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Preface

Backlund transformations have emerged over the past decade as an
important tool in the study of a wide range of nonlinear partial differential
equations in mathematical physics. A need has emerged for a single text that
presents a compendium of the diverse applications of Backlund transfor-
mations and provides an acceptable underlying theory for the subject.
This monograph attempts to meet that need.

The main significance of Backlund transformations in connection with
nonlinear equations is that typically they have associated nonlinear super-
position principles whereby infinite sequences of solutions to nonlinear
equations may be generated by purely algebraic procedures. Multi-soliton
solutions of many important nonlinear evolution equations have been
thereby constructed. An independent development involves the use of
Backlund transformations in general relativity to construct exact solutions
of the stationary axisymmetric vacuum Einstein field equations. Again, a
nonlinear superposition principle is available for the generation of such
solutions. These and other applications of Backlund transformations in
mathematical physics are surveyed in Chapter 1.

Whereas the classical notion of Backlund transformations has proved
too restrictive for contemporary needs, a universally accepted modern
theory is yet to be established. InChapter 2, we present a unifying geometric
framework for Backlund transformations based on a jet-bundle formalism.
This approach meets many of the requirements of a modern theory and,

xi
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in particular, allows for a natural derivation of associated linear scattering
problems.

The remaining chapters of the monograph are devoted to applications of
Backlund transformations in areas of continuum mechanics, such as
gasdynamics, magnetogasdynamics, and elasticity. This represents a de-
velopment in Backlund transformation theory that has proceeded quite in-
dependently of the work described in Chapters I and 2. Much of the material
contained in these chapters may be new to theoretical physicists.

Our aim has been to produce an introductory monograph that is rea-
sonably self-contained. To this end, appendixes have been included on
Hirota bilinear operators, differential forms, and aspects of jet-bundle
theory needed in the main text. The range of application of Backlund trans-
formations, however, is broad indeed; and such has been the rapid growth
of the subject that it has not been practical here to cover all of the most
recent advances. Certain topics have been omitted as being more appropriate
to an advanced treatise. Thus we have not discussed the relationship of
Backlund transformations to canonical transformations, the use of Backlund
transformations in the generation of conservation laws [31O,447-450J,
or the novel application of these transformations to reveal hidden symmetry
properties in similarity solutions of nonlinear equations [433,435,437].
Likewise, details of the generalized Wronskian technique and its relationship
to Backlund transformations must be sought elsewhere [42-46]. Never-
theless, an attempt has been made to produce a comprehensive bibliography,
and the purpose of this monograph will have been fulfilled if the reader is
led to inquire into the original literature for details of these and other
exciting recent developments in the expanding subject of Backlund trans-
formations. The book is appropriate for use as a graduate level text for
applied mathematicians or theoretical physicists. Indeed, it has grown out
of a graduate course given at the University of Waterloo. In this connection,
it should be noted that an applications-oriented course may be taught based
on Chapters I and 3-5, together with Appendix I. On the other hand, a
course with emphasis on the theoretical aspects of the subject might consist
of Chapter 2, together with Appendixes II-VI.
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General Introduction and Outline

In recent years, a class of transformations having their origin in work by
Backlund [1-5] in the late nineteenth century has provided a basis for
remarkable advances in the study of nonlinear partial differential equations.
The importance of Backlund transformations and their generalizations is
basically twofold. Thus, on the one hand, invariance under a Backlund
transformation may be used to generate an infinite sequence of solutions of
certain nonlinear equations by purely algebraic superposition principles. On
the other hand, Backlund transformations may also be used to link certain
nonlinear equations to canonical forms whose properties are well known.
Both kinds of Backlund transformations have been exploited extensively
not only in mathematical physics but also in continuum mechanics. However,
for the most part, the developments in these two fields have proceeded
independently. Here, the results in both of the areas are brought together
in a single account. Furthermore, a jet-bundle formulation of Backlund
transformations is presented which, in the current absence of a universally
accepted theory, provides, in the opinion of the authors, the best framework
for a unified treatment of the subject.



2 GENERAL INTRODUCTION AND OUTLINE

It was Backlund who, in 1880, introduced generalized Bianchi-Lie trans-
formations between pairs of surfaces L, L' embedded in [R3 such that the
surface element [XI,X l,u,iJu/ox l,OU/OX2} of L is connected to the surface
element {X'I,X'l,U',ou'/oxd,ou'/Dx'l} of E' by four relations of the type

lEBi(X I , Xl, U, oU/OX!, cu/ox 2; X'I, X'l, u, oU'/OX'I, au'/ax'l) = 0,

i = 1, ... ,4. (0.1)

Application of the integrability condition

(0.2)

may be shown to lead, under certain circumstances, either to a pair of third-
order equations or to a single second-order equation for u [107]. The
analogous integrability condition on the unprimed quantities leads, again
under appropriate conditions, to a pair of third-order equations or to a
single second-order equation for u', In this situation, implicit in the Backlund
relations (0.1) is a mapping between the solutions u(xa), u'(x,a) of generally
distinct systems of partial differential equations. This fact may be used to
advantage in one of two ways. Thus, on the one hand, if the solution of the
transformed equation or pair of equations is known, then the Backlund
relations (0.1) may be used to generate the solution of the original equation
or pair of equations. On the other hand, if the equations are invariant under
the Backlund transformation (0.1), then the latter may be used to construct
an infinite sequence of new solutions from a known trivial solution. Both
types of Backlund transformations have" important applications. Accord-
ingly, both will be discussed extensively in this monograph.

Chapter 1 presents a comprehensive account of those Backlund trans-
formations which have been found to have application in mathematical
physics. It opens with a description of the classical notion of a Backlund
transformation together with a simple illustration that leads to the solution
of Liouville's equation. There follows a derivation of the celebrated auto-
Backlund transformation for the. 1 + 1 sine-Gordon equation

Ull = sin u, (0.3)

together with its associated permutability theorem. The latter constitutes a
nonlinear superposability principle whereby an infinite sequence of solutions
of(0.3) may be constructed by purely algebraic means. The Bianchi diagrams
descriptive of this procedure are also introduced.

The nonlinear evolution equation (0.3) occurs in a diversity of areas of
physical importance. In particular, it was the work of Lamb [17-21J con-
nected with ultrashort optical pulse propagation phenomena modeled by the
1 + 1sine-Gordon equation which, in some measure, led to the renaissance of
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the subject of Backlund transformations. Thus, Lamb employed the per-
mutability theorem associated with an auto-Backlund transformation of
(0.3) to generate analytical expressions descriptive of the evolution of ultra-
short light pulses. An account of this work, together with its extension to
consideration of 2Nn pulses by Barnard [22], is given in Section (3.

The analysis of the steady propagation of magnetic flux through a long
Josephson junction leads to an elliptic analog of the sine-Gordon equation.
In this connection, Leibbrandt [25-27] established a Backlund transforma-
tion which links the equations

(0.4)

and

(0.5)

where l,i, i = 1,2, are arbitrary plane harmonic functions. This result, to-
gether with associated permutability theorems whereby infinite sequences of
a and f3 solutions may be constructed, is derived in Section 1.4.

In the next section, as a further illustration of a Backlund transformation
of a Monge-Ampere equation, the Cole-Hopf transformation of Burgers'
equation

Uz + UU 1 - VUll = 0, (0.6)

is presented. This equation is of considerable significance, since it represents
the simplest model which incorporates both amplitude dispersion and diffu-
sion effects. The Cole-Hopf transformation has the remarkable property
that it reduces the nonlinear equation (0.6) to the linear heat equation. Here
it is shown how this result may be used to solve a variety of initial value
problems for Burgers' equation, including those with initial step data and
(j function initial conditions.

Apart from the intrinsic importance of the Cole-Hopf transformation in
the solution of initial value problems for (0.6), there is no doubt that its
discovery also served to stimulate the search for Backlund transformations
for other nonlinear evolution equations. One such equation was that derived
in 1895 by Korteweg and deVries [30] in a study of the evolution of long
water waves along a canal of rectangular cross section. The Korteweg-
deVries equation

Uz + 6UUl + Ul 1l = 0, (0.7)

was rederived in 1960 by Gardner and Morikawa [31] in an analysis of
collision-free hydromagnetic waves. Subsequently, it has been shown to
model a rich diversity of finite amplitude dispersive wave phenomena in
the theory of solids, liquids, gases, and plasmas.
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In Section 1.6, the Korteweg-deVries equation is derived in the context
of shallow water wave theory. In the following section, a generalization of
the classical Backlund transformation (0.1) is introduced wherein second-
order derivatives are included. Thus, transformations of the type

i = 1, ... ,4, a, b = 1,2, (0.8)

are introduced, and following Lamb's adaption of Clairin's procedure, an
auto-Backlund transformation is obtained for the Korteweg-deVries equa-
tion. This Backlund transformation, originally derived in 1973 by Wahlquist
and Estabrook [36], is then used to obtain a permutability theorem whereby
multi-soliton solutions may be constructed.

The next two sections of Chapter 1 concern the modified Korteweg-
deVries equation

(0.9)

which arises both in the theory of nonlinear Alfven waves in a collisionless
plasma and in the analysis of acoustic wave propagation in anharmonic
lattices [203, 33]. In Section 1.8, a Backlund transformation is introduced
which leaves invariant the equation governing an integral over a pulse
profile v, where v satisifies the modified Korteweg-deVries equation. The
permutability theorem associated with the auto-Backlund transformation is
then used to generate soliton solutions. In Section 1.9, Miura's celebrated
Backlund transformation, linking the Korteweg-deVries and modified
Korteweg-deVries equations, is developed, using Clairin's procedure as
adapted by Lamb [35]. It is remarked that Miura's transformation may be
exploited to construct a variety of constants of motion for the Korteweg-
deVries equation [37].

Lamb also used Clairin's procedure to obtain an auto-Backlund trans-
formation for another important nonlinear evolution model, namely, the
cubic Schrodinger equation

(0.10)

In Section 1.10, the relevance of this equation to the evolution of weakly
nonlinear deep water gravity wave trains is summarized and its role as a
canonical form noted. In the following section, the AKNS system of non-
linear evolution equations amenable to the inverse scattering method is
introduced. It is shown to include as particular cases not only the sine-
Gordon, Korteweg-deVries, and modified Korteweg-deVries equations but
also the cubic Schrodinger equation. A link with the construction of Backlund
transformations is established via an invariance property contained in a
paper by Crum [311] on associated Sturm-Liouville systems. The section
concludes with the statement of an auto-Backlund transformation of (0.10),
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together with an associated permutability theorem. The latter has recently
been used to reveal, via the language of Painleve transcendents, hidden
symmetries of the similarity solutions of (0.10).

Hirota and Satsuma [201] have recently demonstrated that the permu-
tability theorems for a wide class of nonlinear evolution equations have a
particularly simple generic form when written in terms of certain bilinear
operators. The latter formulation was originally introduced by Hirota [118]
in connection with a direct expansion method for the construction of multi-
soliton solutions of certain nonlinear evolution equations. The basic prop-
erties of the Hirota bilinear operators are set forth in Appendix I. In
Section 1.12, this formalism is used to derive a Backlund transformation
and associated permutability theorem for both the Boussinesq equation

(0.11)

and a higher order water wave equation due to Kaup [236]. In Section 1.13
the same method is used to construct an auto-Backlund transformation in
bilinear form for the higher order Korteweg-deVries equation

(0.12)

(Sawada and Kotera [245]; Caudrey et al. [242]). Miura-type Backlund
transformations exist that link (0.12) to another important higher order
Korteweg'-devries equation [246,248]. Moreover, bilinear representations
of Backlund transformations for the entire Lax hierarchy of higher order
Korteweg-deVries equations have been very recently developed by Matsuno
[413].

Whereas there has been notable progress in the construction of Backlund
transformations for higher order equations in 1 + 1 dimensions, particularly
via the Hirota bilinear representation, there has been no corresponding
rapid advance in the development of Backlund transformations for non-
linear evolution equations in higher dimensions. A review of the limited
progress that has been made is presented in Section 1.14.The section starts
with a summary of Leibbrandt's results on Backlund transformations and
permutability theorems for higher dimensional sine-Gordon equations. This
work has recently been extended by Popowicz [254], who constructed
Backlund transformations and nonlinear superposition principles for the
0(3) nonlinear (J model in both 2 + 1 and 3 + 1 dimensions. There follows
a derivation, in terms of the Hirota bilinear formalism, of a Backlund trans-
formation for the two-dimensional Korteweg-deVries equation

(0.13)

originally developed by Kadomtsev and Petviashvili [256] in connection
with the propagation of disturbances in weakly dispersive media. Finally,
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an interesting Backlund transformation of the four-dimensional Yang equa-
tions is recorded. This result is returned to in Chapter 2 when it is viewed
in a jet-bundle context.

The Benjamin-One equation

u, + Zuu ; + H[ux x ] = 0,

where H is the Hilbert transform operator defined by

1 Ie>: I(::)H{(x):= - P -- dz,
7[ ->0 :: - x

(0.14)

(0.15)

models internal water wave propagation in a deep stratified fluid [274, 276].
In Section 1.15, an auto-Backlund transformation and associated super-
position theorem are established for (0.14) whereby N-soliton solutions may
be constructed. In the following section, the results are extended to Joseph's
nonlinear integrodifferential equation, which is descriptive of internal wave
propagation in a stratified fluid of finite depth [282, 283]. Backlund trans-
formations for Joseph's equation have been recently obtained by Chen et al.
[287] and Satsuma et al. [288] employing differential-difference operators.

In the next two sections, the subject of Backlund transformations as
applied to nonlinear difference systems is discussed. It was Toda in 1967
who, in an analysis of the longitudinal vibration of a chain of masses inter-
connected by nonlinear springs, introduced a nonlinear differential-differ-
ence equation which may be shown to admit stable N-soliton solutions
[290,291]. Subsequently, a Backlund transformation and nonlinear super-
position principle were obtained for this Toda lattice equation and analytical
expressions for the multi-soliton solutions thereby generated [292,293].
Backlund transformations for a number of other nonlinear differential-
difference equations have since appeared. In Section 1.17, the Konno-
Sanuki transformation for a continuum approximation to a nonlinear lattice
equation is recorded. In Section 1.18, the Backlund transformation for the
nonlinear differential-difference equation associated with the discrete Toda
lattice is described. It is noted that the Hirota bilinear operator representation
of this Backlund transformation links the Toda lattice equation to other
important nonlinear lattice equations.

The final section of Chapter 1 deals with a quite independent develop-
ment, involving the application of Backlund transformations in general
relativity. Thus, in recent years much research has been directed toward the
construction of exact solutions of the stationary axisymmetric vacuum
Einstein field equations that could represent the gravitational field of a
spinning mass. Backlund transformations have been discovered by Harrison
[376], Belinskii and Zakharov [377], and Neugebauer [378], whereby solu-
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tions ofthe axially symmetric stationary Einstein equations can be generated.
Moreover, recently Cosgrove [380J has shown that the Neugebauer-Back-
lund transformations provide an important framework for the unification
of diverse solution-generating techniques for the Einstein equations. In
Section 1.19, the Neugebauer-Backlund transformations of the Ernst equa-
tions are introduced together with a permutability theorem. The latter is
then used to derive the Kerr-NUT metric from Minkowski space-time.

The rich diversity of areas of application of Backlund transformations is
apparent in the compendium presented in Chapter 1. However, it has been
pointed out that such has been the rapid advance of the subject in recent
years that, whereas the classical notion of Backlund transformation has
proved too limited, a universally accepted modern theory has yet to be
established. Current work on Backlund transformations is primarily con-
cerned with an attempt to, on the one hand, extend application to other
nonlinear equations of physical interest, and on the other, to embody the
extant results in a comprehensive theory. The progress in the area of appli-
cations in mathematical physics has been reviewed in Chapter 1. In Chapter 2,
we present a jet-bundle formulation of Backlund transformations based in
the main on the work of Pirani et al. [47, 48, 407]. The jet-bundle approach
is seen to provide an appropriate geometric setting for the study of Backlund
transformations and their connection with the inverse scattering formalism,
the prolongation structure of Wahlquist and Estabrook, and symmetries of
differential equations. The development of the classical Backlund trans-
formation (0.1) not only incorporates higher derivatives but also allows the
introduction ofseveral dependent variables. Detailed applications of a partic-
ular class of the latter type of Backlund transformation form the basis for
Chapters 3-5.

Chapter 2 commences with a reasonably self-contained introduction to
the jet-bundle formalism. Thus, Sections 2.1-2.4 deal, in turn, with k-jet
notation, contact structures, prolongation of partial differential equations,
and fibered products of jet bundles. This account is augmented by Appen-
dixes II and III, which deal with background material on differential forms.
The remaining sections (2.5-2.8) show how jet-bundle transformations
known as Backlund maps reproduce features common to many of the
Backlund transformations described in Chapter 1. Thus, in Section 2.5 and
Appendix IV, the concept of Backlund map is developed and is illustrated
both for the sine-Gordon equation and for a class of Backlund transforma-
tions originally introduced by Loewner [64J in connection with the reduc-
tion of hodograph systems to canonical form.

In Section 2.6, it is shown how Backlund maps may be used to determine
Backlund transformations. Illustrations are given both for the Korteweg-
deVries equation and for the AKNS system associated with the sine-Gordon
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equation. Furthermore, the notion of Backlund map is extended to incor-
porate constraint equations. Particular reference is made to Pohlmeyer's
Backlund transformation for the Yang equations.

In Section 2.7, the subject of symmetries of systems of differential equa-
tions is addressed and the manner in which they may be combined with
Backlund maps is described. This leads to a generalization of the classical
"theorem of Lie" for the sine-Gordon equation whereby a parameter is
inserted in the Backlund relations by conjugation of a parameter-free
Bianchi transformation with a Lie transformation (Eisenhart [168J). This
construction is an important one since the parameter so intruded adopts the
role of the eigenvalue in associated inverse scattering problems and, further-
more, is intrinsic to both the permutability theorems and a method for the
generation of conservation laws [310,407]. Background results on sym-
metries of differential equations and exterior systems, together with detailed
calculations related to the composition of symmetries and Backlund maps
are incorporated in Appendixes V and VI.

Chapter 2 concludes with a discussion of the Wahlquist-Estabrook pro-
cedure for the construction of Backlund maps. This technique has the advan-
tage that it reveals the roles of the various Lie groups associated with the
differential equations which admit Backlund transformations. Furthermore,
the method admits a natural formulation within the jet-bundle framework.
Here a generalization of the Wahlquist-Estabrook procedure to the case of
n independent variables is presented [48, 407]. The application of the
method to the sine-Gordon equation is presented in detail.

The application of Backlund transformations in continuum mechanics as
opposed to mathematical physics has experienced a quite independent
growth. Indeed, the theory underlying the separate developments has only
recently been brought together in the jet-bundle formulation of Pirani et al.
[48J discussed in Chapter 2. Applications in continuum mechanics up to
1973 have been summarized in [50J: it was seen that the range of applica-
tion is as diverse in continuum mechanics as in mathematical physics.
Developments since that time have reinforced this view. The remaining
chapters of this monograph are devoted, therefore, to an up-to-date and
comprehensive treatment of applications of Backlund transformations to
areas of continuum mechanics such as gasdynamics, magnetogasdynamics,
and elasticity.

It was Haar [51J, in 1928, who first introduced a class of transformations
that leave invariant, up to the equation of state, the governing equations of
plane potential gasdynamics. However, as will be seen, the pressure-density
approximation to the adiabatic gas law, developed as early as 1904 by
Chaplygin [52J in his now classical work on gas jets, may be set in the con-
text of a broad class of Backlund transformations of importance not only in
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subsonic, but also in transsonic and supersonic flow. Later, in 1938, Bateman
[53] constructed a further class of transformations that leave invariant the
gasdynamic equations. These have been termed the "reciprocal relations"
and a specialization of these was used by Tsien [54J in connection with the
approximation of certain adiabatic gas flows. This specialization was shown
to lead to results equivalent to those derivable from the von Karman-Tsien
approximation [55].

Bateman [56] subsequently observed that both the Haar transformation
and the reciprocal relations are of the Backlund type. Since that time, recip-
rocal and other invariant transformations in both steady gasdynamics and
magnetogasdynamics have been the subject of extensive inquiry [57-63].
The reciprocal and adjoint transformations are presented in the introduc-
tory section of Chapter 3, while in Section 3.2, certain invariance properties
of the reciprocal relations are recorded. In general, the equation of state is
not invariant under the reciprocal transformations. Indeed, if the original
gas is incompressible, then the reciprocal gas has a constitutive law of the
von Karman-Tsien type. This allows the application of the reciprocal rela-
tions to the approximation of subsonic flows of an adiabatic gas. The subject
of reciprocal relations in subsonic gasdynamics is described in Section 3.3,
while in Section 3.4, reciprocal transformations are constructed for steady
two-dimensional nondissipative magnetogasdynamics [63].

In Section 3.5, a Backlund transformation which leaves invariant the non-
linear heat equation

(0.16)

is presented. Equations ofthis type arise notably in plasma physics [423, 424],
boundary layer theory [425], and the theory of Darcian filtration [426-428].
It is shown here that, on appropriate specialization, a result originally due to
Rosen [430J is retrieved whereby an important nonlinear conduction equa-
tion which governs the temperature distribution in solid crystalline hydrogen
may be reduced to the linear heat conduction equation. This transformation
is used to solve an initial value problem for the temperature distribution in
a semi-infinite block of such a material subjected to surface cooling or
warming. Further, it is shown that the Rosen transformation may be used
to link fixed noninsulated boundary problems for a nonlinear heat con-
duction equation to moving noninsulated boundary problems for the linear
heat conduction equation. This work has recently been extended by
Berryman [432].

In 1950, Loewner [64J introduced a generalization of the classical finite
Backlund transformations (0.1) to systems involving pairs of dependent
variables. Loewner's investigation was concerned with the reduction to
canonical form of the hodograph equations of gasdynamics (specifically, to



10 GENERAL INTRODUCTION AND OUTLINE

the Cauchy-Riemann, Tricomi, and classical wave equations in subsonic,
transsonic, and supersonic flow, respectively). Such was achieved for certain
multiparameter pressure-density relationships which may be used to ap-
proximate the prevailing empirical equation of state. Power et al. [66] later
showed that Loewner's formulation may be adopted as a unifying frame-
work for earlier transformation theory of the hodograph equations due to
von Karman [67,68], Peres [69], Sauer [70], and Dombrovskii [71]. In
Dornbrovskii's monograph, what are essentially Backlund transformations
were used extensively in the solution of boundary value problems in com-
pressible adiabatic flow. A detailed account of Loewner's work and its
application to gasdynamics is given in Sections 3.6 and 3.7.

Aligned field nondissipative magnetogasdynamics has been the subject of
much attention in view of its potential relevance to astrophysics. Reference
may be made, for instance, to the work of Grad [72] on reducibility; to that
of Jeffrey and Taniuti [73] on the characteristic theory associated with
aligned field magnetogasdynamic wave propagation; and for general back-
ground material to the treatise by Dragos [74]. In Section 3.8, it is shown
how Loewner's class of Backlund transformations may readily be applied to
obtain elliptic and hyperbolic canonical forms in both sub-Alfvenic aligned
magnetogasdynamic regimes.

Invariant transformations in nonsteady gasdynamics and magnetogas-
dynamics have been developed and utilized considerably in recent years,
notably by the Russian school [75-80]. On the other hand, transformations
of the reciprocal and Haar type for (e + Ij-dimensional spherically sym-
metric nonsteady gasdynamics were first constructed by Rogers [81, 82] and
were subsequently applied in [83] to solve certain nonuniform shock-wave
problems by the generation of new gasdynamic solutions based on one dis-
covered by Sedov [84]. In Section 3.9, the reciprocal relations are developed
and are then shown to constitute a Backlund transformation of a Monge--
Ampere formulation of the governing nonsteady gasdynamic equations.

Finally in Chapter 3, it is shown that Backlund transformations of the
Loewner-type may be used to reduce the Lagrangian equations of one-
dimensional non steady gasdynamics to the classical linear wave equation.
This reduction is available for certain multiparameter gas laws that may be
used for both local and global approximation to the adiabatic equation of
state. A summary is presented of the application by Cekirge and Varley [85]
of a model pressure-density relation to the analysis of the pressure variation
at the closed end of a shock tube during the reflection of a centered, simple
wave.

The use of model constitutive laws in the study of the one-dimensional
propagation of large amplitude longitudinal disturbances in other nonlinear
media of finite extent was developed not only by Cekirge and Varley [85],
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but also in subsequent papers by Kazakia and Varley [141, 142J, Cekirge
[143J, and Mortell and Seymour [144]. Thus certain multiparameter stress-
strain laws may be used, in particular, to approximate the response of sat-
urated soil, dry sand, clay silt, and certain hard materials under dynamic
compression. In Sections 4.1-4.3 we present a review of recent work on the
application of these laws to the analysis of reflection and transmission phe-
nomena. It is also shown that for the model constitutive laws under consid-
eration the Riemann representation of the Lagrangian equations of motion
may be reduced to the linear wave equation by Loewner-type Backlund
transformations.

Kazakia and Venkataraman [94J, in a study of electromagnetic wave
propagation through nonlinear dielectric media, introduced a variant of the
Cekirge-Varley procedure wherein the Riemann characteristic equations
were shown to be integrable for a certain class ofB-H and D-E constitutive
laws. An exact representation of a centered fan which describes the inter-
action of this wave with an oncoming signal was constructed. In Section 4.4,
the work of Kazakia and Venkataraman is presented and set in the broader
context of Backlund transformation theory.

Backlund transformations have also been recently applied to solve a
variety of boundary value problems in elastostatics. Clements and Rogers
[96J used Loewner-type transformations in the analysis of the stress distri-
bution due to sharply curved notches in a class of shear-strained nonlinear
elastic materials. In [97J, the same authors noted that Weinstein's corre-
spondence principle may be regarded as a simple Backlund transformation
of the Stokes-Beltrami equations. The importance of Stokes-Beltrami
systems in the theory of torsion ofshafts of revolution had been first pointed
out by Arndt [316J in 1915. Subsequently, Weinstein [98J noted that in fact
such systems also arise in hydrodynamics, transsonic gasdynamics, and
electrostatics. A correspondence principle was developed, which, in particu-
lar, allows the solution of certain boundary value problems involving cracks
and dislocations in linear elastic media [328].

In Chapter 5, the first two sections are concerned, in turn, with the deriva-
tion of Weinstein's correspondence principle as a Backlund transformation
and its application to axially symmetric punch, crack, and torsion problems
in elasticity. In Section 5.3, a link is established between Loewner's Backlund
transformations and the Bergman integral operator method. Application is
made to crack and contact problems that involve layered elastic media
under mode III displacement. Finally, in Section 5.4, Backlund transforma-
tions ofthe Loewner type are employed in the analysis of stress concentration
and displacement in a notched half-space of nonlinear elastic material sub-
ject to antiplane deformation.



CHAPTER 1

Backlund Transformations
and Their Application to
Nonlinear Equations of
Mathematical Physics

1.1 THE ORIGIN AND IMPORTANCE OF BACKLUND
TRANSFORMATIONS

The classical treatment of the surface transformations which provide the
origins of Backlund theory is .to be found in the work of Lie [103, 104] and
Backlund [1-5]. The subject was subsequently developed by both Goursat
[105] and Clairin [106]. The modern interest in Backlund transformations
lies in that they may be used in one of two important ways in connection
with integral surfaces of certain nonlinear partial differential equations. Thus,
invariance under a Backlund transformation may be used, under appropriate
circumstances, to generate an infinite sequence of solutions of such equations
by a purely algebraic superposition principle. On the other hand, Backlund
transformations may sometimes be adduced to link nonlinear equations to
canonical forms whose properties are wellestablished. Both kinds of Backlund

12
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transformation have important applications in mathematical physics and
continuum mechanics and, accordingly, each will be treated in detail in this
monograph.

An extensive bibliography of the early literature on Backlund transforma-
tions is contained in Goursat's treatise cited above. In this connection, of
particular interest is Clairin's method of derivation of Backlund transforma-
tions. Indeed, Lamb [35] adopted this classical procedure in the construction
of Backlund transformations for the Korteweg-deVries, modified Korteweg-
deVries, and nonlinear Schrodinger equations. However, in the main,
classical theory has been subsumed by ajet-bundle formalism to be described
at length in the next chapter. Thus, whereas we shall illustrate Clairin's
procedure as it applies to the Miura transformation, generally the emphasis
will be on modern methods for the construction of Backlund transforma-
tions. The reader interested in the classical theory may consult a recent mono-
graph by Anderson and Ibragimov [110]. The latter work is devoted to a
generalization of Lie's classical theory of contact transformations based on
what are termed Lie-Biicklund tangent transformations. An interesting dis-
cussion of the early literature on surface transformations in general is
contained therein.

Backlund, in a study of possible extensions of Lie contact transformations,
was led to introduce the important class of surface transformations which
bear his name and which, together with their modern extensions, form the
basis ofthe present monograph. The historical progression to their introduc-
tion is marked by the key work of Lie [103,104,108] and Backlund [1-5].f

A simple illustration of a Backlund transformation and its application is
provided by a well-known reduction of Liouville's equation

(1.1)

Thus, consider the relations

ou' .Du 1/2( + ')-- = - + fJe U U • = la' (u u . u')OX,l ox1 . 1, 1, ,

ou' _ ou 2 1/2(u-u'). _ ro' ( . ')
OX,2 - - ox2 -fie .- LLD2 u,u 2, U , (1.2)

a = 1,2,

where fJ E IR is a nonzero constant known as a "Backlund parameter."

t Additional background material to be found in Bianchi [113-114] and Darboux [115].
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Application of the integrability conditiont

alEB'l alEBz
-a'2-~=O,x ox

(1.3)

to (1.2h.2 produces Liouville's equation (1.1). On the other hand, if (1.2)1.2
are rewritten as

au _ au' f3 1/2(u+u'). _ " .
~-~-.e .-1EB1(U,Ul,U),
(IX (IX

au _ au' 2 1/2(u-u'). _ " .
ax 2 - - ax,2 -(j e . - 1EB2(u , U2, u),

then the integrability requirement

alEB 1 _ alEB 2 = 0
ax 2 ax 1

produces

(1.4)

(1.5)

(1.6)
a2u'

ax1 ax 2 = O.

Thus, implicit in the set of relations (1.2) is a link between the nonlinear
equation (1.1)and the linear equation (1.6). This connection may be exploited
to solve (1.1) in full generality. Thus, insertion of the general solution

(1.7)

of (1.6) into the "Backlund relations" (1.2)1.2 and subsequent integration
produces the general solution of Liouville's equation in the form

(1.8)

where Xu, a = 1,2, are constants.
The encouraging nature of the above result has led to an extensive search

for such transformations for other nonlinear equations of mathematical
physics: this with a view to their use in the generation of solutions. It has
emerged in recent years that, in fact, a remarkable diversity of important
nonlinear equations admit these transformations which, it turns out, are
of a type originally introduced by Backlund.

t It is assumed that U 12' U2l, U'12, and U21 are continuous.
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Thus, let u = u(xa
), U' = u'(x'"), a = 1, 2, represent two surface Land L',

respectively, in [R3. A set of four relations

i = 1, ... ,4, a = 1,2, (1.9)

which connect the surface elements {x a
, u, ua } and [x'", u',u~} of Land L',

respectively, is termed a Backlund transformation in the c1assicalliterature. t

In contemporary applications, the particular interest is when u = u(xa
),

u' = u'(x'") represent integral surfaces of partial differential equations of
significance in mathematical physics and continuum mechanics.

If (1.9) admits the explicit resolutions

ui == lEBi(xa
, u, Ua~ u'), i = 1,2, (1.10)

and

u, == lEBi(x'a, u', u~; u), i = 1,2, (1.11 )

together with

x'! = Xi(xa, u, ua ; u'), j = 1,2, (1.12)

then, in order that these relations transform a surface u = u(xa ) with surface
element {x",u, ua } to a surface u' = tz'(x'"] with surface element {x", u, u~}, it
is required that the relations

du' - IEE~ dx'" = 0,

be integrable. Hence, we obtain the conditions

alEE'l alEE~
-;I2-~=O.
ux ux

(1.13)

(1.14)

(1.15)

(1.16)

Application of (1.16) to the Backlund relations (1.10) and (1.12) is shown
by Forsyth [107] to lead to a nonlinear equation of the form

U{Ul1U22 - UI2} + RUll + 2SU2 1 + TU22 + V= 0, (1.17)

where U, R, S, T, and V, in general, involve the quantities x", u, U;, and u' but
not partial derivatives in u of second or higher order. Thus, if u' is absent
in (1.17), the well-known Monge-Ampere form is obtained.

t The modern notion of a Backlund transformation in terms of a jet-bundle formalism is
developed in Chapter 2.
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In a similar manner, application of (1.15) to the Backlund relations (1.11)
and (1.12) leads to a primed counterpart of (1.17). In particular, if the equa-
tions for u and u' so derived are both of the Monge-Ampere form, then the
Backlund transformation may be regarded as a mapping between their
integral surfaces.

The question as to what types of Monge-Ampere equations admit
Backlund transformations was addressed in [107], where it was shown for
the case in which the IB; or x! in (1.10) and (1.12) are independent of u' that
Backlund transformations are not available for the most general such
equation. However, there remain certain Monge-Ampere equations of
significance which do possess Backlund transformations, notably Liouville's
equation, the sine-Gordon equation, and Burgers' equation. The Backlund
transformation for Liouville's equation has already been exhibited while
those for the sine-Gordon and Burgers' equations will be dealt with in
subsequent sections of this chapter.

While the classical procedures may be extended in a number of ways (see,
for example, Goursat [109] and Loewner [64, 65]), in the main, alternative
methods for the construction of Backlund transformations have been
adopted in recent developments. It has already been pointed out that an
exception is the work by Lamb [35], wherein Clairin's method is used to
generate Backlund transformations for higher order nonlinear evolution
equations. As an illustration of this classical approach, in Section 1.9 we
follow Lamb in our derivation of Miura's transformation for the Korteweg-
deVries equation. Additional aspects of classical theory have been discussed
by Dodd and Bullough [112] in connection with the possibility of the
existence of Backlund transformations for higher dimensional sine-Gordon
equations.

In the present monograph, we shall be concerned mainly with the modern
methods of construction of Backlund transformations. These are associated
with the inverse scattering method, Hirota's technique, and the Estabrook-
Wahlquist procedure.

1.2 THE 1 + 1 SINE-GORDON EQUATION. THE PERMUTABILITY
THEOREM. BIANCHI DIAGRAMS

The sine-Gordon equation

U12 = smu, (1.18)

models transmission in a wide variety of areas of physical interest, notably,
the propagation of quantized flux in Josephson junctions [6-9, 157-159],
crystal dislocation theory [10, 160-162], elementary particle theory
[11-14, 163], splay wave propagation along lipid membranes [164], the
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analysis of mechanical modes of nonlinear wave propagation [15], the
motion of a Bloch wall between ferromagnetic domains [16, 165, 166],
nuclear magnetic resonance [167], and massive Thirring model theory
[23, 24]. In an interesting recent development, the occurrence of the I + 1
sine-Gordon equation in the description of the nonlinear evolution of wave
packets in rotating baroclinic shear flow has been documented by Gibbon
et al. [173]. However, it was the relevance of (1.18) to the propagation of
ultrashort optical pulses in resonant laser media that provided the mainspring
for a renewal of interest in Backlund transformation theory. Thus, Lamb
[17] reintroduced a classical invariant transformation of(1.18) of a Backlund
typeand employed it in an elegant manner to generate multi-soliton solutions
by an iterative procedure.

Here the classical auto-Backlund transformation of (1.18) is presented
together with important consequences of this invariance. Thus, a nonlinear
superposability theorem is established whereby a sequence of soliton solu-
tions of the 1 + 1 sine-Gordon equation may be constructed by purely
algebraic means.

The basic invariance property is embodied in the following result:

THEOREM I. I The sine-Gordon equation

Ul2 = smu

is invariant under the Backlund transformation

U'I = !EB'I(U,U I; u') = UI - 2f3sin{U ~ ul

u~ = !EB~(U,U2; u') = -U2 + ~sin{U ~ ul (1.19)

a = 1,2,

where f3 E ~ is a nonzero Backlund parameter. •

The above result is readily demonstrated. Thus, application of the inte-
grability condition

in (1.19) shows that

f3( , {u + U'} [ 1 , {u - U'}] 0UI2 - Uz + u2)cos -2- - -U 12 + 7J (ul - udcos ~ =,

whence
U12 = sin u.
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Similarly, application of the integrability requirement

alB l _ oIB2 = 0
ox2 ox! '

where (1.19h.2 are rewritten as

f[D I , , 2/3' {u + U'}Ul=l1J)l(U,U!;U)=Ul+ SIll ~'

ro (' I , 2. {u - U'}
U2 = 1Ol2 u,u2 ; u) = -U2 + 7J SIll ~ ,

yields
U't2 = sin u: (1.20)

Hence, relations (1.19) leave (1.18) invariant, that is, they constitute an
auto-Backlund transformation of the sine-Gordon equation. •

The relevance of the above Backlund transformation to the geometry of
pseudospherical surfaces is described by Eisenhart [168J while the derivation
of the Backlund transformation by classical procedures is given by Ames
[169].

Note that both the Liouville and sine-Gordon equations are of the
hyperbolic form t

U 12 = <1>(u). (1.21)

Accordingly, it is natural to inquire as to what restrictions must be placed
on <1> in order that (1.21) admit a Backlund transformation. McLaughlin and
Scott [170J investigated this question via a classical approach. A treatment
based on the jet bundle formalism of Chapter 2, wherein the Backlund trans-
formations for both (1.1) and (1.18) arise in a natural manner, is given by
Shadwick [171].

We now turn to the application of the Backlund transformation (1.19).
Its power lies in that it may be used to generate additional solutions of the
second-order nonlinear equation (1.18) via the pair of first-order equations
(1.19)t,2 on insertion of a known solution. Thus, for instance, u' = 0 is a triv-
ial "vacuum" solution of (1.20). Substitution of this solution into (1.19)1,2
indicates that a second but nontrivial solution may be constructed by
integration of the pair of equations

2 . {u}
U2 = 7J SIll 2" ' (1.22)

t There are. of course. elliptic analogs of both (1.1) and (1.18). A Backlund transformation
for an elliptic version of the sine-Gordon equation is presented in Section 1.4.
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leading to

19

(1.23)

where a is a constant of integration.
Let cPn, I/In be solutions of (1.18) generated by application of the Backlund

transformation (1.19) to a known solution cPn-1 with, in turn, the Backlund
parameters /31 and /32' Further, let cPn+ 1and I/In+ 1denote solutions of (1.18)
obtained by application of the Backlund transformation with parameter
/32 to cPn and with parameter /31 to I/In, respectively. The situation may be
represented schematically by a "Bianchi diagram" (Fig. 1.1). In the latter,
the b., b;, i = 1, 2, represent arbitrary constants of integration.

B-~2'b;-G
~\.

8~'
,6'

<" /)

?"0-PI'~-G
Fig. 1.1 A Bianchi diagram. (McLaughlin and Scott [170].)

Once a second solution of (1.18) such as (1.23) has been derived, that an
infinite sequence of additional solutions may be generated without further
recourse to integration is a consequence of the following remarkable result:

THEOREM 1.2 There exist cPn+ 1 and I/In+ 1 such that

cPn+1 = I/In+1 = cP,
where

In order to establish the above result, we follow the argument developed
by McLaughlin and Scott [170]' Thus, on appropriate use of the Backlund
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relations (1.19), the Bianchi diagram (Fig. 1.1) indicates that t

A.. A.. 2/3' {¢n + ¢n-l}'f'n,x' = 'f'n- I,x' + 1 SIn 2 '

A.. A.. 2 . {¢n - ¢n-l}'f'n,x1 = - 'f'n-1,x 2 + /31 SIn 2 '

A.. _ A.. "'/3' {¢n+ I + ¢n}'f'n+ 1,x' - 'f'n.x' + ~ 2 SIn 2 '

A.. A.. 2. {¢n+ 1 - ¢n}'f'n+ l,x2 = - 'f'n,x 2 + /32 SIn 2 '

.t, _ A.. "'/3' {ljIn + ¢n-I}'l'n,x' - 'f'n- 1,x' + ~ 2 SIn 2 '

.t A.. 2 . {ljIn - ¢n-l}'l'n,x 2 = - 'f'n- l,x2 + /32 SIn 2 '

", ", 2/3' {ljIn+ 1 + ljIn}
'I' n+ 1,x' = 'I' n,x' + 1 SIn 2 '

.t, .t, 2. {ljIn+ 1 -ljIn}
'I' n+ 1,x2 = - 'I' n,x2 + /31 SIn 2 .

Now, (1.24) + (1.26) and (1.27) - (1.25) yield, in turn

A.. A.. 2/3' {¢n+¢n-1} 2/3 . {¢n+l+¢n}'f'n+ 1,x' = 'f'n-l,x' + 1 sm 2 + 2 sm 2

and

A.. 2 . {¢n - ¢n-l} 2. {¢n+l - ¢n}
¢n+l.x2 = 'f'n-l,x2 - /31 sin 2 + /32 sin 2 '

while (1.28) + (1.30) and (1.31) - (1.29) show that

.t, A.. 2/3' . {ljIn+1 + ljIn} 2/3 . {ljIn + ¢n-l}'l'n+ 1,x l = 'f'n-l,xl + 1 sin 2 + 2 sin 2

and

.t 2 . {ljIn - ¢n-l} 2 . {ljIn+ 1 - ljIn}
'l'n+ 1,x2 = ¢n-l.x2 - /32 sin 2 + /31 sm 2 '

respectively.

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

t Thus, for example, to obtain (1.24) and (1.25) we set u' = <Pn- I, U = <Pn, and P= PI in (1.l9lt.2·
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Thus, if we require
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cPn+ 1 = t/Jn+ 1 = cP, (1.36)

we see that relations (1.32)-(1.35) provide two necessary consistency re-
quirements, namely,

/3 . {cPn + cPn-l} /3 . {cP + cPn}Ism 2 + 2sm -2-

/3 . {cP + t/Jn} /3 . {t/Jn + cPn-l}= 1 SIn -2- + 2 sin 2

and

/3 . {cP - cPn} /3 . {cPn - cPn- I}Ism ~ - 2sm 2

--/3 . {t/Jn-cPn-l}+/3 . {cP-t/Jn}
- 1 sin 2 2 sm 2 .

If we now define

(1.37)

(1.38)

(1.39)

(1.40)

L±:= HcP + cPn-l ± (t/Jn + cPn)],
()± := HcP - cPn-l ± (t/Jn - cPn)],

then the conditions (1.37) and (1.38) may be written as

/31 sin(L+ -(}+)+ /32 sin(L+ +8-)=/31 sin(L+ +(}+)+ /32 sin(L+ -8_), (1.41)

/31 sin(L_ +(}+)+ /32 sin(L_ -(}-)=/31 sin(!_ -(}+)+ /32 sin(L_ +(}-), (1.42)

whence, on reduction,

{/31 sin () + - /32 sin /L} cos L + = 0,

{/31sin8+ -/32sin8_}cosL_ =0.

(1.43)

(1.44)

Hence the consistency conditions (1.37) and (1.38) are satisfied if

/31 sin ()+ = /32 sin ()_ . (1.45)

The relationship (1.45) may be solved explicitly for cP in terms of cPn - l'

cPn, and t/Jw Thus, (1.45) implies that

/31 sinHcP - cPn-l + (t/Jn - cPn)] = /32 sinHcP - cPn-l - (t/Jn - cPn)],
whence,

/31[sin-HcP - cPn-rl cos ht/Jn - cPn) + coshcP - cPn-rlsini(t/Jn - cPn)]
= /32[sini(cP - cPn-l)cosht/Jn - cPn) - coshcP - cPn-rlsini(t/Jn - cPn)],
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Fig. 1.2 A commutative Bianchi diagram. (McLaughlin and Scott [170].)

/31[tani(cP - cPn-l) + tanhl/Jn - cPn)]
= /32[tani(cP - cfJn-l) - tan i(l/Jn - cPn)].

Accordingly,

cP = 4tan-{(~: ~ ~~)tan{cPn ~ l/Jn}] + cPn-l' (1.46)

It may now readily be verified that the insertion of cPn+ 1 = cP in (1.26) and
(1.27) and l/Jn+ 1 = cP in (1.30) and (1.31) satisfies these Backlund relations.
This completes the demonstration. •

Theorem 1.2 has the important consequence that a commutative Bianchi
diagram may now be constructed as in Fig. 1.2. Iteration of the Backlund
transformation may be used to generate a Bianchi lattice whereby an infinite
sequence of additional solutions of the 1 + 1 sine-Gordon equation may be
generated without further integration. This procedure is adopted in the next
section to construct analytical expressions for 2Nn pulses in an unbroadened
resonant medium.

1.3 ULTRASHORT OPTICAL PULSE PROPAGATION IN A RESONANT
MEDIUM. 2Nn LIGHT PULSES

The equations of ultrashort pulse propagation under the assumption of
vanishing bandwidth and with neglect of nonresonant losses reduce to
consideration of (Lamb [18J, Barnard [22J)

oe + c oe = 2nNOWp2 IP (1.47)
ot ox 11 '
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alPat =eN, (1.48)

aN
- = -elP
at '

where the optical field E(x, t) and the macroscopic polarization
P(x, t) are expressed in terms of their envelopes and carriers as

(1.49)

density

E(x, t) = (eh/p)cos(kx - wt),

P(x, t) = N oplP(x,t) sin(kx - wt),

(1.50)

(1.51 )

where No is the number of active atoms per unit volume; p is the dipole
matrix element; N = N /No, where N is the population inversion, and c is
the phase velocity of light in the medium.

Integration of (1.48), (1.49) for uniform initial population of the active
medium yields

N(x, t) = ± cos (J, (1.52)

lP(x,t) = ± sin (J, (1.53)

where
e = a(J/at. (1.54)

(1.55)±sin (J,

Substitution of (1.54) into (1.47) now gives the 1 + 1 sine-Gordon equation

a2(J

where ~ = «xtc, T = rx(t - x/c), and

rx = (2rrNowp2/h)1/2. (1.56)

Thus, if we set Xl = T, x2 = ±~, u = (J in (1.55), we obtain (1.18).
It is a remarkable property of the Backlund transformation, established

in the previous section, that it may be used to construct solutions of (1.55)
which correspond to ultrashort light pulses that propagate in a resonant
medium with conservation of pulse area. Specifically, a pulse which travels
in such a manner that the total area under the pulse envelope remains at
2Nrr, so that

f~CXJ e(x,t)dt = 2Nrr, (1.57)

is called a 2Nrr pulse. The permutability theorem generates analytic expres-
sions for such pulses by an iterative procedure. Furthermore, these solutions
exhibit a distinctive property for such pulses that has been observed experi-
mentally, namely, their decomposition into N stable 2rr pulses. The reader
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interested in experimental evidence for this phenomenon should consult, for
example, the work by Gibbs and Slusher [116] concerning the observed
decomposition of a 6n pulse into three 2n pulses in a Rb vapor.

We now proceed to describe the generation of 2Nn pulse solutions via the
Bianchi diagrams associated with the Backlund method.

27t Pulse

The best known solution of (1.55) is that associated with the propagation
characteristic of self-induced transparency in an attenuator. This may be
obtained as a specialization of the solution (1.23)generated by the Backlund
transformation (1.19) out of the vacuum solution. Thus, if the negative sign
is chosen in (1.55)as is required for propagation in an attenuator, on omission
of the translation constant Ci, we obtain

(1.58)

where a is the Backlund parameter. The associated electric field envelope is
given by

where

is the envelope velocity.

If = 2aIX sech]'aai: - xjVp ) ] , (1.59)

(1.60)

·47t Pulse

According to both experimental and numerical evidence, a 4n pulse does
not propagate as a single pulse but rather, separates into two distinct 2n
pulses. Such decomposition is also a property of the associated solution as
derived by the Backlund method. Thus, use of the permutability theorem with
starting solution (J 0 = 0 and first-generation solutions

i = 1,2 (1.61)

corresponding to a single application of the Backlund transformation with
parameters a = a., i = 1,2, produces the second-generation solution

0'3 = 4tan- 1[(a1 + a2) tan i(0'1 - 0'2)J,
a1 - a2

= 4 tan -1 [(a 1 + a2 ) sinh ~(V1 - V2)J . (1.62)
a1 - a2 cosh z(v 1 + v2)

The procedure is illustrated by a Bianchi diagram (Fig. 1.3).
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For a l > - al > 0, (J 3 varies between - 2n and 2n as r proceeds from - 00

to + 00. Accordingly, the area under the associated pulse envelope is given
by

as is required for a 4n pulse.
Use of (1.54) produces the electric field

- (ai-a~)[ 2a l IX sech X l-2al IX sech X l J
s = ai + a~ 1 - A(tanhX I tanh Xl _ sechX I sechX1 ) , (1.63)

where

Xl = alIX(t - xlVd,

X z = - alIX(t - x/Vz),

A = -2alall(ai + a~),

while the velocities V; are given by

(1.64)

(1.65)

(1.66)

i = 1,2. (1.67)

A graph of IX -II; against allx, is shown in Fig. 1.4. The solution is seen
to evolve into two steady 2n pulses according to

where

f3 = tanh- l A,

(1.68)

(1.69)

and the upper sign in (1.68) is to be taken when 1/al < -l/az and the lower
sign when 1/al > -l/al'
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L=x/tlc

~t ,~
~f----'-_---J~

'l'~t ~
4
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o'---'-__!'""'-_-"",__..L-.._-'

4
2
OL.........."""-_~_~~~~~

Fig.1.4 Breakup of 4n pulse. (Lamb [21].)

6n Pulse

A 6n pulse solution may be obtained as a third-generation solution (f~1) of
the Backlund procedure as indicated in Fig. 1.5. According to the permut-
ability theorem,

(f~1) = U\2) + 4tan -1 [ (:: ~ ::) tan ~ ((f~1) - (f~2»)], (1.70)

where

U\2) = 4 tan - 1 eV 2, (1.71)

(1.73)

(1.72)(1) _ 4 -1 [(a1 + a2) sinh !(V1 - V2)]
U2 - tan l'
. a1 - a2 cosh 2(V1 + V2)

(2) _ 4 -1 [(a2 + a3) sinh !(V2 - V3)]
U2 - tan l'

a2 - a3 cosh 2(V2 + V3)

The constraints a1 < 0, a2 > 0, 0 < a3 < a2 on the Backlund parameters
ai' i = 1,2,3, may be shown to generate a 6n pulse (Lamb [21]). The decom-
position of such a pulse is illustrated in Fig. 1.6.

As noted earlier, the decomposition of a 6n pulse into three 2n pulses has
been observed in Rb vapor by Gibbs and Slusher [116], who obtained pulse
profiles similar to those shown in Fig. 1.6.
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Fig. 1.6 Decomposition of a 6rc pulse.
(Lamb [21].)

T

2Nn Pulse

On introduction of the notation

t/Jk,j+ 1 = lEBaik,j' (1.74)

t/Jk+ l,j = lEBakt/Jk,j (1.75)

where lEBa is the Backlund transformation associated with the parameter
)

aj, iteration of the procedure indicated above may be used to generate
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expressions (J = l/Ji,j for 2Nn pulses via the following relations (Barnard [22]):

,/"+1' = 00/ L,1 ,
,I" , = 4 tan - 1 e" +y,0/ 1,1 , i > 0, (1.76)

i > i,

l/Ji,j = l/Ji+l,j-l + 4tan- 1 [kijtant(l/Ji,j-l -l/Ji+d],
k ij = ta, + aN(ai - a), (-I)iai < (-I)jaj, j> i,

while the associated electric field amplitude is given by

- - + k 1 + gt {- -}8ij= 8i+ 1,j-l ijl k2 2 8i,j-l - 8i+ 1,j,+ ijgij

where

(1.77)

(1.78)

gij = tan[t(l/Jj,j-l -l/Ji+dJ. (1.79)

In the above, Yi is an arbitrary constant of integration associated with the
initial location of the first generation solution l/Ji,i'

The Bianchi diagram descriptive of the generation ofthe 12n pulse solution
is given in Fig. 1.7. The areas of the pulse envelopes associated with the
intermediate solutions are indicated. The decomposition of the 12n pulse
solution as given by the relations (1.76)-(1.79) is exhibited in Fig. 1.8.

Fig. 1.7 Sequence of Backlund transformations for generation of 1271 pulse. (Barnard [22].)
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6.0 31'3.0 34' 1.6
axjc:O.O 32:-2.5 35' 1.0

E3.0 33: 2.2 36:-0.4
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aT

6.0 ax/c:200.0

E 3.0

0 ~~
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Fig. 1.8 l2n pulse decomposition. (Barnard [22].)

1.4 PROPAGATION OF MAGNETIC FLUX THROUGH A LONG
JOSEPHSON JUNCTION. AN ELLIPTIC ANALOG OF THE 1 + 1
SINE-GORDON EQUATION. GENERATION OF SOLUTIONS VIA A
BACKLUND TRANSFORMATION

The Backlund transformation treated in the two preceding sections is
such that it leaves the I + I sine-Gordon equation invariant. A Backlund
transformation has been introduced recently by Leibbrandt [25-27] for
an elliptic analog of this 1 + I equation. This Backlund transformation
however, rather than leaving the nonlinear equation invariant, maps it to
an associated nonlinear equation: A permutability theorem is available
for the construction of solutions to both nonlinear equations.

We commence our discussion of the two-dimensional analog of (1.18)
with its derivation in connection with the steady propagation of magnetic
flux along a long Josephson junction (Leibbrandt [25]).

A Josephson junction consists of two superconducting metals separated
by a very thin nonsuperconducting barrier, here taken to occupy the region

{-oo < x ' < +oo} x{-oo < x2 < +oo} x {-b/2::; x 3
::; bI2}.

The two superconductors are assumed to occupy the regions x 3 < - b/2
and x 3 > bl2 (see Fig. 1.9).

The key quantity in the macroscopic description of the Josephson effect
is the relative phase ¢* := ¢1 - ¢2 between the superconducting metals I, II
which causes the Josephson tunneling current to flow across the nonsuper-
conducting barrier.

IfH = (H 1
, H 2

) is the magnetic field strength (assumed to be independent
of x 3 and t) and if V(xG

, t), a = I, 2, is the potential difference across the
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Superconductor II
Non-superconducting x3< - b/2

barrier
Fig.1.9 A Josephson junction.

barrier, then the basic equations descriptive of the Josephson effect are
(Josephson [6])

together with

o¢*/ot = 2eV/h,

o¢*/ox l = (2ed/hc)H2,

a¢*/ox2 = (-2ed/hc)H I
,

(1.80)

(1.81)

(1.82)

i, = jo(xt, x 2
) sin ¢*, (1.83)

where the latter gives the Josephson current per unit area across the barrier.
Here, e is the electron charge, c the speed of light in vacuo while d = Al +
A2 + b, where AI> A2 denote, in turn, the London penetration depths for
metals I and II; jo depends on the properties of the barrier.

Substitution of (1.80)-(1.83) into the Maxwell equation

oH2 aH I 4n C av 4n.
axl - ax2 - ~ at = ~ 13 (1.84)

produces the barrier equation

where

Co = c(4nCd)-1/2,

A] = c[h/(8nedjo)] 1/2

(1.85)

(1.86)

(1.87)

denote, respectively, the speed of electromagnetic waves along the surface
of the barrier in the absence of the Josephson current and a measure of the
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Josephson penetration depth; C denotes the capacitance of the barrier per
unit area. Here, and in the sequel, V2 designates the two-dimensional Laplace
operator.

Introduction of the scaling

a = 1,2,

reduces (1.85), in the static case, to the elliptic sine-Gordon equation investi-
gated by Leibbrandt. Solutions of this nonlinear equation here generated
by the Backlund method were termed fluxons by Leibbrandt since they can
be shown to carry an integral number of flux quanta through the Josephson
junction.

The method of generation of fluxon solutions is a consequence of the
following result:

THEOREM 1.3 The equation

V 2ct = sin {ct + Vi} (l.88)

is mapped to the equation

V2 /3 = sinh{/3 + v2
}

by the Backlund transformation

Oct 0/3
oxl = /RI(ct; /3, ox2)

-ovi 0
= ~ - ox2 {fJ + v

2
}

(1.89)

[ {
ct + VI} {/3 + V2}

+ 2 cos ¢ sin -2- cosh -2-

{
ct + VI} {/3 + V

2
} ]- sin ¢ cos -2- sinh -2- ,

Oct ofJ
ox2 = /Rz{ct; /3, ext) (1.90)

-OVI 0
= ox2 + ox l {fJ + v

2
}

+ 2[COS¢cos{ct ~ V

I

} sinh {/3 ~ V

2}

{
ct + VI} {/3 + V

2}]
+ sin ¢ sin -2- cosh -2- ,

x'a = x", a = 1, 2,
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where 1> is a Backlund parameter and Vi, i = 1, 2, are arbitrary harmonic
functions in xu, a = 1, 2. •

The above result may be readily established. Thus, the constituent
Backlund relations of (1.90) yield

(1.91)

together with its complex conjugate

(1.92)

Operation on (1.91)with i1/ox l
- i 0/ox2 and subsequent use ofthe relation

(1.92) show that

V2{OC ~ if3} = sin{OC + Vi -2i( f3 + V
2)}

cost + Vi +2i( f3 + V
2)},

(1.93)

whence, on separation into real and imaginary parts, the nonlinear equations
(1.88) and (1.89) are generated as required. •

The Backlund transformation (1.90) may now be used to generate first-
generation nontrivial oc and f3 solutions. We remark that the transformation
IRq, with Backlund parameter 1> takes a solution a + Vi of (1.88) to a new
solution i(f3 + v2

). This may be represented by

lRq,(oc + Vi) ~ i(f3 + v2
). (1.94)

Thus, in this sense, the mapping IRq, may be regarded as being an auto-
Backlund transformation.

First-Generation IX Solutions

In order to construct a first-generation oc solution oc of (1.88), we start
. I

with a "vacuum" solution f3 + v2 = 0 of (1.89). Substitution of f3 = - [12 into
o 0

(1.90>t,2 yields

{

OC + Ill}
0~1 h + VI} = 2cos1>sin _1-

2
- ,

{

OC + VI}
0~2h+Vl}=2sin1>sin _1_

2
- ,
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a.
1

--------
»:->»>

./

~ -,,__--.Xl

-x2

Fig. 1.10 A one-fluxon solution of V2
0: = sin 0:.

whence

{

IX + VI}
tan _1-4- = c expjx' cos cjJ + x2 sin cjJ}

or,

_ 4 -1 { C exp{Xl cos cjJ + x2sin cjJ} - tan(v
1
/4) } (1.95)

~ - tan I + ctan(v 1 /4)exp{x 1 cos cjJ + x2 sin cjJ} ,

where c is a constant of integration. Such a single fluxon solution with
VI = 0 is illustrated in Fig. 1.10.

First-Generation fJ Solutions

To establish a first-generation f3 solution f3 of (1.89), we employ now a
1

"vacuum" solution IX + VI = O' of (1.88) as a starting point. Substitution of
o

IX = - VI into (1.90k2 yields
o



34 1. BACKLUND TRANSFORMATIONS AND NONLINEAR EQUATIONS

{J=
I

so that (Leibbrandt [26])

h
- I { clexp{xlcos¢ + X2Sin¢}-tanh(V2/4)}

4 tan .
1 - c i tanh(v2/4)exp{ x! cos ¢ + x 2sin ¢}

if Xl cos ¢ + x2sin ¢ :s:: 0,

-I {I - c 2coth(v2/4)exp{ Xl cos ¢ + x2sin ¢}}
4c~h .

C2exp{XI cos¢ + x2sm¢} - coth(v2/4)

if Xl cos ¢ + x2sin ¢ > 0,

where ci , i = 1, 2, are arbitrary constants of integration.

(1.96)

Permutability Theorems

Infinite sequences of additional higher generation a and {J solutions may
now be constructed by appeal to the following pair of permutability theorems
due to Leibbrandt. Since they are established similarly, only the second of
the results is demonstrated here.

THEOREM 1.4 If a + VI is a solution of (1.88) and {JU) + v2, j = 1,2, are two
o I

distinct solutions of (1.89) such that

i({J(I) + v2 ) = 1EB",,(a + Vi)
1 0

and i({J(2) + v2 ) = 1EB"'2(a + Vi),
I 0

then there exists a new a solution a + Vi such that
2

oc + Vi = 1EB""IEB",,(oc + VI) = 1EB"'2 1EB",.(aO + Vi),
2 0

given by

{

a + Vi - (« + VI)} {{J(l) + v2
- ({3(2) + V

2)}

2 O' (¢I - ¢2) I Itan 4 = cot 2 tanh 4 '

¢2#¢I±Nn, N=O,1,2, .... • (1.97)

THEOREM 1.5 If {J + v 2 is a solution of (1.89) and aU) + VI, j = 1,2, are two
o I

distinct solutions of (1.88) such that a(I) + VI = ilEBu ,({3 + v2
) and (pI +

I 0 1

VI = ilEB
u 2({J

+ v 2), then there exists a new {J solution {J + v
2 such that

o 2

{J + v2 = lEB u,lEBu 2({J + v2) = lEBu 2IEB u ,({3 + v2)
2 0 0
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given by

{

f3 + v2
- (13 + V

2)} (J _ (J {1X(2) + v1 - (1X(1) + V
1)}

tanh 2 4 0 = cot ( 12 2) tan 1 4 1

N=0,1,2, .... • (1.98)

(1.99)

The derivation of the preceding result is given by Leibbrandt [26]. It is
as follows:

The relations IXU) + v1 = B,,{i(f3 + v2
) } , j = 1, 2, yield

1 J 0

{

i(f3 + v2
) - (1X(1) + V

1)}

{o .o} 0 1
ax1 + I ox2 2 '

{

i( f3 + v2
) + (1X(1) + V

1)}

= exp(i(J1)sin 0 2 1 ,

{

i( f3 + v2
) - (1X(2) + V 1)}

{o .o} 0 1

ax1 + I ox2 2

{

i( f3 + v2 ) + (1X(2) + V 1))

= exp(io2) sin 0 2 1 l' (1.100)

while application of !B"2 and !B"t to a(l) + v
1 and 1X(2) + v

1 in turn leads to
1 1

further solution classes B",{IX(l) + v1
} ' and B",{1X(2) + v1

} . If these are
1 1

assumed to have nonzero intersection, then if i(f3 + v2 ) is a common element,
2

it follows that

(1.101)

(1.102)
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The combination (1.99) - (1.100) + (1.101) - (1.102) leads to

. [. {i(fJ + V
2) + ~(l) + V

1}
. {~(2) + V

1 + i(~ + V
2)}]

0= exp(ZO"l) SIn 0 2 - SIn 2

[ {

i(fJ + v2
) + cP) + V

1}
{1X(1) + v

1 + i(fJ + V
2)}]

(. l l si 0 1 . 1 2- exp ta2 SIn 2 - sm 2

or

{

i(fJ - fJ) + (IX(!) - 1X(2»)}
( . j si 0 2 1 2exp ZO"l SIn 4

{

i(fJ - fJ) + (1X(2) - 1X(1»)}
( . l si 0 2 1 1= exp UJ2 SIn 4 '

provided that

Use of the relation

now produces the required result, namely,

(1.103)

(1.104)

(1.105)

N =0,1,2, . . .. (1.106)

It may now be readily shown that fJ + v2 as given by the permutability
2

relation (1.106)does indeed satisfy the Backlund relations (1.101)and (1.102).
This completes the demonstration. •

As a consequence of Theorems 1.4 and 1.5, the construction of second-
generation IX and fJ solutions may be conveniently represented, in turn, by
the commutative Bianchi-type diagrams shown in Figs. 1.11 and 1.12.
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4>2 4>2

1 !
i {13(2)+v 2} 4>1 • a +v l

I 2
Fig. 1.1l The Bianchi diagram for second-generation C( solutions.

°2 °2

! 1
a(2)+ vI . UI • i{l3+v2}
I 2

Fig. 1.12 The Bianchi diagram for second-generation fJ solutions.

The permutability properties embodied in Theorems 1.4 and 1.5 may be
used iteratively to generate multiple o: and f3 solutions according to the
sequence of relations

{

( r:t. + v t
) - ( r:t. + VI)}

t
2n 2n- 2

an 4

n = 1,2,3, ... , ¢2n # ¢2n-1 ± Nn, N = 0, 1,2, ... , (1.107)
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{

0(2) + V 1 _ ( 0(1) + V 1)}

(
(J 2n - 1 - (J2n) 2n - 1 2n - 1

= cot 2 tan 4 '

n = 1,2,3, ... , (J2n "# (JZn-l ± Ntt, N = 0, 1,2, (1.108)

respectively. The relations (1.107) and (1.108) can, in turn, be written sym-
bolically in terms of the Backlund operators IRe/>' IR" as

(1.109)

n = 1,2, 3, . ... (1.110)

1.5 THE COLE-HOPF REDUCTION OF BURGERS' EQUATION TO THE
HEAT EQUATION. SOLUTION OF INITIAL VALUE PROBLEMS

The particular Monge-Ampere equation

(1.111)

known as Burgers' equation, represents the simplest equation which incor-
porates both amplitude dispersion and diffusion effects. It seems to have
been first set down by Bateman [174] who obtained a particular solution.
Subsequently, the equation was rederived by Burgers [175] as a simple
model in the theory of turbulence. Lighthill [176] and later Blackstock [177],
on the other hand, used Burgers' equation to describe the propagation of
one-dimensional acoustic signals of moderate amplitude. A derivation of
(1.111) in this context is given by Karpman [178]. A general discussion ofthe
role of (1.111) in the analytic description of small amplitude waves is given
by Whitham [29].

It was shown independently by Cole [40] and Hopf [39] that Burgers'
equation (1.111) may be mapped to the linear heat equation

u~ - VU'll = 0 (1.112)
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by the Backlund transformation

, rD>' ( ") 1,
U 1 = lEDl U, U = -~UU,

-v

39

(1.113)

a = 1,2.

This important result is readily demonstrated. Thus, imposition of the in-
tegrability requirement

and use of the Backlund relations (1.113h.2 give

U2 + UU l - VUl l = 0,

provided that u' =1= 0. On the other hand, the relations (1.113)1,2 yield

U~ - VU'll = :v [uu' + 2VU'1] = 0,

whence the reduction is established.
Lighthill [176] utilized the Cole-Hopf reduction to analyze the com-

petition between nonlinearity and diffusion in a review of aspects of finite
amplitude sound waves involving shock formation, interaction, spreading,
and decay. Here, application to the solution of the initial value problem

U 2 + UU l - VUll = 0, t> 0, U=<I>(x l), t=O (x 2 = r), (1.114)

is summarized. A more detailed account is given by Whitham [29].
Use of the Backlund transformation (1.113) shows that the initial value

problem (1.114) for Burgers' equation corresponds to the initial value
problem

U~ - VU'll = 0,

U' = exp[ - ;V f:' <I>(u)duJ
t> 0,

t = 0,

(1.115)

for the classical heat equation. The solution of this problem is well known,
namely,

, 1 Ioo [1 {I' (Xl - 'tl}]
U.= ,J4nvt _ooexp -2v Jo<l>(u)du- 2t dx, (1.116)
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so that the solution of the original initial value problem (1.114) is

f oo (Xl - r) [ 1 {j' (Xl - r)2}]
_ -2VU'l_ -'fJ t exp -~ Jo<I>(a)da+ 2t dr

U - -, - [{ 1 2}]U 00 1, (x - r]
5-00 exp - 2v fa <I>(a)da + 2t dt

(1.117)

The uniqueness of this solution for suitably restricted <I> (x1
) was demon-

strated by Cole [40]. We now proceed to specific cases.

(i) Initial Step Data In this case, the evolution of a shock wave into a
steady state is considered. The initial conditions are taken to be

<I>(X 1)={ u., x
1

< 0, (1.118)
- Vb Xl > 0,

and substitution into (1.117) yields (Cole [40J)

2sh(V 1X
1/2v) +exp[V 1x

1/2vJerf[(x l + V 1t)/2(vt)1/2J
(1 ) +exp[-U1x

1/2vJerf[(x1-V
1t)/2(vt)1/2J

U X .t = - VI 2 ch(V l X1/2v) + exp[V1X1/2vJ erf'[tx! + V 1t)/2(vt)1/2J
- exp[ -U1x

1/2vJerf[(x l - V 1t)/2(vt)1/2].
(1.119)

For large values of t]» (lx 1
[ i= U1 t), use of the asymptotic result

1· (1)erf z ""' 1 - ~- exp( _Z2) + exp( -Z2)0 -
n 1/2z Z3

in (1.119) shows that the solution approaches the steady state

u = - VI tanh(V1x
1/2v).

In the more general situation when the initial conditions are

Xl < a
Xl> a

(1.120)

(1.121)

introduction of a coordinate system moving with speed U = i(U 3 + V4)
allows the use of the solution (1.119) with U 1 = U 3 - U and the changes
Xl ---+ x! - Vt, u ---+ u - V.

(ii) b Function Initial Data For the single-hump initial condition with

<I>(x 1
) = Ab(x1 ), (1.122)
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(1.117) produces the similarity solution (Whitham [29])

u=tf{~;~}
= tv[ (exp(A/2v) - 1)expl-(xl)2/4vt] ].

i
(1.123)

t J1i + (exp(A/2v) - 1) 1 -r-r-: exp[ - (2] d(
x N'+vt

As A/2v - 0, the diffusion dominates the nonlinearity and (1.123) ap-
proaches the source solution of the classical heat equation, namely,

(1.124)

(1.125)u' = 1 + .jaTtexp[ -(x1f/4vt],

A
u = ~exp[ _(XI )2/4vt].

V 4nvt
Instead of a direct use of the Cole-Hopf reduction, an inverse approach

may be adopted wherein a known solution u' of (1.112) is taken and the
corresponding u under the Backlund transformation (1.113) interpreted as
the solution of an initial value problem for Burgers' equation. Two examples
of this procedure are presented below. The reader is recommended to consult
the works of Whitham [29] and Burgers [117] for additional details.

(iii) N Waves If we select a source solution u' of the heat equation
(1,112), namely,

then the corresponding solution of Burgers' equation under the Backlund
transformation (1.113) is

Xl JaTt exp[ _(X1)2/4vt]
u = - (1.126)

t 1 + JaTtexp[ -(x1 f /4vt]

The latter corresponds to an N'waue, so-called because of its shape (Fig. 1.13).

A/2v: R(to)

t >t o

-1

Fig.1.13 N-wave solution of Burgers' equation. (Whitham [29].)
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The area under the positive phase of the pulse profile is

r u dx' = -2v r U'IU'-l dx! = 2vln{1 + J(iii} = R(t),

where R(t) is a Reynolds number. As t --+ co, Rtr) -+ 0 and diffusion becomes
dominant.

(iv) Periodic Wave Solutions If the initial condition on the heat equa-
tion has a Fourier series expansion

1 [ 00 (2mr:x
1)JU'lt=o = J: 1 + 2 JI cos -A- ,

then the solution of the initial value problem is

(1.127)

(1.128)

(1.130)

u' = ~ [1 + 2 J1 exp{ - 4~:n2vt} cosen~x1) J
The associated solution of Burgers' equation under the Backlund trans-

formation (1.113) is

_ 8nv ~ {-4n
2n2vt}

. (2nnx
1)/[

~ {-4n
2n2vt}

(2nnx
1)J

u - A n~l nexp A2 sin A. 1 + 2 n~l exp A2 cos A '

(1.129)

corresponding to a periodic wave (Whitham [29J).
It is remarked that (1.128) is the Fourier series expansion of the solution

00 {-(X1-nA)2}u' = (4nvt)-1/2 L: exp ----
n=-oo 4vt

of the heat equation (1.112) due to a distribution of heat sources set at a
distance A apart.

Some progress has been made in direct extensions of the Cole-Hopf
reduction, notably by Chu [41J, Sachdev [179J, and Tasso and Teichmann
[180]. On the other hand, a Backlund transformation has yet to be con-
structed for a generalized Burgers' equation recently discussed in the context
of nonlinear acoustics by Parker [181].

Despite the undoubted intrinsic significance of the Cole-Hopf reduction,
perhaps its greatest importance lies in the impetus it gave to the search for
similar Backlund transformations for other nonlinear evolution equations,
notably, in the first instance, the celebrated Korteweg-deVries equation.
This subject is taken up in the following sections.
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1.6 FINITE AMPLITUDE DISPERSIVE WAVES AND
THE KORTEWEG-deVRIES EQUATION

It was in 1844 that Scott-Russell [182J recorded his dramatic observation
of a solitary wave propagating along a canal, "a rounded, smooth and well-
defined heap of water, which continued its course along the channel appar-
ently without change of form or diminution of speed."

Korteweg and deVries [30J, in a subsequent analytic study of the evolution
of long water waves along a canal of rectangular cross section, were led to
introduce the model equation that now bears their names, viz.,

(1.131)

Here, u represents surface elevation above the equilibrium level I, g is the
gravitational constant and (J =!P - (Tl/pg), where T is the surface capillary
tension and p is the density of the fluid; IJ( is a parameter associated with
the underlying motion of the medium.

In 1960, a Korteweg-deVries equation was rederived in an analysis of
collision-free hydromagnetic waves by Gardner and Morikawa [31]' Since
that time, the Korteweg-deVries equation has been shown to model a
diversity of important finite amplitude dispersive wave phenomena in the
theory of solids, liquids, gases, and plasmas. Review articles by Jeffrey and
Kakutani [183J, and Miura [184J have been devoted to the topic, while
additional details are given in [185-187]. Kruskal and Zabusky [32, 188]
showed that the Fermi-Pasta-Ulam problem [189J associated with the
propagation of longitudinal waves in a one-dimensional lattice of equal
masses coupled by certain nonlinear springs is modeled by the Korteweg-
deVries equation. In plasma physics, its application to the analysis of finite
amplitude waves in a low-density plasma was noted by Berezin and Karpman
[190, 191] while Washimi and Taniuti [34] used the Korteweg-deVries
equation to model the transmission of ion-acoustic waves in a cold plasma.
On the other hand, Shen [192] derived the Korteweg-deVries equation in
connection with the propagation of three-dimensional waves in channels of
arbitrary cross section, while its relevance to the theory of rotating fluids was
described by Leibovich [193]. Its occurrence in the analysis of pressure waves
in liquid-gas bubble mixtures has been documented by Wijngaarden [194]
whereas its application in the nonlinear theory of longitudinal dispersive
waves in elastic rods and in the context ofthermally excited phonon packets
in low-temperature nonlinear crystals has been set out by Nariboli [195] and
Tappert and Varma [196], respectively.

In more general discussions, Su and Gardner [38], Taniuti and Wei [197J
have demonstrated that a large class of nonlinear evolution equations may
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be reduced to consideration of the Korteweg-deVries equation. Thus, it may
be regarded as an important canonical form.

The rich tapestry of physical applications of the Korteweg-deVries equa-
tion is apparent. That this important nonlinear equation admits a Backlund
transformation is as remarkable as the consequences thereof. Thus; not only
can the Backlund transformation be used to generate multi-soliton solutions
of the Korteweg-deVries equation, but it may also be adduced to construct
both the associated inverse scattering problem and a multiplicity of conserva-
tion laws. Here, the Korteweg-deVries equation is derived in the context of
shallow-water wave theory: the presentation is based on that given by
Whitham [29]. In the following section, a Backlund transformation is con-
structed by the Clairin procedure as described by Lamb [35]. Multi-soliton
solutions of the Korteweg-deVries equation are thereby generated as a
consequence of a permutability theorem.

The Navier-Stokes equations governing the motion of an inviscid incom-
pressible fluid under a constant gravitational field are

V· q = 0,

p{qt + (q. V)} = -Vp - pg,

(1.132)

(1.133)

where q = (u, v, w) is the velocity vector, p is the water density, and g is the
gravitational acceleration vector. The Korteweg-deVries water wave equa-
tion emerges out of a boundary value problem for this system in a manner
now described.

In water wave theory, problems typically are concerned with situations
where there is propagation into regions with no initial vorticity. Thus, any
subsequent vorticity will only derive out of diffusion from boundaries where
the effects of viscosity are important and there is formation of boundary
layers. If the latter are thin in comparison with the depth, then over times
that are not too large, the effect of boundary layers on the wave motion may be
neglected, whence it may be assumed that the irrotationality condition

V x q = 0, (1.134)

applies in addition to (1.132) and (1.133). However, it should be noted that a
long-time analysis should take account ofthe boundary layer (Phillips [198]).
Moreover, the present analysis only has validity up to the occurrence of wave
breaking since strong shear layers are then formed and vorticity is transmitted
into the main body of the fluid with an accompanying onset of turbulence.

The body of water is assumed to be bounded above by air, with the inter-
face given by

<1>(x, y, Z, t) = 0. (1.135)
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Thus, since there is no transport across the boundary, the velocity of the
fluid normal to (1.135) relative to the velocity of the boundary normal to
itself must be zero, whence

V<I> { - <I>r }
IV<I>I • q - IV<I>I = 0,

so that,

<I>r + q . V<I> = O.

In particular, if the interface is described by

z = ((x, y, t),

where the z axis is taken vertically upward, then we may set

<I>(x, y, z, t) == ((x, y, t) - z,

whence the kinematic boundary condition becomes

(1.136)

(1.137)

(1.138)

at z = ((x, y, t). (1.139)

In the absence of surface tension, the water and atmospheric pressure must
balance on z = ((x, y, t). It is usual to assume that the change in the air
pressure due to the motion of the water wave is negligible, whence the air
pressure may be approximated by its undisturbed value. Accordingly,

P = Po on z = ((x, y, t), (1.140)

where P is the water pressure and Po is the constant pressure in the undis-
turbed atmosphere.

If the lower boundary of the water region is taken to be both rigid and
impermeable, the appropriate boundary condition requires that the normal
velocity of the fluid vanish at the boundary, so that

n r q = 0 (1.141)

there.
The irrotationality condition (1.134)allows the introduction of a potential

¢*(x, y, z, t) such that

q =V¢*, (1.142)

whence on substitution in the equation of motion (1.133) and integration, a
Bernoulli integral

p{¢i + t(v</l*f + gz} = Po - P + plEB(t) (1.143)
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is obtained. On introduction of a new potential

cP = cP* - it IR(0") do,Jto
the relation (1.143) reduces to

p{cPt + HVcP)2 + gz} = Po - P,

and the boundary condition (1.140) becomes

(1.144)

on z = ((x, y, t), (1.145)

while the continuity requirement (1.132) shows that

'l,72 cP = o.
In addition, if the lower boundary is given by

z = -h*(x, Y),

(1.146)

(1.147)

then condition (1.141) yields

cPxh: + cP yh: + cPz = 0 at z = - h*(x, y). (1.148)

Thus to summarize, it is required to solve

-h* < z < (, (1.149)

(1.150)

subject to the boundary conditions

i, + cPx(x + cPy(y - cPz = o} r(
1 2 2 2 at z = ., x, y, t),

cPt + 2{cPx + cPy + cPz} + g( =0 0

cPxh: + cPyh: + cPz = 0 at z = - h*(x, y), (1.151)

augmented by the appropriate initial conditions.
Attention is now restricted to the case of two-dimensional gravity waves

propagating on the free surface of a layer of water bounded below by a
horizontal, plane, impervious, and rigid base. It is convenient to introduce
the vertical translation z --+ z + h* so that the lower boundary becomes
z = O. Thus, we obtain the moving boundary value problem consisting of
Laplace's equation

o< z < h(x, t),cPxx + cPzz = 0,

subject to the boundary conditions

ht + cPxhx - cPz = O} at z = h(x, t),
cPt + HcP; + cP;} + g(h - h*) = 0

cPz = 0 at z = 0

(h:= ( + h*),

(1.152)

(1.153)

(1.154)
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z

z:h(x,t)

Fig. 1.14 Geometric configuration for two-dimensional gravity waves.

and appropriate initial conditions. The geometric configuration is shown in
Fig. 1.14.

In the case of small perturbations on water initially at rest, the linearized
version of the boundary value problem (1.152)-(1.154) reduces to con-
sideration of

together with

¢xx + ¢zz = 0, O<z<h*, (1.155)

ht - ¢z = O} at z = h*,
¢t + g(h - h*) = 0

¢z = 0 at z = 0,

(1.156)

(1.157)

where it is noted that the conditions at the free surface z = h(x, t) are applied
at the undistributed surface position z = h*. The system (1.155)-(1.157) is to
be augmented by appropriate initial conditions.

On elimination of h in (1.156), we obtain

¢tt + g¢z = 0 at z=h*; (1.158)

whence a linear boundary value problem for ¢ alone is derived. Once ¢ has
been determined, the free surface is given by

z = h(x,t) = h* - g-l¢t(x,h*,t).

Sinusoidal solutions
¢(x, z, t) = Z(z)ei(kx - wt),

h(x, t) - h* = Hei(kx-wt)

(1.159)

(1.160)

(1.161)

that are appropriate to horizontal wave propagation are now sought.
Substitution of (1.160) into (1.155) yields

Z" - k2Z = 0, (1.162)
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and combination of this requirement with condition (1.157) shows that

Z(z) = Z(O)cosh(kz). (1.163)

Moreover, (1.159)and (1.161), together with (1.160) and (1.163), yield

H = (iw/g)Z(h*),
whence

4>= -igH cosh(kz) ei(kx-Wl)
w cosh(kh*) ,

h = Hei(kx-wl) + h*.

The remaining condition (1.158) provides the dispersion relation

w2 = gk tanh(kh*),

(1.164)

(1.165)

(1.166)

connecting the wave frequency w = 2n/T and wave number k = w/Vp = 2n/A
(namely, the number of cycles per unit distance). Here, in the usual notation,
T is the wave period, Vp = w/k is the wave speed with which the disturbance
propagates to the right, while A = Vp T is the wave length (that is, the distance
between successive wave crests); H/A is called the wave steepness, while
e= kx - wt is known as the phase of the motion.

In general, associated with a dispersion relation w = w(k) such as (1.166),
the notion of wave group velocity ~ may be introduced according to

(1.167)

If Vp =I ~, as in the present case (excluding the limit k ---+ 0), then the wave is
said to be dispersive. If the dispersion relation w = w(k) has a complex
solution w with im(w) < 0, then there is amplitude attenuation with in-
creasing time. This phenomenon is known as attenuation dissipation. If
im(w) > 0, the wave amplitude increases without bound as time progresses
and the wave, accordingly, is said to exhibit instability. If w = w(k) is real
and aVp/ak =I 0, then there is neither dissipation nor stability, but rather
there is said to be pure dispersion.

In the shallow water wave approximation, the phase speed Vp '" Jgh*
and so is independent of k; hence dispersion effects are not included. If we
proceed to the next approximation wherein we consider weak dispersion
with the requirement that k « 1 corresponding to waves of long wavelength,
then

w2 = gk(kh* - (kh*)3/3) = V6k2 - tV6h*2k4 (Vo = Jgh*), (1.168)

with phase velocity given by

Vp = Vo{1 - ih*2k2 + O(k4)}. (1.169)
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In the sequel, it is convenient to normalize the variables according to

x - xf],

Iz - hla,

z- zfh",

cP - VocPlgla,
t - Votll,
(- (la,

(1.170)

where I is a horizontal length scale for the waves and a is a typical amplitude.
The stretchings in x and z reduce the problem in normalized variables to
(Whitham [29J)

PcPxx + cPzz = ° 0< z < 1 + iX(,

(I + iXcPx(x - p- 1cPz = O}
at z = 1 + iX(,

(+ cPI + HiXcP; + iXP-l cP;} = °
cPz = ° at z = 0,

(1.171)

(1.172)

(1.173)

where IX = afh", P= h*21[2 are measures of the nonlinearity and dispersion,
respectively.

A formal expansion in terms of the small parameter Pis now introduced,
namely

00

cP = L {zmcPm(x,t)}pm,
o

(1.174)

whence, on insertion into (1.171) and subsequent use of the boundary con-
dition (1.173), we see that

00 (_l)mpmz2m a2mcPo
cP -" -- (1.175)-i- 2m! "ax2m'

Substitution of (1.175) into the free surface conditions (1.172) now yields

(I + {(I + iXOcPo,xL - {t(1 + IX03cPO,xxxx
+ tiX(1 + IX02(xcPo,xxx}P + O(P2),

( + cPO,1 + tlXcPL - t(1 + iX02
{ cPO,XXI

+ IXcPo,xcPo,xx; - lX(cPo,xJ2}P + O(P2).

(1.176)

(1.177)

If all the terms in pare neglected, the well-known nonlinear shallow water
equations

(1.178)

(1.179)
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are retrieved." This nondispersive system provides a reasonable approxi-
mation for certain bore, breaker, and hydraulic jump phenomena. On the
other hand, a characteristic analysis of simple wave propagation as described
by the above shallow water model predicts progressive steepening of the
disturbance. This feature, which is known as amplitude dispersion,ultimately
requires that the wave steepens to such an extent that breaking occurs
(Peregrine [199J). However, observation shows that breaking does not
always occur in shallow water situations. This leads us to investigate how a
combination of nonlinear and dispersive effects may act to inhibit breaking.

If, as in Whitham [29J, the approximation is introduced wherein terms in
(JI are retained but terms of O(rx(3) are neglected, then we obtain a Boussinesq-
type system

(, + {(l + rxOw}x - i{3wxxx + O(rx{3,{32) = 0,

WI + rxwwx + C - t{3wxxI + O(rx{3, (32) = O.

(1.180)

(1.181)

Following Whitham, a solution of(1.180) and (1.181) is now sought in the
form

whence, on insertion, we obtain

(I + (x + rx(A·x + 2(U + (3(J1x - i(xxx) + O(rx2 + (32) = 0,

(I + (x + rxP'1+ ((x) + (3(J11 - t(XXI) + O(rx2 + (32) = O.

Since (I = - (x + O(rx, (3), consistency requires

A = -i(2, J1 = !(xx,

so that

where

(1.183)

(1.184)

(1.185)

(1.186)

The latter is a normalized version of the celebrated Korteweg-deVries
equation descriptive of the propagation of a progressive wave in the positive
x direction. The change of variables

(1.187)

leads to the standard form of the Korteweg-deVries equation, namely,

(;. + 6('(~, + (~'x'x' = O. (1.188)

t That similar systems admit Backlund transformations will be established in Chapter 3.
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1.7 THE WAHLQUIST-ESTABROOK INVARIANT TRANSFORMATION
OF THE KORTEWEG-deVRIES EQUATION. THE SOLITON
LADDER

In 1973, Wahlquist and Estabrook [36J published an ingenious auto-
Backlund transformation of the Korteweg-deVries equation. This result was
later derived in another manner by Lamb [35J by means of a natural gener-
alization of the Backlund transformation (1.9) wherein higher derivatives are
included. Thus, transformations of the type

i = 1, ... , 4, a, b, = 1,2 (1.189)

were introduced and used to derive permutability theorems for a series of
important nonlinear evolution equations.! These are discussed in this and
subsequent sections of this chapter. Here, a derivation of the auto-Backlund
transformation ofthe Korteweg-deVries equation is carried out "in extenso."
The method adopted is that of Lamb, and the result is embodied in the
following:

THEOREM 1.6 The Korteweg-deVries equation

V 2 + 6vv I + VIII = 0

is invariant under the Backlund transformation

, flJ>' ( ") f3 I [ 'J 2ul = UJlI U, ul, U = - UI - 2" U - U ,

U2= 1B2(U, UI , Ull , U2 ; U',U'I,U'l1)

= -U 2 + [u - U'J[Ull - U'llJ - 2[ui + utU't + u'/],

(1.190)

(1.191)

a = 1,2,

where

u(xa ) := t~ v(X,x2)dX,

and f3 is an arbitrary Backlund parameter. •

(1.192)

In order to construct the Backlund transformation it is convenient to
proceed in terms of the integral of the pulse profile. Thus, on introduction of
(1.192) into the Korteweg-deVries equation (1.190) and subsequent inte-
gration, we obtain

(1.193)

t Systematic extension to include higher order derivatives is introduced in Chapter 2, where a
theory of Backlund transformations is established based on a jet-bundle formalism.
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where <I>(x2
) is arbitrary. The change of variable

I X 2

U ~ U - _ 00 <I>(X)dX

reduces (1.193) to

U2 + 3ui + UlII = O.

A Backlund transformation of the type

(1.194)

(1.195)

u, = IRj(u, ujk; u', uj, Ujk)'

x'a = x", a = 1, 2,
i,j,k= 1,2,

(1.196)

(1.197)

is now sought for (1.195) rather than for (1.190). In order that the integra-
bility condition

Q = GIRl _ GIR2 = 0
GX 2 GX 1

should not introduce derivatives that are absent in (1.195), the Backlund
transformation must be specialized to the form

U I = IRI(u; u',u'd,

U2 = 1R2(u, U1I; u, U'b u~, U'l d, (1.198)

Moreover,

a = 1,2.

(1.200)

so that Ull can be expressed entirely in terms of u, u', U'l, and u'll in 1R 2 •

The integrability condition (1.197) now requires that

[
GIR I G1R 2] , aIR I aIR I ,

Q = Gu'l - GU~ Ul2 + au 1EB 2 + au' U2

aIR2 aIR 2 , GIR 2 , GIR 2 , '2
- -1R1 - -,Ul - -,Ull + -,- [U2 + 3UI ] = 0, (1.199)

GU GU aUI GUll

an immediate consequence of which is that

GIRl _ aIR2 = O.
aU'I au~

Hence,
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so that

53

(1.201)

(1.202)

The particular solution

IR I = f311u'1 + f312(U,U'),

1R 2 = f311U~ + f321(U, U')U'll + f322(U, u')u'?

+ f323(U, U')U'I + f324(U, u'), (f311 = const),

of(1.201) is now introduced, and substitution back into (1.199) produces the
following overdetermined system for the f3;/

2f322 + f311f321,u + f321,u' = 0,

f321 + f311f312,u + f312,u' = 0,

f323 + f312f321,u - f321f312,u = 0,

f322f312,u - f312f322,u + 3f321 - f311f323,u - f323,u' = 0, (1.203)

f323f312,u - f312f323,u - f324,u' - f311f324,u = 0,

f311f322,u + f322,u' = 0,

f3 24f312,u - f312f3 24,u = O.

We now impose the requirement that U be a solution of (1.195); it is
recalled that the corresponding condition for u' has already been used in
(1.199). A routine calculation shows that

Ull i = f311 U;ll - f32I U;1 + 2f322U;Z
+ [2f311 f312f312,uu + 2f312f312,uu'

+ f312,u{f311f312,u + f312,u·}]U'1

+ (f3d2f312,uu + f3df312,Y'

whence, on substitution into (1.195), the following additional requirements
on the f3ij emerge:

f322 - f311 + (f311)2 = 0,

f311f312,uu + 2f311 + f312.uu' = 0, (1.204)

(f3d2f312,uu + f312(f312,u)2 + f324 + 3(f3d2 = O.

The combined system (1.203)-(1.204) is readily seen to admit the particular
solution

f311 = -1,

f322 = -2,

f312 = f3 - Hu - U']2,

f323 = 2f3 + [u - U']2,

f321 = -2[u - u'],

f324 = f3[(u - U')2 - 2f3],
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where /3 is an arbitrary Backlund parameter. Substitution into (1.202) now
produces the auto-Backlund transformation of(1.195) as set out by Wahlquist
and Estabrook [36]. Moreover, use of the Backlund relation

, /3 I [ ']2U I = - U I - 2" U - U

yields

Ull l + U'lll = -[u - U'][Ull - U'll] - [UI - U'I]2,

which equation, together with (1.195) and its primed counterpart, shows that

u~ = -U2+ [u - U'][Ull - U'll] - 2[ui + UIU'I + un;

whence the Backlund transformation is obtained in the form given by Lamb
[35]. •

The Wahlquist-Estabrook transformation leads to the following permut-
ability theorem whereby an infinite sequence of solutions of the Korteweg-
deVries equation may be generated from a known solution:

THEOREM 1.7 H up, = IRp,uo, i = 1,2, are solutions of (1.195) that are
generated by means of the Backlund transformation (1.191) from a known
solution Uo via, in turn, the Backlund parameters /3 = /3i' i = 1,2, then a new
solution <jJ is given by

<jJ = Uo + 2{/31 - /32}/{Up, - up,},

where <jJ = IRp,IRp2UO = IRp2IRp,Uo' •

(1.205)

The above result is a simple consequence of the Backlund transformation
(1.191). Thus the latter yields

UO• 1 + Up,.1 = /31 - Huo - UpJ2,

UO• I + Up2.1 = /32 - Huo- Up2}2,

Up,,1 + up,P2.1 = /32 - t{up, - Up,P2V,

Up2.1 + UP2P,.1 = /31 - HUP2 - Up2PJ2

(1.206)

(1.207)

(1.208)

(1.209)

(Up,,) := oUP.lox),

where Up,P2 : = IRp2IRp,Uo, up2P, : = lEBp,lRp2uo. Hit is assumed that <jJ exists such
that <jJ = Up,P2 = uP2P" then the operations (1.206) - (1.207) and (1.208) -
(1.209) produce, in turn,

Up,,1 - up2• 1 = /31 - /32 + Hup, - Up2}{2uO - Up, - Up,},

Up,,1 - Up2• 1 = /32 - /31 + HUP2 - up,}{up, + uP2 - 2<jJ}.

(1.210)

(1.211)
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(1.212)

Subtraction of (1.210) from (1.211) now produces the required expression

¢ = Uo + 2{{31 - {32}/{u p1 - up,},

and it is readily verified that this is indeed a solution of (1.195). •

In Theorem 1.7,Uo represents an arbitrary solution of(1.195). Accordingly,
the more general recursion relation

u(n) = u(n-2) + 2{{3n - {3n-d/{u(n-l)' - u(n-l)},

n> 1, u(o) = UO,

is immediate, where the subscript (n) denotes the set of n parameters
{{31"'" {3n}, while the subscript (n)' denotes {{31"'" {3n-l> {3n+d·

With n = 3 in (1.212), we obtain

Up,PZP3 = up, + 2{{33 - P2}/{up,P3 - up,pz},

which expression may be written entirely in terms of first-generation solutions
as

= P1Up,(Upz - u( 3) + {32Upz(Up3 - upJ + {33Up3(Up, - u pz) (1213)
Up,PZP3 {3 {3 . .

l(Upz - u( 3) + 2(Up3 - upJ + {33(Up, - up,)

Corresponding to n = 4, Wahlquist and Estabrook [36] recorded the
relation

where

N P,PZP3P4 +N PZP3P,P4 +N P,P3P4PZ +N P3P4P,PZ
+N P,P4PZP3 +N P4PZP,P3

DptpzP3P4 +DpZP3P,P4 +D p,P3P4PZ
(1.214)

N ppPqPrPs: = Pp{3q({3p - Pq)(uPr - up), (1.215)

DpppqPrPs:= (Pp{3q + Pr{3s)(upp - up)(uPr - up). (1.216)

It is remarkable that the hierarchy of solutions of the Korteweg-deVries
equation, as generated by the theorem of permutability with starting solution
Uo = 0, correspond to multi-soliton pulses. Thus Zabusky and Kruskal [188],
in a computer study ofthe Korteweg-deVries equation, had earlier predicted
the existence of solitary waves with the extraordinary property that they
asymptotically preserve their shape and velocity upon collision with other
solitary waves, emerging with no more than a phase shift. Such solitary
waves are termed solitons. A wide variety of nonlinear evolution equations
have now been shown to admit soliton solutions and the literature on the
subject is now extensive. An account of recent developments in soliton theory
is to be found, for example, in Lonngren and Scott [187]. An illustration of
soliton typical interaction given in that text is reproduced in Fig. 1.15.
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Fig. 1.15 Numerical observation of the collision oftwo solitons (a) "Overtaking"; (b) "Head-

on."(Daikoku et al. [200].)

Hirota [118J introduced a bilinear operator method whereby an n-soliton
solution of the Korteweg-deVries equation may be constructed. That an
identical result may be obtained by means of the permutability theorem
associated with the Backlund method has been recently demonstrated by
Hirota and Satsuma [201]. Indeed this and other similar results indicate a
strong connection between the existence of solitons and Backlund trans-
formations (Herrmann [202J).

The soliton ladder is initiated by the insertion of the vacuum solution u = 0
in the Backlund relations (1.191), whence

(1.217)
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the regular solution of which is

u' = (2f3)1/2 tanh[(P/2)1/2(x 1 - 2px2)], (1.218)

with associated soliton solution of the Korteweg-deVries equation (1.190)
given by

(1.219)

Hence, the Backlund parameter Pcorresponds to the amplitude of the single
soliton while it also determines its speed 2p.

In view of the invariance of (1.217) under the transformation u' -+ 2P/u',
the system also admits the singular solution

u* = (2p)1/2 coth[(P/2)1/2(XI - 2px2 )] ,

with corresponding solution of the Korteweg-deVries equation

v* = - Pcsch2[(P/2)1/2(XI - 2px2 )].

(1.220)

(1.221)

If the regular solution (1.218) is used as the starting point in the soliton
ladder generated by the recursion relation (1.212), then the only regular
second-generation solution obtained is given by

(1.222)

where U$2 is the singular first-generation solution corresponding to the
parameter P2' Similarly, the regular three-soliton solution is generated via
the theorem of permutability and use of {Up"U$2'Up3}, where PI < P2 < P3
and uP3 is the regular P3 soliton. In general, it may be asserted that in order to
maintain regularity in the multi-soliton solutions as constructed by this
iterative procedure, it is required that Backlund parameters increase mono-
tonically so that

PI < P2 < ... < Pn,
(Wahlquist and Estabrook [36J). An expression for the multi-soliton of
the Korteweg-deVries equation is subsequently presented in Section 1.12.

1.8 AN AUTO-BACKLUND TRANSFORMATION OF THE MODIFIED
KORTEWEG-deVRIES EQUATION. THE PERMUTABILITY
THEOREM AND GENERATION OF SOLUTIONS

The modified Korteweg-deVries equation arises out of the analysis of
nonlinear Alfven waves in a collisionless plasma (Kakutani and Ono [203J).
Further, its connection with acoustic wave propagation in anharmonic
lattices has been described by Zabusky [33]. In Section 1.17 a Backlund
transformation is constructed for a nonlinear lattice equation which, in
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its continuum approximation, includes the sine-Gordon and modified
Korteweg-deVries equation as but special cases. t Here, a procedure anal-
ogous to that adopted in the preceding section for the Korteweg-deVries
equation leads to a Backlund transformation which leaves the modified
Korteweg-deVries equation invariant. The result, which is due to Lamb
[35J, is as follows:

THEOREM 1.8 The modified Korteweg-deVries equation

is invariant under the Backlund transformation

U1 = 1EB1{u; U',U'l) = om'l + psin{u + au'},

Uz = lEBz{u, Ub Ull; U'b U'l1)

= au~ - p[2au~1 cos{u + au'} + 2u'/ sin{u + au'} + P{u l + au~)]

x'" = x' a = 1, 2, a = ± 1,
where

(1.223)

(1.224)

(1.225)u(xa
) : = r, v(X, Xz) dX

and Pis an arbitrary Backlund parameter. •

The above result is readily established. Thus, under the transformation
(1.225), subsequent integration, and incorporation of a translation of the
type (1.194), the equation for the integral of the pulse profile reduces to

uz+2uI+ull l=0. (1.226)

(1.227)

If a Backlund transformation of the form (1.196) is sought for (1.226),
considerations similar to those set out in Theorem 1.6 allow a specialization
of the type (1.202). The restrictions on the Pij in this case consist of the
system (1.203), but with (1.203k6 replaced by

PnP12.u - P12Pn.u - PllPZ3.u - PZ3.u' = 0,

PllPn.u + Pzz.u' - 2PZl = 0,

together with the conditions imposed by the requirement that u satisfy
(1.226), namely,

Pll(Pil - 1) = 0, pzz + 2PilP12 = 0,

2PllPlZ + P12.uu· + PllP12.uu = 0,

PIZ[PIZPIZ.uu + Piz.u + 2Piz] + PZ4 = 0.

(1.228)

t A Backlund transformation and associated permutability theorem have also been developed
by Wadati [294] for a nonlinear lattice described, in the long wave length continuum approxi-
mation, by a combined Korteweg-deVries-modified-Korteweg-deVries equation.
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A routine calculation reveals that the system (1.227)-(1.228) admits the
particular solution (Lamb [35]jf

/3i1 = + 1, /312 = /3 sin{u + /311 u'},
/321 = -2/3/311 cos{u + /311u'}, /322 = -2/3sin{u + /311 u' } , (1.229)

/323 = -2/32/311> /324 = -/33sin{u + /311 U'},

which, on insertion in (1.202), produces the required result.! •

An immediate consequence of the Backlund transformation (1.224) is the
following:

THEOREM 1.9 If up" i = 1,2, represent solutions of (1.226) generated via the
Backlund transformation (1.225) with a starting solution Uo and, in turn,
the Backlund parameters /3 = /3i' i = 1,2, then a new solution ¢ is given by

(1.230)

where ¢ = Iap,lap2uo = Ia p2IaP,UO' •

Application of the Backlund transformation (1.225) with parameters
/3 = /3i' i = 1,2, and starting vacuum solution Uo = 0 produces the first-
generation solutions

where

U = 2 tan - 1ell i
Pi ' (1.231)

(1.232)

and Yi' i = 1,2, are integration constants. The permutability relation (1.230)
now yields

(1.233)

which accords with a solution obtained by Wadati [119] by means of an
inverse scattering formalism.

Multiple soliton solutions of the modified Korteweg-deVries equation
may be constructed either by iteration of the permutability relation (1.230)
or by use of the Hirota method [201, 204].

t Here IX = PII = ± 1, the ambiguity of sign corresponding to the invariance of (1.226) under
the transformation u ---> - u.

I A detailed account of a more general result is presented in Section 1.17.
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1.9 THE MIURA TRANSFORMAnON

Whereas the Backlund transformations set out in the preceding two
sections were invariant transformations of the Korteweg-deVries and modi-
fied Korteweg-devries equations, Miura's celebrated transformation links
these nonlinear equations. The result, here derived by Clairin's classical
procedure as described by Lamb [35J, is as follows:

THEOREM 1.10 The Korteweg-deVries equation

U2 + 6u'U'l + U'll I = 0

and modified Korteweg-deVries equation

U 2 - 6u2uI + Ulli = 0

are linked by the Backlund transformation

UI = IBI(u; u') = ± {u' + u2
} ,

U2 = 1B2(u, UI; u',U'l, U'll) = +U'll - 2{ UU~ + dud,

(1.234)

(1.235)

(1.236)

a = 1,2.

Thus, introduction of the Ansatz

(1.237)

and application of the integrability condition (1.197)yield

_ olB l oIB 2 _ alB l aIBI, aIB 2 IB a1B 2 ,

n - ax2 - ax l - au 1B 2 + au' U2 - au I - ou' U I

so that

(1.238)

(1.239)

(1.240)

02 1B 2 a21B
2 _ a21B

1 a21B
2 _ 0

au'aU'II - au'/ - OU'2 - au'/ - ,
(1.241)
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Integration of (1.244) and use of (1.241) give

a2 1R 1 a2 1R 2 _

-a,2 = -a,2 = a(u),u U I

whence, if we set r:t. = 0,

and
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(1.244)

(1.245)

(1.247)

(1.246)aIR 2 f3 ( ,-a' = 2 u; U,U'II)'
UI

Moreover, (1.240)-(1.242) immediately show that f32 is dependent on u
alone. Accordingly, integration of (1.246) and subsequent appeal to the
relations (1.239) and (1.245) show that

1R 2 = f32(U)U'1 - f31 (U)U'II + r:t.(u, u'),

where r:t.(u, u') is determined by the requirements

a3 1R
QU'u'ul = - au,32

= 0, (1.248)

(1.249)

(1.250)

(1.251)

Thus, as a consequence of (1.247)-(1.249), the Backlund transformation
adopts the reduced form

UI = f31 U' + f33'

U2 = f32 U'1 - f3 1U'll + yf31 U'2 + f34U' + f3s,

where f3i = f3i(U), i = 1, ... , 5", remain to be determined; }' is an arbitrary
constant of integration.

Substitution of the Backlund relations (1.250) back into (1.238) now
produces the following system of equations for the f3i:

fJlf3'2 - f32f3'1 + 2f31(3 + y) = 0,

f31f34 - f34f3'l + y(f33f3'1 - f31f3'3) = 0,

f31f3~ - f3sf3'l + f33f34 - f34f3'3 = 0,

f34 = f32f3'3 - f33f3~, f3sf3'3 - f33f3's = 0,
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(1.252)

while the requirement that the Backlund relations (1.250) produce the
modified Korteweg-deVries equation (1.235) leads to the further set of
conditions

f3z + f3If33 = 0, y + f3If3~ = 0,

2f3If33f3~ + f3If33z - 6f3IUZ+ f34 = 0,

f3';f3~ + f33zf33 - 6UZf33 + f3s = 0,

where, in the derivation of the system (1.252), f3I has been assumed to be a
nonzero constant.

The combined system (1.251)-(1.252) is readily seen to admit the solution

f3I=±I, f3z=-2u, f33=±Uz, f34=+2u z, f3s=O, y=-2,

which, on insertion in (1.250), leads to the required Backlund transformation
(1.236).

Relation (1.236) is known as the Miura transformation which accordingly
represents part of a Backlund transformation.

1.10 A NONLINEAR SCHRODINGER EQUATION

The nonlinear cubic Schrodinger equation

iuz + UII + vuzu = 0 (1.253)

is an important wave evolution model. Thus, it arises in the description of
self-focusing of optical beams in nonlinear media [205-207], modulation of
monochromatic waves [208-211], and the propagation of Langmuir waves
in plasmas [212-214]' It is also related to the Ginzburg-Landau equation in
superconductivity [215], while its occurrence in low temperature physics
has been documented by Tsuzuki [216], and in vortex motion by Hasimoto
[217] and Yuen [218]. Recent results associating (1.253) with the acceleration
of wave packets in weakly inhomogeneous plasmas are to be found in
[219,220].

Equation (1.253) was originally derived in the context of deep water waves
via a spectral method by Zakharov [221] and later, independently, by
Hasimoto and Ono [222] and Davey [223] using multiple scale techniques.
Subsequently, Yuen and Lake [226] rederived the same equation using
Whitham's averaged variational principle. Extensions to two dimensions
and finite depth were made by Benney and Roskes [224] and Davey and
Stewartson [225]. Derivative nonlinear Schrodinger equations have been
investigated in [268-271]'

Here, the relevance of the cubic Schrodinger equation (1.253) to the evolu-
tion of weakly nonlinear deep water gravity wave trains is summarized.
Further, its importance as a canonical form is highlighted by two recent
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results. In the next section, an inverse scattering formalism is introduced
whereby Backlund transformations for a wide class of nonlinear evolution
equations, including (1.253), may be readily constructed.

Deep Water Gravity Waves

Whitham's averaged variational principle shows that the evolution of a
slowly varying weakly nonlinear wave system characterized by wave vector
k, wave amplitude a, and frequency w is governed by the equations

oa
2

0 {ow 2}at + oxi oki a = 0,

(1.254)

(1.255)

where Xi are the spatial coordinates and t is the time. Equations (1.254) and
(1.255) must be augmented by an appropriate dispersion relation for weakly
nonlinear deep-water gravity waves, namely, the Stokes relation

w2 = gk(1 + k2a2
), (1.256)

where k = Ikl is the wave number. Following Yuen and Lake [226J, attention
is confined to a wave train wherein

k = kO + k' = (ko,O) + (k l1
, k ' 2 ),

with Ik'l small. Accordingly, expansion of (1.256) shows that

w(k) = w(k O) + ow (kO)k'i + ~ o~w. (k0)k'ik'i + ...
ok' 2 ok' ok}

where Wo = Jqk",
On introduction of the complex wave envelope

A(x 1
, x 2

, t) = a(x 1
, x 2

, t) exp W(x1
, x 2

, r),

where

(1.257)

(1.258)

(1.259)

oe
-= wo- w
in ' (1.260)
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(1.263)

the governing system (1.254)-(1.255), together with (1.258), lead to the
Daoey-Stewartson equation

{
OA Wo aA} Wo 32 A Wo 02 A 1

i at+2ko axl - 8(ko)2 axl2 +4(kO)2 ax22-:2 WO(kO)2I A I
2
A =0. (1.261)

In the one-dimensional case, the change of variable x'! = Xl - (w?/2ko)t,
t' = t and appropriate rescaling reduces (1.261) to the cubic Schrodinger
equation (1.253).

Slowly Varying Solitary Waves

In a recent paper by Grimshaw [227], a slowly varying solitary wave
solution of the variable coefficient cubic Schrodinger equation

iP2 + A(X2
)V ll + v{x2)lvI2v = 0 (1.262)

was constructed. In particular, it was shown that under the transformation

v = IV/Al l /2uexp{-ii,ulv/AJ(Xl )2},

~ = [v/ A[X l
, a = (l/,uHlv/AI-lv/A[x1=o},

and subject only to the constraint

(1.264)

(1.266)

Eq. (1.262) is transformed to the canonical form

iu; + u~~ ± [ul 2u = 0, (1.265)

where the sign ± corresponds to the sign of the quantity AV;,u is an arbitrary
nonzero constant.

Nonlinear Waves in a Weakly Inhomogeneous Plasma

Zakharov [228] has shown that the analysis of self-modulation of plasma
oscillations in one dimension leads to an equation of the type

.0E a2E 2
I aT + 3z 2 + 2[[EI - IXz]E = 0

for an appropriately nondimensionalized electric field E. That (1.266) is
reducible to the canonical form (1.253) was demonstrated by Chen and Liu
[219]. Thus, it was shown that under the transformation

E = u exp[ - 2ilX~a + iia2a 3
] , z = ~ - 2cxa 2

, T = a, (1.267)

Eq. (1.266) reduces to the cubic Schrodinger equation

iu; + u~~ + 2[UJ2U= O. (1.268)
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This result has recently been used by Motz et al. [441] in the study of the
acceleration and slowing down of nonlinear wave packets in a weakly non-
uniform plasma.

Thus, it is seen that the cubic Schrodinger equation has importance not
only as a basic model for the evolution of the wave envelope of a weakly
nonlinear system with a carrier wave, but also as a canonical form for
associated inhomogeneous systems. In the next section, an auto-Backlund
transformation for the cubic Schrodinger equation is set forth. A permuta-
bility theorem is available, albeit of an implicit nature, whereby solutions
of this and other associated nonlinear equations may, in principle, be
generated.

1.11 BACKLUND TRANSFORMATIONS AND THE AKNS SYSTEM.
AN INVARIANT TRANSFORMATION OF THE CUBIC
SCHRODINGER EQUATION

As in Ablowitz et al. [121], the inverse scattering formalism

OljJ2
ox + AljJ2 = r(x, t)ljJl (1.269)

is introduced wherein the eigenfunctions ljJ l' ljJ 2 evolve in time according to

oljJ l/at = A(x, t; A)ljJ 1 + B(x, t; A)ljJ2,

oljJ210t = C(X,t; A)ljJl - A(x,t; A)ljJ2'

If, as in [121], time invariance of the eigenvalues A is required, then

oA
- = qC - rB
ox '

oB _ 2AB = oq _ 2Aq
ox in '

ec or
;;- + 2AC = -0 + 2Ar.
uX . t

(1.270)

(1.271)

Specializations of A, B, and C lead to members of the AKNS system of
nonlinear evolution equations amenable to the inverse scattering method
[120, 121,260, 308]' t The link between the latter technique and the construc-
tion of Backlund transformations is well documented": it will be alluded

t The formalism has recently been extended to embrace further important nonlinear evolution
equations [264, 272, 273].

I Recent accounts have been given by Konope1chenko [231] and Calogero [309].
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(1.272)

to again both in Section 1.14 in connection with Chen's method and in the
next chapter in a jet-bundle context. Here, our concern is the construction of
certain well-known Backlund transformations by means of the formulation.
The following members of the AKNS system generated by the indicated
specializations of A, B, C, wherein 2 is taken as a constant, are noteworthy:

The Korteweg-deVries Equation

q/ + 6qqx + qxxx = 0

A = -423
- 2Aq - qx' B = -qxx - 22qx - 4A2q - 2q2 ,

C = 422 + 2q, r = - 1.

The Sine-Gordon Equation

UX ! = sin u

1
A = 42 cosu, C

1 .
B = = 42 smu, (1.273)

The Modified Korteweg-deVries Equation

q/ + 6q2qx + qxxx = 0

A = -423 - 22q2 , B = -qxx - 22qx - 422q - 2q3,

C = qxx - 22qx + 422q + 2q3 , r = -q.

The Cubic SchrOdinger Equation

(1.274)

(1.275)

iq, + qxx + 21ql2q = 0

A = 2i22 + ilql2, B = iqx + 2i2q,

C=iQx-2Wj, r=-q.

Wadati et al. [310J have shown that Backlund transformations for sub-
classes of the AKNS system that include the above nonlinear evolution
equations may be readily generated by appeal to an invariance property
contained in a paper by Crum [311Jon associated Sturm-Liouville systems. t

This states that the Sturm-Liouville equation

021jJ2 '2.1, ,I,
- ox 2 + A 'I' 2 = q'f' 2

is mapped to the associated Sturm-Liouville equation

021jJ'
___2 + 22•1, ' = q'.I,'

ox2 '1'2 '1'2'

(1.276)

(1.277)

t A Wronskian representation of N-soliton solutions of the Korteweg-deVries and modified
Korteweg-deVries equations based on Crum's work has been given by Satsuma [312].
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under the transformations

67

(1.278)

In the application of this result, it will prove convenient to introduce T(x, t)
according to

(1.279)

so that the scattering equations (1.269) and (1.270) combine to produce the
Riccati forms

ar
- = 2J.T + q - rr2

ax ' (1.280)

(1.281)

The following three subclasses of the AKNS system are now considered:

Class I (r = -1) In this case, the scattering equations (1.269) lead to
the linear Schrodinger equation (1.276), and under the above invariance
property,

(1.282)

where q = wx ' q' = w~. On substitution of r as given by (1.282) into the
Riccati equations (1.280)and (1.281), we obtain the Backlund transformation

w' + W = 2). 2 - l(w - W')2
x x 2, (1.283)

W'I - WI = 4A[!(w' - w) + ).] - 2B + 2C[!(w - w') - ).]2

for this subclass of the AKNS system. In particular, with the specializations
incorporated in (1.272), the relations (1.283) give the Wahlquist-Estabrook
auto-Backlund transformation (1.191) of the Korteweg-deVries equation.

Class II (r = -q) In this case, the scattering equations (1.269) yield

l/Jl,xx - ).2l/Jl = Utb , and CPl,xx - ).2CPl = 0CPl' (1.284)

where

The system (1.284) is invariant under the transformations

whence

l/J'l = INl'

cp'! = I/CPl'

U' = U + 2(logl/J;)xx'

0' = 0 + 2(log cp'!)XX'
(1.285)
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where q = w;; q' = w~. Thus, under the transformations (1.285),

r = cot{t(w' - w)},

and insertion of this expression into the Riccati equations (1.280) and (1.281)
produces the Backlund transformation in the form

W x + w~ = 2Asin{w - w'},
(1.286)

Wt - w; = 2Asin{w' - w} - (B + C)cos{w' - w} + B - C.

The specialization
w = -uI2, {3 = 1/2,1.,

together with (1.273), gives the Backlund transformation (1.19) for the
sine-Gordon equation. On the other hand, the choice

w= -u, IX = -1, {3 = 2,1.,

together with (1.274) and use of (1.226), produces the Backlund transforma-
tion (1.224) for the modified Korteweg-deVries equation.

Class III (r =-q) Konno and Wadati [229J constructed a Backlund
transformation for this subclass of the AKNS system via I" and q', which
leave the Riccati equations (1.280) and (1.281) invariant. In particular, the
specializations contained in (1.275) were shown to lead to an auto-Backlund
transformation for the cubic Schrodinger equation, namely,

qx + q~ = {q - q'h/4A2 -Iq + q'1 2,

qt + q; = i{qx - q~}J4A2 -:-Iq + q'I2

i
+:2 {q + q'}[lq + q'I2 + Iq - q'1 2].

(1.287)

Combination of this result with the invariance of the cubic Schrodinger
equation, under the transformations

x* = x - 2kt, t* = t, (1.288)

leads to Lamb's auto-Backlund transformation as generated by Clairin's
procedure. t

If q1 and q2 are solutions of the cubic Schrodinger equation generated by
the Backlund transformation (1.287) from the solution qo and with Backlund
parameters Ai and ,1.2' respectively, and if, in accordance with the usual
Bianchi diagram, q12 = IR A2IR At q o = IR AtIR A2q O' then the Backlund transfor-

t A Backlund transformation for the cubic Schrodinger equation in 2 + I dimensions,
.namely, the Davey-Stewartson equation (1.261), has recently been obtained by Levi, Pilloni
and Santini [267].
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mation (1.287) produces the algebraic perrnutability relation

(qo - qtlJ4Ai -Iqo + ql12 - (qo - q2)J4A~ -Iqo + q21 2

+ (q2 - qdJ4Ai -lq2 + qd2 (1.289)

- (ql - qdJ4A~ -Iql + qd2 =0,

which determines, albeit implicitly, the further solution q12 of the cubic
Schrodinger equation. It is noted that an alternative implicit nonlinear
superposition principle has been given by Gerdzhikov and Kulish [230] in a
recent paper on the derivation of the Backlund transformation for the cubic
nonlinear Schrodinger equation via the Gel'fand-Levitan-Marchenko in-
tegral equation.

In conclusion, we remark that recently Boiti and Pernpinelli [433] have
used an auto-Backlund transformation of the cubic Schrodinger equation
to reveal, via the language of Painleve transcendents, hidden symmetries
of its similarity solutions. Further, if the general stationary solution of the
cubic Schrodinger equation is expressed in terms of the Weierstrass elliptic
p-functions, then an application of the Backlund transformation may be
used to retrieve Bianchi's celebrated formula for the zeros of a fourth order
polynomial in terms of elliptic p-forms (Bianchi [434]). These and other
related results indicate the growing interest in Backlund transformations
in the context of the theory of ordinary differential equations [435 -440].

1.12 THE HIROTA BILINEAR OPERATOR FORMULATION OF
BACKLUND TRANSFORMATIONS. THE BOUSSINESQ
EQUATION. KAUP'S HIGHER ORDER WATER
WAVE EQUATION

Hirota and Satsuma [201] have recently shown that the permutability
theorems for a wide class of nonlinear evolution equations adopt the same
simple structure when written in terms of certain bilinear operators. The
latter formulation was originally adopted by Hirota [118] in connection
with a direct expansion technique for the generation of multi-soliton
solutions. t Here, Hirota's bilinear operator formalism is introduced and used
to derive Backlund transformations associated with both Boussinesq's
equation and Kaup's higher order water wave equation. In subsequent
sections, the same method is used to construct Backlund transformations
for higher order Korteweg-deVries equations, the Kadomtsev-Petviashvili
equation, and the Benjamin-One equation.

The Boussinesq equation [232,237]

Utt - Ux x - 3(u2
).u - Ux x x x = 0,

t A review of the bilinear operator method is given by Hirota in [234].

(1.290)
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like the Korteweg-deVries equation, arises in the analysis of plane gravity
waves but is not restricted to unidirectional wave propagation.

If we set

U = 2(logflxx, t s ». (1.291)

then, on introduction of the Hirota bilinear operators Dx and D, according to

( a a)" ( a 8 )m ID7D';a ob:= -8 --a' -8 --;-I a(t,x)b(t', x') , (1.292)
t t x ox x'=x. ,'=/

we appeal to properties set out in Appendix I in order to associate (1.290)
with a bilinear form. Thus, on use of (1.2) and (1.3), respectively, we see that

Again, from (1.2),

U = f- 2D;f
0 [,

Uxx = f-2D~f" f - 12[j-2D;f 0 f/2] 2,

= f-2D~f 0 f -3u2.

(1.293)

(1.294)

2(logf)tI = f- 2D?!
0 f, (1.295)

whence, on use of (1.293) and (1.294),

2(logf)" - U - 3u2 - Uxx = f- 2[(D; - D; - D~)f o fJ. (1.296)

Accordingly,

2(logf)"xx - Uxx - 3(u2)xx - Uxxxx = ;:2: [;2 (D; - D; - D~)f 0 f1
that is,

Uti - Uxx - 3(u2)xx - Uxxxx = aa:2 [;2 (D; - D; - D~)f 0 f1(1.297)

Hence, if f is a solution of

(D; - D; - D~)f 0 f = 0, (1.298)

then U as given by (1.291) is a solution of the Boussinesq equation.
A Backlund transformation is now established for Eq. (1.298) rather than

(1.290). Thus, relations

(D, + aD;)f "I' - af3ff' = 0,

{(l + 3f3)Dx + D~ + rxD,Dx}f 0 I' = °
(1.299)

(1.300)

are introduced between f and I' and it is shown that, subject to an appro-
priate condition on rx, if f is a solution of (1.298), then so also is 1', and
conversely. Specifically, it is demonstrated that relations (1.299) and (1.300)
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imply that

!P := [(D; - D; - D-;)f 0 fJf'f' - ff[(D; - D; - D;)f' 0 f'J
vanishes, provided that rt 2 = - 3.

Thus, use of the properties (1.4) and (1.5) yields

(D;f 0 f)f'f' - ff(DU' 0 f') = 2DrlDJ 0 f') 0 ff',

(D;f 0 f)f'f' - ff(D;f' 0 f') = 2Dx(Dxf 0 f') 0 ff',

(D;f 0 f)f'1' - ff(D;f' 0 f') = 2Dx(D;f 0 f') 0 ff'

- 6Dx(D;f 0 f') 0 (Dxf 0 ['),

whence
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(1.302)

IP' = 2[Dt(DJ 0 I') 0 ff' - Dx[(Dx + D;)f 0 f'J 0 ff'

+ 3DAD;f 0 f') 0 (Dxf 0 f')]' (1.301)

Now, from (1.299) and (1.300),

DJ 0 f' = rtf3ff' - rtD;f 0 [', (Dx + D;)f 0 f' = - [rtDtDx + 3f3DxJf 0 [',

and on insertion into (1.301), it is seen that

IP' = 2[Dt(rtf3ff' - rtD;f 0 f') 0 ff' + Dx[(rtDtDx + 3f3Dxlf 0 f'J 0 ff'

+ 3Dx(D;f 0 1') 0 (Dxf 0 f')]

= 2[rt[DxCDtDxf 0 f') 0 ff' - Dt(D;f 0 f') 0 ff']

+ 3[DAD;f 0 I' - f3ff') 0 (Dxf 0 f')]],

on use of (1.4).
Finally, from (1.6),

Dx(DtDxf 0 f') 0 ff' - Dt(D~f 0 f') 0 ff' = - DADJ 0 f') 0 (Dxf 0 f'),

whence

IP = -2Dx[(rtDt - 3D;)f 0 f' + 3f3ff'] 0 (Dxf 0 f').

If we now set rt 2 = - 3, then (1.302j yields

IP' = -2rtDx[(Dt + rtD;)f 0 f' - rtf3ff'] 0 (Dxf 0 f') = 0

by virtue of relation (1.299). This completes the demonstration. •

Let fo be a solution of (1.298) and suppose that fl and Jl are solutions of
(1.298) given by the Backlund relations (1.299) and (1.300) with starting
solution f = fo and Backlund parameters 13 = 131 and 13 = 132, respectively.
Let us assume that f2 exists such that f2 = IB p1IBpJ o= IB p2IBpJoso that a
commutative Bianchi diagram may be constructed (Fig. 1.16). This embodies



72 1. BACKLUND TRANSFORMATIONS AND NONLINEAR EQUATIONS

the relations

(Dr + aD;)fo 0 I, = af3dofl' (1.303)
2 ~ ~

(Dr + aDx)fo 0 fl = af3zJOfl' (1.304)

2 - J(Dr + aDx)fl 0 f2 = af31 -J«. (1.305)

(Dr + aD;)fl 0 f2 = af3zJd2' (1.306)

where a2 = - 3. Multiplication of (1.303) by Jd2 and of (1.305) by fofl and
subsequent subtraction yield

(DJo 0 fdJd2 - j~fl(DJl 0 f2)

+ a[(D;fo 0 fdJd2 - fofl(D;Jl 0 f2)J = O. (1.307)

Similarly, (1.304) and (1.306) give

(DJo 0 Jdfd2 - fOJl(DJI 0 f2)

+ a[(D;fo 0 Jl)ftf2 - foJl(D;fl 0 f2)J = O. (1.308)

On use of (1.4) and (1.12), Eqs. (1.307)and (1.308) become

(DJo 0 Jl)fd2 - fOJl(DJl o f2)

+ aDx[(Dxfo 0 f2) 0 fdl + fof2 0 (DxJl 0 fdJ = 0,

(Drfo 0 Jdfd2 _. j~JrlDrfl 0 f2)

+ aDx[(Dxfo 0 f2) 0 fdl + fof2 0 (Dxfl u ll)] = 0,

respectively, so that on subtraction and use of (1.1),

Dx[(fof2) 0 io.t, 0 ldJ = o.
Accordingly,

fof2 = constDxfl 0 Jl' (1.309)

and it is readily demonstrated that /2 as given by (1.309) is indeed a solution
of (1.298).
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More generally,

where

fN-l = fN-l([3I,[32,"" [3N-d, fN = fN([31, [32"'" [3N),

IN = IN([31 , [32' ... , [3N- 1> [3N+ d,
fN+l = fN+l([31>[32,"" [3N-l,[3N,[3N+d

(see Fig. 1.17).
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(1.310)

(1.311)

Relation (1.310) represents the permutability theorem for the Boussinesq
equation in bilinear form. In fact, it may be shown that it is generic for a
wide class of nonlinear evolution equations (Hirota and Satsuma [201]).
Here we show that indeed the same superposition theorem obtains for the
Korteweg-deVries equation. It is then used to generate N-soliton solutions.

If, again, U is introduced as in (1.291), then (1.2) shows that

Ut = ~ [)z DxDJ 0 f1
while from (1.294),

a [1 4 JSuu; + Uxxx = ax f2 Dxf 0 f .

Combination of (1.311)and (1.312)yields

a [1 3 JUt + Guu; + Uxxx = ax f2 DAD t + Dx)f 0 f .

Accordingly, U is a solution of the Korteweg-deVries equation

if f is a solution of the associated bilinear equation

DADt + D~)f 0 f = o.

(1.312)

(1.313)

(1.314)
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Hirota [233J has constructed the auto-Backlund transformation

tD, + 3f3Dx + D~)f 0 I' = 0, (1.315)

(D~ - f3)f 0 I' = 0 (1.316)
for (1.314).The invariance of the latter bilinear equation under the Backlund
relations (1.315) and (1.316) is readily established. Thus, (1.5) and (1.8) show
in turn that

(D;f 0 f)f'f' - ff(D;f' of') = 2DxCD~f a 1') 0 f'f

+ 6Dx(D~f of') 0 (Dxf~ 0 f),

(DxDtf 0 f)f'f' - ff(DxDtf' of') = 2Dx[(Dtf 0 1') 0 f'fJ,

and, on addition of these two relations we obtain

[Dx(Dt + D~)f 0 fJf'f' - ff[DxCD t + D~)f' of'J

= 2Dx[(Dt + D~)f 0 f'J 0 f'f + 6Dx(D~f 0 1') 0 (Dxf' 0 f)

= 2Dx[(Dt + D~)f 0 f'J 0 f'f + 6f3Dx(Dxf 0 1') 0 f'f

= 2Dx[(Dt + 3f3Dx + D~)f 0 f'J 0 f'f = 0.

Consequently,

ff[Dx(Dt + D~)f' of'J = f'f'[DxCDt + D~)f 0 fJ,
so that iff is a solution of(1.314), so is1',and conversely. Thus, the relations
(1.315)and (1.316)do indeed determine an auto-Backlund transformation of
(1.314). The Estabrook-Wahlquist transformation (1.191)for the Korteweg-
deVries equation is readily shown to 'be a consequence of this result for the
bilinear representation.

Letfo be a solution of(1.314) and suppose that fl and I, are new solutions
generated by the Backlund transformation (1.315) and (1.316) with starting
solution f = fo and Backlund parameters f3 = f31 and f3 = f32, respectively.
Let us assume that f2 exists such that f2 = IRp,lRp,fo = IR p2lRpJo, whence a
commutative Bianchi diagram may be constructed (Fig. 1.16).

Now (1.316) shows that

D~fo 0 I, = f3dofto

D~fo 0 t. = f3zfOJ1'
2~ ~

Dxf1 0 f2 = f3dd2'

D~f1 0 f2 = f3zfd2'

Multiplication of (1.317) by Jd2 and of (1.319) by fofl
subtraction yield

(1.317)

(1.318)

(1.319)

(1.320)

and subsequent
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or, on use of (1.4),

Dx[(Dxfo 0/2) -i.t, + 10/2 0 io.t, old] = O.

Similarly, (1.318) and (1.320) may be combined to give

Dx[(Dx/l 0 Jtl 0/012 + i.t, 0 (Dxfo 0/2) = O.

Addition of (1.321) and (1.322) shows that

Dx[(fo/2) 0 (Dxfl 0 Jd] = 0,

while subtraction yields
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(1.321)

(1.322)

(1.323)

(1.324)

The relations (1.323) and (1.324) imply, in turn, the alternative super-
posability laws

(1.325)
and

(1.326)

In particular, the permutability theorem (1.205) for the Korteweg-deVries
equation (1.313) may be shown to be a consequence of (1.325). Moreover, the
latter explicit law leads to the same permutability relation

IN-dN+l = constDxfN 0 IN (1.327)

as was obtained for the Boussinesq equation. Furthermore, Hirota and
Satsuma [201] have demonstrated that the same law applies for both the
modified Korteweg-deVries equation and Kadomtsev-Petviashvili equation.
A Backlund transformation and its associated permutability theorem are
constructed for the Kadomtsev-Petviashvili equation in Section 1.14.

N-Soliton Solutions

We now turn to the application of the bilinear Backlund transformation
(1.315)-(1.316) of (1.314) to the generation of N-soliton solutions of the
Korteweg-deVries equation.

Thus, insertion of the vacuum solutionj., = I of (1.314) into the Backlund
relations (1.315) and (1.316) yields

I; + 3f3/~ + I~xx = 0,

on use of the result

(1.328)
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It is readily seen that the linear system (1.328) leads to a nontrivial solution
of(1.314) in the form

I' = exp[kl(x - 4kit) + YI] + exp[ -kl(x - 4kit) - YI] ([3 = ki),
(1.329)

where YI is an arbitrary phase constant.
A routine calculation shows that if

f(x, t) = eax+b(t)g(x, t),

then

(1.330)

(1.332)

(1.333)

DAD t + D~)f 0 f = eZ(ax+b(t))Dx(Dt + D~)g' g,

so that, if g is a solution of (1.314), then so also is.f. Moreover,

U = 2(logf)xx = 2(logg)xx'

so thatf and g generate the same solution of the Korteweg-deVries equation
(1.313). Accordingly,

fl = exp[kl(x - 4kit) + YI]I'(X,t) = 1 + e~l, (1.331)

where

111 = 2kdx - 4kit) + 2YI,

leads to the same solution of (1.313) as does (1.329), namely,

8
z

(~ )U I = 2 axzlog(1 + e~l) ~ 2ki sech ' 2
1

.

Thus, the first-generation Backlund solution represents a one soliton.
Application of the permutability law (1.325) with fa = 1 and

f' = e~1/2 + «v».
J' = e~2/2 + e-~2/2,

~i = 2k j(x - 4kft) + 2Yi, i = 1,2, (1.334)

now leads to a new solution of(1.314), namely,

f2 = const Dxf'· 0 J' = const {f~J' - f'J~},

that is,

/2 = A exp [ -~ (~I + 17Z)J

{
kl + kz kl + kz }

x 1 - k
l

_ k
z

exp(~d + k
l

_ k
z

exp(17z) - exp(171 + 17z) ,

where A is an arbitrary constant.

(1.335)
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If we now define
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(0) _ I (k 1 + k2 )Y1 - og k _ k '
2 1

(0) _ 1 (k 1 + k2 )
Yz - og k

1
- k

2
'

(
k- - k.)2

Aij = log k; + k~ ,
(1.336)

then f~ may be written as

f~ = A exp[ -HiJ1 + iJ2 - yiO) - y~O»)]

x {I + exp(1]l) + exp(1]2) + exp(1]l + 1]2 + A 12 )} ·

Hence,

(1.337)

may be taken as the second-generation Backlund solution of(1.314). It may
be shown to correspond to a two-soliton solution of the Korteweg-deVries
equation (Hirota [118]).

A second application of the permutability law leads to a third-generation
Backlund solution in the form

f3 = 1 + exp(1]d + exp(iJ2) + exp(1]3)

+ exp(1]l + 1]2 + Ad + exp(1]2 + 1]3 + Ad + exp(1]3 + 1]1 + A 3d
+ exp(1]l + 1]2 + 1]3 + A 12 + A 13 + Ad,

{
(3) 3}

1'~'1 exp i~j liilijAij + i~l liiiJi ,

where 2:1'=0,1 here indicates summation over all possible combinations of
li1 = 0, 1, li2 = 0, 1, li3 = 0, 1, while Ll~j denotes summation over all
possible combinations of i and j from 1 to 3 subject to the requirement
i<j.

In general, an Nth-generation Backlund solution may be constructed in
the form

fN = 1'~,1 exp{~ liilijAij + it1 liiry} (1.338)

where LI'=O,l now indicates summation over all possible combinations of
li1 = 0, 1, li2 = 0, 1, ... , liN = 0, 1, while Ll"~T)j designates summation over
all possible combinations of i and j from 1 to N subject to the requirement
i < j. That the expression (1.338) corresponds to an N-soliton solution of the
Korteweg-deVries equation was demonstrated by Hirota [118]. Extensions
to slowly varying solitary waves and cylindrical solitons have been made
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at Y = h + 1'/, (1.339)

possible by recent work of Grimshaw [238] and Hirota [239, 240], respec-
tively, wherein certain variable coefficient Korteweg-deVries equations have
been shown to be reducible to the canonical form (1.313). Indeed, multi-
soliton solutions for a wide class of nonlinear evolution equations adopt the
functional form (1.338) (see Hirota [233]).

In fact, solutions of nonlinear evolution equations other than the Bous-
sinesq equation may be generated based on multi-soliton solutions of the
Backlund relations (1.299) and (1.300). In particular, solutions of a higher
order water wave equation due to Kaup [236] may be so derived in the
manner indicated below.

Thus, consider the propagation of water waves in an infinite narrow
channel of constant mean depth h. The free surface conditions are

1'/T + U1'/x - V = 0
UT + UUx + VVx + 1'/xg - p- 1r1'/xxx = 0

where X is the coordinate parallel to the channel, Y the vertical coordinate,
1'/ the amplitude of the wave, (U, V) are the velocity components, r is the
surface tension, and p the mean density of the inviscid, incompressible fluid.
The motion is assumed to be irrotational so that a velocity potential <1> may
be introduced such that

V<1> = (U, V). (1.340)

On appropriate scaling and expansion in terms of the quantities J and s,
where J is the ratio of depth/wave length and e is the ratio of the wave
amplitude/depth, it emerges that <1> (evaluated at Y = 0)satisfies the equations
(Kaup [236])

'Ttl = <1>xx + J2(t - a)<1>xxxx - e(<1>x'Tt)x + O(J4,eJ2),

tt = <1>t + !e<1>~,

(1.341 )

(1.342)

where a = r/(pgh 2
) and (x, t) are scaled, unitless (X, T) coordinates.

We now return to the Backlund relations (1.299) and (1.300) originally
introduced in association with the Boussinesq equation corresponding to
rt.2 = - 3. It is natural to inquire as to whether or not any other value of rt.

leads to results of interest. In fact, Hirota and Satsuma [235] have shown
that the specialization rt. = 1 has importance in connection both with a
nonlinear Schrodinger equation and with Kaup's higher order water wave
equation. The method is illustrated for the latter case.

Thus, introduction of the change of variables

¢ = log(f'/f),

t/J = log(ff'),

(1.343)

(1.344)
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into the Backlund relations (1.299) and (1.300) yields

</Jt - (X[l/!xx + (</JJ2] + (Xf3 = 0,

(X(l/!xt + </JAt) - (1 + 3f3)</Jx - </Jxxx - 3</Jxl/!xx - (</Jxl 3 = O.

The transformations
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(1.345)

<!l = (-2y/e)</J,

X' = yx,
tt = (- 2/e}l/!xx

t' = yt
(1.346)

(1.347)

(1.348)

(1.349)

together with specializations (X = 1, f3 = 0 now take (1.345) to the Kaup
system

tt = <!It' + te(<!lxl,

nt' = <!lx'x' + ()2(i - a)<!lx'x'x'x' - e(<!lx,n)x"

Hirota and Satsuma [235] demonstrated that the Backlund relations
(1.299) and (1.300) admit N-soliton solutions, wherein f and f' adopt the
usual forms

{
(N) N}

f = 1'~.1 exp i~j AijJ1.iJ1.j + i~l J1.lli ,

{

(Nl N }

f' = 1'~,1 exp i~j AijJ1.iJ1.j + J1 J1.i(t'Ji + ei) ,

both in the case (X2 = - 3 corresponding to the Boussinesq equation and in
the case (X = 1 for Kaup's equation. In the latter instance, the relations (1.343),
(1.346), and (1.348) combine to give a multiparameter solution

2)'{[ {(N) N }]<!l = -- log 2: exp ,2:, AijJ1.iJ1.j + .2: J1.i(t'Ji + ei)
e 1'=0,1 ,<) ,=1

-log[ 2: exp{~, AijJ1.iJ1.j + .£ J1.it'Ji}]}
1'=0,1 i c ] ,=1

of Kaup's nonlinear system (1.347).

1.13 BACKLUND TRANSFORMATIONS FOR HIGHER ORDER
KORTEWEG-deVRIES EQUATIONS

Hierarchies of Korteweg-deVries equations have been investigated both
by Lax [241] and Caudrey et at. [242]. Some attention in the latter paper
was concentrated on the higher order Korteweg-deVries equation (Sawada
and Kotera [245])

(1.350)
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Fig. 1.18 Three plots of u(x, r) against x for t = - 20,0, and 20 which describe a two-soliton

collision for u, + 180u2u
x + 30(uuxxx + uxuxxl + Uxxxxx = O. (Caudrey et al. [242].)

which was shown to have N-soliton solutions. A two-soliton collision is
shown in Fig. 1.18. That (1.350) admits a Backlund transformation was
subsequently demonstrated by Satsuma and Kaup [243J, and it is their
result that we now discuss. t

Thus, a natural higher order generalization of the bilinear representation
(1.314) of the Korteweg-deVries equation (1.313) is the bilinear equation

(1.351)

leading to (1.350). Satsuma and Kaup constructed the auto-Backlund
transformation

(D, - 1£13D; - ~D;J!' 0 f = 0,
(D; - fJ)!' c~ f = 0

(1.352)

(1.353)

of (1.351), where fJ is a Backlund parameter. The method of derivation in
[243J was to show that

[jJ> : = f'f'D~(Dt + D~)f 0 f - ffDADt + D~).f' o!, (1.354)

vanishes if(l.352) and (1.353) hold. Accordingly, on use of (1.8)-(1.10), we see
that

[jJ> = Dx[2Uf) 0 (Dtf' o.f) + iUf) 0 (D~!, o.f)

- 11 (Dxf' o.f) 0 (D~!, o.f) + ? (D;!, o.f) 0 (D;!, o.f)J

+ iD;[U:n c (D;!, o.f) - 3(Dxf' o.f) 0 (D;!, 0 f)J,

whence, on substitution of (1.11),

[jJ> = Dx[2Uf) 0 (Dtff) - 3Uf) c (D~!, o.f)

+ 15(D;!, o.f) 0 (D;!, Q.f)J + 5D;U:n" (D;!, -T» (1.355)

t Backlund transformations for the Lax hierarchy of higher order Korteweg-deVries equa-
tions have recently been constructed by Matsuno [413].
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Insertion of the Backlund relations (1.352) and (1.353) into (1.355) yields

lP = Dx[15f3Uf) a (D;!, 0 f) + 15f3(D;!, 0 f) 0 Uf)J = 0, (1.356)

and the required result is established.
The Backlund transformation (1.352)-(1.353) may be reformulated more

conventionally in terms of the potential

w = fro udx (1.357)

and its derivatives. Thus, introduction of ¢ and l/J, as defined by (1.343) and
(1.344), into (1.352)-(1.353) yields

¢t = !¢xxxxx + ll¢xl/Jxxxx + 15¢xxxl/Jxx + 15(¢xl2¢xxx

+ 4l¢x(l/Jxx)2 + 15(¢xl3l/Jxx + !(¢xl 5 + ?f3l/Jxx + Ilf3(¢x)2, (1.358)

¢xxx + 3¢xl/Jxx + (¢x)3 = 13. (1.359)

Introduction of the relations

¢x = w' - w, (1.360)

l/Jx = w' + w (1.361)

into (1.358) and (1.359) now reduces the Backlund transformation to the
form obtained independently by Dodd and Gibbon [244J via the inverse
scattering formulation, namely,

(w' - w), = H(w' - w)xxxx + 5(w' - w)(w' + w)xxx

+ 15(w' - w)xAw' + w),

+ 15(w' - W)2(W' - w)xx'+ 30(w' - w)(w' + w);

+ 30(w' - W)3(W' + w)x+ 6(w' - wnx, (1.362)

(w' - wL + 3(w' - w)(w' + w)x+ (w' - W)3 = p. (1.363)

In an interesting recent development, Hirota and Ramani [246J have
constructed a Backlund transformation which links another higher order
Korteweg-deVries equation due to Kaup [247J, namely,

with a scaled version of the Sawada-Kotera equation (1.350), viz.,

fit + 45u2u
x + 15(uuxxx + uxuxx) + uxxxxx = O.

(1.364)

(1.365)

Thus, integration of(1.364) and (1.365)with respect to x, under the vanish-
ing boundary conditions u = u= 0 at Ixl = 00, leads to the equations

a, + 15((J~ + (Jx(Jxxx + i(J;x) + (Jxxxxx = 0,

't + 15(,~ + 'x'xxxl + 'xxx)Cx = 0

(1.366)

(1.367)
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for the potentials (J, ' such that

(Jx = 2u,

Introduction of the Miura-type one-sided Backlund transformation

2,x + (Jx - (r - (J)2 = 0

leads to the relation

+ a, + 15((J; + (Jx(Jxxx+ ~ (J';x) + (Jxxxxx]

+ 2(, - (J)['t + 15(,; + 'x'xxJ + 'xxX.<X

- {(Jt + 15((J; + (Jx(Jxxx + ~ (J';x) + (Jxxxxx}] = O.

(1.368)

(1.369)

It follows that if r is a solution of equation (1.367) under the vanishing
boundary condition, then (J satisfying (1.368) is a solution of equation (1.366)
under the vanishing boundary condition. Since N-soliton solutions of(1.365)
have already been obtained in the literature (Sawada and Kotera [245J,
Caudrey et al. [242J), multiparameter solutions of equation (1.364) are now
readily constructed.

In conclusion, we remark that a Miura-type transformation linking scaled
versions of (1.350) and (1.364) has also been derived by Fordy and Gibbons
[248].

1.14 BACKLUND TRANSFORMATIONS IN HIGHER DIMENSIONS.
THE SINE-GORDON EQUATION IN 3 + 1 DIMENSIONS.
THE KADOMTSEV-PETVIASHVILI EQUATION.
THE YANG EQUATIONS

The extension of Backlund transformation theory to higher dimensional
nonlinear evolution equations remains a subject of current research. Recent
work by Leibbrandt [249J, Leibbrandt et al. [392], Christiansen [250, 251J,
Anderson et al. [265], Tenenblat and Terng [253], Case [393] and Wilson
and Swamy [394] has concerned Backlund transformations for the higher
dimensional sine-Gordon equation

[ V2
- :t:]u = sin u, (1.370)
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associated with the propagation of magnetic flux through Josephson tunnel
junctions. Permutability theorems have been established in both the (2 + 1)-
and the (3 + Ij-dimensional cases and multi-soliton solutions of (1.370)
thereby constructed.' Moreover, this work has recently been extended by
Popowicz [254], who derived Backlund transformations and associated
permutability theorems for the 0(3) nonlinear a model in both 2 + 1 and
3 + 1 dimensions (Pohlmeyer [255]).

In an independent development, Chen [257] constructed an auto-
Backlund transformation of a two-dimensional Korteweg-deVries equation

qxt + rxqyy + qxx + (3q2)xx + qxxxx = 0, (1.371)

which describes the propagation of disturbances in a weakly dispersive,
weakly nonlinear medium. Chen's method represents a variant of the pro-
cedure outlined in Section 1.11 for the construction of Backlund transfor-
mations from the inverse scattering formalism. The procedure is based
directly on the Lax equations

Lt/J = At/J,

Mt/J=t/Jn
wherein, Land M are linear operators subject to the constraint

aL/at = -[L,M] = -(LM - ML).

(1.372)

(1.373)

(1.374)

The link between the Lax system and the inverse scattering method has been
discussed by Chen [258]. In particular, it was noted that the AKNS system
corresponds to the Lax system with the specializations

r
:x

L=
r

-q 1- [A B] [t/JI]a' M= , l/t= .
- ax C -A t/J2

(1.375)

In an adaption of a result due to Dryuma [261], a Lax system was con-
structed in [257] for the two-dimensional Korteweg-deVries equation
(1.371) and, following a simple extension of a procedure outlined in [258,
259] for the one-dimensional case, an auto-Backlund transformation was
thereby obtained. An alternative method based on the Hirota bilinear
operator formalism was subsequently presented by Hirota and Satsuma
[201].

Higher dimensional Backlund transformations may also be constructed
for the Yang equations. Thus in recent years there has been much interest

t Ring-shaped quasi-soliton solutions to (1.370) have recently been investigated by Chris-
tiansen and Olsen [252].
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in the study of solutions of the SU(2) Yang-Mills equations in four-
dimensional Euclidean space in the case when the field strengths are self-
dual or anti-self-dual [396-402].t It has been established by Atiyah and
Ward [398] that the problem of constructing the so-called "instanton"
solutions may be converted to a problem in algebraic geometry via a series
of Ansatze. Corrigan et al. [399] showed that these Ansatze are linked by
Backlund transformations for the Yang equations in the R-gauge, while
Belavin and Zakharov [402] used a linear scattering problem to construct
instanton solutions. In a recent paper by Pohlmeyer [401], a formulation
was presented which leads to both the inverse scattering problem of Belavin
and Zakharov and to Backlund transformations for the Yang equations.

Here, an auto-Backlund transformation for the sine-Gordon equation
is presented along with its associated permutability theorem. Two- and four-
soliton solutions of (1.370) are thereby generated.

Next, the derivation of an auto-Backlund transformation for a two-
dimensional Korteweg-deVries equation via the Hirota bilinear formalism
is given. This has the advantage over the Chen method that the resultant
permutability theorem adopts a particularly concise form.

Finally, Pohlmeyer's Backlund transformation for the four-dimensional
Yang equations is recorded:

The sine-Gordon equation in 3 + 1 dimensions

In Section 1.4, it was shown that the sine-Gordon equation in 2 + 0
dimensions admits a Backlund transformation

{
0 ,0 } {r:x. - i f3} " {r:x. + if3}axl + I ox2 -2- = exp[IO] sin -2- (1.376)

that maps a known solution r:x. to a new solution if3 = IB(O)r:x., where 0 is a
real Backlund parameter. Subsequently, this result was extended by both
Leibbrandt [249] and Christiansen [250, 251] to the sine-Gordon equation
in 3 + 1 dimensions. Thus, it was shown that

{

3 02
a2 },2::' ::l il - -a2 u = sin u,=1 uX t

(1.377)

possesses a Backlund transformation

{I O~l + ial 0~2 + ia ; a~3 + a2 ~t}{r:x. ~ i
f3
}

= exp[iOa 1 expj(- icP(2) exp( - Lad]] sin {r:x. ~ i
f3}, (1.378)

t A review of the mathematics of the Yang-Mills theory is given in [403].
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where 0"1' 0"2' 0"3 are the Pauli spin matrices and I is the 2 x 2 identity
matrix. The real Backlund parameters (e, ¢,;;) are restricted to the domains
os es 2n, 0 S ¢ S 2n, - 00 < r < 00, while the real functions a, 13 are
readily shown to satisfy

{

3 a2 a2} a(x l x 2 x3 t) = sin «(x' x 2 x 3 r) (1.379),,--- ,,-, , , , ,
L... -2 2
i=IOX' at f3(X I

, X
2,x3 , t ) = sinhf3(x l,x2,x3, t ), (1.380)

respectively. The matrix equation (1.378) describes, in analogy with (1.376),
a transformation from a to if3 = Ia(e, ¢, r)«.

Single Soliton Solutions

The matrix Backlund equation (1.378) may be written more succinctly as

{ a . } {a - if3 } .' {a + if3 }I ax l + IP -2- = [AI + IA 2J sm -2- , (1.381)

where

[
0 -iJ

0"2 = i 0'

(1.382)

and

A I = I cos e, (1.383)

A - [ sin esin ¢ cosh r (cos ¢ - sin ¢ sinh r) sin eJ (1.384)
2 - ( cos ¢ + sin ¢ sinh r) sin e - sin esin ¢ cosh r .

Hence, on separation of the real and imaginary components in (1.381), we
obtain

I a~1 {~} + p{~} = Al sin(~)cosh(~) - A2COs(~)sinh(~} (1.385)

p{n - I a~l {n = AI cOs(~)sinh(n + A2sin(~)cosh(~} (1.386)

(1.388)

(1.387)

if R s 0,

if R> 0,

The simplest, nontrivial solutions a, 13 of (1.379) and (1.380), respectively,
now emerge by setting first 13 = 130 = 0 and then a = ao = 0 in the Backlund
relations (1.385) and (1.386). These are given by

al(xt,x2,x3
; e,¢,r) = 4 tan-l{aoexpR},

13 ( I 2 3. e» )= {4tan-l{al expR}
I x ,x ,x , .tp,» 4 th- l { R}co al exp
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where

R = Xl cos 0 + x2 sin 0 cos cP + sin 0 sin cP (x3cosh r + t sinh r], (1.389)

and a., i = 0,1, are integration constants. The solution (1.387) corresponds to
a single-soliton solution of (1.379); the f3 solutions, by contrast, lack soliton-
like character.

The Permutability Theorem

Multi-soliton solutions of the 3 + 1 sine-Gordon equation may now be
generated by appeal to the following permutability theorem (Leibbrandt
[249J):

THEOREM 1.11 If 1X 0 is a solution of the 3 + 1 sine-Gordon equation (1.379)
and f3V), j = 1, 2, are two distinct solutions of (1.380) generated via the
Backlund transformation (1.378) according to if3V) = IEB(Oj, cPj, rj)lXo, then a
new solution 1X2(X1,X2,x3,t; 01,02,cPl,cP2,rl,r2) of (1.379) is given alge-
braically by

{

N N } {R(1)> R(2)}"'2 - "'0 Pl - Pl
tan 4 = D 12 tanh 2 '

where

D 12 = ±J(1 + Ld/(I - L 12 )

and

L 1 Z = cosOl cos O2 + sin01 sinOz

x [cos cPl cos cP2 + sin cPl sin cP2 coshlr 1 - r 2 )]. •

(1.390)

(1.391)

(1.392)

The above result has an associated Bianchi diagram as illustrated in
Fig. 1.19. Iteration generates, without additional quadrature, an infinite
sequence of exact 1X2n solutions of the 3 + 1 sine-Gordon equation. However,
in contrast with the 2 + 0 case, there are constraints on the LZn-l, Zn n ~ 2
that represent restrictions on the Backlund parameters and hence on the
solutions that may be constructed by the Backlund transformation method.
The geometrical implications of these constraints have been described
recently by Christiansen [406J, while computational aspects have been in-
vestigated in [392J for the (2 + I)-dimensional analogs of (1.379)-(1.381),
namely,

(1.393)

(1.394)
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ao i 6 j {l )

~.
t8"." '11 . jl81' .,",J

~O
I (3j(2) aZ

Fig. 1.19 The Bianchi diagram for second-generation IX solutions of the 3 + l sine-Gordon
equation. (Leibbrandt [27].)

with associated Backlund transformation

{I a~I + ia 1 a~2 + a2 :t} {O( ~ i
P} = exp[i8rr1exp(Arr3)Jsin {O( ~ i

P} (1.395)

and permutability theorem similar to Theorem 1.12 but with the replacement
L I 2 -+ L I 2 = cos 0 1 cos Oz + sin 01 sin O2 COsh(A I - A2 ) . Leibbrandt et al. [392]
used the permutability theorem to construct a four-soliton solution 0(4 of
(1.393) given by

where

(1.396)

{
P ~ ) - rr I)} _ {O(~+ 1) - O(~)}

tanh -Ds s + 2 tan ,4 . 4

while the two-soliton solutions 0(lJ:) are given by

{
0(lJ: ) - O(O} _ {prj - 13.r+ I)}

tan 4 - Dp,p+ 1 tanh 4 '

where

s = 1,2,

p = 1,2, 3, (1.397)

{
PU

)}tanh -i- = aj exp[x! cos OJ + sin OJ(x2 cosh Aj + t sinh Aj ) ] ,

j = 1,2,3,4.

The structure and time evolution of typical O(z- and 0(4-soliton solutions is
depicted in Figs. 1.20 and 1.21 (Leibbrandt et al. [392]).
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Fig.1.20 Time evolution of a typical two-soliton solution of the 2 + I sine-Gordon equation.
(Leibbrandt et al. [392].)
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Fig. 1.21 Time evolution of a typical four-soliton solution of the 2 + 1 sine-Gordon equa-
tion. (Leibbrandt et al. [392].)
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The Kadomtsev-Petviashvili Equation

We now present a Backlund transformation and associated permutability
theorem for the two-dimensional Korteweg-deVries equation in the form
originally adopted by Kadomtsev and Petviashvili [256J, namely,

qxt + rxqyy + (3q2)xx + qxxxx = 0. (1.398)

This is obtained from (1.371) by the simple change of variables x' = x - t,
t' = t.

It proves convenient to adoptthe Hirota formalism. Thus, the substitution

q = 2(logf)xx, f>O, (1.399)

leads, under the boundary condition q ---+ 0 as Ixl---+ 00, to the bilinear
representation

(DxDt + D; + rxD;)I 0 I = 0, (1.400)

of the Kadomtsev-Petviashvili equation (1.398). Hirota and Satsuma [201J
recently presented an auto-Backlund transformation for (1.400) in the form

(D; - yDy)F 0 I = f3If, (1.401)

tD, + 3f3Dx + D~ + 3yDxDy)F 0 I = 0, (1.402)

where y = ±(rx/3)1/2 and f3 is a Backlund parameter. That relations (1.401)
and (1.402) leave (1.400) invariant is readily demonstrated by means of
standard bilinear operator identities.

Thus, if IP is introduced according to

IP:= {(DxDt + D; +rxD;)I 0 I}If'

- ff{(DxDt + D; + rxD;).f' 0 F}, (1.403)

then (1.4), (1.5), and (1.8) together show that

IP = 2[DADJ 0 F) 0 IF + DAD~I 0 F) 0 IF

+ 3DAD;I a F) a (Dxf' o.f) + rxDy(DyI 0 F) 0 IFJ

= 2[3yDx{(DxDyf 0 F) 0 If + (DyF o.f) 0 (Dxf' 0 In
+ rxDy(DyI a F) 0 IFJ (1.404)

on use of the Backlund relations (1.401) and (1.402). Substitution of (1.401)
into (1.404) and appeal to the identity (1.6) now yield

IP = 2y- 1(3l - rx)Dy(D;I 0 F) 0 If = 0, (1.405)

and the result is established. •

The Backlund relation (1.401)delivers a convenient permutability theorem.
Thus, if Io is a solution of (1.400) and if Il' /1' and I2 are new solutions
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introduced after the manner of Fig. 1.17, then

(D~ - yDy)fl 0 fo = fJddo, (1.406)

(D~ - YDy)ll 0 fo = fJ21do, (1.407)

(D~ - yDy)f2 011 = fJd211' (1.408)

(D~ - yDy)f2 0 fl = fJddl' (1.409)

Multiplication of (1.406) by t.t, and of (1.408) by fofl and subtraction yield

Dx[(Dxfo 0 f2) 0 ftll - fof2 0 (Dxfl 011)]

+ y(Dyfo 0 fl)ld2 - Yfofl(DJl 0 f2) =0, (1.410)

on use of (1.4). Similarly, from (1.407) and (1.409)

Dx[(Dxfo 0 f2) 0 I.I. - fof2 0 (DJI 0 fd]

+ y(Dyfo 0 11)fd2 - Yfoll(Dyfl 0 f2) = 0, (1.411)

and subtraction of (1.411) from (1.410) shows that

DAfof2) 0 (Dxfl 011) = 0, (1.412)

whence we obtain the permutability theorem in the familiar form

fof2 = constDxfl 011' (1.413)

The N-soliton solution of the Kadomtsev-Petviashvili equation (1.398)
may now be generated in the usual functional form (1.337) with appropriate
phase and interaction terms (Satsuma [262], Hirota and Satsuma [201]).
Moreover, Satsuma and Ablowitz [263] have shown that suitable specializa-
tion leads to lump solutions which decayto a uniform state in all directions
(Fig. 1.22).

u
y'

Fig. 1.22.. A lump solution of the Kadomtsev-Petviashvili equation as seen at fixed time.
(Satsuma and Ablowitz [263].)
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The Yang Equations

Backlund transformations for the four-dimensional Yang equations have
recently been established by Corrigan et al. [399J, Brihaye and Nuyts [404J,
and Pohlmeyer [401]. The Pohlmeyer result is recorded below.

Thus, let x ', ... , x4 be coordinates in [R4 and set y = x' + ix", Z = x 3 + ix".
Let M be a four-dimensional Minkowski space with coordinates qO, s', q2,
q3, and metric gab = diag(1, -1, -1, -1). Then Yang's equations may be
written in the form

s :q = 1, (1.414)

qyy + qzz + (qy . qy + qz . qz)q + i[q; qy; qyJ + i[q; qz; qzJ = 0,

(1.415)

where q E M, . denotes the Minkowski inner product q . q = qaq a, qa = gabqb

and [; ;J denotes the triple vector product. Thus, [u; v; wJ is the vector in
M with coordinates [u; v; wJa = eabcdubVcWd, where e

abcd is the Levi-Civita
symbol.

Pohlmeyer's result states that if

where

, ( ') + ( ')"[' . +'. Jqy - q" = - q . qz qq. qy q - I q ,qz qy ,q , (1.416)

q. q = 1, q'. q' = -1, q .q' = 0, (1.417)

then q is a solution of (1.415) whenever q' is a solution of

q~y + q~z - (q~ . qy + q~ . q~)q'

- i[q' ; qy; q~J - i[q' ; q~; q~J = O. (1.418)

It was shown in [401 J that the preceding Backlund transformation may
be used to derive an infinite collection of conservation laws. In the next
chapter it will be viewed in terms of a jet-bundle framework.

1.15 THE BENJAMIN-ONO EQUATION FOR INTERNAL DEEP WATER
WAVES. THE NAKAMURA TRANSFORMATION

The Benjamin-One equation

Ut + Zuu ; + H[uxxJ = 0, (1.419)

where H is the Hilbert transform operator defined by the Cauchy principal
value integral

1 fro j(z)Hj(x):= -P --dz,
n -ooz-x

(1.420)
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was introduced by Benjamin [274] and independently by Ono [276] to
model internal water wave propagation in a deep stratified fluid. Nakamura
[277] has recently constructed a Backlund transformation for (1.419) in
terms of Hirota's bilinear representation.' Moreover, this Backlund trans-
formation was subsequently used, in an ingenious manner, to derive N-
periodic wave and N-soliton solutions of an associated "modified" Benjamin-
Ono equation (Nakamura [278]). Here, Nakamura's results are described,
while in the next section, extension to Joseph's equation for internal wave
propagation in a fluid of finite depth is discussed.

In order to obtain a bilinear representation associated with the Benjamin-
Ono equation (1.419), we set

a
u(x, t) = i ax (log[f'/fJ), (1.421)

where
N

I ex n (x - zn(t)),
n=l

N

f' ex n (x - z~(t)),
n= 1

(1.422)

(1.423)

and zn,z~are complex with im z, > 0, im z~ < OVn,while N E Z+. Accordingly,

whence

.{/~ Ix} . N {II}U=I --- =1 L -----
f' I n=l x-z~ x-zn'

(1.424)

(1.425)i fOC! 1 N {II}Hu=-P -- L --,--- dz.
n - OC! (z - x) n= 1 Z - Zn Z - Zn

In order to evaluate (1.425), a contour C is introduced as in Fig 1.23. The
residue theorem yields

1~ 1 [1 1 ]-2' (--) --, - -- dz = res(z = zn),
m z-x z-z z-z

C n n

x
Fig. 1.23

t A bilinearization of higher order Benjamin-One equations has recently been presented by
Matsuno [275].
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whence

Thus,
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. 1 f X
- ' 1 [1 1 Jhm- -- ------ dz

._02ni -eo z-x z-z~ Z-Zn

.1fl[1 IJ+hm- -- ------ dz
._02ni z - x z - z~ Z - Zn

C2

1 leo 1 [1 1 J 1+lim- -- ------ dz=--.
,_02ni x+, z - X Z - z~ z - Zn X - Zn

_1 pIeo _1_[_I I_JdZ
2ni - 00 Z - x Z - z~ Z - Zn

=_I__ lim _l f _1_[_1_. -_I_JdZ
x - Zn ,_02ni Z - x Z - z~ Z - Zn

C2

1 { 1 f,0 1 '8[1 1 J '8 }= -- - lim - e- e-, , - , eie' dOx- Zn .-0 2ni " x+ ee'8 - z~ x+ ee,8 - Zn

= X ~ Z + ~ [x ~ z' - x~ Z J= ~ [x ~ Z' + x~ Z J, (1.426)
n n n n n

and we see that

c : (1 1) N(1 1)Hu=- L: ni --,+-- = - L: --,+--
n n= 1 X - Zn X - Zn n= 1 X - Zn X - Zn

(1.427)

(1.428)= _[f~ + fxJ = -~ (log[fj]).r f ax
Insertion of (1.421) and (1.428) into the Benjamin-Ono equation (1.419)
shows that

:X[i :t (log[f'/JJ) - :x (log[f'/JJf - ::2 (log[fj])J = 0,

whence on integration with respect to x and choice of the arbitrary function
of time so introduced to be zero, it follows that

a [a J2 a2

i at (log[f'/JJ) - ax (log[f'/JJl - ax2 (log[fj]) = 0,

so that

i(ff; - fft) - ff~x + 2fJx - fjxx = 0. (1.429)
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The latter equation may be rewritten as

[i(f;f - f'ft,) - (f~xf - 2f~fx' + f1x'x')]x'=x, t'=t = 0

or

Consequently,

[[ i ( ~ - :,) -(: - ~a ,)2]f'(X, t)f(x', n] = 0,
ot ot uX uX x'=x, ,'=,

that is,

95

(1.430)

Thus, we conclude that if f and f' are introduced according to relations
(1.422) and (1.423), then if the bilinear condition (1.430)holds, it follows that
u as given by (1.421) is a solution of the Benjamin-Ono equation (1.419).

Suppose that (f,f') is a solution pair of (1.430) and (g, g') is a pair in
similar product form introduced via the Backlund relations

(iDt - 2iADx - D; - Il)f 0 9 = 0,

(W t - 2iADx - D; - Il)f' 0 g' = 0,

(Dx + iA)f 0 g' = ivf'g,

(1.431)

(1.432)

(1.433)

where A, 11, and v are arbitrary parameters. It may be demonstrated that 9
and g' are such that

and accordingly,

(W, - D;)g' 0 9 = 0,

. a
v = I ax (log[g'jg])

(1.434)

(1.435)

gives a new solution of the Benjamin-One equation (1.419). To establish
this result, it is shown that Eqs. (1.430)-(1.433) together imply that

IP:= q'qtil), - D;)f' 0 f - f1(iDt - D;)g' 0 9 = 0,

so that condition (1.434)automatically follows.
Thus, (1.12) (see Appendix I) shows that

g'g(DJ' of) - f1(Dtg' 0 g) = fg(DJ' 0 g') - f'g'(DJ 0 g),

(1.436)
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whence

iP' = fg(iDJ' 0 g') - f'g'(iDJ 0 g) - g'g(D;f' 0 f) + f'f(D;g' 0 g)

= 2iA[jgDxf' 0 g' - f'g'Dxf 0 g] + [jgD;f' 0 g' - f'g'D;f 0 g]

- g'gD;f' 0 f + f'f(D;g' 0 g) (1.437)

on use of(1.431) and (1.432). Now, identity (I.l3) yields

fgDxf' 0 g' - f'g'Dxf 0 g = Dxf'g 0 fg',

while (1.4) shows that

(1.438)

(1.442)

fgD;f' 0 g' - f'g'D;f 0 g = Dx[(Dxf' 0 g) 0 fg' + f'g 0 (Dxf 0 g')] (1.439)

and

f'fD;g' 0 g - g'gD;f' 0 f = Dx[(Dxg' 0 f) 0 I'a + fg' 0 (Dxf' 0 g)l (1.440)

Addition of(1.439) and (1.440), together with use of the antisymmetric prop-
erty (I.l), now yields

fgD;f' 0 g' - f'g'D;f 0 g + f'fD;g' 0 g - g'gD;f' 0 f

= 2Dx[j'g 0 (Dxf 0 g')], (1.441)

whence, from (I.l3),

iP' = 2iADxf'g 0 fg' + 2Dx[j'g 0 (Dxf 0 g')]

= 2Dx[j'g 0 (D; + iA)f 0 g'l

Thus, on use of the Backlund relation (1.433), it follows that

iP' = 2Dx[j'g 0 (ivf'g)] = 2ivD x[j'g 0 f'g] = 0

as req uired.
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We now turn to the superposition theorem associated with the above
auto-Backlund transformation. The result is embodied in the following:

THEOREM 1.12 If (/1,1;), (/2,f~) are solution pairs of the Benjamin-Ono
equation (1.419) generated by the Backlund transformation (1.431)-(1.433)
with starting solution pair (/o,f~) and parameters (AI,,uI, vd arid (A2,,u2, v2),
respectively, then there is a solution pair (/12' I'12) given by the relations

fofl2 = k[D x + i(A2 - AI)]fl a f2,

f~I'12 = k[Dx + i(A2 - Ad]I'I 0 f~,

where (/12 ,f'12) is generated via the Backlund transformation

(1.443)

(1.444)

(1.431)-

(1.433) from

(see Fig. 1.24).

(/1' I'I)
(/2,f~)

•
with parameters (A2, ,u2, V2)

(AI,,uI, vd

The above result is readily established. Thus, the Backlund relation (1.433)
yields

(D; + iAI)fo 0 f~ = ivtf~fl' (1.445)

(Dx + iAI)f2 0 f~l = ivtf~f2l' (1.446)

io; + iA2)fo 0 f~ = ivd'of2' (1.447)

(o, + iA2)fl 0 I'12 = iv2I'tf12' (1.448)

We proceed on the assumption that a solution pair (f12,I'd = (f2l,f~1)

exists, whence on elimination of VI and V2 in (1.445)-(1.448), we obtain, in
turn,

{(Dx + iAl)j~ 0 f~}f~f12 - f'ofl{(Dx + iAdf2 a I'12} = 0, (1.449)

{(Dx + iA2)fl 0 I'12}!'of2 - I'tf12{(Dx + iA2)fo 0 f~} = O. (1.450)

Addition of (1.449) and (1.450) and use of the identity (1.14) now show that

f~I'12{Dx + i(A2 - Ad}fl °/2 - fof12{D x + i(A2 - Ad}I'l 0 f~ = 0,

whence we obtain the necessary conditions

fof12 = k{D x + i(A2 - Ad}!l 0 f2,

f'oI'12 = u», + i(A2 - Al)}I'l a f~,

where k is an arbitrary function. Here, only the case of constant k is consid-
ered. It is interesting to note that when Al = A2 , the same superposition
structure as that obtained previously in Section 1.12 for other Backlund
transformations is retrieved.
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(1.451)

It is now a routine calculation to show that the pair (f12,f'd = (j~I,f~d

as given by (1.443) and (1.444) does indeed satisfy the Backlund relations
(1.446) and (1.448). Moreover, a lengthy but straightforward procedure
shows that the superposition relations (1.443) and (1.444) also hold for the
other two Backlund relations (1.431) and (1.432). These calculations are set
out in detail by Nakamura [277J and are not repeated here.

The permutability theorem embodied in the relations (1.443) and (1.444)
may now be used to generate solutions of the Benjamin-Ono equation
starting with the "vacuum" solution g = g' = 1. Thus, with such a solution
pair (g, g'), the Backlund relations (1.431)-(1.433) adopt the linear form

( a a 0
2

)i - - 2iA - - - - Jl f = °at ax ox2
'

( a a 0
2

)i - - 2iA - - - - Jl f' = °ot ax ox2 '

U7
x + iA)f = ivf".

With the choice A= v, Jl = 0, the equations (1.451)admit the solutio?s

where

f = () + ¢, f' = () - ¢, (1.452)

() = i{x + cot - (x o + iX~)},

¢ = -1/0),

(1.453)

(1.454)

and w = 2A, xo, and x~ are arbitrary real parameters. The pair (f, f') pro-
vides the bilinear representation of the single-soliton solution of the Ben-
jamin-Ono equation as presented by Matsuno [279J and Satsuma and
Ishimori [280]. On the other hand, with A =f. v and Jl =f. 0, Eqs. (1.451)admit
the one-periodic wave solution with

f = 2cosht«(} + ¢), f' = 2 cosh t(() - ¢), (1.455)

where () is as given by (1.453), but 'now (1.454) is of the form

w = -coth¢. (1.456)

The permutability theorem may now be used iteratively to generate
either N-soliton, N-periodic, or N-soliton-periodic wave solutions of the
Benjamin-Ono equation." Furthermore, in a subsequent paper, Nakamura

t Computer plots depicting the interaction of Benjamin-Ono solitons have been published
by Matsuno [414].
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[278J showed that the results obtained for the Benjamin-One equation may
be used in a novel manner to derive associated solutions of a "modified"
Benjamin-Ono equation. A description of their procedure follows:

Nakamura's modified Benjamin-One equation adopts the form

(1.457)

where H is the Hilbert transform operator given by (1.420) and A., v are con-
stants. In order to construct a bilinear representation associated with (1.457),
we set

[
f' gJu(x, t) = Uo + log fg' '

where f, f' are in the product forms (1.422) and (1.423), while
N

g ex n (x - wn(t),
n=l

N

g' ex n (x - w~(t»,
n= 1

and W n, w~ are complex with im W n > 0, im w~ < O. Thus,

U = ~ log (f'g) = {f~ + gx _.& _ g~}
x ax fg' f' g f g'

N{ I 1 1 I}L --+--------,
n= 1 X - Z~ x - W n X - Zn X - W~

so that

(1.458)

(1.459)

(1.460)

(1.461)

1 foo 1 N {I I II}Hu =-P -- L --+-------- dz (1.462)
x n - 00 (z - x) n= 1 Z - Z~ Z- W n Z- Zn Z- W~ .

Consider the contour integral

~_1_[_1_ + _1 1__ -1-JdZ
~ (z - x) z - z' '7 - W Z- Z Z- w' ,
C .n 6J n n n

with C as shown in Fig. 1.23. The residue theorem shows that

_1 Pfoo _1_[_I_+_I I I_JdZ
2ni - 00 (z - x) Z - z~ Z - W n Z- Zn Z- w~

+ lim _1 f-l- [_1_ + _1 1__ -1-JdZ
e--+O 2ni (z - x) Z- z~ Z - W n Z- Zn Z- w~

C2

1 1
= res(z = zn) + res(z = wn) = -- - --.

x - Zn X - W n
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Accordingly,

1 foo 1 [1 1 1 1]-p -- --+-------- dz2ni - 00 (z - x) Z - z~ Z - W n Z - Zn Z - w~ ~

= ~ [x ~ z' + x~ '7 - X ~ W' - x~ W ],
n »n n n

whence

nu;« i I, {_1_, +_1 1 1_,}
n= 1 X - Zn X - Zn X - W n X - W n

= i {I~ + Ix _ g~ _ gX} = i~ IOg(I1').
I' I g' g ox gg'

The modified Benjamin-Ono equation (1.457) now yields

i(I; + gt _~ _ g;) _ 2iA(I~ + gx _ Ix _ g~)
I' gIg' l' gIg'

+ 2iveUO (I'g) (I~ + gx _ Ix _ g~)
g'f I' gIg'

-(1x + 17- g;x _ g;x

12 ,2 f I' ')- 22 + 2 & + 2 xgx - 2 xgx = °
12 e" Ig 1'g'

on appropriate substitution. Consider the system (Nakamura [278])

(iD t - 2iADx- D; - 11)1 0 g= 0,

(iD t - 2iADx- D; - 11)1' 0 g' = 0,

(Dx+ iA')Io g' = iv'f'g, (v' = veUO
)

(1.463)

(1.464)

(1.465)

(1.466)

(1.467)

suggested by the form of the Backlund transformation (1.431)-(1.433) for
the Benjamin-One equation. On expansion, the system (1.465)-(1.467)
yields .

i(f - ~t) - 2iA(; - ~) - 17+ 2;:x - g;x - 11 = 0, (1.468)

i(I; _ g;) _ 2iA (I~ _ g~) _ I~x + 2I~g~ _ g~x - 11 = ° (1.469)
l' g' F g' l' I'e' g' ,

Ix _ g~ + iA' - iv,!'g = 0, (1.470)
I g' Ig'
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and the operations (1.469) - (1.468) - 2(ojox)(1.470) lead to Eq. (1.460).
Consequently, if the product forms f,f', g, g' are subject to conditions (1.465)-
(1.467), then u as given by (1.458) is a solution of the modified Benjamin-Dna
equation (1.457).

In viewof the form of the system (1.465)-(1.467),Hirota's procedure for the
generation of N-periodic wave and N-soliton solutions of the modified
Benjamin-Ono equation follows that of the conventional Benjamin-Ono
equation (Satsuma and Ishimori [280J). Thus, in particular, N-periodic
wave solutions of the system (1.465)-(1.467) may be constructed in the form
(Nakamura [278J)

f = _ . ~ exp{.t ninj - ljJj + cP) + .._I.. ninjrij} ,
nj-O.l.j-l, ... ,N j-l l.j-l(r<j)

f' = _ . ~ exp{.t ninj -ljJj - cPj) + .._I.. ninjrij} ,
nj-O,l,j-l, .... N j-l l.j-l(l<j)

n.> ikix - X Oj - C/), Cj:= kjcothcPj - 2A,

(Ci - C)2 - (ki - kl
exp(rij) := (C

i
- C)2 - (k

i
+ kl'

. _ Cj + 2A - 2v' + k,
exp(2cP)·- 2A 2' k'cj + - v - j

with expressions for g and g' similar to those for f and f', respectively, but
with cPj---+ -cPj' The N-soliton solution may be generated by a limiting
process out of the N-periodic wave solution [278,280].

In conclusion, it is noted that recently Bock and Kruskal [281J have
obtained a Backlund transformation for the Benjamin-Ono equation with-
out recourse to the bilinear formalism.

1.16 A BACKLUND TRANSFORMATION FOR JOSEPH'S
EQUATION FOR INTERNAL, WAVES IN A STRATIFIED
FLUID WITH FINITE DEPTH

Joseph's equation, descriptive of wave propagation in a stratified fluid of
finite depth, may be written in dimensionless variables as [282, 283J

U t + 2uux + G[uxxJ = 0, (1.471)

where G is the integral operator defined by

G[u(x, t) = ~ A S:'oo [coth{~ A(X' - xl} - sgn(x' - x)] u(x', t) dx' (1.472)
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and A- 1 is a parameter characterizing the depth of the fluid. In the shallow
water limit, A-4 00, and (1.471) reduces to the Korteweg-deVries equation
while in the deep water limit, A= 0, it reduces to the Benjamin-Ono equation.

In order to hold a bilinear representation associated with Joseph's equa-
tion for u which are real and finite for all x and t and which are such that
the boundary conditions u -4 0 as IXI-4 00 hold, we set (Matsuno [284J)

where
N

[ix, t) = n [1 + exp{A[A(im zn)(x - At) - znJ}]
n~1

(1.473)

(1.474)

and z,, n = 1,2, ... , N, are complex with 0 < Aim z; < 11:.

On insertion of f and its conjugate 1 into (1.473) and use of the result

f oo coth{trA(x' - x)}dx' - 2A -1 csc(y)sinh(Ayx)
-00 cosh(Ayx') + COS(y) cosh(AYx) + COS(y)

(0 < y < n),

we obtain

~ G [UJ = - ~ {j~ + ~} + AU,ox ox f f
(1.475)

whence, on appropriate substitution of (1.473) and (1.475) into Joseph's
equation, integration, and use of the boundary conditions, it is seen that

(1.476)

Suppose that (f, J) is a solution pair of Joseph's equation and (g,9) is a
pair in similar product form introduced via the Backlund relations

(iD l + i(A - 2A')Dx - D; - It'Jf 0 g = 0,

(iD t + i(A - 2A')Dx - D; - Il)l 0 9 = 0,

(Dx + iX)f 0 9 = iv'Jg,

(1.477)

(1.478)

(1.479)

where A', u', v' are arbitrary parameters. It is readily established that (g,9)
as determined by (1.477)-(1.479) is also a solution pair associated with
Joseph's equation. Thus, if IP is introduced according to

IP := [(iDl + iADx - D;)l o fJgg - ]J[(iDl + iADx - D;)g 0 gJ, (1.480)
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then use, in turn, of the identity (I.l2) and of the Backlund relations (1.477)
and (1.478) shows that

IP = fg[(iDt + iADJ10 g] -lg[i(Dt + iADx)f 0 g]

- ggD~(J 0 f) + 1fD~({J 0 g)

= fg[(2iA'Dx + D~ + Jl')1 0 g] -lg[(2iA'Dx + D~ + fl')f 0 g]

-ggD~(J 0 f) + lJD;({J 0 g). (1.481)

Now, from identities (1.13) and (I.l4),

fgDxl1 0 g) - 19DxU 0 g) = DAlg n gIl,

.IgD;U 0 g) - 19D;(f 0 g) = Dx{[Dxl u g] "fg + 19 0 [DJ n g]),

and

(1.482)

(1.483)

(1.485)

1fD;(g 0 g) - ggD;(J 0 f) = Dx{[Dxg 0 JJ 0 Jg + Jg 0 [Dx1o g]}. (1.484)

On substitution of (1.482)-(1.484) into (1.481), it is seen that

IP = 2iA'Dxllg 0 gf) + Dx{[DJ 0 g] 0 Jg + 19 0 [Dxf 0 g]}

+ Dx{[Dxg 0 JJ olg + fg 0 [DJ 0 g]}

= 2DxUfl 0 (Dx + iA')f 0 g} = °
by virtue of the third Backlund relation (1.479).

Thus, if u,n is a solution pair of (1.476), then so also is (g,9) given by the
Biickluna transformation (1.477)-(1.479). Moreover, since the latter differs
from that of the Benjamin-One equation only by the replacement A
-2A' ---+ 2A, the superposition property of the Backlund transformation may
be established in a similar manner. The N-soliton and one- and two-periodic
solutions of Joseph's equation as set out by Matsuno [284] and Nakamura
and Matsuno [285] may then be generated as for the Benjamin-Ono
equation.

Just as the Backlund transformation for the Benjamin-One equation
leads to solutions of the "modified" Benjamin-One equation, so the
Backlund transformation for Joseph's equation is connected to solutions of
a "modified" Joseph equation (Nakamura [286 ). Thus, if we set

cP+ ;= log(g!f), cP- ;= 10g(g!J),

p+ : = log(gf), p_ := 10g(gJ),
substitution into the expanded versions of (1.477)-(1.479), namely, the
analogs of (1.468)- (1.470), yields

icP+t + i(A - 2A')cP+x + P+xx + cPlx + fl = 0,

icP~t + i(A - 2A')cP-x + P-xx + cP~x + fl = 0,

(1.486)

(1.487)



104 1. BACKLUND TRANSFORMATIONS AND NONLINEAR EQUATIONS

and

P+x - P-x - cP-x - cP+x + 2iA: - 2iv'exp(cP+ - cP-) = o. (1.488)

Now, the latter relation shows that

P+xx - P-xx = cP-xx + cP+xx + 2iv'[exp(cP+ - cP-)](cP+x - cP-J,

whence, on use of (1.486) and (1.487) to eliminate P+xx and P-xx, we obtain

i(cP+ - cP-)t + i(A- 2A')(cP+ - cP-)x + (cP+ + cP-L

+ 2iv'(cP+ - cP-)x exp(cP + - cP-)+ (cP+ - cP-)AcP+ + cP-)x = o. (1.489)

If U is now introduced according to

U;= cP+ - </J- = log(Jg/fg),

then since, by virtue of (1.473) and (1.475),

it follows that

(cP+ + cP-)x = -AiU + iG[UxJ,

(cP+ + cP-)xx = -AiUx + iG[Uxx].

(1.490)

(1.491)

(1.492)

Substitution of (1.490)-(1.492) into (1.489) now produces the "modified"
Joseph equation

U, - 2A:Ux + 2v'euU
x + G[UxxJ + UxG[UxJ - AUUx = o. (1.493)

Thus, if the product forms f,!, g, gare subject to the conditions (1.477)-(1.479),
then U as given by (1.490) is a solution of (1.493). N-soliton solutions of the
modified Joseph equation have been generated via this procedure by Naka-
mura [286].

It is noted that Chen et al. [287J and Satsuma et al. [288J have also
constructed Backlund transformations for Joseph's equation. In both of these
papers, differential-difference operators were used to advantage in an inter-
esting manner. It is to the important subject of Backlund transformations
as applied to nonlinear differential-difference equations that we turn in the
next two sections.
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1.17 BACKLUND TRANSFORMATIONS OF NONLINEAR LATTICE
EQUATIONS IN THEIR CONTINUUM APPROXIMATION.
THE KONNO-SANUKI TRANSFORMATION

Toda [289], in an analysis of the longitudinal vibration of a chain of
masses interconnected by nonlinear springs, introduced a nonlinear differ-
ential-difference equation which, remarkably, may be shown to possess stable
N-soliton solutions (Hirota [290], Flashka [291]). Chen and Liu [292] and
Wadati and Toda [293] later derived a Backlund transformation and an
associated permutability theorem for the Toda lattice equation whereby the
multi-soliton solution may be generated. Since that time, a number of papers
have appeared in which Backlund transformations have been constructed for
other nonlinear lattice equations. Thus, Wadati [294] early derived a Back-
lund transformation for a lattice which, in the continuum approximation,
is modeled by a nonlinear evolution equation which is a combined form of
the Korteweg-devries and modified Korteweg-deVries equations. On the
other hand, Konno and Sanuki [295] obtained, via the inverse formalism
of Section 1.11, a Backlund transformation for a nonlinear lattice under a
weak dislocation potential. Backlund transformations for discretised versions
of the sine-Gordon and Korteweg-deVries equations have been obtained by
Orfanidis [296, 297] and Hirota [298, 299].

Here, the Konno-Sanuki Backlund transformation for a continuum
approximation to a nonlinear lattice equation is recorded. In the next
section, the Backlund transformation for the nonlinear differential-difference
equation associated with the discrete Toda lattice is described. Moreover,
it is shown that the Hirota bilinear operator formulation of this Backlund
transformation links the Toda lattice equation to other important nonlinear
lattice equations.

The Konno-Sanuki Transformation

Konno et at. [300] introduced a nonlinear one-dimensional lattice in
which the equation of motion of ~he nth atom is of the form

a2 uaT; = Un + 1 - Zu; + Un-I

(1.494)

where Un is a dimensionless displacement of the nth atom and s is a measure
of the size of the displacement.
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In the case of disturbances of long wavelength compared to the spacing of
the atoms in the lattice, a continuum approximation may be adopted. Thus,
if a stretching

~n = a(nh - ITj, (1.495)

is introduced, where h is a lattice spacing and I is the group velocity, the
displacement un±1 (T, ~n± 1) of the (n ± l)th particle may be expanded as a
Taylor series in the small parameter eh. It is shown in [300J that retention
of terms to 0(a4

) in this development leads to the nonlinear evolution
equation

- a
2u

1 4 [auJ2 a
2u

h4 a
4u

.
A a~ aT + 16 h a~ ae + 24 a~4 - o: sm u = 0, (1.496)

where, in the continuum approximation, ~n is replaced by ~ = a(X, AT) with
X = nh. Note that when rx = 0, the modified Korteweg-ydevries equation in
u~ is retrieved, while neglect of the terms in h4 leads to the sine-Gordon
equation. Moreover, introduction of the variables

x = (24)1/4~/h,

reduces (1.496) to the form

(1.497)

(1.498)

(1.499)

for which a Backlund transformation was later derived by Konno and Sanuki
[295]. This result is now derived via the inverse scattering formalism outlined
earlier in Section 1.11.

Thus, return to the AKNS system (1.271) with the specializations

A = - 4A3
- tA(UJ2 + (rx/4A) cos u,

B = tuxxx + AUxx + 2A2ux + iu~ + (rx/4A) sin u,

C = -tuxxx + AUxx - 222u
x - tu~ + (rx/42) sin u,

r=-q=tux,

leads to the nonlinear evolution equation (1.497). Now the Riccati equations
(1.280) and (1.281), associated with the inverse scattering formulation of
(1.497), are

ar/ax = 2Ar - tux - tux r 2
,

ar/at= 2[ -4-t3 -tA(Ux)2 + (rx/4-t) cos uJr
+ tuxxx+ AUxx+ 2A2ux+ iu~ + (rx/4.~) sin u

- [ -tuxxx+ 2uxx - 222u
x - iu~ + (rx/42) sin uJr 2

,

and, following the Konno-Wadati procedure as introduced in [299J, it is
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(1.504)

seen that the pair of equations (1.499) is invariant under the transformations

r = r- 1, (1.500)

u' = u + 4 tan- 1 r. (1.501)

Elimination of r between (1.501) and (1.499) now produces an auto-Backlund
transformation for the nonlinear equation (1.497), namely,

Ux+ u~ = - 4Asin !(u- u'), (1.502)

ut-u;=2[C- B] -2[C +B] cos!(u-u')+4A sin !(u-u'). (1.503)

The permutability theorem based on the spatial part (1.502) of this
Backlund transformation may now be generated in the manner earlier
indicated for the sine-Gordon equation. Thus, if III and Ilz are solutions of
the nonlinear equation (1.497) generated via (1.502), (1.503) with the Backlund
parameters Al and Az, respectively, and starting solution uo, then (1.497)
admits the second-generation solution </J = 1BJ.,1aJ.2UO = 1aJ.21BJ.,UO given by

</J = 4 tan-l[G~ ~ ~~)tan{Ul ~ u
z}] + Uo'

Additional solutions of (1.497) may now be constructed iteratively in the
usual manner by means of the Bianchi lattice.

If we set u = Uo = 0 in the Backlund relations (1.502) and (1.503), integra-
tion produces the single-kink solutions

u, = -4 tan -1 [;li esJ (1.505)

where
s, = 2Ait + 2AiX ,

Ai = -4A[ + (oc/4Ai),

(1.506)

(1.507)

corresponding to the eigenvalues (Backlund parameters )11.;, i = 1, 2. Asso-
ciated with these single-kink solutions are the single solitons given by

ui,x = - 4Aisech [Si + In{C;/2A;}]. (1.508)

Interestingly, relation (1.507) indicates the existence of a critical eigenvalue
at

(1.509)

which is a result of the competing effects of the anharmonic and dislocation
potentials. Thus, the propagation velocities

Vi = (16A( - oc)/4Af (1.510)

are positive for Ai > Ac and negative for Ai < Ac.
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Substitution of single-kink solutions U t and Uz into the permutability
relation (1.504) generates a two-kink solution 4J of the nonlinear evolution
equation (1.497). The associated two-soliton solution is given by 4Jx' These
double-kink and double-soliton solutions are characterized by the parameter
o: together with }'i and ci, i = 1, 2. Three distinctive kinds of propagation
emerge and are here illustrated in Figs. 1.25-1.30 below as reproduced from
the paper by Konno et al. [300].

Case I is shown in Figs. 1.25 and 1.26. Thus, Fig. 1.25 depicts the two-step
nature of the double-kink solution, while Fig. 1.26shows the head-on collision
ofthe two-component solitary waves in the spatial derivative ofthe two-kink
solution.

Figures 1.27 and 1.28 illustrate the double-kink and associated double-
soliton solutions in a typical Case II. It is noted that one of the solitary
waves in the latter instance remains stationary, apart from the phase shift
it undergoes due to the impingement of the second pulse.

t:
(D-1.8
Q) -1.2
@-0.6
@ 0.6
® 1.2
® 1.8

-5

o

-h
o 5

Fig. 1.25 Case I: The propagation of two kinks. (Konno et al. [300].)

t : 1.8

5

~-=::::::-----t: 0

o
t : -1.8

1o£...._-~..L....---..L....--=:L-------..J10 X
-10

Fig.1.26 Case I: The collision of two solitary waves with amplitudes (1.0, 4.0) and veloci-
ties (- 3.75,3.75). (Konno et al. [300].)



1.17 NONLINEAR LATTIeE EQUATIONS 109

-411"

t:
<D -1.8
Q) -1.2
@ -0.6
0) 0.6
® 1.2
@ 1.8

-10 0 5 10 X

Fig. 1.27 Case II: The propagation of two kinks. (Konno et al. [300].)

Fig. 1.28 Case II: The collision of two solitary waves: one with amplitude 4.0 and velocity
3.75, and the other with amplitude 2.0 and nonrunning. (Konno et al. [300].)

t:

G)-1.80 0.6
Q)-1.2 ® 1.2
@-0.6 @ l.8~---:=:=P""'=:::::::::--_

Fig. 1.29 Case III: The propagation of a kink and antikink. (Konno et al. [300].)
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autO)
ax

t=1.8----

t=O------

Fig.1.30 Case III: The collision of two solitary waves with amplitudes (1.0, -4.0) and
velocities (0.0,3.75). (Konno et al. [300].)

Finally, typical Case III double-kink and double-soliton solutions are
indicated in Figs. 1.29and 1.30,respectively. Thus, Fig. 1.29depicts the prop-
agation of a kink and antikink, t while Fig. 1.30 shows the collision process
of two solitons which have amplitudes of opposite sign at t ---+ ± 00.

This concludes our discussion of the Konno-Sanuki transformation for
the continuum model of an anharmonic lattice under weak dislocation
potential. In the next section, we turn to the derivation of Backlund trans-
formations for the original nonlinear differential-difference equations des-
criptive of pulse propagation in certain lattices.

1.18 BACKLUND TRANSFORMATIONS OF NONLINEAR
DIFFERENTIAL-DIFFERENCE EQUATIONS.
THE TODA AND ASSOCIATED LATIICES

The nonlinear lattices discussed in this section consist of a one-dimensional
chain of N particles, each of unit mass, interconnected by nonlinear springs.
The equation of motion of the nth such particle is

Yn = -¢'{Yn - Yn-d + ¢'{Yn+t - Yn}, Yn:= oZYn/otZ, (1.511)

where Yn is the displacement of the nth particle from its equilibrium position
and ¢(r) is the potential energy of the spring, where r denotes its elongation
over its natural length. In the case of the Wadati lattice [294J, for instance,

t A kink with negative amplitude is termed an antikink.
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a potential was assumed in the form

111

(1.512)

where IX, 13, Y ~ 0 are constants. Accordingly, substitution in (1.511) yields

.Yn = 2Cl{(Yn+ 1 - Yn) - (Yn - Yn- d}
+ 3f3{(Yn+l - Yn)2 - (Yn - Yn_d 2}

+ 4Y{(Yn+l - Yn)3 - (Yn - Yn_tl3}, (1.513)

which, in the long wavelength continuum approximation adopted by Wadati,
reduces to a mixed Korteweg-deVries-modified-Korteweg-deVries form

(1.514)

A Backlund transformation and associated permutability theorem were con-
structed by Wadati [294J for this nonlinear evolution equation via the inverse
scattering formulation. t However, rather than pursue such continuum
approximations further, our interest here lies in the construction of Backlund
transformations for the original nonlinear differential-difference equations
descriptive of discrete lattices. Specifically, our concern will be with the Toda
and associated lattices.

In the case of the Toda lattice, the potential energy function is

so that the equation of motion (1.511)becomes

Yn = exp{ -(Yn - Yn-l)} - exp{ -(Yn+ 1 - Yn)},

that is,

in terms of the relative displacement of adjacent particles

(1.515)

(1.516)

(1.517)

(1.518)

Wadati and Toda [293J introduced an auto-Backlund transformation for
the Toda lattice equation (1.517) in the form

Yn - Y~-l = 13 [exp {-(y~ - Yn)} - exp{ -(Y~-l - Yn-tl}J,

«t • f3-1[ { ( ')\ f ( ')'JYn - Yn = exp - Yn+ 1 - Yn j - exp I - Yn - Yn-l J '

(1.519)

(1.520)

t Nakamura and Hirota [415] have obtained a Backlund transformation for Wadati's
equation by means of the Hirota bilinear operator formalism.
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where f3 is a Backlund parameter. Thus, it is readily verified that if rn = Yn -
Yn-l is a solution of (1.517), then so also is r~ = y~ - Y~-l' and conversely.
Alternatively, (1.519) and (1.520) imply that

s, - f3exp{ -(y~ - Yn)} - p- 1exp{ -(Yn - y~- d}
= Yn-l - f3exp{ -(Y~-l - Yn-l)} - p-l exp{ -(Yn-l - Y~-2)};

whence by descent and imposition of the boundary conditions

it is evident that

Yn' y~ -+ const as Inl-+ 00, (1.521 )

Yn = f3[exp{ -(y~ - Yn)} - c] + p-l[exp{ -(Yn - Y~-l)} - c- I
] , (1.522)

where

c = exp{ -(y'-oo - Y-ocJ}.

Similarly,

Y~ = f3[exp{ -(y~ - Yn)} - c] + p-l[exp{ -(Yn+l - y~)} - c- I
] , (1.523)

and the relations (1.522) and (1.523) represent a Backlund transformation for
the Toda lattice equation (1.516), subject to the boundary conditions (1.521).

A permutability theorem is readily established for the Toda lattice. Thus
in the notation indicated in the Bianchi diagram, Fig. 1.31, predicated on the
assumption of a solution y~12) = IBP1IBP2Y~O) = IBP2IBPIY~O), the Backlund
relations (1.519) and (1.520) yield

Y~O) _ y~l~l = f31[exp{ _(y~l) - y~O))} - exp{ --'-(y~l~l - y~O~l)}]'

y~O) _ y~2~ 1 = P2[exp{- (y~2) - y~O»} - exp{ - (y~2~ 1 - y~O~ I)}]'
(1.524)

y~l) _ y~13l = f32[exp{ _(y~12) - y~l))} - exp{ _(y~1_2l_ y~l~l))]'

y~2) _ y~13l = f31[exp{ _(y~12) _ y~2)} _ exp{ -(y~13l- y~2~d)].

Yn(1?

i31~ ~i32
Y
(0)/ ~ Y (12)

n~ /n
132~ /13 1

Yn(2)

Fig. 1.31
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On introduction of the boundary conditions
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(1.525)

y~~ = y(O), y<!~ = y(l),

yl!~ = y(2), y<!~ = y(l2),

y~~ + y<!~ = y<!~ + yl!~,

and elimination of the time derivatives in (1.524), a permutability theorem
is obtained in the form (Wadati and Toda [293Jt)

where

exp(y~12) _ y(12) + y~o+l_ y(O»)

= { ':::1 exp(y~2) - yO)) - ':::2 exp(y~l) - y(l)) }

ZI exp( y~2J 1 - y(2») - Z2exp( y~IJ I - y(l»)

x exp(y~IJ I - y(l) + y~2J I - y(2»),

(1.526)

(1.527)
ZI = /31 exp(y(O) - y(l)) = /31 exp(y(2) _ y(12)),

2 2 = /32 exp(y(O) - y(2») = /32 exp(y(l) _ y(12»).

It may readily be verified that y~12l, as given by (1.526), is indeed a solution
of the Toda lattice equation (1.516).

Interestingly, the Hirota bilinear operator formalism may be adduced to
show that the Toda lattice and a bilinear representation of its Backlund
transformation are associated with a number of other important lattices
(Hirota and Satsuma [301, 302J). Thus, if

(1.528)

is introduced into the Toda lattice equation (1.517), it becomes

whence on the further substitution,

Vn = (j~/j~) - U';/f;),

and subsequent integration, (1.529) yields

j;J~ - /; + f; - In+Jn-1 = O.

(1.529)

(1.530)

(1.531)

In terms of Hirota's bilinear operators, the nonlinear differential-difference
equation (1.531) adopts the compact form

[D; - 4sinh2 {!DnJJIn0 j~ = 0, (1.532)

t Chen and Liu [292] independently derived a Backlund transformation and associated
perrnutability theorem for the Toda lattice equation.
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where

(1.534)

(1.535)

(1.536)

(1.537)

Dtg~ 0 gn + 2iX- I sinhHDn}f~ C ,in = 0,

[PI sin,pHDn} + coshHDn}Jg~ 0 e, = I~J..,

[pzsinhHD,,} + coshHDn} JI~ 0 j~ = «o:

e(EDxHD,la(x, t) 0 b(x, t) : = a(x + s, t + c5)b(x - s, t - 15). (1.533)

Hirota and Satsuma [301, 302J constructed an auto-Backlund transforma-
tion for (1.532) given by the relations

DJ~ 0 In + 2c<sinhHDn}g~ 0 gn = 0,

where a,PI' pz are arbitrary parameters subject to the single constraint

Pi - 1 = iXZ(P~ - 1). (1.538)

Thus, it may be verified that if J..(gn) is any solution of (1.533~ then I~(g~),

defined through the relations (1.534)-(1.537), also satisfies the bilinear form
(1.532) of the Toda lattice equation. Indeed, the Backlund transformation
defined by (1.534)-(1.537) may be used to generate important nonlinear
lattice equations closely related to the Toda equation. To this end, new
variables

Xn= log{fJn},

Un = log{f~/fn}'

y" = log{g~gn},

Vn= log{g~/g,,},
(1.539)

are introduced into (1.534)-(1.537), and on elimination of xnand Yn from the
resulting equations, we obtain

(1.540)
Un = [iX-I(!Ji - l)tu; + PIU" + iXJ[Vn- I/Z - vn+I/ZJ,

vn = [iX(P~ - l)tv; + pzv" + iX-IJ[Un-l/z - U,,+I/ZJ,

where Un:= fin' Vn:= Bn. The coupled system (1.540) contains certain well-
known nonlinear equations as special instances, namely,

(i) PI = pz = 1 This case corresponds to the nonlinear network equa-
tions descriptive of a Volterra system (Daikoku et al. [200J, Hirota and
Satsuma [303J).

(ii) PI = pz = 0, a = 1 In this case, the self-dual nonlinear network
equations are retrieved (Hirota [304J).

N-soliton solutions ofthe system (1.540), and hence of the above nonlinear
lattice equations, are now readily generated via the Hirota technique. The
results have been set out by Hirota and Satsuma in an extensive supplement
devoted to the subject of nonlinear lattices [302].
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Finally, note that Hirota has recently produced a further series ofpapers on
nonlinear lattices and their Backlund transformations [298,299,305-307]'
In particular, Backlund transformations were constructed via the bilinear
operator formalism for a discrete-time Toda equation and adiscretized
Liouville equation. The reader is referred to the original publications for
details.

1.19 BACKLUND TRANSFORMATIONS IN GENERAL RELATIVITY. THE
ERNST EQUATIONS. NEUGEBAUER'S PERMUTABILITY THEOREM

In recent years, much research has been aimed at the construction of exact
solutions of the stationary axisymmetric vacuum Einstein field equations
which could represent the gravitational field of a spinning mass. A number
of alternative approaches have been proposed for the generation of such
solutions which preserve asymptotic flatness. Thus, Kinnersley and others
[358-368J developed a formalism based on the infinite-dimensional Geroch
group [369, 370] and discovered two independent infinite-dimensional sub-
groups which preserve asymptotic flatness, namely the Kinnersley-Chitre
groups [361J and the Hoenselaers-Kinnersley-Xanthopoulos groups [363].
On the other hand, Cosgrove [371] investigated groups outside the Geroch
group which preserve asymptotic flatness. Such a Lie group Q was sub-
sequently used to construct the three-parameter Cosgrove-Tomimatsu-
Sato solution [372-375].

Independently of the above investigations on continuous transformation
groups, Backlund transformations had been discovered by Harrison [376],
Belinskii and Zakharov [377], and Neugebauer [378J, whereby solutions
of the axially symmetric stationary Einstein field equations could be
generated.

In [379] it was observed that Cosgrove's continuous groups are essentially
the same as Neugebauer's Backlund transformations /1 and /2' Moreover,
it was shown that Harrison's Backlund transformation may be decomposed
into the products /1/2 and /2/1 and that Neugebauer's permutability theorem
may be used to obtain a composition theorem for the Harrison transforma-
tions. Thus, the Neugebauer Backlund transformations provide an important
framework for the unification of diverse solution-generating techniques of
the axially symmetric stationary Einstein equations. The connection between
the Neugebauer-Backlund transformations and those other methods has
been set forth recently in an extensive review by Cosgrove [380]. Here, we
first derive the Ernst equation and then proceed to the construction of
Neugebauer's Backlund transformations and an associated permutability
theorem. The latter is then used to derive the Kerr-NUT metric from Min-
kowski space-time.



116 1. BACKLUND TRANSFORMATIONS AND NONLINEAR EQUATIONS

A stationary, axially symmetric space-time is one which admits a two-
dimensional isometry group with one timelike and one spacelike Killing
vector, respectively. For such space-times, coordinates may be selected
such that the metric tensor adopts the form

(1.541)

where u, w, D, W depend on x', X
Z only, and

W:1Z = 0, H-;1 # 0, W:z # 0. (1.542)

In terms of the cylindrical coordinates (p, z, <p, t), the metric is given by

dsZ = u[dt - wd<p]Z - u-1[eZ~(dpZ + dzZ) + WZd<pZ],

where x! = P + iz, X
Z = P - iz.

In the system (1.541), the vacuum field equations

Rij = °
become

u[u. 1Z + tW- 1U,1 W:z + tW- 1U,ZW:1] - U.1 U,Z + W- ZU4W,l W,Z = 0,

W,lZ - tW- 1W,1 W:z - tW- 1w,z W:1 + U- 1[U,1 W,Z + U. ZW,l ] = 0,

D,l = tW,J:1[W:ll + tWu- ZU~l - tW-1UZW~1]'

s, = tW:;l[w:zz + tWu-zu~z - tW-1UZW~Z]'

(1.543)

(1.544)

(1.545)

(1.546)

(1.547)

where the integrability of (1.546) and (1.5.47) follows from equations (1.544)
and (1.545),

In order to solve the system (1.544)-(1.547), we choose a real function
W(xl, XZ) which satisfies (1.542) and then solve (1.544) and (1.545) for u(x 1

, xz)
and w(xl, XZ), respectively; D(x1

, XZ) is then given by the pair of equations
(1.546) and (1.547).

A more tractable system is obtained if it is noticed that the field equation
(1.545) may be written as

a { -1 Z } a { -1 Z } _ 'ax1 W u W. Z + axZ W U W,l - 0,

whence a function v(x 1
, xz) exists such that

If the Ernst potential s given by

(1.548)

/; = u + iv (1.549)
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is now introduced, then it is readily verified that the real and imaginary
parts of the Ernst equation

(1.550)

constitute the Einstein field equations (1.544) and (1.545).
In terms of the Neugebauer field variables (M i , N;), i = 1, 2, 3, introduced

according to

M 1 = 8,d(8 +e),

N 1 = e,2/(8 + e),

M 2 = e d(8 + e),

N 2 = 8,2/(8 + e),
M 3 = Jt:dW,
N3 = Jt:2/W,

(1.551)

the Ernst equation (1.550) together with potential equation (1.542) are equiv-
alent to the system

(1.552)

where the nonvanishing e~l are given by

ep = e~2 = e~3 = -el 2 = _e~l = -1,

ei 2 = ep = e~ 1 = ep = - t. (1.553)

The Neugebauer Backlund transformations 11 and 12 may now be intro-
duced in the context of the system (1.552). They map a known solution
(lVIi' N i) of the system to a new solution (M i , NJ A new associated solution
set {u, v,W, 6, W} ofthe Einstein field equations (1.544)-(1.548) is then readily
generated. Thus, if the solution set {tt, D, w, J, W} is known, the solution pairs
(M i , Ni ), i = 1,2,3, may be constructed via the relations (1.551). Substitution
of the new solution pairs (M;, N i) into, in turn, equations (l.551), (1.548), and
(1.546)-(1.547) generates, on integration, the new solution set {u, v,w,6, W}.

(i) The Neugebauer-Backlund Transformation 11 The Neugebauer-
Backlund transformation 11(cq) is given by

arx 0 0 1 0

~ = rx(rx - I)M 1 + (rx - y)M2 +"1 rx(y - I)M 3 ,
uX ~

and

arx 0 rx 0 rx 0

~ = (rx - I)N 1 + -(rx - y)N 2 + -(y - I)N 3 ,
uX y 2y

(1.554)

(1.555)
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_ lk 0

Ni=ai N b

[

a 0
(a7) = 0 fJ

o 0
afJ = y,

(1.556)

and «;» is the inverse of 1X7.
The integrability conditions for (1.554) and (1.555) follow from the fact

that the pairs (M i , Ni), i = 1,2,3, satisfy the system (1.552). It is noted that
the solution (IX, y) of (1.554) and (1.555) contains two complex constants
of integration.

(ii) The Neugebauer-Backlund Transformation t, The Neugebauer-
Backlund transformation I z(a,y) is defined by

(1.557)

where S is the symmetry operator which maps the set (Mi , N;) to the set
(M;, Nil in accordance with the relations

k 0 k 0

M, = fl.;Mk , N; = viNk ,

[

- 1 0 t]M) = 0 -1 z .
o 0 1

(1.558)

This transformation, which satisfies s:' = S will, in general, send a real
solution of the Einstein field equations to a complex one, the original solution
(u,v, w, W) being mapped to the solution (u, v, w, W) = (u- l W, iw, - iv, W).
If there is no rotation, so that w= ~ = 0, the operator S generates a real
solution. For example, Minkowski space-time dsz = dtZ_ dp? _ dz? _ pZd¢z
is mapped to the nonflat metric ds" = p dtZ - P-1(pI/Z dp? + pl/Z dz? +
pZd¢z) by S.

We record the following important properties of II(IX,y) and Iz(a,y):

IAa z, yz) 0 Ia(IX I, yd'= IAlXlctz, YIYZ),

I;l(ct,y) = IAct-l,y- I), a = 1,2,

(1.559)

(1.560)

The Backlund transformations may now be used to construct an infinite
sequence of axially symmetric vacuum solutions of Einstein's equations via
purely algebraic procedures by appeal to the following permutability
theorem:

THEOREM 1.13 If(Mi,N;), i = 1,2,3, is a solution of the system (1.552) and
I I («, y) is an arbitrary Neugebauer-Backlund transformation, then there



1.19 BACKLUND TRANSFORMATIONS IN GENERAL RELATIVITY 119

(M',N')

(M, N)
-

(M",NH
)

o 0

(M,N)

Fig. 1.32 The Bianchi-type diagram for the Neugebauer permutability theorem.

exist three Backlund transformations 12(a', y'), II (a", y"), and I 2(a''', y'ff)
such that

12 (a''' , y''' ) a II(a",y") 0 12 (a', y' ) 0 I I (a, y)(i 1; , N J = (M;,NJ, (1.561)

where

a' = (a - y)ly(a - 1),

a" = Yla,

a'" = (a - 1)/(a - y),

y' = y-I,

y" = y,

y'" = y-I . •
(1.562)

The above result is readily demonstrated on appeal to the definitions
of I I and 12 , It may be conveniently represented by a Bianchi-type diagram
wherein a double line represents a transformation of type I I and a single
line a transformation of type 12 (Fig. 1.32).

Let us now suppose that a solution (M,N) of the system of field equations
(1.552) is known and that (1.554) and (1.555) have been solved for (a A, YA)'
A = 1, 2, where (ai, Yd, (a2, Y2) denote solutions with different integration
constants. Reference to Fig. 1.33 shows that the permutability theorem
provides for the construction of a second-generation solution

(2) (2) 0 012 (a ,y. ) a I I (al> yd(M;, N i), (1.563)

where

(1.564)

The Neugebauer procedure is illustrated here by using a second genera-
tion solution to construct the Kerr-NUT metric from Minkowski space-
time (Neugebauer and Kramer [381]). Thus, if we start with the solution
(1.544)-(1.547)

it = 1,



120 1. BACKLUND TRANSFORMATIONS AND NONLINEAR EQUATIONS

o

Fig.I.33 Construction of second-generation solutions 12(cP',y(2') , I,(cx" Y!l(M" N,j via
the Neugebauer permutability theorem.

corresponding to Minkowski space-time, then (1.551) shows that

where

Application of the symmetry operator S to the set (Nt;, IV i ) and use of the
resulting set (M;, N;) to solve (1.554) and (1.555) yield

[
b 1/2 J_ 1/2 A + 'YA

iXA - 'YA 1 +bA'Y~/2 '

[
X

2 + ikAJ
'YA = - 1 ik: 'x -I A

A = 1,2,

A = 1,2,

(1.565)

(1.566)

where bA and kA, A = 1,2, are complex constants of integration.
A straightforward calculation now shows that the image of Minkowski

space-time under the Backlund transformation

(1.567)
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is given by

A(Yl - 1)yY2

2B(b1 + yi/ 2
)

M = (x! + X2)-1 B(Yl - l)y1/ 2
,

2A(1 + bly~/2)

Y2

2A(Y1Y2)1/2(b1 + y~/2)

N = (x ' + X 2)- 1 A(l - ytl
2B(Y1Y2)1/2(l + bly~/2)

-1
Y2

where

and
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(1.568)

(1.569)

(1.570)

(1.571)

The metric obtained by solution of (1.551) for Wand E; using the set
(M i , N i ) given by (1.568)and (1.569)will be real if M; = Ni , and this condition
holds if kA = kA and DA = bA1. It follows that

while, if the coordinate change

w1 = P + iz = 2/(x 1
- ik2 ),

w2 = P - iz = 2j(x2 + ik2)

is introduced, the Ernst potential is obtained in the form

e-it/Jrl + eit/Jr2 - 2(m + il) cos 4>
E; = e it/Jr 1 + eit/Jr2 + 2(m + il)cos4>'

where

(1.573)

(1.574)

(1.575)

(1.576)
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and the original constants of integration bA, kA are given by

b 1
= e2it!>, b - [rn=iT it!>

2--~;:;;+ite ,
(1.577)

K 1 = -Jm2 + [2COS¢ + Zo, K 2 = Jm2 + f2cos¢ + Zo°

The Ernst potential (1.575) corresponds to the Kerr-NUT solution in
Weyl coordinates where m and [ are the mass and NUT parameters, re-
spectively. The Kerr parameter is m sin ¢, while Zo denotes the position of
the rotating body on the z axis.

The above procedure may be iterated to generate a lattice whereby an
infinite sequence of solutions of the system (1.552) may be constructed
without further integration. Thus, iteration can be used to construct exact
solutions of the Einstein field equations corresponding not only to a
Tomimatsu-Sato solution [382] but also to a superposition of Schwarzs-
child solutions [383, 384]. Furthermore, particular Neugebauer-Backlund
transformations have recently been employed to generate new solutions of
the Einstein equations both from the Van Stockhum metric and from Weyl's
class of static vacuum solutions (Herlt [385, 386]). In particular, Darmois
and Reissner--Nordstrom solutions were thereby constructed.



CHAPTER 2

A Local Jet-Bundle Formulation of
Backlund Transformations

2.1 PRELIMINARIES

In this chapter, a geometric formulation of an important class of Backlund
transformations is presented. We consider the case in which the defining
equations of the Backlund transformations may be solved to express the first
derivatives of the new dependent variables as functions ofthe old independent
and dependent variables, their derivatives of some finite order, and the new
dependent variables themselves. The formalism is based on the idea of a
Backlund map [48, 407]. It has the advantage that it allows consideration of
Backlund transformations of equations without restriction as to order or to
the number of dependent or independent variables.

We shall demonstrate how a one-parameter symmetry group of a differen-
tial equation allows the introduction of a parameter into its Backlund trans-
formation. Further, we shall note how a certain factorization of Backlund
maps permits one to identify the presence of a Lie algebra (such as5~ (2,
IR)) which, in turn, may be used to construct an associated linear scattering
problem. Finally, the Wahlquist-Estabrook procedure for the construction
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of Backlund maps will be presented. This method, based on the notion of
pseudopotentials, is more economical than the traditional Clairin approach.
Moreover, it clarifies the roles played by the various Lie groups associated
with differential equations which possess Backlund transformations.

Here, a jet-bundle formulation of Backlund transformations is set forth.
In general terms, the utility of jet bundles in this connection is due to the
fact that they have local coordinates which adopt the roles of the field
variables and their derivatives; in this context, these derivatives may be
legitimately regarded as independent quantities.'

We begin the discussion with some definitions. Let M and N denote spaces
of independent variables, M = /Rm and N = /Rn say,t with coordinates x",
a = 1, ... ,m, and ZA, A = 1, ... , n, respectively. Let CXJ(M, N) denote the
smooth maps from M to N. Then, if f E COO(M, N) is defined at x E M, it
follows that f is determined by n coordinate functions ZA : = f A(X). If9 E C'"
(M, N) is another map defined at x, then f and 9 are said to be k-equivalent
at x ifff and 9 have the same Taylor expansion to order k at x. Thus, f and
9 are k-equivalent at x iff

A = 1, , n,

A = 1, ,n, j = 1, ... , k,
(2.1)

where 0a denotes the derivative oloxa, while va"" a
J

denotes repeated
differentiation:

Here and subsequently, the lower case indices a l , a2 , ..• range over 1, ... , m.
The k-equivalence class of f at x is called the k-jet of f at x and is denoted
by j~f. The collection of all k jets j~f as x ranges over M and f ranges over
CXJ(M, N) is called the k-jet bundle of maps from M to N and is denoted by
jk(M, N). Thus

jk(M,N):= U j~f·
XEM, fECOO(M,N)

(2.2)

It follows from the definitions that if p is a "point" in jk(M, N), then
p = j~f for some x E M and f E COO(M, N) and hence that p is determined
uniquely by the numbers

a = 1, ... ,m, A = 1, ... ,N, j = 1, ... ,k, (2.3)

t Other geometric approaches to the theory of Backlund transformations have been given
by Gardner [442] and Payne [357].

I The subsequent treatment can be formulated equally well if M and N are smooth manifolds
of dimension m and n, respectively (Pirani et al., [48]).
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where xu, ZA are the coordinates of x and f(x), respectively, and
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The latter quantities are, by definition, independent of the choice off in the
equivalence c1assj~f. Conversely, any collection of numbers xu, ::;A, ::;~l" 'a,'

j = 1, ... , k, with the Z~l'" a, symmetric in the indices ai' ... , aj determines
a point of Jk(M, N). t

Example 2.1 Let M = 1R 2
, N = IR, and choose coordinates x", x 2 on M and

z' on N. Then, iff and g E C'(M, N) are given by

[tx' ,x2
) = (x 1f + (X

2)2,
g(X

1,X 2) = 0,

f and g belong to the same I-jet at (0,0) but not to the same 2-jet.
The 2-jet bundle J2(M, N) may be identified with IRs with the coordinates

Xl,X2,Zl,Z},zi,z~1,Z}2,Z~2' II

Note that two maps which are k-equivalent at x E M are also j-equivalent
for allj:S; k. This fact allows us to define the canonical projection maps nt-r
from Jk(M, N) to Jk-r(M, N), r = 0, ... , k - 1, by

(2.4)

It is sometimes convenient to identify JO(M, N) with M x N and to define
nt by

nt :j~f -> (x,f(x)). (2.5)

There are two further canonical projection maps which will prove useful
in what follows, namely, the source and target maps rJ.: Jk(M, N) -> M and
f3: Jk(M, N) -> N defined by

rJ.:j~f -> x, f3:j~f -> f(x), (2.6)
respectively.

A map h: M -> Jk(M, N) which satisfies rJ. c h = idM , where idM is the
identity map on M, is called a cross section of the source map o: An important
example of such a cross section is the k-jet extension of a map f E C" (M, N)
denoted byIf and defined by .

/f:x -> j~f.

In the case k = 0, l f is just the graph of f.
Example 2.2 If M = 1R 2 and N = IR with the same coordinates as In

Example 2.1, then the I-jet extension /f of f E C~(1R2, IR) is defined by

/f:(x 1, x 2 ) -> (x ', X 2,f(X 1, x 2
), clJ(x', x 2

), (1 2 / (x ' ,x2
) ). •

t The k-jet bundle Jk(M, N) with M = [Rm, N = [R" may, accordingly, be identified with
[Rdim]" with the coordinates (2.3).
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2.2 CONTACT STRUCTURES

Those cross sections of IX that are k-jet extensions of maps from M to N
may be conveniently characterized in terms of differential forms on Jk(M, N). t

We first consider the case k = 1 and define differential I-forms eA
, A =

1, ... ,n, on P(M,N) by

(2.7)

Since ZA and z1 are coordinates on JI(M, N), the I-forms eAare not identically
zero. There are, however, certain privileged submanifolds on JI(M, N) on
which the eA vanish. The ones of interest for the present investigation arise
as images of cross sections of iX. Thus if g:M -> JI(M, N) is a cross section
of o: and is given in coordinates by

g: x -> (x",gA(Xb
) , g1(xb»,

then the image of g is the m-dimensional submanifold im(g) c JI(M, N)
determined by the constraint equations

ZA = gA(Xb
), z1 = g1(xb

), (2.8)

(see Fig. 2.1).

g

Fig. 2.1 A schematic representation ofim(g), g:M --> Jl(M, N).

It follows from (2.7) and (2.8) that on the submanifold im(g), eA is given
by

t The reader unfamiliar with the exterior differential calculus is referred to Appendixes II -III
or, for a more complete account, to Flanders [122].
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and this l-forrn vanishes iff
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(2.9)

(2.10)

(2.12)

But (2.9) holds iff 9 is the I-jet extension of the map [3 0g: M ~ N since
[3 0 9 is given in coordinates by

[30g:x ~ gA(Xa ).

The same result may be rephrased in terms of the so-called pull-back
maps (see Appendix II). Thus, if we consider the l-forms g*eA on M, we have

(
OgA )

g*()A = dgA - g1 dx" = nxa - g1 dx",

so that g*()A = 0 iff g1 = ogAjoxa and this, in turn, holds iff

9 = /([30 g).

To summarize then, if 9 is a cross section of ct, then 9 is the l-jet extension
of [3 o g: M ~ N iff g*()A = O. The l-forrns ()A are called contact forms and the
set of all finite linear combinations of the l-forms ()A over the ring of CifO
functions on JI(M, N) is called the first-order contact module and is denoted
by QI(M, N).t Thus

QI(M, N): = {IfA()A IfA E CifO(JI(M, N), [R)}. (2.11)

The set of l-forms {eA
} is called the standard basis for QI(M, N).

It is a simple matter to generalize the above discussion to the case k > 1
by introducing the l-forms ()A, 01,., 'a,' 1= 1, ... , k - 1, according to

eA := dz" - z1dxb
,

eA '- d~A _ ~A dx"at . - ....at "'alb ,

eA - d~A _ ~A dx"a 1 .•• Uk - 1 - ,i., a 1 ... Uk - I ....a I ... Uk - 1b .

It may be readily verified that if g: M ~ Jk(M, N) is a cross section of the
source map ct, then

*eA
- 09 a," 'a, - , 1= 1, ... , k - 1 iff 9 = l([3 0 g).

Thus, if 9 is given in coordinates by

g:x ~ (x",gA(Xb) , g1, , .. aJx:b»,
it follows that

j = 1, ... , k,

t See Adamson [123] for an introduction to module theory. The notion of contact module
used here is based on that of Johnson [124].
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and then iteratively that

«»: ... a, = 0 (2.13)

l = 1, ... , k - 1,

The collection Qk(M,N):= {IfAOA + If'A,··· ajO:
1

••• aJ is called the kth-
order contact module.

One may equally well characterize k-jet extensions in terms of differential
m-forms on Jk(M, N) or, indeed, in terms of differential p-forms with 1 :-:::;
p :-:::; m. This characterization is presented here for the cases p = m and p =

m - 1 since these arise in the later discussion of the Wahlquist-Estabrook
procedure.

Let W be the volume m-form on M given by

w:= dx' /\dx 2 /\ .•• /\ dx'",

and define (m - Ij-forms w,; a = 1, ... , m, and (m - 2)-forms Wah' a < b,
1, ... ,m, by

(2.14)

and

(2.15)

respectively. Here -.J denotes the interior product of differential forms and
vector fields (see Appendix II).

The modules of contact m-forms Qtm)(M, N) and contact (m - I)1orms
Qtm-l)(M, N) are defined by

(2.16)

and

(2.17)

respectively.
Suppose now that g is a cross section of ()(. It follows that

iff g*O = 0,

whence

g*QtmlM, N) = 0 iff g*Qk(M, N) = O.

Accordingly, if g is a cross section of ()(, then

g*QtmlM, N) = 0

and a similar calculation shows that

g*Qtm-l)(M, N) = 0

iff g = l(P 0g),

iff g = l(P 0 g).

(2.18)

(2.19)
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2.3 PARTIAL DIFFERENTIAL EQUATIONS ON JET BUNDLES

A general system of kth order partial differential equations in n unknowns
uA may be written in the form

A = 1, ... , r; (2.20)

and such a system determines a submanifold of the k-jet bundle Jk(M, N),
namely, the submanifold Rk given by the constraint equations

A = 1, ... , r. (2.21)

This submanifold, being a geometric object, provides a very convenient
means whereby transformation properties of the system (2.20) may be
analyzed.

In what follows, we shall refer to R k as a kth-order differential equation.
A solution of R k is defined to be a map f E COO(M, N) such that im(/f) c Rk

(see Fig. 2.2). Thus, if f is a solution of Rk and if f is given in coordinates by
ZA = fA(X b) , then it follows that

F;.(xa, f A,8
af A, ... ,8a, ... akf A) = 0, A = 1, ... , r,

and f is a solution of the system (2.20).

Example 2.3 Let M = ~2, N = ~, and choose coordinates x", Z, Za' Zab

on J 2(M , N ).
The sine-Gordon equation

UcM
Fig. 2.2 A schematic representation of solutions f of Rk

•
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determines the submanifold R2 of J2(M, N) given by

Z 12 - sin z = 0,

and a solution of R2 is a map! E COO(M, N) such that if x E M, then
l!(x) E R 2

, that is,

012!(Xl, x 2) - sin{f(xl, x2)} = o. •
To summarize then, a system of partial differential equations may be

replaced by a submanifold of an appropriate jet bundle. This point of view
is the basis of the formulation of Backlund maps and Backlund transfor-
mations that follows. Both linear and nonlinear systems of the type (2.20)
are treated. In the simplest case, when the system is linear with constant
coefficients, the associated submanifold Rk is a subspace of Jk(M, N), where
it is recalled that here M and N are taken to be Euclidean m and n spaces,
respectively, so that Jk(M, N) may be identified with IRd im

'". Thus, the func-
tions FA which serve to define Rk are linear in each of the coordinates so that
if p and pi are points in R\ so also is ap + bpi where a, b E IR. In the case of
nonlinear systems, the associated submanifold of Jk(M, N) is not a subspace.
These points are illustrated by the following:

Example 2.4 Let M = 1R 2
, N = IR, and consider, in turn, the Klein-Gordon

equation

and the sine-Gordon equation

02U
ox1 ox2 = sin u.

These correspond to the submanifolds Rand R' c IRs given by

and

Z12 = sin z,

(2.22)

(2.23)

(2.24)

(2.25)

respectively.
If p and p' are points in IRs with coordinates (xa,Z,Za,Zll,ZI2 = az,z22)

and (x,a,z',Z~,Z~I,Z'12 = az',z22)' respectively, then since

aZ12 + bZ~2 = aaz + bxz' = a(az + bZ')12,

it is readily seen that ap + bpi belongs to the submanifold (2.24) associated
with the Klein-Gordon equation. Accordingly, (2.24) is a subspace of 1R 8

.
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On the other hand, if p and pi are points in R' with coordinates (x",z,Za'
ZII, Z12 = sin z, Z22) and (x", z', z~, zl11 , zl12 = sin ZI, Z22), then since

aZ12 + bz'12 = a sin z + b sin z' # sin(az + bz'), a,bEIR,

examination of the Z12 coordinates of ap + bpi shows that, in general,
ap + bpi does not lie in R', so that R' is not a subspace of 1R8

. •

(2.26)

At this point, it is convenient to introduce the important notion of pro-
longation of systems of differential equations. Thus it is often useful to
consider a system together with its derivatives and to characterize the new
system in terms of jets. In order to describe the jet bundle submanifolds
corresponding to the system, we introduce the total derivative operators
D~k) defined on Jk(M, N) for k ~ 1 by

o 0
D(k ) • - _ + '7 A _ + ... + '7 A

a . - 'lxa «a O_A ~aa, ... ak I A .
(J z-- - OZal··· Uk _ 1

(2.27)"l = 1, ... , r.

For notational convenience, repeated total derivatives D~~) 0 D~~) 0 ••• 0 D~k;

will be designated by D~~) . . . aD' The lth prolongation of R k is the submanifold
Rk+ 1 c Jk+I(M, N) defined by the constraint equations

F;. =0,
D~k+I)F;. = 0,

D~~:l). a,F;. = O.

It follows from (2.27) that if f is a solution of R k + 1
, then

F;.(xa,fA, , oal· .. akfA) = 0,

oaF;.(xa,fA, , oa,·· .akfA) = 0,
(2.28)

Oa" .. a,F;.(xa, ... , Oal ... akfA) = O.

Example 2.5 Consider the sine-Gordon equation as in Example 2.3. The
total derivatives on J3(M, N) are given by

~) 0 0 0
Da = oa + za'" + Zab -;:; + Zabc ~'

oz U~b lI~bc

and consequently, the first prolongation of the sine-Gordon equation is
given by

Z 12 - sin z = 0,
that is,

Z 12 - sin z = 0, Z112 - ZI cosz = 0, Z122 - Z2COSZ = O. •
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The following properties of the total derivative as introduced in (2.26)
will prove important in the context of prolongations of Rk

:

(a) If f) E Qk(M, N), then D~k) ..J f) = O.
(b) If 4>: f-1(M, N) --d~, then

d(lTf-l4» = D~)(nr_l4»dxa modQk(M,N),

where congruence "mod Qk(M, N)" means that l-forms lying in Qk(M, N)
are discarded.

Example 2.6 Consider the function 4>:Jl(l~2, IR) -> IR defined by

so that

Hence if f), f)l E Q2(M, N) are introduced according to

then it follows that

d(ni'4» = (zlza + zZla)dx a + Zlf) + Zf)l

= D~2)(ni'4»dxa + Zlf) + Zf)l' •

2.4 FIBERED PRODUCTS OF JET BUNDLES

IfM = IRm, N = IRn, N' = IR n
', then the subset of Jk(M, N) x Jl(M, N') which

consists of all pairs of points (p,p'), p E f(M, N) and p' E Jl(M, N'), such
that alp) = alp') is called the fibered product of Jk(M, N) and Jl(M, N') and
is denoted by Jk(M, N) x Jl(M, N'). Thus

M

f(M, N) x Jl(M, N') := {(p,p') E Jk(M, N) x f(M, N') Ia(p) = a(p')},
M

(2.29)

and points in the fibered product have the form (j~f,j~g) for some f E

C"(M, N) and g E CY'(M, N').
If local coordinates x", ZA, •.. , =:, ... ak and x", yI', ... , Y~, ... a, are chosen

on Jk(M, N) and J' (M, N'), respectively, then it follows that there is a
one-to-one correspondence between Jk(M, N) x Jl(M, N') and the set of

M
't(a~A A I' I' )points X,k "",Za"'.ak,Y, ... ,Ya""a/'
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The important concepts of projection maps nk,l:Jk(M, N} x Jl(M, N')-+
M

Jk-l(M, N) x J 1- 1(M, N') and modules nk,I(M, N, N') on Jk(M, N) x Jl(M, N')
M M

are defined, in turn, by

nk,l: (j~f, j~g) -+ (j~- If, j~ -l g), (2.30)

and

nk,I(M, N, N'): = pr] nk(M, N) + pri nl(M, N') (2.31)

where pr, represents projection on the ith factor, while total derivative
operators D~,l may defined on Jk(M, N) x Jl(M, N') by

M

888Dk,l ,__ + -r4 _ + ' , ,+ ZA
a . - 8 a <a 8 A aa, ... ak -c I 8 A

X Z Za, ... ak _,

(2.32)

It is readily verified that

(a) D~,l -1 e = 0, ve E nk,I(M, N, N'),
(b) If cjJ:Jk

-
1(M , N) x J1- 1(M , N') -+ IR, then

M

mod nk,I(M, N, N').

Example 2.7 Let M = 1R 2
, N = N' = IR, and take coordinates x", z, Y on

M, N, and N', respectively. Then, on J2(M, N) x Jl(M, N'), 0.2
, 1 is generated

. M

by the l-forms

e = dz - Zb dx", ea = dz; - Zab dx", and f} = dy - Yb dxb
,

while the total derivative operators D;,1 are given by

e 8 8 8
D;,1 = exa + Za 8z + Zab 8z

b
+ Ya 8y'

If cjJ is a function from Jl(M, N)' x JO(M, N') to IR, then since Jl(M, N) x
M M

JD(M, N') has coordinates (x", Z, Za' Y), it follows that

d(n2,I*cjJ) = (dx a ~ + dz.!!..- + dz; ~ + dy.!!..-)(n 2,I*cjJ)

\.: 8xa 8z 8za 8y

= D;,I(n2
•
hcjJ) dx" + (e.!!..- + o, ~ + e.!!..-.)(n2

•
1*cjJ)

8z 8za 8y

== D;,I(n2,hcjJ) dx" mod 0.2 , 1 . •
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Finally, note that if 1 and g are maps 1 E C'J(M, N) and g E C 70 (M, N'),
then there is a natural map from M to Jk(M, N) x J(M, N'), namely,

M

/'1 x i'e > Vf x/g) 0 Ll,
M

where Ll is the diagonal map

Ll:x ~(x,x).

2.5 BACKLUND MAPS

In this section, we introduce jet-bundle transformations known as Back-
lund maps, which reproduce features common to many of the Backlund
transformations set forth in Chapter 1. Indeed, the concept of Backlund map
as formulated by Pirani and Robinson [47J is sufficiently general to provide
an important unification of the inverse scattering, Wahlquist-Estabrook,
and classical approaches to Backlund transformations. Backlund maps have
the feature of being maps of finite-dimensional spaces that admit a simple
geometric characterization. As such they may be used to give a geometric
formulation of Backlund transformations as described in the sequel.

Our aim is to develop a natural jet-bundle framework for Backlund
transformations of the type

I' _ .I,a( a ,..A '7A V)
Ya-V'J1X'~ "·',-al<·'ak;Y'

a = 1, ... ,m, A = 1, .... ,n, v = 1, ... , n', (2.33)

without restriction as to dimension. In accordance with previous notation,
let M and N be the spaces ofthe original independent and dependent variables
x", ZA, respectively, and let N' = [Ro' be taken as the space of the n' new
dependent variables y". Let ljJ be a map from Jk(M, N) x N' = Jk(M, N) x

M

JD(M, N') ~ Jl(M, N) which is such that the diagrams of Figs. 2.3 and 2.4
commute, where, as before, pr i denotes projection on the ith factor and a, f3

Fig. 2.3



2.5 BACKLUND MAPS 135

liM, N) xJo(M, N')--:......--t.~Jl(M. N')
M

Pf'l
N'

Fig. 2.4

are the source and target projection maps. Thus we require that

IY. 0 l/J = IY. 0 pr 1 (2.34)

and
f3 0 l/J = pr z· (2.35)

If p E Jk(M, N) x JO(M,N') and p' = l/J(p), then p = (j~f, y) and p' = j~,g,
M

where j~fE Jk(M, N), YEN', andj~,g E Jl(M, N '). Hence, from (2.34),

(IY. 0 l/J)(p) = (IY. 0 pr d(p),

so that
1Y.(j~,g) = 1Y.(j~f),

which implies that

x' =x. (2.36)

Further, from (2.35),

which implies that

f3W,g) = y,

whence
g(x') = y. (2.37)

Thus, in terms of coordinates x", z-4, ... ,;.;1, ...ak' yV and x'", /1', y;; on the
domain and codomain ofl/J, respectively, it follows from (2.36)and (2.37)that

(2.38)
and

(2.39)

In view of (2.38) and (2.39), it remains only to specify the coordinates y;: as
functions of x", ZA, ••• , z1, ...ak' yV in order to determine completely the map
l/J. In other words, l/J is prescribed by mn' functions l/J~(Xb, ZA, ... , z1, ...ak' yV)
with

(2.40)
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If the map ljJ is given and f, 9 are maps f E CXj(M, N), 9 E C1J(M, N'), then
we shall be concerned with two ways of constructing out of f, g, and ljJ a map
from M to Jl(M, N'), namely, /g and ljJ 0 (/'f x /g), respectively. In local

M

coordinates, these maps are given by

x'" = x", y'l' = gl'(xb),

and
x'a = x", y'll = gl'(x b),

y;: = ljJ~(Xb,jA(Xb), . . . , 0al" 'ajA(xb),gV(xb)),

respectively. These representations will not generally agree, in that it will
not usually be the case that

ljJ~(Xb,jA, ... , 0a", 'ajA,gv) = oagl'. (2.41)

In fact, (2.41) holds only if the integrability conditions

ObljJ~(Xb,jA, . . . , Oat" .ajA,gv) = oaljJg(xb,jA, . . . , Oat" 'ajA,gV) (2.42)

are satisfied.
We now present a geometrical formulation of the integrability conditions

for ljJ which arises naturally out of consideration of the pull-back under ljJ
of the contact module QI(M, N'). Since (2.42) involves the (k + l)th derivatives
of the "old" dependent variables fA and the first derivatives of the "new"
dependent variables q", the formulation is in terms of objects on a space that
contains both Jk+ I(M, N) and Jl(M, N'), namely, r: I(M, N) x Jl(M, N').

M

In fact, the integrability conditions for ljJ will be seen to determine a sub-
manifold Bk + 1,1 C r: I(M, N) x jl(M, IV').

M

Let {B'I'} denote the standard basis for QI(M, N') and let Lt/t be the exterior
differential system on Jk+ I(M, N) x Jl(M, N') generated by {ljJ*B'I', ljJ*dB'I'}.

M

Thus Lt/t is the differential ideal generated by the pull-back of QI(M, N')
under ljJ. It is demonstrated in Appendix IV that there is a submanifold of
Jk+ I(M, N) x Jl(M, N'), denoted here by Bk+ 1, 1(ljJ), naturally associated

M

with LifJ. This is such that if.f E 'CO(M, N), 9 E CX'(M, N'), then

(/'f x /g)*Lt/t = 0, (2.43)
M

iff
im(jk+ If x/g) C Bk+1,1.

M

The constraint equations defining w: 1,1(ljJ) are given by

y~ = ljJ~,

(2.44)

(2.45)

(2.46)
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(2.50)

and it follows that a pair of maps f E CD(M, N), g E C 7C(M, N') satisfies
(2.44) iff

and

i1A/~(XC,fA, . . . ,gV) = abl/l~(xC,fA, . . . , gV). (2.48)

A pair (j,g) of such maps is called a solution of Bk+I,1 in what follows.
Note that the relations (2.45) are identical to the relations (2.40)which define
the image of l/I on Jl(M, N '), while (2.46) may be regarded as a system of
equations on r: I(M, N) parametrized by the y", If this system, which we
may identify as BHI,I n J H 1(M , N ), is nonempty, then l/I will be called an
ordinary Backlund map [47, 48]. The Backlund maps of present interest arise
when BH I n JH I(M, N) contains a system of differential equations Rk + I.
Then the above procedure provides a representation of the constraint equa-
tions for R k + I as integrability conditions for the map l/I, and in this case l/I
is called an ordinary Backlund map for R k + I.

Example 2.8 Let M = ~2, N = N' = ~,and let l/I be the map

l/I: Jl(M,N) x N'-+J1(M,N'), (2.49)

given by

y' = y,

Y~ = YI = l/II := ZI + 2el sint(y + z),

Y~ = Y2 = l/I2 := -Zi + 2e- 1sin tty - z),

where t is a real parameter, Here the coordinates are XU on M, Z on N, and
y' on N'.

In this case, B2. 1 is the submanifold of J2(M, N) x JI(M, N') given by
M

together with

that is,t

(2.51)

t Here and in what follows, square brackets denote antisymetrization of the enclosed indices.
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Insertion into (2.51) of IjJI and IjJz as given by (2.50) now yields

-Z12 + e-t(YI - ZI)COS!(Y - z) - [ZZI + et(yz + ZZ)cos !(y + z)] = 0,

that is,

-2z12 + 2sin!(y + z)cost(Y - z) - 2sint(y - z)cos!(y + z) = 0,

whence

Z 12 - sin z = O. (2.52)

(2.53)

Thus IjJ is an ordinary Backlund map for R Z
, where R Z is the system consist-

ing simply of the sine-Gordon equation (2.52). •

Example 2.9 (Pirani et at. [48]) Let IjJ be a map of the form

IjJ:J1(M,N) x N' ~JI(M,N')

given, in the notation of [48], by

x'" = x", y'A = yA,
'A _ ."A( a 711 11 B) _ A-Ac7P + B-A 7P + C-A B + D-A

Yb - 'l'b X,~ ,Za'Y - pb~c pb~ BbY b »

where the matrices /f, B, C,and 15 are dependent on the x", Here, the coordi-
nates are x" on M = /Rn, zl1 on N = /Rm, and y'A on N = N'.

It is readily shown that subject to the conditions

/fAc = /fA DC t
pb p b'

OdC~b - ObC~d + C~bCEd - C~dCEb = 0,

the integrability conditions (2.46) yield

IXB
7 P + f3B 7 P + rB - 0

p[b~al p[ab]~ '>Iab] - ,

with
B . _ -B -A -B -A

IXpb ' - 0b(GAAp ) - GABp b ,

f3:ab:= ob(G~B:a)'

(~b ':= 0b( G~ 15:),

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

where it has been noted that the condition (2.55) implies that the matrix C
is such that

(2.60)

Here [gt] is an arbitrary nonsingular matrix with entries dependent on x"
and [G~] is its inverse.

t "1, is the usual Kronecker symbol.
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If the matrix [X:J is nonsingular and [a~J denotes its inverse, then subject
to the additional conditions

B B-A
!3,,[abl = ()("[bafABplal'

the integrability conditions (2.56) imply the system R 2 given by

(2.61)

(2.62)

Accordingly, subject to the conditions (2.54) and (2.57)-(2.61), the map ljJ
given by (2.53) is an ordinary Backlund map for the system (2.62).

The specialization of the above result to M = N = [R2 leads to the linear
Backlund transformations introduced by Loewner [64]. In subsequent
chapters these are used extensively both in gasdynamics and elasticity. •

2.6 BACKLUND TRANSFORMAnONS DETERMINED
BY BACKLUND MAPS

In this section, we describe the way in which Backlund maps may be used
to determine Backlund transformations. The idea is to consider submanifolds
Bk+r,r C Jk+r(M, N) x Jr(M, N'), r = 1, ... , constructed by analogy with

M

the prolongations of a differential equation, and to use ljJ to define maps ljJr
from these submanifolds to Jr+l(M,N'). One then obtains a Backlund
transformation if the image of some ljJr is a differential equation.

Thus, let Bk+r,r be the submanifold of Jk+r(M, N) x Jr(M, N') defined by
M

the constraint equations

Yll _ .t,« = 0 Dk+r,r,I,1l = 0
a 'l'a , [a 'l'b] ,

Dk+ r•r (11 .1,11) - 0
al"'QjYa-lf'a -,

Dk+r,r (Dk+r,r,I,I') - 0 . - 1
a, ... aj [a 'l'b] -, } - , .•. , r.

We may now introduce maps

ljJr:d+ r.r -+ J'" I(M, N')
given in coordinates by

x'" ='x a
, y'll = yll, Yd = ljJ~,

ru - Dk+r,r .1,1' • 1
Yaal"'Qj- Ql"'Qj'l'a' )= , ... ,r.

(2.63)

(2.64)

Note that since the domain of ljJr is restricted to Bk+r,r, the conditions (2.63)
are satisfied, and thus y;::" ... aj is symmetric in the indices aa1 ..• aj and ljJr
is well defined. If for some r, the image of the map ljJr is contained in a system
of differential equations R' c r: I(M, N /), then the correspondence between
Rk+ 1 and R' will be called the Backlund transformation determined by the
Backlund map ljJ. Suppose now that this is the case and that f E C"(M, N),
g E C"(M, N ') are such that the pair (f, g) is a solution of Bk+1,1, that is,
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im(jk+ 1f x/g) C Bk + 1,1. A routine calculation in coordinates shows that
M

('V 0 (jk+1 x /g))*n.r+ 1(M , N ') = 0,
M

and, consequently, that the map

l/J' 0 (jk+1 x /g):M -+ J'+ l(M, N ')
M

is the (r + lj-jet of f3 0 l/J' 0 (/+1 x /g). But
M

f3 0 l/J' 0 (jk+1 x/g) = g,
M

so that
l/J' 0 (/+1 x/g) = /+l g.

M
(2.65)

(2.66)

Accordingly, since im l/J' c R', it follows that whenever (f,g) is a solution of
Bk+1,1, 9 is a solution of R'. In other words, if l/J determines a Backlund
transformation between R k + 1 and R' and if f is a solution of R k + 1, then a
solution 9 of R' may be obtained by solving the first-order system

ogll _ .I,Il( b J~ A ::1 fA V)
OXa-o/aX, "",Ua1o·· aj ,g.

Example 2.10 The Korteweg-deVries Potential Equation Let M = 1R2,

N = IR, and N' = IR. The Korteweg-deVries potential equation

U2 + U 1 1 1 - 6(ud 2 = °
determines the submanifold of J3(M, N) given by

Z2 + Zlll -'6(zd2 = 0. (2.67)

Wahlquist and Estabrook [36] constructed a Backlund map for (2.67),
namely, the map

l/J:J2(M,N) x JO(M,NI)-+J1(M,N')
M

given by

y; = -Zl -2t+(Y-Z)2,

y~ = -Z2 + 4{4t2 + 2tz1 - 2t(y - Z)2 (2.68)

+ zi + Zl(Y - Z)2 + ZlJ(Y - zj},
where t is a Backlund parameter.

The integrability condition, obtained by substitution into (2.46) yields

(y - Z)(Zlll + Z2 - 6zil = 0,
and this equation defines B3

•
1(t/!). Since the Korteweg-deVries potential

equation is thus contained in B3 •1(l/J), it follows that l/J is a Backlund map
for (2.67).
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The map l/J1 is given by (2.68) together with

Y;1 = -Zl1 + 2(y - z){ -2z1 - 2t + (y - z)Z},

y'12 = -Z1Z + 2(y - z){16t Z+ 8tz1 - 2zi + Z111 - zz}

+ 8(y - Z)ZZ11 + 8(y - Z)3(Z1 - 2t),

y;z = -Z22 + 8tz 12 + 8Z1Z1Z + 4z 11 Z(y - z) + 4z 1Z(Y - z)Z

+ 4{Zl1 + (2z1 - 4t)(y - z)}

x {-2z1 + 4[4tZ+ Ztz ; - 2t(y - z)Z + zi
+ Z1(y - z)z + Zl1(Y - z)]}.

A further prolongation shows that l/Jz has as its image the submanifold
of J3(M, N') given by

Y; + Y;11 - 6(y;)z = O.

Thus, the map t/J determines an auto-Backlund transformation for the
Korteweg-deVries potential equation. •

Example 2.11 The AKNS System for the Sine-Gordon Equation The
AKNS linear scattering equations for the sine-Gordon equation may be
generated from a Backlund map in the following manner:

Let M = [Rz, N = [R, N' = [Rz, and let l/J be the map l/J:J 1(M , N ) x
4 M

JO(M, N') ---+ J1(M, N') given by

y'/ = l/Ji := tA(y1cos Z + yZsin z),

y;Z = t/Ji := tA(i sin z - yZcos z],

y;l = l/J1 := t(A -1 i - yZZz),

y;Z = l/J~ :=t(y1zz _ A- 1yz).

It is readily verified that l/J is a Backlund map for the sine-Gordon equation
and the corresponding system (2.66) may be written as

o [g1] _ ~ [cos f sinf][g1]
1 gZ - 2 -suif -cosf gZ'

[ g 1 ] = ~ [ A - 1 -fz ][g1]
Oz Z 2 f 1 -1 Zg Z -A g

where f is any solution of the sine-Gordon equation. This is precisely the
AKNS system for the sine-Gordon equation as set out in Section 1.11. •

Observe that for both of the above Backlund maps, the functions l/J~ of
equation (2.40) factorize according to

l/J~ = 'P;(xb, zA, ... , z1, .. , ak)X~(yV).
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The functions Xi(Y") may be used to define vector fields on N', namely,
the vector fields X), given by

X ic := X~(y"k1jCy!'.

If these X ic constitute part of a basis for a finite-dimensional Lie algebra
G, then there is a Lie group naturally associated with the Backlund map t/J,
namely, the Lie group G with Lie algebra G. Moreover, in this case, R k + I

may be expressed as the Maurer-Cartan structure equations for the Lie
group G (Crampin [408]).

Example 2.12 In the case of the Backlund map (2.69), the vector fields X A

are given by

Xl = yl i\ - yZ oz, X z = yZ i\, X 3 = v' e.,
and these form a representation for the three-dimensional Lie algebra
S1?(2, IR). Accordingly, the Lie group S1(2, IR) may be associated with the
Backlund map t/J. •

To conclude this section, we describe how the notion of Backlund map
may be extended to incorporate constraint equations. Thus we consider
the case in which p equations of the type (2.40), namely,

}
,!, _ '/'!'(xb ~A ~A ,''')
a-'f'a ,~ ,·,.·,4.-al···Uk'Y

are augmented by the n'<p constraint equations

J1 = 1, ... ,p, (2.70)

ffi!'(Xb ~A ~A "V) - 0'II' ~ , J.J , • • • , »a 1 .•• Uk' ~.. -

here assumed to be solvable in the form

J1 = p + I, ... , n',

J1 = p + I, ... , n', (2.71)

The approach now is to adjoin to (2.70) the system obtained by operating
on (2.71) with D~, namely,

J1 = p + I, ... , n', (2.72)

and to use (2.70) together with (2.72) to define a map
t/J:jk(M,N) x jO(M,N')-dO(M,N'). Thus t/J is the map given III coor-

M

dinates by

Yd = t/J~,

Yd = D~¢!',

J1=I,,,.,p

J1 = P + 1, ... , n'.

(2,73)

Let C denote the submanifold of jk(M, N) x jO(M, N') given by (2.71),
M

and let C' denote the submanifold of jk+ I(M, N) x jl(M, N') given by
M

(2.71) and (2.72). In view of (2.73), we call the map t/Jic a Backlund map for



2.7 SYMMETRIES OF DIFFERENTIAL EQUATIONS; BACKLUND MAPS 143

a system of equations Rk+ I if

Bk+ l,l(tjJ) ::J Rk + I n C. (2.74)

Example 2.13 Pohlmeyer's Backlund Transformation for the Yang Equa-
tions As noted in Section 1.14, Pohlmeyer [401] has recently constructed
a Backlund transformation from Yang's equations that was derived from
the Backlund transformation for the nonlinear a-models [255]. That this
transformation in fact determines a Backlund map may be seen as follows:

Let M = 1R4 and N = 1R4 = N', and let M, N, N' have, in turn, the co-
ordinates x', ... , x", z ', ... , Z4, and l, ... , y4. Let z and y denote the
vectors with components ZA and yA, respectively. Then Yang's equations
may be written in vector form on JZ(M, N) as the system RZ given by

Z12 + Z34 + (z. • Zz + Z3 • Z4)Z

+ i[z; Zz ; Zl] + i[z ; Z4 ; Z3] = 0 Z • Z = 1, (2.75)

where . denotes the Minkowski scalar product z· Z = Z AZA with Z A : =
gABZ

B and
[gAB] = diag[l, -1, -1, -1],

while [u;v;w] is the triple vector product of u, v, and w, namely, the vector
with components given by

[u; v ; W]A = BABCDUBVCWD'

Pohlmeyer's Backlund transformation may be written as a Backlund map
tjJlc for RZ

, where tjJ:J1(M, N) x JO(M, N') -d1(M, N') is given in vector
M

notation by

y~ = -Z4 - (Z4 • y)y, y~ = -Z3 - (Z3 • y)y,

y~ = Zl + (z , • y)y, y~ = Zz + (zz • y)y,

and the constraint submanifold C c Jl(M, N) x JO(M, N') is given by"
M

(2.76)

Z· Z = 1, Z· Y = 0, y'y=-l. (2.77)

2.7 SYMMETRIES OF DIFFERENTIAL EQUATIONS AND
ONE-PARAMETER FAMILIES OF BACKLUND MAPS

In this section we indicate how symmetries of a system of differential
equations Rk+ 1 may be combined with a Backlund map for R k + 1 to pro-
duce another Backlund map for Rk+ I [48]. In the case when Rk+ 1 admits

t The correspondence between the present notation and that of Pohlmeyer is

(x', x 2, x3, x", Zl,Z2, Z3,Z4) 4-+ (Y. y,z,z, q', q2, q3, q4),
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a one-parameter group of symmetries, this procedure leads to a one-param-
eter family of Backlund maps. This result generalizes the so-called "Theorem
of Lie" for the sine-Gordon equation whereby the parameter is inserted in
the Backlund relations by conjugation of the parameter-free Bianchi trans-
formation with the Lie transformation (x', x 2

) ~ (ex', x 2/a)' (see Eisenhart
[168]). The general construction is an important one, since the parameter
so introduced plays the role of the eigenvalue in the associated inverse
scattering problems, and moreover, is intrinsic to both the permutability
theorems and the method of generation of conservation laws (Wadati, et al.
[310], Shadwick [407]). In what follows, we use the notation of Appendixes
V and VI to which the reader is referred for the relevant definitions.

Suppose that (<P, (/» is a symmetry of Rk+ 1, t/J is a Backlund map for
Rk+ 1, and (<P', cP) is any diffeomorphism of JO(M, N'). A diffeomorphism
pk,O(<P x <P') of Jk(M, N) x JO(M, N') may be constructed from the prolon-

M

gations of <P and <P' according to

pk,O(<P x <P') := pk<p x p0<P'.

If we now introduce a map (if:Jk(M,N) x JO(M, N') ~ J 1(M,N') by
M

(if:= p1<p,-1
0 t/J 0 pk,O(<P x <P'), (2.78)

it is shown in Appendix VI that the integrability conditions for (if are satisfied
on Rk+ 1 X im (if, that is,

Rk+ 1 x im(if c Bk+ 1,1«(if),

so that (if is also a Backlund map for Rk+ 1.

Given a one-parameter group of symmetries (<PI' cPt) of Rk+ 1 and any
other one-parameter group of diffeomorphisms (<P'I' cPt) of JO(M, N'), the
same procedure may be adopted to obtain the one-parameter family of
Backlund maps (ift given by

(ift := p1<p;-1
0 t/J 0 pk,O(<Pt x <1>;). (2.79)

Example 2.14 The Theorem of Lie for the Sine-Gordon Equation Let
M = [Rz, N = [R = N', and let t/J be the Backlund map for the sine-Gordon
equation given by

, 2 . {y +z}, 2 . {y - z}Y1 = Zl + sm -2-' Yz = -Zz + sin -2- .

This is the Backlund map corresponding to the Bianchi transformation for
the sine-Gordon equation (Eisenhart [168]).

Let (<Pt, cPt) be the one-parameter group of Lie symmetries of the sine-
Gordon equation given by

(x", x Z, z) ~ (e'x ', e-txZ, z).
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Let (<<1>;, cPt) be the one-parameter group of diffeomorphisms of JO(M, N ')
given by

and

respectively, so that the maps t/Jr:J1(M,N) x JO(M,N')~Jl(M,N') with
M

t/Jr = pl«1>'_t 0 t/J 0 pl,O(<<1>t x <1>;) have the coordinate representation

1''' = y,

n -t' -t . Y - z
Y2 = e 1'z = e [-e'zz + 2 sm{-2-}].

This is the Backlund map with an incorporated "Backlund parameter" et

as set out previously in Example 2.8. •

Example 2.15 A One-parameter Family of Backlund Maps for the Yang
Equations It is readily verified that the Yang equations (2.75) admit the
one-parameter group of symmetries (<<1>t, cPt) given by

(x 1
, X

Z
, X

3
, X

4 ,Z) ~ (e'x', e- tx Z,x 3, x 4 ,z).

Thus, if we let (<<1>;, cPt) be given by

then the Backlund map t/Jlc of Example 2.13 gives rise to the one-parameter
family of Backlund maps t/Jtlc given by

y~ = etC -Z4 - (Z4' y)y],. y~ = e- t[
-Z3 - (Z3' y)y],

(2.80)
y~ = e-'[Zl + (z, . y)y], y~ = etCZz + (zz • y)y]. •

2.8 THE WAHLQUIST-ESTABROOK PROCEDURE

We now turn to the problem of construction of Backlund maps. The
method of Clairin as outlined by Lamb [35] is readily translated into the
language of jet bundles. Wahlquist and Estabrook [409, 410] devised a more
economical method than that of Clairin based on the notion of pseudopo-
tentials. This has subsequently been applied in the construction of Backlund
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transformations and Lax formulations (Dodd and Gibbon [244, 411]). The
Wahlquist-Estabrook procedure has the advantage that it highlights the
roles of the various Lie groups associated with differential equations that
admit Backlund transformations. Moreover, the method has a natural formu-
lation within a jet-bundle context. Here, we present a generalization of the
Wahlquist-Estabrook procedure to the case of m independent variables
(Pirani et al. [48], Shadwick [407]). t

The technique adopted takes as its starting point an exterior differen-
tial system L k of m-forms on Jk(M, N) associated with a quasilinear system
Rk+ I C Jk+ I(M, N)t. Let N' = IRn and choose coordinates x'", y'f', and y;:'
on JI(M,N'). Then a basis for the contact (m - Ij-forms on JI(M,N') is
given by e'f' /\ W~b' where

e'f' := dy'" - y;:' dx'"

and for a < b = 1, 2, ... , m, W~b is the (m - 2)-form defined by

, a I a I (d 'I d ,m)
Wab = DX,b -' DX,a -' X /\ ... /\ X .

A short computation shows that

(2.81)

(2.82)

(2.83)

Suppose now that the map l/J:Jk(M,N) x JO(M,N')->JI(M,N') is given
M

in coordinates by

(2.84)

Let 0' denote the module of contact (m - l j-forms on Jl(M, N'). It is readily
shown that the requirement

l/J*dO' c J(L\ l/J*O') (2.85)

implies that l/J is a Backlund map for Rk + I. Now, the condition (2.85) holds
only if

nk+ u*l/J* dO' c nk+1,1*J(Lk, l/J*O'),

where nk + 1,1 is the canonical projection

nk+I,I:Jk+I(M,N) x JI(M,N')->Jk(M,N) x JO(M,N').
M M

(2.86)

(2.87)

But since nk+ I,UJ(L\ l/J*O') is generated by Ok+ 1,1 and Fw, the condition

t The method has its roots in Cartan's theory of exterior differential systems [49].
I We present the technique in the case for which Rk+ 1 is given by a single equation F = O.

extension to systems is obvious.



2.8 THE WAHLQUIST-ESTABROOK PROCEDURE

(2.85) obtains only if

147

(2.88)

Thus, since n' is generated by Wit /\ W~b}' a necessary condition for (2.85) to
be satisfied is that

nk +l,hljJ*(d{}'1t /\ W~b) E J(nk+ 1,1, Fw).

But on application of (2.83), a routine calculation shows that

nk +l,l*IjJ*(d{}'1t /\ W~b) =: Dta+ l,lljJt1w mod J(nk+ 1,1);

whence, from (2.88),

(2.89)

Dta+ l,lljJt1wE J(nk+ 1,1, Fw). (2.90)

The only m-forms in J(nk+ 1,1, Fw) that are linearly dependent on ware
multiples of Fw, so we conclude that (2.85) holds only if DtaljJtl is some
multiple of F. Thus, the integrability conditions for IjJ are satisfied on Rk+ 1

and IjJ is a Backlund map for Rk + 1.

The Wahlquist-Estabrook procedure requires, essentially, that the map
IjJ be determined by solving for the functions 1jJ~ as given by the conditions

(2.91)

In practice, it is usually convenient to seek a differential subideal L C L k

that has Rk+ 1 as its associated equation. Such a subideal is said to be effective
for Rk+1. Thus if L is effective for Rk+1 and one finds a map 1jJ: Jk(M, N) x

M

N' -+ J1(M, N') such that

1jJ*(n', dn') c J(L, ljJ*n'), (2.92)

then since J(L, ljJ*o.') c J(Lk, ljJ*o.'), it follows that IjJ is a Backlund map
for Rk+ 1.

The advantage of working with the subideal L is that a reduction in the
number of variables in the equations for IjJ may be achieved thereby. This
reduction can be described in terms of characteristic vector fields for L
(see Appendix III). Specifically, if it is assumed that every characteristic
vector field for L is vertical over M, that is,

X -.J dx" = 0, a = 1, ... ,m, Vx E Char(L),

then it may be verified that the condition

ljJ*do.' c J(L, ljJ*n'),
requires that

X(IjJ~) = o.'
t An alternative construction is given in [48].

(2.93)
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It is the additional equations (2.93) for t/J~ that allow a reduction in the
number of variables to be considered. The procedure is illustrated by the
following example:

Example 2.16 The Wahlquist-Estabrook Procedure for the Sine-Gordon
Equation Let M = 1R2, N = IR, and N' = IR. The exterior system LIon
Jl(M, N) generated by the 2-forms

1'/1 := dz A dx' + Z2 dx' Adx2,

1'/2: = dz A dx? - Zl dx" A dx/',

1'/3 := dz1A dx I + sin z dx 1A dx",

1'/4:= dZ2 Adx2 - sin z dx! Adx2,

has as its associated equation

Z12 = sin z.

There are three effective subideals OfL 1
, namely L 1 generated by {I'/I' 1'/4}'

L 2 generated by {1'/2,1'/3}' and L 3 generated by {1'/1,1'/2,1'/3 + 1'/4}' It is readily
verified that if (ll>, ¢) is the diffeomorphism of JO(M, N) given by

(x", x 2
, z) -+ (x 2

, x", z),
then pIll> is given by

and further, that p1ll>*L
2 = L r- Thus, there are essentially only two effective

subideals of L 1 and we may, without loss of generality, restrict attention to
L 1 and L 3 •

A short calculation shows that Char(Lrl = {%zr} and Char(L3) = {OJ.
Thus, we may expect a reduction in the number of variables to be considered
if we apply the Wahlquist-Estabrook procedure to L 1.t To do this, we must
find functions t/J 1 and t/J 2 on J1(M, N) x JO(M, N') which satisfy (2.91),

M

that is

d(dy - t/J1 dx' - t/J2 dx 2)
E f(L 1 , dy - t/Ja dxa),

together with the additional requirement

a
~t/Ja=O.
U--1

Thus, functions f, g, and a l-form ~ must exist such that

dt/J I A dx I + dt/J 2 A dx 2 = !I'f 1 + gl'/4 + ~ A "

t For an analysis of the Wahlquist-Estabrook procedure applied to the effective ideal L 3 ,

the reader is referred to Shadwick [171].
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where ,: = dy - ljJadx" and the ljJa are independent of Zl' Consequently,
if aljJa/axb = 0, then

aljJ 1 d 1 aljJ 1 1 aljJz z aljJz d d z
-a Z/\ dx + -a~ dzz /\ dx + -a dz /\ dx + ~ zZ /\ X

Z ~z z uzz

(
aljJz aljJl) I z+ ljJl ay -ljJz ay dx r. dx

= In 1 + gn4 + ~ /\, ;
whence, on use of (2.94) and comparison of the terms in dz /, dx", dz /\ dx",
dzz /\ dx", and dzz /\ dx'; the additional equations

aljJl = 0 aljJz = 0 aljJl = f aljJz (2.95)
azz ' az ' az ' azz = g,

for the ljJa are obtained, so that ljJl = ljJl(Z,y) and ljJz = ljJz(zz,y). Finally, a
comparison of the terms in dx' /\ dx? and use of (2.95) shows that

.t, aljJz _ .t, aljJl _ aljJl _. aljJz
'1'1 a v z a - Zz a~ sm z a~ .

y y "' "'Z

Solutions of (2.96) are sought for which ljJ z is linear in Zz, so that

ljJz(zz,y) = X 1(y) + Xz(y)zz

(2.96)

(2.97)

for functions Xi(y), i = 1,2, to be determined. Substitution of (2.97) into
(2.96) yields

(
aX l axz) . aljJl aljJl'

ljJl ay + ay Zz - (XI + Xzzz) oy = Z2 az -smzXz,

whence

and

(2.99)

A solution of (2.98) is given by

ljJl = asinzX3(y) + acoszX 1(y),

ljJz = a-IXI(y) + Xz(y)zz'

provided that X I' X Z , X 3 are such that

Xl = [XZ,X3 ] , X z = [X l,X 3 ] , X 3 = [Xl>Xz],

where [Xi,XJ:= Xi(aX)ay) - Xj(oXjoy). These equations are the com-
mutation relations for 5.2(2, ~), so that a solution ljJ I' ljJ z is obtained by
substitution into (2.99) of anyone-dimensional representation of 5.2(2, ~)
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in this basis. Thus, for example, if we take

(2.100)

the Backlund map

y~ = t/J 1 = t (1 - yZ)sin z + ay cos z,

y; = t/Jz = a-1y - t(1 + yZ)zz

is obtained. The system (2.100)is equivalent to the Riccati form of the AKNS
scattering equations. •

In conclusion, we note that the choice of the effective ideal can limit the
transformations retrievable from the Wahlquist-Estabrook procedure.
Thus, for instance, the Backlund map which defines the classical Backlund
transformation for the sine-Gordon equation, cannot be obtained byapply-
ing the procedure to the Ll of the previous example. It is, on the other hand,
the only nontrivial map, in the case N' = ~ and 8t/Ja/8xb = 0, if the starting
point is the effective ideal L3' For further discussion and applications of the
Wahlquist-Estabrook technique, the reader is referred to the work of Pirani
et al. [48], Harrison [376], Morris [412], and Shadwick [407].



CHAPTER 3

Backlund Transformations in
Gasdynamics, Nonlinear Heat

Conduction, and
Magnetogasdynamics

3.1 THE RECIPROCAL RELATIONS AND THE HAAR
TRANSFORMATION

In 1928, Haar [51], in a paper devoted to adjoint variational problems,
established a remarkable invariance property of the gasdynamic equations.
Subsequently, Bateman [53] introduced an associated but less restricted
class of invariant transformations known as the reciprocal relations. The
application of the latter in the approximation of subsonic gas flows was
later noted by Tsien [54].

That the adjoint and reciprocal transformations are both of the Backlund-
type may be readily seen in terms of Martin's formulation of the gasdynamic
equations [138,172]. However, it is also interesting to note that both types
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of transformation may be shown to lie within a more general class of
Backlund transformations subsequently introduced by Loewner [64,65].
The appropriate specializations which lead to the adjoint and reciprocal
relations are indicated in the discussion of Loewner's work later in this
chapter. Here the reciprocal transformations which follow are generated as
a Backlund transformation of Martin's system of equations.

Martin's Equations

The steady two-dimensional flow of an inviscid thermally nonconducting
gas, subject to no external force, is governed by the following system of
equations (Yih [405J)

j = 1,2

i,j = 1,2

(3.1)

(3.2)

. os
uJ-.=OoxJ '

to which must be adjoined an equation of state

p = p(p,s), (opjop)s> O. (3.4)

Here, p, p, s, and ui, i = 1, 2, denote, in turn, the gas pressure, gas density,
specific entropy, and components of the velocity field u. In irrotational
flow, the additional condition

(3.5)

holds.
Multiplication of (3.1) by ui and addition to (3.2) allows the replacement

of the latter by

o .. op
oxj (pu'uJ

) + ox i = 0, i,j = 1,2, (3.6)

which, together with the continuity equation (3.1), permits the introduction
of~(xa), if(xa), t/J(x"), a = 1,2, such that
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d~ = pUl u2dx 1 _ (p + p(Ul )2)dx 2,

dii = (p + p(U2)2) dx' - pU1U2dx",

dt/J = PU2dx' - PUI dx/:'

If we now set

153

(3.7)

(3.8)

(3.11)

then the Pfaffian system (3.7) becomes

d(=u ldt/J+x2dp, dtl=u2dt/J-x ldp,

and the introduction of p and t/J as independent variables instead of the
x" is suggested.! In terms of p and t/J, (3.9)1,2 show that

x' = -tip, x2 = (p, u l = (rjJ' u2 = tlrjJ' (3.10)

while, (3.9h then requires that ((p, t/J) and tI(p, t/J) satisfy Martin's equations

(rjJ(prjJ + tlrjJtlprjJ + p-l = 0,

(rjJ(pp + tlrjJtlpp = O.

Note that the isentropic condition (3.3) shows that s = s(t/J), whence, the
constitutive law (3.4) implies that p = pip, t/J). Specification of the latter
characterizes the system (3.11).

A Monge-Ampere equation associated with the system (3.11) is readily
generated. Thus, (3.10}z and (3.11)z show that if q is the gas speed given by
q = (u . U)1/2, then

tlrjJ = (q2 _ ($)1/2,

npp = _(rjJ(pp!(q2 _ ($)1/2,
(3.12)

(3.13)

and elimination of n produces a Monge-Ampere equation for ((p, t/J),
namely,

2qqp(rjJ(rjJp _ qqrjJ(rjJ(pp + q3qpp

- (qqpp + q;)($ + q2((rjJrjJ(pp _ (~p) = O. (3.14)

Backlund transformations of this equation may now be generated by a direct
approach to the Martin system (3.11) as indicated below for the reciprocal
relations.

t ~ and If are termed the lift and drag functions, respectively [53].
I The class of gasdynamic flows for which the streamlines are isobars must thereby be excluded.

The geometry of this restricted set of flows has been delineated by Martin [172].
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The Reciprocal Relations

It is readily verified that the system (3.11) is invariant under the multi-
parameter class of Backlund transformations

~~, = fJI1[~ - (p + fJ2)~pJ, fJl -1= 0,

p -fJl~1/I
'01/1' = [p + fJ2J' p + fJ2 -1= 0,

'1~, = fJI 1['1- (p + fJ2)'1 pJ,

I - fJ 1 '11/1
'11/1' = [p + fJ2]'

, fJ fJifJ2 ./, fJ fJ
p = 4-[P+fJ2]' 'f"= 3ljJ, 3-1=0.

where fJi' i = 1, ... , 4, are constants and the new density p' is given by

(3.16)

Use of relations (3.10) reveals that (3.15) and (3.16) correspond to the
reciprocal transformations introduced originally by Bateman [53J and
subsequently extended to rotational flow by Power and Smith [60J, who
obtained their result in the following form:

THEOREM 3.1 The system of gasdynamic equations (3.1)-(3.3) is invariant
under the multiparameter class of transformations

{ ..i i} {'i' I I Ii}u- , p, p, s, x --+ U ,p, p , s , x

given by

s' = s,

j = 1, 2, fJ 1 -1= 0,u'i = - fJ1
Uj

[p + fJ2]'

I fJ fJifJ3
P = 4 - [p + ~2J'

I fJ3P(P + fJ2)
P = ~-'----=-----"'--=::

[p + fJ2 + pq2]'

dx" = fJI 1
[ -(p + fJ2 + p(U2)2)dxl + pU1u2dx2J,

dX,2 = fJI 1[pU1U2dx' - (p + fJ2 + p(u1)2)dx 2J,

subject to the requirement °< IJ(X' I , X ' 2 ; X
1,x 2)1< 00, so that

0< I(p + fJ2)(P + fJ2 + pq2)1 < 00.

(3.17)

(3.18)
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The Haar Relations

The Haar class of invariant transformations is of a type similar to the
reciprocal relations but is restricted to irrotational flow. Haar's result is as
follows:

THEOREM 3.2 The system of homentropic gasdynamic equations (3.1)-
(3.2) augmented by the irrotational condition (3.5) is invariant under the
multiparameter class of transformations {uj,p,p,xi

} ---t {uj,p,p,xi
} given by

-j f31PU
j

f3
u = [p + f32 + pq2] , j = 1,2, 1 =F 0,

- f3 f3if33 f3 0
P = 4 + [p + f32 + pq2J' 3 =F ,

(3.19)
_ f33(P + f32 + pq2)
P = -----=c----:~-

pep + f32]

dx l = s.: [pUIU 2dx' - (p + f32 + p(ul )2)dx 2],

dx 2 = f31 1[(p + f32 + p(U2)2)dxl - pU1u2dx2],

subject again to the constraint (3.18) imposed by the condition

0< jJ(XI,X2
; X

I , x2)1< 00.

The above Haar relations are readily established VIa the Loewner
formalism as introduced later in this chapter.

3.2 PROPERTIES OF THE RECIPROCAL RELATIONS.
INVARIANCE OF THE EQUATION OF STATE

We now proceed to establish certain invariance properties ofthe reciprocal
relations. The first such result is incorporated in the following:

THEOREM 3.3 (Power and Smith [60]) Under the reciprocal transforma-
tions (3.17) .

(i) irrotational} fl d t irrotational} fl
rotational ows are mappe 0 rotational ows,

(ii) subsOnic} . sUbsonic} .. regIOns are mapped to . regIOns,
supersonic supersonic

subject to the assumption of uniform stagnation pressure and of a Prim-type
equation of state

p = P(p)S(s). (3.20)
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(3.22)

(3.23)
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Proof (i) The reciprocal relations (3.17Jt,s,6 may be combined to
produce the relationship

ouz cu1 {ou'Z OU'l}
~ - -0Z = 131 1(p + 13z)(p + 13z + pqz) -8'1 - -8.z 'ox zx x x

between the vorticities in the original and reciprocal flows. In view of
condition (3.18), the result follows.

(ii) The equations of motion (3.2) and of energy (3.3) together produce
the Bernoulli integral

qZ + 2h(p,s) = 2h(po,s),

where h is the specific enthalpy, given by

h( lP dop,s) = 0 -(-)'P O',S

and Po is the stagnation pressure. The latter is constant along any individual
streamline, that is,

ui oPolox i = o.
The reciprocal enthalpy may be introduced similarly according to

h'( ") (p' dO"
P, S = Jo p'(o', s')'

(3.24)

(3.25)

while the reciprocal equations of motion and energy produce the reciprocal
Bernoulli integral

q'Z + 2h'(p', s') = 2h'(p~, s'), (3.26)

where P~ is the reciprocal stagnation pressure.
The equation of state (3.4) is henceforth specialized to be of the Prim

product type (3.20). In particular, this includes the constitutive law for a
perfect gas, namely,

(3.27)

where A is a constant, 'Y = cplc" and cp, c" are the specific heats at constant
pressure and volume, respectively.

With the Prim law (3.20), the specific enthalpy (3.23) adopts the form

where

h(p, s) = f1(p)IS(s),

IT( ) _ (p do
P - Jo P(O'),

(3.28)

(3.29)
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and (3.22) becomes

(3.30)

Use of the reciprocal relation (3.16), together with (3.20) and (3.30), yields

P'=[ f33 P(P)(P+f32) ]S(S) (331)
[p + f32 + 2{II(po) - II(p)}P(p)J' .

which together with the reciprocal relations for pi and s', as given in (3.17),
determine the reciprocal equation of state. Thus, in the case of uniform
stagnation pressure Po' the reciprocal equation of state adopts the form

P' = PI(pl)SI(S') (3.32)

so that the Prim form is preserved under the reciprocal transformations. We
proceed on this assumption.

The Mach numbers M and M' in the original and reciprocal flows are
given by

(3,33)

and

(3.34)

respectively, where c, c' are the corresponding local speeds of sound. On use
of the reciprocal relations (3.17k2' together with the original and reciprocal
Prim-type equations of state (3.20) and (3.32), it is readily shown that

1 - M,2 = (l - M 2)(p + f32)2/(p + f32 + pq2)2. (3.35)

Thus, 1 - M ' 2 and 1 - M 2 have the same sign and the result follows.' •

Further properties of reciprocal relations were detailed by Power and
Smith in [60]. Thus, it was shown, under an additional assumption, that
shock lines are mapped to shock lines under the transformations. Moreover,
in [60J and a subsequent paper by Rogers [61] the conditions under which
the equation of state remainsinvariant were investigated. In this connection,
the following result was established in [61]:

THEOREM 3.4 Prim-type equations of state

p = f31 [<})(lnlf31 1(p+ f32)1) + <})'(lnlf31 1(p + f32)I)J -1 S(s), (3.36)

where <}) is an even differentiable function, are invariant under reciprocal
relations (3.17) with the specializations f32 = - f34' f33 = + 1.

t Regions in which M < 1are called subsonic, while regions with M > 1are termed supersonic.
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Proof The equation of state is invariant provided that

P(p') = lP(p),

where

(3.37)

(3.40)

lP(p) =./33P(P)(P + /32)/[P + /32 + 2 {Il(po) - Il(p)} P(p)]. (3.38)

In view of relation (3.29), this condition yields

dIld(P) (p + /32) + 2[Il(po) - Il(p)] = /33 dIld(~') (p + /32),
p . p

whence, on integration,

where e is a constant of integration. The choice s = - Il(p~) reduces the
problem to the solution of the functional equation embodied in

Il(p) - Il(po) = /31 2(p + /32)2[Il(p') - Il(p~)J,

IP da , IP' da
Il(p) = Jo P((J)' Il(p) = Jo P((J) ,

p' = /34 - /3i/33/{P + /32}'
If we now set /32 = - /34' /33 = -1, together with

Il*(p) := Il(p) - Il(po), p* := p + /32'
then (3.40)1 reduces to

Il*(p* - /32) = /312p*2Il*[~! - /32J

whence, we obtain the canonical form

IT(p) = IT(p-l),

where

(3.41)

(3.42)

(3.43)

(3.44)

The substitutions p = e", p> 0, p = - e", p < 0 (it has been stipulated
that p #- 0) show that a sufficient condition for (3.43) to be satisfied is that

n(p) = cD(lnlpl), (3.45)

where cD is an even function (required by earlier considerations to be differ-
entiable).
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To show that (3.45)is the necessary form, we set Ipl == elnipi and decompose
fI(p) into even and odd parts. Then by virtue of (3.43),

fi(p) == g(lnlpl) = Hg(1n!pl) + g( -In!P1)] + Hg(lnlpl) - g( -lnJpj)]

= Hg( -In/p/) + g(lnlP1)] + Hg( -In/pI) - g(lnlpl)]. (3.46)

Thus,

g(lnlpl) - g( -lnlp/) = 0,

so that fI(p) is necessarily an even function of lnlpl.
Hence, it has been shown that the most general solution of the system

(3.40) with the specializations P2 = - P4' P3 = - 1 is

n(p) - n(po) = Pl- 1(p + P2)cD(lnIPl 1(p + P2)1). (3.47)

The required result now follows, namely, that Prim-type gas laws with

P(p) = Pl[cD(lnIPl 1(p + P2)1) + cD'(lnIPl 1(p + P2)llJ- I
, (3.48)

are preserved by the present reciprocal relations. •

As an illustration, if we take

k

cD(lnIPl l(p + P2)j) = I 2Ar cosh{r InlPl l(p + P2)J}, (3.49)
r=O

then

k

n(p) = ll(po) + Pl l(p + P2) I Ar(IP1r(p + P2l'1 + IP~(p + P2)-rl),
r=O

(3.50)

whence, if Pl l(p + P2) > 0, it follows that

P(p) = [to Ar{P 1r-I(1 + r)(p + P2Y + p~-I(l- r)(p + P2)-r}JI. (3.51)

It is of interest to note that if we set

Ao = [P d(2B)](A + P2)' Al = [-1/(2B)]Pr, A r = 0, r ~ 2,

the invariance of the Karrnan-Tsien type gas law

p = [BI(A - p)]S(s) (3.52)

is established for the present transformations. The form (3.52) has been
widely used to approximate the real gas law in subsonic potential flow since,
with such an equation of state, the hodograph equations can be reduced to a



160 3. GASDYNAMICS, HEAT CONDUCTION, AND MAGNETOGASDYNAMICS

Cauchy-Riemann system. The application of reciprocal relations in such a
context is described in the next section.

3.3 RECIPROCAL RELATIONS IN SUBSONIC GASDYNAMICS .

In general, the equation of state is not invariant under the reciprocal
relations. Since the classical theory of plane, incompressible, potential flow
is well established, it is of interest to investigate the properties ofthe reciprocal
flow when the flow in the original x" plane is incompressible. The subsequent
discussion of this aspect of the reciprocal relations proceeds under the
assumption of homentropic, irrotational conditions.

If p = Po in the original flow, the Bernoulli integral (3.22) then yields

Poq2 + 2p =2po, (3.53)

so that the reciprocal density pi is given by

(3.54)

Elimination of p between (3.54)and the reciprocal relation (3.17)2 for pi now
shows that the reciprocal equation of state is of the Kdrmdn- Tsien type

where

pi = A - B/p' (3.55)

The importance of the Karman-Tsien relation (3.55)in the approximation
of subsonic flows of an adiabatic gas

p = CpY (3.56)

is well known (Tsien [54], von Mises [55], Shapiro [356], Power and Smith
[125]). On the other hand, properties of supersonic flow of gases with an
equation of state approximated by a Karman-Tsien relation have been
investigated by Coburn [68].

It is convenient at this point to proceed in terms of a hodograph system.
Thus, by virtue of the continuity equation (3.1) and the irrotationality con-
dition (3.5), stream and potential functions t/J(xa

), ¢(xa
) may be introduced

in turn according to

Po(pq)-ldt/J = -sin8dx l + cos8dx2,

«: d¢ = cos 8dx l + sin 8dx2,

where qe" = u l + iu': Hence, if z = Xl + ix".

(3.57)

(3.58)

(3.59)
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so that, on introduction of q,eas independent variables, under the assumption

(3.60)

(3.62)

(3.61)

it is seen that

oz _1 i6 [ocP . -1 ol/tJoq = q e oq + lPoP oq'

oz _1 ie[ocP . -1 ol/tJae = q e ae + lPoP ae'

The integrability condition for the latter pair of equations now produces the
well-known hodograph system (Shapiro [356J)

[cP ] = [0 -Po(1 - M2)/pq][cP] ,
l/t q p/Poq 0 l/t 9

where the M(q), p(q) relationships are provided by the prevailing equation
of state together with the Bernoulli integra1.

In subsonic flow, M < 1 and introduction of the variable s according to

s = (q [1 - M(an l/2a - l da, (3.63)JqO
reduces (3.62) to the elliptic canonical form

(3.64)

where

(3.65)

and qo is a reference gas speed.
In particular, for the Karman-Tsien gas law (3.55), use of the Bernoulli

integral (3.22) in the reciprocal flow shows that

K'= 1, (3.66)

whence the hodograph system (3.64) reduces to the Cauchy-Riemann
equations

and

(3.67)

cP' + W = g(s - ie), (3.68)

where g is an analytic function of its argument. In this manner, if the adiabatic
gas law (3.56) is approximated by a Karman-Tsien law of the form (3.55)
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by appropriate choice of the parameters A and B, then established complex-
variable techniques may be adduced to approximate plane subsonic gas
flows associated with classical hydrodynamic solutions. t

The Karman-Tsien method may be regarded as an improvement over the
Glauert-Prandtl theory for the analysis of small disturbances due to the
introduction of solid bodies ofsmall thickness ratio in subsonic uniform flow
([126], [54]). Thus, the Karman-Tsien theory is not restricted to subsonic
flow past thin bodies and accordingly has proved to be of considerable
importance in aerodynamics, there being an extensive literature on the subject
[416-422].

In Section 3.7, the reduction to canonical form of the hodograph system
(3.62) in subsonic, transsonic, and supersonic flow is investigated in the
broader context of matrix Backlund transformations. In particular, it will be
seen that the Karman-Tsien approximation is but one of a class of (p,p)
relations for which (3.62) may be reduced to the Cauchy-Riemann equations
in subsonic flow.

3.4 RECIPROCAL-TYPE TRANSFORMATIONS IN
STEADY MAGNETOGASDYNAMICS

The governing equations of the flow of a thermally nonconducting gas of
infinite electrical conductivity in the presence of a magnetic field are, in
rationalized MKS units [74]

op .op oui
-;-+ uJ ~ + p ~ = 0, (3.69)
ot uX . uX

(3.70)

(3.71)

(3.72)

i = 1,2,3,

i = 1,2,3,

[
ad .oUi] en, .oR i

p at + u' oxi + oxi - j1.RJ oxi = 0,

oRi
oxi = 0,

oR i oui
. oRi. . oui

- - -.RJ +-. u' + R'-. = 0,at oxJ oxJ oxJ

where I1m = p + tj1.R iRi is the total magnetic pressure, j1. is the magnetic
permeability (assumed constant), while u; R i are the rectangular Cartesian
components of the velocity and magnetic fields, respectively; p, p denote, in
turn, the magnetogas pressure and density.

t In Chapter 5 a detailed application of the method is given for analogous antiplane defor-
mations of nonlinear elastic materials. In that context, certain deformations of nonlinear
elastic materials are linked to associated deformations of classical Hookean materials.
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(3.73)i = 1, ... ,4,

In two-dimensional steady magnetogasdynamics, the system (3.69)-(3.72)
can be written in the form (Rogers et al. [62J)

(1A~ aA i
l-aI--a2=0,x X

together with the relation

(3.74)

where o: is a constant and

Equations such as (3.73) in the form of conservation laws in two indepen-
dent variables may be conveniently expressed in terms of differential I-forms.
Thus, if we let M be [R2 with coordinates x", x 2 and let N be [RIO with coor-
dinates ul

, u2
, Om' p, HI, H 2, and w', i = 1, ... , 4, then the exterior differ-

ential system L on JO(M, N) generated by the O-form

h:= J1(u 1H 2
- u2H 1

) - r:J., (3.76)

and the I-forms

(3.77)

is equivalent to the system of equations (3.73)-(3.74).
A solution of L is a map f: M -4 N such that·

If*L = 0, (3.78)

while a generalized symmetry ofL is a diffeomorphism </J of JO(M, N) which
satisfies

</J*LCL (3.79)

(see Appendix V). If </J is such a diffeomorphism and f is a solution of L,
then the map f3 0 ¢ 0 If: M -4 N will' be another solution of L' provided
¢ 0 If =19for some map g:M -4 N. Here, it is demonstrated that reciprocal-
type generalized symmetries of L exist, and that, except in a degenerate case,
they map solutions to solutions.

Consider a diffeomorphism ¢ ofJO(M,N) which is linear in the coordinates
x", w', namely,

x" := ¢*xa = Biwj + qxb
, (3.80)

W ' i := ¢*wi = b~wj + c~xa, a, b = 1,2, i,j = 1, ... , 4, (3.81)
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where Bj, q, b~, and c~ are constants. The condition (3.79) may now be used
to determine the remaining quantities

p':= ¢*p,

IT~ := ¢*ITm ,

H ' i := ¢*Hi
,

as follows:
From (3.80) and (3.81)

¢*yi = ¢* dw' - ¢*A~¢* dx"

= bi, dw! + ci dx" - -1.* Ai {B~ dw! + Ck dxU
}J U 'f'kJ u'

and from (3.76), (3.77),
modI,

so that

modI,

where

Thus ¢*yi E I iff

which condition provides eight equations for the six unknowns in terms of
ui

, ITm , p, and Hi together with the constants b~, c~, BJ, and C~. The
requirement

¢*h = Ah, (3.82)

(3.83)

[qJ = [On
-b ]

b o~ ,

[ 'J [O~bj = o~

where Ais a constant, provides a ninth equation. In general, it is to be expected
that it will be necessary to impose three additional constraints in order to
obtain symmetries of the present type. It is possible however, to reduce the
number of constraints to two as is evidenced in the following illustration of
the method.

The matrices [bD, [cD, [BD, and [CD are taken to be of the forms

[cD ~ [-: oj :].
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where O~ is the 2 x 2 null matrix, and

A(a1 , a2) = [~l ~J,
while [AD is written as

where

S:= pU1U2 - J1. 2H 1H2, U:= Om + p(U1)2 - J1.2(H 1)2,

V : = Om + p(U2)2 - J1.2(H 2)2,
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(3.84)

and, in the above, ai; i = 1,2, b, and c are real constants. It follows that,

[BiAk + Ci.] = b[S + V -(S + U)]
k} } S-V S-U'

whence,

(3.85)

where

Thus,

i k iJ -1 1 [ S - U S + U]
[BkA j + C j = - 2bJ -(S - V) S + V '

where it is required that

.0< IJI < 00,

while

so that

(3.87)

(3.88)

(3.89)

(3.90)
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c{2S+U+V} J
C{V-U}

-alp{nm(Ul-u2)-/la(Hl+H2)} .

-a2{/lnm(HI-H2)-pa(ul +u2)}

(3.91)

In this case, the form of the matrices B~ and c~ has guaranteed that A,/ =
A~z so that the number of equations for ud, u'z, U;", p', H ' I, H'z has been
reduced to the seven relations obtained by comparison of (3.91) and the
primed counterpart of (3.75), augmented by the constraint (3.82). Thus, in
general, ud, u'z, U;", p', H d, H ' Z may be expressed in terms of ul

, uZ, llm'
p, HI, and HZ subject to two constraints on the latter six quantities.

Now, comparison of the (4,1) and (4,2) entries in (3.91) and [An given by

l
p'U'IU'Z - jlzH,l H'z - {U;" + p'(U'I)Z - jlZ(HII)Z}J

ti - {ll;" + p'(u'z)z - jlz(H,Zf} p'U,IU'Z - jlz H ' IH 'Z
[A j ] = I,Z , 'I ' (3.92)

pu -pu
jlH'z - pHd

produces the required expressions for the new components H ' i ofthe magnetic
field in terms of the original magnetogasdynamic variables, namely,

or

pH,1 = -az[Umjl(H I - HZ) - pa(u l + uZ)]/2Jb,

jlH'z = az[llmjl(H
1 + HZ) + prt.(u l - uZ)]/2Jb, (3.93)

pH' = - az[llmjl(l - i)B - pa(l + i)q]/2Jb, (3.94)

where H := HI + iH z, q := u l + iuz and similarly for the primed quantities.
On the other hand, comparison of the (3,1) and (3,2) entries of (3.91) and

(3.92) yields

or

p'u" = -'alp[Um(UI - UZ
) - jla(H I + H Z)]/2Jb,

p'u'? = alP[Um(U
1 + uz) + jla(H I - H Z)]/2Jb, (3.95)

p'q' = -aIP[llm(l - i)q - jla(l + i)B]/2Jb. (3.96)

Now, the restriction (3.82) implies that

2ip'rt.' = - jl{p'q'B' - p'q'H'}, (3.97)

where a' = Aa, so that, from (3.94) and (3.96) we obtain the expressions for
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the new density and new velocity components in the forms

p' = -a1a2rxp/2b2rx'J,

and
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(3.98)

(3.99)

respectively.
Further, comparison of the (1,2) or (2,1) entries of (3.91) and (3.92) gives

the new total magnetic pressure, namely,

I1~ = a1rx'p[I1m(u
l + u2) + p,rx(H l

- H2J]2/2a2rxJ

+ c[2I1m+ p(u1 - U2)2 - p,2(H l
- H2)2]/2bJ (3.100)

+ a~[I1mp'(H 1 + H2)+ prx(u1 - U2)JZ /4J 2b2.

Finally, the (1,1)entries of (3.91) and (3.92) yield

p'U'lU,2 _ p,2tr' H,2 = c{p[(Ul)2 _ (U2)2] _ p,2[(Hl)2 - (H2f]}/2bJ, (3.101)

while the (1,2)and (2,1) terms give, for I1~ to be defined consistently,

p'[(U'l)2 _ (U'2)2] _ p,2[(H'1)2 _ (H'2)2] = 2C[pUlU2 _ p,2Hl H 2]/bJ. (3.102)

Conditions (3.101) and (3.102) may conveniently be combined to give the
single complex constraint

(3.103)

(3.104)

(3.105)

That solutions of :E are mapped to solutions of :E by ¢> is readily shown.
Thus, it follows from (3.80)and (3.83) that

¢>* dx' = b(dwl
- dw2

),

¢>* dx? = bidw" + dw2
),

whence, if f is a solution of :E, then the l-forms

(¢> 0 /f)* dx: = /f*¢>* dx", (3.106)

are linearly independent iff/f* dw1 and /1* dw? are linearly independent.
Relations (3.75) and (3.77) show that this will be the case provided that

[
A 1 o/f A 1 o/IJ

det A~ 0 /1 A~ 0/1 oF 0, (3.107)

that is, provided that J oF O.
Thus, to summarize, it has been shown that the magnetogasdynamic

equations (3.73)-(3.75) are invariant under the transformations defined by
(3.80), (3.81) with the specializations (3.83) and subject to the constraints
(3.89) and (3.103).
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In the following section, reciprocal-type transformations are constructed
in another context, namely, nonlinear heat conduction. A specific boundary
value problem is solved using a reduction property associated with the
mappings.

3.5 A BACKLUND TRANSFORMATION IN NONLINEAR
HEAT CONDUCTION

The nonlinear heat equation

ut - [k(u)uxJx = 0, (3.108)

with variable conductivity k(u) has diverse areas of application, notably
in plasma physics [423, 424], boundary layer theory [425], and Darcian
filtration [426-428]'

Those exact solutions of (3.108) that are known have been incorporated
in the class of all similarity solutions of such equations that arise out of
invariance under a Lie group of point transformations [429].

In 1979, Rosen [430] derived a specialization of (3.108)of the form

(3.109)

in connection with the analysis of the temperature distribution in solid
crystalline hydrogen. A novel transformation was introduced which reduced
the nonlinear heat equation (3.109) to the classical linear heat conduction
equation

u', - Du~x = 0, (3.110)

and initial-value problems of importance were thereby solved. Subsequently,
in an independent development, Bluman and Kumei [431] rederived the
result, but in the context, of Noether transformations.

Here a more general result is presented. Thus, a reciprocal-type transforma-
tion is constructed that leaves. the nonlinear heat conduction equation
invariant. Appropriate specialization leads to the Rosen-Bluman-Kumei
transformation.

The General Invariance Property

New independent variables x', t' are introduced, defined by

dx' = u dx + k(u)uxdt,

dt' = dt,

(3.111)

(3.112)
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whence, if u' is the new dependent variable and k'(u') is the new thermal
conductivity,

u'dx' + k'(u')u~, dt' = u'u [dX + C(~Ux + k'~~~~~) dtJ= dx

if we set

Thus,

k' = uZk.

u;, - [k'(u')u~,Jx, = 0,

(3.113)

(3.114)

(3.115)

and we obtain the interesting result that the nonlinear heat conduction
equation (3.108) is invariant under the transformations (3.111)-(3.114).

The Rosen-Bluman-Kumei Transformation

In solid crystalline molecular hydrogen, the temperature distribution
T = T(x, t) is governed by the Fourier equation

pCp aT/at = V(kVT),

where the specific heat cp and thermal conductivity k are such that

(3.116)

(3.117)

(3.118)

where ('I., /3, and T, are appropriate constants [430]. Substitution of the
empirical expressions (3.117) and (3.118) into (3.116) leads to the nonlinear
heat conduction equation

of)/ot = Df)zVZf)

for the dimensionless thermal variable

f)(x, t) =,[1 + (T/Tcl 4J-1,

where D is a diffusion constant.
In one-dimension, (3.119) reduces to

(}t - D[(}-zl1xJx = 0,

where 11 = e:',Thus, from (3.111)-(3.114), the transformation

f)' = (}- 1 = f),

dx' = (}dx + Dl1-Zl1
xdt = f)-1 dx - Df)xdt,

dt' = dt,

(3.119)

(3.120)

(3.121)

(3.122)
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takes the nonlinear heat equation (3.121) to the associated linear equation

0; - DO~,x' = O. (3.123)

This is the result obtained by Rosen [430J, who used it to solve the following
initial-value problem for the temperature distribution in a block of solid
crystalline hydrogen:

(3.124)t > 0,

x> 0,

x=O,
t = 0,

Semi-Infinite Solid Subject to Surface Cooling or Warming

In this case, the boundary-value problem consists of solving

0t - DOx'x' = 0,

0=00 ,

0= 0;,

1/0::S - 1,

1/0 ~ 1,

1'101 « 1, (3.127)

where x' is as given in (3.122). Rosen presented the solution

0= 0i + (00 - 0;)(1 - erf17o)-l(1 - erf17), '10 ~ 17 ~ 00, (3.125)

in which, from (3.122),

17 = x'/2(Dt)1/2 = [0; + (00 - 0;)(1 - erf'1o)-lJ'1

+ (Oi - 00)(1 - erfrfo)-l

x ['1erf'1 + n- l/2exp(-1/2)]. (3.126)

On setting x' = 0 and 17 = '10 in Eq. (3.126), Rosen obtained

1 - 00
10; = n 1/21/0(1 - erf'1o) exp 1J6

{

I - J'10 2 + 0(170 4
) ,

= n l/2170 - 2'16 + 0(176),

2n l/21/0[eXP'16 + O(I17o/- l)J,

whence it is seen that there is a unique positive value of 170 corresponding
to surface cooling (00 > 0i) and a unique negative value of 170 corresponding
to surface warming (00 < OJ In either case, in the neighborhood of the
boundary, the solution (3.125)-(3.127) shows that

0= 00 - 17ox/(Dt)1/2 + 0(x 2 /Dt).

The Rosen-Bluman-Kumei transformation may also be used to solve
boundary value problems involving thermally insulated finite slabs [430].
In this connection, it was noted in [431 J that

[ oV (X,t)] = 0<:>[00: (x',n] = 0,ox x~s(t) ox x'~s'(t')
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whence x = sU) is an insulated boundary in the nonlinear problem governed
by (3.121) if and only if the corresponding boundary x' = s'(t') is an insulated
boundary in the associated linear problem governed by (3.123).

In general, (3.122) shows that a noninsulating boundary condition for
the nonlinear heat equation (3.121) on a fixed boundary x = const = c
is mapped into a noninsulating boundary condition for the linear heat
equation (3.123) but at a corresponding moving boundary x' = s'(t') traveling
with speed

ds' [- - 2 a-e ]
dt' = DO(x, t) ax (x, t) x=c. t> t'

If, however, the boundary in the nonlinear problem is insulated, then the
preceding relation shows that the associated insulated boundary in the
canonical linear problem is also fixed.

In conclusion, note that Berryman [432] has recently extended the
Rosen-Blurnan-Kumei transformation to obtain a correspondence between
a moving boundary problem for the nonlinear heat equation

and a fixed boundary problem for the associated nonlinear heat equation

This result emerges out of the specialization of the transformations (3.111)-
(3.114) with k(u) = -(1 + 6)uO; the case 6 = -2 gives the Rosen-Bluman-
Kumei mapping. Details of the analytic and computational advantages of
dealing with the new fixed boundary problem rather than the original
moving boundary problem are given in [432].

3.6 BACKLUND TRANSFORMATIONS OF THE LOEWNER TYPE

In 1950, Loewner [64] introduced a generalization of the classical Back-
lund transformations (1.9). Thus, transformations of the form

i = 1, ... , 6, a = 1,2, (3.128)

were developed which relate surface elements {sa, u,ua}, {sa, v,Va} and
{s,a, u', u~}, {s,a, v', v~} associated with pairs of surfaces u = u(sa), V= v(sa) and
u' = u'(s,a), v' = v'(s'a). It was asserted that the choice of six relations in
(3.128) is natural, in that, if the sa are regarded as independent variables and
s,a, u, v, u', v' as dependent variables, then the number of equations coincides
with the number of unknowns.
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Loewner's investigation was specifically concerned with the reduction of
hodograph systems to canonical form in subsonic, transsonic, and super-
sonic flow. Accordingly, the analysis in [64J was entirely devoted to the
linear subclass of Backlund transformations of the type (3.128) that can be
written in the matrix form t

A'I = AA1 + BA2 + CA + DA' + E,

A~ = AA 1 + BA2 + CA + fiN + E,
s,a=sa; a= 1,2,

(3.129)

where

A=[~J
A' = [~],

(3.130)

(3.132)

and A, B, C, D, E together with A, B, C, fi, and E are 2 x 2 matrices with
entries dependent, in general, on the so, a = 1,2.

The hodograph system (3.62) adopts the form

AI = HA 2 , (3.131)

where

H= [0 h~(Sl)J
hi(SI) 0 '

and the nature of the h) depends on the prevailing flow regime. Loewner
sought Backlund transformations of the type (3.129)which reduce hodograph
systems (3.131) to associated systems

A~ = H'A~,

where H' adopts one of the canonical forms

(3.133)

[0-1J
10' [9 -sJ

1 0'
(3.134)

corresponding, in turn, to subsonic, transsonic, and supersonic flow. This
method is now described in detail.

Thus, application of the integrability requirement

(3.135)

t The original gasdynamic equations are, of course, nonlinear, but are linearized by the
hodograph transformation.
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to (3.129k2 yields

-AA11+(A-D)A12+BA22
+(A2-A1+DA-DA-C)A1+(B2-D1+DD-DB+C)A2
+(C2-C 1 +DC-DC)A+(D2-D1 +DD-DD)A'

+E2-E1 +DE-DE=O (3.136)

on use of the companion integrability condition on A, namely,

(3.137)

In general, if

(3.138)

(3.139)

then (3.136) may be solved for A' and substitution into (3.129)1.2 produces a
pair of matrix equations involving third-order partial derivatives of A. How-
ever, if we impose the conditions

A= B= 0, A= D,

C2 - C 1 + DC - DC = 0,

D 2 - D 1 + DD - DD = 0,

E2 - E1 + DE - DE = 0,

then provided that

(3.140)

a matrix equation of the form (3.131) results.
Similarly, iflAI =F 0, so that the roles of A and A' may be reversed in (3.129),

and if we then write

A1 = A'A~ + C'A' + D'A + E',

A2 = A'A~ + C'A' + D'A + E',
where

C' = -A -lD,

C' = -A -lD,

A'=A- 1,

. D' = -A -1C,

D' = -A -lC,

E' = -A -lE,

E' = -A- 1E,

(3.141 )

(3.142)

then the integrability condition (3.137)leads to a matrix equation of the form
(3.133), if the primed counterparts of conditions (3.139h_5 and (3.140) obtain,
namely,

C~ - C'l + D'C' - D'C' = 0,

D~ - D'l + D'D' - D'D' = 0,

E~ - E~ + D'E' - D'E' = 0,

(3.143)
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together with

!A; - C' - D'A'I oF O. (3.144)

Now, from (3.129) and (3.139)l.2,

A; - H'A; = AAl + CA + DA ' + E - H'[AA2 + CA + DA' + E],

whence, the matrix equation (3.131) is mapped by the Backlund transforma-
tion (3.129) to the associated matrix equation (3.133), and conversely, if the
set of conditions (3.139) and (3.143) is augmented by the restrictions

A- 1H'A = H, C - H'C = 0,

D - H'D = 0, E - H'E = 0,

where (3.136~and its primed counterpart show that

H = (A2 - C - DA)-l(Al - C - DA),

H' = (A; - C' - D'A')-l(A; - C' - D'A').
(3.146)

However,

C; - C'l + D'C' - D'C' = - A;D + A; D + A'(D l - D 2)+ A'CA'D - A'CA'D

= -(A; + A'D + A'CA')D + (A; + A'D + A'CA')D

= - (A; - C' - D 'A')D + (A; - C' - D' A')D

=0,

by virtue of (3.139)4' (3.145h, and (3.146h. Hence, condition (3.143)1 is seen
to be a consequence of relations (3.139),(3.145),.and (3.146). These same con-
ditions may likewise be shown to imply relations (3.143)2,3' Moreover,
elimination of the primed quantities in (3.146h shows that it is equivalent to
the relation (3.146)1 while similarly, condition (3.144) is implied by (3.140).

Thus, to summarize, it has been shown that the Backlund transformations

A; = AAl + H'CA + H'DA' + H'E,

A; = AA2 + CA + DA' + E,

s" = sa, . a = 1, 2,

subject to the conditions

C l - (H'Ch + DH'C - H'DC = 0,

D l - (H'Dh + DH'D - H '(D)2 = 0,

E l - (H'Eh + DH'E - H'DE = 0,

Al - H'C - H'DA - (A2 - C - DA)H = 0

IA2 - C - DAI oF 0,

(3.147)

(3.148)
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transform the matrix equation

Al = HAz = A-IH'AAz,
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(3.149)

to the associated matrix equation (3.133).
The preceding Loewner-transformations lie within a class of ordinary

Backlund maps ljJ:Jl(M,N) x N' -+ JI(M,N') described in Chapter 2 (see
Example 2.9). Such linear transformations will be shown in this and sub-
sequent chapters to have important applications not only to gasdynamics
and nonlinear elasticity, but also to punch, crack, and torsion boundary
value problems in linear elasticity.

In conclusion, note that linear auto-Backlund transformations have also
been obtained by McCarthy [446J for the class of equations

[DcP := (all 0~2 . . . a~n + Oil ~2 ••• O~n . . . + 011022. . . o~n)cP = 0, (3.150)

where PI' Pz, .. , ,Pn' ql' qz, ... , qn' ... , VI' Vz , ... , vn are nonnegative in-
tegers. In view of their intrinsic interest, we record three examples given in
[446J. In each, the Backlund transformation implies that the constituent cPi
are solutions of the given equation [DcP = 0.

(i) The 1 + 1 Linear Diffusion Equation

[DcP = cPt - cPxx = 0,

[ 1 - OxJ [cPIJ [OJ- ax at cPz = °.
(ii) The Linearized Korteweg-deVries Equation

(iii) The 2 + 1 Linear Diffusion Equation

(3.151)

(3.152)

(3.153)

(3.154)

(3.155)

(3.156)
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3.7 REDUCTION OF THE HODOGRAPH EQUATIONS TO
CANONICAL FORM IN SUBSONIC, TRANSSONIC, AND
SUPERSONIC GASDYNAMICS

In the context of gasdynamics, the matrix equation (3.136) is here identified
with a hodograph system wherein H, whether in subsonic, transsonic, or
supersonic flow, has the two salient properties of being independent of the
variable S2 and also of having zero principal diagonal elements. Backlund
transformations of the type (3.147) are sought that preserve these properties in
H' and that, more particularly, reduce H' to one of the canonical forms (3.134).

Henceforth, each of the matrices A, C, D, and E in (3.147) is assumed to
be independent of S2, so that (3.148) reduces to the system of coupled ordinary
differential equations

C1 + DH'C - H'DC = 0,
D 1 + DH'D - H'(D)2 = 0,

E 1 + DH'E - H'DE = 0,

A1 - H'C - H'DA + (C + DA)H = 0,

IC +DAI #0.

(3.157)

Certain properties of the system (3.157) are immediate. Thus, (3.157h
shows that

tr{Dd = [tr{D}]1 = tr{H'(D?} - tr{DH'D}

= tr{H'D' D} - tr{D' H'D}

=0,

so that the trace of D is constant. Further, if D* denotes the adjoint of
D, then

tr{D 1D*} = tr{Ii'D(DD*) - tr{DH'(DD*)}

= detD[tr{H'D} - tr{DH'}]

=0, (3.158)

since DD* = (detD)!. But ifD = [dD, then

tr{D1D*} = (dD1d~ - (d~h di - (dih d~ + (d~h di = (det D)1'

whence, from (3.158), it follows that det D is also constant.
In a similar fashion, postmultiplication in turn of (3.157)1 and (3.157h 4

by the adjoint matrices C*, E*, and A* and computation of traces demon-
strates that det C, det E, and det A are each constant.
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In the subsequent discussion, the matrices A, C, f> are specialized to be
of the forms

(3.159)

(3.160)

(3.161)

- [0 d~J
D = di 0 'C= [0 dJdO'°ZJ,az

while E is taken as the 2 x 2 null matrix. Thus, in particular, if H adopts
the form (3.132), then

H' = [hi!] = [0 alh~/a~J
J a~hilal ° '

so that the required property of zero principal diagonal elements is preserved.
Further, in extenso, equations (3.157) yield

c 1 + cl[dlhz, - hlld Z] - °Z.1 Z Z I Z I - ,

c2 + cZ[dZh ll - hZ'dl] = °1,1 I I Z I Z ,

dl + dl[dlhz, - hl'd Z] = °Z, I Z Z I Z I ,

dZ + dZ[dZh ll - hZld l] = °1,1 I I Z I Z ,

1 hl/[ 2 dZ I] hZ[ 1 dl Z] °al,1 - Z CI + la 1 + I Cz + zaz = ,
Z hZ/[ I d1 Z] hl[ Z dZ 1] °az,1 - I Cz + zaz + Z CI + lal = .

Since

detA = ala~ = a, det f> = -d~di = d,

(3.162)

where a, d are constants, (3.161h_6 reduce to consideration of a pair of
Riccati equations for d~ and al, namely,

dL + hi'(d~)z + hrd = 0,

aL + a-Ihi'd(aDZ + [hi'd~ - h~/diJal - hrd = 0,

while d, ci are given by (3.161kz, once d~ and hence di have been obtained.
The further restrictions di = di = °are now made and accordingly, (3.162)
reduces to the single Riccati equation

(3.163)

where

(i = a-Ihi'd,

73 = -h~/d,

(3.164)

(3.165)

and ci, ci are constants by virtue of (3.161kz'
The discussion is next concerned with reduction to specific canonical

forms associated with subsonic, transsonic, and supersonic flow regimes in
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steady gasdynamics. Subsequently, applications in nonsteady gasdynamics,
magnetogasdynamics, elasticity. and nonlinear dielectrics will be developed
in detail.

Subsonic Flow

If M < I, a reduction is sought wherein H' adopts the canonical form
(3.134)1' so that h~' = -I, hi' = + 1.Thus,

(a) if a = 0,

(3.166)

(b) if 71 = 0,

(3.167)

(c) if 7Nfl. > 0,

(3.168)

(3.169)

(3.170)

(d) if 71la < 0,

a~ = (-71la)I/2 coth {(-lIla)I/2(as1 + Ill};

where b, s, (, 11 are arbitrary real constants.

Under the present class of Backlund transformations, H is given by

H = A-IH'A = [0 h~'al(a~fJ
hi'(aD2Ia ° '

and in subsonic flow, it follows that reduction ofthe hodograph system (3.64)
to the Cauchy-Riemann equations may be achieved if the real gas function
K given by (3.65) is approximated by an expression adopting one of the
following forms corresponding, in turn, to (3.166)-(3.169):

(a) a2I[ -lIs1 + b]4,

(b) a2[as 1 + e]4,

(c) (aallIl2cot4{(lIla)I/2( -as1 + m,
(d) (aallIl2tanh'{t -lJla)I/2(as1 + '1)}.

(3.171)

(3.172)

(3.173)

(3.174)

The approximations (a)-(d) to K(SI) each lead, via (3.22), (3.63), and (3.65),
to associated multiparameter approximations K*, r, p*, q* to the real gas
variables K, p, p, q. Thus, corresponding to the adiabatic gas law (3.56), if
the gas density and local speed of sound are taken to be unity at q = O. then
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c = y- 1, and we obtain

K = [1 - t(y + l)q2]/[1 - t(y - l)q2](Y+ 1)/(Y-1),

P = y-1[1 - t(y - l)q 2T/(Y-1),

P = [1 - t(y - l)q2]1/(y-1),

where

M 2 = q2/[1 - t(y - l)q2],

so that, over the subsonic range,

o~ q < [2/(y + 1)]1/2.
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(3.175)

(3.176)

(3.177)

(3.178)

(3.179)

The available parameters in the approximations K*, p*, p*, q* to the corre-
sponding real gas variables may now be chosen so as to achieve best align-
ment in some specified manner over the range (3.179).

A variety of transformations previously established by diverse means in
the literature are now retrieved in a unified manner. Thus, Muller [127] and
Sauer [128] investigated approximations of the type (3.171) and (3.172),
respectively, while the Karman-Tsien approximation corresponds simply
to the choice cx' = 0 in (3.172). On the other hand, approximations of the
type (3.173) and (3.174) have been applied extensively in a monograph by
Dombrovskii [71] to solve various boundary value problems. In particular,
it is noted therein that the approximation (3.174) leads to the following
multiparameter p*(Sl), p*(Sl), and q*(Sl) relations:

* _ (arl/l3)(d3)2{d1tanh(d1s*) + I} d
p - 2d2[(d1)2 - 1][d2e

2s*{d
1tanh(d 1s*) - I} + {d1tanh(d1s*)+ I}] + 4,

(3.180)

* _ d2d
2s*{d

1tanh(d 1s*) - 1} + {d1tanh(d1s*) + I}
p - (aex/71)tanh(d1s*)[d2e2s*{tanh(d1s*) - dd + {tanh(d 1s*) + dd],

(3.181)

* _ (arl/7J)d3 tanh(d1s*)
q - [d2e

2s*{d
1tanh(d1s*) - I} + {d1tanh(d 1s*) + 1}]'

(3.182)

where d1 = (-aPl1/2, s* = Sl + '1a-1, and the remaining d, are arbitrary
real constants.

In Fig. 3.1, the variation of p*, p*, and q* is shown against that of the
real adiabatic gas variables p, p, and q with the arbitrary parameters in
(3.174) and (3.180)-(3.182) assigned so as to give best alignment in the
neighborhood of the stagnation point q = O. The corresponding numerical
comparison is set out in detail by Power et al. [66].
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Fig. 3.1 The Dornbrovskii transformation. Comparison of real and approximated gas vari-
ables over the subsonic range 0 :$ q < (2/y + 1)'/2: alignment at stagnation conditions.

It is clear that (a)-(d) and the corresponding p*, p*, q* relations may be
used to approximate the associated real gasdynamic variables in other ways
dependent on the part of the subsonic region in which optimal alignment
is required. Reduction to the Cauchy-Riemann equations achieved, estab-
lished complex variable methods of classical hydrodynamics may be adduced
to treat a wide range of boundary value problems in subsonic gasdynamics.
Reference may be made to the monograph of Dombrovskii [71] and to the
extensive bibliography contained therein for a description of such appli-
cations. Analogous transformations for hyperbolic systems will be exploited
later in this chapter to analyze the reflection of a centered wave in a shock
tube. In the next chapter, they will be used extensively in connection with
wave propagation in bounded nonlinear elastic and dielectric media. Appli-
cation to elastic-plastic wave propagation is described in [87, 88].

'Transsonic Flow

In transsonic regions (M ~ 1), the hodograph system (3.62) is mixed and
in this case, instead of (3.63), the change of variable

SI = jq p(a')q-l(a)da, (3.183)
JqO

is introduced, so that the hodograph system reduces to

[cPJ = [0 -K(SI)J [cPJ .
ljJ 5' 1 ° ljJ 52

(3.184)
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Reduction is sought to the canonical form (3.133) wherein

H' = [0 -SIJ
1 0'

181

(3.185)

whence, the specialization h~' = _SI, hi' = + 1 in (3.164)-(3.165) reduces
the Riccati equation (3.163) to the form

(3.186)

Accordingly,

(a) if d = 0,

(b) if d = 0,

a~ = [a-Ids l + e]-I;

where 15, s are again arbitrary real constants.

By virtue of (3.170), it follows that the transsonic system

(3.187)

(3.188)

(3.189)[¢J [0 -sla/(aD2J[¢J
l/I s' = (a})2/a 0 l/I sz'

is reducible to the Tricomi canonical form when a~ adopts either of the
forms (3.187) or (3.188). Moreover, (3.189) may be rewritten in the standard
form

[¢J = [0 -K*(S*I)J[¢J '
l/Is*' 1 0 l/Is"

where

and

(3.190)

(3.191)

(3.192)

Thus, corresponding to (3.187) and (3.188), we obtain:

K* = a2s1
[ -tci(SI)2 + Jr4

,
(a)

S*I = a- l[lo(ci)l(sl)5 - tJd(SI)3 + Jsl],

K* = a2s l[a- lds l + e]4,
(b)

S*I = -(d)-I[a-leis l + e]-I,

(3.193)

(3.194)

(3.195)

(3.196)
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where, in the preceding, the reference constant SO has been taken to be zero.
In particular, the specialization d = 0 in (3.193) and (3.194) produces the
well-known transsonic approximation due to Frankl' [129J and subsequently
extensively developed by Tomotika and Tamada [130].

Supersonic Flow

In supersonic regions (M > 1) the hodograph system (3.62) is hyperbolic
and in this case, the change of variable

SI = i rq
[1 - M(ofJ l f2a- l do (3.197)JqO

is introduced, so that (3.62) reduces to

(3.198)

where now K < O.
Reduction to the canonical form associated with the classical wave equa-

tion is now sought so that hi' = hi' = 1 in (3.164)-(3.165). Thus, subject only
to the change 7J = - d instead of the value 7J = d, if ai adopts one of the
forms (3.166)-(3.169)with SI now given by (3.197), then such a reduction may
be achieved. The corresponding K* are, from (3.170) and (3.198), given by

K* = -a2j(aD4
. (3.199)

In particular, the approximation corresponding to (3.168) was exploited by
Khristianovich [131J in supersonic flow. Also, as noted previously, the
analog of the Karman-Tsien approximation in supersonic regimes wherein
K is replaced by an appropriate constant, has been investigated by Coburn
[68].

It has been seen that the linear Backlund transformations introduced by
Loewner provide a convenient unifying framework for a wide class ofapprox-
imations in subsonic, transsonic, and supersonic gasdynamics. In fact, the
reciprocal and adjoint transformations introduced earlier in this chapter
may also be generated readily via the Loewner formulation. Thus, the
Backlund transformations (3.147) of the type

A; = AA1 , A~ = AA2 , s'" = s", a = 1,2, (3.200)

with A a constant matrix that adopts, in turn, the for~s

[~i ~~l (3.201)

[
0 aiJ (3.202)
ai 0 '
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may be shown to lead to the reciprocal and adjoint relations, respectively,
when applied to the hodograph system. The details have been set out by
Rogers [132] and 'are not repeated here. The important point is that, seen
in this light, both such transformations may be regarded as of linear Back-
lund type,

3.8 BACKLUND TRANSFORMATIONS IN ALIGNED
NONDISSIPATIVE MAGNETOGASDYNAMICS

Invariant transformations of a reciprocal type have been constructed in
Section 3.4 for steady, two-dimensional magnetogasdynamics. Here, Back-
lund transformations of the Loewner type are introduced under the addi-
tional assumption that uj(xQ

) , Hj(xQ
) are aligned, so that

(3.203)

where, in general,

(3.204)

while here, k is assumed constant.
The alignment condition (3.203) together with the equations of continuity

and motion may be readily combined to produce a Bernoulli integral (Seebass
[134]). With the assumption of uniform stagnation ethalpy, this serves,
under homentropic conditions, to determine p(q) and p(q) relations once
the gas law is specified.

On introduction of new variables u*i,.p*, p*, according tot

u*j = {I - j1.k 2 p }uj, (3.205)

p* = Om' (3.206)

p*={I-j1.k2p}-lp,I-j1.k2p¥0, (3.207)

the governing magnetogasdynamic equations reduce to the associated gas-
dynamic system

. ap* 'ou*j
u'" -. + p* --, = 0,ox) ax)

.OU*i op*
p*u*) axj + ax i = 0,

together with

t See Grad [72] and Iurev [133].

j = 1,2,

i.] = 1,2,

(3.208)

(3.209)

(3.210)



(3.211)

(3.212)
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Equations (3.208) and (3.210) allow the introduction, in turn, of ljJ*(xa
),

cP*(xa
), according to

(p*q*)-l dljJ* = -sin e* dx: + cos e* dx",

q*-1 dcP* = cos e* dx: + sin e* dx",

where

(3.213)

In analogy with the gas dynamics procedure, the hodograph system

may now be established. subject to the requirement that

(3.215)

S2 = e*, (3.216)

In sub-Alfoenic regions ()lk2p > 1), it is seen that if M > 1, the hodograph
system (3.214) is elliptic. On the other hand, if M < 1, since (/lk 2p)-1 =
q2/b2 =A2, where b=(/l/p)I/2H is the Alfoen speed and A is the Alfoen
number, the system is elliptic in the region

q2 q2
b2 + c2 < 1,

and hyperbolic in the region

q2 q2
b2 + c2 > 1.

In super-Alfoenic regions (/lk 2p < 1), as in conventional gasdynamics, the
hodograph system is elliptic for M < 1and hyperbolic for M > 1. The various
regimes in the (M, A) plane are illustrated in Fig. 3.2. Transcritical regions
have been investigated by Seebass [134J and Tamada [135].

Backlund transformations of the type described in Section 3.7 may now
be employed in a similar manner to reduce the hodograph system (3.214) to
the appropriate canonical forms in elliptic or hyperbolic regimes. Thus, if
attention is restricted to subsonic super-Alfvenic regions, under the change
of variable

SI = rq [(1 - M 2 )(1 - /lPp(1 - M 2))Jl
/
2 dq

JqO (1 - /lk2p) «'
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Fig.3.2 The sub-Alfvenic and super-Alfvenic regions in the (M, A) plane (Seebass [134J).

the system (3.214) reduces to the form

(3.217)

where
(3.218)

(3.219)

Backlund transformations may be now employed to reduce the system
(3.217) to the Cauchy-Riemann system when K is approximated by forms
analogous to (3.171)-(3.174) as set out in the previous section. In particular,
the analog of the Karman-Tsien approximation wherein K is replaced by
an appropriate constant may be shown to lead to a hypothetical constitutive
law of the form

B f.l.k2Cp2
p=A- p+ [ I _ f.l.k2p] 2'

where A, B > 0, C> 0 are real parameters. The consequences of such an
approximation are investigated in [132]. It is noted that the Karman-Tsien
approximation of nonconducting gasdynamics is recovered in the limit k ~ O.

3.9 INVARIANT TRANSFORMATIONS
IN NONSTEADY GASDYNAMICS

The subject of invariant transformations in nonsteady gasdynamics has
been developed in a series of papers by Nikol'skii [75], Tomilov [76],
Movsesian [77], and Ustinov [78]. Reference may also be made to the work
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of Smith [136] on invariant transformations of the substitution principle
type. Here, a reciprocal invariant transformation is constructed and is shown
to correspond to a Backlund transformation of a Monge-Ampere equation.
Note that these reciprocal relations have since been extended to nonsteady,
quasi one-dimensional, oblique field magnetogasdynamics by Rogers and
Kingston [137]'

The governing equations of inviscid, one-dimensional nonsteady gas-
dynamics, neglecting heat conduction and heat radiation are, in the usual
notation,

op 0 I
-8 + -;-I (pu ) = 0,

t ox
(3.220)

(3.221)

(3.222)

(3.223)

(3.224)

together with an equation of state (3.4).
The equations of continuity and motion (3.220)-(3.221) imply the

existence of ljJ(xl
, t), ~(Xl, t) such that

dljJ = p dx' - pu l dt,

a l d~ = pu 1dx' - [p + p(u1)z + az] dt,

where a l =f- 0 and az are real constants.
Introduction of new variables uri, p', x", t', according to

rI -alu l
u = a l =f- 0, p + az =f- 0,

(p + azl'

, a3P(p + az)p = ---'--~--=--

(p + p(ul)z + az)'

t' = ~,

provided that

shows that

whence,

(lp' (I "I
~ +:111 (p u ) = 0,
ot ox

(3.225)

(3.226)

(3.227)

(3.228)

(3.229)

(3.230)
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where in the above, a3 is a nonzero real constant. Hence, the equation of
continuity is preserved in the (X'I, t') space.

Moreover, since

a
at

[p + p(ul)z + az] a
a l at"

the equation of motion (3.221) transforms into

[
:'l 11 :'l I1J [ z J:'l, ou 'I uU . ala3 uP_

p at' + U OX,I + (p + az)z OX,I - 0.

Hence, if we set

p' = a4 - aia3/(p + az),

where a4 is an arbitrary real constant, then (3.231) becomes

(3.231)

(3.232)

(3.233)

(3.234)

so that the equation of motion is likewise preserved in the (X,I, t') space.
Finally, (3.222) yields

as I ~ _ _ (p + az)[os' 11 as' J
:'l + u :'l I - :'l , + u :'l,1 'ot uX a l ot uX

so that, since p + az # 0,

where

as' 'lOS'
at' + u OX,l = 0,

S' = <I>(s)

(3.235)

(3.236)

and <I> is assumed to be an invertible function of the specific entropy s.
Thus, the system of nonsteady gasdynamics equations (3.220)-(3.222) is

invariant under the reciprocal-type transformations

U'I = -alul/(p + az), al # 0, p + az # 0,

p' = a4 - aia3/(p + az), a3 # 0,

p' = a3P(p + az)/(p + p(u l)z + azl,

s' = <I>(s), x' = x, t' = ~,

subject to the condition (3.229).

(3.237)



188 3. GASDYNAMICS, HEAT CONDUCTION, AND MAGNETOGASDYNAMICS

The reciprocal relations (3.237h_4 may be inverted to yield

ul = - al a3u/1/(a4 - p'), p = [aia3/(a4 - p')J - az,
(3.238)

p = p'/a3[1 - p'(utl)z/(a4 - p')J, s = <t>-I(S').

This establishes the following result (Rogers [81 J):

THEOREM 3.5 If {UI(XI,t), p(xl,t), p(xl,t), s(x l , t)} constitutes a solution set
of equations (3.220)-(3.222), then so also does the four-parameter system

where t' is defined by (3.228), which expression is integrable by virtue of
(3.220) and (3.221).

As in the case of the analogous transformations in steady gasdynamics,
the invariance does not, in general, extend to the equation of state. However,
the parameters aI' i = 1, ... , 4, are available for the approximation of the
real gas law.

That the preceding reciprocal relations constitute a Backlund transforma-
tion may readily be seen in terms of Martin's formulation of the system
(3.220)-(3.221), wherein the particle trajectories and isobars are adopted
as curvilinear coordinates in the (x', t) plane. Thus, with p, l/J as independent
variables, Martin [138J noted that (3.220)-(3.221) reduce to consideration
of the Monge-Ampere equation .

~pp~",,,, - (~",pf = rp(p,l/J),

where ~ = al ~ + (p + az)t, and u l
, p, x', t are given by

(3.239)

(3.241)

(3.240)

Ul=~"" p=r-l(p,l/J),

x; = ~"'~PP' x~ = ~",~p", + r,

. t = ~P'

and (3.239) represents the integrability condition on (3.240h,4'
The reciprocal relations (3.237) correspond to the Backlund transforma-

tion of (3.239) given by

~~, = a11[ -(p + az)~p + ~J,

~~, = - al ~",/(p + az),

p' = a4 - aia3/(p + az),

l/J'= a3l/J,



(3.242)
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with p + az f:- 0 and

I (p + az)' + (~",f
a3' = (p + az)

On the other hand, Ustinov's transformation as set out in [78] corresponds
to the simple Backlund transformation of (3.239) given by

pi =" (3.243)

together with

and the requirement that

r = p, (3.244)

o< I~pp'''' - ~p""pl < 00. (3.245)

Ustinov [78] employed this transformation to generate a new solution of
the system (3.220)-(3.222) associated with the flow between a piston and a
nonuniform shock wave.

In conclusion, we remark that the above Backlund transformations also
have application to the analysis of plane, rotational, hypersonic flow past
thin aero foils in view of a general similitude developed by Hayes [139] and
Goldsworthy [140]. Therein, the governing equations of steady hypersonic
flow may be shown, under certain circumstances, to reduce to the system
(3.220)-(3.222). High Mach number flows of importance may thereby be
shown to be directly analogous to associated nonsteady piston-driven
motions.

3.10 BACKLUND TRANSFORMATIONS IN LAGRANGIAN
GASDYNAMICS. REFLECTION OF A CENTERED WAVE
IN A SHOCK TUBE

The Lagrangian description of one-dimensional nonsteady inviscid gas-
dynamics consists of the pair of equations

. -ap/ax = Poav/at,
av/ax = ae/at,

(3.246)

(3.247)

augmented by an appropriate state law which, in homentropic conditions,
adopts the form

p = - I(e). (3.248)

Here p, p are the gas pressure and material density, e = (Po/p) - 1 is the
stretch, while v(X, t) represents the material velocity; Po is the density of the
gas in its reference state.
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Substitution of the constitutive law (3.248) into (3.246) yields

A2(e) oe/oX = ov/ot,

where

A(e)= (- Po 1 dp/de)1/2

(3.249)

(3.250)

is the Lagrangian signal speed. The governing equations now become

(3.251)

and under the hodograph transformation wherein X, t are taken as the new
dependent variables and v, e are the new independent variables, then subject
to the requirement

0< IJ(v,e; X, t)1 < 00,

(3.251) reduces to the linear matrix system

[X] [0 A(C)] [X]
t c = A(C)-l 0 t v'

where

C = f: A(T)dT.

(3.252)

(3.253)

(3.254)

The Loewner-type Backlund transformations may now be introduced as
in Section 3.7 to achieve the reduction of (3.253) to the hyperbolic canonical
form

(3.255)

for certain multiparameter gas laws. The latter may be used for both local
and global approximation to the adiabatic state relation

p = PoA~}'-l[(1 + e)" - 1]. (3.256)

It turns out (Cekirge and Varley [85]) that the most appropriate such model
gas law for the approximation of (3.256) in the range

O.1Po ~ P ~ Po

is that in which the Lagrangian sound speed adopts the form

A/Ao = 82 tan2{8
o + 81c/Ao},

(3.257)

(3.258)

where 8i , i = 1,2, 3, are arbitrary constants. Use of relation (3.250) shows
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that the model (p, e) laws associated with (3.258) are given parametrically by

P:A6 = Po + 0110
2 [~: - tan (00 + ~:) J (3.259)

e = eo - (0102 ) - 1 [cot(Oo + ~:) + ~:J (3.260)

where Po, eo are further arbitrary constants. In Fig. 3.3, the variation of
T = - p with e is compared for the real adiabatic gas law (3.256) and the
model laws (3.259)-(3.260) with appropriate choice of the available param-
eters to give alignment over the range O.1Po :s; P :s; Po. A least squares ap-
proximation is employed and detailed comparison tables are given by
Cekirge and Varley [85].

We now present a summary of the work by Cekirge and Varley on the
application of the model laws (3.259)-(3.260) to the analysis of the pres-
sure variation at the closed end of a shock tube during the reflection of a
centered simple wave.

The situation envisaged is one in which an adiabatic gas with constitutive
law of type (3.256) is contained at high pressure between the closed end of a
shock tube and a diaphragm at X = D. This membrane is suddenly removed,
whereupon the initial discontinuity at the interface between the high pres-
sure region and the external atmosphere divides into two waves. Thus, a
constant strength shock wave moves away from the closed end of the tube
into the quiet atmosphere while a centered rarefaction wave moves back-
ward over the high pressure gas. Once this disturbance reaches the rigid end

963
OL-------!,;------,~----__;!

e
Fig. 3.3 Comparison of the exact stress-strain relations for gases with isentropic exponents

y = 1, 1.4.and i with model stress-strain relations. The strain e varies over the range 0 S e S 9,
which corresponds to a density variation O.lpo S P S Po. - denotes model equation; --
denotes Law pjpo = (pjpol' (Cekirge and Varley [85]).
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x = 0, it undergoes total reflection as an expansion wave and proceeds to
catch up with the contact discontinuity represented by x = x(D, t) in the
t-x plane. At this interface, the rarefaction wave is partially reflected and
partially transmitted. The transmitted part subsequently moves as a simple
wave until it, in turn, catches up with the shock, whereupon again partial
reflection and transmission take place. The Cekirge-Varley analysis pre-
sented here is valid only until such time as shock formation occurs in the
region °::s; X ::s; D. It deals specifically with the initial centered simple wave
region and the subsequent interaction regime that occurs on the reflection
of the disturbance at X = 0.

It is convenient to proceed in terms of the Riemann formulation. Thus, on
return to the canonical form (3.255), it is seen that

X' = MU) + N(g),

t' = - M(f) + N(g),

where M, N are arbitrary functions of the Riemann invariants

f = (c - v)/2,

g = (c + v)/2.

From (3.251), it follows that

it + A(c)fx = 0,
and

gt - A(c)gx = 0,

whence, f is constant on the «-characteristic wavelets given by

dX!dt a: = A(c),

while g is constant on the p-characteristic wavelets given by

dX/- = -A(c).
dt f3

Accordingly,
f = F(ct),

g = G(P),

(3.261)

(3.262)

(3.263)

(3.264)

(3.265)

(3.266)

(3.267)

(3.268)

(3.269)

(3.270)

where, for convenience, the characteristic wavelets of the ct- and p-waves are
subsequently labeled according to

ct=t

P=t

at X = 0,

at X = D.

(3.271)

(3.272)
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Note that relations (3.263)-(3.264) together with (3.269)-(3.270) allow
c, v to be expressed in terms of F(rx) and G(fJ).

Insertion of expressions (3.261) and (3.262) into the original Backlund
transformation allows the complete integration of the hodograph system
(3.253). An important class of particular solutions is that in which

x = 1 - ¢(rx)A1/2 - Mr(rx),

t = ¢(rx)A-1/2 + rea),

where, in the notation of Section 3.7,

M = - (alP) det A,

and ¢(rx), r(rx) are subject to the compatibility condition

dtld« = 2fJ(detA)-1/2¢(rx)dF/drx.

(3.273)

(3.274)

(3.275)

(3.276)

(3.279)

(3.277)

(3.278)

Kazakia and Varley [141] show that relations (3.273)-(3.274) are ap-
propriate for the analysis of the early stages of evolution of a centered fan in
a wide range of nonlinear continua. The procedure is outlined here for the
shock tube problem alluded to above. A more detailed discussion 'Of the
method is given in the next chapter in the context of both nonlinear elasticity
and nonlinear dielectrics.

When the membrane in the shock tube bursts, the centered wave so gen-
erated which travels toward X = 0 crosses, in turn, two distinct regions, I
and II say. In region I there is a simple wave, with F == 0, while in region II,
the centered wave interacts with the wave reflected from X = 0, so that F is
no longer identically zero. We now proceed to the analysis of the state vari-
ables in these two regions. In the sequel, as in [141], distance, time, and
velocity are measured in units of D, D/Ao, and Ao , respectively.

In the reference state ahead of the advancing simple wave, A = 1 and the
hodograph equations (3.253) integrate, subject to conditions (3.271), (3.272),
to give

X=t{I-rx+fJ},

t=t{I+rx+fJ}·

At the front of the centered wave, fJ = 0, whence,

X = t(1 - rx), t = to + a), -1 ~ rx ~ 1,

A = 1, F = O.

Insertion of this information into (3.273) and (3.274) shows that, in the inci-
dent simple wave region,

¢ = HI + rx), r = 0, - 1 ~ rx ~ 1, (3.280)
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so that

A = (l - X)/t,

ex = 2[(1 - X)tr/ 2
- 1, - 1 ::; ex ::; 1.

(3.281)

(3.282)

Further, since F == 0 in region I, it follows from (3.263) and (3.269) that

v = c(A) = c[(1 - X)/t].

The f3-characteristics are given by

c(A) - F(ex) = G = const,

so that, in region I, they are the rays

(l - X)/t = const.

(3.283)

(3.284)

(3.285)

The incident centered wave remains a simple wave until it begins to inter-
act with the wave reflected from X = O. Since X = 0 is a perfectly rigid
boundary,

v =0,
c

F = G = 2 at X = 0,

while (3.273) and (3.274) show that

¢ = m(1 - Mex)/(m2 - M),

r = (m2ex - 1)/(m2 - M),
where

A1/2 = m(ex) . at X = o.

(3.286)

(3.287)

(3.288)

(3.289)

From (3.286) and (3.289), together with the model constitutive law (3.258),
it is seen that

where

dmlda = A -1/2(dA/dc)(dF/dex) = [,u + vA](dF/da),

AfP,u = 2010i/
2,

A~/2V = 2010:;1/2.

(3.290)

(3..291)

(3.292)

Substitution of the relations (3.287) and (3.288) into the compatibility
condition (3.276) shows that m(a) is the solution of the initial-value problem

(1 - Ma)dm/dex + m(m2 - M) = 0, m = 1 at a = 1, (3.293)

so that

[
M(M - 1) Jl/2

m = (Ma _ 1)2 + M - 1 . (3.294)
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Insertion of the expression (3.294) into (3.287) and (3.288) now generates
4J(rx) and r(rx), whence, from (3.273) and (3.274), the Lagrangian sound speed
A(X, t) is obtained explicitly in the form

A = M(X 2 + M - 1)/[(Mt - 1)2 + M - 1]. (3.295)

At X = 0, (3.295) together with the constitutive law (3.258) yields

t = M- l[ 1 - (1 - M)l/2 CSC{00 + OlC)], (3.296)

and if, as in [85], we set M = -cot2 00 and revert to the original variables,
we retrieve the relation

(3.297)Aot 1 2 II { sin 00 }-= + sec 17 -1
D 0 sin(Oo + (Olc/Ao»

obtained by Cekirge and Varley but in a different manner.
The temporal variation of the pressure p and stretch e at X = 0 is now

obtained parametrically through relations (3.259), (3.260), and (3.297). In
Fig. 3.4, the variation of p/Po with Aot/(D - X) in the incident centered wave
is compared with its variation with Aot/D at the end of the shock tube [85].
The available constants in (3.259) and (3.260) have been chosen so that there
is alignment at reference conditions, that is,

A = Ao, T=e=O at c = o.
Comparison of the pressure variation results with those obtained by
Owczarek [156] by means of a graphical procedure are shown. Agreement
is seen to be excellent.

1.0

0..=

6:-0.5

...
-............

\\:~
~ "'--"'~ident pulse

...<, -"'--"'--...~ 4-...-4--Closed end 4--...__... _
32

Aot/D-X

OL-- L-- ~----'----____!

I

Fig.3.4 The predicted pressure variation at the closed end of a shock tube during the re-
flection of a centered simple wave compared with that calculated by Owczarek (1964). -
denotes theoretical prediction; .. denotes numerical values computed by Owczarek (Cekirge
and Varley [85]).
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In conclusion, we remark that Mortell and Seymour [144J have recently
employed the Cekirge-Varley model gas laws to analyze the propagation of
disturbances generated by an oscillating piston at one end of a shock tube,
the other end of which is closed. The reader is referred to that work for details.
In the next chapter, we shall see that the model state laws approach has, in
fact, wide applicability outside gasdynamics. Thus, this approach will be used
to solve important problems in both nonlinear elasticity and nonlinear
dielectrics.



CHAPTER 4

Backlund Transformations and
Wave Propagation in Nonlinear

Elastic and Nonlinear
Dielectric Media

4.1 PROPAGATION OF LARGE AMPLITUDE WAVES IN NONLINEAR
ELASTIC MEDIA. REDUCTION TO CANONICAL FORM OF THE
RIEMANN REPRESENTATION

In an extensive analysis of the one-dimensional propagation of large
amplitude, longitudinal disturbances in nonlinear elastic media of finite
extent, Cekirge and Varley [85] observed that notable analytic progress can
be made for a distinctive class of model constitutive laws. Thus, for these
materials, the Riemann characteristic formulation allows the exact solution
of important problems involving the interaction of large amplitude elastic
waves. In particular, one such model law was shown to provide a reasonable
approximation to the behavior of saturated soil, dry sand, and clay silt
under dynamic compression, while another was employed to describe a
class of hard elastic materials. The approach developed in [85] has been
subsequently applied in a variety of areas by Kazakia and Varley [141,142],

197
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Cekirge [143J, Kazakia and Venkataraman [94J, and Mortell and Seymour
[144]'

In a separate development (Rogers [86J), it was shown that, in fact,
Riemann's characteristic equations may be integrated generally for the
Cekirge-Varley constitutive laws by means of a Backlund transformation.
Further, that this approach has more general application was indicated by
Rogers et at. [95J in the context of electromagnetic wave propagation through
nonlinear dielectric media. Links may, in turn, be established between the
Backlund transformation approach and not only the Karal-Keller wave
front expansion method but also the Bergman integral operator formalism.

We begin with a description of the reduction to canonical form of the
characteristic equations for a class of important model constitutive laws.
The relevant background material on the dynamic response of nonlinear
elastic materials is to be found, for example, in the work of Eringen and
Suhubi [145].

In the finite deformation of an elastic body wherein the material points
X move to new points x according to

x = x(X, t), (4.1)
the extension e is defined by

e:= {ds* - dS*}/dS*, (4.2)
where

dS*2 = dXkdXk = Ck1dxkdx1,

dS*2 = dxi dx; = Ck1dXkdX1

(4.3)

(4.4)

and
Ck1(X, t)= 6KLXK,kXL,I' (4.5)

CKL(X,t)= 6kIXk,KX1,L (4,6)

are termed the Cauchy and Green deformation tensors, respectively. In
(4.5) and (4.6), the usual notation

aXK
XK,k=-",~,

uXk .

(4.7)

(4.8)

(4.9)

ekl = H6k, - Ckl},

while the particle displacement u(X, t) is given by

x = X + u(X,t).

is adopted.
The Lagrangian and Eulerian strain tensors EKL and ekl are introduced

in turn through the relations

EKL = HCKL - 6KL},
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In the Lagrangian formulation, the equations of motion become

et; 02X i

oX. = Po at2 '
J

199

(4.10)

where Tij denote the components of the stress tensor T, while Po determines
the density of the medium in its undeformed state.

If the dynamic response of the elastic material is both isotropic and
homogeneous with respect to the undeformed state, T is given in terms
of the deformation gradients by a constitutive law

T = T{Xk,K(X, t)}.

In the case of uniaxial deformation,

x = x(X, r),

T = T(ox/aX, t),

(4.11 )

(4.12)

(4.13)

where the normal traction T per unit undeformed area on the plane X =
constant at time t is, by virtue of (4.9) and (4.10), related to its displacement
u(X, t) normal to the plane by

aT/aX = poa2 u/at2
. (4.14)

The material velocity v(X, t) of the plane X = const relative to the bound-
ing plane X = 0 is given by

v = ax/at,

whence, from (4.14),
aT/aX = Poav/ot.

Furthermore, for the uniaxial deformation under consideration,

e = (ax/aX) - 1,

(4.15)

(4.16)

(4.17)

which relation, together with (4.15), provides the compatibility condition

av/ax = oe/ot. (4.18)

Thus, (4.16) and (4.18) represent the Lagrangian description of the defor-
mation. According to (4.13) these equations are to be augmented by an
appropriate constitutive law

T= 2)e),

whence, on substitution into (4.16),

A2(e)ee/3X = ev/ot,

(4.19)

(4.20)
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A(e) = (Po 1 dLjde)1/2 (4.21)

is the signal speed. Equations (4.18) and (4.20) describe the variations of the
kinematic variables e(X, t) and v(X, t) which, once determined; lead through
(4.15) or (4.17) and the specified side conditions to x(X, t).

On introduction of the hodograph transformation, wherein X, t are taken
as the new dependent variables and v, e are the new independent variables,
we see that

Vx = Jt.,

ex = -Jtv ,

v, = -JXe ,

e, = JXv ,
(4.22)

where J = J(v, e: X, t) and we require that

0< IJI< roo (4.23)

Use of relations (4.22) in (4.18) and (4.20) produces the hodograph system

where

A=[~J
H-[0 A(C)]

- A(c)-l 0 '

and C is the new strain measure given by

c = f; A(s) ds.

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

The results of Section 3.7 may now be applied, mutatis mutandis, to system
(4.24). Thus, the Backlund transformation

A~ = AAc + H'CA,

~~ = AAv + CA,

c' = c, v' = v,

with

A = [~~ ~~J

c = [~i ~~J

H' = G~J

(4.29)

(4.30)

(4.31)
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reduces (4.24)to a canonical form associated with the classical wave equation
provided

where

H = A-IH'A, (4.32)

aLe+ Ci(aD2 + lJ = 0, a} = [(detA)A(e)-'J I
/
2, (4.33)

and Ci, lJ are the constants introduced in (3.164)-(3.165). It is recalled
that det A and the e~ are constants.

Consequently, reduction to canonical form via the Backlund transforma-
tion (4.28) is available when

(a) Ci = (detA)-ld = 0,

A(e) = (det A)/[ -lJe + DJ2, (4.34)

(b) lJ = - ci = 0,

A(e) = (det A)[Cie + eJ2, (4.35)

(c) lJ/Ci> 0,

A(e) = (Ci/lJ)detAcot2{(lJ/Ci)I/2(-Cic + OJ, (4.36)

(d) lJ/Ci < 0,

A(e) = (-Ci/7J) detA tanh 2{( - lJ/ Ci )' /2(Cic + I])}. (4.37)

Here, D, s, (, I] are arbitrary real constants.

The canonical form

yields

so that

where

A~ = H'A;"

x~ = t;"

X' = N(r) + M(s),

r = t(c + v),

HI=[~ ~J

t' = N(r) - M(s),

s = t(c - v),

(4.38)

(4.39)

(4.40)

(4.41)

are the Rieman invariants.
The application ofthe preceding Backlund transformations to the analysis

of specific initial-boundary-value problems is taken up in Section 4.3 fol-
lowing a discussion of the model state laws implicit in the Riccati equation
(4.33).
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4.2 THE MODEL CONSTITUTIVE LAWS

In the preceding section, it was shown that the characteristic equations
are reducible to the canonical form (4.38) by a single Backlund transfor-
mation subject to the requirement (4.33), that is,

(4.42)

where

(4.43)

Nonlinear elastic media characterized by the relation (4.42) have been
investigated by Cekirge and Varley [85]. In particular, it was shown that
the associated model constitutive laws can be used to approximate locally
any given stress-strain relation in some vicinity of (t, e) = (0,0) to within
an error of O(e4

). It was further shown that Bell's parabolic law may be
approximated by one of the model laws to an error ofless than 1% over the
range of strain in which Bell's law is well supported by empirical data. These
and other aspects of the model laws are summarized in the sequel. The
interested reader should consult the work of Kazakia and Varley [141]
for application to other materials.

Reduction to the same canonical form is available for more general con-
stitutive laws by iteration of the Backlund transformations. However, it
will be seen that the model laws based simply on (4.42) have a remarkable
versatility although they can only approximate the response of materials
over ranges in which the Lagrangian sound speed A has either a monotoni-
cally increasing or decreasing dependence on e. Thus, the laws cannot be
used to approximate stress-strain relations with a point of inflexion. Such
laws occur, for instance, in the axial compression of polycrystalline materials.

The model constitutive laws determined by the relation (4.42) are now
described in detail based on the subdivision (aj-Id) of the preceding section.

(a) Relations (4.19), (4.21), and (4.27) together show that materials with
a Lagrangian sound speed A given by (4.34) have a nonlinear stress-strain
law of the type

T = A[e+ p]-1/3 + V, (4.44)

where A, p, and v are material parameters available for approximation
purposes.

In the case of an ideally hard material, the Lagrangian sound speed in-
creases monotonically without bound. If the material is ideally hard in
tension, the strain e can never exceed a limiting value e b however large
T. Likewise, if the material is ideally hard in compression, however large
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e
Fig. 4.2 A typical stress-strain rela-

tion for an ideally soft elastic material.

r-----'~------
I

I
f

T

Fig. 4.1 A typical stress-strain rela-
tion for an ideally hard elastic material.

TT

el
Fig. 4.3 A typical stress-strain rela-

tion for a hard elastic material.

e
Fig. 4.4 A typical stress-strain rela-

tion for a soft elastic material. t

- T, the quantity - e can never exceed some limiting value - e L' Typical
behavior of an ideally hard material is illustrated in Fig. 4.1.

During dynamic compression, fully saturated soil, dry sand, and clay
silt all harden in that the local Young's modulus increases with the loading
until the material becomes almost rigid. Dry sand and clay silt do not, in
general, adhere to the same stress-strain law in unloading as they do in
loading. On the other hand, in the case of saturated soils, according to
Critescu [146J, provided there is no seepage in unloading so that the soil
remains fully saturated, hysteresis can be neglected.

t Figs. 4.1 through 4.4 are from Cekirge and Varley [85].
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In [85J, stress-strain laws of the type (4.44) were used to model the
behavior of hard materials under dynamic compression. To this end, the
parameters A:, Ji, and v in (4.44) were set by the conditions

Tle=o = 0, dT/dele=o = Eo = PoA6, d'F[de -+ 00 as e-+ei' (4.45)

Here, Ao is the value of the Lagrangian sound speed in the medium at e = 0,
Eo is the local Young's modulus at e = 0, while e1 is the locking strain which
e asymptotically approaches with increasing stress. Accordingly, (4.44)
adopts the form

(4.46)

Comparison of this model law with the experimental stress-strain laws
corresponding to dynamic compression of saturated soil, dry sand, and
clay silt is illustrated in Fig. 4.5. It is observed that the model represents
a decided improvement on the linear elastic-perfectly hard model commonly
adopted for locking materials. Cekirge and Varley [85J undertook the
analysis of the decay of a pulse in a layer of fully saturated soil bounded
by sea water above and by rock below. The pulse was assumed to originate
at a depth which was large compared with this layer so that the pulse was
regarded as essentially plane on crossing the soil-rock boundary. The
dynamic response of the soil to the disturbance generated by the transmitted

I
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I
I
I
I,.

1,/'1
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Fig.4.5 Comparison of the experimental stress-strain relations during the dynamic com-
pression of saturated soil, dry sand, and clay silt with the theoretical law T/(poA~ed = 3[(1 -
e/ed- 1

/
3

- 1].-, Theoretical law; .... dry sand (Allen et al., 1957);0, saturated soil (Liahov,
1964); ... , clay silt (Ginsburg 1964); --, linear elastic, perfectly hard material (Cekirge and
Varley [85]).
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energy at this interface was modeled by a constitutive relation of the type
(4.46).

(b) If the Lagrangian sound speed is given by the expression (4.35), then
the corresponding model stress-strain law is of the form

T = l[e + pr 3 + v, (4.47)

where again, J:, Ii, and v denote parameters available for the approximation
of empirical constitutive laws. In particular, the imposition of the conditions

Tle~o=O, dT/dele~0=Eo=poA6, dT/de---.O as T---.Tl, (4.48)

leads to the model law

(4.49)

This stress-strain relation may be used to model ideally soft materials, that
is, media in which, for all practical purposes, the Lagrangian sound speed
decreases monotonically to zero as e increases without bound. For those
such materials which soften in extension, no matter how large e becomes,
the traction T never exceeds the limiting value T r- Likewise, for such ma-
terials which soften in compression, however large - e, the quantity - T
can never exceed - T t : A typical stress-strain law for an ideally soft elastic
material is shown in Fig. 4.2. Recall that during expansion a gas exhibits
ideally soft behavior. In that case, T 1 = Po, the pressure in the reference
state.

(c) By virtue of (4.36), or equivalently, on appropriate choice of ~,

A(c) = (ri/fJ) det A tan 1[(lI/ri) l/Z(ric + n], (4.50)

if we introduce 0i, i = 0, 1, 2, according to

(4.52)

(4.53)

then relations (4.19), (4.21), and (4.27)together lead to the model stress-strain
laws in the parametric form presented in [85], namely,

T/(PoA6) = to + 01lez[tan(Oo + 0lc/A o) - Olc/Ao],

e = eo - (OIOZ)-I[cot(Oo + 0lc/A o) + Olc/Ao],

where to, eo are arbitrary constants of integration.
If it is required that there be alignment at the reference state c = 0, so that

then

Tlc~o = 0, elc~o = 0, (4.54)
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43

-0.0

o~---~-------=------.!:---------!

0·4

0.8

0.6

2
poA~e/TI

Fig.4.6 Typical variations of TIT, with poAf>elT, for ideally soft elastic materials. The case
M = -0.065 corresponds to a gas with isentropic exponent j = 1.4.(Cekirge and Varley [85]).

The constitutive laws given by (4.52) and (4.53) may be employed to model a
class of ideally soft materials parametrized in terms of

0< eo ~ n/2, (4.56)

(4.58)

with variation in the range - 00 < M ~ O. In the limit as M -+ - 00, the law
(4.49) is retrieved. This limiting case together with the stress-strain laws
corresponding to M = - 0.65 and M -+ 0 are illustrated in Fig. 4.6.

Finally, as lJo = eo - n/2 and c = elc/A o vary in the ranges

o~ lJo ~ n/2, -lJo'~ c ~ 0, (4.57)

the parameter M = - .u/(Aov) = - tan2 lJovaries in the range - 00 ~ M ~ 0
and a class of ideally hard materials is obtained. The stress-strain laws
corresponding to M = -10 and M -+ 0, M -+ - 00 are shown in Fig. 4.7. The
limiting case M -+ 0 produces the locking material stress-strain law (4.46).

(d) The Lagrangian sound speed (4.37) may be rewritten in accordance
with the notation of [85] as

A _ (1 + M I
12 tanh C)2

--MAo - M I 12 + tanhc '

where

.u = 2A ooA o 112/[(Ao + Aoo)el],

c = M I12c/[(1 + M)eiAo],
v = -2AoI12/[(;O + Aoo)el], (4.59)

T I = Eoel = POAOel'

Here, e = e1 is the strain corresponding to the point at which the tangents
to the stress-strain curve at e= 0 and lei = 00 intersect (see Figs. 4.1-4.4).
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1.0

(4.61)

(4.60)

The model constitutive laws corresponding to (4.58) are given paramet-
rically by

[ (

- l i Z h)JT _ _ _ liZ _ 1 + M tan c
T

1
- (1 + M) 1 + M c - M1/Z + tanh c '

~. = (1 + M- 1)[1+ M- 1/ Z (c- M
1

/
z
+ tanhc )J.

e1 1 + M 1
/
Z tanh c

Bell [147] has shown that during dynamic uniaxial compression many
polycrystalline solids adhere to a stress-strain law which can be approxi-
mated by .

(4.62)

outside the neighborhood of eE = O. Here, the subscripts E and M refer,
respectively, to experimental and model state variables, while TM(<0) and
eM(<0) designate any two values of stress and strain that occur simulta-
neously. To be specific, - TM may be taken as the maximum compressive
stress and - eM as the maximum compressive strain that occur during the
deformation.
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Fig. 4.8 Comparison of Bell's parabolic stress-strain relation with a model stress-strain
relation. -, Model equation; ---, Bell's parabolic law (Cekirge and Varley [85]).

Bell's law may be rewritten in the form

- T = 2poy2(_e)I/2,

where

(4.63)

T M = - 2Poy2IeMI1/2, AM = YleMI-l/4 , CM = -1yleMI3/4 . (4.64)

In [85], the model laws associated with relations (4.60)-(4.61) were used
to approximate the law (4.63) over the range O.1CM ::::; C::::; CM' The results
are displayed in Fig. 4.8. The maximum error in T and e under the approxi-
mation is in the neighborhood of 0.10

' 0-

The stress-strain laws given by (4.60) and (4.61) model non ideal elastic
response as c varies in the range 0::::; c < 00. In Figs. 4.9 and 4.10, the (TIT1 ,

e]e, j-relations implicit in these laws are illustrated for certain values of the
parameter M. Thus, Fig. 4.9 shows curves descriptive of the behavior of soft
elastic materials. This class of medium is bounded by the type (a) law

TIT 1 = 1 - (1 + 3eletl- 1f3, (4.65)

corresponding to the specialization M = 0 and by Hooke's law

(4.66)

associated with the case M = 1. The curve M = 0.341 corresponds to the
approximation to Bell's parabolic law shown previously in Fig. 4.8. By con-
trast, the curves shown in Fig. 4.1 0 correspond to cases when (4.60)-(4.61)
model nonideal hard elastic behavior. This class of materials is bounded by
those governed by Hooke's law (4.66)on the one hand and those with a type
(b) stress-strain relation

(4.67)
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on the other; the law (4.67) corresponds to the limiting case M -> + 00.

As M and c vary in the ranges

1.::; M < 00, -1'/ .::; c < 0, (4.68)

the laws generated by (4.60) and (4.61) describe ideally soft elastic behavior.
Certain such stress-strain laws are presented in Fig. 4.6 along with other

2

1

43
oIC..-__--'-__----:~----:--_~

2
e/e]

Fig.4.9 Typical variations of TIT! with e]e, for soft elastic materials. The parameter
M = A~JAo. The case M = 0.341 corresponds to materials which satisfy Bell's parabolic law
(Cekirge and Varley [85J).

10

7

..=-'
Fig. 4.10 Typical variations of TIT, with ~

e]e, for hard elastic materials. The parameter
M = A"jAo (Cekirge and Varley [85J). 4

1
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I
I

110.0
I
I
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ideally soft materials modeled by the relations (4.52)-(4.53). The limiting
case 1\1 --+ OC! produces the explicit stress-strain law (4.49).

If 1\1 and c vary in the ranges

where

o :os; 1\1 s 1, - '10 s t: s 0, (4.69)

(4.70)

we obtain a class of ideally hard materials, various examples of which are
shown in Fig. 4.7 along with certain ideally hard elastic materials modeled
by the relations (4.52)-(4.53). In the limit as 1\1 --+ 1, the linear elastic-
perfectly hard response is obtained. On the other hand, as 1\1 --+ 0, the explicit
stress-strain law (4.46) is retrieved, namely that used previously to approxi-
mate the response of clays and saturated soils.

The preceding discussion has been directed, in the main, at the application
of the model laws (4.42) to the global matching of experimental constitutive
laws. Should it be required to obtain a local fit at e = 0 to a stress-strain
relation that in some neighborhood of e = 0 adopts the form

Tle=o = 0,

T = poA6[e + pe: + qe3 + O(e4
)] ,

then the prescriptions

dT I Z-d = PoAo,
e e=O

dZT
dezle=o = 2Po[JlAgl

z + vA6IZ],

d3T

de3!e=0 = Po[5JlAglz + 7vA6IZ][JlAbIZ + vA6IZ],

(4.71 )

(4.72)

show that the constitutive law obtained by the integration of (4.42) subject
to

= (7
pZ

- 6Q)A-1/Z = (6Q - 5
pZ

) A - 3IZ (4.73)Jl 2p 0' v 2p 0'

A(O) = Ao,

has Taylor series representation that, except when p = 0, agrees with the
prescribed relation (4.71) up to terms O(e4

). Accordingly, with the stated
exception of the case with p = 0, the model constitutive laws implicit in (4.42)
can be used to approximate locally, to within an error O(e4

), any specified
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constitutive law at points where the stress can be expanded as a Taylor series
in the strain. It is suggested in [85] that this local approach is appropriate
in the investigation of small amplitude deformations involving weak shocks,
resonant vibrations of crystals, or other small amplitude deformations where
the effectof small local nonlinearities can lead to aggregate first order effects.

4.3 REFLECTION AND TRANSMISSION OF A LARGE AMPLITUDE
SHOCKLESS PULSE AT A BOUNDARY

Here, we outline the application of the model laws derived in the preceding
section to the analysis of the reflection and transmission of large amplitude
longitudinal waves in a nonlinear elastic medium bounded by the material
planes X = °and X = D normal to the axis of stretch. These boundaries
separate the enclosed nonlinear elastic medium from other elastic media
stretched along the same axis. The surrounding elastic media, which are in
general nonlinear, are assumed to be effectively semi-infinite in extent, inas-
much as their deformation at the interfaces with the enclosed medium is not
significantly affected by any energy which may be reflected from their outer
boundaries.

It is appropriate for the problem in hand to proceed in terms of a charac-
teristic formulation. Thus, Equations (4.18) and (4.20) together with (4.27)
show that

c, - A(e)vx = 0,

Vt - A(e)cx =.0,

whence, in terms of the Riemann invariants r s,

r t - A(e)rx = 0,

Sl + A(e)sx = O.

(4.74)

(4.75)

(4.76)

(4.77)

Hence, s is constant along the right propagating characteristic wavelets
a(X, t) = const defined by

dX/dila = +A(e), (4.78)

while r is constant along the left propagating characteristic wavelets f3(X, t) =
const defined by

dXjdtlfJ = -A(e).

At the a = const characteristic wavelet,

dx (Ix I ax I dXdt = at x + (IX t dt = v + (e + I)A(e) = v + ale),

(4.79)

(4.80)
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where a(c) is the local speed of sound given by

a(c) = (l + e)A. (4.81)

Likewise, at the f3 = const characteristic wavelet,

dxidt = v-a. (4.82)

Relations (4.76)-(4.79) show further that, in the notation of [85J,

f = s = F(a), g = r = G(f3), (4.83)

so that c, v may be expressed in terms of the signal functions F, G through
the relations

c = G(f3)+ F(a), v = G(f3) - F(a). (4.84)

In what follows, it is convenient to label the a, f3 characteristic wavelets so
that

·a = t

f3=t

at the material boundary X = 0,

at the material boundary X = D.

(4.85)

(4.86)

Accordingly, from (4.83), this corresponds to the prescription

f = F(t)

9 = G(t)

at X = 0,

at X = D.

(4.87)

(4.88)

The analysis of any specific deformation essentially consists of two parts.
Thus, on the one hand, it is required to determine the form of the signal
functions F(a) and G(f3) carried by the a-wave and f3-wave components of
the disturbance from prescribed initial and boundary conditions. On the
other hand, in order to determine the state variables as functions of (X, r}, it
is necessary to determine a(X, t), f3(X, t).

For a medium which obeys Hooke's law,

(4.89)

where Eo > °is Young's modulus, the Lagrangian sound speed reduces to

A = (Eo/Po)1/2 = A o,

while the characteristic equations (4.78), (4.79) yield

a = a(X - Aot), f3 = f3(X + Aot)·

In particular, use of the conditions (4.85)-(4.86) yields

(4.90)

(4.91)

f3 = t + (X - D)/Ao· (4.92)



4.3 REFLECTION AND TRANSMISSION OF A LARGE AMPLITUDE PULSE 213

Hence, in the present Lagrangian formulation, the relations (4.84) imply that
any one-dimensional longitudinal deformation of the linear elastic medium
(4.89) can be represented as the linear superposition of a nondistorting,
nonattenuated progressing a-wave moving to the right and carrying a signal
F(a) and a progressing fJ-wave moving to the left carrying the signal G(fJ).
The deformation analysis reduces to the derivation of the signal functions
F(a), G(fJ) carried by these waves from specified boundary and initial data.
By virtue of(4.84) and (4.92), if v and c are prescribed at the boundaries X = 0
and X = D, the resolution of F(a) and G(fJ) depends on the solution of
simultaneous functional equations.

It was shown by Cekirge and Varley that it is possible to determine the
current values of the state variables at the boundary X = 0 from the current
value of 9 there and that, similarly, the values of the state variables at X = D
can be determined from the current values of f at that boundary. As a
consequence, the temporal variation of the state variables at both boundaries
can be determined from this analysis if the temporal variation of 9 at X = 0
and f at X = D can be obtained. In general, such problems are not soluble
analytically save for very special media undergoing very special deformations.
However, for the class of nonlinear elastic media described in the preceding
section, important boundary-value problems of this type can, in fact, be
solved completely. The remainder of this section is devoted to the description
of such a class of problems involving the reflection and transmission oflarge
amplitude shockless pulses at an interface.

A large amplitude shockless pulse is assumed incident at the interface
X = 0 having traversed a nonlinear elastic medium bounded by X = 0 and
X = D. The extent of the slab is taken 'to be large compared to the width of
the pulse. It is further assumed that until the front reaches X = 0, it is moving
into an equilibrium configuration, so that the pulse acts as a simple wave with

f = F(a) = 0, 9 = G(f3) = v = c. (4.93)

Once the pulse front reaches the boundary X = 0, it generates not only a
reflected a-wave which moves toward the boundary X = D but also a
transmitted fJ-wave which moves into the adjoining medium (Fig. 4.11). The
incident pulse, following arrival at X = 0, will begin to interact with the
reflected a-wave. Accordingly, during this period of interaction, it is no longer
a simple wave.

The disturbance which is transmitted into the surrounding medium ML

is, on the other hand, a simple wave. Thus, if the subscript L designates the
value of state variables in ML so that its constitutive law is

(4.94)
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T=T (C)

X
Fig.4.11 The wave system that is set up when an incident pulse is partly reflected and

partly transmitted at an interface between two elastic materials (Cekirge and Varley [85]).

it is seen that, in the transmitted wave, whatever the transmitted signal GLUh),

(4.95)

In particular, relations (4.95) hold at the boundary X = 0; moreover, since
the boundary is a material plane,

at X = O. (4.96)

Relations (4.94)-(4.96) imply that

T(c) = TdcL ) at X = 0, (4.97)

where

(4.98)
c = 9 + f,

CL = VL = V = 9 - f·
Combination of(4.97) and (4.98) provides an implicit relation for the reflection
function

f = L(g) at X = 0, (4.99)

where the local reflection coefficient l(g) is given by

l(g) := L'(g) = [i(g) - 1J/[i(g) + 1],

and i(g) is the local impedance of the boundary X = 0 given by

. dTLjdT
I(g):= dC

L
de

(4.100)

(4.101)



4.3 REFLECTION AND TRANSMISSION OF A LARGE AMPLITUDE PULSE 215

Certain particular cases are of interest. Thus, if the interface is perfectly
free, then regardless of the amplitude of the incident pulse,

c=o

so that, in view of (4.98h and (4.99),

f=L= -g

at X = 0,

at X = 0,

(4.102)

(4.103)

corresponding to vanishing local impedance i(g). On the other hand, if X = 0
represents a rigid boundary,

whence,

v=o

f=L=g

at X = 0,

at X = 0,

(4.104)

(4.105)

corresponding to infinite impedance i(g). IfX = 0 separates two media with a
Hooke constitutive law, then both of the Lagrangian sound speeds A and AL

are constant so that the impedance is independent of g.
Given the constitutive laws of ML and the bounded medium M, the

variables f, c, v, and gLare determined at X = 0 in terms of g by the relations

f = L(g), c = g + L(g), V=g-L(g)=gL' (4.106)

Once the reflected «-wave has traveled through the interaction region
X < I L (see Fig. 4.11), it traverses a region where, prior to its arrival, the
medium is in equilibrium. In this region, the reflected pulse is a simple wave
in which

g = 0, c = -v=f. (4.107)

If the subscript R denotes the value of the state variables in the medium
MR occupying the region X> D and if the constitutive law of the material is

then

(4.108)

at X = D, (4.109)

where

c = g + f, CR = - VR = - V = f - g.

Combination of (4.109) and (4.110) shows that

g = R(f) at X = D,

where the reflection coefficient r(f) is defined by

rtf) := R'(f) = [j(f) - 1]/[j(f) + 1],

(4.110)

(4.111)

(4.112)



216 4. BACKLUND TRANSFORMATIONS AND WAVE PROPAGATION

and the impedance j(f) is given by

.(f).= dTRjdT
] . d deCR C

(4.113)

The matter of the change of amplitude of the pulse following multiple
reflections from the boundaries may now readily be handled after the manner
ofCekirge and Varley.

We now turn to the application of the model constitutive laws. Thus, the
Backlund transformation (4.28), together with the relations (4.83), yields

o ][X] . [ ci -d][X]a~ r ], + F(IX) - ci d t'[~1 = [~t

[ X '] [at 0] [X] . [ci d] [X]t' fJ = 0 a~ t fJ + G(f3) ci d t'

In particular,
, 2 • 2 1

til = a2t" + F(IX) [ -c1X + C2t],

tp= a~tfJ + G(f3)[ciX + dt],

or in view of (4.40), (4.43), and the relation a~ = [A(c) det A]1/2 ,

2A 1/2 t" + [Jl(t - IX) + vX]F(ct) = m(ct),

2A 1/2 tfJ + [Jl(t - 13) + v(D - X)]G(f3) = n(f3),

where

m(ct):= F(ct) [ -2M(s)(detA)-1 /2 - Jlct],

n(f3) := G(f3) [2N(r)(det A)-1 /2 - Jlf3 + vD].

(4.114)

(4.115)

(4.116)

(4.117)

(4.118)

(4.119)

Relations (4.116) and (4.117) are in accord with those derived by Cekirge and
Varley [85]. Moreover, since

dtld« = at/act + (df3/dct)(at/af3)

= at/act + (dI3/dlX)A -l(ax/af3)

= at/act - A -1 ax/act = 2at/alX

and similarly,

at fixed X,

dt/df3 = 2 at/af3 at fixed X,

it follows that, at any constant X, (4.116) and (4.117) reduce to the pair of
ordinary nonlinear differential equations

A 1/2 dtld« + [Jl(t - ct) + vX]F(ct) = m(ct),

A1/2 dt/df3 + [Jl(t - 13) + v(D - X)]G(f3) = n(f3).

(4.120)

(4.121)
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It is observed that, in view of the labeling in (4.85) and (4.86),

m(t) = A 1
/
2 at X = 0,

n(t) = A 1
/
2 at X = D.

217

(4.122)

(4.123)

Once the functions F, G, m,and nhave been determined from the prescribed
initial and boundary conditions, the variation with t of IX and p, and thereby
the variation of any of the state variables, may be calculated at any fixed
station X.

In what follows, the initial deformation of an impulsively loaded slab of
elastic material that softens on loading is now analyzed by a procedure due
to Kazakia and Varley [141,142]. The load is assumed compressive if the
material softens on compression and tensile ifthe material softens on tension.

It is supposed that at t = 0, the slab is in equilibrium in a reference state
wherein all the state variables {v, c, T, e} are zero and the Lagrangian sound
speed A has the value A o. At t = 0, the traction at X = D is subject to a
discontinuous change to Ta . A centered wave at X = D is thereby generated
which travels with speed A o toward the interface X = 0 where it is partially
reflected and partially transmitted. As the centered wave crosses toward
X = 0, it traverses two distinct regions. In region I, it is a centered simple
wave with F = 0 and during its passage, at any fixed station X, the traction
T increases monotonically in time to T a . The latter value is then retained
until the arrival of the wave that is reflected from X = O.

As T changes from zero to Ta , the state variables v, c, and G, which are
equal in region I, change from zero to Ca while e changes to ea and the La-
grangian speed A decreases from A o to A a• Ifthe applied load is tensile, T; > 0
and Ca > 0, while if the applied load is compressive, Ta < 0 and Ca < O.

In region II, the centered wave interacts with the wave reflected from
X = 0, and the signal function F is no longer identically zero, but rather is
to be calculated by means of the relation (4.97).

It was shown in [85J that as the centered wave crosses both regions I and
II, Eq. (4.117) reduces tot

2A 1
/
2 tp + [/1t + v(l - X)JG(P) = O. (4.124)

But,

G(P) = cp = A -1/2(/1 + VA)-l A p,

tp = (/1- VA)-I[/1t + v(l - X)]p,

(4.125)

(4.126)

t Following Kazakia and Varley, distance, time, and velocity are henceforth measured in
units of D, DIAo, and A o, respectively. Stress is measured in units of PoA5 and the material
constants u; v in units of AD 1/2 and AD 3/2, respectively.
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(4.127)

whence, on substitution in (4.124) and integration, we obtain

}It + v(1 - X) = 4> (oe)A -1/2(}l + vA),

and insertion of the latter expression into (4.126) yields

tp = 4>(oe) [A -1/2]p. (4.i28)

Equations (4.127) and (4.128) show that in the centered wave, X and t can be
expressed in terms of A and oe by relations of the type

X = 1 - 4> (oe)A 1/2 - Mr(oe),

t = 4> (oe)A -1/2 + r(oe).

(4.129)

(4.130)

Once 4>(oe) and r(oe) have been determined, relations (4.129) and (4.130)
together determine A(X, t). At specified X, Eq. (4.129) gives A explicitly in
terms of the characteristic parameter oe. Insertion of this expression into
(4.130) determines t as an explicit function of oe. The variation of A with tis
thereby obtained parametrically through oe. In a similar manner, (4.129) and
(4.130) together determine the variation of A and X with a at fixed time t.

Once A(X, t) has been obtained via (4.129) and (4.130), the strain measure
c(X, t) is determined by the prevailing A-c relation. The traction T(X, t) and
strain e(X, t) are given by the relations

T = Po J; A(s)ds,

e = J; A- 1(s)ds,

(4.131)

(4.132)

respectively, together with c(X, t). The trajectories of constant stress and
strain are generated by holding A fixed in (4.129) and (4.130) and allowing oe
to vary. The same equations also give the trajectories of the o-characteristics.
Thus, on elimination 'of A, they yield

(t - r)(1 - X - Mr) = 4>2, (4.133)

and since r, 4> are constant on a given «-characteristic, it follows that (4.133)
gives the X -t relation at any characteristic, which is accordingly a hyperbola
in the X-t plane.

An immediate consequence of the hodograph system (4.25)-(4.26) is that
the Lagrangian distance measure X(oe, /3) and time measure t(oe, /3) satisfy
the equations

X~ = -At~,

X p = Atp•

(4.134)

(4.135)
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Insertion ofthe expressions (4.129) and (4.130) for X and t into (4.134) shows
that F(a), </J(rx), and 't'(rx) are not independent but rather, that they are related
through the compatibility condition

diid« = v</JdF/drx. (4.136)

The material velocity v can now be expressed in terms of A and a via the
relation

v = c(A) - 2F(a), (4.137)

where it is understood that the appropriate A-c relationship is to be used in
(4.137) as determined by the material response considerations outlined in the
preceding section.

The trajectories of the f3-characteristics are given by relation (4.84)[, since
on such a characteristic,

c(A) - F(a) = G = const. (4.138)

In region I, it is observed that in the reference state where A = 1, the
hodograph equations (4.134), (4.135) integrate subject, to conditions (4.85)
and (4.86), to provide

rx= t-X, f3=t+X-l. (4.139)

(4.140)

At the front of the centered wave, f3 = 0, so that

X = t(1 - a), t = t(1 + a), -1 ~ rx ~ 1,

A = 1, F = O.

Insertion of these data into (4.129) and (4.130) shows that in region I,

</J = t(1 + «), -1 ~ rx ~ 1, 't' = O. (4.141)

Hence, in that simple wave regime,

A = (1 - X)/t, Aa ~ A ~ 1,

rx = 2[(1- X)tJ1 /2 - 1, -1 ~ a ~ 1.

Moreover, since from (4.137), F = 0 in region I, it follows that

v = c(A) = c[(l - X)/tJ,

while (4.138) shows that the f3-characteristics are the rays

(1 - X)/t = const.

(4.142)

(4.143)

(4.144)

(4.145)

Relations (4.142)-(4.145) correspond to the well-known centered simple
wave solutions of the hodograph equations (Courant and Friedrichs [148J).
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(4.146)

The incident centered wave remains a simple wave until it enters region
II where it interacts with the wave reflected from X = O. The trajectory of the
front of this reflected wave is obtained by setting 0( = 1 in (4.143) and so is
given by

(1 - X)t = 1.

At this front, (4.142) and (4.146) together show that

A = (1 - X)2,

and since interaction region II is completely crossed by the wave front
when A = Au, in (4.146),

(4.147)

In the first instance, the case in which the boundary X = 0 is perfectly
free is considered. Thus,

c = T= 0, A = 1 at X = 0, (4.148)

and (4.129), (4.130) show that

¢ = (1 - MO()/(1 - M), r = (0( - 1)/(1 - M). (4.149)

Substitution of these expressions into the compatibility condition (4.136) and
integration of the latter, subject to the condition F = 0 at 0( = 1, shows that

F = J1.- 1 In ¢ . (4.150)

The back of the centered wave on which G = Cu reaches X = 0 when F =
- G = - Ca; whence (4.150) shows that relations (4.149) prevail when 1 :S
0( :S O(a, where

(4.151)

Insertion of expressions (4.149) into (4.129) and (4.130) and subsequent
elimination of the characteristic parameter 0( provide an explicit expression
for A(X, t), namely,

A = H(1 - (J) + [(1 -- (J)2 + 4M(J]1/2}2, (4.152)

where

(J = X/O - Mt). (4.153)

The material velocity v is now determined by (4.137), together with (4.150),
so that

(4.154)
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where A(X, t) is given by (4.152) and (4.153) while cjJ(X, r) is then determined
by

(4.155)

(4.156)

Relation c(A) is to be obtained from the prevailing A-c law.
Since cjJ is constant at any a-characteristic, the trajectories ofthe latter may

be generated by setting cjJ = const in (4.155). On the other hand, the trajec-
tories of the f3-characteristics as they are refracted by the reflected a-waves
are given by (4.138) together with (4.150), the A-c law and the A(X, t), cjJ(X, t)
relations. Thus, at constant 13,

c(A) - }l- 1 In cjJ = G = const,

whence
x

cjJ exp[ - }lc(A)] = 1 _ A 1/2 exp[ - W(A)]

(1 - Mt)A 1/ 2

= A 1/2 _ M exp[ - }lc(A)] = const

1 - M13
I-M'

where 7J is the arrival time of the f3-characteristic at X = O. In particular, the
trajectory of the back of the centered wave corresponds to 7J = aa and so is
parametrized in terms of A according to

X = (l - A I
/
2)exp[}l{c(A) - can

- - 1 [ (A 112 - M) ]
t = M 1 - A 1/2 exp [}l{c(A) - ca}] ,

Relation (4.153) implies that the constant levels of 0 and hence of the state
variables A, T, c, and e (but not, in general, v) propagate with constant speed
IMBI. The O-wave is centered at (X, t) = (0,M- 1

).

At a constant station X, from (4.152) and (4.153),

dAjdtlX=consl = {MOj(1 - Mt)}A(O), (4.157)

and A(O) becomes unbounded so that a shock forms when 0 = Os, A = As,
where

(4.158)

An examination of (4.158) shows that As is imaginary when °< M < 1 so
that no shock can form for nonideal materials in region II. On the other
hand, if T 1 designates the limiting value of T as A -+ 0, then provided that
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TaIT! is large enough for A to attain the value AS' a shock can form in an
ideal material. Since As= AiM), the criterion for shock formation depends
only on the material parameter M. If the condition is met, the shock appears
at the front of the reflected wave. Certain aspects of this shock phenomenon
are discussed further in [142].

In the case of a centered wave incident at a perfectly rigid interface, the
reflected wave continues to soften the material and accordingly, no shocks
form. Indeed, Kazakia and Varley point out that in an ideally soft material,
if TaIT! exceeds a certain critical value (dependent only on M), the incident
wave is refracted so strongly by the reflected wave that part of it never
reaches the boundary X = O.

When X = 0 is a perfectly rigid interface, the analysis parallels that of the
shock tube problem in Section 3.10. Thus,

v = 0, F = G = !c at X = 0, (4.159)

while (4.122), (4.129), and (4.130) combine to show that

m -
¢ = 2 M (l - Mex),

m -
(4.160)

and it remains to determine m(ex) at the rigid boundary. In this connection,
the constitutive law (4.42) together with conditions (4.122) and (4.159) at
X = 0 show that

(4.161)

On appropriate substitution of relations (4.160) into the compatibility con-
dition (4.136) and use of (4.161), it is seen that m(ex) is given by

(1 - Mex)dmldex + m(m2
- M) = 0, m = 1 at ex = 1, (4.162)

whence

[
M(M - 1) J1 /2

m = (Mex _ 1)2 + M - 1 .

Thus, from (4.160),

= 1 - M [(Mex - 1)2 + M - IJ
1

/
2

¢. 1 - Mex. M(M - 1) ,

while

(4.163)

I-ex
r = (4.164)

I-Mex'

(4.165)

where the relation c(m 2
) is determined by the prevailing A-c law. Insertion

of expressions (4.160) for ¢(ex) and r(ex) into (4.129) and (4.130) now delivers
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oL...--------::.l.::--------=-

Fig.4.12 A typical reflection ofa centered wave from a rigid boundary in a nonideal material
(M = 0.36). The centered wave is always completely reflected in a finite time.-, Trajectories
of constant levels of stress; ---, the characteristic curves (Kazakia and Varley [141]).

A(X, t) and IX(X, t) in the explicit forms

A = M(X 2 + M - 1)/[(Mt - 1)2 + M - 1],

IX = [(M - 1)t + (t - 1)X]/[M - 1 + (Mt - 1)X],

(4.166)

(4.167)

while the material velocity v(X, t) is then given by (4.137) together with (4.165).
The trajectories of the {J-characteristics may be obtained directly from

(4.79)and (4.166)and are the' curves

[(M - 1)t + (1 - t)X]/[(M - 1) + (l - Mt)X] = const. (4.168)

In Figs. 4.12 and 4.13, the trajectories of the characteristics in region II are
shown for a typical nonideal material (M = 0.357) and a typical ideal mate-
rial (M = 1.1) respectively. If Ta/T t is sufficiently large, the reflected wave
produces yield in the materia1. The circumstances in which this occurs are
discussed in [141]. .

The above two cases in which the interface X = 0 is perfectly free or per-
fectly rigid correspond, in turn, to i == 0 and i == co, where i is the impedance
ofthe boundary. For other values of i when the material ML is nonlinear, the
forms of ¢(IX), !(IX),and F(IX) in (4.129), (4.130), and (4.137) cannot, in general,
be obtained analytically. The method of computation to be adopted is as
follows:

Condition (4.99)shows that

F(IX) = L(G), (4.169)
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where

Fig. 4.13 A typical reflection of a centered
wave from a rigid boundary in an ideal material
(M = l.l). If the applied traction is sufficiently
large, the material yields at the rigid boundary
and the centered wave is not reflected in a finite
time. _, Trajectories of constant levels of
stress; --- the characteristic curves (Kazakia
and Varley [141]l.

G = G(a) at X = O. (4.170)

On the other hand, (4.106) and (4.122) combine to show that, in terms of G,

(4.171)

Relations (4.160), which are valid for any interface, rigid or otherwise, then
give ep and T in terms of mea) and hence G. Accordingly, it remains only to
determine G(a). 'This may be achieved by substitution of the expressions
(4.169) and (4.171) for F(a) and mea) together with those of (4.160) for ep and
T into the compatibility condition (4.136). This results in the equation

MA I
/
2[G + L(G)]d,a/dG + J1.(Ma - 1) = 0,

for G(a). Integration of (4.172) subject to the condition

at a = 1,
yields

(4.172)

(4.173)

a= 1 + 1 ~ M (l-exp{ -J1. foG A- I
/
2 [S+ L(S)]-ldS}} (4.174)

Condition (4.173) is a consequence of the fact that the front of the centered
wave at which G = 0 arrives at X = 0 at t = 1. Relation (4.174) gives G(a)
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implicitly. Once determined, F(a) and m(a) follow from (4.169) and (4.171)
while ¢ and r are given by (4.160). The variations of the state variables A
and v in the interaction region II are then given by relations (4.129), (4.130),
and (4.137). If the material does not experience yield at the interface, since
G = Ca at the back of the incident centered wave, it follows that Gvaries over
the interval (0, cal in (4.174). If, on the other hand, the material yields at the
interface, then G varies over the range (0,G*) where

G* + L(G*) = CI (4.175)

(Kazakia and Varley [141]).
In the absence of shock formation, the reflected wave, having crossed

interaction region II, becomes a simple wave in which G = Ca; where (4.106h,2
show that

C = Ca + F(a), (4.176)

at the back of the incident centered wave. Equations (4.129) and (4.130) with

(4.177)

provide the parametric representation

(4.178)

for the trajectory of the back of the incident centered wave. The curve (4.178)
separates interaction region II and the simple wave region.

Relations (4.147) imply that the wave front emerges from the interaction
region II at X = 1 ~ A~/2 when t = A; 1/

2• Thereafter, it moves with constant
speed A a toward the boundary X = i to arrive at time t = 2A-; 1/

2•

Conditions under which the wave reflected from X = °focuses to form a
shock are set out by Kazakia and Varley [141, 142]. A detailed analysis of
subsequent reflection at the loaded boundary X = 1 is also presented there.
Rather than pursue these matters, we now turn to a recent development of
the method with application in electromagnetic theory.

4.4 ELECTROMAGNETIC WAVE PROPAGATION IN NONLINEAR
DIELECTRIC MEDIA. REDUCTION TO CANONICAL FORM VIA
BACKLUND TRANSFORMATIONS

Wave propagation in nonlinear isotropic dielectrics has been studied by
Jeffrey [149], Broer [150], Jeffrey and Korobeinikov [151], and Venkata-
raman and Rivlin [152] with a view to understanding the mechanism under-
lying the formation and propagation of discontinuities. Certain physical
consequences of nonlinearity in the refractive index have been explored by
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De Martini et al. in [153J where, in particular, they discuss distortion effects
in nonlinear optical experiments in the propagation of light pulses.

Kazakia and Venkataraman [94J investigated a class of nonlinear bound-
ary value problems for Maxwell's equations, involving the propagation of a
linearly polarized plane electromagnetic wave in a nonlinear dielectric slab
of finite extent. The nonlinear medium was assumed to be embedded in a
linear dielectric. A variant of the Cekirge-Varley procedure was adopted
wherein the Riemann characteristic equations were shown to be integrable
for a certain class ofB-H and D-E constitutive laws. An exact representation
of a centered fan which describes the interaction of this wave with an on-
coming signal was presented. Here the work of Kazakia and Venkataraman
[94J is set in the context of Backlund transformation theory.

In the absence of charge and current density, Maxwell's equations of
electrodynamics reduce to

aB
V x E+&=O,

V'D=O,

aD
VxH--=O

at '

V'B=O,

(4.179)

(4.180)

(4.181)

(4.182)

(4.183)

(4.184)

where E, H, D, and B denote in turn, the electric field, the magnetic field, the
electric displacement field, and the magnetic flux. Maxwell's equations are
augmented by appropriate constitutive laws descriptive of the material
behavior. Here, certain nonlinear B-H, D-E 'state laws will be adopted.

In the case of electromagnetic waves polarized in the (xz, X3) plane and
propagating along the i direction with

E = E3(X 1 , t)k, H = HZ(x1 , t)j,

D = D 3(X 1 , t)k, B = Bz(xt> t)j,

Maxwell's equations (4.179)-(4.182) yield

aE3/aX l = aBz/at,' aHz/ax t = aD3/at.

These dynamic equations are here supplemented by the constitutive relations

(4.185)

insertion of which into (4.184) shows that

et: sn
ax = B'(H) at'

where indices have now been dropped.

en oE
ax = D'(E) at' (4.186)
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Under the hodograph transformation in which E and H are taken as
independent variables and x and t are taken as dependent variables,

Ex = Jt H ,

H x = -JtE ,

E t = -JXH'

H, = JxE ,
(4.187)

where J = J(E, H; x, t) and it is assumed that

0< IJI < 00. (4.188)

Accordingly, the governing equations (4.186), together with (4.187), lead to
the hodograph system

where

[XJ [0 A*(e,h)J [XJ
t h = A*-l(e,h) 0 t :

h = fH [B'(O] 1/2 deJHo

e = IE: [D'(ry)] 1/2 dry,

A*(e,h) = [B'(H)D'(E)] - 1/2.

(4.189)

(4.190)

(4.191)

(4.192)

The initial state of the medium is assumed to be uniform with constant
values Eo and H 0 for the electric and magnetic intensity fields, respectively.

A consequence of Loewner's work as outlined in Chapter 3 is that the
Backlund transformation

h' = h, e' = e (4.193)

takes the matrix system

to the associated system

A;' = !l/A~,

(4.194)

(4.195)

subject to the requirements

Ah - !l/C - (Ae - C)n = 0,

Ch - (!l'C)e = O.

(4.196)

(4.197)

In the present context, we take

A=[;J
A' = [X/J

t' '

n-[ 0- A*-l(e,h)

fi' = [0 IJ
10'

A*(e,h)J
o ' (4.198)

(4.199)
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(4.200)

(4.201)

while in (4.193), A and Care assumed to be of the form

°2J,a2
.[a~A= o

- [d dJc = 2 2'
C1 C2

where the a~ and c~ are dependent on both hand e and are constrained by
conditions (4.196) and (4.197). In extenso, if!! = [wn then (4.196) yields

a}.e - d + d/w~ = 0,

a~.e - d + d/wi = 0;
(4.202)

(4.203)

whence, in particular, det A = a~a~ is constant. Thus, the system (4.202) may
be reduced to consideration of the pair of nonlinear equations

aLh - d + c~(aW/detA = 0,

«l., - d + d(aD2/det A = O.

It is readily seen that (4.203) together with (4.197), admit the particular
solution

(4.204)
(ae + b~Ch + d)J

A = [(ae + b)-lciCh + d)-l

C= [0 c(ae + b)J
o a(ch + d) ,

with det A = 1. Thus, the Backlund transformation (4.193) with the spe-
cializations (4.204) reduces the hodograph system

[xJ = [. 0 (ae + b)2(ch + d)2J[XJ (4.205)
t h (ae + b)-2(ch + d)-2 0 t :

to the hyperbolic canonical form given by (4.195) and (4.199). This shows
that

x' = N(r) + M(s), .t' = N(r) - M(s), (4.206)

where

r = (h + e)/2, s = (h - e)/2 (4.207)

represent the Riemann invariants. Insertion of expressions (4.206) into the
Backlund relations (4.193) and subsequent integration yield

x = - [N(r) - M(s)]A *1/2 - 2J(r)M(s) + 2 f,r J'(r)N(r) dr - 2 IS K(s)M'(s) ds
TO Jso

(4.208)
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and

t = [N(r) - M(s)]A*-l/2,

where

A* = (ae + b)2(ch + d)2,

= J(r) + K(s).
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(4.209)

(4.210)

(4.211)

A model constitutive law of the type (4.210) was introduced by Kazakia
and Venkataraman [94] and adopted in a subsequent analysis of the evolu-
tion of a centered fan in a nonlinear dielectric slab. On use of (4.190)-(4.192)
it is seen that the relation (4.210) corresponds to model D-E, B-H laws of
the type

(4.212)

(4.214)

(4.215)

and

BM=BM(H)=Bo+(cd)-I[I- {I +3cr 3(H-Ho)}-1/3]. (4.213)

Following Kazakia and Venkataraman, nondimensional variables may
be introduced according to

15 = (D - Do)/D b E = (E - Eo)/E1 ,

13 = (B - Bo)/B1, H = (H - H o)/H1,
A* = A*/Ao,

where

D1 = (ab)-I, E 1 = ia- 1b3,

B1=(cd)-I, Hl=1C-ld3,

A o = b2d2
,

and A o represents the electromagnetic wave speed in the equilibrium state
wherein E = Eo and H = H o- Hence, on introduction of the relations (4.214)
into (4.212) and (4.213), these state laws become

15 = 1- (1 + E)-1/3, 13 = 1 - (1 + H)-1/3, (4.216)

corresponding to

(4.217)

In the case of small field intensities wherein D(E) and B(H) admit the
Taylor series expansions

D = GIE + G2/EIE + 0(E3
),

B = fllH + fl21HIH + 0(H3),

(4.218)

(4.219)
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the choice ofthe material constants a, b, c, din (4.212) and (4.213) according to

(4.220)

b - -1/4[1 - ~ 82 E J1/3
- 8 1 + 2 0 ,

8 1

d = -1/4 [1 + ~ /12 H J1/3/11 1 0 ,
~ /11

allows a local approximation to (4.218) and (4.219) valid to within an error
of 0(E3

) and 0(H3
), respectively. The upper and lower signs are associated

with, in turn, positive and negative values of the electric and magnetic fields.
The importance of the proposed state laws (4.212) and (4.213) in the case

of large amplitude disturbances depends on how well they may be adapted
to empirically or theoretically determined material response over a finite
range of E and H. t The matter of global fit of the model constitutive law
(4.212) to a particular class of D-E laws is taken up in [94].

4.5 EVOLUTION OF A LARGE AMPLITUDE CENTERED FAN IN A
NONLINEAR DIELECTRIC SLAB

In this section, we consider the propagation of a large amplitude distur-
bance in a nonlinear slab with material response modeled by D-E, B-H laws
of type (4.212), (4.213). The disturbance is generated by the arrival of a
constant electromagnetic shock at the boundary x = X o (see Fig. 4.14). The
analysis is based on that of Kazakia and Venkataraman [94].

It is convenient to proceed in terms of a characteristic formulation wherein

rt - A*(e,h)rx = 0,

s, + A*(e, hss; = 0,

(4.221)

(4.222)

so that the Riemann invariant s is constant on any right propagating charac-
teristic wavelet cx(x, t) = const given by

dx/dtL. = +A*(e,h), (4.223)

while the Riemann invariant r is constant on any left propagating charac-
teristic wavelet {3(x, r) = const given by

dx/dt/ p = -A*(e,h). (4.224)

t Additional multiparameter model D-E and B-H state laws for which the characteristic
equations are reducible to canonical form are to be found in [95J (see also Donato and Fusco
[154J).
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Linear Medium Nonlinear Medlum

Clwavelets,
~ I
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1111111
1111111

o

Linear Medium

Fig.4.14 The initial wave pattern produced inside the slab during the reflection and trans-
mission of an arbitrary signal at the interface with a linear dielectric (Kazakia and Venkata-
raman [94J).

Thus, in the notation of [94J,

r = t(h + e) = G(f3), s = -t(h - e) = F(a), (4.225)

so that hand e may be expressed in terms of the signal functions F(a), G(fJ)
according to

e = G({3) + F(a), h = G(fJ) - F(a). (4.226)

The dielectric slab is assumed to be bounded by the planes x = °and
x = Xo and to be embedded in dielectric media with linear properties (Fig.
4.14). The rt.- and fJ-characteristic wavelets are labeled in accordance with the
usual convention

rt.=t

fJ = t

at x = 0,

at x = X o'

(4.227)

(4.228)

An arbitrary shockless pulse is assumed to be generated at x = X o and to
traverse the dielectric slab. Until the wave front reaches x = 0, it is taken to
be moving into an equilibrium region wherein E = Eo, H = H o. Conse-
quently, the pulse initially acts like a simple wave with

F(rt.) == 0,

G(fJ) = e = h.

(4.229)

(4.230)
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However, once the pulse front reaches the interface x = 0, a reflected a-wave
is produced which proceeds toward x = Xo' At the same time, a transmitted
wave is produced which moves into the adjoining linear dielectric medium.
Following its arrival at x = 0, the incident pulse begins to interact with the
reflected a-wave and as a consequence, in this region of interaction, the
disturbance no longer acts like a simple wave.

By contrast, the wave which is transmitted into the adjoining linear
dielectric medium M L is a simple wave. Thus, if the subscript L denotes the
value of state variables in M L so that its constitutive laws are.

DL = eLEL,

BL = J1LHL,

(4.231)

(4.232)

then in the transmitted wave, whatever the transmitted signal Gdlh),

(4.233)

In particular, relation (4.233) holds at x = 0, while in addition, we have the
boundary conditions

E = EL , H = HL , at x = ° (4.234)

(Born and Wolf [155]). As a consequence, from (4.190), (4.191), and (4.231)-
(4.234), at x = 0,

EL - Eo = (J1ded I2[ H L - H o] = E - Eo = (J1dCL)1/2[H - H o], (4.235)

while the local reflection and transmission coefficients are given by

together with

where

dGL = 2(J1L) I 12/[(J1LCN) 1/2 + IJ,
dG J1N J1NcL

(4.236)

(4.237)

J1N:= B'(H), CN := D'(E). (4.238)

It was observed by Kazakia and Venkataraman that the specialization

x = -¢*(a)A*1/2 + r*(a), (4.239)

t = ¢*(a)A*-1 /2, (4.240)

of relations (4.208) and (4.209) provides, on appropriate choice of ¢*(a) and
r*(a), a representation of the interaction between the incident centered fan
and an arbitrary oncoming disturbance. The functions ¢*(a), r*(a) are
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related to this oncoming signal and moreover, from (4.224), satisfy a com-
patibility condition of the form

dT*(rx)/drx = 2ci1¢*(rx)[Cl - 1 - 2F(rx)] dF(rx)/drx, (4.241)

(4.242)

(4.243)

(4.244)

where here and in the sequel we proceed in terms of the state laws (4.216)
with associated signal functions F, G given by

2F = [(1 + £)1 13 - 1] - c1[(1 + H)1 13 - 1],

2G = ci 1[(1 + £)1 /3 - 1] + [(1 + H)1 /3 - 1],

where c1 = adfbc. Furthermore, distances are henceforth normalized with
respect to X o while time, together with the characteristic variables rx, {3, is
normalized with respect to xo/A o.

In region I (see Fig. 4.15), wherein the centered wave moves through a
reference state with A* = 1, the characteristic equations (4.223), (4.224)
integrate, subject to conditions (4.227), (4.228) to give

x = HI - rx + {3],

t = HI + o: + {3].

At the front of the centered pulse, {3 = 0, so that matching this solution with
(4.239), (4.240) yields, in region I,

¢*(rx) = 1(1 + «), T*(rx) = 1, -1 :s; rx :s; 1. (4.245)

Aot/L
Linear Dielectric
E =EL
H=HL
A=AL

Transmitted
Simple Wave

EL=O
HL=O

Reference State R
E=O,H =0,A=1

o

Linear Dielectric

E =Ea
H=Ha
A=Aa

Fig.4.15 The wave system that is set up when a centered fan is partly reflected and partly
transmitted at the interface with a linear dielectric (Kazakia and Venkataraman [94]).
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Insertion of these expressions for ¢*(ex) and r*(ex) into (4.239)-(4.240) and
subsequent elimination of ex shows that, in region I,

A* = (1 - x)/t, (4.246)

where A: represents the value of A* at the back of the centered wave. Hence,
since F == °in the simple wave region, from (4.217) and (4.242), the field
variables E and H are given implicitly in terms of x, t by

(l - x)/t = {I +cl 1[(1 + £)1/3 - 1]}(1 + £f/3

= {I + Ct[(1 + H)I/3 - l]}z(l + H)2/3.

(4.247)

(4.248)

The incident centered wave remains a simple wave until it enters inter-
action region II. In region I,

ex = 2[(1 - X)t]I/Z - 1, -1 sex s 1, (4.249)

and the trajectory of the boundary of this simple wave region with the
adjoining interaction region corresponds to ex = 1 and so is given by

(1 - x)t = 1.

At the boundary x = 0, (4.235) shows that

£ = czH,

where

and the quantity

(4.250)

(4.251)

(4.252)

(4.253)

(4.254)

represents the ratio of the intrinsic impedances in their equilibrium state.
Use of relation (4.217) together with (4.251) in expression (4.239) at x = °

shows that ¢*(ex) and r*(ex) are related by

* _ ¢*(ex)h(ex) ( Cz - 1 )Z/3
r (ex) - d/3 h3(ex) _ 1 '

where

HI 1 = h
3(ex)(cz

- 1)
x=o + cz(h3(ex) - 1)'

Furthermore, from (4.242) at x = 0,

2F(ex) = c t - 1 + (l - C3h(ex))(h~tex;_11Y/3 == 2F(h),

(4.255)

(4.256)
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where

(4.257)

Elimination of r*(oc) and F(oc) in the compatibility condition (4.241) and
subsequent integration subject to the condition

</J* = 1 (4.258)

(a consequence of (4.254) at oc = 1), yields

*= [(d /3+d /3+ 1)(h-1)2JI /6
(C3

1
+C3)

</J (c~/3 -1)2(h2+h+ 1)

x exp[r 1/2(C3 1 -c3){tan-I[r 1/2(1 + 2h)J- tan -I[r 1 / 2(1+ 2CY3)J}]

=¢(h). (4.259)

Introduction of (4.217) into relations (4.239)-(4.240) and elimination
of H by means of (4.242lt now give

(1 +E)1 /3 =~ [(1 +2F(h)-Ctl+{(1 +2F(h)-ctl2+4c I ¢~h)r/2] (4.260)

=~ [(1 +2F(h)-Ctl+{(1 +2F(h)-ctl2+4c I C(~(~ x)}1/2}

(4.261)
where

f(h) = C3 (Ch~ - 1)2
/3

h¢(h). (4.262)
CI - 1

On the other hand, elimination of E between (4.242)1 and (4.260)-(4.261)
provides

(1+H)1/3=2~1 [{(1+2F(h)-Ctl2+4CI ¢~h)r/2 -(1+2F(h)-Ctl] (4.263)

1 [{ (f(h) - X)}112 ]=2c
1

(1+2F(h)-C 1)2+ 4cl ¢(h) -(1+2F(h)-c1)·

(4.264)

Elimination of the parameter h between (4.260) and (4.261) determines
E(x, t), while similarly, elimination of h between (4.263) and (4.264) gives
H(x,t). In particular, the variations of E or H at fixed station x or specified
time t are readily accessible.

If attention is restricted to nonmagnetic media so that the material con-
stant c is zero in (4.210), the state variables in the evolution of the centered
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Fig.4.16 Constant E-level trajectories
within the slab (Kazakia and Venkatara-
man [94]).

Fig.4.17 Constant H-level trajectories
within the slab (Kazakia and Venkatara-
man [94]).
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fan were obtained in [94] in terms of

H=cI 1H *,

by taking the limit as cl l ~ 0 of the expressions (4.247), (4.248), (4.255),
(4.256), and (4.259)-(4.264). The trajectories of constant E and H levels in
regions I and II are shown in Figs. 4.16 and 4.17.

Finally, we remark that the preceding results are only valid until such time
as the disturbance reflected from the boundary x = 0 forms a shock. This
occurs at stations x = x., where the field variables experience unbounded
gradients so that

dE/dt IX=Xs~ 00, dH/dtlx=xs -+ 00.

Kazakia and Venkataraman show that there is shock formation on the
reflected front when

t = ts = 2/(1 - io),

Accordingly, when io > 1, no shock occurs.

h == 1.



CHAPTER 5

Backlund Transformations and
Stress Distribution Theory in

Elastostatics

5.1 WEINSTEIN'S ~ORRESPONDENCE PRINCIPLE IN THE CONTEXT
OF BACKLUND TRANSFORMATIONS OF THE GENERALIZED
STOKES-BELTRAMI SYSTEM

Stokes-Beltrami systems have their origin in the study of axially symmetric
solutions of the n-dimensional Laplace, equation

V;! = 0, (5.1)

where

n az
V; = L ;'l n:

i~ 1 uX
(5.2)

Thus, if solutions ¢ of (5.1)are sought that depend only on the two variables

y = Ltz (xi)ZJIZ
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(5.3)
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then ¢(x, y) satisfies the equation

~ (YP a¢) + ~ (yP 8¢) = 0,
ax ax 8y 8y
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(5.4)

where p = n - 2 and y 2: 0. Accordingly, ¢ may be regarded as an axially
symmetric potential ina space of n = p + 2 dimensions. The conventional
notation ¢{p} is adopted, on occasion, in order to indicate the dependence
of ¢ on the parameter p.

Here, it will prove convenient to study the generalized axially symmetric
potential equation (5.4) in the context of the generalized Stokes-Beltrami
system

[¢J [0 -y - PJ [¢J
ljJy- yP ° 1jJx'

(5.5)

where the existence of 1jJ{ -p} is guaranteed by (5.4). In the case p = 0, the
Cauchy-Riemann system is retrieved, while the case p = 1 was the subject
of a series of important papers by Beltrami [313] that were originally pub-
lished circa 1880. There, Beltrami founded a generalized theory of analytic
functions later to be developed in a systematic manner by Bers and Gelbart
[314] and Weinstein [98]. A survey of recent developments in this subject,
together with an extensive list of references isgiven by Bauer and Ruscheweyh
[315].

In terms of applications, it was Arndt [316] who first noted the importance
of the Stokes-Beltrami system in n = 5 dimensions in connection with the
theory of torsion of shafts of revolution. On the other hand, Weinstein
[317] demonstrated that in the elliptic regime, Tricomi's equation of trans-
sonic gasdynamics (see Chapter 3) may be reduced to a Stokes-Beltrami
system with n = i.

Invariance properties of the Cauchy-Riemann system have had a major
impact on classical potential theory. Thus, invariance under conformal map-
pings has been widely used to transform two-dimensional harmonic bound-
ary value problems to canonical problems with simple boundaries whose
solution is readily obtained. it is natural therefore to inquire as to whether
the more general Stokes-Beltrami system (5.5) admits invariance or reduci-
bility properties of practical importance. In this connection, Beltrami early
demonstrated that the classical case p = 1 admits simple invariance prop-
erties whereby sequences of axially symmetric harmonic functions may
readily be generated (Bers and Gelbart [314]). Subsequently, Weinstein
[318] established a correspondence principle of considerable utility in con-
tinuum mechanics, while further invariance properties in the case p = 1
were noted by Parsons [319].
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In later papers, Rogers [320J and Rogers and Kingston [321J demon-
strated that both Parson's invariance properties and Weinstein's corre-
spondence principle may be readily retrieved from a study of the invariance
and reducibility properties of the Stokes-Beltrami system (5.5)under matrix
Backlund transformations of the type introduced in Chapter 3. Thus,
Backlund transformations

n~ = AOx + fin + CO',

n~ = Any + Bn + en', (5.6)

x' =x, y' = y,

were introduced that transform the Stokes-Beltrami system

A= [0 -y-P]
yP 0 '

(5.7)

to an associated system

where

n=[~J , [cP']n = t/J"

(5.8)

(5.9)

and A, fi, C, A, B, e are 2 x 2 matrices with entries dependent on x, y. In
particular, linking Backlund transformations were established in [321]
with q = p + 2, p "# - 1 and the matrices specialized according to

A-A-[ ·2(ax+b) y-p-l[a(xZ- yZ)+2(bX+d)]]

- - -yp+l[a(xZ- yz)+2(bx+d)J 2yz(ax+b) ,

- [a(p+2) 2y-p-l(ax+b) ]
B= 0 ayZ+(p+l)[axz+2(bx;+d)] ,

B = [ 0 -ay-P - (p + l)y-P-Z[axZ+ 2(bx + d)]]
alp + 2)yP+z 2y(ax + b) ,

e=[~ ~J C=[Cy~+z -C};p-zJ
where a, b, c, d are arbitrary parameters assumed not all to vanish simulta-
neously. Relations (5.6) and (5.9) together constitute a four-parameter class
of correspondence principles linking the Stokes-Beltrami system (5.7) with
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the associated system

[
<p'] = [0 -Y-(P+2l][<p']
ljJ' y y(p+2) 0 ljJ' x'

In particular, if we set

a = b = c = 0,

the Backlund relations yield
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A-.' = 2d -p-l./,
'f'x Y 'l'x'

whence,

or, in Weinstein's notation,

p=/= -1,

(5.10)

where (j = 1/(2d). The relation (5.10) is known as the Weinstein Correspon-
dence Principle. It implies that given a ljJ{p}, an associated <p{p + 2} may be
determined up to a multiplicative constant, in two more dimensions and vice
versa.

If

we see that

where k = p and k = - p, respectively. Thus, Weinstein's correspondence
principle may be written as

f{ -k} = l+lf{k + 2},

where, in this context, f {k} designates that f is a solution of

Lk(f) = o.

(5.11)

(5.12)

In an alternative notatioiI adopted by Burns [322J, (5.11) is written as

(5.13)

and induction readily establishes a more general result for the iterated
equation of generalized axially symmetric potential theory

namely, that

L~(f) = 0, L~: = (Ld", (5.14)

(5.15)
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Burns applied this result in the case n = 2 to systematize the study of prob-
lems involving Stokes flow of a viscous fluid past such bodies as a spindle,
lens, or torus. The work may be compared to that of Pell and Payne
[323~325].

5.2 APPLICATION OF WEINSTEIN'S CORRESPONDENCE PRINCIPLE
IN ELASTOSTATICS. ASSOCIATED AXIALLY SYMMETRIC
PUNCH, CRACK, AND TORSION BOUNDARY-VALUE PROBLEMS

The governing equations oflinear isotropic elasticity consist of the equilib-
rium equations

i,j = 1,2,3, (5.16)

together with the linear stress-strain relations"

i,j= 1,2,3, (5.17)

where

and

e., = -2
1 Cu . . + u. .J.1) I.) ).1

(5.18)

(5.19)

Here T:ij and eij represent the components of the stress and strain tensors,
respectively, while Ui and F, denote, in turn, the components of the displace-
ment and body force vectors; gij and e" are the usual components of the
covariant and contravariant metric tensor, while A, Jl are the Lame elastic
parameters. The medium is taken to be homogeneous, so that A and Jl
are constants.

The above system of equations holds at every interior point of the elastic
body under deformation. Moreover, on the surface 1: of the body, the stresses
must fulfill the equilibrium requirements

(5.20)

where TV is the stress vector acting on the surface element of 1: with normal
v, In addition, to the system (5.16)-(5.20) must be adjoined the Saint-Venant
compatibility conditions

eij.kl + e k1•i j - e ik•j l - e j 1•i k = 0,

required for the continuity of the displacements as defined by (5.19).

t These correspond to Hooke's law "ul tensio sic vis" annunciated in 1678.

(5.21)
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In what follows, it is shown that Weinstein's correspondence principle
may be used to link axially symmetric punch, crack, and torsion problems
[99, 326]. In this context, it is convenient to introduce cylindrical coordinates
r, e, Z so that the equilibrium equations (5.16) become, under the assumption
F, = 0,

arre + ~ aree + arez + 2rre = °
or r oe oz r '

arrz + ~ orez + orzz + rrz = °
ar r oe oz r '

while the strain-displacement relations (5.19) yield

(5.22)

laue u,
eee = --+-,

r ae r

(5.23)

(5.25)

- ~ [~OUr OUe _ ~] _ ~ [au z aUr]
ere - 2 r ae + ar r' e., - 2 ar + az '

_ ~ [aue ~ OUz]
eez - 2 az + r oe '

where (u" Ue, uz ) are the cylindrical displacement components. On the other
hand, the stress-strain laws (5.17) become

rrr = A. Vu + 2f.1e", ree = A. Vu + 2f.1eee, rn = A. Vu + 2f.1e.., (5.24)
rre = 2f.1ere, rrz = 2f.1erz> rez = 2f.1eeZ>

where
1 a ou,

Vu = -- (rur ) +-.
r or az

Substitution of the relations (5.24)into the elastostatic equations (5.22)and
use of the strain-displacement conditions (5.23) now produce the following
system:

a {} u,
IX;;- Vu + dUr - 2" = 0,

ur r

a
IX az {Vu} + dUz = 0,

UedUe - "2 = 0,
r

(5.26)

(5.27)

{5.28)
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where

o: = (Je + fl)/fl,

(5.29)

(5.30)v = Je/[2(A + fl)]

Note that the elastostatic system (5.26)-(5.28) is decoupled in so far as the
torsional displacement term U9 occurs only in the single equilibrium equa-
tion (5.28). However, Weinstein's correspondence principle may be adduced
to link an important class of punch and crack problems governed by the pair
of equations (5.26)-(5.27), subject to appropriate boundary conditions,
to certain boundary value problems in which torsion only is involved. This
association, which is due to Payne [99], is now described in detail.

In the first instance, if the plane z = 0 is assumed to be shear free, then the
elastostatic equations reduce to consideration of (5.26) and (5.27) only. The
solution of this system has the general representation (see Sneddon and
Lowengrub [327])

2 [ ot/J]Ur = -- (1 - 2v)t/J + z - ,
r (lz

o¢
Uz = -4(1- v)¢ + 2z oz'

where
tJ.¢ = 0, (5.31)

and the auxiliary potential t/J(r, z) is determined by the Stokes-Beltrami
system

[¢] [0 -r-
1][¢]

t/J r = r 0 t/J z'
(5.32)

Under this representation, the corresponding nonvanishing stresses are given
by

(5.33)

[
3¢ 02¢]

r.; + 1'99 = -4fl (l + 2v). oz + z OZ2 '

r., - 1'99 = -4fl[(1 - 2v) ~ (r ot/J - 2t/J) _ z 02¢ + 2::: o¢],
r2 or or2 r or

1'rz = 4flZ :::z' 1'zz = -4fl[~~ - z~:~l
On the other hand, in the case of purely torsional deformation with circu-

lar symmetry,

u, = u, = 0, (5.34)
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while the tangential displacement Uo is independent of e. Accordingly, the
relations (5.23) reduce to

ero = ~ [~~o - ~ 1 e.; = 0, eoz = ~ ': (5.35)

whereas Hooke's law (5.17) shows that the corresponding stresses are given
by

(5.36)

Insertion of these relations into the elastostatic equations (5.22) leads to the
single equilibrium condition

~ (r3 0<1» + ~ (r30<1» = 0or or oz oz
and introduction of the auxiliary potential 'P(r, z) such that

(5.37)

0'11 30<1>
-=-r -
OZ or' (5.38)

(5.39)

produces the generalized Stokes-Beltrami system

[:1 = [~3' -~-3J[:1
which is descriptive of torsional deformation. The nonvanishing stresses
TrO and Toz are given in terms of <I> by

(5.40)

In the above representation, <I> and t/J are axially symmetric potentials in
a space of five dimensions, a fact first exploited by Arndt [316] in connection
with the torsion of shafts of revolution. Subsequently, Weinstein [328]
showed that an important boundary value problem involving a plane circular
crack under torsion may be solved by use of the correspondence principle
to reduce the problem to the determination of the electrostatic potential of
a disk in seven dimensions. Here, Weinstein's correspondence principle is
employed in a different manner to link wide classes of boundary .value
problems. The crack problem treated by Weinstein is readily solved as but
one application of the method presented.
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I An Axially Symmetric Punch Problem: The Associated Torsion
Problem with Prescribed Shear Stress Interior to a Circular
Region and Zero Tangential Displacement Outside

(5.41)on z = o.</J = fer), r s a,

THE PUNCH PROBLEM The stress distribution is sought in the elastic
half-space z ;;::: 0 due to indentation of the plane boundary z = 0 by a perfectly
rigid axially symmetric punch. It is assumed both that the displacement of
the surface in contact with the punch is known and that the indented surface
varies only slightly from the original surface.

On the part of the boundary outside the region of contact, the condition
of zero normal stress is imposed. The shear stress is assumed to vanish at
all points of the plane z = O. Accordingly, the relations (5.30) and (5.33)
show that the appropriate boundary value problem requires the solution
of(5.31) in the region z > 0, subject to the boundary conditions

o</Joz = 0, r> a

In what follows, it proves convenient to introduce the oblate spheroidal
coordinates ~, lJ according to [336, 337]

z + ir = asinh(~ + ilJ). (5.42)

The disk r s a, z = 0 is then given by ~ = 0, while its exterior in the plane
z = 0 is given by lJ = n12.

A routine calculation shows that (5.31) admits a solution of the type
cr:

</J = L AnP2n(cOSlJ)Q2n(isinh ~),
n=O .

(5.43)

while from (5.32), the corresponding l/J is given by

l/J = f· 2 (2
An

1 cosh~sinlJP2n(cOSlJ)Q2n(isinh~). (5.44)
n=O n n + )

Since

a hY: 0 . h z si 0
a~ = a cos '" cos lJ OZ + a sin '"sin lJ or' (5.45)

o . h c si 0 hY: 0-0 = -aSIll '" SllllJ - + acos '"coslJ-,n oz or
it follows, in particular, that

(5.46)

:zlz=o, r~a
(11
oz z=O,r>a

1 0

acoslJ o(

-1 (1

asinh ~ olJ'

(5.47)

(5.48)
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Use of the latter relation shows that
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whence the second boundary condition of(5.41) holds automatically for the
representation (5.43).

If it is now assumed that f(r) may be expanded in the form

00 00

f(r) = L: an(a
2 - r2)" = I ana2ncos2nlJ,

n=O n=O
(5.49)

identification of(5.43) at ~ = 0 with (5.49) determines the An.and consequently
the potential ljJ, as given by Payne [99], namely,

_! ~ _2n ,( !) ~ 4(n - m) + 1
ljJ - 2 L. ana n.r n + 2 L. 'r(2 _ ~)n=O m=O m. n m + 2

X P2(n-miCOSlJ)Q2(n-m)~isinh~), (5.50)
Q2(n-m)( +0, I)

where

. 1. n-m+l r(n-m+!)
Q2(n-mj( +0, I) = 2 I(-1) r(n _ m + 1)' (5.51)

THE ASSOCIATED TORSION PROBLEM It is now shown that the above
punch problem corresponds to a certain axially symmetric torsion boundary
value problem. In this connection, the boundary condition

is seen by (5.32) to be equivalent to

ol/tjozlz=o,r,;o = -rf'(r).

But, by Weinstein's correspondence principle,

l/t = Cr2<1>,

where

L 3(<I» = 0,

and accordingly, the boundary condition (5.53) may be expressed as

o<l>jozlz=o,r,;o = - f'(r)jCr

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)
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on cD. Similarly, the boundary condition

o¢jozlz=o,r>a = g(r)

leads to

cD!z=o,r>a = dr2 f~ pg(p)dp. (5.57)

Thus, associated with the solution ¢ of the mixed boundary value problem

L 1(¢ ) = 0,

¢ = f(r),

o¢joz = g(r),

z> 0,

z = 0, r ~ a

z = 0, r » a

(5.58)

(5.59)r ~ a,z = 0,oz Cr '

is the solution cD of the torsion problem

L 3(cD) = 0, z > 0,

ocD f'(r)

1 rr
cD = Cr2 Jo pg(p) dp, z = 0, r> a,

where

(5.60)

and I/J is given by (5.44). The specialization g(r) = 0 gives the punch problem
with prescribed displacement interior to the disk r = a, Z = 0 and zero
normal stress r > a, Z = O. Accordingly, the solution (5.50) of this problem
generates the solution cD of the pure torsion problem wherein the shear
stress Toz is specified interior to the disk r = a, Z = 0 while exterior to the
disk, the displacement is zero. The particular case f(r) = t(a2

- r2
) cor-

responds to the half-space torsion problem discussed by Reissner and Sagoci
[329]. The case f = const, 9 = 0 gives the problem of a penny-shaped
crack under torsion, solved in [327J using a dual integral equation formu-
lation.

II A Boussinesq Problem: The Associated Torsion Problem with
Prescribed Tangential Displacement Interior to a Circular
Region and Zero Displacement Outside

THE BOUSSINESQ PROBLEM The stress distribution in the elastic half-
space z ~ 0 is now sought when the normal pressure Tzz is specified in terms of
r over the circular disk r ~ a, Z = 0 and is assumed to vanish for r > a,
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z = O. Special cases of this normal loading problem were first considered
by Boussinesq [330]. Subsequently, other Boussinesq-type problems were
investigated by various authors (see Sneddon [331] and Gladwell [332]).

In the present case, the relevant boundary value problem is given by

L 1¢ =0,

('¢
oz = g(r),

o¢
oz = 0,

z > 0,

z = 0, r ~ a,

z = 0, r » a.

(5.61)

Thus, ¢ corresponds to the potential of an electrified disk when the surface
density ofthe electric charge is prescribed on the surface of the disk. Beltrami
[333] showed that this potential is given by

¢ = - fox e-ZCJo(rt)dt f: sJo(st)g(s)ds, (5.62)

(5.63)

r ~ a,

r> a,

Z = 0,

z = 0,

and, in particular, in the case of a spherical distribution of pressure over the
plane area z = 0, r ~ a so that (Payne [99])

(lAo k
_'1'_ = __ [(R2 _ r2)1/2 _ (R2 _ a 2)1 /2],
oz 411

o¢
-0 =0,

IZ

the result (5.62) specializes to (Watson [334])

k x (-ltnn-t)an + 12n

¢ = 811 n~1 ntHR2
- a2r O / 2 )

x t : e- ztt-(n+1)J (rt)J (at)dtJo 0 n + 1 . (5.64)

THE ASSOCIATED TORSION PROBLEM Use of Weinstein's correspon-
dence principle (5.54) indicates that the Boussinesq problem (5.61) is asso-
ciated with the pure torsion boundary value problem determined by

L 3(<1» = 0, z> 0,

If<1> = Cr2 0 pg(p)dp,. Z = 0, r s; a, (5.65)

<1> = 0, Z = 0, r> a.

The solution <1> of (5.65), determined by the solution ¢ of the Boussinesq
problem (5.61), corresponds to the torsion of the half-space Z ~ 0 where
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the tangential displacement interior to the disk r = a, Z = 0 is specified,
while the displacement exterior to the disk is assumed to be zero. The case
g(r) = t(a 2

- r 2
) was solved by Reissner [335].

III The Penny-Shaped Crack: The Associated Torsion Problem with
Prescribed Tangential Displacement Interior to a Circular
Region and Zero Shear Stress Outside

THE PENNY-SHAPED CRACK PROBLEM The boundary conditions for the
determination of the stress in the half-space Z ~ 0 due to the presence of a
penny-shaped crack occupying the region r ~ a, Z = 0 and opened by the
application ofan internal stress!zz = - per) applied at the crack are (Sneddon
[336])

!rz = 0, Z = 0, r ~ 0,

'l"zz = -per), z = 0, r ~ a, (5.66)

Uz = 0, Z= 0, r > a.

In terms of the potential ¢, the mixed boundary value problem is given by

L 1(¢ ) = 0,

o¢/oz = p(r)/4/-l,

¢ =0,

Z >0,

Z = 0, r ~ a,

Z = 0, r> a.

(5.67)

Payne [99] has shown that an appropriate representation for ¢ in this crack
problem is

00

¢ = L A2n+lP2n+l(COS1])Q2n+l(isinh~),
. n=O

(5.68)

where ~,1] are the oblate spheroidal coordinates introduced in (5.42). Thus,
since P 2n+ 1(0) = 0, it follows that ¢ = 0 when 1] = n12, so that ¢ vanishes
exterior to the disk r = a, Z = 0 for the representation (5.68). Moreover,
interior to the disk r = a, Z = 0, on use.of (5.47), it is seen that

o¢ 1 00 •

-0 =-- L A 2n+1P2n+l(COS1])Q2n+l(+10), (5.69)
Z cos 1] n=O

and if p*(r) = p(r)/4/-l admits an expansion of the type

00 00

p*(r) = L Qm(a2 - r 2)m = L Qma
2mcos!" 1], (5.70)

m=O m=O
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the expression (5.68)will be the solution of the mixed boundary value problem
(5.67) if A2n+ I can be determined such that

'Xi CD

L: A2n+IP2n+l(COSIJ)Q2n+I(+iO) = L: amcos2m+ 11J. (5.71)
n=O m=O

Now, standard Legendre series theory produces the relations

A2n+1Q2n+l(+iO)=(2n+~) m~o amf~1 x2m+1P2n+l(X)dx

3 'Xi (2m + l)!r(m - n + !)am

= (2n + 2) m~n 22n+1(2m _ 2n) !(m + n + ~) (5.72)

whereby the A2n+ I may be calculated. In the special case of constant pressure

Po'
a:

L: A 2n+IP2n+I(COSIJ)Q2n+ 1(+ iO) = P~PI(COS IJ),
n=O

so that

Al = pUQI(+iO),

while the remaining A 3 , As, A 7 , ••• , are all zero. But, (Hobson [337J)

IIlI < 1

so that, proceeding to the limit p- 0, we obtain QI( + iO) = -1, whence

In the case of a spherical distribution of pressure of the type (5.63)1' the
solution

k 'Xi a2n+ll(n-!)r(n+~)

4> = 8nJl n~o (R2_ a2)"-(1/,2)

n (-It[4(n-m)+3J(n-m)! .
x L: W(2 _ .i)l( _ 1) P2(n-ml+I(COSIJ)Q2(n-ml+l(ismhO

m=O m. n m+2 n m+2

(5.74)

was obtained by Payne [99].

THE ASSOCIATED TORSION PROBLEM Weinstein's correspondence prin-
ciple (5.54) shows that the solution 4> of the penny-shaped crack problem
(5.67) determines the solution 11l of the pure torsion mixed boundary value
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Li<l» = 0,

1 jr
<I> =.4J1Cr2 Jo pp(p)dp,

0<1>
oz = 0,

z> 0,

z = 0, r s; a,

z = 0, r > a.

(5.75)

This corresponds to a half-space torsion problem wherein the tangential
displacement interior to the disk r = a on the bounding surface is prescribed,
while the shear stress exterior to the disk vanishes. The particular case
p(r) = 2J1(a 2

- r 2
) was solved by Weinstein [328], who used the correspon-

dence principle to reduce the torsion problem to 'the determination of the
electrostatic potential of a disk in a space of seven dimensions.

IV An Axially Symmetric Crack Problem with Prescribed Deformation:
The Associated Half-Space Torsion Problem with Shear Stress
Prescribed Interior to a Disk on the Boundary

THE CRACK PROBLEM WITH PRESCRIBED DISPLACEMENT In this case,
our interest lies in ascertaining the distribution of pressure required to give
each face of a disk-shaped crack a prescribed deformation. The appropriate
boundary value problem is

L 1(¢) = 0, z > 0,

¢ = g(r), z = 0, r s: a, (5.76)

¢ =0, z = 0, r> a.

Here, the value of ¢ is sought in the region z> 0. This function is then
continued as an odd function across the boundary z = °to provide the
value of ¢ in the region z < 0. Thus, ¢ corresponds to the potential of a
magnetic disk with the distribution of magnetic moment prescribed on the
disk.

If we set ¢* = o¢/oz, where ¢ is the solution of the Neumann problem
(5.61), then since ¢* is harmonic, we see that it is the required solution ofthe
associated Dirichlet problem (5.76), namely, on appeal to (5.62),

¢* = f~x, te-ztJo(rt)dt f: sJo(st)g(s)ds. (5.77)

In particular, if g(r) = k(a 2 - r2)q, where q is real, then

¢* = 2qaq+ 1 r(q + l)k foX) e-ztt-qJo(rt)Jq+l(at)dt. (5.78)
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Payne [99J used this expression to derive the solution

k 00 (-1t2nr(n- 1.)an+1 00

¢*= - 8(1-v) n~l r(tHR2-a2)~-1/2 fo e-ztt-nJo(rt)Jn+l(at)dt, (5.79)

corresponding to the case in which the cavity takes the shape of a symmetrical
lens of spherical indentation with radius R.

TIlE ASSOCIATED TORSION PROBLEM Application of Weinstein's cor-
respondence principle shows that associated with the crack problem deter-
mined by (5.76) is the pure torsion boundary value problem

L 3($ ) = 0,

0$ g'(r)
OZ - c-:

0$ = °oz '

z > 0,

z = 0, r sa,

z = 0, r > a.

(5.80)

This corresponds to the torsion of a half-space z ~ °when the shear is
specified interior to the disk r = a, Z = °and is zero outside that region. The
specialization g(r) = t(a2

- r2) leads to a torsion problem solved by Wein-
stein [328].

5.3 ANTIPLANE CRACK AND CONTACT PROBLEMS IN LAYERED
ELASTIC MEDIA. BACKLUND TRANSFORMATIONS AND THE
BERGMAN SERIES METHOD

In this section, the stress distribution due to a mode III displacement of
an inhomogeneous elastic solid is investigated. Such antiplane deformations
have been discussed for homogeneous media by Sneddon and Lowengrub
[327]. Here, the important Bergman series method is introduced and linked
to results obtained earlier by Loewner's method. Two basic crack and contact
problems for a layered elastic medium in mode III deformation are thereby
solved.

In mode III displacement, the only nonzero component of displacement
uz(x, y) is related to the nonzero components of stress !xz and !yz by [327J

!xz=j1auz/ax, (5.81)

!yz = j1 auz/ay, (5.82)

where x, y, z are rectangular Cartesian coordinates. Accordingly, the single
equilibrium equation

e [auz] a [ auz] _ °- Ji- +- Ji- -
ax ax oy ay

(5.83)
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results, that is,

where
V2u + A(x, y)U = 0, (5.84)

(5.85)

(5.86)

and the shear modulus J1 is here assumed to be independent of z.
Bergman series type solutions of (5.84) are now sought in the formt

ex,

U = L {ocn(x, y)cPn(x, y) - Pn(x, y)ljJn(x, y)},
n= 0

(5.87)

where OCn' Pn are determined by the inhomogeneity of the medium, while
cPn' ljJn satisfy the Cauchy-Riemann equations

[ cPnJ [0 - IJ [cPnJ
ljJn y = 1 0 ljJ n x'

together with the recurrence relations

ocPn/ox = cPn-l,

oljJn/ox = ljJn-l,

n = 0,1,2, ... ,

n = 1,2, ... ,

n = 1,2, ....

(5.88)

(5.89)

(5.90)

(5.91)

Substitution of the series (5.87) into the equilibrium condition (5.84) yields

~ {(t72)..I.. 2 oanocPn 2 oocnocPn A..I..
L, v OCn w« + 0 0 + 0 0 + OCn'f'n

n=O X X Y Y

_ (V2P ),/, _ ') oPn oljJn _ 2 oPn oljJn _ Ap ,I, } = 0
n'l'n ~ ox ox oy oy n'l'n '

whence, on use of recurrence relations (5.89) and (5.90) are the following
system of recurrence relations for OCn and Pn is obtained:

COCo _ cPo = 0 ooco + oPo = 0
ox oy , oy ox '

2[
OOCn OPnJ 2 A~ - ay + V OCn- 1 + (x, y)ocn- 1 = 0,

(n= 1,2, ... )

[
OOCn OPnJ 22 oy+~ +VPn-l+A(X,y)Pn-l=O.

t An introductory account of the theory of Bergman series and associated linear operators
is to be found in the monograph by Bergman [338]. Modern developments have been reviewed
recently by Kreyszig [339] and Bauer and Ruscheweyh [315].
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This system may be rewritten more compactly as

8yo = 0 8Yn 8
2Yn_1 *-oz ' OZ + OZOZ + A (z,Z)Yn-1 = 0, n = 1, 2, ... , (5.92)

where z = x + iy, Z = x - iy and

{
Z + Z Z-Z} {z+z Z-Z}

Yn(z, z) = «; -2-' ~ + if3n -2-' ~ ,

A*( "') = ~ A {z + Z z- z}
Z, ~ 4 2' 2i '

(5.93)

while, if we set

'¥n = <Pn + il/Jn, n = 0, 1,2, ... , (5.94)

by virtue of (5.88)-(5.90), the '¥ n are analytic and satisfy the recurrence
relations

n = 1,2, .... (5.95)

Accordingly,

(5.96)n = 1,2, ... ,
z (z - t)n-1

'¥n(z) = La (n _ I)! '¥o(t)dt,

so that on insertion in (5.87) and use of (5.85), it is seen that, if we set go = 1,
the displacement Uz is given by

(5.97)

or

(5.98)

where

(5.99)
_ 00 _ (z _ tt- 1

K(z,Z; t) = I Yn(Z,Z) ( _ 1 !
. n=1 n).

is the kernel of the Bergman integral operator (5.98). The latter may be
interpreted as acting on the complex analytic function '¥ o(z), corresponding
to the solution of a boundary value problem for deformation ofa homogeneous
medium to produce the displacement (5.98) associated with a linked deforma-
tion of an inhomogeneous elastic material.'

t In a gasdynamics context, such operators have been used extensively to link compressible
and incompressible flows (Mises and Schiffer [340]). On the other hand, the operators also link
important boundary value problems of filtration in homogeneous and inhomogeneous strata
(Alferov and Ryashentsev [341]).
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(5.101)

(5.100)

Substitution of (5.98) into the stress-displacement relations (5.81) and
(5.82) shows that T x z and T yz are given respectively by

1 l/Z[' -, - ] 1 - liZ [OJ1 OJ1] [ - _ ]Tx z = 2. J1 <I> (z) + <I> (z) - 4J1 oz + oz <I>(z) + <I>(z) ,

Tyz = ~ iJ1 l /Z[<I>'(z) - <D'(z)] - ~ iJ1- l /Z [~~ - ~~J[<I>(Z) + <D(z)],

where

<I> = 'Po + jz K(z, z; t)'Po(t)dt.Jzo (5.102)

The two simplest cases for which the Bergman series terminate are now
considered, and a link with Loewner's Backlund transformation method is
established. Crack and contact boundary-value problems are then solved
for a layered elastic medium.

Case I (Yo #- 0, Yn = 0, n = I, 2, ... ) In this instance, relations (5.92) show
that A = 0, whence

VZJ1l/Z = 0, (5.103)

while the nonvanishing components of displacement and stress are given by

Uz = ~ ,u-l/Z['Po(z) + 'Po(zl],

T x z = ~ J1l/Z['P~(z) + 'P~(z)] - ~ J1- l /Z[~~ + ~ J['Po(z)+ 'P o(z)], (5.104)

Tyz = ~ iJ1l/Z['P~(z) - 'P~(z)] - ~ iJ1-l /Z['P
o(z) + 'Po(z)].

In the particular case of a layered elastic medium in which the shear
modulus J1 depends only on y, condition (5.103) shows that

(5.105)

while relations (5.104) become

where

'Po(z) = cP1 + icPz

and cP 1, cP Z are real harmonic functions.

(5.107)
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It is noted that the above result may be obtained via a special case of
Weinstein's correspondence principle, namely,

ljJ{O} = by¢{2}.

Case II (Yo f= 0, Yl f= 0, Yn = 0, n = 2, 3, ... ) In this case, relations (5.92)
yield

C {I a [A*]} *_GZ A* OZ Yo + A Yo - 0, A* f= 0, (5.108)

(5.109)

while the non vanishing components of displacement and stress are given by

_ 1 -I /Z[ 7 - -;;]Uz -"2 Jl \II I(~) + \II d~) ,

1 1/2[' -, _] 1 -IIZ[OJl OJl][ - -n!xz="2 Jl \II1(Z)+\II1(z) -4: Jl GZ + oz \II1(Z)+\III(Z) ,

1 . 1/2[\TJ' () l'fJ' (-)] 1. -IIZ[CJl GJl][\TJ () ffl (-)]!yz = "2 lJl T 1 Z - T 1 Z - 4: lJl (1z - 0: T 1 Z + T 1 Z ,

where

and

(5.110)

OYo = °
OZ '

°Yl A* - °;)_ + (z,zh'o = .
.oz

(5.111)

If the shear modulus varies only with y, condition (5.108), together with
(5.86), yields

[logA*]yy + 4A* = 0, (5.112)

[,ulIZ]yy + 4,uIIZA* = 0, (5.113)

and it may be readily shown that the representation (5.109)-(5.111) for the
particular solution

(5.114)

of this system can be derived alternatively via the Loewner-type Backlund
transformations discussed in Chapter 3.

AN ANTIPLANE CRACK PROBLEM The stress distribution is sought in an
inhomogeneous half-space x 2 °under mode III displacement when there
is a crack occupying the region x = 0, Iyl < 1(seeFig. 5.1). The shear modulus
,u is assumed to be of type (5.105).
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z
y

Fig. 5.1 Section of an elastic medium with a Griffith crack: mode III displacement.

The appropriate boundary value problem to be solved in this case is

o[ 2 OUZ ] 0 [ 2 OUZ ]OX (iXy + {3) ax + oy (iXy + {3) ay = 0,

Tx.(O, y) = 0,

U.(O, y) =7 0,

The representation (5.106) shows that

Uz = (iXy + f3)-1¢1

x > 0,

Iyl < 1,

as x ---+ 00,

Iyl> 1.

(5.115)

(5.116)

is the solution of this mixed boundary value problem if the plane harmonic
function ¢ 1 is such that

O¢l = °
ox '

O¢l S
- ---+ ..,-------:c-
ox (iXy + {3)

¢t =0,

. x = 0, Iyl < 1,

as x ---+ 00,

x = 0, Iyl> 1.

(5.117)

The appropriate ¢1 is readily seen to be given by

¢1 = S[iXY: {3 + g;c[l/t(e)e-~X; e---+ yJ1 (5.118)
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where l/J(~) is required to satisfy the dual integral equations

:y $'s[l/J(~); y] = ay ~ f3' 0.::;; y < 1,

~[l/J(~); y] = 0, y> 1,

259

(5.119)

where

and

g;c[f(~,x); ~ -. y]:= AfoOO f(~,x)cos(~y)d~

g;s[f(~,x); ~ -. y] := AfoOO f(~,x)sin(~y)d~,

(5.120)

(5.121)

denote the Fourier cosine and sine transforms, respectively, of f(~, x). Thus,
(5.118) shows that

0/1 = 0, x = 0, Iyl> 1,
provided that

while, since

it follows that

$'c[l/J(~); y] = 0, y> 1,

(5.122)

00/1 [1 m; . J
ox = S ay + f3 - ..~A~l/J(~); y]

= S[ay ~ f3 - d~ $'s[l/J(~); y]J

whence

at x = 0;

x = 0, Iyl < 1,

provided that

as x -. 00,

:y $'s[l/J(~); y] = ay ~ f3'

Finally, (5.122) shows that

a0/ 1 S--.--
ox ay + f3

O'::;;y<1.

so that the required applied shear condition obtains.
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(5.123)

(5.124)v> 1,

o$; Y < 1,

The dual integral equations (5.119) are a particular case of the system

d ~
dy ~s[l/J(¢); yJ = p(y),

:?c[l/J(¢); yJ = 0,

which arises in the mode I displacement problem for a Griffith crack subjected
to an internal pressure varying along its length. The complete solution of
(5.123)-(5.124) was obtained by Sneddon and Elliot [342].t Thus, we see
that (5.124) is identically satisfied if l/J(¢) has the integral representation

l/J(~) = Jk SOl f(t)Jo(¢t)dt. (5.125)

Moreover, since

os Y < 1,

(x Jo(¢t) sin(¢y) d¢ = H(y - t),
Jo .Jyl _ t2

we see that (5.123) is equivalent to the Abel integral equation

d I Y f(t)dt
d- Jo.J 2 2 = p(y),
Y Y - t

(5.126)

(5.127)

with solution

f(t) = (2t/n)q(t), (5.128)

where

(5.129)q(t) = It p(u) du .
Jo .Jt1_ u2

Accordingly, the solution of the original antiplane crack problem is given by

u, = (ay + {J)-lS[ay : {3 + :?c[l/J(¢)e-~X; ¢ ---+ yJJ
'xz = S[I - (ay + (3).ic[N(¢)e-~X; ¢ ---+ yJJ,

[
-2ax

'yz = S --/1 - a:?c[l/J(¢)e-~X; ¢ ---+ yJ
lXy + F

- (IXY + (3)ffs[¢l/J(¢)e-~x; ¢ ---+ YJ]

(5.130)

t A more general pair of such dual integral equations was treated by Busbridge [343].
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(5.131)

where

t/J(~) = ~2 11 {2t It dn}JO(~t)dt.
-V 2" Jo n Jo (au + {3) t2 - u2

AN ANTIPLANE CONTACT PROBLEM The stress distribution is sought in
an inhomogeneous half-space y ;;::: °under the strip shear stress loading [101J

{
To, Ixl<a, y=O, 2

'yz = 0, Ixl > a, y = 0, (5.13 )

where '0 is a constant. The variable shear modulus Ii is again assumed to
be of the type (5.105) so that the representations for the displacement Uz and
shear stresses,xz' 'yz become

(5.133)

(5.134)

(5.135)

The integral representation

1 lex>
1J'0(z) = 2n Jo A(p)exp(ipz)dp (5.136)

(5.137)
Ixl < a,
Ixl > a,

is now adopted for the analytic function IJ'o(z) so that the boundary condition
(5.132) requires that

1 100 {TO,
- 2n Re Jo [a + {3pJA(p)exp(ipx)dp = 0,

whence, from the inversion theorem for the Fourier cosine transform,

A(p) = -4'op-l(a + {3p)-1 sin(pa). (5.138)

Accordingly, the displacement and stress components have the integral
representations

-2'0 loo .
Uz = ( {3 p-l(a+{3p)-ls111(pa)cos(px)exp(-py)dp,

nay + ) °
2'0(ay + {3) lOO 1 . .

'xy = (a + {3p)- slll(pa) sintpx) exp(-py) dp,
n °

(5.139)

(5.140)

2'0 loo 1 .'yz = - p" (a+ {3p)-I(a+ {3p +apy) slll(pa) cos(px) exp( - py) dp. (5.141)
n °
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In particular, the displacement on the boundary y = 0 is given by

2r o (00 .
uz!y=o = - np Jo p-l(1X + Pp)-l slll(pa) cos(px) dp, (5.142)

and if Ct. is large enough that terms of order Ct.~2 can be neglected, (5.142)
reduces to

I 2ro ~oo
Uz y=o = --p v:' sin(pa) cos(px) dp

n IX 0

{

ro

= PCt.'

0,

Ixl < a,

Ixl > a.

(5.143)

Thus, if terms of order Ct. - 2 are neglected, the displacement u, on y = 0 is
nonzero only in the strip where there is an applied shear load. Furthermore,
the magnitude of this displacement on y = 0 tends to zero as Ct. -> 00, in
accordance with physical considerations, since the rigidity of the medium
increases with Ct..

In conclusion, it is noted that other elastostatic crack problems for inhomo-
geneous media have been solved via the Bergman series method in [100, 102].
On the other hand, the method has been used extensively in elastodynamics
and viscoelastodynamics where it was derived independently in the context
of asymptotic wave front expansions [90-93,344-350]' The application of
simple Backlund transformations to the solution of initial-value problems
involving wave propagation in inhomogeneous elastic media has been dis-
cussed by Clements and Rogers [89].

5.4 STRESS CONCENTRATION FOR SHEAR-STRAINED PRISMATIC
BODIES WITH A NONLINEAR STRESS-STRAIN LAW

In his book "Kerbspannungslehre" [351J and in a subsequent paper [352J,
Neuber investigated the behavior. of stress and strain concentrations for
large antiplane deformation of notched prismatic bodies for which the
classical Hooke's law is no longer applicable. Sokolovsky [353J subsequently
introduced a nonlinear stress-deformation law for which a wide class of mode
III deformation problems is readily solved once the solution of a corre-
sponding harmonic boundary value problem for the linear Hooke material
is known. Here, following the work of Clements and Rogers [96J, new multi-
parameter nonlinear stress-deformation laws are obtained for which the
Neuber pair of antiplane equations is reducible to an associated Cauchy-
Riemann system by Backlund transformations. The stress-deformation laws
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y

*"---.,.----l~ X

Fig. 5.2 The notched half-space y ~ 0 under anti plane deformation.

of Hooke and Sokolovsky emerge as special cases of the procedure that is
here used to determine the stress distribution due to the anti plane deforma-
tion of a notched half-space of nonlinear elastic material.

Prismatic bodies under anti plane deformation are considered as shown
in Fig. 5.2. If the coordinate system is chosen in such a way that the x and
y axes lie in one of the cross sections of the prism, then, as in the preceding
section, the only nonvanishing components of displacement and stress are
Uz, rxz, and ryzwhich depend only on x and y with the shear stress components
constrained by the single equilibrium equation

(5.144)

On the other hand, the nonvanishing components of the deformation tensor,
namely, exz and eyz, are subject to the strain-displacement relations

exz = ! auz/ax,

eyz = !ouz/ay,

while, following Neuber [352], stress-strain relations

. rxz = (r/e)exz,

ryz = (r/e)eyZ

are adopted, where

r 2 = r~z + r;z,
2 2 2e = exz + eyz

and r, /; are subject to a deformation law

e = <I>(r).

(5.145)

(5.146)

(5.147)

(5.148)

(5.149)

(5.150)

(5.151)
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Introduction of the warpingand stress functions ¢(x, y) and t/J(x, y), respec-
tively, according to

.yz = -iN/ax, (5.152)

(5.153)

shows that the antiplane deformations under consideration may be described
by the matrix system

[¢J [ 0 2kll>(.)/.J [¢J
t/J x = -./(2kll>(.)) 0 t/J y'

where it will be seen that the constant k represents a shear modulus in the
Hookean range. If 0 is the angle between the stress vector 't' and the x axis, it
follows that

whence,

e
d¢ = 2k[e xzdx + eyzdy] = 2k - [.xzdx + .yzdy]

r

= 2kll>(r)[cos 0 dx + sin 0 dy],

dt/J = -.yzdx + .xzdy =.[ -sinOdx + cosOdy],

or

O/2kll>(.))d¢ = cosOdx + sinOdy,

and

Ole) dt/J = - sin 0 dx + cos 0 dy.

Accordingly, if z = x + iy,

dz=dx+idy

= [(1/2kll>(.))cosOd¢ - (1/.)sinOdt/J]

+ i[(l/2kll>(.))sinOd¢ + (1/.) cos 0 dt/J]

= ei9[(l/2kl1>(.}) d¢ + i(l/.) dt/J],

(5.154)

(5.155)

(5.156)

(5.157)

(5.158)

(5.159)

(5.160)

so that, on introduction of the Tschaplygin-Molenbroek transformation
wherein. and 0 are taken as the new independent variables, it is seen that"

az/a. = ei9[(1/2kl1>(e)) a¢/a. + i(I/.) at/J/a.],

az/ao = ei9[(1/2kll>(e)) a¢/ao + i(I/.) at/JlaO].

t This is analogous to the hodograph transformation of gasdynamics and elastodynamics,
discussed in Chapters 3 and 4, respectively.
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Application of the integrability condition a2z/orae = o2z/oear now produces
the Tschaplygin-Molenbroek system (Neuber r351J).

[
cPJ [0 -2k«1>(r)/r

2J[cPJ

l/J r - r«1>'(r)/(2k«1>2) 0 l/J 9' (5.161)

where it is assumed that

0< p(x, y; r,e)1 < 00.

Moreover, introduction of the new stress measure

s = (r {«1>'(0')/0'«1>1 1/2 dO'Jro f

reduces (5.161) to the elliptic canonical form

where

(5.162)

(5.163)

(5.164)

(5.165)

(5.166)

Loewner-type Backlund transformations may now be sought which reduce
(5.164) to the Cauchy-Riemann system

[ cP 'J [0 -1J [cP'J
l/J' s - 1 0 l/J' 9'

The results of Chapter 3 apply directly, whence we see that reduction to
(5.166) may be achieved via the linear Backlund transformations

o J[cPJ [aih~d/a~ ° ][cPJ
a~ l/J s + ° a~hfc~/ai l/J'

where

[::J = [~i

[ cP 'J [ai 0J[cPJ [0 dJ[cPJl/J' 9 = 0 a~ ljJ 9 + d 0 l/J'

(5.167)

h~ = _K 1 / 2 ,

and a~ is such that

a:a~ = const = a, (5.168)

aL + a(ai)2 + 13 = 0, (5.169)

with a, 71 given in terms of the constants a, cL and d by a = dla, 71 = -d·
Thus, the Tschaplygin-Molenbroek system (5.164) is reducible to the

Cauchy-Riemann system (5.166) by the Backlund transformations (5.167)
if the deformation function cP(r) is such that K(r) as given by (5.165) adopts
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one of the following forms, corresponding in turn to the cases a = 0, lJ = 0,
lJla> O,andlJla < 0:

(a) a = 0

(b) II = 0

(c) lJ/a> 0

(d) lIla < 0

K = (aallJ)2 tanh'{ - lJla)1/2(fis + '1).

The approximations (a)-(d) to K(T) each correspond to the following
multiparameter deformation laws (which may be used to approximate
empirical stress-strain relations):

(a) a = 0 In this case, if F = 2ket>, then

(5.170)

and since

we see that

dxlds = m 2IF(- lIs + (W,
dFlds = P( -lIs + J)Z[at,

(5.171)

(5.172)

(5.173)

which equations admit solutions corresponding to the parametric deforma-
tion laws

F = 11a[ -lI(AeS + Be- S
) - (-lIs + J)(Ae' - Be- S

)] ,

T = [-lIs + J]/[Ae S + Be- S
] ,

where A and B are arbitrary constants.
(b) II = ° In this case,

F3/T3F' = a2[as +e]4,

whence, from (5.171),

and

(5.174)

(5.175)

(5.176)
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This pair of equations admits solutions corresponding to multiparameter
deformation laws given by

F = [as + s]/[CeS + De- S
] ,

r = l/a[a(CeS + De- S
) - (as + s)(CeS

- De- S
) ] ,

where C, and D are arbitrary constants.
(c) ~/a > 0 Here, it is readily verified that

dxlds = aar2 coe(~/a)1/2( -as + ()/~F

and
dF/ds = ~F2 tan2(~~)1/2( - as + Waar.

(5.178)

(5.179)

These relations may be integrated numerically to approximate specific stress-
strain laws over appropriate ranges of deformation.

(d) ~ /a < 0 In this instance, the relations

and
dr/ds = -aar2tanh 2

( - ~/a)1/2(as + y/)/~F

dF/ds = - ~F2 coth 2
( - ~/a)1/2(as + y/)/aar

(5.180)

(5.181)

are obtained, and, as in case (c), recourse to numerical integration is required
to determine the associated deformation laws.

Typical stress-deformation laws of types (a) and (b) are shown in Fig. 5.3.
In particular, it is apparent that curves of type (a) could be used to approxi-
mate constitutive laws for materials which initially deform according to the

'lk 1.0

2.5 5.0

F/k
Fig.5.3 Typical stress-deformation laws of types (a) and (b) (Clements and Rogers [96J).
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0< n< L (5.182)

and then exhibit plastic behavior. Such constitutive laws have recently been
adopted by Sih and MacDonald [354] in an investigation of the effect of
material nonlinearity on crack propagation.

Included in Fig. 5.3 is a typical stress-deformation law with ex = 73 = O.
In this case the type (a) and type (b) laws coincide and the parameter s may
be eliminated in (5.177) to give the Sokolovsky Law [353]

F = mh/[l + 4a2e2CDr 2
]l /2

or, in the notation of Dobrovol'sky [355],

r = 2ke/[1 + (2md]1/2,

(5.183)

(5.184)

where a2e4 = + 1, m2e2 = -4CDK2, and k, m are parameters available for
the approximation of the mechanical behavior of the material. Further
Sokolovsky laws are shown in Fig. 5.4 for k = 0.5, 1.0, 5.0 and kfm = 1.0.
Note that when m = 0 in (5.184), Hooke's law is retrieved.

T

1.0 -------------

kIm =1.0

1.0 2.0 'Y

Fig.5.4 Particular cases of Sokolovsky's law (Dobrovol'sky [355]).

Since Sokolovsky introduced his law in 1950, it has been used extensively
to solve a wide range of anti plane notch problems for nonlinear elastic
materials [352,355]. In view of the importance of the Sokolovsky law,
this section is concluded with an illustration of its use in the solution of a
stress distribution problem involving a shear-strained, notched nonlinear
elastic half-space. The basic procedure adopted is analogous to the Karman-
Tsien approximation of subsonic gasdynamics, in which, in the notation of
Chapter 3, q <--+ F(r), pq/po <--+ r.
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Thus, in the case of the Sokolovsky law (5.183), the Backlund transfor-
mation (5.167) reduces to

[ 4J'] [a~ 0] [4J],/1' s - 0 a~ ljJ.'

[4J'] [a~ 0] [4J]
ljJ' 8 = 0 a~ ljJ 8'

(5.185)

where a~a~ = a and at = e- 1
• Accordingly, if we set a = + I, it follows that

4J' = e- I 4J ,

ljJ' = eljJ,

while the Cauchy-Riemann system (5.166) yields

4J' + W = g((j),

(5.186)

(5.187)

(5.188)

where g is an analytic function of the complex variable (j = s - iO. Thus,

so that

4J' = Hg + g],

d4J = te[dg + dg],

ljJ' = (1/2i)[g - g],

and substitution into the relation (5.159) yields

dz = te i8[(e/F(r»( dg + ~) + (I/er)(dg - dg)]. (5.189)

At this stage, following a procedure analogous to the Karman-Tsien method
of subsonic gasdynamics, a new variable FH(F) is introduced according tot

dFH/FH= (r/F2)dF,

where Sokolovsky's law (5.184) yields

(5.190)

(5.191)
E

r = '---:~;:;;:'[I=+=(m=F=/k=;)2~J'

and we have set e = +1. Substitution of (5.191) into (5.190) and integration
gives

(5.192)

t An account of the important Karmari-Tsien procedure in a gasdynamics context is given
by Shapiro [356].
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where c is an arbitrary constant of integration. If we require that F = FH

correspond to Hooke's law (m = 0), we set c = 2k/m, and the FH(F) relation
(5.192) becomes

whence, on inversion,

F _ 4(k/m)2FH
- [4(k/m)2 - F~]'

Combination of(5.191) and (5.194) now yields

4(k/m)2FH
r = -=--~-.---.--=-

[4(k/m)2 + F~]'

so that, on substitution of (5.194) and (5.195) into (5.189), we see that

dz = Fii 1ei9dg - t(m/k)2FHe
i9dg.

(5.193)

(5.194)

(5.195)

(5.196)

The analytic function g(a) corresponds to an anti plane deformation of a
Hooke material in a certain ( plane where

d( = Fii lei9 dg,

and it follows that (5.196) may be written as

dz = d( - t{m/k) 2 FHei9 dg = d( - t{m/k)2(dgjdO dg

= d( - t(m/k)2(dg/df)2 dr,

whence,

1 (m)2 J(dg)2Z = ( - 4 k dr dr,

(5.197)

(5.198)

(5.199)

up to an arbitrary constant of integration.
Expression (5.199) relates the antil?lane deformation of a Hooke material

to an associated deformation of a nonlinear elastic medium that can be
modeled by the Sokolovsky law (5.184). An illustration of such an associa-
tion is presented below.

Antiplane Deformation of a Nonlinear Elastic Notched Half-space

The problem considered here is that of the antiplane deformation of a
nonlinear elastic prism, the cross section of which is a semiplane with two
oval notches (Fig. 5.2). The complex potential associated with the correspond-
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ing Hookean problem is (Dobrovol'sky [355])

g(() = T[( + {3(( ~ a+ ( ~ a)} (5.200)

where T, a, and {3 are real parameters. Insertion of (5.200) into (5.199) and
integration yield

1 (m)2[_z=(-4 k (+2{3(Vl+V2)

2(r - - 1_3 1_3 1 (OV2))J
-{3 a2vlv2+:3vl+:3v2+2a3ln VI '

where, if ( = ~ + in,

(5.201)

~-a

A1 = [(~ _ a)2 + 112]'

-11

~+a

A2 = [(~ + a)2 + 112]'

-11

(5.202)

The warping and stress functions 4>, lj; are given by

4> = T[ ~ + (3(A 1 + A2)],

lj; = T[11 + (3(J.l1 + J.l2)],

while the longitudinal displacement is .

Uz = (Tjk)[ ~ + (3(A l + A2)].

(5.203)

(5.204)

(5.205)

The parametric equation ofthe boundary in the physical plane is obtained
by substitution of the values of ~, 11 such that lj;(~, 11) = 0 into (5.201). Use of
(5.204) shows that the rectilinear sections of the boundary in Fig. 5.2 corre-
spond to 11 = 0, while the curvilinear arcs correspond to the Persey curves

[(~ - a)2 + 112][(~ + a)2 + 11 2] = 2{3[e + 11 2 + a2],

where the constraint

a> J!{3(l + J2)

(5.206)

(5.207)

on the parameters a, {3 ensures that the curves do not intersect.
In Fig. 5.5, the stress distribution along the boundary contour is shown

for T = 1.0, mjk = 0.4, a = 2.1224, and {3 = 1.1155, where the values of a
and {3 are chosen so that the abscissas of A and Bare 1.0and 3.0,respectively,
[355]'
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T: 1.0

Fig. 5.5 The stress distribution along the boundary contour in the nonlinear elastic anti-
plane notch problem (Dobrovol'sky [355]).

Dobrovol'sky generalized the above discussion to the case in which the
complex potential of the notch problem for the Hookean material adopts
the form

(5.208)

where T, IX., f3., S = 1, ... , n, are arbitrary real parameters. In this case,
substitution of (5.208) into (5.199) and integration yield

where

(5.209)

IX; - 11 (5.210)
Ils = [(~ _ 1X~)2 + (11 _ 1X;)2]'

1X2 = IX~ + ilX;, s = 1,2, ... , N,

The warping and stress functions cjJ, IjJ are given by

cjJ = T[~ + stl f3sAsJ (5.211)
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and

tP = T[IJ + stl {JsPs].
while the longitudinal displacement becomes

Uz= (T/k{ ~ + ~J3sAJ

(5.212)

(5.213)
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Properties of the Hirota
Bilinear Operators

( a a)n(a a)m ID~D';a 0 b:= -a - -aI -a -;--c; a(t,x)b(t',x')
t t x uX x'=X,t'=t (1.1)

D';a D b = (-l)mD';(b 0 a),

. a2 1
ax at (log!) = 2f2 DxDJ 0 f,

8
4

1 [ 1 J2ax4 (log!) = 2f2 ~;f <T - 6 2f2 D~f o.f ,

(D~a 0 b)cd - ab(D~c 0 d) = Dx[(Dxa 0 d) 0 cb + ad 0 (Dxc 0 b)]

(D;a 0 a)cc - aa(D;c 0 c) = 2DJD;a 0 c) 0 ca

+ 6DAD~a 0 c) 0 (Dxc 0 a),

Dt(D~a 0 b) a ab = Dx[(DxDta a b) a ab + (Dta 0 b) 0 (Dxa a b)],

Dt[(Dxa a b) 0 cd + ab a (Dxc a d)]

= (DtDxa a d)cb - ad(DtDxc 0 b)

+ (Dta a d)(Dxc 0 b)-(Dxa 0 d)(Dtc 0 b),
274

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)
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bblr.D,« 0 a - aaDxD,b o b = 2Dx(ba) 0 (D,b 0 a), (1.8)

bbD~a 0 a - aaD~b 0 b = Dx[2(ba) 0 (D;b 0 a) - 10(Dxb o a) 0 (D;b 0 a)

+ 20(D;b 0 a) 0 (D~b 0 a)]

- 5[(D;b 0 b)(D;a 0 a) - (D;b 0 b)(D;a 0 a)], (1.9)

bbD~a 0 a - aaD~b 0 b = D~[2(ba) 0 (D~b 0 a) - 6(Dxb 0 a) 0 (D;b 0 a)]

+ 3[(D;b 0 b)(D;a 0 a) - (D;b 0 b)(D;a 0 a)], (1.10)

D~(ba) 0 (D~b 0 a) + D~(Dxb 0 a) 0 (D;b 0 a)

= Dx[(ba) 0 (D;b 0 a) - (Dxb 0 a) 0 (D;b 0 a)

- 2(D;b 0 a) 0 (D~b 0 a)], (1.11)

cdils,« 0 b) - ab(Dxc 0 d) = bd(Dxa 0 c) - ac(Dxb 0 d), (1.12)

cd(Dxa 0 b) - ab(Dxc 0 d) = Dxad 0 be, (1.13)

(Dxa 0 b)c - (Dxa 0 c)b = -a(Dxb 0 c). (1.14)
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Differential Forms

II.1 TANGENT SPACES AND VECTOR FIELDS ON IR"

Suppose Xi, i = 1, ... , k,are coordinates on ~k and that I is a differentiable
function on ~k. If V is a vector at x E ~k with components Vi, ... , vk, then
the directional derivative of I at x in the direction of V is given by

V(f)(x) = Vi aal ,(x).
x'

(11.1)

Thus, we may identify the real k-.dimensional vector space with basis {6/axi jx;
i = 1, ... , k}, with the collection of directional derivatives at x. This vector
space is called the tangent space to ~k at x and will be denoted by T x~k. In
what follows, it will be convenient to write the basis for T x~k more concisely
as {a/ax i

} .

If Xl, ... , X k are smooth functions on ~". then to each point x E ~k one
may assign an operator X(x) given by

(11.2)

An assignment of such an operator to each point in ~k is called a vector field
on ~k. This provides a map from COO(~k) to COO(~k) by sending I E coo(~k) to

276
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. of
x(f)(x) = X'(x) ~ (x).

ux'

277

(11.3)

11.2 DIFFERENTIAL p-FORMS ON IRk

We now introduce I-forms at a point x in IRk as vectors in the dual space to
TxlR\ denoted by T:lRk

• The space. T:lRk is thus a real vector space of dimen-
sion k and has a basis dual to the basis {o;ox i

; i = 1, ... , k}, which for rea-
sons that will become apparent is denoted by {dx 1

, dx", ... , dxk
) . The

canonical pairing of vectors in TxlRk and T:lRk is denoted by <,), so that

(11.4)

(11.5)

(11.6)

Following Flanders [122], for each p = 0, 1,2, ... , k, a new vector space
/\P T:lRk over IR may be constructed. Thus, if we set

/\
0 T:lR k = IR\

N T:lR k = T:IR\

then /\P T:lR k is the space consisting of all finite formal sums (p-forms)

I C(llll\112 I\" .. /\ 11pi, (11.7)

where C E IR, l1i E T:lRk
, and the exterior (wedge) product /\ is subject to the

rules

(a~ + b() /\ 112/\' .. /\ I1 p = a(~ /\ 112/\:' . /\ I1 p ) + b(( /\ 112/\' .. /\ I1 p ),

111/\112/\'''/\l1p = 0 ifforsome i#j, I1j = I1j,

111 /\ 112 /\ ... /\ 11 p changes sign if any two 11 i are interchanged.

(11.8)

(11.9)

(11.10)

It follows from (11.8) and (11.10) that the product /\ is linear in each factor.
Thus, for example,

111 r. (a~ + bO /\112/\' .. /\ I1 p

= a(111 /\ ~ /\ 112/\' .. /\ I1 p ) + b(111 /\ (/\ ... /\ I1 p ).

Since {dx 1
, . . . , dxk

} is a basis for N T:lR k
, it follows by a short compu-

tation that each p-form 11 E /\P T:lR k is a linear combination of terms of the
form

~jl dx': /\ l1i
2
dx'? /\ ... /\ (i

p
dx'r,

But from (11.8), this is the same as

1', n . . . . r. dx': rcdx'?». .. '/\dxi p
~11·1t2 SIp ,

(11.11)

(11.12)
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and from (11.9)-(11.10) we conclude that any element of f\P T: IRk may be
written in the form

L ~il'" i» dx:' /\ ... /\ dx», 1 ~ i 1 < i 2 ••. < ip ~ k, (11.13)

and that the p-forms {dXi , /\ ..• /\ dx ip } , 1 ~ i 1 < i 2 ••• < ip ~ k, comprise a
basis for the space f\P T:lR k of dimension (~). Note that when p = k, this
basis consists of only one element, namely,

dx' /\ dx2 /\ ••• /\ dx",

so that 1\k T:lR k is one dimensional. Ifp > k, then there must be at least one
term dx" that appears twice in the sum (11.13), whence from (11.9), it follows
that any p-form with p > k is zero.

Use may be made of the fact that 1\k T:lR k is one dimensional to give a
basis-independent definition of the determinant of a linear transformation
on IRk [122]. Thus if A: IRk --+ IRk is such a transformation, then there is an
alternating linear map from 1\k T:lR k to itself defined by

~l /\ ~2 /\ ... /\ ~k --+ A~l /\ A~2 /\ ... /\ A~k'

Since /\ k T:lR k is one dimensional, it follows that there is a real number IAI
such that

A~l /\ A~2 /\ ... /\ A~k = IAI ~l /\ ~2 /\ ... /\ ~k'

The determinant of Ais defined to be the number IAI. The reader may verify
that if A is given in a basis by the matrix [aij]' then IAI is the determinant of
this matrix.

A p-form of the type ~ = ~l /\ ~2 /\ ... /\ ~p' is called a monomial. Each
monomial p-form ~ determines a functional on

TxlRk x TxlRk X ... X TxlRk
\. '

by
v

p-copres

~(Xl"'" X p ) = <~l,Xl> <~2,Xl>

<~1,X2>. <~2,X2>

for each i,

<~l'Xp> <~2'Xp> <~p,Xp>

where Xi E T x IRk, i = 1, ... , p. It follows from the properties of determinants
that ~ is a p-linear functional and is totally antisymmetric. Thus

~(Xl>"" AXi + J.lY, ... , X p)

= A~(Xl"'" Xi"'" X p) + J.l~(Xl>"" Y, ... , X p)

and ~(X 1, ... , Xp) changes sign if any two Xi are interchanged.
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If 1] is another monomial p-form 1] E 1\P T:lR k and a, b are constants, then
we may define (a~ + b1])(X b ... , Xp) by

(a~ + b1])(X 1 , ••• , Xp) = a~(Xl"'" Xp) + b1](X 1 , ... , Xp).

Thus every p-form determines a p-linear totally anti symmetric functional on
T"lRk x ' .. X T"lRk

•

A differential p-form may be defined as a smooth assignment of a p-form
at each x E IRk. Thus, for example, if f, 1]i' ~ii' i,j = I, ... , k, are smooth
functions on IRk, then f, 1]: = n.dx: and ~: = Li<j ~ii dx' 1\ dx! represent, in
turn, a differential O-form, a differential l-form, and a differentiaI2-form. We
denote by FP(lRk

) the space of differential p-forms on IRk. If ~ E FP(lRk
), then

the degree of ~ is the number deg ~ = p.
The functionals determined by p-forms may now be used to combine

differential p-forms ~ and p vector fields Xl"'" X p to form functions
~(X 1, .•. , Xp) on IRk according to

~(X b ... , X p):X --+ ~(X l(X), ... , X p(x)).

In particular, for p = 1, if X is any vector field and ~ is any differential l-form,
~(X) is the real-valued function on IRk given by

~(X):x --+ <X(x), ~(x».

IfX = XiO/OX i and ~ = ~idxi, then the component functions of X and ~ are
conveniently picked out by

and

11.3 THE EXTERIOR DERIVATIVE

An operator d: FP(lRk
) --+ FP + 1(IRk), called the exterior derivative, is now

introduced. If f E FO(lRk
) , then df is the l-form defined by the requirement

that for any vector field X,

<X,df> = X(f). (11.14)

Thus, if df is given in coordinates by df = Jj dx', it follows from (11.4) and
(11.14) that

Accordingly,

dlf = of, dx:
ox' '

(11.15)
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and hence our choice of the notation dx' for the basis l-forms. Note the
consistency of this notation with the usual convention in that Xi may be
regarded as a function on [Rk and

. exi
. .

d(x') = -. dx' = dx'.exJ

We now extend d to an operation on p-forms for p > 0 by the requirements

d(~ + ry) = d~ + dry,

d(f~) = df 1\ ~ + fd~,

d(¢ 1\ 1]) = d¢ 1\ I] + (_I)deg ~¢ 1\ dn,

d(dl]) = 0

(11.16)

(11.17)

(11.18)

(11.19)

for all forms ¢, I] and functions f. Existence and uniqueness properties of d
based on conditions (II.16)-(1I.19) are established in Flanders [122].

In view of properties (11.16) and (II.17), it is sufficient to exhibit the effect
of d on a p-form

since an arbitrary p-form will consist of linear combinations of such terms
over FO([Rk).

Now (11.18) implies that

d¢ = L d(¢i, ... ip dx" 1\' .. 1\ dx ip
)

= "dJ:· . 1\ idx:' 1\' . '1\ dxip )L... Stl ... lp

+ (-1)°¢i
l
... ip didx'' 1\ ... 1\ dxip

) ,

and since

it follows that

(11.20)

Example11.1 The operators gradient, curl, and divergence of vector cal-
culus are readily recovered in terms of the exterior derivative d when k = 3.

Since the space of l-forms on [R3 is three dimensional, we may identify
the basis l-forrns dx", dx", and dx 3 with the usual basis vectors e ', e2

, e3 in
[R3.

t The space of 2-forms on [R3 is again three dimensional, and if the basis
forms dx? 1\ dx", dx' 1\ dx'; and dx' 1\ dx? are associated, in turn, with the

t There is a good reason for this apparently arbitrary choice. The Hodge star operator
(Flanders [122]) gives an isomorphism between F'{~3) and F2(~3) which maps dx", dx", and
dx' to dx? 1\ dx", dx ' 1\ dx", and dx' 1\ dx 2, respectively.
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basis vectors e ', el , e', then /\ corresponds to the vector product x in [R3

in that

dx? /\ dx" _ el x e3 = e",

dx" s dx' _ e3 x e ' = el
,

dx' r. dx? _ e l x e l = e'.

Suppose that f is a O-form on [R3. Then from (11.15),

of I of 1 ?1 3
df = ;;--T dx +:12 dx + -a3 dx ,

uX ox tx

so that the components of df are the components of

ilf I of 1 of 3
grad f = ;;l e +:12 e + ~ e .

ox (IX ox

Similarly, if 11 is a l-form on [R3,

YJ = Pdx l + Qdxl + Rdx3,

then (11.17) shows that the 2-form dn is given by

dn = dP /\ dx" + dQ /\ dx l + dR /\ dx'

oP . I ilQ . 1 oR . 3
= -. dx' /\ dx + -. dx' /\ dx + -. dx' /\ dx

OX' aX' OX'

_(OR aQ) 1 3
- oxl - (IX 3 dx /\ dx

(
ap OR) 3 I

+ ox3 - ox l dx /c dx

(
OQ oP) I 1+ oxl - DXl dx /\ dx .

Hence, the components of dYJ in this basis are the same as the components of

curl F = 0
ox l

P

where F = Pel + Qe l + Re3'

Finally, if' is a 2-form given by

Q R
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then
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d( = d(A dx 2)/\ dx 3 - A dx? /\ d(dx 3
)

+ d(B dx 3
) /\ dx' - B dx" /\ d(dx l)

+ d(Cdx l)/\dx2 - Cdx' /\d(dx 2)

(
OA oB OC) 1 2 3

= OXl + OX 2 + OX 3 dx s dx /\dx .

Since p 3(1R 3
) is one dimensional, dx' /\ dx 2 /\ dx? is a basis, and the com-

ponent of d( is

. oA oB OC
div G = oxl + ox2 + ox 3 '

where G = Ae 1 + Be2 + Ce3 . •

11.4 PULL-BACK MAPS

One of the most useful features of differential forms is their behavior under
mappings of the space in which they live. Thus, if cjJ is a smooth map from
IRk to IRI

, then there is a naturally defined map of differential forms

cjJ*: FP{1R1
) ~ FP(lRk

)

called the pull-back map. Iff E pO{1R1), then cjJ*f is the O-formon IRk defined by

(cjJ*f)(x) = f(cjJ(x»,

so that

cjJ*f = f 0 cjJ. (11.21)

The following properties of the pull-back map apply for arbitrary smooth
maps cjJ: IRk ~ 1R1

, 0/: IRm
--+ IRk, functions f, g E pO(1R1

), and p-forms ~, '1 E FP( 1R1) :

¢*(f~ + g'1) = (¢*f)(¢*~) + (cjJ*g)(¢*'1),

cjJ* d~ = d(¢*~),

¢*(~ /\ 11) = cjJ*~ /\ ¢*11,

(cjJ 0 o/)*~ = (0/* a cjJ*K

(11.22)

(11.23)

(1I.24)

(1I.2S)

If / are the coordinate functions on 1R1 and cjJ: IRk ~ 1R1 is given by yi =
/(x l

, ... , x"), then

(11.26)
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Example11.2 If ¢: ~2 -> ~2 is given by

yl = yl(X I,X2) = Xl - ax 2 ,

then, from (11.26),

283

¢*dyl = dx' - a dx",

while, on use of (11.22),

¢*(f(yl,y2)dyl) = (¢*f)(¢*dyl)

= f(yl(X I , x 2), y2(Xt, x 2))(dxl - a dx 2). •

11.5 THE INTERIOR PRODUCT OF VECTOR FIELDS
AND DIFFERENTIAL p-FORMS

An interior product, denoted by --.J, of vector fields and differential p-forms
may now be introduced. If X is any vector field and f is any O-form, then
we set

X --.Jf:=O. (11.27)

More generally, if ~ is any p-form, then X --.J ~ is defined as the (p - 1)-
form such that

(11.28)

for all vector fields r;. It follows from the linearity properties of p-forms
that

(fX + g Y) --.J ~ = IX --.J ~ + gY --.J ~,

and

X --.J (f~ + g1'/) = IX --.J ~ + gX --.J n,

where I, g are arbitrary O-forms. In addition, it is readily shown that

X --.J(~/\tf)=(X --.J~)/\tf+(-I)deg~~/\(x --.J1'/),

X --.J Y --.J ~ = - Y --.J X --.J ~,

and

~(XI"'" X p ) = x., --.J X p _ I --.J ... --.J XI --.J~.

In the case p = 1, X --.J ~ is a O-form

X --.J ~ = ~(X) = <X,O,

and if X = Xi %xi, on use of (11.4), one sees that

X --.J dx' = Xi.

(11.29)

(11.30)

(11.31)

(11.32)

(11.33)

(11.34)
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The calculation of X -.J ~ may be extended to p-forms ~, p> 1, by use of
the result (11.31) to show that

X -.J dx': /\ ... /\ dx'»

= XiI dx i2 /\ •• , /\ dx» _ X i 2 dx'' /\ dx'' /\ ' .. /\ dx'»

+ . , , + (_1)1-1 Xi, dx>»; . . . /\ dx'':> /\ dx'' r; . . '/\ dx'»

+ ... + (-I)P-l x» dx': /\ .. '/\ dx'r :',

Example 11.3 Let

~ = ~ldxl + ~2dx2 + ~3dx3

and

'7 = Al dx" /\ dx" + A2 dx" /\ dx' + A 3 dx' /\ dx".

If X = Xi a/axi
, then

X -.J ~ = X -.J (~I dx l + ~2dx2 + ~3dx3)

= ~I(X -.J dx l) + ~2(X -.J dx2) + ~3(X -.J dx3)

= ~IXI + ~2X2 + ~3X3

and

X -.J '7 = (A 2X 3 - A 3X 2) dx l + (A 3X I
- A 1X 3) dx 2

+ (A IX
2

- A2X
I ) dx 3

.

Combination of these results shows that

y -.J (X -.J '7) = (A 2X 3 - A 3X b)y l + (A 3X I - A I X 3)y 2

+ (A IX
2 - A 2X

I )y 3,

and hence, .

Y -.J (X -.J '7) = '7(X, Y). •

11.6 THE LIE DERIVATIVE OE DIFFERENTIAL FORMS

The operators d and -.J may be used to define an operator called the Lie
derivative of a differential form with respect to a vector field. Thus, if X is
a vector field on IRn and ~ is a p-form, the Lie derivative Lx~ of ~ with respect
to X is defined as the p-form given by

X(~) = Lx~ := X -.J d~ + d(X -.J ~),t (11.35)

t In general, the notation X(~) for the Lie derivative proves more convenient in the sequel
than the more usual Lx~.
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It is readily shown that

Lxf= <X, df), f E FO(1R1
),

Lx(~ 1\ 11) = Lx(~) 1\ 11 + ~ 1\ L x(11 ),

Lx(d~) = d(Lx~).
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(11.36)

(11.37)

(11.38)

(II.39)

The coordinate expression for Lx~ may be deduced from (11.36) and (11.37)
in terms of the I-forms Lx(dxi

) given by, if X = Xi %xi,

o • a 0 0 a 0

Lx(dx') = (Xl ax) -J d(dx') + dtX! oxi -J dx'J

. oxi .
= d(X') = -. dx/.

oxl

(11.40)

and the coordinate expression for Lx~ with ~ an arbitrary p-form may now
be deduced from this result and (11.37).

Example II.4 If

then

o of 1 2 [oX
1

. 2 oX
2

1 oJ
Lx~ = X' oxi dx 1\ dx + f oxi dx' 1\ dx + oxi dx 1\ dx' . •
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Differential Forms on Jet Bundles

III. I PRELIMINARIES

At this juncture, we list certain facts about differential forms onjet bundles
which prove useful for later calculations. In particular, we introduce a basis
better adapted to calculations involving pull-backs of forms on Jk(M, N)
to forms on M by k-jet extensions than is the basis dx", dz", ... , d=1

1
... ak'

If ~ is any l-form on Jk(M, N), then it follows from (11.25), together with
the definitions of nZ + 1 and ll, that

(111.1 )

so that the pull-back of ~ by /f is the same as the pull-back of nZ + 1 *~ by
r».

In view of the fact that the l-forrns nZ + 1*dz1
1

••• ak are given by

where 81
1

••• ak are the contact forms introduced in Section 2.2, it follows
that the l-form nZ+ 1*~ may be expressed in the form

nZ + U ~ = ~a dx" - ~, (111.2)
286
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where ~ E Qk+1 (M, N) and ~a are functions on Jk+l(M, N). Thus, once ~

has been pulled up to r : l(M, N) it may be expressed in terms ofthe I-forms
dx" and I-forms in the contact module. Moreover,

/+If*nZ+1*~ = /+If*(~adxa) + /+If*~ = «(ao/+lf)dxa,

so that from (III.1),

/f*( = «(a0/+1f) dx". (III.3)

Hence, in view of (III.2), it follows that for any l-form on Jk(M, N) there
are functions (a on r: l(M, N) such that

mod Qk+ l(M, N).

Use of (III.2) and the fact that

D~k+ 1) -.J e = 0, . ve E Qk+1(M, N),

shows that

(nZ+ l*~)(D~k+ 1» = D~k+ 1) -.J (nZ+ 1*~) = (aD~k+ 1) -.J dx",

whence, the functions (a may be expressed in terms of the total derivative
operator Dlf'+ 1) according to

(IlIA)

Example 111.1 IfM = 1R2
, N = IR, and (is the l-form on J1(M, N) given by

(= fa dxa + fe + rdza,

where fa, f, and fa are smooth functions, then

ni* ( == (fa + fb zba) dx" mod Q2(M, N).

On the other hand,

(ni*~)(D~2)) = D~2) -.J ni*(

= (i3~b + 'Zb :z + Zbc i3~J -.J (fa dx' + te + I" dza)

=h+ rZbc' •
Let J(QZ(M, N)) denote the exterior ideal generated by QZ(M,N). Thus

J(QZ(M,N)):={L~/\(fJl( is any p-form p=O,l, ... ,cjJEQJ(M,N)}. It
is a simple matter now to show that if ~ is any p-form on Jk(M, N), then there
are functions (a, ... ap on Jk+l(M, N) such that

nZ+ 1*( = L (at" 'apdxa,/\ .. '/\dxap +~, (III.5)
1 :5al < ... <ap::S;m
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where ~ is in f(Qk+ 1(M, N)). Again, the funct~ons ~a, ... a
p

may be expressed
in terms ofthe total derivative operators, for if ~ is a p-form in f(Qk+ 1 (M, N)),
it follows that

J'(D(k+ 1) ... D(k+ 1») = D(k+ 1) -.J D(k+ 1) ••• D(k+ 1) -.J J' = 0
~ at ' , Q p Q p Q p - 1 at ~ ,

whence

;:: _ ( k+ 1*;::)(D(k+ 1) D(k+ 1»)
Sal' .. Q p - nk S at ' ... , Q p • (111.6)

Example 111.2 If M = 1R 2
, N = IR, and ~ is the 2-form on J1(M, N) given by

~ = dZ1 /\ dx? + dZ2 /\ dx' - f(z)dx 1 /\ dx",

then

ni*~(D\2), D~2») = D~2) -.J D\2) -.J (dz 1/\ dx 2 + dZ2 /\ dx' - f(z) dx' /\ dx 2)

= D~2) -.J (Zl1dx2 + Z12dx1 - dZ2 - f(z)dx 2)

= Z 11 - Z22 - f(z),

so that

ni*~ == (Zl1 - Z22 - f(z)) dx' /\ dx 2 •
Finally, there are two cases of particular interest for the discussion of

conservation laws, namely, the cases p = m and p = m - 1. In this connec-
tion, if ~ is an m-form on Jk(M, N), then we may write nt + 1*~ in terms of the
volume m-form won M and the ideal generated by Qk+1(M, N).t Thus, in this
case, there is a single function ~ on Jk+ 1(M, N) such that

mod f(Qk+ 1(M, N)), (III.7)

and

r = ~k+1*;::(D(k+l) D(k+1) D(k+1»)
J~ " .. 1 ,2 , ... , m •

If ~ is an (m - Ij-form, then

nt+ 1*~ == ~awa (III.8)

m.z EXTERIOR DIFFERENTIAL SYSTEMS ON JET BUNDLES

Let ~ = {a;.} be a collection of differential forms on Jk(M, N), k ;;::: O. Such
a collection is referred to as an exterior differential system. A solution of this
system is a map .r E COCJ(M, N) which satisfies

If*a;. = 0 Va;. E~. (111.9)

t The volume m-form w on M is given in local coordinates by w = dx' /\ dx? /\ ... /\ dx'".
I The (m - I)-forms w. are defined by w. := D~l) --.J a*w.
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Iff is a solution of E, then the image of/'f is a submanifold of Jk (M, N) on
which the differential forms a" all vanish. For this reason, im/f is called a
solution submanifold for L; it provides a solution to the system of exterior
differential equations

a" = O.

It follows from the properties of the pull-back map that if f is a solution of
L, then

/f*(~ /\a) = 0

for any differential form ~ and any a E L. Thus if we define .Jf(L) as the
exterior ideal generated by L, that is, f (L) := {Li~i /\ a I~i is any p-form,
a E L; P = 0,1, ... , dimJk(M,N)}, then f is also a solution of .Jf(L). Con-
versely, since L c .Jf(L) it follows that every solution of .Jf(L) is a solution of
L. Thus, we may regard the exterior systems Land .Jf(L) as equivalent, since
f is a solution of E ifff is a solution of .Jf(L). The exterior system L is said to
be closed if, for every a E L, do E .Jf(L). In this case, .Jf(L)is called a differential
ideal.

If L is an exterior system and X is a vector field which satisfies

X -.J a = 0, X -.J do E L

Va E L, then X is called a characteristic vector field for L. The collection of
all characteristic vector fields for L is denoted by Char(L). We note that if
L is closed, since X -.J a = 0 Va E L it follows that X -.J do E L.

II1.3 THE SYSTEM OF DIFFERENTIAL EQUATIONS ASSOCIATED
WITH AN EXTERIOR DIFFERENTIAL SYSTEM

We conclude this appendix with a simple construction that associates with
any exterior differential system on Jk(M, N) a system of differential equations
with the same solutions.

Let L = {a,,} and define the set of functions Fat' .. ap " by

Fat' .a
p

" : = {(n~+ l*.a,,)(D~~+ I), ... , D~ + I») Ip = deg a,,}. (111.10)

The submanifold Rk+ I ofr :I(M, N), determined by the constraint equations

(III.! 1)

is defined as the system ofdifferential equations associated with L.
That (111.11) has the same solutions as L may readily be seen. Thus, if a is

any p-form in L, it follows from (III.5) and (III.6) that

(n~+ 1 *a)(D~~+ I), ... , D~~+ 1)) dx" /\ ... /\ dx'»
Ul<"'<Up

(111.12)
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and if f is a solution of the associated system equations, then

i" If*{(n~+ I*o-)(D~~+ I), ••• ,D~:+ I»} = O.

However, by (III.12), it is seen that (III.13) holds iff

and thus, iff

APPENDIX III

(III.13)

If*o- = O.

Consequently, f is a solution of L iff it is a solution of Rk+ I.

Example 111.3 Let M = ~2 and N = R If L is the exterior system on
JI(M, N) generated by

0-1 = dz /\dx l + dZI /\dx 2
- 2zz 1 dx' s dx",

0-2 = dz /\ dx 2 - ZI dx' /\ dx",

then L is associated with the Burgers' equation

Z2 + 2zz I - Z11 = O.

Thus, since D~2) = (1 joxa + z; Cjez + zab e jUZb' we see that

(nr*o- d(D\2), D~2» = D~2) -.J (z1 dx' - dz + z 11 dx? - 2zz I dx 2)

= -Z2 + ZII - 2zz l ·

On the other hand, since 0-2 = () /\ dx", this 2-form has the vacuous asso-
ciated equation 0 = o. •

IlIA AN EXTERIOR DIFFERENTIAL SYSTEM OF m-FORMS ON
J"(M,N) ASSOCIATED WITH A QUASI-LINEAR EQUATION ON
JH1(M,N).

If Rk+ I is any quasi-linear system of equations on r :I(M, N), then one
may construct an exterior differential system of m-forms on Jk(M, N) which
has Rk+ I as its associated equation (Pirani et at. [48]). We describe the con-
struction for the case in which R'""I is given by a single constraint equation
F = 0; the extension to systems is straightforward.

Since Rk+ 1 is quasi-linear,

F = FA" --ak+ 'Z:, ...au 1 + G, (111.14)

where FA"" ak +' and G are functions independent of Z:I'" ak + " A map
f E CorM, N) is a solution of Rk +I iffl+ 'r:F = 0 and thus iff

r: If*(Fw) = 0, (III.15)
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since
f+lf*(Fw) = (jk+lf*F)f+lf*(w) = (jk+lf*F)w.

It follows from (III.l4) that

r: If*(Fw) = r: If*(F~' ... ak +' dz:, ... au, + Gw),

and from the definition of Wa in Section III.2 that
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(III.l6)

Fa' '' ' ak+' A -Fa""ak+'(d~A _oA )
A ZUl"'ak+lW- A -"at···akI\.Wak+t Ul"'Qk/\WUk+ 1'

Combination of (III.16) and (III.17) shows that

i" If*(Fw) = i" If*(F~' ... akb dz:, .. , ak /\ Wb+ Gw),

and since F~' ... akb and G are functions on Jk(M, N), it follows that

i" If*(Fw) = rro»: akb dz:, ... ak /\ Wb + Gw)

where Wb are the (m - 1)-forms defined in Section II!. I.
If we now define the m-form a by

'- Fa,·· 'akbd A + Ga . - A za, .. -ak /\ Wb W,

(III.l7)

(III.18)

then f is a solution of the equation Rk + 1 iff

ff*a = O. (III.l9)

Let ~k be the exterior differential system generated by the contact m-forms
{OA /\ wa, ... , 0:, ...a(k _I) /\ wa} together with the m-form a. It. is readily
verified that if s E C'1J(M,Jk(M, N)) is such that IX 0 s = idM , then

s*1J = 0 V1J E ~k iff s = ff,

where f = f3 0 s is a solution of Rk+ 1. Thus, the solutions of the exterior
differential system ~k are in one-to-one correspondence with the solutions of
the equation Rk+1. We may therefore consider ~k and Rk+ 1 as entirely equiv-
alent. There are many instances for which it is natural and very convenient
to make this identification. Thus, for example, there is a simple geometric
interpretation of conservation laws and symmetries in this context and be-
cause of the reduction in the number of variables in passing from r: 1(M, N)
to Jk(M, N), it is frequently easier to compute the symmetries of ~k than it is
to compute those of Rk+ 1 directly.

Note that we may pull back the exterior system ~k to an exterior system
nZ+ U~k on Jk+ l(M, N) and that nZ+ l*~k is generated by Q~:/ and Fw.
Thus nZ+ l*~k is contained in the ideal generated by the l-forrns in Qk+ 1

and by the m-form Fw. Finally, it is immediate from this observation and the
fact that D~+ 1 ..J 0 = 0 for 0 E Qk+ 1(M, N) that the equation associated with
~k is just F = O.
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The Derivation of the Equations
That Define Bk+ 1.1(",)

Equations (2.45) and (2.46), which define Bk+ 1,1(l/J), may be obtained by
imitating the procedure described in Appendix III.3 to associate with an
exterior system L on Jk(M, N) x JO(M,N') a submanifold of r: I(M, N) x

M M
JI(M, N'). All that is required is that the total derivatives D~+ I be replaced
by the vector fields D~+I,I. Thus, if E is an exterior differential system on
Jk(M, N) x JO(M, N') and {a,l} are its generators, we associate with L the

M

submanifold S of r : I(M, N) x JO(M, N'), defined as the zero set of the
M

functions

{(nH 1,1*a,l)(D~: 1,1, ... ,D~: 1,1); p = degree of aJ. (IV.!)

It is readily verified that iff andg are twomapsf E COCJ(M,N), g E COCJ(M, N'),
then the map If x l g is a solution of L iff the image of the map l + If X jIg

M M
lies in S.

The foregoing procedure is now applied to the exterior system L", asso-
ciated with a Backlund map l/J;Jk(M, N) x JO(M, N') -dl(M, N'). The

M

generators of L", are the l-forms {l/J*e'll} and the 2-forms {l/J* de'Il}, where

292
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{lJ'fJ} is a basis for the contact module QI(M, N'). Since l/J*lJ'fJ = dy" - l/J~ dxb

and l/J* dlJ'fJ = d(l/J*lJ'/l), it follows that the submanifold BH 1.1(l/J) associated
with 'L", is the zero set of the functions

(nk+l,l*(dyfJ -l/J~dXb))(D~+1,1) (lV.2)

and

(nH 1,1*(dxC
/\ dl/J~))(D~+ 1,1, D:+ 1,1).

From the definition of D~+ 1,1, we see that these functions are just

y~ -l/J~

and

(IV.3)

(IVA)

(IY.5)

respectively. Thus, the submanifold BH 1,1(l/J) is determined by the equations

y~ = l/J~, (IV.6)
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Symmetries of Differential
Equations and Exterior Systems

The topic of symmetries of differential equations and exterior differential
systems is introduced in a jet-bundle context. We do not attempt to describe
the most general setting for the discussion of symmetries. Thus, in the case
of differential equations we confine ourselves to consideration of extended
point transformations since these are sufficient for our purposes. On the
other hand, it was noted in Chapter 3 that the reciprocal relations in gas-
dynamics and magnetogasdynamics may be treated as generalized sym-
metries of a natural exterior. differential system. Correspondingly, we
consider symmetries of exterior differential systems on JO(M,N), which are
more general than point transformations, namely, those which arise as
diffeomorphisms of JO(M,N).

V.I POINT TRANSFORMATIONS

A map </J: IRk --+ IRk that is COO and that has a COO inverse is called a diffeo-
morphismof IRk. If </J and <I> are diffeomorphisms of M and JO(M,N) = M x N,
respectively, and we have a commutative diagram (Fig. V.1), then <I> is said

294
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JO (M, N) <I> ~ JO (M, N) JO(M, N) <I> • JO(M, N) ~ .N

41
1
4

jOfI Jf
/

/
//f<l>

/
/

/
M

<I>
~ M M ...

~ -1
M

Fig. V.I Fig. V.2

to be compatible with ¢ and (<1>, ¢) is said to be a point transformation of
JO(M, N). If ¢ is given in coordinates by

(V.I)

then <1> is given by

(V.2)

for some functions <1> A .

Iff is any map in eX"(M, N) and (<1>, ¢) is a point transformation, we may
combine f and (<1>, ¢) to construct a new map f',p E eX'(M, N) defined by

f(J>:={3o<1>o/fc¢-I, (V.3)

as shown in Fig. V.2. If ('P, 1/1) is another point transformation, then use of
(V.3) shows that

(VA)

and, in particular,
(V.5)

for any f E CalM, N).
Any point transformation (<1>, ¢) may be extended to a diffeomorphism

pl<1> of Jl(M, N) that is uniquely determined by the requirement that

pl<1> 0 H o ¢-l = H(J> (V.6)

for every f E C"(M, N). It f9110ws from (V.5)and (V.6) that

pl(<1>-I) = (pl<1»-I, (V.7)

and it is readily deduced that pl<1> preserves the contact module Ql(M, N),
that is,

(pl<1»*Ql(M, N) = Ql(M, N).

In terms of coordinates, the diffeomorphism pl<1> may be given by

(V.8)

x/a = ¢a(x),

j=l, ... ,l-l,
(V.9)
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and
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(V.10)

Suppose now that {(<I>I , <PI)} is a I-parameter group of point transforma-
tions, that is, for each t E ~, (<1>1, <PI) is a point transformation such that

(V.1l)

and <1>0 = idM x N , <Po = idM. These conditions imply that

(V.12)

so that (<I> -I' <P -I) is the point transformation inverse to (<1>1' <PI)'

Example V.I Let M = ~l, N =~, and let (<1>1' <PI) be the l-parameter
group of point transformations given by

<1>1: (x", Xl, z) --+ (elxl, e-Ixl, z),

<PI: (x ', Xl) --+ (e'x", e-Ixl),

that is, by
z' = z, a = 1,2.

The coordinate version of the first prolongation of (<1>1' <PI) is determined
by the single set of equations

or

Hence

so that pl<1>l is given by

pl<l>I:(XI, Xl, z, Zl>Zl) --+ (e'x", e-Ixl, Z, e-IZl' elzl). •

If (<I>, <p) and (<1>', <p) are point transformations, we may construct a diffeo-
morphism pk.I(<I> x <1>') of Jk(M, N) x JI(M, N') given by

M

l·l(<I> x <1>') := pk<l> x pl<l>', (V.13)

and it is readily verified that pk.I(<I> x <1>') has the property

pk.I(<I> x <I>')*Ok.1 = Ok.l. (V.14)

Note that the definition (V.13) applies more generally to I-parameter
groups of point transformations (<1>1' <PI), (<1>;, <PI) with

pk.I(<I>1 x <1>;):= pk<l>l x p'<l>;. (V.l5)
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V.2 SYMMETRIES
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If R k is a system of differential equations, a point transformation (<1>, <p) is
said to be a symmetry of R k whenever the condition

(V.16)

is satisfied. This formulation of symmetry in purely geometric terms is thus
made without any specific reference to the space of solutions of R k

• However,
that a symmetry (<1>, <p) does indeed send solutions to solutions may be shown
as follows:

Let f E COO(M, N) be a solution of Rk and suppose that the condition (V.16)
holds. Then since im(/f) c R\ it follows that

im(pk<1> -rr 0 <p -1) C pk<1>(Rk) c R\ (V.17)

whence

(V.18)

so that fll> is another solution of Rk
•

If {(<1>t, <Pt)} is a I-parameter group of point transformations, it is said to
be a I-parameter group of symmetries of Rk whenever

l<1>tRk = Rk. (V.19)

The fact that for each t, (<1>0 <Pt) is a point transformation implies that if f
is a solution of R\ then fll>, is a l-parameter family of solutions.

Example V.2 A straightforward calculation shows that the second pro-
longation of the group of point transformations of Example V.I is given by

pl<1>t :(xt, Xl, z,z1, Zz, Z11' Z11,Zll) --+

(e'x", e-txl, z, e-tz 1, etZz, e- ltz11, Z11,eZtzll)'

It follows, in particular, that every point q E J2(M,N) for which Z12 = sin z
is mapped under pl<1>t to a point q' with Z'12 = sin z'. Thus {(<1>t, <Pt)} is a
l-parameter group of symmetries of the sine-Gordon equation. •

Symmetries of exterior differential systems may be defined in a manner
similar to symmetries of Rk (see, for example, Shadwick [407]). For our
purposes it is sufficient to deal with exterior systems L defined on JO(M, N)
while broadening somewhat the allowable types of transformations. Thus,
it is sometimes convenient to consider arbitrary diffeomorphisms of JO(M, N)
rather than restrict attention to point transformations. In the general case,
a diffeomorphism <1>: JO(M, N) --+ JO(M, N) is given in coordinates by

x'a = <pa(xb, ZB), Z'A = <1>A(Xb, ZB) (V.20)
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[cf (V.2) for the corresponding equations for a point transformation]. One
consequence of this generality is that there is no natural way to construct
out of <l> and a map f E COO(M, N) another map in COO(M, N) without the
imposition of additional conditions. Thus if f E COO(M, N), then <l> may be
composed with f to obtain a map <l> 0 f:M -+ JO(M,N), but it will not
necessarily happen that <l> 0 f = 19 for any g E COO(M, N).

If<I> is a diffeomorphism of JO(M,N) and <jJ*'J:. = 'J:., then <l> will be referred
to as a generalized symmetry of 'J:.. In order that <I> take solutions of 'J:. to
solutions of 'J:., it is required that whenever f is a solution of L, the map
<l> 0 If have the form 19 0 <jJ for some g E COO(M, N) and some diffeomor-
phism <jJ: M -+ M. Thus, if this is the case,

and

(<I> 0 If 0 <jJ - 1)*L = 0, (V.2I)

(V.22)

so that g is another solution of L. This situation will occur if it is required
that the map <jJ := ex 0 <I> 0 If be a diffeomorphism of M or, equivalently,
that the l-forms <jJ* dx" be linearly independent. In this case, the map
<l> 0 If 0 <jJ -1 is the graph of a map from M to N, that is, (V.22) holds for
some g E COO(M, N).

As an illustration of various aspects ofthe above discussion, the interested
reader is referred to Section 3.4 on reciprocal relations in magnetogas-
dynamics.
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Composition of Symmetries
and Backlund Maps

Here we show that if lfi is the map constrocted in Section 2.7 from a
symmetry and a Backlund map t/J for Rk+ 1, then lfi is also a Backlund map
for Rk+ 1. T<;> do this, it suffices to show that the constraint equations de-
scribing Bk+ 1,1 (lfi) are satisfied on Rk+ 1.

Let Lt,ij be the exterior system associated with lfi. Then Lt,ii is generated by
lfi*f}'1l and lfi*df}'Il. Moreover, from the definition of lfi and (11.25), we have

lfi* = pk,O(<1> X <1>')* 0 t/J* 0 p1<1>'* -1, (VI.1)

and since p1<1>'*{f}'Il} = {f}'Il}, it follows that Lt,ii is generated by

{pk,O(<1> X <1>')* 0 t/J*f}'Il} and {pk,O(<1> x <1>')* 0 t/J* df}'Il}.

Thus the equations associated with Lt,ii are determined by the functions

(nk+1,1*pk.O(<I> x <1>')* 0 t/J*f}'Il)(D~+ 1.1) (VI.2)

and

(nk+1,1* 0 pk,O(<1> x <1>')* 0 t/J* df}'Il)(D~+ 1,1, D~+ 1.1). (VI.3)
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The zero set of(VI.2) isjust im(~) and thus BH 1.1(~) ::J Rk + 1 X im ~ provided
RH

1 is contained in the zero set of (VI.3).
Since, on t/J*de'll,

nk+1,1*pk.O(<I> X <1>')* = pk+1.1(<1> X <1>')*,

(VI.3) may be written as

(pk+1.1(<I> x <1>')* 0 t/J*(de'Il»)(D~+1.1,D~-i-1.1).

Moreover, it follows from the definition ofOk + 1.1 that

(VIA)

(VI.5)

t/J*de'll == [D~+1,1t/J~ - D~+l.lt/J~Jdxa /\dxb

so that since pH 1,1<1> X <1>' preserves ..?(Ok+ 1.1),

mod ..?(Ok + 1,1), (VI.6)

But

(pk+1.1(<1> X <1>')* 0 t/J*(de'Il»

== pH 1.1(<1> x <I>')*[D~+I.It/J~ - D~+1.1t/J~J

x pk+1.1(<1> X <I>')*(dxa/\ dxb) mod Jf(Ok+1,1). (VI.7)

(VI.8)

and thus,

pk+1.1(<I> x <I>')*(t/J*de'Il)(D~+1,1,D:+l.1)

== pk+1:1(<1> x <1>') [D k+1.1,I,1l _ Dk+1,1,I,Il] [o¢a O¢b _ O¢a O¢bJ
a v» b 'I'a OXC OXe OXe OXC

mod Jf(Ok+1.1). (VI.9)

Since ¢ is invertible,

so that the zero set of the functions (VI.5) is just the zero set of the functions

pk+1.1(<1> x <I>')*(D~+ 1.1t/J~ - D~+ 1,1t/J~)

= [D~+l,lt/J~ - D~+1,1t/J~] 0 pk+l.1(<I> x <1>'). (VI.10)
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But <I> is a symmetry of R k + 1; whence if q E Rk + 1, it follows that

q= pk+ 1,1(<1> x <I>')(q)

is such that

301

Thus, Rk + 1 is contained in the zero set of the functions (VI.lO), and we
conclude that ~ is indeed a Backlund map for Rk + 1.
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