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Preface

The notion of a vertex algebra was introduced ten years ago by Richards Bor-
cherds [B1]. This is a rigorous mathematical definition of the chiral part of a
2-dimensional quantum field theory studied intensively by physicists since the land-
mark paper of Belavin, Polyakov and Zamolodchikov [BPZ]. However, implicitly
this notion was known to physicists much earlier. Some of the most important
precursors are Wightman axioms [W] and Wilson’s notion of the operator product
expansion [Wi|. In fact, as I show in Sections 1.1 and 1.2, the axioms of a vertex
algebra can be deduced from Wightman axioms. The exposition of these two sec-
tions is somewhat terse. The rest of the book, written at a more relaxed pace, is
motivated by these sections but can be read independently of them.

Axioms of a vertex algebra used in this book are essentially those of [FKRW]
and were inspired by Goddard’s lectures [G]. These axioms are much simpler than
the original Borcherds’ axioms and are very easy to check. One of the objectives of
this book is to show that these systems of axioms are equivalent (see Section 4.8).

Another objective of the book is to la.;' rigorous grounds for the notion of
the operator product expansion (OPE) and demonstrate how to use it to perform
calculations that are otherwise very painful. The classical Wick theorem allows
one to compute OPE in free field theories. A “non-commutative” generalization of
Wick’s formula allows one to compute OPE of arbitrary local fields (see Section 3.3).

The main objective of the book is to show how to construct a variety of examples
of vertex algebras, and how to perform calculations using the formalism of vertex
algebras. to get applications in many different directions (Chapter 5).

In Sections 2.7 and 5.9, I present some new material on a topic closely related
to vertex algebras — the theory of conformal superalgebras.

These notes represent a part of the course given at MIT in 1994 and 1995.
Unfortunately, I didn’t have time to write down the chapters on representation
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2 PREFACE

theory of vertex algebras and some other applications. (Most quoted literature is
related to these unwritten chapters, and I hope that the present book will facilitate
the reading of these papers.) In fact, another important application of vertex
algebra theory is that it picks out the most interesting representations of infinite-
dimensional Lie (super)algebras and provides means for their detailed study.

There is nothing in this book on the application to the Monster simple group
(there is a book [FLM] on this, after all), nothing on Borcherds’ solution of the
Conway-Norton problem [B2], and nothing on Borcherds’ marvelous applications
to generalized Kac-Moody algebras and automorphic forms [B3].

A technical remark is in order. What I call a “vertex algebra” should probably
be called a “N = 0 vertex superalgebra” (see Section 5.8 for the definition of a
N = n vertex superalgebra), but I decided on this simpler name. (Also, I call a
“conformal vertex algebra” what is called in [FLM], with some additional restric-
tions, a “vertex operator algebra.”) The reader who detests “supermathematics”
may assume that the Zj-gradation is trivial, that “Lie superalgebra” means “Lie
algebra”, etc. But then he skips fermions and beautiful applications to identities
and to soliton equations, the rich variety of superconformal theories, etc.

The bibliography is by no means complete. It is already quite a task to compile
a complete list that would include all the relevant work done by physicists. However,
it includes all items that influenced my thinking on the subject. One may also find
there further references.

In addition to the sources mentioned above, the most important for the present
book were the work of Todorov on the Wightman axioms point of view on CFT, the
paper by Li from which I learned the unified formula for n-th products and Dong’s
lemma, the paper by Getzler from which I learned the “non-commutative” Wick
formula, and the work of Lian and Zuckerman on “quantum operator algebras.”

A preliminary version of these notes has been published in the proceedings
of the summer school in Bulgaria in 1995 where I lectured on this subject. I am
grateful to Ivan Todorov and Kiyokazu Nagatomo for reading the manuscript and
correcting errors, and to Maria Golenishcheva-Kutuzova, Mike Hopkins, Andrey

Radul, and Ivan Todorov for numerous illuminating discussions.

Vienna, June 1996



CHAPTER 1

Wightman axioms and vertex algebras

1.1. Wightman axioms of a QFT

Let M be the d-dimensional Minkowski space (space-time), i.e., the d-dimen-

sional real vector space with metric
Iz —y® = (@o—w0)* — (@1 — 1) — - — (@ae1 —ya_1)>

(As usual, g = ¢t where c is the speed of light and ¢ is time, and z,,... ,zq4_; are
space coordinates.)

Two subsets A and B of M are called space-like separated if for any a € A and
b € B one has |a—b|* < 0. The forward cone is the set {z € M | |z|*> >0, zo > 0}.
Define causal order on M by x > y iff  — y lies in the forward cone.

The Poincaré group is the unity component of the group of all transformations
of M preserving the metric. It is the semidirect product of the group of translations
(= M) and the Lorentz group L, the group of all unimodular linear transformations
of M preserving the forward cone. Hence the Poincaré group preserves the causal
order and therefore the space-like separateness.

A quantum field theory (QFT) is the following data:

the space of states—a complex Hilbert space H;

the vacuum vector—a vector |0) € H;

a unitary representation (g,A) — U{g,A) of the Poincaré
group in H;

a collection of fields ®, (a an index)—operator-valued distri-
butions on M (that is continuous linear functionals f — ®,(f) on
the space of rapidly decreasing C™ tensor valued test functions
on M with values in the space of linear operators densely defined

on H).
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CHAPTER 1

Wightman axioms and vertex algebras

1.1. Wightman axioms of a QFT

Let M be the d-dimensional Minkowski space (space-time), i.e., the d-dimen-

sional real vector space with metric

|z — Z/|2 = (z0 — Z/o)2 — (1 - Z/l)2 == (Tao1 — yd—l)z-

(As usual, zg = ct where c is the speed of light and ¢ is time, and x,,... ,x4_, are
space coordinates.)

Two subsets A and B of M are called space-like separated if for any a € A and
b€ B one has |a—b|? < 0. The forward cone is the set {x € M | |z|? > 0, zo > 0}.
Define causal order on M by z > y iff £ — y lies in the forward cone.

The Poincaré group is the unity component of the group of all transformations
of M preserving the metric. It is the semidirect product of the group of translations
(= M) and the Lorentz group L, the group of all unimodular linear transformations
of M preserving the forward cone. Hence the Poincaré group preserves the causal
order and therefore the space-like separateness.

A quantum field theory (QFT) is the following data:

the space of states—a complex Hilbert space H;

the vacuum vector—a vector |0) € H;

a unitary representation (q,A) — U{g,A) of the Poincaré
group in H;

a collection of fields ®, {(a an index)-—operator-valued distri-
butions on M (that is continuous linear functionals f — ®,(f) on
the space of rapidly decreasing C* tensor valued test functions
on M with values in the space of linear operators densely defined

on H).



4 1. WIGHTMAN AXIOMS AND VERTEX ALGEBRAS

One requires that these data satisfy the following Wightman axioms:

W1 (Poincaré covariance): U(g, A)®.(f)U(q, A)™! = ®a((q,A)f)), g € M,
AeL.

Note that U(q,1) = expizi;g) @i Pi., where Py are self-adjoint commuting opera-
tors on M.

W2 (stable vacuum): The vacuum vector |0) is fixed by all the operators
U(g,A). The joint spectrum of all the operators Py, ..., P;_; lies in the
forward cone.

‘W3 (completeness): The vacuum vector |0) is fn the domain of any polyno-
mial in the ®,(f)’s and the linear subspace D of H spanned by all of them
applied to |0) is dense in H.

W4 (locality): &,(f)®s(h) = ®(h)®,(f) on D if the supports of f and h
are spacelike separated.

The physical meaning of axoim W2 is that vacuum has zero energy and it is
the minimal energy state. The last axiom means that the measurements in space-
like separated points are independent. (According to the main postulate of special
relativity the speed of a signal does not exceed the speed of light.)

Actually, these are axioms of a purely “bosonic” QFT. In order to include
“fermions” one considers even and odd fields by introducing parity p(a) = 0 or
1 € Z/2Z. Then only the axiom W4 is modified:

Waper (locality): @,(f)®p(h) = (—1)P@PB @ (h)®,(f) on D if the sup-

ports of f and h are spacelike separated.

Axiom W1 gives, in particular, translation covariance (g e M):
(1.1.1) U(g,1)®a(2)U(g, 1) = @4(z + ).

Here and further, by abuse of notation, we often write ®,(x) in place of ®,(f(z)).
Note that, by definition, D lies in the domain of definition and is invariant
with respect to all the operators ®,(f). It follows from W1 and W2 that D is

U(g, 1)-invariant. Since the translation covariance means
(1.1.2) 1 [Pk, @] = Oz, Pa,

and P;|0) = 0 by W2, we see that D is invariant with respect to all the operators FP;.
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Note that applying both sides of (1.1.1) to the vacuum vector and using its
U(q, 1)-invariance, we obtain (g € M):
(1.1.3) Bo(z +q)0) = (expiquPk) ®,(z)|0).
k
Now, the Poincaré group preserves distances on M. One considers also a larger
group — the group of conformal transformations of M (preserving only angles).

The simplest conformal transformation is the inversion
z— —z/lz|%

Conjugating a translation z +— z + b by the inversion, we get a special conformal
transformation (b € M):

z + |z[2b
1.1.4 b ETREO
(1.1.4) T T 1T 2 b+ 2R

The group generated by the translations and the special conformal transformations
is called the conformal group. It includes the Poincaré group and also the group of

dilations:
z— Az, A#O0

Conformal transformations of the Minkowski space are important for QFT since
they preserve causality (hence space-like separateness).

A quantum field theory is called conformal if the unitary representation of the
Poincaré group in H extends to a unitary representation of the conformal group:
(¢,A,b) — Ulq, A,b) such that the vacuum vector |0) is still fixed and also the
special conformal covariance holds for the given collection of fields; in the case of a

scalar field it means

(1.1.5) U(0,1,b)®4(z) U(0,1,5)"" = (b, z) 2 &, (z*),

where A, is a real number called the conformal weight of the field ®, and
(1.1.6) w(b,z) =1+ 2z - b+ |z|?|b.

Note that <p(b, )¢ is the Jacobian of the transformation {1.1.4), It follows that

axiom W1 and (1.1.5) together give conformal covariance:

U(g, A, 0)a(2) Ulg, A, 0) " = p(b,2) %@, ((g, A, b) - 2)-



6 1. WIGHTMAN AXIOMS AND VERTEX ALGEBRAS

In particular, we have dilation covariance:
(1.1.7) UN@a(z) UN) T = AP8,(Az),

where A — U()) denotes the representation of the dilation subgroup.
Formula (1.1.5) implies that the infinitesimal special conformal generators are
represented by selfadjoint operators Qx (k= 0,...,d — 1) on H such that

(1.1.8) 1[Qk, Balx)] = (|x|,28Ik —2mezi B — 2A0mixi) Ba(z),

where E = an;lo T,

Tm

is the Euler operator and 7, are the coefficients of the

metric (g = 1, mx = —1 for k > 1).

1.2. d = 2 QFT and chiral algebras

Consider now the case d = 2. Introduce the light cone coordinates t = xg — x;,
I = xo + 21, so that |z|> = tf. (In this section the overbar does not mean the

complex conjugate.) Let
1 = 1
P=-2-(P0—P1), P:§(P0+P1)
Then formula (1.1.3) becomes:
(12.1) Bo(t +q,E+ §)|0) = 9P, (1,1)[0) .

By the vacuum axiom the joint spectrum of the operators P and P lies in the
domain ¢ > 0, £ > 0, hence the operator exp i(tP +£P) is defined on D for all values
Imt > 0, ImZ > 0. Moreover, by formula (1.2.1) the D-valued distribution ®,|0)

extends analytically to a function in the domain
{t|Imt >0} x {{ | ImZ >0} ¢ C2.

Indeed, by the spectral decomposition, €97 17P) is the Fourier transform of a (op-
erator valued) function whose support is in the domain p > 0, 5 > 0, by the
second part of axiom W2. Hence we may take the value ®, (¢,7) |0) when Im¢ > 0,
Imi > 0. It follows from (1.2.1) that this value is non-zero unless ®, = 0.

The locality axiom means

(1.2.2) &, (t,8) & (t',7) = (-1)P PO, (¢',¥) @, (t,7) if (t—-t)E-F)<0
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In the light cone coordinates the special conformal transformations decouple:

t - t
1.2.3 = =
( ) 1+ byt 1+6-7
where by = by £ b;. Hence the conformal group consists of transformations of the

form:

at+b a£+13)

t,7) = a2
7(52) (ct+d d+d

where (‘Cz bd) and (‘2 f-l) are from SLz(R). Then the Poincaré covariance (axiom
W1) and special conformal covariance (formula (1.1.5)) give together the following

conformal covariance (with A, = A,):
(1.24) UM®a (4,8) UM = (ct+d) 72 (e +d) % @alr(t, D).

Because of the decoupling (1.2.3) one usually does not assume that A, = A, and
considers more general conformal covariance of the form (1.2.4).

Introduce further the operators

Q=—3@+Q), @=;(@-Q).

Then formulas (1.1.2) and (1.1.8) become:

(1.2.5a) i[P®, (1)) = 8@, (1),
(1.2.5b) i[P,®a. (t,1)] = &% (1),
(1.2.5¢) i[Q, ®a (t,0)] = (t°0, +244t) @, (t,1),
(1.2.5d) i[Q®a(t,T)] = (%0 +2A.1) P (t1).

In order to make conformal transformations defined everywhere, consider the
compactification of the Minkowski space given by:

1+4i  _ 1+idt
z = -, Z= -,
1—it 1—1t

This maps the domain Im¢ > 0, ImZ > 0 to the domain |z| < 1, |z| < 1. Consider
the new fields defined in |2| < 1, |Z| < 1:

1 1-2
—®, (t,t), where t=1i
(1+ 2)22a (1 +2)28. ~° &3

Note that Y (a, 2, Z) 1|,=0,z=0 is a well defined vector in D which we denote by a,

_ 1-z
, t=1 -,
1+2 1+ 2

Y(a,2,2) =

and (due to the above remark) Y (a, 2,Z) — a is a linear injective map.
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We let
T = L(P+IPQ-Q),
H = 3(P+Q),
T = L(P-PA-Q)

and similarly we define T, H, T*. It is straightforward to check that formulas
(1.2.5a—d) imply:

(1.2.6a) [T,Y(a,2,2)] = 8,Y(a,z27%),
(1.2.6b) [H,Y(a,2z,2)] = (20,+ A,)Y(a,z2,2),
(1.2.6c) [T*,Y(a,2,2)] = (2%0:+2A.2)Y(a,2,32),

and similarly for T, H, T*. Also, of course, all the operators T, T,... annihilate
the vacuum vector |0).

Note that (1.2.6b) means:
MY (a,z,2) A7 = A2 Y (a, Az, 2).

Note also that the operators T, H, and T™ satisfy the following commutation rela-

tions:
(1.2.7) \ [H,T)=T, [HT)=-T, [T*,T]=2H.

Applying both sides of (1.2.6b and c) to the vacuum vector and letting z =

z =0, we get:
Ha= Aja, T'a=0.

Recall that P and P are positive semidefinite self-adjoint operators on H (due to
axiom W2). The same is true for ¢ and @ since they are operators similar to P
and P respectively. Hence H is a positive semidefinite self-adjoint operator as well.
Thus, conformal weights are non-negative numbers.

If in our QFT, Ta = 0 = Ta is possible only for the multiples of the vacuum
vector, then A, = A, = 0 imply that a = |0).
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Now consider the right chiral fields, namely those fields for which 8;®, = 0.
Then (1.2.2) becomes

Bu(t)By(t) = ()P PO, (¢)D, (1) if t#AL.

This implies that the (super) commutator (i.e., the difference between the left- and
the right-hand sides) has the following form:
[a(t), 26(t)] = D_ 69 (¢ ~ )W ()

20
for some fields W7 (¢'). For these fields the Wightman axiorus still hold (but the
conformal covariance does not necessarily hold), hence we may add them to our
QFT to obtain:

[Y(a,2),Y(w)] = Zé(j)(z —w)Y (¢j, w).

720
Commuting H with both sides of this equality and using (1.2.6b) we see that the
field Y (c;, w) has conformal weight A, + Ay — 7 — 1 (in the sense of (1.2.6b)). Due
to the positivity of conformal weights we conclude that the sum on the right is
finite. It follows that

(z—w)N[Y(a,2),Y(b,w)| =0 for N >>0.

(A detailed explanation of this will be given in Section 2.3.)
We expand a chiral field Y (a, z) in a Fourier series:

Y(a,2z) = Z a2,

where a(,) € EndD and denote by V' the subspace of D spanned by all polynomials
in the a(,) applied to the vacuum vector |0). It is clear that V is invariant with
respect to all a,) and, by (1.2.6a), with respect to T. By the argument proving
Corollary 4.6(f), V' is spanned by all polynomials in the a(,y with n < 0 applied
to [0). ,
We thus arrived at the following data called the right chiral algebra:

the space of states—a vector space V;

the vacuum vector—a non-zero vector |0) € V;

the infinitesimal translation operator T € EndV;
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fields Y (a, z) for each a € A, some subset of V' endowed with
the parity p(a), where
Y(a,2) = Za(n)z_"_l
nez
is a series with a(,) € EndV'.
These data satisfy the following properties for a € A (we ignore the remaining
properties for a while):

(translation covariance) [T,Y (a,z2)] = 0Y (z,a);

(vacuum) T10) =0, Y(a, 2)|0)|:=0 = a;

(completeness) polynomials in the a(,)’s with n < 0 applied to |0)
' span V;

(locality) (z = w)NY(a,2)Y (bw)

= (~1)P@P®) (z — wW)NY (b, w)Y (a,z) for someé
N € Z, (depending on a,b € A).
By the vacuum property we have (a € A):

(1.2.8) a=a_yl0), aml0) =0forn >0.

Applying both sides of the translation covariance property to [0) and letting z = 0,
we obtain (using 7|0} = 0 and (1.2.8)):

(1.2.9) Ta=ay0), ac A

Thus, the infinitesimal translation operator on A is built in the collection of fields.

The positivity of conformal weights imply, due to (1.2.6b):
(1.2.10) a(nyv = 0 for n > O(depending on a € A and v € V).

Later (in Section 4.5) we shall prove the existence theorem that asserts that, using
(1.2.10), one can construct fields Y (a, z) for all a € V' (using the so-called normally
ordered product) such that (1.2.10), translation covariance, vacuum and locality
properties still hold (completeness then automatically holds). We thus arrive at
the definition of a chiral algebra. This name is used by physicists. Mathematicians,
following Borcherds, use the name vertex algebras, or vertex operator algebras,
since (for historical reasons) the fields Y (a, z) are called vertex operators.
Similarly, one may consider the left chiral fields, that is those fields for which

8,®; = 0. In the same way as above, we construct the left chiral algebra V with the
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same vacuum vector [0), the infinitesimal translation operator T and fields Y (g, 2),
@ € V. Due to locality (1.2.2) we see that ®,(t)®5() = (—I)P(“)P(E)Qa(ﬂq)a(t) for

all ¢t and £, hence
[Y(a,2),Y(@,z)]=0forallacV, aeV.

The left and right chiral algebras are the most important invariants of a confor-
mally covariant 2-dimensional QFT. Under certain assumptions and with certain
additional data one may reconstruct the whole QFT from these chiral algebras, but
we shall not discuss this problem here.

REMARK 1.2. One may also consider the case of d = 1 conformal QFT. Then
the only coordinate is time ¢ = zy and the forward cone is the set of non-negative
numbers. Then conformal covariance reads:

at+b at+b\ 7" 1 at+b
— ) B, (¢ _— = P .
U(ct+d) “()U<ct+d> (at + d)2e “(ct+d

It follows that there exist self-adjoint operators P and @ in H such that

i[P,@u(t)] = 0:@a(t), i[Q, Ra(t)] = (20; + 2A4t) Ba(?).

Compactifying by z = Fﬂ letting

—it?
1

Y((l, Z) = (T—;—I;)TA—:(I)G(‘Z)

and defining T, H, and T* as in d = 2 case, we find that Y (a, 2) satisfies formulas
(1.2.6a—c). Asin d = 2 case, we see that Y (a, 2)|0) {,=o is a well-defined vector.
The only property that is completely missing is locality since there are no spacelike

separated points.

1.3. Definition of a vertex algebra

Let V be a superspace, i.e., a vector space decomposed in a direct sum of two

subspaces:
V=V+W
Here and further 0 and 1 stand for the cosets in Z/2Z of 0 and 1. We shall say that

an element a of V has parity p(a) € Z/2Z if @ € Vpq). If dim V' (= dim V§ +dim V3)

< 00, we let

sdimV = dim V; — dim V3
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to be the superdimension of V. In what follows, whenever p(a) is written, it is to
be understood that a € Vp(q)-
A field is a series of the form a(2) = }, 7 a(n)z~ """ where a(n) € EndV and

for each v € V one has

(1.3.1) amy(®) =0 for n> 0.

We say that a field a(z) has parity p(a) € Z/2Z if

(1.3.2) amyVa CVoypa forall ace Z/éZ, neZ.

A wvertex algebra is the following data:

the space of states—a superspace V,

the vacuum vector—a vector |0) € V5,

the state-field correspondence—a. parity preserving linear map
of V to the space of fields, a — Y (a,2) = Y,z 8(m)z ™"},
satisfying the following axioms:

(translation covariance): [T,Y (a,z)] = 8Y(a, 2),

where T € EndV is defined by

(1.3.3) T(a) = a(—3|0),

(vacuum): Y ([0), z) = Iy, Y(a, 2)|0}].=0 = g,
(locality): (z —w)NY (a,2)Y (b, w)
= (=1)P@P®) (7 — w)NY (b, w)Y (a, z) for N > 0.
Note that the infinitesimal translation operator T is an even operator, i.e.,
TVy4 C V,, and the bracket in the translation covariance axiom is the usual bracket:

[T,Y] =TY — YT, so that this axiom says
(1.3.4) [T, am)] = —nam—)-
The first of the vacuum axioms says that
(1.3.5a) [0)(ny = 6n,—1; in particular T|0) = 0.
The second of the vacuum axioms says that

(1.3.5b) amyl0) =0forn >0, aryl0) =a
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The locality axiom is to be understood as a coefficient-wise equality of two

series in z and w of the form 3" 7 Gm n2™w™.

REMARK 1.3. Applying T to both sides of (1.3.3) n—1 times, and using (1.3.4)
and T|0) = 0, we obtain %(a) = a(_n_1)|0), for n € Z,, which is equivalent, by
(1.3.5b), to

(1.3.6) Y(a,2)[0) = ¢*"(a).
1.4. Holomorphic vertex algebras

A vertex algebra V is called holomorphic if a(ny = 0 for n > 0, ie, Y(a,2) =
Zn€Z+ a(_n_1)2" are formal power series in z.

Let V' be a holomorphic vertex algebra. Since the algebra of formal power series
in z and w has no zero divisors, it follows that locality for V turns into a usual

supercommutativity:

(1.4.1) Y (a,2)Y (b,w) = (—1P PO Y (b, )Y (g, 2).
Define a bilinear product ab on the space V' by the formula

(1.4.2) ab=a(_b

and let [0) = 1. Then applying both sides of (1.4.1) to ¢ and letting z = w = 0

gives:

(1.4.3) a(be) = (—1)P@P®p(ac).
The vacuum axioms give

(1.4.4) lra=a- 1=a.

It is easy to see that properties (1.4.3) and (1.4.4) are equivalent to the ax-
ioms of a (super)commutative associative unital super algebra. Indeed, letting
¢ =1 in (1.4.3), we see by (1.4.4) that V is (super)commutative. But using (su-
per)commutativity, we can rearrange (1.4.3) to get a(cb) = (ac)b, which is associa-
tivity. The converse is clear.

Furthermore, apply Y (b, w) to both sides of (1.3.6):

Y (b,w)Y(a,2)1 = Y (b,w)e*7 (a).
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Applying commutativity to the left-hand side and then (1.3.6), we obtain
(~1)P POy (a, 2)e"T (b) = Y (b, w)e*T (a).
Letting w = 0 and using the commutativity of our product on V' we get
(1.4.5) Y (a, 2)(b) = e*T (a)b.
Thus, the fields Y (a, z) are defined entirely in terms of the product on V and the

operator T'.

Finally, by (1.4.5), translation covariance axiom becomes:
(1.4.6) T (T (a)b) — &7 (a)T(b) = T (&7 (a)) b.

Letting z = 0 we see that T is an even derivation of the associative commutative
unital superalgebra V' and that (1.4.6) is equivalent to this.

Thus, we canonically associated to a holomorphic vertex algebra V' a pair con-
sisting of an assoéiative commutative unital superalgebra structure on V and an
even derivation T. Conversely, to such a pair we canonically associate a holomor-
phic vertex algebra with fields defined by (1.4.5).

If T = 0, then Y(a, z)(b) = ab. Therefore we may view vertex algebras as a
generalization of unital commutative associative superalgebras where the multipli-

cation depends on the parameter z via
ab=Y(a,z)().

However, as we shall see, a general vertex algebra is very far from being a “com-

mutative” object.



CHAPTER 2

Calculus of formal distributions

2.1. Formal delta-function

In the previous chapter we considered formal expressions
(2.1.1) Z amn,. 2w ..,
mn,...,€%
where am n,... are elements of a vector space U. Series of the form (2.1.1) are called
formal distributions in the indeterminates z,w,... with values in U. They form a
vector space denoted by U [[z,z_l,w,w_l, - ]]
Given a formal distribution a(z) = 3}, .5, 2", we define the residue by the

usual formula
Res; a(z) = a_;.

Since Res, 8a(z) = 0, we have the usual integration by parts formula (provided
that ab is defined):

(2.1.2) Res, da(2)b(2z) = — Res, a(z)db(z).

Here and further da(z) = ", nan2z™~! is the derivative of a(z).

Let C[z,27!] denote the algebra of Laurent polynomials in z. We have a non-
degenerate pairing U [[2,27}]] x C[z, 27!] — U defined by (f, ¢) = Res, f(2)¢(z),
hence the Laurent polynomials should be viewed as “test functions” for the formal
distributions.

We introduce the formal delta-function §(z — w) as the following formal distri-
bution in z and w with values in C:

| Z\"®
(2.1.3) Sz—w) =2z n%(w) .

In order to establish its properties, introduce one more notation. Given a

rational function R(z,w) with poles only at z = 0, w = 0 and |z| = |w|, we denote

15
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distributions.
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by 4, wR (resp. iy ,R) the power series expansion of R in the domain |z| > |w]

(resp. |w| > |z|). For example, we have for j € Z,:

: 1 — = myY —m—t m—j
(2.1.4a) iz G 7;::0 (J.)z w™ I,

: 1 - «— MY —m—1, m—j
(2.1.4b) tw,z G—wp = mgl <j)z w .
From (2.1.3) and (2.1.4a and b) we obtain the following important formula:

) 1

(N §(z — = 4 —3
(2.1.5a) 0Y6(z —w) iyw T w2 oW
pas - ()

meZ

Here and further for an operator A we let
(2.1.6) AD = 4 [,

Note that (2.1.5a) is a formal distribution with integer coefficients.
The formal delta-function has the usual properties listed below.

PROPOSITION 2.1. (a) For any formal distribution f(z) € U [[z, z_l]] one has:
Res; f(2)6(z —w) = f(w). - /

(b) 6(z — w) = 8(w — 2). b
(c) 826(z —w) = (00 Y8z —w). |

@) (z— w)d¢*V6(z —w) =89 8(z —w), j€ Z,.
(&) (z—wytaP6(z—w) =0, j € Z,.

ProOF. It suffices to check (a) for f(z) = a2™, which is straightforward.
We have:

8z —w) =2"" Z (g)n+1 = ™! Z (5)1‘ = é(w — 2),

neZ nez
proving (b). Since 6(z —w) = 3,z ™ lw™ = 3 z7™ 2w+l we see that
0,6(z — w) = —8,6(z — w), proving (c). Finally, (d) and (e) follow from (2.1.5a
and b). O
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2.2. An expansion of a formal distribution a(z,w)

Here we consider the question: when a formal distribution

a(z,w) = Z Ap 2 w"

m,nex
has an expansion of the form
(2.2.1) a(z,w) =Y & (w)dD6(z — w).
7=0

Multiplying both sides of (2.2.1) by (z — w)™ and taking Res, we obtain using

Proposition 2.1 (a, d, and e) S

poL ] ST

(2.2.2) c"(w) = Res; a(z, w)(z —w)"

Consider the map w of the space of formal U-valued distributions in z and w into
itself given by the formula

(2.2.3) wa(z, w) = Z (Rgsz a(z,w)(z — w)j) 6,(3)6(2 —w).
=0
PROPOSITION 2.2. (a) The map 7 is a projector (i.e., m* = m).

(b) Kerm = {a(z,w) | a(z,w) = a(z,w) ")}, where

(224) a(z,w)T® = Z am 2" w",

meLy
nez

(c) Any formal distribution a(z,w) is uniquely represented in the form:

(2.2.5) a(z,w) = i & (w)dP8(z — w) + bz, w)
j==0

where b(z,w) = b(z,w)+t®) and the coefficients ¢/ (w) are given by (2.2.2).

PRrROOF. (a) follows by the argument preceding formula (2.2.2). It is clear that
a(z,w) € Kern if a(z,w) = a(z,w)*®. Conversely, if a(z,w) € Kerw, writing
a(z,w) = 3, cz an(w)2", we see from (2.2.2) that c®(w) = 0 implies a_;(w) =0,
A(w) = ¢*(w) = 0 implies a_;(w) = a—2(w) = 0, etc., proving (b). (c) follows

from (a) and (b). O
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COROLLARY 2.2. The null space of the operator of multiplication by (z — w)™N,
Nz21,@U|[[z,z74ww ] &

N-1
(2.2.6) 3" 8096(2 —w)U [[w,w™]].
=0

Any element a(z,w) from (2.2.6) is uniquely represented in the form
N-1 ‘

(2.2.7) a(z,w) = Y & (w)dP8(z —w),
—~

the ¢’ (w) being given by (2.2.2).

PrOOF. That (2.2.6) lies in the null space of (z —w)™ follows from Proposi-
tion 2.1e.
Conversely, if (z — w)Va(z,w) = 0, we have by (2.2.5) and Proposition 2.1
(d and e):
oo
0= Z N (Ww)6D (2 — w) + (z — w)Vb(z, w) .
3=0
By the uniqueness in Proposition 2.2c we conclude that ¢/ (w) = 0 for > N and
that (z — w)Vb(z,w) = 0. The last equality implies b(z,w) = 0 since b(z,w) =
ZnEZ+ an(w)2™. O

We shall often write a formal distribution in the form
(2.2.8) a(z) = Za(n)z-"_l a(z,w) = Z amayz " lwT ! ete.
neZ m,n€Z
This is a natural thing to do since a(,) = Res, a(2)2". Then the expansion (2.2.7)

is equivalent to
N1\

(2.2.9) Am,n) = 2% ( j)cgm+,._,-)-
i=

This follows by using (2.1.5b) and comparing coefficients.

2.3. Locality

Suppose now that the vector space U carries a structure of an associative super-
algebra. This simply means that U = Uy @ Uy is a Z/2Z-graded associative algebra
(ie., UsUg C Uyt g, @, B € Z/27).
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The most important example of an associative superalgebra is the endomor-

phism algebra EndV of a superspace V with the Z/2Z-grading given by:
(EndV)y = {a € EndV | aVp C Voyp}-
One defines the bracket [, ] on an associative superalgebra U by letting
(2.3.1) [a,b] = ab— (=1)*Pba, where a € U,,be Up.

Here and further we adopt the convention of [K1] that the bracket of an even
element with any other element is the usual commutator and the bracket of two
odd elements is the anti-commutator (physicists usually write [a, b4 in the latter
case). Recall that the Z/2Z-graded space U with the bracket (2.3.1) is a basic
example of a Lie superalgebra (see e.g. [K1] for a definition).

We can define now the notion of locality of formal distributions.

DEFINITION 2.3. Two formal distributions a(z) and b(z) with values in an

associative superalgebra U are called mutually localifinU [[z, 27", w,w™*]] one has
(2.3.2) (z = w)V[a(z),b(w)] =0 for N >0.
(The parity of a formal distribution is the parity of all its coefficients.)

REMARK 2.3. Differentiating both sides of (2.3.2) by z and multiplying by
z—w, we see that the locality of a(z) and b(z) implies the locality of da(z) and b(z).

In order to state equivalent definitions of locality we need some notation. Given

a formal distribution a(z) = 3,.cz a(n)z """ 1, let

(2.3.3) a(z)_ = Za(n)z_"'l, a(z)y = Z a(n)z_"_l.

n>0 n<0
This is the only way to break a(z) into a sum of “positive” and “negative” parts

such that
(2.3.4) (Ba(z))x = A a(z)x)-

Given formal distributions a(z) and b(z), define the following formal distribution

in z and w

(2.3.5) s a(2)b(w) = a(z) 1b(w) + (—~1)PPOb(w)a(z) .
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Note the following formulas:

Il

(2.36a) a(z)b(w) [a(z)=, b(w)] + : a(2)b(w) :

(2.3.6b) (—1)P@POp(w)a(z) = ~—[a(z)y,blw)]+ : a(2)b(w) :

THEOREM 2.3. Each of the following properties (i)—(vii) is eguivalent to
(2.3.2):

N-1
() [a(2),bw)] = Y 86(z — w)d’ (w), where ¢ (w) € U [[w,w™]].
=0
) piyg 1 -
@ -l = X (ier ) © @),
N-1
. 1 -
SRS (e g ) @)
where ¢/ (w) € U [[w,w™!]].
(iif) a(2)b(w) = Nf (z,,,_—l——ﬁ) & (w)+ : a(2)b(w) :,
= (z —w)?

(@pi®) 5 (; 1 '
(-1)PPBp(y)a(z) = j;) (l"”z(z——m) & (w)+ : alz)b(w) :,

where ¢ (w) € U [[w,w™']].

N-1
. m i
(iv) [a(m),b(n)] = Z (j)czm+ﬂ—j)’ m,n € Z.

j=0
(V) [agmy, b(w)] = Nz—;: (T;)ci(w)w""j, m€EZ.
J=
Nt
(Vi) [a(m), b)) = Z pi(M)dpin, MM EZ,
for some poly:;;)nials p;j(z) and elements d{c of U.
(vii) a(2)b(w) = ’"’G-—IUW cleu),
(-1)P@r®p(p)a(z) = iw,zm c(z,w)

for a formal distribution c(z,w). - - -

]

PrOOF. (i) is equivalent to (2.3.2) due to Corollary 2.2. (ii) is equivalent to (i)
by taking all terms in (i) with negative (resp. non-negative) powers of z. (iii) is
equivalent to (ii) due to ((2.3.6a) and b). (iv) and (v) are equivalent to (i) due to
(2.2.9). (vi) is equivalent to (iv) since any polynomial is a linear combination of

binomial coefficients. Finally, (iii) implies (vii) and (vii) implies (2.3.2). O
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By abuse of notation physicists write the first of the relations of Theorem 2.3(iii)

as follows:
(23.72) a(2)h(w) = Z( )t e

or often write just the singular part:

N-1
(2.3.7b) a(z)b(w) ~ Z (zc’(w))m

Formulas (2.3.7a) and (2.3.7b) are called the operator product ezpansion (OPE).
By Theorem 2.3 the singular part of the OPE encodes all the brackets between all
the coefficients of mutually local formal distributions a(z) and b(z). That is why
it is important to develop techniques for the calculation of the OPE’s. Most of
the time we shall use the form (2.3.7b) of the OPE as typographically the most
convenient. .

For each n € Z, introduce the n-th product a(w)myb(w) on the space of formal
distributions by the formula

(2.3.8) a(w)(n)d(w) = Res,[a(z), b(w)](z — w)".

Then, due to Corollary 2.2, the OPE (2.3.7a) becomes:

(2.3.9) a(2)b(w) = Z“(w)<:>b(w) +: a(2)b(w) :

)]+1

PROPOSITION 2.3. (a) For any two formal distributions a(w) and b{w), and

for any n € Z, one has:
(2.3.10) aa(w)(,,)b(w) = —na(w)(n-l)b(w) .

Moreover, 8 is a derivation of all n-th products.
(b} For any,mutually local formal distributions a(w) and b(w), and for any n € Z,

one has:

(2.3.11) a(w) (myb(w) = (=1)PL@P®) f:(—1)f+"+1a<f> (d(w)n+pa(w)) .
j=0
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(c) For any three formal distributions a(w), b(w) and c(w), and for any m,n € Z,

one has:
a(w)(my (B(w)(myc(w)) = Z(?) (a(w)()B(®)) () €w)
j=0
(2.3.12) +(=1)P@POb(w) oy (a(w)myelw)) .

PrOOF. The left-hand side of (2.3.10) equals
Res;[0a(z), b(w)](z — w)™ = Res, 8.[a(z), b(w)](z — w)",

which is equal to the right-hand side of (2.3.10) by (2.1.2). The second part of (a)
follows from (2.3.10):

B (a(w) (nyb(w))
= Res, [a(2), 9b(w)] (z — )" — n Res; [a(z), b(w)] (z — w)" ™"
= a(w)(n)0b(w) + Ba(w)(nyb(w) -
Next, using (2.3.8), Theorem 2.3 and Proposition 2.1d, we have
a(w)(myb(w) = —(=1)PVP®) Res, [b(w), a(2)] (z = w)"

= —(=1)P@PO Res, Y (-1Y058(z — w)b(2) jya(2) (z — w)"

J€Zy
= (~1)PPO) Res, Y~ (=115 ™8(z — w)b(2)(;)a(2)
JE€Zy
= (-1)P@P® Res, Y~ (—1)"*18P5(2 — w)b(2)(j4ma(2) .
JELy

Using integration by parts (2.1.2) and Proposition 2.1a, we obtain (b):

a(w)(yb(w) = (~1)P@PO Res, Y (=17 +76(z = w)aY (b(2)(j+nyal(2))

JEZ4

= (1@ 37 (L1470 (b(w) g mya(w) -

j€Zy

The left-hand side of (2.3.12) is equal to
Res, Resy, [a(2), [b(w), c(w)]] (z — w)™ (u — w)"
which by the usual Jacobi identity is equal to the sum of two terms:

(2.3.13) Res, Res, [[a(2), b(u)}, c(w)] (z — w)™ (u — w)"
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and
(2314) (_l)p(a)p(b) Res; Res, [[b(u)v [a(z), c(w)]] (Z - w)m(u - w)n .

But (2.3.14) is equal to the second term on the right-hand side of (2.3.12). Substi-
tuting in (2.3.13) the expression

m

(z—w)"w-—w)* = (77) (2 — u) (u — w)™ 37

j=0

we see that (2.3.13) is equal to the first term on the right-hand side of (2.3.12),
proving (c). 0

The following well-known statement has many important applications.

COROLLARY 2.3. (a) If a(2) and b(z) are formal distributions, then
[a(o), b(z)] =0 iff a(2)g)b(2) = 0.
(b) If a(z) is an odd formal distribution, then a%o) = 0 iff Res, a(2)(g)a(z) = 0.
(¢) Let A be a space consisting of mutually local formal U-valued distributions
in w which is 8-invariant and closed with respect to_ thé.\O-tﬁ\‘ product. Then
with respect to the 0-th product 0A is a 2-sided ideal ofbA and A/OA is a
Lie superalgebra. Moreover, the 0-th product defines on A a structure of a
left A/0A-module.

PrROOF. Statements (a) and (b) are obvious by definitions. From (2.3.10) for

n =0 we get

(2.3.15) 0A)A=0.

Furthermore, (2.3.11) for n = 0 gives

(2:316) a(w)(oyb(1) = ~(~1)PPOb(w) gy a(w) mod HA.

Then (2.3.15) and (2.3.16) imply that 9.4 is a 2-sided ideal and that the 0-th product
induces a super skew-symmetric bracket on .4/8.4. The super Jacobi identity in

A/8A follows from (2.3.12) for m = n = 0. This proves (c). O
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2.4. Taylor’s formula

One of the devices in calculating the OPE is Taylor’s formula. Here and further
we shall adopt the following notational conventions. Given a formal distribution
a(z) = 3_, a,z" we may construct a formal distribution in z and w:

t,wa(z — W) = Zaniz,w(z —w)™.
n

In order to further simplify notation we shall often say instead that we consider the

formal distribution a(z — w) in z and w in the domain |z| > |w]|.

PROPOSITION 2.4 (Taylor’s formula). Let a(z) be a formal distribution. Then
one has the following equality of formal distributions in z and in w in the domain
|2| > fw]:

o . .
(24.1) a(z+w) =Y 8Pa(z)w’.
j=0
PROOF. Let a(z) = Y., anz", so that 8a(z) = > (j)anz""9. Comparing

coefficients of a,, in (2.4.1), we need to show that

o
(242) (e 4wt = 3w (”)
3=0 J
But (2.4.2) is the binomial expansion in the domain [z| > |w| a

Replacing z by w and w by z — w in (2.4.1) we get another form of Tay-

lor’s formula as an equality of formal distributions in w and z — w in the domain

|z —w| < |w|:
(2.4.3) a(z) = f:a%(w)(z —w)’.
j=0

The following, yet another version of Taylor’s formula, shows that when cal-
culating the singular part of the OPE one can use Taylor’s expansion up to the

required order.

THEOREM 2.4. Let a(z) be a formal distribution and N be a non-negative in-

teger. Then one has the following equality of formal distributions in z and w:

N
(2.4.4) ON6(z —w)a(z) = 8 6(z — w) Y 8Da(w)(z —wy.
7=0
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PrOOF. It suffices to check that for an arbitrary Laurent polynomial f(z)

one has:
Res, 8V6(z — w)a(2) f(2)
N
= Y 09Wa(w)Res; 07 6(z — w)(z — w) f(2).
j=0

Integrating by parts N times transforms this to the equality

. N
Res; 8(z — w)8™(a(2) f(2)) = Y 8% a(w) Res, 6(z — w)8l ((z — w)’ f(2))

=0

which, due to Proposition 2.1a and Leibnitz rule, is

N .
O™ (a(w) fw)) = 3 Paluw) (1;’ )6”—J‘f(w).

=0

This holds by Leibnitz rule. m!

2.5. Current algebras

Here we discuss one of the most important examples of algebras of mutually
local formal distributions—the current algebras.
First we consider the simplest case—the oscillator algebra s. This is a Lie

algebra with basis a,, (n € Z), K and the following commutation relations:
(2.5.1) [om, an] = mby, _n K, [K,am] =0.

Let U = U(s) be the universal enveloping algebra of the Lie algebra s, and
consider the following formal distribution with values in U:
az) = Z apz "L
neZ

Then it is straightforward to check that
(2.5.2) [a(2), a(w)] = 8,6(z —w)K

(this follows also from the equivalence of (i) and (iv) of Theorem 2.3). In other
words, the formal distribution a(z) is local (with respect to itself) with the OPE

K

(2.5.3) a(z)a(w) ~ Gow)

The (even) formal distribution a(z) is usually called a free boson.
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The current algebra is a non-abelian generalization of this. Let g be a Lie su-

peralgebra with an invariant supersymmetric bilinear form (.|.). “Invariant” means
(fa,8lle) = (alls, ), a,bes, |
and “supersymmetric” means
(af8) = (=1)"”(bla) (in particular, (g5lo1) = 0) -
The affinization of (g, (.|.)) is the Lie superalgebra
§=C[t,t7'| ®c g+ CK

with Z/2Z-grading extending that of g by p(t) = 0 = p(K), and commutation
relations (m,n € Z; a,b € g):

(254) [am,bn] = [a, b]m+n + m(alb)ém,~nK7 [K7 @] =0.

Here a,, stands for ™ ® a, a € g. Note that C [t, t"l] ®c @ is the loop algebra,
i.e., the Lie superalgebra of (polynomial) maps of C* to g, so that § is its central
extension. If g is a simple finite-dimensional Lie algebra with the (normalized)
Killing form (.|.), then g is known as the affine Kac-Moody algebra [K2]. If g is
the 1-dimensional Lie algebra with a non-degenerate bilinear form, then we recover
the example of the oscillator algebra. (Of course, this ¢ has nothing to do with the
light cone coordinate t.) '

Introduce the following formal distributions with values in U(g), which are
usually called currents:

a(z) = Zanz"""l, a€g.
neL

Then by the equivalence of (i) and (iv) of Theorem 2.3, we see that
(2.5.5) [a(2), b(w)] = 6(z — w)[a, b)(w) + Bwb(z — w)(a|b)K

hence all the currents a(z) are mutually local with the OPE
b K
fa,(w) , (alb)

z—w  (z—w)?

(2.5.6) a(z)b(w) ~

There exists a natural super extension of the affinization, called the superaf-

finization, which is a central extension of the super loop algebra:

ﬁsuper =C [tvt—l70] ®c g+ CK,
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where 2 = 0, p(#) = 1 and the remaining OPE are as follows. For a € g define the
supercurrent
(_l(Z) = Zan+%z—n"17
n€l
where a,,1 = "0 ® a. Then the supercurrents 4(z) are pairwise local and also

local with respect to the currents, and the remaining OPE are given by

(2.5.7a) a(2)b(w) ~ E;—?_l(;u-),
(2.5.7b) a()b(w) ~ (?“@?K

The supercurrents form a closed subalgebra. In view of its exceptional impor-
tance, we repeat its construction in a slightly different form. Let A be a superspace

with a skew-supersymimetric bilinear form, i.e.,
(el¥) = —=(=1)P®)(l) (in particular, (Ag| A1) = 0).
The Clifford affinization of (A, (.|.)) is the Lie superalgebra
Ca=Clt,t7'| ®c A+CK
with commutation relations (m,n € § +Z; p,9 € A)

(2.5.8) [pm:¥n] = (P|$)0m,-nK, [Ca,K]=0,

where ©,, = t™"% ® . The formal distributions ¢(2) = 3=, cz @nt %z‘"‘l are
mutually local with the OPE

(25.9) plewtu) ~ LK

Two particularly important special cases of the Clifford affinization are the
following.

Let A be the odd 1-dimensional superspace Cy with the bilinear form (¢|p) = 1,
and let K = 1. Then C4 turns into the algebra

1
(2.5.10) PmPn + PnPm =Omy—n, MM E 5+ Z.

The (odd) formal distribution ¢(2) = 3,112 Yz V2 is called a free neutral
fermion; its OPE is

. 1

z—w

(2.5.11) p(2)p(w) ~
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In the second example let A be the odd 2-dimensional superspace Cpt & Cp~
with the symmetric bilinear form (p*|p™) = 1, (p%|p*) = 0, and again let K = 1.
Then we obtain the algebra (m,n € 4 + Z):

(2.5.12) PrPE + Phom = bmny  OmPE + PP =0

The odd formal distributions o*(2) = 3=, . 14z wE2=""1/2 are called charged free

fermions; their OPE are:
1
(2.5.13) 0= (2)pT (w) ~ pr— ¢* (2)p* (w) ~ 0.

These examples show that superalgebra is far from being a senseless general-

ization of the usual algebra.

2.6. Conformal weight and the Virasoro algebra

Let H be a diagonalizable derivation of the algebra U, called a Hamiltonian.
Then H acts on the space of all formal distributions with values in U in the obvious

way (coefficientwise). The following definition is motivated by (1.2.6b).

DEFINITION 2.6. A formal distribution a = a(z,w,...) is called an eigendis-

tribution for H of conformal weight A € C if
(H-A-28, —wdy —--+)a=0.
Here are some obvious properties of conformal weights.

PROPOSITION 2.6. Suppose a and b are eigendistributions of conformal weights
A and A’ respectively. Then
(a) O.a is an eigendistribution of conformal weight A + 1.
(b) :a(z)b(w) : is an eigendistribution of conformal weight A + A’.
(c) If f is a homogeneous function of degree j then fa is an eigendistribution
of conformal weight A ~ j.

COROLLARY 2.6. If a(z) and b(z) are mutually local eigendistributions of con-
formal weights A and A’, then in the OPE
N-1 ;
c (w)
a(z)b(w) ~ Zo (7_—11—}—)717,

j=
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the ? (w) is an eigendistribution of conformal weight A+A'—j—1. In other words,
denoting by D* the space of all formal distributions of conformal weight i, we have:

D}, D’ c DIl gDt C DL

If a(z) is an eigendistribution of conformal weight A, one usually writes it in

the form (without parenthesis around indices):

a(z) = Z anz~ "8,

nE—-A+Z

The condition of a(z) being an eigendistribution of conformal weight A is then

equivalent to
(2.6.1) Ha, = —na,.

As a result, the commutation relations given by Theorem 2.3(iv) take a graded

form:
N-1
m+A-—-1\ ;
2623.) [amv b’"- = ( y )cjm ny

( ] ,; p .
or equivalently

N-1 - .
(2.6.2b) [am, b(2)] = Z (m +jA - l)ci(z)zm+A—J‘—1_

=0

ExAMPLE 2.6. Choosing for the algebra of currents g (resp. supercurrents
Gsuper) the Hamiltonian H = —18; (resp. = —18; — 309y), we see that the cur-

rents a(2) (resp. supercurrents @(z)) have conformal weight 1 (resp. 1/2).

Corollary 2.6 is a very useful bookkeeping device in calculating the OPE. In
many examples (e.g., from the considerations of unitarity) the conformal weight is
in %Z+ and it is 0 iff the eigendistribution is a constant element commuting with
all formal distributions of the theory.

If the above positivity condition holds, then due to Corollary 2.6, all mutually
local eigendistributions of conformal weight % have the OPE of the form (2.5.7b),
all eigendistributions of conformal weight 1 have the OPE of the form (2.5.6) and
the OPE between the latter and the former is given by (2.5.7a).
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‘We consider now the next case—a local even eigendistribution L(z) of conformal
weight 2:
L(z2) = Lpz2
nezZ
As has been mentioned above, it is natural to assume that the OPE has the form

3C |, _aw)  %w) | cw)
(z—w)t (z-—w)®  (z—-w)?  z-w

(2.6.3) L(z)L(w) ~

’

where C is a constant formal distribution.

THEOREM 2.6. Suppose that L(z) is an even local formal distribution with the
OPE of the form (2.6.3). Then
(a) a(w) =0 and c(w) = 8b(w).
(b) If in addition [C,L(2)] = 0 and

(2.6.4) [L_y,L(z)] = 8L(2), [Lo,L(2)] = (28 + 2)L(z)

then (2.6.3) becomes

ic
(2.6.5) L(z)L(w) ~ e i wys (36(2;2 azL_(":;)

1

or, equivalently, we have the Virasoro algebra (m,n € Z):

—m

3
(2.6.6) (Lo, Ln] = (M = 1) Lo + — 5

bm.—nC, [C,Lm] = 0.

PrOOF. Exchanging z and w in (2.6.3), we obtain

10 e, B _ cla)
(z—w)t (z-w)l (z—w)? z-—w

L(w)L(z) ~
By making use of Taylor’s formula, this turns into:

3C_ a(w) +da(w)(z — w) + ¥a(w)(z - w)?

oy 0T e (= w)?
- 2b(w) + 20b(w)(z —w)  c(w)
+ (z — w)? T Zz—w

Due to locality the right-hand sides of (2.6.3) and (2.6.7) must be equal. Matching
the coefficients of (z — w) ™ and (z — w)~! we get (a). Thus, we have:

3C 2b(w) n Ob(w)
(z—w)t  (z~w)? z—w

(2.6.8) L(z)L(w) ~
Due to (2.6.2b) this implies, in particular:

[L-1,L(2)] = 8b(2), [Lo,L(2)] = (28 + 2)b(z).
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Hence assumptions (2.6.4) imply that b(z) = L(z). This proves (2.6.5). The equa-
tion (2.6.6) is equivalent to this OPE due to (2.6.2a). 0

A local formal distribution L(z) with the OPE (2.6.5) is called a Virasoro
formal distribution with central charge C.

In conclusion of this section we give a table of the most commonly used OPE of
mutually local formal distributions and the equivalent commutation relations (all

these are special cases of formula (2.6.2a)).

2.7. Lie superalgebras of formal distributions and conformal

superalgebras

The following definition singles out the most important for CFT class of Lie
superalgebras, which includes the (super)current and the Virasoro algebra. Except

for this definition, the rest of the section is not used until the last Section 5.9.

DEFINITION 2.7a. A Lie superalgebra g is called a Lie superalgebra of formal
distributions if it is spanned over C by coefficients of a collection of g-valued mutu-

ally local formal distributions {a®(z)}.

Let g be an arbitrary Lie superalgebra. We denote by fd(g) the space of all
g-valued formal distributions in z with n-th products, n € Z,. This is clearly a
C[8]-module (8 = 8,).

Consider the subspace R over C of fd(g) which is closed under all n-th products;
n € Z,, and denote by g(R) the C-space of all coefficients of all formal distributions
from R. Provided that all formal distributions from R are mutually local, g(R) is
a subalgebra of g with the bracket
(27.1) [amy b)) = Y (m) (@(j)®) (m4n-3)-

JE€Z+ J
This follows from Theorem 2.3(iv). Clearly, g(R) is a Lie superalgebra of formal
distributions and all of them are thus obtained.

Let R be a collection of pairwise local formal distributions from fd(g). We
denote by R° the minimal C[d]-submodule of fd(g) closed under all n-th products,
n € Zy. Due to Remark 3.2 and Dong’s lemma proved in Section 3.2, R® consists

of pairwise local formal distributions and therefore we have a Lie superalgebra of



2. CALCULUS OF FORMAL DISTRIBUTIONS

32

ym—2)

41

Slms

U:I.E%

+

uru(u — w) = [V ]

NI:IB\:\N N = AB\V\H

NIEINE\HN = ANV\H

oy —w(t - v)) = [0 7]

goum¥p { = (m)p

NIEINE\NN = ANV\N

:I‘E%E = Ta Itd_

1—u—Mm%q N ” {(m)q

—w_2™D N = (z)p

z/> *
z(m —2) + m—-z
(m)1g ()10
z(m —2) + m-—z
(m)oy ~ (m)vg
g{m —z)
T
m -~z

1-u-M*2 = (m)

:+EU — ﬁFQ .EGQ

tu i = (m)g

—w TUD N = (2)p

ado

SUOIYB[ed UOIIBINUILIOD

uonNqIISIp pug

UoMqIIISIP IST

"AdO °I98L




~ 2.7. LIE SUPERALGEBRAS OF FORMAL DISTRIBUTIONS 33

formal distributions g(R°). In view of Proposition 2.3, this leads us to the following

definition.

DEFINITION 2.7b. A conformal superalgebra R is a left Z/2Z-graded C[8]-mod-
ule R = R ® R; with a C-bilinear product a,,b for each n € Z. such that the
following axioms bhold (a,b,c € R, m,n € Z..):

(CO) anyb=0forn>>0,

(C1) (Ba)(nyb = ~man-1jb ,

(C2) a(nyb = (~1)P(r® Z 1D/ i gya

ks m
(C3) agm) (bme) =Y ( ‘)(“<j>b)<m+n—j)0+ (1P PO (a(mye) -

=0 J

Conformal superalgebras is an effective tool to study Lie superalgebras of formal
distributions. Indeed, if g is spanned by coefficients of a collection R of pairwise
local formal distributions, then R° is a conformal superalgebra, due to Proposi-
tion 2.3. Conversely, reversing the arguments of the proof of Proposition 2.3, we
may construct a Lie superalgebra of formal distributions g(R) associated with the
conformal superalgebra R as follows. Let g(R) be the quotient of the vector space
with basis a(,) (¢ € R, n € Z) by the subspace spanned over C by elements
(a,be R, A€ C,neZ):

(A@)(n) ~ Aa(ny, (@ +D)(n) ~a(n) ~bny, (0a)(n) = ~na(n_y).

One easily checks that formula (2.7.1) gives a well-defined bracket on g(R).

The following theorem facilitates the construction of conformal superalgebras.

THEOREM 2.7. Let R = @, C[0]a® be a free Z/2Z-graded C[5]-module with
basis {a®} consistent with the Z/2Z-grading, and suppose that for each n € Z.
and a, 3 € I products a?‘n)aﬂ with values in R are defined such that (C0), (C2),
and (C3) hold. Then these products can be uniquely extended to R x R giving R a

structure of a conformal superalgebra.

PRrOOF. Let g be a vector space over C with basis af,,, (e € I, n € Z) and

bracket (2.7.1). Reversing the arguments of the proof of Proposition 2.3, we see
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that g is a Lie superalgebra spanned by coefficients of the collection {a®(z) =
S a‘(‘n)z"”“l} of mutually local formal distributions. But then R = {a*(z)}¢is a
conformal superalgebra. |

Note that it follows from axioms (C1) and (C2) that
(2.7.2) a(n)ab = a(a(n)b) + nag,_1)b,
and hence that & is a derivation of all n-th products (cf.Proposition 2.3(a)).

REMARK 2.7a. The operator a(g) is a derivation of all n-th products (due to
(C3)) and it commutes with & (due to (2.7.2)). As in the proof of Corollary 2.3,
it follows (using also (C1) and (C2)) that, with respect to 0-th product, R is a
2-sided ideal of R such that R := R/OR is a Lie superalgebra, and that 0-th product
defines on R a structure of a left R-module for which R commutes with C[3].

The notions of a homomorphism, ideal and subalgebra of a conformal super-
algebra R are defined in the usual way. An element a € R is called central if

amyR=0forall n € Z, (and hence R,ya=0,n € Z,).

PROPOSITION 2.7. If the center of a conformal superalgebra R is trivial, then
the C[0]-module R has a trivial torsion. (In particular, R is a free C[0]-module if
it is finitely generated.)

PRrOOF. Suppose that the torsion is non-trivial, i.e., P(8)a = 0 for a non-zero

polynomial P and a non-zero element a € R. Then we have
(2.7.3) (@~X"a=0forsome A€ Cand N > 1.

Since a is a non-central element, there exists b € R and m € Z such that a(,.,yb # 0;

take the minimal such m. Then by (C1):
(8*a)(m)b = 0 for k >0,

hence ((8 — \)"a) my® = (=M a(myb. It follows from (2.7.3) that A = 0. Hence
8Va = 0 and therefore 0 = (8Ya)(men)d = (-1)¥(m + N)(m+ N - 1)--.
(m + 1)a(myb (due to (C1)), which is a contradiction. n
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Consider a central extension of a conformal superalgebra R by a 1-dimensional

center:
R=R&®CC, p(C)=0, dC=0, CyyR=0forneZ,.
The n-th product a¢)bon R C Ris given by
amyb = amyb + an(a,b)C.

It is straightforward that R is a conformal superalgebra iff {a, }nez, is a 2-cocycle
on R defined as follows. A 2-cocycle on a conformal superalgebra R is a sequence of

C-valued C-bilinear forms o, (n € Z1) on R x R such that (a,b,c € R, m,n € Zy):

(2.7.4) an(8a,b) = —na._1(a,b),

(2.7.5) an(a,b) (1)t HP@ORB) o (B a),

m

5 (7 ) st o)+ (-0t

3=0

(2.7.6) am(a,bn)c)

As usual, the trivial cocycle a,(a, b) = f(a(n)b), where f : R — C s a C-linear
map, defines a trivial central extension of R (isomorphic to the direct sum of R and
the trivial conformal algebra C). Two cocycles that differ by a trivial cocycle are

called equivalent.

REMARK 2.7b. A module M over a conformal superalgebra R is a Z/2Z-graded
C|[d]-module with C-linear maps a — af‘,’{) of R to EndcM for each n € Z such
that the following properties hold:

i m M
(agmy blm] = D ( j) (2()8) (mgnsy >

7=0
(Ba)My = —nall_}), 10 =dally +nall_,.

One can define cohomology H*(R, M) similar to the Lie algebra cohomology. The
central extensions of R by C are then parametrized by H2(R,C).

In conclusion of this section we consider two main examples of conformal alge-
bras R(= Rg). Due to (C1) and (2.7.2) it suffices to define n-th products on the
generators of the C[d]-module R.
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EXAMPLE 2.7a. Let g be a Lie algebra. Then the C[8]-module R = C[d] ®¢ g
has a structure of a conformal algebra defined on a,b € g by

(2.7.7) ayb= [a; b, ammb=0form>1

This is called the current conformal algebra associated to g since the correspond-
ing (via (2.7.1)) Lie algebra of formal distributions is the affinization of g divided
by the center CK (see Section 2.5). The following formula defines a 2-cocycle
(a,0€1®g C R):

(2.7.8) ay(a,b) = (a|d), am(a,b)=0ifm#£1,

where (.|.) is a symmetric invariant bilinear form on g. It is easy to see (2.7.8)
gives all 2-cocycles, up to taking for ag a 2-cocycle on g, provided that [g, g] = g.
In particular, if g is a simple finite-dimensional Lie algebra, then (2.7.8) are all

2-cocycles, up to equivalence.

EXAMPLE 2.7b. The conformal algebra associated with the Virasoro algebra
(divided by the center) CC is R = C[d]|L, with products (cf.(2.6.5)):

(2.7.9) L(O)L = gL, L(l)L = 2L, L(m)L =0ifm>2.
The 2-cocycle of its central extension is given by
(2.7.10) as(L, L) = g am(L,L) = 0if m #3.

DEFINITION 2.7c. An even element L of a conformal superalgebra is called a

Virasoro element if relations (2.7.9) hold.

CONJECTURE 2.7. Any simple conformal algebra of finite rank over C[9)] is
isomorphic either to a current conformal algebra associated to a simple finite-

dimensional Lie algebra or to the Virasoro conformal algebra.

There has been some progress recently in the proof of this conjecture (in partic-
ular, M. Wakimoto an myself were able to show that it is indeed true in the rank 1
case), but the general proof is still far away. 4

As we shall see in Sections 5.8 and 5.9, the list of known simple conformal

superalgebras of finite rank is much richer than that of conformal algebras.
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Local fields

3.1. Normally ordered product

Fix a vector superspace V = V5 + Vj (the space of states). Recall that a formal

distribution

a(z) = Z amyz !

nez
with values in the ring EndV (ie., a(,y € EndV) is called a field if for any v € V'

one has:
amyv =0 for n>> 0.

Note that in the expansion (see (2.2.5)): . :

(3.1.1) [a(2), b(w)] = i & (w)d6(z — w) + b(z, w)T

7=0
all the coefficients ¢/ (w) are fields provided that b(w) is a field, due to formula
(2.2.2):

(3.1.2) F(w) = Resz‘i;z(z), b(w)](z - w).

The normally ordered product of two fields a(z) and b(z) is defined by

(3.1.3) : a(2)b(2) = a(2) 1b(2) + (~1)P@POp(z)a(z)_.

Since

(3.1.4) : a(z)b(z) f(n)= _Z: a(j)b(n_j_l) + (—l)p(a)p(b) Z b(n_]-_l)a(j)
j=-1 =0

we see that when applied to v € V each of the two sums gives only a finite number
of non-zero summands, hence : a(z)b(z) : is a well defined formal distribution. Here
we use that both a(z) and b(2) are fields; for general formal distribution one is able
to define only the normally ordered product (2.3.5) in two indeterminates.

37
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Moreover, it is clear from (3.1.4) that : a(2)b(z) : is a field, since given v € V,
biyv = 0 for s > M, agyv = 0 for j > N and bgav = 0 (1 < j < N) for
s > K, for a suitable choice of M, N and K € Z. Then : a(2)b(2) :tny v = 0 for
n>M+N+K.

Thus, the space of fields forms an algebra with respect to the normally ordered
product (which is in general neither commutative nor associative).

v Incidentally, it is straightforward to verify that : a(z)b(z) : —(—1)P(e)P(®
: b(2)a(z) : is a Lie superalgebra bracket (in spite of the non-associativity of the
normally ordered product).!

The derivative da(z) of a field a(2) is again a field and, thanks to (2.3.4), J is
a derivation of the normally ordered product:

(3.1.5) 3 : a(2)b(z) =: Ba(2)b(z) : + : a(2)Bb(z) : .

Due to the existence of the normally ordered product, one can define the n-th

product between fields not only for n positive (see (2.3.8)), but also for n negative:
(3.1.6) a(z2)(_n_1)b(2) = 8™ a(2)b(2) , ne€Zy.

It is tempting now, using these products and Taylor’s formula (2.4.3), to rewrite
the OPE (2.3.9) of mutually local fields a(z) and b(z) in a “complete” form:
3 dwoiw) a{w);)b(w)

(3.1.7) a(z)b(w) = o= wp i

J€Z

However, (3.1.7) makes no sense as an equality of formal distributions since different
parts of it are expanded in different domains. (In the “graded” case one can give a
meaning to (3.1.7) using analytic continuation.) Still, formula (3.1.7) can be used,
up to an arbitrary order of z — w.

In order to state the result we need the notion of a field in z and w. This is a
formal EndV-valued distribution '

a(z,w) = Z Ammyz "l
m,neL
such that for each v € V one has: '
Umayw=0if m >N (re;s; n > N), for some N independent of n (resp m)
Jwhen n <« 0 (resp. m «.0). !

IThis was pointed out to me by A. Radul.
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For example, : a(z)b(w) : is a field if a(z) and b(w) are fields. Note that a par-
tial derivative of a field is a field and that a(w,w) is a well defined field in the

indeterminate w. The following is yet another version of Taylor’s formula.

LEMMA 3.1. For any field a(z, w) and any positive integer N there exist fields
d(w) (0<j< N-1) and a field dV (z,w) such that

N-1
(3.1.8) a(z,w) = Z I(wl(z —w) + (z - w)Vd¥ (z,w).
=0

The coefficients ¢ (w) are uniquelif determined by this expansion and are given by

the usual formula:
(3.1.9) F(w) = 89 a(z, w) | o .

ProOF. The uniqueness of the ¢’ (w) is proved in the usual way: differentiate j
times (3.1.8) by z and let 2 = w. It suffices to prove existence of (3.1.8) for N = 1:

(3.1.10) a(z,w) — a(w,w) = (z — w)d(z, w) for some field d(z,w), *== ¥

since applying it again to d(z,w) gives (3.1.8) for N = 2, etc. The proof of (3.1.10)
is straightforward. O

THEOREM 3.1. Let a(z) and b(2) be mutually local fields and let N be a positive
integer. Then there exists a ﬁeld d™(z,w) such thatin the domain |z| > |w| one has:

(3.1.11) a(2)b(w) = Z “("’)(“b(w)+(z—w)MdM(z,w).

Pran'¥ w)i+l

The coefficients of (z—w)™~1 (5 > — ) in this expansion are umquely determined.

Proor. In view of (2.3.9) and (3.1.5), the theorem is a consequence of
Lemma 3.1 applied to the field : a(z)b(w) :. d

Lemma 3.1 and Theorem 3.1 show that when calculating the OPE of local fields
one can use Taylor’s expansions up to the required order.

It turns out that there is a nice unified formula for all the n-th products of
fields (n € Z):

(3.1.12)
a(w)(nyb(w) = Res, (a(z)b(w)iz,w(z —w)" — (~1)PDPOp(w)a(2)iy, (2 — w)") ,
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Indeed, for n > 0 formula (3.1.12) obviously coincides with (2.3.8). For n < 0,
(3.1.12) follows from the following formal Cauchy formulas for any formal distribu-
tion a(z) and k € Z:

1

(31133.) Res, a(z)iz‘wm = a(k)a('w)+ )
(3113b) Res, a(z)iw,zm —a(k)a('w)_ .

It is immediate to check these formulas for k = 0; the general case follows by
differentiating both sides by w k times.
3.2. Dong’s lemma
Now we are in a position to prove the following important lemma. (see [Li]).
LEMMA 3.2. If a(z), b(z) and c(z) are pairwise mutually local fields (resp. for-
mal distributions), then a(z)(n)b(2) and c(z) are mutually local fields (resp. formal

distributions) for alln € Z (resp. n € Z; ). In particular : a(2)b(z) : and c(2) are
mutually local fields provided that a(z), b(z) and c(z) are.

PROOF. It suffices to show that for M > 0:

(3.2.1) (22— z)MA = (22— z)MB,
where
(3228) A = i, (21— z)"a(z21)b(22)c(23)

= (= 1p@PBi,, . (21 = 2)"b(z)a(z1)e(23),

(32.2b) B (—1)PP+P) (5. (21 — z2)™c(23)a(21)b(22)

= (F1PPO, L (21 — 2)"e(23)b(22)a(21)) -
Indeed, taking Res,, of both sides of (3.2.1) and letting zo = z, 23 = w gives the
result due to (3.1.12).

The pairwise locality means that for r > 0:

(3.2.32) (2 — z) a(z1)b(z2) (21 — 22) (—1)PDPO)p( 20} a(z1),

(3.2.3b) (22 — 23)"b(z2)c(23) (22 — 23)7 (—1)POPCe(25)b(2),

(3.2.3c) (z1 — z3)"a(z))e(23) (z1 — z3)T(—l)p(”)p(c)c(za)a(zl).
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Taking r sufficiently large, we may assume that n > —r. Take M = 4r and use

3r

(-2 =3 (M@ - -

s=0
Then the left-hand side of (3.2.1) becomes

3r

(3.2.4) Z (?;r) (22— 21)* % (21 — 23)° (22 — z3) A

5=0
If3r—s+n >, then (21 — 22)¥ %, 2 (21 — 22)" = (21 —zg)” where ' > r, hence
due to (3.2.3a) the s-th summand in (3.2.4) is 0 for 0 < s < r. Hence the left-hand
side of (3.2.1) equals

3r

3r 3r—s s r
(3.2.5a) s;q (S ) (22 — 21)"" (21 — 23)%(22 — 23)" A.
Similarly the right-hand side of (3.2.1) equals
(3.2.5b) SZT (3T) (22 — 1) (21 — 23)*(22 — 23)" B.
s=rq1 VS
Due to (3.2.3b and ¢}, (3.2.5a) is equal to (3.2.5b). O

Let g¢f (V) denote the space (over C) of all fields with values in EndV. As
we have already pointed out, g£f(V) is closed under all the products a(z),)b(z),
n € Z. This is called the general linear field algebra.

DEFINITION 3.2. A subspace of ¢g£f(V) containing the identity operator Iy
and closed under all the products a(z)(nyb(z) is called a linear field algebra® A
linear field algebra is called local if it consists of mutually local fields.

REMARK 3.2. A subspace A of g£f(V) is a linear field algebra iff Iv € A,
8A C A, A is closed under normally ordered product and A is closed under OPE
(i.e., all the coefficients ¢/ given by (3.1.2) are in A).

One says that a collection of fields generates a field algebra A if A is the minimal

field algebra containing these fields. Dong’s lemma implies

COROLLARY 3.2. A linear field algebra generated by mutually local fields s

local.

2Lian and Zuckerman [LZ] use the term “quantum operator algebra.”
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3.3. Wick’s theorem and a “non-commutative” generalization

The normally ordered product of more than two fields a!(z), a%(z), ... , a"¥(z)
is defined inductively “from right to left”:

(3.3.1) sat(2)a?(z) - aV(2) =0t (z) -t aV T H2)aN () e
This is a sum of 2V terms of the form
(3.3.2) a1 (2) a2 (2)y - @t (2)_aP2(2)- -,

where i) < i3 <.+, j; > ja > -+ - is a permutation of the index set {1,... ,N} and

* is the sign of this permutation from which the indices of even fields are removed.

" REMARK 3.3. It is clear from (3.3.2) that if [a%(2), a7(2)4] = O for all i and
J» then: a’(2) - a™(2) : = % : a*1(2) -+ a*¥(z) : where % is the sign of the permu-
tation (¢, -+ ¢x) from which the indices of even fields are removed. It follows that

in this case the normally ordered product is (super)commutative and associative. -

The following well-known simple theorem is extremely useful for calculating

the OPE of two normally ordered products of “free” fields.

THEOREM 3.3 (Wick theorem). Let a'(z),... ,aM(z) and b'(2),... ,bY(2) be
two collections of fields such that the following properties hold:
(i) [[a*(z)—, b7 (w)], "(z)] =0 foralli, 3, k, and c= a or b,
(ii) [a’(z)i,b’(w)i] =0 for all i and j.
Let [a'b] = [a*(z)_, ¥ (w)] denote the “contraction” of a*(z) and b/ (w). Then one
has the following| OPE in the domain |2| > ol

. : 7 min(M,N)
(33.3) :al(z)---aM(z) :: b} (w) - 0N (w) := Z Z

5=0 11; ;1,
+ [a" 1] - [a* 0] a'(2) - aM ()b (w) BV (w) 1,
( ] lia

[EEIT 75 ) YO :js))

where the subscript (i1« is; 51 Js) means that the fields a* (2), ..., a*(z),
bt (w), ..., bs(w) are removed, and the sign & is obtained by the usual super
rule: eac(z permutation of the adjacent odd fields changes the sign.

. L« ;: I ~.,\ ’,‘d,,_ xi, ‘\H,\; ’ (‘,ﬁ
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Proor. The typical term on the left-hand side of (3.3.3) is
(0 (2)40% (2): -+ 0 (2) 0" (2) ) (b5 ()b (w)s. - 57 () 62 () )

and we have to move the a*(z)_ across the #(w), in order to bring this product

to the normally ordered form (3.3.2). But due to the condition (ii) of the theorem,
(3.3.4) a'(z)-b (w)y. = (~1)PPEb () 4 (2) - + [a¥(2) -, b (w)] .

Due to condition (i) the contractions commute with all fields, hence can be moved
to the left. This proves (3.3.3). a

Y ﬁvl,),'u : Yot

DEFINITION 3.3. A collection of fields {a*(z)} is called a free field theory if all
of these fields are mutually local and all the coefficients of the singular parts of the
OPE are multiples of the identity.

By Remark- 3.3, normally ordered products of free fields are, up to the sign,
independent of the order. The OPE between these normally ordered products can
be calculated using Wick’s formula (3.3.3) and Taylor’s formula (3.1.8).

Now we turn to a generalization of Wick’s formula for arbitrary fields. First,

we prove an analogue of Proposition 2.3 for all n-th products of fields.
PROPOSITION 3.3. (a) For any two fields a(w) and b(w) and any n € Z one has:
(3.3.5) Ba(w)(nyb(w) = —na(w)m_1)b(w).

Moreover, 8 is a derivation of all n-th products.

(b) For any mutually local fields a(w) and b(w), and for any n € Z one has:
(3.3.6) a(w)(myb(w) = (~1)PDO Y (1)1 (bw)(y jya(w)) -
i=0
(c) For any three fields a(w), b(w), and c(w) and for any m € Z+,"”n €z
one has:
ap o () = 3 () (@) ey )
+ (~ 1P POb(w) () (a(w)mye(w)) -
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PRrROOF. The proof of (a) is the same straightforward verification as that of

Proposition 2.3a. We have by (3.1.11) in the domain |z| > |w|:

(33.8) b(z)a(w) = Z blw); 2;’,51"1) (z —w)Na" (2, w).
k>—N
Using locality and exchanging z and w we obtain from (3.3.8) in the domain
l2| > |w|:
(—1P@POa(2)p(w) = 3 b—(%ﬂwq)w(w,z).

n>—N

Applying Lemma 3.1 to a(z,w) = b(z)(n)a(z) we rewrite this as:
(3.3.9)
(—1P@POa(z)b(w) = Y ()Y

n>—N 7>0

au b(w) )a(w)

(z — w)nti—3 + (z —w)Ndy (w, 2).

Comparing the coefficients of (z —w)™*~! in (3.3.8) where a and b are exchanged
and in (3.3.9) we get (b). In order to prove (c), note that by formula (3.1.11) the
left-hand side of (3.3.7) is

Res, Resy ([a(2), b(u)e(w)](z — w) ™ iy, (u — w)"
— (=1)P7) [a(z), c(w)b(w)](z ~ w)™iwp,u(u ~ w)").

We use now in both summands the identity
[a, bc] = [a, b]c + (—1)P@P®)p[a, ]
and proceed in the same way as in the proof of (2.3,12). d

The special case of (3.3.7) for n = —1 is called the “non-commutative” Wick
formula:
(3.3.10)
a(2)(m) : b(2)e(z) = (a(2)(m)b(2)) e(2) :
m—1
m
+ (—1)7 (a)p(b b(z) (a(z) c(z)) i+ .Z(:) (J) (a(z)(j)b(z))(m_l_j) e(z).
j=
Note that for free fields the “correcting” sum in (3.3.10) vanishes and we recover
the usual Wick formula.
Formulas (3.3.6) and (3.3.10) -allow one to calculate OPE of arbitrary normally
ordered products of pairwise local fields knowing the OPE of these fields if they form
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a closed system under n-th products for n € Z, . In fact there is a Mathematica

package [T] which provides a computer program for these calculations.

3.4. Restricted and field representations of Lie superalgebras of formal

distributions

DEFINITION 3.43,.“ Let g be a Lie superalgebra of formal distributions, i.e. a Lie
superalgebra spanned by coefficients of a family of mutually local formal distribu-
tions {a%(z)}. A representation of g in a vector space V is called a field represen-
tation if all the a®(z) are represented by fields, i.e, for each v € V| alyv = 0 for
n>0.

An important problem of quantum field theory is the construction of local linear
field algebras. The usual way of doing this is to take a field representation of a Lie
superalgebra of formal distributions; then the fields representing the a®(z) generate
a local linear field algebra.

Field representations are usually constructed by means of induced modules.
Recall that for a Lie superalgebra g and a representation m of its subalgebra p in a

vector space W the induced g-module is the vector space
Indfr = U(g)®up W
= (U(g)®W)/U(g)(p@w—1®n(p)w|p € p,w e W)
on which g € g acts by left muitiplication on the 1st factor.
Let g be a Lie superalgebra spanned by coefficients of mutually local formal

distributions {a*(z)},.; and assume that the C[d]-span of the a(2) is closed under
all n-th products, n € Z, (cf. Corollary 4.7). Let CoLn

(3.4.1) gt = {a‘("n)|a elne Z+}.

Due to Theorem 2.3(iv), g* is a subalgebra of g. Let 7 be a representation of g*
in a vector space W such that for any w € W:

™ (af‘n)) w=0 for 0. "

Then the induced g-module Ind:+1r is a field representation. Indeed, one proves by

induction on k (using Theorem 2.3(iv)) that

a‘(’n) (a“‘l)---a?,’:k)w) =0 for n>0.

(n
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Unfortunately, even the oscillator algebra has a lot of pathological irreducible
field representations. The additional requirement of “restrictedness” removes these
pathologies.

We shall now assume that- the Lie superalgebra g of formal distributions is
graded. This means that we have a diagonalizable derivation H of the Lie superal-
gebra g such that for some A, € R:

(3.4.2) Ha®(z) = (2. + Aa) a*(2)

i.e., a*(z) is an eigendistribution for H of conformal weight A,. Writing a®(z) =

Y ne—nntz 622 A= we have, due to (2.6.1):

Hence g is a R—graded Lie superalgebra:

g= @ngnv [gm7 gn] C Bmtn-

Let
92 = Bn>08n, g>0 = @n>08n-

DEFINITION 3.4b. A representation in a vector space V of graded Lie superal-
gebra g of formal distributions is called restricted® if the subalgebra g>° acts locally
nilpotently on V, i.e., for any v € V there exists n > 0 such that g, --- g,v = 0 for
any n elements g, ... ,gn of g~°. ‘

Add
Recall that a g-module V' is called graded if V = @ ;crV; and gV, C Viugn.

Consider a representation m of the subalgebra gy, extend it to g= by letting »
7 (g7%) =0, and let

V()= IndgZ m.

The g-module V' (r) is called the (generalized) Verma module associated to w. Note
that R-gradation (3.4.2) induces a gradation:

(3.4.3) V(r) = P V(n)n,

n>0

3This terminology differs from that of [K2], where field modules are called “restricted” and

restricted modules are more or less the “category ©” modules.
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so that the representation of g in V() is w. It follows from (3.4.3) that the
representation of g in 17(1r) is a restricted field representation.
Denote by J(w) the sum of all g-submodules contained in ,, ., V(7)n, and let
V(m) = V(m)/J(x).

It is clear that J(m) is a graded submodule, hence V(rr) is a graded module.
A vector v of a g-module V is called singular if g>% = 0.
The proof of the following proposition is straightforward.

PROPOSITION 3.4. (a) A graded restricted g-module V = D; V; is irreducible
iff all its singular vectors have minimal grade d and the representation of go in Vg
is irreducible.

(b) The map 7 +— V(m) gives us a bijection between the set of all (up to iso-
morphism) irreducible go-modules and the set of all (up to isomorphism and shift
of grade) irreducible restricted g-modules. =]

3.5. Free (super)bosons

Let § be a finite-dimensional superspace with a non-degenerate supersymmetric
bilinear form (.|.). Viewing § as a commutative Lie superalgebra, we may consider

its affinization (see Sec. 2.5):
h=C[t,t"|®ch+CK
with commutation relations (m,n € Z; a,b € h):
(3.5.1) [@ms ba] = M(alb)bm, K, [K,B] =0,
where a,, stands for ™ ® a. Then the currents

a(z) = Zanz_"_l, a€h,

neZ
are mutually local with the OPE (cf. (2.5.6)):
(alb) K
(3.5.2) a(z)b(w) C—w)

It is natural to call § the Weyl affinization of § (vs. the Clifford affinization
Cl4 discussed in Sec. 2.5 and in the next section). The different nature of notation
stems from the difference of the generalizations of these two affinizations to the

non-abelian case discussed in Sec. 2.5.



48 3. LOCAL FIELDS

Consider a field representation of the Lie superalgebra § in a vector space V.
Then we get a set of mutually local fields with the OPE (3.5.2), called a system
of free bosons (sometimes called free superbosons if h; 7# 0). Note that these fields
satisfy the conditions of Wick’s theorem.

Choose bases {a*} and {b*} of ) consistent with the Z,-gradation such that

(3.5.3) (b'a?) = 6i;.

Such bases are called dual Then for any h € § we have:

(3.5.4) h= Z(bi;h)ai = Z(ma")bi.
Consider now the field 1
(3.5.5) S(z) = %Z L@ (2)b(2) : -
Using Wick’s theorem, calculate the following OPE:
S(2)a(w) ~ % Z (%ai(z)K + % ;(—l)p(bi)p(“)(%bi(z)K.

Using (3.5.4), we obtain (a € b):

(3.5.6) S(z)a(w) ~ a(z) K~( a(w) +3a(’w))K_

(z—w)? z—w)? z-w

In the last part of (3.5.6) we used Taylor’s formula.
Suppose now that K = kI, where the affine central charge k is a non-zero

number. Let
(3.5.7) L(2) = %S(z).
Then (3.5.6) gives us (a € h):

oo Uept) ~ 25 ~ o+ T

Writing L(z) = 3_,,c7 Ln2" ™2, we obtain, due to Table OPE (Sec. 2.6):
(3.5.9) [Lim,an] = ~n@min, m,ne€Z.

Noting that

1 ipi
Lo = EEXi:aObO-}-H,
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where
1 L N
H= 2535 (b b+ (~ )% b0l
i n>0
and that the elements ag lie in the center of , we see from (3.5.9), in particular,
that

(3.5.10) [H, an] = ~nan.

In other words, adH is a Hamiltonian and all fields a(z) have conformal weight 1.
(Of course, it is even easier to check (3.5.9) and (3.5.10) directly.)
Note that (3.5.9) for m = —1 and m = 0 means

[L_1,a(2)] = Ba(z), [Lo,a(z)] = (20 + a(2).

It follows easily that L(z) satisfies (2.6.4). Since also L(z) is a local field whose
OPE with itself, by Wick’s theorem, has the form (2.6.3) we obtain by Theorem 2.6b
that L(z) is a Virasoro field. (Of course, it is easy to see this directly using Wick’s
theorem.) In order to compute the central charge, we need to compute the s = 2
term of L(2)L(w) in Wick’s formula (3.3.3), which is § sdimb/(z — w)*. Thus we

obtain
(3.5.11) central charge of L(z) = sdim h.

Since Ja(z) has conformal weight 2 we can construct the following family of
local fields on conformal weight 2:
Lb(z) = L(z) + 8b(z), b€ bg.

As usual, we let Lb(2) = ¥~ L2721t follows from (3.5.2) and (3.5.8) that

a(w) da(w)  2(alb)k
E-w? z-w (z-w)

(3.5.12) Lb(2)a(w) ~
Hence (using (2.6.3)) we obtain:
(3.5.13) [Lfn,an] = ~Namin — (a|B)k(mMm? + m)6, —n.

In particular, [L®),a.] = —na,_i, hence [L®,,a(z)] = da(z) and, as above, we
deduce that L(z) is a Virasoro field. Using (3.5.2), (3.5.8) and (3.5.11), we see
that the central charge of L?(z) is equal to dim bg — dimb; — 12(b|b)k. Thus we

have proved the following
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PROPOSITION 3.5. For each b € by the field L?(2) is a Virasoro field with
central charge

(3.5.14) sdim b — 12(b|b)k.

We apply now formula (3.5.10) to representation theory of the algebra §. Since
fy is a direct sum of the abelian Lie superalgebra § and the Heisenberg superalgebra
i =Pt"®bh+CK,

n#0
it suffices to study representations of the latter. We have the triangular decompo-

sition:

b =h<+CK +b>, where h> =P (t*" ).

n>0

The following lemma is immediate from the definitions.

LEMMA 3.5. If v is a singular vector of a field representation of h (i.e.,
b>v =0), then Hv = 0. o

Let h+ = §>+CK. Given k € C, denote by 7* the 1-dimensional representation
of h* defined by:

wk(6>) =0, w*(K) = k.
Then the Verma module V* := 17(1r’°) is explicitly described as follows:
f/’k — S(6<)7

(ie., V* is identified with the symmetric superalgebra over the superspace h<),
K =kI, t™ ® a acts on vk by multiplication if m < 0 and by a derivation of the
symmetric superalgebra defined by

" @ a(t™" ® b) = kmém, n(alb), n>0,
if m>0.

THEOREM 3.5. (a) The b’-module V* is irreducible iff k # 0. (V° has a unique
mazimal submodule J° such that V°/J° is the trivial 1-dimensional module.)
(b) Any restricted field representation of § such that K = kI with k # 0 is

equivalent to a direct sum of copies of the representation vk,



3.5. FREE (SUPER)BOSONS 51

PRroOOF. If k # 0 then we can construct the operator H. Due to (3.5.10), H
is diagonalizable on V* with non-negative eigenvalues and the only vectors with a
zero eigenvalue are multiples of 1 € V*. Hence, by Lemma 3.5, V* is irreducible if
k # 0. The case k = 0 is obvious.

In order to prove (b), consider a restricted field representation of ¥ in a vector
space V and denote by V° the subspace of V consisting of singular vectors. Since V
is a restricted representation, it is clear that V° # 0. Since V is a field representation
with k # 0, we can construct the operator H on V. It follows from (a) that U (f)’ v

is an irreducible module isomorphic to V* if v is a non-zero vector from V°. Hence
V= U(p)V°

is a direct sum of copies of the representation V*. Note that, due to (3.5.10), all
eigenvalues of H on V' are non-negative.

Suppose now that V # V’. Then V/V' is again a restricted field §’-module,
hence there exists a non-zero singular vector v € V/V’, hence by Lemma 3.5,
Hv = 0. Taking a preimage v € V of v, which is an eigenvector of H, we obtain
Hwv = 0 and we see by the construction that a,,v is a non-zero vector of V' for some

a € b and some n > 0. Hence, by (3.5.10),
Ha,v = —na,v + a,Hv = —nayv.

Thus, a,v is an eigenvector of H in V' with a negative eigenvalue, a contradiction

proving (b). O

The h’-module B := V1 is called the oscillator representation of the Heisenberg
superalgebra G’ . It is characterized by the property of having a cyclic vector |0) =
1€ B (ie,U (6') |0y = B) such that

(3.5.15) an|0) =0foralln>0, a€h.

ExAMPLE 3.5. The oscillator algebra s (see (2.5.1)) is a special case when
h = b5 = C, (ab) = ab and a, = 1,,. In this case the s’-module V* can be

identified with the algebra of polynomials Clz;,z2,. . ][36‘_ that (m >0):
/ gt
‘ i)

= B Ao = kmz,, K=k
m

Qm
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The s-module V* extends to an s-module V*# by letting ap = g € C. Due to
Theorem 3.5 any restricted field representation of s such that K = kI with k # 0
and ay is diagonalizable decomposes in a direct sum of representations 17’“"‘, necC.

In particular, for each u there exists a unique such irreducible representation.

It is easy to construct some “pathological” representations of s. If we take a

5

1-dimensional sT-module m; such that o, — 0 for n > 0, then Ind]

+m is a field
representation which is not restricted. If we take a 2-dimensional representation w5
of st given by a,, — (?g) for all n > 0, K v kI, then Ind{, m; is a restricted but
not a field representation. It contains a submodule isomorphic to V0 the quotient

by which is again isomorphic to V¥, but the whole module is not V*0 @ V*:0.

3.6. Free (super)fermions

Now we consider the Clifford affinization of a finite-dimensional superspace A
with non-degenerate anti-supersymmetric bilinear form (.].). Recall (see Section 2.5)

that this is a Lie superalgebra
Ca=Clt,t7"|®c A+CK
with commutation relations (m,n € 1 +Z; 9 € A):
(36.1) [m: ¥n] = (@l¥)6m,—nK, [Ca,K]=0,

where ,,, stands for i™~2 ® ¢. Recall that the supercurrents

o(z) = Z wnz_"‘%, wEA,
nef+z
are mutually local with the OPE (2.5.8).
Consider a field representation of the Lie superalgebra C4 in a vector space V
such that K = kI,. We shall assume that k # 0. Then we obtain a set of mutually
local field with the OPE

(36.2) (DY) ~ LE

Zz—-w

called a system of free fermions (sometimes called superfermions if Ag # 0). Note
that these fields satisfy the conditions of Wick’s theorem.
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Choose dual bases {¢'} and {#'} of A (see Section 3.5), and consider the
following even field of conformal dimension 2:
(36.3) L(z) = kZ 8¢ (2 (2) _gesznz "

Using Wick’s theorem, we obtain

L(z)<p('w)~~( o(2) +3<p(2))’ oe A

(z—w)?2  z-w

Hence, by Taylor’s formula, we have:

1
(3.6.4) L(2)p(w) ~ (—j‘f(—z; + ‘ZL_(%

Due to Table OPE (Section 2.6), this is equivalent to

(3.6.5) [Linyon] = — (%m+ n) Omtns meZ, ne€ % + Z.
The case m = 0 of (3.6.5) gives

(3.6.6) [Loy n] = —nepn, ne % +2Z, peA,

i.e., p(z) has conformal weight % with respect to the Hamiltonian adLy. The case
m = —1 of (3.6.5) gives:

[Lo1,0(2)] = Bp(2), €A

In the same way as for free bosons, it follows that L(z) is a Virasoro field. Com-

puting the s = 2 term of L(z)L(w) in Wick’s formula, we obtain
1
(3.6.7) central charge of L(z) = ~5 sdim A.

In the same way as in the bosonic case, we apply (3.6.6) to representation

theory of the Lie superalgebra C4. We have the triangular decomposition:
Cs=Cs5+CK+C3,

where C; = C[t|®A4, C5 = t7IC[t!|®A. Let C} = C;+CK. Given k € C denote
by 7* the 1-dimensional representation of C; defined by n* (C3) =0, n¥(K) =
Then the Verma module V* := V(x*) is identified with S (CS), K = kI, t" ® ¢
acts by multiplication if m < 0 and by a derivation of the superalgebra S (ij
defined by

"®p({t " ®Y) = kbm_nt1(ap), n>0,
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ifm 2> 0.
The following result is proved in exactly the same way as Theorem 3.5 by

making use of (3.6.6).

THEOREM 3.6. (a) The Ca-module V* is irreducible iff k # 0.
(b) Any restricted field representation of C4 such that K = kI with k # 0 is

equivalent to a direct sum of copies of the representation vk,

The C4-module F := V! is called the spin representation of the Clifford Lie
superalgebra C4. It is characterized by the property of having a cyclic vector
|0) € F such that

(3.6.8) @nl0) =0 foralln>0 ¢eA

In conclusion of this section we describe a very useful construction, called
bosonization. Suppose that the superspace A is a direct sum of two isotropic sub-
spaces A* and A~, and let k = 1. Choose bases {¢'} of A* and {¥*} of A~ such
that (¥*|?) = 6;;. Note that for any ¢ € A we have
(369)  g=¢t+¢7, wherept =3 (W) ¢, @ = (ple’) ¥

i i
Construct a new field of conformal weight 1:

o)=Y DY)

1
Using Wick’s and Taylor formulas, formulas (3.6.2) for k = 1 and (3.6.9) we obtain
the following OPE:

¢ w) ~ o~ (w)
Z—w

(3.6.10) a(z)p(w) ~

Furthermore, Wick’s formula gives:

ZC (' (w) : - : g (w)yi(2) )

sdim AT
(36.11) dBlatw) = L yp z-w
+) G (Y (2)P (W (w) : -
0

By Taylor’s formula, the second term on the right-hand side of (3.6.11) equals

Z(: Fpt (W)Y (w) : — : ¢ (W)W (w) 2)
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and the third term equals

D PV () W (w) : +(z = w)(---)-
We conclude that
— odim AT
(3.6.12) a(z)a(w) ~ -—(?_—1_%,
i.e., that a(z) is a free boson with affine central charge — sdim A*, and that
re(a(w): = 3 (: 06wl (w) : — : ¢t w)dY ()

i

(3.6.13) +2_ '@ ) (W (w) :
2y

Finally, note that we may construct a family of Virasoro fields

(3.6.14) IMz)=(1-XNLT(2) + \L™(2), AeC,

where

L*(z) = Z 00 ()Y (2) , L(2) = Z 09 (2)9'(2) 5,

so that using Wick and Taylor formulas we obtain:

Fp(w) | (1= Ne~(w) + Ap*(w)
—w | (z ~w)? w4

(3.6.15) LM2)p(z) ~

55

It follows as above that L*(z) are Virasoro fields for each A. The central charge,

calculated as before, is equal to

(3.6.16) ex = (1222 — 12X + 2)sdim A™.






CHAPTER 4

Structure theory of vertex algebras

4.1. Consequences of translation covariance

First, recall the axioms of a vertex algebra given in Section 1.3. It is often
convenient to state them in a slightly different form (closer in spirit to the Wightman
axioms).

A vertex algebra is a superspace V endowed with a vector |0) (vacuum vector),
an endorhorphjsm T (infinitesimal translation operator) and a parity preserving
linear map of V' to the space of fields (the state-field correspondence)

a—Y(az2)= Z a(n)z""_l, a(n) € EndV,
neZ
such that the following axioms hold (a,b € V):

(translation covariance): [T,Y (a,2)] = 8Y(a, 2),

(vacuum): T|0) =0, Y(|0), 2) = Iv, Y{(a, 2)|0)| =0 = a,

(locality): (z — w)N[Y{(a,2),Y (b,w)] =0 for N > 0.

Applying both sides of the translation invariance axiom to |0) we obtain (1.3.3)
from the 1st and 3rd parts of the vacuum axiom after letting z = 0. Hence these
axioms imply those in Section 1.3. Conversely, T|0) = 0 follows from (1.3.3) and
the 2nd part of the vacuum axjom.

The following easy uniqueness (and existence) theorem of a formal differential

equation is very useful in establishing identities.

LeMMA 4.1. Let U be a vector space and let R € EndU. Then the differential
equation
(4.L1) L f(2) = BRI
.1 @)= z

has a unique solution of the form

f(Z) = Z fnzn7 fn el,

nely

57



58 4. STRUCTURE THEORY OF VERTEX ALGEBRAS

with the given initial data fo.
Proor. Equation (4.1.1) means:
if;=R(f) for j=1.
It follows that f(z) = e*(fo). 0

PROPOSITION 4.1. For any element a of a vertez algebra V one has

(4.1.2) Y (a, 2)|0) e*T(a),

(4.1.3) e“TY (a,2)e T = Y(a,z+w) in the domain |z| > |w],

41.4) e*TY(a,2)re T Y(a,z+ w)+ in the domain |z| > |w)|.

PROOF. We actually proved already (4.1.2) in Section 1.3. It is placed here
again because the proof of all three formulas is the same.

Note that (4.1.2) is an equality in V[[z]] and (4.1.3 and 4) are equalities in
EndV [[z,27!]] [[w]] (recall that “in the domain |z| > |w|” means that (z + w) is
replaced by its power series expansion i, ,,(z + w)’ € C [[z,z_l]] [fa]]).

We apply Lemma 4.1 to U =V, R=T. Since both sides of (4.1.2) satisfy the
differential equation (411) with the initial condition fy = a, (4.1.2) follows.

We apply Lemma 4.1 to U = (EndV) [[z, z‘l]], R = adT. Since both sides of
(4.1.3) (resp. (4.1.4)) satisfy (4.1.1) with the initial condition fy = Y'(a, z) (resp.
fo=Y(a,2)4), (4.1.3 and 4) follow. In the proof of (4.1.4) we have used that the

translation covariance equation splits into two equations:

(4.1.5) [T,Y (a,2)+] = 8Y (a, 2)+.

4.2. Quasisymmetry

PROPOSITION 4.2. For any elements a and b of a vertez algebra V one has:
(4.2.1) Y{a, 2)b = (~1)P@POeTY (b ~2)a.
PROOF. We have by the locality axiom for N > 0:

(z = w)VY (a, 2)Y (b, w)|0) = (~1)P@PO(z — w)VY (b, w)Y (a, 2)[0).
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This can be rewritten using (4.1.2):

(z - w)NY (a,2)eTb = (~1)POPO) (z — W)NY (b, w)e?Tq.
Applying (4.1.3) to the right-hand side we get
(4.2.2) (z = w)NY(a,2)e*Tb = (—1)P@PO)(, _ w)NeTY (b, ity (W — 2))a.

Since bny(a) = 0 (resp. a(n,)(b) = 0) for n >> 0, the equality (4.2.2) involves
only positive powers of z — w if N is sufficiently large (resp. only finitely many
negative powers of z). Hence (4.2.2) is an equality in (EndV){(2)) [[z ~ w]] if N is
sufficiently large. Then we can let w = 0 in both sides of (4.2.2) and divide by 2V,
obtaining (4.2.1). O

Comparing coeflicients of (4.2.1) we obtain the original Borcherds formula for
quasisymmetry (n € Z):
oo
(4.2.3) agyb = (~1)PPO N1yt HITO) (b, jya)
7=0
Here and further we write a(n)b in place of a(»)(b) (the endomorphism a(,)
applied to a vector b). We do this not only for typographical reasons, but, more
importantly, in order to emphasize that for each n € Z we have on V a bilinear
operation a(,)b which, as (4.2.3) shows, is far from being symmetric (hence the
choice of the word “quasisymmetry”). As we shall see, the products a,)b are
essentially the same as products a(z),)b(z) discussed in Sections 2.3 and 3.1, and

(4.2.3) is the counterpart of Proposition 3.3(b).
4.3. Subalgebras, ideals, and tensor products
A subalgebra of a vertex algebra V is a subspace U of V' containing |0) such that

ayU cUforallae U.

It is clear that U is a vertex algebra too, its fields being Y(a,2) = 37, a(m)lvz 1.
This follows immediately from the axioms of a vertex algebra in Section 1.3.
A homomorphism of a vertex algebra V to a vertex algebra V' is a linear parity

preserving map ¢ : V — V' such that

olamb) = p(a)yp(b) forall a,beV, neZ
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A derivation D of parity v € Z/2Z of a vertex algebra V is an endomorphism
of the space V' such that DV, C V., and

D(amb) = (Da)(mb + (—1)*"a(ny(Db) forall a€V,, beV.

Note that if D is an even derivation and e? is a convergent series, then e’ is an
automorphism of the vertex algebra V.
An ideal of a vertex algebra V is a T-invariant subspace J not containing |0}

such that

aqnyJ CJforallaeV.
Note that we have
4.3.1) ‘ eV CJforallae J

Indeed, it follows from the quasisymmetry that Y(a,z)v = +e*TY(v,—2)a €
J [[z,z"l]] for a € J, v € V. Hence the quotient space V/J has a canonical
structure of a vertex algebra, and we have a canonical homomorphism V — V/J of
vertex algebras.

The tensor product of two vertex algebras U and V is defined as follows. The
space of states is U ® V, the vacuum vector is [0) ® |0), the infinitesimal translation
operator is T ® 1 + 1 ® T'. Finally, the fields are

Y(u®v,2) =Y (u,2)®Y(v,2) = Z U(m) ® Ugnyz~ ™2,
m,nez
In other words
(4.3.2) (u®v)k) = Z Ufm) ® V—mtk—1)-
meL

We use the usual definition of a tensor product of two operators A and B:
(A® B)(a ®b) = (—1)PB?) A(a) ® B(b).

It is clear that the sum (4.3.2) applied to any vector a ® b is finite (since both
Y (u,z) and Y (v, 2) are fields). We have that (4 ®v))(a®b) = 0 for k >> 0 because
wmya = 0 for m > M and v(nyb = 0 for n > N imply Um) @ v¥(—mik—1)(a®b) =0
fork>M+N.

It is straightforward to check that U ® V' is a vertex algebra.
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Given a vertex algebra V' it is natural to define its offinization V as follows.
Let C [t,t!] be the algebra of Laurent polynomials (with trivial Z/2Z-gradation)
and let T denote its derivation 8;. Then C [t, t_l] is endowed with the structure of

a holomorphic vertex algebra (see Section 1.4), and we let
V=Clt oV
As we shall see, this affinization is closely related to that considered in Section 2.5.

4.4. Uniqueness theorem

The following theorem is extremely useful in identifying a field with one of the
fields of a vertex algebra.

THEOREM 4.4 (see [G]). Let V be a vertex algebra and let B(z) be a field
(with values in EndV ) which is mutually local with all the fields Y(a,2), a € V.
Suppose that for somebeV:

(4.4.1) B(2)|0) = &*Tb.
Then B(z) =Y (b, 2).
ProoF. By the assumption of locality we have:

(z = w)"VB(2)Y (a,w)|0) = (~=1)PP¥) (z — )Y (a,w) B(2)|0).
Applying to the left- (resp. right) hand side formula (4.1.2) (resp. (4.4.1)) we obtain:
(44.2) (z - w)V B(2)e*Ta = (—1)PBP) (; — w)VY (a, w)e*Th.

Applying (4.1.2) to the right-hand side of (4.4.2) we get
(=1yPEP@) (7 — )NV (a,w)Y (b, 2)|0)

which by locality (for sufficiently large N) is equal to (z — w)NY (b,2)Y (a,w)|0).
(It follows from (4.4.1) that p(B) = p(b) since p(T") = 0.) Applying to this (4.1.2)
again and equating it with the left-hand side of (4.4.2), we obtain

(z=w)VB(2)e*Ta = (z —w)NY (b, z)e*Ta.

Letting w = 0 and dividing by z¥, we get B(z)a = Y (b, z)a for anya € V. O
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REMARK 4.4. Condition (4.4.1) follows from
(44.3) B(2)|0)|.—0 = b, 8B(2)|0) = TB(z)0).

Indeed, equation {4.4.3) means that B(z)|0) is a solution of the differential equation
£ a(z2) =Ta(z), a(2) € V[[2]], with the initial condition ag = b. Due to Lemma 4.1
we conclude that (4.4.1) holds.

Note that just the first of the condition (4.4.3) is not enough as the example
B(z) = (14 2)Y (b, z) shows.

4.5. Existence theorem

The following theorem allows one to construct vertex algebras (see [FKRW)).

THEOREM 4.5. Let V be a vector superspace, let |0) be an even vector of V and
T an even endomorphism of V. Let {a™(2)},; be a collection of fields such that
(0) [T,a%(2)] = 9a(2) (e € 1),
(i) T)0) =0, a®(2)|0}]z=0 = a® (« € I), where the a* are linearly independent,
" (ili) a®(2) and a®(2) are mutually local (o, 8 € I),

(iv) the vectors az"‘

L1y A _yl0) with js > 0 span V.

Then the formula
4.5.1) Y (a;'_ljl_l) ~a® o), z) =2 90 (2). .. 9U)gn (2) -

defines a unique structure of a vertex algebra on V such that |0) is the vacuum

vector, T is the infinitesimal translation operator and
(45.2) Y(a% z) =a%(z), a€l.

PROOF. Choose a basis among the vectors of the form (iv) and define Y (a, 2)
by formula (4.5.1). By (iii), Remark 2.3 and Dong’s lemma, the locality axiom
holds. It follows from (3.3.2) and (ii) that the vacuum axioms hold (the first two of
them hold for trivial reasons). Finally, the operators adT" and 8 are both derivations
of the normally ordered product (see (3.1.5) and (4.1.5)), which, due to (i), coincide
on the a*(z) and hence on the 87)a®(z). The translation covariance axiom follows.

If we choose another basis among the monomials (iv) we get (possibly different)

structure of a vertex algebra on V. But all the fields of this new structure are
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mutually local with those of the old structure and satisfy {4.4.3). By Remark 4.4
and the Uniqueness theorem it follows that these vertex algebra structures coincide

Thus (4.5.1) is well-defined and (4.5.2) holds. Uniqueness is clear as well. ]

DEFINITION 4.5. A collection of fields of a vertex algebra V satisfying condi-
tion. (iv) of Theorem 4.5 is called a strongly generating set of fields of V. If condition
(iv) holds without the assumption j, > 0, this collection is called a generating set
of fields.

COROLLARY 4.5. (a) In any vertez algebra V for any collection of vectors

al,...,a" € V and any collection of positive integers ji,... ,ji one has

(4.5.3) : 3(j1—l)y(al’z) o ‘a(jn—l)y(an’ 2) /= Y (a%"jl) T a?"jn)l())’ Z) ’
{b) For any a,b €V and any n € Z one has:

L

(@sa) (o

™Y (a,2)Y(b,2) =Y (@(<n-1)b,2) .
(c) For any a € V one has
(4.5.5) Y(Ta, z) = 0Y (, 2).

PROOF. (a) follows from Theorem 4.5 since all the fields of V is a strongly
generating set of fields. (b) is a special case of (a) whenn=2,57; =n+1,52=1
{because of (1.3.5b)). Finally, since Ta = a(..3|0), (c) is a special case of (a) when
n=1and j = 2. [

REMARK 4.5. Let VacV = {a € V|Ta = 0}. This subspace contains C|0) but
may be larger (see Remark 5.7c). (One often imposes an additional axiom of QFT
requiring uniqueness of the vacuum, but we do not require this). It follows from

(4.5.5) that
VacV = {a €V |Y(a,2) = a1}

and from (4.5.4) that VacV is a subalgebra of V. This is called the vacuum subal-
gebra of the vertex algebra V. It follows from locality that

(4.5.6) [a(-1),Y(b,z)] =0for a € VacV, beV.
Hence

(4.5.7) binyVacV =0forbeV,n€Z,.
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4.6. Borcherds OPE formula

Let V be a vertex algebra. We have:
Y{a,2)Y (b, w)|0) = Y(a,2)e*Tb = e*TY (a,z — w)b

(the last equality holds in the domain |z|] > |w| due to (4.1.4)). Letting

¢ =Y(a,z — w)b we have
Y (a,2)Y (b,w)|0) = e*T

If the uniqueness theorem were applicable we would derive the “associativity” of V:

(4.6.1a) Y(a,2)Y(byw) = Y(Y(a,z—w)b,w)
o Cpremn”
n€Z

the latter equality being the “symbolic” OPE. However, the uniqueness theorem is
not quite applicable (and no wonder, since the “symbolic” OPE makes no sense as
an equality of formal distributions). Still, in view of the discussion in Section 3.1,

we may expect that the following holds.

THEOREM 4.6. In the domain |z| > |w| one has for any a,b€ V:

b,
(4.6.22) Y (a, 2)Y (b,w) = Z T;‘i(lw’)-;i-”l—)Jr LY (a,2)Y (b,w) : .
Equivalently: -
(4.6.2b) [Y (a,2), Y (b,w)] = i BV 8(z — w)Y (aguyb, w).
n=0

This is a very important formula as it allows one to compute the OPE of any two
composite fields (4.5.3) as soon as the (very simple) axioms of a vertex algebra are
checked. Thus (4.6.2a) may be also viewed as a “non-commutative” generalization
of Wick’s formula (see a discussion below).

In fhe “graded” case the above “proof” can be made rigorous by making use
of the analytic continuation (cf. Remark 4.9a).

We prove (4.6.2a) for a general vertex algebra V in a roundabout way using

the following lemma. -
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LEMMA 4.6. (a) For anya,b,ce V one’has in the domain |z| > lw| for N > 0:
(4.6.3) (z~w)VY(a,z —w)Y (b, ~w)c = (z —w)"Y (Y (a, 2)b, —w) .

(b) Suppose that in the domain |z| > |w| one has

N-1 g
—— cr{w
(4.6.4) E (2 +w) " " = Z zlc(+1)‘,
m,nely, k=0
m>0

Then in the domain |z| > |w| one has:

(4.6.5) Z mnz” ™ NX:l (w)
.6. m.n T
m,n€ly k= (z w) i
m>0 -
. PROOF. Write the equation of locality (N > 0): v~ .

(z—w)"Y(a,2)Y(c,w)p = (~1)PPE(z —w)VY(c, w)Y (a,z)b.,
Using the quasisymmetry on the left- (resp. right-) hand side for the field Y (c, w)
applied to b (resp. applied to Y(a, 2)b) we get:
(z— w)NY(a, z)e'”TY(b, —~w)e = (z — w)Ve?TY (Y (a, 2)b, —w)c.

Now (4.6.3) follows by usmg (4 1. 3) on the left-hand side of the last equation.

" Comparing coefficients of z=*~" in (4.6.4) gives

Fwy= Y am,n(i)wk—m+n(_1)k—m.

mnez L
m2>0 i

Substituting this in the right-hand side of (4.6.5) gives:

Y amn (:l) (2) (—1)F=meps=mtn =s—1

m,n,k,s€Z
m,k,5>0

This is equal to the left-hand side of (4.6.5) since
(4.6.6) 3 V(5 ) (=1 = 5, for any s,m € Z
0. m k = Ys,m y 8, .
keZy

The latter equality is obvious for m > s. For m < s the left-hand side is
(2) Chem (iom) (=1)*~™ = 0, proving (b). O
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PROOF OF THEOREM 4.6./ In the domain |z| > |w| we have

Y(Y(a, 2)biw) = Z ﬂ‘%ﬂ+ Z Y (a(-n-1)biw) 2".

neZy nely
Due to (4.5.4), (2.3.4) and Taylor’s formula, the second summand on the right is
//equa.l to’: Y(a,z ¥ w)Y(b:;v) :. Hence we can rewrite formula (4.6.3) as follows

(2] > |w]): 22
M = ‘L Y(a \b,_'w
(e = w)N [¥ (2,2 % w) -, Y(bw) e = (: —w) I (z(:il ).
z \ e s s [ \\\ o v’,LEZ"'
Since this is \a.r{,équali“t;y\ig Lément series in w and z~1, it follows that we can cancel

(z — w)" on both sides. Thus, we have in the domain |2| > |w]:
— Y (ambw
[¥ (0,2 +w)_, Y (bw)] = 3 —(;3’7—)

neZy

Due to Lemma 4.6b this implies in the domain |z| > |w]:

.Y (a b, w
¥ (@ 2)-. Y ()] = 3 (—(_(—ui)—r)
neZy
but this is (4.6.2a). Due to Theorem 2.3, (4.6.2a) is equivalent to (4.6.2b). O

Formula (4.6.2b) is equivalent to each of the following very useful Borcherds

commutator formulas (m,n € Z):

m
(46.7) [¢(m) bm)] = §<j)(a(f>b)(m+n-j)
(4.6.8) s Y(0,2)] = VY (agb, ) 20
[a(m) ] ];(J) (a(b, 2)

In particular, the set of operators a(,,) (@ € V, m € Z) is closed with respect to
the (super)bracket. We shall denote this Lie superalgebra by Lie V. (It is clearly a
Lie algebra of formal distributions.)

An important special case of (4.6.8) is
(469) [a(o), Y(b, Z)] = Y(a(o)b, Z) .

Comparing (2.3.9) with (4.6.2a)‘.:c\;1d using (4.5.4) we obtain

(4.6.10) Y(a,2)mY (b,2) =Y (ampb,2), n€Z.
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COROLLARY 4.6. (a) aoyb =0 iff [a(), Y (b,2)] = 0.

(b) a¢;yb =0 for all j € Z,. iff [Y(a,z2),Y(b,w)] =0.

(c) The operator a(y) is a derivation of the vertex algebra V for anya € V.
These dertvations form a subalgebra of the Lie superalgebra of all derivations of V.

(d) The centralizer of Y (a, z) in V (d.c., the subspace {b € V | [Y(a, 2), Y (b, w)]
= 0}) is a vertex subalgebra of V.

(e) A subspace U of V is a vertexr subalgebra iff the collection of fields
{Y(a,2) | a € U} is a linear field algebra.

(f) The fized point set of an automorphism of V is a vertex subalgebra of V.

(g) If a vertex algebra V is generated by a collection of fields Y(a',z) and
b4’ €V are such that bgya* = b’(o)ai for all a*, then by = blgy-

(h) If a vertez algebra V is generated by a collection of fields which is closed
under OPE (i.e., with respect to n-th products for n € Z, ), then V is strongly
generated by this collection of fields.

PROOF. (a) follows from (4.6.9) and (b) is immediate from (4.6.8). The first
part of (c) follows from (4.6.7) for m = 0 applied to ¢ € V. The second part of (c)
follows from (4.6.7) for m = n = 0. (d) follows from (b). (e) is clear by (4.6.10).
(f) is obvious. (g) follows from (c). Finally, (h) follows from formula (4.6.7) which
shows that the bracket [a(m), ()] With m > 0 and n < 0 is a linear combination
of some c(xy with k& < m, hence applying a() to an element of the form given by
condition (iv) of Theorem 4.5 we get by induction a linear combination of elements

of this form. O

REMARK 4.6. Corollary 4.6 provides several ways of constructing subalgebras
of a vertex algebra V, which are quite popular in both mathematics and physics

literature:

(I) Given a subspace U of V, its centralizer
CyvU)={beV|Y(a,2),Y(bw)] =0 forall acU}

is a subalgebra of V (by Corollary 4.6d) called by physicists a coset model.

(IT) Given a collection of elements {a‘} of V, the intersection of the null spaces
of the operators afo) is a subalgebra of V' (due to Corollary 4.6c) called by
physicists a W-algebra.
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(III) Given a collection of elements {a‘} of V, the linear span of all the vectors
aE:ll) o a;':ls)|0>
is a subalgebra of V generated by the fields Y (a?, 2).
(IV) Given a group of automorphisms G of a vertex algebra V, the fixed point set

VG is a subalgebra of V' (by Corollary 4.6f), called by physicists an orbifold

model when G is finite.

4.7. Vertex algebras associated to Lie superalgebras of formal

distributions

Let g be a Lie superalgebra spanned by mutually local formal distributions
a*(z) (a € I), and suppose that there exists an endomorphism T of the space g

over C such that
(4.7.1) Ta%(z) = 8a*(2).

Then g is called a regular Lie superalgebra of formal distributions. It follows from
the commutation relation of Theorem 2.3(iv) that T is an even derivation of the

Lie superalgebra g. Let
(4.7.2) g+ ={a€g|TFa=0for k> 0}.

This is a T-invariant subalgebra of g. Let A : g+ — C be a 1-dimensional g, -module
such that

(4.7.3) A(Tgy)=0.
Consider the induced g-module (cf. Section 3.4)
(4.7.4) VXg) =Ind§ A =U(g)/U(g) (a~ A(a) | a € g4),

and let |0) € V*(g) be the image of 1 € U(g).
Note that the formal distributions a*(z) are represented in V*(g) by fields
(which we shall denote by the same symbol). Indeed, formula (4.7.1) means:

(4.7.5) Taf,y = ~naf, ),

hence g D gt (see (3.4.1)), and the discussion in Section 3.4 implies that the a®(z)

are fields.
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The derivation T of g extends to a derivation of U(g), which can be pushed
down to an endomorphism of the space VA (g) due to condition (4.7.3). This endo-
morphism is again denoted by T.

The following theorem is now an immediate corollary of the Existence Theo-

rem 4.5 and Corollary 4.6h:

THEOREM 4.7. Let g be a regular Lie superalgebra of formal distributions.
Then the g-module V*(g) has a unique vertes algebra structure with |0} the vacuum

vector and generated by the fields a*(z) (a € 1).

REMARK 4.7. A formal distribution a®(z) is represented in i7"(g) by a zero
field iff aiyy € g4 It follows from (4.7.5) and locality that in such a case a®(z)

lies in the center of g.

COROLLARY 4.7. Let g be a reguilar Lie superalgebra of mutually local formal
distributions a®(z) (a € I). Then the coefficients of Y )6(z—'w) in the commutators
[@®(z),a”(w)] (B,7 € I) are finite C-linear combinations of the fields a®(w) and

their derivatives and some central formal distributions.

PRrOOF. Consider the vertex algebra Vo(g). Due to Remark 4.7, the represen-
tation of g/ center(g) in V°(g) is faithful. We have a*(z) = Y(af"_l)|0),z), hence,
by Theorem 4.6 we obtain:

N-1
6*(z), e’ w) = Y ¥ (ag;)af_l)m), w) 8D 8(z —w).
=0

But, by (4.6.7), each vector aE"j)a?_I)|0) = [af‘].), af_l)} |0) is a finite linear combi-
nation of vectors aZ—i—1)|0> with ¢ € Z,." The corollary now follows from (4.5.3)
forn=1. a

The vertex algebras V')‘(g) are called universal vertex algebras associated to g.
Consider now the example of a current (resp. supercurrent) algebra g (resp.
Gsuper) associated to a Lie superalgebra g. This is a Lie superalgebra spanned
by formal distributions a(z) (resp. a(z), @(z)), a € g, and K, with commutation
relations given by (2.5.6) (resp. (2.5.6), (2.5.7a) and (2.5.7b)). Taking T = -8, it



70 4. STRUCTURE THEORY OF VERTEX ALGEBRAS

is immediate that (4.7.5) holds. Hence we méy apply Theorem 4.7. We obviously

have:

8+ Cltj® g + CK, Tg, Cltl®g;
(ﬁsuper)+ = C[t, 0] ®g+ CK, T(gsuper)+ = C[t, 0] ®g.

(4.7.6)

Thus, condition (4.7.3) gives us the following possibilities for A:
AMC[t] @) (resp. A(C[t,]®g)) =0, IK)=keC.

We shall denote the corresponding §- (resp. @super-) module by f/"k(ﬁ) (resp.
Vk(ﬁsupe,)). By Theorem 4.7, f/"k(ﬁ) and Vk(ﬁsupe,) are vertex algebras, which
are called universal affine vertex algebras.

In the special case when g is a commutative Lie superalgebra, the universal
affine vertex algebras are simple (i.e., have no non-zero ideals), provided that k # 0,
due to Theorems 3.5 and 3.6. In this case the universal affine vertex algebra V* (9)
is called the free bosonic verter algebra and is usually denoted by B*(g).

One argues similarly in the case of the Clifford affinization Cy4, defined by
commutation relations (2.5.8). The corresponding vacuum vertex algebra (which is
simple if k£ # 0 due to Theorem 3.6) is called the free fermionic vertex algebra and

is usually denoted by F*(A). Note that for a commutative g one has:
(47.7) V¥ (@)super = B*(a) ® F*(3),

where the bar signifies the change of parity on g.
Let us demonstrate now on the example of currents a(z), a € g, how to use
the non-commutative” Wick formula. We shall work in the universal affine vertex

algebra V*(g). By (2.5.6) we have
a(2)b(2) = [@,8(2),  a()b(2) = @)k,  a(2)mb(z) =0 form>1.
Hence by formula (3.3.10), we have
a(2)(0) : b(2)e(2) : = [a,8](2)e(2) : H(=1)PPD : b(z)[a, d(2) 1,
a(2)q1) : b(2)e(2) : = (alb)ke(z) + (=1 P (alc)kb(z) + [[a, B],¢] (2),

a(z)(2) : b(2)e(z) : =k ([a,B]|c) ,

a(2)(m) 1 b(2)c(2) : =0  form > 2.
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Thus, we obtain the following OPE:

: [a, b](w)c(w) : +(=1)P(P®) : b(w)[a, c](w) :

a(z) : b(w)e(w) : ~

zZ—-w
[[a, 8], ¢] (w) + (alb)ke(w) + (=1)P*®) (alc)kb(w)
+
(z—w)?
k ([a, bllc)
(4.7.8) + Cowp

4.8. Borcherds identity

THEOREM 4.8. Let F(z,w) be a rational function in z and w with poles only
at z=0, w=0 or z=w. Then for any elements a and b of a vertez algebra V

one has the following Borcherds identity:

(4.8.1)
Res, . Y (Y (a, z — w)b, w)iy —wF(z,w)
= Res,(Y(a,2)Y (b, w)i, F(z,w) — (=1)P@POY (b w)Y (a, 2)tw, . F(2, w)).

PRrOOF. It suflices to prove (4.8.1) for
F(z,w) = 2™ (z— w)"w!, m,n,leZ.

Taking the residues for this F, (4:8.1) becomes the following identity multiplied

by wt:
o o o in ,
(482) Y (TJ”)Y (@i b w) ™I =3 (-1y (j)a(m+,,-j)y(b, w)w?
3=0 j=0

oo
— (—1)P@P®O N ()t (?) Y (b, w)a(m4yw™ ™,
7=0

which is Borcherds identity for F = z™(z—w)™. In particular, we see that Borcherds
identity holds for F(z,w) iff it holds for w'F(z,w), | € Z. It follows'that it suffices

to prove (4.8.2) in the following two cases:
case l: F=2z", meZ case 22 F=(z—w)"", neZ,.

But case 1 of (4.8.2) is precisely (4.6.8) and case 2 of (4.8.2) is precisely (4.5.4). O
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PROPOSITION 4.8. (a) Borcherds identity is equivalent to the following three

identities:
(commutator) [a(m), Y(bz2)] = Z (rjn) Y (agjybs 2) 2™,
=0
(normally ordered product) :Y(a,2)Y(b,z): = Y (a-n)b,2)
(derivative) 8Y(a,z2) = Y(Ta,z2).

(b) The following set of Borcherds azioms is an eguivalent set of azioms of a

vertez algebra:
(partial vacuum) Y(|0),2) =1, apl0)=q;

(4.8.3)

. . > m o fn
(Borcherds identity) Z ( j ) (a(n+]~)b)(m+k_]_) =Z(—1)J (]) Amtn—7)D(kt5)
=0 =0

o . n
_ (_I)P(G)P(b) E (—1)]+" <j)b(ﬂ+k°j)a(m+j)
=0

(k,m,n € Z).

Proor. (a) follows immediately from the proof of Theorem 4.8. Since (4.8.3)
is an equivalent form of (4.8.2), our axioms listed in Section 1.3 imply Borcherds
axioms (due to Theorem 4.8). Conversely, suppose that Borcherds axioms hold.
Taking b = |0) and F' =1 in (4.8.1) we get a(;)|0) = 0 for j > 0, giving the vacuum
axiom of Section 1.3. Letting T'a = a(_4|0), applying both sides of (4.8.3) to |0)
and letting m = 0, k = —2 gives the translation covariance axiom. Finally, taking

F = 2™(z — w)™ for n > 0, we obtain the locality axiom from (4.8.1). a

4.9. Graded and Mdbius conformal vertex algebras
A vertex algebra V is called graded if there is an even diagonalizable operator
H on V such that

(4.9.1) [H,Y (a,2)] = 20Y (a,2) + Y (Ha,z).

Note that (4.9.1) means that the field Y(a,2) has conformal weight A € C with
respect to the Hamiltonian adH (see Definition 2.6) iff Ha = Aa. By abuse of
terminology, we shall call H a Hamiltonian of a vertex algebra V if (4.9.1) holds.
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As in Section 2.6, writing the field of conformal weight A in the form

Y(a,2) = Z anz" "8,

nE—A+Z

so that

(4.9.2) G(n) = Gn-A+15
we see that (4.9.1) is equivalent to

(4.9.3) [H,a,] = —na,.
Note that (1.3.4) becomes:

(4.9.4) [Tyan]=(-n— A+ 1)ay-1,
and (4.9.1) for a = [0) gives

(4.9.5) H|0) =0.

It follows that

(4.9.6) [H T =T

since both sides commute in the same way with all a, and both annihilate |0).

Consider the eigenspace decomposition of V' with respect to H:
v=@pv.
i
Note that, by (4.9.3) and (4.9.4) one has:
(4.9.7) a, VW cvU-m Ty c yU+y,

It is clear that a graded vertex algebra has a unique maximal graded ideal and

that the corresponding quotient vertex algebra is simple.

REMARK 4.9a. If V is a graded vertex algebra, one usually considers the “re-

stricted” dual space:
V= @ yl*
j
and the matrix coeflicients of fields or their products, like

ME(z,w) = (0", Y (a, )Y (bw)v), veVD, v eV

U
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Then provided that the real part of the spectrum of H is bounded below this matrix
coefficient converges to a rational function in the domain |z| > |w|, and we may
extend it analytically to the domain z # 0, w # 0, z # w. Then the equality of
all matrix coeficients is equivalent to the equality of the product of fields. For
example, the locality is equivalent to the equality of all rational functions:

M2, (2,w) = (1POPO M (w, 2).

Vv

In this approach the proofs are somewhat simpler (for example, Theorem 4.6 is then
immediate by Goddard’s Uniqueness theorem) and (4.6.1a and b) makes sense (as
an equality of the matrix coefficients). However, this approach is restricted to the
graded case only.

Using (4.9.2) we rewrite (4.6.7) and (4.6.8) in a graded form (m,n € Z):

(4.9.8) [Gm,bn] = Z (m * A B 1) (@j-a+18)min,

JEZy J
(499) lam, Y(5,2)] = Y <m+jA—I)Y(aj-A+1b,z)zm—j+A—l.
JEZy

Hence LieV becomes a Z-graded Lie algebra, the gradation being given by the
eigenvalues of ad H. Note that adT is a derivation of Lie V' that shifts this gradation
by —1.

The following remark allows one to construct Hamiltonians.

REMARK 4.9b. Let V be a vertex algebra and let H be a diagonalizable oper-
ator on the space V' such that H|0) = 0. Suppose that V is strongly generated by
a collection of fields Y (a®, z) such that

[H,Y (a%, 2)] = (20 + Ay)Y (a%,2), A4 €C.

Then H is a Hamiltonian of the vertex algebra V. This follows from (4.9.4)
and (4.9.5).

The following remark allows one to construct automorphisms of a vertex

algebra.

REMARK 4.9c. Suppose that V = @B, V") is a graded vertex algebra such
that dim V) < oo for all j, and let a € V."). It follows from (4.9.8) that ag
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is a derivation of the vertex algebra V which preserve the gradation. Hence the
series €%¢ converges to an automorphism of the vertex algebra V called an inner

automorphism of V.

The following proposition allows one to compute the vacuum subalgebra. of a

vertex algebra.

PROPOSITION 4.9. Let V be a vertex algebra graded by a Hamiltonian H all of
whose eigenvalues are non-negative. Suppose that there erists an operator T* on V.

such that
(4.9.10) [H,T*) = -T", [T*,T]=2H.

Then
(a) VacV C V@ (= Ker H).
(b) The representation of the Lie algebrat = CT +CH+CT™* on V is completely
reducible if and only if VacV = VO,

PROOF. Due to (4.9.6) and (4.9.10), t is a Lie algebra isomorphic to sl2(C). It is
clear that every irreducible subquotient of the t-module V either is a 1-dimensional
t-module or is a Verma module with respect to the Borel subalgebra CH + CT*
with"ne‘gative‘“ highest weight. Proposition now follows from the elementary highest
weight representation theory of sla(C) (or one can apply the general Proposition 9.9
from [K2]). . o

1

~~  EXAMPLE 4.9a. Let g be a regular Lie superalgebra of formal djstrib’utions.
Suppose that g is graded with the Hamiltonian H (see (3.4.1)). Then Hg, C g+
(due to (4.9.6)) and hence, due to Remark 4.9a, the associated vertex algebras
7% (g) are graded. Note also that (see Section 3.4) g+ > gt \Bljovide'd that all
conformal weights are non-negative. This follows from (4.9.3) a.nd (4.9.4). The
simple quotient vertex algebra of V*(g) by the maximal graded ideal is denoted
by V*(g). Furthermore, suppose that there exists a derivation T* of g such that
(4.9.10) holds. Then T*g C g, hence we get an induced operator on 72 (g) which
we again denote by T™. It is easy to see that the maximal graded ideal of f})‘(g)
is T*-invariant, hence we get an induced operator T* on the vertex algebra V)"(g)

which still satisfies (4.9.10).
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The following is a special case of Example 4.9a.

ExaAMPLE 4.9b. It follows from Example 2.6 that the universal affine vertex al-
gebras V*(§) and V* (@super) are graded, the conformal weights of currents (resp. su-
percurrents) being 1 (resp. 1/2). In particular, the free bosonic (resp. free fermionic)
vertex algebra is graded by taking the conformal weight of free generating bosons
(resp. fermions) equal 1 (resp. 1/2). The simple graded quotient of the universal
affine vertex algebra V*(g) (resp. V* (Gsuper)) is called an affine (resp. superaffine)
vertex algebra and is denoted by V*(g) (resp. V*(Gsuper)). Note that T* = —#29,
(resp. —t28; — %t069) is a derivation of the algebra of currents g (resp. supercur-
rents gsuper). Thus, the vertex algebras V*(g) and V* (Gsuper) satisfy the conditions
of Proposition 4.9. Since Ker H = C|0) we obtain that in both cases the vacuum

subalgebra is C|0).
The following definition is motivated by (1.2.6c) and the subsequent discussion.

DEFINITION 4.9. A graded by H vertex algebra V is called Mébius-conformal
if there exists an operator T* on V which decreases the conformal weight by 1 and

such that for any a € V one has:
(4.9.11) [T*,Y (a,2)] = 2°0Y (a, 2) + 22Y (Ha, 2) + Y(T"a, z).

Letting a = |0) in (4.9:11), we get from (4.9.5) and the axioms of V:

(4.9.12) T*[0y =0.
We also have:
(4.9.13) [T*,an] = —(n = A+ Daps1 + (T*a)ny-

Combining (4.9.12),(4.9.13) and (4.9.3),(4.9.4), we see that (4.9.10) is satisfied.
Motivated by (1.2.5¢c), a field Y(a,z) of conformal weight A of a M&bius-

conformal vertex algebra is called quasiprimary if
[T*,Y(a,2)] = (28 + 2A2)Y (a,2).
REMARK 4.9d. Y (a,2) is a quasiprimary field of conformal dimension A iff

(4.9.14) Ha = Aa, T*a = 0.
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Note that if the representation of the Lie algebra CT+CH+CT™ in V is completely
reducible, the vectors T*"a, where a satisfies (4.9.14) for some A and n € Z,,
span V. (Due to Proposition 4.9, this condition holds if all eigenvectors, except for
the C|0), of Lo have positive eigenvalues.) Hence in this case the quasiprimary fields
along with all their derivatives span the space of all fields of the vertex algebra V.

Recall that the axiom of translation covariance integrates to the following equal-

ity of formal distributions in z and A in the domain |A] < |2|:

(4.9.15) eTY (a,2)e T =Y(a,z+ A).
Similarly, relation (4.9.1) integrates to (cf. Section 1.2):

(4.9.16) MY (a,2)A"H =Y (\Ha, 22).

Indeed, (4.9.1) is equivalent to (4.9.3) which integrates to AHa,A~H = A "a,,
which is equivalent to (4.9.16).
Finally, (4.9.11) integrates to the following covariance relation in the domain

[Az] < 1:

(4.9.17) 7Y (a,2)e T =Y (e*“‘*’”'(l - 22)"*a, - - ,\z) ’

(Note that this reduces to a special case of (1.2.4) if a satisfies (4.9.14).) In order

to prove this relation, write:
AT™ =TTy A —Z
T (a, 2)e (40 125)

where A()) is a formal power series in A with coefficients in Hom(V, EndV [[2,27!]])
and constant term I. Differentiating both sides by A and using (4.9.11) we obtain

an equation on A(A):
%‘AA_) = 228, A(\) + 22AH + AT

which has a unique solution with constant term I. To check that A(\) =
eM1=2T7(1 _ A2)~2H ig a solution to this equation, we use (4.9.10) (and that
adT* is a derivation).

In what follows, we shall perform calculations in the Lie algebra sly (C((A)))
and the corresponding ‘group SLs (C((A))), where C(()\)) stands for the field of
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Laurent series in ), which act on C({(A)) ®c V' via the identification

01 1 0 00
T = 5 2H = 5 T* = .
00 0 -1 -1 0

(In the previous calculations we, in fact, kept this identification in mind.) Formulas

(4.9.15) and (4.9.17) give us respectively:

(4.9.18)
(1 A) Y(a,2) (1 "A) =Yz +X) (N <l
0 1 0o 1
(4.9.19)
10 10 L—Ag)T" _ z
(_/\ . ) Y(a, 2) (/\ 1) =Y (e)‘( 22)T7 (1 — Az)~2Hg, 1_/\2) (IAz] < 1).
Using that

()0

we deduce from (4.9.18) and (4.9.19) (cf. [B1] and [DGM]):

(4.9.20)

0 A 0 -A —2_ e 2
Y (a,z) =Y (e‘* beT (—A'lz)°2ﬂa,—/\—) .
S S At 0 z

This formula holds over C({(\)) provided that T* is locally nilpotent on V' (which

is the case when the spectrum of H is bounded below).

4.10. Conformal vertex algebras

It is well-known that even locally the only orientation preserving conformal
transformations of the Minkowski space of dimension d > 2 are in the conformal
group described in Section 1.1. Of course in the d = 2 case the situation is dramat-
ically different—any transformation of the form ¢+ f(t), t — f(t), where (t,t) are
light-cone coordinates and f is a smooth function with a non-vanishing derivative,
is conformal. For that reason, the term “conformal” 2-dimensional QFT is reserved
for the case when covariance holds for this much larger group. We give now the

precise definition, which is motivated by the notion of the energy-momentum field
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of a QFT. Recall that a field L(z) with the OPE (2.6.5) in which C =cI, c € C, is
called a Virasoro field with central charge c.

DEFINITION 4.10. [B1] A conformal vector of a vertex algebra V is an even
vector v such that the corresponding field Y(v,2) = ¥ .z Lnz™"" % is a Virasoro
field with central charge ¢ which has the following properties:

(a) L.y =T,

(b) Ly is diagonalizable on V.
The number ¢ is called the central charge of v. A vertex algebra endowed with a
conformal vector v is called a conformal vertex algebra of rank c. The field Y (v, z)
is called an energy-momentum field of the vertex algebra V.

THEOREM 4.10. (a) Suppose a vector V' € V satisfies properties
@ Lao=T,
(ii) Lov = £|0) for somec€ C,
(iif) Loy =0 forn > 2.
Then there ezists a € VacV such that v = V' — a satisfies (i)-(iii) and
(iv) Lov =2v.
(b) If (i)—(iv) hold, then Y (v, z) is a Virasoro field with central charge c.
(¢) A vector v eV is a conformal vector iff it satisfies (i)—(iv) and
(v) Lo is diagonalizable on V.
(d) If (i) and (v) hold, then V is a graded vertez algebra with respect to Lg.

(e) A conformal vertez algebra is Mobius-conformal with H = Lo and T* = L.
PROOF. Due to (4.6.2a) we have the following OPE:

Y/, 2)Y (V' ,w) ~ Z YL, w)

— +27
n>~-1 (Z w)n

hence using (i)—(iii) and (4.5.5) we obtain:

c/2 Y(LiV,w) Y(Ly', w) 6Y(u’, w)
(z—w)t  (z-w)? (z—u;)2 z—w

(410.1) Y/, 2)Y(V,w) ~
It follows from Theorem 2.6(a) that

(4.10.2) L/ =0,

BY (v — LLov/,w) = 0.
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Hence v — %Lou’ = a € VacV. Due to Remark 4.5, L,a = 0 for n > —1 and
ak) = 6k,—10(k). Hence v = V' — a satisfies (i)-(iv), proving (a). Formula (4.10.1)
along with (4.10.2) proves (b). (c) follows from (b) and the OPE for the Virasoro
field. By (4.6.2a) and (4.9.9) we have for any a € V: ‘

Y(Lpa,w
(4.10.3) Y(r2)Y(aw) ~ Y (Z(_ o +)2,
n>~-1
(4.10.4) L Y(@a] = 3 (" D690
ms ) : . J+1 7%
j2—-1
Equation (4.10.4) for m = 0 proves (d). (e) follows from (c). O

REMARK 4.10. Let v € V be such that Y (v, z) is a Virasoro field and v() is a
diagonalizable operator on V. Then the subspace {a € Vl|lvw), Y(a, 2)] = Y (a, z)}

is the maximal subalgebra of V for which v is a conformal vector.

If Loa = Aa, we have by (4.10.3) and (4.5.5)

6Y(a w) N AY (a,w) N

Y(v,2)Y (e, w) ~ — - = wp

A field Y (a, z) of a conformal vertex algebra V is called primary of conformal weight
A if there are no extra terms in the above OPE:

Y (a, w) AY (a,w)
z—w (z— w)2’

Y(v,2)Y(a,w) ~

COROLLARY 4.10. The field Y (a, z) is primary of conformal weight A iff one
of the following equivalent conditions hold:
(1) Lna=6,00a forallneZ,;
(1) [Lyn, Y (a, 2)] = 2™(20+ A(m + 1))Y (a,2), m € Z;
(iii) [Lm,an] = ((A —1)m - n)amin, m,n € 2.

Note that a primary field is always quasiprimary.

We consider now some examples.

ProrosITION 4.10. (a) Let b be a finite-dimensional superspace with a super-
symmetric non-degenerate bilinear form, let {a'} and {b°} be dual bases of b, let

b € g and let k be a non-zero complex number. Then

1 i 1)
v(b) = 5 Z a}_1yb_1/0) + b2 |0)



4.10. CONFORMAL VERTEX ALGEBRAS 81

is a conformal vector of the verter algebra B*(h) with central charge ¢ =
sdimb — 12(b | b)k.

(b) Let A be a finite-dimensional superspace with a skew supersymmetric non-
degenerate bilinear form, let {*} and {)*} be dual bases of A and let k be a non-zero

complex number. Then
1 i i
vi= 35 2 -)¥-nl0
is a conformal vector of the vertezr algebra F*(A) with central charge ¢ = —3 sdim A.

PrOOF. Note that by (4.5.4) and (4.5.5) we have (see Section 3.5):

(4.10.5) Y(u(b),2) = L%(z) = Y Lhz""2

Recall from Section 3.5 that L®(2) is a Virasoro field with ¢ given above, and for

any a € h we have:
(4.10.6) [L%1,a(2)] = da(2),
(4.10.7) Ly = H.

Now property (a) of v(b) follows from (4.10.6), and property (b) from (4.10.7),

proving (a). In a similar way, (b) follows from the discussion in Section 3.6. a

Note that in the case of the vertex algebra B*(h), all free bosons a(z) have
conformal dimension 1 with respect to L}, but they are primary iff & = 0 (see
(3.5.12)). In the case of F¥(A), all free fermions are primary fields of conformal
dimension 1 (see (3.6.4)).

One can construct in a similar way the conformal vector for an arbitrary vacuum
affine vertex algebra V* (g) or Vk(gsuper) (under a suitable assumption on k) but

the calculation is somewhat more involved and will be done later (see Section 5.7).

EXAMPLE 4.10. The Virasoro algebra Vir (defined by commutation relations
(2.6.6)) is spanned by formal distribution L(z) = >_ .7 Lnz"™ 2 and C (the OPE
being given by (2.6.5)). The derivation T'= adL..; satisfies (4.7.1), and H = adL¢
is a Hamiltonian with respect to which L({z) and C have conformal weights 2 and 0
respectively. Note that

Vi, =CC+ Y CLn, T(Viry)= Y CL,.

n>-1 n>-1



82 4. STRUCTURE THEORY OF VERTEX ALGEBRAS

Hence (due to Theorem 4.7) the associated universal vertex algebras Ve(Vir) are
parametrized by a complex number ¢ (= A(C)). All these vertex algebras (and

their quotients) are conformal with the conformal vector
V= L_2|0),

so that Y(v,z) = L(z). In particular these vertex algebras are graded with the
Hamiltonian Ly, and we have the corresponding simple conformal vertex algebras
Ve(Vir) (of rank ¢).

The vertex algebras V¢(Vir) are characterized by the property of being simple
graded vertex algebras strongly generated by a non-free field of conformal weight 2.
Indeed, writing this field in the form L(z) = }_, L,2z"™"2, we have:

VW =C6pl0)if j <1, V@ =Cv, where v = L_,|0),

so that L(z) = Y (v, z). Hence we have:

c 2aL(w) = ¥(w)
(z—wyt (z—w)? z—w’

L(z)L(w) =

for some ¢, a € C and some field ¥(w). By Theorem 2.6 we conclude that ¥(w) =
adL(w), and hence a # 0 since L(z) is a non-free field. We can rescale v so that
L(z) becomes a Virasoro field.

Note that holomorphic vertex algebras do not admit a conformal structure since

the Virasoro field is not holomorphic.

4.11. Field algebras

Field algebras generalize vertex algebras in the same way as unital associative

algebras generalize unital commutative associative algebras.

A field algebra V is defined by the same data as a vertex algebra, but weaker
axioms:

(translation covariance): [T,Y(a,z2)] = Y(Ta,2z) = 8Y(a,2) where T €

EndV is defined by Ta = a(_3)[0),

(vacuum): Y(|0),2) = Iy, ¥(a,2)0) |s=0= a,

(weak locality): Res,[Y (a, 2), Y (b, w)](z — w)N =0 for N >0,

(normally ordered product): Y (a(_1)b, z) =: Y(a, 2)Y (b, w) :.
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Note that all the consequences of the translation covariance discussed in Sec-
tion 4.1 still hold for field algebras.

In a field algebra V, (4.2.2) holds if we take Res, of both sides. Hence, by
Proposition 2.2¢ we see that for a field algebra, the following weak quasisymmetry
holds:

(4.11.1) Y(a,z)_b= (=1)P@P®eTY (b _7)_aq.

This simply means that (4.2.3) holds for n € Z,..

We have the following analogues of the uniqueness and existence theorems.

PROPOSITION 4.11. (a) Let V be a field algebra and let B(z) =Y., B,z™""!
be a field which is weakly local with all the fields Y (a,z), a € V. Suppose that

(4.11.2) B_, = by for someb €V and [T, B(z)] = 0B(2).

Then B(z) =Y (b, ).

(b) Suppose that all the hypothesis of Theorem 4.5 hold except that in (iii)
“local” is replaced by “weakly local.” Then the conclusion of Theorem 4.5 holds
except that “vertex algebra” is replaced by “field algebra.”

PRrROOF. Replacing B(z) by B(z) — Y (b, z), we may assume that b = 0. The
same argument as in the proof of Theorem 4.4 gives for all N > 0:

Res,(z ~ w)VB(2)e*Ta =0, acV.
It follows that
B,=0forneZ,.
On the other hand, due to (4.11.2),
B, =0, [T,B-,]=nB_p-,

hence B, = 0 for n < 0, proving (a). The proof of (b) is now the same as that
of Theorem 4.5. O

Note that the weak quasisymmetry can be written as (N > 0)

Res,(z — w) VY (a, w)b = (—1)P@P®) Res_ (z — w)Ve*TY (b, —w)a.
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Using this, in the same way as in Section 4.6 (by taking Res, of all equations and
using Proposition 2.2c), we prove the commutation formula for the field algebra
(I > fwl):

Y (a(n)b, w)

(4.11.3) [Y(a,2)-, Y(bw)] = )

neZy

But this formula simply means that for n € Z, one has:
(4.11.4) Y (a(m)b, w) = Res;[Y (g, 2), Y (b, w)](z — w)™.

Also, replacing a by T"a in the normally ordered product axiom and using that

Y(Ta,z) = 0Y(a, z) we obtain if n € Z,:
(4.11.5) Y (a(—n-1)b, 2) = ™Y (a,2)Y (b, 2) : .
Now it is easy to prove the following result.

THEOREM 4.11. The following is an equivalent set of axioms of a field algebra:
(partial vacuum) Y (|0), z) = Iv, a(-1)|0) = a,
(n-th product) Y (a(n)b, z) =Y(a,2)m)Y (b,2), n € Z.

PRrROOF. The n-th product axiom is (4.11.4) for n > 0 and (4.11.5) for n < 0.
Thus, the old set of axioms implies the new one.

Conversely, taking & = |0) in the n-th product axiom with n > 0 we see
from (4.11.4) and the partial vacuum axiom that a(,)|0) = 0 for n > 0, proving
the vacuum axiom. The axiom Y(Ta,z) = 8Y(a, z) follows from (—2)nd product
axiom by taking b = |0). Taking Res, 22 of both sides of the n-th product axiom
and applying to |0), we get [T, Y (a,z)] = 3Y(a,z). Finally weak locality follows
from (4.11.4) for n > 0. a

As in Section 1.4, it is easy to show that all holomorphic field algebras are
obtained by taking a unital associative algebra V' and its derivation T, and letting

Y(a,2)b=¢eT(a)b, a,beV.

The general linear field algebra gff(U) defined in Section 3.2 is not a field
algebra since the field property

(4.11.6) amb=0 for n>0
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does not necessarily hold. However, if we take a collection of mutually weakly local
fields {a®(z)} C g€f(U), they generate a linear field algebra which is a field algebra.
(The only axiom that is not immediate is the normally ordered product axiom; it is
checked by a lengthy but straightforward calculation.) Of course, vertex algebras
are precisely the local field algebras.

REMARK 4.11. The n-th product axiom is nothing else but Borcherds identity
for F = (z — w)™. Hence it is immediate to see that the n-th product and locality
axioms imply Borcherds identity. Of course, it is natural to define a “non-unital”
field algebra as a vector space V with n-th bilinear product for each n € Z such
that the n-th product axiom holds for all n € Z.






CHAPTER 5

Examples of vertex algebras and their applications

5.1. Charged free fermions

Recall (see Section 2.5) that “charged free fermions” is a Lie superalgebra
spanned by odd formal distributions 9 (z) and ¥~ (z) and an even (constant)
formal distribution 1 commuting with ¥*(z) with the OPE (2.5.13). We shall
denote this Lie superalgebra by Cinar- It has a basis consisting of odd elements

1/1(1,,1) (n € Z) and an even central element 1 with commutation relations:

[ i) = bmmnts - [ ¥i] =0

It admits a derivation T defined by (4.7.1) (i.e., T¥5,) = ~ny,_,), T1=0).

Recall that, by Theorem 3.6, the Lie superalgebra Cehar has a unique irreducible
module, which we shall denote by F, such that the central element 1 is represented
by the identity operator and there exists a non-zero vector |0) such that

¥E(2)-10) =0.
Due to Theorem 4.7, F is a (simple) vertex algebra generated by the fields ¥+ (z)
and ¥~ (z).
The vertex algebra F has a 1-parameter family of conformal vectors (A € C):
(5.1.1) A = (L= M % 1yl0) + M5 %110
Indeed, Y (v*,z) = L*(z) (which is given by (3.6.14)) and by (3.6.15) we have:
Wt (w) | W (w)

Y (V’\, z) yt(w)

(5.1.2) Zow Z:’”V:
Y (1/\, 2) Y~ (w) 6;/)_(;1:) 21 (Z/\_)t)gw) .

It follows that L*, = T since L*(z) = >, L)z~""% is a Virasoro field, it follows
that v* is a conformal vector (see also (5.1.10) below). Using also (3.6.16), we
arrive at the following proposition.

87
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PROPOSITION 5.1. The vectors v* (A € C) are conformal vectors of the vertex
algebra F. The field Y (V’\,z) s a Virasoro field with central charge

ex=—1222 4121 - 2.

The field ¥+ (2) (resp. ¥~ (2)) is a primary field with respect to Y (v*,z) of con-
formal weight X\ (resp. 1 — A).

We turn now to bosonization (see Section 3.6). Let

afz) = 9T ()97 (2) : -

This is an even field of conformal weight 1 with respect to any L*(z). Due to
(3.6.10) and (3.6.12) we have the following OPE:

(5.1.3) ()W) ~ i-";_(lw),
(5.1.4) a(z)a(w) ~ (_z_—}T)?

Formula (5.1.4) shows that a(z) is a free bosonic field with affine central charge 1.
Furthermore in our case the second sum in (3.6.13) vanishes (due to Re-

mark 3.3), hence (3.6.13) gives:

(5.1.5) talz)a(z) = 0yt ()W (2) 1 + : Y (2w T (2) ;.
It follows that
(5.1.6) Y (v, 2) = LN2) = % tafz)?: + (% - /\) da(z).
As usual, we write a(z) = 3 a,2""!. Then (5.1.3) and (5.1.4) mean the
following:
[am,an] = m‘sm,)nv
(5.1.7)

[am, ¢(j:.)] = i‘/’(j:n+n)-
Thus, the «,, form the oscillator algebra s, and g, called the charge operator,
is diagonalizable on F. The eigenvalues of g are called charges. Explicitly, the

elements
(5.1.8)
Vi YW Va0 0<ii<iz <y 0<ji<j2 <)

are eigenvectors of o of charge s —t and form a basis of F.
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Let F = ®y,ezF™) be the ag-eigenspace decomposition, called the charge
decomposition. Note that each F™) is invariant with respect to s.
Furthermore, due to (5.1.6) we have, in particular:
A_ 1l 1 =
(5.1.9) Ly = éao-l— A 2 ao+;a_jaj.
Due to (5.1.2) we have:
[Léy¢+ ] = (—m— 1+ ’\)¢+ »
(5.1.10) o o
(L3, 1/’(7,0] =(-m- /\)1/1(-,")-

Hence L}, called the energy operator, is diagonalizable in the basis (5.1.8) of F, the
eigenvalue, called the energy, of the element (5.1.8) being equal

(5.1.11) it i+ 14 i A5 —t)—s.

Note that the energy of all states is non-negative provided that A € [0, 1].

Introduce the following element of F™) called the m-th charged vacuum:

|m) 1/’:,") . '1/1?—_2)1/’Et.1)|0) ifm>0,

Im) = Yy Y y¥yl0) ifm<oO.
It is easy now to prove the following important theorem.

THEOREM 5.1. The representation of the oscillator algebra s in each space

F(m) 45 srreducible.

PrOOF. By Theorem 3.5b, it suffices to show that if v € F(™) is a vector such
that a;jv = 0 for all § > 0, then v € C|m). It follows from (5.1.9) that v has the
same energy as |m). But by (5.1.11) the vector |m) has the strictly lowest energy
among the vectors (5.1.8) of charge m, if we take A € (0,1). O

Here is a nice application of Theorem 5.1. Let us compute the “character”
chF = trpqhs 22

in two different ways. Just looking at the basis (5.1.8) we get

(5.1.12) chF = H (1+ Zq/\+j—1) 1+ Z—lq—z\+j) )
j=1
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On the other hand, elements
a_j,-ra—jm) (0<j1 <ja<---)

form a basis of L)-eigenvectors of F(™ with eigenvalues mA+im(m—1)+ji+- - js.
Hence
oo
(5.1.13) chF =)~ zmgmi+imim= [ TT (1 - ¢)
meZ j=1
Comparing (5.1.12) and (5.1.13) we get
oo
G119) I -¢) Q+2g70) (142717 = Y gmgmitimimeh),
=1 meZ
Replacing in this formula zg* by z we get the famous Jacobi triple product identity:
oo
(5.1.15) H (1-¢) 1+2¢7) (1+27¢) = Z Zmgnim=1/2,
j=1 meZ
Letting in (5.1.14) A = % and z = —1 and replacing ¢ by ¢* we get the no less
famous Euler identity:
o .
(5.1.16) [Ta-&)= > (-ymgrem+ur
I=1 meZ
Letting in (5.1.14) A = % and z = —1, and replacing g by ¢*> we get another famous
identity due to Gauss:

(5.1.17)

',:18

=Y (-9™.

1 meZ

i
REMARK 5.1. Formula (5.1.13) can be rewritten as follows:
- 1 A=l )2
q ex/24hF = Z quz(m+ 3 /177
meL

where 1 = ¢ [1;2, (1 — ¢’) is the Dedekind 7-function.

5.2. Boson-fermion correspondence and KP hierarchy

In the previous section, starting with charged free fermions 9% (z), we con-
structed a free boson a(z). We wish now to express the fields ¢*(z) via the
field a(z). This is obviously impossible since a(z) preserves charge whereas ¥*(z)

changes charge by +1. For that reason we introduce a new (invertible) operator u
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on F, which changes charge, as follows. Consider the automorphism of the algebra
Cehar defined by

Yoy ™ Yacy Y ™ Yty

It is clear that this automorphism maps the annihilator (in Ceh,.) of the vector
|m) to that of the vector |m + 1), m € Z. Hence there exists a unique invertible

operator u on F such that
(5.2.1) wWiyu™ =Yy, um) =|m+1).

Since for n # 0 we have:

(5.2.2) ay = Ed’z)‘/’(;—i—l)’
i€z

(5.2.1) implies

(5.2.3) wapul=aqa, ifn#0.

Since u : F(™ — F(™+1) we obtain

(5.24) uagu™! =g — 1.

Now, due to (4.5.3) the field corresponding to the vector | £ m) (m > 0) of the

vertex algebra F under the state-field correspondence is:

(5.2.5) Y(| £ m),z) = 8Vt (2) - St (2)pE(2) -,
in particular,
(5.2.6) PE(2) =Y (| £1),2).

On the other hand, by the general OPE formula (4.6.2a) we have:
Y (a;|m),w)
a(@¥ (), w) ~ Y- D),
j>0

and since a;|m) = & jm|m), we obtain

(5.2.7a) a(2)Y (|m), w) ~ mY(|m),u;),

zZ—w

or, equivalently,

(5.2.7b) [a;, Y(Im), w)] = m2TY(|m), w).
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We also have, using (5.2.5):

(5.2.8)
Y(jm), z) : F®) — e[z =1, |k) — 2™ |m + k) + higher energy states.

Formula (5.2.7b) along with (5.2.3 and 4) show that the field

Plaid

Xm(z) :=u"me™ Yico %3 *Y (|Jm), z)e'"EJ'>° o
commutes with all operators ; (i € Z). Furthermore, due to (5.2.8), we have
Xm(2): F&) _, gtk [[z,z'l]] , |k} — 2™|k) + higher energy states.
By Theorem 5.1, we conclude that
Xm(2)|pwy = 2™ Lo,

hence X,,(z) = 27 ™20, We thus obtained the following remarkable formula:

(5.2.9) Y(jm), z) = umzm0e” ™ Li<o a5 emm 50 ey,

REMARK 5.2. The field (5.2.9) first appeared in the early days of string theory
under the name “vertex operator” in the following form (see the review [Man)]).
Consider the (multivalued) Veneziano field

p(z) = q—iplogz+iy gn’iz‘",
n#0
so that a(z) = idp(z). Here the @, with n # 0 form the Heisenberg algebra
[0, an] = My, —m, P = ap is the momenta operator, and u = €' where q is the
conjugate coordinate operator (i.e., [g,p] = i). Then : e™%(?) : is the (well-defined)
vertex operator, where the sign : : of normal ordering means that p and «,, with

n > 0 (i.e., operators that annihilate the vacuum) are moved to the right.

For m € Z let B(™ = Clz1, 3, ...] denote the representation space for the

oscillator algebra given by the usual formulas (cf. Example 3.5):

aj and a—;=jz; for j >0, ag=ml.

We identify the space B := @, ., B™ with the space C[z),z2,... ;u,u™!] via
the obvious identification B(™ = C[z;, x2, ...]u™. Then the operator (5.2.9) looks
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on B as follows:

Pt ]

(5.2.10) [m(z) = u™ ™0™ X321 ;g B 5 ae

Thus the space B becomes a vertex algebra with the vacuum vector 1 and the

following state-field correspondence (where, as usual, a(z) = 3, oz

Y (zj, - z;,u™, 2) = " la(z) - la(2)Tmlz) s J52)- - al

n

We can state now the basic result, called the boson-fermion correspondence,
which goes back to Skyrme [Sk]. Its proof follows from the above discussion and

the uniqueness of representations of the oscillator algebra (see Example 3.5).

THEOREM 5.2. There exists a unique isomorphism of vertex algebras o : F =

B such that
olm)=v", meZ and o (YT ()Y 7 (2):) 0" = a(2).
Under this isomorphism we have for m > 1:
0 : 0 IYE() - YR (Y E(2) 107! =T (2),
in particular:
opE(2)o =Ty (2).
In what follows it will be convenient to write the fields ¥*(z) in the form

PR =) YT, () =) Wi,

i€z JEZ
(i-e., we take A = 1) so that
YT+ YTYE = b n, YEYE = YTyl

Using these fields one constructs a representation r of the Lie algebra gl of all
matrices (a;;); jez with a finite number of non-zero entries a;; as follows. Let

En= (6i'"6jn)i,jeZ’ m,n € Z, be the usual basis of gl,,. We let
T(Em‘n) = "/Jtm’w;a
in other words:

(5.2.11) > r(By)e e =9t ()Y (w) = Bz, w).

1,j€Z
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We have

(E(z,w), ¥* (w)] = ¢* (2)6(w —v), [E(z,w), 9~ (u)] = —¢~ (w)é(z - u),

in other words we have the following commutation relations:
(5.2.12) . [T(Eij),"lfi_k] = jk"/’ti? [T(Eij)?"/’k_] == ikdj;'

It follows that the adjoint representation on Cg,, induces the defining representa-
tion of gl in thé space @j Ci/;f]- (resp. its dual in the space @j Cy;’); in particular
r is indeed a representation of gl.,.

It is straightforward to see that the restriction of the representation r to each
F™) is irreducible and that this is the m-th fundamental representation of gl
with highest weight vector |m):

r(Eiyj)lm)=0ifi <j, r(Ey)lm)=I|m)ifi<m, and =0ifi>m.
Recall that we have (cf. (5.2.6) and (5.2.10))

z—3

(5.2.13) opE(2)o™! = utlateet iin 2 F Bi2 5T ol

Substituting this in (5.2.11) we obtain a formula for the representation of gl in
B™) (the bosonic picture):

(5.2.14a) 3 oro™} (Biy)#tw = (z/w) Iz, w),
i,j€Z Z—w
where
j 3 oo 2" 3—w™2
(5.2.14b) I(z,w) = (7 —wi)e; D5 —,—_—3%.

Formula (5.2.14a) should be understood as an equality of formal distributions
in the domain |z| > |w|. Note also that in multiplying out of the vertex operators

we have used
(5.2.15) e902eb% = obeb2e08: 4 b e C.

One of the most remarkable applications of the boson-fermion correspondence
is the theory of the KP hierarchy developed by the Kyoto school. We discuss this
briefly, referring to [DJKMj, [JM], [KR], or [KL2] for details.
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The KP hierarchy in the fermionic picture is the following equation on 7 € F(®):;

(5.2.16) S ¢freypl;r=0 (nFoF)
JEZ

Introducing the operator

S=Y v @yl

J€L
on F ® F, we can rewrite (5.2.16) as
(5.2.17) S(reTr)=0.
Yet another way to rewrite (5.2.16) is
(5.2.18) Res, ¥ (2)T ® ¢~ (2)7 = 0.
The two basic properties of the operator S are
(5.2.19) 5(10) ® |0)) = 0,
(i.e., the vacuum vector T = |0) is a solution of (5.2.16)) and
(5.2.20) [E(z,w)® 1 +1® E(z,w),S] =0,

(i.e., the representation of gly, in F ® F commutes with the operator S). Formula
(5.2.19) is clear since either ¢ |0) = 0 or 1/)i'j|0) = 0 for each j. Formula (5.2.20)
is obtained by a simple calculation:

[E(u,w) ®1+1® E(u,w),Res, p1(2) @ Y~ (2)]

Res. [17* (upy™(w), ¥+ (2)] @ %™ (2) + Res, 9*(2) ® [p* (wy~ (), 9™ (2)]
Res; 6(w — 2)¥ ™ (u) ® ¢ (2) — Res, ¥ (2) ® §(u — 2)y™ (w)

P (u) ® Y~ (w) ~ P (u) ® P~ (w) = 0.

The representation r of the Lie algebra gl,, exponentiates to a representation R
of the group GLq of all invertible matrices (6;; + @ij), ;cz With a finite number of
non-zero a;;. Property (5.2.20) means that the operators R(g) ® R(g) (g € GLw)
commute with the operator S on F ® F. Hence, applying R{g) ® R{g) to both
sides of equation (5.2.19), we obtain that all elements 7 = R(g) : |0) (g € GL,) are
solutions of the KP hierarchy. (One can show that, conversely, if a non-zero element

7 of F is a solution of the KP hierarchy then T lies on the orbit R(GL,)|0) [KR].)
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Let us go now to the bosonic picture. We identify F(® with B® = C[z1,xs,... ]
using o, and F0) @ F©® with B9 ® BO) = C[z},x},... ; z{,z4,...]. Substituting
in (5.2.18) the right-hand side of (5.2.13) we obtain the “bilinear form” of the KP

hierarchy in the bosonic picture:

, - f_mlz‘ia 1/212 8
(52.21) Res, | e*%e 77 ¥} [em* =T R ") | =0,

where = = (z1,2,...) and z- z stands for 3272, 27z;.

There are two ways to proceed from (5.2.21). The first way is to introduce new
variables by letting ' = £ — y, £” = z + y, which leads to the KP hierarchy of
Hirota bilinear equations on the 7-function. We refer to the literature quoted above

for details. The second way is to introduce the wave functions

e:tz-n:e:F i E;—JE% T(m)

J

+ =
w (x7 Z) - T(m‘) )
so that equation (5.2.18) becomes
(5.2.22) Res, wt(z', 2)w™(z",2z) = 0.

£(z)z~7,
Introduce the wave operators P = 1+wi (z)d~ ' +wEfd~24- .., so that wt(z, z) =

Pte”® and let L = P*(P*)™. Then L = 8+ u ()0~ + ua(z)d~2+- - -, where

The wave functions w*(z, z) have the following form: w*(z, 2)=1+3"2 W5

U = log 7(x), etc.

8*
or?
One can show that (5.2.22) implies the following hierarchy of evolution equations
of L:

oL

(5.2.23) o

:[(L")+7L]7 n=1,2,...,

where the subscript + signifies the differential part of a pseudo-differential operator.
Equations (5.2.23) imply the following zero curvature equations:
[ 17} 17}

(5.2.24) a—x: b (L )+ s E

~(L")+] =0, mn=12....

Equation (5.2.24) for m = 2, n = 3 produces the classical KP equation on the

function u = 2u,, where x; =z, 2 = y, 23 = #:

3 1 b
(5.2.25) guyy = ('U.g — EuuI - Zumz) .
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One can show that if 7(zx) is a solution of (5.2.21) then (1 + al'(a,b))7(z) is a
solution as well for any «,a,b € C. Applying this procedure N times starting
with 7(x) = 1 we obtain the T-function of the so called N-soliton solution. For
example, u(z,y,t) = 2%’2 log(1+T(a, b))7(x,y,t)) is a 1-soliton solution of (5.2.25);
explicitly:

1 1 -2
u(z,y,t) = 5((1 —b)? (cosh 5((a —b)z+ (a® — by + (a®* - b®)t + const)) .

5.3. gl and W14

Denote by 5100 the Lie algebra of all matrices (a;;)i,jez such t.ha.t a;; = 0 for
|¢ — j| > 0. It is important to consider this Lie algebra which is larger than gl
because, as we shall see, many important Lie algebras can be embedded in 51 - but
not in gl

Unfortunately the representation r can not be extended from gl to ﬁoo, since
for example,

r (diag(M)iez) 10) = D Xi[0).
i<0
In order to remove this “anomaly,” introduce the following projective representation
7 of the Lie algebra gl (cf. (5.2.11)):
(5.3.1) 3 F(Ey) F T T = T ()Y (w):
1,JEZ
It is clear that 7 extends to a projective representation of the Lie algebra 5100

Recall that in the domain |z| > |w| we have
PRy (w) = —+ P2y (w):
Comparing this with (5.2.11) and (5.3.1) we obtain:
T (E;;) =r(Es;) ifi#jori=j>0,
(5.3.2)
?(Eii) = 'I'(E"‘) -I ifi __<_ 0.

It follows that

[F(A),*(B)] = 7([A,B]) + a(A,B)I, A,Be€gl
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where a4, B) : gl x gl,, — C is a bilinear function given by

(5.3.3) oA, B) =tr([J,A]B),  whereJ =) Ey.

i<0
Since _(;loo is a Lie algebra, it follows that (A, B) is skewsymmetric and satisfies
the identity )

a([A7B]7C)+a([B7C(]vA)+a([CvA]7B)=07

i.e., a is a 2-cocycle on _;loo.

Let 5100 = _(;loo + CK be the central extension of _t;loo defined by this cocycle,
that is K is a central element and the Lie algebra bracket on _t’]\loo for any two
elements A, B from the subspace _;loo is given by

[4,B] = AB — BA + o(A, B)K .

Thus, letting 7(K) = I, we obtain a linear representation 7 in the vector space F
of the Lie algebra ﬁoo, defined on the subspace g~l°° by (5.3.2).
Consider now the Lie algebra D of regular differential operators on C \ {0}.
Recall that these operators are of the form
N
Z a;(t)d, where a;(t) € C[t,t™}].
=0

They act on C[t,t™!] in the usual way. Operators
JE = kb (ke Zy,n e Z)

form a basis of D.

Choosing the basis e; = ¢t/ of C[t, 1], we obtain

1 k _j
k~! J"e]' = ( B €jn.

We thus get the following embedding ¢ of D in _t;loo:
1 —J
(5.3.4) ¢ (EJS) == Ejon,
: jez \ k
Let D = D + CC denote the central extension of the Lie algebra D defined by the

cocycle « restricted to ¢(D), and extend ¢ to a homomorphism & : D — 51 by
letting $(C) = K.



5.3. gl, AND Wijco 99

Introduce the following formal distributions with values in D (k € Zy):
J*(z) = Z JEg—kon=1,
neZ
THEOREM 5.3. (@) 7 (¢ (J*(2))) = &%y~ (2)9*(2):
(b) The formal distributions J*(2) are mutually local.
(c) The restriction of the cocycle a to D via the embedding ¢ is given by the
following formula:

rls!
(r+s+1)

ProoF. (a) follows from (5.3.4) and (5.3.1), and (b) follows from (a). Note
that, by Wick’s formula, the constant term in the OPE : 9"y~ (2)y(2) :

a(f(t)07,9(£)0;) = br,—s Res, (0,1 £(1)) (97 9(1)) -

1 Y~ (w)yT(w) : is equal to KZL__%));:—::::? Hence, using (2.6.2a) and (a), we obtain

m+r
a(Jr, J2,) = (=1)rls! Om,—n»
r+s+1

proving (c). a

REMARK 5.3a. The restriction of the cocycle «a to the subalgebra gl of the
Lie algebra _;loo produces a trivial cocycle:

a(A, B) = trJ[A, B].

On the other hand,

a(t™,t") = mbm,—n,

hence restricted already to the (commutative) subalgebra ¢ (3~ Ct™), the cocycle
« is nontrivial. Note also that when restricted to vector fields, a reproduces a
multiple of the Virasoro cocycle:

md—m

a (tm+lah t"+lag) - _6m’_" 5

It is easy to see that the derivation T = —add; of the Lie algebra D lifts to the
central extension D by letting T(C) = 0. In fact, this is equivalent to the relation

a([ahA]vB)z_a(Av [ath])7 A,BeD.
which is immediate to check. It is also immediate to check that

[T,J%(2)] =0J%(z), keZ,.
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Hence we may apply the construction of vertex algebras associated to a regular Lie
algebra of formal distributions developed in Section 4.7.
We have:
ﬁ+=P+CC, Tﬁ.{_:’P,

where P is the set of all differential operators regular on the whole complex plane
C (i.e., the coefficients of these operators are in C[t]). Note that P is a subalgebra
of D since the restriction of the cocycle a to P is zero. Hence all 1-dimensional

ﬁ+ — modules A are of the form:

AA(P)=0, AfC)=ceC.
We thus obtain the vacuum vertex algebras

V(D) = ndB, coh., c€C,

strongly generated by the fields J*(z2), k € Z,..
Finally, it is straightforward to check that for each A € C, the vector

(5.3.5) V= (2 + (A= 1)J2,) 10)

is a conformal vector of the vertex algebra Vc(ﬁ). Note that the corresponding

Virasoro field is

Y (v*,2) = J'(2) + (A = 1)87°(2),
and that the central charge equals
(5.3.6) — (123 =12 + 2) c.

In particular, V(D) is a graded vertex algebra (with the Hamiltonian J}), hence it
has a unique simple quotient Vc(ﬁ). The generally accepted notation for the simple
vertex algebra Vc(ﬁ) is Witoo,c. More on these vertex algebras and references to

their applications may be found in [FKRW] and [KRad].

REMARK 5.3b. Due to Theorem 5.1, the fields : 8%y~ (2)¢t(2) : , k € Zy,
generate the subalgebra F() of the vertex algebra F (it suffices to take k = 0). It
follows from Theorem 5.3a that the vertex algebra F® is isomorphic to the vertex
algebra W1, 1. The conformal vectors (5.3.5) and (5.1.1) correspond under this

isomorphism.
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5.4. Lattice vertex algebras

The vertex algebra B*(R?) of ¢ free bosons may be viewed as a quantization
of the space of maps from the circle S* to RE. In this section, we shall construct a
vertex algebra Vg associated to an integral lattice @ of rank £ which may be viewed
as a quantization of the space of maps from S! to the torus R¢/Q. This is called a
lattice vertex algebra.

Let Q be a free abelian group of rank £. Recall that the group algebra C[Q)] is

an algebra with basis e*(a € Q) and multiplication
eef =eotf | 0= (0, B€Q).

Let @ be given a structure of an integral lattice, meaning that @ is equipped with
a Z-valued symmetric bilinear form (.|.). Let h = C ®z Q be the complexification
of Q, and extend the bilinear form (.|.) from @ to § by bilinearity. Let

h=C[t,t7"] ®ch+CK

be the affinization of ) viewed as a commutative Lie algebra (see Section 3.5). Let S
be the symmetric algebra over the space §<0 =37, _, t/ ® h. We shall write th in
place of t/ ® h for short.

We define the space of states of the vertex algebra that we shall associate to
the lattice @ as

Vo =S5aC[Q]
with the parity
p(s®e”) =pla) €Z/2L,
where p : @ — Z/2Z is a homomorphism to be determined, and the vacuum vector
0)=1®1.

Recall (see Section 3.5) that we have a representation, which will be denoted
by m, of the Lie algebra a in the space S defined by letting m(K) = I, m (t"h)
be the operator of multiplication by t"h if n < 0, w(¢t"h) be the derivation of the
algebra S defined by

(t"h)(t™°a) = nén s(hla)
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ifn >0and m(h) =0 (h,a € §,s > 0).
Recall that the fields 37, ., m1(t"h)z~ ™! generate a vertex algebra structure
on the space S. In order to extend this structure to Vi, we define a representation

2 of ) on the space C[Q] by letting
m(K) =0, ma(t"h)e® =6p0(alh)e* (he€h,a€Q, ne),

and extend m; to a representation m of a on Vogbym=m®1+1Qm. Let
hn =n(t"h) (h € h,n € Z) and consider the following EndV-valued fields: h(z) =
Y nez Bnz™™"!. Then we have

(5.4.1a) (R, By) = Mbm—n (B|K), h,h €H, mneZ,

which is equivalent to the OPE

(RIK)

Denoting by e* the operator on Vg of multiplication by 1 ® e*(a € @), we have
(5.4.2) (rn, €] =bno(alh)e* neZ,hel.

In order to construct the state-field correspondence, we need to find the fields
Tuf2) :== Y(1 ® €%, 2) for each a € Q. Since h,e*|0) = 6, 9e*|0) for h € § and
n € Z4, we see from the general OPE formula (4.6.2a) that we must have

@M forheh, ace@,
z—w

(5.4.3a) h{(2)T o (w) ~
which is equivalent to
(5.4.3b) [Pn,Ta(w)] = (alh)z"T'o(w) forheh,neZ, a€q.

Using the same argument as in the proof of formula (5.2.9), we derive from (5.4.3b)
that
Tofz) = e%e™ Zi<o 7% ™ Lyno %iajaa(z) )

where a,(z) is a field such that

(5.4.4) [An,a,(2)]=0 forallheh, neZ.
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Furthermore, we want the fields I'x(2), a € @, to be pairwise local. In the

same way as in the derivation of (5.2.14b) we obtain in the domain |z| > |w|:

(alB)
(5.450) La(@)Ts(w) = e®aa(2)e?asw) (1= 2) " e p(z,),
where
(5.4.5b) ca’ﬂ(z’ w) =e EJ'<°(%J.Q"+%[’J') e Ej>o(z;_'j°‘i+%'jﬂj) .

As before, we have used the formula
30m gbPn = oablam Bnlghbngaam 4§ ¢ C,o,B8€h.

Using the equivalent definition of locality given by Theorem 2.3(vii), we conclude
that the fields I'x(z) and I's(w) are mutually local iff the following equality holds

for all z,w:
(5.46) e%an(2)Pag(w)z™(1P) = (=1 P@IPEH B By s (1) e¥ ay (2)w™ (10
Furthermore, we have

Ta(2)[0) = e%aa(2)e =570 F210) = e%aq(2) (1 + za_1 ++--)[0).
Hence by the vacuum axiom we must have
(54.7) aa(2)|0) [z=0 =10), ao(z) =1,
and also we must have (see (1.3.3))
(5.4.8) T(1®e*) = (t"'a) @ €*.
Since we want (4.5.4) for n = 0 and (4.5.5) to hold, formula (5.4.8) forces
(5.4.9) Ol a(2) = a2)Tafz) : .
The latter equation is equivalent to das(z) = apz ™ aa(z), hence we must have

aq(2) = caz™,

where c, is an operator independent of z such that due to (5.4.4) and (5.4.7):
(5.4.10) =1, c.|0) = |0, (hnical =0 (hED, neZ).
Using (5.4.2), we see that the locality condition (5.4.6) is equivalent to

(5.4.11) e%cqelcg = (—1)POPOH R B ppoe
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It is also clear that all T'y(z) are indeed fields. We thus arrive at the following
proposition (by making use of Theorem 4.5):

PROPOSITION 5.4. Any verter algebra with the space of states Vg and the vac-
uum vector |0) = 1 ® 1 with the property
(5.4.12) Y ((t7'h)®1,2) = h(z) forallhep,
is generated by the fields h(z) (h € h) and the fields

27

= . Pt N
Y(l@ea’z).—_-e"‘zo“’e"zgm 7% o™ Lj>0 57 %en (€EQ@),

where the c, are operators on Vg satisfying conditions (5.4.10) and (5.4.11). For
any solution of equations (5.4.10) and (5.4.11), there exists a unique such vertex

algebra.

The most important solutions to the equations (5.4.10) and (5.4.11) are of the

following form:
(5.4.13) ca(s®P) =e(a,B)s®e’ (s€85,B8€Q),

where e(a, 3) € C. Equations (5.4.10) and (5.4.11) are then equivalent to

(5.4.14a) e(e,0) = €(0,0) = 1 (e€ @),
(5.4.14b) e(a, B) = (~1)P@POFTED (8 o) (a,f€Q),
(54.14c) B, MeB+ 7, 0) = (7, + Be(B, @) (a,8,7€Q).

Indeed, (5.4.14b) follows from (5.4.11) applied to the vacuum vector and using
(5.4.10). Since the function

B(a,f) = (- (0,5 Q)
is bimultiplicative, we see that the equation (5.4.11) for the ¢, of the form (5.4.13)
is equivalent to the equations (5.4.14b and c).

5.5. Simple lattice vertex algebras

In order to understand better the equations (5.4.14a-c), introduce the twisted
group algebra C.[Q)]. This is the algebra with a basis e* (a € Q) and the “twisted”
multiplication:

e%ed = e(a,ﬂ)eaﬂ? (a,B€ Q).
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Then equations (5.4.14a and c¢) simply mean that C.[Q] is an associative algebra
with the unit element € = 1.

Note that e* is an invertible element of the algebra C.[Q] iff e{a, —a) # 0. Let
Q. = {a € Qle(a,—a) # 0} and let J. denote the linear span of e*’s such that
€(a,~a) = 0. Then Q. is a sublattice of @, J, is an ideal of the algebra C.[Q]
such that

(551) Ce [Qe] =~ Ce [Q]/JE *
Note also that
(5.5.2) ela, B)e(B,a) #0 forallBe Qifa € Q..

Suppose now that @ = Q., or, equivalently, that € : Q x @ — C*. Then
equations (5.4.14a and c) mean that € is a 2-cocycle of the group @ with values in
the group C*. Given a 2-cocycle ¢ : @ x @ — C*, one associates to ¢ a function
B. : Q x Q@ — C* defined by
(5.5.3) B.(a,B) = e(a, Be(B,a) L.

It is clear that B, is skewsymmetric, i.e.,
Be(o,8) = B.(8,0) "
Since (5.5.3) is equivalent to
el = B.(a, B)ePe*,
multiplying both sides of this equality by e on the right and using associativity,

we see that B, is bimultiplicative, i.e.,

Be(a + 7) ﬂ) = Bé(a$ﬂ)BE(77 ﬂ) ’ Be(ﬂ7a +7) = BE(/Bv a)BE(ﬂ$7) -

Replacing e* by e e* (e € C*,¢p = 1) gives an equivalent cocycle € (a, 3) =
euege;j_ ﬂe(a, ) and does not change B.. We thus obtain a homomorphism, which
we denote by b, from the second cohomology group H*(Q,C*) (= the group of
equivalence classes of 2-cocycles) to the group of bimultiplicative skewsymmetric
functions on @ x @ with respect to multiplication. The following lemma is well

known.

LEMMA 5.5. The homomorphism b is an isomorphism.
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PROOF. One has an obvious bijection between H2(@,C*) and isomorphism

classes of central extensions Q of Q by C*:
1-C* — é —-Q—-1.

Namely one defines on the set é = @ x C a group multiplication by (a, A){8, 1) =
(a+8, e(a, B)Ap). Choosing a basis ay, .. . ,a¢ of Q, we may rearrange the product
of two products of elements of the form (+a;, A), where indices are arranged in a
non-decreasing order, such that the indices are non-decreasing by making use of

the formula
(ai, Mg, ) (i, )71 = (@, Be(oui, o)) -
This proves that b is bijective. a

COROLLARY 5.5. For any integral lattice Q there exists a unique up to equiv-
alence solution e{a, B) to the equations (5.4.14a~c) taking only nonzero values. In

this case we have:

(5.5.4) pla) = (ala) mod 2,
so that
(5.5.5) B.(a, ) = (—1)l)+(ala)s18)

PROOF. Letting a = 3 in (5.4.14b) we get (5.5.4). Since the function defined
by (5.5.5) is bimultiplicative, the corollary follows now from Lemma, 5.5. O

Now we can prove the main result of this section.

THEOREM 5.5. (a) Let Q be an integral lattice and let Vo = S @ C.[Q]. Then
there erists a simple vertex algebra structure on the space Vg with the vacuum vector

[0) =1®1 and such that
Y((t7'R)®1,2z) = h(z), he€b,

iff the bilinear form (.|.) is non-degenerate. Such a vertex algebra structure is
unigue and is independent of the choice of the cocycle ¢ (satisfying (5.5.5)) up

to isomorphism.
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(b) The lattice vertex algebra described in (a) can be constructed as follows: Let
€:QxQ—{£l} bea 2—cocyclé (i.e., (5.4.14a and ¢) hold) such that

(5.5.6) (o, Be(B, @) = (—1)@IHBID o 3.

Consider the corresponding twisted group algebra C.[Q] and the algebra Vo =
S ® C[Q]. Then Vq is the space of states with parity

(5.5.7) p(s®e*) = (ala) mod 2,

with the vacuum vector |0) = 1 ® 1 and the infinitesimal translation operator T

defined as the derivation of the algebra Vg given by (n > 0,h € §,a € Q):
(5.5.8) T "R)®L)=n(t"""'h)®1, T{1®e)=(t"'a)®e.

Fora € @ let

~3 -3
(5.5.9) To(z) = €200~ 203<0 7 %™ 2j>0 57 |
where e* is the operator of left multiplication by 1 ® e*. Then the state-field corre-
spondence is given by (n; € Zy, h; € h,a € Q):

(5.5.10)
Y (¢ hy) (0777 hy) . @ e, 2) =: 0V Ry (2)0™ D ho(2) . . . Tal2) :

PROOF. If h € §is in the kernel of the bilinear form (.|.), then t “!h®1 generates
an ideal of V. Suppose that the bilinear form (.|.) is non-degenerate. Then all
solutions of the equations (5.4.14a—c) are of the form (5.4.13) (since [hg,ca] = 0
for all h € B). Since 1QJ, generates an ideal of Vg (see (5.5.1)), it is necessary
for simplicity of Vg that e(a, 8) # 0 for all o, 5 € Q (due to (5.5.2)). Due to
Corollary 5.5, the structure of a vertex algebra on Vg is unique up to isomorphism.

In order to complete the proof of (a), we must show that if the bilinear form
(-|-) is non-degenerate and e{a, 3) # 0 for all aF € @Q, then Vg is a simple vertex
algebra. Recall that S is irreducible under all the operators h,, n # 0, and that
ho(l®e*) = (alh)1®e*. It follows that any nonzero invariant subspace U of Vg
contains a vector 1®e® for some « € Q. Applying z(*1®)T'_,(2) to this vector and
letting z = 0, we conclude that |0) € U (since e(a, —a) # 0), hence U = Vq.

(b) is a reformulation of a special case of Proposition 5.4. a



108 5. EXAMPLES OF VERTEX ALGEBRAS AND THEIR APPLICATIONS

REMARK 5.5a. For an integral lattice @ one can construct explicitly a cocycle
¢(a, B) with values +1 such that

(65.11) (o, B)e(B, ) = B, B),  where B(a,§) = (~1)*8rHel8I0)
as follows. Choose an ordered basis «;, ..., of Q over Z, let
B(a, aj) ifi <7,
f(ai, aj) = (ml)((ai|ai)+(ai|ai)2)/2 ifi=j,
1 ifi> g,
and extend to @ by bimultiplicativity. We thus obtain a bimultiplicative function
€:Q x Q — {£1} such that

(5.5.12) (o, a) = (=1){(el) )2 g

Then bimultiplicativity implies the cocycle properties (i.e., (5.4.14a and ¢)), and
(5.5.12) along with the bimultiplicativity imply (5.5.11).

The operators 'y (z) go back to the early days of string theory under the name
vertex operators (see Remark 5.2). The only essential missing ingredient was the

cocycle e{a, 8) which was introduced by [FK].

EXAMPLE 5.5a. The main result of Section 5.2 states that the vertex algebra
F of charged free fermions is isomorphic to the lattice vertex algebra Vg, where
Z is the 1-dimensional lattice with the bilinear form (m|n) = mn. In this case
p(m) = m mod 2 and Bc(m,n) = 1 for all m,n € Z, so that one may take
ela,f)=1forall o, € Z.

More generally, let @ = Z¢ with the standard bilinear form (e;|e;) = 6;; where
{e:} is the standard basis of Z¢. Define a bimultiplicative function € on Q x Q with
values £1 by letting

1 i),
e(e,— 1 €5 ) =
~1 ifi>j.
Then ¢ satisfies (5.5.12), hence satisfies equations (5.4.14a~c) (with p(a) defined
by (5.5.4)). The corresponding lattice vertex algebra is isomorphic to F®¢.
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REMARK 5.5b. Let @ be the orthogonal direct sum of lattices @1 and Q2 and
assume that the 2-cocycle € takes only nonzero values. Then we have an isomor-
phism of the (uniquely) associated vertex algebras: Vg ~ Vi, ® Vg,. In partic-
ular, let o« € Q be such that (a|a) = 1, so that we have a direct sum of lattices

Q = Za @ ot and an isomorphism of vertex algebras:
Vo=FQV,..

It is convenient to collect together the most important properties of the fields
h(z) (h € ) and the fields (vertex operators) I',(z) defined by (5.5.9):

h|W
(5.5.13) h(2)R' (w) ~ ((_-lw—))z (h,h' €bh),
(5.5.14) h(2)[ o (w) ~ @’l)r—uf“’) (hebhaeQ),

(65.15)  Ta(2)Tp(w) ~ eler, B)(z —w) P, s(z,w) (o, 8€Q),

where Iy 5(2,w) is the following field in 2 and w:

273 w7 =i w=I
g -+ ) 2 (—»a-+—.~ )
Lo (2, w) = e 2%0wfoe ZKO( 7t h e Ljso 5o+ 256 )

(5.5.16) o (2) = a(2)Talz): (@€ Q).

These are equations (5.4.1b), (5.4.3a), (5.4.5a~b), and (5.4.9) respectively. It is
straightforward to check that (cf. (5.5.16)):

8, Tap(z,w) =: a(z)lq g(z, w) : (= af2)1Tap(z, w) + Ta gz, w)a(z)-) .

By induction on n we obtain a formula for n-th derivative:

(5.5.17)
MTapzw)= 3 calkr,kz,-..): a(2)" (9a(2)** ... Tap(z,w) 1,
ki+2ka+...=n
ki€Z,
where
n!
Cn(kl,kz,.. ) =

(IN)erky (202 kp! ... "
This is the number of partitions of n which contain k; parts equal 7. Expand-

ing s p(z,w) in a Taylor series by Lemma 3.1 and using (5.5.17) we obtain
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from (5.5.15) the following explicit OPE:

(5.5.18) Ty (2)Tp(w) ~ e(a, B)(z — w)? Z

0<n<—(a(B)
(z—w)" ke k
s a{w)® (Qaf(w))™...T w): .
k1+zlczz+...=n (ks ky (2N k2ky! ()™ (Gaw)) a+olw)
ki€Z

Finally, we discuss the conformal structure of Vj.

PROPOSITION 5.5. Let Q@ be an integral lattice of rank ¢ and assume that the
bilinear form (.|.) is non-degenerate. Choose bases {a'} and {b'} of b such that
(a’|t) = 6. Then

(a) The vector

[4
1 . .
(5.5.19) v=3 al,bh,(0)
i=1

is a conformal vector of the lattice vertez algebra Vg (it is clearly independent of
the choice of dual bases). The central charge of the corresponding Virasoro field
Y(v,z) is L.

(b) The fields h(2) (h € b) are primary of conformal weighi 1.

(c) The fields To(z) = Y (1 ® €*,2) are primary of conformal weight %(c|a).

ProOOF. 1t is straightforward to show, using Wick’s theorem as in Section 3.5,
that Y'(,2) = 3,z Ln2™""? is a Virasoro field with central charge £ and that
the h(z) are primary fields of conformal weight 1 with respect to this Virasoro field
for each h € §. In particular,

(5.5.20) Lyt th®l)=t?hel.

Since

[4

Y(v,2) = %Z sl (2)b(2) 1,

=1
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we have:
: 1 ¢ o 1 ¢ ; : i i
Lo=52 afbh+35D > (aluby +blm0r)
i=1 i=1n>0
1¢ i i i
Loa=352.3 (alaby+l,00)
i=1n>0
1
Ln=522 6, im0
i=1 jez

It follows that
(5.5.21)

Lo (¢ hy)(the) ... @ €%) = ((jl +ia 4 )+ %(ala)) (t™hy)...®€%,

I

(5.5.22) L_i(1®e%) (t7la) @ e*,

(5.5.23) L,(1®e%)

I

0 for n > 1.
Comparing (5.5.22) and (5.4.8), we see

(5.5.24) L_1(1®e*) = T(1®eY), aeQ.
Using the commutator formula (4.6.2a), formula (4.5.5), and (5.5.21-5.5.23), we see
that I', (2) is primary with respect to the Virasoro field Y (v, z) of conformal weight

3(ala).
In order to complete the proof of the proposition, it suffices to show that

L_y =T. But this follows from (5.5.20), (5.5.24) and Corollary 4.6g. ]

EXAMPLE 5.5b. Under the isomorphism Vg = F, the conformal vector v de-
fined by (5.5.19) maps to the conformal vector ¥4/2? (see (5.1.1)). Hence lattice

vertex algebras may have several conformal structures.

5.8. Root lattice vertex algebras and affine vertex algebras
Let @Q be a positive definite integral lattice. The set
A={aeQ|(ala) =2}

is called the root system for Q. It is well known (and easy to show, see e.g., [K])
that A is isomorphic to a direct sum of finite root systems of type A, D and E.
The lattice Q is called a root lattice if it is spanned over Z by the set A.
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REMARK 5.6. The lattice Q is an orthogonal direct sum of the lattice Z¢,
where Z is the standard lattice of rank 1 and d > 0, and the sublattice @>2 C @
spanned over Z by all « such that (a|a) > 2. Hence we have an isomorphism of

the corresponding simple vertex algebras:
VQ ~ F¢ ® VQ22 .
In this section we will study the simple vertex algebra Vg, where @ is a root

lattice. We may assume that € : Q x @ — {£1} is a 2-cocycle (i.e., (5.4.14a and ¢)
hold) such that

(5.6.1) e(a, B)e(B,a) = (—=1)@d)

(cf. (5.5.6) and note that Q is an even lattice.)

Consider the generating fields h(2) = Y., czhnz "' (R € h = C®z Q) and
To(2) =3, cz €527 "1 (a € A). Note that since Q is integral and positive definjte
we have only the following three possibilities for a pair o, 8 € A:

(@lB) 20, (alf)=-1, or a=-4.

Hence the following is a complete list of the OPE between the generating fields
(see (5.5.13), (5.5.14) and (5.5.18)):

(5.6.2a) h(2)K (w) ~ (zi‘_'hw—)y if h,h' €1,

(5.62b)  A(z)Ta(w) ~ @;P“w(—“’) ifheh, acA,

(5.6.2¢) To(z)Tg(w) ~0 if o, B € A, (a8) >0.
(5624)  To(e)la(w) ~ ela, /) 22 ifa,6€ A, (alf) = 1,
(562¢) Ta(e)l_a(w) ~ (070 | o =aalw) o\

(z —w)? z—w
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These OPE are equivalent to the following commutation relations respectively

(m,n€Z):

(5.6.32)  [hm, hl] = Mbm,—n(R|R) if b, h' € b,

(5.6.3b)  [hm,en] = (hla)enn ifheh, acA,

5.6.3¢) [e2,ef] =0 if a, 8 € A, (]B8) >0,
(5.6.3d)  [e%, €] = e(a, B)eXtE, ifa,Be A, (alf) =—1,

(5.6.3¢) [e2, 7% = (@, ) (Amyn +Mm,—n) ifa €A,
Commutation relations (5.6.3a—e) lead us to consider the vector space
(5.6.4) 8 =0 ® (BacaCeq)

with the bracket defined by

(5.6.5a) [h,h] =0 if h,heh,

(5.6.5b) [hyeo] = (hla)eq ifheh, acA,

(5.6.5¢) [ear€3] =0 if o, B € A, (alB) 20,
(5.6.5d) [ear e8] = €(a, B)ears ifa,B€A, (alB) = -1,
(5.6.5¢) [ear€—a] = €(a, —a)ex if a € A,

and with the C-valued symmetric bilinear form (.|.) : g x g — C which extends that
on f by letting

(5.6.6) (eale—a) = €la, —a), (ealeg) =0 ifa# -8, (blea) =0.

We arrive at the following theorem, which is usually referred to as the Frenkel-

Kac construction [FK].

THEOREM 5.6. (@) The space g with the bracket defined by (5.6.50—€) is a
semisimple Lie algebra with a Cartan subalgebra b and the root space decomposi-
tion (5.6.4). The form (.|.) is the non-degenerate symmetric invariant bilinear form

on g normalized by the condition (ala) =2 fora € A.
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(b) Formulas (5.6.3a—€) define an irreducible representation of the affinization
8 = Clt,t"1] @ g + CK of the pair (g,{.|.)) with central charge k = 1 and highest
weight vector |0) such that

(5.6.7) (Clt®8)[0) =0.

(c) The simple vertez algebra Vg is isomorphic to the affine vertez algebra
Vi(g).

PROOF. The fact that g is a Lie algebra follows from (5.6.3a—e) withm =n = 0.
Formulas (5.6.3a—) also define a representation of the affinization of (g, (.|.)) with
k =1 in the space Vj (cf. (2.5.4)). It follows that the form (.|.) is invariant, and it
is clearly symmetric and non-degenerate. It is also clear that g is a semi-simple Lie
algebra. Furthermore, since h(z) and I',(z) are generating fields, it follows from
Theorem 5.5a that the representation of g in Vi defined by (5.6.3a—e) is irreducible.
Formula (5.6.7) holds since e%|0) = 0 for n > 0. This completes the proof of the

theorem. O

5.7. Conformal structure for affine vertex algebras

Let g be a finite-dimensional Lie superalgebra with a supersymmetric invariant
bilinear form (.|.), and let § = C[t,t7!] ®c g + CK be the associated affinization
(see Section 2.5). Given k € C, consider the affine vertex algebra V*(g) (see Ex-
ample 4.9b) graded by the Hamiltonian H ( = ~t9;). Recall that by Example 4.9b

we have:
(5.7.1) Vac V¥ (g) = C|0) .

REMARK 5.7a. Due to Remark 4.9c¢, for any a € gg, the exponential e%® con-
verges to an automorphism of the vertex algebra V*(g). All these automorphisms

generate a group called the group of inner automorphisms of V*(g).

In the previous section we established an isomorphism of V*(g) with the root
lattice vertex algebra in the case when g is a semi-simple Lie algebra and (a|a) = 2
for all roots a. This provides V'(g) with a conformal structure (constructed in
Section 5.5).

In this section we give a construction of a conformal structure, which goes

back to Sugawara, for any (universal) affine vertex algebra in the case when g is
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an arbitrary simple (or commutative) Lie superalgebra, the bilinear form (.|.) is
non-degenerate, and k is different from a certain “critical” value. The construction
gives the same vector as in the above mentioned special case under the isomorphism
given by Theorem 5.6.

Note that for v to be a conformal vector it suffices that

(5.7.2a) Hv=2v,

dg(w) " g(w)

cw T Gowp T Prelecs

(5.7.2b) Y (v, 2)g(w) ~

where g(z) = Y, gnz"""". Indeed, letting Y (v,2) = 3, .7 Lnz"""2, by the com-
mutator formula (4.6.8), formula (5.7.2b) gives:

[L—lv g(Z)] = ag(z) I
[Losg-1] =g-1.
Since the fields g(z), g € g, are generating fields, it follows that
(5.7.3) L.=T, Lo=H.

Since all eigenvalues of H are non-negative integers and the zero eigenspace is C|0),
we see from (5.7.3) and (5.7.2a) that Lov € C|0) and L,v = 0 for n > 2. Hence v
is a conformal vector by Theorem 4.10c.

By the general OPE formula (4.6.2a) we have for g € g:

Ylew2) |, Ylond) , Yiews)
z—w (z—-w)?  (z—-w)’

g(w)Y (v, 2) ~

Using Taylor’s formula and (4.5.5), this becomes:

Y(Tgiv — gov, w) +Y(y1V’W) " a(g)

(5.7.4) g(w)Y (v, z) ~ p— G-w?  (z—w)?’

where a(g) € C is defined by gav = a(g)|0).
Comparing (5.7.2b) and (5.7.4) and using locality, we see that (5.7.2b) is equiv-

alent to the following system of equations on g € g:
(5.7.5) 9-2|0) = Tq1v — gov, g-1|0) = q1v.
Applying T to both sides of the second equation, we get

9-2|0) = Tgv.
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Substituting this in the first of the equations (5.7.5) and using (5.7.1), we arrive at

the following statement.

PROPOSITION 5.7. Let v satisfy (5.7.2a). Then v is a conformal vector if and

only if the following equations hold for all g € g:
(5.7.6) gov=0, g.1/0) =gv.

The field g(2) is primary (of conformal weight 1) with respect to Y (v, z) iff a(g) = 0.
A vector v satisfying (5.7.2a) can be written in the form:
v=2X>_at 5 |0) +d[0),

for some a?, b, d € g; A € C is a parameter introduced for convenience. Equa-

tions (5.7.6) then turn into

(5:772) AY ([g, ai]_1b% 4]0) + (~1)P@P@Igi [g. bi]_1|0)) +[g,d]-210) =0,

g-1[0) = A (Z [lg, a*], 8] _, + k(gla")b, + (—1)”(9)”(“i)k(ylbi)a"_1) 0)
(5.7.7b)

i

+ [.g’ d]_1|0) .
We also have

(5.7.8) alg) = )\kz ,a']|6) + 2k(g|d) .

Suppose now that the bilinear form (.|.) is non-degenerate and that {e‘} and
{b*} are dual bases of g, i.e., (3.5.3) holds. Let

Q=) dob €3y
i
be the Casimir operator.

LEMMA 5.7. (a) The element Q2 is annihilated by the adjoint action of g
ongRg.

(b) The element 2 := 3", a'b* € U(g) is central.

(c) If g is simple or commutative, then
(5.7.9) . Z [ai, [bi,g]] =2hYg forallgeg,

where 21" is the eigenvalue of § in the adjoint representation.
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(d) The operators §t and Q are independent of the choice of dual bases. In
particular,
(5.7.10) Z[ai, b1=0
ProOF. We have by (3.5.4) and invariance of (.|.):
[9,a] = Z (bj[[g, ai]) &= Z ([bj,g]|ai) o’
J J

lg, 6] = Z (Ig, b']l0”) & Z( 1)7*9P) ([8, g]|a?) 7
Hence
l9, 90 =3 lg, '] @b + 3 (-1 Da’ @ [g, b
= z; (167, glla®) o @b — > ([t*, glla?) o' ® ¥ = 0,

i
proving (a).

(b) follows from (a) by considering the g-module homomorphism g ® g — U(g)
given by z ® y — zy.

If g is simple, its adjoint representation is irreducible, hence, being a central
element, () acts on g as a scalar, hence (c) holds. If g is commutative, then (c)
trivially holds with AY = 0.

The independence of 2 and § of the choice of dual bases is straightforward.
Taking dual bases {b'} and {(~1)"“)a}, we deduce (5.7.10). This completes
the proof. (]

The number A is called the dual Coxzeter number of the pair (g, (.|.)), where g
is a simple Lie superalgebra and (.|.) is a non-degenerate invariant supersymmetric
bilinear form. One usually normalizes the bilinear form (.|.) by the condition that
the maximal square length of a root equals 2. Then in the Lie algebra case, A" is
always a positive integer listed, e.g., in [K2, Chapter 6]. (For the Lie superalgebra,
case see [KW2].)

Considering the g-module homomorphism g ® g — V*(g) given by z®y —
z_1y-1|0), we deduce from Lemma 5.7a that the sum in (5.7.7a) is zero. Hence

equation (5.7.7a) holds, provided that the element d is central.
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Suppose now that g is simple or commutative and that d € g is central. Then,
due to (3.5.4), (5.7.9) and (5.7.10), equation (5.7.7b) turns into the following simple

equation:
g-110) = X (2hY + 2k) g_110) ,

which holds if we assume that k # —h" and let A = (2hY + 2k)~". Hence we proved
that the element

1 P
v = m Za(_l)bz_l)w) -+ d(_2)|0)

is a conformal vector of the vertex algebra V*(g) (and of V*(g) too). In particular,
the field
1 S
Y(v,2) = PR Z a*(2)b'(2) + 0d(z)

is a Virasoro field. This field is usually referred to as the Sugawara construction [S)].

It follows from (5.7.8) that a(g) = 2k(g|d), hence all fields g(z) are primary
with respect to Y(v,2) iff d = 0.

Recall that the case of commutative g has been worked out in Section 4.9 using

Wick’s formula (see Proposition 4.9a). We state now the result in the case of

simple g.

THEOREM 5.7. Let g be a simple finite-dimensional Lie superalgebra with a
non-degenerate invariant supersymmetric bilinear form (.|.) and let {a'} and {¥*}
be dual bases of g, i.e., (b|a’) = 8;;. Then, provided that k 5 —h", where h" is
defined by (5.7.9), the vector

1 i 7
V= W—) zi:a_lb~1|0)

is a conformal vector of the vertez algebra V*(g) (and V*(g)) with central charge

__ksdimg

(5.7.11) =

All fields g(z), g € g, are primary with respect to Y (v, 2) of conformal weight 1.
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PrROOF. It remains to calculate the central charge c of the Virasoro field Y (v, z).

We have for g € g:
20k + h)gov = 3 7lg,a18%1[0) = kD ([9, o']16") [0)
=k (glle’,6) 0) =0

by (5.7.10). Note that g,v = 0 if n > 2 for an obvious reason. Thus, recalling (5.7.6)

we have for g € g:
(5.7.12) gov=0 forn>20rn=0, giv = g_1|0) .

Next, we have:

Ly = 2(k+hV) Z (ngl a}, —n+2+nz>%( 1)ple’ Vo n+2an) ]
Using (5.7.12), we obtain:
2(k+ ") Lo = > (-1)P@blalv = > (-1)**Vbial,|0).
Hence

2(k +h¥) Loy = kY (1% (b'|a*) [0) = ksdim g|0) ,

%

proving (5.7.11). O

REMARK 5.7b. A more straightforward (but somewhat less elegant) way to

prove Theorem 5.7 is just to apply the non-abelian Wick formula (4.9.12)(cf.(4.7.8)).

REMARK 5.7c. Let g be a finite-dimensional Lie superalgebra with a non-
degenerate invariant supersymmetric bilinear form (.|.), and suppose that g =
@7 o9 is an (orthogonal) direct sum of a commutative subalgebra g° and simple

subalgebras g°, ¢ > 0. Then
VE@) = ®F V(9Y),

where k = (ko,k1,...). Provided that k; # —h; (note that Ay = 0) the vertex
algebra V*(g) is conformal with the conformal vector

n
1/=E v,

=0
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where 1%, the conformal vector of V*: (5‘) given by the Sugawara construction, is

identified with [0) ® --- ®1* ® --- ® |0).

Due to Lemma 5.7b, the conformal vector v is fixed by the group of inner
automorphisms G of the vertex algebra V*(g). Hence for any subgroup I of G the
fixed point set subalgebra V*(g)! contains v, hence is a conformal vertex algebra

of the same rank cy.

REMARK 5.7d. We constructed in Example 4.9b an operator T* on V*(g) for
any k € C. It is easy to see that T* = L; (if k # —h"). Hence T* satisfies (4.9.10)
with H = Lo for k # —h", hence for all k. Thus V*(g) is M&bius conformal even
at the critical value k = —h" (but is not conformal).

We turn now to the discussion of conformal structure for coset models. Let g be
a Lie superalgebra as in Remark 5.7c and let h be a subalgebra of g such that (.|.)|y
is non-degenerate and ) is too a direct sum of simple and commutative subalgebras.
Let v; and w, be the elements of V*(g) given by the Sugawara construction, so that
Y(vg,2) =3, L82 " 2and Y (wy,2) =Y LY27""2 are Virasoro fields. The fields
h(z) with k € b generate a vertex subalgebra of V*(g) isomorphic to V*'(h) and we
denote by C(k, g, h) its centralizer (see Remark 4.6). In other words (by (4.6.7))

C(k,g,b) = {a € V*(g)| hn(a) =0 forallh€bhandneZ,} .

A conformal vector for the vertex algebra C(k, g,5) can be constructed as follows.
This is known as the Goddard-Kent-Olive construction [GKQO]. (Some further
applications of this construction in representation theory may be found in [KW1]

and [KR].)
COROLLARY 5.7. The vector
V=vyy -1

is a conformal vector of the vertez algebra C(k,g,h) with central charge equal the

difference between central charges of vy and vy.

Proor. By Theorem 5.7 we have for all A € b:

Oh(w) + h{w)

Y (vg, 2)h(w) ~ z—w  (z-w)?

~ Y (vy, 2)h(w).
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1t follows that
(5.7.13) Y(»,2)h(w)~0  forall h€h.
Hence v € C(k,g,h). Let Y(v,2) =3, L,27 "2
Next, by the construction, we see that L? , annihilates C(k, g, ), hence
(5.7.14) Loy=IL%, =T on C(k,g, h).
Finally, Y (v, z) is a Virasoro field since both Y (4, 2) and Y (v, 2) are Virasoro
fields (by Theorem 5.7). Indeed, we have, using (5.7.13) twice:
Y({,2)Y(v,w) ~ (Y (5, 2) = Y (4,2)) Y (v, 0)
~ Y (v, 2)Y (v, w)
~ Y(ng Z)Y(Vm w) - Y(Vﬂa Z)Y(Vba w)
~ Y(Vﬂ’ Z)Y(VG7 w) - (Y(Va z) + Y(Uba z)) Y(Vba w)
~ Y(Vﬂa Z)Y(Vﬂa w) — Y(Vba Z)Y(V"h w).
O
REMARK 5.7e. The vacuum subalgebra Vac C(k, g,h) coincides with the zero
eigenspace of Ly and is often larger than C|0). For example, if g is a simple
Lie algebra and b is its conformal subalgebra (see e.g., [K2, Chapter 13]), then
VacC(1,g,h) = C(1,g,bh) is almost always larger than |0). Another example is
C(k, 8,b) where k is a positive integer, g is a simply laced simple Lie algebra and b
is its Cartan subalgebra; then the vacuum subalgebra Vac C(k, g, b) is isomorphic

to the group algebra of the center of the simply connected Lie group with the Lie
algebra, g.

5.8. Superconformal vertex algebras

The classification of all simple vertex algebras is certainly a hopeless problem
as it includes the classification of all non-degenerate integral lattices. Some people

impose the condition that a simple vertex algebra V is graded by %Z+:
(5.8.1) V =,e12, VP, where VI = C|0).

This excludes lattice vertex algebras associated to indefinite lattices, which is very

unfortunate since the vertex algebras associated to Lorentzian lattices provide
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some of the most spectacular applications of vertex algebras found by Borcherds
[B2], [B3]. But even this restriction includes lattice vertex algebras associated to
positive definite integral lattices, and the classification of the latter is still a hopeless
problem.

Let V be a simple graded vertex algebra with a gradation (5.8.1). If V is
strongly generated by its fields of conformal weight %, then, due to Theorem 3.6, V
is isomorphic to the simple free fermionic vertex algebra F*(A) (see Section 4.7).
Moreover, the same Theorem 3.6 implies that if a vertex algebra V contains F*(A)
as a subalgebra, then V~F*(A)®Cy (F*(A)). Furthermore, the fields of conformal
weight 1 generate an affine vertex subalgebra. (cf. Sections 2.6 and 4.7). The simplest
result concerning the next case, that of conformal weight %, is the following (cf.

Example 4.10). -

LEMMA 5.8. Let V be a simple conformal vertex algebra strongly generated by
a non free odd field of conformal weight % Then 'V is isomorphic to the simple con-
formal vertex algebra V°(NS) where NS is a Lie superalgebra spanned by mutually
local formal distributions G(z), L(z) = Y (v, z) and central element C satisfying the
following OPE:
c 2L(w)
(z-w)p  z-w’

3G(w) | 9G(w)
(z~w)2  z-w

3C 2L(w) AL (w)
(z—w)*  (z—~w)? + z—w’

(5.8.2a) G(2)G(w) ~

(5.8.2b) L(2)G(w) ~

(5.8.2¢) L(z)L(w) ~

PrROOF. By the assumptions of the proposition we have
vO=clo), v =vD =0, VI =Cr, v®=Cu.

Hence L, = %6,,‘07- for n > 0, i.e., G(2) := Y(1,2) is a primary field of conformal
dimension %, which is equivalent to (5.8.2b). The most general possibility for
G(2)G(w) is:

200 a(w) BL(w)
(z-w)® (z-w)? z-w

G(2)G(w) ~ , a,pBeC.

In the same way as in the proof of Theorem 2.6a, we show, using locality, that

a(w) = 0. Since G(z) is not a free field, B # 0 and we may rescale 7 to make 8 = 2.



5.8. SUPERCONFORMAL VERTEX ALGEBRAS 123

3
OPE (5.8.2a~c) are equivalent to the commutation relations (by (2.6.2a)):

It remains to show that o = . Let G(2) = Yoneisz Gnz"""%2 Then the

(5.8.33) [Grmy Gl = 2Lmsm + é (m2 - i) SminC
n
(5.8.3b) [Gom, L] = (m - 5) Gmin
3 __
(5.8.3¢) [Lamy Ln] = (M — 7) Lynym + %5,",_,,0.

We have established all these relations except for identifying the coefficient % in
(5.8.3a) with a. This follows from the Jacobi identity for the elements G, G,
Lomn. 0

The Lie superalgebra defined by commutation relations (5.8.3a~c) (with C be-
ing a central element) is called the Neveu-Schwarz algebra (NS) or the N = 1
superconformal Lie algebra [NS].

DEFINITION 5.8. An odd vector 7 of a vertex algebra V is called a N = 1
superconformal vector if the field G(z) = Y(7,2) satisfies (5.8.2a and b) with
L(z) = 3, ez Lnz~""2 being a Virasoro field such that L_;(= G?,) = T and

2

Ly is diagonalizable.
The following proposition is proved in the same way as Theorem 4.10.

PROPOSITION 5.8. An odd vector T of a vertex algebra V is a N = 1 supercon-
formal vector iff for Y(r,2) =3, 14z Gnz ™% the following properties hold:
(i) G_y7=2v, where Y (v,2) = 3., Ln2"""? is such that L_, = T, Lo7 = 3,
Ly is diagonalizable,
(i) Gg7 = 2c|0) for some c € C,
(iii) GxT =0 for k> 3.

In this case v is a conformal vector. 0

A vertex algebra V is called N = 1 superconformal if it is endowed with a
superconformal vector. (Then V is a conformal vertex algebra.)

A large class of N = 1 superconformal vertex algebras is provided by the su-
peraffine vertex algebras V*(gsyper). Namely, the following theorem can be proved
in the same way as Theorem 5.7, or simply by making use of the non-commutative

Wick formula (4.9.12). Therefore we omit its proof.
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THEOREM 5.8. Let g be a simple or commutative finite-dimensional Lie super-
algebra with a non-degenerate invariant supersymmetric bilinear form (.|.), and let

{a’} and {b*} be dual bases of g. Then, provided that 'k # —hY, the vector

1 R 2 i N 1 e
T= T Za’_lb‘_% +3 Z (la', &’lla7) b2, 7 407, ) 10)
i i,3,7
is a N = 1 superconformal vector of the vertez algebra V*(gsuper) (and vk (Bsuper) ),

the corresponding conformal vector being

1 1 i i i i 1 AR TS T Y|
v (g2 (ahabhs +alaabinge) +3 3 (10, llan) By 3, ) 10)
i LT

with central charge

- 1 .
¢k =cr+ —sdimg.
2 O
This construction is usually referred to in physics literature as the Kac-Todorov

model [KT1].

EXAMPLE 5.8a. Let V be the vertex algebra generated by a free bosonic field
a(z) = 3, 7 0mz ™! and a free (odd) fermionic field ¢(z) = Yonctsz Onz""
which commute:

aRaw) ~ s, PR ~ I a(@e(w) ~0.

Then V is a (simple) vertex algebra with a family of N = 1 superconformal vectors
r= (a_lcp__; +A¢_%) ), AeC,
the corresponding conformal vector being

1
Vo= i (azl + ‘P-%‘P—% + )\Q-Q) |0)

with central charge g —3A2, This is proved by a direct calculation using Wick’s
theorem. The case A = 0 (which is Theorem 5.8 for the 1-dimensional Lie algebra g)
goes back to Neveu and Schwarz [NS].

ExaMmpLE 5.8b. The Neveu-Schwarz algebra NS (defined by (5.8.3a~c)) is span-
ned by formal distributions L(z) = 3,7 Ln2™"7%, G(z) = Zne§+z G,z "3/
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and C. The derivation T = adL_, satisfies (4.7.1), and H = adL is a Hamilton-
ian with respect to which L(z), G(z) and C have conformal weights 2, 3/2, and 0

respectively. We have:

NS =CC+ > (CLn+CG,), T(NS;)= > (CLn+CGy).
mn>-1 mn2-1
Hence (due to Theorem 4.7) the associated universal vertex algebras V(N S) are
parameterized by a complex number ¢ (= A\(C)). These vertex algebras (and their
quotients) are superconformal with the N = 1 superconformal vector 7 = G'_3/2|0)
and conformal vector v = L_4|0) with central charge c. The vertex algebra V(N S)
has a unique simple quotient V¢(NS).

The Neveu-Schwarz algebra, is the simplest among the superconformal Lie al-
gebras. Further examples were constructed in [A], [K1], [KL1], [CK]. We define
a superconformal Lie algebra as a Lie superalgebra g for which the following three

properties hold:

(a) gis spanned by a finite family of pairwise local formal distributions {a®(2)};

(b) g is simple in the sense that no submodule of the C[0]-module " C[8]a*(2)
spans a nontrivial ideal of g;

(c) one of the members of the family is the Virasoro formal distribution L(z2)
satisfying the properties:

[Lo1,a%(2)] = 0a%(2),  [Lo,a®(2)] = (20 + Aa)a®(z), A €C.

It follows easily from a very difficult theorem of Mathieu [M] that the only
simple graded Lie algebras spanned by a finite number of pairwise local formal
distributions are the Virasoro algebra and the affine Kac-Moody algebras modulo
their centers. It seems plausible that the condition that the Lie algebra should be
graded is superfluous, i.e. any Lie algebra satisfying conditions 1 and 2 is either
Virasoro or an affine Kac-Moody algebra modulo the center; cf. Conjecture 2.7. A
conjectural list of all superconformal Lie algebras was given in [KL2]. However, it
has been discovered recently that one should add to this list a new superconformal
Lie algebra, denoted by CKg, which is spanned by 16 even and 16 odd pairwise
local formal distributions [CK].
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The simplest after the Neveu-Schwarz algebra is the celebrated N = 2 super-
conformal Lie algebra. It is a graded superalgebra spanned by a central element C,
a Virasoro formal distribution L(z), an even formal distribution J(z) primary with
respect to L(z) of conformal weight 1, and two odd primary with respect to L(z)
formal distributions G*(z) and G~ (z) of conformal weight 3/2. The remaining

OPE are as follows:

(5.8.48) J(2)J(w) ~ (:{—61/3—1)3 CE)GEw) ~0, J(2)G (w) ~ i%i:(%),
C/3 J{(w) L(w) + 38J(w)

(5.8.4b) GH(2)G™(w) ~

(z—w)®  (z—w)? z—w

We denote this superalgebra by N2. Note that the superalgebra N2 contains the
Neveu-Schwarz subalgebra spanned by C, L(z) and G(z) = G~(2) + G*(z), and
another one spanned by C, L(z) and G(z) = i(G*(2) — G~ (2)).

A vertex algebra is called N = 2 superconformal if it has two odd vectors 7+
such that the fields G*(z) = Y (%, 2) satisfy the OPE of N = 2 superconformal
algebra with L_, (= [G*,,G,]) =T, and Jo and Ly are diagonizable.

Of course one constnicts tl:e N = 2 superconformal vertex algebras V¢(N2) in

the same way as in Example 5.8b. A more explicit example is the following.

EXAMPLE 5.8c. Let Z(3) be the lattice of rank 1 with the bilinear form (m/|n) =
3mn. Then the simple lattice vertex algebra Vz(s) is isomorphic to the N = 2
superconformal vertex algebra V!(N2). Indeed, the fields G*(z) = —\}gl"i(z),
J(z) = }1(2), L(z) = } : 1(2)? : strongly generate the vertex algebra Vz(3) and
obey the OPE of N2 with ¢ = 1. This follows from the general OPE formulas
(5.5.13), (5.5.14) and (5.5.18), and Proposition 5.5.

ExAMPLE 5.8d. (cf. [0S]) Let V be the vertex algebra generated by a pair
of free charged bosonic fields a*(z) = > onez aXz~"~! and a pair of free charged
(odd) fermionic fields y*(z) =3, . 14z YE277"1/2 such that:

1 1
o (2o (w) ~ s W) ~ S

OPE for all other pairs of fields ~ 0. Then V is a (simple) vertex algebra with a

family of N = 2 superconformal vectors

r = (atut, £ 305,)10),
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the vector corresponding to the current J(z) being
i = (¥292y — ety —daTi ) 0),
and the corresponding conformal vector being
v= (aflazl + %1121'3/27/’:1/2 + %¢:3/2¢t1/2 - ‘g‘atz + %azz) [0) »
with central charge 3 + 6A2%.

Kazama and Suzuki [KS] have found necessary and sufficient condition for a
coset model of a N = 1 superconformal vertex algebra V*(gsuper) to admit a N =2
superconformal vector.

Another point of view at N = 1 superconformal vertex algebra V is as follows.

Introduce superfields:
(5.8.5) Y(a,2,6) =Y(a,2) +€Y(C_ya,2),

where ¢ is an odd indeterminate, £2 = 0. Using that, by (4.9.9),

(5.8.6) [G_% ,Y(a,2)] = Y(G_%a, z),
we obtain
(5.8.7) [G_3,¥(a,2,6)] = (& +£0.)Y (a,2,€)..

This leads us to a N = 1 vertex superalgebra V (generalizing that of a N = 1 su-
perconformal vertex algebra) defined by a vector [0) € V, odd operator G (= G_%)
on V, and superfields )s’(a.,z, &) (a € V) such that the “odd translation covariance”
axiom (5.8.7) holds, the usual locality axiom holds and the obvious modification of

vacuum axioms hold:
(5.8.8) Gy =0, Y(0),28=I, V(a26)0)|s0e0=a.

Most of the formulas and results for vertex algebras remain valid for N = 1 ver-
tex superalgebras if one replaces Y (a, 2) by lsf(a.,z,f), including (4.5.3-4.5.5) and
Borcherds OPE formula (and identity). For example, the OPE formula reads:

(z —w)n+

V(a.20Y b w,6)~ Y

n€Zy

It is also easy to see that N = 1 vertex superalgebra is precisely a vertex algebra

with an odd operator G_ such that G? , =T and (5.8.6) holds. (Then superfields
2
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are defined by (5.8.5).) This latter definition generalizes to an arbitrary N = n.
A N = n vertez superalgebra is a vertex algebra with n odd operators G satisfying

forali#,7 =1,...,n the following two conditions:
(5.8.9) [GD, Y (a,2)] = Y(GWa,2),
(5.8.10) : [G®,GV)]| = 26,T.

The N = 2 superconformal vertex algebra is N = 2 vertex superalgebra with
GV =G, +GZ,,GY =i(Gr, -GZ,).
-3 3 -3 3

EXAMPLE 5.8¢. V*(Gsuper) is @ N = 1 vertex superalgebra (for all k) generated
by the fields

a(z,£) = Z:(t"Qa.)z"""1 + Z(t“a)z'"_lf, a€g.

The operator G is induced by the derivation 89 —08; of Geuper (since (9p —08;)a(z,&)
= (¢ + £8;)a(2,£)). This operator coincides with G_ given by Theorem 5.8 for
k#—hY.
For a N = n vertex superalgebra the superfields are constructed in the same
way as for N = 1 (where the §; are anticommuting indeterminates):
Y(azb,....6)= 3. Y(@G® . Gia2)g, - &, .

0<r<n
1<ig < <ip<n

Then (5.8.7) holds for each £; (= the “odd translation covariance” axiom) and the
usual locality axiom and the obvious modification of the vacuum axioms (5.8.8)
hold as well. It is easy to see that these axioms give an equivalent definition of
a N = n vertex superalgebra. Example 5.8e generalizes to an arbitrary n in an

obvious way.

REMARK 5.8. Condition (5.8.10) puts quite stringent constraints on the num-
ber of generating fields. For example, let g be a superconformal Lie algebra spanned
by the coefficients of a finitely generated C[d]-module with a basis consisting of pair-
wise local formal distributions a®(z). Suppose that a®(2)()a"(2) = L(z) + 8p(2)
for some indices 3,y and some formal distribution ¢(z) (cf. (5.8.10)). Then one has:

(5.8.11) #(even a®) = #(odd a%).



5.9. ON CLASSIFICATION OF CONFORMAL SUPERALGEBRAS 129

To prove this relation, consider the C[8]-module A spanned by the a*(z). Then
A := A/DAis a Lie superalgebra with respect to the 0-th product and A is a left
module over A defined by this product (see Section 2.3) such that:

(5.8.12) L-a® =0a*.

But L = afo)aﬁ in A, hence its supertrace str L must be zero. On the other hand,
str L = (#(even a®) — #(odd a*))d by (5.8.12). A special case of (5.8.11) was
obtained in [RS] as a result of a lengthy calculation.

5.9. On classification of conformal superalgebras

As we have seen in the previous section, the superconformal Lie algebras give
rise to some of the most important vertex algebras. On the other hand, according
to Section 2.7, the classification of Lie superalgebras of formal distributions reduces
to the classification of conformal superalgebras. Here we shall discuss briefly the
latter problem.

First, we recall the two examples that arose in the previous sections (disregard-
ing the central terms).

The simplest is the Neveu-Schwarz (or N = 1) conformal superalgebra R =
C[9|L + C[3]G, where the generator L is even, the generator  is odd, and all

non-trivial products between them are as follows:

(59.1a)  LgyL = 0L, Liy)L = 2L,

(591b)  LeyG = 3G, GoyL = 386, LyG = Gyl = G, GG =2L.

Formula (5.9.1a) shows that the even subalgebra C[d]L is nothing else but the
Virasoro conformal algebra. The central extension of the Neveu-Schwarz conformal

superalgebra (cf. (5.8.3)) is given by
2 1
(592) Ct2(G, G) = 561 Ct3(L, L) = EC-

Here and further we are writing only non-zero values of the cocycle on generators.
It is easy to snow that any 2-cocycle is equivalent to (5.9.2).
The following definition (which is a counterpart of Definition 2.6, see also Sec-

tion 4.10) facilitates the description and classification of conformal superalgebras.
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DEFINITION 5.9. Let R be a conformal superalgebra and let L be an even
element of R. An element a € R is called an eigenvector with respect to L of
conformal weight A € C if

(5.9.3) Loya=0a, Lgja=Aa.

An eigenvector a with respect to L is called primary if Li;mya = 0 for m > 1. The
conformal superalgebra R is called graded by L if it has a basis over C cousisting

of eigenvectors with respect to L.

Note that, by (C2), we have for a primary eigenvector a of conformal weight A
with respect to L:

(5.9.4) eyl =(A—~-1)8a, ag)L=A7Aa, amL=0form2>1.

Note also the following simple properties of the conformal weight (cf. Corol-
lary 2.6).

LEMMA 5.9. If elements a and a’ are eigenvectors with respect to L of confor-
mal weight A and A’, then:

(a) Oa is an eigenvector of conformal weight A + 1,

(b) an)a’ is an eigenvector of conformal weight A + A’ —n—1.

ProOF. (a) follows from (C1) and (2.7.2). (b) follows from (C3) for m = 0
andm=1,ne€Z, anda=1L,b=a, c=2a’, and from (Cl) . |

The second example is the N = 2 conformal superalgebra R = Ry & R; where
both Ry and Rj are free C[8]-modules of rank 2:

Ry =CPIL®C[d)J, R;=C[|G* & C[9|G~.

The element L is a Virasoro element (i.e.(2.7.9)) holds), elements J and G* are
primary eigenvectors with respect to L of conformal weight 1 and 3/2, and all the

remaining non-trivial products (up to changing the order) are as follows:

- 1 -
(5.9.5) JoG* =+G*, GLG =L+ 395, GG =J.

The N = 2 conformal superalgebra has a unique (up to equivalence) 2-cocycle
given by

1 1
(5.9.6) @) =36 @@ G) =30 all,L)=je.
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The next most important example is the following N = 4 conformal superalge-
bra. It is convenient to use for its description the basis of sly(C) consisting of Pauli

matrices 0° = (03 )ape(1,2) § = 1,2,3:

The even part of the N = 4 conformal superalgebra is Rg = C[@]LQB( ;1 C[o|J ’) ,
where L is a Virasoro element, the J* are primary eigenvectors with respect to L
of conformal weight 1 and @3:1 C[]J* is the current conformal algebra, associated
to si2(C) with the basis J° = J0°. The odd part too is a free C[d]-module of rank
4: Ry = C[9]|G" + C[9]G? + C[8]G" + C[8)G?, all four elements G, G?, (!, and
G? being primary eigenvectors with respect to L of conformal weight 3/2. The

remaining non-zero (up to the order) non-trivial products are as follows:

a 1 b ~a 1 ~b
(5.9:73’) ESO)G = EZb:Usz 9 J(SO)G = —‘5 ;aiuG )

(5.9.7b) G =285l +2) 03,87°, GGt =4) a0
s s
The unique, up to equivalence, 2-cocycle is given by
s gt c s 7t a b 2 ¢
(5.9.8) a(J5,JY) = gtrJ J, G, G%) = §5ab6, a3z(L, L) = 3
Now we can state the main theorem of this section.

THEOREM 5.9. Let R be a graded by an element L simple conformal superal-
gebra of finite rank over C[0]. Suppose that in addition the following conditions
hold:

(i) L is a Virasoro element,

(ii) primary eigenvectors of conformal weight 1 along with L generate the C[0]-
module Rg,

(iii) primary eigenvectors of conformal weight 3/2 generate the C[d]-module R;.

Then R is isomorphic to one of the following four conformal superalgebras: Vira-

soro, Neveu-Schwarz, N = 2, and N = 4.
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ProOF. Let g C Rj (resp. V C Ry) denote the subspace over C of all pri-
mary eigenvectors of conformal weight 1 (resp. 3/2). Then, due to (ii), (iii), and

Proposition 2.7, we have:
Rs=C[OlL® (Cl0|®cg), Ri=Cld]ecV.

Due to Lemma 5.9, g is a Lie algebra with respect to 0-th product and we have a

representation 7 of g on V defined by

m(g)v =gwyv;, 9€g9, VEV.

The remaining non-trivial products, due to Lemma 5.9, have the following form

(u,v e V):

u(oyv 2(u,v)L + Bp(u ® v),

uyv = P(u®v),

where (u,v) is a symmetric C-valued bilinear form on V, invariant with respect
to the representation 7 of g on V, and ¢ and 9 are homomorphisms of g-modules
V®V —adg.

Due to (C3) we have for u,v € V:

L(2)(U(0)’U) = (L(O)u)(z)v + 2(L(1)u)(1)v = u()v.

It follows that

(5.9.9) b=2.

Note that the bilinear form (, ) on V is non-degenerate (otherwise C[d] ®¢
(g + Ker(, )) is an ideal of R) and that the representation 7 of g on V is faithful
(its kernel is an ideal of R).

In the case Ry =0, the conformal algebra R = Rj is the Virasoro conformal
algebra since C[] ®¢ g is an ideal of R in this case.

Let now R; # 0 and consider the R/0R-module R given by 0-th product.
Then, due to the non-degeneracy of the bilinear form (.,.) on V, we may apply the
argument of Remark 5.8 to get

(5.9.10) dimg =dimV —1.
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Let u € V be such that (u,u) = 1, and let u* be the orthogonal complement to Cu
in V. Then in the basis L, g, u, ut of R the matrix of the element u (viewed as an

element of R/8R acting on R by 0-th product) looks as follows:

00 2 0

00 ad A0
9/2 v 0 0

0 v 00

where A and v are dimg x dim g matrices over C. Since R is a R/3R-module,
we deduce that the square of this matrix is 81, where I is the identity matrix
(cf.Remark 5.8). It follows that & = 0, v = 0, AV = Igimy. In particular, the

matrix v is invertible, which implies that
(5.9.11) dimn(gju = dimg.

Let G be the connected simply connected Lie group with the Lie algebra g. Due to
(5.9.10) and (5.9.11) the group G acts transitively on the quadric (u,u) =1 with a
discrete stabilizer. If dim V = 1 (resp. = 2), then, by (5.9.10), dimg = 0 (resp. = 1)
and it is easy to see, using also (5.9.9), that R is isomorphic to the Neveu-Schwarz
(resp. N = 2) conformal superalgebra.

Let now N =dimV > 2. Then the quadric (u,u) =1 in V, being homeomor-
phic to the direct product of the N — 1-dimensional sphere and RY !, is simply
connected and hence is homeomorphic to G. But this is possible only for N = 4
in which case g ~ sl3(C). Since 7 is an orthogonal 4-dimensional representation of
sl2(C) which has a 3-dimensional orbit, the only possibility for = is the direct sum
of two 2-dimensional irreducible representations. It is easy to conclude now that in

this case R is the N = 4 conformal superalgebra. |

REMARK 5.9. One can prove by a similar method, using the classification
of complex Lie groups acting transitively on quadrics, the following stronger re-
sult [K3]:

Suppose that condition (iii) of Theorem 5.9 is replaced by a weaker condition:

(iii') primary eigenvectors of conformal weights 3/2 and 1/2 generate the C[d]-
module Rj.
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Then the complete list is obtained by adding to the list of Theorem 5.9 the well-
known N = 3 conformal superalgebra of rank 8 over C[d] (associated to the Lie
superalgebra denoted in [KL1] by K(3;0)), the less known conformal superalgebra
of rank 12 over €[] associated to the Lie superalgebra denoted in [KL1] by W(2)
and the new conformal superalgebra C K¢ of rank 32 over C[d] constructed in [CK].
(The algebras K(3;0) and W(2) admit a unique up to equivalence non-trivial central
extension, and the algebra C K¢ admits no non-trivial central extensions.)

Under stronger assumptions, which exclude W(2) and CKg, a similar result
was stated in [RS], but the proof there is not quite correct.

M. Wakimoto and myself have shown recently that the only simple conformal
superalgebra R with rank Ry =rank Rj = 1 is the Neveu-Schwarz algebra.

CONJECTURE 5.9. Any simple conformal superalgebra of finite rank is isomor-
phic either to the current conformal superalgebra associated to a simple finite-
dimensional Lie superalgebra (classified in [K1]), or to one of the following con-
formal superalgebras (n € Zy): W(n), §'(n + 1;1), K(n;0) (see [KL1]), CKs
(see [CK]).
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L)
Corrections to the book “Vertex algebras for beginners”, second

edition, by Victor Kac.

p. 39, £. 37; p. 49, £. 117; p. 56, £. 107: should be n > 0 instead of ng0
p. 50, £. 5: should be N > 0 instead of Ng0

p. 56, £. 37 reads: Now, choose a system of generators {a®},c; of R viewed as

a C[0]—
p. 57, £. 1: should be {aflacI,j > n}
p. 67. £. 8] reads: = E:‘:II(_l)i+lai)\,.’y)‘hm’5‘1.’_"‘)‘"“((11, cea iy an4)

p- 81: before formula (3.1.1) a line is missing: Note that in the expansion

(cf. (2.2.5))

p. 100, £. 13: should be (y|y) instead of (alb)

p. 102, £. 2: should be Lp(w)Ainstead of p(z)

p. 104, £. 5: V should be replaced by U

p. 118, £. 5: should be (byk44)c) instead of bri e

p- 118, £. 6: should be (a(mj)c) instead of agmyj)c
p. 191, £. 27: should be 1 — v instead of 1 + ad3v

pp. 130-131: Theorem 4.11 and Proposition 4.11 are false. A corrected version

of Section 4.11 is given below.

4.11. Field algebras

Field algebras generalize vertex algebras in the same way as unital associative
algebras generalize unital commutative associative algebras.

A field algebra V is defined by the same data as a vertex algebra, but weaker
axioms (cf. Proposition 4.8(b)): '



(partial vacuum): Y (]0), z) = Iy, a(-1y|0) = a,
(n-th product): Y(a(,b, 2) = Y(a, 2)(n)Y (b, 2), n € Z.

Note that the n-th product axiom is nothing else but Borcherds identity in
the form (4.8.1) for F' = (z—w)™. Asin the proof of Theorem 4.8, it follows that
(4.8.1) . holds for F' = 2™ with m € Z,. Hence the n-th product axiom implies
(4.6.4) for m € Z4, and in particular, the axiom (C3) of conformal algebra.

As in the case of vertex algebra, the axioms of a field algebra imply:

(4.11.1) Y(a,2)|0);=0 =a, Y(|0),2)=1Iv,

(4.11.2) Y(Ta,z) = 8Y(a,z) = [T,Y(a, 2)],

where T' € End V is defined by Ta = a(_3)|0). The n-th product axiom for

n >> 0 implies weak locality:
(4.11.3) Res,(z — w)V[Y(a,2), Y (b, w)] =0 for N >> 0.

Note that weak locality of fields a(z) and b(z) means that a(z)n)b(z) = 0 for
n > N, some N. (Unlike the usual locality, this is not a symmetric property.)
Then, clearly, (za(2))(n)b(2) = 0 for n > N. Using this remark, one can extend
the proof of Dong’s lemma. to the weakly local case (assuming that all ordered

pairs are weakly local).

ExAMPLE 4.11. Recall that any two local fields satisfy the skewsymmetry
relation (3.3.6). This, however, fails for weakly local fields. In order to construct
a counterexample, consider the free bosonic field a(2) = 37, czonz™™ ! (cf.

Example 3.5), and let 8(2) = 3", o n 'anz™™ Then we have:

[(2), B(w)] = b,z (z —w) ™"

Hence for j € Z we have:

a(2)(;)B(2) =0, B(2)(5a(z) = b



Therefore both pairs («, 8) and (8,c) are weakly local, but (3.3.6) fails for
a=0o,b=Fn=0.

Recall that the —1st product axiom means:
(4.11.4) Y(a-1yb,2) = Y(a,2)Y(b,2): .

Replacing a by T"a and using (4.11.2), we see that (4.11.4) implies the n-th
product axiom for n < 0.
Multiplying both sides of the n-th product axiom by (—w)™""1 and taking

summation over n € Z, we obtain its equivalent form in the domain |z| > |w|:

(4.11.5) Y (Y (a,2)b, ~w)e =Y (a, z —w)Y (b, ~w)c
—p(a, b)Y (b,~w) Y 85,6(z — w) Res , )Y (g, z)e.

320
This is immediate by the following special case of Taylor’s formula in the domain

|2} > fwl:

tueb((w+7) —2) = > 2D8L6(z — w).

320
Formula (4.11.5) implies the associativity property in the domain |z| > |w]|:

(4.11.6)(z — w)Y (Y (a, 2)b, ~w)c = (z — w)NY (a, z — w)Y (b, —w)c for N >0

As in Section 1.4, it is easy to show that all holomorphic field algebras are
obtained by taking a unital associative algebra V and its derivation T, and

letting
Y(a,2)b = eZT(a)b, a,beV.

The general linear field algebra gZf (U) defined in Section 3.2 is not a field
algebra since the field property

(4.11.7) a(n)b =0 for n>0

fails in general. However, if we take a collection of mutually weakly local fields

{a*(2)} C g£f(U), they generate a linear field algebra which is a field algebra.



The n-th product axiom for n > 0 is implied by (3.3.7). Next, it is immediate to
check (4.11.1) and (4.11.2). Weak locality is proved in the same way as Propo-
sition 3.2. The n-th product axiom for n < 0 follows from (4.11.4) as explained
above. Finally, the —1st product axiom is checked by a direct calculation.

We have the following field algebra analogs of the uniqueness and existence
theorems (obtained jointly with Bojko Bakalov).

THEOREM 4.11. (a) Let V be a field algebra. For each field Y (a,2) define
the “opposite” field X (a, z) by the formula (cf. (4.2.1)):

(4.11.8) X(a, 2)b = p(a,b)e*TY (b, —2)a.

Let B(z) be a field which is mutually local with all fields X (a,z),a € V, on any

veV,ie,
(z —w)N[B(2), X (a, 2)]Jv =0 for N 0.

Suppose that (4.4.1) holds for some b € V. Then B(z) =Y (b, z).

(b) Let V be a wector superspace, let |0) be an even vector and T an
even endomorphism of V. Let {a®(2)}aca and {b%(2)ger (A, B index sets) be
two collections of fields such that each of them satisfies conditions (i)-(v) of
Theorem 4.5 except that in (iii) “local” is replaced by “weakly local”. Suppose,
in addition, that all pairs (a®(2),b°(2)) are local on any v € V. Then formula
(4.5.1) defines a unique structure of a field algebra on V such that |0) is the
vacuum vector, T' is the infinitesimal translation operator and (4.5.2) holds. The
same conclusion holds if the family {a®(z)} is replaced by the family {b?(2)} and
the fields Y are replaced by the fields X. The two field algebra structures on V'
are related by ({.11.8).

Proof: 1t is similar to that of Theorems 4.4 and 4.5 using the observation
that the associativity property (4.11.6) is equivalent to the locality of the pair
(Y(a,2),X(c,2))onbeV. 0O

Taking in this theorem all fields of a field algebra, we obtain the following

corollary.



COROLLARY 4.11. (a) Vacuum and translation covariance axioms along with
weak locality (4.11.3) and associativity (4.11.6) form an equivalent system of
axioms of a field algebra.

(b) If (V,]0),T.Y(a,z2)) is a field algebra, then (V;}0),T, X(a, z)), where
X (a, z) are defined by (4.11.8), is a field algebra as well.

REMARK 4.11a. It follows from the above discussion that a field algebra with
n-th products for n € Z4 and @ = T satisfles all axioms of a conformal algebra,
except the skewsymmetry axiom (C2), which may fail in view of Example 4.11.

REMARK 4.11b. It follows from the proof of Proposition 3.3(b) that two
weakly local fields a(z) and b(z) for which the skewsymmetry property (3.3.6)
holds, are local. Hence a field algebra satisfying the skewsymmetry property
(4.2.2) is a vertex algebra. This follows also from Corollary 4.11(a).



