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Preface

Boris Yakovlevich Levin was born on December 22, 1906 in Odessa, the beau-
tiful port city on the Black Sea, one of the main trade and cultural centers in the
South of the Russian Empire. “I am an Odessit by social origin and nationality?,”
he used to joke. His father was a clerk for a Black Sea steamer company, whose
work often took him to various beach ports on long-term missions. B. Ya. (as he
was called by his colleagues and friends, rather than more formal Boris Yakovle-
vich) spent his youth moving with his family from one port town to another. He
kept his devotion to the sea all his life, was an excellent swimmer and longed for
the Black Sea, while living far from it in Kharkov.

Being of nonproletarian social origin, B. Ya. had no right to higher education
in post-revolutionary Russia after graduating from secondary school. For some
time he worked as an insurance agent and newspaper dispatcher, and as a welder
during the construction of oil pipe-lines in the North Caucasus. This gave him
the right to enlist as a univerisity student, and in 1928 he started his first year
at the Department of Physics and Engineering of Rostov University, Russia. He
and his friend decided, before concentrating on physics, to widen and improve their
knowledge of mathematics. It was the choice of destiny: once entering mathe-
matics they never parted with it. Both became famous experts: Boris Levin in
analysis and Nikolai Efimov in geometry. To a great extent they were influenced
by Dmitrii Mordukhai-Boltovskoi, an interesting and original mathematician with
wide interests who worked at the Rostov University at that time.

While a second year student B. Ya. obtained his first mathematical result when
he solved a problem proposed by Mordukhai-Boltovskoi. He investigated the func-
tional equation

q)(ax—f-ﬂ

242 = Rlaja(),

where R(z) is a given rational function. This equation generalizes the functional
equation I'(z + 1) = zI'(z) of the Euler I'-function. B. Ya. proved that, apart
from some exceptions, all solutions to this equation are hypertranscendental, just
as I'(z). All exceptional cases were explicitly described by him. This theorem
generalizes the famous Hélder theorem.

In 1932 B. Ya. graduated from the university, and for the next three years
worked on his dissertation and taught mathematics at a technical institute in Ros-
tov. His close personal and scientific friendship with Naum Akhiezer (Kharkov) and

14Gocial origin” (or “class origin”) and “nationality” were obligatory questions in all ap-
plication forms in the Soviet Union. Unlike in other countries, the notions “nationality” and
“citizenship” had different meanings there.

xi



xii PREFACE

Mark Krein (Odessa) started at that time.? In 1936 B. Ya. submitted his Candidate
of Science dissertation “On the growth of an entire function along a ray, and the
distribution of its zeros with respect to their arguments” to Kharkov University,
but was awarded with the highest degree of Doctor in Mathematics, which was
an extremely rare event. In this dissertation B. Ya. founded the general theory of
entire functions of completely regular growth, whose creation he shared with Albert
Pfluger.

In 1935 B. Ya. moved to Odessa and began teaching mathematics at the Odessa
Institute of Marine Engineering. In due time he got a Chair of Mathematics of this
institute. Parallel to his teaching B. Ya. spent a lot of time and effort in advising
his colleagues who worked on hydrodynamical problems of ships and mechanics of
construction. In his later years he would say that teaching and communicating
with engineers in a serious technical university is an important experience for a
mathematician.

Starting from the middle 1930s a new school of functional analysis has been
forming around Mark Krein in Odessa, and B. Ya., as he later used to say, ex-
perienced its strenghtening influence. He became interested in almost periodic
functions, quasianalytic classes and related problems of completeness and approx-
imation, algebraic problems of the theory of entire functions, and Sturm-Liouville
operators. These remained the main fields of interest during his life.

In Odessa, the first students of B. Ya. have started their own research. Moshe
Livshits and Vladimir Potapov, who became well-known specialists in functional
analysis, were in equal measure students of Mark Krein and Boris Levin. To-
day, the family tree of B. Ya.’s mathematical children, grandchildren, and great-
grandchildren contains more than a hundred mathematicians.

During World War II, B. Ya. worked with his institute in Samarkand (Uzbek-
istan). His attempts to join active military service failed, since Full Professors were
exempt from the draft. After the war B. Ya. returned to Odessa. At that time
a destruction of mathematics at Odessa University began. Mark Krein and his
colleagues were not permitted to return to work at the university, and very soon
an anti-semitic campaign waged against Mark Krein and B. Ya. forced the latter to
leave Odessa. On invitation of Naum Akhiezer in 1949, B. Ya. moved to Kharkov.
During several decades after the end of World War II, some other mathematicians
moved from Odessa to Kharkov: Izrail Glazman, Mikhail Dolberg, Moshe Livshits,
Vladimir Potapov. However, B. Ya. has kept close ties with Odessa, Mark Krein,
and the mathematicians of Krein’s circle for the whole life.

Despite all difficulties, the period from late forties to late sixties was the time
of blossoming of the Kharkov mathematical school. At that time Naum Akhiezer,
Boris Levin, Vladimir Marchenko, Aleksandr Povzner, and Aleksei Pogorelov
worked in Kharkov, and their impact determined the image of Kharkov mathe-
matics for many years.

From 1949, B. Ya. worked at Kharkov University. In addition to undergrad-
uate courses of calculus, theory of functions of a complex variable and functional
analysis, he taught advanced courses on entire functions, quasianalytic classes, al-
most periodic functions, harmonic analysis and approximation theory, and Banach
algebras. The lectures were distinguished by their originality, depth and elegance.

?Reminiscences of Mark Krein, written by B. Ya., were published in the Ukrainian Mathe-
matical Journal, 46, no. 3, 1994.
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B. Ya. used to include his own, yet-unpublished results as well as new original
proofs of known theorems. He attracted a very wide audience of students of various
levels and also research mathematicians. This book emerged from notes of one of
such courses and it is a great pity that notes of other courses are not available.

In 1956 he published his monograph “Distribution of zeros of entire functions”,
which greatly influenced several generations of analysts. It was translated into
German and English and revised in 1980. Even now the book is the main source
on the subject.

During the same year B. Ya. started his Thursday seminar at Kharkov Univer-
sity. For about 40 years it has been a school for Kharkoy mathematicians working
in analysis and has been a center of active mathematical research. The major
part of seminar talks concerned complex analysis and its applications. Neverthe-
less, there was no restriction on the subject: there were talks on Banach spaces,
spectral theory of operators, differential and integral equations, and probability
theory. A meeting of the seminar usually lasted more than two hours, with a short
break. In most cases detailed proofs were presented. Its active participants in-
cluded Vladimir Azarin, Aleksandr Eremenko, Sergei Favorov, Aleksandr Fryntov,
Anatolii Grishin, Vladimir P. Gurarii, Illich Hachatryan, Mikhail Kadets, Victor
Katsnelson, Vladimir Logvinenko, Yurii Lyubich, Vladimir Matsaev, lossif Ostro-
vskii, Igor’ Ovcharenko, Victor Petrenko, Lev Ronkin, and many others. B. Ya.
has always been proud and delighted with achievements of the participants of his
Seminar.

In 1969, without interrupting his teaching at the university, B. Ya. organized
and headed the Department of the Theory of Functions at the Institute for Low
Temperature Physics and Engineering of the Academy of Sciences of Ukraine, where
he gathered a group of his former students and young colleagues. He worked there
to the last days of his life. A well-known western mathematician working in complex
analysis once said: “It is a typical Soviet habit to make secrets from everything;
evidently, “Low Temperature Physics” is just a code for function theory.”

The name of the founder and first director of the institute Boris Verkin must
be mentioned here. A specialist in experimental physics, he held mathematics in
high esteem and gave a lot of support to its progress. “Mathematicians ennoble the
institute,” Verkin used to say. Due to his initiative, Naum Akhiezer, Izrail Glazman,
Vladimir Marchenko, Anatolii Myshkis, Aleksei Pogorelov joined the institute in the
early sixties and very soon the Mathematical Division of the institute became one
of the leading mathematical centers in the former Soviet Union, with the wonderful
creative athmospere.

It is not our intention to give here a detailed description of mathematical ac-
tivities of B. Ya. We only mention that he knew how to find unexpectedly simple
ways leading to a solution of a problem which from the beginning seemed to be
extremely complicated. After his talks and works one would be puzzled why other
mathematicians who attacked the same problem did not have the same insight?
The participants of his seminar remember that sometimes after somebody’s “hard”
talk B. Ya. proposed his simple and elegant solution. At the same time B. Ya.
mastered the fine analytic techniques, which he successfully used if required.

The main part of results obtained by B. Ya. are related to the theory of entire
functions. Being interested in the central problems of this theory, he found new
and important connections with other domains of analysis. His results helped to
transfer applications of the theory of entire functions to functional analysis and the
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spectral theory of differential operators to a deeper level. Often B. Ya. expressed
the viewpoint that the theory of entire functions remains of importance due to its
numerous applications.

Boris Levin lived a long life, full of mathematical quest and discoveries. He
experienced many difficult periods, but despite all strokes of fate remained faithful
to his highest moral principles which he defended openly and selflessly. He did
not have, and did not try to seek favours from officialdom. Until mid-80s he was
not allowed to travel abroad and had very scarce possibilities to contact foreign
colleagues. In Kharkov he lived in a small and wet ground-floor appartment. Nev-
ertheless, very often B. Ya. would invite his colleagues and students to his home.
Several hours would be devoted to mathematics. Then supper time would arrive,
and his wife Liya, a woman of great charm, kindness, and benevolence, joined the
guests. After traditional strong tea which B. Ya. always made himself, there was
the time for discussing politics and politicians, for storytelling and poetry, in which
B. Ya. was the expert and connoisseur.

Outstanding mathematician, brilliant lecturer and storyteller, witty compan-
ion, B. Ya. radiated some kind of energy that attracted to him even people who
were very far from mathematics. He was a person of the highest quality to the
many people who knew him.

For many years B. Ya. has planned a book based on his lecture course at the
Moscow University in 1969. It was intended for a reader interested in applications
of the theory of entire functions.

During the last two years of his life, we worked with B. Ya. on preparation of
this book. The material of the lectures was shaped, extended, and augmented with
a bibliography. Initially, B. Ya. planned to include some important applications
of the theory of entire functions to the spectral theory of operators, discovered in
various directions by Louis de Branges and Vladimir Matsaev, but this task was
never completed.

B. Ya. hoped to see his book published both in Russian and English and worked
on the manuscript until the last days of his life. He died on August 24, 1993. His
daughter Natalya and wife Liya had preceded him, passing away in 1980 and 1992.
He is survived by his son Mikhail and two grandchildren.

David Drasin carefully read the entire manuscript and made many corrections
and suggestions related both to mathematics and English. Gundorph Kristiansen
called our attention to some misprints. We are very grateful to them for that.

Yurii Lyubarskii, Mikhail Sodin, Vadim Tkachenko



Introduction

This monograph originated from a lecture course which I gave at the Moscow
University in 1969. The lectures were printed by the University in an edition of 500
copies.

The title of the monograph remains the same, but it is not a second edition,
since the main part of lectures has been written anew, some new material has been
added, and some old topics have been extended resulting in a substantial increase
of the entire volume.

The theory of entire functions has a multitude of applications in calculus and
functional analysis. I made it my goal to present the main facts of the theory of
entire functions from that point of view and tried, as much as possible, to develop
a connection between applications and the general theory. I hope that such an
exposition will help in mastering the methods of the theory of entire functions.
Many sections of this monograph contain problems with applications related to
these topics. Their solution is not necessary to comprehend subsequent parts, but
may be of some use. No special knowledge is required to read this book, except a
conventional university course on the theory of functions of a complex variable.

Yu. Lyubarskii, M. Sodin, and V. Tkachenko helped me very much in writing
the monograph; it would not have been written without their support.

I. Ostrovskii read the whole manuscript and made several remarks, which were
taken into account in the final text. A. Eremenko made several useful remarks to
Part I. T would like to express my deep gratitude to these colleagues.

This monograph was written with a partial support by a grant from the Amer-
ican Mathematical Society, which is highly appreciated.

B. Levin

XV



Part 1. Entire Functions of Finite Order

A function f(2) analytic in the whole complex plane, i.e., a function represented
by a power series of the form

f(z) = chz" ) linolo Yen| =0,
n=0

is called an entire function. This is the simplest class of analytic functions con-
taining all polynomials. Polynomials are classified according to their degree, i.e.,
according to their growth as |z| — co. An entire function can grow in various ways
along different directions. For a general characterization of the growth, the function

Mj(r) = max|f(z)|

|z|=r

is introduced. It follows from the Maximum Principle that this function increases
monotonically.

The more roots a polynomial has, the faster it grows. This property is extended
to entire functions, but it is much more complex. The relationship between the
growth of an entire function and the distribution of its roots is the main subject
matter of the theory of entire functions.

Here we would like to point out, without giving precise definitions, that there
is a large cycle of theorems which state that if an entire function f “grows slowly
enough” and its roots are “arranged very densely”, then f(z) = 0. These are unique-
ness theorems similar to the simplest uniqueness theorem for polynomials (a poly-
nomial of degree n having more than n roots is identically equal to zero). The
solution of many completeness problems for various functional systems, in particu-
lar eigenfunctions of boundary value problems, reduces to such theorems.

Another cycle of questions involves the study of relationship between the growth
(or decrease) of a function along different directions, and its global growth charac-
terized by the function M(r). A polynomial grows in all directions uniformly. The
asymptotic behavior of an entire function as z — oo is much more complicated.
The main facts pertaining to this problem can be stated in the following way: an
entire function having a “small” global growth cannot “decrease too fast in some
direction”, but must “grow on a large enough part of the complex plane”. The sim-
plest fact of this type, directly implied by the Liouville theorem, can be formulated
in the following way: if f(z) = O(1), z — o0, and f(z,) — 0 for some sequence
2, — 00, then the function f(z) is identically equal to zero. More refined estimates
are usually based on various versions of Phragmén-Lindel6f theorems. Theorems of

1



2 I. ENTIRE FUNCTIONS OF FINITE ORDER

this type are used in functional analysis (in particular, in the theory of nonselfad-
joint operators and in the theory of Banach algebras), in harmonic analysis, and in
some problems of mathematical physics.

Finally, some problems of expanding functions of a real or complex variable
into special functional series (problems of bases) reduce to certain questions of the
theory of interpolation by entire functions.

Thus, the theory of entire functions provides us with a powerful tool to solve
many problems of classical and functional analysis.

This is the approach which will be used to present the theory of entire functions
in this monograph. :



LECTURE 1

Growth of Entire Functions

1.1. The growth scale for entire functions

We shall start by considering an important question: how fast can the function
My (r) grow?

THEOREM 1. If, for a nonnegative A, the equation

lim inf Mf—ir) =90
r—00 r

holds, then f(z) is a polynomial whose degree does not exceed .
PROOF. We shall use the Cauchy inequalities

|Cn| < Mf_(r) .
T’n,

For n > X we obtain Iy
len] < liminf ﬂ
r—00 rm

=0.

Thus, in order to classify entire functions according to their growth, we must
construct a scale of monotonic functions that grow faster than any polynomial.
Can the function My (r) grow arbitrarily fast?

PrROBLEM 1. Let ¢(r) be a function growing as r — oco. Construct an entire
function f(z) to satisfy the inequality M (r) > 1+ ¢(r).

On the other hand, there exist entire functions with a slow rate of growth.

PROBLEM 2. Let ¢(r) be an arbitrary function increasing unrestrictedly as

r — oo. Construct an entire function g(z) which is not a polynomial and satisfies
the inequality M, (r) < 1+ r¥("),

HINT. Look for a function in the form of a power series with positive coeffi-
cients.

1.2. Order and type of entire functions
Let us introduce the following notation. If an inequality h(r) < ¢(r) holds for
sufficiently large values of r, we shall call it an asymptotic inequality and write
h(r) < @(r). If the same inequality holds for some sequence of values r, — oo,
then we shall write h(r) < o(r).
An entire function f(z) is called a function of finite order if My(r) < exp(r¥)
for some k > 0. The order (or the order of growth) of an entire function f is the

3



4 LECTURE 1. GROWTH OF ENTIRE FUNCTIONS

greatest lower bound of those values of k for which this asymptotic inequality is
fulfilled. We shall usually denote the order of an entire function f by p = ps. It
follows from the definition of the order that

as  p+e

e < Ms(r)<e
By taking the logarithm twice we obtain

n loglog M¢(r) as
p_€<—-T(;g_T‘—<p+€7

whence
» = limsup 2818 Ms (1)
r—00 logr
Do entire functions of any nonnegative order exist? This question will be answered
at the end of the lecture.

Note that among the functions of the same order there are functions growing
in different ways. For instance, take e/ 187 ¢™ and " 16" These functions are not
entire, but it is not difficult to find entire functions for which M(r) grows in the
same way. Such functions are distinguished by using another characteristic, namely
the type.

Let p be the order of an entire function f. The function is said to have a finite
type if for some A > 0 the inequality

Mf (T) ? CATP

is fulfilled.

The greatest lower bound for those values of A for which the latter asymptotic
inequality is fulfilled is called the type o = o5 (with respect to the order p) of the
function f. It follows from the definition of the type that

elo—ar’ 2 My (r) < elotor’
Having taken the logarithm and divided by r?, we obtain

log M
— ¢ 2 Lf(r) 8'<S o+e,
rP
and therefore
log M
r—00 rf

PROBLEM 3. Prove the inequalities py, < max(py,pg), pr+g < max(py,pg),
0fg <05 +0g, and 054y < max(oy, o).

If, for a given p > 0, the type of a function is infinite, then the function is of
mazximal type; for 0 < o¢ < oo the type is normal or mean; for o = 0 the type is
minimal. In the last case, for any £ > 0 the asymptotic inequality

My (r) <
is fulfilled.
Entire functions of order p = 1 and normal type o are called entire functions
of exponential type o.
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EXAMPLES. Verify that sin Az is of order p = 1 and type o = |A|, which means
that it is an entire function of exponential type |4|; sin+/z/+/z is of order 1/2 and
type 1; exp{agz™ + ...+ an}, ap # 0, is of order n and type |ag|.

1.3. The relation between the growth of an entire function and
the decrease of the coefficients of its power series expansion

Let
(1) f(z) = Z cn2™

be an entire function.

LEMMA 1. If the asymptotic inequality

as AT‘K

(2) My(r)<e
i$ fulfilled, then

3) len| <

as (eAK)n/K .

PrOOF. By the Cauchy inequality, it follows from (2) that

M(T) < eArK—nlogr

(4) len] € —— , T>Tg.
T’n,

Minimizing the exponent with respect to r, we obtain KAr¥ =1 —n/r = 0 and

rX = n/(AK). For sufficiently large n we have r, > rq. After substituting r, in

(4) we obtain (3).
LEMMA 2. If the asymptotic inequality (3) is fulfilled, then
(5) My(r) < eAt9™ | ve > 0.
PrOOF. First, note that if an entire function f satisfies inequality (5), then so

does the function f + @, where Q) is a polynomial. Therefore, we can assume that
¢p = 0 and (3) holds for all n > 1. Thus, we have

£l <Yl 3 (S25) e
n=1

3
Il
—

M

1

3
1l

Set m = [n/K]. Then, for sufficiently large r, we have

K n K m
(57) < (5™

Hence

< Y (LA

m=1
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By using the Stirling formula
m m
m! ~ (—) V2rm, m —
e

and the inequality

%EE<C(A+ﬂmH, m>1,

A
we obtain
0o em Kymal e (A +€/2)m+1,’.K(m+1)
|f(z)|§clmzﬂﬁ(147" ) <Clm2=1 !

— Cle(A+E/2)rK (A + E) C’I‘K aé Cze(A-‘rE)rK
2 >
where C, C1, Cq are constants. Thus,
F@)|<elAror

The lemma is proved.

These lemmas enable us to express the order and the type of an entire function
in terms of the rate of decrease of the coefficients of its power expansion. Indeed,
the order p equals the greatest lower bound of those K for which (5) holds for any
A > 0, in particular, for A +¢ = 1. By Lemmas 1 and 2 we have

(e(p—e))p%2|cn|a<s (e(p—I—e))#

for each € > 0. Having taken the logarithms, we obtain

n n

llog e(p — &) — log n] < log jen| £ ——[log e(p — ¢) — logn],

p—e p+e
or

nlogn as 1 nnlogn
——l4+o(l)]<log—<
p+€[ W Bleal S ¢

Thus we have proved

[1+40(1)].
THEOREM 2. The order of the entire function (1) is determined by the formula
. nlogn
(6) p = limsup

n—oo log(1/lcn])

Likewise, the type o equals the greatest lower bound of those A for which
estimate (3) holds with K = p. From this we deduce

THEOREM 3. The type of the entire function (1) is determined by the formula

(7) o= élimsup (n¥/|cal?) .

n—oo
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ExXAMPLES. Let 0 < p < 00, 0 < 0 < oo0. The entire function

=3 (7"

n=1

is of order p and of type . The function

=3 () e

is of order p and of minimal type, whereas the function

fe) = 3 (LB
n=2

is of order p and of maximal type. The entire function
/1

Hz) = Z (logn)nzn

n=2

is of infinite order, and the function

© 2
flz)=> ez
n=0
is of zero order.

PrROBLEM 4. Using formulas (6) and (7), prove that the order and type of an
entire function do not change under differentiation.

PROBLEM 5. If f(z) is an entire function and the numbers £(")(0) are integers,
then either f(z) is a polynomial, or the type oy of this function with respect to the
order p =1 is at least 1.



LECTURE 2

Main Integral Formulas for
Functions Analytic in a Disk

To investigate the relation between the growth of an entire function and its
zeros we shall need several formulas.

2.1. The Poisson formula and the Schwarz formula

We assume that the reader knows the classical Poisson formula which represents
a function harmonic in a disk {2 : |z| < R} and continuous in its closure:

2m 2 _ 2 )
u(z) = i/ u(Re'™) R-r dy, z=re?.
27 Jo R? — 2Rrcos(i) — 6) + 12

The same formula may be written in the form

1 2 = |22 1 /2” (+2
0 ue)=a 14<>|<__42 v=ge [ uOR S ay,
where ( = Re®™.
To represent a function f = u+ v holomorphic in a disk {z: |z| < R}, whose
real part u is continuous in {z: |z| < R}, we shall be using the Schwarz formula:

) 1A= [ WO dprin),

The latter formula follows from (1). Indeed, by (1) the real parts of the functions on
the left and right sides of (2) coincide in {z: |z| < R}. Hence, the functions differ
by a purely imaginary constant, and for z = 0 they coincide: u(0) + w(0) = f(0).

2.2. The Poisson-Jensen formula

If f(2) # 0in adisk {z: |z| < R}, then log f(z) is a holomorphic function in
the disk, and by formula (2) we have

I Re® + 2
= Wy == )
(3) log f(2) 5 ./0 log |f(Re )|Re“¢‘ — dip +iC
Formula (1), as well as formula (3), implies
R%Z — 2

@ loglf) =5 [ loglf(re)

9

R? — 2Rrcos(6 — ¢) + 12 d
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Now let a1, az, ... ,a, be the zeros of f(z) in {z: |z| < R} arranged according
to increasing modulus. We shall make a permanent convention to write down each
zero as many times as its multiplicity. Let f(z) # 0 for |2| = R, and let

n 2
R — a2z

(5) R(z — Q)

m=1
It is evident that |p(Re®™)| = |f(Re™)| and ¢(z) # 0 for |z] < R. Let us apply
formulas (3) and (4) to . It follows from (3) that

1 [ oy R + 2 ,
log p(z) = %/ log | f(Re w)im dp + ¢
0

or

2m
(6) logf(z):%/o loglf(Reiw)|§ RS 1ogR(_—z‘;":+ic.

lam|<R

R(z — am)
R2 —

plane along the rays {z = rel aEEm > |ay,|}. If some cut meets the point z, we
shall slightly deform it counterclockwise. After separating the imaginary parts in
(6) we obtain

For the function log to be single-valued it is necessary to cut the complex

2m . RQ-— 2
loglf(Z)\=%/O 1°g|f(Rew)|R2_2chos(g Hre

+ Z log‘—R( am)‘, 2 =ret? |

(7

Formula (7) was derived by R. Nevanlinna who named it after Poisson and Jensen.
It forms a foundation of the Nevanlinna theory of distribution of values of mero-
morphic functions.

2.3. The Jensen formula

Let us assume, first, that f(0) # 0. If we set z = 0 in equation (7) we obtain

2
log | /O)] = 5= [ Toglf(Re™)|d+ Y o o]

lam|<R

The second term on the right can be written as a Stieltjes integral. Denoting
by n(t) the number of points a,, satisfying the inequality |a,,| < t, we obtain a left
continuous, monotonic, integer-valued and piecewise constant function. It is called
a counting function of zeros. We have

R
Z log :/ logEdn(t) n(t)log — ' / @dt,
t t t
{am|<R
and, finally,

. o
®) /0 @dt:%/{) log | f(Re™)| dyp —log|f(0)] .

This is the famous Jensen formula.
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If £(0) = 0 (and, of course, f #Z 0) we denote by & the multiplicity of the root
at z = 0. Then formula (8) takes on the form

/RMdt+n(0)logR
0 t

1

_ L / log | (Re'¥) 29

dip — 1
o Y — log

To prove the latter formula it is sufficient to apply (8) to the function f(z)/2*.

2.4. The Nevanlinna characteristics

If f(z) is a meromorphic function in the disk {z : |z| < R} with neither zeros
nor poles on the circumference {z : |z| = R} and at z = 0, then the function ¢(z)
must be chosen different from (5). Namely, let

R(z —by,) R(z—am)}—l ’

2 _p 2 _g
RZ — b,z lam [< B R? —a,,2

w(z) =1 ][]

|bm | <R

where {b,,} are poles of a function f in the disk {z : |z| < R}. Then formula (6)
is replaced by

1 [ o Re® + 2
1 ==/ 1 wy T2
o8 f(2) =5 [ loglf(Re¥) iy dv
R(z — an) R(z —by) .
—a - 1 - = .
+ Z log R —a. Z og R 25 +iC
fam|<R |bm|<R
The Poisson-Jensen formula (7) takes the form
1 g2 ' R? _ 2
1 = _— 1 i d
og|f(2)l 27r/0 el R R — gy 72

R(z —am) R(z—by)
* 2 ton| |- 3 el .
l[am|<R : [bm<R

and the Jensen formula becomes

R 0 R 2 )
(10) /()@dt—/0 @dﬁ%/@ log | f(Re™) |y — log | £(0)] -

Here n(t,0) is the counting function of zeros, and n(t, co) is the counting func-
tion of poles of the function f . Following R. Nevanlinna, let us introduce

2m
m(B,f) = 5= [ gt IF(ReV)] b

where at = max(a,0), and

N(R, f) = / * nlt, o) —"0:9) 4y 4 n(0,00)log R,

0

T(R,f) =m(R,f)+ N(R,f) .
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The function T(R, f) is called the Nevanlinna characteristic. In this notation, the
Jensen formula (10) becomes

(11) T(R,f)=T(R,1/f)+C .

Here C is a constant, and if f(0) # 0 and f(0) # oo, then C = log|f(0)|.
It is easy to see that

T(R,af +b) =T(R,f)+0(1), a#0,
and hence equation (11) implies
af +0b
T(R, m) —T(R,f)+0(1), ad—bc#0.
This relation is called the First Main Theorem of Nevanlinna.

PROBLEM 1. Prove the following estimates:

T(R,;@ < Z:IT(R, £,) +logn,

T(R, ﬁ fl,> < zn:T(R, ).
v=1 v=1

Here f,, 1 < v < n, are meromorphic functions.

(12)

PROBLEM 2. Prove the following statements (H. Cartan).
1. If f(z) is a meromorphic function, and f(z) = f1(2)/f2(2), where fi(z),
f2(2) are entire functions without common zeros, then

27
T(r.f)= 5, | max(log|fu(re®)|, og fafre') ) s+ O(1).

2. If f(2) is a meromorphic function, then

1 [ 1
T 1) = Z/O N(T’ f_ei9>d9+cf»

where the constant Cy does not depend on r.

HinT. Use the formula

1 2m )
—/ log [w — €| d§ = log™ jw| .
2 0

The function T'(R, f) plays an important role in the study of entire and mero-
morphic functions. If f is an entire function, then

2
T(R,f) =m(R )= 5- [ log" |f(Re)] dp < log* My(R)

On the other hand, using the Poisson-Jensen formula (7) we have

1 27 ; R2—7"2
log /() < 5 [ log | (Re™) 17—

R+r 1 [* -
< — log™ W =
_R_T 27T o Og lf(Re )'d’l[}’ T lZ|,
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and R

log My (r) < p—m(R, 1)
For R = 2r we obtain
(13) log My (r) < 3m(2r, f).

If, in particular, m(r, f) < Ar* then
log M (r) 2395 Ark,

Hence, in defining the order of an entire function one can use the Nevanlinna
characteristic T'(r, f} instead of log M (r).

Let fi, fo be entire functions such that the quotient ¢ = f;/fo is an entire
function. Then the First Main Theorem of Nevanlinna and estimates (13) and (12)
imply

log M, (r) < 3T(2r, ) < 3[T(2r, f1) + T(2r, f2) + O(1)]
< 3log My, (2r) + 3log Mg, (2r) + O(1) .

A theorem on the growth of a quotient of entire functions now directly follows from
the latter inequality.

THEOREM 1. If the quotient of two entire functions of order not greater than p
is an entire function, then its order is also at most p. If, in addition, the numerator
and denominator are of mean type with respect to p, then the quotient is of mean
type with respect to p.

We refer the reader to the monographs by Nevanlinna [102], Hayman [51],
Goldberg and Ostrovskii [43] where the Nevanlinna theory of meromorphic func-
tions and its applications can be found.

2.5. Some corollaries of the Jensen formula

Let f be an entire function. Then it follows directly from the Jensen formula
that

1 2m )
(14 log |/(0) < 5 [ Tog | f(Re") v
T Jo
If |f(0)] = 1, then for r > 0 we have

log My (er) > /Oer @ dt > /er @dt > n(r),

and hence
(15) n(r) <log My(er) .

The modulus of an entire function may decrease in some directions, and in-
equality (14) shows that “in the mean” it decreases not faster than it grows. The
latter inequality shows that an entire function with an upper bound for My (r) can-
not have too many zeros. We remark that if |f(0)| # 1, then (15) must be replaced
by n(r) < log M¢(er) + const.



LECTURE 3

Some Applications of the Jensen Formula

3.1. A theorem on (J)-quasianalyticity

A class C of functions defined on some interval is called (I)-quasianalytic if
each function g € C vanishing almost everywhere on an interval, no matter how
small is its length, vanishes almost everywhere on its domain of definition. We shall
use the Jensen formula to prove a theorem on (I)-quasianalyticity.

THEOREM 1 (Pélya). If a 2m-periodic function f € L?[—n, 7] is represented by
a lacunary Fourier series

and f(t) = 0 almost everywhere on an arbitrarily small interval, then f(t) = 0
almost everywhere on [—m,7].

PROOF. Making a shift of the periodic function f(t), we obtain a function
@(t) = f(t+ h) equal to zero for # — § < |t| < 7 and represented by a series

o0 o0
ingh ingt ingt
p(t) ~ g Cn, €T = 5 A, €7 .

k=—00 k=—00
By a well-known formula we have
1 T

_ —int .
") p(t)e™ ™ dt .

According to the conditions of Theorem 1 “many” coefficients d,, are equal to
zero. We shall prove that in this case all coefficients vanish.
Let o(t) # 0. We define the function

1 T —1z 1 -t —iz
@(z):%/ ot =5 [ gt

It is easy to see that ®(z) is an entire function, and that
T—6 1

1
Dz +1y)| < —/ t)| dt elm=Olul <
2 i)l < 5 [ lote) =

||¢||L2[_mr]e(7r~6)lyl

or

) log |®(re®)| < (r — 8)r|sin 6] + C,y .

15
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Let n(t) be the counting function for zeros of the function ®(z). We have
®(n) =0 for n # ny, and hence

n(t) 2 2t] +1 - nf () —ny (1),

where n) (t) and n, (t) are the numbers of points ny located inside intervals [0,t)

and [—t,0) respectively. Let ng <0 < n;. Then, for ng <t < ngs1, k>0, we have
ny(t)=k=o(ny) =o(t), t—o0.
In the same way, n] (t) = o(t), t — co. Hence
n(t) S (2 - e)t
for all € > 0. Therefore,
(2) /T@dta;(z—ze)r.
T

Applying the Jensen formula (equation (8), Section 2.3), and estimates (1) and
(2), we obtain

as 1 %7 6 4 § 8
< — —_ — i - — —— = —_ —
N(r) < 27r/0 <7r 2)r|sm€d€ o <7r 2)7‘ (2 7T)r,

2-2e<2-6/m.
This is a contradiction! The function ®(z) has too many roots for its insufficiently
fast growth. Thus, ®(z) = 0, all Fourier coefficients d,, are equal to zero, and
f(t) = 0 almost everywhere. The theorem is proved.

and so

PROBLEM 1. Let
oo 0
f@) = Z cnemnt ) Z len| < oo,
n=—0oo n=—0oo
where A, are real numbers, and let

An
— > 400, |n|—oo0.
n

If f(t) =0 on an interval, no matter how small, then f(¢) =0.
HinT. Use the identity

< —tz _ — Cn
/Of(t)e dt_n;mz_i/\n, Rez >0,

and apply the Jensen formula to the meromorphic function on the right-hand side
of the latter formula.

The reader can find more sophisticated theorems related to the same field in
the monographs by Levin [82] (Appendix 2), Levinson [84], Koosis [72].
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3.2. The convergence exponent and the
upper density of the sequence of zeros

DgrrFINITION. Given a sequence a1,a2,...,0n,--., @y £ 0, lim, .o a, = o0,
the greatest lower bound of A’s such that the series

S
n=1 |an|)\

converge is called the convergence exponent.

Let n(r) be the counting function of a sequence {a,}. We denote by p; its
order; i.e.,
1
oy = limsup 2877
r—00 log'l"

)

A = limsup —=
r—»oop TPl

is called the upper density of the sequence {a,} with respect to the given order p;.
It is evident that

The number

rPE & n(r) 2 porte
and
(A —¢e)rr < n{r) < (A +g)rer
for every € > 0 . The number

A = liminf n(r)

- r—oo 7Pl

is called the lower density of the sequence {a,} with respect to the given order p;.

PrROBLEM 2. Prove the identities

LEMMA 1. Let a series

S
n=1 |an|)\

be convergent for some XA > 0. Then the integral

< n(t)
/0 t’\T dt

converges, and
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PROOF. Since
<1 °° dn(t)
(3) Y 5= :
la '/\ tA
n=1 n 0

upon integrating by parts we find

T dn n(r T
(4) /O tit)ZQH/O K—th.

r

The convergence of the series in (3) implies that both summands on the right-
hand side of (4) are bounded from above. The second summand does not decrease,
and therefore tends to the finite limit, which together with the inequality

ﬁQ<A/wﬁ@dt

rA A+l
proves Lemma 1.
LEMMA 2. The convergence exponent of the sequence {an} s equal to the order
p1 of its counting function.
PrROOF. Let K be the convergence exponent, and let A > K. Then the series

n(r)

in (3) converges, and by Lemma 1 we have lim —= = 0. Hence p; < X and
r—oo T
p1 < K. On the other hand,

n(t) St 2 | >0,

< n(t)
converges and n(t)/t* — 0, t — oco. It follows from (3) and (4) that the series in
(3) converges, and therefore K < p;, proving Lemma 2.

Hence for A = p; + € the integral

PROBLEM 3. Prove that the convergence of the series in (3) is equivalent to
the convergence of the integral on the right-hand side of (4).

PROBLEM 4. Prove that if the terms of a converging series form a decreasing
sequence a; > ag > ag > ..., then na, — 0 (E. Borel).

THEOREM 2 (Hadamard). The convergence exponent of zeros of an entire func-
tion does not exceed its growth order.

PRrOOF. According to a corollary to the Jensen formula, Section 2.5, we have
n(r) <logMg(er) + O(1) .

It follows that
log log M¢(er)

1 log log M
lim sup ogn(r) < limsup = limsup M
r—00 ogr r—oo logr r—o0 logr

i.e., p1 € p. The theorem is proved.

We shall give another corollary of the Jensen formula, namely, a uniqueness
theorem that does not permit an entire function to vanish on a “dense set”.
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THEOREM 3. Let f(z) be an entire function of type not greater than o with
respect to an order p . If f(z) vanishes on a set A and at least one of the inequalities

(5) A(A) > epo

(6) A(A) > po

holds, where A(A) and A(A) are the upper and lower density of the sequence A with
respect to the order p, then f(z) =0.

PROOF. Let us assume, for example, that (5) holds. We denote by na(r) the
counting function of the sequence A and set n{r) = ns(r).
For every A > 1, we have

) 1

1 AT n(t
< < —_— <
nalr) s nlr) < 105 / 7 9S o

N(r).

By the Jensen formula, with f # 0,
N(Ar) < log M;(3r) + O(1) < (0 + &) APre .
Hence

I o'>\p
A(A) < .
( )_logA

Minimizing with respect to A, we obtain A(A) < epc, a contradiction.

If A(A) > po, then for some £ > 0 we have n(r) > na(r) s (po + 2¢)r?. Hence

1
N(r) > =(po +€)r*, and using the Jensen formula we obtain
p

s 1

1
log M¢(r) S p(pa—i—e)r", o> ;(pa—l—e) )

a contradiction again.

3.3. Completeness of a system of exponential functions

DEFINITION. A system {z} of elements of a linear topological space F is said
to be complete if the closure of its linear hull coincides with £. In other words,
each element z € F may be approximated by finite linear combinations of elements
of a complete system {z}.

If a system is not complete, then the closure of its linear hull is a proper
subspace L C F. If F is a locally convex space, then by the Hahn-Banach theorem
there exists a nonzero linear functional f € E* such that f(z) = 0 for every element
x € {zx}. The existence of such a functional is a necessary and sufficient condition
of the noncompleteness.

Let a system {e***!} be given with real exponents Ay.

THEOREM 4. Let n(t) be the counting function of a sequence { ¢} = A. If

(7) limint " 5 o

t—00 t

then the system {e***t} is complete in the space of continuous functions C[—m, ).
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PRrROOF. If the completeness fails, then by the F. Riesz theorem on the form of
a linear functional on the space of continuous functions there exists a nonconstant
function o(¢) of bounded variation such that

/e”‘ktda(t):O, A €A

The function i
D) = / e do(t)

is entire, not identically equal to zero and satisfies the inequality
|®(s +ir)| < (Var o)e!l

Since ®(Ax) = 0, we obtain, by the Jensen formula, Section 2.3,

T 2
/"(t)dtgﬂ/ |sind|df + O(1) = 2r + O(1), r— 0.
o b 21 Jo

Since for some £ > 0 we have

t
nT) Sote,
we conclude that

24+e)r+0(1)<2r+0(1), r—o.

This is a contradiction. The theorem is proved.

PROBLEM 5. Let A\g be an arbitrary real number and let A, =n —§,, A_, =
—~n + 8, be pairwise distinct real numbers with |n| > 6,26>0,n==21,42,....
Prove that the system of exponential functions {e**~*} is complete in the space
Cl—m,m).

Some more sofisticated theorems on the completeness of a family {e**»*} will
be proved in the second part of the monograph. In particular, it will be proved
that the assertion of Theorem 4 remains in force if the lower limit in (7) is changed
to the upper limit.

3.4. Completeness of a special system
of functions in countably normed spaces

Let us consider the space A(D) of all analytic functions in a simply connected
domain D C C. Let us choose an expanding sequence G1,Ge, ... of compact sets
which exhaust D from the inside and are such that every G, is compactly imbedded
in D:

GeGye--€eGpe--; GiUGU---UGuU--=D |
and let us introduce the system of norms
(8) |fllm = sup [f(2)].
2€Gm,

The space A(D) endowed with the system of norms (8) is countably normed. The
following proposition describes the general form of a linear functional on the space
A(D).
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THEOREM 5. For every linear functional F € A*(D) there exists a unique
function ¢(¢) analytic on a closed simply connected set C\D', D" € D, equal to
zero at infinity and such that the value of F' at a function f € A(D) is determined
by the identily

©) FIf) = 5 [ 1Q0(0) dc.

Here | is a simple closed curve lying inside D such that ¢ is analytic on | and
outside 1.3

PRroOOF. It follows from the definition of topology by norms (8) that a homoge-
neous and additive functional F[f] is continuous if and only if there exist a number
m > 1 and a constant C such that the inequality

(10) [FLA< Cl S llm

holds. Let F[f] be some linear functional on the space A(D), and let G,,, € D be a
domain corresponding to the norm in (10). Let us choose an intermediate domain
D', G,, € D' € D. By (10), the functional F can be extended to a linear functional
on the space C(G,,) of functions continuous on G, with the norm (8).

Now let ¢ € C\D'. Noting that R i . € C(Gy,), we define the function

1
11 = [ }
(11) o) =F 2
where the functional F' is applied with respect to the variable z. It is natural to
call the function ¢ the Cauchy-Stieltjes transform of F. By (10), the function
©(¢) extends to an analytic function on the closed set C\D'. If { — oo, then

— 0, and it follows from (10) that p(o0) = 0. Finally, let a simple curve

C= 2l
[ encircling G, in the domain D’ be chosen close enough to the boundary 8D’ for
the function ¢ to be analytic on ! and in the component of the set C\l containing

the infinite point. Then it follows from (11) that

— [elos@rdc= o [F|

omi J, 2mi J,

SFLGL

=F[2im/l% ac| = Fif)

for every function f € A(D), which proves (9).
Let @1 and @3 be two functions determining the functional F[f] according
to (9). We may assume that the same curve [ corresponds to each of them. If

Y = 1 — @2, then

/w(C)C"dC=0, k=0,1,2,... .
{

Since the function v is analytic in the exterior of [ and ¥(o0) = 0, it follows that
1 = 0. Thus, every linear functional is representable by equation (9). The converse
statement is obvious. The theorem is proved.

3In what follows we shall say that the bounded domain whose boundary is I contains all
singularities of ¢.
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Let us apply Theorem 5 to study the completeness of the system of functions
wn(z) = F(A\nz), where F(z) is an entire function and {\,} is a sequence of complex
numbers. First results on completeness of a system of functions {F(A,z)} were
obtained by A. O. Gelfond in 1937. A. I. Markushevich obtained more complete
results using a method close to that described in this section.

THEOREM 6. Let an entire function of order p

F(z)= i a,2"
n=0

with all coefficients a,, nonzero, be of type not exceeding o, and let A = {\,} be a
sequence of complex numbers. Then the system @,(z) = F(\,z) is complete in the
disk {z : |z| < R}, where

(12) R = pid max (A(A) AW),

and A(A) and A(A) are the upper and lower densities of the sequence A with respect
to the order p.

PROOF. Suppose that the system {F(\,z)} is not complete in the space A(D),
D = {z: |z| < R}. Then by Theorem 5 there exists a function 1(z) that is
analytic outside a disk {z : |2| < r}, r < R, vanishes at infinity, is not equal to zero
identically and satisfies

/ FA2)¥(z)dz=0, n=0,1,2,..., r<R.
|z|=r

Let us consider the function
B() = / FA2)u(z) dz .
|z|=r

This is an entire function vanishing at the points of A. Let us estimate its growth.
Using
as
\F(Az)| < exp{(c +e)[Ar?}, >0, r=|z,

we obtain

[2(A)

F(\z 2)||dz
S/Izl—r| (Ae) (=)
2 2rr M exp{(c +¢&)|A|PrP}, M= Imlix [¥(z)], €>0.

Hence the type of the function ® does not exceed or?. If the sequence A satisfies
lim,, o0 |An| = o0, then by the inequality r < R and equation (12) it follows from
Theorem 3 that ® = 0. The same statement is a trivial corollary of the uniqueness
theorem if A has a finite condensation point. Indeed, if

Y=Y

n=0

then

=7

o) = /IJ c FA2)Y(z)dz = ianbr)\” =0.
z n=0
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Since all numbers a,, are different from zero, all numbers b,, must be equal to zero
implying 4(2) = 0. This contradiction proves Theorem 6.

REMARK. If A(A) = oo, then the system {F(\,z)} is complete in A(C).



LECTURE 4

Factorization of Entire
Functions of Finite Order

4.1. The Weierstrass canonical product
In our study of infinite products we shall assume that an infinite product of

entire functions
o0
H gn(2)
n=1
converges at a point zg if for some N there exists the limit

M
Jim ngv 9n(z0) ;
not equal to either zero or infinity. The same infinite product is said to converge
uniformly on a set K if for some N the products Hﬁi ~ gn(2) tend to a function
hy(z) uniformly with respect to z € K as M — oo.

It follows directly from the definition of convergence of infinite products that
a general term of a convergent product tends to unity. Hence it is possible after
omitting a finite number of factors to define log g, (2) using the principal value of
logarithm. It follows that (uniform) convergence is equivalent to (uniform) conver-
gence of the series

> loggn(2) .
n=N

A product is said to be absolutely convergent if the latter series converges absolutely
for some N.

Let {an} be a sequence of complex numbers not equal to zero and such that
for some nonnegative integer p the series

> lanl ™t <00
n

Let us introduce the infinite product
1(z) = [[ G(z/an, D) ,

where
1- U, pP= 07
P

2
(1—u)exp[u+%+---+%], p>0.

The functions G(u, p) are called the Weierstrass primary factors.

G(u,p) =

25
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The inequality

oo

U

log G( L < 2fulpt!
| log G(u, p)| ;lk_IUI ’

evident for |u| < 1/2, implies that the infinite product II(z) converges absolutely
and uniformly in every disk {z : |2| < R < oo}. This product is called the
Weierstrass canonical product of genus p.

4.2. The Hadamard theorem

One of the main theorems of the theory of entire functions is

THEOREM 1 (Hadamard). An entire function f of finite order p may be rep-
resented in the form

1) f(z) ==z ePQ(z)HG( )

where ay,as, ... are all nonzero roots of the function f(z), p < p, Py(2) is a poly-
nomial in z of degree q < p, and m is the multiplicity of the root at the origin.

PROOF. Let us use formula (6) from Lecture 2:

1[4 . Re*¥ R(z —ay, .
logf(z)zg/0 log|f(Re“p)|R7d1/J+ Z logR(T_?a—)—HC’.
lan|<R

Without loss of generality we assume here that m = 0, i.e., f(0) # 0. Differentiating
this formula p + 1 times with p = [p], we obtain

2 (X
(p+1) _ (p+1)! i 2Re
[]'Og f(z)] - I 0 log 'f(Re | (Reup _ Z)p+2 d/l/}
|—p+1 !
p!
+ Z _azp-H— Z (@ — 2)P+1 "
lan\<R lan|<R

It follows that

[log f ()] + Z —zP+1}

|an‘<R

(p+1)! 47R

p
< IOng(R)(R—r)PJrQ+(R—r)P+1 ;

The estimates
log M;(R) < RF¥e
n(R) < log Ms(eR) < < Rete

yield, after passing to the limit as R — oo,

1)
log f(2)]P+D) = p'z PR
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Integrating both sides of this indentity along any path joining the points 0 and z

and not intersecting cuts from the points a1, as,... to infinity, we obtain
1 St i
0 og {1 - —) + bt 2], a<s,
g f(2) :1;1[ g( - F) ase

Now formula. (1) follows, which proves Theorem 1.

Let us remark that the Hadamard theorem was proved with p = [p], g < [g].
Representation (1) is possible, generally speaking, with different integers p and g¢.
In what follows, p will denote the smallest integer for which the series 7 |an| P!
converges. With this convention the number ¢ is determined uniquely.

The integer g = max(p, q) is called the genus of an entire function f. It follows
from the Hadamard theorem that the genus of an entire function does not exceed
its order.

An entire function of order zero has the form

d z
cer Tl 2). s
z g - w < 00
with
i: L
|an
For p < 1, by the Hadamard theorem a function f(z) of order p has exactly the

same form.
An entire function of genus one has the form

) = Cames o T (1 =)o

Qn
n=1
ExAMPLE. The function f(z) = Smj/f is entire and of order p = 1/2. Its
i
zeros are a, = n?, n = 1,2,.... According to the Hadamard theorem,

i z
= (1-52),
n=1
and since f(0) = 1, we have C = 1. Substituting 22 instead of z, we obtain
sin7mz =7z H (1 - ——)

or

sinmz = 7wz H (1——) /m

As usual, the prime here means that the factor corresponding to n = 0 is omitted.
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PROBLEM 1. Let —00 < a < b < 00. Show that the Fourier transform F(z) of
a function f € L[Qa’b] has an infinite set of zeros (nonreal, generally speaking). The
same is true if

b
F(z) :/ etdo(t), —-oco<a<b<oo,
a
where o () is a function of bounded variation which is not a step function with a
single jump.

PrOBLEM 2 (Laguerre). Let f(z) = =% g(2), where o > 0 and g(z) is a real
entire function of genus p < 1 with real zeros. Prove that the zeros of the derivative
f'(z) are also real and interlace with the zeros of f(z).

HinT. Use the Hadamard theorem and study f'(z)/f(2).

PrOBLEM 3. Let f(2) and g(z) be entire functions of order p < 2 such that
) +g°(z)=1.
Prove that f(z) = cos{az + 83), ¢9(z) =sin(az + 3), o, 8 € C.

4.3. Estimates for canonical products

Let {a,} be a sequence of complex numbers, lim,,_.o a, = 00, and let n{r) be
its counting function. Suppose that for some integer p > 0 the series >_1° |a,|7P~!
converges, and denote

T(z) = fj[G(é,p) .

As we proved earlier using the Jensen formula, Section 2.3, the estimate n(r) <
log Mii(er) is valid. Now we shall estimate log My (r) from above using n(r). To
this end we shall obtain an estimate for the Weierstrass primary factor G(u, p).

LEMMA 1 (the Borel estimate). For u € C the estimates
|u|Pt?

Pl+ful
log |G(u,0)| <log(1 + |ul)

log |G(u,p)| < A p>0, Ap=3e(2+logp),

are valid.

PRrROOF. The latter inequality is evident. Let p > 0. If |u| < p/(p + 1), then
expanding log(1 — u) we obtain

o~ ful JulP*

log|G(u,p)| < > ——<

— < ulPtt
2n Seni-m =M
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If, on the other hand, |u| > p/(p -+ 1), then the inequality log(1 + |u|) < |u| yields

ul? ulP
g G ()| < 2] + - o 12
1 1 1 1 1 1
= |ulP L S 4o )
|“|( o1 T 2 T

p+l p—1 1 1 |’LL|
gup(—) (2+—+---+ )<e2+logp ufp
(% ; p) <cHloepul

|u|p+1 |u|p+1
Tdul = "PLl4jul’

1
=e(2 4+ logp) (1 + —)
|ul
proving Lemma 1.

THEOREM 2. Let {a,} be a sequence of complex numbers. If the series

(2) Z |a |p+1

converges, then the product

i z
z) = H G (—,p)
Gn
n=1
converges uniformly on every compact set and salisfies the estimate

log [T1(2)| ngrP{/Or p(+3 dt +r /oo f&l t}

where K, = (p+ 1)Ap, r = |2|.

PRroOF. First, let p > 1. It follows from the Borel estimate that

> rptl * dn(t)
log [T(z)| <A, — — _— 4 P+1/ ey
BN <4 D oy = ), wtn

®3)

= APTPH%} + A rp+1/000 Lp+1(€+r) + tp(tir)Q}n(t) dt .

Since the series (2) converges, by Lemma 1 from the preceding lecture we have

and

1
1 < P+1 d
0g |T1(2)] < Apr / / Tt p(tH)Q}n(t) :

< K,r {/Otp(ﬁdwr/ n()dt} r=lz.
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For p = 0 the estimate of the canonical product is simplified:

log TI(z)}| < Zlog (1+ | ni) =/Ooolog (1+—7t:) dn(t)

[ n(t) " n(t) * n(t)
[T g [0 [0,

The theorem is proved.

THEOREM 3 (Borel). The growth order p of a canonical product is equal to
the convergence exponent of the sequence of its zeros.

PRrROOF. Let p be the smallest integer such that the series

Z |an|p+1

converges, where {a,} is the sequence of zeros of the canonical product Ii(z), and
let p; be the convergence exponent of the sequence {a,}. Then p < p; <p+1.
First, let p1 < p+ 1. We choose € > 0 such that p; + € <p + 1. Then
n(t) < tPrte

It follows from the preceding theorem that
log My (r) < KprP{O(l) +/ tp1+5_p_1dt+r/ tP1+E—P—2dt}

0
(4) rP1te—D pPLHE—P
< Kprp{O(l) +

as
+ }<T-Pl+25.
pr+e—p p+l—pi—e¢

Now consider the case p; = p + 1. We proved in Lemma 1, Section 3.2, that

),

pp+1 7 $p+2

tend to zero as r — oc. Hence it follows from Theorem 2 that
(5) log M (r) 2 epPtl = gper

for any € > 0.
Thus, in both cases p < p;. Comparing this inequality with the corollary to
the Jensen formula derived in Section 2.5, we obtain p = p;. Theorem 3 is proved.

PROBLEM 4. Find a necessary and sufficient conditions for a sequence of com-
plex numbers {ax} to be such that the infinite product

H sin (8374
(84’74

k

converge to an entire function. Under what conditions imposed on {3} this is a
function of exponential type?

4This is the Poincaré theorem.



LECTURE 5

The Connection between the Growth of Entire
Functions and the Distribution of their Zeros

5.1. Functions of noninteger order

THEOREM 1. The convergence exponent of the zero set of an entire function f
of noninteger order is equal to the order of growth of f.

PROOF. Let f be an entire function of noninteger order p, let p; be the conver-
gence exponent of its zeros , and let II{z) be the canonical product corresponding
to the set of zeros of f. According to the Hadamard representation (Theorem 1,
Section 4.2), we have

(1) f(z) = 2" @I(z), deg P,=g¢.
Using the Borel theorem (Theorem 3, Section 4.3), we obtain
log Ms(r) < c1r? + 7774 | &> 0.

Hence
as

log Ms(r) < v, X =max(p1,q) ,

and p < A. The opposite inequality is true, since by virtue of Theorem 2, Section
3.2, we have p; < p, and by virtue of the Hadamard theorem g < p. The theorem
is proved.

THEOREM 2. If the order p of an entire function f(z) ts not an integer, then
its type oy and the upper density of zeros Ay simultaneously are equal either to
zero, or to infinity, or to positive numbers.

PROOF. According to Theorem 3, Section 3.2, we have A < epos. To estimate
o from above via A; we shall use the bound of a canonical product of genus p
proved in Theorem 2, Section 4.3. The inequality

n(t) LB +e)t?, e>0,

yields

log Mp(r) < Kprp{O(l) +(Af + 5)/ tPPldt + (Af + s)r/ P2 dt} .
0 T

Since p < p < p+ 1, we have

log M (r) < Co(Af +e)r?,

31
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and by Hadamard’s representation

log M¢(r) 2 agr? + Co(Af +e)r? < Co(Af + re)r?
or
(2) oy < Cply,

which proves Theorem 2.

5.2. Functions of integer order

An entire function of integer order p may not have zeros at all. It is possible
that p = ¢, ¢ being the degree of the polynomial in Hadamard’s representation, and
the order of the canonical product p; is less than p. But another feature of entire
functions of integer order is more essential. It turns out that, for an integer order,
inequality (2) may fail even for a canonical product. The upper density of the zero
set may be finite while the canonical product may be of maximal type.

Consider, for example, the entire functions

T = 22 " z
o oy _ 2 \.z/2n
sm2z— 2znl;[1 (1 4n2) = 2zng (1 2n)e

o0

and -
1 z
i == )

n=1
where v is the Euler constant. It is evident that, for both functions, n(t) ~ ¢ and
the convergence exponent of zeros is p; = 1. Since the functions differ inessentially
from the canonical products, they are of order one. For the former function we
have

1, = = x
E(eﬂy‘ —e 3l < ‘singz‘ < eslvl

§(e%r — e E ) < M(r) <e?’.
Hence, log M(r) ~ (7/2)r and ¢ = w/2. For the latter function, according to the
Stirling formula,

1

1 1 1
log — :—(2—5) logz—l—z——logZﬂ—l—O(M

I'(z) 2

where the plane is assumed to be cut along the negative real axis, and | arg z| < 7.
Hence

) =—z{(1+0(1))logz,

1 - T
log —— = —(1 +o(1))(cosp)rlogr, z=re'¥, —<|p|<m,
IP(2)] 2
and therefore log M (r) > Crlogr. This means that f = 1/I" is of maximal type.
We shall see that the “root of all evil” is the presence of a symmetry in the
distribution of zeros of the first function and its absence for the second function.
‘We remind the reader that p denotes the smallest integer for which the series

1
Z |an|p+1
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converges. By virtue of the Hadamard and Borel theorems from the previous lecture
we have p < p < p+ 1. Two cases are possible if p is an integer: either p =p+ 1
and the series Y |a,| # converges, or p = p and the same series diverges.

In what follows we denote by a, the coefficient of 2# of the polynomial P(z) in
Hadamard’s representation.

THEOREM 3 (Lindeldf). If p = p+ 1, then f(z) is an entire function of
minimal type for a, = 0 and of mean type for a, # 0.°

PRrROOF. According to the Hadamard theorem, we have
(3) log|f(2)] < Re(a,2”) + log|I(2)| + O(J2|*7), z— 0.
It follows from inequality (5), Section 4.3, that if p = p + 1, then
(4) log M (r) L ere , €>0,
and inequality (3) yields
(5) log My(r) < (lap| + 3e)re.

To estimate log M;(r) from below we start from the evident relation

(6) m(r,exp(a,z’ + -+ ap)) = m(r, %) ,
where m is the Nevanlinna proximity function (see Section 2.4). It follows that

s 1
(7 |(21—7pr|rp P m(r,exp(a,z” + -+ +ag)) < m(r, f) +m<T> ﬁ) +log2 .

By virtue of Jensen’s formula
1
N(r,0) = m{r,TT) = m(r, = ) ~ log|TI(0)],
whence
1
8 ( ,—) < m(r,1I) .
(®) m\r ) S m(r, II)

Taking into account (7), (8) and (4) we obtain

) |(21—7"T|rp < mlr, f) +m(r, ) +0O(1) € log Ms(r) +3er®, £>0.

The statement of Theorem 3 follows from (9) and (5).

THEOREM 4 (Lindelof). Let p=p. Set

55r) = [ap+ 1+ 3 0

lan|<r

, 67 =limsupés(r),

and v; = max (A;,8¢). Then oy and v; simultaneously are equal either to zero, or
to infinity, or to positive numbers.

5A stronger statement o7 = |a,| is true.
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PrOOF. We shall use the formula
2Re™

! 2w ;
llog f(2)]®) = ;_”/0 log | f(Re ¢)|W

(- 1)taz (o - 1)!
A e 2 Ta e

lan|<R

dip

proved in Section 4.2. If we set z = 0, we obtain

log f(NL + (0 - > az?

lan|<R
_ 29t [T iy |, —ipw (p—Dlaf
—QFRPA log | f(Re™)le dyp + Z T R%
lan|<R
or
log () Dy +(p =11 Y ar?|
(10) lan|<R
200 1 (27 " n(R)
-/~ = v — ==
< 2L [ loglitre)l|av + (o~ 01"

It is easily seen that the logarithm of a primary factor has a root at z = 0 of
multiplicity p + 1. Hence,

flog(T1(2)] %y = 0
and
(11) llog £(2))%y = pla, .
In addition,

1 [ .
%/o |1og | (Re™) || dp = m(R, f) +m(R, %) .

The Jensen formula yields

m(R, 3) =m(R, /)~ N(R,0) + 0(1) < m(R. f) + O(1),

f

and
1 2m _
(12) o [ loglf(Re)|| dw < (R, 1) +O(1) < 210g My (R) +01).
0

The Jensen formula yields the estimate
(13) n(R) < log Ms(eR) + O(1) .
Substituting (11)—(13) in (10) we obtain

pla,+(p -1 Y aZ"I

lan|<R

o log My (eR) 1
< 455 10g My(R) + (p — 1)) =L o(ﬁ)
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or

log Mf (CR)

5y(R) £ ¢ BELE

with a constant C' independent of the function f. It follows from this inequality
that 65 < Cefoy. Since by virtue of (13) we have Ay < efoy, we obtain finally
(14) Vf:max(gf,zf) §C1O'f .

To estimate o; from above via 7y we shall write the Hadamard representation of
f(2) in the form

f(z) =exp [(ap + % Z a;f’)zp} exp P,_1(2)

\an\<r
lan|<r lan|>r "

where P,_; is a polynomial of degree at most p — 1. Using the estimate of the
primary factor G(u,p) given by Lemma 1, Section 4.3, we obtain

T dn(t) ©  dn(t) '
1 < § PL A [ 1 et S p+1/ } Py .
NS e+ Al /0 tP1(t+r) o r tP(t+T) ol
Much as in the proof of Theorem 2, Section 4.3, integration by parts yields

log My (r) < 64(r)r? + K, {re™" /Or@dt+rp“ / ) e} +o(r?)

te

Now we apply the inequality n(¢) < (A +€)tP, € > 0, and obtain
log Ms(r) < §p(r)rf + 2K (A +&)r .
Therefore,

lim sup 5+ 2K,A5 < Cpyy

6
with a constant C,, which proves o < C,v;. Together with (14) this proves
Theorem 4.

log My(r) _
rP -

PROBLEM 1 (Valiron). Prove the following statement.
If p is not an integer, then convergence of the integral

(15) / ~ log My(r) |

A+l

is equivalent to convergence of the series

(16) Z |an|p

If p is an integer, then convergence of the integral (15) is equivalent to conver-
gence of both the series (16) and the integral

/°° 5;(r)dr




LECTURE 6
Theorems of Phragmén and Lindelof

Let f(2) be an analytic function in a bounded domain D, let ¢ be a point of
the boundary I' of this domain, and let Us(¢) be the é-neighborhood of the point
¢. Set

limsup|f(z)] =lim sup |f(2)].
z—¢ 6—0 z€Us(¢)ND
If the inequality
limsup |f(z)| < M
z—¢

holds at all points of ', then we shall say that |f(z)| < M on the boundary of the
domain D. The Mazimum Principle for functions analytic in a bounded domain
may be stated as follows:

If |f(2)| < M on the boundary of a domain M, then |f(z)| < M in D.

This statement easily follows from the Maximum Principle in its standard form
and compactness of the boundary of D.

6.1. Functions analytic inside an angle

For a function f(z) analytic inside an angle D = {z : o < argz < 8} we set
My (r) = sup{|f(re®)| : a < 6 < B} .

THEOREM 1. Let D be an angle of opening 7/, and let f(z) be a function
analytic in D satisfying an asymptotic estimate

(1) log M¢(r) S,

where p < A . If f(2z) is bounded by a constant M on the sides of D, then |f(z)| < M
forz € D.

PROOF. Without loss of generality we can assume that D = {re : || < a},
o = 7/2\. Let us choose a number p; such that p < p; < A, and set

ws(2) = f(2)e™® |, 6>0.
The asymptotic inequality
[ps(z)| < elsl/ =l cospre
holds inside the whole angle D. Since p < p; and cos p;c > 0, the inequality

lps(ReV) <M, —a<8<a,

37
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holds for |z] = R > Rs. Applying the Maximum Principle to the function s (2)
inside the sector Dg = {re?? : r < R, |0] < o}, we find that |ps(z)| < M at an
arbitrary point. In other words,

|f(2)] < M

As R tends to infinity we see that this inequality is fullfilled everywhere inside the
angle D.

Since § > 0 is an arbitrary number, we obtain |f(2)| < M in D, completing
the proof of Theorem 1.

PROBLEM 1. Prove that if, for some p < A, the function f(z) in Theorem 1
satisfies the condition log M
0
lim inf 285 ()
700 T
then its conclusion remains valid.

:O,

THEOREM 2. If a function f(z) analytic inside an angle

D:{z: ]argz|<a:21p}

satisfies the asymptotic inequalities
log My (r) < (o +e)rf
for alle > 0, and f(z) is bounded on the sides of D by a constant M, then

‘f(rew)‘ < Meorpcospe ) Tei@ cD.

ProOF. The function
pe(z) = f(2)em (O

is bounded on a positive ray and on the boundary of D. According to the previous
theorem, it is bounded by a constant in each angle Dy = {z: 0 < argz < 7/2p},
D_ ={z: —m/2p < argz < 0}. Applying the previous theorem once more, we
obtain |p(2)| < M for z € D, or

|fre®)| < Melotericossd — peif e D 2> 0.

The statement of Theorem 2 follows when € — 0.

The following corollary from Theorem 2 is frequently used.

THEOREM 3. If f(2), z = = + 1y, is an analytic function in the half-plane
{#z : Im z > 0} such that, for alle >0,

M;(r) < elorer,
and | f(z)] < M on the real azis, then
(2) |f(z +iy)| € Me?¥ .

Proor. If we take &« = 7/2 and p = 1 in Theorem 2 and apply this theorem
to f(—tz), we obtain Theorem 3.
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REMARK 1. The estimate given by (2) is sharp. It is attained for functions
of the form f(z) = M~e™'%, |y| = 1. On the other hand, it is easy to verify,
introducing the function f(z)e**?, that if the equality is attained in (2) at least at
one point, then f(z) = M~ye™"%, |y| = 1.

REMARK 2. If f(z) is an entire function of exponential type o, and | f(z)| < M,
—00 < T < 00, then

(3) |f(x +iy)| < Mel¥
in the whole plane.

REMARK 3. If the growth of an entire function f(z) is not higher than of first
order and minimal type, and if |f(z)| < M on the real axis, then f(z) = const.

ProBLEM 2. If f(z) is an entire function of exponential type ¢ > 0, and
f(z) — 0 as |z} — oo, then f(z+iy)e=?l¥ =3 0 as |z| — oo, uniformly with respect
to y.

PrOBLEM 3. If f(z) is an entire function of exponential type o, and
|f(z)| < C(1 +[z["),

then
f@e ¥ < Ci(l+|2]") .
If, in addition, o = 0, then f(z) is a polynomial.

PRrOBLEM 4. Prove the following statements.
1. A nonconstant entire function f(z) satisfying the condition

i 198 My(r)
rT—00 —\/7_"

cannot be bounded on any ray emanating from the origin.
2. If f(z) is a nonconstant entire function of minimal type with respect to the
order 1/2, then the function

pp(r) = min{|f(2)] : |2| =}

cannot be bounded as r — co (Wiman).

=0

HinT. If f(z) is as stated with zeros a1,a2,..., f(0) =1, and

=ﬁ( mﬂ

then us(r) > |¢(r)|. Now apply statement 1.

There are many results on the connection between the growth rate of an entire
function and the rate of its decrease. We shall mention here the coswp-theorem
due to Wiman and Valiron stating that

lo
Jim sup lgﬂ

> cosSTpP
oo log My (r)
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for an entire function f(z) of order p < 1, and the Beurling theorem stating that,
for every entire function f(z),

0
oy OB 7))

>—1
=00 log Mf(T) -

for every 6 € [0,2r]. Proofs and further results can be found in Beurling [13],
Kjellberg [70], Hayman and Kjellberg [55] and in the monograph Essén [34].

PROBLEM 5. Prove the following statements.
1. Let f(2) be a bounded analytic function in the right half-plane. If

L loglf(@)

= =00,
T— 400 T

then f = 0.
2. Let f(z) be an analytic function in the right half-plane. If
|f(2)| < Me™c*l | Rez >0,
for some ¢ > 0, then f =0.

HINT. Introduce an auxiliary analytic function F(z) = f(z)exp(—ezlogz2),
Rez > 0, and apply the first statement.

The Phragmén and Lindelof theorems proved above treated functions analytic
inside an angle.

ProBLEM 6. If f(z) is an analytic function in the strip {z : |Imz| < b},
|f(z £ ib)| < M, and

logl )| <b
lim sup og logmax{|f(z +1iy)| : |y| < b} < T ’
|z]—o00 |1E| 2b

then |f(z)] < M in the whole strip.

Theorems of a similar type are often used for functions analytic in some other
unbounded domains. Such theorems can be found in the monographs by Pélya and
Szegt [111] (Sect. III, Chap. 5, §6), Evgrafov [36] and Tsuji [123].

Many theorems of the theory of entire functions remain valid for more general
classes of functions.

6.2. Entire functions with values in Banach algebras

A function ¢ : G — E, where G is a domain in C and F is a Banach space, is

called analytic if for all A € G there exists the derivative
. A+ h) — ()
') = lim PATR) =)

) P = Jim 2T
where the limit is considered with respect to the norm in E. It is evident that,
for every linear functional f € E*, the function f[p())] is analytic. This remark
permits theorems on complex-valued analytic functions to be extended to E-valued
analytic functions.

For example, let ¢ be an entire function with values in E such that ||p(A)|| < C
for all A € C. For every linear function f € E*, according to the Liouville theorem,
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we have flp())] = const. By the Hahn-Banach theorem it follows that ¢(X) =
const. Thus, we have proved the Liouville theorem for E-valued functions.

The growth characteristics for E-valued entire functions are defined in the same
way as for complex-valued functions, with the norm in place of the modulus. For
example,

M, (r) = maxc{lp(V| : A < r}
for an E-valued entire function ¢(z). The Phragmén and Lindelsf theorems proved
in the previous section remain valid for E-valued functions as well. Indeed, if
an abstract function ¢(2) is analytic in D = {z : |argz| < o} and satisfies the
inequalities

lp(re=* )|l < M,
i
20’

and if f € B™* is a normalized linear functional, then for the scalar analytic function
U(z) = flp(z)] we have

le(2)|l < explz]?, p<

|T(re= )| < M, |¥(z)| < exp |z|” .
Applying Theorem 1, we obtain |f[p(z)]| < M for z € D, and
()| = sup{|fle(2)]| : f€B" [Ifl=1}<M, z€D.

The same method can be applied for extending other theorems on scalar ana-
lytic functions to abstract analytic functions.

Let us also remark that the formulas expressing the order and type of an entire
function via the coeflicients of its power expansion

f(z) = Z cn2"
n=0

remain valid if |¢,| is replaced by ||cn]|.

Various theorems on analytic and entire E-valued functions are often used in
the theory of Banach algebras (see Gelfand, Raikov, and Shilov [38], Bourbaki [19],
Rudin [118], Brudnyi and Gorin [21]). We shall describe the simplest examples.

Let B be a Banach algebra with unity e. This means that B is a Banach space
and for each pair (z,y) of its elements the product zy is defined which is a bilinear
function of z and y, and the inequality |zy|| < ||z|/|ly|| holds. In what follows we
assume that B is an associative algebra, i.e., z(yz) = (2y)z for all z,y,z € B.

An element e € B is called the unity of the algebra if ze = ex = e for all z € B.

We remind the reader that the spectrum spec(z) of an element z € B is the
set of all A € C such that Ae — z is not invertible in B.

THEOREM 4. The spectrum of an arbitrary element x € B 1s not void.

PROOF. If the spectrum is void, then the resolvent (\e — z)~! is a B-valued
entire function. Its norm tends to 0 as A — oo. Using the Liouville theorem we
conclude that (Ae—z)~! = 0 which is a contradiction to the identity limy—,oo A(Ae—
)"l =e.

THEOREM 5 (Le Page). If |zy| < Cllyz| for every pair of elements z,y € B
with some constant C, then B is a commutative algebra.



42 LECTURE 6. THEOREMS OF PHRAGMEN AND LINDELOF

PROOF. Let us consider the entire function w(A) = e~ *?ye*® with

Ok, k
Nz Ay

(5) e = '
poard k!
According to the hypothesis we have
eIl = lie*y)e** || < Clle* (e )|l = Cllyll ,

and by the Liouville theorem ¢(A) = const. Hence ¢’(0) = —zy+yz =0, and B is
a commutative algebra.

DEFINITION. The value

p(z) = sup{|A| : X € spec(z)}
is called the spectral radius of z € B.

THEOREM 6 (1. Gelfand). The identity
©) p(z) = lim [oF]*
holds.

PROOF. Let us consider the analytic B-valued function

(7) ro(A) = Z N
k=0

The disk of convergence (centered at infinity) of this series coincides with the
set

{X: [A > limsup ||z||*/*} .
k—oo

The series converges uniformly inside the disk, and multiplying it by (z — Xe) we
find (z — Ae)rz{A) = ry(z — Ae) = e. Therefore, the function r;(A) is the resolvent
(Ae —z)7 L.

Hence, the convergence disk of series (7) coincides with the largest disk con-
tained in C\ spec(z), which implies that p(z) = limsup,_, . ||z*||*/*. In particular,
we find p(z) < [Jo. |

Now let A € spec(z). Since A\"e — 2™ = (Ae — z)y, the invertibility of the left-
hand side of this identity would imply (Ae —z)y(A"e —z")~! = e contradicting the
assumption X\ € spec(z). Therefore, A" € spec(z™) and the inequality p(z™) < ||z"||
implies [A| < [|z™[|*/™. Hence,

p(z) < liminf ||z™||*/™,

proving the Gelfand formula (6).

COROLLARY. The type o, of an entire function e;()\) = e*? is equal to p(z).

THEOREM 7. Let elements z,y € B be such that xy = yz. Then p{z +y) <
p(z) + ply).
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PROOF. Since z and y are commuting, we have e*(#+¥) = ¢ 2¢ ¥ which follows
from the power representation of e*(#*+¥), It remains to use the inequality for the
type of the product of entire functions, which yields

P(T +Y) = Opreery < Oorz + 0020 = p(z) + p(y) ,

proving Theorem 7.

6.3. Applications of the Phragmén and
Lindel6f theorems to Banach algebras

An element z of a Banach algebra B is called real if its spectrum spec(z) is a
real set.

THEOREM 8. Let every element of a Banach algebra B be representable in the
form w = z + iy, where x and y are real, and, for every triple x, y, z of real
elements, the identity

|zyz(| = llyzz]|
hold. Then the algebra B is commutative.

PROOF. Let L be a curve surrounding the spectrum of . Then

(8) e = %/EeAC(Ce —z)7ld¢
and
er|| < Cexp (réleaz{Re(AC))

with a constant C independent of A. If x is a real element, then, however small
€ > 0 be given, we may choose as £ the boundary of a rectangle {({,n): a < { <
b, |n| < €}. Then for purely imaginary A = iy we obtain

||eiuz|| < Ceee\u\ )

As in the proof of the Le Page theorem, let us consider the entire function ¢(A) =
e*?ye~*?. Let r be a real element, and ) a real, while ;1 a nonreal number. Then,
using the power expansion (5}, it is easy to verify that, with £ sufliciently close to
the real axis, the element

el KR DR (s

Az

is inverse to e*® — u. Hence, e*? is real for real A. If  is also a real element, then

el = llerye=>2| = |ly]l.

If X = iy, then [|o()\)] < Cle?IM. Hence, the entire function of exponential
type ¢(\)e?** is bounded on the imaginary half-axis {\ : A =iy, x4 > 0} and on
the real axis. By the Phragmén-Lindelof theorem it is bounded in the entire upper
half-plane {\ : ImA > 0}, and similarly, the function ¢(A)e2** is bounded in
{A: ImX < 0}. Therefore, ||o(\)| < C”e?¢!l| ¢ > 0, which means that ¢()) is of
minimal type with respect to the order 1. On the real line we have ||o(A)|| = |ly]|-
With account taken of Remark 2 of the previous section we obtain ©(A) = ¢(0) =y
and e*?y = ye*®. Comparing the coeflicients at A in the power expansion we find

Ty = yz.
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To complete the proof we notice that the commutativity of real elements implies
the commutativity of arbitrary elements. The theorem is proved.

Another application of the Phragmén-Lindeldf theorem is related to commu-
tative Banach algebras. Let us denote by 91 the space of multiplicative linear
functionals on a Banach algebra B endowed with the weak topology. Let z(-) be
the Gelfand transform of an element z, i.e., the continuous function on 9% defined
by z(M) = M(z), m € 9. Then spec(z) = {z € C: z = z(M), M € M}, f.
Gelfand, Raikov, and Shilov [38], Rudin [118].

THEOREM 9 (Gelfand). The unity e of a commutative Banach algebra B is
an extreme point of the unit sphere.

PROOF. % Assuming the contrary, there exist elements u, v of the unit sphere
such that 2e =u+v. fu=e+ 2z, € B, then v = ¢ — z, and

le+te]| =lle—tz|| =1, —-1<¢t<1.

For any nontrivial multiplicative functional M € 97t we have M{e) =1 and ||M]|| =
1, and the previous equations with ¢ = 1 yield

L+a(M)| <1, [1-z(M)<1.

Hence (M) = 0 for every M € 9. Therefore, spec(z) = 0, and according to the
Gelfand formula,

lim [|z*]|'/* = p(z) = 0.

k—oo

Let us consider the entire function ¢**. By the corollary to Theorem 6, its type

with respect to the order 1 equals 0. We shall show that the function is bounded
on the real line.
It follows from equation (8) that
Az Az

n
e’ = lim (e-{-—) , n—x.
n—oo n

Hence,
[ = tim [[(e+22)"
n—oo n
For real A and n > |\| we have ||e + Az/n| = 1. Hence, |(e + Az/n)"*|| <1 and, at
last, |[e*®]| < 1.
By the Phragmén-Lindel6f theorem (Remark 3) we obtain e*® = const, which
is possible only if £ = 0. The theorem is proved.

8The proof which follows was given by M. Krein.



LECTURE 7

Subharmonic Functions

7.1. Definition and basic properties

A real function u(z) < +oo is called subharmonic in a domain D if at each
point zg € D it satisfies two conditions:
a) upper semicontinuity

w(zp) = lim sup wu(2);
60 |z—zg| <6

b) the mean-value property

1 % _
u(z) < 7/ ulzg +re®)do, r<8(z).
2m Jy

It is easy to check that the logarithm of modulus of an analytic function is
subharmonic. In fact, many properties of the function log|f(z}| are extendable to
the wider class of subharmonic functions.

Many properties of subharmonic functions follow directly from the definition
(see, for example, Ronkin [116], Hayman and Kennedy [54]). Some of them are
listed below.

1. If o(t) is an increasing convez function and u(z) 4s a subharmonic function, then
w(u(2)) is subharmonic as well. In particular, e“(#) is subharmonic. Thus if f(z)
is an analytic function, then for each A > 0 the function |f(z)* is subharmonic.

2. Let uy,...,u, be subharmonic functions in D. Then the upper envelope
u(2) = max (ul(z), . ,un(z))

is subharmonic in D. In the case of an infinite family of subharmonic functions
{ua(2)}, locally uniformly bounded from above, the upper envelope need not be upper
semicontinuous. However, its upper semicontinuous regularization

uw(z) =lim sup u({)
§—0 |z—C|<6
18 subharmonic.

3. The lmit of a decreasing or a uniformly convergent sequence of subharmonic
functions is a subharmonic function.

4. The sum of finitely many subharmonic functions is a subharmonic function.
Moreover, integration with respect to a parameter preserves subharmonicity.

Namely, let u(z,p), (2,p) € D x G, be a subharmonic function in D for every
p € G and an upper semicontinuous function in D x G, and let i, be a nonnegative

45
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measure in G. Then the function
u(z) = /u(z,p) dp

is subharmonic in D.

5. The Maximum Principle is valid for subharmonic functions. It may be formu-
lated as follows:

If a subharmonic function u(z) in a domain D attains its mazimum value at
an interior point z5 € D, then u(z) = const.

PROOF. If M = sup,.pu(z) and u(zg) = M, then by the mean-value property
b) we have
1

27
u(zg) = %/0 u(zo + re’) do

for small enough r > 0. The upper semicontinuity of the function u{z) and the
estimate u(z) < M yield u(z + re?) = M for 0 < § < 2m, 0 < r < §. Thus,
the set of points where u(z) = M is open in D. On the other hand, the upper
semicontinuity implies that this set is closed. Hence, u(z) = M for z € D.

This theorem, combined with the lemma on finite covering, yields the following
statement.

For { € 8D define
u(¢) = limsup u(z) .
z2—(,2zeD
Then the inequality

u(z) < sup u(()
¢edD

holds everywhere in D, with the equality valid only +f u(z) 1s constant in D.

PROBLEM 1. Prove the principle of harmonic magjorant: in order that an upper
semicontinuous function u(z), z € D, be subharmonic it is necessary and sufficient
that for every subdomain G C D and every harmonic function h(z), z € G, satis-
fying the inequality u(z) < h(z) for z € 8G, the same inequality hold everywhere
on G.

6. Let us define an average

1

o

27
N(r, z;u) = / u(z +re?)dd, r < dist(z,0D) ;
0

then
) N(r, z;u) does not decrease as r increases;

B) lim,—o N(r, z; u) = u(z).

To prove @), notice that according to the property 4 the function

27
N,z u) = 2—17;/0 u(z + Ce®) do
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is a subharmonic function of ¢ and that M(¢, z;u) = N(|{], z;u). By the Maximum
Principle (the property 5) the function 91(r, z; ) is monotonic in r. To prove 3),
notice that

u(z) < N(ryzi0) < max u(()

and, by upper semicontinuity,

li = .
r‘f%”f??ﬁ;“(o u(z)

7. Each subharmonic function can be represented as a pointwise limit of a decreas-
ing sequence of infinitely differentiable functions.
To prove this fact, we set

ue(2) = //u(w)ae(z —w)do, ,

where do, is the area element, o, (z) = ¢ 2a(e7!|z|), and a(t),t > 0, is an infinitely
differentiable function supported on [0, 1] and such that

1
27r/ afs)sds=1.
0
Then )
u.(2) :/ saa(s)/ ulz + ) dp ds
0 0

1
= 27r/ sa(s)MN(es, z;u)ds .
0
Using properties a) and 3) of the average M(r), we complete the proof.

8. A twice continuously differentiable function u(z) is subharmonic in a domain D
if and only if 1ts Laplacian Au is nonnegative in D.

To prove this statement we need an analogue of the Jensen formula from Lec-
ture 2. Let u, v be twice continuously differentiable functions, and let G be a plane
domain with the smooth boundary. Then the Green formula is valid:

o v
//G(vAu —ulv)do = /6G (Ua—n - ua—n) ds,

where 3/9n is differentiation along the exterior normal. We apply this formula with

G={w:e<|z—w| <R}, v(w) =log ﬁ, and send ¢ to zero. We obtain

(1) u(z) + %//‘ e B Auw)dow = N(R, 2:u)

|z — w]
proving our assertion.

PROBLEM 2. Prove the following statements:

1. Let us suppose that a function u(z), z = ¢ + iy, ¢ < £ < b does not depend
on y, i.e., u(z) = ¢(z). For u(z) to be subharmonic it is necessary and sufficient
that the function ¢ be convex.

2. Let u(z) be a subharmonic function in an annulus Ry < |2| < Ry. Then for
Ry <1 < Rj the functions B(r) = max|,|—, u(z) and MN(r) = N(r, 0;u) are convex
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functions of log r. The first part of the statement with u = log |f|, f being analytic,
is called Hadamard’s three-circle theorem.

3. Let a function u(z), z = re?’, Ry < r < Ry do not depend on 0, i.e.,
u(z) = 9(r). For u(z) to be subharmonic it is necessary and suflicient that v be a
convex function of logr, i.e.,

P(r) <

~ logre —logry

logr —logr logry — logr

Y(ra) + Y(r1)

logry —logry
for R; <r < Rs.

PROBLEM 3. Prove that if a function u(z) is subharmonic in a domain D, and
if a function z(w) is analytic in a domain G and with values in D, then the function
v(w) = u(z(w)) is subharmonic in G.

7.2. The F. Riesz theorem and the Jensen formula

We state here without proof a theorem which is a fundamental fact of the
theory of subharmonic functions.

THEOREM 1. Let u(z) be a subharmonic function in a domain D. Then there
exists a unique nonnegative Borel measure u in D such that u(G) < oo for every
subdomain G compactly embedded into D, and u(z) admits the representation

(2) u(z) = //Glog|z—§|d,ug+h(z)
with a function h(z) harmonic in G.

The measure u is called the Riesz measure of the function u(z), and the integral
on the right-hand side of (2) is called the logarithmic potential of pu. Formula (2) is
a generalization of the simple formula

log| /() = ) loglz-zk|+log\%‘,

2, €G

where f(z) is an analytic function in D, {24} is the set of its zeros in G, P(z) =
(z—2z1) - (2 — zn) and the last term on the right-hand side is harmonic in G. In
this case the measure y is a linear combination of Dirac measures supported by the
set {zx}. If the function u(z) is twice continuously differentiable, then (2) follows
directly from (1}, and the measure 4 has the form

1
dp¢ = - Au(() dog .

The proof in the general case can be carried out using a careful limit process. Now
we shall derive the Jensen formula for subharmonic functions, the Jensen formula
of Lecture 2 being a particular case.

THEOREM 2. Let u(z) be a bounded subharmonic function in a disk D = {z :
|z| < R}, u(0) # —o0, and let u be the Riesz measure of u(z). Then

u(())—l—/OR@dt:‘ﬂ(R,O;u),

where p(t) = p({z : 2| < t}).
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PRrROOF. The representation (2) can be written in a disk D, » < R, in the form

.<3> / / log |

Then
© =[] 1os"duc+n0).

Since the integrand in (3) vanishes for |z| = r, and h(z) is a harmonic function, we
obtain

\du +h(z) .

,,.2

u(0)

r t
/ log £ du(t) + M(r, 0, h)
0 T

-
t
= —/ Mdt—l—‘ﬂ(r,(),u) ,
o U
proving Theorem 2.

Proofs of the F'. Riesz theorem as well as further results on subharmonic func-
tions can be found in the monographs Ronkin [116] (short and elementary exposi-
tion), Landkof [78], Hayman and Kennedy [54].

7.3. Phragmén-Lindel6f theorems for subharmonic functions

The Phragmén-Lindel6f theorems proved above for analytic functions are valid
for subharmonic functions. The following theorem is similar to Theorem 1 of the
previous lecture.

THEOREM 3. Let D be an angle of opening w/A, and let u(z) be a functior.
subharmonic in this angle, satisfying an asymptotic estimate

u(z) < |27, p<A,

and bounded by a constant M on the boundary of the angle. Then u(z) < M inside
the full angle D.

Proor. Without loss of generality we assume that D = {z = re'? : 0] <
7/2A} and consider the subharmonic function
ws(z) = u(z) =6z cospib, p<p1 <A,

inside the sector {|z| < R, |arg z| < w/2A}. With R tending to infinity, we obtain
by the Maximum Principle that ws(t) < M for an arbitrary fixed z. Passing in this
inequality to the limit as 6 — 0, we complete the proof.

Other theorems of Phragmén-Lindeldf type can be derived in a similar way for
subharmonic functions.
PROBLEM 4. Prove the following statement of Phragmén-Lindelof type.

Let u{z) be a subharmonic function in a domain D, and let u({) < M, { €
OD\E, E C 9D. Assume that there exists a negative harmonic function A(z) in D
such that, for every 6 > 0,

limsup (u(2) + 6h(2)) < M

z—(, z€D
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at each point ¢ € E. Then u(z) < M everywhere in D.
For example, if D is a bounded domain, E = {(;,{s,... } is at most countable
subset of the boundary 0D, and sup,. p u(z) < oo, then the function

o0

1
h(z) = 2—n—10g|z*{n|—C
1

n=

will be negative in D for an appropriate constant C. Hence, we conclude that
u(z) <M, z € D.

7.4. Logarithmically subharmonic functions
A notion of logarithmically subharmonic function is rather useful.

DEFINITION. A nonnegative function u(z) is called logarithmically subhar-
monic if the function v(z) = logu(z) is subharmonic.

For example, if f(z) is analytic, then |f(2)?, p > 0, is a logarithmically sub-
harmonic function.

Let uq,... ,u, belogarithmically subharmonic functions. Evidently, their prod-
uct 41 - ... u, 18 also a logarithmically subharmonic function. To verify that the
finite sum of logarithmically subharmonic functions has the same property, we start
with the identity

u*Alogu = uAu — |Vul?,
which can be easily checked. Here, as usual, Vu is the gradient of the function w.
Using this identity, we obtain

2 - v v _ 2
(u-+v) Alog(u +v) = (1—|—u)uAu—|— (1+U)UA’U |Vu + V|
= (1 + %)(uQAlogu + [Vaul?) + (1 + %)(U2Alogv + Vo)) = |Vu + Vo]?
= (1 + 2)uQAlogu + (1 + E)1}2A10g11 + (B|Vu|2 —2(Vu, Vv) + EIVUP) :
u v u v

This implies that the sum of two, and hence of an arbitrary finite number, of
logarithmically subharmonic functions is logarithmically subharmonic.

A passage to the limit proves that integration with respect to a parameter
preserves logarithmical subharmonicity.

PROBLEM 5 (Hardy). Let f(z) be an analytic function in the disk {z : |2| < R},
and let

~on
Then I(r, f) is an increasing function of r, and log I(r, f) is a convex function of
log r.

27w
I(r f) = - /0 Fre®)|do

THEOREM 4 (Plancherel and Pélya). Let f(z) be an analytic function in the
upper half-plane {y > 0}, continuous up to the real azis, and let

3) £()] < €7+l

for an arbitrary € > 0. If

/ f@)Pdz =M <00, p>0,

— 00
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then -
|1t i do < e

for an arbitrary y > 0.

PRrROOF. Given N > 0, the function

N
wn() = [ I

-N

is logarithmically subharmonic in C; and bounded on R:
wN(:v)S/ |[fz+t)Pdt=M.

Further, by (3),
wy(z) € Pl e 50,
The Phragmén-Lindelof theorem applied to the subharmonic function logwy(z)
implies that
wy(z +1iy) < MeP?V
or

N
/ f(z + iy + )P dt < MePoy
N

Sending N to infinity, we obtain the desired estimate.

REMARK. If f(2) is an entire function of exponential type o such that

| apds<n

— o0

for some p > 0, then the function f(z) is bounded on the real axis.
Indeed, the function |f(2)|P is subharmonic, and

F(@)] < {%//m fat oo}y

1 ! o0 1/p
< {—/ dn/ |f(:v+7+in)lpd7}
T™J1 —00
2

< {%M(e”"f — 1)}1/;; .

In connection with the Plancherel-Pdlya theorem we would like to mention the
papers Dzhrbashyan and Avetisyan [28] and Luxemburg [85].

In the second part of this book we will return to the entire functions belonging
to the space LP{—00,0o0) on the real axis.



LECTURE 8

The Indicator Function

8.1. The definition and p-trigonometric convexity of the indicator

Let us consider a function f(z) which is analytic inside an angle D = {z =
re’? : a < 0 < B} and satisfies the estimate

(1) My(r) < e
with My (r) = SUD,<p< g |7 ()]
DEFINITION. The function

1 60
h¢(8) = limsup oeljire )i |f(re”®)]

r—00 rP
is called the indicator function of f(z) with respect to the order p.

The indicator function describes the growth of the function f(z) along a ray
{z: argz = 0}.

It follows directly from the definition that the indicator of the product of two
functions does not exceed the sum of the indicators of the factors, i.e.,

hyg(0) < hy(0)+ he(0)

and that the indicator of the sum of two functions does not exceed the larger of the
two indicators:

By +0(8) < max (s (0), hy(6):
For the function
f(Z) — e(A—iB)zp
holomorphic in an angle {z =re?? : a < 0 < 8}, § — a < 27, we have

|f(7'€i0)| — B(A cos pb+ B sin pf)r”

3

and its indicator is equal to
H(9) = Acospf + Bsin pf .

Such functions are called sinusoidal or p-trigonometric. If 0 < 83 — ) < 7/p, then
the sinusoidal function H(#) assuming values h; and ho at the points 67 and 65 is
unique and can be expressed by the formula

_ hysinp(fy — 0) + hosinp(6 — 01)
N sin p(fy — 01) '

(2) H(0) 0 <0<0;.

53
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DEFINITION. A function K (#) is called p-trigonometrically convez on the closed
segment [, 8] if for « < 0; < 0 < 3,0 < 63 — 61 < 7/p the equations

K(@l) = h1 5 K(eg) - h2

imply the inequality
K@) <H®), 6,<0<0s,

where H(6) is a p-trigonometric function assuming the values h; and hy at the
points 8, and §2. A function K () is called p-trigonometrically convex in an open
interval if it is p-trigonometrically convex on each closed subinterval.

For p = 1, the corresponding functions are called trigonometric and trigono-
metrically convex, respectively.

THEOREM 1. Let f(z) be o holomorphic function inside an angle, and satisfy
inequality (1). Then its indicator function hy with respect to the order p is a p-
trigonometrically convex function.

PROOF. Let values 61 and 6, in [a, b] be such that 0 < 6 — 61 < 7/p, and let
H.(0) = A. cos pf -+ B, sin p0 be the p-trigonometric function which assumes values
hs(8;) +cat 0;, 5 =1,2, e > 0. Consider the holomorphic function

0e(2) = fz)eAemiBI"

We have

|()05(7'ei0])| = |f(7‘6i0-7)|e_H6(01)7‘p ? e 577

Hence the function ¢, is bounded on the rays {z : argz =6;}, j = 1,2, and by the
Phragmén-Lindelof theorem we have

lpe(re®) <M., 0€[01,05], r>0.
The latter inequality yields
|f(rei®)| < M.em"He(6)
and, according to the definition of the indicator function,
hp(0) < H(0) .
Passing to the limit as ¢ — 0, we obtain
(3) he(0) < H(0), 0€[01,00],

where H(0) is the p-trigonometric function assuming the values h(0;) at 8;, j = 1, 2.
The theorem is proved.

Relations (2} and (3) imply the fundamental relation for the indicator function:
(4) h(60:) sin p(6 — 03) + h(6) sinp(62 — 01) + h(02) sinp(6; - 0) <0

for 1 < 6 < 03, 0 < 02 — 61 < w/p, which is equivalent to its p-trigonometric
convexity.
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REMARK. If f(2) is an entire function of order p, then its indicator hy is a 27-
periodic p-trigonometrically convex function. It is known that for every 27-periodic
p-trigonometrically convex function h(6) there exists an entire function of order p
whose indicator coincides with h(6). This statement is due to V. Bernstein. The
proof of a somewhat more general theorem is given in Levin [82].

PrOBLEM 1 (Lindeldf). Let a function f(z) analytic in a vertical strip satisfy
the estimate
[fz+ay) =O0(y*), |yl — oo,
with some K < co. Then the function

| .
hy (@) = limsup 22 W)

is convex.

8.2. Properties of trigonometrically convex functions

1. The mazimum of two p-lrigonometrically convex functions is p-trigonomet-
rically convex. Similarly, the upper envelope of a uniformly bounded family of p-
trigonometrically convex functions is p-trigonomelrically convez.

2. Let h(f) be a p-trigonometrically convez function in an interval (o, 8). If
h(61) = —oo for some 01 € (o, 3), then h() = —oo for each 0 € (a, 3).

PrOOF. Assertion 1 follows from the definition. Now, in 2, let us prove that
h(0) = —oo for each ¢ € (o, ) satisfying the condition 61 < 0 < 01 + w/p. We
choose a point 83 € (o, 8) such that ¢; < § < 82 < 6 + m/p and introduce the
p-trigonometric function H,(#) which assumes values H.(61) = —1/¢, H.(62) =
max{—1/e, h(f2)}. The p-trigonometric convexity of the function A implies that
h(0) < H.(8), 6; < ¢ < 03. Sending ¢ to zero, we obtain h(f) = —oo. Thus
h(#) = —oo for §; < 6 < min(3, 61 + 7/p). The required assertion now follows for
each 8 € (61, 0) and, similarly, for each 8 € («,01).

3. If a p-trigonometrically convex function h(0) is bounded, i.e., |h(9)] < K
for 8 € (a,3), then it is a continuous function of 8 € (o, ), and in each closed
subinterval it satisfies a Lipschitz condition.

PrOOF. The proof is based on the fundamental relation (4). We write it in
the form

(1(0) — h(61)]sin (0 — 01)
< h(02) sin p(0 — 01) 4 h(01)[sin p(02 — 0) — sin p(02 ~ 01))

Cosp(02 _0 ;_ 0) ,

0, -0

= h(02) sin ,0(0 — 01) + 2h(01) Sinp

which implies
h(0) —h(61) < K1(0—61), 08>0,; Ki=2Kp/sinp(f:—61).
On the other hand,
(h(02) ~ h(0)] sin p(6 — 01)
> h(61)sinp(@ — 62) + h(0)[sin p(62 — 61) — sin p(0 — 61)]

02_0(:05,0(01 — 0+02> .

= h(61)sin p(0 — 02) + 2h() sinp 5
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Fixing 61, and sending 6 to 62, we obtain
h(02) — h(e) > —K1(02 — 0) , By >0 s
or after changing the notation,

|h(0") — h(0')] < K1|0) — 0" .

REMARK. A p-trigonometrically convex function does not have to be continu-
ous on a closed segment. Its limit values at the endpoints can be smaller than the
values of the function.

PROBLEM 2. Prove that a function h(f) is p-trigonometrically convex for 8 €
(o, B) if and only if the function u(re”) = r?h(f) is subharmonic within the angle
D={z=re?: a<0<pg r>0}

PrOBLEM 3. Construct a function f analytic within the angle D, continuous
up to the bounding rays and satisfying the estimate (1) with the indicator hy
discontinuous at the endpoints of the segment [¢, J].

4. Let h(8) be a p-trigonometrically convex function on the segment [o, §].
Then

(5) h(o) +hlo+7/p) 20, alep<p+n/p<p.

PROOF. Let us substitute the values 8; = p+7, 8 = @+7/2p, 8, = p+7/pinto
the fundamental relation (4) and pass to the limit as 7 — 0. Using the continuity
of the indicator at the interior points of the segment [e, 3] and the inequality
h(p) = h{p + 0) for ¢ = a, we obtain (5).

5. If the equality is attained in (5), then h(6) is a p-trigonometric function in
the segment [p, @ + m/p].

PROOF. Let h(—m/2p) = h(m/2p) = 0. Then the fundamental relation (4)
yields h(68) < h(0)cospf. If for some 6y € (0,7/2p) the inequality holds, then,
applying again the fundamental relation with 6; = —8g, 82 = 6y, 8 = 0, we obtain
h(0) < h(0). Thus h(0) = h(0) cos pf everywhere on [—m/p,m/p]. The general case
can be reduced easily to the examined one.

THEOREM 2. Let f(2) be an analytic function in the angle D = {z = re' :
a < 0 < 8}, which satisfies the asymptotic estimate (1), and let its indicator with
respect to the order p be a continuous function on [, B]. Then

®) e < 0O psr a<o<g.

Proor. We divide the segment [«, 8] into subintervals with endpoints o =
O <0y < ... <6, =0, 0j31—0; < 7/p. For each subinterval {9;,0;41] we
construct the sinusoidal functions H;(#) = A;cos pf + B;sin pf assuming values
h{#;)+¢/3 and h(f;41)+¢/3 at the points §; and 6,1, respectively. The segments
[0;,0,4+1] can be chosen small enough that the oscillation of the functions h(¢) and
H;(0) on each of these segments be less than &/3.

The function

p3(2) = fl)e(Aimim)
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is bounded on the sides of the angle 0; < argz < §;41. By the Phragmén-Lindelof
theorem it is also bounded inside the angle. Hence

|f(7“ei0:\| < CjeHj((?)r” , 9] <0<,

and for sufficiently large r;(¢) and r > r;(¢)

- €
log | f(re”)| < [Hj(9) + g}r" , 05<0<0;41.

Thus,
log |f(re®)| < [h(0) +]r”, a<6<3,

for r > r(e) = maxr;(e).

REMARK 1. Similar arguments show that if the indicator of the function f(z)
equals —oo identically, then

log | f(re*?)|

, = -0, TT— -0,
T

uniformly on each closed subangle.

REMARK 2. The previous remark implies that if f(z) is an entire function of
order p and if its indicator with respect to the order p equals —oo at one point, then
f = 0. This remark is a particular case of the following principle: “No nontrivial
entire function which grows not too fast in the complex plane can approach zero
too fast as z tends to infinity along any ray.”

REMARK 3. There are several different definitions of the order and type of a
function f(z) analytic inside an angle D = {z = re" : a < # < 8}. We shall use
the following definitions:

. log™ log™® M;(r) o log*™ My(r)
py = limsup ==/ D=y oy = limsup =0

ProBrLEM 4. Using the Phragmén-Lindeléf theorem, prove that, for py >
/(8 — @), the order of growth is simultaneously the order of decrease, i.¢.,

i6
limsupMEO, a <8 <p,

00 rPte

for each € > 0.
Other definitions of the order of functions analytic inside an angle can be found
in Govorov [46], Goldberg and Ostrovskii [43], Hayman [53], Grishin [47, 48].

PROBLEM 5. Let f(z) be a function analytic inside an angle D = {z : o <
arg z < 3} and satisfying estimate (1), and let h;(0) be its indicator with respect
to the order p. Prove that the indicators of f(z) and f'(z) satisfy the relation
he(0) < hy(0), @ < 6 < (3, where the inequality can hold at the point 6y only if
hz(8) = 0 in some neighborhood of 6.
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8.3. Applications of properties of the indicator function

THEOREM 3 (Carlson). Let f(z) be a function analytic and of exponential type
in the right half-plane {z: Rez > 0}, and let

(Z) + s~ %) < 2n.

Iff(n)=0,n=0,1,2,..., then f = 0.
PROOF. Outside the disks {z : |z — n| < 6} we have
|sinmz| > mge™Vl .
Thus the function ¢(z) = f(z)/sinnz is analytic in {z: Rez > 0} and

= O
zZ)| < —e€
(@) <
outside the same disks. Assuming é < 1/2, these disks are pairwise disjoint, and by
the Maximum Principle the latter inequality holds inside these disks as well. Also,
the lower estimate of sin 7z implies that

ho(£m/2) = hy(£m/2) — 7

and therefore hy,(—7/2) + hy(7/2) < 0. By the property 4 of p-trigonometrically
convex functions it follows that A, (0) = —o0, —7/2 < § < 7/2. Let us consider a
function

Vap(2) = p(2)e™* 07 qreal, B>0.

Its indicator equals:

™ ™

—— << =

3 2 2)
is

is
hw(iz)q:a, 0=+7.

— o0

Bow s (0) =

Choosing an appropriate o we can assume that A, ,(+7/2) < —n < 0. Hence the
function g 5(2) is bounded on the imaginary axis by a constant M which does not
depend on 3. Since ¢4 (2) is bounded in the right half-plane (this follows from the
obvious modification of Theorem 2 ), we can apply the Phragmén-Lindelsf theorem
to arrive at the inequalities

|ap(z) < M
and
lp(x)| < Me™P" .
With 3 tending to infinity, we obtain ¢(z) = 0 and therefore f(z) = 0.

THEOREM 4 (Shilov). Let f(x) be an infinitely differentiable function on the
real axis and let

sup |27 f\9(x)| < CAPBYpP¢%? | p,g=0,1,...

—oco<z<oo

with some positive A, B, C, o, 3, a+ 3 < 1. Then f(z) =0.
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PRrROOF. The assumptions of the theorem imply that the remainder term in
the Taylor formula for the function f tends to zero for every x € R. Hence f can
be continued into the whole complex plane as an entire function. Using its Taylor
expansion at a point , we obtain

(Bly)?g”

|2 f(z + i) < CAPP )=

q

By the Stirling formula and Lemma 2 from Section 1.3 we obtain

— -1
P £ (x + iy)| < CAPperet T

Hence
Ceb’yll/(lfﬁ)

w{(3)r )

|z + )] < Ceelel/=+blul /O~
with some ¢ > 0. Thus f is an entire function of order p < 1/(1 — 3) . Since
a + 0 < 1, we conclude that

|f(z +1iy)| <

and

o loglf@)
|z|— o0 |£L‘|p

and hence f = 0.

THEOREM 5 (Morgan). Let f(t), —oo < t < o0, be a function such that
f(t)eAMp is bounded as [t| — oo for some A > 0 and p > 1, and let its Fourier
transform g(x) decrease in such a way that for some B > 0, | > 1 the function

g(:v)eBml is bounded as |x| — oo. If1/p+ 1/l <1, then f(t) =0.
ProoF. For z € C we set

9= [ " et

and observe that g(z) is an entire function which coincides with the Fourier trans-
form of the function f on the real axis. Further,

oo
(e + )| < c/ e~ Alt+vt] gy

—0o0
Without loss of generality we may assume that A > 1/p (otherwise, we introduce
a function f(At) instead of f(¢)). Using the inequality

el < P+ 2lyl, 4o =1,
p q p g
we obtain
l9(z + iy)| < Ceal",
which means that the order p of the function g(z) does not exceed ¢ < I. On the
other hand, the assumptions of the theorem imply that

1
e

Thus g(z) = 0 and hence f(t) = 0.
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Let us remark that Morgan [100] found a precise condition on positive values A
and B which guarantees that the assertion of Theorem 5 holds in the case 1/p+1/] =
1.

Theorem 5 shows that in a study of connection between the decrease of a

2
function and that of its Fourier transform the functions decreasing as fast as e =“*
play an essential role. The following theorem deals with such functions.

THEOREM 6 (Hardy). Suppose that, for some nonnegative integer n and for
all real x, the following estimates hold:

[f@)] < CO+ e/, lg(@)] < O+ |z[Me /2,
where ~
o@) = [ fed
is the Fourier transform of f. Then - ‘
flay=e " P(e), g(a) = Qu(a),
where P, and @Q,, are polynomials of degrees notl exceeding n.

PROOF. The estimate for f(z) implies that

maszfmwwt

is an entire function, and

sle+i) <C [ ferye

- C[/ +/ }(‘1 et e
[t|<4ly] [t]24]y|

We will denote by C positive constants which depend on n but do not depend on
z and y. For the first integral on the right-hand side of (7) we have

(7)

4ly|
/ (1+|tl”)e—t2/2+ytdtgC(1+|yI”)ey2/2/ ey gy
[t]<4]y| —4lyl
2 4|y‘ 1 2
=C(1+ |y|™)e¥ /2/ e~ 3ty gy
—4jyl

(®)

The second integral is bounded since

/ (14 [t[)et* /2wt gt < 2/00(1 |yt A /Al gy
(©) [t 4ly] aty)
< 2/ (1+tMeat < C.

—o0

Inserting the estimates (8) and (9) into (7) we obtain

(10) lg(z + iy)| < C(1+|2")e¥ /2.



8.3. APPLICATIONS OF PROPERTIES OF THE INDICATOR FUNCTION 61

Now we observe that p(z) = ezz/2g(z) is an entire function of order not exceed-
ing two. This function does not grow faster than a polynomial along the coordinate
axes. Moreover, the estimate (10) implies that the indicator of ¢(z) with respect
to the order p = 2 satisfies the estimate

1
(11) hy(0) < 5cos20, 0<0<2r.

Let us show that ¢(z) is a polynomial, which will prove the Hardy theorem.
We have h,(0) = h,(7/2) < 0. By Property 5 of the indicator it follows that

(12) ho(0) =ksin20, 0<0<m/2.

Comparing (11) and (12), we conclude that ksin20 < (cos?8)/2, or 2ksing <
(cos0)/2, 0 < 6 < 7/2, whence k < 0. Since ¢(z) has a polynomial bound on
the coordinate axes, we obtain by the Phragmén-Lindelof theorem that |¢(z)| <
C(1 4+ |2|™) in the first quadrant. Similar estimates are valid in the remaining
quadrants. Therefore, ¢(2) is a polynomial whose degree does not exceed n.

REMARK. If the function f(z) is as stated in Theorem 6, and if g(:v)e“”z/2 -0
as |z| — oo, then we conclude that Q(z) — 0 as |z| — oo, Le., g(x) = f(z) = 0.
This gives a uniqueness theorem.

In Lecture 25, Part III we will present uniqueness theorems generalizing theo-
rems of this section. The recent developments are exposed in Nazarov [101].



LECTURE 9

The Polya Theorem

9.1. Supporting functions of convex sets

We start with the introduction of a notion of supporting function k() of a set
KcC:

k(0) = sup{zcosf+ysinf} = sup{Re(ze™ )}, 0 € [0,2n].
z€EK zeK
It is not difficult to prove that the supporting function of a set coincides with the
supporting function of its closed convex hull. In what follows we assume that K is
a convex compact set.

For each 6 € [0,27] the line Iy = {2 : Re(ze™%%) = k()} is called a supporting
line of K. Evidently, it is orthogonal to the ray {z : argz = 6}, has nonvoid
intersection with K, and the set K itself is contained completely in a closed half-
plane with the boundary ly. The value |k(6)] is equal to the length of the segment
of the ray {z : argz = 0} if k(0) > 0 or of the ray {z : argz = 0+ n} if k(d) < 0,
cut off by the line ly. If k(0) is the supporting function of K, then k(—0) is the
supporting function of K, where the bar means, as usual, the complex conjugation.

EXAMPLES. The supporting function of the disk {z : |z| < R} is k() = R.
The supporting function of a single point {2y = roe’®} is k(6) = rgcos(6 — 6p).
The latter function is sinusoidal. The converse statement is also true: every sinu-
soidal function is the supporting function of a set consisting of a single point. The
supporting function of the segment [—id, id] is k(#) = d| sin 6).

THEOREM 1. The supporting function of a convex compact set is trigonometri-
cally conver. Conversely, every 2m-periodic trigonometrically convez function k()
is the supporting function of some convexr compact set K.

PRrROOF. Let k() be the supporting function of a convex compact set K. Then
k(0) is the upper envelope of a uniformly bounded family of 27-periodic sinusoidal
functions h(6) = Re(ze~ %), z € K. Hence k(0) is trigonometrically convex, which
proves the first statement of Theorem 1.

To prove the converse statement, let us consider the set

K= ()] T,

0<H<r

where [Ty = {z : Re(ze™%%) < k(#)} is a half-plane, and prove that this set is not
empty. Moreover, we shall see that every line lg = {2z : Re(ze™*?) = k(#)} contains
points of K. It will show that K is a convex compact set and that [y are supporting
lines of this compact set.

63
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lo,

A
L2
M\Y\\\\\\\N
a b
ls,
FiGURE 1
Ly
T 5
a b
I o
by
FIGURE 2

Without loss of generality, we fix # = 7/2 and prove that [ /o contains at least
one point which belongs to all half-planes IIy. Let us assume that 0 < 6; < 7/2 <
#> < m, and denote by A the intersection point of the lines ly, and lg,. Since the
function k(0) is trigonometrically convex, the point A cannot lie below the line I, 5
(see Figure 1). Thus, the half-planes Ily,, ITg, and the line I, /o have a common
segment which we denote by [ag,,bs,|. It may happen that ap, = by,. Setting
a = sup{ag, : 7/2 < 0y < w}, b =inf{by, : 0 < 0 < 7w/2}, we find that a < b,
and hence the segment [a,b] C I, /2 belongs to all half-planes IIg, 0 < < 7, and,
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in particular, to the strip {z = « + 14y : k(r) <z < k(0)}. Let us show that each
half-plane I, —7/2 < ¥ < 0 also intersects this segment. Using the definition of
trigonometrically convex functions with ¢ = 67 < 0 < 63 = 7/2, we find that the
intersection point of [/, and I, cannot lie to the left of the intersection point B
of the lines I, /; and Iy (see Figure 2). Hence the segment [a,d] is in the half-plane
IT,. The case —m < 9 < —m/2 can be examined using the same arguments, which
proves the theorem.

Let F be an entire function of exponential type (EFET). By Theorem 1 from
Section 8.1, its indicator hp is trigonometrically convex, and hence hp is the sup-
porting function of a convex compact set Ir C C. This compact set is called the
indicator diagram of the function F. It gives a geometrical representation of the
growth of F' in various directions.

This definition allows us to give, in particular, a simple geometrical interpre-
tation of certain properties of indicators of EFET. For example, let F(z), G(z) be
such functions; then the inequality

hpic(9) < max{hr(0), hc(0)}

means that the indicator diagram Ip;o is contained in the convex hull of the
diagrams Ir and Ig.

PROBLEM 1. Prove that if one of the indicator diagrams Ir and Ig can be
obtained from the other by a parallel translation, then the indicator diagram of the
sum Ir,¢ coincides with the convex hull of the indicator diagrams Ir and Ig.

The sum of sets, K = K + Kp, is the set of points {z = 21 + 22 : 21 € K],
29 € Ky}. It is evident that the sum of convex compact sets is a convex compact
set. It follows from the definition that the supporting function of the sum of convex
compact sets equals k() = k1(0) + k2(0). Therefore, if hpa(0) = hp(0) + ha(0),
then Irg = Ir + I, and conversely, the latter equality implies the former.

9.2. The Borel transform and the Pdlya theorem
Let

be an EFET. Tt is easy to deduce from the formula for the type of an entire function

that
o =op =limsup /¢, -

n-—00

The function
o0

Cn
f(2) = z% prsy

is called the Borel transform of the function F(z). By the Hadamard theorem
the series converges outside the disk {|z| < op} and diverges inside this disk.
It is possible that the function f(z) can be analytically continued into the disk
{z : |2| < or}. The smallest convex compact set containing all singularities of
f(z) is called the conjugate indicator diagram of F(z). We denote by kr(0) the
supporting function of this compact set.

The following theorem establishes the remarkable connection between the con-
jugate diagram and the indicator diagram of EFET.
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THEOREM 2 (Pélya). For every EFET F(z) the relation
hr(0) = kp(—0)

holds, and hence the conjugate diagram s the reflection in the real azis of the
indicator diagram Ip.

PROOF. Let us denote by I the conjugate diagram. The proof is based on two
integral formulas linking the function F(z) and its Borel transform. The first of
them has the form

) F(z) = F(Q)e= de,

27 Jog ik,

where K. is the disk {z: |z| <&}

Indeed, the integration over the curve 8(I + K, ) on the right-hand side may be
replaced by the integration over the circle 0K, . (here o is the type of the function
F). Thus the formula (2) is obtained by the integration of the series

>0

eCZf(C) — Z Cs%e(z .

n=0

1t follows from (2) that

|[F(re)| < C.exp{r max Re((2)}
Cel+ K,

=C.exp{r(k(-0)+¢)} .
Hence
(3) h(0) < k(=0) .
The transform inverse to (2) has the form
(4) F(O) = / Fte )<t ™ d(te™) ;  Re(Ce™) > h(—0).
0
To prove this formula we observe that the inequality

IF(te_w) a<s e(h(~0)+5)t

implies that the integral in (4) converges uniformly in the half-plane {¢ = £+ in :
€cosf +nsin® > h(—0) + 2¢}, and hence this integral represents a holomorphic
function in the domain {¢ : Re(¢e~%) > h(—0)}. Let us check that this function
coincides with f(¢) for ¢ = re?®, r > 30. Indeed, in this case the integral (4) can
be written as

/ F(te*w)e*”e‘w dt .
0

For the series
o0

F(te——ie) — Z C‘r;tne-me ,
n.
n=0

we have the estimate of the general term

as e2(o+e)t
< MF(2t) s e 7
- (20"

Cn

n!

n=01,...,
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and of the remainder

0 )

Cr 1 o 1 ,

s 55 [3fe< 55 oo Lo
k=n+1 k=n+1

If » > 30 we obtain the estimate
* >  Ck k_—ikb
F(te=®)e e " dt — / e e T Bikemikl gy
‘ /0 ( ) 0 ;} k!

1 (o9}
<— [ ele=2tgr,
o ),
Integrating termwise, we obtain the equality (4). Thus, f(¢) is analytic in the
domain {( = £+ if : £cosf + nsiné > h{—0)}. Hence, k(8) < h(—6). Combining
this estimate with (3), we obtain h{#) = k(—#). The theorem is proved.

REMARK 1. It follows from formula (4) with § = 0 that the function f{(()
coincides with the Laplace transform of the function F(z).

REMARK 2. Let F'(z) be a holomorphic function of exponential type inside an
angle {z : a < argz < 8}. Then the function f(¢)} defined by (4) is analytic in
the union of half-planes {¢ = £ +in: £cos@ + nsind > h(—0), a < 8 < 3}. The
complement to this domain is the intersection of closed half-planes {( = £ +in :
&cosf + nsinf < h(—0)}, and its boundary contains two rays orthogonal to the
rays arg( = —a and arg( = —f3. This closed convex set is minimal among all
convex sets of such a form containing all singularities of f({), which is not difficult
to prove using the well-known inversion formula for the Laplace transform

1 a-+ioo
F(z)= = lim f(O)e*dc .

247 a—oo a—ico

The notions of indicator, indicator diagram, and conjugate diagram can be
extended to entire functions with values in a Banach space. To this end, the
modulus | f(re®)| in the corresponding definitions should be replaced by the norm

1£ret®)]-

PROBLEM 2. Prove that the convex hull of the spectrum of an arbitrary element

x of a Banach algebra coincides with the indicator diagram of the entire function
Az
err.

EXAMPLE 1. Let F(z) = Y7_, Pu(2)e***, where A\g, k =1,2,. .., are complex
numbers, and Py (z) are polynomials. The Borel transform of a monomial zPe**?
equals p!(¢ — A\;)7P~1. Therefore, the poles at the points Az, k = 1,2,..., are the
only singularities of the Borel transform of F(z). The conjugate diagram of F(z)
coincides with the convex hull of points {A, ..., A, }, and by the Pélya theorem the
indicator diagram of F(z) coincides with the convex hull of points {X1,... , A}

ExXAMPLE 2. Let K be an arbitrary convex compact set. Choose a countable
set of points {A\x} dense on K, and consider a function

FO=3 =% S lal<oo.
kZ:OC—Ak Z k
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Evidently, the function f(¢) is analytic outside K, equals zero at infinity, and
cannot be analytically continued through any part of K. Hence K is the indicator
diagram of the entire function

F(z) = che’\’cz .
k=0

Thus for every closed compact set K C C there exists an entire function of expo-
nential type whose indicator diagram coincides with K.



LECTURE 10

Applications of the Pélya Theorem

10.1. The Paley-Wiener theorem

The following theorem gives a description of the class of entire functions of
exponential type that are square integrable on the real axis.

THEOREM 1 (Paley-Wiener). For a function g to be representable in the form

b
& o@) = 5 [ v, verab),

it 1s necessary and sufficient that

a) it be possible to extend g(x) to the whole complex plane as an EFET,

b) g € L?(—o00, ).
If the interval (a, b) cannot be replaced by a smaller interval, then the segment [ia, 1b]
of the imaginary azis coincides with the conjugate diagram of g(z).

NECESSITY. By the Fourier-Plancherel theorem, we have g € L?(—o0, cc) and
V27| 9|l L2 (= 00,00) = [|¥||L2(a,p). Further, the function

b
o2 = o [ euip

is entire since the integrand is an entire function of z € C. For y > 0, we have
1 /P Re(itz) 1/
)l < — t)e e gt < em W — t)| dt .
e+ i)l < 5o [ w@le e a < e [

Similarly, for y <0,

. a1t
e i) < e [ ).

It follows that g(z) is an EFET and its indicator diagram is contained in the segment
[—ib, —ia] of the imaginary axis.

SUFFICIENCY. The Borel transform ¢(w) of the function g is holomorphic out-

side the conjugate diagram of g, and, in particular, outside the disk {w : |w| < o4}
The function ¢ can be represented using the Laplace transform

o0
(2) olu+iv) = /0 g(@)e Wt gy u >0, ,

69
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and, similarly,

0
(3) olu+v) = —/ g(z)e 2t gz 4 < —0g .

Since g € L%(—00,00), equations (2) and (3) imply that ¢ is holomorphic in the
half-planes {w: £ Re w > 0}. Therefore, the conjugate diagram of the function g
coincides with a segment [ic, i8] of the imaginary axis.

The function ¢(u+iv) is square integrable on every vertical line which is not the
imaginary axis. Let us show that there exist the mean square limits LLIZIQO o(u+1v)

equal to

o(+0 +iv) = / g(z)e ™ dx |

0
0 .
(=0 +iv) = —/ glz)e™ dz

— 00

where the integrals are mean square convergent as well. Indeed, by the Plancherel
theorem we have

o0 1 o0
/ (40 + iv) — p(u + w)|* dv = —/ g(@)* |1 —e “Pdz -0, u\0.
— 0 2m 0
Similarly, (-0 + iv) = l.i.m(.) olu + ).

The functions ¢(+0 + iv) coincide with ¢(iv) and, consequently, with each
other, at imaginary points lying outside the indicator diagram. Thus, if ¥(v) is the
Fourier-Plancherel transform of the function g(z), then for such values v we obtain

P(v) = /O g(x)e ™ dx + /Ooog(x)e_”” dx

— 00

=p(H0+w) —p(-0+iw)=0.

The inversion formula implies equation (1) which shows that the indicator diagram
of the function g(z) contains the segment [—ib, —ia]. The theorem is proved.

10.2. Analytic continuation of a power series

The next application of the Pdlya theorem is related to analytic continuation
of a power series

(4) p(z) = Z Gn 2"
n=0

converging in a neighborhood of the origin. First, observe that there exists an
EFET F(w) such that a, = F(n), n = 0,1,.... Indeed, if the series (4) converges
for |z| <r, then

_ 1 ¢(2)
(5) an = 5 T dz .
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Choosing a continuous branch of the logarithm log z for |argz| < 7 and setting
¢ = —log z, we obtain a,, = F(n), n=0,1,..., where

1 — log r+im

__ b s
Fw)= -5 S ple)e™ d¢

is an EFET. Hence the converging series (4) can be represented in the form

(6) p(z) = F(n)z",
n=0

where the width of the indicator diagram of the function F' along the imaginary
axis does not exceed 27, i.e., hp(m/2) + hp(—m/2) < 2x. If this width is smaller
than 27, then the following theorem asserts that the series (6) may be analytically
extended.

THEOREM 2 (Carlson). If the width of the indicator diagram I of the func-
tion F' along the imaginary axis is less than 2w, then the function ¢ defined in
neighborhood of the origin by the series (6) may be analytically continued into a
domain C\G, where G = {w = e~ %, z € Ir}, and p(c0) = 0.

Conversely, let a function @ be represented in a neighborhood of the origin by
series (4) and also can be continued analytically into the exterior of a set

(7) G={w:w=e?2€ K},

where K is a convex compact set whose width along the imaginary axis is less than
2w, and let p(00) = 0. Then there exists an EFET F such that Ir C K and
an=F(n),n=0,1,2,....

PRrOOF. To prove the first assertion of the theorem, we use the inversion for-
mula (2) for the Borel transform defined in Section 9.2. Using this formula, we
write equation (6) in the form

1 o0
plz) = o— FQY erzrde,
27['Z 3(7F+K5) T;O
where € > 0 is chosen so small that the width along the imaginary axis of the
compact set Ir + K, is less than 27. For small enough values of |z| the series in
the integrand converges and hence

(®) o) =5 [ Oy

o 21 3(7F+K5) 1-— zeC

The function defined by the integral is analytic outside G = {e7%, z € Ir} and
equals zero at infinity. Since the width of I along the imaginary axis is less than
2m, the set C\G is connected. The first part of the theorem is proved.

Conversely, let all singularities of the function ¢ represented by series (4) lie in
a set G of the form (7), where K is a convex compact set whose width along the
imaginary axis is less than 27, and let ¢(00) = 0. Under these assumptions the set
C\G is a domain containing the points 0 and co. We have

4, = 1 w(2) iz

= o C—z"+1 n=0,1,...,

3y
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where C is a circumference of small radius centered at the origin. Since (o) = 0,
each of these integrals can be replaced by the integral over an arbitrary contour L
which surrounds G and does not surround the origin. Setting

1
Fw) = o [ 8 ac,

we obtain F'(n) =a,, n=20,1,..., and
1

F - el ¢

(w) 2m./F90(6 )t dg

where the contour I' surrounds the compact set K. It follows that F' is an EFET
and its indicator diagram is contained in K. The theorem is proved.

CoOROLLARY (Leau, Wigert). In order that the function ¢ represented by the
series (4) have a singularity at z = 1 only, and have a zero at infinity, it is necessary
and sufficient that the coefficients of series (4) have the form a, = F(n), where
F(w) is an entire function whose growth does not ezceed order one and minimal
type.

ProBLEM 1. Let ¢(z) = G(1/(1 — z)), where G is an entire function and
G(0) = 0. Then the order pg of the function G and the order pr of the entire
function F'(w) interpolating the coeflicients of ¢(z) are related by the equation
pc =pr/(1 = pr).

ProOBLEM 2. In order that the function

p(2) =3 ane”
n=0

holomorphic in a neighborhood of the origin have only a finite number of isolated
singularities (in whose vicinities the function ¢ is single-valued) in the disk |z| < R,
it is necessary and sufficient that

N
an, :ZFk(n)zk‘”—l—O(%) , mn—00,
k=1

where Fj(w) are entire functions of minimal exponential type. Moreover, zi, ...,
znv are singularities of ¢(z) in the disk {|z| < R}. In order that these singularities
be poles, it is necessary and sufficient that the functions Fy(w) be polynomials.

REMARK 1. Equation (8) yields that if the assumptions of the Carlson theorem
hold, then the expansion of ¢(z) in a neighborhood of infinity has the form

n=1

REMARK 2. If the assumptions of the Carlson theorem hold, then the function
©(z) can be continued to infinity along some ray emanating from the origin. If the
indicator diagram I of the interpolating EFET F(w) is such that the compact
set e”!¥ does not separate 0 and oo, then, as before, ©(z) can be analytically
continued at infinity. Evidently, e~!F does not separate 0 and oo if and only if the
sets Ip + 2mmi, m € Z, are pairwise disjoint.
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PROBLEM 3. Let F'(w) be an EFET whose indicator diagram has the width
along the imaginary axis less than 27. Prove that
log |F
hr(0) = limsup %(nﬂ :

n—oo

Other applications of the Pdlya theorem to problems of analytic continuation
may be found in Bieberbach [16].

10.3. Analytic functionals

As was stated in Section 3.4, every linear functional F' on the space A(D) of
analytic functions in a simply connected domain D € C is defined by the equation

FU) = 3 [FOwQdc,

where the function ¢ determined by F' is analytic on the complement of D, (o) =
0, and the simple closed curve [ surrounds all singularities of ¢ and lies in D. Thus,
the space A*(D) of linear functionals on A(D) (they are called analytic functionals)
is isomorphic to the space Ay(C\D) of functions analytic on C\D which are zero
at infinity.

The Pélya theorem gives another representation of the space A*(D) if D is a
convex domain. In this case we may assume that compact sets G1 € Gy € -+ €
G € - - exhausting the domain D from the inside are convex and their supporting
functions satisfy the condition

hi(6) < ho(B) < o < hp(B) <+ .
Then the function H(8) = lim h,,(6) is supporting for D. Given a linear func-
m—0o0
tional I, let us introduce the function
(9) ®(\) = F(e*)

usually called the Fourier-Borel transform of F. According to formulas (8) and (10)
from Lecture 3, there exist an integer m > 1 and a constant C such that

[@(N)| < C max |e*?| = Cexp (hm(—arg \)|A[).

So ®(A) is an EFET and by the Pélya theorem its conjugate diagram is contained
in the domain D. Denote by ¢(¢) the Borel transform of the function ®(\) and
check that

(10) F() = 57 [ 100

for each function f € A(D), where [ is a simple closed contour in D surrounding
all singularities of the function ¢.
Indeed,
1
F(e*) = ®(\) = — [ X dac .
(@) =8 = 5 [plc)dc

Differentiating this equation with respect to A and setting A = 0 afterwards, we
obtain

P = g [ctelo)ic.
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Hence (10) holds for every polynomial. Since polynomials are dense in A(D), equa-
tion (10) holds for every function f € A(D).
Let ®()\) be an entire function satisfying an estimate

[B(N)] < Cexp [ (— arg A)|A]

for some C' and m, and let ©({) be its Borel transform. Then equation {10) defines
a linear functional ' on A(D) such that ®(\) = F(e**). Thus, we have proved

THEOREM 3. Fquation (9) defines an isomorphism between the space A*(D)
of linear functionals on the space of analytic functions in a convex domain D with
supporting function H(0), and the space of entire functions of exponential type
whose indicators satisfy the condition

h6) < H(9) .

If D = C, then H{f) = +oo, and A(D) is the space of all entire functions
endowed with the topology of uniform convergence on each compact set in C. Ac-
cording to Theorem 3, the space A*(D) can be identified with the space of all
EFET.



LECTURE 11

Lower Bounds for Analytic
and Subharmonic Functions

11.1. The Carathéodory inequality

For a function f(z) = wu(z) + tv(2) analytic in the disk {z : |z| < R} we
set Af(r) = max{u(z) : |z| < r}. It follows from the Maximum Principle for
harmonic functions that Af(r) is a monotonically increasing function of r, and that
|Ag(r)| < Mg(r). It appears that for R > r the value M¢(r) can be estimated from
above by means of As(R).

THEOREM 1 (Carathéodory). Let f(z) be an analytic function in the disk {z :
|z] < R}, and let f(0) =0. Then

2r
R—r

My(r) < Af(R) .

Proor. The Schwarz formula, Section 2.1, states that
1 [ o ReW + 2
- iy T2
£(2) 27r/0 w(RN) e, || <R
Further, by the condition f{0) =0, we have

1 27

— u(Re™¥) dip .
2 0

Hence

According to the Cauchy theorem

1 %diw_i/ i g
2r Jo Re®W —z  2mi Jiq—pC(C—2)

Thus 5
1 4 . 2
1) = 5 [ AR~ u(R) g
and then
1 [ 2 2
£ S 5o [ 1A —ulRe¥)) 2 dv = 5T Ag(R)

proving Theorem 1.
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The proven inequality yields e lower bound for the harmonic function u(z) in
the disk {z : |z| < R} provided that u(0) = 0:

p) :
u(z) > —R—T max{u(Re¥): 0< ¢ <21}, r=|z.
It immediately implies

THEOREM 2. If an analytic function f(z) has no zeros in a disk {z : |z| < R}
and if | f(0)] = 1, then

2r
—r

log|f(2)l =2 — &

as |z| = r < R. In particular, log |f(z)| > —2log M;(2r).

log M;(R)

PROBLEM 1. Prove that

My(r) < [As(R) ~ Re fO)] o + [f(O)] , r<R

R—
for a function analytic in the disk {z: |2| < R}.

PrROBLEM 2. Let f(z) be an analytic function in the upper half-plane {z :
Imz > 0} such that Im f(z) > 0. Prove the estimates
1 in @ .
SFOIE S @IS T 5, =re?, 0<O<m, r>1.
This is the so-called Carathéodory inequality for a half-plane.

HinT. Consider the function

F(u):z‘f(—z’u+

1
u—1
it satisfies Re F'(0) < 0. Then apply the inequality from the previous problem.

) lul <3;

11.2. The Cartan estimate
If the function f(z) has zeros in the disk {z: |z| < R}, then

f(2)
log|£(2)| = log |P(2)] + log | eIk
where P(z) is a polynomial and the second term is a harmonic function. Therefore,
the problem of estimating the function f(z) from below reduces to that for the first
term. Evidently, such an estimate is possible only outside some neighborhood of
the zeros of the function f(z).

We shall consider a more general problem of estimating from below the loga-
rithmic potential of a finite measure.

u(z) = [ /C log |2 — ¢| dpu(<)

where (1 18 Borel measure, u(C) = n < co. Given H, 0 < H < 1, there exists a
system of disks in the complex plane such that

> ry<5H,

THEOREM 3. Let
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where r; are radii of these disks, and
H
u(z) > nlog —
e

everywhere outside these disks.

ProoF. Fix p > 0. A point z € C is said to be p-normal, if n(t; z) < pt, t > 0,
where n(t;z) = pu({C : |z —¢| <t}). If z is a p-abnormal point, then there exists
a number ¢t such that n(t;z) > pt. Let p, be the Lu.b. of the set of such values t.
Since u(C) < oo, the value p, is finite and attained for some t. Indeed, let ¢, ./ p,
and n(tm; z) > pty. Then

n(pz2) 2 Pty — Pps, ™M — 00.

Thus, for every p-abnormal point z there exists a radius p, and an exceptional disk
C, ={¢: |z —¢| < p,}. For normal points we set p, = 0.

Let r, = sup{p, : z € C}. We will prove that this Lu.b. is attained at some
point. Note that for a given € > 0 one can choose a value R, such that the measure
p of the domain {z : |z| > R.} is less than ¢, and hence p, — 0 as z — 0. Let
{zm} be a sequence such that p, " r;. Since the sequence of points z,, lies in
some disk |z| < R, we may assume, without loss of generality, that z,, — (. We
have n(ry + &;¢) > pri, and then n(ry;¢) > pry.

We delete from the plane the open exceptional disk C; with the center at {; = (.
Similarly, in the remaining part of the plane, the lL.u.b. of radii of abnormality is
attained at some point (. We select the corresponding disk C;. Continuing this
construction, we obtain a sequence of exceptional disks C,Cs,... with centers at
¢1,(2,...,;and radii ry > rg > --- .

Let us show that no point of the plane will be covered by more than five disks Cj.
Indeed, let a point 2’ be covered by disks C'},... ,C{ withradiir] >rj > --- > r}.
Draw vectors from 2z’ to the centers (f,...,(; of these disks. Since the center of
each disk lies outside other disks, the angle between each pair of these vectors is
larger than 7/3. Thus there are no more than five such vectors.

The disks C; are exceptional, i.e., n(r;;(;) > pr;. Therefore,

erj < Zn(rj;cj) <5u(C)="5n.
J J
Choosing p = n/H, we obtain

(1) > rj <5H.

Evidently, if there is an infinite number of disks, then r; — 0 as j — oo, and
since for each p-abnormal point z there is a radius of abnormality p, > 0, every
p-abnormal point will be covered by some disk C;.

Tt remains to estimate the potential u(z) at an arbitrary normal point z. It is
evident that

1
w2 [[ gl lan(c)= [ rogtants)

1 Lot
:n(t;z)logt} —/ nlt2) gy
0 0 t
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and since n(t; z) < pt, we have
1
t.
u(z) > — / lt2) g
0 t

In addition, n(t; z2) < n = pH. Therefore,

H 1
t 1 H
u(z)z—/o %dt—/HT—Zdt:—n—nlogﬁznlog;,

and the theorem is proved.

In particular, if

n
P(Z) = H(Z—Zk) )
k=1

then the inequality

n
(2) PE) = (2)
holds outside exceptional disks (C;) with the sum of radii not exceeding 5H. Due to
the Maximum Principle, one can assume that each exceptional disk contains at least
one zero z;. Notice that the estimate (2) is not precise. In the paper Cartan [24]
(see also Levin [82, Chapter 1]) a more precise estimate is proven: for a polynomial
P(z) the inequality (2) holds outside disks (C;) with the sum of radii not exceeding
2H. In the paper Grishin [47] it is proven that in the statement of Theorem 3
one can replace 5H by 2H as well.” The method of proving Theorem 3 presented
here is essentially due to L. Ahlfors. This method is frequently used in potential
theory (see the monographs Nevanlinna [102], Landkof [78]) for estimating integral
operators with kernels depending on the difference of arguments:

/g(
X

In the paper Gorin, Koldobskii [45] infinite-dimensional analogs of the Cartan
estimate are found.

Ahlfors’ method has applications in approximation of a subharmonic function
by the logarithm of modulus of entire function. The first general result of such
a type was proved by V. S. Azarin. In the paper [124] by Yulmukhametov the
following theorem is proved.

Let u(2) be an arbitrary subharmonic function of finite order. Then there exists
an entire function f(z) such that

’u(z) —log |f(z)|| =O(log|z]), |2| — oo,

outside a set of disks (C;) with finite sum of radi.

o= ) du(c) = | " o) dultiz) |

7It seems that the best constant for the sum of radii of exceptional disks is still unknown
either for logarithmic potentials or for the logarithm of modulus of monic polynomials, see Hayman
[52, Problem 4.7].
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11.3. Lower bounds for the modulus of an analytic function in a disk
THEOREM 4. Let f(z) be a function analytic in the disk {z : |z| < 2eR},
[f(0)] =1, and let n be an arbitrary small positive number. Then the estimate

g (2) > ~H(n) log My (2eR) . H(n) =log -

is valid everywhere in the disk {z : |z| < R} except a set of disks (C;) with sum of

radui
Zf‘j < ’I7R .

PROOF. First, we construct the function

1

(p(z _ 2R H Z—ak

)2 —arz’

ai,...,a, being the zeros of the function f(z) in the disk {z : |2| < 2R} with
account taken, as usual, of their multiplicities. We have |©(0)] = 1 and

(2R)"
a1 an|

The function ¥(z) = f(2)/¢(z) has no zeros in the disk |z| < 2R, and by Theorem 2
we conclude

lp(2Re™)| =

(2R)"

|a1...an|

log [(2)] > —2log My (2R) = —2log M;(2R) + 2log

Y

-2 IOng(QR) > —2log Mf(QGR)
for |z| < R. Thus
(3) log|f(2)| = —2log My(2eR) + log |¢(2)|

for |z| < R. Let us now estimate the second term on the right-hand side of this
inequality.
For |z| < R we have

n
(4) H |(2R)? — @xz| < (6R?)"™ .
Applying Theorem 3 with H = nR/5, we obtain the inequality
n
R
(5) logH[z—ak|>nlogg—e

k=1

everywhere outside the disks (C}) with the sum of radii not exceeding nR. Taking
into account (4) and (5), we obtain

2R)™
log [p(2)| = 10g|a(17)| +10gH |z — ag| — logH I( (2R)? — a2

k=1 k=1

R
> nlogg—e —nlog6R? + nlog2R = nlogl—56
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for |z| < R, but outside the exceptional disks (C;). Using the corollary to the
Jensen formula, Section 2.3,

n=n(R, f) < log My (2¢R) ,

we have 15
log |p(2)| > —log My(2eR) 1og76 .

Inserting this inequality into (3), we obtain
15¢3
log|f(z)| > —log M;(2eR)log .
for |z| < R, but outside the disks (C;). The theorem is proved.

Using the Nevanlinna characteristic, we have proved in Section 2.4 the theorem
on division of entire functions. Another way of deriving division theorems is based
on lower estimates of analytic functions.

THEOREM 5. Let fi(z) be an analytic function inside the angle D = {2z : a <
arg z < B}, and let f2(z) be an entire function. Assume that both functions have
order p and mean type. If the quotient ¢(z) = fi(2)/f2(z) is analytic inside the
same angle, and if
(6) (P(Re™)| < e, [p(Re'?)| < AR
on the boundary of the angle, then o(z) also has the order p and mean type in D.

PRrROOF. By Theorem 4, we have
as
log|fa(2)| > —H(n)(os, +€)(2¢)’R*
for |z| < R and outside the exceptional disks (C;). This implies that the estimate
) log [p(2)] < [H()(o, +€)(2€)° + o, + el R” = BR”

holds for z € D, |z| < R, but outside (C};).
The exceptional disks (C;) satisfy the condition

Z r; <nR,

|z, | <R

where z; are the centers of the disks, and r; are their radii. Hence, there is a number
R; lying between R and (1 — 2n) 'R such that the circumference |z| = R; does
not intersect the disks (C;). Using (6) and the Maximum Principle we conclude
that the estimate (7) is fulfilled for all R (possibly, with another constant B). The
theorem is proved.



LECTURE 12

Entire Functions with Zeros on a Ray

12.1. Asymptotic behavior of canonical products

Let 0 <A1 € Ao < --- € Xy € -++ let n{r) be the counting function of the
sequence {A,}, and let the limit
(1) A = lim nir)
r—oo 1P

exist for a noninteger p. We consider the canonical product

I(2) = ﬁe(i,p) :

where p = [p], and
G(u,p) = (]_ _ u)eu+u2/2+.._+up/p ’

and assume that —7 < arg(l —u) < w. For such u the function log G(u,p) is
single-valued in the complex plane cut along the ray [1, c0).

THEOREM 1. If a sequence {\,} satisfies (1), then, uniformly with respect to
8, 0 < 6 < 2w, the asymptotic relation

TA

2 log H(re™) —
(2) og II(re™) sinp

- 6
e 0=mrP | sin 7= o(rf), r— 00

holds in the complex plane cut along the positive ray of the real azis.

Proor. We have
0 _ % z N_ [T z
log I(re )—-T;logG()\n,p> /0 logG<t,p>dn(t)
= —Zp+1 /Oo 7n(t) dt .
0

tPH1(t — 2)

Let us estimate the modulus of the expression

S = logII(re) + ,,.10+1ez(10+1)9/ AtPdt

0 tp+1(t - reie)
= —zPH! /Oo 771(75) — At dt .
o (- 2)

81
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Because of (1) we obtain

©© — At
|S|§r”+1/ Mdt
0

tPHL]t — reif]

N 00 —p—1
— AtP tp—P
(4) < pPTl / M dt + erPt1 / i
0 0

trH1jt — retd| [t — retf|
= Jl(T, 9) + JQ(T, 9)
as N > N(e). Then

N
_ optl In(t) — At _
(5) Ji(r,8) =rP /0 TR r— dt =0(r?)=o(rf), r— o0,

uniformly with respect to 8, 0 < 6 < 27.
To estimate the term J, we set t = r7. Then

TP—P— 1
= grf =
Jo(r, 6) ET/O |7__619‘ dr = erf / / |7__619|

o <5P(/27—pp1d7’+/0O LA d7'><€cpp
"\ J, sin(6/2) s JL— /7] sin(6/2)
Moreover,
—p—1
Ao i+ 10 / Tt e ier1)e / FTrTdt
0 tp—l—l(t - 7‘67‘9) 0 t— 619

The latter integral is easily calculated using residues. It is equal to

T TV
ez(p 1-p)@ inp

sinmp
Thus the relations (3)—(6) imply the assertion of the theorem.
PROBLEM 1. Prove asymptotic relation (2) under the assumptions that A, are

complex numbers such that each angle around the positive ray contains all but
finitely many An, n/A, — A, A > 0, p is noninteger, and § <6 <27 —§, § > 0.

REMARK. Taking the real part of both sides of equation (2), we obtain
TArf cos p(6 — ) o(rf)

/ 1 II 16 — .
@) og [T1(re™)| sinmp sin(0/2)
Evidently, this yields

hr(6) = cosp(f —m), 0<6<2r,

sin wp

and, by the continuity of the indicator, the latter equation holds for all 8, 0 < 6 <
2m. By the property of the indicator stated in Theorem 2, Section 8.2, we obtain

. s A
log |TI(re*?)] < [ .7r cosp(6 —m) + 6] rf
sinmp
In what follows, the function cos p(f — ) is meant to be extended from the
interval {0 : 0 < 6 < 27} as a 2m-periodic function.
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THEOREM 2. If A, is a sequence of positive numbers such that n/A, — A,

n — oo, and if
2

then -
(7) hn(0) = mA|siné| ,

and for 8 # 0,m, the limit
1 II 10
hin(6) = lim 28l
=00 T
exists.

ProoF. The sequence {)\2} has density A with respect to the order p = 1/2.
According to the previous theorem,

1 1/2
10g|H(\/E)|=7FAR1/2COS§(QO—7F)+$, R — 0,
where RV/2 =r = |z, /2 =0 = arg z; ie.,
i0 . o(r)
log |TII(re*”)| = wA|sin|r + r— 00, 0<|0] <,

|sing]’

which completes the proof.

12.2. Theorem on a segment on the boundary of the indicator diagram

THEOREM 3. Let f(z) be an entire function of exponential type. If f vanishes
at a point set {\,} having the density
A= lim = ,
n— o0 n
then the supporting line of the indicator diagram of f(z), which is orthogonal to
the direction arg z = 0, and the indicator diagram itself have a common segment of
length at least 2mA.

ProOF. Consider the function

with
(o0} Z2
n=1 n
By Theorem 5 from the previous lecture, ¢(z) is of exponential type in the upper
half-plane.
Theorem 2 implies

hs(8) = hw(é) + hi(0) = hy(0) + wA|sind)| ;

ie., for |§] < m/2 the supporting function of the indicator diagram I coincides with
the supporting function of the sum of the indicator diagram I, and the segment
[—imA,irA]. To complete the proof, we observe that the boundary of the convex
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compact set I, + [—imA,imA] contains a segment of length at least 27 A which is
parallel to the imaginary axis.

DEFINITION. A domain G bounded by continuous curves y = a{z) and y =
a(z) +d, z € R, is called a curvilinear strip of width d.

THEOREM 4. Assume that all singularities of the Borel transform of an entire
function F(z) of exponential type are in a curvilinear strip of width d. If F'(z)
vanishes at points {\n} and if

n d
A= lim — > —
nl—bnc}o )\n = 2r’
then F(z) = 0.

PRrROOF. Consider the smallest convex compact set K containing all the sin-
gularities of the Borel transform of F'(z). We see that the vertical line supporting
K contains no segment of length 27A lying on the boundary of K. Then by the
previous theorem we obtain F'(z) = 0, proving Theorem 4.

Theorems 3 and 4 can be used for the study of the completeness of exponential
systems {e*n#}.

THEOREM 5. 8 If \,/n — 1, n — oo, then the system of functions {e’*} is
complete in A(Q), where Q is an arbitrary curvilinear strip of width 2m, and is not
complete in any simply connected domain which contains a closed segment of length
2m parallel to the tmaginary axis.

PROOF. If a system {e*"*} is not complete, then there exists a function f(z) #
0 in a neighborhood of the point at infinity satisfying f(co) = 0, with all its
singularities lying in € and such that

/L e f(z)dz = 0,

where I C € is a simple closed curve surrounding all these singularities. The
function

d(\) = /Le’\zf(z) dz

is an entire function of exponential type, and all singularities of its Borel transform
f(2) are in the strip Q. By Theorem 4, the equations ®(A,) =0, n=1,2,... yield
®(\) =0, and f(z) = 0 giving a contradiction.

Now, let us prove the second assertion of the theorem. Let G be an arbitrary
simply connected domain containing a closed segment / = [@ — im, @ + im|. Using
(7), we see that the indicator diagram of the function

F()\) = ™ ]o:o[ (1 - i—;«)

coincides with the segment I = [a —im, a+47], and the conjugate diagram coincides
with the segment I = [@ — im,@ + im]. By the Pélya theorem
1
FO = 5 [ () dz,
c

2mi

8 This theorem was proved independently by A. F. Leont’ev and the author.
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where C C G is a simple closed curve surrounding the segment I. A nontrivial func-
tional from A*(G) corresponding to the function f(z) annihilates all the functions

e*? and hence this system is not complete.

Final results on completeness of the system of functions {e***} in curvilinear
strips are established in the papers Malliavin and Rubel [90], and Khabibullin [66].

Theorem 3 may be used to solve completeness problems for systems of functions
in spaces with another topology, for example, in the spaces LP(K) or C(K) where
K is a compact set.

THEOREM 6. Let K be a rectifiable curve which is the graph of a continuous
function defined on @ closed segment, and let A = {\,}52, be a sequence of complex
numbers satisfying the condition

DA , n — 00 .
Then the system E(A) = {e?»*}2°, is complete in each of the spaces LP(K),
1 <p< oo, and C(K).

Proor. For the sake of definiteness, consider the space C(K). If the system
E(A) is not complete in this space, then there exists a nontrivial measure du(z)
supported by K and orthogonal to all functions of the system E(A). Using this
measure we construct an entire function of exponential type

<I>()\):/Ke’\z dp(z)

vanishing at the points of A. The Borel transform of this function has the form

w(C)=/KCé”_(ZZ),

and hence the function ¢(¢) is holomorphic in C\ K. If this function does not
vanish identically, the conjugate diagfam of the function ®()) coincides with the
convex hull of K or with the convex hull oi some part of it. It is evident that such a
convex hull has no vertical segment on its boundary, which contradicts Theorem 3.
Thus, ®(\) = 0. This yields

<1><k>(0)=/ Fdu(zy=0, k=0,1,2,...,
K

and since polynomials are dense in C(K),° we obtain that the measure du is or-
thogonal to the whole space C(K). The theorem is proved.

REMARK 1. Let K be an arbitrary compact set in the complex plane and let
A(K) be the closure of polynomials in the uniform norm on this compact set. If A
and E(A) are as in Theorem 6, and, for each real a, the diameter of the intersection
of K and the vertical line Re z = a is less than 27A (or the intersection is empty),
then the system E(A) is complete in A(K).

It is worth mentioning that by Mergelyan’s theorem (Mergelyan [98]) the space
A(K) coincides with the space of functions continuous on K and holomorphic in
the interior of K.

9This statement is a rather particular case of a well-known theorem of Mergelyan, see [98].
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REMARK 2. If there are two points z1, z2 in a compact set K such that Re z; =
Rezz and |21 — 22| = d > 0, then the system of functions E(A), A = {27ki/d},
k € Z is not complete in C(K).

Indeed, each function of this system assumes equal values at the points z; anc
72, and hence the system E(A) could not be complete in A(K). Evidently, a subset
of this system could not be complete as well.

ProBLEM 2. If ¢ > 0,b > 0, and an entire function
b
F(\) = / cos( AWt Y(t)dt, o € L(—a,b)
vanishes on a set {\,}, where
n
An
then ¥(t) = 0 a.e. on (—a,0).

—A>0, n— oo,

12.3. Lower bound for the canonical product
with positive zeros having density

For the canonical product
ad z
T(z) = G(— ) , 1 An >0,
(z) ll P p<p<p+1,

with

lim w =A

r—oo 1P
we have established the asymptotic formula

o(r#)

os p(6 — —— 0<8<2m.
cospl0=m)+ Go@73)
The latter relation is of no meaning for 8 = 0. However, it can be defined more
exactly to be valid for § = 0 as well. To this end, it is necessary to exclude from
the complex plane some exceptional disks containing zeros of II{z), i.e., the points
An.

DEFINITION. A set of disks (C;) in the complex plane will be called a C%-set

: TArf
log |TI(re 9)| = snap

if
, 1
Jm g 2 =0,
|z;|<R
where z; are the centers of (C;), and r; are their radii.

THEOREM 7. Under the condition

(8) lim % dt = A

t—oo

there exists a C0-set of disks (C;) outside which the asymptotic relation

(9) log [TI(re'%)| =

J

A
i prPCOSp(Q—W)—i—o(rP), r— o0,
7r

holds uniformly with respect to 8, 0 < 8 < 2.
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PROOF. In the following proof we denote by K various numbers depending on
p and A only. Firstly, we shall prove that, for each small enough value ¢ > 0, there
exists a set of disks (C;(e)) with centers z; and radii r; such that

1
(10) limsup — Z r; <nle),

oo lz; <R

where n(e) — 0 as ¢ — 0, and that outside (C;(¢)) the inequality
TA

1 log |TI(re*®)| —
(11) og |(re™)] sinrp

cos p( — ﬁ)r”‘ < Kyer?

holds. We have already proved that the inequality

: A
2 log|M(re*)| < [~ - p
(12) og |TI(re™)| < Snrp cos p(@ — ) +6:|7‘
holds as r > 7., and the inequality
; A
(13) log |(re®)| > { T2 cos p0 —m) — e]r”
sinmp

holds as r > 7, and €/2 < 0 < 27 — /2.
For each natural n we set R, = (1 +¢€)", zg = Rne*/?, and consider the

function
M(zo +w)  T(2)

d(w) = = ,
(w) I(zo) (o)
in the disk |w| < 2eR,,. We note that the disk {|z — 2| < 2¢R, } contains the sector

z=w+ 29,

S, = {rew t Roo1 <7< R, 18] < %} )
Moreover,
max{|arg z| : |z — zg| < 2eR,} = % + arcsin2e < 3¢,
max{|z|: |z — 20| < 2eR,} = R,(1+ 2¢).

By the lower bound of the modulus of a holomorphic function (Theorem 4 of the
previous lecture), given n > 0, the inequality
15€3
log |®(w)| > —H(n)log Mg (4eeR,) ,  H(n) =log o

holds everywhere outside disks (CJ(-")) such that

er(-n) < 2enR, =2en(l+¢&)" .
J

Inequalities (12) and (13) imply

A
log Mg (4ceR,) < max { ,ﬂ
|6]<3e LsinTrp

TA c
— €\ 1o )
[Sinﬂ'p COS'O(Q ) E:an < KeR?, .

cosp(§ —m) + 6} (1+ 2¢)°RE
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FIGURE 3

Thus, for |w| < 2eR,,, but outside the disks (C'](-"))7
log |®(w)| > —H(n)KeR? .
Setting w = z — zg, we obtain

log |TI(z)| = log [TI(z0)| + log |®(w)|

osp(g —71') —e—H(n)Ke}Rﬁ

Eet
sinmp

> [siZ?rp cos p(f — m) — (K1 + KH(n))e} P

for z = re'?, but outside the exceptional disks (C](")).

If n = n(e) is chosen such that

15¢3 1
H(n) =log % = —_,
(n) = log = 7
then
0 TA L o
(14) log |TT(re*)| > [simrp cos p(f — ) K\/E}r

with re?? € S, but outside the set of exceptional disks (C](-")). Let us now consider

the system of disks

(€(e) = (™).
Let z; be the centers of these disks and let r; be their radii. Then for Ry_; < R <
Ry

N N
ST eSS i <o S (e <ol + N < mR.
|z,|<R n=0 j n=0
Therefore, the system of disks (C;(e)) satisfies the condition (10). By estimates
(12), (13), and (14), the inequality (11) holds.
In order to complete the proof of Theorem 7 we shall construct an exceptional
CP-set of disks. For this purpose let us choose a sequence €, \, 0; then n, =
n{ep) v 0. For each p we have found, as described above, an exceptional set of
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disks (C;(e,)) with centers z;, and radii ;. Starting with R(® = 1, we choose a
value R® > pR®=V 50 that

Z Tip <2npR

|Zj|<R

as R > R®). We construct the system (C;) including in it all disks from (C;(e,))
whose centers are in the annulus R® < |¢| < R®tD, p = 0,1,2,.... Then, for
RM) < R < RIN+1) | we obtain

N
Z T3 = Z Z Tjp T Z TjN

|z;|<R p=1 Rr—1)<|z; ,|<R®) RN <|2z; n|<R
P s

N
<Y 2y RP 42, R
p=1
< 2171( L RN S l)R“\’) + 29y R + 2ny R
= 29.3.4..-N '3.4.-.N N
=o(1)R, N - 0.

Evidently, the asymptotic relation (9) holds outside the disks (C;). The theorem
is proved.

REMARK 1. If

mo-0-5). f-e
n=1 n n

then, making a change of variables 2% = w, we obtain an entire function of non-
integer order p = 1/2. Applying the latter theorem to this function, we find that
outside a CC-set

log |I(re®)| = 7A|sinf|r + o(r) , T — 00.

REMARK 2. If zeros {\,} lie on the ray {2 : argz = 9}, then equation (9) is
replaced by

. ArP
log [TI(re'?)| = ﬂ ! cosp(f —+p — ) + o(r?) | P<O <Y+ 2r,
sinmp

valid outside an exceptional C-set.

REMARK 3. As an analysis of the proof of Theorem 7 shows, one can replace
the assumption (8) by its corollary

. o
log | f(re?)| = ;f;p cos p(6 — ) + o(r?) , 6<8<2r-6.
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PROBLEM 3. Let a sequence of positive integers {\,} has density A with re-
spect to the order p =1 and let

oo
z
II(z) = H G(A—,p> .
n
n=1
Prove that, outside a C%-set of disks, the asymptotic relation
log [TI(re*)| = Acos@rlogr + o(rlogr) , 7 — 00,

is valid.

PROBLEM 4. Prove that if f(2) is an entire function of minimal type with
respect to an order p, then

log|f(2)| = o(|21"), 2] = o0,

everywhere outside a C%-set.



LECTURE 13

Entire Functions with Zeros
on a Ray (Continuation)

13.1. The Valiron theorem

In this section we shall prove theorems which may be regarded as converse to
the theorems proved in Lecture 12.

THEOREM 1. Let f(z) be an entire function of noninteger order p with positive
zeros, and let, for each § > 0, the asymptotic relation

) ArP
(1) log |f(re')| = = cosp(6 — m) 4 o(r”)
hold uniformly with respect to 6, § <0 < 2w — 6. Then the limit
i
(2) lim n(t) =A
t—oo {P

exists, where n(t) is the zero-counting function of f(z).

PROOF. The asymptotic relation (1) implies that

hi(8) = —2 cos p(6 — )

sinmp

for 0 < 8 < 27. Since the indicator is a continuous function, the latter equation
holds for 8 = 0 as well. It yields

Q log £ (re)] £ [ T2

cosp(@—ﬁ)—i—e]rp, e>0.
sinmp

According to Remark 3 to Theorem 7 of the previous lecture, relations (1) and (3)
imply that the asymptotic relation (1) holds everywhere outside an exceptional
CP-set of disks (C;) containing zeros of f(z).

Let us now choose a number R > 0 such that the circle {z: |z| = R} does not
intersect the exceptional disks (C;). Assume that f(0) = 1. Then, by the Jensen
formula,

R 27
N(R):A wdt:%/o log | f(Re®)| do

0 2m
= —ER— / cos p(6 — ) df + o( R*) = éR" + o(R*) .
2rsinmp Jo p

If R is a number large enough that the circle {z : |z| = R} intersects the
exceptional set, then for each § > 0 we can find &2 = R(R), 0 < h < §, such that

91
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the circles |z| = R(1 - h), |z| = R(1+ h), R > Ro(6), do not intersect this set. We
obtain

A o)
—(1—h)PRP+o(RP)§/O M0 g1 <

a
p p

(1+ )P R + o(R?),

which shows that the asymptotic relation (4) holds as R — oo.
Let us show that equation (4) yields relation (2); this is a standard Tauberian
argument from real analysis. Choosing k > 1, we easily derive from (4)

kR
n(R)logk < / Zl% dt = %(kp —1)R? +o(R"),
R

and
kR
n(kR)logk > / n(t) dt = %(kp —1)R* + o(R") .

In other words,

n(R)  AkP—1
<2 1
Re — p logk +oll),
n(kR) _ A kP —1
2 1.
Ry = kg T oW

\%

Using these two inequalities, we obtain

Ak—1 . . .nR) _. n(R) _ AkP -1
A < <1 <=
) krlogh ~ minf —p2= < lmsup == < %

for each k£ > 1. Passing to the limit as k& \, 1, we get

() n(R) _
lhni.lo%f — = hgljouop e

The theorem is proved.

In fact, Valiron showed that (2) follows from a far weaker form of (1). To do
this we remind the reader that for a function ¢(z) which is analytic and bounded
above in the upper half-plane we have defined |p(z)|, z € R, as

lo(z)] = limsup [p(2)] .

z—z,lm 2>0
THEOREM 2 (on two constants). Let ¢(z) be a bounded analytic function in
the half-plane {z +1iy : y > 0}, let |p(z)| < My, for z < 0, and let |p(z)| < My for
z > 0. Then
(5) lp(re’®) < M7y =0

for0<8<m.
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(+7)/2

FIGURE 4
PROOF. Let
g .
u(z) = 4 log My + (1 - —-) log M, , z=re? .
T T
Evidently, u(z) is a harmonic function in the half-plane ¥ > 0. The function

w(z) = log |p(2)| — u(2)

is subharmonic. It is bounded above in the half-plane {z 4+ 4y : y > 0} and its
boundary values are nonpositive on the real axis. The Phragmén-Lindel6f theorem
implies that w(z) < 0 for y > 0, which is equivalent to (5).

THEOREM 3 (Lindeldf). Let ¢(z) be a bounded analytic function in the upper
half-plane, and let |p(z)| — 0 as x — +oo. Then p(z) — 0, 2 — oo, uniformly
inside the angle {z: 0 < argz < v} for each v < m.

PrROOF. Indeed, if |¢(2)| < M and if |p(z)| < § as z > x5, then the inequality

lo(2)] < MY /250y /2

holds inside the angle {z : 0 < arg(z — z5) < (7 + v)/2}. The conclusion of the
theorem now follows by inspection of Figure 4.

COROLLARY. Let f(z) be analytic in the upper half-plane and continuous up to
its boundary. Assume that f(x) has distinct limits as x — +oo. Then the function
f(2) is unbounded.

THEOREM 4 (Valiron). Let the zeros of an entire function f(z) of noninteger
order p and mean type lie on the positive axis, and let
TA

log |f(—7)| = sinﬂprp +o(r?), r— 00 .

Then
n(t) = At? + o(t?) , t— 00.

PrOOF. According to the Hadamard theorem, Section 4.2, we have
log |f(2)| = log [II(2)| + Re Py(z) ,
where II(z) is a canonical product, and P, is a polynomial of degree ¢ < p. Thus

A

sinmp

(6) log [II(—7)| = r’ + o(r?), T - 00 .
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The function log II(z) may be represented (see Section 12.1) in the form

n(t)dt
logH(z):—zp+l/0 t?“rl((%z)’ 0 <argz<2m, p=p|.

Since f(z) is of order p and mean type, n(t) 2 ct?, and hence

p—p—1

(7) [logI(2)| < Crp"'l/ t dt < CgrP
0

[t~ 2|
for 0 < 6§ < 6 < 27 —§. We choose the branch of the function (—z)” in the complex

plane cut along the positive axis such that (—z)? > 0 on the negative axis, and set

o(2) = log II(z2) A

(=2)p  sinmp
By (7), the function ¢(z) is bounded inside the angle {z: 0 < § < argz < 27 — §}.
Further, the function logII(2) is real on the negative axis. Together with (6) this
implies that ¢(—7) — 0 as r — 0o. By Theorem 3 we find that ¢(2z) — 0 uniformly
inside the angle é < argz < 27 — § as z — oo . Hence
TArP

sinwp

log (re*®) = e Lo(rP),  6<O<2r—6.
According to Theorem 1, this asymptotic relation yields n(t) = At? + o(t?), which
proves Theorem 4.

13.2. Functions of completely regular growth

If zeros { A\, } are located on a finite number of rays arg z = 9, with densities A,
with respect to t?, p being noninteger, then it follows from Theorem 7, Lecture 12,
that the canonical product 1(z) with zeros at {\,} has the asymptotic behavior

wrf

log 11(2)| = ZAkcosp(O—wk—ﬂ)—l—o(rp), 0—2m <ty <8,

sinmp =

outside an exceptional C?-set. The latter sum can be written as a Stieltjes integral:

wrf

log [TI(2)| = /[ o801~ W) dAW) o).

sinmwp

where A is the measure supported by the points ¥, A({¢x}) = Ay, and, as before,
cos p(f — ) is the 2m-periodic continuation of the function cos p(é — ) from [0, 27]
to the whole axis.

This result can be substantially generalized. To avoid technical difficulties, we
restrict ourselves to a narrative exposition omitting the proofs.

For a noninteger p, every p-trigonometrically convex function h(f) may be
represented in the integral form

™

(8) h(6) = /[ , CoPl0 % = m) AW,

sinmp

where A is a nonnegative Borel measure on [0,27). Denote by ny(r;v:,v2) the
number of zeros of an entire function f(z) of order p in the sector {z : |z| <
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r, 1 < argz < ¥q}. Assume that for each 91,9 € [0,27)\ Q, where @ is at most
countable, there exists the limit

(9) Af(1,92) = lim

=00

ns(r,¥1,12)
TP

which is called the angular density of zeros of the function f(z). Then the asymp-
totic relation

(10) log | f(re™)| = h(8)r® + o(rF) , T — 00,

holds everywhere outside an exceptional C-set. Here, the indicator hs(8) has the
form (8) with the measure A coinciding with the angular density of zeros of f(z).
In other words, on each semi-interval [11,¥2), ¥1,%2 € Q, the measure A is defined
as A([¢r,92)) = A (1, ¢2).

For an integer p > 0, every 2m-periodic p-trigonometrically convex function
h(6) can be represented in the form

(11) he(9) = /[02 ](9 — ) sin p(0 — ) dA(y)) + T cos p(0 — ) -

In this case, in addition to the existence of the limit (9), the following condition
must be imposed: there exists the limit

1 Z
= i = 1 — —P
(12) b1 Rh—r.noo e Rh_n.ﬂoo (ap " |Anl<R g )

(see Lecture 5). The relations (9) and (12) imply that (10) holds outside a C%-set
with the indicator h(6) defined by (11) with §; = rei®.

The entire functions satisfying (10) are called the functions of completely reqular
growth. The following theorem is valid:

The zeros of an entire function of completely regular growth have an angular
density (9) with

Af(¢1 £0,92 £0)

1

(13) o

{h'(¢2 +0) — k(¢ £0) + p° /wz h(¥) d¢} :

P1 <y

For an integer p, the relation (12) holds as well.

For p = 1 (i.e., for entire functions of exponential type) equation (13) has a
simple geometrical interpretation. Namely, let us consider the indicator diagram
of the function f(z) and draw the supporting lines orthogonal to the directions
argz = 11,1 (see Figure 5). Let § = S(w1,12) be the length of the arc of the
boundary of the indicator diagram between the supporting points z; and 25 on
these lines (for the sake of simplicity, we assume that the indicator diagram has no
segment on its boundary). Then the angular density of zeros of the function f(z)
of completely regular growth is

1
Af(hr, 1) = Q;S-
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z2

21

T

Y2

——

Y

FIGURE 5

The proofs of these results can be found in Chapters IT and III of the monograph
Levin [82], which also contains numerous applications. Further results on functions
of completely regular growth can be found in Appendix III to the same monograph.
In the recent monograph Ronkin [117] the theory of functions of completely regular
growth is constructed based on the concept of weak convergence.

V. 8. Azarin [7] proposed a new approach to the investigation of the asymptotic
behavior of entire functions of finite order. This approach is based on the theory
of subharmonic functions and allows one to obtain many new results, as well as to
simplify proofs of many well-known theorems.



Part II. Entire Functions of Exponential Type

According to the Phragmén-Lindel6f theorem, every function f analytic and of
exponential type ¢ in the upper half-plane C, which is bounded by some constant
M on the real axis, satisfies the inequality

[flz+iy)| < Me™, y>0.

Therefore, if a sequence of such functions of exponential type not exceeding some
oo converges uniformly on the real line, then it converges uniformly in each strip
of finite width which is parallel to the real axis. In addition, the limit function is
also of exponential type ¢ < a.

A similar effect appears if the uniform norm is replaced by the norm

1= ([ Ir@ypas) ™.

In the second part of the book we study entire functions that are bounded on
the real axis in a weaker sense, namely functions of class C.

DEFINITION. By the Cartwright class C' we mean the class of all entire func-
tions of exponential type satisfying the inequality

oo -+
(0) [mﬁ%%ﬂﬂ<m.

The functions of this class have completely regular growth (see Lecture 13 in
Part I), and moreover, they possess some additional regularity of the growth and
distribution of zeros, which is very important for applications. For example, the
Fourier transform of a compactly supported function or distribution is an entire
function of exponential type satisfying condition (0). The functions of class C also
arise in boundary value problems for differential equations where eigenvalues are
zeros of such functions. The study of functions of class C is based on two main
results: representation of functions of class C in the half-plane, and the Hayman
theorem on the estimate from below of the potential of masses located in the closed
half-plane. Using this study, we turn to the properties of exponential functions
{e***} in the space L?(—m,7) and to interpolation problems in some classes of
entire functions of exponential type.
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LECTURE 14

Integral Representation of
Functions Analytic in the Half-plane

14.1. The R. Nevanlinna formula

First, we obtain the Riesz-Herglotz formula. This formula provides a represen-
tation of a function that is analytic in the disk {w : |w| < R} and has nonnegative
real part. The Schwarz formula gives the following representation of such a function
o(w) = u(w) + iw(w) in the disk {w: |w| < p}, p < R:

L7 pe 4w i0 ;

In other words,

1 m pele+w ]

where o, is a nonnegative Borel measure on the segment [—m, 7| with identified
endpoints. This measure is defined by the relation

a,(E)= /Eu(pe”)dT.

Since o,([—m, n]) = u(0) < co, by Helly’s theorems one can choose a sequence p, T
R such that there exists the weak limit lim,_,o, 6,, = &, and the representation

1 Re? 4+ w .
plw) = > /[_WT] Jr— do(0) + i Im(0)

holds.
This relation is called the Riesz-Herglotz formula. If applied to a function w(w)
positive and harmonic in the disk {w : |w| < R}, this formula gives

1 R? —|w|?
= — ———d .
u(w) 2 /[_n,n] |Ret® — w)|? a(0)

Now let 1(2) = u(z) + iv(z) be a function analytic in the half-plane C., and
let v(z) > 0 for y > 0. Setting

T— 2 1—-w
W= - , Z=i—1,
1+ 2 1+w
we obtain the function
(w) = sp(i7—2)
w) = =Pl
v 1 1+w/’
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which by the Riesz-Herglotz formula admits the representation

1 e + w
p(w) = .
T

. do(0) + il 0).
oy e = 7O TR
If the measure do has a discrete mass 2ro at the point § = 7, one can write this
representation in the form

1—-w

1 e +w
plw) = o /(_Twr) ———do(0) +o 1

e —

o T im0,

and the inverse substitution yields the Nevanlinna formula

@ v =1 [ T L )+ oz + Rew(d)

Mo t—2
where (i — t)(i4+t)~' = €%, t = tan6/2, and the nonnegative Borel measure u

1
is defined by the relation u((—oo,t)) = 50((—7r,2arctant)) and is of bounded

variation on the whole real axis. If
W(B) = [+ ) dutt),
E

then relation (2) can be written in the form

1 [ 1 t .

(3) ¥(z) =~ [m [m - ml dv(t) + oz + Re(d)
where o > 0, and

* duft)
@ [ tra<e
Taking the imaginary part of (3) we obtain

_y [T dv(t)

(5) U(z)_‘ﬂ_/_oo't__zlg_'—g

Thus, the following theorem is proved.

THEOREM 1. Euwery function v(z) nonnegative and harmonic in the half-plane
C. admits representation (5), where v is a nonnegative Borel measure satisfying
condition (4) and o > 0.

One can easily obtain an explicit expression for the measure v. Indeed, if y > 0,
then integrating both sides of (5) with respect to z we obtain

/‘jv(z—i—iy)dw: l/oo [arctanx—t ﬂ dv(t) + (8 — a)oy .

TJ-0o Y

z—t|8

is equal to the angle at which the segment [a, §] is

viewed from the point z = z 4 ¢y. Therefore, if (¢) is continuous at the points «
and 3, we have

The quantity arctan

B
(6) lim/ v(z +iy)dz = v(B8) —v(a) .

yl0 Jo
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This relation remains true for arbitrary a and § if v(t) is defined as v(t) =

[v(t+0)+v(t—0)]/2 at the jump points of the function v(t). It follows from relation
(6) that the function v uniquely defines both the measure g and the number o.

REMARK. Suppose that the function v(z) in Theorem 1 has continuous boun-
dary values v(z) on the real axis. Passing to the limit under the integral sign in
(6) for each o and 3, we have

or

In the general case we denote v(z) = liminf, o v(z + 4y),'° and applying the
Fatou Lemma obtain the inequality

Ié]
/ v(t) dt < v(8) — v(a)
which can be written in the form
v(E) > / v(t)dt .
E

COROLLARY 1. If the function v(t) is positive and harmonic in C, then

° o(t)
dt .
/ 1 2 < o0

oo

COROLLARY 2. Let f(z) be an analytic function in C. which is nonvanishing
and continuous up to the real azis, and let log |f(2)| <0, 2 € C.. Then

* lo t
loglf(z)izi/ |tg_7fz(|2)|dt+ay, 0g<0.

The example
22 i
£6) = e (=)

shows that the condition that f(z) is nonvanishing cannot be omitted.

14.2. Representation of a function f(z) analytic in the half-plane
such that log |f(z)| admits a positive harmonic majorant

Now, we shall consider functions that may have zeros in the half-plane.

10The famous Fatou theorem asserts that the limit exists for a.e. 2 € R; see for example
Nevanlinna [102] or Koosis [71].
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THEOREM 2. Let a function f(z) be analytic in the half-plane C, let
log | f(2)| < u(2)

where u(z), z € Cy, is a positive harmonic function, and let {ax}7° be the sequence
of all zeros of f(z). Then

> Imak
o 2 o fasP =

k=1

PrOOF. If v(z) is the harmonic conjugate to u(z), then the function
p(z) = f(2)e

is analytic in C4, has the same zeros as f(z), and satisfies the estimate |p(2)] < 1.
Without loss of generality we may assume (i) # 0. Consider the sequence of
functions

N

(8) In(z) =[]

k=1

1-— Z/ak
1-— z/ak )
By the Phragmén-Lindelof theorem we have |p(2)IIy(2)| < 1, z € C,. Since the

absolute value of each factor in the product (8) is greater than 1 for z € C,, we
have that Iy (i)|? is an increasing bounded sequence. Hence,

o0 -

1— 2
Z(‘1 Z'/ak‘ —1)<C°'
k=1 —i/ax

Finally, we have

1—i/ak‘2_1_ |Ek—i|2—|a,k—i|2 4Imak
1—i/ax a lay, —if? T 14 el

This completes the proof of the theorem.

REMARK. Under the assumptions of Theorem 1 we have
1
Im — .
(9) > ’ m | <o
lak|>e

In particular, if the function f(z) does not vanish in a neighborhood of the point
z =0, then condition (7) takes the form

> 1
10 ‘Im— <00,
(10) ; -

COROLLARY. If a function f(z) is analytic and bounded in C, and vanishes
on a sequence {ay}§° such that

1
Z \Ima—lC =00,

lak|>e

then f(z) =0.
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PROBLEM. Prove the Miintz theorem on the completeness of the system {¢%~ }&°
in C[0,1]:

Let {a,} be a sequence of numbers 0 = ag < a1 < ---. For the system of
powers {t*~} to be complete in the space C0,1] it is necessary and sufficient that

S et =

HiNnT. To prove the necessity, represent the function

l—x/ak
S(
(z) l—i—ccQ:I-_[l—i—:v/a;C

in the form .
S(z) = / £ £(8) dt
0

To obtain a representation of functions satisfying the conditions of Theorem 2
we need the following lemma:

LEMMA 1. Let a sequence {ai} C Cy satisfy condition (7). Then the series

Zlog}z—aJ

converges uniformly on each compact set in C,.

PrOOF. We have
1= Z— Qg 1 o= Z—5k|2—|2—ak|2
32 tos| ot = > s 1 - )
U(Z) 22 o8 2z — Qg 22 |z—6k|2
Zl [ 4yImak]
= O .
S z—ak|2

Since, for Im¢ < 0, we have |¢ —i|? > |¢|? + 1, it follows that

1+¢]? — i)
Imggo [ =22 7 tme<ol{—

(11)

The right-hand side of this inequality is bounded when z belongs to a compact set
in C,. Taking into account the inequality

1 1

L,
lz —ag? = 1+ |ag|? Imcgo (—=z

and condition (7) we see that the series
Z Im ag
|Z - ak|2

converges unfformly on each compact set in C,. This implies the uniform conver-
gence of series (11) and, finally, the statement of the lemma.

The function

1-2z/a
H l—z/a:
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is called the Blaschke product for the upper half-plane, and relation (7), which,
in the case |ax| > ¢ > 0, provides the convergence of the product, is called the
Blaschke condition.

THEOREM 3. Let the function f(z) be analytic in the half-plane C. = {z :
Im z > 0} and let the function log|f(2)| have a positive harmonic majorant u(z) in
C+. Then

2z — Qg

+g/_°° du (t) _E/“’ din (t) ‘g

Tl o lt—22 7w J_o|t— 22

log |f (2)] = Zlog‘z uak‘
(12) =

Here {as} is the zero set of the function f(z) in C4, o is a real number, and the
v; are nonnegative measures such that

0 dl/z‘(t) .
(13) /_001+t2<00, 1=12,

PROOF. Let v(z) be the harmonic conjugate to u(z). The function
¢(2) = f(2)e )

is analytic in €, has the same zero set and satisfies the bound |p(2)| <1, z € C,.
By Lemma 1 the series

w(z) = ilog}z — ak\
k=1

2 — T

converges in C4. Let us denote voo(2) = log |@(2)| — w(z) and prove that —ys is
a nonnegative and harmonic function in C,..
Indeed, for each n > 1 the function

- Z — Qg i 2z — Qg
w(2) =lo z)| — lo ‘—_‘:10‘ z ‘
7u(2) =log i (2)| ; 8l =, ”()gz_ak

is subharmonic and bounded above in C.. Since v,(2) < 0 on the boundary
of the half-plane, the Phragmén-Lindel6f theorem for subharmonic functions (see
Lecture 7) yields v,(2) < 0 for all z € C.. As n — +oo we obtain v (2z) =
log |p(2)| — w(z) <0, z € C. It is obvious that the function Yo (2) is harmonic in
C.. Therefore, we have

(14) log|f(2)| = w(2) + Yoo (2) + w(2)

and Theorem 1 gives representation (12), as well as inequalities (13), completing
the proof of Theorem 3.
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REMARK. Let a function f(z) be analytic in C, and let log|f(z)| have a pos-
itive harmonic majorant in C,. Then log|f(t)| dt = dvi{t) — dia(t) where vy, 15
are the measures from representation (12), and hence, this representation takes the

form:!!
y [T logl|f(2)]
log|f(z)|:;/ooﬁdt+ay+ E log‘

— ay ' .
In addition, relation (13) yields

/°° | log [£(£)l

T dt < oo

or, equivalently,

> log™t | f(t)| > log” |f(®)]
[ s [ B e,

— 00 —o0

The following uniqueness theorem is a direct consequence of the above Remark.

THEOREM 4 (Carleman). If f(z) is analytic and bounded in C,'? and if

* log” [f(t)
/ 1+ di =

— o

then f(z) =

14.3. Application to the theory of quasianalytic classes

Let a sequence {m, }5° of positive numbers be given. Denote by C,,, the class
of all infinitely differentiable functions on the real axis satisfying the inequalities

(15) lF™ (@) < k™m,, -—co<t<oo, nmn=012 ...,

with some constant k independent of n and . It is evident that this class is linear.

The class C,,,, is said to be (A)-quasianalytic if, for each ¢y € R, the unique
function f € Cp,,, which satisfies the relations fim (to)=0,n=0,1,...,is f(t) =

It is easy to see, estimating the remainder term in the Taylor series, that if
mn = n!, then the functions of class Cy,  are analytic on the real axis. Hadamard
posed the problem to find a criteria for a class Cp,, to be (A)-quasianalytic. It
is clear that the slower the growth of a sequence {m,} is, the more likely are the
chances for the class Cy,, to be (A)-quasianalytic. The growth of a sequence {m,,}
can be measured by means of the function

,r.TL

(16) T(r) igpo —
This function was introduced by A. M. Ostrowski. Since the function logT(r) is
the upper envelope of the family of functions {nlogr — logm,}2°, that are linear
with respect to logr, it is convex with respect to logr. It follows that log T'(r) is
a continuous function. It is evident that the slower is the growth of the sequence
{m..}, the faster is the growth of T'(r).

1 This representation was obtained by R. Nevanlinna in 1925.
12Taking into account Fatou’s theorem (see footnote 10), one can assume that f(z) is analytic
and bounded in Cy.
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THEOREM 5 (Carleman, A. Ostrowski). For the class Cp,, to be (A)-quasi-
analytic, it is necessary and sufficient that

(17) /1°° log T(r) —

r2

ProoF. Without loss of generality we may assume & = 1 in inequality (15);
otherwise we may consider the function f(k~!t). Introducing the function
f(t + to), we may suppose

(18) f(”)(0)=0,_ n=0,1,2,....

To prove the sufficiency of condition (17) we redefine the function f(t) setting
f(t) = 0 for ¢ < 0. The resulting function belongs to the class C,,, . Let F(z) be
its Fourier transform:

(19) F(z)= /000 ft)e#dt, Imz>0.

Integrating by parts we have

F(z)= ((;zl)): /000 ™) dt, Imz>0,
whence

1 m, 1

y 12" = yT (=)

The function F(z+ 1) is bounded and analytic in C,, and we can apply Carleman’s
uniqueness theorem. Condition (17) yields

/°° log™ |F(z + iy)| p

y=Imz.

(o]
F(z) < 22 / et dt =
[z]™ Jo

1+ 22 T=o0

— 0

and, hence, F(z) = 0. Taking the inverse transform in (19) we obtain f{t) = 0
proving the sufficiency of condition (17).

Now let
]
/ ____ogT(r) dr < o0o.
1 T2

Consider the function

__y [ log[(1+ )T (]t])]
u(z)——;/_oo =27 142 dt .

It is harmonic in C, and continuous in the closed half-plane C,. Since T(r) >
1/mg, the function u(z) is bounded from above in €. If v(z) is its harmonic
conjugate, then the function

F(z) = e4(=)+i0(2)

is bounded and analytic in C, and satisfies the estimate

1

S ()
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on the real axis. By the Lindelof theorem (Theorem 3, Lecture 13) we have
F(z) — 0, |2| —» o0, z € C4, and hence the Jordan Lemma implies that the

Fourier transform

£(t) = % / " Plo)e da

— 00

vanishes for ¢ < 0. On the other hand, f(¢) is not identically zero and

Fo = 00 / " e P(m)e " s

m —00

Hence

1 [ |z|™dz 1 [ |z|"dx
STy SR —
L N Sy () Rl N e e
Thus f € C,,,, which completes the proof of the theorem.
For other theorems on (A)-quasianalyticity see the monographs by Carleman

[22] and Mandelbrojt [91, 93]. An abstract operator version of the Hadamard
A-quasianalyticity problem can be found in Lyubich and Tkachenko [88].



LECTURE 15

The Hayman Theorem

We consider the asymptotic behavior of a function in C, which is represented by
a more general formula than (12) of Section 14.2. Namely, we shall study functions
of the form

(1) U(Z)://C log‘%du(o_}_%/—za—%i(;l?ﬂ’

where du(¢) and dv(t) are nonnegative Borel measures such that

//mlimlgP () <o, /Rld:(?2<oo

A set of disks (C;)$°, centered at points z; of the upper half-plane and of radii p;
is called a set of finite view if

(2) Z ,03

=T

where r; = |z;].
THEOREM 1 (Hayman). The asymptotic relation
(3) v(z) =o(lz), |zl 500,
holds everywhere in C, outside some exceptional set of disks of finite view.

ProoOF. The proof of this theorem is similar to that of the Cartan estimate
(see Section 11.2). First, to transform representation (1), we define the measure
dm(¢) and the kernel K(z,¢) by the relations

ndu(¢)
P R A
e
rl+leE) 1T
and
1+ ¢ log (-7 >0,
K@= 7 4;
(1+lf|2)m, n =0,

where 2z = z 41y, ( = £ +14n. The function v(z) now can be represented in the form

=/_K@ommm
C+

109
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where

m(@:)= [ /C+ dm(¢) < oo

Since v(z) > 0 for z € C, it is sufficient to obtain the estimate of v(z) from above.
It is easily seen that, for the kernel K(z,(),

2
@ Kieg) <2t g B o< Y
and!3
2
(5) K(z,() < 4|1<+—|2I2y . y>0.

At the next step, we fix small € > 0, choose a number R, large enough for the
inequality

to be valid, define the measure m(%) by the relation

mE(B)=m(En{zeC,, |z| > R.}),

| M

and introduce the function
W) = [[ K09
C.

A point z € C, is called e-normal if the inequality

) £t
//|g_z|5t () < ||

holds for all ¢t > 0. Otherwise z is called e-abnormal. It is obvious that the
inequality holds for ¢t > |z|/4. Therefore, if a point # is e-abnormal, and if p, is the
least upper bound of the values t for which

(7) / / am® > £
c—zl<t 2]

then p, admits the estimate

(8) pr < =lz] .

As in the proof of the Cartan estimate (Section 11.2), inequality (7) holds for ¢ = p,
as well. Now, we shall prove that, for sufficiently large |z|, at each e-normal point
z the inequality

9) ' ul)(2) < Cel2]

holds with C' independent of both ¢ and 2. To this end, let us consider the sequence
of half-annuli
A, ={z:2" < |7 < 2"} C, .

13Compare with (11) from the preceding lecture.
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For a fixed n > 0, choose the disk C'™ centered at an e-abnormal point z € A,
and having the largest radius pgn) among all e-abnormal points in A, (such points
exist, see Section 11.2). Excluding the interior of this disk, we choose the point

zén) in the remaining set with the largest possible radius pg") of abnormality and

(n)

continue the process. The radii p; ™ of the constructed disks Cg?) form a sequence

which is either finite or decreases to zero, and all abnormal points in A,, belong to
the set |J; C’gb).

Repeating the arguments used in the proof of the Cartan estimate, we prove
that each point z € A, belongs to at most five exceptional disks. Therefore,

()
(10) £y % <5 / dm®(¢) .
Tl M igan g

Since r{™ < 27+ then by (8) we have p{™ < 2"~1. Therefore, all exceptional
disks that correspond to the half-annulus A, belong to the annulus

{z: 22 < |z| €272}
Then, according to (10), the union over all n of all such disks has a finite view:

(n)

Zzpi—)§§// dm(¢) < o0 .
w g s

Let us estimate the function u(*)(z) at e-normal points. By virtue of (4) we
have

1 2
i K(z,Qam®(0) <2 [ P g 2 gmeg)
6<[¢—2|<y/2 s<ic—zl<y/2 Y I¢ — 2|
1 2 y/2
g6—+|z|/ 10g 2L dm ) (¢)
] s t

14 |22 y2 el
= 6+—‘z\ [mga) (t) log 3_y’ + / m (t) dt] ’
Yy tls 5

t
= [[ Q.

If z is an e-normal point, then

where

and, as 6 — 0, we have
def (=)
w@E [ K(eQan(Q) < Cuelal
|¢—2|<y/2

Using estimate (5) for

o K(z,¢) dm®
% (2) //ymsmz|5r/2 (=€) (e
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with r = |2|, we obtain

+ ¢ /2 dm(e )(t)
12(1
)< 4//11/2<|C 2|<r/2 |C - ZP PO 212047y /y/z t2

() 9 r/2, (5)
_ o | mz () my (t)

et
and using the inequality m{®)(t) < = again we have
r

() r/2 r/2 dt
vg(2) < 12(1+r?)y l% + ;//2 ?2} < Caer .
y

Further, let
w@® [[ KO
[¢—2|>r/2
Then

2
v3(z) < 4y / /| LELE ¢

(—z|>r/2 'C - Z|2

< 16— //IC z|>r/2 dm'®(¢) + 2y //IC 2> /2 ‘C

‘ < 3 and since (6) holds, we have
2

(E)

Since in this case ‘ c

Ug(z) < ng/ dm(E)(() < Chey .
[(—z|27/2

Combining the estimates of the functions v;(z), j = 1, 2, 3, we arrive at relation (3).
To complete the proof of the Hayman Theorem let us represent the function
v(z) in the form

v(z) = z m w2} .
(2) //Mgm,c)d () +u)(2)

The integral here is O(—) Therefore relation (9) yields that the inequality

I
lv(2)] < Celz|

holds for all sufficiently large |z| if z does not belong to a set of finite view, C being
independent both of € and z.
Let us choose sequences {€,}3°, €, | 0 and {Rp}1 , By T 00 so that for each p,
the condition
Pip 1

7 Ti,p - —2—10
holds for exceptional disks centered in the exterior of the half-disk

Kr, ={z: |2| < Ry, Imz > 0},

and the estimate
v(z) < Cepl2|



LECTURE 15 THE HAYMAN THEOREM 113

holds for all 2 ¢ Kg, such that z does not belong to the union of exceptional disks.
Finally, let us include into the exceptional set all disks centered in the half-annulus
{z: Rp <|2| < Rpt1,Imz >0}
that correspond to the value €,. Then we have
IS
p g P
and

u(z) = o(|z))

outside the exceptional set. This completes the proof of the theorem.

We would like to mention that Hayman [50] proved the asymptotic relation (3)
for |z| € E where E C R is a set of finite logarithmic length, i.e.,

(11) /E dz < 0.

T

A version of the theorem given here was obtained by Azarin. It is evident that
condition (11) follows from (2). There are many works containing further gener-
alizations and refinements of the Hayman theorem. We mention here the papers
Azarin [5] and Grishin [47], and the monograph Essén [35].



LECTURE 16

Functions of Class C
and their Applications

16.1. Properties of functions of class C

First, we remind the reader that, an entire function f(z) belongs to the class
Cif
a) f(%) is an entire function of exponential type;

b) /°° log™ | f(¢)]

T2 dt < oo.

~—00

THEOREM 1 (M. G. Krein). For an entire function f(z) to belong to the class

C' it is necessary and sufficient that the function log|f(z)| have positive harmonic
magorants in the upper and lower half-planes C, and C_.

SUFFICIENCY. By virtue of Theorem 3, Section 14.3, the existence of a positive
harmonic majorant in the half-plane C. yields the representation

= z—ag| Yy [ dv(t)
10g|f(z)|2210g‘z_ak‘+;/ m‘f'mry
k=1 -

with

Imay ° dlv|(t)
E — <0, 2 <00
& 1 + |ak| oo 1 +1
Applying the Hayman theorem, we obtain

1) log|f(z)] =04y +ollz), y=>0,
and, similarly,
(2) log|f(2)| = o-y+o(lz]), y<O0,

everywhere outside the union of exceptional disks {C;} that form a set of finite
view. Outside these disks we have

(3) |f(2)] < elotallzl oc=max{o.,0_},

for each € > 0, and by the Maximum Principle this inequality still holds inside
the disks C;. Condition b) is a direct consequence of the Remark to Theorem 3,
Section 14.3.

115
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NECESSITY. Let f(z) € C. Condition b) yields the convergence of the integral

g/@l%+uunﬁ

U(Z):ﬂ- —00 |t—Z|2

y>0,
which defines a positive harmonic function in C; with boundary values on the real
axis coinciding with log™ | f(¢)]. Let v(z) be the harmonic conjugate to u(z) in C,.
Then the function

go(z) = f(z)e~’u.(z)7iy(z)
is analytic and of exponential type in the half-plane Cy, and |e(z)| < 1, —00 <
T < oo. By the Phragmén-Lindelof theorem we have

lp(z +iy)| <e?,  y2>0,

where o is the type of the function f(z). Hence

y /°° log™ | f(8)]

1 <=
gl < b [ ooy,

— 00

i.e., the function log|f(z)| has a positive harmonic majorant in the upper half-
plane. Similarly, we prove the existence of a positive harmonic majorant in the
lower half-plane, completing the proof of Theorem 1.

Together with the Hayman theorem this yields the following important result
related to functions of class C.

THEOREM 2. Every function f(z) of class C satisfies the following relations:

(4) log|f(2)| = ory +o(lz)), 320,

(5) log|f(z)|=0c-y+o(lzl), y<0,
everywhere outside a system of exceptional disks of finite view.

REMARK. The arguments used in the proof of Theorem 1 can be used to obtain
statements similar to Theorems 1 and 2 for functions analytic and of exponential
type in the closed upper half-plane for which the integral

/°° log* | f(t)]

dt < oo
oo 14122

converges. A conformal mapping of the upper half-plane onto the unit disk trans-
forms this class into the Nevanlinna class, i.e., class of functions f(z) analytic in
the unit disk and such that log|f(z)| admits a positive harmonic majorant.

If the function f has only real zeros, then the sufficient condition in the previous
theorem yields the following result.

THEOREM 3 (M.G. Krein). If f(2) is an entire function, and if the represen-
tation

1 Cn
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holds with some real \,,’s satisfying

S <
L+ A ’

then f(z) belongs to the class C.

PROOF. Let us use the representation

ﬁ = @1(2) = pa(2) + ila(2) — pa(2)]

where the functions ¢;(z) are represented by series of the form (6) with positive
coefficients ¢,. Since Im;(z) < 0 for Imz > 0, we have |@;(z) — i| > 1 implying
that each function
def .
u;(2) = log lp;(2) — il
is positive and harmonic in C,. Using the inequality

log™ ‘ Zak‘ < ZlogJr lag| +logm ,
k=1 k=1

we obtain
1 4
log™ im‘ < S log™ [0y (2)| + log 4 .
j=1

Since |p;(2)| < |p;(2) — i|, we have

4 4
log™ [%‘ < ;10g+ loj(2) =il +logd =Y u;(z) +log4.

Jj=1

Hence, the function —log|f(z)| admits a positive harmonic majorant in the upper
half-plane, and the same is true for the lower half-plane. By the Hayman theorem,
asymptotic relations (1) and (2) hold outside a set of finite view and applying the
Maximum Principle we obtain asymptotic inequality (3) everywhere in C. This
proves that f(z) is an entire function of exponential type. By virtue of the Remark
to Theorem 3, Section 14.3, we have

/°° log™ | £(D] ,, _ /°° log™ [1/£(1)
1+12 1412

dt < oo.

—0o0 — 0

Hence, the function f(z) belongs to the class C. This completes the proof.

It should be mentioned that Theorem 3 still remains true if the function 1/ f(2)
is representable in the form

1 1 1z 2
6 — = S
(6a) e ;c [Z_AH+AH+A%+ +

where p is a positive integer, A,’s are real numbers, and

2|5

<00,
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Indeed, we can write the previous representation in the form

1 Cn
1)~ 2 e =)

which reduces the problem to the case already considered.

REMARK. In articles [76, 77] by Krein, Theorems 1 and 3 were applied for
studying the theory of selfadjoint operators in Hilbert space and for a description of
spectra of boundary value problem for the Sturm-Liouville operator. A description
of the class of entire functions admitting representation (6) (or (6a)) was given in
Ostrovskii [106].

In Part III of this book we prove the Matsaev theorem which gives a general-
ization of Theorem 3. Other generalizations of the Krein Theorem may be found
in Chapter VI of Goldberg and Ostrovskii [43].

It follows from Theorem 2 that if f(2) belongs to the class C, then the limit

i log | f(re®®)| opsinf, 0<60<m
im —= 2=
o_|sinf|, 7m<6< 2

(7)

r—00 r

exists for almost all 8 € [0,27]. Indeed, for any € > 0, one can choose sufficiently
large R. such that the sum of openings of the angles at which the exceptional disks
C; centered outside the disk {z: |2| < R} are viewed, is less than €. Relation (7)
holds for all € such that the ray arg z = 6 does not belong to these angles. Since ¢
is an arbitrary small number, the limit in (7) exists almost everywhere in [0, 27].

THEOREM 4 (on the sum of indicator functions). If fi(z) is an entire function
of exponential type and f2(z) belongs to the class C, then

(8) P (0) = hy, (0) + Ry (),
and hence, the indicator diagram of the product fifa is the sum of the indicator
diagrams of f1(z) and fa(z).

PROOF. On a dense set of rays we have
1 it 1 i6
11 (0) = limsup PEALCEN Ly, BIAGT)
T—00 r r—00

ie., hgp,(0) = hy(0) + hy,(0). The statement of the theorem follows since the
indicators are continuous functions.

Using the same arguments as in the Remark to Theorem 2 we obtain the
following statement:

REMARK. If f1(z), fo(2) are functions analytic and of exponential type in C,,
and if
/°° log™ | fa(?)]

1+t2
then relation (8) holds for 0 < < 7.

dt < oo,

— 00

It follows from Theorem 2 that the functions of class C' are of completely regular
growth. The functions of completely regular growth were described in Section 13.2.
The theorem on the sum of indicators still remains true if f2(z) is an arbitrary
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entire function of completely regular growth. If no assumption on the regularity of
growth of entire functions fi(z) and fo{2) is made, one can claim only the trivial
inequality hy, 7,(0) < hys, (6) + hy,(6). There exist examples of entire functions for
which hy, ¢,(0) < hy, (6) + hy,(0) at every 6 € [0, 2r].

Property (8) is characteristic for functions of completely regular growth. It is
proved by Azarin [6] that if fo{2) is a fixed entire function and relation (8) holds
for an arbitrary entire function f1(z), then f2(z) is of completely regular growth.

16.2. The Titchmarsh convolution theorem and a problem of Gelfand

It is easy to see that the class C contains entire functions of exponential type
bounded on the real axis. In particular, such is the Fourier transform F of an
integrable function f with compact support. The Fourier transform F' is an entire
function of exponential type, and its conjugate diagram, after being rotated by the
angle m/2, coincides with the supporting segment of f, that is, with the smallest
segment outside which this function vanishes.

THEOREM 5 (Titchmarsh). Let f1(t) and fo(t) be two compactly supported
integrable functions with the supporting segments [a,b] and [c, d], respectively. Then

o= [ hle-9his)ds

s a compactly supported function with the supporting segment [a + ¢,b + d].

The statement that the supporting segment of ¢(t) belongs to [a + ¢,b + d]
is trivial. The most essential statement of the Titchmarsh convolution theorem is
that this segment is exactly [a + ¢, b + d].

PRrROOF. The Fourier transforms of the functions ¢(t), fi1(t), f2(t) satisfy the
relation
D(2) = Fi(2)Fa(2).
The conjugate diagrams of Fy(z) and Fy(z) are the segments [ia,ib] and [ic,id].
According to Theorem 4, the conjugate diagram of the product ®(z) is the sum of
the diagrams of the factors, i.e., the segment [ia + ic,ib + id]. This completes the
proof of the theorem.

There are many works containing results of the same type as the Titchmarsh
convolution theorem as well as their applications to various problems of harmonic
analysis. We mention here Domar [30], Ostrovskii and Ulanovskii [107], and
Borichev [18].

In 1938 the journal “Uspekhi Matematicheskikh Nauk”, no. 5, published a
list of unsolved problems that were suggested by various mathematicians. Problem
#17 in this list was the following:

PRrROBLEM (I. Gelfand). Describe all closed invariant subspaces of the operator
of integration:

t
Iz(t) = / z(s) ds
0
in the space L'(0,a), a > 0.

‘We shall show that this problem may be solved using the Titchmarsh convolu-
tion theorem.
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Let E be a closed subspace in L(0,a) invariant with respect to the operator
I. First, we prove that E is invariant with respect to the right translations. This
means that if z(¢) € E, then the function

) wt)={ 0, VEET

zt—7) 7<t<a
belongs to E for each 7 € [0, al.
Indeed, since = € F, then

(I”x)(t)z/o %x(s)ds € FE.

Therefore,
t
/ P(t—3s)x(s)ds € E
0

for all polynomials P(¢), and since the set of all polynomials is dense in C[0, a], we
have

/t ot —s)z(s)ds = /t w(8)z(t—s)ds € E
0 0

for all functions ¢ € C[0, al.
For a positive number € < min{7,a — 7) we choose a function () > 0 such
that o(t) =0 fort € [0,7 — €] U [T +¢,a], and

/Oaw(t)dtzl.

The inequality

r

/ " pls)alt - 5)ds - 2, (8)] e
0

< /06 |z(t)|dt + max /T+6 |x(t — 8)|dt

s€lr—e,m+e] Jr_¢

+ max /a |x(t —s) —z(t —7)|dt

s€lr—e,mtel Sy

with an arbitrary small € > 0 shows that, indeed, all functions of the form (9)
belong to E.

Let us denote by x the greatest lower bound of the left endpoints of supporting
segments of functions from F, and suppose, first, that £ = 0.

We denote by f(t) a function of the space L>(0, a) which generates a nontrivial
linear functional annihilating the space E. It is evident that the supporting segment
[, B8] of f(t) is contained in [0, a], and since x = 0, there exists a function z(t) € E
with the supporting segment [v, §] such that v € (0,3/2). Using the translation
property of the space E we have

(10) Oz/oaf(t)xT(t) dt:/a FOalt — 1) dt
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for each T € [0,a]. If the functions f(t) and z(t) are extended to be zero outside
[0, a], then relation (10) can be written in the form

(11) / fRzlt—7)dt=0, 0<rt<a.

The integral here is the convolution of the functions f(t) and x(—t) with the sup-
porting segments [, 8] and [—§, —], respectively. By the Titchmarsh theorem the
supporting segment of their convolution is [@ — 6,8 — +]. Since 0 < v < 3/2, we
have [ — 6,8 — v) N [0,a] # @ which contradicts relation (11). Hence f = 0, and
E coincides with the whole space L'(0,a).

Now let k € (0,a). Denote by E, the subspace of all functions from L!(0,a)
that vanish on [0, k], and consider the mapping T, which transforms the function
z(t) € E, into the function y(t) = z(¢t + x) on the segment [0,a — «]. It is easy to
check that T} is an isomorphism between the spaces E, and L'(0,a — ), and that
T, F is a closed subspace in L'(0,a — ) invariant with respect to the operator I.
By the choice of « there exists a function from T, E whose supporting segment is
arbitrary close to zero. According to the above arguments for £ = 0 we conclude
that T, E = L'(0,a — k), and hence F = E,.

We have proved that the solution to Gelfand’s problem is given by the following
theorem.

THEOREM 6. Every closed subspace FE C L'(0,a) invariant with respect to the
operator I coincides with one of the spaces By .

Theorem 6 shows that the operator I is unicellular. This means that the set of
its invariant closed subspaces is totally ordered with respect to inclusion. For the
operator-theoretic approach to Gelfand’s problem and for other related topics, we
refer the reader to the monographs Gohberg and Krein [41], and Nikol’skii [104,
Lecture 4].

16.3. Mean periodic functions

The notion of a mean periodic function was introduced by Delsart and was
afterwards developed by L. Schwartz.

Let C(R) be the space of all complex functions continuous on the real line with
the topology of uniform convergence on compact sets. According to L. Schwartz,
a function f(z) € C(R) is called a mean periodic (m.p.) function if the closure
Ty of the linear span of all translations {f(x + t)}+cp does not coincide with the
whole space C'(R). This property is equivalent to the existence of some a > 0 and
a nonzero function o(x) of bounded variation such that

(12) /fx—l—t Ydo(t) =0, zeR.

We may assume that the supporting segment of the charge do(t) coincides with
[0,a].

The simplest example of m.p. function is a periodic function. Another example
is given by an exponential monomial

(13) f(@) = ake>

In this case the corresponding space T has dimension &.
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Let f be am.p. function and let Ef be the closure (with respect to the uniform
convergence on compact sets) of the linear span of all monomials of the form (13)
which are in T7.

The main problem of the theory of m.p. functions is to prove the equality
E; =Ty. This problem is called the problem of spectral synthesis'® and was solved
by L. Schwartz back in 1947. Here we present a solution of the problem given by
Lyubich and Tkachenko [87] using the theorem on the sum of indicators.

If |f{x)] € Ce™®, then, applying the Laplace transform to relation (12), we
have

t

= /Oa et da(t){/ooo e f(x) do — /Ot e f(x) dm}.

0=/Oooe_“d:n/oaf(x+t)da(t)=/an”da(t)/oo e f(x) d

Hence,
> — Az — }f(A;f)
(14) /Oe flz)de = A
where N
A — At
) /O M do(t)
and

HO f) = /O M do(t) /t e () da

0
The right-hand side of relation (14) is defined independently of any restriction on
the growth of the function f(z). It represents a meromorphic function which is
called the Carleman transform of the function f.
Given a m.p. function f we introduce the formal series

(15) f(x)NZresA{%{—)eM} )

with the surnmation over all zeros of the function A()). We call this series the
generalized Fourier series of the function f(z) and note that each term in the sum
has the form P(z)e?*, where P(z) is a polynomial. One can easily see that

: a t
Hf(l?;\{)em = res) A(l)\) /0 e da(zﬁ)/gC e M f(s)ds e,

and a simple change of variable yields:

Hj?;\)f)ekw:res,\ﬁ/o da(t)/mf(m"'t—s)e”\sds.

Now, by (12) we have

/a da(t) /zf(:z:—%—t—s)e“ds:/ze“ds6t8f(x+t—s)da(t):O,
0 0

0

resy

res),

14The problems of spectral synthesis for other classes of functions and with respect to other
topologies were investigated by A. Beurling in a series of papers starting from 1945. These results
are included in the second volume of his Collected Works.
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whence

a t
(16) res) HA()’\) e x:res,\ﬁ/o do(t)/o flx+t—s)e ds.

Therefore, each term of the series (15) can be approximated in C(R) by linear
combinations of translations f(x +t) and hence belongs to the subspace T.

Now, let v(¢) be a function of bounded variation on the real axis such that
the corresponding linear functional on C'(R) annihilates the subspace E;. Let the
support of v belong to the segment [b, ¢, and let

(17) F(t) :/ flt+s)dv(s).
b
Since
a c a
(18) / F(:z:—l—t)da(t):/du(s)/ fle+t+s)do(t)=0, zeR,
0 b 0
the function F'(¢) is a m.p. function. Consider the corresponding generalized Fourier

series HO\ F)
) Az
F(J;)NZreS,\ A e .

Using (16) and (17), we have

HNF) I ¢ s
reskweA = resy A()\)/o da(t)/o Flz+t—s)eds
_ [ H f) At

_/b {res,\ A0 eMet )}du(u).

Since the function v generates a functional which annihilates the subspace Ef, the
last integral vanishes for each A € C, and H(A; f)/A()) is an entire functions. Let
us prove that F(z) = 0 for z > 0. To this end we multiply (18) by e~** and
integrate from 0 to . We have

Oz/oxe_’\sds /OQF(S—I—t)dJ(t) |
= /Oa do(t) /Or e MF(s+t)ds = /Oa e do(t) /tr+t F(s)e ™ ds

a T4t
:—H(/\;F)+/ et da(t)/ F(s)e ™ ds .
0 0

Therefore,

HNF)  [° 1 a T4t N
(19) A0 —/O e F(s)ds—l—m‘/o e da(t)/ﬂC F(s)e ™ ds’,

and the second term on the right-hand side of (19) is an entire function as are
the other entries of this relation. By the theorem on the growth of the quotient of
entire functions (Theorem 1, Section 2.4), it is a function of exponential type. Since
A(i)) belongs to the class C, we may apply Theorem 4 (on the sum of indicator
functions) and conclude that the value of the indicator of this term on the ray
{)\: arg A = 0} does not exceed —z. Hence its indicator diagram belongs to the
half-plane {)} : Re A < —z}. If F(s) £ 0 for s € [0, z], then the indicator diagram
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of the first term on the right-hand side of (19} is a nontrivial segment in [—z, 0]. In
this case the indicator diagram of the right-hand side of (19) is nonempty and does
not reduce to the point A = 0. This is a contradiction, since either H()\; F) = 0
and the indicator diagram of the left-hand side of (19) is empty, or H(X; F) #Z 0
and by the theorem on the sum of indicators this indicator diagram coincides with
the point A = 0. This proves that F(s} = 0 for s € [0,z] and, hence,

F(0) = /bcf(s)du(s) =0.

The Hahn-Banach theorem implies Ty = E¢, which solves the problem of spec-
tral synthesis for the m.p. function f(z).

For other results on m.p. functions dealing with various problems of approxima-
tion by exponential functions, quasianalyticity and related problems see Schwartz
[119], Kahane [62, 63|, and C. Berenstein and Taylor [11].



LECTURE 17

Zeros of Functions of Class C

The distribution of zeros of an entire function of class C is remarkably regular.
To study this distribution we shall obtain a relation which may be thought of as a
generalization of the Jensen formula.
17.1. The generalized Jensen formula
Let a function f(z) be analytic in the sector

{z:a<argz< 8,|2| <7}

and not vanish on its boundary. We apply the argument principle to evaluate the
number of zeros of f(z) in this sector. We have

2rnira ) = [ a- [ N

0 dt dt
ﬁd ip
[ dmeseen),
a T dyp

By the Cauchy-Riemann conditions this formula can be transformed to

" dl )| " o1
27m(r,a,ﬁ)=/ o8|/ (te)l, = dt—/ dlog|f(te)lp=a 4
(1) 0 tdy 0 tdy
P dlog |f(te")|s=r

Without loss of generality we may suppose that f(0) =1. If

TH(6) = /OT log Ift(tee)idt 7

then relation (1) can be written in the form

2nn(r,a, 8) = % [J]C(go)] oep % [J;(SO)}

g e _
[ Aol
o dr

We divide both sides of this equality by 277, integrate over » from 0 to r, and set

N(T;a,ﬁ)z/orwdt.
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Then we obtain the representation

d ™
Need) =g [ [ 730

1 dyp (7., .dt 1 [ i
-z i — dy .
il [ 0T g [ elrelas

This is the generalized Jensen formula. The usual Jensen formula, Section 2.3,
follows if we set § = a + 27.

dt}
t lo=p

®3)

17.2. Asymptotic properties of zeros of functions of class C

Let f(z) be an entire function of class C. It follows from Theorem 2, Section
16.1, that its indicator diagram is a segment of the imaginary axis. Multiplying
f(2) by e*** we normalize f(z) in such a way that its indicator diagram is a segment
of the imaginary axis which is symmetric with respect to the real axis. In other
words, we can assume that

hs(0) = o|sinf| .
The same Theorem 2 also yields

) log|f(re®®)| = hy,(6)r + o(r)

outside an exceptional set of an arbitrary small view.
For the ray {z: argz = 8} not intersecting this exceptional set, we have

Ji(0) = hs(O)r+o(r), r—00,
and, finally,

/OTJ}(G)%:hf(e)T—FO(T) , T — 00 .

LEMMA 1. Let n(t) be a nondecreasing function for t > 0, let n{t) = 0 for
0 <t <e, and let there exist o > —2 such that

R
W(R) = % /O £2n(t) dt

approaches the limit

nE)
R

approaches the limit d as R — oo. Then the function
(e +2)d as R — 0.

PrROOF. Let k£ > 1. Then

kR

(kR)*"2y(kR) — R*"2y(R) = / t*n(t)dt .
R

Since the function n(R) is nondecreasing, we have!®

(kR)a+1 _ Ra+1

n(R) o

< B2 [k 2y (kR) — y(R)]

(kR)a+1 _ Ra+1

< n(kR) a+1

15We assume that o # —1. The case a = —1 is similar.
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Dividing the first inequality by R**? we obtain

. n(R) _ k**t? -1
1 <
ke e

(a+1)d,

while the second one yields

at+2 _
lim inf n(R) > 1k 1

R—oo R — Eka+1—1(a+1)d.

Combining the last two inequalities we obtain

. n(R)
Aim —p = (a+2)d,
which completes the proof of the lemma.

Relation (4) shows that if f(z) belongs to the class C, then there exists the
limit

g (R) _
(5) ]{lgnw 7= 20T .
Indeed, choosing R such that the circle {z : |z| = R} does not intersect exceptional
disks, and applying the Jensen formula we have by (4)

R
(6) Nf(R)zfo @dt:%%w(m.

The set E of all values k such that the circle {z : |2| = k} intersects the excep-
tional disks has a finite logarithmic length (condition (11) of Lecture 15). Taking
into account that N¢(R) is a monotonic function we obtain relation (6) for all R.
Relation (5) is a consequence of Lemma 1.

The generalized Jensen formula yields an even stronger result. Namely, for 0 <
a < 7 let us denote by ny(r,a) and n_(r, @) the numbers of zeros of the function
f(z) in the sectors {z : |2| <7, |argz| < a}and {z: |z| <7 ,|r —argz| < a},
respectively.

THEOREM 1 (Cartwright, Levinson). Let f(z) be a function of class C, and
let {ax}, ar # 0, be its zero set. Then

1
k

r—00 T r—00 T 2m

where d is the width of the indicator diagram of f(z), i.e.,

o= s(5)+h(-3).

3. There exists the limit .
lim —.
R—oo [+3%
|a;c|<R
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Proor. Without loss of generality we may assume that hy(f) = g—|sin0|,

0 < 8 < 2m. The first statement is a consequence of Theorem 2, Section 14.2,
since according to Krein’s theorem (Theorem 1 in the previous lecture) the class
C' coincides with the class of entire functions f such that log|f(z)| has positive
harmonic majorants in the upper and lower half-planes.

One of the consequences of the first statement is that

N(r;a, B) = o(r) , T — 00,

if the angle {z : @ < argz < 3} does not contain either the positive or negative
rays.

To prove the second statement, we apply the generalized Jensen formula (3).
The left-hand side of (3) represents a nondecreasing function of 5. Besides, the

function
d T, dt
%[/0 71(e) t L’=ﬁ

has at most a finite number of points of discontinuity. Therefore, the Newton-
Leibniz formula is applicable when integrating this function. Integrating both sides
of (3) with respect to 8 from § to 8+ k, and with respect to a from a to @ +1, we
obtain

1 B+k  potl 1 r Jt —f-k‘—Jt
/ N(T;Wﬂ/})dwdﬂ):E‘/O o0 ZI50)

Kkl Jg tk
1 /7 J}(a—}—l) - J}(a) 1 Btk patl ry 0

- — It ¢ .
=3 ) a4 /ﬁ / / og |/ (re®) | df dip dip

The numbers «, 8, k, [ can be chosen such that asymptotic relation (4) holds
on the corresponding rays. Besides, without loss of generality we may suppose that
this relation holds for all 2, |z| = r. Then, as r — oo,

Lok et 1 hy(B+k) = hs(B)
H P N N(T,Wﬂ/})d@dﬂ)—ﬁ k

1 hpla+1) = hp(e) T ﬁ+’°/“+l/¢
o ; T+27le./,3 : ; h(8) db dp dap + o(r) .

r

The function hs(p) = g|sin | is differentiable for all ¢ # 0, w. Therefore, for

sufficiently small k& and [, we have

(7) ‘zl?Sf(a,ﬂ)-s+o(l) < M = %Sf(a,ﬁ)'i"f"”o(l)’ T — 00,

where
B8

S5(c B) = Hy(6) — (o) + / h(6) do

It should also be noted that, for —7 < & < § < 7, we have Sy(a,8) =0if a8 > 0,
and Sy(a, f) =d if B8 < 0.
Relation (7) yields
N(r,—a,0) d

lim ——— = —
7—00 T 27
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for 0 < a < 7 and, according to Lemma 1,

ny(ra) _ d

li .

e r 27
Similarly,

lim =) _ 4

7—00 T 2

which completes the proof of the second statement.

To prove the third statement we apply the Schwarz-Nevanlinna representation
(6), Section 2.2. Differentiating both sides of this relation, and setting z = 0 we
have

£ _ 1 [*"log|f(Re™)| iy _ L o
(8) f(O) N ;/O R ¢ dw OJCZ<Ra " |ak|Z<Rﬁ .

Let us suppose that the circle {z : |z| = R} does not intersect the exceptional set
for relation (4). Using this relation we rewrite (8) in the form

0y d [ : a
(9) Z i:_f()_f_%/o |sinyle ™ dy + Z %'1"0(1)7 R—o0.

lan<R 7 () lan|<R

We denote by Ig{ay} the sum on the right-hand side of (9), and prove that it
approaches some limit as R — oo. To this end, let us consider separately the zeros
from the half-plane {z : Rez > 0} and denote them by aj = |aj|¢?¥*. To compare
the quantities Ig{@}} and Ir{|a}|}, we have

B2 ) ekl =R 2 > @[ <R Y Jagl 1 —e ¥

10 laf | <R jaf | <R jai|<R
(10) < Z |aj|? ‘ 1 — e k| |sine}|
- o R R% | sinj, |aj|

According to statement 1 the series

converges, and hence, the left-hand side of (10) vanishes as R — oo. For ny(t) =
ny (t,7/2) we have

1 1 (R ny(R) 1 [F
Iefloil) = g7 Y lail = 5z [ tonan =250 - 2 [Tawar,

laj <R
and, according to statement 2, ny (t) = ¢d/2x + o(t). Therefore,

d d
! = — = — = —_—
Inflail) = o= — <+ o(l) = £ +0(1), R o0,
whence

d
In{ak} = +o(1), R—oo.
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If {a}} is the set of zeros in the half-plane {z : Re z < 0}, then in the same way we
prove that
d
IR{a;cl :_E+O(l)a R—o00.
Since the integral in (9) is equal to zero, we obtain

Z 1o 0)-1—0(1), R— o0,

|<R )

which yields statement 3.

REMARK 1. Since ®)
A= lim —~*
im R

R—oo
we see that n(R + 0) — n(R) = o(R), R — oo. Therefore, if the zeros {as} are
enumerated in increasing orders of |ak|, then the series 2(1)0 a;l converges, and

— 1 (0
- , Yoo

REMARK 2. By the Hadamard theorem every entire function f(z), f(0) # 0
of order 1 admits representation of the form

)

£(2) = f(0)e ﬁ (1 _ i)ezk/a .

k=1

It is easy to check directly that ¢ = f/(0
entire function f(z) € C such that f(0) # 0 a
representation

@) =fOPVI[ (1= ) =£0) tim ] (1__)

|k|

P
=
gl
[y

0). Now we conclude that every
d hg(m/2) = hy(—n/2), admits

Here the convergence of the infinite product is conditional, since the a; are enu-
merated according to the growth of their absolute values, and it is uniform on each
compact set in C.

Further information on zero-distribution for functions of class C can be found
in de Branges [20], Khabibullin [67, 68], and Koosis [72, vol. II].



LECTURE 18

Completeness and Minimality
of Systems of Exponential Functions in L2(a,b)

We start with reminding the reader that a system {hy} of elements of the Ba-
nach space FE is called complete if the closure of the set of finite linear combinations
> aghy, ax € C, coincides with the whole F.

A system of elements {hy} € E is said to be minimal if the relation

I35 0. ames,
k=1

yields a,(cn) — 0, n — 00. In other words, for each k, the element hj does not belong
to the closure of the linear span of all other elements.

In this lecture we study the problems of completeness and minimality of ex-
ponential systems by methods of the theory entire functions. As in Lecture 3,
the reduction to the problem for entire (or, more generally, analytic) functions is
performed by using the Hahn-Banach theorem. According to this theorem,

The system {hy} is complete in E if and only if there is no nontrivial functional
f € E* annihilating all elements {h}, and it is minimal if and only if there erists
a biorthogonal system of functionals {fx} C E*, which means that fi(hm) = Skm.

In many cases where the general form of functionals from E* is known, the
problem of the completeness can be reduced to uniqueness problems for analytic
functions and the problems of minimality to the relevant interpolation problem.

For a given sequence A = {A,} C C of pairwise distinct complex numbers, let
us denote by £x = {e**, X € A} the corresponding system of exponential functions.
If this system is not complete in L?(—m,7), then there exists a nonzero function
h € L*(—m,7) annihilating £,. The function

(1) fA) = /_ﬂ h(t)eMdt , he L*(—m,7),

is an entire function of exponential type o < 7 such that
fE€L*(~00,0), f(A)=0 for A€A.

Conversely, if an entire function f # 0 satisfies these conditions, then by the Paley-
Wiener theorem it admits representation (1), and the function h from this repre-
sentation annihilates the whole system £,. Thus, the following theorem is proved.
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132 LECTURE 18. COMPLETENESS AND MINIMALITY

THEOREM 1. For a system £ to be incomplete in the space L?(—m,7) it is
necessary and sufficient that A be a subset of the zero set of a function of exponential
type o < which belongs to L*(—o0, 00).

REMARK 1. Using the linear change of variables it is easy to formulate an
incompleteness criterion for a system £, in L?(a,b) for an arbitrary interval (a, b).

REMARK 2. If some p points of the sequence A coincide, then p copies of a point
Ax belong to A, and the functions e*»t te**t ... P~ 1e’ ¢t must be included in
the system £4. In this case, Theorem 1 states that the multiplicity of A\ as a zero
of f is not less than p. For the sake of simplicity, in what follows, we assume that
all points of A are pairwise distinct.

An entire function of exponential type which belongs to L*(R) is an element of
class C. Combining Theorem 1 with the theorem on zeros of functions of class C
we obtain the following statement:

THEOREM 2. If a sequence A cannot be imbedded into a sequence which satisfies
conditions 1-3 of Theorem 1 from Section 17.2, then the system Ea is complete in
L?(—m, 7).

This theorem yields several sufficient conditions of completeness. To formulate
one of them let

ni(r,A) =card{A € A, ReA >0, |\ <r}.

If

- - ny(r¢,A) —ny(r,A)
§(A) = lim lim sup —~—>2 >1
( ) ¢l r—)oop T(C - 1) ’
then the system €, is complete in L2 (—m, ).

Indeed, if A is a part of the sequence M of zeros of a function from C and
of exponential type 7, then the density 6, (M) in the right half-plane satisfies the
inequality 6,(M) > 6(A) > 1, which contradicts condition 2 of Theorem 1 from
Section 17.2.

The value 6§(A) was introduced by Pélya. It is called the mazimal density of
the sequence AN {A: ReA > 0}.

Another condition of completeness is the following.

If latg A\ — m/2] < 7 <7 and if Y (14 |Ax])™ = o0, then the system & is
complete in L?(—1,1) for any l.

Indeed, in this case

Z}Im—/\—lk—)ZCOSTEﬁ:OO.

REMARK. Beurling and Malliavin [14] proved that for any entire function f of
class C and any € there exists an entire function ¢ of exponential type not greater
than e such that f(z)e(z) € L?(~o0,00).

Therefore, if a sequence A is part of the zero set of a function of class C' and of
exponential type o, then the system &, is incomplete in the space L?(—0 —¢,0 +¢)
for any € > 0. When studying the problem of completeness of exponential systems
Beurling and Malliavin [15] introduced a special density which gives a criterion for
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a sequence A to be part of the zero set of a function of exponential type o and of
class C (see also Krasichkov-Ternovskii [75] and Koosis [72, vol. II]). In terms of
this density Beurling and Malliavin defined the quantity

p(A) = sup{a : £ is complete in L?(0,a)},
which is called the completeness radius of A.

PrOBLEM 1. If, for some u ¢ A, the function e**! can be approximated in
L?(—m,m) by linear combinations of the exponential functions from &£, then &, is
complete in L?(—m, ).

PrROBLEM 2. If A is the zero set of an entire function ¢(z) of exponential type
such that
lim inf | (iy)le™™¥ >0
y— oo

then the system &, is complete in L?(—m, 7).

The following theorem describes a criterion of minimality for an exponential
system.

THEOREM 3 (Paley and Wiener). For a system €, to be minimal in L*(—m, )
it is necessary and sufficient that there exist a nonzero entire function @(X) of
exponential type not exceeding m vanishing at A and such that

(3) (M)A +]A) ™! € L*(~00,00) .
PROOF. SUFFICIENCY. For each A\, € A let

_ (A)
oY) = TR0

The function () is an entire function of exponential type not exceeding , and
by (3) ¢r € L?(—00,00). According to Paley-Wiener theorem, there exists a func-
tion hy € L?(—m, ) such that

or(A) = /W eNhy(t) dt .

-7

The system of functions {h;} is biorthogonal to £4 because

/ ekmt(pk (t) dt = (Pk()\m) = Ok -

-7

Therefore, the system £, is minimal.

NECESSITY. Let £4 be minimal in L2(—m, 7). For A} € A, let the function
hy € L?(—m, m) generate the functional which is orthogonal to £4\ {e**1t}:

/ Ci‘u'thl(t)dtzo, ,LLEA\{)\l}, hlgéO

—T

The function -

o) = (A — )\1)/ My (8) dt

—T

satisfies all the conditions of the theorem. This completes the proof of the theorem.
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Now consider the conditions which provide for a system £a to be both complete
and minimal in the space L?(—m, 7).

THEOREM 4. For a system of functions Ep to be both complete and minimal
in L?(—m,m) it is necessary and sufficient that:
1. The infinite product

converge uniformly on each compact set in C, p(N) be an entire function of expo-

nential type, and
T ™
ho(g) +he(—3) =2m.

2. o)A+ At € L¥(~00,00) .
3. If x(X) is a nonzero entire function of exponential type zero, then

P(Nx(A) & L*(=00,00) .

NECESSITY. Since the system €4 is minimal, there exists an entire function
6()\) # 0 which satisfies condition 2 and such that (A) = 0, A € A. If this function
has at least one additional zero u ¢ A, then the function %(\) =
(A=) ~10(\) vanishes on A and also belongs to L%(—ooc,00). Its Fourier transform

1 = ;
h(t) = —/ Yp(Ne M dX € L (—m,7)
21 J_ oo
génerates a nontrivial functional in L?(—m,7) which annihilates £4. This contra-

dicts the completeness of £4 in L?(—m, 7). Since §()) satisfies condition 2, it belongs
to the class C, and hence, admits the representation

R—oo

- A
B(\) = ce* lim 1-—], a€R,
|/\:li_£R( )"“)

where the infinite product converges uniformly on each compact set. For ¢(\) =
c~le7"@*g()) we have

b (5) (- 5) = (3) (- F) <3

hw(g) +hw(_g) =20 <27,

If

then the function in( A
sin(r — o
A = p) T2
belongs to LZ(—o0, 00), vanishes on A and is of exponential type 7. This contradicts
the completeness of £4 proving conditions 1 and 2.

Let x(\) be an entire function of minimal type with respect to the order 1, and
let (X)) = (M\)x(A) € L¥(—o0,00). We have

o (5) + (- 3) =

and (i) = 0, Ay € A, which again contradicts the completeness of £,. Hence,
condition 3 is proved.
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SUFFICIENCY. Conditions 1 and 2 yield that the system £, is minimal. Sup-
pose it is not complete. Then there exists a nonzero function h € L?(—m, ) such
that the function -

P(A) = / eMh(t) dt
-7
vanishes on A. The function ()) belongs to L?(—00, 00) and is of exponential type
o < 7. Let us consider the entire function of exponential type
Y(A)

x(A) = m

Since both ¢(A) and ¥(\) belong to the class C, it follows from the theorem on
the sum of indicators that hy(0) = hy(0) — hy(0). Since hy(f) < ofsinf| and
h,(0) = 7| sing|, the function x(A) is of minimal type with respect to the order 1,
and ¥(A) = ©(A)x(A) € L?(—00,00). We have obtained a contradiction to condition
3, which completes the proof of the theorem.

PrROBLEM 3. Let () be an entire function of exponential type,

() +h(-3) =3

K - —
W < |0(z +1ia)| < Kol + |z))V/?7°, —oco<z <00,

for some a € R and K1, K3 > 0. If A is the zero set of ()), then the system &, is
complete and minimal in L?(—x, ).

PROBLEM 4. Prove that if [\g — k| < ¢ < 1/4, k = 0,£1,+2, ..., then the
system {e****} is complete and minimal in L?(—m, 7). This statement is false for
g =1/4 (see Theorem 5, Section 23.2).

and let

For further results on the completeness and minimality of exponential systems
see Levinson [84], Redheffer [115], Korevaar [73], Koosis [72, vol. II] and references
therein.



LECTURE 19

Hardy Spaces in the Upper Half-Plane

19.1. Definition and basic properties

The Hardy class H i, p > 1, is the set of functions analytic in the upper half-
plane C_ satisfying the condition

o0

sup/ |f(z+ i)|Pdz < 00,
y>0J -0

and endowed with the norm

1) 11 = 1 = (s [

—00

o0

fat i)’

The class H? is defined similarly for the lower half-plane C_.
Let f € H?, 2 € C,, and let K(p,z) be the disk of radius p centered at z.
Since |f(z)[? is a subharmonic function, we have

@) £ |P<—//p] QP do ,

where do is the area element. In what follows, we shall frequently use this inequality.
Let us consider the basic properties of the class HY.

1. The class H i is @ Banach space. We need only to prove that H ﬁ is complete.
Let {f»} be a Cauchy sequence with respect to the norm ||-||,. By (2) it approaches
an analytic function f uniformly on each compact set in C. As n — oo in the
inequalities

sup (/_o; [fn(x—f-iy)[?’dx)l/p <C<o0,

y>0
using the Fatou lemma, we obtain f € HY and, similarly, | f — fa|l, — 0.

2. The function f € HY satisfies the estimate

3) @< (=) "Ils, y=Tmz>0,

To prove this estimate we apply estimate (2) with p = y and then replace the disk
K(y,z) by the square {{ =€ +in: |{ —z| <y, |n—y|l <y} We obtain

P < / fCoi+in)P dgdn < 2|13

137
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3. Let f € HY. Then for each hy, hg, 0 < hy < ha,
(4) flz+iy) =20, [z|—o00, M <y<hs.
Indeed, by the definition of HY we have

h1+ha
/ / flz+w)|Pdrdy < oo.

Hence,
hi1+ha
[ [ erapasa =0, N
0 |z|>N
Applying now inequality (2) with p = h; we obtain (4).
4. Let f € HY. Then
(5) flz+1ih) -0, lz| =00, Imz>0,
for each h > 0. This statement is a direct consequence of statements 2 and 3.

5. Let f € HY and q > p. Then the function fn(x) = f(x + ih) belongs to the
space Li(—00,00) for each h > 0. Indeed, according to (4) the quantity

My (f) = sup |f(z + ih)]

is finite. Therefore

/oo|f(w+zy)|qu_Mh / ‘fw+zh‘dx

— 00
< My(f /‘fx+2h‘d<oo

6. Let {\,} C C be a sequence of points such that 0 < hy < ImA; < he and
|An — Ax| > 26, n #k, for some § < hy. If f € HY for somep, 1 < p < oo, then

ORI <" 00508

PRrROOF. The properties of the sequence {\,} provide that the disks K(An, )
lie in C, and are pairwise disjoint. Taking into account inequality (2) we obtain

SIonr <X ff - uoras

ho+6
_7r62_/ / [z +1y) \pdwdy< 62 |\f||P

PrOBLEM 1. Let f € HY, p > 1. Then both | f(2)|? and log | f(2)| have positive
harmonic majorants in C, .

PROBLEM 2. Let f € HY and let

L(y) = /w fat+iy)Pde, y>0.

—00

Prove that I;/p is a decreasing convex function, Ip/? (+0) = | f]l, and Ié/p(oo) =0.
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19.2. Boundary values of functions of HY

We need several auxiliary lemmas.

LEMMA 1. Let f € HY and h > 0. Then

f(t+ih)
I
(6) f(z+1ih) = 2”1_/ P dt , mz>0,
and
° flt+1h
(7) S i S DPTS yy
2 J_oo t—7Z
PRrOOF. Relations (6) and (7) result from integrating the functions
[C+ity S+
(—z (—7z

over the contour which consists of the segment [—R, R] and the half-circle C% = {( :
|¢] = R, Im(¢ > 0} followed by passage to the limit as R — oo. Property 4 from
the previous section provides that the integral over C}.{ tends to zero as R — oo.

LEMMA 2. Let f € HY and let h > 0. Then the function f(z) can be repre-
sented by the Poisson integral

(8) f(z~|—z'h)=%/oo (f(t—l—z'h)

— 00

To prove this relation it suffices to use relations (6) and (7) and the identity
1 1 2y 21y

t—z t—-2z |t—22 (t—=z)2+y?

DEFINITION. A family of functions kx(t), h > 0, —oo0 < t < 00, is said to be
an approximate identity if it possesses the following properties:

1. kp(t) >0, —c0o <t <00,

2. / kp(t)dt=1 forall h>0,

—00

3. Forany §>0,
/ kp(t)dt =0 as h—0.
t[>6

The convolution of an approximate identity and an arbitrary function g €
LP(—00,00) is defined by the relation

o0

(9% kn)(t) = /oo g9(8)kn(t — s)ds = / g{t — s)kn(s)ds .

—0Q — 00

LEMMA 3. Let g € LP(—o00,00), p > 1, and let ky(t) be an approximate iden-
tity. Then

9 * knllLr(—o0,00) < 1]l L (=00,00) -
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PROOF. Let p > 1. Using Minkowski’s integral inequality,'® properties of an
approximate identity and Fubini’s theorem, we obtain

o0 o0 P
o+l ey = [ | [ att=okao)as]" o
/ / 9t ~ ) Phn(s) ds dt < [[gl[25_ oo o0

The same estimate is still true for p = 1.

LEMMA 4. Let g € LP{—00,00), p > 1, and let kn(t) be an approximate iden-
tity. Then

llg * kn — 9llrr(—00,00) = 0, h—0.

PrROOF. We have

[e o}

(9% kn)(t) — g(t) = / gt — ) — g(8)]kn(s) ds

—00Q

- / ot — 5) — g(®)kn(s) ds + / ot = 5) — g(8)]kn(s) ds .
|s|<6 |>6
Therefore,

9) Mg *kn —gllze < sup fig{t - s) — g(#)l|zo +2||9\|Lp(—oo,oo>/ kn(s) ds .

|s|<é |s|>6

Since the translation operator T,g(t) = g(t — s) is continuous'” in LP(—o0,00) for
p > 1, we have ||g(t — s) — 9(t)||1p(=00,00) — 0 as s — 0. Therefore, taking 6 small
enough, we can make the first summand on the right-hand side of (9) arbitrarily
small. The second summand vanishes as h — 0. This completes the proof of the
lemma.

PrOBLEM 3. Prove the following statements.

Let ¢ be a bounded uniformly continuous function on R and let k, be an
approximate identity. Then (k, * g)(t) = g(¢), h - 0,t € R.

Let u be a finite measure on the real axis. Then the measures

(hn )0yt = ([

—0Q

o0

kn(t — s)du(s)) dt

approach p with respect to the weak topology of the space of measures, as h — 0.

161t reads

H/G(t s dy(s) /HG(t S Lo () AV (s)

provided that the measures i and v are o-finite, 1 < p < oo, and the function (t,s) — G(¢,s) is
u X v-measurable. We use it with G(t,s) = g(t — s), du(t) = dt, and dv(s) = kp(s)ds.
17To prove this, it suffices to approximate g by compactly supported continuous functions.
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THEOREM 1. Let f € HY, p> 1, and let fy(z) = f(x +1iy). Then there exists
a function fo € LP(—o0,00) such that

(]‘O) ”fy - fO”LP(foo,oo) —0 > Yy i 0 3
and
(11) 1 foll 2z (~00,00) = I f 1z -

ProoF. Since the unit ball in LP(—o00,00), p > 1, is weakly compact, there
exists a sequence h, — 0 such that fn  converge weakly to a function fy €
LP(—00,0). Using Lemma 2 with h = h, and n — oo, we have

(12) f(m—f-z'y):%/_oo@_st)—(;)_i_yzdt:(fo*Py)(m), y>0,
where y
GETE

is the Poisson kernel which satisfies the definition of approximate identity. Rela-
tion (10) is a consequence of Lemma 4. By Lemma 3 we have

[ £yl Lo (—00,00) < 1 foll Lr(—o0,00) -

On the other hand, combining (10) and Fatou’s Lemma we obtain
H.fO”LP(——oo,oo) S l‘brgi%f ”fyHLP(—oo,oo)

proving equation (11) and Theorem 1.

As stated by Theorem 1, every function f € HY, p > 1, has boundary values on
the real axis belonging to the space LP(—o00, 00). By virtue of (11) we can consider
the space HY as a subspace of LP(—o0,00).

REMARK 1. A function f € HY, p > 1, may be recovered from its boundary
values by means of both the Cauchy integral

LI A 10}

1 =
(13) f(2) 5im _oot_zdt, Imz2>0,
and the Poisson integral

y [~ _f®)

14 == .
(14) f(2) w/_oo|t——z|2dt’ Imz >0
In addition,

1 e t
— L) =0 Imz>0.

?

2im J_t—Z
It should be mentioned that these relations yield HY N H? = {0}, p > 1.

REMARK 2. Theorem 1 is still true for p = 1. This case requires additional
considerations since the weak limit of a sequence of functions from the space
L'(—00,00), generally speaking, may be a measure rather than a function. For
details, see Koosis [7T1], Garnett [37].
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PROBLEM 4. Let h(t) € LP(—00,00) be a nonnegative function. For the exis-
tence of a function f € HY such that |f(t)| = h(t) almost everywhere, it is necessary

and sufficient that -
1
/ og h{t) dt > —00 .
oo 1412

19.3. M. Riesz’s theorem on conjugate harmonic
functions and the general form of linear functionals in HY

Let u(t) € LP(—00,00), 1 < p < oo. Consider the harmonic function in C
o0
: y u(t)
(15) u(z—{—zy):(u*Py)(z):;/_oomdt.
Since the Poisson kernel is an approximate identity, we obtain
(16) ||uh — /UIHLp(_oo,oo) — 0 5 h—0 5

where uy(z) = u(z + ih), and

o0 o0
(17) / lu(z + i) dz < / lu(a)|? dz .
— 00 — o0
In exactly the same way as when proving Theorem 1 we find that if a function
u(z) is harmonic in C, and, for some p > 1,

/ lu(z +ih)[Pdr < C < o0

—0oC
for all h > 0, then u(z) has boundary values u(t) € LP(—o00, 00), and relations (15)—

(17) hold.
The conjugate harmonic function %(z) in C; is defined by the relation

_ 1 1 (z—tut) ,
18 == -t = ) >0.
(18) () W[w(x—t)2+y2 z=z+1y Y

THEOREM 2 (M. Riesz). Let u{t) € LP(—o0,00), p > 1, and let the function
ii(z) be defined by (18). Then there exists a constant K,, < oo which depends on p
only, such that

(19) sup / |(x + th)|P dx < Kp/ [u(z)|P dz .

h>0 J—o00

Therefore, the function @(z) possesses boundary values @i(t) € LP(—o00,00), and

o0 o0
(20) / ()P de < K, / ()P dt
— -0

PrOOF. First, we assume that p > 2 and that u(t) is a compactly supported
function. Relation (18) yields the estimate

Ch
E{

Imz>h.

(21) a(2)] <



19.3. M. RIESZ’S THEOREM ON CONJUGATE HARMONIC FUNCTIONS 143

The function f(z) = u(z) + ii(2) is analytic in C, and according to (15) and (21),
the function f(z + ¢h) satisfies the estimate

(22) If(z—i—ih)lg%, Imz>0,

and so belongs to the space HY for each h > 0.
Let us introduce the function

—1__P P
k(f)=1 p_1|sm¢9|.

This is a m-periodic function, and
K'(0) + p*k(9) = p*(1 —sin?~26) > 0.

Since k'(0) = k'(m) = 0, k(9) is p-trigonometrically convex function for all p > 2
(prove it!). Therefore the function

G(z) = rok(®) = |2 — 2 lyl”

is subharmonic in C, (see Problem 2, Section 8.1). It follows from (22) that the
integral

HW = [ 6+

converges. Since H(z) is a subharmonic function, and H(z + 4y) is independent
of z, we have H(z + iy) = L(y), where L(y) is a convex function of y, y > 0 (see
Problem 1, Section 7.1).

Estimate (22) yields L(y) — 0 as y — oo, and since the function L(y) is convex,
it must be nonincreasing. Therefore, L(h) > 0 for each h > 0, and hence

Lo w@rdes [ in@pr.

Applying Minkowski’s inequality for the space L?/?(—oo, 00) we obtain

(/o:o | fr(z)|P d$>2/:0 _ (/oo (|uh|2 4 Iﬂ’hlz)p/Q d$>2/:v

< ([T w@pra) ([ na@pea)”
Hence,
R e ae) < ([ apan) ™ s ([ )™
or
/: iz + ih)|P do < [(%)2/” - 1] e /_O:o u(z + ih)|P de

< Kp/ |w(z)|? dx .
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Until now u(x) was a compactly supported function. If it is an arbitrary func-
tion from the space LP(—o00,00), we find a sequence {u,} C LP(—o0,00) of com-
pactly supported functions such that

1w = UnllLe(—o0,00) = 0 n—oo.

For any fixed h > 0 we have

/ |un($+ih)—u($+ih)|pd$§/ |tn(z) —u(z)|Pdz — 0, n — oo,

o0 —oo

and also, @, (2) = 4(z), h — oo, uniformly on each compact set in C,. The Fatou
lemma yields

/ |G(z + ih)|P dz < lim Sup/ [tin (z 4 tR)|P dz < K / u(z + h)|P dz
—00 N ~—00 —00
proving (19) for p > 2.

To prove (19) for 1 <p <2 weset ¢ = le > 2, and let A > 0 be fixed. For

each € > 0 choose a compactly supported function v(¢) such that

/ w|fds =1,

(23) 16z + h) || e (—o0,00) ‘/ @z + th)v( )dac‘—{—s.

and

Combining Fubini’s theorem, Hélder’s inequality, and estimate (19) with g substi-
tuted for p, we obtain

R . (z = thu(t)v(z)
‘/_oou(:r—{—zh dm —‘—/ / CETE +h2 dtd‘
—‘/ o(t +h) dt‘

< ||u||LP(—oo,oo)||/Uh||Lq(—oo,oo) < Kp”uHLP(—oo,oo) .

Since £ > 0 in (23) can be taken arbitrarily small, we arrive at (19), completing the
proof of the theorem.

REMARK 1. The best value of the constant K}, on the right-hand side of (19)
was obtained by Pichorides:

tan21 l<p<?
K,= P

p s
cot— 2<p<oo.
2p
Essén [35] proved that this value of K, may be obtained by modifying the choice
of subharmonic function G(t) in the proof of Theorem 2.
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REMARK 2. The expression of the conjugate harmonic function may be reduced
to the form

3 _ 1 [ (z—-tut) 1 [Pulz+s)—ulz—s) s°
== ot == d
Uz + ) W/_oo(l,‘—t)Q-f-yQ 7T/0 s s2 492 s
For a smooth function u(¢) € LP(—o0,00), p > 1, we have
1 oo
(24) i(z) = P.V./ @ dt .

The right-hand side of (24) is called the Hilbert transform of the function u(t).
It is known (see for example Koosis [7T1], Garnett [37]) that for each function
u(t) € LP(—00,00) its Hilbert transform 4(t) exists for almost all ¢ and coincides
with the boundary values of @(xz + iy). As a result, the Riesz theorem can be
formulated as follows.

The Hilbert transform is a bounded operator in LP(—o0,00), 1 < p < 0o.

The following corollaries of Riesz’s theorem will be used later.
COROLLARY 1. If f € LP(—00,00), 1 < p < 00, then the functions

171

= I
(25) fx(2) . _oot_zdt, +Imz >0,

belong to the spaces HY , respectively, and
(26) I fellzz < Kpllfllze(-co,00) -

Here and in what follows, H? stands for the Hardy space in the lower half-plane
C_ ={z:Imz < 0}, which is defined similarly to the space HY .
To prove this statement it is sufficient to note that the Poisson kernel P, (t) =

%m and its harmonic conjugate Q,(t) = TRt are the real and imaginary
parts of the Cauchy kernel
Pyt —z)+iQyu(t —x) = i ! ,
mit—z

and then apply estimate (19).

COROLLARY 2. Each function f € LP(—o00,00), 1 < p < 00, admits the unique
representation:

(27) fO) =1 - -0,

where fi(t) are the boundary values of functions from HE, and inequality (26)
holds.

PROOF. We set

Fe=gUip),  fo=—3(-if),

and apply Riesz’s theorem. To prove the uniqueness of representation (27) we find
that if f = f, — f_ = g — g—, then the function f; — g4 = f_ — g_ belongs to
HY N H? and, according to Remark 1 to Theorem 1, vanishes identically.

Now we can describe the dual space (HY)*.
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THEOREM 3. Let 1 < p < oo. Then the space (Hﬁ)* may be identified with
the space H?, 1/q+1/p = 1. The functional Ey, € (HY)* which corresponds to a
function ¥ € H? has the form

(28) B = [ fewta,
and
(29) 1Byl ey < 19llae < KpllEyll(am)-

PRrROOF. Given a function 9 € H?, equation (28) generates a bounded func-
tional E, € (H?)* and the left-hand inequality in (29) holds. Conversely, by the
Hahn-Banach theorem each functional E € (HY)* admits an extension to a func-
tional on the whole space LP(—o0, 00) with the same norm. Hence

B = [ sewmd, e Li-oo0).
By Corollary 2 from M. Riesz’s theorem we have
Yv=9y~9%-, Yr€HL,

and
[Vallz < Koll¥lize = Kol Ell(ary- -

Further,
[t =jin [ e =o,
hence, E = E,, with ¢_ = 1, proving Theorem 3.

COROLLARY. If f € LP(—00,00), p > 1, then the following three statements
are equivalent.

a) f is the boundary value of a function from the space HY;

b) &dtzo, Imz<0;
o b — 2
e ) 1 1
c) / f(t)g(t) dt = 0 for each function g € HY, a—i— b= 1.

For more results on the Hardy spaces and on their applications, see Privalov
[112], Koosis [71] and Garnett [37].

19.4. The Paley-Wiener theorem for H2

The space H2 admits the following description:

THEOREM 4 (Paley-Wiener). For a function f(z) to belong to the space H% 1t
s necessary and sufficient that f admit the representation

(30) @ =5 [ e, per’0,00).

and in this case

(31) 1112 = 2mllel|Z2 (0,00
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Proor. For f € Hi let us consider the inverse Fourier transform along the
line Imz = y:
R .
alt)= | satieieds,
—00
or
oco+1iy ]
ter = [ e ds.
—oo+1y
By property 3 of functions from Hi, the right-hand side of the latter equation is
independent of y. If (t) = p,(t)e®, then Parseval’s relation yields

sup2r [ e (o) di = | £l < .

y>0 —oo +

This implies that ¢(t) =0 for t < 0 and also, that relation (31) holds.
The proof of the inverse statement is straightforward.

It should be mentioned that in the special case p = 2 one can easily obtain the
results of the previous sections by means of the Paley-Wiener theorem.

PrROBLEM 5. Deduce from Theorem 4 the Paley-Wiener theorem on entire
functions of exponential type that are square integrable on the real line (Theorem 1,
Section 10.1).



LECTURE 20

Interpolation by Entire
Functions of Exponential Type

The following is a typical problem in the theory of entire functions:

Let [p, o] be the class of entire functions whose growth order does not exceed p
and whose type with respect to p does not exceed . Let two sequences {A,} € C,
An — 00, and {c,} C C be given. Find an entire function f € [p,o]| such that
f(An) = cp for all n.

Usually the numbers ), are called the nodes of interpolation. Sometimes, in-
stead of restricting the type of f(z), it is required that the indicator of f(z) does
not exceed a given p-trigonometric function h(#) (the class of all such functions is
called [p, h(#)]). The most interesting are problems of existence and uniqueness of
the solution, as well as its explicit expression. The reconstruction of the solution
is based mainly on the classical Lagrange interpolation series and on its general-
izations for the case of multiple nodes. For results on interpolation in the classes
[0, o], [p, h(6)] and some other classes, see, for example, Levin [82], Leont’ev [79],
Grishin and Russakovskii [49], Goldberg, Levin, and Ostrovskii [42, Chapter 4].

We shall restrict ourselves to the study of interpolation problems in some classes
of entire functions of exponential type (EFET) and with integer nodes of interpo-
lation or with nodes close to the integers.

20.1. Spaces L? and B,

Let us denote by L?, 1 < p < oo, the space of all entire functions of exponential
type < o that belong to the space LP(—o00,00). It is easy to see that L? is a closed
subspace of LP(—o0,00). Indeed, the Plancherel-Pélya theorem (see Section 7.4)
yields

& | sl ds <A,

— o0

Therefore, we have

(2) // |z +ily + )P dods < 270D g,

for any y € R, and since |f|? is a subharmonic function, we obtain

2
i Zeop(yl+D) || £112
) flat i < 2 WD|p,

149



150 LECTURE 20. INTERPOLATION BY ENTIRE FUNCTIONS

It follows from this inequality that LP-convergence of a sequence of functions from
L? implies the uniform convergence in each horizontal strip, and that the limit
function is an entire function of exponential type not exceeding o.

The following properties of the spaces LP are important.

1. For each h € R, the functions f(z +ih)e'? and f(z + ih)e "% belong to
the Hardy spaces in the half-planes {Imz > 0} and {Im z < 0}, respectively. This
statement is a direct consequence of (1).

2. For each —oo < hy < hy < 00:

fla+iy) 30,  |zf - o0,

uniformly in the strip {h1 <y < ho}. In particular, f(z) — 0, as |z| — Foo.
3. For each function f € LP

1Fy)l = o(e™), |yl = o0.

This property follows from the previous one combined with the Phragmén-Lindelsf
theorem.
4. Let a sequence {A,} C C be such that for some H, é

(4) | ImA\,| < H < o0, An—Am| >26>0  forn#k.

Then, for each f € LP,

PSONFIE

LP(—00,00)

S IFA)

where the constant C depends on o, § and H, but not on f. This follows directly
from Property 6, Section 19.1, of functions of the Hardy space.

To simplify notation, we set L, = L. in what follows. Let us denote'® by B,
the space of all entire functions of exponential type not exceeding o, endowed with
the norm

I£1l8, =sup|f(z)| .
z€R

Using the Phragmén-Lindelsf theorem, it is easy to see that L2 and B, are Banach
spaces.

20.2. Interpolation with integer nodes
We start with a theorem which is now classical.

THEOREM 1. Fach entire function f(z) € L2 admits the representation

sin mz

®) 9= ¥ (1 m
where ¢, = f(k), k € Z, and

(6) / T @R = 3 EE

k=—o00

181n honor of Serge Bernstein.
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The series (5) converges in the LZ-norm and uniformly on each compact set in C.
Conversely, for each sequence {cx} € 1% equation (5) defines the function f(z) € L2
which solves the interpolation problem f(k) = ck.

PROOF. According to the Paley-Wiener theorem, each function f € L2 admits
the representation

L T —itz
™ o) =5 [ v, el (-mm).
The Fourier expansion
(8) P(t)= D cxe'™

k=—o00

converges in L?(—m, 7). Substituting it in (7) we obtain relation (5). It is evident
that ¢, = f(k), k € Z. In addition, using Parseval’s identity we obtain

1
[ £1l22(~00,00) = E||¢”L2(—7rm) = |{exHlez = I{f (K},

and the series on the right-hand side of (5) converges in the L?(—oc, cc)-norm.

Conversely, let a sequence {ci} € I2 be given. Formula (8) defines the function
¥ € L?(—m,n) and the function f defined by relation (7) is of exponential type
o < m for which representation (5) is valid.

REMARK 1. Another form of Theorem 1 is the following:
sinm(z — k) }00

forms an orthonormal basis in
m{z — k)

The system of functions {

k=—o00

L2.

REMARK 2. Theorem 1, as well as some similar results, is of importance in
communication theory. According to the Paley-Wiener theorem, each bandlimited
signal can be treated as the restriction of some EFET to the real axis. Theorem 1
states that to transmit such a signal it is sufficient to use its samplings only, i.e., its
values at some periodic sequence of points. It was V. Kotel’nikov who in the early
thirties used this theorem in communication theory. In the forties, C. Shannon
applied this theorem to the same area. Now, it is known as the sampling theorem
or the Kotel’'nikov-Shannon theorem. For more complete exposition of applications
of entire functions to the communication theory, optics and some other fields, see
Khurgin and Yakovlev [60], Higgins [56].

20.3. Interpolation in the spaces L2, 1 < p < oo, with integer nodes

We begin with a uniqueness theorem for EFET which is close to Carlson’s
theorem, Section 8.3, and is proved by similar methods.

THEOREM 2. Let f(2) be an EFET o < m, such that f(n) =0, n € Z, and let
(9) lim f(iy)e ™ =0.

ly|—o0

Then f(z) = 0.
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Proor. The function p(z) = f(2}/sinnz is an EFET. For any fixed § > 0 the
denominator sin 7z admits the lower and upper estimates

mse™¥ < |sinmz| < Me™ y=Imz,

where the left estimate is valid for |z — n| > 8§, n € Z. Therefore, the indicator
diagram of the product (z)sinmz is the sum of the indicator diagrams of the
factors. The indicator diagram of sinzz is the segment [—im,in|, and hence Iy =
I, + [~im,im] C {z: |z] < 7}. Therefore, ¢(z) is a function of minimal type with
respect to order 1. Condition (9) yields ¢(iy) — 0, y — foo, and applying the
Phragmén-Lindel6f theorem in the right and left half-planes we find that ¢(z) is
bounded in C. Hence (z) = const, and since p(iy) — 0, y — Foo, we obtain
@ = 0, which completes the proof of the theorem.

As property 3 from Section 20.1 shows, Theorem 2 can be applied to functions
from L2, p > 1, leading us to the following statement.

COROLLARY. Fach function from the space LP, p > 1, is uniquely determined
by its values at the integers.

THEOREM 3 (Plancherel-Pélya). For any sequence {cx}52. € P, 1<p<

00, the sertes

— o0

(10) f(z) = Z (‘chkm

k=—o0

converges in the LP(—oc,00)-norm to a functions f € LP, which is the unique
solution of the interpolation problem f(k) = cx, k € Z. Conversely, for any function
fell, 1<p<oo, the sequence { f(k)}32 ___ belongs to [P, and there exist positive
constants ¢ and C such that

= 1/p > 1/p
) o X RP) T S Il <C( X 1FROF)
k=—o0 k=—o0
for all functions f € L2,
COROLLARY. For 1l < p < oo, the mapping

{e} = f2) = 3. (—1)’“%%

k=—00
18 an wsomorphism of the Banach spaces [P and LP.

PrROOF OF THEOREM 3. Let us set

m

¢ sinmz
erm(2) =Y (T fam(e) = = —pnm(2).

k=n

It is evident that the functions ®, ,, belong to the spaces L2, 1 < p < 0o. Therefore,
for any h > 0, we have

/ [P, m (z)|P dz < e”ph/ 1@, o (z + ih)|P da
(12) o0 —o0

(o]

< C(hp) / (P iB)|P d

— o0
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Thus, to prove the convergence of series (10), it suffices to estimate the norm of
functions ¢, (@ + ih). Since @ n(z + ih) € HY, then, using Theorem 3, Section
19.3, which describes the general form of linear functionals in HY , we obtain

lenm(a + i)z = Kpsup{| [ gmnla+ inp(z)dz] v € HE, [yl <1},

To evaluate the integral on the right-hand side we apply the Cauchy formula for
residues:

/oo Pnm(z + ih)ip(z) dz = ~2mi B (—1)*extp(k — ih) .
k=n

— o0

By Holder’s inequality and property 6 of functions from the Hardy spaces (see
Section 19.1), we obtain

H‘Pn,m(z + 7;h')HH?;

< Kp(i |Ck|p>1/p sup{(i o (k — ih)|q>1/q Ml <1}
(13) 2 2
S Kp( m |Ck|p>1/p )
k=n

Therefore, for sufficiently large N. and m > n > N., we have
lpn,m(z + th)||Ler < e,

and taking (12) into account we find that series (10) converges in the LP-norm. Since
all summands belong to P and the space L? is complete, the sum of the series (10)
belongs to LP as well. The uniqueness of the solution to the interpolation problem
follows from the Corollary to Theorem 2.

For n — —oo0, m — 400 in relations (12), (13) we obtain

> 1/p
I £1l L2 (~ 00,00) SKP( Z |ck|p> .

k=—o00

The converse inequality follows from property 6, Section 19.1, of functions from L2.
This completes the proof of the theorem.

The statement of Theorem 3 is false for L, and B,. Indeed, if {cx} € I,
the series (10) converges uniformly in each horizontal strip and the interpolating
function f satisfies (9). Hence, by Theorem 2 it is unique, but now it need not
belong to the space L. If {cx} is a bounded sequence, the interpolation series (10)
may be divergent and also, as the example f(z) = sin 7z shows, the solution of the
corresponding interpolation problem is not unique.

In the next lecture we shall study the interpolation with integer nodes in the
spaces L, and B, with ¢ < 7 in more detail.
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Interpolation by Entire Functions
from the Spaces L, and B;

In Section 20.3 we studied the interpolation series (10) which determines the
behavior of the solution to the interpolation problem for the spaces L? in the case
1 < p < 0o. The study of the extreme cases p = 1 and p = oo is essentially different.
In particular, if {cx} is a bounded sequence, the series (10) may diverge. In the
present lecture we give a criterion for solvability of the interpolation problem

fk) = ck

for {ck}32 o € 1%° ({ck}i2 o € 1') inthe space B, = L (L, = L., respectively).
We shall also obtain a representation of the solution to this problem via a special
interpolation series.

21.1. Interpolation by functions from B, and L,

Let a sequence {cx}32 _
of the interpolation problem

€ [*° be given. We begin with constructing a solution

(1) fky=ce, k=0,+1,%2, ...,

in the class of EFET, and then we shall study the behavior of this solution on the
real axis.

THEOREM 1. For any bounded sequence {cx} € I°° there exists an entire func-
tion f(z) of exponential type < m which solves the interpolation problem (1) and is
such that

(2) F@le ™ =o(l2]), |zl — .

These conditions define the function f(z} up to an additive term of the form
Csinmz. In addition, the function f(z) admits the representation

(o]
/

(3) fle) = T2 S (ke [

™

L1
k k

} + Csinnz

k=—o0

where the prime in the summation sign means that the second term in the braces is
omitted for k = 0.

PROOF. First, let us prove that the series

@ o) = 2 S (0t 2+ ]

k=00

155
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on the right-hand side of (3) is convergent. Suppose |cx| < M, k = £0,%1,....
We have

Sm,n(z):‘ i (—1)’“ck(zik+%)‘§MlZ| i ﬁ

[kl=n+1 lk|=n+1
m o0
1\1/2 1
SMM( 2 k_Z) <Z|z—k|2)
|k|=n+1 —00

If § € (0,1/4) is fixed and z lies outside the union of the disks {z : |z — k| < &},
then

1/2

> 1 1 21

_ 2
E m§6—2+25 E_M6<OO,
k=—o00 k=1

whence
(5) |Smn(2)| < €|z| for n,m > N,.

Combining this estimate and the Maximum Principle we find that the series (4)
converges uniformly to a function g(z) on each compact set in the complex plane.
Moreover, (5) yields

S (et D) moel),  smee,

k=—o00

outside the disks {|z — k| < é}, k =0,£1,+£2,.... Hence, using (4),
(6) g(z)e ™ =o(lz]),  |z| - o0.

It is evident that the function g(z) is a solution to the interpolation problem (1).

Now let f(z) be an arbitrary entire function which satisfies conditions (1), (2).
Since the difference f(z) — g(z) satisfies condition (2) and vanishes at integers, the
ratio p(z) = (f(2) —g(2))/sinmz is an entire function with ¢(2) = o(|z|), |z| — cc.
By Liouville’s theorem ¢(z) is a constant, which proves (3).

REMARK 1. Similar reasoning allows us to replace condition (2) by a weaker
condition:

[f@y)le ™ =o(ly), |yl — oo
PrOBLEM 1. Let f(z) admit representation (3) with {cx} € [°°. Prove that
(7) [f(2)le™ ¥ = O(logl2]) , 2] = oo

PROBLEM 2. Let a sequence {cy } satisfy the condition |cx| = O(|k|™"%), k € Z,
with some integer m > 0 and some number s € (0,1). Prove that the series

sinmz i (—1)ke (L+l+i+ +i)
T ek k| k2 Emtl

k=—o0

converges to an entire function f(z) uniformly on each compact set in C. This
function solves the interpolation problem (1), and satisfies the condition

f@)] e e 0, 2] = oo
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Conversely, each entire function ¢(z) of exponential type ¢ < 7 which solves the
interpolation problem f(k) = cx and satisfies the condition

|fGy)le™™ ¥ =o(jy|™ "),  y— oo,

admits the representation

(o]

_ sinmz T Nk 1 1 zm .
flz) = p Z (-1) Ck[z_k-f-k-f- +km+1}+P( )sin7z

k=—o00
where P(z) is a polynomial of degree less or equal to m.

There exists a bounded sequence such that the corresponding interpolation
problem has no solution in B,. To describe conditions that provide the existence
of a bounded solution to the interpolation problem, we introduce for each integer
7 the functional

®) L e = Lofed) = Y (hsr — )z
k=—o0

where di = (—1)*¢cy. Since,

k k+r 1
- =0f=— k
2+1 (k+m2+l O(k?)’ Bl

the series on the right-hand side of (8) is convergent.

THEOREM 2. Let {cx} be a bounded sequence. In order that there exist an
entire function f(z) of exponential type < 7, which is bounded on the real azis and
solves the interpolation problem (1), it is necessary and sufficient that

9) |Lr({ce})| < M, r=0,4£1,42,...,
for some M > 0.

SurFICIENCY. Let {cx} be a bounded sequence satisfying (9). By Theorem 1
the series (3) converges to g(z) which is an EFET o < 7. Therefore, it remains to
prove that g(z) is bounded on the real axis.

For an even 7, let us consider the difference

(z+7+1) - ($+i)—7sm7r($+i) i d ( 1 S )
g g N s Mt k c+i+7—k x+i1—k

_Sinﬂ'(I-f-Z') i dk—H-_dk
- s k:_ooz—k—f-z"

Since the sequence {dj} is bounded we have

o0 o0
dgtr — di Qr — dic ‘
i A — | <
} 2 z—k+i 2 Pl R
k=—00 k=—o00
for 0 <z < 2, where C) is independent of z € [0,2] and 7. Besides,

‘ i dk;;:z Lr({ck})‘ <Oy,
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where C, is also independent of 7. Combining these inequalities with (9), we obtain
lgle+74+1) —glz+19)| <M+ Ci+ Cy
for 0 <z <2, 7=0,£2,.... Now, setting C3 = maxg<y<2 |g(z + 7)|, we have
lglx+d)] <C1+Co+C3+ M

for all z € R. Therefore, the function g(z} is bounded on a straight line which is
parallel to the real axis. By the Phragmén-Lindeldf theorem g(z) is bounded on R
as well.

NECESSITY. Let f(z) be an entire function of exponential type ¢ < 7 bounded
on the real line and solving the interpolation problem (1). Then by Theorem 1 f(z)
admits the representation (3). For an even integer 7 we have

f(TH)_f(i):_Sh;};W 2. (_l)kck[T—f-i—k—i—lk‘]

sinh 7 i dk+-r—dk
i—k

sinh7r smh7r 0 (digr — de)(1 + ik
L, ({ex}) - k;oo( e e

Since f(x) is bounded on the real axis, so are both f(z + 1) and the difference
f(z+ 1) — f(3). Therefore, we have

sup{|L,({cx})| ,7 = 0,£2,£4,...} < 00

The estimate for an odd 7 follows from the relation

Lr(exd) = Lr—a{eeh) + Z disr— 1[ kl—)21+1 _k2]i1]‘

This completes the proof of the theorem.

Now let us consider the interpolation problem for a sequence {c} € I'. In this
case the interpolation series

(o]

(10) f6) = ¥ (e

k=—o0

is convergent, but, generally speaking, its sum f(z) does not belong to L!(—oc, co).
To formulate the corresponding summability condition we define, for each integer
7, the functional

(11) s {en} = Mo({e}) = Z dio--r kgli 1
k—_

The following statement is similar to Theorem 2.
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PROBLEM 3 (Ber). Let {cx}>, be a sequence in I'. In order that there exist
a function f € L, which solves the interpolation problem (1), it is necessary and
sufficient that

(12) S M ({eed)] < 0o

T=-—00

HiNT. To prove the necessity, use the representation (10) of a function f € L,
and the inequality

(o]

> 1f(r+4)| < comst | fL, ;

T=—00

see Section 19.1. To prove sufficiency note that if f(z) is represented by the series
(10), then the sequence

{/01 |f(z+7+4)[dz ~ MT({Ck})}i_oo

is summable.

It should also be mentioned that conditions (9) and (12) are equivalent to the
boundedness of the discrete analogs of the Hilbert transform: )

R

k40 =T

and

(AR} o {Z dk]:—‘r

k#£0

}oo
T=—00

in the spaces [ and ', respectively.

PROBLEM 4. Construct a sequence {cx}>®, € I® ({ck}>=, € I!) such that
condition (9) (respectively (12)) fails.

PRrROBLEM 5. Prove that, for p = 1 and p = oo, there exist entire functions of
exponential type 7 such that

(13) f@)=o(lz]),  z—*oo,

and {f(k)} € lp, f(.’I)) ¢ Lp(—O0,00).

PROBLEM 6. Let p € [1,00] and f(z) be an entire function of exponential type
7 satisfying (13). Then the following statements are equivalent:

1) f(z) € LP(~00,00) .
2) There exist a,b € R such that a # b and

{fk+ia)}iz el?,  {flk+ib)}Z €07,



160 LECTURE 21. INTERPOLATION BY ENTIRE FUNCTIONS

21.2. Interpolation by functions from L? with o < 7

As stated in Problem 6 of the previous section, there exist entire functions of ex-
ponential type 7 which satisfy (2), are bounded at the integers, but are unbounded
on the real axis.

This is not the case if we require that the type ¢ of an entire function is less
than 7. To study such functions we need the following interpolation formula.

THEOREM 3 (Boas, S. N. Bernstein). Every entire function f(z) of exponential

type such that
7r 7r
d= _) - (— —)
hf(2 hf 5 <T

FR <M, k=0+1,+2,...,

admits the representation

and

R S RIRULLEEL)

(14) (Z _ k‘)2 ’

k=—o00
where w s an arbitrary number from the interval (0,7 — d).

PrOOF. Let us fix z € C and consider the function of (:

sinw(( —z) sinn¢ i (_l)kf(k) sinw(z — k) .

A R B

k=—00

It is an EFET vanishing at the integers. Therefore, the ratio

_ o2 _ fQsinw((—2) 1 e k)sinw(z — k)

sinm¢ w(¢ — z)sinm¢ w £

is an EFET as well. The indicator of the first summand on the right-hand side is
equal to d 4w — 7 < 0 at the points # = £7/2 and, by the continuity, is negative
on some neighborhood of these points. The second summand on the right-hand
side of (15) vanishes as { — oo along any ray {¢ : arg( = 8}, for § # 0, 7. By the
Phragmém-Lindel6f theorem we have (¢, z) = 0. With ¢ — z we obtain (14).

THEOREM 4 (Cartwright). Let f(z) be an EFET such that
7r 7r
2d =hy(Z) +hs(5) <2r,
and let |f(k)| < M for k=0,£1,+2,.... Then
(16) |f(z)| < Cd)M —00 < T < 00.

Proor. Without loss of generality we may assume h(7/2) = hy(—7/2), and,
hence, f(z) admits the representation (14). This yields the estimate

7w o0 1 T4w X

e 1
M <M .
W Z (z—k)?+1~ W k; k? +1

k=-—o00 —o0

fl@ti) <
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To obtain (16) it suflices to apply the Phragmén-Lindel6f theorem in the strip
{z: |Imz| < 1}. The theorem is proven.'®

Similar reasoning may be applied in the case p = 1. Combining these results
with the Plancherel-Pélya theorem from the previous lecture, dealing with the case
1 < p < o0, we obtain the following result.

THEOREM 5 (Plancherel-Pélya). Let f(z) be an entire function of exponential
type such that

2d; = hy(3) +1is (- g) <or
and

{fR)}e € l?
for some p € [1,00]. Then f(z) € LP(—o00,00) and there exist positive numbers c
and C not depending on f(z) such that

el fll o (~o0.00) < I{f (B)Hlir < Cllf Il o (=00,00) -

PRrOOF. We should consider only the case p = 1 in which we again use the
Boas-Bernstein interpolation formula (14). Let

. m . —k
fam(®) = =25 37 <—1>kf<k>s“§i7z,€)2)
|k|=n+1
Then
o8] T+w o) m T4w m
[ tmntetalan< S ([T B Y =S Y 1rwl.
—o0 —oo & |k|=n+1 [kl=n+1

The function

N
un(z) = / (D)

is a subharmonic bounded function in the strip {z : |Imz| < 1} satisfying the

estimate
tw

S I
|k|=n+1
By the Phragmen-Lindel6f theorem this estimate is extended to the whole strip. In
particular,

eﬂ'

un(z 1) <

o] eﬂ—{—w m
mn(Z)| dz =1 0) < k)| .
| lfmn(a] dz = limsupun(0) > 156

w
- [k|=n+1

Therefore, the series (14) converges to the function f(z) in the L!(—o0,00)-norm

and
oo

> 1R

k=—o0

eﬂ—{—w

[l (00,00 <

19The best value of C(d) is not known yet. In some particular cases (d = n/nandd = n—m/n,
n € N) it was found by S. N. Bernstein. Generalizations in various directions of the Cartwright
theorem are known. We mention here the papers Agmon [1], Davydova and Logvinenko [26],
Levin [81], and Malliavin [89].
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The opposite inequality (with another constant) follows from Property 4 of the
space LE (see the previous lecture).

21.3. Interference in a class of entire functions
The following interference phenomenom has been discovered by S. N. Bernstein.

THEOREM 6 (S. N. Bernstein). Let f(z) be an entire function of ezponential
type o < 7 which satisfies the estimate (2) and is such that supy, | f(k)| < co. Then

17) |f($+1)+f($)\5081;p|f(k)\,

where the constant C s independent of f.

ProoF. Expanding f(z) in the interpolation series (3) with ¢, = f(k), we
obtain

flat 1)+ fe) = 0 Y 1Rk (- =)

k=—o00

which implies (17) with the constant2°

sinmx ‘

C =su ‘
kazz—oo (z —k)(x—-k+1)
This proves the theorem.

The similar effect takes place with respect to L!(—oo, 0o)-norm.

PrROBLEM 8 (Ber). Let f(z) be an entire function of exponential type o < 7,
which satisfies condition (13) and is such that ;- |f(k)| < oo. Then

/°° et D)+ f@lde<C S 7).

- k=—o00

An operator which transforms each entire function f(z) of exponential type
o <, such that condition (13) is satisfied and {f(k)} € I°° (or {f(k)} € I}) into
a function from the space B (respectively L), is called the interference operator.
Such operators (not necessarily of the difference form) were studied in Boas [17],
Akhiezer [4, pp. 207-211], Levin and Din Than Hoa [83], Ber [10]. In particular,
the general form of an interference operator commuting with translation by an
integer can be described.

20The best constant C = 8/7 was found by S. N. Bernstein.



LECTURE 22

Sine-Type Functions

22.1. Interpolation with nodes at the zeros of a sine-type function

Theorems on interpolation with integer nodes can be extended to more general
sets of nodes. Starting with an evident observation that the integers are the zeros
of the function sin 7z, we shall consider the interpolation problem with the nodes
at zero sets of a more general class of functions which we now define.

DEFINITION. An entire function F'(z) is called a sine-type function with the
width of indicator diagram 2¢ if

a)
(1) he(5)=he(=3) =0

2 2
b) all zeros Ay of F'(2) are simple and satisfy the separation condition
2 i — — .
(2) Iggluk An| =26>0;
c)
(3) sup{|Im Ax|} = H < 00
k

d) there exist constants h, ¢, C, such that

(4) O0<e<|F(z+ih)|<C <o, —0 <z < 0.

The zeros of a sine-type function lie in a horizontal strip. We enumerate them
in increasing order of their real parts; i.e., ReAy < ReAgy1, k=0,£1,£2,..., and
assume these relations to be fulfilled unless otherwise stated. Before investigating
interpolation problems we prove some auxiliary statements.

LEMMA 1. For any n > 0 there exists my, > 0 such that
(5) |F(2)] > mne"llmzl

if dist(z, {Ax}) > n.

PRrROOF. Let H; > max{H,|h|}. First, we shall prove (5) under the additional
restriction | Im z| < Hy. Relation (4) together with the Phragmén-Lindelof theorem
implies that F(z) is bounded in the strip II = {z : |Imz| < 2H;}. Therefore,
{F(z+7): —o0 < 7 < oo} is a normal family of functions. If relation (5) fails
in the strip II} = {z : |Imz| < H;}, then there exists a sequence {z;} C Iy,
z; = x; + ty;, such that F(z;) — 0, j — oo, and dist(z;, {A\e}) >m, j =1,2....
Introducing, if needed, a subsequence of {z;} we can assume that the functions

163
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F(z + x;) converge to a function Fy(z) uniformly on each compact set in II, and
that there exists the limit lim; o y; = yo € [~Hi1, H1]. From the left-hand side
inequality in (4) we have |Fy(z + 1h)| > ¢, —00 < z < 00, and, hence, Fy(z) is not
identically zero. On the other hand,

Fo(iyo) = Jim Fy(iy;) = Jim F(z; +1y;) =0.

It follows from Hurwitz’s theorem that there exists a number j, such that, for
J > Jn, all the functions F;(z) = F(z + z;) have at least one zero in the disk
{z : |z — tyo| < m/2}, and hence, the function F'(z) has a zero in the disk {z :
|z — zj| < n} contradicting the conditions dist(z;, {\x}) > 7.

To obtain estimate (5) in the half-plane {z : Imz > H;} we may use the
representation

) y—Hy [ log|F(t+1H;)
log |F(z + iy)| = - / |t—z(+iHl|12,

dt + (y — Hl)hF(g) :

and the estimate |F(¢t +4H;)| > m,e’ "1, which has just been proved. The estimate
in the half-plane {z : Imz < —H;} is derived in the similar way. This completes
the proof of the lemma.

REMARK. By the Phragmén-Lindeldf theorem the inequality which is opposite
to (5) with another constant instead of m,,, holds as well. Therefore, we have

(6) 0<c<|F(z)lem*l < C <0, dist(z, {Ax}) > 1,

with appropriate constants ¢ and C. This inequality is equivalent to the definition
of the sine-type functions with simple zeros satisfying (2).

LEMMA 2. For every sine-type function F' there exist constants Ny, No such
that

(7) 0< N <|F'(Ap)|<N2< 0, k=0,+£1,42,... .

PROOF. Let 6 be the number in the separation condition (2) from the definition
of sine-type function. According to the previous lemma, we have

0<msg < min
|Z*/\k‘=5

| F(z) FQ)

— < Ms < o0
Z—/\k~_|z—/\k\=6‘z—/\k‘_ 8 ’

with some ms, M;s. Inequalities (7) now follow from the Minimum and Maximum
Principles for analytic functions.

The following property of sine-type functions will be used in Lecture 23.

LEMMA 3. The zeros of a sine-type function satisfy the relation

(®) sup{[Ax = Axal} <00
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PROOF. Let the contrary be true. Since all zeros Ak lie in the strip {z : |Im 2| <
H}, there exists a sequence {z,} such that the vertical strip {z : |[Rez — zx| <
k} is free from zeros of the function F(z). Taking a subsequence of {Rexy}, if
needed, we can assume (as in the proof of Lemma 1) that the sequence of functions
F(z + z) converges to a nonzero function Fy(z) uniformly on each compact set in
C. According to the choice of the points {z,} this function has no zero in C, and
hence, Fy(z) = ef(*) for some entire function f(z). In view of relation (6) we have

(9) 0 <ce’!™? < |Fy(z)] < Ce’! ™l <00, zeC.

Therefore, Fy(z) is an EFET and f(z) = az + ( for some o, € C. In this case,
the indicator diagram of the function Fy(z) coincides with the point @. On the
other hand, according to (9), it must be the segment [—ic, i0]. This contradiction
proves the lemma.

A parametric description of the class of sine-type functions with real zeros in
terms of special conformal mappings was obtained recently by Eremenko and Sodin
[33].

The following statement shows that the zero sets of sine-type functions have
the same interpolation properties as the set of integers.

THEOREM 1. Let F(2) be a sine-type function with indicator diagram of width
20, and let {A\}52_ be its zero set. Then the mapping

©o — f(z) = 3 c A
(10) {er}ie oo = S( )_k;w kF’(/\k)(Z—/\k)

is an isomorphism between IP and L? for each p € (1,00). The series on the
right-hand side of (10) converges in the LP(—o0, 00)-norm. The inverse mapping is
defined by the relation

(11) Fo{fQeiii

ProoF. Let f € LE. Property 4 of the space L? (see Section 20.1) gives

[e ]

D AR S O aoro0y »

k=—o00

and hence (11) defines a continuous mapping from L? into I?.
Now, we prove that for an arbitrary sequence {cx}*>°,, € [P the series (10)
converges in the space LY and

[f1l (-~ 0,00) < comst [[{ck }lew -

Let, for the sake of simplicity, all zeros {A\;} belong to a horizontal strip {z :
0 <n<Imz < H < oo}. Otherwise, we could use the same reasoning for the
function F(z+ 2iH). From (6) we obtain 0 < ¢ < [F(z)| < C < 00, —00 < & < 00.
To prove the LP-convergence of the series

(12) p(z) = k;w F’(/\k)(i ~ M)
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we note that each partial sum

n
Ck

(Pm,n(z) = Z m

k=m

belongs to the Hardy space H?. Much as in the proof of the Plancherel-Pélya
theorem (Theorem 3, Lecture 20), its LP-norm can be found using the relation

lemnllzr < Const.sup{\ /_0; Om n(2)(z) da:‘ c e HY, ”@bHHi < 1} ,

with g = p—pI Applying the residue theorem to evaluate the integral, we obtain

lom,nll e < const sup H Z ﬁw(z\k)‘ rp € HY [Yllge < 1} :
k=m

Now, the Holder inequality together with relations (7) and property 6 of Hardy
spaces (see Section 19.1) yields

”‘Pm,n”Hﬁ

<constsup {( 3 [esl?) (32 |¢<Ak>|Q)i/ Liwedy Iwluy <1
k=m k=m

i 1/p
< const ( Z |ck|p>
k=m

proving the convergence of the series. Passing to the limit as m — —oo, n — o0,
we obtain the bound for the norm of the series. Theorem is proved.

Dzhrbashyan and Rafaelyan [29] considered the class EFET satisfying the es-
timate

0<ec< (14]2))*|F(z)le ™2 < C < o0, dist(z, {A\}) >

for some k. In the case |k| < 1/2 they obtained results similar to Theorem 1.

22.2. Functions whose zeros are close to the integers

In this section we study the following problem. Given a bounded sequence
{dr}32 _ . of complex numbers, consider the function

(13 fo=Jm [ (-725)

oo
|k+di|<R

which vanishes at the points k + dy. (If k + dy = 0 for some k, we replace the
corresponding factor in (13) by z.) For dy = 0, k = 0,£1,+2, ... , we have

f(z) = =sinwz. In the general case f(z) may be treated as a perturbation of
T

— sin7z. What conditions on {d} ensure f(z) to be a sine-type function?
7r
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Let ap = supg{|Imdg|} and let the branch of arg(k + dj — z) in the half-
plane {z : Imz > ag} be such that arg(k + dy — z) € (—=,0). Assume also that
arg(k + di) € (—37/2,7/2]. By this choice of arguments we have

arg (l—ﬁ) = arg(k+dx —z)—arg(k+dy) - 0, k— +oo, Imz>ag.

Let us now define the function
(14) 0(z) = log{f(2)e"™ R} | Imz>ap.

Its behavior along a horizontal line may be studied using the functionals {L.}
constructed in Section 21.1:

(15) Lo {a} = Y (dkgr — dk)kQ—H o a=(Dr, TEZ.

k=—00

THEOREM 2. The function 8(x +1ia) is bounded with respect to x for all a > ag
if and only if

(16) IL({(-1)*dx})| < M, T=0,%£1,42,...,

for some M > 0.

PrROOF. We have

. . . f(a:—I—T—I—za) iTT
0(z+ 7+ ia) G(x—l—w)—log{ Fwtia) e }
N .
. k+d,—717—2—1ia
—JJLI,HOO{IOgI]l k+dp, —z—1a +WT}
N-—-1
k+dyir —z—1ta
= 1
= IOgI]l k+d,—z—ta

T

R —N—l—l—d_N;H_T—a:—ia .
1 {1 }
+Nlm OgEN—T—I—l—I—dN_T_f_l—a?—ia_'_“rT

Each factor in the last product converges to e *™ as N — oo. Therefore, the
product of these factors converges to —im7 and the last term vanishes as N — oc.
Hence,

N
. . . dk+T - dk
The function 6(z + ia) is bounded for —oco < = < oo if and only if the differences
6(z + 7+ ia) — 6(z + ia) are bounded for 0 < z < 1 uniformly with respect to
T =0,%£1,42,.... With a being sufficiently large, we can assume that

1
|(dk4r — di)/(k +dx — z —ia)] < 3 0<z<L
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Since |log(1+ a) — o < |a|? for |a| < 1/2, we conclude that the uniform bounded-
ness of 8(z + 7 +ia) — 6{z + ia) with respect to 7 holds if and only if the sum

d —

~|—dk—a:—1a

is bounded in z and 7. This in turn is equivalent to (16), which completes the proof
of the theorem.

The above theorem combined with Theorem 2, Section 21.1, and with the
definition of a sine-type function yields the following statement.

COROLLARY. Let {di} be a bounded sequence and let the function f(z) be de-
fined by (13). For f(z) to be a sine-type function it is necessary and sufficien:
that

1) inf dp, —1—4d ;
) }gr;léllkJr k i >0;
2) there exist a function g € B, which solves the interpolation problem g(k) =
(—1)*dy,, k=0,+1,£2,....

For other applications of the functionals L, for describing zeros of some classes
of entire functions of exponential type, see Levin [82, Appendix VI], Kheifits [69].



LECTURE 23

Riesz Bases Formed by
Exponential Functions in L?(—m,7)

In Lecture 18 we studied the completeness and minimality of exponential sys-
tems in the space L?(—m, 7). Here, we turn to a more delicate property of an
exponential system to be a Riesz base in L?(—m,7); this requires more advanced
notions from functional analysis.

23.1. Definition and properties of Riesz bases
First, we remind the reader the definition of a Riesz base in a Hilbert space.

DEFINITION A. A system of elements {z,} in a Hilbert space H is called a
Riesz base if every element x € H can be represented in the form z = 3 ¢ (z)z,
and there exist positive numbers ¢ and C such that

clal> <Y lea(@)* < Cllal?,  zeH.

Each Riesz base is a complete and minimal system in H but not vice versa. For
a detailed exposition of the properties of Riesz bases, see, for example, Gohberg
and Krein [40].

Using the notion of Riesz base, we may formulate Theorem 1 of the previous
lecture as follows.

THEOREM 1. Let F(z) be a sine-type function, let the width of its indicator
diagram be 2w, and let {\,} be its zero set. Then the system of functions

) (T e

is a Riesz base in L.

Let {¢n} be an orthonormal base in H. It follows from the definition that a
system {x,} C H is a Riesz base if and only if the operator

B: chnpn — cha:n

s bounded and invertible. In other words, a system of elements of a Hilbert space is
a Riesz base if and only if it is the image of an orthonormal base under the action
of an invertible bounded operator. Since its biorthogonal system is the image of the
same orthonormal base under the action of the inverse of the dual operator, the
latter system also forms a Riesz base.

169
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Let xn(t) € L?(—n, ) be the functions representing the functions

___ F@
T F' () (z— M)

according to Paley-Wiener theorem. This means that

(2) F.(z) = /7T e xn (t) dt .

Then .
/ eit)‘kxn(t)dt = Fr(Ag) = bkn,
-7
which means that {xn(t)}5_., is biorthogonal in L?(—m,7) to the system
{e?*=t}2 _ . Since the Fourier transform is an isomorphism between the spaces

L2 and L%*(—n,m) we conclude that the system {x,(t)}3%_., is a Riesz base in
L?(—n, 7). We have arrived at the following theorem:

THEOREM 2. Let {A,}22_ o be the sequence of zeros of a sine-type function
with indicator diagram of width 2m. Then the system {e*»t}2 _  is a Riesz base
in L*(—m,m).

REMARK. Examining the asymptotic relations

iAnt|[2 T2 1
e o|[* = [ e |7dt <
-7

14+ |ImA,|’

Hei)\nt _ ei,\kt|l2 — / |ez‘)\nt(1 _ ei()\k—)\n)t)|2dt = '/\n _ )\k| ,
valid for |n|, |k| — oo, we readily see that conditions (2) and (3) from Lecture 22

are necessary for the system {e?*}°° _ __ to form a Riesz base in L(—m,).

Let us now consider the problem of stability of exponential bases, which goes
back to Paley and Wiener [109, Chapter VII]. First, we shall prove the following
auxiliary statement.

LEMMA 1. Let {zx} be a Riesz base in o Hilbert space H. Then there ezists
a > 0 such that each system {yx} C H satisfying

(3) 1D erlzr —yo)l* < &2 Jerl?

for any finite set {cx} C C, is also a Riesz base in H.

ProoF. Since {zx} is a Riesz base, there exists an invertible operator B :
H — H and a complete orthonormal system {4} such that zx = Bp,. We define
the operator C : H — H setting Cx = yx — 2. It follows from (3) that ||C|| < ¢
The operator A = B 4 C transforms @y into yx and is invertible if o < ||B=1||7.
For all such « the system {yx} is a Riesz base in H.

THEOREM 3 (Golovin).  Let the system {e***}32 __ be a Riesz base in
L*(—m,m). Then there exists € > 0 such that the system {e"***}3° s a Riesz
base in L*(—m, ) for each sequence {ux}32 .. satisfying

(4) Ak — x| < e, k=0,+1,£2,....
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PROOF. Since the set {€***}22 __is a Riesz base in L?*(—m,7), the sequence
{Ae}32 _ o satisfies conditions (2), (3) from Section 22.1 with some § > 0. If

{r}52 _ o satisfies (4), then for any sequence {cx}52 _ ., with a finite number of
nonzero elements, using the Paley-Wiener theorem, we obtain

[ee]
H Z ck(ei,\kt_ei,ukt)‘
k

=—00

® =] [ o0 3 el - a] - ol =1}
- k=—c0
(e}

L2(—m,m)

=sup {| D e(fO0) = ()| : 1fllsz =1}

k=—0o0

For each k € Z we have

(6) [f Q) = flue)l <€ max | f(Q)] = el £(Cr)l

CEk,uk]

where (i is a point of the segment [Ag,ux] depending on f. If ¢ < §/2, then
|Ck — ¢;] > 6 for j # k. Since f € L2 and [l fllzz < 1, the Paley-Wiener theorem
implies f' € L2 and ||f'||,2 < «. Then by property 4 of the space L% (see Section
20.1) we have

[e ]

(7) Srr<cr,

k=—c0

where C depends on H and 6 only. Coming back to (5), and taking into account (6)
and (7), we obtain

H i ck(emt_emt)“

k=—0o0
<e( 3 1) saf( S 1@R)” 1l <1)
k=—co k=—o0
<ec( i |ck|2)1/2.

k=—0o0

To complete the proof it is sufficient to apply Lemma 1.

Now we introduce another equivalent definition of a Riesz base.

DEFINITION B. A system {z,} in a Hilbert space I is called a Riesz base if
it is minimal and there exist numbers ¢ and C such that

(8) clz* <> Hz,za)* < Clla|*,  weH.

It follows immediately from (8) that the system {z,} is complete in H. For a
proof of the equivalence of the two definitions we refer the readers to Gohberg and
Krein [40] or to Nikol'skii [114, Lecture VI].
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Let H = L?(—m,7) and let {z,} = {e*!}32 By the Paley-Wiener theorem

condition (8) may be written in the form e
© of P 3 orse [ ok, seL?.

n=-—oo

Combining (9) with the condition of minimality of an exponential system given in
Lecture 18, we obtain the following statement.

LEMMA 2. For a system of exponential functions {e*t}2 _ __ to form a Riesz
base in L?(—m,m) it is necessary and sufficient that (9) hold and there exist an
entire function o(X) of exponential type m which vanishes on the set {\,}2
and such that o(A\)(1 + [A])~! € L%(—o0, o0).

—0o0

23.2. The 1/4-theorem

The following problem was formulated by Paley and Wiener [109, Chapter VII].
Describe all numbers d > 0 such that every functional system {e*=t}2__ __ with
a sequence {pin }oo. _ . Satisfying the inequalities

lin —n| <d, n=0+1,+2, ...

is a Riesz base in L%(—m, 7).

Paley and Wiener proved that for d < 1/72 the system {e##t}2 __is a Riesz
base. A bit later, Ingham showed that for d = 1/4 the property to be a Riesz base
may fail. We will present Ingham’s example at the end of this section. Several
authors improved the value of the Paley-Wiener constant d before 1964 when the
complete answer was obtained by M. I. Kadets who proved that any d < 1/4 fits.
Here, we prove a more general theorem unifying both Theorem 2 and the Kadets
theorem.

THEOREM 4 (V. Katsnelson). Let a real sequence {A,}52 be the zero set

n=—oo

of a sine-type function F(z) with the width of indicator diagram equal to 2n. Let,

for some d € (0,1/4), a sequence of real numbers {6,152 _ . satisfy the conditions
6] < dop , n=0+1,%+2,...,

where pn, = infyxn |Ax — An|. Then the system of exponential functions

{ei(/\n-f-én)t}oo

n=—oo
forms a Riesz base in L?(—m, ).
We split the proof into several steps,?! assuming during the proof that F/(0) = 1.

LEMMA 3. Let G(X) be a sine-type function, let 20 be the width of its indicator
diagram, and let {\,}32 _  be its zero set. Then

) A,
(10) Z é/((/\n)) =0 forall g L, .

n=—oo

21We follow the original paper Katsnelson [65] where the case of complex A, is treated.
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PrROOF. Since G is a sine-type function and g € L,, we have

> ek <o,

n=—oo

and hence the left-hand side of (10) defines a linear functional on L,. Therefore, it
suffices to verify (10) for functions g from a dense set in L., for example for all g's
satisfying g(z) = of|z| 1)e™ ™2l 2z — o0o. Let g belong to this set. According to
the lower estimate (5) for sine-type functions proved in Lemma 1, Section 22.1 we
have

(11) |

9=z) | _ -1 _
G(z)} =o(lz]™"),  z—oco, dist(z,A) 27>0.

Hence the sum of the residues of the meromorphic function ¢(z)/G(z) vanishes,
which proves (10).

Let us assume now that the points {A\,}22_
that A, < A,41 and define the sequence {\, }32

are enumerated in such a way
—so

:\\n: (/\,n’-i—/\»,7,+1)7 TLZO,il,

N =

Let
Pn = 12f |/\n - /\]‘ = mln(/\n - /\n—la /\n+1 - /\n)a
i#n
and let {6,}52 _., be a real sequence which satisfies |6,| < dp, with some d €
(0,1/4). For 6 € [0,1] we set A, (0) = A, + 06,, and N,(0) = A, — 06,. If
'lnfn;gk I/\n — /\kl =26 > 0, then

A”%ﬂ“uwn > 2 pn 26,2 (1-4d)6 >0,

and each set Ag = {A,(0)}2_ U{\L(0)}52 _ is separated (this is the place where
the condition d € (0,1/4) works!). Moreover, we have in addition that inf, o, > 0,
and there exists a number § > 0 such that

inf [X,(6) — X/(6)] > 6

(12) (0 - A (0)] =

for all 6 € [0,1]. Hence the set A = [Jgc(y 1) Ag does not cover the entire real line,

and without loss of generality we can assume that A, (6) # 0, (6) # 0 for all
n € Z and 6 € [0,1]: otherwise we replace {\,}3%_ by a set {\, + a}52 with

n=—0o0

a suitable a € R, and note that the systems {e**}3° ___ and {e!=+@)}0  are

or are not the Riesz bases in L?(0, ) simultaneously.

LEMMA 4. The product
(13) F(z) =PV.T](1 - 2/2n)
converges uniformly on each compact set in C and defines a function F such that
(14) 0<e< |ﬁ(t +iy)e ™| < C <00, |y >1,

with some positive numbers ¢ and C independent of T.
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PrOOF. To prove that the product in (13) converges and that (14) holds we
note that

(1- i) (1- ﬁ) CGn =) —2) A2

n

(1 - %)2 (A — 2)2 Andngr

-)0-52) o -
An Ant1 _ {1 _ (l‘r(b/)\-ti—i)r;) }{1_ ()‘n+zll}\\%)‘n) } 1-

According to Lemma 3, Section 22.1, we have

(15) Sup|)‘n+l - )\ni <00,

while the separation condition (2), Section 22.1 yields that there exists a number
N such that each interval I, = [k, k + 1] contains at most N points of the set
{A\n}2 . Therefore, there is no more than N + 2 points of the set {A,}32 _
inside I. If Rez = =, Imz =7, |7| > 1, then

SHPZ pZZ

Do — 2472
=0 k=—00 X, €L a:| T

(16)
1
(N+2k§ o < 00.

Using (15) and (16), we find that the product

L)t

2
oo (1 - i)

converges and defines an analytic function bounded in {z: |Imz| > 7} for |7] > 1.
Moreover, for all sufficiently large |7| the reciprocal of it is also analytic and bounded
in{z:|Imz| > 7}

Since F'(z) is a sine-type function, it belongs to the class C and hence has the

representation
=pv.]](1- A—Zn) .

Thus the product in (13) converges as well. Moreover, inequalities (6), Section 22.1
are valid, and applying (15) and (16) again, we obtain (14).

LEMMA 5. Let the sequences {A,}5° _ ., and {12 _ be as in the previous
lemma, and let {6,}72 _ . be a real sequence which satisfies |6, < dinfyn [An— Ayl
with some d € (0,1/4). Then, for each 6 € [0,1], the infinite product

(17) PVH( )\+06)(1 njoan)
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converges uniformly on each compact set in C and defines an entire function of
ezponential type 2w such that
(18) 0<c<|Golz+iy)e V| <C<oo, |y>1,
where ¢ and C are positive numbers independent of 0,z and y.

Skipping the proof, which is similar to that of the previous lemma, we only
note that it suffices to consider the relation

o _ g U)o )
PORE we (15) (1)

ad As1 — A )06, — 20262\ S Aot — An)06, — 26262\ "
— H<1+( +1 ) o n) H<1+( +1 )A n) )
2(An — 2)(An — 2) 2AnAn

n=—oC n=-—0o0

LEMMA 6. Let F(z) be a sine-type function with the width of indicator diagram
equal to 2m and real zeros {A,}o2 _ . Let pp = inf;z, |An — A;| and let {6,152
be a real sequence which satisfies

(19) |6n] < don

for some d € (0,1/4). Then there exist positive numbers ¢ and C such that for all
f € L% and 6 € [0,1] the following inequalities hold:

2

@) e X 0wt o)< [ OPESC Y 1f0nt 08

n=-—o0 -0 n=—o0
ProoF. It follows from (12) that, for each 6 € [0,1], the set Ay is separated,
which jointly with Lemma 5 proves that the function G4 defined by (17) is a sine-
type function with the width of indicator diagram 4m. Using (12) and (18) we
prove, in addition to the statement of Theorem 1, Section 22.1 that there exist
positive numbers ¢; and C; not depending on € such that

loe)

o /°° FORd< S IFOWOIE+ S SO < ¢ / () de

0 n=—oo n=—oo — 00

for all f € L2. Therefore, to prove relation (20) it suffices to check that

@21) e Y IFQLOP< Y IfORO)IP<C > IFnO)?, fe Ll

n=—o0 n=—o0 n=-—00

with c; and C, independent of # and f € L2. Applying Lemma 3 to the functions

Go(z) and f(z2)f(z) € L2, we obtain

MO & L) )
22 2 Gowoy — 2= aoney T

n=-0oo n=—0o0

Since Gy is a real function and the numbers A,,(6) and A//(6) are interlacing, the
signs of all numbers G} (\;,(6)) coincide and are opposite to those of Gy(An(6)).
Again using (12) we find that there exist positive numbers ¢3 and Cj such that

0 < c3 <|Gy(AL(0))] < C3 < o0, 0 < c3 < |Gy(An(0))] < C3 < o0.
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In view of (22) we have

[e ] o0

caCyt Y TN < Caes? Y O

n=—o0 n=—oo

and (21) implies (20), proving Lemma 6.

To prove Theorem 4 we note that, according to Lemmas 2 and 6, the system
{efntén)1oo  forms a Riesz basis in L2(—, 7r) if the infinite product

(23) =PV H ( An +6n )
is convergent and if
‘Fl ti|2

(24) /_ T dt<
An equivalent form of the latter relation is

aef  Fi1(2) 2

fl(Z)— 7 — o — % eL:.
To prove (24) let us consider the family of functions
bt z Fy(2)
=P.V. l— — = #8ecl0,1].
F=pv. I] (O -55)  #@ =5 g f€bl

Since, for each z # Ay,

(1+ 66 )(1+%)_1=1+O(/\;2), n— o0,

Ap — 2
the ratio
1 z 14 66,
Fa(z) ﬁ An o+ 6,0 ﬁ Ap — 2
Fo(Z) N = 1— i N = 1 0671,
n=—0oQ /\n n=—oo + /\—n

converges for all 6 € [0,1] on every compact set of C not containing points of the
set {/\}n__oo, which proves that Fyp(2) is an entire function of exponential type. If
fo € L%, then, taking into account that fg(\, + 06,) = 0 for n # 0, the relation
(20) yields

(25) / s O dt < Cls (o + 05)[7 = CIEL (o + 060)]2

For k # 0 we have |(Ag + 080) — (Ax + 06%)| > 27 infsn [Ak — An| = 6 > 0, and the
right-hand side of (25) is bounded for 6 € [0, 1]. Since the family of entire functions
{fs(2)} is continuous in # with respect to convergence on compact sets of C, estimate
(25) and the Fatou lemma imply that the set S = {6 : 6 € [0,1];f5 € L2} is
closed. On the other hand, this set coincides with the set of all 8 such that the set
{ettCn+88r)100 is a Riesz base in L?(—m, 7). According to Theorem 3, this set
is open in [0, 1]. Since 0 € S, we have § # & and hence S = [0, 1]. This proves (24)
and Theorem 4.
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The following result shows that the condition d € (0,1/4) in Theorem 4 is the
best possible.

THEOREM 5 (Ingham). If A, =n— Isgnn, n#0, Ao =0, then the system
of exponential functions {1} __ does not form a Riesz base in L*(—m, ).

PROOF. We shall prove that the system {e**»'}32.___ is not minimal in the
space L%(—m,m). To this end, we introduce the function

F(z) = zjjl <1 - ﬁ)

which vanishes exactly on the set {\,}. As soon as we prove that
(26) |F(z +19)* <1+ |z]

we find that 271 F(2) € L2, implying the system {e**»!} is not minimal.
To prove (26), let us consider the function

1+ T 4+1 T+
Flz+i) 1747 'n-1/4 1y n-1/4
2 = ——— = — — . — = .
n=1 14 n=1 1-— "

For the first product we have

L g Etil
Hl(m):nI:Il 1+£& n—1/4
o (14 BT YA o mrio 1)
S e R AR
Tz + 1) " "
T(z—1/4+1i)

where I is the Euler gamma function and C' is a nonzero constant. The Stirling
formula gives

(28) M(z) <1+ |z|'/*, T — +00.
For the second product a similar representation is valid
1 T+1
o0 - .
n—1/4 I'(—z — 1)
Hg(a?) = - = C -
nI;Il 1_33-1-2 I'(—z—1/4—1)
n
with some nonzero constant C. Using the identity I'(z)['(1 — 2) = — L , and,
sinz
again, the Stirling formula we prove
(29) Ma(z) <14 |z|'*, 22— +co.

Combining estimates (28) and (29) with (27), we obtain (26) as  — 400 and, since
F is odd, as £ — —oc. Theorem 4 is proven.
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PROBLEM 1. Construct a sequence {A,}2
0,%1,42,..., and the system {e**~?}2

_oo Such that [A, —n| < 1/4, n =

_ oo does not form a Riesz base in L%(—n, 7).

PROBLEM 2. Let A\g =0, A\p =n+ 3 Lsgnn, n # 0, and let

(e} 22
z) =z H (1 - /\—2) .
n=1 n
Prove that the function F(z) satisfies the estimate
(30) F(z+14) =< (1+[z|)~ Y2, T — F00.

Relation (30) yields that the system {e**»!} generated by the sequence {)\,} is
complete and minimal in L?(—n, ) (see Problem 3 from Lecture 18). Prove that
the system {e**#'} does not form a Riesz base in L?(~m, ).

To conclude this lecture we mention without proof the criterion for a system of
exponentials to form a Riesz base in L?(—m, 7). This criterion has been discovered
by Pavlov, see Hrudcev, Nikol’skii and Pavlov [59] which also presents the history
of the subject.

Now let the sequence A belong to the half-plane {A : ImA > h}. We assume
that A > 0, which involves no loss of generality since the translation A — A +
w, w € C does not alter the property of the sequence A to generate a Riesz base
of exponentials. The exponentials e**»* no longer satisfy the conditions

A, t

||€ 'L2(—7T,7l') =1, An € Aa

which are necessary for the Riesz base property to hold, so we need to introduce
an additional normalization.
Denote
En = {(1+|ImA,|)!/2e7mIm Al Ant X e A},

The following statement holds:

For the system £, to be a Riesz base in L?(~m,7) it is necessary and sufficient
that
a) A satisfy Carleson’s condition

1an {/\ _;

>0;

b) the product

=pv.[] (1 — /\—Zn)

converge uniformly on each compact set in C and the Hilbert transform be bounded
in the space

Lo = {1+ [ U@Pu)ds <ol ula) = F@)

In the case when A is located in a horizontal strip, the Carleson condition is
equivalent to the separation condition infj, |Ax — A,| > 0. Thus both conditions
a) and b) hold if {A,} is the set of zeros of a sine-type function.
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Criteria for the Hilbert transform to be bounded in LZ (—c0,00) may be for-
mulated in terms of the weight w(z) (see, for example, Garnett [37]). One such
criterion is the As-condition of Muckenhoupt:

1 1 _
st}p{m/lwda: m/lw da:}<oo,

where supremum is taken over all intervals I C R.
More recent developments can be found in Minkin [99] and Seip [120].



APPENDIX

Completeness of the Eigenfunction
System of a Quadratic Operator Pencil

When separating variables in partial differential equations one can meet prob-
lems of completeness and minimality for functional systems of more complicated
structure than exponentials. In some cases such systems are formed by solutions of
ordinary differential equations with polynomial dependence on a spectral param-
eter. Here we consider an example of such a system generated by the boundary
value problem

F(5) - 2 cos 0 (&) + \2f(z) =0,  F(0) = f(m) = 0.

Such an equation admits nonzero solutions only if A = n/sinf, n = £1,+2, ...,
and the entire system of solutions has the form

Icll h {fn(x)};.zo=—oo,n#0 3 fn(a’;) = e *sinnzx R

with a = cot 6.

If cos @ = 0, the system X, contains both functions sinnz and —sinnz,n # 0.
In a sense, the system under consideration is “overcomplete”, and we can expect
something more than its completeness in the space L?(0, ). More specifically, we
shall investigate the following problem:

Given a functional system f,(x), is it possible to represent an arbitrary vector
(¢o0,1) € L2(0,7) ® L?(0, ) as the limit of finite linear combinations of the form

(3 enfal@), Y neafuls))
n#0 n#0
If such an approximation is possible, then, following M. Keldysh, it is said that the
system f,(z) is twofold complete in the space L2(0,).
A.1. Twofold completeness of the system K,

THEOREM 1. The system K, is twofold complete in L*(0,) for any a € R.
PrOOF. Let a vector (f,g) € L?(0,7) ® L?(0,n) annihilate all the vectors of

the form (e®" sinnt, ne® sinnt), n = +1,£2,.... This means that

(1) / f(t)e*™ sinnt dt +n/ g(t)e* ™ sinntdt =0 .
0 0

Let us set

Ft)= /tﬂf(t) dt .
181
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Integrating by parts in the first integral of (1) we obtain
Aﬂﬁa+@F@y+¢®FW“mmﬁ
—Aﬂ“a—wF@)+m0%“iW%h:0, n==+1,%2,....
The EFET
(2) ®() = / " [(a+ P +9(8)] el e - / [ta—i)F) + 9] e at

0

vanishes at A € Z\ {0}, and its indicator diagram Iy lies inside the triangle T, with
vertices at the points 0, (a & i)7. It is easily seen that ®(in)e ™"l — 0, n — +o0.
Therefore the function

_AD(N)
) = sinwA
is an EFET, and
Y(in) =ollnl), n—=Foo.

Outside the disks {\ : |A — n| < §} an estimate |sinwA| > msexpn|ImA| is
fulfilled, and if ® # 0, then Is = Iy + [—im,in] . The only set Iy that agrees
with the condition that Iy C T, is Iy = {a}. Therefore, the indicator diagram of
the function ¥q()\) = e 2" ¥()) is the point Iy, = {0}. Since ¥y(in) = ol|n|),
n — +00, the Phragmén-Lindel6f theorem yields ¥;(z) = const. Returning to the
function ® we obtain '

() = o SIRTA ¢ [(a + i)/ (@A gr (g — Z.)/ pla—ixt dt]
A 21 0 o

including the case ® = 0 which corresponds to ¢ = 0. Substituting this expression
into (2), we obtain

/0 i [(a T (F() — ) + g(t)] e(a+DA gy
- [P - ) + gto)] e ae =0

and, applying the Laplace transform,

[l drO o)t

(a+i)t—2
_/7T (a=1)(F(t) —c1) +g(t) dt =0, Rez>max{0,ar}
0 (@—ijt—= | | .

This relation is analytically continued to the set C\ {[0, (a + 7)7] U [0, (a — ©)7]}.
The Sokhotskii-Plemelj formula yields
(a+i)(F(t) —c1) +9(t) = (a —i)(F(t) —e1) +9(t) =0,  t€[0,n].

Therefore, F(t) = ¢;, and f(t) = —F;(t) = 0, which proves the twofold complete-
ness of the system /C,.

PROBLEM 1. Prove that the system K, is twofold minimal in L?(0, 7). In other
words no vector (e™ sin nt, ne®™ sin nt) belongs to the closure of linear span of all
other vectors of the same form.
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A.2. Completeness of the system K}

To avoid “overcompleteness” of the system K, in the case cos@ = 0, it is
sufficient to introduce the subsystem {sinnz}22., which is complete and minimal
in L2(0, ). For an arbitrary @, the corresponding subsystem has the form

Kd={falz)}2,, fo(z) = e sinnz ,

and we arrive at the problem of the completeness of the system K.
THEOREM 2. 22 The system K} is complete in the space L*(0, ).

ProOF. Let a function ¢ € L?(0,n) annihilate K}. This means that

/0 P(t)e* sinwtdt = %/ ¢(t)€(a+i)mdt
(3) 0
1 .
—g/ p(e* Mt =0, n=12....
0

Introduce the auxiliary function

U(t) = /t7T w(r)dr.

Integrating by parts each integral on the right-hand side of (3) we obtain

(4) /7T lI](t)e(a+i)(n—1)t de(a+i)t _ /7T \I](t)e(a~i)(n*1)t de(a—i)t =0.

0 0
Setting ¢ = e(@+9t in the first integral and ¢ = e(® 9t in the second, we must
integrate over the curves v+ = {¢ = e(@+t . t € [0,7]}, and 4y~ = {¢ = ele"Vt .
t € [0, 7]}, respectively (see Figure 6). Let the function @(() be defined on the
closed curve v = v+ U~ as follows:

p(eF) =gy,  telo,q].
Relation (4) takes the form:
(5) /@(g)g”*ldgzo, n=12,....
-

Since ¥ € L%(0,7), the function T satisfies the Hélder condition with the
exponent 1/2. Let G be the domain bounded by the curve . Consider the functions

RG]
PO =g [ gogd, <0,

FO=5m [72d,  cen\(Guy.

Since U satisfies a Holder condition on ~, the functions Fy ({) are continuous on
the closures of their domains, and the Sokhotskii-Plemelj formula yields

(6) V() =F()-F (), <Cen,

22This theorem was proved in various ways by Dzhavadov and Gasymov, V. P. Gurarii,
Kostyuchenko and Shkalikov, and the author. Here, we follow essentially Gurarii’s proof.
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am 1

’Y

FIGURE 6

where F (¢) are the boundary values of the corresponding functions. At infinity
the function F_(¢) admits the representation

SN S S [P
PO =Y e / B(e)ede
and relation (5) yields F_ = 0. By (6) we conclude that
VO =F(0), Cev.

Thus the function @(C) admits a continuation to a function analytic in G and
continuous in the closure of G. Without loss of generality we may assume that the
function ¢ which annihilates the system K7 is real-valued. Then the functions
U(t), t € [0,7], and @(C), ¢ € ~, are real as well. In particular, the set @(’y) =
{@(C) : ¢ € v} is a bounded subset in R. If @(C) is a nonconstant function, the set
V(@) = {@(C) : ¢ € G} is a domain, and its boundary is a part of @(’y) Therefore,
@(G) is an unbounded set. This is a contradiction, since ¥ is a continuous function
in the closure of G. Thus, ¥(¢) = const, ¥(¢) = const and, finally, ¥(t) = —¥'(t) =
0. We have proved, therefore, that the only function from L?(0, n) annihilating K}
is identically equal to zero. This means that the system K is complete in L%(0, ).

PROBLEM. Prove that K is complete in all spaces L?(0,1), 0 < I < 2.

It may be proved that the system K] is minimal in L?(0,n) (see Shkalikov
[104]).

For the completeness and minimality problems for eigensystems of other oper-
ator pencils, see Gohberg and Krein [40], Markus [94], Lyubarskii [86].



Part III. Some Additional Problems
of the Theory of Entire Functions

In this part we present some special topics of the theory of entire functions.

First of all we derive the Carleman formula for functions meromorphic in a
sector, which is an effective tool for applications of entire functions. This formula
is applied to describe exact conditions for nontriviality of some classes of infinitely
differentiable functions which, in particular, originate as the test spaces in the
theory of distributions and related partial differential equations.

The same formula is used to prove a theorem due to Matsaev which states that
some lower bounds for an entire function may imply that the function is of finite
order. The statements of this type have been successfully applied to a study of
spectral properties of nonselfadjoint compact operators in Hilbert spaces.

In Lecture 27 we discuss a class P of entire functions without zeros in a half-
plane and prove an analogue of the Hermite-Biehler theorem for it. One of the most
important properties of a function f € P is that the zeros of its real and imaginary
parts are real and interlacing. This is a very typical situation encountered in the
theory of ordinary selfadjoint differential operators.

We conclude the monograph by exposing the famous inequality discovered by
S. N. Bernstein on the derivative of EFET, which is of great importance for the
theory of approximation on the real line.
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LECTURE 24

The Formulas of Carleman and
R. Nevanlinna and their Applications

In this lecture we shall derive integral formulas relating the modulus and zeros
of functions holomorphic in a half-plane. These formulas, similar to those of Jensen
and Poisson-Jensen, have important applications in the theory of entire functions.

24.1. The Carleman formula

Let f(2) be a meromorphic function in a closed sector § = {z : p < |2| <
R, Im 2z > 0} whose zeros and poles do not lie on the boundary 8S. We exclude
disks of sufficiently small radius € > 0 with centers at the zeros a, and the poles

by, of the function f(z) from the domain S and apply the second Green’s formula

to the functions u(2) = In|f(2)| and v(2) = — Im(% + i) in the resulting domain

RZ
S.. We obtain 5 5
v U
/{,Ss (5 = Vam) 45 =0,

where 8/0n is the differentiation along the inner normal and ds is the element of
arc length. ,
The function v(z) is harmonic in §; the equations

v 2

v=20, %=ﬁsincp, z = Re®
hold on the half-circle {|2| = R, Im z > 0}, while the equations
v=o, X_L1_1
’ on 2 R?

hold on the intervals {z = *t : p <t < R}. As e — 0, the integrals over the
excluded disks give a total contribution equal to

2r Z Im(a—ln-}-%) — 27 Zlm(i-{-%) .
an €S bn€S
Thus,

. Ov Ou
0=lm /. (3, ~ V) @

2 [T ot S|
= ﬁ/o loglf(Re“")lsmcpdcprL (55 —~ ﬁ)logu(t)f(—tndt

+2wanzeslm (51; + %) —27ran€SIm (i + %) + As(p,R)

187
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where the remainder term A (p, R) has the form

1 M1 1 .
= —— —_— — )
Af(p, R) = —o ; [(szrRz)lOg\f(pe )

+ (% ~ %)%IOglf(pei“’) }psinsodso :

1)

Taking into consideration that

Im (% + %) = —(% - %) sin(arge) ,

we obtain Carleman’s formula

1 anly 1 |baly .
Z ] R2 ) sin v, Z m P ) sin G,
p<lan|<R p<|bn|<R
R
2) 1 / 1_1 p
3 |, (7~ 78) loslr@f(-0)lae

‘1 7r _
+ L / log |f (Re™)|sin @ dg + A;(p, R) ,
7TR 0

where a,, = |a,|e**", b, = |b,|e*’" are zeros and poles of the function f(z), and the
remainder term Ag(p, R) is expressed by formula (1).

We have derived Carleman’s formula under the additional restriction that there
are neither zeros nor poles of the function f(z) on the boundary of the semi-annulus
S. However, because of continuous dependence on p and R of all terms, Carleman’s
formula remains valid for functions with zeros and poles on the half-circles {|z| =
p,Imz > 0} and {|z| = R,Im z > 0}. If f(z) has zeros and poles on the real axis
one should first exclude small semi-disks around these zeros and poles and then pass
to the limit. Moreover, one may only require the function f(z) to be meromorphic
in the open sector S and continuous up to its boundary.

If f(z) is meromorphic in the upper half-plane and continuous up the real axis,
then due to expression (1)

As(p, R) = O(1), R— 0.

REMARK 1. Let the function f(z) be holomorphic in a neighborhood of the
point z = 0, and let f(0) =1, i.e., f(z) = 14+¢cz+0(22), z — 0. Then log|f(pe*¥)| =
pRe(ce’?) + O(p?), p — 0. Substituting this expression into (1), we obtain

Ime

1 /7 ; 1
i = —— e 1 = — = - !
ﬁl)ln(l)AAp, R) 77/0 Re(ce*¥) sinp dp 5 5 Im f'(0) .

REMARK 2. The Nevanlinna characteristics for the upper half-plane may be
related to functions meromorphic in the upper half-plane (see Goldberg and Ostro-
vskii [43]). In particular, the counting functions for zeros and poles in the upper
half-plane have the form

cr(t,0) = Z sina,, , cr(t,00) = Z sin 3, ,

lan|<t |bn] <t

cr(t) = cf(t,0) — c(t,00)
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If f(0) # 0, 00, then

(|al—n| - %T;l) sin oy, — Z (m - %T;i) sin 3,

lan|<R bn| <R

_ /OR (5 = 32 ) des(t) = /OR (5 + 7 )estrat.

We state a frequently applicable uniqueness theorem that follows from Carle-
man’s formula.

RS

THEOREM 1 (F. and R. Nevanlinna). Let a positive function A(r) be such that

/OOA(;)drzoo.

r

Let f(2) be a memomorphic function in the closed upper half-plane which, for suf-
ficiently large r and constants A\, p, and v satisfies the following three estimates:

L log|f(r)f(=r)] < 2rA(1+o(1))A(r),

9. i/ 1og|f(rei“’)|sin<,0d90SN(1+0(1))/ &;)dt’
T Jo . ' ‘

3. cf(r) 2 v(l+o0(1))A(r).
Ifv > u+ A then f(z) =0.

For example, if f(z) is a holomorphic function of exponential type in C,, then,
assuming A(r) = r, 4 = 0, we obtain a generalization of the Carlson theorem from
Section 8.3:

If
lim sup log |7(r) f(=r)| |f(r) (=) < liminf L(T’O)

r—00 2mr T —00 r

then f(z) = 0.

PrOBLEM 1 (N. I. Akhiezer). Let f(z) be an entire function of exponential
type and let a,, = |a,|e**" be the sequence of its nonzero roots. Derive that each
of the three inequalities:

@ 3 el oo
n=1 ™
Rlog|f(t)f(—2)| ,

R log | f(£)f(~1)]
(c) Iszlg//l t—2dt < 0

implies the other two.



190 LECTURE 24. THE FORMULAS OF CARLEMAN AND R. NEVANLINNA

24.2. The Phragmén-Lindelof principle
as formulated by F. and R. Nevanlinna

The argument given above provides a simple way of proving the Phragmén-
Lindeldf principle in the elegant formulation of F. and R. Nevanlinna.

Let u(z) be a function harmonic in the closed upper half-plane. Then (after
substituting u(z) for log|f(2)|) the above-given proof of Carleman’s formula (2) is
valid and leads to the formula

1

21 /pR (l - i)[“(ﬂ +u(—t)]dt + Ay(p,R) = 0.

1 4 o s
(3) ;T}—%/Ou(Re ¥)sinp dyp + 2R

If u(0) = 0, then the integral

dt < oo

@ /O u(t) + u(-t)

12

converges, and A, (p, R) approaches a constant as p — 0. Passing in (3) to the limit
as p — 0, we obtain

(6) % /Orr u(Re*) sin p dip + % /OR (%2 — %) [u(t) + u(—t)] dt = const.

Now let us demonstrate how condition (4) may be removed. From the explicit form
(1) of the remainder term A, (p, R) it follows that

}}_{%[Au(p» R) — Au(p,m)) =0

for fixed values » < R. Now let us subtract from equation (3) a similar equation
with r instead of R and pass to the limit as p — 0. We obtain

1 1/t
R 2PN o} _ N of
7TR/0 u(Re*¥) sin p dyp - /0 u(re*?) sinp dp

Ry u(— R
©) N % ) 4;2 (=1) 4 2771R2 /O [u(t) + u(~t)]dt
1 T
. /O [u(t) + u(—t)] dt = 0.
Set

m(r) = %/ u(re’¥)sinp dy

0
U(r) =2 /O [u(t) + u(—t)] dt .
Then, for r < R,
/R Ut),, _1U(r) 1UR) 1 /R dU(t)

t3 2 r2 2 R? 2 )
r R
- % [0+ o= gz [t +u-o)a
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As a result, equation (6) is written in the form

m@R) mr) 1 [FuE
™ R =0,

where condition (4) now is not used. The same relation holds for u(z) harmonic in
the upper half-plane and continuous up to the real axis.

Now, let u(z) be a subharmonic function in C,. Having replaced the function
u(z) with its least harmonic majorant?® in an arbitrary half-disk {z : Imz >
0, |2| < R}, we obtain, instead of identity (7), the inequality

w0 L[

[~

or, choosing an arbitrary p < r, the inequality

TR PR IR O

el di < Y Ay
T 27 13 ts R +27T t3

Thus, the quantities m(r) and U(r) are related by the following theorem:
THEOREM 2 (Ahlfors [3]). Let u(z) be a subharmonic function in C,., then

the sum
m(r) 1 [TU(®)
r + 2n / 3 dt

is a nondecreasing function of r. If u(z) is harmonic in C,, then this sum is
independent of r.

Suppose the subharmonic function u(2) has nonpositive values on the real axis.

Then the integral
[0,
13
P

does not increase with r, hence the ratio m(r)/r does not decrease with . Since
the function u™(2) is also subharmonic, the ratio m(r)/r, with

1

m4(r) = - /o ut (re*?)sinpdy ,

does not decrease with r. Thus we have proved the Phragmén-Lindel6f principle as
formulated F. and R. Nevanlinna.

THEOREM 3. If a subharmonic function in f_,_ has nonpositive values on the
real axis, then the functions m(r)/r and my(r)/r are nondecreasing. In particular,
the condition

lim inf m+T(T) =0

implies ut(2) =0, i.e., the function u(z) is nonpositive everywhere in C,.

A stronger theorem was obtained in Ahlfors [2].

231.e., harmonic function with the same boundary values as those of the function u(z).
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24.3. R. Nevanlinna’s formula for a half-disk

We remind the reader that if a domain 2 has a piecewise-smooth boundary 982,
then a positive function G,(¢), ¢ € ©, which is equal to zero at every point ¢ € 92,
is harmonic in Q\{z} and has the asymptotic expression

G =log = +0(), (=2, zeQ,

in a neighborhood of the point ( = z, is called the Green function of the domain
Q c C. If u(z) is harmonic in the domain 2 and continuous up to its boundary,
then its values inside the domain 2 can be recovered with the aid of the Poisson
kernel

ian
2 On

(8) P,(¢) = ¢ed, z€e,

(differentiation is taken along the inner normal), by the formula

u(z) = /a uOP(Q)ds.

If Q is a simply connected domain and g,(¢) is a conformal mapping of  onto the
unit disk D such that g,(2) =0, then

(9) G.(¢) = log m% ,

and hence

. [log g.(¢)]" d¢ .

~ 2m

(10) P.(¢)ds

By using formulas (9) and (10) we shall find the expression for the Green function
and for the Poisson kernel in the half-disk D} = {¢ : |¢| < R, Im¢ > 0}. The
function

_R((—2)
()OZ(C) - R2 _ CE
maps D g = {¢ : |¢| < R} conformally onto the unit disk D, ¢,(z) = 0. That is
why the function

_ Soz(o _ C_Z_Rz_gz
1) 0= 00 "¢ oG

maps the semi-disk Df conformally onto D, and g,(z) = 0. Substituting (11)
into (9), we obtain the expression for the Green function

(—-zZ R?’-(z

(12) G.(0) = log| = - |-
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Further,
(13)
P.(¢) ds = 5 —llog 0.()] d
:%Lfiz;gifrmigz Cz}dc
2_7T|Z| (\Re'ml— z|? B |Rei91— 2|2) df, ¢=Re? 0<f<m,
- 2
II:ITZ(|t_lz|2—|R21EtZ|2)dt, (=t —R<t<R.

Let u(z) be a function harmonic in D }; with continuous boundary values. Then
RZ |22 [ 1 1 0
= . - . Re™) do
u(z) 27 /0 (|Re“9 —z|?  |Re? - E|2)u( e)d

+Imz/_f;( 1 R )u(t)dt.

- t— 22 |R® -tz

(14)

Now, let f(z) be a meromorphic function in the half-disk D £, {a,} be its zeros
and {b,} its poles. Using expression (12) for the Green function of the domain D},
we deduce that the function

n RZ—anz
u(z) = log|f(2) = 3 log| T2 g

aneD}
R%2 _p,z
+ lo ‘ - -
Z gz—b R? — b,z
be]D)

which is harmonic in D £ , has the same boundary values as the function log | f(2)|.
Applying representation (14) to u(z), we obtain the R. Nevanlinna formula for a
half-disk

(15) 2 2 s
g £ = S [ (= — (e ) 0B (R
+ ImTZ/R (|t—1z|2 B |R2132tz|2) log |f ()|t
D = B D e
an€Dh breDf

PROBLEM 2. Deduce the Carleman formula for subharmonic functions.

HiNnT. Use the R. Nevanliona representation (15) which can be transferred
directly to subharmonic functions.



LECTURE 25

Uniqueness Problems for Fourier Transforms
and for Infinitely Differentiable Functions

25.1. Uniqueness theorem for Fourier transforms

The Fourier transform
1 foo= [ f@erds

of a nontrivial function f € L?(R) with compact support belongs to the class C,
and as proved in Section 14.2, cannot decrease along the real axis so fast that the

integral
> log” |f(t)]
/ 1+ ¢2 at

— 00

diverges. The relation arising in this situation between the functions f and f
is of rather general nature and can be formulated as the statement that the two
functions cannot decrease simultaneously too fast at infinity. This phenomenon
is called the Uncertainty Principle; it has been encountered in Section 8.3. For a
detailed description of results related to this principle, see Havin and Jéricke [61]
and Nazarov [101].

Following Beurling and Dzhrbashyan, we shall prove theorems on relation be-
tween the rates of decrease of f and f along the real axis, and afterwards we shall
apply these theorems to describe conditions for some classes of infinitely differen-
tiable functions to be nontrivial.

In what follows, without a special mention, we denote by p(¢) a positive con-
tinuous function on the half-axis [0, 00) satisfying the conditions:

a) p(0)=p'(0)=0;
b) Jim p(t)t™! = +oo.

For every fixed z > 0, the quantity

(2) p*(z) = igg{zt - p(t)}

is finite. It is called the Legendre transform, or the Young dual function for p. Being
the upper envelope of a system of linear functions, p*(z) is a convex function, and
it follows from (2) that p*(z)/z increases with z. In addition, (2) implies

(3) xzt < p*(z) + p(t) , z,t>0.

195
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Therefore,

(4) Sgpo{wt —p"(z)} < pl2) .

If p(t) is a convex function, then, for every ¢t > 0, there exists a value x = z(¢)
such that (3), and hence (4), is an equality. This implies that if p(t) is a convex
function, then (p*)* = p.

THEOREM 1 (Dzhrbashyan). Let f(t) expp(|t|) € L'(R). If f is the Fourier
transform (1) of f, and if

1 m
liminf{ﬁ / p*(Rsin @) sin do
0

Rooo
+ % Rm(/lm @f—f(z)j(—u)[ du)dm} =—00,

()

then f and f are equal to zero a.e. on R.

PROOF. Since p(t) > 0, we have f € L*(R), and f is a continuous function on
the whole real axis. Moreover, by (3), f is an entire function satisfying the estimate

(6) Fle+iy)l < / )

— 00

|£(2)]e™! dt < /oo F(&)eP® gt . e W)

If f is not equal to zero a.e., then applying the Carleman formula from Section 24.1
and integrating by parts we obtain

1 T =
1 . .
_ﬂ'R/O og|f(Rsiné)|sind df

. %m/lnxdm /106 log(f(uL];(—u)ldu +001)

1 T z
:W_R/O log |f(Rsing)|sing df

1 (7,1
o (m

o ~ 7 ) og | F(w) f(-u)| du +0(1) 2 0

Hence, the function

—/ *(Rsin 6) 51n6d6+—/ / 10ng —u)l

is bounded from below as R — oo, contradicting condition (5). We conclude that
fA) =0, and f(¢t) =0 a.e onR.

REMARK. If, instead of f(¢)expp(|t]) € L' (R), we assume that f € L*(R) and
f(t)expp(t) € L'(~o0,0), then Theorem 1 remains valid. Indeed, these assump-
tions imply that f()) is a function analytic in the half-plane {\ : Im A > 0} and is
continuous in its closure. Therefore, relation (6) is valid for y > 0. The previous
arguments prove that f =0 a.e. on R.
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CoRrOLLARY 1. If f(t)expp(|t]) € L'(R) and, instead of (5), the condition

(7) liminf{w—i—i Rx(/deu)dw}:—oo

R—oo R R2 U

holds in the hypothesis of Theorem 1, then f and f are equal to zero a.e. on R.

Indeed, since p*(z)/z is an increasing function, we have that

| pr(R) [T . 24 _ TP (R)
R/o p(R51n¢9)sm«9d0<T/o sin® 6 df = 5E

and (7) implies (5).

_ CororLary 2. If f(t)expp(|t]) € L'(R), and instead of (5), we assume that
flx) = 0(e~2U2)y g5 |2| — o0, and

O (TR ([ S )< e

thenfzsz a.e. on R.

If we set p(t) = At and a(t) = Bt?, where 1/p + 1/p < 1, then since
p*(t) = A*t? for 1/p+1/q = 1 we have ¢ < p’ and (8) is satisfied. It leads us to
the uniqueness theorem of Morgan from Section 8.3.

Here is another variation on the same theme.

THEOREM 2 (Beurling). Let f € L'(R) and let

// (y)|e!®¥! dedy < oo .

Then f equals zero a.e. on R.

PROOF. %% Let

M) = [ @) de

N(z) = /_oo |F@)lel™! dy .

It is evident that M (y) and N (x) are increasing functions of |y| and |z|, respectively,
and,

O [ wmea= [ 1i@N@ = [[ 17070k e < oo

Let us assume, first, that the function f(z) has compact support. If f # 0,
then the function M (y) grows exponentially. Hence, | f (y)| tends to zero, at least,
exponentially, and f has an analytic continuation into a horizontal strip. Since
f(z) has bounded support, f = 0. If the function f has a compact support, then
we may use the same arguments.

24This theorem was proved by A. Beurling in the early forties, but the proof was published
by Hérmander [58] only recently. Here, we follow the latter paper.
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Thus we conclude that none of the functions f and f has a compact support
and hence M and N grow faster than an arbitrary exponential function. By the
inversion formula the functions f and f are entire functions admitting the estimates

(10) [flz+ )l < Ny) ,
[f(z+iy)] < M(y) .
Let ..
F) = [ o)) ds.
The first estimate in (10) together witoh (9) implies that
(11) /O:O |f(@)] |.f (£iz)| do < /oo |f(@)|N(z) dx < o0,

and hence the entire function F(z) is bounded on the coordinate axes. Further, the
estimate (10) gives the inequality

Mp(r) < rN%(r) .
If .
lim inf N(z)e™** /2 =0

|z|—o0
for each ¢ > 0, then the version of Phragmén-Lindeldf theorem given in Section
24.1 and applied to the function F(2?) implies that F(z) is a bounded function in
C, and hence F(z) = 0. Since the same argument is valid for the function f, we
conclude that if f Z 0, then there exists ¢ > 0 such that

N(m)>e='/?,  M(y) > eV /?

for large |z| and |y|. Since
f@)=n [ fmwe )}y,

we conclude from (9) that

N 1 2 2 1 2 2
|f(2)| < K supelv!!Imzl=ev’/2 = fgellmzl®/2e
Y

proving that either f is of order at most two or it equals zero identically.
Since the majorant N(r) is increasing, it follows from (10) and (9) that for
every a € [0, 27],

/'UWﬂwmws/ FO)IN() dr = K' < 00 .
0 0
Let us show that

(12) / |f(re®/ )2 dr < K’ , 0<a< g
0

with the same constant K’ for all @,0 < @ < 7/2. Indeed, if ¢ is a smooth compactly
supported function on the real axis, [p| < 1, then the analytic function

¢@)=ZAwf@&ﬂﬁéﬂWﬂﬁ
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is bounded by a constant K’ on the boundary of the angle {z : 0 < argz < a}.
Since the order of ®(2) does not exceed 2, by virtue of the Phragmén-Lindeldf
theorem the same estimate holds inside the angle, proving (12). As o — 7/2 we
conclude that '

o .
/ |f(ret™/ )2 dr < K.
0
In the same way the estimates
/ |F(xre™ 42 dr < o
0

are proved. Hence,

|F(:L_Te:i:irr/4)|
are bounded functions, and by the Phragmén-Lindelsf theorem, F(z) is constant.
Therefore, f(2)f(iz) = 0, proving Theorem 2.

COROLLARY. If p(x) and g(z) are nonnegative functions on the real azis, if

(13) lzy| < p(z) +49(y) ,
and if
/ |f(x)|ep(z) dz < oo, / |f(y)|eq<y) dy < ¢,

then f vanishes a.e. on R.

25.2. Construction of entire functions decaying on the real axis

The following problem due to Gelfand and Shilov [39, Chapter IV] is of interest
in the theory of distributions.

Let S[™ be the class of all entire functions f(z) satisfying the condition
(14) |f(2)| < Cexp{l(Aly]) —m(Bl2|)}, z=z+iy,

where I(z) and m(x) are positive increasing functions, and A, B and C are numbers
depending, perhaps, on f. What are conditions for | and m such that there exists
an entire function f(z) € S* not identically equal to zero ¢

Let us remark that the proof of Theorem 4, Section 8.3, due to Shilov, was
reduced to the proof of triviality of the class S for m(z) = zV/*, I(z) = z1/(1-6)
with @ + 8 < 1 (see inequality (7) of Lecture 8).

Carleman’s formula yields a condition of triviality of the classes S[".

THEOREM 3 (Dzhrbashyan). Let positive functions [(z) and m(z) be given
such that l(x)/z and m(z) monotonically increase as = increases, and let

(15) lim inf [l(iz)‘— /1 ’ mu(;‘) du| = —o0

T—00

for every 8 > 0. Then the class S is trivial.
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PRrROOF. Let an entire function f(z) be not identically zero. Introducing the
function f(z/B) and using the Carleman formula we have

0(1) < % /07r [l(%RsinG) — m(R)} sin 6 df

1 %101
—;/1 (E—ﬁ)m(u)du, R— 0.

If we set § =-A/B and take into account that [(z)/z and m(z) are monotonic, we
obtain

R R

1 u?
1 B [(26R) R om(u)
+ﬁ/1 m(w) du < T‘/l W

0(1) < 200R) 2m(R) /R m(u) du

in contradiction to (15). This proves the theorem.

Under additional assumptions on the behavior of the function m(z) Babenko
[9] obtained a converse to Theorem 2.

THEOREM 4 (Babenko). Let functions I(z) > 0 and m(zx) > 0 be such that
l(z)/z and zm/(z) monotonically increase as x increases, let

lim zm/(z) = +o0,
T— 00

and let, for sufficiently large k,

(16) m_k/l % du ™\, 0
as € — oo. If the inequality
.. . Ti(0x) T m(u)
(7) hzn_l'géf[ - —/1 22 du] > —00

holds at least for one value 8 > 0, then the class S| is nontrivial.

PRrOOF. Let p be a positive integer and let
2

sin® z\P
a) =1-(1- 255
It is evident that h(z) satisfies the following conditions:
(18) R0y=1,  K(0)=h"(0)=---=hP"D() =0,
(19) 0<h(z)<l for z#0.
Then the function ] )
sin z
H() = (57) he)
satisfles the inequality
(20) H(z) < L z€R
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It is clear that the function H(z) also meets conditions (18) and (19). We fix a
number p such that the inequality 2p > &k + 1 is valid with &k as in (16), and denote
by ¢ the exponential type of H(z): ¢ = 2+ 2p. By virtue of the Phragmén-Lindelof
theorem, (19) and (20),

(21) log|h(2)| < olyl, z=z+iyeC,
(22) log|H(Z)| < oly| — log|z]| , zeC.
Let us choose a number § > 0 small enough to satisfy the inequality
(23) 406(1+ (log2)™) < %
and such that the relations
(24) log |[H(z)| <0,
(25) log |H(2)| < —log|2|

are valid in the sector
Gs={z:|argz| <& or |argz—m| <& |z]<2}.

In what follows, without loss of generality, we assume m(z) =0 for © < 1.
Let us set n(x) = [zm/(z)], where [¢] is the integral part of ¢, and

_ [T
m*(m)—/o Tdt.

Then m.(z) < m(z) < m.(z) +logz. We denote by p; < pa < --- < pp < -
the jump points of the function n(z). Since the function m(z) is monotonic and
condition (16) is valid,

2x
;nk(fl)gh_k/z %du—ao, T — 00 .

Integrating by parts three times and using condition (16) with the inequality
2p > k + 1, we obtain

o0
1 * dn(u) < n(u)
2 Z — 1.2 2
|Z| P 2 |Z| p/ u2p < 2p|Z| p/ w21 du

k=n(|z|)+1 Pk 1=l i
* dm. (u)  ma(u)
— 2p * 2),2p
= 2pl2| /|z| o < (2p)°lz L w du
© dt [ m.(u)
26 < (2 3 2p/ __/ *
(26) < [ [T a

gt st \k 1 mu
S(2p)3|z|2p/ EE;(m)/o Y g

2]
| 2]
0 u

Here and in what follows each C) is a positive number not depending on z.




202 LECTURE 25. UNIQUENESS PROBLEMS

It follows from (18) (for H(z)) and (26) that the infinite product

(27) [T 72 /00)

k=1

converges uniformly on each compact set to an entire function f(z). We shall show
that f(z) belongs to the class S]™. First of all,

log|f(z)|=2/ long( )‘dn

:2(/0|z +/|z, >log‘H(§>|dn(t)=J1+J2.

To estimate the first integral, let us use inequality (22):

J1=2/ log‘H( )‘dn <2o|y|/|dn( 2/'74'@0&
0

=20y \[ (|Z|)+/O|z|@dt] — 2ma(l2]) .

E t2

With account taken of the inequalities

(28)

2|z u
n(lz) <maelsl),  male)) < 2/2] /0 m

we obtain

2e|2|
(29) J1 < C’zlyl/ mqf;‘) du — 2m.(|2]) .
0

To estimate the second integral on the right-hand side of (28), we use first the
inequality log |H (2)| < C3|z]??, |z| < 1, which follows from conditions (18), and
then estimate (26):

00 |2]
(30) < [“ 8 <o [P
0

5| %P

Substituting (29) and (30) into (28) we arrive at the inequality

Csly|
(31) log |£(2)| < Csly| / ™Y g (|

valid for all z such that § < argz <7 —-§or —m —§ < argz < —§6 where § is a
number chosen in accord with (23).
Let us now estimate the function f(z) inside the angle

{z: |argz| < 6}U{z: |argz — 7| < 6} .

atg=a( [+ [ [ Yo () vt

By virtue of inequality (24), when estimating the function log | f(2)| from above, the
third integral may be disregarded. To estimate the first and the second integrals,

We have
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we apply inequalities (22) and (25), respectively. Since o > 1, we obtain, after
integrating by parts,

||

121/2 ; .
oslf( <20 [ (W tog a2 [ 10g Sl anty

t t 2 ot
n(|z]/2) =172 n(t) * n(t)
(32) < 2a|y[[ B +/O T:Tdt] - 2/0 — = dt
n(lz Wz |z[/2 .
= 20|y|[ T‘Z||//22) + m|i||/|2/2) +/O mugu) du} —2m.(|z]) .
Now

n(]2]/2) < mu(l2])(log2) ™",

and

/|z!/2 m(u) < /4o|yl M () . m(]z]/2) .
0 “Jo

u? u? 4oy

If we substitute these bounds in (32) and take into account that now |y/z| < &, we
obtain that

log |£(2)| < 406(1 + (log2) ™ )yma(|2]) + %m*(|z|)
aly
+20y] /4 ) g 2]
0 (72
4o|y|
— 20ly| /O m;g“) du + [40—5(1 + (log2)™Y) — g]m*(|z|) .
By virtue of (23) we have
4oly| m(u)

(33) oglf)l < 20lyl [ T du—m(lz)

Estimates (31) and (33) imply that, everywhere in the complex plane, the
following inequality holds:

" du —m(|z]) .

Colyl (w0
log £ ()| < 06|y,/0 ()

According to condition (17),
If(z)| £ et (Csblyl)—m(|2) ,

implying that f(z) is a nontrivial element of the class S;”. Theorem 4 is proved.

Some results close to Theorem 4 are contained in papers of Mandelbrojt [92],
Katznelson and Mandelbrojt [64]. See also Redheffer [115, pages 26-29).
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25.3. Uniqueness problem of Gelfand and
Shilov for infinitely differentiable functions

Gelfand and Shilov posed the problem of the existence of a nonzero infinitely
differentiable function f(t) on the real axis which satisfies the inequalities

(34) [tk M (1) < Cp AR B maly,  nk=0,1,2... .

If I, = A% for all k > 0, then it follows from (34) that f(t) = 0 for [¢t| > 1
and the problem is reduced to the Hadamard problem of nonquasianalyticity of the
class Cr,, (cf. Lecture 14). If [ = k%*, m,, = n®", o+ 8 < 1, then, as was proved
by Shilov (see Lecture 8), condition (34) implies f(¢) = 0.

In what follows, we denote by C({;, m,) the class of all infinitely differentiable
functions on the whole real axis, satisfying (34) with some positive numbers A, B,
and C, perhaps depending on f. Classes of this type and their multidimensional
analogs arise in the theory of distributions and in the theory of partial differential
equations (see Gelfand and Shilov [39], Palamodov [108]). We shall assume that
the sequences {Ix} and {m} from the definition of C(lx, mx) satisfy the following
condition:

(35) lim =% =

for each C > 0.
We need the following definition.

DEFINITION. A sequence of positive numbers {m,} is called logarithmically
convez if, for all k and n,

log i 4m < logmy, +logm,, .

Let us, once more, recall the definition of A. Ostrowski’s function (see Section

14.3) for a sequence {m, }:

M(z) = sup .
n>0 Mn
By virtue of (35) this function is finite for each z > 0. Let the function ¢(u) on
(0,00) be continuous and linear on each interval [n,n + 1] and such that ¢(n) =
log m,,. Then the function
log M (e*) = sup(nt — log m.,)
n>0
coincides with the Legendre transform of ¢(u). In particular, if {m,} is a loga-
rithmically convex sequence, then the function p(u) is convex, and hence p(u) =
(log M (e?))*. Therefore, in this case the initial sequence {m,} can be recovered
from its Ostrowski function in the following way:
36 My = SUP —— .
9 M)
Our aim now is to give necessary and sufficient conditions for C'(lx,m,) to be
nontrivial if {lx} and {m,} are logarithmically convex sequences.?> To this end,

251n our exposition we follow Dzhrbashyan [27] and Babenko [9]. Some other nontriviality
conditions for the same classes but under different restrictions on {lx} and {my} are given in
Babenko [8], Mandelbrojt [92, 93].
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we need a description of the class C (I, m,) formed by the Fourier transforms of
functions from C(ly, my).

THEOREM 5. Let {Ix} and {m,} be logarithmically convex sequences, and le:
L(x) and M(z) be their Ostrowski functions. Then

(:‘(lk,mn) C SZL C C’(lk,mn+2) ,

where m(z) = log M(z), I*(x) is the Legendre transform of the function l(z) =
log L(z), and the class S is defined by (14).

PrROOF. Let us first prove the inclusion é’(lk,mn) C S If f is a nontrivial
function of class C(lx, m,), then it follows from (34) that
1+t* B"m, C B"m,
L(t/A) 1+t Li(t) 1427

TAIGIEYe

where L, (t) = L(¢/A)/(1+t?). To estimate the Fourier transform f(z), we integrate
by parts and obtain

) ()e*t dt .

The previous estimate implies

s CB™m,, gt
[f(z+1y)| < —|Z—|nm—exp [3;13 (rly] —long(T))} /_ool+—t2
< Cexplli(|yl) —m(|zl/B)] ,

where [} denotes the Legendre transform of log L1 (t) = I(t/A) — log(1 +t?). Then,
for sufficiently large s, we have

I3(s) = §1>110)[st —1(t/A) +log(1 +t)]

= sup[24st — I(t) + (log(1 + %) — Ast)]
>0
<I*(24s)+0(), 85— 00.

Hence, f € S
Let us prove the inclusion S¥ C C(lg, my42). We shall show that if f is a
nontrivial function from S, then f € C(lx, mn2).

Let us set
S -~ .
=/ f(z)e*tdz .
-0

According to the definition of the class S[*, we may integrate along any straight
line {z : Im z = y} instead of the real axis. After such a substitution we obtain

e pim (g / f2)e=t vtz de | 2=z +1iy.

If y has the same sign as t, it follows that

(37) |51 ()] = Cltl* /oo 2" exp[l"(Aly|) — m(B|z|) - yt] d .
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Since {lx} and {m,} are logarithmically convex sequences, we have

|2["+2eBD = expl(n + 2) log |2| — m(B|z|)]
t

<sg n+2)1log = —m(t
< sup exp [( )log - ()}

_ Mnt2
- Bn+2 ?

for sufficiently large |z| and |y|, and (37) implies

My, «
1) 0)] < Calt T exp (1" (Aly) — wt)

Minimizing the right-hand side with respect to |y|, we obtain

(39) 5 0)] < a2 e { — 1)

But

k_ﬂ_|t|k<k7'k_k
i e"p{ (A)}_L(lﬂ/A) < Al sup 7 = 1A

Substituting this bound in (38), we find f € C(ly, my+2) proving the Theorem.

REMARK. For Shilov’s classes [, = k®*, m,, = n®™, it is readily seen that

Clk,mp) = C(mn, ly).
Gelfand and Shilov [39, Chapter IV, §6], Babenko [8], and Mandelbrojt [93] proved
this relation under various restrictions imposed on the sequences {I} and {m,, }.

Combining Theorems 3, 4 and 5 we obtain the main theorem of the present
section.

THEOREM 6 (Babenko, Dzhrbashyan). Assume that {I;} and {m,} are loga-
rithmically convez sequences, L(x) and M (z) are their Ostrowsk: functions, m(z) =
log M(z), and I*(x) is the Legendre transform of log L(z). Let, for some k, condi-
tion (16) be fulfilled.

Then the class C(ly,m,,) is nontrivial if and only if, for some 6 > 0, condi-
tion (17) is fulfilled with | replaced by I*.

PROOF. If (17) fails, then, according to Theorem 3, the class S is trivial, and
Theorem 5 implies the same for C(lx,m,,).
Let (17) be fulfilled. Since

log M d
wm’(w):zofo—gix):alogM(et), t=logz,
and the function
tn
log M (e") = sup log — = sup{tn — logm,,}
n>0 My, n>0

is convex, zm’(x) is an increasing function. If zm’(z) < C' < oo, then M(z) < z¢
and z"m, ! < z¢ for any n > 0, which is a contradiction if n > C. Hence,

lim zm/(z) = 400 .
r—00

In the same way, [*(z)/z is monotonic, nonbounded, and hence tends to infinity.
We conclude that the conditions of Theorem 4 are fulfilled for the functions I*(x)
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and p(z) = m(z) — 2logz. Hence, the class Si. is nontrivial. Since the function
p(z) corresponds to the sequence m.,_q, the class C(l, m,,) is also nontrivial, which
proves the theorem.

REMARK. The necessity of (17) for the class C(lx, m,) to be nontrivial was
proved above (as in the paper of Dzhrbashyan) only if the sequences {l;} and
{m,} satisfy (35).



LECTURE 26

The Matsaev Theorem on the Growth of
Entire Functions Admitting a Lower Bound

In this lecture we will prove?®

THEOREM 1 (Matsaev). If an entire function f(z) has the lower bound
1 i
(1) |f(Z)|Zexp{—Cr”W}, z=re", p>1, k>0,

then the function f(z) is of order p and finite type.

The proof of this theorem consists of two parts, each of which is of independent
interest. In the first part the upper bound

L
@) - 7o) < Comp{Cri )
is derived from the lower bound (1) using Carleman’s and R. Nevanlinna’s formulas.
In the second part the assertion of Matsaev’s theorem is derived from this upper
bound.
In what follows we shall denote by C various values which may depend on p or
k, but not on z or f(z).

26.1. A lower bound for harmonic functions of
order greater than one in the upper half-plane
First, we prove

THEOREM 2. Let u(z) be a harmonic function in the upper half-plane with
continuous boundary values on the real axis. Suppose that

3) uz) <K, zeCy, r=ld21, p>1,
and
(4) [u(z)] < K, |z] <1, Imz > 0.
Then
. 1+7r° .
5 Wy > —CK weC
(5) u(re'?) > ang’  TOCECH

where C' does not depend on K,r,¢ and the function u(z).

26Following (96, 97).

209
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Proor. To begin with, we apply Carleman’s formula (6) from Section 24.2 to
the harmonic function u(z):

L Wu—(ReiG)sin9d¢9+i/R (l 1)[u‘(t)+u’(—t)]dt
1

7TR 0 27 t2 B ﬁ
(6) L[ uT (Re®) sinf df
7R Jg
! R(i—i)[+(t)+ +(—t)|dt+ Au(R), R 2
o, \g TR/ W =g
Here and further on, 4~ = (—u)*, i.e., v = ut — u~, and the remainder term is
I I 1
Au(R) = ;/0 (€™ sin  dip + 2—7;/0 (1= 25 ) (®) + u(-)] at.

Using estimate (4), we obtain
(7 |A.(R)| < 2K .

Other terms on the right-hand side of (6) can be estimated using (3):

1 g -
= + i0 in@ < p—1
R/, ut(Re")sinfdf < KRF™
1 a1 2K (RB,1 1
— Bl + +(— < 222 P
o7 /) (7 R2)[u O +ur(=tldt< 50 | (7 R2)t dt
K
<—— _RFL.
~m(p—1)

Thus, for R > 2 we obtain from (6)

(8) L u” (Re®)sinfdf < CKRP™!,
TR 0

and

1 [Bu(t)+u(-t) 41 (R, 1 _ _

_ 2N TN b DT - —

o J, 2 <300 ), (t2 (2R)2)[u () +u™(=t)] at
(©) 41 2R, 1

- I ——— T —(— < o1
S (t2 (2R)2)[u () +u=(~t)]dt < CKR

R. Nevanlinna’s representation for the half-disk (formula (14), Section 24.3),
and estimates (8) and (9) allow us to find a lower bound for the function u(2). We
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have

R |2 [T 1 1 o
—ulz) = 2 /0 (|Rei9 — 2|2 |Re'® —zZ|? ) (—u(Re™)) df

Imz [® 1 R?
t /R(|t—z|2_|Rz—tz|2)(_u(t))dt'

Both integral kernels are positive, since they are derivatives of the Green function
with respect to the inner normal. This permits us to replace —u by u~ in the
integrals and simultaneously to transform identity (10) into the inequality. Now we
shall estimate the kernels which appear in the integrals. Let r = |z| > 2, R = 2r.
Then, using the inequalities

t?sin o, |t| > 1,

|t — 2 |2 29 r?
Z 3 ,t| <1 3

we obtain the estimate of the kernel in the second integral:

1 r
Im z 1 R2 gtzsimp ) |t|21a

(11) T (|t — 22 |R? - tz|2) 4singp
, It < 1.

r
For the first integral kernel we have
R? — 12 ( 1 1 )
2 R%2 —2Rrcos(f —¢) +7r2  R?—2Rrcos(d + ¢) + r?
1 4Rr(R? — r?)sinfsingp

12 = —
(12) 27 (R? — 2Rrcos(f — ¢) + r2)(R?% — 2Rr cos(0 + ¢) + r?)

4Rr(R 4+ r)sinf < 12sind
- 2r(R-r® - =&

Substituting inequalities (11) and (12) into (10), we obtain

1 4 ,
—u(z) < —2/ u~ (2re*) sin 6 df
0

T
r () +Fu(—1) 4sing ' _ _
7Tsin(p/l - a + 220 /_l[u () +u(—8)] dt .

To estimate the first and the second terms in the right-hand side we use inequali-
ties (8) and (9). The third integral is bounded uniformly with respect to z, by (4).
Finally, for |2| > 2,

P

—u(z) <CK——,
sin ¢

and the theorem is proved.
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FIGURE 7

REMARK. For p = 1 the assertion of Theorem 2 is false as is shown by the
example of the function

u(z) = —Im[(z + ilog(z +1))], z€Cy.

Further versions and refinements of Theorem 2 may be found in the mono-
graph Nikol’skii [103, Chapter I], and in the papers Krasichkov-Ternovskii [74],
and Matsaev and Mogulskii [95]. These results have applications in the study of
the division problem for analytic functions.

26.2. Refinement of the upper bound

In this section we shall prove the theorem which plays the basic role in proving
Matsaev's theorem.

THEOREM 3. Let u(z) be a subharmonic function in the complex plane which
satisfies the estimate

(13) u(z) <o+

—— z=re¥, p>1,1>0.
= 7 |singft FETET, P

Then u(z) is of order p and finite type.

PROOF. It suffices to prove that u(z) is of finite order. If that is proved, then,
applying the Phragmén-Lindeldf theorem within angles of sufficiently small opening
containing the positive and negative rays, we obtain the assertion of the theorem.

Without loss of generality we assume that [ > 1/4. Then #/8] < 7/2. We
consider the rhombus L with the vertices at the points

T .o
:l:a—:t2csc§, :tb—:t2zsec§,

and denote by T' its boundary, see Figure 7.
The function
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is harmonic within L and has the lower bound

C .
(14) h(¢) 2 [sino[ ¢ =te,

on I'. Let us prove (14), for example, for Re { > 0. We have

1 cos 20(y1 + )
h - R = R
=R =07~ Ta- CPllat (7
where ¢, = arg(a+(), ¥2 = arg(a—(). Inspection of Figure 7 shows that 1 +2 €
[-m/4l, 7 /4l], and the estimate (14) is valid. But L contains the unit disk, and we
can apply the maximum principle to the function u(r{) — h{¢). This function is
bounded above inside L and

u(z) < max h(¢) + max[u(r¢) — 2({)] < C + max Cr? ¢ )

a _
= dlet cer 0<6<2n (|s’1n6’|l | sin 62

Further, the maximum of the right-hand side is equal to C(1 4 r2?), and hence
u(z) < C(1+17%),
proving the theorem.
In this theorem we encounter the situation in which some upper bound of an
analytic function yields more precise upper bound. It looks as one of the first

theorems of this kind was obtained in the paper [22] by Carleman. It states that
if an entire function f(z) satisfies the estimate

|f(re'®)] < H(p)

in the whole complex plane, with H(yp) > e being an arbitrary function such that

27
/ loglog H(p)dp < oo,
0

then f(z) is bounded, and hence constant.

Other results of this kind may be found in many sources; among them we
mention here the monograph Levinson [84], and Beurling’s lectures published in
his Collected Works, Beurling [13, vol. I]. See also Domar [31] and Rashkovskii
[113, 114].

26.3. Proof of Matsaev’s theorem

Let f(z) be a function satisfying the assumptions of Theorem 1. Evidently,
f(z) has only real zeros and f(0) # 0. Without loss of generality we suppose that
f(2) # 0 for |z| <1, and hence

(15) [log|f(2)l|<C, [z <1.

1
We choose v and 9 such that 1 < v < min(2,p), 0 < ¢ < 7r(1 - ;), and consider

the function

(16) Un,p(¢) = log | F(¢/7e™/%).
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This is a harmonic function in the closed upper half-plane satisfying the estimate

(7] P )

> P kﬂ N> P/ esck (2 — i
(17 Uqy, () = —C7P 7 csc (2 + 'y) > —C1P/7 ¢csc (2) , ¢ =rTe

By Theorem 2 applied to —u., ({) the estimates (15) and (17) yield the upper

bound
(18) Uny () < CTP/7 csc® (%) csch .
In order to estimate the function f(z), we note that 0 < ~¢/2 < =, and set
¢ =r7e"¥/2 in (17). By (16) we obtain the estimate
log | f(re¥)]| = w4 (re7¥/?)

19 k k+1

(19) SC’I‘p(CSC%) csc(%)ﬁCr”(csc%) +, r>2,

valid within the angle {z = re"¥ : 0 < ¥ < w(1 —1/4)}. In the same way the
estimate is proved for 0 > ¢ > —w(1 — 1/~). If we change f(z) to f{—z), we find
that (19) holds within the angle {2 = re®¥ : |1 — ¢| < 7(1 — 1/4)}. It remains to
obtain the estimate of f(z) within the angle {z = re'¥ : 7(1—1/4) < ¢ < n/v}.
For this purpose we set ¢ = 77¢Y(*=%/2) in (17) and obtain

log | (re™)| = 1y, (r7e7® /D) < C(1+19) .

The same estimate is evidently valid for —n /v < ¢ < —n(1 —1/v). Combining all
these estimates, we obtain (1) with [ = k + 1. Thus, the assertion of Theorem 1
follows immediately from Theorem 3.

26.4. Entire functions admitting a lower bound for p <1

In Theorem 1 we assumed that p > 1. Evidently, for p < 1 this theorem implies
that an entire function f(z) admitting the lower bound is of order at most one. A
more precise estimate of the growth of f(z) is given by the following proposition.

THEOREM 4 (Matsaev). If an entire function f(z) has a lower bound

1 P
+ |2] b, 0sp<1, k>0,

(20) 7@ 2 exp{ = My

then it belongs to Cartwright’s class C.

ProoF. We shall denote by M different positive constants depending on p and
k only.

1
To begin with, we consider the harmonic function log |f(—z)| in the half-plane
{z: Imz > 1}. By (20)
1
log—+ < M(1+ |2|"), p<1l, Imz>1,
7 |

and hence this function has a positive harmonic majorant in the upper half-plane.
According to the Remark to Theorem 3, Section 14.2, the function log|f(z)| can
be represented in the form

Im2*1/°° log | f(t + 19)|

7T oo |t— 2412

(21) loglf(2)] = dt+M(Imz—-1), Imz>1,
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where

dt < oo .

/°° log™ | f(t +9)|

(21) 1182

By Hayman’s theorem, Lecture 15, we conclude that f(z) is of finite exponential
type in the half-planes {z: Imz > 1} and {z: Imz < —1}.

By Theorem 1 the entire function f(z) has finite order. To conclude that f(z)
is an entire function of exponential type we apply the Phragmén-Lindeldf principle
in the strip {|Imz| < 1}.

By Krein’s theorem on functions of Cartwright’s class (Section 16.1) the condi-
tion (21) implies that log|f(z)| has a positive harmonic majorant in the half-plane
{z : Imz < 1}. Similarly, log|f(z)| has a positive harmonic majorant in the half-
plane {z : Imz > —1}. Therefore, this function has positive harmonic majorant
in both half-planes C_ and C.. Applying M. G. Krein’s theorem once more, we
conclude that f € C'. The theorem is proved.

REMARK. Theorem 4 immediately implies M. G. Krein’s theorem on entire
functions f(z) such that 1/f(z) is represented by an absolutely convergent series
of simple fractions with real poles (Theorem 3, Section 16.1). Indeed, if

where {),} are real and if

i [en| < oo
T T Al
then

1 M
: [flz+a)l ~ (vl
Now Theorem 4 may be applied.

IA

Both Matsaev’s theorems have important applications to the spectral theory
of operators; see Gohberg and Krein [40].



LECTURE 27

Entire Functions of Class P

DEFINITION. An entire function w(z) of exponential type belongs to the class
P if

(a) w(z) has no zeros in the lower half-plane C_;

(b} the number h,(—7/2} — h,(r/2) is nonnegative.

It is evident that every polynomial without zeros in C_ belongs to the class P.
In this and the following lectures we will discuss some properties of functions
of class P as well as some of their applications.

27.1. Properties of functions of class P

We start with a lemma which may be regarded as a version of the Phragmén-
Lindel6f principle.

LeMMa 1. Let f(2) and w(z) be EFET, let w(z) have no zeros in the upper
half-plane and also

[f(@)] Slw(z)], —co<z<oo.
Then ¥(z) = 58 is an analytic function of exponential type in the upper half-
plane. Further,
(1) hs(8) = hy(0) 4+ hy(0) = ho,(8) + ksiné | 0<e<m,
and
(2) Y(z)] <€, y=Imz>0,

where k = hy(n/2).

PrOOF. According to the theorem on division of analytic functions (Theo-
rem 5, Lecture 11), the function ¢ (z) is of exponential type in C,. Since the
function ¢(z) is bounded on the real axis, hy(0) < 0 and hy(n) < 0, and by
properties 4 and 5 of the indicator function (see Section 8.2)

hy(0) = ksind , k=hy(n/2), 0<O< .

By the theorem on addition of indicator functions, Section 16.1, we obtain inequality
(1). It is evident that the type of the function ¢ (z) in C, equals k, and estimate (2)
follows from the Phragmén-Lindelof theorem, proving the lemma.
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CorOLLARY 1 (M. G. Krein). The indicator diagram of EFET w(z) without
zeros in the lower half-plane is symmetric with respect to a line which is parallel to
the real axis.

To prove the corollary, it suffices to set f(z) = w(z) in Lemma 1 and to replace
w(2) by w(2).27 Since hz(0) = hy,(—0), (1) has the form

ho(8) = hy,(~0) + ksind 0<f<m.

Thus, the upper part of the indicator diagram can be obtained from the lower part
by the reflection in the real axis followed by the translation along the imaginary
axis by k. It is evident that the line {z = z + iy : y = k/2} is the axis of symmetry
for the indicator diagram. The corollary is proved.

DEFINITION. The number
1 k
d, = E[hw(—ﬂ'/2) - hw(ﬂ'/2)] = D)

is called the defect of the EFET w(z) without zeros in C_.

PrROBLEM 1. Prove that

I T w(ret®)
(3) d, = lim /0 IOg‘D(rei‘P)

T—00 7T

sinp dy ,

where the function under the limit sign does not decrease.

HiNT. Use the Carleman formula.

The theorem on addition of indicator functions in the upper half-plane com-
bined with the definition of the defect immediately yields:

COROLLARY 2. The defect of the product of EFET without zeros in the lower
half-plane equals the sum of defects of the factors.

COROLLARY 3. In order that an EFET w(z) without zeros in the lower half-
plane be a function of class P it is necessary and sufficient that

<1

—_ )

Imz>0.

Bl

@(2)

(4)

The sufficiency of condition (4) is evident, and the necessity follows from in-
equality (2) in the statement of Lemma 1.
REMARK. Let w(z) be an EFET. Represent it in the form
w(z) = P(2) +1Q(2) ,

where P(z) and Q(z) are real entire functions.?® Condition (4) is equivalent to the
fact that the function
Q(z)

P(z)

0(z) =

27%(2) denotes the entire function obtained from w(z) by conjugating all Taylor coefficients.
28 An entire function is called real if it takes real values on the real axis.
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(2)

€

maps the upper half-plane into itself. Indeed, if ¥(2) = = @) then
w(z
_1+i0(2)

and the unit disk in the i-plane corresponds to the upper half-plane of the 8-plane.
Note that the function 6(z) is constant if and only if w(2) is real on the real axis
up to a constant factor.

COROLLARY 4. If a sequence w,(2) of functions of class P converges uniformly
on each compact set to an EFET w(z), then w(z) 1s a function of class P.

wn (2)
Wn (Z)

Indeed, w(z) has no zeros in C_, and the inequalities ‘ ‘ <lforImz>90
yield ‘@} <1forImz>0.
w(z)

COROLLARY 5. FEach function of class P can be represented in the form

(5) w(z) = c2™e* [ | (1 - i)ez Reay |

k ke
where Ima =d, > 0, Imay >0 and
1
6 ‘Im — | <.
® > i
, w(z)
Proor. The function ¥(z) = o) z € Cy4, has the same zeros ay as the

function w(z). Since the function ¥(2) is bounded on the real axis, its zeros satisfy
the Blaschke condition (6), as proved in Theorem 2, Section 14.2. Representation
(5) follows from the Hadamard theorem and (6). Further,

P(z) = w(z) _ % e(a—E)zH 1_—Zﬂ

A l—Z/ak,

where the product converges by virtue of (6). According to the Hayman theorem
(Lecture 15), we have
hy(8) = —2(Ima)siné .
Thus, Ima =d, > 0.
COROLLARY 6. Each function w(z) of class P can be approzimated uniformly

on compact sets by polynomials wy,(z) without zeros in the lower half-plane.

Proor. We will use representation (5). The sequence of functions
i z
czen” (1 - —)
He-z

. 1 . . .
with s, = @+ >, _, Re — approximates the function w(z) uniformly on every
873

compact set. Choosing positive integers p,, large enough, we obtain the sequence
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of approximating polynomials

without zeros in C_. The corollary is proved.

The well-known Laguerre-Pélya theorem describes the general form of entire
functions which can be approximated on every compact set by polynomials without
zeros in the lower half-plane. Such functions have the form f(z) = e‘”z(I)(z) where
v > 0, and ®(z) is an entire function of genus one satisfying condition (6). For
more details related to this subject we refer the reader to Chapter 8 of the book
(82].

Entire functions of class P have important applications in the framework of the
theory of Hilbert spaces of entire functions developed by de Branges. This theory
is exposed in the monograph de Branges [20].

27.2. Meromorphic functions with interlacing zeros and poles

In this section we prove a theorem which will be used in the sequel.

We say that two sequences of real numbers {ax} and {bx} are interlacing if
exactly one member of one of them lies between each pair of neighboring terms of
the other.

THEOREM 1 (M. G. Krein). In order that a real meromorphic function 6(z)
in C map the upper half-plane onto itself, it is necessary and sufficient that 6(z) be
represented in the form

" =T (- 2)(-2)

wherebk<ak<bk+1,k€Z, a_1 <0<by,c>0

The prime here means that the index k takes all integer values except zero.

SUFFICIENCY. Since a; and by are interlacing, the series

> (a0

and hence the series

SI0-2D0-0) " = G-

k

are convergent. Thus the infinite product (7) converges uniformly on every compact
set not containing points by.
For all values of the index k we have

T
arg azk = arg(z — a) — arg(z — by) .

b
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For z € C,, the left-hand side is the angle at which the segment [bg, ax] is viewed
from the point 2. The equation

argf(z) = Z[arg(z — ay) — arg(z — by)]
k

implies that 0 < arg#(z) < m, z € C.

NECESSITY. Suppose that the real meromorphic function §(z) maps the upper
half-plane into itself, i.e.,

0<argf(z) <m, zeCp.

If 6(z) has either zeros or poles in the upper half-plane, then, going around a contour
lying in the upper half-plane and enclosing one pole (or zero) of §(z), we find that
the absolute value of the increment of arg#(z) is not less than 27. Since this is
impossible, all zeros and poles of the function §(z) lie on the real axis.

When Im z < 0, we have —7 < argf(z) < 0, and when the point z runs over
any circumference, the absolute value of the increment of arg§(z) does not exceed
2m. Therefore, all zeros and poles of the function §(z) are simple, and the number
of zeros on any interval of the real axis differs from the number of its poles by
at most one. This means that the zeros and poles of (2) interlace. The infinite

product )
_ , _
o =R T (- )i 2)

corresponding to the zeros {ax} and poles {bx} of the function 6(z) converges
uniformly on every compact set not containing points of {b;} and maps the upper
half-plane into itself.

The function

0(2)

is entire, has no zeros in the complex plane, and |argx(z)| < 2 for all z € C.
Thus the entire function u = log x{z) maps the whole complex plane into the strip
|Imu| < 27, and therefore 4 = const. The theorem is proved.

This theorem immediately yields the following statement.

REMARK 1 (N. G. Chebotarev, P. Montel). In order that a real meromorphic
function #(z) can be uniformly approximated on every compact set in the complex
plane by real rational functions with real interlacing zeros and poles, it is necessary
and sufficient that #(z) maps the upper half-plane into itself.

ProBLEM 1 (N. G. Chebotarev, P. Montel). Prove that a real meromorphic
function §(z) which maps the upper half-plane into itself can be represented in the
form ‘

w3
C 1 1
0 =az+b+ 243 eaf =}, —ofwgw<o,
z an — 2 Qp
n=uw1i
where ¢ > 0, bisreal, ¢, 20, ...an—1 < Gy, < apy1..., and the series
2
n=w1a"

converges.



222 LECTURE 27. ENTIRE FUNCTIONS OF CLASS P

In fact, this representation is a particular case of the representation of a holo-
morphic functlon mapping the upper half-plane into itself, due to R. Nevanhnna
given by relation (2), Section 14.1.

REMARK 2 (N. G. Chebotarev). Two real entire functions P(z) and Q(z) are
sald to be a real pair if they have no common zeros, and if any linear combination
wP(z) + rQ(z) with real coefficients has no complex zeros. If entire functions P(z)
and Q(z) form a real pair, then the meromorphic function

Q(2)

®) o) = g

does not take on real values for Im z # 0, so that it maps Cy either onto itself or
onto C_. If, in addition,

9) Q' (z0) P (o) — Q(z0) P (z0) > 0

at some real point zg, then 6 (z¢) > 0, and 8(z) maps the upper half-plane onto
itself.

Conversely, if a function #(z) of the form (8) maps the upper half-plane onto
itself, then it takes on real values on the real axis only, and hence any real combi-
nation uP(z) + vQ(z) with real coeflicients has only real zeros. The condition (9),
is evidently fulfilled.

27.3. Theorem of Hermite and Biehler
for entire functions of exponential type

In many applications it is necessary to know whether a certain half-plane does
not contain zeros of a given entire function. For polynomials the criterion is given
by the well-known theorem due to Hermite and Biehler:

In order that the polynomials

w(z) = P(z) +1Q(2)

where P(2) and Q(z) are real polynomials, have no zeros in the closed lower half-
plane {z : Imz < 0}, it is necessary and sufficient that the following conditions be
satisfied:

1) the polynomials P(z) and Q(z) have simple interlacing zeros;

2) at some real point g

Q' (z0)P(z0) — Q(z0)P'(z0) > 0.

In this section we will prove the analog of the Hermite-Biehler theorem for
EFET. We call an EFET w(z) of class P trivial if it is real up to a constant factor.

THEOREM 2 (Generalized Hermite-Biehler Theorem)?®. In order that an
EFET w(z) = P(2) + iQ(z) be a nontrivial function of class P, it is necessary
and sufficient that real entire functions P(2) and Q(z) satisfy the following condi-
tions:

29This theorem was proved independently by M. G. Krein and the author, but the work of
M. G. Krein was not published. Similar results were proved by N. N. Meiman.
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(A) the functions P(z) and Q(2) can be represented in the form
P(z) = R(z)P1(2),  Q(2) = R(2)Q1(2) ,

where the zeros of R are real, and the zeros of P, and @ are real, simple and
interlacing,

(B) EFET P and Q have coinciding indicator diagrams;

(C) at some real point zg,

Q' (o) P(x0) — Q(z0)P'(z0) > 0.
To prove this theorem we need the following result.

LEMMA 2. Let P(2) and Q(z) be EFET with real, simple and interlacing zeros,
and let

P(z2) =zme‘”+CH (1 - i)ez/‘”‘ ,
K

a
10 _ g batd O F N 2 bk
(10) Q(z) =z"e 1;[ (1 bk)e

(a_1 <0< bl)
be their canonical representations. Then
(11) ho(8) = hp(8) + 6cosb , 0<0<2r,

where
1 1
(12) 6_b—a+§k:<a—a).

In other words, the indicator diagram of the function Q(z) can be obtained from
the indicator diagram of the function P(z) upon translation of the latter by & along
the real axis. If P(z) and Q(z) are real entire functions, then the vector & is real
as well.

Proor. It follows from representations (10) that
Q(2) 5.2 —bo 11/ z z N1
1 = ce’” - —) AT
( 3) P(Z) ce z—aOH (1 bk (1 ak)
Denote by ®(z) the infinite product on the right-hand side of (13). The convergence
of this product was proved while proving Theorem 1. By Theorem 1 the real
function ®(z) maps the upper half-plane either onto itself or onto the lower half-

plane. Using its representation as described in Problem 1 above we obtain the
estimate

2
C—;_Cﬁ, |z > 1.
al ly|

\ o |Z|2

i3 < b+ — + —

|®(2)] < alz| + b+ E + ] E
n#0

Since the function —1/®(z) has positive imaginary part in the upper half-plane,
the similar lower estimate is valid for ®(z) and we arrive at the estimates

r

| sin 4| 0
—— < |®(re’?)| < Com— > 0 #

r

C

30Compare with Carathéodory’s inequality (Section 11.1, Problem 2).
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with some positive constants C; and Cs. It follows from these inequalities that, for
8 #0,m,

log |®(re?
(14) lirn 10812(re7)|

T—0o0 ‘s

=0.
Relation (11) follows from (13) and (14), and the lemma is proved.

COROLLARY. The relation
1 1
(15) b—a+;(a—a)—0

is necessary and sufficient in order that the entire functions P(z) and Q(z) have
coinciding indicator diagrams.

ProOF OF THEOREM 2. SUFFICIENCY. Let us consider the function

_ Q(Z) _ Ql(z)
Y= 50 " Rl

The previous corollary implies that this function is represented in the form (7)
with a real constant ¢. Then by Theorem 1 and by Remark 2 to this theorem either
w(z) € P (¢>0),orw(z) € P {c <0). Using condition (C) we conclude that
w(z) € P.

NECESSITY. If w(z) € P, then the function #(z) maps the upper half-plane onto
itself. Evidently, condition (C) is fulfilled. Condition (B) follows from Theorem 1
and the Corollary from Lemma 2. The theorem is proved.

REMARK 1. Suppose that assumption (A) of Theorem 2 is fulfilled but as-
sumption (B) is violated. Then by Lemma 2 the indicator diagram [p of P(z) can
be obtained from the indicator diagram Ig of Q(z) translating the latter by a real
number § # 0. According to the property of the indicator diagrams (Section 9.1,
Problem 1), the diagram I, of the function w = P +4@Q coincides with the smallest
convex compact set which contains /p and Ig. The functions P(z) and Q(z) are
real; hence their indicator diagrams are symmetric with respect to the real axis.
Therefore, I, is also symmetric with respect to the real axis, and d, = 0 . In
addition, in this case the function w(z) has zeros in both half-planes C, and C_,
since otherwise condition (B) would be satisfied.

Thus, if the function w(z) satisfies condition (A) and also at least one of the
following two conditions:

(8) w(z)#£0, zeC_;
(b) d, >0,
then w(z) € P.

REMARK 2. If the function w(z) is of zero exponential type (in particular, if
w(z) is a polynomial), then the indicator diagrams of the functions w(z), P(z) and
Q(z) coincide with the origin. In this case, if the function w(z) has no zeros in the
lower half-plane, then w(z) € P and condition (B) holds automatically.
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Thus, if P(z) and Q(z) are entire functions of zero exponential type, the func-
tion w(z) = P(z) +iQ(z) has no zeros in the closed lower half-plane if and only if
the zeros of P(z) and Q(z) are real and interlacing, and condition (C) is satisfied.

Now we present an example of application of Theorem 2. Let us consider an
exponential polynomial

w(z) =) €M Py(z),
k=1

where A} < Ag < --- < An, —A1 < A, and Pi(z) are polynomials. The indicator
diagram of w(z) coincides with the segment [—i\,, —iA;] of the imaginary axis.
Hence ]
d, = §(>\n_>‘1)>0

Let w(z) = P(z) +1Q(z), where P({z) and Q(z) are exponential polynomials. By
Remark 2 to Theorem 1 the interlacing property of the zeros of P(2) and Q(z) is
equivalent to the condition that all zeros of w(z) lie in the open upper half-plane.

More detailed account of this circle of problems can be found in the monographs
Chebotarev and Meiman [25], Levin [82] and in the paper Levin [80].



LECTURE 28

S. N. Bernstein’s Inequality for
Entire Functions of Exponential Type
and its Generalizations

One of the most significant properties of entire functions of exponential type
was discovered by S. N. Bernstein:
If f(z) is an entire function of exponential type ¢ > 0 and

|f(z)| < M, —00 <z <00,

then
|f'(z)| < Mo, —co <z < 00.

The equality sign is attained here for some x if and only if
f(z) =cicosoz+ cysinoz.

This theorem was generalized by many authors in various directions.

The inequalities in the statement of the Bernstein theorem may be written in
the form

[f(z)] < |Me®] and [f'(z)] < [(Me?)].

In other words, the Bernstein theorem states that under some conditions the in-
equality between the functions yields the same inequality between their derivatives.

Taking the properties of functions of the class P as our starting point, we will
prove that if f(z) is an EFET, w(z) € P, and if

(1> of <ou,
then the inequality between the functions
(2) [f(@)] < lw(z)l,  —o0<z<o0,
yields the same inequality between their derivatives:
|f(z)] < ' (z)], —00 < T < 0.

S. N. Bernstein’s inequality has many applications, mainly in approximation
theory (see Akhiezer [4], Timan [122]). In this lecture we shall discuss only one
surprising application to the theory of Banach algebras.

28.1. P-majorants

DEFINITION. A function w(z) € P is a P-majorant of an EFET f(z) if inequal-
ities (1) and (2) are fulfilled.

We shall denote this relation by the symbol f < w.
In this section we shall prove several important properties of P-majorants.

227
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LEMMA 1. If f < w, then
(3) |f(2)] < |w(z)], z€eC_,

4) fI <z, zeCi.

ProoF. By Lemma 1 from the previous lecture we have
(5) h¢(8) = ho(—0) + k|sinf| , -7 <6<0.

To prove the lemma we shall show that k& < 0.
Since w(z) € P, then

ho(0) > ho(—0), —7<6<0,

and hence h,(f) attains its maximum o, at some point 8y, —7 < 6y < 0. If
8o # 0,7, then, setting § = 8 in (5), we obtain

k|sin6’0\ =hf((90)—0'w SO’f—O’w SO

Thus, in this case, & < 0.

Now let §p = 0 (or 6y = 7). It follows from (5), that the part of the indicator
diagram I corresponding to § € [—m, 0] can be obtained from the respective part
of the indicator diagram I, translating the latter by —k¢. In this case, the point
o, — ki belongs to the indicator diagram Iy, and

af 2 03; + k%,
i.e., k = 0. The lemma is proved.
REMARK 1. If w(?) is an EFET such that for each EFET f(z) inequalities (1)
and (2) yield (3) and (4), then w(z) € P.

REMARK 2. If an EFET f(z) possesses a trivial (i.e., real up to a constant
factor) majorant w(z), then

(6) f(2) = cw(2), le| < 1.

Indeed, in such a case W(z) = cw(z), and by Lemma 1 the inequality.
£ (2)] < |w(2)]
holds in the whole complex plane. By the Liouville theorem we obtain (6).

PrOBLEM 1. Let f(2) be an EFET. Prove that the following conditions are
equivalent:

(a) f(z) has a P-majorant.

(b) There is a function w(z) € P such that f < w,

|f(2)] = |w(z)], -0 <z <00,

and either the indicator diagrams of f(z) and w(z) coincide or one can be obtained
from the other by reflection in the real axis.3!

31Such a majorant w(z) is the best possible.
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(c) The zeros {oy} of the function f(z) satisfy the condition

1
Im—| <oo.

(67
& k

sup‘/r log|f d ‘<oo

HinT. The equivalence of conditions (c) and (d) follows from Carleman’s for-
mula (see Problem 1, Section 24.1). If the zeros of an EFET

f(2) = celat®= H (1 — i) exp Z

(67 (67
A k k

satisfy condition (¢), then a majorant w(z) satisfying condition (b) can be found in
the form

_ aplatip)z _Z i
w(z) = celat® 1;[(1 ﬁk)exszeﬁk,

where (8 = ay for Imay, > 0, 8, = @ for Imay < 0, and p > 0 is appropriately
chosen.

LeMMA 2. Let w(z) and f(z) be entire functions. In order that the function

pulz) = f(2) — uw(2)
belong to the class P for an arbitrary complex value u satisfying |u| > 1, it is

necessary and sufficient thatw € P and f < w.

NEcEssITY. Let ¢, € P for |u| > 1. The equations

(.U(Z) _ SO’LL(Z) - SO’U(Z) ,
v—u
vy (2) — wpy(z
fz) = 2 (2) — wpu(2)
v—u
imply that the functions w(z) and f(z) are of finite exponential type. As u — oo,
the function —,(2) approaches —w(z) uniformly on every compact set, and by
u

Corollary 4 to Lemma 1 from the previous Lecture we have w(z) € P. Further, if
|u| > 1, then the holomorphic function

pulz) _ J()
w(z)  w(2)
does not vanish in the half-plane C_. In other words,
(7) () Tmz<0.
w

To estimate f(z) in the upper half-plane, we note that, according to Corollary
3, Section 27.1, the condition ¢, € P and estimate (7) imply the inequality

f(Z) —uww@)] < | (2) —w(2)| < 1+ [u))lw(z)|, 2€C-,

whence

®) [F@)] < (1 +2u))w(z)] .
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Evidently, estimates (7) and (8) yield (1) and (2); i.e., f < w.
SuFFICIENCY. If f < w, then by virtue of Lemma 1 the estimate (3) holds, the

function ¢, (z) has no zeros in C_ for |u| > 1, and hence for |u| > 1.
Further, for z € C_ and |u| > 1, we have

o) SO |0 ) 1)) Ll

— uw wlz) uw(z) lw(z) lu] — 1
Also, SOU(Z)‘ = 1if z is real.
Pu(z) _
Applying the Phragmén-Lindeldf principle to the function ‘ w”g; ‘ in the half-
Pu

plane C_, we obtain

[ou(Z)] = [Pu(2)] < lpul2)],  Imz<0.

It is clear that the last inequality is valid for |u| = 1 as well. Thus ¢, € P for each
u satisfying |u| > 1. The lemma is proved.

For an arbitrary function w € P and an arbitrary value « € [0, 27] we set

Qz;a) = %(w(z)ew‘ +w(z)e"*) .

If w(z) = P(2) +iQ(z), then Q(z;a) = P(z) cosa — Q(z) sine, and according to
part (A) of the generalized Hermite-Biehler theorem (Theorem 2, Section 27.3) and
Remark 2, Section 27.2, (z; @) has real zeros only. Multiple zeros of this function
are simultaneously zeros of the function w(z).

PRrROBLEM 2 (N. I. Akhiezer). Let f(z) be a real EFET and let f < w. Then
the difference Q2(z; @) — f(2) either vanishes identically or has only real zeros, and
these zeros are simple except when f(z) = t|w(z)|.

HINT. By virtue of Lemma 2, the function f(z) — e**w(z) belongs to the class
P. Tt suffices to apply Theorem 2, Section 27.3 to this function.

PROBLEM 3. 3?2 Let f(2) be a real EFET and let f < w. Then for every
complex z

If(2)] < %(IW(Z)I +w(2)))

where the equality holds for at least one nonreal point if and only if f(z) = Q(z; «)
for some « € [0, 27].

HiNnT. Use the previous problem.
28.2. Operators preserving inequalities

DEFINITION. A linear operator K defined on the set of all entire functions of
exponential type and mapping the class P into itself is said to be a B-operator.

321n the case w(z) = €2 this theorem is due to R. J. Duffiu and A. C. Schaeffer. The general
statement was obtained by N. I. Akhiezer.
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THEOREM 1. B-operators preserve the relation of majorization.

PrROOF. Let f < w and let K be an arbitrary B-operator. By Lemma 2 we
have
flz) —uw(z) € P, lul > 1.
Then
KIf(2) - wa()] = K[f] —uKlo] € P, Jul 21,
Applying Lemma 2 once more, we obtain K[f] < K[w], proving the theorem.

THEOREM 2. The operator of differentiation is a B-operator.

PROOF. Let w(z) be an entire fuction of exponential type o > 0. Its derivative
w'(z) has the same type, which follows, for example, from the formula expressing
the type of an entire function via its Taylor coeflicients (see Section 1.3).

Let us consider the imaginary part of the logarithmic derivative of a function
w(z) € P. Representation (5) from the previous lecture yields

! 1 1
w(z):E+a+ /{ —Re—].
w(z) =z z— g o
Since Ima = d, > 0, we obtain
W' (2) —(Im z — Im o)
9 m S — g, + ST TRET %) Sy Imz<0.
) (2) DD FE

Therefore, w'(z) # 0 for Imz < 0.

By Corollary 6 of Lemma 2 of the previous lecture there is a sequence of polyno-
mials wn,(2) € P without zeros in the lower half-plane converging to w(z) uniformly
on every compact set. By (9) the polynomials w/,(z) have no zeros in the lower
half-plane33 and hence belong to the class P. Applying Corollary 4 of the same
Lemma 1, we conclude that w’(z) € P. The theorem is proved.

REMARK. If the function w(z) € P has at least one nonreal zero, then inequal-
ity (9) holds on the real axis.

Indeed, if at some real point z

! I
Imw(aj):dw+zl m o, _0,

w(z) — |z - o |2
then d, = 0, and all zeros «;, are real.
PROBLEM 4. Prove that d,- > d,, for w(z) € P.
LEMMaA 3. If f < w and for some real o
o(2) = £(2) ~ euw(2)
is a trivial function of class P, i.e., it is real up to a constant factor, then
(10) [(2) = aw(z) + cw(2)
with |c1| + |co| = 1.

33These arguments prove the Gauss theorem: zeros of the derivative of a polynomial are
located in the closed convex hull of zeros of the polynomial itself.
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ProoOF. Without loss of generality we assume that the trivial function ¢(z) of
class P is real and fix real values v, and 72 such that

e f(2) + ew(z) = ip(2) .

Set
e f(2) = P(2) +iQ(2)

eMw(z) = —P(2) +15(2) ,

where P(z), Q(z) and S(z) are real EFET. The inequality
|P(z) + iQ(z)| < |P(z) — i5(z)]

implies that
(11) Q) <|5(x)], zeR.
Now we shall show that

Qz) =cS(2), el <1.

By the generalized Hermite-Biehler theorem (Theorem 2, Section 27.3), the
function S(z) has real zeros only and, according to inequality (11), they are zeros
of Q(z). Hence

Q(2)
6 =

is an EFET bounded by 1 on the real axis. Let us consider the entire function

teM f(2) + e2w(z) O0<t<l.

By virtue of Lemma 2 this is a function of class P, and, once more, by the general-
ized Hermite-Biehler Theorem, the function tQ) + S has real zeros only. Hence the

function
tQ(2) + 5(2)
5(z)
also has real zeros only. Since |6(x}| < 1 on the real axis, then, for 0 < ¢ < 1, the
entire function ¢0(z) + 1 has no real zeros. If follows that the entire function 6(z)

omits values T < —1, and therefore 6(z) = ¢ with real ¢, |c| < 1.
Thus,

t0(2) + 1=

¢ f(2) = P(2) +icS(2)

(12) eMw(z) = —P(2) +iS(2)

which is equivalent to (10). The lemma is proved.

REMARK. If an EFET f(2) is represented in the form (10) with w € P, then,
as follows from relations (12), |f(zo)| = |w(zo)| at each zero zq of the function
S(z). We note that if the function S(z) has no zeros, then again by the generalized
Hermite-Biehler theorem, w(z) is a polynomial of the first degree.
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THEOREM 3. Let f <w. Then for all positive integers k
(13) ¥ (@) < WP (@), —co<z<o0.

If w(2) is not a polynomial, then the equality sign is attained in (13) at least at
some real point xo and for some k, if and only if the function f(z) has the form
(10).

PROOF. Inequalities (13) follow directly from Theorems 1 and 2. Note that by
virtue of Theorem 2 we have w® € P, and if f(2) has the form (10), then

FP(2) = a0 (2) + e (2)

is a function of the same form. In this case, according to the remark to the previous
lemma, for each k there is xx such that

1f P (@) = |w® ()]

Now, let us prove the converse statement. Assume that for some positive integer
k there is a real x such that

170 (20)] = w® (20)] -
Then for some real « the derivative of the function
p(z) = fE D (2) — et D (z)
vanishes at zg. The function o(z) itself cannot vanish at zg, since otherwise

f(khl) (Z) o D
iy © + (2 —20)P0(2),  6(z0) #0,p =2,
which gives an immediate contradiction, since f*~1) is majorized by w*~1), Thus

' (wo) _
w(wo)

By the Remark to Theorem 2 we conclude that all zeros of p(z) are real, and hence
it is a trivial function of class P. Hence, Lemma 3 yields

FED() = ™ D (@) +e@® D(z), el e =1,
By virtue of the Remark to Lemma 3 it follows that, for some real point z1,
FED (@) = w* D ()] -

Repeating this argument several times, we obtain that the function f(z) has the
form (10). The theorem is proved.

Now we will show that the class P is the largest class of EFET for which
Theorem 3 holds. More precisely, we will prove
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THEOREM 4. Let w(z) be an EFET such that the condition
F@) < (@), —oco<z <00,
where f is any EFET with 65 < o,,, implies that
|f(z)] < |w'(2)], —00 < T <00.
Then either w(z) € P or w(z) € P.
ProoF. To begin with, we assume that the function w(z) has zeros in both

half-planes C. and C_. Choose a real point zg such that w(zg) # 0 and o' (zg) # 0.
For the sake of definiteness we assume that

w(iL‘o)

I
T (@o)

<0.

Set -
f2) = Z=2u(z),

z—
where « is a zero of w(z) lying in C (if

w(iL‘o)
w/(l‘o)

then we choose a € C_). Evidently, o4 = o, and

Im

>0,

[f(z)] = w(z)], —c0o<z<o00.
On the other hand,
! _ / :I:O_a_ a—a N , _ W(ﬂ?o) Ima
o)l = e ($0)$ - (o) (zo — 0)2‘ = |w (370)”1 2Zw’(aco) lzo — a1

According to our choice of «, we have

Re| - 23 “(20) Imia} >0

w’(iL‘o) liL‘o - a]2
If the left-hand side vanishes, then the imaginary part of the expression in the
brackets does not vanish. In either case

k)

cw(zg) Ima
‘ wl(l‘o) |z0—a|2‘
and hence
|f'(@o)] > |w(@o)] -
Thus we arrive at a contradiction.

Let us assume now that all zeros of the function w(z) lie in a closed half-plane
which, for the sake of definiteness, is C,.. If all zeros are real, then w(z) is a trivial
function of class P.

Assume that some zeros of w(z) are located in C,. If the defect of w is non-
negative (d,, > 0), then w € P. Suppose that d,, < 0 and consider the function

f(z) = ew(z)_

where § = —d,, > 0. Then f € P. It is evident that with such a choice of § we have
oy = 0, and

(14) |f(@)] = lw(z)] -
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Further,

(15) Re /(=) = Re

Corollary 5, Section 27.1 yields

w(z) = czMe % H (1 — i)ezp‘el/"‘“.

k

Therefore
w Im oy,
I - -6 _Hmak
e AP i e

areCy

and

mlD g, 3 Ime

fa) =0T 2 -l

Since there is at least one oy € C4, we obtain

(16) 1m ‘:’g)) | <|mm f; g)) .

Examining (14), (15) and (16), we conclude that

|[f(@)] > ' ()] -

Hence the assumption d,, < 0 leads us to a contradiction, which proves that w(z) €
P. :

PROBLEM 5. Let w(z) be a nontrivial function of class P, and let

1 1o — —io — ! UJ($)
Qz;a) = E{w(z)e +w(z)e "}, ®(z) = 5 I8 =)
. (;) . ) .
Then the function y = y(z) = (@) satisfies the identity

¥)? +{2'(2)}*y* = {2'(2)}* .

PrROBLEM 6 (N. 1. Akhiezer). Let f be areal EFET, and let f < w where w
is a nontrivial function of class P. Then

(17) L i8] <owyi- L2

where ®(z) = %arg ;g;

|w(zo)| and the equality holds in (17), then f(z) = Q(z; ) for some real c.

. If there is at least one real point z¢ at which |f(zo)| <



236 LECTURE 28. S. N. BERNSTEIN’S INEQUALITY

HinT. For each real z one can find values L, 0 < L < 1, and o, 0 < o < 2,
such that
f@)=LUz0),  fllz) =LY(z;0),
and then use the previous problem. If the equality holds in (17), then it is necessary
to use Problem 2.

For w(z) = €'7% the assertion of the previous problem gives a useful inequality
|/ (@) < opv/1 = |f(2)]?,
which is valid for any arbitrary EFET f(2) such that |f(z)| < 1.

Let E be a Banach space of functions defined on the real axis whose norm is
invariant with respect to the real shift. This means that, for every real ¢,

lg(z + D = llg@)] -

Examples of such spaces are provided by the space LP(—o0,00), p > 1, and by the
space of locally integrable functions with the norm

2m+s l/p
sup / o(e)P de)
—ools<oo K]

PROBLEM 7. Let f(z) be an EFET o belonging to the space E. Then | f’| <
all £l

HinT. Apply S. N. Bernstein’s inequality to the function x(t) = [f(z + t}],
where ¢ € E*, ||¢|| = 1.

A description of %B-operators and other results connected with Theorems 1-4
can be found in Levin [80] as well as in Chapter IX of Levin [82]. A somewhat
different approach, based on interpolation formulas, to this circle of problems can
be found in Akhiezer [4, pages 336-347].

28.3. S. N. Bernstein’s inequality and Banach algebras

V. E. Katsnelson discovered a direct relation between S. N. Bernstein’s inequal-
ity and the theory of Banach algebras.

DEFINITION. An element a of a Banach algebra A is called Hermitian if
lete|| = 1 for all real t¢.

For example, Hermitian elements of the algebra of all bounded operators of a
Hilbert space are selfadjoint operators. It is well known that the operator norm of
a selfadjoint operator in a Hilbert space coincides with its spectral radius. Using
S. N. Bernstein’s inequality, V. E. Katsnelson showed3* that for every Hermitian
element in an arbitrary Banach algebra the norm coincides with the spectral radius
p(a). Moreover, this statement appeared to be equivalent to S. N. Bernstein’s
inequality. '

First, using this inequality, we shall prove that

(18) llall = p(a)
for the Hermitian element a € A.

34Independently and almost simultaneously this fact was proved by a uumber of other authors
(F. F. Bonsall, M. T. Grabb, A. M. Sinclair, A. Browder).
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Let ¢ € A* be an arbitrary linear functional whose norm equals 1. Consider
the entire function f(z) = 9 (e'#). By Gelfand’s formula for the spectral radius
p(a) (see Section 6.3) f(z) is an EFET and

{M} s pla).

1.
of = —limsupn o

€ nooo

Since the element a is Hermitian, we have |f(z)| < 1, z € R. Applying S. N. Bern-
stein’s inequality, we obtain

[¥(a)] = |£'(0)] < oy sup{|f(2)| : = € R} < p(a) .

The Hahn-Banach theorem yields |la|| < p(a). Since the converse inequality is
evident, (18) is proved.

Now, we shall deduce from (15) S. N. Bernstein’s inequality. To this end we
consider the Banach space B, of EFET not exceeding ¢ and bounded on the real
axis and assume that B, is endowed with the norm

Il = sup{|f(2)] : = € R} .
Let {f,} € B, be a Cauchy sequence. The inequality

[fn(z + iy) — fm(z +iy)| < sup |fa(@) = fru() 7!

implies that the limit function belongs to B, proving its completeness.

1d
Let a= - o be the operator of differentiation in this space. If ¢t € R, then
1 dz

@ = (3 ) =Y. S () S f) = e +1)
n=0 ’ n=0
Hence, for f € B,, we have ||(e!®)[f]|| = ||f|| - Thus ||e®**|| = 1, and a is an

Hermitian element in the Banach algebra of all bounded operators in B, .
Now we shall evaluate the spectral radius of a. Let z € R. We have

I¢l=r

omg ¢r+l
Using the inequality |f(z + ¢)| < 7¢I} f||, we obtain

12 !
@) < =gl = T

Minimizing this estimate with respect to r, we conclude that
|f(n)($)| < ||f”n!en—nlogn+nlogcr )

In other words
”an” < n!en—nlogn+n]oga .

By Gelfand’s formula for the spectral radius and by the Stirling formula the last
inequality yields

p(a) = lim ”anHl/n < lim {n!en—nlogn+nloga}1/n =0,
n—a n—o0
Taking into account condition (18), we obtain now for an arbitrary function f € B,,

I @) = la[f1(@)] < llall /]l = pla)I f] < ollF1I

proving S. N. Bernstein’s inequality.
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REMARK. F.F.Bonsall and T. Duncan, somewhat later than V. E. Katsnelson,
found the following simple and direct proof of the coincidence of the norm and
spectral radius of Hermitian elements in Banach algebras. This proof uses only
basic facts of the theory of Banach algebras, and leads one to another proof of the
inequality of S. N. Bernstein.

Let us consider the function f({) = arcsin ¢ analytic in the disk [(| < 1. The
Taylor coefficients fi of this function are nonnegative and their sum equals f(1) =
m/2. Let a be an arbitrary Hermitian element of a Banach algebra such that
p(a) < w/2. Then the identity a = f(sina) holds, whence

oo
lall <>~ fillsinal* .
k=1
Since the element a is Hermitian, we have || sina|| < 1, and therefore,

lall <~ fe=m/2.
k=1

This allows us to conclude that for an arbitrary Hermitian element and an arbitrary
e >0, |la]] £ (1 +¢)p(a). Hence |a|| < p(a).
Further results connecting inequalities of S. N. Bernstein type (including The-
orem 3) with the theory of Banach algebras can be found in Gorin [44].
Added in Proof

page 187, lines 1-2 below must be
2 [T o Boroo1
=& | elstreysmpdst [ (5 - Rz)logu() (~t)|ds

+27TZIH’1( )—271'21m( ) 2mAs(p, R),

page 200, line 3 below must be

sin z

2p
H(z) = (—) h(z)
z
page 201, line 3 above, instead of 0 = 2 + 2p must be 0 = 4p
page 213, lines 5-6 above, instead ¥ + 1o € [—m/4l, w/4l] must be ¥; + 12 €
(—m/4l, 7 /4])
page 214, line 9 above must be
SCT"(CSC %) csc (Vw) < CrP| cscop|F+t, r>2,
page 215, line 4 below must be

1 ||
T S M1+ —].
|f (@ +1y)| ( Iyl)
page 223, Eq.(11) must read

hq(6) = hp(0) + Re(Sexpif), 0<6<2m,

page 223, line 10 below omit the words: along the real axis.
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formula, 187

for a half-disk, 192

for functions with positive imaginary parts,

100
representation of functions with positive
harmonic majorants, 105
Nevanlinna F. and R. theorem, 189

Operator interference, 162
Operator preserving inequality, 230
Order of an entire function, 3
Ostrowski function, 204

P-majorant, 227
Polya’s theorem
on (I)-quasianalyticity of lacunary Fourier
series, 15
on conjugate diagram, 66
Paley-Wiener
H_%_-theorem, 146
theorem, 69

on minimality, 133
Phragmén-Lindel6f theorem, 37
in F. and R. Nevanlinna form, 190
in integral form, 50
Plancherel-Pélya
equivalence norm theorem, 161
interpolation theorem, 152
Poisson formula, 9
Poisson-Jensen formula, 9
Potential logarithmic, 48
Product absolutely convergent, 25

Radius spectral, 42
Riesz F.
measure, 48
theorem, 48
Riesz M.
base, 169
theorem, 142
Riesz-Herglotz formula, 99

Sampling theorem, 150
Schwarz formula, 9
Set of finite view, 109
Shilov’s theorem, 58
Space

A(D), 20

A*(D), 73

HE, 137

H?, 145

B, 150

Lo, 150

LB, 149
Spectral synthesis, 122
System minimal, 131

Theorem
on a segment on the boundary of the in-
. dicator diagram, 83, 85
on addition of indicators, 118
on completeness and minimality of expo-
nentials, 134
on division, 80
on two constant, 92
on three circles, 48
Titchmarsh convolution theorem, 119
Type
exponential, 4
maximal, 4
mean, 4
minimal, 4
normal, 4
of function, 4

Uncertainty Principle, 195
Valiron’s theorem, 91, 93

Weierstrass canonical product, 25
Weierstrass primary factor, 25
Wigert-Leau theorem, 72



