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Introduction

[t is now nearly 140 years since Riemann introduced [Rie-EDL]

the concept of a "local system” on PLl - {(a finite set of points}. His
idea was that one could (and should) study the solutions of an n'th
order linear differential equation by studying the rank n local
system (of its local holomorphic solutions) to which it gave rise.

Riemann knew that a rank n local system on Pl - {m points} was
‘nothing more” than a collection of m invertible matrices A; in

GL(n, €) which satisfy the matrix equation A{Ao..A4 = (idy), such

collections taken up to simultaneous conjugation by a single element
of GL(n, C). He also knew each individual A was, up to GL(n, C)

conjugacy, just the effect of analytic continuation along a small loop
encircling the i'th missing point.

His first application of these then revolutionary ideas was to
study the classical Gauss hypergeometric function [Rie-SG], which he

did by studying rank two local systems on Pl - {three points}. His
investigation was a stunning success, In large part because any such
(irreducible) local system is rigid in the sense that it is determined
up to isomorphism as soon as one knows separately the individual
conjugacy classes of all its local monodromies. By exploiting this
rigidity, Rilemann was able to recover Kummer's transformation
theory of hypergeometric functions "almost without calculation”
[Rie-APM].

[t soon became clear that Riemann had been "lucky”, in the
sense that the most local systems are not rigid. For instance, rank

two irreducible local systems on Pl - {m points}, all of whose local
monodromies are non-scalar, are rigid precisely for m=3. And rank

n irreducible local systems on Pl - {three points}, each of whose
local monodromies has n distinct eigenvalues, are rigid precisely for
n=1 and n=2.

On the other hand, some of the best known classical functions
are solutions of differential equations whose local systems are rigid,
including both of the standard generalizations of the hypergeometric

function, namely F,_1, which gives a rank n local system on pl -
{0,1,<}, and the Pochhammer hypergeometric functions, which give

rank n local systems on Pl - {n+1 points).
In the classical literature, rigidity or its lack 1s expressed In
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terms of the vanishing or nonvanishing of the "number of accessory
parameters”. But the object whose rigidity 1s classically in question

1s not a rank n local system on Pl - (m points}, but rather an n'th
order linear differential equation with rational function coefficients
which has regular singularities at the m missing points, and no
other singularities. In practice, one assumes also that each of the
local monodromies has n distinct eigenvalues, expressed classically
by saying that no two exponents differ by integers. One then looks
for the most general n'th order linear differential equation with
rational function coefficients which has regular singularities at the
m missing points, no other singularities, and whose indicial
polynomial at each missing point is the same as for the equation we
started with. [This game with indicial polynomials makes sense for
any equation with regular singularities, but it is only a meaningful
game in the case where each of its local monodromies has n distinct
eigenvalues, for only then can we be sure that any equation with
the same indicial polynomials automatically has isomorphic local
monodromies.] The "number of parameters” upon which such an
equation depends is called the "number of accessory parameters”, or
the "number of constants in excess” [Ince, 20.4]. For example, in the
classical literature one finds that for second order equations with m
regular singularities, the number of accessory parameters is m-3
[Ince, top of page 506].

From a modern point of view, what corresponds precisely to a

rank n local system on Pl - {m points} is an nxn first order system
of differential equations with regular singularities at the named
points (i.e., an algebraic vector bundle with integrable connection on

Pl - (m points} with regular singularities at the m missing points)
[De-ED]. So what corresponds to rigidity for a local system is the
absence of deformations of the corresponding nxn system which
preserve local monodromy. But in the classical literature, the
question of deforming such a system while preserving its local
monodromy does not seem to be addressed. Even, or perhaps
especlally, if we start with an n'th order equation with regular
singularities, there is a priori a great difference between deforming
it as an equation and deforming it as a system (in both cases
preserving local monodromies).

For an irreducible local system 7 on Pl - {m points}, there is a
simple cohomological invariant, rig(¥), the "index of rigidity", which
measures the rigidity or lack thereof of ¥, cf. Chapter 1. One denotes

by
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i: P - {m points} —» P1

the inclusion, one forms the sheaf j,End(7F) on IPl, and one then

defines rig(¥) to be the Euler characteristic (Pl JxEnd(F)). Since
% is irreducible, we have

rig(F) := 2 - h1(P1, jLEnd(F)).
One proves (1.1.2) that the irreducible local system ¥ is rigid if and
only if rig(F) = 2, ie., if and only if h1(P1, j, End(F)) vanishes. So

the integer h1(P1, JxEnd(F)) appears as a cohomological analogue of

the number of accessory parameters, at least in the cases where
that number was defined classically. In terms of the corresponding

nxn system, this hl is the "number” of its deformations to systems
having the same local monodromies. So in case we start with an

n'th order equation, we should expect this hl to be larger than the

number of accessory parameters, since the hl allows deformations
as system, while in computing the number of accessory parameters
we allow only deformations as equation.

In the case of a rank n irreducible local system ¥ which arises
from an n'th order equation, and each of whose local monodromies
has all distinct eigenvalues, one can separately compute both the
number, say p, of accessory parameters, and the number

h1(Pl, j End(¥)). One finds a doubling:

h1(PL, jLEnd(F)) = 2p.
[Both sides come out to be 2 - [(2-m)n? + mn]), cf. [Forsythe, pp.
127-128] for the calculation of p, and Chapter 1 for the calculation
of hl] That the hl turns out to be even is not a surprise, because
HL(PL, jLEnd(F)) carries a symplectic autoduality. But why the

underlying n'th order equation should have "twice as many”
system-deformations as equation-deformations seems entirely

mysterious. It is as though the group Hlpt, JxEnd(F)) carried a
welght one Hodge structure, in such a way that the "holomorphic

part” H1.0 corresponded to deformations as equation. But there is
almost nothing to back up such speculation.
Let us return to the consideration of a rank n local system on

Pl - (m points}, in its incarnation as a collection, taken up to
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simultaneous conjugation, of m elements A; of GL(n, C) whose

product is 1. Such a local system is said to be irreducible if the
subgroup of GL(n, C) generated by all the A;j is irreducible, i.e., if

there exists no proper nonzero subspace of €' which is respected by
all the A;. Given a local system, we extract, at each of the m

missing points, the conjugacy class of its local monodromy at that
point (concretely, the Jordan normal form of each separate A;j), and

call this the numerical data of our local system. There is also the

notion of abstract numerical data of rank n on P1 - {m points}: one
specifies at each of the m missing points a conjugacy class in
GL(n, C), i.e., a Jordan normal form.

Two basic problems in the subject are:

Irreducible Recognition Problem Given abstract numerical data
of rank n on P1 - {m points}, determine if it is the numerical data

attached to an irreducible rank n local system on Pl - {m points}.

Irreducible Construction Problem Given abstract numerical
data of rank n on Pl - {m points} which one is told arises from an

irreducible local system on Pl - {m points}, construct explicitly at
least one such local system. Or construct all such local systems.

Because the index of rigidity rig(¥) can be expressed in terms
of the underlying numerical data of ¥ by universal formulas, one
can pose these two problems separately for each of the a priori
possible values 2, 0, -2, -4, ... of the index of rigidity. This book is
devoted to the solution of these two problems in the special case of
rigid local systems, rig(F) = 2.

The case of more general local systems remains entirely open.
Already the next simplest case, rig(F) = 0, seems out of reach. Also
the analogues of these problems for reducible local systems remain
entirely open.

Another problem which remains open is this. Suppose we are

given a rank n irreducible rigid local system ¥ on Pl - (m points).
We know [De-ED] that it is the local system attached to a (unique,

by rigidity) nxn system on Pl - (m points}, with regular singular
points at the m missing points. Is this this nxn system in fact (the
system attached to) an n'th order equation with regular singular
points only at the m missing points? By [Ka-CV], any system has,



Introduction-5b

Zariski locally, cyclic vectors. So at the expense of allowing finitely
many additional "apparent singularities” in our n'th order equation,
we can always get one whose local system is ¥. The question is
whether there exists such an equation without apparent
singularities. It should be remarked that if we drop the word "rigid”
from this question, a "counting constants” argument of Poincare
[Poin, pp. 314-315 of Tome II, where he counts projective
representations] suggests that "in general” it should not be possible
to avoid apparent singularities in this "strong form" of the
Riemann-Hilbert problem. Another heuristic argument that one
cannot avold apparent singularities, pointed out to me by
Washnitzer, is this. Consider an irreducible n'th order equation with

regular singular points on Pl - {(m points}, each of whose local
monodromies has n distinct eigenvalues. Suppose the underlying

local system, say 7, is not rigid. Then the calculation hl - 2p

discussed above suggests that ¥ has a 2p-dimensional deformation
space of local systems with the same local monodromies, and that
only for deformations 4 in a p-dimensional subspace will there be

an n'th order equation on Pl - (m points}, i.e, without apparent
singularities, with § as monodromy.

Let us now turn to a more detailed discussion of the contents of
this book. Although the Irreducible Recognition Problem is, on its
face, an elementary problem about multiplying complex matrices
which could be explained to a bright high school student, our
solution for rigids is, unfortunately, far from elementary.

We begin with the trivial observation that on Pl - {m points},
any rank one local system is both irreducible and rigid. Our basic
idea is to construct two sorts "operations” (which we call "middle
convolution” and "middle tensor product”) on a suitable collection of
irreducible local systems which preserve the index of rigidity and
whose effect on local monodromy we can calculate. The "middle
tensor” operation offers no difficulty; all the work is in working out
the theory of middle convolution.

What does convolution have to do with rigid local systems? The
idea is simple. The earliest known, and still the best khown, rigid
local system 1s the local system of solutions of the second order
differential equation

A1-2)(d/dN)2f + (c - (a+b+1)x)(d/dN)f - abf = 0
satisfied by the Gauss hypergeometric function F(a, b, ¢, A). A
solution is given [WW, page 293] by the integral
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J(x)@=c(1-x)c7P=1(5 - x)adx.
Our key observation is that formally, this integral is the additive
convolution

[f(x)g(A-x)dx

of f(x) 1= (%)@ C¢(1-x)¢"P~1 and g(x) := x"@. We then view f(x) as
incarnating a rigid local system, and g(x) as incarnating a Kummer

sheaf on G,,, and think about forming the additive convolution of

two such objects. In some sense, our entire book consists of first
making sense of this, and then exploiting it.

In Chapter 2 we define the middle convolution operators, and
work out their basic properties. The theory of perverse sheaves is
the indispensable setting for this theory. The theory we need is that

of middle convolution on Al as additive group. However, we also

devote some attention to the theory on G,,, where it ties in nicely

with our previous work [Ka-GKM] and [Ka-ESDE] on Kloosterman
and hypergeometric sheaves and differential equations.

Chapters 3 and 4 are devoted to the proof that our middle
convolution operators do in fact preserve the index of rigidity, and
to calculating their effect on local monodromy. Here the main
technical tool is the 4-adic Fourier Transform in characteristic p > O.
In Chapter 3, we show that Fourier Transform preserves the index
of rigidity in characteristic p. Because middle convolution in
characteristic p > 0 has a simple expression in terms of Fourier
Transform, we find that middle convolution in characteristic p also
preserves the index of rigidity. Because Laumon has worked out the
precise effect of Fourier Transform on local monodromy, we also get
the effect of middle convolution on local monodromy, still in
characteristic p > 0. In Chapter 4, we use a specialization argument
to show that these results on middle convolution still hold in
characteristic zero (despite the fact that the Fourier Transform no
longer exists).

The next step 1s to show, in Chapter 5, that any rigid
irreducible local system can be built up from a rank one local
system by applying a finite sequence of middle convolution and
middle tensor operations. The proof of this last step gives us an
algorithm to calculate, for any given irreducible rigid local system
%, exactly what sequence of operations to apply to what rank one
local system £ in order to end up with ¥. This algorithm is thus a
solution to the Irreducible Construction Problem for rigids.

This algorithm depends only on the "numerical data” of 7.



Introduction-7

Roughly speaking, we solve the Irreducible Recognition Problem (in
Chapter 6) by showing that if we are given some abstract numerical
data which is rigid, then it comes from an irreducible ¥ if and only
1f the algorithm, applied "formally”, gives a meaningful answer.

In Chapter 7, we explore some of the diophantine aspects of
rigidity. In Chapter 8, we reinterpret our construction of rigids in
terms of "pleces” of the relative de Rham cohomology of suitable
families of varieties. In Chapter 9, we use this cohomological
expression, together with an easy but previously overlooked
generalization of our earlier work on Grothendieck's p-curvature
conjecture, to prove Grothendieck's p-curvature conjecture for all

those differential equations on Pl - {(m points} with regular singular
points whose underlying local systems are rigid and irreducible.

Let us now discuss what is not done in this book. One could try
to classify systematically all rigid irreducible local systems, since
one has an algorithm to recognize their numerical data. Even a
cursory glance at the kinds of local monodromy one can get by
starting with a rank one local system and applying a cleverly
chosen sequence of middle convolution and middle tensor operations
leaves one with the impression that there is a fascinating bestiary
waiting to be compiled.

One could also study the identities between special functions
which presumably result whenever a rigid irreducible ¥ can be
bullt in two or more different ways out of rank one local systems by
successive middle convolution and middle tensor operations. Already
for the case of F,_1, any n 2 2, there are in general a plethora of

such building paths. Do we get anything about ,F,_41 which is not

already in the classical literature?

In characteristic zero, we have shown how to construct all
rigid irreducible local systems out of rank one local systems, by
using the operations of middle convolution and middle tensor. Our
arguments in fact begin in characteristic p > 0, where we prove the
same result for rigid irreducible local systems which are
everywhere tamely ramified. But in characteristic p, the
everywhere tame local systems are by far the least interesting ones.
What can be said about arbitrary rigid irreducible local systems in
characteristic p? Is 1t true that any rigid irreducible local system In

characteristic p on Pl - (m points} is built out of a rank one local
system by finitely iterating the operations Fourler Transform,
middle tensor with a rank one local system, and pullback by an

automorphism of P17 For example, all the irreducible ¢-adic
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hypergeometrics are rigid, and they are all obtained in this way
[Ka-ESDE, proof of 8.5.3].

In characteristic zero, the analogue of a not necessarily tame
local system 1s a differential equation which does not necessarily
have regular singular points. There i1s no difficulty in defining the
index of rigidity in the holonomic D-module context, cf. [Ka-ESDE,
3.7.3 and 2.9.8.1]. One knows, for example, that the generalized
hypergeometric equations studied in [Ka-ESDE] are rigid. One also
has the D-module Fourier Transform. It should be true that
Fourier Transform preserves the index of rigidity in the D-module
context, but this is unknown. The main stumbling block to proving
this is the absence of an D-module analogue of Laumon's theory of
local Fourier Transform and his stationary phase theorem relating
the local and global Fourier Transforms: Laumon's theory in the 2-
adic case was the main technical tool in our proof that Fourier
Transform preserves index of rigidity. If the D-module analogue of
Laumon's local Fourier Transform exists and satisfies stationary
phase, one can then use stationary phase to "compute” what the
local Fourier Transforms must be, in terms of slope decompositions
at oo of global Fourier Transforms of suitable "canonical extensions”
in the sense of [Ka-DGG, 2.4.11] of various completions of the input
D-module. In this sense, one could say that the theory of local
Fourler Transform does already exist, and that "all" that one lacks is
the D-module analogue of stationary phase.

If one could prove that the J-module Fourier Transform
preserves index of rigidity, or even that it preserves rigid objects,
one could ask if any irreducible D-module is built out of an
irreducible D-module of generic rank one by finitely iterating the
operations Fourier Transform, middle tensor with an irreducible

object of generic rank one, and pullback by an automorphism of Pl
Another question we are unable to treat is the following. Given
a rigid irreducible local system, say ¥, of rank n, consider its

geometric monodromy group Ggeom’ defined as the algebraic

subgroup of GL(n, €C) which is the Zariski closure of the monodromy

representation which ¥ "is". This group Ggeom’ and consequently its

Lie algebra, is determined up to GL(n, C)-conjugacy by 7F, and hence

by the numerical data of ¥. How can we determine Ggeom’ or even

its Lie algebra, as a function of the numerical data. Even in asking

when Ggeom is finite, which we prove is equivalent to (the

associated differential equation's) having p-curvature zero for
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almost all primes p, we do not know how to read this from the
numerical data.

There is also a nagging technical point that is not treated in
this book. In Chapter I, we show (1.1.2) that for complex irreducible

local systems on Pl - (m points} over C, rigidity is equivalent to
having index of rigidity equal to 2. And we show (5.0.2) that in any
characteristic #¢, having index of rigidity equal to 2 is a sufficient
condition for an irreducible ¢-adic local system to be rigid. However,
we do not show, even over [, that for irreducible ¢4-adic local
systems, being rigid is in fact equivalent to having index of rigidity
equal to 2.

[t is perhaps striking that although this book is concerned with
problems that go back to Riemann, it depends for its very existence
on a great deal of mathematics that did not exist until quite
recently: Grothendieck's etale cohomology theory [SGA], Deligne's
proof of his far-reaching generalization of the original Weil
Conjectures [De-Weil II], the theory of perverse sheaves [BBD],
Laumon's work on the ¢-adic Fourier Transform [Lau-TF], all these
are indispensable ingredients.

My interest in rigid local systems was first aroused by a
conversation with Ofer Gabber some years ago, who told me about
some lectures Deligne had given at [.LH.E.S. on them. It was later re-
aroused by conversations with Carlos Simpson, who was pursuing
them from quite a different point of view than that used here. It is
a pleasure to acknowledge helpful discussions with Delighe, Gabber
and Simpson, and to thank Beilinson and Faltings for asking some
incisive questions. I would also like to thank the referee, whose
helpful comments and suggestions led to a number of corrections to
and clarifications of the original manuscript.

[ gave a series of lectures on some of the material in this book
in January, 1991 at the University of Minnesota as an Ordway
Visitor. The material on middle convolution was presented in March
of 1993 at Johns Hopkins, at a Symposium in honor of Professor
Igusa. I also gave lectures on some of this book in May of 1993 in
Berkeley as a Miller Visiting Fellow. It is a pleasure to thank all of
those institutions for their support and hospitality.



Chapter 1-First results on rigid local systems-1

1.0 Generalities concerning rigid local systems over C
(1.0.1) Let X be a projective smooth connected curve over C, of
genus g, S a nonempty finite subset of X(C), and U := X - S the open

complement. Suppose we are given on the complex manifold U2 &
local system ¥, i.e., a locally constant sheaf of finite-dimensional C-
vector spaces. As on any connected complex manifold, if we fix a

base point u in U3 the functor "fibre at u", ¥ ¥, defines an
equivalence of categories

local systems on U3 = fin.-dim'l. C-rep.'s of w4 (U3 u).
We say that the local system ¥ is irreducible if the corresponding
representation Agq of mq(U3M u) is irreducible.

(1.0.2) For every "point at «" s in S := X - U, the punctured
neighborhood

D*(s) := UaNNN(a small disc around s in Xalt)

1s a punctured disc, whose fundamental group

I(s) := m4(D*(s), any base point)
1s canonically Z, with generator Y5 := "turning once around s in the
counterclockwise direction”, the "local monodromy transformation

at s". We say that two local systems ¥ and 4 on U3 have
1somorphic local monodromy if for every “point at " s in 5 := X -

U, there exists an isomorphism of local systems on D*(s)
F I D*(s) = G | D*(s).
(1.0.3) We say that a local systemm F on U2 is physically rigid

if for every local system ¢ on U2 such that ¥ and § have
isomorphic local monodromy, there exists an isomorphism % = ¢ of

local systems on U2, Because we have assumed that S is
nonempty, if ¥ and § have isomorphic local monodromy, they
necessarily have the same rank.

(1.0.4) This notion of physical rigidity is reasonable only for
genus zero. Indeed, if X has genus g > 1, there exist local systems &

of rank one on Xa! no tensor power of which is trivial. [A rank one

local system on X2 is a homomorphism from ﬁl(xan)ab ~ 728

to €C*.] Denote by j: U8 — XaN the inclusion. Because the map
Jx M (UAN u) - mq(Xan, u)

is sur jective, no tensor power of j*& is trivial. But j*&£ has trivial
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local monodromy, so for any local system ¥ on U2, ¥ and F®j*L

has isomorphic local monodromy. But ¥ and ¥F®j*L are not
isomorphic unless ¥ = 0, since already their determinants, det(%)

and det(?)@(j*ﬁ)‘grank(?) have a ratio which is nontrivial, indeed

of infinite order. Thus no non-zero local system ¥ on U@ is
physically rigid when X has genus g > 1.

1.1 The case of genus zero
(1.1.1) Let us now explore in greater detail the situation when X

is P1. Even here, the situation is only understood for local systems ¥

on U2 which are irreducible. In this case, there is a numerical
criterion for physical rigidity.

Theorem 1.1.2 Let S a nonempty finite subset of P1(C), and U :=
Pl - S the open complement, j: UaN — (P1)aN the inclusion, F an
irreducible local system on U2 of rank n > 1. Then ¥ is physically
rigid if and only if X (P12, j End(¥)) = 2.

proof Suppose first that y ((P1)an JxEnd(7F)) = 2, and let § be a

local system on U3 such that ¥ and 9 have isomorphic local
monodromy. We will show the existence of an isomorphism from %

to §.

For any local system ¥ on UM, the Euler-Poincare formula
states

x(P1)an, j #)= x(UaN, C)xrank(®) + 3 iy, g dimg #1(S),
Therefore if ¥1 and Hy are two local systems U2 with isomorphic
local monodromy, we have X((IPl)an, Jx¥q) = X((I]Dl)an, Jx¥o).
We apply this to ¥4 = End(¥) and to ¥y = Hom(%F, 4), which have

1somorphic local monodromy. Thus we find
X (P21, j, Hom(¥F, §)) =% ((P1)an, j End(¥F)) = 2.

But on a curve, X 1is hO - hl + h2 < ho + h2, so we find
hO(PLan, j.Hom(¥, 9)) + h2((phHan j Hom(¥F, 3)) = 2.

We rewrite this in terms of ordinary and compact cohomology on
yan

as
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hOan, Hom(¥, 9)) + h.2(U2", Hom(%, 9)) = 2.
The Poincare dual of HC2(Uan, Hom(7F, 9)) is HO(uan, Hom(9, F)), so

we obtain

howan Hom(¥F, 9)) + hO(Uan, Hom (g, F)) > 2.
So at least one of the two groups

HO(UaN Hom(F, 9)) = Hom(F, 9)

or

HO(UaN Hom(9, ¥)) = Hom(g, F)
is nonzero. Since ¥ is irreducible and both ¥ and § have the same
rank, any nonzero element of either Hom(%, 4) or or Hom(g, 7) is
necessarily an isomorphism.
Now suppose that ¥ is an irreducible local system of rank
n 2 1, which is physically rigid. We will show that

¥ ((P1yan, j_End(¥F)) = 2.

To do this, it suffices to show that for any local system 7 of rank
n > 1 which is physically rigid, we have

x((Phan j End(F)) > 2.
[1f F is irreducible, both HO(P1)an, j_End(¥F)) and its dual

H2((pl)an, JxEnd(7F)) are one-dimensional, so for any nonzero

irreducible ¥, we have X(([Pl)an, JEnd(F)) < 2].
We will resort to a transcendental argument. For a suitable

Uan

choice of base point u in , a sultable numbering sq, .., s of the k

:= Card(S) points at e, and suitably chosen loops ¥; which run from
u to D*(s;), turn once counterclockwise around s;, and then return

to u the same way they came, the fundamental group m¢ (U3, u)

may be described in terms of generators and relations as the

abstract group I'y with k generators C; subject to the one relation
TT; Cj := C1Cn..Cy = 1, via the isomorphism C; = YV;. Notice that the
conjugacy class of C; in I'y is that of local monodromy Y¥(s;) around
Si-

From this point of view, a rank n local system F on U2 is a

collection of k elements A; in GL(n, C) which satisfy TT; A; = 1. Given
a second rank n local system § on U2 corresponding to a collection
of k elements D; in GL(n, C) which satisfy TT; D; = 1, ¥ and ¢ have
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iIsomorphic local monodromy if and only if for each 1, A; and D; are
conjugate in GL(n, C), i.e, if and only if for each i there exists an
element B; in GL(n,C) such that D; = BiAiBi_l. F and § are
isomorphic if and only if there exists a single element C in GL(n,C),
or equivalently in SL(n,C), such that CAiC_1 = D; for all i.

So suppose that F is a rank n local system, corresponding to a
system of k elements A; in GL(n, C) which satisfy TT; A; = 1. Then ¥

is physically rigid if and only if given any system of k elements B; in
GL(n,C) such that TT; (BiAiBi_l) = 1, there exists a single element C
in SL(n,C) such that CA;C™1 = B;A;B;™1 for all i.

Fix such an ¥. By the Euler-Poincare formula, we have
x((P1Han i End(F)) = (2 - k)n? + Z; dim(3(A))),
where 3(A;) denotes the commuting algebra of A; in M(n, C).

Let us denote by Z(A;) the subgroup of GL(n, C) consisting of all
elements which commute with A;. Then Z(A;) is a nonempty, and
hence dense, open set of the linear space 3(A;), namely it is the
open set where the determinant is invertible. Therefore Z(A;) is
irreducible, of dim(Z(A;)) = dim(3(A;)). Thus we may rewrite the
above formula as

x((P1)an jLEnd(F)) = (2 - kKIn? + 3 dim(Z(A})),

Consider the k-fold self product of GL(n, C) with itself,

X := (GL(n, C))K
and the map

m: X = SL(n, C)
defined by

(Bl’ e Bk) =TT (BiAiBi_l).
[Since TT; A; = 1, this map m does indeed land in SL(n, C).] Consider

the group
G := SL(n, C) x TT; Z(A}),

which acts on X by having an element (C, 2, o Zk) in G act on X as
(Bl’ ) Bk) = (CBlzl_l, ey CBka_l).

The same group G acts on SL(n, C), by having (C, Zq, .., Z;) in G act

on SL(n, C) as
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A = cacl,
With respect to these actions of G, the map
m: X » SL(n, C)
i1s easily checked to be G-equivariant.
Since the point 1 in SL(n, C) is a fixed point of the G-action, the

group G acts on the fibre 7-1(1). The key tautology is that ¥ is
physically rigid if and only if the group G acts transitively on w1(1).
[Indeed, ¥ is physically rigid if and only if given any point {B;}; in
m~1(1), ie, any system of k elements B; in GL(n,C) such that

TT, (BiAiBi_i) = 1, there exists an element C in SL(n,C) such that for
each i, CAiC_1 = BiAiBi_l, i.e., such that C_lBi is an element (Zi)_1 in
Z(A;), i.e, such that the point {Bj}; is the image of the point {1;};
under the action of the element (C, {Z;};) of G]

Suppose now that F is physically rigid. Then G acts transitively
on m~1(1), so we must have the inequality

dim(G) = dim(n~1(1)).

Since the point 1 in SL(n, C) is defined in SL(n, C) by n? -1
equations (an element (X; J) in SL(n) is 1 if and only if Xj j= 8 jfor
each (i,j) = (1,1)), n~1(1) is defined in X by n2 -1 equations.
Therefore every irreducible component W of = 1(1) has

dim(W) = dim(X) - (n? -1).
[To see this, recall that X = GL(n, 0k is equidimensional of

2

dimension kxn<“: at every closed point x of X the local ring Oy ., has

dimension kxn2. If a closed point x of X lies in ©~1(1), then
On-1(1)x = @X,X/(an ideal generated by n? -1 non-units)
has dimension
dim(O-1(1) ) 2 dim(Oy 5) - (n? - 1)]

Since the fibre nt-1(1) is nonempty (it contains the point {1;};), we
have
dim(G) 2 dim(n™1(1)) = sup,,.q comprs w dim(W) =
> dim(X) - (n? -1)

for ¥ physically rigid. Recalling the definitions of G and X,
G := SL(n, C) x TT; Z(A;),
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X := (GL(n, C))K,
the above inequality

dim(G) > dim(X) - (n2 -1)

says
(n2 - 1) + 2; dim(Z(A})) = kxn? -(n? - 1),
l.e.,
(2 - K)n? + % dim(Z(A)) = 2,
ie.,

x((Phan j End(F)) = 2. QED

Corollary 1.1.3 Notations as in Theorem 1.1.2 above, let ¥ be an

Uan

irreducible local system on of rank n > 1, and let £ be a rank

one local system on U2 Then the following conditions are
equivalent:

1) F is physically rigid.

2) F®L is physically rigid.

3) the dual local system ¥ := Hom(7, Cyyan) is physically rigid.
proof Indeed, all three local systems ¥, QL and 7 are

irreducible, and all have the same End sheaf on U2 and hence the
same jyEnd sheaf on Pl. QED

1.2 The case of higher genus

(1.2.1) Using the same technique, we can analyse the situation in
higher genus. We return to the situation X a projective smooth
connected curve over C, of genus g, 5 a nonempty finite subset of
X(C), U := X - S the open complement, j: U = X the inclusion. We
have already seen that as soon as g 2 1, no nonzero local system on

Uan can be physically rigid, due to the possibility of tensoring with

rank one local systems £ on X. So we introduce two weaker notions.

We say that a local system ¥ on U3 is weakly physically semi-
rigid if there exists a finite collection of local systems %41, %9, ..., ¥4

on UM with the following property: for any local system § on Uah
such that ¥ and 4 have isomorphic local monodromy, there exists a
rank one local system L on X, an index 1 <i < d, and an
Isomorphism

9= F,8j*L
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of local systems on U3, We say that a local system F on U2 is
weakly physically rigid if it is weakly physically semi-rigid and

we may take d=1, i.e,, if for for any local system 9 on U2 such
that ¥ and § have isomorphic local monodromy, there exists a rank

one local system £ on X and an isomorphism § = $Qj*L

Lemma 1.2.2 Let X a projective smooth connected curve over C, of
genus g, S a nonempty finite subset of X(C), U := X - S the open
complement.

(1) Any local system F on U2 of rank one is weakly physically
rigid.
(2) If ¥y is a rank one local system on U2, then for any nonzero

local system 9 on U2 G is weakly physically rigid if and only if
9® % 1 i1s weakly physically rigid.

(3) If ¥ is a nonzero local system on U3 T any finite subset of
Uuan(c), and k : Uadh - T — U3 the inclusion, then F is weakly
physically rigid on U2 if and only if k*¥F is weakly physically rigid
on yan - T,

proof (1) If ¥ and G are any two local systems of rank one with
isomorphic local monodromy, then Hom(9, ¥) is a rank one local

system on U@ with trivial local monodromy, so of the form j*&£ for
a unique rank one local system £ (namely j,Hom(9, F)) on Xa,
whence ¥ = §®j*L.

(2) It suffices to show that if § is weakly physically rigid then
3®7F ¢ is weakly physically rigid (since § is (9@?1)(8)(?1)(@_1). If ¥
and 9®7F 1 have isomorphic local monodromy, then %@(?1)(@)_1)
and 9 have isomorphic local monodromy, so by the weak physical

rigidity of 4, there exists a rank one £ on X2 and an isomorphism
g = (j*ﬁ)@%@(?i)(@)_l) on Ual Tensoring with ¥4 gives the

required isomorphism 3®%F 1 = (j*L)QH.
(3) Suppose first that ¥ is weakly physically rigid on U3 and that
g is a local system on U3 - T such that k*% and § have

isomorphic local monodromy on U2 - T. Because k*7F has trivial
local monodromy at each point of T, so also does ¢, and therefore ¥
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Uan

(= kyk™7F) and kG are two local systems on with isomorphic

local monodromy. Since ¥ is weakly physically rigid on U3 there
exists a rank one local system £ on X2 and an isomorphism
F = ky,9®j*L on U3, Restricting this isomorphism to U2 - T.gives
k*F = GQk*j*L, as required.

Conversely, suppose F is a nonzero local system on

that k* 7 is weakly physically rigid on U3 - T. Let G be a local

Uan such

Uan such that ¥ and § have isomorphic local

system on
monodromy. Then k*F and k*g have isomorphic local monodromy

on Ua - T so there exists a rank one local system £ on X2 and an

isomorphism k*7F = k*%@k*J*f, = k*(%@J*f,)_ Applying k, gives

the required isomorphism F = k k*F = k*(k*(9®J*f,)) = %@J*f,.
QED
In a more serious vein, we have:

Proposition 1.2.3 Let X a projective smooth connected curve over
C, of genus g, S a nonempty finite subset of X(C), U := X - S the open
complement, j: U = X the inclusion. If a nonzero local system ¥ on
Uan is weakly physically semi-rigid, then

X (Xan j End(¥)) = 2 - 2¢.
proof Once again we resort to a transcendental proof. With suitable
base point u in UM, suitable numbering sq, .., s of the k := Card(S)
points at o=, and suitable numbering of the g "handles”, the
fundamental group ’ITl(Uan, u) may be described in terms of
generators and relations as the abstract group rg,k with 2g + k

generators Eq, Fq, .., Eg, Fg, Cq, ..., C subject to the single relation

----------

where we write {a, b} for the commutator aba~1b~1. In this
presentation, the elements C; are the local monodromies around the
points s; at oo, and mq(X3M1 u) is the quotient of rg,k by the normal
subgroup generated by the elements Cq, .., Cy.

Uan

In terms of this presentation of 1T1( , u), a local system ¥ on

Uah of rank n > 1 is a collection 2g + k elements in GL(n, C),
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My, Ny, .., My, Ng, Ay, ., Ay

----------

Fix such an ¥. By the Euler-Poincare formula, we have
X(X3N, j End(F)) = (2 -2g - k)n? + =; dim(Z(A})).

A rank one local system L on X3 corresponds to an arbitrary

system of 2g elements pq, vq, .., Mg, v in C*; $®j*L then

g

corresponds to the collection
wqMq, v1Nq, .., ngl\/[g, ’IJgNg, Aq, ..., Ay
Consider a second local system ¢ of the same rank n,

corresponding to is a collection 2g + k elements in GL(n, C),
P11, Qq, . Pg, Qg, D1, .., Dk

----------

Then ¥ and § have isomorphic local monodromy if and only if for
each 1 < i < k there exists an element B; in GL(n,C) such that

Di = B;A;B;{™1 for each 1 < i < k.
F and § are isomorphic if and only if there exists a single element C
in GL(n,C), or equivalently in SL(n,C), such that

PJ CMJC_j‘ fOl” J=1;---}g;

N
D; = CAC L for 1 <i <k
Consider the 2g+k-fold self product of GL(n, C) with itself,

X := (GL(n, €))28*k

CNJc-1 for j=1,..,g,

and the map
m: X —» SL(n, C)
defined by

(J1, Ky, o Jgo K, By, oy By) = (TT5 (05, K D(TT; (BjAB;™1)).
[Since (ﬂj {MJ', Nj})(WiAi) = 1, and commutators lie in SL(n, C), this
map T does indeed land in SL(n, C).] Consider the group

G := SL(n, €) x (C*)28 x TT; Z(Ay).
[t acts on X by having an element

(C, 11, V{1, - Mg, Vgs 29, - Z1)
in G act on X as

(J1, Kq, oo I, Kg, By, o B) o
CuqdqC™L, cugkqct, cuquqcl, cvgkqcl, cByz47L, L, cBZ 7.

The same group G acts on SL(n, C), by having an element
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(C, g, V1, - Mg, Vg, 21, - Z1)
in G act on SL(n, C) as
A CAC™L.
With respect to these actions of G, the map
m: X = SL(n, C)
is easily checked to be G-equivariant. Since the point 1 in SL(n, C) is

a fixed point of the G-action, the group G acts on the fibre n-1(1).
The key tautology is that ¥ is weakly physically semi-rigid if and

only if under the action of G, n~1(1) is a finite union of G-orbits.
Just as above, if ¥ is weakly physically semi-rigid, we infer
that

dim(G) = dim(rr~1(1)) = dim(X) - (n2 - 1),
which is to say

(n2 - 1) + 2g + % dim(Z(A) = (2g + k)n? - (n? - 1),
l.e.,

(2 - 2g - K)n? + 2, dim(Z(A}) = 2 - 2g,
l.e.,

¥(Xan, j End(F)) = 2 - 2¢. QED

Corollary 1.2.4 Let X a projective smooth connected curve over C,
of genus g, S a nonempty finite subset of X(C), k := Card(3), U := X -
S the open complement, j: U — X the inclusion. If g > 2, and F is a

local system on U2 of rank n > 2, then ¥ is not weakly physically
semi-rigid.

proof For ¥ of rank n21 on U2 the Euler-Poincare formula gives
X (Xen i End(¥F)) - (2 - 2g)=

(2 - 2g - K)n? + Z; dim(Z(A) - (2 - 2g)
(2 - 2g)(n% - 1) + 3 (dim(Z(A)) - n?).

Each term (dim(Z(A;) - n?) is < 0, with equality if and only if Aj is

scalar. If g 2 2 and n = 2 then the term (2 - 2g)(n2 -1)is <0, so
X (XA, G End(F)) < (2 - 2g).
Therefore 7 is not weakly physically semi-rigid. QED

Corollary 1.2.5 (mise pour memoire) Let S be a nonempty finite
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subset of P1(C), U := P1 - S the open complement, j: U = P1 the

inclusion. Let ¥ be an irreducible local system on U21 of rank n > 1.
The following conditions are equivalent.

(1) F is physically rigid.

(2) F is weakly physically rigid.

(3) F is weakly physically semi-rigid.

(4) x(Pphan j End(F)) > 2.
(5) x(PLHan j End(¥F)) =2.

proof The implications (1) = (2) = (3) are trivial, and we have
proven (3) = (4) in 1.2.3 above. For ¥ irreducible, we have already
proven (4) = (5) and (5) = (1) in the proof of 1.1.2. QED

1.3 The case of genus one

Corollary 1.3.1 Let X a projective smooth connected curve over C,
of genus g=1, S a nonempty finite subset of X(C), U := X - S the open
complement, j: U = X the inclusion. Let ¥ be a local system on U3
of rank n = 1. Consider the following conditions:

(1) F is weakly physically rigid.

(2) F is weakly physically semi-rigid.

(3) X (X3, jLEnd(F)) > 0 = (2 - 2¢).

(4) x(Xan j . End(F)) =0 = (2 - 2¢g).
(5) ¥ has all its local monodromies scalar.
(6) jxEnd(F) is a local system on Xa1,

We have the implications
(1) = (2) = (3) = (4) = (5) = (6).
If in addition ¥ is irreducible, these conditions are all equivalent.

proof The implication (1) = (2) is trivial, and (2) = (3) is the
content of Proposition 1.2.3 above. If g=1, the Euler Poincare
formula gives

X (Xan G End(¥)) - (2 - 2¢g)=
(2 - 2g - K)n? + Z; dim(Z(A)) - (2 - 2g)
55 (dim(Z(A}) - n?).

Thus X (Xa j.End(7F)) < (2 - 2g) = 0, with strict inequality unless

all the local monodromies A; are scalar. Thus (3) = (4) and (4) =
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(5). If (5) holds, then End(¥F) has trivial local monodromy, so
JxEnd(¥F) is a local system on the elliptic curve Xa%, Thus (5) = (6).
Suppose now that ¥ is irreducible, and that (6) holds, i.e.,

JxEnd(7F) is a local system on X2 Let § be another local system on
Uah such that ¥ and 9 have ismorphic local monodromy. Then
Hom(¥F, §) and End(%) have isomorphic local monodromy. Since.
JxEnd(¥F) is a local system on X@ End(7F) has trivial local
monodromy. Hence Hom(%F, §) has trivial local monodromy, and

therefore jo,Hom(7F, ) is a local system on X@'. Because the mq of

Xal is abelian, any local system on X@! is a successive extension of

rank one local systems f’k on XaM So there exists a rank one local

system £ on X&' and a non-zero map of local systems on XaI

L = jxHom(F, 9).

Tensoring this map with r®-1 gives a nonzero map of local systems
C - jHom(F, QL1 = j Hom(F®j*L, 9),
l.e., a nonzero element in
HO(X@N, j Hom(F ®*L, ) = HO(UAN, Hom(F®j*E, 9))

= Hom(¥®j* L, 9).

Because ¥ (and hence ¥ ® j*L) is irreducible and of the same rank
as ¢, any such non-zero map of local systems is an isomorphism.

Therefore we have F®j*L = 9. Thus ¥ is weakly physically rigid,
and so (6) = (1) for ¥ irreducible. QED

1.4 The case of genus one: detailed analysis

(1.4.1) We now analyze the case of genus one in greater detail.
The first step is to show that up to tensoring with rank one objects,
we may reduce to the case when there is only a single point at oo.

Lemma 1.4.2 Let X a projective smooth connected curve over C, of
genus g=1, S = {sq, so, .., s} a finite subset of X(C) with k = 2 points,

U := X - 5 the open complement,
;U —= X,
and j1 1 X -8 — X - {sq}

the inclusions. Let ¥ be a local system on U3 of rank n > 1 which is
weakly physically rigid. There exists a rank one local system £ on
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Uan and a weakly physically rigid local system ¥4 on (X - {sq})a1,
such that ¥ = £®j1 ™7 1.

proof If ¥ on U3 of rank n > 1 is weakly physically rigid, its local
monodromy at each point s; in 5 is a scalar, say «;. Think of
m4(UaN 1) as the abstract group I'1 | with 2 + k generators E, F, Cq,
..., Ci subject to the single relation

{E, F}(0T,_4

The required L is any character X of this group which takes the
value «j at C; for i > 1, e.g,, one might take X (E) = X(F) = 1, and

.....

X(Cq) = (M1, oci)_l. Then F®L®1 has trivial local monodromy
at each of sg, ..., s, so it is of the form jl*?l.for some local system
F1 on (X - {sq})21. By 1.2.2(2), FRL® 1 on UAN is weakly physically

rigid, and, by 1.2.2(3), ¥4 is weakly physically rigid on (X - {sq})a.
QED

(1.4.3) We next analyze the irreducible local systems in genus
one when there is a single point at infinity.

Lemma 1.4.4 Let X a projective smooth connected curve over C, of
genus g=1, xg in X(C) a point, U := X - {xg} the open complement,

j: U = X the inclusion. Let ¥ be a local system on U2 of rank n > 1.
Then the following conditions are equivalent:

(1) F is both irreducible and weakly physically rigid.

(2) The local monodromy of ¥ around X Is a scalar ¢ which is a

primitive n'th root of unity.

proof Suppose first that (1) holds. By the weak physical rigidity of
F, and 1.3.1, (1) = (5), we know that the local monodromy of ¥
around xg Is a scalar ¢. We first show that ¢ is necessarily an n'th

root of unity.
Think of m4 (U3, u) as the abstract group I'1 1 with 2 + 1

generators E, I, C subject to the single relation
{E, FIC = 1, or C = {F, E},
C being the local monodromy around xg. Then ¥ "is” an n-
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dimensional C-representation of this group. So its local monodromy
around xq lies in SL(n, C), because it is the commutator of two

elements of GL(n, C). Being a scalar, ¢ is necessarily an n'th root of
unity.

Glven an n'th root of unity ¢, we construct an explicit n-
dimensional C-representation py ¢ on V . of mq(Uah u), which we
now think of as the free group on E and F, as follows:

Ve is the n-dimensional C-algebra CITI/(TH - 1),

Pn C(E) is the automorphism A: {(T) = Tf(T),

Pn,g’(F) is the automorphism B: {(T) — f(¢T).

Clearly AB(f)(T) = Tf(¢T), BA(f)(T) = ¢Tf(cT), so BA =tAB, which is to
say {B, A} = ¢, or equivalently {A, B}t = 1.
Interpret the representation py, ¢ as a local system 7 ¢ on

Ual Then its local monodromy around X0 i1s the scalar ¢.

We must show that if ¥ is both irreducible and weakly
physically rigid, then ¢ is a primitive n'th root of unity. We argue
by contradiction. Suppose that for some factorization of n = dm,
with both m and d integers 22, ¢ were a d'th root of unity. Then ¥

and @

local monodromy (namely ¢).

m copies 3d,¢ are two local systems on U™ with isomorphic

By the weak physical rigidity of ¥, there exists a rank one £ on Xam

and an isomorphism ¥ = @ T4 C®j*£’,. But this shows that

m copies
F is in fact reducible. Thus (1) implies (2).

Suppose now that (2) holds. By 1.3.1, it suffices to prove that F
is irreducible. Interpreting ¥ as a representation, this results from
the following general lemma.

Lemma 1.4.5 Let K be an algebraically closed field, n = 2 an
integer, V an n-dimensional K-vector space, A and B two elements
of GL(V), C the commutator {B, A}. Let £4, E9, ..., E, be the n (not

necessarily distinct) eigenvalues of C. Suppose that for any proper
nonempty subset S of {1,2, ..., n}, the product TT, . < E; = 1. Then
the subgroup of GL(V) generated by A and B acts irreducibly on V.
In particular, if C is scalar, equal to a primitive n'th root of unity,
then the subgroup of GL(V) generated by A and B acts irreducibly on

V.
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proof We restate the hypothesis in the following form: for any
monic polynomial f(T) of degree 1 < d < n which divides dety,/ (T - C),

we have Tl—all roots & of f g = 1.

We argue by contradiction. If W is a nontrivial proper subspace
of V which 1s mapped to itself by both A and B, then W is also
mapped to itself by their inverses, and so W 1s mapped to itself by C
= {B, A}. But

CIW=(BIW,A|lW}
lies in SL(W) (being a commutator of two elements in GL(W)). Taking
f(T) := detyw /(T - CIW), we get a contradiction. QED

Using the local systems ¥ ¢ on (X - {xg})®™ constructed in the

proof of 1.4.4 above, we get a complete description:

Proposition 1.4.6 Let X a projective smooth connected curve over
C, of genus g=1, xg in X(C) a point, U := X - {xg} the open

complement, j;: U —» X the inclusion, n 2 1 an integer. The local
systems F on U@ of rank n which are both irreducible and weakly

physically rigid are precisely those of the form 7, C®j*ii, with £ of

rank one on Xa1 and with ¢ a primitive n'th root of unity.

proof By 1.4.4, we know if ¢ is a primitive n'th root of unity, then
F

and hence also 7 C®j*f,, is irreducible. Because ¥ and

n,g n,g

hence also 7 C®j*£’,, have scalar local monodromy, [1.3.2,
(5) = (1)] shows that ¥, ®j*L is weakly physically rigid.

Conversely, given a rank n ¥ which is irreducible and weakly
physically rigid, by 1.4.4 its local monodromy at x( is a scalar ¢

which is a primitive n'th root of unity. So ¥ and %, , have
isomorphic local monodromy. By the weak physical rigidity of 7,
there exists an £ of rank one on X2 and an isomorphism

T = F, ¢ ®j*L.QED

(1.4.7) We next compute the determinant of ¥ . To state the

result, we denote by L1 /9 the rank one local system on (X - {xg})al

corresponding to the character E » -1, F —» -1, and by L the
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trivial rank one local system on (X - {xp})@1. [Of course, both of
these, like any rank one local system with only one point at oo,

extend uniquely to local systems on the complete curve Xamn ]

Lemma 1.4.8 Let X a projective smooth connected curve over C, of
genus g=1, xg in X(C) a point, U := X - {XO} the open complement,

J: U = X the inclusion, n > 1 an integer, ¢ a primitive n'th root of
unity. Then

det(?rrn C) = ‘f’O if n is odd.

proof As representation, ¥, e is

£1 /9 if nis even,

Ve is the n-dimensional C-algebra CIT]/(T" - 1),
Pn,g’(E) is the automorphism A: {(T) = Tf(T),
Pn C(F) is the automorphism B: {(T) — f(¢T).

The assertion is that det(A) = det(B) = (¢)n(n+1)/2 ( = (c)n+l ) 71
see this for A, notice that the vectors

() o= 2 g €0 T,
1 <1< n, are an eigenbasis for A, with eigenvalues Ci. To see it for B,
notice that vectors Ti, 1 <1< n, are an eigenbasis for B, with

eigenvalues Ci. QED

In fact, the local systems ¥ ¢ have a stronger rigidity

property.

Proposition 1.4.9 Let X a projective smooth connected curve over
C, of genus g=1, xg in X(C) a point, U := X - {xg} the open

complement, n > 1 an integer. Let ¥ be a local system on Ua! of
rank n which 1s both irreducible and weakly physically rigid. Denote
by ¢ the primitive n'th root of unity which i1s the local monodromy
of ¥ around xgq. If det(¥F) = det(?n’c), then ¥ = ?n,c-

proof As representation, ¥, e is
Ve is the n-dimensional C-algebra CIT]/(T" - 1),

Pn,g’(E) is the automorphism A: {(T) = T£(T),
Pn C(F) is the automorphism B: {(T) — f(¢T).
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By 1.4.6, there exist nonzero scalars A, i in C* such that the
representation Ag corresponding to ¥ is realized on the same space

Vn,c’ but with
Ng(E) 1= NA,
NAg(F) := uB.

Because det(¥) = det(7F C)’ the scalars A and | are n'th roots of
unity. Thus we must show that the automorphisms A and B of V, ¢

have the following property ()

(%) for any n'th roots of unity A, [, there exists an automorphism X
of Vy, ¢ such that AA = XAX™T and uB = xBX™1.

To prove (%), recall that BA = ¢AB. Thus
BAB™1 = ¢A, and ABA™L = ¢B.
So if we write A = Ci and W = CJ, we may take X = AJBL, QED

Corollary 1.4.10 Let X a projective smooth connected curve over
C, of genus g=1, xg in X(C) a point, U := X - {xg} the open

complement, n > 1 an integer. Let ¥ be a local system on Ua! of
rank n which 1s both irreducible and weakly physically rigid. Denote
by ¢ the primitive n'th root of unity which i1s the local monodromy
of ¥ around x(. The isomorphism class of 7 is determined by the

isomorphism class of the data (n, ¢, det(7F)).

proof The group (under ®) of isomorphism classes of rank one local
systems on U@ is divisible (being C* x €C*), so tensoring ¥ with an

n'th root of det(?n’c)@)det(?)_l, we reduce to the proposition above.
QED

(1.4.11) We now 1nvestigate the situation in genus one when there
are k=2 points at oo.
Proposition 1.4.12 Let X a projective smooth connected curve
over C, of genus g=1, S = {sq, so, .., si} a finite subset of X(C) with k
> 2 points, U := X - 5 the open complement,

;U —= X,
and j1 1 X -8 —> X - {sq}
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the inclusions. Fix an integer n > 1. The local systems ¥ on U2 of
rank n which are both irreducible and weakly physically rigid are

precisely those of the form (j{)*(F,  on (X - {s1})@")QL, with L of

rank one on UM and with ¢ a primitive n'th root of unity.
proof Simply combine 1.4.2 and 1.4.6. QED
Here is an intrinsic characterization.

Lemma 1.4.13 Let X a projective smooth connected curve over C,
of genus g=1, S = {sq, .., s} a finite subset of X(C) with k > 1 points,

U = X - S the open complement, j: U — X the inclusion. Let ¥ be a

local system on U2M of rank n > 1. Then ¥ is both irreducible and

weakly physically rigid if and only if the following two conditions
hold:
(1) ¥ has scalar monodromy &; around each point s; in S.

(2) TT, ., 5 Ei Is a primitive n'th root of unity.

proof The assertion is invariant under tensoring with an £ of rank

one on U3 so we are reduced, as in the proof of 1.4.2, to the case
when k = 1, where it is 1.4.4. QED

Proposition 1.4.14 Let X a projective smooth connected curve
over C, of genus g=1, S = {sq, so, .., si} a finite subset of X(C) with k

> 1 points, U := X - 5 the open complement,
J;uU - X
and j1 1 X -8 = X - {sq}
the inclusions. Let ¥ be a local system on U3 of rank n > 1 which is
both irreducible and weakly physically rigid. Denote by g; the scalar

which is the local monodromy of ¥ around s;. The isomorphism class

of ¥ is determined by the isomorphism class of the data (n, {g;}j,

det(F)).

proof Given this data, first construct the rank one local system
L)) on (X - {sq, .., si})@ given as character of mq by

Ew 1,F— 1,00 = T, &, C = (gP7Lforiz2.
Tensoring with L({g;};), we reduce to the fact 1.4.10 that
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()« (FRLE})) on X - {s1})81 is determined up to isomorphism by
the data (n, TT; &;, det((j)«(F ®L({g;}}))). QED

(1.4.15) We now return to the case of a single point at e, and give
a structure theorem for irreducible, weakly physically rigid local
systems of rank n =2 1, which says they are all induced from rank
one local systems.

Theorem 1.4.16 Let X a projective smooth connected curve over C,
of genus g=1, xg in X(C) a point, U := X - {xg} the open complement,
J: U = X the inclusion, n > 1 an integer. Let ¥ be a local system on

Ual of rank n which is both irreducible and weakly physically rigid.
Denote by ¢ the primitive n'th root of unity which is the local
monodromy of ¥ around xg. Let m : Y — X be any connected finite

etale covering of degree n (such coverings exist!). Denote by S C Y(C)

the set ’IT_j‘(Xo), which has Card(S) = n. Then there exists a rank one

local system £ on (Y - S)81 for which the local monodromy around

each of the n points in S is ¢, and for which my & = ¥ on U3,

proof Because X has genus one, m{(X3"1) is abelian, = (2)2. So
connected finite etale coverings Y of X are in bijective

correspondence with the subgroups ' of (2)? of index n, and such I’
clearly exist. By the Hurwitz formula, Y has genus one.

Consider the pullback m*% on (Y - S)2. Because 1 is finite

etale over all of X, the local monodromy of m*% around each point
of S is still the same scalar ¢.
Since S contalns n points, and ¢ i1s an n'th root of unity, there

exist rank one local systems £ on (Y - S)3" for which the local
monodromy around each of the n points in S is ¢. Pick any such L.
(We will "correct” it later.)

The local system Hom(&, m>*%F) on (Y - S)@1 has trivial local
monodromy at each point of 5. 5o denoting by k:' Y - S — Y the

Yan which is

inclusion, k,Hom (L, %) is a local system on
(because Y has genus one) necessarily a successive extension of rank
one local systems on Y@, So there exists a rank one £y on Y31 and

a nonzero element of
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Homyan(L(, keHom (L, w*F)) = Hom(y_gan(E®k* L, m>*F).
Because ¥ is irreducible, and m corresponds to a normal subgroup of
finite index, m* 7 is semisimple. Therefore the group

Hom y_gan(n™ 7, L&®k™ L) = Hompyan(F, m (L®k*L())
1s nonzero. Since ¥ 1s irreducible, and has the same rank n as

M (L®k™L(), any nonzero map between them is an isomorphism.
Thus ¥ = n(L®k™L(). Since Lg was a rank one local system on all
of YN [ and E®k* Ly have the same local monodromy at each

point of S. So L®k* Ly works as the required "L". QED

Remark 1.4.17 Here is a variant proof. Consider on (Y - S)@!! any
£ for which the local monodromy around each of the n points in S

is ¢. Because T is finite etale over all of X, m,£ on U3 is a rank n
local system which has its local monodromy around xq given by the

primitive n'th root of unity ¢. By 1.4.4, L is irreducible and

weakly physically rigid. So by 1.4.6, L is ?®j*(ﬁ1)®_1 for some

Xan

local system £4 on , and so

T = (M L)IRGTL) = m (E®n™j*L ) = m (E®k*n™L),
and EQ®k*n™L4 1 works as the "L

(1.4.18) What about reducible local systems which are weakly
physically rigid (or even semi-rigid)?

Lemma 1.4.19 Let X a projective smooth connected curve over C,
of genus g=1, S = {sq, s9, .., sy} a finite subset of X(C) with k > 1

points, U := X - 5 the open complement,
J;uU - X
and j1 1 X -8 —= X - {sq}
the inclusions. Let ¥ be a local system on U3 of rank n > 1 which is

weakly physically semi-rigid. Then ¥ is irreducible (and hence
weakly physically rigid, by 1.3.1).

proof We first reduce to the case of a single point at o. If k > 2,
denote by &; the scalar which is the local monodromy of ¥ around
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si, and by L({g;};) the rank one local system on (X - {sq, ..., s}.})a"
constructed in the proof or 1.4.14 above. Then FQL({g;};) extends to

a local system on (X - {s1})2" which is still weakly physically semi-
rigid, and 1t suffices to show that this local system 1is irreducible on

(X - {s1))3 [Since the mq of (X - {sq, .., s})@" maps onto the mq of
(X - {5113, a local system G on (X - {s1})3! is irreducible if and

only if its restriction (j1)*g to (X - {sq, .., sp})@1 is irreducible.]
We now assume that k=1, S={sq}, and show that any weakly

physically semi-rigid local system ¥ on (X - {s1})@" is irreducible.

Let ¥ have rank n > 1, and denote by ¢ its local monodromy around
the unique point sq at . Then ¢ is an n'th root of unity, and we

know by 1.4.4 that ¥ is irreducible if and only if ¢ is a primitive
n'th root of unity. So if ¢ has exact order n, we are done.
So suppose that ¢ has exact order d < n, and define m:= n/d, an

Xan

integer >1. Let # be any local system on of rank m. Then % and

?d,C’®J*}E are two local systems on (X - {s1})@" with isomorphic

local monodromy (namely ¢).
By the weak physical semi-rigidity of ¥, there exists a finite

collection of local systems ¥4, Fo, ..., T, on (X - {s1})81 with the

following property: for any local system § on U2 such that ¥ and
9 have isomorphic local monodromy, there exists a rank one local
system £ on X, an index 1 < i < r, and as isomorphism

9 = F;®;*L.
Applying this to § := ?d,g’@uj*}t’ as ® runs over all rank m

local system on X2 we see that up to tensoring with a rank one

local system on X@ we obtain only finitely many isomorphism
classes.
We will show this is impossible if m>1. Pick a rank one £4 on

Xan of infinite order. For each integer k > 1, define a rank m local
system H(k) on X,

HK) = @ (£q) 8kl

l<isgm

Then

Fqe®*HK) = @ Fq, e ®(G*L)®KL

1 <1sm
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We claim that even modulo tensoring with a rank one local
system on X&' there are still an infinity of isomorphism classes

among the local systems ¥ 4 C®j*}f’,(k).

Notice that each T4 C®j*3’l’,(k) is a direct sum of m pairwise
non-isomorphic irreducibles each of the same rank d( namely the

?d’g®(j*ﬁ1)®ki with 1<ism, whose determinants,

det(F g4 C)®(j*f,1)®dki, are already pairwise non-isomorphic, £4

being of infinite order).
To any direct sum § of m pairwise non-isomorphic irreducibles
i, each of the same rank d, we may attach the following invariant:

the finite set consisting of the distinct isomorphism classes among
the m(m-1) rank one objects det(%i)/det(gj), for all i = j. This

construction visibly attaches the same invariant to § and to

3®j*L, for any rank one local system £ on X@I,
So 1t suffices to see that the objects

Fqe®i*HK) = @ Fq,e®G*EPKL Kk 21,

each give rise to distinct invariants. But this is obvious. The

l1<i<m

invariant attached to ¥4 ®j*¥#(k) consists visibly of the
isomorphism classes (j*f,l)®kdp, -(m-1) < p < m-1. Because £ has
infinite order, (J*£1)®kd(m—l)’ which occurs in the invariant of

¥4 c®i*H(k), does not occur in the invariant of ¥4 ®j*H(N) for
any 1 < N < k. QED
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2.0 Transition from irreducible local systems on open sets of
Pl to irreducible middle extension sheaves on Al.

(2.0.1) Let S a nonempty finite subset of P1(C), and U := P1 - g
the open complement, j: UaN — (P1)an the inclusion, ¥ an
irreducible C-local system on U@ of rank n > 1. We know by 1.1.2
that F is physically rigid if and only if x(P1)an, j End(¥)) = 2.

Motivated by this fact, we define the index of rigidity of ¥ on U,
noted rig(¥,U), to be the integer

rig(F, U) := x(P1)an, j End(F)).
Lemma 2.0.2 Let S a nonempty finite subset of P1(C), U := P1 - s

the open complement, j: UaN — (P1)an the inclusion, ¥ an
irreducible C-local system on U@ of rank n 2 1.

(1) If £ is any rank one local system on U2 we have
rig(Fe L, U) = rig(F, U).

(2) If T is any finite subset of U2(C), and k : U - T — Ual the
inclusion, we have

rig(k*F, U - T) = rig(F, U).

proof (1) holds because the local system End(F) on U2 does not
change if we replace ¥ by FQ®UXL. (2) holds because for any local

system @ on U3 we have 9 = k, k*g. Applying this to End(7F), we
get
G End(F) = j Kk Kk*End(F) = j, Kk End(k*F),

and applying y((PhHan ) gives the assertion. QED

(2.0.3) Recall [Ka-ESDE, 7.3.1] that on a connected smooth curve
U/C, an algebraically constructible sheaf ¥ of C-vector spaces on

Uan is called a middle extension sheaf if for some (or
equivalently for every) nonempty Zariski open set k: V — U such
that k*% is a local system on V&Il we have ¥ = k k*7F. A middle
extension sheaf ¥ on U is called an irreducible middle extension if

if for some (or equivalently for every) nonempty Zariski open set

k: V — U such that k*7 is a local system, k*% is an irreducible local
system.
(2.0.4) We now specialize to the case when U is a Zariski open set
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of IPl, ;U - Pl its inclusion. We will now define the index of

rigidity rigU(?) of an irreducible middle extension ¥ on U2, Given

such an %, pick a nonempty Zariski open set k: V — U such that
k*¥F is an irreducible local system. The integer

riglk*F, V) := x((PHan, j k End(k*F))
1s iIndependent of the auxiliary choice of V, thanks to lemma 2.0.2
above. We call it rigU(?).
(2.0.5) The situation now is this. For any nonempty Zariski open
set U In IPi, we have the category IrrME(U) of irreducible middle

extensions on U3, Whenever V C U, with inclusion k: V — U, the
functors

k* : IrrME(U) = IrrME(V) and k, : I[rrME(V) — IrrME(U)
are inverse equivalences. Given two nonempty Zariski open sets Uy
and Uy, pick any nonempty Zariski open V in U1NU», with

inclusions k; : V. — U;. Then we get an equivalence

‘P1,2 = (kz)*(kl)* : II’FME(U]_) - II’FME(U2)

which is independent of the auxiliary choice of V. Given three
nonempty Zariski open sets Uq, Uy, Uz, we have

P1,3 = 92,3°9P1,2
S0 we can canonically identify all of these categories.

(2.0.6) The Z-valued functions ¥ = rigy(%) on these categories

respect these identifications, so we may speak of the single function
F = rig(7F).

(2.0.7) At first glance, it would seem most natural to work with

the single category IrrME(P1). However, it turns out to be better to
pick two points in IPl((E), label them o and 0, and work on the open

set A1 ;= P1 - (). Because we have specified the origin 0, this Al
has an additive group structure. By embedding the category

IrrME(AL) in the slightly larger category IrrPerv(Al) of irreducible

perverse sheaves on Al, we can bring to bear the whole mechanism
of additive convolution.
2.1 Transition from irreducible middle extension sheaves on

Al to irreducible perverse sheaves on Al
(2.1.1) On any separated C-scheme X of finite type, a sheaf F of
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C-vector spaces on X@M is said to be algebraically constructible if

there exists a finite partition xred - 1l; Y; as the disjoint union of
smooth connected subschemes Y;, such that on each Y;, ¥ | yian 1s a
local system on Y;3". We denote by D(X3, C) the derived category
of the category of all C-sheaves on X&' and by DbC(Xan, C) the full

subcategory of D(X@! €) consisting of those objects K for which
1) each cohomology sheaf H#1(K) is algebraically constructible,
2) only finitely many of the sheaves H1(K) are nonzero.

These DbC support the full Grothendieck formalism of the "six

operations”. In this formalism, the dualizing complex Ky /¢ 1s defined

as f'C, f: X — Spec(C) denoting the structural morphism.
(2.1.2) Recall [BBD, Ch. 4] that an object K of DbC(Xan, C) is

called semiperverse if its cohomology sheaves ®1(K) satisfy

dim Supp(HI(K)) < -i, for every integer i.
An object K is called perverse if both K and its Verdier dual
Dy /cK := RHom(K, f!C), f: X — Spec(C) denoting the structural
morphism, are semiperverse. The main facts about perversity,
semiperversity and duality we will use are the following [BBD, Ch.
4]
(1) if X = Y is an affine morphism, then K — Rf K preserves

semiperversity
(2) if f:X — Y is a quasifinite morphism, then K — RfK preserves

semiperversity
(3) if f:X — Y is an arbitrary morphism whose geometric fibres all

have dimension < d, then L — {*L[d] preserves semiperversity

(4) Duality interchanges Rf| and Rfy

(5) Duality interchanges f' and f*

(6) if f:X = Y is a smooth morphism everywhere of relative
dimension d, then f' = £*[2d](d). Consequently f*[d](d/2) is self-dual,

and K = {*K[d] preserves perversity
(7) If X is smooth over C, purely of dimension d, then for any local

system ¥ on X, F[d] is perverse, and Dy /. (F[d]) = F ¥[dl(d).

(2.1.3) In this discussion, the field C occurs in two ways, as the
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ground field over which our variable scheme X is given, and as the
coefficient field. Since we speak of X@MN the field C with its classical
topology 1s being used as as the ground field. But the coefficient field

C enters in a purely algebraic way, and could be replaced by any

field to which it is isomorphic, for instance by Q, (if we grant the
axiom of choice). So we might just as well work with DbC(Xan, 68)
whenever 1t is convenient.

2.2 Review of DP_(X, Q)

(2.2.1) Let k be a perfect field of characteristic p = £. For variable
separated k-schemes of finite type X/k, we can speak of DbC(X, 68)' For

morphisms f: X — Y between separated k-schemes of finite type, one
knows (cf. [De-Weil II] for the case when k is either algebraically closed

or finite, [Ek], [Ka-Laul, [SGA 4, XVIII, 3]) that these DbC support the full
Grothendieck formalism of the "six operations”. In this formalism, the
(relative to k) dualizing complex Ky in DbC(X, 68) is defined as ’IT!@e,
where 1 denotes the structural morphism m: X — Spec(k). In terms of
Ky, the Verdier dual D(L) of an object L of DbC(X, 68) is defined as
RHom(L, Kx). One knows that L = DD(L) by the natural map. The

duality theorem asserts that for f : X — Y a morphism of finite type
between separated k-schemes of finite type, one has D(Rf|L) = Rf,D(L),

D(Rf4L) = RfiD(L). If X/k is a smooth separated k-scheme of finite type
and everywhere of the same relative dimension, noted dimX, then Ky
is Qyl2dimX](dimX), and so D(L) is RHom(L, Qp)[2dimX](dimX).
(2.2.2) Given two separated k-schemes X/k and Y/k of finite type,
‘external tensor product over Q)" defines a bi-exact bilinear pairing,
Db (X, @p)xDPL(Y, Bp) — DPL(Xx,Y, Q)
(K, L) = KxL := prq{*K®pro>L.

One knows that D(KxL) = D(K)xD(L).
(2.2.3) [f k happens to be €, the comparison theorem gives an

exact, fully faithful "passage to the analytic” functor DbC(X, 68) -
DbC(Xan, 68) which is not, however, an equivalence of categories.

Everything recalled above about DbC(X, 68) is true also of DbC(Xan, @8)’
and all cohomological constructions above commute with the "passage

to the analytic" functor. Given any object in DbC(Xan, C), for all 2 >> 0



Chapter 2-The theory of middle convolution-5

there exists an isomorphism C = @e such that the corresponding object

in DP_(XaN, @) lies in (the essential image of) DPL(X, @), cf. [BBD, 6.11.
In 5.9.2, we will give the elementary and down to earth proof of this

fact for local systems on open sets of A1, which will suffice for our
purposes.

2.3 Review of perverse sheaves

(2.3.1) We continue to work with X/k as in 2.2.1. An object K of

DbC(X, @e) is called semiperverse if its cohomology sheaves HIK satisfy

dim Supp(H®IK) < -i.
An object K of DbC(X, 68) is called perverse if both K and its dual D(K)

are semiperverse. If f : X — Y is an affine (respectively a quasifinite)
morphism, then Rf, (respectively f| = Rf|) preserves semiperversity. So

if f is both affine and quasifinite (e.g., finite, or an affine immersion),

then by duality both f; = Rf; and Rf, preserve perversity. If f : X = Y

is a smooth morphism everywhere of relative dimension d, then f*[d]
preserves perversity. In particular, if K is perverse on X, then its
inverse image on X®pk is perverse on X®p k. One knows that the full
subcategory Perv(X, 68) of DbC(X, 68) consisting of perverse objects is

an abelian category in which every object is of finite length. If £ is
fixed, we will often denote Perv(X, Q) simply Perv(X). The objects of

Perv(X) are sometimes called "perverse sheaves” on X. However, we will
call them "perverse objects” to avoid confusion with "honest” sheaves.

(2.3.1.1)  We now recall from [BBD, 1.3] the theory of the perverse

truncations Pt _;(K) and Pt,;(K) and of the perverse cohomology
sheaves PHI(K) attached to an object K in DbC(X, 68)' This will be
used (only) in section 2.12. Inside DbC(X, @8)’ we denote by PD=0

(respectively PD20 ) the full subcategory consisting of those objects
K which are semiperverse (respectively, those objects K such that

DK is semiperverse). For each integer i, we define pp<i (respectively

PD21) to be the full subcategory of DbC(X, 68) consisting of those

objects K such that Kli] lies in PD=<0 (respectively PDZ0). Duality
interchanges PD<! and PDz"1 By [BBD, 1.3.3], the inclusion of ppsi
(respectively of PD21) into DbC(X, 68) admits a right (respectively
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left) adjoint, noted Pt_; (respectively Pt.;). It is tautological that
(Pt (KDI) = Pr_o(K[D, (Pry (K] = Pryo(KIiD.
For any i, and any K in DbC(X, @e), we have a distinguished triangle
Pt_i(K) - K = Pt 1 (K).

For any two integers a, b, there is a canonical isomorphism [BBD,
1.3.5] between the two composites

Pryg e Pty = Py o Pryg.

Unless a < b, both of these composites are zero.
Now take the special case a=b=0. In this case, the composite

functor above has values in Perv(¥X, 68)’ the intersection of PD<0
and of PD20 For K in DbC(X, 68)’ we define
PHO(K) := P, o(PT_(K)) = P1_g(P1,0(K)).

For each integer i, we define

PHI(K) := PROKIID,

or equivalently,
PHI(K)[-1] := Pr,;(P1_i(K)) = P1_i(P1,(K)).

One shows [BBD, 1.3.6] that P10 is a cohomological functor from
DbC(X, ﬁé) to the abelian category Perv(X, @e): a distinguished

triangle in DbC(X, 68) gives rise to a long exact sequence of perverse

cohomology sheaves. The functors pTSO and pTZO are interchanged
by duality, whence

PrO(DK) := D(PHO(K)),
and hence for every i, we have

PHI(DK) := D(PHI(K)).
Glven any K in DbC(X, 62)’ all but finitely many of its perverse

cohomology sheaves PHI(K) vanish. [By duality, it suffices to show

that PHI(K) vanishes for i sufficiently large. But Klil is (trivially)
semiperverse for 1 sufficiently large, so it suffices to show that for K

semiperverse, PHI(K) vanishes for i > 0. In fact, one knows [BBD,
1.3.7] that K in DbC(X, @e) is semiperverse if and only if PHI(K)

vanishes for i > 0. Therefore PHI(K) = 0 for i outside [a, b] if and only
if K lies in Ppla, bl .o ppza n ppsb ] Moreover, any K in DbC(X, 69) is
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a successive extension of its shifted perverse cohomology sheaves
PHI(K)[-i], as one sees by induction on the length b-a of the shortest
interval [a, b] such that K lies in ppla, b], using the distinguished
triangles Pt_;(K) - K — Pt 4(K).

(2.3.2) [f X 1s smooth over k, everywhere of relative dimension
dimX, the simplest example of a perverse object on X is provided by
starting with a lisse sheaf ¥ on X, and taking the object F[dimX] of

DbC(X, 68) obtained by placing ¥ in degree -dimX. The object F[dimX]
is trivially semiperverse, and its dual D(F[dimX]) = (F ¥ (dimX))[dimX],

being of the same form, is also. If X is connected, and if ¥ is irreducible
as a lisse sheaf, i.e,, as a representation of m{(X, x), then FldimX] is a

simple object of Perv(X).

Lemma 2.3.2.1 For X smooth over k, everywhere of relative
dimension dimX, consider the following two (rather special)

properties of an object K in DbC(X, Qyp):

a) each of the cohomology sheaves ®I(K) is lisse,

b) each of the perverse cohomology sheaves PHI(K) is of the form (a
lisse sheaf on X)[dimX].

These properties are equivalent, and, if they hold, then the perverse
and ordinary cohomology sheaves of K are related by

c) PRI(K) = #lI-dIMmX)[dimXx],
proof Suppose first that a) holds. For the usual truncation functors
T<pn, We have distinguished triangles

Ton-1K = 1. ,K = H(K)[-n].

For n sufficiently negative, we have 1K = 0, and for n sufficiently

positive, we have 1.,_1K = 17.,,K = K. Because P10 is a
cohomological functor, we get a long exact sequence
> PHI(T_,_1K) = PHI(T_,K) - PRIKN(K)[-n]) >PRIFL(t_ 1K) -
Since HI(K) is lisse, HI(K)[dimX] is perverse, and hence
PHA(HT(K)[-n]) = HUK)dimX] for a=n+dimX
= 0 for a=n+dimX.

Using this fact, and the long exact sequences above, one shows by
induction on n that
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1PHA(1 ,K) = 0 for a > n+dimX,
2)the map 1K — H(K)[-n] induces an isomorphism on PH?@ for
a=n+dimX,

3)the map 11K = 17 ,K induces an isomorphism on PH?@ for

a<n+dimx.
Once we have these facts, then for any a, we get
ppatdimX( k) =z pyardimX( K) = = ppatdimX(g)
<a <a+1

by successive application of 3), and then by 2) we get
ppardimX (¢ k) = prardimX(gag)l-al) = #A(K)dimX].

Thus we obtain PHatdimX (k) = #2(K)[dimX], which proves c), and
consequently b).

Now suppose that b) holds. Repeat the above argument, with
usual truncation replaced by perverse truncation, with perverse
cohomology sheaves replaced by usual cohomology sheaves, and
with dimX replaced by -dimX. Again we find c), and consequently
a). QED

(2.3.3) Glven a locally closed subscheme Y of X such that Y is affine,
the inclusion j: Y — X is both affine and quasifinite (factor it as the
open immersion of Y into its closure Y, followed by the closed
immersion of Y into X). So for a perverse object K on Y, both jiK and

Rj«K are perverse on X, and as functors from Perv(Y) to Perv(X) both

Jiand Rjy are exact. There is a natural "forget supports” map from jiK

to Rj«K, and as Perv(X) is an abelian category it makes sense to form
Jix(K) := Image(jiIK = RjxK) € Perv(X),

called the "middle extension” from Y to X of the perverse object K. The
functor ji, is end-exact (i.e,, it preserves both injections and

surjections, cf. the appendix to this chapter) from Perv(Y) to Perv(X),
it carries simple objects to simple objects, and it commutes with
duality. Despite the erroneous assertion in [Ka-ESDE, 8.1.4], the functor
Jix 1s not exact in general.

(2.3.3.1) For K and L perverse on Y as in 2.3.3 above, the functors
Jix and j*¥induce natural maps of Hom groups,
Jlx
Homvy (K, L) — Homy(jixK, jixL)

and
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J'*
Homx(j!*K, j!*L) - Homy(K, L).
These maps are inverse isomorphisms. To see this, we argue as
follows. The composite functor K = j*ji4K is the identity, so the

composite map

Homvy (K, L) — Homy(jixK, jixL)—= Homvy(K, L)
is the identity on Hom-~ (K, L).

Because jiyxL is a subobject of Rj K in Perv(X), the restriction
map

J'*

Homy (jixK, jixL) — Hom+ (K, L).
1s injective: we have
Homy (ji«K, jixL) € Homy(jixK, RjcL) =

= Hom~(j*jixK, L) = Homvy(K, L).

Now start with ¢ in Homy(ji«K, jixL). Both ¢ and jixj*(¢) have the

same restriction, namely j*(¢), in Homvy (K, L), hence ¢ = jij*(¢) in

Homx(j!*K, j!*L).

(2.3.4) One knows that for any simple object S of Perv(X) there
exlists an affine locally closed subscheme j: Y — X such that Y is
smooth over k and irreducible, and an irreducible lisse sheaf ¥ on Y
such that Sis ji(F[dimY]). Given the simple object S, we construct Y

and 7 as follows: the closure Y of Y is precisely the closure of the
support of EBi}EiS, Y 1s any smooth affine open set of Y on which all the
KIS are lisse, and F is ¥~ dIMY(g)|y.

(2.3.5) An object S of Perv(X) is called geometrically simple if its
inverse image on X®k is simple. Of course "geometrically simple” =

“simple”.
(2.3.6) Consider the special case when X/k is a smooth,

geometrically connected curve. Then an object K of DbC(X, @e) is
perverse if and only if

HIK = 0 for i = -1, 0,

#~1K has no nonzero punctual sections,

10K is punctual.
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We call a perverse object K punctual if K = }[’,O(K), and we call K

"nonpunctual” if #OK = 0. If F is a lisse sheaf on an open nonempty
open set j: U — X, then the middle extension ji4(F[1]) is none other

than (j,F)[1]. It is for this reason that we adapted the terminology
"middle extension” for sheaves of the type j.F with F lisse on U. The

dual D(ji4(F[1])) of such a middle extension is given by
D(jix(FI1]) =D(jFI1]) = J1&(D(F[L])) = j (F¥)IL1I(1).

Any perverse sheaf K on X has a natural two step filtration, whose
associated graded pieces are (punctual, middle extension, punctual).

To see this we first filter K by its subobject ¥~ 1(K)[1], which sits in
the short exact sequence of perverse sheaves

0 - #1mIM » K - #9(K) - o.
Now denote by j: U — X the inclusion of a nonempty affine open set

U on which ®#~1(K) is lisse. Since ¥~ 1(K) has no nonzero punctual
sections, we have a short exact sequence of usual sheaves on X

0 - H LK - j.j*H LK) - pct'l = 0.
Shifting by [1] and rotating the triangle, we get a distinguished
triangle
pet'l = HLIOM] = (G *HTENI1],
l.e., a short exact sequence of perverse sheaves
0 = pctl —» B LK1 - (o j*H T )1 - o.

The filtration in question is pct'l C ®-L(K)[1] c K.

There are two types of simple perverse object on X:
(1) the punctual ones, whose Y is a single closed point x of X; the
corresponding simple objects are x,%F, where ¥ is an irreducible

representation of Gil(E/k(X)) [so if k is algebraically closed, only the
delta sheaf &y =%, Q) supported at x].

(2) the nonpunctual ones, whose Y is a nonempty open set j: U — X of
X; the corresponding simple objects are (jF)[1], where ¥ is an

"arithmetically irreducible” lisse sheaf on U, 1.e., one whose
representation of w4 (U, u) is irreducible [so the nonpunctual simples

which are geometrically simple are precisely the F[1] where ¥ is an
‘Irreducible middle extension sheaf” in the terminology of 2.0.35.
(2.3.7) If kis C, then for any ¢ the exact, fully faithful "passage to

the analytic" functor DbC(X, 68) - DbC(Xan, 68) induces an exact fully
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faithful functor Perv(X, 68) — Perv(Xal, 68)' Everything said above

about Perv(X, 68) holds also for Perv(Xall, 68)’ and all cohomological
constructions, including middle extension ji,, commute with the

"passage to the analytic” functor 2.2.3.
2.4 Review of Fourier Transform

(2.4.1) Suppose X/k is Al/k, k a perfect field with char(k) := p > 0.

For each ¢=p, we fix a nontrivial additive character : [Flo - @ex, and

1ts assoclated lisse, rank one Artin-Schreier sheaf f,qJ on Al The
derived category versions of Fourier Transform are defined by
FTy 1(K) 1= Rlpro)ilpri "K&L y,(xy)I1],

FTy »(K) := R(pro)y(pri *K@L ,(xy))[1].
Both are exact functors from DbC(Al, 68) to itself, which are
essentlally interchanged by duality:
D(FTy, 1K)= FTy ([-11*-DK)(1).
[t is easy to prove that FTqJ’! 1s essentially involutive:
FTqJ’!-FTqJ’! = [-1]*(-1);
by duality it follows that the same holds for FTqJ,*.

(2.4.2) The "miracle” of Fourier Transform is that there is really
only one: the natural "forget supports” map FTqJ’! - FTqJ’* Is an

isomorphism. We denote it FTqJ. As FTqJ (viewed as FTLp «) preserves
semiperversity, it follows from the miracle that FTqJ preserves
perversity, and so defines an exact autoequivalence of Perv(Al). In
particular, FTqJ sends perverse simple objects to perverse simple

objects.

2.5 Review of convolution
(2.5.1) Suppose G is a smooth separated k-groupscheme of finite
type of relative dimension noted dimG, m: Gx,G = G the multiplication

map, e: Spec(k) — G the identity section. Given two objects K and L in
DbC(G, 68)’ we define their "compact” or "!" convolution, denoted Kx|L,
by

Kx L := Rm(KxL) € DP_(G, @p).

We define their "x" convolution, denoted Kx L, by
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Kx L = Rm,(KxL) € DP_(G, Q).

Duality interchanges the two sorts of convolution:
D(KxL) = D(K)*,D(L), D(Kx L) = D(K)*D(L),

By the Leray spectral sequence and the Kunneth formula, we have
Gal(k/k)-equivariant isomorphisms of cohomology algebras

Ho*(Gek, Kx L) = H.*((GxG)®k, KxL) = H.*(Gak, K)QH_ *(Gok, L),
H*(Gok, Kx, L) = H*((GxG)ek, KxL) = H*(Gok, K)QH*(G®k, L).

(2.5.2) If we start with two (usual or perverse) sheaves ¥ and 9 on

G, viewed as objects of of DbC(G, 68)’ their convolutions ¥ %94 and ¥ =,9

are "really" objects of DbC(G, ﬁé)’ and not simply single (usual or
perverse) sheaves placed in some degree. It is this "instability” of (usual
or perverse) sheaves themselves under convolution that makes

DbC(G, 68) the natural setting for systematically discussing convolution.

(2.5.3) For the convenience of the reader, we collect from [Ka-ESDE,
8.1.9-10] the standard facts about convolution.

(0) If K and L are semiperverse (resp. perverse) objects on G, then
KxL is semiperverse (resp. perverse) on GxG. Therefore if G is affine,

and if K and L are both semiperverse on G, then Kx L is semiperverse

on G. If K and L. are both perverse on G and if moreover the natural
‘forget supports” map is an isomorphism Kx|L = Kx_L, then
K= L = Kx L is perverse (its dual being D(K)x ,D(L)).
(1)Each sort of convolutign 1s associative, and for each the 6-sheaf
6o 1= ex Wy
supported at the identity of G is a two-sided identity object. If G is
commutative, then each sort of convolution is commutative as well.
(2a) If 9: G=H is a homomorphism of smooth separated k-
groupschemes of finite type, then for K and L. on G we have
R (Kx L) = (RO, K)x (Re,L),
R(P!(K*!L) = (RLP!K)*!(RQP!L).
(2b) If ¢ : G = H is a homomorphism, then for K on G and L. on H we
have

@*((R@K)= L) = K (¢*L),
@' (RPK)xyL) = Kx, (¢'L).
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(3) For g € G(k) denote by Ty : G =G the map x = gx "left translation
by ¢g", and by Sg = (Tg)*(Se) the delta sheaf supported at g. Then for
g € G(k), we have

(Tg)* = R(Tg)* = (Tg)! = R(Tg)!

(Tg)*(K**L) =~ ((Tg)*K)**L,

(Tg)*(K*!L) ~ ((Tg)*K)*!L,

(Tg)*(L) = (Sg)*L.
Moreover, if G is commutative, then for g, h in G(k), we have

(Tgh)*(K**L) =~ ((Tg)*K)**((Th)*L),

(Tgh)*(K*!L) = ((Tg)*K)*!((Th)*L).

(4) If G is commutative, geometrically_connected, and defined over a
finite subfield k(y of k, then for every Qy-valued character X of G(kg),

the associated lisse rank one ‘E’X on G obtained from pushing out the

Lang torsor by X satisfies ﬂ*f,x = f’XXf’X’ whence by the projection
formula
(K*!L)®f,x = (K®£X)*!(L®f,x),
(K**L)(X)Jix = (K®£§X)**(L®£ﬁx).
(2.5.4) If kis C, then for any ¢ the exact, fully faithful "passage
to the analytic" functor DbC(X, 68) - DbC(Xan, @e) respects both

sorts of convolution.

2.6 Convolution operators on the category of perverse
sheaves: middle convolution

(2.6.1) Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type of relative
dimension noted dimG, m: GxG — G the multiplication map. A

perverse sheaf K on G is said to have property B! [respectively
property ®x] if for any perverse sheaf L on G, the ! convolution Lx K

[respectively the x convolution Lx K] is again perverse. If K has
property P! [respectively property T x], the functor L — LxK
[respectively L = Lx, K] is an exact functor from Perv(G) to itself.

Notice that since duality interchanges the two sorts of convolution,
D(Lx=K) = D(L)x ,D(K),

we have the equivalence.
K has P! & DK has Px.
(2.6.2) A perverse sheaf K on G is said to have property P if it
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has both properties P! and Px. If K has property T, we define, for
any perverse L on G, the middle convolution Lx,,;4K to be the

perverse sheaf on G defined as the image, in the abelian category of
perverse sheaves on G, of the natural "forget supports” map
LxigK = image(Lx /K —  Lx K).

For fixed K in P, L = Lx,,iqK is end-exact (cf. 2.17).

(2.6.3) By definition, the map

LK = LxpigK
1s sur jective in Perv, and the map

L*midK - L**K
I1s injective in Perv.
(2.6.4) If K and L have P! [respectively Px], so does Kx|L
[respectively Lx K], just by the associativity of convolution. What
about P itself? We will see later that if K and L both have P, and if
G is either G, or Al, then Kx, ;qL also has P, but we do not know

this for more general G. Returning to the general situation, we have
Lemma 2.6.5 In the situation 2.6.1, if ¥, K and L are perverse
sheaves on G which all have P, then

(FxmidK)*midl = F*mid(Kxmiql).
proof We will show this equality by showing that both are the
image of F =KL in ¥=,Kx_L. Indeed, we may factor this "forget

supports” map as the composition of the two surjective maps
(FxK)x L = (Fx,;qK)= L (surj. as %L is exact on Perv)

(?*midK)*!L - (?*midK)*midL
and the two injective maps

(?*midK)*midL - (?*midK)**L‘

(FxigK)* L = (Fx )= L (inj. asx 4L is exact on Perv).
Thus (F % ,igK)*nigl i1s the image of F = Kx L in Fx, Kx, L.
Rearranging the parentheses shows that ¥ =,,;q(K*,iqL) is also this

image. QED

Remark 2.6.6 If we only assume that K and L have P, but not 7,
then the right hand side Fx,,;q(K*,,ijql) isn't defined,since we

don't know that Kx,,;qL has P. Later, we will know that Kx, iqL
has Pif both K and L do, at least on both Al and G, but it will not

be true that for any 7 in Perv, we have ¥ =, ,;q(K% iqL) =
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(F % nigK)*migl Indeed, it can be that K=, ;qL = &5, so the left side
is ¥, but that already ¥ %K = 0, so a fortiori ¥=,,;4K = 0. [example:

F = Qgltlon AL, K = Ly 1], L = £x[1]]
Lemma 2.6.7 Let k be an algebraically closed field. Suppose G is a

connected smooth affine k-groupscheme of finite type. Let K and L
be any perverse sheaves on G. Then Kx|L 1s perverse if and only if it

Is semiperverse.
proof By definition, K= |L is perverse if and only both it and its dual

are semiperverse. 5o it suffices to show that for K and L perverse,
the dual of K= |L is semiperverse. But this dual is D(K%|L) =

D(K)=  D(L), the xconvolution of the perverse sheaves D(K) and D(L),

hence is semiperverse because G is affine (cf. 2.5.3 (0)). QED

Lemma 2.6.8 Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type. Let K be
perverse on G. Then the following conditions are equivalent:

1) K has property P!

2) K%M is perverse for every perverse irreducible M on G.

proof That 1) implies 2) is trivial. Suppose now that 2) holds, and let
L. be perverse on G. It is known [BBD, 1.3.6 and 4.3.1 (i)] that the
category of perverse sheaves on G i1s abelian, and every object is of
finite length. We proceed by induction on the length of L. If L 1s
irreducible, then Kx L is perverse. by 2). In general, pick a perverse

irreducible M in L, and consider the short exact sequence of
perverse sheaves

O > M-—->L—->N - 0.
By induction, both K%M and Kx|N are perverse, and hence both are

semiperverse. In the derived category DbC(G, @é), the above exact

sequence of perverse sheaves is a distinguished triangle. Applying
the functor K= (_) to it yields a distinguished triangle

0 = KxM — Kx|L = KxN - 0

whose end terms are semiperverse. The long exact cohomology
sequence

= HI(KxM)—> HI(Kx L) > HI(KxN) -
shows that Kx L is itself semiperverse, and hence (by the previous

lemmea) perverse. Thus 2) implies 1). QED
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The special case of relative dimension one

We now turn to the special case when G in 2.6.1 is further
assumed to be of relative dimension one. Although such a G is
iIsomorphic to either G, or G, we will, to the extent possible, give a

unified treatment of the two cases.

Lemma 2.6.9 Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let K be any perverse irreducible on G whose
isomorphism class is not translation-invariant. Then K has property

L

proof By the above two lemmas, it suffices to show that for any
perverse irreducible L on G, K%L is semiperverse. Since G is one-

dimensional, Kx L is semiperverse if and only if

}EO(K*!L) is punctual, and }f’,i(K*!L) = 0 fori> 0.
I[f K (respectively L) is punctual, then Kx|L is a translate of L (resp.
K), and hence Kx|L is certainly perverse. If neither K nor L is

punctual, then there exists a dense open set U in G, and irreducible
lisse sheaves ¥ and ¢ on U, such that, denoting by j: U — G the
inclusion, K and L are j,%[1] and j,3[1] respectively. The stalk of

}Ei(K*!L) at any geometric point g of G is the cohomology group
Hci+2(G, Transg*(j*?)@)(inv)*(j*%)). Since G is one-dimensional, this
group vanishes for 1 > 0, and hence }l’,i(K*!L) = 0 for 1 > 0. It remains

to show that Hi(K*!L) is punctual, i.e., that for all but at most
finitely many g in G(k), we have
HCZ(G, Transg*(j*?)@(inv)*(j*g)) = 0.
For fixed g in G(k), let us denote by Uy the dense open set
Ug := Transg*U N (inv)*U
on which both Transg*(j*?) and (inv)*(j«9) are lisse. Then
HC2(G, Transg*(J*?)®(inv)*(J*9))
= Ho?(Ug, Transg*(F)®(inv)*()).
= HO(Ug, Transg*(?V)®(inv)*(9V))v(1)

= Hong(Transg*(?), (inv)>* (9 Y)Y (1).
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Since both ¥ and § are irreducible, this group vanishes unless
Transg*(?) = (inv)*(3Y) as lisse sheaves on Ug,
l.e., unless
Transg*(j*?[l]) = (inv)*(j« 9 YI[1]) as perverse sheaves on G,
l.e., unless

Transg*(K) = (inv)*(D(L)) as perverse sheaves on G,

in which case the group is one-dimensional. By the constructibility
of }(’,O(K*!L), either }EO(K*!L) is punctual, in which case Kx|L is
semiperverse, or there is a dense open set V in G such that
Transg*(K) = (inv)*(D(L)) for all g in V.

In this last case, we argue as follows. F'ix one such gq; then

Transg*(K) = Trans, *(K) for all g inV. Then the isomorphism class

0

of Transgo*(K) is invariant by translation by all g in V1 := go_l\/.

But the set of g in G(k) such that Trans,™ fixes any particular

g
isomorphism class (here that of Transgo*(K)) is a subgroup of G(k).

This subgroup, for Transg *(K), contains the open dense set V¢, and

0
hence contains V1V4 = G. Thus the isomorphism class of

Transgo*(K), and hence of K itself, is translation invariant. QED

Corollary 2.6.10 Let k be an algebraically closed field. Suppose G is
a connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let K be any perverse irreducible on G whose
i1somorphism class is not translation-invariant. Then K has property
.

proof By lemma 2.6.9, K has P!. But the isomorphism class of DK is
not translation-invariant, so DK also has P!, whence K has Px. QED

Lemma 2.6.11 Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type, of relative
dimension one. For any perverse objects K and L on G, the not-

necessarily perverse object Kx|L. on G has }l’,i(K*!L) = 0 for 1> 0.

proof By an obvious devissage, we reduce first to the case when K is
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perverse irreducible, and then further to the case where L is
perverse irreducible as well. If either K or L is punctual, 1.e., a delta
function, then K%L is a translate of either L or K, so is perverse,

and hence has }Ei(K*!L) = 0 for 1 > 0. If not, then K = 9[1] and L =
9[1] for sheaves ¥ and 4 on G. In this case, }l’,i(K*!L) =
Ri+2sum!(pr1*?®pr2*9) vanishes for i 21 for dimension reasons: G

has relative dimension one, hence Risum!(any sheaf) = 0 for i > 3.

QED

Lemma 2.6.12 Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let K be perverse on G. Then K has property ®! if
and only 1f K%L is perverse for every perverse irreducible L on G

whose isomorphism class is translation-invariant.
proof The "only if" is obvious. Suppose now that Kx|L is perverse for

every perverse Irreducible L on G whose isomorphism class is
translation-invariant. We wish to show that K has ®!. For this, it
suffices (by 2.6.8) to show that K= M is perverse for every perverse

irreducible M on G. If the isomorphism class of M is translation
invariant, we are given the perversity of KM by hypothesis. If the

i1somorphism class of M is not translation invariant, then by 2.6.10,
M itself has P!, and hence Kx/M = Mx K is perverse. QED

Lemma 2.6.13 Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let L be a perverse irreducible on G whose
isomorphism class is translation-invariant. If G is G,,, then L is the

shifted Kummer sheaf f,x[l] for some character X of T[ltame((]}m).

If Gis AL, and char(k) = 0, then L is 68[1]’ while if char(k) = p > 0,
then L is the shifted Artin-Schreier sheaf f’qj(ocx)[l] for some o in k.

proof Because L is translation invariant, it cannot be punctual, so it
must be of the form L[1] for an irreducible middle extension sheaf L
on G. By translation invariance, £ must be lisse on all of G. Hence £
i1s a lisse irreducible sheaf on G.

If char(k) = 0, then mq(Gy,) = ﬂltame((ﬁm) is abelian, so L is
an ‘f’X’ while ﬂl(Al) =0, so & is 68'

If char(k) = p > 0, and G is Gy, the translation invariance of £
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forces it to have swan (L) = 0 and swang(L) = 0 (cf. [Ver, 1.1], [Ka-
GKM, 4.1.6]), hence to be tame. As ﬂltame((ﬁm) is abelian, £ is an

‘E’X’ as required. Suppose now that G is Al Then L is a perverse
irreducible whose isomorphism class is translation invariant. Its
Fourier transform FTLP(L') 1s a perverse irreducible, say M, on Al,
whose isomorphism class is invariant under M = M®‘f’q)(ﬁ>x) for all

B in k. Look at the I(e)-representation M(e) of such an M. From the
fact that the f’LlJ(BX) give (one for each value of p in k) an infinity of

distinct characters of I(e), we see (cf. the appendix 2.18 to this
chapter) that M(e) = 0. Therefore M is punctual. Being perverse
irreducible, M must be a single delta function 6, for some « in k,

whence L is ‘E’qJ(O(X)[j‘]’ as required. QED

Lemma 2.6.14 Let k be an algebraically closed field. Suppose G is a
connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let K be perverse on G. Then K has property ®! if
and only if Homg(K, L) = O for every perverse irreducible L on G

whose isomorphism class is translation-invariant.
proof We have shown above that K has P! if and only if K%L is

semiperverse for every perverse irreducible L. on G whose
Isomorphism class is translation-invariant. Fix one such L. We know

by 2.6.11 that }l’,i(K*!L) = 0 for i » 0. Thus we must show that

}EO(K*!L) is punctual if and only if Homg(K, L) = 0. Because the
isomorphism class of L is translation invariant, at any point g in

G(k), the stalk of 'J’EO(K*!L) is the same cohomology group
H.O(G, inv*L®K). Thus
#O(Kx L) is punctual & HO(K=|L) = 0 & H.U(G, inv*L®K) = 0.

By 2.6.13, L. = L[1] with £ lisse of rank one on G, and £Y = inv™*L.
Thus, ignoring Tate twists we find

H.O(G, inv*L®K) = H.L(G, inv* L ®K) is dual (L being lisse) to
H™L(G, inv*& Y ®D(K)) = HO(G, inv*E ¥ [-1]1®D(K))
= Hom(@e,inv*ﬁv[—l]@)D(K))

= Hom(inv*LZ[1], D(K)) (because L is lisse of rank one)

= Hom(D(L), D(K)) (because inv*L = L)
= Hom (K, L).
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Thus we find that }EO(K*!L) is punctual if and only if Hom(K, L) = 0.
QED

Corollary 2.6.15 Let k be an algebraically closed field. Suppose G is
a connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let K be perverse on G. Then K has property ®x if
and only if Homg(L, K) = 0 for every perverse irreducible L. on G

whose isomorphism class is translation-invariant.

proof Indeed, K has ®x if and only if DK has P!, if and only if
Hom(DK, L) = O for every perverse irreducible L. on G whose
isomorphism class is translation-invariant, if and only if Hom(DL, K)
= 0 for every such L. But the class of such L is stable by duality.
QED

Corollary 2.6.16 Let k be an algebraically closed field. Suppose G is
a connected smooth affine k-groupscheme of finite type, of relative
dimension one. Let K be perverse on G. If K has P!, then every
quotient of K (as perverse sheaf) has P!. If K has Px, then every
subobject of K (as perverse sheaf) has P x.

proof Obvious from the Hom(K, L) = 0 and Hom(L, K) = 0 criteria
2.6.14 and 2.6.15 for K to have P! and Px respectively. QED

Corollary 2.6.16.1 Let k be an algebraically closed field. Suppose G
1s a connected smooth affine k-groupscheme of finite type, of
relative dimension one. Suppose that

0 — Kl - K — K2 - 0

1s a short exact sequence of perverse sheaves on G. If both K4 and
Ko have P! (respectively ®x, respectively ), then so does K.

proof Again obvious from the Hom(K, L) = 0 and Hom(L, K) = 0
criteria for K to have P! and Px respectively. QED

Corollary 2.6.16.2 Let k be an algebraically closed field. Suppose G
1s a connected smooth affine k-groupscheme of finite type, of
relative dimension one. If K is perverse on G and has P!
(respectively Px) then any perverse irreducible quotient
(respectively subobject) M of K as perverse sheaf has T.

proof Indeed by 2.6.16, M has P! (respectively Px).But M is itself
perverse irreducible, hence by (2.6.14) (respectively by (2.6.15), its
isomorphism class cannot be translation invariant. So by (2.6.10), M
has . QED
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Corollary 2.6.16.3 Let k be an algebraically closed field. Suppose G
1s a connected smooth affine k-groupscheme of finite type, of
relative dimension one. If K is perverse on G and has P, then every
perverse irreducible quotient and every perverse irreducible sub-
object of K as perverse sheaf has P.

proof Immediate from 2.6.16.2. QED

Remark 2.6.16.4 It is not necessarily the case that if K is perverse
and has T, then every subobject and every quotient of K as
perverse sheaf again has P. To give examples, we work over C (see
2.10.4 for examples in characteristic p > 0), and use Riemann-Hilbert
to work with holonomic RS D-modules instead of perverse sheaves.
On Ga,(E := Spec(C[x]), we write D for C[x, 8], where 8 := d/dx.

Consider the left D-module M := D/Dx8x. Because x8x is minus its
own adjoint, M is self dual. The only irreducible holonomic D-
modules whose isomorphism classes are translation invariant are
D/D(8-w), for o« in C. Only for «=0 is D/D(8-) RS. Therefore M has
P if and only if

Homjeft- D-modules(M, D/D8) = 0.

We will show that for any «in C, we have
Homieft- D-modules(M, D/D(8-x)) = 0.

This Hom is, via the image of the class of 1 in D/Dx8x, just the set
of elements in D/D(6-«) annihilated by x6x. But D/D(6-) =

eXX(C[x], via 1 » e*X and e*X(C[x] C Cl[x]]. But x8&x is obviously
(look at lowest degree terms) injective on Cl[x]], and hence M has P.
But M admits D/D8x as quotient, which does not have P, because
D/D8 C H/D8x via Right(x) . Similarly, M admits, via Right(x),
D/Dx8 as a subobject, which again does not have P, because D/Dx8
admits D/D8 as a quotient.

On Gy, ¢ = Spec((li[x,x_l]), we write D for Clx, X_i, 8], & again
given by & := d/dx. Consider the left D-module N := D/D(x-1)8(x-1).
Because (x-1)8(x-1) is minus its own adjoint, N is self dual. The
irreducible holonomic D-modules whose isomorphism classes are
translation invariant are those of the form D/D(x8-«), for o« in C.
Thus N has P if and only if, for every o in C, we have

Homjeft-D-modules(N, D/D(xé-a)) = 0.
Just as above, this Hom is the set of elements in H/D(xd-x) =
x%C[x, x~1] which are annihilated by (x-1)8(x-1). In terms of the

parameter t:= x-1, x*C[x, x~11 ¢ C[[t]], and (x-1)8(x-1) becomes the
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operator t(d/dt)t, which, just as above, is injective on C[[t]].
Therefore N has ®. But N admits D/D8(x-1) as a quotient, which
does not have P; indeed, since x is invertible, we have D/Dx8 =
D/DB, and H/DH& € DH/D8(x-1) via Right(x-1). Similarly, N admits,
via Right(x-1), H/D(x-1)8 as a subobject, which does not have P,
since it in turn admits D/D8 = D/DxS as a quotient.

(Key) Corollary 2.6.17 Let k be an algebraically closed field.
Suppose G is a connected smooth affine k-groupscheme of finite
type, of relative dimension one. Suppose that K and L are perverse
on G, and each has P. Then their middle convolution Kx,,;qL has P.

proof We have already noted that Kx L. has P!, and that K= L has

Px, in both cases simply by the associativity of | and % convolution.
But K%, ijqL 1s a quotient of KL, and hence has ®!. Similarly,

K% igL 1s a subobject of Kx L, and hence has Px. QED

(2.6.18) By the above corollary, when G is either G4 or Al, the

full subcategory () of the category Perv of all perverse sheaves on
G consisting of those with property ® is stable by middle convolution

*.,nid- This category for Al, with its middle convolution, will be the

essential player in all that follows.

2.7 Interlude: middle direct images (relative dimension one)
(2.7.1) Here is the general setup for "middle direct image".
Proposition 2.7.2 Over an arbitrary base S which is itself
separated and of finite type over a field k of characteristic p = ¢,
consider a diagram

£ [f 1D
S

in which j: U —» X is an affine open immersion, fis proper, and
fID : D — S is affine (hence finite, since it is also proper). Suppose K

in DbC(U, 68) is perverse, and that both Rf K and Rf|K are perverse
on S. Then Rf_*j!*K Is perverse on S5, and

Rf,jixK = Image( RfiK » Rf, K )
in Perv(S).
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proof On X, we have two short exact sequences of perverse sheaves:

0 = Ker = jiK = jixK = 0,
0 = jixK = RjxK — Coker —0.

Notice that the objects Ker and Coker are supported on D, hence are
perverse on D.

In the derived category, these are distinguished triangles, so
applying the exact functor Rf_* gives two distinguished triangles on

D,
— Rf,Ker - RfK — Rf,jiK — ,

— Rf,jixK = Rf,K —» Rf,Coker —.
The objects Rf_*Ker and Rf_*Coker are perverse on S5, because they
are both of the form R(f[D).(perverse on D), and f[D, being finite,
preserves perversity. B
We first show that RfyjixK Is perverse. The first distinguished

triangle above shows that Rl‘_*j!*K Is semiperverse: its H1is caught

between the ¥~1 of one perverse sheaf and the 1 (-1) of another, so
certainly has dimension of support < i. The hypothesis that both
Rf K and Rf|K are perverse gives, by duality, that also both Rf, DK

and Rf|DK are perverse. 5o repeating the argument we find that
Rl‘_*j!*DK = D(Rl‘_*j!*K) is also semiperverse, whence Rl‘_*j!*K is

perverse.
Once we know that Rf, ji«K is perverse, the two distinguished

triangles above are actually short exact sequences in Perv(S)
0 = RiyKer —» RI{K — Rf jixK — O,

0 - Rf,jixK = Rf K - Rf,Coker — 0,
which together show that Rl‘_*j!*K = Image( RfiK = Rf K ). QED

2.8 Middle additive convolution via middle direct image

(2.8.1) We return to Al over an algebraically closed field k of
characteristic 4. We will apply the idea of "middle direct image" to
computing the middle additive convolution with a perverse object L

on Al which has property .
(2.8.2) Given a perverse sheaf K on Al, we have the perverse

sheaf K, ®Li_ on A2, with coordinates x,t. In these coordinates, the
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original "sum” map 1s the projection onto the t-line. By the very
definition of additive convolution, we have

Kxi L = Rlpro) (K, ®Ly_y),

Kxyil = R(pro), (K ®Li_).
Since L lies in (P), both of these objects are perverse.
(2.8.3) We compactify the map pro by compactifying the affine
x-line into the projective x-line, all over the AL of t's:

i AL Al o Ploxaly

Then we are in the set-up to which the above middle direct image

proposition 2.7.2 applies. Thus we find
Proposition 2.8.4 Hypotheses and notations as in 2.8.1, for K

perverse on Al, and L perverse on Al with P, the middle additive

convolution Kx,  iq+L Is

R(pro)«(the perverse sheaf ji (K ,®L;_) on Plxpl).

Using this, we get a fibre-by-fibre recipe for Kx,,;q+L over a

dense open set.
Corollary 2.8.5 Hypotheses as in proposition 2.8.4 above, suppose in

addition that K = F[1] and L = 9[1] for sheaves ¥ and § on Al Then
1) there exists a dense open set U C Al over which
a) the formation of Rj(F,®Gi_5) | P1xU commutes with

arbitrary change of base on U,
b) Rijx(F®Fi_5) | eoxU is lisse on U, of formation compatible

with arbitrary change of base on U.

2) Over [Pl><U, we have
a) an isomorphism

I (K ®Li_ ) | PIxU = §(F,89;_ 2] | P1xU,
b) a short exact sequence of perverse sheaves

0 = Ju(Fu®G_ 1] oxU = j(F,®F_ 2] | P1xU
= jx(F4®G_ 2] PLlxU - 0.

which, as a distinguished triangle, is of formation compatible with
arbitrary change of base on U.

3) For E/k any separably closed extension field of k, and any point t
in U(E), we have

(Kxnigl)t = RTPL®LE, (j: Al = P1), (the sheaf x = F,89,_))2],
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and a "short exact sequence” (really a distinguished triangle)
0 — (the I(ee)-invariants in the sheaf x = ¥ ,8%;_,)[1] =

= (Kx L)y = (Kxppyjgl)y =0
which is the fibre at t of a short exact sequence of perverse sheaves
on U
0 — (the lisse sheaf j (F,®F_) | coxU)[1] > Kx | L = K%, iq+L —0.
4) If both ¥ and § are tame at o, then we may take U to be Al,
and the sheaf j (F,8%_y) | oo x Al is lisse, of formation compatible

with arbitrary change of base on Al
5) If char(k) = 0, then the sheaf j (F,®F;_y) | coxAl is
geometrically constant, of formation compatible with arbitrary

change of base on Al

proof 1) The base-changing statements over a dense open U4 are a

special case of Deligne's generic base change theorem [De-Th.Fin, Cor.
2.9]. The lisseness in 1b) results from the constructibility of
Rjx(F®Gi_y), but may require passing to a smaller dense open U

in Uq. Once we have 1), 2a) follows from the "successive partial

truncation” description [BBD, 2.2.4], and 2b) follows from 1). Once we
have 2), 3) results from (proper base change and) the fact that, by

1), the formation of j (F,®F4_s) | P1xU commutes with arbitrary
change of base on U. To prove 4), notice that the sheaf (¥,®%_,)
on P1xAl - o xAl is lisse in a Zariski open neighborhood of oo x AL

indeed, if f(x) and g(x) are monic polynomials such that ¥ (resp. )
is lisse where f (resp. g) is invertible, then 7 ,8%;_, is lisse where

the (£)monic-in-x polynomial f(x)g(t-x) is invertible. Moreover, this

sheaf is fibre-by-fibre tamely ramified along s x AL, The result 4)
then follows from the relative Abhyankar lemma, cf. [Ka-SE, 4.7.2].
If char(k) = 0, then ¥ and § are automatically tame at o, so by 4)

the sheaf j (F,89;_,) | oo x Al is lisse; because we are in

characteristic zero, any lisse sheaf on Al is geometrically constant.
QED

2.9 Middle additive convolution with Kummer sheaves
(2.9.1) We continue to work over an algebraically closed field of
characteristic #4. We now apply 2.8.4 to the special case of
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computing the middle additive convolution with Lj!f)x[l] = j*f,x[l]
on Al, for OCX a nontrivial Kummer sheaf on G,,, and

Jji Gy — Al the inclusion. We know that j*f,x[l] on Al is perverse
irreducible, and its isomorphism class is not translation invariant (it
has a unique point where it is not lisse). So j*f,x[l] on Al has

property .
Exactly as in 2.8.4 we find

Proposition 2.9.2 Hypotheses and notations as in 2.9.1, for K
perverse on Al, and any nontrivial Kummer sheaf ‘f’X’ the middle

additive convolution K*midhj*f’x[l] is

R(pro)y(the perverse sheaf J!*(KX‘X’JZX(J[ ~ )LD on Plpal).

(2.9.3) In order to go further, we need to see what the perverse
sheaf jix(Kx® Ly (t - x)[1]) on P1xAl looks like. To lighten the
notational burden in the following lemma, we will sometimes write
‘E’X on Al to mean j*f,x on AL

Lemma 2.9.4 Hypotheses and notations as in 2.9.2 above:

1) For any tp in Al(k), the restriction of J!*(KX(X)‘E’X(t _ )1 to

PL o (tg) is iryr ALy = (tg) = PLy x (1)K ® Loy (1, - 5l1]

2) Denoting by i: ox Al - PLxAl the inclusion, the perverse sheaf
j!*(KX(X)JZX(t _ )l1D) on P1xAl sits in a short exact sequence of
perverse sheaves on Plxal

0 —iy (the constant sheaf (J’(’,_l(K)@f,X)I(OO) on ooxAlt)[l] —
3) The middle and ! additive convolutions of K with j*f,x[l] sit in an
exact sequence of perverse sheaves on Al

0 —(the constant sheaf (}E_l(K)@.ﬁX)I(OO)) [1] on Alt -

- K*Hf)X[l]—) K*mid+f’x[1] — 0.

proof An affine open neighborhood of o x Al is the A2 with

coordinates z and t, z=1/x. In these coordinates, o x Al is defined by
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z=0, and so the function 1-zt takes the value 1 along o x Al Let us

denote by U the open In A2 where 1-tz is invertible. On this open
set, we have the lisse, rank one sheaf f’X(l—tz )- Thanks to the

identity
t-x=(-1/2)(1 - zt), we have
r:’X(t - x) ~ r:’X(i—tz))@”ﬁ’X(—l/z)'

In terms of the inclusion

iU - woxpal 5 U,
we have
Ky®ELy (1 - )11 1 U = coxAl =

(JF Ly (1-12))® (K1 /z® Ly (1 /2))[1] on Gm,zxﬂlt, | U - soxAl
The key point here 1s that f’x(l—tz) is lisse on all of U. So taking

middle extension across e xAl, which we may compute Zariski
locally along oo><A1, we see that on U we will get
‘f’x(l—tz))@(M-E- of (Kl/z®‘f’x(—1/z))[1] on Gm,zxﬂlt’ across z=0).

Since formation of middle extension is compatible with external
products (this being true separately for duality, for ji and (so) for its

dual Rjy), we see that, on U, our middle extension is
f’x(l—tz))(g)the restriction to U of the external tensor product sheaf
(M.E. of (Kl/z®f’x(—1/z))|(ﬁm,z across z=0)®(@€[1] on Alt).
on the A2 with coordinates z,t. In particular, this shows that 1)
holds. If we go back to the original x,t coordinates, we find that the
middle extension across e xAl Is, along oo><A1, the constant
perverse sheaf[1] on Ait which is
KL PI=)] = (e Ly )He)2),
S0 on I]31X><A1t, we have, denoting by 1 oxAl 5> PLlxpal the
inclusion, the short exact sequence of perverse sheaves
0 —iy(the constant sheaf (J{_l(K)(X)f)X)I(‘X’) on ooxﬂ-\lt)[l] -

asserted in 2). Taking the total direct image onto the t line, we get
the exact sequence

0 — (the constant sheaf (}ﬂ_l(K)@.ﬁX)I(‘x’)) [1] on Alt —
- K*_,_!f)x[l]% K*+midf’x[1] - 0
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of perverse sheaves on Al asserted in 3). QED
Corollary 2.9.5 For K perverse on Al, and any nontrivial Kummer

sheaf £, the stalk at any point t in AL(K) of K¥rnid+d= £y [1] is
RT(PL, Jix(the perverse sheaf x = Ky®L (1 - y) on ADLI1]).

proof This results from the preceding Proposition 2.9.2, via proper
base change and part 1) of the above lemma 2.9.4. QED

Proposition 2.9.6 Let k be an algebraically closed field k. Given any
two nontrivial Kummer sheaves ‘f’p and ‘f’X on G, g, their middle
additive convolution J*f’p[l]*midhj*f’x[l] on Al is given

(geometrically)

= §g if xp = 1.

proof Suppose first that Xp = 1. Then by part 3) of the lemma 2.9.4
above, applied with K := j*f)p[l], we see that

GRS ER)ETIG P 9 £ ) IER N N £ N N vy KB

because (J’(’,_l(K)@f,X)I(OO) = (f,PX)I(OO) = 0. Thus our middle
convolution is given by

R(pro)i(the perverse sheaf f’p(x)@’f’x(t - )l2D on Alxply.
Over t=0, the (geometric) stalk is RI'.(Gyp, f,pX[Z]) = 0. Therefore
our middle convolution on Al is the extension by zero of its
restriction to Gy,. So it suffices to show that over G,,, our middle
convolution is (geometrically) isomorphic to f,PX[l].

Over the open set Gy, where t is invertible, we make the

change of variable
(x, t) — (tx, t),
and we find

I Lol migrin £y 1] Gpy =

= R(pro)(L,(1x)® Ly (1 - tx)l2]) on ALxG).

= Rlproh(L5)®Ly (1 - )I®Lpy (1)l1]) on ALxG,,)
= Loy [LI®RT (AL - (1,00, Ep()®Ly (1 - )LD,
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Because pX =1, we have HZC(A1 - {1,073, EP(X)®£’,X(1 ~x)) =0, by
considering the local monodromy at o« of f’p(x)®f’x(1 - x); because

‘f’p(X)®‘E’X(1 _ x) Is tame, and lisse of rank one, we have
XC(Al - {1,0}, f’p(x)‘x’f’x(i - x)) = -1,
and the only possibly nonvanishing groups are the HiC for 1=1,2.

Thus RTC(Ai - {1,0}, ‘f’p(x)®f’x(1 - )[1]) is a one-dimensional 68_

vector space, placed in degree zero, as required.
Suppose now that Xp = 1. In this case, the corollary 2.9.5 above
will give the required assertion. For the stalk of our middle

convolution at t in Al(k) is given by

RT(PL, Jix(the perverse sheaf x = f’x(x)@)‘f’p(t - )1l on AD1]).

By definition, the sheaf ‘E’X(X)®‘f’p(t - )1l on Al is lisse outside of
{t,0}, and is extended by zero across {t,0}. So if we denote by
kio: AT - (1,00 - Al

the inclusion, this stalk is

RI(PL, jiu(ky o) (Ey () ®Lp(t - L] on ALy - {£,0)I1)).
Since X p = 1, this stalk 1s

RT(PL, iy o)i( By (x/(t-s0)1] on AL, = (1,0)[1D.
For any t, this coefficient sheaf is lisse of rank one at o, so it is lisse
of rank one on [PlX - {t,0}) and everywhere tame.

For t # 0, the sheaf ‘f’x(x/(t—x)) 1s not geometrically constant

(it has nontrivial monodromy at both 0 and t), and has no nonzero
punctual sections, so

HU(PL, 1w (kg 0)i( By (x/(t-x))[1) on ATy = {,0D[1]) = 0 if i=0, -2.
But the Euler characteristic also vanishes, so we find
RI(PL, iy (ky 0)i(Ey (x/(t-x))[1] on ALy = (£,00[1]) = 0 for t = 0,

and hence
J*‘E’p[l]*midﬂ*f’x[l] is supported at t=0 if pX = 1.

So 1t remains only to compute the stalk at zero. This stalk is
RI(PL, jiu(kg o)i(Ey (x/(-x))[1] on AT, = {OD[1D).
But the perverse sheaf ji, (kg O)!(‘f’x(x/(—x))[l]) is (geometrically)

just the constant sheaf 68[1] on Pl - {0}, extended by zero.

So our stalk at zero is
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RTL(PL - (0}, @yl2]) = RT(AL, @yl2D),
the one-dimensional vector space HZC(Al, 68) placed in degree zero.
QED

Theorem 2.9.7 Let k be an algebraically closed field, f,x a
nontrivial Kummer sheaf on G,,, Jj: G — Al the inclusion.

1)0n AL, the operators K — Kxpig+ix Ly [1] and K =

K*midhj*if,&[l] on P are automorphisms of P, which are inverses

of each other (where we write 7( for the character X_i).

2) On AL, the operator K + K*pnid+Jx Ly [1] induces an
automorphism of the perverse irreducible objects in P, with inverse
the operator K — K*mjd+J'*f)7([1]-

proof We know that j*f,x[l] is perverse irreducible on Al and

that it lies in ® on Al (because it is not translation invariant). In
view of the preceding result 2.9.6, 2.9.7 is a special case of the
following result.

Theorem 2.9.8 On Al over an algebraically closed field k, let K and
L be perverse objects in P with K=, ijg+L = 8¢ =Lx*,,i9+K.
1)On Al, the operators X m Xx,,ig+K and X = X%, iq+L on P are

automorphisms of P, which are inverses of each other.
2) The operator X m Xx,,;q+K induces an automorphism of the

perverse irreducible objects in P, with inverse the operator
X = Xx* 1 id+L.

proof For 1), just use the fact that middle convolution is
assoclative, and that & is the identity for middle convolution.

For 2), Let X be perverse irreducible in . We must show that the
perverse sheaf Xx,,iq+K is perverse irreducible. By 1), it is nonzero,

so 1t contains a subobject Y which is perverse irreducible. Since
X% nig+K lies in P, Y itself lies in P (by 2.6.16.3). Since W

W, 1ig+L 1s end-exact, it preserves injections, so Y, iq+L 1s a
subobject of X, iq+K*ijq+L = X. This subobject is nonzero by 1), so
by the irreducibility of X, we have X = Yx,,;4+L. Applying W

W ig+K, we find X 1;4+K = Y* 1 ig+L*mig+K = Y is irreducible, as
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required. QED

For later use, we record the following corollary.
Corollary 2.9.9 On Al over an algebraically closed field k, let K and
L be perverse objects in P with Kx,,iq+L = 85 =Lx,4;jq+K. Then L
and K are perverse irreducible.

proof Indeed, by 2), the functors X m Xx, iq+K and X — Xx :q4L
carry irreducibles in ® to irreducibles in P. Take X to be 8. QED

2.10 Interpretation of middle additive convolution via
Fourier Transform

(2.10.1) In this section, we work on Al over an algebraically
closed field k of characteristic p > 0, p=£. Recall [Br, Cor. 9.6] that
Fourier Transform interchanges ! convolution and tensor product:

more precisely, for K and L in DbC(Al, 68)’ we have
FTqJ,!(K(X)L)[—l] = FTqJ’!(K)*!FTqJ,!(L)(—i).

Lemma 2.10.2 In the situation of 2.10.1, let K be perverse on Al
The following conditions are equivalent.

1) K has P

2) K has no quotient ‘f’qj(ocx)[l] for any o in k.

3) FT(K) has no nonzero punctual quotient.
4) HO(FT(K)) =0,

5) FT(K) is of the form F[1] for some sheaf ¥ on Al which has no
nonzero punctual sections.

proof 1) & 2) by 2.6.13 and 2.6.14.

2) © 3) since FT carries ‘f’qj(ocx)[l] to 8_ .

3) = 4): For any perverse N on Al, the short exact sequence of
perverse sheaves

0 - # L] - N - HON) - 0
expresses HO(N) as a punctual quotient of N. Applying this to FT(K)
gives HO(FT(K)) = 0.
4) © 5) by the concrete description of perverse sheaves in
dimension one.
5) = 1): If FT(K) is F[1] for some sheaf ¥ on Al, then

L = FT(K)[-1]®L = FoL
preserves semiperversity. By Fourler inversion, L. = Kx|L preserves
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semiperversity. By Lemma 2.6.7, K has ®!. QED

Lemma 2.10.3 [n the situation 2.10.1, for K perverse on Al, K has
P if and only if FT(K) := N is a middle extension.

proof If K has P, then both K and DK have P! By the above
lemma, both N := FTLP’!K and and DN = FTQ’!(DK) have no nonzero

punctual quotient. Thus (by duality) N has no nonzero punctual
subobject. By the same lemma, we know N is F[1] for some sheaf ¥

on Al which has no nonzero punctual sections. This forces N to be a

middle extension. For if N is F[1], with F C j,j*7 for j: U — Al an

open where ¥ is lisse, then if ¥ = j,j*%, the short exact sequence of
perverse sheaves
0 = (jxJ*F)/F— Fl1] = N> j,j*F[1] - 0

exhibits a nonzero punctual subobject of N.
Conversely, suppose that N := FTqJ 1(K) is a middle extension.

Then so is DN = FTQ’!(DK). By the previous proposition, both K and

DK have P!, so K has 7. QED

Remarks 2.10.4

1) Here is an slightly variant proof of the above result. We know
that a perverse K lies in P if and only if as a perverse sheaf it has
no subobject and no quotient of the form f,qj(ocx)[l] for any o in k.

By Fourier Transform, this becomes the condition that FT(K) as
perverse sheaf have no subobject and no quotient which is
punctual. But this last condition is equivalent to being a middle
extension (compare [Ka-ESDE, 2.9.1]), as one sees using the natural
filtration (cf. 2.3.6) of the perverse sheaf FT(K) with associated
graded (punctual, middle extension, punctual).

2) Using 2.10.3, we can give a characteristic p > 0 example (compare

2.6.16.4) of a perverse K on Al which has P, such that K admits a
quotient as perverse sheaf which does not have . Thanks to 2.10.3,

it 1s the same to give an example of a perverse N on Al which is a
middle extension, but which admits a quotient as perverse sheaf
which is not a middle extension. On G, over our algebraically closed

field k of characteristic p = ¢, there exists a lisse rank two @e—sheaf

% which is a nontrivial extension of the constant sheaf 68 by 1tself,

because Hl((Em, @e) = @e. This sheaf is automatically tame, its

global monodromy being unipotent, and hence its local monodromy
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at zero i1s a single Jordan block, of dimension two. Denote by j: G,

— Al the inclusion. Applying jsx to the tautological short exact
sequence of sheaves on G,

O%@e%?%@eﬁo,
we get an exact sequence of sheaves on Al,

0 — @e’Al = JxF - (D\@,ﬂ\l'
The last arrow is not sur jective on the stalk at zero, since j,7F has
only a one-dimensional stalk at zero, so we have a short exact
sequence of sheaves on Al B

0 — ®€,A1 - jx7F = Lj!@é,(Em — 0.
Shifting by [1], we get a short exact sequence of perverse sheaves on

Al which exhibits j!@e Gm[l], which is visibly not a middle

extension, as a quotient of the middle extension (j, F)1] = ji,(F[1]).

Proposition 2.10.5 Let K be perverse on Al, and suppose K has P.
Let f,X be a nontrivial Kummer sheaf on G, j: G, = Al the
inclusion. Write FT(K) = F[1], with ¥ a middle extension sheaf on Al
Then

FT(K% g rdn &y (1) = JuGXFTIO®E ) = j((*F®E L]
proof We have already seen in 2.9.4 that we have a short exact

sequence of perverse sheaves on nl
0 — (constant sheaf)[1] — K*!+f,x[1] - K*mid+‘f’x[1] - 0.

Under Fourier Transform, this gives a short exact sequence
0—(pct. sheaf, supp. at O)—>FT(K*!j*IZX[l])%FT(K*midJnj*f,X[l]) — 0.

Using the general identity
FT(K= L) =FT(K)®FT(L)[-1],

together with the standard geometric isomorphism
FT(j Ly (1) = j,E5 1],
we rewrite this short exact sequence as
0—(pct. sheaf, supp. at 0) — FT(K)@j*Jii - FT(K*mid+j*ﬁX[1])—>O.

Restricting to G,,, the above exact sequence gives an isomorphism:
LP‘FT(K)@:E& = J*FT(K*mid+J*‘f’X[1])'
Since we know a priori that FT(K*midN*f’X[l]) is a middle
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extension, being FT(an object in (1)), we have
FT(K*pmigudsn £y (1) = Jui*FT(Kx pigadw £y (1D
= J*(j*FT(K)(X)f)&), as required. QED

Remark 2.10.6 This proposition gives us, in positive characteristic,
a second proof of Proposition 2.9.6 (take K = j*f,p[l]).

(2.10.7) In fact, more is true. Under Fourier Transform, the
operation x,,iq+ corresponds to the obvious tensor product operation

on middle extensions.
Theorem 2.10.8 In the situation 2.10.1, let K and L be perverse on

Al, both K and L having . Pick a common open set j U — Al
where both N :=FT(K) and M := FT(L) are lisse, and write N = j,FI[1],

M = j 9l1], with F and @ lisse sheaves on U. Then
FT(K*mid+L‘) = J*(?®g)[1]

proof. The key point is to show that there exists a dense open set

;U - Al such that when we apply FT to the "forget supports” map
Kx ;L = K% ,L, the map we obtain,

FT(Kx1.L) = FT(Kxy, L),
Is an isomorphism on U:
J¥FT(Kx L) = j¥FT(Kx= ., L).

If this is so, then from
FT(K*ig+l) = Image(FT(Kx L) = FT(Kx,,L)),

we get
J¥FT(K%piq+l) = JOFT(Kx*,L) = j*FT(Kx=,,L)).
Since we know a priori that FT(Kx,,;4+L) is a middle extension, we
know that
FT(K% nid+l) 2 Jxd “FT(Kx* iq+L) =JxJ FT(KxL).
Using FT(Kx L) = FT(K)QFT(L)[-1] = ¥ ®3[1] gives the assertion.
[t remains to prove that the map
FT(K=,L) = FT(Kx L)
1s an isomorphism on a dense open set of Al
Lemma 2.10.9 In the situation 2.10.1, For any two objects K and L
in DbC(Al, 68)’ the natural map
FT("forget supports”) : FT(Kx L) = FT(Kx L)

1s an isomorphism on a dense open set.
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proof The idea of the proof is to exploit the basic miracle of Fourier
Transform, that FT,§ = FTx,p. By Deligne's generic base change

theorem [De-Th.Fin, Cor. 2.9], there exists a dense open set U in Al
over which the formation of each of FT, qJ(K)’ FT, qJ(L)’ and

FT*’qJ(K**JrL) commutes with arbitrary change of base. By proper

base change, the formation of each FT qJ(K)’ FT, qJ(L)’ and
FT, Lp(I<*!+L) commutes with arbitrary change of base over all of Al

Choose any point o in Al(k). The stalk at o of FT(K=,L),
viewed as an FT L 1s
RT (AL (K LY® L, (5[ 1]).
If « lies in U, the stalk at o of FT(K%,,L), viewed as an FT*’qJ, is
RI(AL(Kx s L)® Ly o 50)[1D),

and the map between them is induced by the "forget supports” map
K L =K% L on coefficients, followed by the "forget supports” map

R[. = RT.
The source is
RT(AL(KxL)® L gy o5)[1] =
RT (AL (R(sum)i(prq *(K)®pro* (L)@ L g, o 5))[1]

RI(AL, R(sum)i(pri*(K®L () ®pro* (LOL (o)1),
(by the projection formula, and the additivity of f,qj)
RT(AZ,pry *(K®L (ox)) ®pro* (LOLy(x))1] (by Leray)
RI(AL, K®L (o)) ORI (AL, LOL | (5x))[1] (by Kunneth).

In completely analogous fashion, the target, for o« in U, is
RI(AL, KL ) 03)) ORT(AL, LOE gy o50))[1],

and, with these identifications, the map between them is
("forget supports”)®("forget supports”).
Because « lies in U, over which the formation of both FT, qJ(K) and

FT*’qJ(L) commutes with base change, these "forget supports” maps
RT(AL, K®E (o) = RT(AL, K®E (50,

RT(AL, LOL | (ox) = RI(AL, LOE yy(ox)),
are just the identity maps of FT(K),[-1] and of FT(L)[-1]

respectively.
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Thus the map FT(Kx ;L) = FT(K%y4L) is an isomorphism over
U, as required. QED

Corollary 2.10.10 In the situation 2.10.1, for any two objects K
and L in DbC(Al, 68)’ the mapping cone object [Kx ;L — Kx L] in
Dbc(Al’ 68) is a direct sum of shifted Jiq;(ocx) sheaves, for various «
in k.

Proof This is the Fourier Transform of the statement that the
mapping cone [FT(Kx L) - FT(Kx,,L)]is punctual. QED

Remark 2.10.11 In terms of a relative compactification of pro, say

J 1
Alxpl - PIipal — woxpl
lpro
Al

the object [Kx | L = Kx ,L]lis i*Rj (K, ®Li_). So the above
corollary 2.10.10 says that, over an algebraically closed field of
characteristic p > 0, i"Rj (K, ®L;_,) has all of its cohomology
sheaves direct sums of ‘E’LP(O(X)' This does not seem obvious a priori,

and we do not know a "direct” proof of it.

(2.10.12) Here is a slight reformulation of the results of this section.

Denote by GalRep(Al/k, 68) the category of those continuous finite-
dimensional @e—representations V of Gal(k(x)°®P/k(x)), the galois

group of the function field of Al/k, with the following two
properties:
1) V is definable over a finite extension of Qyp,

2) V is unramified outside a finite set of places of k(x).

[f we denote by n the generic point of Al, the functor

(perverse middle extension sheaves on Al) - GalRep(Al/k, @é)
N = juFlile F, = (N1,
is an equivalence of categories. [Indeed, for each nonempty open U

in Al, this functor induces an equivalence between the full (by
2.3.3.1) subcategory of its source,
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(perverse middle extensions on AL which are lisse on U),
and the full subcategory of its target

(objects in GalRep(Al/k, 68) which are unramified on U).]
Using this fact, 2.10.3 and 2.10.8 say that the composite functor

(perverse sheaves on Al with ®) — GalRep(Al/k, @g)

K = (FTK[-1]),

1s an equivalence of categories, under which middle additive
convolution goes over to tensor product, and under which the

functor K » D_K := [x = -x]*DK = D([x — -x]*K) goes over into the

functor V. = VY := the contragredient representation to V.
(2.10.13) Using this description, we can easily analyze the

invertible objects. We say that a perverse sheaf K on Al with ® is
invertible for the operation of middle convolution if there exists a
perverse L with T such that K=, ;q+L = 8g. [If such an L exists, it is

unique, by the associativity of middle convolution.]

Theorem 2.10.14 On Al over an algebraically closed field of

characteristic p » 0, a perverse sheaf K on Al with P is invertible
for the operation of middle convolution if and only if FT(K)[-1] has
generic rank one. In this case, Kx,;4+D-K = 8.

proof Obvious by Fourier Transform, where it becomes the question
of looking for ®-invertible objects in GalRep: these are obviously
those of dimension one, and for these, the contragredient is the ®-
inverse. QED

Corollary 2.10.15 On Al over an algebraically closed field k of

characteristic p > 0, the perverse sheaves K on Al with ® which are
both invertible for middle convolution and tame at o are precisely
the translated &-functions 6, for « in k, and the translated

nontrivial Kummer sheaves J*f’x(x—oc)[l] for « in k.

proof The objects listed are obviously invertible, and tame at o. We
must show there are no more. First of all, any invertible object K is
irreducible as a perverse sheaf: indeed, from the Fourier Transform

description, such a K has no proper subobject in P, while, as already
noted in the proof of 2.9.8, any irreducible subobject of a perverse K
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with P itself has P.
Among perverse Irreducible K's, the punctual ones are already
on our list. So we must look for irreducible middle extensions j, F[1]

with ¥ tame at oo, for which FT(jx %) has generic rank one. For ¥

tame at oo, and o=0 in k, the stalk FT(j %), is
H L (AL, juF®L (ox)); both the Ho? and Hel vanish (jF®L (o)

is totally wild at e, and has no nonzero punctual sections). So for
o=0, the rank of stalk FT(j,¥), is

X (AL, G FOL (o)) =
= - generic rank(j*?@)fw(ax)) + Swanm(j*?®£¢(ax)) +
* Zfinite sing s [Swans(j*?(@ﬁq)(ocx)) * drOps(J*?@’f’qJ(ocx))]-

Since 7 is tame at o, and pr(ocx) has slope one at o, the first two

terms cancel. Since ‘f’qJ(ocx) 1s lisse on Al, at each finite singularity s
of ¥, the f’qJ(ocx) might as well be absent: we find

rank FT(j, %),
Each of the terms [Swang(jx7F) + dropg(jxF)] is strictly positive (the

= 2finite sing s [Swang(jx¥) + dropg(jsF)I.

drop is nonzero), and each term where ¥ is not tame is at least two.
So 1f this rank 1s to be one, there is at precisely one finite
singularity, ¥ is tame there, and has a drop of one. Translating the
singularity to the origin, we get an ¥ which is lisse and tame on
G, irreducible, and nontrivially ramified at zero. Since 1t is lisse,

tame((ﬁm) is abelian),

tame and irreducible, it must be rank one (ﬁl
so a Kummer sheaf f,x on G,,. Since it is ramified at zero, X is

nontrivial. QED

2.11 Invertible objects on Al in characteristic zero
Theorem 2.11.1 On Al over an algebraically closed field k of

characteristic zero, the perverse sheaves K on Al with P which are
invertible for middle convolution are precisely the translated &-
functions &, for o in k, and the translated nontrivial Kummer

sheaves J*‘E’X(X—oc)[l] for o« in k.

proof The listed objects are visibly invertible. We must show there
are no more. By 2.9.9, any invertible object K 1s perverse
irreducible. If K is punctual, it is already on our list. So suppose that
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K is an irreducible middle extension j,FI[1], with ¥ nonconstant.

Such a K lies in P.
step 1) We show that for any irreducible middle extension K =
Jx Fl1], with K in P, there exists a surjective map of perverse

sheaves K, iq+D-(K) = 83. [This is obvious in characteristic p, by
looking on the Fourier Transform side.] For this, we argue as follows.

For any perverse sheaf N on Al, we have a short exact sequence of
perverse sheaves

0 - ® 1l » N - #om) - o,
in which the sheaf #O(N) is punctual. So for any o in Al, we have a
surjective map HO(N) - }{’,O(N)O((X)SO(, so all in all N = }(’,O(N)O(®SO(.
Applying this to N = Kx,,;q+D-(K), it suffices to show that

HO(Kx 1 iq+D-(K))g
1s one-dimensional. Because we are in characteristic zero, we can
compute every fibre of Kx, ,iq+D-(K) (by 2.85, (3) and (4)). Recall
that K is j.F[1], j: U — Al a dense open set on which ¥ is lisse,

irreducible, and nonconstant. In terms of k: Al > Pl the inclusion,
we have

(Kxpnig+D-(K)g = RI(PL, ke (. F @« (FV))I2].
Thus
HOKx iqeD_(K))g = H2(PL, k(i F®iu(F V)
= Ho2(U,F®F ) = Qp(-1),
the last equality because ¥ is irreducible. [In fact, for such K, one

can show that }[’,O(K*midJrD_(K))O( = 0 for « = 0, provided we are in

characteristic zero. In other words, }(’,O(K*midJrD_(K)) is the required

60 quotient.]

step 2). We show that if Kx, iq+L = 80 = Lx,yig+K, then L is D_(K).

Indeed, applying the end-exact functor X —=Lx, ;34X to the

surjection K=, iq+D-(K) > &(. produced in step 1, we get
Lxid+K*mid+D-(K) = Lx,4iq+80g, i.e., D_(K) = L.

Since K is irreducible, so is D_(K), and hence D_(K) = L.

step 3) We show that if Kx,,;9+D-(K) = 83 with K an irreducible

middle extension jy,FI[1], then F is a translate of a nontrivial
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Kummer sheaf f,x. Because we are in characteristic zero, we have,
by 2.8.5, (3) and (4), a short exact sequence of perverse sheaves on
A:I_

0 — (constant sheaf)[1] = K= ,D_(K) = Kx,,;q+D-(K) — 0,
which, if Kx,,iq+D-(K) = 8p, reads

0 — (constant sheaf)[1] = Kx,D_(K) — &3 — 0.

We exploit this last exact sequence by computing the difference in
the virtual ranks of stalks: for any t = 0, we have
1 = rank (K% 4 D_(K))g - rank (K%;,D_(K))y,

l.e.,
1= X (AL Ju(F)®iu(FY) - Xo(AL L (FIR[x = x+t]*j (F V).

Denote by n the rank of ¥ (also that of ¥Y), and denote by S the set
of finite singularities of ¥ (also that of ¥Y). At any s in S, both j (F)

and jx(FY) have the same dimensional fibre, say of dimension rg

(the same because r. is the common number of unipotent Jordan

S

blocks in the local monodromies of ¥ and of ¥ at the point s, cf.
3.1.2). Since we are in characteristic zero, the Fuler-Poincareé
formula gives

X(AL, Ju(FI®ju(FY)) = n? - 3 1, g (n2 - (ry)?).
For t sufficiently general (not in the finite set S - S), the two finite
sets 5 and S+t are disjoint. So for such t,

(AL, ju(FIB[x = x+t]1%j (FV)) =

= n? - 25in S (n? - (ro)n) - 35 in S+t (n? - n(rg))
2

=n2 - 25 i, < (n? - (rgdn)

- n2 - >sin g (2n)(n - ry)

=n2 -3, 5 ((n+ryd+(n-rdn-ry)
= n? - 2sin S (n? - (r5)2) -Zsin s (n - rs)z'
Subtracting, we find
1 =%5in g n- 1f5)2'
Since each term (n - r5)2 1s a strictly positive integer, we conclude

that S consists of a single point. Translating that point to the origin,
% becomes a lisse sheaf on Gy, which is irreducible and nonconstant,

so necessarily a nontrivial Kummer sheaf f’X' QED
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2.12 Musings on %,,ijqx -—invertible objects in P in the G/,

case
(2.12.1) In this section, we work on Gy, over an algebraically

closed field k of characteristic = 4.
Lemma 2.12.2 On G,y over an algebraically closed field k of
characteristic = ¢, let K in Dbc((]}m, 68)' The following conditions are

equivalent:
1) RI'(Gypy, K®f,x) = 0 for some Kummer sheaf ‘f’X'

2) RIN(Gyp, K®£§X) = 0 for some Kummer sheaf f,x.

3a) each of the cohomology sheaves HI(K) is a successive extension of
Kummer sheaves L.

3b) each of the perverse cohomology sheaves PHI(K) is a successive
extension of Kummer sheaves f,x[l].

4) RI'(Gpyy, K®L ) = 0 for all but at most finitely many Kummer
sheaves ‘f’X'

5) RT(Gyp, K®£,X) = 0 for all but at most finitely many Kummer
sheaves ‘f’X'

proof By (2.3.2.1), 3a) & 3b). The implications 3a) = 4) and 3a) =
5) are obvious, because RI'.(Gy,, JZX) = RIN(Gyy,, f,x) = 0 for any

nontrivial Kummer sheaf. The implications 4) = 1) and 5) = 2) are
trivial. We will prove below that 2) = 3a). Admitting this, we have
2) © 3a) © 3b) © 5). As noted in 2.3.1.1, we have

PHI(DK) := D(PH7I(K)).
Therefore 3b) holds for K if and only if 3b) holds for DK. Therefore
the equivalences 2) & 3b) & 5) hold for DK, which by duality
means that the equivalences 1) & 3b) & 4) hold for K.
It remains to show that 2) = 3a). For this, we argue as follows,
cf. [Ka-ACT, 2.5.3]. Replacing K by K®£ZX, we may assume that

RT'(Gy,, K) = 0. Consider the spectral sequence

EoP»d = HP(G,,, H9(K)) = HPTA(G,,, K).
It has EoP:9 = 0 unless p is 0 or 1 (cohomological dimension of an
affine curve), so degenerates at Eo. Therefore for each X, we have

RI(Gyy, K) = 0 © RI(Gyy,, HIK)) = 0 for all i.

So to prove 2) = 3), it suffices to do so in the case when K is a single
sheaf . In this case, we are reduced to the following sublemma.
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Sublemma 2.12.3 On G,, over an algebraically closed field k of

characteristic = ¢, let ¥ be a constructible @e—sheaf such that

H*(Gyq, F) = 0. Then 7 is lisse on Gy, and everywhere tame, hence
a successive extension of Kummer sheaves f,x.

proof. Let j: U — G,, be a dense open set where % is lisse. Consider

the canonical map ¥ — j.Jj*F, whose (punctual) kernel we denote

?pct' The inclusion %rpct C % induces an inclusion
HO(Gyyy, Fper) € HOGyy, F) = 0,

whence HO((Em, ?pct) = 0, and consequently ?pct = 0. Thus 9 has

no nonzero punctual sections. For such an 7%, the Euler Poincare
formula
X Gy, F) = -Swanp(F) -Swan ,(F)

-2 «in Gy [drop(F) + Swan (F)]

is a sum of terms which are each nonpositive. Since X((Em, F) =0,
we see that ¥ is lisse on Gy, and everywhere tame. Because

mqt8Me(G ) is abelian, any such F is a successive extension of

Kummer sheaves f’X’ these being the characters of ﬁitame((ﬁm).
QED

For ease of later reference, we record here the well-known

Lemma 2.12.3.1 On G,, over an algebraically closed field k of
characteristic = ¢, let K in Dbc((]}m, 68) be perverse. Then

1) X (G, K) 2 0,

2) X(Gy,, K) =0 if and only if K is a successive extension of Kummer
sheaves f,x[l].

proof For 1), use the short exact sequence

0 - ¥ 1K1 - Kk - ®OK) - 0
to reduce to the case when K is either punctual, in which case the
assertion is obvious, or is of the form F[1], with ¥ a sheaf on Gy

with no nonzero punctual sections. In this case the Fuler-Poincare
formula shows, as above, that X(G,,, ) < 0, i.e,, X (G, Fl1]) 2 0.

For 2), the vanishing of
X (G, K) = X (G, HTLED + X (G, HOK))
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together with the non-negativity of each summand shows that
#O(K) = 0, and that X (G, X LKL = 0. But ¥~ 1(K) has no
nonzero punctual sections, so again as in the proof of 2.12.3 the

Fuler-Poincare formula shows that }E_l(K) 1s a successive extension
of Kummer sheaves f,X. QED

Lemma 2.12.4 On G, over an algebraically closed field k of

characteristic = ¢, let K in Dbc((]}m, 68)' For all but at most finitely
many Kummer sheaves ‘f’X’ the "forget supports” map
RI'(Gypy, K®JZX) - RI(G,, K®f)x)

Is an isomorphism.
proof By the spectral sequences

EoP:d = H.P(Gyy, }[’,q(K)(X)f,X) = H.PTA(G,y,, K®Ly)
and
EoPd = HP(Gp,, HAK)I®L ) = HPTA(G,py, KLy ),

we reduce immediately to the case where 7 is a single sheaf. In that
case, we need only avoid the X whose inverses occur either in F(0)
or F(e), the I(0) and I(e)-representations attached ¥. QED

Lemma 2.12.5 (Gabber-Loeser) On Gy, over an algebraically closed

field k of characteristic = ¢, let K and L. be two objects in

Db

supports® map between ! and *x multiplicative convolutions,
K*!XL - Kx, L,

has all of its ordinary and perverse cohomology sheaves successive
extensions of Kummer sheaves.

proof (compare the proof of [Ga-Loe, page 28]) Choose a Kummer
sheaf ‘f’X such that the "forget supports® map is an isomorphism

RI (G, N®.IZX) = RI(Gyp, N®£§X) for N any of the three objects
K, L, K%,L. This is possible by the preceding lemma. For this X, we

(G ﬁé)' Then the mapping cone object formed from the “forget

claim the "forget supports” map

RT(Bypy, (K% L)®Ly) = RT(6pp, (Kx o L)@ Ly )

Is an isomorphism. Since X has been chosen so that

ch(Gm, (K*!XL)®£X) = RF((Em, (K*!XL)®£X);

1t suffices to show that the "forget supports twice” map

RT (G, (K%, L)®Ly) = RI(Gp,(Kxy L)L y)
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1s an isomorphism. Using the definition of multiplicative convolution,
the multiplicativity of ‘f’X’ the Leray spectral sequence for both !

and = direct image, and the Kunneth formula for both RI'. and RI,

this map becomes the map "forget supports”"®"forget supports”
RFC((Em,K®JZX)(X)RFC(Gm,L@iZX)—)RF(Gm,K(X)f)X)@RF(Gm,L@f)),
which is an isomorphism by our choice of X. The lemma now follows
from 2.12.2, applied to K := the mapping cone of Kx | L — Kx_ L.

QED

Corollary 2.12.6 On G, over an algebraically closed field k of

characteristic = ¢, let K and L be two objects in Dbc((Em, 68) which

are perverse. Suppose that K satisfies P for multiplicative
convolution. Then the kernel and cokernel of the "forget supports”
map between the perverse sheaves

Kxj L = Kx, L
are perverse sheaves which are successive extensions of Kummer
sheaves f,x[l].

proof The kernel and cokernel are the perverse cohomology sheaves
of the mapping cone. QED

Corollary 2.12.7 On G, over an algebraically closed field k of

characteristic = ¢, let K and L be two objects in DbC(Gm, 66) which

are perverse. Suppose that K satisfies P for multiplicative
convolution. Then we have the product formula for middle
multiplicative convolution
X (G K*pnigxL) = X (G, KIX (G, L).
proof We have a short exact sequence of perverse sheaves
0 —» ker = Kx L = Kx L =0

on G. We know that X (G, ker) = 0 because ker is a successive

mid x

extension of Jix[l]'s. Thus we find
X((Elm, K*midXL‘) = X((Elm, K*!XL).
By the ! Kunneth formula we know that
X (B, K L) = X o(Br, K)X (G, L),
Finally, we know that X .(Gy,, N) = X(Gy,, N) for any derived
category object N. QED
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Corollary 2.12.8 On G, over an algebraically closed field k of

characteristic = ¢, let K and L be two objects in Dbc((Em, 68) which
are perverse and which both satisfy P for multiplicative
convolution. Suppose that Kx, iqxL = 84, i.e,, suppose that K in P is
invertible for multiplicative middle convolution, with inverse L.
Then

X (G, K) = X(Gp,, L) = 1.
proof Indeed, X (G, 61) = 1, and X (G, K) is a nonnegative integer
for any perverse K on G, by 2.12.3.1. QED

Theorem 2.12.9 On G,, over an algebraically closed field k of
characteristic = ¢, let K and L in Dbc((]}m, 68) be perverse and

midxL = 81-
L on P are

satisfy P for multiplicative convolution. Suppose that Kx
Kand X = X%, ,idx

automorphisms of P, which are inverses of each other.
2) The operator X — Xx K induces an automorphism of the

1)0On Gy, , the operators X — Xx,iqx
mid x
perverse irreducible objects in P, with inverse the operator X =
X % L.

3) L and K are perverse irreducible on Gyy,.

mid x

proof This is entirely analogous to the additive case, cf. 2.9.7 and
2.9.9. QED

Theorem 2.12.10 On G,, over an algebraically closed field k of

characteristic = ¢, let K in Dbc((]}m, 68) be perverse. The following

conditions are equivalent.
1) K lies in P and X (Gy,, K) = 1.

2) K is perverse irreducible and X (G4, K) = 1.

3) K is an irreducible hypergeometric (cf. [Ka-ESDE, 3.5.4 and 8.5.3]).
4) K lies in P, and there exists a geometric isomorphism

Kx,nigxDlinv*K) = &4.

5) K lies in P, and is invertible for multiplicative middle convolution.

proof For 1) = 2), let L € K be nonzero perverse irreducible. If L=K,
stop. If K/L is nonzero, we get a contradiction as follows. Since K lies
in P, L is not any f,x[l], so X(Gyy, L) > 0, by 2.12.3.1, 2). But by

212.3.1, 1),
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X (G, any perverse) z 0,
so from the exact sequence
0O —=L—-=K-—=K/L—->20
we get X(Gy,, L) = 1, and X(Gp,, K/L) = 0. Thus K/L is a successive

extension of f,X[l]'s, and so K has an f,X[l] quotient. But this is

impossible, because K lies in P.

That 2) = 3) is proven in [Ka-ESDE, 3.5.4 and 8.5.3]. That 4) =
5) is trivial, and 5) = 1) is proven in 2.12.8 above .

[t remains only to prove 3) = 4). Suppose first that we are in
characteristic p > 0. By the structure theorem [Ka-ESDE, 8.5.3] for
hypergeometrics, we know that every irreducible hypergeometric is
either a 6 or is F[1] for ¥ a hypergeometric sheaf ¥, (!, ¢, X's, p's)
with disjoint X's and p's. Such a hypergeometric is a successive
% nidx convolution (because with disjoint X's and p's, each =, =
* . in the constructive definition of hypergeometric objects cf. [Ka-
ESDE, 8.4.2 (5)]) of sheaves ‘E’X®‘E’¢[1]’ their multiplicative
translates (this only changes the ) and their multiplicative
D(inv*K) = 84
for K =‘E’X®f’¢[1]' Now for all the convolutions on G,,, we have

(f’x(x’A)*any,x(f’X@B) = £X®(A*any,xB)-

D(inv™K) = 84. for K =f,q)[1]. This

inverses. 5o we are reduced to showing that Kx . ;q«

So it remains to show that K=, 4«
will be proven in 2.13.4 below.

[f we are in characteristic zero, then by classification every
irreducible hypergeometric. is either a 8 or is F[1] for ¥ a
hypergeometric sheaf H,(X's, p's) of type (n,n) with disjoint X's and

p's. Such an F[1] is a successive multiplicative middle convolution
(with disjoint X's and p's, each x|, = %, ,) of hypergeometrics of

type (1,1), # (X, p)lL] with X = p (compare [Ka-ESDE, 5.3.1] for the

D-module analogue). So we are reduced to the case when K is
J*‘f’X(X)(p/X)(%-X)[l]' Just as in characteristic p, we may replace K

by K®f,§(, and multiplicatively translate A to 1. This reduces us to
treating universally the case when K = J*f’x(l—x)[l]’ with X

nontrivial. This will be proven in 2.13.3 below.
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2.13 Interlude: surprising relations between x,,;q on Al

and on Gm

Lemma 2.13.1 On G,y over an algebraically closed field k of
characteristic = ¢, let K in Dbc((ﬁm, 68) be perverse, and let f,x be
any nontrivial Kummer sheaf on G,,. Let j: G, = Al be the
inclusion, and denote J*‘IZX on Al simply as f,x. We have

Ko Loy (x-1)[1] = ¥ C K@ L5 ) Ly [11)

K**xf’x(x—l)[l] =j*( Rj*(K(X)f)&)**Jrf)X[l] ).

K% nid xf’x(x—l)[l] = jx( J!*(K®Ji§()*mid+ﬁx[1] ).

proof Let's start with K on G,, any derived category object. For X
nontrivial, we have, for mw : G, xG,, = Gy, the map (x,t) = t, and
J Gy — Al the inclusion,

Ko By (x-1) = RMKy® Ly ((1/%) - 1)) =

= Rﬁ!((K@’Ji&)X@f}X(t - X))

S CHER®E ) * Ly ).
Dualizing this, we get

DK**X‘E’R(X—l) = j%( Rj*(DK®ﬁX)**+lﬁi ).
Replacing K by DK and X by %, this gives
Suppose now that K is perverse on G,,. Then so is K®f)7(, and we

have equalities on perverse sheaves (perverse because f’x(x—l)[l] is
P on Gy,
K*!x‘f’x(x—l)[l] = j*( J!(K(X’f);()*!_kf)x[l] )

K By (x-1)[1] = 0% ( Riju (K®E 3 )%y Ly [1]).
Take the image of the first in the second. On the left side, the map is
the "forget supports® map, and we get Kx, 4 xf’x(x—l)[l] as image.

and because f,x[l] is ® on Al) on G

On the right side, the map 1s the pullback to G, of the map "forget

supports twice" of perverse sheaves on a1

JKBE ) *1, By [1] = Rj(K®E )% oy Loy [1].
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This map we may factor into two surjections followed by two
injections, as follows:

J'!(K@f,;()*H_JZX[l] - J!*(K(X)f)&)*Hf)X[l] (exactness of *!+£X[1])
J'!*(K®f)7()*!+f)x[l] - J!*(K®‘f’7()*mid+‘f’x[1] (def'n of *,iq)
J!*(K®f)&)*mid_,_f)X[l]%j!*(K(@f)&)**_,_f)X[l] (def'n of %,,iq)
j!*(K(X)f,j()**Jrf,X[l]—)Rj*(K(X)f,&)**ij,X[l] (exactness of **+I’,X[1])
so the image of this composite map is kj!*(K(X)f,;()*midJrf,X[l]. QED

In analogous but simpler fashion, we have
Lemma 2.13.2 On G,y over an algebraically closed field k of

characteristic p = ¢, p > 0, let K in Dbc((]}m, @e) be perverse. Then

for j: Gy — Al the inclusion, we have

inv*K*!Xj*f)qJ[l] = JXFT(jiK),
NV *Kx ¥ Eyl1] = J*FT(RjyK),
inv*K*mide*f)qJ[l] = J¥FT(jixK).

proof The first assertion results formally from the definitions, cf
[Ka-ESDE, p264, or GKM 8.6.1], and the second is the dual of the first.

Since Lj*ﬁqj[i] on G, is in P, being perverse irreducible and not an
JZX[l], all the objects in the first two assertions are perverse. The

third assertion is the image of the first in the second by the "forget
supports® map, where on the right we think of the source as

J¥FTi(jiK) and the target as j*FT (Rjy,K). QED

As a nice application of these last two results, we can now complete
the proof of 2.12.10, 3) = 4).

Corollary 2.13.3 On G, over an algebraically closed field k of

characteristic = ¢, let ‘E’X be any nontrivial Kummer sheaf. Then K
= f,X[l] satisfies Kx D(inv*K) = &4.

proof For any perverse L on Gy,, we have

mid x

L*mid xf’X(X—l)[i] = j=( J!*(L®f’§()*mid+f’x[l] ).
We take
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L := Dlinv*Ey (x-)[1D = E5 ((1/x) - DI = £5 (1 - x)/x)L]
Then
J'!*(L®f,§() = ﬁ&(l _ X)[l];
and the formula becomes
D(inv*.ﬁx(x_l)[l])*mid x Ly (x-1)[1] =j*( Ly - o)t bmiq+ Ly [1D.
This last object f’?{(l _ X)[l]*midJrf)X[l] on Al is (geometrically) the
additive translation by 1 of f’?([l]*mide’X[l]’ which we have

already seen to be 8. S0 we obtain

D(inv*ﬁx(x_l)[l])*mid xf’x(x—l)[l] = &4, as required. QED

Corollary 2.13.4 On G, over an algebraically closed field k of
characteristicp = ¢, p > 0, K = iikp[l] satisfies K%, ijgxD(inv™*K) = 84.

proof For any perverse L. on G we have, by 2.13.2 above,

m’
inv*L*midxj*f)qJ[l] = JOFT(jixL).
For L =Lj*f,$[1] on G we have jixL = ii@[l] on Al, and so FT(ji«L)

= 84. Since L. = DK, the above formula says precisely

m>

inv*DKx igxK = 81 forK =Lj*f,q)[1] on Gy,

But inv*DK = D(inv*K), so the commutativity of middle convolution
gives

K D(inv*K) = 84, as required. QED

*mid x
2.14 Interpretive remark: Fourier-Bessel Transform We
continue to work on Gy, over an algebraically closed field of

characteristic p > O, p=4. For any irreducible hypergeometric sheaf
H, and in particular for any Kloosterman sheaf X, ¥[1] lies in P and
is invertible for middle multiplicative convolution. Thus ,;q(#[1])

is an automorphism of P, with inverse *,,;qDinv*(H#[1]). In

particular, if we take # to be the "classical” rank two Kloosterman
sheaf Kly, we find the ¢-adic analogue of the classical Fourier-Bessel

Transform.

In characteristic 0, we can only form such a transform with
hypergeometrics of type (n,n). But already in the case n=2, where
we have the Gauss hypergeometric function, we have a transform
which should have received a classical hame, and some classical
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attention.

2.15 Questions about the situation in several variables
Lemma 2.15.1 On A" over an algebraically closed field of
characteristic p = ¢, p > 0, a perverse K in DbC(An, 68) has P! if and

only if FT(K) is of the form F[n] for some sheaf 7.
proof First of all, we already know that for M and K perverse, the
dual of K%M is semiperverse, so K is in P! if and only if K%M is

semiperverse for every perverse M. On the [T side, we are asking
when L:= FT(K) has the property that N = N®L[-n] maps perverses
to semiperverses. As soon as L[-n] has some nonzero cohomology
sheaf in strictly positive degree, we can take N to be §, for some

point o where the offending cohomology sheaf lives, and get a non-
semiperverse answer. 5o the condition is necessary, and it is
trivially sufficient, since when it holds, N = N®L[-n] = N®%F only

decreases the supports of the ®-1. QED

(2.15.2) As an application of this lemma, &'s on A" and external
products of perverse objects with P! on each Al factor will satisfy

P! on A, What about condition P on A'? On the Fourier

Transform side, we are looking for the sheaves ¥ on A such that
Fln] is perverse and such that D(F[n]) = 9[n] for some sheaf G.
What is the classification of such sheaves?

(2.15.3) Since K on A™ has P iff both K and DK have P!, external
products of perverse objects with T on each Al factor will satisfy T

on A, What is the intrinsic characterization of ® on A'? What if

any 1s the analogue of the one-variable criterion
Hom(f)qj[l], K) = HOI’I’](K, ‘E’Lp[j‘]) =0

which we had on A1? There are presumably lots of objects in P on

A other than external products of objects in P on the factors, and
8's. What are they? How can analyze the situation without FT?
What happens in characteristic zero?

(2.15.4) Already on higher dimensional tori (Gm)" we don't seem

to know even that external products of perverse objects with T on

each G, factor will satisfy P on (Gy,)"

2.16 Questions about the situation on elliptic curves
(2.16.1) What about the situation on an elliptic curve E over an
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algebraically closed field of characteristic #¢, where again we may
speak of P (here P! and Px are both )7 Any perverse irreducible
whose Isomorphism class, under translation, has only a finite
stabilizer, is automatically in . We know the stability under =
trivially for P (just as we knew it trivially for P! in the
noncompact case).

(2.16.2) If we are over ?p’ there is a kind of FT defined using the

Lang torsors over finite subfields kg over which E is defined,

E—- Eby1- Frobko, with structural group E(kg),

and pushing out by characters £ of the group E(kg) to get rank one
lisse sheaves ‘E’E on E against which we can form

(K, £) » RI'(E, K®J3E).
The Euler characteristic X (E, K®f,&) is independent of £. In any
case, If K is say perverse irreducible, and not itself any f,g, then

RI'(E, K®f,&) has only its middle cohomology group possibly nonzero.

Just as in the Al and G, cases, we have

Lemma 2.16.3 On an elliptic curve E over an algebraically closed
field of characteristic #¢, the necessary and condition that a
perverse K on E have P is that for each lisse rank one £ on E

(automatically translation invariant), we have
Hom(L[1], K) = Hom(K, £[1]) = O.

(2.16.4) What are the invertible objects on an elliptic curve E
over an algebraically closed field of characteristic =47 Since

X (E, KxL) = x(E, K)X(E, L),
only those objects in T whose Euler characteristic X = 1 can
possibly be invertible. Notice that any object in T with X =1 is
irreducible (since by the Euler Poincare formula on E, %X (E, K) = 0
for any perverse K, with equality if and only if K is F[1] with F lisse
on E, so a successive extension of lisse £'s of rank one, cf. below). Do
we know any non-96 examples of invertible objects? Indeed, do we
know any non-56 examples of irreducible perverse sheaves K on E
with X (E, K) = 17
(2.16.5) On E the Euler Poincare formula for J*"ﬂi] gives
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X(E, jxFI1D = = X(E, jxF) = 2y iy E (dropy(F) + swan, (F)).
So if X(E, jxF[1]) =1, then there is only one point x with a nonzero

contribution. At that point, (which by translation we may as well
take to be the origin Of) F's local monodromy is tame (since

swan > 0 forces drop > 0) and a pseudoreflection. In fact this
pseudoreflection must be unipotent, since det(%) is lisse of rank one
on E - {0}, with tame local monodromy at 0; because E and E-{0}

have the same tame (ﬂl)ab, det(7F) is also lisse at zero. In
particular, X (E, j.F[1]) = 1 implies rank(F) > 2.

(2.16.6) In characteristic zero, such an ¥ on E - {0} is a pair A, B
in GL(n, C), n:= rank(¥), with commutator {A,B} a unipotent
pseudoreflection. If such a j,F[1] is in P, then, as noted above, ¥

must be irreducible on E - {0}

(2.16.7) This brings us to the following question, which we are at
present unable to answer, except by explicit calculation, in rank
n=2, where the answer is negative. Given n = 2, do there exist
elements A, B in GL(n, C) with commutator {A,B} a unipotent
pseudoreflection, such that the group <A, B> generated by A and B is
an irreducible subgroup of GL(n, €C)? [As we have seen above, this is
equivalent to the question of whether there exist perverse
irreducibles K on E with X (E, K) = 1 of the form 7[1] with F of
generic rank n.] We may scale both A and B, and require that A and
B lie in SL(n, C) if we like.

(2.16.8) Let us briefly explain the negative answer to the n=2 case
of this question. Here the "trick" is that an element X in SL(2, C) is
unipotent if and only if trace(X) = 2. So we first want to find two
elements A and B in SL(2, C) whose commutator has trace 2, then
check to see if A and B generate an irreducible subgroup of SL(2, C).
We may conjugate by SL(2, C) to reduce to the case when A is
upper triangular. If A has distinct eigenvalues, then by further
conjugation we may assume it is diag(x,y), with x=y, xy=1. If A has
repeated eigenvalues, they must be both +1, so either A = £1, or A
= #(the standard upper unipotent).

(2.16.9) If A is diagonal and nonscalar, we compute {A,B}, set its
trace =2, and find that B is either upper or lower triangular, so
<A,B> can't be irreducible in this case. If A is scalar, <A,B> is not
irreducible. If A is x(unipotent), we find that B is upper triangular,
and again <A,B> is not irreducible. 5o it seems that no such
irreducibles exist!

(2.16.10) This seems to put a damper on our elliptic hopes, and
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makes it likely, or at least plausible, there are no X =1 irreducibles
of any rank > 1. It would be interesting to clarify this point.
(2.16.11) Another point one should clarify is this: the rigid objects
?h,C’ on E - {0} constructed in the last chapter give perverse

irreducibles j, 7% C[l] on E, which have X(E, j ¥, C[l]) = n, hence

lie in . What happens when we convolve them with each other?

2.17 Appendix 1: the basic lemma on end-exact functors
Lemma 2.17.1 We are given two abelian categories ¥ and B, two
exact functors S, T from o« to B, and a morphism of functors
¢@: S — T. Then the functor Im(¢) from o to B defined by
Im(@)(A) := Image (9a: S(A) = T(A))
1s end-exact, l.e., it carries injections to injections, and it carries
sur jections to sur jections.
proof Let us begin with a short exact sequence in «,
O —>A—->DB—->C—> 0.
Applying the functors S and T, we get a commutative diagram in B
0> SA — SB —» SC — 0.
loa  lop loc
0> TA - TB —» TC — 0.
with exact rows. Applying the snake lemma, we get a six term
exact sequence
&
0 — Ker(ga) = Ker(gp) = Ker(gc) — Coker(ga)— Coker(gpp)—

— Coker(gc) — 0.
We denote by Ker(qc)l8] C Ker(¢@c) the kernel of the coboundary

map 9, and extract the short exact sequence

0 — Ker(gpa) = Ker(gpp) = Ker(¢c)l8] — 0.

Then we have a commutative diagram in B

0 — Ker(ga) = Ker(gp) = Ker(gc)l8] — 0.

i i )
0 > SA - SB - SC- 0.

with exact rows and with all vertical arrows injective. Applying the
snake to this diagram gives a short exact sequence

0 — SA/Ker(gp) = SB/Ker(gpp) = SC/Ker(gp)l8] — 0,

which we may rewrite as
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0 — Im(gp) — Im(¢p) — SC/Ker(¢p)l8] — 0.
Thus the map Im(¢@p) = Im(gp) is injective. The third term
SC/Ker(¢c)l8] of this exact sequence surjects onto SC/Ker(¢c) =
Im(¢c), and hence the map Im(¢g) — Im(¢c) is surjective, being

the composition of the two surjections

Im(¢gp) > SC/Ker(gp)l8] » SC/Ker(gc) = Im(gc). QED

2.18 Appendix 2: twisting representations by characters
(2.18.1) In analyzing the translation-invariant perverse

irreducibles on Al over an algebraically closed field k of
characteristic p > 0, cf. the proof of 2.6.13, we made use of the
following lemma, with I" the group I(e), K the field Qp, and

characters all the ‘f’lJJ(BX)’ p in k.

Lemma 2.18.2 Let [' be a group, K an algebraically closed field of
characteristic zero, and M a finite-dimensional K-representation of
['. Suppose that for an infinity of one-dimensional K-valued
characters % of I', there exists an isomorphism M = M®YX (as K-
representation of I'). Then M = 0.

We will prove this in the following equivalent form.

Lemma 2.18.2 bis Let I' be a group, K an algebraically closed field
K of characteristic zero, and M a non-zero finite-dimensional K-
representation of I'. Denote by Stab(M,I") the subgroup of the

character group Hom(I', K*) consisting of those characters X of I" for

which there exists an isomorphism M = M® X (as K-representation
of I'). Then Stab(M,I") is finite.

proof
Step 1.We first reduce to the case where M is a faithful
representation of I'. Denote by Ker(M) C T" the kernel of the
representation M of I'. Then for any X in Stab(M,I"), X |Ker(M) lies in
Stab(M|Ker(M), Ker(M)) = Stab( dim(M) copies of 1, Ker(M)).
Comparing characteristic polynomials, we see that ¥ |Ker(M) is
trivial. Thus we find

Stab(M, I') = Stab(M, I'/Ker(M)).
Step 2. We henceforth suppose that M is a faithful representation,
i.e. that [' € GL(M). We denote by G the Zariski closure of [' in GL(M).
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We claim that every character X in Stab(M, I') extends uniquely to
an algebro-geometric character X in Hom(G, Gy,).

Indeed, given X in Stab(M, I'), there exists by definition an
element A in GL(M) such that, for every ¥ in I', we have
AYA™T = yx(y).
We rewrite this as
AyATIy1 = (),
and remember only
AyA‘ly‘l = scalar.
For fixed A in GL(M), the map of GL(M) to itself defined by
B — ABA™1R"1
is an algebro-geometric morphism. In the target GL(M), the set of
scalar matrices is Zariski closed (equations Xij = 0 for 1=, X =
Xq 1 for 1<isdim(M)). So for fixed A, the set of B in GL(M) for which

ABA™IR-1 = scalar
is Zariski closed. It is also a group, as one sees in rewriting this
equation as

ABA™L = (scalar)B.
Thus the set of such B's is a Zariski closed subgroup of GL(M), which
contains ['. Therefore it contains G. Thus for every g in G, there
exists a scalar, say ol(g), such that

olg) = Aga~1g™1,
Clearly the function g = «lg) is an algebro-geometric morphism to
Gy, (it is an algebro-geometric morphism to GL(M) which lands in

the subgroup consisting of scalars). This function is multiplicative in
g, as one sees by rewriting the defining equation as

AgA™T = «(g)g.
For if g and h are elements of G, we have

alhg)hg = AhgA™1 = AhA ™ 1AgA™l = c(h)ha(g)g = o(h)alg)hg,

and multiplying both sides by (he)~1 gives ot(hg) = o(h)o(g). Thus
g = «(g) is an algebro-geometric character of G which agrees with
X on I'. Since [' is Zariski dense in G, there is at most one such,
which we denote %. Thus

N(g) := alg).
Step 3. For every X in Stab(M, I'), X lies in Stab(M, G), as is clear
from the equation

AgA"1 = x(g)g := X (g)g.
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Thus we have

Stab(M, G) = Stab(M, T'),
the isomorphism that of restriction to I'.
Step 4. For any X in Stab(M, G), by taking determinants in the
equation

AgA™t = (g,
we see that X(g)dim(M) = 1. Thus X has finite order, and hence is a
character of the finite group G/GO of components of G. Therefore

Stab(M, G) lies in the finite group Hom(G/GO, K*), hence is finite.
Therefore the isomorphic group Stab(M, I') is finite, as required. QED
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3.0 Fourier Transform and index of rigidity
(3.0.1) Let £ be a prime number. On Al over an algebraically
closed field of characteristic =4, denote by k: Al — P the inclusion.

Let K in DbC(Al, @e) be a perverse sheaf which is a middle
extension, i.e., K is j,F[1] for a nonempty open set j: U — Al, and a
lisse @g—sheaf F on U. We define the index of rigidity of K, rig(K),

to be the integer (compare 2.0.3-6)
rig(K) := X (P1, k. j End(F)).

Theorem 3.0.2 Let p and ¢ be prime numbers, ¢=p. On Al over an
algebraically closed field of characteristic p, let K In DbC(Al, @e) be a

perverse irreducible such that neither K nor FT(K) is punctual (i.e., K
is neither a &, nor an jiqjoc[l])' Then K and FT(K) have the same

index of rigidity:
rig(K) = rig(FT(K)).

This 1s a speclal case of the slightly more general
Theorem 3.0.3 Let p and ¢ be prime numbers, £=p. On AT over an

algebraically closed field of characteristic p, let K in DbC(Al, 68) be a
perverse sheaf on Al such that both K and FT(K) are middle

extensions from any nonempty open set of Al. Then
rig(K) = rig(FT(K)).
proof of Theorem 3.0.3 Write K = j,7F[1] and FT(K) = j,9[1], for

some dense open j: U — Al, and lisse sheaves ¥ and 9 on U. Denote
by k: Al - P1 the inclusion. By definition,
rig(K) := X(P1, kj End(¥F)) =

= dim End(F)I(=) + x (AL, j End(F)).
The sheaf j . End(¥) on Al contains the subsheaf j (F)®j (F"); the
quotient j End(F)/j.(F)®j(F ) is punctual, supported in ALl - U:
IxEnd(F)/j (FI®jy(FY) = @, . 1 6,0End(F)IX)/(Fl)g(F v)l(x))

SO

X in
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rigK) 1= X (AL, j.(F)®j (F¥)) + dim[End(F)I(=)] +
+ 3 0 at dim[End(F)10) /(1) g (5 v)1(x))],
Since K = j,F[1], DK = j.F YI[1], and we have

Jx(FI®Ju(F) = DKKI[-2].
Thus
rig(K) := X (AL, DK®K) + dim[End(F)I(=)] +
+ 2 i al dim[End(F)1(x) /(F1(x) g (F v ) 1(x))],

Now we break up the I(eo)-representation F(e) of ¥ according to
whether slopes are <1 or >1:

Floo) = Feo)(s1) & F(o)>1).
Because there are no nonzero I(e)-equivariant maps between I(eo)-
representations with disjoint slopes, we have

End(F)I(=) = Endj( ) (F()) =
= Endj(eo)(F(e2)(1)) + Endy(oo)(F(e2)1)).

Using this, we rewrite the formula for rig(K) as the sum of four

terms
rig(K) = 1(K) + 2(K) + 3(K) + 4(K)

1(K) := ¥ (AL, DK®K),

2(K) := dim[Endy(e)(F (e2)>1))],

3(K) = dim[Endy( e )(F(e=)(<1))],

4(K) = 3, 1 at dimEnd(F)I)/(F10 @ (5 )1,

With this breakup, the equality
rig(K) = rig(FT(K)).
results from the

Theorem 3.0.4 Let p and ¢ be prime numbers, ¢=p. On Al over an

algebraically closed field of characteristic p, let K in DbC(Al, 68) be a
perverse sheaf on ATl such that both K and FT(K) are middle

extensions from any nonempty open set of Al Then
1(K) = L(FT(K)), 2(K) = 2(FT(K)), 3(K) = 4(FT(K)), 4(K) = 3(FT(K)).

proof We begin with 1), a form of Parseval's formula which is valid
for any object K in Dbc. We denote by D_K the object [x = -x]*(DK).
We have
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1(K) 1= X (AL, DK®K) = % (AL, DK®K) = rankq(D_Kx,K),
the last equality by using proper base change to calculate the stalk
at zero of D_Kx K.
Applying this to FTK gives

1(FTK) = rankg(D_FTKx,FTK) = rankg(FTDKx |, FTK)

(using D_oFT = FTeD)
= rankp(FT(DK®K)[-11])
(FT interchanges ® and x,)

= % (AL, DK®K)
(using the ! form of FT, and proper base change)
= 1(K), as required.
Assertion 2) follows from taking dimensions in the more precise
equality
Fndi(ee)(F(e0)>1)) = Endp(os)(G(eo)(>1)).
This holds because, in terms of Laumon's local Fourier Transform
FTloc(eeo,), we have
F(e=)(>1) = FTloc(ee,o0)(F (=)(>1)),
and one knows (cf. [Lau-TF], [Ka-TL], [Ka-ESDE, 7.4.1]) that
FTloc(eeo,e0) is an autoequivalence of the category of I(eo)-
representations with all slopes >1.
The last two assertions,
3(K) = 4(FT(K)), 4(K) = 3(FT(K)),
are in fact equivalent. [They are obtained from each other by

replacing K by FTK, and noting that FT(FTK) = [x = -x]*K up to a

Tate twist, while visibly 4(K) = 4([x = -x]*K).] We will prove that
4(K) = 3(FT(K)).

For this, we recall the theory of Laumon's local Fourier
Transforms FTloc(x,e), for x in Al. Each of these is an equivalence
of categories

[(x)-representations = I(e)-representations with all slopes <1.
By Laumon's theory of stationary phase [Ka-ESDE, 7.4], we know
that

G(eo)(<1) = &, Al f,qJX(X)FTloc(X,oo)(?(X)/?(X)I(X))_
[In [Ka-ESDE, 7.4.1], the functor M HELPX(X)FTIOC(X,oo)(M) was called

FTloc(x, )]
There are no nonzero I(e)-equivariant maps between the
distinct summeands. [If M and N are any two [(e)-representations
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all of whose slopes are <1, then for x =y, Homl(m)(f,qJX@M, £¢y®N)
= Homl(oo)(l\/[, f,qjy_X®N) = 0, since E"Py—X@)N has all slopes =1,
while M has all slopes <1.] Therefore
Endj(e)(G(e)(1) = @, i al End(e)(FTloc(x,e )(F(x)/F (x)1(X).

Because FTloc(x,e) is an equivalence of categories
[(x)-representations = I(e)-representations with all slopes <1,
we have

EndI(Oo)(FTloc(X,w)(?(x)/?(x)l(x)) = EndI(X)(?(X)/?(X)I(X))_
Thus we obtain

End(e)(3(ee)(21)) = @, al Endyy)(F(x)/F ()1),
To complete the proof, it remains only to check that
dim[End()(F ) /(F I @(F )] = dimlEndy(,)(F (x)/F (x) 1)),

This is proven in the following section, Proposition 3.1.8. QED
3.1 Lemmas on representations of inertia groups
(3.1.1) Throughout this section, we fix a complete discrete

X in

valuation ring R with algebraically closed residue field k and with
fraction field K. We denote by I the galois group

[ := Gal(KS€P/K).
If char(k) = p > 0, we denote by P C I the unique p-Sylow subgroup.
If char(k) = 0, we define P = {e}. The quotient I/P is (noncanonically)
the pro-cyclic group Tré;tp Zy.

(3.1.2) We also fix a prime number ¢=char(k). By an £-adic
representation of I, we mean a continuous Qp-representation p of I

on a finite-dimensional @e—vector space V, with the property that
there exists a finite extension E, of Q) with ring of integers G5, a

free Uy -module Vg, and a continuous U, -representation pg of I on
Vo such that (po, V(ﬂ@@g = (p, V).

(3.1.3) An ¢-adic representation of [ is said to be tame if it is
trivial on P. [t is said to be unipotent if it is a successive extension of
trivial representations of I. Because the upper unipotent subgroup of
GL(n, O,) is pro-¢, any unipotent representation of I is tame. If we

fix a topological generator Y of I/P, then isomorphism classes of n-
dimensional unipotent representations of I are in bijective
correspondence with conjugacy classes of unipotent elements in
GL(n, 68)' By the theory of Jordan normal form, there is, up to

isomorphism, a unhique indecomposable unipotent representation of I
of each dimension n > 1, which we denote Unip(n). We sometimes
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refer to Unip(n) as the "standard Jordan block of size n".

Lemma 3.1.4 If M and N are inequivalent irreducible ¢-adic

representations of I, then Extli(l\/l, N) = 0 for all i. In particular,

Hom(M, N) = Ext;1(M, N) = 0.

proof Ext{i(M, N) = H(I, M¥ ®N) = HI(I/P, (MY ®N)P). In terms of a
topological generator Y of I/P, we have
HI(I/P, MY ®N)P) = Ker(1-y | (MY ®N)P)ifi = 0,

= Coker(1-y | (MY ®N)P)ifi =1,
=0 fori1 = 2.

This explicit description shows that X (I, MY ®N) = 0. Therefore we
have hO(I, MY ®N) = hl(l, M¥®N), ie,

dim Ext;1(M, N) = dim Hom[(M, N).
Since M and N are irreducible and inequivalent, HomI(M, N) = 0.
QED

Lemma 3.1.5 If N is an irreducible nontrivial ¢-adic representation
of I, then HI(I, N) = 0 for all i.

proof Take M to be the trivial representation in Lemma 3.1.4. QED

Lemma 3.1.6 Any ¢-adic representation M of I has a canonical
direct sum "isotypical” decomposition, indexed by the equivalence
classes o of irreducible representations of I, as & M where

M
type «.

o in o o

1s a successive extension of irreducible representations all of

proof This is immediate from Lemma 3.1.4. QED

Lemma 3.1.7 Let N be an irreducible ¢-adic representation of I.
1) Given any two unipotent representations Uy and Uy of I, the

natural map

"®N" defines isomorphisms
HomI(Ul, U2) = HomI(N(X)Ul, N®U2),

Extj(Uq, Ug) = Ext{(N®U¢, N®U»).

2) Given any {¢-adic representation M of [ which is a successive
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extension of N by itself, there exists a unipotent representation U of
[ and an 1somorphism M = N®U of [-representations. We can

recover U intrinsically as the "l-isotypical” component of NY ® M.
3) Let M be an indecomposable ¢-adic representation M of I which is
a successive extension of N by itself. If M has length m as Q[I]-

module, then M = N®Unip(m), where Unip(m) is the standard
Jordan block of size m.
proof 1) Given Uq and Uy unipotent,

Extl(N®U{, N®Ujy) = Hi(I, NY®N®(U; ¥ ®U»)).

Because N is irreducible, NY ®N is semisimple, and
NY®N =1 & R, with R = @ of nontrivial irreducibles.
Because U1 Y ®Uy is unipotent,R®(Uq Y ®U») is a successive

extension of nontrivial irreducibles, and hence Hi(I, R®(MU4qY®U»y)) =

O for all i, by Lemma 3.1.5. Therefore the inclusion of 1 into NY &N
induces isomorphisms

HI(I, Uy ¥ ®Uy) = HI(I, NY®N®(Uq ¥ ®Uy)) for all i.
If we view these groups as Ext groups, then this isomorphism is that
induced by "®N"

Extl[(Uq, Uy) = Extl(N®U4, N®Uj) for all i.

2) Once we have 1), the first assertion of 2) is proven by induction
on the length of M. Once M = N®U, we have, just as above,

NY®M = NYN®U = (1 & R)®U = U & RQU,
with R®U a successive extension of nontrivial irreducibles.
3) If NQU is indecomposable of length m, then U is indecomposable
of length m, hence is Unip(m). QED

Proposition 3.1.8 Let M be an ¢-adic representation of I. Then
dim[End{(M)/(MI®@(M*)D)] = dim[Endj(M/MD)].

This will be proven in a series of Lemmas.

Lemma 3.1.9 If Proposition 3.1.8 holds for all unipotent ¢-adic
representations of I, then it holds for all ¢-adic representations of I.
proof L.et M be an ¢-adic representations of I. In terms of the

"isotypical” decomposition of M as & ;, 4 M we have

(O &,
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Endi(M) = & o Endi(M ).

Moreover, if we denote by 1 the trivial representation of I, and by

o in

Mq the corresponding "isotypical” summand (thus My is the

maximal unipotent subrepresentation of M), then clearly
ML= (M), and (M) = (M¥)! = ()L
Thus the "isotypical® decomposition of M/M! is
M/ML =@ _ . Mg @ Mﬂ/(Mﬂ)I,
and hence
Endi(M/MD) = @
On the other hand,
MieM¥)l= (Mplam )l = (Mplevg) )L,
and hence
Endi(M)/(MleM)D) = @ __, . 4 Endi(M) &

L End{(Mg) @ End{(Mq/(Mp)).

=1 in

® End;(M)/(MpI®((Mg))D).
Thus we see that Proposition 3.1.8 holds for M if and only if 1t holds
for Mq. QED

(3.1.10) We now study the case in which M is a unipotent ¢-adic
representation U of I, so a direct sum of standard Jordan blocks
@ Unip(n;) of varying sizes n; > 1. Given a unipotent representation

U of I, we define a sequence of non=negative integers e; =e;(U),
€1 2 epg 2ez2eyq 2.,e, =0 forr>» 0,

by
ej := the number of Jordan blocks of dimension > 1.
[t 1s obvious from this definition that given two unipotent

representations U4y and Uy of I, we have
ei(U1@®U»9) = e;(Uq) + e;(Un).
For a single unipotent block Unip(n), we have

e; = 1 for 1 < n,

ei=0fori>n.

So for M = @Unip(n;), the e;(M) are the partition of dim(M), written

in decreasing order, which is dual to the partition of dim(M) given
by the block sizes n;. We call the sequence (el, eo, e3,...) attached to

a unipotent M its "dual partition”.
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(3.1.11) Clearly if M is unipotent, with dual partition (eq, ey, ez,

eq,..), then M/M! has dual partition (ep, ez,.e4,...) formed from that
of M by discarding the leading term. [Indeed, if M = Unip(n), then
M/M! is 0 if n=1, and is Unip(n-1) if n > 1.]
(3.1.12) Notice that if M is a single Jordan block Unip(n), then MY
is also a single Jordan block Unip(n). So if M = @Unip(n;), then also
MY = @Unip(n;). From this we see that
dim(M1) = the number of Jordan blocks in M := e (M),
dim((M¥)) = e (M) = eq (M),
Remark 3.1.13 One could define the dual partition inductively by

the properties
e (M) = dim(MD), e; (M) = e;(M/MD), for i »1.

Lemma 3.1.14 If M and N are unipotent {¢-adic representations of

I, with dual partitions (eq, eg, e3, eg,...) and (f1, o, 3, f4,..), then
dim[HomI(M, N)] = Zi eifi'

proof Both sides are additive over direct sums, so it suffices to

check in the case when M is Unip(m) and N is Unip(n). In this case

the assertion is that
dim[Hom(Unip(m), Unip(n))] = min(m,n).

In terms of the action of
T := (a topological generator of I/P) -1,
this is the assertion that over any field E, we have

dimg Homgpp(E[T]I/(T™), E[T]/(TM)) = min(m,n).
But by the map ¢ — ¢(1),
Homp[r(EITIZ(T™), E[T]I/(T™)) = kernel of T™M in E[T]/(T™).
= E[T]/(TY), if m = n,
= TO"MET]/(TN) = E[T]/(TM) if n > m. QED

Lemma 3.1.15 If M is a unipotent ¢-adic representation of I, with
dual partition (eq, en, e3, eyg,..), then

dim[Endj(M)] = Z; (e;)2.

proof Take N=M above. QED
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Lemma 3.1.16 If M is a unipotent ¢-adic representation of I,
dim[End;(M/MD)] =dim[Endj(M)/(MI® (M )],

proof If M has dual partition (eq, en, ez, ey4,..), then M/M! has dual
partition (ep, ez, ey,...), and dimMI@m™)l) = (91)2, so both sides
are equal to 259 (91)2. QED

In view of Lemma 3.1.9, this completes the proof of Proposition
3.1.8.

3.2 Interlude: the operation ®,,iq

(3.2.1) Let k be a field, X a separated k-scheme of finite type which
1s irreducible and smooth, everywhere of relative dimension n. Let £
be a prime number =char(k). We look at the full subcategory ME(X)
of (£-adic) Perv(X) consisting of those objects which are middle
extensions from every nonempty affine open set, i.e., those perverse
objects K on X such that for every nonempty affine open set

JJU = X, we have K = j!*j*K. Given K in ME, we say that K has
generic rank r if for some (or equivalently, for any) nonempty

affine open set j: U = X on which it is lisse, j*K is F[nl], with ¥ a
lisse sheaf on U of rank r.
(3.2.2) We define an operation

® mid : ME(X) x ME(X) — ME(X)

as follows. Given any two objects K and L in ME, pick a common
nonempty affine open set j: U —» X on which both K and L are lisse.

Thus j*K = F[n] and j*L = 9[n] for lisse sheaves ¥ and 4 on U. We
define

K® il = g1 (FOPIND = j1((*K®*L)[-n)).

This is easily seen to be independent of the auxiliary choice of U,
using 2.3.3.1.

Lemma 3.2.3 Let k be a field, X a separated k-scheme of finite type
which is irreducible and smooth, everywhere of relative dimension
n. Let 2 be a prime number =char(k).

1) An object K in ME is perverse irreducible if and only if it is
irreducible in ME.

2) Let L in ME have generic rank one. Then

2a)The operation K = K® ,iqL is an autoequivalence of ME with
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itself, whose inverse is K = K®,iqDL.
2b) The operation K = K®,,iql induces an automorphism of the

family of all irreducible perverse sheaves in ME, whose inverse 1is
K = K&,ijgDPL.

proof 1) Since ME is a full subcategory of Perv, any perverse
irreducible is an irreducible object of ME. Conversely, suppose that K
in ME is not perverse irreducible. Then there exists a perverse
irreducible L, and a nonzero element in HomX(L, K). If L is in ME, K

is not irreducible in ME. If not, then L is supported on a proper
closed subvariety Y of X. So there exists an affine open j:U — X

with j*L = 0. But in Perv(X), we have K = jij K C Rj«Jj K, so
Homy (L, K) € Homy(L, Rjxj*K) =Hompy(j*L, j*K) = 0,

contradiction.
2a) is obvious by 2.3.3.1, and by 1) it implies 2b). QED

Lemma 3.2.4 Let £ be a prime number. On Al over an
algebraically closed field of characteristic =¢, let L in DbC(Al, @e) be
a perverse sheaf on AL which lies in ME. Suppose that L has generic

rank one. Then
1)If K in ME is perverse irreducible, so is K® ,iqL-

2) For any K in ME, rig(K) = rig(K® 4iqL)-
proof Assertion 1) is part 2b) of the preceding lemma. Assertion 2)
1s obvious from the definitions: if j: U — Al is any nonempty open

set on which both K and L are lisse, say j*K = F[1] and j*L = L[1],
with 7 lisse of some rank r, and &£ lisse of rank one, then on U the
sheaves End(%) and End(¥ ® £) coincide. QED

3.3 Applications to middle additive convolution

Lemma 3.3.1 Let p and ¢ be prime numbers, ¢=p. On Al over an
algebraically closed field of characteristic p, let K and L in

DbC(Al, 68) be perverse sheaves. Then

1) K is in P if and only if FTK is in ME.
2) If K and L are both in P, then
FT(K*yig+l) = FTK® ,iqF TL.

proof This was proven in 2.10.3 and 2.10.5 above. QED
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Lemma 3.3.2 Let p and ¢ be prime numbers, ¢=p. On G, over an
algebraically closed field of characteristic p >0, let X be any
continuous nontrivial @ex—valued character of ﬁl((]}m)tame, ‘f’X

the corresponding Kummer sheaf on G and J*f’X its extension by

m:
direct image to Al. Then FT(j*f,X[l]) = \j*f,i[l] (geometrically).

proof Direct calculation. QED

Theorem 3.3.3 Let p and ¢ be prime numbers, ¢=p. Over an
algebraically closed field of characteristic p, let X be any continuous

nontrivial @ex—valued character of ﬁl((ﬁm)tame. Let K in

DbC(Al, 68) be perverse irreducible on Al

1) If K is not in P, then

la) If K is @[1], then Kxjqsixy[1] = 0.

1b) If K is f,qjo([l] with o=0, then Kxpjqejx Ly [1] = E)Lpoc[l]'

2) If K is in P, then

2a) If K is punctual, say &, K*mid+uj*f’x[1] = J*‘f’x(x—oc)[l]'

2b) If K is J.*f’i((x—oc)[l] for some o, then K*midhj*f’x[l] = 8-

2c) If K is J*‘f’p(x—oc)[l] for some o« and some p;é;(, then
Kxmidgeds Ly 1] = J*f’pX(x—oc)[l]

2d) If K is a perverse irreducible in T which is not of type 2a, 2b, or
2c, then K*mid+uj*f’x[1] is a perverse irreducible in T which is not

of type 2a, 2b, or 2c.
3) If Kis in P and of type 2d), then
rig(K) = rig(K*mid+j*f,X[1]).

proof Assertion 1) is proven by direct calculation. Assertion 2a) is
proven by direct calculation. We know that middle convolution
*mid+uj*f’x[1] with j*f,x[l] is an automorphism of the irreducibles
in P, with inverse *midJﬂj*f,;([l]. Using this, 2b) follows from 2a).
We also know also that

J*f’x[l]*mid+J*f’p[1] =J*£XP[1] if Xp=1,

= 8p if Xp=1.

Using the associativity of middle convolution, and 2a), we get 2c).

To prove 2d), observe first that for each «, the family of all
those irreducibles in ® which are either 8, or J*‘f’p(x—oc)[l] for
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some p=1 is simply the orbit of § , under the group of operators
given by middle convolution with 83 and with any j*f,x[l], for any

X =1. Since the family of all irreducibles in P is also stable by this
group of operators, the complement of a union of orbits is also
stable.

To prove 3), we note that by 2d, both sides are middle
extensions. Since both sides are also in P, their Fourier Transforms
are middle extensions. So by Theorem 3.0.2, we have

rig(K) = rig(FTK),
and

rig(K*midN*f’X[l]) = rig(FT(K*mid+j*f,X[1]))
rig(FTK@midFT(j*ﬁX[l])), by 3.3.1.2
rig(FTK@midj*ﬁi[l])), by 3.3.2

rig(FTK), by 3.2.4.2. QED

(3.3.4) We now turn to a discussion of the monodromy of middle
convolution with a j*f,x[l]. For the convenience of the reader, we

recall some of the basic facts about Laumon's local Fourier
Transforms.

Theorem 3.3.5 Hypotheses and notations as in the theorem 3.3.3
above, suppose that K is a perverse irreducible in P of type 2d). Pick

a nonempty open set j: U — AL on which both K and
K*mid+J*f’X[1] are lisse, say

K = j!*?[l], K*mid_hj*f)x[l] = Jl*g[l]
with 7 and ¢ lisse sheaves on U. Then the local monodromies of F
and of § are related as follows:
1) at s in Al - U:

FTyloc(s, ) (F(s)/F()IN@LY = FTloc(s, )(9(s)/g(s)1)),
1a) In particular, ¥ is lisse at s if and only if § is lisse at s.
2) at oo

decompose F(eo) = F(eo)(slopes > 1) & (B ;y, Al f,qjs®?(oo,s))

with F(eo,s) an I(ee)-representation with all slopes < 1, and similarly
for 9. Then

2a) We have the formula

FTquoc(oo, e2)(F (eo)(slopes > 1))@ L~ = FTLPIOC(OO, o0 )(G(eo)(slopes > 1)).

2b) For each s=0 in Al,
F (eo,s) = G(eo,s).
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2¢c) There exists an I(0)- representation M(0) with
F(e,0) = FTyloc(0, e)(M(0)/M(0)HO))

G(e=,0) = FTloc(0, =)(M(0)® L5 /(M(0)® £3)1(0)),

2d) In particular, cf. [Ka-ESDE, 7.4.4], ¥ is tame at oo if and only if §
Is tame at oo.

proof This is just the spelling out of identities
FTqJ(K*mid_,_L) = FTLPK(X)midFTqJL’
FT@(FTqJK@midFTqJL) = Kxpnig+Ll,
FT@(FTqJK) = K.
with L = j*f,x[l], together with the effect of FT upon local
monodromies, as expressed via Laumon's FTloc(s, «) and
FTloc(ee, o) functors.

Concretely, let us write FT K = Jix(A[1]), for some sufficiently
small nonempty open set j: V — Al and some lisse sheaf o on V.
Then FTLP(K*midJrL) = Jix(B[1]), with B = %@j*ﬁ&. Their
I(eo)=representations are related by B(e) = d(==)®L 7, so

decomposing them we find

B(eo)(slope > 1) = of(eo)(slope > 1)®f,7(,
and
B(oo, s) = (oo, S)®f,§(, for every s in Al
By Laumon (cf. [Ka-ESDE, 7.4.2]) we know that
FT yloc(s, =0)(F(5)/F (s)18)) = st(eo, 3),

FTyloc(s, =0)(§(s)/3()1(8)) = B(es, 5) = slleo, 5)@LT,
whence
FTyloc(s, «)(F(s)/F()N@LS = FTyloc(s, «)(§(s)/3()1(s).

By Laumon, we also know
FTquoc(oo, o )(F (oo )(slope > 1)) = of(eo)(slope > 1),

FTquoc(oo, o0 )(G(eo)(slope > 1)) = B(eo)(slope > 1).
= (oo )(slope > 1)®.f,7(,

whence
FTquoc(oo, o2 )(F (o )(slopes > 1))@ LY = FTLPIOC(OO, o0 )(G(eo)(slopes > 1)).

To prove the remaining assertions, we use the inversion
formulas
FT@(FTqJK@midFTqJL) = K% nig+L,
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FT@(FTLPK) = K.
Since our FTL is lisse of rank one on G,,, FTK and FTK® ,;qFTL

give isomorphic representations of I(s) for each s=0 in Al

o(s) = B(s) for s = 0 in AL
By stationary phase,

F(o0,5) = FTgloc(s, o )(s(s)/sd(s)1(3), and
G(eo,s) = FT@IOC(S, oo)(‘B(s)/‘B(s)I(S)), for every s in Al

But o(s) = B(s) for s = 0 in Al so F(eo,s) = G(eo,s) for s = 0 in Al
For s=0,
A(0)®Ly = B(0),

so with M(0) := «(0) we get
F(e,0) = FTyloc(0, e)(M(0)/M(0)HO))

G(e0,0) = FT@IOC(O, oo)(l\/[(O)@f)&/(M(O)@ﬁ&)I(O))_
QED

Corollary 3.3.6 Hypotheses and notations as in 3.3.3 above, suppose
In addition that K 1s tamely ramified everywhere. Then so is
K*mid+j*f,x[1], and their local monodromies are related as follows:
1) at s in Al - U:

(F()/FSENRL y (4-5) = 9()/G()1(3),
2) at o: there exists a tame [(e=)-representation M(e) with

F (o) = M(eo)/M(eo)1(=),

(o) = M(=)®E /(M) @£ 4 )1,
Moreover,

3) M(e) is the unique I(e)-representation with these properties.
4) We have the formulas

rank M(e) = 2. iy Al_y rank (?(S)/?(S)I(S)),
rank M(e) = 2. iy Al_y rank (9(5)/9(3)1(5)).

proof At s in Al - U, we have

FTyloc(s, ) (F(s)/F (N5 = FTloc(s, =)(9(s)/g(s)1)),
Since F(s) is tame, and FTquoc(s, > ) and its quasi-inverse both
carry tames to tames, we see that 9(5)/9(5)1(5) is tame, whence 9(s)

itself is tame. Moreover, for M a tame I(s)-representation, we have
[Ka-ESDE, 7.4.1.3]
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FTyloc(s, )(MI®L7y = FTloc(s, ) (ML y (x-s)).
Indeed, for M tame, we have [Ka-ESDE, 7.4.1.3 and 7.4.4.3]
FTquoc(s, = )(M) = [x-s = 1/(x-s)]*M as [(e0) representation.
So from the above isomorphism of I(ee)-representations we infer
(F()/FSNRL (o) = 9()/G()1(5),

We now turn to the situation at o. Since K is tame at o, we have
F (oo )(slopes > 1) =0. Therefore FTLploc(oo, 0 )(G(eo)(slopes » 1)) = O,

and hence G(e)(slopes > 1) = 0. For s=0, F(eo,s) = 0, hence G(eo,s)=0.
For s=0, any I(0)- representation M(0) with

F(w,0) = FTloc(0, o0 )(M(0)/M(0)1(0))

must be tame [Ka-ESDE, 7.4.4.4]. Moreover, for tame I(0)-
representations, we have [Ka-ESDE, 7.4.4.3]

FT@OC(O, «)(M(0)) = [x —» 1/x]*M(0)

as [(e)-representations. We take our M(e) to be [x +— 1/x]*MI(0) for
M(0Q) appearing in the previous theorem (i.e., if FTqJK = Jix¥l1], for a

sufficiently small nonempty open set j: V — Al and a lisse sheaf o
on V, then M(0) is «(0).

To show that M(ee) is uniquely determined as I(eo)-
representation by the two conditions:

Feo) = M(eo)/M(ea)(=),
(o) = M(0)® Ly /(M(o0)® Ly )1(=),
write the "isotypical decomposition” of M(ee), (cf. Lemma 3.1.6), say
M(e) = @ o M(eo) .
By the first condition,
M(eo) = F(oo) for o = 1.
By the second,
(M(OO)@JZX)O( = G(eo)y for o = 1,
which we rewrite as

(M(OO)@JZX)O(@X ~ 9(°°)oc®x for a®y = 1,

o 1n

le.,

M(eo)y = (G(e2)®L 7)o for o = X
In particular,

M(s)g = (G(=)®L7)y.
Thus
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M(eo) = @y .q Fleo), & (9—(00)®f)7()ﬂ.
To compute the rank of M(eo), recall that if we write FTqJK =

Jix(A[1]), for a sufficiently small nonempty open set j: V — Al and a

lisse sheaf o on V, then M(eo) is [x = 1/x]*(0). By stationary phase,
A(eo)(<1) = B, Al f,qJX(X)FTloc(X,oo)(?(x)/?(x)l(x))_

A(0)(>1) = FTloc(eo,)(F(=)(> 1)) = 0, (since F(e) is tame).
Since each F(x) is tame, we have
rank FTloc(X,oo)(?rr(x)/?(x)l(x)) - rank(F(x)/F (x)1(x)),
Thus
rank M(e) = rank «(0) = rank o = rank H(e) =

= 3,0 at rank(F/FGIN) = 5050 a1 rank (F(s)/F()10)).

The second formula for rank M(eo) is term by term equal to this
one: equate ranks in the isomorphism of I(s)-representations

(F()/FSNRLy (4-g) = 9()/G()1(3), QED

Corollary 3.3.7 (rank formula) Hypotheses and notations as in
3.3.3 above, suppose in addition that K is tamely ramified
everywhere. Then so is K*mid+j*f,x[1], and their ranks and local

monodromies are related by the formulas

rank F = 5g i aloy rank (3(s)/3(s)1)) - rank((g(e)@ L)1),
rank 9 = 2. i, pl_-y rank (F(s)/F(s)l(s)y - rank((?(oo)@ij)I(OO))_

proof These follow immediately from the formulas
Feo) = M(eo)/M(eo)(=),
(o) = M(e0)® Ly /(M(o0)® L5 )1(=),
and
rank M(ee) = 2. iy pAl_y rank (?(S)/?(S)I(S)),

rank M(ee) = 2. iy pAl_y rank (9(5)/9(5)1(5)). QED

3.4 Some open questions about local Fourier Transform
(3.4.1) We know that if M is an irreducible I(0)-representation
with all slopes a/b, and dimension b, then FTloc(0,~)M is an
irreducible I(eo)-representation with all slopes a/(a+b), and
dimension a+b. We also know that FTloc(0,>) is an equivalence of
categories

[(0)-representations = I(eo)-representations with all slopes <1.
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Denote by (FTloc(0,%))~1 a quasi-inverse. Then for every nontrivial
Kummer sheaf ‘E’X’ we get an autoequivalence of the category of

[(0)-representations, defined by
(34.1.1) M = (FTloc(0,%) (L5 ®FTloc(0,e2)(M)).

This autoequivalence preserves slopes and dimensions, and on tame
M is given (cf. [Ka-ESDE, 7.4.4.3]) by M f,X(X)M. What is it? Is

there a simple formula for 1t?
(3.4.2) The most naive hope is that this autoequivalence be given
by M - f,X(X)M on all I(0)-representations, or equivalently that

FTIoc(O,oo)(M@JiX) = ﬁ&@FTloc(O,oo)(M) as I(eo)-rep'ns.
This hope is false. Here is a simple sequence of counterexamples. For
each integer n > 1, take for My, the I(0)-representation attached to
inv*(Kl,(y; p1, -, pp)), where Kl (¢; p1, ..., pp) is any of the rank n
Kloosterman sheaves discussed in [Ka-GKM, 7.4.1]. By [Ka-GKM,
8.6.1], we have a geometric isomorphism

j*FTqJ(jlinv*(Kln(qJ; P1, - Pp))) = Klpe1 (W 1, pq, o pp)-
Becuause Kl +1(¢; 1, pq, ..., pp) has all its eo-slopes < 1 (they are all
equal to 1/(n+1)), stationary phase shows that

FTloc(0,0)(My,) = Klyy11(g; 1, pq, ..., pp)e).

If we replace M, by Mn®‘f’x’ we are looking at

Mn®f,x = inv ™ (K1, (g; &pl, o an)) as 1(0)-representation,
so by the above FT fornmula we have B B
FTloc(0,00)(Mp ®Ey) = Kl (45 1, Xpg, oy Xpp)leo).
We claim that
FTloc(O,oo)(Mn(X)f,X) = ﬁ&@FTloc(O,oo)(Mn) as I(eo)-rep'n.

This amounts to Ehe statement that, as I(e)-representations,
Kln+1(¢; 1, Xpl’ ) Xpn) = f;&@Kln_'_l(Lp; 1, P15 s pl’l)

Indeed, the two sides have non-isomorphic determinants. To see
this, use the geometric isomorphism ([Ka-7.4.1])

valid for n > 2. The ratio of the two determinants is thus ‘E’X’ which

is nontrivial on I(e) so long as X is nontrivial.

(3.4.3) There is a somewhat unsatisfactory "fomula” for the
autoequivalence 3.4.1.1, in terms of middle convolution and the
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canonical extension. Let M be an irreducible nontame representation
of 1(0). By the theory of the canonical extension [Ka-LG], there exists
a lisse sheaf ¥y on G,y which is tame at «, and whose 1(0)-

representation is M. This sheaf %, is certainly irreducible on G,

since already its I(0)-representation is irreducible. Denoting by j: Gy,
— Al the inclusion, the object Kpp i= jxFl1]is a perverse

irreducible on Al which (being wild at 0) is visibly of type 24, i.e.,
neither punctual nor an f’LPo([l] nor a translate of a j*ﬁx[l]. Since

Kp 1s tame at « and lisse on G, Laumon's stationary phase tells

us that FTKy, is lisse on G say j*FTKpg = oAl1] with of a lisse sheaf

m:
on G,,, and

{(eo) = FTloc(0, e )(M) = FTloc(0, o )(Fpg(0)).
Now consider the object L :=KM*mid+j*f,X[1], whose FT is also lisse

on G with jJ*FTL = %@ﬁ&[l]. The object L is lisse on Gy, and

tame at o (by 3.3.5, 2d), since Ky is lisse on G

m>

m> and tame at o).

Say j*L = Jl[1], with Tl a lisse sheaf on G,,. Then by stationary

phase,
(H® L5 )(e) = FTloc(0, o)(TL(0)).

Thus the autoequivalence
M ~ (FTloc(0,%)) (L 5 ®FTloc(0,e2)(M)).

1s given on nontame irreducibles M by
M — the [(0)-rep'n of (j*?M[l])*mid+(j*ﬁX[1]).

(3.4.4) We can also pose a similar question about FTloc(eo o). If
M is an irreducible I(ee)-representation with all slopes (a+b)/b > 1
and dimension b, then FTloc(ee,)(M) is an irreducible (e )-
representation with all slopes (a+b)/a > 1 and dimension a. We know
that FTloc(ee, ) is an autoequivalence of

{I(o)-representations with all slopes >1 },

with quasi-inverse [x = -x]*FTloc(ee,o). For every nontrivial
Kummer sheaf ‘f’X’ we get another autoequivalence by
(344.1) M [x - —x]*FTloc(oo,oo)(f,i®FTloc(oo,oo)(M)).

This autoequivalence preserves slopes and dimensions. What is it? Is
there a simple formula for it?
(3.4.5) The most naive hope is that the autoequivalence 3.4.4.1 be
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given by M — ﬁ&@l\/[ on all I(ee)-representations with all slopes >1,

or equivalently that
FTIoc(oo,oo)(M@f,X) = £X®FTloc(oo,oo)(M) as I(eo)-rep'ns.

This hope is false. Here is a simple sequence of counterexamples. For
each n = 3 which is prime to p, take for M, the I(e)-representation

attached to f,qj(xn). For any Kummer sheaf ‘f’X’
FTloc(oo,oo)(Mn(X)f,X) has rank n-1, and all slopes n/(n-1). We claim

that
(3.4.5.1) det(FTloc(oo,oo)(l\/ln@IZX)) = f,x as I(eo) representation.

Admit this for a moment. Then FTloc(ee,«)(M,) has rank n-1 and

trivial determinant for n > 3 prime to p, so our naive hope would
force FTloc(oo,oo)(Mn®f,X) to have determinant f,xn—l rather than

f,x. To show that 3.4.5.1 holds, consider first the case of trivial ¥X.

Then FTLP(JZLP(XH)) is lisse on Al of rank n-1, and has all oo -slopes
n/(n-1). As explained in [Ka-GKM, 9.2], its restriction to G,,, descends

through the n'th power map, to a Kloosterman sheaf of rank n-1 on
G- The determinant of this Kloosterman sheaf is tame on Gy,

because n-1 > 2, and hence FTqJ(f,qJ(Xn)) itself has a determinant

which is tame on G,4. But as FTLp(f,qJ(Xn)) is lisse on Al, so is its

determinant, and hence det(FTqJ(f,qJ(Xn))) = 1 (being both tame on

Gy
FTloc(eo,20)(My,) = FTqJ(f,qJ(Xn))(oo) as I(eo)-representation, and hence

and trivial at zero). As FTqJ(f,qJ(Xn)) has all its e -slopes > 1,

FTloc(ee,0)(My,) has trivial determinant, as asserted. Now consider
the case when X is nontrivial. In this case, FTqJ(f,qJ(Xn)(X)f,X) is lisse
on Al of rank n, and its e-slopes are 0 once and n/(n-1) repeated
n-1 times. As explained in [Ka-GKM, 9.2.2], the restriction to Gy, of
FTqJ(IZqJ(Xn)(X)IZX) descends through the n'th power map to a

hypergeometric sheaf of type (n, 1). The determinant of such a
hypergeometric sheaf is necessarily tame on G,, (because n > 3),

and hence FTLP(JZLP(XH)(@JZX) has trivial determinant (because this

determinant is simultaneously lisse on Al and tame on Gy )- By
stationary phase, the I(e)-representation of FTqJ(f,qJ(Xn)(X)f,X) is a

direct sum

FTqJ(f,qJ(Xn)(X)f,X)(OO) = ii& &) FTloc(OO,OO)(Mn(X)f,X).
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Taking determinants, we find 3.4.5.1, as required.

(3.4.6) Just as in 3.4.3 above, we can give a somewhat
unsatisfactory "formula” for the autoequivalence 3.4.4.1 in terms of
canonical extensions. In terms of the canonical extension of an I(ee)-
representation M with all «-slopes > 1 to a lisse sheaf pj on G,

which is tame at zero, we get a description of the autoequivalence
3.4.4.1 as
M — the slope > 1 part of the I(ee)-rep'n of

(G IMID* g (o By [1D).



Chapter 4-Middle convolution: dependence on parameters-1

4.0 Good schemes

(4.0.1) Recall that a "good scheme” is one which admits a map f
of finite type to a scheme T which is regular of dimension at most
one. For variable good schemes X, and ¢ any fixed prime number,

we can speak of the triangulated categories DbC(X[l/é], 68)’ which

admit the full Grothendieck formalism of the "six operations” (cf.
[De-Th.Fin], [De-Weil I1], [Ek], [Me-SO]).

4.1 The basic setting

(4.1.1) Throughout this section, we fix a prime number 2, and
work over a ground-ring R which is a normal noetherian integral
domain in which ¢ is invertible, and such that Spec(R) is a good
scheme. We work on AlR = Spec(R[x]). We fix a monic polynomial
D(x) in R[x] of some degree d > 1 whose discriminant A is a unit in
R, and denote by D C AlR the divisor defined by the vanishing of
D(x). We further assume that the polynomial D(x) factors

g (x = aj) with aj - ajin R
for all i=j. [This "further assumption” always holds after replacing
Spec(R) by a connected, finite etale covering of itself.] Then D =

1l Dj is the disjoint union of the sections D; defined by the

completely in R[x], say D(x) = TT

1 <1 x<

vanishing of x - aj.

(4.1.2) We say that an object K in DbC(AlR, @e) is adapted to the
stratification (ﬂ\lR - D, D = Ll Dj) of AlR, if each of its cohomology
sheaves is lisse when restricted either to AlR - D or to any Dj.
(4.1.3) We say that an object K in DbC(AlR, @é) is fibrewise

perverse if its restriction to each geometric fibre of AlR over

Spec(R) is perverse, i.e. if for any algebraically closed field k, and
any ring homomorphism ¢: R — k, the inverse image K(P of K in

DbC(Alk, @e) is perverse on Alk.
(4.1.4) We say that an object K in DbC(AlR, 63) is fibrewise

tame if for any algebraically closed field k, and any ring

homomorphism ¢: R = k, the inverse image K‘P of K in DbC(Alk, @g)

1s tame on Alk in the sense that for any dense open set U C Alk on
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which K(P is lisse, each of the cohomology sheaves }Ei(K(P) | U is

tamely ramified at each point of IPlL< - U.

4.2 Basic results in the basic setting

Proposition 4.2.1 Hypotheses and notations as in 4.1.1 above, let K
in DPL(A1R, ©)) be adapted to (Alg - D, D = LL; Dy). If the fraction

field of R has characteristic zero, then K is fibrewise tame.
proof [Ka-SE, 4.7.1 and Remarque (ii), SGA 1, Expose XIII, 5.5]. QED

Proposition 4.2.2 Hypotheses and notations as in 4.1 above,
suppose K in DbC(AlR, @e) is adapted to (AlR - D, D = Lll; Dj) and is

fibrewise tame. Then the following conditions are equivalent:
1) K is fibrewise perverse.

2) There exists a geometric fibre on which K is perverse.

3) Each of the following three conditions holds.

i) H1(K) vanishes for i outside {0, -1},
i) #OK) | AlR - D vanishes, and,

iii) denoting by j: AlR -D - AlR the inclusion, the natural

adjunction map 1w K - j*j*R_l(K) is injective.

proof Fix an algebraically closed field k, and a ring homomorphism
¢: R — k. The inverse image K‘P of K on Alk 1s perverse if the

conditions of 3) above hold after the base change ¢: R — k; let us
call these conditions 3¢).

For each integer i, each of the sheaves HI(K) | AlR - D and
HUK) | D is lisse. So for any ¢: R = k as above, 3i) & 3¢i), and 3ii)
& 3¢ii). It is in showing 3iii) & 3giii) that we make essential use of
the fibrewise tameness. B

The key point [Ka-SE, 4.7.2 and 4.7.3] is that for ¥ a Qp-sheaf
on AlR which is adapted to (AlR - D, D = LI; D;) and fibrewise

tame, we have:

a) formation of j,j*% commutes with arbitrary change of base on
Spec(R), and



Chapter 4-Middle convolution: dependence on parameters-3

b) the sheaf
C;cht = Ker(F — jo j*7F)
is concentrated on D, lisse on D (i.e., lisse on each Di), and of

formation compatible with arbitrary change of base on Spec(R).

Applying this to 1~ 1(K), we see that 3iii) & 3iii).
Fixing a single ¢, we get 2) = 3). Varying ¢, we get 3) = 1).
And 1) = 2) is trivial. QED

Proposition 4.2.3 Hypotheses and notations as in 4.1.1 above, let K
in DP.(ALR, ©)) be adapted to (Alg - D, D = L; D)), fibrewise

perverse and fibrewise tame. Then the following conditions are
equivalent:

1) on each geometric fibre, K is the middle extension of its
restriction to Alk - Dg.
2) there exists a geometric fibre on which K is the middle extension

of its restriction to Alk - Dyg.
3) #O(K) = 0, and denoting by j: AlR -D — AlR the inclusion, the

adjunction map is an isomorphism 1wk = j*j*%_l(K).

proof The kernel and cokernel of the adjunction map

® 1K) > j.i*® 1K)
are concentrated on D, lisse on D, and of formation compatible with
arbitrary change of base on Spec(R), cf. [Ka-SE, 4.7.2-3]. Fixing a
single ¢, we get 2) = 3). Varying ¢, we get 3) = 1). And 1) = 2) is
trivial. QED

Proposition 4.2.4 Hypotheses and notations as in 4.1.1 above, let K
in DPL(A1R, ©)) be adapted to (Alg - D, D = LL; D)), fibrewise
perverse and fibrewise tame. Denote by n the rank of the lisse sheaf
1 1K) | AlR - D. Fix a subgroup I'" of GL(n, @e). Then the following

conditions are equivalent:

1) on each geometric fibre, K is the middle extension of its
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restriction to Alk - Dy, and the image of ﬁl(Alk - Dy, base point) in

GL(n, 68) under the monodromy representation of ¥~ 1(K) | Alk - Dy

is conjugate to I'.
2) On some geometric fibre, K is the middle extension of its

restriction to Alk - Dy, and the image of ﬂl(Alk - Dy, base point) in

GL(n, 68) under the monodromy representation of ¥~ 1(K) | Alk - Dy

is conjugate to I'.

proof In view of the preceding result, this results from the fact that
for a lisse @e—sheaf F on AlR - D (namely #™1(K) | AlR - D) of rank
denoted n which is fibrewise tame, the function on geometric points
of Spec(R) given by B
(¢: R = k) = the conjugacy class in GL(n, Q) of the image of
ﬁl(Alk - Dy), any base point)
is constant (cf. [Ka-ESDE, 8.17.13]). QED

Corollary 4.2.5 Hypotheses and notations as in 4.1.1 above, let K in
DbC(AlR, @8) be adapted to (AlR - D, D = Ll D), fibrewise perverse

and fibrewise tame. Then the following conditions are equivalent:

1) on each geometric fibre, K z@g[l].
2) there exists a geometric. fibre on which K z@e[l].

proof This is the case n=1, I' = {1} of the previous result. QED

Corollary 4.2.6 Hypotheses and notations as in 4.1.1 above, let K in
DbC(AlR, @8) be adapted to (AlR - D, D = Ll D), fibrewise perverse

and fibrewise tame. Then the following conditions are equivalent:
1) on each geometric fibre, K is perverse irreducible and is the

middle extension of its restriction to Alk - Dyg.

2) there exists a geometric fibre on K is perverse irreducible and is
the middle extension of its restriction to Alk - Dg.

proof This is the case "' an irreducible subgroup of GL(n, 68)“ of the

previous Proposition, for all such I'. QED

Proposition 4.2.7 Hypotheses and notations as in 4.1.1 above, let K
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in DPL(ALR, @)) be adapted to (Alg - D, D = LI Dy), fibrewise

perverse and fibrewise tame. Denote by j: AlR -D - AlR the

inclusion. Then the following conditions are equivalent:

1) on each geometric fibre, K = j, Ly (y-)I1] for some nontrivial
Kummer sheaf f,x and some o.
2) there exists a geometric fibre on which K = j L (x-)[1] for

some nontrivial Kummer sheaf and some «.
3) Each of the following conditions holds:

i) #OK) = o,

i) LK) | AlR - D is lisse of rank one,

i) ®1K) = j i n ),

i) ¥~ 1K) | D; is lisse of rank one for all but exactly one value

ig of i, and for this value ®™1(K) | D; = 0.
proof It is clear that 1) = 2) and 2) = 3). To see that 3) = 1), we
may reduce by an additive translation on AlR to the case where
the divisor DiO 1s the divisor x=0. In this case, we must show that
for any geometric point ¢: R — k, the only lisse rank one @e—sheaf

on Gm,k which i1s ramified at 0 and which is tame at both 0 and oo

is a nontrivial Kummer sheaf f,x. But this 1s a tautology. QED

Proposition 4.2.8 Hypotheses and notations as in 4.1.1 above, let K
in DPL(A1R, ©)) be adapted to (Alg - D, D = LL; Dy), fibrewise

perverse and fibrewise tame. Then the following conditions are
equivalent:
1) on each geometric fibre, K = §, for some o.

2) there exists a geometric. fibre on which K = §, for some «.
3) ®1(K)= 0, and #OK) | D; = 0 for all but exactly one value ig of i,

and for this value }E_l(K) | DiO is lisse of rank one.

proof It is clear that 1) = 2) and 2) = 3), and 3) = 1) is obvious as
well. QED
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4.3 Middle convolution in the basic setting
(4.3.1) We continue to work in the basic setting 4.1.1. Fix a
nontrivial character X of the group

mq MGy R) = Ty iny in R Zo(1).
(4.3.2) Denote by C(R, D) the full subcategory of Dbc(AlR, 63)
consisting of all objects K which are adapted to (AlR - D,D = Ll Dy),

fibrewise perverse and fibrewise tame. We will nhow define a middle
convolution functor from C(R, D) to itself,
K - K*midhj*‘ﬁx[l]’

whose formation commutes with arbitrary change of base on R, and
which for R a field of characteristic #¢ coincides with its namesake
2.6.2. It 1s defined via the relative compactification of the map pro

as ln 2.8.3-4,

i Alyxnl o Pl xpal,
by extending KX®(j*f,X[1])t_X across Z:i=eo pnl by TZS_ZRJ*, [BBD,
1.4.13] and then taking Rpro, as in the earlier discussion. The key
point is that Rj*(KX®(j*£x[1])t_X) | Z is lisse, and of formation
compatible with change of base on R (by the general lemma 4.3.8
below). Therefore the object TZS—2RJ*(KX®(J*f’X[l])t—X) | 7 is lisse,

and of formation compatible with change of base on R.
(4.3.3) Since the formation of Rpro, commute with passage to

fibres, by proper base change, we know that Kxjq+Jx Ly [1]is

fibrewise perverse, of formation compatible with arbitrary change
of base on R, and fibre by fibre equal to its namesake.
(4.3.4) We also have an explicit triangle relating this middle

convolution to the ! convolution and to a lisse sheaf on AlR. On
[PlRXAlR we have a distinguished triangle
= G (M7 2Ky ®(ju £y (1D [2] | Z.

(435)  But 77 _3Rju(Ky®(jx Ly [1D-y) is ji(Ky®(ju Ly [1D1-y), s0

rotating this triangle gives a distinguished triangle
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Jx(HT2K ®(u By (1D 1) | Z = (K ®(ju By [1D4_y) =
- TZS—ZRJ*(KX(@(J*‘EX[l])t—x)
in which the first term is (a lisse sheaf on Z)[1].

(4.3.6) Applying Rproy gives a distinguished triangle on AiR

(a lisse sheaf on ATR)1] = KxpjuLy[1] = Kxppiqeisdy 1],
Using this triangle, we see the adaptedness of K*mid+uj*f’x[1] to the

same stratification (AlR - D, D = Ll Dj) to which K was adapted.

(4.3.7) We know fibre by fibre that tameness is preserved: this is
automatic for characteristic zero fibres, and for characteristic p > O
fibres it was proven in 3.3.6.

Lemma 4.3.8 Let S an irreducible noetherian scheme, X/S smooth,
and D in X a smooth/S divisor. For ¥ lisse on X - D and tame along
D, j: X-5S = X and i: D =X the inclusions, we have

1) formation of j,F and of Rj,7F on X commutes with arbitrary

change of base on 5,
2) the sheaf 1*j % on D is lisse, and formation of i*j,% on D

commutes with arbitrary change of base on S.
proof [Ka-SE, 4.7.2 and 4.7.3]. QED

Proposition 4.3.9 Hypotheses and notations as in 4.1.1 above, let K
in DP.(A1R, ©)) be adapted to (Alg - D, D = L; D)), fibrewise

perverse and fibrewise tame. If K is fibrewise a middle extension,
then its fibrewise index of rigidity is constant.

proof Consider the lisse tame sheaf on IPlR -{DL o=},
F = End® 1| Pl - (D L «)).
Its j«F on IPlR is adapted to (IPlR -{D Il o}, {D LI o}), fibrewise

tame, and of formation compatible with arbitrary change of base on
Spec(R), by the general lemma above. By the Euler-Poincare
formula, the fibrewise X of j7F is constant. Indeed, if

n = rank of ¥ on IPlR -{D LI oo},
Ne, = rank of j4¥F | eop,

nj
then the fibrewise X of j, 7, i.e., the fibrewise index of rigidity, is

= rank of j, 7 | D, for each of the d sections Dj,
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(1 - dn + ne, + 2 nj. QED

Theorem 4.3.10 Hypotheses and notations as in 4.1.1 above, let K in
DbC(AlR, 69) be adapted to (AlR - D, D = Ll D), fibrewise perverse
and fibrewise tame. Suppose K is fibrewise perverse irreducible of
type 2d) in the sense of 3.3.3. Then both K and K*mid+uj*f’x[1] are
fibrewise perverse irreducible of type 2d) and have the same index
of rigidity.

proof Suppose first that R is not a Q-algebra. Then Spec(R) has

points with finite residue characteristic p. Once we know that
K - K*midhj*f’x[l] is stable on fibrewise perverses which are

fibrewise tame and adapted to D, we just look fibrewise (legitimate
by the earlier fibrewise results) and take a fibre in characteristic
p > 0, where we can use 3.3.3.5.

How do we get this result if we don't assume R has points in
some positive characteristic? By passing to fibres, we first reduce to
the case when R is itself an algebraically closed field of
characteristic zero. Since 1 of open curves in characteristic zero

doesn't "see” extensions of algebraically closed fields, we may assume
that our field R is "just” an algebraic closure of the finitely
generated field Q(coef's of D(x)), and try working over the ring Rq :=

Z[coef's of D(x), 1/Al. This ring R is way too big, but it does have
points of characteristic p for all p »> 0. Our w1 AlR - D has a

GL(n, O4) form, O, denoting the ring of integers in a finite extension
Ey of Qp, with finite residue field F,. The key point is that for p >> 0
the group GL(n, O,) is prime to p, because it is an extension of the
finite group GL(n, F,) by the pro-£ group 1 + AM(05). For any

p >>0, we can, by applying 5.9.3 and then extending the residue field,
embed our Ry inside a complete discrete valuation ring R4 with

algebraically closed residue field of characteristic p.
When we do this, D stays a good D. By the specialization
theorem for the prime to p fundamental group of the open curve

AlRl - D, we see that the sheaf w1 | AlR - D extends to a lisse
sheaf on AlRl - D, which will be irreducible if and only if our

original w1 | AlR - D was geometrically irreducible. Denoting by
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j:mlg, -D - Alg,
the inclusion, J*(}C_i | AlRl - D) is adapted, fibrewise perverse,

fibrewise tame, and fibrewise a middle extension. By 4.2.6, 4.2.7, and
4.2.5, the fibrewise "type 2d irreducible” condition is still satisfied by
our extended K over Rq. Now we apply the already known case of

the result over the mixed characteristic Rq to get the index of

rigidity on the general fibre. QED

Theorem 4.3.11 Hypotheses and notations as in 4.1.1 above, let K in
DbC(AlR, 68) be adapted to (AlR - D, D = Ll D), fibrewise perverse
and fibrewise tame. Suppose K is fibrewise perverse irreducible of
type 2d) in the sense of 3.3.3. For j: AlR -D - AlR the inclusion,
write

J¥K = FIU, *(Kxpmiqedn By [1) = GIL1,
with 7 and ¢ lisse sheaves on AlR - D. Then on every geometric

fibre, the local monodromies of ¥ and of 4 are related as in 3.3.6
and 3.3.7.

proof Denote by L the set of those prime numbers which are
invertible on R. Because 7is lisse on AlR - UD; = IPlR - {eop, LD;)
and tame along each of the "missing” sections Z := eop or D;, its local

monodromy along each of these sections "is" a pair
(a lisse Qp-sheaf F[Z] on Z, an action of Z (1) on F[Z])

whose formation i1s compatible with arbitrary change of base on
Spec(R) (cf. [De-Weil II, 1.7.8], also [Ka-SE, 4.7.2]). Similarly for §. So
in order the verify the asserted relations between the fibrewise local
monodromies of ¥ and ¢, it suffices to do so on a single geometric
fibre.

If Spec(R) has a point of residue characteristic p, we are done
by 3.3.6 and 3.3.7. If not, we reduce first to the case when R is an
algebraically closed field of characteristic zero, and then we
specialize both ¥ and f,x into characteristic p >> 0 by the argument

of the previous theorem, which reduces us to the case when R is a
mixed characteristic discrete valuation ring. QED
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5.0 Cohomological rigidity
(5.0.1) Let ¢ be a prime number, k an algebraically closed field of

characteristic =4. On Al over k, denote by k: Al - Pl the inclusion.
Let K in DbC(Al, 68) be a perverse irreducible sheaf which is

nonpunctual, i.e., K is j,F[1] for a nonempty open set j: U — Al,
and a lisse irreducible @e—sheaf F on U. In 3.0.1, we defined the
index of rigidity of K, rig(K), to be the integer

rig(K) := % (P1, k. j End(F)).
We say that K, or ¥, is cohomologically rigid, if rig(K) = 2.

Theorem 5.0.2 Let ¢ be a prime number, k an algebraically closed

field of characteristic =4. In AE over k, let j: U — Al be a nonempty
open set, ¥ a lisse irreducible Qy-sheaf ¥ on U. Suppose that ¥ is

cohomologically rigid. Let § be any lisse @e—sheaf on U which is

locally isomorphic to ¥ in the sense that for each point s of pl - U,
there exists an isomorphism between the representations F(s) and

3(s) of the inertia group I(s) afforded by ¥ and § respectively. Then
there exists an isomorphism F = § of lisse @e—sheaf on U.

proof. This is a trivial modification of the easy half of 1.1.2. Denote

by k: Al - P the inclusion. Since F and G are locally isomorphic,
so are the two local systems End(%) and Hom(%F, §). So from the
shape of the Euler-Poincare formula, which depends only on ranks
and on local data at the ramification points and at infinity, we see
that

2 = X(PL, kyjwEnd(F)) = X (PL, k,j Hom(F, 9)).

Once we have the inequality ¥ (P1, kyeixHom(F, 9)) = 2, we

conclude exactly as we did in 1.1.2. QED

5.1 The category T ), and the functors MCX and MTp

(5.1.1) In this section, we work on Al over an algebraically
closed field k. We fix a prime number ¢=char(k). We are Interested
in the full subcategory ‘Te of the category of constructible Qp-

sheaves ¥ on Al consisting of those which satisfy the following
three conditions:
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T 1) F is an irreducible middle extension: there exists a dense open
set j: U — Al such that j*7F is lisse and irreducible on U, and such
that ¥ = j,j*7.

T2) F is tame: j*F is tamely ramified at every point of P1 - U.

T 3) F has at least two finite singularities: there are at least two

distinct points of Al at which F fails to be lisse.

Lemma 5.1.2 In the situation 5.0.1, suppose F satisfies conditions
T 1) and T2) above. If ¥ has generic rank > 2, then ¥ satisfies T 3).
proof Indeed, if ¥ is tame and irreducible with at most one finite

singularity, say «, then j*% is an irreducible representation of the
abelian group ﬂltame(Al - {a}), so has rank <1 QED

Lemma 5.1.3 In the situation 5.0.1, the perverse irreducibles K in
DbC(Al, 68) which are tame, and of type 2d) in the sense of 3.3.3
are precisely those of the form 7F[1], with ¥ in T ).

proof A nonpunctual perverse irreducible K is precisely an F[1] for

F satisfying condition T1) above [and we recover ¥ as ™ 1(K)]. Such
a perverse irreducible K is tame if and only if ¥ is tame. Requiring
in addition that K have property T forces ¥ to be nonconstant (and
not to be an f)qjoc’ but that case was already eliminated by the

tameness requirement). Requiring K to be of type 2d) eliminates the
possibility that ¥ be any J*f’x(x—oc)' But these last two
eliminations, of 68 and of any J*E’X(X—O()’ amount precisely to
condition T 3) above. Indeed, of tame irreducible middle extensions,
those with at most one finite singularity are either @, (if there is no

finite singularity, because ﬁltame(ﬂl)=0) or they are J*‘ﬁx(x—oc)

for o« the unique finite singularity (because ﬂltame((ﬁm) is abelian).
QED

(5.1.4) For any nontrivial continuous character
X ﬂltame((ﬁm k) - @ex,

we denote by ‘f’X the corresponding lisse sheaf of rank one on G,,,
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and by J*‘E’X its direct image to Al we may restate 4.3.11 in terms
of T4 as follows. Given a finite subset D in Al(k), and an ¥ in Ty
which is lisse on Al - D, the middle convolution

?[1]*mid+uj*‘f’x[1]
is of the form g[1], with ¢ in T ), and ¢ lisse on the same Al - D,

We can recover ¥ from ¢ by the inversion formula
Fl1] = 9[1]*mid+J*fR[1]-
Moreover, the local monodromies of ¥ and of § are related by 3.3.6
and 3.3.7. According to 4.3.10, the indices of rigidity of ¥ and §
(strictly speaking, of the perverse objects F[1] and of 9[1]) are equal:
rig(F) = rig(9Q).
(5.1.5) We define, for X a nontrivial character as above, the
functor

MCXI CT@ - CT@
by
MCy (F) = G 1= (F[LTxppiqudn £y [1DI-11
These functors have the composition laws
l\/ICXol\/ICp = MCpoMCX = MCX]O if X p 1s nontrivial
MCXol\/IC& = 1d.

(5.1.6) Here is a relatively concrete description of MCy (¥). Let ¥
in T . Denote by D the set of finite singularities of ¥, and by

joAl-D > Al
the inclusion. Consider the projection

pro: A2 - AL (x,1) — t.
On A2, we have the sheaf ?X®£X(t—x) (extended by zero across the
diagonal t=x). Because ¥ is lisse on Al - D, and in T, the higher
direct images Ripr2!(?x®ﬁx(t_x)) and Riprz*(?x(@ﬁx(t_x)) are
both lisse on Al - D, and both vanish for i=1. Moreover, both are of
formation compatible with arbitrary change of base on Al - D (by
2.8.5). Thus we may form the lisse sheaf on Al - D which is

Image(j*RlprZ!(?X(X)f,X(t_x)) - j*Rlpr2*(?X®£§X(t_X))).

It is tautological that this is none other than j*MCX(?). But
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MCX(?) is a middle extension, so we get the

Explicit Recipes 5.1.7 In the situation 5.1.1, we have:
(1) For ¥ in Ty, and : ALl - D -5 Al the inclusion of a dense open set

on which j*7 is lisse,
MCy (F) = jxJ*MCy (F) =

=j*1mage(j*R1pr2!(?X®ﬁX(t_x)) - J*Rlpr2*(?x®f’X(t—x)))'
(2) At any geometric point T in Al - D, the stalk at T of MCX(?) is
given by
(MCy (F)¢ = Image(H! (AL F®Ly (1-x)) » HUALFRL y (1-x))).
(3) In terms of the inclusion k: Al — Pl this image is just the
"parabolic” group Hl(Pl,k*(?(X)f,X(T—X))), SO

(MCy (F)) = HHPLk (FRL y (1-x))), for T in AT - D.

(4) In terms of the inclusion kq : Al - D -{t} = P1, we may rewrite
this as

(MCy (F))y = HLPLky  (FRL y (t-x) | AL - D ~(1))) =

= Image of the "forget supports” map

HI (AT - D (1}, F®L 4 (1-x)) = HU(AT - D (1), F@L y (1-x)).

(5.1.8) Let & be a middle extension sheaf on Al which is
generically of rank one, and which is tame. We wish to define an
operation of "middle tensor product with £" for objects of Ty
[compare 3.2]. The naive idea is this: given ¥ in T, pick j: U ->pla
dense open on which both ¥ and £ are lisse, and form

I (((ZF)®(j*L)). This sheaf, which is independent of the auxiliary

choice of U, visibly satisfies both T1) and T 2). As it has the same
generic rank as 7F, it will satisfy T 3) if ¥ has generic rank at least
2, thanks to Lemma 5.1.2.

(5.1.9) However, for ¥ of generic rank one, j,((j*F)®(j*L)) may

very well fail to satisfy T 3): for example, it might be the constant
sheaf. In order to deal with this problem, we define
To vk 52 = the full subcategory of T ) consisting of those

objects of generic rank =2.
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On this full subcategory?e’ rk >2, we can define the above "middle
tensor product with £", which we denote
MTr: T, rk 22 2 To, rk 22,
MTp(F) = ju(((*FIQ* L)),
for j: U - Al any dense open on which both ¥ and £ are lisse.
[t is clear from the definitions that MTp preserves index of rigidity:

rig(MT p(F)) = rig(F).

If we are given a lisse, rank one £ on a dense open jU — Al, we
will often write MTp instead of the literally correct MTJ*f).

5.2 The main theorem on the structure of rigid local
systems

(5.2.0) Given an everywhere tame lisse @e—sheaf on Al - D, we

denote by LocMono(7F) the subgroup of the group of all continuous
characters

X [(p)tame = 1T1‘[arne((]arn k) N @ex
generated by those which "occur” in the local monodromies of F at
all the points of pl [i.e., canonically identify the tame inertia groups

I(x)tame 4t points o in P1 to 1(0)taMe yia automorphisms of P1
which carry o to 0 (the resulting identifications are independent of
the choice)l.

Main Theorem 5.2.1 In the situation 5.1.1, suppose ¥ in T ) has

generic rank r(¥) > 2, and is lisse on Al - D. Suppose further that ¥
1s cohomologically rigid. Then B
1) There exists a lisse, everywhere tame, rank one Qp-sheaf L on

Al - D, and a nontrivial character X, such that the (necessarily
cohomologically rigid) object 4 in T ) defined by

G := MCy MTp(F)

has strictly lower generic rank: r(§) < r(7F).
2) In 1) above, we may choose both L and £ to have all of their

local monodromies in the group LocMono(%), and, if we so choose
them, then @ := MCXMTf)(?)haS LocMono(g) € LocMono(%F).

3) If for some integer N>1 all the eigenvalues of all the local

monodromies of ¥ are N'th roots of unity, then in 1) above we may
choose X of order dividing N, and we may choose £ to have each of
its local monodromies of order dividing N, and if we so choose them,
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all the eigenvalues of all the local monodromies of 4 will be N'th
roots of unity.

(5.2.2) proof We will prove the theorem by giving an algorithm for
how to choose both £ and ¥X.
(5.2.2.1) In order to eliminate any ambiguity in the algorithm, for

each point o« in [Pl(k), we will choose a total ordering of the
underlying set of the group of all continuous characters

X I(O()tame N @ex‘
One way to do this is as follows. If we pick a topological generator,

say ytame of the group [(x)'@Me€ (which is canonically the group

Myxchar(k) Zy(1)), and a field embedding of 68 into C, then
"evaluation at yt@me" omhpeds the continuous characters into the

group C*. So we are reduced to exhibiting a total ordering of C*. The
simplest way to do this is to use polar coordinates, writing nonzero

complex numbers as re!Y with r and 9 real, r > 0 and 0 < 9 <2T.
Then we say rel® ¢ rel® if either r < r' or if r=r' and @ < 9",
(5.2.2.2) First Step.We now explain how to choose £. Because ¥ is

lisse on Al - D, and everywhere tame, at each point o in D1l {e},
the local monodromy of ¥ defines an r(7F)-dimensional

representation of I(o)t@Me We first describe a shorthand to describe

this representation of I(x)t@Me We write it as a direct sum of
(character)®(unipotent rep'n.):

F as [(x)t@me _rep'n, = @X f,X(X_O()®Unip(oc,X,?), o finite,

F as [(eo)t@me _pop'n, = @X f,X®Unip(oo,X,?), for or=oo.
We write Unip(x,X,F) as a direct sum of Jordan blocks, of
dimensions {ni(oc,x,?)}i, and then pass to its "dual partition”

[compare 3.1.10], the decreasing sequence of non-negative integers
eq1(o,X,F) 2 eglat,X,F) =2 ... z eplo,X,F) = 0 for k> 0

defined by
eJ'(oc,X,c;F) = the number of Jordan blocks in Unip(x,X,%)

whose dimension is =.
Thus eq(o,X,%) is the multiplicity

dimHomI(O()({f,X(X_O() if ofinite, f,X if cx=o0}, Flex))

of X as simple eigenvalue in F(«) := F as [(«x)t@Me_representation
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(and ej(oc,x,?)=0 for all j if the character X does not occur in the

local monodromy of ¥ at o).
Given 7 and a point « in D, pick a character X whose
ei(oc,x,?) I1s maximal among all the characters which occur in the

local monodromy of ¥ at «. There may not be a unique such X, but
in case of a tie we choose the one which comes first in the chosen

total ordering of the set of all characters of I(x)t@Me [The proof

works just as well if whenever we are confronted with a tie we
make an arbitrary choice, rather than consult some pre-chosen
total ordering.] This character we denote X 4 .

(5.2.2.3)  We now have chosen, at each point « in the finite set
D ¢ AL, a continuous character X o F of I(c)t@ME By the known
structure of the prime-to-p fundamental group of AT - D (the
maximal prime-to-p quotient of the profinite completion of the free
group with one generator for each point « in D), there Is a unique
(up to isomorphism) lisse, everywhere tame, rank one Qp-sheaf £
on Al - D with the property that, for every o in D,

L as I(a)tame_reopresentation = (X ?)‘1,
Concretely, £ is the tensor product, over o in D, of the inverses of
the translated Kummer sheaves f’xoc g (x-o0)-
(5.2.2.4)  With this choice of £, the sheaf MT (%), which has the

same generic rank as ¥ and the same index of rigidity as ¥, has the
additional property that, at each o in D, the trivial character 1 has

maximal "simple multiplicity": for each oin D, we have
e1 (e, 1,MTp(F)) 2 eq (o, X , MT (7F)) for all X.

(5.2.2.5) Notice that the local monodromies of £ were all drawn
from the group LocMono(7), and that, consequently,
LocMono(MT (7)) lies in LocMono(7).

(5.2.2.6) Second Step In order to complete the proof of the theorem,
it suffices to apply the following result to MT p (7).

Main Theorem 5.2.3( = 5.2.1 bis) In the situation 5.1.1, suppose
¥ in T ) has generic rank r(%) > 2, and is lisse on Al - D. Suppose

that 7% satisfies the following condition:
(%) At every point « in D, we have
eq1(o,1,%) 2 eq(o,X,F) for all X.

If ¥ is in addition cohomologically rigid, there exists a nontrivial
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character X in LocMono(7), such that the (necessarily
cohomologically rigid) object 4 in T ) defined by

9 = MCX(?)

has strictly lower generic rank: r(§) < r(F). Moreover, LocMono(9) is
contained in LocMono(7).

(5.2.4) proof The "moreover" follows from the explicit recipes of
3.3.6.
(5.2.4.1) We choose the character X so as to maximize the

dimension of the I(s)t@Me inyariants in f,X(X)?F. [If there is more

than one X which works, we choose the first of them in the chosen
total ordering, though any choice would work for the proof.]
(5.2.4.2) We claim that any X which maximize the dimension of

the I(eo)t@Me inyariants in f,X(X)C;F is nontrivial. If not, we would

have
e1(=,1,%) 2 eq(e,X,F) for all X.

Recall that already at all finite singularities o in D, ¥ has
eq(o,1,9) 2 eq(o,X,F) for all X.

(5.2.4.3)  We will show this is impossible if ¥ in T, is
cohomologically rigid. First, we remark that on Al - D, ¥ is both
irreducible and nontrivial (just because it lies in ‘Te). Therefore,
denoting by

jal-D - pl
the inclusion, we have

HO(PL, i (FIAL - D)) = 0 = H2(PL, j . (FIAL - D)),
and hence we have the inequality

X (PL, j(FIAL - D)) < 0.

(5.2.4.4) On the other hand, we are given that F is cohomologically
rigid, i.e.,

¥ (PL, j.End(FIAl - D)) = 2

(5.2.45) The idea now is to use the Euler-Poincare formula to
make explicit both of these Euler characteristics. Consider any 7 in

7T p which is lisse on Al - D. Because ¥ is tame,

x(PL, ixEnd(FIAT - D)) =

=X (A1 - D, End(¥)) + S in DLl (o) dim(End(F)1(e))
=(1 - CardDNr(F)2 + T4 in DL (w) Sy Zi (eilo, X, T2,
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the last equality thanks to 3.1.15.
(5.2.4.6) Now at each o in Dll{ee}, denote by X ¥ a choice of

character for which el(oc,x,?) 1s maximal. Sihnce the e; are a

i
decreasing sequence, we have
e1(c, X o F.,7) 2 ejlo,p,F) for all p and for all i.

Therefore we have the inequality
S 2 (ejlo, X, FN2 <2y 5ieq (o, X o . Fejlo, X, F).
But
ZX 2 ei(OC,Xo(,?,?)ej(O(,X,?) = el(oc,XO(’?,?)ZX 2 ejlo, X, 7)
= eqlo, X o, F,FIr(F),
so we get
x(P1, jxEnd(FIAl - D)) <

< (1 - Card(D)r(F)? + Ty in DLl {eo) @100 X o, F, FIr(F).
This we record as
Basic Inequality 5.2.4.7 For any % in T ) which is lisse on Al - D,
we have
X (P1, jxEnd(FIAL - D)) <

<r(P)I - CardDNr(F) + 25 jn DIl {eo) @10, X o, F,F)]

(5.2.4.8) Now suppose that
(%%) for every o in DLl {e}, we have
eq1(o,1,%) 2 eq (o, X,7F) for all X.

Then el(oc,Xo(’ch,?) is just eq(,1,%), and we find
(L/r(FNX(PL, jL.End(FIAL - D)) <
< (1 - Card(D)r(F) + 2, ip D1l {0} eq (o, 1,7).

But the Euler Poincare formula for Jx T gives

X (PL, j(FIAL - D)) = (1 - Card(D)r(F) + Ty in DLL(eo) @1(c0,1,F).
Thus for ¥ in T satisfying (%), we get the inequality

Y (PL, j End(FIAL - D)) < r(FIN(PL, j (FIAL - D).
But ¥ (P1, j*(?|A1 - D)) < 0 for any ¥ in T, so we get

¥ (P, j End(FIAT - D)) < 0,

which is impossible if ¥ is cohomologically rigid, i.e., if
¥ (PL, j.End(FIAl - D)) = 2.



Chapter b-Structure of rigid local systems-10

(5.2.4.9) This shows that if we choose a character X so as to
maximize the dimension of the I(«)t@Me inyariants in f,X(X)?F, then

any such X is nontrivial, provided ¥ is cohomologically rigid and
satisfies the hypothesis (%) of 5.2.3.

(5.2.4.10) We must now show that for any such choice of X, the
sheaf G := MCX(?) has strictly lower generic rank: r(g) < r(F). For

this, we use the rank formula 3.3.7, according to which, for any ¥
in C:re,

r(9) = Sy in D rank(F(e)/F(e))) - rank((F (=)@ L)1)

= card(D)r(¥) -= p rank(F (e)H()- rank((F ()@ L4 )1()).

=card(D)r(¥F) -2, iy p eq1(o,1,%)- rank((?(OO)(X)f)X)I(‘x’)).
(5.2.4.11) The Euler-Poincare formula for ¥ says
X(PL, j (FIAT - D)) = (1 - CardDNr(F) + 2 in DL (oo} €10, 1,%),
= —[card(D)r(F) -2, in D @1(c,1,F)] + r(F) +eq(eo,1,F).
(5.2.4.12) Thus in our formula for r(g) we get, for any ¥ in T,

r(9) =r(F) +eq(e=,1,F) - X (PL, j4(FIAL - D)) - rank((F (=)@ L )L(=)).
(5.2.4.13) We rewrite this as
r(?) - r(g) =

= X(PL, W (FIAT - D)) +rank(F (=)@ 5, )I()) - g (e0,1,%).
(5.2.4.14) So we need to show that, for our 9, we have
X (PL, j(FIAL - D)) +rank((F (o) ®L 4 ))) - e (e,1,%) > 0.
(5.2.4.15) To show this, recall that for any ¥ in T we had the
Basic [nequality 5.2.2.7

x(P1, jxEnd(FIAT - D)) <

<r (P - CardDNr(F) + 25 in DL {eo} el(oc,Xo(’ch,?)].

For ¥ cohomologically rigid and satisfying the hypothesis (%) of 5.2.3,
the left hand side is 2 (¥ is cohomologically rigid) and on the right
each term el(a,xa’?,?) for o« in D is equal to eq(c,1,%). Thus the

& 1n

Basic Inequality gives
2/r(F) < (1 - Card(D))r(F) + el(oo,xoo’%r,?) + 25 in D €1, 1,F)

= X (P, j(FIAT - D)) + eq(eo, X o 5.,F) - eq(e,1,%).

Since the left hand side (namely 2/r(¥F)) is strictly positive, we get
0 < X(PL, ju(FIAL - D)) + eq(e0, X oo 5,F) - eq(e,1,F).

This 1s precisely the required inequality 5.2.4.14, for by the very
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choice of the character X we have

e1(, X e .F) = rank((F(e)®L)I(=)) QED

5.3 Applications and interpretations of the main theorem
(5.3.1) We continue to work in the situation 5.1.1. Fix a dense

open set ALl - Din Ai, and a subgroup I' of the group of all
continuous Q,*-valued characters of [(0)tame [ et us denote by
‘T@(Al - D, I') the full subcategory of T ) consisting of the objects F
which are lisse on Al - D and for which LocMono(¥F) c I

(5.3.2) We can construct a graph whose vertices are the objects
of ‘T@(Al - D, I'), and in which there is an edge joining two objects

F and § if either of the following conditions a) or b) holds:
a) ¥ and § both have generic rank >1, and there is a lisse tame

rank one £ on Al -D, all of whose local monodromies are in [, such
that ¥ = MTp(9), or equivalently ¢ = MTp-1(7).

b) there exists a nontrivial character X in I such that ¥ = MCX(Q),
or equivalently § = I\/ICX—l(?F).

In terms of this graph, the Main Theorem says precisely
Main Theorem 5.3.3 (= 5.2.1 bis). If ¥ in T (AL - D, I') is
cohomologically rigid, then ¥ (as vertex of the graph 5.3.2) is
connected to an object of rank one in ‘T@(Al - D, I'), and its distance

to such an object is at most 2(r(F) -1).
5.4 Some open questions
(5.4.1) In this graph, any two objects which are connected have

the same index of rigidity X(P1,j,End(FIAl - D)), by 4.3.10. Let us

say that an object ¥ of ‘T@(ﬂ\l - D, I') is minimal if for any object

3 to which it is connected, r(F) < r(9). Obviously every object is
connected to a minimal object which has the same index of rigidity.
The Main Theorem 5.3.3 states that the minimal cohomologically
rigid objects are exactly those of generic rank one.

(5.4.2) But the index of rigidity, a priori even and <2, can be

any even integer < 2. [For instance, the pullback by x = x of the

rank two local system on pl - {0,1,} attached to the differential
equation for the Gauss hypergeometric function F(1/2,1/2,1;x) has
index of rigidity 4 - 2n.] What are the minimal objects ¥ whose
index of rigidity is some given even integer < 0 Already the simplest
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case of this question, index of rigidity =0, is far from understood. For
instance, is it true that if an object is not minimal, then it is at
distance at most two from an object of strictly lower rank? Are
there minimal objects with index of rigidity =0 of arbitrarily large
rank?

(5.4.3) Here is a "candidate” for a construction of minimal objects

with index of rigidity =0 of arbitrarily large rank on Al - (3 points}.

2

Over C take an elliptic curve y# = (x-eq)(x-ep)(x-ez), an integer

n > 1, and a primitive n'th root of unity ¢. Denote by ¥, ¢ the

(extension by zero to E of the) rank n local system on E - {0} with
local monodromy around O given by the scalar ¢ constructed in the

proof of 1.4.4. For a rank one local system £ on E for which £®2n g
nontrivial, there exists no isomorphism (of local systems on E - {0})

Jz@?n,tj E[—l]*(ﬁ@?n’t) [compare determinants]. Let t: E — Pl be

the map "x". Then § =m (L®F C)’ for £ as above, is an irreducible

middle extension sheaf on P1 which on Al - {eq, e, e3)

1s a rank 2n local system with index of rigidity 0. Its local
monodromies at the four missing points are semisimple, with
eigenvalues
at oo: each of the two square roots of ¢, repeated n times
at ej: each of £1, repeated n times.

[t is easy to show that any object of distance at most two from §
has rank at least that of 9. Is § minimal? If so, § provides an

example of a minimal object of rank 2n, lisse on Al - {el, e, 93},

with index of rigidity =0.

5.5 Existence of universal families of rigids with given local
monodromy
(5.5.1) Let k be an algebraically closed field, n > 2 an integer,

X1, X9, .. Xy a set of n distinct points of Al(k), 4 a prime number

n
invertible in k, Nx>1 an integer which is invertible in k, and ¢ a
primitive N'th root of unity in k. Let ¥ be an object of T ) which is

lisse on Al - {ocl, KD, ocn}, cohomologically rigid, and such that all

eigenvalues of all local monodromies of ¥ are N'th roots of unity.
(5.5.2) Given the data (n, N, ¢), we form the ring
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RN,@ = Z[CN, 1/N¢], ¢N = a primitive N'th root of unity
(i.e., RN, ¢ s Z[1/N2lX1/(@ (X)), with @y(X) in Z[X] the N'th
cyclotomic polynomial). We denote by E = Ep the fraction field of
RN,E: thus E is the cyclotomic field (D(CN). We fix an embedding
Ry,o = Qg
le., we fix a primitive N'th root of unity in 68' We denote by A the
induced place of the "abstract” field E, and by E, the A-adic

completion of E.

(5.5.3) Denote by Sy , ¢ the ring
SN,I’],@ = RN,Q[Tl’ ., Tn][l/A], A = Wi#j(Ti - TJ)
There is a unique ring homomorphism

¢ : SN,I’I,@ - k
for which ¢(¢p) = ¢ and for which ¢(T;) = «; for 1 <i < n.
Over Sy p ¢, We have Al with its n disjoint sections {Tq, .., T,}. We
denote by

. 1_ 1

Jjr (A= A{Tq, ..., Tn})SN,n,é - (A )SN,I’],E

the inclusion.

Theorem 5.5.4 In the situation 5.5.1, we have
1) There exists a lisse E+-sheaf

F on (Al- (T4, ..., Tnlsy 1
which, after the base change ¢ : 5\ , p = k and the extension of

scalars Ey — @g becomes (the restriction to Al - {ocg, an, ... oupy) of)

7.
2) ("mise pour memoire”, cf. 4.2.3, 4.3.8, and 4.3.9) The object jF on

(Al)SN n 1s of formation compatible with arbitrary change of base

2

on SN,n,é’ and is adapted to the stratification
1_ 1
((A {Tl, e,y Tn})SN,n,é’ {Tl’ e, TH}SN,n,E) of (A )SN,n,E'

The restriction of j,F to every geometric fibre of (Al)SN n is

?

(after extension of scalars E, — 68 ) a cohomologically rigid object
of T, all of whose local monodromies have all their eigenvalues N'th

roots of unity.
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3) The lisse Ey-sheaf ¥ on (Al- {Tq, .. is pure of some

’ Tn})SN n,?

integer weight w, 0 < w < rank(%) - 1, and all its characteristic
polynomials of Frobenius at all finite field-valued points have
coefficients in the subring Z[¢y] of E4 (a subring via the given

embedding of Ry » into 68)'
4) For any prime number ¢4, and any embedding

A Zley) = @@1,
there exists on (Al- {Tq, ., Tn})SN ho @ lisse Exl—sheaf ?7‘1 which
J J 1

satisfies 2) above with ¢ replaced by ¢4, which is pure of the same
welight w, which at every finite field-valued point has characteristic

polynomial of Frobenius with coefficients in the subring Z[¢y] of E>\1.

Moreover, at any such finite field valued point where ¢ is invertible,
the characteristic polynomial of ?7‘1 is equal to that of F (equality

in the common subring Z[¢nD.

5.5.5 construction-proof of 5.5.4
(5.5.5.1) We proceed by induction on the generic rank r(7F) of ¥.

Suppose first that r(¥) = 1. Then on Al - {ocg, an, .oy}, T is a lisse

sheaf of rank one, all of whose local monodromies have order
dividing N. Denote by X; the character of order dividing N of

I(o)t@Me given by F at o;. Thus X; is a Ey *-valued character of

(o) t@me/NI(o)tame = y(k), the isomorphism given by the action
of Wy (k) as galois group of the finite etale galois connected covering
of Al - {otj) of equation yN = x - o, on which ¢ in My (k) acts by
(x,y) = (x,¢y). Thus the translated Kummer sheaf ‘E’Xj(X - ) On

Al - {ctj} is a lisse rank one E,-sheaf on Al - {o¢j}, and it has the
same local monodromy at «; that % does.

(5.5.5.2) Consider the lisse, rank one E,-sheaf
®; f’Xi(X - o) on Al - {ocg, o, .oopl.
[t has the same local monodromy as % at each point «j, and both it

and F are tame at o. Therefore

T = ®; f’Xj(X - o) on Al - {ocg, g, ooyl
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because their ratio is lisse and tame on Al, but ﬁltame(Al) = 0.

(5.5.5.3) By means of the fixed choices of primitive N'th roots of
unity ¢y in Ry p €Sy ¢ and ¢ in k, we may identify the groups

MN(RN ¢) = BN(SN f p) and up(k). This allows us to view X as a
character of the group “N(SN,n,é) which i1s the galois group of the

finite etale galois connected covering of (Al - {Ti})SN n of equation

2
yN = x - T;, on which ¢ in UN(SN  ¢) acts by (x,y) = (x,¢y). Thus
we may speak of the translated Kummer sheaf ‘E’Xj(X - T;) as a lisse
Ey-sheaf of rank one on (Al - {Ti})SN -
(5.5.5.4) We now define F to be
F = &; ‘E’XI(X _ Ti) on (Al— {Tl’ e Tn})SN,n,E'
It is obvious that 1) (and hence 2) also) and 3) are satisfied, with the
weight w=0. 5ince the characters X ; have values in the subgroup
MN(Z[CN]) of @ex, for any prime number ¢4, and any embedding
AR N R Qyy
we can view the X, as Exlx—valued characters, and define ‘377\1 by

the same recipe as above, viewing now each f’Xj(X - T;) as a lisse
rank one E)\l—sheaf on (Al- {Ti})SN,n,él' It is obvious that 4) is now
satisfied. [One should remark that, fibre by fibre, this ‘:F>\1 does
indeed have at least two finite singularities, since along the section
T; its local monodromy is of exactly the same order as was the local
monodromy of the original % at o;, namely the order of the
character X, and the assumption that ¥ is in Ty guarantees that
Xi 1s nontrivial for at least two distinct values of i.] This concludes

the construction-proof in the case of generic rank one.
(5.5.5.5) We now explain how to pass to the general case. Thus let

F in T be lisse on Al - {ocg, g, ... oy}, cohomologically rigid, with

all all local monodromy eigenvalues N'th roots of unity, and with
generic rank r(¥) > 2.
(5.5.5.6) According to the main theorem 5.2.1, there exist

1) an object § in T, lisse on Al - {ocq, g, .. oy}, with all local
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monodromy eigenvalues N'th roots of unity, with r(g) < r(%),

2) a lisse rank one @g—sheaf 5 on Al - {oeg, oo, .. oy}, with all
local monodromies of order dividing N,

3) a nontrivial @e—valued character X of ﬂl(Gm)tame of order
dividing N,

4) an isomorphism

F = MTp(MCy (3)).
(5.5.5.7) By applying the argument given in the rank one case to
5 oon Al - {oeg, g, .. oy}, and to f’X on Gy, = ALl - (0}, we

construct lisse rank one E,-sheaves £ on (Al- {Tq, ..., Tn})SN y

and Ly on (AL- {O})SN,n, which after the base change ¢ : Sy,

2

— k and the extension of scalars E, — 68 become L and ‘f’X
respectively. The conclusions 2), 3) and 4) of the theorem hold for £

on (Al— {Tl, . These same conclusions hold also for 'B'X.

’ Tn})SN,n,é
on (Al- {O})SN,n,é provided we delete the phrase "in T )" from 2).
(5.5.5.8) By induction, we may assume there exists a lisse E- -sheaf
g on (Al- {Tq, ..., Tn})SN,n,é for which after the base change ¢ :
SN,n,é — k and the extension of scalars Ey — Qy becomes ¢, and for

which 2), 3), and 4) hold. We define Fon (Al- {Tq, .., Tn})SN n.o by

FI1) = E® (o BLIx migedon Ly 1D,
where

ol 1
J- (A {Tl’ o Tn})SN,n;e - (A )SN;n;e’

and jor (Al-(ohgy = (Abgy

? ?

denote the inclusions.
(5.5.5.9) That 1) holds results from 4.3.2, 4.3.3, and 4.3.10. As
already remarked, 2) for ¥ is automatic once we have 1) [Use 4.3.10

to see that (after extension of scalars Ey\ — @8) ?@f,_l, and hence
%, whose generic rank is 2 2, is fibre-by-fibre in T ).] To prove 3) for
F, it suffices to do so for (j*g[l]*mid+jo*.ﬁX[l])[—l], because we

already know that 3) holds for & itself, with weight w=0.
(5.5.5.10) We begin the proof of 3). Let F be a finite field in which
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NZ is invertible, and p : Sy p = F a ring homomorphism. Pick a
point T in AL(F)- {p(T1), .., p(Ty)}). Denote by U the open set
U:= (AL- (p(T)), .., p(Tp), TDF
of Al[F. According to 5.1.7, the stalk of (j*9[1]*mid+j0*ﬁx[1])[—1] at
the geometric point (p,T,f) 1s the image of the "forget supports” map
HI (URF, 38L&y (1-x)) » HU(UBF, Ly (1-x)).
By induction, § is pure weight w, 0 < w < rank(g) - 1, while 'E’X is

pure of weight zero. By [De-Weil II, 3.2.3 and remark following its
statement] the image of the "forget supports” map is precisely the

weight = w+1 quotient of of the group ch(U(X)ﬁ, 9®E,X(T—X)),
which 1s a priori of weight < w+1. Now the cohomology groups
H (URF, §®Ly (T-x)) = 0 for i1

(for i=0 because we are lisse on an open curve, for i=2 because in
addition we are geometrically irreducible and nontrivial). Therefore
the characteristic polynomial of Frobenius FrObp,T,[F on

ch(U(X)?, 9®£X(T—X)) is, by the Lefschetz Trace Formula [Gro-FLl],
equal to the L-function of the lisse sheaf 9®£X(T—X) on U:
L(U,9®£X(T—X),T)=

=det(1 - TFrob, ¢+ F | HL(UF, 3® Ly (t-x))).
Therefore the characteristic polynomial of Frobenius FrObp,T,[F on
(Jx G11%piq+Jox Ly [1DI-1] is the "pure of weight w+1 part” of this

L-function.
(5.5.5.11) We now consider more closely this L. function. Because
both § and BX have all their characteristic polynomials of

Frobenius with coefficients in the subring Z[CN] of @e, the Euler

product for this L function shows that the L-function itself lies in
1+T(Z[¢IITID, hence (being a polynomial) in 1+T(Z[¢NIITD, and that

1t 1s entirely determined by all the individual characteristic
polynomials of Frobenius of both § and ’EX' If we factor L(T) as

L(T) = ﬂj (1 - E)JT),
the reciprocal roots pjare algebraic integers, which (as a set with
multiplicity) are stable under Aut(C/Q(¢y)). Taking the "part of

weight w+1" of L. produces the intrinsic divisor of L(T) in which we
keep precisely those P which, together with all their conjugates an
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algebraic integers, have complex absolute value sqrt((Card([F))W+1.
This intrinsic divisor is also stable under Aut(C/Q(¢y)), so has

coefficients in Q(¢p) N {algebraic integers} = Z[t\]. Moreover, being

intrinsic, it too is entirely determined by all the individual
characteristic polynomials of Frobenius of both § and 'E"X.'

(5.5.5.12) It remains to prove 4). Again by induction, all the objects
g, £ and f,X have Aq-adic versions, say 9%1, r’7\1 and E,Xxl. Using

these, we define ?7‘1 out of them In precisely the same way we

defined ¥:
‘3’>\1[1] (= r’xl®J*(J*97\1[1]*mid+uj0*r"x,)\1[1])-

Now repeat for J*(J*gkl[l]*midNO*'E’Xxl[l])[_l] the above

discussion of characteristic polynomials of Frobenius. It will establish
that its characteristic polynomials of Frobenius have coefficients in
Z[tyl, and are entirely determined by all the individual

characteristic polynomials of Frobenius of both 9)\1 and ’E’X)\ by
1

exactly the same "part of weight w+1 of an L function” rules as the
characteristic polynomials of ¥ we determined by those of § and

.f,X. This proves inductively that J*(J*97\1[1]*mid+J0*‘f’Xxl[l])[_l]

1s pure of weight w+1, has characteristic polynomials of Frobenius
with coefficients in Z[CN], and that for any finite field-valued point

of (ALl- {Tq, ..., Tn})SN .y where ¢4 is invertible,

I8N mid 0w B ID-1] and ¥ Gy [1midedow By, [1DI1]
have the "same” (comparison in the common subring Z[¢y] of 68
and (Del) characteristic polynomial of Frobenius. Because we already
know that 4) holds for £ and its Aq{-partner E)‘l’ we may tensor
by these to deduce that ¥ and ‘37>\1 also have the same

characteristic polynomials of Frobenius at any finite field-valued

point of (Al- {Tq, .., Tn})SN oo where ¢4 is invertible.
(5.5.5.13) It remains only to show that J*?xl satisfies 2). Using

4.3.8, we get most of 2): it remains only to show that kj*cf)\l 1s fibre-
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by -fibre in T ). But as rank(?xl) > 2, it is equivalent to show that

(J*97\1[1]*mid+J0*£Xxl[l])[_l] is fibre-by -fibre in 7 ).This results

from 4.3.10 and 4.3.11. QED

(5.5.6) We now discuss the weight w of ¥ constructed in 5.5.4. If
F has rank one, then w=0. When ¥ has rank r(F) > 2, we can, by
5.3.3, connect 7 to a rank one object L through a finite number of

steps, each of which is either an MTp or an MCX’ say
F = MTf»dOMCXdO °MT£21°MCX1(£O)’

in such a way that
1) each application of an MCX strictly increases the rank,

2) we have (Xi)N = 1 for i=1, .., d, but each ¥; = 1,

3) we have (f,i)®N = 68’ fori=0,..,d, but £ is non-constant for

i=0, .., d-1.

There may be more than one such expression for 4, but each choice
of such an expression gives rise to an F. Concretely, we "thicken"
each £ to £, each ‘E’Xj to E’Xi’ and inductively define ¥ 1= L,

¥4, ... Fq:= F by (in the notations of 5.5.5.8)
Fi4ql1] = 'ti@J*(J*?i—l[l]*mid%jO*‘f’Xi[l])’
for i=0, ..., d-1. The weight of the F constructed this way is the

number d of steps of type MCX'

(5.5.7) We now examine the unicity of an F given by 5.5.4.
Denote by

TC . (Al_ {Tj_; sy Tn})SN n. ¢ - SN,I’],@'

the projection. For any lisse Ey-sheaf & on Sy p, F®m*(L) works

just as well as F in 5.5.4.1). This is the only ambiguity in ¥F.
Lemma 5.5.7.1 Hypotheses and notations as in 5.5.4, suppose ¥ and
¥4 both satisfy 5.5.4 1). Then there exists a lisse Ey-sheaf £ on

SN n ¢ and an isomorphism ¥4 = FRm*(L)

proof This follows from the Rigidity Corollary 5.5.7.3 below, applied

to S:= Spec(Sy p, ), and U := (AL-{Tq, .., Tn})SN -

Lemma 5.5.7.2 (mise pour memoire) Let ¢ be a prime number, S a
normal connected noetherian Z[1/¢]-scheme whose generic point has
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characteristic zero, X/S a proper smooth curve with geometrically
conhnected fibres, D C X a closed subscheme which is finite etale over
S of degreed > 0, U := X - D, and m:U — 5 the structural map. For
any finite extension E, of Qp, and and lisse Ey-sheaf ¥ on U, the

sheaves Riﬂ!? and Riﬁ*? on S are lisse, and of formation

compatible with arbitrary change of base on S.

proof Because S has generic characteristic zero, ¥ is automatically
tame on the geometric generic fibre, and the asserted result for

Rim? is well-known, cf. [Ka-SE, 4.7.1]. This result, applied to ¥,
yields the result for the Riﬁ*? by duality. QED

Rigidity Corollary 5.5.7.3 In the situation 5.5.7.1, let ¥ and 9 be
lisse Ey-sheaves (respectively @e—sheaves) on U. The following

conditions are equivalent.
1) For some geometric point s of S, both F|Ug and 4|Ug are

absolutely irreducible, and there exists an isomorphism ?lUS = 9|US
of lisse sheaves on Uy

2) For every geometric point s of S, both F|Ug and 4|Ug are
absolutely irreducible, and there exists an isomorphism ?lUS = 9»|US

of lisse sheaves on US'

3) Condition 2) holds, and there exists a lisse, rank one Ey-sheaf

(respectively @e—sheaf) £ on S, and an isomorphism ¢ = FQmu™(L)

of lisse sheaves on U.

proof It is trivial that 3) = 2) = 1). We now show that 1 = 3).
Consider the lisse sheaf ¥ := Hom(F, §) on U. By 5.5.7.1 applied to ¥,
T Hom(F, §) is lisse on S, of formation compatible with arbitrary

change of base on S. Taking the fibre at s, we see from 1) that

L= myHom(%F, 9) is lisse of rank one. We have a canonical map of
lisse sheaves on U, FQ®m*(L) — G, which is is an isomorphism on Ug.
But the kernel and cokernel are of this map are lisse sheaves on U,

so both must vanish. Therefore FQ@mn*(L) = §. For every geometric
point s of S, we get F|Ug = 4|Ug by passing to fibres. That both F|Ug

and %»lUS are absolutely irreducible for every geometric point s
results from 4.2.6. QED
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(5.5.8) We now clarify the sense in which the ¥ constructed in
5.5.4 1s a universal family of rigids with the same local monodromy
as ¥. We must first specify the precise meaning of "same local
monodromy as 3". Thus let k1 be a second algebraically closed field

in which 2N is invertible, t1 in kq a primitive N'th root of unity,
and Bq, .., By a set of n > 2 distinct points of Al(kl). Let ¥4 be a
lisse @e—sheaf on Alkl - {p1, .., Bp) which is everywhere tame and

such that all eigenvalues of all local monodromies of ¥4 are N'th
roots of unity. At any point B in {Bl, ey By >}, we can describe the
local monodromy of %41 at p as follows. The tame inertia group

I(E))tame is canonically the pro-cyclic group 1Ty char(k) Zy(1)(kq)

=lim. inv. Wp(kq), the inverse limit taken over M's invertible in kq.

This group maps onto pp(kq). By hypothesis, F1(p) as I(p)tame-

representation is canonically the direct sum of representations of
the form

(a character of gp(kq))®(a unipotent repn. of I[(p)tame)
A unipotent representation of I(p)t@mMe factors through a unipotent
representation of Zy(1)(kq), and its isomorphism class is the Jordan

normal form of the action of any topological generator of Z,(1)(k).

Therefore ¥4(p) as [(p)tame_representation factors through the
quotient
lim. inv.,, Mpvn(kq)
of I(p)tame Moreover, for any choice Y(p, Cl)tame of a generator of
this last group which maps onto ¢4 in Wp(kq), the Jordan normal
form (i.e., conjugacy class in GL(rank(%4), @?,)) of its action on ¥ 1(B)
is independent of the choice. By "the local monodromy of 74 at B,

relative to ¢1", we mean the Jordan normal form of the action on

F1(p) of any Y(p, Cl)tame_
Proposition 5.5.8.1 Consider the situation 5.5.1. Let k4 be a second
algebraically closed field in which ¢N is invertible, ¢4 in k1 a

primitive N'th root of unity, and pq, .., by @ set of n 2 2 distinct
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points of Ai(kl). Let ¥4 be an object of T on Alkl which is lisse on

Alkl - {pq, .., BpJ, cohomologically rigid, and such that all

eigenvalues of all local monodromies of ¥4 are N'th roots of unity.

Suppose that
a) for i=1, .., n, the local monodromy of ¥4 at py, relative to ¢4, is

isomorphic to the local monodromy of ¥ at o, relative to ¢,
b) the local monodromy of ¥4 at o, relative to ¢4, is isomorphic to

the local monodromy of ¥ at e, relative to ¢.

Denote by % and %4 on (AL- {Tq, .. any choices of the

’ Tn})SN,n,é
lisse Eq-sheaves given by 5.5.4, applied to ¥ and to 1 respectively.
Denote by

mw: (AY-(Tq, ., T“})SN,n,e = SN n,¢
the projection. Then
1) At any geometric point ¢: SN,n,é — ko of SN,n,é’ the restriction
?(P of F to the fibre over ¢ is a cohomologically rigid object of T,
whose local monodromy at the point ¢(T;), i=1, .., n, (resp. at o)
relative to cp(CN), Is isomorphic to the local monodromy of ¥ at o,

i=1, .., n (resp. at =), relative to ¢.
2) Denote by sq the geometric point ¢1: SNy ¢ = kg with ¢q(gy) =

¢1 and ¢41(T;) = gy for i=1, ..., n. The restriction ‘3’51 of ¥ to the fibre

over sq is isomorphic to F4.

3) There exists a lisse E- -sheaf £ on SN . n.¢ and an isomorphism

cfl = ?@T[*(E).

proof Statement 1) results from 5.5.4 2), together with [De-Weil II,

1.7.8] (cf. [Ka-SE, 4.7.2] and the proof of 4.3.11), which tells us that
the local monodromy of % along each section T; and along the

section oo is "the same” on all geometric fibres. [Strictly speaking, we
should first extend scalars in the universal situation from
Zlty, 1/N¢] to Z[all ¢ pvy, 1/N2], choose a toplogical generator of

lim. inv.,, Hpvn(Zlall ¢ vy, 1/N¢]) which maps to ¢, and use the

fact that fibre by fibre this generator gives a choice of Y(p, Cl)tame_]

By 1), the restriction ?51 of ¥ to the fibre over sq has the same
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local monodromy as 74, at each of the points {[31, e B o }. Since

%4 is cohomologically rigid, %1 is isomorphic to ‘3"31. To get 3), apply

the rigidity corollary 5.5.7.3 to ¥ and to ¥4, and the geometric
point sq. QED

5.6 Remark on braid groups The space (Al- {Tq, ., Tn})SN .y is

the spec of
Zlcy, 1/NOIX, Ty, o, TRllL/ATT . (T = T (X - )l

So if name the variables X as Ty 41, we can think of this as the ring
Zlen, 1/N2lTq, ..., Tn+1][1/(ﬂi¢J(Ti - TJ))]-

Thought of this way, we see its fundamental group as an
arithmetic-geometrical version of the Artin braid group on n+1
letters. And so we can restate the first assertion of the theorem by

the catch-phrase "an irreducible local system on ALl minus n points
which 1s cohomologically rigid extends to a representation of the
braid group on n+1 letters”.

5.7 Universal families without quasiunipotence
(5.7.1) We next explore the situation if we drop the hypothesis of
quasiunipotence. Thus, we let k be an algebraically closed field, n > 2

an integer, oq, ™9, ... ¢y a set of n distinct points of Al(k), and ¢ a
prime number invertible in k. Let ¥ be a cohomologically rigid
object of T ) which is lisse on Al - {ocg, g, o).

(5.7.2) We denote by p the characteristic of k. If p > 0, we denote
by [Flo the algebraic closure of [Flo in k, and we denote by R the ring

W(?p) of Witt vectors over ﬁp' If char(k) = 0, we denote by R the

subfield Q(all roots of unity) of k. There is a canonical ring
homomorphism from R to k, which for p=0 is the inclusion, and

which for p»>0 is the composite R = R/pR = [Flo — k of reduction

mod p and of the inclusion.
(5.7.3) We denote by S, the ring

Sn = RITq, .., TRIIL/AL A = ﬁi?ﬁJ(Ti B TJ)'

There is a unique ring homomorphism
@5, 2k

which induces the canonical map on R, and for which ¢(T;) = «; for
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1 <1=<n.0ver S5,, we have Al, with its n disjoint sections {Tl, .,

-
T,). We denote by
L 1_ 1
Jr (A= {Tq, .., Tn})gn - (A )Sn

the inclusion.
A straightforward modification of the proof of the previous
theorem 5.5.4 yields:
Theorem 5.7.4 In the situation 5.7.1, we have
1) There exists a lisse @e—sheaf

1_
Fon (AL- Ty, ., Tp)s
which, after the base change ¢ : S;; = k becomes (the restriction to

Al - {ocg, o, o ot} of F.
2) ("mise pour memoire", cf. 4.2.3, 4.3.8, 4.3.9) The object j.F on
(Al)sn is of formation compatible with arbitrary change of base on
SN,n,é’ and is adapted to the stratification

(AL-(Tq, ., TpWg , (Tg, o, Tplg ) of (AD)g .
At any geometric point ¢: S5, = ko of S, the restriction of j, % to
the fibre over ¢ 1s a cohomologically rigid object of ‘T@, whose local

monodromy at each point ¢(T;) (resp. at o) is isomorphic to the

local monodromy of of ¥ at «; (resp. at o).
5.7.5 Remark The space (Al- {Tq, .o, Tn})Sn is the spec of
R[Tl, o Tn+1][1/(ﬁi¢j(Ti - TJ'))].

Its fundamental group is a (less arithmetic) version of the Artin
braid group on n+1 letters, and we can again restate the first
assertion of the theorem by the catch-phrase "an irreducible local

system on Al minus n points which is cohomologically rigid extends
to a representation of the braid group on n+1 letters"”.

5.8 The complex analytic situation
Theorem 5.8.1 Over C, suppose given n > 2 an integer, o1, &9, ..

o, a set of n distinct points of Al((ﬁ), ¢ a prime number, N>1 an

n
integer, ¢ a primitive N'th root of unity in €, and an embedding of
Q(zp) into 68' Let ¥ be a cohomologically rigid object of T p which is

lisse on
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U:=nal- {oeg, oo, oo,
and such that all eigenvalues of all local monodromies of ¥ are N'th

roots of unity. Then there exists on U3 a local system F ] of

cyc
finite-dimensional Q(¢p)-vector spaces and an isomorphism of Qp-

local systems on Uanh Fan = ¢

cyel®q(ey) e

proof Any lisse, rank one, @e—sheaf £ on U whose local
monodromies all have order dividing N is a homomorphism from

1 (U) to LLN(@@) = un(QCep)). Now £81 is the same homomorphism,

restricted to mq(U3M), so it too has values in up(Q(¢y)), so may be

Uan

viewed as as a rank one (D(CN)—local system f’cycl on which sits

in an isomorphism £80 = [

CYCI@@(CN)QQ'

We proceed by induction on the generic rank r(%) of F. If
r(¥)=1, we are done, by the above discussion. Suppose that r(F) > 2.
By the Main Theorem, we know that there exists on U a rank one
lisse & of order dividing N, a nontrivial character X of order
dividing N, a lisse cohomologically rigid § with r(9) < r(¥) and with
all eigenvalues of all local monodromies N'th roots of unity, and an
isomorphism on U

Fl1] := f»®J*(J*9[1]*mid+JO*f’X[l])-

By induction, the Q(¢p)-local system gcyd exists on yan

, as do

‘f’cycl and f’x,cycl- We define ¥y on Uan to be
?cycl[l] = f’cyd@uj*(J*gcycl[l]*midNO*f’X,cycl[l])-
By the comparison theorem, ?cycl 1s a local system of finite-

dimensional Q(¢y)-vector spaces which sits in an isomorphism of

@e.QED

@e—local systems on Uah Fan = ?CYC1®®(CN)

(5.8.2) What happens if we drop the quasiunipotence hypothesis?
Over C, I(e=) and each of the groups I(«;) are canonically the group

lim invy MpNI(C), a group which has a canonical generator, namely
{exp(21Ti/N!)}N. Thus we may speak of "the eigenvalues of local

monodromy”, meaning the eigenvalues of the action of this
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canonical generator, of a lisse @e—sheaf F on Al - {ocl, XD, . ocn} at
any of the points e or «; where it possibly fails to be lisse.
Repeating the above proof yields:

Theorem 5.8.3 Over C, suppose given n 2 2 an integer, o1, &9, ..

o, a set of n distinct points of AL(C), ¢ a prime number, I' a

n
subgroup of @ex, K the subfield Q(I") of 68' Let ¥ be a

cohomologically rigid object of T ) which is lisse on

U:=nal- {oeg, oo, oo,
and such that all eigenvalues of all local monodromies of ¥ lie in I'.

Then there exists on U2 a local system ¥ of finite-dimensional K-

vector spaces and an isomorphism of @e—local systems on Uat Fan

= Fr®, 0,

5.9 Return to the original question
(5.9.1) We now return to the question with which we began:
what 1s the structure of irreducible local systems of finite-

dimensional C-vector spaces on U3 which are physically rigid? We
know from 1.1.2 that for such local systems, physical rigidity is
equivalent to cohomological rigidity. Thus it "suffices” to understand
the structure of cohomologically rigid irreducible local systems of

finite-dimensional C-vector spaces on U3 Rather than deal with it

directly, we reduce 1t to the ¢-adic case on U. This reduction 1s made
possible by the following standard result, which we spell out for the

convenience of the reader.

Proposition 5.9.2 Over C, suppose given n > 2 an integer, o, &9, ..

oy a set of n distinct points of AL(C),

U:=nal- {oeg, oo, oo,

and 7 ¢ 5 @ local system of finite-dimensional C-vector spaces on

Uan. There exists an integer N > 1 such that for all primes £ not_
dividing N, there exists an isomorphism of fields C = Qjp, a lisse Qy-

sheaf ?e on U, and an isomorphism of @g—local systems on U@,

(?g)an = ?(]:,an(x)@@@-
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proof Let n := rank(¥ ¢ ) be the rank of ¥F¢ 4. Once we pick a

base point in U3 := U(C), we may interpret ¥¢ 44 as a
homomorphism of groups
p: w1 (U3MN) — GL(n, C).

We know that ﬁl(Uan) 1s a finitely generated group, and that its

profinite completion is the profinite group 4 (U).

Because mq(U31) is finitely generated, p takes values in GL(n,R)
for some subring R of C which is finitely generated as a Z-algebra.
[For instance, if {Xi}i is a finite set of generators, we may take for R
the ring Zlentries of all p(¥;) and of all p(){i_l)].] Let us admit

temporarily the truth of the following lemma, which is certainly
well-known, cf. [BBD, 6.1.2 (A")], but for which I do not know an
explicit reference:

Lemma 5.9.3 Let R be a subring of € which is finitely generated as
a Z-algebra. Then there exists an integer N > 1 such that for every
prime number ¢ which does not divide N, there exists a finite
extension E, of @y with integer ring U,, and an isomorphism of

fields 1: € = Q) under which 1(R) C G+

(5.9.4) Granted the lemma, for any ¢ prime to N we get that
¥ ¢ ,an has an Uy-form. As the group GL(n, O,) is profinite, the

composite homomorphism
p : mq(U3N) - GL(n, R) C GL(n, 0y)

extends to a continuous homomorphism of profinite completions
Palg - T1(U) = GL(n, Oy).

Corresponding to Pr,alg, We have a lisse U, -sheaf, say %, and in

terms of C;F)\ we define ?e = C;F>\®9>\@e. QED

5.9.5 proof of 5.9.3 Denote by R the Q-subalgebra of C generated
by R. Thus R is a finitely generated Q-algebra, to which we apply
Noether normalization [AK,2.5]: there exists a finite collection of
elements xq, .. ,x; In Ry which are algebraically independent over
@, and such that Rq is integral over Qlx4, .. ,x,]. Notice that the
ring Q[x4, .. ,xul is unchanged if we replace each x; by a nonzero

integer multiple of itself. Since each x; is in R, after so replacing it
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we may assume that each x;j lies in R.

Now every element r in R is integral over Qlxq, .. ,x]. Writing
an equation of integral dependence for r over Qlxq, .. ,xpl, we see
that for some integer N(r) > 1, r is integral over Z[1/N(r)llxq, ... ,xpl.

Because R is generated as a Z-algebra by finitely many elements r;

in R, if we define N := TT;N(r;), then each rj is integral over
Z[1/Nllxq, ... ,;xul. Since the integral closure of Z[1/Nllx4, .. ,x] In
Rq@ is a Z[1/N]-algebra, R[1/N] is integral over Z[1/Nllxq, .. ,;xp].

Now pick any prime £ not dividing N. Because Q is

uncountable, it has uncountable transcendence degree over Q. In
particular, there exist n elements y1, yo, ... ,¥yp In Qp which are

algebraically independent over Q. Multiplying each y; by a power of
2, we may further suppose that each y; lies in Z,.
Using the axiom of choice, there exists an isomorphism
1 C = Q
such that 1(x;) = y; for i=1, .. ;n. Under this isomorphism,
1(Z[1/Nllxq, .. ,xy) € Z), and hence v(R[1/N]) is integral over Z,. In

particular, every element of 1(R[1/N]) lies in some finite extension of
Q,p. Since R[1/N] is finitely generated as a Z-algebra, there exists a

single finite extension field E, of @y with v(R[1/N]) C E,. As
1(R[1/N]) is integral over Zy, we have 1(R) C ©(R[1/N]) C G,. QED

5.10 The category T 5,(U,T")

(5.10.1) Over C, suppose given n 2 2 an integer, &1, &9, .. &, a

n
set of n distinct points of AL(C),
U:= Al - {ocg, g, ooyl

and I' a subgroup of C*. We denote by T ,,(U,I') the full subcategory

of the category of all local systems of finite-dimensional C-vector

spaces on U3 whose objects are those which are irreducible, have

nontrivial local monodromy at two or more of the points «;, and for

which all of eigenvalues of all topological local monodromies lie in I

Theorem 5.10.2 Let X be any nontrivial C*-valued character with
values in the subgroup I, and ‘f’x,an the corresponding Kummer
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sheaf on Gy 4p- Then for ¥, In T an(U,I'),the object G 4 In
pP_(Uan, ¢) defined by

gan[l] o= Jan*(Jan*?an[l]*midNO,an*f’X,an[l])’
lies in ‘Tan(U,r), and its local monodromies are related to those of

¥ 4n by the rules of 3.3.6 and 3.3.7.

proof For any chosen £ >> 0, there exists a field isomorphism 1: € =
Qy under which both ¥ 4, and ‘E’X an come from lisse Qp-sheaves ¥

on U and I’,X on Gy, respectively. If we now view [' as a subgroup of
@ex, we may speak of the subgroup I'y,51es of the group of

continuous @ex—valued characters of I1(0) which on the canonical
(we are over C) generator take values in I'. Then ¥ lies in
‘T@(U,rvalues), and X lies in I'y,51yes. By 4.3.11, the object § of
DP_(U, @) defined by

lies in T p(U,I"

values)’ and its local monodromies are related to those

of ¥ by the rules of 3.3.6 and 3.3.7. Passing to U2™ and applying the
inverse of the isomorphism 1: € = Qp, we recover our assertions

about 95. QED

(5.10.3) We write
Gan = Mcx,an(?an)'

(5.10.4) We can construct a graph whose vertices are the objects
of T,n(U,I'), and in which there is an edge joining two objects ¥,

and g,y if either of the following conditions )a or b) holds:
a) ¥4, and 9, both have rank >1, and there is a rank one C-local

system £, on U, all of whose local monodromy eigenvalues are in

I', such that ¥ ,, = £,,,8%,, or equivalently §_,,, = ‘f’an_1®?an-
b) there exists a nontrivial character X with values in I such that
Fan = MCy 4n(Gan), or equivalently G, = MCXan—l(?an).

Main Theorem 5.10.5 (complex analytic version of 5.3.3). If
¥ 4 1s an object of T 4(U,I') which is rigid, in either of the

equivalent senses of being physically rigid or of being
cohomologically rigid, then ¥4, (as vertex of the above graph) is

connected to an object of rank one in ‘Tan(U,r), and its distance to
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such an object is at most 2(rank(F_,) -1).

proof Once we have the previous result 5.10.2, we can repeat,
essentially verbatim, the proof already given in the ¢-adic case. QED

Corollary 5.10.6 In the situation 5.10.1, let N > 2 be an integer,
and consider the case I' = up(C). Thus let ¥ be a local system of

finite-dimensional C-vector spaces on U3 which is irreducible, has
nontrivial local monodromy at two or more of the points «;j, and for

which all of eigenvalues of topological local monodromy are N'th
roots of unity. Suppose that 7 is rigid. Then
1) ¥ has a Q(gp)-form, ie., for any embedding of the abstract field

Q(tp) into C, there exists a local system ?cycl of Q(¢p)-vector
spaces on U3 such that ¥ = ?CYCI(X)@(CN)(E.

2) Fix a Q(¢p)-form ?cycl of . For every finite place X\ of E :=
(D(CN), with A-adic completion E, and integer ring O-, there exists a

lisse Eq-sheaf ¥, on U and an isomorphism (7,)an = ?cyd@EE)\'

3) Fix a Q(¢p)-form ?cycl of . For every finite place X\ of E :=
Q(tp), with A-adic completion E, and integer ring O,, there exists a

local system % of free O,-modules on U such

?CYC1®EE7\ = (?x@@)\E)\)an

4) Fix a Q(gp)-form ?cycl of . For every finite place A of E :=
@(CN), with A-adic completion E, and integer ring -, there exists a

local system ¥F,3M of free O, -modules on UM such

?cyd@EE?\ = F,91® GXEN

proof. First let us notice that 4) follows trivially from 3): one takes
the ¥, of 3), and defines ¥, to be (¥, )3 Also, 3) follows trivially
from 2), since any lisse Ey-sheaf ¥ on U has an U,-form.

So it remains to prove 1) and 2). We prove these by induction
on the generic rank of F. Both are obvious for rank one lisse sheaves

£ on U3 all of whose local monodromies are N'th roots of unity,
and for ‘E’X with X nontrivial of order dividing N. Moreover, if 1)
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and 2) hold for 34y, they hold for both £L,®34, and MCy 51n(34p)

[compare 5.5.5.5-9]. So by the connectedness properties 5.10.5 of the
set of rigid points in the graph on T, (U,I'), with I' := up(C), 1) and

2) hold for all ¥ in T_,,(U,I"). QED



Chapter 6-Existence algorithm for rigids-1

6.0 Numerical Invariants
(6.0.1) To motivate this section, let us fix an algebraically closed
field k, and a prime number ¢ = char(k). Let us fix also a finite

subset D of A1(k) with Card(D) > 2. Suppose we are given an object
F in Ty which is lisse on Al - D, of rank r(¥). Then for any point s

in DIL{e}, F gives rise to a representation F(s) of I(s)tame hich

)tame

we write as a direct sum, over characters X of w1 (G, of

)tame

representations of I(s of the following form:

for sin D: F(s) = @X ‘f’X(X _ S)®Unip(s, X, F),
for s = oo; F(e0) = EBX f,X(X)®Unip(oo, X, F).

[With this naming convention for the characters, if we start with a
rank one object ¥, and denote by X4 the unique character p of

ﬁl((ﬁm)tame for which eq(s, p, ¥) = 1, the characters X are related
by the formula X o = TT.;, p Xs.]

(6.0.2) For each of the unipotent representations Unip(s, X, F),
we denote by

eq(o,X,F) 2 eglot,X,F) =2 ... z eplo,X,F) = 0 for k> 0
the sequence of integers defined by

eJ'(oc,X,c;F) ;= the number of Jordan blocks in Unip(x,X,%)

whose dimension is =.
(6.0.3) The fact that each F(s) is an r(F)-dimensional
representation gives the relations:

for each s in Dll{eo}, Zi,X ei(s,X,¥F) = r(¥F).

(6.0.4) Recall (3.3.6 and 3.3.7) that there exists an [(e)tame.
representation M(e %) attached to this situation, with the two
properties:

M(eo,F)/M(eo,F)H=) = F (o),
rank(M(ee,F)) = 2o iy p (r(F) - eq(s, 1, F)).

(6.0.5) These two properties allow us to calculate the invariants
attached to M(e,7), which we will denote as Ej(e, X, ¥). The recipe

Is
Eileo, X, F) = ejleo, X, F)if X = 1,
Ei+1(°°’ 1, F) = ei(OO, 1, F) fori =1,
Eq(ee, 1, ) =rank(M(ee,7)) - r(7F).
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(6.0.6) We introduce the notation
m(F) = 25 iy p (r(F) - eq(s, 1, F)).

Thus m(7F) is simply the rank of M(e,F), and we have the relations,
Zi,X Ei(OO,X,CEF) = m(?),
Eq(ee, 1, F) =m(F) - r(F).

(6.0.7) Let us remark in passing that the inequality
El(OO, ﬂ, CEF) = E2(00, ﬂ, C3")

may be rewritten as

m(F) - r(F) 2 eq(eo, 1, F).

(6.0.8) There are a priori linear dependences among these data. If
we are given the integer r(7) and all the integers ei(s, X, ¥) for all s

in DIL{e}, we may compute m(7F) and all the integers E;(eo, X ,¥).
Conversely, if we are given the integers Ei(oo,x,?) and all the
integers ei(s, X, ¥) for s in D, we may compute both m(%) (namely
Zix Ei(eo,X,F)), r(F) (namely m(F) - Eq(e, 1, F)), and the
ej(eo,X,F).

(6.0.9) The reason for presenting the data in both (r, all ;) and
(m, Ej at e, r, e; at points of D) formats will become clear when we
analyze the effects of the operations ¥ = MTp(%) and ¥ = MCy (F)

on this numerical data.
(6.0.10) We begin with the more straightforward of the two,
F = MTp(F). For each s in DlL{e}, we denote by X p the unique

character p with eq(s, p, £) = 1. Then we have

r(MTp (%)) = r(7),

e;(s, PXs 2 MT (%)) = ei(s, p, F) for all s in DIL{e}, i, p.
(6.0.11) We now turn to the case of ¥ MCX(?). According to
3.3.6 and 3.3.7, we have M(oo,MCX(?F)) = M(oo,?)@iix. This gives

the relations

m(MCX(?)) = m(%),
Ei(ee, pX, MCX(?)) = Ej(ee, p, F) for all i and p.
[t allows us to compute all the integers E;(e, p, MCX(?)), so in

particular to compute

r(MCX(?)) = m(MCX(?)) - Eq(eo, 1, MCX(?)).
(6.0.12) We know that for s in D, the local monodromies of ¥ and
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of MCX(?)are related by
MCy (F)(s)/MCy (F)()I) = (F(s)/F )N QL (5 - o).

(6.0.13) Thus we may compute most of the invariants of

MCX(?)(S):
ei(s, pX, MCX(?)) = ei(s,p, F)if p= 1 and pxX = 1,
ei_,_l(s, 1, MCX(?)) = ei(s, X_l; T),
ei(s, X, MCX(?)) = ejyq(s, 1, F).
(6.0.14) Only eq(s, 1, MCX(?)) now remains uncomputed, and it is

gliven by equating ranks in the above isomorphism 6.0.12 of

I[(s)teMe_representations:
r(MCX(?)) - eq(s, 1, MCX("}')) =1r(F) - eq(s, 1, 7).
(6.0.15) [t will also be convenient to give two expressions for the

index of rigidity (P, J End(F| Al - D)) in terms of the numerical
data. The first expression is
X (P, jLEnd(¥| Al - D)) =

= x(Al - D, End(9)) + 5, i D1l {eo} dim(Endy(¢)(F(s)))
X (AL - D, End(F) + Z¢ in DLl (o} Zi,y eils, X, F)2
(1 - Card(D)r(F)2 + Zsin DL {e) 2i,x €ils, X, F)2.

This expression makes it numerically obvious (it is already
conceptually obvious !) that MT (%) has the same index of rigidity

as does 7.

(6.0.16) The second expression for the index of rigidity i1s more
complicated-looking, but it has the merit that is a sum of terms,
indexed by the points of DIl{e}, each of which is visibly the same
for ¥ and for MCX(?). So this formula has the merit of making

numerically obvious the fact that ¥ and MCX(?) have the same
index of rigidity.
Lemma 6.0.17 In the situation 6.0.1, for ¥ in T ) lisse on Al - D, its
index of rigidity is given by

x(P1, jxEnd(F] Al - D)) -

(-m(F)2 + 5, Ei(eo,X,F)2) +

+ 2 r(F) - e(s,1,F))2 + S0 = 1) eils, X, F)2).

proof We begin with the first expression for the index:
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Y (PL, juEnd(FI Al - D)) =
(1 - CardDN(FI2 + T, piige Ziy eils X, F)2

(1 - Card(D)r(F)2 +
ei(eo, %, F)2 +

+

1X s in D ZI,X ei(S’X’ ?)2
(1 - Card(D)r(F)2 +

“Eq(e0,1,9)2 + 3, Ei(eo, X, F)2

+ 2. in D {el(s,ﬂ,?)2 + 2(0,%) = (1,1) ei(s,x,?)2}.
Comparing this with the asserted value, namely
(-m(F)2 + 5; 5 Eyjleo, X, F)2) +
(r(F) - e1(s5,1,FN2 + ZG0 = (1.1) eils, %, F)2),
it remains to prove
(1 - Card(D)r(F)2 -Eq(eo,1,9)2 + =_,  eq(s,1,%)2
=-m(F)2 + % (0(F) - eq(s,1,9))2.
We rewrite this as
r(F)2 -Eq(e2,1,%)% + m(F)? -
(r(F) - eq(s,1,F)2 +r(F)2 - e1(s,1,%)2).

Using the identity
m(F) - r(F) = E{(=,1,%),

this reduces to
r(F)2 -(m(F) - r(F)N2 + m(F)?2 =
(r(F) - eq(s,1,FN2 +r(F)2 - e4(s,1,%)2),
which we rewrite
2r(F)m(F) = = (2r(F)2 - 2r(F)eq(s,1,7)).

Factoring out 2r(%) from both sides, we find the definition of m(%¥),
m(7F) = 2 {r(¥) - eq(s,1,%)}. QED

st

SmD

st

sin D

sin D

6.1 Numerical incarnation: the group NumData
(6.1.1) We now abstract the numerical data attached to an

object ¥ in T ) which is lisse on Al - D, and for which all characters

occurring in all local monodromies of ¥ lie in a fixed subgroup [ of
the group of all characters of w1 (Gy,).

(6.1.2) Thus we fix:
a finite set D with Card(D) > 2
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a set {0} with one element,
an abelian group [', with identity element denoted 1.
We define the abelian group NumData(D,[') as follows: an element Jl
of NumData(D,I') is a quadruple (r, m, e, E) consisting of
1) an integer r(J1),
2) an integer m(J1),
3) a Z-valued function e on the product set (Z,q) x (DLL{e}) x T,

which we also view as a collection of integers ei(s,x,ﬂ), one for

every integer ix1, every X in I', and every s in D1l {eo},
4) a Z-valued function E on the product set (Z,q) x ({e}) x I', which

we also view as a collection of integers Ei(oo,X,‘ﬂ) for every 121 and

every X in ', and which satisfies the following conditions:

i) the function e has finite support, and for each s in DLl {e}, we

have Zi,X ei(s,x,71) = r(7),

i) m(I) = 25 iy p (r(N) - eq(s,1,N)3},

iii) Eq(e,1,71) = m(F) - r(7N),

iv) the integers Ej(eo,X,J1) and e;(e,%,Jl) are related by
Ei(eo, X, 1) = ejleo,x, NN) if X = 1,
Eiyq(eo, 1,7N) = ej(e=,1,71) for all ix1.

v) the function E has finite support, and Zi,X Ei(eo, %, 1) = m(7).

(6.1.3) Addition in NumData(D,I') is defined componentwise.
(6.1.4) There is a great deal of redundancy in this presentation of
an element Jl in NumData(D,I'). An element J1 is determined by the
data (r(J1), e), which is subject only to condition i). [Then use ii) to
find m(71), then iii) to find Eq(e,1,71), then iv) to define all
E;(ee,%,I1); v) will be automatic, as it is implied by ii), iii) and iv).]
(6.1.5) Alternatively, an element 7l in NumData(D,I") is
determined by the data (r(71), m(Jl), e restricted to (Z,1) x D x T,

E), which is subject only to ii), iii), v) and to

i not ) the function e on (Z,4) x D x [ has finite support, and for

each s in D, we have 2 X ei(s,x,71) = r(71).

(6.1.6) We define an even Z-valued quadratic form, called the
index of rigidity, denoted "rig", on NumData(D,[") by either of the
following equivalent (cf. the proof of lemma. 6.0.17) formulas:
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rig(N) := (1 - Card(D)r(N)2 + = iy DL (e} Zi,y eils,X, n)2,
or

rig(i) := {-m(T)2 + X, Ej(eo, X, T)2) +

+ 2o ((r(T) = e (s, 1,12 + Z6,0 = 1) ej(s, X, T)2).

(6.1.7) Given an element X = 1 in [, we define an endomorphism
MCX of NumData(D,I') as follows: given Jl in NumData(D,I), MCX(‘.H)

1s given as follows:

o) m(MCy (7)) := m(9N),
B)  Eij(ee, pX, MCy (M) := Ej(ee, p, N) for all i and p,
¥)  r(MCy (T1)) := m(MCy (11)) - Eq(ee, 1, MCy (T0)),

8) for s in D,
61) ei(s, pX, MCX(‘R)) = eils,p, M) if p= 1 and px = 1,

82)  ejls, X, MCy (TU) i= ejq(s, 1, T),

83) ei_,_l(s, ﬂ, MCX(?II)) = ei(s, X_i, ﬂ),
64) eq(s, 1, MCX(‘H)) = r(MCX(‘ﬂ)) - r(J1) + eq(s, 1, N).
[t is useful to rewrite 84) in the more symmetric form

84bis) for s in D,
r(l\/ICX(‘ﬂ)) - eq(s, 1, MCX(‘H)) = r(F) - eq(s, 1, N),

and to rewrite Y) as well:

vbis) r(MCy (1)) + Eq(eo, X1, )= m(7).

Lemma 6.1.8 For each X =1 in I, the operator Jl — MCX(‘H) is an
orthogonal automorphism of NumData(D,["), with inverse MCX—l.

Moreover, if also p=1 in I', then
MCPOMCX = MCPX’ if pX=1.
proof Given Jl in NumData(D,I"), the above formulas define all of

the quantities
(r, m, e restricted to (Z,4) x D x I', E)

needed to define MCX(‘JI), but we must show that MCX(‘.H) satisfies

the relations which characterize elements of NumData(D,['). That e
and E have finite support is obvious from the definitions (and the
fact that 1 was in NumData(D,I")). Relation ii) holds, thanks to o)
and 84bis). Relation iii) holds by definition, and relation v) holds by
o) and p). To verify the rank formulas in "i) not ", rewrite
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as

r(MCy (1) - eq(s,1,MCy (1)) = 5,

By 81-3), the right hand side is
S 1p)=(1,0) €i(5,p,MCy (1))

=25 €i(s,1,MCy (M) + 2, ej(s,X,MCy () +
= 2 ei(s,X"l,‘ﬂ) + 25 ei(s, 1,7) + 2
=Zi,p ei(s,p, 1) - eq(s,1,7)

=r(N) - eq(s,1,9)

=r(MCy (T1)) - eq(s,1,MCy (T1)),

this last equality by 84bis).
This shows that MCy does in fact map NumData(D,I") to itself.

Lp)=(1,1) ej(S,P,MCX(ﬂ)).

o= €i(5,p,MCry (7))

,p#ﬂ,x_i ei(s’p’ﬂ)

That MCX is orthogonal is obvious from the second formula for the
quadratic form,

rig(N) := ( -m(I)2 + =, Fileo, %, N)2) +
+ 2 r(N) - eq(s,1,N)2 + 2y = (1,1) eils, X, N2}

which writes it as a sum of terms each invariant by J1 MCX(‘H).
To show that (MCX—l)oMCX = id, we argue as follows. That this

1s true for m and E is obvious from the definitions. That it is true for
r follows from Y),

r(MCy (1)) = m(91) - Eq(ee, x71, M),
which applied to MCX—l(MCX(‘ﬂ)) gives
r(MCy -1(MCy (M))) = m(MCy (T1)) - Eq(ee, X, MCy (T1))
=m(Jl) -Eq (e, 1, T1), using «) and p),
=r(71), by ¥).

once we know this, then
eq(s, I, MCy -1(MCy (T1))) = eq(s, 1, T1)

follows from a double application of 84bis). Similarly, from §3) and
§2) we get

eiy1(s, 1, MCX—l(MCX(‘ﬂ))) = ei(s, X, MCX(‘H)) = ejyq(s, 1, T),

ei(s, X_j-, MCX—l(MCX(ﬂ))) = ei+1(s, 1, MCX(TII)) = ei(s, X_l’ﬂ).
For p=1 and px_l =1, 81) gives

ei(s, pX ™1, MCy =1(MCry (T1))) = ei(s, p, MCy (1)) = ei(s, px.~1,9).
This concludes the proof that MCX—loMCX = id.
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That MCpoMCX = MCPX if pX =1 1s shown in an altogether

similar way: one first checks on m, then on E, then on r, then on
eq(s, 1, MCP(MCX(‘H))), then on ej;4(s, 1, MCP(MCX(‘H))), then on

ei(s, p, MCp(MCX(‘ﬂ))), and finally on e;(s, A, MCp(MCX(‘ﬂ))) for any
A other than 1 or p. QED

(6.1.9) Suppose now we are given an element £ in the group
Maps(D, I') of all maps of sets from D to I' (the group structure by
pointwise multiplication of values). We write

s = As, L
for the map given by £, and we define
Xoo,f, .= Tl-s in D XS,.f;'
We write the multiplication in Maps(D, I') as £1® L.

(6.1.10) Given an element £ in Maps(D, I'), we define an
endomorphism MTp of NumData(D, I') as follows. We work in the

(r, e) presentation of elements of NumData(D, I'). Given 7l in
NumData(D, '), we define
r(MT () = r(71),

ei(s, PXs L MT p(T1)) := ei(s, p, T1)
for any (i, s, p) in (Z5 1) x (DLL{e}) x T

Lemma 6.1.11 Given £ in Maps(D, I'), the operator J1 = MTp(T1) is
an orthogonal automorphism of NumData(D,I'), with inverse MTp-1.
Moreover, given £1 and £y in Maps(D, I'), we have

MT£2OMTE)1 = MT£1®£2.

proof Clear, using the first formula of 6.1.6 for the quadratic form.
QED

(6.1.12) We can construct a graph whose vertices are the
elements of NumData(D,I"), and in which there is an edge joining
two elements JIl and Jl if either of the following conditions a) or b)
holds:

a) MM and 7l each have r > 2, and there is an £ in Maps(D, I') such
that T = MTp(71), or equivalently Tl = MT p-1(7),

b) for some X =1 in I', M = MCX(‘JI), or equivalently 7l = MCX—l(‘JTl).

6.2 A compatibility theorem
(6.2.1) Let k be an algebraically closed field, ¢ = char(k) a prime
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number, D a finite subset of AL(k) with Card(D) 2 2, and I" a
subgroup of the group of all continuous Qy-valued characters of
ﬂl((ﬁm)tame_ Given an object ¥ in ‘Te(Al - D, I'), denote by ND(%F)
its numerical data, i.e., the element of NumData(D,I') given by
(r(F), m(F), Ej(eo,X,F) for all (i,X), ej(s,X,F) for all (i,s,%)).
To give a lisse, tame, rank one £ on ALl - D with all its local
monodromies X4 p In I, is the same as to give the element Iin
Maps(D, T'), still denoted L, which is s = X p. We may summarize

the previous discussion in the following
Compatibility Theorem 6.2.2 In the situation 6.2.1, we have:

1) For ¥ in T 4(AY - D, I), rig(¥) = rig(ND(¥F)).
2) For ¥ in T y(AT - D, T) and X in I', MCy (ND(F)) = ND(MC (F)).
3) For ¥ in ‘T@(Al - D, ') of rank r 2 2, and L lisse, tame, rank one

on Al - D with all local monodromies in [', MT p(ND(¥)) =
ND(MT g (7F)).

4) Given two objects ¥ and § in ‘Te(Al -D, '), F and § are

connected (as vertices in the graph built on ‘Te(Al - D, I") if and

only if their numerical data ND(%F) and ND($) are connected (as
vertices in the graph built on NumData(D, I').

Compatibility Theorem 6.2.3 (Complex analytic variant) If k
is C, the above theorem 6.2.2 remains valid with [' any subgroup of

Hom(mq (G ©)3™), €*) = Hom(Z, €C*) = €%, and with T (Al - D, ')
replaced by ‘Tan(Al - D, IN).

6.3 Realizable and plausible elements
(6.3.1) We continue to work over an algebraically closed field k of

characteristic =¢. As in 6.0.1, we fix a finite subset D of Al(k) with
Card(D) > 2.We now consider the question of recognizing those
elements Jl in NumData(D, I') which are of the form ND(%) for some

F in T (AL - D, I') [or for some ¥ in T,,(AL - D, '), if k = C, and if

[ is a subgroup of C*]. We call such such elements of NumData(D, I')
realizable.
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Lemma 6.3.2 In the situation 6.3.1, any realizable element 7l
satisfies the following ten conditions:
1) r(N) = 1,
2) m(N) = r(N),
3) for all X in ["and all i > 1,
Ei(eo,%,71) 2 0, and E;j(eo, %, 1) = Ej4q (e, X, 7)),

4) for all sin Dll{e}, all X in " and all i = 1,
ei(s,X,NN) = 0, and ei(s,X,N) z ej41(s,X,N),

5)there exist at least two distinct s in D for which r(71) > eq(s,1,71),
6) (1 - Card(D)r(N) + 2, pli(ee) @1(s,1,T0) < 0,
7) if r(N) = 2, then for any s in D1L{eo},

(1 - CardDNr(N) + 2. iy puie.) Maxyleg(s,x, 1)) <0,

8) rig(N) < 2,
9) rig(T)/r(I) < (1 - Card(DNr(T) + 2, i\ pli(e) Maxx{el(s,x,‘ﬂ)},

10) in the group I' written additively, we have
ZX(Zi ejleo, X, U)X = ZX (2. inp 2 €i(s, X, TIX.
proof If Tl is ND(¥) for ¥ in T (Al - D, I') [resp. T,,,(AL - D, T') if

k=C], then 5) and 1) hold because 7 fails to be lisse at two or more
points of D, and so in particular is nonzero. Since F(e) is a quotient
of M(eo,%), we get 2). Since the E; and the e; are the numerical

invariants of actual representations M(e,F) and F(s) respectively,

we get 3) and 4). Since 7 is irreducible nontrivial, X(IPl, JxF) <0,
and X (P1, JxEnd(F)) < 2, which give 6) and 8). If ¥ has rank 2 or

more, we choose a rank one £ so that MT p (%) satisfies
Maxx{el(s,X,MTﬁ(?))} = eq(s,1,MT (7))
for each s=sqg in D1L{e}. Then we get 7) by writing out
X(PL, juMTp(F) <0
and dropping the term eq(sg,1,MT (7)). The Basic Inequality 5.2.4.7
gives 9). Because det(F) is lisse on Al - D, tame of rank one, we get

10). QED

Definition 6.3.3 An element Jl in NumData(D, I') is called
plausible if it satisfies the ten conditions of the above lemma 6.3.2.
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(6.3.4) The above lemma 6.3.2 states that every realizable
element is plausible. [t is not true that every plausible element is
realizable. We will give an example, due to Deligne, in 6.4 below.

Lemma 6.3.5 In the situation 6.3.1, if 71 in NumData(D, I') is
realizable, then every element Il of NumData(D, I') to which J1 is
connected (as vertex of the graph) is also realizable.

proof By induction on the length of a path which I to J1, it suffices
to show that each nearest neighbor of Jl is realizable. But such a
nearest neighbor is either MCX(‘H), for some X =1 in I', or, in case

r(71) 22, is possibly MT p(71), for some £ in Maps(D. I'). If Tl is ND(¥F),
these neighbors are ND(MCX(?)) and ND(MT p (%)) respectively. QED

Lemma 6.3.6 In the situation 6.3.1, if 71 in NumData(D, ') is
plausible and if r(71)=1, then 7l is realizable.

proof J1 is ND(L) for the unique rank one £ in ‘Te(Al -D, I

[respectively in ‘Tan(Al - D, I')] whose local monodromy at s in
Dl {eo} is the unique character X for which eq(s,X,J1) = 0. [This £
exists by condition (10) in the definition of plausibility.] QED

Lemma 6.3.7 In the situation 6.3.1, Suppose that Jl in
NumData(D, I') is plausible, has r(Jl) > 2, and has rig(Jl) = 2. For
each s in D, denote by X4 any character such that

e1(s, X, V) = Maxy {eq(s,%,T)},
and denote by £ the unique rank one L in ‘T@(Al -D, I

[respectively in ‘Tan(Al - D, I')] whose local monodromy at s in D is

(XS)_l. Consider the element MT p(J1) of NumData(D, I'). Then either
MT  (T1) is not plausible, or we are in the following situation:
1) MT p(71) is plausible,
2) eq (oo, 1,MT (7)) < Maxy {eq (e, X, MT (7))},
3) for any character X =1 such that
eq(eo, X "L, MT (7)) = Maxy {eq (e, %, MT (1))},
the element MCX(MTOC(‘JI)) has r(MCX(MTf)(‘ﬂ))) < r(T).
proof If MTp(71) is not plausible, we are done. If MT p(71) is
plausible, we know rig(MTp(71)) = 2, and by construction we have

eq(s,1,70) = Maxx{el(s,x,‘ﬂ)} for each s in D,
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so 2) results from the plausibility relations 6) and 8). To prove 3),
notice that
r(MCX(MTﬁ(‘ﬂ))) = m(MCX(MTE(‘ﬂ))) - El(OO,ﬂ,MCX(MTf,(‘ﬂ)))
= m(MTp(N)) - eq(eo,x "L, MTp(N))
= - eq(eo, X" LMTR(N) + =, p(r(MTE(N)) - eq(s,1,MT (7))}

= - eq(eo, XL MTR(N) + 2, o{r(N) - eq(s,1,MT (7))

sin D
= - eq(eo,x "L MTR(N) + CardD)r(N) - . 5 eg(s,1,MT (1))
= Card(D)r(Tl) = 2, i, pii(e) Maxx{el(s,x,fﬂ)}.

Thus
r(T1) - r(MTy (MTE (1) =

(1 - Card(DN)r(N) + Z_ i, pli(e) Maxx{el(s,x,‘ﬂ)}

rig(N)/r(N) = 2/r(7) >0,
the penultimate inequality from plausibility condition 8). QED

\%

6.4 Existence algorithm for rigids

(6.4.1) In the situation 6.3.1, suppose that 7l in NumData(D, I')
has rig(Jl) = 2. Here is an algorithm to determine if Jl is realizable.
Step I X = J1.

Step II Is X plausible? If not, Jl is not realizable. Stop.

Step IIl Is r(X) = 17 If so, 7l is realizable. Stop.

Step IV For each s in D, choose a character X4 such that

eq1(s,Xg,X) = Maxy {eq(s,X,X)}.
Denote by £ the unique rank one L in ‘Te(Al - D, I') [respectively
T an
X:= MT p(X).

Step V Is X plausible? If not, Jl is not realizable. Stop.
Step VI Choose a character X =1 such that

el(oo,x_l,X) = Maxy {eq (e, X, X))
(such X exist, by 6.3.7 (2) above). X:= MCX(X). Go to Step II.

Al - D, I')] whose local monodromy at s in D is (XS)_l.

(6.4.2) Since Step VI lowers the rank by at least one, we only
need iterate the algorithm at most r(Jl) - 1 times to determine
whether or not Jl is realizable.

(6.4.3) To see that the algorithm gives the correct answer,
assume first that Jl is realizable. Then by 5.2.1 the algorithm will
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correctly tell us that Jlis realizable. Suppose that we start with an
J1 which the algorithm tells us is realizable. Then the algorithm
provides us with a path which connects 7l to a plausible object of
rank one. But any such object is realizable (by 6.3.6), and so our 7l
is connected to a realizable object, so is itself realizable (by 6.3.5).

6.5 An example

(6.5.1) Here is an example, due to Delighe, of an element Jl in
NumData(D, I') which has rig(J1)=2, and which is plausible, but
which is not realizable, because it has a nearest neighbor which is
not plausible. Suppose first that we are not in characteristic 2, and
suppose that I' contains the unique nontrivial character X o of

11 (Gyy) of order 2. We take D = {0,1},

r(N) = 7,

eq(eo, X9, ) = 3, enlee,X9,I1) = 1, ej(e=,1,71) = 1 for 1 <i < 3,
el(O,ﬂ,ﬂ) = e2(0,ﬂ,ﬂ) = 3, eg(O,ﬂ,ﬂ) =1,

el(l,ﬂ,(ﬂ) = 92(1,ﬂ,ﬂ) = 3, eg(l,ﬂ,ﬂ) =1,

and all other ei(s,X,J1) = 0. One checks easily that rig(7l) = 2, and
that J1 is plausible. However, I := MCX2(‘R) is readily computed. It
turns out to have

r(M) = 5,
eq(eo,1,T) = 1, ej(eo, X9, M) = 1 for 1 <i < 4,

e1(0,1,MM) = 1, eq(0, X2, M) = 3, e9(0,%Xo,M) = 1,
el(l,ﬂ,?ﬂl) =1, el(l,X2,m) = 3, 82(1,X2,m) 1,
but this Tl is not plausible, since it fails plausibility test 7) with sg

taken as oo.

(6.5.2) If we are in characteristic 2, or indeed in any
characteristic not 3, suppose that [' contains a nontrivial element
X3 of order 3. We take D = {0,1},

r(ﬂ) = 7;

eq(eo,X3,J1) = 3, ej(ee,1,71) = 1 for 1 <1 < 4,
e1(0,1,71) = en(0,1,7) = 3, ex(0,1,7) = 1,
e (1,1,7) = en(1,1,7) = 3, ex(1,1,7) = 1,
and all other ei(s,X,J1) = 0. In this case, T := MCyg(‘ﬂ) has
r(M) = 5,

ej(oo, X3, M) = 1 for 1 <i <5,
e1(0,1,M) = 1, e1(0,%x3,T) = 3, e5(0,%3,M) = 1,
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e1(1,1,M) = 1, eq(1,%3,M) = 3, en(1,xz,TM) = 1,

and again fails to be plausible, for exactly the same reason.

6.6 Open questions How can one determine the realizabilty of
elements of Jl in NumData(D, I') whose index of rigidity is some
integer other than 27 A necessary condition for Jl to be realizable is
that every Il to which Jl is connected (in the graph on
NumData(D, I')) is itself plausible. Can this condition be decided by
an algorithm with finite running time? Is this condition sufficient?
[It is sufficient for elements Tl with rig(Jl) = 2, as is clear from the
algorithm.] Much remains to be done.

6.7 Action of automorphisms
(6.7.1) Let o: X +— X(O) be an automorphism of I" as abstract
group. Given Tl in NumData(D, I'), define N.(9) in NumData(D, I') by
r(n(o)) = r(n),
m(n(9)) .= m(n),
Ei(eo, % (9),(0)) .= Ei(eo, %, M), for all ix1, all X,

ei(s,x(g),‘ﬂ(g)) = ei(s, X, ), for all iz1, all s in Dll{e}, all X.

This defines an orthogonal left action of of the group Aut(I’) on
NumData(D, I').
Lemma 6.7.2 In the situation 5.3.1, we have

(1) If 71 in NumData(D, I') is plausible, then (o) is plausible for
every o in Aut(l’)
(2) If N and M in NumData(D, I') are adjacent in the graph, then

() and M(9) are adjacent for every o in Aut(I').
proof (1) is obvious from the definitions. For (2), suppose first that

M = MCy (). Then M(9) = MCy (0)(N(9)). 1f M and 9 have
common rank > 2 and Tl = MTp(71), then (o) - MTr;(O)(ﬂ(O)),
where £(9) is the element ool of Maps(D, I'). QED

Theorem 6.7.3 (invariance by automorphisms) In the situation
6.3.1, if 71 in NumData(D, I') is realizable, and has rig(7l) = 2, then

for any o in Aut(I), 1(9) is realizable.

proof If r(J1)=1, then "realizable" is the same as "plausible”, so the
result follows from part (1) of the previous lemma. If r(J1) 22, 7 is
realizable if and only if Tl is connected, in the graph, to a plausible
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element of rank one. Take a connecting sequence and apply o. By
parts (1) and (2) of the previous lemma, this is a sequence which

connects N9 1o a plausible element of rank one. QED

6.8 A remark and a question
(6.8.1) Notice that if an Jl in NumData(D, I') with rig(Jl) = 2 is

realizable, then the object ¥ in ‘Te(Al - D, I') with ND(F) = N is
already determined up to isomorphism by Jl; this is precisely the

meaning of rigidity. So given ¥ in ‘Te(Al - D, I') which is rigid, we
may speak of the rigid object F(0) in ‘Te(Al - D, I') for every o in

Aut(l'). If o is the automorphism -1 of I, then F(-1) is the dual of

F. This description of F(-1) a5 the dual of F makes sense for any 7,
not just rigid ones, and so -1 preserves the set of realizable elements
in NumData(D, I').

(6.8.2) In the complex analytic case, with ' a subgroup of C*, if
o in Aut(l') is induced by an automorphism o of the field C, then

F(9) has a down to earth interpretation: view ¥ in ‘Tan(Al -D, I')

as a homomorphism A : ﬁl((Al - D)an) — GL(r, C), then F(9) is the
composite homomorphism oo/, where o acts on GL(r, C) by

conjugating every entry. This description of F(0) makes sense for
any F, not just rigid ones, and shows that Aut(C) preserves the set
of realizable elements of NumData(D, I'). [If ¢ is complex

conjugation, and if ' € C* lies in the circle Sl, then o induces -1 on
[, and F(9) is the dual of ¥

(6.8.3) However, there are many subgroups I' of C* on which
Aut(C) acts trivially, but for which Aut(I') is nontrivial. A typical
example of such a I' is the multiplicative subgroup generated by 2
and 3, which as abstract group is free abelian on the elements 2 and
3. Thus Aut(l’) is GL(2,Z), with the standard upper unipotent
element T acting as (2 = 6, 3 = 3), the standard involution S acting
as (2 » 3,3 = 1/2), and -id acting as (2 — 1/2, 3 — 1/3). It is far
from clear whether or not, for this I', Aut(I') preserves the set of
realizable elements in NumData(D, I'). [t seems almost miraculous
that Aut(l') preserves the set of realizable elements which are rigid.
(6.8.4) In the ¢-adic case, over any algebraically closed field of
characteristic zero, once we fix a topological generator Y of
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ﬂl((]}m)tame, we may identify, via evaluation at Y, the groups
Homcontin(ﬁl((ﬁm)tame’ ﬁéx) = (Gﬁe)x'
We may take for I" the multiplicative group of Z,* C (®®€)X

generated by any two distinct primes both different from ¢, e.g. by
2 and 3 if £ > 5, and repeat the same question. [If we are over an
algebraically closed field of positive characteristic p=4, we must

replace (Gﬁé)x by its subgroup (G@Q)X(not p) consisting of those
elements whose image in f@x has order prime to p, and we may
take for I' the multiplicative group of (@@e)x(not p) generated by
any two distinct primes qq and g which both have order prime to

p in Fy* (eg., take both g; = 1 mod ¢).
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7.0 Diophantine criterion for irreducibility B
(7.0.1) Fix a prime number ¢, and an embedding 1: Qp — C. For

X 1n @@ denote by [x| the usual complex absolute value of 1(x).
Let F be a finite field of characteristic =¢, F an algebraic
closure of F. On Al over F, denote by k: Al 5> PL the inclusion, and

by ;U — Al the inclusion of a nonempty open set.
(7.0.2) To motivate this section, recall the well known

diophantine criterion for a pure sheaf to be geometrically irreducible

(cf. [Ka-MFC, sections II and III]). B
Lemma 7.0.3 In the situation 7.0.1, let ¥ be a lisse Qp-sheaf on U,

which is 1-pure of weight zero. Then % is geometrically irreducible,
l.e., irreducible on U®pF, if and only if there exists a constant C

such that for all finite extensions E of I, of cardinality denoted qf,

we have:

(x) 2y in U(E) ITrace(Froby g | FI2 - qp | < Clqp)t/2

proof Because 7 is pure of weight zero, we have
|Trace(FrobX’E | F)|2 = Trace(FrobX’E | End(9)),

so we may rewrite (%) as

2% in U(E) Trace(FrobX’E | End(¥)) - gl =< C(qE)1/2.

By the Lefschetz Trace Formula, applied to the lisse sheaf End(7F) on
U, we know that
>x in U(E) Trace(Froby g | End(%)) =
=2 i=1,2 (—1)1Trace(FrobE | HiC(U(X)Fl?, End(F)).

This we may rewrite (%) as
(%)
2219 (—1)1Trace(FrobE | HiC(U®F1?, End(F)) - qpl =< C(qE)1/2.

Because End(¥F) is 1-pure of weight zero, we know from [De-Weil II,
3.3.1] that HiC(U(X)Fl?, End(7F)) is mixed of weight <i, for i=1,2, and
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the H2C is pure of weight 2. Again by purity, we also know [De-Weil

IT, 3.4.1(iii)] that both ¥ and End(%) are geometrically semisimple,
and hence

H2 (UQFF, End(¥)) =
(the coinvariants of ﬂl(U(X)Ff) in End(9))(-1)
(the invariants of ’IT:I_(U®F1?) in End(%))(-1).
Suppose first that F is geometrically irreducible. Then by
Schur's Lemma we have H2C(U®F1?, End(%)) = 68(_1)’ and hence

Trace(Frobg | H2C(U®F1~:, End(¥)) = gf.
Since the Hl_ is mixed of weight <1, taking C := hl _(U®fF, End(¥))
gives

| Trace(Frobg | H1 ((U®FF, End(¥F)) | < C(qp)1/2,

and (»x) is now obvious.
Suppose now that (%x) holds. Then at the expense of enlarging
C, for every finite extension E of ' we have

ITrace(Frobg | H2C(U®F1?, End(F)) - gl =< C(qE)1/2.
Since H2C(U®F1?, End(¥F)) is pure of weight 2, the usual compactness
argument (cf. [Ka-SE, 2.2.2.1]) shows that h2C(U®F1?, End(¥)) = 1.

Because ¥ is geometrically semisimple (being pure), this one-

dimensionality means precisely that F is geometrically irreducible.
QED

7.1 Diophantine criterion for rigidity B
Theorem 7.1.1 In the situation 7.0.1, let ¥ be a lisse Qp-sheaf on U,

which is 1-pure of weight zero. The the following conditions are
equivalent.

1) F is geometrically irreducible, i.e., irreducible on U®F1~:, and

cohomologically rigid, i.e., X([P1®F1?, kyixEnd(7F)) = 2

2) There exists a constant C such that for all finite extensions E of F,
of cardinality denoted g, we have:

2% in U(E) |Trace(FrobX’E | F)2 - qe | =< C.
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proof Because End(¥F) is pure of weight zero, we know by Weil II
[De-Weil 11, 3.2.3] that for all i, H(PL®pF, kyjxEnd(¥)) is pure of
welght 1. From the long exact sequence of cohomology attached to

the short exact (excision) sequence of sheaves on IPl,
0 — kijiEnd(F) = ki jxEnd(¥) — (punctual, wt. < 0) — 0,

we see that
H2 (UQFF, End(%)) = H2(PL1®FF, k, j«End(F)),
and that we have a short exact sequence
0— (wt. < 0) > HL(U®FF, End(%)) » HL(PL1Q¢F, k, i End(¥F)) — 0.

Suppose first that F is geometrically irreducible and
cohomologically rigid. Then

H2(P1QFF, kyjxEnd(F)) = @Q,(-1),
HI(PLl®F, kyixEnd(%)) = 0,
HOPIQ®EF, ki End(F)) = Q.

Therefore we find

H? (U®F, End(F)) = Q,(-1),

H1 (U®pF, End(¥)) is mixed of weight < 0.
Thus 2) holds, taking C := hlc(U®F1?, End(F)).

Conversely, suppose that 2) holds. By the previous lemma, ¥ is
geometrically irreducible, and hence

H2 (UQFF, End(¥)) = Qy(-1).
Exactly as in the proof the proof of the previous lemma, the
Lefschetz Trace Formula allow us to rewrite 2) as

| 2i-1 2 (-1)'Trace(Frobg | H.(U®FF, End(¥)) - qp | = C.

But as H2C(U®Fl?, End(¥F)) = 68(_1)’ this says precisely that for all

finite extensions E of F,

| Trace(Frobg | HL(UKFF, End(F)) | < C.
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From this, the standard "radius of convergence" argument (cf. [Ka-
SE, 2.2.1.1]) shows that ch(U®F1?, End(¥)) is mixed of weight < 0.

Therefore Hl([P1®F1?, k. jxEnd(7F)), being a quotient of this ch, is
itself mixed of weight < 0. But it is also pure of weight one, hence it
vanishes: Hl(IPl(X)Fl?, kyjxEnd(%F)) = 0. Finally, the geometric
irreducibility of F gives

HOPL®FF, kyjuxEnd(¥)) = HO(UEF, End(¥)) = Q.
Thus we find X([Pl®1:1?, kK, JjxEnd(F)) = 2, as required. QED

Variant Theorem 7.1.2 In the situation 7.0.1, let ¥ be a lisse 68_

sheaf on U, which is 1-pure of weight zero, and let A > 0 be a non-
negative integer. The the following conditions are equivalent.

1) F is geometrically irreducible, i.e., irreducible on U®F1~:, and

h1(PI®FF, kyixEnd(F)) < A, e, X(PI1®FF, kyjxEnd(¥F)) = 2 - A.

2) There exists a constant C such that for all finite extensions E of F,
of cardinality denoted g, we have:

Sy in U(E) ITrace(Froby g | T2 - qp | < Algp)t/2 + C.

3) There exists a constant C such that for all finite extensions E of F,
of cardinality denoted g, we have:

Zx in AL(E) ITrace(Froby £ | juxF)? - qp | < Alap)?/? + C.

proof We first remark that 2) and 3) are trivially equivalent, since
at each of the finitely many points of Al - U, jxF 1s mixed of

weight < 0.
To show that 2) implies 1), we argue as follows. If 2) holds, then
by the first lemma 7.0.3, ¥ is geometrically irreducible, and

H2C(U®Ff,End(?)) = 68(_1)’ so 2) says that for all finite extensions E
of F,
| Trace(Frobg | ch(U®F1?, End(%)) | < A(qE)1/2 +C

From this it follows (cf. [Ka-SE, 2.2.1.1]) that ch(U(X)F}:, End(¥)) is
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mixed of weight < 1, with at most A eigenvalues of weight 1. From
the short exact sequence

0— (wt. < 0) » HL(U®FF, End(F)) » HL(PL1®¢F, k, j End(¥F)) — 0.

and the fact that Hl([Pl(X)FI?, kyixEnd(F)) is pure of weight 1, we
see that hl(IPl(X)FF, kyJjxEnd(7F)) is precisely the number of
eigenvalues of weight one in ch(U(X)Fl?, End(¥)). Thus we find
h1(P1®pF, kyjxEnd(¥F)) < A, as required.
Conversely, suppose that 1) holds. By the first lemma, ¥ is
geometrically irreducible, H2C(U®F1?, End(%)) = @e(—i), and 2) is the

assertion that there exists a constant C such that for all finite
extensions E of F,

| Trace(Frobg | ch(U(X)Fl?, End(%)) | < A(qE)1/2 +C
Since by 1) we have hl(IP1®F1?, kyixEnd(7F)) < A, it suffices to show

the existence of a constant C such that for all finite extensions E of
F,

| Trace(Frobg | ch(U®F1?, End(F)) | <
< W1 PLI®FF, ki End(F))(qp)l/?2 + C.

But this 1s obvious from the short exact sequence

0— (wt. < 0) » HL(U®F, End(¥)) » HLPL®FF, ki End(F)) - 0

and the fact that Hl(IPl(X)FI?, k. jxEnd(F)) is pure of weight one. QED

(7.1.3) This result allows us to give a quite short proof of the fact
that Fouriler Transform preserves the index of rigidity in the special
case of pure objects. It was only after first proving this "special
case” that we found the proof of the general case given in 3.0.2.

Theorem 7.1.4 Let F be a finite field of characteristic = ¢, ¢ a
nontrivial Qp-valued character of the additive group of F. Over F,

let K be a perverse sheaf on Al which is of the form Jx Fl1] for F a

lisse @e—sheaf on U, which is 1-pure of weight zero, and
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geometrically irreducible. Suppose that ¥ is not geometrically
isomorphic to ‘f’qJ(ax) for any a in F. Consider the (Tate-twisted)

Fourier Transform FTqJ(K)(l/2), which is known (cf. [Ka-GKM, 6.2.5
and 8.4.1]) to be of the form j9[1] for j: U — Al the inclusion a

nonempty open set, and § a lisse @g—sheaf on U’, which 1s 1-pure of
welght zero, geometrically irreducible, and not geometrically
Isomorphic to ‘E’qj(aX) for any a in F. Then ¥ and § have the same
index of rigidity: X (P1, kyjxEnd(¥F)). = X (P1, k. j+End(9)), or
equlivalently,

h1(PL, k j End(F)). = h1(P1, k. j  End(g)).

proof For every finite extension E of F, the trace functions of j,,F

and of j',9 as functions on AL(E) = E are, up to sign, normalized
Fourler Transforms of each other: for y in E, we have
Trace(Froby,E | 1'% 9) =
= (—1/(qE)1/2)ZX o E qJE(yX)Trace(FrobX,E | JxF),
where we have written g for yeTraceg /f.

By the Plancherel formula, we have, for every finite extension E of
F, the equality

2. AL(E) |Trace(FrobX’E | i P2 =

X 1n
=2y in AL(E) |Trace(FrobX’E | j'*9)|2

Now apply the equivalence of 1) and 3) in the Variant Theorem 7.1.2

above. By 1) = 3) for ¥, with A taken as h1(P1, k. j,End(¥)),

followed by 3) = 1) for §, with the same A. We see that

h1(PL, k j End(F)). > h1(P1, k. j  End(9)).

Reversing the roles of ¥ and ¢, we get the opposite inequality. QED

7.2 Appendix: a counterexample
(7.2.1) ~ What happens if, in Theorem 7.1.1, we assume only that
the lisse Qp-sheaf ¥ on U is 1-mixed of weight < 0 (rather than

pure of weight zero). By [De-Weil II, 3.4.9], any lisse @e—sheaf F on U

which 1s 1-mixed admits a filtration, indexed by real numbers w,
by lisse subsheaves

Tew € Tow € FTppe - C 7T,
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such that ¥, (resp. ¥ ) is 1-mixed of weight <w (resp. <w), and
such that Gr,(F) = (¥ _,)/(F ) is v-pure of weight w. For ¥
which is 1-mixed of weight <0, the pieces Gr,(F) = 0 for w > 0.
(7.2.2) Let ¥ be a lisse @e—sheaf F on U is t-mixed of weight < 0,

and suppose that there exists a constant C such that for all finite
extensions k of I, of cardinality denoted gp, we have:

(%) > in U(E) |Trace(FrobX’E | )2 - qe | =< C.

(7.2.3) This estimate does imply that Grg(¥F) is geometrically
irreducible. [Indeed the geometric irreducibility of Grg(¥F) for a lisse
@e—sheaf F on U which is 1-mixed of weight < 0 is equivalent to the

existence of a real constant C and of a real o« < 1, such that for all
finite extensions E of F, we have

> in U(E) |Trace(FrobX’E | F)|2 - qep | = Clggp)<.]

(7.2.4) However, the estimate (%) above does not imply that
Gro(7F) is cohomologically rigid. Here is an example.
(7.2.5) We begin over Z, with a Pl with homogeneous
coordinates (u,v), and a P2 with homogeneous coordinates (X, Y, Z).
Over the open set of P1 where ’I)(LL3 - 271)3) 1s invertible, the closed
subscheme of P2xP1 defined by the single equation

(X3 + Y3 +7%) = uxyz

is an elliptic curve, say 1 : € — PL1/(v(ud - 2703))]. This curve,
with say (1,-1,0) as origin, carries an arithmetic level three
structure

wz x Z/37 = E[3]

in the sense of [Ka-RA,2.0.4], and in fact this is the universal elliptic
curve with arithmetic level three structure.
(7.2.6) If we extend scalars from Z to Z[1/3, ¢3], we may view

this same curve as the universal elliptic curve with usual level 3
structure of determinant ¢z over 7[1/3, Cg]—algebras.

(7.2.7) Fix a prime number £. The sheaf
9o = Rln, 0y on PHL/(2v(d - 2709))]
is lisse of rank 2, pure of weight one, and det(g,) = @e(—l).

(7.2.8) We next invert the prime 3, i.e., we work over
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PLl1/(3e0(ns - 27v9))].
The advantage of doing this is that over Z[1/3], the divisor in

Pl[1/3] of equation (3 - 2703) = 0, is finite etale of degree 4:
indeed over Z[1/3, C’g] it is the disjoint union of four sections. It is

well known (cf. [KM, 14.3.3]) that the local monodromy of 3, along

each of these four sections is unipotent and nontrivial.
(7.2.9) In particular, for any prime p other than 3 or ¢, the
restriction

Fop = Gl PHI/ (WS - 2709)]®F,

is lisse of rank 2, pure of weight 1, with nontrivial unipotent local
monodromy at each of the four cusps. Since any pure lisse sheaf is
geometrically semisimple [De-Weil II, 3.4(iii)], it follows that G, D is

geometrically irreducible (since already under local monodromy at
any cusp it is indecomposable). Indeed, the geometric monodromy
group of 4 must be SL(2), since it is a semisimple subgroup of SL(2)
which contains a nontrivial unipotent element.
(7.2.10) Since we know the local monodromy, we can easily
compute the index of rigidity of 9, p: Denoting by

J o PHL/(0(® - 2709))]@F, » PIRF,
the inclusion, we find

X (PLOFp, juEnd(Gy ) = (2-4)4 + 4x2 = 0,
or equivalently, G, D being geometrically irreducible,

h(PI®F,, jxEnd(Gy ) = 2.
In particular, G, D is not cohomologically rigid.

Proposition 7.2.11 Hypotheses and notations as in 7.2.5-9 above,
fix a prime p = 2 mod 3, and a prime ¢=p. Denote by F the lisse

@@—sheaf on U := PL1/(v(p3 - 27@3))]®[Fp4

F = Gy p(1/2) & Gy (1),
where the half Tate twist is defined using p2 as sqrt(p4). There
exlists a constant C such that for any finite extension E of [Fp4,
we have

(%) > in U(E) |Trace(FrobX’E | F)|12 - ap | = C.

proof Let us denote G, D simply as 9. The traces of ¥ and § are

related as follows: for any finite extension E of [Fp4, and any x In E,
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Trace(FrobX’E | F) = Trace(FrobX’E | )1 /sart(gp))(1l + 1/sqrtlqp)).

4

In this formula, qp is a power of p*, say qp = p4n, and Sqrt(qE) 1s

the same power 102n of p2. Thus
|Trace(FrobX’E | F)|2 =

= |Trace(FrobX’E | 9)|2(1/qE)(1 + 1/sqrt(qE))2.

From its genesis via elliptic curves, we see that the trace function of
9 has values in Z. Therefore we may omit the absolute value:

|Trace(FrobX’E | F)|2 =
= (Trace(FrobX’E | 9))2(1/qE)(1 + 1/sqrt(qE))2.

We must prove the existence of a constant C such that for any any
finite extension E of [Fp4,

(%) 2% in U(E) |Trace(FrobX’E | F)I2 - qe | =< C.

Multiplying through by qp, and substituting in terms of ¢, this
amounts to

()2 in UE) (Trace(FrobX’E | gN2(1 + 1/sqrt(qE))2 - (qE)2| < Cqg.

Notice that
(Trace(Froby, | g)2 = Trace(Froby, g | 9®9).
Because 9® G is pure of weight 2 on U, j.(9®9) is punctually mixed

of weight <2 at the cusps. So (%x%) is equivalent to the existence of a
constant C such that for all finite extensions E of [Fp4, we have

%% in PL(E) (Tr(Froby g1 j.(3®9)(1 + 1/sqrt(qE))2 - (qE)2| < Cqg.
We will show that this holds with C=2. Indeed, we will show that
(%x%) Ty in pL(E) (Tr(Froby g | jx(3®GN(L + 1/sqrt(qp))? = (qp -1)%,

which makes this estimate obvious. Writing
(ag -1)2 = (qE)2(1 - 1/qE)2 = (1 + 1/sqrt(qE))2(1 - 1/Sqrt(qE))2,

we see that (x%x) is given by the following
Lemma 7.2.12 If p is congruent to 2 mod 3, then for all finite
extensions E of [Fp4, we have
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Sy in PL(E) (Tr(Froby £ | j«(3®9)) = (qp)?(1 - 1/sqrt(qp))?

= qplqg + 1) —2(qE)3/2.

proof Decompose 3® G as

A2(9) ® Sym?2(g) = det(3)® Sym?2(3) = Qyu(-1)d Sym2(g).
Thus on P1 we have

ix(3®F) = Qp-1) ® j.(Sym2(g)),
and so
Zx in P1(E) (Tr(Froby g | jx(3®9)) =

= qplagp + 1) + 2y in pL(E) (Tr(Froby g | Jx(Sym2(9))).
Thus we are reduced to showing that

Sx in PL(E) (Tr(Froby £ | j(Sym?2(9)) = -2(qp)3/2.
By the Lefschetz Trace Formula, we may rewrite this as

% (-1 Tr(Frobg | HPT®F ,, ju(Sym?2(3) = -2(qp)3/2.

We claim that the only possibly nonvanishing cohomology
group is the HL. For this, it suffices that Sym2(9) be geometrically

irreducible and nontrivial. But Sym2(9) 1s geometrically semisimple,
because pure, and is indecomposable under each local mondromy,

which acts as a single unipotent Jordan block. Therefore Sym2(9) is
geometrically irreducible and nontrivial. Moreover, at each cusp the
local monodromy is tame with a one-dimensional fixed space
(because a single unipotent Jordan block).

Thus we are reduced to showing that Hl(IPl(X)fp, j*(Sym2(9)))

has dimension 2, and that for all finite extensions E of [Fp4, both

eigenvalues of Frobp on this space are (qE)3/2. For this, it suffices to

show that the two eigenvalues of Frob[Fp on this space are ii(p)3/2.

That Hl(IPl(X)fp, j*(Sym2(9»))) has dimension 2 is immediate
from the Euler Poincare formula, which gives
X(PL®F, ju(Sym2(9))) = (2-4)3 + 4x1 = -2,

and the vanishing of Hl for i=1.

Now G(1/2) is symplectically self-dual, so Sym2(4)(1) is
orthogonally self dual, so by Poincare duality the two eigenvalues of

Frob[Fp on Hl(IPl(X)fp, Jx(SymZ2(9))) have product equal to p°.

Therefore it suffices to show that



Chapter 7-Diophantine aspects of rigidity-11

Trace(Frob[Fp | H1(|]31®fp, j*(Sym2(9))) = 0,

for any prime p=£ which is congruent to 2 mod 3.

Implicit in Deligne's proof that "Weil implies Ramanujan" [De-
FMRY?, 4.8-4.9, for n=3] is the following identity of traces: for any
prime p not 3 or ¢, and for any integer k>0,

trace(Frob[Fp | Hl([P1®fp, j*(Symk(g))) =

= trace(Tp | cusp forms of weight k+2 on ['(3)).

Unfortunately, this identity, which is certainly "well-known" to the
specialists, does not seem to appear, at least in so explicit a form,
anywhere in the literature. For the sake of completeness, we will
give a (somewhat clumsy and convoluted) proof of it in the special
case k=2, by making use of results of Scholl [Schl].

The space of weight 4 cusp forms on I'(3) is one-dimensional.
Since f:= the cube root of A is known [Lang-EF, page 254] to be a
weight 4 cusp form on ['(3), f provides a basis of this one
dimensional space, and is automatically an eigenfunction of all
Hecke operators Tp for all primes p=3. The g-expansion of this f at

any cusp of I'(3) is
qTTpsq (1 - g8,
[f we knew the asserted identity of traces, we would argue as
follows. We write this q expansion as 2a(n)q!. By Hecke theory we
know that for primes p not 3 we have Tp(f) = a(p)f. Therefore for

any prime p not 3 or £ we have
trace(Frob[Fp | Hl([P1®fp, j*(Sym2(9))) =

= trace(Tp | cusp forms of weight 4 on ['(3)) = a(p).

From the g-expansion of f above, it is visible that a(n) = 0 unless n
Is congruent to 1 mod 3.

We now indicate an alternate proof, valid for primes p > 5,
p=?¢, that

trace(Frob[Fp | Hl(lPl(X)fp, j*(Symk(%))) = al(p).
Because f has even weight, the element -1 in SL(2, Z/37Z) fixes

f. Therefore f is in fact invariant under *I'(3), the group denoted
['0(3,3) in Atkin-Lehner [AL,page 134] consisting of all elements in

SL(2,Z) which reduce mod 3 to diagonal matrices. [In general *I'(N)
is a proper subgroup of I'g(N,N): they coincide precisely when *1 are

the only units in Z/NZ,i.e., precisely for N <4.] Now quite generally,
f(t) = f(NT) is a bijection between cusp forms of any given weight k
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on I'g(N,N) and cusp forms of weight k on FO(N2). Returning to the

case at hand, we conclude that the space of weight 4 cusp forms on
['0(9) is one-dimensional, spanned by a form whose g-expansion at

the standard cusp is

qMs1(1 - go0)8,

By the one-dimensionality, this form 1s automatically an
eigenfunction of all Hecke operators Tp for all primes p=3. If we

write this q expansion as 2Za(n)g", then by Hecke theory we know
that for primes p not 3 we have Tp(f) = a(p)f. Because we are now

on ['g(9), Tp(f) = a(p)f translates into the following identity on
coefficients:

a(np) -a(p)a(n) + pJa(n/p) = 0,
with the standard convention that a(x) = 0 if x is a non-integer.
For each prime p not 3 or ¢, let us define

Alp) := trace(Frob[Fp | Hl(IPl(X)?p, j*(Sym2(9))).

By the Lefschetz Trace Formula, and the fact that j.(Sym2(g)) has

a Z-valued trace function (even at the cusps, where its trace is 1)
which is independent of the auxiliary choice of ¢, we see that A(p)
lies in Z, and is independent of the auxiliary £. For any prime p not
3 or & we have

det(T - Froby | HI(PL®F ,, jx(Sym2(9)) = T2 - A(p)T +p°.

According to Scholl [Sch, Theorem 5.4, applied to k=2 and I':= T'(3):
the "M" of Prop. 5.2 is then 3], the g-expansion coefficients a(n) of f
satisfy, for each prime p not 3, p > 3, the congruences

a(np) -A(p)aln) + pJa(n/p) = 0 mod (pn)3,
for every integer n. But we recall that they also satisfy the
identities

a(np) -a(p)a(n) + p2a(n/p) = 0.
Subtracting, we find

(alp) - A(p))al(n) = 0 mod (pn)g.
We wish to infer from this that in fact A(p) = a(p). We take

n=1. Because a(1)=1, we get a(p) - A(p)= 0 mod pS. But both a(p)
and A(p) are usual integers, whose absolute values are at most

2p3/2. So al(p) - A(p) is an integer of absolute value at most 4p3/2.

3

But a(p) - A(p) is divisible by p~, so if nonzero its absolute value is
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at least pS. But 1o3 > 4p3/2 for p > 3. Therefore A(p) = a(p) for p > 3,
p=4.
For the sake of completeness, let us show that for p=2, =2,

trace(Frob[F2 | H1(|P1®ﬁ2, j*(Sym2(9))) = 0.

Because the cohomology groups Hi(ﬂ31®f2, j*(Symz(g)) vanish for
1=1,the Lefschetz Trace Formula gives
’trace(Frob[l_-2 | Hl(IPl(X)fQ, j*(Sym2(9»))) =

-2

% in P

L(F ) Trace(FrobX’[F2 | 5 (SymZ2(g))).

There are sufficiently few [ y-rational points in Pl that this

computation is quite feasible. The points x=1 and x=o are both
cusps, at each of which the trace of Frobenius is 1 ( indeed the

restriction to the cusps of j*(Symk(%)) for any k>0 is the constant

sheaf). At the point x=0, Sym?2(3) is the Sym? of the Hl of the
elliptic curve E of homogeneous equation

X3 +v3+273 -0
over 5. This curve has 3 [y rational points (the three Fo-points

where exactly one of X,Y or Z vanishes): as this number of rational
points is given by

1+ 2 - Trace(FroblF2 | Hl(E®f2, Qy),
we see that Trace(Frob[F2 | HL(E® f2, 68) = 0. Therefore the two
eigenvalues of Frob[F2 on HL(E® ?2, @e) are +i(2)1/2 Therefore the

three eigenvalues of Frob[F2 on Sym2(H1(E® f2, 68)) are -2, -2, 2.

Hence for the point x=0 we have
Trace(Frob, Fo | j*(Sym2(9»))) = (-2) + (-2) + 2 = -2.

Thus we find that
2. L(F ) Trace(FrobX,[F2 | j*(Sym2(9))) =1+1+(-2) = 0,

X in P

as required.
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8.0 The basic setting
(8.0.1) To motivate this chapter, start with an algebraically
closed field k, n > 2 an integer, &1, &9, .. &, a set of n distinct

points of Ai(k), ¢4 a prime number invertible in k, N>1 an integer
which is invertible in k, and ¢ a primitive N'th root of unity in k.
We are interested in "describing” all objects of T ) which are lisse on
Al - {oeq, o, .. oupy}, cohomologically rigid, and such that all

eigenvalues of all local monodromies of ¥ are N'th roots of unity. We
wish to do this describing in as universal a way as possible.
(8.0.2) Thus we fix an integer N > 1. As in 5.5.2-3, we have the
rings

RN,@ = Z[CN, 1/N¢], ¢N = a primitive N'th root of unity
and

SN,n,@ = RN,Q[Tl’ e, Tn][l/A], A = Wi;gJ(Ti - TJ)

We fix an embedding B
RNn,e = Gy,
le., we fix a primitive N'th root of unity in 68' We denote by E = E
the fraction field of RN,@- We denote by A the induced place of the
"abstract” field E, and by E, the A-adic completion of E. We denote
by ¢ the unique ring homomorphism
¢ :SNn,e >k
for which ¢(¢p) = ¢ and for which ¢(T;) = «; for 1 <i < n.
(8.0.3) Over SN,n,é’ we have Al with its n disjoint sections
{Tq, .., Ty}, and coordinate X1. This space
(AT- (T4, .., TSy ng
is the spec of the ring SN’nJrl’e, in which n+1 variables are denoted
Tq, .., Ty, X1. More generally, for each integer r 2 0, we will have
occasion to consider the space
Aln, r+1)RN,€ = Spec(RN’e[Tl, v Ty X, e ’Xr+1][1/An,r]’
where
Mgy = (T (T = T, (X = TOYT, (Xprq - X3,
[The indices 1 and j run in {1,2,..,n}, the index a in {1,..,r+1}, the
index k in {1,..,r}; when r=0 the empty product TT (X} 41 - Xi) is

understood to be 1.]
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(8.0.4) A more illuminating way to think of A(n, r+1)RN 0 is as

lying in the r+1 fold fibre product of (Al- {Tq, .., Tn})SN ne with

itself over Sy, p, as the open set where the function TT,(Xy4q - X))
1s invertible. Thought of this way, we see r+1 projection maps
pri @ Aln, r+1)RN y - (Al- {Tq, .., Tn})SN n
(Tl’ ey Tl’l’ Xl’ vy Xl”+1) = (Tl’ vy Tl’l’ Xi)‘
(8.0.5) Strictly speaking, A(n, r+1)RN 0 depends on the integer n

Y/

and on the ordered set {1,2,.. , r+1} (because TT (X} 41 - Xi)
depends on the order). For each nonempty subinterval

[1,1:= {1, 1+1, ..., gy € {1,2,..., r+1},
we may form the space A(n, [i,j])RN 0 by forming the j+1-i fold

fibre product of of (Al— {Tl, with itself over Sy 4 o,

’ Tn})SN,n,é

.....

invertible. We have natural projections

Pr(i il lo,p] P AL LIDR Y, = Aln, losplRy

(Tl’ vy T Xi’ vy XJ) = (Tl’ ey Tl’l’ XO(’ vy XE)),
whenever [o,p] C [i,jl. In this notation, the projection pr; above is
PIT1 r+11,[1,i]

8.1 Interlude: Kummer sheaves
(8.1.1) We work in the setting 8.0. On (G

n:

m)RN,é with coordinate

Z, we have the Kummer covering of degree N, of equation yN - 7.
This 1s a connected LLN(RN e)—torsor, whose existence defines a
sur jective homomorphism
1 (Grg)Ry ,) > MN(RN, Q)
The chosen embedding Ry 4 — 68 gives an embedding py(Rpy o) —

@ex, which we can think of as a faithful @e—valued character Xy of
the structural group Mp(Ry 8)' The composite homomorphism

1 (G ) = HN(RN,Q) - @@X

Ry, 0
defines the Kummer sheaf f’XN on (Gm)RN,é'
(8.1.2) More generally, any character

p:UN(Ry, ) = Qp*
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defines in this way a Kummer sheaf ‘E’p on (G Any such

)RN,e'
character p is some power of X, say p = (XN)a for some integer a

(which is unique mod N).
(8.1.3) For any scheme W and any map

W = (B)Ry
the Kummer sheaves f*f,p i= ‘f’p(f) and f*f,XN i= ‘E’XN(f) on W are
related by
- - &
‘f’p(f) - f’XN(fa) - (‘E’XN(f)) %
(8.1.4) An alternative description of the Kummer sheaf f’p(f) on

W is this. One considers the covering of W of equation yN = f, with
structural map

w (yN = ) - w. B
The zeroeth direct image sheaf ™, Qy has a LLN(RN 8) action, and its

p-component 1s the sheaf f’p(f) on W.

8.2 Naive convolution on (Al- {Tq, ..., Tn])SN noe

(8.2.1) We continue in the setting 8.0. Denote by Lisse(N,n,?) the
category of lisse Qp-sheaves on

Aln, DRy, = (AL- ATy, ..., To)sy 1 o

For each nontrivial @ex—valued character X of the group HN(RN,Q),
we define an exact functor, "naive convolution with f,x", denoted
NCX’ from Lisse(N,n,?) to itself, as follows. Consider the space

A(n,2)RN 0 with its two projections to A(n,l)RN 0 We define
NCy () := RMpro)(pry (L y (%, - x4))-
Lemma 8.2.2 In the setting 8.2.1, let ¥ in Lisse(N,n,¢), and X an
arbitrary @gx—valued character of HUN(RY ).
1) The sheaves Ri(pr2)!(pr1*(?)®ﬁx(xz _ Xl)) are all in Lisse(N,n,?).

2) If X is nontrivial, they vanish for i=1.
3) If X is nontrivial, the functor NCX 1s exact.
4) If X is nontrivial, and if F is mixed of weight <w, then NCX(?) is

mixed of weight < w+1.
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proof 1) Over the target A(n,l)RN 0 the total space is a relative Al
with coordinate X1, minus the n+1 disjoint sections {T¢, ... , T, XoJ.
The sheaf prl*(?)®ﬁx(x2 - X4q) is lisse on this space. Because the

base is normal and connected with generic point of characteristic
zero, any lisse sheaf 1s automatically tamely ramified along each of
these missing sections, as well as along o. The lisseness of the

Ri(pr2)!(pr1*(?)®£ﬁx(x2 _ Xl)) now results from the standard
specialization theorems, cf. [Ka-SE, 4.7.1].

2) Since 7 is lisse, and our morphism is affine and lisse of relative
dimension one, proper base change shows that the only possibly

nonvanishing cohomology sheaves are those with i=1 or i=2. As 7 is
lisse outside the n disjoint sections {Tl, . Tn}, it is lisse along the

section Xo. If X is nontrivial, the sheaf pri*(?)®f,x(x2 - Xq) is

totally ramified along the section X5, and this remains true after

passage to any geometric fibre. On a geometric fibre, say (T; = «j,

Xop = p), the H2c must vanish: already the inertia group I(p) at p
acts as a scalar ¢=1, so has no nonzero co-invariants, and a fortiori
the entire 14 of the geometric fibre has none either. By proper

change, the sheaf R2(pr2)!(pr1*(?)®ﬁx(xz _ Xl)) vanishes.

3) This results formally from 2), by the long exact cohomology
sequence.
4) This is Weil II [De-Weil II, 3.3.1]. QED

Corollary 8.2.3 In the setting 8.2.1, let r>1 be a positive integer,
¥4, .., T441 objects in Lisse(N,n,¢), and X1, .., X nontrivial @ex—
valued characters of W (R p). Consider the objects 3¢, 4,.., 3, in

Lisse(N,n,2) defined inductively by
Yo = ¥4,

Y = ?r+1®NCXr(9r).
On A(n, r+1)RN 0 consider the lisse sheaf

-----
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and the projection
presq ¢ Aln, r+1)RN,€ — (Al- {Tq, .., Tn})SN,n,é'

We have

.....

-----

proof This follows from parts 1) and 2) of the previous lemma 8.2.2.
Factor the map pr,.4q1 as the composition of successive “one-variable

at a time" projections
T = Pr e+ i1, r+1] P A, et DRy ) = Aln, i+l r+ DR,
(Tl’ ey T Xi’ ey Xl’+1) = (Tl’ cee Tl’l’ Xi+1’ cee Xr+1).

[t suffices to show that for each i1=1, ..., r, we have

n:

.....

and that the other RJ vanish for J=1. For this we argue as follows.
For each i, denote by H; the lisse sheaf on Al(n, [i,r+1])RN 0

Hi= Oy T(£Xk(xk+1 - Xk)®?k+1(xk+l)))'
The map m; sits in a cartesian diagram

Prir+11,[1,i+1]

A, et DRy, Aln, lLi+1DRy,
”il lpr[i,i+1],[i+1,i+1]
A(n, [i+1,r+1] — Aln, [i+1,1+1]

)RN,e )RN,e'
PIrii+1 r+1],[i+1,i+1]

The sheaf

on the source is the tensor product
()™ (F 141 (X)) @4 )R (Pryj et 1,11 D7 (i-1 (XD @ Ly s(x5,4 - %))

of a pullback from the base, namely (m;)*(%;;1(X;41)®¥;41), which

the projection formula takes care of, and of a pullback
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(pr[i;l’+1],[i,i+1])*(91‘10(1)®‘E’Xi(Xi+1 _ Xi)) from the situation of the
previous lemma. QED

8.3 Middle convolution on (Al- (T, .., TpDgy ’

(8.3.1) We continue in the setting 8.2.1. For each nontrivial @ex—
valued character X of the group HN(RN,Q), we now define a left
exact functor, "middle convolution with f,x", denoted MCX’ from

Lisse(N,n,2) to itself, as follows. We view the space A(n,2)RN 0 with
its second projection pro to A(n,l)RN 2 as a relative Al with
coordinate X1, minus the n+1 disjoint sections {Tq, ..., T, Xo}. We
then compactify the morphism pro into the relative pl

-4

pro P XA(n’i)RN,é — A(n’l)RN,é’
by "putting back” the n+2 disjoint sections {Tq, .., Ty, X9, e}

J

A(n,Z)RN 0 > I]31><A(n,1)RN 0

pl’g\ l &2

A(n,l)RN’e.
We then define
MCy (F) := Rl(ErQ)!(J*(prl*(?)(X)iiX(Xz - %))
Lemma 8.3.2 In the situation 8.3.1, let ¥ in Lisse(N,n,?), and X an
arbitrary @gx—valued character of UN(RY ).

1) The sheaves Ri(ErQ)*(j*(prl*(?)(X)f,X(X2 _ Xl))) are all in

Lisse(N,n,?).
2) If X is nontrivial, the above sheaves vanish for i=1.
3) If X is nontrivial, and if ¥ is pure of weight w, then MCX(?) is

pure of weight w+1, and we have a short exact sequence of lisse
sheaves on A(n’l)RN,é’

0 — (lisse, mixed of weight sw) — NCX(?) — MCX(?) — 0.

4) If X is nontrivial, then MCX(?) is related to the middle

convolution of 4.3 as follows. In the notations of chapter 4, take R to
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be the ring Sy , p, D to be the n disjoint sections {Tq, .., T} of Al

over SN . ¢

. 1 _ 1
k: (A D)SN,I’I, i (A )SN,I’],

2 2
the inclusion, and K := k F[1]. We know that K*mid+uj*f’x[1] on

(Al)SN " is adapted to the stratification (Al - D, D), so its

v
restriction to AL - D is of the form (a lisse sheaf)[1]. This lisse sheaf
is MCX(?):

MCX(?)M] = k*(K*midJﬂj*f)X[l]).
proof of 1). Denote by D the divisor {Tq, .., Ty, Xo, e} in

I]31><A(n,1)RN 0 a disjoint union of sections. The key point is that the
sheaf

J*(prl*(‘&r)@)ﬁlx(xz _ Xl))
is adapted to the stratification (I]31><A(n,1)RN 0 D, D) (cf. 4.3), and

of formation compatible with all change of base. Let us make this

explicit. In the exact sequence of sheaves on I]31><A(n,1)RN 0

0 = Jipr*(PI®Ly (x, - xq) = InPri*(PI®Ly (x, - x4) =
— Quot —0,

the sheaf Quot is the direct sum of sheaves Quot(Ti), concentrated

along the section T;, a sheaf Quot(Xy) concentrated along the section

X5, and of a sheaf Quot(e) concentrated along the section . The

adaptedness means that each of these sheaves, viewed (via the
section on which it is concentrated) as a sheaf on the base, is a lisse
sheaf on the base. Therefore R(prp),Quot is a lisse sheaf on the base,

concentrated in degree zero. By the previous lemma 8.2.2,

R(Er2)*(j!(pr1*(?)®£ﬁx(x2 _ Xl))) has lisse cohomology sheaves,

and thus 1) is obvious from the long exact cohomology sequence.

proof of 2). If X is nontrivial, use the fact that formation of

j*(prl*(?)®£ﬁx(x2 _ Xl)) commutes with passage to fibres. Then

fibre by fibre we have a sheaf on Pl with no nonzero punctual
sections and whose stalk at some point p vanishes. Such a sheaf has

vanishing Hl for i=1. By proper base change, we get 2).
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proof of 3). If X is nontrivial, the long exact cohomology sequence
appealed to in the proof of 1) above reads
0 — (pro)yxQuot —» — NCX(?) - MCX(?).

If ¥ is pure of weight w, then each of the sheaves Quot(T;),
Quot(Xo), and Quot(ee) is mixed of weight < w (cf. [Ka-SE, 4.7.4]). The
sheaf (Erz)*Quot 1s just the direct sum of these sheaves, each
viewed on the base. Thus (51”2)*Quot is lisse, and mixed of weight

<w. That MCX(?) is pure of weight w+1 results from the fact that
the formation of j*(prl*(?)®ﬁx(x2 - Xl)) on ﬂjle(n’l)RN,é
commutes with arbitrary change of base on A(n,l)RN i together

with Weil II [De-Weil II, 3.2.3] applied fibre by fibre.
proof of 4). This is a tautology, given the definitions of chapter
4.QED

Corollary 8.3.3 In the situation 8.3.1, let ¥ in Lisse(N,n,%), and X a
nontrivial @ex—valued character of HN(RN,Q)- Suppose that 7 is

nonzero and geometrically irreducible on each geometric fibre of
(AL- (T, ..

1) If ¥ is fibrewise in Ty, so is MCX(EF). In this case, ¥ and MCX(?)

have the same fibrewise index of rigidity.
2) If on a single geometric fibre, ¥ is constant, then ¥ is fibrewise
constant, and MCX(?) = 0.

’ Tn})SN n,4¢

3) If on a single geometric fibre, ¥ is isomorphic to ﬁ&(xl - Ty for
some index i,then ¥ is fibrewise isomorphic to E&(Xl _ Ti)’ and
MCX(?) = 0.

4) If on a single geometric fibre, F is isomorphic to f,p(xl - T)) for
some index 1, and some @ex—valued character p of H(Rpy p) with

p = 7(, then ¥ is fibrewise isomorphic to f,p(xl _ Ti)’ and MCX(?) is
fibrewise isomorphic to ‘f’PX(Xi - Ty

proof These all result, thanks to part 4) of the above lemma 8.3.2,
from what we have already proven about middle convolution with
parameters. Part 1) is just a restatement of 4.3.10.
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To prove parts 2), 3) and 4), we argue as follows. We first show
that if the condition envisioned holds on a single geometric fibre,
then it holds on ever fibre. For this, just apply 4.2.5 to k (%),

k*(?®.ﬁx(xl _ Ti))’ and to k*(?®£a(xl _ Ti)) respectively, noting

that formation of ky(F) commutes with arbitrary change of base

(cf. [Ka-SE, 4.7.2 and 4.7.3]). Once we know that the conditions hold
fibrewise, it suffices to check on all geometric fibres in positive
characteristic. For parts 2) and 3), this is given in 3.3.3, 1a) and 2b).
For part 4), we use 3.3.3, 2b) to show that MCX(?) is isomorphic to

‘EPX(Xi - Ty on every geometric fibre of positive characteristic,

hence in particular on a single geometric fibre. As above, we
consider k*(MCX(?)@)f’a&(Xi _ Ti)) and apply 4.2.5 to it, to

conclude that MCX(?) is fibrewise isomorphic to f’PX(Xi - Ty QED

Second Corollary 8.3.4 In the situation 8.3.1, let r>0 be a positive
integer, ¥4, .., ¥,41 objects in Lisse(N,n,¢) which are all pure of
weight 0, and X1, .., Xy nontrivial @ex—valued characters of
HN(RN,Q)- Consider the objects 9q, 91,.., 9, in Lisse(N,n,¢) defined

inductively by
G0 = T4,

Yy = ?r+1®NCXr(9r).
Consider also the objects Hg, Hq,..., €, in Lisse(N,n,?¢) defined

inductively by
}EO = ?1,
Hq o= ?2®MCX1(}EO),

Hy, o= ?r+1®MCXr(}l’,r).
For 1=0,1,..,r each ¥, is pure of weight i, each @; is mixed of weights

<i, and we have a short exact sequence of lisse sheaves on
Aln,1
(. DRy o



Chapter 8-Motivic description of rigids-10

0 — (mixed of weight <i-1) = §; = H; — O.

proof For r=0, there is nothing to prove. If r>1, this results by
induction from part 3) of the previous lemma 8.3.2. Indeed, suppose
we already have a short exact sequence of lisse sheaves on
Aln,1

DRy

0 — (mixed of weight <i-1) = §; = H; — 0,
and ¥H; is pure of weight i. Applying NCXj’ we get (by 8.3.2, parts 3)
and 4)) a short exact sequence of lisse sheaves on A(n,l)RN 0

0 — (mixed of weight <i) — chi(gi) — NCXi(}(’,i) — 0.

From part 3) of the previous lemma 8.3.2, we get a short exact
sequence of lisse sheaves on A(n,l)RN 0

0 — (lisse, mixed of weight <i) — NCXi(}Ei) - MCXi(}Ei) - 0,
and MCXi(}Ei) is pure of weight i+1. The composite map

1s sur jective, and its kernel is lisse and mixed of weight <i. So we get
a short exact sequence of lisse sheaves on A(n,l)RN 0

0 — (lisse, mixed of weight <i) — chi(gi) — MCXi(}(’,i) — 0.
Tensoring this with 95,4 gives the required short exact sequence
0 — (lisse, mixed of weight <i-1) = 9,44 — Hi+1l — 0,

and shows that ;4 is pure of weight i+1. QED

Theorem 8.3.5 In the situation 8.3.1, fix an integer r > 0. Fix a
choice of (r+1)n arbitrary characters

Xa,i i MNRN, D = Qp%,
and a choice of r nontrivial characters

pr: MN(RN ) = Q%
On A(n, r+1)RN 2 consider the lisse of rank one, pure of weight zero
@e—sheaf

L= (®a,i‘f’xa’i(xa - Ti))(®k=1 ..... rf’pk(xk_,_l - Xk))-
Denote by
) 1_
Prysq - A(n, r+1)RN,é - (A {Tl’ - Tn})SN,n,é

the map
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(Tl’ ey Tl’l’ Xl’ vy Xl”+1) = (Tl’ v Tl’l’ Xl’+1)‘
1) The sheaves RY(pry41)i& on (Al- {Tq, .., Tn})SN,n,é are lisse and

tame, and they vanish for i=r.
2) The sheaf X := R''(pr, 411 is mixed of integral weights in [0,r]. It

sits in a short exact sequence of lisse sheaves
0> Koy 2 K> K., >0

where K_,_1 is mixed of integral weights in [0,r-1], and where X_,
1s punctually pure of weight r.
3) If X_, is nonzero, then its restriction to every geometric fibre of

(pl- {Tq, ..., Tn})SN Lo over SN ,n,¢ Is geometrically irreducible and

cohomologically rigid, with all eigenvalues of all local monodromies
N'th roots of unity.
4) Fix a geometric point of Sy p 0, 1.e,, a ring homomorphism

¢ SN,D,@ - k
to an algebraically closed field k. Denote ¢(T;) := «; in k. On the

corresponding geometic fibre Al- {ocl, .,y ocn} over k, any tame,

geometrically irreducible lisse sheaf which is cohomologically rigid,
and such that all eigenvalues of all local monodromies are N'th roots
of unity, is isomorphic to (the restriction to that fibre of) a nonzero
X _y for some integer r=0, some choice of the characters Xa,i and

some choice of the r nontrivial characters Pk-

proof For a=1, .., r+1, define ¥ in Lisse(N,n,¢) by
?a(Xa) = ®i=1 ..... n‘ﬁxa i(Xa - Ti)‘

Define 9q, 91,.., 9y in Lisse(N,n,?) inductively by
Yo = T4,
Fq = C3‘d2®NCp1(90),

Gy = ?r+1®NCpr(9r).
Define Hp, H4,..., €, in Lisse(N,n,¢) defined inductively by
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}EO = ?1,
H’l = ?2®MCP1(}E0),

Hy = ?H_l@l\/ICpr(}ﬁr).
Assertion 1) results from 8.2.3, which further tells us that X is the
sheaf §,. Thanks to 8.3.4, we get 2), with the further information
that X_, is the sheaf H,..
To prove 3), we successively apply 8.3.3 to the sheaves H;.

To prove 4), we argue as follows. If the F in question is of rank
one, take r=0, and take ¥4 to be the unique sheaf of type

H£X1,1(X1 - Ty, whose restriction to the fibre in question is

.....

F.If the ¥ in question is of rank 2 or higher, the main theorem
5.2.1 gives us an explicit algorithm for choosing the X 5 ; and the py

so that with the resulting choice of

Fo(Xy) = ®i=1 ..... nf’Xa,j(Xa - T;)
our ¥ is the restriction to its fibre of the object H, defined as above.
QED

8.4 "Geometric" description of all tame rigids with quasi-
unipotent local monodromy

Theorem 8.4.1 In the setting of 8.0, fix an integer r > 0. Fix a
choice of (r+1)n arbitrary integers e(a,i), and a choice of r integers
f(k) such that no f(k) is divisible by N. In the product space G x

A(n, r+1)RN 0 consider the hypersurface Hypl(e's, f's) of equation

Denote by
1 : Hyp(e's, f's) — (Al- {Tq, ..., Tn})SN,n,é
the map
(Y, Tl’ ey Tl’l’ Xl’ vy Xl”+f|_) = (Tl’ cee Tl’l’ Xl’+1)'

[Thus we think of Hyp(e's, f's) as a family of hypersurfaces in the
r+1 variables (Y, X4, ..., X;), parameterized by (T4, .., Ty, Xy41).]
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Fix a faithful @@X—valued character X of the group HN(RN,Q),
which acts on Hypl(e's, f's) by moving Y alone.

1) The sheaves Ri’l'[!@e on (Al- {Tq, ..., Tn})SN oo 2re lisse and tame.

2)The X -component (Rimﬁe)x vanishes for i=r.
2) The sheaf X := (Rrﬁlﬁe)x is mixed of integral weights in [0,r]. It

sits in a short exact sequence of lisse sheaves
0> Koy 2 K> K_p =0

where X_,_1 is mixed of integral weights in [0,r-1], and where KXoy

1s punctually pure of weight r.
3) If X _y Is nonzero, then its restriction to every geometric fibre of

(AL- {Tq, ., Tn})SN over SN,n,é is geometrically irreducible and

,n, ¢
cohomologically rigid, with all eigenvalues of all local monodromies
N'th roots of unity.

4) Fix a geometric point of Sy 0, 1.e., a ring homomorphism

¢ SN,n’e - k.

Denote @(T;) = «;

; In k. On the corresponding geometric fibre Al-

{ocl, v, ocn} over k, any tame, geometrically irreducible lisse sheaf

which 1s cohomologically rigid, and such that all eigenvalues of all
local monodromies are N'th roots of unity, 1s isomorphic to a
nonzero X_, for some integer r=0 and some choice of integers e(a,i)

and f(k) as in the theorem.

proof Denote by py the projection
po : Hypl(e's, f's) = Aln, r+1)RN 0
This map is a M~torsor, and hence we have a direct sum

decomposition

(p2)*@g = @p ((p2)*@g )X,
indexed by all characters X: MN(RN,Q) — @ex. The X -component is
precisely
(p)w @y )% = (&, Ly _ (Xg - TRyt Lo (Kpaq - X0
where the characters Xa,i and py are given by the recipe

Xa,i — Xe(a,i)’ pk — Xf(k)

For each integer 1 and each character X, we have
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(Ri'rtlﬁe)x = Ri(prr+1)!(((p2)*®g )X,
Thus we find

(Rim@g)x =

I
w .
o)
=
~
+
H
o
&
=
8)
>
8)
|
,_]
~
|
o
3
&

That all of these sheaves are in Lisse(N,n,?) follows from 8.2.2. For X
faithful, the hypothesis that none of f(k) is divisible by N is
equivalent to the hypothesis that each py is nontrivial. Thus this

theorem is no more or less than a restatement of the previous one
8.3.5. QED

8.5 A remark and a question
(8.5.1) In the case r=1 of the above theorem, we are looking at
the n+1 parameter family of curves in two variables (Y, Xl), with

parameters (Tq, .., Ty, X9), defined by the equation
YN = (TT50x4 - TpelhD)(Imixy - TPeZ)(xy - x )L,

The local systems % _ . in this case are, over C, the (¢4-adic

incarnations of the) Lauricella hypergeometric local systems whose
monodromy was studied extensively by Picard, Terada, and, most
recently, Deligne-Mostow, cf. the bibliography of [Del-Mol.

We should remark that because the factor (TT;(Xo - Ti)e(2’i))

comes from the base, omitting it simply twists K_, by the inverse

of ®1£X2,1(X2 _ Ti))' So essentially we are dealing with the n+1

parameter family of curves in two variables (Y, Xl), with

parameters (Tl, R X2), defined by the more familiar equation

YN = (x4 - Tped)(x, - xp)HL),

(8.5.2) In the case of higher r, the local systems X _, do not seem

to have been the object of much systematic study. One might ask
whether,over C, the ("Betti realizations” of the) local systems X_op

can have "Interesting” monodromy groups also in the case r > 17
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9.0 Introduction

(9.0.1) In this chapter, we will prove (Theorem 9.4.1)
Grothendieck’'s p-curvature conjecture for the regular singular
differential equation corresponding, via Riemann-Hilbert, to any

irreducible rigid local system on an open set of P1l over C: such a
differential equation has p-curvature zero for almost all p if and
only if it has finite monodromy.

9.1 Review of Grothendieck's p-curvature conjecture
(9.1.1) Let S be any smooth connected quasi-projective C-

scheme. On S8 we have the category LocSys(S31) of all local
systems of finite-dimensional C-vector spaces on 3@, On S8 we
also have the category DE(S2") of "analytic differential equations on

San” ie., the category of all pairs (M, V), with M a coherent Ogan-

module M and V an integrable connection V: M — M®Q15an/@ on
M. The functor "sheaf of germs of horizontal sections”,
M - MV := Ker(V: M - M®Qlgan ),
1s an equivalence of categories
DE(S@) = LocSys(Samn).
(9.1.2) On S/C itself, we have the category DE(S/C) of all

"algebraic differential equations on S/.C", i.e., the category of all
pairs (M, V), with M a coherent Ug-module M and V an integrable

connection V: M — M®Q13/(E on M. Inside DE(S/C), we have the full

subcategory RSDE(S/C), consisting of those algebraic differential
equations with regular singular points "at =" in the sense of [De-ED].
Thanks to Deligne's solution of the Riemann-Hilbert problem, cf.
[De-ED] and [Ka-ODW23], we know that the functor "passage to the
analytic”,

(M, V) —» (Man .= M®@S®San, vamn)

1s an equivalence of categories
RSDE(S/C) = DE(san).
Combining this equivalence with the previous one, we see that the
functor “sheaf of germs of holomorphic solutions”,
M (Man)van,
1s an equivalence of categories
RSDE(S/C) = LocSys(Samn).
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In words, any local system on S@! is the monodromy of a unique
algebraic differential equation on S with regular singular points.
(9.1.3) Let us next recall from [Ka-NCMT] and [Ka-ASDE, Intro.],
what it means for an algebraic differential equation (M, V) on S/C,
not a priori assumed to have regular singular points, to have "p-
curvature zero for almost all p”. Given S/C, we can find a subring R
of € which, as a ring, 1s finitely generated over Z and smooth over
R, and a smooth R-scheme 3/R whose C-fibre (via the given
inclusion of R into € as a subring) is S/C. At the possible expense of
enlarging R, but still keeping it finitely generated over Z and smooth
over Z, we can find an affine open U in 3 whose C-fibre Ug is a

Zariski dense affine open U in S, and a pair (I, V) consisting of a
locally free Oq-module of finite rank and an integrable U/R-

connection V : Il — Tﬂ@Qlu/R whose complex fibre is the
restriction to U := Ug of the original (M, V) on S/C.

(9.1.4) Having made such choices (R, U, M, V), we can ask
whether there exists an affine open V in U, whose C-fibre V¢ is

Zariski dense in Ug, such that either of the following two equivalent

conditions holds:

1) for every maximal ideal m of R, with (necessarily finite) residue
field R/m of positive characteristic p, the restriction to V®p(R/m)

of the differential equation (Tl/m7l, V) on UKR(R/m) has p-

curvature zero (meaning that V(D)P = V(DP) for every R/m -linear
derivation D of the affine ring of VT®pR(R/m) to itself).

1') for every prime number p, the restriction to V®pR(R/pR) of the
differential equation (JN/pIM, V) on URR(R/pR) has p-curvature

zero (meaning that V(D)P = V(DP) for every R/pR -linear derivation
D of the affine ring of V®R(R/pR) to itself).

(9.1.5) If there exists such a V (i.e. a V such that 1) and 1') hold)
for one set of choices (R, U, M, V), then there exists such a V for
any other set of choices. The existence of such a V is thus an
intrinsic property of the original differential equation (M, V) on S/C
(indeed an intrinsic property of the germ of (M, V) at the generic
point of S), which is called "having p-curvature zero for almost all

P .
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(9.1.6) It is known [Ka-NCMT, 13.0] that if (M, V) on S/C has p-
curvature zero for almost all p, then (M, V) has regular singular
points, and its local monodromy around any smooth divisor D; at o

In any normal crossing compactification S of S (ie., S open dense in
a projective smooth S/C such that S - S is a union of smooth
divisors D; with normal crossings) is of finite order.

(9.1.7) Grothendieck's p-curvature conjecture is that if (M, V) on
S/C has p-curvature zero for almost all p, then (M, V) satisfies the
following equivalent (equivalent because (M, V) has regular singular
points) conditions:

1) (M, V)& has finite monodromy on S&1,

2) (M, V)3 becomes trivial on a finite etale covering of S&,

3) (M, V) becomes trivial on a finite etale covering of S.

4) (M, V) has a full set of algebraic solutions.

5) There exists a dense open U C S such that (M, V) | U satisfies
the preceding conditions 1)-4) on U.

9.2 Interlude: Picard-Fuchs equations and some variants
(9.2.1) Let us denote by K the function field of S. Thus K is a
finitely generated extension of C. Given any smooth K-scheme U/K,
separated and of finite type, its algebraic de Rham cohomology

groups HiDR(U/K) are finite-dimensional K-spaces endowed with a
canonical integrable C-connection V, the Gauss-Manin connection.
The algebraic differential equations (HiDR(U/K), V) on K/C are called

the Picard-Fuchs equations (in dimension i, for U/K).

(9.2.2) There are two variations on this theme which will be
essential in what follows. The first involves a finite group action.
Suppose we are given a finite group G which acts K-linearly on U/K.

Then G acts K-linearly and horizontally on each HiDR(U/K). For each
irreducible C-representation p of G, we denote by HiDR(U/K)(p) the
p-isotypical component of HiDR(U/K). This 1s a V-stable K-subspace
of HiDR(U/K), so corresponds to a subequation (HiDR(U/K)(p), V) of
(HiDR(U/K), V). In fact, this subequation is a direct factor, since
(HIpR(U/K), V) = &, (Hipp(U/K)(p), V).

(9.2.3) Hironaka has announced, in the introduction to his paper
[Hir-1ES] that given U/K and G as above, we can find a G-
equivariant normal crossing compactification X/K of U/K, i.e., a
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proper smooth X/K which contains U as a dense open set, such that
X-U 1s a union of smooth divisors D; with normal crossings, such

that G acts K-linearly on X/K and such that the inclusion of U into
X is G-equivariant. Youssin, in the introduction to [Youl, has
announced another proof of this same result. Unfortunately, neither
proof of this result has yet appeared (although Hironaka's proof of
equlvarlant resolution for the presumably much harder case of
complex analytic spaces has appeared, cf. the bibliography of [Hir-
IES]). Although this result was already used freely in [Ka-ASDE], and
1ts use in what follows would slightly simplify the exposition, we will
avoid using it here.

(9.2.4) Given U/K as above, by Nagata [Na] there exists a
compactification Xg/K of U/K, i.e., a proper K-scheme Xy which

contains U as a dense open set [if U/K is quasiprojective, we may
take for X its closure in the ambient projective space]. Applying

Hironaka [Hir-RS, Cor 3 of Thm 2] to a compactification Xq/K of U/K,
there exists a proper birational K-morphism m: X = Xy which is an

isomorphism over U, and such that X/K is a normal crossings
compactification of U/K, i.e., a proper smooth X/K which contains U
as a dense open set, such that X-U is a union of smooth divisors D;

with normal crossings.

(9.2.5) Given a second smooth K-scheme V/K which is separated
and of finite type, and a K-morphism {: V — U, we can find a
normal crossings compactification Y/K of V/K, and a K-morphism ¢:
Y — X which "extends” f in the sense that the following diagram

commutes:
f
V - U
N N
Y — X.

P

[Recall the construction: one takes any compactification Yq of Y,

and applies Hironaka [Hir-RS, Cor 3 of Thm 2] to the
compactification Y4 of V which is defined to be the closure in YxX

of the graph of f.]
(9.2.6) Given finitely many K-morphisms f; : V — U, i=1, .., n,

we cahn find a single normal crossings compactification Y/K of V/K
and maps ¢@;: Y — X such that ¢; extends f; for each i; just apply
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the one map statement to the map fqx..xf,;: V = UM and the

normal crossings compactification X of U,
(9.2.7) By functoriality, the inclusion of U/K into X/K induces on
cohomology a horizontal restriction map

(H'pR(X/K), V) = (HIpR(U/K), V).
The image of this map is thus a subequation of (HiDR(U/K), V) which
is denoted (W;HIpR(U/K), V), called the "weight i part” of (Hipg(U/K),

V). It was a fundamental insight of Grothendieck's [Gro-Brauer III,
9.1-4], later generalized by Deligne's mixed Hodge theory [De-Hodge
II, 3.2.17], and for us an easy consequence of the Weil conjectures

and resolution, cf. 9.4.3-5, that the "weight i part"” of (HiDR(U/K), V)

i1s independent of the auxiliary choice of the normal crossing
compactification X/K used to define it.

(9.2.8) Because (WiHiDR(U/K), V) is an intrinsic subequation of
(HiDR(U/K), V), it must, by "pure thought"”, be stable under the

action of G. Here is an explicit geometric way to see this stability. We
can find a normal crossings compactification Y/K of U/K such that
each of the finitely many maps g: U — U, one for each g in G,
extends to a map Pg: Y — X. Then from the commutative diagram

g
ﬁ

< D C
< D C

R
P

we get a commutative diagram of de Rham cohomology groups

(cpg)*
HipR(X/K) = Hipg(Y/K)
lrestr. lrestr.
HIpR(U/K) = Hipgr(U/K)
g*.
But both H!pp(X/K) and H'pRr(Y/K) have the same image in
HiDR(U/K), namely WiHiDR(U/K). So this diagram shows that

WiHIpR(U/K) is G-stable.
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(9.2.9) So for each irreducible representation p of G, we may

form the p-isotypical component WiHiDR(U/K)(p); we call it the
weight i part of HiDR(U/K)(p). It is a subequation both of
(HiDR(U/K)(p), V) and of (WiHiDR(U/K), V). Moreover, we have
W;HIpR(U/K)(p) = (W;HIpR(U/K)) N (Hipr(U/K)(p)).
However, there is another way to describe WiHiDR(U/K)(p) which

will be useful later.
(9.2.10) Recall that for an irreducible representation p of G, the
projector onto the p-isotypical component is the central idempotent
P(p) in the group ring Z[1/Card(G), ¢carq(g)IG] defined by

P(p) := (deg(p)/Card(G)Zy i, g trace(p(g™)e.
We denote by P(p;¢) the K-linear horizontal map

P(p;¢): Hipp(X/K) = Hipgr(Y/K)

defined by

P(p;g) := (deg(p)/Card(G)Zy i, G trace(p(g™))(gy)*.

We have a commutative diagram

P(p;¢)
HipR(X/K) — Hipp(Y/K)
lrestrx lrestry
Hipp(U/K) — Hipp(U/K)
P(p).

By definition, WiHiDR(U/K)(p) is the result of applying the projector
P(p) to the subequation W;HlpR(U/K) of Hipr(U/K). If we think of
WiHiDR(U/K) as the image of HiDR(X/K), we get

WiHIpR(U/K)(p) = Image( P(p)erestry).

This corresponds to going around the diagram by the bottom. If
instead we go around by the top, we get the alternate description

WiHIpR(U/K)(p) = Image( restryoP(p;¢)).

9.3 The main result of [Ka-ASDE] and a generalization
(9.3.1) For the reader’'s convenience, we recall the statement of
the main result of [Ka-ASDE]. Let S be a smooth connected quasi-
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projective C-scheme, with function field K Let Let (M, V) in DE(S/C).
Consider the following condition ():

(%) There exists a smooth K-scheme U/K, separated and of finite
type, a finite group G acting K-linearly on U/K, an irreducible C-
representation X of G, and an integer 1 > 0, such that denoting by

{X9)5 the distinct Aut(C)-conjugates of X, the restriction of (M, V)

to K is isomorphic to @ 4 ((HiDR(U/K)(XO), V).

Theorem 9.3.2 [Ka-ASDE, 5.7] Let S be a smooth connected quasi-
projective C-scheme. Let (M, V) in DE(S/C) satisfy the condition ()
above. Then Grothendieck's p-curvature conjecture holds for (M, V):
if (M, V) has p-curvature zero for almost all p, then (M, V) has
finite monodromy.

(9.3.3) Consider now the following conditions (xx) and (% x):

(%) There exists a smooth K-scheme U/K, separated and of finite
type, a finite group G acting K-linearly on U/K, an irreducible C-
representation X of G, and an integer i > 0, such that the restriction

of (M, V) to K is isomorphic to ((HiDR(U/K)(X), V).

(%% x) There exists a smooth K-scheme U/K, separated and of finite
type, a finite group G acting K-linearly on U/K, an irreducible C-
representation X of G, and an integer i > 0, such that the restriction

of (M, V) to K is isomorphic to (W{HIpR(U/K)(X), V).

(9.3.4) The following theorem generalizes and implies the
theorem [Ka-ASDE, 5.7] stated above. Its proof is essentially already
contained in [Ka-ASDE], but the author only recently understood
this fact.

Theorem 9.3.5 Let S be a smooth connected quasi-projective C-
scheme. Let (M, V) in DE(S/C) satisfy either of the conditions (xx) or
(%% x) above. Then Grothendieck's p-curvature conjecture holds for
(M, V):if (M, V) has p-curvature zero for almost all p, then (M, V)
has finite monodromy.

proof The question is birational on S. So at the expense of shrinking
S, we may apply standard "spreading out” techniques to produce

1) a subring R of C, which is finitely generated and smooth over Z,
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and which contains the cyclotomic ring Z[1/Card(G), CCard(G)]’

2) a smooth affine 3/R, whose C-fibre is S,
3) a smooth U/3, whose restriction to the generic point of ¢ is U/K,

and an Ad-linear action of the finite group G on U/3 which over the
generic point of 3¢ is the given action of G on U/K,

4) a normal crossings compactification X/3 of U/38, i.e., a proper

smooth X/3 containing U as a dense open set, such that (X - g)red
= D is a union of finitely many smooth over 3 divisors Dj in X

which have normal crossings relative to 3,
5) a normal crossings compactification Y/8 of U/, i.e., a proper

smooth Y/3 containing U as a dense open set, such that (Y - g)red
:= € is a union of finitely many smooth over & divisors €; in Y

which have normal crossings relative to 3,
6) for each g in G, an d-morphism 9g Y — X which maps U to U

and induces g on U.
At the expense of further shrinking on &, we may also assume that

1) for each pair of integers (a,b), each of the four Hodge cohomology
groups on &

HP(X, Q3y / 5), HP(X, Q2y , 5(logD)),
HP(Y, Qaqy/3), HP(Y, Q3 3(logk)),

is a locally free O g-module of finite rank, whose formation

commutes with arbitrary change of base on 3.
2) each of the four Hodge-de Rham spectral sequences

(1) E;2P = HP(X, Qay , 5) = Ha*tb(x, Q' /3),
(I log) Eqa:0 = HP(X, Qay , 3(logD)) = HE*P(X, Q" y / 5(logD)),
(11) Ela,b _ Hb(qa[’ Qay/z) N Ha+b(fg, Qg/z),

(II log) Ela’b = HP(vy, Q% 8(logE)) = Ha*+b(y, Q.fg/g(logﬁ)),
degenerates at Eq, and is of formation compatible with arbitrary

change of base on 8.
3) For each g in G, the 3-morphism Qg Y — X induces an

isomorphism of spectral sequences (I log) = (II log). If we identify
(I log) = (Il log) via ¢;jq, then g — e defines an action of G on the

spectral sequences (I log) and (II log).
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4) For each i and j, the restriction maps
FildyoqeeHIO6, QT x/8) = Fildy o HU(X, Q y/ 3(logD))

and

FilJHodgeHi('lg,l, Q.qa[/g) - FilJHodeHi(U, Q.qa[/lg(logg)),
are maps of locally free O g-modules of finite rank whose kernels,
images, and cokernels are locally free O g-modules of finite rank

whose formation commutes with arbitrary change of base on 3.
Moreover, via the identification (I log) = (II log) via ¢;q in 3) above,

these image coincide, and are G-stable subspaces of

Hi(X, Q.X/g(long)) = Hi(y, Q.qa[/g(logg)).

With all these preliminaries out of the way, we are ready to
proceed with the proof of the theorem.
Let us first treat the case (%x). Thus we assume that

Hi(X, Q-X/Z)(logD))(X), which "makes sense” thanks to our

preliminary assumption 3) above, has p-curvature zero for almost
all p. We must show that its complex fibre has finite monodromy on

Ac = S.Denote by {X9}5 the distinct Aut(C)-conjugates of X. It

suffices, by [Ka-ASDE, 4.2.2.3] to prove that the Hodge filtration on
o HI(X, Q x/ 3(logD))(X )

is horizontal, for over 3¢ this is (the de Rham "realization"” of) a

family of mixed Hodge structures whose associated graded family of

pure Hodge structures is polarizable. For this, it suffices to prove

that each individual term HI(X, Q'X/Z)(logD))(XG) has its Hodge

filtration horizontal (under the assumption that

HI(X, Q'X/g(logD))(X) has p-curvature zero for almost all p).

The key observation here 1s that every irreducible
representation X of G is defined over the field (D\(CCard(G))- Therefore

all the Aut(C)-conjugates X © of X are obtained as we let o vary

over the Galois group Gal(Q(tcarq(g))/Q) = (Z/Card(G)Z)™, with a in

(Z/Card(G)Z)* corresponding to the unique element o of this galois
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group with o (¢) = ¢@ for each Card(G)'th root of unity.

Fix an integer a which is invertible mod Card(G), and consider
the automorphism o := 04 in Gal(Q(¢carq(g))/Q). In order to show

that HI(X, Q.X/g(logD))(XO) has its Hodge filtration horizontal, it

suffices to show that for an infinity of primes p,

Hi(X, Q.X/g(logD))(XO)(X)Z(Z/pZ) has its Hodge filtration horizontal.

We will show that HI(X, Q.X/g(logD))(XO)@)Z(Z/pZ) has its Hodge

filtration horizontal for almost all of the infinitely many (thanks to
Dirichlet) primes p which satisfy
p = 1/a mod Card(G).
[f we were to admit the existence of G-equivariant normal
crossing compactifications, as we did in [Ka-ASDE], the desired
horizontality modulo almost any prime p = 1/a mod Card(G) would

be given by [Ka-ASDE, 3.3.2], applied not to X but rather to X © (for

then (XO)(p) in characteristic p is just (the reduction mod p of) X
itself).

Since we wish to avoid assuming the existence of G-equivariant
normal crossing compactifications, we must give a slightly more
involved, but not essentially different, argument.

To say that HI(X, Q.X/g(logD))(XU) has its Hodge filtration

horizontal means that for any derivation D of &/R, acting via the
Gauss-Manin connection, the composite map

HI(X, Q.X/g(log(D))
| v(D)

HI(X, Q.X/g(log(cD))
L P(x;¢)
HI(Y, Q oy 4(log(E))
maps FilJHodgeHi(X, Q.X/g(log(D)) to FilJHOdeHi((Ig}, Q.y/g(log(g)) for

every integer j>0. By Griffiths transversality [Ka-ASDE, 1.4.1.6],
V(D), maps Fildy o H! to FilJ=1,  HL The other map, P(X 7;¢),

respects the Hodge filtration. Thus HI(X, Q.X/g(logD))(XG) has its

Hodge filtration horizontal if and only if for each j20 the composite
of the associated graded maps
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ngHodgeHi(X, Q.X/g(log(D))
| v(D)

grd ™ qp HIX, Q5 3(10g(D))
L P(x9;¢)
gr"j_lHodgeHi((g’ Q°rg/2>(log(€))

vanishes.

Since & 1s smooth over R and R is smooth over Z, & is smooth
over Z, so 2>®[Fp is smooth over Z/pZ, and hence 2>®|Fp is reduced.

Therefore the absolute Frobenius F s on Z>®[Fp 1s injective. So to

show this vanishing on dQ®I ., it suffices to check after base change

p}
by the absolute Frobenius F g of Z>®[Fp. Thanks to the main

technical result [Ka-ASDE, 3.2], and its functoriality for the
mappings Pg - Y — X, this composite, after reduction mod p and

base change on Z>®[Fp by absolute Frobenius, becomes (up to sign)

the composite of associated graded maps for the conjugate filtration
(see [Ka-ASDE, 2.3])

gri_‘jconHi(X’ Q'X/Z)(log(D))(X)ZFp
L w(D)

gri+i=i_  Hi(x, Q x /5(og(DN®7F
L P )P g)

orl+i=J_ Hi(y, Q°y/5(log(€))®zﬂ:p

where ((D) denotes the p-curvature. Thus we need to see that this

composlte vanishes, for almost every prime p with
p = 1/a mod Card(G).

Now the map P((XO)(p);q}) respects the conjugate filtration, while
the p-curvature ¢(D) maps Fili_J.COn to Fillﬂ_ujcon. Thus we are

reduced to showing that the composite map
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HI(X, Q %/ gog(DN®7F,
L ¢(D)
HI(X, Q.X/Kg(log(D)))@Z[Fp
L P o) ®g) = POx;9)
HI(Y, Q qy/ g(log(E))®7F
maps
Fill™J_ HI(X, Q 'y 3(log(D)))®7F,
to
Fil2*i=J_ HI(Y, Q qy/ g(log(E)) @71 .
But this composite map is in fact the zero map for almost all primes
p = 1/a mod Card(G), precisely by the hypothesis that
HI(X, Q x / 5(logD))(X)

has p-curvature zero for almost all p, and hence in particular has
p-curvature zero for almost all primes p = 1/a mod Card(G). This
concludes the proof of case (%x).

We now turn to the proof of the theorem in the case (x%x). The
proof is very similar to that of case (%), but for the sake of
completeness we will spell out all the details. Thus we assume that

WiHIOC, Q" g(logD)(X) :=

(Image(HI(X, Q' y /3) = HI(X, Q x /3(logD))N(X)
has p-curvature zero for almost all p. We must show that its
complex fibre has finite monodromy on d¢ = S. Denote by {X %}

the distinct Aut(C)-conjugates of . It suffices, by [Ka-ASDE, 4.2.1.3]
to prove that the Hodge filtration on

D5 WiHI(X, Q y/ 510ogD))(X )
is horizontal, for over 3¢ this is (the de Rham "realization"” of) a

family of polarizable pure Hodge structures. For this, it suffices to

prove that each individual term WiHi(X, Q.X/g(logD))(XO) has its

Hodge filtration horizontal (under the assumption that

WiHi(X, Q.X/z(logD))(X) has p-curvature zero for almost all p).

To say that WiHi(X, Q.X/g(logD))(XO) has its Hodge filtration
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horizontal means that for any derivation D of X/R, acting via the
Gauss-Manin connection, the composite map

HI(X, Q.X/ﬁ)
lrestr.

HI(¥, Q.X/g(log(D))
| v(D)

HI(X, Q.X/Kg(log(D))
L P(x%;9)
HI(Y, Q oy 4(log(E))

maps FilJHOdgeHi(X, Q.X//S) to FilJHOdeHi('Q, Q.qal/z)(log(ﬁ)) for every
integer j>0. By Griffiths transversality [Ka-ASDE, 1.4.1.6], V(D), maps

FilJHodeHi to Filj_iHodgeHi. The other two maps, restriction and
P(x 9;¢), respect the Hodge filtration. Thus
WiHi(X, Q.X/g(long))(XO) has its Hodge filtration horizontal if and

only if for each j20 the composite of the associated graded maps

glfijodgeHi(X’ QX/A)

l restr.

ngHodgeHi(X, Q.X/g(log(b))
| v(D)

ng‘lHodgeHi(X, Q'X/g(log(D))
L P ;¢
ng‘lHodgeHi((Q, Q.fg/g(log(g))

vanishes.

Fix an integer a which is invertible mod Card(G), and suppose
that o := 04 in Gal(Q(¢c4rq(G))/ Q). In order to show that this last

composite vanishes, it suffices to show that it vanishes mod p for an
infinity of primes p. We will show that it vanishes mod p for almost
all of the infinitely many (thanks to Dirichlet) primes p which
satisfy
p = 1/a mod Card(G).
Since & is smooth over R and R is smooth over Z, & is smooth
over Z, so Z>®[Fp is smooth over Z/pZ, and hence Z>®[Fp is reduced.
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Therefore the absolute Frobenius F on Z>®[Fp i1s injective. So to

abs

show this vanishing on dQI ., it suffices to check after base change

p’
by the absolute Frobenius F 4 of Z>®[Fp. Thanks to the main

technical result [Ka-ASDE, 3.2], and its functoriality for the
mappings Pg Y — X, this composite, after reduction mod p and

base change on Z>®[Fp by absolute Frobenius, becomes (up to sign)

the composite of associated graded maps for the conjugate filtration

eriT o HIX, Q%) 3)®7F
l restr.
gri=J_ HI(X, Q' x/ 3(log(D)®7F,
| w(D)
gri*ti=J_ Hi(x, Q.X/g(log(D))(X)Z[Fp
L P o) P)g) = P(x;9)
gri 70 HIY, Q' g(log(E)®7F,

where (D) denotes the p-curvature. Thus we need to see that this
composite vanishes, for every prime p with p = 1/a mod Card(G).

Now both the restriction map and the map P((XG)(p);Lp) respect the

conjugate filtration, while the p-curvature qJ(D(p)) maps Fili_J.Con to

Fill+i_~jcon. Thus we are reduced to showing that the composite map

HI(X, Q.X/5)®Z[Fp
l restr.
HI(X, Q' x/ g(log(D)®7F,
| w(D)
HI(X, Q x/3(log(D)®7F,
L P2 P)g) = P(x;9)
HI(Y, Q' 3(log(E))®@7F,
maps
Fill™J_ HI(X, Q' /3)®7F

to
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Fil2+i_JconHi(q@l, Q.y/g(log(g))®zﬂ:p.
But this composite map is in fact the zero map for almost all primes
p = 1/a mod Card(G), precisely by the hypothesis that
WiHI(X, Q %/ 3(logD))(X)

has p-curvature zero for almost all p, and hence in particular has
p-curvature zero for almost all primes p = 1/a mod Card(G). QED

9.4 Application to rigid local systems

Theorem 9.4.1 The regular singular differential equation
corresponding, via Riemann-Hilbert, to any irreducible rigid local

system on an open set of P1 over C satisfies Grothendieck's p-
curvature conjecture: such a differential equation has p-curvature
zero for almost all p if and only 1if it has finite monodromy.

proof Let {ocl, U ocn} be n > 2 distinct complex numbers. Suppose

that on (AL(C)- {oq, o, a3 we are given an irreducible rigid
local system ¢ of C-vector spaces whose underlying regular

singular differential equation, say (M, V), has p-curvature zero for
almost all p. Thanks to the previous theorem 9.3.5, it suffices to
prove that (M, V) satisfies the condition (*xx) of 9.3.3.

To prove that (M, V) satisfies (x%%), we argue as follows. The p-
curvature hypothesis implies that ¥ ¢ has local monodromy of finite

order around e and around each of the points «; [Ka-NCMT,13.0.2].
S0 we are reduced to proving the following proposition, which may
be of independent interest.

Proposition 9.4.2 Let {oq, .., &y} be n = 2 distinct complex
numbers. Suppose that on (AL1(C)- {ocqg, o, a3 we are given an
irreducible rigid local system % ¢ of C-vector spaces whose local

monodromies are all quasiunipotent. Then the underlying regular
singular differential equation satisfies (%xx) of 9.3.3.

proof Fix an integer N such all the eigenvalues of all the local
monodromies of ¥ ¢ have order dividing N. According to 5.10.6, F
has a Q(¢p)-form ?cycl on (AL(C)- {oeg, o, ap})3, and for every
finite place A of E := (D(CN), there exists a lisse Ey-sheaf ¥, on the

algebraic variety (nl - {ocg, o, o) with (F,)20 = (?Cycl)(X)EE)\.
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Fix one such finite place A, say_of residue characteristic ¢, and
choose (1) an isomorphism of fields @y = C. Denote by ¥, the lisse

@e—sheaf ?7\®E>\@€ on (Al - {ocg, .y o). Then

(Fp = FecQy,
and %, is a tame, geometrically irreducible lisse sheaf which is

cohomologically rigid, such that all eigenvalues of all local
monodromies are N'th roots of unity. For technical reasons, it will be

convenient to consider the dual local system (";Fe)v, which, like ?Fe,

1s a tame, geometrically irreducible lisse sheaf which is
cohomologically rigid, such that all eigenvalues of all local
monodromies are N'th roots of unity.

According to 8.4.1, (¥ )~ on (AL - {ocg, .., apl)g arises as

follows. For a suitable choice of an integer r > 0, (r+1)n arbitrary
integers e(a,i), r integers f(k) such that no f(k) is divisible by N, and

a faithful @ex—valued character X of the group uyN(Z[1/N¢, gD,

there is a(n explicit) smooth affine hypersurface of relative
dimension r, on which the group WN(Z[1/N¢, ¢l acts,

1 : Hyp(e's, f's) — (Al- {Tq, ..., Tn})SN n
with the following properties:
1) For all i, the sheaves Riﬁ!ﬁé on (Al- {Tq, .., Tn})SN Lo are lisse

and tame (and mixed of integral weights in [0,i], by [De-Weil II]).
2)For any faithful character p of the group W(Z[1/N¢, ¢nl), the p-
component (Rim@e)P vanishes for i=r, and the sheaf (er@e)P 1s
lisse and mixed of of integral weights in [0,r].

3) The weight r quotient ((Rrﬁgﬁg)XLr of (Rrﬂ!@e)x, restricted to

restricted to (Al- {otq, .., apl)g, is isomorphic to (F ).

We now apply Poincare duality to this situation. By 1), all of
the sheaves Riﬁ*@g on (Al- {Tq, ..., Tn})SN Lo are lisse and tame,

mixed of integer weights > 1, and of formation compatible with

arbitrary change of base on (Al- {Tq, - . By 2), for any

’ Tn})SN,n,é
faithful character p of the group WN(Z[1/N¢, ¢nl), the p-component
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(Riﬂ*@e)p vanishes for i#r, and the sheaf (R'm,Q))P is lisse and
mixed of of integral weights > r. By 3), the weight r subsheaf
Wr(Rrﬁ*(D\e)X of (Rr’l'[*(De)X, i.e., the X -isotypical component of

W(RT'1,Q,p), restricted to (Al- {ocq, .., apt)g, is isomorphic to 7.
Denote by R the subring of C defined by
Rop = ZI1/N¢, tp, o, ) g, 1/1_[1;”.(0(1 - ocj)].
The ring R is finitely generated over Z as a ring, and there exists a
nonzero element & in Rg such that R := Rgl1/8] is smooth over Z.
We have a canonical ring homomorphism
SNl’l@_) R,Ti'—> -

Via this base change, the open curve (Al- {Tl, over

’ Tn})SN n,?¢

SN .n.¢ glves rise to an open curve (Al— {ocl, v ocn})R over R, whose
complex fibre (via the given inclusion of R into €) is the complex

curve (Al- {ocg, o, apdc.
Now consider the pullback R to (AL- {oeg, .., aup})p of the

smooth hypersurface

m : Hyp(e's, f's) = (Al-{Tq, .., Tn})SN no

and of the various cohomology sheaves to which it gives rise.
Thanks to Hironaka [Hir-RS, Cor. 3 of Thm. 2], we can find a normal
crossings compactification of this pulled-back morphism, first over

the generic point of (Al- {ocq, .., xR, and then, by "spreading
out”, over a dense open set, say U, of (Al— {ocl, e ocn})R, say
R ¥ > (A= (g, ., o DR

It is standard (a proof is given in 9.4.3 below) that, for every i, we
have

Wi(RITt,,Qp) | U = Image(RI(R) 0y = Ri(nR).Qy).
Extending scalars from R to C, we find that over a dense open set U
= Ug of (Al- {ocg, .., o)), there exists a normal crossings
compactification E(]Z : X = U of a smooth morphism m¢ : Hyp = U

on which W) acts, and a faithful character X of Wy such that
FplU = (Image(RM(mg)Qp = RICe) sy Qp)(%).

Restricting to U2 using the comparison theorem [SGA4, Exp. XVI,
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4.1] and the isomorphism 68 = C, we find
Fel U = (Image(Rr(E(E)an*(E - Rf(nm)an*@)(&).

Because X/U is a normal crossing compactification of Hyp/U, the

relative de Rham cohomology sheaves on U, HiDR(X/U) and

HiDR(Hyp/U), are coherent Uyj-modules with integrable connection,

of formation compatible with arbitrary change of base on U. They
are known [Ka-NCMT] to have regular singular points. Under the
Riemann-Hilbert correspondence, they correspond to the local

systems Ri(Eq:)an*(E and Ri(ﬁq:)an*(ﬁ on yamn,
Taking i=r, we see that, on U, the regular singular differential
equation corresponding to the local system ¥ is

(Image(H pR(X/U) = H pr(Hyp/U))(X).

Restricting to the generic point of U, we see that this differential
equation is indeed of type (x%x). This concludes the proof. QED
(9.4.3) [t remains only to recall why

Wi(RI, @) | U = Image(RI(TR) Q) = RI(TR),. Q).
[t suffices to check at all closed points. Since both sides commute
with arbitrary change of base, we are reduced to checking that if k

is a finite field of characteristic = ¢, X/k is proper and smooth, and
D = UD; is a union of smooth divisors in X with normal crossings,

then under the restriction map, we have
Image(H(X®k, Qy) » H((X-D)®k, Q) = WiH((X-D)®k, Q).

To see this, consider the Leray spectral sequence

EoPd = HP(X® k, R9j, Q) = HPYA((X-D)®k, Q)
for the inclusion map j: X-D — X. We have j*@e = 68’ and for each
q =z 1,we have

RqJ*@e = @il ¢ 12 << iq @g(—q) | D110D1200D1q

Thus EoP:9 is pure of weight p+2q, and hence E, P9 is pure of weight
p+2q for every r > 2. Since d, has bidegree (r, 1-r), we have d, = 0

for all r> 3. Looking at the weights of the E, = Ez terms, we see
that HI((X-D)®yk, Qp) is mixed of weight > i, and that
WiHI((X-D)®y k, Qp) = E,LO = E£LO.
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Since this is a first quadrant spectral sequence, do Kkills E2i’o, SO we

have a surjective map E2i’0 - ESi,O, l.e, a surjective map
HI(X®k, Q) > WHI((X-D)®k, Qp),

as required.

(9.4.4) Here is an alternate proof of a stronger statement. Let X

be proper and smooth over a finite field k of characteristic # £, and
Z in X any closed subscheme. Then for every 1,

Image(H(X®k, Qy) » HI((X-2)®k, Q) = WH((X-2)®)k, Qp).

To prove this, we argue as follows. Passing to connected components,
we may reduce to the case when X is connected, of some dimension

d. Now HI((X-2)® k, Q) and H.2d71((X-2)® k, Qy) are Poincare

dual, with values in (Dg(—d). Looking at weights, we see that under

this pairing, the dual of WiHi((X—Z)(X)kE, @e) is the weight 2d-i

quotient of Hc2d_i((X—Z)®kE, 63)' So our statement is dual to the

statement that

Image(H.2471((X-2)® k, 0p) —» H2ATI(X®k, Q)

is the weight 2d-i quotient of Hc2d_i((X—Z)®kE, 68)’ or what is the

same (since H2d_i(X®kE, 68) is pure of weight 2d-i), that
Ker(H.2d71((X-D)®y k, @y) —» H2d(X® k, Qp))

1s mixed of weight < 2d-i. But this is clear from the excision
sequence

LH2471-1(D®y k, @)) = H2d7(X-D)®k, Op) - H2d7i(x @k, Q)))..
and the fact that, Z being proper over Kk, H2d_i_1(D®kE, @g)) is

mixed of weight < 2d-i-1, by [De-Weil II, 3.3.1].
(9.4.5) As a minor variant on this argument, we could more

explicitly exploit the exactness of the functors ngi (:= associated
graded of weight i for the weight filtration) on the category of 62_

W

finite dimensional @e[Gal(E/k)]—modules. Applying gr "V o 4_; to the

exclslon sequence gives the injectivity of
ng2d_i(HC2d_i((X—D)®kE, @e)) - ng2d_i(H2d_i(X®kE, @g))).

The Poincare dual of this injectivity is the surjectivity of



Chapter 9-Grothendieck’'s p-curvature conjecture for rigids-20

er Vi(HIX ® k, Dp) = gr Wi (H((X-D)®yk, Q).
Since H(X®1 k, @p) is pure of weight i, while H{(X-D)® k, Q) is
mixed of weight 2 1, this i1s the required sur jectivity of
H(X®)k, Qp) = W{HI((X-D)®, k, Q).

9.5 Comments and questions
(9.5.1) In addition to the general result [Ka-ASDE, 5.7],
Grothendieck’'s p-curvature conjecture has been proven for several

explicit families of differential equations on open sets of Pl 1t is
striking that in all of these cases, whenever the equation in question
is irreducible, it is in fact rigid (in the sense that its local system of
germs of holomorphic solutions is a rigid local system). These cases
were:

1) the (differential equation satisfied by the) Gauss hypergeomtric
function oFq, cf. [Ka-ASDE, 6.2 and 6.9.4],

2) the (differential equation satisfied by the) generalized
hypergeometric function F cf. [B-H,4.8 and 4.9],

3)the ("Pochhammer" differential equation, satisfied by) the
hypergeometric functions of Pochhammer type, cf. [Har, Theorems
1.2, 1.3, 2.11.

ntn-1:

(9.5.2) In all three of these cases, an essential step is to compute,
in terms of the parameters of the equation (i.e., in terms of our
"numerical data” of chapter 6, which specifies all the local
monodromies) precisely what is the condition to have p-curvature
zero for almost all p. In each case, one gets an a posteriori
verification that, having begun with a differential equation
satisfying (%), one has a direct factor of a differential equation
satisfying (%). This was the method of proof in [Ka-ASDE, 6.2]. It was
also the method employed in the exposition of [B-H] given in [Ka-
ESDE, 5.5].

(9.5.3) However, it should be emphasized that both Beukers-
Heckmann and Haraoka prove their results without invoking
[ASDE, 5.7]. Rather, what they do, at least in the irreducible case
with quasiunipotent local monodromy, is to consider the unique (up
to scalars) hermitian form carried by the local system F¢ in

question which expresses that the dual local system to ¢ is just its
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complex conjugate. They calculate the signature of this hermitian
form in terms of the parameters of the equation, and then show
that the form is (positive or negative) definite provided the
parameters satisfy the conditions of p-curvature zero for almost all
p.

(9.5.4) In contrast, while we have proven that Grothendieck's p-
curvature conjecture holds for (the regular singular differential
equation underlying) any irreducible rigid local system on an open

set of IPl, we do not know how to tell, in terms of the numerical
data of chapter 6, or equivalently in terms of the data of all the
local monodromies, whether or not a particular such differential
equation has in fact p-curvature zero for almost all p. Presumably
there is a simple explicit algorithm for computing, in terms of the
numerical data, whether or not we have p-curvature zero for
almost all p. What is it? If one is more optimistic, one might ask
how to compute, in terms of the nhumerical data, the dimension of
the differential galois group (which for regular singular points is the
Zariski closure of the monodromy group), or even the isomorphism
class of its Lie algebra. Much remains to be done.
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