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But try to remember that a good man can never die.
The person of a man may go, but the best part of him stays.
It stays forever,

William Saroyan: The Human Comedy



Preface

The idea of supersymmetry was originally introduced in relativistic quantum
field theories as a generalization of Poincaré symmetry. In 1976 Nicolai sug-
gested an analogous generalization for non-relativistic quantum mechanics.
With the one-dimensional model introduced by Witten in 1981, supersym-
metry became a major tool in quantum mechanics and mathematical, sta-
tistical, and condensed-matter physics. Supersymmetry is also a successful
concept in nuclear and atomic physics. An underlying supersymmetry of a
given quantum-mechanical system can be utilized to analyze the properties of
the system in an elegant and effective way. It is even possible to obtain exact
results thanks to supersymmetry.

The purpose of this book is to give an introduction to supersymmet-
ric quantum mechanics and review some of the recent developments of vari-
ous supersymmetric methods in quantum and statistical physics, Thereby we
will touch upon some topics related to mathematical and condensed-matter
physics. A discussion of supersymmetry in atomic and nuclear physics is omit-
ted. However, the reader will find some references in Chap. 9. Similarly, super-
symmetric field theories and supergravity are not considered in this book. In
fact, there exist already many excellent textbooks and monographs on these
topics. A list may be found in Chap. 9. Yet, it is hoped that this book may
be useful in preparing a footing for a study of supersymmetric theories in
atomic, nuclear, and particle physics.

The plan of the book is as follows. Chapter 1 starts with a brief historical
review of symmetry and supersymmetry.

In Chap. 2 the basic definitions for supersymmetric quantum mechan-
ics are given and fundamental properties following from these definitions are
discussed. In particular, we study the properties of N = 2 supersymmetric
quantum systems. It is shown that the existence of the Witten-parity operator
naturally leads to a grading of the Hilbert space. The supersymmetry trans-
formation and the Witten index are introduced. Ground-state properties of a
supersymmetric quantum system are also discussed.
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Chapter 3 extensively discusses Witten’s model, which in essence consists
of a pair of standard one-dimensional Hamiltonians. This model is uniquely
characterized by a scalar function which is often called the supersymmetric
(SUSY) potential, Properties of this SUSY potential and the corresponding
supersymmetric Witten model are studied. Many examples of SUSY poten-
tials leading to well-known quantum problems in one dimension are presented,

Supersymmetric classical mechanics is introduced and studied in Chap.
4. Here we consider the pseudoclassical version of Witten’s model. A pseu-
doclassical system possesses, in addition to the usual degrees of freedom,
Grassmann-valued degrees of freedom. The equations of motion are explicitly
solved and the properties of the solutions are discussed. Here emphasis is put
on the so-called fermionic phase. Quantization of this pseudoclassical system
is achieved via the canonical as well as the path-integral approach.

Exact solutions of quantum mechanical eigenvalue problems are covered
in Chap. 5. An additional property of the SUSY potential called shape-
invariance allows an explicit derivation of the discrete spectrum of the
Hamiltonian in question and the corresponding eigenstates. The connection
with Schrodinger’s factorization method is shown.

As an approximation method we consider in Chap. 6 the quasi-classical
path-integral approach to the Witten model. This approach yields novel quasi-
classical quantization conditions having some remarkable properties. These
are discussed in detail and are compared with the usual WKB approximation
method,

An application in statistical physics is studied in Chap. 7. The super-
symmetric structure of the Fokker-Planck and that of the Langevin equation
are shown to be closely connected to the quantum mechanical and the pseu-
doclassical Witten model, respectively. Implications of supersymmetry are
discussed. Supersymmetric approximation methods for decay rates are also
presented.

In Chap. 8 we consider the supersymmetry of Pauli’s Hamiltonian and dis-
cuss the paramagnetism of a two- and of a three-dimensional non-interacting
electron gas, and the paramagnetic conjecture. Supersymmetry in Dirac’s
equation is briefly discussed and its application to semiconductor heterojunc-
tions is also given.

The selection of the topics covered in this book is clearly subjective and
results from my own interests. Chapter 9 is aimed at giving a broad overview
of topics in theoretical physics where supersymmetric methods became and
still are important tools,



Preface IX

The overview given in Chap. 9 is not meant to be complete. Similarly, the
list of references, though rather extensive, is certainly incomplete. I apologize
to all those who have been left out due to my ignorance,

This book originated in a course of lectures given at the University of
Erlangen-Niirnberg during the winter term 1993/94. My view of supersym-
metric quantum mechanics has been developed during many years of collab-
oration with Akira Inomata. Discussions with him, either personally or via
e-mail, are always enjoyable and clarifying. His comments and advice have
been very valuable for this book. Similar thanks go to Hajo Leschke. This
book benefitted a lot from his clarifying comments and suggestions. Also sev-
eral other people have read parts of the manuscript and made many valuable
comments. I am especially indebted to Wolf Beiglbock, Helmut Fink, Werner
Fischer, Alfred Hiiller, John R. Klauder, Stephan Matthiesen, Peter Miiller,
and last but not least Siegfried Wonneberger for his endurance in reading the
complete manuscript.

The collaboration with Akira Inomata on supersymmetric quantum me-
chanics has been supported by the Deutsche Forschungsgemeinschaft. This
support is gratefully acknowledged. I am also grateful to Urda Beiglbéck and
Frank Holzwarth for their assistance with the Springer IATEX macro package
CLMono01.

Finally I am greatly indebted to my wife Karin and my children Julia and
Michael for their moral support and patience.

Erlangen, June 1996 Georg Junker
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1. Introduction

“Dass der Raum, als Ort fiir Puncte aufgefasst, nur drei Dimensionen hat, braucht
vom mathematischen Standpuncte aus nicht discutirt zu werden; ebenso wenig kann
man aber vom mathematischen Standpuncte aus Jemanden hindern, zu behaupten,
der Raum habe eigentlich vier, oder unbegrénzt viele Dimensionen, wir seien aber
nur im Stande, drei wahrzunehmen.”’

Felix Klein (1849-1925)

Symmetry plays important roles in theoretical physics. There are numerous
kinds of symmetry in nature. Some are visible and some are hidden. Some
are static and some are dynamic. Some belong to simple individual systems
and some may be seen in the collective behavior of many systems. Often,
various symmetries reveal themselves at the same time and complicate the
appearance of a physical phenomenon. Mathematically, symmetry is handled
by group theory; symmetry of a physical system is seen as an invariance
under a group action. The visual symmetry of a crystal may be described
by a discrete group. Symmetry of a system in motion is represented by a
continuous group. The mirror-image symmetry of a system can be described
by a discrete group of reflections and uniformity of time flow may be seen as
a consequence of invariance under a continuous group of time translations.
In 1872, Felix Klein [K11872], in his inaugural lecture at Erlangen, com-
monly known as the Erlangen program, made an observation that geometry
of space is associated with a mathematical group. According to Klein, the Eu-
clidean space, for instance, is characterized by its transformation groups which
consist of rotations, translations, and reflections. In 1918, Emmy Noether
[Noel8] put forth another important theorem that if a system is invariant un-
der a continuous group of n parameters and satisfies the equations of motion,
there exist n constants of motion. As a result of Noether’s theorem, we see
that if a system moves freely in D-dimensional Euclidean space then the D-
component momentum and (D? — D)}/2-component angular momentum must

1 F. Klein [K11872] p.42.



2 1. Introduction

be conserved in association with the translation group of D parameters and
the rotation group of (D? — D)/2 parameters, respectively. The symmetry
considerations are useful not only in the study of classical systems but also
in understanding quantum phenomena. Soon after the development of quan-
tum mechanics the symmetry methods were found to be powerful in analyzing
quantum spectra [Wey31, Wig3l, Wae32].

In modern physics we recognize two kinds of symmetry; ezternal symmetry
and internal symmetry. In classical physics, we are concerned with external
symmetries. In understanding the detailed structure of an atomic spectrum,
it became necessary to introduce the concept of quantized spin. Since it is
difficult to ascribe the spin concept associated with a point particle to the
classical spinning of an extended body, the spin in non-relativistic quantum
mechanics was understood as an internal degree of freedom. As quantum me-
chanics was applied to nuclear physics and high-energy physics, numerous
additional internal degrees of freedom and their associated internal symme-
tries were introduced. There have been attempts to unify external symmetries
and internal symmetries. However, such a grand unification has not been fully
achieved so far.

In Minkowskian space-time, where quantum field theory is formulated, the
maximal symmetry group is the Poincaré (or inhomogeneous Lorentz) group.
It contains the homogeneous Lorentz group as a subgroup which allows for a
classification of fundamental particles by their spin [Wig39]. Since the allowed
values of spin are integers or half-integers, as long as our physical world
is Minkowskian, fundamental particles must be either bosons or fermions.
Thus, in the relativistic formulation, the spin is no longer associated with
an internal symmetry but with a manifestation of the external space-time
symmetry. Internal degrees of freedom such as isospin, baryon number, color,
strangeness, charm, etc. are still associated with internal symmetries.

In 1967 Coleman and Mandula [CoMa67] investigated all possible symme-
tries of the scattering matrix in relativistic quantum field theory. Their result
is as follows.? If one restricts the set of continuous symmetries to those gen-
erated by a Lie algebra, then the set of all possible generators consists only of
the angular momentum Lorentz tensor M, , the momentum Lorentz vector
P,, and Lorentz scalars. While M, and P, generate the Poincaré group, ad-
ditional symmetries must be generated by Lorentz scalars, which are indeed
internal symmetries. However, the restriction to Lie symmetries made in the
work of Coleman and Mandula has no a priori grounds.

2 They considered field theory in more than two space-time dimensions with a finite
number of massive one-particle states and a non-vanishing scattering amplitude.
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In 1968, Miyazawa [Miy68] suggested a possible unification scheme for
mesons and baryons based on a superalgebra. While a Lie algebra consists
only of commutators, a superalgebra is closed with respect to commuta-
tors and anticommutators.® Gol'fand and Likhtman [GoLi71] were the first
to embed the Poincaré algebra into a superalgebra. The supersymmetric field
theory formulated in 1972 by Volkov and Akulov [VoAk72] was not renor-
malizable. In 1974, Wess and Zumino [WeZu74a, WeZu74b] succeeded in for-
mulating a renormalizable supersymmetric field theory. Subsequently, Haag,
Lopuszénski, and Sohnius [HaLoSo75] constructed “all possible generators
of supersymmetries of the S-matrix”. They found that within the framework
of superalgebras, besides the generators of the Poincaré group and possi-
ble Lorentz scalars, there are spinor operators (J, allowed. In the Weyl re-
presentation where the supercharges Qo (o € {1,2}) are given by two com-
ponents of a left-handed Weyl spinor, the superalgebra reads (without the
Poincaré subalgebra and extra Lorentz scalars)

[Qar M) =1 (04) Qs [Qar Pl =0,

{QaQs} =0,  {Qa,Qh} =2(0") .5 Py

Here [A, B] := AB — BA and {A, B} := AB + BA denote the commutator
and anticommutator, respectively. Furthermore,

(1.1)

ot :=(1,0)=(1,01,07,03), ot = %[a“,a"], (1.2)

with Pauli matrices

oy = (2 (1)> 09 1= (? Bi>, 03 = (é _01). (1.3)

From this superalgebra we notice that

H=P =1 {Qa.QL}, Qi=0 (1.4)

From the first commutator of (1.1), it is also obvious that the supercharge
operators change the eigenvalues of the third component M), of the angular
momentum operator by % Therefore, each of the supercharge operators con-
verts a bosonic state to a fermionic state and a fermionic state to a bosonic
state, and becomes a generator of the so-called supersymmetry transforma-
tions (see Fig. 1.1). In a nucleus, the proton and the neutron are constantly
transmuted into each other, so that they are not physically distinguishable. It
is more appropriate to consider them as two possible states of a single nucleon,
forming an iso-spinor. The indistinguishability of the proton and the neutron

% For details see, for example, the books by Scheunert [Sche79) and Cornwell
[Cor89].
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Supermultiplet
Q' Fig. 1.1. The SUSY transforma-
- tions in relativistic quantum field
Boson Q Fermion theories generated by supercharges
> Q,Q".

in a nucleus lead Heisenberg to the idea of iso-symmetry. In much the same
sense, the idea of supersymmetry assumes that there may be environments
where bosons and fermions become indistinguishable. They are to be viewed
as members of a single supermultiplet. In order for a physical system to have
supersymmetry (SUSY), the ground state (vacuum) |0) of the system should
be invariant under any SUSY transformation. This means that if SUSY is a
good symmetry

Qal0) =0 and QL|0)=0, foralla. (1.5)
If SUSY is broken, then we have
Qal0) #0 and/or Q1|0) #0, for at least one a. (1.6)

As has been mentioned earlier, SUSY was originally introduced to physics
in search of a possible non-trivial unification of space-time and internal sym-
metries within four-dimensional relativistic quantum field theory. However,
application of the SUSY idea is not limited to high-energy particle physics.
SUSY has been successfully applied to other areas of theoretical physics such
as nuclear, atomic, solid-state, and statistical physics [KoCa85]. Even for
mathematical aspects of theoretical physics, it has been found to be a use-
ful concept [KoCa85]. As will be shown in later chapters, SUSY has become
a powerful tool in non-relativistic quantum mechanics. The first SUSY ap-
plication at the non-relativistic level was done in 1976 by Nicolai [Nic76]. He
utilized SUSY to construct spin models in statistical physics.

Although the SUSY idea is fascinating, we know that a boson and a fermion
are quite clearly separate objects. In our surrounding environments, we can
find no phenomenon in which a boson is converted into a fermion. In other
words, as far as we see, SUSY is not a good symmetry. SUSY is in fact
broken in our physical world. Yet, if we have a faith in SUSY, then it is rea-
sonable to assume that SUSY has spontaneously been broken at some point
in time and temperature. In 1981, Witten [Wit81] introduced SUSY quantum
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Degenerate eigenstates

! o ! Fig. 1.2. The SUSY transformation

< of SUSY quantum mechanics trans-

negative Q positive forms between states of positive and
> negative Witten parity.

mechanics, based on the simplest superalgebra, in order to provide a sim-
ple non-relativistic model for the spontaneous SUSY breaking mechanism.
Witten’s formulation of non-relativistic SUSY quantum mechanics attracted
considerable attention in the last decade and is still serving as a useful tool
in quantum physics [GeKr85, LaRoBa90, CoKhSu95]. Some recent textbooks
on quantum mechanics [deLaRa91, Schw95] include Witten’s formulation as
a modern alternative to the factorization method of Schrédinger, Infeld, and
Hull. The SUSY approach also serves as an important tool for analyzing
mathematical structures of the Schrédinger equation and the Dirac equation
[CyFrKiSi87, Gro91l, Tha92]. It should also be mentioned that the recent
work of Seiberg and Witten [SeWi94a, SeWi94b] again stimulated intensive
research activities on four-dimensional supersymmetric gauge theories. Ac-
tually, Seiberg and Witten obtained, by means of electric-magnetic duality,
exact information about the vacuum structure of N = 2 supersymmetric
Yang-Mills theories. An overview on these results is given in [Sei95, InSe95].

Despite the fact that SUSY quantum mechanics is indeed the (0+1)-
dimensional limit of SUSY quantum field theory, it is rather independent of the
latter. SUSY in SUSY quantum mechanics is not the original supersymmetry
relating bosons and fermions. The supercharges of SUSY quantum mechanics
do not generate transformations between bosons and fermions. They generate
transformations between two orthogonal eigenstates of a given Hamiltonian
with the same degenerate eigenvalue (see Fig. 1.2). These two orthogonal
states are eigenstates of the so-called Witten parity operator (see Chap. 2)
with eigenvalues +1 and —1. Although the degeneracy arises from the fact
that the supercharge operators change the eigenvalues by %, the Witten parity
states in SUSY quantum mechanics may be taken in general as independent
from the real spin states. Some of the examples we shall discuss later on are,
indeed, models of a particle carrying a physical spin—% degree of freedom. In
order to avoid a possible confusion, we shall refer to those states that are
independent of spin as the Witten-parity states.






2. Supersymmetric Quantum Mechanics

In this chapter we will start with the definition of the so-called N-extended super-
symmetric quantum mechanics. This approach, actually for N = 2, has first been
formulated by Nicolai [Nic76] in his search for supersymmetry in non-relativistic
quantum systems related to models of statistical physics. Witten's [Wit81, Wit82a)]
approach has been for a general N > 1 but, for N > 2, has the same features as
Nicolai’s formulation. Here we will present the definition due to Witten in order to
include the N = 1 case, which has some interesting applications in the theory of
a three-dimensional electron gas in a magnetic field. However, only for N > 2 we
will find the typical properties of supersymmetric quantum mechanics. In particu-
lar, N > 2 allows the introduction of the so-called Witten parity and thus implies a
natural grading of the Hilbert space into two subspaces.

2.1 Definition of SUSY Quantum Mechanics

Let us suppose that we have a quantum system which is characterized by a
Hamiltonian H acting on some Hilbert space . Furthermore, we will postu-
late the existence of N self-adjoint operators Q; = Q}, 1=1,2,...,N, which
also act on #H. With this setup we spell out the following definition.

Definition 2.1.1. A quantum system, which is characterized by the set

{H,Q1,...,Qn;H}, is called supersymmetric if the following anticommu-
tation relation is valid for all 1,7 =1,2,...,N:
[{Qi,Q;} = Hé.j, | (2.1)

where 8;; denotes Kronecker’s delta symbol. The self-adjoint operators Q;
are called supercharges and the Hamiltonian H is called SUSY Hamiltonian.
The symmetry characterized by the superalgebra (2.1) is called N-extended
supersymmetry.

Let us remark that sometimes SUSY quantum mechanics is defined with
non-selfadjoint supercharges. For example, for N = 2M one can define the
“complex” supercharges Qi = (Q2: +1Q2i11) /V/2. Because of this, an N =
2M extended supersymmetry, in the above sense, is sometimes called an M-
extended SUSY. We will exclusively use the notion of the above definition.
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The above superalgebra. certainly puts restrictions on the SUSY Hamilton-
ian H. First we notice that from the fundamental anticommutation relation
(2.1) immediately follows

N
H=2Q%=2Q§="’=2Q%\’=%ZQ?’ (2.2)
i=1

which may be compared with (1.4). The supercharges of a supersymmetric
quantum system are square roots of the SUSY Hamiltonian. A direct conse-
quence of the relation H = 2Q? is

[H,Q]=0 foral i=1,2,..,N. (2.3)

Therefore, the supercharges are constants of motion if they do not depend
explicitly on time, 8Q;/dt = 0.

As a second consequence of (2.2) we note that the Hamiltonian does not
have negative eigenvalues. In other words, the ground-state energy’

Ep :=inf spec H (2.4)
of a supersymmetric quantum system is non-negative
Ey > 0. (2.5)

In analogy to supersymmetric field theories, see eq. (1.5), we introduce
the notion of good and broken SUSY.

Definition 2.1.2. A supersymmetric quantum system {H,Q1,...,Qn;H}
is said to have a good SUSY if its ground-state energy vanishes, that is,
Ey = 0. For a strictly positive ground-state energy Eq > 0 SUSY is said to
be broken.

The analogy to (1.5) becomes visible through the following

Proposition 2.1.1. For good SUSY all ground states |1/;{)') (j enumerates a
possible degeneracy of the ground-state energy Ey = 0) are annihilated by all
supercharges:

Qil¥d) =0  for alli and j. (2.6)
If SUSY is broken (Eo > 0) there exists at least one pair (i,7) for which
Qilwg) # 0. (2.7)

Proof. Obviously, H|yd) = Eol}) implies by (2.2) SN, ||Q:lvd)|? =
EoN/2. Hence, Ey = 0 implies (2.6) and Ey > 0 implies (2.7}, respectively.

! The symbol spec H denotes the spectrum (set of all eigenvalues) of the operator
H.
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It should be pointed out that supersymmetry imposes even more and
stronger constraints on quantum systems. A rather general construction pro-
cedure for quantum systems with a SUSY structure as defined above has been
given by de Crombrugghe and Rittenberg [CrRi83]. Below we will present
some examples of supersymmetric quantum systems for N = 1,2 and arbi-
trary positive integer values of N, respectively.

2.1.1 The Pauli Hamiltonian (N = 1)

As a first example we will mention a system which is characterized by the
Pauli Hamiltonian for a spin-1 particle in an external magnetic field. The mass
of this particle is denoted by m, its charge by e and the external magnetic field
by B(r,t) := V x A(r,t). Here the real-valued function A : R® x R — R?
denotes the vector potential. Furthermore, ¢ and £ denote the speed of light
and Planck’s constant (divided by 27), respectively. Because of the presence
of spin the Hilbert space is given as the tensor product # := L?(R%)®C?. Here
L?(R?) is the infinite-dimensional Hilbert space of Lebesgue square-integrable
complex-valued functions on the three-dimensional Euclidean space R? and
C? is the two-dimensional Hilbert space equipped with the standard scalar
product.

Let us define this supersymmetric system by introducing [CrRi83] the self-
adjoint supercharge (N = 1):

1

Q= T (p— -EA) 0. (2.8)

Due to the SUSY requirement (2.2) the Hamiltonian is necessarily given by
Hp = 2Q%. An explicit calculation leads to

1 e \?2 eh

and coincides with the well-known Pauli Hamiltonian for a spin—% particle
with gyromagnetic factor ¢ = 2. It is an amusing and interesting observa-
tion [CrRi83] that supersymmetry suggests ¢ = 2.2 Without supersymmetry
this usually follows from the relativistic covariant Dirac Hamiltonian only. In
fact, relativity and supersymmetry are closely related [Cas76a]. To be more
explicit, the supercharge (2.8) is related to the Dirac Hamiltonian (in the
standard Pauli-Dirac representation) for the same point mass in the same
magnetic field B:3

2 In Sect. 8.1 we will show that supersymmetry also allows for a gyromagnetic
factor g = —2.
% For the definition of a supersymmetric Dirac Hamiltonian see Sect. 8.3.
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He = mc? (cp—eA)-o
b= ((cp —eA)-0 -mc?
(2.10)
_ mc? 2v'me? Q,

- <2Vm02Q1 —-mc? ) )

Let us also mention that the last expression for Hp immediately leads to a
known [Fey61] relation between the Pauli and Dirac Hamiltonian:

2 242 1-1-2[?[}::/77102 0
- 2.11
Hp = (me’) ( 0 1+ 2Hp /mc? (2.11)

Obviously, the supercharge (2.8) commutes with Hp as well as with Hp and,
therefore, for 8A/dt = 0 it is a constant of motion [Fey61].

Finally, let us note that with |1g) being an eigenstate of Hp with eigen-
value E > 0 the SUSY transformed state |¢%) := \/2/E Q1|¥g) is also an
eigenstate of Hp with the same eigenvalue E. For a further discussion of
supersymmetry in the Pauli and Dirac Hamiltonian system see Chap. 8.

2.1.2 Witten’s SUSY Quantum Mechanics (N = 2)

The most popular model of an N = 2 SUSY quantum system has been
introduced by Witten [Wit81, Wit82a]. This model describes a Cartesian
degree of freedom which carries an additional internal spin—%-like degree of
freedom. Hence, the Hilbert space is given as H := L?(R) ® C?. The two
supercharges have been defined by Witten as follows:

o, :=\/L2_ (\/%_m®al+¢(z)®02),

Qs :=\/L2_ (\/%@az—é(z)®01)y

where @ is a real-valued function, & : R — R, which, for convenience, is
assumed to be continuously differentiable. Note that ¢ is customarily called
SUSY potential. This should not be confused with the superpotential usu-
ally introduced in supersymmetric quantum field theories. In fact, the SUSY
potential & may be considered as the derivative of the superpotential.

The SUSY Hamiltonian is necessarily given by H := 2Q? = 2Q32 and has
the explicit form '

(2.12)

H= (2% + 452(z)) ®1+ \/%é’(z) ® o3, (2.13)

where the prime denotes differentiation with respect to the argument, that is,
P = g—‘f. In the eigenbasis of o3 the Hamiltonian becomes diagonal in the
C?-space,
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_(Hy 0
H—( 0 H_), (2.14)
where
He= 282y + I w () 2.15
™ T Tore T (2.15)

are standard Schrédinger operators acting on states in L?(R).

This Witten model is the simplest one which shows all typical features of
supersymmetric quantum mechanics. We will discuss this model extensively
in the next chapter.

2.1.3 Nicolai’s Supersymmetric Harmonic-Oscillator Chain

As a last example we will mention the supersymmetric harmonic-oscillator
chain introduced by Nicolai in 1976 [Nic76]. This model consists of a one-
dimensional lattice with NV sites. Each of these sites may be occupied by
bosonic and fermionic degrees of freedom. The bosonic degrees of freedom
are characterized by bosonic creation and annihilation operators a! and a;,
i=1,2,...N, acting on @ ,L*(R) and obeying the commutation relations

[ai,a}] = dj, [a:,ax] =0, [al,al] =0. (2.16)
The fermionic degrees of freedom are described by fermionic creation and

annihilation operators b! and b;, which act on C?N = @[, C? and obey the
anticommutation relations

(6,01} =6y,  {bi,bx} =0,  {bl,b]}=0. (2.17)

1

Let us define N supercharges by

N
hw
Q,,::,/72:(a§bi+n+b§+na,—), n=1,2,...,N, w>0, (2.18)
i=1

where we used the cyclic boundary conditions a;+ 5 = a; and by ny = b;. It is
easily verified that the supercharges (2.18) obey the superalgebra (2.1). The
Hamiltonian explicitly reads

N
H=2Q =) (a,?a,- + b}b,—) (2.19)
i=1

and describes N non-interacting bosonic and fermionic harmonic oscillators.
Using the explicit realization of the fermionic operators in terms of Pauli
matrices, b; = o' := 1 (agl) - iag’)) , this Hamiltonian reads
N -
H=mwY [(a}ai +1)+ %@’] . (2.20)

i=1
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Let us note that the supersymmetry of this example can be enlarged by in-
troducing [CrRi83] complex supercharges Qij = albj. Finally, we remark
that by generalizing the definition (2.18) it is possible to find supersymmetric
spin-chain models with a non-trivial interaction [Nic76].

2.2 Properties of N = 2 SUSY Quantum Mechanics

So far the Definition 2.1.1. does not necessarily give rise to degenerated energy
eigenvalues of the Hamiltonian H, which in turn allow for a construction of
supercharges generating a SUSY transformation (cf. Fig. 1.2). In this section
we are going to show that for N = 2, and therefore also for N > 2, one
can define an additional operator, which we will call Witten-parity operator.
Analyzing the properties of this operator we will find that only N > 2 in
general implies a degeneracy of the eigenvalues of H and thus allows for the
construction of the corresponding SUSY transformation which transforms the
associate energy eigenstates into each other.

The N = 2 SUSY quantum mechanics consists of two supercharges Q;,
Q> and a Hamiltonian H which obey the following relations:

Q1Q2 = —Q2Q1, H=2Q}=20;=0Q}+Q3. (2.21)
Let us introduce the complex supercharges
1 1
= — (Q1 +iQ.), t= — (Q,—iQn). 2.22
Q V2 (@1 Q2) Q /2 (@1 —1Q2) ( )
These operators together with the Hamiltonian H close the superalgebra
@=0=Q"", {QQ)=H (2:23)

It should be remarked that the algebra (2.23) is the one which has been in-
troduced by Nicolai [Nic76] in his approach to SUSY quantum mechanics and
is clearly motivated by the algebra of supersymmetric quantum field theories
(cf. eq. 1.4). Indeed, many authors restrict their definition of SUSY quantum
mechanics to the case N = 2. This is, because this case is sufficiently general
to establish all typical properties of SUSY quantum mechanics. Nevertheless,
there are interesting physical systems with N =1 and N > 2, too.
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2.2.1 The Witten Parity

Let us now, in addition to the operators forming the superalgebra (2.23),
postulate the existence of a self-adjoint operator W, which obeys the relations

(W, H=0, (W,Q}=0={W,Q"), W?=1] (2.24)

That is, W should commute with the Hamiltonian, anticommute with the
complex supercharges and define a unitary involution on H.

Definition 2.2.1. A self-adjoint operator W which obeys relations (2.24) is
called Witten parity or Witten operator.

It should be noted that for V = 2 such an operator may always be found by
setting

[Q, Q1]
{Q. Q1)
which is only well defined on the orthogonal complement of ker H. That is, on
the subspace spanned by the eigenvectors of H with strictly positive energy
eigenvalues. However, the above explicit form (2.25) of W often has a natural
extension to ker H. For example, in Witten’s model, where @, @2 and H
are given by (2.12) and (2.13), respectively, we find [Q, Q2] = iHo3. Hence,
according to (2.25) the Witten operator is given by o3 and is well defined on
the full Hilbert space H. If there does not exist such a natural extension one
may define W on ker H, for example, by postulating that all zero modes of
H are positive or negative states. See Definition 2.2.3. below. It should be
remarked that such a problem may only occur for good SUSY.

Being a unitary involution the Witten operator takes only the eigenval-
ues +1 justifying the name parity. Instead of W, Witten [Wit82a] origi-
nally considered the operator (—1)F = —W where F denotes the so-called
“fermion-number operator” [SaHo82]. Actually, it is even possible to in-
troduce (on the complement of ker H) a “fermionic” annihilation operator
b := Q'/VH obeying the anticommutation relation {b,b'} = 1. Hence, the
“fermion-number” operator F := b'b = QQt/H = F' = F? obeys the al-
gebra [F,H] = 0, [F,Q] = @, [F,Q'] = —Q', and is related to the Witten
parity by W = 2F — 1 = (—1)7+1. The eigenspace of W with eigenvalue +1
(F = 1) is sometimes called “fermionic” subspace. Whereas, the eigenspace of
W corresponding to the eigenvalue —1 (F = 0) is called “bosonic” subspace.
As this notion might be confusing, SUSY quantum mechanics does not deal
with the real boson-fermion symmetry, we call them subspaces of positive and
negative (Witten) parity, respectively:

2
W= 2QQ 1= (01, Q] = (2:25)
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Definition 2.2.2. Let P* := (1 + W) be the orthogonal projection of H
onto the eigenspace of the Witten operator with eigenvalue £1. The subspace

HE = PEH = {|[g) € H : Wp) = £[)) (2.26)
is called space of positive (HT) and negative (H~) Witten parity, respectively.

It is natural to decompose the Hilbert space into these eigenspaces of W,
H=HtTOH, (2.27)

and represent each linear operator acting on H by 2 x 2 matrices.* For ex-
ample, the Witten parity W and the projectors P* read in this notation

W=(é_01), P+=(ég), P-=(g(1’). (2.28)

Because of @% = 0 and {@, W} = 0 the complex supercharges are necessarily
of the form®

=(38) @=(20)

which imply

Q1= % (;1)1 ‘3) , o Q= \/Li (21 _OA) . (2.30)

Here A : H~ — H* denotes a generalized “annihilation” operator and At :
H*+ — H~ isits adjoint, which may be understood as a generalized “creation”
operator [CyFrKiSig7].

The SUSY Hamiltonian becomes diagonal in the representation (2.28),

AAt 0
H = . .
( a A) (2.31)

Hence, for an N = 2 supersymmetric quantum system the total SUSY
Hamiltonian H consists of two so-called SUSY partner Hamiltonians

H, := AA' >0, H_:=AtA>0. (2.32)

Let us mention that an arbitrary operator B acting on H can be decom-
posed into its diagonal (even) part B. and its off-diagonal (odd) part B,.
That is, B = B + B, with

4 Because of this grading of H the Witten operator is sometimes called grading
operator.

® The second possibility @ = (91 8) is, in essence, equivalent to (2.29).
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[W1 Be] =0, {W1 Bo} =0. (233)

In particular, the SUSY Hamiltonian H is an even operator, whereas the
supercharges @ and Q! are odd operators.

Finally, we note that for N = 1 there does not necessarily exist a Wit-
ten operator. For this reason, some authors [GrPi87, JaLeLe87, CyFrKiSi87,
Tha92] include the existence of such a Witten operator in their definition of
supersymmetric quantum systems.

2.2.2 SUSY Transformation

According to the Definition 2.2.2. we introduce the notion of positive and
negative Witten-parity states.

Definition 2.2.3. Eigenstates of P are called positive and negative (Wit-
ten-) parity states, respectively. They are denoted by |1h*) :

PE[yE) = £|p¥). (2.34)
For simplicity we will call them also positive and negative states.

In the matrix notation of (2.28) they are represented in the form

=) w=(2). (239

where [¢t) € HE.
It is obvious that the supercharges (2.29) generate a SUSY transformation
in the sense that they map negative states into positive states and vice versa:

QH~ CHT, QMY cH-. (2.36)

This SUSY transformation can be made explicit for eigenstates of H. Note
that [W, H] = 0 and therefore, the Hamiltonian and the Witten operator have
simultaneous eigenstates:

Proposition 2.2.1. To each positive (negative) eigenstate |Y}) (|¢Yg)) of
the Hamiltonian H with eigenvalue E > 0 there ezists a negative (positive)
eigenstate of H with the same eigenvalue. These eigenstates are related by
the SUSY transformation
1 1

-y _ 1 ot Yo
Proof. Let, for example, [15) be a negative eigenstate of H, that is, H[¢g) =
E|y%). Then, because of [H,Q] = 0, we have HQ|yg) = QHYg) =
EQ|vg) € H*. Hence, the normalized vector (1/\/E)Q|1/)E) is a positive
eigenstate of H for the same eigenvalue E > 0.

QlYE)- (2.37)
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Corollary 2.2.1 ([Dei78]). The spectra of the two SUSY partner Hamilton-
ians H, and H_ are identical away from zero:
spec (H4)\{0} = spec (H-)\{0}. (2.38)

If |¢§) € H* denotes an eigenstate of Hy with eigenvalue E > 0, that is,
FHi|¢L) = E|¢t), then the corresponding SUSY transformation (2.37) reads

oy L L

In other words, the strictly positive eigenvalues of the SUSY partner Hamil-
tonians Hy coincide. Operators having the property (2.38) are said to be es-
sential iso-spectral [Dei78, Schm78]. Hence, the Hamiltonian of N = 2 SUSY
quantum mechanics consists of a pair of essential iso-spectral SUSY partner
Hamiltonians. For more properties on essential iso-spectral operators we re-
fer to [Dei78, Tha92]. We note that the above relations (2.37) and (2.39) are
also valid for continuous spectra. For the proof, however, one needs resolvents
[Dei78].

Allgl),  |of) = —= Al#E)- (2.39)

2.2.3 Ground-State Properties for Good SUSY

Until now we have considered eigenstates of the SUSY Hamiltonian H with
strictly positive energies E > 0. For good SUSY, by definition, there exists
(at least) one state in H with vanishing energy eigenvalue. Let us denote such
a state by |vo), that is H|y)p) = 0. Necessarily, [1)o) is annihilated by the
supercharges Q and Qt:

Qlo) =0,  Q'lyo) = 0. (2.40)
For a negative ground state |1, ) = (| ¢?;)) this implies

Aldg ) = 0. (2.41)
Whereas, a positive ground state [1/7) = (|¢g)) requires

Allgg) =o. (2.42)

In general, the ground state [10) could be of positive or negative Witten
parity. If the ground-state energy Eo = 0 is degenerate even both types of
states may occur. It should be noted, that in general, these states are not
paired like those for strictly positive-energy eigenvalues. For typical spectra
of a SUSY Hamiltonian in the case of good and broken SUSY see Fig. 2.1.
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E, good SUSY E “broken SUSY
h
E3 —f4—r
E 4
E, ——44+—— Fig. 2.1. Typical spectra for

E, 4 good (E = 0) and bro-
ken (Eo > 0) SUSY. Strictly

2 positive-energy eigenvalues oc-
Eo —#+*t4— cur in positive-negative-parity
E, 414 0 pairs (T1).

2.2.4 The Witten Index

In the above we have seen that the ground-state properties of a SUSY quantum
system may be of particular interest. In order to decide whether there are such
zero modes, that is, states with zero energy, Witten [Wit82a] introduced the
following quantity.

Definition 2.2.4. Let us denote by ny the number of zero modes of Hy. in
the subspace HE. For finite ny and n_ the quantity

A =n_ — n.,_ (243)
15 called the Witten index.

It is obvious that for ny + n_ > 0, by definition, SUSY is good. Hence,
whenever the Witten index is a non-zero integer SUSY is good. However,
if A = 0 it is not clear whether SUSY is broken (ny = 0 = n_) or not
(n+ =n_ # 0)

It should be remarked that the Witten index is related to the so-called
Fredholm index [Kat84] of the annihilation operator A characterizing the su-
percharge Q:

ind A := dim kerA — dimkerA' = dimkerA' A — dim ker4 A, (2.44)

where dim kerA denotes the dimension of the space spanned by the linearly
independent zero modes of the operator A (the kernel of A). Clearly, (2.44)
makes only sense if both, dim kerA4 and dim kerAt, are finite. Operators having
this property are called Fredholm operators [Kat84]. The most remarkable
property of the Fredholm index is its “topological invariance” [Kat84]. The
Witten index obviously is related to the Fredholm index by

A =ind A = dimkerH_ — dimkerH, . (2.45)

For non-Fredholm operators, that is, for systems where Definition 2.2.4 does
not apply, it has been suggested [Cal78, Wei79, Wit82a, Jun95] to consider
so-called regularized indices:
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A(B) := Tx (—-We™PH) (2.46)
= Tr_ (e"ﬁA'A) — Try (e'ﬁAA') ,

A(z) = Tr (—W HZ_ Z) (2.47)
= Tr- (‘m) — T (Ir) ’

Ae) = ’I‘r(—W@(E - H)) (2.48)

Tr_ (6 - A14)) ~ Try (6 — aah),

where 8 > 0, z < 0 and € > 0, respectively, Try(-) stands for the trace
in the subspaces H*, and @ denotes the unit-step function, ©(zx) = 0 for
z < 0 and O(z) = 1 for z > 0. The above indices are called heat kernel
regularized, resolvent kernel regularized and IDOS kernel regularized index,
respectively, for obvious reasons. Here IDOS stands for integrated density of
states. The heat kernel regularized index has been introduced by Atiyah, Bott
and Patodi [AtBoPaT73] for an alternative proof of the Atiyah-Singer index
theorem. It has also been used by Atiyah, Padoti and Singer [AtPaSi75] in
their study of the spectral asymmetry of certain elliptic self-adjoint operators.
For a derivation of the Atiyah—-Singer index theorem based on supersymmetric
quantum mechanics see [Alv83, FrWi84, MaZu86, Jar89].

For A being a Fredholm operator these regularized indices are independent
of their argument and are identical to the Fredholm and Witten index:

A= A(B) = A(z) = A(e) = ind A. (2.49)

As already mentioned, for A being not a Fredholm operator the above def-
inition for the Witten index cannot be used. In this case there are several
alternative definitions available in the literature,

A= lim A(B), (2.50)
A= lim A(2), (2.51)
A= lim Ale), (2.52)

whenever the quantity on the right-hand side exists.

The heat kernel and resolvent kernel regularized indices are well stud-
ied. See, for example, [Cal78, CeGi83, Hir83, NiWi84, AkCo84, BoBIl84,
JaLeLe87, BoGeGrSchwSi87, Nak90, Tha92]. The IDOS kernel regularized
index has been shown to be related to the magnetization of a non-interacting
electron gas in an arbitrary magnetic field [Jun95]. See also Sect. 8.2.
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2.2.5 SUSY and Gauge Transformations

As a last point we will mention that the N = 2 superalgebra (2.21), respec-
tively (2.23) is invariant under the “rotation”

(g;) = (-Zfﬁz Z)nsf;) (8;) a € [0,2). (2.53)

This invariance becomes explicit by noting that

QQ = =-Q0Q =-Q;Q1, & =H2=Q). (259
Similarly, for the complex supercharges one gets

Q' =e0Q, Q'=dQ, (2.55)
which obviously obey the algebra (2.23).

It is interesting to note that this invariance of the superalgebra can be

related to global gauge transformations, that is, changing the states in H* by
a constant phase:

[9'F) = e~ P |yE). (2.56)

Note that for 8, # B- the above global gauge transformations are different
in the two subspaces H* and H™, respectively. The SUSY relations (2.37)
remain invariant if we perform the rotation (2.53) with a rotation angle given
by @ = 8+ — S-.. Hence, the parameter a accounts for different global gauges
in the two subspaces H*.






3. The Witten Model

In this chapter we will study a particular supersymmetric quantum model introduced
by Witten in 1981 [Wit81]. Originally, this model has been designed to serve as
a simple example for studying the SUSY-breaking mechanism in quantum field
theories. However, in the last decade this model has found applications in many
other areas of theoretical physics. Some of these applications will be discussed in
this book.

3.1 Witten’s Model and Its Modification

The Witten model which is an N = 2 extended supersymmetric quantum
system is characterized be the two supercharges

o) :=\/i§(—\/%®02 +¢(z)®01), o
Q2:=\/L§(\/%®01+Q(z)®ag). .

Note that this definition of the supercharges slightly differs from Witten’s
original one (2.12) by replacing @1 = Q2 and Q2 — —@Q,. Actually, this
replacement corresponds to a rotation (2.53) with angle @ = 7/2. As modifi-
cation to Witten’s setup we also restrict the configuration space of the point
mass m to a one-dimensional subspace M C R. Here M either denotes the
Euclidean line R (Witten’s original model), the half line Rt := [0, 00) or a fi-
nite interval [a,b] C R Hence, the Hilbert space is given by H = L2(M)®C?.
Let us note that for the latter two cases the supercharges (3.1) are in general
symmetric but not self-adjoint. In addition one has to impose boundary condi-
tion for the wave functions at = = 0 and z = a, b, respectively [Ric78, ReSi80].
If not stated otherwise we will consider only the first case, that is, M = R.
However, the results derived below are also valid for the other cases if we do
not explicitly state the contrary. As before, we assume that the SUSY potential
is a continuous differentiable function on M, & : M — R.
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In analogy to Sect. 2.2 we may introduce the complex supercharge

o-(00) @=(58)

where now the annihilation and creation operators are explicitly given by

ip ip
A= + &(z), At =— + &(z). 33
Vam T2 Jam T 2E) (33)
The SUSY Hamiltonian reads
H, 0
— 34
H (OHJ, (3.4)
where the SUSY partner Hamiltonians are given by
2
Hy =2 4+ Vi(2) (3.5)
2m
with
h
V. = @%(z) + — ¥'(x). 3.6
:i:(z) (I) \/% ( ) ( )

Let us also mention that the commutator and anticommutator of the creation
and annihilation operators (3.3) can be related to particular parts of the
Hamiltonians Hy = Hiree = Hioop :

2

= P s = Legt
Hiree = o + &%(z) = 2{A , A},

h
Vv2m
The interpretation of the two parts Hiree and Hioop as “tree Hamiltonian” and

“loop correction” (due to Grassmannian degrees of freedom) will be explained
in Chap. 4.

(3.7)

1
Hioop i= —=2'(z) = 5[4',4].

3.2 Witten Parity and SUSY Transformation

It might be instructive to verify some of the general properties discussed in
Sect. 2.2 for the Witten model. First, let us consider the Witten parity defined
in (2.25). A simple computation shows that [Q:,Q2] = iHo3 and, hence, the
Witten parity is indeed given by W = o3. Following the general treatment, we
can grade the Hilbert space into eigenspaces of W. Obviously, the positive and
negative Witten-parity subspaces are H* = L?(M). Here we note that for
the case of M = R and M = [a, b] the two subspaces H* may have different
boundary conditions. In many cases the positive and negative subspaces are
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identical, but there exist exceptions. Examples of such exceptions are given
in (3.51) and (3.53) below.

Secondly, for completeness, we give the explicit form of the SUSY trans-
formation (2.37), respectively, (2.39). If |#£) denotes eigenstates of Hy. to the
same eigenvalue E, the SUSY transformation explicitly reads

A167) = (= + 8(0) ) 163) = VEIs),
. (3.8)
A163) = (- + ) ) 1eB) = VEIG).

In the coordinate representation ¢%(z) := (z|¢L) these relations take the form

]
(i Nt ¢(z)) ¢5(z) = VE ¢5(x). (3.9)

3.3 The SUSY Potential and Zero-Energy States

3.3.1 Ground State for Good SUSY

One of the important features of the Witten model is, that it allows for a rather
explicit discussion of its ground-state properties. That is, one can determine
from the shape of the SUSY potential whether SUSY is broken or not. In the
good-SUSY case it is even possible to give the ground-state wave function
explicitly.

For example, let us assume that SUSY is good (Ep = 0) and the corre-
sponding zero-energy eigenstate belongs to H~. That is, the ground state has
negative Witten parity. This state necessarily satisfies eq. (2.41) which reads
in the present model

L 0
—_— o =0. .1
(Sa=gs +2@) d51@) =0 3.10)
This first-order differential equation is easily integrated to
45 () =Cexp{-——vzm/dz¢(z)}, (3.11)
zo

where o € M is an arbitrary but fixed constant and C = ¢; (o) stands for
a normalization constant. Introducing the so-called superpotential

U(z) = @ /dz &(2) (3.12)
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the ground-state wave function reads
oy (z) = Cexp{-U(z)}. (3.13)

Similarly, the assumption that the ground state belongs to the positive sub-
space H* leads to

¢3 (z) = ¢ (z0) exp{+U(2)} o

1
= (z) (3.14)
If SUSY is good, that is, there exists a zero-energy eigenstate for the SUSY
Hamiltonian H, this state belongs either to H~ or H*. This is obvious, be-
cause if (3.13) is square integrable then (3.14) cannot be square integrable
(and vice versa). In any case, the eigenvalue Ey = 0 is not degenerate.

We also note that in case of good SUSY there is a close connection between
the SUSY potential, the superpotential and the ground-state wave function
[Goz83] expressed by the relations

¢ (@) g B (6@
) O T AR @

where the upper sign is valid if the ground state belongs to H* and the lower
one if it belongs to H ™, respectively.

U(r) = xIn

(3.15)

3.3.2 An Additional Symmetry

As the reader may have realized, the two SUSY partner Hamiltonians Hy
differ only by an overall sign in the SUSY potential. In other words, changing
the sign of ¢ simply replaces Hy by H_ and vice versa. Hence, the Witten

model is invariant under the simultaneous replacements
@—)5::—@, Hi—)ﬁi:=H;F,
~ I 3.16
Hof= 80 (3.16)
0 H_

The above transformation implies

Qo % (_% @02 o) ®01) (3.17)
Q“’Q?::%(%@al—m)@@) '

and hence the superalgebra remains invariant, that is,
{Q:,Q;} = Hsy;. (3.18)

However, we note that the transformation (3.17) of the supercharges cannot
be generated via a rotation (2.53). Therefore, this is an additional symmetry
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which occurs only in the Witten model and cannot be found for other N = 2
SUSY models in general. Within the Witten model this invariance can be
used to fix the overall sign of the SUSY potential by some convention. The
standard convention is to choose the overall sign of & such that for good
SUSY the unique ground state belongs to H~. That is, the ground state is
a negative state (bosonic vacuum). If SUSY is broken the overall sign for &
may be chosen arbitrarily. As a consequence of this convention we have the
following spectral properties of the partner Hamiltonians:

spec(H_)\{0} = spec(H) for good SUSY,
spec(H_) = spec(H,) for broken SUSY.

For broken SUSY F'_ and H; have identical spectrum, whereas for good
SUSY H_ and H, are only essential iso-spectral. If not explicitly mentioned
otherwise we will work within the convention (3.19) from now on.

(3.19)

3.3.3 Asymptotic Behavior of the SUSY Potential

All properties of the Witten model are exclusively determined by the SUSY
potential @, respectively its integral, the superpotential U. In this section we
will show how the asymptotic behavior of  and U, respectively, provide an
answer to the question whether SUSY is good or broken.

The requirement for a good SUSY is the existence of a normalizable zero-
energy wave function ¢, (z) (because of our convention). Thus we have to
impose the following condition on the superpotential U:

/dz exp{—2U(z)} < o0. (3.20)
M

In other words, the superpotential has to diverge fast enough for £ — +oo,
U(x) = +o0 for z— +oo. (3.21)
Note that we will discuss only the case M = R. The discussion for the other
cases M = R+ and M = [a,b] are similar.
Let us explore what could be meant by fast enough. For this, we make the
ansatz

U(z) ~ ax|z|®* for z— *oo. (3.22)

Clearly, for a+ > 0 and a+ > 0 the integral (3.20) exists. Hence, SUSY is
good for any superpotential which diverges algebraically to +oc0 as z — +oo.
The behavior (3.22) implies for the SUSY potential the asymptotic form

ot
P(z) = \/% U'(z) ~ ﬁ—g\/—j—;%i El;—— for - +oo. (3.23)
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0 1 2
x

Fig. 3.1. A typical example for good SUSY. Shown are the superpotential U(z) =
z*/4, the SUSY potential ¢(z), and the corresponding normalizable ground-state
wave function ¢y (z) = Ce™V™® in wnits k= m = C/4 = 1.

4 I ] I
-2 1 0 1 2
x

Fig. 3.2. An example for broken SUSY. Again the superpotential U(z) = z3/3, the
SUSY potential (), and the corresponding non-normalizable function ¢g (z) =
Ce V™ are shown (h=m=C/2=1).
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In particular, a sufficient condiiion for good SUSY is #(x) - oo asz — oo
(i.e. ax > 1). See Fig. 3.1 for the example U(z) = z*/4. On the contrary, a
SUSY potential which for z — +oo behaves, for example, like $(z) — +oo
necessarily leads to a broken SUSY. See Fig. 3.2 for the example U (z) = z3 /3.

However, even a logarithmic divergence of U at infinity can lead to a good
SUSY. Making the ansatz

U(z) ~ by In|z| for T — 00, (3.24)

the square integrability of ¢ (z) requires b+ > 1. For the SUSY potential
this leads to
hby 1
2@~ oz
which may be considered as a limiting case of (3.23) where ay — 0, ax — c©
such that by = azas > 1.

Let us mention that the conditions ax > 0 and by > % are a direct
consequence of our convention. If we want to have a positive-parity zero-
energy state these conditions change to a+ < 0 and by < —1. In Fig. 3.3 we
display the regimes of the parameters a1 and ay which give rise to broken
and good SUSY, respectively.

for - too, (3.25)

o+
Good SUSY
Broken SUSY . .
negative-parity
ground-state
e
Good SUSY
Broken SUSY positive-parity Fig. 3.3. Whether SUSY is broken
ground-state or not is determined by the asymp-
totic behavior of the superpotential.

3.4 Broken Versus Good SUSY

In the above discussion we have demonstrated that the breaking of SUSY is
completely determined by the asymptotic behavior of the SUSY potential $.
In fact, more generally, the existence of a zero-energy state is obtainable from
the quantities

by = zglilwé(z) € [~o00, +0]. (3.26)
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Defining the sign function

+1 for 0<z<+®
e = 3.27
sgn(z) : {——1 for 0>z2>—-0 (3.27)
it is obvious that for #1 # 0! we have the equivalence relations
sgn(®;) = sgn(P_) <= SUSY is broken, (3.28)

sgn(®4) = —sgn($_) <= SUSY is good.

The asymptotic values $4 also allow for an explicit representation of the
Witten index:

A= L[sgn(84) - sgn(e-)]. (2.29)

This result shows that the Witten index does not depend on the details of the
SUSY potential é. As long as the asymptotic behavior of ¢ does not change
the sign, that is, ¢+ do not change sign, the Witten index is invariant under
deformations of the SUSY potential. This is an example of the “topological
invariance” of A mentioned in Sect. 2.2.4.

It should be noted that in the case where one or both of the values ¢
vanish the above criterion (3.28) does not apply. Here more information about
the asymptotic behavior of & is necessary. See, for example, the discussion of
(3.25).

The asymptotic values ¢4 allow also for a discussion of the excited energy
eigenvalues of H. For example, if both |, | and |$_. | are equal to +oo then the
two SUSY partner Hamiltonians H and H_ have a purely discrete spectrum.
On the contrary, if one or both of |[#4| are finite (including zero) then the
SUSY partner Hamiltonians have, in addition to a possible discrete spectrum,
identical continuous spectra starting at e. := min($3, $2). In particular, for
€. = 0 both Hamiltonians Hy have a continuous spectrum given by the half
line R*. In addition, if SUSY is good, one of them also has a bound state
with eigenvalue Ep = ¢, = 0.

There exist also other criteria for good and broken SUSY, which of course
are equivalent to the above. For example, it has already been noted by Witten
[Wit81], that for a continuous differentiable SUSY potential with |$4| > 0
SUSY will be broken if ¢ has an even number of zeros (counted with their
multiplicity). On the other hand, SUSY will be good if ¢ has an odd number of
zeros. In particular, if & is a polynomial of degree p, this number determines
whether SUSY is broken (p even) or not (p odd) [JaLeLe87).

Another interesting criterion for broken and good SUSY can be found if
the SUSY potential ¢ has a definite space parity [InJu93a]. That is, it is an
eigenfunction of the space-parity operator II,

! This corresponds to s > 1 if & has an asymptotic behavior as in (3.23).
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II®(z) := &(—z) = £8(x), (3.30)

which should not be confused with the Witten-parity operator. Obviously, the
operator II commutes with the tree Hamiltonian Hiyee defined in (3.7)

[H; Htree] =0. (331)

Now, if ¢ has even parity, which implies a broken SUSY, then the loop
correction Hjoop, which is proportional to the derivative of #, has odd parity
and, hence, anticommutes with II,

[1,8]=0 =  {II,Hoep} = 0. (3.32)

As a consequence, both Hamiltonians Hy = Hyee = Hipop do not have a
well-defined parity. For an even & parity as well as SUSY are broken.
If, however, & has odd parity then

(0,6} =0 =  [II,Hpop)=0 =  [II,Hi]=0 (3.33)

and parity as well as SUSY are good symmetries.

3.5 Examples

3.5.1 Systems on the Euclidean Line

As a first class of examples for the Witten model we consider the SUSY
quantum mechanics of a cartesian degree of freedom on the Euclidean line
M = R The corresponding Hilbert subspaces H* := L?(R) are identical.

Ezample 1. Supersymmetric anharmonic oscillator:
This system is characterized by the SUSY potential

&(z) := ;;_msgn(z)|z|"—l, a>1, a> 0, (3.34)

which is an odd function of its argument. Hence, by the reasoning of the
previous section we expect SUSY to be good. It may easily be verified that
the partner potentials are given by

Vi(z) = % [@®z[**7? £ a(a - 1)[z|*7?] = Vi(~2) (3.35)

and the ground-state wave function reads
- _ _ g a
5 (z) = C exp { Zfe] } . (3.36)

In Fig. 3.4 we plot for various values of the parameter a the potential V_
and V. Note that & = 2 is the special case of the supersymmetric harmonic
oscillator and that for large a the potential V_ acquires narrow and deep dips
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52
2m

Vi(z)/

Fig. 3.4. The two partner potentials V_ and Vj for the good SUSY potential (3.34)
for a = 1. Displayed are the potentials for o = 2 ( ya=3(--),a=5(----)
and a=10(----- )-

near z = 1. In fact, in the limit @ — oo these dips become singular and lead
to stationary wave functions with vanishing slope at £ = +1. In other words,
they simulate Neumann boundary conditions, ¢'(+1) = 0. For the partner
potential V; the limit @ — oo produces Dirichlet conditions at x = +1, that
is, ¢(£1) = 0.
Ezample 2. Anharmonic oscillator with broken SUSY:
Dropping the sign function in (3.34) we obtain the SUSY potential

ah

Va2m

which now is an even function giving rise to a broken SUSY. The correspond-
ing partner potentials read

&(z) = ||t a>0, a>1, (3.37)

2
Vi(z) = :—m [[22%~ + a(a — sgn(@)e|*~?]. (3.38)

Note that Vi(—z) = V¢(z) and, hence, it is not surprising that the two
partner Hamiltonians have identical spectrum as expected from broken SUSY.
We have plotted V_ in Fig. 3.5 for the same parameters as in the previous
example. Note that besides SUSY also parity is broken. Here in the limit
a — oo the potential V_ simulates at z = —1 a Dirichlet condition and at
z = +1 a Neumann condition (and vice versa for V).

Example 8. The free particle and its SUSY partner:
As a third example we consider the SUSY potential

&(z) =

h
tanh(z), 3.39
Vam ) (3:39)
which gives rise to the two partner potentials
K2 K? 2
Vi@ =o—  Vo(2) = o [1 —-—] . (3.40)

2m cosh?z
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4
L& 0
~
&
Sl -
8 1 i ¥ Fig. 3.5. The same as Fig. 3.4 but for
-2 1 0 1 9  the broken-SUSY potential (3.37). Here

z only V_ is plotted as Vi (z) = V_(-z).

Again SUSY is good as $; = —_ (cf. eq. (3.28)). The potential V, is
constant and hence characterizes a free particle. There are no bound states
for H, and therefore, because of good SUSY, H_ has a single bound state
with zero energy. The corresponding wave function reads

b5 (@) = —2

cosh(z) "
The potential V_ is an example of the so-called symmetric Rosen-Morse po-
tentials. The Schrédinger equation for this type of potentials is studied, for
example, in connection with soliton solutions of the Korteweg-de Vries equa-
tion [Tha92] or relaxation processes in Fermi liquids [VoVoTo85]. It is easily
shown that the potential V_ is reflectionless due to the reflectionlessness of
its SUSY partner V,, the constant potential [CoKhSu95]. In Fig. 3.6 we have
plotted both potentials.

(3.41)

Example 4. Attractive and repulsive §-potential:
As a last example on the Euclidean line we mention the attractive and repul-
sive 4-potential. For this we consider the SUSY potential of the form

&(x) = - O(-1)], a>0. (3.42)

ah
Wor [O(z)
Note that this SUSY potential is not continuously differentiable, an assump-
tion we have made so far for all SUSY potentials. Nevertheless, interpret-
ing the derivative of the unit-step function in a distributional sense, that is,
©'(z) = 6(z), we arrive at

Va(z) = :—; [a® + 2a6(2)] , #g (z) = Cexp{—al|z|}. (3.43)

The attractive and repulsive é-potential are SUSY partners. Note that SUSY
is good as the bound state associated with V_ has zero energy. This model
can also be considered as the limiting case a = 1 of our first example.
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4 -2 0 9 4 Fig. 3.6. The free particle on the real
z line (—) and its SUSY partner (- — -).

3.5.2 Systems on the Half Line

The second class of examples, which we are going to mention, has as config-
uration space the positive half line M = R*, that is, z > 0. Here the partner
Hamiltonians H* are formal differential operators and require a careful spec-
ification of their domains #*, which in fact depend on the explicit form of
the potentials V. In the following we will consider the Hilbert space with
Dirichlet boundary condition at z =0,

HE = {¢ € LA(R") : ¢(0) = 0}, (3.44)

and only those potentials Vi for which Hy will be self-adjoint on HE, We
note that on H* the momentum operator p is symmetric but not self-adjoint
[Ric78). Hence, the supercharges @, and Q; are also symmetric but in general
not self-adjoint. However, p'p is still self-adjoint on #* and therefore, also
H, may be well-defined partner Hamiltonians if the SUSY potential & is
chosen appropriately. For example, a singular SUSY potential which behaves
like $(z) ~ —n/z near z = 0 requires a careful discussion [JeRo84, Fuc86,
ShSm Va88] showing that not all ) € R are admissible if the Dirichlet condition
in (3.44) would have been omitted. If not such care is taken, then one may find
negative energy eigenstates or unpaired positive-energy eigenvalues for H4
[Cas91, PaSu93] which are a direct consequence of the non-selfadjointness of
the supercharges.

Below, for each example, we simply list the SUSY potential, the partner
potentials, the ground-state wave function, and then make some comments.
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Ezample 1. Radial harmonic oscillator:

@(z)_\/— z—ﬁ; w >0,
Vi(z) = %szzz + M - hw (17 + l) , (3.45)

¢g () = Cz" exp {—% zz}

Obviously, for n > 0 SUSY is good. In particular, if weset n=101+1,1 € Ny,
the two potentials Vi are identical to those of the radial harmonic oscillator
for fixed angular momentum [ and [ + 1, respectively. On the other hand,
for n < 0 we have a broken SUSY. Despite the fact, that n € (-1/2,0]
does lead to a square integrable ground-state wave function, it does not obey
the boundary condition ¢g (0) = 0. Because of this boundary condition the
partner Hamiltonian associated with the above potentials V. are indeed self-
adjoint. In fact, we have chosen a particular self-adjoint extension of the
formal operators Hy by (3.44). This is true for any n € R because n(n +£1) >
—1/4 [ReSi75). In the broken case n < 0 we point out that for n = - we again
recover (up to some constant) the same two radial harmonic oscillators with
fixed angular momentum ! and [ — 1. Hence, the radial harmonic oscillator is
a supersymmetric quantum system with good or broken SUSY, depending on
the choice of the parameter 7).

Ezample 2. The modified Poschl-Teller problem:
&(z) := \/% [stanhz — 7 cothz], k>0,

nn+l) sle£l)

ﬁ2
Vi(z) = — -n)?, 3.46
+() 2m [ sinh? z cosh? ¢ Tr-m) ( )
_ _ . sinh*z
b (@) =C cosh” z

The above potentials Vi are called modified Péschl-Teller potentials. Here
SUSY is good if 0 < n < k. As in the above example the partner potentials
are up to an additive constant invariant under the replacement  — —n. What
does change is the nature of SUSY, that is, good SUSY becomes broken and
vice versa.
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Ezample 3. Radial hydrogen atom:

2m a h 7
= —_—— e — ,n >0,
&(z) ”5277 o a,n>0

a  Ranxl)  ma? 3.47
Vi(z) = Tz + 2max? n2h2’ ( :

¢ () = Cx"exp {——72%; z} .

Note that because of our convention (3.19) we have to impose the condition
n > 0. For n = | + 1 we recognize the radial hydrogen problem. Super-
symmetric aspects of the one-dimensional hydrogen atom are discussed in
[SiTePoLu90).2

3.5.3 Systems on a Finite Interval

As alast class of examples for the generalized Witten model we consider those
which are defined on a finite interval z € M = [a, b]. Here, in contrast to the
previous class, the momentum operator and hence the supercharges can be
made self-adjoint if appropriate boundary conditions are specified at z = a
and b.

Ezxample 1. Infinite square well and its SUSY partner:
The first example we mention is the infinite square well of width = chosen for
convenience symmetric about the origin:

8(z) = —— tanz, @ €[-n/2,7/2),

V2m
2 2
Va(e) = 2 (~—2— - 1) . Vo(z) = _:_m, (3.48)

2m \ cos?zx
¢5 (z) = C cosz,

with domain H* := {¢ € L*([-7/2,7/2]) : ¢(—7/2) = 0 = ¢(n/2)}. Hence,
the SUSY partner for the particle in a box is given by the symmetric Pdschl-
Teller potential V. SUSY in this case is a good symmetry. Note that the
square well V_ is shifted such that Ey = 0.

% There has been a long-lasting discussion about the spectral properties of the one-
dimensional hydrogen atom in the literature. For a clarification see [FiLeMii95].
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Ezxzample 2. The non-symmetric Péschl-Teller oscillator:

¥e) = oo (wtanz-neota),  £>0, ze /2]
Vilo) = oo [SEED) 102D oy el (3.49)

2m | cos?’z sin® z
¢ (z) = C cos® zsin" z,
with domain H* := {¢ € L?([0,7/2]) : #(0) = 0 = ¢(r/2)}. Obviously, the

non-symmetric Poschl-Teller oscillators with parameter set (x,7) and (x —
1,7 — 1) are SUSY partners. SUSY is good for > 0 and broken for n < 0.

Ezample 3. The supersymmetric square well:
Here we assume a vanishing SUSY potential in the configuration space M :=
[-1,1] and consequently also the partner potentials vanish on M

&(z) := 0, Vi(z) = 0. (3.50)
The SUSY structure is introduced via the boundary conditions at z = *1:
HY = {p € L*([-1,1]) : ¢(-1) =0= (1)},
H™ = (¢ € L3([-1,1) : ¢'(~1) =0 = ¢'(1)}.
That is, for H, = p*/2m we choose Dirichlet conditions at x = £1. Whereas,

(3.51)

for H_ = p?/2m we take Neumann conditions at those points. These imply
a good SUSY as the ground-state wave function is constant,
5 (2) =1/v2. (3.52)

This example can be considered as the limiting case a — oo of (3.34), the
supersymmetric anharmonic oscillator.

Ezxample 4. Square well with broken SUSY:

As in the previous example we assume a vanishing SUSY potential on
M = [—1,1]. However, the breaking of SUSY is introduced via non-symmetric
boundary conditions at z = +1:

Ht = {p € L*([-1,1]) : ¢'(-1) =0 =¢(1)},

H- = (¢ € L3([-L1) : ¢(~1) =0 = ¢'(1)}.
That is, for H, = p?/2m we take a Neumann condition at £ = —1 and a
Dirichlet condition at £ = 1, and vice versa for H... Clearly, parity as well as

SUSY are broken. This example may be understood as the @ — oo limit of
(3.37).

(3.53)






4. Supersymmetric Classical Mechanics

In the present chapter we consider the classical version of the supersymmetric Witten
model. Actually, these kinds of supersymmetric classical systems can be considered
as special cases of so-called pseudoclassical models. The notion of pseudoclassi-
cal mechanics has been introduced in 1976 by Casalbuoni [Cas76b] and describes
classical systems which in addition to their usual bosonic (commuting) also have
fermionic (anticommuting) degrees of freedom. In fact, pseudoclassical systems can
be understood as the classical limit of quantum systems which have both kinds
of degree of freedom [Cas76b]. Pseudoclassical mechanics is of particular inter-
est because of its ability to describe spin-degrees of freedom on a classical level
[BeMa75, Cas76a, BaCaLu76, BrDeZuVeHo76, BeMa77, BaBoCa81, LaDoGu93].
For an alternative classical spin model see [BaZa84, Bar86).

4.1 Pseudoclassical Models

The construction of pseudoclassical models has systematically been discussed
by Casalbuoni [Cas76c]. Here we will study the properties of the simplest non-
trivial example which allows for an interaction between bosonic and fermionic
degrees of freedom. It is characterized by the pseudoclassical Lagrangian
(m=1):

Lo = 33 = Vi(2) + § (%9 — ) — Va(a)Py. 41
In the above z denotes a bosonic degree of freedom and ¢ and ¢ denote
independent fermionic degrees of freedom. The potentials Vi and V; are dif-
ferentiable functions of z.

Let us first discuss the nature of the bosonic and fermionic degrees of
freedom. They are not represented by ordinary c-numbers but by even and
odd elements of a Grassmann algebra. In the present case this algebra may be

constructed via two generators denoted by 1o and 1), which obey the following
relations?

1 For details about Grassmann numbers and Grassmann algebras see, for example,
[Ber66, DeWit92, Cor89, CoGr94].



38 4. Supersymmetric Classical Mechanics

The overbar denotes the adjoint Grassmann number. For an arbitrary element
of the Grassmann algebra

B := a1 + a2t + a3ty + asPoto, a; € C, (4.3)
its adjoint is defined as
B = a} + a3t + ajiho + afdoto. (44)

Here, the mapping ¢ - ¢ is linear and involutive [Ber66]. Even elements of
this algebra are those which commute with all Grassmann numbers of the
form (4.3). The bosonic degree of freedom z is, therefore, expected to be of
the form

T =z + 290, (4.5)

where z1,z; € R which assures the reality of the bosonic variable £ = z. As z
is a real and even Grassmann number, as given in (4.5), so are the potentials
Vi:

Vi(z) = Vi(z)) + V{ (z1)z290v0, i=1,2. (4.6)

On the other hand, the fermionic degrees of freedom are odd elements of
the Grassmann algebra

¥ = atpp + by, P =a*o +b* o (4.7)
with a,b € C.

4.2 A Supersymmetric Classical Model

Now we will specialize the above Lagrangian (4.1) by setting

Vi(z) = %@2 (z), Va(z) := &' (), (4.8)
where, as in the sense above,
@(z) = @(zl) + Q’(Il)zzlzolﬁo. (49)

It will be shown later that ¢ is up to a constant factor V2 identical to the
SUSY potential in Witten’s model.

The special class of systems we are now dealing with is characterized by
a Lagrangian of the form

Li=1d? ~ 182(2) + § (¥ — P9 - & (2)Pp. (4.10)

This Lagrangian characterizes pseudoclassical systems being supersymmetric.
Indeed, this model can be derived via a supersymmetrization of a (0 + 1)-
dimensional field theory. By supersymmetrization we mean the extension of
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the (0 + 1)-dimensional space spanned by the time variable ¢ to a superspace?
spanned by (t,6,8) where 6 and  are odd Grassmann variables. The general
procedure has been outlined by Nicolai [Nic76] and is basically a special case
of the supersymmetrization of (3 + 1)-dimensional field theories [WeZu74a,
WeZu74b]. For a detailed discussion based on the work of Nicolai [Nic76]
see, for example, [CoFr83] or Sect. 2 in [Mis91]. In essence, one first arrives
at a Lagrangian density £ over the superspace (t,6,8) being invariant under
SUSY transformations, which consist basically of translations generated by
0/0t, 8/00 and /8. The “effective” Lagrangian (4.10) is then obtained via
integration, L = | d6dd £, and characterizes a system being invariant under
the following SUSY transformation of the fields [Nic76]:

Tz + bz, 8z = & + e,
PP+ 8, 5 .= —(iz + &(x))e, (4.11)
PP+ 69, 8¢ := (iz — ¥(x))E,

where ¢ and € denote “infinitesimal” versions of the Grassmann variables
and 6. The invariance of such systems under the above SUSY transformation

becomes obvious by noting that (4.11) implies
L L+68L, L= % EdZ [(@ - i)y + (& +i®)ve] , (4.12)

which gives rise to a Lagrangian L +4L being gauge-equivalent to the original
Lagrangian L. In other words, L + 6L and L characterize the same pseudo-
classical system. )

4.3 The Classical Dynamics

Despite the fact that these pseudoclassical and supersymmetric classical
models are known for almost 20 years, it has only recently been observed
[JuMa94, JuMa95] that the solution of the corresponding classical equations
of motion can be derived in a rather explicit form and have some interesting
properties.

Let us start with the equations of motion derived from (4.10):

$=—id' (@), P =i¥ (=), (4.13)
= —&(z)¥ (z) — 9" (z)1). (4.14)

2 The superspace formulation has been introduced by Salam and Strathdee
[SaSt74]. For the properties of superspaces see, for example, [DeWit92, Cor89,
CoGr94).



40 4. Su 'mmetric Classical Mechanics

The first-order differential equations for the fermionic degrees of fre_edom can
immediately be integrated. With initial conditions 1o := ¥(0) and v := ¢(0)
integration of (4.13) gives

t
P(t) = Yoexp {—i dr 4"(z(7))} ;
/
() = Yo exp {i dr 4"(z(7))} ;
/

where z denotes the (yet unknown) solution of (4.14). Let us note that the
solutions (4.15) imply that )(t)1(t) = yoto is a constant and, therefore, eq.
(4.14) simplifies to

£ = —&(z)?'(z) — 3" (z)hoto. (4.16)

As the SUSY potential & is assumed to be of the form (4.9), the bosonic
degree of freedom z is necessarily of the form (4.5):

z(t) = Zqe(t) + a(t)botbo, (4.17)
where z4c and ¢ are real-valued functions of time. We will call 24 the quasi-
classical solution in order to differentiate it from the full pseudoclassical so-
lution z which contains the 1gtp~term and in general is an even-Grassmann-
valued function of time. It is also worth mentioning that in (4.15) one may
replace z(7) by z4(7) because of (4.17) and (4.2). Hence, we have

»(t) = Poexp {~2iplzqcl},  P(t) = Yo exp {2iplzqc]}, (4.18)

where we have introduced the fermionic phase

(4.15)

t
plr) =1 /d'rQ' (z('r)), (4.19)
0

a functional which we will revisit in our quasi-classical approximation to the
quantum propagator for the Witten model.

Now we study the solution for the bosonic degree of freedom. Multiplica-
tion of (4.16) with £ and integration leads to the conservation of the energy

£ = 3% + 1% (z) + &' (2)ovo, (4.20)

which is a constant even Grassmann number. The ansatz (4.17) together with
E=:E+ Fipyo (E >0 and F € R are constants) results in

Ege = 2B ~ 8*(zqc), (4.21)

¢= % (F - Ql(zqc) — B(Zqc)®' (Tac)q] - (4.22)

Tqc
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The last equation, which determines g(2) if Z,c # 0, can also be integrated
and yields [JuMa94]

Zqe(t)

o = ) F — & (sqe(1))

= 8%(zqc(1))’

where ¢(0) is a constant of integration. Again we find, as for the fermionic
degrees of freedom, that ¢(t) is expressible in terms of the quasi-classical
solution z,c(t) determined by (4.21). Let us note that the singularity of the
integral in (4.23) near the turning points of the quasi-classical path is pre-
cisely canceled by its prefactor as #,c(t) vanishes at those points. Hence, ¢(t)
remains finite for all ¢ > 0. Let us also note that even for the initial condi-
tion ¢(0) = 0 we have in general ¢(t) # 0 for ¢ > 0. In other words, even
assuming the pseudoclassical solution initially to be real, z(0) € R, it will in
general become a Grassmann-valued quantity. It is only in the special case
&'(z) = F = const., that is, for a linear SUSY potential &, where a real z(0)
remains to be real for ever.

Let us now discuss some properties of the quasi-classical solution zc(t).
The equation of motion (4.21) for the quasi-classical path can be obtained
from a “quasi-classical” Lagrangian defined by

q(0) + Zqc(t) / dr (4.23)

Loc = 1d? — 18%(z) = (zi@(z)) ¥ i6(2) . (4.24)

Here z will denote the usual real-valued degree of freedom. The second equal-
ity above shows that this Lagrangian is gauge-equivalent to

I = 1(:+i(x))*. (4.25)

As an aside we note that the above complex gauge transformations Lqc — Zflhc
become real by using Euclidean instead of real time.
The canonical momenta obtained from the two Lagrangians Lf]hc are
+ 6 Lt
. ac
Sl Frele =z +id(z) = (¢ ) (4.26)
and, surprisingly, coincide with the generators of the SUSY transformation
(4.11) of the fermionic degrees of freedom:

& = ~it"g, &y =itte. (4.27)

In fact, with these canoncial momenta one can construct classical super-
charges [Nic91]

Q= \/lis-&, g= —% £+, (4.28)
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It is easily verified with the help of (4.13) and (4.14) that these supercharges
are constants of motion. Indeed, from (4.25) we derive the equations of motion

£ = Fid' (zqc) ¢, (4.29)

which are identical in form with those for the fermionic degrees of freedom.
Obviously, the solutions read

¢ (t) = £5(0) exp{F2ip[zqc]} (4.30)

and explicate the conservation of the supercharges (4.28). It is also obvious
that the conserved energy E of the quasi-classical solution can be expressed
in terms of these canonical momenta, E = %§+§ ~. As a consequence we have
the relation

¢/VIE = (67/V2E) (4.31)

valid for E > 0.

For E = 0 the quasi-classical solutions are given by zqc(t) = zx, where z;
are the zeros of the potential ¢, #(xx) = 0. These are precisely the classical
ground states for good SUSY. SUSY will be broken on the classical level if
the SUSY potential $ does not have zeros, because then E > 1&2(z) > 0 for
all z € R. See also Fig. 4.2 below. Note that the solution (4.23) for ¢ may not
be used in this case. Actually, because of £,c = $(zx) = 0 the equation of
motion corresponding to (4.22) reads

F = &' (z4c) = 9 (k). ) (4.32)

As a consequence, the solutions of the fermionic degrees of freedom are given
by

P(t) =oe™F,  (t) = goeF. (4.33)

There is no equation of motion for ¢ and hence it remains undetermined. This
indicates that ¢ can’t be a physical degree of freedom.

Finally, let us make two remarks. First we note, that the above procedure
for solving the dynamics of the supersymmetric classical system (4.10) can
also be used to derive [JuMa95] solutions for the more general pseudoclassical
system (4.1).

In a second remark we point out that the gauge transformations Ly — Zflhc
are the classical analogues of the so-called Nicolai map [Nic80a, Nic80b]. This
map characterizes a transformation of bosonic fields of a SUSY quantum field
theory. It has the interesting property that the full bosonic action is mapped
into a free action of boson fields. Note that the quasi-classical Lagrangians
E;tc are quadratic in their canonical momenta, £%. For an extensive review on
the Nicolai map see Ezawa and Klauder [EzK185] and Sect. 7.3.
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Let us now discuss in detail the fermionic phase defined in (4.19). This
discussion will be presented in a separate section because of its fundamental
role played in the quasi-classical approximation considered in Sect. 6.1.2.

4.4 Discussion of the Fermionic Phase

According to its definition (4.19) the fermionic phase in (4.18) is a functional
of the quasi-classical path. For simplicity let us assume that the quasi-classical
solution starts with positive velocity £,.(0) > 0 and t is sufficiently small such
that £4.(7) > 0 for all 7 < t. In this case the fermionic phase can easily be
calculated using the equation of motion (4.21):

Zge(t)
1 ¢,(z) 1 " 7

Tael = = T ————e—— = — [a(z") — a(z 4.34

Plracl = 3 S = 3@ ate) (434
Zqc(0)

where, for convenience, we have introduced the abbreviations
a(z) := arcsin ,
(2) := arcsin¥& € [-2,7] (435)

z' 1= z40(2), T = zqc(O).

If we further assume that we initially start at a zero of the SUSY potential,
that is, #(z') = 0, the fermionic solution 1) takes the simple form

P(t) =g exp{—iarcsin%%}

o [(&;)/%

\/— [£qc(t) — 1®(2qc(D))] -

(4.36)

Hence, the fermionic degrees of freedom are expressible in terms of the canon-
ical momenta ¢* of the quasi-classical Lagrangians L, as expected from
relation (4.30):

L e < Y0 0
Y(t) = m& (o = o £H(0)E™ (1), s

BO) = = 0 = 326 O )

These are the finite versions of the infinitesimal SUSY transformation (4.27).
Note that because of the assumption ¢#(z') = 0 we have £+(0) = £-(0) and
therefore ¢+(0) = 1/v2E.
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Fig. 4.1. A typical shape of the po-
tential +&>. The quasi-classical mo-
tion for a given energy F starts at
Zqc(0) = ' and reaches at time ¢ the
position zq(t) = z". During its mo-
tion the left and right turning points
T g ' TR zy and rr may be visited several
z times.

?*(z)

1
2

Let us now consider a more general quasi-classical solution which also
passes turning points. These are points where &4 vanishes. The only assump-
tion we make is that ¢ has one global minimum and diverges for £ — +oo0.
See Fig. 4.1 for a typical shape of %Qz. In other words, we assume the quasi-
classical solution to be a bounded periodic motion about this minimum. For
the SUSY potential this assumption implies that it has at most one zero which,
however, may have a multiplicity larger than one. Typical SUSY potentials
with good and broken SUSY at the classical as well as quantum level [Wit81]
are shown in Fig. 4.2.

Being a one-dimensional system we can rather explicitly discuss the possi-
ble quasi-classical paths for a given energy E > 0. It is convenient [Schu81] to
consider the following four classes. Without loss of generality, we may assume
z'" > z', see Fig. 4.1.

(1) Paths which leave z' to the right and reach ' from the left:
Zqc(0) > 0, £4c(t) > 0.

(2) Paths which leave z' to the left and reach ="' from the left:
4c(0) < 0, Zgc(t) > 0.

(3) Paths which leave ' to the right and reach z" from the right:
Gqe(0) > 0, Fqc(t) < 0.

(4) Paths which leave z' to the left and reach z" from the right:
tqe(0) < 0, Eqe(t) < 0.

Within each class the paths are uniquely characterized by their number of
complete cycles they perform before arriving at z" at time t. Each of these
full cycles contributes a term a(zr) — a(zy) to the fermionic phase, where
zg and xy, are the quasi-classical right and left turning points of the periodic
motion with energy E:

®%(2r) = 2F = &*(z1). (4.38)
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&(z)
&(z)

b)

Fig. 4.2a-c. The three qualitative different
shapes for the SUSY potential. In case (a)

5 SUSY will be good on the classical as well
as on the quantum level. Case (b) displays

: a situation where SUSY is good on the clas-

c) : sical level but will be broken due to quantum

0 i fluctuations. The last case (c) shows a SUSY

potential where SUSY is already broken ex-
z plicitly on the classical level.

Thus for a quasi-classical path belonging to class (i), ¢ = 1,2,3,4, and con-
taining k € Ny complete cycles we obtain [InJu93a, InJu94]

Oleqc) = 0 = 0§ + k[a(zr) — a(zL)], (4.39)
where
o) = La(z") - a{z)],

o) = Lla(z") + a(z")] - a(av),

o) == a(zn) — } [a(z") + a(a")],

08! = a(zr) — a(zL) —  [a(z") — a(z")].
The explicit values for a(zgr) and a(zy) depend on the shape of the SUSY
potential ¢. The turning-point condition (4.38) has the two possible solutions

a) &(zp) = —P(zL) = £V2E:
This situation only occurs when SUSY is good on the classical as well as
on the quantum level (cf. Fig. 4.2a). We have a(zr) = —a(zL) = £5 and
thus

(p;:) = (p(()i) + kn. (441)

(4.40)
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b) &(zr) = H(zL) = £V2E:
This is the situation where SUSY is broken on the quantum level. Note
that classically SUSY may still be good (cf. Fig. 4.2b and c). Here we find
a(zr) = a(zy) = £F and consequently

ol = o). (4.42)

Note that because of the factor two in the exponent of (4.18) the classical
fermionic solutions do not require a separate discussion for these two cases.
Even more interestingly, they are identical within each class of paths. Denoting
with (9 (t) the solution for the class (i) we have

YD) = poexp(~i(alz") ~a(e")}
P (t) = —oexp{—i(a(z") + a(z')} Yo

== ¢H0)e (¢ 4.43
PO (t) = —ypexp{i(a(z") + a(z')} 2E 0 ® (443)

P9 (t) = oexp{i(a(z") - a(z")}

and similar expressions for (i) (t). See also eq. (4.37).

Here we emphasize that the fermionic phase, in contrast to the fermionic
solutions, distinguishes between the cases of good and broken SUSY on the
quantum level. Although being a purely classical quantity, the fermionic ohase
along the quasi-classical path provides some information about the nature of
the SUSY of the corresponding quantum system. To be more precise, because
of our assumption that $$? forms a single-well potential (cf. Fig. 4.1) the
Witten index may be put into the following form [JuMaIn95]

A = Xa(zr) — a(zL)). (4.44)

Hence, the fermionic phase accumulates with each complete cycle of the quasi-
classical motion an additiona! phase An:

o = o + kAx. (4.45)

This obviously coincides in the case of good SUSY (A = *1) with (4.41) and
for broken SUSY (A = 0) with (4.42).

4.5 Quantization

So far the discussion of this chapter has been devoted to the classical dynamics
of supersymmetric systems. Now we want to demonstrate that the quantized
version of the model characterized by the Lagrangian (4.10) is identical to the
Witten model. There are at least two different approaches for the quantization
of a classical dynamical system. These are the standard canonical quantization
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procedure and the path-integral approach of Feynman [Fey48]. We will sketch
both approaches for illustrative purposes. More detailed discussions can be
found in [GiPa77b, CoFr83, Nic91, Mat95).

4.5.1 Canonical Approach

Let us begin with the canonical quantization. For this, one first has to derive
from Lagrangian (4.10) the corresponding classical Hamiltonian. For this we
need the canonical momenta

oL _oL i __oL i
pi= oo =4, = 3¢_ w, 7= aw— ¢ (4.46)

Here we observe that the fermionic momenta 7 and 7 are proportional to
the fermionic degrecs of freedom. As a consequence, we have the second-class
constraints

X1 ::7r+%1ﬁ=0, X2:=7"r+%¢=0. (4.47)

This is a typical feature of all pseudoclassical systems [Cas76c]. Obviously,
the phase space is six-dimensional. However, the dynamics takes place in
a four-dimensional submanifold defined by (4.47). In order to respect these
constraints we have to introduce two odd (Grassmann-valued) Lagrange mul-
tipliers A;, A2 and arrive at the so-called total Hamiltonian [Dir64, HeTe92)

2 - .
Hr = % + 2 ;z) + &' (z)g + (7r + %¢> AL+ (7? + %zp) do.  (4.48)
The corresponding equations of motion read®
OH . OH o OH
= '—_I’ ¢ = __Ia ¢ = ""—_‘I’
op on o (4.49)

__3HT ‘,,r_—aHT P _3HT )

p= az 3 - 6¢ ’ - 615 ’

which are equivalent to the Euler-Lagrange equations derived from L. In
fact, using the consistency conditions x; = 0 = ¥» [Dir64, HeTe92], which
guarantee that the constraints (4.47) are respected during the time evolution,
one finds for the Lagrange multipliers A, = i®'4, Ay = A = —id'+). Inserting
this result in Ht we obtain

Hr = }p? + [ 8% (z) + i¥' (z)(P7 — ¢m). (4.50)

In this representation the total Hamiltonian obviously gives rise to the cor-
rect equations of motion (4.13-4.14). Here let us note that often the classical
Hamiltonian

3 Note the extra minus sign for the odd Grassmann variables.
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H:=1p*+1%z)+ &' (z)y (4.51)

is considered, which however, does not lead to the correct equations of motion.
Actually, in Dirac’s notion Ht and H are weakly equal® Such weak equalities
are denoted by the sign =, that is,

H =~ Hr. (4.52)

However, H and Hrt lead to different flows in phase space. It is Ht which
generates the correct phase-space flow staying on the submanifold of the phase
space defined by the constraints (4.47). Because of these constraints the time
evolution of an arbitrary phase-space function is determined by the Dirac
bracket instead of the usual Poisson bracket:

dF

Tl {F, Hr}pp, (4.53)
where in the present case the Dirac bracket explicitly reads [Mat95]
OF 0G OF 0G
{F,G}pp = 6_:1:6_;» - a—pa
1[0F0G OFO0G OFOG IJFIG
_1\degF - | ¥4 Y™ vr v - -
(DT [a¢ or Tonoyp Y ogor T on a¢] (4:54)

+(_1)degpi[a_FaG OF 0G 19F G 1aFaG]

900 000 4oror 407 on
with deg F = 0 (1) if F is an even (odd) Grassmann-valued phase-space
function. Note that the Dirac bracket has the following symmetry property:

{G,F}pp for degG =1=degF

{F,G}pe = {—{G’,F}DB olse (4.55)

Explicitly we have the following relations
{Iap}DB =1, {¢1W}DB = _% = {iaﬁ}DBa
{¢, &}DB = _ia {Waﬁ}DB = %1
and all other Dirac brackets for the bosonic and fermionic variables vanish.
Quantization of the system characterized by (4.48) can be achieved® by
replacing the Grassmann variables by the corresponding operators (for which

we will use the same symbol). Simultaneously, the symmetric Dirac brackets
are replaced by the (symmetric) anticommutator divided by (ik). Whereas,

(4.56)

* Two phase-space functions F' and G are called weakly equal, F =~ G, if they are
identical on the submanifold of the phase space which is defined by the constraints.
See ref. [Dir64] p. 12.

5 See, for example, ref. [HeTe92].
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the antisymmetric Dirac brackets are replaced by the (antisymmetric) com-
mutator also divided by (ik). Hence, the operators obey the algebra

[zap] = lﬁ'a {¢,W} = _% = {&a"_f},
{wa 1;} = ﬁa {7(',‘7('} = —§
Note that 72 = 0 = #2 and ¢* = 0 = . The algebra satisfied by the

fermionic operators is isomorphic to that obeyed by Pauli matrices. Therefore,
we may choose the representation®

4.57)

v=vVho_, $=vho,, w= —% hoyp, 7= —% ho_.  (4.58)
Using this representation in (4.50) we finally arrive at Witten’s quantum
mechanical Hamilton operator acting on L%(R) ® C2,

Hy = 1p? + 1 8%(z) + 2 &'(2)os (4.59)

with unit mass, m = 1, and rescaled SUSY potential &/+/2. It is also worth
mentioning that the ladder operators (3.3) are the quantized versions of the
momenta £*, that is,

S e TR G
A= e, A= (4.60)

and consequently the classical supercharges (4.28) become, after quantization,
the supercharges (3.2). Similarly, the relation E = %§+§‘ is the classical
analogue of the tree Hamiltonian Hiree = 5{A', A}. Let us also mention, that
the classical supercharges (4.28) and the classical Hamiltonian (4.48) obey
the classical superalgebra

{Q,Q}pe = —iHrT, {Q,Hr}pB = 0, {Q,Hr}pp = 0. (4.61)

4.5.2 Path-Integral Approach

The second approach of quantizing the pseudoclassical system (4.10) is based
on Feynman’s path integral [Fey48, FeHi65]. The basic proposition of Feyn-
man is that the integral kernel of the quantum-mechanical time-evolution op-
erator can be expressed as an integral over a certain set of continuous paths
in (pseudo-) classical configuration space, each of which is weighted with a
phase given by the action calculated along these paths. For a later convenience,
we will only consider the trace of the time evolution operator exp{—itH/h}.
Clearly, this requires a suitable regularization, for example, by letting the time
t have a negative imaginary part, if the Hamiltonian H is bounded from be-
low. In case of a purely classical system described by a standard Lagrangian
L(z,z) Feynman’s approach to construct H from L can then be written as

© Note that there are no other (inequivalent) irreducible representations [LaMi89].
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TTexp{—iﬁtH} = / ’D[z]exp{iﬁ /t dTL(z(T),a:-(T))}. (4.62)
0

z(t)=z(0)

Here fz( 8)=2(0) D[z](-) symbolizes integration over all continuous paths z :
[0,t] = R, which are periodic in the sense that z(t) = z(0). More precise defi-
nitions of the Feynman path integration can be based, for example, on a theory
of so-called pro-measures [AlHo76, DeWiMaNe79, AIBr95, CaDeWi95] or on
a discrete time-lattice approach. The latter approach is equivalent to the Lie-
Trotter formula [Fey48, Nel64, FeHi65, LeSchm77, Schu81, LaRoTi82, Exn85,
InKuGe92, Kle95]. In the following we will perform only formal calculations
for simplicity.

The path-integral approach is not only useful for quantizing bosonic de-
grees of freedom but is also applied to field theories with fermionic degrees of
freedom [Ber66]. The formulation of fermionic path integrals is based on the
integration rules for Grassmann variables (see, for example, [ZiJu93, Roe94)]):

/d61=0, /d66= 1. (4.63)

From these follows the “Gauss formula”

/ dé, / dd, - -- / a9, / dé,,exp{ T éiAi,-e,-} —det(dy;)  (464)

=1
and its infinite-dimensional generalization, the “fermionic Gaussian-path-
integral formula”
ot
o [ D[&]exp{ Jar
0o o

W(O)=£$(0) F(t)=£H(0)

dr' §(r)D(r, 7' )y(r")
} (4.65)
!
=Ny det(D(T, T )):t
Again, this path integral is formal in the sense that the determinant on the
right-hand side does in general not exist. For this, we have included a “nor-
malization” constant N to be chosen such that the right-hand side becomes
meaningful. We also mention that in the above we consider periodic (+) as
well as antiperiodic (—) boundary conditions for the fermionic fields. Clearly,
the determinant on the right-hand side does also depend on the choice of
the boundary conditions. This dependence is indicated by the subscript. In
fact, the natural choice for fermionic degrees of freedom is the antiperiodic one
[ZiJu93)]. However, we will consider both, periodic and antiperiodic conditions
in the following path-integral treatment [GiPa77b, CoFr83]:
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Za(t) = / Dla] / D] / ’D[lp]exp{ / dTL} (4.66)
2()=2(0) Y(O=24(0) F(O)=LF(0)

where
L:=1:% - 1%z) + i) — &' (z)P (4.67)

is a Lagrangian equivalent to (4.10) because of ¥(t)y(t) = ¥(0)+(0). As the
above Lagrangian is bilinear in the fermionic fields, the corresponding path
integral is reduced to the problem of calculating the determinant of the kernel

D(r,7") := (166_7- - ¢'(:c(‘r))> &r -1 (4.68)

with appropriate boundary conditions. This problem is immediately reduced
to the eigenvalue problem

(i3 -~ 26D ) ) = As(0) (469
whose solution reads

¥a(t) = ¥a(0)exp {——i/\t -1 /d‘ré'(:c(‘r))} . (4.70)
0

From the boundary condition 1 (t) = ¢ (0) one obtains the eigenvalues

Ay =(2n+1) ‘,t—[ %/d‘r &' (z(1)) for Pa(t) = —a(0),
(4.71)
A= Zn% -3 /d‘l' #la(r)) for  §alt) = +9a(0),
0

where n € Z. Consequently, the determinant is formally given by the infinite
product

det (D(T, T ) =] 2 (4.72)
nez
Defining the normalization constants by
1 s
=2 H(2n+1)?, — —2H2n—— (4.73)
nez nel

and using the relations

cosz = ﬁ (1-— W%;), smz‘zH ( 2 2) (4.74)

k=1 =1
we arrive at the result
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Z4(t) = 2-(t) F z+(t), (4.75)
where
2y (t) = D[z] exp { L dr [#* - ¢*(z) F hd'(z)] }
z(:)=/z(o) _ 2 o/ (4.76)
= Tr exp {——% tH:t}
and
Hy=1pP +18 @)+ o (a) (4.77)

are indeed the partner Hamiltonians of the Witten model with unit mass and
rescaled SUSY potential $/+/2. As a result we find that antiperiodic boundary
conditions for the fermion degrees of freedom lead to

7_(t) = Trexp {—’li tHT} (4.78)

with Hr being the Witten Hamiltonian (4.59). In contrast to this, periodic
boundary conditions give rise to

Z.(t)=Tr (Wexp{——%tfh}) , (4.79)
which is related to the heat-kernel regularized Witten index by
Z4(t) = —A(it/h). (4.80)

Although this path-integral approach has been formal, it clearly demon-
strates that the term proportional to 4 in the Hamiltonians (4.77) stems from
taking all fermion loops into account. This has been the reason for introducing
the notion tree Hamiltonian and (fermion-) loop correction in Sect. 3.1.
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In this chapter we will present some exact results which are obtained via the SUSY
formalism. First, we will show that for any standard one-dimensional Schrédinger
Hamiltonian one can find a family of associated SUSY potentials [AnBolo84,
Suk85a). In a second step we will demonstrate that a particular invariance prop-
erty of such a SUSY potential (the so-called shape invariance [Gen83]) will lead to
the exact discrete eigenvalues and their corresponding eigenfunctions of the SUSY
Hamiltonian.

5.1 Supersymmetrization of One-Dimensional Systems

In our above discussion on the Witten model we have already seen that several
(cf. Sect. 3.5) well-known quantum Hamiltonians possess a SUSY structure
according to Definition 2.1.1. Here naturally the question arises: Which quan-
tum systems exhibit a SUSY structure? This question has been considered by
de Crombrugghe and Rittenberg [CrRi83] with the general result that SUSY,
in particular the extended one with N > 2, imposes strong conditions on the
Hamiltonian. For one-dimensional one-particle systems, however, it is always
possible to bring them into the form of the Witten model [AnBolo84, Suk85a.
Here we will only consider those systems.

Suppose we are interested in the supersymmetric form of a given quan-
tum problem characterized by the following standard Hamiltonian acting on
L2 (]R) 1

v \

Hy = om +V(z), (5.1)
where V' is some continuous real-valued function such that Hy has a non-
empty discrete spectrum which is below a possible continuous spectrum.
Suppose further that we want the Hamiltonian Hy to be identified (up to
a constant) with the Hamiltonian H_ of a SUSY quantum system of the

! Without loss of generality we choose as configuration space the Euclidean line
M =R
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Witten type. Note that the other choice H can be treated similar to the pro-
cedure described below by replacing the SUSY potential ¢ by —&. In general
the ground-state energy of Hy cannot be expected to vanish or being strictly
positive. Hence, in order to be able to accommodate a SUSY structure we
have to put

H_:= Hv—-E, (5.2)

where ¢ is an arbitrary constant energy shift sometimes called factorization
energy [Suk85b]. It is obvious that, if € equals the ground-state energy of
Hy , we will arrive at a good SUSY, whereas for values of € which are below
this ground-state energy we may obtain a broken SUSY. Finally, for € being
above the ground-state energy of Hy the Hamiltonian H_ will have a negative
eigenvalue which implies that we cannot get a well-defined SUSY structure.

For the moment let £ be an arbitrary real number. Then the SUSY poten-
tial we are looking for is determined by the generalized Riccati equation

() — \/'Z_ﬁ &(z) = V(z) —e. (5.3)

Making the ansatz [Inc56, Suk85b]

d. 2 (z) = —-—\/= In | pe(z) 1+/\/dzp52(z)

(5.4)
h o fee(@) | z\pﬁ(z)

Vam | pela) + /\fdzps_Q(z)
0

the non-linear Riccati equation reduces to a linear Schrédinger-like equation:

2

(@) + V(@) pela) = epala). (5.5)

Note that p. is not necessarily required to be square integrable. Hence, the
parameter ¢ is indeed arbitrary. Let us remark that with p, also p.(z) :=
pe(z) [y dzp72(2) is (a linear independent) solution of (5.5) and hence any
linear combination p, + Ap., which is used in (5.4), will also yield such a
solution.

With &,y as given in (5.4) we have obtained a two-parameter family of
SUSY potentials which at least formally brings the original problem (5.1) into
a SUSY Hamiltonian H_. We are also able to find the corresponding partner
Hamiltonian

2
p h 2h
H, 2=%+¢Z,/\(.’E)+\/Tﬁ¢;,/\($) = Hy ~6+\/Tﬁ¢;”\(z)’ (56)
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which may have energy levels identical to those of H_. To make it more
precise, let us discuss some particular ranges for the value of the parameter
¢. For this we will denote the discrete eigenvalues of Hy by &, with the
ordering €9 < €1 < ---. We also limit our discussion to the special case A = 0
for simplicity.? In this case, the zero-energy wave function ¢; as defined in
(3.11) can be identified up to a normalization constant C with p,:

a)

g (z) = Cpe (). (5.7)

€ < €p:

In this case it is well known from Sturmian theory [Inc56] that p. and
therefore ¢, will have no zeros and will not be normalizable. It is, however,
possible that 1/p. is normalizable. Or in other words, changing the minus
sign in front of (5.4) to a plus sign may give rise to a normalizable ¢7 =
C/p:. We are led to case b) discussed below with & replaced by —&.

In the general case, where neither p. nor 1/p. is normalizable, eq. (5.4)
gives rise to a well-defined (note that A = 0 and p. has no zeros) SUSY
potential with broken SUSY. That is, the partner Hamiltonians H_ and
H_ have identical spectrum. Consequently, the Hamiltonian

- oM”
Hy := HV+\/T%¢($) (58)

will have the same spectrum as Hy. Thus by supersymmetrization with a
factorization energy € below the ground-state energy of a given Hamilton-
ian Hy one can find another Hamiltonian H v with identical spectrum but,
of course, different eigenfunctions.

£ =¢€gp:

Now Cp. = ¢, is normalizable and hence, the SUSY potential (5.4) gives
rise to a good SUSY. The two partner Hamiltonians H_ and H, are
essential iso-spectral, that is, the ground-state energy of H_ vanishes and
all other eigenvalues of H_ coincide with that of H,.. As a consequence,
the Hamiltonian I?v, as defined above, has a spectrum which coincides
with the set {e1,€2,...} of energy eigenvalues of the original Hamiltonian
Hy. The SUSY potential is represented by the ground-state wave function
[Goz83] of H_, respectively, Hy:

- ___h @)@k d
P(z) = Peoo(z) = Tom d%(z) = mdzlndJo(). (5.9)

We will discuss some implications of this relation and the spectral relation
between Hy and Hy below.

% A more general discussion is given by Sukumar [Suk85b].
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€) en1<e<eEy,n=123,...:

Here from Sturmian theory we know that p. has n distinct zeros (of mul-
tiplicity one) and hence the SUSY potential (5.4) will have singularities
at those points. Here the superalgebra will only be valid on a formal level
and one has to be careful about a proper definition of the domains for
the operators in question. In particular, the supercharges (3.1) cannot be
self-adjoint because the Hamiltonian H_ = Hy —¢ has n strictly negative
eigenvalues implying complex eigenvalues for the supercharges (3.1). The
formal Hamiltonian H, will in general not be essential iso-spectral to H_
[JeRo84, Fuc86, ShSmVags].

As an illustrative example let us consider the anharmonic-oscillator potential
Vi) e B gn 5.10
(z) := m (5.10)
The generalized Riccati equation (5.3) reduces in this case to the usual one if
we set the factorization energy € to zero, which corresponds to case a) above.
The ansatz (5.4) with XA = 0 then allows to express po in terms of an arbitrary
solution of Bessels differential equation denoted by Z, [MaObS066):

h py(z .
#o) == B (o) = VEZy, (B P). 1)

This example shows that a rather simple problem can lead to a complicated
SUSY potential if supersymmetrization according to case a) is chosen. Hence,
the natural choice for the factorization energy is the ground-states energy of
the Hamiltonian (5.1) with the SUSY potential expressed in terms of the
ground-state wave function as in (5.9).

The relation (5.9) displays (for the case of good SUSY) an interesting
relation between the zeros of the SUSY potential and the extrema of the
ground-state wave function. To be explicit, these extrema are precisely given
by the zeros of the SUSY potential. These zeros are in general not identical to
the minima or maxima, of the full potential V' but coincide with the minima of
&2. This is rather surprising, because one naively expects the maxima (local
minima) of the ground-state wave function to be located at the minima (local
maxima) of the potential V.

Let us consider the following SUSY potential
&(x) = \/Z_m (z — atanhz), aeR (5.12)

Obviously, for a < 1 this SUSY potential has a single zero at o = 0 which is
also the position of the maximum of the ground-state wave function

#5 (z) = C exp{~z?/2} cosh® z. (5.13)
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Fig. 5.1. (a) The SUSY potential (5.12) for parameter values a = 0 (—), 1
---)2C¢----)and5(------ ). (b) The ground-state wave function (5.13) for the
same parameters as in a).

However, for a > 1 the SUSY potential (5.12) has two more zeros, $(z ;) =
0, located symmetrically about the first zero zp = 0 which now becomes
the position of a local minimum of ¢;. The two non-trivial zeros =+, are
maxima of the ground-state wave function and are determined by the non-
trivial solutions of £4; = atanh(z41), z_1 = —z4+1. A graph of the SUSY
potential and the ground-state wave function for various values of a are given
in Fig. 5.1. The functional dependence of the zeros z; on the parameter a are
shown in Fig. 5.2. It is clearly visible that the single maximum of ¢ fora <1
bifurcates at a = 1 into two maxima at positions z4,. In addition the trivial
zero o = 0 is now the location of the minimum of ¢; . This bifurcation signals
the onset of tunneling in the full potential V_. The two partner potentials are
given by
h?
V() = o~ [z? + a(a £ 1) tanh’ z - 2aztanh z ¥ (a — 1)) (5.14)

and are shown in Fig. 5.3 and 5.4. In particular we note, that V_(0) = %(a——
1) > 0 for a > 1 but the ground-state energy is identical zero for all values
of a due to good SUSY. Hence, a = 1 characterizes indeed the onset of
tunneling. We also point out that for a > (3 + v/5) the potential V_ has a
local minimum at z = 0 where also the ground-state wave function has a local
minimum. Therefore, a local minimum of a given potential does not necessary
imply a local maximum in the ground-state wave function.

Finally, we note that this example demonstrates that SUSY can also be
used for the discussion of tunneling problems. In fact, the tunneling splitting
for the lowest energy eigenvalues is given by the lowest eigenvalue of Hy if
SUSY is good. This eigenvalue can, for example, easily be obtained using
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Fig. 5.2. The locations z; of the maxima ( ) aud minima (- - - ) of the ground-
state wave function (5.13) as a function of the parameter a.

the instanton method [GiPa77a, SaHo82, KaMi89], a perturbative method
[SaHo82, KeKoSu88, GaPaSu93] or a WKB-like method [GiKoReMag9).

We have seen in the above discussion that for a factorization energy ¢ = ¢
it is always possible to find for a given Hamiltonian Hy an associated part-
ner Hamiltonian Hy given in (5.8) which is essential iso-spectral to Hy.
It is obvious that by repetition of this supersymmetrization procedure one
can construct families of essential iso-spectral Hamiltonians. This method,
in fact, has been developed in the last century and is known as Darboux’s
method [Dar1882].3 An alternative method, which is based on a theorem
of Gel'fand and Levitan [GeLe51, Fad63], has been given by Abraham and
Moses [AbMo80]. See also [Suk85a, Suk85b, LuPu86, Pur86]. These methods
of constructing a hierarchy of essential iso-spectral Hamiltonians are nowa-
days successfully applied, for example, in a SUSY variant of the variational
[GoReTh93] and inverse scattering method [Suk85c, BaSp94].

5.2 Shape-Invariance and Exact Solutions

In the above discussion we have seen, that, in principle, one can construct a
hierarchy of potentials whose corresponding Hamiltonians are pairwise essen-

3 For some historical remarks see [Gro91].
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Fig. 5.4. The potential V, of eq. (5.14) with parameters as in Fig. 5.1.
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tial iso-spectral. In fact, one only needs to know the ground-state energy ¢o of
Hy and the corresponding ground-state wave function ¢; in order to obtain
the partner Hamiltonian H v. Repeating this process for the construction of a
hierarchy of pairwise essential iso-spectral Hamiltonians one now needs also
the ground-state properties of Hy etc. In other words, in finding a family
of such Hamiltonians a complete knowledge of the discrete spectrum of the
starting Hamiltonian is required and nothing is gained.

In this section we want to show that under a certain condition called
shape-invariance the full information on the discrete spectrum of the starting
Hamiltonian is not required and can be obtained in a straightforward way
using the SUSY transformation.

Let us assume that we have given a SUSY potential for good SUSY. We
further assume that this SUSY potential depends on some set of parameters
collectively denoted by ag. We will explicitly denote the dependence on this
parameters in the form ®(ag,z). Then the corresponding partner potentials
are given by

Vi(ao,z) = ¢2(ao,$ ¢(ao,$)‘ (515)

R 3

+—Z

) V2m Oz

Definition 5.2.1 ([Gen83]). The partner potentials Vi(ag,z) are called
shape-invariant if they are related by

|Vi(ao,2) = V_(ar,z) + R(@),] (5.16)

where a1 is a new set of parameters uniquely determined from the old set
ap via the mapping F : ag — a1 = F(ap) and the residual term R(a,) is
independent of the variable z.

In other words, shape-invariance implies that the partner potential V (ao, z)
can, after subtracting the constant R(a;), be interpreted as a new partner
potential V_(a,, z) associated with a new SUSY potential $(a;, z).

As an example we mention

®(ap, ) = agtanh z, ap > 0. (5.17)

h
v2m
The corresponding partner potentials read

h? 1
Vi(ag, ) = Im [ag - aOT(oas?h—z:;l] (5.18)

and are shape-invariant because of the relation

Vilao,z) =V_(ap — 1,7) + % [a3 — (a0 — 1)?]. (5.19)

One immediately reads off the function F and R,
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h?
a1 = F(ap) = ap - 1, R(a;) = 2m [ag - af] , (5.20)
and the ground-state wave function
&5 (ag,z) = C cosh™* . (5.21)

Let us now assume, that we have a SUSY potential $(ap,z) generating
shape-invariant partner potentials with a new parameter set a; such that
&(a1, ) is also a good SUSY potential. We further assume that the mapping
F :a,_1 — as = F(as-1) may be iterated n times leading to a family of SUSY
potentials $(a,,z), s =0,1,2,...,n, all with good SUSY. Then the discrete
energy eigenvalues and corresponding wave functions of the original Hamilton-
ian Hy := {% + V_(ao, z) are given by [Gen83, CoGiKh87, RoRoRo91]

En = Z R(as)’
= A¥Xa, _
¢; (a0, z) = H ([El——(EZ)T‘TJ o (an, ), (5.22)

8=0

&g (an,z) = Cexp {-@/dzé(an,z)} ,
0

where the product of the operators

R 0
V2m 0z
is ordered such that At(a,) stands to the left of A'(ae+;). The validity of rela-
tions (5.22) is an obvious consequence of the SUSY transformation (3.9) which
is illustrated in Fig. 5.5. Hence, shape-invariance is a sufficient condition for

obtaining complete and exact informations about the spectral properties of
the bound-states of the family of Hamiltonians

Al(a,) = - + &(a,, 1) (5.23)

K2 92
H,:=- 2m Ba 75 +V-(as,7) + Es, §=0,1,2,...n. (5.24)
Note that the energy eigenfunctions
H,¢,_.(as,z) = En¢,_,(as,2), n>s, (5.25)
of this family of Hamiltonians are related by
- A'(a -
(a0 2) = e by 00, 2) (5.20)

It should be noted that despite the fact that shape-invariance is a sufficient
condition it is not necessary for the solvability of the eigenvalue problem of
Schrodinger’s equation [CoGiKh87].
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V_(ao,z) V-(a1,z)+ R(a1) V_(az2,z)+ R(a1)+ R(az)

Fig. 5.5. An illustration of a family of shape-invariant potentials. The arrows in-
dicate the relations (5.22) and (5.26).

5.2.1 An Explicit Example

As an example let us briefly discuss the family associated with the SUSY
potential (5.17). Note that from (5.20) follows

h?
as =as—1 —1=ap - s, R(as) = 2m [a2_, - d?], (5.27)

and therefore
¢ (An, ) = @ (ap — n,z) = Ccosh"* ¢ (5.28)

will be normalizable for all n € Ny with n < ag. The eigenvalues are also
immediately found:

B.= 2 i(cﬁ - al) = h—?[a2 = (a0 — n)?]
2m ~ s—1 s 2m 0 3 (529)

n=20,1,2,... < ap.

Finally, the energy eigenfunctions are given by

Oz

x (_E + (ap —n— 1) tanh :c) cosh"™* z,

¢7_1(a07$) = Cn ("i +a0tanh:c> X ...
(5.30)
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where C,, are normalization constants determined by the ground-state nor-
malization C:

n—1
Cn:=C]]J (a0 - 5)? - (a0 -n)’], n=1,23,...<ao (5.31)

8=0
5.2.2 Comparison with the Factorization Method

Despite the fact that originally shape-invariance was believed [Gen83] to
be a new hidden symmetry which allows for an exact solution of eigen-
value problems, it is equivalent to a similar condition already known from
the factorization method [Bau91, Gro91]. The factorization method has been
developed by Schrodinger [Schr40, Schr4la, Schrdlb] and Infeld and Hull
(Inf41, HuIn48, InHu51] as an algebraic method for solving the stationary
Schrédinger equation in one dimension [Gre66, deLaRa91]. Its close connec-
tion with SUSY quantum mechanics [AnBolo84, Suk85a] is obvious. In fact,
it is amusing to note that already in 1967 Joseph [Jos67], in his search for
self-adjoint ladder operators (we would call them now supercharges), found
quite naturally that the Hilbert space has to be graded into two subspaces
(he called them “a” and “b” subspace). He also noted that the Hamiltonian
together with these self-adjoint ladder operators close an algebra containing
anticommutators, that is, a superalgebra.

Let us make the connection between factorization method and shape-
invariance of SUSY quantum mechanics transparent. Writing the shape-
invariance condition in the form

B (ay11,7) — as,7) ~ —_:— (8 (ass1,7) + B (a5, 2)] = ~R(ass1) (5.32)
m

its equivalence to the condition (3.1.2) of Infeld and Hull [InHu51] becomes
obvious if we identify the functions k(z, s) and L(s) in [mHu51] as follows:

2
df(%)z-%k(z,s), R(as+1)=::—m[L(s+1)—-L(s)]. (5.33)

Note that because of R(as4+1) > 0 we arrive at the class I type of factorization
of Infeld and Hull. This is due to our convention that the ground state is
an eigenstate of H_. Otherwise, we would arrive at the class II type of fac-

torization. In order to complete our comparison let us note that from (5.33)
follows

n 2
Ea= )" R(e) = o [L(n) - LO), (5.3

which is identical to Theorem IV of Infeld and Hull (n = ! + 1), and
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&g (an,z) = Cexp /dz k(z,n) 3, (5.35)
0

which agrees with eq. (2.7.1) of [[nHu51]. Finally, the relation (5.26) coincides
up to an overall minus sign with (2.7.2) of [InHu51].

Hence, the shape-invariance condition does not lead to any new insight
into the question: Why are some potentials exactly solvable? Shape-invariance
is simply a restatement of the factorization condition of Infeld and Hull
[InHu51]. In contrast, the solvability of these shape-invariant potentials can
be related to an underlying dynamical Lie symmetry [Mil68, OlPe83]. For an
embedding of SUSY into those dynamical Lie symmetries see Barut and Roy
[BaR092]. More general dynamical superalgebras are constructed by Baake
et al. [BaDeJa91].

The developing interest in SUSY quantum mechanics, however, has revived
the important question: Which class of potentials are shape-invariant? This
problem was attacked by Infeld and Hull by starting with a typical dependence
of the energy eigenvalues on the quantum number n. Recently, Lévai [Lev89]
reconsidered this problem in the light of SUSY quantum mechanics. Although
his approach was rather different from that of Infeld and Hull, he essentially
arrived at the same potentials. See Table 5.1.

However, inspired by this work Wittmer and Weiss [WiWe92] were able
to find a shape-invariant generalization of the harmonic-oscillator poten-
tial based on the Hongler-Zheng model [HoZh83]. Another new class of
shape-invariant potentials has been found by Khare and Sukhatme [KhSu93,
BaDuGaKhPaSu93]. Unfortunately, this latter class of potentials cannot be
expressed in closed form, that is, in terms of known functions. There exist
only series representations which are even not guaranteed to be convergent
on the real axis.* For a deta’led discussion on recent developments in this
field we refer to [CoKhSu95].

Finally, for completeness, we also present the classification scheme of
shape-invariant potentials as given by Gendenshtein [Gen83):

 Actually, these series are believed to have a finite radius of convergence
[BaDuGaKhPaSu93]. Hence, the possibility of one or more singularities on the
real axis cannot be excluded. In fact, the claimed properties of these potentials
(being bounded from below as well as from above because of reflectionlessness
and still having an infinite number of bound states) indicates that these potentials
do not lead to a Hamiltonian with a well defined domain. In other words, SUSY
may only be a formal symmetry algebra. See also our comments on singular
SUSY potentials made in Sect. 5.1 case c).
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Class 1:
h .
&1 (z) .= o (afl(:c) + b) with
fi(@) =pfi(z) +afi(z) +, (5.36)

2
V(@) = o [aa % p)SE() +a(2b+ 0)fi(x) + (B £ ar)]
Class 2:

&s(z) := \/% (afg(:c) + b/fg(:c)) with
fi(z) = pfi(z) +4q, (5.37)
2 1
Vf)(z) = Zh_m [a(a +p)fi(z) + b;bg?;;l) + 2ab =+ (ag — bp)] .
Class 3:

&3(z) := \/% (a+ by/pfi(z) +q> /fa(z) with

fi(z) = V/pfi(@) +q, (5.38)
@ gy = B |2 tpabF)  VpRE) +a_ 2

Vil )—2m 720) + 7@ (2bq:1)+bp].

Here a,b,p,q,r € R are arbitrary potential parameters. Depending on the
values of these parameters SUSY will be good or broken. Let us note that
the potentials belonging to class 2 posses the additional reparameterization
invariances:

a— ~{atp)
b——(b¥q)
That is, in both cases the full potentials are only shifted by an additional

constant. This reparametrization implies the following changes in the SUSY
potential:

a——(atp) = &(z) > —(atp)fi(r) +b/fa(z) (5.40)

b —-(bFxq) = &) > afal(z) - (bFq)/f2(z) (5.41)

The particular form of @, shows that if the parameters originally have been
chosen such that SUSY is good, after reparametrization SUSY will be broken
(InJu93a, InJu93b, Sup92, InJuSu93]. Examples which belong to this class
are the radial harmonic oscillator (Example 1 of Sect. 3.5.2) and the P&schl-
Teller oscillators (Example 3 of Sect. 3.5.2 and Example 2 of Sect. 3.5.3).

} = V2@ - V@) + const. (5.39)
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Table 5.1. List of known SUSY potentials giving rise to shape-invariant partner
potentials

SUSY potential config. parameter range partner potentials

cb(x)/:%; space®  for good SUSY® V4 (z)/%

Atanhz + Bf/coshz R A>0 A%+ Bz'A(AwC);fg(iA;l)Si“hz
Acothz — B/sinhz RY  B>A>0 A? ¢ BAAGUFI-BEAR ) corh s
—Acotz + B/sinz  [0,7] A>B>0 —-A% + 32+A(Ails)i;3i2'ql)c°”
Atanz — Beotz (0,7/2] A>0, B>0° —(A+B)?4 A4l 4 BBLL

Atanhz - Beothz  RY A>B>(° (A-B)2 - 44%h | BBl

Atanhz + B/A R A>B>0 A?+ By AZD | 9B tanhz
~Acothz + B/A  R* B>A>0 A%+ By 4 4420 9B coths
—~Acotz + B/A [0, 7] A>0 —-A2+%;-+ﬂs£§%ll—-23cotx
Az — B[z R* A>0, B>0° —A(2BF1)+A%z? 4 2L
-A/z + BJA R* A>0,B>0 528 AR

~Ae”* + B R A>0, B>0 B?4 A% % — A2BF1)e™®

Az +B R A>0 (Az+B)*+ A

* For z € RY, z € [0,7/2], and z € [0, 7] we impose Dirichlet boundary conditions
on the wave functions at £ = 0, = 0,7/2, and £ = 0, w, respectively.

® With our convention that the ground state is an eigenstate of H._.

© These examples belong to class 2 of Gendensthein and will give rise to a broken
SUSY potential if B is replaced by —B.



6. Quasi-Classical Path-Integral Approach

In this chapter we will consider a quasi-classical evaluation of the path-integral for
the Witten model. In contrast to the usual semi-classical evaluation of the path
integral, where one expands the action about the classical paths up to second order,
we propose a modified approach by expanding the action about the quasi-classical
paths. We arrive in the case of good SUSY at a quantization condition which has
previously been suggested by Comtet, Bandrauk and Campbell {CoBaCa85]. For
broken SUSY we find a modified form of this quantization condition {InJu93a]. A
remarkable property of these two quasi-classical SUSY formulas is that they yield
the exact discrete spectrum for all shape-invariant potentials. In combination with
the usual WKB formula they are also useful for not shape-invariant (i.e. not exactly
soluble) potentials.

6.1 The Path-Integral Formalism

As already mentioned in Sect. 4.5.2, according to Feynman [Fey48, FeHi65]
the kernel of the time-evolution operator generated by the standard Schré-
dinger Hamiltonian,
p?
H:= o + V(z), (6.1)
is expressible in terms of a path integral

z(t)=z"

(z"| exp {—(i/R)tH} |z} = / Diz]exp / dr L(z(r),3(1) § (6.2)
z(0)=z'

with the standard Lagrangian

L(z,z):= —:1: - V(z). (6.3)
Here, in contrast to the path integral in Sect. 4.5.2, f z((ot)__:, D[z]( ) symbolizes
integration over all continuous paths z : [0,t] — R starting in =’ := z(0) and
ending in z" := z(t).

From the integral kernel of the time-evolution operator one can obtain the
Green function, that is, the integral kernel of the resolvent of H via (complex)
Laplace transformation:
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("|(E-H)™Y2') = /dt (z"|e~W/MEH |1y (/MBI B > 0. (6.4)

The real poles (in the complex E-plane) of this expression give rise to the
discrete spectrum of H. The associated residues provide the corresponding
normalized energy eigenfunctions.

6.1.1 The WKB Approximation in the Path Integral

In the semi-classical approximation [Gut67, Schu81, Gut92] one evaluates the
path integral (6.2) using the method of stationary phase. That is, one first
looks for all classical paths z for which the action

S[z] := /dT [% i - V(z)] (6.5)
0

is stationary, 85[za] = 0, and which obey za(0) = z' and za(t) = z”. Then
one expands the action about these classical paths up to second order in
(1) := z(1) — za (),

t
S[z] ~ S[za] + /dT [% 0" — %V" (Icl(T)) 772] ) (6.6)
0

and thus arrives at
fixedt

("l exp {~(i/R)tH}|2") = Y Fv[za] exp{(i/R)S[zal} (6.7)

Zcl
with the Fresnel-type path integral
n(t)=0

Frleal = [ D[n]exp{% / dr [%ﬁz—%V”(zcx(T))nz] . (68)
0

n(0)=0

In the above the symbol Zﬁxedt( -) stands for the summation over all classical
paths starting in =’ and arriving after the fixed time ¢ in z”. The remaining
path integral (6.8) is easily calculated via the van Vleck-Pauli-Morette formula
[V1e28, Pau51, Mor52]

6 S[Icl]
Fy[za] = V 27rﬁ 8z"0z"

B m/4 625[2:01]
- vV2rh oz" oz’

1/2 (6.9)
exp{-ip[za]7/2},
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where ;1 € Ny denotes the number of negative eigenvalues of the second vari-
ation of the classical action S[zq]. This integer-valued functional y is usually
called Morse index and equals the number of points along z, which are con-
jugate to z' [Schu81].

In a second step one performs the Laplace integration (6.4) using, again,
the method of stationary phase. A detailed discussion of this calculation can
be found in Chap. 18 of Schulman’s book [Schu81], which is based on the
original work of Gutzwiller [Gut67]. The result reads

("|(E— H)™ 2"y ~ % VDy(z',z" E)
fixed E . (6.10)
X Z exp{%W[zcl] - iu[zcl]g} ,

Zel

where
Dy(z",2',E) := % I(E - V(") E- V()™ (6.11)
and

Wiza] := Saa) + Bt = / dz /om(E — V(@) (6.12)

Zel

is Hamilton’s characteristic functional. Note that ¢ = t(E) is obtained from
the relation 0S[xa]/0t = —E which follows from the stationarity condition in
the evaluation of the time integration (6.4). The integral in (6.12) has to be
taken along the classical path z. In (6.10) the symbol Zg:ed E(.) denotes the
summation over all classical paths from z’ to " with a given fixed energy E.
The integer-valued functional v € Ny is called Maslov index and equals the
number of turning points along the classical path [Gut67, Fel87].

If one finally assumes that the potential V has a single global minimum
(cf. Fig. 6.1) the sum over all classical paths in (6.10) can be performed
explicitly [Schu81] (see also the next section). We arrive at the well-known
quantization condition of Wentzel, Brillouin, and Kramers (WKB formula)
[Wen26, Bri26, Kra26, Dun31]:

/dz VIE V@) = hr(n+1/2), n=01,2,..., (6.13)
qL

where g1, and gg are the classical left and right turning points determined
by V(q) = E = V(gr). See also Fig. 6.1. The corresponding approximate
energy eigenfunctions read
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V(z)

Fig. 6.1. A single-well potential V
and the corresponding classical paths
for a fixed energy F starting in z'
and arriving in z"'. The left and right
turning points ¢ and gr may be
z passed several times.

dn(z) = 4 /71% sin (}-qujdngﬂ(z) + %) , (6.14)

where pg(z) := /2(E — V(z)) is the magnitude of the classical momentum
for a given energy E, Tg := 2m qu:‘ dz [pe(z)] ™" is the period of the classical
motion and E,, is the solution of the WKB formula (6.13) for a given n € Ny.

6.1.2 Quasi-Classical Modification for Witten’s Model

Let us now consider the case of Witten’s model, where the potential appearing
in the action (6.5) is given by one of the partner potentials V. That is, the
two actions associated with Witten’s partner Hamiltonians Hy read

t
S*[z] == / dr [% i? - 82(z) ¥ \/%_m & (z)| . (6.15)
0

According to our discussion of Sect. 4.5 we may split this actions into a tree
part and a fermion-loop correction,

S* (7] = Stree[z] F ﬁip[z], (6.16)

where
t t
, 1 p .
Stree[z] 1= O/dT [% 2 - 452(9:)] , olz] = or 0/d7'45 (z). (6.17)

Note that the above functional ¢ is identical to the fermionic phase (4.19).!
The explicit appearance of h in front of the fermionic phase indicates that

! Note that here we have the original SUSY potential &, whereas in (4.19) the
rescaled SUSY potential #/+/2 is used and the mass has been set to unity.
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this part of the action stems from quantum corrections of Fermion loops. It
is therefore reasonable to assume that the major contributions to the path
integral will be supplied by paths which make the tree-action functional sta-
tionary. Those paths are in fact the quasi-classical paths introduced in Sect.
4.3. Note, however, that the SUSY potential ¢ will in general depend on
Planck’s constant, too. See, for example (3.12). Actually, the natural units
of & are h/v/2m. Hence, a formal power counting as done by Comtet et al.
[CoBaCa85] and Eckhardt [Eck86] has no a priori justification. Our suggested
modification, which takes the quasi-classical paths and their quadratic fluc-
tuations as dominant contributions to the path integral into account, is not
based on such a formal power counting. It rather stems from our discussion
of supersymmetric classical dynamics, which has already shown that the solu-
tions of the classical equations of motion are governed by those quasi-classical
paths. For this reason the present approach [InJu93a, InJu93b, InJu94] has
been called quasi-classical approzimation in order to distinguish it from the
usual semi-classical approximation as discussed in Sect. 6.1.1.

Therefore, let us expand the tree action up to second order in n(t) =
Z(T) — 2qc(7), that is,

t
m . 1
SE[2] = StreelTac] F fip|Tac] + /dT li? 7’ — 3 (452)" (ch(f))nz] .(6.18)
0
Then we again arrive at an approximate Fresnel-type path-integral represen-

tation for the kernel of the time-evolution operator associated with the SUSY
partner Hamiltonians:

fixed t .
(@"|e” (/Mg > N~ Fpolza] exp{l Siree[Tqc] F i<p[zqc]} . (6.19)

Tel h
where
i 02SireelT
Feleel =57 550"
i 1/2 (6.20)
el1r/4 828, [I ]
= St exp{—ip[zqc]T/2}
/_27rh 8z"8x’ qc N

In essence, the calculation is identical to that of Sect. 6.1.1 with V replaced by
&2. The only difference is the additional fermionic phase-functional ¢. Hence,
we immediately arrive at the approximated Green function

(I”l(E —- Hj:)—llzl> ~ % /D¢2(Il, I", E)

fixed E i T (6.21)
X Z exp {7‘1 Wiree[Zqc] F i9[Tqc] - iV[ch]E}

Zqe
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$*(x)

Fig. 6.2. The single-well potential
#? and the left and right turn-
ing points z1, and zg of the quasi-
z classical motion for a given energy E.

Table 6.1. Phases of the k = 0 paths contributing to the resolvent kernel (6.21)
within the quasi-classical approximation

Class (7) Wéi) <p((,i) uéi)
(1) w(z") —w(z') 3 la(z") - a(2")] 0
(2) w(z") + w(z') 3 la(z") + a(2)] - a(z1) 1
(3) 2w(zr) — w(e") —w(z') -3[e(z") +a(z')] +a(zr) 1
(4) 2w(zr) —w(z") + w(z') ~-1[e(e") +a(z")] + a(zr) —a(zL) 2
with

Wireolac] i= / dz \/Zm(E —3°(3)). (6.22)

We will now explicitly perform the above path summation. To this end we
assume that $? will have one single global minimum. See Fig. 6.2. Note that
this does not necessarily imply that the full potentials V. are of this type,
too. In doing this summation we first classify, following Sect. 4.4, the quasi-
classical paths into the same four classes (i), i = 1,2,3,4. All three phases
appearing in (6.21) are functionals of the quasi-classical path. Hence, within
each class (¢) we can explicitly put them into the form

Wtree[ch] = W,Ei) = Wéi) + 2kw(IR),

V[zeq) = vl = v + 2k, (6.23)
(%) (%)

k

plreal = @)’ =9’ + kla(zr) — a(zL)],
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where?

w(z) := /dz V2m(E - $2(2)), a(z) := arcsin j_) (6.24)

As in Sect. 4.4, the integer k € Ny enumerates the number of complete cycles
of a path within each class. The quantities for k = 0 are given in Table 6.1
with the turning points 1,/ to be derived from ¢*(z1) = E = #*(zg)- The
path sum may be rewritten as

rL

fixed E 4 oo
=330 (6.25)
ZTqe i=1 k=0

and gives rise to a geometric series for the k-part. Performing the latter sum-
mation we arrive at the approximate Green function:

(@"|(B~ He) ) =

_m
ik \/pg (z")pg (z')
4 .
> exp{ (t) T l<,0 () iuét)%} (6.26)

1—expqi [%w(IR) ¥ (G(IR) - a(IL)) N 7r] } ’

where
F(z) := V2m(E — $2(z)) (6.27)

is the magnitude of the quasi-classical momentum for a given energy E. From
this resolvent kernel we may derive approximate energy eigenvalues and eigen-
functions.

6.2 Quasi-Classical Quantization Conditions

From the poles of (6.26) we obtain the following quasi-classical quantization
condition

wen) = [aapg) = r (n4 L+ S slon)) 629

with n € Ng. This expression can be made more explicit by considering the
turning-point condition of the quasi-classical paths, which implies a(zr/L) =
§sgn [S(zr/L)]:

% Note that the present definition of a(z) differs from that in (4.35) because of the
rescaling of the SUSY potential.
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[ aep@ = tr (n+ 32 ] beng(an) - sgnoa). (6:29)

This expression has first been obtained by Eckhardt [Eck86] via Maslov the-
ory based, however, on a very strong assumption.®> The above path-integral
approach, which is based on the stationary paths of the tree and not the full
action, has first been presented in 1991 [InJu93a). In the following we will
denote the solutions of this quantization condition for a given n € Ny by EZ
for H +-

For a discussion of the above quantization condition (6.29) we consider
the two possible cases (1) = ~F(zr) and ¥(z1) = H(rR).

Case I. #(z1) = ~®(ar) = +VE:

This case corresponds to a good SUSY. Note that we have assumed that $2
is a continuous function with a single global minimum. Hence only the three
cases shown in Fig. 4.2 are possible. The present case corresponds to Fig.
4.2a) and implies a good SUSY. We also note that because of our ground-
state convention (3.19) only the case #(zp) = —®(zr) = —VE may occur.
We arrive at the quasi-classical quantization conditions for good SUSY:

r

R
/dz V2m(E - $2(z)) = hnn for H_,
“En (6.30)

/dz V2m(E ~ $2(z)) = hn(n + 1) for H,..

rL

Formula (6.30), which is sometimes referred to as CBC formula, has first
been suggested by Comtet, Bandrauk and Campbell [CoBaCa85] based on a
formal WKB approach. They have assumed that ¢ will be independent of A.

Comparing the CBC formula (6.30) with the WKB formula (6.13) we note
two differences. First, instead of the full potentials Vi only &2 appears in the
integral on the left-hand side. Secondly, the extra term % in the WKB formula,
which stems from the Maslov indices, is in the case of H_ precisely canceled
by the contributions of the fermionic phase. In the case of H,., however, these
two contributions are equal and add up to unity. The CBC formula (6.30)
has some remarkable properties:

3 Eckhardt explicitly assumes that the i dependence of the SUSY potential ¢ is such
that limp_,0 2 is well-defined. This, for example, is not the case for the radial
hydrogen atom (3.47). In fact, for the natural choice of units &(z) = 72'7 f(z),
where f is independent of i, Eckhardt’s assumption covers the free-particle case
only,
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1) The quantization condition (6.30) provides the exact ground-state energy
for H_.. Note that for n = 0 one necessarily is led to E = Ey = 0. We have
already shown in Sect. 5.1, that the knowledge of the ground-state energy
and wave function for a given Hamiltonian is needed in order to find the
SUSY potential. Hence, the quasi-classical quantization condition cannot
provide an additional information about the ground state. Nevertheless,
it is remarkable that the quasi-classical approach can reproduce the exact
ground-state energy for good SUSY. This is a rather unexpected result.

2) The presence of the fermionic phase has the consequence that the exact
relation E | = E}! is also valid within the quasi-classical approximation.
Note that the WKB formula (6.13) does in general not reproduce this
relation.

3) An immediate and obvious consequence of properties 1) and 2) is, that
the CBC formula will reproduce exact bound-state spectra for all shape-
invariant potentials [CoBaCa85, DuKhSu86]. This is in contrast to the
WKB formula, which is not able to reproduce the exact spectra for those
systems without any ad hoc modifications of the Langer type [RoKr68].
Only in the special case of the harmonic oscillator and the Morse oscillator
the WKB formula is able to reproduce the exact bound state spectrum.
See also our discussion in Sect. 6.4.1 below. Furthermore, it has been
shown that for a wide class of shape-invariant potentials all higher-order
corrections (in k) to the CBC formula vanish [RaSeVa87, BaMa91].

Case II. &(z1,) = #(zr) = +VE:
This is the case where SUSY is broken (at the quantum level). See Figs. 4.2
b) and c). Here the contribution to the fermionic phase from the left turning

point cancels that from the right turning point. The quantization condition
(6.29) reduces to

7dz \/m)— = hrw (n + %) for Hy. (6.31)

This formula and its relation to broken SUSY have first been discussed in
[InJu93a, InJu93b]. As in (6.30), instead of the full potential Vi only &2
appears in the integral on the left-hand side. Whereas, on the right-hand side
it is identical to the WKB formula. The Maslov indices, are not affected by
the fermionic phase. Formula (6.31) has also some remarkable properties:

1) The exact relation E; = E} valid for broken SUSY is respected also by
the quasi-classical expression (6.31). Again we note that the WKB formula
(6.13) does in general not obey this relation.

2) The surprising result, which has first been noted in [InJu93a] is, that
for those shape-invariant potentials for which the parameters can be cho-
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sen such that SUSY will be broken (see remark c) in Table 4.1), for-
mula (6.31) does provide the exact bound-state spectrum. See also ref.
[InJu93b, InJuSu93, KoSuIn94] and our discussion in Sect. 6.4.1. As for
the CBC formula it can be shown that higher-order corrections to (6.31)
vanish identical for somc shape-invariant potentials [MuGoKh95].

It is interesting to note that (6.30) and (6.31) can be combined with the
help of the Witten index (2.43), which in the case of the Witten model is given
by A = F1 for good SUSY if the ground state belongs to Hy, and by A =0
for broken SUSY, respectively. See eq. (3.29). Hence, we may write (6.30)
and (6.31) in the combined form

TR
/dz V2m(E — $%(z)) = hn (n + % + —?—) for Hy, (6.32)
Ty

which is even independent of any convention about the ground state. The
above expression displays an interesting interplay between the Witten and the
Maslov index. We will refer to expression (6.32) as the quasi-classical SUSY
(ge-SUSY) approzimation in the following. The appearance of Witten’s index
in this formula is rather natural. Note that under the assumption we have
made, that is, #? characterizes a single-well potential (cf. Fig. 6.2) we may
put expression (3.29) into the form

A= %(a(zn) ~afz)),  wr > (6.33)

This identification allows us to interpret the qc-SUSY approximation (6.32)
as the pseudoclassical analogue of the Bohr—Sommerfeld quantization condi-
tion [JuMaln95]. In fact, let us consider the following pseudoclassical phase
integral along one period of the quasi-classical motion (cf. eqs. (4.15) and
(4.46))

¢ (rdv + 749) = - (a(on) - a(or)) o o] = ~nAldo,a]  (6:34)

and note that 1o, o] is replaced by fioz upon quantization (cf. eq. (4.58)).
Since, o3 has eigenvalues £1 in the subspace H* the qc-SUSY formula (6.32)
may formally be put into the form

}{ (pFdz + wdyp + 7dep) = 2nh(n+ ) . (6.35)

Let us now comment on the formal approaches of [CoBaCa85, Eck86]. In
fact, assuming that & is independent of %, the above expression (6.32) can be
derived from the standard WKB formula (6.13) by simple Taylor expansion
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in A [InJuSu93]. Replacing in the WKB formula (6.13) the potential V by the
explicit form of V. we find:

qR

2
/dz\/(p‘};(z)) E S \/%_m@(z)
qL

qc T 45/(93) 3/2 029

/dsz(z):t: \/m_ + O(K°7%),
where we have expanded the square root on the left-hand side in a Taylor series
and kept only the first two terms. We have also replaced the classical turning
points V(g /r) = E by the quasi-classical turning points &*(zy/r) =
The second integral on the right-hand side can explicitly be evaluated and
we will arrive at the expression (6.28) which is equivalent to (6.32). Hence,
for a SUSY potential which is independent of /i the quasi-classical SUSY
approximation (6.32) is actually equivalent to the WKB formula in first order
of fi. An example for such a case is the harmonic oscillator SUSY potential
#(z) = y/m/2wz for which the WKB as well as the CBC formula provide
the exact spectrum. This, however, is not a typical but rather an exceptional
case. Actually, whenever there is an intrinsic length scale in the underlying
classical problem (for example 1/a in ¢(z) = ha/+/2m tanh(az)) then the
energy has the unit A%/2m if we measure distances in umts of this length

scale (i.e. @ = 1). Setting &#(z) = ‘/-—f(a:) and FE = —5 the stationary
Schrédinger equation reads
62
(~ 0z + 110 £ 1)) 9lo) = ol (6.37)

The WKB and the quasi-classical SUSY formula lead to the following approxi-
mate quantization conditions for the dimensionless eigenvalues &, respectively.

[aver@e @ =n(n+).
" (6.38)

7dzm=w(n+%i—§->.

Hence, the WKB and the quasi-classical SUSY approximations are indeed not
equivalent.
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6.3 Quasi-Classical Eigenfunctions

The approximate result for the resolvent kernel (6.26) also provides the quasi-
classical wave functions to be obtained from the residues of its poles [InJu93a].
Again we will distinguish the two cases of good and broken SUSY.

Case 1. Good SUSY:

Using the explicit forms of the quantities in Table 5.1 we can perform the
remaining sum in (6.26) at the poles EX determined by the CBC formula
(6.30):

Res(z"|(E — Hy)™'[)

E=E}

apsin (8522 522) g (s 26
o~ Tgc /_qc—'pE (:l:’) /pch(:l:”) - b
" (6.39)
Res(z"|(E — H.)™'|z")
E=E]
4m coSs (-—(—l + ggz—l) COSs (ﬂ:—”l + ﬂ;—”l)
ch Vv P (=) vV PE (=) g ’

where T3° := 2m [[% dz [P%(2)]”! is the period of the bounded quasi-
classical motion for a given energy E. From these residues we read off the
quasi-classical wave functions:

o (z) ~ ’T§i4‘};+( 3 sin ( f dzpfy (z) ~ Larcsin ‘PE:) ,|  (6.40)

¢ (z) = ch 4m e 2 ¢ ( fdsz_(z)+ arcsm%g%). (6.41)

Note that E; = 0 and, therefore, also p o = 0. Hence, (6.41) is not defined
for n = 0. We have to exclude the value n = 0 in (6.41). Actually, the ground-
state wave function is already known exactly

¢ () = Cexp {———\/%_@ / dz 45(2)} . (6.42)

In comparing the expressions (6.40) and (6.41) with the WKB result (6.14)
we note that the latter has a constant phase shift 7w/4 whereas the SUSY
wave functions contain z-dependent phase shifts stemming from the fermionic
phase.
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Case II. Broken SUSY:
In this case the residues of (6.26) explicitly read

Res(z"|(E — Hy) ™' |2')

E:E:

i o (245~ 252) con (252 - 26
Ty VpE(E) VPE (@) .

E=F

(6.43)
Res(z"|(E — H.)"!|z')

E=E_

(S5 #3) (452 52
CTE VE®) VPg (2") ’

E=F,

where now the poles at E = E}f = E;; are determined by (6.31). Hence the
corresponding quasi-classical wave functions read

ot (z) ~ T 42” = ) ( fdzp (z)——arc&njs/—(—Lz—) (6.44)
EtPE:

o (z) ~ ch 4q _( ) sin (_15 fz dsz_ (z) + arcsm\/—(—L—> (6.45)

As in the good-SUSY case we observe the additional z-dependent phase ap-
pearing in (6.44) and (6.45).

The wave functions as they stand (including the WKB wave function)
are only valid in the quasi-classical (classical) allowed region z1, < = < zg
(gL < = < gr)- In the forbidden regions the trigonometric functions have to be
replaced by appropriate decreasing exponential functions. As expected, these
quasi-classical eigenfunctions are singular at the quasi-classical turning points
71, and zg. For a discussion of regularized wave functions see [FrBaHaUz88,
Mur89, PaSu90].

6.4 Discussion of the Results

6.4.1 Exactly Soluble Examples

As we have already mentioned above, the quasi-classical SUSY quantization
condition (6.32) provides the exact bound-state eigenvalues for all shape-
invariant potentials. This is in contrast to the WKB formula (6.13), which
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in general requires an ad hoc replacement of the potential parameters in

order to yield the exact eigenvalues for those shape-invariant potentials. As

an example, let us consider the radial harmonic oscillator

m o 2_+_f‘zzl(l+1)
2mr?

Using the WKB approximation, it is known [RoKr68] that only upon the

Langer modification I(I + 1) = (I + })? the WKB formula

qr
/dr\/2m (E - %wzrz - M) = hw(n+ 1/2) (6.47)
L

V(r) = 1=0,1,2,---, r>0. (6.46)

2mr?

will give rise to the exact spectrum
En = hw(2n + 1+ 3/2). (6.48)
Let us now consider the SUSY potential

m h(l+1)

b(r) =4/ —wr— 6.49
N (6.49)
which leads to a good SUSY. The associated partner potentials are
2
V+(’r) = mwzrz + W —_ hw(l + 1/2),
2mr?
m R+ 1) (6:50)
Vo(r) = 22+——-—Iw(l+o/2)

2mr?
where the latter is identical to the original potential V' up to a constant neg-
ative shift by the ground-state energy Eo = hw(l + 3/2). V. corresponds to
the same potential but with ! replaced by ! + 1 and a different energy shift.
Using the qc-SUSY formula (6.32)

TR
2 2
/dr\/2m (E— I 2 m—ll—+hw(l+1)>
2 2mr?
zL

(6.51)
1 1
= — 4=
hm (n + 3 2)
we immediately arrive at
E* =2hw (n + -;- + %) , (6.52)
which is the exact result as E,, = E + hw(l + 3/2).
On the contrary, choosing the SUSY potential to
m
B(r) := o5 Wt = T 6.53
(6.53)

we realize a broken SUSY with partner potentials
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2(] —
Vo) = T+ D pabye),
o R (654)
— v 2.2 —
Vo(r) = 5 T + Y= + hw(l —1/2).

Here the latter is also identical to V with a positive shift by hw(l — 1/2)
and V, is similar to V_ with [ replaced by { — 1. In this case the qc-SUSY
quantization condition reads

IR
_ Moz P2 = 1
/dr\/2m (E FWir? = o hwl hn{n+ 3 (6.55)
rL
and yields the energy eigenvalues
Ef =hw(2n+2+1), (6.56)

which again are exact because of E,, = E7 — hw(l —1/2).

Similar to this example it is straightforward but tedious [Sup92, KoSuln94]
to show that all of the shape-invariant potentials listed in Table 5.1 give rise
to the exact energy eigenvalues if the qc-SUSY formula (6.32) is used. For
those systems where SUSY is good this phenomenon can be explained ac-
cording to our remark 3) on page 75.* However, for those cases (marked with
c) in Table 5.1) which also allow for a broken SUSY potential, there is no
explanation available for the exactness of formula (6.31). In fact, the question
~ why is the qc-SUSY approximation exact for shape-invariant potentials? —
is still open. A possible explanation might be based on the discussion of the
Nicolai map by Ezawa and Klauder [EzKI85], see also Sect. 7.3 below. Ezawa
and Klauder have shown that the (Euclidean-time) path integral for SUSY
quantum mechanics can be transformed into a Gaussian path integral via this
Nicolai map. Gaussian path integrals, in turn, are exactly evaluated by the
method of stationary phase. ¥

6.4.2 Numerical Investigations

We have seen that the qc-SUSY approximation (6.32) does lead to exact
bound-state spectra for (by other means) exactly solvable problems. Here im-
mediately comes the question to mind: Does this approximation yield also bet-
ter eigenvalues (than the WKB approximation (6.13) does) for those problems
which are not exactly solvable? To answer this questions we have investigated
a class of power SUSY potentials of the form [InJu94]

4 Note that recently it has been argued [BaKhSu93] that for the new shape-invariant
potentials found by [KhSu93] the qc-SUSY does not yield the exact eigenvalues.
In contrast to the arguments given in {BaKhSu93] this might happen because of
the singular nature of these potentials. See the footnote on p. 64.

*) Svao‘kowever EHrKeSuQI , De NLQO]
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&(z) := \/’;a_mzd for z>0. (6.57)

Here a > 0 and d > 1 are free parameters. Note that the above definition is
only valid for the positive Euclidean half-line. For £ < 0 we may define the
SUSY potential either through an antisymmetric or symmetric continuation,
which leads to a good and broken SUSY, respectively:

&(zr) = h;m|z|dsgn (z) for good SUSY, (6.58)
&(z) = ha |z|*  for broken SUSY. (6.59)
V2m

The associated partner potentials read

2
Vi(z) = 2h—m (azzzd + ad |z|d‘1) =Vi(-x) for good SUSY, (6.60)

2
Vi(z) = :—m (a’2®! + ad|z|*"'sgnz) = V¢ (-z)
for broken SUSY
and are shown in Fig. 6.3 and Fig. 6.4, respectively.
For the SUSY potentials (6.58-6.59) the qc-SUSY quantization condition

(6.32) can be evaluated analytically with the result (I" denotes Euler’s gamma
function)

(6.61)

2d/{d+1
L P | T(E yr( 1,4 [+ 662
"Tom T e \"T 272 : '

where A = 1 for the case of good SUSY and 4 = 0 for broken SUSY,

1] T
T T T
\ :
1 : '
¥ : ]
v : '
u& \ : 1y
~ v, : .',I
—~ = \ : —
O \ : )
+ \ :
AN :
) : 4
) : 7,
\‘\\ //"
-6 1 i 1 0 ] MR i |
-1 0 1 -1 0 1
T T

Fig. 6.3. The partner potentials (6.60) for values a = 1 and d = 2 (solid line), 3
(long dashes), and 5 (short dashes).
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Fig. 6.4. The potential V_ for bro-
-6 1 1 I ken SUSY (6.61) and a = 1, d = 2
1 0 1 (solid line), 3 (long dashes), 4 (short
T dashes), and 6 (dotted line).

respectively. These energy eigenvalues are in general not exact. For arbitrary
d and good SUSY only E; = 0 will be exact. The associated normalized
ground-state wave function reads

_ a d+1\@+D a
¢ (z) = I"(—lj (——22—> exp {..d—i- 1|:z:|d+1}. (6.63)

d+1

For d = 1 and good SUSY we arrive at the supersymmetric harmonic oscillator
problem, where (6.62) provides the exact spectrum for all n. Formally, for
good SUSY we may also include the case d = 0, if in this limit in the potential
(6.60) the term Zad|z|?~! is interpreted as +ad(z).5 In this case only n = 0
is allowed.

Another case, where (6.62) becomes exact for all n and for good as well
as broken SUSY, is the limit d — oo:

Kn? 1, 4A\°
; + 4+ 2 .64

Jm By =5 ("+2i2> (6:64)
That this is the exact spectrum can be seen by realizing that both, (6.60 )
and (6.61) become infinite square-well potentials in this limit:

for |z|<1

. 6.65
for |z|>1 (6.65)

. 0
V- =
m v = {
This limit has to be taken with some care. Actually, the Hilbert spaces H*
change in this limit, too: L2(R) — L3([-1,1]). In addition one has to specify
boundary conditions at £ = 31 in order to have a well-defined problem. The

% Indeed, for d = 0 the SUSY potential (6.58) coincides with that for the §-potential.
See Example 4 on p. 31.
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type of boundary conditions which has to be chosen is related to the require-
ment that the SUSY structure, that is, good or broken SUSY, is conserved in
the limit d — oo. It is obvious that for this one has to impose, for good SUSY,
Neumann conditions at £ = +1 for V.. and Dirichlet condition at z = %1 for
V.. Thus parity as well as SUSY remain to be good symmetries. For broken
SUSY (and, hence, broken parity) we have to choose for V_ Dirichlet condi-
tions at £ = —1 and Neumann conditions at z = 1, and vice versa for V, . See
also our discussion of Example 3 and 4 in Sect. 3.5.3. That these boundary
conditions are indeed the one which are simulated by the finite-d system in
the limit d — oo can also be seen by looking at the numerically calculated
energy eigenfunction of the Schrédinger equation [InJu94].

For finite d we have compared the eigenvalues (6.62) and those obtained
via the WKB formula (6.13) with the numerical exact eigenvalues of the
Schrédinger equation. Here we have chosen the parameter a to unity. Note
that the potentials (6.60) and (6.61) obey the scaling property

=Xz, a—a/X¥, E E/N (6.66)

For the case of good SUSY we have considered the parameter values
d = 2,3,5. The results are given in Tables 6.2-6.4. The graphs for the corre-
sponding partner potentials are shown in Fig. 6.3. Note that V_ is a double-
well potential with a barrier at £ = 0. Hence, the WKB formula cannot be
applied for n = 0. This is indicated by the abbreviation N.A. in the tables.
These wells become smaller and deeper with increasing d and are located near
z = *1.In the tables we also list in brackets the relative error

(Eexact - Eapprox)/Eexact (667)

in percent. These relative errors are also shown in Figs. 6.5-6.7. Because of
the scaling property (6.66), the relative errors are independent of the coupling
parameter a. The case of good SUSY with odd d has also been studied by
Khare [Kha85]. See, however, the corrections made in [DuKhSu86].

In the case of broken SUSY we have made explicit calculations for the
parameter values d = 2,3,4, and 6. A graph of the corresponding potential
V_ is given in Fig. 6.4. Note that V, (z) = V_(—z) in this case. The numerical
results are presented in Tables 6.5-6.8 and the relative errors are visualized
in Figs. 6.8-6.11. Note that, because of the symmetry between V, and V.,
also the WKB approximation yields identical eigenvalues E; = E;} for both
potentials.

By inspecting the numerical results we see that the qc-SUSY approxima-
tion is in general not better than the usual WKB approximation. However, the
interesting observation we have made is, that the qc-SUSY estimate is always
above the WKB estimate:
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Eqc-susy 2 Ewks- 2 Ewkp+- (6.68)

Furthermore, only for the case d = 2 and good SUSY we found one value
Eqc-susy (for n = 2), which is slightly below the exact eigenvalue. Note that
the corresponding partner potentials are not differentiable at £ = 0. See the
solid line in Fig. 6.3. For this example we also find an unusual behavior of the
relative error. That is, the absolute value of this error is not monotonically
decreasing with increasing n. It rather shows an oscillatory behavior (see Fig.
6.4). Excluding such cases we arrive at the more interesting observation

ch-—SUSY > Eexact > EWKB+ (669)

for all continuously differentiable partner potentials V.. In the case of broken
SUSY we even found for such potentials that Ewkp- is always below the
exact value:

ch—SUSY _.>. Eexact _.>. EWKB— - (6.70)

We again emphasize that these three relations are not strict inequalities based
on some mathematical proof, but rather express the observation made in our
numerical investigations.

To support these relations we have also considered other systems, which
do not belong to the above class of power SUSY potentials. Here we present
results for exponential-type SUSY potentials

P(z) = = sinh(z) good SUSY,
o(z) = -\7%-; cosh(z) broken SUSY, (6.71)

&(z) = -\7%-; exp{z?/2} broken SUSY.

The numerical results displayed in Tables 6.9-6.11 and in Figs. 6.12-6.14
support our previously made observation.

In conclusion, we can say that the qc-SUSY approximation is as good as
and in particular cases even better than the WKB formula. We have made
the interesting observation that for some potentials V. the qc-SUSY approx-
imation always overestimates the exact values. In the case of broken SUSY
we, in addition, observe that the WKB approximation for some potentials
always gives an underestimation. Because of this special feature, the approx-
imation can be improved by taking an average of the results from these two
approaches [InJu94]. Recent discussions which also include higher-order cor-
rections to the WKB and CBC (good SUSY) formula [AdDuKhSu88, Var92]
show that the above observation may only be true for the lowest-order as
discussed here. Finally, let us note that a similar phenomenon, namely the or-
dering of energy levels of spherical symmetric potentials, has been observed
within a WKB approximation [FeFuDe79] and a rigorous proof based on the
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algebra of the generalized creation and annihilation operator (3.3) has been
given by Grosse et al. [GrMa84, BaGrMa84, Gro91]. For a derivation of lower
and upper bounds to the ground state energy of a given Hamiltonian based
on the factorization method see [Schm85].

Table 6.2. Comparison of the exact numerical eigenvalues with that obtained via
the qc-SUSY and the WKB approximation for V. (WKB™) and V4 (WKB™) for
d = 2 and good SUSY. Energies are given in units of 5?/2m. The relative errors
parenthesized are given in %

n 0 1 2 3 4 5 method

E; 0000 2.481 6.938  11.834 17.456  23.485  exact
E; 0000 2.753 6.937 11912 17.481 23538 qc-SUSY
(+10.95) (-0.14) (+0.65) (+0.14) (+0.23)

E; NA. 2462 6.821  11.817 17.409 23475 WKB~
(+4.88) (~1.55) (-0.07) (-0.27)  (-0.04)

Ef, — 2602 6.791  11.807 17.397 23467 WKB*
(-0.76)  (-2.12) (-0.23) (-0.34)  (-0.08)

Table 6.3. Same as Table 6.2 for d = 3 and good SUSY

n 0 1 2 3 4 5 method

E7 0000 2302 7.490  13.889  21.451  30.021  exact
E; 0000 2694 7.619  13.997 21549  30.116  qc-SUSY
(+17.04) (+1.73) (+0.78) (+0.46) (+0.32)

E; NA. 2378 7.364  13.779  21.356  29.940 WKB~
(+3.34) (-1.67) (-0.80) (-0.45) (-0.27)

EY ., — 2123 7.372 13.728  21.323 29917 WKB*
(-7.74)  (-7.74) (-1.16) (-0.60) (-0.34)

Table 6.4. Same as Table 6.2 for d = 5 and good SUSY

n 0 1 2 3 4 5 method

E; 0000 2155 7.908 16.096  26.215  38.148  exact

E; 0000 2,625 8.333 16.378 26454  38.372  qc-SUSY
(+21.78)  (+5.37) (+1.75) (40.91) (40.59)

E; NA. 2010 7.743 15.829  25.939  37.885 WKB~
(-6.75) (-2.09) (-1.66) (-1.05)  (-0.69)

EfYf ., — 1675 7.549 15.706  25.853  37.820 WKB™*

(-22.26)  (-4.54) (-2.42) (-1.38)  (-0.86)
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Fig. 6.5. Relative errors for
the qc-SUSY and the WKB
approximations for d = 2
and good SUSY.

Fig. 6.6. Same as Fig. 6.5
for d = 3 and good SUSY.

Fig. 6.7. Same as Fig. 6.5
for d = 5 and good SUSY.
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Table 6.5. Same as Table 6.2 for d = 2 and broken SUSY

n 0 1 2 3 4 5 method

EEX 0.708 4673 9.288 14.585  20.411  26.682  exact

EEX  1.093 4.727 9.341 14.630  20.453  26.728  qc-SUSY
(+54.27) (+1.16) (+0.57) (4+0.31) (40.21) (40.17)

EX  0.658 4.571 9.233 14.544 20381 26665 WKB*
(-7.09)  (-2.20) (-0.58) (-0.28) (-0.14) (~0.07)

Table 6.6. Same as Table 6.2 for d = 3 and broken SUSY

n 0 1 2 3 4 5 method

EX 0616 4.696 10.552  17.526  25.621  34.647  exact

EX 0952 4.949 10.648  17.638  25.636  34.745  qc-SUSY
(+54.61) (4+5.38) (+091) (4+0.64) (+0.36) (40.28)

EX 0357 4.598 10.380  17.413 25516  34.566 WKB*
(-42.11) (-2.09) (-1.63) (-0.65) (-0.41) (-0.23)

Table 6.7. Same as Table 6.2 for d = 4 and broken SUSY

n 0 1 2 3 4 5 method

EX 0574 4.679 11.288  19.522  29.281 40432  exact

EX 0875 5.076 11.494  19.692  29.438  40.583  qc-SUSY
(+52.39) (+8.47) (+1.82) (40.87) (+0.54) (+0.38)

EEX 0.207 4.528 11.043  19.297  29.081 40254 WKB*
(-63.96) (-3.24) (-2.17) (-1.15) (-0.68)  (~0.44)

Table 6.8. Same as Table 6.2 for d = 6 and broken SUSY

n 0 1 2 3 4 5 method

EX¥ 0533 4.600 12.053  21.939  33.992  48.095  exact

EEX 0.793 5.217 12.524  22.297 34304 48389  qc-SUSY
(+48.81) (+13.42) (+3.90) (+1.63) (+0.92) (+0.61)

EX  0.083 4.314 11.686  21.520  33.575 47697 WKB*

(-84.40) (-6.21)  (-3.05) (-1.91) (-1.23)

(~0.83)
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broken SUSY.

Fig. 6.9. Same as Fig. 6.8
for d = 3 and broken SUSY.

Fig. 6.10. Same as Fig. 6.8
for d = 4 and broken SUSY.
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Table 6.9. Results for the good-SUSY potential #(z) = \/h2/2m sinh z. Here the
WKB approximation respects the exact relation E; = E:_l, n=1213,...

n 0 1 2 3 4 5 method

EX¥ 0000 3245 7229 11811 16919 22506  exact
Ef 0000 3265  7.253  11.838 16948 22539  qc-SUSY
(+0.61) (+0.33) (4+0.22) (+0.17) (+0.15)

E; -0.125 3.155  7.152  11.742 16.857 22450 WKB"
(-2.77)  (-1.07)  (-0.59) (-0.37) (-0.25)

Table 6.10. Results for the broken-SUSY potential #(z) = \/h2/2m coshz

n 0 1 2 3 4 5 method

EX 3438 7.116 11424  16.284  21.642  27.458  exact

EX 3530 7.178 11476  16.330  21.686  27.503  qc-SUSY
(+2.68) (+0.88) (40.45) (40.28) (4+0.20) (40.16)

EX 3338 7.033 11.551  16.218  21.581  27.404 WKB*
(-2.92) (-1.16) (-0.64) (-0.41) (-0.28) (-0.20)

Table 6.11. Results for the broken-SUSY potential &(x) = \/h2/2m exp{z?/2}

n 0 1 2 3 4 5 method

EX¥ 3533 7.678 12.959  19.263  26.521  34.682  exact

EX 3593 7.742 13.025  19.333  26.595 34.762  qc-SUSY
(+1.71) (+0.83) (40.51) (40.36) (4+0.28) (40.23)

EX  3.337 7.491 12775  19.083  26.345 34.512 WKB*
(-5.54)  (-2.44) (-1.42) (-0.94) (-0.66) (-0.49)
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for the good-SUSY potential
&(z) = \/h?/2m sinh x.

Fig. 6.13. Relative errors
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Fig. 6.14. Relative errors
for the broken-SUSY potential

&(z) = \/h?/2m exp{z’/2}.






7. Supersymmetry
in Classical Stochastic Dynamics

In 1979 Parisi and Sourlas {PaSo79] pointed out that there is a hidden supersymme-
try in classical stochastic differential equations. In fact, it is possible to reformulate
some supersymmetric models of field theory in terms of classical stochastic equa-
tions [PaSo82]. The existence or non-existence of a stationary solution of a classical
stochastic system is related to good and broken SUSY in the corresponding field
theory, respectively [FeTs82]. In the case of one cartesian degree of freedom, whose
averaged dynamics is characterized by a one-dimensional Fokker-Planck equation,
it can be shown [Kam81, PaSo82, CoFr83, BeBr84] that this equation may be put
into the form of a supersymmetric Schrodinger equation with imaginary time. The
corresponding Hamiltonian can be identified with that of Witten’s model. This anal-
ogy explains the fact that the Fokker-Planck operator for a given drift potential and
diffusion constant is essential iso-spectral to the Fokker-Planck operator with the
inverted drift potential and the same diffusion constant [BeBr84, Ris89]. The break-
ing of SUSY in the Langevin dynamics of non-potential systems is also related to
the occurrence of corrections to the linear fluctuation-dissipation theorem [T¥i90].

In this chapter, we will review the relations between the classical stochastic dy-
namics of one cartesian degree of freedom and supersymmetric quantum mechanics.
We will show that SUSY may be utilized to derive decay rates for bistable and
metastable Fokker-Planck equations. For applications to field theories of statistical
and condensed matter physics see, for example, {Sou85, ZiJu93].

7.1 Langevin and Fokker—Planck Equation

The dynamics of many complex systems in physics, chemistry and biology can
be described phenomenologically by the so-called Langevin equation [Lan08,
Arn73, Kam81, Gar90)

i=F(n) +£(t). (7.1)

Here 11 € R denotes a macroscopic degree of freedom, the time-evolution of
which we are interested in. The quantity £ € R is assumed to be a random
function of time. The stochastic differential equation (7.1) first appeared in
the work of Langevin [Lan08] who studied a simplified approach of Einstein’s
[Ein05, Ein06] and Smoluchowski’s [Smo06] description of Brownian motion.
In this model 1 denotes the momentum (or for highly overdamped motion the
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position) of the Brownian particle, F stands for an external deterministic force
and ¢ is a random function characterizing the fluctuations of the medium in
which the Brownian particle is immersed. Properties of this random function,
which is usually called noise, are characterized by expectation values. Without
loss of generality, one may assume

(€(t) =0, t>0, (7.2)

because a non-vanishing expectation value can be absorbed in the determin-
istic force F. The Langevin equation (7.1), as it stands, may characterize
physical systems with noise £ correlated on a given time scale 7. as, for ex-
ample [Gar90], like

EWEE) = o exp{-lt~ /), D>o0. &

Such a noise is called colored noise and is a realistic description of various
physical systems. For many systems, however, it is justified to consider the
idealization of so-called d-correlated or white noise by taking the limit 7, \, 0:

(E(t)E(t) = Dot — t'). (7.4)

To make the problem definite, in addition to (7.4), we will assume that this

white noise has a Gaussian distribution, which is uniquely characterized by
(7.2) and (7.4):

()= [Deexpd 55 [arem 10 (739)
0

Usually, one is not interested in a particular solution of (7.1) for a given
realization £. Of interest are, however, properties of typical realizations. These
properties may be deduced from the probability density for arriving at z € R
in a given time t if the particle initially started in zo € R:

my(z,T0) = (6(n(t) — z)), o = n(0). (7.6)
This transition-probability density can be shown [Lesch81, Kam81] to be
determined by the so-called Fokker-Planck equation [Fok14, Plal7]

= mu(z )_2_22_
ot T T He

mo(z,z0) = (8(z — o))

mye(x,T0) + % F(z)m(z,z0), )

This is a diffusion equation with diffusion constant D/2 and an additional
drift coefficient F'.
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In the following we will show that the Fokker-Planck equation can be put
into the form of an imaginary-time Schrodinger equation with supersymmetry
of the type of Witten’s model. The drift coefficient F will turn out to play the
role of the SUSY potential . As a consequence the diffusion problem with
drift F = & will be related via SUSY to the same problem with inverted drift
F=-¢.

7.2 Supersymmetry of the Fokker—-Planck Equation

In this section we will study the Fokker—Planck equation for two drift coeffi-
cients which differ by an overall sign, Fy := +&. Being a deterministic force
in one dimension, we may introduce the drift potential Uy = —F4. In the
present case we have the pair

Us(z) = / dz8(z) = ~Us (). (7.8)
0

Typical drift potentials Uy and their related drift coefficients are shown in
Fig. 7.1. Here we adopt the convention that the stable drift potential, if there
is any, is given by U.. This convention will turn out to be equivalent to our
convention (3.19) made for the Witten model. The corresponding Fokker-
Planck equation reads
2

2 mt(@a) = 2 o mit(a,a0) e eIz, 20), (7.9)
where we have introduced an additional superscript in the transition-probabilit
density in order to discriminate the solution for the drift potential U_. from
the one for Us.

Making the ansatz [Kam81]

i (a,20) = exp { =5 U2@) - Vs (o)l } Kale )

(7.10)
K+(z,0) = (6(z — 2o)),
one arrives at the imaginary-time Schrodinger equation
~-D %Ki(z,t) = HiKi(:L',t), (7.11)
where
D? 92 1, D _,

appear to be the partner Hamiltonians of Witten’s model for unit mass upon
the substitution
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¢-Vv28, Dok (7.13)

Clearly, the drift coefficient ¢ plays the role of the SUSY potential and, hence,
the drift potential U_ may be identified with the superpotential (3.12). With
the initial condition (7.10) the solution of (7.11) is given by the heat kernel

Ki(z,t) = (z|exp{~tH1/D}|zo). (7.14)

Denoting the eigenvalues of Hy by AX (we will assume a purely discrete
spectrum for simplicity) and the associated eigenfunctions by ¢, that is,

Hi¢fjl:(z) :Af¢f(z), n= 0, 1,2,"', (7.15)

we arrive at the spectral representation [Kam81]
1
i (2,30) = exp {~ V) - U (oo}

oo (7.16)
xS exp{ - 3 thi (o oo
n=0

D

Because of SUSY we know that H_ and H are essential iso-spectral. That
is, the strictly positive decay rates for the drift potential U_ and the inverted
one U, = ~U_ are identical [Ris89]. This fact is even true for colored noise,
where it is also related in some sense to an underlying SUSY [LeMaRi87].

In addition, in the case of a good SUSY, we have a vanishing eigenvalue
Ao = 0. As a consequence, good SUSY implies the existence of a stationary
non-trivial distribution

P(z) := tli)r&mt_(z,zo), (7.17)

which, due to our convention, belongs to U_.

7.3 Supersymmetry of the Langevin Equation
The Langevin equation associated with the Fokker-Planck equation (7.9) of
the previous section reads

i = £8(n) + £5(2), (7.18)

where, as in Sect. 7.1, £+ and £~ denote independent Gaussian white-noise
variables with the same diffusion constant D = 1:

(EFRET )+ = (€~ (E(t")- = 8(t - 1),

(Os:= [ Deiexp{~§ [ar [e*m]z} ()
0

(7.19)
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It is interesting to note that £&& = 7 + &(n) are the Euclidean versions of
the classical canonical momenta introduced in (4.26). In other words, they
may be considered as the canonical momenta of the Euclidean version of the
quasi-classical Lagrangian (4.25):

= . 1 .
Ly, cuer (7)== (0 F &(m))”. (7.20)
Let us now consider the transition-probability density associated with the
Langevin equation (7.18):
mi (z,20) = (§(n(t) — @)z, 2o =n(0). (7.21)
Using the definition (7.19) we find the following path-integral representation

mi (z, xo) / D¢+ exp {——/dr fi(‘r }(5(77(t) ~x). (7.22)
n(0)=zo

This Gaussian path integral may be transformed into a Wiener-type path
integral upon the transformation £+ — 7, which is called Nicolai map
[CeGi83, KiSaSk85, EzK185, GrRo85, SiSt86]:

£4(t) = () T B(n(1))- (7.23)
Noting that
+
= (g ram)ie-v) (7.24)
we find
m¥ (z,%o) / Dn eXP{—— / dr [i(1) F $(n(7))] }
7(0)=zo
xd(o(e) - o)t | (3 7 #00)) ¢ - 1)
n(t)=z . (7.25)
= [ orew {~ [ar E;,eue,,w(r),n(r))}
7(0)=zo 0

x det [(% ¥ ¢'(n(t))> a(t — t')] .

Here several remarks are in order. The functional determinant appearing in
(7.25) can be given a definite meaning if the associated Nicolai map (7.23)
is properly interpreted as a change from the stochastic Gaussian process in
&% to a Wiener process in 7. Ezawa and Klauder [EzKI85] have considered a
Stratonovich- (Str) and an It-related interpretation of (7.23) leading to
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t
(1) = con X 1 & (n(r
det [(577(t') Ltr const. X € p{q:2 -O/d &' (n( ))} , 726)
(1)
det [(577(t') Lw = const. X 1,

where the (infinite) constant may be absorbed by the normalization factor.
Similar, the Euclidean action appearing in the exponent of (7.25) has to be
interpreted in a consistent way:

¢ t
[ a0 =5 [ a7 1) + #ato)]
0 ’ (7.27)

t
- / dr 7(r)B(n(r)).
0

It is the last integral of this relation which requires a proper interpretation,
because of the stochastic nature of (7). For the Stratonovich, respectively,
the It6 interpretation we have [EzKI85]

t
+ [arimemm)| =+ / dz8(z) = — [Us(z) - Us(zo)],
° Str (7.28)
+ / dri(r) 8(n(r))| = - [VUs(z) - Us(zo)] F / ar & (5(7)),
0 Itd

where Uy is defined in (7.8). Both interpretations lead, of course, to the same
Wiener-type path-integral expression

mi (z,30) = exp {~ [Ux(z) ~ Us(20)]}

n(r)=z

< [ Dnexp{—— [erti (T)+¢2(n(f))i¢'(n(f))]} (729)

n(0)=zo

= exp {~ [Us(2) ~ Us(2o)]} {zle™""|zo),
where H is given in (7.12). This result coincides, as expected, with (7.10-
7.14).
Let us note, that the functional determinant in (7.25) may also be ex-
pressed in terms of a fermionic path integral

det [ (5 20D ) 8te -]

Str

= /'ng/'Di,Zexp{/tdﬂ,b(‘r ( 4:¢'(77(7'))> 1//’("')} .
0

(7.30)
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Here we have taken the Stratonovich-related interpretation for the determi-
nant.! The fermionic path integral, as it stands, is not well defined. To give it a
meaning Ezawa and Klauder [EzKI85] used a time-lattice definition € := t/N,
¥; = ¥(je), and showed that the right-hand-side of (7.30) may be given by?

N —_
i / jl;IO(dlbjdlbj)

. (7.31)
X exp {Z [@j(% ~i-1) F %@(ﬂ(fﬂ)@(% + ¢j-1)] } :

7=0

where 1_; := 0, which they called half-Dirichlet boundary condition. Having
this in mind we may represent the transition-probability density as follows

mi(z, z0) = n(t/) an / Dy / DY exp{ / erO} (7.32)

n(0)=zo

where

LE i= 2+ 58 () — i+ ()P (733

The Lagrangian L is, up to a total time derivative, invariant under the SUSY
transformations

n=&p—ve, SY=c(nxdm), =>0F0n)E. (7.34)

There exists also another time-lattice definition for the right-hand-side of
(7.30) which reads (cf. eq. (A.7) of [EzKI85])

N -—
Jim [ TTcaw,ai)
=0

N (7.35)
= €, - -
XN exp {Z [%‘(%‘ = ¥i-1) £ @' (n(ed)); (Y5 + lbj—l)] } Yo,
j=0

where again the half-Dirichlet boundary condition ¢._; := 0 is used. Here, in
essence, the overall sign of the SUSY potential ¢ has been changed and the
exponential is now sandwitched between ¥x = ¥(t) and ¥p = ¥(0). With
this definition we can put the transition-probability density into the form

! Because of (7.26) the Ito-related interpretation will only lead to a trivial fermion
path integral. There would be no coupling between the bosomc variable 1 and
the fermionic variables y, ¥.

% See eq. (3.19) in [EzKI85). Note, however, that our convention (4.63) for the
Grassmann integration rule differs from that of Ezawa and Klaunder.
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n(t)==

t
m(z,z0) = /Dn /w/vz/n/;(t)exp{—O/dTLli}¢(0), (7.36)

7(0)=zo
where

LE 1= 5P+ 28 () — PO FE 0. (7.37)
Again, because of Lf = L§, this Lagrangian is invariant under the SUSY
transformation (7.34).

It should be noted, that these two representations of the formal fermionic
path integral (7.30) are related to the invariance of Witten’s model under
a change of an overall sign of the SUSY potential. See our discussion of
Sect. 3.3.2. This two-fold SUSY has been interpreted by Gozzi [Goz84] as
macroscopic manifestation of Onsagers principle of microscopic reversibility.
Indeed, the backward Fokker-Planck equation can be obtained from (7.9)
by taking its adjoint on the right-hand-side. This, however, is equivalent to a
change of the overall sign of the SUSY potential. In the following we will study
some implications of this symmetry between the forward and the backward
process.

7.4 Implications of Supersymmetry

7.4.1 Good SUSY

First we will consider the good SUSY case. Typical drift and SUSY potentials
are shown in the left row of Fig. 7.1. From our discussion of the Witten model
we know that the decay rates AL in the potentials Uy are related by

Ai=A;=A,>0, n=123,...,

(7.38)
A =0,
and the ground-state wave function of H._. is given by
_ 1 1
& (:z:)=Cexp{—5/dz¢(z)}=Cexp{—5U_(z)}, (7.39)
0

where C denotes the normalization constant. The transition-probability den-
sities read

m; (@,20) = |65 @) + 2LEL ™ -At/D 4 ()47 (),
n=1

& (zo) =

mi (z,70) = 22(Z0) Y e tPgt  (2)d 1 (zo)-
n=1 '

%o ()

(7.40)
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As already mentioned, because of good SUSY, there exists a stationary dis-
tribution for U_, which is given by the SUSY ground state

P(z) = |¢5 (z)* = C? exp {—-% U_(.'I:)} . (7.41)

Due to the SUSY transformation (3.9) we can also relate the normalized decay
modes ¢F of U_ with that of U, and vice versa:

5 @) = = (D 5+ 9@)) 42(0),

470 = = (D 3z~ 2@ 61,(0)

SUSY in not only useful for obtaining the above connections between the
diffusion in a given drift potential and the diffusion in the inverted poten-
tial. It also proofs to be useful for explicit calculations. For example, for all
shape-invariant SUSY potentials listed in Table 5.1 one can easily find exact
solutions of the associated Fokker-Planck equation [HoZh82, Eng88, Jau88].
Approximate results can also be obtained, for example, via a variational ap-
proach. Here, in essence, one obtains from a variational ansatz the ground-
state properties of H,, that is, A; and ¢ . Then via (7.38) and (7.42) one
finds the timescale 1/X;, and mode ¢7 with which the system U_ relaxes into
the stationary distribution (7.41). This process can in principle be continued
to obtain a hierarchy of diffusion potentials in analogy to our discussion at
the end of Sect. 5.1.

Here we limit ourself to an approximate derivation of the smallest non-
vanishing eigenvalue A; based on a SUSY method originally devised for tun-
neling problems [KeKoSu88, Wit92]. We want to find the ground-state prop-
erties of the Hamiltonian H, of the pair of partner Hamiltonians

n=12.3,.... (7.42)

D ¢
H; = T3 32 + Vi(z) (7.43)
with partner potentials
Vi(z) = %qb? () + %?'(z). (7.44)

See left row of Fig. 7.2 for a plot of V_, V, and &2, which are associated
with the drift potential given in the left row of Fig. 7.1. For simplicity, we will
assume that & is an odd function, which implies that Uy and V. are even
functions. We further assume that U_ is a bistable potential as shown in Fig.
7.1 left row (for the corresponding partner potentials see Fig. 7.2 left row)
with a high barrier between the two minima. The last assumption implies
that the eigenvalue A; > 0 will be very close to zero. Here we note that a
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V_(z)

Vi(z)

10 T 1 25 T
75 |- - 20 7
Oy ' 4 8°r i
o : % 10 |- ;
25 I~ 1 5 b -

0 1 0 i

2 -1 0 1 2 0.5 0 0.5 1

r r

Fig. 7.2. The partner potentials Vi and &2 for the drift potentials shown in Fig. 7.1.
Again the left row corresponds to the good-SUSY and the right to the broken-SUSY
case. The diffusion constant D has been set to unity.
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non-normalizable eigenfunction of H, with zero eigenvalue is given by (cf.
eq. (3.14))

o o exp{U-(2)/ D} = exp{~U4(2)/D}. (7.45)
5 (z)
Obviously, for z — %00 this function diverges. However, for small values of
it may be a good approximation to the exact ground state ¢ of H,. In fact,
regularizing (7.45) for large z values one can use it as a trial function for a
variational approach [BeBr84, MaSoZa88].

Here, however, we choose a perturbative approach. Let us consider the
following nodeless and normalizable wave function [KeKoSu88, Wit92]
+oo
C

o - 2
)= [ ¢ @), (7.46)

z|

For small = values this wave function is similar to (7.45) and therefore is a
good approximation to ¢g . It is, however, not differentiable at z = 0. In fact,
it is easily verified that ¢ is the exact zero-energy ground-state wave function
for the Hamiltonian

H := H, —2D? (¢5(0))’ 6(x). (7.47)

The Hamiltonian H; may be viewed as Hamiltonian H with additional é-like
perturbation. Knowing the ground-state properties of H one may obtain those
of H, via a perturbation expansion. In a first-order perturbation expansion
the ground-state eigenvalue of H, is given as

D2

N [do(Hy - d@) = 2D* (0) #O = 5- 0% (149)
R

Hence, the eigenvalue A, is essentially given by the normalization constant C
introduced in (7.39). Using the Laplace method for small D in the calculation
of C one arrives [Wit92] at the result of Kramers [Kra40]

D
A - \/Uf(:z:min)|U'_'(-'L'max)|

exp { = 5 [U-(omas) ~ U-(min)] |

(7.49)

Here .y, is the position of the (right) minimum of U_ (zy;, =1 in Fig. 7.1
left row) and Tmax is the position of the barrier of U~ (zmay = 0 in Fig. 7.1
left row). Despite the fact that this derivation has been given for a symmetric
drift potential it can be used for asymmetric potentials, too [Ris89).

Higher eigenvalues A, may be estimated via the WKB approximation
Vi) = A = Vi(gr)]
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/ dz/3( —Va(@) = Dr (n+ (7.50)

L
or via the qc-SUSY approximation [$2(z1) = 2A = $2(zg)]

/dz\/Z/\ — $2(z) = Drn. (7.51)

These approximations may even be applied for an approximation to A, if D ~
U(Zmax) = U(Zmin), where the Kramers result is not applicable. Our discussion
of Sect. 6.4.2 in addition shows that a combination of both approximations
may yield lower and upper bounds to the exact decay rates.

7.4.2 Broken SUSY

The discussion for the broken-SUSY case is similar to the previous one. Here
the decay rates for Uy (see Fig. 7.1 right row) are identical, that is,
A=A =2 >0, n=0,12,.... (7.52)

The corresponding transition-probability densities are

m (z,70) = exp {ﬂ:% U_(z) - U- (:z:o)]}
x fj e /D¢ (2)% (z0),

n=0

(7.53)

where the decay modes are related by

$@) = 23 (D " ¢<z)) #% (). (7.54)

Note that because of broken SUSY (Aq > 0) there exists no stationary distri-
bution.

As for the good-SUSY case there are shape-invariant SUSY potentials with
broken SUSY. Hence, it is also possible to study the unstable or metastable
Fokker—Planck equation exactly. As an interesting example we mention

&(z) := $ptanhz + a, $>0,a>0,

(7.55)

U_(z) = &y In(cosh z) + az.

For a < ¢ SUSY is good (see Table 5.1). However, for a > $¢ SUSY will be
broken. The corresponding drift potential U_. for various values of a is shown
in Fig. 7.3. Of particular interest is the broken case a = &, which describes
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U._ (I)/Qo

-10 -5 0 5 10 Fig. 7.3. The drift potential (755) for
T various values of a/®.

the diffusion of a free particle near a soft wall. The corresponding partner
potentials read
_ $o(®o ¥ D)

1
Vi(z) = = |82 + a?
+(2) 2[0 4 cosh?z

+ 2ad tanh :z:] , (7.56)

which is the so-called non-symmetric Rosen~Morse potential [RoMo32]. The
eigenvalue problem of the associated Schrodinger equation has been studied
in various ways [RoMo32, Nie78, JuIn86, BaInWi87).

For obtaining approximate decay rates of not exactly solvable potentials
one can choose the same techniques as in the good-SUSY case. For example,
for a high barrier of a metastable potential U_ the smallest decay rate Ao > 0
will be very close to zero. Hence, for ¢ we may take the same ansatz as
before,

[e e}
o(z) = CeU—(|z|)/D/dze—2U—(Z)/D, (7.57)

=i

and arrive at
Ao~ 3 C2D2. (7.58)

Again the normalization constant C' may be evaluated via the Laplace method
which yields the result

%0~ 22U @iV @)
exp { ~5 [U- (oman) = U-(omin)}-

As before Zpyin and Tmax denote the positions of the local minimum and
maximum of U_, respectively. The above result differs from that of the bistable

(7.59)
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potential by a factor two which is due to the fact that the metastable potential
has only one instead of two local minima.

For lower potential barriers or for the other decay rates one may also apply
the WKB approximation (7.50) or the qc-SUSY approximation for broken
SUSY

/ dz\/2A—%2(z) = Dr (n + 1). (7.60)

zy

Finally, let us point out that in the Fokker—Planck equation one may allow
for a singular drift coefficient, which produces a cusp-like barrier in the drift
potential. As an example, let us consider the following drift.

&(z) := __s\g/né — 22, Us(z) = (% 23 + \/H) . (7.61)
For the shape of the drift potentials see Fig. 7.4. Obviously, these metastable
potentials do not have a stationary distribution and, hence, SUSY is broken.
However, they have not necessarily identical decay rates. Mathematically, this
could happen because then the superalgebra holds only formally. The corre-
sponding partner Hamiltonians are only formal operators and one has to define
carefully their proper domains. See also our remark in point c) of Sect. 5.1.
Physically, the system with U_ may decay more rapidly than that with U,.
This is because, once the particle has reached the top of the cusp-like barrier
of U_. with a finite velocity it will never return into the well. In the case of U,.,
however, because of the flatness of the barrier, the particle has a good change
to move back into the well. Hence, we expect U, to have a smaller decay rate
At then U_. For an overview on these recent results see [HiTaBo90].

U-(z)
Ui (z)

Fig. 7.4. The metastable drift potentials (7.61) showing a cusp-like barrier and well
due to a singularity in the SUSY potential.






8. Supersymmetry
in the Pauli and Dirac Equation

The first examples of supersymmetric quantum systems we have mentioned in Sect.
2.1.1 are the Pauli and Dirac Hamiltonian. Here we will discuss some of the im-
plications of supersymmetry for systems which are characterized by these Hamilto-
nians. In particular, we will consider the Pauli paramagnetism of a two-and three-
dimensional non-interacting electron gas. The (IDOS regularized) Witten index is
shown to be related to the zero-temperature magnetization of such systems. It is
also shown that breaking of SUSY gives rise to counterexamples of the so-called
paramagnetic conjecture.

Because of the graded Hilbert space SUSY is a rather natural symmetry of spin-3
systems. In fact, supersymmetric quantum mechanics has originally been devised for
spin systems in statistical mechanics [Nic76]). Nowadays SUSY is discussed, for ex-
ample, in connection with systems of strongly correlated electrons. Here a supersym-
metric extension of the Hubbard model was proposed [EsKoScho90, EsKoScho93)
for which an explicit expression for the ground-state wave function can be given. See
also [BaJa94, BrGoLiZh95] for other supersymmetric extensions of integrable quan-
tum chains or [GiDoFiReSe90] for an application to fractional statistics. Another
field of statistical physics, where supersymmetric methods are used extensively, is
that of disordered systems [Efe82, BoEf82, Efe83]. Here SUSY provides an alter-
native to the replica trick. As recent applications of the SUSY structure in Dirac’s
Hamiltonian we mention heterojunctions of semiconductors. Supersymmetry clearly
shows that there exist localized states at the junction which are not spin degenerate
[PaPaVo87, Pan87].

8.1 Pauli’s Hamiltonian in Two and Three Dimensions
According to our discussion in Sect. 2.1.1 the Pauli Hamiltonian in three space
dimension, which characterizes a spin-% particle with charge e and mass m,

possesses an NV = 1 SUSY if the gyromagnetic factor of this particle is equal
to two. The self-adjoint supercharge and the Pauli Hamiltonian read

(8.1)
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and act on states in the Hilbert space H = L?(R®) ® C%. Let us recall that
o is a three-dimensional vector with components given by the 2 x 2 Pauli
matrices o, i = 1,2, 3. Furthermore, the magnetic field is given by the curl of
the vector potential A : R — R®, B := V x A. Here we note that because of
N = 1 we cannot construct a Witten operator analogous to (2.25). Indeed, in
the general case none of the Pauli matrices 0; commutes with H, }(,3) because of
the Zeemann term. Due to the property W2 = 1 the Witten operator has to
be represented by a linear combination of these o;’s. Consequently, the result
derived for N = 2 SUSY cannot be applied to the general three-dimensional
Pauli Hamiltonian. However, it is still possible to introduce a grading of the
Hilbert space. In fact, with the help of the gauge-invariant velocity operator

— (3) 1o e
vimi= s [H | =—(p—24) (8.2)
and its property
(v 0)? = 4mQ? = mHY) (8.3)
one can introduce the helicity operator
A= —2 T —sgn@s (8.4)
2mH1(,3)

as an alternative to the missing Witten parity. Note that
A=, =1, [AEP]=0 (8.5)

and, therefore, one can grade the Hilbert space into subspaces of positive
and negative helicity. Note, however, that A commutes with the supercharge

@1 = \/%Hl(f) A and, therefore, leaves the helicity eigenspaces invariant.
It does not generate transformations between these spaces. Because of the
last relation in (8.5) eigenstates of the Pauli Hamiltonian H}(,3) with strictly
positive eigenvalue E > 0 may simultaneously be chosen to be an eigenstates
of the helicity operator, too:

HOWgE) = Elvg),  AlE) = £lgk). (8.6)

Hence, all strictly positive eigenvalues of H}(>3) are twofold degenerate.
If the magnetic field is chosen such that B = B(z,, z3)es we may, however,
introduce a Witten parity! by setting W := 03. This operator now commutes

! Another class of magnetic fields which gives rise to a Witten parity consists of
those with a definite space parity B(—r) = £B(r) [GeKr85). Here, in essence,
the Witten operator is given by the space-parity operator IT [cf. eq. (3.30)]. Also
for the case of a magnetic monopole field it has been shown that the Pauli-
Hamiltonian possesses a dynamical OSp(1, 1) supersymmetry [D’HoVi84].
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with H1(>3)' Note that such a magnetic field, being perpendicular to the (z,, z3)-
plane, is generated by a vector potential of the form

al(l‘l,l‘z)

o da

A= (az(zl,zz)) R B(z1,35) = B—Z? — %, (8.7)
0

where a; : R2 = R, i = 1,2. The three-dimensional Pauli Hamiltonian can be
expressed in terms of the two-dimensional one

2
H® =g® 4 B3 8.8
P p T o (8.8)
where
2
@, 1 ) eh 8
Hy” = 5 (pI ca’) e Boj. (8.9)

It is this two-dimensional Pauli Hamiltonian in a perpendicular magnetic field

which possesses an N = 2 SUSY. The associated complex supercharge may
be defined by

1 e . e .
Q = \/ﬁ [(pl - Eal) -1 (p2 - Eaz)] ® (01 +102) (8.10)
and obeys the superalgebra
Q*=0, {QQ"Y=HD. (8.11)

Because of W = a3 the eigenstates of the Witten operator with positive (neg-
ative) Witten parity are spin-up (spin-down) eigenstates. Hence, as a result of
SUSY all positive eigenvalues of H}()z) are spin degenerate. These degenerate
eigenstates are related via the SUSY transformation (2.37) or (2.39). Note
that the generalized annihilation operator reads in this model

1 e e
T I NI
= f 41 p a) 1 P2 o az ( )
and the Hamiltonians restricted to the spin-up and spin-down subspace, re-
spectively, are given by

HP[#t = a4t,  HP[H- =44 (8.13)

Under some mild conditions (B is assumed to be bounded with compact
support [CyFrKiSi87]) it has been shown by Aharonov and Casher [AhCa79]
that for the two-dimensional Pauli Hamiltonian SUSY is always good if the
magnetic flux through the (z,, z;)-plane,

F:= /dzldz2 B(z1,z2), (8.14)
R2
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is sufficiently large. To be more precise, the degeneracy of the zero-energy
eigenvalue of H}(,2 is given by

d:= [[;ﬂc]] , (8.15)

where [z} denotes the largest integer which is strictly less than z and [0] = 0.
In other words, the magnitude |F| of the flux (8.14) has to be larger than
one flux-quantum 2rkic/|e| for the existence of a zero-energy eigenstate. The
d degenerate eigenstates are all spin-up (spin-down) states for sgn(eF) = 1

(sgn(eF) = -1). Let us note that the above degeneracy is related to the
Witten index by
A = —dsgn(eF). (8.16)

In concluding this section, we remark that one may also consider the su-
percharge

Q= \/——21)-_; [(p1—§a1)+i(p2—§a2)] ® (01 +i02) (8.17)

which differs from that in (8.10) by the sign in front of the first imaginary
unit. As a consequence, one arrives at a Pauli Hamiltonian

2
7O .= LS (%) + 2

P " om ; (pI c a’) + 2mce Bas, (8.18)
which differs from that in (8.9) by the sign in front of the Zeemann term.
Note that H}()z) and Hl(f) are not related by a charge conjugation (e — —e).
They are related by a reflection at the (z1,23)-plane (z3 — —z3). As it stands
H}(,z) characterizes the same particle as Hl(f) but with a gyromagnetic factor

g=—2, thatis, g —» —g.

8.2 Pauli Paramagnetism of Non-Interacting Electrons,
Revisited

Here we will investigate the implications of the SUSY structure in Pauli’s
Hamiltonian for the paramagnetic magnetization of a system of non-inter-
acting electrons in two and three dimensions. This magnetization arises from
the magnetic moment associated with the spin of the electrons. Moreover,
we will confine ourselves to zero temperature, that is, we are looking at the
ground state of non-interacting fermions obeying Pauli’s exclusion principle.
Without interaction the ground-state properties of the electron system are
characterized by the single-electron Hamiltonian Hl(f) and H1(>3) , Tespectively.
For both values of the space dimension we assume that the magnetic field is
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perpendicular to the (z;, z2)-plane. Since we are not interested in diamagnetic
effects due to the orbital motion, the magnetization M of N' = N} + N_
electrons can be written as

M = ug(Ny — N), : (8.19)

where N, and N_ is the number of electrons with spin up and spin down,
respectively, in the ground state of the electron system, and
__ eh
bp = e’
is Bohr’s magneton.

(8.20)

8.2.1 Two-Dimensional Electron Gas

According to the Pauli principle the ground state of non-interacting electrons
with single-electron Hamiltonian H. }(,2) is characterized by the reduced single-
electron density operator ©(ep — Hl(,z)), where the Fermi energy er can be
determined from the “normalization” condition

Tr (9 (EF -HP)) =N (8.21)
The magnetization is then given as
M=ppTr (039(5F -HP)). (8.22)

Let us note that because of W = o3 the right-hand-side of (8.22) can be
interpreted as a regularized Witten index. In other words, the magnetization
is given by the IDOS regularized index (2.48)

M= —uBZ(eF), (8.23)

where the SUSY Hamiltonian in (2.48) is replaced by H}()z) .

For a purely discrete spectrum and a finite degeneracy of each eigenvalue
the operator H}(,z) is Fredholm and the regularized index A(e) becomes iden-
tical to Witten’s index:

M = —upA = updsgn(eF). (8.24)

This is the expected result. Because of SUSY we know that all positive eigen-
values are spin degenerate. Hence, the contribution to the trace in (8.22) of
the corresponding eigenstates cancel each other and only the degeneracy of
the ground-state energy of H}()z) contributes. In other words, the Pauli para-
magnetism stems from these unpaired zero-energy states only. Because of
the SUSY pairing of the excited states only a fraction of all of the electrons
contributes to the magnetization. We have illustrated these facts in Fig. 8.1.
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E
E; [—#H———

Ey
Fig. 8.1. Typical ground state for the two-

dimensional electron system. Only the zero-energy
Ey SRR states of the single-electron Hamiltonian H}(f) are
unpaired and contribute to the paramagnetic mag-

[\ SIS S ¥ % SE— netization.

As an example, let us consider the case of a constant magnetic field
B(z1,z2) = B > 0. In order to have well-defined quantities we restrict _he
configuration space (sample) to a large but finite region with area ¢2 such
that boundary effects, nevertheless, may be neglected. The flux (8.14) is then
given by

F = B2 (8.25)

Note that in this case the spectrum of Hl(,z) is discrete and consists of (ap-
proximately) the well-known equidistant Landau levels E, = nm%lcé. The
magnetization per area reads
M eB
7= “Bﬁc—’
which is independent of the electron density. Of course, we have assumed that
there are sufficiently many electrons in the sample to fill up the zero-energy
eigenstates. The paramagnetic susceptibility per unit area then reads

1 0M e €

X=R 9B~ Morhe ~ dmme?’
which is the expected resu't [Isi91, Isi93].

We note that besides the regularization by a finite region £2 we have also
neglected possible unpaired spins at the Fermi energy. These unpaired spins
can only occur when the Fermi energy coincides with an eigenvalue of H}(f) .
That is, if we have not completely filled Landau levels.

Despite the fact that we have confined ourselves to the discussion of zero-
temperature effects, let us briefly indicate the extension of the above results
to finite inverse temperature 8 < oo. Being non-interacting fermions, the
magnetization of the electrons at finite temperature reads

(8.26)

(8.27)

M(B) = upTr g3 )
9= b (1+exp{ﬂ<Hé2>~u)}>’ (528)

where the chemical potential u = p(3,N) is determined by the “normaliza-
tion” condition
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1
Tr =N. 8.29
(1 + exp{B(HY — u)}) (529

For vanishing magnetic field 4 can be expressed in terms of the Fermi energy
er = p(00, N) > 0 [Lee89, Lee95]

exp{Bu} = exp{Ber} — 1. (8.30)

Assuming, as before, that Hl(f) is Fredholm the contributions of the posi-
tive energy eigenstates to the magnetization cancel each other due to SUSY.
Hence, we arrive at

M(B) = ppdsgn(eF) (1+ e_ﬁ“)—1 . (8.31)

Assuming further that for an infinitesimal constant magnetic field B > 0 the
chemical potential is approximately given by the zero-field expression (8.30)
the zero-field susceptibility at finite temperature reads

.1 oM(p) e?
xo(B) = Ilal—Tof_? 9B drmc?
This result may be interpreted as follows. The fraction of zero-energy states
which is not occupied by electrons due to thermal excitation (to available
states at the Fermi energy) is given by e~#¢F. Hence, for the magnetization
and the susceptibility these electrons do not contribute.

(1 —ePer) . (8.32)

8.2.2 Three-Dimensional Electron Gas

In this section we will utilize our previous results by considering only the case
B = B(z,,z5)es for the three-dimensional problem. Again we will neglect the
interaction of the electrons and, hence, have to consider the Hamiltonian H1(>3)
as given in (8.8). Obviously, in each subspace of the Hilbert space with a fixed
eigenvalue hik; of p; we have the SUSY structure of the two-dimensional Pauli
Hamiltonian. Hence, from each of these subspaces we have a contribution to
the zero-temperature magnetization as given in the above section. In order to
find the total magnetization we simply have to count the occupied eigenvalues
of k3. Assuming a finite range ¢3 for the z3 coordinate the possible eigenvalues
are given by

ks=2"n nez. (8.33)

However, only those states are occupied with |ks| less than the Fermi mo-
mentum

kp = Y 2’;‘”. (8.34)
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For large ¢3 the number of these occupied states is approximately given by
£3kp /m. Multiplying the result (8.23) by this factor we arrive at the three-
dimensional magnetization at zero temperature
krl3
—
Note that here e is the Fermi energy of the three-dimensional system, that
is, in (8.21) Hl(,z) has to be replaced by H}(,3). The IDOS regularized index,
however, is to be calculated with H}(f).

For the particular case of a constant magnetic field the magnetization and
paramagnetic susceptibility per unit volume at zero temperature read

M = —ppA(er) (8.35)

M _ eB . _ o mh
72g,  FPoppe T T BT gy
\ (8.36)
_ 2 mkp _ €
X=Hp h2n?  4dmimct T

Note that in contrast to the two-dimensional case, the three-dimensional zero-
temperature paramagnetic susceptibility depends on the electron density and
the magnetic field B via the Fermi momentum and has no physical dimension.

In the three-dimensional case practically always exist two eigenvalues of
ps for which the corresponding eigenstates of H1(>3) coincide with the Fermi
energy. Hence, unpaired spins of such states near ¢r are certainly neglected.
The above result (8.36) coincides in the limit of vanishing magnetic field with
that given in textbooks [AsMe76, Whi83, Isi91].

8.2.3 The Paramagnetic Conjecture and SUSY

Another consequence of SUSY is that it may provide a counterexample to the
paramagnetic conjecture due to Hogreve, Schrader and Seiler [HoSchrSe78].
This conjecture states that the ground-state energy of the general Pauli
Hamiltonian with an additional scalar potential V : R® s R,

1 e \2 eh
HYAV):= —(p-ZA) - =B
D@AV):= = (p-24) -5 =B-0+V, (8.37)
is always less or equal to that with zero magnetic field:

inf spec (H}(,3)(A, V)) < inf spec (H}(,3) (0, V)) (8.38)

A proof of this inequality exist for arbitrary scalar potential V and a magnetic
field being essentially of the form B = B(z? + z2)e; [AvSe79]. However,
in the general case Avron and Simon [AvSi79] found one counterexample.
Nevertheless, it is believed, see [CyFrKiSi87] p.131, that (8.38) “... still holds
for general A and selected sets of V' ...”. Here we note that for the particular
case V = 0 the factorizability of H, 1(,3) (A,0) = 2Q? > 0 implies the inequality
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inf spec (H{,”(A,O)) > inf spec (H{f) (0,0)) =0. (8.39)

This inequality is in the opposite direction of the paramagnetic conjecture
(8.38). For arbitrary magnetic fields such that SUSY is a good symmetry the
inequality (8.39) can be replaced by an equality. However, for any magnetic
field which does break SUSY we have a strict inequality in (8.39) and thereby
a counterexample to the conjecture (8.38). Or vice versa, for any magnetic
field, for which the paramagnetic conjecture with V' = 0 can be proven, SUSY
will be a good symmetry and hence equality holds in (8.39). The question
whether there exist B-fields such that for H}(,3) (A, 0) SUSY is broken remains
open.

8.3 The Dirac Hamiltonian and SUSY

As already mentioned in Sect. 2.1.1, there is a close connection between SUSY
and relativistic quantum systems characterized by the Dirac Hamiltonian. A
detailed analysis of SUSY in Dirac’s equation is given in the textbook of
Thaller [Tha92]. Here we will present only the basic ideas.

Definition 8.3.1 ([Tha92]). A Dirac Hamiltonian acting on L*(R®) ® C!
and which may be represented in the form

Hp = ( gh ~ A‘}_f) (8.40)

with Q,Qt, My and M_. being operators acting on L2(R?) ® C? is said to be
supersymmetric if the following relations are valid

Q'M_=MQ', QM =M__Q. (8.41)
Note that this definition implies for supersymmetric Dirac Hamiltonians

1 2
H%:(QQJM+QQ£M3). (8.42)

An example, which we have already mentioned in Sect. 2.1.1, is Dirac’s
Hamiltonian for a magnetic field:

Hy = ca- (p - £ 4) + > (8.43)
The 4 x 4 Dirac matrices a = (a1, a3, a3) and 3 close the Dirac algebra

{as,ar} = 264, {as,8} =0, g=1, (8.44)
for all i,k € {1,2,3}. In the standard Pauli-Dirac representation
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a= (g ‘;) 8= ((1) _(1)), (8.45)

the Hamiltonian (8.43) is supersymmetric upon the identification
Q ::c(p— %A) ‘o =Qt, My :=mc?. (8.46)

Note that the above supercharge @ is up to a factor ¢/v/4m identical to @,
of Pauli’s Hamiltonian (8.1).

An important property of supersymmetric Dirac operators is, that they
can be diagonalized,

UHpUt= [ V QlQ+ M3 0 (8.47)
? 0 - Jogi+ M2

and, therefore, positive- and negative-energy solutions are decoupled. The
unitary transformation U is explicitly given by [Tha88, Tha9l, Tha92]

I
| =
H.

U:=a4 +1sgn(Q)a-_, ay =

() e (09)

Here we note that the operators Q'Q and QQ' are essential iso-spectral.
Consequently, the positive and negative eigenvalues of Hp are closely related.
In particular, for My = M_ = mc? > 0 the spectrum of Hp is symmetric
about zero with possible exceptions at £mc? and has a gap from —mc? to
+mc?. The value +mc? (—mc?) belongs to the spectrum of Hp if Q1Q (QQ1)
has zero eigenvalue. That is, if SUSY is good.

8.3.1 Dirac Hamiltonian with a Scalar Potential

As a simple but instructive example we will discuss the problem of the Dirac
Hamiltonian with a scalar potential [Tha92] 8%y, $o : B3 — R:

Hp :=ca-p+ f (mc® + Po(r)) . (8.49)

In the “supersymmetric” representation [Tha92]

a= (g g) B = (? Bi) (8.50)

this Hamiltonian is supersymmetric with
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Q :=cp-o+i(me® + &(r)), M,=M_=0. (8.51)

The spectrum of Hp can be obtained from the spectrum of the operators
(&(r) := mc® + Fo(r)),

QTQ =c?p? + 8% + heo - VP,
QQt = 2p? + ¢? - heo - V&,

according to (8.47). For further simplification we assume that ¢ depends only
on one coordinate, say z3, ® = #(z3). Such a model describes, for example, a
z3-dependent valence- and conduction-band edge of semiconductors near the
I’ or L point in the Brillouin zone. The position dependent @ characterizes a
position dependent band gap. Examples for such materials are Pb;_,Sn, Te,
Pb;_,S;Se, Hg,_,Cd,Te. In particular, all these semiconductors show band
inversion, that is, conduction and valence band interchange [DoNiSchl83]. A
typical shape for the potential #, which characterizes a Pb;_,Sn,Te junction,
is shown in Fig. 8.2.
With this assumption the above operators simplify to

(8.52)

t
g Q‘f } =c*p? + ?p2 + HP), (8.53)
where
H®) .= ?p? + & (x3) + hed' (z3)03 (8.54)

is a pair of SUSY Hamiltonians acting on L?(R)®C? . In fact, the Hamiltonians
are of the type of Witten’s model and differ only in the overall sign of the

PbTe Pbl—zsnzTe PbSn
z3
L = &(z3) Lg
0 T 1

Fig. 8.2. The structure of the LG:E band gap of a Pb;_;Sn; Te junction as a function
of the composition parameter z, which itself varies linearly with z3 along the junc-
tion. For details see [DoNiSchi83). The scalar potential ¢ may be identified with the
LY band.
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SUSY potential @. Our results on the Witten model can immediately be taken
over upon replacing 1/+/2m by c. For the shape of & as given in Fig. 8.2, that
is, having one zero, H®) both have zero-energy eigenstates. They are given
by

$55) (z3) = Cexp {?ﬁc/dz 45(2)} X+ (8.55)
0

with spinors

X+ = (é) X- = ((1)) (8.56)

In other words, these semiconductors have unpaired spin-up and spin-down
states in the conduction and valence band, respectively, which are localized
at the junction [PaPaVo87, Pan87]. Finally, let us note that for &(z) =
mc? tanh z the spectrum and eigenfunctions of Hp can explicitly be calcu-
lated due to shape invariance as we have shown in Sect. 5.2. Of course, any
other shape-invariant SUSY potential will also allow for an exact solution
of the eigenvalue problem of Hp [CoKhMuWi88]. For example, a detailed
discussion of the radial Dirac equation for the Coulomb problem is given in
Chap. 7.4 of Thaller’s book [Tha92]. See also [Suk85d, JaSt86].



9. Concluding Remarks and Overview

In the last fifteen years supersymmetric quantum mechanics has increasingly
been utilized as an elegant and effective method in various branches of the-
oretical physics. In the present book we have discussed some of the recent
developments in supersymmetric quantum mechanics. Only a small number
of applications in quantum and statistical physics have been treated. In Ta-
ble 9.1 we give a list! of applications in quantum mechanics, mathematical,
statistical, condensed-matter, atomic, and nuclear physics. It appears that the
Witten model, which we have extensively studied, is the prototype of a su-
persymmetric model in quantum mechanics. Despite the fact that this model
is rather simple, it finds applications, for example, in the study of classical
stochastic dynamical systems. Even for the understanding of semiconductor
heterojunctions the Witten model can be utilized. A detailed analysis of its
classical and quasi-classical properties has revealed many interesting results.
The most impressive one is the quasi-classical supersymmetric quantization
condition derived and discussed in Chap. 6. This approximation leads to exact
bound-state spectra of all (via the factorization method) completely solvable
problems. In this respect, it is superior to the well-established WKB approx-
imation.

Besides the Witten model we have also discussed the supersymmetric na-
ture of Pauli’s Hamiltonian and its implications to magnetic properties of
electronic systems. In fact, supersymmetry becomes more and more a basic
tool in the theory of such systems with or without interactions. In connection
with a quasi-classical approximation analogous to that of the Witten model it
might be possible to derive additional information about their spectral prop-
erties in one, two or more dimensions. In this context also disordered systems
are of interest, in particular, because of their relevance for the understanding
of the quantized Hall effect.

Further developments which can be based on the present work may be per-
formed for classical systems with stochastic dynamics. For instance, a detailed

! This list is not meant to be complete. Also the given references are certainly
fragmentary.
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functional analytic investigation of Witten’s model for singular SUSY poten-
tials may provide additional insights into the diffusion problem over cusp-like
barriers. Let us also mention that in classical systems driven by colored noise
supersymmetry may be utilized for a further study of their dynamics.

The Table 9.1 does not contain particle and high-energy physics. There
exist many textbooks covering these topics. Below we given an incomplete
list:

1) S.J. Gates, M.T. Grisaru, M. Rocek and W. Siegel, Superspace or One
Thousand and One Lessons in Supersymmetry, (Benjamin/Cummings,
London, 1983)

2) P.G.O. Freund, Introduction to Supersymmetry, (Cambridge University
Press, London, 1986)

3) R.N. Mohapatra, Unification and Supersymmetry, (Springer-Verlag, New
York, 1986)

4) O. Piguet and K. Sibold, Renormalized Supersymmetry, (Birkhauser,
Boston, 1986)

5) P. West, Introduction to Supersymmetry and Supergravity, (World Sci-
entific, Singapore, 1986)

6) M.B. Green, J.H. Schwarz, and E. Witten, Superstring Theory, Vols. 1
and 2, (Cambridge University Press, Cambridge, 1987)

7) H.J.W. Miiller-Kirsten and A. Wiedemann, Supersymmetry: An Intro-
duction with Conceptual and Calculational Details, (World Scientific, Sin-
gapore, 1987)

8) F. Gieres, Geometry of Supersymmetric Gauge Theories, Lecture Notes
in Physics 302, (Springer-Verlag, Berlin, 1988)

9) M. Kaku, Introduction to Superstrings, (Springer-Verlag, New York,
1988)

10) P. van Nieuwenhuizen, Anomalies in Quantum Field Theories: Cancel-
lation of Anomalies in d = 10 Supergravity, (Leuven University Press,
Leuven, 1988)

11) M. Miiller, Consistent Classical Supergravity Theories, Lecture Notes in
Physics 336, (Springer-Verlag, Berlin, 1989)

12) J. Lopusanski, Introduction to Symmetry and Supersymmetry in Quan-
tum Field Theory, (World Scientific, Singapore, 1991)

13) L. Castellani, R. D’Auria and P. Fré, Supergravity and Superstrings,
(World Scientific, Singapore, 1991)

14) J. Wess and J. Bagger, Supersymmetry and Supergravity, (Princeton Uni-
versity Press, Princeton, 1991), 2nd ed.
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Table 9.1. Some applications of SUSY in theoretical physics

QUANTUM MECHANICS References

solvable potentials, factorization method Sect. 5.2*

quasi-exactly solvable potentials [JaKuKh89]

quasi-classical approximation [CoBaCa85, InJu93a)], Chap. 6*
tunneling [KeKoSu88], [RoRoRo91, CoKhSu95*
variational approach [GoReTh93]

d-expansion method [CoR090], [CoKhSu95]*

large- N expansion [ImSu85), [RoRoR091, CoKhSu95)*
bounds on ground-state energy [Schm85]

level ordering [BaGrMa84], [Gro91]*

Pauli Hamiltonian [GeKr85]*, Sect. 8.1°

Dirac Hamiltonian [Tha92]®, Sect. 8.3*

inverse scattering method [Suk85c]

coherent states [FuAi93)

supercoherent states [BaSchmBa88, BaSchmHa89, FaKoNiTr91)
supercoherent-state path integrals [Koc96)

Berry and other phases [liKu87, BhDuBaKh94, IIKaMe95]
integrability, many-body problems [ShSu93]

SUSY breaking, instantons [Wit81, SaHo82, KuLiMii-Ki93]
Korteweg-de Vries equation, solitons [Tha92]®, [KuLiMii-Ki93]

fractional SUSY [Dur93a, Dur93b, AzMa96)

anyons [Sen92, RoTa92]

quantum chaos [Guh95)

parasupersymmetry [BeDe90], [CoKhSu95]*
orthosupersymmetry [CoKhSu95)*

g-deformation [1U2z93, Deb93, BoDa93]

SUSY and geometric motion [BoWeRi93]

SUSY on Riemann surfaces [BolIl94, Doll94]

MATHEMATICAL PHYSICS

pseudoclassical mechanics [Cas76c, LaDoGu93], Chap. 4*
Morse theory [Wit82b, CyFrKiSi87]
Atiyah-Singer index theorem [Alv83, FrWi84]

localization techniques [BITh95, SchwZa95]*

# and references therein.
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Table 9.1. cont.

STATISTICAL AND CONDENSED MATTER PHYSICS References
Fokker-Planck equation Sect. 7.1*
Langevin equation Sect. 7.2%
Nicolai map [Nic80b, EzK185]
Colored noise [LeMaRi87]

Grassmann Brownian motion
random walks
Pauli paramagnetism
supersymmetric Hubbard models
integrable quantum chains
fractional statistics
random matrices
disordered systems
classical diffusion
electron localization-delocalization
density of states
conductivity
correlation function
Jahn-Teller systems
lattice models

semiconductor heterojunctions

[Rog87, Cor93)

[Jau90, RoRe95)

[Jun95], Sect. 8.2
[EsKoScho90, EsKoScho93]
[BaJa94, BrGoLiZh95]
[GiDoFiReSe90]

[Zuk94]

[Efe83]

[BoCoGeDo90]*
[ToZaPi88, CoDeMo95]*
[Weg83, BrGrit84], [FiHa90]*
[HaJo91]®

[Tka94]

[JaSt84]

[Sha85, Belg95]
[PaPaVo87], Sect. 8.3.1

ATOMIC PHYSICS

References

alkali-metal atoms
quantum-defect theory
Stark effect

Penning trap

Rydberg atoms, superrevivals

[KoNi84, KoNi85a)

[KoNi85b, KoNiTr88]

[BIK093)]

[Kos93]

[BIKo94, BIK095], [BIKoPo96]

NUCLEAR PHYSICS References
dynamical supersymmetry [Tac80], [Ver87)®
classification of spectra [BaBala81]
nuclear-nuclear potential [UrHe83)
collective excitations [BaReGe86)
superdeformed nuclei [AmBiCaDe91)

® and references therein.
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