Several other related results could have been included, among them some on
dual periodic continued fractions. But hopefully the sample above is sufficient to
accomplish the intention of the paper: to present some examples of useful formulas

involving tails (or “"wrong tails™) in the theory of continued fractions.
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UNIFORM TWIN-CONVERGENCE REGIONS FOR CONTINUED FRACTIONS K(an/l)
William B. Jones
Walter M. Reid

1. Introduction. A sequence {En} of subsets of € 1is called a sequence of

convergence regions for continued fractions of the form

® a

a a
(1.1) K@/)=-1 _2 _3 ..
n=1 ©® 1+ 1+ 1+
if
(1.2) 0O#a €E , n=123,..

insures the convergence of K(an/l) to a finite value. Let fn denote

the nth approximant of (1.1) and let f = lim fn , When that limit exists. A

nro
sequence of convergence regions {En} is called a uniform sequence of

convergence regions for continued fractions of the form (1.1) , if there exists a

sequence of positive numbers {en} (depending only on {En} ) with 1im €, = o]

n-<e
such that (1.2) implies that
(1.3) 'f—fn’gan , n=1,2,3,000 .
In the special case where E2n—1 = E1 and E2n = E2 , n=1,2,3,... , one speaks

of twin-convergence regions and uniform twin-convergence regions.

In 1959 Thron [10] proved that if w = ’w’eie and p* > 1 , then
*
2

are twin-convergence regions for continued fractions K(an/l) . By means of a

*

* *
(1.4) B, = [w ’w, <p] and E, = [w: M > 2(p -cos 8)]

* &
counter example he showed that (EI’EZ) in (1.4) are not uniform twin-

convergence regions. In the same paper it was shown that
*

* *
(1.5a) El(n) = [w : ,w, <p (1-n)] and E2

= [w: ,wl > 2(p"~cos 0)]

are uniform twin-convergence regions for K(an/l) , provided that

* *
(1.5b) o<n<.i.(2._;i) and p >1 .

p

* * *
1 » We say that El(n) is a contraction of E1 .

By taking a different approach to convergence theory, Jones and Thron [6,

*
Since El(n) c E

Corollary 5.7] were able to extend the result of Thron for (l.4) by proving

that, if T 1is a complex number and p a positive number satisfying

(1.6a) Ir’ < ,1 + r’ <o
then

= 2 .12 2 1.2
(1.6b) B, = [w: ’rw—r(|1+r’ —,r, )’ + ’1+l"”w| < p(|1+r’ —,r’ )]



107

and

(1.6c) E, = [v: p’wl-,w(1+f)—(1+r)(p2—|1+r|2), > ’1+I"(p2—’1+r’2)]

are twin-convergence regions for K(an/l) . We note that the first inequality
in (l.6a) 1is equivalent to Re(I') > -1/2 . It is easily seen that, when I = 0 ,
the regions in (1.6) reduce to the corresponding regions in (1.4) (i.e. ,
E1 = E: and E2 = E; ) A disadvantage of the method used in [6] is that it
gives no information about uniform convergence or speed of convergence of the
continued fractions.

This paper is concerned with a sequence of convergence regions {En(én)} for

continued fractions K(an/l) where each region En(én) depends on a parameter én

(with 0 < Gn £ 1) and where

1 1
(1.7) En(én) c:En(én) if én < én <1
and
(1.8) E2n_1(1) = E1 and Ezn(l) = E2 , n=123 ... .

Here E1 and E2 are defined by (l1.6) . Thus E2n—1(62n—1) and E2n(62n) are
contractions of E1 and E2 » respectively. In our main result (Theorem

1) it is shown that {En(én)} is a uniform sequence of convergence regions

if the infinite product Hén diverges to zero. Moreover, it is shown that,

for continued fractions K(an/l) with O # a €E (én) , the truncation error

n
’f - fn’ of the nth approximant fn is bounded above by 2pII§ « This theorem

3
2
therefore provides an extension of Thron's uniform twin convergence regions (1.5) .
The methods used in [6] , [10] , and in the present paper are based on a
study of sequences of nested circular disks {sn} in @ having the property that,

for n=1,2,3,.¢¢ .

(1.9) _ fn+m € sn , m=0,1,2,... ,
so that
(1.10) fn+m - fn < 2Rn s, m=0,1,2,...

where Rn is the radius of 8, . The approach taken in [6] was to show
that a continued fraction K(an/l) converges even if 1lim Rn # 0 (limit
circle case). Hence nothing can be said about the speed of convergence. In [10]
and in the present paper, estimates are obtained for Rn which insure that
1lim Rn = 0 (limit point case). Therefore uniform convergence regions and
speed- of -convergence estimates are obtained. This approach was employed first by
Thron [9] in the investigation of parabolic convergence regions for continued
fractions K(an/I) . It has subsequently been used here and in ([1] , [2] ,
(31 , [4), [5] » [7] , [8] , and [lO] .

One of the main steps in Thron's method is obtaining suitable parametric
representations for the element regions En(én) « In terma of the parameters

defining En(én) ,» we derive an expression for Rn +« This expression is then
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maximized for all a € En(én) , thus giving an estimate of Rn and hence of
(L.10) .

Questions on best twin value regioms are dealt with in Section 3 . It is
shown (Theorem 2) that some of the twin—convergence regions (1.6) are not best.
In Theorem 3 it is established that for every pair of twin-convergence regions
(1.4) , there is no better pair of twin-convergence regions within the larger
family (1.6) .

We conclude this introduction by defining some special symbols that are used.
Let A and B denote subsets of @ . Then Int(A) and 3A denote the interior
of A and boundary of A, respectively. B~A denotes the complement of A with
respect to B . If f 1is a function of A into ¢ , then
£(A) = [£(x) ¢t x € A] .

2. Uniform Converggnce Regions. Here and throughout this paper, Arg z denotes

the principal value of arg z , where -n < Argz {7 .

Theorem 1. Let T be a complex number and p be a positive real number such

that

(2.1) |r, < ,1+r’ <p -

Let {én} be a sequence of positive numbers satisfying

(2.2) '1+F’/p <8, ;<1 , 0¢8, <1 , n=1,23,... .
For each n =1,2,3,... , let E (6 )C € be defined by

10 /2
(2.3a) E2n—1(62n—1) = [w = re : 0 S r S t((szn_l,e)" t (6211—]_’9)—1((&2]1—1)] ’
where

2

(2.3b) €6y, _1,0) = 62n_1p!1+I', - ’r‘, cos(0-2ArgT)

2
(2.3c) (8, 1) = (55 1P —’ ’ )(,1+r, -|r | ,
and

10

(2.4)  Ey (8, ) = [w=Te :r> 2’1+I‘,(p/62n—’1+I‘,cos(6—2Arg(1+l")))] .

Then: (A) {En(én)} is a sequence of convergence regions for continued

fractions of the form K(an/l) .
(B) 1If the infinite product H&n diverges to zero, then {En(én)} is a

uniform sequence of convergence regions for continued fractions K(an/l) .

(¢) If K(an/l) is a continued fraction with elements satisfying

(2.5) 0#a €E(S) » n=1,23,...

and with nth approximant fn and value f = lim fn , then

(2.6) |f-f , CpMe, , m=234.00 .
j=2

Our proof of Theorem 1 is based on several lemmas which will now be given.

Throughout this section the symbols F,p,{én} and {En(én)} are defined as in
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Theorem 1 . The first five lemmas describe useful properties of the element

regions En(én) .

Lemma 1. (A) ) 1is a closed, bounded, convex region, symmetric

E2n—1(62n—1
with respect to the line (axis) determined by the ray arg w =0 = Argl’ .

(B) Let g be the function

(2.7) £(5,0) = £(5,0) - /t2(5,0)K(8) ,1+r,/p <8<t ,

where t and K are defined by (2.3b,c) . Then

(2.8) max  g(5,0) = g(5,0,) = (6p + ’r|>(’1+r|-|r’>
Ko<2n

where 62 = 2Argl EEE

(2.9) min g(8,6) = g(5,0,) = (6p-'T’)('1+T!—,F,) ,
0<6<2n

where 6, = 2Argl +1 .

Proof: Except for convexity, (A) is an immediate consequence of (2.3) .
The proof of convexity will be given after we have proved Lemma 4.
(B): Since § > ,1+T,/p > ’T,/p , we have K(8) > O and hence

Yt (5,0)-K(8) # t(5,0) .

It follows that g (5,0) = 0 if and only 1f t (5,0) = ,T,Zsin(G—ZArgF) =0 3
that is, if and only if

0 = 92 = 2Argl’ or 6 = 91 =2ATgT + 1T .
By an elementary calculation one can verify (2.8) and (2.9) . [ |

Lemma 2. (A) bEzn(GZn) is a cardioid with axis of symmetry géssing through

the ray arg w = 0 = 2Arg(14T) . E2n(62n) is the unbounded region consisting of

aEzn(ézn) and its exterior. (B) Let h be the function defined by

(2.10) h(6,8) = 2,1+T'[p/&—’1+T'cos(9—2Arg(1+r))] , 0<8<1 .
Then
(2.11) max h(6,0) = h(5,0,) = 2| 17| (p/641)

0<6<2n
* — =
where 92 = 2Arg(14T) + n© and

(2.12) min h(5,8) = h(&,@:) = 2’1+T’(p/6—1) .
0<e<2n
where 6: = 2Arg(1+T) .

The proof of Lemma 2 follows readily from (2.4) and hence is omitted.
Lemma 3. (A)

(2.13) (61)C By 1(8) 1f |1T|/p <6t <8 <1 .

E2n—1
(8)

(2.14) Ezn(é') CIEzn(é) if 0<&8'" <8 <1 .
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Proof. (A): Let 6 be fixed and define f£f(8) = g(5,6) where g is defined
by (2.7) . 1t suffices to show that f 1is an increasing function of 8 . 1If
' =0, then it can be seen that f(8) = pd which is clearly increasing. Suppose
that T # 0 . Then by (2.3b) , t(5,0) Z_p6,1+T,-|T,2 >0 . Thus

(2.15)  t2(5,0) - K(8) = [Gp,1+P,—,P,2cos(6—2ArgP)]2-(6292-,F,2)(!1+F,2-,T’2)

v

oo
. |T’2('1+T,—p6)2 >0 .

It follows that f£'(8) > O if and only if

(2.16) 26,(5,0) 2 (5,0)-K(6) > 26(5,0)t,(5,0) = K'(8) -
Since

2 2 .12
(2.17) ts(6,0) = p’1+F, and K'(8) = 268p (,1+r’ —,r, )

the right side of (2.16) becomes

(2.18) 2t(6,9)t&(6,9) - K'(8)

2p'1+r,[p6,1+F,—,P’2cos(9—2ArgT)] - 26p2(’1+F’2—,T'2)

fwv

2p’1+T’[p6,1+P",T’2] - 26p2(,1+F’2—,T,2)

2p,F’2(6p—’1+T’) >0 .

Therefore if we square both sides of (2.16) , rearrange terms and simplify, we
obtain the equivalent inequality

(2.19) 4E(8,0)t 4(6,0)K"(8) - 4[t6(6,6)]2K(6) -k E>o .

Now substituting from (2.3) and (2.17) into (2.19) and dividing throughout by
4p2(|1+Fl2-’F’2) yields the equivalent inequality

26p'1+T|[96|1+T|-,T’2cos(9—2Argr)] - ’1+r,2(9252-|r’2)
- 62p2(’1+r’2-,T|2) >0 .
This inequality will surely hold (for all © ) if the new inequality, obtained by

replacing the cosine by one, holds. That inequality can be shown to be equivalent

to
7|2 (1r) 20832 > 0
which clearly holds. We conclude that f£'(&) > 0 , which proves (A) . To prove
(B) it suffices to show that h(§,0) (defined by (2.10) ) is a decreasing
!

function of & . Since this is readily done, the proof is complete. 0
Lemma 4. Let E1 and E2 be defined by (1.6) and let En(l) be defined

by (2.3) and (2.4) . Then
(2.20) By (1) =E and E, (1) =E, , n=123.. .

Proof: It suffices to prove that El(l) = E1 and E2(1) = E2 « We begin
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The inequality in (l.6¢c) is equivalent to

with E,(1) = E, .

(2.21) ol - || |ur|?y 2 |vasfy-cryo®-[1or) By
which implies that

(2.22) vl 2 Jl+r!(°2;!1+rj.2) >0

Squaring both sides-of (2.21) , collecting like terms in r and dividing
throughout by the positive quantity r(p2—,1+T!2) yields

(2.23) r> 2’1+I"[p-’1+I"cos(9—2Arg(1+I')] ,

which is the inequality in (2.4) . We have shown that (2.21) implies both
(2.22) and (2.23) and hence that E2 c E2(1) « It can be seen that
(2.23) 1implies (2.21) provided that (2.23) implies (2.22) . To prove that
(2.23) implies (2.22) it suffices to show that
(2.24) 2|17 | (o= 14| cos (o-2arg(147)] > ,1+I‘,(p2—,1+I',2)/p .
But (2.24) 1is equivalent to

2p[p-,1+I"cos(6—2Arg(1+I‘))] > 0% - ’1+r,2 = (p+,1+I',)(p—,].+I',) s
which follows immediately from the fact that p > ,1+F, , so that 2p > p + |1+P, .
This proves that E2(1) = E2 .

To prove that E1(1) = E. it suffices to show that the inequalities

1
(2.25) 'fw—r(’ur’z-’r'z)’ 5p(,1+r,2-,r’2) - |r+r]]v]
and
(2.26) 0<r <) - /e2co)x (where w = rel?)

are equivalent. Here
t(0) = t(1,0) = p,1+I" - ,I"zcos(e-ZArgI') ,
and
k= k() = 62|rf(ur|r .
For that purpose we establish the following

2112
(2.27) 0 < £(0) - /t2 o)k < ‘L(-‘%,'Ji)g to) + 2oy .

The first inequality in (2.27) follows from the fact that
£@) > p’1+I" - ,r'z >0 and 0 <K< t2(8) , since

t2(0) - kK = [p |1+I‘,—,I"2cos(e—2ArgI')]2 - (pz-,r,z)(,1+1“’2-,r'2)
> ofps > - 6] e
= ,I"z(p-,lﬂ‘,)z >0 .

To prove the second inequality in (2.27) we note that by (2.7) and (2.8)
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t(e) - /t2(0)x = g(1,0) < (p+,r,)(|1+r’-,r’)

PRrTd el i O
= +T
The third inequality in (2.27) is equivalent to
|1+I‘!/t2(9)—1( + ,I"z(p—’lﬂ‘,cos(e—ZArgF)) >0 ,

which is readily verified. Now suppose that (2.25) holds. This implies that

2 .12
(2.28) r=u] < I€ 252N Mind 1 NP
- 1+T

Squaring both sides of (2.25) , collecting like terms in ’w, =r , and dividing
throughout by (’1+F,2—,r'2) yields

(2.29) r2 - 2re(0) +K >0 .

Completing the square on the left side gives the equivalent relation
(2.30) (e-eon? > 2oy - .

Since t2(8) - K> 0 for all real 6 , (2.30) is equivalent to

(2.31) lr—t(e), > ey«

where we take the positive square root. Clearly (2.31) implies that either

(2.32a) r L) - /t°(8)-K , (when T < t(0))
or
(2.32b) r > t(8) +/t7(8)-K , (when r > t(8)) .

Combining (2.28) with the third inequality in (2.27) shows that (2.32b)
cannot hold. Hence (2.32a) holds, which proves (2.26) .

Conversely, suppose that (2.23) 1is satisfied. Then by the second inequality
in (2.27) , it follows that (2.28) holds. Hence the above steps can be
reversed to show that (2.21) is valid. | ]

Remarks. We shall now prove the assertion made in Lemma 1(A) that

E2n—1(62n—1
convex if ,1+T’/p <& <1 . Inview of Lemma 4 it can be seen that, if p 1is

) 1is a convex set. It suffices to show that El(é) is

replaced by p& in (1.6b) , then the resulting inequality is equivalent to the
inequality in (2.3a) (with 62n_1 =8 and n =1 ) defining E1(6) .
Therefore we can write

E,(8) = [w ,fw—r(,1+r,2—’r,2),+,1+r"w| < p6(’1+I"2—|I',2)] .
To show that El(é) is convex, it suffices to show that, if A, B and C are

arbitrary positive numbers and Y € ¢ , then
E = [w: Alwl + Blw—wo’ < C]

is a convex set. Let vy and L be any two points in E . Then we

shall show that, for all 0 <« 5_1 , w(a) E , where w(a) = aw1 + (l-a)w .
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Since wl,w2 €E ,

Alwk’ + B’wk—wo’ <C , k=1,2 .
Now

A,aw1+(1—a)w2, S_aA,wl, + (l—a)A,wz,
and

Blaw1+(1—a)w2—w0, = B,a(wl—w0)+(1—a)(w2—w0)|

S_aB’wl—wo’ + (1—a)B'w2—w0’ .
Thus by using the preceding three inequalities, we obtainm, for 0{ a1l ,

A,w(a), + B,w(a)—wo, = A,aw1+(1—a)w2, + B,aw1+(1—a)w2—wo,

aAlwl, + (l—a)A,wz, + aB,wl—wo, + (I—a)B,wz—w

IN

ol

a[A’w1’+B,w1—w0|] + (1—a)[A|w2’+B,w2—wO,]

IA

aC + (1-a)C = C .

It follows that E 1is convex and hence also that El(é) is convex as asserted

in Lemma 1(A) .

Lemma 5. Let TI',p, and {En(én)}n=1 be as in Theorem 1 and let {Vn}n=0

be a sequence of subsets of ¢ defined by

(2.33a) V, = lve ¢: ,v—I" <pl , n=0,1,2,... ,
(2.33b) oy = [VE € ’v+(1+I‘)’ > ’1+r|] , no=0,1,2,000 .
Let

s(w,v) = Y

(W, v) 1+v

Then
(2.34a) s(Ezn(ézn),Vzn) c v2n-1 , n=1,2,3,... ,
(2.34b) 8(E, 108, ,1)wVy ) eV, n=0,1,2,000

Proof: Let E1 and E2 be defined as in (1.6) . Then by [6,

1970, Lemma 5.5] we have

S(El’vl) c V., and s(E2,V2) cV

0 1

Hence (2.34) 1is an immediate consequence of Lemmas 3 and 4 . a

Proof of Theorem 1. (A) follows from Lemmas 3 and 4 and [ 6, 1970,

Corollary 5.7}. (B) 1is an immediate consequence of (C) . To prove (C) 1let
K(an/I) be a continued fraction with elements a satisfying (2.5) and
with nth approximant fn and value f . Let {sn} and {Sn} be

sequences of linear fractional transformations (l.f.t.'s) defined by (DNL) .
Let {Vn} be defined by (2.33) . It follows then from Lemma 5 that

(2.35a) sn(vn) = Vn_ n=20,1,2,...

1 bl
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and hence that
(2.35b) Sn(Vn) [ sn—l(vn—l) [ V0 , n=1,2,3... .

Therefore {Sn(Vn)} is a nested sequence of closed circular disks. Let

R denote the radius of S (V) . Since £ =S (0) and O €V , for all

n n n n n n

n=1,2,3,... it follows from (2.35b) that fn+m € Sn(Vn) for m = 1,2,... and

hence that

(2.36) fn+m - fn < 2Rn , n=234... , m=0,1,2,... .
Thus to prove (2.6) , it suffices to show that
n
R <pI$ , n=234 ... .
n — =2 h]

For that purpose we let

Ty =T, by =P s Ty oy =~(4T) 5 pyy = ’1+r, , o n=20,1,2,000 .

2n

Then for each n , an is a circle with center Pn and radius Pn °

Let Bn denote a point on an with its exact location to be determined.

Let z be a point in Int(V ) such that S (z_) 1is the center of § v) .
n n n' ' n n'n

Let An and Bn denote the nth numerator and nth denominator of

K(an/l) , respectively. Then by use of the determinant formula
n
n
Aan—l - An—an =(-1) I a , n 1,2,3,¢0¢
k=1
and (DN5) , one can show that
n
SRR
n ool _, k

2
an—ll ,hn+8n, hn+zn,

(2.37) R =[5, (B )-8, (2] =

where hn = Bn/Bn—l . Formula (2.37) can be simplified as follows. We recall
that inverses with respect to a circle are preserved under 1l.f.t.'s . Moreover,
o 1is the inverse of Sn(zn) with respect to the circle asn(vn) .
Since Sn(—hn) =o , it follows that the points z, and —hn are inverses with
respect to the circle avn (see Figure 1 for a schematic diagram). Now we
choose Bn to be the point of intersection of the circle avn and the
line segment passing from Tn through z, and --hn ; that is,
itn
Bn = Fn + Pne .

e

It follows that (2.37) can be reduced to

n
(2.38) R = pnkgl|ak, .
" ’Bn-l , 2’ ,hn+rn, Z_pIZI

Since hn = Bn/Bn__1 can be estimated more readily than Bn- , we shall consider

1
the ratio
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dVam

-h2m Vom+i >
2m+i
2'" zmﬂ
S2m+I(V2m+I)
.Szmmz,n) .52m+(!32m+)

(a) EVEN CASE: (b) ODD CASE:
n=2m n=2m+|

Figure 1
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(2.39) Q =0 - N Y e

"R |hn_1|2' |ratha 2.2

From the difference equations (DN6) , we obtain

a
h =1+_21
n

n—-1

and hence (2.39) can be written as

(2.40) . o N ey
"Ry pn_l'Ian+hh_1(1+Fn)|Z—pilhn_llzl

The principal advantage in (2.40) over (2.39) is that (2.40) does not involve

hn and the quantities a and hn— (involved in (2.40)) are

1
independent of each other.

We consider now the case with n = 2k + 1 odd; (2.40) gives

- o1 o |1+T||32k+1|||r+h2k|2_92

(2.41) Q1 Ry, +Th2k'2—'1+rlzlh2klzl

p”32k+1
To obtain an upper bound of QZk+1 , we recall that
Sn(—hn) = Sn(—Bn/Bn_l) == ¢ Vg » n= 1,2,3,... .

Hence by (2.35b) , —hn €C - Vn for n=1,2,3,... . It follows then
from (2.33) that

(2.42) 'h2k+T| >p and 'th_l-(1+r)| < '1+r| , n=1,2,3.. .
By the first inequality in (2.42) we have
||T+h2k'2—pzl = |r+h2k|2 - o2
and from the second inequality we obtain
|2zt Tl = [0 [ ] - ”f‘%ﬁ = v -] ?| [y *

- |'h2k+1—(1+r)|2—'1+r'2"thIZ , (since h =1l+a /b )

- [|1+F|2-|h2k+1—(1+r)|2]|h2k|2

B |1+T|2|h2k|2 - |32k+1_rh2k|2 .

Therefore certain absolute value signs in (2.41) can be removed and we obtain
2 2
I b | P LS L
2 2 2
P[|1+T| || -'32k+1_rh2k' ]

Next we introduce, by means of (2.5) and (2.42) , the parametric representationms

of

(2.43)

Qw1

sl and th given by
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—ewe!® , 0<e<1, 0<ocan

(2.44a) a5

where

(2.44D) o = 8(5,8) = £(5,0) - /c2(5,00-K(8) , (see (2.7))
and

(2.44¢) %k=—T+$eﬂ , 0<y<1l, 0<A<2m

It is understood that the parameters ¢€,u,9,8,y, and A all depend on k .

Substituting (2.44a) into (2.43) and expanding the denominator yields

u|1erf1 II‘-H'kalz—pZ]

Q2k+1 = o F(e,u, e’th)
where
F(e,u,e,th) = _____ii_____E ,
D0+2D15—D25
_ 2_|n{2 2 _ -i6 = 2
Do—(|1+1'" |r| )|h2k| , Dy = wRe(Thye ) , D, =u” .
Since
2
D D€
%l= -~ 72 0
€
[D0+2D15—D25 ]
we have
max F(e,u,0,h,.) = F(1,u,8,h,. ) ,
oK<l 2k 2k
and hence
2 2
u| 14T (| T+h -p7)
(2.45) max Q I ' | Zk' .

- 2 112 2 ~16. 2
p[(|1+1"| |r| )|h2k| +2uRe(Thy e = )-u")
Now we substitute (2.44c) 1into the numerator of (2.45) and obtain

(2.46) max up| 17| (17"

Qi+ T —
2 2 2 2 -io, 2

Y [(|1+1"' |r| )thkI +2uRe(Thy e~ )=u"]

We see that fortunately the parameter A appears by way of th only in the

denominator of (2.46) . Therefore we can find the maximum of (2.46) with

respect to A by finding the minimum of its denominator. Letting D denote

the denominator of (2.46) and substituting (2.44c) into D yields after some

rearrangement of terms
(2.47a) D = (|1+I"2—|I"2)(92+Y2'1" 2y - qu[2|1"'2cos(e—2Argl")+u]
207|730V

where
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(2.47b) ) = ('1+F'2-|F'2)cos(x-ArgF) - u cos(A-6+Argr) .

Therefore to minimize D with respect to A , it suffices to maximize J(7) .

For that purpose we write

J(\) = elcosk + ezsink = e§+e§ cos(A-A) ,

where
e = (|1+F|2—'F'2)cos(ArgF) - u cos(0-Arglr) ,
e, = ('1+T|2—|F|2)sin(ArgF) - u sin(6-Argr) ,
cos & = e /fertel , sin A = e /fertel .

Consequent 1y

(2.48) nax IO = /Qf:;g - l(I1+F'2—|F|2)—uei(e_2ArgF)' .

Equation (2.48) can be further simplified by recalling from (2.44b) and (2.3)

that u € dE and hence from (l1.6b) with p replaced by 8p , we

2141 (8)
conclude that

|fu—r('1+r|2'|r|2)' + o - p(|1+F'2'|F'2) .
Therefore

A T
The minimum of D with respect to A\ can now be written, after some rearrangement

max J(A) = Tl]{ép('1+T'2-'T|2)—u|1+F|] .

of terms, as

(2.49) win D = —quz—Zyu[y'F'Zcos(B—ZArgF)—p'1+FI]
A
2 2 2, 21 12 2
+ (|1+r' “[r| 6™+ lr' -2v80%) -
From (2.44b) it follows that u2 = 2ut(8,0) - K(8) . Substituting this into

'(2.49) and then rearranging and cancelling some terms yields

2 112
min D = p(l—Yé)[p('1+F' —'r' )(1—Yé)+27u'1+rl] .
A
Using this in (2.46) we arrive at

(2.50) max Qy,; = 2U(1_;2)!1+TJ
€.\ (1~v8) (o (| 147 | *~| 7| D2y )42vur47| )

Our next step is to maximize (2.50) with respect to 6 . For that purpose

we write
2
4T (1-y")
(2.51a) max Q = J—l—ﬂ(u) R
£\ 2k+1 (1-y8)
where
(2.51b) G(u) = u

p(|1+r|2—|r'2)(1—ya)+2|1+r|yu ’
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(2.51c) u = u(x) = T(x) - /Tz(x)—K(é) ,

(2.514) T(x) = t(6,0) , x = cos(06-2Argl') .

It is easily seen that G'(u) > 0 . From (2.5lc) we have
u (x) = 2T(x)u(x) - K(8) ; hence implicit differentiation with respect to x

gives

u'(x) = D) - ITI u(x) >0
vGITG) AT x(s)

Therefore, by the chain rule %ﬁ = %ﬁ %2 > 0 ; hence G(u) attains its maximum
X u dx —
value when x =1 , that is, when 6 = 2Argl’ . We conclude from this and Lemma 1

that
max G(u) = (69+|T')('1+T"|T') .

0
Combining this with (2.51) gives

(2.52a) KO = e Gy = g f;él_i) =
0“1V

where

(2.52b) c, = p(|1+T|+'F') >0 ,

(2.52¢) c = lT'(p6-|1+T|) >0 ,

(2.524) c, = a[pa(|1+r|—|r|) + 2|r||1+r|] >0 ,

(2.52e) cy = |1+r'(p5+'r|) >0 .

It remains to show that

(2.53) H(6,y) <& , forall 0<y<1l .

It is readily seen that the denominator on the right side of (2.52a) 1is positive.
Hence (2.53) 1is equivalent to
C, (1~ 2) < 8C, - 28C,y - &C 2
which can be shown to be equivalent to
2 2 2
lFl(l—éy) (pé-'1+T') + vy (1-8 )[1+F|(96+|F|) 20 .

Since this inequality clearly holds, we conclude that

(2.54) sy £ :ag YQ2k+1< 6 =84

We turn now to the case with n = 2k even; (2.40) then gives

Rk . p|“2k|||1+T‘2"h2k-1'(1+r)|2|

Rok-1 '1+T'|(1+F)h

(2.55) Qe = —
2k—1+aZk' P 'th—ll

We shall establish that
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(2.56) <8 k=1,2,3,.0. .

QZk 2k
Since most of the arguments involved parallel those used in the proof of (2.54) ,
we shall give only an outline of the steps used for (2.56) . Two sets of absolute
value signs in (2.55) may be removed since, by (2.42) ,
2 2
|1+1"| 'th_l (1+r)| >0

and
|(1+a2k/h2k_1)+1"' -p>0 .
We note that h, ., # 0 , since ~hy , 4 Vor-1 and 0 € Vor-1 ° Consequently

one obtains

|(1+1")h2k_1+a2k_1|2 - "Zlhzk—llz >0

and hence
olay |l I1+I"2—lh2k_1—(1+1")|2]

(2.57) Q =
|| (] (#Toby o #] aZkIZ_pZ LY |2]

From (2.4) it is seen that the element a has the parametric

2k
representation
10
(2.58a) 2y, = |1+1"|5Be
where
(2.58b) e>1 , 0<6<2m
and
(2.58¢) g = 2[p/5—'1+I"cos(9—2Arg(1+I‘))] .

Here €,0,8 and & all depend upon 2k ; a subseript of 2k has been suppressed
for simplicity. Substituting (2.58) into (2.57) and cancelling the common

factor |1+F| , We may express

- 3
(2.59a) O = —2——
DZE +D1€—D0
where
_ 2 2 2
(2.59b) D, = (o |1+r| )Ith_ll >0 ,
. _ -a
(2.59¢) D, = 2|1+I'|BRe[(1+I‘)h2k_1e 1,
2 .
(2.59d) D, = |1+1"|a >0 ,
(2.59¢) D, = oB[|147|2=|n,, . -1+1)]?]
e 3 = eBL|1+T| L .

An argument similar to that used to maximize Q2k+1 with respect to € shows

that attains its maximum with respect to € at € =1 ; that is,

Qx
has its maximum value when a

lies on the boundary of EZk(é Thus we

Qx %) -

f4n that

2k
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pa[|1+r|2—|h2k_1—(1+r)|2]

(2.60) max Q2k =

€ |1+F'2B2+2|1+F|BRe[(1+T)h2k_1e_ie]—(pz—'1+F|2)thk_lIZ
By (2.42) , h2k—1 can be written in the parametric form
(2.61a) hyyy = (4T) + y|1+F'eix ,
where
(2.61b) 0<y<1l and 0L A< 2 .

Substituting (2.61) in (2.60) and simplifying, the resulting expression yields

2
(2.62a) max Q, = 08U=y ) |
2 ok A
where
2 2 2 2
(2.62b) A =g+ 2|1+F|Bcos(e—2Arg(1+T)) - (p —|1+r' Y(1+y%)
+ 2930,
(2.62¢) J(A) = a sin\ + bcos A ,
(2.62d) a = '1+F'Bcos(9—2Arg(1+F)) - (pz—|1+F|2)cos(Arg(1+F)) .
(2.62¢) b = '1+F|Bsin(e—2Arg(1+F)) - (pz—'1+F|2)sin(Arg(1+F)) .

By an argument similar to that used to maximize max Q2k+1 with respect to A ,
€

we find that (2.62a) attains its maximum with respect to A at X = A , where
A= cos_l(b/¢a2+b2) .

After simplification we obtain

min J(A) = J(A) = —l(pz—'1+r|2)—’1+r|Bei(e‘ZA‘g(1+F)' .
A
Let x = cos(6-2Arg(14+I')) . Then in (2.62b) one has the simplification

82 + 2| 147 | Beos (6-2Arg(14T)) = BL+2x| 147 ]

= 208/8 .
Consequently one now has
(2.63a) max Q, = oB(l-vz) R
€, 208 /6-(0%=| 147 2 (144 ?) -2y /S
where
(2.63b) /R = |p2—|1+r|2—|1+r|sei(e'ZArg(1+r))| .

M(x) may be expanded in the form

M(x) = 4'1+F|2p2x2 - 4p'1+F|(p2+|1+F|2)x/6
+ (p2—|1+F|2)2 + 4|1+r|292/5 .

This can be simplified somewhat by writing
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A Im AXIS

Figure 2
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\ Im AXIS

Re
AXIS
N > =i
T p =15
p¥=2.5(¥2-1)
.04
1 Im AXIS

Figure 3
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(2.64) M(x) = [29|1+I‘|x—(pz+|1+1"'2)/6]2 + (p4+|1+r|4)(1-6’1) }

Now to establish (2.56) , it will suffice, in view of (2.63a) , to show that

2
(2.65) > DB(;—Y ) <6
208/6-(0"-| 1472y (1447 )-29/HG)

holds for all 'xl 1 and 0<y<1l. Since 0X QZk = RZk/RZk—l L1 , the

ratio on the left side of (2.65) 1lies between O and 1 . Thus the denominator
in (2.65) 1is positive since the numerator is positive. Hence (2.65) 1is

equivalent to
2 2 2 2 A0S
PB(1-Y") < 8[208/8-(0"=[14T|H(1+y") - 2v/MGO] -
~ After rearranging terms we obtain the equivalent inequality
2 2 2
(2.66) 28/MCx) < (1Y) [eB=(o7=| 14T %)8] .

To verify (2.66) we note that, since 0 < 8 <1, it follows that
(1—6_1) < 0 and hence from (2.64) we have

M(x) <_[(pz+|1+I‘|2)/6—Zp|1+1"|x]2 ;
The expression inside the brackets above can be shown to be non-negative. Therefore
(2.67) 276/ S2Y5[(pz+|1+1'"2)/6—Zp'1+I"x] .
For the right side of (2.66) we have (by (2.58c))
) [pp=(o - 147|281 = (v 2/ 6= 14T |x)=(o - |147] Py
- (1+y2)[(pz(2—52)+62'1+1'"2)/6—2p|1+1"|x] .

Since 0 <y <1 , we have (I—Y)2 > 0 and hence

(2.68) 2w <1+ .
Furthermore, we have
(2.69) o + |1+1~|2 < pP(2-8%) + 52|1+r|2 ,

which can be verified since (2.69) is equivalent to
2 2 2 2 2 2 2
0 < p"(1-6%) - |1+r| (1-8“) = (p —|1+1"| W(1-57)
which clearly holds since 0 < & <1 . Combining (2.66) , (2.67) , (2.68) and
(2.69) yields

2¢6/H(D) < Zyé[(pz+|1+1'"2)/6—29|1+I‘|x]

AP 1(e? (2-67 8% 1472y 8-20 | 14T %]

N

<1+vz)[pa—(pz-|1+r|)61 .

Thus (2.66) holds and therefore (2.65) and (2.56) hold.

Now we have shown that Qj = Rj/Rj—l < éj for all 3 = 2,3,4,.0.

Therefore
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n n
(2.70) R <R H j S,R I éj , n=2,34,00. .

j= j=2
Since R1 is the radius of Sl(vl) and since Sl(vl) < V0 it follows that

R1 <p . Combining this with (2.70) and (2.36) proves (2.6) . This

completes the proof of Theorem 1 . [ ]

3. Elimination of Twin-Convergence Regions Which Are Not Best. A pair of

twin-convergence regions (EI’EZ) for continued fractions K(anll) is said to be
best if there does not exist another pair of twin-convergence regions (E',Eé)

such that

Ek c Eé , k=1,2
where proper containment holds for k =1 or 2 or both. In our next result it
is shown that there exist pairs of twin-convergence regions (EI’EZ) of

the form (1.6) which are -not best.

Theorem 2. Let T be a complex number and p be a positive real number such

that
(3.1) 0 < 'r' < '1+r| <p .

Let (EI’EZ) denote the pair of twin-convergence regions for continued

fractions K(anll) defined by (1.6) . Let

(3.2) o = (p+'F')('1+F"’F’)

x %
and let (EI’EZ) denote the pair of twin-convergence regions (1.4) . Then

*
(3.3a) E1 c E1 . (proper containment)
Moreover
*
. <
(3.3b) E2 E2

if and only if
(3.4) p > '1+r| + '2+r| - 'r'

Proof. By Lemma 4 , E1 = El(l) and E2 = E2(1) where El(l) and EZ(I)
are given by (2.3) and (2.4) . Let g(®) = g(1,0) and h(6) = h(1,0) where
g(6,0) and h(6,0) are defined by (2.7) and (2.10) , respectively. Then

i6

(3.5a) E1 = El(l) = [w = re : 0 S_r S g(6) , 0 < 6 < 27)
and

i@
(3.5b) E2 = EZ(I) = [w = re :r>h(®) , 0<06<2n] .

*

Here r = lwl >0 ., It follows immediately from Lemma 1 that EIC: E1 and the

containment is clearly proper. It can be seen that (3.3b) holds if and only if
*

h(®) > 2(p -cos®) for all 6 ; that is, if and only if

*
(3.6) 2,1+F'[p-,1+F|cos(9-2Arg(1+F))] > 2(p —cos8) , 0< 0 <2m .
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Upon substituting (3.2) 1in (3.6) , cancelling terms and rearranging, we obtain
the equivalent inequality

(3.7 |v[Co-[+T]+|T]> = [1#7]cos(o-2Arg(14T)) + cosb > 0 .
Let
D = ,l"'(p-’1+f'|+,l'") and ¢ = 2Arg(l+T) .
Then (3.7) can be written as
(3.8) D - |1+l"|2cos(0—¢) - c0s8 >0 .

This 1s easily seen to be equivalent to

(3.92) D+ A sin 6+ B cos <] >0
where

2 2
(3.9b) A= -’1+r'| sin¢ and B =1 - |1+r" cosd .

Inequality (3.9b) 1is equivalent to

(3.10a) D+ C cos(6-¢) >0 ,
where
(3.10b) C = ¢A2+B2 , sin ¢ = A/C , cos ¢ = B/C .

It can be seen that

(3.11) c = /1-2|1+r|2cos¢+|1+r|" > |1—|1+r|2| >0 ,

since T #0 . Now (3.10a) will hold for all 6 if and only if D > C ; that
is, if and only if

(3.12) |7 ¢o-|+rf+{r]> > @,1+r|zcos¢+,1+r,“ )

To investigate (3.12) we note that

1 - 2|1+r|2cos¢ + '1+r|" 1 - 2Re(147)2 + '1+r"‘

1 - 4?2 - 2 + |1+r|“
= '1-(1+r)2'2
= 'r’2|2+r’2 .
Using this in (3.12) , we obtain the equivalent inequality
[Pl orrfe{r] 2 [rf[2+r]
which is equivalent to (3.4) since 'FI # 0 . This completes the proof. =

Remarks. It can be seen that there will exist a p satisfying (3.1) and
not satisfying (3.4) if and only if |2+r| > |T| ; that is, if and only if
Re(T') > -1 . But the requirement ,F' < ,1+F in (3.1) is equivalent to
Re(T') > -1/2 . Thus for every I satisfying O < 'FI < '1+F| , there exists a
p> ,1+F, such that in Theorem 2 E2 ¢ E; .
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Two examples are considered to illustrate the situations that can occur.

*
Example 1. Let I"' =1 and p =3 . Then p = 42 -1) = 1.7 and
p=3>265=/7+/5-1= ’1+r, + '2+r, - ’r’ .

* *
Thus by Theorem 1 we will have E1 (= E1 and E2 < E2 . The boundaries of these

regions are shown in Figure 2 , where it is seen that E is properly

% 2
contained in E2 .

* -
Example 2. Let I' =41 and p = 1.5 . Then p = 2.5(¥2 - 1) = 1.04 and
p=1.5¢2.65%/T+/5-1= '1+r| + '2+r' - Ir' .

Hence by Theorem 2 we will have E1 < E: and E2 t E; . The boundaries of
these regions are shown in Figure 3.

In our final result (Theorem 3) we shall show that, given any pair of twin-
convergence regions (EI,E;) of the form (l.4) , there does not exist a better

pair of twin-convergence regions (EI’EZ) in the larger family defined by (1.6) .

* * %
Theorem 3. Let p > O be given and let (EI’EZ) be defined by (1.4) .

Let T be a complex number and p a positive number such that

(3.13) 0 < |r| < |1+r' <p
and let (EI’EZ) be defined by (1.6) . Then: (A)
*

(3.14) E c E

1 1

if and only if
*
(3.15) o = (p-'T’)(’1+FI-,F,) .
(B) If (3.15) 1is satisfied, then
*
(3.16) E, ¢ E, -

Proof. (A) is an immediate consequence of (l1.4) , Lemma 1 and Lemma 4 .

(B) Suppose that (3.15) holds and assume that

(3.17) E, SE, .

Then by Lemma 4 , (3.17) is equivalent to

(3.18) 2| 14| to=| 147 | cos (0-24rg (141))] < 2(p"-cose) , 0<6<2m .

Substituting (3.15) in (3.18) , cancelling terms, rearranging and setting
¢ = 2Arg(1l+4T') yields the equivalent inequality

319 |r[GeH{rsr|-|r|> - frar]Pcoso-0) + cos0 <O, 0 <o < 2m .

By a method similar to that used in the proof of Theorem 2 , we set
D=p + ,1+r| - ’r, , A= ,1+F’231n¢ , B = ,1+F,2cos¢ -1,
¢ = /a2+8? , sin ¢ =A/C , cos ¢ =B/C .

Then it is readily shown that (3.19) is equivalent to

1
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(3.20) ' C cos(6-¢) >D , 0<8< 2 .

Clearly (3.20) holds for all 6 if and only if -C > D . But this is
impossible since C > 0 and D > 0 . Hence the assumption (3.17) 1is false. B
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DIGITAL FILTERS AND CONTINUED FRACTIONS

William B. Jones

Allan Steinhardt

1. Introduction. Digital filtering is a discipline, born of the computer
revolution, that is concerned with the extraction and/or enhancement of information
contained in a sequence of measurements of a continuous waveform phenomenon.
Digital filtering has been used in such diverse fields as astronomy, economics,
electrical power planning, medicine, radar, seismology and speech processing. The
most active area of digital filter applications is speech. Although a continuous
phenomenon, speech is so redundant that a sequence of sampled values, if taken
frequently, can contain all of the desired information in the original message. By
processing such a sequence one can filter the static noise from a telephone message
or transform the message to a form recognizable by a computer [9]. Recent studies
have been made [7] in computer processing, recognition, and classification of
picture images by digital filtering. In seismology, digital filtering is being
used to process seismographs for detecting the presence of gas, oil or precious
minerals in a given geological formation ({1].

The purpose of this paper is to investigate connections between digital
filters and continued fractions. Digital filters implemented by ladder—directed
graphs (Figure 1) are used in machine analysis and synthesis of speech {9] , and
are known to perform well in the presence of arithmetical roundoff [12] . It is
shown (Theorem 2.1(A)) that the transfer function of such a ladder filter can be
represented by a terminating continued fraction RN(z;cN+1) (see (2.1) ). This
continued fraction is seen to be equivalent to a modified approximant of a Schur
fraction and it follows that all such filters are stable. Conversely, it is shown
(Theorem 2.1(B)) that the transfer function of an arbitrary stable digital filter
can be represented either by a continued fraction of the form RN(z;cN+1) , Or as
the limit of such continued fractions. The question of stability is also studied
in Section 3. We state and prove (Theorem 3.1) that, for a given polynomial to
have all of its zeros located in the interior of the unit disk, it is necessary and
sufficient for a certain test function to be represented by a continued fraction of
the form RN(z;cn+1) . In a sense this result is the analogue of a theorem of Wall
[19] and Frank ([2] for stable (Hurwitz) polynomials (i.e. polynomials whose
zeros all lie in the left half-plane). We obtain as a consequence of Theorem 3.1
the well-known Schur-Cohn test (see Algorithm 1 and Corollary 3.8). In Section 4
we describe a numerical method for computing the poles of transfer functions of the
form RN(z;cN+1) , even in the case (of most interest here) when two or more poles
have equal moduli. The method is based on the FG-algorithm of McCabe and Murphy

[10] « 1In the applications considered, the coefficients ¢ of the continued

3



130

fraction RN(z;cN+1) are measured parameters called reflection coefficients. Two
examples are presented, one to speech analysis and the other to signal detection
in noise ([18] . 1In the latter example the FG-algorithm was found to be faster
for this application than Laguerre's global convergence method with polynomial
deflation which is known to be cubically convergent. An explanation for this
phenomenon is given in Section 4.

Connections between digital filters and continued fractions have been
investigated previously by Mitra and Sherwood ([11]. However, they did not
consider continued fractions of the forms dealt with here. We conclude this
introduction with a summary of basic concepts, definitions and theorems about
digital filters, directed graphs and Schur fractions that are subsequently used.
More on digital filters and directed graphs can be found in (4] , {61 , and {13] .

The set 2 of all sequences {x(n)}:=0 of complex numbers forms a linear
space over the field € with respect to the usual operations of addition and
scalar multiplication. Two other operations on £ are of special interest. The
convolution {h(n)} * {x(n)} of sequences {h(n)} and {x(n)} 1is defined by

n

(1.1) {h(n)} * {x(m} = { § h()x(n-k)} .
k=0

The unit delay D{x(n)} of a sequence {x(n)} 1is defined by

(1.2) D{x(0),x(1),x(2), e} = {0,x(0),%x(1),%(2) ¢4}
For j =1,2,3,..., the jth order delay is

1.3 Dj{x(n)} = {y(n)} , where y(n) = if 0 é

o, < 31
x(n-j) if ]

n
> .
Two subspaces of £ are particularly notable. 20 denotes the subspace
consisting of all sequences {x(n)} such that

1/n

(1.4) lim sup|x(n)| < w

n+> o
%, denotes the subspace of £ (and of lo) consisting of all bounded

sequences {x(n)} ; that is, {x(n)} € 2@ if and only if there exists a

constant B such that
(1.5) |x(n)|513 , n=0,1,2,.0. .

A digital filter F is a mapping of sequences {x(n)} 4in £ into sequences
{y(n)} according to equations of the form

N M
(1.6) y(n) + b y(nk) = Zakx(n—k) , n=0,1,2,... ,
k=1 k=0

where and b ’b2""’b are given complex constants with

8gadpseecrdy 1 N
o # # = = .
(1.7) aM o , bN 0 and LI 0 if m <O
If N =0 then the sum on the left side of (1.7) is interpreted to be zero, in

which case the filter is called nonrecursive. If N > O then the filter is called

recursive. The sequences {x(n)} and {y(n)} are called the input and output,
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respectively, of the filter F and we write
{y(m)} = F({x(n)}) .

It is easily seen from (1.6) that a digital filter F 1is a linear transformation
of 2 into % ; that is, if {x(n)} , {z(n)} € &£ and a,b € ¢ , then

F(a{x(n)} + biz(n)}) = aF({x(n)}) + bF({z(n)}) .

It can also be shown that a digital filter F maps lo into lo .

Directed graphs are used to describe specific procedures for implementing a
digital filter. A directed graph is a geometric configuration consisting of two
types of elements. There are points (called nodes) and simple directed curves
(called branches). Each branch connects two nodes and the direction of the branch
is indicated by an arrow. The nodes will be labeled from 1 to 4N . Each node
has associated with it a node sequence; {xi(n)}:=o denotes the node sequence of

the ith node. Each branch has associated with it a transmittance sequence of the

form
1j ceaec ,

aij =0 or bij =0 .

The first index i denotes the node from which the branch originates and the

(1.8) {tij(n)}:=o = {a;,6,,,0,0,0,000)

second index j denotes the node at which the branch terminates. The effect of
{tij(n)} is a scalar multiplication by aij if bij #0 ; it is a scalar multi-
plication by bij and a unit shift if aij =0 . Every directed graph has two
special nodes called the sink node and the source node. As the names imply, the
source node has no branch terminating at it and the sink node has no branch

originating at it. The node sequences are interrelated by means of the fundamental

equations

(1.9) {x;(m)} = Z {cj ()} * {x, (n)} , 1= 2,3,...,48 .
J#i
If there is no branch from node j to node i , then tji(n) =0 for all

n=0,1,2,... . If node 1 1is the source node and node 4N is the sink node,
then (1.9) defines a digital filter in which {xl(n)} is the input and
{XAN(H)} is the output. It is well known that every digital filter can be
described by equations of the form (1.9) . and hence by means of a directed graph.
It is sometimes useful to decompose a directed graph into subgraphs. A
directed graph is a subgraph of a given directed graph if it has the property that
exactly one branch of the parent graph enters the subgraph (at the subgraph source
node) and exactly one branch of the parent graph leaves the subgraph (at the sub-
graph sink node). The following theorem governs the role of a subgraph in the

parent graph.

Theorem 1.1. For a subgraph of a given directed graph, let {xso(n)}

denote the source nodal sequence and {xSI(n)} denote the sink nodal sequence.
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Then there exists a sequence {t(n)} with the property that if the subgraph is

replaced by the subgraph source and sink nodes connected by a single branch (from

source to sink) with transmittance sequence {t(n)} , then the nodal sequences at

all nodes on the parent graph exterior to the subgraph remain the same. In other

parent graph is unchanged. Moreover, {t(n)} can be obtained by setting

{xso(n)} = {1,0,0,0,°+*} and solving the fundamental equations (1.9) for
{t(m)} = {xSI(n)} .

We note that in this case the transmittance sequence {t(n)} will not (in
general) be a sequence of the special form (1.8) . Some examples o directed
graphs and subgraphs will be considered in Section 2.

The z-transform is very useful in work with digital filters and directed
graphs. The z-transform X(z) of a sequence {x(n)} in 2 is defined by

00
(1.10) X(z) = ) x(n)z ©
n=0
Following Henrici [6] , we shall use the symbol

X(z) 8——0 {x(n)}

to indicate that X(z) is the z-transform of {x(n)} . The z-transform provides
a one-to-one mapping of £ onto the set of all formal power series of the form
(1.10) . If {x(n)} € 20 , then the z-transform of {x(n)} defines a

function X(z) analytic at z = ® , The following are some elementary properties
of the z-transforms that are used here. 1If X(z)..—-z—-o{x(n)} € JLO and
Y(z).——z—-O{y(n)} € 20 , then

(1.11) aX(z) + bY(z)#——o0 al{x(n)} + bly(n)} , abe ¢

(1.12) 10—2-0{1,0,0,0,+°} ,

(1.13) Y(z)X(z) @%—0 {y(n)} * {x(n)} ,

(1.14) 2 'X(z)e—2-0Dix(n)} ,

(1.15) (:zoajz_j)x(z).—-—z——oj:ioaij{x(n)} , a,€¢ , m>0 .

We shall now summarize some further properties of the z-transform and its relation

to digital filters that are needed.

Theorem 1.2. Let f be a digital filter defined by (1.7) and let H(z) be
the corresponding rational function
Ig -
a .z
(1.16) H(z) = k=0 ____ | b =1 .

N
Z b, z.k
=0 ¥
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If X(z)e——o0 {x(m)} ¢ 87 , then
(1.17) H(z)X(z)e——0F({x @)}) .

The function H(z) is called the transfer function of the digital filter F .

Theorem 1.2 shows that the z-transform of the output of a digital filter is the
product of the transfer function and the z-transform of the input. It can be seen
that H(z) 1is analytic at 2z = © , since bo =1 . The sequence {h(n)}:=0
defined by

H(z)e—2—0 {h(n)}

is called the shock response of the filter. The next property states that the

output of a digital filter is the convolution of the shock response and the input.

Theorem 1.3. Let F be a digital filter with shock response {h(n)} . If
{x(n)} € 20 , then

(1.18) F({x(n)}) = {h(n)} * {x(n)} .

A digital filter F is said to be stable if {x(n)} € %, implies that
F({x(n)} € 2, .
The following result provides conditions for determining whether or not a

given filter is stable.

Theorem 1.4. Let F be a digital filter with transfer function H(z) and

shock response {h(n)} . Then the following three statements are equivalent:

(i) F is stable.

(i1) All poles of H(z) are in the interior of the unit disk.
)
(ii1) |h(n)| <o
n=0
A directed graph and its fundamental equations (1.9) can be mapped by the
z~transform into a corresponding directed graph and set of fundamental equations
involving functions of the complex variable 2z . The simplification induced by
this mapping is mainly due to the fact that functions of 2z can be manipulated
more easily than infinite sequences. Moreover, the theory of analytic functions
can sometimes be used to deal with stability and other related problems. The nodal

function Xi(z) associated with the ith node and the transmission function

Tij(z) associated with the branch connecting node i to node j are defined

by
(1.19) Xi(z)Q——z—O{xi(n)} , Tij(z)o—z—o{tij(n)} .

1f {tij(n)} has the form (1.8) , then
-1
(1.20) Tij(z) = aij + bijz .
By applying the z-transform to both sides of (1.9) and using (1.11) and

(1.13) , we obtain the fundamental equations in the transform domain
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4N
(1.21) X (2) = 321 Ty ()X (2, 1= 23,000

j#i
Now let node 1 be the source node and node 4N be the sink node of a
directed graph. Then {xl(n)} e 29 and {X4N(n)} are the input and output
respectively of the associated digital filter F , so that

F({xl(n)}) = {xaﬁh)} .

Thus by (1.17) , F({xl(n)})o—ii—.IKz)Xl(z) , where H(z) 1is the transfer
function of F . It follows that

(1.22) X,y(2) = H(2)X, (2) .

Equation (1.22) can be obtained by eliminating Xz(z),X (z)""’XAN-l(z) from

(1.21) . Therefore one can obtain the transfer function H(z) of the filter

defined by (1.21) simply by setting Xl(z) =1 and solving (1.21) for

H(z) = XAN(Z) « This method of finding H(z) will be employed in Section 2 .
We conclude this introduction by stating a well known theorem about Schur

continued fractions for functions G(Z) analytic for IC' < 1 and such that
M(G) = l.u.b.lc(c)' <1 .

4 K¢
The theorem is based on methods of Schur ([15] and was first proved by Wall {20,
Theorem 77.1] . Although Schur did not consider continued fractions, Hamel ([3]
gives a theorem on continued fractions closely related to the Schur problem and to
the result of Wall. Connections with two-point Padé tableg and general T-fractions
are given by Thron (17] .

Theorem 1.5. (A) Let {ck} be an infinite sequence of complex numbers
T ——— —— —— —

with moduli less than unity,

(1.23) |ck| <1 , k=1,2,3,e0. ,

and let

(1.24) sn(;;t) =c1+.(j-!c1—|2)c_c_l+ﬂ)_c_ ---_c_1+ﬁtf_'_2.)_i_-_t. .
clc 2 czc n cnc

Then

(1.25) Isn(c;t)l <1 , for |c| <1, |c| <1 , n=0,1,2,00. .

Let {tk} be a sequence of independent variables. There exists a function

G(z) , analytic for lc' <1 , such that M(G) {1 , and such that, for every
positive number r <1 ,

(1.26) lim Sn(C;tn) = G(z) ,

n+>o
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uniformly for |c’ <r , 'tn’ <1 , n=1,2,3,... .
(B) Conversely, if G(L) is a given function, analytic for |C| <1 , such

that M(G) {1 , then one of the following three statements holds.

(a) G(g) = e » where ¢ is a constant with |c1| =1 .

(b) There exists uniquely a finite sequence n>1l , such

L YEREPL R
that

(1.27) |ck' <1 for k=1,2,.ce,n and Icn+1| =1 ,

and such that

(1.28) (L) = 5, (Lie_1) -

(c) There exists uniquely an infinite sequence {ck} satisfying (1.23)
such that (1.26) holds.

A continued fraction of the form

. a-fey e anfelhe At

(1.29) ¢

where the N satisfy (1.23) will be called a Schur fraction. The

successive approximants of (1.29) starting with the zeroth approximant are as

follows:
(1-|e, [Poe (1-|e, 32
RN e, + R X
1 - - -c
clc clc 2
Therefore
2 2
(1-|c, [T (1-fe, )T
S (L30) = c, + ___l_ll__. 2 ___1_31___‘ e 1
n 1 - -c, + - - -c
clc 2 c2C n

is the (2n-2)th approximant of (1.29) . Thus Theorem 1.5 deals with even
order approximants of (1.29) and more generally with modified approximants

Sn(C,tn) .

2. A Family of Ladder Directed Graphs.

In this section we are concerned with digital filters that can be implemented
by ladder directed graphs of the form shown in Figure 1 .



Xan  Xan-i XaN-2 XaN-3 XanN-4 XanN+3 X2N+2 X2N+I

Figure 1. A ladder directed graph in the transform domain with 4N nodes. The
Xk are the nodal functions of the complex variable z . Next to each branch

1s the associated transmittance function of 2z , where the are_complex
constants with |c <1, k=1,2,...,N, ¢1—|ck, . Node

|l |ener| =2
1 1is the source node and node 4N 1s the sink node.

and dk =

These filters are useful in machine analysis and synthesis of speech [Gray and
Markel]. The physical mechanism for speech can be modeled mathematically as a
ladder digital filter with an input which is a fixed periodic sequence (for vowels)
and a white noise sequence (for consonants). The type of input and the parameters
¢, can be obtained from the speech waveform in a time period so small as to be
imperceptible to the naked ear. From the parametric representation it 1s possible
to reconstruct the speech by using the appropriate ladder directed graph and input.
Mullis and Roberts [12] have shown recently that a directed graph of the type
in Figure 1 provides a nearly optimal implementation of the digital filter in the
sense that the influence on the output due to arithmetic roundoff error occuring at
each node sequence is comparatively small. The directed graphs known to be optimal
in this regard are impractical, since the number of nodes 1involved is of the order
of N2 .« Hence the ladder directed graphs in Figure 1 offer a good
compromise between the requirements of speed and good roundoff behavior. We shall
show that every digital filter represented by a directed graph of the type in
Figure 1 1is a stable filter. Moreover, every stable filter can (up to a constant

factor) either be represented by a graph of this type or can be approximately
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represented by such a graph where the error of approximation can be made
arbitrarily small but positive. For this purpose we consider continued fractions
of the form

. (l-lcl'z)z_1 1 (].—|c2'2)z_1 . 1 (I_ICN,Z)Z—I

- + + - - o - -
lz1 <, czzl + +cN+ 1 +

@1) Ry(z;t) = ¢

8 Ll

c

Theorem 2.1. (A) Let F be a digital filter represented by a directed graph

of the form in Figure 1. Let H.N(z) denote the transfer function _g£ F .

Then F 1is a stable filter and H.N(z) can be expressed as a continued

fraction

(2.2) H(z) = Ry(zseg ) -
(B) Let F be an arbitrary stable digital filter and let H(z) denote its

transfer function. (We assume that H(z) is not identically constant.) Then one

of the following statements holds.

(Bl) There exists uniquely a finite sequence

CysCoseesCpy s with Ickl <1

for k =1,2,...,N and =1 , and a positive constant B8 > 0 , such that

ICN+J
(2.3) H(z) = BRy(z3e,,) .

(B2) There exists uniquely a sequence {ck} with 'ckl <1 for k =1,2,3,..

and a positive constant B8 such that

(2.4) H(z) = limBR (z;1) for |z| >1 .
N+

For each r with 0 < r <1 , the convergence is uniform on |z| >1i/r .

Proof. (A): First we will show that HN(Z) has the form (2.2) . Our proof
is by induction. Suppose that N =1 . Then by the fundamental equation (1.21)

we have

X, (z) = l—lc |2 (z)- ¢ z_lx (z)

2 1l 5 12 % ,
(2.5) X3(z) = c2X2(z) .

c1X1(z) + V1'|c1’22—1X3(z) .

Setting Xl(z) =1 and solving for Hl(z) = X4(z) we obtain

X, (2)

2, -1
.\ (l—lcl' )z 1
= z—l + <,

Hl(z) = cl
as asserted. Next we assume that the assertion (2.2) holds for N-1 and
consider the subgraph shown in Figure 2. By the induction hypothesis
the transfer function T(z) for the subgraph in Figure 2 has the form

1. 124,71 1. 12471
+(1 Icz' )z (1 IcNI )z

(2.6) T(z) = <,
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XaN-2 X2N-I X2N

Xgn-2 Xan-3  Xan-4

Figure 2. Subgraph of directed graph in Figure 1.

By Theorem 1.1 (interpreted in the transform domain) all nodes on the parent

graph exterior to the subgraph remain the same 1f the subgraph is replaced by a

single branch with transmission function T(z) (see Figure 3). The fundamental

T(z)

X aN XanN-1

Figure 3. Directed graph (of Figure 1) with subgraph replaced by a single branch
having transmission function T(z) .

equations in the transform domain for the directed graph in Figure 3 are the

following:
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X2(z) = 1—|c1’2X1(z) - EIZ_IXAN—I(Z)
2.7) Xy (2) = H2)%y(2)
XAN(Z) = clxl(z) + Vl—lcl'zz_IXAN_l(z) .

Setting Xl(z) =1 and solving for HN(z) = xﬁN(z) , we obtain

2. -1
Ry(2) = ¢, + PR 1
1 212—1 + T(z)

An application of (2.6) gives (2.2) . Now to prove that F is stable, we note
that by (2.2) and (1.24)

= . = - _1-
Ho(z) = Ry(zseg ) = Sp(=z “5ep,) -
Therefore by Theorem 1.5(A)
|H.N(z)| <1 for |z| >1 .
Since HN(z) is a rational function, all of its poles lie in |z| < 1 and hence
by Theorem 1.4 F is stable. This proves (A) .
To prove (B) we suppose that F is a stable filter so that by Theorem 1.4
all poles of its transfer function H(z) 1lie in 'z' <1 . Thus G*(¢) = H(1/%)
is analytic for 'C’ <1 . Let
B = max 'G*(C)l
|z|«t
Then G(Z) = G*(z)/B is amalytic for |;' <1 and M(G) <1 . Theorem 1.5(B)
can then be applied to G(Z) . If case (b) holds then G(Z) can be expressed in

the form of S (gsc » Where |ck’ <1 for k =1,2,...,N and Icn+1' =1 .

n+1)
Hence

H(z) = BSy(z “iey,;) = BRy(ziey,) -
Thus (Bl) holds.

The only other situation that can occur is case (c) of Theorem 1.5(B) . 1In

that case one can easily verify that (B2) holds. a

3. A Stability Test.

A polynomial Q(z) with complex coefficients is called stable (or Hurwitz) if
all of its zeros lie in the left half of the complex plane. Wall [19] and Frank
[2] have shown that Q(z) is stable if and only if a certain test rational
function (with denominator Q(z) ) can be expressed in the form of a particular
real J-fraction (see, for example, [6, Section 12.7], [8, Theorem 7.32] and
[20, Theorem 47.1] ).

A polynomial will be called D-stable if all of its zeros lie in the interior

of the unit disk Izl <1l . The connection between D-stable polynomials and

stable digital filters is clear. In this section we shall prove a result for
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D-stable polynomials (Theorem 3.1) similar to the result of Wall and Franmk for
stable polynomials. The well-known Schur—Cohn algorithm for testing D-stability

will be derived as a consequence of our proof.

Theorem 3.1. Let
SEETEENRMENEEEEET. 000000 e

(3.1) Q(z) = a, + az + vee anzn
be given, where n>1 , a 0 , a, €¢, j=0,1,.0e,n . Let P(2)
and H(z) be defined by
(3.2) P(z) = z“Qn(l/'é) =a +ta _z+ e+t Eoz“ s
(3.3) H(z) = B(2) |
Q(z)

Then Q(z) is D-stable if and only if the test function H(z) can be represented

by a continued fraction of the form

. (1-]e,® . (-{e, [ . (a-|e|®
c + c2 + c + + (:rl + z
1 2 n

(3.4a) H(z) = o
+ cn+1

where

(3.4b) 'cj' <1, c,€C¢ for j=1,2,...,n and 'cn+1| =1, ¢ €0 .

b]

Remarks: We note that the continued fraction (3.4a) is equivalent to
RN(z;cn+1) (see (2.1) and (2.2) ).

Our proof of Theorem 3.1 will be given by means of several lemmas, some of
which are of interest for their own sake. In each of these lemmas P(z) , Q(z)

and H(z) have the meaning as in Theorem 3.1 .

Lemma 3.2. If Q(z) is D-stable then every pole of H(z) 1lies in Iz' <1

Proof. H(®) = -a-o/an # © go that all poles of H(z) 1lie in € . If
H(zk) = o for Z € @ , then clearly Q(zk) = 0 and hence lzk' <1 . B

Remark: The converse of Lemma 3.2 1s not true as can be seen by the
following example. Let Q(z) = z2—z so that P(z) = 1-z and
a(z) = (- L)(=1) .
z z-1
Every pole of H(z) 1lies in |z| < 1 although Q(z) 1s not D-stable. The
reason that Q(z) fails to be D-stable is that P(z) and Q(z) have a common
zero at z =1 which is not in |z| <1 .

Lemma 3.3. If P(z) and Q(z) have no common zeros and if H(z) has all of

its poles inside Iz' <1 , then Q(z) 1is D-stable.

Proof. Suppose that Q(zk) =0 for some Z, € ¢ . Then by
hypothesis P(zk) # 0 so that H(zk) = w , Hence Izk| <1 . =
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Lemma 3.4. If Q(z) is D-stable, then P(z) and Q(z) have no zeros in

COmmon .

Proof. Let ZysZgsecerZy denote the distinct zeros of Q(z) and write

m. m,
(3.5) Q(z) = an(z—zl) 1(z—zz) 2'"(z—zk)mk .
Then by (3.2)

m. m,
(3.6) P(z) = 3_(1-7,2) "(1-7,2) 2---(1—'z'kz)lnk .

Now assume that P(zj) = Q(zj) = 0 for some zj , 1 S j S k « Then

z

j # 0, since a #0 . It follows thenm from (3.6) that zj = 1/2i for some i
with 1 <1 <k and z, # 0 . Therefore z, j) = Q(zi) =0 .

Since Q(z) 1is D-stable, |1/2j’ <1 . This contradicts the fact that 'zj, <1

= I/Ej and hence Q(l/z

so that the above assumption must be false. [

Lemma 3.5. If Q(z) 1s D-stable, then:

4

(3.7a) H(z) =1 for |z| =1 .

(B)

(3.7b) 'H(z)l <1 for |z| >1 .

©

(3.7¢) [a()| > 1 for |z <1 .

Proof. (A): If z=e®, 0 € R, then by (3.2)
B = oot
et

(B): Let G(g) = H(1/Z) , T =1/z . By (A) we know that |G(c)| =1 if
';' =1 and by Lemma 3.2 we know that every pole of |G(C)' lies in |z| >1 .
Hence by the maximum principle (and the fact that G(z) is not identically
constant) it follows that 'G(c)' <1 for ';’ <1 . This implies (3.7b) .

(C) can be proved by an application of the maximum principle to
F(z) = 1/H(z) = Q(z)/P(z) . In fact, by (3.6) 1t can be seen that every pole of
F(z) 1lies in Iz >1 . Since |F(z) =1 for |z| =1 , it follows from the

maximum principle that IF(z)I <1 for 'zl <1 . This proves (3.7¢c) . B
For our next lemma we introduce the notation
- N ¢:)) (n) cee (n) n
(3.8a) Qn(z) Q(z) a, + a "’z + + a 'z N
(3.8b) Pn(z) = P(z) and Hn(z) = H(z) ,
so that
(3.8¢) a™ -2, §j=01,0e0n .

3 3
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Lemma 3.6. Let Qn(z) = Q(z) be D-stable and let Hn-l , Pn—l N Qn—l be

defined by

P (z)
(3.9a) B, (2) = o
n Q,_,(®
where
- -c. P
(3.9b) P (zy = n®T%(® gy - Q7P (®)
n—-1 2 n-1 2
' l-lcl’ (1-|c1' )z
and
(n)
a
(3.9¢) e, =0 .
¢ 17w
n
Then: (A)
(3.10) |c1' <t .
(B)
(3.11a) Qn-l(z) = aén—l) + a{n_l)z + s + aggil)zn_l ,
and
@by r_(2) = 2l (1/7) = alP) 4 2Dy 4 een g QDL
where
ay al™-ga
(3.11¢) ag“ )=_:it_1__1_n_;.’1—_1 , §=0,1,u00.n-1 .
1-|ey |
)
(3.12) a5 s0
(@ If n=1 , then
Q)
3.13) H.(z) = 0 , 8o that 'H (z)' =1 .
( 0 a(o) —— 0
0

Proof. (A): 1If aén)
Then Pn(z) has n zeros. Let ZysZgseresZy denote the distinct zeros of Qn(z)

Then Pn(z) = P(z) can be written in the form (3.6) . It follows that the

0 , then Icl' =0<1 . Suppose that aén) #0 .

leading coefficient of Pn(z) is

m m m

P - iy ey i
Hence
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(n)
o] =[] - fertege) <o
@

since Qn(z) is assumed to be D-stable.
(B): By (3.9b) and (3.9c) we obtain

o) (n) (n) (n) ceenfq (M) (n), n-1
. l(z) _ (an -c, ag )+(an_1—cla1 Yz+ +(a1 -clan_l)z i
n—

1-|e, |

which gives (3.11b) with (3.1l¢) . Similarly by the second equation in (3.9b)
and (3.9¢) we obtain (3.1la) with (3.lle) .
. (n-1) _ , (n)_= _(m) - 2 (n-1) _
(©: By (3.1le) , a'’] (a."-c ay" /(1 |c1' ) . Hence a'’; 0

if and only if ¢, = agn)/aén) = 1/21 . The latter equation does not hold (by
(3.10) ) and hence (3.12) holds.

(D) follows immediately from (3.9) , (3.11) and (3.12) . [
Remarks: From (3.9) we obtain

(3.14) P (2) = P__(2) + ¢ 2Q _1(2) , Qz) = ¢ P (2) + 2q _;(2) ,

and hence

i (z) = Pn_l(z)+c1an_1(z) - Hn_l(z)+c1z .
n

¢ Py (2)+2Q 1 (2) e H _ (2)+z

It follows that
a-|e, |%
(3.15) Hn(z) = +

ey + E__E?;;
n-1
which gives the initial part of the continued fraction (3.4a) . We wish to show
that the procedure described above to obtain (3.15) can now be applied to obtain
a similar continued fraction for Hn—l(z) . That this can be done is a

consequence of our next lemma.

Lemma 3.7. Suppose that Qn(z) = Q(z) is D-stable. Let Pn_l(z) R Qn—l(z)
and Hn—l(z) be defined as in Lemma 3.6. Then:

(A) Pn_l(z) and Qn—l(z) have no common zeros.

(B) Every pole of Hn_l(z) lies in |z| <1 .
(©) Q,,(2) 1is D-stable.

Proof. (A): Assume that Pn_l(u) = Qn—l(“) =0 for some u ¢ € . Then by
(3.14) , Pn(u) = Qn(u) = 0 which contradicts the result of Lemma 3.4 .

Hence the above assumption must be false.
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(B): Suppose that u 1is a pole of Hn—l(z) « Then u # » gince
a{"1) £ 0 . Therefore by (3.15) H(u) = H (u) = 1/¢; , so that [aw| > 1 .
It follows from Lemma 3.5 that |u| <1 .

(C) is an immediate consequence of (A) , (B) and Lemma 3.3 B

Proof of Theorem 3.1. Combining the results of the preceding lemmas, we see

that if Q(z) 1is D-stable, then H(z) can be represented by a continued fraction
of the form (3.4) . It remains then to prove the converse. For a given Q(z)
suppose that H(z) 1is represented by (3.4) . Then with the notation of (2.1)
and (1.24) we have

-1
H(z) = Rh(z,cﬁ+1) = Sn(z ,cn+1) .

Therefore by Theorem 1.5(A) , 'H(z)l <1 for |z| > 1 and it follows that all
of the poles of H(z) are in 'z' <1 . Thus Lemma 3.3 implies that Q(z) is
D~stable, provided that P(z) and Q(z) have no common zeros. To verify this
last condition, we let {Am(z)} and {Bm(z)} be sequences of polynomials

defined by

A () =1, B (2) =0, Ay(2) =By, By =1 ,
A(z) =BA _(2)+aA (2 , m>1 ,

Bm(z) = BmBm_l(z) + amBm_z(z) , m>1

where

[+ j=1,2,0c0,n

AP L VL

ﬁ0=c1 ’ ﬁzj_l =cj > ﬁ2j=cj+1 s j=1,2,...,n .

Then Am(z) is the mth numerator and Bm(z) the mth denominator of

the continued fraction (3.4) and H(z) = Azn(z)/an(z) « Moreover, it is
readily seen that Azn(z) is a polynomial in 2z of degree at most n and
an(z) is a polynomial in 2z of degree exactly n with leading coefficient

equal 1 . Hence
P(z) = anAZn(z) and Q(z) = anan(z) .

By the determinant formula for continued fractionms

B - )B = (-1)2nt? 1%1n
A2n(z) 2n—1(z) A2n-1(z 2n(z) ¢ =1 aj
n
= 2" 1 (- e ’2) .

1 13

Therefore
n

(3.16) B(2)B, _ (z) = Ay (2)Q(z) = -a 2" T (1—'cj'2) .

i=1
Now assume that P(u) = Q(u) = 0 for some u C . Then by (3.16) , u=0 .

But this contradicts the fact that a #0 in (3.2) . Hence the assumption
is false. B
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Lemma 3.6 contains the key to a simple numerical procedure for computing the

c in the continued fraction (3.4) and hence for determining whether or not

3
a given polynomial - Q(z) is D-stable. The procedure is given here.

Algorithm 1 (Schur—-Cohn). Let a.,a . ,...,a_ be given, a, € €
Algorithm 0281 i

n
for j=1,2,¢ee,n , a #0 . Set-

agn) = aj , J=0,1,¢0e,n
For m = n,n-1,...,1 , compute
= o(m), (m)
Camtl - %0 /am
(m) (m)
- a. 1-c a_ %
agm D -Jil__E:Eil—Elgtl s 3=0,1,000,m1 .
1_Icn—m+1|
= 5,0, (0)
Set €41 = 3 /ao .

Corollary 3.8. Let € 3CgseeesCyy be computed as in Algorithm 1 . Then

n
Q(z) = a, + a,z + + az is D-stable if and only if
ch’ <1 for j=1,2,...,n , and |Cn+1| =1 .

4. Computation of Poles for Speech Filters and Signal Detectors. In Section 2

it was pointed out that ladder digital filters of the type described in Figure 1
provide a mathematical model of the physical mechanism of speech and that the
associated transfer function H(z) can be expressed as a continued fraction
Rn(z;l) (see (2.1) ). The S in (2.1) are the reflection coefficients
associated with particular vowel sounds and these parameters can be computed
directly from the sampled speech. The parametric representation of the speech
waveform can be processed and the utterance identified by computer. The useable
utterance information is contained in the location of the poles of the transfer
function H(z) [16] . Hence the computation of pole locations is a task that must
be performed with much frequency.

Another application requiring pole computation is in signal detection [18] .
The example considered is the detection of a sinusoidal wave of a single unknown

frequency ® . The signal input is given by a finite sequence {x(k)} , where
x(k) = sin(uk) + n (k) , k=1,2,...,N ,

and where the no(k) are mumbers chosen at random from a standard normal
distribution with variance 02 (wvhite noise). Ladder filters have recently

been applied to this problem [14] . Again reflection coefficients are computed
from the input data {x(n)} . 1In this case H(z) will have a single conjugate
pair of poles located near the unit circle with the remaining poles located nearer
to the origin. The argument (phase) of the poles with greatest magnitude is the

estimate of w .
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In this section we describe a method for computing the poles of H(z)

directly from the S without first having to form the denominator polynomial

Q(z) of H(z) . The method is based on an algorithm of McCabe and Murphy

and is similar to the qd-alrogithm of Rutishauser. Proof of convergence of the

iterations is omitted, but follows along the lines of the proof for the

qd-algorithm in the case when the poles have equal moduli (see [5, Section 7.91).

If e #0 for k =2,3,...,0tl , then the continued fraction
Rn(z;cn+1) has an even part (see, for example, [8, Section 2.4.2]) . The
even part of Rn(;_l,cn+1) can be expressed in the form of a

terminating general T-fraction

(4.1a) T (2) = R (¢ Ve ) P b Do "ot
<la = sC = ¢ (XY}
n ot o L e o+ iw,c+ + 6
where
[
(4.1b) F, = (-e ,2)c . By (e ,2)_iﬂ , §=2,3,e00,m ,
1 1l %2 Fy i
h ]
- C
(4.10) € = ¢y cj=_.ciﬂ , §3=2,3,...,n .

i

The following algorithm is now applicable [8, Section 7.3.2] .

Algorithm 2. (FG-algorithm)
for j=1,2,...,0n be given and let m, be given.

2‘“) F(“‘)-»o for m = 0,1,...,m and

0 0 0
G{ ) - G1 , Fﬁ ) - Fk and Gﬁ ) - Gk for m=2,3,...,n .

Then for each m = 0,1,...,m0-1 , compute
(wH) _ (@) | ()
G1 G1 + F2

and for k = 2,3,...,n

(m) , .(m) _(m)
Ff{“’*’l) <0 TG M)
(m) (m)
Gy Py
(mtl) | o(m) |, o(m) _ (mH)
Gk =G Tt T T

An application of Algorithm 2 produces a table (the FG-table) of the form

= (0) (0) (0) @, ,. O (0) ) _
0=F 6, F, Gy Fo G, Fo=0

-1 ) L) (D, () L) (1)
0 F1 G1 F2 G2 Fn Gn Fn+1 0

. . . . . . .
. . . . . . .
. . . . . . .

(my) (mg) (mg) (my) F(mo) (mg) (mg)

0=F 6 Fy 6y n n e "
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It is known that the FG-table associated with (4.la) with the Fj,aj #0

can be computed for any positive m Tn(C) has n poles; we shall

denote them by Cl,Cz,...,Cn , whege.
0 < o] <[] <o < gy

It is well known [8, Theorem 7.21] that if

(4.2) |%ee1] < o] < [
then
(4.3) m o = - %;; :

If, on the other hand, two or more of the poles have the same modulus, then the

situation is somewhat more difffcult. That situation is discussed below.

An index k 1is called a critical index of the function Tn(C) if

%] < [Een]
It can be shown that if k 1is a critical index then

lim Ff{“‘) =0 .

m>o
Thus the FG-table is divided into subtables by the F-columns tending to zero. If

a subtable contains j G-columns, then this indicates the presence of j poles of
equal modulus. When j =1 , the single G-column converges to the negative
reciprocal of the pole as in (4.3) . Suppose that k and k + j are two
consecutive critical indices of T (C) « Let polynomials pim)(u) be defined by

(4.4a) ™) =1
(4.4b) P = wp{™P ) - M M

m=0,1,2,... 3 1i=20,1,...,51 .

If condition (H) given in [5, Theorem 7.%9a] holds, then there exists an
infinite set of positive integers M such that

1im pj (u) =Py (u)

mEM
where
(4.5) py(u) = (wbz )(utzy ) oo (ubzy )
(4.6) z, = 1/C:l , 1 =k,ktl,eee k+j-1 .
Here the z, are poles of H(z) = Tn(z—l) .
For illustration suppose that for some k , we have k and k+2 as

consecutive critical indexes (i.e. =2 ). Then

(m) - (nﬂ-l) (m) (m) . (m)
(4.7) (u) (G + Gk+2) + Gk+2 PR
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Now suppose that the limits

. (ml) | . (m) (m) (m)
(4.8) ak = ;im(ck+1 + Gk+2) and b lim Gk+ZGk+1
both exist, so that
- 2 -
(4.9) pz(u) =u au+b .
The zeros (ak * ¢a§-4bk)/2 of pz(u) are then poles of H(z) with equal

modulus; It will be seen that this situation occurs in the following examples.

OO @ )

For convenience we shall let denote the zeros of p , so that

z, = lim zim) , 1=1,2 .
mre

Example 1. Speech Analysis. We consider now the reflection coefficients

given in Table 1. We wish to compute the poles of the transfer function
Table 1. Reflection coefficients cj for the Russian vowel /e/ taken
from [9, p. 87] .

k| ¢y 3 °y

1 | 0.500 5| -0.189
2 | 0.456 6 | -0.212
3] 0.178 7 | -0.200
4 |-0.044 8 0.381

H(z) = R8 (see (2.1)) associated with the coefficients in Table 1. After
using (4.1) to obtain Fj and Gj for j=1,2,...,8 , we have applied

Algorithm 2 to form an FG-table. The elements Fim) of the FG-table for

k=1,2,,..,8 and m = 100,200,...,700 are given in Table 2. As can be seen,

F§m),F§m) and F§m)

appear to approach zero as m * ® , Therefore the
indication is that the poles of H(z) occur in pairs having the same modulus. In
Table 3 we show the values of the sums and products in (4.8) for k =1 and
(m)) and Im(zim)) for m = 100,200,...,700, z; and z,
complex conjugates. The remaining poles of H(z) are given in Table 4 and all

the resulting Re(z are

occur in conjugate pairs.

from the FG-table associated with

Table 2. Selected elements Fém)

reflection coefficients ¢ in Table 1 .

|
(m) (m) (m) (m) (m) (m) (m)

m F2 Fa F4 F5 F6 F7 F8

100 2.34449 -.10956 -5.11980 .01943 1.65777 -.53872 -.06133
200 12296 .01990 2.51598 | -.00009 2.93129 .02196 -.08759
300 .59788 -.00105 1.99876 .00000 | -1.86633 -.00529 -.13034
400 214277 -.00005 ~-4.58580 .00000 | - .72617 .00051 -.24783
500 .33239 .00001 ~2.35639 .00000 | -1.38386 -.00002 -.86929
600 .17947 .00000 3.70904 .00000 3.37503 -.00001 4.31542
700 $22212 .00000 1.78708 .00000 { -9.09978 .00000 4.36749
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G{m+1) + Gém) G{m)cém) and real and imaginary

Table 3. Sums , products

parts of z{m) obtained from the FG-table and (4.9) associated with the

reflection coefficients cj in Table 1.

n c§m+1) + cém) cfm)cém) Re(zfm)) Im(zim))
100 -1.358154 767111 .679077 -.553141
200 -1.819877 .924506 .909938 -.310674
300 -1.840151 .945378 .920076 .314386
400 -1.840669 .945794 .920335 .314290
500 -1.840696 .945830 .920348 .314308
600 -1.840695 .945829 .920347 .314309
700 -1.840695 .945829 .920347 .314309

Table 4. Poles z of the transfer function H(z) associated with the

k
reflection coefficients ¢, in Table 1.

J

k Re(zk) Im(zk) 'zk’

1 +920347 .314309 .972538
2 .920347 -.314309 972538
3 .00954835 .934707 .939571
4 .00954835 -.934707 .939571
5 -.527641 .715288 .888843
6 -.527641 -.715288 .888843
7 -.836649 .240790 .870610
8 -.836649 -.240790 .870610

For comparison we have also computed the eight poles in Table 4 by use of
Laguerre's global convergence method with polynomial deflation. The time required
(by a CDC Cyber) to compute the eight poles with at least six significant digits
was 0.069 seconds by Laguerres' method and 0.203 seconds by the FG-algorithm.
The slowness of the FG-algorithm here is, in part, due to the fact that the
magnitudes of the poles are all nearly equal. Thus about 1000 iterations are

needed to obtain six significant digits for all of the poles.

Example 2. Signal Detection. We consider now the problem described near the

beginning of this section; that is, to determine an unknown frequency « from a
signal consisting of a sinusoidal wave superimposed with white noise. For this
example we have taken N = 200 , ® = w/4 radians and 62 = 0.02 . (This

value of 62 corresponds to a signal power to noise power ratio of 30
decibels.) The reflection coefficients cj for the given input data are

given in Table 5 .

Table 5. Reflection coefficients cj for the sinusoid in noise detection

problem.
j c. j c
) 3 ) i
1 .0138023 5 |-.0478801
2 .0376839 6 .177988
3 |-.0348238 7 .987017
4 .0187238 8 |-.706543
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Again we constructed the FG-table; the F;m),Fgm)

colums are given in Table 6
together with the sums and products of G's in (4.7) . Also given in Table 6

are the resulting pole approximations z{m) = Re(z{m)) + iIm(zim)) R

m = 15,20,...,45 . 2, is the pole of principal interest and 2545) approximates
z; with six significant digits. Thus as an approximation of w = =/4 = .7854 N
we obtain w = Arg 2{45) £ .7856 which has “approximately three" significant

digits. The computing time (on the CDC Cyber) to compute z, with six
significant digits was .044 seconds by the Laguerre method and .010 seconds by
the FG—algo;ithm. The FG-algorithm was favorable in this application because we
were searching a single pair of conjugate poles located near the unit circle and
somewhat isolated from the other poles. These results suggest that the
FG-algorithm may provide an efficient method for signal detection problems.

Table 6. Intermediate output from FG-algorithm approximations

zT = Re(zfm)) + iIm(zfm)) of the pole 2y of transfer function H(z) in signal

detection problem with reflection coefficients in Table 4 .
(m) (m) (utl),  (m) (m) , (m) (m) (m)

m F2 F3 G1 +G2 G1 G2 Re(z1 ) Re(z2 )
15 1.1747 .00000 27.385539 |-24.825296 .878340 .000000
20 | -11.38749 .00000 ~1.540688 1.028264 .770344 659420
25 8.02913 .00000 -1.408984 .984263 «704492 .698537
30 .65483 .00000 ~1.406301 .989196 .703150 .703403
35 77308 .00000 -1.406648 .989847 .703324 .703692
40 | - 9.16121 .00000 -1.406690 .989883 .703345 .703697
45 7.63801 .00000 -1.406692 .989884 .703346 703696
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S-FRACTION EXPANSIONS OF ANALYTIC FUNCTIONS

L.J. Lange

1. Introduction. By a 8-fraction we mean a finite or infinite continued fraction

of the form
d.z d, z d.z

1.1 by - 8,z + —L 2 3
a-n 0 0 1-8,2 + 18,z + 1-8,2 + «o» :
where bo and dn are complex constants, dn #0 for nz1l , and the 6n are

real constants restricted to the values 0 or 1 . We adopt the convention that
the ¢&-fraction (1.1) , and all of its approximants, have value bo at z=0 .,
We say that the 6-fraction (l.1) is regular if dk+1 =1 for each k such that
Gk =1 . We choose the name 6&-fraction for the continued fraction (1.1)
because of the binary “impulse" nature of the sequence {Gn} and the analogies,
therefore, with the 8's in the Dirac delta function and the Kronecker delta
symbol. We are led to this investigation of 8-fractions, and their connections
with analytic functions, in our quest to find an answer to the following question:
Is there a class D of “simple” continued fractions

al(z) az(z) a3(z)

bl(z) + b2(z) + b3(z) + oo

(1.2) bo(z) +

having the following desirable properties?
(a) the elements an(z) and bn(z) are polynomials in 2z of degree =1 .
(b) D contains the class of regular C-fractions
. R
0" "1 +1T +71 + oes
(c¢) Given the power series

+ ,e €€ , e #0 if n=z1 .
n n
L, 2 ¢, +c,2+ ¢ 22 + c z3 + oo c €EC c, ¥ 0
0~ % "4 2 3 * G * %o g
there exists a unique member Ko €D such that Ko corresponds to Lo , Llee.,
the Maclaurin series of the n-th approximant of Ko agrees termwise with Lo
up to and including the term ck(n)zk(n) , where k(n) * ® as n=+ o

(d) 1If Lo
then its corresponding Ko € D terminates.

represents a rational function in a neighborhood of z = 0 N

(e) Let us say that K € D corresponds to a function f(z) , analytic at
z=0 , if K corresponds to the Maclaurin series of f . Then for many
classical functions, analytic in a neighborhood of the origin, explicit and useful
formulas can be obtained for the elements an(z) and bn(z) of the continued

fractions in D corresponding to these functions.

! This research was funded in part by a grant from the Research Council of the
Graduate School, University of Missouri, Columbia.
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(f) Much information can be given about the convergence of the continued
fractions in D that correspond to functions which are analytic at the origin.

(g) In many cases, at least "some"” of the approximants of the continued
fraction K € D corresponding to a power series LO are in the Padé table for Lo

The C-fractions of Leighton and Scott [13] , the T-fractions of Thron [26],
and the P-fractions of Magnus [14,15] all essentially meet requirement (e) ,
but each of these classes fails to meet one or more of the remaining requirements.
The C-fractions in general do not meet requirement (a) , and the regular
C-fractions above do not meet requirement (c¢) . For example, it is known that
there is no regular C-fraction corresponding to 1 + z2 « The T-fractions
essentially meet requirements (a) and (f) , in addition to (e¢) , but they do
not meet (b) , (d) , and (g) . The P-fractions have a close connection with the
Padé table of a given power series LO » but they fail to meet requirements (a)
and (b) , among others. The class of general T-fractions, studied by Waadeland
[31,32] and others, essentially contains our class of $-fractions, but, to date,
this general class has been studied more from the interpolation point of view,
i.e., more from the point of view of their connections with two-point Pade tables
for meromorphic functions. Closely related to the general T-fractions are the
M-fractions studied by a number of authors [2} , [17] , [18] . For thorough
treatments of the subject of correspondence and the properties of many kinds of
corresponding continued fractions, including the ones just mentioned, we refer the
reader to the recent book on continued fractions by Jones and Thron [91 .

We offer the class of regular S-fra;:tions as our candidate for an answer to
the question posed above. It is easily seen that these continued fractions satisfy
(a) and (b) . In Section 2 we give five basic theorems dealing with the
correspondence between G&-fractions and power series. It follows from Theorems
2.1 and 2.4 , respectively, that requirements (c¢) and (d) are satisfied if D
denotes the class of regular 6-fractions. The proof of Theorem 2.4 turns out to
be considerably more complicated than the proof given by Perron [21, page 111] of
the corresponding result for C-fractions.

In Section 3 we make a start towards meeting requirement (f) with our
§-fractions, by offering four convergence theorems involving these continued
fractions. At the beginning of the section we state, in Theorem A , a version of
Poincarée's Theorem on linear homogeneous difference equations, which we use later.
Theorem 3.1 is concerned with properties of uniformly convergent 6-fractions.
Theorem 3.2 essentially states that the &-fraction (1.1) with b0 =1
converges to an analytic function in a neighborhood of z = 0 , if the sequence
{dn} is bounded. It follows from Theorem 3.3 that the &-fraction (1.1)
converges to a meromorphic function in the unit disk |z| <1 , if 1lim dn =0 .

nre
In Section 3 we also introduce the concept of a (p,q) 1limit periodic S—fraction.

Theorem 3.4 1is a very useful convergence theorem for limit periodic 6-fractions
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of type (l.1) . We have obtained other convergence theorems, which will be
published elsewhere, for the (2,1) and (1,2) cases. The various techniques
used in the proofs of these convergence theorems can be used to obtain further
results of this type. For other recent results involving limit periodic continued
fractions, we refer the reader to the work of Thron and Waadeland [27, 28, 29] and
to the work of Gill [6, 7] .

In Section 4, we give the regular dJ-fraction expansions for tan z , tanh z
Dawson's integral function, (1+z)v , (1+22)v , Arctan z , Arctanh z , exp (z) ,
and exp(zz) « We have obtained the dJ-fraction expansion for many other
classical analytic functions, some of which will be presented in another paper. In
our opinion, regular 6&-fractions do indeed meet requirement (e) . We use a

method of successive extensions along with frequent equivalence transformations to

derive many of these expansions. We display several techniques for establishing
the validity of these representations. A powerful new technique, based on
Poincaré's Theorem, allows us, in many cases, to establish convergence of a
§-fraction over the whole complex plane (except for poles and cuts) to the analytic
function to which it corresponds. Our examples also indicate that (p,q) 1limit
periodic behavior is quite common in the expansions of classical functions.

Finally, we assert that the regular {&-fractions meet the remaining
requirement (g) , not yet considered. However, the only justification for this
assertion that we give, is to point out the following: The class of regular
§-fractions contains the class of regular C-fractions, and the latter have known
connections with the Padé table (see [9, page 190]).

We refer the reader to Chapter 2 in the book by Jones and Thron [9] for the
basic definitions, formulas, and properties of continued fractions that are
employed in this paper. Other valuable reference books on the subject of continued
fractions are those by Perron [21] and Wall [33] .

2. Correspondence. We follow the work of Jones and Thron [10, or 9 (Section
5.1)] on sequences of meromorphic functions corresponding to a formal Laurent series
in introducing the basic definitions and notation for this section. We call

m o+l mt2
= + + + LI # =
L c .z €12 Co? 0o 3oy 0, mz0 ,

where the ¢, are complex numbers, a formal power series (fps) . L =0 is also

called a (fps) . We define a function A on the family of all such power series

L as follows:
MLy =2 if L=0 ; ML)=m if L #0 .

If f£(z) 1is a function analytic at the origin (i.e., analytic in an open disk
containing z = 0 ), then its Taylor series expansion about z = 0 will be denoted
by L(f) . A sequence {Rn(z)} of functions, where each Rn(z) is analytic at

the origin, will be said to correspond to a (fps) L at z =0 Iif

Um A(L - L(R)) = =

n+®
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If {Rn(z)} corresponds to a (fps) L then the order of correspondence vn of
ln(z) is defined by

v, = AML - L(Rn)) .

Thus if {Rn(z)} corresponds to L , then I and L(Rn) agree term—by-term up
v -1

to and including the term =z n +» Finally, a continued fraction
* a (z)
bo(z) + K (22
n=1 bn(z)

is said to correspond to a (fps) L if its sequence of approximants corresponds

to L .

Theorem 2.1. For every formal power series
WEECEEEDETES 00—

L,.=1+c¢cz+ ¢ z2 + oo

0 1 2
there exists a uniquely determined regular &-fraction
d, z d,z
K=1-82z+__L1 2
0 1-8,z + 1-8,z + *o¢

such that X corresponds to L0 .

Proof. We define a sequence {Ln} of power series each with constant term 1
as follows. If L. =1 , choose L1 =1 and define the O&-fraction K by K =1,

0
If Ly3l and o « If Lyl and ¢ =0

choose 61 =1 and d1 =1 . Then

# = =
0 , choose 50 0 and d1 ¢y

where
* * 9
L.=1+ ¢,z + ¢,z + e

and we define

=1 - 2 34 ...
L1 — 1+ cl,lz + c1,22 + c1,3z + .
Lo
If L. ,L,,e00,L are defined and have constant term 1 , then we define L in
0”1 n n+l
the following manner: If L =1 , choose I, =1 . If L % 1 and
n n+l n
2
= + see
Ln 1+ cn’lz cn’zz + ,
= = #+ =
choose Gn 0 and dn+1 Cn,1 if a1 0 . Otherwise, if Cn,1 o ,
define
5n =1 and dn+1 =1 .

Then, if Ln ¥ 1 , we have

where

In this case, we define



=_12
Lpp =5 1*te
L

n
Hence, it follows by induction that Ln is defined for all nz 0 . It is easy

ntl,1

to see that if Ln =1 for some n then Lk =1 for all k zn . If this

should happen, let m be the least value of n such that Ln =1 . Then we have

L(16z)+_(ﬁﬁ , 05k =n1

k
Lk+1

where dk+1 =1 if Gk .

If we set ak(z) = dk z + 0 and bk(z) =1 - sz , then it follows from
[10, Theorem 2] that

d.z d z d z
L,=L(1 - 8,z + —L = S )
0 0 1-8.z + *eo + 1=z + 1
1 m-1
and K corresponds to L0 if
18z 4 dlz dm—lz dmz .

07 1-8iz 4 cer + 18 _jz+ 1
In the remaining case, where L, # 1 for all n , we have shown that there exist
sequences {Gk} and {dk} , where d #0 , Gk =0 or 1 ,and 4., =1 if

Gk = 1 such that

L, ,2)
Lk=L(1—5kz)+_k+l_ , k>0 .
/ k+1
Again, if we set ak(z) = dkz and bk(z) =1 - sz , it follows from [9, Theorem

2] that K corresponds to L0 , where
d.z d,z
=1- Soz + é __%__
1- 17 + 1- o2 + oo

With this our proof is complete.

Theorem 2.2. Each finite &-fraction
——_ 1

d .z d .z d
K =1-8z+ 1 —ol” o
n 0 1-8.z + see +1-6_ __z+ 1
1 n-1
and each infinite &-fraction
d,z d,z
K, =1-8z+ é %
1- 12 + 1- 22 +
correspond to a uniquely determined power series
2
L0 =1+ €z + ¢z + .
The order of correspondence Y of X, is k+ 1 and Ve for Kn is k+1 if

£k <{n and «® if kZ n .

Proof. Let the sequences {Rn(z)} and '{Sn(z)} of functions, analytic at the
origin, be defined by

*

*
A A A
P G 5, (2) = L (2) ;s (0 NG

" B,(2) B B (2) B ()

* *
where An(z)/Bn(z) is the n-th approximant of K_ and Ak(z)/Bk(z) is the

(=]
A
=~
1IA
=]

*

k-th approximant of Kn « Since
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n
-1) d1d2 dn+lz

ntl

R -r -
w1 ()~ Ra(®) B_(2)B_ (2)

and Bn(O) =1 , it follows that
vn = >‘(L(Rn-l»l)

monotonically as n > @ . Also

k+1 *
B, (2B, (2)

Hence, in this case,

- L(Rn)) =n+1l+

[10, Theorem 1]

k K+l
-1 d eee z
S (z)—Sk(k)=()d1;2 et if k<n and O if kz n .

= - = o i =
Ve A(L(Sk+1) L(Sk)) k+1 if k <n and if kzn ,
and again 1lim vk =® , Thus we have met the requirements of
ko

and our theorem follows immediately from this result.

Theorem 2.3. (A) Two regular infinite &-fractions

K=1-8z+ K (dkz/(l-ékz))

1

regular finite

§—fraction

0 k=1
and
* 5* = d* 5*
K =1- ot K ( kz/(l— kz))
k=1
correspond to the same power series
2
LO =1+ cz + c,y2 +
if and only if
§ =68, k20 and d * .
k- %k z an k= dk , k2=
*
(B) A regular infinite d&-fraction K and a
d, z d z
K =1-8z+_1 n-1
n 0

1-86.z + *ee +1-8§ _z+ 1
1 n—

1
correspond to the same power series L0 if and only if

Gk = Gk .

k

0sk=nl ; 6§ =1, k

d z
13

z

»
4 =d ,15ksn ; d;:=1 , k =zt

n

(C) A regular finite d&-fraction Kn and a regular finite

§-fraction

* * *
* d’z d z d’z
Ki=1-62z+_1 ml”  m
m 0 * *
1-8.z + o0 + 1-§ z+ 1
1 m-1
correspond to the same power series L0 if and only if
* . = *
n=m ; Gk = Gk , 0=k Enl1 ; dk = dk , 1=

k

A

n

Proof. The techniques used to prove this theorem are similar to the ones

employed by Perron [2, p. 108] and Thron [26, p. 208] in their proofs of

analogous theorems for C-fractions and T-fractions, respectively.

Therefore,

allow space for other items in this article, we omit a detailed proof.

to



Theorem 2.4. A power series

- 2 LN}
L0 =1+ ¢,z + czz +

is the Taylor series about the origin of a rational function
n

1+ az+ ¢+ az
R(z) = ! n

1+bz+swe+b”
1 m

if and only if there exists a finite regular S-fraction

d,z d .z d z
K=1-28z+ 1 o’ o
0 1-8.z + eoe +1-8 _z+ 1

1 n-1

such that K correponds to L0 .

Proof. Let the degree of any polynomial P(z) be denoted by P . We prove

the above theorem by mathematical induction, where our n~th induction statement

is that all rational functions of the form g%&% , where P(0) = Q(0) =1 and
PO z

max(P,Q) = n , have a S-fraction expansion of the type asserted in the theorem.
If n=0 , then P(z)/Q(z) =1 and we have only to choose K =1 . If n=1,
then we have only to consider the three types of rational functions Rl(z) =14 az
Rz(z) = 1/(1+bz) , or R3(z) = (1+az)/(1+bz) , where a #0 , b #0 . The

desired &-fraction expansions for R1 and R, are clearly

2
1+382 gnd 1 -bz bz |
1 1+ 1
respectively. If a =b in R3 , choose K =1 ; otherwise, the desired
expansion for R3 is easily seen to be
1+ {a=b)z bz
1+ 1

Now assume that our theorem is true for all rational functions R(z) = P(z)/Q(z)
satisfying P(0) = Q(0) =1 and max(g,a) =k for some k,0=ksn . Let
Ro(z) = Po(z)/Qo(z) be an afbifrary rational function satisfying

PO(O) = QO(O) =1 and max(PQ,Qo) =n+1 . The proof is completed by showing
that either Ro(z) =1 , in which case we choose K=1 , or Ro(z) * 1 can be

expressed in one of the following six forms in a neighborhood of z = 0

R ( 1+ 4z
(a) Ry(z) R
d, z d,z
= 1~ 2
(b) Ry(z) =1 T+ R
d, z
= (1~ _z_ z. oz 1
(e) RO(Z) (1-z) + 1-z + *o¢ 4+ 1=z + 1 + Rl(z)
I
a1-2 terms
d d
(d) Ry(z) =1+ b z 2*

Z. z
l-z + 1=z + *¢¢ + 1-z + 1 + Rl(z)
L

a2—2 terms



d z d,z
e) R (z) = (1~z) + -2 2z =z _1- 2
() Ry(z) = (1-2) 1-z+'~'+1-zJ+1+1+R1(z)

L
a1-2 terms

d,z
f) R (z) = (1-z) + & z oz _1-
() Rylz) = ( )'1—z+"'+1—zj+1+l-z

a1—2 terms

where d1 0 , d2 # 0 are complex numbers, ay >2, a, > 2 are positive
integers, and Rl(z) = Pl(z)/Ql(z) , where Pl(O) = Ql(O) =1 and max(Pl,Q1

We omit the rather lengthy case analyses involved in the remainder of the

)<n

proof, since a full proof will be published elsewhere. However, we mention here,
that to arrive at the above cases, we found it convenient to make repeated use of
the following observation.

If

a
F(z) =1 + 32 _ |
H(z)

where a # 0 , o is an integer > 2 , and H(z) is a rational function

satisfying H(0) =1 , then in a neighborhood of z = 0
a-1
F(z) = (1-z) +2 ___3&a
1 - o-1
az + H(z)
Theorem 2.5: A regular infinite d&-fraction
e —
K=1- Soz + K (dnz/(l—snz))
n=1
corresponds to the Taylor series expansion about z = 0
1L+ a,z4 *oe +a 2"
R(z) = 1 n

1+ bz+ sse+b 2"
1 m

if and only if there exists an integer N z 0 such that Gn =1 if nz N and
dn =1 if nzN+1 .

f a rational function

Proof. By Theorem 2.4 there exists a finite &-fraction
d. z d z d z
K =1-82+_1 —ol”  n”
n Y 1-8,z + soe +1-8 _z+ 1
1 n1
such that Kn corresponds to L(R(z)) . Then by part (B) of Theorem 2.3

the infinite 6-fraction

bl

d.z d .z d z
K=1-682+ 1 n-1 n z z
0 1—512 + coe 4 1—5n_lz + 1=z 4+ 1~z + 1-z + ere

also corresponds to L(R(z)) . By part (A) of the same Theorem 2.3 any other
infinite &-fraction corresponding to L(R(z)) must be identical to X so we have

our desired result.
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3. Convergence. We shall later use the following theorem, a version of which was
first given by Poincaré [25] in 1885.

Theorem A (Poincaré): For n =1,2,3,..., let Dn be a nontrivial solution

of the homogeneous linear difference equation

(3.1) D_=bD + aDd

n n n-1 nn2 °’

where
lima =a , limb =b .
n n

nre nre
Let the roots X and Xy of the characteristic equation

(3.2) Z-bx-a=0
satisfy

(3.3) |x1' > 'xz' .
Then

D
lim B = LY
n*® “n-1

where x, = is ome of the roots of (3.2) .

To fix the ideas of his method of proof Poincare sketched the proof of a
similar result for third order linear difference equations. Perron [22, 23, 24]
gave extensions of Poincaré's Theorem and proofs for the general n~th order case
through three separate papers, the first two of which appeared in 1909 and the last
in 1921, Treatments in English, of the Theorems of Poincare and Perron on finite
differences may be found in the books of Gel'fond [5] and Milne-Thomson [19] on
the calculus of finite differences.

The following theorem is an adaptation to &-fractions of some convergence
results given by Jones and Thron [10] dealing with sequences of meromorphic

functions.

Theorem 3.1. Let the infinite &-fraction

d,z d z
K=1=0682z+ L1 2
0 1-8,z + 1-8,2 + +=°

correspond to the power series

=1+ c,z+c z2 + eee

Lo 1 2

Let D be a domain containing a neighborhood of the origin. Then,

(A) X converges uniformly on every compact subset of D if and only if its

sequences of approximants {An(z)/Bn(z)} is uniformly bounded on every compact
subset of D .

(B) If K converges uniformly on every compact subset of D , then

f(z) = lim An(z)/Bn(z) is analytic in D and L0 is the Taylor series expansion
nreo

of f(z) about z =0 .
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(C) Two infinite subsequences of approximants of X which converge uniformly

on every compact subset of D converge to the same analytic function in D .

Proof. Part (A) and (B) follow immediately from [10, Theorem 4'] . Part
(C) may be established as follows: Let {F_ (z)} and {F_ (z)} be two sub-

sequences of approximants of K which converge uniformly on every compact subset
of D . Since each of these subsequences corresonds to L0 , it follows from

(10, Theorem 4'] that 1im f_ (z) = F (z) and lim f_ (z) = F (z) , where F_(z)
’ ke Tk R WY M " "

and Fm(z) are analytic in D and have the property that L0 is the Taylor
expansion of each about the origin. Since D is a domain, it follows from the
Identity Theorem for analytic functions that Fn(z) = Fm(z) for all z in D .

The next theorem shows that a O&-fraction converges uniformly in a neighbor-
hood of the origin to an analytic function if {Gn} is an arbitrary sequence of
zeros and ones, provided only that the sequence {dn} is bounded.

Theorem 3.2: If the coefficients dn of the infinite &-fraction

K=1- 502 + nI:l(dnz/(l—(snz))

satisfy the inequality

0< 'dn' =M ,

then K converges uniformly in the disk Iz‘ = (/THm + /M) 2 to a function f£(z)

vhich is analytic in the interior of this disk.

Proof. With the aid of an equivalence transformation, K can be written in

the form
® dE (z
K=1-38z+ K (_ILJL__z) ,
n=1 1
where for each n , En(z) is one of the three functions

z , z/(1l-2z) , Z/(l—z)2 >

provided z #1 . If ,z| =

From this we also derive

z
1-2z
since ll-z! zl - ,z' .

= ’

" (1-n)?

(1-1)? |1-2

We impose the further restriction on r that it satisfy the equation

r =_1
(l-r)Z 4M

We solve this equation for the value of r in the interval 0 < r < 1 to obtain
r = (i + )72 .

By the Convergence Neighborhood Theorem in Jones and Thron's book [9, page 1087,
Satz 2.25 with P, = 2 1in Perron's book [21, page 64], or by Theorem 10.1 in
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Wall's book [33, page 42], K converges uniformly if ldnEn(z)l-é 1/4 . Since
the latter inequality is satisfied whenever Id ' =M and Iz' = (/TIE + /35_2 N
the uniform convergence is established. It is clear, therefore, that K converges
uniformly on every compact subset of |z| < (/TIE + /35—2 » It follows from part
(B) of Theorem 3.1 that f(z) 1is analytic in this disk, and our proof is
complete.

By further restricting the sequence {dn} in Theorem 3.2 we can say the

following:
Theorem 3.3: Let K =1 - Goz + K (dnz/(l-énz)) be a O8-fraction such that
n=1
limd =0 .
nre n

Then K converges to a function f(z) which is both meromorphic in the open unit

disk D(0,1) = {z: 'z| < 1} and analytic at z =0 . The convergence is uniform

on every compact subset of D(0,1) which contains no poles of f(z) .

Proof. By an equivalence transformation K can be put into the form

de/a-s sy K (B

K=1- Goz +

1 + 1 ’
where
d z
B oas s "2t
n-1 n

Clearly, each En(z) is analytic if |z| <1 . It is also easy to see that for
each M satisfying 0 < M <1 there exists an oy such that lEn(z)l =1/4 for
all nz oy and lzl =M . Thus, by the Convergence Neighborhood Theorem
referenced in the proof of Theorem 3.2 , a tail

K (En(z)/l)

n=m
of K converges uniformly to a function F(z) on |z|= M if m=z o - By

Theorem 3.1 , F(z) 1is analytic in the disk 'zl <M and F(0) =0 . The
remainder of the proof will not be given here since, after making the above
observations, it is very similar to the proof suggested by Jones and Thron for
their Theorem 7.23 [9, p. 275] .

The remaining theorem in this section deals with the convergence of

§-fractions having certain convergence criteria imposed on the sequences {dn} and

{Gn} . We shall say that a 6-fraction
bo - Goz + nI:l(dnz/(l—snz))
is (p,q) 1limit periodic if there exist positive integers p and q such that

1im d =D k = 0,1,...,p-1
Voo p \’+k k » i i i
and
1im § =A m=0,1,e..,q-1 ,
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where each Am is 0 or 1 and the Dk are numbers in the extended complex
plane. Thus, in this setting, limit periodic regular C-fractions are in the class
of (1,1) 1limit periodic &-fractions. In the next section we shall see that the
regular O&-fraction expansions for certain analytic functions can serve as examples
of (p,q) 1limit periodic &-fractins of types (1,1) , (2,1) , (4,1) , and (8,1).
We have obtained general convergence results, which will appear elsewhere, for the
(1,2) and (2,1) cases. Before we state Theorem 3.4 , it will be convenient for
us to introduce the symbol R[a] for the ray from a to * in the direction of

o defined by

(3.4) Rl[a] = {at : tZ 1} , a#20 , o €6 .,
Theorem 3.4. Let K =1 - Goz + K (dnz/(l-énz)) be a S-fraction satisfying
n=1
limd =d ; lim§ =46 |,
n*e n n+o n

where d is a complex constant and § is either 0 or 1 .

(A) If d=8=0 , then K converges to a function £(z) which is both

meromorphic in the complex plane € and analytic at z =0 . The convergence is

uniform on every compact subset of € which contains no poles at f(z) .

(B) If d=0 and 8§ =1 , then the conclusions are the same as in (A)

(C) If d#0 and 8§ =0 then the conclusions are the same as in (A) with

€ replaced by the cut plane € = R[p-1/(4d)] .

(D) If d#0 and 8=1 , then the conclusions are the same as in (A)

with € replaced by any domain D such that 0¢ D and DC € - E

By = {z ; [2 -z - 1/z]/(4d) € [0,1]} .

If d is real, then Ed is a subset of the set made up of the real line and the

unit circle. If d=1 , in particular, then E is the unit circle

d
Proof. Let
E={z:1~8z2=0}y {z : —4dz ¢ [-= -1]}
(1~Gz)2
and let D be any domain (open connected set) in € satisfying
0€D and DNE=¢ .

It is sufficient to prove the above theorem for the interior T0 of T , where T
is an arbitrary connected compact set such that TS D and 0O ¢ T0 + Since D
contains no points of E , it follows that the roots xl(z) and xz(z) of the

quadratic equation
x2 - (1 ~-682)x-dz=0

have unequal moduli if z ¢ D . Thus, since TC D and T is compact, there
exist constants 6 , C1 , and C2 (0<e<t, C1 >0 , and C2 > 0 ) such that

%, (z)



and
C1 = |x1(z)' = C2

for all z ¢ T . Hence, we have met the hypotheses of Satz 2.42 of Perron [21,

page 93] , so there exists an integer Yo such that the continued fraction

K =1-82+ K (d_z/(1-8 z))
v v bl ™ m
converges uniformly on T if v =z Vg o+ If Pn(z) and Qn(z) denote the

numerator and denominator, respectively, of the n-th approximant of Kv , then

from the determinant formula we have

n+l
1" 4
Pn+1(z) - Pn(z) = k=1 vtk nz 0 .
Qi (2)  Q (2) Q,(2)Q 4, (2)

Therefore,

AL(P_,./Q_,.) - L(P /Q))=n+1
ot+l’ tokl n 'n

and hence by Theorem 2.2 , or by Theorem 1 of Jones and Thron [10, page 4] ,

there exists a power series

2
Lv =1+ Clz + sz +

to which Kv corresponds at z = 0 , the order of correspondence being n + 1 .
Each approximant of Kv is a rational function analytic at the origin since
Qn(O) =1 for all nz 0 .

Also, since Kv converges uniformly on T , it converges uniformly on every

compact subset of T0 to a function Fv(z) « By Theorem 4' of [10, page 15],

Fv(z) is analytic in TO and Lv is its Taylor series expansion about z =0

Now 1let Ak and Bk denote the numerator and denominator, respectively, of the

k-th approximant of the original continued fraction XK . Then for nz 0.,
A\)+n = Av—I(Pn/Qn) + ZdvAv-z
Born Byq(P /Q) +zd B

-2
For z €T let
+
£(z) = lim AV+n _ Av_va(z) ZdvAv—Z )
n*eo Bv+n Bv_va(z) + zdev_2

Since the numerator and denominator functions of the last expression for £(z)

have no common zeros and since the denominator is not identically zero in TO (it
is equal to 1 at z = 0 ), it follows that f£(z) is meromorphic in TO . Using

the facts that {Pn(z)/Qn(z)} converges uniformly to F (z) on compact subsets of

T0 R OET0 , and

Bv—l(z)Fv(z) + Zdev-Z(z)

does not vanish at z =0 , it is not difficult to verify that {Ak(z)/Bk(z)}

converges uniformly to f£(z) on pole free compact subsets of TO . The fact that

f(z) 1is analytic at the origin follows from Theorem 3.2 . After choosing d, §,
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D and E appropriately for each of the four cases in the statement of the
theorem, our proof is complete. Part (A) also follows from Theorem 7.23 of

Jones and Thron [9, page 275] dealing with general T-fractions.

4. Expansions. We shall make repeated use in this section of the extension
theorem for continued fractions (Satz 1.7) 1in Perron's book [21, page 16] .
Hereafter, we shall refer to this result as Theorem B. We shall also make heavy
use of equivalence transformations of continued fractions. For thorough
discussions of equivalence transformations, the reader is referred to the book of
Jones and Thron [9, Section 2.3] and to Perron's book [21, §2] .

We are now ready to give, through a series of five Theorems, regular
§-fraction expansions for a variety of classical analytic functions as well as

considerable information about the regions of validity of these expansions.

Theorem 4.1: The regular S-fraction expansions of tan z and tanh z are

given by

z/3 z/3 z/5 z/5 z/7 z/7 z/9
+ 1 - 1 - 1 + 1 + 1 = 1 = 1 + e»»

tan z = _Z_
-z +

Ll 1]

and
tanh z = 2 z z/3 z/3 z/5 z/5 z/1 z/1 z/9
l-z+1- 1 + 1 = 1 + 1 = 1 + 1 = 1 4 ess
These expansions are valid everywhere in the complex plane. The &-fractions above
are (1,1) 1limit periodic.

Proof. According to [12, page 122] , the following representation for tan z
is valid everywhere in the complex plane except at points which are poles of the

function

2 2 2 2
(4.1) tanz =2 2. Z_  Z Z .
1 -3 =5 =7 = eee = 20Fl = ses

By letting the N in Theorem B take on the values of z and -z it is easily

seen that the continued fraction (4.1) can be extended to the continued fraction
(4.2) 2.z Zz 2z z 2z z z 2z Z
I-2+1+3-1-54+1+7=-1=94+1+ ees
which by an equivalence transformation can be put into the form
(4.3) z z z/3 _L_ z/5 z/[5 z/1 z/1 z/9 .
1-z+1+ 1 - =1 + 1 + 1 = 1 = 1 + =
The continued fraction (4.3) is a (1,1) 1imit periodic O&-fraction satisfying
limd =0 and 1lim 6 =0 .,
n*+e n n*e n
Also, its 2n-th approximant is the n-th approximant of (4.l) . Hence, it
follows from Theorem 3.4 that (4.3) converges to tan z everywhere in €
except for poles.
From [12, page 123] we obtain
2 2 2
(4.4) tanh z = 2 2 2_ z
1L+ 3+ 54 eso 4 20t + oo

valid everywhere in € except at the poles of tanh z . By extension, (4.4)

becomes



(4.5) Z£. & 2z 2z 2z 2z 2z 2
-2+ 1 -34+1-5+1=-7+1— ses
which is equivalent to
(4.6) z z z/3 z/3 z/[5 z/[5 z/[1 z/[7 .
1-z+1 - 1 + 1 - 1 + 1 - 1 + 1 = ee»

The even approximants of (4.6) are the approximants of (4.4) , so again by
Theorem 3.4 , (4.6) converges to tanh z everywhere this function is defined.

Theorem 4.2: If F(z) 1is Dawson's integral function, where,
2, .2
z | et e,

F(z) = e
0
then the regular &-fraction expansion of F , valid everywhere in € , is given
by
(4.7) F(z) = -2 % 3. 4 57 ,

where for n 21

. (-1)"n(??)
4n-1 =~ 4n -1
(4n-1)4
(4.8)
n,n
d = -4 = (-1) 4
4nt2 4 1
(4nt1) ()
and
4¥n/m . /nf
“-9 || ~ 405 5 [oema| ~ T -

The &-fraction (4.7) is (1,1) 1imit periodic.
Proof. According to McCabe [16] , the function F(z) can be represented by
the continued fraction

(4.10) F(z) = 2 222 4z 622 822
1+ 3 = 5 4+ 7 = 9 + = eo»
and the expansion is valid everywhere in the complex plane. We mention here, also,

’

that Dijkstra {[1] has given a certain continued fraction expansion for a
generalization of Dawson's integral function. By an equivalence transformation,

the continued fraction (4.10) can be put into the form

222 42t 6t 8t
(4.11) F(z) =2 3 3x35 5x1 1x9 .
1+ 1 - 1 + 1 = 1 + = see
By extending (4.11) we obtain the &-fraction
2z 2z 4(z) 4(z)
(4.12) -z z 3 3 25 25
1-z+1- 1+ 1+ 1 - 1
2x6(z 2x6(z 4x8(z 4x8(z
4 7) 4 (7 2x6 9) 2X6(9)
+ 1 - 1 - 1 + 1
2x6x10(_z 2x6x10(_z 4x8x12(_z
4x8 ‘11) 4x8 ‘11) 2x6x10 13) .
- 1 + 1 + 1 - eee

It can be shown that (4.12) 1s the same as the continued fraction (4.7) , where
the d  are given by formulas (4.8) . It follows from the asymptotic formualas
(4.9) (which were determined with the aid of Stirling's formula) that
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limd =0 .
n

>0
Also, the 2n~th (nz 0) approxim:nt of the continued fraction (4.7) 1is the
n-th approximant of (4.11) . Thus it follows from Theorem 3.4 that (4.7)
converges to F(z) at all points 2z € € ,and our proof is complete.

The expansion (4.13) 1in our next Theorem is easily derived from a well known
continued fraction originally due to Lagrange (see [12, page 102] or ({21, page
152]1). Thus, in our proof of Theotem 4.3 , we shall concentrate on justifying the
new O&-fraction expansions (4.15) and (4.16) over the region indicated. In the
proof of Theorem 4.3 we employ for the first time, a new technique, based on
Poincarée's Theorem, for establishing the convergence behavior of (4.15) . Murphy

2)—1/2

[20] has given various continued fraction expansions for (l+z . We deal

with the function (1+22)v for all Vv satisfying 0 < v<1 .

Theorem 4.3: (A) Suppose Vv is any real number satisfying 0 < v <1 .

Then the regular &-fraction expansion of (1+z)v , valid for all 2z € € - R[~1] ,

is given by
. A-vz  (1+)  (2-v)z  (2+V)z
(4.13) (1+2)” = 1 + M2 2 6 6 10
1+ 1 + 1 + 1 + 1

(3~-V)z (ntV)z (n+l-v)z
10 4rrk2 4ort2 .
+ 1 4o+ 1 4+ 1+ eee

In particular,

(4.14) itz = 1 +2/2 z/4 z/4 z/4 .
1 + 1 + 1 4+ 1 + e

(B) The regular &-fraction expansion of (1+22)u (0 <v<1l), valid for
all z ¢ € - {R[-1] U R[1]} , is given by

€12 €2 €,Z €,z €4z
1 + 1 - 1 + 1 = 1 4+ 1 =+ eo¢
where, if B(x,y) denotes the Beta function and n z1 ,

(4.15) (1+22)° = (1-2) +z

c = n \B(n+v,1-v) , {0 if 0<v<1l/2 as n~»* =
2n-1 2n-1B(n-v, vy = If 1/2<v<1
= (1 B(ntl-v,v), (@ if 0<v<1/2 as n> =
“2n (2) B(ntv,1-v) b If 1/2<v<1
In particular,
[ 2
(4.16) 1+z = (1-z) +2 z/2 z/2 z[2 z[2 .
1 -1 4+ 1 = 1 4+ 1 =+ ece

The &-fraction (4.15) is (4,1) 1imit periodic 12 v #1/2 and (2,1) 1limit
periodic if v =1/2 .

Proof. After substituting 22 for z in the expansion (4.13) we obtain
-vz?  (QwZE ©@-w (rvw?

(4.17) (+z2)Y =1 + vz 2 6 6 10
1 0+ 1 + 1 + 1 + 1
2 2 2
B3-v)z" (ntv)z (ntl-v)z
_ 10 4nt2 42

+ 1+ oser 1+ 1 4 e
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By an equivalence transformation, this continued fraction can be put into the form

2 2 2
(4.18) 1+2 zZ zZ R
by + by + by + eee
where b = 1/v and
b = (2n+1)(1-v)ees(n-v) ;s b, = 2v(A+v)eee(n-1+v) , (nz1l) .
20+l V(1+v) + oo (V) 2n (1=v)(2=v) ce+(n - v)

With the aid of the functional relations

I(xtl) = xT(x) and B(x,y) = L(XI(y) |
I'(xty)

where T'(x) is the gamma function, the following formulas for the bn can be

obtained
(4.19) b = (Zn—l) B(n-v,v) ; b = 2B(ntv,1-v) (nz1) .
2n-1 n  B(ntv,1-v) 2n Tp(ntl-v,v)

Using Theorem B with o =z (n=z0), we extend the continued fraction (4.18)

to obtain

(4-20) (1—2)+%—'b—:'+%—'ti'+%—'t§'+%—-u ’

which, after an equivalence transformation and after setting e, = l/bn (n=z1) ,
becomes the continued fraction (4.15) . Let An(z)(Bn(z)) denote the numerator
(denominator) of the n-th approximant of (4.17) , fn(z) = An(z)/B (z) ,

hn(z) = Bn(z)/Bn—l(z) , and let gn(z) denote the n-th approximant of (4.15) .
Then, for all n =0 ,

An(z) - zann_l(z)

g2n+1(z) = fn(z) and gzn(z) =

B (2) - ze B _,(z)
Hence,
ze, ||£, (2) - £, (2)
L R v
and
(4.22) [Bamea(®) = £ppp ()] = 220 [ F2an (2 - £,2)] )

[Dont (20 = 2541 |
The continued fraction (4.17) dis limit periodic because its partial numerators
converge to 22/4 , and the roots xi(z) (1 = 1,2) of the associated quadratic

equation
x2 -x - z2/4 =0

have unequal moduli if z € ¢ - {R[-i] U R{1]} . Therefore, it follows from
Theorem A that {hn(z)} must converge to xl(z) or xz(z) if 2z 1is in this
region. We have that <, =1/2 if v =1/2 , and with the aid of Stirling's
formula it can be verified that

limc2_1=0(°°) if 0<v<1/2 (1/2<v<1)
o T
and

limc2n=°°(0) if 0<v<1/2 (1/2<v<1) .
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We are now in a position to establish the convergence behavior of (4.15) asserted
in part (B) . By convention, the continued fraction (4.15) converges to 1 1f
z =0 , so let us now assume that z # 0 and 2z € ¢ - {R[-i] UR[i]} . Then,
using the convergence properties of {cn} and (hn(z)} established above, it
follows that the right sides of formulas (4.21) and (4.22) converge to 0 as

n+*® , Hence, since lim fn(z) = (1+zz)v , it follows that
n->wo

2. v
1lim g4n(z) = 1lim g4n+2(z) = 1lim g2n+1(z) = (1+z7)
n>e n>e nsw

and our proof 1is complete.

Theorem 4.4: (A) The regular O&-fraction expansion of Arctan z 1is given by

d.z

d,z d,z
(4.23) Arctan z = 2 2 3 _4 57 ,
I-z + 1+ 1 + 1 + 1 + se»
where (for n 1 ),
2r2ny12
dn = 94 1=n[(“)] 4n 51 a5 na+o
n n- - —
(4n_1)42n 1 n(4n-1) T
(4.24)
d 4Zn mm

A
[
]
=]
v
8

= —d =
4nt2 4n+l
een[(PHE A

This expansion is valid for all =z € ¢ - {R[-1] U R[1]} except possibly at
-1
z = (n/& - 1/1) .
(B) The regular O&-fraction expansion of Arctanh z is given by

CLhZ c,2 Cr2
(4.25) Arctanh z = 2 2 3~ 47 57
1=z + 1+ 1 + 1 + 1 + see
where (for n 1)

*Cn " Y%n 3 %2 T upn T Y2

defined by formulas (4.24) . This expansion is valid for

clm--l

with d and d

4n 42
all z€ ¢ - {r[-1] U R[1]} except possibly at z = (w/4 + 1/1t)_1 . The

§-fractions (4.23) and (4.25) are (4,1) 1limit periodic.

Proof. The following known representation of Arctan z is taken from
[9, page 202] :
22 22 22 22
(4.26) Arctan z = 2 1z 22 3z 4z
1+ 3 + 5 + 7 4+ 9 4 e
valid if 2z € ¢ - {R[~1i] Y R[1]} . The continued fraction (4.26) 1is equivalent

to
1222 2222 3222 4222
(4.27) Arctan z = Z 1x3  3x5 5x7 7x9
14+ 1 4+ 1 4+ 1 + 1 + eoo

The continued fraction (4.23) is derived as an extension of (4.27) as follows:
Let an(z) , mn=1,2,... , denote the n-th partial numerator of the continued
fraction (4.27) . Then the continued fraction (4.23) 1is identical to
a,(z)  py(2) a,(2z)/e,(2) p,(2) ay(2)/p,(2)
1-p,(z) + 1 = l-p,(2)ta,(2)/p(2) + 1 - l-pi(2)+az(2)/py(2) + *°*
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where {pn(z)} is defined by

P (2) =2z
The formulas
behavior can be derived from the above process
and Stirling's formula.
z =0

manipulation
when

z#0

converges to Arctan z
investigation we assume
(4.27) ,

Then g, (2z) = fn(z) s

approximant of gn(z) the same for

n=0,1,2,... ,

Py (2) = an+1(2)/pn(2)

(4.24) for the coefficients {dn} of (4.23)
The continued fraction

, so from now on in our

. Let fn(z) =

|d4nz||f2n(z)_f2n—1(z)J

, nzl .

and their asymptotic
amount of algebraic

(4.23)

with a modest
certainly
convergence

An(z)/Bn(z) denote the n-th

(4.23) , and hn(z) = Bn(z)/Bn—l(z)‘

(4.28) |&4e1 (20 = £5(2)] = DRGE nzl ,
and
(4.29) |g4n+1(z) - f2n+1(z)| = ld4n+22||f2n+1(2)_f2n(2)| », nzl .

'h

2041 (%)~ d4neo

?

The partial numerators an(z) of (4.27) converge to 22/4 as n > o

Therefore, by Theorem A , {hn(z)} converges

x2 -x - 22/4

if z € ¢ - {R[-1]y R[1]} . These roots are
1 * V1+22
2
where ¥ denotes the square root with positive real part.

to one of the two roots of

=0

In particular, if =z

is real, it is easy to see that 1lim hn(z) = (1 + 1+zz)/2 (since the other choice

n*e

is a negative number). The sequences {d4nz}

nz/& , respectively. We now see from (4.28)

{84n—1(z)} and {g4n+1(z)} will converge to

and {d converge to z/7 and

4n+22}

and (4.29) that the sequences

Arctan z 1in any region {fn(z)}

converges to this function, provided hzn(z)—7L* z/® and h2n+1(z)—f—* nz/4 as

n > . Thus we investigate the roots of the

1+ /1+22 =%z and L% /1+22 =2
4

2

equations

2 T

The only possible candidates for roots of the first set of equations are

z =

We have already disposed of the case z =0 .

we obtain

0 and 2z = (n/4 - 1/n)

L 5140922923 .

For the second value of 2z above

Asn/i=1/m) 2 - w(n/a-1/m) "

lm b ((n/4 - 1/m)" Ly = L+
e O 2

so for z= (n/4—1/n)_1 it follows that

lim(hzn(z) -

n+o

dyne2

4

z) =0 .

Therefore, unfortunately, our methods do not allow us to decide the convergence

behavior of (4.23) for this value of z .

set of equations above having

z/n on the right side are z = 0

The only possible roots of the second

and
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z= ‘(ﬂ/4—1/n)—1 . But {n 2z} converges to a nonzero limit at

2t (P 7 dynep
z = —(n/4—1/n)—1 » so that the continued fraction (4.23) converges to Arctan 2z
at this point. Thus

lim g (2) = lim f (z) = Arctan z
e O nre O
over the region indicated in part (A) of our theorem.

The proof of part (B) will not be given since it parallels the proof of part
(A) . We give only the continued fraction representation of Arctanh z from which
the O6-fraction (4.25) can be derived by an extension. Making use of the fact
that Arctanh z = -1 Arctanh(iz) and employing (4.27) , it follows that

1222 2222 3222 4222

(4.30) Arctanh z = Z 1x3 3x5 5x7 7x9
1 - 1 - 1 - 1 - 1 = eeo
valid if z € ¢ - {R[~1] U R[1]} .

In our next theorem we give a new continued fraction representation for the
function exp(zz) that turns out to be a regular &-fraction with all of its
partial denominators equal to 1 . The proof that the corresponding &-fraction
for exp(zz) converges to exp(zz) everywhere demands a new twist not employed in

our previous examples.

Theorem 4.5: (A) The regular 6&-fraction expansion of exp(z) , valid for

all ze€ € , is given by

(4.31) exp(z) =1+2 2/[2 z/[6 =z/6 z/10 2z/10 3z/14 z/14
1- 1 + 1 = 1 + 1 =1 + 1 = 1 + eoe

(B) The regular d&-fraction expansion of exp(zz) » valid for all z €€ is
given EX

2 [zl 22 z2 #2323
= (1-z) + 2 2 2/l z/2
(4.32) AR e s T A I
z/2 z/2 2[5 2[5 z/2 z[2 z/[1 zl_
-1+ 1 -1 +1 +1 -1+ 1 -
z/2 z[2 z/9 z/9 z[2 z/[2
ST 4+ 1 -1+ 1 41 =1 4 e
= (1-z) + K (d_z/1) ,
n
n=1
where for n=1,2,... ,
= =1 = - _1
dy =1 d8n-4 2 d8n—1 -1
= - _1 =-1 d, = -1
(4.33) d8n—'6 i3 d8n—3 5 8n )
= _1 =_1 d =1
d8n—5 4n-3 dgn-2 4n=1 8+l

The &-fraction (4.32) is (8,1) 1limit periodic.

Proof. It is well known that the following representation for exp(z) 1is
valid for all z €€ :

z 2z
— ese — 2 4 2pt]l = ese

(4.34) exp(z) =1+Z 2

win
(&3 1]

NN

+

+
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Two sources giving this expansion are [9, page 207] and [12, page 113] . The
representation (4.31) 1is easily derived from (4.34) by an equivalence
transformation, and it may be found in (21, page 124] . By replacing 2z by 22

in (4.34) and using another equivalence transformation we have for all z €@

that

2 2 2 2 2 2 2
(4.35) exp(zz) =1+ Z_ z z z. .z, z z

1+ (=2) + (-3) +2 +5 4 (=2) + (=7) + *»+

=1+ K (zz/b )y
n

n=1
where
(%.36) b, = ((1)"2 and b, | = 1" Yn-1) , nz1 .

We extend the continued fraction (4.35) (using Theorem B with pn Sz ) to

obtain the continued fraction

(4.37) (1-z) + K ((-1)“'lz/cn) ,
n=1
where

Con-1 =1 and =b .

The regular &-fraction

(4.38) (1-2) + 2 z/b1 z/l?1 z/b2 z/b2 z/b3 z/b3
1-"1 + 1 = 1 + 1 = 1 + 1 = ee

where the bn are given by (4.36) , is equivalent to (4.37) . It is easily

verified that the continued fractions (4.38) and (4.32) are identical. Let
gn(z) denote the n-th approximant of (4.32) and let An(z) (Bn(z)) denote the

numerator (denominator) of the n-th approximant of

2 2 2 2
(4.39) exp(zd) = 1+ 22 2242 246 2f6 /10 z°/10

T- 1 + 1 = 1 + 1 = 1 + ee»
derived from (4.31) by replacing z by 22 . Then (if fn(z) = An(z)/Bn(z)

and hn(z) = Bn(Z)/Bn_l(Z) ),

_A(2) - (z/bn)An—l(z) a1

Bant (2 7 Fp(2) (n20); and g,(2) = B (2) - (z/bﬂ)Bn—l(Z)
Hence,
z/2{|E, (2) - £, _(2)
(4.40) Igsn(z) - f4n(z)| = | Il4i?z) — 2/3T 1 41
z/(4ntl) || £ (z)~f, (2)
e e
z/2|{f (z) - £ (z)
(4.42) ESMOREAWO] | “14::_:%2) m z/grl |
(4.43) |8gnes(®) ~ Eanps(®| = [2€4m3) | [ Fuy(2) ~ Sy |

|h4n+3(z) + z/(4n+3)]

The sequence of partial numerators of (4.39) converges to 0 as n > .

Therefore, it follows from Theorem A that 1lim hn(z) =0 or 1 . Unfortunately
n+o
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for a given z , we do not know how to determine whether {hn(z)} converges to O
or 1 . Hence, we cannot employ expressions (4.41) and (4.43) above and our
technique used in the past to determine the convergence behavior of {g8n+2(z)}

and {g8n+6(z)} . Therefore, we try a different approach here and investigate

first the convergence of a tail of (4.32) .

@ fzd
R = X ( 8n—4+m) ,
m=1 1

Let

*
where the coefficients of 2z are given by (4.33) . Then the odd part Kn of Kn

is given by
2 2 2 2
z z z z
K = (-z/2) + 2(4n1)  2(hn-1) 2(GAn¥l)  2(4ndl)
n 1 - 1 + 1 - 1
2 2 2 2
z z z z
2(4nt3)  2(4nt3)  2(4nt+5)  2(4nt5) .
+ 1 - 1 + 1 - 1+ eoo
*
Suppose lzl =M (> 0) and choose n 1in Kn large enough such that
2
M 1
2(4n-1) ~ 4

It follows from the Convergence Neighborhood Theorem (see [9, page 108] and
Theorem 3.1 that K; converges uniformly on the set 'zl =M to a function
Fn(z) that is analytic on Izl <M . Now let Gm denote the m—th approximant
of Kn , and let Nm(z)(Dm(z)) denote the numerator (denominator) of the m~th
approximant of Kz . Then

N (z2) - zd N 2z
Gyt (2) = 2 and G, (z) = w2 8n-3+2n’ m-12)
Dm(Z) Dm(z) - Zd8n—3+2mDm-1(z)

with the aid of which we obtain

JZdSn—3+2m Nm(z)/Dm(z)_Nm-l(z)/Dm—l(z)l R
,(Dm(z)/Dm—l(z))—ZdSn—3+2m

If we let Hm(z) = Dm(z)/Dm_l(z) , then Hl(z) =1 and it can be verified by

induction that

(4.44)  [6,0(2) = N (2)/D ()] =

H (z) - 1| = — 401 _ an4 |m 2) -~ 1| ¢ —o_4n7l
|2mﬂ I 2[4o+2m-1] |2wﬂ() '— 2[4nt2m-1]

provided =z satisfies 'zl =M . Hence, we can now say that 1lim Hm(z)
mre
splitting {sz(z)} into four subsequences as we did for (gzm(z)} and by using

(4.44) , it can be seen without too much difficulty that

ii: Gyp(2) = lim N (2)/D (2) = F_(2) 1if |z| <M . Thus given an arbitrary

positive number M there is a tail of (4.32) which converges to an analytic

1 . By

function Fn on 'zl <M . By the Convergence Neighborhood Theorem [9, page 108]
applied to (4.32) , we have, in particular, that (4.32) converges uniformly on
the set 'zl =1/2 . Hence, by arguments similar to those used in the proof of
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Theorem 3.4 , the &-fraction (4.32) must converge to exp(zz) in a neighbor-

hood of the origin and, therefore, to exp(zz) throughout |z| <M . Since M

was arbitrary, our proof is complete.
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ON THE STRUCTURE OF THE TWO-POINT PADE TABLE
Arne Magnus

1. Introduction. The two-point Padé table is a double-entry table of rational

functions related to two power series

2—2 + s ck £ 0

L=c,z+ c2z2 +c z3 + eee and L* = c* + c* z—l + c* H

1 3 0 1 2
as follows. The two-point Padé approximant at the location (m,n) 1is the rational
function Pm,n/Qm,n where the degrees of the polynomials Pm,n and Qm,n are
{m and < n, respectively, and these two polynomials are selected so that as
many of the initial coefficients as possible in the power series Qm,nL - Pm,n and
Qm,nL* - Pm,n are equal to zero.

We develop the basic properties of the approximants Pm,n/Qm,n in the
table including existence and uniqueness. We find the actual degrees of Pm’n
and Qm,n and show that each approximant is equal to at least one adjacent
approximant. Finally, we determine the shape and location of larger blocks of
equal approximants.

In Section 2 we give the definition of the ordinary one-point Padé table and
state without. proof some of its basic properties as a background for the two-point
table.

In Section 3 we give our definition of the two-point table and prove some of
its properties while in Section 4 we study the block structure of equal
approximants.

In 1948 Thron [12] dintroduced the T-fractions t =1 + doz + K(1+: ) and
z

proved that if 0 <(m S.dn M=, ¥n then t converges to two diffegent

functions, one holomorphic near O , the other holomorphic near = . In 1957
Perron [l10] generalized these fractions to T = Yo + 60z + K(;_fg_;) , Yn +£0,
n > 1 and proved convergence to two power series, L near 0 3nd™ L* near = .
The approximants of the general T-fraction T corresponding to L and L* , [4],
are the two-point Padé approximants Pm,m/Qm,m of L and L* down the
diagonal m = n . This connects the two-point Padé table with the general
T-fractions and the closely related M-fractions of McCabe and Murphy [9] .

Baker, Rushbrooke and Gilbert [2] , 1964, appear to be the first to use the
term two-point approximant. McCabe [8] , 1975, introduces a two-point table via

the M-fractions.

2. On the one-point Padé table. For a comprehensive treatement of the ordinary

Padé table see, for example, the literature references [4] , [10] , [14] .

Given a power series with complex coefficients

L=c¢cy+cz + c2z2 + oo

and an ordered palir of non-negative integers (m,n) , we seek polynomials
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m n
Pm,n P + P, 2 + + P,z and Qm,n 9, + q,2 + + q,2

so that either

(1.1a) L= By Q= o™ty - paximum
or

mhnHl
(1.1b) QL = Py p = OC2 y

where O(zd) denotes some power series whose leading term is of degree d or
. larger.

It is easy to show that the two formulations (l.la) and (1.l1b) are equi-
valent in the sense that both determine the same unique rational function
Pm,n/Qm,n , called the (m,n) Padé approximant of L .

In recent years, Baker [l1] has adopted an alternate definition, namely

(l.1a) with the additional restriction that
j = maximum 2 0 .

As a consequence, Pm,n/Qm,n may not exist for certain pairs (m,n) but
when it does exist it equals the classical Padé approximant.

We point out that among authors who use the classical definitions (l.la) or
(1.1b) there is very little agreement on notation, notably in the use of m and
n and the placement of the m and n axes in the Padé table. To some, m

denotes the degree of P ; to others, it denotes the degree of Qm nt
»

m,n
To some, the m—axis points to the right, to others it points downward.
The Padé table is drawn in Figure 1 and the approximants P /Qm
m,n ,n

occupies the square with vertices (m,n) , (ol ,n) , (ml ,n+l) , (m,n+l) .

Figure 1. The square block where m =1,2,3 and n = 2,3,4 has been enclosed by
a heavier outline.
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It is customary to require that c, # 0 in which case the following

0
theorem is well known [10] .

Theorem 1. All Padé approximants that are equal to a given Padé approximant

occupy the squares in a square block. If the upper left-hand corner of such a

block has coordinates (a,b) , then the corresponding approximant

a b
Pa,b/Qa,b (po + P, 2 + + P,z )/(qo +qz + + 9,z )

a+b+1+r) exactly, where the square

=Pa,b/Qa,b if m=a+1 ,

satisfies PoP 909 #0 and Qa,bL - Pa,b = 0(z

block has dimensions r + 1 ; that is, Pm n/Q
]

n=b+3,1, §=0,1l,.c.,r .

m,n

Although Pm,n/Qm,n is unique, Pm,n and Qm,n are in general not unique,

but determined as follows.

Theorem 2. In the notation of Theorem 1 ,if s 1is fixed,

(=]
1A
(]
1A
2}
[a)
l:r
o
=

all approximants where m=a+s ,n=b+s,b+s+1, «.c; b+ r or
m=a+s,a+s+1, ..., a+r, n=b+ s have the form P =P S and
—_—— e—— ‘m,n a,b’s ——
Qm =Q .S , where § is an appropriate polynomial of degree s . If
,n a,b"s —_— Ty —— —_—

m+n=a+b+r then Ss may be chosen arbitrary, while if

m+n=a+b+r+t , 0F=2t=r then Ss contains the factor zt N

Ss = ztSs_t , Where Ss-t is an arbitrary polynomial of degree = s -t .

For the proof, we refer to Figure 2 below. We first determine for what
(m,n) the polynomials zsPa b and sza b satisfy (1.1b) . Since the exact
E] t]

degrees of zsPa b and sza p are a +s and b + s , respectively, we must
» 2

have
(1.2) a+ssm and b+ s sSn .
at+bHl+r s s
From Qa bL Pa b 0(z ) , exactly, follows (z Qa,b)L (z Pa,b)L

- o(za+b‘-1+r+s) ’, exactly. This implies

(1.3) m+n+lsa+db+l+r+s .

Inequalities (1.2) and (1.3) together show that zsPa,b and
sza,b satisfy (1.1b) 1ff (m,n) 1lies inside or on the triangle with
vertices (ats,bts) , (atr,bts), (a+s,btr) .

Secondly, we note that the linearity of (1.1b) implies that linear

combinations of solutions are solutions. The theorem then easily follows.
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(a,b) (a+r,b)
+ (a+r+l,b+s)
(a+s,b+s) (a+r, b+s) " _I '
x4
©
X
,°
<&
@
(a,b+r) (a+s, b+r) l___
Figure 2 Figure 3

Remark. The line m+ n=a+ b+ r +s in Figure 2 passes through the
upper left-hand corner, as shown in Figure 3 , of squares in which zsPa’b
and sza,b are solutions of (1l.1lb)

The polynomial Pa,b and Qa,b may be expressed in terms of the

coefficients of L . In particular, we have (see [l10] ):

Theorem 3. In the notation of Theorem 1 Qa b 1is the product of an
_—— > -

arbitrary constant and the determinant
b b-1

z z e 1
Ca-b+l Ca-b+2 oo Catl .
®a €atl o Catb

Some Padé approximants are the convergents or approximants of certain
continued fractions, which approximants have this property is related to the

concept of normality.

Definition. The Padé approximant P /Qm is normal 1iff r =0
—n=2 a,n ,n
that is, P /Qm is not equal to any other Padé approximant. The Padé
m,n ,n

table is normal iff every approximant is normal.

Theorem 4. If the Pade approximants Em,m/Qm m ? BT 0,1,2,...

along the main diagonal of the Padé table are all distinct then L has an

associated continued fraction whose mth approximant is /Qm .
— m m m

If the approximants P, O/Q0 0 By 0/Q1 o P 1/Q1 1 B 1/Q2 100
along a stairstep path in the Pade table are all distinct then L has a regular

C-fraction expansion whose consecutive approximants are those Padé approximants.

In particular, if the above Padé approximants are normal then the continued

fraction expansions in question exist.
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The proof is found in [10] . There are other continued fractions expansions
related to the Padé table. For example, every Padé approximant is an approximant
of some P-fraction associated with L , whether the Padé approximant is normal or
not [7] .

For Padée tables were = 0 we have the following.

)

Theorem 5. If one Padé approximant equals zero identically then

= = ese = = > 2
SN 4 St o , S # 0 for some k =1 1in which case the Pade

= k+1 cee
approximants of L = )2 + Cpt1 2 + can be obtained from those of

t]
a
Qm,n =z Sn—a , where o = max(0,n-(k-1-m)) and Sn-d is an arbitrary polynomial

of degree =n - a . For k=m we have

k
' = see = - =
L o + ozt L/z" as follows. For O =m=k -1 we have Pm o Z o,

= M = 0!

Pm,n z m-k,n °’ Qm,n Qm-k,n ’

where P!
— mk,n 5
table is moved k columns to the right and every entry is multiplied by =z

' - a ' a
/Qm—k,n 1s the (m-k,n) Pade approximant of L' . That 1is, the Pade

and the first k vacated columns are filled with zeros.

The proof is elementary and therefore omitted.
We note that the block structure of Theorem 1 1is carried over except for

the first k columns of zeros.

3. The two—point Padée table. Given two power series

2 3 vee * = ok % 51 *
z- + cqyz + and L <} + c* 2 + c*

224 ees cx £ 0

(3.1) L=cz+c 2 ’ 0

1 2
and a pair, (m,n) , of non-negative integers. We seek
m n

= + o0 4 = + + oee
m,n Py +py2z P2 and Qm,n 9y *+ 92 9,2z #0 so that
P /Qm approximates L and L* in some sense as well as possible.
m,n 8

Before we adopt our definition we make a few remarks. Firstly, since
Pm,n/Qm,n depends on a finite number, m +n + 1 , of parameters
(po,...,pm,qo,...,qn up to a factor of proportionality) we expect that the better
we approximate one series the less well will we approximate the other. We must
therefore commit ourselves to the amount of approximation allotted to each series.
In applications, these amounts may depend on the extent to which the two series are
known.

Secondly, the two formulations (1.la) and (l.1b) for the one-point table
have their analogs for the two—-point table but they are not equivalent. For
example, iIf m+ n+ 1 1s even and we require that

U BV ocz(mt)/2y g

(3.2) - oly" (w2,
z

* -
L Pm,n/Qm,n

that is, equally good approximation to L and L* , then this determines a differnt

rational function Pm,n/Qm,n than does the requirement
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- o(z(m+n+1)/2) and Qm,nL* _ Pm,n - 0((-];)—(m+n+1)/2)

We must therefore make a choice between these two options. The former one of
these, expressed in (3.2) 1is essentially uninteresting since c* # 0 implies

that Pm n/Qm n is holomorphic at z = « and different from zero there:

bl 2
that 1is, the actual degrees of Pm,n and Qm,n are equal. As a matter of
fact, it is easily seen that in this formulation the only distinct approximants are
Pk’k/Qk,k , k=0,1,2,... and that Pm,n/Qm,n = Pk,k/Qk,k
The table is therefore essentially a single-entry, not a double—entry table.

where k = min(m,n) .

We adopt the following definition.

Definition. The two—point Padé approximant Pm n/Qm a of the two
» ’
power series L and L* in (3.1) 1s determined by

(3.3) Q ol Py o T 0(z") and

bl

(3.4) Q, L* - Pm,n - O((%)s-max(m,n))

m’
where O(zd) , (0((l)d)) , 1ls some power series in ascending (descending) powers
z

of z whose leading term is of degree d (-d) or higher (lower). We select r
and s to be

r=[mtn+2} ap4 s = [m+tn+1]
2 2

[x] denotes the greatest integer = x .

We have

r+s=m+n+1l

td

the number of parameters in P__/Q
m,n’ m,n

Jones and Thron [3] also consider the case where L = < + c,2 + c2z2 + eee

and L* = cﬁzu + cﬁ_lz“_]' +°°-+c6 + eee . u=z=0 . The two—point Padé approxi-
mants obtained by that pair of series are closely related to those of this paper.
If we compare coefficients on both sides of the equations (3.3) and (3.4)

we obtain the following systems of linear equations for the coefficients of

Pm,n and Qm,n s
n
(3.5) ,Y,qick_i—pk=o , k=0,1,....r-1
i=0
n
(3.6) ) q;0f_4 = P = 0, k= max(mn)-s+l,...,nax(m,n) ,

where any coefficient p,q,c,c* with subscripts outside- the ranges given earlier
shall be equated to zero.

The cases where m = 0 or n =0 will be considered separately. We first
consider m = 0 . Then (3.5) with k = 0 implies Py = 0 or PO,n =0

Similarly, (3.6) gives q_ = = see = = 0 . The remaining [n/2]+l
y n -1

Un/21+1
coefficients of Q0 o can then be determined from the remaining r - 1 = [p/2]
bl
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equations in (3.5) - k # 0 - so that Qo,n 70 . Thus Po,n/QO,n =0
for all n .

Next we assume n =0 . Then Q 4= q, #0 and (3.5) implies Py = 95k
’ n

for k =0,1,...,r-1 = [@/2] , while (3.6) shows that P = X qiclt_i = qocﬁ =0
1=0

r-1
i
for k = [m/2]+l,...,m . Thus, Pm,O/Qm,O = iZociz , m=0,1,2,... .
When m,n =1 then max(m,n) — s+ 1 Sr -1 so that the ranges for k in
(3.5) and (3.6) overlap. We eliminate the pk's from the corresponding

equations and obtain
(r-1) - (max(m,n) - 8) = m + n - max(m,n)
linear equations for the n + 1 unknown qpedyscessd, Since
m+ n - max(m,n) < n+ 1 there always exists a nontrivial solution (qo,ql,...,qn)
which in turn determines (pO’pl""’pm) uniquely. This proves the
following theorem.

Theorem 6. For each pair (m,n) of non-negative integers there exist

polynomials Pm,n and Qm,n 70 of degrees <m and < n,
respectively, satisfying (3.3) and (3.4) .

The actual degrees of P
m,n

and n , respectively, as stated in the next theorem [3] .

and Qm o 3Te in general less than m
E

Theorem 7. If ng m- s =m then degree Pm’n =m - s and degree

=n . If m-s=ns=m then degree Pm,n =n and degree

n then degree Pm a =m and degree
’

m. If m=n-s=n then degree Pm,n =m and degree

n - s . These bounds are best possible.

Pl

m,

fA
1A

n . lﬁ n-s=m
?

%
Qm:
Q

m,

=T~ - -]
1A A

Proof: If m=n-s =n then since Pm,n contains no term of degree > m
and 0((l)s_n) contains no term of degree > n - s we see from (3.4) that
Qm,nL* Zontains no term of degree > n - s . Since c* # 0 this implies that
Qm,n contains no term of degree > n - s . As 1s seen, in Theorem 10 below,
the coefficient of the terms of highest and lowest degree in Qm,n depends
linearly on some, but not all, of the coefficients in L and L* . Such
coefficients may therefore be chosen so that Qm,n

case n - s . We also note that the constant term of Qm a is, 1in general,
bl

has maximal degree, in this

different from zero.
The three remaining cases are proven similarly.

We can now show the uniqueness of P /Q .
m,n’ ‘m,n

Iheorem 8. P~ and Q  may not be unique but P . /Q, . 1s.

For the proof we first assume n =m . Assume (3.3) and (3.4) are

~

satisfied by tyo pairf (Pm,n’Qm,n) and (Pm,n’Qm,n) . Then, since

Q pPon” Cmofmn = Qoo ~ o) o= Qp L Py 000

m,n m,n m,n mn m, m,n’ “m,n m,n’ m,n
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we see that Q111 nhm " Q111 ofm,n = O(zr) and similarly that
t ]

b _ A - s-m™n - 1 -+l -
,npm,n Qm,npp,n 0(( ) ) 0((v9 ) , since m+n+1=r+s . This

P t in n f degr -1 an; e
shows that Qm,n n,n Qm o'm,n Son ains no term of degree < r nor y term

of degree = r . That is, Qm nPm,n Qm R =0 so Pm n/Qm n is unique.
’ 2

Next we assume n - s s m=n . Then degree Qm n =0 and (3.6) again
~ ~ ’

0((l)s—n—m) leading to the same conclusion.
z

glves Qm,an,n - Qm,npm,n

Finally, if m=n - s S n then degree Qm a =n - s so that degree
~ ~ t
- < - = -
(Q me,n Qm an n Sn s+m=1r -1 which, together with

Q 0(zr) again implies the uniqueness of P /Q

mnmn anmn=

m,n’ m,n
In the onme-point Padé table all approximants may be different, as 1s for
example the case with L = X zn/n! » 1n contrast to the two-point approximants
n=0

which always come in pairs or, along the diagonal m = n, in triples.

Theorem 9. For every pair L,L* , if m+ n 1is even then

(A) m=zn implies Pm+1,n/Qm+1,n = Pm,n/Qm,n
(B) m=n implies Pm,n+1/Qm,n+1 = Pm,n/Qm,n :

Proof: If m+n 1is even and mz n then r and s - m do not change when

W

m is replaced by m + 1 so the required approximations in (3.3) and (3.4)
namely Q(zr) and 0((l)s—m) are preserved. This, together with the uniqueness
z

of P proves (A) . The proof of (B) 1is similar.

o, o/ %t 0 )
We can now introduce the two—point Pade table of L and L* . As 1s the case
with the one-point Padé table the approximant Pm’ /Qm,n is placed in the

square with vertices (m,n) , (ml,n) , (m,n+l) and (m+l,n+l) . By Theorem 9
equal approximants may be combined in pairs or triples to give the table the
structure of a brick wall. The hypotheses of Theorem 7 combined with m + n =
even may be rewritten as 3nsm, n=m=3n, mSn=3mmand 3m=n,

respectively, dividing the table into four sectors 1, 2, 3 and 4 .
o 2 4 6

m
Pao _ Pso
Qo Qs
i
2 3n=m
4 2
n=m
6
= 3
n 4 3m=n

Figure 4
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There is an analog of Theorem 3 for the two—point approximants expressing

Qm n in terms of the coefficients of L and L* .
t]

Theorem 10. Let ék = c{é - k =0,%1,#2 ... . If the rank of the

coefficient matrix involved is maximal then Qm n 1s given by
t ]

(A) Q, , = constant ° 2" see 1 » When n zm
’
r-2n 6m—s+1
S.s " O cin
(B) Q, , = constant ° " eee 1 ,vwhen n - s smsn
»
r-2m e+ 6n—s+1
én_s con n—s+m
(€) q, , = constant ° 2775 e e e S see e 1 ,when l=msSn - s=n .
b
0 . o .0 61 e o o o 6m+1
o - . .
51 e 6r—2u1 e 6n-s+1
61]1 « o o 6“—5 ¢« o o o 6r—1

Proof: If n=m the overlap in the ranges for k in (3.5) and (3.6) is
k=m-s+1,m-s8+2,se.,m -8 +n . We eliminate the corresponding Py
from (3.5) and (3.6) and obtain

n
(3.7) ¥ 4y =0 » k=msH,..,mstn .
Lo

One possible solution is the one given in formula (A) of Theorem 10 , and since
the rank is maximal, equal to n , that is the only solution.

If n-s=ms=n we again obtain the equations (3.7) but with
k=n-s+1l,...,n - s+ m and degree Qm,n Sm , by Theorem 7 . This gives
formula (B) .

Finally, if m=n - s =n all the equations (3.6) are trivial, namely

0 since no p, appears and all cﬁ-i = 0 because
k -1z (n-s+l) - (n-s) =1 . We use the system (3.5) for

ml,m2,...,mn-s to determine ChI PERTERL: SO from which we obtain formula
) .
The determinants in Theorem 10 are of the same form as those in Theorem 3 .

This suggests a connection between the one-point and the two-point table.

Theorem 11. (A) If 1 =n sm then (If (m,n) lies in sector 1 or 2)

r-1l r
Pm’n(z)—(clz + ¢,z + + € .12 )Qm,n(z) + 2z S

[

n—l,n(z) ’
- n-1 1y/2% 1
where Sn—l,n(z) 1s a polynomial of degree =n 1 and z Sn_l,n(;)/z Qm’n(;)
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2

1is the one-point Padé approximant at (o~-1,n) of 6r—1 + 6r_2z + 6r_3z + ses
(B) If n-s<msn then (if (m,n) lies in sector 3 )
= (c* * ese * r-2m _ ,r2m
Pm,n(z) (c0 + ckiz + + ek 57 )Qm,n(z) z Sm—l,m(z) s
< _ .
where Sm—l,m(z) is a polynomial of degree £ m - 1 and Sm—l,m(z)/Qm,n(z; is
the one-point Pade approximant at (m-l,m) of 6r—2m + 6r—2m+lz + 6r—2m+22 4 oo

(C) If msn=-s sn then (if (m,n) lies in sector 4 ) Pm n(z)/Qm n(z) is

the one-point Padé approximant at (myn-s) of L= 2 + oz + 42 + eee

. i sse r-1 -
Proof: (A) Equation (3.3) implies Qm,n(clz + + c .12 ) Pm,n
_ ry _ _.T r+n
= 0(z") z Sn—l,n + O(z ) or
2 r-1 r _ r+n
Qm,n(z)(clz + ¢,z + + S Y+ z Sn—l,n(z) Pm,n(z) =0(z ) .

By Theorem 7 , the left-—hand side is of degree =r + n - 1 and therefore

identically equal to O . This proves the formula for Pm n(z) . Next we
b

insert this expression for Pm n in (3.4) , replace z by 1l and multiply by
3 z

+r—
25T 1 to obtain

3

(2", (B ) + 8 _pz+ b g2+ o) - Vs dy) = 0z")

n-1,n

which proves (A) .

(B) If n- s sms=n we replace z by 1 4n (3.4) and multiply by 2"
z

and find

m 1 * * ces * mnts-ly | om 1
(z Qm,n(;))(co ezt * Cpn-s4l ) -z Pm,n(;)
- z2m—n+s—1 (l) + 0(22111--n+s) .

m~l,m",

The strict inequality n - s < m then implies that Pm n(z) is as stated in
b -_
part (B) . We insert this in (3.3) , change sign and cancel zF m to find

2

_ 2m
U, 0P Crogn * Spogmr1® + Spogpip? + 000 7 Sy (2 = 0T,

which proves part (B) .
=n-s =

Finally, wher m 2= n - s 2n then degree Pm,n + degree Qm,n

sm+n-s8=r-1 , which combined with (3.3) shows that P /Q
m,n’ "m,n

is the one-point Padé approximant of 1L at (m,n-s) . This proves part (C) .

In addition to the equal approximants given by the brick wall structure of
Theorem 9 there are equal approximants on opposite sides of the diagonal m = n

as follows.

Theorem 12. If (m,n) lies in sector 2 or 3 then P_ /Q =P Q
—— — —_— — —— “m,n’ ‘myn n,m’ n,m

Proof: If m and n are interchanged then r and s - max(m,n) remain
unchanged. The approximations required by Pn n and Qn m in (3.3) and (3.4)
» 3>
are therefore furnished by Pm o and Qm 2 ° Since, furthermore, Theorem 7
’ ’

states that degree Pm n = min(m,n) s n and degree Qm oS min(m,n) s m we see by
b 3
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the uniqueness of Pn,m/Qn,m that Pm,n/Qm,n = Pn,m/Qn,m .
The remaining approximants, in sectors 1 and 4 , excluding those in common
with the approximants in sectors 2 and 3 are in general distinct except, of

course, for the brick structure.

Theorem 13. If m+ n is even and n<{m -8 sm or m<n-s sn then
e ] — ————————— el — = ———

is 1 ral 1 a other approximant exce he ones
m,n/Qm,n is in general not equal to any ot PP mant except t n

given by Theorem 9 .

Proof: As in the proof of Theorem 7 we may select the coefficients of L
and L* so that Pm’n and Qm,n have maximal degree and so that the
approximations in (3.3) and (3.4) are 0(zr) , not O(ZFH) , and
O((l)s--max(m,n)) , not 0((l)s-max(m,n)+1

z z

) , respectively. If Pm,n/Qm,n

appears at another location (;1,?) in the table where m +n 1s even we must have
Tsr and 5 - max('ﬁl‘,'r\{)g s - max(m,n) .

A straightforward manipulation of all the inequalities involved leads to m = W

and n =1 which proves the theorem.

4. Blocks of equal two-point approximants. Theorems 9 and 12 state which

approximants are equal in any two-point Padé table. For special choices of L and
L* there may be additional equal approximants. The case where Pm n =0 is
treated separately.

pt+l

p+1z 4 oo

Theorem 14. (A) If Pm o =0 for some (my,n) and L = cpzp + c
]

cp #0 then p=z= 1+ min(m,n) .

(B) If 1, is as in (A) then P 0 for m=20,1,...,p~1 and all =n
== L5 as 1o =2 “m,n o anc a2 -

and also for n = 0,1,...,p~1 and m = 0,l,...,n+2p-1 .

. = a LN ] n-Y
Proof: (A) If ns m and Qm,n 9,z + + qn—yz , where
" -0 = atp
0 sa sn-y sn and qqun—y # 0 then Qm,nL 0 0o(z ) , exactly and
Qu1 nL* -0= 0((l)Y_n) , exactly. Thus, r=oa+p and s -m=Zy-n . Adding
> z

these inequalities we find r+s~-m=n+1lsp-(n-y-a)s p . Similarly,
if msn we find m+ 1=p . This proves (A) .
(B) If 0O sn~-m=evenand 0= m sp -~ 1 we shall construct Q, , as in

(A) so that Pm,nEO and Qm,n satisfy (3.3) and (3.4) . We must

have r sa+p and s - n £y - n or equivalently

_n;'m+1-p=__.n;m—(p~-1—m)§cx§n—y§_—n'm .

We select a = max(0,M4® + 1 - p) | s=.n_2'£-cx_2_p-1-m;0 and let SE
be any polynomial of degree =¢ . Then Qm - zmSE is of degree =n
’
and together with Pm o = 0 satisfies (3.3) and (3.4) . The case
3

0 =n -m= odd is then trivial because of Theorem 9 . Thus, the first p

columns contain only zero approximants below the diagonal m =n .
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If 0Sm~n=even and O Sn Sp -1 then P =0 and Q
m m,n

,n
satisfy (3.3) and (3.4) 1ff rsa+ p and s -m £y - n which is equivalent

to
?—(p-l-n)gaén—yémin(n,l'zﬂ) .
In order that we have any solution we must therefore have X2 - (p -1 ~-n)s E%E
2

which is trivial because p-1-nz0 , and % - (p-1~n) =n which is

equivalent to msn+ 2p -2 . The case O =m -~ n=o0dd leads to msn+ 2p - 1
This proves (B) .

When the approximant Pm,n/Qm,n # 0 we have found it convenient to
introduce the so-called minimal solution of (3.3) and (3.4) and to determine a
point (a,b) 1in terms of which all the pairs (m',n') can be found for which

Pm',n'/Qm',n' = Pm,n/Qm,n . To this end, we give the following definition.

Definition. The minimal solution at (m,n) is the unique solution of (3.3)
2
and (3.4) for which Qm,n = qq + + gz, gy = 1 and 2 is minimal.

Theorem 15. The minimal solution exists and P and Q“1 have no
e ] — r——— m’n ret—— ’n —— —

common factor except possibly a power of =z .

~ ~
m,’rL’Qm,n) and (Pm,n’Qm,n) are both minimal solutions

then (Pm,n - Pm,n’Qan - Qm,n) is also a solution since (3.3) and (3.4) are

Proof: Suppose (P

~

linear. But Qm,n - Qm,n is of lower degr’eve than £ , thus Qm,n - Qm,n =0
which shows that P

"
ol

and Q =Q .
m,n m,n m,n m,n
Suppose S =az - b, ab # 0 is a common factor. Then (3.3) and (3.4)

imply

(Q /S - (B _/S) = 0(zE)(~b 1y(L + 22 + 252 4 e = 0(zD)
m,n m,n b b2 ’

_ - 1.8—max(m,n), -1 1 b1 b2 142 cee
(Q /9* = (2, /5) = () da (DA + 21 a—z(—z) +oeee)

- 0((L)s+1-max(m,n))
z

Together they show that (Pm n/S,Qm n/s) is a nontrivial solution where
bl 2

degree Qm n/S = 2 -1 , contradicting the fact that (P ) 1is the minimal
s

m,n’Qm,n
solution. This proves the theorem. ‘

In order to determine the point (a,b) we first need a point where the

minimal solution gives the exact approximation O(zr) and 0((l)s-max(m,n))
z

Theorem l6. If 0= m - n = even, (P Q ) 1is the minimal solution and
e ] —— ettt —— —— ——

m,n’"m,n

the approximations in (3.3) and (3.4) are 0(zr+u) and O( (l)s ) exactly
i — z

then (zu+vP ,zu+vQ ) 1s the minimal solution at (m',n') where

_— m,n m,n’ — — = _—

A
m'=m+3u+v and n' =n+ u+ v and the approximations are exactly 0(zr )

1] 1
and O((.l_)s - ) . A similar statement holds when m and n are interchanged.
z - —_— —_—
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Proof: First we note that n'sm' ,m“n' = even and degree zu+vP

m,n
su+v+ms o' , degree ZU+va o Su+v+n=n'"-. Then (3.3) and (3.4)
s
u+v utv r+2utv utv * utv
imply (z m,n)L (z Pm,n) 0(z ) and (z Qm,n)L (z Pm,n)
= 0(( )s-m-u) . This shows that (zu+va n’zu+va n) is a solution at (m',n')
’ td
since r' = [E_i'_;u]=r+2u+v and s' - n' = [ﬁ'—"—;"—il]—m'
¥
=g ~m=-u . It also shows that the orders of approximation are exactly 0(zr )
| J——
and O((l)s m ) . Since (P n,Qm n) is the minimal solution we see that
z
z“+vP and zu+vQ cannot have a common factor S = az -b, ab #0 . Also,
m,n m,n
( u+v~1Pm n,zu-wb]'Qm n) is not a solution at (m',n') since
) " v
u+v 1Qm n - utv-l n) = O(zr 1) and not O(zr ) as required. This shows
that (z m n,zu+va n) is the minimal solution at (m',n') . The roles of m
3 ’
and n in this proof may be interchanged. Thus, the theorem is proved.
Without loss of generality we may now assume that (P n, n,Qm n) is the minmal

solution, that the approximations in (3.3) and (3.4) are exact and that
n # O . Consider now the case 0= m -~ n even. We set
= a svee n=y = = - s .
Qm,n 9,2 + + qn—yz , 0fasSn-y=n, q qn'Y 0
From (3.5) it then easily follows that Pg= Py = ***=p, ™ 0 so that we may
write

atl m-f
= e = -
Pyi12 + + p Bz , ¢+ 1 =m

™
1A
=]
-
v}
]
he ]
b3
o
.

P
m,n

We now define a and b by

a=m-a-f and b=n-a-y .

Since the exact degrees of z % and z_an are a and b , respectively,
m,n 5

and z—aQ has the value q #0 at z = 0 we see that P /Q cannot be a
m,n a n,n’ “m,n

two-point approximant at any point (m',n') where m' <a or n'<b .

We investigate for what points (m',n') the pair of polynomials

(z-a+5 a+5Qm ) 1s a solution of (3.3) and (3.4) . The integer § must

—o+d
be non-negative in order that =z ot Qm n be a polynomial. We set
$]

m=a+8+k and n' =b+85+ 2, 0 sk,

since degree z-a+5Pm a= @ + & and degree z_a+6Q = b+ 6 . Then
£t o= (Rt n' 4 2] o [moo-BtoHdm-a-y+SHI2] 2 ¢ - o P [-g—ﬁk+ 1 and (3.3)
2 2
implies (z a+d )L - (z a+6 m n) = O(zr_a+6) . From r' sr-a+ & follows
’

[:ﬁ:%tki&] =0e k +4sB+y+1. Thus, (m',n') 1lies in a triangle with
vertices (a+tb,b+d) , (at5+B+y+l,b+d) and (at+d,b+&+HpHyHl) , see Figure 5 .
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We first restrict our attention to the portion of these triangles which lies

above the diagonal n' = m' |, that is

“k+282m~-n-~B+vy .

at s~mra—-3

~o+d ~at+d 1
From (3.4) we get (z Qm,n)L* (z Pm,n) 0((;) ) and
e -m = [t #1] - g oagp [Bo Y-kt 2+1] . g

'-m'és-m+a-6a[i‘7‘g+l+1] S¢g~ 0 e
(4.1) -k +2 22(a-8)~-(B-v) .

In the k,2%-coordinate system, see Figure 5 , this inequality determines a half
plane above the bounding line. As &8 increases one unit the triangle and the

k, &~coordinate system moves one unit down along the diagonal through (a,b) and
the bounding line for the half plane moves up two units cutting off a larger part
of the next triangle.

The largest value of & for which both k + £ SB+ y+ 1 and (4.1) is
satisfied is 8 = a + vy 1iIn which case k = B+ ¥ s, BP+y+1 and 2 =0 . For
any 6,0 2 8=2a+y we find L Za-8+y and n"Sb+a+y=n. Thus, if
n' smo' , Pm,n/Qm,n appears at all points (m',n') inside the polygon
bounded by the lines n' =b , m' ~n' =a-b+B+y+1,n" =n and
m' - n' =a-b~2a+ B -y ; that is, the location of the approximants that are
equal to Pm,n/Qm,n and lie above the diagonal m' = n' form a
parallelogram (see Figure 6). The line m' - n' =a ~ b~ 20+ B — y cannot meet
the vertical line m' = a above the diagonal m' = n' and below a , that is, on
the segment between (a,b) and (a,b+f+y+l) since we may then choose k = 0 and
L such that the corresponding entry (m',n') belongs to a "brick” of Theorem 9
which extends to the left of the line m' = a and that would place an approximant

equal to Pm,n/Qm,n to the left of that line.
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Secondly, we consider the points (m',n') below the diagonal m' = n' , that
ig, -k +2Zm-n-B+Y . We find

&' - ! = [m—a-a+5+k+;—a-y+5+x+1] - (nma-yH5HL) = s - n + [—&ﬁg-xﬂ]

gso that 8' ~n'Ss-~-m+a-38e

k - 2= 2(a=8) - 2(m-n) + (B~v) ,

which is a half plane below the bounding line (see Figure 7).

(a,b) ' (a+8+y+1,b)

IR NERESERERERNSRRRERREN)

Figure 7

The (m',n') below the diagonal again lie in a parallelogram but of different size
than the one above the diagonal unless a = b in which case they lie symmetric
about the diagonal m' =n' .

Such parallelograms may not appear just anywhere. We refer to Figure 8
where b < a . The portion, A , of the triangles which lies between m' = n' ,
m' = 3n' and above n' = a ; that 1s, b= n' = a cannot contain any approximant
equal to Pm,n/Qm,n since the symmetric locations in A' (symmetric with
respect to m' = n' ) lie to the left of the triangles and cannot contain that
approximant, contradicting Theorem 12 .

The areas B between m' = n' -~ 2a and m' = n' + 2a and below n' = a
cannot contain Pm,n/Qm,n either since then there would be such a fraction
in A due to the symmetry expressed in Theorem 12 and to the parallelogram
shape of the blocks of equal approximants.

The argument 1s analogous if a < b . If a =b then the area A 1in Figure
8 reduces to a single line segment along the line n' = a and A' 1lies on, not
to the left of, m' = a giving no contradiction. The parallelogram blocks are
then placed as in C-C or D-D of Figure 8 . Thus, we have the following

theorem.
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Theorem 17. If Pm,n # 0 then all approximants equal to Pm,n/Qm,n appear

in one or two parallelogram blocks of contiguous locations. There are three cases.

(A) There is one block of the form PQRS in Figure 8 above m' = 3n' or above

m' = n' + 2a or there is one block of the form P'Q'R'S' below n' = 3m' or

(B) There are two blocks as in (A) one above and one below the diagonal m' = n'

(C) There are two blocks, symmetric about m' = n' possibly abutting along

m' =n' .
As an example, we have computed some of the approximants of the two series

L=z+z2+ V2" and 1* =1 .
n=5
In addition to the equal approximants given in Theorems 9 and 12 there are at
least two pairs of blocks of equal approximants outlined by heavy lines in Figure
9 .

0 m
07:3”,
(a,b)
% RS
o
3.
o
Al - R
i N
! 2
3=0| |3=I
I ,’
I < RS
7/ P
' } Q 7/
n £/ 7/
| : B o/ N7 S
i %
| /7 B
! ’
/
/
p' : ~ ¢
7
! 7/
// c
/
/
4
7/
B
X
>
ol
\
eo

Figure 8



182

0 2 4 6 8 10 12
08, 18, (2+22)8, (z+28) 8, (z+2*) 8, (z+22+:®) 8,
8, $o S So So S
80 28, (z+z0)8, (x+z')sl (:+1')zs, (z+x")(q°+q|:)+q,:’
{(1+z) S, (1-2) 8, S S, z8, ez
2
(z+2:h) 8, (2z+2h s, ta+ztys, (z+2h)zs, s+ ats,
of 0 (1+z+22%) 8, (2-z+1%)s, s, 18, s,
18 N
o (re2ate3ys, | (3eet-rs, (z-22-2%)s, 1 18, (z-23-1%)s,
ol ® (1rzt2t+3d)s, |(3-2z+e2-P)s, [U-2s+2-2)g JUtmz+a®-2)s, | (1-z-2d)s,
4 K ———=
= el Rasq Req Rgq 104
8| & i [
of% o R
&l 8w Rss 75
i
6 LIRS
~ ~
L
b I d
ol o uﬂ 4
ol =15 T [
o]~ ' o :
L)}
8 N
. (-]
"l o 8 o
j |[! 2 N
e 2l
o o ol pig oY
of% o p— — of o o |+
| 3 * <y ] pas & 2 ¥
I °-:. = °-r| A't; ° Am; ‘,'s '?
] [} < 7)) o
10 ~ ‘: ‘_ .. “: l"_ (I)° ‘:“ ) pid mo u‘? 5 2 ; mN
L1E 12 [ sle O e old e m|®
dg) 1= iy = ~ m P TN Y~ e [0 ©ON
) g Al <, |0 " NI L e, o |+ i 5
o !3. "1 o 0 m+ I '~ " N +™ N +
' o : :I F i : NN ! Nl “n "y " NI N
l ofa ~ o]™u nelm + | + Tl R " + -: ~
12 e ol — mw|+ Ny N +l= ¥ N
" 2] :l FN Ll NN N n [ o
l L " ~ Nl ~le =~ ~ NN + -
° | oel% =1 o+ n " " YN "
N e AL = N ~ [ = ~N|+ ©
ol% e L HLE " ~n| + % 2 3 NIE o
altie » ~iz @ x o« ~
) | “ | " ] 1] " " "
oo, = 1 < 0 ® 3 0 >
14 ~ -r ' -?‘ “Ll m‘n mﬂ' mQ' o« mm o
L oo 1Y m " n " " "
P S2) ' < < < © 0
ol ¢ =3 el A = E3 ~ 3 = 3 ®
w2 M o o o o o 13
o™ N . " " " " " "
~l =z <
=142 p4 3 3 S A 2
16 G| = o o o (13 @
+ ’ll
Nl
Figure 9
References

1. Baker, George A., Jr., Essentials of Padé Approximants, Academic Press, New
York, 1975.

2, Baker, George A., Jr., G.S. Rushbrooke and H.E. Gilbert, "High-temperature
series expansions for the spin-1/2 Heisenberg Model by the method of
irreducible representations of the symmetric group"”, Phys. Rev., 135 (1964),
A1272-A1277.



10.

11.

12,

13.

14.

193

Jones, William B. and W.J. Thron, "Two-point Padé tables and T-fractions”,
Bull. Amer. Math. Soc. 83 (1977), 388-390.

Jones, William B. and W.J. Thron, Continued Fractions, Analytic Theory and
Applications, Encyclopedia of Mathematics and its Applications, 11,
Addison-Wesley Pub. Co., Reading, Mass., 1980.

Magnus, Arne, "Certain continued fractions associated with the Padé table",
Math. Zeit., 78 (1962), 361-374.

Magnus, Arne, "On P-expansions of power series”, Norske. Vid. Selsk. Skr.
(1964), #3, 1-14.

Magnus, Arne, "P-fractions and the Padé table", Rocky Mtn. J. Math., 4 (1974),
257-259.

McCabe, J.H., "A formal extension of the Padé table to include two~point Padé
quotients”, J. Inst. Maths. Appl. 15 (1975), 363-372.

McCabe, J.H. and J.A. Murphy, "Continued fractions which correspond to power
series expansions at two points”, J. Inst. Math. Appl., 17 (1976), 233-247.

1957.

Avram, Sidi, "Some aspects of two-point Padé approximants”, J. Comput. Appl.
Math., 6 (1980), 9-17.

Thron, W.J., "Some properties of continued fractions 1 + doz + K(z/(1+dnz)),"
Bull. Amer. Math. Soc., 54 (1948), 206-218.

Thron, W.J., "Two-point Padé table, T-fractions and sequences of Schur”, Padé
and rational approximation, E.B. Saff and R.S. Varga, eds., Academic Press,
New York, (197%,' 215-226.

Wall, H.S., Analytic Theory of Continued Fractions, Van Nostrand, New York,
1948.

Arne Magnus

Mathematics Department

Colorado State University
Fort Collins, Colorado 80523



A CLASS OF ELEMENT AND VALUE
REGIONS FOR CONTINUED FRACTIONS

Marius Overholt

0. Introduction. We shall be dealing with continued fractions

o an , *
0.1) n!il(l_) » a0 .

See [l] for notation and background. The present paper is based upon my thesis
[2] , which originated from a suggestion by W.J. Thron. His idea was to require

;

|aq - al £r , and investigate the location of the approximants

a
_n
n 1

A a a
0.2) f =_n=_1 _2
n 1 +1 + ecee +

of (0.1) subject to this condition. The expected results were to be used to
obtain truncation error estimates for (0.1) . The idea was to some extent

motivated by the case where (0.1) is limit-periodic of period 1 , i.e. where

a, > a . In this case given any neighborhood E of a we can find an n such

that a €E for all m>1 . So we are then seeking information about the

location of the approximants of the tail

® a
K(n+m)
m=1

At least as stated in this form, the question is not tied to closed discs in any

essential way. Any other choice of neighborhoods 1s equally appropriate.

As 1s usual, a set EC C such that a €E , n>1l , shall be called a
simple element region for (0.1) . Given a set EC € , one may ask for
information about the location of the approximants (0.2) of the continued
fractions of the form (0.1) having E as a simple element region. The following
concept is then essential: A closed set V, @ # V CIG , Is a value region -

corresponding to the simple element region E if

(0.3) E cv , EcvVv .
1+v

It 1s easily seen that if a €E , n2>21l , then necessarily fn €Ev .
See [1] for details, and for a thorough discussion of element and value regions

generally. Note that since V is closed we have f = 1lim fn €v 1if (0.1)
nre
converges. Generally speaking it is very difficult to start with an E and then

find a satisfactory V (A set V is satisfactory if it is not too large; V = ¢
is always a possible choice, but is not satisfactory). In the theory of continued
fractions one usually starts by prescribing V and then determines an E
belonging to V . For a properly chosen V this approach is often very
efficient. Sometimes it is not too difficult to determine explicitly the best
possible (i.e. maximal) E corresponding to V . The approach has, however, the

drawback that one to a certain extent loses control over E .
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Given a simple element region E there exists a best possible V
corresponding to E . Putting

U (E) = —E U, (E) = E
ntl 1+ () ~ 1 ’
we obtain recursively a sequence {Un(E)}‘:;_1 of sets. For each n 21 one

clearly has
{fn €¢ a €E,m>1} = Un(E) ,
and hence

oo
U(E) = U U (E)
n
n=1
is the required best possible V . But even for very simple E the explicit

determination of the Un(E) is usually out of question.

An instructive (but trivial) example, where the approach outlined above
actually can be carried out, is the following: Let O Lr<{R<®® , and put E =
[r,R] , i.e. E 18 a segment of the non-negative real axis. Clearly
Un(E) = [rn,Rn] where

r = _L R = _R
ol 4 7 mH T4
n n

and rp=r , R1 =R . So we have

o
UGE) = U [r,R ] .
n=1
Consequently U(E) C [iff.,R] » and in some cases the inclusion may be replaced by
R

equality.

1. A useful class of element regions. The approach outlined above can not be

carried out except in trivial cases. We may, however, modify this approach by

*
trying to determine a sequence of sets {Un(E)} satisfying the condition

1.1 * E *@€) = E
( . ) Ulﬂ'l( )DT ’ UI(E) .
1+Un(E)

It is easily seen that

*
(1.2) v EcU (E) ,
and hence

* ® %

(1.3) WE)c U () = U Un(E) .

n=1

*
To make this approach work, we shall want all the sets Un(E) to be, roughly

speaking, sets of the "same type". This is because we form U:+1(E) from U:(E)
by (1.1) . It would clearly simplify matters if we could use the same procedure
regardless of the value of n . This would give the process of forming the U:(E)
the character of a relatively simple iteration process.

The choice E = {z ¢ ¢"z—a' < r} 1is not suitable for the approach cutlined
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above. We shall therefore leave the original choice of closed discs as simple
element regions in favor of another class of sets. These are natural
generalizations of the segments [r,R] of the positive real axis. We shall use

sets of the form .
E-{ze¢”argzlsr,r£'z'£1(} , 0T <¢n

as simple element regions. They will be denoted by S(r,R,-T,I') and called
symmetric segments. They are special cases of general segments S(r,R,Y,I) ,

Y S_T .« (The notation 1is self-explanatory.) The generél (unsymmetrical) segments
will not be considered to any great extent in this paper. See [2] for details of

these.
If S1 and S2 are segments, then so are SISZ and Sl_1 . One has
(1'4) S(rl ’R]. )Yl )rl).s(rziRz !Yz)rz)
= S(rp Ty Ry Ry Yy ¥, T HT)
(1.5) sler R.,v.,T) = SRE,e - -v.) .
* 1°71°'1°°1 111”1

The approximants (0.2) of (0.1) are formed by repeated use of the three
operations z*+*1+z , z * z , 2z *wz . Segments are preserved under
the last two of these. If S 1is a segment, then 1 + S is generally not a
segment. We can, however, avoid this difficulty by enclosing 1 + S in a
segment. The simplest case is when S 1is a symmetric segment contained in the
half-plane Re z > 0 . We have:

Observation 1. Let S be a symmetric segment contained in the half-plane
Re z > 0 . Then

(1.6) 14+8c S(|1+reir|, 14, -arg(1+relT), arg(1+relly) .

A proper verification is trivial, and shall be replaced by an illustration from
which the truth of Observation 1 follows immediately.

Fig. 1
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We furthermore have:

Observation 2. Let S1 and 52 be symmetric segments, and let 52 be contained
in Rez >0 . If

r, < rl > R3 > .___R._l—_ »
3= 4R, = i,
|1+r2e '
ir

2
I'3 > I‘1 + arg(1+R2e ) N

then

8, /(148,) © S(ry,Ry,~Ty,T5)

Proof. Apply Observation 1 to 1+S2 » then use (l.4) and (1.5) .

* *
The above observation makes it possible to determine Un+1(E) from Un(E)

*
when E 1is a symmetrical segment, and all the Un(E) are symmetrical segments
contained in Re z > 0 . We have the

Proposition 3. Let S be a symmetrical segment. Put

= _r - - R -
T TR 1T F s R . TR
n |1+r e I
n
y r iln I =T
ol s +arg(1+Rne ) 1= .
If T. <T for 1 <k<n , then
= ‘k=y 2 2R =hen
Un(S) [ Sn .
In particular

U(S)c S(inf r , supR_ , =sup ', sup T')
SIS TS S S
if T <X for all n>1 .
n—=7 — =/

The above proposition is an immediate consequence of Observation 2 . It
gives a result of the type (1.2) for symmetric segments S that are such that
Sn is contained in Re z > 0 for all n > 1 . A necessary, though by no
means sufficient, condition for this is that S 1itself be contained in Re z 20.
The second part of the proposition above is not, however, of the type (1.3) , but

*
gives the smallest segment 8' , such that U (S8) = S' . 1If I'n < for all

n
2
n>1 , then it is not difficult to see that

sup R =R, =R , infr =r = _L_

n_)_l n 1 nZl n 2 1+R
in Proposition 3 , so that the first difficulty is to establish conditions to

insure I'n S% for all n > 1 . The second one is to determine sup ' . As
n>1
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the Fn are given by a coupled set of nonlinear recurrence relations, only

partial answers can be expected. We can, however, use Observation 2 to produce a

corresponding value region for certain symmetrical segments S . We have:

Proposition 4. Let 0TI’ 55§ and

I‘l
p'= L, R'=R , T' =T+ arg(l+Rel ) .
1+R

Then S(r',R',-I'',I'') 1s a value region corresponding to S(r,R,~-I',T) .

Clearly Sc S' . Further Observation 2 establishes s/(1+s')c 8' , so
the definition of a value region 1is satisfied.
We need a criterion for I s_%. . As ¢ - arg(1+Ré¢ ) 1s a

strictly increasing function of ¢ 1in the interval 0 < ¢ S_g. , see Fig. 2 , one
easlly deduces that a necessary and sufficient condition for the existence of a T'
with 0 KT 'S-"i'- and

r =T+ arg(1+Re1r )
is that

T S_%.- arctan R,
which is equivalent to the condition

R<cot T .

A ip

@ - arg(l+Relw)

>

Fige 2

Proposition 4 makes it possible, for certain segments S , to find a value
reglon S' corresponding to S , or for certain segments S' to find a simple
element region S belonging to S' . These results are stated as Theorems 5

and 6 Dbelow.

Theorem 5. Let 0 T < r<R L cotl . Let

[
[
[=

In

for all n>1 . Then
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and
n a / 2 2
|arg K (_EJ' < arctan(IARYI+(I1-R)tan' T panr)
1 - 2 2
m=1 1-R” tan'T

for all n>1 .

The results for the radii were already established in Proposition &4 ; the
result for the angle is obtained by straightforward computation of TI' from

A
' - arg(l+rel’’y =T .
For details, see [2] .

Theorem 6. Let 0<T' <X and 0<r' <-BL . pLet

-2 — 1+R'
r'(14R") < 'an' <R,
|arg a ' <T' - arctan —R'sinl''
nl = 1+R' cos I
for all n > 1 . Then
0 a
< x (@) <R,
m=l 1

and
n
Iarg K (ﬂ)' S r .,
m=1 1
for all n>1 .
This 18 an almost Iimmediate consequence of Proposition 4 . For details see [2].
The results above are in general weaker than what Proposition 3 could give,
if it were possible to exploit this result effectively. One may, however, get a
certain Improvement by combining Proposition 3 and Proposition 4 .

We may use Proposition 3 to determine the Sn up to some =n_ , taking care

0
to check that rn<£ g. s 1 <{nK n, and then use Proposition 4 to determine

an S8' , I S.%. such that

S _cs' ,
1+S*
S cs' .
%o
Then we have
%o
u(s)c s'y Us
n=1

Such a result may under certain clrcumstances be appreciably better than Theorem

5 . See [2] for details.

2. More complicated cases. The case where S 1is symmetrical and the angle of S

is so small that T < g. (Proposition 3) or I S.g. (Proposition 4) is rather

special. It is, however, the case that is "nearest to” § = [r,R] , and actually
degenerates to this case if T =0 . When S = [r,R] we can, essentially, get

the best possible value region explicitly. As we move further away from this case,
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by increasing the angle and rotating the segment out into the‘plane (ungymmetrical
segment), we get more complicated discussions and less good results. This is
because, generally speaking, the smallest segment containing 1+S approximates
1+S 1less and less well as S gets further away from the positive real axis. See
Fig. 3 and Fig. 4.

Fig. 3

\/

Fig. 4

In Fig. 3 the segment is symmetric, but its angular measure is large. 1In Fig. 4
the segment has a small angular measure, but it is unsymmetric. The figures
illustrate the fact that if the position or shape of S 1is awkward, then a lot of
information is lost In replacing the 1+S by the smallest segment containing it.

Analogues of Observation 2 can be given for symmetrical segments with large
angular measure, and for general segments. The latter case includes the first as a
special case, and the first includes Observation 2 as a speclal case. See [2]
for details. These analogues, especially for general segments, are quite
complicated, involving the distinguishing of different cases. They are not as easy
to work with as Observation 2 , and the results obtained are not so simple.
However, useful results may still be obtained, especially if ome is willing to
start with S' and then determine a simple element region S belonging to S8' .

As an example we have the following:



Theorem 7. Let - X< y<O0<KT<T and 0< r' <R
L
r'(1+R')£'an'SR s
Y' + arctan R'sin ' ¢ arg a_ < T'' + arctan R'sin Y'
1+R'cos T' — n = 1+R'cos Y'
for all n>1 . Then
a o a
r' <|]K _E)' <R' , y' LargKk (_E) <r o,
m=1 1 m=l 1

for all n >1 .
Theorem 7 is the simplest theorem for the case when S' 1is not symmetric. For

Y' = -T' we get back Theorem 6 .

3. Another approach. Suppose that we know that V 1is a value region

corresponding to the simple element region E' . Then obviously V 1is also a
value region corresponding to any simple element region E for which Ec E' .
So given a simple element region E we can try to enclose it in another simple
element region for which we know a corresponding value region. The value region
corresponding to E obtained in this way will often be a poor one. The result
may, however, immediately be improved by repeated application of the following
simple

Proposition 8. Let V be a value region corresponding to the simple element
region E . Then

(3.1) Ey E

1+v
is a value region corresponding to E , and if 0 €V , then

(3.2) _E_
14V

is a value region corresponding to E .

The correctness of the proposition above is immediate by the definition of
value region. In [2] the above approach has been used as an alternative to the
*
approach of determining a sequence {Un(E)} . A natural idea is to use the well-

known value result for parabolic simple element regions of the form
(3.3) P(a,p) = {z ¢ C”zl-Re(ze_Zia) < 2p(cosa-p)}

where - §.< a < g and 0<p¢< £2§2 . These element regions are connected with
the important parabola theorem, the first version of which was proved by Scott and

Wall [3] . For details of the parabola theorem, see [l1] . Put
(3.4) H(a,p) = {z € ¢ Re(ze_ia) > -pl .
Then the following is true:

Propogition 9. H(a,p) 1s a value region corresponding to the simple element
region P(a,p) .

For a proof, see [l] .

Given a segment S we can now try to determine all a,p such that
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(3.5) S C P(a,p) .

This will give, by Proposition 9 , a family of value regions H(a,p) , all
corresponding to S . Their intersection is trivially also a value region
corresponding to the simple element region S . 1In this connection we notice that
P(G,PI)C: P(G,pz) and H(G,pl) c H(a,pz) if p; < p, -« It is then natural first
to determine whether there exists an a such that

s(r,R,Y,T) c (e, 2%32)

The following way of handling this problem was suggested by W.J. Thron and
seems to be the simplest. Put a = ci in (0.1) , i.e. use the transformation
z = wz . The condition (3.6) in the z-plane is then equivalent to the

condition

—

1

»Rz% %) clve ¢| IIm(we-ia)I < cc2>sa}

in the w-plane. The set to the right of the inclusion sign is a closed strip in

(3.7) S(r?

the w-plane; see Fig. 5. Note that the points w = % %. lie on the boundary of

the strip. The result is the following

Propogition 10. Let r, R, Y, I be given. There exists an o sguch that (3.6)

1is satisfied if and only if

R_<_'1_ ’ 1_f (“’",0)05?*0 ’

4
(3.8)
cosz(ll;l)
RS%——-— » if (==,0)nsS=¢ .

+
2
sinz(zgl)

2>
A
JEC I
e
S
RS\
\

Fig. 5



203

The proof is based upon simple geometric considerations. For details, see [2] .
The above result furnishes a criterion for a segment to be contained in some

parabola P(a,£§§2) « One can also, in the same manner, determine for which

a (3.6) 1s true. For R D % the answer is that (3.6) holds for all a with

a S.a S a , where

1 2

—

|

r.1 r
a = arctan|{tan — -~ = R~ sec —
1 ( 2 2 2) ’

p—

N

a, = arctan(tan Y + L r
2 22

For details, see [2] . It is not difficult to determine the best, i.e. smallest,

sec Y] .
2

p for each a . 1In principle the application of Propositions 9 and then 8 1is
noy straightforward. Unfortunately to obtain good results Proposition 8 may have
to be used repeatedly, especially if the segment has a small angular measure. But
the results grow very complicated already if Proposition 8 18 used twice. For
the segment S(O,cot I',-I',I') with 0 < T < g. Theorem 5 gives the value region

8(0,cot T, - g, %) « What is of interest here are of course the angles, since

the result ig trivial for the radii. But even a very simple application of the
approach outlined in this section will give a result better than this if only T
18 chosen small enough. Since 'zl < cot(arg z) = IIm z| <1 it is clear that at
least for symmetrical segments the approach using the parabola value result in this

case is superior to the approach in Section 2 , except for quite narrow segments.

4. Truncation error estimation. This section will illustrate an application of
Theorem 5 1in Section 2 . We shall consider (0.1) with

(4.1) an Es(rrR’-r’r)
where R  cot I' . We want an estimate for
(4.2) e -] »
the truncation error of (0.1) . Here f = lim fn « The question thus
presupposes the convergence of (0.1) . But this convergence will follow from the
argument, and will in fact be geometric.

We shall apply a variant of a formula used by Hayden [4] and Roach [5] in
truncation error investigations. For references to the literature on truncation

error estimates, see [l] . Let Bn be the n-th denominator of (0.1) .
Then it is well known that

B a a,
(4.3) A_=1+_1 - , n>1l .
1 + e +1 -
n-1
This 1s easily proved by induction on n . See [1, p. 71] . Now let An
denote the n-th numerator of (0.l) , and Sn(w) the n-th 1linear
fractional transformation used in defining (0.1) . See [l1, p. 20] for details.

Then it is well known that
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A +A
(4.4) S_(w) =__n1_ .
n B +B
n' n-1%
This gives
A +A A +A
(4.5) S (z) - S (w) =_0_10- -1% n n-1%
n n B+B .z B +B
n n-l n n—l

= (An ~1"n n n—l)(z v)

(Bn+an_1)(Bn+an_1)

A A
(B—“‘—l - 1) (z-w)

- n-1 Bn .
B B
(28 +2) (1+nsl)
B B
n-1 n
Since fn+1 = Sn(an+1) , fn = Sn(O) straightforward computation now gives
- = - 1 -
(4.6) fn+1 fn T (fn fn—l) » n>1l .
1+ 1
%ntl f;

1 +eest 1

Here we have f =0 . This formula gives

0
n 1 1
4.7) f .. -f =(¢1"a .
ml Lyt 1 1+ 1
80tl ) )
1 4eeet 1
Hence
(4.8) f = 2 (Fq = £
n=0
= a Z -n* 1 ces 1 .
Lh=o 1+ 1 1+-1
g1 ) 3
1 4eeet+ 1

Now suppose that E is a simple element region for (0.1) , and that V is a

value region corresponding to E . If

3-¢
2

Nu»
I
[}

-1}

(4.9) ve {z E¢”z—(.2_%- )' < ;_

2 - 2 -

[y]

for some & , 0<e€<1l , then

(4.10) clze al 'zl <1 -¢} .
1+1
v
This implies that
(4.11) [ 1 <l-¢ ,
1+ 1
80l )
1 +eeet 1

and hence
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(4.12) |f - fnl < of Ime - fml < Ial' E (1-¢)™
m=n =n

= Ja_l,. a-)" .
€

Thus we have geometric convergence. We get in particular the following:

Theorem 11. Let S be symmetric, with R < cot T . Let TI' be given by Theorem

5 « Then if a €S , (0.1) converges and

(4.13) |f - £ ' < R R ro,
T | o]
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PARAMETERIZATIONS AND FACTORIZATIONS OF ELEMENT REGIONS

FOR CONTINUED FRACTIONS K(an/l)

Walter M. Reid

1. Introduction. The study of convergence of continued fractions

a a a
l.la Ka_/1)=-L 2 3 ...
¢ ) (@p/D) 1+ 1+ 1+
involves a search for sequences {En} of convergence regions, that is, regions

Ent_; € for which the condition
(1.1b) 0#a ¢E , n=1,2.3,...

implies the convergence of the continued fractions to a finite value in G . A
fruitful approach in this search, introduced by Lane [7] , begins with a second
sequence {Vn} of closed circular regions in & , each containing zero, called
value regions, a sequence then of closed disks, closed complements of disks, or
closed half-planes. From the sequence of value regions a corresponding sequence of
element regions, candidates for convergence regions, is defined as the sequence of
sets of those wg¢ € which determine for the linear fractional transformations
(1.f.t's) which generate the continued fraction a specified mapping property

between the value regions, that is,

(1.2) E = {w : s(w,Vn) cV_ .}

n-1
where s(w,v) = .!; for v ¢ Vn » as in (DN1) . This approach has been employed
by Jones and Thron [4] and Jones and Snell [2,3] to obtain sequences of element
regions and by Jones and Thron [5] to find families of twin-element regins
(EI’EZ) » a special and very important instance of a sequence resulting

from setting E =E , and E, = E, ~for twin-value regions Vo = Vp, anmd
V'l

=V, .
1 2n-1
By defining element regions through (1.2) , constraints are placed on the

approximants, fn s of the continued fractions generated by (1l.1) . 1Indeed,

by (DN4) , the nth approximant satisfies
(1.3) £, = Sn(O) € Sn(Vn)
since O ¢ Vn « Hence from (1.2) and from (DN2b) with m =0 |,

(1.4) S, (V) =8 1 (s(w,y Ne s _(V_)ev n=1,2,3,... .

0 »
If V0 is a closed disk, then since each Sn is an 1.f.t. and each Vn
is a closed circular region, it follows that {Sn(Vn)} is a nested

sequence of closed disks. Consequently (1.3) implies that
(1.5) Ifm—fn <R, m>n ,

where Rn denotes the radius of the disk Sn(vn) . Upper bounds on Rn will
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provide truncation error estimates for K(an/l) . The nestedness of {Sn(Vn)}
implies that lim Rn =R>0. If R can be shown to equal O , then the
continued fraction converges and the element regions are established as convergence
regions. In case K(an/l) is known to converge, tight bounds on Rn may
reveal the rate of convergence. In addition, the issue of uniform convergence may
be considered.

Thron [11] simplified the study of Rn to consideration of a function
of two variables, a, and the independent variable hn_1 defined in
(DN10) . Use of (l.5) in addressing the issues of convergence depends upon
having parameterizations of or estimates for a and hn—l ; therein lies
an inherent weakness of this method. In many cases En as defined in (1.2)
is determined by implicit conditions on w rather than explicit parameterizations.

On the other hand estimates for the hn_ are gained only by rather involved

arguments using (DN1O) . Determinationlof parameterizations for w ¢ En )
then, has received considerable attention in this analysis.

In the special case with disk and complement of disk as twin-value regions,
Thron [l11] showed directly, using (1.5) , that for r > 1 the twin-element

regions

(1.6) E1 = {w : 'w' > 2(r-cos(arg w))} , E2 = {w: 00X 'w' < r}

are twin-convergence regions. In this case the parameterizations for the a,
are apparent. He also proved that convergence is not uniform over the entire
convergence regions, but that it is uniform if ay, is restricted to suitable
subsets, called contractions, of E2 .

In cases where each palr of value regions in a sequence includes a half-plane,
the parameterizations of a are transparent. Indeed, when the vglue regions
are all half-planes or half-planes alternating with either disks or complements of
disks, Jones and Snell [2,3] and Jones and Thron {5, Theorem 3.2] identified
the element regions as having parabolas or alternating ellipses and branches of
hyperbolas, respectively, as boundaries. In [2] , the parameterization of a,
was applied to show that R = O thus proving the element regions to be convergence
regions.

Except in certain cases, however, when the value regions are strictly disks
and complements of disks, the element region parameterizatins were not clear.
Consequently, as in Jones and Thron [4,5 (Theorems 5.1 and 5.4)] , the element
regions' descriptions remained as implicit conditions on w € En .

One of those exceptional cases, however, was studied by Lange and Thron [9]

and later more generally by Lange [8] , a case of twin element regions (EI’EZ)

which factored; that is, for ci =a , ¢ satisfied

=]

(.7 +11"'

|c2n
| Cppog HE(LHT) |

IA

o, |c2n—11"| <p

P, |c2n_1—1(1+r)| >0

A\
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for T€ @ and 'I" <p< '1+I" . Here tight estimates for hn_ were

derived and used to prove convergence by showing that R =0 . Ii fact since
specific values of a were not considered here, a stronger convergence result
was proved. The convergence proved to be uniform over the entire element regions.
On the other hand, in [8] , other issues of convergence were not addressed. The
bounds on R display no sensitivity to precise information about specific
continued fractions when a is known, provide less useful truncation error
estimates, and reveal less about the rate of convergence. For these
considerations, parameterization of the a is needed.

But apart from those exceptional cases, when the value regions are strictly
disks and complements of disks, neither parameterizations of the a mnor tight
estimates of the hn_1 were known. Granting then the possibility that
lim Rn =R >0 , Jones and Thron nevertheless succeeded in proving convergence
by a powerful indirect argument for several families of both sequences of element
regiong and twin—-element regions, the latter subsuming the earlier result (1.6)
and (l.7) . They were even able to relax the value region postulate of
0 € Vn in [5] and considered only pre-~value regions. These indirect
arguments were applied again by Jones and Snmell [3] 1in cases where half-planes
appeared among the value regions yielding the element regions mentioned above
having conic sections as boundaries. But while these indirect arguments did yield
convergence regions, they did not address the issues of uniform convergence,
truncation error estimates, and rates of convergence. For these considerations,
again, either parameterization of the a or factorization of En for
parameterization of ci =a to estimate hn_1 is needed.

This article furnishes in Theorems 1 and 2 the complete parameterizations
and factorizations, respectively, of the element regions derived from the general
case involving value regions of disks and complements of disks. Consequently
parameterizations are offered for elements of the twin-convergence regions of Jones
and Thron [5, Theorems 5.1 and 5.4] , which in turn subsume the earlier case
(1.6) of Thron. These parameterizations have been applied by Jones and Reid
[These Proceedings] in gaining truncation error estimates and uniform convergence
results for K(an/l) over contractions of the larger family of twin-
convergence regions, thus extending the results of Thron [11] . The
parameterizations of Theorem 1 also apply to the case of the continued fractions
K(an/bn) studied by Jones and Thron [4, Lemma 2.1] . On the other hand,

Theorem 2 presents factorizations for the factorable element regions
corresponding to value regions, two cases giving the earlier result (1.7) of
Lange as a special case, and the third giving a different form. Also necessary and
sufficient conditions for factorization of this kind are given. It is hoped that
these factorizations will aid in extending the arguments of Lange and Thron to
yield the stronger uniform convergence results for larger families of convergence

regions.
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To simplify the context and notation we limit the setting to two value regions
(VI,VO) and the single element region E . Let

(1.8a) cgsC) € € with |c1| # |1+c1' , and 1 ,r,>0 .
For 1 = 0,1 let Vi take the form either of a
(1.8b) closed disk (D) : V, = {z : |ee | < ry AESA

or
(1.8¢c) closed complement of disk (cDi) : Vo= {z : Iz—ci' 2y, ry < 'ci'} .

In case either of disk or complement of disk, we will call ¢ the center of

i
V1 and £y the radius of Vi . Then corresponding to (Vl,Vo) is the element
region
1.9) E={w: s(w,Vl) c Vo)} .

Because of (l.1b) we shall be concerned that E contain nonzero elements.

For sets A and B we will use the following notation:
Int(A) for the interior of A s
0(A) for the boundary of A , and
B~A for the complement of A with respect to B .
2. Parameterizations of Element Regions.
Theorem 1. For £s07CsCy and value regions (Vo,Vl) as in (1.8) taking the
specific forms indicated below, E 1is parameterized as follows:
I fue| <rp < fey| for (-1 AedVe) or o] << [vre; | with |eof < x
for (-1 4 nl,o € Int Do) then

(2.1) E={w= lw'eie rog|v] <ByCe), e .

I r < '1+c1' y S_'c1| y o < 'co' , and o ¢ 3! for
TZ;T |1+c1|

(-1 € Int(ch),cDo) then

(2.2) B = (w=fule™® 3 (®) < |u] <B(O),0€ 0 .

If |c1' ¥y s [they| Sxp s oand oty < |ey| for (-1 € Dy,eDy) then
(2.3) E={v= leeie : B (O) < [v])

It fey| <xp < [t4e| and xp < feo] for (-1 D ,cDy) then
(2.4) E=¢ -~ {w= |w|e1° P B (O) <[] <By(O), 0EQ
where

(2.5) B, (v) = £(0) * aoal/tz(e)—k ,
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(2.6a) r [-®,%] wunless
Q=
eoll¥e) 20, x < |1+r1| ,and 1, < 'COI in which case

(2.6b) 0+ [o-o] < cos™ (COTLTE),

(2.7) t(6) = =039, %07 I 1+c1'cos(9—¢) »
(2.8) b = arg((-cy)(1+¢)))

(2.9) k= (oo=|eo 03[ 1re,|P) , ana

(2.10a) for i = 0,1
L if Vv, ds adisk, [e,| <,

e} =
1 -1 if \A is the complement of a disk, L S-ICiI .
Further, let
2 2
(2.10b) o) = sgn(rl—'1+c1' ) -

Remarks. 1) 1In relating the influence of the o's , notice that o, =0,

= 0 means -l ¢ 6(V1) » and o = -0, means -1 § V1 .

means -1 € Int(Vl) , G, 1 A

2

2) The conditions O € Int(Dy) for (2.1) and 0 ¢ 1 gor (2.2) are
]:;T |1+c1'

necessary to insure that E - {0} # ¢ .

3) In the case of (2.1) where V0 is a disk and -1 ¥ V1 , E is a

convex set as will be proved following (2.27c¢) .

4) All element regions in Theorem 1 are symmetric about the axis 0 = ¢ . When

the regions are convex, the extreme values of 3(E) occur on that axis.

Corollaries. We now relate the parameterizations of Theorem 1 to element regions
which are known to be convergence regions.

*
A. Seguences; For sequences {En} of convergince regions defined by (1.2) for
sequences {Vn} of value regions where each Vn has center Fn €C with

* * *
'Fnl # |1+Fn| and radius P, » ve assign En = E for V1 = Vn R V0 = Vn_1 with
¢ = Fn » T) =P Cp = Fn—l » Lo T P s and ¢n = arg[(—Fn_l)(1+Fn)] .
1. [Jones and Snell, 3, Theorem 3.1]. (Disks and Complements of Disks). When
Izn—ll < P11 < |1+Fn_1| or when |1+F1' <oy < IFil for i = n,n-1, then
En =E as in (2.1) with Qn = [~n,n] . On the other hand if

*
'rn' <p, < ,1+rn| while |1+rn_1| <p < 'rn_ll , then E_ =E as in (2.4)
with %9301 = -1 and Qn as in (2.6Db) .
2. [Jones and Thron, 4, Lemma 2.1]. (Disks). Here the continued fraction
*

K(an/bn) is considered with anl <e, < |1+Fn' . Consequently E =E as in

(2.1) with 0001 =1 and Qn = [-%,%] wupon replacing 1+c1 with bn + Fn and

1+<—:1 with Bn + fn » This parameterization, of course, then depends on bn .
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* %
B. Twin-Convergence Regions. For twin-convergence regions (EI’EZ) corresponding

*  k
to the twin-value regions (Vl,Vz) with centers FI,FZ , and radii P1sPy

*
respectively, where (EI’EZ) are defined by
*

(2.11) B} = {w: s(w,v)) €V,} , E

* *
1 = {w : s(w,Vz) < Vl} ,

we assign
*
(2.12a) El = E with ¢ = T
(2.12b) b, = arg[(~T,)(1+T. )] = (p2-|T '2)(p2— 14T, |3y , and
. 1 2 1oy 2 I 2 1 | 1| ,

1° T1 =P s ¢ = Fz . p2 s 80 that

*
(2.13a) E2 = E with ¢ = F2 s Y] TPy, €y = Fl s Yo =P s 80 that

(2.13b) 4y = argl(-TTY] Ky = (of-[1y |20ee3-f1er, [Py

The parameterizations apply to regions determined by Jones and Thron [5] . They
considered a more general setting of pre-value regions, relaxing the condition that
0€ VI n V; . The results offered here consider only the convergence regions
obtained from value regions.

l. [Jones and Thron, 5, Theorem 5.1] (Disk-Disk). When IPll < 2 < |1+F1| and
|Ta| <oy < [147,] 5 then opop =1 and E;‘ =E and E, =E both as in (2.1)
with Ql = 92 = [-%,®] under assignments (2.12) and (2.13) ,

respectively.

2. [Jones and Thron, 5, Theorem 5.4]. (Disk-Complement of Disk). When
*

(2.14) v = {z: 'z—l"1| < ey} with |r1| <pp # |1+1"1| s
2.15 Yy r } with 14T, | < r
(2.15) V2 z 3 'z 2' > Pyt wit ' + 2' Py < ' 2' ,
then, with oo, = -1 '
*
(2.16) E) =E as in (2.4) if |1"1| <py < |1+r1| and
*
(2.17) E =E as in (2.3) if |r1' < '1+r1| <py
while in either case
*
(2.18) E2 = E as in (2.1) with 92 = [-m,7] .
When Fl and r, are related to each other through T ¢ ¢ in the
manner
(2.19) T, = ~(14T) =T ,
then, from (2.12, 13) ,
*
(2.20) E1 = E for ¢ = r , rl =P s ¢ = -(1+T) ro = P, 8O that
(2.21) ¢, = arg(1+T)? = 2arg(4T) , K, = (ey- [t Baced- [Py
and
*
(2.22) E2 = E for e - -(1+T) rp =P 5 Co = r , rg = Py 80 that
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2 2 2., 2 2
(2.23) 4, = arg(-T)" = 2argl , ¥, = (op=|T[ e[|
and we obtain two particularly important special cases of twin-convergence regions

for disk-complement of disk value regions.
3. [Lange, 8]. In the case of (2.19) with

(2.24) Ir' <p< ‘1+r'

and P P=0 then o= -1 and from (2.16) , (2.20) , and (2f21) ,

%*
Ej = E as in (2.4) with k; = (p —'1+r| ) while from (2.18) , (2.22) , and

(2.23) , E' =E as in (2.1) with k = (p° -|r ' ) . These are the twin
convergence regions, with indices interchanged, whose factorizations appear in
(1.7) . See Corollary 2 in Section 3 .

4, [Jones and Thron, 5, Corollary 5.7] . In the case of (2.19) with

(2.25) |r' < |1+r| <p

*
%0 = -1 :nd E1 = E as in (2.3) with
(2.20) and (2.21) where k1 =0 , while E2 =E as in (2.1) with assign-

ments (2.22) and (2.23) where k, = (p2-|r|2)(|1+r|2—|r|2) . For an

application of these parameterizations in the study of uniform convergence, see

and Pp =P 5 Py = |1+F' , then

Jones and Reid [1].. Actually in [1] the regions E1 and Ez are

interchanged. These parameterizations reduce to those of Thron [1.6] when T = 0.

Proof of Theorem 1.

The proof divides into two parts. Part I considers the case where

o, = 0 and -lE€ 6V1 . The remainder of the proof, Part II, studies the

several cases when 9, # 0 ; that is, when -1 avl .

Part I. (-l1¢ 6V1) . In this part, r = '1+c1' > 0 and o, = 0 . Since

~1 € 6V1 and s(w,~l) = for w#0, V0 must be the complement of a

disk.

a) (V ,V ) = (-1 € b(D ) cDo) . In this case, -0, =0, =1 . It can easily be

shown that for w = I ' 19 ° '

i(arg(1+c1)—6) w
s(w,Vl) = {z : Re(ze ) > —T4_l_r}
-2 +c1

a half-plane. Consequently s(w,V.) cV, = {z : 'z—col > ro} if and only if

0

1(arg(1+c1)—9) w
Re[c.e +r,. < _Ti_l—T
[ Y ! 02 +c1

which is equivalent to I ' 2 2I1+c1'(r° ' o'cos(e ¢)) = 2t(6) for ¢ and t(O)

as defined by (2.8) and (2.7) , respectively. Since |1+c1' k=0
and since 0001 = -1, 2t(6) = B_I(G) . Thus weg E {if and only if (2.3) holds.
b) (Vl,vo) = (-1 ¢ 6(cD1),cD0) - Here -o,= -0, = 1 . Again a half-plane

appears
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1(arg(1+c1)—6) v
s(w,Vl) = {z : Re(ze ) £ —|-l-vl—[} s
=2 +c1

so that s(w,V;) cV, = {z : 'z—co' > ro} if and only if

:L(arg(1+c1 )»-6) w
Re[coe ] - o 2_5.].1:&1_',

which is equivalent to
o< 'wl < 2|1+c1'[—r0—|c0'cos(9—¢)] = 2t(0)

which is of the form (2.1) with oyo=1 , 1 = |1+c1' , and k =0 , when

-1 T
t(8) >0 , as is the case when IG—da' £ cos (- ) , that is, when 6 € Q .
c

Q , in turn, contains nonzero elements if and only if o < Ico' s that is, if and
only if, O € Int(Vo) .

Part II. 1In case r; # |1+c1' and -1 ¥ b(Vl) ,» then o, = +1 . The arguments
of Jones and Thron [5, Lemma 5.5] yield the results

{z ; Iz—D' < q} if oo, = -1

s(w,Vl) = .
{z : 'z—Dl > q} if g0, =1
w(1+31) r, jw
where D = and q = . Consequently s(w,Vv )c V if and
r2—|1+c '2 |r2-—|1+c '2|
1 1 1 1
only if
—(q+'D+co|)+r020 vhen o =1 , o0, =<1 ,
(q - |D+c°|)—r°20 when co=—1 . 0102-1 , and
~(q - |D+c0|) ~x,>0 when oy =-1 , oo =-l .

These cases may be summarized in the single relation

alcz(q + 00|D+c0|) + %o >0

or equivalently

2 2 - 2 2
(2.26) 0102'w|r1 + Uorolrl—'1+c1' ' + uoalczlw(1+c1) + co(r1—|1+c1' )' >0 .
Hence w ¢ E as in (1.9) if and only if w satisfies (2.26) . The

possibilities for the product ©,0,0, are either

0172
(2.27a) 000162 = -1 or
(2.27b) 0,919, = 1 with G = 0102 =-1 .
Notice that the case
(2.27¢) o, =0,0, =1 is disallowed

(o] 172
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since if 010é =1 , that is, if -1l ¢ V1 , then s(w,-1) = for w # 0 and
s(w,V,) ¢ V0 o

0,0, = 1 implies 9y = -1 .

We can verify remark (3) at this point: if V0 is a disk and -1 % V1

that is, if % = 1 and 0,0, = -1 , then E 1is a convex set. Let W) s¥, €EE

- 2 2
and wy = aw + (1-)w, for 0< @< 1. Let A=(l+e) , B= co(rl—'1+c1' ),

imply that V., must be the complement of a disk. Hence

Cc = ro'ri—|1+c1'2| . Then from (2.26) w.
satisfy

1*¥25¥, € E if and only if they each

(2.28) ||z, + fwass| < ¢
and E 1is convex if and only if W1V, € E implies vy €E . Now
|w3'r1 + |w3A+B' = 'aw1+(1—a)w2'r1 + '(aw1+(1—a)w2)A+B'

law1+(1—a)w2'r1 + Ia(w1A+B)+(1—a)(w2A+B)I

[ ZaY

a('wl'rl + |w1A+B|) + (1—a)(|w2|r1 + 'w2A+B|)
_<__GC+(1'fa)C=C .

The last inequallty is justified since vy ¥, € E . Hence Vg € E and E 1is convex.

Now we continue with the cases (2.27a,b) . If 06010é = -1 , then (2.26) 1is

equivalent to
2 2 - 2 2
(2.29) 0,0, |w|xy + oprg|ry=te, |7] 2 fwaie,) + colry|1+ey || -
Now if the left hand side of (2.29) 1is nonnegative; that is, if
2
|

(2.30) AL :_0|r"1’—|1+c1|
1

then we may square both sides of (2.29) and multiply by %9 % = -1 to obtain

equivalently

(2.31) c0c1c2|w(1+E1)+co(r§-|1+c§|)|2 > coclcz(c1c2|w|r1+c0ro,r"1’-|1+c1|2|) .

On the other hand, if 04919, = 1 with Oy = 079, = -1 , then (2.29) may be

written in the form
- 2 2 2 2
Iw(1+c1)+c0(r1 |1+c1| )' 2 rI'w' + rolrl '1+c1| I .
Both sides are inherently nonnegative and we may square both sides to get an
equivalent inequality. Observe, however, that since o, = 0,0, = -1 we may

o]
substitute

(rl'w|+ro'rf—|1+c1'2')2 = (clczrllw'+cor0|ri-|1+c1'2I)2
and multiply the relation by 03019, = 1 to again obtain (2.31) . Thus in cases

(2.27a or b), (2.29) 1is equivalent to (2.31), if 0,919, = 1,or both (2.30) and

2.31) , if o0 0.0, = -1 . Expand (2.31) and collect like terms in |w| to
’ 012

obtain
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(2.32) o {|w|2(rf-|1+c1'2) + (rg—|c0'2)|rf—|1+c1|

0912 2'2

+ 2[606162r0r1'w||r§—|1+c1|2'—Re[w(1+51)(EO)(ri—'1+c1'2)]} <0 .

Factoring out (rf—'1+c1|2) , recognizing by (2.10b) that
2 2 2 2
cz(r1 |1+c1' ) |r1 |1+c1| ' .
and noting the two forms for
Re[w(l+c;)(cy)] = -Re[w(l+cy)(~c()]
= -|w|'00'|1+c1|cos(9—¢) .

and dividing throughout by I f—|1+c1'2' , we obtain first

(2.33) cocl{|w|2+2(coolrorl'w|+Re[w(1+El)(—Eo)]]+(rg— 'co'z)(ri—lucl'z)} <0

and second, from (2.7) , (2.8) , and (2.9) ,
2
(2.34) ooy {[w]“-2|w|ecor <o .
Finally complete the square to find
2 2
(2.35) cyocyl(lwl—t(e)) < 0,0, (£5(0)k) .
Thus for o

, #0 , that is, for r # |1+c1' , W€ E 4if and only if

(2.36a) relation (2.35) holds when o =1 or

0%1%
(2.36b) both (2.30) and (2.35) hold when Gy01 9 = -1 .

In anticipation of finding solutions of (2.35) 1let

A = {6 : t2(e)k >0} ,

1
A, = {0 : t(8) 20 .
If 040, = -1 then k<O , |e(®] < /t?(6)-k , and consequently

(2.37a) £(0) - /t2(8)k < 0 < £(0) + /t2(0)k

(2.37b) for 6 € Al = [~n,n] .

1f 6062 =1 then k>0 , ¢£(6) > /tz(e)—k , and consequently
(2.38a) 0 < t(0) - /e2(o)k < t(8) + /e2(0)k
(2.38b) for 6 € Al n Az .

We consider separate cases to discover the form of Alr\ Az when Gy%y = 1

- T2 7
c0(1+c1) = 0 then |t(9)| = ror; Z_/?ro—lcoi )(rl—'1+c1' )y =vk , and
Al = [-%,7] .« Furthermore t(6) = ~%0%1F o1 2 0 1if and only if %4%1
which case Az = [-n,n] . Hence if 0,0, = 1 and c0(1+c1) = 0 then

(2.39a) Az # ¢ only for 0,0, = -1 and in that case

(2.39b) Al N AZ = Al = Az = [-m,M] .

= -1

’

If

in
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On the other hand, if c0(1+c1) 0 , G0y = 1 ,and k>0 , then
t2(0)-k > 0 if and only if |t®] 2k , so that 6 & 1if and only if

=049 T~ -k

(2.40a) cos(6-¢) < 01 or
. 1+¢
0 1
-0 0, ¢’k
(2.40b) cos(8-¢) > 0L o1

Teo Tl

while 6 ¢ Az if and only 1if

-0, 0, . T
(2.41) cos(6-¢) < 0101
lcolll+c1’
Clearly
-g. o,r.r,—k.
(2.42) AN A, ={8: cos(-¢) <0101 1} |
1 2 - co 1+c1

Now we consider those cases, for c0(1+c1) +# 0 , when A1 n Az # ¢ and further

when Al n Az = [-m,n] .

r rl—/E' 2
If 0.0, = -1 then -2 > -1 1is equivalent to (r '1+c '+r 'c ') >0
01 Icol'l+cll 0 1] "1]70
which clearly holds. Hence for G901 = -1, Al n Az #¢ . 1f, in particular,
60 = -0y =0, = 1 then in fact Al Il Az = [-n,n] . This can be seen since
r.r,—/k
01 >1 o,

|c0'|1+c1’ -
or equivalently
Ty ~ 'c0'|1+c1' Z./E .
The left hand side is nonnegative since |c0' < LT and |1+c1| < T, < '01' .

Upon squaring both sides and co%%ecting like terms this relation is seen to be
equivalent to (r0'1+c1'—r1'c0') >0 . Thus

(2.43a) for 6061 =-1 , Al n A2 + @ and
(2.43b) for Gy = "9 =0, = 1, Al n A2 = [-®w,®] .
On the other hand, if %o = 1 then Al Il Az # ¢ provided that
—rorl—/E' N
c0 1+c1

or equivalently
(2.44) 'c0“1+cl' - rr; > 7K .

Since we are now considering the case Gp%1 = 9% = 1 , and by (2.27¢)
= g = g, =1 1is disallowed, we are in fact considering the case

c
0 1 2
= -1 , which implies r < 'CO' and Ty < '1+c1' « Thus the left

% =% " %
hand side of (2.44) 1is positive and upon squaring one sees that (2.44) 1is

equivalent to
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2
(r0'1+c1' rI'co') >0
which holds if and only if
(2.45)

! # To
|1+c1' T;;T

Assuming (2.45) , then, Al n Az # ¢ for % =0 =0 = -1 . We consider one

other matter before proceeding. If coqlcz = -1 , then for 0¢ A1
2 2 [T
(2.46a) |-r1c(ey+r0'r1-|1+c1' [ < 5,/t°(8)»k for gpoy =-1 , o, =1 ,
2 2 /2
ofri-|1+ey| '_>_r1 t7(8)-k for oyo; =1 , o, =-1 .

These relations may be seen as follows. Squaring both sides of each, collecting

(2.46Db) |-r1t(9)+r

like terms, simplifying with the values of the o's , and dividing each throughout

by |r§-'1+c1'2' , each is shown to be equivalent to
(2.47) rﬂcol + 2rgr | o |1#e; [cos(o-ud + rf)'ucl'z >0 ,

which holds since the left hand side is bounded below by the nonnegative quantity
2
(rI'co' r0'1+c1') . Finally, let

(2.48) Q= {06 : Bl(e) = ¢£(0) + 0061¢t2(6)-k >0} .
Case 1. 1If %% = 1 and (VI,VO) = (DI’DO) or (ch,cDO) , from (2.35) we

know that w € E only if

(|w]-tcen? < €20y - x
which for © € 4, has solutions M such that

o] -ec®)] < AZome

or equivalently

(2.49a) £(0) - Ye2(o)k < |w] < eeey + AP cork

(2.49b) for 6 €0 ={0: B (0) = £(0) + /P(0)k > 0} .

If %901 = -1 then by (2.37) , (2.49) reduces to

(2.50a) 0 < |w| < ko) + /2 (o)«

(2.50b) for 0 €Q =4 =[-m,7] .

a) If Gy =0 = -1 with g, = 1 then %% % = 1 and by (2.36a) weg E 1iIf

and only if (2.50) holds. Thus (2.1) 1s proved for

(Vl’ 0) -1 ¥ Int(ch),cDo) .

b) If Gy = 0y = 1 with o, = -1 then %% % = -1 and by (2.36b) wg E if
and only if both (2.50) and (2.30) hold, where (2.30) takes the form

(2.51) ¥ <_( e, | -rf) }

Now (2.50) will imply (2.51) for 6 € Q = [-m,n] 1f
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(2.52) £(0) + /e2(0)-k < f2(|1+c1'2-rf) ,
r
1

or equivalently

(2.53)

/e 0)-k < -rye(0) + rg(fire, Pord)
Since the right hand side of (2.53) satisfies

—rlt(e) + ro('1+c1|2—rf) = '1+c1'(r0|1+c1'+r1'c0'cos(9—¢))

2 '1+c1'(r0'1+c1'—r1'c0').> o ,

the last inequality following since Oy = 1 implies L7 > 'c0| and o, = -1
implies |1+c1' > LA Thus (2.53) 1is equivalent to (2.46b) and hence (2.52)
holds. Consequently (2.50a) dimplies (2.51) . Then w ¢ E if and only if
(2.50) . Thus (2.1) 1is proved for (Vl,Vo) = (-1 - Int(Dl),Do) .
e) If o, =0, =0, =~-1 then o.0,0 = -1 and by (2.36b) we E 1f and only

0 1 2 012
if both (2.49) and (2.30) hold, where (2.30) takes the form

(2.54) || Z;_O_('ucllz_rﬂ) .
1

Now since =1 and k>0 , from (2.38) , (2.49a) will imply (2.54)

%%
for 9 €0 =14, N4, if and only if

(2.55) £(e) - /t2(0)k _>_r_0(|1+c1'2_r{)
r
1

or equivalently
(2.56) X OREX(EN S PER I OS

From (2.39) since %901 = 1 we know that c0(1+c1) # 0 . Now after
simplification it is clear that the left hand side of (2.56) 1is nonnegative if
and only if 6 satisfies

-r,|1tc
(2.57) cos(6-¢) < oL 11 |
“11%

Now the right hand side of (2.57) exceeds -1 if and only if
.2} N L .

. |1+c1| lcol

On the other hand it can be shown that the inequalities

—rorl—/E' -r '1+c l —r0r1+/E‘

<O 1] ¢
|c0']1+c1, rI]col |c0'|1+c1'

(2.58)

(2.59)

are each equivalent to
2 2.2 2_2 2
(|1+c1' RlCA N —r0'1+c1' )y>o

which again holds if and only if (2.58) 1is true. Assuming (2.58) then, we know
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that (2.59) holds. Now by (2.59) , (2.57) eliminates (2.40b) while (2.40a)
implies (2.57) . Further (2.57) implies the equivalence of (2.56) and
(2.46b) . Thus (2.55) holds and assures us that (2.49a) implies (2.54) .
Thus assuming (2.58) , w € E 4if and only if (2.49) holds for Q = Al N A2 as
in (2.42) . Further Q - {0} # § since (2.58) implies (2.45) « Thus (2.2)
is proved for (Vl,Vo) = (-l¢ Int(ch),cDo) o

Case 2. If 6,0 = -1 then (VI’VO) - (ch,Do) or (Dl,cDo) and from (2.35)
w € E only if

(2.60) (|w]-ecen? > ¥@y -k .

When 6 ¥ A1 , that is, when tz(e) -k <0 , then any value of |w| 1s a
solution, while for 0 € Al , (2.60) has solutions le which satisfy

||¥]-eco] > Aty ;
that 1s, either
(2.61a) v < eco) - /e (0)-x
or

(2.61b) %] 2 eco) + Aok .

Also notlce, for the first two cases below, that when o, = 1, (2.46a) 1is

equivalent to

(2.62a) 68) - /2(0)k ¢ 0(x3-[1ee, |P) < e + APOrk .
- <
1
(2.62b) for @ = {0 : B (0) = &(6) - /e2(o)k > 0} .
a) If =0y =0 =0y = 1 , the case of (VI,VO) = (-1 € Int(Dl);:Do) , then '

0172
and (2.30) , which in this case has the form

6.6.0, = -1 and by (2.36b) , w€ E 1if and only if 'w' satisfies both (2.61)
r
(2.63) |%] > _9.(rf-|1+c1'2) .
Zg

Since Gdb =« , k<0 , and by (2.37) , (2.61) reduces to (2.61b) for
0 €A =[-m,71] . By (2.62) , (2.61b) implies (2.63) . Thus we¢ E if
and only if |w| satisfies (2.61b) for 6 € [-m,m] , proving (2.3) .

b) If Gy = =0; = 0y = 1 , the case (VI’VO) = (-1% Int(ch),Do) , then
6y%1% = -1 and again by (2.36b) w €E if and only if |w| satisfies both

(2.61) and (2.30) , where, this time, (2.30) stipulates that

r
(2.64) |¥] <_9.(rf—'1+c1'2) .
- r
1
Since G0 = 1 , k>0 and by (2.382) , (2.61) admits both small and large
values of |w| for 0 € Al n A2 . However, in view of (2.62) , (2.64) allows
only solutions to (2.6la) . If c0(1+c1) = 0 , then, from (2.39) ,
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6 ¢ /.\1 n A2 = [-n,n] . If c0(1+c1) # 0 then for 6¢ Q = 4N A2 as in (2.42).
This proves (2.1) in this case.

e) If =% 15 79 = 1 then (VI’VO) =(-1% Int(Dl),cDo) » 0g91% = 1 and
by (2.36a) w € E if and only if 'w' satisfies (2.61) for

0EQR = Al n A2 = [-n,m] {1if c0(1+c1) = 0 while if c0(1+c1) #0 then weg E if

and only if |[w| satisfies (2.61) for O6€ Q= A N A, as in (2.42) and for
1 2

= g

any le for 0 § Al N A2 « In either case ¢ - E 1is more conveniently
parameterized as is done in (2.4) .

This completes the proof of Theorem 1 .

3. Factorizations of Element Regions.
Theorem 2. For Ty €09 and value regions (Vl,Vo) as in (1.8) taking the

specific forms indicated, E factors as follows:
It firey| <y 5.'c1' + |eof £ for (1% ed ;D)) , then

(3.1) L N L O RS R P IR 2 S
I e £ < [t4e,] » =g < |eo| for (-1% Dj.eDy) , then
(3.2) E = {v? : 'v+ic*' > Vi |v—ic*' > R

it 2] 4 '1+c1' » T < '01' s Tg _<_ IcO' for (-le¢ Im:(c.Dl),cDO) » then

(3.3) E = E1 U E'2 , where
E, = v . 'v' > 'c ' “Tofy s |v+ic*' < /}E} .
E, = {v2 : 'vl > v"c*'z—rorl , |v-1c*' S"E;)T1} .

Furthermore these factorizations occur if and only if

(3.4) rI'col = r0'1+c1'
and
(3.5) (c*)2 = (—co)(1+c1) .

Corollaries. Here the factorizations of Theorem 2 are related to cases of
twin-convergence regions whose setting was outlined in (2.11, 12, 13) .
*

1. If 'rz' <oy < '1+r2' and |1+r1| <py < 'rl' then E = E as in (3.1)
under the assignment (2.12a) if and only if, from (3.4) and (3.5) |,

* 2 *
p2|1+r1' - p1|F2| , and (c;)” = (-T,))(14T}) . On the other hand, E, =E as in
(3.2) with assignment (2.13a) 1if and only if, again from (3.4) and (3.5) ,

*
p1'1+F2' = p2|r1| and (c,) = (-T))(1+T,) .
2. [Lange, 8]. Under the assumptions of Corollary B3 in Section 2 , that is,
*

with assignment (2.19) when '1’" <pX< '1+I" and PL=P=p El =E as in
(3.2) under assignment (2.20) with e = +(14T') since rllco' = p1|1+I"
- p|1+1"| = p2|1+1" ' = r0|1+c1' shows (3.4) to be satisfied. On the other hand,
*

%
E2 =E as in (3.1) wunder assignment (2.22) with ¢y = +' sgince



221

= T'f = = 3 = .
rl'co' p1' ' plF' p2'1 (1+F)' r0'1+c1' :howing again that (3.4) 1is
satisfied. Upon interchanging the indices on EI’EZ we obtain the result in (1.7)

Proof of Theorem 2.

From (2.33) , in order for v2 € E it must satisfy

4 2 2 2 2 2 2, - -
(3.6) cocl{lvl 2|v| r0r1+lr0 Ico' ”r1 |1+c1| '+2Re[v (-co)(1+c1)]} <0 .
*
Now for and only for ¢ as defined in (3.5) , it follows that
- - —% -t 2
3.7) Re[vz(—co)(1+c1)] = Re[(ve )2] = 'vc*|2 - 2[Re(-ivc )]

" 'V|2f°o'|1+°1l - are(v(ic N2 .

Thus the last factor in (3.6) takes the form

(3.8) |v|4 - 2|v lz[rorl—'c0'|1+c1'] + 'rg—'c0|2'|r§-|1+c1'2' - 4[Re(v(ic*))]2 .
Further notice that

(3.9) |rg—|c0'2'| §—|1+c1'2' = (r0r1—|c0'|1+c1')2 = (r0r1—|c*|2)2 .

The left hand equality holding if and only if (3.4) holds. Further (3.4) holds

only in the case

(3.10) 0% = 1
where 60,62 are defined in (2.10) . Assuming (3.4) , we can then write
(3.8) as
2 %2 .2 * .2
(3.11) (Ivl —(rorl—lc 1% - 4[Re(v(ic )]

which in turn may be factored to give (3.6) the form

(3.12) . 059121 (")Q,; (V) <0

where Q+1(v) are defined in two equivalent forms as

(3.13a) Q,, () = |v|2 + 2Re(v(ic)) + 'c*'z - ror)

1 + 1c |2

(3.13b) = 'v t 1c ' Tor, -

To summarize, then, given (3.4) and (3.5) , in order to have v2 € E 1t is
necessary that (3.12) hold.

Case I. (VI’VO) = (DI,CDO) or (ch,DO) . In this case 0,0 = -1 . From
(3.10) Gy = "9 2 which occurs if and only if -1% V1 . Further
040,0, = -1 and by (2.36b) v2c E if and only if both (3.12) and (2.30)
hold, where (3.12) takes the form

= 0

(3.14) Q; (MY, () >0 .

Our attention now turms to the specific values of Oy »

a) If o, = 1 then 60 = -0, =0, = 1 and (VI’VO) = (-1% Int(ch),Do) , while

(2.30) takes the form
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(3.15) K& 5:_0(r§-|1+c1'2) = rory - |2
1

the right hand equality following from (3.4) . This relation implies that (3.14)

is true if and only 1if
(3.16) Q_l(v) <0 and Q_l(v) <0 .

To this end we will show that if either Q_l(v) >0 or Q+1(v) > 0 then
(3.14) fails. Indeed, if Q_l(v) > 0 then by (3.13a) for Q_l(v) and

2 * 12 TF
(3.15) , © Z_'vl - (r0r1—|c ' ) > 2Re[v(ie )] . Consequently from (3.15)
and (3.13a) for Ql(v) we have

Ql(v) = 'v'2 - (rorl—'c*lz) + 2Re[v?I:;)]
< 2(|v]2=trgry-|e" 0 < 0

so that Ql(v) <0 and (3.14) fails. A similar argument shows that 1if

Q+1(v) > 0 then Q_l(v) < 0. Thus (3.14) and (3.15) imply (3.16) .
Conversely, if (3.16) holds, then clearly (3.14) 1is satisfied. Further, from
(3.13a) for both Qil(v) s it is clear that

9 - cege] '[P < 2frecas| < 0

which {mplies (3.15) . Thus V'2 € E 1if and only if (3.16) holds, or
equivalently from (3.13b) , if and only if

|viic*' < /;;FI

which proves (3.1) .

b) If o, = -1 then by (3.10) , and since %% = -1 , it follows that

=Gy = 0 = —0, = 1 i the case of (VI’VO) = (-1 § Int(Dl),CDO) . Then %% =
and by (2.36a) , v- € E if and only if (3.14) 1is satisfied. 1In this case

* * %9
'(-ic Y=(iec )I = 'Zc I = 4'c0'|1+c1' > 4r0r1 . Congsequently from (3.13b) ,
% *

{v: 'v—ic ' < /ror1 , 'v+ic ' < /rorl} = {v: Q_l(v) <0, Q+1(v) <0} =¢ .

Thus v>€ E if and only 1f both Q,(v) 20 and Q. (v) >0 ; that is,
* %
|v+1c ' 2_¢r0r1 and 'v-ic ' 2_/r0r1 .

This proves (3.2) .

Case II. (VI’VO) - (DI’DO) or (ch,cDo) . Here G0 = 1. By (3.10) ,

G50, = 1 so that Gy = 0 =0y o From (2.27c) we must have Gy =0 =0y = -1
that 1is, (Vl,Vo) = (-1 ¢ Int(ch),CDo) , and since %% % = -1 , by (2.36b)

v2 € E 1if and only if (3.12) holds with %% = 1 , that is,

(3°17) Q_l(v)Q+1(v) S 0 1

while (2.30) holds in its specific form

1
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(3.18) |v '2 Z:_O('ucl'z-rf) - |c*|2 -, 20,
1

recalling (3.4) . We will show that V'2 € E 1if and only if v satisfies
(3.18) and either

(3.19a) Q_ (v) <0 or
(3.19b) QM <o .

Clearly (3.17) dimplies (3.19a) or (3.19b) . Conversely we will show that
given (3.18) and either (3.19a or b), then (3.17) holds. Assume that
Q_l(v) <0 . From (3.13a) for Q_l(v) R

% *
|v|2 + 'c '2 - 1ot; < Re[v(ic )]
and consequently from (3.13a) for Q+1(v) .

Ql(v) = |v'2 + 'c*'z- LA + 2Re[sz:;)]

2 *,2 *,2
2 20| He [Foror1 2 4f]e ' -rory1 2 0
The last two inequalities following from (3.18) . Hence (3.17) holds. A
similar argument shows that 1if Ql(v) <0 then Q_ (v) >0 , and again (3.17)

holds. Thus V € E if and only if (3.18) and either (3.19a) or (3.19b)
hold, that is, if and only if

|| 2 /" [*-rom,
and from (3.13b) , either
|v+1c*' <VEE or 'v—ic*' < IrE
Thus (3.3) is proved. This completes the proof of Theorem 2 .
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ON A CERTAIN TRANSFORMATION

OF CONTINUED FRACTIONS

W.J. Thron
Haakon Waadeland

1. Introduction. In another place in these proceedings we have surveyed the
history of modifications {Sn(wn)} of the sequence of approximants {Sn(O)} of
"a continued fraction bo + K(an/bn) . There we pointed out the use of
modifications for accleration of convergence, analytic continuation, and for
obtaining necessary and sufficient conditions for the uniqueness of the solution of
the Hamburger moment problem, among others.

In this article a transformed continued fraction

o ~

b, + Kk (n)
n=l b
n

whose approximants E;(O) are equal to Sn(wn) for all n > 0 , will be derived.
One advantage of having such a transformation is that it allows us to bring known
results of continued fraction theory to bear on the modified sequence {Sn(wn)} .
Another reason for considering the transformation is that in this way repeated
modifications of the initial sequence become possible. That is one can study
En(;n) as well as continue the process a finite or even an infinite number of
times.

In Section 2 we first derive the transformed continued fraction for the most
general case and then specialize it to a more restricted case namely a =a + Gn ,
bn =1 |, wo=x o, where x is a solution of the quadratic equation
a - w- w2 =0 . In Section 3 the very intractable case a = -1/4 , Gn + 0
is studied. By using Theorem 2.2 a little more light is thrown on the
convergence behavior of this class of limit periodic continued fractions. 1In
Section 4 repeated transformations of continued fractions of the form
K((a+ckn)/1) , 'kl <1 , are investigated. Section 5 {1s devoted to numerical
examples and Section 6 contains some speculations as to possible future

developments.

2. Formulas for the transformed continued fraction.

For a given continued fraction

o

a
(2.1) b, + k (-2)
0 =1b
n=l °,
and a given sequence {wn}:=0 we wish to determine another continued fraction
~ o 7
(2.2) by + K (<P)
n=l b

=]
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in such a way that not only

A +wA ~ A
s )= _nolas()=T10,

n'n B+ wB n ~

n n n-1 Bn

but that A, =A, =1 , B, =B, = 0 and for n > 0
2.3) i-A +wnAnl N
2. B =B + wB .

n n-1

Here An R Bn , 2% ,’En are the nth numerators and denominators of their

respective continued fractions and hence satisfy the recursion relations (DN6)

with coefficients a bn and a

A well known theorem (see for example (7, Th. 2.2]}) allows us to accomplish

3; , respectively.

this. Slightly rephrased for our purpose the theorem can be stated as follows.

Let {Kn} s {in} be sequences of complex numbers, such that

(2.4) A‘_1 =1 , Ao = bo N B_1 =0 , Bo =1
and
(2.5) Aan—l - An—an #0 , n>0 .

Then there exists a uniquely determined continued fraction (2.2) with nth

numerator A and denominator B for all n>1 . Moreover
—_— —_—— ————- n,.,,__ ————

b
:>l
ul

~
a = n—l n " “ntn-1
n Lo 'ﬁ"—_;u'_' ’

n—an—Z n-2 n—l

b
D»

(2.6)

ann—Z - n—ZBn
n nx ~ ~ ~

n—an—Z - An—ZBn—l

~

>t

for n>1 .

We want to apply this theorem to A, "En determined by (2.3) . Since

A
A_1 =1 , Ao =By, B, = o , By = 1 the relations (2.4) are satisfied with
b

Condition (2.5) 1is equivalent to
Sn—l(wn—l) * Sn(wn) = Sn—l(sn(wn)) >

which in turn is the same as

a
- n
¥n-1 * sn(wn) D +w
n n
or
. - # .
(2.7) 2 bnwn—l n—lwn 0

From (2.3) and the determinant formula [7, Th. 2.1]

n
n-l
Aan—l - BnAn—l (-1) E a4 n>0

it follows by a simple, but somewhat lengthy computation, that
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(2.8) an—l - An—an
-1 n~-1
= (~1) (kzlak)(an - bnwn_1 - wn_lwn) , n2>1
(2.9) AOB—I - A—lBO = -1
(2.10) Aan—Z - An—ZBn
n-2 n-2
= D (kl_llak)(bnan—l + 1% (an + bnbn--l)wn—Z - bn—lwnwn—Z) » n22
(2.11) B_1 - A—lBl = —(bl +w) .

By using these formulas in (2.6) we easily find the formulas for :n and '];‘n ,

and are thus led to the result below:

Theorem 2.1. Let (2.1) be a given continued fraction and let {w_} be a

sequence of complex numbers satisfying

(2.7) a - bnwn_1 WY #0 .

Then the continued fraction bo + K(an/bn) where

bo = bo + Yo
ot T & T s B

bl = bl + vy

(2.12)

~ a - bw -w__.W

a = a n n_n-l n-l n nd>2

n n-l 5 -b .w -W__W ’ - ’

n-1 n-1 n-2 n-2 n-l

'; = Pppe1 ¥ 8p1¥p ~ (e # bnbn—l Yng ” Pn-1¥n"n-2 > 2

n a - b b4 n 7 ’

n-1 n=1%n-2 ~ wn—2wn—1

is such that for all n > O its nth approximant Sn(O) is equal to Sn(wn) .

The simplest case is when all w are equal to a fixed complex number w .
We shall make this assumption for the remainder of this paper. Condition (2.7)
then becomes

(2.13) an—bnw—w2¢0 , for all n>1 .

Any number w , except those on an at most denumerable set, is admissible in that
it satisfies (2.13) .

We shall now further assume that the given continued fraction can be written
in the form K(an/l) . This will be the case if for all n > 1 bn # 0 (see

[7, p. 34]). The transformed continued fraction can be expressed in the same form

(except for a term in front) by applying to bO + K(an/bn) the equivalence

transformation ~ -
a * a
a = 1 , a =_.0_ , n>2 .
1% L
1 n-l n
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Since the equivalence transformation requires ’En #0 , n>1l , we must avoid an
additional set of w-values. This set however is also countable.

From now on it will be convenient to write
a =a +§ , n>1l
n n =

*
for some a # 0 . With this notation the elements in w + K(an/1) are given by

the formulas
* (a—w—wz) + 61
a, = — 3,
1 1l +w
* (a—w—wz) + 6§
82 = (B"HSI) 2 2 3
(L4w)(8,+(8 =8, ) + (a—ww"))

* (6 +a-w—w )(5 +a—w-w )
a = (a+6n_ ) .

)
CHTE Gn_l—ﬁn)w(a-w-w NS (S 1)w+(a-w-w N

n-2" n

These formulas suggest a choice for a and w such that

a-w- w2 =0 .

In this case they become much simpler. The condition (2.13) now reduces to
Gn #0 , n>1 ,

and we have the following result.

Theorem 2.2. Let K((a+6n)/1) be a given continued fraction with

§ #0 , n>1 .
n

Further let x be one of the roots of the quadratic equation

a-—-w- w2 =0 .,

Then the continued fraction

- *
a
x+ k(&) ,
n=1 1
with
61
a, = &
1 1+x
* §
(2.14) ay = (a+6)) 2
(1+x)(61+(61-62)x)
* (a+d b 6nan 2
a = (a ) l n>3
n -1l - _ 4 Z ’
(Gn—1+(6n—1 6n)x)(sn—2+(6n—2 Gn—l)x)

% .
is such that for all n 21 its approximants Sn(O) are equal to Sn(x) N

Theorem 2.2 1is valid even if the Gn do not tend to zero. In the
applications to be made of the theorem in the next two sections the continued

fraction



a
(2.15) Kk ()
however will be assumed to be limit periodic. It then will be natural to choose

(2.16) lim a =a

n*e

and hence have

lim§ =0 .
n

’ 00
We recall from [9, p. 95] th:t if a is noton thery t < -1/4 the limit
periodic continued fraction (2.15) converges (possibly to <« ). For a = -1/4
it converges if Gn + 0 sufficilently fast (see for instance [12, p. 162]).
If a 1is located on the ray t < -1/4 we know that (2.15) diverges at least if

Gn + 0 sufficiently fast.

From now on we shall assume that w = x , where x is one of the solutions

of the equation

a-w- w2 =0 .

If x 1s one solution then =-(1+x) 1is the other. Hence it could be used in

(2.14) 1in place of x . Observe that x and =-(l+x) are the fixed points of

the linear fractional transformation

(2.17) w=.2_
1+w

*
Observe also that for Gn + 0 the numerator and denominator of a, in (2.14)

both tend to zero, but if the ratio Gn/ﬁn_ behaves sufficiently nicely, the

1
transformed continued fraction will still be useful.
We further recall that if in the limit periodic continued fraction (2.15) a
(as defined in (2.16) ) is different from zero and not on the ray s < -1/4 of
the negative real axis, then the two fixed points x and =-(l4+x) of (2.17) are
both different from zero and of different absolute values. If
x| < |

then x 1s the attractive fixed point and {Sn(x)} tends to the value of the
continued fraction faster than {Sn(O)} in the following sense:

f-5_(x)

—Dn __+0 as n+e

f—Sn(O)
This holds regardless of how slowly Gn +0 . For a= -1/4 both fixed points
coincide, that is

x = —(14x) = -1/2 ,

and the result above holds under certain conditions on the speed at which Gn + 0
[12] . Replacing {Sn(O)} by {Sn(x)} in these cases has been called the "right”
modification. If

lx’ > x|
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then x 1is the repulsive fixed point. Under additional conditions on the rate at
which Gn + 0 (Gn _<__Ckn for 0 < k < '(1+x)/x' is known to be sufficient) the
sequence {Sn(x)} will converge but in general to a value different from

lim 5_(0) . Replacing {Sn(O)} by {Sn(x)} in this case has been called the
"wrong” modifiction since it leads to a value different from the value to which the

continued fraction converges. The result on the wrong modification is proved in

two different ways in the articles [13] and [14] . 1In the first paper it is

also shown how the wrong modification can be used for analytic continuation of

functions defined by regular C-fractions or general T-fractions. A crucial point

is that the modification works also on the ray s < -1/4 under the condition

mentioned above. On this ray we have ’1+x| = 'x' » X # —=(1+x) so that the fixed

points are distinct but are neither attractive nor repulsive, since the

transformation (2.17) 1is elliptic in this case.

3. An application to limit periodic continued fractions with a = ~-1/4

case the two fixed points coincide x = ~(14x) = -1/2 and the formulas

take the form

a = 261 R

G.1) * 462

. a, = a
2 1 >
61+62
48 8
ari:“an-l‘s YT 3 »n23 .
( n n—l)( n-1 n—Z)

It follows from a result of Pringsheim [10] that

|6 ¢ —1
n 2
4(4n"~-1)

« In this
(2.14)

insures convergence of K((—1/4+5n)/1) « In this formula n can be replaced by

n+ k ; if in addition one sets k ~ 1/2 = 8 then one is led to consider the

bound

1
16 (n+6)(n+6+1)

An attractive but as yet unproved conjecture is that if

8 €1
D 16(nH0) (at6+1)

’

and possibly is subject to additional conditions, then K((—1/4+6n)/1) can be made

to diverge.
Now it turns out that, if in (3.1) Gn is chosen to be

(3.2) § mw-____ G
n 16(at8) (m+6+1)

3

where C 1is a complex number and © is a real number > -1/2 , then (3.1) takes

on the very simple form
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*

a, = - —-C ___ |
1 8(1+6)(2+6)
G- 8 = - 2 zgze) "% e
8(2+6)
*
a =a _, » D 23 .

*
The transformed continued fraction x + K(an/I) then can be written as

C
(3.4) -1 8(1+6)(2+6)
2 c + 146
1 - 8(2+e)2 2(2+6)
1+ K (an/l)
n=2

In the cases where the original continued fraction and (3.4) both converge and

where they converge to the same value, this value f must satisfy the quadratic

equation
I
(3.5) £f=-1-_8(0+6)(246) R
2 2a, 146
1+ 1 2+9
al/f
since

14+ K (an/l) = al/f .
n=2

The quadratic equation (3.5) can be written as

(3.5") g2 4 3420 4 246 4 C =0 .
2(1+60) 4(1+6) 16(H_e)z
The solutions of this equation are
(3.6) f = - 3+20%/1-C
4(1+40)

If |C| <1 we know from [12, p. 162] that both continued fractions converge to
the same limit which is then one of the two values given in (3.6) . It can be
proved that if vI-C 1is taken to be the root with non-negative real part then f
is

(3.6") f = - 3+26-V1-C
4(1+6)

The case C = 1 1is particularly simple since the square root vanishes. We have in

this case
(3.7) R
4(1+496)
and for the tails
M o 3490428 . 1. _ 1
4(1+nt0) 2 4(1+nt0)

Since we know all of its tails, the continued fraction
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o 1 1
(3.8) K ( 4 16(n+9)(n+6+1))
n=1 1

may then serve as an guxiliary continued fraction in the sense of L. Jacobsen ([3]

and her article in these proceedings).

The case 6 = 0 was treated numerically in [12, Ex. 5.4]; the one millionth
approximant was found to be =-.714 and for Sn(—1/2) , D= 106 , the computed
value was -.718, so we conjectured that the limit would be approximately -.72 .
From (3.7) we now see that the correct value is -3/4 . Thus we gravely under-
estimated the slowness of the convergence , which is of order 1/logn . The

convergence of the tails to -1/2 we now see to be of order 1/4n

The case 6 = -1/2 gives the continued fraction

-1 1
* 2
K ( 4  4(4n —1)) .
n=l 1
This is connected to a hypergeometric function in the following way
(ql - ____l;__)z
* 4 2
(3.9) Kl( 4(fn =) ) - - 1 3 -1
n= .3.
2F1 (;’1,71 Z)
= 1 -1 for 'zl <1 .
S n
1+ ) =
n-]_2n+1

For z=t , 0<t <1 the function is a decreasing function of t , whose
limit as t+l 4is -1 . From (3.7) we have that the value of the continued
fraction is also -1 .

It is easily seen from (3.4) that if either the original or the transformed
continued fraction converges (including convergence to = ) then so does the
other. However, it does not follow that they both converge to the same limit. For
no R >1 1is it true that the continued fractions both converge to the same value
for all C in 'C' <R . In order to see this take C real and C > 1 . 1If
the continued fraction and its transform both converged to the same value, that
value would have to be non-real by (3.6) . However the elements of the continued
fraction are all real. Hence we have a contradiction. Unfortunately we are not
able to arrive at the stronger conclusion (which is probably true) that both

continued fractions diverge in this case.

4. Some results of repeated transformation. Next to be investigated is the case

when a > a geometrically. In its simplest form — the one to be studied

here - the continued fraction is
bt n

(4.1) K(ﬂk_),o<'k|<1,a¢o.
n=1 1
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Let x and =(l+x) denote the fixed points of the linear fractional
transformation (2.17) . Here x need not be the attractive fixed point. It
follows directly from the formulas (2.14) that for n > 3 the transformation
with w, =X gives

a* = ga+ckn_1)k
n

(1+(1-1)x)>

and hence, 1f k #1 - 1/x s the transformed continued fraction is limit periodic

with
. _kx
(4.2) lma = —8k = Lx .
me a+1-o0’ (1 - _kx)
1+x

From well known properties of the Koebe function it follows that for

(4.3) '1_:5; < ]%‘.
1lim a; is not on the ray (-=,-1/4] of the negative real axis, so that the
convergence of the transformed continued fraction may be substantially improved by
the method of [12] .

For later convenience we now introduce superscripts in (4.1) and shall write

it as

(4.4 K (@2 x O
n=1 1

0 0
where 0 < 'k' <1 , c( ) #0 , a( ) # 0 . The approximants of (4.4) shall
be denoted by Sn,O(o) . We shall also assume that (4.3) is satisfied with x
replaced by x(o)

28 This is always possible by a proper choice of x(o) . If
a

- 0
is on the ray a( ) S_—1/4 of the negative real axis then both choices work,

since in this case the left hand side 1s <1 . It is easy to see that in the

angular opening

(4.5) m-8< arg(a(o) +1/8) <n+8 ,
where

(4.6) B o= - 4arctan|k'

(O

may be taken to be either the attractive or the repulsive fixed point.

0
We use the x( )—modification on (4.4) and get the transformed continued
fraction

o L(0)
.7) {4 g (M
n=1 1

where (from (2.14))
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Y(o) - c(0)k
14x(®

(4.8) ¥{® - @ - o
A+ 7)Y A+(1-k)x ")
e
(1+(1—k)x(o))2
Its approximants shall be denoted by Sn,l(o) so that we have

»

Sn’o(x(o)) =5, ,a21 .

For n > 1 we define

oD o @y Dy
where
S DI () K ,
(1+(1-k)x(?)?
eI ) i
(1+1-1)x(D)?2

0)

It follows from the assumption k # 1 - 1/x that the denominators do not

vanish. We now set
o) _ (L
Yn+2 a s, 21 .

The transformed continued fraction may thus be written in the form

) )
Y Y
(4.9) © 4 2
1 + o _(1)
a
1+ k()
n=1 1 (0)
Before proceeding with the iteration we make a comment on the case where x is
the repulsive fixed point. In this case the direct computation of 1im Sn(x(o))

o
by using the wrong modification on the continued fraction (4.4) is numerically

unstable. The reason for this is that

1lim Sn(w) = lim Sn(O)

n>e nHeo

for all w # X - Hence a roundoff error in x(o) may cause the process

to tend to the value lim Sn(O) instead of 1lim Sn(x(o)) « On the other hand,
(0))

the continued fraction (4.9) converges to lim Sn(x and can be computed by

using the backward recurrence algorithm in the usual way. As was shown in [6]
this process is numerically stable. Examples 5.2 and 5.3 in Section 5
illustrate this difference in stability.

We shall now apply a transformation to the continued fraction (agl)/l)

n=1
W, W

o The two roots of the quadratic equation

For it we have a
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wz +w= a(l) are x(l) and —(1+x(1)) . We shall choose them so that
0 0

(4.10) D@ Wy L s

1+(1-k)x(0) 1+(1—k)x(0)
This choice insures that
. 1 0

(4.11) I__.&(_)I = Ik” x¢ )I <1

1+x(1) 1+x(0)

so that x(l) is the attractive fixed point of the transformation w = a(l)/(1+w)
and so that {Sn 1(x(l))} is the right modification of (4.9) regardless of what
’

type of modification x(o) induced. The next step leads to a continued fraction

of the form

(0) 0) 1) (¢D)
L9+ N ) N T2
1 0+ 1+x(1) + 1 + ® a(2)
1+ k(o)
n=1 1

The process can be repeated indefinitely and we are led to the continued fraction
(9) (0) (1) 1) (2) (2)
5! Y2 A5 ) Y2 Y2

1+ 1+x(1) + 1 + 1+x(2) + 1 + 1+x(3) +

) ,

(4.12) x

or the equivalent form

(0) (1) 1) (2)
0 —2 1 2 N
(4.13) 0,7 1D e ® 1@ e ®

1+ 1 + 1 + 1 + 1 +
Before proceeding to the formulas for the elements we shall describe what the
continued fraction (4.13) does. It is a "diagonal process” in the sequence of
modified sequences. We have already defined Sn,O(O) , Sn,l(o) . We now extend
this definition as follows
(e=1)y x> 2

Sn,k(o) = Sn,k-l(x

The sequence of approximants of (4.13) will be the staircase illustrated below:

30’1(0) > 51’1(0) s S2’1(0) > 53’1(0) , 54’1(0) s S5,1(0) ’ 36,1(0) s S7’1(0)

30’2(0) s 31’2(0) > 52’2(0) s 53’2(0) > 34,2(0) > 55’2(0) ’ 36,2(0) > 57,2(0)

50’3(0) ’ 81’3(0) ’ 52’3(0) ’ 53’3(0) ] 54’3(0) s 55,3(0) ’ S6,3(0) ’ 57’3(0)
50,5000 » 51 4(0) 5 5, () 4 83 ,(0) 4 5 4 (0) , S5 ,(0) 56 4(0) 5 S 4(O)

50,5(0) , 31’5(0) > S2,5(0) > 53’5(0) , 54’5(0) » 35,5(0) » 56’5(0) > 37’5(0)

Hence for n =29 , q > 0 the nth approximant of (4.13) is qu q+1(0) and
- ]

for n=2¢q+1 , q>0 , the nth approximant of (4.13) is ) .

Soqtl,q+l
(n) (n)

The formulas for Y1 N YZ are now easily obtained by induction. We omit
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the details and state the result below, having replaced x(o) by x again to
simplify the statement.

bl

n
Theorem 4.1. Let K(éifk_) be a continued fraction where 0 < 'k' <1
c*¥0,a#*0 . Let x be one of the solutions of the quadratic equation

chosen such that

Then the sequence {Sn(x)} converges and the continued fraction

3 2
ok —E——(atck) _Ck_2 X (atacd)
(4.14) x + x40 (1+x) (1+x)
1+ 1 + 1+ 1 +
2p-1 ;
P ——52——(a+ckp)
oo (1+x) (1+x) oo
+ 1+ 1 +

converges to the same value, but substantially faster. If, in particular,
|x| < |1+x| then the continued fraction (4.14) converges to the same value as

K( a+ck2 )

1

5. Numerical examples. The purpose of the present section is to illustrate the

acceleration of convergence by numerical examples. A proper analysis of the

acceleration, for instance by giving estimates for ratios of different types of
truncation errors, is beyond the scope of the present paper. Let it be mentioned,
though, that Tor Leknes Iin a not yet completed investigation [8] has found upper

estimates for the truncation errors
[£-5,0], |f-s.@|, |[£-5,@@ ,
where the continued fraction in question is (4.1) with a off the ray a < - %

and where f 1s the value of the continued fraction. x 1s chosen such that

le < 'x+1| , Sn(O) is the nth approximant and Sn(x) the nth x-modified

approximant, whereas Sn/X(O) is the nth approximant of the continued fraction

(4.14) . His estimates are, under certain mild conditions, in the three cases of

the following orders of magnitude

2
n

oo|w

ozl oz ouff >

The numerical examples to be studied here are all computed on the NORD - 10/1000 -
computer at the University of Trondheim, the real cases with double precision (15
decimals), the complex one with ordinary precision (8 decimals), in most of the
cases by Kent Holing. Example 5.1 explains how the results will be presented
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also in the other examples, as far as the acceleration of convergence to the right
value of the continued fraction is concerned. In Ex. 5.1 all 15 decimals are
listed, whereas in the other real examples we shall restrict ourselves to 10

(even if the computation is done with 15 ). 1In two of the examples we shall also

{llustrate the wrong modification.

Examgle 5.1. For

a=5 , c=1 , k=%

the value of the continued fraction (4.4) , as given by the computer, rounded off
to 15 decimals, 1is

7.0433816741 38279 .

The table below gives in each case the smallest n-value L such that the
desired accuracy is obtained for all n > L Approximants of (4.14) are called

"super—approximants”.

4 decimals 8 decimals 15 decimals

Ordinary approx. Sn(O) 97 176 281
Modified approx. Sn(7) 9 22 39
Superapprox. Sn/7(0) 2 4 8

Example 5.2. For

h

the value of the continued fraction (4.4) , rounded in the 10t decimal

place, is
1.1096400019 .

A table, to be understood as In Ex. 5.1., is here:

4 decimals 10 decimals
Ord. approx. Sn(O) 18 36
Mod. approx. Sn(l) 4 11
Superapprox. Sn/l(o) 2 5

The "wrong” value of the continued fraction (4.4) , 1lim Sn(-2) , rounded in the
nroe
1oth decimal place, 1Is
- 2.1607903165 .

This is obtained from n = 6 on by using the superapproximants Sn/_z(O) .
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Here |[-X.| = |=2] =2 1 = .
(Here |x+1| I-l , whereas TET 4 , and the condition (4.3) 1is thus
satisfied.)

An attempt to compute the sequence {Sn(—2)} directly from the formulas

s (2) = 21 20472 2™
n

1 + 1 4 e 4+ 14(-2)
(by the backwards recurrence algorithm, starting with -2 instead of 0 ) leads to
the following adventure: The values produced by the computer first seem to

approach the value we want, and for n = 26 it gives the value
- 2.1607903112 .

This is the closest value to the correct one. Further computation produces values

approaching 1lim Sn(O) , which 1s taken on with 10 decimals from n = 92 on.
nree
With four decimals instead of ten Sn/—Z(O) give the value - 2.,1608 from n = 4

on, whereas the “"direct” method gives - 2.1608 for 13 { n < 38 and the value
1im Sn(O) =1.1096 from n =72 on.

nre

Example 5.3. For

the value of the continued fractionm (4.5) , rounded in the 1oth decimal

place, is
2.1228302993 .

A table as in Ex. 5.1 and Ex. 5.2 1is here:

4 decimals 10 decimals
Ord. approx. Sn(O) 30 62
Mod. approx. Sn(2) 8 20
Superapprox. Sn/Z(O) 4 6

The "wrong" value, 1im Sn(-3) , is in this case
nree

- 3.1393059686 ,
obtained from n = 7 on by using the superapproximants Sn/_3(0) . Direct
computation from (4.5) shows the same pattern as in the previous example. The

value closest to the correct one is
- 3.1393058294 ,

obtained for n = 50 . Fron n = 157 the attempted computation of 1im Sn(-3)
ne
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gives us back the value of (4.5) , rounded in the 10th decimal place.

Example 5.4. For

am-l, c=1, k-1
the value of the continued fraction (4.4) , rounded in the 1oth decimal
place, is
- 0.6303611673 .
Table:
4 decimals 10 decimals
-1
Mod approx. Sn( E) 22 39
Superapprox. Sn/—l/Z(O) 8 11

As for the ordinary approximants, the convergence is so slow that even for

n = 9999 the computed value of Sn(O) ,

- 0.6299770019
only gives the value of the continued fraction rounded in the an place.
Example 5.5. For
a=-1+1 , c=2 , k--;:
the value of the continued fraction (4.4) rounded in the 5th decimal place,
is
0.78568 + 1.07662 1
Table:
3 decimals 5 decimals
Ord. approx. Sn(O) 28 43
Mod. approx. Sn(i) 9 14
Superapprox. Sn/i(o) 5 6

6., Final remarks. The special results of Sections 3 and 4 may prove to be of
more interest than merely to serve as illustrations to Theorem 2.2 . Partly the
same methods may turn out to be useful and lead to manageable continued fractions

in more general cases, for instance
(6.1) a =a + k™ + o(kn)

in Section 4 . More interesting is, that the continued fractions of Section 4

may serve as an auxiliary continued fraction in acceleration of the continued
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fractions by the-method of L. Jacobsen [3] , [4] . It is likely that from a

a
numerical and practical point of view for continued fractions K(IEJ , where the

a's are as in (6.1) , this method will be superior to a method with direct
application of repeated transformation on (6.1) . As for continued fractions
“near” the ones we studied in Section 3 L. Jacobsen's method is not applicable,
but there is no doubt that it wiil be extended also to such cases.
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