Mathematics and Its Applications

Managing Editor:

M. HAZEWINKEL
Centre for Mathematics and Computer Science, Amsterdam, The Netherlands

Volume 387




A User’s Guide
to Algebraic Topology

by

C.T.J. Dodson

University of Toronto,
Ontario, Canada

and

Phillip E. Parker

Wichita State University,
Kansas, U.S.A.

hd

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON



Library of Congress Cataloging-in-Publication Data

Dodson, C. T. J.

A user's gulde to algebraic topology / by C.T.J. Dodson, Phillip
E. Parker.
p. cm. -- (Mathematics and its applications ; v. 387)
Includes bibliographical references (p. - ) and index.

ISBN 0-7923-4292-5 (HB : aci1d-free paper)
1. Algebraic topology. I. Parker, Phallip E. II. Title.
III. Series: Mathematics and its applications (Kluwer Academic
Publishers) ; v. 387.
QAB12.D63 1997
514" . 2--dc20 96-43438

ISBN 0-7923-4292-5

Published by Kiluwer Academic Publishers,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Kluwer Academic Publishers incorporates
the publishing programmes of
D. Reidel, Martinus Nijhoff, Dr W. Junk and MTP Press.

Sold and distributed in the U.S.A. and Canada
by Kluwer Academic Publishers,
101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed
by Kluwer Academic Publishers Group,
P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Reprinted 1998
02-1098-100 ts

Printed on acid-free paper

All Rights Reserved

© 1997 Kluwer Academic Publishers

No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,

including photocopying, recording or by any information storage and

retrieval system, without written permission from the copyright owner.

Printed in the Netherlands



Contents

Preface

Introduction and Overview

1 Basics of Extension and Lifting Problems

1.1
1.2
1.3
14
1.5

Existence problems . . . . . . . .. ... Lo Lo
Retractions . . . . . . . . . .
Separation . . . . . . . ... e e
Transcription of problems by functors . . . .. . .. ... ... ...
The shape of thingstocome . . . . . .. . ... ... .........

2 Up to Homotopy is Good Enough

2.1
2.2
2.3
24
2.5
2.6

Introducing homotopy . . . . . . .. .. ... ...
Fibrations and cofibrations . . . .. ... ... .. ... ... ...,
Commuting up to homotopy . . . . . . . ... ... ... ... ...
Homotopy groups . . . . . . . . . ...
The fundamental group . . . . . .. . ... ... ...,
First applications . . . . . . .. . . . .. .. ... ...

3 Homotopy Group Theory

3.1
3.2
3.3
3.4

3.5

Introduction . . . . . . .. oL L
3.1.1 Exactsequences . . .. .. ... ... ... ...
Relative homotopy . . . . . . . . . ...
Relative and exact properties . . . . . . . . ... ... ... ...
Fiberings . . . . . . . . ...
3.4.1 Applications . . .. ... ...
CW-complexes . . . . . .. . . . . . .. e
3.5.1 Attaching cells and homotopy properties . . . . . .. .. ...
3.5.2 Simplicial complexes . . . . . ... ... ...
3.5.3 Computing fundamental groups . . . . . . .. ... ... ...

xi

S oo oo &

10

17
17
27
37
44
45
47



CONTENTS

vi
3.6 Simplicial and cellular approximation. . . . . . . .. ... ... ... 89
3.7 Weak homotopy equivalence is good enoughin CW . . . . .. .. .. 93
3.8 Exploiting n-connectedness . . . . . . . .. .. ... 96
3.9 Extracting homotopy groups from known bundles . . . . . . . .. .. 99
4 Homology and Cohomology Theories 105
4.1 Introduction. . . . . . . . . . . . ... 105
4.2 Homology and cohomology theories . . . . . . ... ... .. ... .. 106
4.3 Deductions from the axioms . . . . . . ... ... L0000 108
4.3.1 Reduction and unreduction . . . .. ... ... ... ... .. 116
4.3.2 Deductions from homology . . . .. .. ... .. ... .... 118
4.3.3 The Lefschetz theorem . . . . . . .. ... ... ... ..... 122
4.4 Homology of chain complexes . . . . .. ... ... ... ...... 125
4.4.1 Universal coefficient theorems . . . . . .. ... ... ... .. 133
4.5 Homology and cohomology of CW-complexes . . . . ... ... ... 135
5 Examples in Homology and Cohomology 143
5.1 Cubical singular homology . . . . . . . . .. ... .. ... ... .. 144
5.2 Simplicial singular homology . . . . . ... ... ... ... ... .. 147
5.3 Cupproduct . .. ... .. .. .. 150
5.4 Geometric simplicial homology . . . . . .. .. ... ... ... ... 151
5.5 Computing simplicial homology groups . . . . . . .. .. ... .. .. 155
5.6 Relative simplicial homology . . . . . . ... . ... .. ... .... 157
5.7 Geometric simplicial singular homology . . . . .. ... . ... ... 164
5.8 Bordism homology . . . .. ... ... ... 165
5.9 de Rham cohomology . . . .. .. ... ... ... ... . ... 165
5.10 Geometric simplicial cohomology . . . . . . . . .. ... ... .. .. 167
0.11 Moreon products . . . . . . . . . .. .. ... 168
5.12 Cech cohomology theories . . . . . . . . . ... ... ......... 172
6 Sheaf and Spectral Theories 175
6.1 Some sheaftheory . .. ... ... ... .. ... .. ... ... 175
6.2 Generalization to spectral theories . . . . . ... ... ........ 181
6.3 Spectral sequences . . . . . . . ... e 189
6.3.1 Review and moraltale . . . . .. ... ... ... ... ..., 204
7 Bundle Theory 209
7.1 Elemental theory . . . . . ... ... . ... ... .. ... . ... .. 210
7.1.1 Pullbacks . .. ... ... 219



CONTENTS
7.2 Stabilization . . . . . . . ..
7.2.1 Linear stabilization . . . . . . . ... ... ... ... ...
7.2.2 Nonlinear stabilization . . . . . ... ... ... ... ... ..
7.2.3 Linear K-theory . . .. .. ... ... ... ... . ......
7.3 Homology and cohomology . . . . . .. ... ... .. ... ..
7.3.1 The Gysin sequence . . . . . . . .« .o oo v e,
7.3.2 The Wang sequence . . .. ... .. ... ... ........
7.3.3 Transgression and the Serre sequence . . . . . . ... ... ..
7.3.4 The Leray-Hirsch theorem . . . . . . . . .. ... .. .....
7.3.5 Thom isomorphism theorem . . . . . . . ... .. .. .....
7.3.6 Zeeman comparison theorem . .. ... ... .. ... ... ..
7.4 Characteristicclasses . . . . . . . . . ... L
7.5 Nonabelian cohomology . . . ... ... ... ... ... .. ...,
8 Obstruction Theory
8.1 Preliminaryideas . . . . . . ... . L L
8.2 Eilenberg-Maclane spaces K(m,n) . . . . . . .. ... .. ... ....
8.3 Moore-Postnikov decomposition of a fibration . . . . .. ... .. ..

8.4 Homotopy cofunctors
8.5 Postnikov invariants

9 Applications

9.1 Thosealready done . . . . . .. .. .. ... .. ... ... .....
9.2 Twoclassicalresults . . . . .. ... ... ... ... .
9.3 Theorems of Geroch and Stiefel . . . . . .. ... ... ... .....
94 Thepower . . . . . . . . . . i e e e e e
9.4.1 Piecewise linear structures . . . . . . . . ... ... ... ...
9.4.2 Smoothing PL structures . . . . .. ... ... ... .....
9.4.3 Almost-complex structures . . . . ... ... .. .. .....
9.5 Marcus’stheorem . . . . . .. .. ... ...
9.6 Meta structures . . . . . . ... e e
9.7 Other signatures . . . . . . . .. . . ...
A Algebra
Al Setsandmaps . . .. ... ... e
A.2 Categories and functors . . .. ... .. .. ... ... ... ... ..
A21 Atriangularview. . . . . ...
A.2.2 Limitsof diagrams . . . . . . ... ... ... ... ... ...
A3 Groupsand actions . . . . . . . . ...
A31 Groups . . .. ... e

A.3.2 Group actions

vii

224
227
230
233
234
243
244
244
245
246
248
248
250

257
257
260
267
271
277

283
283
285
286
288
288
288
289
289
291
292



CONTENTS

viii
B Topology 309
B.1 Topological spaces . . . . . .. .. . ... 310
B.2 Separation properties. . . . . . ... ... Lo 315
B.3 Compactness . . . . . .. . .o 316
B.4 Paracompactness . . . . . . . . . . . .. 318
B.5 Connectedness . . . .. ... ... ... . ... 319
B.6 Peano’s space-filling curve . . . . . ... ... Lo 321
B.7 Collected examples on general topology . . . . . . ... ... .... 322
C Manifolds and Bundles 331
C.1 Manifolds . . . . .. . . ... 331
C.2 Tangent SPacCeS . . . . . v v v v i e e e 332
C.3 Calculus on manifolds . . . . . .. ... ... ... 335
C.3.1 Summaryofformulae . . . . . .. .. ... ... ... 335
Cd4 Bundles . . . . . . .. 348
C.5 Metrics and connections . . . . . . .. ... ... ..., 349
C.5.1 Principalbundles . . . . .. .. ... .. ... ... ..., 351
C.5.2 Linear connections . . . . . . . . . . . i 352
C.5.3 Levi-Civita connection . . . . . . .. .. ... ... ...... 354
C.6 Fibered manifolds . . . ... ... ... .. .. ... ... ..., 362
C.7 Systems of connections and universal connections . . . . . . ... .. 362
D Tables of Homotopy Groups 365
D.1 Spheres . . . . . . . 366
D.2 Three special unitary and symplectic groups . . . . . .. ... .. .. 368
D.3 Symplectic groups . . . . . ... 368
D.4 Two spin and two exceptional groups, and CP2 . . . .. .. ... .. 369
D.5 Real Stiefel manifolds . . . . . ... ... ... .. ... .. .. .. 370
E Computational Algebraic Topology 381
Bibliography 385
Index 393



List of Figures

0.1
0.2

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
211
2.12
2.13
2.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

Spaces of the same homotopy type . . . . . ... ... ... ... ..
Torus with the graph of amap S* —» S . ... ... ... ... ...

Mapping cylinder . . . . .. . ... oo 7
Deforming graphs of maps relative to asubset A . . . . . . ... .. 18
The standard homeomorphism [a,b] = [0,1] . . . .. ... ... ... 19
The torus S! x S! as an identification space . . . . . ... ... ... 20
Homotopy equivalent but not homeomorphic . . . . .. ... .. .. 20
Mapping cylinder My and mapping cone Crof f . . .. .. ... .. 22
Deforming circlemaps f:S*—= X . .. ... ... ... ... ..., 24
Joinof X toapointe . ... ... ... ... ... ... 26
Mapping cylinder fibration over itscone . . . . ... ... ... ... 29
Cylinder and Mébius line bundles over St . . . . . . .. . ... .. 30
Mapping cone Cy for f: X - BinTop™ . . . . ... .. .. I 32
Mapping cylinderof ¢ : U =V . . .. . ... oL 34
Cofiber of cofibrationg: A—> X . .. ... ... ... .. ...... 35
Graph of a loop « in loop space QY = YS' ... .. ... 39
Suspension of X: SX =S!AX =S!'x X)/S'VvX). . ... .... 42
Mapping cylinder M; and mapping cone Crof f . . . ... ... .. 59
Schematic fiber bundle . . . . . .. ... .. oL 63
Rolling up the real lineintoacircle. . . . . ... .. ... ... ... 64
Sphere S? as a CW-complex and as a simplicial complex . . . . . . . 70
Infinite bouquet of circles embedded in the plane . . . . .. .. ... 72
The torus S* x S'asa CW-complex . . . . . ... ... .. ..... 73
Deformation retract of attached cell . . .. .. ... .. ... .. .. 79
Convex coordinates: (A, (1 —X)) . .. ... ... ... ... ..... 80
Standard 2-simplex and homeomorphism onto B2 . . . . .. ... .. 81
Tetrahedron simplicial complex . . . . . .. .. ... ... ...... 82

1X



3.11
3.12
3.13
3.14

4.1
4.2
4.3

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4

8.1
8.2
8.3

LIST OF FIGURES

Barycentric subdivision and boundary operator . . . . . .. ... .. 83
Some minimal 2-dimensional simplicial complexes . . . . . . . .. .. 85
Non-triangulation of the cylinder . . . . . . . ... .. ... ... .. 85
Pseudotriangulation of S* . . . . ... ... ... ... 87
Mapping cone of inclusion A SX 112
St x S as a CW-complex with 1-skeleton STV S . . .. ... . ... 138
Projective plane as a CW-complex with 1-skeleton S'. . . . . . . .. 140
Picturing spectral sequences . . . . . . ... .. ... 195
Example of a sparse E2 diagram . . . . .. ... ... ... ... 199
Part of the E}*-plane; groups (top) and generators (bottom) . . .. 201
Part of the Ef*-plane . . . .. .. ... ... ... .......... 203
Principal Zo-bundles over St . . . . . ... . L. 210
Total spaces of associated bundles over S with fiber BT . . . . . . . 216
Diagram in the proof of Lemma 7.3.8. . . . ... . ... ... .... 240
Diagram in the proof of Leray-Serre. . . . . . . .. ... .. .. ... 242
Postnikov tower of a space . . . . . . . . . . ... ... ... ... 263
Moore-Postnikov decomposition of a fibration . . . . . . .. ... .. 269

Fibration used in defining the n!* obstruction set of f . . . ... .. 276



Preface

We have tried to design this book for both instructional and reference use, during
and after a first course in algebraic topology aimed at users rather than developers;
indeed, the book arose from such courses taught by the authors. We start gently,
with numerous pictures to illustrate the fundamental ideas and constructions in
homotopy theory that are needed in later chapters.

A certain amount of redundancy is built in for the reader’s convenience: we
hope to minimize flipping back and forth, and we have provided some appendices
for reference. The first three are concerned with background material in algebra,
general topology, manifolds, geometry and bundles. Another gives tables of homo-
topy groups that should prove useful in computations, and the last outlines the use
of a computer algebra package for exterior calculus.

Our approach has been that whenever a construction from a proof is needed,
we have explicitly noted and referenced this. In general, we have not given a proof
unless it yields something useful for computations. As always, the only way to un-
derstand mathematics is to do it and use it. To encourage this, Ex denotes either an
example or an exercise. The choice is usually up to you the reader, depending on the
amount of work you wish to do; however, some are explicitly stated as (unanswered)
questions. In such cases, our implicit claim is that you will greatly benefit from at
least thinking about how to answer them. Others are explicitly stated directions to
write something out: here we are claiming that doing so is essentially necessary for
a reasonable understanding of the computational machinery. Those appearing as
bald statements of fact may be safely taken as such, but we urge you to play with
at least a few of them.

We are indebted to all of the books that we cite, and to the many authors
and lecturers who have stimulated our enthusiasm for this beautiful and powerful
branch of mathematics. It is currently at the forefront of exciting new developments
in geometry and physics, perhaps offering the best means yet of describing the
fundamental models of physics through topological quantum field theories.

In preparing the manuscript we have used IATgX and Mathematica™ for gen-
eration of PostScript™ graphics, on NeXT™ and OS/2™ workstations. The title
picture is a Mathematica representation of an embedding of a Klein bottle, with
self-intersection a figure of eight. For assistance with typing, we are grateful to Kelly
Chan, Frances and Chris Dodson, and Karin Smith. Several generations of students
at Lancaster University and Wichita State University provided useful comments on

xi
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earlier drafts; in particular we wish to thank B. Bolton, G.J. Fox, M. R. Hanson,
H. Oloomi, M. S. Patel, P.D. Sinclair, and C. Snyder for detailed commentary and
proofreading.

Finally, we wish to thank our good friend David Larner of Kluwer for his en-
couragement and patience during our preparation of this book, which he accepted
in draft form ten years ago.

Kit Dodson, Toronto
Phil Parker, Wichita

June 29, 1996



Introduction and Overview

Holeistic mathematics

Topology provides a formal language for qualitative mathematics whereas geometry
is mainly quantitative. Thus, in topology we study relationships of proximity or
nearness, without using distances. A map between topological spaces is called con-
tinuous if it preserves the nearness structures. Now, in algebra we study maps that
preserve product structures, for example group homomorphisms between groups,
and one of the largest areas of growth in pure mathematics this century has been
the solution of topological problems by casting them into simpler form by means
of groups. The theory is called algebraic topology and, like analytical geometry
and differential geometry before it, there is considerable interplay with some of the
most fundamental theories in physics. In this book we shall develop the essential
mathematics and see how it is used to solve problems in geometry and theoretical
physics.

The fundamental concept is that of homotopy, and arguments based on it have
led to some of the deepest theorems in all mathematics, particularly in the alge-
braic classification of topological spaces and in the solution of extension and lifting
problems. We shall meet the formal definitions later but the intuitive idea is very
simple:

e Two spaces are of the same homotopy type if one can be continuously deformed
into the other; that is, without losing any holes or introducing any cuts.
For example, a circle, a cylinder and a Mobius strip have this property (cf.
Figure 0.1), as do a disk and a point. So, coming from geometry, general
topology or analysis, we notice immediately that the homotopy relationship
transcends dimension, compactness and cardinality for spaces.

e Two maps are homotopic if the graph of one can be continuously deformed
into that of the other. For example, the graphs of maps from a circle to itself
lie on the surface of a torus and circuit once the horizontal copy of S!, as
indicated in Figure 0.2. Two such maps will be homotopic if they circuit the
vertical copy of S! the same number of times—then they have also the same
degree, of course.
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Figure 0.1: Spaces of the same homotopy type

Figure 0.2: Torus with the graph of a map S! — S!
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Thus, for spaces and maps, the classification up to homotopy equivalence precisely
captures their qualitative features. Homotopy yields algebraic invariants for a topo-
logical space, the homotopy groups, which consist of homotopy classes of maps from
spheres to the space. Continuous maps between spaces induce group homomor-
phisms between their homotopy groups; moreover, homotopic spaces have isomor-
phic groups and homotopic maps induce the same group homomorphisms.

It is possible to obtain information about homotopy groups by means of algebraic
theories called homology and cohomology; also, these theories have intuitive appeal
and they are computationally simpler. For example, a reasonable space of dimension
n can have at most n + 1 (ordinary) homology (and cohomology) groups. Again
these groups are homotopy invariants, as are the homomorphisms among them that
are induced by continuous maps. Our viewpoint will be that homotopy theory is
the basic tool for investigating spaces, while homology and cohomology theories
provide useful approximations which are easier to compute and can be tailored to
exploit particular features and situations, such as in the study of bundles.

One fundamental problem in topology is that of extending a map from a subspace
to (be continuous on) the whole space; another is that of lifting a (continuous) map
to take values in some overspace, like a covering space or bundle. It turns out
to be sufficient for many purposes and applications to consider merely homotopy
classes of solutions to such problems. This will be our approach and we shall
see that a wide range of problems in mathematics and physics can be cast into
one of the above two forms. Such problems have led to obstruction theory and
its supporting techniques, yielding elegant algebraic objects that encapsulate the
reasons for absence of solutions in some cases. We shall use this theory as a higher
level tool in the classification of spaces relative to their admission of solutions to
extension and lifting problems.

Our objective is to provide a users’ guide to algebraic topology that would allow
readers to use the material and results with confidence, in their own applications.
Roughly, we suppose in our users a working knowledge of elementary topology and
group theory. For your convenience, there is a series of Appendices at the end of
the book, covering notation, basic definitions and results on sets, maps, categories,
functors, point set topology, groups, manifolds, bundles, and fields. These sections
are intended to help bridge some of the inevitable lapses of memory that so often
arise just as a new construction or method seems within our grasp. They also pro-
vide a guide to accessible texts on the various topics. The approach is more intuitive
than formal and well provided with examples in the places where experience tells
us that they are most important. In particular, a good grasp of general topology is
difficult to obtain without a wide range of examples and we give special prominence
to this. Since any guide needs a fund of data we also append a fairly extensive
tabulation of homotopy groups for commonly occurring spaces.

The organization of the book is such as to provide motivation for constructions
and definitions and to instill confidence for use of deep theorems by means of worked
examples; often we give more prominence to these than to details of proofs. We have
tried to avoid repeating standard material in a form that is easily found elsewhere.
Since a good way to assess a body of knowledge is to discover what are the questions
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to which it gives answers, we provide at the end of the next chapter a list of problems
from mathematics and physics that are solved by the material contained in the rest
of the book. These are all problems of existence or classification, but is there any
other kind? The next chapter sets the scene by presenting all interesting existence
problems for maps fundamentally as extension and lifting problems, up to homotopy
equivalence.



Chapter 1

Basics of Extension and
Lifting Problems

To boldly go where no map has gone before

1.1 Existence problems

We begin with some metamathematics. All problems about the existence of maps
can be cast into one of the following two forms, which are in a sense mutually dual.

The Extension Problem Given an inclusion 4 <» X, and a map A 4 Y, does
there exist a map f!: X — Y such that f! agrees with f on A? We shall follow a
common practice and indicate the postulation of such a problem by means of the
diagram

A i X

f - | Extension ProblemJ
L

)/f

Here the appropriate source category for maps should be clear from the context and
commutativity through a candidate f! is precisely the restriction requirement; that
is,
flofloi=fla=f.

If such an f! exists!, then it is called an extension of f and is said to extend f.
In any diagrams, the presence of a dotted arrow or an arrow carrying a 7 indicates
a pious hope, in no way begging the question of its existence. Note that we shall
usually omit o from composite maps.

1t suggests striving for perfection, crusading
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The Lifting Problem Given a pair of maps F A BandXx L B , does there exist
amap f°: X — E, with pf° = f? Diagrammatically, the problem is posed thusly:

P

B E

4
f 7 o l Lifting ProblemJ
X

If such an f° exists?, then it is called a lifting of f and f° is said to lift f.

That all existence problems about maps are essentially of one type or the other
from these two is seen as follows. Evidently, all existence problems are representable
by triangular diagrams and it is easily seen that there are only these six possibilities:

Of these, 1 and 2 are indistinguishable, as are 3 and 4, but 5 and 6 are reducible
by composition to

0 and 0
5 6

Hence 5 has a trivial solution while 6, when well-posed, is simply the existence of
a section of a surjection and that is equivalent to the Axiom of Choice. So we are
left with just two non-trivial, distinct cases:

o

and, plainly, 4 is the lifting problem. We need only show that 1 always converts to
an inclusion situation and hence to an extension problem. This is achieved (up to

2 © suggests enlightenment, beatification
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Figure 1.1: Mapping cylinder

homotopy) by the substitution

A——>w A—2 > M,
f / — fl/
Y Y

Here, h = ft|w, and io(a) = (a,0) defines the natural inclusion of 4 in M, which
is the mapping cylinder of g (think of A = S! as in Figure 1.1),

M,=(AxT)u, W,

where U, means identification of (a, 1) with g(a) in the disjoint union of A x I with
w.

In algebraic situations we are of course solving extension problems when we use
a basis or define a homomorphism by requiring linearity on generators. The main
result from functional analysis is the

Hahn-Banach Theorem: Let A be a vector subspace of a Banach
space X and let p be a seminorm on X. Then any linear functional
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f defined on A with |f(zx)| < p(z) can be extended to a bounded linear
functional f on X with |f(a:) < p(x). 0O

From this result it follows that a bounded linear functional on a closed vector
subspace A of X can be extended to a bounded linear functional on X, with the
same norm.

1.2 Retractions

We begin with the simplest case of the extension problem.

The Retraction Problem Given an inclusion i : A < X and the identity map
14: A — A, does there exist a map IL : X — A such that 1; (called a retraction
of X onto A) agrees with 14 on A?

AC—i>X

1a I Retraction Problem |

In consequence of the properties of continuous maps we have the following easy
results in topological categories:

e There is no retraction of a connected space X onto a disconnected subspace
A.

e There is no retraction of a compact space X onto a noncompact subspace A.
e There is no retraction of a Hausdorff space X onto a non-closed subspace A.

e There is a retraction of a space X onto a subspace A, if and only if for all
spaces Y every map f: A = Y admits an extension to X.

Retractions are preserved in products.

1.3 Separation

We observe next that the separation properties of the spaces involved will influence
existence problems in topological categories:

o If Y is a T, space then (and only then) limits are unique, so if A is dense in X
it follows that f : A — Y has at most one continuous extension ff: X — Y.

e Even if A is dense in X, Hausdorflness is not sufficient to guarantee the
existence of a continuous extension. For example, consider

F:R\{0} = R:zr—1/z.
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e We can improve the separation properties in X to be T3, but still we cannot
be sure that there are any non-constant continuous real functions at all.

e If YV is a regular space and A is dense in X, then a good enough continuous
f: A —> Y has a continuous extension f! to X; and in this case, since regular
implies T», the extension is unique.

Here, f is good enough if and only if for all z in X and for all neighborhoods
Ny () of f(z), there exists a neighborhood N, of z such that

f(szA)ng(a:)>

and then f' is the (filterbase) limit of f. For more details of this aspect of
(generalized) convergence see Dugundji [34].

e If X is a Ty space, then we know that there exist non-constant continuous
real functions on it. However, subspaces and products of Ty spaces need not
be T4.

e If and only if X is a normal space, then every continuous real function on
a closed A C X admits a continuous extension to X. This is the Tietze
Extension Theorem.

¢___closed normal

space

A
7 h Tietze Extension TheoremJ
R

ENl

o A Hausdorfl space X is Ty if and only if given two disjoint nonempty closed
subsets Ag and A;, there always exists a continuous extension to X of

z+— 0z €A
f:A()UAl_)[O’l]:{z)——)IJEGA?

This is the Urysohn Lemma, best remembered as an extension result.

1.4 Transcription of problems by functors

The principal role of algebraic topology is the transcription of topological problems
concerning existence and classification into more tractable algebraic contexts. Tran-
scriptions are effected functorially between a topological category of interest and
an appropriate algebraic category. It follows from the way in which diagrams must
be preserved by functors that there is a simple necessary condition for existence
problems.
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Let 7 be a topological category (typically Top*) and let F be a functor from T
to a category G. Then, in order to solve in 7 the problem

A—t X v JE

f . or ! p
s

\% X 7 B

it 1s necessary to be able to solve in G, respectively, the problem

F(4) —9 . F(x) I(E)
F(f) , or | ! ()
?(Y)ﬁ i - T m

For example, a homology theory provides functors such as this F, and obstructions
to solving the necessary problems in its image category (abelian groups) can yield
sufficiency conditions in algebraic terms.

There is a dual situation for cofunctors. They preserve diagrams, but they
reverse all arrows in the process; cohomology theories yield examples of these.

Now, by design, functors and cofunctors respect identities and map composi-
tions, hence also inverses; consequently, maps with good qualities tend to have
transcriptions with good qualities. More specifically for our purposes, the functors
and cofunctors of algebraic topology are only sensitive up to homotopy equivalence.
In the next chapter we shall introduce homotopy theory and in due course it will
appear as the organ grinder for which various homology and cohomology monkeys
are categorically choreographed.

1.5 The shape of things to come

We devote the remainder of this chapter to an annotated list of some problems
from mathematics and physics which will be considered in the sequel (although
some require more advanced versions of things described herein). The range of
topics in the list gives a vivid impression of the scope of the theory. Some problems
require a considerable amount of preparatory work and their solutions are mainly
deferred to the final chapter on applications (or just summarized there); others are
more eagily dealt with and we shall pick them off surprisingly quickly.

1. When do maps defined on a circle extend to the whole disk? Clearly, it cannot
be done if the image of the circle surrounds a hole in the target space; so the
map surely must be homotopic to a constant map. (See page 23.)



1.5.

10.

THE SHAPE OF THINGS TO COME 11

. Is there a retraction of a ball to its boundary sphere? If there were, then we

could use a time machine to run it backwards as we shrink the sphere; clearly
we can’t deal with all the identifications at the center in a continuous way.

(See page 25.)

. When do maps extend from closed subsets to entire spheres? A continuous

map of a closed interval into a circle that gets only part way round the circle
could be extended to stretch out the rest of the real line as finite arcs at each
end of the image. (See page 25.)

. Is there a continuous map of a disk to its boundary which restricts to the

identity on the boundary? If we pierce a soap film disk on a wire circle, then
it may map the disk to its boundary, but it surely breaks the disk. (See page
46.)

. The Fundamental Theorem of Algebra: every nonconstant complex polyno-

mial of degree n has n roots. If f(z) had no zero, then we could construct a
homotopy involving f(tz)/|f(tz)| for maps from S? to itself. But the map for
the case t = 0 is constant, whereas for large enough ¢ we can get right round
S! as many times as we wish, and these are certainly not homotopic. (See
page 47.)

. The Brouwer Fixed Point Theorem: any continuous stirring of a solid ball

leaves at least one point exactly where it started. If f : B — B' had no
fixed point, then we could get a continuous map from B! onto its boundary
B! = S% by sending z to +1 depending on whether f(z) < x. But this would
map a connected space to a disconnected space. (See page 48.)

. The Antipodal Theorem: there is a continuous, nonzero tangent vector field

on §™ if and only if the antipodal map a : £ = —z is homotopic to the identity.
If v is a continuous, nowhere-zere tangent vector field, then it is possible to
use v(z)/||v(z)|| to construct & homotopy of the identity map to the antipodal
map. (See page 48.) ‘

. Can you comb a hairy ball without a part? If v is a continuous, nowhere-

zero tangent vector field on S™, then f(z) = v(z)/||v(z)|| is homotopic to the
identity map on S™ But if n is even, then f must have a fixed point and so
somewhere v(z) = z, which is normal and not tangent. (See pages 49 and
125.)

. Most spaces of common interest in geometry and physics admit a represen-

tation up to homotopy as a CW-complex. It is almost true that two CW-
complexes are homotopy equivalent if and only if they have the same homo-
topy groups. (See page 95.)

The theorem of Hopf that established homotopy theory: n3(S2?) = Z. This
means we can nontrivially map S® into S?, so some spheres have hidden pock-
ets. (See page 100.)
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. The homotopy of Lie groups is surprisingly accessible (see page 102), but its
ramifications reach profound depths. One of the deepest is the celebrated
Bott Periodicity Theorem (see page 229).

As one would hope, R” is not homeomorphic to R™ for n # m. This seems
obvious, but is surprisingly difficult to prove. Perhaps the easiest(!) way is to
show that S™ and S™ have different homology so they cannot be homeomor-
phic, hence neither can R* and R™. (See page 113.)

Is any sphere continuously deformable to a point? Clearly, S® is not connected
so cannot be deformed to a point. For n > 0, S™ has non-trivial homology
at dimension n, but a point does not and homology is a homotopy invariant.
Indeed, spheres are minimal nontrivial homology examples in each dimension.
(See page 118.)

~

The Degree Theorem: Since ordinary homology of S™ has H,(S™Z) = Z,
there is a homotopy invariant degree for maps S™ — S™ which is simply the
(integral) multiplier in this homology. (See page 118.)

One of H. Hopf’s famous theorems: maps of a sphere to itself are homotopic
to each other if and only if they have the same degree. For n = 1, a map of
degree k is equivalent to a periodic real function on R which increases by k
each time its domain point moves by 1. All such maps are homotopic and we
can proceed inductively. (See page 120.)

The Borsuk-Ulam theorem: every continuous f : S™ — R must identify a
pair of antipodal points. If f : S® —» R" did not identify any pair of antipodal
points, then we could use g : S™ — S™~1: (f(z) — f(—=z))/||f(z) — f(=z)]|| to
preserve antipodal points, which leads to a contradiction. (See page 121.)

Are there always at least two points on the Earth where the weather is simul-
taneously the same? Temperature and pressure together yield a map from the
sphere to the plane, so by Borsuk-Ulam it must identify a pair of antipodal
points. (See page 121.)

How much paper does it take to wrap a ball? By the Borsuk-Ulam theorem,
no map S™ — R™ can be injective if it is continuous. Thus it definitely takes
more than the area of the surface, unless you cut the paper. (See page 121.)

Can you cut every sandwich ezactly in half with one cut, no matter how
sloppily it was assembled? Let A;(z) be the volume of A; on the outside of
a plane P, parallel to the tangent plane to z € S2. Then f : S? — R? :
z — (Az(zx), A3(z)) must identify a pair of antipodal points, say zy and —zo;
choose the cut by plane P;,. (See page 122.)

The Lusternik-Schnirelmann theorem: if a sphere is covered by three closed
sets, then one of them must contain an antipodal pair. Since the union of such
Ay, Az, A covers S%, then f : S? — R? : (d(z, A1),d(x, A2)) must identify a
pair of antipodal points, zg, —zg. Either zo, —zg lie inside A; or A,, or
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d(zg, A;) > 0 for i = 1,2, whence they both lie in A3 because we have a cover.
So, wrapping a soccer ball with three pieces of paper will force one of the
pieces to cover a pair of antipodal points. (See page 122.)

Do you want to know if a map has fixed points? The Lefschetz number Ay of
a continuous self-map f of a space with finite homology is the obstruction to
f being fixed-point free. (See page 123.)

How many groups act freely on even-dimensional spheres? Only two, because
maps on these spheres homotopic to the identity are not fixed-point-free. (See
page 125.)

Which closed surfaces admit a fixed-point-free map homotopic to the identity?
Only the Klein bottle and torus, because only these have Euler characteristic
zero. (See page 125.)

One might regard homology as an approximation to homotopy. If so, then
how good is it? Well, it’s excellent—as far as it goes! But that’s just so far,
and no farther. (See page 141.)

One general principle of algebraic topology is that the more algebraic structure
a map must preserve, the easier it is to prove that certain maps do not exist. In
this sense, cohomology is better than homology because it has a natural ring
structure rather than merely a group structure. The spaces S* x S? and CP?
have the same homology and cohomology groups, but different cohomology
rings. (See pages 150 et seq.)

The Euler-Poincaré, Hopf Trace, and Lefschetz Fixed Point Theorems: the
beauty of these results lies in the fact that elementary linear algebra on chain
complexes yields homotopy invariants without any need to pass to homology.
(See pages 162 and 163.)

The natural process of local integration of forms on chains in R™ fits together
among charts on smooth manifolds and is a homotopy type invariant, giving
the de Rham isomorphism between cohomologies of differential forms and
chain complexes on compact manifolds. This manifests itself in perhaps the
most widely applied result in integral calculus, Stokes’s theorem. (See page
168.)

On paracompact Hausdorff spaces, such as smooth manifolds, there is a natu-
ral way to use locally finite covers to generate an abstract simplicial complex,
and by the refinement ordering of covers we can take a limit in the induced
cohomology. This turns out to give a theory with (at least) dual personalities,
Cech cohomology, in which cocycles consist of transition functions between
charts. (See Sections 5.12 and 7.1.)

Some of our problems require more-or-less ordinary cohomology theories, but
with coeflicients that may vary from point to point (see page 278). Sheaves
provide a natural means of allowing this, being algebraical vertically and topo-
logical horizontally. (See Section 6.1.)
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All ordinary (co)homology theories agree on CW-complexes. This is indu-
bitably one of the most beautiful applications of spectral sequences, amply
rewarding the effort required to cope successfully with them. (See page 196.)

Three identical particles moving in a manifold M have a configuration space
given by the product M x M x M, less all its diagonals, quotiented by the
symmetric group S3. Selig used spectral sequences to find the cohomolgy of
this space for various M. (See pages 200 et seq.)

The infamous complexity of spectral sequences can be somewhat amusingly
illustrated by comparison with bureaucracies. It is not at all clear which comes
off better! (See pages 204 et seq.)

Fiber bundles are extremely important, fundamental objects in both topology
and geometry: they are the most useful interpretation of the concept of a
parametrized set of spaces. In gauge formulations of quantum field theories,
they are the quantum fields on spacetimes. We find them conveniently seen
as elements of a cohomology theory, especially for computations. (See page
213.)

Reducing the structure group from GL(n) to O(1), using the determinant
map, yields a reduction to a Zs-bundle. This gives a neat way to describe
orientability of vector bundles. (See page 214.)

Do all manifolds admit Riemannian metrics? How about Lorentzian metrics,
or even general pseudoriemannian metrics of any signature? It took quite a
while to figure out that this was a genuine problem, and the complete solution
is not yet in sight. We know what we should do, but the actual doing of it
seems to be beyond our computational abilities now. (See pages 220, 291, and
292.)

Fibrations are surjections that have the homotopy lifting property; so they
usually have homotopy-equivalent fibers. Fiber bundles are locally products,
so they usually have homeomorphic fibers. What’s the difference? Fibrations
are fiber bundles up to homotopy. (See page 236.)

The Leray-Serre Theorem: bundles and fibrations are generalized product
spaces, and (co)homology theories can measure the extent of their deviation
from a product. Naturally, this involves a spectral sequence. (See page 239.)

A CW-complex with just one nontrivial homotopy group 7 in dimension n is
called a K(m,n). So Stis a K(Z,1), but it is CP*™, not §2, that is a K(Z,2).
Also, RP* is a K(Zs,1). This highlights some subtleties behind the view
that homology groups might give approximations to homotopy groups! (See
pages 261 et seq.)

When is a manifold orientable? Someone probably asked this before Riemann
had finished trying to define manifolds. Answering it in the 1930s was one
of the original motivations for the entire theory of characteristic classes. (See
page 285.)
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When can a manifold have a spin structure? This is of great interest to
physicists, of course; any attempt to introduce quantum theory requires the
ability to discuss spin. So their version might read: where can we do physics
if we wish to be able to talk about spin? (See page 286.)

Which 3- and 4-manifolds are parallelizable? The basic question is classical,
but gained currency in modern general relativity when it was asked about
globally hyperbolic spacetimes. Many relativists still regard them as the fun-
damental objects of study. (See page 287.)

Which manifolds can be piecewise linear? These are somewhat better than
merely topological manifolds, but not as nice as differentiable manifolds. (See
page 288.)

Which manifolds are smooth? This has turned into one of the most intrigu-
ing questions in dimension 4; in all other dimensions it has been essentially
answered. So 4-dimensional topology is now the “hottest brand going.” (See
page 288.)

Which manifolds are complex? The first part of the answer comes from ob-
struction theory, but the last part is analytical. For example, all orientable
4-manifolds admit an almost-complex structure, but not all these can be in-
tegrated to complex structures. (See page 289.)

When does a manifold have any nonvanishing vector fields? Hopf originally
answered this apparently simple question; many mathematicians have con-
tributed to solving the multitude of problems it spawned. A compact manifold
has a nonvanishing vector field if and only if its Euler characteristic vanishes;
noncompact manifolds always have nonvanishing vector fields, because we can
push any problems (zeros) off to infinity. (See page 290.)

Which manifolds admit a metalinear structure? How about metaplectic?
These questions were of little mathematical interest until the ideas around ge-
ometric quantization became important, largely through contact with physics.
(See page 291.)






Chapter 2

Up to Homotopy is Good
Enough

A log with nine holes— old Turkish riddle for a man

2.1 Introducing homotopy

In a topological category, a pair of maps f,g : X — Y which agree on A C X is
said to admit a homotopy H from f to g relative to A if there is a map

Xx]ILY:(x,t)»—)Ht(z)

with Hi{a) = H(a,t) = f(a) = g(a) for all a € A, Ho = H( ,0) = f, and
H, = H(,1) = g. Then we write f A g (relA). If A = @ or A is clear from the

context (such as A = * for pointed spaces, cf. below), then we write f R g, or
sometimes just f ~ g and say that f and g are homotopic.
We can also think of H as either of:

e a l-parameter family of maps
{H:X —Y | te[0,1]} with Hy=f and H, = g;
e a curve cy from f to g in the function space YX of maps from X to Y
cH:[O,l]—)YX 1t — Hy.
We call f nullhomotopic or inessential if it is homotopic to a constant map.

Intuitively, we picture H as a continuous deformation of the graph of f into that of
g, as suggested by Figure 2.1. The following is an easy exercise.

Proposition 2.1.1 For all A C X, ~ (rel A) is an equivalence relation on the set
of maps from X to'Y which agree on A. O

Maps in the same equivalence class of ~ (rel A) are said to bc homotopic (rel 4).

17
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A X

Figure 2.1: Deforming graphs of maps relative to a subset A

Ex
1. Supply the proof that ~ determines an equivalence relation.

2. Use the standard homeomorphism depicted in Figure 2.2

h:[a,l:]——)[O,l]:s»——)Z_Z
to show that
2s s€[0,1]
F:00,1] —[0,1]:s+— < s+ 1 s€ [} 1]
(s+1)/2 se[},1]

is homotopic to the identity on [0,1]. Deduce that being homotopic is a
transitive relation on paths and on loops in any space. Observe that a loop
in X is a path

c:[0,1] — X with ¢(0) = ¢(1),

so for loops we are interested in homotopy rel{0,1}.

Two topological spaces X, Y are said to be of the same homotopy type or
homotopy equivalent if there exist (continuous) maps

f: X—Y, g:Y — X

with gf ~1x and fg~1ly.
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Figure 2.2: The standard homeomorphism [a, b] = [0, 1]

Then we write X ~ Y and say that f and g are mutual homotopy inverses or
inverse up to homotopy.

Similarly to the case for maps, ~ is an equivalence relation on any collection of
topological spaces and one sometimes speaks (loosely) of spaces in the same class
as being homotopic.

The spaces in the homotopy equivalence class determined by a singleton space
are called contractible; we often use x to denote a singleton space.

Ex

1.

Consider the identity map, 1g1 : S' — S!, as a closed curve on the torus
S! x S!in Figure 2.3 and find explicitly two other closed curves on the torus
such that all three belong to different homotopy classes.

If two continuous maps f,g : X — S™ have f(x) # —g(x) for all z € X then
f and g are homotopic. For, otherwise consider

tf+(1-1t)yg
litf + (1 =t)gll”

Any two continuous maps into a contractible space are homotopic.

Show that the following X,Y are homotopically equivalent spaces which are
not homeomorphic in the usual topologies (¢f. Figure 2.4). Here, S'Vv S! is
the quotient of the disjoint union of two circles, obtained by identifying one
point in each circle to each other.
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Sl

Figure 2.3: The torus S! x S as an identification space

Stvst

Punctured torus Punctured Klein bottle

Figure 2.4: Homotopy equivalent but not homeomorphic
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(a) X =S" ¥ = §" x R™;
(b) X =R*, Y = {0};

(€ X =§"1 Y =R\ 0;

(d) X =S'vSh Y = punctured Klein bottle;
(e) X =S', Y = punctured RP?;

(f) X =S!VvSL Y = punctured torus.

The objective in this chapter is to assemble a body of theory that exploits our
view of homotopy as a fundamental property and fibrations and cofibrations as fun-
damental structures. We can achieve more elegance and power in the results by
limiting our attention to Top = ktop, the category of compactly generated Haus-
dorff spaces (also called k-spaces) and continuous maps. This is not too serious a
restriction as far as applications are concerned. Certainly, Hausdorffness (unique-
ness of limits) is normally required in physical spaces and there is a nice functor &
(for Kelley), which is a retraction of the category top of Hausdorff spaces onto ktop.
Thus, any Hausdorff X has a compactly generated correspondent k(X ); moreover,
this correspondence preserves products and exponentiations (cf. Gray [38], chapter
8). A Hausdorff space is called compactly generated if every subset which intersects
every compact set in a closed set is itself closed; this property is implied by local
compactness or by first countability (sufficiency of sequences), for example. Addi-
tionally, with a view towards typical applications, we may as well assume that all
of our spaces are paracompact (see Appendix B.4).

Frequently, we work in Top*, the category of pointed spaces and pointed (that
means base-point preserving) maps, where homotopies are always understood to be
relative to the set consisting of the base point *. Then [(X, *), (Y, *)], or briefly
[X,Y], is used to denote the set of homotopy equivalence classes [f] of pointed
maps f from (X, *) to (Y, ).

Two pointed spaces (X, *) and (Y, *) are called of the same homotopy type
or homotopy equivalent if there are pointed maps p and ¢ with [p] € [X,Y] and
[q] € [Y, X] which are mutual homotopy inverses, namely such that

[gp] = [1x] and [pg] = [1y].

Then we write X ~ Y, and it is easy to show that ~ is an equivalence relation on
any collection of pointed spaces.

The singleton pointed space (x,*), often denoted simply by *, defines the
class of contractible pointed spaces. In Top* there is only one constant map
from (X, %) to (Y, ), that which sends all of X to * € Y. We shall use the notation
f ~ * to mean that f is homotopic to the constant map. It follows that (X, %) is
contractible precisely when 1x ~ *.

Ex on homotopy (Work in Top.)

1. A circle S, a cylinder S xI, and a solid torus S x B? are mutually homotopic.
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f: X —Y

Figure 2.5: Mapping cylinder My and mapping cone Cy of f

2. Euclidean spaces R™, unit balls B™, and unit cubes I" are contractible.

3. Is contractibility preserved in products, quotients, restrictions and for retrac-
tions?

4. Any two maps into a contractible space are homotopic and hence all are
homotopic to the constant map. What about maps from contractible spaces?

5. If any f : X — S™ is not surjective, then it is nullhomotopic.

6. Amap f: X — Y is nullhomotopic if and only if it extends to a map from
the cone over X:
CX =(XxI)/(Xx{1}).

Note that CS™~1 = B,

7. Given amap f : X — Y, then Y is homotopy equivalent to the mapping
cylinder of f, Figure 2.5,

My=(XxI)UsY = (X xIUY)/~

where for all z in X, ~ identifies (z,1) with f(z). Details of a suitable
homotopy can be found in Hocking and Young [46], p. 157.

8. The mapping cone of f : X - Y is Cy = My/X, Figure 2.5.
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9. A subset A — X is called a deformation retract of X if there is a retraction
r: X — A, 5074 = la, with 7 ~ 1x; then A ~ X. In this case every
h:A— Y extends to X.

10. For all f : X — Y, the space Y is a deformation retract of the mapping
cylinder My, shown on the left in Figure 2.5. (Cf. Ex 7 above.)

11. A space X is contractible if and only if it is a retract of the mapping cylinder
M, of any constant map X — {*}. Observe that M, is a homeomorph of the
cone CX.

12. One may supply appropriate base points and repeat these Ex in Top*. Ob-
serve that reduced versions of the cone and cylinder are required: these are
obtained by identifying all those points {*} x T in X x [. Draw some of these
schematically.

13. Given an inclusion A <5 X, then X/A is homeomorphic to (X U; CA)/CA.
See Switzer [106, p. 26] for details and for further homotopy results concerning
cones.

It is clear that homeomorphic spaces are homotopy equivalent, but not con-
versely. Hence, by working with homotopy equivalence instead of topological equiv-
alence we lose some detail. This loss is of course irrelevant in the solution of pure
existence problems; but, surprisingly, we shall see also classifications of extra struc-
tures on spaces usefully based on homotopy classes. A recurring theme will be to
exploit homotopy-type invariants by using the fact that if they differ for two spaces
then the spaces cannot be homotopy equivalent and so must differ topologically.
Borrowing terminology in anticipation of later structures, we might think of homo-
topy as yielding a kind of fibering of topology theory, with some algebraic structure
arising on fibers from homotopy-type invariants.

A very nice illustration of the role of homotopy in an extension problem is the

following, where we consider extending a continuous map from the unit circle S to
the disk or 2-ball B2,

Proposition 2.1.2 (Circle to disk extension) A continuous map from a circle
extends to the disk if and only if it is inessential.

Sl (__inclusion IBZ

f [ Extension <= f ~x ‘
ff

A

X

Motivation: Of course, if X is contractible then we always have f ~ x.
So for a mental picture think of X as S!, whence the graph of f lies on
the surface of a torus and f would have a graph inside the solid torus,
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‘O
/N

Figure 2.6: Deforming circle maps f : S! — X

agreeing with f on its surface. Then f ~ x if and only if the graph of
f can be continuously deformed into the vertical circle ¢ in Figure 2.6,
regarded as the graph of a constant map.

Such a deformation is not possible if f gets right around X, as in-
dicated by the horizontal circle r in Figure 2.6. Now, if f ~ *x we can
obtain f! by taking the constant slice B2 x {*} and then reversing its
deformation to bring its perimeter back into agreement with f. Con-
versely, if we are given f! then the graph of f! cannot be like r in the
figure, because such a graph could not arise from the continuous image
of B2. Pictorially, any slice of the torus through a curve like r will con-
tain a hole, since r is not deformable to ¢, but ff(B?) cannot have such
a hole if f is to be continuous.

Proof: For convenience we consider S! as the boundary of the unit disk
B2={2€C|0<|z|< 1}

with base point * = 1.
(i) Suppose that we are given ff, continuously extending f, with f(1) = ff(1) =
* € X. Then we obtain a homotopy f ~ x by

St xT— X :(e¥,t) — fH(e?(1),
(ii)) Conversely, given a homotopy H from f to * we construct
ft:B* — X :re® — H(e?,1—7).
Now, this has the required restriction because r = 1 on S' and
fls1=H(,0)=f

which completes our proof. O
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In fact, this result extends to spheres of all dimensions:

Theorem 2.1.3 (Sphere to ball extension) Any continuous map from a sphere
to the ball it bounds extends if and only if it is inessential.

sn (__inclusion Bn+1

f ' Ezxtension < f ~ * '
ft

ya

X
Proof: Ex O
For the particular case f = lg» we have the retraction problem. However, for
n > 0 it is a fact that S™ is not contractible, as we shall see later, though B™ is

contractible.

Corollary 2.1.4 There is no retraction of a ball onto its boundary.
Proof: Since S™ % *, then 1g» o * and so 1g~ has no extension to B™+!. O

The next result also concerns S™ and is attributed to Borsuk.
Theorem 2.1.5 (Extending maps from closed sets in R™ to spheres) Any
continuous map into a sphere from a closed subset of R™ extends to the whole of

R™ if and only if it is inessential.

A C closed Rr™

f ff ‘ Exztension <— f~*j

£

STL

Proof: Hocking and Young [46, p.53] actually show that if f ~ g and f! exists,
then also gt exists with ff ~ gt. The result follows because constant maps always
extend. Moreover, A can be a closed subset of any separable metric space. O

We remark that in order to show f ~ %, we need find only one homotopy;
however, to show f £ x we need to establish that no such homotopy exists, clearly
a harder task. We can obtain a useful characterization of inessential maps by the
following construction of the join of a space X and a singleton e as illustrated in
Figure 2.7.

oX = ({o} x X xI)/({o} x X x {1}).

There is a natural injection: g : X — ¢X : z — (z,0).
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X xI

Figure 2.7: Join of X to a point e

Proposition 2.1.6 (Extension to join with singleton) A map extends to the
join of its domain with a singleton if and only if the map is inessential.

b'e  t o X

fl f ’ Ezxtension <= f~ *7
A

Y

Proof: (i) Given f! we find a homotopy (Check the continuity!)

(z,t) — fi(z,t) for t€0,1)

XX]I_)Y:{(z,l)v—)ff(O)

from f to a constant map.
(ii) If we have a homotopy H : X x [ = Y from f to a constant map

c: X —Y :z—yp,
then put

(z,t) — H(z,t) for te€[0,1)

ff:OX—)Y:{
[ ] P——-)yo

This map has the desired properties. O

Observe that implicitly we worked here in Top, rather than in Top* which is more
difficult by being constrained to the one constant base-point preserving map. Our
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proof does not carry over directly; for if ¢ is a base-point preserving injection, then
e is not the base point in X and we get the wrong constant map in (i). However, we
can decide precisely when two constant maps are interchangeable, up to homotopy,
by the following.

Proposition 2.1.7 Two constant maps,
c: X —>Y:izr—ry, , 1:=0,1,
are homotopic if and only if there is a continuous curve

v:[0,1] — Y from yo to y:.

Proof: (i) Given a homotopy co K ¢ and any z € X we have
Yz : [0,1] — Y : t —> H(x,t).

(ii) Given the curve v we obtain a homotopy
H: XxIT—Y:(zt) —~(t)

which completes the proof. 0

2.2 Fibrations and cofibrations
Good Fibrations—B. Boys

We now make a systematic approach to lifting and extending problems via the
representation of maps as fibrations and cofibrations. These turn out to be very
useful concepts and quite widespread in applications because, up to homotopy, every
map is equivalently represented as a fibration and also as a cofibration. We work
in Top*.

Definition 2.2.1 A (pointed) map p: E — B is called a fibration when it has the
homotopy lifting property, namely: every square diagram like that below has a
diagonal H® lifting it.

x —2 E

Jo H P ’ Homotopy lifting property —’

X xI——>B

It is a principal fibration if there is also a space C and a mapc : B = C
and a homotopy equivalence (over B, that is, commuting through B) of E with the
mapping path space of ¢ defined by:

P. = {(b,0) € Bx C"| a(0) = *,0(1) = ¢(b)} .
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In this case, C is called the classifying space and c is called the classifying
map for the principal fibration; there is a natural projection p; of P, onto its first
component in B and hence for all g, H and X we have the principal fibration
property, a commutative diagram:

7 4 / ( Principal fibration property

What we call a fibration is also called a Hurewicz fibration. The term Serre
fibration or weak fibration is used for a map which has the homotopy lifting
property for all cubes 1", or equivalently, for all balls B".

Jo

X xI

Theorem 2.2.2 (Everything fibrates) Every map is a fibration, up to homo-
topy.

Proof: Given any map ¢ : U — V we construct
Es = {(u,0) € Ux V'] 0(0) = ¢(u)}
then show that we have a fibration
p:Ey —V:(u,0)—0a(l).

The result follows because E4 ~ U (c¢f. Gray [38, p.86] or Maunder [68, p. 249] for
more details). 0

Ex

1. The standard fiber of a fibration p : E — B is the subspace p* {x} C E;
it is always homotopy equivalent to P,, the mapping path spacc of p. See
Maunder [68, p.249] for details of this homotopy.

2. The natural projection p of a mapping cylinder onto its mapping cone is
a fibration (observe that we need to use the Top™ constructions). This is
illustrated in Figure 2.8. Take any ¢ : U — V and consider the following
diagram:

UM, =(UxDUg V) /({} x1I)

. H°
Jo P

UxI

7 Co = My/(U x {x})
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¢(U) \%

Figure 2.8: Mapping cylinder fibration over its cone

The fiber p* {*} of this fibration is homotopy equivalent to U because
p{x} = U xD)/({x} xI) ~ U.
According to the preceding Ex it should also be homotopy equivalent to
P, = {(m,0) € My x ng | 0(0) = * and o(1) = p(m)} .

This is indeed the case because P, essentially consists of continuous curves in
U beginning at *.

3. If p: E — B is a fibration, then it is necessarily a surjection. For, the trivial
homotopy B x [ — B admits a lift.

4. For the case X = {x}, the homotopy lifting property coincides with the path
lifting property. Hence for a fibration p : E — B, if there is a path from *
to b in B, then there is a homotopy equivalence between p* {x} and p* {b}.
That is, the fibers of p over path-connected points are homotopic; in a bundle
the fibers are homeomorphic.

5. If B is a paracompact Hausdorff space and p : £ — B is a locally trivial
surjection with fiber type or model fiber F' (or an F-fibered space),
meaning

(Vbe B) (Jopennbd Uy of b) : p“U, = Uy x F,

then p is a fibration with fiber F.
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O O

Figure 2.9: Cylinder and M&bius line bundles over S!

6. If B is paracompact and locally contractible, so every point has a con-
tractible neighborhood, then p : E — B is a fibration if and only if there are
local slices (cf. Dugundji [34], p. 404).

7. The composition of two fibrations is a fibration. How about local triviality?

8. The product of two fibrations is a fibration. What about the fibers?

Like fiber bundles, fibrations are introduced to generalize the notion of a map.
Thus, a map B — F' can be represented by its graph in the product space B x F,
and different bundles are possible by topologizing the set B x F' differently. This
is illustrated in Figure 2.9 for two different line bundles over B = S—both have
fiber F' an interval of the real line. On the left is the cylinder, a trivial or product
bundle, and on the right is the Mdbius strip, a nontrivial or twisted bundle. They
are topologically distinct subspaces of R®; how could you show this? Are they
homotopically distinct?

Now, in bundles we always have the fibers of the surjection homeomorphic (over
each path component) but in fibrations they need only be homotopic (to the map-
ping path space of the fibration). Note that some French mathematicians use the
term fibration to mean fiber bundle so some care is needed to avoid confusion, but
usually we shall be needing bundles in geometry and physics.

The significance of fibrations arises from the simple homotopy invariant dia-
grams relating E 5 B and the fiber p“{*}, because they transcribe (cf. §2.6)
into extraordinarily useful infinite diagrams in algebraic categories; in particular, p
yields epimorphisms.

The condition for being a principal fibration is evidently harder to satisfy and
depends on finding the classifying map ¢ and the classifying space C. We shall
return to this problem later, but the following proposition shows that when we do
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have a principal fibration then the condition for solving the lifting problem is very
simple and purely homotopical. (Compare with 2.2.7.)

Theorem 2.2.3 (Obstruction to principal fibration lifting) Given a princi-
pal fibration, the lift f° exists if and only if cf is inessential:

_E

° lp
x—L1—B [3f <= cf~x |

Xle

C

Proof: Since we have a principal fibration there is a homotopy equivalence (over
B) E ~ P, and hence a diagram

Fe

commuting over B satisfying
hg~1p, gh~1g and pth=p, p1 =pg

where p; is projection onto the first component of P,.
(=) Given f° we obtain a homotopy cf ~ * as the composite:

H:XxI— P, — C
: (z,t) v hfo(z) = (f(2),00) — 04(t) = Hi(2).
(<) Given a homotopy cf £ x we can define:
Gy : 1 —C:t+— G(z,t)

fe: X — P, — E
sz o— (f(2),Ge) — 9(f(2),Gs) -

Then we deduce
pf°(z) = pg(f(z),Gz) = f(x) (Vz € X),
sopf° = f. O

We shall see that lifting problems can often be broken down into a sequence of
such problems in principal fibrations, by means of the Moore-Postnikov decomposi-
tion. In anticipation of these developments, we refer to the homotopy class [cf] in
[B, C] as the primary or first (order) obstruction to lifting f.

We can obtain a nice characterization of when this obstruction vanishes, meaning
the class is trivial, through the following conversion of lifting into extension.



32 CHAPTER 2. UP TO HOMOTOPY IS GOOD ENOUGH

Identify set ¥——— to

fX) B

Cy

Figure 2.10: Mapping cone Cf for f : X — B in Top”

Theorem 2.2.4 (Principal fibration lift to classifier extension) A [Lft f°
exists in a principal fibration if and only if there exists ¢! extending the classifying
map c in this diagram:

.7E
fo Jp
¥ g B (inclusion ol 3f° = Il 1
|
CA—

The previous result showed that f lifts if and only if ¢f is inessential, so the lift-
ing problem for a principal fibration is equivalent to an extension problem for its
classifying map.

Proof: In Top® the mapping cone C; is obtained from the mapping cylinder My by
identifying X x {0} U* x I with % in B. This is shown schematically in Figure 2.10.

(=) Given a homotopy H from * to cf, define

) | (z,t) — H(z,t)
CT'Cf'{ b — c(b)forbé fX

then c(z,0) = * and cf(z,1) = cf(z)(Vz € X) so ¢! is a suitable extension.
(<) Given an extension ¢! of ¢ we obtain a homotopy:

G: X xI— C:(z,t) — cl(z,t)
G(x,0) = c'(z,0) = ¢l () =
G(z,1) = cl(z,1) = cf(z)
for all z € X. Hence cf ~ *. 0

As usual for anything worthwhile concerning diagrams, there is a dual theory to
fibrations arising from the notion of cofibration.
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Definition 2.2.5 A map q : A — X is a cofibration when, for all g,Y, every
diagram like this one has a homotopy H' extending H:

X g Y

Jo

>
HY -
H F Homotopy extension property _’

XXH‘qT—AXH

We call it a principal cofibration if it is an inclusion of a closed subset and
there is a map ¢ : C — A with a homotopy equivalence under A (that is, commuting
through A) of X with the mapping cone C,; in this case c is called the coclassifying
map for the principal cofibration.

There is an equivalent definition for a cofibration ¢ : A — X (cf. Baues [6])
which requires the existence of h! for all g, h, and Y in diagrams like

Rt :
q o0 [ Cofibration property |
A
I
A " Y

That it is equivalent stems from the homeomorphisms (valid in Top)
yAXD o yIxA o~ (YII)A .
For a principal cofibration i : A < X there is a natural map
j1:A—C.:a—[q],

and hence for all g, h, and Y a commutative diagram:

C,~—~=2>x—2 >y

t
i h o0 ’7 Principal cofibration propertﬂ

A
C = A —Y!

7

Theorem 2.2.6 (Everything cofibrates) Every map is a cofibration, up to ho-
motopy.

Proof: Take amap ¢ : U — V. Then there is induced a map
q:U — Mg :ur— [(u,0)].

Here M, is the mapping cylinder of ¢, which in Top* is given by
M= ((UxT)Ug V) / (x x T)

and is homotopy equivalent to V. It is illustrated in Figure 2.11. Maunder [68,
p. 246] gives more details. 0
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Figure 2.11: Mapping cylinder of ¢ : U - V
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Identify both sets *¥———— to *

Cq/qA

X x {x}

Figure 2.12: Cofiber of cofibration g : A -+ X

Ex on cofibrations

1. The cofiber of a cofibration q : A — X is the space C,/qA, which is of the
same homotopy type as X/qA. A representation of this identification space is
given in Figure 2.12.

2. An inclusion A < X is a cofibration if and only if
X x {¥}UA xLis aretract of X xI.

This means that A must capture the homotopy essentials of X (c¢f. Dugundji
[34, p. 327] for more details). Moreover, if X is a Hausdorff space and 4 — X
is a cofibration, then A is closed in X. Is the converse true?

3. If g: A = X is a cofibration, then it is necessarily an injection. For, the
trivial homotopy A x I — A extends to X x [ - A. What about a converse?

4. The composition of two cofibrations is a cofibration.

5. Given closed inclusions A < X and B — Y which are cofibrations, then the
following are also cofibrations:

AXxB =& XXxBUAXY <= XxY.

6. For any pointed map h : (X, x) — (Y, %), the inclusion
7Y =& YU, CX
is a cofibration (c¢f. Switzer [106], p. 74).

Next we show that the extension problem for a principal cofibration is charac-
terized by a simple homotopy condition. (Compare with 2.2.3.)
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Theorem 2.2.7 (Obstruction to principal cofibration extension) Fora
principal cofibration f in this diagram, an extension f! ezists if and only if fc is
tnessential:

C c A ¢ _inclusion X

f E
fT

+
Y

Proof: Since we have a principal cofibration, there is a homotopy equivalence (un-
der A) X ~ C, and hence a diagram

<

1

X C.

w

commuting through A. That is, rs ~ 1¢,, sr ~ 1x, sj1 = ¢, and j; = ri where j;
sends a € A to its equivalence class [a] € C..
(=) Given f' we construct the homotopy

H:CxI—C,—Y:(kt)— fls(k,t).
H(k,0) = fls(x) = x
H(k,1) = fls(k,1) = fle(k) = fe(k)

S0 fc ~ *.
(<) Given a homotopy H from * to fc, we extend f by defining

fl:x 5Heo,—Y

H(k,t) if 3k € C with r(z) = [(k,1)],
T { f(@) z)therwise. Tx

If r(z) € C¢, then r(z) = {(k,1) = c(k)} for some k € C with c(k) = ar € A. But
by definition of H,
H(k,1) = fe(k) = f(ar)

so f! is well-defined and agrees with f on A. 0

In a manner precisely dual to that for liftings, we shall see that extension prob-
lems can often be broken down into a sequence of such problems in principal cofi-
brations, by means of a CW-decomposition. Thus we refer to the homotopy class
[fc] in [C,Y] as the primary or first (order) obstruction to extending f.

There is also a duality with fibrations in that the simple homotopy invariant
diagrams relating a cofibration A 3 X and its cofiber C,/qA also carry over into
very useful infinite diagrams in algebraic categories; in particular, q yields monomor-
phisms. The really clever thing is that, for most principal cofibrations and principal
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fibrations of practical interest, the sets of homotopy classes [C,Y] and [B, C] can
be given the structure of groups.

A logical way to investigate the homotopy properties of a space X would be
to study the homotopy classes of maps from a set of standard spaces to X. One
is very quickly led to use the spheres {S™ | n > 0} for this purpose; of course,
Euclidean spaces R™ and the balls B™ are useless because they are all contractible
and hence homotopically trivial. It turns out that the classes [S™, X] are indeed
very useful in characterizing X because for n > 0 they can be given the structure of
groups, and often these groups are finitely generated and abelian. We wish to set up
this investigatory machinery in the most economical way that will give maximum
power in subsequent applications. For this purpose we tend to favor the approach
of Switzer [106] and Gray [38]; many other texts give more leisurely accounts of the
elementary aspects, particularly concerning the fundamental group (c¢f. Armstrong
(2], Hocking and Young [46], Sieradski [94], Wall [115], for example).

2.3 Commuting up to homotopy

With the benefit of hindsight from a position on the shoulders of giants like Poincaré
and Hurewicz, we perceive that in order to obtain a group structure for homotopy
classes of maps it is only necessary for the maps themselves to have the character-
istics of a group up to homotopy. Now, these characteristics can always be repre-
sented by a commutative diagram in the category Set. For example, associativity
of a product e on a set G is equivalent to commutativity of the diagram:

GxGxQaG ox1 Gx@G

ixe . , Assaociativity 7

GxG . G

Other examples can be found in Switzer [106], p. 14.

For our purposes, we shall want to relax the condition and have merely com-
mutativity up to homotopy. This will be signified by the presence of the symbol &
near the diagram concerned. For the diagram above this would change its meaning
to

o(ex1) ~ o(lxe).

Hence we are led to the concept of a group up to homotopy or an H-group; the H
could stand for homotopy but in fact it stands for Hopf who first investigated spaces
of this type [50]. Once again, since we are being purely diagrammatical, there is a
precisely dual notion of H-cogroup.

This goes a long way to solve our immediate problem because if G is an H-group,
then [X, G] can be given a group structure and if K is an H-cogroup, then [K, X] can
be given a group structure, for each pointed space X. The standard spaces we want



38 CHAPTER 2. UP TO HOMOTOPY IS GOOD ENOUGH

arise as loop spaces (which are H-groups) and suspensions (which are H-cogroups)
and there is a nice isomorphism between their induced group structures.

As always we work in Top* and use x universally to denote base points and
constant maps; identity maps are denoted by 1.

Definition 2.3.1 An H-group is o quadruple (G,*,¢,”1) where G is a pointed
space and & is a multiplication satisfying these three conditions.

1. The constant map * is a homotopy identity:

¢, oxg <) g
l./ ®
1 1

2. The multiplication e is homotopy associative:

GxGxG—2> >GxG

Ixe . ©
GxG@G < G
3. The map ~! is a homotopy inverse:
¢ axg<t g

N

An H-group is called homotopy commutative if also:

GxG 2 GxG
NN

[Here ©(z,y) = (y,2).]

More generally, algebraic topologists study H-spaces in which homotopy associativ-
ity and homotopy inverses are not assumed; see Stasheff [100] and Zabrodsky [123]
for complementary accounts. It turns out that homotopy associativity characterizes
those H-spaces which are loop spaces.
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S!xY

Sl
Figure 2.13: Graph of a loop « in loop space 1Y = ys'

on homotopy equivalence

. Write out the above properties in terms of homotopy equivalences of maps.

. Show that every topological group (in particular, every Lie group) is an H-
group.

. Regarded as the unit octonians, S7 is almost an H-group: it fails to be homo-
topy associative.

For any pointed space Y, its loop space is the pointed space QY = YS' and
_gsalways for function spaces it is given the k(compact-open) topology. The
situation is depicted for an interval Y in Figure 2.13.

The pointed space QY is an H-group with product e given by

_ fa2)  telo,1/2]
a"B\“ B2t —1) t € (1/2,1]

and homotopy inverse given by
a '(t) = a(l ~t),t€0,1],
where we have used the natural identification

st =~ [0,1)/{0,1}.

Satisfy yourself that  is a functor from Top* to Top* (cf. Switzer [106]).
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7. Pointed spaces and homotopy classes of maps form a category ’fo\;;* with com-
position [f][g] = [fg]-

Theorem 2.3.2 (H-group to group cofunctor) For every H-group G there is
a group-valued cofunctor
F& : Top* — Grp

x Wy ix 6 (va.

Proof: (We leave the details as an exercise.) The group product (commutative if
G is homotopy commutative) is

[][8] = [ah],

with, for all z € X,
aef(z) = a(z) e f(z).

The group homomorphisms are given by

x—2~q
Flel=lofl | /
Y
More details can be found in Switzer [106, pp. 15-16]. 0O

Corollary 2.3.3 Forn > 2 and any pointed Y the tterated loop spaces
oy = Q(Qn—ly) _ (Qn—ly)S1

are homotopy commutative H-groups, so for each n > 2 and pointed X,Y we have
well defined abelian groups [X,Q"Y].

Proof: Exercise. Cf. Switzer [106, p. 22]. 0
The dual constructions involve the wedge product of pointed spaces
XVY=Xx{*} U{s}xYCXxY,

so the base points are identified. There are also wedge composite maps f V g :
XVY s Z forall f: X - Z and g:Y — Z, defined by

fvglk,x)=f(k) and fVg(xk)=g(k).

Definition 2.3.4 An H-cogroup is a quadruple (K,x,®,”) where K is a pointed
space and @ : K — K V K is a comultiplication satisfying these three conditions.



2.3. COMMUTING UP TO HOMOTOPY

1. The constant map * is a homotopy identity:

K< gy g0,

S

K
2. The comultiplication ® is homotopy associative:

KVKVK <2 —KvK

KVK K

8. There is a homotopy inverse:

(Chy N
K«=——KVK—>K

An H-cogroup is called homotopy commutative if also:

KVK<—"—KVK

BN

[Here < (z,y) = (y,7).]

Ex on H-cogroups

41

S

1. Write out the above properties in terms of homotopy equivalences of maps.

2. For any pointed space X, its suspension is the smash product:

SX =S'AX = (S!x X)/(S'V X).

The suspension of an interval X is formed by identifying to x one vertical copy
of X and one of the end circles in S! x X, as depicted in Figure 2.14.

3. The pointed space SX is an H-cogroup with comultiplication

[ (2t,2],%)  te0,3]
@@ﬂ"{ujm—letG%J]
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Sx X

St'vX

Figure 2.14: Suspension of X: SX =S'A X = (S' x X)/(S'V X)

and homotopy inverse given by
[t,z]"! = [L-t,42],
where we have regarded the suspension as a quotient
SX = IxX)/({0} x XU{1} x XUTIx {x})

by virtue of the identification S* = 1/{0,1}. (Cf. Switzer [106, p.20] for more
diagrams.)

. By considering S? as the union of two hemispheres whose intersection is the
equatorial S!, find a homeomorphism from SS?! to S2.

. In Top® the cone on X is CX =ITA X and SX =2 CX/X.

. Suspension is a functor:
S : Top* — Top*

x Ly sx sy

with
Sf=1Af:[t,z] — [t, f(z)].

It is adjoint to the loop functor (¢f. Switzer [106], p. 13, and Gray [38], §8)
Q : Top" — Top*

x Lvesax oy

with
Qf :a— fa.
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7. In Top* the path space X! dctermines a fibration with fiber p* {*} = QX:

p: X' = X:0+—0(1).

8. Foralln >0,
S'AS™ = S§™! and S"X = S"AX.
Details can be found in Switzer [106], pp. 22-23.

Theorem 2.3.5 (H-cogroup to group functor) For every H-cogroup K there
s a group-valued functor
Fk : Top* — Grp

x Dy Kk, x15 K, Y]

Proof: (We leave the details as an exercise.) The group product (commutative if
K is homotopy commutative) is given by

[][8] = [(aB)']

with
(aB) (k) = N(avpB)o (k) forall ke K,

and

K (aB) X
KVK —(5>XVX
The group homomorphisms are given by
filol = [fo].

Corollary 2.3.6 For n > 2 and any pointed X, the iterated suspensions
S"X = S(S"'X) = S'ASTIX

are homotopy commutative H-cogroups, and so for each n > 2 and pointed X,Y we
have well defined abelian groups [S™X,Y].

Proof: Exercise. 0
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Evidently we have achieved our objective in establishing homotopy invariants in
the form of groups. They will be studied in the sequel. Observe that, as functors and

cofunctors, Fx and F¢ carry isomorphisms in Top* (that means homotopy equiva-
lences) into isomorphisms in Grp. We tidy up some loose ends in our construction,
beforc the main definition.

Theorem 2.3.7 (H-isomorphisms and adjointness of S and Q) The follow-
ing are some group and cogroup functoriality properties.

1. If K is an H-cogroup and G is an H-group then the two products available on
[K, G] determine isomorphic groups and, moreover, these groups are abelian.

2. For any pointed Hausdorff X and Y, the adjoint functors S and 2 yield an
tsomorphism of groups
[SX,Y] = [X,QY].
Furthermore, for n > 2 we have isomorphisms of abelian groups
[SX, Q" Y] = [X,Q"Y];
in particular, [SX, QY] is abelian and [S"X,Y] = [X,Q"Y].

A proof can be found in Switzer [106], pp. 20-22, or Gray [38], pp. 65-66.

2.4 Homotopy groups
Definition 2.4.1 For any pointed X, its nt* homotopy group is
(X)) = [S™X] for n>1.

(Here 7 is for IHoincaré.) Also, we denote by mo(X) the (pointed) set of path com-
ponents of X.

If m,(X) is the trivial group (or set) we write 7,(X) = 0, (or sometimes m,(X) = 1)
and if 74x(X) = 0 for 0 < k < n, then we say that X is n-connected. This is
independent of the choice of basepoint. When the basepoint must be denoted, we
write 7, (X, %) for example.

Ex on homotopy groups

1. There is a natural equivalence

m(X) « [S° X].

2. There is a bijection [CX,Y] — [X,Y7].
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3. We can equivalently define for n > 1

T(X) = m(Q"X) = [S° 0 X].

4. According as m is 0, 1, or greater than 1, so 7, is a functor from Top* to Set*,
Grp, or Ab, respectively. In fact, m, is the composite functor mo2™.

5. If X is contractible then 7, (X) = 0 for all n > 0, but the converse is false (cf.
Maunder [68], p.301).

6. For any topological group G, mo(G) = G /Gy is actually a group, where Gy
denotes the (connected) component of the identity. Also, 71 (G) is abelian.

7. More generally, if G is an H-group, then mo(G) is (naturally) a group and
71(G) is abelian.

2.5 The fundamental group

For any pointed space X, we call 7 (X) the fundamental group of X. A space X
with 71 (X) = 0 is precisely what is called a simply connected space in the older
literature.

Most introductory books on algebraic topology are admirably detailed in estab-
lishing the amazingly useful fact that m;(S') = Z, so we just provide a reminder of
the steps in the exercises. This result immediately gives a negative answer to one
extension problem, by applying the functor ;.

Sl (_inclusion B2 Z 0 {0}
st” Al

Evidently we cannot have commutativity on the right. Indeed, it turns out that
m(S™) = {0} if and only if n # 1, and also 7,(S™) = Z for all n > 1 so there are
corresponding results generated by the other homotopy group functors for higher
dimensions. Moreover, m, like 7, for all n > 0, preserves products so we easily
obtain the fundamental groups of the torus (Z x Z) and the cylinder (Z). We defer
more detailed study to later (cf. §3.5.3 below).

As a practical matter of notation, we usually write trivial groups as 0 and
indicate G is a trivial group via G = 0. Thus we write m(S?) = 0 and m(S2?) =0,
but mo(S?) = m(S?) to emphasize the conceptual difference.

Ex on m(S!) (Work in Top*.)
1. The result m;(S!) = Z can be approached as follows.

(a) p: R —> S':z > e*™® is a continuous surjection.
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() ¢ : Z = m(S!) : n = [po,)] where 0, : I = R : t — nt is a group
homomorphism.

(c) Paths in S' admit unique lifts to R.

(d) R —£» S! has the homotopy lifting property.

(e) ¢ is an isomorphism.

2. If X = UUV for some open 1-connected subsets U, V, and UNV is 0-connected,
then X is 1-connected since loops in X are homotopic to a product of loops
in U or in V. Hence 7;(S™) =0 for n > 2.

3. Consider the two paths ¢ and a going half counterclockwise and half clockwise
respectively round S! as the unit circle in C :

c:[0,1] — St s e!™F,
a:[0,1] — St :sr— e 17,
Show they induce the same isomorphisms between m; (S, 1) and m; (S}, —1).

4. The fundamental group of S'VS! is Z * Z and hence nonabelian. The paths in
St v S! corresponding to a,c in the previous example do not induce the same
isomorphisms.

5. No continuous map from the unit disk to its boundary can restrict to the
identity on the boundary.

6. Not all continuous surjections induce epimorphisms of fundamental groups
but retractions do.

A useful aid in computing fundamental groups of simple compact spaces is the
notion of a simplicial complez, which is a device for building homeomorphs from
standardized pieces of Euclidean spaces of various dimensions; we shall encounter
this in the next chapter. Another trick is to exploit symmetry arising from group
actions, as in the following theorem.

Theorem 2.5.1 (Fundamental group in action) Let a topological group G act
on a simply-connected space X in such o way that every point x € X has a neigh-
borhood N, for which, if g € G\ {identity},

gN, NN, =o.
Then m (X) = G.
Proof: This is a check that the canonical projection
p: X —>X/G:z+— G,

appropriately sends paths ¢, in the fibers of p into loops in X/G. Hence, taking
any o € X we get a map

¢: G — m(X/G,p(xo)) : g—< ply >

which is actually an isomorphism. 0
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We have also an easy first result on products.

Theorem 2.5.2 (Fundamental group of a product) Let X; and X be path-
connected spaces and denote by p1,ps the projections from X; x X onto the two
factors. Then there is an tsomorphism

(pl,pg)* Z7I'1(X1 X Xz) — 7I’1(X1) X 7r1(X2).

Observe that it has an inverse induced by the canonical injections of the two factors
into the product space. 0

Corollary 2.5.3 In particular:

m(R") =0, n>0;
T (S'xSYH =ZxZ;

m(S™%x 8" =0, m,n>2.
O
The two generators of 71 (S x S!) can be represented by the two identification
lines in the torus of Figure 2.3, p.20. These give two non-homotopic embeddings
of S! in the torus; a third is given by the graph of the identity map on S!, which
is also shown in Figure 2.3. What can you say about a punctured torus, or a

punctured Klein bottle, as shown in Figure 2.4, p. 207 Why is it easy to deduce the
fundamental groups of the cylinder and Mébius strip (Figure 2.9, p. 30)?

2.6 First applications

We outline some powerful results that can be achieved by the homotopy methods
that we have assembled. First, the most widely used result in elementary algebra.

Theorem 2.6.1 (Fundamental of algebra) Fvery nonconstant complex polyno-
mial has a root.

Proof: Without loss of generality, suppose that
f)=2"+an 12" +an22" 2+ +ao
is never zero. Now consider the map
H :S!'x [0,00) — S : (2,t) —> f(t2)/|f(t2)].
Evidently it can be used to construct a homotopy between any two of the maps

H;:S'—S': 2+ H(z,t), t € [0,00)
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and in particular Hy ~ *. However, for
n—1
T > ma.x{z I(I,‘I,l}
1=0
it turns out that Hr is also homotopic to
g:C—C:2—2z"

which is not nullhomotopic, for reasons that we shall go into later. Hence this
contradicts the supposition that f(z) is never zero. |

The next theorem suggests that if you stir a cup of coffee then afterwards there
will always be at least one particle of fluid in the place at which it started!

Theorem 2.6.2 (Brouwer fixed point) Any continuous f : B® — B™ has at
least one fized point.

Proof: Suppose not and consider the following maps from each B™ to its boundary
oB™ = §n 1

—1if f(z) >«

(n=1) g:IBl——)SO:z»——){l if f(z) < o

Now, g is a continuous surjection from a connected space so we have a contradiction
because S is not connected.

(n=2) g:B%> — St

with g(z) that point where the line from f(z) through z meets the boundary circle.
Again, g is a continuous surjection and moreover the induced homomorphism

g« : m (B?) — m (SY)

must also be surjective. Now this is a contradiction because we know that B? is
contractible, so 7, (B2?) = 0, and that m (S!) = Z.

The cases for larger n will be dealt with in due course. 0

Next we have one of a family of important results about antipodal maps.

Theorem 2.6.3 (Antipodal) There is a continuous nonzero tangent vector field
on S™ if and only if the antipodal map

a:S"—S8":z+— —x

is homotopic to the identity.
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Proof: Given such a field, v : S® = R**!, then 1 ~ a by the homotopy

S7 x [ — 8™ : (z,8) — (1 — 28)z + 2Vt — 20(z)/ || v(z) || .

Conversely, a homotopy 1 ~ a can be approximated by a differentiable homotopy.
This yields tangent curve elements and hence a nonzero tangent field of directions.
More details can be found in Gray [38], p. 15. 0

Finally, you cannot comb flat a hairy ball.

Theorem 2.6.4 (Hairy ball) There is a conlinuous nonzero tangent vector field
on S™ if and only if n is odd.

Proof: It can be shown that if n is even and f : S™ — S™ is homotopic to the
identity, then f has a fixed point. Given a nonzero vector field v : S® — R**!, then

f with
f(@) = v(@)/|lv(@)ll

is homotopic to the identity. Hence, at some zo € S™, v(z) is normal and so v is
not a tangent field.
If n is odd we can construct v by defining

U((El, .. '7:1:2’6) - (CL'Q, T, T4, —T3,---,T2k, _‘1"2k—1)

which is easily seen to have the required properties. 0

1. If a continuous map f from S™ to itself is not homotopic to the identity then
it must identify a pair of antipodal points.

2. The antipodal map on S27*! is homotopic to the identity, for n > 0.
3. There is no antipode-preserving continuous map from S™ — S™~L.

4. Which of the following spaces have the fixed point property? (i) R™; (ii) open
ball; (iii) closed ball; (iv) §™.

5. The fixed point property is a topological invariant but not a homotopy type
invariant.

6. The fixed point property of a space X is inherited by a subspace A if 4 is
a retract of X. Deduce that SV S! does not have the fixed point property.
(Think about a pocket watch case.) So wedge products do not preserve fixed
points. What about other products?

7. Construct nowhere zero continuous tangent vector fields on S! and S3.

8. Find a nontrivial continuous f : $? — S? which is homotopic to the identity
and show that f has a fixed point.
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9. Find the fundamental group of O(2) based at the identity.

10. Find subgroups of the Euclidean group E(2) which act on the plane R? to yield
respectively the torus and the Klein bottle, hence deduce their fundamental
groups. You can conveniently view these spaces as identification spaces of a
rectangle as indicated in Figure 2.4, p. 20.

11. Let
S*={(z,w) € C* | 2z + ww = 1}

and, from the action of Z, = {—1,1} given by
Zy x S? — S?*: (=1, (z,w)) —> (2€™, we™),

deduce that m;(RP3) = Z,. Construct analogous actions for Z, on S? by
representing the generator of Z, as the matrix

e27ri/p 0
0 eznqi/p

in C2*2 for relatively prime p,q € Z.



Chapter 3

Homotopy Group Theory

There was things which he stretched, but mainly he told the truth.—Mark Twain

3.1 Introduction

In order to exploit our development of homotopy theory and its role in the study of
fibrations and cofibrations as fundamental structures, we use several devices that
in the long run save work and are invaluable in applications. The main algebraic
devices are the eract sequences; these are particularly useful diagrams and they
arise naturally from fibrations and cofibrations. The main topological device is to
incorporate formally the inclusion situation A — X by means of the category of
pairs and pair maps. Then homotopies of pairs and the corresponding homotopy
groups, called relative homotopy groups, become powerful calculational aids. Fi-
nally, we use a synthesizing trick which allows quite complicated spaces to be built
up from simple cells as CW-complezes. These and their structure-preserving cel-
lular maps turn out to be adequate for many purposes because, up to homotopy,
they offer equivalents to most situations of interest. Often cellular approximations
are simpler than simplicial ones.

We shall continue to suppress basepoints but where necessary denote them uni-
versally by *. This is intended as a simplification of the notation, to make state-
ments and constructions easier to read. It is evident that anything done in Top*
(and later, Topp*) is sensitive to the particular element chosen as basepoint in
a space. This sensitivity persists for the homotopy groups, but it will be clear
that if we change the basepoint from one element to another in a given path com-
ponent then the homotopy groups remain unaltered. Indeed, any path between
basepoints yields (for example, Maunder [68], p. 260) isomorphisms of all homotopy
groups, though there is no unique way to set up such isomorphisms (unless there
is only one path!). A given space X and z;,z2 € X determine two pointed spaces,
X1 = (X with basepoint ;) and X, = (X with basepoint z3). So there is no
a priori reason to expect relationships of any kind between m,(X;) and 7,(X5),

51
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nor between m,(X1, A) and 7,(X5, A) in the sequel, for the same reason that if the
universe consists of two connected components it would not be noticed by particles
or people.

As before, up to homotopy is good enough for our purposes so we begin with
some examples that give a feel for which spaces are homotopic and which maps
are homotopy equivalences; at the same time we review some standard topological
constructions.

Ex on homotopic maps

1. The following diagram, commuting up to homotopy, means that A is a de-
formation retract of X and then A ~ X.

A (_inclusion X
© 1.

[ Deformation retraction

retraction

Moreover, A ~ B if and only if A and B are deformation retracts of the same
X (c¢f. Massey [67], p. 33).

2. Products of homotopic maps are homotopic and equivalences are preserved.
3. Xl ~CX =IAX.
4. X~Y = SX ~8Y. Recall SX =S'A X =2CX/X.

5. f: X =Y extends to CX < [~ x

6. Given X 5 Y thereis a map f of Y into the mapping cone Cy. We can form
the mapping cone Cf of this map f. Then it turns out that

Cf ~ SX = S'AX.
Dually, the mapping path space Py has a natural projection
7Pt —» X :(z,0)— =z
and it follows that its mapping path space satisfies
P, ~0X = X%
Maunder [68, §6.4] gives details of these homotopy equivalences.

7. The following homeomorphisms for compactly generated Hausdorff spaces give
homotopy equivalences that are often useful. Recall that we use the compact
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open topology for function spaces, and where necessary we apply the k functor
to have X x Y or YX in ktop = Top.

(Y x 2)X =2yX x zX
ZXVY = z7X x 7¥
ZXAY = (zX)Y
ZXXY = (ZX)Y
XANYAZ)=2(XAY)ANZ
XAY=YAX
(XVY)ANZZ(XANZ)V(Y ANZ)
YX/A o~ (Y,{*})(X’A)
8. If g: A — X is a cofibration, then there is a homotopy equivalence
Cy ~ X/qA.
If p: A — B is a fibration with fiber F, then there is a homotopy equivalence
P,~F.

(Detailed constructions for these are given in Maunder [68], §6.5.)

3.1.1 Exact sequences

In the category Set* of pointed sets and pointed maps we define the kernel of a
map f: X — Y to be the set f<{x} C X. (As usual, we denote all basepoints by
* and by definition in Set™ we have f(x) = x.) This is consistent with the usage of
the term in elementary algebra because all groups, rings, modules and vector spaces
are given their identity elements as basepoints. The picture is always of the form

s
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Recall from linear algebra the simple but elegant property of linear maps:
dim(dom f) = dim(ker f) + dim(im f),

which incidentally implies that kernels and images are vector subspaces, as indeed
they are subobjects in Set™ and its other subcategories. We prepare in this section
some further ramifications that are useful in Set”, and particularly in Top*, when
we study homotopy properties.

Definition 3.1.1 (i) In Set*, a diagram
xLy 4z

is called an exact sequence if im f = ker g; we also say that the diagram (or
sequence) is exact at'Y .

(i1) A longer sequence is called exact if each pair of consecutive maps determines
an exact sequence in the above sense; that is, if the sequence is exact at each object.

(iii) An exact sequence of the form

s—x-Ly Lz .
is called a short exact sequence or ses, and it is called split if there exists
Y <& Z with gh=15;
such an h is colled a section (or right inverse or coretraction) of g.

We remark that when restricting attention to one of the subcategories of Set*
(notably Grp and Top®) it is important that the appropriate structure-preserving
properties of the morphisms are verified in applications of these definitions of exact
sequences. We are especially interested in exact sequences of homotopy classes; Ex
10 below is important.

Ex on exact sequences

1 x5 X LY exact « f a monomorphism.
(N. B. = fails in general because base points are fixed.)

2. X5y 5« exact < f an epimorphism.

3. x5 X LY 5« exact < f an isomorphism.
(N. B. = fails in general because base points are fixed.)

proj

4. 5 X Y EFY/X - « is exact.

5. %= X3 X xY ¥ Y - «is exact.
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Cx oY E X xY ™ X 5 xis exact.

x5 X oY L Z 5« exact with a right inverse Z 5 Y (so fg = 1) implies

Y = X x Z in Set; that is, a product set. However, Y may well not be a
product structure in any other category.

. The four lemma If the following diagram has exact rows and commutes,

Ap Az = Az Ay
epic a b monic
B1 Bz 3 Bg B4

then kerb = akera and ima = 8% imb.

. The five lemma, from two applications of the four lemma: if the following

diagram has exact rows and commutes,

Al A2 A3 A4 A5
a b ‘c d e
Bl B2 B3 B4 B5

then:

(a) a an epimorphism and b, d monomorphisms = ¢ a monomorphism;
(b) e a monomorphism and b, d epimorphisms = c¢ an epimorphism;

(c) a,b,d, e all isomorphisms = ¢ an isomorphism.

Given any f: X — Y in Top* the following sequences of homotopy classes are
exact in Set* for all pointed W

Q) xwlpwdyuox,wl (YU, CX =)

(i) W, Pr] 22 (W, X] L (w, v,
where we have used the canonical maps
JY =Y U CX:yr—y
TP (CX xY) 5 X:(z,0)— 2

(¢f. Maunder [68], §6.4).
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Following from Ex 10, two significant long exact sequences can be constructed
by applying to (i) the suspension functor and its iterations and to (ii) the loop
functor and its iterations. Long (actually infinite) exact sequences arise because we
can join up the different iterations by means of two maps, s,{:

s:Cs — SX, induced by Cy =Y Uy CX and (Y Uy CX)/Y = SX, and
1:QY — Py 10+ (x,0)
Hence we have also S™s and Q"I for n > 0.

Theorem 3.1.2 (Suspension and loop exact sequences) Forany f: X =Y
in Top®, the following sequences are exact for all pointed W and n > 0:

(i) [s"x, W] <=L (smy, W] <L S (Y Uy OX), W] < [ X, W)

Q" . Qrf.

(i) w,amty] s (W, 0m Py s (W, Q7 X

[W,Q"Y]

Proof: Switzer [106, p. 27 et seq.]. O

In this result and elsewhere, the exactness is in Set™ but some parts of the
sequences lie in Grp and there the exactness coincides with the usual definition in
group theory. In particular this occurs in (i) if W is an H-group and in (ii) if W is
an H-cogroup. The following is an important deduction from our result.

Corollary 3.1.3 (Cofibration and fibration exact sequences) (i) If g: A —
X is a cofibration, then C; ~ X/qA and for all pointed W there is an ezxact sequence

[A, W] — [X, W] +— [X/qA, W] +— [SA,W].

(i) If p : E — B 1s a fibration with fiber F, then P, ~ F and for all pointed W
there is an eract sequence

W, QB] — [W, F] — [W, E] — [W, B].

Proof: These are obtained by taking the case n = 0 in each sequence. 0O

3.2 Relative homotopy

We denote by Topp* the category of pointed topological pairs and continuous pointed
maps of pairs. Recall that a morphism

(X,4) L5 (v, B)



3.2. RELATIVE HOMOTOPY 57

in Topp* has in Top* the following equivalent commutative diagram of restrictions:
x—L >y
A——B

fla

There is a natural inclusion of Top® in Topp* by sending each X to (X, {x}). We
make the obvious definition for homotopy and leave the reader to check that the
right properties follow.

Definition 3.2.1 In Topp*, given the diagram

(X,4) =

we say that f is homotopic to g , written f ~ g, if there is a map of pairs:
H: (X xI,AxI)— (Y,B): (z,t) — H(z)

with Ho(z) = f(z) and H1(z) = g(z) for all z € X. We denote by [(X, A), (Y, B)]
the homotopy (equivalence relation—check!) class of maps of pairs from (X, A) to
(Y, B).

Motivation For any pointed pair (X, A) we have an inclusion A < X in Top™, so

for each n > 0 we have a diagram 7, (A) 23 7,(X). This turns out to be part of an
exact sequence and by a judicious choice of A we might exploit it to save work in
calculating 7, (X). The trick is to introduce some new objects 7, (X, A), measuring
the homotopy information lost by studying X only through A. Thus we shall
arrange to have the boundary conditions 7, (X, X) = 0 and m, (X, {*}) = 7, (X).

As might be expected, this can be achieved by using homotopy classes of maps
of pairs.

Definition 3.2.2 For each n > 1 we define the nth relative homotopy set of a
pointed pair (X, A) to be

(X, A) = [(B™,S™ 1), (X, 4)].
Theorem 3.2.3 (Relative homotopy functor) For each n > 1, there is a rel-
ative homotopy functor
m, : Topp® —> Set™ :

(X,4) L (V,B) — m(X,4) L5 ma (v, B).

Moreover, m, takes values in Grp for n > 2, and in Ab for n > 3.
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Proof: This is just a check of details. O

Our immediate purpose is to use these relative homotopy functors to find the
(absolute, as opposed to relative) homotopy groups m,(X) of a pointed space X.
What we give next is a catalogue of basic properties with which the user needs to
become familiar. Proofs of the properties can be found among the standard texts
we have already quoted and we shall omit them; however, we shall draw attention
to important constructions and see the results applied to specific spaces.

3.3 Relative and exact properties

1. Given homotopic maps of pairs in Topp*, the category of pointed topological
pairs and pair maps,
f
(X, 4) === (¥, B)
then the induced maps on quotients

7/
9/

X/A Y/B

are homotopic in Top*, and a homotopy equivalence of pairs is carried through
to one between the quotients.

2. Ifzo € A C X, then (X/A,{z0}) =~ (X, A) in Topp* if and only if A is
contractible, and then

(X, A) Z mo(X/A, {z0}) = mn(X/A),
where zo = *. For example, although B2 /S! = S?, we observe that
0= m,(B2,SY) 21, (S?),
because S! is not contractible.

3. We can also.define the relative homotopy sets via a study of the inclusion
mapping path space F;, which we can view as the space of pointed paths in
X which end in A:

P, ={(a,0) € Ax X"| 6(1) = a}
Pi={oe X' |a(1) € A}

with A < X. We also use the notation P, = P(X, A). Corresponding to the
isomorphisms 7, (X) 2 mo(Q2" X), it turns out that there are isomorphisms of
classes of maps of pairs

ﬂ'n(X,A) = Wn—l(Pi) = Wo(Qn_IPi) .

Hint: a morphism f in Topp* determines a map on path spaces by sending o
to fo.
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fiX—Y

Figure 3.1: Mapping cylinder My and mapping cone Cy of f

4. Every pair (X, A) with A < X and (X, {*}) A (X, A) determines an exact
homotopy sequence of the pair:

Tni1 (X, A) -2 mn(A) 225 10 (X) 25 ma(X, 4)  (Vn>0),

where 8 = m,(w) with # : P, - A : (a,0) » a, and j, = m,(p) with
p:0QX = P;:o~ o. Hence if m,41(X, A) = 0, then i, is a monomorphism.
(Often i, is loosely written i,; better is i,,.) We recall that, in particular,
(X, A) = mn(X/A) =0 if X/A is contractible.

5. The connecting morphism 9 in the exact homotopy sequence of a pair
(X, A) is a natural transformation from m, to the functor 7,_; F; where

Fy : Topp* — Top* : (X,A) — A.

6. A map of pairs f : (B",S™!) - (X, A) is inessential if and only if there
exists f' ~ f (relS™~!) with f'B™ C A.

7. Given f : X — Y in Top", then its mapping cylinder is the space
M= (IxX/Ix{x})VY) /=

where (1,z) =~ f(z) for all z € X. This is shown schematically in Figure 3.1.
Then, viewing X as the subspace {0} x X, we find that

M;/X =Y U;CX =Cy.
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Hence, m,(My, X) = m,(Cy) and there obtains an exact homotopy sequence
of the pair (M, X):

g1 (Mp, X) — 1o (X) — mn(My) — 7 (My, X) (V0 >0).

Moreover, the inclusion Y &M ¢ and the surjection

(t,z) — f(x)

T:Mf——»Y:{
Yy — Yy

both yield isomorphisms

T (My) === 7, (Y)

In

and consequently an exact sequence
a f
Tnt1(Mf, X) = wp(X) =5 10 (Y) — w0 (Mg, X)

for all n > 0.

. The natural projections

X&-xxvy Ly

make
X xS XY xYWY . f— (pf,qf)

a homeomorphism. Now we can choose W = S™ x I and there obtains an
isomorphism for all n > 1,

(X XY) > m,(X)om,(YV): frop.fdaf.

Find the inverse isomorphism!

. For n > 2 there is an exact homotopy sequence (of abelian groups) for the

pair (X xY,XVY):
Tt (X X Y) 259 1 (X X Y, X VY) -5 mp (X VY) 25 1 (X x V).

It turns out that i, is an epimorphism and j, is the zero map. Then the
resulting scs splits (by reason of a right inverse for 4. ), and hence (¢f. Maunder
[68], p.273)

(X VYY) 2 (X xY)® (X xY, X VY)
which reduces to
(X VYY) 2 m (X))o m(Y)®dmma (X xY,XVY).

This is valuable when we know that 7,41 (X x Y, X VY) = 0. One case in
particular is when X AY = (X x Y)/(X VYY) is contractible; another occurs
on page 265.
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10.

11.

12.

13.

14.

A pair (X, A) is called n-connected if, for 0 < k < n,
f:(BF S —(X,A) = 3g:B* -4

with g ~ f (relS*¥~1), and every point of X is path connected to some point
of A. (This is the same as before with the convention S~! = &; the pair is
0-connected.) If n > 0, then (B! S") is n-connected. This follows from the
contractibility of B”t! and substitution of 7 (S™) = 0 for k < n in the exact
sequence for the pair, giving mx(B"*1,8") = 0 for 0 < k < n (c¢f. Switzer
[106], p. 40).

Show that (X, A) is n-connected if and only if the following hold: (i) every
path component of X meets A; (ii) m;(X, A, {a}) =0 for 1 < k < n and all
a € A

A pair (X, A) with A < X is n-connected if and only if
iy : Tk (A, {a}) — (X, {a})

is bijective for k¥ < n and surjective for k = n, for all a € A. In particular,
(X, X) is n-connected for all n > 0.

Construct in Top* homeomorphisms for each n > 1:
/o =S*=B"/0B" .

Deduce that for any pointed X there is a bijection of 7, (X) onto homotopy
(rel 91™) classes of maps of pairs from (I™,0I") to (X, {x}), and this corre-
spondence preserves the composition of morphisms in Top*. See Maunder [68],
§7.2, where this result is used to provide a group structure on 7, (X) which
coincides with that of our definition; a similar construction recovers also the
relative groups m, (X, A).

For any pointed pair (X, A), there is a natural action of m; (4) on 7, (X, A); for
a pointed space X, one has m;(X) acting naturally on 7, (X). The basic idea
is as follows. Let [g] € m1(X), [f] € mn(X), and regard f : (I",01") — (X, *)
as in the previous Ex. Pull f back along g by constructing a homotopy H of
f such that H(9I™,t) = g(1 —t) for every t € I, so obtaining another element
of 7, (X). It now turns out that this element depends only on [g] and [f],
thus providing the claimed action. In the relative case, one must also control
the image of JI"™ (rel A) by keeping one face in A. See Hu [51], pp. 126-128
and 137 for the details; an alternative is Switzer [106], pp. 45-50. This action
is used to study the effects of changing the basepoint. One interpretation
for path-connected spaces is that the orbit space m,/m; consists of the free
homotopy classes, (B™,S"7!) — (X, A) or S* = X, respectively, where the
basepoint is not fixed (or preserved).
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3.4 Fiberings

We bring our constructions concerning exact sequences and relative homotopy
groups to the study of a large class of situations, namely those involving fibra-
tions and in particular the special cases of fiber bundles and coverings. The key
result is that the homotopy lifting property itself lifts to path spaces, which leads
to an exact sequence of homotopy groups for a fibration. Before the new ideas, we
give a reminder of the definition of a fibration (from page 27):

x——E

) H° e

Jo p Homotopy lifting property ‘
X xI 7 B

Definition 3.4.1 A fiber bundle is a map E > B in Top™ with standard fiber
p* {x} = F such that

e B has an open cover {U, |a € J}
e for all a € J there is a homeomorphism
bo : Uy x F — pTU,

with

Pa

Uy x F p U, ‘ Local triviality property ‘

We call B the base space, E the total space, and each p* (b) a fiber of the bundle.
Sometimes we represent the situation by a diagram like

F—sE-2B

to emphasize that we have an inclusion and a surjection. A fiber bundle E 5 B s
called a covering of B if F' is discrete; then we call E a covering space over B
and p is called a covering projection:

pT{x} = F discrete Covering property ’

See Figure 3.2 for a schematic illustration of a fiber bundle. In it we have shown
four typical fibers, one of which contains the base point of E and lies over the base
point of B, as it must.

A common way in which fiber bundles, especially coverings, occur in geometry
and physics is as a projection of a topological group onto a quotient space. To
ensure that we have the local triviality required in the total space we demand local
inverses for the projection. The construction is simple but a bit involved, so we give
details.
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Figure 3.2: Schematic fiber bundle
Theorem 3.4.2 (Closed subgroups give fiber bundles) Consider a closed
subgroup H of a topological group G such that the map onto right cosets
p:G—G/H:x— zH
has a local section o on a neighborhood U of H, the base point in G/H, so:
o:U— G with po=1yp.

(This happens when G is a Lie group and H is closed—why?) Then every closed
normal subgroup K — H determines an H/K-fiber bundle with bundle map

p:G/K— G/H:gK+— gH.

Proof: The local section o on U C G/H can be shifted to surround any zH € G/H
because there is a transitive action of G on G/H :

GxG/H — G/H : (g,aH) —> (ga)H .

Then
oz 72U — G :aH +— z-o(z" aH)

is a local section about xH. Let p be the natural projection of G/K onto G/H; we
can establish local triviality by composing the maps

0, :2U x HHK — G/K : (aH,hK) — o,(aH) - hK .
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R/Z

Figure 3.3: Rolling up the real line into a circle

bz 2 pT(2U) — zU x H/K : gK —> (gH,0,(gH)™" - gK).
For,
O:0z = 1y ouy and ¢z0: = Louxh/k -
Also, at all stages continuity is assured because we are working with topological
groups. 0

Recall that we can view G/H as a group only if H is a normal subgroup of
G, that is zH = Hz (Vz € G). (Recall that there is always a bijection between
the sets of right and left cosets, but that it might not be this natural one.) The
homogeneity of G/H displayed in the first part of the proof has led to the name
homogeneous spaces for such quotients; they are always topological spaces on
which G acts continuously and transitively.

In order to obtain a covering by means of a group action on a topological space,
we can ensure discreteness in the fiber by requiring the action to be strong enough to
move whole neighborhoods of each point and choose a discrete group for the purpose.
The precise meaning of ‘strong enough’ is (i) and (ii) in the following statement;
an action having this property is usually called properly discontinuous. For
definiteness think of the action

ZxR—R:(n,z)—z+n,
which rolls up the line into a circle S! = R/Z, as shown in Figure 3.3.

Theorem 3.4.3 (Properly discontinuous discrete group action) Consider
a continuous action G x X — X of a discrete group G on a topological space X
satisfying the following for all T in X :

(i) there exists a neighborhood U, of x such that
(g-UsNU, #2) = g=1;

(ii) if y ¢ G - x, then there exist neighborhoods U, of x and U, of y such that for
all g € G,
g-U.,NU,=2.

Then the space of orbits (cf. p. 305)
X/G={G -z|ze X}
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1s a Hausdorff space and we have a covering projection:

X

g:z—Gx [ Covering with fiber G |

X/G

Proof: Condition (ii) ensures that X/G is Hausdorff. For each G-z choose U, sat-
isfying (i); then the qU, give an open cover of X/G, and q|y, is a homeomorphism.
Hence we have

b 1 qUe x G = ¢ (qUs) : (y,9) — 9 (alp,y)

commuting with ¢ and with projection onto qU,. 0O

Corollary 3.4.4 If in addition mo(X) = 0 then, since m (G) = 0 for discrete G,
the sequence of groups

00— 71'1(X) — 7['1(X/G) — G —0
is ezact because the morphism in Set”
m(X/G) — 7o (G) =G

s actually a homomorphism. 0

Ex on fibered spaces

1. Any product E = B x F 2% B is a (trivial) fiber bundle.

2. The pointed path space determines a fibration PX = X ' X, with fiber the
loop space X = X5, (Recall that PX is always contractible.)

3. The following are coverings with fibers F' as indicated:
()R »Sl:t— et F=17;
(i) S » Stz 2", F =17y
(i) S™ —» RP™ : z — {z,—z}, F =12Z,.

4. There are generalizations of 3.(iii) to complex and quaternionic projective
spaces, but they are fiber bundles with non-discrete fibers:
(i) S+l » CP" : 2 S!'-z, F=S8
(ii) St » HP" : 2 — S%- 2, F =83

5. Steenrod [101, §20] gives a detailed discussion of the famous Hopf Sphere
Bundles over spheres (see also Gluck, Warner and Ziller [37] for more details
of their symmetries):

(i) S* < C2\ {0} » S2=CP! : (z,w) » [z,w], F =S}
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(i) 8" — H? \ {0} - S* =HP' : (p,q) = [p,q], F =83
(iii) S5 < 02 \ {0} —» S® = QP! (N. B. nonassociativity of the octonions
or Cayley numbers O does raise problems in defining OP! well.)

Of course, we have already encountered the case for R:
S' > R? — {0} —» S'=RP! :z+— {2,-3}, F=8"°=2Z,.

The four cases exhaust the possibilities for constructions of this type because
R, C, H, O are the only real finite-dimensional division algebras, but that is
quite a difficult thing to prove (cf. Porteous [89], Ch. 15, and references there).
If nothing else, you should study (i) since it is the first nontrivial embedding
of a sphere into a higher dimensional sphere. It encapsulates much of the
beauty of algebraic topology and serves as a valuable test space for geometry
and physics; we shall return to it later.

. The group O(n) of orthogonal real n x n matrices has for each k < n a closed

subgroup O(k) which determines fiber bundles: O(n) — O(n)/O(k), with
fiber O(n — k), and O(n)/O(n — m) —» O(n)/O(n — k), with fiber O(n —
k)/O(n —m) for k < m < n (cf. Switzer [106], §4.14.)

. Each of the following is a split short exact sequence of topological groups (cf.

e. g. Porteous [89]) and determines a fiber bundle of the central group over
the one to its right:

1 — O(1) — Spin(n) — SO(n) — 1

1 —s SO(n) — O(n) 5 0(1) — 1

1 — SU() — Un) B U@a) —1.

Recall the geometrical equivalences:
O(1) 2 Zy homeomorphic to S° and Spin(1) =1,
U(1) = SO(2) = S! and Spin(2) = R,
Spin(3) = SU(2) = S°.

(See also Appendix A and Maunder [68], pp. 308-309 for further results on
these groups.) Thus, we observe that Spin(n) is a double covering of SO(n)
for n > 3. There is a corresponding double covering of the identity component
of the Lorentz group in dimension four by the group of 2 x 2 complex matrices
with unit determinant:

1— 0(1) — SL(2,C) — SOt (1,3) — 1.

It is sometimes called a spinor group to distinguish it from the spin groups.
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8. The group SO(3) is a closed normal subgroup of O(3) and in fact is the maxi-
mal compact subgroup of the proper orthochronous Lorentz group SO*(1, 3);

geometrically:
SO(3) = S*/Z, homeomorphic to RP? .

This allows SO*(1,3) to be viewed as a (trivial) fiber bundle over R® with
fiber SO(3). That is, SO* (1, 3) is topologically RP®* x R* and so its homotopy
groups are the same as those of SO(3), namely 7, (RP3?).

Theorem 3.4.5 (Fibration bundles) (i) Every fiber bundle with paracompact
base is a fibration.

(ii) Every fiber bundle is a weak fibration; that is, it has the homotopy lifting
property for all cubes.

Proof: (i) See Dold [32] or Dugundji [34] for example. (ii) See Switzer [106], p. 56.
O

Theorem 3.4.6 (Weak fibration isomorphisms) For a weak fibration E % B
and any By C B we get a bijection

m(E,p" By) «— m,(B,By)
which is an isomorphism for n > 1.

Proof: See Switzer [106] p. 54, or Spanier [97] p. 56. 0

3.4.1 Applications
e The exact sequence for the pair F = p~{x} & E is
o T (B F) — mp (F) — 1o (E) — mp (B, F) — -+ (Yn > 0)

and applying our result with By = {*} we obtain

o= g1 (B) - 1 (F) — Tp(E) — 7p(B) — -+ (Y > 0)

which is called the exact homotopy sequence of the fibration. In par-
ticular, if 7,(B) = mp41(B) = 0 (for example, this is true for all n > 0 if B
is contractible) then =, (F) = 7, (E). Similarly, if 7,(F) = m,+1(E) = 0 then
Tnt1(B) = mn(F).

o If £ — B is a covering so its fiber F' is discrete, then mo(F) is in bijective
correspondence with F' and 7, (F) = 0 for all n > 1. Hence, for n > 1 there
is an isomorphism 7, (B) = 7, (FE). Moreover, if the covering space E is path
connected, then 7mo(F) = 0 and we have a monomorphism 7 (B) — F.

e We know that PX = X! - X is a fibration with fiber 2.X = XSI; now, PX
is contractible so from above 7, (X) = m,_; (AX).
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e Given a triple (X, A, B), that is B C A C X, and inclusions

(4,B) > (X,B) & (X, 4), (A, {x}) S (4,B)
in Topp*, then (PX, PA, PB) is also a triple with inclusions P(i), P(j), P(k).
Furthermore, these path spaces are fibrations and, since they are contractible,
we get the following diagram with vertical bijections

Tni1(PX, PA) — 1,(PA, PB) — m,(PX, PB) — m,(PX, PA)

>~

14
R

T (PA) Tn_1(PB)

Tpn—1 (PA)

mn(PA, PB)

However, the lower sequence is exact, since it arises from the pair (PA, PB);
hence the upper sequence also is exact. Now we can apply the proposition to
get bijections like

m(PX,PA) = m,(X,A)

and hence obtain the exact homotopy sequence of a triple (Vn > 0)
s 1 (X, A) -5 (A4, B) 2 1 (X, B) 25 mp (X, A) — -+
This reduces to that for the pair (X, A) if we put B = {*}:
> g1 (X, A) — m(A) — T (X) D 7 (X, A4) — - (V> 0).
Ex on homotopy groups We obtain the following results from our previous

examples.

1. mp(F) = mp(B) @ 7 (F) — 7, (B) is exact for any trivial fibration B x F'.

2. m(SY) 2 wo(Z) = Z: [z 2" = n, and 7, (S?) = 0 for m > 1, from the
standard surjection R! —» S'.

3. T (8™ = 7 (RP™) for m > 1, from S™ —» RP™.
4. 7, (CP™) = 1, (S2™+1) for m > 2, from S2*t! — CP™. Also

0 — my(S*™+) — 1y (CP™) — Z — 0

is exact, so
WQ(CP”) = W2(82n+1) @ Z .

5. From S**+3 B HP" with fiber S® we obtain the exact sequence

Tm(S%) — 7 (S84743) 25 7 (HP? )—>7rm 1(8?).
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Next, we already have
Tm—1(S%) = Tm (B4, S3)
and we can get to 7, (S***3,8%) by applying 7, to the map of pairs

(B*,S%) — (83,8 1 2+ (z,/1- | 2 |2,0,...,0)

where we view the 4-ball and 3-sphere as sitting in H = R*. Hence we obtain
a right inverse to 0 in the exact sequence. Therefore 0 is an epimorphism and
p. is a monomorphism so we have exactness in

0 — T (S4713) — 71, (HP™) — 71 (S3) — 0
and consequently

T (HP™) = 7 (S*743) @ 701 (S3).

3.5 CW-complexes

In this section our objective is to describe how quite intricate spaces can be synthe-
sized from simple building blocks. There is a fairly natural choice for these blocks,
namely homeomorphs of interiors of the balls {B™ | n > 0}. It is rather less obvious
how to perform the synthesis so as to gain advantage from the cellular substructure
for investigating homotopy properties even when infinitely many cells might be in-
volved. This is in fact achieved by CW-complezes, for given any space (not just
those in Top) it is possible to construct a CW-complex having the same homotopy
groups. Moreover, maps can be replaced, up to homotopy, by cellular maps which
respect the internal skelctons of CW-complexes. Some readers may already have
encountered something similar in triangulating compact spaces by finite simplicial
complexes. We point out that, where the two theories are alternatives, then that
of CW-complexes is often simpler. Indeed, as a simplicial complex the sphere S™
requires (Zif) k-simplices; but as a CW-complex it requires only two cells, one a
point €® and the other e™ = S™\ {€°} which is a homeomorph of B". Cellular and
simplicial representations are illustrated for S? in Figure 3.4.

The cellular structure of CW-complexes is ideal for constructing successive ap-
proximations to maps, by extending from cell boundaries to interiors. The existence
of such extensions is sensitive to the homotopy properties of the space in which the
cell sits. C'W-complexes give another advantage for homotopy investigations: if A
is a subcomplex of a CW-complex X, then the pair (X, A) is a cofibration. In our
constructions we shall work in top, the category of Hausdorff spaces, but we shall
arrange to have the finished product, CW-complexes, in T'op, and hence compactly
generated. Mainly we follow the development in Gray [38], Chapter 14; but see also
Maunder [68] for a different slant, and Lundell and Weingram [64] for more details.

Definition 3.5.1 A cell complex is a Hausdorff space X which is the union of
disjoint subspaces {eq | @ € A} called cells with:
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Figure 3.4: Sphere S? as a CW-complex and as a simplicial complex

e For each e, there is an integer n > 0 called its dimension. If e, has dimen-
sion n then we write e for this cell and we define the n-skeleton of X to

be
X" = U ek
k<n
e Ife, is an n-cell, then there is a characteristic map of pairs
Xa: (B",8"71) — (X, X"71)
which restricts to B™ \ S"~! as a homeomorphism onto e,.

A map f: X = Y between two cell complexes is called cellular if, for all n > 0,
fX" C Y™ We shall make use of the standard n-cell

e" =S"\ {(1,0,...,0)} C R**!,

which we might informally think of as an n-sphere minus its ‘east pole’.

Ex on cell complexes

1. Verify that S™ is a cell complex with two cells. Also any cell complex with
two cells €® and e” is a homeomorph of S®. Making B"*! needs one more
cell, and its n-skeleton is S™.

2. Cell complexes and cellular maps form a category, hence sub-cell complexes
(subcomplexes) are well defined. If X is a cell complex and A C X, then
the intersection of all subcomplexes containing A (called the cellular hull of
A) is itself a subcomplex.

Definition 3.5.2 A cell complex X with {eq, Xxa | @ € A} is called a CW-complex
if it satisfies the following two conditions for all a € A:

1. the cellular hull of ey is a finite subcomplex;
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2. FC X isclosed < FNeéy s closed.

We call 1. the closure-finite property and 2. the weak topology property,
signified respectively by C and W in CW. A relative CW-complex is a pair
(X, A) where X is a CW-complex obtained by attaching cells to A (¢f. Ex 14.(i));
in particular this occurs if A is a subcomplex of X. Actually, to make everything
work we need only require X \ A to be a CW-complex, not A nor X in general.

Ex on basic properties of cell complexes (Work in Top.)

1.

The sphere S? is a cell complex if we regard every point as a 0-cell; then it
has the closure finite property but does not have the weak topology property.

. The ball B3 is a cell complex with cells

{e? =B°\8} U{e; = {2} |z €57

and it has the weak topology but is not closure finite.

. A graphic illustration of the weak topology is given by the set consisting of

an infinite one-point union of circles (cf. Gray [38], p. 115) which is evidently
a closure finite cell complex. Now, with the usual (wedge product) topology,
which gives a subspace of the infinite product S! xS x - - -, we get the compact
space on the left of Figure 3.5 as the subspace

o0

Uiy | (@-1/n)? +y* =1/n*} CR2.

n=1
However, the weak topology gives the noncompact imbedding

{(z,9) | (e —n)? +y* =n?} CR

n=1
on the right.
CW-complexes and cellular maps form a category, denoted by CW.
S™is a CW-complex with one 0-cell and one n-cell.

RP™, CP™ and HP™ are CW-complexes with one cell of each dimension k, 2k
and 4k, respectively, for each k < n.

. If {X, | n > 0} is a collection of CW-complexes with each X,,_; a subcomplex

of X, then Up>0X, with the weak topology is a CW-complex and each X,
is a subcomplex of X.

Use Ex 5 and 6 to construct RP™ = U,>oRP™ as a CW-complex; similarly
CP*> and HP* are CW-complexes.
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Upzi{(z,9) | (z = 5)* +9° = 77} U {(z,y) | (z — n)? +y? = n?}

10.

11.

12.

13.

14.

Product topology Weak topology
Figure 3.5: Infinite bouquet of circles embedded in the plane

(i) Every cell complex contains at least one 0O-cell, for if it contains an n-cell
then its k-skeleton is not empty for some k < n. X° is a discrete space.
(ii) A CW-complex is path connected if and only if it is connected.

The torus S xS! is a CW-complex with one 2-cell, two l-cells and a 0-cell, as we
can see by displaying the torus as a rectangle in the plane with identifications
as indicated in Figure 3.6.

Construct CW-complexes for the cylinder and the Klein bottle.

For any n-cell e, with characteristic map x, in a cell complex X, x.(B") =
éq. If a cell complex is finite, then it is compact. If A is a subcomplex of X
and e, C A, then also é, C A. Moreover, A is closed, its induced topology is
the weak topology, and X /A is a CW-complex. For each n > 0, the n-skeleton
X™ is a subcomplex of X.

For any cell complexes X and Y there is a cell-complex structure for X x Y
with product cells and the characteristic maps obtained from the product
maps by using homeomorphisms:

B™™ =M =[x ™ = B™ x B™.
If X and Y are CW-complexes then X x Y is a CW-complex and X VY is a

subcomplex. (Cf. Gray [38], p. 117; the compactly generated properties of X
and Y are needed here; cf. Maunder [68], p. 282, Switzer [106], p. 72.)
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1
€

Figure 3.6: The torus S! x S! as a CW-complex

15. Attaching and removing cells If X is a CW-complex with n-skeleton X",
then:

e For any f:S" - X",
(XUB™™)/{z ~ f(2) | = € OB™'}

is a CW-complex denoted X Uy e™*!.

e For any (n + 1)-cell e4, X"t \ e, is a subcomplex and
xntl o~ (Xn+1 \ea) Uy, entl!
for some f, : S™ > X"

16. Given a CW-complex X with {eq, Xo | @ € A}, then f: X — Y is continuous
if and only if f o x4 is continuous for all a € A.

Theorem 3.5.3 (CW-subcomplex inclusion cofibration) The inclusion of a
subcompler A in a CW-complex X is a cofibration.

X x {0} — Y

t
joJ H

X x[<+=———AxI

H ’ CW-subcomplex cofibration—‘

Proof: We construct a sequence of maps for n > 0, by induction:

Hp: X x {0}U(X"UA) xI—Y
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(cf. Gray [38, p. 118] and, for another approach, Switzer [106], p. 75). The 0-skeleton
X has the discrete topology and so given H and h put:

H(t)if t #0,

. (4]
Ho: (e%t) — {h(eO,O) ift=0.

Suppose that we have H, for some n > 0; then construct H, 4, as follows. Since
H, has dealt with all n-cells, consider an (n + 1)-cell e, in X™+1. Then X1\ e,
is a subcomplex and for some f, : S™ —» X"

Xn+1 o~ (Xn+1 \ea) Ufcx en+1

by Ex 14.
Also, we can construct the composite

Yo :S"x T U B™ x {0} X2 X x {0} U (X"UA) xI ny

and extend it to ¢, on B™*! x I. Now, x, restricts to be a homeomorphism from
the interior of B™t! onto e,, for each choice of e,, and the boundary of this cell is
an image of S™ in X™.

Thus we define the map

Hpp : X x {0} U (X" UA) xI —Y

) Hp(a,t) if (a,t) € X x {0} U (X" UA) xT,
Ha,t) — {w;(a,t) if (a,t) € eq x1 = B! x1.

This is continuous, so the induction is complete and our required extension of the
homotopy H is

H' : X xI1—Y: (z,t) — Hy(z,t) if z€ X",

which is continuous because it is continuous on every n-skeleton subcomplex of the
CW-complex X and X x I is a CW-complex. 0

Corollary 3.5.4 Up to homotopy, we can quotient out contractible subspaces:
A~x = (X, A) ~ (X/A{x}).

Proof: We show that the projection p : X —» X/A is invertible up to homotopy.
Given H, we extend it to H'

X A

X xI<=—AxI
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by the cofibration property. Since for all a € 4
H(a) = H(a) = x,

we obtain a map

k:X/A— X :[z]—

zifz g A
xifre A

with HIJr = kp. Hence kp ~ 1, = Hg. Next,
pHi(a,t) =+ (NVa€ A,tel),
so there is a homotopy (c¢f. Ex 1 below)
G:X/AxI— X/A with pH! = G(p,1).

Then
Go([z]) = Gop(z) = G(p(x),0) = pH'(z,0) = p(z) .

Hence Go = 1x/4. Also
G1([z]) = Gip(z) = G(p(z),1) = pH'(2,1) = pH] (z) = pkp(z) .
Finally, G1 = pk, since p is surjective, and pk ~ 1x/4. 0

This means that collapsing contractible subcomplexes does not matter, up to
homotopy. Which is how it should be: we only want to synthesize enough matter to
show where there are internal holes; there’s nothing baroque about CW-complexes.
Really of course we only want the holes but they become too much at one with the
tao if we don’t have their boundaries too. Some practical researchers in another field
demonstrated how to show complex hole patterns in three dimensions. They were
studying moles; by flooding a large abandoned molehill with expanding polystyrene
they could excavate and reveal the tunnel complex without its bounding earth.
Apparently, after making their complex, moles simply patrol their holes and eat the
worms that drop in, so perhaps both are really interested in topology—for opposite
reasons. As the theory develops you might give thought to whether there are more
theorems for moles or for worms.

Or wilt thou go ask the mole?—Blake, The Book of Thel

Ex on quotient spaces

1. If 4 is a closed subspace of X with a homotopy £ : X x [ — Y satisfying
F(a,t) = F(b,t)for all a,b € A,t € I, then there is a homotopy G : X/AxT —
Y.

2. The corollary does not require X to be a CW-complex, but A < X is required
to be a cofibration.
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We can now make some reasonable progress in finding homotopy groups for
CW-complexes. Four theorems that we use in the sequel to make very considerable
advances are quite easily understood and can be summarized briefly as follows, for

CW-complexes X,Y:

e (J.H.C. Whitehead) Given f: X — Y in Top, and any O-cell €’ in X, then
X ~ Y if furn(X,e%) — 7, (Y, f(€°)) is bijective for all n > 0.

e (Cellular approximation) Given f : X — Y in Top, then the problem of
extension in CW

K ¢_inclusion X
¢ St
Y

has a solution ¢! ~ f (rel K).

e (H. Freudenthal) If 7,,,(X) =0 for m =0,1,...,n—1, and {*} = X is a
cofibration, then the map induced by suspension

S, 7Tm(X) — 7Tm+1(SX)
is an isomorphism for m < 2n — 2 and an epimorphism for m = 2n — 1.

¢ (Homotopy excision) Given a CW-complex W = X UY and m,n, > 1 with
(X,X NY) n-connected and (Y, X NY) m-connected, then the map induced

by the inclusion (X, X NY) < (X UY,Y),
Je (X, XNY) — 1 (X UY,Y)
is an isomorphism for 1 < r < n + m and an epimorphism for r = n + m.

The rest of this chapter is devoted to these results, incidental constructions to their
proofs, and applications. We begin with a study of certain relationships between
homotopy properties and the attaching of cells to spaces. Then we spend a little
time on simplicial complexes and their barycentric subdivisions in order to have at
our disposal the useful simplicial approximation theorem.

3.5.1 Attaching cells and homotopy properties

Theorem 3.5.5 (Characterising relatively inessential maps) Given a map

of pairs
f:(B™, 8" — (X, A4)

then

[fl=0€m(X,A) < 3Fg:B™ — A with f~ g(relS™}).
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Proof: (=) Given f X x then f g g(relS™ 1)  with

H(1573,1) for ||z [|€ [0,1~t/2)

G:B"X““*X‘(“)H{H<ﬂ:—,,2—2nzu> for ljz lle [1-t/2,1]

(<) Given g, then [g] = [f]. Hence f £ « with
F:B™S" Y xI— (X,4): (z,t) —> g((1 — t)z + tzo)
where zg = * € B". O
The next result was met previously in §3.1.3; here we prove it.

Theorem 3.5.6 (Only inessential maps extend to interior of cell) For any
integer n > 1, we have:

sn ¢_inclusion ]En+1

/ r Extension g' exists <= [g]=0¢ m.(X) l
9

Proof: (=) Given g' define

X

H:S"xI— X :(z,t) — g'((1 - t)x + txo)

where g = * € S”; then Hy = 1 and Hy = *.
(«<) Given g £ % define

gt . z for ||z|| < 1/2,
g': B "_)X'IH{G(H:—'[,Q—QH:::H) for [jz|| > 1/2.

Then, if x € S™ we have ||z|| = 1 so
9'lsn () = G(,0) = Go(x) = g(z).

Thus we have the extension; it is continuous because it is continuous on the two
closed subsets of B?+!:

{zxeB™ ||lzl €[0,1/2]}, {z€B"" ||lzll €[1/2,1] }

and so we may apply the following easy but useful result,

Lemma (Gluing Lemma) Let A, B be closed (or open) subsets of AUB.
If two continuous maps f : A —> X and g: B — X agree on AN B, then
their union map

fUg:AuB — X

18 continuous. 0O
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to finish the proof of the theorem. 0O

Corollary 3.5.7 In the particular case that X ~ x, we find that g : S™ =+ X
extends to B! because every map into a contractible space is nullhomotopic.

Theorem 3.5.8 (Extension to attached n-cell) In the diagram:

Sn_l 9 A ¢_inclusion A Ug en
f
A r Extension exists if mo(X)=0=mp_1(X) J
ya n
X

Proof: We know that f extends to AU, CS™! if and only if fg is nullhomotopic.
But CS™! =~ B", hence
Ayge™ = Ay, cs™

so the required f' exists if and only if fg ~ *, which is the case because
[fg] € [S"7!, X] = M1 (X) =0

by hypothesis. O

The next result says that attaching n-cells to a CW-complex yields a quotient
which is a bouquet of the boundaries of those n-cells.

Theorem 3.5.9 (Attaching cells gives relatively nice bouquet) Let (X, A)
be a relative CW-complez. If X is obtained from A by attaching the set of n-cells
{Xa €2 | @ € A }, then there is a homeomorphism

¢ X/A \/Sg

a€EA

and a commutative diagram in Topp*:

(S™ {*}) —=— ( \V Sz,{*})

aEA
q

(B",9B™) P

S

(X, A) —5— (X/A, {+})

Here q collapses the boundary of the n-ball to a point, so giving the n-sphere.
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oB" oB" A

AUem e

Figure 3.7: Deformation retract of attached cell

Proof (outline): Since (X, A) is a relative CW-complex, X/A is a CW complex.
This is because if e is an m-~cell in A with characteristic map x, then xB™ = &
is also contained in A. Since A contains X" 1, y, in the diagram is well defined.
Now, by definition X consists of 4 with n-cells attached, so when we quotient by
A it leaves a bouquet of n-spheres attached to the residue of A, namely *. (Recall
that B™ /OB™ = S™.) Thus the upper row in the diagram is rather like a coordinate
version of the bottom row. 0

As usual, we use €™ to denote the interior of e"; see page 311.

Theorem 3.5.10 (Strong deformation retract) If X = AUe™ and z is in é",
cf. Figure 3.7, then A is a strong deformation retract of X \ {z}:

Ti ~ La(rel A).
A X\{z}
1a ®

A

Proof: The construction depends on the following strong deformation retract of
the punctured n-ball B™ \ {b} onto dB":

Hy : B™\{b} x I — B"\{b}

t(Ab+ (1= Nz, ) — (1= )Ab+ (1 = A(1 — 1))z,

where we have used convex coordinates for B™ \ {b} in terms of the given interior
point b € B™ and boundary points z with X € [0,1); ¢f. Figure 3.8. (These
coordinates take their simplest form if b is the origin.) Now, by definition, there is
a characteristic map for €™ in X,

x:(B",0B™) — (X, A4),
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Figure 3.8: Convex coordinates: (A, (1 — A))

and since it is bijective from B" to €", then b € x*{z} is uniquely determined.
Hence we have the required homotopy:

H:X\{z} x T — X\{z}: {gavt%ﬂ ifa€ A,

z,t) — xHp(y,t) if 2 = x(y) ¢ 4.
0

We shall make significant use of the simple convex structure of B™ to provide
a convez linear structure on the interior of an n-cell, via the good properties of its
characteristic map. In the notation of the proposition, we use the linear combination

T,y € é"
rz + sy = x(rx"(z) + sx“(y)) for ¢ (rx"(2) +sx"(y)) € B"
r,s € R,
where it is well defined, for example when r, s > 0 with r +s = 1. Before employing
this we need a construction aid to handle simple spaces.

3.5.2 Simplicial complexes

Definition 3.5.11 The standard n-simplezx s

A" = {(z:) eR™ Dz =1, 7 €[0,1] Vi}
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T
RS
S
S

Figure 3.9: Standard 2-simplex and homeomorphism onto B?

and its vertices (cf. Figure 3.9) are the n + 1 points

vo = (1,0,...,0), v; =(0,1,0,...,0),...,v, = (0,...,0,1).

Conversely, given n+1 points vy, vy, ..., Vs in R**! such that the n vectors {v;—vy |
it = 1,...,n} are linearly independent, then they define an n-simplex. It is the
subset:

(vo,vl,...,vn)Z{a:GR"H |z=Ztivi, t; € [0,1], Ztizl}

which we say spans the vertices vo,v1,...,v, with barycentric coordinates (t;).
Evidently we can equally well consider an n-simplex to be defined in any RF with
k > n. We often abbreviate (vo,v1,...,v,) to 0 when the vertices are clear from
context.

Ex on barycenters

1. There is a homeomorphism

n
A" — (vo,V1,...,Un) : (Tj) — in“vi.
=0

2. The barycenter (center of gravity) of (vg,v1,...vs) is the point with the
average coordinates, namely

b(vo,v1,....v0) = -y l(vo +up+ -+ vp).

3. Radial scaling from the barycenter gives a homeomorphism of any n-simplex
onto an n-ball and hence onto B™, Figure 3.9.
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Figure 3.10: Tetrahedron simplicial complex

4. Given an n-simplex (vg, v1,...,v,), every subset (ip,41,...,i%) of (0,1,...,n)
determines a k-simplex (v;,,v;,,...,v;, ) called a k-face or k-subsimplex of
the given n-simplex; @ is a face of every simplex.

Definition 3.5.12 A geometric (finite) simplicial complex K is a (finite)
collection {o; € R™ | i = 1,2,...,p} of simplices, all in R™ for some finite m,
satisfying:

(i) 0;No; is a face of o; and of o

(#1) every face of a simplex in K is itself a simplex in K.

A simplicial complex K inherits the subspace topology and we denote this topological
space by |K|. It is called a realization of K. Then a space X, homeomorphic to
|K| is called a polyhedron and we say that K is a triangulation of X. The
n-skeleton K™ of a simplicial complex K is that subcomplex consisting of m-faces
of simplices of K for m < n. By convention, the empty set is the (—1)-skeleton .

Ex on tetrahedra A tetrahedron is a simplicial complex in R® with: four 2-
simplices, six 1-simplices, and four O-simplices. This is illustrated in Figure 3.10
as a surface in R® and as the identification space in the plane that we first met in
elementary school origami. The opened out display in the plane is a very convenient
way to present simplicial complexes that represent surfaces and we shall see more
examples below (c¢f. Figure 3.12). ‘

The 1-skeleton of the tetrahedron consists of the six 1-faces and four vertices.
The 0-skeleton is simply the vertex set.

For any complex, we always have subcomplex inclusions of its skeletons:
=K' K'aK'«w...oK =K

for some 7; if K"~! # K we say that K is r-dimensional.
A map f : |K| —» R" for a simplicial complex K, is called linear (and this
ensures continuity) if for all o = (vg,vy,...,v,) € K and for all z € ¢ :

f@)=FOQ tiw) = > tif(v).
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Barycentric subdivision

Boundary operator
Figure 3.11: Barycentric subdivision and boundary operator

A map between simplicial complexes is called simplicial if it sends vertices to
vertices and is linear over linear combinations of vertices.

The barycentric subdivision of a simplicial complex K is a simplicial complex
K' satisfying (cf. Figure 3.11):
(i) the vertices b, of K' are the barycenters of the simplices o of K;
(ii) the simplices of K’ are

{ (bog, boys---3bs,,) | 0i C 0441 strictly }.

The boundary 9o of a simplex o = (vo,v1,...,v,) is the simplicial complex with
simplices (cf. Figure 3.11):

{ (v1,v2,...,9), (Vo,V2,V3,...,Un),- -, (Vo,V1,...,Vn-1) }.
We often denote such sets by means of 4 to indicate the omission of the vertex u:
Ovo, v1y...,vn) = { (vo,v1,...,0iy...,0n) |[£=0,1,...,m }.
Ex on barycentric subdivision (Cf. Switzer [106] §12 for these and others, for
example.)

1. If K has a barycentric subdivision K’, then it is indeed unique and a simplicial
complex with |K| = |K'|.

2. Every simplicial complex has a barycentric subdivision.

3. A simplex o has a barycentric subdivision if do has one.
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. For any n-simplex o, indeed 9o is a simplicial complex and |[Jo| = S™~1.
. Every simplicial complex is a C'W-complex.

. Given simplicial complexes K and L in R™, then define

K N L to be the set of simplices in both K and L and

K U L to be the set of simplicial complexes in cither K or L.

Then it follows that K N L is a subcomplex of K and L but, in general, K UL
is not a simplicial complex. However, K UL is a simplicial complex if we have

|KNL|=|K[N|L],

and this latter happens in particular if K and L are subcomplexes of some
other simplicial complex.

. The Euler characteristic x(K) of a finite simplicial complex K,

dim K

X(K)= 3 (~1)ia

i=0

where «; is the number of i-simplices in K, is unaltered by barycentric sub-
division of K.

The historical importance of geometric (finite) simplices is that they can be used
to synthesize homeomorphs of the compact spaces encountered in elementary ge-
ometry. This is quite clear intuitively; what is less clear is how the synthesis can
be most efficiently carried out. However, we shall need to triangulate only simple
spaces (particularly spheres and balls) and to construct linear maps on them.

Ex on more origami: triangulations of simple surfaces

1. The following two-dimensional spaces admit the triangulations indicated by

identifying the similarly marked edges in the plane diagrams of Figure 3.12.
In fact, each of these triangulations is minimal in that there is no alternative
with smaller vertex set. For every closed surface S the number, Ny, of vertices
in a triangulation satisfies

No > o (7+ /49— 2ixs)

where x g is the Euler characteristic of the surface. Now, xg¢ is a topological
invariant and can be calculated from any triangulation as

xs =No— N1+ N,

where N; is the number of 1-simplices and N, is the number of 2-simplices.
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Cylinder Mobius Strip a

3 Sphere

o c
2 3 3
Klein Bottle
5 [¢] b
2 1

a
Real Projective Space

Figure 3.12: Some minimal 2-dimensional simplicial complexes

Figure 3.13: Non-triangulation of the cylinder
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2. As examples of non-closed surfaces we have the cylinder and Mobius strip in

Figure 3.12. (Observe that we always need at least three 1-simplices to ‘get
round’ any copy of S'). Again, these two triangulations are minimal. If we try
to eliminate some of the 2-simplices then we find that there arise two distinct
1-simplices between one pair of vertices, or worse, a 1-simplex is doubled back
on itself, as in Figure 3.13. There is evidently no doubt that this latter is a
homeomorph of the cylinder. What fails is the simplicial complex property:

7,0 € K = 7No =g or7rNo isacommon face.

For example, in the collection of simplices joined as indicated in Figure 3.13,
consider the intersection of the two 2-simplices o, 7,

ont={u,v}.
But the only face in ¢ arising from this pair of vertices is
v 25w
and the only face arising from it in 7 is
u .

Hence, {u,v} is not a common face of o and 7, so K is not a simplicial complex;
although it is a homeomorph of the cylinder, it does not yield a triangulation
but a pseudotriangulation. In fact, pseudotriangulations yield similar alge-
braic invariants to triangulations (¢f. Hilton and Wylie [44], pp. 50,132-3), but
they are less convenient in the combinatorial development of the theory. The
essential difference is that in a pseudotriangulation we may have more than
one simplex spanned by a given set of vertices, as both A and p are spanned
by {u,v} in the example; this is not allowed in a triangulation. So we might
call an entity like K in the example of Figure 3.13 a pseudosimplicial com-
plex. It turns out that the first barycentric subdivision of a pseudosimplicial
complex is actually a simplicial complex. Hence, every pseudotriangulation
determines a unique triangulation; but it need not be a minimal triangulation.
For example, in Figure 3.14, K is a pseudotriangulation of S!, but its first
barycentric subdivision, the triangulation K’ in 3.14, has one more vertex
than the minimal triangulation—which is shown at the lower right in Figure
3.11.

3.5.3 Computing fundamental groups

As intuition suggests for polyhedra, their fundamental groups are computable from
a study of the loops which are closed paths along 1-simplices, so-called edge loops.
Evidently, homotopy will discard any parts of such paths which are part of the
boundary of any 2-simplex. More precisely, an edge loop at the vertex v in a
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Figure 3.14: Pseudotriangulation of S!

simplicial complex K is a sequence of vertices v,u,...,w,v, and we identify two
such sequences

v,u,a,b,c,...,w,v and U, U, A, Cy. .., WU

if abc span a 2-simplex, a 1-simplex, or a vertex of K. Then we define the edge
group of K at v, E(K,v), to be the group formed from equivalence classes of edge
loops at v with the binary operation of juxtaposition.

Ex
1. Find E(K,v) when K is a triangulation of a cylinder.

2. Satisfy yourself that E(K,v) is always a well-defined group and that there
is a group isomorphism from it to m;(|K|,v). Full details can be found in
Armstrong [2], pp. 133-134.

It is convenient to present the edge group as a set of generators and relations. We
can do this as follows; again full details are to be found in Armstrong [2], pp. 134—
136. Let L be a simply-connected (cf. §2.5) subcomplex of K which contains all of
the vertices of K. Define G(K, L) to be the group generated by the 1-simplices of
K, denoted g;; for each edge v;,v; and with relations:

9:;j =1 if v;,v; span a simplex of L

gijgjk = gir  if vy, v;,vg span a simplex of K .

To each generator g;; we can associate an edge < w;,v; >. Next, because L is
path-connected, we can construct an edge path e from v to each vy, and its inverse
6;1 from vy, to v. Hence we obtain a map which turns out to be an isomorphism of
groups:

G(K,L) = E(K,v).
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1. Satisfy yourself that the above construction works and find G(K, L) for the
case when |K| is a one-point union of two circles and a disk.

2. In computing m (|K|,v) as G(K, L), why is it best to choose L as large as
possible? Show that a suitable L always exists, as the maximal tree in K, but
that it can often profitably be enlarged to simplify calculations by choosing a
larger subcomplex that is simply connected.

3. Compute the fundamental groups of a torus and a Klein bottle.

The next theorem allows us to compute fundamental groups of polyhedra in terms
of those of constituent sub-polyhedra.

Theorem 3.5.13 (Van Kampen) Let M be a polyhedron with a triangulation
JU K where J,K,JN K are all path-connected with inclusions

17 & 170 K|S K.
Then, for all vertices v in JN K,
mi(|M],v) = m (|J],v) * T (K], v)/~
where ~ denotes the set of relations:
J«(2) =ki(2)  for allz€em(JNK|v).

Proof: The trick is to take a maximal tree Ty in |J N K| and extend it to give
maximal trees T, T5 in J, K, respectively. Then T3 UT» is a maximal tree in JU K.
Next construct m; (|M|,v) as G(M, T U T»). Finally, the result follows because

J«(m (] N K|,v)) is generated by edges of JN K \ Tp in J, and

k«(m(]J N K|,v)) is generated by edges of JN K \ Tp in K. 0

Ex on Van Kampen’s theorem
1. Use Van Kampen’s theorem to find 7 (X) for the following spaces:

(a) STVS!VSL
(b) RP?, as the union of a 2-disk and a Mébius strip;

(c) A Klein bottle as a union of two Mobius strips.

2. Every finitely presented group G admits a representation as the fundamental
group of some simplicial complex K.
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3.6 Simplicial and cellular approximation

The value of performing barycentric subdivisions repeatedly for a given simplicial
complex K lies in the property that, up to homotopy, any continuous map between
simplicial complexes can be replaced by a simplicial map on a suitable subdivision.
This is the Simplicial Approzimation Theorem (cf. Gray [38] §12 for a full discus-
sion). In fact, we use a closely related result that is more directly suited to our
program for exploiting the greater generality offered by CWW-complexes. We show
that, for a CW-complex X, any map f : S®™ —» X is equivalent, up to homotopy,
to a map that is linear where it crosses the interior of cells in X (¢f. page 77 and
Switzer [106], p. 76 et seq.).

Theorem 3.6.1 (Simplicial approximation (SAT)) Assume (X, A) is a rela-
tive CW-complex with X = AUe™ and let K be a finite simplicial complex with a
subcomplex L. Then, given a map of pairs

f(K]L L) — (X, 4),

there exists a subdivision (K', L'} of (K,L) and a map f' satisfying:

(i) f and f' agree on f< A;

(it) f~ f' (rel fA);

(111) of f'(|o|) meets {x(z) | ||z|| < 1/4, = € B™} where x is the characteristic map

of e® and o € K', then f'(|o|) C €°, and f' is linear on |o|.
Proof: Denote
elys = {x(@) | llzll < 1/4, z € B"}

and similarly use e?/z,eQ‘M. Observe that |K| is compact so x~!f is uniformly
continuous on x‘_eg/ 4+ Subdivide K until no simplex of K’ has diameter more than
6 where § satisfies:

Ix  f(x) — x'f()| < 1/4 whenever |z —y| < 6 for z,y € X €5
This effects a trichotomy on K’, giving disjoint classes:

Ci ={o € K'| f(lo]) C X\eT)s},
Cy = {o € K'| f(lo]) C X\éT)5},
Cs ={oc € K'| f(lo]) N Oe7/, = 2}
Thus, we have arranged that those o € C3 do not meet e] /4 when mapped by f and,

moreover, neither does the convex hull of this image. We begin the construction of
f' as follows:

e If 0 € C; define f' = f on |o|.
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e If (vo,v1,...,vx) =0 € Cy and ¢ = Er;v; € |o| then put:
f'(z) = Brif(vi), so f' is constructed linearly from f.

e For (vg,v1,...,vx) = 0 € C3 we use induction on dim ¢ = k. If k = 0,|0| = vo
and we put f'(vg) = f(vo).

e Next suppose that we have defined f' on all o with dim o < k such that f'(|o]|)

is contained in the convex hull of f(|o|). Then given ¢ = (vg,vy,...,vx) we
already have f’ defined on |do| and that image lies inside the convex hull of

f(|6al).
e The barycenter b, of o has coordinates r; = (lel), 1 =0,1,...,k. Now,
each z € |o|\{b,} has a unique expression in the following form:

z=th, + (1 —1t)ys.

for some t € [0, 1] and some y, € |do|. Since f'(y;) is already well defined we
put

fi(x) = tf(bs) + (1 = 1) f(yz) -

This linear combination ensures continuity on |o| and traps f'(|o|) inside the convex
hull of f(|o|). Thus f’ is well defined and meets conditions (i) and (iii). A homotopy
to satisfy (ii) is

. ' f(z) ifreoeC,
H|K|XH—)X(l’,t)’—){(l_t)f(m)_}_tf/(x) 1fieg¢01

This is evidently continuous, and stationarity on C; ensures that the homotopy is
relative to f< A. O
Ex on simplicial approximation
1. Prove that the set of fixed points of a simplicial map between polyhedra,
s:|K| — |L]

is a subcomplex of the first barycentric subdivision of K but not necessarily
of K itself.

2. Consider simplicial approximation to the map
f:00,1] —[0,1] : x> 2°

between standard 1-simplices to show how barycentric subdivision of the do-
main helps.

3. Use the simplicial approximation theorem to show that the set of homotopy
classes of continuous maps, between two compact polyhedra, is at most count-
able.
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4. Consider a simplicial loop
S |6 A2| _— |8 An+1| R

where A\, is the standard m-simplex. If n > 2, then s is inessential and so,
by the simplicial approximation theorem, S™ is simply connected.

5. Let K be a simplicial complex of dimension k < n. Then a simplicial map
s:|K| = |0 Dny1] is inessential; so by the simplicial approximation theorem
we have 7, (S™) =0 for all k < n.

6. Simplicial maps are dense in each space of continuous maps between polyhe-
dra.

Theorem 3.6.2 (The property of being n-connected) If (X, A) is a relative
CW-complex and (X, A)" is obtained from (X, A)"~! by attaching n-cells, with
A= (X,A)"!, then for each n > 0:

o every path component of X meets (X, A)";
o (X, (X, A" y)=0forr=1,2,...,nand all y € (X, A)™.
We call (X, (X, A)™) n-connected if both properties hold.

Proof: We know that (X, (X, A)™) has both of the properties if and only if, for all
f : (BT,ST_I) — (Xa (XvA)n)

and all 7 < n, f ~ fl(relS™!) for some f! with f1B" C (X, A)". We proceed as
follows for each 7 > 0.

Given such a map f, then fB” is compact and therefore contained in (X, A)™
for some m; moreover, fB" meets only finitely many m-cells, e*,e3?, ..., e;*. We
shall deal with these cells in turn.

Let m > n and apply simplicial approximation to get f!, homotopic to f rel-
ative to f<((X,A)™\el") and linear on (e]*);/4. Since (f'B7) N € is at most
r-dimensional, and 7 < n < m, we can find z € é™\f!B” and a deformation
retraction

D:((X,A™\{z})xI— (X,4A)™\{z} onto (X,A)™\é".

This allows a deformation of f! by means of a homotopy rel f< ((X, A)™\é™), given

by
H:B" xI— X :(y,t) — D(f'(y),1)

into H( ,1) = 2 with f2B" C (X, A)™\ép.

Evidently we can repeat this process until some deformation f™ is found with

BT C (X, ™M\ UL &) = (X, A)m
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and, by transitivity of homotopy, f ~ f™(rel S"~!). By means of this we can, up
to homotopy (rel OB"), exclude fB" from all of the m-cells and indeed from each

m-skeleton for m > n until eventually we find some f with

f~ f(rel®B") and fB" C (X,A)".
Since f was arbitrary, 7, (X, (X, A)™) = 0, and the base point is irrelevant because
X is path connected to (X, A). 0O
Corollary 3.6.3 Given a CW-complex X and the inclusion X™ dy X of its n-
skeleton for n > 0, then

an 1somorphism for r <n

bt (X7) — m (X)) s { an epimorphism for r = n.

Proof: Substitution of 7,.(X,X") = 0 for < n in the exact homotopy sequence
for the pair gives

0 — T (X™) 25 w0 (X) — 0 (r <n)

7Tn+1(X?Xn) - 7T'n()(n) L> Wn(X) — 0 (T’ = n)

These yield the required properties for i, n
Corollary 3.6.4 7.(S") =0 forr <n

Proof: S™is a CW-complex with cells e® and e™ so its (n — 1) skeleton is just the
basepoint €° and hence 7,.((S®)™~1) = 0 for all r. Now, when we again use the
exact sequence to yield a surjection

e (SM™H) — 1 (S™), forallr <m —1.
It follows that . (S™) = 0 for r < n. 0O

We are now in a position to prove the cellular version of the simplicial approxi-
mation theorem, in a conveniently general form for pairs (¢f. Spanier [97], p. 404 et

seq.).

Theorem 3.6.5 (Cellular approximation) Given f: (X, A) — (Y, B) in Topp
between relative CW-complezes, then the extension problem in CW-pairs

(K,C) (X, A)
]
(Y, B)

has a solution ¢! ~ f (rel K).
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Proof: We have seen that if (X, A) is a relative CW-complex then for any k& >
0.(X,(X,A)*) is k-connected. Moreover, the inclusion A — X is a cofibration.
Hence by induction on the skeletons of (X, A) we obtain a sequence

of homotopies relative to (X, A)¥~! which yields a stepwise deformation of f into a
cellular map (we may suppose that it is already cellular on K):
f’&’ of“lflf1~'-'~fk—1}'{? o~
with
fr(X, A% C (Y, B)*.

Then the required ¢' is obtained by a homotopy f B o' with
H:(X,A)xI— (Y,B)

sz, t) — Hy (az, ﬁ)

k k+1

fortE[l—%,l—le]. 0

Corollary 3.6.6 Any continuous map between relative CW-complexes can be re-
placed by a cellular map, up to homotopy, for we can take K to be a O-cell in X.

The reason that cellular approximation works is that given two CW-complexes
(X, A) and (Y, B), with (Y, B) being n-connected for all n, we can, up to homotopy
(rel A), replace any continuous f : (X, A) = (Y, B) by a cellular map fi(X, A) —
(Y,B). Indeed, if X\ A has no cells of dimension greater than m, then we can
find such f ~ f(rel A) provided that (Y, B) is m-connected. The trick is to climb
the relative skeletons, exploiting their n-connectedness to construct the required
sequence of homotopies. The mole’s living space is 3-dimensional but its 2-skeleton
is of interest to the worm.

3.7 Weak homotopy equivalence is good enough in
cw

Our next objective is the J. H. C. Whitehead theorem, which almost says that two
CW-complexes are homotopic if and only if they have the same homotopy groups
(and the same number of path components).

Definition 3.7.1 A map f : X = Y in Top is called an n-equivalence if (for
somen > 1 ) the induced maps

furr (X, z) — 7. (Y, f(z)) Vz e X)

are isomorphisms for 0 < r < n and an epimorphism for r = n. If f is an n-
equivalence for all n > 1, then we call f a weak homotopy equivalence or an
co-equivalence .
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It follows immediately that n-equivalences are preserved by compositions of maps
and by homotopic deformations. Hence, in order for f : X — Y to be an n-
equivalence, it is necessary and sufficient that the inclusion of X in the mapping
cylinder My of f be an n-equivalence, because we have My ~ Y as a deformation
retraction (cf. p.23). The exact homotopy sequence for (My, X) yields (for n > 0)

Tnsr (Mg, X) — (X)L 70 (V) — mo (Mg, X) .

So f is an n-equivalence precisely when (M, X) is n-connected. Note the conversion
of the problem of deciding when f, is an isomorphism. It becomes the problem of
the vanishing of certain homotopy groups in an exact sequence containing f,.

Theorem 3.7.2 (Extension for n-equivalence) Let (P,Q) be a relative CW-
complez such that P\ Q has no cells of dimension higher thann andlet f: X = Y
be an n-equivalence. Then there is a solution g' to the extension problem in the
following diagram; namely, gtq = g and fg' ~ h (rel Q).

Q ! P
9 g h
X y @

\f /
My
Proof: Let f : My — Y be a homotopy inverse of j. We can construct a

homotopy ig ~ Jjhq such that rH is constant. Next, (P,Q) is a relative CW-
complex so ¢ is a cofibration and we can find h' : P — M/ such that h'q = ig
and Th' ~ rjh(rel Q). Hence h'(Q) C (X x {0}) = X, so we can consider h’ as
a map of pairs (P,Q) = (M, X). But (My,X) is n-connected because f is an
n-equivalence; moreover, P \ @ has no cell of higher dimension than n. Thus ' is
homotopic (rel Q) to some gt : P — X. Finally, gtq = ¢ and

fg' =righ ~ rh/(rel Q),
h=rjh ~rh'(rel Q). 0
Corollary 3.7.3 Given an n-equivalence f : X — Y and a CW-complex P having

no cells of dimension above n, then the induced map f.[P,X] — [P,Y] is epic; and
if P has no cells of dimension n, then it is also monic.

Proof: The surjectivity follows from the previous theorem with Q = @, for given
[h] we find [g']. To show that f, is injective if dim P < n, consider the relative
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CW-complex (P x I, P x 0I) where 0l = {0,1}. Suppose we have go ~ g; with
fgo ~ fg1. Then we can find g : P x 01 - X satisfying (Va € P)

gO(a‘) = g(a,O)

g1(a) = g(a,1)
and h: P x I - with hq = fg.

Pxdl——PxI

|h

Y

g

go
—_—
— =X

91 /

Now, dim(P x I) < n, so we reapply the theorem to find g'q = g. But this gt is
itself a homotopy from gy to g; so [go] = [¢1] and f is injective. 0O

The next deduction is an important theorem. Observe that the isomorphism
of homotopy groups must be induced by a map in order to ensure a homotopy
equivalence. Switzer [106, p.90] gives an example (the lens spaces) where this
necessity is illustrated.

Corollary 3.7.4 (J.H. C. Whitehead weak homotopy theorem) A map be-
tween CW-complezes is a homotopy equivalence if and only if it is a weak homotopy
equivalence.

Proof: (=) If f: X - Y is a homotopy equivalence, then it induces bijections on
sets of homotopy classes and hence it is a weak homotopy equivalence.

(<) If f: X - Y is a weak homotopy equivalence between CW-complexes, then
by Corollary 3.7.3, we have induced bijections:

[X,X] —[X,Y] and [Y,X]— [Y,Y].
Take any g : Y — X with f.[g] = [ly], so fg ~ ly. We see that gf ~ 1x as follows,
flgfl =1f9f]1 =1y f] = [f1x] = f[1x],
because f, is injective. 0
Ex It is important to note that the Whitehead theorem applies only to CW-
complexes. Maunder [68, p.301] gives a detailed study of the subspace X C R?
given by the set of all line segments: from (0, 1) to both (0,0} and (1/n,0) and from

(0,-1) to both (0,0) and (—1/n,0), for natural n. This space is not contractible
but 7,(X) =0 for all n > 0. Hence

f: X — X:(z,y) — (0,0)

is a weak homotopy equivalence but not a homotopy equivalence, because X is not
a CW-complex.
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3.8 Exploiting n-connectedness

We now prepare for the excision theorem. Once again, in order to find when a
certain map induces isomorphisms, we embed the induced homomorphism into an
exact sequence and seek the conditions for appropriate homotopy groups to vanish.
The map in question here is

j:(A,ANB) < (AUB,B)

and we shall see that a convenient exact homotopy sequence in which to embed j.
is that of the (pointed) path space pair

P(A,ANB)— P(AUB,B).

First recall that in this notation the relevant definitions are

(AU B,B) = 1,_1(P(AU B, B)) = neQ" "} (P(AU B, B))

(A, ANB) =7m,_1(P(A, AN B)).

The exact sequence is then, for n > 2, £

mn(P(AUB,B),P(A,ANB)) — (A, AN B)

— mp(AUB,B) — 7,1 (P(AUB,B),P(A,AN B)).

Hence from the properties of such sequences, we deduce that j, is:

isic for 2<r<n
epic for r=n & n,_1 (P(AUB,B),P(A,ANB))=0
monic for r =1

for 2 <r <n.

Theorem 3.8.1 (Homotopy excision) Let X = AU B be a pointed space with
basepoint in AN B. Consider the inclusion j : (A,ANB) — (AU B,B). For
n > 1, suppose that (A, AN B) is an n-connected CW-complex and (B, AN B) is an
m-connected CW-complex. Then

Ju 7 (A,ANB) — 7.(AU B, B)
is wsic for 1 <r <m+n and epic forr =m + n.

Proof: We merely indicate the steps, full details are given in Switzer [106, pp. 81—
84]. The procedure depends on how 4 N B needs to be augmented to construct A
and B.

1. A=ANBUe™ and B=ANBUe™ , for n; > n and m; > m, then

m—1(P(AUB,B), P(A,ANB))=0 for 2<r<n;+m; —2.
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To establish this, we represent each element of the homotopy set on the left
by the homotopy class of a map of quadruples

f(B7 ' xL,0B ' x1,8B" ' x [,B" x {0} U {x} x I)

— (AU B, A, B, %),

which is possible because P(AU B, B) consists of pointed paths in AUB ending
in B, and also
r—1 r—1
(AUBYE™ = (AuB)E"™ *L,

Then the construction uses simplicial approximation on B™™! x I to achieve
a sufficiently fine triangulation relative to €™ and e™! for the given f to be
deformed homotopically into a map that is nullhomotopic.

2. IfA=ANBUe™Ue™U---Ue™ and B=ANBUe™ with m; > m and
n; > n for 1 <1i <k, then we apply (1) repeatedly and use induction.

3. The method of (2) extends also to the case
B=ANnBUe™Ue™U---Ue™.

4. Given (A, ANB)* = ANB = (B,ANB)™ and f as in (1), then we can find
Al, B! with
ANBCA'CA, ANnBCB'cB

and A', B! representable in the form of case (3), and moreover such that the
(compact) image of f lies in A! U B!. Then it follows from (3) that

- 1(P(A'UB', B'), P(A'Y, A'nB")) =0 for 2<r<m+n.

5. If (B, ANB)™ = AN B, then we can construct (A!, C') with n-skeleton C' and
with AN B as a strong deformation retract of C' and A a strong deformation
retract of A!. It follows that AN B is a strong deformation retract of A U B
and B is a strong deformation retract of C' U B = B!. Hence the inclusion

(AUB,A,B) < (AU B, A', BY)
induces the following isomorphisms for r > 0:
m—1(P(AUB,B),P(A,AN B)) = m,_1(P(A' U B, B'), P(A!, A n BY)).

However, by (4), the group on the right is trivial for 2 < r < m + n.

6. The procedure of (5) can be used in the general case by embedding (B, AN B)
in (B!, C') to induce isomorphisms by:

(AUB,A,B) = (AUB', AUC',B').
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Corollary 3.8.2 (Relative to quotient homotopy homomorphisms) Given
a relative CW-compler (X,Y) with Y m-connected and (X,Y) n-connected, then
the projection onto the quotient

p:(X,Y) — (X/Y, {x})

induces a map
e 7o (X, Y) — 7 (X/Y, {*})

which s isic for 2 <r < m +n and epic forr =m +n+ 1.

Proof: We embed (X,Y) in (X UCY,CY) and use the homeomorph
(XUVCY/CY,*) = (X]Y,%),

observing that CY =~ x. Now, we can apply the excision theorem to the case
A= X, B=CY because (X,Y) is n-connected and =,.(CY,Y) =2 7,_1(Y) =0 for
1 <7 <m+ 1. Hence we have a homomorphism.

iv 1 1 (X,Y) — 1, (X UCY,CY)

which is isic for 2 < r < m + n and epic for r = m + n + 1. The result follows
because (X UCY,CY) ~ (X UCY/CY, {x}). 0

Theorem 3.8.3 (Freudenthal suspension theorem) If X is a CW-complez
which is n-connected for some n > 0, then the suspension functor S induces a
homomorphism

Se (X)) — 141 (SX) : [f] — [sf]

which is isic for 1 <r < 2n and epic forr =2n + 1.

Proof: First recall that SX = S' A X and Sf = 151 A f; hence S(S") = S' A
S™ = S™1 and so S, is well defined. Next, CX/X =~ SX and m,4,(CX/X) =
Tn+1(CX/X, {x}). Now X is n-connected and (CX, X) is (n + 1)-connected so, by
the foregoing Corollary,

p: (CX, X)) — (CX/X,{x}) = (SX,{x})

induces p. which is isic for 2 < r < 2n + 1 and epic for 7 = 2n + 2. The result
follows by virtue of the isomorphisms

(X)) = 711 (CX, X)
WT+1(SX) = ’/Tr+1(CX/X)

of homotopy groups. 0

Corollary 3.8.4 (Spheres hold water) 7,(S™) 2 Z for n > 1.
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Proof: We have already seen that 71 (S!) = Z. Next, the Hopf fibration S3 — S?
with fiber S! gives an exact sequence containing

72(S?) — m(S?) — ™ (SY).
But we have shown that 7,(S™) = 0 for r < n so
71'2(82) = ’/Tl(Sl) ~7.

Now we can apply our suspension theorem: S$™ is (n — 1)-connected hence S, :
7 (S™) — w1 (S™FY) is isic for r < 2(n — 1) and so

(8™ = 11 (S forn > 2. 0O

This is, of course, not the end of the story for spheres; for although we have
shown that 7,(S!) = 0 for r > 1, in general 7,.(S™) # 0 for 7 > n. Indeed we
actually encounter such a case elsewhere in the exact sequence for the fibration
used above: 73(S?) 2 Z.

3.9 Extracting homotopy groups from known bun-
dles

Given a bundle F — E % B we can take advantage of any topological simplicity
in the pair (E, p* {*}) to yield information about homotopy groups from the exact
sequence. For example:

e If p~{*} < E is homotopic to the constant map in E, so p* {*} is contractible
in E, then forn > 2

Wn(Eap(—{*}) = (E)® Wn—l(pf—{*}) ;

hence
Tn(B) = mp(E) & mp1(p™ {*}) -

o If r: E — p*{x} is a retraction, then for n > 2
() 2 1 (B, pT {*}) ® ma (p {*});

hence
Tn(E) 2 mn(B) @ o (0 {*}) .

o If f: E — p* {*} is homotopic (mod {x}) to 1g, then for n > 2

Ta(PT{*}) = 1u(E) ® mny1 (E,p {*}).
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The Hopf sphere bundles allow us to deduce some homotopy groups of spheres.
In

St 8% 2y 82,
71 (S%) = 0, so p~{*} is contractible in S3. Then
7rn(§2) = Wn(SS) ® ”nfl(Sl) forn > 2,

and so
n(S?) = 71, (S?) forn > 3.

Now we can deduce the result of Hopf that established homotopy theory:
7T3(S2) =/
In S% < S7 5 §4, p* {} is contractible in §” and so:
T (SY 2 1, (ST @ 1,_1(S?) forn > 2.
But we know that

0, n<k,
T (8%) = {Z,nik.
This gives
Tn(8Y) 2, 1(S?) for2<n<7
(S = ne(S* D Z.
Again, in

ST s 5 g8
p™{*} is contractible in S” and so:
Tn(S8) = mn(S'®) © -1 (S7) forn > 2.
Hence
(8% = m,_1(S7) for2<n<15
7r15(S8) = 7T14(S7) D7 .
Homotopy groups of spheres are tabulated in Appendix D.

We can now compute some homotopy groups of classical Lie groups. In some
cases we shall need the Stiefel varieties and Grassmann manifolds, so we review
them first. Let I denote R, C, or H, respectively. There are natural inclusions
F" < F"*! : 2 — (z,0) so we can define F*® = lim_, F* and an induced inner
product (|) on it.

Definition 3.9.1 The Stiefel variety of (orthonormal) k-frames in n-space is
Vi(F™) = {(z1,...,zx) € F™* | (z5]z;) = 655}
and Vi (F*) = lim_, Vi (F™).
The Grassmann manifold or Grassmannian of k-planes in n-space is
Gr(F") = {k-dimensional subspaces of F"}

and Gx(F>®) =lim_, Gx(F™). When F is R or C, there are also oriented versions
SGi(F™) and SGr(F*) in which the k-planes are oriented subspaces.
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Ex on Stiefel and Grassmann spaces

1. Vo (F™) =2 O(n),U(n), Sp(n), respectively.

2. For k <mn,
ny o O SO0
Vi(R?) = O(n—k)  SO(n—k)
ny~ UM SUMn)
Ve(C") = Un—k)  SU(m—k)
ny ~ 9PN
3. Vi(F*) = §n—1 §2n-1 §4n—1 regpectively.

e~

Voo 1(R?) 2 SO(n) and V,,—(C™) = SU(n).

5. For 1 <l <k<mn, Vie(F*) —» Vi(F™) is a fiber bundle.

10.

The natural projection Vi, (F™) —» G (F") sending a frame to its span defines
a principal O(k), U(k), Sp(k)-bundle, respectively (¢f. Chapter 7). Similarly,
Vi (R™) — SG(R™) is a principal SO(k)-bundle and V;(C™) — SG(C") is
a principal SU(n)-bundle, and SG(F™) is a cover of Gy (F™).

For k < n,

ny O(n) Y O(n)

Gr(R?) = O(k) x O(n — k) SC(RY) = SO(k) x O(n — k)
ny ~ U(n) Y Ul(n)

G(C7) = U(k) x U(n — k) SGx(C7) = SU(k) x U(n — k)
ny o Sp(n)

G = S Spn = B)

. We have G;(F") = RP"" !, CP"~! HP™ !, respectively. Also, SGi(R") =

S"~! and SG,(C") = §2n-L,

T (Ve(F?)) =0forit <n—k—1,9<2(n—k),7 <4(n— k) + 2, respectively.
Thus m;(Vix (F°)) = 0 for all i and k, whence V3 (F*°) is contractible.

The first nontrivial homotopy group of Vi (F™) is:

IR

Trn_k(Vk (Rn)

)
To(n—k)+1(Ve(C™))
Ta(n—k)+3 (Ve (H™))

Homotopy groups of Stiefel varieties are also tabulated in Appendix D.

Zy for k> 2 and n — k odd;

%

{Z for k=1or n— k even,
Z
Z

b

1
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Ex on homotopy groups of Lie groups

1.

2.

10.

11.

For every Lie group G, m2(G) = 0.

For every topological group G, mo(G) is an abelian group. In particular,
mo(O(n)) 2 Z4 and mo(O(1,n)) = Zy & Zs, the Klein 4-group.

m0(SO(n)) = mo(U(n)) = m0(SU(n)) = mo(Sp(n)) = mo(Spin(n)) = 0.

Since SO(n) is the identity component of O(n), all their homotopy groups
after the zeroth coincide, so we’ll not list O(n) any more. Thus m;(SO(1)) =
m(SU(n)) = m1(Sp(n)) =0 for n > 1, m (SO(2)) = m(U(n)) = Z forn > 1,
and 71 (SO(n)) 2 Zy for n > 3.

m(SO(2)) = m(U(1)) =0 for k > 2.

m3(U(n)) 2 73(SU(n)) 2 Z for n > 2, m3(Sp(n)) & Z for n > 1, m3(SO(3)) =
Z,73(SO4)) 2 Z @ Z,and n3(SO(n)) = Z for n > 5.

Use m441(S*) = Z, for k > 3 to calculate m4(SO(n)) and 74(Sp(n)) for n < 4,
and m4(U(2)) and m4(SU(2)).

From the inclusion O(n) < O(n + 1) we obtain ses

neven: 0 2Z— m,_1(0n)) = 1—1(0O(n+1)) =0
nodd: 0—2Zy— mp—1(0(n)) =& 71 (O(n+1)) -0

. Some of these groups are stable in the following sense.

Considering the fibration yields
S"=S0(n+1)/S0O(n) m(SO(n)) = m,(SO) for k <n — 2;
St = SU(n +1)/SU(n) T (SU(n)) = mi(SU) for k < 2n —1;
S = (n +1)/U(n) Te(U(n)) = m (U) for k < 2n — 1;
S48 =~ Sp(n + 1)/Sp(n) 7 (Sp(n)) = m(Sp) for k < 4n + 1.

Here, O = lim_, O(n), SO = lim, SO(n), U = lim, U(n), and Sp =
lim_, Sp(n) are the infinite or stable groups.

For the spinor groups of low rank, the identifications in Appendix A together
with the tables of Appendix D allow the computation of their homotopy groups
through m3. Since 7, (SO(n)) = m (Spin(n)) for k > 2, we may also compute
T, (SO(n)) for k < 23 and n < 9. Since 7 (U(n)) = mx (SU(n)) for k > 2, we
can also compute 7 (U(n)) for k < 23 and n < 4.

Forn >12and k < 2n—1, (SO (n)) = m(SO)D k41 (Vi (RZ™)) = 7 (SO) B
7rk+1(RP°O/RPn_1).
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Finally, recall that G5 and Fj are two of the exceptional simple Lie groups, and
that the Cayley projective plane is QP2 = F;/Spin(9). The following fiberings
may occasionally be found useful, in which a fibration F — E —» B is denoted by

B
F—FE.

5% 2 Sp(1) BE) ~
SU(2) §° SU(3) 5° G
o 87 s”
Spin(3) SU(4) = Spin(6) — Spin(7) ——z—> Spin(9)
\ 5° or?
Sp(2) = Spin(5) Fy

Problem Find a nice, ‘geometric’ visualization of the connecting map & in the
exact homotopy sequence of a fiber bundle (or of a fibration, if you can).






Chapter 4

Homology and Cohomology
Theories

‘Well, if you knows of a better ’ole, go to it. —Bairnsfather

4.1 Introduction

We ended the last chapter by calculating homotopy groups for spheres, which in
view of their importance in CW-complexes is a necessary starting point for our
program to classify spaces up to homotopy. However, in general the homotopy
groups are difficult to compute so we turn to a coarser theory, homology, which
yields more easily computed groups but by design has strong ties with homotopy
theory. There are many excellent books which give leisurely accounts of homology
theory, gradually revealing its versatility through particular representations.

We wish to use the theory and from the outset we know very well certain proper-
ties that will be convenient to have. Accordingly, we shall declare these properties
as axioms, see why they are chosen, and then show that they can be realized in
a variety of ways. At each stage in the development of homology theory there is
a dual situation and the corresponding theory is called cohomology; it arises from
cofunctors whereas homology arises from functors. In either case we shall want the
theory to yield diagrams in the category Ab of abelian groups. However, depend-
ing on the circumstances, we shall want to use the theory on several topological
categories:

. I/‘o\p;) = topological pairs and homotopy classes of pair maps;
o CWW = CW-complex pairs and homotopy classes of CW-pair maps;
e Top* = pointed spaces and homotopy classes of pointed maps;

o« CW = pointed CW-complexes and homotopy classes of pointed CW-maps.

105
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Observe that already we are planning to ignore changes in maps up to homotopy.
Since we have the inclusions

m%m and é\VT/*%Top*,

the main differences among our domain categories are between pairs and pointed-
ness. There are two important internal functors corresponding to these differences:

Restriction
(X,A4) (A, @)
R:Topp—Topp : W] —— |[/la]
(Y, B) (B, @)
Suspension
X SX

S: Top* ——=Top* : | —— |[57]

Y SY

We shall want our theories to behave well with respect to these functors. From
our experience with homotopy groups we are prompted to have excision inclusions
yielding isomorphisms and pair inclusions yielding exact sequences. These points
summarize our requirements for homology and cohomology:

(i) functoriality;
(ii) naturality with respect to restriction R or suspension S;
(iii) exactness for inclusions;

(iv) isomorphisms for excisions.
There are then, a priori, two families of theories:

one on Topp using (i), (i) R, (iii) and (iv);
one on Top™ using (i), (ii) S and (iii).

These items are similarly labelled in the following definitions.

4.2 Homology and cohomology theories

Homology Axioms

A homology theory H, on fo\p/p consists of four parts:
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(i) asequence {H, |n € Z} of functors Hy : 7/‘;)\;-7;) — Ab;

(ii) natural transformations 0, : H, — H,_1 o R;

(iii) the inclusions (4, @) E) (X,2) and (X, @) ([i], (X, A) induce exactness for all
n € Zin

_Hali]

H,(4) 220 g o) 22U g (x, 4) —2 s B, (4)

where, as usual, H,(X) = Hp(X, 9);
k _ .
(iv) excision the inclusion (X\U, A\U) 3 (X, 4) with U C A, induces for all
n € Z isomorphisms

H(x\U, A\U) B g (x4,

A homology theory H, on 7/‘;5* has three parts:

(i) a sequence {H, | n € Z} of functors H, : ’.I,’o‘/p* — Ab;
(ii) natural equivalences oy, : H, — fln“ oS;

(iii) A <—]) X and X Ji]} X U CA induce exactness for all n € Z in

H, (5]

74— g oo 2 g xuca,

Hn(A)

where CA =T A A is the cone on A.

Cohomology Axioms

A cohomology theory H* on fo}jp is

(1) asequence {H" | n € Z} of cofunctors H™ : I% — Ab;

(ii) natural transformations 6" : H" o R —s H"*1;

(ifi) inclusions (4,2) & (X, 2) and (X, 2) &
n € Zin

(X, A) induce exactness for all

H™(X, A) H(A) <8 po(xy < gox gy,

(iv) excision inclusion (X\U, A\U) &]) (X, A) with  C A induces isomorphisms
foralln € Z
HY(X\U, A\U) <28 gn(x, 4.
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A cohomology theory H* on fo‘;t_)’* is
(i) a sequence {H™ | n € Z} of cofunctors H™ : 1/“0\17/* — Ab;
(ii) natural equivalences o™ : H” — H"*1 0 S;

(iii) inclusions A E) X and X ‘[i]> X U CA induce exactness for all n € Z in

A gy <00

H™(A) H"(X UCA),

where CA =1A A.

Sometimes homology and cohomology theories on 7751;* are called reduced the-
ories; those on T(T;a;) are then called unreduced theories. The definitions could
have been given on Top™ and Topp; then invariance up to homotopy would have
been added as an axiom. In some texts (¢f. Spanier [97], Gray [38]) the homology
and cohomology theories are defined by means of functors and cofunctors taking
values in the category of graded abelian groups. There the objects are integer
indexed sequences of abelian groups so the corresponding functors are {H,}, { H"},
and so forth. Elements of (co)homology groups are traditionally referred to as
(co)homology classes

As will be revealed in due course, homology and cohomology theories do indeed
exist. The most important ones for practical purposes are ordinary (co)homology
theories with coefficients G. These have

Ho(x) =G and Hp(x) =0 for n#0,

where * is any singleton, and a similar statement for cohomology. This is sometimes
called the dimension axiom. The prototype candidate for the coefficient group
G is the infinite cyclic group Z and the universal coefficient theorems allow us to
obtain information on other coefficient choices from this one.

Under quite reasonable conditions we shall see eventually that any two such the-
ories are naturally equivalent. We shall first investigate the immediate consequences
of our axioms. When there is no likelihood of confusion we shall denote H,[f] and
H"[f] by f. and f*, respectively.

4.3 Deductions from the axioms

First of all there is a natural inclusion

(X, z0) (X, {z0})
Top* —=Topp : )| —— |If]

(Y, %0) (Y, {yo})
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We shall see how this allows us to construct a reduced theory from an unreduced
theory, so our a prior: differences are less than might be expected. Consequently we

give explicit instructions only for a homology thcory on Topp; passing to cofunctors
will give the dual results for cohomology.

Functoriality
(f9)s = fuge,  (FH=(f)7"  Lo=1.

If f is a homotopy equivalence, then f,. is an isomorphism.

Inclusions

Consider these four special cases of

1x

N

A4+t ~x
X
1. Weak retract: r: ~ 14

IAJ /
i
2. Retract: ri =14
3. Weak deformation retract: 7i~ 14, ir ~ 1x
4. Deformation retract: ri =14, ir ~ 1x.
Since our homology functors are insensitive to differences between ~ and =, there
are only two cases: 1,2 and 3,4. We deduce the following.

Theorem 4.3.1 (Retracts split in homology) If A 4 X isa (weak) retract,
then for alln € Z
Ho(X)=Hp(A)® Hy (X, A).

Proof: We have a (weak) retraction 7 : X — A so, in homology, (1), = r,i. = 1
and for all n € Z there exists an exact sequence

2 Ho(A) 25 Ho(X) 25 Ho(X,A) =S Hoyor(4) 225 -

with (X, @) < (X, A). But i, is monic, so 9 is trivial and j. is an epimorphism
with a right inverse. Hence we have a split short exact sequence and the result
follows, with

kerr, = Hn(X,A). 0O

Corollary 4.3.2 (Deformation retracts kill relative homology) For a weak
deformation retract A we have, for alln € Z, i,7. =1 and so H,(X,A) = 0. In
particular, H, (X, X) = 0 and if (X, {x0}) is contractible then

H,(X,{z0}) =0
for alln € Z. 0O
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When the basepoint is well behaved, we have the following nice aid to compu-
tation.

Theorem 4.3.3 (Well-pointed spaces) If * 4 Xisa cofibration, then
Hp(X) = Hy(X, %) @ Hu(x).
Proof: Being a cofibration implies there exists p : X — * such that pi = 1., whence
v — Hp(x%) — Hp(X) — Hp(X, %) — -+
splits for every n. O
Ex If X is also path-connected, then Ho(X;G) = G for any ordinary H, with
coefficients G.

Exactness

Axiom (iii) gives us an exact homology sequence for a pair (X, A) and we can deduce
the following.

Theorem 4.3.4 (Exact homology sequence of triple) If the triple (X, A, B)
has inclusions ,
(4,2) % (4,B) = (X, B) = (X, 4),

then there is an exact sequence in homology for alln € Z,
H,(A, B) 25 H,(X,B) 2 H (X, A) =3 H,_,(A,B).

The composition ¢, is sometimes denoted by A; it is a connecting morphism. Since
the exact sequence can in principle be extended indefinitely, it is sometimes called
long.

Proof: This is directly analogous to the situation for homotopy groups and involves
a check of exactness at each group. A detailed checklist is provided in Switzer [106],
pp. 42-43. O

Corollary 4.3.5 (Cone-triple isomorphisms) In the triple (CA, A, {a}), the
pair (CA,{a}) is contractible so we have an isomorphism for alln € Z :

Ho(CA,A) = Ho_1 (A, {a). 0

Corollary 4.3.6 (Union-triple isomorphisms) For a CW-triad (AU B, A, B),
the inclusion
k:(A,ANB)— (AUB,B)

induces isomorphisms in homology.
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Proof: The trick is to construct a homotopy inverse to the inclusion
7 (A,AUB) — (NA,NAP]B)

where N4 is an open neighborhood of A. Now, by the proposition there is an
isomorphism
Jx : Hy(Na,NaNnB)= H,(AU B, B).

This is so because (AU B) \ 4 is open in B and N4 is open, therefore
AUB = N4U(AUB\ A) C NyUB,

where B denotes the interior of B. It follows that k, is also an isomorphism. Details
of the homotopy construction are given in Switzer [106], pp. 100-101. 0

Another kind of long exact sequence arises in ordinary homology theories when
we begin with a ses of coefficients 0 - B - N — G = 0. The connecting morphism
in this case is called the Bockstein associated with the ses of coefficients and is
denoted by 3. Thus we have

H(X;R) — Ho(X; N) — Ho(X;G) 25 Ho_1 (X3 R),

and similarly for pairs (X, A).

Excisions

There is a convenient equivalent form for the excision axiom which simplifies its
application on C'W-complexes.

Theorem 4.3.7 (Excision equivalent) A functor H, Topp — Ab satisfies the
excision aziom (iv) if and only if, for all triads (AU B, A, B) with AUB = AUB,
the inclusion

j: (A, AnB) < (AuB,B)

induces isomorphisms; that is, for alln € Z :
H,[j]: H,(A,ANB) = H,(AUB, B).

Proof: Given axiom (iv), we can apply it to X = AU B, with U = X \ A. For,
U=X\AsoUcB. Also B\ (X\ A) = AN B, hence j, induces isomorphisms.

Conversely, given the stated properties for a functor H,, suppose that U C A C
X and U C A. Then the triad (X \U)UA, X\U, A) has (X \U)° UA = (X\4)u4
since X = (X \A)UA C (X \U)UA = (X \U)° U A. Hence the inclusion

(X\U,A\U)=(X\U,(X\U)NnA) = (X \U)UA,A)

induces the isomorphisms required by the excision axiom. O
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We can exploit the excision property to show that cofibration projections in-
duce isomorphisms in homology, a considerable simplification from the situation in
homotopy theory; c¢f. Section 3.8.

Theorem 4.3.8 (Cofibrations induce homology isomorphisms) If A 4 X
is a cofibration then the projection

p: (X, 4) — (X/A {a})
induces isomorphisms in homology.

Proof: Since i is a cofibration, its mapping cone C; (¢f. Figure 4.1) is homotopy

equivalent to X/A. Now, C; = X U(CA) and so we have a triad inclusion (X, A) N
(C;,CA) which induces isomorphisms in homology. But (CA, {a}) is contractible
and C;/CA is a homeomorph of X/A, so

H,(X,A) = H,(C;,CA) = H,(X/A,{a}). 0
A a X

Figure 4.1: Mapping cone of inclusion A &4 X

Corollary 4.3.9 (Suspension isomorphism) If (X,z¢) is a pointed space, then
for all n € Z there is an isomorphism

Gn i Ho(X,{z0}) — Hpp1(SX, {x}).
Proof: We have already found isomorphisms
Hn+1 (CX7 X) = Hn(X’ {xO}) ’

so we need only compose these with those induced by the homeomorphism CX/X
SX and by the projection (CX, X) — (CX/X, {*}). O

Evidently, the 6,, will be relevant to the construction of a reduced homology theory

on Top* where we require such a relationship between the homology and suspension
functors.
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Suspension

Suspension is particularly important for spheres and we easily find the following
results for them, in any homology theory.

Theorem 4.3.10 (Periodicity in homology of spheres) For allm,n € Z with
m > 0 there are isomorphisms

H(S™,{*}) 2 Haia(S™4, {+}) 2 Hyom(S°, {}) = Hpon (%)

Proof: The first two isomorphisms arise from suspensions
§mtl = §(§™) = S™F1(S9)

The other one arises from the triad (S° {—1},{+1}) and inclusion ({-1},2) <
(8% {+1}). O

We may now compute something interesting.

Corollary 4.3.11 (Ordinary homology of spheres) If H, is ordinary with co-
efficients G, then

GG, n=m=0,
H,(S™) = G, n=m#0orn=0,m#Q0,
0, otherwise.

Proof: From Theorem 4.3.3 we obtain H,(S™) = H,(S™, %) ® H,(¥) = H,(S™, %)
for n # 0. From the preceding theorem we find H,(S™, *) & H,_,,(*), whence

m ~ G , n=1m,
Ha(87,%) = { 0, otherwise.
Combining these yields Ho(S%) = G @ G, and for m # 0, Ho(S™) = H,,(S™) = G.
|

This last result shows that if n # m, then the spheres 8 and S§™ have different
homotopy type and hence cannot be homeomorphic. On the other hand, R* and R™
are both contractible so they have trivial reduced homotopy and the same homotopy
type. However, by appropriately adding one point each to compactify R* and R™
we get S™ and S™, which would have to be homeomorphic if R* and R™ were.

Corollary 4.3.12 (Simple invariance of domain) If n # m, then S™ and S™,
whence R* and R™, are not homeomorphic. O

It is nontrivial to prove this in any other way!
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Ex Can you prove the full invariance of domain result now? If U; and U, are
subsets of S®, h : U; — U, is a homeomorphism, and U; is open, then so is Us. (If
not, try it again after another chapter or so.)

We call a triad (AU B, A, B) excisive for a homology theory if the inclusion
(A, AnB)— (AUB,B)

induces isomorphisms in homology. Evidently we could equally well require the
other inclusion,

(A, ANB)— (AUB,A)
to induce isomorphisms; in fact they are equivalent conditions (cf. Switzer [106],
pp. 103-4). From above, we know that CW-triads are always excisive so we shall
be able to exploit their cellular structures to build homology information on their
skeletons. A general and very useful consequence of excision is the following.

Theorem 4.3.13 (Mayer-Vietoris exact sequence) If (AUB, A, B) is excisive
and C C AN B, then for all n € Z there is an exact homology sequence

Ho(ANB,C) 25 Hu(A,C) & Ha(B,C) 22 Hy(AUB,C) 2 Hao1(ANB,C).

Proof: The candidate maps are clear enough from the inclusions. With

(4,C)

A 0
(AnB,C)/1 \(A*UB,C)
S A
(B,C)

we have ax = (Ax, u«) and B.(a,b) = 6.(a) — ¢« (b). Also, (4, AN B) A (Au B, B)
induces an isomorphism j, by excision. Let (4 U B,C) & (AUB,B) and (AN
B, @) i) (AN B,C). Then we construct A as the composite

H.(AUB,C) —*> H,(AUB, B) > H,(A, AN B)
la
H,_1(ANB) —> H, (ANB,C).
To establish exactness at H,,(A,C) & Hn(B,C) we observe that
Be(a,b) =0 => 6.(a) = ¢.(b)) = a,b€ doma,

50 fean(z) = Bu(Ass ) (@) = 0. A0u(2) — dupn(2) = 0.
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For the remainder, we use the two exact sequences generated by the triples
(A, ANnB,C)=(A,N,C) and (AUB,B,C)=(U,B,C),
for the rows in the following commutative diagram:

Hui1(A,N) 222> H,(n,C) —2*> H,(4,C) > H,(A,n) =%~ H,_1(n,C)

o o 0. =3
, | l |
Hn+1(U7 B) I Hn+1(B7 C) T’ Hn(ch) T’Hn(uaB) - Hn(Bac)

By the four lemma, ker 8, = A. ker p. and ¢ im 6. = im pu.. We deal with exactness
at H,(U,C) and leave the other case as an exercise.

Take (a,b) € dom 8,; then
ABx(a,b) = 1,05 ku(Bu(a) — ¢ (D))

but k.¢, = 0 and 8.(a) € im ¢., so AB, =0 and im 3. C ker A.

Next, suppose that we have y € ker A. Then j 'k.(y) € kerl.d = imi, and
let j7 k. (y) = iu(2). But i.(2) = j7 ke84 (2) and k.0.(z) = 0 since imf, C im ¢,.
Hence y € kerk, = im ¢, so y = 3.(0,b) for some b.

Therefore ker A C im g, so ker A = im g, and we have exactness at H,(U, C).

O

Ex Calculate H,(S™) for ordinary H, using this theorem.

Corollary 4.3.14 (Intersection isomorphisms) In particular, if C = AN B
then (B, is an isomorphism, so also is

(0e,04) : Hy(AJANBY® H,(B,ANB) & H,(AUB,ANB) VneZ. 0O

Corollary 4.3.15 (Disjoint union isomorphisms) For any disjoint open A, B,
AUB = AU B so we have excision, and hence for all n € Z an isomorphism

(6., 2) : Ho(A) ® H,(B) = H, (AU B). 0

Corollary 4.3.16 (CW-triad isomorphisms) Any CW-triad is ezcisive; in par-
ticular for any pointed CW-complezes (A, a), (B,b), the triad (AV B, A, B) is exci-
sive. Hence, for all n € Z we obtain an isomorphism

(Ox,04) : Ho(A,{a}) ® Hy(B,{b}) = H,(AV B,%). 0
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4.3.1 Reduction and unreduction

Theorem 4.3.17 (Reduction) We can obtain a homology theory on T/o\;* from
one on Topp.

Proof: Given (H,,d,) we define (H,,&,) by

(X, 20) Hn (X, {z0})
H,: fo\[;* s Ab: )| ——— H.[f]
(Y, 0) Hn(Y,{yo})

Hp(X, o) H,(5X,x)

On = 0On : El lg

Hp 1 (CX, X) —z> Ho 1 (CX/ X, %)
The exactness axiom is satisfied because of isomorphisms
Ho(XUCA %) =2 H,(XUCA, {*}) 2 H,(XUCA,CA) = H, (X, A)

which allow the exact sequence in H. of the triple (X, A, {zo}) to be reduced to the
required one in H,. O

The process of reduction is actually ‘reversible’ if we require our reduced theory
to satisfy the extra condition: weak homotopy equivalences induce isomorphisms,
which is usually abbreviated to WHE.

Theorem 4.3.18 (WHE unreduction) If (H,,0,) is a reduced theory satisfying
WHE then

1. there is an unreduced theory (H,,0,) given by

(X, 4) H,(X UCA)
H,: Uyl| —— [f]
(Y, B) H,(Y UCB)

8, Hi(X UCA) — H,(CAJA) = H,_1(A);

2. (H,,0,) is naturally equivalent to (H,,0,);

3. (En,gn) is naturally equivalent to (H,,0,).
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Here natural equivalence means a natural equivalence of homology functors, com-
muting with their respective natural transformations.

Proof: The details are rather lengthy, but given fully in Switzer [106], pp. 112-117.
O

Corollary 4.3.19 (Reduced and unreduced theories equivalent on CW)
WHE is automatically satisfied by CW-complezes, so unreduced and reduced theories
are equivalent for those spaces. O

Theorem 4.3.20 (Relation of reduced and unreduced theories) If H and
H are related both by reduction and unreduction of each other, and if x — X is a

cofibration, then H,(X,*) = H,(X) whence
H,(X) = H,(X)® Hu(x).

Proof: The result follows from showing that (X, x) >~ (X UC*,1); complete details
appear in Gray [38, p. 185]. 0O

Corollary 4.3.21 H,(*) = H,(S%) = H™"(). O
Next we have an important property of the ordinary homology of CW-complexes.

Corollary 4.3.22 (Non-negative ordinary theories on CW) If H, is an or-
dinary theory and X is a connected CW-complexz, then H_,,(X,*) =0 for alln > 0.

Proof: Inducting from the suspension isomorphism, we obtain
Hyp (X, %) = Hrom(S™X, %).

Thus for n > 0, we have H_,(X, %) = Ho(S"X,*) = Hy(S™"X) = 0. Here we used
Corollary 4.3.15. O

Definition 4.3.23 Let H, be an ordinary homology theory. When each H,,(X) is
a finitely generated R-module, there is a well-defined R-rank b, of Hpn(X) called
the m*" Betti number of X. When R is a field, b,, is just the dimension of the
vector space Hpy, (X) over R. When the homology modules are all finitely generated
and there are only finitely many which are nonzero, we say that the homology of X
is finite. In this case, we also define the Euler characteristic (number) of X

as
+oc

X(X) =3 _(=1)"bm -

-0

This is traditionally applied only when the homology is non-negative, as it is for
CW-complexes. The main examples of spaces with finite ordinary homology are
the compact spaces. Each of these numbers contains progressively less information
about X. However, it is enough for the solution of several important problems.
This is largely due to the invariance of these numbers under homotopy equivalence
(cf. on page 129).
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Ex

1. Use the Euler characteristic to show that a sphere cannot be homotopy equiv-
alent to a point. There are no trivial spheres all spheres are topological
individuals; in a homological sense, every sphere is a minimally nontrivial
example of its dimension class.

2. Reflect on the fact that our results for spheres are valid for spaces that are
spheres only up to homology equivalence—even less than homotopy equiva-
lence. Find some examples that distinguish between these equivalence classes.

4.3.2 Deductions from homology

Actually, a number of other powerful results can now be deduced; we present some
as theorems and others as guided exercises. Observe how much we can squeeze out
of the identity and antipodal maps on spheres and remember that, since everything
is based on homotopy type invariance, we get much more than results about spheres.

In the following results, H, denotes any ordinary homology theory. If we need
to specify the coefficients as, for example, Z we write H,( ;Z).

Theorem 4.3.24 (Brouwer fixed point) Fvery continuous map from the closed
n-ball to itself, for n > 1, has a fized point.

Proof: Just replace m; by H, in the proof for n = 1. 0O

Theorem 4.3.25 (Degree) There is a well-defined map
deg: m,(S™) = [S™, 8" — Z
which preserves compositions.

Proof: Define deg f for continuous f : S = S™ to be the integer multiplier induced
as the homomorphism

fe Hy(SMZ)=2Z — H,(SHZ) 2 7.

It is evidently a homotopy type invariant and sends composites to products of their
degrees. 0

Theorem 4.3.26 (Suspension preserves degree) If f : S™ — S™ is continu-
ous, then deg f = deg(Sf).

Proof: This is a typical Mayer-Vietoris argument. Let U denote the complement
of the north pole and V the complement of the south pole in S**1. Note that the
inclusion ¢ : S® — U NV is a homotopy equivalence, and that the connecting map
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A: H, 1 (S™1Y) — Hp(UNYV) is an isomorphism for n > 1. The following diagram
commutes.

Hpp1(S") —&— H,(UNV) <—=— H,(S™)

o

(Sf)~[ [ fe

Hpy (S™) —2— H,(UNV) <——2— H,(S™)

=]

Thus (Sf). = A7 i, f.i7 A so, applying this to H.( ;Z), we get deg f = deg(Sf)
forn > 1.
We leave the case n = 0, when A is only monic, as an exercise. O

Corollary 4.3.27 Regarding S™ — R if f :S™ =5 S : (z1,...,Tpy1) =
(1, -, —Ziy. -, Tny1) then deg f = —1.

Proof: First, we reduce to the case i = 1. Let g(z1,...,Zny1) = (=21, ., Tps1)
and let h be the homeomorphism of S™ which interchanges z; and z;. Then degh =
+1 and f = hgh, so deg f = (degh)? degg = degg.

Thus it suffices to show degg = —~1. But this is trivial when n = 0, and ¢ for
all other n is an iterated suspension of this one. O

Theorem 4.3.28 (Antipodal degree) The degree of the antipodal map
a:S"— 8"z — —z

is (—1)ntt,

Proof: Clearly a is a composition of n + 1 maps, each of degree —1. O

Corollary 4.3.29 If a continuous map f : S™ — S™ has no fized points, then

deg f = (—1)"*".

Proof: Such an f:S™ — S™ is homotopic to the antipodal map by:

(1-t)f(z) -tz
(1 =8)f(z) —tall

F:S"xI— S": (z,t) —>

O

Corollary 4.3.30 If f:S2% — S2* and f is homotopic to the identity, then f has
a fized point.

Proof: Such an f has degree +1 = deg lgz.. But by Corollary 4.3.29, if f has no
fixed points then it has degree —1 and we have a contradiction. Hence, f must have
a fixed point. O
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Theorem 4.3.31 (Hopf) Two continuous maps from S™ to itself for n > 1 are
homotopic if and only if they have the same degree.

Proof: From the Degree Theorem we need only prove that maps having the same
degree arc homotopic; this is done by induction on n. For n = 1, a map with degree
k is representable as a periodic real function on R which increases by k£ each time
its argument increases by 1. Any two such maps are homotopic.

Assuming the result for n — 1, two maps with the same degree admit representa-
tion as the suspensions of maps of S*~! to itself and suspension preserves the degree.
Hence the maps we suspended are homotopic, but then so are their suspensions and
the result follows. O

Ex on degree

1. If f:S™ — S™is constant, then deg f = 0.
2. Show that the identity map ls~ is not homotopic to a constant map.

3. If f:S™— S™is a homeomorphism, then
deg f deg f ! =degfo f ! =degls-=1.

4. Construct one representative map f : S! — S! for each element in 7, (S!) and
explain why only two of these maps are homeomorphisms.

5. Find a continuous f : S2 — S? which preserves antipodal points and show
that its degree is odd.

6. Find the degrees of the following maps from S™ to S™ for n > 0: (i) a rotation
about the polar axis; (ii) antipodal composed with a polar rotation; (iii)
projection onto the southern hemisphere; (iv) reflection in the equator.

Theorem 4.3.32 (Borsuk’s antipodal) If a continuous map f : S*t1 — Sn+!
preserves antipodes, then it has odd degree.

Proof: For definiteness, we note that preserving antipodes means commuting with
the antipodal map. We induct on n, and the induction step is another Mayer-
Vietoris argument almost identical to the one used in the proof that suspension
preserves degree, Theorem 4.3.26. Indeed, we use the same set-up and diagram,
merely replacing (Sf). there with f, here and f. there with f|s» here, regarding
S™ < S™*! as the equator. Then we apply the conclusion from the diagram to
H,( ;Zs) now instead of H,( ;Z).

This reduces us to the n = 1 case, and we leave that as an exercise, along with
the trivial n = 0 case. O

Theorem 4.3.33 (Antipodal subsphere) If a continuous f : S™ — S™ pre-
serves antipodes, then m < n.
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Proof: Suppose that m > n > 0, and that the given f preserves antipodal pairs of
points. Observe that

S8 = {(x1,%2,. -, Tms1) € ST CR™! |z, =0,i > n}.

Put g = f|s, and observe that g : S™ — S™ preserves antipodes so its degree is odd.
But we can homotope g to a constant map because g admits an extension over the
closed upper hemisphere of S™. So degg = 0, a contradiction. Hence, m <n.

Theorem 4.3.34 (Borsuk-Ulam) FEvery continuous f : S® — R® must identify
a pair of antipodal points.

Proof: Suppose that the given f does not identify any pair of antipodal points.
Then we can construct:

_ f(z) — f(-=)
g:S" — SVl L
lf(z) = f(==2)l
This map preserves antipodes, which contradicts the previous theorem. 0

Corollary 4.3.35 (Meteorology theorem) Somewhere on the Earth, there is a
pair of antipodal points having simultaneously the same temperature and pressure.

Proof: Let T, P respectively denote the temperature and pressure functions, as-
sumed to be continuous, on the Earth’s surface. Then we have a continuous map

f:82 =R :z+ (T(z),P(z))
and the theorem applies. O

The next result is a corollary that explains the problems of gift-wrapping a
soccer ball or making maps of the world.

Theorem 4.3.36 (Gift wrap) No subspace of R™ can be homeomorphic to S™.

Proof: By the Borsuk-Ulam Theorem, no map from S™ to R® can be injective if it
is continuous. O

Theorem 4.3.37 (First hairy ball) An n-sphere admits a continuous nowhere-
zero tangent vector field if and only if n is odd.

Proof: For n = 2k even, suppose that we have a continuous nowhere-zero vector
field
v: 8% — RN {0},

We shall show that it cannot be everywhere tangent to S2*. Construct

v(z)
o)l

f:Szk—)S%::c»—)
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Now, this f is continuous because v is, and moreover, f is homotopic to the identity
1g2¢. Hence, by Corollary 4.3.30, f has a fixed point at some zg. Then v(z¢) = o,
and so v is not tangent but normal at zo.

For odd n = 2k — 1, we construct

v:S%*-1 R, (T1y. -y Tak) V> (—Thtly- ooy — T2k, T1y- -y Th) -

This is evidently continuous and nowhere zero; also, it is everywhere orthogonal to
the normal and hence a tangent field. O

Theorem 4.3.38 (Ham sandwich) Given bounded subsets A; fori=1,...,n in
R™, then there exists a hyperplane which simultaneously bisects all of the A;.

The name comes from the case n = 3: two pieces of bread and a slice of ham,
stacked in any way, can be fairly divided with one cut.

Proof: Take any z € S® ! C R* and construct the tangent space there, T,S™ 1.
In R?, find that hyperplane P, which is parallel to T,S™~! and which also bisects
A;. Define A;(z) to be the measure of A; on the outside of P,. Observe that the
outside of P, is the inside of P_,. Next construct the continuous map

f:SP RV o (Ay(2), A3(T), ..., An(T)) .

By the Borsuk-Ulam Theorem, there exists 2o € S*~! with f(zo) = f(—z0), so we
choose Py, . a

Now consider wrapping a soccer ball with three pieces of paper; we find that
one piece must cover a pair of antipodal points.

Theorem 4.3.39 (Lusternik-Schnirelmann) If S™ is covered by n + 1 closed
sets Ay, ..., Ant1, then one of them must contain an antipodal pair.

Proof: The union of the given sets is S® C R**!, so we construct the continuous

map
f:S" = R*: 2+ (d(z, A1), ..,d(z, An)) .

This must identify a pair of antipodal points, zo and —zg say, by the Borsuk-Ulam
Theorem. Now there are only two possibilities: either d(zg, A;) = 0 for some ¢,
whereupon zo, —2g € A; because A; is closed; or d(zg, A;) >0 foralli=1,...,n,
whence zg, —xo € Ap41 because the A; form a cover. 0

4.3.3 The Lefschetz theorem

We have seen how useful the Euler characteristic is in comparing spaces and just
saw how the degree of a map from a sphere to itself could solve otherwise apparently
difficult problems. Next we come to another characteristic, the Lefschetz number,
for a continuous map from a space with finite homology to itself. A sphere is of
course a special case, and we shall see that for spheres the new number relates to
the degree. We obtain also a powerful fixed-point theorem with useful applications.
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Theorem 4.3.40 (Lefschetz number) Let X be a space with finite homology.
There is a well-defined map, from the set [X, X] of homotopy classes of continuous
self-maps on X, to the rationals Q:

A X, X] > Q:[fl—Ay.
Proof: For all k € Z, there is induced a linear map on rational homology
fex t He(X;Q) — Hi(X;Q).

We recall from linear algebra that the trace is independent of the choice of basis.
We define

A= > (—1*tr fra.

k=—o00

Clearly Ay is well defined. 0O

Our next theorem shows that Ay is the ‘obstruction’ to f being fixed-point free.

Theorem 4.3.41 (Lefschetz fixed point) Let f : X — X be a continuous map
from a compact space to itself and let Ay be the Lefschetz number of f. Then it
follows that

(i) if Ay #0, then f has a fized point;
(13) if X has the rational homology of a point, then X has the fixed point property;

(iit) if 1x is homotopic to f and f has no fized point, then the Euler characteristic
of X is zero;

(iv) if X =8S™, then
Ap=1+(-1)"degf;

(v) if the Euler characteristic of X is nonzero, then every flow
P X XR— X:(z,t) — ®(x,t) = ®;(x),
on X, has a fized point xo € X with ®;(xo) = xo for all t € R.

Proof: (i) A proof for simplicial complexes is given on p. 163. General proofs may
be found in Gray [38, Sect. 26] or Vick [114, Chapt. 6].

(ii) By hypothesis, X has only one component so the only nonzero rational homology
is Ho(X;Q) = Q. It follows that fox = lg, whence

A=(-1)trfo. =1#0

and we have an obstruction to f being fixed-point free, as required.
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(iii) Suppose that f is fixed-point free, so Ay = 0, and homotopic to 1x. It induces
identity morphisms on homology and the trace of an identity linear map is the
dimension of its domain:

T n

Ap= (D (L) = ST(-1)* dim Hi (X;0) = x(X).

k=0 k=0
(iv) In the case of a continuous f : S — S”, we have
Ho(S™ Q) = Ha(S™ Q) = Q
Ag =tr(fo.) + (1) tr(fns) =1+ (=1)"deg f.

(v) A flow is by definition continuous, each ®; is a self homeomorphism of X and
satisfies the conditions

QO = lx and (I>t1+t2 = (I>t1 o ‘I>t2 .
First we see that every &, is homotopic to 1x by
F:XxI:(z,8)— ®((1-9)t,x).

So Ay = A1, = x(X) # 0 and hence each ®; has a fixed point. We need to show
that there is a fixed point common to all; we use induction and the finite intersection
property as follows. l
For each natural n, define X, to be the (nonempty, closed) set of fixed points
of ®;/5n. Now, X = Ny X, # &, because X, 11 C Xy, So, X is a set of points
fixed under all rationals of dyadic form k/2"; but, as we exploited in the proof of
the simplicial approximation theorem, such rationals are dense in the set of reals.
It follows that every element in X, is fixed under ®, for all t € R. 0

Corollary 4.3.42 We note the following easy deductions:
1. A, = x(X).
2. The antipodal map a : S™ — S™: x — —z has

Aa =14+ (_l)n(_l)n—H =1 + (*_1)2n+1 =0.

3 If f:S™ — S™ is not a homeomorphism, then its degree is not +1; hence
Ay # 0 and it must have a fized point. 0

1. Give another proof of the Brouwer Fixed Point Theorem using the Lefschetz
Fixed Point Theorem.
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2. Show that RP? has the fixed point property, as in fact do all RP?™ because
Hi(RP?*™;Z)= 0 or Zyif k > 0.

However, RP! = S! certainly does not.

3. Regarding S?® C R?"*1 no continuous f : S?™ — §2" has f(z) orthogonal to
z for all z € S?™.

4. Find the degree of all fixed-point free maps from S™ to itself and deduce that
if n is even, then no such map can be homotopic to the identity.

5. Up to isomorphism there are only two groups with free actions on even-
dimensional spheres, because maps on them homotopic to the identity are
not fixed-point free.

6. If f : 82" — S?7 is continuous, then either f has a fixed point, or f o f has a
fixed point and f sends some point to its antipode.

7. The only compact closed surfaces with Euler characteristic zero are the Klein
bottle, which is nonorientable, and the torus, which is orientable. Only these
two admit a fixed-point free map that is homotopic to the identity. On the
torus, a fixed-point free map can be obtained by a flow along a nowhere-zero
tangent vector field.

8. Open-ended problem: Construct a sequence of maps fy, fi,... with in-
creasing (decreasing) Lefschetz number, starting with Ay, = 0, and investigate
the corresponding sequence of numbers of fixed points. [Hint: A convenient
domain to start with would be S%; for a decreasing sequence of Lefschetz
numbers try S'.]

4.4 Homology of chain complexes

As will be anticipated, the axioms for homology can be realized in a variety of
ways depending on the particular topological subcategory that is of interest. Thus,
particular features or extra structure on spaces can be exploited in different ways to
yield equivalent homology theories. For example, simple compact spaces, especially
surfaces, can be dealt with quite efficiently by utilizing families of free abelian groups
generated by simplices of different dimensions. This approach to triangulable spaces
yields simplicial homology and a good text suitable for a first course in it is provided
by Armstrong [2].

At the other extreme, we may have potentially sophisticated spaces with con-
siderable extra structure, such as bundles over differential manifolds. Then it is
convenient to formulate a cohomology theory in terms of free abelian groups gen-
erated by differential forms. This yields de Rham cohomology and an introductory
treatment can be found in Singer and Thorpe [95] or Warner [116]. See Appendix
E for some computational help.
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In both of these examples, and in many others, the construction follows a stan-
dard pattern: use whatever features are convenient to construct a sequence of
abelian groups and homomorphisms that form a chain complez. At each group
there is a unique quotient group determined and it turns out to have the desired
properties for a homology (or a cohomology) theory provided that we have properly
chosen our chain complex. Thus a construction problem is reduced to the synthesis
of appropriate chain complexes. We begin with a study of these entities and fol-
low with examples. Later we shall construct homology and cohomology theories by
much more general methods.

Denote by C a fixed subcategory of the category Ab of abelian groups and group
homomorphisms.

Definition 4.4.1 A C-chain complex is a set

K = {Kp,0m | m € Z}

of objects and morphisms K, LN K1 from C satisfying 8, Omy1 = 0. Each Op,
is called a boundary operator.

Hence, K can be usefully viecwed as a doubly infinite sequence diagram in C

K . . 371 K_l 30 61 82

Ky

K,
with the morphism conditions
im 8,41 C ker 9,

for all m € Z.

As we have remarked, the case where each K is simply an abelian group is basic
to our subject. However, in the sequel we shall study also the case when, for some
fixed commutative ring R with identity, each K, is a module over R. In particular
the rings Z, Z, Q, R, and C should be borne in mind. Of course, the category of
Z-modules can be identified with Ab itself.

Definition 4.4.2 A C-chain map f between two C-chain complezes K and K' is
a set {fm : Ky — K.} of C-morphisms that satisfy, for all m € Z,

6;nfm = fm—lam-

Then by f : K — K' will be understood the commuting diagram

8.1 3] 2] 2]
K< <2k <2
f-1 fo N1
8’— 1 KI a(’) KI 8{ 1 aé
-1 0 Kl
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Theorem 4.4.3 (Category of C-chain complexes) The C-chain complezes and
their C-chain maps with natural composition form a category Chain. O

Definition 4.4.4 The homology H.(K) of a chain complex K is the sequence of

quotient objects
ki
{Hm(K) _ KerOm ‘m € Z}.
im Opmy1

It is fundamental that homology measures the departure of the chain complex from
exactness.

Betti numbers and Euler characteristics of chain complexes are defined as for
spaces. Each of these numbers contains progressively less information about K;
however, it is enough for the solution of several important problems. This is largely
due to the invariance of these numbers under an appropriate equivalence relation
on chain complexes, as we shall see shortly (c¢f. on page 129).

Theorem 4.4.5 (C-chain homology) Every C-chain map f : K — K' deter-
mines a homology map H.(f) consisting of a set of C-morphisms

Ho(f) : Hu(K) — Hp(K') : ¢+ Omt1 Kmt1 ¥ fme+ 00 Kiy

where ¢ € ker 8,,. It follows that for each m we have a covariant functor

K Hum(K)
Hy, :Chain ——C : f| ———> |Hn(f) O
K’ H,(K")

Subsequently we shall be interested in calculating the homology of chain com-
plexes associated with topological spaces. Various choices are usually available for
chain complexes, some geometrical and others more analytical. However, given
some choice, we need to know which chain maps give rise to the same homology
maps; this follows from the algebraic notion of chain homotopy. We shall see later
that the reason for this name is the induction of such algebraic maps by topological
homotopies.

Definition 4.4.6 A C-chain homotopy s between two c-chain maps f,g : K — K’

18 a set
{$m : Km — K;n+1|m €7}

of C-morphisms

-1 8o 15 2]
K——l K() 1 Kl 2
S—1 s
f-1[|9-1 fo| |90 * e 51
§—2
K' K! K
-1
o, 3% 0 g Loog
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satisfying for all m € Z
a;n.HSm +8m-10m = fm — Gm »

and if such a set exists we write s : f ~ g. A C-chain complex K is called chain
contractible if there is a chain homotopy from the identity 1k to the zero chain
map on K.

Theorem 4.4.7 (Chain contractibility) A chain complex K composed of free
abelian groups (a free chain complex) is chain contractible if and only if it has
trivial homology (then we say it is acyclic).

Proof: Suppose we have a chain homotopy s : 1 ~ 0; then (Vm € Z)
6m+13m +8m-10m =1-0=1,

ker 0y,

Now, if 0, (z) = 0, then dmy18m(z) =z, s0 ¢ € iMmOpp41 and ker 8y, C im OG-
But 8,,0m+1 = 0 s0 im 9,41 C kerd,, and for all m € Z,

Hn(K)=0.

Conversely, if for all m € Z
ker@m =im 8m+1 y

then we define

0 if Oz #0,

S’”:K'"——)K"’“:“_’{yz i Oz = 0,

where O 11y = 2.
Hence, for any = € K,,, either 9,,z = 0, when
(Om+15m + Sm-10m)(z) = =,
or O,z = z # 0, when
(Om+1Sm + Sm-102)(T) = sm—1(2) = .

If also O’ = Oz # 0, then (z — z') € kerd,,,; but, since neither z nor ' is in
ker Op,, it follows that z = z’. Hence s is well defined and also a chain homotopy.
|

Theorem 4.4.8 (Chain homotopy invariance) Chain homotopic maps induce
the same maps in homology:

s:f~g= H.(f)=H.(g). O
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Ex on chain homotopy Observe that s gives commuting diagonal maps in the
diagram of commuting squares generated by f and g.

The functorial property of H, on morphisms preserves isomorphisms, but we see
next that in order to have isomorphisms in homology it is sufficient to have chain
complexes equivalent up to chain homotopy.

Theorem 4.4.9 (Chain homotopy equivalence) If f: K —» K' and h : K' —
K satisfy fh ~ 1g and hf ~ 1k, then H.(f) and H.(h) consist of isomorphisms
inC. a

Corollary 4.4.10 Chain homotopy equivalent chain complezes have the same Betti
numbers, and hence the same Euler characteristic (when defined). (Cf. page 84,
page 117, and page 162.) 0O

Just as the theory of vector spaces is enriched by the study of dual spaces, so
also is homology theory augmented by its dual, cohomology. The dual to a vector
space is the usual vector space of scalar-valued linear maps on the first space. For
a chain complex K of R-modules, the natural choice of dual uses R-valued module
homomorphisms on the K,,; that is, Homg(K,,, R). However, we can obtain useful
flexibility by working more generally with Homg (K, G) where G is an arbitrary R-
module. We note that Hompg (K, G) is an abelian group and indeed an R-module
if R is commutative. More generally still, we can work with the abelian groups
Hom(K,,,G) when K,, and G are objects from C, our fixed subcategory of Ab.

Ex on Hom

1. Hompg(A, ) is a functor and Homg( , B) is a cofunctor.
2. Homg(®A;, B) = [[Hom(A;, B) and Homg(A, [ B:) = [[ Hom(A, B;).
3. Homyz(Z,Z,) = Zs.

4. There is a short exact sequence of abelian groups

0 7z-2>7-Y>17, 0

where ¢ : k — 2k and ¢ : 2k — 0. One may deduce that Hompg( , R) does not
preserve exact sequences by investigating exactness in

0 ~— Homz(Z, Zy) <2 Homy(Z, Zs) ~2— Homg(Za, Zi2) <— 0.

5. For any abelian group G, show that there is an isomorphism

Hom(Z,G) — G :ar— a(l).
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6. For any m,n € N, show that there is a homomorphism
Hom(Zym, Zn) — Zp, : @ —> (1)
which induces an isomorphism
Hom(Zm, Zn) = Z(m,n)

where (m,n) denotes the greatest common division of m and n.

Definition 4.4.11 Given a C-chain complex K = {K,,,0m | m € Z} and a fized
object G in C we define the C-cochain complex K* of K with coefficients in
G to be
(Hom(K,G),8) = {K™, 6™ | m € Z}
where for each m, K™ = Hom(K,,,G) and
0™ = Hom(9m+1,16) : K™ — K™ f— foOmtr-

Km < Om 1 K’m+1
f ()

/
G

Theorem 4.4.12 (Coboundary operators) The 6™ are C-morphisms satisfying
the condition

gmrlgm = 0.
The 8™ are called the coboundary operators. 0

Definition 4.4.13 The cohomology H*(K;G) of the C-cochain complex K with
coefficients in G is the set of C-objects

ker 6™
The notation H™(K;G) = H™(Hom(K,G)) is also used. When G = Z it is fre-
quently suppressed: H™(K) = H™(K;Z).

A C-chain complex is equivalently defined as a graded C-object {K,,|m € Z}
with a differential 0 of degree —1 called the boundary operator. Then a C-
cochain complex is a graded C-object with a differential & of degree +1 called the
coboundary operator.

Every such cochain complex determines a unique chain complex by changing
m to —m in its indexing set. By this device, we obtain the notions of cochain
map, cochain category, and cochain homotopy with properties dual to those arising
from chains. Then for each m, H™( ;G) is a cofunctor. The cohomology of a
cochain complex is the homology of its associated chain complex. However, it turns
out that cohomology is in fact richer in structure than homology by possessing a
natural product, so we shall have cohomology rings. This, for example, will allow
us to distinguish between S* x S2 and CP? although they have the same homology
and cohomology groups.
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Ex on Betti numbers for cohomology Betti numbers and the Euler charac-
teristic are defined similarly for cohomology. The Euler characteristic is the same
in both cases.

The following terminology is standard for any C-chain complex
K={Kn,0n|meZ};

elements of Z,,(K) = kerd,, C K,, are called m-cycles; elements of B,,(K) =
im 41 C K,y are called m-boundaries; two m-cycles in the same homology class
are called homologous if and only if they differ by an m-boundary.

Correspondingly, for any C-cochain complex, we have its m-cocycles and m-
coboundaries. However, in de Rham cohomology an older terminology has per-
sisted: m-cocycles are called closed m-forms and m-coboundaries are called exact
m-forms ; we return to this later (page 167 et seq.).

A technique for constructing homology and cohomology theories is now clear
enough. We need an appropriate C-chain complex to utilize its homology, so ensur-
ing functoriality. The appropriate topological homotopies must be shown to induce
chain homotopies. We can often establish the required exactness property from the
following result.

Theorem 4.4.14 (Short exact sequence functor) There is a covariant func-
tor from the category of short exact sequences of C-chain complexes to the category
of (long) exact sequences of groups. It sends each diagram

0 A-—Jtsp-*.¢ 0
0 A~ B —> (' 0
g

commuting in Chain with exact rows, to the commutative homology diagram with
exact rows 4

D> Ho(A) —£> H,(B) —2> H,(C) %> Hpy (A) —> -

a.[ B Ot*j

o Hal(A) = Ha(BY) = Ho(C') —5= Ha () — -+

T

Proof: The crucial map 0 is called the connecting morphism and is defined by
Ou : Hy(C) — Hpo1(A) @ [2] —> [z.],

where the exactness in the chain rows is exploited by putting z = ¢g(d) for some
d € B (since g is surjective) and 0,d = fz, for the unique z, € A (since f is
injective). Of course, f, in the diagram simply abbreviates H,(f), etc. 0O
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Ex on chain complexes

1. Any abelian group G determines a trivial chain complex with K,,, = G and
O, = 0 for all m € Z. Hence, given any finite diagram

83 .. 8"

Ko o K, i K, K,

in Ab with 8,,0,,+1 = 0, we can extend it to be a chain complex with K, =0
and 8,, = 0 outside the given diagram.

2. Ab is isomorphic to the category of Z-modules.
3. C-chain complexes and C-chain maps form a category.

4. Given a sequence {Gp, | m € Z} of abelian groups, does there always exist a
chain complex K with homology H,,(K) = G, for all m € Z?

5. Write out enough details to define C-cochain maps, the category of C-cochains
and C-cochain homotopy, listing explicitly the properties dual to those found
for chain complexes.

6. A chain complex is an exact sequence if and only if it has trivial homology.

7. Formulate a definition for exactness of a sequence of C-chain complexes and
show that short exact sequences of C-chain complexes form a category.

8. Verify the exactness of the homology sequence arising from a short exact
sequence of chain complexes.

We saw above that cohomology H™(K';G) is defined with the cochain complex
{K™,é™}, where K™ = Hom(K,,G) and 6™ = Hom(8,,+1, L), constructed from
the chain complex {K,,,Om}. The use of Hom means that there is a natural pairing

() HY(K;G)® Hpo(K) — G
with respect to which § and 0 are adjoints:
(6u, p) = (u,0p).

This pairing is called the Kronecker product (formerly, index). In terms of a
representative cocycle u € Hom(K,,,G) and a representative cycle v € K,,,

([u], [v]) = u(v) € G.

Ex on Kronecker product (,) is a well-defined pairing on H™(K;G)® H,(K):
that is, the element obtained in G does not depend on the choice of representatives.
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4.4.1 Universal coefficient theorems

The Kronecker product appears in one of several Universal Coefficient Theorems,
which name indicates that knowledge of ordinary (co)homology with integer coef-
ficients suffices to determine ordinary (co)homology with any coefficient group G.
In the literature, it is most common simply to cite ‘a UCT’ and to leave the reader
to decide precisely which one is being used. We now consider a few of the simplest,
one of which is generally adequate.

Theorem 4.4.15 (Universal coefficient theorem 1) There is a natural short
ezact sequence

0 — Ext(Hm-1(K),G) — H™(K;G) 5 Hom(Hnm(K),G) — 0,

where (,) denotes the Kronecker product, which splits but unnaturally.

Proof: Ext(, ) is the extension functor defined as follows. Let A and B be
abelian groups and consider a free resolution of A

0—R—F-—A—0.

That is, a short exact sequence in which F' is free and R stands for the relations,
so that A = F//R. Then we define

Ext(A, B) = coker (Hom(F, B) — Hom(R, B)) = Hom(R, B)/im Hom(F, B),

so that Ext( ,B) measures the failure of Hom( , B) to be exact. Scc Gray [38,
Sect. 25] for more details or Vick [114] for hints. )

Here are some important properties of Ext.

Ex on the extension functor Ext

1. Ext(A, B) = 0if A is free or if B is divisible. We recall that B is divisible if
and only if uB = B for every integer u > 1.

2. The field of rationals is divisible as an abelian group, as is

Zpeo = lim Zupn

n—0o0

where p is any prime. B is divisible if it is a direct sum of various Z,~ and
copies of the rationals Q. It follows that R and C are divisible.

3. Ext(Zyp,Zg) = Z(p,q) where (, ) denotes the greatest common divisor. More
generally, Ext(Z,, B} = B/pB.

4. Ext(®;A;, B) = II, Ext(A;, B). It may be helpful to recall that for finite
collections, direct sum @ and direct product II coincide.
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5. Ext(A,II; B;) = II,; Ext(A, B;).

6. Ext{A, B) is the group of all equivalence classes of extensions of A by B;
that is, of all classes of short exact sequences

0—B—>C—A—0

with the group operation derived from direct sum and the equivalence relation
from the 5-lemma.

7. Always, H'(K) = H;(K) and H(K;G) = Hom(H; (K),G).
Theorem 4.4.16 (Universal coefficient theorem 2) If each H™(K) is finitely
generated or if G is finitely generated, then there is a natural short exact sequence
0— H"(K)®G — H™(K;G) — Tor(H™"'(K),G) — 0,

which splits, but unnaturally. If instead each H,,(K) is finitely generated or if G is
finitely generated, then there is a natural short exact sequence

0 — Tor(Hp—1(K),G) — Hp(K;G) — Hyp(K)®G — 0,
which splits, but unnaturally.

Proof: Here Tor(, ) is the torsion functor, and Tor( , B) similarly measures the
failure of ® B to be exact. Thus, if

0—R—F—>A—00
is a free resolution as before, then
Tor(A,B) =ker(R® B— F ® B).
For further details see Gray [38] or Vick [114]. 0

We present the companion list of properties of Tor.

Ex on the torsion functor Tor
1. Tor(A, B) = Tor(B, A).
Tor(A, B) = 0 if either A or B is free.
Tor(Zp, Zy) = Zyp,q) where (p,q) denotes the greatest common divisor of p, g.

More generally, Tor(Z,, B) = {b € B|pb = 0}.

A

Tor commutes with direct sums:
Tor(, ) = & Tor( , )
Tor( ,®) = @ Tor( , ).
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In general, Tor is much easier to calculate than Ext; of course, Ext is more important
in abstract homological algebra. One other place where Tor is needed, however, is
the Klinneth formula for the (co)homology of a product.

Theorem 4.4.17 (Kiinneth formula) If K and K’ are free C-chain complezes,
then

Hy(K®K')= > Hy(K)®Hy(K') ® Y Tor(H.(K),Hi(K")).

p+g=n r+s=n—1

See Vick [114, pp. 98-102] for a proof.

Ex Write down the version for cohomology: just raise the indices.

4.5 Homology and cohomology of C'W-complexes

As we have anticipated earlier, the CW-decomposition of a space does indeed allow
a simple calculation of ordinary homology and cohomology groups (c¢f. Lundell and
Weingram [64]). The basic free abelian groups are generated by the m-cells, as we
might have hoped; hence they arc found with much less work than will be the case
for simplicial complexes. The family of boundary homomorphisms depends on the
isomorphism 7, (S™, s9) = Z, to incorporate the degree of a map into a formal sum
of generators. Now we use the homotopy group ,(S™) of a sphere S™ to redefine
degree in a way that makes it directly available to index the boundaries of cells via
their attaching maps.

The role of the integer degree for cells corresponds to some extent with the
use of an integer from Z, to indicate the orientation of a simplex. We summarize
the construction, then compute the homology of some familiar spaces. Given a
C'W-complex structure

{easXa | a € J}

on a Top space X, denote by C,,(X) the free abelian group generated by
Jm = {a € J | e4 is an m-cell}

for m € Z. Observe Cp,(X) = 0 for m < 0. For each m € Z we define, by linearity
over generators,

Om : C(X) — Cruoy (X) sa— > deg(hg)B.
BEIm -1

Here,
hg3 : (™1 50) — (S™71, 50)

is obtained from the restriction of the attaching map

Xa : (B™, 8™ 50) — (X™, X™ 1, o)
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to the boundary é,, which we shall use via the homeomorphism é, = S™1:

M 1
gm-1 —— s gm

Xm-l IBm-l/ Sm—2

where, with é3 denoting the interior of eg,

Xm-—l

Xm—l —
mel \éﬂ

o~ ]Bm—l/ Sm_2

and we have omitted basepoints. In the diagram, X™ ! denotes the (m—1)-skeleton
of X, the union of cells with dimension not exceeding (m—1), and X™ = @ if m < 0;
finally, for all m > 1,

deg(h3) = [h3] € Z = w1 (S™Y).

Ex Repeat the Ex on degree (page 120) as much as possible. In particular, find
the degree of your favorite maps on spheres, including

deg(homeo) = 1, deg(const) =0.

We recall that for any CW-complex, the adjacent skeletons are related by
xm/xmlte \/ §™.
a€Jm

Definition 4.5.1 A homology theory H, is said to satisfy the wedge azxiom if
inclusions

Yoo \/ Yup inTop’
nEM

induce isomorphisms on H, for allm € Z:
P Ha(Y) =Hn | \/ V.
nEM ueM

Evidently, if we wish to have coefficients in a group G then we can replace Cp, (X)
by Cm(X)®G and d,, by 8,, ® 1. The properties are summarized in the following.

Theorem 4.5.2 (Natural wedge equivalence) We have:

1. {Cn(X)®G,0m ®1|me€ L} is a chain complez C.(X) @ G.
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2. The homology of C.(X) ®G is naturally equivalent to any ordinary homology
theory H, with coefficients G that satisfies the wedge aziom.
3. The natural equivalence of homology arises from a natural equivalence
Hp(X™/X™ ) 5 Cph(X)®G,
Hy(X™/X™ ) =0 ifk#m.

4. Hp(X™) > Hnp(X) is an epimorphism and Hy(X™) — Hi(X) is an iso-
morphism for k < m.

5. Bvery cellular map f: X =Y in CW* induces a map

frm i C(X) — C(Y) rar— Y deg(f5)7,

veJn,
where f : S™ — S™ is the composite of quotient maps induced by f:

52
s™ s™

o

XT(X™\ €a)

Y™/(Y™\éy)
and hence a corresponding homomorphism in homology.

Proof: Switzer [106], pp.174-180, and Lundell and Weingram [64], pp.148-151.
O

[n the construction of 8,, above, the degree isomorphism actually provides an in-
dexing of how the boundary, é, = S™™!, of each m-cell e, is ‘stretched’ across each
(m —I)-cell in the (m — l)-skeleton. Similarly, we obtain each f,, by an indexing of
the behavior of a cellular map between spaces.

Next we offer some practice to bring this and other features home. Just as in
physics every new quantum theory development is illustrated on (and sometimes
only on!) the poor old harmonic oscillator, so we rediscover again the hole in a
circle as the first exercise. Actually, this is an entirely proper state of affairs in
both physics and mathematics because of the fundamental importance of the two
examples. Indeed, the circle is the first nontrivial topological space as distinct
from set, and the exponential function is by far the most important function in all
mathematics.
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X! =SS!

X =X?

Figure 4.2: S! x S! as a CW-complex with 1-skeleton S§! v §?

Ex on computing homology of CW-complexes

1. The circle S! admits a CW-complex structure {e°,el;xo,x1} with attaching
maps:
x?:BY — ST el 5

x': (B!,S°s9) — (S, 80) : ¢ — cos 7wz + isin7z.

Evidently Co(S!) = Z = C;(S'), and otherwise Cx(S!) = 0. Now, kerdy =
Co(S?) and im8; = 0. Hence Hy(S') = Z. Next,

ker0; = {a € C(S) | degh® =0} = C;(S") = Z
and im 0y = 0; hence

Hi(S)=Z and Hi(S')=0 fork>1.
2. The torus X = S! x S! admits a CW-complex structure
(% er, ez, €% x°% X1, X2, X7}

which corresponds with our usual plane rectangular representation with edge
identifications. The 2-skeleton X? is the whole space and X! is the one point
union of two circles.

kerdp = Co(X)=Z and imd =0 so Ho(X)=7Z.

Ci(X)Z2Z®Z so kerdy ={(\p) €ZDZ|Adegh, + pdeghs =0}

where the pointed maps hi, hs : S — S° are induced by x! and x3, respec-
tively. But h; and hs have degree zero since they are constant, so

keroy =Z S Z.
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im 8, 2 {(Adegh?, ndegh3) €EZDZ |\, p € L}
where h? and h2 are the maps making the following diagram commutative:

2
h2 h3

é2ESI

Sl

é2 ESI

x? = x2

X! =S§lysl—=S'V{so} =2B!/S%= {5} VS «—— x! = §lys!

Now, both h? and hZ wrap the boundary of e? twice round their image space
S!, once forward and once backward; therefore they both have degree zero.
Hence H1(X) 2 Z S Z.

Also, Hy(X) = Z because
imf3 =0 = H2(X) = ker 0, - CQ(X) ~7

and
ker 8, = {\ € Z | Mdegh? + degh2) =0} = 7Z.

In fact, these computations extend easily to S™ and to S™ x S* because of the
simple way that the cells are attached together in these spaces. The wedge
axiom itself deals with SV S*.

3. The real projective plane RP? admits a CW-complex structure
{e% el %X X! X} -

Here the 1-skeleton is homeomorphic to S'.  As before, we get Hy(X) = Z
and C1(X) = Z.

Now, however, x! induces h; : S° = S° and so
kerdy ={A€Z|Adeghy =0} =Z.

Also
im8; = {Adeghs | A € Z}

where hy is given by

. hao
62 o~ Sl _—)Sl

St= X! X!

But ho wraps the boundary of e? twice round X! = S! so deg h, = 2. Hence

imd, = {2\ | A € Z}
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Figure 4.3: Projective plane as a CW-complex with 1-skeleton S?

SO

H\(X)X7Z,.
kerdy 2 {N € Z|Adegho =0} ={A€Z]|2X=0}=0.
Hence Hy(X) = 0.
4. Compute H.(S?) and H,(Klein bottle); then compute H,(S™) for n > 2.

We collect these elementary results and others in Table 4.1; it is customary to denote
the direct sum of k copies of Z by kZ. In each case here the space is connected (so
Hy = 7)), and unless indicated otherwise the top homology group is also = Z.

Ex Verify as many as possible. [Hints: For S"xS™, recall how S*VS§™ «» S"xS§™;
we suggest you start with S x S? and note that S! = B1/S° For the projective
spaces, you will need the attaching maps.]

In our preliminary deductions from the axioms, we showed that the following
C'W-complex situations induce isomorphisms in homology:

(i) inclusion of a relative CW-complex:
(A,ANB)— (AUB,B);
(ii) projection onto a quotient by a subcomplex:

(X, 4) — (X/A, ).
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Space CW-cells Nontrivial H;(X;Z),k >0
R™ en H,=0

B” el en1 en H,=0

Nig el e” H,~Z

Srvsm e, em e™ Hy = Hi(S™) & Hi(S™)
S®x §” e, e, e, entn H,27&7

S*x 8™ n#m el e, e™, entm H,=H, =7

RP2" el el,. .. e Hy, =0, Hypy1 =79, 0<k<n
RP2 ! el el, ... entl Hypo1 =27y, 0<k<n
CP™ el e? et ... e Hy=7,1<k<n

HP™ el et e8,. .., el" Hy=27Z,1<k<n

Klein bottle e, el el e? H =27Z®7Zy Hy=0
orientable p-surface elelel, ..., e%p, e? | Hy =2pZ

nonorientable p-surface | €% el el ..., e%p, e | H1 =2 (p—-1)Z®Zo Hy =0

Table 4.1: Homology of some simple spaces

In these, (ii) is a special case of the property enjoyed by all cofibrations, and both
extend to cohomology theories (¢f. Maunder [68], p. 314, for the cohomology version
of (i)).

Since we obtain cohomology with coeflicients G as the homology of a dualized
chain complex, we do not expect to gain any new information except via the product
in cohomology. See sections 5.3 and 5.11 for details about the cup product.

We have claimed that homology gives a useful approximation to homotopy
groups. The following theorem shows that the approximation is excellent—as far
as it goes!

Theorem 4.5.3 (Hurewicz isomorphism) If X is an (n — 1)-connected space
for some n > 2 and H, is ordinary homology theory, then there is a homomorphism

an isomorphism for m <mn,

hom = 7 (X) — Hin (X5 2) { an epimorphism for m =n + 1.

If X is path-connected, then there is an epimorphism
h1 : 7T1(X) —> Hl(X,Z) .

We shall indicate a proof via spectral sequences in Section 6.3, beginning on page
197; see also Switzer [106], p. 185, or Maunder [68], p. 323.
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Corollary 4.5.4 For path-connected spaces, the homomorphism hy induces an iso-
morphism
1 (X)/ker}n = HI(X, Z)
with ker hy the commutator subgroup of m1(X), so Hi(X;Z) is m1(X) abelianized.
O



Chapter 5

Examples in Homology and
Cohomology

Proceed, proceed. We will begin these rites,
As we do trust they’ll end in true delights.
—Shakespeare, As You Like It.

In this chapter we outline the construction of a number of frequently occurring
theories. As pointed out before, going from a chain complex to homology and
the dual situation of going from a cochain complex to cohomology are automatic
steps; it is in the construction of the chain and cochain complexes that there is
freedom. Also, it is in the nature of things that the infinite cyclic group Z should
have a prominent place aside from its role in the UCT; in the absence of other
constraints we can most conveniently form chain and cochain complexes from free
abelian groups.

In the sequel we shall see that sometimes a problem can be solved by means of
a homology theory simplified by using chain complexes of modules over Z, instead
of free abelian groups which are modules over Z. In other cases a considerable gain
is made by using chain complexes of modules over R, which are simply real vector
spaces, for that permits the use of powerful theorems from linear algebra. Usually
a homology theory arises from natural classes of entities, typically from classes of
simplices with common dimension. Correspondingly, a cohomology theory often
arises from homomorphisms defined on free abelian groups, or modules. We shall
see several such cases in the ensuing examples.

Actually, geometric simplicial complexes have wider application than might at
first be anticipated. For, if we distill out their essential algebra that is needed to
construct a chain complex, then we obtain an abstraction which admits applica-
tion when no geometric interpretation is available. This is exemplified by Cech
homology and cohomology where the basic building blocks are abstract simplices

143
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whose ‘vertices’ are sets from an open cover. In order that these essential algebraic
ingredients of simplices can be identified in particular cases we make:

Definition 5.0.1 An abstract simplicial complex K is a pair (V,S), where V
15 a set of elements called vertices of K and S is a collection of finite nonempty
subsets of V called simplices of K, satisfying

(i) U{o | 0 € S} =V (covering property),
(i) 2 #~vCo€S=~v€S (face-saving property).

If 0 € S contains (m + 1) vertices then we say o is an m-simplez.

Ex on abstract simplicial complexes

1. If (V,S) is an abstract simplicial complex with V a finite set, then it always
can be realized as a geometric simplicial complex (¢f. Hocking and Young
[46], p. 213).

2. If X is a space in Top, for example a compact Hausdorfl space, then every
open cover U of X has a (locally) finite subcover Vyy = {U;,Us, ..., Ui} which
defines an abstract simplicial complex (Vy7, Sy) where

0€Sy+o={U |1=0,1,2,...,m}

with -, U, # @, for some m > 0.

In the next few sections we summarize some common theories and give some
notes on their construction. These summaries give the simplest case for each theory,
namely the absolute one. In the sequel, we shall encounter generalized theories
arising from spectra.

5.1 Cubical singular homology

Generators: Continuous maps c¢: I™ — X generate Q.,, for m > 0.
Boundary operation:

m
dc=> (-1)' (42 oc— ¢} oc)
i=1
with @7 o c(z) = ¢(z!, -+, zt L, ryzitl .. gm—l,
Chain group:
Cm(X) = Qm /Dm
where D, is the set of ¢ for which ¢(z) is independent of coordinate z* for some
k <m.
Morphisms: Continuous f : X — Y give f, via foec.
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Definition 5.1.1 A singular m-cube (for a non-negative integer m) in a topo-
logical space X is a continuous map

e:I™— X : (g4, 22,...,2™) = c(at, ..., ™)

where 1° = {0} and I™ = [0,1]™ C R™. Such a c is called degenerate if there

exists k with 1 < k < m such that c(z',22,...,2™) does not depend on z*; we

throw these away algebraically.

Denote by Qm(X) the free abelian group generated by the set of all singular
m-cubes in X and let D,,(X) be the subgroup generated by degenerate m-cubes in
X. We define the quotient group, Qum(X)/Dm(X) = Cr(X), to be the group of
cubical singular m-chains in X, with C,, =0 for m < 0.

We can easily make C,,(X) a module over any ring R and so, to obtain a chain
complex, we need to construct a boundary operator 3,,. This is achieved in terms
of the following face operators.

Definition 5.1.2 For each k=1,2,...,m > 0 and g = 0,1 we define
¢ 1 Qm(X) — Qm-1(X) :cr— ¢foc
by putting
ploc(zt,...,a™ ) = (..., 2¥ "t g, 2", 2™,
We call ¢} o c the front k-face of c and ¢}, o ¢ the back k-face of c.

Theorem 5.1.3 (Cubical boundary operator) For eachm > 0 there is a group
homomorphism

szm( )_'>Qm1 Z (¢koc_¢k°c) O

Corollary 5.1.4 Since d,, preserves degeneracy, it follows that it induces a group
homomorphism on the quotients and we obtain

Om : O (X) — Cpp1 (X))
and Om—10,m = 0. O
Theorem 5.1.5 (Cubical singular chain complex) For any Top space X,
{Crn(X),0m |MmEZL} with Cp(X)=0 for m<O0,

is a chain complex of abelian groups called the cubical singular chain complex
of X. BEvery continuous map f: X — Y determines a unique homomorphism

Qm(X) — Qum(Y):c— foc
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for eachm = 0,1,2,.... Since this preserves degeneracy, it determines a chain map
fi :{Cr(X)} — {Cn(Y)}

and hence also homomorphisms of quotients

ker 8,,

fo = {Hn(X) I Ho (V) | m € 2} where Hp(X) = ——™
im O 41

There is a covariant functor of degree O into the category of graded abelian groups

X {Hm(X)|meZ}
H:Top— -~ GrAb: f| ——— H(f)
Y {Hn(Y) | m € Z}

which gives rise to cubical singular homology theory (H.,0.) on Top, with O.
wnduced by the Op,. 0

There is, of course, considerable work in proving this by checking the axioms. We
turn to extending our theory to Topp.

Theorem 5.1.6 (Relative cubical singular homology) There is a covariant
functor, also denoted by H,

(X, 4) {Hn(X, 4) | m € Z.)
H:Topp— s GrAb: f| ——— H(f)
(Y, B) {Hm(Y,B) | m € Z}

agreeing with the previous one on Top.

Proof: We outline the steps.

(i) Given (X, A) with A <> X in Top, then iy : Cp(A) = O (X) is well defined
and monic so Cp, (X, A) = Cph(X)/Crn(A) is well defined in Ab.

(ii) Since 8, Cm(A) C Cpy—1(A), it extends to a homomorphism
Om : C(X,A) — Cpe1 (X, A)
and {Cp,(X, A),0,, | m € Z} is a chain complex of abelian groups.
(iii) Define Ho(X, A) = Co(X,A)/imdy, Hn(X, A) = ker 8,,/im 041 for m # 0.
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(iv) Given f:(X,A) = (Y, B) in Topp then we have
fi={Cm(X) — Cn(Y) [m e Z}
and, since fA C B,
(Fla)g = {Cm(A) — Cn(B) | m € Z}
as chain maps.- Hence there is an extension to the chain of quotients
{Cn(X,A) — Cp,(Y,B) | m € Z}
and therefore a well-defined homomorphism in homology

fo = {Hm(X,A) — Hp,(Y,B)|m € Z} . 0

From the foregoing construction we obtain on Topp the relative cubical singu-
lar homology theory, usually also denoted (H.,d.). We observe that, from the
construction of the chain complexes, we always have

Hpn(X)=0= Hp(X,A) for m<O0.

Again the notation
Zm(X,A) =ker O,

Bm(X, A) = im 8y

is standard and conveniently keeps the underlying spaces in view.

5.2 Simplicial singular homology

Generators: Continuous maps A : A™ — X, where A™ is the standard m-simplex,
generate A,.
Boundary operation:

OA = Apam
Chain group:
Sm(X)=An, m>0; S,(X)=0, m<0.
Morphisms: Continuous f: X — Y give f, via fo .
Definition 5.2.1 The standard m-simplex A™ in R™+! is the set
(€0, ---,em) where e = (1,0,...,0),e; =(0,1,0,...,0),e2 = (0,0,1,...,0),....

Thus A™ 1is a closed, convex m-dimensional subset of R™.
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A singular m-simplex in a topological space X is a continuous map
AAT — X

We denote by (Xeg, ..., Aen) its image and by S (X) the free abelian group gener-
ated by all the singular m-simplices in X, with Sy, (X) =0 for m < 0.

Then O : Sm(X) = Sm—1(X), the boundary operator, is the homomorphism
defined on generators by

Om : (Aeo, .., Aem) —> > _(=1)"(Xeo, ..., Aér, .., Aem)

r=0
where &, denotes omission of verter e,. [Those familiar with the exterior derivative
should recognize this pattern.]

Theorem 5.2.2 (Simplicial singular chain complex) The set
S(X) = {Sm(X), 0 |meZ}

is a chain complex of abelian groups, called the (simplicial) singular chain com-
plex of X. O

We can now construct a functor Top — GrAb by sending spaces to the homology
groups of these chain complexes and by sending continuous maps f : X — Y to
homomorphisms

fo : {Hm(X)} = {Hn(Y)}

arising from the chain maps

A™ A™
fm i Sm(X) ——= S (Y) : o ——— |foo
X Y

Then, as for the cubical case, we can extend the functor to Topp by considering the
chain complex of quotients

S(X, A) = Sm(X)/Sm(A) .

In this way we obtain (simplicial) singular homology and relative (simplicial)
homology. As might be suspected no new information is gained; we obtain groups
that are isomorphic to those for corresponding cases in cubical theory. The latter
theory is, however, more convenient when relating homology groups and higher
homotopy groups.

We leave the proofs of the next few results as exercises.

Theorem 5.2.3 (Homology of contractible spaces)
Z forn=0,
Hp(x) = { J

0 otherwise.
Thus this is an ordinary theory with coefficients Z.



5.2. SIMPLICIAL SINGULAR HOMOLOGY 149
Ex Calculate H,(S™) again.

Clearly a singleton space is topologically trivial, but is not a trivial set: it is
nonempty. Thus it is Hy which is the obstruction to vacuity, entirely proper from
the algebraic point of view. However, from the point of view of applications, sin-
gletons may create only pathological interest. Thus we may conveniently factor out
from homology this indicator of nonemptiness, obtaining reduced homology H,:

ﬁn = H, except ﬁo ®7Z=H,.

In order to achieve this as a homology theory (I~{*, 5) in its own right, we introduce
the reduced chain complex S:

S, =S, except So®Z=So.

Theorem 5.2.4 (Reduced homology)  Using the appropriate definition for d,
(H.,0) is a homology theory. 0

Theorem 5.2.5 (Long exact homology sequence) Given
(X, 4) 5 (¥, B)
in Topp with induced '
S(A) = S(X) L (X, A)
in Chain, there is a short ezact sequence
0 — S(A) & S(X) L S(X,A4) — 0.

Then the exactness theorem for chain complezxes yields the exact sequence in homol-
ogy and there is the following commutative diagram with exact rows

.._>Hn(A)L>Hn(X)_j*>Hn(X’A)L, o1 (A) —— -

-+ ——> H,(B) 7 H,(Y) 7 H,(Y,B) Hn, 1(B) —— -

*

8,
There 1s a corresponding diagram for reduced homology. O

Corollary 5.2.6 Given any x € X, then X — (X, {z}) determines an exact ho-
mology sequence. Since Hp({z}) = 0 for all n, it follows that

FIn(X) = Hyp(X,{z}) for alln,
because the exact sequence breaks up into pieces like

0 — H,({z}) — Hn(X,{z}) — 0. O
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5.3 Cup product

We shall now construct the cup product. As mentioned earlier, the presence of
products in cohomology provides an additional source of information, helping us to
distinguish between otherwise similar spaces (page 130).

First, we need to be able to view the (singular) faces of a singular m-simplex.
Define the inclusion opposite the ;th vertex, 1 <i<m+1,

G AT e A (g, x) — (20,50, Tn)

where the new 0 occurs in the i** coordinate position. For convenience, we shall
indicate k-fold composition via

Liy-wvige = big ©@ljy OO Lg, .
Now, for a singular m-simplex A : AP*?9 — X define the front p-face

pPA= A0 Lpi1pig
and the back ¢-face
Ag=A0tlg.p.

These may now be used together with the Kronecker product (or pairing) to define
the internal or cup product of a p-cocycle u and a g-cocycle v:

(uv, A) = (WU v, A) = (=1)P9{u, pA) (v, Ag) .

This makes sense for integer coeflicients, of course, but also more generally whenever
the coeflicients are a ring R regarded as a Z-module.

Ex on cup product in cohomology

1. The product on cochains passes to cohomology to define the internal or cup
product on cohomology, that is

d(uUv) =duUv+ (-1)PuUdv.

2. Show fI*(S";R) is a trivial ring for all n > 1. More generally, this holds for
any suspension SX.

3. Let p be a prime and consider the coefficient ses 0 = Z, = Z,2 =+ Z, = 0
with Bockstein 3 (¢f. page 111). Then 88 = 0 and S(vUv) = B(u) Uv +
(-=1)"u U B(v) for u,v € H"( ;Z,). When p = 2, then 8 : H( ;Z,) —
H2(;Zp) : u v u?,

4. Try some calculations with coefficients in Z,.

See also section 5.11.

Henceforth, we shall normally consider only cohomology with coefficients in
a ring (or sheaf of rings). Geometrically, this cohomology product corresponds
roughly to the product of cells. In particular cases, the correspondence may be
quite precise.
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Ex on cohomology of simple products

1. H*(S™x 8™; Z) has generators (as a ring) 1, the O-cell, e, the n-cell, e, the
m-cell, and the product e, Ue,, = enen,, the (n+ m)-cell which is the product
of the n-cell and the m-cell. Thus

Z,k=0nm,n+m
k n m, ~ ) y fby ) )
HY(S" x 8™ 2) = {O otherwise.
If n = m, we naturally get Z & Z at k = n = m. Compare this with the trivial
ring structure for SV §™ v §*™,

2. Investigate H*(CP™;Z) and H*(RP"; Z,).

5.4 Geometric simplicial homology

We defined geometric simplicial complexes in the previous chapter and saw how
useful they could be for computing fundamental groups of triangulable spaces. They
give also an intuitively appealing homology theory which reflects well its role as a
‘hole-ology’ theory. For this we need to use oriented simplices so that we can
incorporate them in an abelian group structure.

An orientation for a simplex is just a choice of ordering of its vertices; two
choices are called equivalent orientations if they differ by an even permutation
of the vertices. It follows that there are just two equivalence classes under this
relation for simplices of dimension greater than zero; so there are two choices for
the orientation of such simplices.

Ex The choice of an orientation for a simplex ¢ induces an orientation on each of
its faces and 8(—0) = —do; check this for o = A3.

Generators: Oriented m-simplices ¢ = (vp,...,vn) in a simplicial complex K
yield a free abelian group A,,.
Boundary operation:

do = Z(—l)i(vo, ey Uiy ey Um)

Chain group:
Sm(X) =Apn, m2>0; Sm(X) =0, m<0.

Morphisms: Continuous f : |[K| — |L| between polyhedra give f. via the Sim-
plicial Approximation Theorem.

Recall that a geometric simplicial complex K is a locally finite set of (hence-
forth, oriented) simplices, all contained in some R", satisfying the conditions:
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(i) if 74 is a face of o, € K, then 74 € K
(ii) if 7,0m € K then 74 N oy, is empty or it is a common face of 7 and oyy.
Note that our simplices are closed; if we had used open ones then we would require
TN Z2C <> Tp=0m,.

A face of an m-simplex oy, is the subspace simplex generated by any subset of
the vertices of o,,.

The dimension of an m-simplex is m, in agreement with affine geometry. The
dimension of K is the maximum of the dimensions of its simplices. A subcomplex
of K is a subset L C K satisfying (i), and hence (ii).

If o,, € K, then the set &, of faces of o, is a simplicial complex and the set &,,
of proper faces of o, is a simplicial complex. For each r > 0, the r-skeleton K"
is the subcomplex of K consisting of all oriented simplices of dimension at most 7.
The star stx (o) of a simplex in K is the union of the interiors of the simplices of
K that have o as a face. A simplicial pair (K, L) is a simplicial complex K and
one of its subcomplexes L. The polyhedron or realization of K, denoted by |K]|,
is the topological subspace of R™ consisting of the points of simplices of K.

Definition 5.4.1 Given simplicial complexes K and L, a simplicial map is any
map f:|K| — |L| satisfying:

(i) f sends vertices to vertices;

(i) (ag,...am) € K = {f(ao),...,f(an)} spans a simplex of L, so [ sends
simplices to simplices;

(i53) f is linear on each simplez, in the sense that

=Y Nai€(a,...,am) €K = f(z)= \if(a;).
1=0 1=0

A stmplicial pair map
[ (K] L) — (1M, |NT)
is a simplicial map
fo|K] — M| with f(|L]) C |N].

It turns out that conditions (i)—(iii) ensure that a simplicial map must always
be continuous. We can easily check that there is a category of geometric simplicial
complexes and simplicial maps and a corresponding one for simplicial pairs. The
whole theory can be detached from dependence on R" by using, instead of geometric
simplicial complexes, abstract simplicial complexes. These consist of a set V', and
a set S of locally finite non-empty subsets of V' which covers V and which is closed
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under the taking of proper subsets (i.e. under the formation of faces as defined on
page 144)

The important thing is that any locally finite abstract simplicial complex (i.e.,
the vertex set is locally finite) has a geometric realization (e.g., in R29t! if it has
g + 1 vertices) and any two realizations of the same complex are isomorphic in the
category of geometrical simplicial complexes.

Definition 5.4.2 Let (K, L) be a simplicial pair. S,(|K]|) is, from above, the free
abelian group generated by continuous maps A : A™ - |K| and we denote by A, (K)
that subgroup generated by simplicial . Define:

Am(K,L) = Am(K)/Am(L)
and observe that it may be viewed as a subgroup of S, (|K]|,|L|).

Proposition 5.4.3 We have two subchain complezes, of S(|K|) and S(K, L), re-
spectively:
A(K) = {Am(K),0m | m € L}

A(K,L) = {Am(K,L),0p | m € Z} .

We denote by H,(K) and H.(K, L) the simplicial homology of the chain com-
plexes A(K) and A(K, L) respectively.

The significant result is that for all m there are isomorphisms with the singular
homology groups (simplicial or cubical) of the corresponding polyhedra:

Hm(K) = Hn(|K[)
Hp(K,L) = Hn(|K][,|L]).
These are constructed via a chain map which is an inverse (up to chain homotopy)
of the inclusion chain map A(K) — S(|K]|).
Singular m-simplices in S,,(]K|) are approximated by simplicial maps of trian-
gulations of A™; the theorem at work is the Simplicial Approximation Theorem.

The homology theory that arises is (oriented) simplicial homology and a reduced
homology theory is obtained as before.

Definition §.4.4 For simplicial complezes K, L and a continuous map f : |[K| —
|L|, we say that a simplicial map g : |[K| = |L| is a simplicial approzimation to
f if for every vertex v € K we have

flstxv) =str(g(v)).
Then it is easy to establish the following.
Theorem 5.4.5 (Approximation related to composition and homotopy)

If g is a simplicial approzimation to f, then g is homotopic to f. Simplicial approxi-
mation s preserved under composition of maps. ]
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Not every continuous map f : |K| — |L| has a simplicial approximation, because
there may be too few vertices in K to accommodate the variability of f in a simplicial
way. However, if we are prepared to introduce more vertices in the interiors of
existing simplices of K then we can always find a simplicial approximation. A
systematic procedure for introducing extra vertices in K is to place a new vertex
at the barycenter (literally, center of gravity) of each simplex in K and join it to
the original vertices of that simplex. The resulting complex K" is called the (first)
barycentric subdivision of K or the derived complex of K. In a particular
case such a complete subdivision might be unnecessary and it might be sufficient to
leave a whole subcomplex, Kq say, of K unaltered during the subdivision; then we
have stellar subdivision relative to K. In any case we can repeat the procedure
indefinitely, so obtaining K" the 1 subdivision for any r € N. This leads to the
important theorem that we have met already on page 89.

Theorem 5.4.6 (Simplicial approximation) Given simplicial complezes K, L
and continuous f : |K| — |L|, then for some r € N there is a simplicial approzima-

tion to f : |K(M| — |L|. O
Corollary 5.4.7 The theorem extends to simplicial pairs. 0
Ex

1. Every simplicial complex K with m components has Ho(K;Z) isomorphic to
m copies of Z.

2. Construct an example of composite simplicial maps
OA3 — A? — Al
and calculate the induced chain maps and homomorphisms.
3. Two simplicial approximations a,b to a map
foIKl— L]
are close in the sense that for all # € |K]| the carrier of f(z) contains a(z)
and b(z). Close simplicial maps induce the same homomorphisms in homology
and yield a chain homotopy
dy : Cp(K) — Cry1(L)
with dgy_10 — 0dy = ax — by : Ci(K) = Ci(L) for all k.

Details of the construction of the chain maps leading to the isomorphisms between
singular and simplicial homology groups can be found in, e.g., Maunder [68].
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5.5 Computing simplicial homology groups

The representation of a space X as a simplicial complex K allows the definition of its
simplicial homology which turns out to be independent of the choice of triangulation
K and gives, moreover, a homotopy-type invariant functor. The steps in establishing
this are summarized as follows.

Ex on simplicial homology invariance

1. Every continuous f : |[K| — |L| induces by SAT a simplicial approximation,
for some barycentric subdivision K™ of K|

s:|K™ — |L| with f~s.

2. Simplicial maps induce chain maps by sending a simplex to its image simplex
if it identifies no two vertices, and otherwise to 0. Chain maps which com-
mute with the boundary operators yield homomorphisms of homology groups.
Compositions of chain maps carry through to their composites in homology.

3. By using stellar subdivision (cf. page 154 and Armstrong [2], p.186) we
can simplify barycentric subdivision into smaller steps as subdivision of one
selected simplex in a complex. Stellar subdivision induces an isomorphism
on homology and it follows that barycentric subdivision does not alter the
simplicial homology of a complex.

4. By composing the barycentric subdivision chain map with the one induced
through simplicial approximation, we obtain an induced morphism in homol-
ogy for each continuous map between polyhedra. This induction is inde-
pendent of the choice of simplicial approximation because if two simplicial
approximations are taken then they always send a simplex to faces of one
simplex in the image complex.

5. Composition of continuous maps between polyhedra is preserved in homology,
and homotopic maps yield identical homomorphisms.

We can see the kind of steps involved in computing simplicial homology groups
by the case of S! triangulated as the boundary of the standard 2-simplex with
vertices vg, v1,vs. The various groups are as follows:

Co = <U0,U1,U2> SO 3000 =0

Cl = <’U0’U1, ’U1U2,’U2U0>

Cy,=0, kE#0,1

ker80 = <’UO7 vy, ’U2>

imd; = (v1 — vg,v2 — v1,v9 — v2)

Hy = (UO,U1,U2>/<U1 — Vo, V2 — V1,V —U2) =Z

ker 01 = ((vov1 + viv2 + v2v0)) = Z
im82 = 0
Hy = {(vov1 + vivz + v210)) /0 = Z .
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A similar but longer computation using the boundary of the standard (n+1)-simplex
yields for n > 0

Ho(S™) = H,(S™ = Z, otherwise H(S™) =0.

For orientable closed surfaces, the sum of all the 2-simplices generates the 2-
dimensional homology. However, this sum is not a 2-cycle in the nonorientable
case and here the 2-dimensional homology is trivial. We assemble some aids to
computation. Recall that for any group G its commutator subgroup is generated
by

{z7 'y 2y | z,y € G}.

In fact, the commutator subgroup is the smallest normal subgroup C such that G/C
is abelian. The transition from G to G/C is called abelianization of G.

Ex Distinguish between the free product Z *Z and the direct sum Z @ Z and show
that there is an exact sequence

0—C—5Z+xZ—>7Z07Z —0

in which C is the commutator subgroup of Z * Z.

Theorem 5.5.1 (Abelianizing fundamental groups) If K is a connected sim-
plicial complex with fundamental group 7 (|K|) having commutator subgroup C then

Hi(K) =m(|K])/C.
Proof: Take any vertex v € K then
m (|K|) = E(K,v), the edge group at v.

Every edge loop determines a 1-cycle of ordered pairs of vertices and homotopic
edge loops determine homologous 1-cycles. Hence we get a map

¢ E(K,v) — Hi(K).

This turns out to be a homomorphism with kernel the commutator subgroup of
m (JK]) and so the result follows. 0

Ex On simplicial homology
1. Fill in the details to show that ¢ is an isomorphism.
2. Find H;(S'vSh).
3. Find H;(X) where X is

(a) a sphere with a disk replaced by a Mdbius strip;
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(b) a sphere with one handle.

4. If K is an orientable closed surface then the sum of all 2-simplices generates
Hy(K).

5. If K is a nonorientable closed surface then Hy(K) = 0.

6. Given a connected space X, a cut point of X is any z € X such that X \ {z}
is not connected. Cut points are topological invariants but not continuous
invariants. Show that S?2V SV S! has the same homology as S! x S! but these
two spaces are not homeomorphic.

7. Since simplicial homology groups of polyhedra are finitely generated abelian
groups, they always admit a decomposition into a direct sum of a number of
copies of Z and a torsion part containing the finite order elements. The number
of copies of Z in Hy(K) is the ktP Betti number of K. Betti numbers are
homotopy type invariants and so spaces with differing Betti numbers cannot
be of the same homotopy type, nor therefore homeomorphic.

8. Consider the homology H.(K’;Z3) of an n-dimensional simplicial complex
K, using coefficients from Z,. Denote by b the number of copies of Z; in
Hy(K;Zs). Then

X(K) = 3 (= 1) by
i=0

Theorem 5.5.2 (Classification of closed surfaces) If K is a simplicial com-
plex triangulating a closed surface X, then its first homology group is given by the
following classification:

H(K) = hZ if X is orientable of genus h,
! T 1 (b=1Z®Zs if X is nonorientable of genus b.

Proof: This depends on the technique of surgery to show that all closed surfaces
are homeomorphs of standard ones arrived at by adding handles or M&bius strips in
place of disks on the surface of a sphere. An excellently detailed account of this with
illustrative diagrams is given in Armstrong [2], who goes on to compute finite pre-
sentations of the fundamental groups for all closed surfaces. Their abelianizations
turn out to be sufficient to distinguish all types. 0

The theorem of Rado [91] established that closed surfaces, that is compact 2-
manifolds without boundary, always admit triangulations so the result is stronger
than it first appears.

5.6 Relative simplicial homology

Proposition 5.6.1 For any m-simplex o,,, its set of faces 6., and its set of proper
faces ., form a simplicial pair and

. 0, k#m,
Hk(om,am):{z kim
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Proof: Ay(G,) = Ak(6ym) for k # m so the quotients are trivial, but
Am(@m)/Am(om)
is non trivial, with one generator [0o,y,]. [

Definition 5.6.2 Given two subcomplexzes K1, Ko of a simplicial complez K, their
Mayer-Vietoris sequence is the exact sequence of simplicial homology groups

B (" j O
B Hy (K N KG) 5 Hy(Kq) @ Hy(Ka) 25 He(K UKY) 22 -
induced by the short eract sequence of chain complexes
0 — A(K: NK2) =5 AKD) & A(K,) 5 AK; UK,) — 0.

Definition 5.6.3 The relative Mayer-Vietoris sequence for simplicial pairs
(K1,Ly), (Ka, L) in K is the ezact sequence.

o — Hy(Ky N Ky, Ly N Ly) 25 Hy(K1 L) & Hy(K2Ly)
2y He(Ky UKy, Ly ULy) 25 Hy 4 (Ky N Ky, Ly N Ly) — -+
induced by the short eract sequence
0 — A(K1 N K3)/A(L1 N Ly) — (A(K1)/A(L)) @ (A(K2)/A(L))
— A(KjUK,)/A(L; ULy) — 0.

In singular homology, we have to restrict the choice of subsets to account for the
loss of simplicial information. Given a topological space X then a pair (X7, X2) of
its subspaces is called an excisive pair if the excision map

(X1, X1 N X3) S (X1 U Xs, Xo)

induces an isomorphism in singular homology. A sufficient condition for this to
happen, as anticipated by the excision axiom, is that X, C X;i; then e is the
identity.

For any X, Xs C X we always have a short exact sequence of singular chain
complexes

0 — S(X1 N X3) -5 S(X1) & S(Xa) —2 S(X1) + S(X2) — 0
where S(X;) + S(X») is generated by S(X;) U S(X3), because
S(X1nNXy)=85X;)NS(Xs).
However, in the case that (X7, X5) is an excisive pair we have the isomorphisms

Hk(S(Xl) + S(Xg)) x Hk(S(Xl U Xg)) .
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Ex Simplicial pairs are automatically excisive.

Definition 5.6.4 The singular Mayer-Vietoris sequence of an excisive pair
(X1, X2) is the exact sequence

o2 Hy(X0 0 Xa) 5 Hyy(X0) @ He(Xz)
ELN Hip(X1UXp) — Hig 1 (X1 N Xp) — ...

For comparison, we calculate the homology of spheres again (¢f. Corollary 4.3.11
and the Ex on p.115).

Theorem 5.6.5 (Homology of spheres) The homology groups of spheres are:

Z®Z,m=n=0,
H,(S") = Z, m=n>0, or m=0,n>0,
0  otherwise.

Proof: S™is homeomorphic to ¢ where ¢ is the standard (n+1)-simplex. Now, & is
a simplicial complex and || is contractible. Consider the reduced chain complexes
A(6) and A(G). Since |5| is contractible, its reduced homology is trivial. Also,
A, (6) =0if m > n orif m < —1. There is an inclusion i : |¢| <> |5| which is
evidently simplicial and induces a chain map i, with A,,(6) = A,,(5) for all m < n:

0 A, (6) —— A,_1(6) A (6) ——0
Ant1(6) —5— An(6) —5—> An_1(5) A(5)——0

We deduce that

Next:
]EIn (o) = Z" (¢) since B, (6) = 0;
Zn(6) = Zn(7) since iy is an isomorphism;
Zn(0) = Bn(6) since H,(d) = 0.
Now, B, () has only one generator, 8[5], hence so does H, (&) and the result follows.

O

Simplicial Homology with Rational Coefficients

For an oriented simplicial complex K we defined homology groups from quotients
of free abelian groups of oriented k-simplices. Now, a free abelian group is a module
over Z; intuitively, a module is like a vector space over a ring instead of a field.
Here, our basis elements are the generators of the group. In fact, we could replace
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Z by any abelian group without problems. For the present purposes we shall replace
Z by the rational field Q, so that we can exploit linear algebra in the context of
homotopy type invariants for the next series of results. The formal steps are quite
easily comprehended and we just summarize them as follows.

Let ay denote the number of k-simplices in K. For each k we construct the vector
space Ci(K; Q) over Q, with basis consisting of oriented k-simplices. The vector
space operations are induced directly from Q. Then, dim Cr(K;Q) = ai. The
collection of these vector spaces becomes a chain complex with boundary operators

02 : Ch(K;Q — G (K;Q)
induced by linearity over Q from-those defined over Z.

Theorem 5.6.6 (Rational simplicial homology) Let K be a (finite) simplicial

complex with ay, k-simplices for k =0,1,...,n. The vector space quotient
ker 89
Hy(K;Q) = —4o
imdg,,

of subspaces of Cr(K;Q) has dimension equal to the rank of the free abelian part of
H(K), the k** Betti number B; of K.

Proof: First consider homology with coeflicients in Z. Since H(K) is a finitely-
generated abelian group, it admits a decomposition into a free part Fj and a torsion
part Ty. Let a minimal set of generators of Fj be denoted by {[z1],...,[2s,]} and
of Ty by {[wi],...,[w,,]}, so the [w;] all have finite order. Let z be a k-cycle, so
0z = 0 and [z] € Hx(K). Denoting by (z) the corresponding element of Hy(K;Q),
we shall show that

{<21>a EEER (zﬁk)a <’U)1>,. ER) (w’)‘k)}
spans Hy(K; Q). Suppose that we have a rational k-cycle

T

Z %o‘i € ker 2 C Cy(K;Q)

i=1

for some integers a;, b; with b; # 0. Then we can rearrange it as:

T
g

1 T
25,7 by b 26
1=1 =1
for some ¢; € Z, and with

Zciai € ker 9 C Ck(K;Z).

i=1

Now, ker 0y, is spanned by z1,...,23,,w1,...,W.,, SO

{<21>, ) (zﬁk)7 (wi),..., (w’ne)}
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spans Hi(K; Q).
Next we get rid of all the finite-order elements from our spanning set. Suppose
that [w] € Hi(K) has finite order m. Then we can find

h € Cr1(K;Z) with Ogy1h = mw, so mw € im k41 -

By construction of 82, it follows that
Q 1 - C . -
Ocia Eh =w € Cp(K;Q) so (w) =0,

and the result follows.

Finally, we have to show linear independence of the set {(z1),...,(z3,)} C
Hi(K; Q). Suppose that we have

T

S Pai=0€ Hulk;Q

i=1

for some integers a;,b;. Then

ZZ_ = th for some h € Cry1(K;Q).

However, clearing the denominators,
bib - - Z 52 € GG D).

So we have
T T
a
biby--- b, Z 2z, = Zcizi, for some ¢; € Z,
i=1 b; i—1
and
T
Zcizi = Ok419, for some g € Cry1(K;Z).
i=1

Then }"._, ¢;[2i] = 0 but the [2;] are linearly independent because the z; constituted
a minimal set of generators for F'. Hence, ¢; = 0 for all 7 and so

dim Hy(K;Q) = Bk - O

This construction allows us to prove that the classical Euler characteristic of a fi-
nite simplicial complex is independent of the triangulation and actually a homotopy-
type invariant dependent only on the Betti numbers, coinciding with our earlier
version in Definition 4.3.23.
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Theorem 5.6.7 (Euler-Poincaré) If K is a finite simplicial complex with ay,, k-
simplices and k** Betti number By, then the Euler characteristic (number) is given

by

dim K dim K
X(K)= > (-1)*6 = Y (~1)Fax.
k=0 k=0

Proof: This is an exercise in linear algebra, exploiting the subspace inclusions

im oY

R, = Bi(K;Q) Ckerd@ = Zx(K;Q) C domdf = Ck(K; Q).

As almost always in linear algebra proofs, we repeatedly apply the process of ex-
tending a base from a subspace to a lar(%er space, and employ the rank and nullity
theorem for a linear map, in our case 9, as

dim dom 8}? = dim ker 8? + dim im 8? .
Letting % = dimim 8%, we find that

ok = (Ye+1 + Be) + Y

with v = Y41 = 0. Then the ;s cancel in the alternating sum and the result
follows. a

Corollary 5.6.8 The classical Fuler characteristic is a homotopy type invariant
for compact triangulable spaces, because the Betti numbers are. Therefore:

X(K) #x(K') = |K| # |K'| = |K| 2 |K'|. O

Ex

1. Find a cover for S? consisting of 3 closed sets and show that one of them must
contain an antipodal pair.

2. Supply the linear algebra details to establish the Euler-Poincaré formula.
[Hint: Start at the top dimension, extending from B, (K;Q) through bases
for Zx(K;Q) and Cy(K;Q).]

3. Compute the Euler characteristic for some low dimensional polyhedra and
deduce bounds on the sizes of their homology groups.

Next we show that we do not need to go to homology classes to obtain the trace
in the formula for the Lefschetz number; we can work at the chain group level.

Theorem 5.6.9 (Hopf trace) Let X be a compact triangulable space with trian-
gulation |K|, let C.(K;Q) be the simplicial chain complex with rational coefficients,
and let

¢: Cu(K;Q) — Cu(K;Q)
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be a chain map. Then ¢ induces for each k =0,1,...,n = dim K a linear map
¢ : Ck(K;Q) — Ci(K;Q)

which factors through to homology to give
bkx : Hy(K;Q) — Hi(K;Q)

with

S -DFtrée = (-1)Ftr gy, .
k=0 k=0

Proof: Choose ‘standard’ bases for C(K; Q) as in the proof of the Euler-Poincaré
formula and use the fact that, by definition of a chain map, it commutes with the
boundary operator. 0

Now we give a proof of the principal part of the Lefschetz Fixed Point Theorem
for simplicial complexes; ¢f. Theorem 4.3.41 for the complete statement.

Theorem 5.6.10 (Lefschetz fixed point) Let f : X — X be a continuous map
from a compact triangulable space to itself and let Ay be the Lefschetz number of f.
If Af #0, then f has a fized point.

Proof: Suppose that f is given and a triangulation homeomorphism h : |K| — X
is chosen. This induces a map

K] — K]

Assume to get a contradiction that f has no fixed point; then f* has no fixed point.
Now construct
g:|K| — R:z—d(z, fi(x))
which measures the distance that f* moves each point. This g is clearly continuous
and never zero; it attains a lower bound § > 0, say. By using if necessary a
barycentric subdivision, arrange that the longest edge in K has length less than §/3.
By the Simplicial Approximation Theorem, we can find a simplicial approximation
to f*, say
s:|K™ — |K]|,

and a subdivision chain map for K™, say

®:C(K;Q — C(E™Q :a— Y ¢;.

J

The induced map on homology is:

fl?* = Skx oq’k* Hk(K7Q) — Hk(KaQ)
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By the Hopf Trace Theorem, we need only consider the trace of
sk®r : Cp(K;Q) — Cu(K;Q).

Take any (oriented) simplex o; € C(K;Q) and find 7 € ®x(0;), where, of course,
®(0;) is just a linear combination of the simplices in o;. Now, since s approximates
fh, for all z € | K|,

d(f"(z),s(z)) < §/3

and so both points lie inside the same simplex in K™. There are two cases to
consider:
either s; (1) C $;Px(0;) is sent to o;, whereupon for « € 7, we get a contradiction
by

d(z,s(z)) < 6/3 = d(z, fM(z)) <5/3+6/3<4.

or sg(7) = 0 for all 7 € o;, whereupon

sk®i(0;) = Y _Ajo; hasall A; =0
J

and then the trace of s, ® is simply > . A; = 0.

We conclude that f*, and hence also f, must have a fixed point. 0

Corollary 5.6.11 Ay, = x(K). O

Ex
1. Write out the matrix algebra needed in the proof of the Hopf Trace Theorem.

2. Write out the matrix algebra needed in the proof that Ay is well-defined.
Illustrate it explicitly for the antipodal map on SZ2.

5.7 Geometric simplicial singular homology

Generators: Simplicial maps s : A™ — K, where A™ is the standard m-simplex,
generate A,,.

Boundary operation:
Os = s|laam .

Chain group:
Sm(X)=An, m>0; S,(X)=0, m<0.

Morphisms: Continuous f : |K| — |L| on polyhedra give f. via f o s and the
Simplicial Approximation Theorem.
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5.8 Bordism homology

Generators: Singular ‘submanifolds’; that is, continuous maps u: M™ — X, for
m-manifolds M™ with boundary M.

Boundary operation:
Op = plon -

Chain group:
Sm(X)=C°(M™,X), m>0; Sn(X)=0, m<O0.
Morphisms: Continuous f : X — Y give f. via f o p.

This is more or less homology theory as Poincaré [88] originally conceived it.
Nowadays it is more conveniently regarded as a spectral theory (¢f. section 6.2), as
we shall see later (see page 247).

5.9 de Rham cohomology

In a number of ways, this is the most important cohomology theory for global dif-
ferential geometry and for physical field theory. Indeed, the naturally important
objects for both areas are closely related and carry much information on homo-
topy properties of the manifolds and bundles involved. The theory is supported
on smooth manifolds and for smooth maps, but this is not a serious restriction
because of the denseness of smooth approximations to continuous maps. Useful
reference texts include Bott and Tu [14], Karoubi and Leruste [56], Kobayashi and
Nomizu [61]. The section in the Appendix on manifolds and bundles beginning on
page 331 gives a brief review of the basic ideas of differential geometry from the
coordinate-free viewpoint, in terms of differential forms. Appendix E illustrates
how a computer algebra package can help with computations involving differential
forms.

Generators: Differential m-forms w € A™(X) on a smooth manifold X.
Coboundary operation: dw = dw, exterior differentiation.
Cochain group:

S™MX)=A"X), 0<m<dimX; 8™(X)=0 otherwise.

Morphisms: Smooth f: X — Y induce f* on exterior products as the dual of the
derivative Tf : TX —» TY.

Definition 5.9.1 A smoothly triangulated n-manifold is a triple (M, K, h)
consisting of a smooth n-manifold M, a geometric simplicial complex K, and a
homeomorphism h : |K| — M such that, for each n-simplex 0 € K, h||;| has an
extension h, to a neighborhood U, of |o| in R® with h,(U,) a smooth submanifold
of M.
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We observe that K is required to be locally finite (¢f. page 153), so M will need
to be locally compact since h is a homeomorphism. It is known that every smooth
manifold admits a smooth triangulation, by the theorem of Munkres [82]. The
differentiable structure on a manifold is independent of its topology, and indeed
there may be many choices (or just onel—cf. the table on page 333). However,
remarkably, it turns out that for a triple (M, K, h), where h is the triangulation
homeomorphism, the oriented simplicial cohomology of K with coefficients in R is
isomorphic to the cohomology of real differential forms on M.

Theorem 5.9.2 (de Rham cochain complex) Given a smooth n-manifold M
there is a cochain complexr (A*(M),d) where A*(M) is the graded algebra of real
differential forms on M and d is the exterior derivative, which is of degree +1. We

put A™(M) =0 for m < 0. O
Theorem 5.9.3 (De Rham cofunctor) There is a cofunctor of degree 0,
M {Hm(M,d) | m € Z}
H*(,d): Man —— GrVec : f| ——— 1
N {Hn(N,d) |m e Z}
defined on smooth manifolds by
kerd™
H"(M,d) = ———
( 7d) lm dm_l b

d™: A™(M) — AT (M),
and on smooth maps f via the linear map
fFeA™N) - A" (M) :w wo (TF,Tf,...,TS)
where Tf: TM — TN is the derivative map of f. O

It is common to write d for d™ when the domain is evident. The cohomology arising
from H*( ,d) is called de Rham cohomology theory. Since it takes values in
vector spaces over R, we obtain dimensions as cohomology invariants. In particular,
if M is a connected smooth manifold, we find

dim H°(M,d) = dimR =1,
dim H*(M,d) = dim{0} =0 for k >n,

because dim A*(M) = (}) for 0 < k < n and also dim A¥(M) = 0 for k > n. We
recognize the number dim H*(M,d) as the k*" Betti number of M (cf. page 157).
These are topological invariants of M and so independent of any particular triangu-
lation, as we have already anticipated in our notation (¢f. Nagano’s memoir [84]).
We shall use de Rham cohomology some in the sequel; it is the most important the-
ory for physical applications because physical fields are representable as differential
forms, which have a natural product that induces the ring structure on de Rham
cohomology.
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Ex on de Rham cohomology

1. Consider S! as a real submanifold of C and let v be a unit tangent vector
field on it. Show that the dual to v is not exact but is a closed 1-form which
generates the 1-dimensional de Rham cohomology.

2. Observe that S! is also a topological group and actually a Lie group because
its operations are smooth; how can this be exploited?

3. Consider S3 as a real submanifold consisting of unit quaternions. Again, we
have a Lie group, but this time not abelian; investigate its de Rham cohomol-

ogy.

5.10 Geometric simplicial cohomology

Generators: R-linear maps from the vector space of oriented m-simplices over R
to R; giving the dual space (S, (K))* = A™(K;R).

Coboundary operation:
5™ s AT(KGR) —> AU R) v g0 O
that is, the adjoint of the boundary operator from simplicial homology.
Cochain group:
A™(K;R), m>0; A™(K;R) =0, m<0.

Morphisms: Continuous f : |[K| — |L| on polyhedra give f* via the Simplicial
Approximation Theorem.

Definition 5.10.1 For a simplicial complex K, geometric simplicial cohomol-
ogy with coefficients R, (H*(K; R), §*) is defined to be the cohomology of the cochain
complex

{A™(K;R),6™ |m e Z}.

Here, A™(K; R) is the vector space of R-valued linear maps on the real vector space
generated by all oriented m-simplexes of K subject to the orientation condition

Om = —0,,

if om,0,, are m-simplices of K with the same vertex set but opposite orientations.
Ex Describe cohomology theories dual to some other homology theories.

We have taken the dual of geometric simplicial homology (over R) to enable us
to define an integral of a differential k-form over an m-dimensional region homeo-
morphic to a k-simplex. This gives a linear map from the vector space A¥(M) to
the vector space A™(K; R) and it is actually an isomorphism.
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Theorem 5.10.2 (de Rham) Given a smoothly triangulated manifold (M, K, h)
of dimension n, then for each k = 0,1,...,n there is an isomorphism

deRham
/ : H*(M,d) = H¥(K;R).
k

Proof: This follows from the integration of forms over chains
/:A’“(M) — A*(K;R) :wb—)/w
k k

which is linear and satisfies the condition

rof )
k k+1

the general form of Stokes’s Theorem. 0

In fact, the exterior product on forms actually determines a product, giving a graded
Grassmann algebra A*(M). Moreover, the product factors through cohomology and
so0 yields a ring structure on H*(M,d). The following section elaborates a little.

5.11 More on products

The formation of the product on forms can easily be visualized because given an
m-form w and a k-form u we obtain an (m + k) form w A u. This is actually an
antisymmetrized tensor product of multilinear functionals on a real vector space
(c¢f. Section C.3.1). The tensor product here is itself defined pointwise by taking
the product (in R) of the values of the functionals. The latter process exemplifies
the situation in arbitrary cohomology theories.

Suppose that we have a cochain complex K having coefficients in a ring R with
unity 1. Take an m-cochain a and an n-cochain §; then their cup product is the
(m + n)-cochain defined on generators by

aUfB: Knyn — R:(vo,...,Umsn) — a((vo, .-, vm)) - B{Vm+1s-+ -, Umtn))

where - is the multiplication in R. By inspection, U is bilinear and associative with
unit the 0-cocycle €9 : vy > 1.

Ex The coboundary operator satisfies
daUB) =daUB+ (-1)"aUdB

(cf. section 5.3; also Hocking and Young [46], p. 307, or Vick [114], Chapter 4).
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In consequence, the cup product behaves well with respect to cohomology classes
and we obtain a graded ring of cohomology groups ,,., H™(K; R). For smooth
triangulable manifolds the simplicial cohomology ring over R = R so formed is
isomorphic to the de Rham cohomology ring arising from the exterior product of
forms, hence it is not commutative but Grassmannian.

The integration of forms on a manifold is a special case of the following product
operation. The cap product of an m-cochain & and an n-chain c is:

the 0-chain if m > n;
the (n — m)-chain a N ¢ for n > m, which is constructed by linear extension over
generators (vp, . ..,v,) from

an (’Uo, fe ,’Un> = a((vn-m+1, PN ,’Un))<’l.)0, ce ,Un_m) .

We can easily express this in terms of a singular n-simplex A and its front and back
faces, as used in the construction of the cup product (cf. page 150):

anA={(a, mA)An_m .

Ex on the cap product
1. For appropriate elements, (83U a,c¢) = {(a,8Nc).
2. (-1)M3(anNec) = (anNdc) — (ba N c), whence the cap product passes to
cohomology and homology as a map H™(X; R) X Hn(X; R) =& Hp—m(X; R),
for any ordinary theory with coefficients a (commutative) ring R.

3. The cap product is natural with respect to induced maps:

fH(ffanc) =an f.c.

The main occurrence of the cap product of interest to us is in Poincaré duality.

Theorem 5.11.1 (Poincaré duality) If M is a compact, connected, oriented n-
manifold with generator z € H,(M; R) = R for the ordinary theory H with coeffi-
cients R, then

D:H¥(M;R) — H, (M;R) :u— uNz
is an isomorphism for each k. 0
See Vick [114], Chapters 4 and 5, for a proof and more details. Alternatively, an am-

bitious reader might try to prove the theorem directly from the Thom isomorphism
theorem 7.3.11.
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Ex on Poincaré duality
1. When R is a field, H*(M; R) = H""*(M;R) and Hy(M;R) = H,_(M;R).

2. Seek out induced isomorphisms!

A (some would say the) general principle of algebraic topology is that the more
algebraic structure our theories have, the easier it is to prove that certain maps
do not exist. In this sense, cohomology is better than homology because it has
a natural ring structure rather than merely a group structure. Certain theories
on certain spaces may have even more algebraic structure. We now present one
example of this, which will also be used crucially later: namely, certain ordinary
cohomologies of H-groups.

Ex Recall the notion of H-group; see Section 2.3. Since the definition is somewhat
long, we shall not repeat it here; but if you have forgotten any part of it (or if you’ve
never seen it before), go look at it now.

At present, you may assume that we are using CW-cohomology; later (Theorem
6.3.6), we shall see that what we are about to do is indeed valid for any suitable
ordinary theory.

Theorem 5.11.2 (Cohomology of H-group) Let G be an H-group and let H*
be an ordinary cohomology theory with coefficients R such that H*(G x G) =
H*(G) ® H*(G), where we do and will suppress the coefficients. Then the mul-
tiplication @ : G x G — G induces a morphism, called a coproduct, k : H*(G) —
H*(G) ® H*(Q) with the following properties:

1. K is a graded R-algebra homomorphism of degree zero for the cup product;
2. k is associative: (k ® 1)k = (1 ® K)K;

3. the homomorphism ¢ : H*(G) = R :rl — 7 for all v € R satisfies (¢ ® 1)k =
(1®e)=14.

Proof: The coproduct is just the composition of * : H*(G) — H*(G x G) with
the isomorphism H*(G' x G) = H*(G)® H*(G). The verification of the properties is
a straightforward exercise using the properties of H-groups and cohomology, which
you should do. O

Ex

1. In this setting, the cup product is similarly induced by A*, where A : G —
G x G : g+ (g,9) is the diagonal inclusion map.
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2. From the Kiinneth formula for cohomology (cf. Ex following Theorem 4.4.17),
H*( ;Q) is one such theory. When would H*( ;Z,) or H*( ;Z) be such?

3. e also induces a product on the homology H.(G), the Pontrjagin product.

Thus H*(G) has additional algebraic structure, that of what is called a Hopf
algebra; they were created by Hopf [50] almost exactly in this way. Physicists
pursue them under the misleading name ‘quantum groups’ which seems to indicate
a pious hope; see Kassel [57] for an introduction. (In fairness, however, we note
that physicists frequently do not distinguish between a Lie group and its associated
Lie algebra.) The standard mathematical reference for them now is [74], from
which we adapt the following structure theorem; cf. also Borel [12]. We say that
a graded module is of finite type if and only if each homogeneous module (. e., all
the elements of a given degree) is finitely generated.

Theorem 5.11.3 (Hopf algebra structure) Let R be one of Z, Z,, or Q and
assume that H is a Hopf algebra of finite type over R. If R = Z, or Q, then
H is isomorphic to the tensor product of an exterior algebra with generators of odd
degree and a infinite-dimensional polynomial algebra with generators of even degree.
If R = 7Z and H 1s torsion-free, then it is isomorphic to an exterior algebra with
generators of odd degree. For convenience, we shall count R itself as an exterior
algebra with generators of odd degree.

See the cited references for a proof. If one wishes to be definite about the last
convention, one might take the generators to have degree —1 since there are none
and dim @ = —1.

Let us consider some abstract examples of each type. An exterior algebra over
R with one generator is of the form R[z]/(2?). If we take the degree of z as 1,
then R[z®]/ ((z®)?) has one generator of degree 3. We say that the height of a
generator in an exterior algebra is 2. More generally, we may consider polynomial
algebras with generators of arbitrary height. For example, R[z] has one generator
of infinite height while R[z]/(z™) has one generator of height n. For this to be a
finite-dimensional part of the polynomial algebra in the theorem, we must have a
generator of even degree with a height n > 2. Thus if we take the degree of z
as 1, then R[z*]/ ((z*)?®) has one generator of degree 4 and height 23, so is an
acceptable candidate.

Ex For concrete examples, H*(S™; R) is an exterior algebra on one generator of
degree n and H*(RP™;Z,) is a polynomial algebra on one generator of degree one
and height n + 1.

Theorem 5.11.4 (Hopf) If G is a finite-dimensional H-group, then H*(G;Q) is
tsomorphic to the rational cohomology algebra of a finite product of odd-dimensional
spheres.
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In particular, this applies to all Lie groups.

Proof: If G is finite-dimensional, then H*(G; Q) is finite-dimensional, hence iso-
morphic to an exterior algebra by the Hopf algebra structure theorem. It is now
a fact of multilinear algebra that this exterior algebra is isomorphic to the tensor
product of exterior algebras on one generator of odd degree, and each of these is
in turn isomorphic to the cohomology algebra of an odd-dimensional sphere by the
immediately preceding Ex. We finish by applying Ex 2 above. O

Ex Write down versions of the theorem for coefficients Z, and Z.

Corollary 5.11.5 (Hopf) No even-dimensional sphere of positive dimension can
be an H-group. 0

In fact, only S° S', S% and S7 support H-space structures, but this is a much
deeper result; see [52], for example, for further references.

To summarize, cohomology is better than homology because it has an additional
operation, the cup product. Certain spaces may have even more algebraic structure
on their cohomology: H-groups give rise to Hopf algebras, for example. More gen-
erally, any cohomology theory can support several other operations in addition to
the cup product. These are defined as certain natural transformations of the com-
ponent cofunctors, and their study comprises the theory of cohomology operations.
A very brief introduction to them, much in the spirit of this book, is in Lomonaco
[63]. (You will need to have studied Sections 8.2 and 8.4 a bit, however, before you
can read it.) Since they are defined categorically, they have natural duals: homology
cooperations. (A certain sense of humor is evident here.) More thorough treatments
of both are in Gray [38] and Switzer [106].

5.12 Cech cohomology theories

As we have indicated above, every locally finite cover A = {U,} of a paracompact
Top space X determines an abstract simplicial complex K 4 with typical m-simplex

o={Uo,...,Un) | ﬂUi;éZforsomemZO}.
i=0

Evidently the (co)homology of K 4 would tell us more about the cover than about
the space X, unless the cover is in some way unique. For the kind of spaces that
we usually have to work with, there is no distinguished cover. However, the locally
finite open covers of X are partially ordered by refinement, so we can effectively deal
with them all together by taking a limit of their inclusion diagram in (co)homology.

Complete technical details can be found in Hocking and Young [46], Chapter
8, and Warner [116], Chapter 4. In essence, each locally finite open cover A con-
tributes its own m-cocycles and there is a natural projcction induced by a refinement
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inclusion, A C A’, which preserves the property of being cohomologous among m-
cocycles because every element of A is contained in some element of A'. Thus,
each locally finite open cover gives a cochain complex and the property of being
cohomologous determines equivalence classes over the different chains for each di-
mension m. A representative in each chain for a given class is a local coordinate for
the class and addition of classes is defined by addition of these coordinates in their
own chains. The Cech cohomology group at a given dimension is the group of coho-
mologous classes at that dimension. The important property is that Cech theories
and simplicial theory agree on finite polyhedra, but not necessarily on infinite ones;
Cech is an example of a continuous cohomology theory, while simplicial is not.

We now provide some of the details, as we shall need them later. Let G be an
abelian topological group, taking the discrete topology when there is none more
usual. For each m-simplex ¢, an m-cochain f is a continuous map || = G, where
o] =UgN---NUy, C X for ¢ = (Up,...,Un). Let C™(A;G) denote the abelian
group of all m-cochains with respect to the cover A for m > 0 and set C™(A4;G) =0
for m < 0.

The coboundary operator is now given by
m+1 ]
§:C™(AG) — C™HAG)  f = D (=) flyonntn ot
i=0
for m > 0 and is the zero map for m < 0, where U; indicates that U; is to be omitted
from the intersection.
Ex 4§ =0.

We denote the cohomology of the resulting cochain complex by H™(A;G).

Ex
1. This cohomology is a covariant functor in G.

2. Show f is a 0-cocycle if and only if f : X — G is continuous. In particular, if
G is discrete then f is constant and H°(A;G) = G.

3. Compare the effect of different topologies on G; for example, consider G =
St 2 SO(2) with the discrete and the usual topologies for X = S2.

Next, we partial order covers by refinement and then take the direct limit to
define a cohomology theory of X. Let A’ be a locally finite refinement of A. Then
there exists a map p : A" - A such that V C u(V) for every V € A’. This p
induces a map on simplices because

o=WVo,.- s V) = p(o) = ((),...,n(Vm)) ,
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thus an induced map
p# : C*(A;G) — C*(AG) : fr— foup,

and, in turn, finally an induced map on cohomology p* : H*(A; G) — H*(A';G).
We must now compare the maps induced by two different refinements, so let p
and 7 both refine A" = A. For 0 = (Vo, ..., Vin—1) set

G; = (o), ..., u(Vi), 7(Vi)y- .., T(Vin—1))

and define h,, : C™(A;G) = C™ 1 (A";G) by

g, .

hon() = 3 (~1)'f
1=0

Ex h is a cochain homotopy: Am4+10 + 0hm = Tm — tm.

It follows that p* = 7* on cohomology, so the direct limit with respect to refinements
of locally finite coverings is well defined and exists. We define this to be the Cech

cohomology of X: 5 5
H*(X;G) = li_n);H*(A;G).

Ex For discrete G, this is an ordinary cohomology theory with coefficients G on
paracompact Hausdorff spaces.



Chapter 6

Sheaf and Spectral Theories

What beckoning ghost along the moonlight shade
Invites my steps, and points to yonder glade.
—Pope, Elegy to the memory of an unfortunate lady.

This chapter describes some generalizations and extensions of homology and coho-
mology theories. Using sheaves as coefficients is the most general way of allowing
the coefficients to vary from point to point for an ordinary theory. The category
of spectra provides a very general way of constructing homology and cohomology
theories which need not be ordinary. The method of spectral sequences provides
a way of calculating with any homology or cohomology theory which can be very
powerful, but may also be very complicated.

6.1 Some sheaf theory
Bringing in the sheaves—OQOld hymn

Covering spaces are surjective local homeomorphisms, hence have discrete fibers.
Fiber bundles generalize this by allowing more topological structure on the fibers,
whereas sheaves allow more algebraic structure. Additionally, sheaves allow some
algebraic variability from fiber to fiber. One motivation for introducing fiber bundles
is to use their sections as generalizations of ordinary maps to a standard space, the
model fiber. Similarly, sheaves provide a means for collecting local maps to algebraic
objects into global sections.

Fibrations are (essentially) fiber bundles in the homotopy category, allowing the
topological isomorphism type of the fibers to vary. Sheaves already provide for
the algebraic isomorphism type of their fibers (traditionally called stalks) to vary.
Thus, one may regard fiber bundles as a generalization of covering spaces in one
direction and sheaves as a double generalization in another. It is convenient to define
sheaves in terms of the slightly more primitive notion of presheaves. For subsequent

175
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efficiency we shall define presheaves and sheaves as functors (c¢f. Johnstone [55]).
But first we follow Tennison [110] and our intuitive preliminaries to define a sheaf
space, which eventually turns out to be the essential object that characterizes any
sheaf.

Definition 6.1.1 A sheaf space or étale space over X is a surjection
p:FE— X

that is also a local homeomorphism or étale map: for all e € E there exists a
neighborhood N, of e such that the restriction of p to N, is a homeomorphism onto
its image.

Note that this local condition goes the other way to that of a fiber bundle with model
fiber F, which is a surjection

p:E—» B
that is also locally a product with F: for all b € B there exists a neighborhood N,
of b such that

p "Ny =Ny x F.
Ex

1. Given a sheaf space p: E —» X, p is an open map and each fiber is a discrete
subspace of E.

2. Covering spaces and covering projections (see page 62) are examples of étale
spaces and maps.

3. Construct contrasting examples of fiber bundles, sheaf spaces and fibrations
over a given space.

4. Partial order for a topology Given a topological space X, then its topology
7(X) has a partial order by inclusion; the poset (7(X), C) is a category with
a morphism U — V if and only if U C V with U,V open in X.

We shall see below that a sheaf space E 2» X is equivalent to a sheaf of germs
of local sections of the surjection p; such sections (lifts of the identity map on the
base X) correspond to the physicists’ concept of locally defined (e.g., by coordinate
charts) ‘E-valued fields’ over the space X.

Definition 6.1.2 Given a space X with topology T (X) and any (concrete) category
C, a presheaf of C-objects on X 1is a cofunctor (cf. Fz 4 above)

U PU)
PT(X)—>C — pg

v P(V)
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When C is Set or one of its subcategories (typically Grp or Ab) we call P(U) the
set of sections of P over U and p the restriction map.

A morphism of such presheaves P, P' is a natural transformation of cofunctors,
7 : P — P'; namely, each inclusion U < V in T (X) is sent to a commuting diagram
in C:

U Py "L Py
——  |s¥ o'y
v P(V) —7= P'(V)

Ex For any space X there is a presheaf of abelian groups given by (c¢f. Tennison
[110], p.3)
PU)=0 forU#X, P(X)=1%

p§ =1z, otherwise pg = constant.

In many applications to physics and geometry the presheaves will arise from
local sections of a surjection; and they are better behaved than this example in that
P(U) is uniquely determined by {P(U,) | & € A} for some open cover {U, | a € A}
of U. Such good behavior is rewarded by the following nomenclature.

Definition 6.1.3 A presheaf P of C-objects on X is a sheaf if, for all open covers
{Uy | @ € A} of open U C X and for all

{0a € P(Uy) | 00,03 agree on U, NUg, Ya,B € A},
then there exists a unique o € P(U) such that for all a € A,
Pga (0) = 0a-

A presheaf morphism between sheaves is called a morphism of sheaves.

1. Investigate presheaves of Z,-objects on Zs.
2. Given any object W in C, the constant sheaf Wy is given by
Wx(U)=W; p¥=1w.

3. Given a space Y, the sheaf C( ,Y") of germs of continuous Y-valued maps on
X is defined by

C(V,Y) = {continuous f: V — Y},

viCW,Y) —CUY): fr fi,,
for U C V, both open in X.
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4. If in C(,Y), the space Y is a topological group then we get a sheaf of groups.

5. A topology 7 (X) itself yields a sheaf O on X by restrictions to open subsets
UCX:
OU)=T(X)lv, pv(A)=ANU.

6. Given a bundle or a fibered space E —2» B, so p is a continuous surjection,
then the sheaf of germs of sections of p, denoted I'(B, E) or just ['(E), is given
by

I'(U, E) = {continuous 0 : U — E | po o is the inclusion U — B}
for U open in B. Also, p¥ (o) = oly.

Definition 6.1.4 The stalk P, of a presheaf P at x € X 1is the inverse (or left, cf.
page 299) limit taken over open sets U containing x:

P, = lim P(U).

z€U

Elements of P, are called germs of sections of P.

Ex on sheaves

1. Given a space X with topology 7 (X) and a (concrete) category C (especially
Set or Ab), there are categories:

CPresh(X) = (CTX)yep,
the category of cofunctors 7(X) — C;
CShv(X) — CPresh(X),
the full subcategory of sheaves; and
Shfsp(X) ,

the category of sheaf spaces over X. We often write Presh(X) or Shv(X),
especially when C is Set or Ab.

2. There are adjoint functors I' and L:
I : Shfsp(X) — Shv(X)
E I'(U,E)

7

X ¢ p— T'(¢)

e
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where

P I~

z€X

L : Presh(X) Shfsp(X): 7| ————  |L(7)

P 1] P

zeX

Moreover, I' is an equivalence of categories with inverse
™' = Lish(x)
and 'L, called sheafication, is left adjoint to the inclusion functor
Shv(X) < Presh(X)
whereas LT is naturally equivalent to the identity.

See Tennison [110] for a detailed study of the categories Shu(X) and Presh(X);
note in particular that if C is Ab, then they admit biproducts and they are abelian
categories.

Ex on sheaf spaces

1. If E % X is a sheaf space, then the stalk of T'(,E) at r € X is naturally
bijective to the fiber p“(z), and is hence a discrete subspace of E.

2. Interpret and justify the statement:

a C*-differential structure on a topological n-manifold is a subsheaf
C*(,R) of C(,R);

(cf. Smith [96]).

Mainly we shall wish to use presheaves and sheaves of C-objects when C is a
category having a zero object (particularly Set” and Grp) so that kernels, cokernels
and exactness can be defined as usual (¢f. MacLane [65]). Then, for a presheaf (or

sheaf) morphism F 1, G we have the following:

e Forall H % F % @ with fg = 0 there is a unique k¥ making commutative
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o Forall F 5 G % H with gf = 0 there is a unique ¢ making commutative

-

coker f

with im f = ker(G — coker f) in Presh(X) or Shv(X), so there is exactness
at G in this diagram if im f = ker g.

We also note that:

e The inclusion functor Shv(X) < Presh(X) preserves kernels but not coker-
nels; ¢f. Tennison [110], p. 44, Example B.

e The sheafication functor I'L : Presh(X) — Shv(X) is ezact but the inclusion
functor Shv(X) < Presh(X) is only left exact; ¢f. Tennison [110], p.52,
Example 6.10.

e If H is a subsheaf of a sheaf F, then there is a sheaf G, unique up to isomor-
phism, and an epimorphism F' — G making exact the sequence

00— H<—>F—»G—0.

We shall need to make frequent use of direct limits and some further use of
inverse limits, particularly of abelian groups. Recall that a limit of a diagram in any
category is an object and associated morphisms having certain universal properties
(¢f. §A.2.2 for some amplification, also Higgins [42], p.50 et seq., or Dodson [29],
p. 20 et seq.).

e A direct limit lim_, is an example of a right limit or colimit of a diagram
and may be viewed as an ultimate target with attendant morphisms.

e An inverse limit lim, is an example of a left limit or limit of a diagram
and may be viewed as an ultimate source with attendant morphisms.

The following examples have been collected to help visualize the process. See also
Switzer [106], pp.118-125, and Dugundji [34], Appendices. The easy way to re-
member which are which is to observe that direct limits go down the arrow stream
and unverse limits go up the arrow stream.

Ex on directed systems
1. llm_,{Al,Az} = Al I Az, with
A1 — AT A; « A1

is the direct limit of two objects with no morphisms, in Set. This limit extends
to arbitrary disjoint unions, and in Grp it yields the free product group while
in Top we choose the largest topology that ensures continuity of the injections.
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2. In Set,
hm{A1 —)a Az} = A2
—

with morphism just a.

3. Given a topological space (X, T), then in Top, the direct limit of the inclusion

pairs of open sets
Im{U =V |UVeT}
-

is constructible from HUGT U.

4. Given a presheaf P on (X, 7), then in Set
Lm{P(V) 2% P(U) |U CV € T} = P(9),
—

with suitable maps; there is a similar result for presheaves of abelian groups.

5. In Set,
lim{A—>X|ACX}=X.
—

6. In Ab,
lim{A < G | A is finitely generated} = G.
—

7. In Top, given subspaces (Xa)acs of a space X = |J,c; Xo With the weak
topology on X, then
limX, =X.
—

8. If X is a CW-complex with X™ its n-skeleton and {X,} its set of finite sub-
complexes, then
X =lmX" =1limX,.
— —

9. Write out some corresponding results for inverse limits of directed systems.

6.2 Generalization to spectral theories

There seem to be two paths to generalizations. One idea now is clear enough: in-
stead of using a fixed coefficient group (or module) for cohomology, we allow the
coeflicients to come from a presheaf or sheaf, effectively using coefficient objects
that vary from point to point. Choosing a constant sheaf G should recover ordi-
nary (singular) cohomology with coefficients in G, and this is indeed the case for
locally trivial X, that is for manifolds. Of course, sometimes we do have continu-
ously varying groups naturally arising; for example, on spaces as pointed homotopy
classes and on smooth manifolds as holonomy groups. The formalities to prescribe
such theories are also easy to state: in any abelian category (e.g., AbShv(X) or
AbPresh(X)) construct a (co-)chain complex of objects and morphisms and define
its (co)homology in the usual way as quotients of kernels and images. The work
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comes in checking that the appropriate Eilenberg-Steenrod axioms are satisfied.
The standard reference here is Spanier [97], Chapt. 6; c¢f. also Tennison [110],
Chapt. 5, Warner [116], Chapt. 4, or Wells [117], Chapt. IL.

Another approach depends on the notion of a spectrum (c¢f. G.W. Whitehead
[118] for the original constructions) and fits well with the prominence that we give
to homotopy theory. For, a theorem of Brown [16] shows that reasonable candidate
cofunctors for cohomology are representable as homotopy classes of pointed maps
into standard spaces. In consequence, all cohomology theories on spaces homotopy
equivalent to CW-complexes are representable by this means, as spectral theories;
these include K-theories, stable homotopy and cobordism.

We shall follow Switzer [106] (based on Boardman [11] via Adams [1], Chapt. 13)
for the construction of a category §5€c of spectra in which CW* is embedded and
to which suspension S admits an extension which is, moreover, invertible there.

From the outset we required our theories to be natural with respect to suspension
and we deduced from the axioms that S induces isomorphisms in homology. The
importance of Spec is that the suspension functor is invertible on it, hence giving a
genuine and very useful generalization of CW~. Spectra are Z-indexed sequences in
CW* that have built in suspension simplicity at each index. Morphisms of spectra
are sequences of cross linking cellular maps which for all large enough indices yield
a commuting ladder, with the proviso that two cross linkings are equivalent if they
eventually agree for all large enough indices. This rigamarole is necessary in order
to handle properly the cohomology of infinite CW-complexes, of which noteworthy
examples are noncompact spacetimes. Precisely we have:

Definition 6.2.1 A spectrum E is a sequence
{SE, <3 Eny1 |n e}
in CW* such that each €, is a (cellular) homeomorphism onto a subcomplex of (or,
an embedding into) E, 4.
Ex on spectra

1. Equivalently, one may define a spectrum via maps E, — QF,.;. What
properties should these maps have?

2. Given a pointed CW-complex X, we define the spectrum on X via

S"X forn >0,
*  otherwise.

COSE
This gives a functor £ : CW* — Spec.
3. Up to homotopy equivalence in CW*, every sequence
{SE, & Enyy |nel)

determines a spectrum (Switzer [106], §8.3).
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A subspectrum F of a spectrum E, so we have F,, C E, for all n € Z, is called
a cofinal subspectrum of F if for all cells e, C FE, there exists m such that
S™e, C Frim- Intuitively, all information from F, is suspended into F, .

The game now is to choose morphisms of spectra such that any spectrum is
equivalent to any of its cofinal subspectra; then we have the right structure to handle
cohomology groups via direct limits. We have begged the question by introducing
subspectra, for in a concrete category we want an object F' to be a subobject of an
object F if the obvious inclusion F' < E is a morphism. Accordingly we make the
following

Definition 6.2.2 A morphism of spectra f : E — E' is an equivalence class [¢]
of commuting cross linking maps

(Fo, 2 E' |nez}

in CW* from cofinal subspectra F' of E, with respect to the relation (F,$) ~ (G, )
if and only if there is a cofinal subspectrum H C FNG C E and commuting cross

links { H, by E! | n € Z} which agree with the restrictions of ¢ and ¢ to H.

n SGr
S
SO,
|
SFn Son

€n

SH

€n

SE!

€n

Hn+1 | G

Gn+1 €,

Ons1 Ynt1

’
Fn+l Hni1 En+l

Ex On morphisms of spectra

1. Draw, for a fixed n € Z, the other commuting diagram involved in the defini-
tion of a morphism of spectra.

2. Cofinality is preserved under finite intersections and arbitrary unions, and it
is transitive.

3. Find a spectrum having the cofinal subspectrum {F, = {*}|n € Z}.

4. Any cellular map ¢ : X — Y defines a morphism of spectra via S"¢ : S" X —
S™Y for the spectra on the spaces (defined above).
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5. Every spectrum F is partitioned into sequences, called cells of E, of the form
e = {en, Sen, S%en,...},
where e, is a cell in E,,.
6. Given spectra E, E' and commuting cross links
{En 2 B! |nez)

in CW*, then (cf. Switzer [106], §8.13) for all cofinal F' C E there exist cofinal
F' C E' such that for all n € Z we have hpF,, C F).

The composite morphism of two morphisms of spectra
is denoted by
E B

and defined to be the class gf = [)¢] where f = [¢] and g = [¢)]. The category so
determined is denoted by Spec.

Ex on composition of spectral morphisms
1. The composition rule is well-defined and associative.
2. Inclusion (and restriction) cross linking maps induce appropriate morphisms.

Theorem 6.2.3 (Spectral cofinal inclusions are isic) In Spec, cofinal inclu-
sions are isomorphisms.

Proof: Given a cofinal inclusion F f—l> E, then F, & E, and for all cells e,, C E,
there exists m such that S™e,, C F, . Also, from the identity morphism 1 we

obtain
en ife, C Fy,

* ife, € Fy,
which defines a morphism j = [(F, ¢})] = [¢] with ¢, = jn. Evidently ji = 1p.
It remains to show that ij = 1g; that is,

This is because F' = FN E is cofinal in F, we have (F,1r), and i¢|r = 1p = 1g|p.
O

jn:En—>Fn:en»——>{

Corollary 6.2.4 Any two cofinal subspectra of E are equivalent to E in Spec, and
hence equivalent to each other. 0O

Now we have Spec containing\ClW*, but we really are interested only in gener-
alizing the homotopy category CW*, so we need a definition of homotopy in Spec
which restricts to what we already have in CW*. This is achieved by extending
smash products to Spec while suitably respecting cofinality.
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Ex on smash products and cofinality
1. Given a spectrum E and a pointed CW-complex X, then
S(E,ANX)2(S'AEVDAXCE 1 AX;
hence there is a well-defined spectrum E A X.

2. Given cofinal F = E and a pointed CW-complex X, then F'A X is cofinal in
EAnX.

Theorem 6.2.5 (Spectral smash functor) There is a well-defined functor
(E,X) EnX
A : Spec x CW* —— Spec: (fc) — fAc
(B, X") E'AX'
where f Ac=[pAc] with f =[¢]. 0

Ex Check the functorial properties and extend this functor to a product on Spec.

We now wish to define homotopy in Spec. Intuitively, we replace the Cartesian
product by the smash product; thinking of spectral poltergeists or Ghostbusters will
help to remember this.

To prepare, consider I = [0, 1] I , the unit interval with a disjoint basepoint.
The natural inclusions

{0} = I « {1}

induce morphisms
EXS EANIT & E

in Spec.

Definition 6.2.6 A homotopy in Spec is a morphism
h:EAIT — F,

and we say that two morphisms

ELFEE
4
in Spec are homotopic if there is such an h with hip = f and hi; = g.
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Ex on homotopy in Spec
1. Homotopy is an equivalence relation in Spec.

2. The ‘spectrum on a space’ functor E : CW* — Spec is an embedding:

¢f. page 182 for E.

In the literature, it is common to omit the F( ) when spectralizing diagrams in CW*

and CW* ; however, care is needed when we come to spectral homotopy groups.
Homotopy equivalence of morphisms in Spec is preserved under composition. We
denote by Spec the hornotopy category induced by homotopy in Spec. In a sense,

we partially dissolve CW' in Spec because certain maps get suspended invisibly.
For example, in the functorial embedding

E:CW* — Spec,

homotopy inequivalence may disappear under suspension. Nevertheless, most of the
desirable features of CW* persist into Spec; in particular, we have available to us
now:

e wedge products, because they commute with suspension in CW*;
e cellular construction, by attaching cells {e,, Sep,...};
e homotopy extension property, from E A {0}t to EATT;
e suspensions .S, by defining
(S E) — Dn+1,

but now with inverse

(S_IE)n = Lp_1;
e homotopy groups; by defining
T (E) = En“n+k (Ek);
e weak homotopy equivalence, since f : E — E’ induces
fo i (E) 2w (E'), forall m;

e cofibrations, such as inclusions of subspectra.
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Note carefully that [ , ] in Spec is a direct limit of a directed system of [ , ] in
CW.

These notions allow many useful results in CW* to be extended, by formally
similar proofs, to Spec. In particular:

Theorem 6.2.7 (WHE persists in Spec) In Spec, a morphism f: E — E' is a
weak homotopy equivalence if and only if it is a homotopy equivalence. 0

So, ‘up to homotopy is good enough’ extends to Spec.
Corollary 6.2.8 In .STp;c we have (i) there is a natural equivalence
EAS!'= SE;
(ii) each [E, E'] admits an abelian group structure with bilinear composition.
Proof: Switzer [106], p.141-143. 0

Theorem 6.2.9 (Exact sequences in Spec) Given the following diagram com-
muting up to homotopy in Spec:

G—L—>g h K
@ a g v
E 7 E' ElUfCE

with a, 3,7 homotopy equivalences, then, for any spectrum F', there are ezxact se-
quences
[F,G] 2 [F, H] 22 [F, K]

(G, F] &~ [H, F] &~ [K, H]

Proof: Switzer [106], p. 143-145. 0

Ex on suspension spectra

1. The cofinal subspectra of STE(S°) are the spectra S*~*E(S¥) for k > 0. A
morphism of spectra S""*E(S*) — F is a cellular map S* — F;_, together
with all of its suspensions.

2. In Spec, given the sequence
EL EoE U CE

with a representative (F,¢) for f, then E' is of the same homotopy type as
the mapping cylinder spectrum of ¢,

Mé={E UF,AT" |neZ}.
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3. Given any pointed CW-complex X, then E(SX) is a cofinal subspectrum of
SE(X) and hence this inclusion induces, for any spectrum E, isomorphisms

[SE(X),S"E] = [E(SX),S"E];
we already know that
[S"E(S®), EAS'A X] = [S"E(S®),SE A X].
Definition 6.2.10 For any spectrum E we define
o the reduced E-spectral homology functor E, = {En | n € Z} with

X [S"E(S°),E A X]
Ep:CW*——> Ab: f| —— (1Af).
Y [S”E(S®),EAY]

e the reduced E-spectral cohomology cofunctor E* = {E” |n€Z} with

X [E(X),S"E]
En . O — Ab: f| —> B(f)*
Y [E(Y),S"E]

Ex One can add coefficients to any spectral theory. Given a spectrum K and an
abelian group G, define a new spectrum EG with EG, = M(G,1) A E,,_; and
mappings 1 Ae,1 : M(G,1) A E,_y AS? - M(G,1) A E,,. Here, M(G,1) is a
Moore space; see page 261f.

We shall see later (page 266) how to recover ordinary homology and cohomology
with coefficients as spectral theories, and how to construct other famous spectral
theories such as K-theory (page 229) and (co)bordism (page 247). For now, we
continue with the general theory, heading toward one of its most famous examples.

Theorem 6.2.11 (Reduced theories extend to Spec) For a spectrum E, the

pair E, and E* define reduced homology and cohomology theories on C/'VI\/'/*, satisfy-
ing the wedge axiom. Moreover, these theories extend to Spec by putting

F [S"E(SO),E/\ F]
En : §[;gc —> Ab: f| /> (1Af)x

G [SPE(SY), E A G]



6.3. SPECTRAL SEQUENCES 189
F [F,S™E]
E": Spec—> Ab: f| —>  [E()"
G [G,S"E]

Proof: The details are given in Switzer [106] p. 145-149. The definition and exten-
sion of E™ is forced by the following isomorphism for any spectrum E and pointed
CW-complex X:

[ST"E(S°) A X,E] 2 [E(X),S"E].

O

Notation There is a natural inclination to write m,(E A X) for E.(X) and
m(E A F) for E,(F) since both are (spectral) homotopy classes of morphisms
from (spectral) spheres.

Definition 6.2.12 For the particular spectrum E = E(S°)—sometimes abbreviated
to S° or S—the theory E(S°), is denoted S% or S. and called stable homotopy

theory w3, since for a pointed CW-compler X we have

75 (X) = ma(E(S%) A X) = lim 4 (8% A X).

The dual theory, stable cohomotopy theory ©%, is the corresponding cohomology

theory, with
T2(X) = @[Sk‘" A X,SH.

Ex on stable theories

1. % is not ordinary: mg'(S% = my(S3) = Z,.

2. Weak homotopy equivalences in CW* induce isomorphisms in 7.

3. w7 and 7% agree on CW~ (hence on Y/’o\;“)

6.3 Spectral sequences

In studying homotopy theory we have seen that while in general the groups m,(X)
are rather difficult to compute (there is no compact, simply connected, incon-
tractible space for which they are all known), they have the greatly redeeming
qualities of behaving very nicely for products and fibrations. On the other hand,
their approximations the homology groups H,(X) are much easier to compute, but,
even for products, the behavior of the latter is much more complicated (as evinced
by the Kiinneth formula). For a fibration 7 : E —» B, it seems reasonable that
H,(E) should be some kind of product of H,(B) and H,(F), where F is the model
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fiber; but what kind precisely? We shall now begin our assault on this citadel, albeit
a bit indirectly.

It will turn out to be convenient to consider a more general setting than C'W-
complexes and their skeletons, that of spaces X with a filtration. This is a Z-
indexed nested sequence of subsets of X, {X, | p € Z}, for which we require that

X:UXP’ Xp gXp+la
p

each X, is closed in X, and every compact subset of X is contained in some X,.
(This last is a technical requirement to provide for the taking of limits later.) Also,

X-wo=lmX,=[)X,=2.
p

Let m : E —» B be a fibration in which B is a CW-complex. Define E, = 7 B?
where BP? is the p-skeleton of B. Note that E, is not in general the p-skeleton of
E, but that E, does define a filtration of E. This will be our model example.

We wish to compute H,(X) for an unreduced homology theory H,. We shall pro-
ceed by a double approximation scheme. First, we regard H,,(X,) as an approxima-
tion to Hp, (X). This gets better as p increases. Secondly, we regard Hy, (X, Xp—,)
as an approximation to Hp,(Xp). This gets better as r increases. We shall investi-
gate each in turn, but first recall that even if X, = @ for p < 0, H,, might not be
zero for m < 0.

In order to compare the various H,,(X,), where we regard m as fixed and p as
variable, we introduce the groups

Fpq =im(Hp(X,) — Hn(X)),

where p + ¢ = m and the map is induced by the inclusion X, < X. Some sort of
double indexing is necessary to keep track of both m and p, and this one is not only
elegant but (as we shall see) very useful. Since

X=Xy, Hn(X)= lim Hn(X,).
p

Thus
Hyo(X)= |J Fpy.
p+g=m
Now observe that since the X, are ordered there is an induced order on the F},,
in which Fj,_; 441 precedes F,, and the bottom is F_;n,4; = 0. Thus we have the
series

Hn(X) 2 D Fpg D Fp1g41 2 2 F 1y =0.
This is called a filtration of H,,(X).

The filtered degree is p, the complementary degree is g, and the total
degree is m. This provides what is usually called a bigraded filtration of H,.(X).
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Note that (as an algebraic fact) a filtration only determines H,,(X) up to some
extensions. Thus group theory suggests that we should consider the consecutive

quotients
qu/Fp—l g+1

as the fundamental objects to study. However, these are defined in terms of maps
into H,,(X), which we do not have to hand.

Lemma 6.3.1 Consider the triple (X, X, Xp—1) and the associated pairs (X, X,),
(Xp, Xp—1), and (X,X,_1). The exzact sequences for each of these interlace to
produce the commutative diagram with ezact row and column

Hmi1(X, Xp)

Hm(Xp—l) 2 Hm(XP)

Hp(X)

where 0 and D are connecting homomorphisms from the pair (X, X,) and the triple
(respectively), the other maps are induced by inclusions, F,, = imi., and

Fp—1q+1 = im il* = imig* . O
Now we compute

Fpo/Fp-1q+1 = imi,/imis.

(Hm(X,)/ keriy) /imig,

= (Hn(X,)/im0) [ ker j.  (by exactness)

= imj./imj.0 (by interchanging the order of quotients)
=imj./imD. (6.1)

R

This avoids using maps into H,,(X), but now we need and lack H,,(X,). So we
trace this information into the second approximation.

We approximate H,,(X,) with Hp,(X,, X,_,) and thus j. with
Jre t Hn(Xp, Xp—r) — Hp(Xp, Xp_1).
Hence we approximate D with
Dy : Hpy1 (Xpir—1, Xp) — Hp(Xp, Xpo1).

In the interests of simplicity (and sanity) we shall not multiply-index j,, and
D, in the obvious way (or any other). Note that this D, goes between sequences as
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D does, rather than within one sequence as the other possible candidate does. To

help keep track of all this we name the images involved

Z;q = im (Jrs : Hn(Xp, Xp—r) — Hp(Xp, Xp-1))
B;q = im (D, : Hpya (Xpsr—1,Xp) — Hm(ththl))

and also name their quotient
Epe=244/Bp
Let us check now and see how the approximation to Fy,/F, 1441 is doing.
Lemma 6.3.2 We have the following inclusions:
_pl +1 +1 .. 1 _
0=B,,C gB;q CByy C--CZ €Z,C - C Zpq = Hpn(Xp, Xp-1) -
It may be amusing to note the formal resemblance to nested intervals here.

Proof: Clearly, 0 = le,q and Zzl,q = Hn(Xp, Xp-1)- To see that B, C B;;rl, we
use the definition to construct

Hm+1( p+7> p)

&)

Hrn(th Xpﬁl)

/

Hm+l (Xp+r—l ) Xp)

and commutativity means that we have the desired inclusion. Similarly, Z;;r ¢ Zy,
is equivalent to commutativity of

Hm(XP, XP—T)

Hm(va Xp—l)

Hm(Xp, Xp—r—])
and we leave the verification that B C Z7 as an exercise. O

Thus we may define
Z3=limZ;, = (2
By, =lim By, =) B
B, = lim E,

Of course, we must identify these more precisely if we wish to compute with them.
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Lemma 6.3.3 In the notation introduced in Lemma 6.3.1, using equation (6.1),
we have Z25 = im j. and By =im D. Moreover,

EX, =2,/ Byy-
Proof: In outline, using the definitions,

Z7 =im (s : Hm(Xp, Xp_r) — Ho(Xp, Xp_1))

rq

converges (as r — 00) to

Z%° =im (ju : Hpn(X,, @) — Hpn(Xp, Xp-1))

X'

and
B}, =im (Dy : Hyps1 (Xpyr—1,Xp) — Hpn(Xp, Xp—1))

converges to
B;x:] =im (D : Hm+1 (X, Xp) — Hm(Xanpvl)) .
We leave the last statement as an exercise. O

It is not true in absolute generality that homology commutes with inverse limits.
However, the theories that we consider and the cases in which we shall apply the
preceding will always obey commutativity, usually because the filtration will be
bounded below in the sense that X, = @ for all p sufficiently small.

Corollary 6.3.4 F,,/F, 1441 = EJY. 0

It is now clear that the E ~are the fundamental objects of our double ap-
proximation scheme. For a fixed 7, there is some additional algebraic structure
that is crucial in computations. To obtain it, we consider a situation similar to
that in Lemma 6.3.1, but now using the exact sequences associated to the triples
(Xp, Xp—1,Xp—r) and (X, X, Xp—r—1). Somewhat intuitively one may regard
these respectively as ‘the rt® approximation to the 1% approximation’ and ‘the
1t approximation to the r** approximation’. Using the exact sequences for the
associated triples (X,, Xp—1,Xp—r—1) and (Xp_1, Xp—r, Xp—r—1) as well, we may
interlace these exact sequences to obtain

Hm(XPaXP—r—I)

jr41 %

Hm(Xp—th—r) Hm(vaXp—r) b Hm(vaprl)

r*

D,y

Hmfl (Xp—r7 Xp—r—l)
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where, e.g., D,;1 is the connecting map of the triple (X,, X,—,, Xp—r—1), and the
unmarked arrows are induced by inclusions. Essentially the same computation as
for equation (6.1) shows that

T r+1 ~ r+1 r
ZPq/ZPq - Bp rq+r—1/Bp—rq+r71 -

Combining this isomorphism with the definitions and inclusion, we may create

T r r r+1 ~ npr+l r r r
qu/qu — qu/qu - Bp—r q+r—1/Bp—r qg+r—1 - ZpArq+r—l/Bp7r g+r—1-

This composition defines a map

& : E;, — E

p—rqg+r—1
with
r o r+1 r
kerd" = ZI /Bl
: — +1 T
imd" = B " /B,
so that

imd" C kerd” and (d")? =0;
whence d” is a differential, like a chain map, and (EL,,d") is a bigraded chain
complex (i.e., the 2-dimensional version of a chain complex). Amazingly, we can
now compute to find:

kerd"/im d" = (Z;;I/B;q) / (B;;LI/B;q)

r+1 r+1 __ r+1
qu /qu _qu :

14

That is, (B!, d"*!) is the homology of (E7,,d")! This complete sequence {E] ,d"}
of bigraded chain complexes in which the homology (as above) of each is the next,
constitutes the algebraic monster known as a spectral sequence. The term ‘spec-
tral’ is because of the homology relation, an historical allusion. In general, they do
occur in other contexts, both abstract algebraic and topological; ours will all fit the
preceding construction. We refer to McCleary [69] for a survey (with details) of the
most important spectral sequences in algebraic topology, and a guide to others.

Frequently, we know an early term (usually E., or E2,) and would like to have
E22. In this case we try to work out enough differentials to gain intermediate terms
E7,. On the other hand, sometimes we know E2? and try to work back to get an
early term. In order to keep track of what’s going on overall, we shall view the terms
as living in 3-dimensional (p, q,7)-space and consider slices of constant r; then we
can display progress on pictures of the resulting (p, ¢)-planes.

Ex Observe that d? is a ‘knight’s move’, and d” is a generalized one. Satisfy
yourself that the sketch in Figure 6.1 represents the situation. Of course, the d°
and d* shown there really live in the r = 3 and r = 4 planes, respectively; we drew
them together purely for illustrative purposes.
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Figure 6.1: Picturing spectral sequences

Note that arrows for d? lie along lines of slope —%, and in general those for d”
along slope 1% Since p + ¢ = m, we may say that H.(X) is along limit lines of
slope —1.

Our objective was to compute H,(X), and this has been achieved up to some
group extensions. Nevertheless, we say that our spectral sequence converges to
H.(X), and write

E}, = H.(X),

reflecting the double approximation scheme we have employed by the double arrow.
As an example of what can be done with spectral sequences, we have the following.

Theorem 6.3.5 (Atiyah-Hirzebruch) Let H, denote an ordinary homology the-
ory and let h. denote any homology theory satisfying the wedge axiom, Definition
4.5.1. If X is a CW-complez, then there exists a spectral sequence

El, = h(X) with E}, = Hy(X;he(x)).

Proof: We use the p-skeleton XP? as our filtration of X. This filtration is bounded
below since X? = @& for p < 0 and converges to X since X = Up X?. We know
from previous work that X? is obtained from X?~! by attaching p-cells, so that

Xxr/xr-t=\/s?

where « indexes the p cells. Thus, applying our construction above,
Ezlw = hp+q(Xp7Xp_l) = hp+q(Xp/Xp_l’*)
= hP‘HI(\/ ng *)
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= (P hpso(SP,%)

= @hQ(SO7*)
= Cp(X) ® hy(x)

where Cp(X) is the group of cellular p-chains which occurred in computing the
homology of CW-complexes. From our construction of the general spectral sequence
before, it is easy to see that

d' =Dyt hpy o(XP,XP7Y) — hppg 1 (XPT1, XP72),

is the connecting homomorphism of the triple (X7, XP~!, XP~2),
Following this through the isomorphisms at the beginning of this proof, we find
that d' maps to

d®1:Cp(X) ® hg(x) — Cpe1(X) ® hy().
Hence, as desired, E2, = H,(X; hy(%)). o

Note that, although E!, above depends on a choice of CW structure for X, E2, does
not. Thus, in theory, all one needs to know in order to compute any homology theory
on C'W-complexes is ordinary homology and the coeflicients of the exotic theory.
In practice, one needs a bit of luck first to obtain the intermediate terms E7, and
their differentials d” for r > 2, and then to solve the extension problems where
necessary to pass from F,, to h.(X). Computer algebra software is sometimes able
to compensate for bad luck.

For our next illustration of the power of spectral sequences over ordinary theo-
ries, we deduce their universal topological invariance:

Theorem 6.3.6 (All ordinary theories agree) Finite simplicial homology (and
thus cohomology) is a topological invariant. In fact, all ordinary theories agree on
CW-complezes.

Proof: Take h, to be finite simplicial homology. Then in the Atiyah-Hirzebruch
spectral sequence,

H,(X;Z) forq=0,

2 ~ . =
qu—Hp(thq(*))_{ 0 for ¢ # 0.

We see that there is only one nonvanishing row in the r = 2 plane, so all differentials
d" for r > 2 are zero homomorphisms and the spectral sequence collapses:

2 ~ o0 Ay
EpOZ pOZFPO/FP-ll'

But
Fp_ll/Fp‘QQ = E;(ill - 0
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which implies that

~

0 A
EpO_ p0 -

Moreover, it follows that
F,,=0 forg#0.

By definition of F},, we obtain
Epo = hy(X)

for finite simplicial complexes X considered as CW-complexes | X|. It is now clear
that all ordinary homologies agree on X, or on | X|, so in particular finite simplicial
homology is a topological invariant. 0

Next, we indicate the proof of the Hurewicz theorem as promised earlier (page
141).

Proof (Hurewicz isomorphism): Recall that stable homotopy is the reduced ho-
mology theory

75 (X) = lim . (SKX) = lm[S™+, (S*X)],
so we have maps
Tn(X) = 1 (X) .
Hence we deduce that for simply connected X, for any fixed n,

m(X)=0fork<n <= 7(X)=0fork<n.

By suspension, for (n — 1)-connected X,
(X)) 2 r5(X) forl<k<2n-1 (6.2)

and there exists 1 : mo,—1(X) = 73, _;(X). Now consider the spectral sequence
(Atiyah-Hirzebruch)
El, = Hy(X;n](x) — 7(X).

Note that
Epo = Hyp(X;Z),
p0 — p0 —-11 — 7 S X S X
im (7rp( p~1) — 5 ( ))

5 (X)

im (75(Xp-1) — 75 (X))’

and we have an inclusion Epy < EZ,. Whence the Hurewicz map

m(X) — Hy(X;Z)
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factors through E;g and

ESS =im (5 (X) — Hyp(X;2)).

Applying the suspension result (6.2) above, yields the Hurewicz theorem (and we
do m; — H,; directly by an elementary argument). 0O

Theorem 6.3.7 (Only two nonzero rows in Ef,q) If Ef,q has only two nonzero
rows, Ef,o = E? | then clearly

pn
B =0 ifq#0,n,
and d"*! is the only non-zero differential. Moreover,

E}F=E}P =...=EX.
Proof: In E2, we have nontriviality only at ¢ = 0,n so
0% E2 %0 and 05 E2, Do,
Eyo = Ejo/{0} = E}, and Ej, =FE;./{0}=E},,
etc.

The only nontrivial differentials arise at level n + 1, namely:

dn+1

0— Ejd' 5 Bl |, —0 so Ef* =kerd™', and

artl
0— Exf 10" E}ft — 0 so E}t? = cokerd™*" here.

Above level n + 1 we have

E;, =0 unless g=0orn,

and with zero differentials; so the homology filters up and is preserved to the limit:
BN = ENf = = BX. O

A typical situation is when we have a spectral sequence with
2 _ .
E,, = Hy(X; Ry)

where the coefficient group R, is a ¢** homology group, and we are interested in E22.
Filling in the known information, we may have an Ef, , diagram with relatively few
non-zero entries to work from. Suppose that the non-zero entries are as indicated
in Figure 6.2. Evidently, for r > 2, E, will have at least the same zero entries as
EZ,. Hence, our first possible nonzero differentials are

3. 3 3
d>: E3, — By, for g even
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b S bt
8 | Fs As Bg o
x -
6 |Fs Ae
4 5
g 4 |F Ay By
3
2 | F Ag
1
0 | Fo Ao B
ol11213141516 1718

p—
Figure 6.2: Example of a sparse E>  diagram
which appear as homomorphisms
d®: Ay — Fyyp for g even.

Suppose further that ES0 has only finitely many zero entries (this happens if our
spectral sequence is known to converge to the homology of a finite dimensional
manifold). Then for sufficiently large m we must have for all ¢ > m,

E3,=FEj,4,=0.

Hence for large enough m,
d3 Am = Lm42.

With specific information about the A4 and Fy, o it may be possible to identify the
action of the d® homomorphisms on generators. Clearly,

Ej, =0 if d*: A, — F,4p is monic.
The next, and only other, possibly non-zero differentials are
d®:B, — Fy.4 forq=4,8,...,
and again for sufficiently large m we must have

dSBm = I'm+4.
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Then everything gels:
EX ~ES .

Before pursuing further applications, we pause to dualize the constructions and
discuss briefly cohomology spectral sequences. We shall hit the highlights and leave
most of the details for exercises or reference by the reader; see e. g., Spanier [97]
and Switzer [106].

We write a cohomology spectral sequence as {EF?,d,} and observe that

now we want
dy : BP9 — Epira-rl

but preserving E}}, still as the homology of E;*. In Figure 6.1 we reverse the
directions of the arrows. Since such objects as EJ, Z24, etc., are now defined
as inverse limits, our cohomology theories must be well behaved with respect to
inverse limits in order that analogous relations still hold. The ordinary, Cech, and
de Rham theories are examples of well-behaved theories, as are most of those we
consider; exceptions will be explicitly pointed out.

Both types of spectral sequence are well behaved with respect to products, and
we shall consider {E??,d,} as a bigraded ring with derivations d, whenever conve-
nient. If @ € EP? and b € EF' 7, then ab € EPt? ¢+¢ and

d(ab) = (dra)b+ (—1)P*%ad,b.
In the cohomology version of the Atiyah-Hirzebruch spectral sequence, we have
maps EP? — h*(X), both additively and multiplicatively, and
EP? >~ FPt — p*(X)

as rings. The additional work needed for a proof is mostly a careful but tedious
checking of details, and we refer to e. g. Hilton [43] or Switzer [106].

Ex on the configuration space of identical particles Selig [93] used spectral
sequences to compute the cohomology of the configuration space of three identical
particles moving in certain manifolds M. So we seek H*(C3(M);Z) where

Cs(M)=Mx M x M \ {all diagonals}

and C3(M) = C3(M)/Ss; so Cs(M) —» C3(M) is a regular cover. Here S is
the symmetric group of permutations of three objects. In this case, the spectral
sequence (cf. MacLane [65], p. 342) has

E}? = H” (S4; H'(Cy(M); 2))
and
EP" = HPT4(C3(M); Z).

For example, when M = R®, the E}? term has the nonzero groups and generators
shown in Figure 6.3, where dega = degc = 2 and deg b = 4. Explicitly, we have the
following generators for n =0,1,2,...:
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1
4 Zg Z3
3
4 -
q 2 Zg Z2 ZQ Z2 .
1
0 Z Z2 Zﬁ Z2 Zﬁ
Ol1 1213141516 1718 v
p—
4 f bf ..
3
t .
qg 2 c ac be abc .
1
0 1 a b ab b?
0111213 516 17 18
p—

Figure 6.3: Part of the E3*-plane; groups (top) and generators (bottom)
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o ab" for E;"120

e b for E4™0,

e b for Eg"1?, and

o ab’c for EgnT32.
Now, C3(R?) is finite dimensional so, for large enough n, H*(C3(R3;Z)) = 0 and
the first possibly non-zero differential is d3, operating from row ¢ = 2 to row g = 0.

Hence, for large enough n, we get exactness in row ¢ = 2 so

ds: (Bg"T1? = 7) — Eg"T0:p"c— 3071, (6.3)
ds : (BE3"32 = 7,) — E3"T80 . ab"c s ab" . (6.4)

It is also the case that d is a derivation (¢f. Selig [93])
dszy = (dsz)y + (—1)%8%dzy .
Therefore, for large enough n, we obtain from (6.3)
d3(b"c) = (dzb™)e+ (—1)*"b"dsc = 0 + b™dzc = 36"+,
and from (6.4)
ds(ab™c) = (dzab™)c + (—1)*"*2(ab™)dsc = 0 + ab™dzc = ab™ "' .

Hence dsc = 3b, which destroys the ¢ = 2 row in E}* since the d3-chain passing
through Ef % is exact. Moreover, ds, being monic, has a Z, image in groups of row
0, nicely reducing it. Hence the E}* term is reduced to that shown in Figure 6.4,
where Ei"”‘i is generated by b™f. Repeating the dimensionality argument for dj,
the only other possibly non-zero differential, yields

E§n+34 I~ Z3 Egn+80 ,

ds (™ f) = (dsb™)f + (=1)*"b"ds f = 0+ b"ds f = 3b" 2.

Therefore ds f = 3b%, which destroys the ¢ = 4 row (by injectivity of ds) and the
¢ = 0 row for p > 8 (by surjectivity of ds). Hence the only surviving entries in Eg*
are
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S S ) b
4 L3 Ly
y 3
q 2
1
0 | Z Zy Z3 Z3
orr 1213141516 1718
p—
Figure 6.4: Part of the E}*-plane
Mm\"||O0|1|2|3]| 4 516 |7
R? Z Zy Zs
R? Z Zo | Z | Zs
S? Z Zo | Z | Zs | Zo
St Z Lo L2 Ly | Z

Table 6.1: Cohomology for configuration spaces of 3 identical particles

203
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so EX¥ = EF* and we conclude that the only cohomology is

H(C3(R?); Z) =
(C3( ) ) = Z27
H*(C3(R’);2) = Z3

Similar analyses are given by Selig [93] for H*(C3(M);Z) when M = R*, §3, and
S% he found the results summarized in Table 6.1. He also classified the principal
bundles over these spaces.

More generally, one may consider the configuration space Cp,(M) = Cp(M)/S,,
of n identical particles in M, where one takes the n-fold product of M by itself,
removes all the diagonals, and mods out by the symmetric group on n objects. When
M is a compact, orientable surface, the fundamental group of C,,(M) is called the
nth braid group of M [9]. It appears in knot theory, amongst other places, and has
recently attracted new attention in both mathematics and theoretical physics.

6.3.1 Review and moral tale

Let’s look back over the construction of spectral sequences. First of all, a spectral
sequence

EBu={E, S E_ ., |IreN pgel}

is fundamentally an algebraic entity living in the space Z3; the (p,q)-plane be-
ing viewed as horizontal. At fixed r, the horizontal sequence through any point
(p,q,r) € Z3 given for n > 0 by

s:nw (p—nr,g+nr—n,r)

singles out a chain complex from FE,,. That is, the homomorphisms defined by
d” between the modules at the point of s compose pair by pair to give the zero
homomorphism. Briefly we write

(d")? =0
This is sufficient to ensure that at each point of s the departure of the associated
chain complex from exactness there is correctly measured by the homology

H(ET

P’

d) = kerd"/imd".
The speciality of spectral sequences is that any such lack of exactness gets kicked
up to the next higher level,

Er+1 (Er

pq’ d"') )

in somewhat similar fashion to the way that bureaucracies promote individuals who
don’t fit at their present level. We are interested in E2%, up in the penthouse.
Horizontal sequences like s allow us to view ET, in each plane of constant r as chain

complexes proceeding from lower right to upper left with ‘slope’
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(change in q) / (change in p) = (1 —r)/r.

Hence the handy little diagrams like Figure 6.1 so often drawn. Now, just as
promoted bureaucrats may not know what to do when they get upstairs, so also do
we have a problem in that, unlike its domain of operation, d"*! is not necessarily
determined in its action by (E;,,d"). On the other hand, our hierarchy is firmly
based on democratic principles dictated by the ground floor functions d!, so we can
represent the superstructure as a tower of submodules in the following manner.

2 _ 151
E;, =kerd /imd

is a subquotient of E} .
qu = kerd?/ im d*

is a subquotient of kerd!/im d! and hence kerd?/imd? = K?/I? with K?/imd'
kerd? and I?/imd! = im d?. Next,

11

4 _ 35 13
E,,=kerd’/imd

is a subquotient of kerd?/imd? and hence kerd®/imd® =~ K3/I° with K3/1* =
kerd® and I®/I? = im d?, and so on, referring back at each stage to a subquotient
of E}, with

kerd" = K"/I"™' at (p,q),

imd"=I"/I""' at(p—r,q+r—1).

For variety, we are using K for kernels and I for images instead of Z and B,
respectively. Hence we obtain a decomposition:

0Cimd' =I'Cr*Ccr*Pc...C---CK}*CK?*CK"'=kerd' CE,,

with
+1 ~ —
E;q > K"/I" forr=1,2,....

Pushing our bureaucratic analogy to its logical conclusion we view the submodules
in these terms:

o K" consists of the survivors of promotion to level r (r-Kreeps 7);

e I" consists of those bounded by stage r (they have achieved their level of
incompetence and are to be factored out: the r-Incompetents);

e K> =N ,K", consists of immortal promotees;

o ] =UX I" consists of all the eventual bounders.

Observe that K® = E] is not included in K. It follows that 7 C K and so
we obtain the limiting quotient (those with an afterlife role?)

B = K /I
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which is really what we have been after all along, the earlier terms being merely
approximations. Note that any tower of (bigraded) submodules
0=I1°CI'Ccr*c---C.--CK*CK'CK°=E,,
with isomorphisms at each (p, q) given by
Kr 1/ NIT‘ —r,g+r— I/I; 71‘q+r 19
hence of bidegree (—r,r — 1), determines a spectral sequence {E; ,d"} for r > 1
with
—_ -1 r—1
Ey,=K/I

and ¢" induces d” with the same bidegree:

Kr~1/Ir~1 a” Kr-l/lr~l

]

Kr—l/Kr Ir/Ir—l

where the vertical arrows are well-defined maps of quotients since I~} C K". Some
particularly simple cases are worth looking at.

Theorem 6.3.8 (Immediate convergence case) If E2 =0 when p or q is odd,
then d™ =0 for all v > 2 and it follows that

00 v 2
Eyg = Epq-
Proof: By definition,

d? :E2 —>Ep 2 g+1

so d? = 0, since if p and ¢ are even then g + 1 is odd. For r > 2,
d" Ep, — By pir

so d” = 0, since for p and g even then either p — r is odd or ¢ +r — 1 is odd. Now,
for all p,q, d2 = 0 so we deduce

ES =kerd’/imd* =

pq;

hence inductively, for r > 2,
E,=E, .

So here the tower has, for all r > 1,
I"=0 and K"=kerd" =E;}'=FE?

It follows that B, = 22, K™ = E2. O
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The proposition transcribes into the following bureaucratic result, first exploited by
the CIA.

Corollary 6.3.9 (CIA theorem) If odd people fit straight away, then there is no
communication after the first level and most of the superstructure is irrelevant.

This subsection first appeared as [28], which was written when we first thought
we had nearly finished this book.






Chapter 7

Bundle Theory

The Whore on the Snowcrust: In Defense of Bundling—US ballad ¢ 1786

This chapter is not really a leisurely introduction to bundles, but new tricks for the
old dog. We shall assume that the reader has already encountered bundles elsewhere
(for example, principal bundles in gauge theories in physics), and direct you to
Appendix C and the works cited there for more background material. Nonetheless,
it is possible to learn bundles ab ovo here, provided that you are willing to do a
certain amount of extra work to familiarize yourself with the traditional view as
you go along.

Given a base space and a group, bundles occur in various forms; but the funda-
mental idea of what it is all about is captured by the following.

Ex There are just two Zs-bundles (double covers) over S!. The first is the trivial
bundle
Dirivial - S x Lo —» St (I,Z) —

with total space consisting of two copies of S*. The second is the twisted bundle with
total space consisting of one copy of S? folded back on itself once, like a bandsaw
blade on a streetcar or a rubberband on a poster. These are shown in Figure 7.1,
each picture there being a view from the same perspective. The existence of the
nontrivial bundle is due to the nontrivial homotopy type of the base space S!, nicely
displayed even by the minimally nontrivial fiber Z;—a thing worth remembering.

In contrast, there is only one double cover (Zs-bundle) over R'. (Draw the
pictures; play with a bandsaw blade or a rubber band!) We shall return to the
analysis of the Z2 bundle over S! below (page 211), by means of Cech cohomology.

We shall see that principal G-bundles over X are given by H!(X;G) and that
in this approach global, local, and computational formulae all appear at once. This

209
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Trivial bundle Twisted bundle

Figure 7.1: Principal Zo-bundles over S!

will be rather different from the usual approach, but very soon it will all fall out
right in your lap.

As the notation just used suggests, we must consider cohomology with non-
abelian coefficients (tangent bundles are GL(n)-bundles). While the theory for H?
and higher ‘groups’ is difficult, and not even possessed of a consensus at present,
H! is relatively easy. The more theoretically minded reader might keep in mind the
following question, to which we have no completely satisfactory answer: how about
homology; in particular, why not H; ?

7.1 Elemental theory

It is most convenient to approach from the viewpoint of Cech theory. Here and
throughout, X will be our fixed but arbitrary base space and G a topological group.
To cater for nonabelian groups, we shall use multiplicative notation.

Let & = {U;} be an open covering of X. Recall that a Cech 1-cocycle on U
with values in G is a collection of continuous local functions f;; : U; N U; — G such
that

fij =1 inG,

fij = ficfr; in G.

The second is historically referred to as ‘the cocycle condition’. Two cocycles f and
g are said to be cohomologous if and only if there exists a collection of continuous
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local functions h; : U; = G such that
fij = bt gish; .

As usual, H(U; G) denotes the set of cocycles modulo the equivalence relation (veri-
fication?) of being cohomologous. Note that although H!(U/; G) has a distinguished
element (the class of the constant cocycle 1), it is not in general a group.

Ex Give an example to show why not. What precisely is the problem in general?

A covering U is said to be simple if and only if each U; N U; is homologically

trivial; that is, H,(U;NU;) = 0 for all 4, j, n (using ordinary reduced homology with
integer coefficients).

Ex
1. Read through the examples in Appendix C.
2. Every manifold has simple atlases.

3. Can you characterize spaces which have simple covers?

Partially order all coverings by inclusion (each covering precedes any refinement
of it), and then define § )
H'(X;G) = h_n}lH%Ll;G) .

What makes these efficiently computable is the following extraordinary theorem.
Theorem 7.1.1 (Leray) IfU is simple, then H'(U;G) = H'(X;G). 0

This theorem is usually presented for abelian GG, in which case it’s actually valid for
the entire H*. Proofs of this version may be found in Spanier [97] or Vaisman [112].

Ex

1. For those willing to consult such a reference, check that one need only assume
that each component of U; N U; is simply connected. We also leave to the
reader (any, now) the extension to the case of sheaf coefficients; that is, the
definition of H!(X;S) where S is a sheaf of (possibly nonabelian) groups.

2. Let X = S' and G = Zy = {£1}, writing multiplicatively. Choose U; =
S™\{S pole} and U, = S\{N pole}. Note that we must use the discrete
topology on Zs. Thus there are only four possible cocycles. The two that
assign either +1 or —1 to both components of U; N U are cohomologous,
and the two that assign +1 to one component and —1 to the other are also
cohomologous. Thus there are two cohomology classes in H(S!;Z;) the first
‘trivial’ and the second ‘twisted’.
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The reader may already have recognized the ‘cocycle condition’ as the compat-
ibility condition of the transition functions for a G-bundle. In order to see bundles
in the usual way, we must globalize.

Recall that we may identify functions and their graphs. In particular, given
a l-cocycle f, each f;; can be identified with the subset of U; N U; x G which is
its graph. (Recall that these cocycles can be defined only with respect to some
covering.) In order to consider cohomologous cocycles we must also study graphs
in each U; x G. Also note that, given a covering & of X we can reconstruct X from
the disjoint union [[ U; by means of the inclusions U; — X and the identifications

U;NnU; =U,;NU;.

Thus, in order to interpret the cocycles and the cohomologous relation in terms
of graphs, we form the disjoint union [[(U; x G) and mod out by the equivalence
(verify!) relation determined as follows: first slot—the relation given above which
yields X; second slot—the relation determined by the cocycle. In other words, if
z € U;NUj, then

(z,91) ~ (x,92) <= g1 = fij(z)g2.

Let us denote the set so obtained by P. Observe that as a set P = X x G and
that there is a natural surjection P -» X such that 7<{z} = G as sets for each
x € X. As a space, however, P is only ‘X-locally’ homeomorphic to X x G, that is
7 U; =2 U; X G for each U; € U. The map 7 is clearly continuous with this topology
on P. Moreover, there is a continuous action of G on [[(U; x G) which is (fixed-
point) free. It is easy to verify that P inherits a continuous free action of G. We shall
make the convention that G acts on the right of [[(U; x G) by right translation,
and thus that P is a right G-space in which the action of G on each set 7 {z}
corresponds to the action of G on itself by right translation. By now it should be
obvious (assuming you've already seen them) that P is a principal G-bundle over
X. We call P the total space and X the base space. Any representative cocycle
for P is called a set of transition functions for P. If G is discrete, P is also called
a G-torsor over X; see page 217 for the most important example.

Ex Using your favorite usual definition of principal G-bundle (or the one in Ap-
pendix C if you wish), complete the verification of this claim. For example, verify
that each fiber 7* {z} is homeomorphic to G.

We now investigate the cohomologous relation. Let f and g be two U-cocycles
and assume that they are cohomologous via some family {h; : U; — G}. Denote the
two principal G-bundles constructed from f and g by P and @ respectively. Define

F:P— Q:p+ phi(r(p))

where 7(p) € U;. Here, as is customary, we have suppressed the fiber identifications
with G.
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Ex
1. F is well-defined (use the cohomologous relation).

2. F is a homeomorphism which preserves fibers (use the facts that G acts by
homeomorphisms and that each h; is continuous).

Summing up, we have achieved a G-bundle classification:

Theorem 7.1.2 (G-bundle classification) Isomorphism classes of principal G-
bundles over X correspond bijectively with elements of H'(X;G), the trivial class
corresponding to the distinguished element. 0

Henceforth we shall regard principal G-bundles interchangeably as geometric objects
or as (representatives of) cohomology classes, whichever is more convenient.

Ex (The frame bundle, consisting of linear frames over a smooth manifold; cf.
p.351. Historically, this was the primary example.) Let X be a smooth manifold
and U = {(U;, ¢;)} any simple atlas. Define a cocycle ! by

lij(z) = D(¢i 0 ¢; " )o;(x);

that is, the matrix of partial derivatives of the change of coordinates. Using the
chain rule, we see that [ is in fact a cocycle. We call [ the Leibniz cocycle and its
cohomology class the Leibniz class. Clearly the corresponding principal GL(n)-
bundle is the frame bundle: the [;; are its classical transition functions.

This example shows that indeed it all falls out at once. Notice all the classical
computations and checks that we do not need to make; listing these is a good
exercise in ‘unpacking’.

Ex

1. Look up an approximation theorem somewhere to verify that smooth maps
are dense in continuous maps. This means that we can take all maps to be
smooth when X and G are both smooth.

2. A principal bundle P over X is trivial if and only if it admits a section; i. e.,
a map X — P which commutes with projection. (Cf. Theorem 7.1.6.)

Now suppose that H is another (Top) group and that we are given a (continuous)
homomorphism f:H — G. For each X this induces a natural map H!(X; H) —
H'(X;@G) via composition of H-cocycles with the homomorphism.
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Ex Verify that this does preserve the cohomologous relation, as claimed.

If P is a principal H-bundle which maps to a principal G-bundle @), we say that
P is obtained from Q by a reduction (think of H < G) or lifting (think of H
covering ) of the structure group, or that ) is obtained from P by an extension
or prolongation of the structure group. From the definitions we immediately
obtain the next result.

Theorem 7.1.3 (Structure group reduction) For a subgroup H of G, a prin-
cipal G-bundle admits a reduction to H if and only if there exists a bundle atlas for
which the transition functions are H-valued.

Proof: Translating from classical into cohomology language, a ‘bundle atlas with
H-valued transition functions’ is a ‘G-cocycle which is also an H-cocycle’. O

Later we shall give a bundle-theoretic criterion for reduction to a subgroup (page
220). The other problems require the machinery of Obstruction Theory, so they
will have to wait until after Chapter 8. For now, we have another example which is
suggestive.

Ex on the orientation bundle Consider the map GL(n) = O(1) = {£1} given

by the formula
det g

|det g|

It induces a map from GL(n)-bundles to O(1)-bundles, now representable cohomo-
logically as )
or : HY(X;GL(n)) — H'(X;0(1)) = HY(X;Z,).

The image under this map of a principal GL(n)-bundle P is called the orientation
bundle or(P). The bundle P is said to be orientable or nonorientable according
as or(P) is trivial or twisted, respectively. The classical case of course is when P is
the frame bundle of a manifold; we shall then write or(X) = orx for this orientation
bundle. In this case, verify that our definition matches your favorite (the classical
one is obviously easiest).

This brings us to the connection with representation theory, the preceding ex-
ample being one of the most celebrated instances. In general, any homomorphism
G — H is called a representation of G in H. When H is the general linear group
of some (possibly infinite-dimensional) vector space, the representation is said to be
linear. We shall be most interested in representations G — Aut(X) in the group of
self-homeomorphisms of a space X (self-diffeomorphisms when X is smooth) which
are continuous (smooth). We say then that X is a G-space. See Michor [70] for an
appropriate notion of smoothness.

Our immediate objective is to obtain a categorical (that is, systematic, consis-
tent, etc.) method of changing the fibers in a principal bundle into any (reasonable)
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space, while preserving all the essential information of the principal bundle. Some-
what more intuitively, we want to think of a principal bundle as some kind of holder
into which we can insert various fibers which may be changed at will. If we think
of the fibers as ‘vertical’ and the base space as ‘horizontal’, then what we wish to
do is to make a vertical change while preserving the horizontal information.

Comparing with our construction of the topological space P, which was a ‘hor-
izontal’ quotient, we see that what we should do is to take a ‘vertical’ quotient of
P x F for some proposed fiber F. In order to make parity consistent, we shall
always consider only left G-spaces F' and write ¢ f to indicate that g € G is applied
to f € F by means of the representation G — Aut(F) which makes F' a G-space.
Clearly, what we must do is to collapse each fiber of P to a point. Thus, define a
right action of G on P x F by

(. g =(pg,97"f)

and then define P[F] = (P x F)/G, the orbit space of this action. We denote the
equivalence class or orbit of (p, f) by [p, f] and define a projection

7 : P[F] —» X : [p, f] — 7 (p),

where the second 7 : P —» X comes from the principal bundle as before. We
call P[F] an associated bundle of P. Associated bundles with fiber R* are called

vector bundles.

Ex

1. Work out the details for the plain band and the Mobius band as associated
bundles of the two principal Zy-bundles over S!. Use R or B! for the fiber F
according as you want open or closed bands, respectively. Figure 7.2 shows the
two total spaces for the choice B!; the ‘middle’ circle corresponds to 0 € B!.

2. Verify that this yields a fiber bundle with fiber F' and group G according to
your favorite definition.

3. If you didn’t do so before, write all this out in terms of local functions and
coverings (bundle charts).

4. If a fiber bundle E and a principal bundle P have the same transition func-
tions, then E = P[F) for some F.

5. If R denotes the category of (left) G-spaces and Bx the category of G-bundles
over X, then each principal G-bundle P over X defines a functor R — Bx.

6. If P denotes the category of principal G-bundles over X and B[F] that of
G-bundles with fiber F', then P — B[F]: P — P[F] is also a functor.

7. Can you characterize H'(X;G) or even H'( ;G) categorically? A good so-
lution should provide higher cohomology objects and classifying spaces (wiz.
infra) for them.
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Trivial bundle Twisted bundle

Figure 7.2: Total spaces of associated bundles over S! with fiber B!

8. Observe that using linear representations of G provides us with vector bundles,
as you may easily verify using (as usual) your favorite definition.

Let A»T*X denote the nt? exterior power of the cotangent bundle of a smooth
manifold X, and recall that orx denotes the orientation bundle obtained from
the frame bundle of X. When O(1) has its natural representation on R, then
AT*X = orx[R].

Let ¥ : R = R be a functor from the category of left G-spaces to itself. If
you can write down explicitly what F does, then you can write down transition
functions for the result of ‘applying F to a G-bundle’. This will also be true if
F maps some subcategory of R into itself; for example, G-modules—vector spaces
with a G-action.

UinU; — 22 o g "2 o Aut(F) —F > Aut(FF)

Here rep above the arrow indicates the action of G on F via the representation and
JF above the arrow indicates the action of ¥ on morphisms in R. By suppressing
explicit mention of the representation, we obtain the very useful recipe for F(f;;):
apply the functor to the transition maps of the bundle P[F] to get the transition
maps of the bundle P[FF]. Classically, these are called ‘change-of-coordinates’
formulas.

Ex

1. Observe that the orientation bundle was obtained from the frame bundle by
applying det /| det| to the transition functions. The concept of orientation
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can similarly be extended to any associated bundle of any principal GL(n)-
bundle.

2. Open any differential geometry book and find a bundle (newer books) or a
change-of-coordinates formula (older books); the more complicated, the bet-
ter. Write down the change of coordinates formula for the bundle and/or state
the bundle for the formula. (Several repetitions provide an excellent review
of multilinear algebra! Hint: start with the frame bundle.)

We shall see some more examples of functors in the next section.

Another application of our bundle theory is in describing what classically were
called ‘local systems of coefficients’ or ‘twisted coefficients’ for ordinary (co)homol-
ogy. We consider a G-bundle E = P[F] over X.

Ex

1. If F is discrete, then the structure group can be reduced to mo(G) = G/Go,
with Gy denoting the component of the identity. (Hint: for any orbit G/H
we have Go < H since all G-orbits in F are of dim0.) In this case P[F]is a
covering space of X.

2. When F' has algebraic structure, P[F] is a sheaf over X. Which sheaves are
not obtained this way?

Using the natural projection G —» mo(G), we may induce a map
HY(X;G) — HY(X;70(G)) : P+ sp

called the Steenrod map; sp is called the Steenrod class of P. Note that (any
representative of) sp is also a principal mo(G)-bundle or mo(G)-torsor (see page
212) over X. We now define the bundles of coefficients associated to E to be
sp[mn(F)] for each n. These are sheaves of groups over X which were classically
denoted by {m,(F)} or by {mn(E;)} where E, = p* {z}. These sp[r,(F)] are
indeed the classical ‘local’ or ‘twisted’ coeflicients.

Definition 7.1.4 Given any cohomology theory h*, we say that E is h*-orientable
if and only if sp[h*(F)] is trivial as a bundle (or sheaf). Note carefully that this
does not imply that sp is a trivial principal bundle in general.

Ex

1. sp is trivial if and only if E is H*-orientable for ordinary cohomology with
coefficients Z.

2. sp is trivial if and only if sp = 0 € HY(X; 79(Q)).

Remark 7.1.5 Just in case it was not obvious, we state explicitly that the action
of m(G) on 1, (F) is induced by the action of G on F and note again that mo(G) =
G/Gy is an abelian group for all G. Similarly, we can define orientability with
respect to a generalized homology theory h,.
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Ex sp = 0ifand only if E is H,-orientable for ordinary homology with coefficients
Z.

Frequently, one does not wish to emphasize the principal bundle and fiber as
G-spaces. Then we usually say something like ‘E is a fiber bundle over B’ or ‘E
is a G-bundle over X’ or whatever the base space is. Some notation is frequently
used. If F is a fiber bundle over X, then a map s : X — E with 7s = 1x is called a
section. We denote the set of all (continuous, or smooth, in that category) sections
by I'(E), or I'(X, E) if necessary.

Ex Vector bundles always have sections, but (general) fiber bundles need have
none.

If E is a G-bundle, then there is a natural representation of G on I'(E) given
by sg(z) = (s(z})g. Since E = P[F] for some P and F, one may regard the
representation of G on I'(E) as being decomposed by means of P into that of G
on F. This can be generalized even more by gluing together bundles over various
spaces which are themselves strata of some larger stratified space, as in Davis [24].

The generic situation here is for F' to be finite dimensional and I'(E) to be infi-
nite dimensional, so this is potentially of great importance in analyzing these most
intractable representations. It is not known which representations can be so de-
composed. In addition, there are large numbers of secondary problems with regard
to the efficiency and beauty of any particular such decomposition, the minimum
necessary class of fibers and base spaces, etc.

We should also note here the vital use of bundles in quantum field theories.
All bundles are considered over one base space called the spacetime. The bundles
themselves are the guantum fields and come in two types: a principal bundle is an
interaction field, and certain of its associated vector bundles are the matter fields
for that interaction. Sections of the vector bundles are wavefunctions for those
types of matter. The interaction potential is a connection on the principal bundle,
whose curvature is the intensity of the interaction. Associated with the connection
on the principal bundle is an induced covariant derivative on each vector bundle,
which gives the coupling of that matter field and the interaction field. The structure
group is called the gauge group and expresses the local symmetry of the interaction.
Elements of the individual fibers are called phases or internal states, and entire
fibers are points of the fields. Each of the four known interactions (gravitational,
electromagnetic, weak, and strong) has been expressed in this form, and some of
them have been unified via prolongation of structure groups. Paraphrasing t’Hooft
[109], while we don’t have the master yet, at least all the keys are cut from the same
blank.

Finally, we hope to have convinced you that this section presents a better way of
conceptualizing bundles and manipulating them globally. Not only is nothing lost
that was there in the classical formula-based approach using transition functions,
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computations using them are clearly outlined and enormously streamlined by our
new framework. Happy bundling!

7.1.1 Pullbacks

Because we have defined bundles via a cohomology theory, there are two kinds of
‘pullback’ operation immediately available: one induced from maps between base
spaces and the other induced from ‘coefficient homomorphisms’. We shall consider
these in order. Let f : Y — X. From general cohomology theory there is an induced
map
frHY(X;G) — H(Y;G)

for every (Top) group G. Recall that at the cochain level this is given merely by
composition

¢ gof,

where ¢ is a G-cochain on X.
Ex f* as above is a natural transformation of cofunctors.

For associated bundles, we thus define
fr(P[F]) = f*P[F]

where P is a principal G-bundle over X and F'is a (left) G-space sometimes called
the model fiber. This bundle is called the pullback bundle of P[F| along f.
Certain pullback bundles have special names: if A C X and ¢: A — X, then

P[F| |a= *P[F|
is called the restriction of P[F| to A. In the special case of a point € X the

restriction is called the fiber over z and is frequently denoted by P[F],.

Ex

LIff:Y - X andif E - X is a bundle, then (f*E)y = Eyy). This is
frequently regarded as an identification, with (we hope) due respect for the
usual dangers.

2. Explain why there cannot be any general method of pushing bundles forward.
(Hint: recall the definition of a function.)

For the second kind of ‘pullback’, let F/ — F' be an equivariant map of (left)
G-spaces. Any principal G-bundle P is a functor, so there is an induced map
P[F'] — P[F] .
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Ex This map commutes with projections to the base space.

When F' C F and the equivariant map is the inclusion, P[F'] is said to be a
subbundle of P[F].

Ex For each z € X there exists an equivariant embedding P[F"'], — P[F],.

Thus, each fiber of a subbundle may be regarded as a subset of the host bundle’s
fiber at the same point. The special case of subgroups and principal bundles is
most interesting. It provides the bundle-theoretic and topological criteria promised
earlier for structure group reduction (and another solution to Ex 2, p. 213).

Theorem 7.1.6 (Structure group reduction) Let H be a closed subgroup of G
and P a principal G-bundle. P has a reduction to H if and only if P[G/H] has a
section.

Proof: If P has a reduction to H, then there is an H-cocycle of transition functions
for P. But this forces P[G/H] to be trivial, whence there exists a section (in fact,
many if G # H). Conversely, if P[G/H] has a section, then the section defines a
subbundle @ of P with model fiber H. The action of G on P restricts to an action
of H on () which is free and by right translation. Hence @ is a principal H-bundle,
and the inclusion Q < P means that the class of Q in H'(X; H) maps to the class
of Pin H'(X;G) under the cohomology mapping induced by the inclusion H < G,
as desired. O

Corollary 7.1.7 If m,(G/H) = 0 for every n < dim X, then every principal G-
bundle over X has a reduction to H.

This will be proved later; see page 281. We state it here because it provides a
very quick and easy proof of the following theorem, which we hope will thus help
motivate the reader to study Chapter 8.

Theorem 7.1.8 (Riemannian metrics) Every manifold has a Riemannian met-
Tic.

Proof: By using the polar decomposition, GL(n)/O(n) is contractible. (Verify
this!) Then a choice of reduction to O(n) as the group for the tangent (or cotangent)
bundle is equivalent to choosing a Riemannian metric. 0

You might wish to compare this with the usual proof using partitions of unity.

Note carefully that reducibility of the structure group is not equivalent to re-
ducibility of the representation on the model fiber.
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Ex The representation of G on F' is irreducible if and only if there are no invariant
subbundles of P[F].

Similarly to what we did for Cech cohomology with abelian coefficients in Chapter
5, one may show that H'( ; Q) is a homotopy invariant. It now follows from category
theory [41, §30] that this functor is representable. This means that there exists
a space BG and a principal G-bundle EG — BG such that we have a natural
isomorphism

H'(X;G) = [X, BG]

of pointed sets, for all X having the homotopy type of a CW-complex. BG is called
the classifying space of G. What BG looks like, we have no idea now; however, as
certain games enthusiasts would surely agree, it is indeed a really Big Fiber Gun to
wield if we can but get our hands on it! Before trying to construct such a monster,
let us consider further whether or not it is worth the effort.

Ex Compare with the earlier notion of classifying space in Section 2.2.

Suppose we have a given principal G-bundle P over X. Then there is some map
f : X — BG such that P corresponds to [f] € [X, BG]. Since this correspondence
is a natural isomorphism, surjectivity implies that P = f*EG. Thus, classifying
spaces allow us to express every bundle as a pullback of a universal bundle by a
classifying map. This in turn means that we can separate the properties of being
a G-bundle from those of being a G-bundle over X. In other words, we can use
bundles to compute information about X; or more precisely, about its homotopy

type.
Ex Stop and think; this is very important!

Thus, an explicit construction of BG (and EG) will, in theory, allow us to calculate
explicitly all universal properties of G-bundles. Surely this is enough motivation
to produce a very concrete construction! So, what do we know a priori about BG
and/or EG? Well, we must have BG = EG/G so we need make only EG. Now
EG must be a free G-space, so each orbit must be homeomorphic to G. Thus we
can make EG by gluing copies of G together appropriately.

How?

To get some information, consider the homotopy groups of EG. Recalling that
o (EG) = [S™ EG], let f : S® - EG be a map and define f : S" x G - EG :
(z,g) = f(x)g; that is, we have composed the map (z,g) — (f(z),9) : S" x G —
EG x G, with the action of G on EG. Regarding S™ x G as the trivial G-bundle
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over 8™, we have the commutative diagram

S"x G ——=EG
pri f r
§" ——— BG

Observe that, by construction, (pf)*EG = S™xG. Since BG is the classifying space
we must have pf ~ %, the trivial map S™ —» BG. If p were a fibration and EG were
a CW-complex, then we could conclude that f ~ * and thus that EG ~ . (Recall
the Whitehead theorem.) In any case, this computation is certainly suggestive;
‘abstract nonsense’ also encourages the idea of a BG as a ‘homotopy quotient of a
point’ (cf. Section 30 in Herrlich and Strecker [41] on representable functors).

Two more pieces of intuition are useful here. One is that since EG is to be
‘universal’, it should be obtained by gluing together orbits (copies of G) in ‘all
possible ways’. The other requires that we recall the notion of join. Given two
spaces X and Y, the join X xY is intuitively obtained by connecting each element
of X to each element of Y with a copy of [0,1]; ¢f. p.26f.

Ex Give a precise formulation before proceeding.

7.1.2 The Milnor construction

We sliall be interested in multiple joins of a space with itself, so we’ll only define
this case formally. It turns out to be most convenient later to use barycentric
coo:r1ates. Thus we define the n-fold join of a space X with itself to be the
set . il 2(n + 1)-tuples

such that 31"  ¢; = 1, modulo the following equivalence relation: (g,t) ~ (¢',¢) if
and only if ¢; = ¢} for each ¢ and g; = g} for each ¢ with ¢; > 0, so only ‘endpoints’
are identified. Note carefully that if ¢; = t; = 0, then we may have g; # ¢} even
though (g,t) ~ (¢',t'). Thus certain copies of X are collapsed to points.

We must now provide this set with a topology in order to have a space. Observe
that we have two families of ‘coordinate’ functions: #; maps into [0,1] and g; maps
t;(0,1] into X. Note this latter is necessitated by the indeterminacy when ¢; = 0.
We define the topology to be the weakest (compactly generated) which makes all
these functions continuous.

Ex The n-fold join of any space with itself is (n — 1)-connected.
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Thus, if we define EG(n) to be the n-fold join of G with itself and then define
EG = lim_, EG(n), then we shall have a homotopy point which is an excellent
candidate.

Ex Define a (right) G-action on EG coordinate-wise on the g; only, and by defining
BG = EG/G obtain a principal G-bundle.

It turns out that universal bundles are characterized by having a contractible total
space. Thus this construction, due to Milnor [71], provides us with the classifying
space desired.

Remark 7.1.9 A good, clean proof of this characterization is not available; it is
considered to be ‘folklore’ by the experts.
Ex

1. If G is a CW-complex, then so are EG and BG.

2. Let G = Zy and develop the following table. In it we have used * to denote
the singleton space and the trivial group, O is S!, ® is the crosscap and ®>
is the infinite crosscap.

E7.5(0) EZ(1) EZ4(2) e EZ(n) e EZ,
I I 1 I I
S° S? S? sn §o°

BZ5(0) BZ,(1) BZ4(2) . BZ4(n) .. BZ,
Il I I I I

RP? RP! RP? e RP™ .. RP®

3. EZ ~ R and BZ ~ S
4. ES! ~ S*° and BS! ~ CP®,

5. Apply the homotopy exact sequence of a fibration to EG — BG. When is
BG a K(m,n)? (See Definition 8.2.1 for K(m,n).)

6. Can you determine BS® ~ BSU(2)?

7. Recall the (infinite) Stiefel varieties and Grassmannians from Definition 3.9.1,
page 100. Show that Vi (F™) is a principal O(k)-, resp. U(k)-, resp. Sp(k)-
bundle over G (F™), and that

BGL(k) = BO(k) = G(R®),
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BGL(k;C) = BU (k) = G (C®),
and similarly for H. [Hint: page 101, Ex 9.]
8. Can you determine BZ,, for each n?

9. [SX, BG] = [X,G] for every X in CW . What does this say about the functors
Q and B here?

10. Is there any reason why the Milnor construction cannot immediately be ex-
tended to H-groups (Definition 2.3.1) by just doing everything only up to
homotopy?

Theorem 7.1.10 (Bundle classifying functor) B : Grp — 7/“55 is a functor
which preserves products.

For the proof, the product part is easy (it uses only the universal properties),
and you can find the induced morphism part (should you need it) on p.204 of
Switzer [106]. It is a theorem of Iwasawa [53] that every connected Lie group
admits a deformation retraction onto a compact subgroup. This means that we
need consider only classifying spaces BG for compact G in order to handle all Lie
groups; in particular, BGL(n) ~ BO(n) and BGL(n;C) ~ BU(n). This must be
taken with a grain of salt, as may be seen in the case of the Lorentz group [Ex!];
see page 249.

Ex (for category theory fans) Express the Milnor construction in (categorical)
simplicial language. Use this to extend the construction to more general G; for
example, small categories. How far can you go?

Problem Observe that BG plays the same role for nonabelian cohomology that a
K (m, 1) does for abelian cohomology (¢f. p.274, Ex 1). Extend this to find objects
corresponding to K (m,n) for n > 1. Collect a Fields Medal afterwards (if under
40).

We have seen (if you did the exercise) that the homotopy groups of BG are just
those of G shifted. Unfortunately, the homology and cohomology are much more
complicated and we defer consideration of them. (The solution has been known to
make theorists start gibbering upon hearing the word ‘calculation’.) A summary of
examples needed is in Section 7.4.

7.2 Stabilization

This section concerns the concept of stabilization. The basic idea is that if you
have enough dimensions to play with, then you can avoid pathologies which are not
inherent in the problem. We have already encountered some manifestations of this
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concept in our study of (generalized or exotic) cohomology theories; for example,
stable homotopy groups. Here we wish to examine stability in the context of fiber
bundles.

First some preliminary constructions. If E is any bundle with fiber F', then we
saw earlier that £ = P[F] for some principal bundle P. We begin by considering
the problem of finding such a P for a given E. One might think that this problem
has a unique solution, at least in some scnse. Let P be a principal G-bundle over
X and let F be any space. Assume that G acts on F' by the trivial representation
(that is, every element of G acts as the identity map of F'). Then P[F| = X x F as
bundles; but, unless P is trivial itself, P[F] is technically not a trivial G-bundle. In
this case it is clear that the principal bundle which we should associate to X x F'is
X x 1, where 1 denotes the trivial group of one element.

This motivates us to try and find an intrinsic definition of the principal bundle
which should be associated to a fiber bundle E over a space X. Now, part of being
a fiber bundle is that we must be given a principal G-bundle P over X (that is,
some G-valued transition functions), as well as a model fiber F' of course.

As was just seen, however, G may be excessively large. Thus we want to find a
reduction of P to a principal H-bundle Q where H is ‘as small as possible’ among
subgroups of G. This is clearly a universal-type problem, and as usual category
theory assures us that a solution exists and is ‘essentially’ unique.

Ex By considering particular G-valued U-cocycles for coverings U, show that ‘es-
sentially’ means ‘up to conjugation’. Thus the isomorphism type of H as an abstract
group is uniquely determined. (Hint: If P is given by a U-cocycle g and p is the given
representation of G on F', start by looking at the subgroup of Aut(F') generated by
pg. Then consider other equivalent covers U’. )

We shall call the principal H-bundle @ constructed above the (minimal) associ-
ated principal bundle of E.

Ex

1. Let X be a smooth manifold and let P be the principal GL(n)-bundle deter-
mined by its Leibniz class: the frame bundle (¢f. page 351). Regard R as a
GL(n)-space via the representation

det : GL(n) — GL(1).

Using your favorite definition of orientability, show that X is orientable if and
only if the associated principal bundle of P[R] is X x 1.

2. One may use a similar method to discuss orientability of vector bundles in
general.
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3. Let X be a smooth manifold with tangent bundle TX. Recall that we may
regard TX as classified by a map X — BO(n) via the frame bundle. Show
that X is orientable if and only if there exists a lifting

BSO(n)

-7

X BO(n)

and that this is essentially the most classical version of orientability in terms
of determinants of Jacobians of transition maps for an atlas of X.

4. In case you have not done so yet, show explicitly that the associated principal
bundle of a trivial bundle X x F is X x 1.

We shall need also what is frequently called the fibered product E; K E; of

two fiber bundles over the same base space X. Let E; and E, have fibers F7 and
F5 and groups GG; and G, respectively.

Ex E; x E, is a G; X Ga-bundle over X x X with fiber F7 x F3.

Let A: X - X x X be the diagonal map = +— (z,z). We may define
E1 X E; = A*(E; x Ey)
and obtain a G; X G2 bundle over X with fiber F; x F». In the case of vector

bundles, this is called the Whitney sum and denoted by & instead of X. This
definition is equivalent to constructing a pullback square

E1 X Eg El

E;

X

in the category of bundles over X.

Ex Up to natural isomorphisms, the operation X is commutative and associative,
and the trivial bundle X x 1 acts as an identity element. This may be expressed
by saying that the category Bunyx of fiber bundles over X together with X forms
an abelian monoid.
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7.2.1 Linear stabilization

Since the linear (vector bundle) theory is better developed and understood, we
shall study it before considering a nonlinear theory. The basic notion is that of
stable equivalence: two vector bundles E; and Ey over X are said to be stably
equivalent if and only if there exist trivial bundles 8% =~ X x F* and §' ~ X x F!
such that

E & gk = E, ® 6"

as F-vector bundles. Here FF is one of the skew fields R, C, or H. If E; has fiber F™
and E> has fiber F™, then we must have n + k = m +[. One frequently refers to
n,m, k, and [ as the fiber dimensions of their respective bundles.

Ex

1. Embedding S™ in R™*! as the unit sphere, we see that the normal bundle is
trivial. Thus TS™ @ 6! = **! and TS" is stably trivial.

2. Stable equivalence is an equivalence relation on the category Vecp(X) of F-
vector bundles over X.

We denote the equivalence class of E by [E]. Thus we may write
157 = [67+] = 0.

Observe that all trivial F-vector bundles have the same class, 0. This and much
that follows can be generalized to other skew fields F. The fundamental theorem in
this area is due to Swan [105].

Theorem 7.2.1 (Swan) If X is paracompact end finite dimensional, then the F-
vector bundles over X with bounded fiber dimension correspond bijectively to finitely
generated projective C(X,F)-modules. 0

These hypotheses are satisfied if X has finitely many components, or of course if X
is compact. We recall that an R-module M is projective if and only if there exists
an R-module N such that M@ N is free. In our case, this means that there exists an
F-vector bundle E' such that E®E' = 6 for some v or that [E]+[E'] = [E®E'] = 0.

Ex This operation of + on stable equivalence classes is well defined.

It was in this context that the universal construction of the group completion of
a monoid first became important.
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Ex

1. Let M be any monoid and F'M be the free group on the set M. Let N be
the normal subgroup of FM generated by zyz~! for zy = z € M. Define
UM = FM/N and (u : M > UM) = (M - FM — UM). Show that
(UM, u) is universal for monoid homomorphisms M — G for G a group, so
U is a functor and u a natural transformation.

2. If M is abelian, so is UM and we may take G abelian.

We now define what has turned out to be an important functor of algebraic
topology. Let X be paracompact and finite dimensional, take a field F and define
the object

K[F(X) = UV@C]F(X) .
The study of this cofunctor and, more generally, of spectral homology and cohomol-
ogy theories derived from it, is known as K-theory. Three places where K-theory
has triumphed are:

1. the Atiyah-Singer index theorem;
2. S° S, S3, and S7 are the only parallelizable spheres;

3. the computation of the exact number of linearly independent vector fields on
S

(Recall that parallelizable means having a trivial frame bundle.) One can see
other important applications in Switzer [106], Karoubi and Leruste [56], Adams [1],
etc. Since * is a terminal object, we have a unique map X — *. This induces a
map Kp(*) - Kp(X).

Ex
1. Kp(*) = Z. [Hint: show UN = Z]

2. Kr(x) = Kr(X) is injective. Thus we can split off a summand and write

Kp(X)=Kp(X)®DZ,

where the splitting may depend on a choice of base point for X (to get =
instead of = above).

3. Swan’s theorem shows that Kr(X) 2 (abelian monoid of stable equivalence
classes).

4. Let GLg = lim, GL(n;F). For connected X there is a bijective correspon-
dence Kr(X) = [X, BGLy).

5. Tensor product of vector bundles when F = R or C induces a ring structure
on K]F(X)
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In order to extend this to completely general spaces, we must convert K g into a
spectral cohomology theory. The basis for this process is the celebrated periodicity
theorem of Bott [13]. The standard notation is

O =1limO(n), F =R;
—

U =1lmU(n), F=C;
—

Sp = lim Sp(n), F = H.
—

Theorem 7.2.2 (Bott periodicity)

N’BU ~ BU x Z;
ON'BO ~ BSpxZ;
N4BSp ~ BO x 7.

There are at least three (complicated) proofs available: by Morse theory [72], by

homotopy theory [13], and by K-theory [3]. Thus we define spectra K, KO, and
K Sp (sometimes K is written KU):

K = BU x Z , n even,
n" ) QBU, n odd;
KO, = Q¥BO x Z), n=k (mod8);
KSp, = KO,

Ex
1. Verify that

K"(X) = K"?(X),
KO"(X) = K§p"(X),
K5 (x) = Ko™ (x).

Moreover, if X satisfies the hypothesis of Swan’s theorem we have K° 2
K¢, KO° = Kg, and KSp® = Ky. Since KO is a ring and K Sp is not, one

usually forgets about the latter.
2. The spectra K and KO are ring spectra.

3. For singletons we find
Z n even,

K (*)E{O n odd,;

Zy,n=-1,-2 (mod8),
KO"x)= (¢ Z, n=0 (mod4),
0, otherwise.
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One theorem well worth mentioning here is due to Lusztig. For this, we need the
notion of the Witt ring of a commutative ring R. Recall that an inner product
space (M, ) over the commutative ring R consists of an R-module M which is
finitely generated and projective together with a nondegenerate symmetric bilinear
form 8 on M. (M, ) is called split if and only if there exists a submodule N < M
which is a direct summand of M and which is equal to its S-orthocomplement. Two
inner product spaces M and M’ are s-equivalent if and only if there exist split
inner product spaces S and S’ such that M @ S = M' @ S'.

Ex

1. Verify that this is indeed an equivalence relation on the set of all inner product
spaces over R.

2. Using (ortho-)direct sum and tensor product, show that s-classes form a ring
(commutative with 1). We call this the Witt ring W(R) of R.

Theorem 7.2.3 (Lusztig) If X is a smooth manifold, then
W(C™(X)) = Kr(X). O

Here is an outline of the proof. If E is a (real) vector bundle with inner product,
then E = E+ & E~, an orthogonal sum, where E7 is positive-definite and E~ is
negative-definite. E* and E~ are unique up to isomorphism. Finally, the inner
product space (of sections) T'(Et @ E~) over C*°(X) splits if and only if E* = E~.
One now uses the smooth version of Swan’s theorem to conclude.

Ex Show that the smooth Swan’s theorem follows from the continuous version
stated earlier. What about K-theory and stable homotopy?

It is well-known that every representation of a group G can be changed into a
linear representation: if X is a left G-space, then there is a representation of G
on C(X) given by (g- f)(z) = f(¢g7'z). If X is finite-dimensional, however, this
procedure has the high cost of changing a finite-dimensional representation into an
infinite-dimensional representation. It is by no means clear which is more difficult
to study: nonlinear finite-dimensional representations or linear infinite-dimensional
representations. Also, projective representations are elementary examples of non-
linear representations, and are very important in quantum theory. With these facts
in mind, we now consider stable equivalence for fiber bundles.

7.2.2 Nonlinear stabilization

We shall try to mimic the linear theory as far as possible. Thus we consider two
bundles over the same base space X: E; with group G; and fiber F;, and E,
with group G and fiber F,. Basically we would like to say that E; and E, are
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stably equivalent if and only if there are trivial bundles 6;,6, over X such that
E, RO, = Fy ®6,. But to do this we must specify the groups of these bundles. In
order to try and develop some intuition, let’s go back and look at linear bundles
again from our new point of view.

Recall that in the linear case the equation for stable equivalence is

E @6 ~E, 6

where E; has fiber dimension n and E» has fiber dimension m, with n+k =m +{.
Now, E; is a GL(n)-bundle, and E, is a GL(m)-bundle, and the isomorphism is of
GL(n + k)-bundles. Note that we are using the inclusions:

GL(n) > GL(n+k): g g& 14

and
GL(m) = GL(n+k): g~ gd1,.

Returning to the nonlinear case, clearly we should regard 6; and 6, as having
associated bundle X x 1. Then the isomorphism E; X 6; = F; R 65 should be of
G-bundles for some G with G; — G and G5 — G. How do we choose a G?

In the linear case, all vector bundles (of finite fiber dimension) are associated

to a chain of groups {GL(n)} for n > 0 so that 1 is the initial element. There are
closed injections

inm :GL(n) > GL(m):g— g® 1
for n < m, and closed injections

GL(n) x GL{m) — GL(n +m)

such that the restriction

(GL(n) x 1 — GL(n+m)) = tnnim
and the restriction

(1xGL(m) — GL(n+m)) = jumimnim

where jnm is an involutive (j2,, = 1) inner automorphism of GL(n + m) with
Jnm = Jmn (this will yield commutativity of the monoid.) The injections being
closed assures the existence of all necessary prolongations.

Clearly we may generalize this to a direct system G = {G,} with initial element
1. We require the existence of closed injections 43 : G4 — Gg for a < 8 (in the
index set) and G, x Gg — G, for some G, which follows both G, and G in G,
which satisfy compatibility conditions:

the restriction (Ga x1) — Gy =gy

the restriction (G x 1) — G = japigy
where j,g is an involutive inner automorphism of G, and j.g = jsa. The fact that
G is a direct system assures us that every two groups in G have a common successor

(usually, many of them), and given G; and G» as above, G may be chosen as any
SUCCESSOr.
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Ex Although there is a canonical choice in the linear case, any successor of it also
suffices.

By modifying the second compatibility condition we may allow nonabelian mon-
oids. Again in the linear case, we use the category of fibers F = {F"} for n > 0
with FO = 0. This is the skeleton of the category of finite dimensional F-vector
spaces. (Recall that a skeletal category is one in which every isomorphism is an
equality.) Here we have two natural operations, induced by direct sum @ and tensor
product ®, when F is commutative. In this case UF = Z as rings, not just abelian
groups.

For the nonlincar case, we first agree that by a G-space we shall mean a G-space
for some G, € G. Then a category of fibers F will be any skeletal subcategory of
the category of (left) G-spaces which is closed under all operations on the category
of G-spaces which are under consideration (in any case, at least under products).
Although it is not necessary to do so, we shall usually restrict our attention to
finite-dimensional G-spaces, as in the linear case.

Similarly, we may speak of G-bundles, etc. Occasionally, it will be convenient
also to denote by G the direct limit group of the direct system G. This should not
cause any dangerous ambiguity. In considering isomorphism classes of G-bundles
we shall agree to form associated principal bundles using only groups from G.

Observe then, that each such G and F determines (at least) a monoid of isomor-
phism classes of G-bundles over X with fibers from F, in fact an abelian monoid
(using our unmodified conditions). Thus we may form the group completion and
obtain a ‘K-theory’ cofunctor denoted by KGx( ).

Ex

1. KGr inherits all algebraic structures considered on F (group, ring, etc.).
For G = GL(n;F) and F =", KGr = Kp
KGr(x) =2 UF for any G and F.

Let F be the skeletal monoid gencrated by spheres. Then UF is the free
abelian group on countably many generators.

Ll

5. Consider spheres again, but with the smash product instead of the Cartesian
product. Find a compatible G.

Via the universal map X — % we define the reduced theory
KGr(X) = coker(KGr(x) — KGr(X)).
Again, a choice of basepoint x — X provides a splitting and we obtain
KGr(X) = KGr(X) ® KGr(x).
We denote the induced morphism KGr(X) - KGx(x) by r.
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Ex In KGr-theory, ris a well defined equivalence relation on the (at least) monoid
of G-bundles over X with fibers 7. Thus we may form the group completion

S5GF(X).

Theorem 7.2.4 If X is a space over which every G-bundle with fibers F has a
complement in this category (that is, for each E there exists E' such that ER E’

is trivial), then SGr(X) =2 KGr(X).

The proof is essentially that of Husemoller [52], 8(3.8), p.105 (corrected in later
edns.), merely using G-bundles instead of vector bundles, KGr instead of KF, etc.

Ex

1. If you are not well accustomed to such modifications of extant proofs, write
this one out in full.

2. If X is connected, then I?é;(X) & [X,Bg] as sets, at least for compact
X and reasonable F. Show that X need only be paracompact. Are any F
unreasonable? (Besides the trivial F!)

From here on, the recovery of analogues to linear K-theory depends on detailed
analysis of G and F. To develop a general cohomology theory we would need a
periodicity-type theorem for G; that is, a complete analysis of the homotopy of G
(or BG).

Ex

1. Consider KNz where A is given by the chain of Heisenberg groups (¢f. Kir-
illov [59], p. 287) and F is arbitrary.

2. Let D = R[z]/(z?) be the dual numbers of Clifford, studied by Study [104]
and others. Consider KDy where D = {GL(n;D)} and F = {D"}. The
skeleton of the category of finitely-generated projective D-modules could be
compared with F.

3. Does Swan’s theorem generalize to C(X,D)?

4. Determine families of X, G, and F which satisfy the conditions for SGr =
KGr (that is, existence of complements).

7.2.3 Linear K-theory

Rather than proceed any further with the nonlinear theory, we return now to linear
K-theory and indicate the comparison between topological and algebraic K-theories.
Algebraic K-theory is what happens when the algebraic machinery of topological
K-theory is applied to algebra itself. As a matter of terminology, the general result
of applying the algebraic machinery of algebraic topology to algebra itself is usually
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referred to as homological algebra. This also may be interpreted as the result
of removing the topology from algebraic topology. Thus K-theory of rings and
cohomology of groups are two examples; others include the general constructions of
Ext and Tor as derived functors.

As usual, there are the inevitable preliminaries. We begin again with Swan’s
theorem. This says that if we define K(A) to be the ring of isomorphism classes
of finitely-generated projective A-modules for a ring A, then K(C(X,F)) = K¢(X)
for reasonable spaces X. (If A is not commutative, then K(A) is only an abelian
group.)

We also extended KF to a cohomology theory. The question is then, how do
we extend K (A), in an algebraic way not requiring A = C(X) for some X, to a
cohomology theory? We merely sketch the final result, due to Quillen [90], and refer
to Bass [5], Berrick [7], and Milnor [73] for the history. Our sketch mostly follows
Berrick [7], Chapt.4, and all proofs are either left to the reader or referenced to
Berrick. Recall that a space X is acyeclic if and only if H,(X;Z) = 0.

Note that this does not imply that X is contractible: all we may conclude
about 7 (X) is that it is perfect: that is, equal to its commutator subgroup. A
map f: X — Y is acyclic if and only if Fy is an acyclic space, where Fy is the
homotopy fiber resulting from converting f into a fibration.

Theorem 7.2.5 If f : X =Y is acyclic, then m(Y) =2 m(X)/P for some perfect
normal subgroup P. Moreover, any such P < m1(X) can be killed by an acyclic
cofibration in which Y is unique up to homotopy type. O

For any space X we define X+ to be the result of killing the maximal perfect
normal subgroup of m(X). For example, X is the terminal object in the category
of acyclic cofibrations under X. Then Quillen’s definition of the higher K-theory of
aring A is

K,A=m(BGLA"), i>1

where GLA = lim_, GL(n; A) is the infinite general linear group over A.

One of course must show that this is the ‘right’ definition, and we refer to
Berrick for details (which do require much of the machinery of this book). He
also covers K; A for i < 0 (this is an exotic theory, remember), whose definition is
very straightforward and essentially algebraic (although the precise constructions
are topologically inspired).

7.3 Homology and cohomology

The main purpose of this section is to develop and study a spectral sequence associ-
ated to a fiber bundle, and some of its applications. Quite quickly we can establish
the very appealing result that, up to homotopy, fibrations are fiber bundles and are
therefore well-suited to study via cohomology and homology theories.

Our first main theorem is due to Hurewicz; a proof may be found, for example,
in Dugundji [34], p. 403, among many others.
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Theorem 7.3.1 (Hurewicz) If B is paracompact, then p : E —» B is a fibration
if and only if it is locally a fibration.

Corollary 7.3.2 Fiber bundles are fibrations.
Proof: Fiber bundles are locally trivial. 0

Thus, to study (co)homology of bundles, we might as well gencralize to fibrations.
Note that we are now completely justified in applying the exact homotopy sequence
to any fiber bundle.

The calculation of the (co)homology wia spectral sequences of fibrations was
one of the historical triumphs of the theory. The basic machine is the Leray-
Serre Theorem, which essentially says that for nice fibrations F' < E —» B and
(co)homology theories h, (or h*), there is a spectral sequence EI, = h.(E) (or
E** = h*(E)) such that

Ef,q = Hp(B;he(F))

or, dually,
EY? = HP(B;hI(F)).

We shall write down the homology version; as an exercise, the reader should pro-
vide the translation to cohomology as we go. B is always assumed to be connected.
Let F'— FE —» B be a fibration and consider the fibration diagram for X = *:

* x {0} —¢ E

)

* x [ B

5

Here e € F, considered as a map * = F. If v is a loop at * € B, then [y] € m(B)
determines i : hi(F) = h.(F) and this defines an action of 71 (B) on h,(F).

Definition 7.3.3 The fibration is h,-orientable if and only if this action is trivial.

Ex
1. The trivial fibration 1: X — X is h,-orientable for every h,.

2. If the fibration is a fiber bundle, verify that this version of h,-orientability
coincides with the one of Definition 7.1.4 and the subsequent Remark. (Hint:
the exact homotopy sequence of a principal G-bundle over B yields a map
m(B) = m(G).)

If v is a path from b; to by then 4 as above is a path from p* {b1} to p* {b2}.
By letting e above vary over F' we obtain a map h. : p* {b1} = p* {b2}.
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Ex  If y ~v then h, ~ h,,. The assignment [y] — [h,] is functorial.

Now we are in a position to show that, up to homotopy, fibrations are fiber
bundles; first we deal with the fibers.

Lemma 7.3.4 (Fibrations have homotopy-equivalent fibers) Over any con-
nected base space, all fibers of any given fibration have the same homotopy type.

We say that a map f : p~{b1} — p*{b2} is admissible if and only if [f] = [h,]
for some path ~ from b; to bs.

Ex Admissible maps exist between any two fibers.

Next we compare fibrations. A homotopy of a map into F is a fiber homotopy
if and only if it moves points only within their fibers. We have the obvious notion
of fiber homotopic for two maps into F, and thus an equivalence relation on
fibrations.

hy

E E'

@

fit1lg = fg~1p.

B—g—>B’

Here L denotes fiber homotopic, and we write 2 for fiber homotopy equivalence
as displayed in the diagram. We also abbreviate this to FHE; when B = B’ and
f=9=1wecall it SFHE (S for strong).

Ex

1. If fo ~ fi :+ X — B, then there exists a SFHE § : f; £ — f{FE such that
foL fig and JlF is admissible.

2. If B is contractible, then every fibration over B has a SFHE with the trivial
bundle B x F' (and the restriction to F' is admissible).

3.Iff: X ~B, then f: ffEXE.

Using the preceding exercises, it is easy to prove the result we want:

Theorem 7.3.5 (Fibrations are fiber bundles up to homotopy) If B is of
the homotopy type of a connected and locally contractible space (for example, a
CW-complez), then any fibration F — E — B is SFHE to a fiber bundle over B
with fiber F' and group G = Aut(F). O
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In other words, fibrations are fiber bundles in a homotopy category. Equiva-
lently, up to homotopy, fibrations are locally products. Thus they are the correct
objects to study with respect to (co)homology theories, as we suspected. What we
get from such study is detailed information on the manner and extent to which the
structure is not globally a product.

Up to isomorphism of principal bundles, the Steenrod class of a fiber bundle
depends only on the SFHE type of the bundle.

Ex Check the details, first that
F~ F' = Aut(F) ~ Aut(F').

Thus we may associate a Steenrod class s with any fibration.

Ex This Steenrod class yields the same notion of h,-orientability as before for
fibrations.

We continue to denote the solid p-ball by B? | so we can use BP without confusion
as the p-skeleton of the base space B. Thus let f : (B?,SP~1) — (BP, BP~1) be the
attaching map for a p-cell in B. We have the following composition

hq(F) — hpiq((BP,SP71) x F) Ly hpq(Ep, Ep—1)

where FE, is the filtration of E induced from the skeleton of B (recall that E, =
p* BP). If g is another map with g ~ f, then it follows from the preceding exercises
that the composition in which f, is replaced by §. differs by some ¢, where ¢ : F —
F is admissible. If the fibration is h.-orientable, then ¢, = 1 and the composition
depends only on [f]. In general, we may as well assume that ¢ is a homeomorphism
so that we may regard ¢. € mo(Aut(F')). Almost by definition, s¢, is the transition
function for s[h.(F')] between the fibers over f(0) and over g(0). Thus, in general,
the composition depends only on [f] and the Steenrod class s of the fibration,
whence we shall denote it by

6s(f) : hg(F) — hpq(Ep, Ep_1) .

This notation is supposed to remind us that in some sense [f] must be twisted by
s. We also write

kst [(BP,SP1), (BP,BP™Y)] x5 hg(F) — hyyq(Ep, Ep—y) - (7.1)

When the fibration is h.-orientable, we omit s and write xg).
More generally, we may replace (BP, BP~!) with any subspace pair (X,Y) with
x € Y C X C B. For convenience, we introduce the following notation. Let

W;(‘Y) = 7!'1/[71'1,71'1] = Hl(AX,Z) .
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Recall that m; (V) acts on m,(X,Y) for any subspace ¥ C X with x € Y; see page
61. For n > 2, define
7T;;(X, Y) = 7rn(X7 Y)/ﬂ-l (Y)) 5

that is, mod out the action of 71 (Y') so that only fixed elements make a nontrivial
contribution to the orbit space 7 (X,Y).

Ex
1. 71 (X,Y) is a group.

2. If X is connected, then 7% (X) does not depend on the choice of basepoint.

Lemma 7.3.6 LetY C X C B. If F — E —» B is a fibration with Steenrod class
s, then ks defines a homomorphism (also denoted by ks)

W;(‘X’ Y) ®s hq(F) — hp+q(E|X’E|Y)7

where ®g denotes the tensor product twisted by s, which is natural for inclusions
of pairs. (We take Y = % if p=1.) Moreover, this map commutes with connecting
maps.

Proof: Recalling that m,(X,Y) = [(BP,SP™!), (X, Y)], we certainly (from equation
(7.1)) have a map

WP(X’Y) ®s hq(F) - hp+q(E|X’E|Y)~

That this is a bilinear homomorphism as desired follows from the use of s and the
group structure in 7,(X,Y). Commutativity with connecting maps follows from
chasing round the following diagram.

(X, V) @5 hy(F) —225 15 1%(X,Y) ®g hy(F) —=8 hyiq(Elx, Ely)

ORs 1 D

Tp-1(Y, Z) ®s hy(F)

Tr;—l(ya Z) ®Xs hq(F) ks hp+q~1(E|YaE|Z)

pr®s 1

Here, Z CY C X C B, pr: m, —» m} is the projection, and 0 and D are connecting
homomorphisms. O

Lemma 7.3.7 If F — E —» BP? s a fibration, then k is an isomorphism for p > 2.
If F — E —» S! is a fibration, then

ks 71 (SY) @5 hy(F) — hee1(E, F)

s an isomorphism.
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Proof: Since B? is contractible, s = 0 and we may assume that the fibration is
homotopy trivial. Thus we obtain the commutative square

”p(BpaSp_l) ® he(F) —*= hp4q(E, Elsz-1)

ha(F) —5—> iy (B?,5771) x F)
Since m,(BP,SP7!) = Z, a is an isomorphism, and since h.(B?,SP™') is a free
h+(x)-module, then so is 8. Finally, v is an isomorphism by homotopy triviality.

Hence
K7 (BP,SPTY) @ hy(F) = hyyo(E, Elsp-1) .

Ex Finish the case F — E —» SL. 0O

Lemma 7.3.8 If B is a CW-complez, then:
Ks W;(prBp—l) ®s hg(F) = hpyq(Ep, Ep-1)
forp>1.

Proof: Let x : (D%, S271) — (BP, BP~!) attach the p-cells. Consider the com-
mutative diagram in Figure 7.3. Here the h are Hurewicz homomorphisms (Theorem
4.5.3) and ¢ = ¢, are inclusions. We know that all horizontal arrows are twisted
isomorphisms (. at the lower left may require some thought). Since (B?,S?P™1) is
(p — 1)-connected, the Hurewicz maps and thus the upper row of vertical arrows are
isomorphisms. By Lemma 7.3.7, k at the lower right is an isomorphism. Thus both
ks, in particular the lower left, are isomorphisms. 0

At last!

Theorem 7.3.9 (Leray-Serre) If F — E —» B is a fibration with B connected,
then there is a natural spectral sequence ET, = h,(E) such that

Ep, = Hy(B; s[he(F))
where S is the Steenrod class of the fibration.

Proof: Without loss of generality, we may assume that B is a CW-complex filtered
by its skeletons and F is filtered by the induced filtration over skeletons. Consider
the isomorphisms kg for the given fibration and & for the trivial fibration 1p,
using h. in the first and ordinary homology with integer coefficients in the second.
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Figure 7.3: Diagram in the proof of Lemma 7.3.8.
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Combining this with our usual spectral sequence yields

Ks
=3

El = hpiq(Ep, Ep_1) T (B, B"!) @5 hy(F)

h®s 1|
H,(B?,BP ') ®s hy(F) —=— Cp(B) ®s hy(F)

where h is a Hurewicz map. This identifies the E!-term.

For the E%-term, take a diagram similar to that used in the proof of Lemma 7.3.6;
see Figure 7.4. Here D, 0, and A are appropriate connecting maps. Chasing round
this diagram establishes commutativity, hence

E}, = Cy(B) ®s hy(F)

is an isomorphism of chain complexes. Thus the E?-term is identified as claimed.
O

We have not given any extensive treatment of twisted tensor products because
there is nothing deep about them that we need. All we do need is that twisted ten-
sor products ®g bear the same universal relation to semidirect products X s that
tensor products ® bear to direct products X. Recall that we may interpret the
Steenrod class s as providing a representation of m;(B) on A,(F). This combines
with the natural representation of m; (B) on m,(BP, BP~!), for example, to define
the semidirect product m,(BP, BP~!) x g h.(F), and then the usual universal con-
struction yields the desired m,(B?, BP~!) ®s h.(F). Warner 116, pp.54-55] has
a nice exposition of the usual construction for real vector spaces which is easily
adapted to the general case.

Ex

1. Write down some relative versions, for example, one in which F' C F and we
obtain E2 = H,(B;hy(F,F")) for an h,-orientable fibration.

2. Write down some cohomology versions.
3. When the (co)homology theories involved have products, the spectral sequence
preserves them. Choose your favorite product(s) and write down formulae and

diagrams for them.

4. Derive the Atiyah-Hirzebruch spectral sequence as a corollary. (Hint: the
trivial fibration 1x : X —» X is orientable.)

And now for some applications, in the format of extended exercises.
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Figure 7.4: Diagram in the proof of Leray-Serre.
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7.3.1 The Gysin sequence

Consider ordinary cohomology with coefficient ring R. Let S™ < E —» B be an
orientable fibration with m > 0. Applying Leray-Serre, we have

HP(B;R) if ¢ =0, m,

EY >~ H?(B;HI(S™; R)) = { 0 otherwise.

Thus there are only two possibly nonzero rows in the r-plane

q

P

and only d,,.1 # 0. Thus the spectral sequence collapses and we have

* % ~ L * %
El, = = EX

1. Deduce that we obtain a long exact sequence, the Gysin sequence,
.- = HY(E; R) — H"™(B; R) ™% H"\(B;R) 25 H""'(E;R) — - -

in which d,41(x) = eU z for a certain e € H™!(B; R) called the Euler
class of the fibration. For a generator u € H™(S™; R) 22 E{™ e = dyy i1 (u).

2. The Gysin sequence applied to the Hopf fibration S! < S?"+! — CP" yields
H*(CP™; R) = Rle]/("*)
where e € H2(CP"; R) is a generator. It follows that

H*(CP*;R) = Re].

3. How about the other Hopf fibrations?

4. If the Gysin sequence were valid for n = 0, we could apply it to S < S” —»
RP™. Carry this out formally; can you justify it?

5. To obtain the Gysin sequence, it suffices that the fiber be a homology sphere.
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7.3.2 The Wang sequence

If the fibration is F <> E 5 S$™ with n > 0 and h* is any cohomology theory, then
the F>-diagram has only two possibly nonzero columns (p and g have interchanged
roles) and the only nonzero differential is d,, : EQP — E7P~"*1  Thus the spectral
sequence collapses again.

Ex

1. We wind up with a long exact sequence, the Wang sequence
e h™(E) s h(F) Sy Rt Y(FY s BB —

2. Compute the ring H*(QS™ Z). (Hint: separate the cases for n even and n
odd.)

3. To obtain the Wang sequence, it suffices that the base be a cohomology sphere.

7.3.3 Transgression and the Serre sequence

Suppose that in the fibration F <> E % B we have H,(B;Z) =0 for 0 < p < n,
H,(F;m) =0for 0 < g < m, and that F and B are connected. Then the E?-diagram
becomes

n D

and in a certain range, the only nonzero differentials go all the way from the p-axis
to the g-axis, d” : E}, — Ef, ;.

Ex

1. We obtain a finite exact sequence, the Serre sequence

Ly

Hn+mfl(E;7r) R Hn+m~l(B§5[7r]) — Hn+m*2(F§7r) —

b

Hyim—2(E;m) = -+ — Hy(B; s[n]) —— Hy(F;7) -5
Hy(E;m) = Hy(B;s[n]),

where 7 = dP is called the homology transgression and s is the Steenrod
class.
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2. Write down the cohomology version and obtain the cohomology transgres-
sion.

T =dgy1 : HY(F;7) — HY(B; s[n])
where s is the Steenrod class.

3. More generally, in the cohomology version

— . 0¢q q+10
T—dq+1 'Eq+1 —>Eq+1 s

and similarly for homology.

4. Combine Gysin and Wang and compare to Serre.

Anytime an inverse to transgression exists, it is called (confusingly) suspension.
There is some relation between the two suspensions, if that helps any.

Ex

1. Find any such relation, even in special cases. [See p.363 of Switzer [106] for
an example.]

2. Find such a relation which can be used to prove the Freudenthal suspension
theorem.

7.3.4 The Leray-Hirsch theorem

In this theorem, H denotes a ring spectrum, like ordinary cohomology theory (but
with arbitrary ring coefficients, not just Z).

Theorem 7.3.10 (Leray-Hirsch) Let (F,Fy) < (E, Eo) % B be a fibration with
B connected. If ey,...,e, € H*(E, Ey) are such that v*ey,...,t"e, € H*(F, Fp)
form a free basis for this H*(x)-module, then H*(E, Ey) is a free H*(B)-module
with basis {e;} under the action

b-£=p"(b)yUE.

Proof: First observe that the fibration is H*-oriented via the basis in each fiber.
Now define a cohomology theory

h* (X, A) = H*(X,A) @ H* () H*(F,Fg)

which will satisfy exactness since H*(F, Fp) is a free H*(*)-module. Via linearity,
define

¢ny : h*(X,Y) — H*(Elx,Ely UE()lx) e ’—)p*.’EUj*Ei

where Y C X C B and j: (E|x, Eo|x) — (E, Ep). Observe that ¢ is natural with
respect to inclusions. Assuming, as we may, that B is a CW-complex, ¢ induces a
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map from the skeletal spectral sequence of B and h* to the (Leray-Serre) spectral
sequence of the fibration. Denoting these by E** and E**, respectively, we have
morphisms

PP Efq — EP4, PP FPY4 __y FPY

such that d,¢R9 = ¢Pt797"+1d_ and these diagrams commute:

BrY, " BT,
P4 > Pq
0 — frtlg-1 FPa E_gg 0
¢P+1 q—1 o9 ¢1;1
0 — pptlg-1 FPe Egg 0

Moreover, recalling the definitions of k and &, this commutes:

Pq
P4 !
El

Pq
El

| ]

[H*(B?, B*™) @p1- (o) H* (F, Fo)P"*1 ——= H?*(E,, E, 1 U (Eo),)

R®ll K

[CP(B; H* () ®p-(x) H*(F, Fy)Jpte CP(B;H!(F, Fy))

Hence ¢, and thus all ¢?9, are isomorphisms. Inducting on the first two diagrams,
all ¢P? are isomorphisms. Therefore

¢p : H*(B) ®u-(x) H*(F, Fy) = H*(E, Ey)

and {e;} is a free basis as desired. 0

Ex Write down the dual homology result.

7.3.5 Thom isomorphism theorem

As usual, B is connected; H is again any ring spectrum.
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Theorem 7.3.11 (Thom isomorphism) If (B",S""1) < (E,Ey) % B is an
oriented ball bundle, then there exists u € H™(E, Eo) such that 1*u € H™(B™,S"1)
is a generator over H*(x). We call u the Thom class. Moreover, for all g € Z
there are isomorphisms:

®*: HY(B) — HY""(E,Ep) : b— p*bU u;
D, Hyyn(E,Eg) — Hy(B) :z— pu(unz).
Proof: Apply (homology and cohomology) Leray-Hirsch with r = 1. O

This is most frequently applied when E is a vector bundle and Eq = E \ 0, reduced
to obtain a ball bundle as follows. Each fiber E, = R™ admits a strong deformation
retraction onto the closed n-ball B®. The (strictly) positive reals Ry act on the
fibers by scalar multiplication, and the quotient (or orbit space) of (Ep)s = R™ \ 0
by (or under) this action is S*~1 = B™. The Thom space of the vector bundle
is the associated fiber bundle with fibers B”/S™~!, the one-point compactifications
of the original vector-space fibers.

Ex
1. If a Thom class u exists, then the ball bundle is H*-orientable.
2. One can now re-obtain the Gysin sequence for fibers S°. From
H*(RP"; ) = Lofw]/(w"*),
where w € H(RP™; Z, ) is a generator, it follows that

H*(RP®; Zy) = Zs[w].

3. Relate the Euler class and the Thom class.
4. Consider twisted versions of the Euler and Thom classes.

5. Let MO(n) denote the Thom space of the universal O(n)-bundle EO(n) —»
BO(n). The inclusion BO(n) < BO(n + 1) induces a map MO(n) A S —
MO(n + 1) which yields a spectrum MO (¢f. section 6.2 for spectral the-
ories). The associated (unreduced) spectral homology theory MO, is bor-
dism, already encountered in section 5.8, and the cohomology theory MO*
is cobordism.

6. The cobordism ring is the graded ring 7.(MO) = N,. Classically, it was
described by saying that two compact n-manifolds are cobordant if and only
if there exists a compact (n + 1)-manifold with boundary, having precisely the
two n-manifolds as its boundary. Equivalence classes of (compact) manifolds
are the elements of the ring, with addition induced by disjoint union and
multiplication by Cartesian product. The identification as homotopy rings is
due to Thom [107].
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7. Similarly, there are Thom spectra M SO, M Spin, MU, and M Sp. One says
that M O* is unoriented cobordism, and that the others are oriented, spin,
unitary, and symplectic cobordism, respectively. There are other cobordism
theories as well: the standard reference still seems to be Stong [103]. The
introduction in Vershinin [113] may serve as a guide to more recent work.

7.3.6 Zeeman comparison theorem

It is often useful to compare spectral sequences as we did above in the Leray-Hirsch
theorem.

Theorem 7.3.12 (Zeeman comparison) If ¢, : Ej, — E{,q is such that:
(i) Ep, = Er, =0 forp,q <0;
(it) E}, = E2, ® E},, and the same for E2, and ¢2,;
(i) ESS = E;jf; =0 for (p,q) # (0,0);
(iv) d)f,o is an isomorphism for p > 0;
then d)gq is an isomorphism for all q. 0

The proof is straightforward by downward induction on r; we refer to Switzer [106]
for details.

Ex Write down the version where (iv) and the conclusion are interchanged, and
both versions for cohomology.

7.4 Characteristic classes

The idea here is that we would like to have (co)homology classes which are charac-
teristic for a fiber bundle, in the sense that they depend only on the fact that it is a
G-bundle rather than any particulars. Recall that every G-bundle with model fiber
F over X is the pullback bundle of the universal bundle EG[F] over BG by a map
f : X — BG, and that the isomorphism classes of bundles correspond to homotopy
classes of such classifying maps; see pages 221ff. Now a map f : X — BG induces
a map on cohomology f* : h*(BG) — h*(X) for any cohomology theory h*, and f*
depends only on [f] € [X, BG].

Definition 7.4.1 Elements of h*(BG) for any cohomology theory h* are called
universal characteristic classes for G-bundles. If f : X — BG 1is the classifying
map for a G-bundle E over X, then the images in h*(X) of the universal classes
under f* are called the characteristic classes of the bundle E. If X is a manifold

and u is any universal characteristic class for vector bundles, we write u(X) as a
shorthand for u(TX).
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Usually, one selects generators of h*(BG) according to some preference system and
refers to them as the universal classes. The preference system employed is frequently
an algebraic criterion for simplicity of the set of generators, such as minimality or
computational ease.

Thus in order to show that two bundles are not isomorphic, one seeks a coho-
mology theory for which the bundles have differing characteristic classes. It turns
out that these classes also appear frequently as obstructions in existence problems,
as we shall see subsequently (c¢f. Chapter 9).

We begin by determining something about the structure of h*(BG), assuming
we already know something about the structure of h*(G).

Theorem 7.4.2 (Borel) If h*(G) = A(x1,z2,23,...) s an exterior R-algebra of
finite type on generators of odd degree, then h*(BG) = R[y1,y2,ys, - -] is a polyno-
mial R-algebra of finite type on generators of even degree, and degy; = degx; + 1.
Moreover, the z; can be chosen so that y; = 7(x;) where T is the transgression.

The proof is a marvelous application of the cohomology version of the Zeeman
Comparison Theorem just above. It concocts an abstract spectral sequence which
ought to be the Serre spectral sequence of the universal bundle and which has
the requisite structure, then compares it to the real Serre spectral sequence and
concludes the two are isomorphic. We refer to Zeeman’s original proof [125] for
more details.

Of course, this theorem is motivated by our results on the structure of the coho-
mology algebra of a finite-dimensional H-group, that for suitable ordinary theories
it fits the hypotheses here exactly (see Theorem 5.11.4). In particular, this is the
case for any Lie group. We now give some examples of H*(BG; R) for selected
classical Lie groups G. As this is just what we shall need, we omit the explicit
computation of the exterior R-algebras H*(G; R) and refer you to [12] or [102], for
example, for some details.

Ex of characteristic classes

1. H*(BO;Z2) = Zo|wy,ws, w3, .. .| with degw; = 7 for all integers ¢ > 1. These
are the universal Stiefel-Whitney classes w;. Show that the inclusion ¢ :
BO(n) — BO induces v* : H*(BO;Z3) —» H*(BO(n); Zs) = Za[wy, . .., Wy).

2. H*(BL;Z2) = Zj[s1,t1, w2, ws,...] with the degree equal to the subscript
again. Here, BL denotes the classifying space of the stable Lorentz group
L =lim_, O(1,n). The identity component of O(1,n) has SO(n) as a defor-
mation retract, inducing a map BL — BO along which the w; are pullbacks
of universal Stiefel-Whitney classes and the universal Stiefel-Whitney w; pulls
back to s; + t;.

3. H*(BSO; Zs) = Zs[wa,ws,...] where the w; here may be identified with the
universal Stiefel-Whitney classes. Indeed, SO — O induces a double cover
p: BSO —» BO with p*w; = w; for i > 2 and p*w; = 0.
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4. H*(BSpin; Zsy) = Zo|ws, ws, wr, ws, Wi, - . .| with degw; =i # 27 + 1. Here,
the ses 1 = O(1) — Spin(n) —» SO(n) — 1 induces a fibration BO(1) —
BSpin —» BSO. The form of H*(BSpin;Zs) now follows from a spectral
sequence argument and the fact that BO(1) & BZ, = RP*.

5. H*(BU;Z) = Z[ci,c2,c3,...] with dege; = 2i for ¢ > 1. These are the
universal Chern classes ¢;. Study the inclusion U(n) — U as in Ex 1 above.

Show that O = Re(U) induces a map BO — BU under which the mod 2
reduction of the pullback of ¢; is wst.

The usual embedding
. A -B
Un) = 02n): A+iB+—> [B A ]

also induces a map BU — BO. What is the relation between the w; and ¢;
now?

6. H*(BSp;Z) = Z[p1, p2,ps, - - -] with degp; = 4i for all integers ¢ > 1. These
are the universal Pontrjagin classes p;. There are maps BO — BU — BSp
under which p; pulls back first to ¢p; and then to wg; mod 2.

At this point, most readers will probably want to skip to the next chapter. Those
who are seeking additional challenges may continue with the next, final section of
this chapter.

7.5 Nonabelian cohomology

Here is one attempt to construct an ordinary cohomology H 2 with nonabelian
groups as coefficients, mostly based on the work of Dedecker [25]. The main objec-
tive is to obtain an interpretation similar to that of representatives of elements of
H'(X;@G) as principal G-bundles.

Let X be a paracompact Hausdorff space (usually a smooth manifold). In ad-
dition to a sheaf of groups G over X we shall also need a subsheaf of Aut(G) which
contains the inner automorphisms; it will be denoted by .A. We consider A as a
sheaf of operators on G. More generally, A4 may be any sheaf of operators on G
together with a map p : G — A such that

Al. p(G) are the inner automorphisms;
A2. p(alg)) = ap(g)a',a € A; and g € G,.

Ex Investigate the case when G is a normal subsheaf of H and A = Inn(H), the
inner automorphisms.

The triple & = (G, p, A) is called a system of coefficients. The standard
definition will apply:
H°(X;®) = HY(X;G) =T(G).
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A 1-cochain is a pair of local sections (g, ) = (gij, ;) with respect to a covering
U = U; with Uij =Uir]U]‘ #Q and

9i5 € T(Us5,G), ai; € T'(Us;, A)

such that o;;05 = ai = 1 and g; = a,-j(g]._il) and g;; = 1. These are usually
called alternated cochains, but we shall not need any more general. We denote by
C(U; ®) the set of 1-cochains.

Lemma 7.5.1 (Cochain groupoid) If we define a product on CL(U; ®) by
(g/7a/) ’ (gva) = (glgva) & o =p(g)a,
then CL(U; ®) forms a groupoid.

For the proof of this and the next several results see Dedecker [25]. For a groupoid
approach to topology see Brown [17], and for the view of a groupoid as a category
with invertible arrows see Higgins [42].

A 2-cochain is a triple of local sections (a,7, @) = (aij, vijk, ;) such that:

_ . 1] ! o,
Qijograk; = p(Vijk) 05k s
Qijoyi = i = 1;
Ykij = aki(%‘jk) Or Yijk = aik(%ij);

—1
Yijk Yikg-

In a similar way to the case of 1-cochains, we define the product
(Bizs Oijk, B5) - (s Yige, iy) = (Bij, Oijevijer i) & Bij = aij,
then the 2-cochains from a groupoid C2(U; ®). Here of course Yijk € T'(Uijk, G)

where U; NU; NUy # @, etc.
The boundary operator 48! : C}(U; ®) — C2(U; ®) is given by

8" (95, cig) = (p(gis)tij 9ijvis (9ix) g i (gua), cvis)
or: 8'(g,a) = (p(g)a,bag,a) for short. It is easy to verify that §' maps cochains

as indicated, and is in fact a groupoid homomorphism.
A cochain is fundamental if and only if

(9,0) = (g,1) [a;i(z) =1
(a,7,a') = (a,7,1) [ai(z) =1

For fundamental cochains we drop the right 1 and just write g and (a,~) respec-
tively. We denote the sets of fundamental cochains by Cl(i;®) = CL(U;G) and
C2(U; ®), respectively. Writing 69 = gijgjxgki, 0'9 = (p(g),6g) and clearly the
cohomology of a fundamental cochain is fundamental. Also, left multiplication by
arbitrary cochains preserves fundamentality.
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We say that g € C1(U;G) is a 1-cocycle if and only if (in Ujjx) gix = 9ij95k-
Also, (a,7) € C?(U;®) is a 2-cocycle if and only if (in U;jx)
Qij ('Yljk) = Yil3 VYijk Yikl-

We denote the cocycles by Z!(U;G) and Z2(U; ®), respectively. Observe that g €
ZMU;G) = ZL(U; ®) if and only if 6'g = (p(g),1). One can define a coboundary
42 and obtain a similar statement about Z2(U; ®), but we shall not need this. Via
a straightforward calculation, we arrive at the following construction.

Lemma 7.5.2 (Groupoid of left operators)
§' Oy U G) — Z2(U; @).

If we define g -z = (6'g)z, then CL(U; ®) becomes a groupoid of left operators on
C2U; ®).

Similarly, we define left operations of C°(U;G) and C°(U;A) on CL(U;G) and
C2(U; ®) via
h-gij = higijhj!

h-(a,7) = (p(hi)ijp(h; ), p(hi)vij)-

Note that only C°(U; G) operates on C.(U;G); to obtain the operation of C°(i4; .A)
on C?(U; ®), make the obvious change of variables. One may verify that

§'(h-g)=h-d'g
he: 22— 22,

Lemma 7.5.3 (Map on cocycles) Let h € C°(U;G) or C°(U; A), take (g,a) €
CL{U; @), and (o',y) € C2(U; ®). If either side is defined then so is the other, and

h- (8" (g,0)(a',7) = 8" (h-(g,0))(h- (', 7).

Thus, when h- is defined, it maps 2-cocycles to 2-cocycles.
Ex Why is it clear that h- maps 1-cocycles to 1-cocycles?

Two 1-cocycles g and g’ are equivalent if and only if, for some h, k € C°(U; G),
we have

g' =h-((6°)g).
Two 2-cocycles (a,7) and (¢',7') are equivalent if and only if for some (g, 3) €
CL(U;®) and h € COU; A),
(@',7") = h- (8" (9,8)(a, 7)) -

Observe that we must have 3 = « for the product on the right to be defined
whence o' = h - p(g)a. These are readily verified to be equivalence relations and
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equivalence classes are called cohomology classes. We denote the sets by H!(U/; G)
and H'(U; ®), respectively. Both have null or trivial classes, represented by h-8°k
and h-6'(g, 1), respectively. In addition, H?(U; ®) has neutral classes represented

by (a,1).
As is usual in Cech-type constructions, we now define

H™(X;®)=lmH"(U;P),n =1,2.
—U

We usually write H!(X;§), as is traditional.
Suppose next that 1 - & = G 5 H — 1 is a short exact sequence of sheaves
and define coefficient systems
® = (G,p,A)  given,
® = (N, pt, A) induced,
" = (H,p", A/pt(N)),

with p'" defined via commutativity in

1 N g H 1
ptl lp lp”
1 — pt(N) A A" 1

We now define connecting maps. Let h € H?(X;H) = T'(X;H) and U be a covering
of X. This induces local representatives h; : U; — H. We have the easily-verified
exact sequence

1— H°(X;N) — H°(X;G) — H°(X;H).

By exactness, then, we can pull the h; back to g; € I'(U;,G) and, for UNU; # @,
define unique n;; € I'(U;;,N) by

gj = gini; on U;.

Then n;; is a l-cocycle, hence represents an element in H'(X;N). We can now

construct
A:HYX;H) — HY(X;®)=H'(X;N):h—n.

Ex Suppose that G is a constant sheaf, so we considerases1 > N -G —» H —> 1
of groups. Then h : X — H, and G fibers over H as a principal N-bundle. Thus,
h*@ is a principal N-bundle over X, and Ah = [h*G]. This depends on showing that
H'(X; @) = { iso-classes of principal G-bundles over X }. Classically, this follows
from the fact that the 1-cocycle condition is the transition function condition, and
a computation to check the equivalence relations.

Now, [hi;] € HY(U;H), so hij € ZL(U;H). Refining U if necessary, we may assume
that h;; is the image of some g;; € CL(U;G) since the map H'(X;G) - HY(X;H)
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is epic. Set a;; = p(g:;) and observe that (a,dg) € Z2(U;®). It is now easy to
check that [(a, 8g)] depends only on [h] thus defining
A:HY(X;H) — H*(X;®").
Theorem 7.5.4 (Dedecker) This sequence is exact:
1 — HY(X;N) — HY(X;G) — H°(X;H) 2 H'(X;N) — H'(X;0)

— HY(X;H) 2 H(X;8') — H2(X;®) — H2(X;9"),
where we use all neutral classes (including the null class) as the distinguished sets

in H2(X;®') and H2(X;®"), and only the null class in H*(X; ®).

In order to obtain a geometrical interpretation of classes in H?, we shall make
comparisons with Duskin [35]. Recall that an aspherical 1-truncated simplicial
object Y over X consists of sets and maps

do

Yy = {vertices} Y, d_—_; Yo X doso = diso = ly,
‘\%
. (do,d1)
Y1 = {directed edges} Y] ——=Yy xY,
Yo X

Let

f f
Ay = {zg = 22 ¢— 21 | 20, 21,22 € Yy, fo,fr€V1}.

A 2-dimensional Kan action of G on Y (on the right) is given by a map

fgiAg XG—)Y& : (.’L‘O —&)22 (f—ll'l,g)’—)[(fo,fl)*gl.’lfo—)l'l]

such that

K1.  (f,f)"1 =s0(x0), (so(z1),f)"1=f
K2, ((fos, f13)" 90, (f23, f03)*91)" 91 ' 9290 = (f13, fo3)" g2

z1
? f13
?
Zo fos T3
\ f23
T2

The action is principal if and only if given fo : g — z; there exists a unique
g € G such that fo = (fo, f1)*g. Now, for us, let U be a covering of X and denote
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by Xo (vertices) the point-set {i | U; € U} and by X (directed edges) the point-set
{i » j | UinU; # @}. We shall consider only the constant sheaf for a group
G. In order to obtain a suitable set of directed edges for a 2-dimensional Kan
action, form the groupoid G(Xy, G) with connected vertices determined by X;; see
Zassenhaus [124], p. 181, for details.

Clearly, G(Xo,G) and Xo form an aspherical 1-truncated simplicial object over
X (the map Xo — X is epic in the appropriate category). Regard a 2-cocycle
(a,7y) = (eij,vijx) as composed of maps a;; which act as transport from vertex j
to vertex ¢ and of maps -y;jx which are attached at vertex ¢ and live on the oriented
2-simplex (ijk). Define & : Ay x G — G(Xo, Q) : vijr — E2(7ijx) as follows:

& (vijr) = (Ujk, vij) € G(Xo,G).
Then the cocycle condition
Viki Viij Vijk = Quk (Yij)

together with the other conditions of the definition show that & is a principal
2-dimensional Kan action of G on G(Xo,G). (Note that the cocycle condition
provided K2 and our definition of a 2-cochain (page 251) covers K1.) Modulo the
equivalence relation, this establishes for H? the conjectural remarks on pp.279-81
of Johnstone [55] in our case.

To complete this picture, one need only show now that connected components
of the category of principal 2-dimensional Kan actions over X correspond with
classes in H? bijectively. This is straightforward. For a more traditionally geometric
picture, observe that, if we take geometric realizations,

|G (Xo, G)| — | Xa|

is a principal G-bundle. We also have embeddings | X;| < X as a 1-skeleton for the
covering U and its nerve, regarding the nerve of i as a simplicial approximation to
X . From above, it follows that [G(X,, G)| together with the (realization of the) Kan
action & : Ay x G — G(Xo,G) determines a unique cohomology class in H%(X; ®);
and, moreover, that every class is so determined.

In Duskin’s setting [35], the ;;x form the 2-simplices of the K({G,2)-torsor
determined by G(Xo,G). He was explicitly writing for abelian G, so the operators
ay; did not appear. Making appropriate modifications, we could say that (a,v) is
a 2-simplex of a K(®,2)-torsor over X.

Finally, we have a geometric interpretation of the second connecting map:

A:HYX;H) — H*(X;®)
for constant sheaves. Hence we have the short exact sequence of groups
1—N—G-—H—1.

Let U be a covering of X and h;; : U;; — H represent a class [h] € H'(X; H).
Recalling that G is a principal N-bundle over H, we would like to use the hi;G to
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construct a principal N-bundle over |X;]|. Refining U/ if necessary, we may assume
that each non-empty U; N Uj is contractible, as well as each U; being contractible.
In this case, it is obvious that the bundles hij will define a principal N-bundle
over any embedded realization |X;| — X as desired. One now verifies readily
that this bundle (together with the induced Kan action) represents A[h]. The
connecting maps arising from short exact coefficient sequences are traditionally

known as Bockstein morphisms; c¢f. page 111.

Ex How successful was this attempt?



Chapter 8

Obstruction Theory

Now wherefore stopp’st thou me?—Coleridge, Rime of the Ancient Mariner.

8.1 Preliminary ideas

Perhaps the most elementary use of an algebraic entity to express the degree of
absence of a property is in taking the kernel of a group homomorphism f, for ker f
is the obstacle to f being injective. In this chapter we shall see how homotopy
theory yields algebraic indicators for obstacles to extending and lifting maps. A
simple example appeared at the beginning of Chapter 2, on page 25, where we
observed that a continuous map f : S™ — X extends to the (n + 1)-ball bounded
by S™ precisely when f is null homotopic. So here the obstacle to extending f is
precisely [f] € mn(X).

N |G B+l

f , LfT exists < f~=*

A
X
Similarly, the obstacle to a lifting problem in a principal fibration could be expressed
as the homotopy class of the map into the classifying space, as we showed in Theorem
2.2.3.

First we shall develop somewhat the cone extension result. Given f: X —» Y,
then f ~ x if and only if f extends to ff : CX — Y where we view X ~ X x {1}
as a subspace of CX = X x [/X x {0}. The mapping cylinder of f is a homotopy
equivalent of Y given by

Mf:XXHUfY:(XX]IUY)/N

where, for all x € X, the equivalence ~ identifies (z,1) with f(z). The mapping

cone of f is
CfZCXUfYEMf/XX{O}.

257
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In fact the induced projection is a fibration with fiber type X:
X x {0} = My —» Cy.
We shall want the following characterization for composites.

Proposition 8.1.1 Given X Ly & Z then gf 1is inessential if and only if g
extends to g7 : C; — Z.

Proof: If gf ~ x then 3(gf)! : CX — Z extending gf. Now we define

fory €Y
t.C;, — 7 H{g(y) ’
9 Y (9£)!(y) for y = (z,t) € CX.
Certainly gt|y = g and g' is well defined since if y = f(z) € Y, then f(z) is
identified with (z,1) in Cy and (gf)'(z,1) = (gf)(x).
Conversely, given (gf)! extending gf we define

"
F:Xx]l——;z;(x,t),_,{(gf) (z,t) for t # 0,
* for t =0,

and easily verify that this is a homotopy as desired. O

In Chapter 3 we met the notion of attaching cells to a space on page 76. The
cone construction increases the dimension by one; for example CS™»~! = B™, where
we grow out from each point of S*~! a real interval [0, 1], then identify all copies
of the final point {1}. Our next result allows us to use nullhomotopy to detect the
extensibility of a map from an (n — 1)-skeleton to an n-skeleton. A worm has no
earthy extension through the 2-skeleton of a mole’s tunnels; the mole has exploited
this for eons as a source of food. (It is not clear to what extent a worm comprehends
when it begins to cross the 2-skeleton of a mole’s tunnel complex; perhaps clever
worms quickly reverse.) Later, we exploit this in an iterative approach to extensions.

Proposition 8.1.2 For any CW-complex X and each n, the n-skeleton is a map-
ping cone over the (n — 1)-skeleton.

Proof: For each n-cell e? with attaching map xo : (B™,S™!) — (X", X""1) we
take a copy BY = x§ (e)” of the closed n-ball with its boundary S"~!. Taking

[e3
disjoint unions over a we obtain

Xn : (H Bg,HSg‘l) — (X", XL

Then, as for individual balls, [[B? = C([[S""!). Moreover, if we set x, =
Xn]HS:_l, then it unites with the skeleton inclusion and x, to give a map

xtuy, (TTBr) — xm.
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This is a homeomorphism by construction and because the composite with identi-

fication,
010 (I18) — x=" s, ([[82) — 47,
is a closed map. 0

Corollary 8.1.83 For any CW-complex Z (in particular, * or 1) and maep h :
X" x Z Y, suppose that we have maps

ho : B x Z — Y satisfying ha(z,2) = h(xa(z),2) for z € SE7L

Then there is unique solution h! to the extension problem

X"_l)(Z#:Y
ht h

n n
X"xZ D B, x Z

In fact, this is true for any compactly generated Z because quotient mappings are
preserved under products in Top. O

Corollary 8.1.4 Every relative CW-complez (X, A) admits a decomposition of the
inclusion A — X into a sequence of mapping cones

A X' X’ o X" oo X =limX". 0O
—
Corollary 8.1.5 g : X" ! - Y extends to g' : X" = Y if and only if gxn ~ *
where xn = anLISn—l. 0
This immediately suggests a way to use the skeleton tower.

Definition 8.1.6 In the extension problem
A——X

P
Y

the first obstruction is the class
&(9) = loxal € [[Ts5v].

Hence g extends to X' if and only if & (g) = *. Recursively, if £,_1(g9) = [9Xn-1] =
*, then the nth obstruction to extension of g is the class

6n(9) = loxal € [[Ts271Y].

If g does extend to X, then all of these obstructions are trivial.
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This does not deal completely with the problem of extensions since it is possible
to climb the whole skeleton with only trivial obstructions, but yet a map may have
no extension to X; this is the phenomenon of phantom or ghost maps; see Gray [38]
or McGibbon'’s article in [54]. Meanwhile, we have the following sufficiency result.

Proposition 8.1.7

I

(1182, Y]
€n(9)

o

x for j >n 34
iz =

X<—"A
Proof: Exercise. a

Ex Work through the case for X the unit disk and ¥ the unit circle.

Corollary 8.1.8 The conditions are met whenever X is finite-dimensional, since
then |[S?, = @ for all sufficiently large j. 0O

Ex Show that there is an essential map f in

Rrp2 —L > gp?

|

RP? /RP! — > §2

o

which induces the trivial map on fundamental groups. Investigate also ¢ in

82_—g_>82

|

RP?2 —> RP?/RP!

8.2 [Eilenberg-Maclane spaces K(m,n)

Our preliminaries suggest that homotopy classes of maps from bunches of spheres
(IIS%) govern the extensibility of a map across the interiors of the cells whose
boundaries they model. Accordingly, we must expect that relevant information
will be carried by the corresponding homotopy groups of the space in which our
map takes values. In fact, there is a simplification of computations if we transfer
our attention from homotopy to cochomology classes for obstructions. Now, moving
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from homotopy to cohomology means changing our theory from a functor to a
cofunctor. Instead of looking at maps from spheres we shall be looking at maps to
some standard spaces, and we shall want these latter to have fairly simple homotopy
structure. Actually, we can construct a large family of spaces having just one non-
trivial homotopy group. Such spaces are even simpler than the spheres, since for
example m2(S?) = 73(S?) = Z, and homotopy classes of maps into them yicld a
useful cohomology theory.

Definition 8.2.1 A CW-complex X with just one non-trivial homotopy group ™ in
dimension n is called an Eilenberg-Maclane space of type (m,n); briefly we say
that X is a K(m,n).

Ex
1. Stis a K(Z,1) but S? is not a K(Z,?2).
2. RP® is a K(Zs,1).
3. CP* isa K(Z,2).
4. HP* is not a K(Z,4).

From these examples we can see the price that must be paid for simplicity in ho-
motopy groups: the simplest possible case turns out to be RP*°, and CP* turns
out to be the example that S? is not!

We shall prove that these K (m,n) exist for all possible (7,n) and, moreover,
each one is unique up to homotopy type. The construction process depends on the
following very natural class of spaces.

Definition 8.2.2 A CW-complex X with one 0-cell, all of its other cells in dimen-
stons n and n + 1, and with 7, (X) = 7 is called a Moore space of type (m,n);
briefly we say that X is an M (m,n).

Ex
1. S™is an M(Z,n).
2. RP? is an M(Zo,1).
3. CP! is an M(Z,2).

Clearly these are geometrically simpler; to get from an M(w,n) to a K(7,n) we
need to trivialize all homotopy groups above the n**. This process is referred to as
killing homotopy groups and the idea is very simple: we just fill in the interior of
non—trivgal copies of higher spheres.
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Lemma 8.2.3 (Killing homotopy) Let X be any CW-complex and n > 0 an in-
teger. Then we can construct a relative CW-complex (X', X') with cells in dimension
(n + 1) only and such that:

1. (XY =0
2. 1. (X") 2 7. (X) forr <n.

Thus, X' resembles X below dimension n, but at dimension n it has trivial homo-
topy.

Proof: Let the generators of m,(X) be represented by {f, : S" = X | a € J}. For
each a € J, take an (n + 1)-ball B?*! and attach it by f, to X to give

X'=(Xu]] B2/~
a€J

Thus, as a relative complex, (X', X) has only these B?*! as (n + 1)-cells—which
precisely make inessential the generators of 7, 1(X). Below dimension n, the space
X' has the same homotopy groups as X by the injection X — X' O
Ex Attaching B* to S? by the Hopf map S% —» S? kills m3(S?).

Theorem 8.2.4 (Postnikov tower) Any CW-complez X admits a decomposition
into a Postnikov tower or system of relative CW-complezes (X" X), as in
Figure 8.1, with

1. cells in dimension (n + 2) and above only;
2. (X" =0 for r > n;
8. b (X) = 7w (X)) for r < n.

Proof: Fix n > 0 and apply the Lemma to kill 7,41 (X), so giving

XM =(xul Bit?)/~ with ma(XM)=0.
agdJ

Next we apply the procedure to Xﬁf) to obtain
X®  with 7 (XP) = e (X®y =0,

and so on recursively to obtain X ,(Ik). Then the space we seek is

Xl = U X*) with the weak topology.
k>1

Property 3 follows from the preservation of w, by direct limits for CW-complexes.
O
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homotopy fibers

Xl <——>— K (m(X),n)

xn-1 <=2 K (mp_1(X),n—1)

fibrations

Figure 8.1: Postnikov tower of a space
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Evidently, a Postnikov tower is defined only up to homotopy equivalence. We call
X[ the nt* Postnikov section of X in the tower and view these sections as
successive approzimations to X which are in a sense dual to the cellular skeletal

approximations X™. Each injection X & X[ is convertible up to homotopy into
a fibration

X &y gn) Poy xln]
with
x(n) — {(.Z‘,U) € X x (X[n])ﬂ |0(0) =in(z)} >~ X
Pn - (;1;,0') D——)O’(l)
and fiber - _
XM = ((z,0) € X" | 0(0) = o(1)}.

Proposition 8.2.5

=0 0 forr<n
(n)) o~ -
T (X )_{TFT(X) forr > n.

Proof: By construction, the only possible non-trivial homotopy groups in X (") are
those above n, and these are isomorphic to those of X by jn.. Ol

We call X(™ the n-connected covering space of X; it is usually denoted merely
by X(m),

Ex
1. Verify that X () is unique up to homotopy.
2. We compute X[ for X = S™.

n=0 X%=uX{". Now X{") = (XUB?)/~ = B2, there being 1 generator
of m1(X), and X{” = X§? for r > 1, since m,(B2?) = 0 for r > 0. Thus
X = B2.

n=1 XM =uUX{". Now X" = X since 72(X) = 0,and X" = x{¥ = X
for r > 1 since 7.(X) = 0 for r > 1. Thus x0l = x =8,

n>1: XM = X =S8 since n,(X) =0 for r > 1.

Note that {*} = X(1) is, up to homotopy, the simply connected covering space

R of X = S!. In this case the Postnikov tower is short!

X =8!'=xM
X=s

1 st = x1)

®

B2 = xO
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Moreover, the inclusion X < X[® needs no extension so ¢ = i. However, to
reveal X[ —» X% as a fibration (up to homotopy) with fiber K (m(X),1) =
S1, we can contract B? to a point and ¢ to the constant map, giving:

K(m1(SY),1) < S —» {x}.

Theorem 8.2.6 There exist K(w,n) of all possible types, unique up to homotopy
equivalence.

Proof: ‘All possible types’ means: integer n > 1 with 7 abelian when n > 1. The
construction depends on the following steps:

1. existence of M (m,n);

2. homotopy groups above n can be killed;

3. functoriality ensures uniqueness up to homotopy equivalence.
Construction of an M (m,n) begins with the observation that if {S? | & € A} is a
collection of disjoint n-spheres, then m,(V,S?2) is the free (abelian if n > 1) group
on a set of generators which bijectively corresponds to A; cf. pages 46 and 60.
This gives M (w,n) for free w. If 7 is not free, then it can be resolved into a short
exact sequence 0 - R - F — 7w — 0 with R and F free groups. Then M (F,n)
and M(R,n) are constructible and the factoring F/R = 7 induces a cellular map
f:M(R,n) - M(F,n). This actually gives us M (m,n) as the mapping cone Cy
because we have a fibration My —» Cy and hence, up to homotopy, another one

M(R,n) = M(F,n) —» M(m,n).
The exact homotopy sequence gives the result since 7,1 (M (R,n)) = 0 by construc-

tion. We leave it to the reader to check that M (w,n) is unique up to homotopy
equivalence.

Now apply the Postnikov decomposition to obtain a relative CW-complex
(M (m,n)!"), M (w,m))
with cells in dimensions above (n + 1) only and

] ~ 0 for r > n,
o (M, m)") = {WT(M(ﬁ,n)) for r < .

Thus we have constructed K (m,n) = M(m,n). 0

Ex on K(m,n) and Postnikov towers

1. X is weak homotopy equivalent to lim, X[ because the homotopy group
functors commute with inverse limits.
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. Each X" is obtained from X[™~1] by filling in its (n + 1)-holes so, up to

homotopy, we can convert each projection into a fibration
K(mp(X),n) — XM —» x-1],
and if 7, (X) = 0, then the fibration has trivial fiber.

. The torus S' x S'is a K(Z ® Z,1). The Klein bottle is a K(r,1) where =

is the group with two generators a, b and one relation aba = b. Is any other
surface a K(m,n)?

. RP? = M(Zy,1) so K(Zs,1) = (RP?)] ~ RP>®. CP' = S? = M(Z,2) so

K(Z,2) = (CPYH)I ~ CP>.

. Show BG ~ K(m,n) if and only if G ~ K(m,n — 1); in particular, BG ~

K(G,1) if and only if G is discrete.

.An f: X — Y from a k-dimensional CW-complex is nullhomotopic if and

only if 4 f is nullhomotopic where ¢ : Y < Y*] is from a Postnikov tower
for Y. [Hint: CX \ X has cells in dimensions below k + 2.]

. (Hopf theorem) If X is a path-connected, finite CW-complex of dimension at

most n, then H™(X;Z) = [X,S"] for an ordinary H.

. K(m,n) is an H-space if and only if 7 is abelian.
. QK (m,n) ~ K(m,n —1).
10.

For each abelian group 7, we obtain a spectrum Hr with (Hn), = K(m,n).
The associated spectral homology and cohomology theories Hw, and Hn* are
just ordinary homology and cohomology with coefficients .

If {m,} is any possible sequence of homotopy groups, then it can be realized
by some space.

Taking Postnikov sections determines functors

X x[n]

CW* ——Cw~ : | —— |[/™]

Y yn]
where fI?: X7 5 yInl is the solution of the extension problem
X>—" s xln]
:
Y 5l
|,

ylnl
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8.3 Moore-Postnikov decomposition of a fibration

We have set up a procedure for converting a space, up to homotopy, into a tower of
fibrations with Eilenberg-Maclane fibers. Our next move is to extend that procedure
to the case of a fibration. This will permit us to decompose a lifting problem into
stepwise lifts while keeping a tight grip on the growth of homotopy complexity as
the successive stages improve in approximation to the given fibration.

Given a fibration ¥ — E —» B we shall construct a sequence of fibrations.
K (mn(F),n) — EM —s Ein=1]

with E® = B and
A win) ~ mi(E) for i < mn,
T (E ) - { mi(B) for i > n.

So, at the nt* stage, El") “ooks like’ E from a lower-dimensional homotopy view-
point and ‘looks like’ B from above. In fact we shall obtain much more because
of the way the above isomorphisms are induced and because compositions of the
fibrations induce fibrations over B with fibers forming a Postnikov tower of F'. The
construction depends on our previous procedure for killing homotopy groups and
on the standard procedure for converting a map into a homotopy fibration. We
illustrate with a simple example.

Ex For F < E % B, take $2 < S! x §2 — S1. Then El0 = §1.

n=1: Put X = EVB = (S! x S?) vS Killing m(B) in X leaves S* x §%
Killing 7(E) also, for r > 1, leaves X! = S!. Hence we obtain the identity
fibration for B!l —» E as x < S! 2 S, with fiber K(m(F),1) = *.

n = 2: Killing m(B) in X for r < 2 leaves S!xS2. Killing 7, (E) also, for r > 2,
leaves X? = S! x K(m(S?),2). Hence we obtain a fibration K (my(F),2) <
ER - BN as K(Z,2) — $' x K(Z,2) — S

n = 3: Killing 7.(B) in X for r < 3 leaves S! x S2. Killing 7,.(E) in X for
r > 3 leaves X3 = S! x K(Z,2) x K(Z,3). Hence we obtain a fibration
K(n3(F),3) > EPl - EP as K(Z,3) — S' x K(Z,2) x K(Z,3) = S! x
K(Z,2).

n = 4: Killing 7,(B) in X for r < 4 and 7.(E) in X for r > 4 leaves X* =
S' x K(Z,2) x K(Z,3) x K(74(S?),4), so giving a fibration

K(Z3,4) — S'x K(Z,2) x K(Z,3) x K (m4(S?),4) —» S'x K(Z,2) x K(Z,3) .
And so on, with clear inclusions E — E[™ inducing isomorphisms on homotopy

groups below the n'*. In the fibrations FI"l < Ll 2= B we see that the fibers
form a Postnikov tower of F' = §? since FI™ is S with all 7,(S2) killed for r > n.
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Moreover ¢, = p; o py © - - - o p, induces isomorphisms on homotopy groups above
the nt*. This is trivially true in our example; indeed, q; = 1 and

g3 :S'x K(Z,2) x K(Z,3) — S!

gives the zero isomorphism from 73,5 (EP) to m3,£(B). The fibration in this ex-
ample is actually a trivial S%-bundle over S! and at each stage of decomposition
the conversion to a fibration is trivial. However, it does allow a visualization of
the development in complexity of E[" with increasing n as successively more of
the homotopy groups of E are admitted. We summarize the general situation as
follows.

Theorem 8.3.1 (Moore-Postnikov decomposition) Given a fibration FF — E

2% B with connected base B then there ezist fibrations EM 22 Eln=1 for n > 1
and maps hy : E — E"™ with pyhy, = hy_y, such that:

1. E® = B and ho = p;

2. the fiber of p, has the homotopy type of K(m,(F),n);

3. hy induces isomorphisms of homotopy groups 7 (E) = my, (E'"™) for k < n;
4

. gn = pip2---pn : E™M — B induces isomorphisms wk(E["]) = 1 (B) for
k>n;

5. letting F" denote the fiber of qn, then {hnlp F - F["]} is a Postnikov
tower of F.

See Figure 8.2 for a diagram.

Proof: We shall induct on n. Denote by E! the space resulting from E V B after
killing in it those groups corresponding to #,(B) for r < 1 and to 7. (E) for r > 1.
We extend the map

pVlig:EvVB —B

to give p : E:l —~ El = B, by sending new interior points to * € B. We have a
natural map hy : £ — E' induced by £V {*} = E V B. Up to homotopy we can
replace p; by a fibration

F' « g0 21y plo]
with
EMN = {(u,0) € E' x B"| 0(0) = p1(u) and p; (u,0) = o(1)}
and
F' = {(u,0) € E' x B" | 0(0) = i (u) = o(1) = »} .

But then F! is that remnant of the fiber Fin E which persists after killing homotopy
groups above the first. Therefore, up to homotopy, F! is K(n1(F),1). The map h;
composes with the killing map

1p1 x % : E' ——-)ED]
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Pn+1 K(ﬂ‘n(F),n) K(T"n(F)’n)

K(mp_1(F),n~1)

K(m(F),1)

Moore-Postnikov Postnikov

tower of F tower of F

Figure 8.2: Moore-Postnikov decomposition of a fibration
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to yield
hy : E — EUW

which evidently induces an isomorphism of first homotopy groups.

The map

g =p: EM — B:(u,0) — o(1)

induces isomorphisms of homotopy groups above the first since p; arises from the
identity on B in EV B and only B contributes to these homotopy groups in EN.

Now suppose that we have found fibrations satisfying the requirements of the
theorem up to n — 1. Thus we have

En-1l «— K(mp_1(F),n—1)

Pn-1

Bl2t pin2) « O K(mp_o(F),n — 2)
Pn—-2
hi=p
El = B

Here the p, arise from p, : E" — El"~1 and each ¢, = p;ps - - - p, is a fibration with
fibers FU] forming a Postnikov tower of F. Denote by E™ the space resulting from
E V E!"=1 after killing in it those groups corresponding to m,(E"~1) for r < n
and to 7,(E) for > n. (Observe that killing 7, (E!"~1) for r < n leaves, up to
homotopy, EV By where Bj is B with homotopy groups killed up to the nt*.) Thus
we have

E;)EV*QEvE["—H&)E" Eln] <— pn
hpn-1V1 (S ~ Pn
yZ
Eln-1] Eln-1

where p,, is the fibration version of the projection p, induced by h,_; V1, and a map
hn, : E — E™ is induced by the killing process. Clearly, h,, induces isomorphisms
on homotopy groups up to the nt*. Also, p, induces isomorphisms above n, but
Gn-1 = P1DP2-.-Pn—1 induces isomorphisms above (n — 1) and so ¢, = gn—_1p, induces
isomorphisms above n.

The fibration p, has fiber

F" = pi {*} = {(u,0) € E" x (B! (0) = pn(u) = 0(1) = *}
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which is that remnant of the fiber F' in E which persists after killing homotopy
groups above the nt*. Hence, m,(F") = 7,(F), and n,(F™) = 0 for r > n. But, by
hypothesis, F*~! ~ K(m,_1(F),n — 1) and F™"~! is the remnant of F in E after
killing homotopy groups above the (n — 1)t*, so 7.(F") = 0 for r < n — 1. Thus in
order to establish F* ~ K (m,(F),n), it is required only to show that m,_1(F™) = 0.

Now, by the induction hypothesis, the fibers FI"] of ¢, for r < n — 1 form a
Postnikov tower of F' so m,_; (F™) will contribute a copy of K (m,_1(F),n — 1) and
Fn=1 to FInl; but this will project by p, onto a similar copy in FI*~1 so p& {x}
will contain no such copy and hence m,_1(F™) = 0. 0

8.4 Homotopy cofunctors

We indicated above that cohomology classes are useful for characterizing obstruc-
tions to extensions. More generally, we use homotopy cofunctors which all turn out
to be representable, up to natural equivalence, by homotopy classes of maps into
some standard classifying spaces.

Definition 8.4.1 A homotopy cofunctor is a cofunctor H : fo\p/* — Set” satis-
fying the coequalizer and wedge properties:

(i) ifY lﬂ) R is the coequalizer of

[f]
—
9]
and H[f|lu = H[glu, then there exists v € H(R) such that H[r|v = u;

(i) if Xq LY VaXa then we have an isomorphism

{H[ia]} : H (\/ Xa> =[] H(X.).

Proposition 8.4.2 (Suspension object groups) If H is a homotopy cofunctor,
then it induces a group structure on each suspension object and it is abelian on
double suspensions. If H is group-valued, then the two group structures coincide.

Ex [SX,Y] = [S! A X,Y] which is naturally equivalent to [S},YX] = 7, (YX).
Hence, the cofunctor [ ,Y] is group-valued on suspension objects. On double sus-
pensions we use

S(SX)=S'AS'AX =2S§ZAX
giving [S(SX),Y] = [S% YX] = 7 (YX) which is abelian.
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Proof: Let SX be a suspension and denote the comultiplication on SX by

([2t, z], *) t € [0, —21—]

©:8X — SXVSX:[tz]l—
1t,] {(*,[2t—1,z]) te (3,1
using SX = ([0,1)/{0,1}) A X; ¢f. Section 2.3, page 41 in particular.

Denote the projections from SX V .SX onto the two copies of SX by p, q respec-
tively. Then we obtain maps

SX —2>5xvsx 22 5x x SX.
Applying H gives a multiplication

H(SX) x H(SX) WD gy v 5x) O

H(SX).

Equivalently, (H[p], H[q]) = (H[i],H[j])~!, where i and j are the inclusions of
the copies of SX in SX vV SX. The H-cogroup structure of SX ensures that the
multiplication on H(SX) yields a group. Clearly, if H is group-valued then it
yields homomorphisms on homotopy classes of maps, and in that case the two
group structures are equivalent up to isomorphism. O

Corollary 8.4.3 For any homotopy cofunctor H, H(S™) is a group for n > 1 and
abelian for n > 2. O

th

We call H(S™) the n* coefficient group of H. In particular the nt* coefficient

group of H =[,Y] is just m,(Y).

Ex

1. Show that H™( ;G) is a homotopy cofunctor and that its nt* coefficient group
isGifn=7r2>1, and trivial if n # .

2. If H is a homotopy cofunctor and * is a singleton, then use *V * = * to deduce
that H(x) is also a singleton.

A space Y is called a classifying space for a homotopy cofunctor H if for all
C'W-complexes X,
H(X) = [X)Y].

Then every element u € H(Y') determines a map
Ty: [ X,Y] — H(X): [f]— H[flu.

In particular, by substituting spheres S™ for X we can test the sensitivity of u €
H(Y) to homotopy information. We say that u is universal if T, is an isomorphism
for alln > 1.
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. Ifue HY)and v’ € H(Y') are universal, then ¥ and Y’ are weak homotopy

equivalent (WHE).

. For path connected Y)Y’ and H = [ ,Y’], v € H(Y) is universal if and only

if u is a weak homotopy equivalence.

Theorem 8.4.4 (Existence of classifying space) Every homotopy cofunctor H
has a CW-complex Y which is a classifying space for H; moreover, there exists some
universal u € H(Y') if and only if Y is a classifying space for H.

Proof: We outline the construction; it resembles the synthesis of a K (7w, n).

(i)
(i)
(i)

(vi)

(vii)

(viil)

Put Yy = x; then H(Y}) is a singleton, {ug} say.
Construct a bouquet of 1-spheres X1 = V,ecpmsnS},.

Define V7 = Y V X;; then the wedge property yields u; € H(Y;) which
restricts to ug on Yy and satisfies H[is]u; = afor all @ € H(S!) with inclusions

SL 3 Y. But then T, [iq] = @ so Ty, m (Y1) = H(S1) and u; is 1-universal.
Construct a bouquet of 2-spheres X = Voep(s2)S3,

For each [f] € mi (Y1) with H[f]u; =0, fill in (by attaching via f) a 2-cell in
Y1, to yield Wi. Put Y, = Wi Vv X,.

The wedge property yields us € H(Y>) restricting to u; on Y1 C W; and
HligJuz = a for all a € H(S?) with inclusions S% 3 Y.

There is a commutative diagram with exact row

w2 (Ya, Y1) — 2 1, (V1) L m1(Y2) m (Y2, Y1)

Tu, Tu,
H(SY

Now, T, is an isomorphism and since Y; is obtained from Y] by attaching
2-cells, we have m;(Y2,Y;) = 0. Hence i, is an epimorphism and T,, is also
an epimorphism, so us is universal.

The process continues inductively, obtaining u,.; from u, by killing off
in Y, those generators of m,(Y;) which lie in the kernel of 7,,. Again
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7k (Yns1,Yn) = 0 for k£ < n so the homotopy groups of Y41 and Y, coin-
cide below n and their inclusion is epic at n. Therefore in

Tk4+1 (Yn+1, Yn) Tk (Yn) L Tk (Yn+l) Tk (Yn+l y Yn)
;\\ Al
H(SH)
Ty, is an n-isomorphism, ker T, C keri,, so for k = n, kerT,, = keri,

and T,,,, is an isomorphism at £ = n. Finally, Ty, ,, is an epimorphism

at k = n + 1 because if a € H(S™*!) with inclusion S7+! I5) Y,41, then by
construction T, ,,[ja] = a.

The coequalizer condition on H is implicit in the construction of u, 1 from u,
as follows: for each [v] € ker T}, take an n-sphere S and for each o € H(S™*!)
take an (n + 1)-sphere S™*1. This yields

\/ Sn Vv (v SZ+1) _.7_) "

which is a coequalizer diagram. It gives an equalizer image under H and hence
Unt1 € H(Yni1). O

. One may apply the foregoing construction to show that, for each fixed n and

abelian group 7, there is a natural equivalence
H'(X;7) = [X,K(m,n)]

on pointed CW-complexes X.

. (Kobayashi theorem) Show [X, BS!] & H?(X;Z) for CW-complexes X.

. If F = E —» B is a fibration, then show that it induces an exact sequence

[X,F] = [X,E] — [X, B
in Set* for any CW-complex X.
If f: X =Y is a weak homotopy equivalence, then it induces bijections
W, X] = [W,Y] and [X,W] = [Y,W]

for any C'W-complex W.
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5. Let X be a CW-complex and let {Y[M}, {¥Y{"]} be two Postnikov towers for
Y. Show that a map f: X — Y induces bijections

X,y =[x, 7).

6. Give an example of a 1-dimensional CW-complex X, a CW-complex Y with
Postnikov tower {Y["} and a map f : X — Y such that the composite

x Ly oyt
is nullhomotopic. Show that [f] = * € [X,Y].

The illustration in this Ex 6 suggests that we may detect nullhomotopic maps
on finite-dimensional CW-complexes without climbing above this dimensionality in
the Postnikov tower of the image space. Indeed, this is reasonable, because above
dimension n an nt"* Postnikov section Y™ of Y has only trivial homotopy groups.
There is a standard terminology in this context. Let X be a CW-complex, up to
homotopy, and suppose that we have a Postnikov tower {Y &y ylnl |n €N} forY.
Then f: X — Y is called n-trivial if ¢, f is nullhomotopic. This allows us to deal
immediately with nullhomotopic maps on finite-dimensional CW-complexes.

Theorem 8.4.5 (Nullhomotopic on finite-dimensional CW-complexes) If
X is an n-dimensional CW-complez, f : X — Y 1is nullhomotopic if and only if f
18 n-trivial.

Proof: Clearly if f is nullhomotopic, then it is n-trivial. If f is n-trivial, then the
composite

x Ly &yl

is nullhomotopic. Denote by Y (" the fiber type of a fibration equivalent to 1.
Then we get, by Ex 3 above, an exact sequence

[X,Y(W] % [X,v]—[X, Y],

But [tnf] = * € [X,Y["] so f determines some g : X — Y™ with 1,g € [f], and
it is sufficient to show that g is trivial. However, g ~ x if and only if g extends to
gt :CX 5 Y™,

Now, X is n-dimensional and so CX has no cell above dimension (n+ 1). More-
over, by construction (¢f. page 264) we have (Y (") = 0 for k < n so g does
extend to CX. Hence f is trivial. 0

Consider the stepwise investigation of n-triviality, for n = 1,2,..., of a map
f:X =Y between CW-complexes. At each stage in the Postnikov tower for Y we
have, up to homotopy, a fibration as in Figure 8.3. By Ex 3 above, we get an exact
sequence

[X, K (ma(Y),n)] =2 [X, Y] 223 [x, yin-1y,
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ylnl <—— K(m,(Y),n)

X —Y Pn

Figure 8.3: Fibration used in defining the nt* obstruction set of f

Now, suppose that f is (n — 1)-trivial, so ¢t,—1 f ~ *. Hence
[tn f] € kerpp. =ima

SO

ay [infl # 2.

Clearly, if f is n-trivial then of [t,f] = keray,; conversely, if x € af [¢nf] then
% € [tnf], so f is n-trivial. Therefore, if f is (n — 1)-trivial then f is n-trivial if and
only if * € af [tnf], so this latter set is an indicator for triviality at dimension n.
Now, by Ex 1 above we can alternatively characterize dom a,, because

O+ [X, K (mn(Y),n)] = H™(X;mn(Y)).
Through this bijection we obtain a set
On(f) = gn(a:z_[Lnf]) - E[n(X; Wn(Y))

called the n-dimensional obstruction set to f being nullhomotopic. Evidently,
if f is (n — 1)-trivial then f is n-trivial if and only if * € O,(f).
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8.5 Postnikov invariants
We bring several ideas together now to study the lifting problem for a fibration
E<~—p {x}~F
4

o= p

X B

f

Here we have anticipated a stepwise solution to this problem and introduced the
notation f for the lift previously denoted by f°. From the theorem on Postnikov
decomposition of a fibration, we have a tower of fibrations py:

ElN <—— K(m,(F),n)

Pn

E =24 plnt] <« K (w1 (F),n — 1)
7 /
f P /
= glo
X ——B =EU

Now, h,, induces isomorphisms of homotopy groups up to the n* so, up to homo-
topy, the lifting problem is solved for lower dimensional X by the following:

Theorem 8.5.1 (Lifting from finite-dimensional space) If X is a CW-com-
plex of dimension not exceeding n, then for a fibration E — B we have the following
characterization of the lifting problem:

E Elnl
7 7
3f Jfm
<~ (dim X < n)

X 7 B X

7 B

Proof: The map h, : E — E induces a bijection

(X, E] = [X, El"]. O



278 CHAPTER 8. OBSTRUCTION THEORY

Our next move is to exploit known topological properties of the fiber in a fibra-
tion F < E —» B. Suppose that 7, (F) is the first nonzero homotopy group of F,
and that 7 is abelian. Firstly, the Kronecker product (cf. page 132)

(,)  HY(F;,m) @ H(FZ) — 7w
induces an isomorphism
H™(F;7) — Hom(H,(F),n7) :v+— (v, ).
Next we have the Hurewicz isomorphism (cf. page 141)
h:@l(F) = H,(F;Z),

where the prime denotes modding out the commutator subgroup when n = 1. Now,
if this h is expressible through v € H"(F;w;, (F)) in the form

(v, ) =h~! € Hom(H,(F);m,(F))
then we call v a fundamental class of F.

Proposition 8.5.2 (Transgressive fundamental class) If 7;(B) acts trivially

on H*(F) for a fibration F < E % B, and v is a fundamental class of F, then v
s transgressive.

Proof: The action of 71 (B) is simply the lift of a loop at * in B to yield a path
from p* {x} to itself in E, which induces a map on cohomology (and homology).
The transgression map on the spectral sequence for H* is d"*! : Eﬁjﬁl — E;Zilm

(cf. page 279) which becomes
7 HY(F;7ml (F)) — H"(B; 7 (F)).
Omitting the coefficient group #/,(F'), the exact sequence containing 7 is

o — H"™U(E) & H(B) < H™(F) <~ H™(E) +— H™(B) +— - --
and it can be shown that v € im 7 = ker p*, as required. 0

The transgression 7(v) of a fundamental class is called a characteristic class
of the fibration. Thus it is an element in (n + 1)-dimensional cohomology of the
base, with coefficients in #] (F), the first non-zero homotopy group of the fiber
(abelianized if necessary). There remains the case that m (B) does not act trivially
on H*(F;x (F)); this is referred to as a failure to be =} (F')-orientable. In this
case we can still retain the transgressive criterion for a fundamental class, provided
that we apply it to H"*1(B; s[r/,(F,) | # € B]) where s is the Steenrod class (page
217) of the fibration and the coefficients are thus a sheaf of groups. For more details
see Steenrod [101] or Spanier [97].
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Ex

1. Use H"(F;7,(F)) = [F,K(7,(F),n)] to deduce that a fundamental class
induces an isomorphism

T (F) = mn (K (7, (F),n)) .

2. Let w = 7(v) € H"WY(B;7/(F)) = [B,K(r,,(F),n)] for a fibration F <
E 5 B. Denote by w' : B — K(7!,(F),n) a map representing w. Show that
w'p is trivial, because p*(w) = 0 € H"*Y(E;x!(F)). For, consideration of
cxactness in the row

HY(F; 7 (F)) —2> H"™ (B, F; ! (F)) —— H"\(E; 7! (F))

yields
p*(w) = p*(T(v)) = j*(6v) = 0.

Let us now suppose that F' has non-trivial homotopy groups m,, (F) only for
certain n; < ng < ---. For simplicity of notation, we shall drop the primes and
henceforth assume that a fundamental group appearing as the coeflicients of our (or-
dinary) (co)homology theory is abelianized. Then, in the Postnikov decomposition

of a fibration F' < E —» B, we encounter the first obstruction to lifting X 4B
at the Postnikov section El™. Let v; € H™ (F;m,, (F)) be a fundamental class
and denote its transgression 7(v;) by k! € H™M+1(B;n,, (F)). Recursively, for a
fundamental class

v; € H™ (F[nivd;ﬂ'm(F[nFl])) s
we define the i** Postnikov invariant to be

k= T(vi) € Hritl (E[ni—l];ﬂ.n‘_(F[ni—l])) .

These k' precisely constitute the stepwise obstructions to lifting f : X — B through
the Postnikov tower to give f*: X — E.
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Theorem 8.5.3 (Lifting through Postnikov towers) Let k', k%, ..., denote
the Postnikov invariants of F — E — B.
Elni]
S
arm pi
x I g = 0€ ki(f) = {9 (k') | g lifts f to Em-11Y
f

Proof: The proposed obstruction set k;(f) lies in H™ (X ; m,, (FI™-11)), which is
naturally equivalent to [X, K (m,, (FI%-11),n; + 1)]. If f™ exists, then it composes
with the projection p; : El™) — Ei-1 to yield a lift g of f to Eli-1] But
g* (k%) = ¢*7(v;) = f**piT(v;) = 0, since 7(v;) € ker p;«. Conversely, suppose that
g lifts f to El™-1] and g*(k?) = 0. Then

g'r(vi) =0 € H 1 (X, (F™))

The result follows from an application of the next lemma because, up to homotopy,
f is a fibration. 0

In this lemma, we use a map « as in Ex 3 on page 274 again.

Lemma 8.5.4 For every fibration G < A -» Y and space Z there is an ezact
sequence

192,6) — [52, 4] 225 157, v] (Z,G] —2 > [2,A] —[2,Y]

(Hint for the theorem: take Fy < Ef —» Y’; see Theorem 2.2.2.)

Ex Show that k! is essentially the classical obstruction to extending a section to
the (n + 1)-skeleton and that a pullback of k* is the obstruction for the (n; + 1)-
skeleton.

We now obtain the characterization for skeletal extensions in terms of finding the
trivial element in the obstruction set, a bit like a fifth column, or a virus.
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Theorem 8.5.5 (Seed of extension) Let X be a CW-complex.

X tn xXn C Xn+l
— 0€k,(f) CH"(X;m,(Y))
f ntl
L = fxnpr ~x
Y

whero
o (T 115)
a7 a4
is the characteristic map for the (n + 1)-skeleton relative to the n-skeleton.

Proof: Denote also by xn41 the restriction of x,41 to [[, ST. Now X"t =C,, .,
so f extends to X™*! if and only if fx,41 is inessential. We can take a Postnikov
decomposition of ¥ and obtain a composite

[[snes xn Ly Loyl yln-tl,

[¢

This yields an exact sequence

X, K (ma(Y), n)] =22 (X7, K (a0 (), )] el [HS K (mn(Y),n)

5 I:H SZ7Y[H]:| . I:H SZ,Y["_I]

wherein 6, : [X, K(m,(Y),n)] =& H*(X;m,(Y)) and we have used « as in Ex 3 on
page 274 yet again. By definition, given f : X™ = Y 50 tnfXxn+1 is (n — 1)-trivial,
then

on(an+1) = en(a(_ [Lann-HD .

Now, this obstruction set contains the trivial element if and only if fx,y1 is n-
trivial, and

kn(f) = [ins 1T Ixtnt1, 17 O(Fxtnt1) 5

so the result follows. 0

Ex Note that if Y ~ «, then everything trivializes and all obstructions completely
vanish. If X is n-dimensional, it suffices that ¥ be (n — 1)-trivial. Use this to prove
Corollary 7.1.7, page 220.






Chapter 9

Applications

Beauty too rich for use—Shakespeare, Romeo and Juliet

The undeniable power of algebraic topology would alone command a leading place
in mathematics; but it has great beauty too, in organizing intuitively different struc-
tures which defied earlier purely analytic or geometric approaches. It has moreover a
leading place in physics, for its success in organizing the most fundamental physical
theories. In this final chapter we try to provide enough examples of applications for
you to see the scope and power of the entire edifice, in enough variety to appreciate
its extraordinary extent.

9.1 Those already done

We begin by recalling the applications listed in Section 1.5 that were done along
the way.

1.

Only nullhomotopic maps extend from the boundary circle to the whole disk:
page 23.

There is no retraction of a ball to its boundary sphere: page 25.

Only nullhomotopic maps from a closed set in R™ to a sphere extend to all of
R™: page 25.

There is no continuous map of a disk to its boundary which restricts to the
identity on the boundary: page 46.

Fundamental Theorem of Algebra—every nonconstant complex polynomial of
degree n has n roots: page 47.

Brouwer Fixed Point Theorem—any continuous stirring of a solid ball leaves
at least onc point exactly where it started: pages 48 and 118.
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10.
11.

12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
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Antipodal theorem—there is a continuous, nonzero tangent vector field on §™
if and only if the antipodal map a : z — —z is homotopic to the identity:
page 48.

Only odd-dimensional hairy balls can be combed without a part: pages 49
and 125.

It is almost true that two CW-complexes are homotopy equivalent if and only
if they have the same homotopy groups: page 95.

m3(8?) = Z, so some spheres have hidden pockets: page 100.

It’s easy to get started with homotopy groups of Lie groups (see page 102),
but the Bott Periodicity Theorem is very deep (see page 229).

R™ is not homeomorphic to R™ for n # m: page 113.
No sphere is homotopic to a point, but their homology is minimal: page 118.

There is a homotopy invariant degree for maps S™ — S™ which is an integer:
page 118.

One of H. Hopf’s famous theorems—maps of a sphere to itself are homotopic
if and only if they have the same degree: page 120.

The Borsuk-Ulam theorem—every continuous f : S® — R™ must identify a
pair of antipodal points: page 121.

There are always at least two points on the Earth where the weather is simul-
taneously the same: page 121.

It takes more paper than the area of a ball to wrap it, unless you cut the
paper: page 121.

You can cut any sandwich ezactly in half with one cut, no matter how sloppily
it was assembled: page 122.

The Lusternik-Schnirelmann theorem: if a sphere is covered by three closed
sets, then one of them must contain an antipodal pair: page 122.

The Lefschetz number gives the obstruction to fixed-point free: page 123.

Up to isomorphism, only two groups act freely on even-dimensional spheres:
page 125.

Among closed surfaces, only the torus and the Klein bottle admit a fixed-
point-free map homotopic to the identity: page 125.

Homology is an approximation to homotopy—just so far, and no farther: page
141.
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25.

26.

27.

28.

29.

30.
31.

32.

33.
34.
35.
36.
37.
38.
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More is better—cohomology is better than homology because it has a natural
ring structure rather than merely a group structure: pages 150 et seq.

Euler-Poincaré, Hopf Trace, and Lefschetz Fixed Point Theorems—homotopy
invariants can be computed without (co)homology: pages 162 and 163.

The de Rham isomorphism between cohomologies of differential forms and
chain complexes manifests itself in Stokes’s theorem: page 168.

Abstract simplicial complexes turn up where least cxpected, giving rise to
a theory with (at least) dual personalities—Cech cohomology: Sections 5.12
and 7.1.

Some otherwise ordinary problems require variable coefficients: Section 6.1
and page 278.

All ordinary (co)homology theories agree on CW: page 196.

Cohomolgy of the configuration space of three identical particles: pages 200
et seq.

Spectral sequences compared to bureaucracies—which came off better? See
pages 204 et seq.

Fiber bundles are elements of a cohomology theory: page 213.

A neat way to describe orientability of vector bundles: page 214.
All manifolds admit Riemannian metrics: page 220.

Fibrations are fiber bundles up to homotopy: page 236.

Bundles and fibrations may deviate from products: page 239.

Eilenberg-Maclane spaces highlight some subtleties behind the view that ho-
mology groups give approximations to homotopy groups: pages 261 et seq.

In the remainder of this chapter we discuss the rest of the items from Section
1.5. Some are covered in complete detail, when we have already assembled all the
necessary tools. Others are summarized, when nothing new is required but some
computational details are left to you, or merely sketched, when more machinery
must be constructed in order to deal thoroughly with them.

9.2 Two classical results

We begin with the notions of orientability and spin structure.

Theorem 9.2.1 A manifold X is orientable if and only if wi(X) = 0.
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Proof: Up to homotopy equivalence, an orientation is a lifting of the classifying
map T of TX from BO to BSO. The fiber of BSO over BO is O(1), a K(Z5,0),
so there is only one Postnikov invariant k! to obstruct liftings from BO to BSO.
Now HY(BSO;Z;) = 0, so from the Serre sequence (page 244) it follows that
the transgression 7 : H® (K(Z,0);Zy) — HY(BO;Z,) is an isomorphism, so a
fundamental class v € H® (K (Zs,0); Z,) transgresses to 7(v) = wi, the generator
of H'(BO;Z5). Therefore k! = w; and 0 € k1 (T) is equivalent to w; (X) =0.

Ex Similarly, a Lorentzian manifold is time-orientable if and only if ¢, = 0, and
space-orientable if and only if s; = 0 (see page 249).

Theorem 9.2.2 An orientable manifold X admits a spin structure if and only if

Proof: Up to homotopy equivalence, a spin structure is a lifting of the (stabi-
lized) classifying map T of the tangent bundle TX from BSO to BSpin. Re-
call that we have an exact sequence 1 — O(1) —» Spin = SO — 1. Since
BO(1) = K(Zsg,1) we have a fibration K(Z4,1) < BSpin —» BSO, so again
there is only one Postnikov invariant to obstruct liftings from BSO to BSpin. We
saw earlier (page 250) that H!(BSpin;Z2) = H?*(BSpin;Z,) = 0. Thus, using
the Serre exact sequence from page 244 and H!(BSpin;Z,) = 0, the transgression
7 HY(K(Z3,1);Zy) — H?(BSO;Z,) is an isomorphism. Hence a fundamental
class v € HY (K (Z2,1);Z5) transgresses to 7(v) = wa, so k! = wq, we(X) € ki1 (T),
and the result follows. O

9.3 Theorems of Geroch and Stiefel

These results provided the original motivation for the first seminar which eventually
led to this book.

Theorem 9.3.1 A noncompact spin 4-manifold is parallelizable.

Proof: Let T : X — BSpin be the (stabilized) classifying map for the tangent
bundle TX. Observe (Ex!) that the first nontrivial homotopy group is 74 (BSpin) =
Z. But X is noncompact so H4{X; s[Z]) = 0, whence all obstructions O,,(T') vanish
and T is inessential. 0

Corollary 9.3.2 (Geroch) A noncompact 4-manifold which is orientable admits
a spin structure if and only if it is parallelizable. O

Geroch was actually looking at noncompact orientable 4-manifolds X which were
Lorentzian, so T : X — BSO*(1,3). He assumed that X was both space- and time-
orientable, so that the image was in the classifying space of the identity component
of SO*(1,3). The simply connected double cover of this component is SL(2,C),
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so we may regard T : X — BSL(2,C). Here it is also true that the first nonzero
homotopy group is m4 (BSL(2,C)) = Z, and it follows as above that T is inessential.
Geroch’s original proof consisted of showing that the principal SL(2,C)-bundle
T*(ESL(2,C)), where the star denotes pullback (not cotangent), was trivial, whence
the associated bundle T X was also trivial. For this bundle,

k' € H* (X;s[n3(SL(2,C))]) =0

since X is noncompact, hence there is a section and the bundle is trivial (it’s princi-
pal). Geroch did not indicate sheaf coefficients, but until the bundle is proved trivial
it is not known that the sheaf is trivial. These structures are sometimes referred to
as spinor structures to distinguish them from spin structures: SL(2,C) versus
Spin(4).

Ex

1. Spin(n) is the universal covering group of SO(n). What is the universal
covering group of the identity component of SO*(1,n)?

2. For 4-manifolds at least, there is a bijective correspondence between spin
and spinor structures. Hint: letting = denote ‘homeomorphic’;, SL(2,C) =
Spin(3) x R3 and Spin(4) = Spin(3) x S* whence SO*(1,3) = SO(3) x R3
and SO(4) = SO(3) x §3.

Theorem 9.3.3 (Stiefel) An orientable 3-manifold is parallelizable.

Proof: Let T : X — BSO be the classifying map for the tangent bundle. Since
X is orientable it will suffice to produce a global section of the bundle of 2-frames,
which has fiber V5(R?). (Indeed, this splits the tangent bundle into an orientable
plane bundle plus a line bundle which is thus also orientable, hence trivial.) Now
71 (Va(R®)) 2 Z, and the following diagram commutes,

H'(SO) ——— H?*(BSO)

|

H' (S0(3)) —— H*(X)

T*

so the first obstruction is k! = wy(X). Here, the cohomology is ordinary with
Zy coefficients and we recall Vo(R3) = SO(3). It is a fact that in any 3-manifold
we = w1 2. Thus wy = 0 here. Since m,(V,(R?)) = 0, there are no more obstructions
and a global section, or lifting of 1 : X — X, exists. O

To show that wy = w,? above, one may use Wu’s formula [75, p. 132] for compact
X. For noncompact X, the same argument goes through provided that singular
homology with finite chains (the usual kind) is replaced by singular homology with
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infinite chains. Since Poincaré duality is used to establish Wu’s formula, it must also
be redone. But it is easy to check that one need only replace compactly supported
cohomology with ordinary cohomology and ordinary homology with infinite chain
homology in A.9 on p.278 of Milnor and Stasheff [75]. Their proof can then be
‘dualized’.

Corollary 9.3.4 (Geroch) An orientable globally hyperbolic 4-manifold is paral-
lelizable.

Proof: Recall that if X is globally hyperbolic then X = R x S where S is a 3-
manifold. Since X is oricntable, so is S. By Stiefel’s theorem S is parallelizable,
hence so is X. a

9.4 The power

To illustrate the tremendous power of the theory, consider these three sketches.

9.4.1 Piecewise linear structures

Let TOP, denote the group of homeomorphisms of R* and PL,, the subgroup of
piecewise-linear ones, and let TOP and PL be the direct limits as n — oo. Observe
that we have a fibration TOP/PL — BPL —» BTOP.

Theorem 9.4.1 (Kirby-Siebenmann) TOP/PL ~ K(Z,,3).

Thus the only Postnikov invariant k lies in H*(BTOP;Z,), whence the only ob-
struction to the triangulation of a topological manifold X with classifying map
T:X - BTOP is T*k € HY(X;Z5).

It is no coincidence that R™ has exotic differential structures only when n = 4,
the famous result of Donaldson and Freedman; cf. [33].

9.4.2 Smoothing PL structures

We have a fibration PL/O — -BO — BPL. Let Iy denote the group (Ex!) of
diffeomorphism classes of S¥. It is known,for example from Kervaire and Milnor
[58] and Cerf [18], that T’y = 0 for k < 6 and is finite for all k; see Table C.1 for
some small k.

Theorem 9.4.2 (Hirsch) 7, (PL/O) = T.

Thus every PL manifold of dim < 7 is smoothable. There are examples in all
dimensions of 8 or more of nonsmoothable PL manifolds.

The results of Donaldson and Freedman thus imply that the exotic differential
structures in dimension 4 do not come from PL structures.
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9.4.3 Almost-complex structures

Next consider U(n) <3 SO(2n) and, in the limit, U «— SO. An orientable manifold
is said to admit an almost-complex structure if and only if the classifying map
T : X — BSO lifts to BU. We have the fibration SO/U < BU—» BSO. Applying
Bott periodicity (page 229) one obtains

im0d8‘01234567

m(SO/U) =0 and
n(SO/U) |22 0 Z 0 0 0 Z Z

Thus the first nonvanishing group is 73 (SO/U) = Z, and the first obstruction lies in
H3*(X;Z). It can be shown that this obstruction is 3(ws), where 3 is the Bockstein
of (i. e., the connecting map in the long exact homology sequence induced by; see
page 111) the coefficient ses 0 &> Z — Z — Zy — 0.

Ex pB(ws) =0 if dimX =4 and X is compact and orientable.

Thus every orientable 4-manifold admits an almost-complex structure, but, as the
example of CP? shows, only one orientation may be admissible.

In general, H*(SO/U;Z) = H*(II32,S%; Z) as abelian groups (but not as rings);
for SO(2n)/U(n), take 1 < i < n —1. As aring, H*(SO/U;Z,) is isomorphic to
the subalgebra of H*(SO;Z;) generated by the even degree primitive elements (the
Wu classes; ¢f. Milnor and Stasheff [75] and Borel [12]).

Thus a necessary condition that X admit an almost-complex structure is that
all odd degree Stiefel-Whitney classes vanish and all even degrees ones are mod
2 reductions of integer classes. From the point of view of reduction of structure
groups, one can show (cf. Steenrod [101, 41.10-.15]) that a necessary and sufficient
condition is the existence of a nonsingular 2-form; if closed, it would be a symplectic
structure.

Once one has an almost-complex structure, the question of its integrability to

a complex structure is one of analysis, answered in the theorem of Newlander and
Nirenberg [85].

9.5 Marcus’s theorem

Another problem we can solve is that of existence for nonvanishing vector fields.
Clearly, there is an equivalence between such and sections of the bundle with fiber
Vi(RY) = 8™ 1 = O(n)/O(n — 1), where dimX = n. We have a fibration S?~! «
BO(n — 1) —» BO(n) with the first nontrivial fiber homotopy group m,_;(S"!) =
Z. Thus the only obstruction lies in H"(X; s[Z]). If X is noncompact this group
is zero, so we may as well assume X is compact. Let v € H" " }(S""}Z) be a
fundamental class so that & = 7(v) € H™(BO(n);Z) is the first Postnikov invariant.
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Letting T be the classifying map as usual, the obstruction is e = T*(k). Using
commutativity of

H*(S™1,7) ——— H* (BO(n); Z.)

|

H*(S"™%2) —— H™ (X; s[Z])
with coefficients Z and the formula for the (twisted) Euler class in terms of the
Thom class (¢f. page 247 and [75], p.98), it follows that e is the (twisted, if X is
nonorientable) Euler class of X. Letting u € H,(X; s[Z]) be a fundamental class of
X, e =0 if and only if (e, p) = 0. Since (e, ) = x(X), the Euler characteristic of
X, we have proved

T

Theorem 9.5.1 (Hopf) A compact manifold has a nonvanishing vector field if
and only if its Fuler characteristic vanishes. 0

By ‘pushing zeros off to infinity’ we also obtain
Theorem 9.5.2 Every noncompact manifold has a nonvanishing vector field.

One way to modify this problem is to ask for a line (element) field: a splitting
off from the tangent bundle of a line bundle as a direct summand. Now our bundle
has fiber G1(R") = RP™ ! = §"~1/0(1). Since RP! = §!, we may assume n > 3.
Then 7; (RP"!) = Zy and m,_1 (RP®1) = Z are the first two nontrivial homotopy
groups. Now H}(RP""!;Z) = Z4 and

Z4o for n odd,

n—1 n—1\ v
HP(RPT) = { Z for n even,

so the first two Postnikov invariants are

k' € H*(BO(n);Z;) and  k?> € H"(BO(n);Z).
Here we are using the fibration

RP" ! 2§™1/0(1) = BO(n — 1)/O(1) —» BO(n).
Using the previous fibration also, we obtain the commutative diagram

H*(S™1) —Z—> H* (BO(n))

|

H*(an—l )

Using Z, coefficients it follows that k' = 0. Using Z coefficients it follows that
k? = k from the previous problem, whence T*(k?) = e. Arguing as before, we can
finish the proof of

Theorem 9.5.3 (Marcus) A compact manifold has a line field if and only if its
Euler characteristic vanishes. (Every noncompact manifold has one.) O
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Ex The existence of a line field is equivalent to the existence of a Lorentzian
structure.

Corollary 9.5.4 (Marcus) A compact manifold admits a Lorentzian structure if
and only if its Euler characteristic vanishes. (Every noncompact manifold admits

one.) O
Since every line bundle is integrable, we have also proved

Corollary 9.5.5 A manifold has a nonvanishing vector field if and only if it has
a line field if and only if it admits a Lorentzian structure if and only if it admits a
1-dimensional foliation. 0O

Ex Prove Marcus’s theorem by computing the Postnikov invariant(s) for BL —»
BGL.

Another natural modification is to consider the existence of ¢ linearly indepen-
dent vector fields on X. Here we seek a section of the ¢-frame bundle with fiber
V4(R™) = O(n)/O(n — q), and we use the fibration

O(n)/O(n — q) = BO(n — q) = BO(n).
Thus we immediately obtain a necessary condition.
Proposition 9.5.6 If X has a q-frame then wp, = wWp_1 = - =Wp_gy1 =0. O

Ex A real n-plane bundle over a CW complex of dimension k£ < n splits off a
trivial (n — k)-plane bundle.

Most theorems depend on the computation of higher order cohomology opera-
tions. A typical example is given in [108].

Theorem 9.5.7 Let X be a closed, connected manifold of dimension congruent to
3 mod 4. If wy = ws =0, then X has a 2-frame.

9.6 Meta structures

In geometric quantization [122] one is interested in metalinear structures. These
are sort of ‘square roots’ of linear structures in the spirit of Dirac. More precisely,
consider the group

(Cx SL(n,C))/Z = GL(n,C) : (z,A) » e*A

where the action of k € Z on (z, A) is given by (z + 27:k,6_27:-ik A). Then det :
GL(n,C) — C\ 0 has a holomorphic square root on

(C x SL(n,C))/2Z = ML(n,C),
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the complex metalinear group. It is a double cover of GL(n,C). If we regard
GL(n,R) — GL(n,C) as the purely real matrices, we obtain the real metalinear
group M L(n,R) as a double cover of GL(n,R) having four components. A met-
alinear structure on a real vector bundle E is a prolongation of the structure group
from GL(n,R) to M L(n,R).

Ex ML(LR) = {1, +i} = Z,.

It follows that a metalinear structure is determined by the choice of a principal
Z 4-bundle which covers the principal Zo-bundle that is the orientation bundle of E.
Now the short exact sequence of groups 0 — Zy — Z4 — Z2 — 0 gives rise to the
long exact sequence in cohomology

0= H'(X;Z) » HY(X;Z4) » HY(X;Z9) D HX(X;25) — ---

where f3 is the Bockstein u +— u? (page 150).

Ex Regarded as a Z,-bundle, E is determined up to isomorphism by w; (E). (Hint:
w1 (E) is the isomorphism class of the associated principal Zo-bundle.)

By exactness, it follows that the obstruction to lifting a classifying map for E
from BGL(R) to BML(R) is w;(E)?, and that the classes of such liftings are
parameterized by H'(X;Zs).

Ex Provide another proof: compute the Postnikov invariant of the fibration

K(Zs,1) ~ BO(1) = BML(R) —» BGL(R).

When E =TX, X is called a metalinear manifold if and only if w; (X)? = 0.

Ex Carry out a similar program for the symplectic group Sp(2n,R) (page 307)
and obtain the metaplectic group as a double cover. Show that the obstruction here
is that ¢ € H?(X;Z) should be divisible by 2, where ¢ corresponds to the complex
line bundle determined by the representation (character) det : U(n) — C\ 0.

9.7 Other signatures

For our last application, we consider the existence problem for pseudoriemanniam
structures of index k, 1 < k < [§], on a manifold X of dimension n. Changing signs,
we see that this would also handle index n — k. It is easy to see that this problem
is equivalent to the existence of a k-plane subbundle of the tangent bundle. Thus
we seek a section of the Grassmann bundle with fiber G (R™). Now 7 (G (R™)) =
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m_1(0(k)) for | < n — k — 1 since O(k) — Vi(R")—» Gx(R") is a fibration and
m (Vi (R™)) =0 for I <n —k —1 (page 370).

However, the situation is really not so bad. Let T : X — BO(n) be (classify)
the tangent bundle and let £ : X — BO(k) be some k-plane bundle. Then (T}, ¢) :
X — BO(n) x BO(k). Recall that there is a universal bundle EO(m) over BO(m).
Now EO(n — k) x EO(k) is an n-plane bundle over BO(n — k) x BO(k), so it
has a classifying map g : BO(n — k) x BO(k) — BO(n). Similarly, {0} x EO(k)
is a k—plane bundle over BO(n — k) x BO(k), so it has a classifying map h :
BO(n — k) x BO(k) — BO(k). Define m,x = (g,h) : BO(n — k) x BO(k) —
BO(n) x BO(k). Thus £ is (isomorphic to) a subbundle of TX if and only if there
exists ¢ : X = BO(n — k) such that m, ;o ((,€) ~ (T,€).

Ex Regarding ¢ and & as vector bundles over X, this last condition is equivalent
to(®E=TX.

It turns out that the homotopy fiber of 7y, i is Vix(R™). Thus the first obstruction
to & being a subbundle of T X lies in

Zy for n —k odd
n—k+1/y. - 2 ’
H (X;R) where R = { 7. for n — k even.

The computation of this obstruction uses a little K-theory; ¢f. Thomas [108].

A final word

This is but a small sampling of what is available; we refer you to the literature
for many, many more. While you may find that you have not learned all that you
need to understand all of them, we hope that you will find that you are now well-
prepared to make good use of references that have not always been famed for their
friendliness to users.



The Road goes ever on and on—B. Baggins




Appendix A

Algebra

A.1 Sets and maps

As such, we do not need to become involved in Set Theory. However, lest we forget
the implied underlying faith, note that it is an active subject in its own right and
can be seen readably as such in Devlin [26, 27]. It is inextricably tangled with the
development of topology itself, which provided many deep questions about infinite
processes.

When we come to maps (mappings and functions are words often used inter-
changeably with maps) the world now seems divided into those who had an essen-
tially pure mathematical upbringing who think of a map as a set of ordered pairs,
and those who think of a map as a rule. Both views are valid but the former is per-
haps safer when, as is often the case in topology, we have to show that a proposed
map is well defined; then an algorithmic check list for the set of pairs to satisfy is
convenient. We record here the main definitions.

Let X and Y be non-empty sets. A relation from X toY isasubset p C X xY.
We write zpy if (z,y) € p and define for p its domain domp = {r € X | Iy €
Y with (z,y) € p} and its image imp = {y € Y | Iz € domp with (z,y) € p}.
When domp = X we say that p is an entire relation; we shall use only entire
relations so we shall not need this qualification. A relation p C X x Y may have
any or none of the following properties:

symmetry zpy if and only if ypzr

reflexivity forallz € X, zpz

transitivity for all z,y,z € X, zpy and yp z implies zp z
equivalence symmetry, reflexivity, and transitivity
antisymmetry zpy and ypx implies x = y

partial order antisymmetry, reflexivity, and transitivity.
total order for all z,y € X, either zpy or ypx

A map from X to Y is a relation f C X x Y which satisfies this condition:

295
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uniqueness of image

APPENDIX A. ALGEBRA

for all z € X, there exists a unique y € ¥
such that (z,y) € f

Then we usually write y = f(z) ory = fz,and f: X > Y. Amap f: X - Y
may have any or none of the following properties:

injectivity f(z) = f(y) implies z =y
surjectivity imf =Y;denoted f: X »Y
bijectivity injectivity and surjectivity

Porteous [89] begins with a clear account of terminology and notation for maps and
operations with sets. We shall use the following common abbreviations:

N,Z,QR,C Natural, integer, rational, real, complex numbers.
reV x is a member of set V.

z ¢V z is not a member of set V.

dz eV There exists at least one member z in V.
YeeV For all members of V.

wWcCcv W is a subset of set V: (Wzx e W)z € V.

{z eV |p(z)} The set of members of V satisfying property p.
o} The empty set.

f: VoW f is a map or function from V to W.

f:z— flx) f sends a typical element z to f(z).

dom f Domain of f: {z |3 f(z)}.

im f Image of f: {f(z) |z € dom f}.

fU for U C dom f
feMfor M Cim f

Image of U by f: {f(z) |z € U}.
Inverse image of M by f: {z | f(z) € M}.

1x Identity map on z: 1x(z) =z for all z € X.
unv Intersection of U and V: {z |z € U and z € V'}.
vuv Union of U and V : {z |z € U or x € V or both}.
L X Disjoint union of sets Xj.

VAU Complement of Uin V: {z e V |z ¢ U}.

fo Composite of maps: apply g then f.

Z?le',‘ T+ 22+ -+ T

= Implies, then.

& Implies both ways, if and only if.

The Axiom of Choice is required for a number of constructions in topology and
a convenient form is this:

Every surjection has a right inverse.
That is, if f: X — Y is surjective, then we can always find a map s : Y — .{ such

that fos = 1y. Then s is called a section of f. Equivalently, given any collection
(not necessarily countable) of sets, it is possible to choose one element from each.
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A.2 Categories and functors

Category theory is not essential to the understanding of pure mathematical con-
cepts but it does provide some convenient and practical guidelines. It has particular
relevance in algebraic topology because there we devise translations of difficult clas-
sification problems in topology into simpler ones in algebra, and category theory
provides the accepted rules for such translations.

A.2.1 A triangular view

For most practical purposes, a category is a collection of sets with specified struc-
tures (group, topological, vector, ...) and the relevant structure-preserving maps
(homomorphisms, continuous maps, linear maps, ...). Functors are the maps be-
tween categories which preserve the compositions of structure-preserving maps.
Now, each elementary composition of maps is a triangular diagram and often we
can think of these triangles as the building blocks of categories. Functors map the
triangles in one category to those in another category; cofunctors do the same but
reverse the direction of the arrows.

Two standard references are Herrlich and Strecker [41], with wonderfully amus-
ing epigraphs, and MacLane [65]. The chapter Naive Category Theory in Dodson
[29] presents the basic ingredients with many examples, aimed at the user rather
than the theorist.

A category C is a directed graph, the vertices being called objects and the
oriented edges arrows or morphisms of C (and these collections may be sets or
proper classes) satisfying some axioms.

1. Every object A has an identity morphism A ~% A.

2. Morphisms A N B, C %5 D compose to give a morphism A 2% D if and
only if B=C.

3. Composition is associative.

4. Identity morphisms always compose with any A 1 B.
Intuitively, a category is a graph (or diagram) in which the essential structural
elements are triangles reflecting the composition of arrows. Typical examples are

the categories:

Grp, with objects the class of all groups and morphisms all group homomorphisms
among them, with normal set theoretic composition;

Vecr, with objects the class of all real vector spaces and morphisms all R-linear
maps among them, with normal set-theoretic composition.
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The idea of a subcategory is intuitively clear and illustrated by the inclusion
Ab < Grp, where Ab denotes the category of Abelian groups. A functor is a
category-structure preserving map between categories, so it needs to be declared on
the elementary triangular diagrams. Thus we want

F:Ci —Cy: gx / — F(g)oF& F(g)
c )

and satisfying F(14) = 1pa4). If F had reversed the direction of the arrows in
mapping triangles of C; to those of C;, then we would call it a cofunctor. An
example of the latter is the dualizing cofunctor of linear algebra:

4—L +B a1 p
Vecr — Vecp : gx / — \ /
C

Two functors F,G : C; — Cs are said to admit a natural transformation from
F to G if there is a map

7 : Objects of (; — Morphisms of C,

which converts arrows into commutative squares thus:

4 F(A) G(A)
fl inC; a4 F(f) G(f) in Cq
B F(B) — > G(B)

A natural transformation 7 is a natural equivalence or natural isomorphism
if every 7(A) is invertible. For finite dimensional vector spaces the taking of double
duals is a natural isomorphism, for example.

A.2.2 Limits of diagrams

Certain diagrammatic operations are common to many categories and can be ex-
pressed through the concept of limits. Let J, and J, be some indexing sets for
morphisms and objects respectively in a diagram

ak.
A = {A 5 A | k€ Tm, ije )
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in some category C. Then we define:

A left limit (if it exists) of A is an object L and morphisms {L EiN A;|i€ Jo}
in C, commuting with the afj and having the universal property that if {K 25 A; |
i € Jo} in C also commutes with the afj then

@A K-5L): (Vied) gi=fiol

A right limit (if it exists) of A is an object R and morphisms {A; RNy |

i € Jo} in C, commuting with the afj and having the universal property that if

{4; %5 K | i € Jo} in C also commutes with the af; then

(AR K) : (Viedy) gi=rofi

If they exist, left and right limits are unique up to isomorphism in the category.
Intuitively, limits are the closest things to the given diagram which have the required

property.

Ex

1. In the category Set of sets and maps, the left limit of a collection of sets with
no maps among them consists of their Cartesian product with projections
onto the factors; the right limit is their disjoint union with injections of the
constituent sets.

2. In any category, if it exists, then the left limit L of a diagram
A 25 A 2 4,

is called the fibered product or pullback over Ag, and it yields the com-
mutative square: (In Set it is a subset of A; x A4j.)

N1

L———4
f2 a
Ay —7—> Ao

3. In any category, if it exists then the right limit R of a diagram
A - Ag 2 A,

is called the fibered coproduct or pushout over Ay and it yields this com-
mutative square. (In Set it is a quotient of A;]]A;.)

Ao L A
a2z fa
Ao R

f2
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4. In any category, given a diagram A; %; A, then, when they exist, the left

limit is called the equalizer and the right limit is called the coequalizer.
(In Set, that subset of A; on which a; and a, agree is the equalizer object
with obvious morphisms; the coequalizer object is a quotient of A,.)

In any category, a morphism A 1, B is called:
monic or a monomorphism if whenever

k
:l; A ., B commutes, then k = [;

epic or an epimorphism if whenever

¥ k
A——B $ D commutes, then k = [;

isic (said “eye-sic”) or an isomorphism if it is invertible; that is, there exists an
inverse morphism B -4 A satisfying go f = 14 and f o g = 1p; then we write
A= B.

Ex

1. In Set, the monics are the injections, the epics are the surjections, and the
isomorphisms are the bijections.

2. In Top, the isomorphisms are the homeomorphisms.

3. In Rng, the category of rings and ring maps, the inclusion map of the integers
in the rationals is epic and monic but not isic.

A.3 Groups and actions

The fundamental concepts in algebra are enshrined in what we now call the category
Grp of groups and group homomorphisms. Every mathematical library has almost
as many books on group theory as on linear algebra so we shall provide only a brief
and focussed summary.

A group is the least structure in which we can define an internal operation
which generalizes the multiplication and division on nonzero numbers. A field is
the nicest way in which two distinct groups can be fitted together so as to preserve
the two identity elements as in ((R,+), (R \ {0}, x)); a ring is slightly weaker, like
Z. A vector space, or linear space, is the nicest way in which a group (with
a commutative operation) can be combined with a field so as to preserve all three
identity elements; a module is similar, but uses a ring instead of a field for its
scalars. For each of these, the appropriate maps which preserve the operations
(hence all identities and inverses), between two structures of the same type, are
called homomorphisms. Invertible homomorphisms are called isomorphisms
and, between a given pair of structures, the set of isomorphisms forms a group.
What is truly amazing, is the richness of the theory of groups.
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A.3.1 Groups
A group is a set G together with a map
x:GxG — G:(g,h) —» gxh,
called a binary operation, satisfying:
1. * is associative: (a*xb)xc = ax(bxc) (Va,b,c € G);
2. * has an identity element e € G: axe=c*a=a Va € G);
3. * admits inverses: (Va€ G)(3a™' €G): axa l=a'*xa=e.

A group (G, *) is called abelian or commutative if a xb = bxa for all a,b € G.

Ex
1. Show that the identity element in a group is unique, as are inverses.

2. The set {z € C| |z| = 1}, of unimodular complex numbers, forms an infinite
group under multiplication. This is actually a topological group, homeomor-
phic to the unit circle.

3. The set of n”* roots of unity forms a group under multiplication.
4. Find the two possible groups of order 4.

5. The set of n x n nonsingular real matrices forms a group GL(n,R), the gen-
eral linear group, under matrix multiplication. So does O(n), the subset
consisting of orthogonal matrices, and its subset SO(n) consisting of those
with determinant +1.

A map ¢ : G — H between groups (G, *), (H,*) is a group homomorphism
if it preserves the group operations:

plaxb) = @(a)*¢(b) (Va,beG).

A subset G’ of a group G is a subgroup of G if the inclusion map G' < G is a
group homomorphism; then G’ is itself a group with the restriction of the operation
of G. The kernel of a homomorphism ¢ : G — H is the subgroup ker¢ = ¢ 1p,
where 1y denotes the identity element of H.

Ex ker¢ is the equalizer of ¢ and the trivial homomorphism 1 : G — H which
maps all of G to 1gy.

If a group homomorphism ¢ : G — H is bijective, then its inverse is also a group
homomorphism, ¢ is called an isomorphism and the groups G and H are called
isomorphic written G & H.

If $: G — H is a group homomorphism then:
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(i) kerg = {g € G | ¢(g9) = eu}, where ey denotes the identity element in H, is a
subgroup of G.

(i) im¢ = {¢(g) € H | g € G} is a subgroup of H.

If H is a subgroup of G then we define for each g € G:
(i) gH = {g*h | h € H}, the right coset of g in G.
(ii) Hg={h*g|h € H}, the left coset of g in G.

There is always a bijection between the sets of right and left cosets, but it may not
be natural; when it is, we take notice with a special name. We call the subgroup
normal if gH = Hg for all g. In this case the set of cosets itself forms a group, the
quotient group denoted by G/H.

Ex The cokernel of ¢ : G — H is the coequalizer of ¢ and 1: G = H. In Set,
it is the quotient set coker ¢ = H/im ¢. If im ¢ is a normal subgroup of H, this is
also a quotient group and coker ¢ is an object in Grp.

The number of elements in G is called the order of G, denoted |G|. If |G| is finite
and G has a subgroup H, then H has a finite number of right cosets in G, called
the index of H in G and denoted by (G : H). Tt follows that, if |G| is finite,

|G| = (G : H)|H|. (Remember: |G| finite!)

This gives the famous theorem of Lagrange: if G is a finite group then the order of
any subgroup divides the order of G (¢f. Cohn [21] p.53). Hence groups of prime
order have no nontrivial subgroups.

There are several basic Isomorphism Theorems which are repeatedly used in
group theory proofs. Their proofs are detailed in most first courses (¢f. Cohn [21]
§9.1) and we can summarize the results as follows.

(i) If f: G — H is a group homomorphism, then ker f is a normal subgroup of
G.

(if) If N is a normal subgroup of GG, then the natural map from G to the quotient
group G/N
¢on:G— G/N:g+— gN

is a group homomorphism with

ker¢on = N.
(iii) With f : G —» H any group homomorphism, we can construct a diagram
G—L —H

}i

G/kerf—f,—»imf

Oker £
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(iv)

Ex

GROUPS AND ACTIONS 303

with factorization f = if'¢yery and f' an isomorphism.

If G is a group with subgroups H, K and K is normal in G, then HN K is a
normal subgroup of H and there is an isomorphism

H/(HNK)=(H x K)/K .
If G has a normal subgroup N then there is a bijection % : { subgroups of G

containing N} ¢+ { subgroups of G/N}: H — H/N. Moreover, if H is a
normal subgroup of G' containing N, then there is an isomorphism

(G/N)/(H/N) = G/H .

. The set of nth roots of unity forms a subgroup of the abelian group of uni-

modular complex numbers.

. The map

¢:Z — St k— 2T
is a group homomorphism from the additive group of integers (Z,+) to the
multiplicative group of unimodular complex numbers.

(Z,+) is a subgroup of (R, +).
GL(n;R) is not abelian if n > 1.

The symmetric group S, of permutations of n objects is not abelian for
n> 1.

We can construct a group from a given set of elements by simple juxtaposition
of the elements; the group consists of the set of all finite words made up from
the given elements and composition of words is by juxtaposition. This group is
called the free group on the given elements. The free group on one generator
is isomorphic to (Z, +); a free group on more than one generator cannot be
abelian. Many groups arise in practice as a set of generating elements together
with some rules of combination. The free product G * F' of two groups
consists of words made from both, with all internal products simplified in
each.

The direct product (G x H,* x o) of two groups (G, %), (H, o) is the group
defined on the product set G x H by

(g,h) x xo(g',h') =(gxg',hoh’).

If two subgroups J, K of a group G can be found such that every g € G can be
written uniquely in the form g = jk for some j € J, k € K and JNK = {e},
the trivial subgroup, then we say that G decomposes into the direct product
of J and K; in this case J, K are necessarily normal.
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Given groups G1, G2, show that the natural projections
pi:GixGy — Gi: (91,92) — gi (1=1,2)
are group homomorphisms from the direct product group.

(i) Deduce that G x G2 = G contains isomorphs of G1,G> as the subgroups
G1 = G1 x {e2}, Ga = {e1} x G2 and that

G1=G/Gy, Gy =G/Gh.

(ii) In the case that G3 = G; show that G = G; x G contains an isomorph
of G; as the diagonal

G = {(9,9) | g€ G}

Prove that G is a normal subgroup of G if and only if G is abelian.

. If H, K are subgroups of G then H N K is also a subgroup, but HU K is a

subgroup of G if and only if H C K or K C H. If H, K are normal subgroups
then sois HK.

If G has no nontrivial subgroups (that is, only {e} and G are subgroups of G)
then G is generated by one element (so G is called a cyclic group) and has
prime order.

If G has a subgroup H of index 2, then H is a normal subgroup. (G need not
be finite!)

If G has even order then it contains an odd number of elements of order two.
If for every g € G we have g? = e, then G is abelian. If G has even order then
there will be at least two elements g € G such that g2 = e.

Let H be a subgroup of G. Show that there is a one-to-one correspondence
between left and right cosets of H in G by the map

H, —» go'H where gxgl=glxg=ec.

Subgroups of index 2 in a group G are always normal.

If¢:G— H and ¢ : H— J are group homomorphisms, then so is 1 o ¢ :
G—J.

If H is a normal subgroup of (G, %), then the quotient G/H = {¢gH | g € G}
has a natural group structure: (gH) x (¢'H) = (g+¢')H.
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A.3.2 Group actions

A group G is said to act on a set (for example, a group, vector space, manifold,
topological space) X on the left if there is a map (for example, homomorphism,
linear, smooth, continuous)

a:GxX — X :(g,z) — ay(x)

such that agn(z) = a4(an(z)) and a.(z) = z for all z € X. Normally, we shall
want each ay : X = X to be an isomorphism in the category for X; in this case,
an action is the same as a representation of G' in the automorphism group of X,
or a representation on X. We sometimes abbreviate the notation to g- z, especially
when « is fixed for the duration of a discussion. There is a dual theory of actions
on the right; we leave the transcription of this to the reader as an exercise.

The orbit of z € X under the action o of G is the set
G-z ={ay(c) | g € G}.

It is easy to show that the orbits partition X, so they define an equivalence relation
on X:
T~y < 3Jg€ G with a4(z) =y.

The quotient object (set, space, etc.) is called the orbit space and denoted by
X/G.
The stabilizer or isotropy subgroup of z is defined to be the set

stabg(z) = {g € G | a,(z) = z},

and it is always a subgroup of G. The action is called transitive if for all z,y € X
we can find g € G such that

ag(f”) =Yy (so also ag_l(y) =1),
free if the only o, with a fixed point has g = e (the identity of G), and effective if
ag([l:):x (VZ'EX) == g=ce¢e.

Note that an action being transitive is equivalent to it having exactly one orbit, or
to its orbit space being a singleton.
The situations of most practical interest are when:

(i) X is a group or vector space;

(ii) G, X are topological groups, so each has a topology with respect to which
its binary operation and the taking of inverses is continuous (Cf. Higgins [42]
for an introductory treatment.);

(iii) G is a topological group and X is a topological space;

(iv) G is a Lie group, so G has a manifold structure with respect to which its
binary operation and the taking of inverses is smooth, and X is a smooth
manifold.
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Ex on group actions

1.

The Euclidean group E(n) consists of all isometries of Euclidean R". Isome-
tries can always be written as an ordered pair from O(n) x R* with action on
R™ given by

(O(n) xR*) x R* — R" : ((a,u),z) —> a(z) +u

and composition
(a,u)(B,v) = (aB,a(v) +u).

Thus, topologically E(n) is the product O(n) x R® but algebraically it is not
the product group. It is called a semidirect product of O(n) and R*. For
the case n = 2 find discrete subgroups G < E(2) such that R*/G is: (i) the
sphere; (ii) the torus; (iii) the Klein bottle; (iv) RP?.

If G acts on a Hausdorff X, then X/G need not be Hausdorff. However, if G
is a closed subgroup of a (Hausdorff) compact topological group H, acting on
H by left translation, then H/G is Hausdorff and the projection H —» H/G
is open.

The stabilizer of £ € X under action by a topological group G, stabg(z), is
always a closed subgroup; and if a,b lie in the same orbit then a and b have
conjugate stabilizers: stabg(a) = gstabg(b) g~! for some g € G.

. If a compact G acts transitively on a Hausdorff X then, for all z € X,

X/G = G/stabg(z) .

In this case X is called a homogeneous space for G because for all z,y € X
there is a homeomorphism f : X — X such that f(z) =y.

S™ is a homogeneous space for O(n + 1).

If F is a closed subgroup of a topological group GG, then G/ F is a homogeneous
space for G with respect to the left action.

Suppose that a connected topological group G acts on a space X and the orbit
space X/G is connected. Then X is connected. Deduce that O(n)/O(n — 1)
and SO(n)/SO(n — 1) are both homeomorphic to S*~!, and so by induction
that SO(n) is connected.

The group U(n) of unitary n x n complex matrices is called the unitary
group, and its subgroup of elements of determinant 1 is denoted by SU(n).
Both are connected, by similar arguments to that in the previous example. So
also are Sp(n), the quaternionic symplectic group of n x n quaternionic
matrices, and Spin(n) the spin group, the double covering group of SO(n).
Porteous [89] gives a detailed discussion of these groups and their mutually
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related actions. To have a feel for their topology, observe that (cf. e.g. [89],
p. 266, and [15], p. 218):

Spin(2) = U(1) topologically S!

Spin(3) = Sp(1) topologically S3

Spin(4) = Sp(1) x Sp(1) topologically % x §3

Spin(5) = Sp(2) topologically Sp(2)/SU(2) = S”
Spin(6) = SU(4) topologically SU(4)/SU(3) = S”
Spin(8) = Spin(7) x S7

0(1) = Zs topologically S°

SO(3) topologically RP3

SU(2) topologically S3

SO(2) topologically S!

Also, Sp(n,C) = {A € GL(2n,C) | A'JA = J}, where

_ 0 _an
J_ [I]Rn 0 ] ’

Sp(n,R) = Sp(n,C) N GL(2n,R) and Sp(n) = Sp(n,C) NU(2n) = Sp(n,C) N
SU(2n) = Sp(n,C) N Sp(2n,R). We note that Sp(n,R) is the group of clas-
sical mechanics. In the lowest dimensions only, we have Sp(1,R) = SL(2,R),
Sp(1,C) = SL(2,C), and Sp(1) = SU(2). One may also show that U(n) =
Sp(n,R) N GL(n,C) for all n.

. A discrete subgroup G of E(n) is called crystallographic if E(n)/G is com-

pact, Bieberbach if also torsionfree. Crystallographic groups are classified
by Bieberbach [8] and Auslander and Kuranishi [4], and the Clifford-Klein
Theorem characterizes compact flat Riemannian n-manifolds as precisely
those R" /G for some Bieberbach group G; see Charlap [20] for a modern
exposition.

The symmetric group S, of all permutations of n objects acts on any set
of n objects in a transitive manner.

The group SO(2) of rotations in a plane acts on a sphere S? as rotations of
angles of longitude. The orbits are circles of latitude and the quotient space
by this action is the interval [~1,1]. The action is neither transitive nor free,
but it is effective.






Appendix B

Topology

General topology is concerned with the theory of topological spaces and continu-
ous maps among them; it contains a sub-theory concerned with metric spaces and
convergence preserving maps. There are two theorems hidden here: (Met C Top)

1. Every metric space is a topological space, but not conversely.

2. A map between metric spaces is continuous if and only if it preserves the limits
of convergent sequences. Precisely, this means that f : X — Y is continuous
if and only if: whenever (z,) is a sequence of elements in X which converges
to a € X then the sequence (f(z,)) converges to f(a) in Y.

In topology we have continuity but it is not dependent upon distances, hence
no epsilontics and many proofs are less messy than for metric spaces. However,
giving up distances means that we also give up geometric notions such as sequential
completeness and boundedness, and we discover the importance of the purely topo-
logical concept of compactness. Another loss is not so obvious but very significant
and concerns separation properties. In metric spaces we can separate two disjoint
closed sets by containing them in disjoint open sets, but in a topological space there
may be too few open sets even to separate a pair of points. This gives rise to a
hierarchy of separation properties.

The fundamental problem of topology is to classify all spaces into homeomor-
phism equivalence classes. This is an enormous task and far from complete; mainly
the progress is via algebraic topology which yields more manageable homotopy
equivalence classes. The fundamental problem in topology is probably that of ex-
tending a map on a subspace to become a continuous map on the whole space.
The two basic results on extension problems are Urysohn’s Lemma and Tietze’s
Extension Theorem.

As well as compactness, separation, and extension properties, we can distinguish
spaces by their connectedness. It turns out to be a nontrivial problem to discover
whether picking up a space by one set allows another set to fall off it. For the real
line, only intervals are connected subsets; this is evident intuitively but takes a bit
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of work to prove. It is worth remarking that geometric intuition is to be used with
caution in general topology. For example, there is Peano’s continuous curve which
fills out a whole rectangular region in the plane, and Alexander’s horned sphere (cf.
[46]) which is topologically equivalent to an ordinary sphere but unrecognizably so
to an eye trained geometrically! In a sense, topology stops us from jumping to
conclusions in qualitative mathematics; geometry provides precision in quantitative
situations.

An easily read introduction to the basics of general and algebraic topology can
be found in Armstrong [2] and the standard reference text is Sieradski [94]. For
more advanced topics in algebraic topology, among the most widely referred to are
Gray [38], Spanier [97], Switzer [106], and Whitehead [119]. At the end of this
Topology section, beginning on page 322, there is a fairly extensive collection of
examples and exercises on the basics of general topology and it should be scanned
in conjunction with the descriptive notes.

B.1 Topological spaces

A topological space is a set with a structural cohesion among its elements that
is sufficient to support the formalization of such intuitive ideas as nearness and
continuity.

A topological space (X, 7T) is a set X together with a collection 7T of subsets,
so T C P(X), satisfying:

1.9, XeT
2. T is closed under finite intersections
3. T is closed under arbitrary unions.

We call T the topology of the space (X, T) or a topology on the set X. Elements
of T are called open sets in the topological space (X, T) or they are called T-open
sets of X.
N.B. In some cases we use more than one topology on a given set, so it is important
then to be clear which is in use.

Every metric space (X,d) has a topology T4 determined by d. Remember, d
models our intuitive notion of a distance function: if S is a set of points, d :
S x S — R is called a metric if

1. d(z,y) = d(y,z) Vz,y€ S (Symmetry)
2. d(z,y) > Oandd(z,y) = 0 <= z =y (Positive definiteness)
3. d(z,z) <d(z,y) + d(y,z) (Triangle Inequality)

A subset A of X is d-open in (X,d) if it contains an open ball around each of its
points, and we define 75 to be the set of d-open subsets. The standard metric on a
normed vector space is simply the norm of the difference between two points.
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Let (X, 7T) be a topological space. A set A is closed in (X, 7T) if X \ A is open
in (X, T) (that is, closed if it is the complement of an open set). Sometimes X \ A4 is
denoted X — A. z € X is a limit point of A C X in (X, T) if every neighborhood
of z meets A\ {z} non-emptily.
N.B. A limit point of A need not be in A, but the following result is useful: A is
closed in (X, 7T) if and only if A contains all of its limit points.
The closure A of a set A in a topological space is the union of A with all of its
limit points; that is, the smallest closed set containing A. The interior, int A
(also denoted A or (A)°, when convenient) of A is the largest open set contained
in A. Ais dense in (X,7) if A = X. The boundary or frontier of a set A is
0A=ANnX\ A

A map between topological spaces f : (X, 7T) — (Y, 7") is called continuous if

VBeT' fCBeT.

The set of all continuous maps X — Y is denoted by C(X,Y) or YX. A map
f: X — Y is called a homeomorphism if

f is continuous, f ! exists, and f~! is continuous;

that is, if f is bijective and bicontinuous; then we say that X and Y are homeo-
morphic and write X 2 Y. The map f is called openif U € T = fU € 7' and
is called closed if U € T = f(X\U) is closed in Y. Open, closed, and continuous
are independent properties.

A base for a topology 7 on X is a collection B C T of open subsets of X such
that every member of 7 is expressible as a union of members of B. If (X,d) is a
metric space then we know it has a topology T4 and 74 has a base B consisting of
all open balls in X; namely, B = {int B(z,7) | z € X, r > 0}. Evidently a base
may be a large collection, and any topology may have many bases.

There is also an advantage in calculations if we can find a subbase. This is a
collection & C 7T such that the set of all finite intersections of sets in S forms a
base.

Remark B.1.1 We can define a topology on a set by specifying a collection of
subsets that we require to constitute a base (or a subbase). Another very important
way to define a topology on a set is to decide which maps (to or from it) are to be
continuous; that is, we wish to assume as little as possible over and above choosing
which maps are to be of interest (continuous). To put a topology on a group we
usually choose it so as to make group homomorphisms continuous (Topological
Groups). To put a topology on a vector space we usually choose it so as to make
linear maps continuous (Topological Vector Spaces).

Quite often we need to put a topology on a set Y which arises from some
construction on a topological space (X,7). Then we choose the topology for Y
which maximizes the influence of (X, T), relative to the method used to get Y from
X.
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Typically we may have an equivalence relation ~ on X and define Y = {[z]~ |
x € X}, where [z]~ is the equivalence class determined by «; that is {a € X | a ~ z}.
This gives a natural surjective map 7 : X = Y : z — [z]~ which we would want to
be continuous, and to maximize the influence of 7 we actually choose the largest!
topology on Y such that 7 is continuous.

For proofs in topology we usually juggle the properties of open and closed sets.
We can get open sets in relatively few ways:

1. directly from T;
2. as complements of closed sets;

3. as inverse images of open sets by continuous maps.

Given a set X, there is a partial order < defined on the set of all topologies
available on X:

TTi<To<= AeTTi =A€7,
<= Ais T;-open = A is T3-open.

For 71 < 7Tz we often write 73 > 7;. A set with a partial order (sometimes called a
pre-order) is called a poset.

Theorem B.1.2 Given any set S of topologies on X there exist unique greatest
lower and least upper bounding topologies

T =infS, Ty =supS;
that is, if T is any topology in S, then T} < T < 7).
Proof: An exercise on posets. See Dodson [29], p. 49. 0O

This result is really about posets, but is very important since it assures us of the
existence of topologies uniquely fixed by the context of most situations.

Ex In the case above Y = Z/~, we use a topology 7. on Y where

T~ = sup{topologies on Y making 7 : X —» Y continuous}.

The following are easily deduced. Let (X,7) be a topological space and, for
some set Y, suppose that we have either

l.amap f:Y — X, or

lalso called strongest or finest
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2.amapg: X — Y.

Then in the first case,

7T = {fCG|GeT}

is the smallest topology on Y that makes (Y, f<7) N (X,T) continuous. In the

second,
9T ={HCY |g"HeT}u{Y|}

is the largest topology on Y that makes (X,7T) -5 (Y,¢7) continuous. We call
foT the coinduced or inverse image topology on Y, and g7 the induced or
quotient topology on Y.

N.B. The prefix ‘co-’ frequently means something is going backwards—such as a
map.

Ex

1. Inclusions For Y C X recall the inclusion map i : Y — X. We call 17 =
T|y the subspace topology. For example, i : S! < B? : z — z where we
regard S! C B2 C R?. The topology 7 on B? is the standard metric topology
with base consisting of open disks like int B(x,). T|s: consists of those ANS!
where A € T. In general, T|ly = {ANY | A € T}: we want the smallest
topology (that co-induced by inclusion); we don’t want to introduce spurious
open sets.

2. Partitions Here we have 7 : X —» Y : £ — [z]. under some equivalence
relation ~ on X. B is open in Y = X/~ if and only if 7 B is open in X.
We want the largest topology here, to get the maximum influence of (X, 7).
This is called the quotient or identification topology induced by .

We always use these topologies unless stated otherwise. For situations with more
than one map to arrange to be continuous, we must use sup and inf topologies.

Theorem B.1.3 (Sup and inf topologies) Let {(X,,7a) | @ € A} be a collec-
tion of topological spaces and suppose that 'Y is a set.

1. If for each a € A there is a map fo : Y = X, then
sup{fy Ta | @ € A}
15 the smallest topology for which every f, is continuous.

2. If for each a € A there is a map g : Xo — Y then
inf{goTo | @ € A}

is the largest topology for which every g, is continuous.
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Proof: In each case we have already shown that the candidate exists, is unique,
and is a topology, since the constituent sets are topologies. From the last theorem,
we deduce that a map h: (X1, 71) — (X2, 72) is continuous

& hTR <T
& T, <hTy.

So we have: f, is continuous if and only if i T, < sup{f{ 7o | @ € A} and thus
we do have the smallest topology in case 1. Similarly in case 2, continuity of g, is

equivalent to
inf{gaTa | @ € A} < gaTa

so we have the largest topology here. (For the details see, e g., Csdszdr, [23].)

Ex

1. Consider the product set Y = [],c 4 Xo with projections

ps: [ Xe = Xo: (Xa)aca = Xp.
acA

The product topology on the product set is
sup{paTa | @ € A}.

(Implicitly you’ve done this, when combining lines to form a plane to represent
figures in geometry).

2. Consider the disjoint union set ¥ =[], 4 X with injection maps

fa:Xg— HXQ:J:»—)Z.
a€A

The coproduct topology on disjoint unions is

It is fundamental that continuity is preserved by the composition of maps and
by the restriction of maps. Of course, the reverse of these processes need not be so
well-behaved. For it is easy to find a continuous composite map with components
that are not both continuous, and extending a continuous map from a subspace to
the whole space in general cannot be done.

Note that the inclusion map, 7 : A < X, of a subset A C X is the restriction of
the identity map 1x on X, and hence it is always continuous. This means that every
subset of a topological space is automatically a sub-topological space, unlike the
corresponding situation in algebra. There, for example, only some inclusion maps
are group homomorphisms, namely those which have subgroups as their domains.
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The formal definition for the restriction f|4 of f: X - Y to A C X is fi:

A (—1> X
fi=fla /
Y

The next result is useful and not difficult to prove.
Proposition B.1.4 The following five statements are equivalent:

1. f: X =Y 1is continuous.

2. If B is a base for topology on Y, then f* B is open in X for all B € B.

3. Forall ACX, fAC fA.

4. Forall BCY, f€B C f*B.

§. For all closed F CY, f*F is closed in X. I

B.2 Separation properties

The separation of disjoint points and sets by open sets is frequently required in
constructions of extensions of maps. A space (X, T) is called a Ti,-space if it satisfies
the T} axiom as described below—from the original German Trennungsaziomen.
Let z,y be arbitrary distinct points in X.

To: there exists U € T such that eitherz e U andy ¢ U orz ¢ U and y € U.
Ty: there exist Uy, Us € T such that z € Uy \ Uz and y € Uy \ U;.
T»: there exist disjoint Uy,U; € T such that z € U; and y € Us.

T3: if B is a closed subset and z ¢ B, then there exist disjoint Uy, Uz € T such
that £ € U, and B C Us.

Ty: if By, Bo are disjoint closed subsets, then there exist disjoint Uy,Us € T such
that B; C U; and By C Us.

It is not difficult to show that Ty, = T1 = Ty. A Ty-space is called Hausdorff, a
(T3 + T1)-space is called regular, and a (Ty + T} )-space is called normal.

In a Hausdorff space, limits are unique and this is why it is frequently the
minimum separation requirement in geometrical applications. Metric spaces, and
hence normed vector spaces, are always normal. A space is Hausdorff if we can
separate distinct points by a continuous real function. A space is normal if we can
separate disjoint closed sets by a continuous real function. The converse to the
latter is:
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Theorem B.2.1 (Urysohn’s lemma) Given disjoint, closed sets Ap, A1 in any
normal space (X,T), then there exists a continuous f : X — [0,1] such that fAo =
{0} and fA; = {1}.

This is a theorem about the existence of a continuous extension of

. ' 0ifac€ Ay,
g_A()UAl ——)[0,1]~a’_){1ifa€A].}.
Diagrammatically,

Ag U Ay C——»x

g‘ [ 3 f if X normal
[0, 1]

This is proved in most general topology introductions, for example Armstrong [2]
or Sieradski [94], as is the case for the following,.

Theorem B.2.2 (Tietze’s extension) Given a closed set A in a normal space
X and a continuous f : A — [—1,1] = B!, then there exists a continuous f: X —
[1,1] with f']a = f.

Diagrammatically,

f’ / 3 st if X normal

[*lal]

B.3 Compactness

The notion of compactness is invaluable in topology and often yields very neat
proofs, so it is worth the initial struggle with definitions. In R" a set F' is compact
if and only if F is closed and bounded (Heine-Borel); for more general spaces we
need to abstract the topological essentials of compactness.

Let (X, T) be a topological space, F C X. An open cover of F is any collection
{Us | @« € A} such that U, € T for all @ € A, and F C UgeaUy. F is called
compact if every open cover of F' has a finite subcover {U,,}, i = 1,2,...,n,
such that F' C U U,,.

Ex

1. Any finite set is compact; so is any space with a finite topology.
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. Closed subsets of compact spaces are compact.
. Compact subsets of Hausdorff spaces are closed.

. In Hausdorff spaces we can separate disjoint compact subsets by disjoint open

sets.

. Compact Hausdorff spaces are normal.

Continuous maps preserve compactness. The proof of this result is typical of
the steps in many proofs of compactness.

Let f: X — Y be a continuous map and let F' be a compact subset of X.
Take any open cover {V3 | 3 € B} for fF.

fFe Y vs

BEB

So

3
N

e U Vs
pBeB

= v

BeB

Now f is continuous so {f< Vs | B € B} is an open cover for F. But, F is
compact so

(3B, Bu€B):FC|Jf Vs,
i=1
whence fF is compact. 0

Show that a compact space can be the continuous image of a noncompact
space.

We collect three important results that are proved in most first courses in topology.
The first gives a characterization of compactness that is often useful in proofs; it
depends on the following definition, which usually has to be read twice, and is often
applied in negated form!

A collection {E, | @ € A} of subsets of X is said to have the Finite Intersec-
tion Property (FIP) if NI , E,, # @ for every finite, non-empty subcollection

{Eo; | 01,...,an € A}.

Theorem B.3.1 (Finite Intersection Property) A space X is compact if and
only if every collection of closed sets having the Finite Intersection Property has
non-empty intersection.
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Theorem B.3.2 (Bolzano-Weierstrass) Given X compact, and an infinite D C
X (for example, D a sequence), then D has a limit point in X. Moreover, we can
choose this limit point such that all of its neighborhoods contain infinitely many
points of D.

Theorem B.3.3 (Tychonoff) Given any collection of compact topological spaces,
their Cartesian product is compact in the product topology.

Ex

1. The Heine-Borel Theorem says that a subset of R" is compact if and
only if it is closed and bounded. Closed subsets of a compact space are
compact. Deduce that SO(n) is compact. Construct an explicit topological
group isomorphism between SO(2) and the multiplicative group of unimodular
complex numbers. Perform an analogous construction to obtain SO(3) =
RP3 by considering the group of unimodular quaternions and observing that
SS/Zz = RP3.

2. A continuous bijection from a compact space to a Hausdorff space is necessar-
ily a homeomorphism; wrapping (0, 1] just round S* shows that compactness
is necessary.

3. Compact Hausdorff spaces are normal (namely, in them we can separate dis-
joint closed sets by disjoint open sets), hence they admit nonconstant real
functions; this is the Urysohn Lemma. Normal spaces admit continuous ex-
tensions of real functions on closed sets; this is the Tietze Extension Theorem.

4. Compact metric spaces are complete but not conversely. Let X be a compact
metric space with open cover L. Then, for some real d; > 0, every subset of
X of diameter less than 61 is contained in some member of L. This is the
Lebesgue Lemma and 4, is called the Lebesgue number of L.

B.4 Paracompactness

Sometimes in geometry and its physical applications the comforting presence of
compactness is denied us. Then we need some other device to control construction
procedures that otherwise fail to converge. The property that is normally a mini-
mum requirement for geometry and physics is paracompactness and it is defined as
follows.

In a space (X, 7T), an open cover K of X is called locally finite if every point
of X has a neighborhood which intersects only finitely many of the sets from K.
Another open cover £ is called a refinement of X if

(VLeL)@KeK):LCK.
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The space (X, T) is called paracompact if every open cover K has such a locally
finite refinement £ which is also an open cover of X. It is easy to see that compact-
ness implies paracompactness. It turns out that paracompactness is equivalent to
the existence of a partition of unity (¢f. § C.3.1) subordinate to every open cover
K.

B.5 Connectedness

We instinctively think of R as connected but X = (0,1) U (2,4) as disconnected.
What we need is a definition that is independent of any particular geometrical
embedding or representation of the space. Like compactness, connectedness is an
important topological property of a space: it is preserved by continuous maps and
homeomorphic spaces have the same connectedness. These preservations are fre-
quently used in contrapositive form: failure of a property in the image = failure
in the domain or discontinuity. The concept of connectedness and its preservation
by continuous maps turns out to be enormously useful, and admits a far-reaching
generalization in algebraic topology.

A space (X, 7T) is disconnected if there exists an open U C X, U # @, such
that X \ U is also open in X; that is, if there exists a nonempty U C X so that U is
both closed and open (‘clopen’). (X, 7) is connected if not disconnected, that is,
if X has no clopen proper subset. A subset is said to be connected if it is connected
as a subspace of X (in the subspace topology). That is, A is connected if and only
if there do not, exist open U,V C X such that

UnA#e, VNA#0,
ACUUV,
unv = o.

N

Ex (0,1)U(1,2) C R is disconnected; SO(2) is connected.

Proofs involving connectedness are illustrated by the following two results.

Theorem B.5.1 X is disconnected if and only if there exists a continuous surjec-
tion f: X — {0,1} (discrete topology).

Proof: (=) X disconnected implies there exists a nonempty subset U which is
both open and closed. Then

o= {t 158

defines a continuous surjection.
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(<)
U = f<{0} open, nonempty in X,
U' = f*{1} also open, nonempty in X .
Then X = U U (X \U) so X is disconnected. 0

Proposition B.5.2 If there is given a surjective continuous f : X — Y, then X
connected = Y connected.

Proof: Suppose there exists V' C Y with V open and closed, and V # &. We show
V=Y.

Now, f©V is open and closed in X since f is continuous, and f<V # & since
f surjective. Because X is connected, these imply that f<V = X. Therefore
fX=Y=YCV=Y=V. 0

The main theorems encountered in a first treatment of connectedness include
the following:

e A subset of R with the standard topology is connected if and only if it is an
interval.

e Intermediate Value Theorem.
e Brouwer Fixed Point Theorem for n = 1.

e Products of Connected spaces are connected in the product topology.

1. Closures of connected sets are connected.

2. A subset of a space is called path-connected if for every pair of points in
the subset there is a continuous curve from one to the other and lying wholly
in the subset. Open connected subsets of R” are path-connected. Show that
openness 1s a necessary condition by considering the closure of

{(z,sin(r/z)) € R* | z € (0,1]}.

3. Let f : X — Y be a continuous surjection of a Hausdorff space X onto a
connected space Y and let g and h be two continuous sections of f. If g is an
open map and, for some yo € Y, h(yo) = g(yo), then h = g.
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B.6 Peano’s space-filling curve

A curve in R? is a continuous map f : [0,1] — R? and we say it begins at f(0) and
ends at f(1), thinking of the parameter space [0,1] as representing time.

In 1890 Peano showed that such a curve can fill out the whole of a square region
in the plane. This led to a revision of the notion of dimension because intuitively
we think of a curve (parameterized by one number) as one-dimensional but a plane
square is two-dimensional. We construct a space-filling curve as the limit of a
sequence (fn). For each t € [0,1] there is a unique nonal (base 9) expansion as
t = 0.ayaz2a3 ... where each qg; is an integer between 0 and 8, inclusive. Divide the
unit square [0,1] x [0, 1] in R? into 9™ subsquares numbered as 0.a;a; . . . a, for the
possible a;, such that square 0.a;as . . . a, has a common side with 0.a;az ... (a, +1).

6 |.7 .8

51.41.3

01].1].2

n=1
.06 1.07 |.08
.051.04 (.03
.00].01 |.02
n=2

Note that 0.a1a2...ap—1(8 + 1) = 0.a1a2...(ap—1 + 1) etc. We also have square
0.a1as .. .an contained in square 0.a1az .. .an—1. For eachn € N choose f,, : [0,1] —
[0,1] x [0,1] such that the subinterval

{t € [0,1] | 0.a1as...a, <t <0.a1a2.. .an+1}

is mapped continuously into the square numbered 0.aia; ... a,.

end

begin

fr
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The sequence (f,,) is Cauchy in the Banach space of bounded continuous maps from
[0,1] to R?. Hence it is convergent to a continuous f : [0,1] —» [0,1] x [0, 1]. This
f is surjective(!), filling the square. Note that f is not injective (but each f, is).
Similarly, we could fill the n-cube [0,1]". (Cf. [2, p. 36] for another f.)

The theorem which says when a topological space is (the image of) a continuous
curve is that of Hahn-Mazurkiewicz: a space is (the image of) a continuous curve
if and only if it is

compact, Hausdorff, 2nd countable,
{ connected, and locally connected.

(Cf. Moore [81].)

B.7 Collected examples on general topology

Many users of algebraic topology in theoretical physics have a good grounding in
linear algebra, differential equations, differential geometry and manifolds, but have
by-passed the standard general topology courses for pure mathematicians. If this
is the case for you, then you should at least read all of these and attempt as many
as you have time for. As with theorems and lemmas, always treat problems with
suspicion until you are convinced that they are well posed!

1. Let 7; and 72 be two topologies on a set X. Prove that 7; N 72 is another
topology on X. Show by example that 71 U 73 may not be a topology.

2. Let A and B be disjoint subsets of X with AU B = X. Let 71 and 75 be
topologies on A and B respectively. Prove that

{UuV|UeT, VeTr}
is a topology on X.
3. Let X be any set. Show that
T={UCX|X\U is finite} U {&}
is a topology on X. This is the cofinite topology.

4. Prove that if A is a subset of a topological space X then int(A) = A° =
X\ (X \A).

5. Prove that if A and B are subsets of a topological space X, then int(A) N
int(B) = int(A N B). Give an example to show that int(A) U int(B) may not
always equal int(A U B).

6. In a metric space (X,d), if A C X define

d(z,A) = inf{d(z,a) |a € A}, forallz e X.
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Prove that r € A & d(x, A) = 0. For any two subsets A and B of X define
d(A, B) =inf{d(a,B) | a € A}.

Give an example to show that d(A, B) may be 0 for two disjoint closed sets
A and B.

In each case state what is (i) int(A) and (ii) the set of limit points of A C
X = R? with the usual topology:

(a) A=RF ={(z,0) | = > 0};

(b) A={(z,y)| ©>0, y>0}

(¢) A= {(z,sinl/z) |0 <z <1}

. Prove that the boundary of a closed set is nowhere-dense: that is, it has no

proper subsets that are open and closed. Is this also true of the boundary of
any set?

. Give an example to show that a countable union of closed sets need not be

closed.

Let A = {(z,y) € R? | z,y arc rational}. Then every point of R? is a limit
point of A. But if B = {(x,y) € R? | z,y are integers}, then B has no limit
points.

A is the smallest closed set containing A. (a,b), = [a,b] in R. A° is the largest
open set contained in A. Find @ and @°.

R has a countable base consisting of all open intervals with rational endpoints.
{(—00,a), (a,00) | a € Q} is a subbase.

For any topological space (X, 7T), B is a base if (i) UB = X and (ii) B is closed
under finite intersections.

Given two metrics d,d' for X yielding topologies 7, 7", then if for some posi-
tive constant c
d(z,y) < cd'(z,y) forallz,ye X

it follows that 7 < 7.

Being homeomorphic is an equivalence relation =. Aut(X) = {f : X = X}
forms a group and for each z € X there is a subgroup Aut,(X) = {f €
Aut(X) | f(x) = z}.

Prove that f : X — Y is continuous if and only if f(4) C f(A) in Y for every
subset A4 of X.

Let f : X — Y be continuous and H be a subspace of X. Define f|g : H - Y
by flu(z) = f(z) for z € H. Prove that f|g is continuous.
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. Let f: A — Y be continuous where A is an everywhere-dense subspace of X.
Show that if Y is a Hausdorff space then f has at most one extension to a
continuous mapping ff: X = Y.

Given that sine and cosine are continuous functions R — R, prove that [ :
[0,1) = S': z — €™ is continuous if S! is the unit circle of the complex
plane with the subspace topology. Prove also that f is not open.

Let X be a T) space, A C X and a be a limit point of A. Prove that a
neighborhood of the point a contains infinitely many points of A. Deduce
(a) a finite subset of a T7-space has no limit points;
(b) if a is a limit point of A, then a is a limit point of X \ A.

Prove that a Ts + Tp-space is Hausdorff. Let X = [a,b] and 7 be the topology
{@,{a}, X}. Show that (X,7) is a Ty + Tp-space which is not Hausdorff.

Prove that a closed subspace of a normal space is normal. Let X = {a,b, ¢, d},
T = {@, {b},{a,b},{b,c}, X}. Show that X is normal but that the subspace
H = {a,b,c} is not.

Let X = (—1,1) and define a subset of X to be closed if it is X, @, or is equal
to an interval [a, b] where

-1<a<0<b<«1.

Prove that the complements of these ‘closed’ sets do form a topology, that the
topological space so formed is Ty and T}y, but that it is not 7.

Let A C R be open if R\ 4 is finite or A = & (the finite-complement or
cofinite-open or finite-closed topology—useful for counterexamples). Then
it follows that in this topology for R:

(a) if A is infinite then every point of R is a limit point of A;
(b) @ has no limit points;
(c) any two open sets overlap.
Amap h: (X, T)— (Y,7T") is continuous if and only if A* 7' < T if and only

if 7' < AT if and only if hA C hA for all A € P(X) if and only if h* C is
closed for all closed C.

z=0ifzreQ

. is nowhere continuous on R
z—1ifrgQ ’

Show that f : R —» {0,1} : {
but fl|o is continuous on Q.
Investigate g : R —» S!: z - €%*; are its fibers closed?

Topological spaces and continuous maps form a category, Top. (Top is a com-
plete category: it admits all products, coproducts equalizers and coequalizers;
see page 297.)
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What is a natural topology for the quotient space V/W of a finite-dimensional
real vector space V with respect to a vector subspace W7

Given X = [0, 1] with the usual topology, and this equivalence relation ~ on
X: z~y<& (z =yorz—y = 1), show that the quotient space X/~ is
homeomorphic to the circle S* by the map

f:[0,1]) ~—» St [z]0 — 2™,

(X,T) is Ty if and only if every point is a closed set. In a T5 space, limits
are unique. Formulate this precisely and prove it. Hint: look at the example
involving the diagonal in X x X on page 328.

What separation properties has (R, 7) where
T={2,R}U{[a,0)|aeR}?

Let f be a map from the topological space X to a topological space ¥ whose

image is contained in the subspace H of Y. Prove that f is continuous if, and

only if, the mapping f : X — H is continuous. Give an example to show that
f: X — H may be open when f: X — Y is not.

Prove that a subspace of a regular space is regular.

You can use Urysohn’s Lemma to prove Tietze’s Extension Theorem, or use
Tietze’s Extension Theorem to give a short proof of Urysohn’s Lemma.

In any topological space (X,7) with A, B € P(X):
(a) AUB = AUB, but AN B C AN B may be strict.

b) z€e A NNA£> (YN €T withz € N).

(c) HACY C X then Ay = ANY.
[N. B. Here Ay means the closure of A in the subspace Y]

Is the property of being dense preserved by

(a) a continuous map?
(b) a continuous injection?
(c) a continuous surjection?

(d) a homeomorphism?
Find a countable dense subset of (0,1).

Repeat question 37.(a)-(d) for the properties (i) open, (ii) closed, (iii) com-
pact, and (iv) Hausdorff.
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(i) Given continuous
f
X—=Y

with Y Hausdorff, then the set B = {z € X | f(z) = g(z)} is closed, and if B
is dense then B = X.
(ii) Find a space having a compact subset whose closure is not compact.

(i) Show that non-compactness is not preserved by continuous maps. (ii) Show
that SL(2,R), the group of 2 x 2 real matrices with determinant +1, is not
compact in R* but that there is a nontrivial compact subgroup.

Put X = {a,b}. Show that there are four possible topologies, two of which
are not metrizable and contain compact subsets that are not closed.

(i) In a Hausdorff space (X, 7), compact subsets can be separated by disjoint
open subsets. (ii) If (Y, 7") is compact and (X, 7) is Hausdorff then

FiY o X continuous = f is closed;
) a continuous bijection => f is a homeomorphism.

(iii) 71 < T3, T2 compact, and 7; Hausdorff implies 71 = 72. (iv) R/~ is not
Hausdorff for (z ~ y < z — y rational).

Let X,Y, Z be topological spaces, f : X = Y and ¢ : Y — Z be continuous
mappings. Prove that go f : X — Z is continuous, but not conversely.

Consider the following collections of subsets of R: (i) {[a,b) | a < b}; (ii)
{[a,b] | @ < b}; (iii) {(—00,b) | b€ R} U{[a,00) | a € R}. Determine which of
these collections is an open base for some topology on R. Also, in each case,
state whether the topology on R for which the collection is an open subbase is
stronger than, equal to, or weaker than the usual topology, or none of these.

Let X be an uncountable set and let
T={A: X\ Ais finite} U {@}.

Show that (X, 7)) is separable but not second countable. (A space is separable
if it has a countable dense subset, like Q in R; second countable if it has a
countable open base.)

Show that the set of isolated points of a second countable space is finite or
countably infinite.

Let A be an uncountable subset of a second countable space. By considering
A with its subspace topology, or otherwise, prove that at least one point of A
is a limit point of A.

Prove that if X and Y are topological spaces and f : X — Y is a mapping
and f(B) is openin Y for all B € B, where B is an open base for the topology
of X, then f is an open mapping.
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Let R have the usual topology but S! have the indiscrete topology. Define
Ff: R — S!'by f(z) = e?™*, Find a subbase S for the topology of R such
that fS is open for every S € S. Prove, however, that f is not open.

Quotients of homeomorphs are homeomorphic. For example,
F:Rt =2R:zr—loggz = R /~=R/~'

wherez ~y < y=3"zonRt andz~"y & y=n+zonR

@O B =@ =R, (YneN). (i) Upen [a,b— i’;;l] = [a, b).

(0,1) is a non compact subset of [0, 1] because there is no finite subcover of
{(1/n,1—=1/n) | n € N}.

(X, T) compact, f: X —» Y surjective = (Y, fT) compact.

(i) If X =Y and X is Hausdorff, then YV is Hausdorff. (ii) If X has the finite
complement topology then it is Hausdorff if and only if it is finite.

. (X, T) compact, (Y,7') Hausdorff, and f : X — Y a continuous injec-

tion imply f is a homeomorphism. Show why the identity is not a home-
omorphism in the following: (i) 1 : (R, 7a,) — R; (ii) 1 : ({a,b}, Ta) —
({a,b}, {2, {a, b}, {a}}).

(X, T) Hausdorff and A not closed imply X/A is not Hausdorff, because if
a € A then [a] is a nonclosed point in X/A.

If f:(X,7) - (Y,T") is a continuous surjection, X is compact, and YV
is Hausdorff, then: (i) C closed in Y & f<C closed in X; (ii) N open in
Y < f< N open in X; (ili) 7’ = f7, the quotient or induced topology.

Use this result [If f : (X,T) — (Y, fT) is a continuous surjection with X
compact Hausdorff and f closed, then Y is compact Hausdorff.] to show that
if a finite group G acts continuously on a compact Hausdorff X, then X/G is
compact Hausdorff. Hence RP"™ is compact Hausdorfl. Also, if X is compact
Hausdorftf and A is closed in X, then X/A is compact Hausdorff. (Cf. [1]
§4.4.)

Which discrete spaces are separable?

Let X be a set and, for each z € X, let T, be the topology 7, = {X}U{U C
X : 2 ¢ U}. Describe inf{7, : z € X} and sup{7, : z € X}.

Which is the weakest topology on a set X in which one-point sets are closed?

In each case we specify a set F of real valued functions defined on R. In each
case describe the weak topology on R with respect to F. [Weak = induced.]

(a) F is the set of all constant functions.
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(0) 7 = (o} where foix) = { § TS0
0, z<0,
(¢) F={f1} where fi(z)=¢ 1,2 =0,
2, z>0.

(d) F = {f2} where fa(x) =z for all z.
(e) F={f] f:R — Ris continuous with the usual topology on R}.

Let (X,T) be a topological space and let Cp(X,R) be the vector space of
continuous bounded functions from X to R where R has its usual topology.
Prove that the weak topology on X with respect to Cp(X,R) equals T if and
only if (X, T) is completely regular (that is, (Vzq € X, V open nbhd N of
Zo) 3 continuous f : X — [0,1] with f(zo) =0 and f(z) =1ifz € X\ N;
cf. Hocking and Young [46], p. 74).

If (X, T) is normal and E, F are nonempty disjoint closed subsets, then from
each closed interval [a, b] there is a continuous map taking the values a on E
and b on F. (Remember: normal => can separate disjoint closed sets.)

If (X,T)is Tz or Ty, then sois (X,7T") if T < T’; so also is any subspace.
The product space X x Y is T if and only if X and Y are.
Products preserve second-countability and separability.

(X,T) is Ty if and only if the diagonal A = {(z,z) | £ € X} is closed in
X xX.

Given a space (X,7) and a base B for 7, (X, T) is compact < every open
cover by sets in B has a finite subcover.

(X,T) is compact = every collection of closed subsets with the finite inter-
section property has nonempty intersection.

X XY is connected & X and Y are connected.

If 7, 7" are topologies on X with 7 < 7' then (X,7T") is compact = (X, T)
is compact.

Show that the space (R,7) in 24 has a compact subset with noncompact
closure. Can you generalize this?

(i) ({a,b}, T..) is disconnected; ({a,b}, (@, {a}, {a,b})) is connected. (ii)
Closures and continuous maps preserve connectedness. (iii) Unions (of sets
that meet) preserve connectedness. (iv) X is connected if whenever X = AUB
for some nonempty A, B then either ANB # @ or ANB # .
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Given a compact Hausdorff X and an open, proper subset U, then U* = U U
{o0} has a topology such that there is a homeomorphism A : U® —» X /(X \U)
where h coincides with the natural projection p on U and h(oo) = p(X \ U).
Furthermore, if z € X then (X \ {z})* = X. For example,

S™\ {north pole} = R" = B™ \ S*~! = 1"\ aI",
so S" (R*)® = B" /S = [/5I".

[Look up one-point compactification for locally compact Hausdorff spaces;
cf. [4], p.73.]

If A is a connected subspace of X, then A CY C A = Y is connected. For
example, R"*1 \ {0}, S™, and RP™ are connected for n > 1.

Let A = {(z,y) € R2 |2 =0,y € [-1,1]} and B = {(z,y) € R* |z €
(0,1], y = cos(m/z)}. (Sketch!) Show that (i) A and B are connected, (ii)
ANB =, and (iii) if X = AU B then X is connected. (For (iii) consider
X =UUYV for some U and V both open and closed in X and assume that
for some a € A we have a € U.) [Observe that a connected space can consist
of two parts that do not intersect but the converse is impossible!]

As for the previous one with

A={(z,00eR |z e[} 1]}
B = {(z,z/n) € R* |z €]0,1],n € N}.

Given (X,7T) put H(X) = {continuous f : X — Z}, where Zy = {—~1,+1}
with the discrete topology; then for all f,g € H(X) define f+g: X — Zs:
z — (f(z) + g(x)) (mod 2). Prove (i) f + g is continuous, V f,g € H(X);
(if) (H(X),+) is an Abelian group; (iii) (X, 7T) is connected < (H(X), +) is
cyclic of order 2, that is isomorphic to Z, viewed as a group. Also, find for
all k € N a space X} such that H(X}) is isomorphic to k copies of Zs.






Appendix C

Manifolds and Bundles

A topological space is the least structure that can support arguments concerning
continuity and limits. A manifold is the least structure that can support arguments
concerning differentiability and tangents. A bundle is a gencralization for manifolds
of the concept of a product space; that is, a possibly twisted product. Dodson and
Poston [31] provides an introductory treatment of manifolds and bundles, with
applications in geometry and relativity. A short account of manifold geometry and
calculus on manifolds is given in Dodson [30]. Comprehensive treatments are given
in Spivak [99], Kobayashi and Nomizu [61, 62], and O’Neill [86].

C.1 Manifolds

A smooth n-manifold M is a Hausdorff topological space together with a collec-
tion of maps (the charts)

{pa : Uy — R* [ € A}
from open subsets U, of M, which satisfy:
i) {Uy | @ € A} is an open cover of M;
ii) each ¢, is a homeomorphism onto its image;

iii) whenever U, N Up # @, then the maps between subsets of R®
$a © ¢(E : ¢ﬂ(Ua n Uﬁ) — ¢a(Ua N Uﬂ) ’

dp0 by 9a(UaNUg) — ¢(Ua NUg),

have continuous derivatives of all orders (are C* or smooth).

We call {(Uq, ¢o) | @ € A} an atlas of charts for M; the properties of M are not
significantly changed by adding more charts. The terminology is borrowed from

331
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mapmaking, where an atlas is a collection (book) of charts. A topological manifold
is similar, but without any differentiability requirements. All our manifolds are
smooth.

Intuitively, an n-manifold consists of open subsets of R" the ¢, (Uy), pasted
together in a smooth fashion according to the directions given by the ¢q o ¢5 . For
example, S! with its usual structure can be presented as a 1-manifold by pasting
together two open intervals, each like (—m, 7). Similarly, S? has an atlas consisting
of two charts

{(Un,onN), (Us,ds)}

where Uy consists of S? with the north pole removed, Us consists of S? with the
south pole removed, and the chart maps are stereographic projections. Thus, if S2
is the unit sphere in R? centered at the origin then:

on :S*\ {n.p.} — R : (z,y,2) —> (z,y)

142

bs:S*\ {s.p.} — R? : (z,y,2) —> liz(m,y).

Essentially the same types of maps work also for the higher dimensional spheres.

Ex
1. R™ has an atlas consisting of just one chart, the identity map.

2. Find another atlas for S? consisting of projections of six hemispheres onto
three perpendicular planes through the origin. Show that this atlas generalizes
also for higher dimensional spheres.

3. Find atlases for the cylinder S! x (0, 1), and for the torus S! x S!. Show that
the notion of products of charts generalizes for arbitrary product manifolds.

It is not difficult to test whether a collection {(Ux, ¢o) | @ € A} constitutes an atlas
for a given space M, but it is altogether nontrivial to discover how many distinct
manifold structures are possible. Some results for R® and S™ are given in Table
C.1. (Cf. Donaldson [33] for a discussion of the initial excitement at R*.)

C.2 Tangent spaces

From elementary analysis we know that the derivative of a function is a linear
approximation to that function, at the chosen point. Thus, we need vector spaces
to define linearity and these are automatically present at each point of R*. At each
point z of a manifold M we construct a vector space T, M, called the tangent
space to M at z. For this we employ equivalence classes [Ty, (;yR"] of tangent
spaces to the images of z, @,(z), under chart maps defined at . That is, we
borrow the vector space structure from R™ wia each chart (U,, ¢o) with z € U,,
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n Sm R™
1 1 1
2 1 1
3 1 1
4 1 e's)
5 1 1
6 1 1
7 28 1
8 2 1
9 8 1
10 6 1
11 992 1
12 1 1
13 3 1
14 2 1
15 | 16256 | 1

Table C.1: Numbers of distinct differential structures on real n-space and n-spheres.

then identify the borrowed copies. The result, for z € S? embedded in R3, is
simply a vector space isomorphic to the tangent plane to S? at z. Actually, the
formal construction is independent of M being embedded in this way. However, the
Whitney Embedding Theorem [120] says that an embedding of an n-manifold
is always possible in R2n+1,

Once we have the tangent space T,M for each x € M we can present it in
coordinates, via a choice of chart, as a copy of R®. The derivatives of the change
of chart maps, like

9 n
@((ﬁa o¢§) (13571:%7' “71:[3),

provide linear transformations among the representations of T, M. Next, we say
that a map between manifolds

f:M—N

is differentiable at z € M, if for some charts (U, ¢) on M and (V,9) on N with
z €U, f(z) € V, the map

Yo flyog™ :g(U) — (V)

is differentiable as a map between subsets of R* and R™, if M is an n-manifold and
N is an m-manifold. This property turns out to be independent of the choices of
charts, so we get a linear map

Tzf T, M — Tf(z)N.
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Moreover, if we make a choice of charts then T, f appears in matrix form as the set
of partial derivatives of 1 o f o ¢*. The notation T, f for the derivative of f at z is
precise, but in many texts it may be found abbreviated to Df, f., f' or T f, with
or without reference to the point of application. When f is a curve in M, that is,
a map from some interval

f:[0,1] — Mt f(t),

then T3 f is sometimes denoted by ft. This is the tangent map to f at ¢ and the
result of its application to the standard unit vector to R at ¢, f;(1), is the tangent
vector to f at t . It is quite common for this tangent vector also to be abbreviated
to ft.

In a natural way we can provide a topology and differential structure for the set
of all tangent vectors in all tangent spaces to an n-manifold M:

T™ = | T.M;

zeM

details are given in [31]. So, it actually turns out that TM is a 2n-manifold, called
the tangent bundle to M. For example, if M = S! with the usual structure then
T M is topologically (and as a manifold) equivalent to the infinite cylinder S! x R.
In general, this simple situation is quite rare and it is rather a deep result that for
spheres

TS™ is equivalent to S™ x R™ only forn =1,3,7.

For other spheres, their tangent bundles consist of twisted products of copies of R”
over S™ In particular, TS? is such a twisted product of §2 with one copy of R? at
each point.

Ex Why is it intuitively clear that the tangent bundle to the torus M = S! x §!
is simply S! x S! x R2? What about the case when M is a Klein bottle?

Ex If we replace each T, M by its dual space Ty M, of real-valued linear maps on
T, M, we get the cotangent bundle T* M.

For further information, see Dodson [29], p. 100 et seq., Brickell and Clark [15], p. 116
et seq., and Husemoller [52], Chapter 15. The technical term for an n-manifold M
that has a trivial product tangent bundle TM = M x R" is parallelizable and
this property is discussed in the cited texts.

A map f: M — N between manifolds is just called differentiable if it is dif-
ferentiable at every point of M, and a diffeomorphism if it is differentiable with
a differentiable inverse; in the latter case M and N are said to be diffeomorphic
manifolds. Diffeomorphism implies homeomorphism, but not conversely. For ex-
ample, the sphere S? is diffeomorphic to an ellipsoid, but only homeomorphic to
the surface of a cube because the latter is not a manifold (it has corners and sharp
edges).
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C.3 Calculus on manifolds

The formal development of calculus on manifolds is in one sense straightforward: we
need only to take the usual operations locally in R® and synthesize their appropriate
equivalence classes under charges of charts that are admissible in the atlas. This
ensures that we obtain intrinsic, coordinate-free definitions. What is less obvious is
that exterior calculus turns out to be the correct generalization of ordinary vector
calculus. The fundamental operation of exterior differentiation, in the presence
of a metric, actually recovers all of vector calculus in R® and extends it to arbitrary
dimensional manifolds in an amazingly powerful way. An m-form is a purely anti-
symmetric, real-valued, multilinear function on an argument of m tangent vectors,
defined smoothly over the manifold. A O-form is a real valued function on the mani-
fold. Thus, the space A°M of 0-forms on M consists of sections of the trivial bundle
M x R. The space A'M of 1-forms on M consists of sections of the cotangent bun-
dle T*M, and A¥ M consists of sections of the antisymmetrized tensor product of k
copies of T* M. Locally, a 1-form has the local coordinates of an n-vector, a 2-form
has the local coordinates of an antisymmetric n X n matrix, etc. Quite generally,
a k-form on an n-manifold has (}) independent local coordinates. It follows that
the only k-forms for k > n are the zero k-forms. The technicalities involved are not
difficult but they are somewhat intricate and there are some subtleties. We shall
summarize below the main algebraic definitions for tensor and exterior algebra and
calculus.

In transcribing problems from the physics literature, it is important to recognize
that not always is it clear whether reported formule are valid only locally in some
chart, or globally; sometimes the underlying manifold is not mentioned either. Also,
care needs to be taken to avoid confusion among the various (infinite-dimensional
vector) spaces of sections of bundles (like A¥M), the bundles themselves which are
pairs of manifolds (like TM —» M), and the local vector and tensor spaces at a
point € M constructed from copies of T, M and T; M.

C.3.1 Summary of formulsae

We shall suppose always our vector spaces are over R. There are three fundamental
operations on finite-dimensional vector spaces (in addition to taking duals): direct
sum &, tensor product ®, and exterior product A on a space with itself. Let F,G
be two vector spaces, of dimensions n,m respectively. Take any bases {by,- -, bn}
for F,{c1, - ,cm} for G, then we can obtain bases

{bi,"-,bn, &1, ,em} for FaG,
{bi®e; | i=1,---\n; j=1,---,;m} for FRG,
{bi/\bj = bi®bj—bj®bi | i:l,---,n; Z<]} for FAF.

So, F @ G is essentially the disjoint union of F' and G' with their zero vectors
identified. In a formal sense (¢f. Dodson and Poston [31], p.104), F ® G can be
viewed as the vector space L(F™*,G) of linear maps from the dual space F* = L(F, R)
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to G. Recall also the natural equivalence (F*)* & F. By taking the antisymmetric
part of FF ® F we obtain F' A F. We deduce immediately:

dimF &G = dim F + dim G,
dimF®G = dim F - dim G,

&mFAFz%dMmeF—D.

Observe that only for dim F' = 3 can we have dim F' = dim(F' A F). Actually, this
is the reason for the existence of the vector cross product x on R® only, giving the
uniquely important isomorphism

RAR - R :zAyr— zxy

and its consequences for geometry and vector calculus on R®.

Each of the operations @, ® and A induces corresponding operations on linear
maps between spaces. Indeed, the operations are thoroughly universal and categor-
ical, so they should and do behave well in linear algebraic contexts. Briefly, suppose
that we have linear maps f,h € L(F,J) g € (G, K) then the induced linear maps
in L(F®G, JOK), LLF®G, JO®K) and L(FAF, JAJ) are

fog:zdy — flz)Dg(y),

fegrzey— f(r)®g(y),

fAh:zAy — f(z)Ah(y).
It is clear how to iterate @ and ®, but not so easy to visualize FAFAFAF =
A*F | for example. Recall that our eventual interest is in applying our operations
to tangent spaces, smoothly over a manifold, and in particular using A on each
cotangent space Ty M. So consider the case F = TyM = L(T,M,R) and put

k factors

AAM=T!MATMA---ANT*M,

k factors

TM, =T;M QT M@ T M .

Explicitly, the alternating operator is given by
Ak g M, — A';M W wy
where the (real-valued) k-linear map
w€ L(TyM xTyM x - xT,M,R)

is sent to the alternating k-linear map

1
wy i (Vi V) Al Z Sgn(T)w(vT(l)avT@)a-'-aUT(k))
" TE€SK
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with summation over the symmetric group Sy of all permutations of the indices
{1,2,...,k}. We can also use the alternating operator to define

(Ak,V) A (AmV) — Am+kv — Am+k(AkV ® AmV) .

The vector spaces AXM for z € M can be fitted smoothly together over M
to yield a bundle A¥M with fiber A¥(R™)*; this fiber has dimension (}) so the
total space of the bundle, A¥M, is a manifold of dimension n + (Z) We denote by
A* M the space of sections of the natural bundle surjection A* M —» M, but others
frequently use A¥M for the total space as well.

By fitting together the tensor product of k copies of T, M and m copies of T M,
smoothly over the manifold M, we obtain the bundle of (k, m)-tensors T M ~» M,
with fiber the corresponding tensor product of copies of R® and (R")*. Full details
can be found in Dodson and Poston [31], but at each z € M an element of T% M
will simply have the appearance of an (m + k)-linear map, from m copies of T, M
and k copies of Ty M to R. So, given a choice of basis for the tangent space T, M,
it induces a dual basis for T M and consequently a basis for (T* M),. Elements of
the latter then appear in coordinate form as n™** arrays; those of A¥M as purely
antisymmetric n* arrays.

It happens that the very nature of the induction process for the tangent spaces,
directly from the choice of the differentiable structure for the manifold, actually
gives a definite role to tangent vectors. An element v € T, M turns out to be a
derivation on smooth real functions defined near z € M. In a chart about z, v
is expressible as a linear combination of the partial derivatives with respect to the
chart coordinates z!,z2,...,z" as

v = 00 +v20h 4+ V"0,

with 8; = %, for some v* € R.
This is often abbreviated to v = v'8;, where summation is to be understood

over repeated upper and lower indices, the summation convention of Einstein.
The dual base to {0;} is written {dz*} and defined by

. (1 ifi=j
J N =4 = !
de’(8:) = {0 i,
Soa € TyM = ALM is expressible as
a = ardzt + andz® + -+ + andz™ = a;dc?

for some a; € R, but v € A2M as

i<y

for some v;; € R. The common summation convention here is v = 'y[,-j]dxi Adzl. A
symmetric 2-tensor would use (¢7).
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Since the 8; and dz® are well-defined in some chart (U, ¢) about z, they serve
also as basis vectors at other points in U. Hence, they act as basis fields for
the restrictions of sections of TM —» M and T*M — M to U, and so generate
local basis fields for sections of all tensor bundles 5 M — M and A*M —» M,
restricted to U. Joining up between charts requires two kinds of attention: a careful
book-keeping of the linear transformations between bases, and a sensitivity to the
global requirements.

One way to investigate locally a vector field v on M is to construct, in a chart
(U, ¢) about zo, a map which represents the geometry of v. That is, a map for some
€ > 0 of the form:

®:U X (—€,6) — M : (z,t) — ®(z,t)
which satisfies for all z € U
(1) ®(z,0) ==
(i1) ¢z : (—€,€) > M : ¢ — ®(z,t) is a curve with tangent vector ¢, (t) = v o ¢z (t).

Such a map & is called a (local) flow for the vector field v. Intuitively, we can
think of v as a field of little arrows (like a west wind on the Earth) and ® as a family
of curves which join up the arrows. Each curve ¢, is called an integral curve of v
through z. We can write the (local) flow @ in the form of a map

S :U— M:z+— O(z,t)
for each ¢ € (—¢,€). Then it can be shown that
b10P, =04 s =009,

whenever all are defined on U. Actually, we have fudged a bit: € might depend on
z, which is the idea behind local in local flow; if it does not, we call the flow global.
When all the intervals (—e,€) = R, the flow is called complete

Given two vector fields u, v on M their commutator or Lie bracket is the new
vector field [u,v] defined as the derivation on real functions f by

[w, v](f) = u(v(f)) —v(u(f)).
Locally, if u = u'0; and v = v?9;, we find that
[u,v] = (u'd’ — viaiuj)(?j.

Now let ¥ and @ denote local flows for u and v on U, respectively, giving for suitable
s, t,

U,: U — M:z+— ¥(z,s),
&, :U— M:z+—> &(x,t).
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Then it turns out that the two flows commute if and only if the commutator of the
vector fields is zero:

D00, =T,00;, & [u,v])Jly=0.

We want one further generalization for our k-forms. In some applications, they
need to take values not in R but in some other vector space V, which may vary
smoothly over the manifold. For example, a tangent space-valued k-form would be
a section of the tensor product bundle

AAM @y TM —» M

where ® 3, denotes the result of smoothly forming AXM ® T, M over z € M. These
are called vector-valued forms, and one similarly considers such things as Lie
algebra-valued forms.

We consider next exterior calculus, the generalization of vector calculus. The
exterior derivative is a linear map on k-forms satisfying

(i) d: A¥M — A¥*1M  ( d has degree +1);

(i) df = grad f if f € A°M  (locally, df = 8, f dz');

(iii) if @ € A®M and 8 € A*M, then
dlanp)=daAf+(-1)*andF;

(iv) d> =0.
In fact, this d is unique in satisfying these properties. A k-form a € A*M is called:

closed if da =0 € A¥1M, so a € kerd|sx p

exact if a = d for some B € A¥ 1M, so a € imd|pr-1,4
(or if k =0, « is constant)

locally exact if for all z € M, there is a neighborhood of z
on which the restriction of «a is exact.

It follows easily from d? = 0 that
exact =—= locally exact — closed,
but with more difficulty that
closed = locally exact

(¢f. Bishop and Goldberg [10]). Appendix E outlines the use of a computer algebra,
package for exterior calculus.

A volume form on an n-manifold M is a nowhere-zero n-form u € A™M. Such
a form actually exists if M has an underlying Hausdorff topology with a countable
base, and M is orientable. Now, orientability is a topological property but it is
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conveniently detectable for a manifold M if M admits an atlas for which all the
change of chart maps

Yool (zt) — ()

have a positive Jacobian determinant
oy’
J, =det | =] .
oo = det ||

For, the standard volume form on R with respect to rectangular coordinates (z*)
is dz' Adx? A--- Adx™. Also, it is not difficult to see that if we transform to any
other coordinates (y7) then the two volume forms are related by:

dy' Ndy* A+ Ady"™ = Jgpdrt Adx? Ao Ada"

Given a volume form p on M, it is possible to define an integral of an n-form w on
M if the n-form has compact support: that is, is zero outside a compact subset. The
trick here is to use each chart map ¢ : U — R" to transfer the integration locally
to R*, and then share out the contributions from overlapping charts by means of
the following device.

A partition of unity on M is a collection of non-zero functions {p, : M — R |
a € A}, with M \ p5 (0) C U, for some chart (Uy, ¢o), and for all x € M

> palz) =1.

a€A

This sum actually will have only a finite number of nonzero terms because, for
our manifolds, each point meets only finitely many charts. A partition of unity
like this, which is subordinate to an atlas, is the main device for fairly sharing
the contributions of different charts in a variety of constructions on a manifold.
Further discussion can be found in Brickell and Clark [15]. For a smooth manifold,
paracompactness (cf. § B.4) is equivalent to the existence of a smooth partition of
unity subordinate to the atlas.

Now we can convert an integral of an n-form on M into an appropriate combi-
nation of multiple integrals on R* and use Fubini’s Theorem to express the latter
as iterated integrals. There is a detailed discussion of the technicalities in Bishop
and Goldberg [10], Chapter 4. In particular, if x is a volume form on M then we
define the p-volume of M to be the integral of p over M:

voluM:/ L.
M

Full exploitation of integration of forms on manifolds requires us to introduce the
concept of a manifold with boundary. This simply requires us to relax our
condition on charts from being homeomorphs of R" to being homeomorphs of half
spaces in R", like {(z,y) | z > 0} in R?. This extends our concept of a manifold to
include spaces like a closed disk or a finite cylinder, for example. The boundary
OM of a manifold M is the set of points coordinatized by points on the boundaries
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of half spaces in R”. Now we can write down the general form of Stoke’s Theorem,
for an (n — 1)-form a with compact support:

/da:/ a
M oM

and the formula for integration by parts

fna= [ o vo

for f € A°M. See Appendix E for a computer algebra version of [ M

Consider making a choice of inner product smoothly over the tangent spaces of
(an orientable) M; that is, choose a positive-definite section g of T2 M = T9M. As
might be expected, it induces a natural volume form p,. Suppose that locally ¢ has
components g;; with respect to coordinates z; then locally

g = |detg,vj|%dx1/\dm2/\~-~/\dz".

(On standard Euclidean space, of course, det g;; = 1 in rectangular coordinates.)
Such a g is called a Riemannian metric tensor for M and the fact that, at each
z € M, g(x) is nondegenerate ensures that p, is nonzero. The same formula can
be used if ¢ is a pseudo-Riemannian metric tensor; that is, we have each g(z) non-
degenerate but not necessarily positive definite, as needed for spacetime (cf. [29]).
Now, g induces a dual metric tensor g* which is a section of T°M = T2M, giving
an inner product on cotangent spaces. Between them, g and ¢g* then extend by
tensor product to all of the other spaces (T¥ M),, and hence by inclusion to A* M
for k-forms. Additionally, g induces a family of isomorphisms

¥ A*M — AV PM o — xa

called Hodge dual isomorphisms for 0 < k¥ < n. To define *, we take any
ordered base (e!,...,e") for Ty M and ordered bases for A¥M and A?~*M given
respectively by

{er Ae2A--Aer |1<i; <ip <<
{eJl Ael2 A AeIn—k llfjl <jo <o < Gpi Sn}
Then, with g(ei, ej) = gij and
a:ailmikeil A Aetr
we have
1 : )
*Q = |detg1«j|2 *aj1-..jn_k€h Ao Aen—k

where

L — ,T111 yT2i02 Trik . .
*ajl...]n_k =g g g ai1“~lksgn(T’f‘l)

and sgn(7,;) is the sign of the permutation
(ilv-"aika jla“'vjn——k) — (rl5"')rk; jla'”;jn—k)-

We can think of *a as the ‘complement’ or ‘dual’ of « in the volume form y,. Some
special cases amplify this view:
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1. If 1 is the constant unit function in A°M, then x1 = p,.

2. xpg = (=1)” where v is the number of negative eigenvalues of g (v =0 if g is
positive definite), Sylvester’s index of g.

3. If (e!,...,e") is an orthonormal base for T; M, then |det g;;| = 1 and
*(ei‘ A e'? /\-~-/\e“°) = (ej1 Ael2 A ---/\ej""’“)

for any even permutation (iy,%2,...,%k,J1,J2,--Jn—k) Of (1,2,...,n). This
simplification extends to k-forms by linearity.

4. % = (=101,

Combining the Hodge dual with the exterior derivative, we obtain the following
generalizations of elementary vector calculus (recall that df = gradf for real func-
tions):

xd = curl, *d* =div, =xdxd=A.

The familiar identities arise now as consequences of d?> = 0. The vector cross
product x on R® with the standard metric structure is related to * by

x(zAy)=z Xy.

This has been a cursory look at calculus on manifolds and more information can
be obtained from: Bishop and Goldberg [10], Flanders [36], Hodge [47], Singer and
Thorpe [95], Spivak [99], and Warner [116]. We provide below some examples and
exercises.

Ex
1. Calculations on a 2-sphere.
M= {(z,y,2) e R® | 2? +4? + 22 = 1}.
Define two charts (U, ¢) and (V, qg) for

U= {(z,y,z) € M| z> 0} (the ‘northern hemisphere’)
V ={(z,y,z) € M |z > 0} (the ‘eastern hemisphere’)

by
¢:U — R :(2,y,2) — (z,9) = (21,22),
¢:V —_>]R2 Z(.’IJ,y,Z) — (y,Z) = (il’j2)'
Thenon UNV = {(z,y,2) € M |z > 0,z > 0} (the NE quadrant) we have

alternative coordinates: the (x;) or the (Z;). These determine corresponding
local basis sections:

9 9 A A o 8
(81,82) = <$,5&> and (61,82) = (%’5‘;) .
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These are related (invertibly) by

8—1'51 + @82

51 = 62 and 52 = 9z 92

withz = (1-y2— 237 and y = (1 — 22 — 2?)%.
Also on U NV, we have angular coordinates:

6:UNV — B : (z,y,2) — (0,9) = (&1, 82),
where 8 and ¢ are the angles defined by

z =cosycosf ) soy =0 on the equator and 7/2

at the north pole,
y = cosysinf and 8 = 0 in the positive z-direction,
z =siny 6 = £7/2 in the =+ y-directions.

Again we get local basis sections

PN o 0
(6.2) = (35 35)

which relate to the original choice (01, 382) by

A o) A 0 0
o = 6—;—81 and O, = b—z(% -+ %82 .

The local section
UNV — TM : (8,1) — cosy b,

locally models an east-west wind on the Earth, decaying from the equator to
the north pole. Similarly,

UNV — TM: (8,9) —s costp b,

models a north wind.
A local flow on S2 for the vector field

v:UNV — TS%: (8,9) —> cos v By
is given by
$:UNV x(—€,€) — 821 (8,9,1) — (a(2), B(2))
where the real functions «, § must satisfy

da dg

E:COS’w, E:O,
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((0),8(0)) = (6,9).

Hence a(t) = 6 + tcosy and B(t) = ¢, and the integral curves are parts of
circles of latitude. The existence and uniqueness theorem for smooth local
flows of smooth vector fields on manifolds says that through each point there
is one and only one integral curve and ¢; : © — ¢(z,t) satisfies ¢yrs = @t 0 Ps
when t, s, (t+5) € (—¢,¢€). For our flow on S? this is satisfied for small enough

s,t since ¢y : (6,v) — @ + tcosp.
Moreover each ¢, is a diffeomorphism from U to ¢:U.

Integral curves on Euclidean 2-space E?
We consider M = E? with its standard chart. Take the vector field

v:E — TE? : (z,y) — 0, + 220, .
It is convenient to use (z,y) as coordinate labels instead of (z!,z?) or (z1,2);

then we denote their induced basis fields by 9, = 8, and d; = J,. We take
the open subset of E? given by

1 1
U=1{(z,y) €E [lz+1] < oyl < 7 ¢
4 4
We seek for each a € U an integral curve
11 o . .
Co: (——2-, —2-) — E°  with ¢,(0) = a and ¢,(t) = v(c,(t)).
The differential equation expands into
éat) = ¢'(t) 0, + 2(t) 8y = Oy + (c'(t))? 0y -
1
ct)=k+1 and ()= g(k+t)3 +1.
Taking a = («, B) as the initial point, we find
13,1 3
ct)y=(a+t,8—za’+(a+1t)].
3 3
Accordingly, the local flow is given by
1 1 3
¢s : (o, B) — a+s,ﬂ—§a +§(a+s)

and we easily check that

¢t+s=¢t0¢sl(a,ﬁ)'——) <a+s+t,ﬁ—%a3+%(d+s+t)3)-
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3. Components of tensors and forms on E?

; ; life=3j
. 0 . 1 2 L. 1 j A )
(a) g: M — TYM : (z',2%) — 0j;dz* ® dx’, where §;; = {Oifi ) }

This defines the usual metric structure on E?, that is the standard dot
product on each tangent space T, M:

g(u* O, v™0n) = dij dz' ® dz (u*y,,v™0,,)
= d;j u*v™ dzt ® da? (O, Opm)
= & utv™ (5}, 67,)
= 51‘]' uiv?

= u v +U2’U2

(b) w:M — A2M : (z,,x2) > dz' Adz®. This defines the usual geometrical
measure on E?, that is the standard parallelogram area mapped out by
pairs of vectors in each tangent space T, M:

w(u*o, v™bp) = l(dz‘1 ® dr* — dr? ® dz')(uk Ok, v™,,)
= (u v? —u?vl).

Both of (a) and (b) generalize to E”, where g has the same form but we
sum now over i,j = 1,...,n and w = dz' A --- Adz™. Any change of chart
induces corresponding changes in their local expressions. Check the role of
the Jacobian!

4. Integration of forms on FE?

Let M be a closed, simply connected region in E?. Take v € A M to be given
in standard coordinates by

1
v= E(a:dy —ydz).
Then

1
dv = i(dx/\dy——dy/\dz)
=drANdy,

/dv:/ v = / dz/\dyzl/ (rdy —ydz).
M oM M 2 Jom

But dz A dy is the usual volume form for E? so

whence

/ dz A dy is just the area enclosed by the curve OM.
M
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In particular, if M is the ellipse L with
L={(x=acosf,y=>bsinf) €E?|0<0<2r}
then

zdy —ydzr = (ab cos® @ + ba sin? §)dé
= abdf

and the area of the ellipse is

/dmAdyzl/ abdf = wab.
M 2 Jom

Evidently the volume form on E? is dz A dy A dz and its restriction to the
2-dimensional submanifold E?, which is the (z,y)-plane, is simply dz A dy.
Now, the ellipse itself is a 1-dimensional submanifold of E? and like the circle
it supports a nowhere-zero 1-form df. The standard ‘volume’ form on the
ellipse L is actually r df, where > = z2 4 42, and therefore the circumference
of the ellipse is

2m
/rd9 :/ (a2cos29+b2sin29)%d0
L 0
2n .
= a/ (1—e?sin?h)zdh,
0

the familiar elliptic integral with e the eccentricity (1 — b2/a?)?.

. Metric tensors on [E?

The standard Euclidean metric tensor on M = E2 is
gz : TeM x T,M — R : (u'9;, vaJ-) — ulo! 4+ ue?

and so here g = §;; dz’ ® dz’. This induces on E? all of the usual Euclidean
geometry, including the usual volume form; it is easily generalized to E™.

Another metric tensor on E? is given by
Ne : TeM x T,M — R : (u'0;,v78;) — ulv! — u?v?
and this is expressed as
S 10
n=mn;de' ®dr’ where ;= [0 _1J .

This induces Minkowski geometry on E?, as used in relativity.
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6. Electromagnetic fields as forms

The equations of the electromagnetic field on a spacetime 4-manifold can be
very neatly expressed in terms of the electromagnetic 2-form F € A2 M.

Locally, for a basis of 1-form fields (w?),
F=Fju A

Taking the w? to be mutually orthogonal unit fields, the nonzero metric tensor
components (g;;) are the eigenvalues of g, lying along the diagonal.

The Hodge dual isomorphism gives *(w® A w?) = w™ A w* where (i, j,m, k) is
an even permutation of (1,2,3,4). So *(w' A w?) = w3 Aw?, ete. Similarly,
*(wh Aw? Aw?) = w! ete.

In regions that contain negligible amounts of matter,
dF =0 and *d+xF = J; (C.1)

here J is the current density. These equations correspond to the usual vector-
calculus expression of Maxwell’s equations via:

xd = curl and xdx = divergence.
Conservation of charge is expressed by
divJ =0.
This is automatically satisfied when there is negligible matter since it becomes
xdxxdxF =0 because d?=0.
However, in the presence of matter, (C.1) becomes
dA=0, xdxB=1J for some A, B € A’M,

with A and B related by some transformation, perhaps linear. Once again,
d? = 0 ensures conservation of charge.

Locally, J = pJiw! where p is the charge density. Then over a compact
spacelike submanifold S of M we can measure the total charge Qn and find
that
Qn = /pwl/\uﬂ/\w3
s
= / *J = / dx B
s s
= / *B.
88
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C.4 Bundles

The tangent bundle T M to a smooth n-manifold M is present without the assump-
tion of any further properties of M and it naturally inherits a 2n-manifold structure.
Of course, T M is a special bundle of vector spaces, copies of R, the fiber of TM.
In a similar way, we can make bundles of groups with fiber some fixed Lie group G
or more generally, bundles of manifolds.

Let B be a smooth n-manifold and let F' be a smooth m-manifold. A manifold
F is a bundle over B with (model) fiber F' if

(i) there is a smooth surjection p: E —» B, the bundle projection;

(ii) around every point x € B there is an open set U, such that p* U, is diffeomor-
phic to U, x F. We call U, a local triviality neighborhood. Of course,
pi{z} = Fforall z € B.

We sometimes abbreviate this in the notation F < E & B, and call E = B x F
a trivial bundle.. Property (i) says that E ‘sits above’ B in some sense. Property
(ii) says that locally E looks like a product of pieces of B and copies of F. Globally,
E may not be such a trivial product. For example, the Mobius strip with fiber the
interval [0,1] is a twisted product of [0, 1] over S!; this is a nontrivial fiber bundle
over St with fiber [0, 1]; the associated ‘untwisted’ product is a cylinder. One of
the important achievements of algebraic topology has been to provide classification
of the extent to which twisting occurs in a bundle, via characteristic classes and
obstruction theory.

Now, a bundle E over B with fiber F, often just called an F-bundle over B, is
particularly useful when F' has not only a manifold structure but also some algebraic
structure. Thus, for example, the tangent bundle 7'M to an n-manifold M has the
structure to support linear algebra in a smoothly consistent way at each of its
constituent tangent spaccs. This canonical linear presence allows M to support
differentiation processes. This is achieved because sections of the projection map,

7. TM —M:v,r—z (fv, € T,M),

have the form
s:M —TM:zx+— s, (withs, € T,M)

and so generalize the notion of a map
f M—R":z+— f(x)
from M to R™, which is equivalent to a section f of the trivial bundle M x R",
f:M— MxR":z+— (z, f(z)).

In a similar way, if G' is a Lie group (that is, a manifold which is also a group
having smooth group operations of composition and inversion), then we can con-
struct a G-bundle E over a manifold B. Now, sections of the projection map of
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E onto B generalize the notion of a G-valued map on B, because the G-bundle
over B actually provides (in a smooth way) one copy of G at each point of B. The
precise manner in which the copies of G are smoothly arranged will depend on the
particular choice of G-bundle over B. There may be many such choices, or just the
trivial bundle B x G. Examples of Lie groups include R", the general linear groups,
orthogonal groups, symplectic groups, spin groups, and discrete groups.

Ex

1. Show that SO(2) is a Lie group which is equivalent as a manifold (that is, is
diffeomorphic) to S! by constructing a suitable diffeomorphism.

2. Show that being diffeomorphic is an equivalence relation on any set of man-
ifolds. (The transitivity property is always extremely useful because it saves
having to make direct constructions. Instead, a simpler intermediary object
is used as a stepping stone; failure to exploit this has caused many examinees
to waste a lot of time!)

3. Investigate the possible G-bundles over S! when G is one of Z, = O(1), SO(2),
0(2), SL(2,R), or GL(2,R).

C.5 Metrics and connections

Returning to the tangent bundle TM to a smooth n-manifold M, we recall the
importance of inner products on vector spaces— these allow the definition of lengths
or norms of vectors and angles between vectors. The corresponding entity for 7'M
is a smooth choice of inner product over its family of vector spaces {T, M |z € M}.
Such a smooth choice is called a Riemannian metric on M. In fact, both positive
definite and indefinite quadratic forms are important in this context. The indefinite
metrics on a manifold are called pseudo-Riemannian metrics and have particular
significance in manifolds used to model relativistic spacetime (cf. [31, 30]).

A manifold M equipped with a metric g is called a (pseudo-)Riemannian
manifold. Given a Riemannian manifold (M, g) we can measure the length of any
vector v, in any tangent space T, M, as (g(vs, vg)) %, and the angle 6 between any
two vectors uz, v, in the same tangent space by means of

92 (Uz, Vz)

cosf = - .
(9z (uz, Uz) 9z (V2,vs)) 2

Then it follows that the length of a curve
c:[0,1] — M : t —> c(t)

is given by

D=

L(t) = /O (9e(e) (68), é)) ¥ it
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Intuitively, given a metric g, we would expect to be able to deduce a sensible
definition for parallelism of vectors at a point. Pushing intuition a little more,
we can also see how to define parallelism for vectors along a curve; that is, how to
parallel transport vectors. Actually, the formal treatment of a smoothly changing
inner product, and its determination of a natural definition of smoothly changing
tests for parallelism, are at the center of the contribution made by the classical
innovators, Gauss and Riemann. Curvature of a manifold is defined to be present if
there is a dependence of parallel transport on the choice of path. Thus, in a standard
Euclidean plane or on a cylinder, there is no curvature; they are flat 2-manifolds.
However, on a standard 2-sphere, the natural parallel transport of a vector, round
a triangle made up of three arcs of perpendicular great circles, does not return to
itself. This can be demonstrated with effect in first courses of Differential Geometry
by parallel transporting a pencil round the head of a suitable student. The spherical
triangle involved here will be seen to contain three right angles, whereas triangles
in Euclidean space always have two right angles. We say that the standard sphere
has positive curvature; Euclidean space has zero curvature so is called flat. A
saddle-shaped surface, like

S={(z,y,2) R | z2=2" -y}

admits triangles with fewer than two right angles and is said to have negative
curvature. See Gray [40] for a catalog of named curves and surfaces in R®, together
with Mathematica code to construct them. Plots include surfaces color-coded by
various curvatures.

The ramifications of the geometrical concept of curvature are very far-reaching.
From the introductory comments above, it is apparent that the process of parallel
transport is controlled by the rate of change of the metric along the chosen path.
The local indicator of curvature is the change of the parallel transport process
round a small closed path. Thus, we expect to be able to isolate the parallel
transport map in terms of the gradient of the metric map and to isolate the curvature
map in terms of the gradient of the parallel transport map. This is indeed the
case. The parallel transport map is controlled by a linear connection; literally it
connects up the parallelism structures of the individual tangent spaces. Formally,
we can represent the linear connection as a smoothly varying vector-valued function
on tangent vectors, that is a vector-valued 1-form, w. Then the curvature is the
covariant exterior derivative (the generalized curl) of wj; that is, the curvature of a
connection 1-form w is the 2-form Dw = Q (see below). A detailed example of the
computation of connection and curvature forms and the Riemann curvature tensor
is given in Dodson [29], pp. 155-158.

In the middle of the last century, the concept of curvature revolutionized geome-
try. At the beginning of this century it did the same for cosmology, through general
relativity. For the last few decades, a further abstraction of curvature, to the con-
text of arbitrary nonmetric connections, has dominated the development of gauge
theory by geometers and theoretical physicists. In 1986, we saw a Fields Medal
awarded to S. K. Donaldson largely for an amazing application of gauge field theory
in algebraic topology [33]. The formal context here is that of principal bundles, and
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we shall summarize next the definitions for connections and curvature there.

C.5.1 Principal bundles

A principal G-bundle over an n-manifold M is a G-bundle p : P —» M for a Lie
group G such that:

(i) there is a group action P x G — P;
(ii) the quotient of P by this action is M, giving a smooth projection

P—» M=P/G:u—> [u].
We sometimes abbreviate this in the notation G < P -5 M.

Ex

1. P = M x G is the trivial principal G-bundle.

2. P={(=z,(e:)s) | x € M, (e;), is an ordered base for T, M } and G = GL(n, R).
This is the frame bundle of M.

A connection in a principal G-bundle G <+ P £ M is a smooth splitting at
each u € P of the space T, P into a direct sum

T.P=2H,P®V,P

where V,, P = ker(Tp : T,,P — Tp,yM). We call H, P the horizontal subspace at
u € P and V, P the vertical subspace at v € P. They comprise the horizontal
and vertical subbundles, respectively, of TP.

Now, because P is a G-bundle, it is locally trivial and so (Vz € M) p*(z) = G.
Next, if p(u) = z, then T, P = T.G = g where e is the identity in G, because B acts
smoothly and vertically on p“ (z) and so also on T, P. However, T,G has also the
structure of a Lie algebra induced from the commutator operation (Lie bracket).
(There is a detailed discussion of Lie algebras in Hochschild [45] and of the above
construction in Kobayashi and Nomizu [62].) A connection exploits this Lie algebra
structure and actually appears as a Lie algebra-valued 1-form, that is, a 1-form on P
taking values in the vertical subbundle V P C TP with model fiber g. Just how this
is done is described with examples in Dodson [29]. For our purposes, the important
role of a connection is that it induces isomorphisms called horizontal lifts from
tangent spaces on the base M to horizontal subspaces of the tangent spaces to P:

t : TpyM — H,P C TP :v+— o',
Technically, a connection splits the exact sequence of vector bundles

0—VP—>TP—TM — 0
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by providing a bundle morphism TM — TP with image the bundle of horizontal
subspaces.

Suppose that w is a connection in a principal G-bundle G — P —» M and
it induces the bundle splitting TP = HP & VP with projection onto horizontal
components given by

hy :TP —» HP : w = wp ® wy —> wy, .

Now, we can view the connection 1-form w as a section of T7*P ® V P, that is as an
element of A'P ® V P; so for any w € T,P, w(w) = 0 € VP if and only if w, = 0.
Then dw € A2P® VP and we define dwo h, = Dw =  to be the curvature form
of the connection w. The curvature form €2 satisfies

(i) d2oh, =0,
(ii) Q(X,Y) = dw(X,Y) + L[w(X),w(Y)] for all tangent vector fields X,Y on P.

Note that the bracket in (ii) represents the Lie bracket (or product) in the Lie
algcbra g.

C.5.2 Linear connections

In the case that P = LM, the bundle of linear frames on M (¢f. Cordero, Dodson
and de Ledn [22] for a treatise on frame bundles), the structure group is G = GL(n).
Then a connection w in LM % M is called a linear connection on M. In this
case we have also another 1-form, the canonical 1-form or soldering form

0:TLM — R": (u,W)r— ¢y 0T, (u,w)

where T),, is the derivative of the bundle projection p; : LM — M and c, sends

vectors in Ty, ()M to their components with respect to u. Hence, 8|y a = 0. Now

we find two additional properties of the curvature and connection forms for a linear

connection:

(iii) dOoh, =2 AH;

(iv) O(X,Y) =d§(X,Y) + 1 (w(X)-6(Y) —w(X)), where © € AM is the torsion
form of the connection w, defined by

©®@=dfoh,.

In terms of local coordinates, because VLM has fiber ]R”2, the connection form w
and curvature form 2 appear as matrices of forms on M:

i i gk i _pi ok !
wj =TI dz" and Q) = R}, de” Ade',

where the I‘fj are called the Christoffel symbols. We shall see how these compo-
nents can arise later {¢f. equation (C.2) and preceding text). The soldering form 6
takes values in R and so appears as a vector of 1-forms on M:

6 = gida’ .
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Then the equations (i)-(iv) above yield

dw;'- = —uwj /\w;-C + 9
A = dwi Awf — wi A dw)

det = —w;l NG+ 6

of which the second and third are called Bianchi identities.

Given a principal G bundle G < P % M, and a manifold F on which G acts,
then there is a well-defined F-bundle F < (P x F)/G % M called the associated
F-bundle. An important example is the case when P = LM and G = GL(n). Then
TM = (LM xR")/GL(n) is an associated R"-bundle, and the other tensor bundles
are associated F-bundles with F an appropriate tensor product of copies of R® and
(R™)*. Every connection w in a principal G-bundle induces a connection in every
associated F-bundle F < E % M by means of a splitting of TE into horizontal
and vertical subbundles. Horizontal lifts from T'M to HE are along the same lines
as those from TM to HP.

Along any curve ¢ : [0,1) —» M in M we can construct through each uo €
p~(c(0)) C P a unique curve c' : [0,1) — P with horizontal tangent vector and
poct =c¢, c'(0) = up. The map

711 p(c(0)) — p*(c(t)) : ug —> ' (t)

defined by the curve is called parallel transport along c. Parallel transport is
always an isomorphism, and commutes with the action of G on P. An associated
parallel transport map satisfies 7 ov(c(t)) = v(c(t)). The covariant derivative of
v along c is defined to be the limit, if it exists

lim %(%,r ov(e(t + h)) — v(c(t)))

and is usually denoted by V. v. Using integral curves c, this extends easily to
Vv for any vector field w. Evidently, the operator V is linear and a derivation:

Vwu+v) =Vyu+ Vyv and Vu(fv) =w(f)v+ fVyv;

it precisely measures the departure from parallelism. For the case of a connection
in a frame bundle and associated bundle T'M, the local appearance of V on basis
fields (9;) about z € M is

Vo,8; =T}; Ok

where the I‘fj are the Christoffel symbols defined earlier. For a linear connection we
define two important tensor fields in terms of their action on tangent vector fields:
the torsion tensor field T is the section of T3M defined by

T(u,v) = Vyv — Vyu — [u,v]
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and the curvature tensor field is the section of T} M defined by
R(u,v)w = Vy,Vyw — Vo, Vyw = Vi yw.

The connection is called torsion-free or symmetric when 7' = 0 and flat when
R =0.
In local coordinates with respect to base fields (9;),

T(8;,0k) = (D% — k)0,
R(0k, )05 = (0kT}; — AT, + T Thp — Ti;Tin)0i -

Then it follows that the connection form w € A'LM ® R™” of our linear connection
is expressible as a matrix valued 1-form with components

w;- = F;-k dz* . (C.2)
Hence
dw; = d( ;k) A dz*
= Or I‘;k dz" A dz*
w,il A w? = Ffw I‘?k dz" A dz*
and the curvature form € A2LM ® R** has the local expression
1 1 1 T k

= ;-Tk dz" A dz* .

C.5.3 Levi-Civita connection

If M has a metric tensor field g, then it induces a linear connection that is uniquely
determined if we require that it has zero torsion and that all parallel transport
maps should be isometries. These two requirements are often referred to as the
symmetric and metric compatibility properties of the connection. The linear
connection so determined by a metric is denoted V¥, it is called the metric or Levi-
Civita connection and is always used with a metric tensor unless explicitly stated
otherwise (because any other choice involves extra structure). This connection
determines the geodesic curves, which are those ¢ : [0,1) — M having parallel
tangent vector fields:
Vé(t)é(t) =0.

There is a very important map which is defined for each £ € M on a neighbor-
hood S; of 0 € T, M and which sends each ug € S; to the point at unit distance
along the geodesic through z with initial tangent vector ug. Formally, we define

S = {uo € T, M | 3 geodesic ¢: [0,1) - M with ¢(0) = z, ¢(0) = uo} .
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This is evidently non-empty and we put
exp, : Sy — M 1ur— (1)

where ¢ is that (unique) geodesic through ¢ with tangent vector ¢(0) = u. The
uniqueness follows from the Cauchy theorem for differential equations. The impor-
tance of the map exp,, called the exponential map at z € M, is that every point
x € M has a neighborhood N; of 0 € T; M on which exp, is a diffeomorphism
onto its image. We say that M with its given metric structure is (geodesically)
complete if exp, has domain T; M for all z € M. We say ‘geodesic’ completeness
because this is equivalent to every inextensible (i.e., maximally extended) geodesic
having domain R as a curve in M. We note that the exponential map and (geodesic)
completeness can be defined for any linear connection, metric or not.

Ex
1. Connection geometry calculations

(i) Consider E! with Vg,8, = A, for some constant A € R, with respect to
the standard chart. Take

c:[0,1] — E' :t+—t so é&(t)=0;.

Then
Tt & TC(O)EI — Tc(t)El tag O — a(t)81

satisfies

da _
—(E+a/\=0 so  aft) =age

Evidently A = 0 corresponds to the usual connection since we do not
usually alter the length of vectors when we move them on E!. Any
A # 0 determines a non-Euclidean parallelism structure on E'. A similar
connection could be put on S!.

(ii) To find a local expression for a parallel transport isomorphism, we con-
sider M = E? with the standard chart and connection V having constant
Christoffel symbols

I'{, =T3, =1 and all other components zero.

Given the curve ¢ : [0,1] = E? : t — (¢,t?), we find the parallel vector
field
w:[0,1] — TE? : t —> f(t)0) + g(t)

for the two independent initial tangent vectors

w(0) =01 and w(0)=0a,.
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The parallel transport condition is Vew = 0 and we have ¢(t) = 8, +2¢ 0,.
Substituting,

fO1 + g0y + 2tfT%,8; + gT4,0; = 0,
(f+2tf+9)01+30 =0 so g(t) = g(0).

We solve f + 2tf + g = 0 for constant g to give:
case (i): f(t)=e ", g(t) = g(0) =0;
case (ii): f(t) = —e=?’ fot e dz = k(t), say, and g(t) = 1.
Then parallel transport along c is the isomorphism
7o Teo)B? — T B? a8y + B0, — (ae™ + Bk(t)) 01 + s,
or in matrix form

al] e k)] [e

g 0 1 ]|8]
Evidently V is not compatible with the usual metric tensor on E? because
parallel transport is not an isometry; for example,

7(8) = e V8 ;

so V is not the Levi-Civita connection for g.

2. Calculation of geodesics in a punctured plane

On an n-manifold we can always find geodesic curves going in all direction
from a point, but in general we may not be able to make them go very far.
Clearly, if M has a boundary then a geodesic may not be extensible after it
meets M. Another type of inextensibility can occur if M is incomplete in
some sense.

Let M = E? \ {(0,0)}, the punctured plane with standard coordinates. Then
the Euclidean conncction has zero Christoffel symbols and the equation of a
geodesic becomes:

Vit = Vg, ¢0;

so ¢ = 0 for k = 1,2. Hence the geodesics are straight lines, as we expect
for a submanifold of the Euclidean plane, but they cannot pass through the
origin. Thus, for example, the geodesic

c:(—€,€) —m M:t— (2-2¢,1—-1)
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which begins at (2,1) in direction —21 — j is only defined for € < 1. Locally,
the shortest distance between two points z,y on a Riemannian manifold with
metric tensor g is along a geodesic from z to y. If M is incomplete then no
(globally) shortest geodesic need exist. Check this for points on opposite sides
of a line though the origin in E2 \ {(0,0)}.

3. Geodesics in Schwarzschild spacetime

We find geodesics (corresponding to free particle trajectories) in Schwarzschild
spacetime. Here we take M = R x (E? \ B) with R giving the time coordinate
t and E3 \ B being the Euclidean space outside a ball of some radius & > 0
centered on the origin. We give E? \ B the usual spherical polar coordinates
(r,8,¢) and view the region B as containing some spherically symmetric mass,
like a star or planet. The appropriate metric tensor for this physical situation
has components

1-2m 0 0 0

(g'-): 0 _(1_2Tm)_1 0 0

* 0 0 —r2 0
0 0 0 —r2sin’6

for r > k > 2m, where m is the mass of the material contained in B. Denoting
the coordinates (t,r,0,¢) by (zo,z1,22,23) we find the metric connection V
has only the following nonzero Christoffel symbols:

m 2m\ !
Fil = _F(l)O -T2 (1 - T) ;

1
F%z = _Fi’:a = ;;
1 1 2m\ .

m 2m
ry, == - —;
00 ’I‘2 ( r ) )

T2, = sinfcosf;
Fg2 = cotf.

We recall that this connection is symmetric: T¥; = T'%; for all i, j, k.
Geodesic curves satisfy V:¢ = 0 and we consider two cases, each with param-
eter s, given by g(é,¢é) = 1.

(i) Circular geodesics: c(s) = (t(s),7(s),8(s), ¢(s)) with 7(s) = 0. We
shall take the plane of one of these circular orbits to be 6(s) = =/2.
Denoting differentiation with respect to parameter s by a dot, we expand
Vee =0 to give the system of equations:

t=0 = {= constant,
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. . 2 .
Tlad? +Thi2 =0 = (1 - —m> Mgz —o,

r ) r2
3
2 T o
= "= —TT-l¢ )
. . eriod
=0 = ¢= constant:p—2—,
T

—> period =T = 27¢.

From g(¢,¢) = 1 we find

Substitution above gives circular orbits with periods
r 3
T:27rr(——3) > 3m.
m

In time-units, for the Sun we have 2m = 10~° seconds and T' = 1 year
~ 1077 seconds for the Earth orbit, so we deduce that the implied radius
is 7 &~ 500 seconds, which is what we observe. Similar data can be
checked for the Moon or other satellites orbiting the Earth. For the
Earth, 2m &~ 3 x 10~ !! seconds.

(ii) Radial geodesics: c(s) = (t(s),7(s),8(s), ¢(s)) with 6, ¢ constant. The
geodesic equation reduces on 6 = 7/2 to

and we deduce r = —m//r?.

Now 7 measures precisely the acceleration due to gravity at distance r
from the center of a spherically symmetric mass m in agreement to first
approximation with Newton’s theory. We find for example, in time units,
that:

ia -3 x 1077 sec;

11
on the Earth { 2”: 3% 10 sec }

2.1 x 1072 sec

QR

2.5 x 10718 sec
5.4 x 1073 sec

1073 sec
2 sec

QR

on the Moon { 2m } i =L %1077 sec;

2m

on the Sun {

QR

P —% x 1075 sec.

4. Metric connection and parallel vector fields

We find a metric connection and equations for a parallel vector field along a
given curve. Take M = (0,27) xS, an open cylinder with identity coordinate
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z on the interval (0,27) and angular coordinate 6§ on the circle S'. Consider
the expression in these coordinates of the pseudo-Riemannian metric tensor

—(1 — cosx)? 0

(9i5) = 0 (1-cosz)2| (z,6) € M.

From symmetry and compatibility of the induced metric connection V with
Christoffel symbols (T'j}) we have

= ig’”k (Oigjk + 0;9ij — Okgij) = §9mkkri1’ »  Say.

Substitution gives

L. — —2sinz(1 — cosz) 0

1hy = 0 —2sinz(1 —cosz) |’
I = 0 2sinz(1 — cosz)

244 7 | 2sinz(1 — cosx) 0 ’

Hence

sinz 0
Tl — | 1-cosz .
1y O sin k]

l1—cosz
sinz
. = ,0 1—cosz
iJ sin 0 .
l—cosz

For the vertical-going curve
c:(0,27) — M : t—> (t,0),
a parallel vector field is
v:(0,2n) — TM :t—> f(t)0: + h(t)0s

where Vv = 0. This differential equation becomes the system

8 f+ fT1; =0

Ozh+hI2, =0,
so suitable f and h must satisfy

sinz sinzx

az.f = _f and azh = —

1——coszx 1—coszx
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5. Connection, torsion, and curvature forms

(i) On E? with the standard coordinates, one V that is not symmetric is given

by the Christoffel symbols
1|18 2 |16
- [28) - (1)
Its torsion form is

1 , A
0= —F’?.ak dz* A dx?

= (881 +60;) dz! Adz? + = (461 + 48;) dz® A dx?

(281 + 8;) dx' A dx? (w1th values in T, M).

So © = (2,1)dz! A dz? (with values in R?). The connection form of this
V is w with
w= (Ffjdmj ® Oy, dx
_ 1d$1®61 8d.’131®62 dal 1d:c1®61 6d.’l)1®62
T |4d2? ® 0, 0dz? ® 0y 2dz? ® 0 2ds® ® O,

dx?

|18 1 16 . R SUPN
S0 w = [40}&5 +[42de (with values in R**?).

(ii) The previously mentioned Schwarzschild metric tensor on M = RxE®\ B

with coordinates (t,7,0, @) is of the form
—f2(r) 0 0 0

N f2(r) 0 0 . .
(gi;) = 0 0 2 0 with f a function of r.
0 0 0 r’sin’6

As before we let indices run 0,1,2,3. Evidently, a basis of mutually
orthogonal unit 1-form fields, that is of orthonormal fields, is given by

(W) = (fdt, f~'dr,r d8,rsin8dg) .

Their exterior derivatives satisfy the structural equations
dw' = —w;- Aw!  where w —F'kw ,
and Q; = dwj- +wi A w]- where Qj = Rjk, wF AL

Computation of the derivatives yields the following, with f denoting the
derivative of f with respect to r:

d® = fuwl A’

dw' = 0;

dw? = i wl A w?;

T

cot 6
dw® = iwl/\w3+——w2/\w3.
r r
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Then we deduce that the only non zero w§ are:

ff

wi=—wl= i 2 50 dwf:—wll\cf;
T
Wi =—wi= i P s0 dui= ff AL+ L f cot0w2/\w3;
WO =wh=fu® so dw1:(f +f)w AW,
cot 8 1
wi=-wl= . w?  so dwgz—ﬁuﬂ/\ws.

By inspection of the second structural equation we find:

0 (ff+ f2) w' AW

ngffw Aw?;

03 = ffwl/\w + f cot §w? A w?;
Qf=fr—fw1/\w2;
Q§=f2;1w2/\w3;

r

00 ﬁw?’ Al
r

Then from the definition of the curvature form we obtain the components
Ry, of the Riemann curvature tensor. For example,

f-1

3 _
3332 = Rjy3 = 2

Einstein’s equation in general relativity can be written

Rz]k ‘LJO + Rz]l + Rt]2 + Rz]S -

It results in two differential equations for f, reducible to
d
P+r—fi-1=
dr

which admits the solution we encountered before:

ﬂﬂ:@—¥§%
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C.6 Fibered manifolds

As we have seen, a connection is naturally induced on a (pseudo-)Riemannian man-
ifold and the formal ingredients yield a view of this entity as a connection in the
principal bundle of linear frames. Moreover, connections can be defined in other
principal bundles, and have important applications in geometry and physics. It is
then logical to ask what is the least structure that is needed to support the con-
cept of a connection? The answer is a fibered manifold, which is a submersion
p : E — B, which means that (the derivative of) p has maximal rank everywhere
(cf. [66] for more details).

A connection on a fibered manifold p : £ — B is a section I' of the first jet
bundle g : JE —» E. Now, JE consists of classes of sections of p that are equivalent
up to first derivative; an element of JE at X € FE is represented by a linear map,

the derivative
To : Tp(X)B — TxFE

of a section 0. Because o is a section, we have Tpo To = lyp and hence To
corestricts to the identity on the subbundle TB — TE. It turns out that JE —» E
is an affine subbundle of the vector bundle T*B @ TE.

Locally our fibered manifold connection appears as
N — JEST*BegTE,

(8, X*) s dz'® i -T%dr' ® 9

oxt axe’
where 5
Fa = Ot.
' (931:1’Y

Here, (v*) represents the class of sections of E determined by I'. The minus sign
is a convenient convention. Each connection induces the expected splitting into
horizontal and vertical distributions:

TE -+ HE®pVE,
(mi,Xa,a':i,Xa) — (28, X°, 40,5 T2) & (xi,Xa,o,Xa Y r;.*).

C.7 Systems of connections and universal connec-
tions

The space of all connections on a given principal bundle (or fibered manifold) is an
infinite-dimensional vector space of sections of the appropriate jet bundle, perhaps
with additional constraints to accommodate respect for group actions. Such a space
is difficult to handle but contemplation of it arises naturally in cases where a family
of connections must be considered. One useful way to obtain finite-dimensional
bundle representations of the family of connections is to use the device of a sys-
tem of connections introduced by Mangiarotti and Modugno [66] (cf. also [80]).
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The important bonus of this approach is that on each system of connections there
exists a unique universal connection of which every connection in the family is a
pullback. An account of the theory for principal bundles and the frame bundle in
particular, with recent applications in geometry, topology, spacetime singularities
and statistical theory, can be found in Chapter 9 of Cordero, Dodson and de Ledn
[22]. Here we just provide the definitions.

The system of all connections on a principal G-bundle E —» E/G consists
of the fibered morphism over E:

éJE/GXE/GE—}JE(ng,G)I——)gz

Here we view JE as a subbundle of T*(E/G) ® TE and 5, appears as the linear

map
(Ts), : To(E/G) — T,E.

A system of connections on a fibered manifold is defined similarly. Given
E—B
we want a fibered morphism over E
1:CxgE —JE—>T"BpTE

with C —» B a fibered manifold. We call C the system space. Then any section of
C —» B determines a unique connection on E —» B as a section of JE —» E.

For the system of all linear connections on a manifold M we have two alternative
views, using the tangent bundle as a fibered manifold or using the frame bundle as
a principal bundle. Thus we have:
mp : TM —» M with system space

Cr = (IT‘M Qpm T‘ITT)‘_ITM cT*M Qpm JTM,

viewing 1y as a section of T*M Qp TM in T*M Qp TT M.
mr : LM —» M with system space

Cp=JLM/G—>T*MeuTLM|/G.
Let JE 5 E —"» B be the first jet bundle over a fibered manifold. Then there
is a unique connection A on the fibered manifold
m:JEXE —» JE

having the universal property that I' = I'*A for all connections I' € Sec(JE/E). To
see this, observe that the jet bundles are affine subbundles of vector bundles:

JE—ST*BQTE, JJE)>T*E®TJE.
Then define

A:JExpE — J(JEXE)—> T"(JE)QT(JE X E),
(Sz,€) — ((X,Y,8) = (X, Y, 8, TsX)).
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Tables of Homotopy Groups

The following tables collect together some information on the homotopy groups of:
1. Spheres S™,
2. Special unitary groups SU(n),

Symplectic groups Sp(n),

- W

Spin groups Spin(n),
5. Stiefel manifolds V,, (RFt™).
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D.1

Spheres

APPENDIX D. TABLES OF HOMOTOPY GROUPS

In these tables, the symbol @ indicates the direct sum of the groups and k Zo, for
example, indicates the direct sum of k£ copies of Zs. The results are from Toda [111]
and Mimura and Toda [77].

Tn4+k(S") | n =2 n=3 n =4 n=>5 n==6 n=7
k=1 7 Zs B .
k=2 Za Zo Zo
k=3 ZQ Zlg Z@ZIZ Z24
k=4 Z12 Zo 279 Zo 0
k=5 Zo Zo 279 Lo Z 0
k=6 Z2 Z3 Zogy® L3 Za Zy Zy
k=7 Z3 Z1s Z1s Z30 Zgo Z120
k=8 Z1s Zy Zo Zo Zing ® Lo 3Z»
k=9 Zo 279 37+ 3%Zso 379 474
k=10 2% | Tr2® L2 | L120®L12® Lo | Lya @ Do | Lo ® Lo | Loa® L2
Ttk (S™) n=28 n=29 n =10 n=11 | n>k+1
k=1 ; ; 72
k=2 Zo
k=3 Zos
k=4 0
k=5 0
k=6 Zo Zo
k=7 Z® Zia0 Z240 Z240
k=28 474 3Zy 279 27
k=9 5729 479 Z® 3% 372 37+
k=10 2224D Lo | 7oa® Lo | Z12® Lo | LeD L2 Z¢
Tn+k(S™) n=2 n=3 n=4 n=>5 n==~6
k=11 Z12®Zsy | Zga® 27y Zga ® 57> Zisos 272 Z50a ® L4
k=12 Zga D272 279 672 372 Z 240
k=13 2Zy Zg Zoa@Ze®D Ly Ze®D Lo Zg
k=14 Ze Z30 Z2520D L6 ® Zo Ze®D Ly Zio®Zo
k=15 Z 30 7 30 Z3o Zizo @ Z2 Zeo® Zeg
k=16 Z 30 Ze®Zo 276 ® 7o 272 Zsos ® 27+
k=17 Ze® Lo Zi12®B2%o | Z24BZ12PZLaD2Zy | Z4P 27> 4Z3
k=18 Z12®2Zs | Z12B 27y Z120D Z12D 572 Z2a02%Zo | 224D ZeD Lo
k=19 212D 2Zo | Z132DZs 71329 5%Zo Zoea B Lo Z10s6 ® Zsg
Tn+k(ST) n=7 n=28 n=29 n =10 n=11
k=11 Zsoa ® Zy Zs504 D Z> ZLsos D Zy Z 504 Z 504
k=12 0 0 0 Z12 Zo
k=13 Zg Ze® Zo Ze Zg Ze® Zo
k=14 Zos® Zy Zigao ® Ziog ® Zg Z16® 74 Z1e @ L2 Z16® L2
k=15 Z120® 372 Zi120 B 5Zy Zioao®3%o | ZiosoH 27y Ziag0 D Z2
k=16 475 TZo 47Zq Zi240 ® Lo Lo
k=17 47, Ze®4Zo 479 37Zo 3%Zo
k=18 Z24 ® Lo Zsoa DLas® Lo Zos® Lo Z24D2Zy | Zs®LsDZLo
k=19 Zaa ® Lo Zags ® Lo Zisea ®Z2 Ziyea ® Le Zioea ® 3 L2
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Trik(S™) n=12 n=13 n=14 n=15 n=16
k‘:11 Z@Z504 2504 .

k=12 27+ Zo 0
k=13 Zie @ Zo Ze YA Y A Z3
k=14 ZasDZs D Zo Z16 D Z2 Ze®Zy Z4DZo 272
k=15 Ziogo®ZLs Zisgo D Z2 Ziago ® L2 Z4g0 @ Lo 7D Lago® Zo
k=16 Zoy Za Zoa D Zo 372 474
k=17 47 474 479 572 6Zo
k=18 ZagoD2L4DZo | 2L3B 7o 278 ® L2 278® Ly | LyaD2Zs DLy
k=19 Zogsa® 57y Zioga ® 3%y | Zoa DZa®Zo | Zoea®2Z2 Ziaea ®27Zo
Trntk(S™) n=17 n=18 n=19 n =20 n>k+1

k=11 . . . . Z 504
k=12 0
k=13 Zs
k=14 272
k=15 Zago® Zy Z4go D Z>
k=16 37, 27 272
k=17 5Z4 Z®4Zo 474 479
k=18 228 ® Ly | LeDLsa®Zy | ZgD2Zo 78 P Ly Zsg® Zo
k=19 Zioea ® 27> Z26a B L3 Zioa®Zo | ZDZLoea® Lo | Zoca®DZo2

22(S?) > Z132® Zo

7r23(S3) > 27>

7r24(S4) > 679

m25(S®) > Ze®2Zo

726 (S6) > Zago D Z12

n27(S7) > Zog

728(S®) > Zoa® L3

729(S%) 2 Zm;

7m30(S10) = Zs0a D Zoa

7I’31(S11) =3 Z24@2Z2

m32(S1?) ¥ Zoy @ 5Z,

m33(S1%) = Zos®H 37,

734(S1) X Zoao D Zoa

mw35(S19) X Zo

736(S16) = Zoy

7r37(Sl7) > Z04

m38(S18) = Zau® Zyo

m30(S1%) = Zya @ Zo

710(S20) & Zoy B 270

741(S?Y) ™ Zya @ Zo

7r42(S22) ™ Ziog

224 for n 2 22
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D.2 Three special unitary and symplectic groups

1= 1 2 3 4 5 6 7 8 9 10 11 12 13
WI(SU(3)) 0 0 Z 0 Z Zs 0 Zlg Zg Z30 Z4 Zgo ZG
ﬂ;(SU(4)) 0 0 Z 0 Z 0 Z Ziog Zy Zi1oo D Zo Zoy Z 6o Zy
7\'1'(51)(2)) 0| 0| Z | Zqy | Zo 0 7 0 0 Z120 Zio | 2Z9 | ZaDZo

1= 14 15 16 17 18
m,(SU(3)) Ziga ® Ly Z3e Zas2 ® Ze Z3o® Zo Z30 B Zg
1. (SUM)) | Zieso @ Z2 | Z72®Zy | Z50a® 4%y | ZaoD3Zr | Z2520® Z12D Zo
m;(Sp(2)) Z16so Zoy 27, Z 4o Za520 D Zo

1= 19 20 21 22 23
i (SU(3)) | Z12®Ze | Zeo D Zs Zg Zes ® Ly 712 DLy
7, (SUM4)) | Z12B 7y | Zeo DLy | Z1e D L2 | L2640 DZa D 2Ly | Zos D472
3 (Sp(2)) 27> 3Z2 Z32 @ L2 Zsago B 2Zo 3Z»

D.3 Symplectic groups
m:(Sp(n))

i\n 1 2 3 4 5 n>6
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 Z Z Z Z 7 Z
4 Zo Zo Zoy Zo Zo Zo
5 Zoy Zo Zy Zo Zo Zo
6 Zoar 0 0 0 0 0
7 Zoy Z Z Z Z Z
8 Zo 0 0 0 0 0
9 Zs3 0 0 0 0 0
10 Zas Zgy 0 0 0 0
11 Zoy Zo Z Z Z Z
12 279 274 Zo Zn Zo 7o
13 Z12® 3 Za® Ly Zo Zo Zo Zy
14 Z84652742 Z7!/3 Zg,ﬂ 0 0 0
15 272 Zo Zo VA 7 Z
16 Zg 274 Zo 0 0 0
17 Z3o Z 4o 0 0 0 0
18 Z30 Zyz@Z2 Zs.p Zo 0 0
19 Ze® Z2 Zo®Zo Zo Zo Z Z
20 Z12®27Z> 3Zo 27, 279 Zo Zo
21 Z12@ 2%y Z3a @ Zo Z12® L2 Ze D Lo Za Zo
22 | Z1352@Z2 | Zaas1®22Z2 | Zy11y12002Z2 | Z11y/Z2 | Zgans 0
23 27 3Zo 274 Zo Z2 Z
24 Zo®Z2 Z2 0

22(217.-1—1)! for odd n

o
Tan+2(Sp(n)) = {Z(2n+1)! for even n

Tan+3(Sp(n)) = Zs

Tanta(Sp(n)) = {ZQ for odd n

Z2® Z, for even n
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D.4 Two spin and two exceptional groups, and

Ccr?
mi(G)

G\i 1 2 3 4 | 5 6 7 8 9 10 11 12 13
Spin() [0 [0 Z |00 0 |Z |22, | 222 | Zs | Z®Zz | 0 | Z7
Spin(9) 0O|O0O|Z|0O0]|O 0 7| 279 | 279 | Zg | ZD Zo 0 Zy

G 0(0|Z|0]|0|Z3| O Zo Ze 0 YACY A 0 0

Fy 0O|0|Z]|0O]|O 0 0 Zo Zy 0 7@ Ly 0 0

CP? 0|0|O0|O0O]O 0 0 Z Zo Zo Zio4 0 0

G\i 14 15 16 17 18
Spin(7) | Zasao @ LD Zo 472 7Ly 228 B2%y | Zoas ® ZLie® Lg® Zy
Spin(9) 7g® Ly Z®3%Zy 672 Lg®2Zy | Logas DZi1e D Ls®Zy

G2 Z168 ® L2 Zy Ze®2Z2 Zg® L3 Z 340

Fy Ly Z 27y Zo Z720 D Z3

CP? Zo Z120 3Z+o 479 Z24BZo

G\1i 19 20 21 22 23
Spin(7) Zy 2%2 | Z24®Z4 | Z1039s D 2L B 4Z2 gD 5%Zo
Spin(9) Zy Zy Z12 Z111y32DLs ® 22> 9B 2%Zo

Go Ze Lo 0 Z1386 D Zg gd2

Fy Zio 0 273 Zo7 or Zg gD Z

CP? Z504 ® L2 0 Zeg Z4 Z&ZLi20B2Zo

where ¢ = Z4 or 27Z,.
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D.5 Real Stiefel manifolds
Tables for 7} . = Txip (Vim(RET™))

I. Adapted from G.F. Paechter, Quart. J. Math Ozford 7 (1956) 249-268.

p=20 k=1]|2 | 4s—1 | 4s+1 | 4s | 45+ 2
m=1 Z 7 Z 7 7 7
m>2 Z2 Z Zy Zo Z Z
p=1 k=1 2 4s—1 | 4s+1 4s 4542
m=1 0 7 72 Zy Zy Zy
m = 0 27 Zo Zo Z.&® 7oy 7Z.® 7oy
m23 0 Z 0 Z2 2Z2 Z4
p=2 k=1 2 4s — 1 45+ 1 4s 4s + 2
m=1 0 Za Zg Za Zo Zo
m= Z 279 Z4 Z4 274 279
m = 27 Zo Z® 7o YAGY M 27+ Zo
m >4 Z 0 Zo 78 279 0
p=3 k m=1 m =2 m =3 m =4 m>5
1 0 Zo 279 Zo 0
2 Zo 27, Za Z 0
3 Z19 Za Zo Zo Zo
4 LDZ12 | 2®Z12® Ly | 2DZL12P Ly | 22D 712D L4 | ZDL12D Za
8s—1 Zog 279 272 274 Zg
8s+3 Zog 279 2749 274 279
4s+1 Z o4 272 37+ 279 Zo
8s Z24 Zoa® Lo Zoa®ZLa VASY AT YA YAS
8s+4 Ziga Los® Lo Zos@® Ly L®Laa® Ly Ziag @D Ly
4s + 2 Zag Zos® Lo Z12® Ly YASYAD VAP
p=4 k m=1 m =2 m=3 m=4 m=>5 m > 6
1 0 Z2 279 Zo Z 0
2 Z12 2712 0 0 0 0
3 Zg Z® Lo 274 | Z®Zy | 272D 7y | ZD 7y
4 279 Zios® 274 47+ 572 479 372
5 Zg 279 3%Z4 274 7. 7o Lo
8s—1 0 Zo Z4 Zg YAGY Zg
8s+3 0 Zo Z4 Zg YASY A Z16
4s + 5 0 Za 274 Lo Z 0
4(s+1) 0 Z a4 274 379 272 Za
8s —2 0 Z o4 Zo Zo Zo 0
8s+2 0 Z24 Z2o Zo Zo Z2
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p=>5 k m=1| m=2 m=3 m=4 | m=5 m=6 m > 7
1 0 Z12 2712 0 0 0 0
2 Zo 279 Z Z Z 27 Z
3 Z2o Zo Z24® Lo 3Zs 474 37Zoy 279
4 279 3Z2 47+ 5Z29 47, ZD®37Zo 37>
5 Za 0 Zag Zo Lo Zo 0
2@®%Lg | 2LPZLsg | LD ZLs
6 Z Z 7@ Zo YY) or or or
Z®ZLy | 22LDZ4 | ZHZLa
4s + 3 0 0 Zo4 279 374y 279 Zo
8s+1 0 0 Zo4 Za Zo Zo Zo
8s+5 0 0 Zio4 Zo Zo Zo 0
4(5+1) 0 0 L2 272 Zo 7 0
8s+6 0 0 Z2 Z4 Zg 7Z6®Zs Zg
8s+2 0 0 Zo Za Zsg Z®ZLs Z16
p=6 k| m=1|m=2 m=3 m=4 | m=5|m=6 | m=7| m2>8
1 0 Zo Zs® Zo Z Z Z Z Z
2 Lo 274 0 Lo 279 3%Zo 27+ Lo

I1. Adapted from the thesis of C.S. Hoo, Syracuse University, 1964. Here k(r) means = k (mod r).

m=2 p\k even odd
0 Z Za
1 7O Zy Zo
2 279 ym
3 2s® Z3 D Zo 274
4 Zg® L3 Zy
5 0 0
6 7o Z2
7 216D ZLs ® L3 D Lo 272
8 Z16®ZLsDL3D2L2 3Zs
9 5Z2 224D Zo
10 Z3®47Zo Za®27%4
11 Zo®DZLsDZLr®Z3D Lo 279
12 Zo®Zs®Lr Z2o
13 Z3 0
14 LZ3® 272 272
15 Z32®ZLs®ZL3®3ZLoy Za®27%o
16 Z32®Z5®23®322 422
17 6Zo 2427~
18 Zg® 5%y ZaD4Zo
19 211 D228 D L3 D27 474
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\ k 0(4) 1(4) 2(4) 3(4)
0 Z Zo Z Zo
1 279 Zo Z 4 0
2 279 YAy Za YY)
3 7.8®ZLsD 73 3Zo 24D Z3D Lo 274
4 27+ 279 Zo Z4
5 Zo 7s® L3 Zo Zs® Z3
6 Zo Zo Zo Zo
7 Z16® Zs 272 Z16® Zs 272
DZL3D L DZ3D Ly
8 479 474 274 Z4® Lo
9 6272 Z16®Ls®2L4 7422 Z16® Ls
D L3P Zo B L3 D27
10 224D L3 D272 Z4aD47Zo Z3® 3 7o 379
11 LZo®Zsg®H Zn 5Z2 Zo®Zsg Z4®2Z>
DZaD®2Zo DZLrB2Zy
12 274 Z3D2Z4 Zo Z4® L3
13 Z3® Za Zo®ZLg® Ly Z3®ZLa Lo@®Zg® Lr
14 27+ 272 27+ 279
15 Z32® s 74D L3 D22L> Z32® Ls Z3® 372
DZLZ3D3Zo DZL3D2Zs
16 Z4a® 479 672
17 872 Z32D ZLs D274
DZ3D®3Zo
18 ZsD 274D 37 74D 67y Z4® 47y 579
19 Z11®ZeDZa 872 Z4B5Zs

PL3D5Zo
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\ k 0(4) 1(4) 2(4) 3(4)

0 Z Zy Z 7.

1 279 Ty Z4 0

2 272 Zsg 0 Zo

3 7® Zsg 274 7ZD7Z4sD L3 279
DZsP7Zs

4 372 Lo Zo Zsg

5 279 Zy Z 4 279

6 Zs®L3® L2 27, Ly ®ZL3z® Lz 27,

7 Z16 D ZLs 2Z, Z16® ZLs 27,
DZ3D Zo DZL3DZL2

8 474 479 274 279

9 TZo 278® Lo 274 2729

10 Z16 D LsD27L4 Zg® 272 | Z16 D Zs D273 3Zo
D2Z3D2Z2

11 To® 7D Zr 374 Zo® Zsg 78D 24D Lo
DZsD4Zo DZLrD Lo

12 579 279 Z4® Zo 7.8 274

13 273® 274 Zo Z4®27L3 279

14 Zo®Zsg Zo® Zsg 372
DLr D27 Zr®27Zo

15 Z32® ZLs Z4® 222 Z320ZLs 3Z2
OL3®3Z2 SL3s D22,

16 Z4®ZL3®2Zo 5Zy

17 107Z,

18 Z32® Zg® Zs

D2Z4PZ3B 47
19 Z11D28sDZLas 6Zo

DL3DTZL2
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p\k 0(s) 1(8) 2(8) 3(8)
0 7 Za Z Zo
1 27+ Zo Z 4 0
2 27, Zs 0 Zy
3 278D L3 Za Z4® 73 279
4 279 7 Zy Z®7ZLsg
5 Zo Zo Zg 374
6 2729 Z4® Zo 37+ 374
7 Z16® Ls® L3 222 Z16®ZLs® L3 279
8 474 479 274 279
9 779 278D Lo Z4® Zo 279
10 278D 273D 27 Z8® Z4 Z3 479
11 Zo®2Zsg Z16®ZLs ® L3 Zo® Zg Z16®Zs®Ls
DL7 D27y DZLr® Lo Za®Z3® L2
12 372 Z2 Zs® 7L Zg DALz
13 Z3® 272 Z4® 7o 28D L3® 27z 5Zo
14 37+ 4749 Z3®D 47y
15 Zo® Ls® Zn Z32®ZLs Zo® ZLsg
DLsD27Z2 PL3D2Zs DZLrD3 Ly
16 Z4® 47 5Z2
17 97+
\k 4(8) 5(8) 6(8) 7(8)
0 7 Z2 Z L2
1 274 Zo Z 4 0
2 279 Zsg 0 Zg
3 716D L4 D L3 Za Z4®ZL3 L2
4 272 YA Zo YACYAS
5 Zo Zo Zg 372
6 Z 4 Z4 Z4® Lo 279
7 Z16®Zs® L3 279 Z16® Zs D L3 27>
8 479 4749 274 279
9 6Zs LegDLs® Lo 24 ® Lo 27>
10 Z78® L4 7.8® Za Z3 479
DZL3D27Z2
11 Z16® Lo® L7 | Z16DLs5D L3 Zo® Zs 716D Zs® Ls
DLy D27 DL DLy DLa®Lz® Lo
12 3Zo Zo 78D Z4 78 D47y
13 Z3® 274 Z4® Lo Zs®ZL3sD2Zo 572
14 379 4749 73D 4%y
15 Zo®Zs® Ly L32® ZLs Zo® Zsg
DLy D272 DZ3D3Zo DZ7D3%Zs
16 Z4aD 47 57+
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p\k 0(8) 1(8) 2(8) 3(8)
4] Z Zo Z Zo
1 274 Zo Z4 0
2 272 Zg 0 Zoy
3 2Zs®D L3 2 Z4®Z3 279
4 Zo 0 Zs Z1s
5 Z Za Z®Zs 272
6 27+ YA YA 474 272
7 Z16 D Zs D L4 474 Z16 @ Zs 2Zs
D L3P Zo P ZL3® 3L
8 Zs®ZLzB®4Zy 572 18D L3 D274 Z4®Zs
9 779 278D Lo Z3 279
10 228D L3P 3Z> Zs® Zo Z3 379
11 Zoh 27s 0 Zo® ZLsg ZsP Lo
SYALEY T P L7 D272
12 Z16D Zs D L3 Zo Z16DZsDLs | Z16D 272
DLsDZL3
13 Z3® Ly Zs®Z4 | LsDL3P4Z> 372
14 Ta® 372 TZ4
15 Z4® 47y
16 Zo® Zg® Z7
DLy D47Zo
17 97,
\ k 4(8) 5(8) 6(8) 7(8)
0 yA Zo Z Za
1 279 Zo Z4 0
2 279 Zg 0 Zo
3 716 ® 24 Z3 Zo Z4D 73 Zy
4 Zo 0 0 Zsg
5 Z Zo 7®7sg 279
6 Z4 Zs Z:027; Z2
7 Zrie® Zs 3Zs Z16D ZLs 2Zo
DZaDZL3 DZ3P2Zo
8 Za®Z3®AZo 5Zo 3Z24® Z3 Z4® Lo
9 6Zo Zs®ZLsDZLoy Z3 272
10 278D ZL3D 27, Zg Z3 4749
11 Zo® 278 0 Zo® Zsg 278D 2%
D ZL7®Zo DL B27s
12 Z16®ZsDZL3 Zo Z16® Zs® Zs Zs®3ZL2
DZ4DZ3
13 Z3®ZL2 Z8®ZLa Zs®Z3® 472 37,
14
15 Z4B 47>
16 Zo®Zg® ZLr
DZaD4Zo
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P\ 0(8) 1(8) 2(8) 3(8)
5 0 Z2 Z16 Z2
6 279 Z®ZLs® Lo 372 Z®Zo
7 Z16D Zg® Zs 572 Z16® Zs Z4®Zo
DZ3®D Zs DZ3D2Z2
8 6 Zo 679 Z.g P Z4 Zs
9 874 378D L3® Lo 7.8 ® Ly Zs®L3 P27y
10 228D ZL3® 272 Zg® Zy 73 372
11 Zo®2Zsg 0 Zo® Zsg ZsDZa® Lo
DLrDZ2 DZrdZ2
12 0 272 27s Zi16® Lz
13 Z3®ZLy Z16DZsDLs | Z16PL3®2Z2 | Z16DLsDLs
PLsDZL3
14 Zs®Z4
15 L4272
16 Z4D67Zo 73D T7Zo
17 107Z+
p\k 4(8) 5(8) 6(8) 7(8)
5 0 0 Zsg Zo
6 Zo 7.® ZLs Z4® Zo A
7 Z16® ZLs 474 Z16® ZLs 279
DZ4sDZL3 ©Z3® Lo
8 579 5%4 274 Zg® Lo
9 TZs Zg®2L4 Zg® Lo ZgD L3P 27>y
DZ3D Lo
10 ZsDZ3sD3ZLsy Zsg Z3 479
11 Zo® 2L L7 0 Zo® ZLsg 2Z8PB 27,
O L7 ® Lo
12 0 272 ZgDZa® Lo 78D L4P Lo
13 730 Ls Z16®ZL3DZLs | ZsDZL3D3Zy | Z16DZs® L3
DZsDZL3
14
15
16 Z3®TZa
17
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m=8
m= 8
m=9
m=29

P\ k 0(8) 1(8) 2(8) 3(8)
6 274 Z16 D L2 274 Zo
7 LD Z16®Zsg 474 ZDZ16D Zs 272
PLsDL3 B Lo DZ3DZLo
8 TZo 579 274 Zs
9 979 228D Za Zs 379
10 3ZsD27Z3D 279 Zg® L2 Z4D273 479
11 ZoD27Zs 0 Zo®DZsg 28D Za® Lo
DZLrD Lo DZ7rD Lo
12 0 Zo Zs® Zg Zs® Lo
13 Z3D274 Zs®Ze 716D Z3® Zo 0
14 Z16 @ ZsDZLs
DLsDL3 D272
15
16 Z4BD9Za
17 Z3®11Z,
p\k 4(8) 5(8) 6(8) 7(8)
6 0 Zsg Z4 0
7 2®Z16®Ls 373 Z®Z1e 272
DZs® 73 GZs®ZLs
8 622 422 2Z4 ZlG@Z;}
9 7Zo YA Y Z16 D L2 472
10 78D L4 78D Lo Zg®2Z3 572
D273D37Z>
11 Zo®D27Zsg® Zr 0 Zo®Zsg 278D 27y
O ZrDZL2
12 0 2 7D ZLa®Zo Zs® 272
13 Z3® 2Lz Zg®ZadZa Zg® Ly 0
B L3D L2
p\k 0(16) 1(16) 2(16) 3(16)
7 2716 @ ZLs 3Z2 Z16 @ Zs Zo
D L3P Lo D Lz® Lo
8 6Zy Z.®472 Z4a® Lo Z&®ZLg
9 8Zo ZsDZLa® Lo Zg 479
10 2723 ® 73D 3Zy Zsg Z3® Zo 474
11 Z16DZo D Zsg Z4DZs3 Zo® Zg Zs® 274
DL Zs GLrp2ZLs SZLs® Ly
12 0 Zo 78D L4 78D Lo
13 Z3®La Zg® Ly Zs® L3z B Lo 0
14 2Z8D27>
p\k 4(16) 5(16) 6(16) 7(16)
7 Z16® ZLs 272 Zie®Zs®ZL3 73D 72
DL4DZL3
8 5Z2 Z®37Zs 274 Z®Zie®Z2
9 67Z2 274® Zo Z32® 7o 579
10 Zs®Z3sD37Zo 728D Zo Z3® 27, 67Zo
11 Zo®27sg Zg P L3 ZoDZLsg 3ZsDZ3 D27~
DLy DL,y DLrD27Z2
12 0 2 Zg®Lad Lo Zs® 272
13 Z3s® 7o T78@Ls DLy | ZsDL3D 2Ly 0
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m=9 p\k 8(16) 9(16) 10(16) 11(16)
7 Z32® Zg® Ls 3Zs Z16 D Zs Zo
DZL3D L2 D ZLZ3D L2
8 672 7Z®47Zy Z4a® Zo 7 ® Zsg
9 8729 LD Za®Zo Zg 479
10 223@Z3@3ZQ Zg Z3G§Zg 4749
11 216D Zo® Zsg Z4®7Z3 Zo®Zsg ZyB® 274
DZ7® L DZLrD2Zs DZ3DZo
12 0 Za Zg® L4 78D Z2
13 Z3® Loy 7g® L4 Lg® L3 D Lo 0
m=9 p\k 12(16) 13(16) 14(16) 15(16)
7 Z16 D Zs 27> 716 ® Ls® Z3 Za
DZa® Z3
8 57y 1@3%Lo La® Ly 7.0 L6 ® Z2
9 622 274® Lo Z16® L2 572
10 Zs® Z3s®37Zo Zs® Lo Z3® 27y 6Zo
11 Zo®2Zsg Zg®Z3 Zo9® Zg 378D 73 D272
DZ7r® Lo DZLr D274
12 0 To 78D L4 ® Zo Zs® 272
13 Z3&@ Zo Le@Ls P Lo | LeDL3D 27~ 0
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379

1. 74 p(Vitm,m) for m large and k = ¢ (mod 8) except as otherwise noted, viz
7(16), 5(32), etc. Here Viymm = Vin (RET™) and “m large” means p < m — 2, the
stable range where mi4p(Vitm,m) depends only on k£ and p. Adapted from C.S.
Hoo and M. E. Mahowald, Some homotopy groups of Stiefel manifolds, Bull. Amer.
Math. Soc. 71 (1965) 661-667.

p\1 0 1 2 3
0 Z Zo Z Zo
1 272 Za Z4 0
2 279 Zsg 0 Zo
3 278D ZL3 Zo Z4® Z3 274
4 Zs 0 Zs Z16
5 0 Zo Z16 Zo
6 279 716D Zoy 2729 Zo
0(16) 2Z16D Z15® Z2
7 8(16) Z32 ® Z15 3Z2 Z16® Z15® Zo Zo
DZLs®Z2
8 579 479 Z 4 Zg
9 722 Zg@Zg Zs 279
10 78D Ls®2Zo Zsg Zs3 279
3(32) 3Z,
19(64) Za® 27+
11 Ze3®2Zs 0 Ze3® ZLs 51(128) Zg®2Z2
115(128) Z16D 27+
11(16) 2Z4
2(32) 27, 3(32) Z32
18(64) Z4DZo 19(64) Ze4
12 0 0 50(128) Zg® Z+ 51(128) Z12s
114(128) Z16® Z2 115(128) Z2s6
10(16) Z2 11(16) Z16
1(32) Zo 2(32) Z32®Z3
17(64) Z4 ® Z, 18(64) Zes ® Z3
13 Z3 49(128) Zg ® Z2 50(128) Z128 P Z3 Zo

113(128) Z16® Z2
9(16) Zo

)
114(128) Z256 ® Z3
10(16) Z16 ® Z3
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p\i 4 5 6 7
0 Z Zo VA Zg
1 272 Zo Z4 0
2 272 Zsg 0 Za
3 Z16® Z4® Z3 Zo Z4® Z3 Za
4 A 0 0 Zg
5 0 0 Zsg Zo
6 0 Zsg Z 4 0
7 Z16®ZL15D L4 27> Z16® Zys 1;82% %fz
6(32) Z4 @ Z2
8 AT, 37, 22(32) 224 157)(12) %32222
14(16) Z4 (16) Z16 ® Z:2
son 28002, | S02) Zn0Ls
9 5Z2 53(64) 7 (BZ @Z 22(32) ZG4®22 322
8W AL E2 ) 14(16) Z16® Zo
13(16) Z4® Z2
4(32) Z3s® 47> 5(32) Z32
20(64) Z12® 3Zo 21(64) Zgs
101 59(64) Zs® Z3® 322 53264; Z1os Ls®Z2 422
12(16) Z3 ® 3 Z» 13(16) Z1s
4(32) Ze3® Za2 ® Lsg
20(64) Zea ® Zoz & Zsg
11 52(128) Z12s ® Ze3 ® Zs Z2 Zs®27Zs Zs®Zo
116( 28) Zose ® Loz ® Ly
12(16) Ze3 ® Z1s ® Zs
12 7 274 Zs Zs
13 Z3®2Zo Zsg Zg® L3 0



Appendix E

Computational Algebraic
Topology

It’s more fun to compute—Kraftwerk

No modern mathematics text is complete without some indication of how the current
powerful symbolic manipulation and graphics software packages can contribute to
understanding of its material. We provide some comments and examples for one
of the principal systems: Mathematica [121] in the context of differential forms. A
similar package is available for Maplie [19], and in the new version due out in Spring
1996 there are homological packages in the Geometry library.

The only free Mathematica package that scems to be available for the linear and
exterior algebraic computations typically arising in (co)homology is that of Zizza
[126]. It provides functions for calculations in the exterior algebra and calculus
of differential forms on R™. At the heart of the computational procedures is the
representation of a module over a commutative ring.

Here are some simple examples of the application of functions from this package;
the Mathematica input and output lines are shown.

Basis yields the standard basis of forms in the specified variables and dimension.
Basis[{x,y,z,u,v},2]

{(1) dx~dy, (1) dx"dz, (-1) du"dx, (-1) dv~dx, (1) dy~dz,
(-1) du~dy, (-1) dv~dy, (-1) du~dz, (-1) dv~dz, (1) du~dv}

Chain specifies the coordinate set for a chain and Boundary derives its boundary
chain; here’s a 2-ball and its boundary circle

a=Chain[ {x -> r Cos[thetal, y -> r Sin[thetal},{r, 0, R},
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{theta, 0, 2Pi}]
Boundary[a]
Chain[1, {x -> R Cos[thetal, y -> R Sin[thetal},
{theta, 0, 2 Pi}]

We can integrate the form d[x,y]=(1) dx~dy over the chain a, and over its bound-
ary as follows

Integralld[x,y],al
2
Pi R
~Integral[d[theta] ,Boundary[a]]
2 Pi

Tensor products are generated using

TensorProduct[t[x], t[x]] + TensorProduct[t[y], tlyl]
(1) dlx] o dlx] + (1) dly] o d[y]

Exterior differentiation is given by d

d[3x~2y~6]
2 5 6
(18 x y ) dy + (6 x y ) dx

Co-exterior derivatives arc found using cod with a specified metric; the standard
metric in R? is

tlx,x] + tly,yl= (1) dlx] o d[x] + (1) d[y] o dly]

cod[ 3x"2y°6 d[x] -~~~ dlyl, tix,x] + tly,yl]

2 5 6
(18 x y)dx + (-6 xy) dy

The Hodge dual operation is
HodgeStar[3x~2y~6 d[x] =~~~ d[yl, tlx,x] + tly,yl]
2 6
3x y

We find a coboundary of the closed form r d[r, theta] in polar coordinates using

HomotopyOperator[ r d[r, theta], Coordinates -> {r, thetal}]

2

r -(r theta)
(--) dtheta + (—-——-—--——--- ) dr
3 3
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Using the definition cod[ d[x], metric ] + d[ cod[ x, metric] ] for a speci-
fied metric, the Laplace operator is

Laplace[3x~2y~6, t[x,x] + t[y,yl]
2 4 6
-90x y -6y

The operator Orientation gives a choice of unit vector of the top-dimensional
exterior algebra on the variables in a specified metric; it bases its choice on the
Sort function.

Orientation[t[r,r] + r~2 t([theta, theta] + t[z,z]]

(=== ) dr~dtheta”dz

Sqrtlr ]
Under a transformation of coordinates, we can pullback a tensor
Pullback[ d[x,y], {x -> r Cos[thetal, y -> r Sin[theta]}]

2 2
(r Cos[thetal] + r Sin[thetal] ) dr~dtheta
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of a product, 47
of a wedge, 46
Theorem of Algebra, 47

G-
bundle, 212
classification theorem, 213
space, 214
left, 215
torsor, 212
general linear group, 301
geodesics
circular, 357
curves, 354
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Hirsch theorem, 288
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properties, 129-130
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homological algebra, 234
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homology, 194
bordism, 247
chain, 127
classes, 108
cooperations, 172
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reduced
singular, 149
spectral, 188
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theory, 106, 107
reduced, 108
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homomorphism, 300
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maps of pairs, 57
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associative, 38, 41
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commutative, 38, 41
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algebra, 171
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trace theorem, 162
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lift, 351
subbundle, 351
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Hurewicz
fibration, 28
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proof, 197

identification

space, 35

topology, 313
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element of a group, 301

morphism, 297
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inclusion, 313

cofibration, 35
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index

of subgroup in group, 302
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inf topology, 313
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injectivity, 296
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integral curve, 338
interior, 79, 311
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invariance of domain, 113
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arrow, 300

limit, 180, 200
isic, 300

isomorphic, 301

isomorphism, 300, 301
isotropy subgroup, 305
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join, 25, 222
n-fold, 222
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Kan action
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kernel, 53, 301
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Kirby-Siebenmann theorem, 288
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Klein bottle, xi, 72, 88, 125, 140, 284

as K(m,n), 266
as orbit space, 50, 306
homology, 140
punctured, 19, 47
triangulation, 84
K(m,n), 261
Kronecker
index, 132
product, 132, 278
Kiinneth formula, 135

Lebesgue
lemma, 318
number, 318
Lefschetz

fixed point theorem, 123, 163

number, 122
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limit, 180, 299
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-Serre
spectral sequence, 239
theorem, 239
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Levi-Civita connection, 354
Lie
algebra, 351
bracket, 338
group, 305, 348
lift, 6
lifting
of a map, 6
of bundle structure group, 214
problem, 6
through Postnikov towers, 279
limit, 180
in category, 298
of a diagram, 180
point, 311
line
(element) field, 290
bundle, 30
linear, 214
connection, 350, 352
map of a simplicial complex, 82
space, 300
linearity, 7
local
coefficients, 217
flow, 338
homeomorphism, 176
triviality neighborhood, 348
locally
a product, 176
contractible, 30
finite, 318
trivial, 29
loop space, 38, 39
Lorentz group, 66
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theorem, 122
Lusztig’s theorem, 230

m-
boundaries, 131
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cocycles, 131
cycles, 131
form, 335
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INDEX

manifold
smooth, 331
topological, 332
with boundary, 340
map, 295
acyclic, 234
admissible, 236
mapping
cone, 22
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spectrum, 187
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Marcus’s theorem, 291
Mayer-Vietoris sequence, 114, 158
relative simplicial, 158
singular, 159
meteorology theorem, 121
metric
compatible connection, 354
connection, 354
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tensor, 341
Milnor construction
of classifying space, 222
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associated principal bundle, 225
triangulation, 84
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module, 300
projective, 227
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manifold, 331
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trivial map, 275

natural
equivalence, 298
isomorphism, 298
transformation, 298
negative curvature, 350
normal, 318
space, 315
subgroup, 302
nullhomotopic, 17, 22
iff n-trivial, 275

objects, 297

obstruction, 249
first, 259
first order, 31, 36
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nth, 259
primary, 31, 36
principal cofibration, 35
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theory, 348
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O(n), 301
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open, 311

cover, 316
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space, 305
order

of group, 302

partial, 312
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ordinary (co)homology theory, 108

all agree, 196
orientable

fiber bundle, 217

fibration, 235

GL(n)-bundle, 214
orientation, 216

bundle, 214

of a simplex, 151
oriented
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origami, 82, 84
orthogonal group, 301
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pair, 56
paracompact, 21, 319
parallel transport, 350, 353
parallelizable, 228, 334
partial order, 295
for a topology, 176
partition, 313
of unity, 340
path
-connected, 320
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phantom, 95, 260
Poincaré duality, 169
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Pontrjagin
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product, 171
poset, 312
positive curvature, 350
Postnikov
decomposition, 262
invariant, 279
section, 264
system, 262
tower, 262
preserve diagrams, 10
presheaf, 176
primary obstruction, 31, 36
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bundle, 212, 351
cofibration, 33
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problems, 10
product space, 30
projective space, 21, 50, 67, 88, 103,
139, 151, 266, 290, 307, 318,
327, 329, 369
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as orbit space, 306
base of fibration, 65
cohomology, 243, 247
essential map, 260
homology, 140
homotopy, 68
infinite, 71
triangulation, 84
prolongation, 214
properly discontinuous, 64
group action, 64
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Riemannian manifold, 349
Riemannian metric, 341, 349
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triangulation, 86
pullback, 299
bundle, 219
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Klein bottle, 19, 47
plane, 356
torus, 19, 47
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quantum field theory, 218
quaternions, 65, 167, 306, 318
quotient topology, 313

r-dimensional, 82
realization, 82, 152
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(co)homology theory, 108
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homology, 149
homology theory, 197
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homology functor, 188
reduction
of bundle structure group, 214,
220
theorem, 116
refinement, 318
reflexive relation, 295
reflexivity, 295
regular
cover, 200
space, 315
rel, 17
relation, 295
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CW-complex, 71
homotopy, 17
homotopy functor, 57
homotopy set, 57
Mayer-Vietoris sequence, 158
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representable
functor, 221
representation, 214
restriction
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map in a presheaf, 177
retract, 35, 109
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weak, 109
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problem, 8
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Riemannian
manifold, 349
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INDEX

right
coset, 302
inverse, 54
limit, 180, 299
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Serre
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approximation, 153
approximation theorem, 89
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map, 83, 152
pair, 152
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singular
chain complex, 148
m-cube, 145
m-simplex, 148
Mayer-Vietoris sequence, 159
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SL(n), 307
smash product, 41
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completely regular, 328
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Ty, 315
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holds water, 98
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structure, 287
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Sp(n), 306
stabilization, 224
stabilizer, 305
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Steenrod
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theorem, 287
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group, 303, 307
relation, 295
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