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Preface

Waves and vibrations are among the most basic forms of motion, and
their study goes back a very long way. Small amplitude waves are de-
scribed mathematically by a linear differential equation, and their be-
haviour can be studied in detail. In contrast, when the amplitude is not
restricted to being small, the differential equation becomes nonlinear,
and its analysis becomes in general an extremely difficult problem.
An example of a nonlinear wave equation is the model

Ou Ou 0B%u

-5 + 6055 + 3—3,'3 =
for a shallow water wave. This equation was proposed by the physicists
Korteweg and de Vries at the end of the nineteenth century, and is now
called the KdV equation. In particular, if we now assume a solution
in the form of a travelling wave u(z,t) = f(z — ct) then (1) can be
integrated: imposing the boundary conditions at large distances that
u(z, t) tends to O sufficiently fast as z — +o00, we find the exact solution

0 1)

ui(z,t) = gsechz (—2‘/—5(:; —ct+ 5)) , @)
where 6 is a constant of integration. The motion described by this is an
isolated wave, localised in a small part of space. In fact, in addition to
this solution, (1) is known to have an infinite series of exact solutions
ug(z,t), us(z,t),....

These solutions uy,(z,t) contain 2n arbitrary parameters c;, 6;, and in
the distant past ¢ < 0 and the distant future ¢t >> 0 they behave just
like a superposition of independent isolated waves of the form (2). The
isolated waves can overtake or collide with one another in finite time,
but they revert after the collision to their individual independent state
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(except for a possible phase change), and are transmitted without anni-
hilation. A wave motion with this special type of particle-like behaviour
is called a soliton, and a solution u,(z,t) representing n isolated waves
is called an n-soliton.

For a linear differential equation, the principle of superposition says
that if special solutions u; are known for i = 1,..., N, then other solu-
tions containing arbitrary constants can be made as linear combinations
vaz 1 ciui. The principle of superposition does not apply to the KdV
equation, because it is nonlinear. The fact that, despite this, there ex-
ist exact solutions containing an arbitrary number of parameters, is a
remarkable and exceptional phenomenon, and it suggests that the KdV
equation occupies a special position among general nonlinear differential
equations.

In classical mechanics, there is a notion of a completely integrable
system (we say simply integrable system for short): consider a mechanical
system with f degrees of freedom

de; _OH dp __OH

dt = api, dt ——a—qi fOl'l=1,...,f. (3)

Here H is a Hamiltonian. We say that (3) is a completely integrable sys-
tem if it has f independent first integrals Fi(q,p) = H(p,q), ..., Fs(q,p).
When this holds, the general solution of (3) can be obtained by solving
Fi(q,p) =C;i fori =1,..., f, where C; are arbitrary constants. Now it
is known the KdV equation can in fact be interpreted as an integrable
system in this sense, but having infinitely many degrees of freedom. The
existence of infinitely many exact solutions such as the soliton solutions
is a reflection of this complete integrability.

Although these remarkable properties of the KdV equation were con-
sidered as an isolated special phenomenon when they were first discov-
ered, their universal nature became gradually more apparent in rapidly
developing research from the late 1960s onwards. At present, a huge
number of concrete examples of integrable nonlinear differential (and
difference) equations are known. These are also quite generally called
soliton equations. A model example of these is the Toda lattice discov-
ered by Morikazu TODA. Many techniques for finding exact solutions
of these equations have also been discovered: inverse scattering theory
which solves the initial value problem, the bilinear method initiated by
Ryogo HIROTA, the theory of quasiperiodic solutions based on Riemann
surfaces and theta functions, etc.

At the same time, classical results that had remained long buried came
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to be viewed in a new light: the applications of theta functions to classi-
cal mechanics, nonlinear differential equations arising in the differential
geometry of surfaces, the study of commutative subrings of rings of dif-
ferential operators, and so on. One could say that the KP (Kadomstev—
Petviashvili) equations, which generalise the KdV equations, the Toda
equation, the Hirota derivative and so on, had already existed in a differ-
ent form. The theory of integrable systems was confirmed as a paradigm
providing a unified viewpoint on these various results.

What is the guiding principle behind the complete integrability of all
these systems? In a word, it is the extremely high degree of symmetry
hidden in the system. For ‘high degree of symmetry’, we could equally
well say ‘action of a huge transformation group’. The aim of this book
is to use the KdV and KP equations as material to introduce the idea
of an infinite dimensional transformation group acting on spaces of so-
lutions of integrable systems. Mikio SATO discovered that the totality
of solutions of the KP equations form an infinite dimensional Grass-
mannian, and established the algebraic structure theory of completely
integrable systems. Our aim is to explain the essence of this theory of
Sato, together with development of these ideas in the research of Masaki
KASHIWARA and the present authors, without going into all the details.
We leave to the reader’s kind judgment the extent to which we have
succeeded in our aim.

As far as prerequisites are concerned, we have tried to write the book
so that it can be read by a student with a knowledge of differential and
integral calculus, linear algebra and elementary complex analysis (up to
the calculus of residues).

Finally, we would like to thank Shigeki SUGIMOTO, Takeshi SUzZUKI
and Masato HAYASHI for reading the manuscript and making useful
comments.

Tetsuji M1wa
Michio JIMBO
Etsuro DATE

Kyoto and Osaka, 1992



1
The KdV equation and its symmetries

We look for symmetries of the KdV equation taking the form of in-
finitesimal transformations by a nonlinear evolution equation. The KdV
equation is itself a nonlinear evolution equation, but we will see how to
derive it in terms of compatibility conditions between linear equations.

The best possible compass to guide us in mathematics and the natural
sciences i8 the notion of symmetry. Following this compass, up anchor
and away over the wide ocean of solitons!

1.1 Symmetries and transformation groups

So then, what is symmetry? For example, consider the symmetries of
the circle. One sees fairly intuitively that the circle is taken into itself
by either

(1) a rotation around the centre, or
(2) a reflection in a diameter.

How do we express this intuition in precise mathematical terms? In the
(z,y) coordinate plane, the circle is given as the set of points satisfying

2 +y?=r2 (1.1)

A rotation of the plane is the linear transformation

G-z =) o
(- 200 o

and a reflection
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The linear transformation given by

(:) B (i 3) (i) (1.9)

represents a symmetry of the circle if it preserves the expression (1.1).
In other words, we say that (1.4) is a symmetry of (1.1) if (z',y’) is a
solution of (1.1) whenever (z,y) is.

Write T'(6) for the transformation (1.2), and S(6) for (1.3). The set
of all invertible linear transformations forms a group under composition.

In other words, if we define the product of two matrices T} = (Zl 31 )
1 d)

andT; = Z2 32 with nonzero determinant to be the matrix T} -T5 =
2 Qa2
@ b az by then the group axiomst are satisfied:
C1 dl Co dz

(1) Associativity: (T1-T2) - T3 =T) - (T2 - T3).
(2) Existence of the unit: T'-id = id - T'; here id = ((1) (1))
(3) Existence of the inverse: - T~ =T ' o T =id.

Restricting attention in particular to the elements that leave the circle
(1.1) invariant, these also form a group. This is called a transformation
group of the circle. We have T'(6) = T(¢'), or S(6) = S(¢'), if and only
if @ = 0' + 2nw, where n is an integer. The group law is given by

T(6:) - T(62) = T(61 + 62),
T(6,) - S(62) = S(62) - T(—6,) = S(61 + 62), } (1.5)
S(61) - S(62) = T(61 — 62),

By passing from the transformations themselves to the composition rules
(1.5), the symmetries of the circle are isolated from their concrete nature
as transformations of the plane, and purified into an abstract group law.

Among symmetries of the circle, consider only the rotations 7'(6).
When the parameter 6 is 0 we have T'(0) = id, so that we can view the

transformation
(§§3§) - (ﬁf’jz 231‘2") (z) ’ (16)

varying together with 6, as the process which takes a given solution
(z,y) of the algebraic equation (1.1) continuously around the circle.
t See any textbook on group theory, for example W. Ledermann, Introduction to

group theory, Oliver and Boyd, 1973, or P.M. Cohn, Algebra, Vol. I, Wiley, 1974,
Section 3.2.



1.1 Symmetries and transformation groups 3

Differentiating this with respect to 8 gives

SEN-C HE. @

The transformation (1.6) is completely determined by these equations,
together with the initial condition

Go)=G) t

is an infinitesimal yenemtor of the rotation, in

0
The operator ( 1 0

a sense we explain presently. We have the relation

(N
T@O)=e \' ° /.

Expanding this with 0 as a small parameter gives

T@)=1+6 ((1’ "01) +0(6%). (1.9)

More generally, if R(0) is a transformation depending on one parameter
6 and satisfying R(6;, + 62) = R(61)R(6;), and we have R(6) = 1 +
6X + O(6?), then we say that X is the infinitesimal generator of the one
parameter transformation R(6), and we set R(6) = e®*. (Compare the
discussion of Lie algebras at the end of this section.) If we think of R(6)
as acting on an initial object f, and we write f7%(6) = R(6)f, then
dff d
do ~ do
‘We are primarily interested in transformations and infinitesimal trans-

formations acting on functions. For example, for a function of two vari-
ables f(z,y), consider the differential equation

R(O)f = X1R(0). (1.10)

2 82
(g—zf t a7 rz) flz,y) =0, (1.11)

where r is a constant, independent of (z,y). Whereas for the algebraic
equation (1.1) we looked for solutions in the 2 dimensional (z,y) plane,
for the differential equation (1.11), the solution f(z,y) should live in the
infinite dimensional vector space of functions of two variables. Now a
rotation of the (z,y) plane induces an action g — T'(6)g on the space of
functions g of two variables (z,y) by the formula

(T(O)g) (112, y) = g(:l:(—o), y(—O))



4 The KdV egquation and its symmetries

(compare (1.6)). Or by considering f7(z,y;8) = (T(8)f)(z,y), we can
write this as an infinitesimal transformation, giving

%fT(w,y; 8) = (w% - yg—z) T (2,u:0).
Thus the operator z(8/8y) —y(8/0z) is an infinitesimal generator of the
transformation. The equation (1.11) has rotational symmetry; thus if f
is a solution of (1.11), so is T'(8) f. The equation (1.11) is also invariant
under parallel translation (z,y) — (z + a,y + b). Expressing parallel
translation also as an infinitesimal transformation gives

f@+a,y+b) =515 f(z,y), (1.12)

which is just the Taylor expansion of f around (z,y). (We note here that
this equation is often used in what follows. Compare also Exercise 1.1.)

For use in future chapters, we now want to give a brief treatment of
Lie algebras. Suppose that X and Y are linear differential operators,
and are the infinitesimal generators of operators e®X, eY; we consider
the product of e* and €Y. In what follows we use the notation

[A,B] = AB— BA

for the commutator bracket of the operators A and B. A calculation
shows that

IX Y — SX+0Y +(1/2)6°(X,Y]+(1/12)0* (X —Y,[X,Y ]|+

Here, in the exponent on the right hand side, the +--- means terms
of higher order in 6; it can be shown that each of these can be writ-
ten using only commutator brackets [—, —], without any products. If
[X,Y] = 0, that is, if X and Y commute, then e?Xe®Y = e#(X+¥) g0
that the composite e®Xe® of the two transformations coincides with the
transformations e®X+Y) corresponding to X + Y. In general these two
do not coincide, but the difference between them can be computed by
knowing the commutator bracket of the infinitesimal generators.

A Lie algebra is a vector space g, together with a law which associates
to any two elements X,Y € g a bracket [X, Y] € g, satisfying

1 XY]=-X],
@  [XY],21+(V.2),X]+ [Z.X],Y] =0,  (1.13)
(3 [aX +4Y,2] = a|X, 2] + BIY, 2].
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(Here a, 8 are coefficients acting by scalar multiplication in the vector
space g.) If we ignore worries about convergence, then for a Lie algebra
g, the set of transformations

G={e"|Xeg}

is a group. To run ahead of ourselves, we note that when treating infinite
dimensional symmetries, as we do in soliton theory, it often happens that
the Lie algebra g is comparatively easy to deal with, even in cases where
handling the transformation group G might lead to difficulties.

1.2 Symmetries of the KdV equation

As explained above, there are two different contexts in which rotations
are generated by an infinitesimal linear transformation:

in 2 dimensional space by ((1) _01) ;

0

in an infinite dimensional space by zé-y- - yg—z .

We can also consider nonlinear infinitesimal transformations. For func-
tions of two variables u(z, t), consider the differential equation

du ou O%u

This is the KdV equation, the main theme of this chapter. Here we take
the coefficients of u(8u/0z) and 8%u/0z3 to be equal to 1, but we can
make them into arbitrary nonzero constants by multiplying ¢, z and u
by constant scaling factors. All of these are also called KdV equations.
This equation describes an infinitesimal transformation in time ¢ acting
on a function u of z by the operator

Ku)=u (1.15)

9z + 33
Quite generally, an equation of the form du/dt = K(u) is called an evo-
lution equation. The equation is said to be linear or nonlinear depending
on the nature of the operator K (u). If K(u) is linear then u — K (u) is
just the infinitesimal generator described in Section 1.1.

From now on, we say that K(u) is an infinitesimal generator also in
the nonlinear case. We interpret the evolution equation, including the
nonlinear case, a8 given by infinitesimal transformation of functions, and
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search for symmetries of the KdV equation among these. We pose the
problem as follows: does the KdV equation

Ou

have a symmetry of the form
ou o
—_— = ?
s K(u)? (1.17)

What does it mean to say that (1.17) is a symmetry of (1.16)? Con-
sider a function of three variables u(z, ¢, s). In what follows, for simplic-
ity, we write derivatives (and higher order derivatives) as

(Ou/0t) = uy, 83u/8z3 = Uggy = U3g,

and so on. A polynomial in u and its z-derivatives uz, Uz, U3z, -. .18
called a differential polynomial in u with respect to z. For example,
(1.15) is a differential polynomial in u.

Let K(u) be a differential polynomial in u. We consider (1.17) as an
evolution equation in time s, and suppose that it can be solved with
the given initial value u(z,t,s = 0). In other words, starting from the
function of two variables u(z, t, s = 0) at time s = 0, and solving (1.17),
we get the function u(z,t,s = As) at time As. To say that (1.17) gives
a symmetry of the KdV equation means exactly that if u(z,t,s = 0) is
a solution of (1.16) at time s = 0, then so is u(z, ¢, s) at any time s.

Treating t and s on an equal footing reinterprets the question as fol-
lows: suppose that ¢ and s are two independent time variables, and that
we are given a function u(z,t = 0,s = 0) when both t = 0 and s = 0.
Then there are two methods to determine the function u(z, As, At) at
time (At, As), as shown in the following diagram:

u(z,t =At,s=0) — u(z,t=At,s=As)

I 2 5 4] (1.18)

u(z,t=0,s=0) — u(z,t=08=As)

In this diagram, the up arrows stand for solving (1.16), and the right
arrows for solving (1.17). The composite arrow A goes first up, then
across; whereas B goes first across, then up. If A and B give the same
result then (1.17) is clearly a symmetry of (1.16). Passing to the limiting
case when At, As are very small in (1.18), we see that for A = B to
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hold, we must have
o 9 =

Now does (1.19) hold for an arbitrary choice of K(u)? For example,
if we try setting K (u) = u?, we get

left — handside = (uug + u3z)s = vty + u(u?), + (u?)3,
3uuy + Gugtzs + 2uugs,
right — handside = (u2)t = 2uu, + 2uua,.

So we see that (1.19) fails without the additional condition 0 = w?u, +
6u,u,,. Thus for arbitrary choices of K (), (1.16) and (1.17) are not
compatible, so that (1.17) is not a symmetry of (1.16).

If in (1.15) we give u degree 2, u, degree 3 and u,, degree 4, then
the right-hand side is homogeneous of degree 5. Although we do not
explain the reason behind it, in searching for symmetries, there is no
loss of generality in our argument below in restricting the infinitesimal
generating operator to be a homogeneous differential polynomial.

The general form of a homogeneous differential polynomial of degree
7is

Clu2u,, + Couusy + Cattgug; + Causy. (1.20)

Substituting (1.20) for K (u) in (1.17) and assuming C; = 1, we see, after
a similar but lengthy calculation, that the coeflicients C; are uniquely
determined by the condition that (1.16) and (1.17) are compatible. In
fact, we get

ou 6
5 = wlug + 2uuag + dugtgs + § Usa- (1.21)

Remark 1.1 There do exist homogeneous differential polynomials of de-
grees 8 (respectively 5), but the resulting symmetries of u(z,t) correspond
simply to the parallel translation z — x + s (respectively t — t + s).

If we set to work to calculate more systematically, we would find that
there apparently exists just one symmelry in each odd degree. Now, how
can we carry out the argument for every odd number? See Exercise 1.2
for an example other than the KdV equation.
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1.3 The Lax form of an evolution equation (the approach via
linear differential equations)

Consider the linear differential equation

2

0
— L2 —
Pw=k*w, where P= a7 +u. (1.22)

We think of u as given as a function of , and P as an operator acting
on functions of z. Thus k? is an eigenvalue of P, and k is called the

spectral variable. If u = 0 then w = e** is one solution, but we can also
look for solutions in the general case as formal power series of the form

w=et (wy+ 22 L =t Ok (1.23)

Here formal means that we do not nec&ssarily require the power series
to converge. Substituting (1.23) in (1.22) gives
3wo Bw 6 Wji—1
— =0 d 224+ 2=
Bz and e Yt e
Assuming that wo = 1, the w; can be determined successively (up to
constants of integration) by integrating with respect to z.

We now introduce a time variable ¢, and allow the given function
u = u(z,t) to vary with t. We want to solve (1.22) in terms of a time
evolution of w with a linear operator. The operator P in (1.22) is a
second order differential operator, so this time we try looking for a third
order differential operator

dw & 0]

Esz’ where B_B 3+bla
Solving this gives a function w(z, t; k) of two variables z, ¢ for any fixed
value of k. We know that (for u independent of k) at time t = 0,
the function w(z,t = 0;k) satisfies (1.22). Does this continue to hold
at other times t? (For this to make sense, u = u(z,t) must also be
independent of k.) If (1.22) holds then differentiating both sides with
respect to t gives

+uwj_1 =0 forj2>1.

+bs. (1.24)

(aP +IP, B])w 0. (1.25)

Here [P, B] = PB — BP is the commutator bracket of the differential
operators P and B, and 0P/8t = 8u/8t, where u is the given function.
Thus (1.25) only involves derivatives with respect to z, so is an ordinary
differential equation (independent of k). If (1.25) holds for an arbitrary
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value of the eigenvalue k then the ODE (1.25) has infinitely many inde-
pendent solutions. This is impossible unless the differential equation is
trivial. Thus we must have

oP

— +[P,B] =0. .

T [P,B]=0 (1.26)
Writing this out as conditions on the coefficients u of P and b;, by of

B gives

bl = ;u,
by = %u@’
ou 3 1
3 = Ut guse (1.27)

Here we are solving under the condition that u, b;, b, and their z-deriva-
tives tend to 0 as £ — +o00. Thus (1.22) and (1.24) are compatible only
if u(z, t) is a solution of the KdV equation. The compatibility condition
(1.26) is equivalent to the KAV equation, and is called the Laz form of
the KdV equation.

We summarise the above argument schematically:

linear system of equations: Pw = k?w and % = Bw

compatibility (1.28)
condition

Lax representation of the KAV equation: % =B, P].
Replacing the third order linear differential operator B in z with lin-
ear differential operators of higher order gives rise to nonlinear evolution
equations called the higher order KdV eguations, which involve higher
order derivatives. To see this clearly, we carry out a few algebraic pre-
liminaries in the next chapter. See Exercise 1.3.

Exercises to Chapter 1
1.1. What is the function generated from f(z) = z by the infinitesimal
transformation z28/0z?
1.2. Determine a symmetry of the equation

2
a7 = WUz + Uszzs-

ot
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The KAV equation and its symmetries

[Hint: Set K (u) = Autu, + Bu?ug, + Cuugzug, + Dud + Eus,, cal-
culate (8/0t)(K (u)) and (8/8s)(K (x)) by the method indicated
after (1.19), then equate coefficients to determine A, B,C, D, E.]

1.3. What equation do you get from the Lax equation (1.26) if you
swap the roles of P (1.22) and B (1.24)?



2
The KdV hierarchy

The value of mathematics is its unrestrained freedom of expression, the
licence to introduce new concepts. You can probably still remember the
amazing experience of meeting the complex numbers for the first time.
In this chapter, we introduce the inverse of the differential operator
0/0z. We then see the astonishing power with which this gives rise to
the higher order KdV equations.

2.1 Pseudodifferential operators

In discussing operators, we usually have in mind some operations applied
to functions. However, here we concentrate instead on the composition
rules for operators. Depending on the situation, we may be able to
dispense altogether with actual operations. As we see in what follows,
by doing this, we can define negative powers of a differential operator.

For simplicity of notation, we write 8 for the derivative with respect
to z. For f a function of z, consider the operator 9" o f obtained as
the composite of multiplication by f with the differential operator 9".
We can write this out with all the differentials on the right, and 8" o f
becomes

of= };0 (’]‘) @ f)osni (2.1)

(compare Exercise 2.1). Here & f is the function obtained as the jth
derivative of f, and (;‘) the binomial coefficient, which we think of as
defined by the formula

n\ _n(n-1)---(n—j+1)
G) =" @2
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When j is a natural number, this definition makes sense for any value
of n. Now if n is a positive integer then ('J') =0 whenever j > n+1, so
that there is no harm in allowing the sum in (2.1) to run over all natural -
numbers j. Having done this, we can use (2.1) to define the composite
of multiplication by f and the operator 8" for any value of n. More
generally, we consider an expression of the form

L= Z £;0°79, (2.3)

i—0

which we call a (formal) pseudodifferential operator of order < . The
product of pseudodifferential operators is defined using (2.1); see Exer-
cises 2.2-3.

Example 2.1 We ezplain how to compule the square root of the
Schrodinger operator 8% + u. For this, set

X=0+) fu0" (24)

n=1
with unknown functions f,, and compute the square:
X% =8%+2 N+ Ofn)0 "+ <—n) A & - g—m—n—i,
;fn ”2231( ot 3y )10 fm)

20

If we set X2 = 0% + u, we can solve term by term for the f,. We write
out the first few terms, obtaining

2
@ +u)2=0+ %u@"l - %ua,a-2 + (Egi - %) 34, (25)

We now explain how to define an action of the pseudodifferential op-
erator L of (2.3) on a power series of the form

— KBekz W W2,
w=k"e (w0+k+k2+ ) (2.6)
First of all, in the case wp =1, wy = wp = -+ =0, it is natural to set

00
L(kPek®) = ko+Pek= N " fok ™,
n=0
because 8" (e**) = k™e*® for a natural number n. Now the power series
‘w of (2.6) can be written in the form

w= Me*¥ where M= ijaﬂ-f.
Jj20



2.2 Higher order KdV equations 13

Thus the action of L on w can be defined by Lw = L(Me**) = (Lo
M)(e*®). It is not quite obvious from the above argument that the action
of a pseudodifferential operator is well defined and without contradiction,
but we do not want to get involved in the proof at this point.

2.2 Higher order KdV equations
Let M be a pseudodifferential operator

o0
M=) go (2.7)
1=0
of order n € Z. We define M. as follows:
n
My=Y g0, and M_=M-M,. (2.8)
=0

Thus M, is a differential operator.

Example 2.2 We return to the Schridinger operator P = 8% + u dis-
cussed in Ezample 2.1, and compute (0% + u)3/2 using (2.5). Then
comparing with (1.24) and (1.27), we see that

B= ((62 + u)3/2)+. (2.9)
More generally, let [ be a positive odd number. Set
B = ((8*+ u)l/2)+, (2.10)

and consider the corresponding Lax form (1.26). We have P = 8% + u
and [P, P!/2] = 0, and we therefore get

[P, B = —[P,(P"?)_]. (2.11)

On the left-hand side, both P and B; are differential operators, and
hence so is [P, By]. On the right-hand side, P is a differential operator
of order 2, and (P'/2)_ a pseudodifferential operator of order < —1,
so that the order of —[P, (P"2)_] as a pseudodifferential operator is at
most 2+ (—1)—1 = 0 (see Exercise 2.4). Therefore (2.11) is a differential
operator of degree 0, in other words, a function. '

This is a differential polynomial in z. We write K;(u) for [P, (P¥?)_].
On the other hand, 9P/3t is equal to u/dt, and the Lax form (1.26) is
equivalent to the nonlinear evolution equation in u

o
Eu = K;(u).
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When we derived (1.27) from (1.26), the computation of the coefficients
b1, bs was based on the condition that the terms of order greater than
1 in [P, B] vanished, but these conditions are automatically satisfied by
virtue of the treatment in (2.10).

2.3 Infinitely many commuting symmetries
We use variables z; indexed by the positive odd integers [ (compare
Exercise 2.5) and consider the system of equations
du
oz,
where Kj(u) = —[P, (P"/?),].

H

Kij(u) forl=1,3,5,..., (2.12)

In particular, for ¢ = 1,3, we get

ou
a;—'uz»

and ﬂ=§uu+—1—u.
zs 2 '3 %

In other words, z; = z, 3 = t (see Exercise 2.6). We now show that all
of these are pairwise compatible. We must prove that

Kj(u) = Kz(u) (2.13)

In particular, taking j = 3, we find that K;(u) give symmetries of the
KdV equation. For general j, !, (2.13) asserts that the symmetries given
by K;(u) and K;(u) commute. That is, composing the evolution in the
z; time direction and in the z; time direction is independent of the order
of composition, in the sense discussed in connection with (1.18).

Proof We have
oP

5;[ = _[P’ (Pl/z)*l-]'

Hence if f(P) is any function of P, we have
) — (PP

Therefore

9 /2y, — _@_ /2y _ i/2 (pl/2
-5:1:—;(1:1 )+ - (a:B‘PJ + - ([PJ 1(P )+])+ ’
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so that
0

%Kj(")

0 i
_6_3:,[P’ (P77%),]

[[P, (P%)4], (PJ'/2)+] + [P, ([PJ'/2, (P’/2)+])+] . (2.14)
Now using the fact that

([P72@724]), = [P P7)] + ([P (PY2])
= [P, P] = ([, P2

the two terms on the right-hand side of (2.14) are

[P, [(Pj/2)+,(Pl/2)+]] _ [P, ([(Pj/2)+,Pl/2])+] ‘ (2.15)

Thus applying the Jacobi identity (1.13) to (2.14) and (2.15), the left-
hand side of (2.13) becomes

[P ([P @) |+ [[Pen]e],

and this is exactly the far right side (2.14) with j and ! interchanged.
Q.ED.

The equation (2.12) obtained in this way is the ith order KdV equa-
tion. The whole system of equations is called the KdV hierarchy. We
summarise our result as follows:

Pw = k*w
linear system of equations: a_w = (L), w where L2 = P,
827[ - +%
compatibility
conditions

KdV hierarchy: 3713 = (LY 4, P].
l -

That is, by searching for symmetries of the KAV equation as infinitesi-
mal transformations of the form (2.12), we have obtained infinitely many
pairwise commuting symmetries. In fact, these are not the only symme-
tries of the KdV equation. There is much bigger noncommuting sym-
metry. Before going into this, we generalise our considerations so far.
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2.4 The KP hierarchy

In place of the square root of the Schrédinger operator, (62 + u)l/ 2 we
consider a pseudodifferential operator,

[ o]
L=8+) fj8~ (2.16)
Jj=1
of order 1, and the corresponding eigenvalue problem:
Lw = kw. (2.17)
We prepare an infinite set of variables x = (z,z2,23,...), and identify
z, = x. Now consider a formal solution

w1 + % + .- .) , Wwhere {(x’ k) = z.’t_.lkj (218)

w = ef(x:k) (1 tT te
~

(see Exercise 2.7). Note here that
6_'eE(x,k) = kI eb0:k) (2_19)

Tj
Considering the linear system of equations

v = Bjw, where B;=(L’)4, (2.20)
6(13]'
we find that the compatibility condition between (2.17) and (2.20) is
oL
— =[Bj, L}. .
52, = 1B 1 (221)

This is an infinite set of nonlinear evolution equations in infinitely
many functions f, fa,... of the infinitely many variables (z, z2, z3, . . .).
Equation (2.21) is called the KP hierarchy.

If L satisfies the KdV condition

(L*)-=0

then we get back the KAV hierarchy. In this case L? = 82 + u, and all
those infinitely many functions f;, f2,... are determined by the single
function u. Also, if j is even, we have [B;, L] = 0, and so

9u _o

3:0,—
Thus of the infinitely many variables, only those with odd index are
meaningful.
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As defined above, the KP hierarchy is an equation in infinitely many
unknown functions, but it can be reduced to a single unknown function.
This unknown function 7 is called a tau function. In what follows we
discuss this without proofs.

We consider the problem of looking for a formal solution of the linear
equation (2.20) in the form

w=Mef®H®,  where M=1+) w;87. (2.22)

=1
Substituting (2.22) in (2.17) gives the relation
L=ModoM™! (2.23)

between pseudodifferential operators (see Exercise 2.8). By (2.23), we
can use (wj,ws,...) in place of the unknown functions (f1, f2,...). In
fact, by the compatibility condition (2.21), it turns out that these can
all be written in terms of a single function r:

1 1

: )
(T — =, 22— —=,23 — ==, ...
( k 22 B ) b (204)
7(z1,22,23,...)

w =

(see Exercise 2.9). From this, we can determine (w;, w2, ...) in terms of
T: for example,

or
w = _6_:1:1 T, (225)
1 (8% or
and Wy = 5 (8_3321"—6_:1:2>/T (2.26)

Thus the KP hierarchy can be viewed as an infinite set of nonlinear dif-
ferential equations in a function 7 of infinitely many variables (z;,z2,
z3,...). In what follows, the tau function 7 plays a fundamental role
in discussing the noncommuting symmetries of the KdV and KP hier-
archies. The original unknown function u of the KdV equation can be
written in terms of T as follows:

2

3 922
The KP hierarchy includes the following equation in u (see Exercise 2.10)
36%u @ (6u 3, 5u 163u)

4927 9z \0xs 2 0z 4

u= log 7. (2.27)

55 2“0z 195 (2.28)
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2.1.

2.2

2.3.
24.

2.5.

2.6.
2.7.

2.8.
2.9.

2.10.

The KdV hierarchy

Exercises to Chapter 2

Explain the relation between equation (2.1) and the Leibniz rule
of dlﬁ‘erentml calculus.

IfL= Z fr0° % and M = Z gr0%~k, compute the composite

LoM (also abbreviated to LM )

Compute (8 + z)~ 1.

Let L, and L, be pseudodifferential operators of orders a; and
ag; what are the orders of L) Ly and [L,, L]?

Explain why there is no point in considering even values of ! in
(2.12).

What is g—; in (2.12)?

Derive the relations holding between f;, f, in (2.16) and w1, wo
in (2.18).

Determine M~ =14+ 0,87 4+ v,07 2 +

Equations (2.25) and (2.26) can be rewritten

OlogT —w
3:1:1 1,
Ologt s Ou
= -2 Sl
B2 W2 U

Prove that these two relations are compatible.
Derive (2.28).
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The Hirota equation and vertex operators

Hirota’s theory of equations of bilinear type is a classic instance of free-
dom of expression in mathematics. In the 1970s, Hirota introduced an
effective method for constructing solutions of the KdV equation and
other soliton equations, although at the time it was not clear that his
methods had any connection with other areas of mathematics. However,
a useful idea in mathematics does not remain in isolation for long. We
will see how the Hirota equation relates to the vertex operators from
elementary particle theory.

3.1 The Hirota derivative

Given two functions f(z) and g(z) of a single variable z, we can write
out the Taylor expansion of f(z + y)g(z — y) around y = 0 in the form

f(z + )o@ - ) =Z;—,<Dz;f-g)yf. (3.1)

=0

The operator (f,g) — Dif - g is the Hirota derivative.

Example 3.1 We have

o o
D:f-g= —aiy—f—ai,

8f . 0fdg &%
Dif'g:ﬁg_zﬁﬁ“L 8z2 "

Note that Dif - g is a single entity, and the D, are not to be thbught
of as some kind of individual operators. Thus Dif - g is definitely not
an object called DI f multiplying g. The Hirota derivative in many



18

2.1,

2.2,

2.3.
24.

2.5.

2.6.
2.7.

2.8.
2.9.

2.10.

The KdV hierarchy

Exercises to Chapter 2

Explain the relation between equation (2.1) and the Leibniz rule
of dlfferentlal calculus.

IfL = E fr0° % and M = 2 gx0%~%, compute the composite
k=0
LoM (a]so abbreviated to LM).

Compute (8 +z)7 L.
Let L, and L, be pseudodifferential operators of orders a; and
ag; what are the orders of L)Ly and [L;, Ly]?
Explain why there is no point in considering even values of ! in
(2.12).
What is 2% in (2.12)?
0:85
Derive the relations holding between f;, f2 in (2.16) and w;, ws
in (2.18).
Determine M~1 =1+ v,07! +v20~2 +
Equations (2.25) and (2.26) can be rewritten

Ologt
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The Hirota equation and vertex operators

Hirota’s theory of equations of bilinear type is a classic instance of free-
dom of expression in mathematics. In the 1970s, Hirota introduced an
effective method for constructing solutions of the KdV equation and
other soliton equations, although at the time it was not clear that his
methods had any connection with other areas of mathematics. However,
a useful idea in mathematics does not remain in isolation for long. We
will see how the Hirota equation relates to the vertex operators from
elementary particle theory.

3.1 The Hirota derivative

Given two functions f(z) and g(z) of a single variable z, we can write
out the Taylor expansion of f(z + y)g(z — y) around y = 0 in the form

f+y)g(z—y) = Z ;(DLf - g)y. (3.1)

1—0

The operator (f,g) — DZf - g is the Hirota derivative.

Example 3.1 We have
of

sz'g_axg fax
o*f ,0fdg 0%
DS 9= 539 2pppn ot

Note that DJ f - g is a single entity, and the D, are not to be thbught
of as some kind of individual operators. Thus Dif - g is definitely not
an object called Dif multiplying g. The Hirota derivative in many



20 The Hirota equation and vertez operators

variables is defined in the same way. That is, if f = f(z1,z2,...) and
g = g(z1,x2,...), we have

eU1D1+Il2D2+--,f ‘g = f(a;l + Y1, T2 + v2,-. ')g(xl —%1,Tg — y.z’: . _)’
where the translation of the coordinates z; — z; + y; is as in (1.12).
Expanding the left-hand side as a Taylor series in (31, y2,. - .), We get
f-g+y1(D1f-g) +y2(Daf-g)+---+ 21/1(D2f g)+-

and comparing with the right-hand side defines all the Hirota derivatives.

Example 3.2 Suppose that f is a function of two variables (z,t). Then

&#f , 8fof
D‘sz'f-z(at—ax ‘a%)

The following equations hold:
8? 1,

64 2
o081 = 5087 1) =6 (52027 1)) -

Now we view (2.27) as defining a new unknown function 7, and rewrite
the KdV equation (1.27) as an equation in 7. Then after carrying out
one integration with respect to z, we get

62 ——logT = 62 log T 2+2§4—10
S ptow 8 % o2 108 o4 BT
Using the above formulas, we can rewrite this as follows in terms of
Hirota derivatives:
(4D¢D; — D)r -7 =0. (3.2)

We write (D1, Da,...) for the Hirota derivatives with respect to the
variables (z1,Z3,...). A Hirota equation is an equation of the form

P(D;,Ds,...)7-7=0, (3.3)

where P(D;,Da,...) is a polynomial in (D,,D,,...). Consider how we
might solve it. If P is an odd function then Pr - r is trivially 0, inde-
pendently of 7. For example, D7 -7 = (87/8z)r — 7(07/8z) = 0. Thus
we suppose that P is an even function, that is,

P(Dy,D,,...) = P(=Dy,-Ds,...).
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Suppose also that P(0) = 0. First, 7 =1 is always a solution. Thus we
look for a solution by expanding it as

T=1+¢f; + O(e?).

Taking the degree 1 term in € of (3.3) gives a linear equation in f;:

P(8,1,0s,...)f1 =0, where d; = 3_ (34)
32:]'
If we choose a set of complex numbers ki, k2, . . . satisfying
P(ky,ky,...)=0

then
fi= ek1z1tkazate

satisfies (3.4). Or more generally, if we prepare several such sets (lc(J )
KD, ...) with P(k, k5, ...) = 0 then

n . :
hi= Y @9

=1

is again a solution. In general, 1 + ¢f; is not a solution of (3.3) to all
orders. However, in the case n = 1, we can break off the expansion at
the linear term in £, and get that

7 = 1 4 gekrzrtkazate
is a solution of (3.3), as can be verified by a direct calculation. For
example, for the KdV equation, writing ¢ for £, we get

3
7 =1+ ce2kat2k’t

as a solution of (3.2). A solution obtained in this way is a 1-soliton
solution.

More generally, in the Hirota equation, a solution that can be ex-
pressed as a polynomial in exponentials

ekrz1tkazat
of the variables 1,3, ... is called a soliton solution. Here
kizy + kozo + - -+

is called an ezponent. In particular, a soliton solution having n distinct
exponents is called an n-soliton solution.
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The special feature of the KdV equation as an integrable system is not
just that it can be rewritten as a Hirota equation, but that for arbitrary
n, there exists a solution having linear approximation 1 + ¢f;, with f;
as in (3.5); that is, there exists an n-soliton solution. A general Hirota
equation always has soliton solutions for n = 1,2. As an empirical fact,
the existence of n-soliton solutions for n > 3 is more or less always
equivalent to the integrability of the system.

Let us consider n = 2. Suppose that (k(’) kP,..) for j = 1,2 are
given, satisfying P(k(’) G ), ...) =0. We consider

2
() (1)
r=1+4 EZCJ'ekIJ zy+kg T3+ +€2f2 + 0(63).
i=1

Taking the second order terms in ¢ in the equation P(D;,D,,...)7-7 =0
gives

P(01,08;,...)fa

+ercaP(kV — kP kD — B2 ekt +hD)m + (D D)zt _ g

Solving this gives

1 2 1 2
PGk — k(2 k5" kY, =) epe ROk D + Azt

fa=—
P(kgl) + k(2) k(l) k(2)

and the expression truncated at €2 is a 2-soliton solution. For P =
4D,D, — D2, setting k(1) = (2k;,2k}) and k@ = (2k3, 2k3) gives

falz,t) = E:l k ;20 2 e2(k1+ka)z+2(k}+k3)t

(see Exercise 3.1).

3.2 n-Solitons

We write down a formula for an n-soliton solution of the KdV equa-
tion. In Section 3.4 we prove that this is the tau function of the KAV
equation. We prepare parameters c,,...,c, and ky, ..., k,, and extend
the two variables (z,t) to an infinite number of variables z;, = z,z3 =
t,Ts,x7,. ... For the infinitely many variables z,, z2,z3, ... of (2.18), we
introduce the notation

£(x,k) = iaz.-k‘,
i=1



8.2 n-Solitons 23

and define the exponents £; and factors a;;» by

&= 2) Koy = €00, k) — £(x, k), (3.6)
=0
o (ki k)
Qiir = (k' T ki/)z . (37)

We set I = {1,...,n}. The sum over all subsets J of I

T(21,33,...) = Y (]‘[c,) I ai | exp (Zg,-) (3.8)

JCI \ieJ ii'ed ieJ
i<é/

is the n-soliton.

Example 3.3 In the case n = 3,

T =1+ c16% + c2ef? + 3t
+c 02(112861'*”62 + c1C3a13ef‘+€3 + Czc;;tlgaefﬁ'fa

+c102€3a12a13a23€51 43T,
In other words, in the above notation, T(z1,z3,...) satisfies
(4D;D3 —DH)r-7=0
(see Exzercise 3.2).

We add a few words concerning the fact that we have added infinitely
many variables. These variables correspond to the commuting symme-
tries of the KdV equation considered in Chapter 1, that is, to the KdV
hierarchy. Let us consider the problem of whether the higher order KdV
equations can be written in Hirota form. If we write the order 25 + 1
KdV equation in the usual way in terms of the unknown function u, it
can be written as an equation in the two variables z; and z3;;.

However, if we try to rewrite it directly in Hirota form using D; and
Dgj+1, it just does not work out properly. To put things differently, for
any n-soliton (3.8), we can try to reformulate the problem as trying to
find a polynomial P satisfying

P(DI,D;;,...)T'T =0. (39)

This is not a Hirota equation involving only D, and Daj,, so that we are
looking for an equation containing an arbitrary finite number of Hirota
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derivatives. If the solution is (3.8), looking for an equation of the form
(3.9), we find, for example,

D§ — 20D3D; — 80D2 + 144D, Ds.

Studying this in more detail, and counting Dj;;1 as order (2j + 1),
we find the following numbers of equations of order ! (including trivial
ones):

order number of
equations

NS Ot bW N
DN WO =

More generally, the number of KdV equations of order m of Hirota type
equals A — B, where A and B are the numbers of ways of writing m as
a sum of positive integers, with the following restrictions:

A = #{partitions of m as a sum of odd positive integers},
B = ##{partitions of m as a sum of positive integers =2 mod 4}.

For example, there is one further linearly independent equation in
order 6, namely D$ +4D$ — 32D3. One can ask if the equations arising
in this way, when translated back into equations for the function u,
really coincide with the KdV hierarchy considered in Chapter 1. This is
in fact the case, but we do not go further into this question in this book.
(However, compare (3.27).)

3.3 Vertex operators

The introduction of infinitely many variables was a crucial step for the
purpose of displaying the symmetries of the KAV equation. This is clear,
first of all, because these variables are just another way of expressing
the existence of the commuting symmetries. Second, and even more
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necessary, they play a fundamental role in describing the noncommuting
symmetries which we treat from now on.

We introduced the idea of infinitesimal transformations in (1.10). We
use ¢ in place of 8, and consider an infinitesimal transformation of the
tau function given by

a

Er(zl,za, .o ) = XT($1,$3, .. )

We want to search for infinitesimal transformations of this type that
transform a solution 7 of the KdV hierarchy into another solution. In
fact, we will see that, starting from the n-soliton solution 7, (3.8), there
exists an X such that

—_ X
Tn+l =€ Ty

is an (n + 1)-soliton solution.
Let k be a parameter, and consider the linear operator

o0 . 8
_ 2+l | ex
X (k) = exp (2 E k¥ $2J+1) p ( 22 (25 + 1 )k2i+1 3:62,...1)

=0 j=0
(3.10)
An operator of this form is called a vertez operator. The name comes
from the theory of elementary particles, but we do not go into this. The
action of X (k) takes a function f(z;,zs,...) into

o , 2] 2 2
X(k)f(xl’z&'“):exp (22k21+1$2j+1) .f (zl - ','c':z3 - 3F7---) ’

=0

where the translation of the coordinates z; — z; — 2/k, etc., is inter-
preted as in (1.12).

Lemma 3.1

(k1 — ka)? 2 & 2j+1
X (k1) X (kg) = o T ha)? 222’“5 Zaj41

i=1 j=0

2 oo
]
-2
X exp ( EZ (21 + 1)k21+1 3.‘!:2]...1)

=1 j=0
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Proof We want to prove that the two operators A and B given by

Ao - 2i°: 1 9
(2 + Dk Oz’

i=0
o0
2j+1
B = 2Zk2]+ T25+1
=0
have exponentials e?, e? satisfying

an_ (k1—k)? g 4
e’e ——(k1+k2)2e e,

We use the following formula, leaving the proof as an exercise (see Ex-
ercise 3.3):

[A, B] a scalar = e4eBe™4 = el4BleB, (3.11)
(Here by a scalar, we mean an operator not involving either differenti-

ation with respect to the variables z;, z3, ..., or multiplication.) In our
case,

00 1 kz 2j+1
5= -3 5501 (&)
k

J=0

> 1 2\ =1 (ko \!
=929 (=22} 9N Z([22

§l< kl) ;l(kl)

I
|
<3
[+]
N
—
+
Kl iKs
N——
[ %]
+
<3
1]
N
-
|
kol ks
N—
[ %]

so that [4, B] is a scalar,

oa.8) _ (k1 — kz)?
(k1 + k2)?’

and the lemma follows. Q.E.D.

As we see from the proof, it would be more accurate to describe the
expression (k1 — k3)2/(k1 + k2)? in the lemma as its Taylor expansion
with respect to ka/k;. From the lemma, we get in particular

X — 1 4 X (k).

- Therefore e“X(¥)1 gives a 1-soliton solution. In general the n-soliton
solution in the form (3.8) is clearly obtained by taking

T = ec1X(k1) ee ecnx(kn)]_. (3.12)
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Let us write out the vertex operator and the n-soliton solution for the
KP equation. Writing the KP equation (2.28) in Hirota form gives

(D} + 3D% — 4D, D)7 - 7= 0. (3.13)

We leave the computation as an interesting exercise. Set P(ki, ko, k3) =
k} + 3k2 — 4k, ks; then the solutions of P(ky, k2, k3) = 0 are

(k1 k2, k) = (p — ¢,0° - ¢, 0% — ¢°) (3.14)
for any p,q. Moreover, given two solutions
(k1,k2,k3) = (p1 — 41,13% - Q%,P? - Q?),
and (k;.’k;’kg) = (P2—42,P§"qg,pg_qg),
we get

_P(ka — ki, ko — ko, ks — k3) _ (p1 —pa2)(a1 — @2)
P(ky + Ky, k2 + k3, k3 + k3)  (p1 — g2)(q1 — p2)
We can set

& =Y (0] — a)x; = €(x,p) — £(x, @), (3.15)
=1

(pi — pir)(gi — gv)
(pi — gir)(gi — p&r)
in the 1-soliton solution (3.8). The vertex operator X(p,q) that gives
rise to the n-soliton solution is

X(p,q) = exp (i(p’ -¢ )wj) exp (—

j=1

(3.16)

Qi =

LRSS q—")%j) (317)

j=1
(see Exercise 3.4). Then
7= X(Pra) . onX(pnign)g (3.18)

is an n-soliton solution. To write this more concretely, in view of (3.15)
and (3.16), it becomes

T(ml,x2, .. ) = Z <H C,) II Qii’ | €Xp (Z f,) . (319)

JCI \ieJ iweJ ieJ
i</

In the following section we prove that this tau function actually satis-
fies the KP hierarchy. Specialising by setting p; = —g; reduces (3.19)
to (3.8), and so we see at the same time that (3.8) satisfies the KAV
hierarchy.
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3.4 The bilinear identity

We now prove that the tau function (3.18) is actually a solution of the
KP hierarchy. The key to this is the following result.

Theorem 3.2 (Bilinear identity) For arbitrary x and x’, set

E=£&(x,k), & =¢&(d,k).
Then the following identity holds:

dk . ¢ 1 1 1
0= ﬁe T :cl—k—,:cz—ép,... :c1+k,.1:3+ T R

(3 20)

dk
Here the contour integration f oy means that we expand the inte-

grand around k = oo and take the coefficient of k~!. If the integrand is
a holomorphic function on the complex plane except for poles at a finite
number of points k € C, this can be computed as the sum of residues at
these poles (see Exercise 3.5).

Proof We prove (3.20). We have to show that if in (3.19) we change
zj to z; — 1/jk? and compute the pole in k, the sum of the residues is
0. Computing the value of the &; of (3.15) at (z; — 1/k,z2 — 1/2k2,...)

gives
€xp (Z(f QJ) (z, jich)) = ::Z: et

j=1

In the same way,
1 k—g o
exp (Z(V’ q’)( ka)) =——-k~z,- eft,
i=1

The residue at k = ¢; is

Z (HC{) H a; | exp Z & (q,--—p‘-) gf:_meE(X.pe)
1€\ (i} 9% —q

ieJCI \leJ 1 l'e.l leJ\{i}

x Y (H q) II aw |exp (Eg,) . _Zz e=E0¢,a0)

igJ'CI \leJ’ \ wes leJ’
<t
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= ¢;(g; — pi)ef P €6 a0) Z (Hcl) H aw Hp‘

igici\tes / \wes  JiesPiT
. i<t
E &
igJ'cr \leJ’ e leJ’ q.
(244

&

elEJ

The residue at k = p; can be computed in the same way, and the two

cancel exactly. Q.E.D.

We can use the bilinear identity to deduce that the tau function pro-
vides solutions to the KP hierarchy in each of the two following senses:

(i) the linear system of equations (2.20), and
(ii) the bilinear system of equations (3.9).

We set

1 1
7'(.7:1 - ;,.’Dz — 3T ) ef(xy")
)

wix k) = T(z1,22,...)

1
W k) = TOLE BBt ) e

T(IIJ]_,.’Dg, )

Then these are of the form

w(x, k)

ef(:k) (1 +§:%) )
w*(x, k) = e ¢k <1+Z )

=1

but as we have just proved, these satisfy

f w(x k)yw*(x', k) =

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

Let us derive (2.20) from (3.25). First we make two-general observations

concerning (3.25).

(1) If Q is any differential operator in variables (z;,z,, ..

}[ —%’%(Qw(x, K))w* (', k) = 0

.) then
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(2) If a power series of the form

~ ey 7
(x, k) = €0k . k—,‘ (3.26)
satisfies
?{ﬁw(x k)w*(x',k) =0
then @, = Wy = --- =0. (See Exercise 3.6).

We prove (2.20). Define L by (2.22) and (2.23), with the w we are
considering. Then setting

0
Q 615] (LJ )+

gives

ow . .
== _ [ j
Quw % w4+ (L7)-w,

J
so that by (2.17), (8w/8z;) — L w is of the form (3.26). The same holds
for (I/)-w = (I/)mexp(). k’z;). Therefore Quw is also of the form
=1

(3.26). Hence by (1) and (2) we get Qw = 0. We can see that the
tau function satisfies an equation of Hirota type as follows. Making the
change of variable z; = z; + y;, ) = z; — y;, we get

1 1
f—exp(2zk7y1)"'($l+yl prte- 2k2"">
X - ~l»l + = =
T\Z1— WY1 K’ - Y2 oK2'"

dk o0 . o0
= ¢ — Ty .
2ﬂ_iexp(22k yJ) exp (2( lk') )T T.
j=1 j=1
Thus expanding
exp (2121 k’yj) exp (J; ('yz lk‘) Dz) (3.27)

in (y1,y2,...) and taking the coefficient of k! gives an equation of
Hirota type (see Exercise 3.7).
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Exercises to Chapter 3

Find some solutions of (3.2) that are polynomials in z and ¢.
Verify that the 3-soliton solution of the KdV equation satisfies
(3.2).

Prove (3.11).

Compute the product X(p1,q1)X(p2,¢2) and the commutator
bracket [X (p1,q1), X (p2, ¢2)], following the method of calculation
of Lemma 3.1. Does the commutator vanish?

Find the tau function of the KP hierarchy as a polynomial in the
three variables (z1,z2,z3). In other words, you have to find a
polynomial that satisfies (3.20).

Prove the assertion (2) concerning (3.26).

Prove that (3.13) follows from (3.27).
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The calculus of Fermions

As we become more familiar with solitons and their structural properties,
the algebraic laws governing the symmetry behind the equations come
gradually to the fore. The scene changes for a while to this algebraic
world; in this chapter we explain Fermions and their calculus.

4.1 The Bosonic algebra of differentiation and multiplication

We have treated infinitesimal transformations of differential equations
(or functions) quite generally in terms of evolution equations. To deal
with cases such as the KdV or KP equations having infinitely many sym-
metries, and to treat this hierarchy all at one go, we have naturally been
led to considering functions of infinitely many variables x = (z,,z,,...).
For the sake of definiteness, for the moment, we restrict the functions
we consider to polynomials in these variables. Although the number of
variables is infinite, each polynomial itself is a finite sum of monomials,
80 involves only finitely many of the variables. When calculating the
weight of a polynomial, we give each variable x,, the weight n.

Now when we speak of transformation of functions, in the first in-
stance, we have the most basic operations of differentiation and multi-
plication. We define operators a,, and a}; acting on polynomials f(x) by
the following rules:

N0 = o0, (GHX=ouf@. @D

. We see at once that these operators satisfy the following commutation
relations, called the canonical commutation relations

[am,8a] =0, [a, 03] =0 and [am,a;] = Omn. 4.2)
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More generally, we can define natural operations of product and sum
on differential operators with polynomial coefficients

o a a\" /708 \A
Z Carag-frfar-L1 Ty (6_.’1:1.> (6_11:2) Tt (43)

which make the set of all of these into an algebra.

We want to consider {an,a}}n=12,... as a set of abstract symbols sat-
isfying the relations (4.2); the a,, and a}, are called Bosons. Quite gen-
erally, given a set of letters S and a set of relations R holding between
them, by starting from S and using the operations of product, sum and
scalar multiplication an arbitrary finite number of times, we obtain the
algebra generated by S with defining relations R. The algebra B gener-
ated by S = {an,a%}n=12,. with the defining relations (4.2) is called
the Heisenberg algebra. We can see that by successively using the canon-
ical commutation relations, we can express any element of B in a unique
way as a linear combination of the following elements:

ay --~a:.i",'aﬁi .--afs

formy<:.--<my, ny <---<n,and 4,0, =1,2,....

Quite generally, a representation of an algebra A on a vector space V is
a linear map p: A — End(V) satisfying p(ab) = p(a)p(b) for all a,b € A.
If A has generators S and defining relations R, this is equivalent to
specifying a linear map p(s) of V for each s € S such that the relations
R are satisfied.

According to this, formula (4.1) means that writing p(a,) = 8/0z,
and p(a}) = z, (multiplication by the variable z,) defines a repre-
sentation of the Heisenberg algebra B on the space of all polynomials
Clx] = C[z1,z2,23,...]. The representation space C[x] is called the
Bosonic Fock space. The operators of differentiating a, = 8/9z,, are
called annihilation operators and those of multiplication a}, = z, cre-
ation operators. Notice that all the creation operators commute among
themselves, as do all the annihilation operators.

The element 1 € C[x] is called the vacuum state; then the following
clearly hold.

(1) The annihilation operators ¢ kill the vacuum state: ¢l = 0.
(2) The Fock space is generated by the vacuum state:

Clx] =B -1 =q¢ {a -1 | a€ B}. (4.4)
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In more detail, C[x] has a basis
{a:m--~a:,,r1|0<m15-~-§m,.} (4.5)

made up by allowing the creation operators to act on the vacuum
state.

Maybe you object that we are deliberately saying simple things in an
unnecessarily complicated way? In what follows, rather than as the con-
crete operation of differentiating and multiplication, Bosons will really
appear in exactly the abstract form (4.2). Please bear with us for a
moment.

4.2 Fermions

Along with the algebra B, from now on we are mainly going to work
with a different algebra 4, obtained from the above canonical commu-
tation relations by replacing the commutator [X,Y] = XY —Y X by the
anticommutator

[X, Y]+ =det XY +Y X.

Definition 4.1 We set up some symbols ¥y, ¥}, and the following basic
relations holding between them, called the canonical anticommutation
relations. We could take the indices n to be anything we like, but for our
subsequent purposes we let n run through the half-integers Z + 1/2.

["pm) ¢n]+ = 0) ['p:n, "/’:z]‘i- =0 and [¢:n)¢"]+ = 6m+"1,0‘ (46)
Then 1n, 4}, are called Fermions; the algebra A they generate, with the
defining relations (4.6), is called the Clifford algebra. Note that the
relations (4.6) include as a particular case the characteristic property of
Fermions

Ya=0, ¢;>=0.

As with the Bosons, by using (4.6) successively, we can transpose the
order of products of expressions in the ¥, %}, so that a general element
of A can be written as a finite linear combination of monomials of the
form

Ymy - Pm, W, - Yn,, Wherem; <---m,andn; <--- <n,. (4.7)

Remark 4.1 Whether the algebra defined in this way is well defined
and without contradiction is a question that merits closer scrutiny. The
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Table 4.1. Bosons versus Fermions

Heisenberg algebra B Clifford algebra A
generators Bosons a,a* Fermions 9, ¢*
relations as* —a*a=1 PP PP =192 =9*2 =0
basis a™a*" form,n=0,1,2,... 1,9,9*,yy*

precise argument ts not very difficult, but we do not go into it, because it
would take us away from main topic of this book; see for example Bour-
baki, Algébre, Chap. 9, §9. We only state the conclusion: the elements
(4.7) are linearly independent and form a vector space basis of A.

‘We summarise the similarities and differences between the Bosons and
Fermions. For simplicity, we consider the case of just two generators
a,a* or ¥,9¥*. What we get is tabulated in Table 4.1. More generally,
the Clifford algebra A generated by any finite number of Fermions is
finite dimensional, but the Heisenberg algebra B is infinite dimensional
already in the two generator case.

Fermions can be realised in a concrete way using matrices. In the
present case we need only set

01 . 00
#=( o) »=(0)
(compare Exercise 4.1). In contrast, Bosons can certainly not be written
as matrices of any finite size: for if A, A* were n X n matrices satisfying

AA*—A*A = 1 then taking trace of both sides would give 0 = Tr(AA4*)—
Tr(A*A) = Tx(1) = n, a contradiction.

4.3 The Fock representation

We now explain the Fermionic analogue of the Fock representation of
Bosons on Clz;, z2,z3,...]. _

We consider diagrams made up of black and white Go stones lined up
along the real line, indexed by half-integers; we require that far away to
the right (when n >> 0) all the stones are black, whereas far away to the
left (when n < 0), they are all white. A diagram of this form is called
a Maya diagram (see Figure 4.1).

By writing m,,mg, ... for the positions of the black stones, we can
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Fig. 4.1. A Maya diagram

describe a Maya diagram as an increasing sequence of half-integers
m= {m;}j>1 withm; <mg<mz<---, (4.8)

and m;;, = m;+1 for all sufficiently large j. We set F to be the vector
space based by the set of Maya diagrams, and call it the Fermionic Fock
space. The basis vector corresponding to the Maya diagram (4.8) is
written |m). We determine a left action of the Fermions on Fock space
by the following rules:

_ (1Y mimy, miy, ) if my = —n for some i, 4.9
Ynlm) = 0 otherwise; (49)

Yn|m) = (=1)}...,mi,n,miya,...) if mi <n <m;+1 for some i,
" 0 otherwise;
(4.10)

except that in the case i = 1, we must obviously interpret (4.9) as giving
|mg, mas,...) and when i =0, we interpret (4.10) as giving |n, my, ma, . . .).
You should check that under this definition, the canonical anticommu-
tation relations (4.6) are satisfied. The Fermion 9, performs the role
of creating a white stone at —n (or equivalently, annihilating a black
stone there), whereas 9} creates a black stone at n (or equivalently,
annihilates a white stone there).
We divide up the Fermions into two classes:

{¥n, ¥} for n < 0 are called creation operators;
{¥n, ¥} for n > 0 are called annihilation operators.

Then all the creation operators anticommute among themselves, as do

all the annihilation operators. (We say that X and Y anticommute if

XY = -YX.) Now consider the vector corresponding to the diagram

with the entire left half-line n < 0 filled with white stones, and the

entire right half-line n > 0 with black stones, so that m; = j — 1/2 for

- j=1,2,...; we write |vac) for this vector, and call it the vacuum state.
Then the following properties hold.

(1) The annihilation operators ¢ kill the vacuum state: ¢|vac) = 0.
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(2) The Fock space is generated by the vacuum state:

F = A-|vac) =4¢f {alvac) | a € A}.

In fact it is known that the Fock space is characterised by these two prop-
erties. By successively applying creation operators to the vacuum state
we obtain (up to sign) the vector corresponding to any Maya diagram:

Ymy - Ym, Yy, - Y, [Vac)

formy <---<m, <0and n; <---<ny <0 (4.11)

The elements (4.11) are linearly independent and provide a basis of F.

Example 4.1 The following discussion may help to understand the sign
convention in the Fock representation. Suppose we could set up the ‘fake
vacuum state’ |Q), which is killed by all the v,, for n € Z. Then the
‘genuine’ vacuum state |vac) can be thought of formally as the vector
obtained by successively applying the infinitely many operators ¥ to
)

|vac) = ¢;/2¢;/2'¢;/2 - [€).

In fact the expression on the right-hand side is killed ezactly by all the
annihilation operators vy, 9}, for n > 0.

The corresponding picture of the vacuum in elementary particle physics
i3 called Dirac’s sea: the vacuum state is not the state having no particles
at all, but that in which the antiparticles are in a certain definite state,
filling up all the ‘holes’.

If we apply further creation operators to this, we get

Y-3/2lvac) = ¢-3/2¢;/2'¢;/2¢;/2 - |K2)
= '¢I/2’/’—3/2¢§/2’/’3/2 )
= "‘f’f/z'/’;/z"/’;/z -+-|2), and
'¢:3/2lvac) = ¢:3/2"/’:/2"/’§/2¢;/2 - [$),

and so on. This can be pictured as in Figure 4.2 as the annihilation of a
black stone (eguivalently, the creation of a white stone), or its inverse.

4.4 Duality, charge and energy

We define the dual Fock space F* in parallel with . In this case, we
describe the Maya diagram using the positions . . ., n3, n2,n; of the white
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Fig. 4.2. Creation and annihilation operators

stones. (Here n; € Z+1/2.) As a vector space F* is again based by the
Maya diagrams, with the basis vectors written as

(n| ={(...,n3,no,ny|, where ...<nzg<nz<mn

and n;41 = n; — 1 for all sufficiently large j. We define a right action of
the Fermions on F* as follows:

( 1)%...,Rit1,m, Ny, . .. | if ni41 < n < n; for some i
? 12
(nlyn = otherwise; (4.12)
( 1)1_ oy i1, N1, .-« ' if n= —n; for some i, 4.13
(afs = otherwise (413)

The dual vacuum state (vac| is the (n| defined by n; = —j + 1/2 for
j=1,2,..., and just as for the Fock space, we have

(1) the annihilation operators ¢ kill the vacuum state — (vac|y = 0;
(2) the Fock space is generated by the vacuum state:

= (vac| - A =qef {a|vac) | a € A}.
We can take
(vacm, -+ Ym, ¥q, - Vi,

for0<m; <---<m,and0<n; <:-:- < ng

as a basis of F*. We have been using Dirac’s bra and ket notation (u|
for an element of 7* and |u) for an element of F, which is traditional
in quantum physics; the action of a € A on elements of 7* and F
-is written (u|a or a|u). There is a pairing F* x F — C denoted by
((ul, |v}) — (ulv) between the two spaces, defined by the formula

(n|m) = 6m1+ﬂ1.05m2+m.06m3+ﬂ3,0 ) (4'14)
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Teble 4.2. Charge and energy of a Fermion

Fermion 4n 9,

charge 1 -1
energy -n -n

where (n| = (---ngnzn| and jm) = |[mymamgs---). Then the following
properties hold:

(vac|vac) =1. and ((u|e)lv) = (u|(alv)) forallae A.  (4.15)

We write (u|a|v) for the latter expression.

The (electric) charge and energy of the Fermions ,, and ¥}, are defined
in Table 4.2. More generelly, the charge and energy of a monomial in
the ¢ and ¢* is the sum of those of the factors, so that by definition, the
monomial (4.7) has charge r—s and energy —(my+- - -+mp+ny+- - -+n,).

Charge and energy are also defined for the basis elements |u) of the
Fock space F. For this, we set

charge (or energy) of |vac) = 0,
charge (or energy) of a|vac) = that of a.
Here a is a monomial in the Fermions for which a|vac) # 0. Similarly,
for the dual Fock space F*, we set
charge (or energy) of (vac| = 0,
charge (or energy) of (vacla = —that of a
indexcharge(note the minus sign). We write fl(d) for the vector subspace
of the Fock space generated by basis vectors with definite charge ! and
energy d, that is,
f‘(d) = linear span of
" N m<---<mpn <---ns <0,
{¢m1 I'/’mrl'/)nl Q/JH']VB.C) r—s=la.nd-2m.~+2nj=d}'

Then F decomposes as a direct sum of vector spaces F = @, F;, and
moreover, F; = @, .7:1("). The same thing holds for the dual Fock space.

Now for every integer I, consider the Maya diagram obtained by sliding
the diagram for the vacuum state bodily  steps to the right (that is, ~!
steps to the left if | < 0); we write |I) = |l +1/2,1 +3/2,1+5/2,...)
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for the corresponding vector of F. In the same way (swapping left and
right), we define the element (| =(...,1-5/2,1-3/2,1-1/2| € F*. In
other words, |I) and (l| are defined as follows:

(vac|'¢/11/2 e 1.b-—l~1/2 forl <0,
(Il =5 (vac| for Il =0,
(vac|¢;‘/2 T 1/];‘_1/2 forl > 0;

Yiprya ¢:1/2|vac) for 1 <0,
[1) =< |vac) for 1 =0,
'¢-l+l/2 e 1,[)_1/2|vac) for I > 0.
It is clear that among vectors of definite charge I, these are the vectors
having minimum energy d = I2/2. Note that by definition, we have

(ln=0 forn< -1 and (I, =0 forn<l  (4.16)
Ya|ll) =0 forn>—1 and yp|l)=0 forn>1  (4.17)

4.5 Wick’s theorem

We now explain how the pairing (4.14) between Fock space and its dual
can be determined uniquely from its properties (4.15), without any ref-
erence to the concrete definition. In what follows, we define the vacuum
expectation value of a € A to be the number (vac|a|vac), which we abbre-
viate to (a). Then (4.15) and the definition of creation and annihilation
operators imply at once the following properties:

<1> =1, ("/J"l) =0, (¥n) =0, (4 18)
(Ym¥n) =0, (Yn9n) =0, (Ym¥;) = bmin,00(n <0).
Here the notation 6(P) in the final term is the Boolean characteristic
function of a general property P, equal to 1 if P is true, 0 otherwise.
For example, the final equation in (4.18) works out as follows: the

right-hand side can obviously only be nonzero if n < 0 < m. But then
by (4.6), the left-hand side equals

< m+n,0 — "/’n"/’m) = m+n0<1)

Continuing the calculation in a similar vein gives the following:

(Yrvmyy) = 0,
(st n) = Wedn) (Vi) — (e¥i ) (idn),
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The general pattern is easy to figure out from this method of calculat-
ing: using the commutation relation (4.6), we can successively pass all
the annihilation operators over to the right and the creation operators to
the left; either of these gives 0 when it bumps into the vacuum vector at
the ends. However, each time we swap two Fermions over, the constant
term in the commutator generates a little small change; adding up all
the resulting constant terms gives the vacuum expectation value.

Thus we see that any monomial a in the ¢ and ¥* has (a) = 0 unless
the 9 and ¥* occur the same number of times. Therefore F} and F;
are orthogonal if k # I. More precisely, ;@ and ]-‘,(e) are orthogonal
unless k =land d =e.

When the number of occurrences is equal, we have to take account of
all the combinatorial possibilities for the positions of ¢* and . Just a
little care is needed with the sign change that occurs each time we swap
two Fermions over. We summarise as a theorem the result of calculation
just described. We write W = (@,,cz C¥n) ® (BD,,cz C¥;) for the set
of all linear combinations of Fermions.

Theorem 4.1 (Wick’s theorem) For w,...,w, € W we have
0 if r is odd,

(wr - wy)= Zsign(d)(wa(l)wa@)) ces (wa(r—l)wa'(r)> if r is even,
a

where sign(o) is the sign of a permutation; the sum runs over all permu-
tations o satisfying o(1) < 0(2),...,0(r— 1) < o(r) and (1) < 0(3) <
<+ < o(r — 1), in other words, over all ways of grouping the w; into
pairs.

Exercises to Chapter 4

4.1. Consider the Clifford algebra generated by two elements {v,%*}
related by 9? = ¥*2 = 0 and [¢,%*]; = 0. Define the Fock
representation F as in the text, with a vacuum state |vac) € F
for which y|vac) = 0. Prove that v; = |vac), v2 = ¥*|vac) forms
a basis of F in which the action of ¥ and ¢* is given by the

matrices
01 . 00
vo(50) (1)

4.2. Write out Wick’s theorem correctly in the case n = 6.
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4.3. Prove that (m, - ¥m, ¥, -+ ¥5,) = det ((m,¥5,)). Using
this, prove that (4.15) is a nondegenerate pairing on F; x Fi.
Here we say that a bilinear form F: V x W — C is nondegenerate
if

F(v,w) =0 forallweW =v=0,
Fv,w) =0 foralveV = w=0.
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The Boson—Fermion correspondence

Although the construction of Bosons and Fermions in the preceding
chapter proceeded along parallel lines, in character the two are remark-
ably different. Despite this, the main theme of this chapter is that we
can actually realise each of them in terms of the other. To pull off this
kind of stunt, the essential idea is to make use of infinite sums of Bosons
and Fermions. The generating functions we introduce provide a glimpse
of the atmosphere of quantum field theory.

5.1 Using generating functions
We now explain the idea of generating functions, an important tool in
gaining insight into how to proceed systematically with calculations.
Introducing a variable k, we define the Fermionic generating functions
as the formal sums
k)= D ¢uk V2 and grR)= Y vk (1)
n€Z+1/2 nEZ+1/2
In what follows, we frequently work with identities between formal sums;
for example, an identity of the form ) an,k™ = ) b,k"™ is interpreted
as a means of writing out and grouping together the series of identities
a, = b, between the coefficients.

Example 8.1 Let us calculate the vacuum ezpectation value of the gen-
erating function (5.1). Using (4.18), we get

@EW @) = Y, Y @Wmypm 212

mEZ+1/2n€Z+1/2

- Zp—n—lqn. (5.2)

n=0
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4.3. Prove that (Ym, - Ym,¥p, - ¥5,) = det ((Ym,¥;,)). Using
this, prove that (4.15) is a nondegenerate pairing on F x ;.
Here we say that a bilinear form F:V x W — C is nondegenerate
if

Flv,w)=0 foralwe W =>v=0,
Fv,w) =0 forallveV = w=0.



5

The Boson—Fermion correspondence

Although the construction of Bosons and Fermions in the preceding
chapter proceeded along parallel lines, in character the two are remark-
ably different. Despite this, the main theme of this chapter is that we
can actually realise each of them in terms of the other. To pull off this
kind of stunt, the essential idea is to make use of infinite sums of Bosons
and Fermions. The generating functions we introduce provide a glimpse
of the atmosphere of quantum field theory.

5.1 Using generating functions
We now explain the idea of generating functions, an important tool in
gaining insight into how to proceed systematically with calculations.
Introducing a variable k, we define the Fermionic generating functions
as the formal sums
k)= Y Yak V2 and k)= Y ypkTvVR (5)
n€Z+1/2 n€Z+1/2
In what follows, we frequently work with identities between formal sums;
for example, an identity of the form )" a k™ = Y b,k™ is interpreted
as a means of writing out and grouping together the series of identities
apn = b, between the coefficients.

Example 5.1 Let us calculate the vacuum ezpectation value of the gen-
erating function (5.1). Using (4.18), we get

(P (9) = E Z (1/,m1p:)p—m—l/2q_"_l/2

meZ+1/2neZ+1/2

S g (5.2)

n=0
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The final expression can be written
1
* =— 5.3
W()¥* () =1 (5.3)
However impressive the formula may look, it means neither more nor less
than (5.2); in other words, the right-hand side of (5.8) is interpreted as
an expansion in p,q with |p| > |q|.

Example 5.2 More generally, by Wick’s theorem, we have
(¥(p1) - - - ¥(Pn)¥* (gn) - - ¥™(q1)) det ((¥(p:)¥"*(g;)))

det( 1 )
Di—4g;

Factorising the right-hand side as a rational function gives the formula
I i-pi)(g — &)
1<i<j<n

H (i —QJ‘)

1<i<j<n

(¥(p1) - Y(Pa)¥" (gn) - ¥ (@) = (5.4)

Here again, (5.4) is understood as an expansion in p;,q; with |py| >
e > 'pn| > |Qn| > > |‘Il|'

Remark 5.1 The factorisation (5.4) of the determinant det o i ‘11)

is called Cauchy’s identity. To prove it, note that if we mult;ply

determinant by [],<;c;<n(Pi — ¢5), the resulting polynomial has zeros
along all the diagonals p; = p; and q; = g; for i # j, and so is divisible
by [1i<icj<n(Pi—P5) (a5 — @). After this, we need only compare degrees.

5.2 The normal product

When handling differential operators, we usually write them out (per-
haps even unconsciously) in a ‘normal’ order, with differentiation on the
right, and multiplication by functions on the left. One reason for doing
this is that the expression is not well defined until we choose some or-
der (for example, (8/0zq)zn = £,(0/0z,) + 1; moreover, specifying the
order as above makes operators meaningful even if they include infinite
sums.

Example 5.3 Consider the Euler operator .. | (nz,0/0z,), which
takes a weighted homogeneous polynomial f(x) into d x f(x), where
d = deg, f (recall that the z,, are weighted with degz, = n); it is
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thus the operator that measures weights. It is meaningful applied to any
polynomial, although it involves an infinite sum. If instead we swap
the order and try writing . ; n(8/0z,)zn, the new operator is mean-
ingless, since already applied to the constant function 1, it would give
Yoo (1 +208/8zs) - 1 = 00.

We now introduce a notation which will be convenient. Quite gener-
ally, for a polynomial p in the operations of differentiation and multipli-
cation, the colon notation : p: is defined inductively as follows:

(1) :p: isalinear function of p, and all the differentiation and multi-
plication operators within the colons commute among themselves;

2) :1: = tpr—: = :p:—and : P = ip:.
() 17 p amn p amna‘n xn p m'n p

The colon notation : p: is called the normally ordered product of p, or
simply the normal product of p.

0 0 0
E 4 h 1 Tpm— ! = ! 5+—Tp: = ITn=—; and
xample 5.4 We have : z, oz, v Ty Tn Bz, an
:ez,.-i-b/bz,. - = zneﬁ/ﬁzn'

Strictly speaking, letting e*» act on polynomials takes us beyond poly-
nomials; however, €/93n acting on polynomials has a genuine mean-
ing, and it is easy to see that it is the translation operator f(x) —
fl..,za+1,..0).

In parallel with this, we now introduce the Fermionic normal product
for elements of the Clifford algebra a € A. We use the same colon
notation : : as for the Bosonic normal product; however, in cases of
ambiguity, we distinguish the two by a subscript, : : p (for Bosonic)
and : : p (for Fermionic). The axioms are as follows:

(1) :a: is a linear function of a, and all the Fermions within the
colons anticommute among themselves;
(2) :1: =1, and

g =a:p for ¢ an annihilation operator,
tp*-a: =¢*:a: for ¢* a creation operator.
For example, for a quadratic monomial in Fermions we have
it = Ym¥;, if m<O0orif n>0,
TTmER T T —im if m>0orif n <0,
= Ym¥Pp — Ym¥})- (5.5)
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The important point for us is that expressions including infinite sums
make sense as operators on Fock space, provided we write them as nor-
mal products. We will see an example of this in the next section.

5.3 Realising the Bosons

We define operators Hy,, one for each integer n € Z, by introducing the
generating function

SO H kT = p(k)yt(k) ;. (5.6)

nel

Comparing coefficients of the k™ gives

H, = Z PP Wiin (5.7)

jE€Z+1/2

Now any element |u) of the Fock space is obtained by successively apply-
ing Fermions to the vacuum state |vac), and it follows that : ¢_;97, ., :
|u) = 0 for all but finitely many j. Thus for any given |u), the expression
H,|u) is actuelly a finite sum.

Let us determine the commutation relations among the ‘operators
(5.7). Note first the following identities among commutator and an-
ticommutator brackets: '

[AB,C] = A[B,C], - [4,C), B (5.8)
= A[B,C] +[A,CIB. (5.9)

Calculating using (5.8) gives the following commutation relations with
the Fermions:

[Hm"/’m] = Ymin, [Hm ¢:n] = -'/’:n+n' (5'10)
Now applying (5.9) and (5.10), we see that
[Hmy Hn] = Mbmin,0 (5.11)

(see Exercise 5.1). Now all the commutators are numbers, so that these
look just like the Bosonic commutation relations. In fact if for n =
1,2,... we set a, = Hy, and na;, = H_, then (5.11) coincides with the
canonical commutation relations (4.2). Thus by allowing infinite sums,
we have realised the Bosons in terms of Fermions!

The operator Hy is different; alone among the operators (5.7), it com-
mutes with all the H,. However, if we set n = 0 and apply (5.10)
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successively, we find that Hp is the operator measuring charge, in the
sense that

a has charge equal to | <= [Ho,a] = la.

5.4 Isomorphism of Fock spaces

By definition, H, has charge 0 and energy —n. Note in particular that
each H, takes the subspace F; C F of definite charge [ into itself. We
now want to explain how each of the F; can be identified in a natural way
with the Bosonic Fock space Clzy,...,z,]. To handle all the charges at
one go we introduce a new variable z, and consider the space

C[Z, 2—17 Ty, T2,T3,.. ] = @lezzlc[ml, r2,T3,-- ] (512)
We also define
H(x)=) znHn (5.13)
n=1

Note that by the rule (4.17), for every | we have
H(x)}l) =0, (5.14)

where |l) was discussed in Section 4.4.
Now corresponding to an element |u) € F, we define the following
polynomial of z*! and x:

B(juw) = 2 {lle? ). (5.15)
leZ

If |u) has definite charge m, only the term with [ = m survives on the
right-hand side. The right-hand side actually defines a polynomial; we
will see presently how this works in a concrete example, but we start
with the statement.

Theorem 5.1 (Isomorphism of Fock spaces) The correspondence
Q:]:_'C[Z7 Z_lfmlvm2)m3)"']1 given by |u) — Q(IU)), (516)

is an isomorphism of vector spaces. Moreover, we have

o ,
&(Halun) = 5z, 2 UM) 1 m>0, (5.17)
—nz_,®(|u)) if n<O0.
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Proof We observe that the H, for n > 0 commute among themselv&s,
so that

a x 8 x
bm—n(lleH( u) = (lla—%eH( u)

= (Ule"™ HuJu),
which gives the first line of (5.17). Moreover, in view of
(e ™ H_,ju) = (I|eHVH_,e=H)H)y), (5.18)

using [H(x), H_,] = nzn, we see that

1
MO _ e HX) = H_ 4+ [H(x),H_] + E[H(x), [H(x),H_p)] + -
= H_, + nay,.

However, (4.16) gives ({|H_, = 0. Therefore the right-hand side of
(5.18) becomes

(| (H-p + nzp) e ®u) = nz, (1|leH®|y),
and the second line of (5.17) follows.
In particular for |u) = |I), (5.14) gives ®(|l)) = z'. Successively
applying H_,, to this, we can obtain z' times any monomial in the
form ®(|u)). This says that (5.17) is surjective. The fact that it is

injective follows by a degree counting argument, which we omit (see
Exercise 5.5). Q.E.D.

We want to try to see in a particular example which polynomials each
individual vector of the Fock space gets mapped to under the above map
(5.17). From the definition (5.13) and the commutation relation (5.10),
we get

[H(x),¥(k)] = £(x, k)p(k) and [H(x),9" (k)] = —£(x, k)" (k),
where £(x,k) = Y >, k"z, (compare (2.18)). Thus a computation
similar to the one after (5.18) gives

eI (k)eHE) = efCkly(F), }

eH(x)¢t (k)e—H(x) — e—f(x,k),d)t (k) (5‘19)

Now if we set

0
R = pu(x)k",

n=0

=1l4+x:k+ (.'122 + ) K+ (:E3 + xoT1 + — ) B y (5.20)



5.5 Realising the Fermions 49

then from (5.19) and (5.20), together with the equations obtained by
interchanging x — —x in these, we get

[ o]
eHO) g o=H() — Z¢" +iDj (%)

3j=0
2
= Pn+ T1Pn41 + (a:z + —,j) Yo+, (521
0o
e yre=H0) = Y "y pi(—x)
j=0
- * .’E% *
= 1/)11 - ml¢n+1 + (—.’172 + '2—) n+2 +---, (522)

and we can determine the polynomial represented by ®([u)) by using
these.

Example 5.5 For the vector 1_s/q|vac), we have

®(1)_p/2|vac)) = 2(1|e¥®y_g 5 |vac)
= z(vachp; ,e" ®p_g 26~ H ) |vac)

=zX\|T +:Ei
- 2 2 )

where we used (5.21) for the final equality.
In the same way, for the vector _g 9" 4 /2|vac), we get

®(Y_3/29 3/2lvac)) = (vacleH)yp_g/ze™ H(x)eH(x)lﬁia/ze_" ) jvac)

2
= (V&Cl (¢—3/2 + x1¢—1/2 + (-'Bz + %) ¢1/2 + - .)
x (¢:3/2 - 2711/):1/2 + - ') IVBC)

it a}
= a:3+m2x1+—6— -1+ -'172+'E '(-:171)
3
=3 — —3" .
The procedure involved in carrying out the calculation makes it clear
that the answer is quite generally a polynomial.

5.5 Realising the Fermions

Theorem 5.1 shows that we can identify the Fermionic Fock space with
the Bosonic Fock space. Thus it should be possible to realise the action
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of the Fermions on the former in terms of operators on the latter. We
now set about achieving this.

Slightly out of the blue, we introduce the operators k° and eX on
the space (5.12) by the formulas

(kHof) (Z,X) =def f(kZ,X) and (er) (Z,X) =def Zf(Z,X),
then define

U(k) = ef(Xk)g—6Bk ") K kHo
(k) = e—E(X,k)ef(b',k—l)e_xk_no, (5.23)
where we have set
Y 8 10 190 . ® 15 .
a_(%—l’ZBmg’g%;) and £(0,k )_n=15—3_-’3_nk .

As we said above, Hy is the operator measuring charge, so that kHo 2! =
k'z', and kHo is a natural notation to use. Writing eX is more unex-
pected, but it can be motivated as follows. We formally define ¢(k) to
be the series

ek) =3 %’ik‘" + Hologk + K, (5.24)
n#0

which corresponds to the indefinite integral of the Bosonic generating
function, because it satisfies dp(k)/dk = Y,z Hnk™!. The ‘constant
of integration’ K is not itself well defined as an operator, but if we fix
the commutation relations

[Ho,K]=1 and [K,H,]=0 forn#0, (5.25)

then one can formally deduce the commutation relations that eX in the
above definition must have with H,,. If moreover we insist that K is a
creation operator and Hy an annihilation operator, then (5.23) can be
written in the mnemonic form

(k)= :e#®) 1 g, (k)= :e¥H) g,

After the above preliminaries, our problem has the following answer:

Theorem 5.2 (Boson—Fermion correspondence) The Fermionic
generating functions (k) and ¢*(k) are realised in the Bosonic Fock
‘'space by (5.28). That is, for any |u) € F we have

o(p(k)luw) = L(k)2(ju)) and B(¢*(k)lu)) = L*(k)®(lu).
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Proof The two proofs are exactly the same, so we prove the statement
for (k) only. By definition, we have

2(v(R)lw) =) 2 (U POp(k)lu) = 50 Y~ 2 (tlp(k)e ).
4 4

On the other hand, if we write

1 1 1
-1 _ s - =
k™) = (k’ 2k2’3k3"")
then e~€(®:¥™") acts by translating the variables F(x) — f(x—e(k71)),
so that the statement reduces to the following lemma.
Lemma 5.3

{Up(k) K1 — 1 HEETD), (5.26)
(k) = k114 1|eHEE), (5.27)

Proof We suppose for simplicity that I = 0. The general case is similar.
To prove (5.26), it is enough to show that

172k~ e HEE D Y(py) - Y(Pr1)* (4n) -+ ¥" (@)
= (¥(k)¥(p1) - P (Pa-1)¥"(gn) - ¥ (@) (5.28)
for any n. Here we note that
eEEEETP) = (1 — p/k)F

so that taking e=H((*™)) over to the right-hand side, the left-hand side
of (5.28) can be written

n-1

IE=p) g
S X § o (WR)Y(1) - YPu2)V" (@) (@)
jl.:_ll(k - q)

Here the integral is obtained by expanding Cauchy’s identity
(W(E)Y(D1) - - Y(Pa-1)¥* (gn) - - ¥* (@)

n—1

I (k — p:) L ei-p) I1 (@i-q)
_ =1 v 1<i<j<n—1 1<i<jsn
n R .
IT(k—g5) 15.-151_1 (P =)
j=1 1<j<n

(see formula (5.4)) about k = oo and taking the coefficient of k1.
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We apply the above formula to the right-hand side of (5.28), and the
assertion follows easily. Q.E.D.

5.1.
5.2.
5.3.

54.

5.5.

Exercises to Chapter &

Prove relation (5.11).

Compute &(_5/29* 3 /2|va,c)) .

If we consider x,, as weighted with weight n, and count an op-

erator having energy d as having weight d, check that H(x) of

(5.13) is homogeneous of weight 0. Using this, together with the

fact that (I| has weight 12/2, show that the polynomial ®(|u))

corresponding to |u) € F{* has weight d — 12/2.

Th;a) generating function for the dimensions of the vector spaces
1

chF =gef Z dim(}_l(d))zlqd
a0/

is called the character of the Fock space F. Using the fact that
(4.11) is a basis of F, prove the formula

cdF= ] (1+2¢)1+27"¢).
>0
j€z11/2
Show that on calculating the character using the Bosonic Fock
space, we get

o0
chF = Z #q'/? H(l -¢) L
lez j=1
Use this together with Exercise 5.3 to verify the following formula
(the Jacobi triple identity).

©0
(1-2gd )1 -27'P)1-¢) =) (—2)'¢t- 172

Jj=1 leZ

Conversely, if we assume this identity is known, it follows that
the map (5.16) is injective.
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Transformation groups and tau functions

We start by shbwing that the space of all quadratic expressions in
Fermions has a natural structure of an infinite dimensional Lie algebra.
The rest of the chapter is taken up with a treatment of the group corre-
sponding to this Lie algebra as a transformation group taking solutions
of the KP equation into other solutions. To describe what happens in ge-
ometric language, this group action moves the vacuum vector around an
orbit, each point of which is a tau function as in Chapter 2. In the huge
infinite space of all functions, the orbit of this action is a submanifold,
and its defining equation is nothing other than the Hirota equation.

6.1 Group actions and orbits

Given a space with a group acting on it, the locus traced out in the space
by a point moving under the group action forms a certain figure. As you
might expect, this figure acquires a high degree of symmetry from the
very fact of the group action.

Quite generally, to say that a group G acts on a set S means that a
point gz € S is specified for any element g € G of the group and every
point £ € S of the set, in such a way that the conditions (g;g2)r =
91(92z) and ex =  hold (where e € G is the identity element). In this
set-up, the subset Gz = {gz|g € G} C S is called the orbit of z under G.
The central theme of this chapter is the orbit of an infinite dimensional
group acting on an infinite dimensional space.

Example 6.1 We fiz the diagonal matriz
1
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and consider the group
G = {g € M3x3(R) | *gJg = J}, (6.1)

consisting of real 3 x 3 matrices preserving J. Suppose that &p is the
point

1

J-fo = 0 )

0
what is the orbit of o under G?7 We see at once that Iy is a point of
the hyperboloid of two sheets given by

T
tgJi=a?—y*—22=1, where £=|y|. (6.2)
z

On the other hand, by the very definition of G, for g € G we have
t(gfo).](y:fo) = tﬂ—fotg.]gﬂ-fo = tﬂ_fo.]:fo =1.

It is not hard to see that the orbit GZ; of zp is the hyperboloid of two
sheets (6.2) (see Exercise 6.1).

6.2 The Lie algebra gl(co) of quadratic expressions

We write W for the set of all linear combinations of Fermions. The basic
property of Fermions is that the anticommutator [w, w']+ of any two ele-
ments w,w’ € W is a number, that is, an element of C. Now calculating
the commutator (not the anticommutator) of quadratic expressions in
Fermions gives

[wywe, wawy] = wiws, wsws] + [wy, wawsjwe
= w [wa, w3)wy — w1w3[1.U2,w4]+
+wy, wslywawy — wsfwy, walpws.

The right-hand side is again a quadratic expressions in Fermions. We
thus conclude that the vector subspace

w® = ngwj |w,' eEWjrcA
i)j
of quadratic expressions is closed under commutator brackets, and there-
fore forms a Lie algebra. We observe that, in particular, W(® contains
C as the set of anticommutators [w, w'].
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Now we consider especially the subalgebra in W (%) formed by elements
of charge 0. Any such element can be written in a unique way in the
form

Z amn¥-m¥p + 60, With amp,a0 € C. (6.3)
mneZ+1/2

Carrying out the computation as above, we get
["p—m"p;,"p—m"‘p;'] = 5nm"‘p—m"p;' - n’m"l’—m"‘p; (6'4)
for m,n € Z + 3. We compare these with the elementary matrices
Emnn = (6imbjn)i jezs1/25

that is, E,,, has 1 in the (m, n)th position and 0 everywhere else. Or-
dinary matrix multiplication gives EpmnEmin' = 6pm Emn, 80 that (6.4)
says that the elements 1_,,1;, have exactly the same commutation re-
lations as the elementary matrices E,,,.

We now want to generalise (6.3) to a type of infinite sum which
includes as a particular case the H, introduced in (5.7). As we saw
in Chapter 5, to handle this type of infinite sum, the Fermions must
be recast as normal products. Thus, for an infinite matrix A =
(amn)m,nez+1/2, consider the Fermion of (6.3) with the products re-
placed by normal products:

Xa=) Omn:¥-m¥}:. (6.5)
mmn

Now we study what effect the modification (6.5) has on the commu-
tation relations. First, suppose that (6.5) is a finite sum. Noting that
the normal product : ¥_p,4} : differs from 9_,,1;, only by a constant
term, we get

[Xa,XB] = Z aiibki[—i¥}, w7
=Y aibri (6t — Sut-a¥y)
=Y abu(: -t : +646(i < 0))

= briaii (: Ykt +6k;6(7 < 0))
= X[A,B] + w(AaB)7 (66)

where
w(4,B) = ai;b;i(6(i < 0) — 6(j < 0)) = —w(B, A4), (6.7)

and 6 is the Boolean characteristic function as explained after (4.18). In
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Fig. 6.1. The finiteness condition (6.8)

other words, compared to the matrix commutator [A, B], only the con-
stant term w(A, B) has changed. Now we impose the following condition
on the matrix A = (a;;):

there exists N > 0 such that a;; = 0 for all 4, j with |i — j| > N. (6.8)

See Figure 6.1; for example, the sum in (6.7) runs over the black regions.

For example, the matrix of coefficients of Hy, of (5.7) i8 6ij = bitn,j,
and satisfies (6.8). Provided that this condition holds, even for infinite
matrices, the matrix commutator and the calculations for (6.7) both
involve only finite sums. In the same way as for the Hy, in Chapter 5,
for any vector |u) of the Fock space, assuming (6.8), it is easy to see that
X alu) has only finitely many nonzero terms.

Definition 6.1 The Lie algebra gl(co) is defined to be the vector space
gl(c0) = {X4 | A satisfies (6.8)} & C, (6.9)
with the commutator bracket defined by (6.6).

The thing that ensures that the commutator bracket [—, —] defined
in (6.6) satisfies the Jacobi identity is the following cocycle condition on
the constant correction term w(A, B) of (6.7):

w(4,(B,C]) +w(B, [C, 4]) + w(C, [4, B]) = 0. (6.10)

(See Exercise 6.2.)
At the same time, we note that taking the commutator with an ele-
ment X4 € gl(oo) induces a linear transformation on Fermions:

[XA;"I’—n] = Zamn"p—m, [XA, "p;] = Z(_anm)"p:n (6'11)

(the right-hand sides are both finite sums). Here the transformation ma-
trices corresponding to the 1 and the 1* are exactly the contragredient
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of one another (that is, in the relation of M and —*M), so that we have
the relation

Y (ulXav-nlo) @/ [Ya1) + (ulb_alv)(@| Xavi[v))
nez+1/2

Y ((uly-nXalo) (W ¥nlv) + (ulp-alo)w[¥5 X alv")) (6.12)
nezZ+1/2

for any (u|, (u], |v), [v'). We will make use of this fact later.

The elements of gl(oco) have charge 0, so their action on F takes each F;
to itself. In other words, F; is a representation space of the Lie algebra
gl(co). We now use the Boson-Fermion correspondence to interpret
these representations in the space of (polynomial) functions of x. For
this, it is enough to use the representation of Theorem 5.2 in terms of
the generating functions and to consider the product ¥ (p)¥*(p). In the
equality

U(p)¥*(q) = E(p)E* (g)e" pHoe~K g~ Ho,

we have
e t@rg—E000) = 1 —tx)e=£Bip™)
1-q/p '
and using pHee=X = p"le'K pHo we arrive at the following expression:
U(p)¥*(q) = eE(x.p) £C) 6B )+EB.a ™M) yHo g—Ho,

In particular, when we restrict this to the charge | = 0 subspace,
pHog=Ho gcts as the identity, so that we can forget it. Now bearing in
mind (5.3) and (5.2), we can express : ¥(p)¥*(g) : in terms of the
vertex operator (3.17) of the KP equation

2(p,q) = ﬁ(xm g)-1). (6.13)

We summarise our conclusion as follows.

Theorem 6.1 (Vertex operator representation of gl(oo)) We sup-
pose

that the operators Z;; acting on Bosonic Fock space Clzy,x2,x3,...] are
defined by means of the generating function

Z(p,g)= Y, Zyp A2, (6.14)
i,j€Z+1/2
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Then
§ :amn : ¢m¢; B g § :amnz—mn
m,n m,n

determines a representation of the Lie algebra gl(co) on C[z,, a:z N ZYON

6.3 The transformation group of the KP hierarchy

We now gradually set out to explain how we can use the Boson—-Fermion
correspondence to obtain a unified construction of both the system of
linear equations defining the KP hierarchy and the tau functions.

We define the group G corresponding to the Lie algebfa gl(oo) to be

G =gt {e¥1eX2 .. e** | X; € gl(00)}. (6.15)

Here the question of whether the eX are meaningful deserves closer
scrutiny, but we do not go into the arguments at present. The object
we want to consider is the orbit of the vacuum state under the action of
G:

Glvac) = {g|vac) | g € G}. (6.16)

By the Boson-Fermion correspondence, we can view a point of the
orbit (6.16) as a function

T(x) = 7(x;9) = (vacleH(")glvac). (6.17) -

A function of this form is called a tau function. Together with this, for
any g € G, we introduce the wave function w(x, k) and the dual wave
function w*(x, k) by the following formulas:

(1eHp(E)glvac)
(vacleR ) glvac)
(~1]eH @y (k)glvac)

(vacle#@glvac)

w(x, k)

(6.18)

w*(x, k) (6.19)

In view of (5.19), and bearing in mind the relations (5.26)-(5.27), we see
that these functions can be identified with the tau functions constructed
in Chapter 3, (3.21)-(3.22). We show that we can derive the bilinear
identity again starting from the expressions (6.17)—(6.19).

Theorem 6.2
Resg—oo (w* (x, k)w(x',k)) =0 for all x,x'. (6.20)
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Proof First, note that if g € G then

> (lgpal)Wlgvil) = S (ulvaglv) @ lpigly).
n€Z+1/2 n€Z+1/2
In fact for g = e*4, this formula is a consequence of its infinitesimal form
(6.11), and for the general case it is enough to apply this repeatedly. Now

for any n, one of ¥_, and ¥}, must be an annihilation operator, so that
using the above formula we get

~Reskco ({ult” (K)glvac) (|4 (k)gvac))
= 3 (ul¥nglvac) (/-nglvac)

nezZ+1/2

= ) (ulgyplvac)(u'|gp_n|vac)
nez+1/2
=0.

Taking (u| = (1]e¥™) and (u'| = (~1|e#™*), we arrive at the required
formula. Q.E.D.

Example 6.2 We calculate one example of a polynomial solution of
the KP equation. Let a,b be constants, and set X = ayp_y/9°, /2
bip_3/29%, 5. The corresponding group element is

g=eX =1+ay 199" 30 + b 32" 5 +abp_1 /29" 550 3/29" /5.
Then we get
. 1 . 1
(Y-1/72(x)¥23/3(X)) = 22 — 5-’”?, (Y-372(x)PLy ja(x)) = 22 + 53’?,

4
(V172X 52 (NP2 (0)¥21 o(x)) = —@125 + 25 + T2 (6:21)

(The last expression is calculated using Wick’s theorem.) Therefore the
required tau function is

1 1 4
T(x9)=1+a (‘”2_ 5"’%) +b(mz+§$f) +ab (—xlxa +x§+%).

Moreover, a,b are arbitrary, so that in particular, as a,b — oo, (6.21)
itself is a solution of the KP equation.

As we have already shown at the end of Chapter 3 it follows from
(6.20) that w(x, k) must satisfy a series of equations in Lax form with
respect to the variables z;,x,x3,.... Moreover, we have already seen
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that, from the equivalent expression (3.20), we can derive directly the
hierarchy of differential equations for the tau function in Hirota form. In
fact conversely, it can also be shown (see Chapter 9) that a polynomial
7(x) satisfying the bilinear identity can necessarily be written in the form
(6.17) for some g € G. Therefore, finally, the tau functions are really
the points of the orbits of |[vac) under G, and whether you write it as a
Hirota differential equation, or the form of linear equation corresponding
to wave functions, the KP hierarchy is really nothing other than the
equations characterising the orbit. Putting this all together, we obtain
the following picture.

Fermionic picture : Fock space D Gjvac).

Bosonic picture : C[z,z2,z3,...] D {tau functions}.

By definition G acts naturally on the orbits. In constructing soliton
solutions, the vertex operators (6.14) introduced out of the blue are in
Fermionic terms just the quadratic expressions which are the generators
of the Lie algebra, and act on the orbit as infinitesimal transformations.
In other words, the vertex operators give infinitesimal transformations
of solutions of the KP hierarchy (tau functions)

Exercises to Chapter 6

6.1. Verify that (6.1) defines a group G. Show moreover that the orbit
of &y is determined by (6.2).

6.2. Verify the cocycle condition (6.10) for any A, B, C satisfying (6.8).

6.3. Derive (6.21) and verify directly that substituting it in the KP
equation (3.13) gives 0.
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The transformation group of the KdV
equation

Coming down from the abstract heights of the KP hierarchy, we return
to the particular case of the KdV hierarchy. The world of solutions
is then narrower, and the corresponding transformation group is also
smaller. We give an introduction to the affine Lie algebra ;l;, which
appears as the infinitesimal transformations of the KdV hierarchy.

7.1 KP hierarchy versus KdV hierarchy

The KP and KdV hierarchies were studied in Chapters 2 and 3. Here
we want to compare them from various points of view and to summarise
their properties. Both were introduced as the nonlinear systems of par-
tial differential equations obtained as the compatibility conditions on
systems of linear differential equations of the form

By (L") 4w, Lw=kw, whereL=08+ f107'+ fo872+--..

Ot
(7.1)
Both can be written as Hirota equations, and have n-soliton solutions
for any n. For example, a 2-soliton solution is given by

T=1+ clegl + c2e%? + ¢y cpar0ef1 12,

For more details, see Table 7.1.

The KdV hierarchy can be obtained as a specialisation of the KP
hierarchy. In the language of pseudodifferential operators, as explained
in Chapter 2, the specialisation condition is that L? should be a differ-
ential operator. It is clear from the system of linear equations (7.1) that
in this case, in the power series expansion (3.23) of w, the coefficients
w; do not depend on the even-numbered time variables x4, x4, s, . ...
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Moreover, the tau function 7 is determined by the w; from the relation
(3.21). Therefore the tau functions of the KdV hierarchy are exactly
obtained by imposing the additional condition

or

_Bz_n=0 for n = 2,4,6,... (7.2)

on those of the KP hierarchy. For example, if we impose the relations

9 =~Pj (7.3)

on the parameters p;, g; in the soliton solutions of the KP hierarchy, then
I2,T4, Ts, - - . drop out automatically, and we obtain soliton solutions of
the KdV hierarchy (see Table 7.1).

Since solutions of the KAV hierarchy are particular cases of solutions
of the KP hierarchy, we can expect that the transformation group taking
solutions of the KdV hierarchy into themselves should be a subgroup of
the corresponding group for the KP hierarchy. We now study this.

7.2 The Transformation group of the KdV equation
In view of the condition (7.3) on the soliton solutions, we consider the
parameters p,q in the vertex operators {6.14), and impose the relation
p? = ¢* on them. Corresponding to the two possibilities ¢ = +p, we get
Z(p,p) = 3 Hup™7},

neZ

Z(p,~p) = 3 (exp( > 2mnp") exp (— > 2 "‘) - 1) :
nnodd n“::d
(7.4)

The first set are exactly the Bosons, the second set the vertex operators
of the KdV equation introduced in Chapter 2. Except for the z,, with n
even, the first set of operators all preserve (7.2), and therefore provide
infinitesimal transformations of the KdV hierarchy. Now, what do these
look like as a Lie algebra?

To rephrase (7.4) in terms of Fermions, we are restricting the frame-
work from quite general quadratic expressions in the Fermions to the
elements of the form

1 P(p)¥*(p): and :Y(p)Yt(-p):. (7.5)

It is easy to see that this is equivalent to the following: instead of general
linear combinations X4 = Y amn : Y :, We restrict attention only
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to the elements which are invariant under the translation
Yn — Yn-2, Yp— Vpi2
of the index. This amounts simply to imposing the condition
Gmn = Gmiznt2 forallm,n (7.6)

on the entries of A. Now an infinite matrix A = (a,,,,) satisfying (7.6) is
clearly determined by its entries a,,, with m = +1/2and n € Z + 1/2.
It is convenient to express this as a Laurent polynomial in one variable
t (that is, a polynomial in t,¢~!) in the following form:

A=) (a‘*"*“’ “‘*'*“) .

jez \ %4+ %4445
In terms of this notation, (6.7) can be rewritten as follows:
ot =N (1 (B0080)). o1

(See Exercise 7.1). The Lie algebra that arises in this way has the
following name.

Definition 7.1 (Affine Lie algebra ;I;) Consider the spacel generated
by matrices whose entries are Laurent polynomials in t, together with
one element c:

=_J[(at) B®)

=1 (50 L)
This has a Lie algebra structure, with the commutator bracket:

40, BO) = 140), BOlms + Resca (T ($080)) ),

[e, X ® A(t)] = 0 for all X.

a(t), B(t), 1(t) € C[t,t-ll} o Ce.

In words, ¢ commutes with everything. Here the subscript [ -, —|mat
means the commutator of matrices. This algebra is called the affine Lie
algebra sl;.

We summarise the story so far. Write B®) for the Heisenberg algebra,
generated by the odd numbered variables z,,,8/0z, (forn =1,3,5,...).
Acting by B® on the vacuum state 1 € C[x] gives the subspace

Clz,, x3, x5, .. ]

as its orbit. The vertex operators (7.4) act on this space. Then B(?
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and the operators (7.4) give a representation of the affine Lie algebra
sl;. Here we suppose the central element c acts by 1. In general if ¢ acts
by a scalar k, we say the representation has level k. The infinitesimal
transformations taking solutions of the KdV equations into themselves
make up the affine Lie algebra sly ﬂn its the level 1 representation). The
orbit of the vacuum state under slp, that is, the tau functions, give the
solutions of the KdV equation (in Hirota form).

Remark 7.1 Instead of the reduction considered in this section, we could
more generally fix any natural number | and let p* = ¢'. This gives rise
to a different series of soliton equations. The corresponding infinitesimal
transformations is called sl;, and gives rise to a series of Lie algebras.
Affine Lie algebras are a class of infinite dimensional Lie algebras that
are easy to handle, and are widely used in applications.

Exercise to Chapter 7
7.1. Verify (7.7).
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Finite dimensional Grassmannians and
Pliicker relations

The scene changes once more, and this chapter gives an introduction to
Grassmann varieties. The link between this classical notion of projective
geometry and the material of the book so far is provided by the Pliicker
relations. We explain the Pliicker relations in the case of finite dimen-
sional vector spaces as an introduction to the material of the following
chapters.

8.1 Finite dimensional Grassmannians

The subject matter we now turn to arises from developments in pro-
jective geometry, or can be viewed as supplementary material in linear
algebra. Starting our narrative in this way will not seem out of place in
substance to a modern reader, although it might have provoked consid-
erable conceptual resistance in the 19th century. One of the areas closely
related to what we are about to explain would have been described by
words like line geometry. This was part of a fertile area of research in
19th century mathematics, and it has many relations to current interests.

We fix an N dimensional vector space V and a natural number m
with 0 < m < N, and write Grass(m, V) or Grass(m, N) for the set of
m dimensional vector subspaces of V. There are various types of them,
depending on the choice of V, N and m, and we call them all collectively
Grassmann varieties or Grassmannians.

For the case m = 0, there is only one 0 dimensjonal subspace {0} of
any vector space V, so that Grass(0, V) consists of just one point {0}.
For our next example, we consider the case m =1. Then Grass(1,V) is
the set of 1 dimensional vector subspaces of V. In other words, an ele-
ment of Grass(1, V') is determined by a nonzero vector v € V, with two
vectors v, v’ describing the same point of Grass(1, V) if and only if they
are linearly dependent, in other words, scalar multiples of one another.
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Grass(1,V) is usually called complex projective space, and denoted by
P(V) or Pn_1(C). (Here we are taking the coefficient field to be the
field C of complex numbers.)

We consider in particular the case N = 2. In this case, as we discuss
presently, P;(C) is 1 dimensional, and is called the complex projective
line. A point of P;(C) is determined by a vector v = (v1,v3) with
v1,v2 € C. The vectors with v, = 0 determine a point of P, (C): there are
lots of the vectors themselves, a whole line of them, but, according to the
definition of projective space, they all determine the same point, called
the point at infinity of P1(C). To a vector v with v, # 0, we assign the
number v, /v;. This gives a one-to-one correspondence between P, (C)
minus the point at infinity and the complex plane. Now if you delete
one point from the 2 dimensional sphere, you get the plane (think of the
sphere as being made of rubber; see Exercise 8.1).

Although this argument was fairly rough, we see that IP;(C) can be
identified with the 2 dimensional sphere. A slightly more detailed argu-
ment can be used to prove that P;(C) is homeomorphic to the 2 dimen-
sional sphere, in fact even isomorphic as a complex manifold. In the same
way, Py _;(C) contains a copy of CV~1, although now Py _;(C) \ CN¥~?
is more than just one point.

The projective space P(V), and the Grassmannians Grass(m, V) gen-
erally, have the structure of an algebraic varieties. We refer elsewhere for
an explanation of algebraic varieties (see for example I.R. Shafarevich,
Basic algebraic geometry, Springer, Chapter 1), but to get to grips with
some of the ideas, we calculate here the dimension of the Grassmannian.
The dimension of a variety is the number of continuous parameters re-
quired to specify a point of the variety; you can get a rough idea of
dimension by analogy with that of a vector space, or convince yourself
by calling to mind a few examples, such as the spheres (although here
we usually have in mind dimension over C). In the case of projective
space, we specify a point of (V') by fixing one nonzero vector, up to the
indeterminacy of a scalar multiple; therefore P(V') is N — 1 dimensional.

For general values of m, we argue as follows: pick a basis of V, that is, a
set of N linearly independent vectors (vi,...,vy). Then we can identify
the elements of V' with row vectors of length N. An m dimensional
vector subspace W C V is determined by m linearly independent vectors
Wi,...,Wn. We can then set

N
W; = Z VijVj. (81)
i=1



68 Finite dimensional Grassmannians and Pliicker relations

In other words, we specify an m dimensional vector subspace W C V
by writing down an m x N matrix M = (v;;) of rank m. The matrix
M = My is called a frame of the subspace W. However, there is some
waste in specifying W by means of a frame. A necessary and sufficient
condition for two frames M; and M, to describe the same subspace W
is that one can be obtained from the other by change of basis, that is
M, = gM, with g € GL(m,C). Our present purpose is only to calculate
the dimension of Grass(m, V), so that we can change the order of the
basis of V if necessary, and suppose that M is of the form

1 0 * kX
1 * kX
]
0 * X X
1 =

where the m(N — m) entries of the right-hand block are arbitrary. It
follows from this that the dimension of Grass(m, V) is m(N —m).

Here is an alternative way of seeing this. Suppose that we choose a
basis of W, and extend it to a basis of V. The freedom in the choice
of basis of V is described by GL(N,C). However, of these, the set of
matrices which leave the subspace W invariant (as a subset) is given by
the subset of matrices of the block upper diagonal form:

m N-m
(| A
m 4 * *
(
N -m( 0 *
A /

(The set of all matrices of this form is a subgroup of GL(N, C), called a
parabolic subgroup.) It follows from this that Grass(m, V) has

Nz—mz—(N—m)z-—m(N—m)=m(N—m)

degrees of freedom, that is, dimension m(N — m).
After projective space itself, the simplest case of a Grassmannian is
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when N = 4 and m = 2. This variety Grass(2,4) has an embedding in
projective space P5(C) discovered by Pliicker and studied in detail by
Klein and others (see Example 8.1).

8.2 Pliicker coordinates

As we said in the preceding section, the Grassmannian Grass(m, V) has
the structure of an algebraic variety. The formal meaning of this as-
sertion is that the points of Grass(m,V) have coordinates which are
common solutions of a system of algebraic equations, and that all the
solutions of this system are given by points of Grass(m, V). As an exam-
ple, a circle is an algebraic variety in this sense: a point of the plane has
coordinates (z,y), and the circle is the set of all points whose coordinates
satisfy the equation

22 +9y2~r?=0 for some fixed r > 0.

Here we should note the following: if we take an algebraic variety
in the above simple minded sense, then we have first of all to specify
the space where our variety is contained, and how it is contained there;
there may be lots of possible ways of doing this. For example, when we
consider the circle, there may be many cases in which we do not really
care what space it is contained in. Although at this point we do not
want to go into this problem in depth, we do need to consider the space
in which the Grassmannian is contained.

We start again from the case m = 1. As we have already noted, a point
of Grass(1,V) = P(V) is described by a 1 dimensional vector subspace of
V, spanned by a nonzero vector v = (v1,vs,...,un) € V. We take the
components of the vector v € V' as the coordinates of the point of P(V);
they are called the homogeneous coordinates of P(V). These coordinates
must satisfy the condition that the components are not all 0:

(1,...,9n) # (0,...,0).

The homogeneous coordinates do not correspond one to one to points
of P(V): we note that a necessary and sufficient condition for two sets
of coordinates (vy,v,...,vy) and (v},v,...,v}y) to describe the same
point is that there should exist a nonzero number c¢ such that v] = cy;
for alli =1,...,N. Thus we want to think of P(V) itself as being the
space which contains points with this type of coordinates.

For general m, the space in which the Grassmannian Grass(m, V) is
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contained is usually taken to be a projective space of sufficiently large di-
mension. We now explain how to do this. Each point W € Grass(m, V)
of the Grassmannian is an m dimensional vector subspace W C V, and
corresponds to a matrix My = (v;;) with m rows and N columns. We
want to consider all the m x m minors of M
v, = det (v"'“i)lsi,jgm ,

where a = (@y,...,0m) with 1 < o < -+ < ay, < N; we think of these
as written out as a list of (x) minors. If we change the basis of M, we
multiply M on the left by a nondegenerate m x m matrix h € GL(m, C).
The effect of this on the v, is to multiply them all simultaneously by
det h (see Exercise 8.2).

There are (ﬁ) different ways of choosing an m x m minor of M, so
that we can view the v, as homogeneous coordinates of projective space
of dimension (Y ,). It can be seen that two different points W, W' €
Grass(m, V) correspond to different (v,), (v,). These coordinates (vq)
are called the Plicker coordinates of a point W € Grass(m, V).

Here is an alternative way of thinking about the Pliicker coordinates:
we assume that the reader already knows about tensor products of vector
spaces; if necessary, refer to a suitable textbook (for example S. Lang,
Algebra, second edition, Addison-Wesley, 1984, Chap. XVI). Consider
the mth exterior product A™V of V. A necessary and sufficient con-
dition for m vectors wi,...,w,, € V to be linearly independent is that
wiA-- AW, #0€ A™V. If W C V is an m dimensional vector
subspace, let wy, ..., w,, be a basis. From what we have said, we know
that w; A --- Aw,, # 0, so that W corresponds to a nonzero vector
of A™V. However, this correspondence depends on the choice of basis.
Let wi,...,w/, be another basis, and h the matrix giving the change of
basis:

m
J g . .
Wi = § :hJ'WJ’
=1

then

Wi A AW, =det(h)wi A Awpy,

(see Exercise 8.2). Thus changing the basis of W just multiplies the
vector by a scalar. Thus we see that there is a well-defined map
Grass(m,V) — P(A™ V), called the Plicker embedding. The relation
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between Pliicker coordinates and the notation (8.1) is given by

WIA AWy, = Z Vay,..,amVais AN AVaq,,..
a1 < <am
From this point of view, insisting that the indices a;, ..., o, on the
Pliicker coordinates v,,,. . o, are ordered as a; < :-- < a,, may turn
out to be inconvenient, and it is more natural to regard the Pliicker
coordinates as skew-symmetric in the indices. This is the point of view
we adopt in what follows.

8.3 Pliicker relations

The Pliicker coordinate (vqy,,..,a,.) Of a point Grass(m,V) is skew-
symmetric in the indices. However, not every set of (ﬁ) coordinates
which change signs on interchanging the indices is the image of an ele-
ment of Grass(m, V).

It is easy to see that there is no linear relation satisfied by the Pliicker
coordinates of all points of Grass(m,V) (see Exercise 8.4). However,
there are quadratic relations between them, of the following form.

Theorem 8.1 Let1 < aj,...,an-1 < Nandl1 < B,...,Bm+1 <N be
two sets of pairwise distinct indices. Then the following relation holds:

m+1 '
Z (_1)1—1001.---.dm-l.ﬁdvﬁl.---.ﬁi—l,ﬁ4+1,---.ﬁm+1 =0. (8'2)

t=1

The Pliicker relations are often used in the form
m

val;-"yamvpl:“ﬂﬁm = E :valr“tal—-l»pinal+l)-"tamvplv-';ﬁi—l,ahp(-flp--.ﬁm

i=1
(8.3)
for any s. This formula can be obtained from (8.2) by renumbering the
indices.

Proof Writing out the left-hand side of (8.2) in more detail gives

m+1 ) Via, cor Vg V15
2 (-1t
=1
Yna; -+ Ymanm_y 'Umﬁ;
'Ulﬁl e 'Ulﬁ;..l 'Ulﬁ‘_.,.; e Ulﬁm+1
X

UnBr +++ UmBici UmBiyn -+ UmBpyr
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Expanding the first determinant down the final column gives

m+1 . m A
Y (=1 3 (-1)™ 46,35
=1 j=1
V18, e ’Ulﬁ‘_l vlﬁH-l
X
UmBy -+ UmBio: UmBia

where we have set

Vi ce Napm-_1

a} _ 'Uj.—lal coe YUjlam—y

Vj+lar -+ Yj+lam—

Umai -+ Umam_s

Putting this together gives
m V16, Vigi-1 UV1ge NBiyy
VAN

i=1 mBr -+ UmpBii UmB: UmBiya
Vigp -+ Yigia Vigi VB

But all of these determinants have a repeated
zero. Q.E.D.

lem+1

vam+l

vlﬁm+l

UmpBmt1
vjﬁmﬂ
row, and are thus

These relations can also be proved using the Laplace expansion of a

2m x 2m determinant (see Exercise 8.5).

Example 8.1 We write out the Plicker relations in the case N =4, m =
2. As already mentioned, after projective space itself, this is the simplest
Grassmannian of all. In this case the linearly independent coordinates

are

V12, V13, V14, V23, V24, V34,

and taking {1}, {2, 3,4} in (8.2) gives the Plicker relation

V12034 — V13V24 + V14023 = 0.

In fact the converse of Theorem 8.1 also holds.

Theorem 8.2 Any nonzero collection of numbers (va,,...,a,,) which is
skew-symmetric under interchanging the indices and satisfies the Phicker
relations (8.2) is the Pliicker coordinate of a point of Grass(m,V), that

18, of an m dimensional vector subspace of V.
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Proof By assumption, (v, ... 4,.) is 8 nonzero vector. We now suppose
that vy...,, # 0. (We can reduce to this case by renumbering the basis
of V if necessary.) Passing to a constant multiple, we can arrange that
moreover,

and we assume this in what follows. Set
Wij = V1.i-1,ji+l-m fOri=1,...,mand j=1,...,N.
Then by construction, we have
wij = 6;; for j <m, (8.4)

so that this determines m vectors w; = (w;y,...,win), fori=1,...,m,
which span an m dimensional vector subspace W C V. In addition, we
set

Wiq, con Wian,

wal,...,am -

Wmay -+ Wma,,

What we are required to prove is that
Wa,,....am = Vay,...,am for all Qyy ...y Q. (85)

We pick one set a, . . ., oy, of pairwise distinct indices. Now let v1,...,7,
be the elements among aj,...,qa,, which are > m, and $,..., 8, the
elements of 1,...,m missing from the list o4,...,a,,. We can permute
ai,...,an into the following order:

11-”1ﬂ1 - 1’71)ﬂ1 +1$'--,ﬂ6_117ﬁﬂ8 +1""am'

Since (8.4) holds by assumption, if we expand out the m xm determinant
for wy,,...a,. down the m — s columns not containing v; we get

Woiya -+ Whiv,

Way,.am =
Wa,y - Wy,

Now, we prove (8.5) by induction on s. It is obvious if s = 0 or 1. So
suppose that (8.5) holds for all s < ¢. By the Pliicker relations (8.3), we
get

m

Vay,.yamVUl,...om = E Vay,.ey@r_1,8,0r 4 14000@m Ve i—1ap i+ Lar, i+ 1,...,m
=1
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Here r is arbitrary. We choose an r for which a, = ;. Then for
i#ﬂh"-’ﬁt we get

Vay ., 0p—1,8,Qr 4100 Qm — 0.

Indeed, the numbers from 1 to m missing from the set {ay,...,an}
are exactly fi,...,5. When i = f;, among the indices of
Vay .. ar—1,85,0r 41, am> € nUMber missing from 1 tomis ¢t —1, so
by the inductive assumption,

Way --- wlar_l wmj wla',_'_l coe Wy,
valr'-uar—l)ﬁjva"+l,"'!am=

Wmay -+ Wmar_; WmB; Wmary: -+ Wmam

Now by using the above argument repeatedly, we can rewrite the above
determinant as

Woiyp  +or Woim Wp, 85
Wgi_am -+ WBi_1ve-1 WB;_1B;

Vay,e,ar—1,87,8r410000m — | Wy cee o Wy Wg;8;
Wemv1 c o+ WBinive-r WBipaB;

Wyyy  +++  Wgyen Wg, 6,

Expanding this out down the final column and using the fact that
wg, g, = Ok, we get

Weyv cee Weiy

—(q\t+i | WBi—am o Whiamea
val|~"la"—lrﬁj!a"+ly~"ram - ( 1) w w
Bi+1m v Bi+17t-1

Wy, cer Wiy,

Now vy, .m = 1, and we have ¢ = f;,a, = 7; by definition, so that,
using the fact that vy, . ;_1,,,i+1,...,m = Wg,,, the Pliicker relation (8.3)
becomes

Wey v, cer Wy
t .
= —1\tt+i
Vay,.oam = E :( 1) Way | W1+ WBj_1m—1
=1 Weip1m -+ Whipime

Whyy  +or Wiy
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This can all be put together as

oy +or Wi Woiy
Vay,.am =| - e . .,
Weiyy  +or Whiyy1  Woery,
which proves the assertion. Q.E.D.

It can also be proved that the quadratic relations provide all the equa-
tions defining the Grassmann variety; in other words, all the higher
degree relations can be expressed in terms of the quadratic Pliicker re-
lations.

Exercises to Chapter 8

8.1. Construct a one-to-one correspondence between the 2 dimensional
sphere minus one point and the plane.

8.2. Let W be a m dimensional subspace of V and M a frame of W.
Prove that for h € GL(m,C) the Pliicker coordinates determined
from hM are equal to det M times those determined from M.

8.3. Prove that different points of Grass(m, V') have different Pliicker
coordinates.

8.4. Prove that the Pliicker coordinates do not satisfy any linear re-
lations.

8.5. Use the Laplace expansion to give an alternative proof of the
Pliicker relations.
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Infinite dimensional Grassmannians

Chapter 6 showed how the space of all tau functions of the KP hierarchy
in Fock space is the orbit of the vacuum state under a group action. In
this chapter we show that this orbit is really a Grassmannian, and we
consider further the equations which describe it, the bilinear identity.
On the way, we touch on the Clifford group and character polynomials.

9.1 The case of finite dimensional Fock space

In the preceding chapter we defined finite dimensional Grassmannians,
and explained their Pliicker coordinates and the Pliicker relations hold-
ing between them. This chapter treats the corresponding theory in the
framework of Fock spaces, that is, we consider the question of describing
the variety of vector subspaces of a fixed dimension in an infinite dimen-
sional vector space. To relate to the material of the preceding chapter,
and to avoid technical complications involved in treating the infinite di-
mensional case, we start by considering the finite dimensional Clifford
algebra and the corresponding finite dimensional Fermionic Fock space.

Fix some positive integer N. In this section, from now on, we consider
Fermions with indices of absolute value [i| < N. Suppose that ;, ¥}
are Fermions satisfying the canonical anticommutation relation (4.6),
and let Ax be the finite dimensional Clifford algebra they generate.
Write Vy and Vy for the vector spaces based by the 1; and 97, that is,

Vv=P Cvi, Vi= P Cyr.
lil<N lil<N
Moreover, set
Wn=VnoVy.
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Let Fx be the finite dimensional Fermionic Fock space defined in the
same way as in Chapter 4. The vacuum state, charge and energy are
defined in the same way.

If g is an invertible element of Ay, we define T, by

Ty(a) = gag™' for a € An.

(Note that Axn certainly contains noninvertible elements, for example,
elements such as 1, 3.) Clearly T, is an automorphism of Ay, and the
following hold:

Tog =TgTy, Ty-1=T;' and T.=1 forceC\{0}. (9.1)
Because of this, the set

G(WN) = {g € AN

the inverse g1 exists and
Ty(w) € Wy for all w € Wy

forms a group, called the Clifford group.
The map taking w,w’ € Wy into the anticommutator (w,w’) =
[w,w]+ € C is a nondegenerate symmetric bilinear form on Wy. Write

O(Wy) = {T € GL(Wn) | (T'(w), T(w")) = (w, w’) for all w,w’ € Wx}

for the orthogonal group corresponding to (-, —). By definition of the
Clifford group, g € G(Wn) gives T, € O(Wy). In fact the following
holds.

Theorem 9.1

(i) Any T € O(Wy) is of the form T =Ty for some g € G(Wn).
(1) Ty = Ty if and only if g = cg’ with c € C\ {0}.

Assertion (i) can be proved using the fact that O(Wy) is generated
by reflections; we omit the details. By (9.1), to prove (ii), we need only
consider the case g¢' = 1. Now Ty = 1 just means that g commutes with
every element of Ay, that is, g is in the centre of .A,. However, it is
known that the centre of Ay is C. (See Exercise 9.1.)

We give without proof a formula which allows us to recover g up to a
scalar multiples if Ty, € O(Wy) is given. (See, for example, Sato et al.
(1978, 1979, 1980).) For ease of notation, we set

Yi—1/2 for i=1,...,N,

1/;,.‘_”_‘/2 for i=N+1,...,2N,
VaN+1/2 for i=2N+1,...,3N,
¢3N+l/2—i for i=3N+1,...,4N.

w; =
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‘We prepare some more notation, setting

_(Ia~n O _ (0 0 _( 0 Iy
E“‘(o 0)’ E*”(o 12N>’ J{‘(Im 0)’

where I;n is the 2N x 2N identity matrix.
Now suppose that T' € O(Wy) is given, and assume that E, + E_T
is nondegenerate. Then set

R=(Ryj) = (T~ 1)(E; + E_T)™J.

In this notation, we find that

1 &
g={(9):€/:, where p= 3 3::1 Rijw;wj,

is the required element; that is, T = T,,. Here (9)? = g*gdet(E,+E_T),
where * is Clifford conjugation, the anti-involution of Ay defined by
w* = —w for w € W. (To say that * is an anti-involution means
that (ab)* = b*a* for all a,b € Ay, so that taking the conjugation *
interchanges the order of products.) For g € G(W) we have g*g = g¢* €
C. It is possible also to write formulas when E, + E_T is degenerate,
but we omit this. '

We define the subgroup Gy of the Clifford group by the following
formula:

(9.2)

i -1
Gy = {a cA there exists a~' such that }

aVna~! =Vy and aVa~! = Vi

Now suppose given two nondegenerate linear transformations Vy — Vy
and Vy — Vj that satisfy

Yim Y ej¥; and P, Y byvj, with (by) = (aiy) .
J J

(9.9)
If we recall the definition of the bilinear form (-, —) on W, we see that
these two linear transformations together define an orthogonal transfor-
mation of Wy.
Now given an element |u) € Fy, we set

Vn(lu)) ={veVn | vlu) = 0}.
This is a vector subspace of V. For example, we have

Vn(lvac) = €@ Cyi;

O<i<N
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more generally if [u) = Ym, -+ Pm, P}, -+ Y5 |[vac) with my < -+ <
my <0and n; <--- < n, <0 then

VN(Iu)) = @ C; | 8CY, - @ C"/’m,--

0<i<N
i#F—ny,..., —ngy

This is N dimensional, that is, half the dimension of V.
However, for example, if {u) = (¥_, s2¥12 + ¥ 3% /2)|vac) then
we have

Vn(lw)= €@ Coi

5/2<i<N

This has dimension N — 2, so its dimension has dropped from that
in the previous examples. Quite generally, if Ju) has charge 0 then
dim Vi (Ju)) < N. (See Exercise 9.2.)

In what follows, we consider the case |u) = g|vac) for g € Gy.

Lemma 9.2 For any g,9' € Gy we have

Vn(glvac)) = Vn(g'|vac)) <= g=cg' for some c € C\ {0}. (9.4)

Proof Suppose that g € Gy. For u € Vy(g|vac)) we have ug|vac) = 0.
Moreover, observing that ug = gT,-1(u), we see that

Vn(glvac)) = Ty(V (|vac))). (9.5)

(In fact this identity holds for any |[v) € Fn in place of |vac).) Therefore
for the lemma, it is enough to prove (9.4) in the case g’ = 1. Suppose
that g € Gy and that

Vn(glvac)) = Vi (|vac)).

Then ;g|vac) = 0 for i > 0. As we have already mentioned, Gy- =
GL(Vn), so that using (9.2) and the following relation (9.3), we see that
also 9} g|vac) = 0 for i > 0. From the properties of the vacuum state it
follows from this that g|vac) is a scalar multiple of |vac). Q.E.D.

Now the action of the group GL(Vy) of nondegenerate linear trans-
formations of Viy takes Vi (|vac)) to a vector subspace of the same di-
mension N, and conversely, each subspace of Vi of the same dimension
is the image of Vi (|vac)) under an element of GL(Vy). Thus we see
that the orbit Gy|vac) of the vacuum state can be identified with the
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Grassmannian of N dimensional vector subspaces of Viy. The equa-
tions defining the Grassmannian are the Pliicker relations, so that for
the Grassmanian discussed above, the Pliicker relations are at the same
time the equations defining the orbit of the vacuum state. In the fol-
lowing section we give the equation describing the orbit of the vacuum
vector in the infinite dimensional case, which includes the case of finite
dimensional Fock space.

9.2 Description of the vacuum orbit

At the risk of repeating ourselves, we take up again the bilinear identity
of Chapter 6, adding explanations of some of the material left over from
there.

Theorem 9.3 (Bilinear identity) An element |u) of Fock space hav-
ing charge 0 belongs to the orbit of the vacuum state if and only if

Y vl eyl =0. (9.6)

i€2+1/2

The first half of the proof we now give is the same as the proof in
Chapter 6, but we repeat it for convenience.

Proof In the case |u) = |vac), the ¥} and 1_; are annihilation operators,
so0 (9.6) holds obviously.

Let X4 be an element of the Lie algebra gl(co) having the following
commutation relations with the Fermions (see (6.12)):

[Xa, 901 =3 (-eu)¥; and [Xa,9-il=D (a)e-;.

From the above relation we get

> [Xa¥ilivac) @ pilvac) + Y ¥f|vac) ® [Xa,¢—i]lvac) =0.

i€Z+1/2 i€2+1/2

It follows from this that the relation (9.6) is invariant under the action
of eX4. Thus (9.6) holds if |u) is a point of the orbit of the vacuum
vector.

‘We now prove the converse. We start by noting the following identity:
if we set ¢* = ¥2; + 9 and ¢ = ¢; +9—; then

[6,6']+ =2 and e™¥2=1-¢"¢€G.
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Using this identity, we get

(1 - (¢:m1 + 'p:u)('/'ml + 'p-ﬂl ))'/'ml e '/}mr'/}:u e :t,-lm)
= (_1)1‘—11/,"12 vee '/’m.-"l’;g e 1/;;"‘,33), (9‘7)

say, foranym; <---<m,<0andn; <---<n, <0.

Now let |u) be any element of F of charge 0. Then [u) is a linear
combination of terms, each of which consists of the vacuum state |vac)
acted on by the same number of Fermions ¢; and ;. Among these
terms, we pick out one with the smallest number of v;; if there are
several such terms, we choose one arbitrarily (for example, we could
order these terms lexicographically by the increasing indices of the 1,
and choose the smallest). This term involves the same number of ;
and 9], so that we can successively reduce the number of pairs using
the relation (9.7). Thus any vector |u) € (Fn)o can be transformed by
a suitable element of the group G to an element of the form

Ivac) + D cijvtjlvac) +---,
$,J<0

where --- stands for a sum of terms involving multiplication by at
least four Fermions. Next, acting by an element of G of the form

exp(— Y cij¥iv}), we can reduce it to the form
4,J<0

[y = |vac) + D cijuitdiilvac) + -
i,7, <0

As we saw above, the relation (9.6) is invariant under the action of G,
so that we have

Y ¢’y @ yilu') =0.

i€z
From the form of |u’) we clearly have ¥} |u') # 0 for i < 0, so that
Y_iluy =0 for —i>0,
and similarly
Yilu'y =0 fori>o0.
This proves that |u’) is a scalar multiple of |vac). Q.E.D.

Putting this together with the material of the previous section, we see
that the bilinear identity (9.6) is basically the same thing as the Pliicker
relations. In the following chapter, Chapter 10, we rewrite this relation
via the Boson-Fermion correspondence to obtain another derivation of
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[ ]

S

Fig. 9.1. Young diagram 1. Y = (5,3, 1)

the Pliicker relations of Chapter 8. As a by-product, this gives rise to
connections with other areas of mathematics. For this we need some
minor preliminaries, which we treat in the following section.

9.3 Young diagrams and character polynomials

We now make a small digression, introducing some preliminary material
which in the following Chapter 10 will help us to understand the con-
nection between the relation of the preceding section and the Pliicker
relations. We introduce the character polynomials, which form one possi-
ble basis for the polynomial ring. Pursuing this discussion further in one
direction leads to another area of mathematics, namely, combinatorics.
The aim of this section is to explain how under the Boson—Fermion cor-
respondence, the basis (4.11) of Fock space (Fn)o of charge 0 goes over
into the character polynomials.

We start by explaining the character polynomials. The objects we de-
scribe are in essence the same thing as the Maya diagrams; however, for
our purpose, we introduce the notion of Young diagrams, which appeared
earlier in the mathematics literature. Young diagrams can be expressed
in a number of different ways; one is to say that a Young diagram is
a nonincreasing sequence of positive integers (fi,..., fr). In pictorial
form, a Young diagram is viewed as a figure in the fourth quadrant of
the plane, made up of a number of rows of congruent square tiles, with
the rows aligned along their left sides, the first row having f; tiles, the
second row f> tiles, and so on. The only requirement is that the number
of tiles in a row does not increase when we move down from one row to
the next (see Figure 9.1).

It is known that if we limit the number of rows, say to diagrams
with at most n rows, then Young diagrams parametrise the irreducible
representations of the general linear group GL(n,C). (See for example
W. Fulton and J. Harris, Representation theory, Chap. 15.) The Young
diagrams also relate to many interesting problems of combinatorics.
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L]

Fig. 9.2. Young diagram IL. Y = (4, 1|2, 0)

Young diagrams have the following alternative description (see Fig-
ure 9.2).

Suppose that Y = (f1,...,f) is a Young diagram, and let s be the
diagonal width of Y when viewed from the top left-hand corner. We
write my; > --- > m, for the number of tiles lying above the NW-SE
diagonal line (excluding those straddling the line) in each horizontal row,
and ny > -+ > n, for the number of tiles lying below the diagonal line
(excluding those straddling the line) in each vertical column. Then, we
write

Y =(my,...,m, |n1,...,n,)

for the Young diagram.
Using this notation, we define the character polynomial of Y to be

XY (x) = det(hminj (X)).

Here
hma(x) = (=)™ Y prom41(X)pa-i(—x) (98)
>0
= (=)™ prem1(x)pni(—X), 9.9)
<0

where the p;(x) are defined in (5.20). (We set p;(x) =0ifi < 0.) It is
convenient to set also

gn(x) = (=1)"pn(-x%)-

Here hmn(X) = X(m+1,17)(X) is the character polynomial correspond-
ing to the hook shaped Young diagram (m + 1,1"), where 1™ stands
for the series of n terms (1,1,...,1). While we are on the subject,
Pn(X) = X(n)(x) is the character polynomial corresponding to a Young
diagram consisting of a single row of n tiles, and g,(x) = x(n)(x) is
that corresponding to the Young diagram (1™) consisting of a column of
n single tiles.
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Example 9.1 We give a few examples, distinguishing the Young dia-
gram by writing it as a subscript on x:

Xﬂ(x) = 1)
X(1)(x) = a1,
a}
X(z)(x) = 2 + z3,
2
X
Xa,n(x) = 71 — 3,
3
X
X@)(x) = -3i — 3,

x‘{ 2
X@2) (%) = 1 ~ %173 + 3.

For the sake of brevity, we do not go into detailed explanations at this
point, leaving proofs to specialist textbooks (see for example I.G. Mac-
donald, Symmetric functions and Hall polynomials, Oxford, 1979, second
edition 1995); however, the character polynomial of a Young diagram
Y is the function obtained from the representation matrix of the irre-
ducible character of the general linear group GL(n, C) determined by Y
by writing out the sum of powers of the eigenvalues as a function of the
elementary symmetric functions. (This is independendent of the size n
of the matrices, provided that it is bigger than the number of rows of
the Young diagram.) In what follows, the xy(x) are called character
polynomials. It is known that the character polynomials form a basis of
the polynomial ring.

The following theorem plays an important part in the arguments of
the following chapter.

Theorem 9.4 Under the Boson-Fermion correspondence, the basis vec-
tor

Ymy - VUm, Y, =¥ |vac) formy <o <m,<0and n; <---<n, <0

of the Fock space of charge 0 goes over into the character polynomial of
the Young diagram of the form
Y = (—my —1/2,...,—m, —1/2| —n1 - 1/2,...,—n, — 1/2)

™ (ni+1/2)4+r(r—1)/2
multiplied by the sign (—1)¢§1 ! .

For the proof, we prepare the lemma below: write the time evolution
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of the Fermions as
"/}'" (X) = eH(x) '/,ne—H(x) ) 'l/};(x) = eH(x)'/,;e— H(x) .

By the formulas (5.21) and (5.22) of Chapter 5, we can write

Ya(x) =3 ntipi(x) and Pr(x) =3 ¥r, pi(—x).

Lemma 9.5 For m,n > 0 we have

hmn (x) = (_1)n<m|'/}—m—l/2 (x)'p:n—l/2 (x) IVBC) .

Proof Substituting the above formulas gives

(vaclps(x)y] (x)|vac) = ) (vaclibirsth}4elvac)ps(x)pe(—x)

8,t=0

=Y. D PXP—X)Bigsetto
~8<i0<t<—j
—j—=1/2

= Y peiem(-x)
t=0
—j—1/2

= Y pois120(X)P-jo1/2-1(—xX)
1=0

= (—1)j+1/2h—i—-1/2,—j—l/2(x)' QE.D.

For the proof of Theorem 9.4, we only need to compare the definition
of the character polynomial and Wick’s theorem.

The Young diagrams appearing here can be expressed more simply in
terms of Maya diagrams. We now explain the relation between Maya
diagrams and Young diagrams (see Figure 9.3). We hope that the corre-
spondence in the general case should be clear from the following exam-
ple. Consider the Maya diagram m = {-7/2,-5/2,-1/2,3/2,7/2,...},
where ... means that from that point on, every half-integer is black in
Figure 9.3. ‘

We now imagine the line as a ruler with ticks marked off at every
integer point, and a white or black stone at every half-integer midway
between the ticks. We fold up the line depending on the white and black
stones according to the following rule: we start from the ¢ < 0 part of
the Maya diagram. By assumption, the stones at all points i < —7/2 are
white. For this white segment, we draw a straight line vertically upwards
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Fig. 9.3. The Maya diagram m = {-7/2,-5/2,-1/2,3/2,7/2,...} and its
Young diagram

starting from —oo, and heading upwards one unit for each white stone.
For the black segment, we draw a straight line from left to right, heading
one unit to the right for each black stone out to +o0o. In the present
example, we proceed straight up until the position —4. Corresponding
to the two black stones at —7/2 and —5/2, we head two steps across to
the right from —4 to —2. Then one step up (for —3/2), one step right
(for —1/2), up (for 1/2), right (for 3/2), up (for 5/2). From 7/2 onwards
all the stones are black, so that from 3 onwards we proceed horizontally
right.

In this way, any Young diagram can be determined as the region of
the plane bounded by two line segments and a bent line. The charge
of a Maya diagram can be expressed as being ¢ + 1/2, where the two
half-lines meet at the midpoint of the interval from % to ¢ + 1. In the
present case, the charge is —1 (see Figure 9.3). A Young diagram in the
usual sense can be treated as a charged Young diagram by viewing it in
the fourth quadrant of the plane, taking the top left corner as the origin,
and then translating up or down (not sideways) to achieve the desired
charge. To pass from a charged Young diagram to a Maya diagram, we
juét retrace our steps in the procedure described above. In this way we
see that there is a one-to-one correspondence between charged Young
diagrams and Maya diagrams.
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In general, consider a Maya diagram with white stonesat —m, < --- <
—m; among positions with { > 0, and black stones at ny < --- < n,
among positions with ¢ < 0. Then the corresponding Young diagram
is described as follows. The diagonal width is max(r,s). If r > s, the
number of tiles to the right of the diagonal line in each successive row is

-m-1/2—(r—38)>--->-m,—1/2—(r—3),
and the number of tiles below the diagonal line in each column is
-n1—1/24+(r—-8)>-->-n,—1/2+(r—8)>r—s-1>...>0.

Similarly, if s > r, the number of tiles to the right of the diagonal line
in each successive row is

—-my+124(8-1r)>- > -m+124(s-1)>8-1r> .- >1,
and the number of tiles in each column below the diagonal line is

- —-12—-(s-r)>--->-n,—1/2—(s—r).

Exercises to Chapter 9

9.1. Prove that the finite dimensional Clifford algebra A(Wy) intro-
duced in Section 9.1 is isomorphic to the algebra of all 22V x 22N
matrices (compare Chapter 4, Exercise 4.1). Using this, deduce
that the centre of A(Wy) is C.

9.2. In a finite dimensional Fock space, prove that dim Vyx(Ju)) < N
for an element |u) of charge 0.

9.3. Verify the relation between Young diagrams and Maya diagrams
explained in Section 9.3 in the particular case

m = {-11/2,-7/2,-3/2,-1/2,5/2,7/2,13/2,.. .}.
9.4. Determine the character polynomials corresponding to the follow-
ing Young diagrams:
(a') h= (3) 1);

(b) 1 =(3,2,1);
(c) h= (4,2,1).
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The bilinear identity revisited

In this chapter, we show how the bilinear identity discussed in previ-
ous chapters can be rewritten as the Pliicker relations for an infinite
dimensional Grassmannian. The chapter can also be seen as an exercise
in applying Wick’s theorem. Moreover, we derive the Hirota equation
from the Pliicker relations.

10.1 The bilinear identity and the Pliicker relations
Let |u) € 5 be an element of the Fock space of charge 0, and

£ |u)) = (vacle™ ™ ju)

the element of the Bosonic Fock space corresponding to |u) under
the Boson—Fermion correspondence. Because the character polynomials
Xy (x) form a basis of the polynomial ring, we can write f(x;|u)) as a
linear combination of these:

£ 1w) =) ev(Ju))xr (%)-
Y

Here xy(x) is the character polynomial corresponding to the Young
diagram Y, and the sum runs over the set of all Young diagrams. In this
section, we show that the necessary and sufficient condition for the left-
hand side to be a tau function of the KP hierarchy is that the coefficients
cy (Ju)) satisfy the Pliicker relations.

As we saw in Chapter 4, the Fock space Fy of chargé 0 is spanned by
vectors of the form

f(m,n) = Pm, - Pm,Pp, - ¥y |vac),

where we set m = (m,,...,m,) and n = (ny,...,n,). However, for our
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purposes in this chapter, this parametrisation of the basis vectors is not
appropriate, because it leads to many irrelevant signs in the formulas.
In what follows, we index the basis vectors in the Fock space F; by Maya
diagrams a = (a;);>1. In fact, we slightly extend the notion of Maya
diagrams, as follows. In Chapter 4, a sequence of half-integers a was
called a Maya diagram if

(i) aj < aj;q forall j > 1, and
(ii) a; + 1= aj4 for sufficiently large j.
Here, we ignore (i), and require only condition (ii); we call a a signed

Maya diagram.
Let a be a signed Maya diagram. Set

. . 1

The integer [ is called the charge of a. We associate a vector |a) € F;
with a. Specifically, |a) is a vector in the Fock space of charge .
If (i) holds, we set

o) = Y, Yoy ¥as - [2)- (10.1)
Suppose that a is written as
1
a= (nl,...,n,,i,...,—m,—1,—m,.+1,...,—m1—-1,m1+1,...).

Then |a) equals ¥, - Ym, ¥y, - - - %5 [vac) up to sign.

We set |a) = 0 if a; = ax for some j # k. Otherwise, by setting
Bj = a,(;) where 0:{1,2,...} — {1,2,...} is an appropriate permuta-
tion satisfying o(j) = j for almost all j, we obtain a Maya diagram f3
satisfying condition (i). We then set |a) = sign(0)|8).

In what follows, for brevity we say that a is a Maya diagram even if it
does not satisfy condition (i). For a half-integer b and a Maya diagram a,
we denote by adb the Maya diagram (b, a;, aa, . . .). For a Maya diagram
a, we denote by a © a; the Maya diagram (a,...,aj-1,aj41,...). If
|a) € Fi, then |a® b) € Fit) and |a © a;) € Fi.

As we discussed in Section 9.2, Theorem 9.3, the necessary and suffi-
cient condition for

F=Y caa)
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to be in the group orbit of the vacuum state |vac) is that
Y wifey_if=0. (10.2)
i€Z+1/2

Here, we restrict the summation to the Maya diagrams in the strict
sense, and of charge 0. It is convenient to extend the notation c(a) to
an arbitrary signed Maya diagram. We set c(a) = 0 if |a} = 0. For a
and (3 as above, we set

c(a) = sign(o)c(B).

We now state the main result of this chapter. We rephrase condition
(10.2) in terms of the coefficients c(a). Let vy be a Maya diagram of
charge 1 and 6 of charge —1. Then, condition (10.2) is equivalent to

oo

Y (1Y c(yo )6 @ ;) = 0. (10.3)
j=1

The proof is straightforward, and we leave it to the reader. We write
out an example: for v = {-1/2,1/2,3/2,...} and § = {-3/2,5/2,
7/2,...}, we get

0 =c({1/2,3/2,5/2,...})c({-3/2,-1/2,5/2,7/2,...})

—-c({-1/2,3/2,5/2,...}) c({-8/2,1/2,5/2,7/2,...})
+e({-1/2,1/2,5/2,7/2,...}) c({-3/2,3/2,5/2,7/2,...}) . (10.4)

10.2 Pliicker relations and the Hirota equation

Summarising the results of the preceding section, we continue by showing
that the Pliicker relations obtained here also imply the bilinear differen-
tial equations of Hirota form.

For an element g € G, we let

7(x;9) = (vacle®®g|vac).

be the element of the Bosonic Fock space obtained under the Boson—
Fermion correspondence. This is a tau function of the KP hierarchy.
Because the character polynomials form a basis of the polynomial ring,
we can write 7(X;g) as a linear combination of these:

T(x9) = Y cr(g)xy(x).
Y

Here xy(x) is the character polynomial corresponding to the Young
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diagram Y, and the sum runs over the set of all Young diagrams. The
result we proved in the preceding section is that the coefficients cy (g)
satisfy the Pliicker relations. In what follows, we call these coefficients
cy(9) the Pliicker coordinates of the tau function 7(x; g).

Now 7(x;g) is an element of the polynomial ring C[z;,z3,...]. We
write §; for the partial derivatives with respect to the z;, and C[8;, &, . . ]
for the polynomial ring generated by the 9;; this is the commutative ring
of all differential operators with constant coefficients in the independent
variable z1, 2, . ... For a polynomial p(x), we write p(5x) € C[0y,8,.. ]
for the element obtained by making the substitution z; — (1/4)9;. The
formula

(P(Bx), £(X)) = P(B)f (X} (10.5)

defines a nondegenerate pairing between the polynomial rings
C[61, B, ...] and C[z1,z2,...]. One sees easily that under this pairing,
the elements
{z;"‘ T2 }
m1!m2!"‘ m120,m2>0,...

form dual bases. In particular, if we give =; degree i as in Chapter 4,
and moreover give 0; degree —i, then we have decompositions into ho-
mogeneous components

Clz1,72,..] = PClxln and C[8y,8..] =) Clbxl-n

n2>0 n20

m .
a'nd {al ! a2 2 }m1 Zo,mzzo,...

and the pairing (p(gx), f(x)) gives a nondegenerate pairing between
Clx]s and C[Bx]—n, with (C[0x]—m, C[x]n) =0 for m # n.

It is known that if we pass to the basis of C[zy, z2,...] formed by the
character polynomials and reinterpret the pairing in these terms, then
the following orthogonality relation holds (see Exercise 10.3).

Lemma 10.1 For any two Young diagrams Y,Y’, we have

(xy (Bx), xv' (X)) = byy-.

In other words, any f(x) € C[zy,%3,...] can be written as a linear
combination of character polynomials

£ =3 erxr ()
Y

and the coefficients cy can be computed using the above pa.iring:

oy = (xr(8x), f(x))-
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We can deduce a number of interesting consequences from this orthog-
onality relation. For g € G, set g(x) = eH™®)ge~H(), and consider the
transformation of the following type of expression:

T(x+Yy;g) = (vacle*+)g|vac)
= (vaclef®ef V) g|vac)
= 7(x;9(y))
=) er(g))xr(x).
Y

Then by Lemma 10.1 above, we get
er(9(¥)) = (xr (), 7(x +¥;9))

= xy (Bx)T(x +¥; 9)|

x—0 °

dr(x+yig) _ 0r(x+yi9)

Using the fact that
g 897; 3%‘

gether with

, and putting this to-

Tx+yig) =Y er(@xr(x+y),
Y

we obtain

Xy BT (X +¥:9))y o
xy By)7(y;g)-

cy(9(y))

This gives the following lemma.

Lemma 10.2 For an element g € G, write cy(g) for the Phicker coor-
dinates of T(x; g), and consider the time evolution g(x) = eH(*)ge—H(x)
of g- Let 7(x;g) be the tau function of the corresponding KP hierarchy.
Then the following relations hold:

(i) ov(g) = xy @7 (x; 9)|z—0 and
(i) cy(9(x)) = xy (8)T(%;9).

In particular, {cy(g(x))} is again the Plicker coordinate of a tau func-
tion of the KP hierarchy.

Combining the fact that the Pliicker coordinates satisfy the Pliicker
relation together with the fact that, as shown by (ii) of the lemma, the
Pliicker coordinates can be expressed in terms of the tau function, we
can also deduce the Hirota bilinear differential equation.
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Example 10.1 As an example, let us try to write out the Plicker rela-
tion from the end of Section 10.1 using the tau function. By the table
of character polynomials given in the example of the preceding chapter
and by the above lemma, in the present case, the Plicker relation can be
rewritten as follows in terms of the tau function as a differential equa-
tion:

0 = Z-7(x) - (8 ~ 40185 + 3637 ()
~307(x) - (8 ~ Bo)7(x)
+3(08 +0)7(x) - (33 ~ By)7().

If we transform this differential equation into Hirota form, we get the
equation

(D} +3D% —4DD3)7 -7 =0.
which has already appeared in Chapter 3.

Exercises to Chapter 10

10.1. Prove equation (10.3) of the main text.

10.2. Show that the Pliicker relation (10.4) at the end of Section 10.1
is the same thing as the Pliicker relation of Section 8.3, and think
about why this must be true.

10.3. Find the matrix describing the change of basis between the two
bases

{z3,z2%1,23/6}, and {x(3)(X), x(2,1)(X)s X(1,2,1)(%)}

of the space of cubic polynomials. Verify (10.2) in this case.
10.4. Determine the Pliicker relation that gives rise to the differential
equation in Hirota bilinear form

D3D; + 2D,D3 — 3D D)7 - 7 = 0.
1



1.1.

1.2.

1.3.

2.1.

Solutions to exercises

Chapter 1
The question is to find F(z,t) such that

F(z,0)=2z and OF/dt= z*(0F/dxz).

Expand in powers of t as F(z,0) = z + ta; + t%a; + --- and
substitute in the equation to get a; = z?, etc. Now guess a
closed form. The answer is z/(1 — tz).

The method is to set K (v) = Au'uy + Buluz, + Cuuzuy, +
Dud + Eus,, calculate (8/8t)(K(u)) and (8/8s)(K(u)) by the
method indicated after (1.19), then equate coefficients to deter-
mine A, B,C, D, E. The answer is

1 3
Eu"ux + ulugy + dungug, + uz + gusz-

From 42 + (B, P] = 0 we get 3u,y + w4z + 6(uu;), = 0. This is
called the Boussinesq equation.

Chapter 2

Thinking of @ o f as an operator on functions gives (3 o f)g) =
0(fg) = (fO)g + (0f)g. Similarly, (0™ o f)(g) is the nth or-
der derivative of the product fg, which can be calculated by the
Leibniz rule:

(0" o f)(g) = 0"(f9)

=¥ (})@ne*a.

k>0
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2.2. The answer is

00
a+0-1 = a—i-— i
‘;h,a , where b= Y ( ; ) £i0*gk,

i+j+k=l
or in other words,
= a—k
> ( )(fka’gk')3“+ﬂ k=K
Gk k' =0 J

2.3. Weset (0+2)! =3, ;(-1)" tap—10™™ and multiply out,
obtaining (8 + z)(600™ ! — a107% + 22073 — --.) = 1. Equating
coefficients of 9~ gives a9 = 1, and a,, — za,_1 + Fa,—1 = 0
forn>1 Thusag =1,a; =z, a3 = 22+ 1, ag = z3 + 3z,
ag = % + 622 + 3, etc., and quite generally

2 - 1) —2) - (n— 2k + 1) -k
2.4-6---2k y

ap =
k=0

2.4.
ordL1L; = a; +a; and ord[Ly, L] =a; +az — 1.

2.5. If | is even then (P'/2), = P!/2, and therefore [P, (P"/?),] = 0.
2.6.

5u 15u?
(P*2), = 8 + —u,,az + ( —8—) 8
15 15
+ S Uzgr + S Uly;

16 8
1
[P,(PY%)4] = _E(uh + 10Utz z; + 30U, + 20UsUzzs).

2.7.
Let™® = (9 + 1871 + D72 +--)
X(1+ w87 + w872 4. .)etxk)
= (6 + wy + (Owy + wa + fl)a—l
+(0wz + ws + frwy + f2)07% + - ) ef00R),
so that

Owi+ f1=0 and 6w2+f1w1+f2=0.

No solutions provided to Exercises 2.8-10.
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3.1.

3.2.
3.3.

3.4.

Solutions to exercises

Chapter 3
One calculates that

DDuof f =2ffu—2fcfc and Dif-f=2ffi—8f:faz+6f2,
and thus (3.2) becomes

87 fot — 8fufz — 2f faz + 8z fox — 6f2, =0.

We give = weight 1 and ¢ weight 3 and look for homogeneous
solutions of degree < 6. Then every polynomial of degree < 3 is
a solution. In degree 4, tz is a solution, in degree 5 there is no
solution, and in degree 6 there are three solutions

1 1 1
—I,;x“+§tz3+t2, —§t:c3+t2 and 2.

No solution provided.
Consider the action B — [A, B], and write ad(A)(B) = [A, B].
Then

eABe ™4 = “(A)B,

and therefore
etePe™4 = exp(ad(A4)B).
But since ad(A)(B) is a scalar, ad(A4)"B = 0 for n > 2. It follows
that
efeBe 4 = exp(B + [4, B]) = el4BleP.

We have

X(PI,QI)X(Pz,Qz) = C(pl’ QI,P2,‘12) : X(Ph‘]l)x(m)‘h) Sy

(r —p2)(q1 — @2)

where C(p1,q1,P2,@2) = .
(P1, 91,72, ) (p1 — @2)(q1 — p2)
Here the normal-product notation : : means that we rearrange
the order of operators inside the colons, passing all the operations
of differentiation to the right and all the multiplications to the
left. (This is explained in detail in Chapter 5.) For example,

LA - R

) la(v] T 'Ba:l 1= la:r.l'
The expression C(p1,q1,Pp2,¢2) i8 symmetric under the transpo-
sition 1 « 2, so that at first sight it seems that the commutator




3.5.

3.6.

3.7.
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should vanish. However, on expanding the operator X (p,q) as a
sum of monomials in p and ¢

X(P, (I) = E anpmqn

with coefficients X,,,, the commutators [X,n,n,, Xmzn,] do not
have to vanish. This contradiction is resolved in the following
way: Y .o . z" is a nonzero formal power series in z. But we
have

Z""_—l' Z"’_

n=—o00 n=0

and as rational function
z~! + 1
1-z! 11—z

Thus the right way of thinking of C(p1, ¢1, 2, ¢2) is as the formal
power series

(1-B)1-2)
A-2)a-&)

expanded in ¢2/p; and p2/q:, and in this sense it does not van-
ish. If we write 6(z) = Y o _., 2", it has the property that

f(z)d(z) = f(1)6(x) for any formal power series f(z), provided
that f(1) is meaningful. Using this we see that

[X(Pl,lh),x(?z,‘h)] = (1 _ g}) (1 - g)5 (52—1) X(Ph‘]z)

(1-2)

) (1 —(,%111)_(5,2115‘ 2) 5 (%) X(p2,q1)-

Thus the vert,ex operators generate a Lie a.lgebra

T, T2+ F a:z—z T3+ 102+ F za——landa:s—zlz2+-i
In this case, for k € C the only pole isat k=0.

Setting x; = « for all j and computing the residue gives @, = 0.
Next, after we differentiate with respect to z}, the same calcula-
tion gives w, = 0, and so on.

No solution provided.
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4.1.

4.2.
4.3.

5.1.

Solutions to exercises

Chapter 4
By definition we have 1v; = ¢|vac) = 0 and vz = 99*|vac) =
vy. Similarly for ¢*.
No solution provided.
Applying Wick’s theorem gives (¥m,¥m,) = 0 and (¥} 95, ) =0,
so that the only terms that survive are those of the form

W)+ (Wma Wi

for a permutation o. Noting here that the identity permutation
o = id has sign +1, we get the answer from the definition of the
determinant.

Taking the pairings of the vectors

(ul = (Vacl"/’m: ...wmr'p:ll e "'p:z,a
lv) = Yomy '“¢—m',¢1n; 1/)‘—n;.|vac>
for0<my <--- <My, 0<ny <---<nyand 0 < m) <--- <

m,, 0 < nj{ < --- < n/, and working as above, neglecting the
sign, we get

dot (" ) det (03, ¥-m)) = £ I S, T [ S
i=1 k=1

It follows form this that the pairing is nondegenerate.

Chapter 5
Relation (5.10) gives

(Hm, Hp] = Z[Hm,¢—j'/’;+n] = E(¢—j+m¢;+n_¢—j¢;+m+n)'
J J

The false calculation goes as follows: if we remove the brackets
in each term of the sum and renumber the first summands by
j — j + m, each becomes equal to a second summand, so that
they all cancel, to give 0. ,

Instead, rewrite the terms inside the bracket as

Yo jemPin — V=¥ min | +Bmino(00 < m) - 6(5 < 0)).

After this, the sum of the normal product parts acts on each
vector as a finite sum, so that the renumbering j — j + m is
permissible and the sum gives 0. The remaining constant terms
give the contribution méy, n 0.



5.2.
5.3.
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5.5.

6.1.

7.1.
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T4+ 122 — Lzaa? — 1ot

In the expansion e/ = 3" f;(x)a;, the only a; which have
(llajlu) # O are those of energy —d + I2/2. Therefore the corre-
sponding coefficients f;(x) are all of weight d — /2.

For each n separately, a term 4),, (respectively 9}) appearing in
(4.11) contributes zg~™ (respectively z2~'¢™™) to the character.

The character of C|z,, z2, z3,...] i8 given by

Z m1+2m3+ H Z qnm,. — H(l _ n)—

YVI1,YVI2,...>0 n=1m,=0 n=1

We have that (I| has charge ! and energy 1?/2. Now because we
can identify F; with z'C[:cl, Z3, T3, . ..], the character of F can be
computed as in the question. For the second part, it is enough to
put together the formulas of Exercises 5.3 and 5.4 and replace z
by —z¢g~ /2.

Chapter 6

We omit the first half. For the second half, we see that the
section z = 0 of (6.2) is contained in the orbit, for example by

using elements
a b
=|b a .
1

Then G contains the rotation around the z axis given by

1
go = cosf —sinb |,
gsinf cosf
which gives the locus (6.2).
No solution provided to Exercises 6.2-3.

Chapter 7

It is enough to prove that for X,Y € sl, the elements A(t) =
Xt™ and B(t) =Yt" € 51, satisfy w(A, B) = mépin o TX(XY).
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8.1.

8.2.
8.3.

8.4.

Solutions to exercises

Chapter 8

For example, suppose that the sphere is tangent to a plane at
the south pole, and consider the stereographic projection of the
sphere away from the north pole onto this plane. '
No solution provided.
Let W be an m dimensional vector subspace of V and My = (vi;)
(for1<i<mand1<j< N)a frame of W. The necessary and
sufficient condition for a vector (z1,...,Zn) € V to belong to W
is that the (m + 1) x N matrix obtained by adding this vector to
the rows of M has rank m. Thus for any (By, ..., Bm41) we must
have

m+1

Z (=1Yzp,vp,,...85- 18541, Bmsr =0

j=0
This set of (m’il) hyperplanes of V is uniquely determined by the
Pliicker coordinates of W, and W is contained in their intersec-
tion. If we can prove that the above linear system of equations
in the x; has solution space of dimension < m then W equals
this intersection, and is uniquely determined by its Pliicker coor-
dinates.

For this, suppose that vg,,... a,, i8 one of the nonzero Pliicker
coordinates. Then set (By,...,Bm+1) = (1,...,0m, 1) fori # Bj,
and write out the above equation. We get

m

Z(—l)jza,'Ual,...,aj_ha,-q.:,...,am.i + (_1)m+11'ival,...,a,,. =0.

j=0

Renumbering the Pliicker coordinates gives

m
zi'"aq,...,a,,, - Zza,» 'Ual....,aj_l,t',aj.,.l,...,a,,. =0.
j=1
Partitioning the indices as {1,...,N} = {ai,...,am} U

{@m+1,--.,an} and considering the above equation for each i =
Qm41,---,aN, we see that the (N — m) x N matrix of coeffi-
cients of the above system of equations has rank N — m. In-
deed, the minor formed by its columns numbered a,,44,...,aN
is ('Ual,...,a,..)N—m #0.

Let Y cay,....amVan,....am = 0 be a linear dependence relation; we
need to prove that all the coefficients ¢, ... a,, = 0. Consider the
m dimensional subspace spanned by the first m standard vectors
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v; = (y;) for i = 1,...,m with v;; = 6;;. Then the Pliicker
coordinates of this subspace are vy, ., =1 and vg,,....a,, = 0 for
{a1,...,am} # {1,...,m}; therefore ¢, ,m =0.

Perform the Laplace expansion of the determinant

V15, e U184 0 e 0
UmBy -+ VUmBmpr 0o ... 0

)
‘Ulﬂl cee vlﬁm+l 'Ulaq PN vlam~1
UmB -+ UmBmy1 Umay .-+ Umap

along the top m rows.

Chapter 9

We write A Vv for the exterior algebra generated by Vy. As a
vector space, it has dimension 22¥. We can identify it with the
subalgebra of Ay generated by the v;. The 4; and 9} correspond
respectively to the following linear operators on A Vy:

Vi i, Aig AYig Ao = i Ay, Ahig Adig A- -+
Ui, Athig Athig A e [, %5 [ i, Aig A
[, Yial+ Wiy Atig Ae e -
This correspondence gives an isomorphism of Ay with the algebra
of all 22N x 22N matrixes.

The fact that the centre of the algebra contains only scalar
multiples of the identity can also be proved as follows. Let a
be a central element of Ay. Because a commutes with Hy =
Siso V=¥ — ;<o ¥i¥—i, it follows that it has charge 0. Write

a= Zc(ml,...,mr,nl,...,nr)qp,,.1 v Ym,Yp, Y,

(the term with r = 0 is constant); here we have assumed that
the set of terms ¥y, - - Ym, ¥y, -+ - ¥, on the right-hand side is
linearly independent. Now consider [y, « +: ¥m, ¥p, - - - Y5, ¥ils
this is nonzero only if i = —n; for some [, and then it equals

(—l)r_"d’ml vee ¢mr¢;l e 1/)1‘.‘_1 ;"+l e w;r

These terms are linearly independent, so that each of their coeffi-
cients must be 0. Now the assertion follows from considering also
the commutator with ;.
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9.2,

9.3.
9.4.

10.1.

10.2.
10.3.

10.4.

Solutions to exercises

Suppose that dim V(|u)) = N + r. For suitable g € G, we can
write '
T,V(lw) = €P Cu
i>—r

= V(¥—rt1/2 - P-1/2|vac)).
By (9.5) and the remark following it, we obtain

V(|lv)) = V(g¥—ry1/2 - ¥_1,2|vac)),

but since g preserves charge, this contradicts the assumption that
|u) has charge 0.
No solution provided.
(a) —z4 — 23/2 + 2222/2 + 21/8;
(b) zsz1 — 73 — z373/3 + 2§ /45;
(C) T6T1 — T4T3 + TyT2T1 — T4} /6 — 2321 /2 — 2323 /2 — T32273/
2 — z3z} /24 + 2321 /6 — 2373/12 + 2,25 /24 + ] /144.

Chapter 10
Use the fact that ¥7/,%m(X) = p—m-1/2(X) — ¥m(x)¥] /), and
hom-1/2,-n—12(X) = ~h_pmi1/2,—n-3/2(X)

+P—m-1/2(X)g-n41/2(X).

No solution provided.

(x(3)» X(2,1), X(1%)) = (23, 271,73 /6)A,

1 -1 1
where A=|1 0 -1}.
1 2 -1

Transforming (8s, 8201, 83) under *A~! gives
(x(3)(0x)> X(2,1)(0x), X (12) (Ox))-

The sum (or alternatively, the difference) of the Pliicker relation
determined by the set consisting of the empty Young diagram of
charge —1 and the Young diagram (1, 1,1,1) of charge 1 and the
Pliicker relation determined by the set consisting of the empty
Young diagram of charge —1 and the Young diagram (2, 1,1) of
charge 1.
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9.2.

9.3.
9.4.

10.1.

10.2.
10.3.

10.4.

Solutions to exercises

Suppose that dim V(Ju)) = N + r. For suitable g € G, we can
write ‘

TyV(lw) = @ Co

iD>—r
= V(¥—r+1/2 " P-1/2|vac)).
By (9.5) and the remark following it, we obtain

V(|lu)) = V(g¥—r41/2 - - - ¥-1/2]vac)),

but since g preserves charge, this contradicts the assumption that
|u) has charge 0.
No solution provided.
(8) —24 — 23/2 + 227}/2 + 21/8;
(b) zsz1 — 23 — 2323 /3 + 28 /45;
(C) TgT) — T4T3 + :B4£E2$1 - .’1741;?/6 - z§z1/2 - $3$3/2 - :l:3.’l72.’17?/
2 — 232} /24 + 2321 /6 — 2323 /12 + 2228 /24 + 27 /144.

Chapter 10
Use the fact that 9} /21/Jm(x) = P_m—1/2(X) — Ym(X)¥} /o and
h—m—l/2,—n—l/2(x) = —h—m+1/2,—n—3/2(x)‘
+P-m—1/2(X)4—n+1/2(x)-

No solution provided.

(X@): X(2,1), X(13)) = (23, 2271, /6) A,

1 -1 1
where A=[1 0 -11}.
1 2 -1

Transforming (83,828, 07) under *A~! gives
(x(3)(8x)» X(2,1) (Ox)> X(13) (x))-

The sum (or alternatively, the difference) of the Pliicker relation
determined by the set consisting of the empty Young diagram of
charge —1 and the Young diagram (1, 1, 1,1) of charge 1 and the
Pliicker relation determined by the set consisting of the empty
Young diagram of charge —1 and the Young diagram (2,1,1) of
charge 1.
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