Nonconvex Optimization and Its Applications

Volume 13

Managing Editors:

Panos Pardalos
University of Florida, U.S.A.

Reiner Horst
University of Trier, Germany

Advisory Board:

Ding-Zhu Du
University of Minnesota, U.S.A.

C.A. Floudas
Princeton University, U.S.A.

G. Infanger
Stanford University, U.S.A.

J. Mockus
Lithuanian Academy of Sciences, Lithuania

P.D. Panagiotopoulos
Aristotle University, Greece

H.D. Sherali
Virginia Polytechnic Institute and State University, U.S.A.

The titles published in this series are listed at the end of this volume.

Rigorous
Global Search:
Continuous Problems

by

R. Baker Kearfott

University of Southwestern Louisiana

Ad

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON

A C.LP. Catalogue record for this book is available from the Library of Congress.

ISBN 0-7923-4238-0

Published by Kluwer Academic Publishers,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Kluwer Academic Publishers incorporates
the publishing programmes of
D. Reidel, Martinus Nijhoff, Dr W. Junk and MTP Press.

Sold and distributed in the U.S.A. and Canada
by Kluwer Academic Publishers,
101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed
by Kluwer Academic Publishers Group,
P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved

© 1996 Kluwer Academic Publishers

No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,

including photocopying, recording or by any information storage and

retrieval system, without written permission from the copyright owner.

Printed in the Netherlands

CONTENTS

LIST OF FIGURES

LIST OF TABLES

PREFACE

1

PRELIMINARIES

1.1 Interval Arithmetic

1.2 Interval Linear Systems

1.3 Derivatives and Slopes

1.4 Automatic Differentiation and Code Lists

1.5 Interval Newton Methods and Interval Fixed Point Theory
1.6 The Topological Degree

SOFTWARE ENVIRONMENTS

2.1 INTLIB

2.2 Fortran 90 Interval and Code List Support
2.3 Other Software Environments

ON PRECONDITIONING
3.1 The Inverse Midpoint Preconditioner
3.2 Optimal Linear Programming Preconditioners

VERIFIED SOLUTION OF NONLINEAR
SYSTEMS

4.1 An Overall Branch and Bound Algorithm

4.2 Approximate Roots and Epsilon-Inflation

vii

xi

xiii

18
26
36
50
66

71
71
78
102

113
115
120

145
146
150

vi

4.3
4.4
4.5

Ricorous GLOBAL SEARCH: CONTINUOUS PROBLEMS

Tessellation Schemes
Description of Provided Software
Alternate Algorithms and Improvements

5 OPTIMIZATION

5.1
5.2
5.3

Background and Historical Algorithms
Handling Constraints
Description of Provided Software

6 NON-DIFFERENTIABLE PROBLEMS

6.1
6.2

Extensions of Non-Smooth Functions
Use in Interval Newton Methods

7 USE OF INTERMEDIATE QUANTITIES IN
THE EXPRESSION VALUES

7.1
7.2
7.3
7.4
7.5
7.6

The Basic Approach

An Alternate Viewpoint — Constraint Propagation
Application to Global Optimization

Efficiency and Practicality

Provided Software

Exercises

REFERENCES

INDEX

154
159
167

169
170
177
199

209
210
218

227
227
230
230
232
233
234

235

255

LIST OF FIGURES

Chapter 1

1.1
1.2

1.3

1.4

1.5

1.6

The united solution set (A, B) for the system (1.19)
¥(A,B) N X can still be bounded when AX = B is underde-
termined.

The difference between the interval slope S!(f,=,#) and the
derivative range £, for z = [0,2], £ = 1 and f(z) = z?

Two ways of computing the change in ¢ between (%1, £2) and
(21, 72)

Sample program to compute a floating point function value
from a code list

Non-uniqueness with slopes with f(z) = (2 — 1)(z + 2), =z =
[-2,3] and £ =3

Chaptér 2

2.1
2.2
2.3

24
2.5

2.6
2.7
2.8
2.9

A FORTRAN-77 program using INTLIB
Tllustration of use of the interval data type

A univariate interval Newton method program, used to gen-
erate the data in Table 1.3

Program that generates a code list for f(z) =z* +2° + x

Operation lines of the code list produced by the program of
Figure 2.4

Sample OVERLOAD.CFG file

Accumulating a product for a dependent variable
Reassignment of a dependent variable

The code list operation lines for the program in Figure 2.8

2.10 (a) Function USR for Example 2.1
2.10 (b) Function USRD for Example 2.1
2.11 A program to generate a code list for fi(z) = f(z) — 2, where

f(z) is as in Example 2.1

20

23

28

31

49

64

77
79

82
85

85
85
86
87
87
90
90

91

viii

RIGOROUS GLOBAL SEARCH: CONTINUOUS PROBLEMS

2.12 Generation of a derivative code list corresponding to the code

list in file EX1.CDL

2.13 Operation lines of the code list for the derivative of f(z) =

2+ 42

2.14 Algebraic interpretation of the code list in Figure 2.13

2.15 A code list for the function in Example 2.2

2.16 The derivative code list corresponding to Figure 2.15

2.17 A program to generate a code list for ¢(z1,z2) = 2} + 22,

subject to ; + 22 —1=0

2.18 Evaluation of the constraints in Example 2.3

Chapter 3

3.1
3.2
3.3
3.4

3.5

Action of a C-preconditioner

Action of an E-preconditioner

Appropriate situation for a left-optimal preconditioner
Action of a magnitude-optimal C-preconditioner: max{a, b} is
minimized.

Action of a mignitude-optimal E-preconditioner: min{a, b} is
maximized.

Chapter 4

4.1
4.2
4.3

4.4

4.5
4.6
4.7
4.8
4.9

Complementation of a box in a box
Complementation of a box in a list of boxes

Bisection of the second coordinate according to maximum
smear, for Example 4.1

Program to produce a code list for a counterexample to a
method of Branin

Box data file BRANIN.DT1

RUN_ROOTS_DELETE for BRANIN.CDL and BRANIN.DT1
Sample output to RUN_ROOTS_DELETE

Box data file BRANIN.DT2

Use of RUN_ROOTS_DELETE for uniqueness verification

Chapter 5

5.1

“Peeling ” a box to produce lower-dimensional boundary ele-
ments

92

92
92
93
93

100
100

125
125
126

127

128

154
156

158

161
162
162
163
163
164

181

List of Figures

5.2 “Peeling” the box into lower-dimensional boundary elements

5.3 Proving that there exists a feasible point of an underdeter-
mined constraint system

5.4 Proving existence in a reduced space when the approximate
feasible point satisfies bound constraints

5.5 A common degenerate case, when X must be perturbed

5.6 Geometry of a feasibility proof with LP preconditioners

5.7 Box data file GOULD.DT1

Chapter 6

6.1 Program that generates a code list for f(z) = z? if z < 1,
flz)=2z-1ifz>1

6.2 Operation lines of the code list produced by the program of
Figure 6.1

6.3 Computation of slope bounds of a discontinuous function

X

183

186

186
187
190
202

211

212
214

LIST OF TABLES

Chapter 1

1.1
1.2
1.3

1.4

Some example operations and corresponding numerical codes
Tabular representation of the output to the program (1.36)

Tllustration of quadratic convergence of the univariate interval
Newton method for f(z) = 2% — 4

Illustration of quadratic convergence of the Krawczyk method
for F as in Example 1.5

Chapter 2

2.1
2.2
2.3
24
2.5

2.6
2.7
2.8
29

2.10

Elementary arithmetic routines in INTLIB

Standard function routines in INTLIB

Utility functions in INTLIB

Special interval functions in module INTERVAL_ARITHMETIC

Logical and interval operators in module
INTERVAL_ARITHMETIC

Operations in module OVERLOAD and program MAKE_GRADIENT
Additional operations supported in module OVERLOAD
Operational complexity — generic routines

Ratio of interval to floating point CPU times CPURAT for
ACRITH-XSC on an IBM 3090

Ratio of interval to floating point CPU times CPURAT for
INTERVAL_ARITHMETIC on a Sun SPARC 20 model 51

Chapter 5

5.1
5.2

Summary attributes of various global optimization algorithms

Summary of handling of constraints in various global opti-
mization algorithms

44
48

54

58

74
75
75
80

81
84
85
98

105

105

177

178

xii Ricorous GLOBAL SEARCH: CONTINUOUS PROBLEMS

5.3 Summary of 3 methods of handling constraints for Exam-
ple 5.2 198

Chapter 6

6.1 Iterates of the interval Newton method for f(z) = 2% — z| —
2z 42 225

PREFACE

This work grew out of several years of research, graduate seminars and talks on
the subject. It was motivated by a desire to make the technology accessible to
those who most needed it or could most use it. It is meant to be a self-contained
introduction, a reference for the techniques, and a guide to the literature for
the underlying theory. It contains pointers to fertile areas for future research.
It also serves as introductory documentation for a Fortran 90 software package
for nonlinear systems and global optimization.

The subject of the monograph is deterministic, automatically verified or rig-
orous methods. In such methods, directed rounding and computational fixed-
point theory are combined with exhaustive search (branch and bound) tech-
niques. Completion of such an algorithm with a list of solutions constitutes a
rigorous mathematical proof that all of the solutions within the original search
region are within the output list.

The monograph is appropriate as an introduction to research and technology
in the area, as a desk reference, or as a graduate-level course reference. Knowl-
edge of calculus, linear algebra, and elementary numerical analysis is assumed.
Interval computations are presented from the beginning, although the more ad-
vanced material is mainly to support development of ideas in nonlinear systems
and global optimization. The style is meant to balance the need to inform new-
comers with the need to provide concise treatment for experts. The emphasis
in the advanced topics is on the author’s own contributions to the field. The
book contains numerous references and cross-references, as well as an extensive
index. A logical thread is provided for easy initial reading, with gateways for
subsequent in-depth study.

Although the major goal of the book is to explain techniques and software
for rigorous solution of nonlinear systems and rigorous, deterministic global
optimization, the extensive introduction in Chapter 1 is suitable as a general
introduction or reference for interval arithmetic. Thus, this introduction can
also be useful in studying verified quadrature or verified solutions of differential
equations, for example.

xiv R1GOROUS GLOBAL SEARCH: CONTINUOUS PROBLEMS

Similarly, the software described in Chapter 2 includes general-use interval
arithmetic software. This software includes a Fortran-90 module for inter-
val arithmetic and Fortran 90 modules for automatic differentiation (termed
INTLIB_90), freely available from the author (email: rbk@usl.edu), and also in-
cludes more special-purpose nonlinear equations and global optimization codes
(termed INTOPT-90). Chapter 2 also contains a review of alternate program-
ming languages and packages for interval computations, with a discussion of
the advantages and disadvantages of each.

In Chapter 3, previously unpublished material on optimal preconditioners for
interval linear systems is presented. Illustrations and examples are meant to
point the reader to the contexts in which such preconditioners can be advan-
tageous, as well as to give necessary explanation for implementation. (The
author’s software contains routines for one type of optimal preconditioner.)

Chapter 4 contains an introduction to algorithmic constructs for global search
methods for solutions to nonlinear systems of equations. These constructs
include overall algorithm structure, as well as methods for subdividing the re-
gion and taking advantage of accurate approximate solutions. Some of these
techniques and algorithmic constructs are shared by global optimization algo-
rithms, described in the next chapter. Chapter 4 also contains a description
of the author’s software for nonlinear equations, in an overall package (termed
INTOPT.90).

Chapter 5 deals with actual global optimization techniques and algorithms.
Beginning with an overall view, historical algorithms and recent, more sophis-
ticated algorithms are reviewed. This is followed by an extensive review of how
inequality and equality constraints are handled, including some of the author’s
proposed techniques and experience. The chapter concludes with a description
of the routines available in INTOPT_90.

Chapter 6 deals with special techniques for non-differentiable problems, such
as I; and I, optimization. In particular, formulas are listed for interval ex-
tensions of non-smooth and discontinuous functions, as well as representation
of derivative information for non-smooth and discontinuous functions. Surpris-
ingly, such interval extensions, even for discontinuous functions, can be eflective
in interval Newton methods; examples are given, and a convergence analysis
is reviewed. Support for the techniques is available in the author’s software,
INTLIB_90.

Chapter 7 deals with using the interval values of subexpressions, obtained while
evaluating objective functions and gradients. These techniques are tied to the

Preface XV

preconditioner techniques of Chapter 3, and are also related to the established
field of constraint propagation.

Throughout the book, techniques and software are presented not only to explain
available work, but also to guide interested readers to future improvements or
to ways of using individual techniques in different contexts.

Elements of the theory deemed most relevant are presented. However, theorems
appear within the context of the meaning and practical impact of their results.
Where proofs are presented, it is mainly for the purpose of giving additional
insight. Where proofs are not presented, references to the original research are
given.

Exercises after many sections amplify the preceding presentation.

The references are available electronically in BIBTgX form, via anonymous FTP
from
interval.usl.edu
in the directory
pub/interval math/bibliographies/optimization.book.bib

I wish to thank my former student Dr. Xiaofa Shi, and my colleagues George
Corliss, Panos Pardalos, Dietmar Ratz, and Siegfried Rump for the careful
reading and suggestions that improved this book considerably. I also would
like to thank Layne Watson for introducing me to TEX and for encouraging
me, early on, to work hard.

1

PRELIMINARIES

The main purpose of this book is to introduce techniques and software for the
verified solution of nonlinear systems of equations and for rigorous, determin-
istic unconstrained and constrained global optimization. Specifically, global
optima or solutions of nonlinear equations will be sought within the boz

X ={(z1,22,...,2,)T €R" |z; <z <%T,1<i<n}, (1.1

for some set of lower bounds {z;};-, and upper bounds {Z;}]_,. The funda-
mental nonlinear equations problem is

Given F : X — R", rigorously enclose all solutions X* € |.
X . That is, for each

X*=(z},...,25)T e X
with F(X*) = 0, find bounds a; < z} < b; such that
(1.2)

m b, —a;issmall,1<i<n,and

®m it is mathematically but automatically proven that
there is a unique root of F' within each

X ={X=(21,.-,%n) |@;s <z <b;,1 <i < m}.

We will phrase the corresponding constrained global optimization problem as

Given ¢ : X — R and constraints
C(X) = (c1(X),...,em(X)T : R* - R™,

rigorously find upper and lower bounds to the values of ¢
that solve

minimize ¢(X)

subject to (X)) = 0, i=1,...,m,
gi,- < Ti;, j=1a'-'q-ua
z;; < Ty, j=p+1,...q, 1.3)

and, for each minimizer X* € X, find bounds a; < z} < b;
such that

m b;—q;issmall,1<i<n,and

m it is mathematically but automatically proven that
there is a unique critical point of ¢ within each

X={X=(1,...,%0) | @i <7 < b;,1 <i < m}.

Variants of the problems, such as when there are singularities, and uniqueness
thus cannot be verified, will be discussed. Also, individual techniques will be
treated separately, so that they can be used outside the main context. For
example, a single approximate root X of F(X) = 0 may have been found via a
traditional nonlinear equations solver; it is relatively efficient to then construct
bounds X as in Problem (1.2), within which it is automatically proven that
there is a unique root of F.

The cornerstone of automatically verified solution of Problem (1.2) or Prob-
lem (1.3) is the ability to compute rigorous bounds on the range of functions and
expressions (such as the range of ¢ over X), and to use such bounds to verify
the hypotheses of fixed-point theorems, coupled with branch and bound algo-
rithms for exhaustive search. This chapter introduces mathematical theory and
techniques underlying such range computations and fixed-point verification.

1.1 INTERVAL ARITHMETIC

Prior to widespread use of interval arithmetic, bounds on the range of a func-
tion were sometimes obtained with Lipschitz constants or moduli of continuity.
Such computations can be considered special cases of computation of interval
enclosures. Judicious use of interval arithmetic allows such range bounds to
be computed efficiently, without extensive ad hoc analysis. Additionally, inter-
val arithmetic, with directed roundings, can provide mathematically rigorous
results from floating point operations on computers.

1.1.1 Real Interval Arithmetic

Introduced in its modern form by R. E. Moore [163], real interval arithmetic
is based on arithmetic within the set of closed intervals of real numbers. If
T = [z,T] and y = [y, 7], then the four elementary operations for such idealized
interval arithmetic obey

zopy={zopy|z€xandye€y} forop € {+,—,x,+} (1.4)

Thus, the image of each of the four basic interval operations is the exact range
of the corresponding real operation. Although Equation (1.4) characterizes
these operations mathematically, interval arithmetic’s usefulness is due to the
operational definitions. For example,

z+y = [z+y,T+7), (1.5)
r-y = [z-F,T-y (1.6)
xxy = [min{zy,zy,Ty, 7y}, max{zy, zy, Ty, Ty} (L7)

% = [1/z,1/z] fz>00rz<0 (1.8)
z+y = zx1l/y (1.9)

Here, reciprocation, and hence ordinary interval division x/y is undefined when
0 € y. However, under certain circumstances (as in §1.1.4 and §1.5.1 below),
it makes sense to define such quotients in an extended or Kahan—-Novoa—Ratz
arithmetic. Also, when multiplication is actually implemented on a computer, a

somewhat more complicated alternative to Equation (1.7), such as [165, (2.20),
p. 12, is often used, since it is faster on average.

Although the ranges of interval arithmetic operations are exactly the ranges of
the corresponding real operations, this is not so if the operations are composed.
For example, if

f (:E) = xz -z,

then evaluating f over « = [0, 1] with interval arithmetic gives
[0,1]2 +[0,1] = [0,1] - [0,1] = [-1,1],

but the range of f over [0,1] is [-1/4,0]; thus, the interval computation over-
estimates the range. This is due to the fact that the variable z is implicitly
assumed to vary independently in the term z? and the term —z, so that e.g.
numbers such as 12 — 0, in addition to 0° — 0 and 12 — 1, are included in the
interval result. This phenomenon is termed interval dependency. Due to in-
terval dependency, algebraic expressions that are equivalent in real arithmetic
give different results when evaluated in interval arithmetic. For example, if f
above is written as (z — 1), then

[O’ 1]([0: 1] - 1) = [O) 1][_170] = [—I’O] # [_1: 1]'

In this case, the expression z(1 — z), obtained using Horner’s method, gives a
sharper bound on the range than the power representation, although that is not
always the casel. Theorem 1.4 in §1.1.7 below states an additional property of
interval dependency. Also, Theorem 1.3 below asserts that evaluating a function
with interval arithmetic always gives bounds on the range of the function. Here,
we can state

Theorem 1.1 Interval arithmetic is subdistributive in the sense that, if x, y,
and z are intervals, then

z(y +2) Czy +x2.

Thus, although addition or multiplication of intervals is commutative and as-
sociative, the distributive laws do not hold. Furthermore, although there is an
additive identity [0,0] and a multiplicative identity [1, 1], additive and multi-
plicative inverses do not exist. For instance, the example

[1a2] - [112] = [_113]

1One study related to this is [192].

illustrates that cancellation does not fully occur in subtraction as defined by
Equation (1.4). However, a fifth operation, cancellation subtraction, is appro-
priate in various contexts. Cancellation subtraction is defined by the equation

z,Z]e[y,7]l=[z-yZ 7] (1.10)

For example, if interval sums s; = E?ﬂ,i# x; are required for each j, the
overall sum s = E?=1 x; can first be computed, then the individual s; can be
obtained with cancellation subtraction.

Additional elementary properties of interval arithmetic are listed in [8], [77],
[83], [165], and [175].

1.1.2 Notation

Throughout, boldface will denote intervals, lower case will denote scalar quan-
tities, and upper case will denote vectors and matrices. Brackets “[]” will
delimit intervals while parentheses “(-)” will delimit vectors and matrices. Un-
derscores will denote lower bounds of intervals and overscores will denote upper
bounds of intervals. Corresponding lower case letters will denote components
of vectors. For example, we may have:

X=(:c1,:c2,...,:z:n)T,

where x; = [z;,Z;]. If X is an interval vector or matrix, then X = [X ,7],
where X is the vector or matrix wh£)§e components are lower bounds of cor-
responding components of X, and X is the vector or matrix whose compo-

nents are upper bounds of corresponding components of X. For example, if
X = ([1,2],[3,4])7, then X = (1,3)T and X = (2,4)T.

The symbol # will denote a representative point, usually in = and often its
center. Similarly, X will denote a representative point for the box X. The
actual center, or midpoint, of an interval x will be denoted by m(x), and the
vector or matrix whose entries are midpoints of the entries of the vector or
matrix X will be denoted by m(X). The magnitude of an interval is defined
as || = max {|z|, |Z|}. The magnitude of an interval vector or matrix will be
interpreted componentwise:

1X| = (|, |22l, ..., |2a)T,

while the norm of an interval vector is defined as || X|| = ||| X |||oo The migni-
tude of an interval = will be defined by <> = mingez |2|.

6 CHAPTER 1

The width of an interval x is denoted by w(xz) = Z—z. The width of an interval
vector X, denoted by w(X), is defined componentwise. We use w(X) in the
context of [|w(X)[| = [|[W(X)||co-

The set of intervals will be denoted IR, the set of n-dimensional interval vectors,
also called bozes, will be denoted by IR", and the set of m by n matrices whose
entries are intervals will be denoted by IR™>™. The set corresponding to IR?,
when identified with rectangles in the complex plane, will be denoted by IC.

Arithmetic operations involving both real numbers and intervals will occur. In
these, such as [1,2] + 1 = [2,3], the real number 1 is interpreted as a thin
interval [1,1]. (Thin intervals are simply intervals of width zero.)

The topological interior of a set D will be denoted by int(D). Unless other-
wise stated, such sets (and in particular, intervals) will be considered to be
topologically closed. The boundary of a set D will be denoted by &D.

If f is a function defined over an interval x, then f*“(x) denotes? the range of
f over . The ranges of functions ¢ : R* — R and F : R* — R™ are similarly
denoted as ¢ and F“, respectively. The gradient of ¢ is denoted by V¢, while
the generic notation F'(X) represents the m by n Jacobi matrix of a function
F:R" - R™.

Comparison of intervals will be as sets. For example @ < y will mean that every
element of x is less than every element of y. Comparison of interval vectors
X,Y € IR" will be componentwise, in the sense of a relation as in [133, pp.
129-130]. For example, X <Y will mean that =; < y, for 7 between 1 and
n, while X <Y will mean x; < y, for ¢ between 1 and n, and x; # y; for at
least one i. The convex hull of two intervals £ and ¥y is an interval that will be
denoted by z U y.

Often, sequences of intervals x;, as well as interval vectors and interval matrices,
will be considered. This leads to

Definition 1.1 Let {x;}2, = {[z;,Z:]}2, be a sequence of intervals. The
sequence is said to converge to an interval * = [z,T| provided z; = = and
T; — x; in the standard topology on the real line. Similarly, a sequence of
intervals is said to converge to a real number r provided z; - r andT; - r. A
sequence of vectors or matrices is said to converge to a vector or matriz if each

2The notation is suggestive of “united” interval extension, a term first used by Moore.

Preliminaries 7

of its components or coefficients converges to the corresponding component or
coefficient of the limit vector or matriz.

For example, we may say that a set of interval matrices A converges to the
identity matrix 1.

1.1.3 Rounded Interval Arithmetic

Computations in §1.1.1 illustrated how real interval arithmetic could compute
rigorous bounds on the ranges of functions, assuming infinitely precise compu-
tations. However, if such an arithmetic is implemented on the computer using,
for example, equations (1.5) through (1.9), then the default rounding may re-
sult in non-rigor. For example, the range of the expression [0.123,0.456] +
[0.0116,0.0214] is [0.1346,0.4774]. But this would be rounded to [0.135,0.477]
with three digit decimal arithmetic and rounding to nearest, and [0.1346, 0.4774]
Z [0.135,0.477]. Nonetheless, with directed rounding, such bounds can be com-
puted rigorously. In particular, if instead of rounding to nearest, the lower
bound of the interval is rounded down to the largest machine number less than
the exact result and the upper bound is rounded up to the smallest machine
number greater than the actual result, then the computed interval necessarily
contains the exact range. In our example, the result would be [0.134,0.475],
and [0.1346,0.4664] C [0.134,0.475]. This process is called outward rounding,
and the resulting widening of the intervals is called roundout error.

Thus, with directed rounding, a machine interval arithmetic can be defined,
such that the result of the four elementary operations contains the result that
would be obtained with real interval arithmetic. Mathematical development of
this concept is found in [147] and other works of Kulisch et al. For notational
simplicity, a distinction between the space IR and the corresponding set of
machine intervals will not be made explicit, but should be inferred from the
context.

The IEEE binary floating point standard [227] prescribes three rounding modes:
nearest, round down, and round up. Thus, rounding modes suitable for inter-
val arithmetic are available on a wide variety of machines. However, stan-
dardized programming language support for switching of rounding modes is
not available, although the Fortran 90 intrinsic NEAREST [4, p. 636] comes
close. Transportable implementations of interval arithmetic thus often resort
to mixed assembly language programming. Notwithstanding, if the tightest
possible bounds on ranges are not required, then rounding down and rounding

8 CHAPTER 1

up can be simulated. The main requirement is that it be known by how many
units in the last place® (ULP’s) the results of the elementary operations +, —,
x and + can be in error. (Note that the IEEE standard [227, §4] specifies that
all stored digits be correct, which translates to 1/2 ULP accuracy.) The ACM
TOMS algorithm* INTLIB implements such a simulated directed rounding, and
provides rigorous interval arithmetic in portable FORTRAN-77 on a wide variety
of machines, including some common computers without IEEE arithmetic. See
§2.1.2 below.

Computing dot products with the formula X oY = } 7 @;y; and interval
addition sometimes results in significant overestimation of the range of X oY,
especially when the widths of the components of X and Y are small. Because
such dot products are important in obtaining a posteriori rigorous error bounds
to solutions of linear systems of equations, Kulisch et al. [147] have proposed
considering o as a fifth elementary operation, having the same accuracy as
+, —, x and +. This mazimally accurate dot product is implemented in the
excellent “SC” and “XSC” languages [243] such as FORTRAN-SC [21, 237]
(known commercially as ACRITH-XSC), Pascal-SC [188], C-XSC [134], and
Pascal-XSC [71]. It enables computation of tight and rigorous bounds to the
solutions of very ill-conditioned linear systems. However, the accurate dot
product gives less benefit when the widths of the component intervals of X and
Y are large in relation to roundoff error, as is the case in most (but not all) of
the interval computation in optimization and solution of nonlinear systems.

1.1.4 Kahan—Novoa—Ratz Arithmetic

Although the interval quotient /y is undefined in ordinary interval arithmetic
when 0 € y, an extension to interval arithmetic for this case is useful e.g. in elim-
inating regions in branch and bound algorithms in which critical points cannot
exist. The arithmetic on infinite intervals presented here differs from previous
arithmetics on infinite intervals, since it corrects inconsistencies [198]. We call
this arithmetic Kehan—Novoa—Ratz arithmetic, since Kahan first proposed an
arithmetic on infinite intervals in the summer school lecture notes [102], since
Kahan used extended interval arithmetic effectively in his continued fraction
research, and since Novoa [180] and Ratz [198] separately proposed the correc-
tions that make it consistent for use in nonlinear equations and optlmlzati?)i
InKahan's arithmetic, the set of real intervals [a,] € IR is augmented by the

3For example, in a three-digit decimal system with numbers of the form 0.123 x 104, one
umt in the last place is .001 x 10° = 103,
4cf. §2.1

Preliminaries 9

set of complements]a, b[= [—00, a] U [b, o0]. In Kahan-Novoa—Ratz arithmetic,
division of two ordinary intervals £ and y with 0 € y is still defined by the
principle in 1.4, operationally as follows:

(z[1/5,1/y] if0&y
[-00,00] ifOExand0€y,
[Z/y,00] Z<Oandy<7=0,

2, 7] [~00,Z/F]U[F/y,00] fZ<0andy<0<7F
= = [—00,Z/7] ifZ<0and0=y<7, (1.11)

[—o0,z/y] U [2/7, 0] if0<zandy<0<7
[z/7, 00] ifz<0and0=y <7
L] if0gx and 0 = y.

For example, according to Formula (1.11), [2,3]/[-3, 4] = [—o0, —2/3]U[1/2, 0],
where [—o00,—2/3] U [1/2,00] represents the actual range of z/y, z € [2,3],
y € [-3,4].

Based on the lecture notes [102], arithmetic on intervals and their complements
based on formulas similar to (1.11) is published, fully developed, in [149]. This
arithmetic is useful in continued fraction computations, since the reciprocal of
an interval complement® is an ordinary interval. However, for most® purposes
here it suffices merely to use Formula (1.11), then to intersect the result with
an ordinary interval, to obtain zero, one or two ordinary intervals; an example
occurs in Example 1.4 on page 53 below.

Kahan-Novoa-Ratz arithmetic, defined on intervals and their complements,
should not be confused with other extensions of real interval arithmetic, de-
signed for different purposes. For example, Kaucher arithmetic is used in [217]
to obtain both inner estimates and outer estimates’ for the solution sets of
linear interval systems. Yet a third structure, Markov arithmetic, purported to
be useful in reducing the overestimation of ranges with ordinary interval arith-
metic, is described in [157, 158]. Each of these arithmetics is at times called
exstended interval arithmetic.

Salso termed an ertended interval

Sexcept perhaps for evaluation of some special objective functions

7An inner estimate of the range of a function is a set contained within the range, while
an outer estimate contains the range.

10 CHAPTER 1

1.1.5 Complex Interval Arithmetic

It is possible to identify rectangles of complex numbers
z={z+iy|z€xandy €y}

with boxes in IR?, and to define interval operations componentwise. Thus, a
complex interval 2z is identified with the interval vector [z,y]T ~ = + iy. So
interpreted, complex interval operations become

Z21+2z2 = T +x+i(y, +ys) (1.12)
= [z + 2,71 +T2] +ily, +3,,71 +), (1.13)
21 X 22 = 1Ty — Y1 Yy +i(T1Y, + T2yy), (1.14)

where 27 = @; +iy, and 2, = & +1iy,, where multiplication of the component
intervals is according to Formula (1.7), and where — and + are defined similarly.
The problem is that, although the set ©123 —1y, Yo +i(®1y, + X2y,) corresponds
to a rectangle in RZ, the actual range

{(z1 +iy1)(z2 +1y2) | 21 € &1, Y1 € Yy, T2 € X2, Y2 € Y3}

is less regularly shaped. Thus, the product 222 does not represent the exact
range, and there is overestimation even in a single elementary operation. This
can be viewed as complex interval dependency arising from the relationship
given by the Cauchy-Riemann equations.

An alternate arithmetic can be defined on the set of disks, rather than rect-
angles, in the complex plane. First introduced by Henrici [59], this circular
arithmetic results in less overestimation in multiplication®, but may be more
difficult to implement. It has been proposed [246] that a combination of both
rectangular and circular arithmetic can be used, to reduce overall overestima-
tion. Both rectangular and circular arithmetic are explained in [8, Ch. 5].

Despite the intrinsic overestimation, complex interval arithmetic can be useful
in practice. Although, with interval arithmetic, problems should be solved in
the real domain if possible (rather than recast in the complex plane), rect-
angular arithmetic, recommended for its simplicity, can be used effectively.
If rectangular arithmetic is not implemented as a data type, either intrinsi-
cally or through operator overloading®, functions w = f(z), f : IC = IC

8in the sense of ratio of area of the interval product to the area of the range of the product
operation
9¢f. §1.4.4

Preliminaries 11

may be explicitly rewritten in terms of their components as F : IR? — IR’
For example, to use a multidimensional interval branch and bound method
to find all roots of f(z) = 22 — 2 in the complex plane, f could be written
as F(x,y) = [fl(x,y)’fZ(x>y)]T = [Oa 0]T7 where fl(x’y) =z? - y2 — 2 and
fa(z,y) = zy.

1.1.6 Extensions of Standard Functions

An example in §1.1.1 illustrated how interval arithmetic could be used to obtain
bounds on the range of a function that could be evaluated as a sequence of the
four elementary operations. This section introduces, in elementary terms, some
of the fundamental techniques for obtaining the ranges of functions, for libraries
to compute interval extensions.

Throughout, the term standard function will appear. It will mean a set of
functions, such as those specified in the FORTRAN-77 standard, that are bundled
with a particular compiler or software package. Libraries for evaluation of such
functions must be supplied by the package provider. Such standard functions
generally include exponentials, logarithms, and a selection of trigonometric
functions and their inverses.

Definition 1.2 If f : R — R 13 a function computable as an expression, algo-
rithm or computer program involving the four elementary arithmetic operations,
then a natural interval extension of f, whose value over an interval T is de-
noted by f(x), is obtained by replacing each occurrence of z by the interval T
and by executing all operations according to formulas (1.5) through (1.9).

It is not hard to show

Theorem 1.2 If f is any natural interval extension of f, and = € IR is con-
tained within the domain of f, then f(x) contains the range f“(x) of f over
x.

This property is crucial to interval computations, so it should be a part of the
definition of an interval extension.

12 CHAPTER 1

Definition 1.3 A function f : IR — IR is said to be an interval extension of
f:R = R provided
{f(@)lz € 2} C f(x)

for all intervals & C IR within the domain of f. (Interval extensions are defined
similarly for F: R* - R™.)

In fact, natural interval extensions can be obtained for virtually aeny function
that can be represented with a computer program. To this end, sharp bounds on
the ranges of the standard functions are desired. Such bounds can be computed
from any expansion (rational, Taylor series, etc.) that has an explicit formula
for the error term. For example, suppose & € IR and # € . Then, for any

zex,
2

(z —2) cos(c)

2
for some ¢ between # and z. Translating to intervals, we obtain the inclusion

(x — 2)*
2

cos(z) = cos(Z) — (z — &) sin(&) —

cos(z) € cos(Z) — (x — &) sin(F) — Icléiar:l{cos(c)},rcréa%{cos(c)} .

Specifically, if £ = [-0.1,0.1], we may use £ = 0 to obtain the interval extension
value

cos*([-0.1,0.1]) C cos(0) — [-0.1,0.1] sin(0) — ([_le’m

1 — [0,0.005][0.9, 1] = 1 — [0,0.005]
[0.995,1] = cos([~0.1,0.1]),

[0.9,1]

whereas the range of cos over [-0.1,0.1], given to ten digits and rounded out,
is [0.995004164, 1].

Remark 1.1 Above, [~0.1,0.1]? is given as [0,0.01], not as[-0.1,0.1]{—0.1,0.1]
= [-0.01,0.01]. Generally, integer powers should be viewed as standard func-
tions with exact Tanges (to within roundout), not as repeated multiplication.

Ranges of the standard functions can thus be approximated with any desired
accuracy, within the limits of the floating point system. Monotonicity can also

Preliminaries 13

be used, as appropriate, to piece together the range from efficiently obtained
narrow enclosures for the endpoints of ©. Argument reductions and other con-
siderations, such as those explained in [32], are also important in construction
of libraries of interval values of functions. Taylor series are often used, due to
their simplicity and ease of including the truncation error term. In fact, Braune
[23] and Kramer [138] describe how both roundoff and truncation error can be
taken into account in Taylor series values, given machine parameters, so that
only floating point arithmetic is necessary when accumulating the series terms,
to obtain rigorous bounds on ranges. Along other lines, [15] contains recipes
for computing ranges of the various standard functions, based on rational ap-
proximations.

There are additional issues associated with interval values of certain standard
functions. For example, the range of the inverse trigonometric functions should
be viewed as an infinite sequence of intervals in some applications, and the
range of some trigonometric functions contains branch points. However, most
of the standard functions available with programming language compilers for
scientific computation can be considered as functions w : IR — IR such that
w(x) is, to within roundout, the exact range of w over .

Detailed discussion of techniques for computing the ranges of functions appears
in [39]. Particulars on construction of the FORTRAN-77 library described in §2.1
appears in [86, 124, 123].

1.1.7 Properties of Interval Extensions

Some elementary properties of interval extensions were already introduced as
Theorems 1.1 and 1.2. Amplification and additional properties useful in for-
mulating and coding objective functions and systems of equations appear here.

Theorem 1.3 Suppose that an interval extension F(X) of a function F :
R® — R™ is obtained by a sequence of computation of rigorous bounds on
ranges w;(x) of standard functions {wj}g.’:l as in §1.1.6 interspersed with out-
wardly rounded interval arithmetic involving the four elementary operations, as
in formulas (1.5) through (1.9). Then this natural interval extension F(X)
contains the range of I over the box X.

An early criticism of interval arithmetic was that the bounds on the ranges so
obtained were too wide or pessimistic to be of value. This is frequently the

14 CHAPTER 1

case when interval arithmetic is applied neively, but a good understanding of
its properties leads to appropriate and effective algorithms. The next several
facts deal with how sharply interval extensions enclose the range of a function.

Theorem 1.4 Suppose ¢ : R* — R, is formally writlten as e sequence of
computations of standard functions {wj}§=1 interspersed with the four basic
arithmetic operations. Suppose that in this expression, each of the n variables
{z:}}, occurs formally only once. Then, if $(X) is evaluated with exact in-
terval arithmetic and computation of the exact ranges of each wj, the resulting
interval enclosure will be the ezact range ¢(X).

Thus, the range e.g. of f(z) = z%2 —2 over [~2,2]is [-2,2]2-2 = [0,4]-[2,2] =
[-2,2], and the range of ¢(z1,z2) = z1z2 over the box ([—1,1],[—-1,1])T is
[-1,1][-1,1] = [-1,1}.

Theorem 1.4 and subdistributivity (Theorem 1.1) suggest that, to maximize
the sharpness of an interval extension, the defining expressions or algorithms
should be rewritten to minimize the number of occurrences of each variable or
subexpression. Indeed, that is a reasonable heuristic in many'? instances.

Computing the exact range of an arbitrary function ¢ over a box X is similar to
optimizing ¢ over X. However, in both cases asymptotic properties of interval
bounds on the range of ¢ as ||w(X)|| = 0 are helpful.

Definition 1.4 Let F(X) denote an interval ertension of F : R* — R™ eval-
uated over a boz X, and let F*(X) denote the exact range of [over X. If
there is a constant K, independent of the box X such that

w(F(X)) - w(£*(X)) < Kw(X)° (1.15)

for all bozes X with w(X) sufficiently small and fized a > 0, then we say
that F is an order « inclusion function for F. When a is 1 or 2, we call the
inclusion first order or second order, respectively.

For clarity in what follows, we now restate Definition 1.2 more generally.

10but not all

Preliminaries 15

Definition 1.5 If F : R* — R™ is o function computable as an ezpression,
algorithm or computer program involving the four elementary arithmetic op-
erations interspersed with evaluations of standard functions {wj}g=l, then a
natural interval extension of F', whose value over an interval vector X is de-
noted by F(X), is obtained by replacing each occurrence of each component z;
of X by the corresponding interval component x; of X, by executing all oper-
ations according to formulas (1.5} through (1.9), and by computing the exact
ranges of the standard functions.

Remark 1.2 We will refer to natural interval extensions even when machine
arithmetic is used. However, the standard function ranges are then merely
enclosures of the actual ranges that are sharp to within roundout error and the
bounds on the truncation error. The order of such an interval extension is then
only approzimate, and not valid when the widths of the independent variables
are on the order of the distance between machine numbers.

Theorem 1.5 ([8], [165], [190, §1.5]) Natural interval extensions are first or-
der.

Second order extensions are somewhat more desirable, and indeed, almost in-
dispensable in some contexts. This has been pointed out in [114] for solving
nonlinear systems and in [52], [125] and [51] for optimization. Second-order
extensions may be obtained, as in the examples in §1.1.6, by series expansions
and bounding the range of derivatives.

Definition 1.6 Suppose ¢ : D C R® — R has continuous derivatives, X C D
and X € X. Then the mean value extension for ¢ over X and centered at X
is defined by § 3 3

$2(X, X) := ¢(X) + V(X)X - X), (1.16)

where V@(X) is a componentwise interval enclosure for the range of V¢ over

It follows from the mean value theorem and properties of interval arithmetic
that ¢,(X, X) is an enclosure for the range of ¢ over X. Furthermore:

Theorem 1.6 (originally in [142]; see also [190, Ch. 2, esp. Theorem 2.3])
Suppose that the components of V¢ are interval estensions of Vo of order at
least one. Then ¢, is an order-2 interval extension of ¢.

16 CHAPTER 1

For example, suppose ¢(z) = z° — 2, ¢ = [0,1] and £ = 1/2, so that V¢(x) =
2z is the exact range of the derivative of ¢ over . Then the natural inter-
val extension obtained from the particular expression z? — 2 is, as in §1.1.1,
én([0,1]) = [-1,1], while the mean value extension is

1 1
-5 +0,2 ([o, 1] - 5)
[~5/4,3/4]

¢2([01 1]7 1/2)

Thus w(¢p([0,1])) = w(p,([0,1],1/2)) = 2, whereas the width of the range
is w(¢*([0,1])) = 1/4. This illustrates that a second order extension may
not be superior to a first order extension (and may actually be substantially
wider than a natural extension) when the widths of the arguments are large.
It also illustrates that the extensions are different: ¢ ([0,1]) N¢p,([0,1],1/2) =
[-1,1]n[-5/4,3/4] = [-1, 3/4] is also an enclosure for the range of ¢ over [0,1]
that is sharper than either ¢([0,1]) or ¢,([0,1],1/2) separately.

If on the other hand = = [0.49,0.51] and & = 0.5, then the natural inter-
val extension is ¢p([0.49,0.51]) = [—0.2699, —0.2299], ¢,([0.49,0.51],0.5) =
[-0.2602, —0.2398], $*([0.49,0.51]) = [—0.25, —0.2499], and a hint of the con-
vergence behavior of ¢ and ¢, is seen.

Unfortunately, although it would be desirable in global optimization algorithms,
it appears difficult to obtain interval extensions of order higher than 2 for
arbitrary functions; cf. [41] and the discussion in [51, Ch. 5]: finding a third
order extension may require solving a quadratic programming problem which
may not always have all positive eigenvalues.

The mean value form is a special case of a centered form for an interval inclusion
for a function. Alternate centered forms and a discussion of the theory appear
in [190]. Such forms may be appropriate to obtain tighter bounds in specific
cases. For our purposes'! the natural extension ¢ and mean value extension
¢, will be adequate. However, we will use interval vectors other than V¢(X)
in Equation (1.16) to obtain tighter but still-rigorous bounds; cf. §1.3 below.
In algorithms, a particular natural interval extension will be denoted by ¢ (or
S or F), while a generalized mean value extension will be denoted by ¢,, to
imply that any first order and any second order extension will do.

since we will supply generic interpreters to compute ¢ and ¢, since order higher than 2
cannot be achieved merely with more terms, and since other mechanisms in global optimiza-
tion algorithms can supply tighter bounds

Preliminaries 17

A final property, often assumed in the literature to facilitate convergence proofs,
is

Definition 1.7 An interval extension ¢ is inclusion monotonic or inclusion
isotonic provided Y C X implies ¢(X) C ¢(Y).

Theorem 1.7 Natural interval extensions as in Definition 1.5 are inclusion
monotonic, provided exact interval arithmetic is used and ezact ranges are com-
puted for the standard functions.

Inclusion monotonicity has been suggested as a stopping criterion for interval
iterative algorithms: violation of it indicates that roundout error is predomi-
nating.

Although inclusion monotonicity is convenient, in our opinion the asymptotic
properties (i.e. the order) are more crucial. Some of our constructions and
algorithmic processes, although effective, lead to interval extensions that are
not inclusion monotonic.

1.1.8 Exercises

1. On page 4, it was seen that the natural interval extension corresponding
to fi(z) = z(z — 1) was sharper than the natural interval extension corre-
sponding to f2(z) = z° — = over the interval [0, 1], even if the exact range
of 2 is used, i.e. £,([0,1]) C £,([0,1]). Is this also true for the interval
[~1,1],i.e.is f,([-1,1]) C fo([-1,1])? What can you say about Horner’s
method and factoring interval extensions? Can you make recommenda-
tions concerning which natural interval extensions are appropriate or how
they should be used? You may wish to consult [192].

2. (roundout error) In rounded interval arithmetic, an increase in interval
widths due to directed roundings occurs under the same circumstances
as roundoff error in traditional floating point computations. Consider an
outwardly rounded interval arithmetic based on directed roundings with
a four decimal digit floating point system. (For example, the outwardly
rounded result of [.1234 x 10°,.1234 x 10°] +[.1111 x 10~1,.1111 x 107}]
would be [.1345 x 10°%,.1346 x 10°] > .13451.) Now examine the difference
quotient Q(h) = (f(zo + h) — f(zo))/h with f(z) = 22 and zo = 1.

18 CHAPTER 1

Representing z, as a four-digit decimal interval [.1000 x 10°,.1000 x 10°)
and using outwardly rounded arithmetic, form a table whose columns are h,
Q(h) and w(Q(h)) and whose rows correspond to b = .1, h = .05, h = .01,
and h = .005. Perform a directed rounding into four digit intervals after
each of the three operations (z - z2, y — z, and y/z).

3. For the example on page 16, form a table with columns z, ¢, ¢,, ¢,
w(g), w(¢p,) and w(¢") for & centered about £ = 1/2 and with widths 1,
10~%, 102,103, 1074, 1075, and 10~5. Referring to Definition 1.4, form
and label additional columns of the table containing ratios of differences
of widths to illustrate from the computations that ¢ is order 1 and ¢, is
order 2.

4. Prove Theorem 1.7.

Hint: This may be done by induction on the number of elementary opera-
tions (including evaluation of standard functions).

1.2 INTERVAL LINEAR SYSTEMS

Within the scope of this book, interval linear systems of equations are important
in interval Newton methods, the primary device for verifying existence and
uniqueness of roots and critical points. In particular, interval Newton methods
can be viewed as computational analogues of the Brouwer fixed point theorem,
and the solution set of an interval linear system must be bounded to carry
out an interval Newton method. Also, interval linear systems of equations are
useful in computing rigorously verified bounds on the actual solutions of real
systems of equations; see [70, Chapter 10] and the references therein.

Generally, interval linear systems are of the form
AX =B, (1.17)

where A € TR**" and B € IR", although the form most commonly encoun-
tered in interval Newton methods is

A(X - X) = By, (1.18)

where X € R" and, usually, ||w(By)|| is small; the special form of Equa-
tion (1.18) can be exploited, as explained in Chapter 3 below.

The concept of regularity is important in proving uniqueness of solutions.

Preliminaries 19

Definition 1.8 An interval matriz A is said to be regular provided each A € A
is non-singular.

The solution set of an interval linear system (a concept to be made precise
below) is bounded if and only if A is regular.

Also, interval versions of inverse positivity, M-matrices, and H-matrices (a gen-
eralization of M-matrices) provide a rich theory for interval linear systems; see
[175] for an overview.

1.2.1 Types of Solution Sets

The solution set can be defined in various ways. Shary ([215, p. 7], [217]) defines
and analyzes three types of solution sets, all potentially useful in applications,
as follows.

Definition 1.9 (Solution sets)

1. The united solution set of Equation (1.17) is that set 3 _5(A, B) C R*
such that, if X € 3 55(A, B), there ezists an A € A and a B € B such
that AX = B. The united solution set will also be denoted simply by
(A, B).

2. The controlled solution set of Equation (1.17) is that set 3_5,(A, B) C R®
such that, if X € 35y, for every B € B there exists an A € A such that
AX = B.

3. The tolerable solution set of Equation (1.17) is that set 3, 5(A, B) C R"
such that, if X € 3 5, for every A € A there exists a B € B such that
AX = B.

In most of the literature, the united solution set £(A, B) is called simply the
solution set. Since this is the solution set of main interest in this book, this
terminology will also be adopted here.

In general $(A, B) is a non-convex polygonal region; pictures of particular
%.(A, B) appear in [217], on the jacket of [175], in [175, fig. 3.2, p. 92], in {77,

20 CHAPTER 1

__/ (47 3)
(_17 O)
SR o
(1,0) Figure 1.1 The united so-
’ lution set £(A, B) for the sys-
/—— tem (1.19)
('_'4) —3) T
(O) _‘1) -
(37 _4)

fig. 4.1, p. 27], etc. For example, consider the interval matrix

A ([2,4 [-2,1])

-1,2] [2,4]
and right-hand-side vector (1.19)
— [_21 2]
B= ([_2v 2] ’

The actual united solution set X(A, B) to this system is shown in Figure 1.1.

Computation of X(A, B) is in general an NP-complete problem; see [203], but
is inexpensive when the system has certain special properties, as for example
in [175, Theorem 3.6.7, p. 108].

Although (A, B) is not an interval vector, the interval vector formed from the
bounds on the coordinates of the solution set is usually considered. It is called
the solution hull or interval hull, and is denoted by [£(A, B). Computing the
exact solution hull is also in general NP-complete [203], but fortunately, it is
computationally inexpensive to obtain interval vectors X D [[E(A, B). Such
vectors are called outer estimates to X(A, B). Similarly, inner_estimates, in-
terval vectors X with the property X C [[X(A, B), are also useful to compute.
For example, Rump [208, §4.2] computes both inner estimates and outer esti-
mates to determine the sharpness of each in approximating the hull, and for
sensitivity analysis. A different, interesting way of computing inner estimates
appears in [148] and 217].

Ke me inner efl{i;

Preliminaries 21

1.2.2 Solution Algorithms

The three most common methods for computing outer estimates to ¥.(A, B)
are interval Gaussian elimination, the interval Gauss—Seidel method, and the
Krawczyk method. The interval Gauss—Seidel method is sometimes called the
single-step method or Finzelschrittverfahren. The Krawczyk method and inter-
val Gauss—Seidel method each require an initial guess vector, whereas interval
Gaussian elimination does not.

It usually is necessary to precondition the System (1.17) by a point matrix
Y € R**", for the Krawczyk, interval Gaussian elimination, or interval Gauss—
Seidel method to be effective. Thus, the algorithms are applied, not to the
original System (1.17) but to

YAX =YB, i.e. MX = C where M =Y A and C = VB, (1.20)

where Y is chosen to make the solution set of M X = C somehow easier to
bound (such as when Y in some sense is like an inverse A=, so M somehow
approximates a diagonal matrix).

Theorem 1.8 (cf. [175, §4.1, esp. fig. 4.1]) Suppose Y € R**", A € IR"*",
B € IR" and (A, B) is as in Definition 1.9. Then

Y(YA,YB) = £(M,C) D £(A, B).

Even though preconditioning in general increases the size of the actual so-
lution set, and thus makes bounds obtained on the solution of the original
System (1.17) less sharp, it nonetheless allows the Krawczyk, Gauss—Seidel, or
interval Gaussian elimination method to compute tighter interval bounds for
the components of the solution set. Preconditioning is thus in general used,
except in special cases mentioned in §3 below.

Interval Gaussian elimination, also called the interval Gauss algorithm, pro-
ceeds similarly to a variant of floating point Gaussian elimination.

Algorithm 1 (Interval Gaussian Elimination)

INPUT: The matrix M = [m;;]?;_, € IR™" and right-hand-side vector
C =ley,...,cu)T € IR" for the preconditioned interval system MX = C.

OUTPUT: Either the information “failure” or bounds GE(A,B) = X =
(Z1,...,%2) D £(M,C) D 3(A, B).

22 CHAPTER 1

1. (Factorization phase) DO fori=1ton —1:
(e) IF 0 € m;; THEN EXIT with failure.
(b) DO forj=i+1ltonand fork=1i+1 ton:
Mk 4 Mk — (Mi/ M) M.

END DO
(c) For j =i+ 1 ton: ¢; «+ ¢; — (mj;/mi;)c;
END DO

2. (Solution phase)

(a) Cnn Cn/Mpn.
(b)) DO fori=n—1to1 by —-1:

c; + (c,- - E;.’:,.H ’Ini,jcj) /mi,i
END DO
3. EXIT

End Algorithm 1

Although the interval Gauss—Seidel algorithm requires an initial guess box X, it
sometimes leads to sharper enclosures of the solution set than interval Gaussian
elimination. Also, since the interval Gauss—Seidel method proceeds coordinate
by coordinate, it may produce sharper bounds on certain coordinates when
interval Gaussian elimination fails, even when the interval matrix A contains
singular matrices'?, or when A € RP*™ with p # n. This capability for rectan-
gular systems is useful in handling e.g. constraints, or parametrized systems, as
in [130]. In fact, even though X(A, B) must be unbounded when A has more
columns than rows, bounds on the portion of £(A, B) lying within a particular
box can still often be sharpened. See Figure 1.2.

Algorithm 2 (Preconditioned interval Gauss—Seidel method)

INPUT: The matrix A € IR®*" and right-hand-side vector B € IR" for the
interval system AX = B. Also input bound constraints X = (xy,...,z,)7
bounding the desired portion of the solution set.

12Interval Gaussian elimination must fail in this case, since ordinary Gaussian elimination
fails on singular matrices, and the intermediate results of the interval computation must
contain all of the corresponding point results.

Preliminaries 23

X
%(A, B) %
\ Figure 1.2 Z(A,B) N X
can still be bounded when
I AX = B is underdetermined.

OUTPUT: Either t~,he information “solution does not intersect X” or new
bounds GS(X) = X = [:El,...,in]T ODXYAYB)NXDX(AB)NX.

DO for i =1 to n.

1. Compute the i-th row Y; of the preconditioner.
2. Let A; denote the j-th column of A. Compute

Y;B + E;;ll(YzAJ)i’J + E?=i+1 (YiA;)z;
YiA;

& =

3 IF&;nz; =0,
THEN
EXIT, signaling “solution does not intersect X .”
ELSE
Replace &; by &; Nx;.

END IF
END DO

End Algorithm 2

If the underlying system is Equation (1.18) instead of Equation (1.17), then &;
and x; are replaced by &; — £; and ; — &; in the right member in step 2 of
Algorithm 2, respectively. In that case, considered in §3 below, much advantage
can be taken of the system structure.

24 CHAPTER 1

The sequential nature in Algorithm 2 is not critical. In particular, the algorithm
will still function qualitatively similarly (although perhaps with a different con-
vergence speed) if some of the & are exchanged for , and visa versa, in the
right member of Step 2. Thus, as with floating point Jacobi, Gauss-Seidel
or SOR iterations, the individual passes through the loop on i may be done
in parallel, asynchronously. Wherever we refer to the “interval Gauss—Seidel”
method, unless analyzing exact convergence rates, we will also be referring to
such parallel variants.

The third method of note for computing rigorous bounds on [X(A, B), the
Krawczyk method, is based on considering the fixed point iteration X « X —
Y F(X), where Y is presumably an approximation to the inverse of the Jacobi
matrix of F at some point [164]. Its convergence properties are particularly
simple to analyze, and much of the theoretical literature concerns this method.
Its iteration formula is

K(X)=YB+[I-YA]X, (1.21)

where, in the literature, Y is often (but not necessarily) taken to be the inverse
of the matrix of midpoints of the elements of A.

The convergence rate of the Krawczyk method depends on ||4|| = || [I — Y A] ||,
and Rump uses A [208, §4.2] to obtain both inner bounds and outer bounds
on [E(A, B). Such bounds are attractive, since the actual amount of overesti-
mation of [[£(A, B) by the method is then bracketed.

However,
GS(X) CK(X) (1.22)

(see [175, 4.3.5 and 4.3.6]), s0, except for special applications, the Gauss—Seidel
method is preferable in practice.

The following theorem, originally proved by various authors (see [175] and the
references therein), forms the basis of most automatic verification procedures.

Preliminaries 25

Theorem 1.9 (Computational existence and uniqueness)

1. [£(A, B) C GE(A, B).
2. [£(A, B) N X is contained in each of GS(X) and K(X).

3. If GS(X) C int(X) or K(X) C int(X), then for each A€ A and B € B,
the system AX = B has a unique solution in X.

Considerations related to part 3 of Theorem 1.9 will be considered in more
detail on p. 63 ff.

When discussing interval Newton methods in §3 below, variants of interval
Gaussian elimination and the interval Gauss—Seidel method corresponding to
Equation (1.18) will be used.

1.2.3 Exercises

The following problems refer to System (1.19), with united solution set in
Figure 1.1. The preconditioning matrix Y to be used here is the inverse of

Y- 1l= (035 —2'5) (Y~! is the matrix of midpoints of elements of A.)

1. Use preconditioned interval Gaussian elimination (Algorithm 1) to com-
pute bounds on the components of the united solution set in Fig. 1.1.
Compare the widths of the component intervals and the total volume con-
tained within the computed box to [£(A, B) and ¥(A, B).

2. Repeat Problem 1 with the preconditioned interval Gauss—Seidel method
(Algorithm 2) in place of interval Gaussian elimination. Start with the
interval vector X = ([—10, 10], [-10, 10])T; do three sweeps of the methods.

3. Apply the Krawczyk method (Equation (1.21)) to the preconditioned sys-
tem Y AX = Y B. Start with initial interval vector

X = ([~10,10],[-10,10))T.

Compare with the results of Problem 2.

26 CHAPTER 1

4. (This problem is more involved, and may require some eztra study.) Com-
pute and graph the exact solution set (Y A,Y B).

(Hint: The paper [181], the description and references in [201], or the
description in [175, Ch. 6 and §3.4] may be helpful.)

1.3 DERIVATIVES AND SLOPES

A primary use of interval derivative information is in bounding ranges or varia-
tions in functions over regions. This was seen directly in §1.1.7, Definition 1.6,
in which a second order interval extension was derived. Such information is
also crucial in interval Newton methods, which in turn are central to fast and
memory-efficient verified global optimization algorithms.

However, it is not always necessary to use interval extensions of the derivative.
In fact, there are two techniques that actually lead to tighter bounds. To
understand these techniques, it is useful to introduce the concept of a Lipschitz
matriz and a slope matriz for a function ¢ : R* — R. There is also a subsidiary
technique due to Hansen, leading to slope matrices, that gives narrower bounds
for multivariate problems.

1.3.1 Interval Derivatives and Slope Matrices

Definition 1.10 ([175, p. 174], etc.) Let F : R* — R™. The matriz A is said
to be a Lipschitz matrix for F' over X provided, for every X € X andY € X,
F(X)—F(Y)=A(X -Y) for some A€ A.

Consider

Example 1.1 Let
d(z1,32) =23 /3 4+ 23 /3 4 ;.
Then a Lipschitz matriz for ¢ over the box X = ([-.5,.5],[—.5,.5])T is any
natural interval estension for the gradient: A = ([-.5,.5] + 1,[-.5,.5]%) =
([1,1.25],[0,.25]), while the corresponding mean value eztension for ¢, centered
at X = (0,0)T, is
#2(X,X) =0+ ([1,1.25], [0, .25)) ([:‘g"

| g%) = [-.75,.75].

Preliminaries 27

In fact, if FF : X C IR® —» R™, then a component-by-component interval
extension of the Jacobi matrix of F' constitutes a Lipschitz matrix for F' over
X.

Definition 1.11 If F: X C IR* = R™, then F'(X) will denote any interval
matriz whose components are natural interval extensions over X of correspond-
ing components of the Jacobi matrixz of F. Any such matriz will be called an
interval Jacobi matrix.

An alternate, weaker property is the following.

Definition 1.12 Let F : R* = R™. The matriz A is said to be an interval
slope matrix (or, more genemlly, a slope set) for F' over X and centered on
the interval vector X if, for every X € X and X € X,

F(X)-F(X)=A(X -X) for some Ac A.

Any smallest such set of matrices satisfying this condition will be denoted by
SH(F,X,X). An interval vector that contains S“(F,Q(,X) (generally o good
computed outer estimate) will be denoted by S(F, X, X).

Often, but not always, X is a point or a very small box.

Univariate Slopes

The difference between derivatives and slopes is most easily introduced with
a one-dimensional example. For illustration purposes only, suppose a second-
order extension to f(z) = z? is desired over the interval [0,2]. Then the range
of the derivative over = [0,2] is a = [0, 4], and the mean value extension, an
enclosure for the range of f(z) = z? over [0, 2], is:

£2((0,2)) = f(1) + £1([0,21)([0,2] - 1) =1 +[0,4][-1,1] = [-3,5].

In contrast,

L forze [0,2]} = [1,3] = S*(£,[0,2], 1)

z2 —
2{#“‘: z—1

28 CHAPTER 1

1 i1
pe =3 /'/
3 T \ ’ 3+
2 + 2 +
=t lope 0
1 -+ \ 1 - slope
/ -« slope 4
| | |
T 1 ! T
1 2 1 2
(a) Range of slopes (b) Range of derivatives

Figure 1.3 The difference between the interval slope SH(f,z,%) and the
derivative range f, for £ = [0,2], % = 1 and f(z) = z°

"){fl

is a slope set for f(z) = @over x = [-1,1], centered!? at = 0. Because of
that, fs(z) = f(0) +[1,2](x ~1) is a second order extension of f(z) = 22 for
xz C [O 2], and ‘an’ericlosure for the range of f over [0,2] is

fs([or 2]) =1+ [173J[~1a 1] = [_21 4] - [_3a 5]
Figure 1.3 illustrates this relationship.
Although an interval extension would not actually be used for f(z) = z? (since

the exact range is computable), this example illustrates a general relationship
between derivatives and slopes, stated as

Theorem 1.10 Suppose f : R — R, = € IR is arbitrary, and £ € . Suppose
£, is the range of f' over . Then

lim ——W(f)
w(x)—o w(SH(f, z, £))

Thus, slopes lead to narrower intervals than derivatives, where they are appli-
cable.

131n fact, this particular a is the smallest such set satisfying Definition 1.12.

Preliminaries 29

Theorem 1.10 is well known,; its proof is not deep, and can be constructed from
the following: p € S(f,x,%) implies p = (f(zf(£))/(z — &) = f"(c2)(z — %)
for some £ € x and c2 € x, while, for the same z, f'(z) = f"(c1)(z — %)
for some ¢; € x. Thus, p/f'(z) = %;Tg—f% ~ 1, 50 S(f,z,%) ~ 2f,(z), and
w(clz, 7]) = cw([z, T])-

In general, only enclosures for the range of the derivative and enclosures for
the slope range S*(F, X, X), not the exact ranges, can be computed, and the
relationship between derivatives and slopes for multivariate functions is more
complicated. However, with automatic differentiation as in §1.4 below, com-
putation of derivative and slope enclosures are equally easy, and the computed
slope enclosures are generally tighter than the derivative enclosures. Some com-
ments and examples appear in [141], while a reference especially relevant for
polynomials appears in [6]. In fact, Theorem 1.10 is a good rule of thumb for
predicting the relative behavior of interval derivative and slope-based compu-
tations in a variety of settings.

Multivariate Slopes

In Example 1.1 on page 26, a slope enclosure corresponding to a particular
partial derivative of ¢ can be computed by simply treating the other vari-
able as constant. For example, the second component of the slope matrix for
¢ over X = ([-.5,.5],[—.5,.5])7 can be computed as S(z3/3,[-.5,.5],0) C
[0,.04167], rounded out to four digits. Similarly, with techniques of §1.4 below,
the first component of the slope matrix can be computed as [1,1.04167], so
A = ([1,1.25],[0,.25]) is a slope matrix for ¢ centered at X = (0,0)T over X,

and a second-order interval extension of ¢ is
[-.5,.5
([1, 1.08334],{0,.08334]) (.5, '5}

C [-.5834,.5834]. (1.23)

$,(X)=0+A(X - X)

Here, [—.5834,.5834] C [—.75,.75], where [—.75,.75] is the enclosure obtained
with the interval derivative, while the actual range of ¢, rounded out to four
digits, is ¢“(X) C [—.5834,.5834], equal in this case to the enclosure given by
slopes.

However, additional care must be taken when computing slopes of general mul-
tivariate functions. For example, if $(X) = z3z3, with X = ([-.5,.5],[-.5, .5]))T
and X = (0,0)7, one would be tempted to compute the first element of the slope
enclosure by setting z2 < £3 = 0, then using a univariate slope computation

30 CHAPTER 1

for z1, and to similarly compute the second element by setting z, + & = 0.
However, this would lead to the clearly incorrect!4 slope matrix of A = (0,0).
Thus, in multivariate problems, variables other than the active one in comput-
ing a component of a slope matriz must be set to their interval, and not point,
values. This is crystallized in

Algorithm 3 (Computation of a slope matrix)

INPUT: The function ¢ : R* — R, the box X and the center X, and a method
of computing a slope bound S(f, z,Z) of a univariate function f: R - R.

OUTPUT: A slope matrix A = S(¢, X, X).

DO fori=1 ton:

1. Define fi(z) = ¢(/X\), where T; =x; for 1< j<n,j#iandZ; =z,
where ¢ is an interval extension of ¢. (Note that f; is in general an
interval, even if T is a point.)

2. Set a; to the slope of the univariate function f;: a; + S(fi, xi, &;).

END DO

End Algorithm 3

1.3.2 Hansen’s Slope Technique

In [73], and later in [77, §6.3-§6.4], Hansen explains a technique that allows
use of point values for some of the variables, when computing derivative matri-
ces for mean value type interval extensions. Hansen’s slope technique is based
on decomposing the change in ¢ : R* — R into changes in due to displace-
ments along the coordinate directions, and on simple application of the mean
value theorem. Different interval extensions are obtained depending on which
displacements are considered first. For example, suppose ¢ : R2 — R, and
X € X c IR®. If displacement along the z; direction is considered first, cf.
Fig. 1.4(a), then, for (z;,z2) € X,

O(z1,22) = d(&1,E2) + %(Cl,fz)(wl — %)+ %(-’51,62)(932 —&2), (1.24)

14Use of this faulty slope matrix in an interval extension would lead to the conclusion that
¢ is constant on X.

Preliminaries

31

(II)IZ)
change %(m,cz)(mz — #2)
-1 ¢o
change %(01,552)(11 — 551)
|
I
(£1,22) @ (z1,22)

(#1,22) (z1,%2)

|
]
a
change %(61,:52)(:51 — 1)

—+ g

change 22-(21,¢;)(z2 — &2)

dzq

(41, %2)

(b)

Figure 1.4 Two ways of computing the change in ¢ between (Z1,%2) and

(z1,T2)

for some ¢; €) and ¢; € x2. Equation (1.24) in turn implies

B(o1,23) € 91, 82) + 5 (@1, 82) (01~ 21) + 5 (@1,22) (w3~ 32), (1.25)

where 8¢/0x, and 8¢/x, represent any interval extensions of 8¢/dz; and
8¢ /0zy. The right member of Equation (1.25) is thus an interval extension of
¢ over X that can be proven to be second order. Similarly, if displacement

along the zo direction is considered first, cf. Figure 1.4(b), then we obtain

&(z1,22) € P(E1,%2) + %(1?1,172)(1?1 ~ &)+ %(51,172)(172 — Z2), (1.26)

where the right member of Equation (1.26) is a second-order interval extension
of ¢ that is different from that in Equation (1.25).

Comparing equations (1.25) and (1.26) to Equation (1.16) (page 15) for the

mean value extension, i.e. to

@ ((z1,2), (1,%2)) = ¢(%1,%2) +

~— (1, T2)(T) — 1)

6:171

%(wl,wz)(wz — &2),

(1.27)

32 CHAPTER 1

shows that equations (1.25) and (1.26) generally give sharper inclusions, since,
in Hansen’s extensions, some of the arguments to the partial derivatives are
points instead of intervals.

For a concrete example, take

Example 1.2 Let

P(z1,T2) = 7123 + 22,
X = ([-.5,.5],[-.5, 5T, and X = (0,0)T. Then the mean value extension
corresponding to Equation (1.27) is

$2(X)

0+ ([-.5,.5)*)[-.5,.5] + (2[-.5, .5][—.5,.5] + 1)[~.5,.5]
= [-0.875,0.875],

the eztension corresponding to Equation (1.25) is

¢g,2) (Xa X)

(l

(0*)[-.5,.5] + (2[-.5,.5][-.5,.5] + 1)[-.5, .5]

[-0.75,0.75],
and the eztension corresponding to Equation (1.26) is
i1y (X,X) = ([-5,.5)[-5,.5 + (2(0)[-.5,.5] + 1)[-.5, .5]
= [-0.75,0.75].

The optimization procedures'® described in Chapter 5 give an actual range
¢*(X) = [-0.625,0.625].

Although ¢g72)(X)= ¢(I’2I,1)(X) in Example 1.2, this is in general not the case;
see Exercise 1 on page 35.

Definition 1.13 Suppose ¢ :DCR* - R, X CD, X € X, and {ij};,;l =

{1,2, e ,n}. Then ¢(Ifl’i2p_‘i")(X,)V() is defined to be Hansen’s interval ezten-
sion as above, with displacement in the iy direction first, in the ia direction
second, etc.

In the main context in optimization (interval Newton methods, §1.5.1 below),
the intervals corresponding to partial derivative values are as important as the

15 Also, it can be seen directly from the fact that 8¢/8z1 = 22 > 0 and 8¢/0z2 = 2z 122 +
1 > 0 that the minimum of ¢ occurs at (—.5,—.5) and the maximum occurs at (.5, .5).

Preliminaries 33

actual extensions. In Example 1.2, the interval gradient is
V¢(X) = ([0,.25),[.5,1.5]) 7,
the vector corresponding to ¢g,2) is
Vol (X, X) = (0,5,1.5)7,
and the vector corresponding to ¢g,1) is

Vi (X, X) = (0,.25,1)".

This example shows that Hansen’s slope technique gives better inclusions than
the interval gradient, even though a particular ordering may not be optimal for
a particular component.

In the optimization context, the Lipschitz property (Definition 1.10 on page 26)
and the slope matrix property (Definition 1.12 on page 27) are important in
the design of interval Newton methods to verify existence and uniqueness of
critical points. The Hansen extensions do not correspond to Lipschitz sets,
but clearly correspond to the definition of slope matrices. In fact, Hansen’s
technique can be combined with the multivariate slope computation procedure
as a minor modification to Algorithm 3.

Definition 1.14 A Hansen slope of a function ¢ : R* — R, denoted by
§H.S (¢, X, X), is defined to be the output A of the following algorithm.

(41,i2,.-in)

Algorithm 4 (Computation of a Hansen slope matrix)

INPUT: The function ¢ : R* — R, the box X and the center X, and a method
of computing a slope bound S(f,x, &) of a univariate function f : R = R.

OUTPUT: A Hansen slope matrix A = S(¢, X, X).
DO fori=1 to n:

1. As in Algorithm 8, define fi(z) = ¢(X) with &; = z, where ¢ is an
interval extension of ¢. However, set &; = &; for 1 < j < n, j # i, and

. . . . Tyi-1 .
JjE€ {Zk}:=i+1’ and &; = x; for j € {zk};=1, where {zk}:=1 = {k |1<
k< n} is a permutation of the first n positive integers.

34 CHAPTER 1

2. Set a; to the slope of the univariate function f;: a; + S(f;, x;, &).
END DO

End Algorithm 4

In the absence of other information, i can be set to k for 1 < k < n. The
expansion can also be done last with respect to those variables x; for which the
scaled partial derivative widths

a¢(§:17"':ji—l7wi7ji+17"'7jn) .
dz; (x; — ;)

differ most from the corresponding “point approximation” widths

6¢(.’i1 e, T T; ji+l i’n) .
— a’zj’ ——=(x; —),

although this is a heuristic. A less expensive heuristic would be to order the
variables to expand in order of increasing

9¢
3:1:,-

In any case, for sharper inclusions, results corresponding to several different
orders can be computed and intersected.

(:l!,; - .’E,;).

For example, Algorithm 3, applied to compute A for the ¢ in Example 1.2,
gives fi(z1) = [0,.25]z, + [-.5,.5]. With techniques of §1.4.3 below, a bound
S(f1,x1,%1) is computed to be [0,.25]. Similarly, fo(z2) = [—.5,.5]z2 + z2, and
a bound S(f2, 2, %2) is computed to be [-.5,.5][—.5,.5] + 1 = [.75,1.25]. The
corresponding computed slope matrix is:

S(4, X, X) = ([0,.25],.75,1.25])”, (1.28)

which is the same as the interval gradient V¢(X) (computed below Exam-
ple 1.2 on page 33). Similarly, for this ¢, the fact that relevant terms in

¢ are linear causes S[7'3 (¢, X, X) = V(i 5(X,X) and S777,(4, X, X) =

V¢g,1)(X,X), where Vd)g,z)(X, X) and V¢g,1)(X, X) are computed below
V¢(X) on page 33.

On the other hand, in Example 1.1 on page 26, with ¢(zy,z2) = z3/3+23/3 +
Ty,

Vo(X) = (1,1.25],0,.25])7,

Preliminaries 35

whereas a computable slope enclosure, given in Equation (1.23) on page 29, is
S(z3/3 + #3/3 + 71, X, X) = ([1,1.08334], [0,.08334])" .

For this example, the slope enclosures from Algorithm 3 and the Hansen-slope
enclosures from Algorithm 4 are the same, but the multivariate slope enclosures
are better than the gradient.

We emphasize:

Theorem 1.11 The Hansen slope S5 (¢, X,X) given by Algorithm 4

(81,82)
s a slope matriz in the sense of Definition 1.12.

This theorem follows from careful consideration of the definitions.

Also:

Theorem 1.12 Assume all interval computations and interval extensions are
inclusion monotonic. Then Sglslz _“i")(qS,X,X) C S(¢,X,X), where

S(¢, X, X) is computed by Algorithm 3.

Because of Theorems 1.11 and 1.12, in almost all situations Algorithm 4 should
be used instead of Algorithm 3, unless, for some reason, Algorithm 3 can be
implemented more efficiently.

1.3.3 Exercises

1. If ¢(X) = zizy + 2123, X = ([-.5,.5],[-.5,.5])T and X = (0,0)7, then
compute and compare ¢g,2)(X,X) and ¢(Ig,1)(X,)V(). Also compare to
the mean value extension ¢, (X, X) and to the natural interval extension.
Is it easy to obtain the exact range ¢*(X) for this ¢?

Hint: ¢*(X) C [-.068042,.068042]. Technigques of calculus may be used
in this case.

2. Prove Theorem 1.11.
3. Prove Theorem 1.12.

36 CHAPTER 1

1.4 AUTOMATIC DIFFERENTIATION
AND CODE LISTS

Description of a global optimization problem requires specification of an objec-
tive function and constraints. However, algorithms for verified global optimiza-
tion may require both floating point and interval values (i.e. interval enclosures
or slope enclosures) of the objective function, gradient and Hessian matrices,
as well as, possibly, interval values of the intermediate quantities obtained in
computing a natural interval extension'®. With floating point and interval
values of the constraints and their gradients, this makes at least ten different
routines'” that would be required for each problem, an unacceptable burden if
many problems are to be solved.

The earliest approach, in floating point codes for approximations to local opti-
mizers, avoided a separate programming effort for Jacobian or Hessian matrices.
They used numerical differentiation, i.e. computation of approximations with
forward or central differences. An alternate possibility is to pre-process with
symbolic manipulation packages such as MACSYMA, Maple, Reduce or Math-
ematica. A third approach, followed in several packages such as LANCELOT
[35], provides ad hoc programs to interpret a standard input format, such as
MPS format [174], or SIF format [35], or a proposed format of Neumaier [176],
and actually writes target language (such as Fortran) subroutines for each re-
quired computation.

Each of these approaches have failings. Numerical differentiation can be over-
whelmed by both truncation and roundoff error, can result in n times the
amount of effort to evaluate the gradient of a function of n variables!®, and is
unsuitable for interval computations. Symbolic differentiation requires substan-
tial separate machinery, and can also result in expressions for the derivatives
that are many times larger than optimal. Special input formats and special
packages must be learned by the user, and are not universal. An alternate
technique is automatic differentiation.

16gee Chapter 7 below.

17The routines must include: (1) floating point objective function, (2) floating point gradi-
ent, (3) interval objective function, (4) interval gradient, (5) floating point derivative matrix,
(6) interval derivative matrix, (7) floating point constraints, (8) interval constraints, (9) float-
ing point constraint gradients, (10) interval constraint gradients. Several others may also be
used, depending on the algorithm.

18depending on system structure and how it is utilized: see [34].

Preliminaries 37

1.4.1 The Forward Mode

The forward mode of differentiation is analogous to interval arithmetic in the
sense that an arithmetic is defined on an extended set of objects, intervals in
the case of interval arithmetic and function / derivative pairs in the case of
automatic differentiation. That is, an object for automatic differentiation is an
ordered pair of the form (u,u'), where the elements u and u' are real numbers
or intervals!'®. The rules for differentiation arithmetic are based on elementary
rules of differentiation. For the four elementary operations, these rules are:

(u,u') + (v,v") = (u+uv,u +0),
<u7u,>—<) ,> = <u_ ,’U,’— ,>a

(u, ') - <:,:'> — (uu,zfu' + mj,)’) (1.29)
(u,u')/(v,v") = (ufv,(@W'v—uw')/v?).

Similarly, rules for standard functions are defined according to formulas of
differential calculus. For example:

sin ((u,u')) = (sinu,u’cosu),
{u, u’)z = <u2,2uu’),
(u,v')® = (u3,3u?u'), etc.

In arithmetic expressions, constants ¢ are identified with pairs (¢, 0) while in-
dependent variables z are identified with pairs (z, 1).

Example 1.3 Suppose
flz) =2+ 2° + 1,

and f(x) and f'(x) are to be evaluated with x = [.99,1.01]. Evaluation of this
function can then be decomposed into the following operations

I = X

T2 + z}

o3+ 2} (1.30)
Ty 4 ZTo+ I3

Ty — Tg+2

z5 is dependent,

and the arithmetic, rounded out to four digits, can proceed as follows:

(z2,7h) + (z,1)* = ([.99,1.01]%,4[.99,1.01]?)

90r floating point numbers and floating point intervals

38 CHAPTER 1

C ([.9606,1.041],[3.881,4.122)),
(z3,2%) « (z,1)° = ([.99,1.01)%,3[.99,1.01]%)

C ([9702,1.031],[2.940, 3.061])
(3a,24) (T2,73) + (23, 25)

C ([1.930,2.072),[6.821,7.183])
(zs5,25) + (24,74) + (2, 1)

C ([2.920,3.082],[7.821,8.183]).

Thus, an interval enclosure for {f(z) | = € [.99,1.01]} is [2.920, 3.082], while
an interval enclosure for {f'(z) | z € [99,1.01]} s [7.821,8.183].

Although automatic differentiation is generally viewed as propagating values
rather than expressions, a similar technique can be used to obtain derivatives in
a symbolic form; see page 91 below. In either case, automatic differentiation is
different from symbolic differentiation. There is no expression swell (that is, the
size of the symbolic representations does not become excessive) in automatic
differentiation.

As seen in Example 1.3, in the forward mode of automatic differentiation, the
intermediate quantities in the expressions for the values and derivatives are
computed in the order in which the expression is evaluated.

The earliest explanation of the forward mode is [239], while an early but thor-
ough explanation is [187].

1.4.2 The Reverse Mode

An alternate mode of computation is the reverse mode. In this scheme, each of
the intermediate quantities computed when evaluating the expression for the
derivative term is assigned a variable. In Example 1.3, there are four operations,
so four intermediate variables are introduced: zs through zs; z is denoted z;,
and zs corresponds to the dependent variable f(z). The system of equations
for Example 1.3 is thus

(z2 + x3) — 24
(4 +x1) — 25

r1—c = 0

zt—zo = 0
z3 —z3 0 (1.31)

0

0.

Preliminaries 39

Throughout, this system of equations will be called the ezpanded system.

If each term in System (1.31) is now differentiated with respect to the variables
occurring in it?°, repeated application of the chain rule leads to the follow-
ing system of equations for the derivatives of the intermediate quantities with
respect to z.

1 x} 1

473 -1 T 0
32 -1 o | =] 0 (1.32)

1 1 -1 o, 0

1 1 -1 zi 0

The forward mode corresponds to setting #; = 1 and applying forward substi-
tution to this system. The reverse mode corresponds to using the fifth equation
to eliminate zj from the fourth equation, using the resulting fourth equation to
eliminate z§ from the third equation, then using the resulting third equation
to eliminate z!, from the second equation. Finally, the first equation can be
used to eliminate z] from the second equation. The first equation may then
be solved for z5 = f'(z). Note that, in general, interval enclosures for the
intermediate quantities (z;, 2 < ¢ < 5, in this example) must be computed
first. This may be done e.g. by forward substitution on System (1.31) or by
computing second order extensions for each equation in System (1.31). For
example, if £ = [.99,1.01] as in Example 1.3, then, rounded out to four digits,

20For example, in the second equation, the first expression is differentiated with respect to
1 and the second expression is differentiated with respect to z5.

40 CHAPTER 1

the augmented matrix for (1.32) becomes

1 1
[3.881,4.122]) -—1
[2.940,3.061] —~1
1 1 -1
1 1 -1
1 1
[3.881,4.122] -1
~ [2.940,3.061] -1
1 1 1 0 -1
1 1 -1
1 1
[3.881,4.122] -1
~ [3.940,4.061} 1 0 -1
1 1 1 0 -1
1 1 -1
1 1
[7.822,8.183] 0 -1
~ [3.940,4.061] 1 0 -1
1 1 1 0 -1
1 1 -1
1 1
0 0 -1 | [—8.183, —7.822]
~ [3.940,4.061] 1 0 -1
1 1 1 0 -1

1

l
-

Thus, f'(z) C [-8.183,-7.822]/(-1) = [7.822,8.183] for z € = = [.99,1.01].
In general, the reverse mode does not give identical intervals to the forward
mode. Observations indicate that the intervals obtained from the reverse mode
are often narrower. Other elimination orders, different from both the forward

and reverse modes and leading to different interval inclusions, are also possible
[66].

The reverse mode works similarly for multivariate functions and partial differ-
entiation: There is an additional equation and column for each independent
variable. All but one of these rows and columns is ignored for a particular
partial derivative. Because of the extreme sparsity?' of System (1.32), it is
not hard to show that the reverse mode can compute all partial derivatives in
a time that is proportional®? to the amount of time required to compute the
original function value ¢(z1,...,%n), independently of n.

More generally, interval enclosures for the solution to the System (1.32) may
be computed with optimal preconditioning, as in §3 below.

211f all operations are unary or binary, each row of the System (1.32) has at most three
non-zero entries.
22Griewank has observed the constant of proportionality to be 5.

Preliminaries 41

Early works dealing with the reverse mode are [225] and [92] (see also [93]),
while Griewank [63, 64] has studied the process more recently. Shiriaev [223]
has included vector operations in the expanded system, thus reducing the num-
ber of intermediate results and increasing the efficiency considerably for many
problems.

1.4.3 Slope Arithmetic

Any interval Lipschitz matrix, such as F'(X) of Definition 1.11, is also a slope
bound matrix S(F, X, X) for any X € X. However, tighter bounds can be
computed automatically for particular X or for particular X C X. This is
done with slope arithmetic that is similar to the differentiation arithmetic of
§1.4. Formulas analogous to those of §1.4 will be presented here; slopes of
multivariate functions can be computed from these and from Algorithm 3.

As with differentiation arithmetic, slope arithmetic is based on defining oper-
ations and standard functions on ordered triplets of the form <, u,u‘>>.
Addition and subtraction are defined the same way as with differentiation arith-
metic, but multiplication and division differ somewhat: the rules?® correspond-
ing to formulas (1.29) are

<<ﬂ,uau(’)>> + <<f),v,v(’)>>
<<ﬂau’u(‘)>> - <<13,v,v(">>
<<ﬂ)u1u(‘)>> X <<’b,’v,’v(‘)>>

L, u, u* > + Kb, 0,09>>

La+ 0,4 +v,u” + 0>,
<Li~v,u—v,u? —vI>,
KLuv,uv,uv® + uv>,

Lu/d,ufv, w»

(1.33)

As with differentiation arithmetic, rules could be defined for the standard func-
tions according to the rules of differentiation arithmetic. However, the resulting
slope bounds are not the sharpest possible. For standard functions w(z) for
which w”(z) # 0 for z € x, a difference formula computes the ezact slope range
SH(w, z, £) to within roundout error:

Theorem 1.13 (A slight generalization of a theorem of Rump in [208, 211])
Suppose w : R - R, ¢ € IR, & € IR, and w is either conver or concave
(i.e. w"(z) # 0 if W is continuous) for all x in the convez hull tUE. Then

23These rules were presented in [141], with additional insight in [208].

42 CHAPTER 1

S (w,x, %) defined by
wiz)—w(z) S 2 forz g

w'(Z) otherwise (1.34)

SO (w,z, &) = h(z) URE) with h(z) = {

is a slope set for w over © and centered on &. If & is a point, then S(9(w, z, %)
is the smallest possible such slope set.

It was proven in [208] that S(¥)(w, z, %) is a slope set if w” # 0, and it was
pointed out in [211] that S{¥)(w,z,%) is a slope set when w is convex over
xUZ. The fact that this slope set is sharp for points & follows from the fact
that any slope set must contain h(z) and h(Z). The fact that S()(w,x,%) is a
slope set when & is non-degenerate interval follows from elementary properties
of interval arithmetic, assuming w(&) contains the range of w over &.

In actual implementations, A is not defined exactly as in Equation (1.34), since
roundout error becomes severe when z is close to &, even though z ¢ &. In
such implementations, h(z) can be defined to be w'(&) whenever

<& —-z> <+em, (1.35)

where ¢,, is the machine epsilon.

Theorem 1.13 can be applied directly when w € {exp,log, va }. 1t can also be
applied directly to w(z) = z" with n even, since such w are limiting cases of
w satisfying the hypotheses. It can be applied to w(z) = z" with n odd by
considering the algebraic signs of the endpoints of and &, and it can be applied
to functions such as w(z,y) = z¥, since they can be computed by composing
log and exp. Theorem 1.13 can be applied when w is an inverse trigonometric
function by checking for the positions of the inflection points relative to and

.

It is somewhat more difficult to apply Theorem 1.13 when w € {sin,cos}. For
these functions, the interval derivative or other techniques can be used.

Preliminaries 43

For example, a slope bound for f(z) = z* + 2% + 2z, ¢ =[99,101, 8 =% =1
can be evaluated as in Example 1.3 on page 37:

LiEg, T2, 75> <, 2,13 = <1, [.99,1.01]4, S¥(z*,[.99,1.01], 1)>
<1,[.9606, 1.041],[3.940, 4.061]>>,
<&, z,1>% = «1,[.99,1.013, 84 (z%,[.99,1.01], 1) >
<1,[.9702,1.031],[2.970, 3.031]>>,
L&,y T2, 75 > + L3, 73,75 >
<2,[1.930,2.072],[6.910, 7.092] >,
Lig, T, 70> + L&, 2, 12>
<3, [2.920, 3.082], [7.910, 8.092]>>.

Thus, an interval enclosure for {f(z) | z € [.99,1.01]} is [2.920,3.082], the
value f(1) is 3, and an interval enclosure for the slope is:

{S*(f,z,%) | = € [.99,1.01], % = 1} C [7.910, 8.092].

Note that [7.910,8.092] C [7.821,8.183], where [7.821,8.183] is the interval
bound on the derivative obtained in Example 1.3. In fact, w([7.910,8.092]) =
0.182 ~ 1w([7.821,8.183]) = 0.362, as theory of S¥ would predict.

<L #3,T3,25>>
L&y, T4, 3>

L&, T5, 25 >

NTtTntTotnt

A final note: Neumaier has suggested that slope arithmetic can be done with
matrices, rather than with numbers. This would obviate the need for Hansen’s
slope technique, and also be more efficient that computing derivative matrices.

1.4.4 Operator Overloading and Code List
Generation

In the software described in this work, both the forward mode and reverse mode
will be used, as well as a symbolic version of each. To do so, methods explained
early in [187] (and earliér in [131]) will be used to first create an internal rep-
resentation, termed a code list, of the function from a user-created program.
Generic routines are then used, with this code list as input, to compute interval
and floating point function and derivative values, and to symbolically differ-
entiate a code list. In this work??, the code list will be created with operator
overloading.

24 Alternatives are to use operator overloading directly in automatic differentiation, without
creating a code list, to implement a special programming language with a derivative data type,
or to create a special computer program that generates a code list. Each has advantages and
disadvantages.

44 CHAPTER 1

Considered one of the four capabilities defining an object-oriented program-
ming language ([184], etc.), operator overloading consists of extension of the
definitions of arithmetic and logical operators (“+7, =7, “x”, “+7, “<?, “>”,
standard functions such as “sin”, etc.) to user-defined data types. In this
technique, the data type is first defined (such as an interval as an array of
two double precision words). Then subroutines are written to implement the
arithmetic and logical operations on this data type. For example, if an interval
were defined in FORTRAN-77 as a double precision array with two elements, then
a subroutine for addition of two intervals could be of the general form?®

SUBROUTINE ADD(A, B, RESULT)
DOUBLE PRECISION A(2), B(2), RESULT(2)
RESULT(1) = A(1) + B(1)
RESULT(2) = A(2) + B(2)
CALL RNDOUT (RESULT)
RETURN
END

The final step in the operator overloading process is to connect the subroutine
names (such as ADD) to the operator symbols (such as “+”). This is done e.g.
in Fortran 90 with a “module.”

An early package allowing this technique was the Augment precompiler [42],
a FORTRAN-66 preprocessor with which an interval data type [247] was pro-
vided. Current common modern programming languages with operator over-
loading are C++, Fortran 90 and Ada. Also, the SC languages, e.g. {70, §2.2],
besides containing intrinsic?® interval data types, provide language constructs
for operator overloading.

The subroutines for particular operations need not do actual arithmetic opera-
tions, but can write lines in a table. This is how code lists are generated. Here,
we sketch briefly how this is implemented, introducing only enough detail to
describe Example 1.3 on page 37. More detail appears in §2.2.2 on page 83.

A partial set of operation codes used in the system of [117] appears in Table 1.1.

Operation Code

7 Table 1.1 Some example
Tp— T 19 . :

q operations and corresponding
Tp & Tg + 2y 20 numerical codes

25This is a simplification of the corresponding INTLIB [123] routine.
26i.e. already defined in the language

Preliminaries 45

New CDLVAR (“code list variable”) and CDLLHS (“code list left-hand-side”) data
types, essentially integer storage addresses, can then be defined?” in Fortran 90
as follows:
TYPE CDLVAR
INTEGER LOCATION
END TYPE CDLVAR
TYPE CDLLHS
INTEGER LOCATION
END TYPE CDLLHS

Arrays OPA, PA, QA, and RA containing the operation code as in Table 1.1 and
the indices of the variables p, ¢, and r as in Table 1.1, respectively, are defined.
Simplified?® Fortran 90 subroutines for code list generation, corresponding to
exponentiation and addition, can then be written:

! The following is for overloading exponentiation A**N.
FUNCTION CLPOWN(A, N) RESULT(R)
TYPE(CDLVAR), INTENT(IN):: A
INTEGER, INTENT(IN):: N
TYPE(CDLVAR):: R
NROW = NROW+1
NVAR = NVAR+1

OPA(NROW) = 19
PA(NROW) = NVAR
QA(NROW) = AY%LOCATION
RA(NROW) =N

R%ALOCATION=NVAR
END FUNCTION CLPOWN

27Here, concepts are illustrated with Fortran 90 constructs; see e.g. [22] for an introduction
to Fortran 90.

28j.e. somewhat simplified versions of actual routines of INTLIB_90 described in §2.2.2 on
page 83 below

46 CHAPTER 1

t The following is for overloading addition A+B.
FUNCTION CLADD(A, B) RESULT(R)
TYPE(CDLVAR), INTENT(IN):: A, B
TYPE(CDLVAR):: R
NROW = NROW+1
NVAR = NVAR+1

DPA(NROW) = 20
PA(NROW) = NVAR
QA(NROW) = A%LOCATION
RA(NROW) = BYLOCATION

RY%LOCATION=NVAR
END FUNCTION CLADD

Assignment “=" can also be overloaded to set a dependent variable (a function
value, of type CDLLHS) to an expression, as in the following Fortran 90 code.

! The following routine overloads f(i) = <expression>
SUBROUTINE CLLHS(F,EXPRESSION)
TYPE(CDLLHS), INTENT (OUT):: F
TYPE(CDLVAR), INTENT(IN):: EXPRESSION
NROW = NROW+1
NEQ = NEQ + 1

OPA(NROW) = 18
PA(NROW) = EXPRESSIONYLOCATION
QA(NROW) =0
RA(NROW) =0

LHSLOC(NEQ) = NROW
F/LOCATION = NEQ

END SUBROUTINE CLLHS

The routines CLPOWN, CLADD, and CLLHS can then be connected to the two
operations in Table 1.1 within a Fortran 90 module OVERLOAD, containing the
following statements:

Preliminaries 47

INTERFACE OPERATOR (**)
MODULE PROCEDURE CLPOW1

END INTERFACE

INTERFACE OPERATOR(+)
MODULE PROCEDURE CLADD

END INTERFACE

INTERFACE ASSIGNMENT (=)
MODULE PROCEDURE CLLHS

END INTERFACE

Suppose that the module OVERLOAD also contains a routine
INITIALIZE CODELIST

to set NROW and NVAR to zero and to set various array dimensions such as the

number of independent variables; and a routine FINISH_CODELIST to write the
29 ;

arrays” OPA, PA, QA, and RA to a table. Then the following Fortran 90 program

would make sense.

PROGRAM EXAMPLE_OF_CODELIST_GENERATION
USE OVERLDAD

TYPE(CDLVAR), DIMENSION(1) :: X
TYPE(CDLLHS) :: PHI
CALL INITIALIZE_CODELIST(X)
PHI = X(1)*x4 + X(1)*x3 + X(1)
CALL FINISH_CODELIST

END PROGRAM EXAMPLE_F_CODELIST_GENERATION

(1.36)

Execution of this program would produce the code list in Table 1.2. Table 1.2
is a numerical description of precisely the sequence of operations given in Sys-
tem (1.30) in Example 1.3 on page 37.

1.4.5 Generic Functions

Once generated, a code list such as that in Table 1.2 (next page) contains, in
principle, all information necessary to evaluate the corresponding function and

29declared in overload and thus available to any routine that uses OVERLDAD

48 CHAPTER 1

OP |p|lg|T
19 2|14

31113 Table 1.2 Tabular repre-
19 sentation of the output to the
20 14123 program (1.36)
20 |5|4|1
18 [5(0 |0

its derivatives, with any data type. In fact, a single interpreter routine may
be supplied to compute e.g. an interval enclosure for the range of any function
representable as a code list. The principle is simple, and can be implemented by
an if-then-else cascade or by a case statement. For example, suppose that NI,
a variable available in module OVERLOAD, denotes the number of intermediate
quantities computed during evaluation of the function. (NI = 4 in the code
list in Table 1.2.) Then the subroutine in Figure 1.5 will return the floating-
point value at X of a function represented by the code list with arrays OPA(I),
PA(I), QA(I) and RA(I), I = 1,...NI, provided the function can be evaluated
with only additions and integer powers. Observe that such programs are easily
extensible.

1.4.6 Exercises

1. Apply forward substitution {(or use the results displayed in Example 1.3)
to compute z;, j = 2,3,4,5 from the expanded System (1.31). Then use
the reverse mode for the System (1.32) to compute an interval enclosure
for the range of f' over z = [.99, 1.01]. Compare the result to the enclosure
computed in the forward mode in Example 1.3.

2. Apply both the forward mode and the reverse mode of automatic differen-
tiation to)
¢(z) = [sin (nz?)]
at x = 1.

3. Apply the reverse mode of automatic differentiation to compute
O8¢/0z1(1,2) and 8¢/0z2(1,2), where ¢(z1,z2) = 22 + z2 + 71 72. Observe
that both partial derivatives may be obtained with only one pass through
the initial part of the elimination process.

Preliminaries

SUBROUTINE POINT_EVALUATION(X,FVAL)
USE CODELIST_VARIABLES
DOUBLE PRECISION, INTENT(IN) :: X
DOUBLE PRECISION, INTENT(OUT):: FVAL
DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE:: XX
INTEGER J
ALLOCATE (XX (NI+1))
XX(1) =X
DO J =1, NI
SELECT CASE(OPA(J))
CASE(19)
XX(PA(J))
CASE(20)
XX(PA(T))
CASE DEFAULT
WRITE(6,*) ’UNIMPLEMENTED OPERATION’
STOP
END SELECT
END DO
FVAL = XX(PA(NI+1))
DEALLOCATE (XX)
END SUBROUTINE POINT_EVALUATION

XX(QA(J)) *+RA(D)

XX(QA(J)) + XX(RA(J))

Figure 1.5 Sample program to compute a floating point function value from
a code list

CHAPTER 1

. Use the chain rule to show that the solution to systems of the form of Sys-

tem (1.32) gives z5 = f'(z) (or, more generally, ty = 0¢(z1,...,2,)/0TL).

Hint: You may want to use induction on the number of operations required
to compute the function.

Assuming each operation is either a unary or binary operation (where stan-
dard function evaluations are counted as an operation), count the num-
ber of additions, subtractions, multiplications, and divisions to perform
the reverse mode on a general system set up as System (1.32). Let n
be the number of variables and N the number of operations to evaluate
#(z1,22,...,Z,). Write the operation count in terms of N and n. Does
this differ from the common perception of the amount of work required to
compute gradients?

. If ¢(z) = 2° + z* + 2% + 7, then write a code list for ¢ in the form of

Table 1.2, using the operation codes of Table 1.1. Are such code lists
unique? If not, then also write down an alternative code list.

Note: Different code lists are obtained by doing the operations in a different
order. However, functions such as ¢(z) = z(1+2%(1+2z(1+2))), although
equivalent in real arithmetic, are considered to be different functions. You
may interpret the problem as asking if there are two different code lists
that both obey the restrictions on the order of operations defined in the
Fortran 90 standard.

. For f(z) = 2* + 2® + = with code list as in Table 1.2 and with entry value

X = 2, manually trace execution of the subroutine POINT_EVALUATION in
Figure 1.5. (That is, make a list of each statement passed in the program,
with values of the variables after they are assigned.)

The value FVAL upon return should be f(2).

1.5 INTERVAL NEWTON METHODS AND

INTERVAL FIXED POINT THEORY

The books [77], [175] and [191] are good references for interval Newton meth-
ods and interval fixed point theory. The reference [77] emphasizes concepts
and practical aspects of implementation. An especially good reference for the-
ory and the computational existence and uniqueness tests in §1.5.2 is [175],
supplemented with the more recent results on uniqueness with slope matrices
that appear in [208]. The reference [7] gives a good survey of interval Newton

Preliminaries 51

methods based on interval Gaussian elimination, and also surveys the Krawczyk
method. One relatively early use of classical fixed point theory in the analysis
of interval methods is in [205].

In this section, univariate interval Newton methods will first be discussed. After
that, multivariate interval Newton methods, based upon methods of bounding
the solution sets to interval linear systems in §1.2.2 will be introduced. Next,
computational existence and uniqueness theory, based on classical fixed-point
theorems, will be presented.

1.5.1 Interval Newton Methods

Except for the choice of interval extensions or slopes, there is essentially a single
univariate interval Newton method. In contrast, multivariate interval Newton
methods vary according to solution method for the linear system, precondi-
tioner, etc. We will discuss the simpler case first.

Univariate Interval Newton Methods

Suppose f : ¢ = [z,F] — R has a continuous first derivative on z, suppose that
there exists z* € « such that f(z*) = 0, and suppose that & € z. Then, since
the mean value theorem implies

0 = f(=")=f(&@+ f(OE" -2,
we have z* z - f(z)/f'(€)

for some £ € . If f'(x) is any interval extension of the derivative of f over z,
then

Il

z* €z — f(£)/f'(z) foranyZ € z.

Similarly, if S(f,z,&) is a slope set for f centered at Z (as in Definition 1.12
on page 27), then, also

z* €& — f(&)/S(f,z,&) forany i € x.

This leads to

Definition 1.15 (Univariate interval Newton methods) The operators

N(fix, %) =& — f(£)/f'(x) (1.37)

52 CHAPTER 1

N(f;:l:,.’i‘) =T - f(.’i')/S(f,:l:,:i) (138)

are®® termed the univariate interval Newton methods.

Recapitulating, if £* € has f(z*) = 0, then z* € N(f;=,%). This fact un-
derlies the use of interval Newton iteration to sharpen bounds on solutions and
global optimizers. Another important fact making interval Newton methods
efficient for global optimization algorithms is local quadratic convergence. An
example of the type of theorem that can be proven3! is

Theorem 1.14 Suppose

(a) i® = (2® + ") /2 for all ¥,

(b) f has a continuous derivative on an initial interval z(®,
(c) |f(@)| < My for z € 2,

(d) N(f;z®,£©) is defined with Equation (1.87),

(e) f' is an inclusion monotonic interval extension of at least first order in
the sense of Definition 1.4 on page 14,

(f) min{|y|,y € f'(®)} =mys >0, and
(9) KM;y/m} =B <1.

Then

1. w(N(f;z®,59)) < gw(z©@).

2. Furthermore, if
) = 20 0 N(f;2® | 38, (1.39)

then w(z(F+1)) = O (w(:z:(")))z.

30 Although methods differ according to the interval extension of the derivative and whether
a derivative or slope is used, all such variants will be viewed as a single method here.

31This theorem is just meant to be an example that is easy to understand, not the sharpest
or most general result in the literature.

Preliminaries 53

Proof: Property 1 will be proved first. Only the case f(£(*)) > 0 and f'(z(?) =
[a,b] > 0 will be considered, since the other cases are similar. In that case,

) - ()
_ w([f(im))’f 5(:1(‘)))]) :f(j(o))ba—_ba
< MfW(f'(m(O)))/m?'
< KMfw(:z:(O))/m% = ﬂw(m(o)).

To prove property 2, we proceed as with property 1, assuming the case f (£ k)) >
Oand f'(z®)) = [ax, bx] > 0: w(z®*tD) < w(N(f;2®),2®)) = f(z k))égﬁh.

However, &%) = z* + () - 2*), so f(& ’°>) = P -) < bew(a)2
since z* € z¥) and #(* is the midpoint of z(¥). Therefore, { f(z(¥)} {—k—h"“ } <

agby

{brw(z®)/2} {(KMsw(z®)/(mpbi)} = 2m,, w(z! ")) , thus proving prop-
erty 2 for this case. The other cases are similar. O

Equation (1.39) may be used directly to reduce the size of the initial interval.
In fact, this equation is applicable even when 0 € f'(x(®), because the set
inclusion properties of the Kahan arithmetic of §1.1.4 are the same as those of
ordinary interval arithmetic:

Example 1.4 (Extended interval arithmetic in an interval Newton method)
Let f(z) = 22 — 4, and let 20 = [-2,2], and ® = 0, so the range of f'
is f'(x®) = [-4,4]. The first iteration of the interval Newton method thus
becomes

N(f;z®,59) = o~[_—;%]=o—([—oo,—1]u[1,oo])

([=00, =1 U1, 00]).

Thus,
N(f;2©,29)n2® = [-2,-1]u[1,2] = 2D YD,

One of z("Y) = [-2, —1] and 2(}?) = [1,2], say 2(1'1), is now put on a stack for
later processing, and the interval Newton method is iterated with z(}?). The
latter, implemented in the software system of §2.2.1 below, gives the iterates32

32The last digits in z(*) and #(¥) have been rounded out for rigorous inclusions.

54 CHAPTER 1

z(k) (%) w(:c(")) rat.
0.9999999999999997, 2.0000000000000005 1.5000000000000000 1.00 —_
1.9374999999999990, 2.3750000000000019 2.1562500000000004 4.38E-01 4E-1
1.9886592741935471, 2.0195312500000010 2.0040952620967740 3.09E-02 2E-1
1.9999724292486506, 2.000035453 7727550 2.0000039415107027 6.30E-05 7E-2
1.9999999999417791, 2.0000000000659869 2.0000000000038831 1.24E-10 3E-2
1.9999999999999988, 2.0000000000000010 2.0000000000000000 2.00E-15 1E+5

DU W N A

Table 1.3 Illustration of quadratic convergence of the univariate interval
Newton method for f(z) =22 — 4

in Table 1.3. There, the last column, labelled “rat.”, represents the ratios
w(:z:(k))/w(m(k"l))z.

Provided the case f(&) = 0 with 0 € f'(z) does not occur, the univariate inter-
val Newton method combined with Kahan-Novoa-Ratz arithmetic and deferred
processing of additional boxes often converges to small boxes containing all of
the roots of f. Such a univariate interval Newton method algorithm can be
summarized in

Algorithm 5 (Univariate interval Newton search, similar to [77, §7.4])
INPUT: f, x, and a tolerance ¢.

OUTPUT: A list C of narrow intervals of length at most € that possibly contain
roots.

1. Initialize: U + {z}.
2. DO whileUd # 0.

(a) Remove an interval from U.
(b) DO while w(z) > e.
i. Compute N(f;x,%) Nz for some T € x.
. IF N(f;x,%) Nz consists of a single interval
THEN
z« N(f;z,Z)Nx.
ELSE
Put one of the intervals into U.
Set the other interval to x.

Preliminaries 55

END IF
END DO
(c) Storex in C.

END DO
End Algorithm 5

A relative width w(z)/ max{|z|, |Z|} may be used in Step 2b. For rigor, all of
the computations to obtain N(f;x,), including evaluation of f(%), should be
done with outwardly rounded interval arithmetic.

For a summary of the theory underlying Algorithm 5, as well as for extensive
additional commentary, see [77, Chapter 7]. Algorithm 5 is simplified, and does
not include steps to verify existence or uniqueness within the boxes in ¢. Such
techniques are explained in the general, multidimensional context in §1.5.2.

Algorithm 5 should function satisfactorily for a variety of f, although more
sophisticated techniques are necessary for problems such as the Gritton problem
studied in [114], in which there is a combination of serious overestimation in
the derivative values and cancellation error.

Multivariate Interval Newton Methods

Although analogous to the univariate interval Newton methods above, multi-
variate interval Newton methods have more variety. Different univariate inter-
val Newton methods of formulas (1.37) and (1.38) vary in the choice of base
point & and interval extension of the derivative or slope. In multivariate interval
Newton methods, not only can the base point X and interval extension F’(X)
or S(F, X, X) be varied, but there is a wider variety of ways of bounding the
solution sets of the resulting linear systems than in the univariate case; cf.
§1.2.2. Furthermore, there are additional issues in dealing with interval slopes
[120, §3.3] and [210]. Finally, there are questions concerning preconditioning
the related interval linear systems. Differences in how interval Newton methods
are used in computational existence and uniqueness tests are discussed later in
this chapter in §1.5.2. Extensive new results on theory and practice of precon-
ditioning systems are presented later in Chapter 3. Further discussion (besides
that in §1.2.2) of the differences between the Krawczyk method, interval Gaus-
sian elimination, and the interval Gauss—Seidel method also occurs below and
in Chapter 3.

56 CHAPTER 1

Multivariate interval Newton methods are closely tied to the methods for linear
systems discussed in §1.2. In particular, multivariate interval Newton methods
involve iterative execution of algorithms to bound the solution sets of linear
systems, except that the linear systems are of the special form

A(X - X) = -F(X),

where X is an approximation to a root of F (and hence ||F(X)|| is small),
and A is either F'(X) or S(F, X, X). Thus, interval Newton methods involve
bounding the solution sets to approximately homogeneous systems of equations,
and there is more structure and symmetry than in the general systems of §1.2.

Widely studied, the Krawczyk method was introduced in [140]. The power of
the Krawczyk method as a computational fixed point theorem was first pre-
sented and analyzed in [164]. The Krawczyk method is based on considering
the classical multivariate Newton method as a fixed point iteration. In partic-
ular, suppose F' : R* — R", and solutions to F(X) = 0 within the interval
vector X are sought. Let X € X, A = F'(X) denote the Jacobi matrix of F
at X, and let Y denote some sort of approximation to A~1. Then the chord
method based on iteration matrix Y can be viewed as a fixed point iteration
with iteration function

P(X):=X - YF(X). (1.40)

Form a mean value extension for P over X as in Definition 1.6:
P(X) = P(X)+ P'(X)}(X - X). (1.41)

However, P'(X) = I — YF'(X), where I is the n X n identity matrix. Thus, a
natural interval extension P'(X) of P’ over X is I — YF'(X), where F'(X)
is an interval extension of F' over X. Combining this with equations (1.40)
and (1.41) gives

P(X)=K(X,X)=X-YF(X)+ (I - YF(X))(X - X). (1.42)

Definition 1.16 The operator K(X, X) : IR™ — IR™ is termed the Krawczyk
operator. The iteration X + K(X, X)N X is termed the Krawczyk method.

Now suppose that X* € X is a point for which F(X*) = 0. Then P(X*) = X*,
so X* € P(X) = K(X,X). In other words any roots of F in X are also in
K(X,X). Furthermore, under certain conditions, such as when X is taken

Preliminaries 57

to be the midpoint vector of X, Y is appropriate, the interval extensions are
sufficiently sharp, and the widths of the components of X are sufficiently small,
iteration of X « K(X,X)N X converges quadratically in the same sense as
Theorem 1.14.

Example 1.5 Take

filz1,22) = 2%~ 4z,
fozy,) = o2 — 2, + 4z,

and
X = (z1,2)" = ([-0.1,0.1],[-0.1,0.3]))".

There is a unique root X* = (0,0)T of F = (fi1, fo)T within X.

In Example 1.5, if X = (0,.1)T, then F(X) = (—.4,.41)T, and the matrix

2z, -4 [-.2,.2] -4

1 — —_— ’

F(X)‘(—2 2w, +4) ‘(~2 [3.8,46]

has components consisting of the ranges of corresponding components of F'{X)
over X. If Y is taken to be the inverse of the midpoint matrix of F'(X), then

Y= {mEe) = (T 7).
and the first iteration of the Krawczyk method becomes
kg = (09)-(z% %) (h)
{23) (757 et) H{ELY)-(39)}

(7o)+ (s Uo) ()
(—.005)+([—.0805, .0905])

0 [~.005, .005]
— s,
- (8) cx
xM = KX, X)nX =KX, X).

If the iteration is continued, taking X (¥) to be the midpoint of X(* and Y *)
to be the inverse of the matrix of midpoints of the components of F'(X*®)),

o8

CHAPTER 1

k zgk) :g’c) ||w(X(’°)) I | rat.
0 -0.11E-00, 0.11E-00 -0.11E-00, 0.31E-00 0.40E-00 —
1 -0.57E-01, 0.47E-01 -0.51E-02, 0.51E-02 0.10E-00 0.63
2 -0.27E-02, 0.27E-02 -0.14E-02, 0.14E-02 0.51E-02 0.50
3 -0.83E-05, 0.83E-05 -0.34E-05, 0.34E-05 0.16E-04 0.62
4 -0.79E-10, 0.79E-10 -0.34E-10, 0.34E-10 0.16E-09 0.58
5 -0.72E-20, 0.72E-20 -0.31E-20, 0.31E-20 0.14E-19 0.59

Table 1.4 Tlustration of quadratic convergence of the Krawczyk method for
F as in Example 1.5

then Table 1.4 is obtained3. Analogously to Table 1.3 for the univariate exam-
ple, the column labelled “rat.” contains the ratios ||w(X (")) | /||w(X (k‘l)) 1|2

Since these ratios are nearly constant, the Krawczyk method is evidently quad-
ratically convergent in practice.

For a given preconditioning matrix Y, the Krawczyk method is not necessarily
as sharp as alternate interval Newton methods; cf. Theorem 1.8 on page 21.
However, the Krawczyk method has various theoretical advantages, such as is
outlined in [208]. Also, as mentioned on page 24 [208], the Krawczyk method
can be used to obtain inner estimates. T

The interval Gauss—Seidel method and interval Gaussian elimination are more
directly related to the classical Newton method. In particular, derivation can
proceed as in the univariate case on page 51: Suppose F : X C R* —» R",
X* € X is such that F(X*) =0, and X € X. Then the mean value theorem
implies
0=F(X*)=FX)+AX*-X)

for some A € S(F, X, X), where S(F, X, X) is any set satisfying Definition 1.12.
Thus, X* — X must be in the solution set to

A(X - X) = -F(X), (1.43)

for A = S(F,X,X) or A = F'(X), for some S(F, X, X) or F'(X). That is,
any root X* of F within X must be within X + X, where X is any bounding
interval for the solution set of Equation (1.43). Bounding this solution set with

the interval Gauss-Seidel algorithm as on page 22 results in the interval Gauss—
Seidel method. The vector B for Algorithm 2 is simply replaced by —F(X),

33The coordinates of ::(lk) and ::(2‘“) have been rounded out at two decimal digits, although
rigorous bounds have been obtained to many more digits with the systems described in §2.1.
and §2.2

Preliminaries 59

although the iteration formula in Step 2 of Algorithm 2 can be replaced by

i—1
ﬁ!,; =I;— {KF(X) + Z},"AJ({I’:J - (i‘j)

j=1
+ i YiAj(-’Bj—ij)}/(Y.-A.-), (1.44)
j=i+1

so that X may be computed directly.

Interval Gaussian elimination as on page 21 may also be used to bound the
solution set.

Most interval Newton methods, such as those above, can be put into the general

form _ 3 3
X=NF;X,X)=X+V, (1.45)

where 3
E(A, —F(X)) cV.

Generally, V is obtained from a method such as those in §1.2.

1.5.2 Derivative and Slope-Based Existence
and Uniqueness

Here, the problems

Given F : X —» R" and X € IR", rigorously verify one of
the following;:

m there exists a unique X* € X such that F(X*) =0, (1.46)
m there exists an X* € X such that F(X*) =0,

m there is no X* € X such that F{(X*) =0.

are considered. Computer arithmetic can be used to verify the assertions in
Problem (1.46), with the aid of interval extensions or computational fized point
theorems. This theory is the subject of this section.

The quadratic convergence properties of interval Newton methods, such as The-
orem 1.14, as well as Exercise 3 on page 65 below, and the existence / uniqueness

60 CHAPTER 1

theory outlined in this section are analogous to the Kantorovich theorem for
the classical Newton method, as stated in [48, p. 92]. In fact, comparisons,
such as in [178], [186], and [220] compare interval Newton methods favorably
with the Kantorovich theorem when the latter is used in computations.

The existence theory for interval Newton methods can be derived largely from
the Brouwer fixed point theorem and the related Miranda’s theorem, while
uniqueness follows largely from non-singularity considerations.

Theorem 1.15 (Brouwer fixed point theorem, [25]) Let D be homeomorphic
to the closed unit ball in R™, and suppose P is a continuous mapping such that
the range P*(D) C D. Then P has a fired point, i.e. there is an X € D such
that P(X) = X.

In particular, if P maps X strictly into X, where X € IR", then there is an
X € X such that P(X) = X.

Theorem 1.16 (Miranda’s theorem, [161]) Suppose X € IR", and let the

faces of X be denoted by
X; = (:z:l,...,:z:i_l,_::;i,:z:i_,_l,...,:z:n)T
X; = (€1, ..., Tie1, T, i1, Tn)" .
Let F = (f1,...,fa)T be a continuous function defined on X. If
FHX)fM (X <0 (1.47)

for each i between 1 and n, then there is an X € X such that F(X) = 0.

In particular, the exact ranges f,” may be replaced by any interval extensions
of the f; in Condition 1.47.

Ezxistence Theory

The Krawczyk method, derived as a fixed-point method, has a clear relationship
to the Brouwer fixed point theorem:

Theorem 1.17 Suppose K(X, X) is as in Equation (1.42), where F : X —
R™ and F'(X) is either a Lipschitz matriz as in Definition 1.10 or a slope

Preliminaries 61

matriz as in Definition 1.12 (on page 27), and where Y is non-singular. If
K(X,X) C X, then there ezists a point X* € X such that F(X*) =0.

Proof: Let P(X) = X — YF(X) be as in Equation (1.40). Since K(X, X) is
a mean value extension for P over X, P*(X) = {P(X)|X € X} C K(X, X).
Therefore, the Brouwer fixed point theorem implies there is an X* € X such
that P(X*) = X*. However, since Y is non-singular, P(X) = X if and only if
F(X) = 0. Therefore, F(X*)=0. O

Similarly, Miranda’s theorem can be used to prove an analogous existence ver-
ification property of the interval Gauss—Seidel method.

Theorem 1.18 Suppose &; is defined by Formula (1.44) for i between 1 and
n, where F : X — R™, where A is either a Lipschitz matriz or a slope matriz
for F over X, and where Y is non-singular. If &; C x; for i between 1 and
n, where the set inclusion is tested before &; is replaced by x; N &;, then there
ezists an X* € X such that F(X*) = 0.

Proof: Notation for the preconditioned function YF(X) will first be intro-
duced. Define G(X) = (g1(X),..-,9n(X))T = YF(X),and define M =Y A =
(m; ;)7 =1+ Also define

n
Yilws) = 9i(X) + D mas(m; — &5) p + (i — &)
g
With the notation of Theorem 1.16, observe that g;*(X;) C ~,(z;) and
9:"(X3) € 7:(30)-

Following this notation and Formula (1.44), the condition #; C «; can be
stated as

91(X) + %=1 my j(z; — £5)
_ J#i C

— 1,71 — I1]. 14
p [z, — 21,71 — £4] (1.48)

]

With just the left endpoint z; — Z;, the inclusion (1.48) implies

01(X) + X1 ma (25~ &5)

mia

4+, — & <O0. (1.49)

62 CHAPTER 1

However, it is implicit in the inclusion (1.48) that 0 € m, ;. First assume that
mai, > 0. Then, multiplying by m, ;, the inequality (1.49) implies

n
a(X) + Zml,j(mj —Z;) p +maa(z, — 1) = 7,(z;) <0.
i=1

J#i

Similarly, with the right endpoint, the inclusion (1.48) and m;,; > 0 imply
~,(Z1) > 0. A similar argument for the case m,; < 0 gives v,(z;) > 0 and
~v,(Z1) £0. Thus, &, C x, implies

g9:"(Xpg,"(X7) <0.

To show g,*(X3)g,%(X3) < 0, replace 1 by &;. Then, with an argument
identical to that above, but replacing [z; — #;,T; — %:] by [Z; — i, % — &),
91*(X1)g,*(X71) <0 still holds for this new X. Furthermore, the same argu-
ment with g, replacing ¢, and z, replacing z; then also implies

9:"(X32)g,"(X3) <0

for this new X, provided &2 C x..

The entire argument above can then be repeated for ¢ = 3 to n to give
9:"(X9g(Xp <0 1<i<n,

where X is the image of X under a Gauss-Seidel sweep given by Formula (1.44)
and Algorithm 2. Thus, by Miranda’s theorem, there is an X* € X C X such
that G(X*) = 0. However, since G = YF and Y is non-singular, this then
implies F(X*)=0. 0O

The literature is replete with variations on such computational existence theo-
rems. One such fairly general theorem is

Theorem 1.19 ({175, Theorem 5.1.7] and earlier) Suppose F : X — R,
suppose A is a regular Lipschitz matriz (e.g. an interval Jacobi matriz F'(X))
for F over X, suppose X € int(X), and suppose

X=X+V,
where V € IR™ is any interval vector such that

L(A,-F(X)) cV.

Preliminaries 63

Then, if X C X, it follows that there exists a unique solution of FX)=0
within X.

Theorem 1.19 encompasses the interval Gauss-Seidel method, interval Newton
methods based on interval Gaussian elimination, and interval Newton methods
based on any other technique for bounding the solution set £(A, ~F(X)). Note
that it is an existence and uniqueness theorem, and it is assumed that A is a
Lipschitz matrix. A similar existence theorem is possible if A is merely a
slope matrix, but uniqueness requires additional consideration in that case. An
alternate version of Theorem 1.19 is proven as Theorem 1.22 below.

Uniqueness
Uniqueness can proceed from verification of regularity. To this end, we have:
Lemma 1.20 Suppose X = X + V is the image under the interval Newton

method (Formula (1.45)), where V' is computed by any method that bounds the
solution set 5(A,—F (X)) and X C X. Then A is regular.

Proof: If A were not regular, then £(A, ~F(X)) and hence V and X would
be unbounded. O
When the interval Newton image obeys IV (F; X, X) C X, uniqueness can be

inferred when a Lipschitz matrix is used.

Lemma 1.21 Suppose F : X — R"® and A is a Lipschitz matriz, such as
F'(X). If A is regular, then any root of F in X is unique.

Proof: Suppose X* € X and X € X have F(X*)=0and F(X)=0. If Ais
a Lipschitz set, then there is an A € A such that
F(X*)-F(X)=0=A(X") - A(X) = A(X* - X).

If X* # X, then A would have a null vector, contradicting the regularity of A.
O

Combining Lemma 1.21 and Lemma 1.20 gives

64 CHAPTER 1

Figure 1.6 Non-unique-
ness with slopes with f(z) =
(1"2 - 1)(1" + 2)a T = [_2)3]
and £ =3

Theorem 1.22 Suppose F : X C R* — R" and A is a Lipschitz matriz
such as F'(X). If X is the image under an interval Newton method as in
Formula (1.45) and X C X, then there is a unique X* € X with F(X*) = 0.

On the other hand, if A is merely a slope set S(F, X, X), uniqueness cannot
be inferred in this way. As an example, take f(z) = (2% — 1)(z +2), z = [-2, 3]
and & = 3, as in Figure 1.6. Then the exact slope set is S¥(f,[-2, 3], 3) = [8, 38],
and 0 ¢ [8, 38]. Furthermore, an interval Newton step gives

& = — f(£)/S*(f,z,%) = 3 — 40/[8,38] C 3 — [1.05,5] = [-2,1.95] C =,

but there are nonetheless three roots of f in . The slopes of the oblique lines
in Figure 1.6 are the bounds on S!(f,z, Z); those lines’ intersection with the
r-axis represents the image .

As Rump pointed out [208], uniqueness verification is still possible in certain
contexts, such as with the e-inflation technique explained in §4.2 below, when
A represents a slope matrix S(F, X, X). The technique is based on:

Theorem 1.23 Let F : X C R* - R", and let X C X be such that there
ezists an X* € X with F(X*) = 0. Let S(F,X,X) be a slope matriz for F
over X at X. If S(F,X,X) is regular (such as when N(F;X,X) C X for
X € X), then X* is unique within X.

Preliminaries 65

Proof: If X € X is such that F(X) = 0, then there would be an A €
S(F, X, X) such that F(X) = F(X*) = A(X - X*) = 0, since X* € X.
Therefore, A € S(F, X, X) could not be regular. O

Theorem 1.23 allows verification of uniqueness within larger boxes than when
an interval derivative F'(X) is used, provided the box X can be found. This is
because slope bounds S(F, X, X) are generally narrower than interval deriva-
tives F'(X).

1.5.3 Exercises

1. (This exercise is best done with a software system or programming lan-
guage, such as the system described in §2.2.1 below, that has an inter-
val date type.) Program interval Gaussian elimination (Algorithm 1 on
page 21) to perform interval Newton iteration on the function in Exam-
ple 1.5. Produce a table analogous to Table 1.4. Do you observe quadratic
convergence? Does the convergence (if there is convergence) appear to be
faster, slower, or about the same as that in Table 1.47

2. Repeat Exercise 1, but with interval Gauss—Seidel iteration and Formu-
la (1.44) instead of interval Gaussian Elimination. (Note that knowledge
of §2.2.1 below will help for this problem, too.)

3. (This exercise is involved; use of matriz norms and the triangle inequal-
ity, as is found in e.g. [61] would be useful.) This exercise consists of
construction of a multidimensional analogue of Theorem 1.14. Suppose
X € IR", suppose F : X — R*, and suppose that N (F; X (k)| X (k))
is defined by

NF;X® x®y = X*) L v,

where V represents a set of bounds on the solution set of
F(XW)(X - X®) = -F(XW),

where X(® is the midpoint vector of X ¥ and where the components of
F'(X®) are inclusion monotonic interval extensions of order at least 1 of
corresponding components of the real Jacobi matrix F'(X), in the sense of
Definition 1.4 on page 14. Assume that V is obtained by a method such
as those in §1.2, with

“w(E(F’(X(")),— (X(")) V)||<L”w (F(x®), F(X("))))”

66 CHAPTER 1

for some fixed L > 0. (For example, see [175, p. 127].) Also assume that
max {||A||°o A€ F’(X(O))} = Mg < 00

and ;
max {|lA7 loo : 4 € F'(X®)} = Mp < oo.

Then find a 3 analogous to that of Theorem 1.14 such that, if 8 < 1, then
(a) w(N(F; X0, X)) < pw(XO);

(b) if
x (k+1) — x (k) NN(F; X® XKy

then [w(x2) | = 0 (| (x))"

Hint: This problem is, essentially, solved on page 219 ff.

1.6 THE TOPOLOGICAL DEGREE

Interval Newton methods allow computational existence and uniqueness, use-
ful in verified global optimization, in cases in which the Jacobi matrix is non-
singular in a neighborhood of the critical points or solution of the nonlinear
system. However, when the Jacobi matrix at a solution is singular, such meth-
ods cannot satisfy the hypotheses of the theorems in §1.5.2. This is because
the image X under an interval Newton method like the Krawczyk method or
of the form (1.45) must contain the solution set to A(X — X) = —F(X), where
A is either a Lipschitz matrix over X or a slope matrix; since a Lipschitz ma-
trix must contain all Jacobi matrices at points X, this solution set would be
unbounded if such a Jacobi matrix were singular. Similarly, for uniqueness ver-
ification, a slope matrix must be based at a small box X containing a solution
X* of F(X) = 0; such a slope matrix®* would necessarily contain the Jacobi
matrix at X*.

The topological degree can be of use in verifying critical point structure in
such cases, with ill-conditioning or singularity at critical points, or with an
unusual critical point structure, such as non-trivial manifolds of critical points.
The following illustrative example exhibits the phenomenon, which occurs in
practice.

34However, existence can possibly still be proven in such cases by basing the slope matrix
at some point other than the solution.

Preliminaries 67

Example 1.6 Define

2 2 2 2
[2i+22-1 forz?+a2>1
¢(z1,72) = { 0 otherwise,

and suppose that global minimizers within the box
T
X =([-2,2],[-2,2)

are sought. The function ¢ is continuous within X, the global minimum within
X is 0, and each point within the closed unit disk =3 + 72 < 1 is a global
minimizer. However,

V(X) = F(X) = (2z1,2z,)" = (0,07

at every point within this disk, so an interval Newton method based on V¢(X) =
0 would necessarily fail to exhibit uniqueness, and interval Newton iteration
would probably fail to narrow the widths of X.

In such instances, the topological degree allows computation of properties of
the solution set within X by just considering the function on the boundary
8X. The topological degree, or Brouwer degree, is a generalization of the
concept of winding number in complex analysis. It can be defined in terms
of the Kronecker interval [9, pp. 415-437], the Heinz integral [81, 200], or by
simplicial approximations [9]; various characterizations can be shown to be
equivalent. The conceptually most informative definition begins by assuming
that the function F' : D C R® — R" is differentiable, with non-singular Jacobi
matrix at its solutions, and generalizes it to continuous functions.

Definition 1.17 Suppose that F : D — R" is such that, if F(X*) = 0, then
X* ¢ 8D, where D is a compact subset of R*. Also suppose that the Jacobi
matriz F'(X*) is non-singular at every X* € int(D) at which F(X*) = 0.
Then the topological degree d(F,D,0) is equal to the number of solutions of
F(X) = 0 in int(D) at which the determinant of F' is positive, minus the
number of such solutions at which the determinant is negative.

For example, if F represents a polynomial in the complex plane, with real and
imaginary parts represented as separate components, then, from the funda-
mental theorem of algebra, d(F, D, 0) is equal to the algebraic degree of the
polynomial when D is a sufficiently large box in R? centered at the origin.

The power of the topological degree for problems in which the critical points or
solutions are at singularities of F' lies in two properties, stated roughly here:

68 CHAPTER 1

1. continuity with respect to deformations in the function F, and

2. dependence only on the function values on 8D.

Formally, d(F,D,0) is defined for continuous but non-differentiable F' by con-
sidering approximations to F' that obey the conditions in Definition 1.17. For-
mal presentations appear in [9], [200, Ch. 6], [153], [81], or [43]. Assuming the
topological degree has been defined for continuous, but not necessarily differ-
entiable F, the following theorem is relevant to global optimization. It is not
stated in its most general form (see [105, p. 18]), but in a form useful in the
interval computations context.

Theorem 1.24 Assume F : X — R" is continuous on the box X C IR, as-
sume F(X) #0 if X € 8D, let s,t € {—1,+1}, and pick any i € {1,2,...,n}.

Then define X.js = (ZT1,...,Tj—1,Tjt,Tjt1,---,Tn)T, where Tx € xi for
k# 3, and
z. ift=-1
R])
Tyt {fj ift=+1.
Also define

Foi(Xujt) = ((Xajt), - s fici (Xnje), fir1(Xnjie), - -5 (X ajie),

and view X.j: as a point in R*™! by ignoring its j-th coordinate. Then
d(F, X,0) is equal to the number of solutions to F.;(X~;:) = 0 at which
sgn(fi) = s and such that st(—1)"*7F'; is positive, minus the number of such
solutions at which st(—1)*+IF! . is negative, as j runs over all j € {1,2,...,n},
and t takes on the values —1 and 1, where F.;, the (n — 1) x (n — 1) Jacobi
matriz of F.; with respect to (xl,...,xj_l,xj_,_l,...,a:n)T, 15 assumed to be
non-singular at such solutions.

In cases where F' is merely continuous, we have

Theorem 1.25 If F : X — R" is continuous and d(F, X,0) # 0, then there
exists a solution of F(X) =0 in X.

Even when F is such as Example 1.6, the degree can still be intuitively viewed,
in terms of Definition 1.17, as the algebraic number of solutions, since there is
a differentiable function F with non-singular Jacobi matrix at the solutions X*
with F(X*) = 0, such that d(F, X,0) = d(F, X,0).

Preliminaries 69

In Example 1.6, if : = 2 and s = —1, then d(V¢, X,0) can be computed by
finding roots of fi = 2z; for which f = 2z < 0 on 8X. There is only one
such root, occurring at the point X., _; = (0,—2), at which F/, = gﬁ- =2.
Thus, Theorem 1.24 states that d(F, X,0) = (-1)(-1)(=1)2*%? = 1. Note
that d(F, X,0) is the same as the degree of the gradient of the strictly convex

function ¢(X) = z? + 22 — 1.

The following theorem has motivated generalized bisection methods based on
the topological degree.

Theorem 1.26 Suppose F is continuous on D1UD2 C R™, suppose D;ND; C
8D, U 8D, and suppose F(X) # 0 for X € 8D, U8D;,. Then d(F,D; U
DQ,O) = d(F,Dl,O) + d(F,Dz,O)

Early machine computation of the topological degree proceeded from formulas
for determinants [226], or from formulas involving sign changes of the compo-
nents of F on 8D [228, 105, 106]; corresponding algorithms contained heuris-
tics that did not rigorously guarantee the correct degree. Generalized bisection
methods were devised based on Theorem 1.26 and on successively dividing D
into D; and D,. More recently, Aberth [2] has proposed interval Newton meth-
ods to compute d(F, X,0), as indicated in Theorem 1.24; such methods must
rigorously compute the topological degree.

The topological degree undoubtedly has its place in root-finding and global
optimization algorithms such as those explained in Chapters 4 and 5 below,
when there is singularity or degeneracy at solutions or critical points. However,
computation of the degree requires searching all of the 2n faces of dimension
(n — 1) of the box X € IR"™, in contrast to a single search of X itself, when
there are no singularities. Thus, a direct search of the n-dimensional space
is probably preferable to computing the degree, in cases where there are no
singularities.

2

SOFTWARE ENVIRONMENTS

This chapter deals with implementations of the interval arithmetic concepts
described in Chapter 1. Such software is, in turn, used in later chapters to
construct higher-level software systems to solve nonlinear systems of equations
and for global optimization. A FORTRAN-77 library and a set of Fortran 90
modules built upon this library are described here. Although some information
here is specific, underlying principles and philosophy are emphasized, and the
packages are readily available, free of cost, to readers.

Alternate packages are also outlined.

2.1 INTLIB

The FORTRAN-77 package INTLIB is ACM Transactions on Mathematical Soft-
ware Algorithm 737 [123], and is thus available over NETLIB [50, 68], either
via FTP (ibid.) or over the World Wide Web!. INTLIB consists of standard
FORTRAN-77 subroutines and functions for the elementary interval operations,
some of the Fortran standard functions, and certain logical and utility opera-
tions. INTLIB achieves portability with simulated directed rounding, although
minor modifications to INTLIB allow true directed rounding, where available.

Some simplification of INTLIB would be possible if it were rewritten with For-
tran 90 constructs. However, INTLIB is presently directly accessible through
Fortran 90, so its ease of use would not be affected.

!The address at the time of writing is http://www.netlib.org/index.html

72 CHAPTER 2

Details of the construction, installation, and use of INTLIB that do not appear
below can be found in [124], [123], and in the instructions provided with the
FORTRAN-77 source.

2.1.1 Philosophy and Design Goals

The goals and design of INTLIB are consistent with the philosophy stated with
the original Level-1 BLAS routines? [151]. That is to say, the routines are
meant to be well-documented, generally available, production quality, and to-
tally portable. Moreover, the routine names and argument lists are meant to
provide a pattern upon which more efficient machine-specific versions can be
based. With this scheme, users can transfer application programs from one
machine to another, and the program, without modification, will execute effi-
ciently on a variety of machines. An attempt was made in INTLIB to conform
to a proposal of Corliss [37].

In addition, the routines in INTLIB are meant to be user-readable, thus pro-
viding instruction in the underlying methods and, possibly, allowing enough
understanding for the user to improve them. The contents were selected to
provide a core set of clearly needed routines, without large numbers of super-
fluous functions. When there was ambiguity of mathematical interpretation,
such as branch points (leading to disconnected ranges, etc.), a routine was not
included.

2.1.2 Simulated Directed Rounding

Conceptually simple, simulated directed rounding is a device with which rig-
orous enclosures to floating point results may be obtained in FORTRAN-77 and
other languages that do not have access to true directed rounding, or on ma-
chines without hardware-supported directed rounding. The only requirement
is that arithmetic parameters, such as the accuracy of an elementary operation,
are known. For example, suppose z = x + y is to be computed. Also suppose
that the largest relative spacing ¢,, between numbers®, as well as the number

2although INTLIB is more like a “Level-0” BLAS, since INTLIB deals with scalar interval
operations, rather than vector operations, as the Level-1 BLAS, or matrix-vector operations,
as the Level-2 BLAS.

3For example, in a hypothetical decimal machine with numbers of the form 0.xxx x 10%,
the largest relative spacing between numbers is 0.101 x 10! — 0.100 x 10! = 10~2.

Software Environments 73

of units M in the last place by which the result of +, —, x or + can be in error,
are known. Then the following procedure can be applied.

Algorithm 6 (Simplified example: addition with simulated directed rounding,.
See INTLIB routines ADD and RNDOUT.)

INPUT: z with z > 0 and y with y > 0. (The other cases are analogous; see
the listing of RNDOUT.)

OUTPUT: z, a machine interval containing the exact interval sum z + y.

1. Compute z = £+ y and Z = T + § with the computer’s floating point
arithmetic.

2. IF z # 0 and the following computations would neither underflow nor
overflow

THEN

(a) z + (1 —Mep)z
() Z + (14+Mep)z

ELSE
Do a special computation for rigor.

END IF
End Algorithm 6

Different formulas must be used when part or all of « or y is less than 0, and
special consideration must be given for rigor when underflow or overflow would
occur. In practice, Step 2 is performed after each elementary operation (i.e.
after performing Step 1 with op replacing +, for op € {+,—, %,+}). The
INTLIB routine RNDOUT performs Step 2.

For details and clarification, the FORTRAN-77 source for RNDOUT should be con-
sulted directly. This routine is meant to be comprehensible by the user.

Within INTLIB, calls to RNDOUT may be replaced by similar calls to an assem-
bler language routine, such as that described in [135]. This results in slightly

74 CHAPTER 2

| Name | function |

ADD | interval addition: z + x +y
CANCEL | cancellation subtraction as explained on page 5
IDIV | ordinary interval division z « z/y, 0 ¢ y
MULT | interval multiplication z « zy
RNDOUT | simulated directed rounding, as in §2.1.2
SCLADD | addition of an interval and a real number
SCLMLT | multiplication of an interval and a real number
SUB | interval subtraction z + = — y

Table 2.1 Elementary arithmetic routines in INTLIB

narrower result intervals and slightly faster execution. In fact, this was done
for Sun SPARC computers (six low-level routines in INTLIB were changed),
with approximately a factor of two increase in speed?.

2.1.3 Contents of INTLIB

INTLIB is organized into subsets of elementary interval arithmetic subroutines,
interval standard function subroutines, utility routines, an error-printing rou-
tine, a routine to set mathematical constants and machine-dependent constants,
and testing programs. Table 2.1 lists the arithmetic routines in INTLIB, while
Table 2.2 lists the INTLIB implementations of standard functions.

INTLIB also contains utility functions, whose mathematical functions are el-
ementary, but whose existence is justified by the error-checking they provide
and their usefulness in operator overloading procedures. Table 2.3 lists these.
Within this table, the arguments to a function are and y for binary interval
functions, x for unary interval functions, ¢ and z for binary real / interval
functions, and z and y for binary real / real functions. The results are z for
interval-valued functions, . TRUE. / .FALSE. for logical-valued functions, and r
for floating-point-valued functions. All intervals are considered to be closed.

Finally, INTLIB contains error-printing routines, a routine to initialize global
constants and parameters, a suite of routines for testing, and sample test out-
put. For details, see [123].

4Details are available from the author, or consult his home page on the World Wide Web
at ftp://interval.usl.edu/pub/interval_math/www/kearfott.html.

Software Environments

Name | function

IACOS | interval arc cosine

IACOT | single argument arc cotangent

IASIN | interval arc sine

IATAN | single argument arc tangent

ICOS | interval cosine

IEXP | interval e*

IIPOWR | nonnegative interval to an interval power

ILOG | interval natural logarithm

ISIN | interval sine

ISINH | interval hyperbolic sine

ISQRT | interval square root

POWER | integer power of an interval

Table 2.2 Standard function routines in INTLIB

75

[Name | function
ICAP | z « z Ny (Error signalled if empty)
IDISJ | .TRUE. ifz Ny =0
IHULL | 2z « [min{g, y}, max{7, J}]
IILEI | .TRUE. ifx Cy
IILTI | .TRUE. ifz >yand T <y
IINF | T Z
IMID | r + (z + T)/2 (computation in floating point)
IMIG | “mignitude:” r + min{|z|,|Z|} if 0 € x, and r « 0 otherwise
INEG | negation with round out: z + —«
INTABS | “magnitude:” r « max{|z|, |Z|}
IRLEI | .TRUE. ifz € o
IRLTI | .TRUE. ifz>zandz <7
ISUP | r+ %
IVL1 | construct an interval from a point: z «+ ¢, Z « =
IVL2 } construct an interval from two points: 2 ¢« 2, Z + ¥
IVLABS | range of || o || over an interval: z « {|z|,z € =}
IVLI | assign one interval to another: z + x
IWID | upwardly rounded width: r «+ Z — z

Table 2.3 Utility functions in INTLIB

76 CHAPTER 2

2.1.4 An Example

Figure 2.1 contains a FORTRAN-77 routine that computes and prints rigorous
bounds on the range® over [1, 2] of the function f(z) = z*+z3+z of Example 1.3
on page 37. The operations in this program are done in the order implied by
Table 1.2; TMP2 and TMP3 represent the intermediate variables 2, and z3 in the
first two computations. Note, however, that separate storage locations are not
needed for z4 and s, if all that is desired® is an interval enclosure f(x).

Figure 2.1 illustrates various aspects of INTLIB. Nonetheless, it is not recom-
mended that INTLIB generally be used in this way, if a Fortran 90 compiler is
available. Programming with an interval data type, as in §2.2.1 below, is, with
a few exceptions, a more desirable way to program interval operations.

2.1.5 Exercises

1. Obtain and install INTLIB. Use INTLIB to evaluate the range (to within
roundout error) of

¢(z) = [sin (7ra:3)]2
over the interval = [0.99, 1.01].

Recall that INTLIB may be obtained either through NETLIB at
http://www.netlib.org/index.html
or via anonymous FTP to
interval.usl.edy,
in the directory
pub/interval math/intlib.

Hint: It is always necessary to call SIMINI first. After SIMINI has been
called, an interval enclosure for 7 is available as variable PI in the common
block MTHCNS.

2. Study the program SIMINI.

(a) What assumptions are made here on the decimal to binary conversions
of constants? How could you modify SIMINI to work with machine
/ compiler combinations for which these assumptions are not valid?

50ver [1,2] and with this particular function, the bounds are the actual range, to within
roundout error.
SHowever, see §7 below.

Software Environments

c

Qo

(o]

This standard

FORTRAN-77 routine uses INTLIB directly.

PROGRAM TEST_INTLIB

Intervals are

represented as double precision arrays

with two elements --
DOUBLE PRECISION X(2), F(2)
DOUBLE PRECISION TMP2(2), TMP3(2)

Initialize machine constants and interval constants used in

the standard functions -—-
CALL SIMINI

The range over
X(1) 1DO
X(2) = 200

[1,2] will be computed --

Round out in case the decimal-to-binary conversion is

not exact --

CALL RNDOUT(X,.TRUE.,.TRUE.)

Compute X**4 +

X*x3 + X --

CALL POWER(X,4,TMP2)
CALL POWER(X,3,TMP3)
CALL ADD(TMP2,TMP3,TMP2)
CALL ADD(TMP2,X,F)

WRITE(6,*)

END

F(1), F(2)

Figure 2.1 A FORTRAN-77 program using INTLIB

77

78 CHAPTER 2

(b) What assumptions are made on the word length of the machines upon
which INTLIB is to be installed? What could you do to provide
rigorous computation with INTLIB on machines with larger word
lengths?

(c) What would you do to install INTLIB rigorously on Cray machines?
Hint: See the comments on Cray installation in [123].

2.2 FORTRAN 90 INTERVAL AND CODE
LIST SUPPORT

Throughout this section, it is assumed that the reader is familiar with For-
tran 90. An excellent introduction, among others, is [22].

Several tools are available for conveniently accessing the routines in INTLIB
through Fortran 90. These include an interval data type and a set of modules
and functions for generating and interpreting code lists, as introduced in §1.4.5.
Available freely, these will be called “INTLIB_90.” A set of additional, higher-
level tools to actually solve nonlinear equations and optimization problems,
explained in §4.4 and §5.3 below, will be called “INTOPT_90.”

2.2.1 An Interval Data Type

The interval data type is defined in a Fortran 90 module INTERVAL_ARITHMETIC.
The module takes its support routines from INTLIB [123].

For example, INTERVAL_ARITHMETIC may be used for the same computation as
in Figure 2.1; corresponding Fortran 90 code appears in Figure 2.2. The output
to the program in Figure 2.2 should be similar to the output” to the program
in Figure 2.1. However, the order in which the operations are done depends on
how the particular compiler parses the statement

F = Xxx4 + X**3 + X,
and may not be the same as that in Table 1.2 or Figure 2.1.

The module INTERVAL_ARITHMETIC defines the four elementary operations (+,
—, *, and /), as well as negation on interval data types (i.e. unary minus).

"namely, [2.9999999999999982, 26.0000000000000391] or something approximately equal,
depending on the compiler and the machine

Software Environments 79

PROGRAM EVALUATE_EXAMPLE

! This standard Fortran-90 routine
! evaluates X**4 + X»x3 + X over [1,2].

USE INTERVAL_ARITHMETIC
TYPE(INTERVAL) X, F
CALL SIMINI

X = INTERVAL(1,2)
F = X#»%4 + X**3 + X
WRITE(6,*) F

END PROGRAM EVALUATE_EXAMPLE

Figure 2.2 Illustration of use of the interval data type

Mixed-mode operations are allowed only between intervals and double preci-
sion (or equivalent type), or between intervals and integer numbers®, Expo-
nentiation ** is also defined for interval-to-integer, interval-to-interval, double
precision-to-interval, and interval-to-double precision.

The module defines the generic names

ACOS, ACOT, ASIN, ATAN, COS, COT, EXP, LOG, SINH,

SIN, SQRT, and TAN, (2.1)

each of which returns bounds on the range®, to within roundout error, of the
corresponding point-valued function. In each case, the corresponding INTLIB
routine from Table 2.2 is used, with TAN and COT making use of the INTLIB
routines ISIN and ICOS.

Additionally, the special interval functions in Table 2.4 are defined!®. The
definitions of ABS and MAG vary slightly from those in ACRITH-XSC [237] and

8This is because intervals are stored and rounded out as double precision numbers. Arith-
metic between a real and interval would first involve converting the real to double preci-
sion, then rounding according to the double precision machine epsilon. However, the single-
precision value may be only accurate to single precision, so the rounded interval would not
contain the theoretical value. Rigor would thus be sacrificed.

9These bounds are not tight in the sense of being the smallest machine intervals that
enclose the actual range. This is because, for portability, only double precision arithmetic is
used in INTLIB. However, the bounds are rigorous inclusions of the range, and are reasonably
tight.

10In Table 2.4, the Fortran 90 interval variables X, Y and Z are identified with intervals
z = [z,Z], vy = [y,¥] and z = [2,Z], while r is identified with the double precision variable R.

80 CHAPTER 2

Corresponding .
t funct
SYntaX | INTLIB routine uneton
R = MAG(X) INTABS r « max {|z[, |}
R = WID(X) IWID T—T—2T
R = MID(X) IMID r+ (T—1z)/2
_ “mignitude:” r + min{|z|,|Z|} if
R = MIG(D) THIG 0 ¢ x, and 7 + 0 otherwise
Z = ABS(X) IVLABS z + {|z|,z €z}
B _ z « [max{z,y}, max{Z,7}] (cf.
Z = MAX(X,Y) Chapter 6)

Table 2.4 Special interval functions in module INTERVAL_ARITHMETIC

other languages with interval data types: in [237], the function ABS corresponds
to the INTERVAL_ARITHMETIC function MAG, and is consistent with use of | o |
throughout the literature on interval computations. However, when coding
objective functions for interval branch and bound algorithms, it is more natural
for ABS to return the range of |o|, as ABS does if INTERVAL_ARITHMETIC is used.

Finally, INTERVAL_ARITHMETIC defines the binary interval and logical-valued
operators exhibited in Table 2.5. The binary operations in Table 2.5 that
correspond to Fortran intrinsic operators on default data types (i.e. .LT., .GT.,
.LE., .GE., and .NE.) admit mixed mode operations between intervals and
double precision or integers, while either or both arguments of .CH. may be
double precision or integer.

With the exception of ABS and MAG, the operators and functions in the list (2.1)
and Tables 2.4 and 2.5 act identically to those in ACRITH-XSC [237].

Assignment of interval values can be done using the default Fortran 90 assign-
ment to structures, e.g. X = INTERVAL(.3DO,.3D0). However, this scheme
is not recommended, since the values may not be properly rounded when
converted from character strings to floating point numbers. The function
IVL, which accepts either one or two double precision arguments, causes the
internally-stored result to be rigorously rounded. Also, assignment (=) is over-
loaded in the module INTERVAL_ARITHMETIC, so that the result is properly
rounded when an integer or double precision number is assigned to an interval.
For example, X = IVL(0.3D0), X = IVL(0.3D0,0.3D0), and X=0.3DO each!!

117yL also accepts integer arguments, such as X=IVL(3), X=IVL(3,3D0), or X=3, where X is
an interval variable. However, many machines can store small integers exactly in floating

Software Environments 81

Correspondin .
Syntax | [UTIIB routine function
Z = X.1S.Y ICAP z+xNyY
Z = X.CH.Y THULL z + [min{z, y}, max{Z, ¥}]
X.SB.Y IILEI .TRUE. fz C y
X.SP.Y IILEI .TRUE. fz Dy
X.DJ.Y IDISJ .TRUE. ifznNy =49
R.IN.X IRLEI .TRUE. ifre «
Y.LT.X - .TRUE. if g <z
Y.GT.X — .TRUE. if y > %
Y.LE.X — .TRUE. fg <z
Y.GE.X — .TRUE. ify > %
Y.NE.X - .TRUE. if y # x (set inequality)

Table 2.5 Logical and interval operators in module INTERVAL_ARITHMETIC

cause a properly rounded inclusion to the number 0.3 to be stored in the interval
variable X.

The left and right endpoints of an interval X are double precision numbers
accessed as X%LOWER and X%UPPER, respectively. These expressions can occur
on either side of an assignment statement!2. Additionally, INF(X) will return
the lower bound on an interval X, and SUP(X) will return the upper bound!?
on an interval X. Implicit conversion from interval is not allowed: the only
conversion from interval to floating point is through the functions MID, INF,
and SUP.

An additional example, the program used to generate Table 1.3, appears in
Figure 2.3.

point formats; for such machines, outward rounding is not necessary, and X=INTERVAL(3,3)
would be more logical.

12The interval X is just a Fortran 90 sequenced structure with double precision components
X/%LOWER and XJUPPER. This is compatible with INTLIB, which stores intervals in FORTRAN-77
as arrays with two elements.

13The routines INF and SUP were included since it is slightly easier with them than with
X/LOWER and X’UPPER to make programs language-independent.

82

CHAPTER 2

PROGRAM INTERVAL_NEWTON_ITERATION_1_D
USE INTERVAL_ARITHMETIC
IMPLICIT NONE

DOUBLE PRECISION XP

TYPE(INTERVAL) :: X, X_IMAGE

INTEGER K

DOUBLE PRECISION WIDTH_OF_X, OLD_WIDTH

CALL SIMINI
WIDTH.OF X = 4
X = IVL(1,2)

DD K = 1,10000
OLD_WIDTH = WIDTH_OF_X
WIDTH_OF_X = IWID(X)
XP = DBLE(X)
WRITE(6,*) K, X, XP, WIDTH_OF_X, &
WIDTH_OF _X/OLD_WIDTH**2
X_IMAGE = XP - (IVL{XP)**2 - IVL(4)) / (2*X)
IF(WIDTH_OF_X.LT.1D-11) EXIT
X = X_IMAGE
END DO

END PROGRAM INTERVAL_NEWTON_ITERATION_1_D

Figure 2.3 A univariate interval Newton method program, used to generate
the data in Table 1.3

Software Environments 83

2.2.2 Generation of Code lists

Some details of an implementation of the operator overloading ideas sketched
in §1.4.4 appear in this section.

A module OVERLOAD containing functions such as CLADD and CLPOWN of §1.4.4
defines the CDLVAR and CDLLHS data types described on page 45. This module
produces the operation codes listed in Table 2.6 and Table 2.7 (next page).
The set of operations in Table 2.6, excluding operation numbers 18 and 28,
which have special meanings, and excluding operation numbers 31 and 32,
is closed under repeated differentiation'4. Operation 31 corresponds to user-
defined univariate functions, while operation 32 corresponds to the derivatives
of these functions. Similarly, each member of this same set of operations, and
possibly also operations 31 and 32, can be formally inverted as either another
operation in the set or as a short sequence of operations in the set. This is
important for the techniques of Chapter 7.

The module OVERLOAD enables a user-supplied program to produce a code list
from a representation of the function in Fortran 90 syntax. Figure 2.4 con-
tains such a program that causes generation of a code list of the function
f(z) = 2* + 2® + = of Example 1.3 on page 37. This code list consists of a
header line giving dimensions, followed by a sequence of lines specifying the
individual operations. Although the exact sequence of operations depends on
the particular compiler and version, a code list actually produced by the pro-
gram in Figure 2.4 (page 85) appears!® in Figure 2.5. Comparing the lines in
Figure 2.5 to the meanings in Tables 2.6 and 1.1, it can be seen that the list in
Figure 2.5 corresponds exactly to the sequence of operations in equations (1.30)
on page 37.

The name and format of the file in which the code list is stored can be controlled.
The default output file name, CODELIST.OUT, can be changed by including a
statement of the form OUTPUT_FILE_NAME=’NAME.CDL’ before the statement
CALL INITIALIZE_CODELIST(X). This would cause the information as in Fig-
ure 2.5 to be written to the file NAME.CDL instead of CODELIST.QUT. The string
NAME can be replaced by anything, but the suffix should be CDL, since programs,
such as those in §2.2.3 and §2.2.4 assume file names of this form.

The numerical information corresponding to Figure 2.5 can be stored either in a
binary or readable ASCII format. Control of this is through a configuration file

1 Differentiation of the non-differentiable functions ¥, | - |, and max is explained in Chap-
ter 6.
15The actual code list is formatted using Fortran output editing.

84

CHAPTER 2

OP no. | operation Comments
4. | Tp = 4Ty
5. | zp =2z
6. | zp = x4/,
7. | zp=2xir
8. | xp = cos(zq)
9. | zp =€
10. | zp = log(z,)
11. | zp = sin(z,)
12. | zp = /T4
13. | =, = arccos(z,)
14. | z, = arcsin(z,)
16. | zp = a®
17. | zp =z
18. | zp is dependent (objective or equation)
19. | zp, =z} (n stored in)
20. | zp =24 + 21
21. | zp =24 — ¥
22. | Tp = axy
23. | zp=xq + b
4. | zp=—2q+b
25. | zp = afz,
26. | Tp=a
27. | zp = x(z4, 24, 2r) Conditional branch
28. | z, is dependent (equality constraint)
29. | zp =~y
30. [2, =0
31. | z, = U_(r,z4,a,b) | (user-defined; index stored in r)
32. | (derivative of U.) | (user-defined; index stored in r)
37. | zp = |4
38. | =, = max{z,,z,}
39. | zp, = min{z,,z,}

Table 2.6 Operations in module OVERLOAD and program MAKE_GRADIENT

Software Environments 85

OP no. | operation
33. | arctan
34. | cosh Table 2.7 Additional oper-
n ations supported in module
35. | sinh OVERLOAD
36. | tan
PROGRAM CODELIST_-GENERATION OPno. p q r
USE OVERLDAD 19 2 1 4
TYPE(CDLVAR), DIMENSION(1) :: X
TYPE(CDLLHS) :: F 19 3 1 3
CALL INITIALIZE_CODELIST(X) 20 4 2 3
F = X(1)#*4 + X(1)**3 + X(1)
CALL FINISH_CODELIST 20 5 41
END PROGRAM CODELIST_GENERATION 18 5 0 0
Figure 2.4 Program that generates Figure 2.5 Operation lines of the
a code list for f(z) =z% + 23 + x code list produced by the program of
Figure 2.4

NEQMAX, NROWMAX, NCONSTMX, BRANCHMX, BINARY_CODELIST
100 10000 2000 10 F

Figure 2.6 Sample OVERLOAD.CFG file

OVERLOAD. CFG, as in Figure 2.6. The first four numbers in this file are bounds
that define maximum number of equations, maximum total number of rows,
maximum number of constants that can be stored, and maximum number of
conditional branches. The last entry specifies whether the code list is to be
stored in an ASCII or binary format; if it is “F”, then an ASCII code list is
formed, and a binary code list is formed if it is “T”.

Binary code lists are generally preferable except in example problems, for var-
ious reasons. The binary code lists can be retrieved more rapidly, and they
take less space. Also, information of the constants a and b that are found in
operations 16, 17, 22-26, and 31-32 is stored in indexed lines at the end of the
file; conversion errors occur when such constants are stored and retrieved in an
ASCII format'®, but do not occur when the constants are stored and retrieved
in a binary format. Finally, the ASCII output formats are not wide enough for
large code lists.

16The software takes account of these conversion errors by rounding out, assuming the
errors are no larger than an error in an elementary operation. This, however, is not true with
all machines and compilers.

86 CHAPTER 2

PROGRAM PRODUCT
USE OVERLOAD
PARAMETER (NFACTORS=2000)
TYPE(CDLVAR), DIMENSION(NFACTORS):: X
TYPE(CDLLHS), DIMENSION(1):: F

TYPE(CDLVAR) :: TMP

OUTPUT_FILE.NAME=’PRODUCT .CDL’

CALL INITIALIZE_CODELIST(X) Figure 2.7 Accumulating

TMP = X(1) a product for a dependent
variable

DO I = 2,NFACTORS
TMP = TMP*X(I)
END DO
F(1) = TMP
CALL FINISH_CODELIST
END PROGRAM PRODUCT

Since operator overloading is used, the functions as illustrated in Figure 2.4
must be programmed with certain special syntax rules, as follows:

1. The input data variables and variables depending on these should be de-
clared to be type CDLVAR (“CoDe List VARiable”). These variables may
occur on both sides of assignment statements, and in arithmetic expres-
sions obeying the rules of Fortran 90, containing “+7, “—", “«” “/” “sx”
CO0S, EXP, LOG, SIN, SQRT, ACOS, ASIN, ATAN, COSH, SINH, TAN, ABS, MAX and
U.. Mixed-mode operations with intervals, double precision, and integers
are acceptable,

2. For multivariate systems of equations, variables defining the function com-
ponents must be in a single vector F(1), ..., F(N), and these variables
must be declared to be type CDLLHS. Each of them may only occur once in
the program, on the left side of an assignment statement, while single ob-
jective functions may be handled as in Figure 2.4. If a dependent variable
is a result of an accumulated sum, a temporary variable of type CDLVAR
may be defined for the accumulation; see Figure 2.7.

3. For optimization problems, equality constraints of the form g;(X) = 0 may
be expressed by declaring an array G to be of type CDLINEQ, then assigning
the expressions for the g; to the elements of G, exactly as with variables of
type CDLLHS.

Software Environments 87

P no.
PROGRAM REASSIGN_INDEPENDENT OP no

USE OVERLOAD
TYPE(CDLVAR), DIMENSION(1):: X
TYPE(CDLLHS), DIMENSION(1):: F
OUTPUT FILE.NAME=’GUIDREAS.CDL’
CALL INITIALIZE_ CODELIST(X)
PO I=1,10

X(1) = X(1)*»2

END DO

F(1) = X(1)
CALL FINISH CODELIST

END PROGRAM REASSIGN_INDEPENDENT

O 00 OO bW R

—
(=]

o OF O OY OF O OF Y OF OR OX
DL S©®~No ok ws
coococoococoocoooo|x

o

Figure 2.8 Reassignment of a de- Figure 2.9 The code list operation
pendent variable lines for the program in Figure 2.8

4. Independent variables must be in a single array!” of type CDLVAR, and
must be “initialized” by passing them as an argument to the subroutine
INITIALIZE_CODELIST at the beginning of the program. The dimension of
this array must equal exactly the number of independent variables. Ex-
amples occur in Figure 2.4 and Figure 2.7. The elements of this array may
occur on either side of the assignment statement, but each such assign-
ment results in a new intermediate variable; see the example in Figure 2.8,
with output in Figure 2.9. (The program in Figure 2.8 defines f; = a:f1 J)
Variables of type CDLVAR, other than the independent variables, may be
defined and used.

5. Conditionally executed constructs (e.g. IF-THEN-ELSE or CASE statements)
may not be used'®, unless the conditions tested are constant. However,
most non-conditional loops and other non-conditional constructs follow-
ing Fortran 90 syntax are allowable. Conditional branches may be pro-
grammed using the branch function x described in Chapter 6 below.

6. Any variables declared as integer, double precision, or interval are treated
as constants when forming the code list. Integers and double precision
are rounded out to intervals. For rigor, such variables should be interval,
or conversion should be used carefully. Single precision variables is not
recommended, due to possible lack of rigor, while any variable that depends
on the independent variables (as specified with INITIALIZE_CODELIST)
should be declared to be of type CDLVAR.

7even if there is only one independent variable
18For an explanation of why, see [119].

88 CHAPTER 2

7. The function may be defined through a hierarchy of subroutines, consistent
with standard Fortran practice, as long as each subroutine contains an
appropriate USE OVERLOAD statement at the beginning.

8. The last program statement must be a call to FINISH CODELIST. This
subroutine places the dependent variable identifications (operation code
18) at the end of the code list, then writes the code list to a file.

User-Defined Functions

Operation code 31 is reserved for user-defined unary operations. Such oper-
ations are useful both to reduce the size of the code list and to reduce over-
estimation in the ranges. For example, each component function f; may be
separable, i.e. f; may be written in the form

fi(X) = Ei(¢1(21), - - -, Pnlzn)), (2.2)

where the exact range of each ¢; and its derivatives can be computed. In such
an instance, the overestimation in f; can be reduced by computing the exact
range of each ¢;, rather than programming E; using naive interval arithmetic.
In an ideal case, E;(ui,....up) = Z;‘zl u; and the exact range of f; and its
gradient can be computed!®. Furthermore, the code list for f; can then be
represented with a single operation for each entity ¢;.

Alternately, certain elementary or special functions not available within the
basic system may be required. In such cases, it would be both more efficient
and more effective (in computing sharp bounds on ranges) to provide a specific
operation in the code list, rather than to program the function in terms of
existing operations.

The system allows an arbitrary number of such unary operations, each as-
sociated with a unique index k. The set of operations is defined in module
USER FUNCTIONS, containing functions USR, USRD, USRDD, USRP, USRPD, USRPDD,
USRSL, and USRDSL, with meanings as follows:

'®Functions of this form are termed separable. Functions of the form 377 u; where the
u; depend on more than one, but not many of the variables x; are termed partially separa-
ble; see [67].. Such partial separability has been exploited in the LANCELOT approximate
optimization package [35].

Software Environments 89

USR(K, INVERSE,X,A,B) provides the range of the K-th function if
INVERSE=.FALSE., or the range of the inverse of the K-th function if
INVERSE=.TRUE. over the interval X and with parameters A and B.

USRD(K,X,4A,B) provides a range for the derivative of the K-th function over
the interval X and with parameters A and B.

USRDD(K,X,A,B) provides a range for the second derivative of the K-th function
over the interval X and with parameters A and B.

USRP (K,RX,A,B) provides a floating point value of the K-th function at RX and
with parameters A and V.

USRPD (K,RX,A,B) provides a floating point value of the derivative of the K-th
function at RX and with parameters A and B.

USRPDD(K,RX,A,B) provides a floating point value of the second derivative of
the K-th function at RX and with parameters A and B.

USRSL(K,XC,XR,A,B) provides an interval enclosure for the slope of the K-th
function over XR and centered at XC, with parameters A and B.

USRDSL (K, XC,XR,A,B) provides an interval enclosure for the slope of the deriva-
tive of the K-th function over XR and centered at XC, with parameters A
and B.

New functions are defined by creating additional branches in CASE statements
in each of the above routines. Not all functions are required for all appli-
cations. For example, the second derivative functions and USRDSL are used in
second-order optimization methods, with code lists that have been symbolically
differentiated with the techniques described below; these functions may not be
necessary for root-finding algorithms. Similarly, depending on the application,
it may not be necessary to provide a branch for the inverse of a function.

Example 2.1 Suppose that a single code list operation is to be defined for the
general quadratic f(z) = 2 + az +b. This function corresponds to the branch
K=1 in figures 2.10a and 2.10b; routines for USRDD, USRP, USRPD, USRPDD,
USRSL, and USRDSL are similar, and are available with INTLIB_90%°. The func-
tion fi(x) = 22 + 3z can then be described with a single code list operation,
generated by the program in Figure 2.11.

20Gimilarly, the routines QUADRATIC_RANGE, QUADRATIC_INVERSE, and QUADRATIC_SLOPE are
slightly lengthier, but are supplied in the template module USER_FUNCTIONS in INTLIB_90.

90 CHAPTER 2

FUNCTION USR(K,INVERSE,X,A,B) RESULT(R)
USE INTERVAL_ARITHMETIC
INTEGER, INTENT(IN) :: K, INVERSE
TYPE(INTERVAL), INTENT(IN) :: X, A, B
TYPE(INTERVAL) :: R
SELECT CASE(K)
CASE(1)
IF (INVERSE.EQ.0) THEN ! Compute exact range of x"2 + ax + b
R = QUADRATIC_RANGE(1DO,DBLE(A),DBLE(B),X)
ELSE ! Compute the inverse -- not required in all cases
R = QUADRATIC_INVERSE(1DO,DBLE(A),DBLE(B),X)
END IF
CASE DEFAULT
WRITE(*»,*) 'ERROR IN FUNCTION "USR.",& °’
'FUNCTION NUMBER K =’, K
WRITE(*,*) ’IS UNIMPLEMENTED.’
STOP
END SELECT
END FUNCTION USR

Figure 2.10a Function USR for Example 2.1

FUNCTION USRD(K,X,A,B) RESULT(R)
USE INTERVAL_ARITHMETIC
INTEGER, INTENT(IN) :: K
TYPE(INTERVAL), INTENT(IN) :: X
TYPE(INTERVAL), INTENT(IN) :: A, B
TYPE(INTERVAL) :: R
SELECT CASE(K)
CASE(1)
! Compute the exact derivative range of x"2 + ax + b.
R = 2D0*X + A
CASE DEFAULT
WRITE(»,*) ’ERROR IN FUNCTION "USRD.", &
'FUNCTION NUMBER K =’, K
WRITE(*»,*) ’IS UNIMPLEMENTED.’
STOP

END SELECT
END FUNCTION USRD

Figure 2.10b Function USRD for Example 2.1

Software Environments 91

! This tests the user-defined function by computing x**2 + 3x +2
PROGRAM USER_FUNCTION_TEST
USE OVERLDAD
TYPE(CDLVAR) , DIMENSION(1) :: X
TYPE(CDLLHS), DIMENSION(1) :: F_1
OUTPUT_FILE_NAME=’USRTST.CDL’
CALL INITIALIZE_CODELIST(X)
F_1(1) = U_(1,X(1),IVL(3),IVL(2)) - 2
CALL FINISH_CODELIST
END PROGRAM USER_FUNCTION_TEST

Figure 2.11 A program to generate a code list for f1(z) = f(z) — 2, where
f(z) is as in Example 2.1

2.2.3 Differentiation of Code Lists

A code list generated according to the principles and procedures of §1.4.4 and
§2.2 is a symbolic representation of a particular sequence of operations for eval-
uating the function. Not only can such code lists be interpreted, as described
in §1.4.5 and §2.2.4, but they can also be symbolically manipulated. In fact, as
first pointed out in [187, p. 14], code lists can be symbolically differentiated in a
loop similar to that of Figure 1.5: To process each intermediate variable of the
code list, an additional code list line (or lines), corresponding to the derivative
of that intermediate variable is created. In such a scheme, a derivative code
list with exactly the same format and set of operations as the original code list
can be created?!. For example, a line corresponding to r, = 4z, generates
lines corresponding to the formula z;, = 24, + z;z,. Here z;,, z; and z; are
new intermediate variables if z,, z, and z, were intermediate variables??; gen-
erally, z; and z; have been generated prior to encountering the code list line
corresponding to zp, S0 ,, can be defined.

Although the actual implementation of such a differentiation scheme is some-
what lengthy, it is based on the above simple principle. It is embodied in
module GRADIENT_CODELIST of INTLIB_90. For example, suppose the code list
for f(z) = z* + 2® + =, as in Figure 2.5 as been generated and placed in the
file EX1.CDL; then the program COMPUTE_GRADIENT of Figure 2.12 produces the
code list for the derivative of f(z), as in Figure 2.13. Comparing the derivative

21The idea of differentiating code lists appeared, perhaps first, in [187, p. 14 ff].
221}, and . are either 1 or 0 if x4 and z, were independent variables.

92

PROGRAM COMPUTE_GRADIENT
USE GRADIENT_CODELIST
INPUT_FILE_NAME=’EX1.CDL’
CALL INPUT_FUNCTION_CODELIST
CALL OBJECTIVE_TO_GRADIENT
CALL FINISH_GRADIENT
END PROGRAM COMPUTE_GRADIENT

OP no.
19
19
20
20
19
22
19
22
20
23

18
18 11

—
o HOQO(X)\]O)UI&-POON'U
O OO OO N O WEFH WW IS
L
|

collE N~ o~ kN~ |

Figure 2.13 Operation lines of the
code list for the derivative of f(z) =
et +z3 +z '

CHAPTER 2

Figure 2.12 Generation of
a derivative code list corre-
sponding to the code list in

file EX1.CDL

T, = i

g3 = =}

Ty = T2+ T3
Ty = T4+1I
e = 7}

Ty = 42}6

g = 2%

o = 3z
Tip = T7+ Ty
Ty = T+l
h = x5~
fo = zn

Figure 2.14 Algebraic interpreta-
tion of the code list in Figure 2.13

code list in Figure 2.13 and the operation set in Table 2.6 gives the algebraic

interpretation in Figure 2.14.

Produced by a program in INTLIB_90, such derivative code lists have exactly
the same format as the original code list, and can be interpreted or further
differentiated as such. However, the meaning attached to dependent variables
(corresponding to operation code 18, at the end of the code list) differs, de-
pending on the way the code list is viewed, as follows.

Example 2.2 Let F: R? — R? be defined®® by

ffzy,z2) =

f2($1,$2) =

49:? —3r; — x4

2
r; — T2.

23This function appeared as a test problem in [171], then in [108] and subsequent work.

Software Environments 93

OPno. p q r a b

19 3 1 3 - -

22 4 3 0 4 -

22 5 1 0 3 -

21 6 4 5 - -

21 7 6 2 - -

OPno. p g r a b 5 8 1 0 - -
19 3 13 - - 21 9 8 2 - -
22 4 3 0 4 - 19 10 1 2 - -
22 51 0 3 - 22 11 10 0© 3 -
21 6 4 5 - - 22 12 11 © 4 -
21 7 6 2 — - 26 13 0 0O 3 -
5 8§ 1 0 — - 21 14 12 13 - -
21 9 8 2 - - 22 15 1 0 2 -
18 7 0 0 — — 26 6 0 0 -1 -
18 9 0 0 - — 26 7 0 0 -1 -
18 7T 0 O - -

18 14 0 O - -

18 16 0 O - -

18 9 0 O - -

18 15 0 0 - -

18 17 0 O - -

Figure 2.15 A code list for the Figure 2.16 The derivative code
function in Example 2.2 list corresponding to Figure 2.15

The code list produced by INTLIB_90 is as in Figure 2.15, while the correspond-
ing derivative code list appears in Figure 2.16.

Observe that there are two dependent variables in Figure 2.15 and six dependent
variables in Figure 2.16. The two dependent variables in Figure 2.15 are viewed
as fi and f;. If the code list in Figure 2.16 were viewed as an original (i.e.
non-differentiated) code list, then there would be six dependent variables fi,
f2, fa, fa, fs and fs. Viewed as a ﬁrst denvatlve code list, the six dependent
variables are given the meanings fi, 2 T 3“ Iz 55—, and —L in that order.
If the code list of Figure 2.16, viewed as an original code hst %s differentiated
again, then a code list for the second derivative tensor results. In this second

derivative code list, there would be 18 dependent variables, corresponding to

94 CHAPTER 2

fi, 8fHL B8H 8L 3_2%. f_ 8h _Of 3_2%.

Ozy? Bzs? 8zy1? Oz12) fzx.0z1) Bza? Bz90zy? Bzxa2)

1
i) 3 3 a2 ik 8 8% 52
f, Ofa 0fr Of L Ofa Of 02 Ef‘%:

Oz TR oy’ EETER 80z 8zq? Ozo0zy?

in that order. (Note the redundancy, assuming continuity of the partial deriva-
tives.)

There are alternatives to symbolic differentiation of code lists. In particular,
Frechét arithmetic [65, Rall, pp. 17-24], similar to the forward mode of au-
tomatic differentiation as in §1.4.1, can be used for derivative tensors of any
order. Also, a first derivative tensor can be obtained from the code list for
the original function with implementations of the reverse mode of §1.4.2. In
the nonlinear systems solver in INTOPT_90 (Chapter 4 below), only the original
code lists are used: Jacobi matrices are obtained with reverse automatic differ-
entiation. Similarly, in the optimization code in INTOPT_90 (Chapter 5 below),
a first derivative, or gradient code list is created, and Hessian matrices are ob-
tained with the reverse mode. In optimization problems, the original code list
has only one dependent variable, the objective function, not counting depen-
dent variables corresponding to constraints (associated with operation number
28 of Table 2.6).

The redundancy in the dependent variables in code lists for higher-order deriva-
tive tensors can be eliminated [179)], at the expense of generality of the code
list format and some simplicity of implementation and use. Also, it has been
reported?4 that use of second derivative code lists in the general format can be
efficient relative to first derivative code lists and automatic differentiation for
the Hessian matrices.

Also notice some redundancy in the operations corresponding to intermediate
variables in Figure 2.16. Care is taken to avoid some of this redundancy dur-
ing generation of the individual code list lines corresponding to derivatives?5,
while other redundancy could be reduced with post-processing. The types of
post-processing that may be necessary are possibly similar to techniques ap-
propriate for eliminating redundant arithmetical computations in optimizing
programming language compilers. It is known that at most five times the stor-
age for the original code list should be required for the code list for the gradi-
ent, regardless of the number of independent variables in the original function
[92]. It is unknown how close the implementation of GRADIENT _CODELIST is
to this complexity bound, but the derivative code list, not counting lines di-

24in a private conversation with Claire Adjiman

25See the actual module GRADIENT_CODELIST.

Software Environments 95

rectly related to the dependent variables, is within this bound on many specific
problems?®.

Although the process of producing a derivative code list can be viewed as
symbolic, it is not symbolic differentiation in the sense commonly associated
with symbolic manipulation packages such as Maple [229, 80], Mathematica
[244, 80], MACSYMA [189, 80] or Reduce [156, 80]. In such packages, alternate
schemes are used to process arithmetic expressions.

2.2.4 Interpretation of Code Lists — Generic
Functions

Routines within INTLIB_90 that use code lists to compute floating point and
interval function values and derivatives, according to the automatic differen-
tiation principles of §1.4 (page 36) and the generic function ideas of §1.4.5
(page 47), are outlined here.

Once the code list is created?”, input routines supplied with the package enter it
into global storage space in the module CODELIST_VARIABLES. The code list can
then be used by a number of package-supplied generic functions. Some of these
operate on generic code lists, while others deal with gradient code lists that are
assumed to have been produced by differentiating a code list corresponding to
a single objective function.

Generic Code List Routines

The following routines operate on any code list, although interpretation of the
results differs, depending on whether the code list is the result of differentiation
of another code list. Interval routines are:

SUBROUTINE F(X,FVAL) returns a set of bounds on the ranges of the func-
tion components over the box represented in the interval vector X(:) in
the interval vector FVAL. For example, if the code list presently in mem-
ory corresponded to Figure 2.15, i.e. to Example 2.2, then, upon return,
FVAL(1) would contain the bounds on the range of 4z3 — 3z; — z2 over
the box represented by the array (X(1),X(2)) and FVAL(2) would con-

26even though, at the time of writing, no post-processing is done in INTLIB.90.

?7¢.g. by running a program such as that in Figure 2.4

96 CHAPTER 2

tain the range of 22 — x, over that box. The natural interval extension
corresponding to the code list is used.

SUBROUTINE F_2(X,FVAL) returns a set of bounds on the ranges F(:) over the
box X(:), as SUBROUTINE F(X,FVAL), except that a mean value extension
is used.

SUBROUTINE DENSE_JACOBI MATRIX(X,FP) returns a bound on the range of
9_)1 over the box X(:) in the interval array component FP(:,7), for each
i and J- These bounds are computed using the reverse mode of automatic
differentiation of §1.4.2.

SUBROUTINE DENSE SLOPE MATRIX(XC,XR,S) returns a slope bound S(F, X, X)
in the two-dimensional interval array S, where X corresponds to the in-
terval vector XR and X corresponds to the interval vector XC. Hansen’s
technique of §1.3.2, the slope arithmetic of §1.4.3, and a modified?® differ-
encing technique as in Theorem 1.13 are used.

Floating point routines are:

SUBROUTINE F_POINT(RX,RFVAL) returns a floating point approximation to the
function components at the point represented in the floating point vector
RX in the floating point vector RFVAL.

SUBROUTINE POINT_JACOBI_MATRIX(RX,RFP) returns a floating point approxi-
mation to ‘a‘f' at the point represented in the floating point vector RX(:) in
the interval array component RFP (i,j), for each ¢ and j, computed using
the reverse mode of automatic differentiation of §1.4.2.

For example, suppose the code list of Figure 2.15, corresponding to the function
in Example 2.2, is stored in the file EX2.CDL. Then the program:

PROGRAM EXAMPLE_INTERVAL_EVALUATION
USE CODELIST_FUNCTIONS
IMPLICIT NONE
TYPE (INTERVAL), DIMENSION(:), ALLDCATABLE :: X, FVAL
CODELIST_FILE_NAME = ’EX2.CDL’
CALL GET_CODELIST
ALLOCATE (X(NSMALL), FVAL(NEQ))

28modified to avoid instances of cancellation error, as in Formula 1.35

Software Environments 97

X(1) = IVL(1,2); X(2) = IVL(3,4)
WRITE(6,#*) ’Initial box:’
WRITE(6,’(2(1X,2(1X,D12.4)))*) X
WRITE(6,*)
WRITE(6,#*) ’INTERVAL VALUE F(X) USING THE NATURAL °’, &
*INTERVAL EXTENSION:’
CALL F(X,FVAL)
WRITE(6,’(2(1X,2(1X,D12.4)))’) FVAL
DEALLOCATE (X, FVAL)
END PROGRAM EXAMPLE_INTERVAL_EVALUATION

produces the output:

Initial box:
0.1000D+01 0.2000D+01 0.3000D+01 0.4000D+01

INTERVAL VALUE F(X) USING THE NATURAL INTERVAL EXTENSION:
-0.6000D+01 0.2600D+02 -0.3000D+01 0.1000D+01

Indeed, 4[1, 2]3-3[1, 2]-[3, 4] = [-6, 26], and [1, 2]2—[3,4] = [-3, 1]. Additional
details of use are distributed with the package itself.

The asymptotic computational cost of these routines is summarized in Ta-
ble 2.8. There, n is the number of independent variables, Ngq is the number
of dependent variables, and Nppgs is the total number of operations required
to evaluate the function, i.e. the number of operation lines in the code list file.
For example, in code list of Figure 2.15, corresponding to Example 2.2, n = 2,
Ngq =2, and Nops = 7.

The actual cost of computing floating point and interval function values with
these generic routines depends on various factors. In a particular comparison,
on a Sun SPARC 20 with a floating point accelerator and the NAG Fortran 90
compiler, floating point evaluation of the Shekel function [49], F_POINT was 8
times slower than programming that specific function in floating point, and F
was roughly 16 times slower [114]. The overhead in the floating point computa-
tions lies in storage and retrieval of intermediate quantities and the looping and
case statements in F_POINT. However, that overhead is not significant for the
interval computations, since programming the function directly with the inter-
val data type of §2.2.1 is not significantly faster. The advantage of the generic
functions is that only one function need be programmed, as in Figure 2.4, thus

98 CHAPTER 2

| Procedure name or task | Number of operations
Form the code list O (Nops)
Form a derivative code list O (n(Ngq + Nors))
F O (Nops) +0 (NEQ)
F2 O (Nops) + 0O (NEQ) +0 (NEQNops)
DENSE_JACOBI_MATRIX O (Nops + Ngq) + O (NeqNops)
DENSE_SLOPE MATRIX O (nNops) + O (Nops)
F_POINT O (n + Ngq + Nops)
POINT_JACOBI MATRIX O (Nops + Neq) + O (NeqNops)

Table 2.8 Operational complexity — generic routines

minimizing programming effort. This advantage makes the overhead acceptable
for many computations.

All of these routines can be applied to code lists that have been produced from
the differentiation process of §2.2.3, but have a different interpretation. For
example, the output of the program EXAMPLE_INTERVAL EVALUATION, when the
file EX2.CDL contains the derivative code list of Figure 2.16 is:

Initial box:
0.1000D+01 0.2000D+01 0.3000D+01 0.4000D+01

INTERVAL VALUE F(X) USING THE NATURAL INTERVAL EXTENSION:
-0.6000D+01 0.2600D+02 0.9000D+01 0.4500D+02
-0.1000D+01 -~0.1000D+01 -0.3000D+01 0.1000D+01

0.2000D+01 0.4000D+01 -0.1000D+01 -0.1000D+01

Here, the meaning of F(X) is as explained on page 93. That is, upon output,
the array FVAL contains f,([1,2],[3,4]) = [-6, 26], %([1,2],[3,4]) = [9,45],
1

LB = -1, 0284 = 3,1, Jx@2p.4) = 24,
g-%:([l, 2],[3,4]) = —1, in that order. Similarly, if EX2.CDL contained the code

list corresponding to the second derivative tensor, then the array FVAL would
contain components of the function, Jacobi matrix, and second derivative tensor
in the order explained on page 93.

Software Enuvironments 99

Gradient Code List Routines

These routines make it easier to extract particular information, such as the
objective function values only or the gradient component values only, from first
derivative code lists. Some of them are:

SUBROUTINE F_GRADIENT D(X,FVAL) is similar to SUBROUTINE F, but returns
only bounds on the objective function, even though it works with the
gradient code list corresponding to that objective function.

SUBROUTINE F_2G(X,FVAL) as SUBROUTINE F_2, returns only bounds on the
objective function computed a second-order extension, but works with a
gradient code list.

SUBROUTINE GRAD(X,GVAL) is similar to F, but works with a gradient code list,
and returns only the components of the gradient.

SUBROUTINE F_POINT_GRADIENT(RX,RFVAL) is similar to F_POINT, but returns
a floating point approximation to only the function value while working
with the code list for the gradient of the function.

SUBROUTINE POINT_HESSIAN G(RX,RFP) is similar to POINT_JACOBI_MATRIX,
but returns a floating point approximation to the Hessian matrix of the
original function while working with the code list for the gradient of the
function.

SUBROUTINE CONSTRAINTS D(X,CVAL) returns, in the interval array CVAL, in-
terval bounds for the constraint residuals over the box represented by the
interval array X; see Example 2.3.

SUBROUTINE CONSTRAINT_GRADIENTSDD(X,GMAT) returns interval bounds on the
components of the Jacobi matrix of the constraints in the two-dimensional
interval array GMAT.

SUBROUTINE POINT_CONSTRAINTS(RX,RCVAL) returns floating point approxi-
mations to the constraint residuals at the floating point vector RX, in the
array RCVAL.

POINT_CONSTRAINT GRADIENTS (RX,CGMAT) returns floating point approxima-
tions to the Jacobi matrix of the constraints at the floating point vector
RX, in the two-dimensional floating point array CGMAT.

100 CHAPTER 2

PROGRAM CNSEX
USE OVERLOCAD
TYPE(CDLVAR), DIMENSION(2) :: X
TYPE(CDLLHS), DIMENSION(1) :: PHI
TYPE(CDLINEQ), DIMENSION(1) :: G
OUTPUT_FILE_NAME=’CNSEX.CDL’
CALL INITIALIZE_CODELIST(X)

- Figure 2.17 A program
PHI(1) X(1)222 + X(2)#»2 to generate a code list for
G(1) = X(1) + X(2) - 1

#(z1,22) = 22 + .1:%, subject
CALL FINISH_CODELIST toz, + 22 —1=0

END PROGRAM CNSEX

PROGRAM EXAMPLE_CONSTRAINT_EVALUATION

USE CODELIST_FUNCTIONS; IMPLICIT NONE
TYPE (INTERVAL), DIMENSION(:), ALLOCATABLE :: X, CVAL
CODELIST_FILE_NAME = ’'CNSEXG.CDL’
CALL GET_CODELIST

ALLOCATE (X(NSMALL), CVAL(NINEQ/(NSMALL+1)))
X(1) = IVL(1,2); X(2) = IVL(3,4)
WRITE(6,*) ’CONSTRAINT RESIDUALS:’

CALL CONSTRAINTS_D(X,CVAL) Figure 2:18 Evaluation of
the constraints in Exam-
WRITE(6,’ (2(1X,2(1X,D12.4)))’) CVAL oo 2.

DEALLOCATE (X, CVAL)
END PROGRAM EXAMPLE_CONSTRAINT EVALUATION

Example 2.3 Consider optimization of ¢(z,72) = 2% + 22 subject to the
constraint £1+ x5 —1 = 0. The program in Figure 2.17 will place a code list for
the function and constraint in the file CNSEX.CDL. Suppose that this code list is
differentiated and placed in CNSEXG.CDL. Then the program in Figure 2.18 will
produce the output:

CONSTRAINT RESIDUALS:
0.3000D+01 0.5000D+01

In addition to the above routines, there are various routines to support com-
putation of the Fritz John equations, etc., for the computations described in
Chapter 5.

Software Environments 101

Additional Package Capabilities

Additional, more specialized routines are also part of the package. Some of
these routines are lower-level routines that nonetheless can be useful in making
specific computations more efficient. For example, a function and the com-
ponents of its gradient may share many common subexpressions in a gradient
code list. Thus, it is more efficient to evaluate the intermediate variables in the
gradient code list only once, to obtain both functions and gradients. A routine
FORWARD_SUBSTITUTION evaluates all of the intermediate and dependent vari-
ables, then specialized routines quickly extract specific information (objective
function values or gradient components) by simply looking up values that have
already been computed. Details are distributed with INTLIB_90.

Other routines, available with the package but not documented here, set up the
function, residuals, and Jacobi matrix for the expanded system of equations in
which each intermediate variable is considered to be a dependent variable, as
described in Chapter 7. These also include routines for the automatic and
user-defined substitution-iteration process of Chapter 7. Routines are also in-
cluded to compute the reduced gradient and reduced Hessian matrix described
in §5.2.3.

Finally, availability of the code list allows easy translation to any format. For
example, relatively simple prototypical routines that output the function as a
TEX representation or as a FORTRAN-77 program work with INTLIB_90. How-
ever, considerable effort is required to polish such routines into professional
quality software.

2.2.5 Exercises

1. Program Algorithm 5 on page 54 using the interval data type and the sup-
plied functions for code list interpretation. Use either fixed-size arrays for
the lists (actually stacks) £ and C, or the INTERVAL_LIST data type avail-
able with INTLIB_90. Use your program to attempt to find all solutions to
the system f(z) = sin(z) — .125z = 0 within the interval [-3x, 37].

2. Use the program from Problem 1 to attempt to find all eighteen real solu-
tions within the interval [—~12, 8] of the polynomial system

18
flz) = Zakxk =0,
k=0

102 CHAPTER 2

where:

ap = —0.3719362500 x 10° a1 = —0.7912465656 x 10°
az = 0.4044944143 x 10% as = 0.9781375167 x 103
as = —0.1654789280 x 10° as = 0.2214072827 x 10°
ae = —0.9326549359 x 10° ar = —0.3518536872 x 10%
as = 0.4782532296 x 10° as = —0.1281479440 x 10*
a1g = —0.2834435875 x 10° an = 0.2026270915 x 103
a1z = —0.1617913459 x 102 a1z = —0.8883039020 x 10}
aia = 0.1575580173 x 10* a5 = 0.1245990848 x 10°
aig = —0.3589148622 x 10~} a7 = —0.1951095576 x 1073
ais = 0.2274682229 x 1073

What behavior do you observe? Is the behavior affected by the choice of

€? What explanation do you have for the behavior? (Hint: This problem is
“Gritton’s second problem,” first introduced to the author by the authors
of [14], and discussed in [114].)

2.3 OTHER SOFTWARE
ENVIRONMENTS

The main goals of INTLIB.90 are to provide a reasonably efficient, portable
access to its capabilities, to provide a unifying framework and, perhaps, stan-
dardization of terminology, names, and features, for interval arithmetic support,
and to supply the most common needs in global optimization. Various other
programming languages and packages excel generally and for specific purposes.
Here, some of these other packages are listed, along with perceived strengths
and weaknesses and availability. The list is not comprehensive; in particular,
many researchers have created packages for their own use, but have not widely
publicized them.

Interval arithmetic packages can generally be classified as follows.

Early packages: Most were Fortran or Algol-based, and were constructed on
the precompiler principle.

SC-languages: Including ACRITH-XSC (also known as FORTRAN-SC) and
Pascal-SC, these extensions of common languages feature an accurate dot
product and a large and useful set of operators and functions.

XSC-languages: Created on the “SC” model, these are portable languages
based mainly on the operator overloading principle.

Software Environments 103

Other modern packages: These include INTLIB_90 and various packages in
C++, and other languages that support operator overloading,.

Packages for symbolic manipulators: These include libraries for interval
arithmetic in Mathematica and Maple.

Capabilities in spreadsheets: These include an extensions to Excel and the
product UniCalc.

Logic programming languages: Prolog, with its ability to define relation-
ships without specifying dependent and independent variables, is suited
for some types of interval computations.

Miscellaneous packages: These are certain specialized packages, and many
packages written for the authors’ own work.

Interval packages contain attributes other than these. For example, the package
can support variable precision arithmetic, it can have a maximally accurate dot
product, etc.

2.3.1 Early Packages

A set of Algol-60 procedures for the standard functions was presented by
Herzberger in 1970 [82]. Later, Triplex-Algol appeared [11, 33], with a data
type consisting of an interval combined with a floating point approximation.

A widely available package was Yohe’s set of “reasonably portable” FORTRAN-66
interval arithmetic routines [247], combined with Augment precompiler [42].
Ahead of its time, Augment featured operator overloading and other modern
constructs that it translated to FORTRAN-66. Yohe’s routines were designed to
be transportable by building on of several low-level machine-specific routines
that contained the directed rounding; assembler versions of these routines were
provided for several machines, such as IBM 360 mainframes and Univac ma-
chines. This package may still be available, although it is unsupported, and
modern alternatives exist.

Jeter and Shriver described the portable preprocessor SEPAFOR (target lan-
guage FORTRAN IV), for a variable precision interval arithmetic [100]. Such vari-
able precision is useful e.g. in solving systems of differential equations, where
the precision can be adjusted to take account of sensitivity to initial condi-
tions, etc. The precompiler was based on a modification of Brent’s multiple

104 CHAPTER 2

precision package [24] and the preprocessor RATFOR. ACM Algorithm 524,
Brent’s package is still available. Also, see [13], a modern Fortran 90 multiple
precision package. A convenient Fortran 90 portable multiple precision interval
arithmetic package could be created by extending the package [13].

The University of Minnesota’s M77 compiler, a FORTRAN-77 compiler, had an
extensive interval arithmetic library?® by W. R. Walster, and efficiently sup-
ported an interval data type intrinsically within the compiler®® [230]. Ap-
pendix Z of [230] contains a description of the capabilities of Walster’s package.
The M77 compiler ran on CDC mainframes. Hansen and Walster used it suc-
cessfully in much of their research, e.g. [235].

Bendzulla presents a two-pass precompiler for an interval data type in
FORTRAN IV [18]. S. Markov and his co-workers also created a Fortran package.
Early software at the Mathematics Research Center of the University of Wis-
consin is mentioned in [187, Ch. 5]. An example interval arithmetic package in
PL/I is given in [15].

2.3.2 The “SC” Languages

FORTRAN-SC, known commercially as ACRITH-XSC [236, 160, 237], and
Pascal-SC [188] made interval capabilities and user-defined data types widely
accessible. Available first for CP/M-based microcomputers, and then for mi-
crocomputers running DOS, Pascal-SC is cited heavily in the interval compu-
tations literature; numerous packages, such as implementation of the hierarchy
of higher operations®! [145, 147] and packages for standard numerical tasks,
such as linear system solvers, have been written in Pascal-SC.

Based on FORTRAN-77, ACRITH-XSC is a compiler for IBM 370 mainframes
that makes use of the ACRITH [206, 95] subroutine package, with improve-
ments.

Both ACRITH-XSC and Pascal-SC feature a maximally accurate dot product,
intrinsic interval data types, dynamically allocated arrays, and user-defined
data types, with operator overloading. The results of the elementary inter-
val operations are the best possible, i.e. they are the smallest possible machine

29By coincidence, Walster’s library happens to be called INTLIB; it does not have a direct
relationship to the later ACM Algorithm 737.

30 According to informal reports, interval arithmetic was only five times slower than floating
point.

3le.g. arithmetic on vectors and matrices

Software Environments 105

Task CPURAT Task CPURAT
106 108
1" 1.000 39.7 3.2, 1.000 19.7
106 108
[T, 1.0p0 34.6 [T,2,1-0p0 24.1
Coﬁmpute sin(1) 17.7 Cosmpute sin(1) 104.9
10° times 10° times
Compute 12 9.6
10% times
Table 2.9 Ratio of interval to float- Table 2.10 Ratio of interval to
ing point CPU times CPURAT for floating point CPU times CPURAT
ACRITH-XSC on an IBM 3090 for INTERVAL_ARITHMETIC on a Sun

SPARC 20 model 51

intervals that contain the mathematical result. Additionally, the standard func-
tion library in ACRITH is in IBM 360/370 assembler language, and has been
crafted for both tightness of bounds and speed with techniques described in
[23, 138].

Table 2.9 hints32 that the efficiency of interval arithmetic in ACRITH-XSC is
not excessive vis ¢ vis floating point arithmetic, especially for the standard func-
tions. A similar table for the module INTERVAL_ARITHMETIC from INTLIB_90
appears®® in Table 2.10. Discounting differences in the machines, this is fa-
vorable to ACRITH-XSC, especially to the design of the standard function
routines, since INTERVAL_ARITHMETIC gives fairly tight bounds, but not the
smallest possible.

A disadvantage of Pascal-SC and ACRITH-XSC is that they are available on
a limited variety of computers.

2.3.3 The “XSC” Languages

The advent of modern programming languages such as Ada, C++ and For-
tran 90 facilitated portability. A second generation of languages, the XSC
languages, modelled on Pascal-SC and ACRITH-XSC, is portable. Developed
under the leadership of Prof. Dr. Kulisch at Karlsruhe University, these lan-
guages all feature a maximally accurate dot product and interval operations

32This table first appeared in [130].
33This data first appeared in [222].

106 CHAPTER 2

that are nearly the best possible, in the sense described on page 104. A good
discussion of these properties appears in [243].

Pascal-XSC [71] is essentially a portable compiler that adheres to the specifica-
tions of Pascal-SC. The compiler itself is written in C. A “numerical toolbox,”
that is, a well-documented package with routines3* for evaluation of polynomi-
als, automatic differentiation, roots of single equations, accurate, verified solu-
tion of linear systems of equations, nonlinear systems of equations and global
optimization, etc. is available [70] in Pascal-XSC. Kramer [139] has written a
set of modules for variable precision floating point and interval arithmetic in
Pascal-XSC. The compiler itself is commercial®®: licenses are for éxecutable
versions for specific machines and C++ compilers.

C-XSC [134] is an extension to the programming language C that consists of
a set of C++ class libraries. In addition to explanation of the language itself,
the book [134] contains short descriptions of programs for important numerical
computations, similar to the computations in the Pascal-XSC toolbox [70]. A
version of C-XSC for the Borland C++ compiler version 4 is available free of
charge via FTP from the University of Karlsruhe®. C-XSC is one of a number
of implementations of interval arithmetic based on C++-; see §2.3.4 below.

Fortran-XSC [238] is still under development. As with INTLIB_90, it will be a
set of Fortran 90 modules. However, emphasis in the design of Fortran-XSC is
on an accurate dot product and on modules for accurate arithmetic, as well as
interval vector and matrix operations. Separate sets of modules are planned for
2 ULP and 1 ULP accuracy, under the assumption that the machine floating
point arithmetic is accurate to within one ULP.

2.3.4 Other Modern Packages

Several other interval packages, besides C-XSC, have appeared in C++, per-
haps since C++ was one of the first widely available languages with user-defined
data types and operator overloading. Jeff Ely [53] has such a variable preci-
sion interval arithmetic package that has been ported to several machines and
vectorized on a Cray YMP. It is not publicly available at the time of writing.

34of varying sophistication and application

35from Numerik Software GmbH, P. O. Box 2232, D76492 Baden-Baden, Germany

36at iamk4515.mathematik.uni-karlsruhe.de in the directory pub/cxsc/borland at the
time of writing

Software Environments 107

Anthony Leclerc has a C++ package [152] that he has ported to several types
of workstations, and has used to solve difficult global optimization problems
in parallel on a distributed network of workstations. It is also not publicly
available at the time of writing.

Kniippel [135] developed a package in C / C++ following a philosophy some-
what similar to that of INTLIB / INTERVAL_ARITHMETIC, and has made it
available via anonymous FTP37. The basic routines are termed BIAS, while the
portion defining the higher-level functions is PROFIL. The package is portable,
except for a single small assembler language routine that is called to change
rounding modes; versions of this routine are available for Sun, IBM PC compat-
ible (80x86-based) and HP workstations. On these machines, a single operation
is sufficient to change rounding modes, for support of true directed rounding.
Following the BLAS paradigm, Kniippel et al. devise efficient libraries for vec-
tor and matrix operations and numerical linear algebra. For example, in an
interval vector addition, all of the sums of the lower end points of the compo-
nents should be rounded down, and the sums of the upper end points all should
be rounded up; thus only two changes of rounding modes are needed. With
this pipelining of interval operations, certain interval matrix computations ap-
proach the theoretical maximum possible speed, taking roughly only twice the
time of corresponding floating point computations. The author has created a
version of INTLIB with a modification of Kniippel’s assembler language rou-
tine for Sun SPARC machines; it resulted in a speed up of roughly 2 over the
portable version of INTLIB, and in slightly tighter interval enclosures.

Jiillig has created a C++ package BIBINS [101] for interval computations that
includes modules for vector and matrix arithmetic. Hyvonen and De Pascale
[88] have created a C++ interval package InC++.

An Ada package GENERIC.SCIENTIFIC_COMPUTATION has been developed col-
laboratively with European Community support [136]; an emphasis in this
package is on an accurate dot product, matrix, and vector operations, while
an interval standard function library appears to be absent. George Corliss also
has an Ada package for interval arithmetic and Taylor arithmetic [40] that is
available from him.

Modula-SC [57], a Modula-2 extension, is a precompiler, written in Modula-2
and translating to Modula-2. Modula-SC provides an accurate dot product, as
well as the operations in higher-order (vector and matrix) spaces of Kulisch et
al. [145, 147].

37at the address ti3sun.ti3.tu-harburg.de at the time of writing

108 CHAPTER 2

2.3.5 Packages for Symbolic Manipulators

Both interval and symbolic computations use computers to obtain mathemat-
ically rigorous statements. Also, since interval computations benefit from a
priori rearrangement and simplification of expressions, and since algorithms
such as interval Newton methods require evaluation of functions and deriva-
tives with different data types, it is natural to consider interval computations
within a symbolic computation environment.

Interval packages are available both within the Mathematica [132] and Maple
[36] systems®®. These packages are useful for various interactive explorations,
and as interval calculators. For example, the following is a portion of a Math-

ematica session®®.

(Input): flx] := x(x-1)

(Input): fplt.] = DL£[t],t]

(Output): -1 +2t
(Input): ix = Intervall0,1]
(Output): Intervall[0,1]
(Input): f[ix]

(Output): Interval[-1, 0]
(Input): fplix]

(Output): Intervall[-1, 1]
(Input): £[1]

(Output): 0

(Input): fpl1]

(Output): 1

(Input): Sin[ix]

(Output): Interval[0, Sin[1]]

These packages may be useful for illustration and teaching of concepts in non-
linear systems and global optimization, such as in [5].

The Maple package [36] contains capabilities consistent with Corliss’ BIAS
proposal?® [37]. An advantage of the Maple package is that the source code is
available.

38 A general reference for Mathematica is [244], while a general reference for Maple is [229].

39with format edited for presentation here

40Corliss’ BIAS proposal has the same name as the Jansson / Kniippel package of [135],
but is something different.

Software Environments 109

In their present state symbolic manipulation packages should be used with
some care, since internal simplifications in the algebraic expressions may result
in interval values that do not correspond to exhibited algebraic expressions.
that is, the packages may rearrange expressions without telling the user, and
such rearrangements give different interval extensions. Furthermore, programs
that include loops, etc. written in these languages execute thousands of times
more slowly than corresponding programs in languages such as Fortran 90.

2.3.6 Capabilities in Spreadsheets

Both spreadsheets and logic programming languages have been used in a tech-
nique termed constraint satisfaction in [89], constraint logic programming in
[232], subdefinite calculations in [12], and substitution-iteration in [112], [222],
and in Chapter 7 below. In a nutshell, such techniques consider equations such
as Tz = z5 not as defining a direction of computation, but a relation; thus, if z,
is known to lie in a certain interval, then it can be used to narrow the possible
range of values for z,, just as interval bounds for z; can narrow the range of
values for ;. This can be used for solving nonlinear systems of equations,
proving infeasibility of inequality constraints, etc.

A spreadsheet enhancement, built upon Microsoft Excel, that supports such
interval constraint propagation has been constructed by Hyvénen et al. [89] as
an add-on function library, based on their C++ package InC++ [88].

A group at the Russian Institute of Artificial Intelligence has developed the
notepad-like program UniCalc [12], in which objective functions, constraints of
various types, etc. are entered into a screen area, and calculation proceeds in
an order similar to that of an interval constraint propagation spreadsheet. A
difference is that, in UniCalc, the expressions are completely parsed into com-
ponent operations, as described with the expanded system on page 39 and in
Chapter 7. The package, with a nice user interface, runs on DOS systems?!,
and is available commercially. An advantage is that the user can stop the cal-
culations in mid-stream and change certain values, for interactive explorations.
The computations in UniCalc are rapid compared to other implementations of
such techniques, but a disadvantage of an early version of UniCalc was lack of
rigor in the arithmetic??.

41and possibly on other systems now
42That is, directed roundings were not used, so that it was possible for a mathematically
incorrect (though approximately correct) result to be given.

110 CHAPTER 2

2.3.7 Logic Programming Languages

Logic programming languages such as Prolog are well suited for constraint
processing [231, 19], as mentioned above. In [30], these techniques are briefly
reviewed, and are used to advantage in a modification of the Moore-Skelboe
algorithm (see §5.1 below) for unconstrained optimization.

Van Hentenryck et al. [232] re-examine the general theory of constraint logic
programming, incorporating their considerations in an implementation of a
general nonlinear system solver, then solving sizable problems arising from
various applications.

The package INTLIB_90 contains ad-hoc Fortran 90 routines for constraint prop-
agation; see Chapter 7. Logic programming languages offer more flexibility, but
basic operations may execute more slowly. Conclusions such as those in [30]
depend on the relative speeds with which certain operations are executed, and
on other aspects of the overail algorithms.

2.3.8 Miscellaneous Packages

Here, two packages with special capabilities, and a lesser-known FORTRAN-77
package are described.

Range Arithmetic and Precision Basic

Aberth [1]has researched range arithmetic for some years. In this variable
precision version of interval arithmetic, intervals are represented with a single
mantissa that contains a variable number of words, combined with a renge.
For example, suppose that a word consisted of two decimal digits. Then the
interval [3.14150, 3.14160] would be represented as:

+[31]a]ss] + [.05]x 107

Operational definitions of this arithmetic, analogous to formulas (1.5)—(1.9) on
page 3, are available for such representations 1, pp. 14-15]. Such arithmetic,
implemented well, can make efficient use of both storage and time in problems
requiring high precision.

Software Environments 111

Aberth developed the language PRECISION BASIC to support range arith-
metic, and presented a complete numerical analysis text*3 [1], accessible to
undergraduates, based on range arithmetic. A diskette with PRECISION BA-
SIC, for IBM PC compatible computers, is distributed with the text.

Aberth and Schaefer also provide C++ modules** for range arithmetic [3].
Using these modules, Aberth has developed an algorithm for numerical com-
putation of the Brouwer degree, as well as an associated algorithm for solving
nonlinear systems of equations [2].

It is the author’s opinion that multiple precision and variable precision arith-
metic, except in certain cases, are more crucial in the verified solution of differ-
ential equations than in solution of nonlinear systems and global optimization.
However, efficient environments that provide variable precision are advanta-
geous for general scientific computation.

An Interval Calculator; An Optimization Input
Format

Arnold Neumaier*® and Friedhelm Heizmann have developed a set of FORTRAN-77
routines?® for interval arithmetic, along with an interactive interpreter INT-
COM that parses expressions and evaluates them with either floating point or
interval arithmetic. The interval arithmetic uses only the machine’s floating
point arithmetic, without outward rounding. The philosophy behind this is the
following view: In global optimization and certain other computations, speed
is useful, and approximate bounds on ranges are useful even if they are not
rigorous*”.

43with chapters on the arithmetic, solvable and singular problems, a single nonlinear equa-
tion, rational arithmetic, zeros of polynomials, numerical linear algebra, numerical differen-
tiation and integration, ordinary differential equations, and a PRECISION BASIC manual

44available via anonymous FTP at math.tamu.edu at the time of writing

45private communication

46The set of FORTRAN-77 routines is called BIAS, Basic Interval Arithmetic Subroutines,
the same as Kniippel’s package [135] and as George Corliss’ general proposal [37].

47The author of the present work experimented some time ago with non-rigorous interval
arithmetic [108]. Misleading results were sometimes obtained, especially when transporting
from one machine to another. These results were harder to trace and interpret than when
rigorous arithmetic was used. The author’s present opinion is that rigorous computations
are usually worth the moderate extra cost. However, it is possible, through introduction
of tolerances, to take into account in global optimization algorithms bounds that are only
approximate.

112 CHAPTER 2

Neumaier has also proposed a format for representing global optimization prob-
lems [176]. This format permits description of underlying structure that interval
methods can use.

Another FORTRAN-77 Package

Krischchuk et al. present a preprocessor [143] for their INFFOR language,
both written in FORTRAN-77 and translating to FORTRAN-77, along with an
associated support library. The system is an outgrowth of an earlier system
that had a preprocessor in PL/I and a support library in assembler language.
This software has supported the authors’ work in modelling manufacturing
processes in radio-electronics. The package has been compiled with Microsoft
Fortran version 5.0.

3

ON PRECONDITIONING

As mentioned in §1.2, it is usually necessary to precondition an interval linear
system to obtain meaningful bounds on the solution set. This is clear for the
interval Gauss-Seidel method, since it reduces to the classical Gauss—Seidel
method when the coefficients of the system of equations are thin, and since the
classical Gauss—Seidel method in general does not converge without precondi-
tioning. However, preconditioning is also necessary and useful for the Krawczyk
method and interval Gaussian elimination. For example, if interval Gaussian
elimination, i.e. Algorithm 1 is applied to the system AX = B of (1.19) on
page 20, the result is

[_2’ 1] | [_2’ 2]
2.4 - 2.4 [[-2,2] - B -2.2]
| [‘21 1] | [_272])

| [-4,4] | [-6,6] /°

which gives only z, € {%} = R and z; € R, whereas, as is seen in Fig-
ure 1.1, the smallest possibfe interval enclosure of the solution set is (4, B) =
([—4,4],[~4,4])T. Similarly, applying the interval Gauss—Seidel method results
in &, + {—2’21‘[f2f;11[‘1°’1°1 =[-11,11] D [-10,10], and

To [_2’2Hf21’2][_10’10] = [-11,11] D [-10,10]. Finally, the Krawczyk

)

method only makes sense in the context of preconditioners.

In contrast, if the system is preconditioned by the inverse midpoint matrix as
in exercises 1, 2 and 3 of §1.2.3, the resulting augmented system and interval

114 CHAPTER 3

Gaussian elimination process, rounded out to four digits, becomes

0.3243 0.0541 [2,4]]|[-2,1] | [-2,2]
—0.0541 0.3243) ([-1,2] [2,4 [[-2.2])

_{ [0.5945,1.4055) | [-0.5406,0.5406] | [—0.7568,0.7568]
~ \ [-0.5406,0.5406] | [0.5945,1.4055] | [—0.5406,0.5406])
[0.5945, 1.4055] | [—0.5406, 0.5406] | [-0.7568, 0.7568)

"(0 | [0.1031,1.8969] | [—1.1659,1.1659])

giving the large but finite solution vector
X = ([-11.5430,11.5430], [-11.5430, 11.5430])T.

For this problem, the interval Gauss—Seidel method does not reduce the coor-
dinate widths with initial guess ([—10,10],[~10,10]), when the above precon-
ditioner is used.

As a second example, take the system
[1.8,2.2] [3.9,4.1] z1 \ _ [[6.1,6.9] (3.1)
(3.8,4.2) [4.9,5.1] z2)~ \ [7.8,10.2]) /° ’

Interval Gaussian elimination with no preconditioner gives
X = ([-8.7201,5.7695], [-0.8501, 5.0723])T,

whereas interval Gaussian elimination with the inverse midpoint preconditioner
gives

X = ([-1.4679,4.3251],[-0.8501, 3.1833))T.
With initial guess vector X = ([-12,12],[-12,12])T and no preconditioner,
the interval Gauss-Seidel method gives

X = ([-12,12],[-12,8.6939])7,

while the interval Gauss—Seidel method with the inverse midpoint precondi-
tioner gives
X = ([-6.2143,3.3572], [-3.6032, 1.3810]) .

Thus, despite the fact that the actual solution set of the preconditioned system
may be larger than the solution set of the original system, preconditioning is
effective and necessary.

The inverse midpoint preconditioner, described in §3.1, is most commonly seen
in the literature and in practice. Under various conditions, particularly when
the widths of some, but not all, of the coefficients of the system are large and
when the system arises from an interval Newton method, alternate precondi-
tioners are useful. Classification, implementation, and advice concerning these
optimal preconditioners appears in §3.2.

On Preconditioning 115

3.1 THE INVERSE MIDPOINT
PRECONDITIONER

Let AX = B be an n by n interval linear system as in §1.2. The inverse
midpoint preconditioner is denoted by

Y™id = m(A)7".

In many cases, the linear system will have the structure of systems arising from
interval Newton methods, as in §1.5.

3.1.1 Shortcuts with the Arithmetic

Much of the computation related to preconditioning and bounding the solution
sets of the preconditioned systems can be simplified! when the preconditioner
is Y™id 1In particular, a large portion of these computations can be done in
floating point arithmetic without the need to change rounding modes, provided
a “round down” or a “round up” mode is available?. These shortcuts depend
upon properties of symmetric intervals.

Definition 3.1 An interval s € IR is said to be symmetric about 0, or simply
symmetric, provided 8 = [—s,s] for some s > 0. A vector or matriz will be
called symmetric about 0 provided each of its components or coefficients is
symmelric.

The following is not hard to prove. (See Exercise 2.)

Lemma 3.1 Suppose 8, € IR and 8 € IR are symmetric, and let z,y € R
and interval £ € IR be arbitrary. Then

81 + 82 is symmetric;
ST is symmetric;

s /x is symmetric.

(In the division, s;/x = R in Kahan—Novoa—Ratz arithmetic when 0 € x.)

1This has been observed by Rump in [208], etc.
2Such modes are available in IEEE standard arithmetic.

116 CHAPTER 3

Now write
A=m(A)+ A, (3.2)

so that A = [~A, A] is symmetric about 0. Taking Lemma 3.1 and properties
of interval arithmetic into account, it follows that

y™midg = Yy™d(m(A)+ A) =T+ S, (3.3)

where I € R™™" is the identity matrix and S is symmetric about 0. (See
Exercise 3.) Furthermore,

S =Y™MdA = [-|Y™d|A, [y™id]|A]. (3.4)

Thus, computation of Y™9 A can be done by taking the absolute value of the
components of Y, then computing |Y|A with floating point arithmetic and the
rounding mode set to “round up.” This is considerably faster than computing
Y™id A in most current implementations of interval arithmetic.

A Caution and Disclaimer

The arithmetic shortcuts presented here are practical only under
special circumstances: Formulas (3.3) and (3.4) are valid only if an ezact
value of Y™ ig used; otherwise, § may not be exactly symmetric, and terms
corresponding to roundoff error must be added for rigorous existence, non-
existence or uniqueness verification, and for obtaining rigorous bounds on the
solutions. In particular, suppose Y = A1, Then

YA = A'(A+(m(4) - A4)+ A)
= I+A Y (m(A)-A)+8S,

so Y A should first be expanded so that it is symmetric about the identity
matrix. If such computations take less effort than the effort saved by assuming
symmetry®, then the formulas presented here can be used.

Shortcuts with the Krawczyk Operator

In addition to choosing Y = Ymidv, the base point will be chosen to be X =
m(X), so that X — X =[-|X — X|,|X — X|] is symmetric about 0. Written

30ne example of a method to take account of the errors in Y™Mid appears in [76, §7, p.
1501].

On Preconditioning 117

in terms of an interval Newton method, the Krawczyk method then becomes
K(X,X) = X-Y™FX)+(I-YAX)(X -X)
= X-Y™HFX)+Y™A[-|X - X|,|X - X|] (3.5)

X - Y‘"‘dF(X)+|Y‘"‘d|Aw(X)[1,1]

Thus, K(X, X) may be computed mainly with floating point operations, using
upward rounding to compute |Y™4|Aw(X)/2. It should be noted, however,
that, for systems arising from interval Newton methods, roundoff error in com-
puting F(X) should be taken into account for rigor. The easiest way to do this
is to evaluate F(X) using interval arithmetic and to use interval arithmetic to
compute Y™d F(X).

These ideas are expounded in Rump [208].

Shortcuts with the Interval Gauss—Seidel Method

The interval Gauss—Seidel method is given by Equation (1.44) on page 59. The
shortcuts are similar to those in the Krawczyk method. Again, the base point
will be chosen as X = m(X). As in Equation (1.44), the symbol Y4 A4, will
denote the dot product of the i-th row of Y™¢ with the j-th column of A and
let A; denote the j-th column of A. Also set Y™4A =S = {s;;}7;_,. Then
the sums in the numerator of Equation (1.44) become

Zz : ledAJ (mJ - ;) + Z] R S A ;(x; ~ &5)
= Z 1 80,5(&5 — &)+ 27 jiv1 Sii (T — &5)
w(Z; mi
= St A YAy 0y s iy YE 1, 1)
(3.6)
Similarly, the denominator in Equation (1.44) becomes

1+ |ymid|A,[-1,1].

Thus, except for the interval division, the interval Gauss-Seidel step can be
computed with only upwardly-rounded floating point arithmetic. Furthermore,
when

i—1 ~ n
Ymidp(X)| < ymid A,W(f”:) + ymid A,W(‘BJ)’
3 1 J 2 i J 2
j=1 J=i+1

such as when the box X is centered on an approximate root, then the numerator
in Equation (1.44) contains zero, and the interval division can be carried out

118 CHAPTER 3

with a downwardly rounded and an upwardly rounded floating point division,
with the formulas

) . . w Ii!j n mi g_ il
Ymdp(X) — {IY,"“‘dIAj(T) LD | S ViV)}
£, = 1— [Ymd[A, ’
jyryrp—— mi w(Z; n mi j
_ YPIRX) + {|Y,- A ¥B) L 5n L (v, @ }
z;, = 1 - |Y,~mid|Ai ’

Shortcuts with Interval Gaussian Elimination

Arithmetic associated with interval Gaussian elimination is similar. In partic-
ular, in Algorithm 1 on page 21, Y™4A = M = I + S, and step 1b becomes:

Mk Mk~ (M /M) mig

1

& 8k & 8k — (8]’,,’)/(1 + Si,;’)'si,k- (3.7)

Thus, all off-diagonal entries in the elimination process are symmetric intervals,
and Equation (3.7) can be implemented with upwardly or downwardly rounded
floating point arithmetic; if 8; 5 = [—s; k, 5;,&], then Equation (3.7) becomes

ik + 856+ (85,6)/ (1 — 8i3) 8ik, (3.8)

where the results of all operations except the subtraction should be rounded
upward, and the subtraction should be rounded downward. A corresponding
simplification is, in general, not possible for the operations on the right-hand-
side vector, although the summation in the back-substitution phase can be
simplified somewhat (Exercise 4).

3.1.2 Optimality Properties

First introduced by Hansen [72] for interval Gaussian elimination* the inverse
midpoint preconditioner has often been assumed in the literature to be the
best overall choice of preconditioner. For example, Neumaier [175, p. 116]
develops a theory based on the inverse midpoint preconditioner. Neumaier

4and also explained in [77, pp. 29-31]

On Preconditioning 119

defines an interval matrix A to be strongly regular provided Y™ A is regular.
He then gives various consequences of strong regularity and various conditions
that imply strong regularity.

Besides the resulting symmetry and simplifications described in §3.1, certain
optimality properties have been proven for the inverse midpoint preconditioner
for the Krawczyk method, as defined in Equation (1.42) on page 56. We have

Theorem 3.2 (Chen and Wang [31]) Let K(X,X) be as in Equation (1.42)
on page 56. Then

1. K(X,X) C X only if the spectral radius p(|(I —= Y F'(X))|) is less than 1.
2. Y = Y™ minimizes p(|(I - YF'(X))|).

Thus, Y™ is optimal for the Krawczyk method. However, for a given Y, the
interval Gauss—Seidel method gives a narrower box than the Krawczyk method,
so this optimality result should be interpreted carefully.

In interval Newton methods, if F'(X) is an interval extension of the Jacobi
matrix whose components are of order at least 1, then, as the width w(X) —
0, Y™4F'(X) = I, where I is the identity matrix. This is advantageous
for the Krawczyk and Gauss—Seidel methods, as well as for interval Gaussian
elimination.

In practice, the inverse midpoint preconditioner is an excellent choice in e-

inflation procedures®, in which a small box is centered at a good approximation
to a root. However, alternate preconditioners are better in some circumstances.

3.1.3 Exercises

1. Perform the computations below Equation (3.1) to check their correctness.
Show all details.

2. Prove Lemma 3.1 by explicitly writing down the results of the operations.

5See §4.2 on page 150 below.

120 CHAPTER 3

3. Prove Equation (3.3).

Hint: Write down a typical coefficient of the product matriz Y™ (m(A) +
A) and rearrange the terms using the fact that z(y+2) = zy+zz forz € R
and y,z € IR; prove this fact by simply writing down the components.
Then use Lemma 3.1.

4. Using notation and techniques of §3.1.1, simplify step 2b of Algorithm 1
on page 22. (That is, rewrite the step so that most interval operations
are replaced by floating point operations with the appropriate directed
rounding.)

3.2 OPTIMAL LINEAR PROGRAMMING
PRECONDITIONERS

In cases in which F'(X) or S(F, X, X) has some rows with much wider entries
than others, preconditioners other than the inverse midpoint preconditioner
can be more effective in interval Newton methods.

Example 3.1 (Brown’s almost linear function)

filX) = z+| > zj-n-1|, 1<i<n-1, and
1<j<n
) = | I =-1],

with n = 5. This function has ezactly three roots in the box
([-10%,10%],[~10%,10%], [-10%,10%],[-10%, 10%], [-103, 10°))T.

These roots are contained in the boxes

XM = ([0.999,1.01],[0.999, 1.01], [0.999, 1.01], [0.999, 1.01], [0.999, 1.01]) T
Xx® = ([0.916,0.917],[0.916, 0.917], [0.916, 0.917], [0.916, 0.917], [1.41,1.42]) T
X® = ([-0.580,-0.579], [0.580, —0.579], [0.580, —0.579],

[—0.580, —0.579], [8.89,8.90]) "

On Preconditioning 121

Suppose that an initial box
X = ([-2.0,2.1],[-2.1,2.2],[-1.9,2.0],[-2.0,1.9],[-2.0,2.05)T (3.9)

is given, and the goal is to apply an interval Newton method to either reduce
the size of the box or eliminate the box. An interval Jacobi matrix of Brown’s
function over this box is

2 1 1 1 1
1 2 1 1 1
F'(X) = 1 1 2 1 1
1 1 1 2 1

[~18.1,17.7] [-17.3,16.9] [-19.0,18.5] [-18.5,19.0] [-18.5,17.7]

(3.10)
Since F'(X) contains a singular matrix, interval Gaussian elimination cannot
be used, but the interval Gauss—Seidel method can possibly reduce the size of
some of the coordinates of the box (3.9). The inverse midpoint preconditioner
corresponding to the matrix (3.10) is approximately®

0.8802 —0.1257 —0.1132 —0.3898 0.5988

. —0.1198 0.8743 —0.1132 —0.3898 0.5988
ymid -0.1198 —0.1257 0.8868 —0.3898 0.5988
—0.1198 -0.1257 —0.1132 0.6102 0.5988

—0.4012 —0.3713 —0.4341 0.9491 —-2.9940

With this preconditioner, the interval Gauss—Seidel method as in Equation (1.44)
does not make any progress, i.e. & 2 x; for i = 1,...,5. However, with the
preconditioner

08 —-02 -02 =02 0.0
-02 08 -02 -02 0.0

Y = -0.2 -02 08 -02 00], (3.11)
-0.2 —-02 -02 08 00
1.0 00 00 00 00

Algorithm 2 gives

Finz C [0.789,1.601] C [-2.0,21] = =,
ZaNay C [0.789,1.601] C [-21,2.2] =
FsNaxy C [0.780,1.601] C [-19,2.0] = 3,
ZsNas C [0.789,1.601] C [-20,19] = x4,
Tz Nxs = Ts.

Thus, with this preconditioner, the interval Gauss—Seidel method reduces the
volume of the box in which all roots in X must lie from approximately 1086

SPrecise enclosures of preconditioners are usually not necessary, except, as mentioned
above on page 116, when implementing shortcuts in the arithmetic.

122 CHAPTER 3

to 1.76, a factor of approximately 616. This is very efficient compared to
generalized bisection”.

For a second example, suppose
X = ([0.5,0.95],[0.5,0.95], [0.5,0.95], [0.5,0.95], [0.5, 0.95))7, (3.12)

so that there are no roots of F' in X. The fifth row of an interval Jacobi matrix
over this box is

([0.0624,0.815], [0.0624,0.815], [0.0624,0.815], [0.0624,0.815],

1
F'5.)(X)C [0.0624,0.815]),

(3.13)
The inverse midpoint preconditioner for this function is approximately
1 0 0 0 —2.280
. 0 1 0 0 -—2280
y™id x 0 0 1 0 -2280
0 0 0 1 -2.280
-1 -1 -1 -1 1140

The factorization in interval Gaussian elimination fails in the second column
with this preconditioner, and the interval Gauss-Seidel method does not make
any progress, either. With the preconditioner (3.11), interval Gaussian elimi-
nation fails in the last column, but &, Nz; = # with the interval Gauss—Seidel
method?.

As a third example, take an initial box
X = ([0.96,1.04],[0.96,1.04], [0.96, 1.04], [0.96, 1.04], [0.96, 1.04])T (3.14)

for Example 3.1, so that there is a unique root at the center of X. In the
methods, choose the slope matrix S(F, X, X) with X = (0,0,0,0,0)7, whose
first four rows are as in (3.10) and whose fifth row is contained in

(1,1],[0.9599, 1.041], [0.9215, 1.083), [0.8846, 1.126), [0.8492, 1.171)).

The inverse midpoint preconditioner is approximately

0.9908 —0.0092 —0.0077 —0.0046 —0.9600
,d —0.0092 0.9908 —0.0077 —0.0046 —0.9600
Y™ ~ —0.0092 —0.0092 09923 —0.0046 —0.9600
—0.0092 —0.0092 —0.0077 09954 —0.9600

—0.9539 —0.9539 —0.9616 —0.9769 4.8000

7See §4.3.2 below.

8 Actually, in this case, a second-order interval extension based on this F {X) would reveal
0 cannot be in the range F*(X), but this is not always the case when preconditioners other
than the inverse midpoint preconditioner give better results.

On Preconditioning 123

With this preconditioner, interval Gaussian elimination fails in the fifth column,
while the interval Gauss—Seidel method gives

1Nz C [0984, 1014] C [096, 104] = i,
&Nz C [0.985,1.015] C [0.96,1.04] = o,
EZzNxz C [0.987,1.013] C [0.96,1.04] = 3,
Z4Nzy C [0.991,1.009] C [0.96,1.04] = x4,
E5 Ny = Ts.

Thus, the interval-Newton-based existence test fails’. However, if a precondi-
tioner that is approximately

0.8 -0.2 -0.2 —0.2 0.0
-0.2 0.8 -0.2 ~0.2 0.0

Y = —-0.2 -0.2 0.8 —0.2 0.0 (3.15)
—0.01042 —0.01042 -0.00868 1.125 —1.085
—4.134 —4.134 —4.168 —4.234 20.80

is used, the interval Gauss—Seidel method gives

F1Nx C [0.991,1.009] C [0.96,1.04] = =,
&Nz C [0.991,1.009] C [0.96,1.04] = ;,
BsNas C [0.991,1.009] C [0.96,1.04] = s,
E4NTy C [0.992,1.008] C [0.96,1.04] = 4,

& Nx; C [0.96005,1.03995] C [0.96,1.04] = 5.

Thus, existence of a solution of Brown’s nonlinear system F(X) = 0 within X
cannot be proven with the inverse midpoint preconditioner, but can be proven
with the preconditioner!® (3.15).

The special preconditioners Y in (3.11), the second example, and in (3.15) are
examples of width-optimal preconditioners, to be discussed in the next section.

3.2.1 General Properties and Classification of
Optimal Preconditioners

The techniques here were introduced in [111]. Additional considerations were
outlined in [126], and Manuel Novoa did much unpublished work on the sub-

9An existence test based on the Krawczyk method would also fail for this slope matrix,
since K(X, X) D GS(X) for a given preconditioner; see p. 24.

10The difference between the power of such preconditioners and the power of the inverse-
midpoint preconditioner to prove existence or uniqueness with iteration matrix A is related
to the distance between a strongly regular matrix and the nearest singular matrix. This
distance is in turn related to the spectral radius of m(A)~1(A — m(A)). Work of Rump has
clarified this; see [209, Proposition 7.3 and Conjecture 7.5].

124 CHAPTER 3

ject, some of which appears here. The works [85] and [222] contain additional
ideas and explanation, while some experimental comparisons in the optimiza-
tion context appear in [194].

Optimal LP preconditioners are based upon heuristics applied to optimize some
aspect of &; in Formula 1.44 at each step!! of the interval Gauss—Seidel method.
Depending on the optimization criterion, different preconditioners are obtained.
In turn, the heuristics enable such preconditioners to be computed as solutions
to linear programming problems.

Formula 1.44 is restated here for convenience:

i—1
T;=T; — {Y,F(X) + ZY;A](EJ - Ii'j)
=1
+ Y Yidj(=; —”lj)}/(YiAi)
J=it1

Following [111], we rewrite the numerator as n;(Y;) and the denominator as
d;(Y;), i.e.:

L (YY)

E, = I a.(Y,)

(%), m(¥e)]
[d:(Y3), di(Y3)]

Optimization criteria depend upon whether it is desired or possible that 0 €
Y;A; = d;(Y3).

(3.16)

Definition 3.2 A preconditioning row Y; is a C-preconditioner if and only if
0 ¢ d;(Y;). Furthermore, Y; is a normal C-preconditioner provided d,(Y;) = 1.

Definition 3.3 (Novoa, unpublished) A preconditioning row Y; is an E-pre-
conditioner'? if and only if 0 € d;(Y;) and O & n;(Y;). Furthermore, Y; is a
normal E-preconditioner if and only if n,(Y;) = 1.

A C-preconditioner is meant to contract x;, while an E-preconditioner is meant
to split x; with Kahan—~Novoa-Ratz arithmetic; see Figures 3.1 and 3.2.

U For this reason, such preconditioners are sometimes termed rowwise preconditioners.
12The original definition, discussed in [126] and [85], was an “S-preconditioner,” defined as
an “E-” or “extended” preconditioner, but without the condition 0 ¢ n;(Y;).

On Preconditioning 125

4/5:" " w\
- -
53,' T; \ T, —
£ Z;
|
T { T 1 I T
L T;
Figure 3.1 Action of a C-precon- Figure 3.2 Action of an E-pre-
ditioner conditioner

All useful preconditioning rows are either C- or E-preconditioners. Any other
preconditioner would necessarily have 0 € n;(Y;) and 0 € d;(Y;), so that &; =
R.

In general, it is not easy to determine whether an E-preconditioner exists.
However, we have

Lemma 3.3 (Hu, [85]) There exists a C-preconditioner Y; if and only if at
least one element of the i-th column of A does not contain 0.

Optimality Criteria for C-preconditioners

We define the following optimality criteria.
Definition 3.4 Let Y; be a C-preconditioner.

1. Y; is width-optimal, or a CW-preconditioner, provided it minimizes the
width of &; over all C-preconditioners.

2. Y; is left-optimal, or a CV-preconditioner, provided it mazimizes the left
endpoint of &; over all C-preconditioners.

8. Y; is right-optimal, or a CR-preconditioner, provided it minimizes the right
endpoint of &; over all C-preconditioners.

4. A C-preconditioner Y; is magnitude-optimal, or a CM-preconditioner, pro-
vided it minimizes the magnitude of &; — &; over all C-preconditioners.

126 CHAPTER 3

T4

Figure 3.3 Appropriate situation for a left-optimal preconditioner

We now define several specific types of C-preconditioners and E-preconditioners.

Most practical experience has been with width-optimal preconditioners. This
preconditioner tends to minimize the volume of the image under the interval
Gauss—Seidel method. Ideally, w(&; N ;) would be minimized, but it is easier
to optimize w(&;).

Although there has been less practical experience to date, left-optimal and
right-optimal preconditioners can be useful to prove that boxes X do not con-
tain roots. Such preconditioners can be effective if A = S(F, X, X) where X
is small, if there is an X* € X with F(X*) = 0, and if X N X = 0. See
Figure 3.3.

It has also been proposed to use the left-optimal and right-optimal precondi-
tioners together to make & as narrow as possible. However, this requires double
the amount of work of a single width-optimal preconditioner, and preliminary
experiments have hinted that this is not advantageous.

The magnitude-optimal preconditioner would be appropriate in existence and
uniqueness, since it maximizes the likelihood that #; C x; when %; is the
midpoint of x;; see Figure 3.4.

Optimality Criteria for E-preconditioners

There is a sort of duality between C-preconditioners and E-preconditioners, and
each optimality criterion for a C-preconditioner corresponds to an optimality
criterion for an E-preconditioner. For example, minimizing the width w(&;)
for a C-preconditioner corresponds to maximizing the width w(z; \ &;) for an

On Preconditioning 127

Z;

Figure 3.4 Action of a magnitude-optimal C-preconditioner: max{a,b} is
minimized.

E-preconditioner. (See Figures 3.1 and 3.2.) The interval z; \ &; will be called
the ¢-th gap or the i-th solution complement.

Definition 3.5 Let Y; be an E-preconditioner. Then:

1. Y; is width-optimal, or an EY-preconditioner, provided it mazimizes the
width of x; \ &; over all E-preconditioners.

2. Y; is mignitude-optimal, or an EM-preconditioner, provided it mazimizes
the mignitude of (&; — %;) over all E-preconditioners.

8. Y; is left-optimal, or an El-preconditioner, provided it minimizes the right
endpoint of the left component of &; over all E-preconditioners.

4. Y; is right-optimal, or an ER-preconditioner, provided it mazimizes the
left endpoint of the right component of &; over all E-preconditioners.

At the time of writing, there has been limited practical experience in the use of
E-preconditioners. Since &; N x; consists of two intervals when Kahan—Novoa-
Ratz arithmetic is used, E-preconditioners generally produce two sub-boxes.
Since, other things being equal, proliferation of subboxes reduces the overall
efficiency of global search algorithms for roots or optima, E-preconditioners are
effective only in the appropriate context, embedded in appropriate algorithms
with good heuristics. Choice of when to apply a “split” was discussed in [78],
and then in [77, §8.8], where a heuristic for when to split the box is given.
Experimental results involving splitting were also reported in [85], [194], and

128 CHAPTER 3

/ Ti \
-— Z; e
a | b
|]
I
oz —

Figure 3.5 Action of a mignitude-optimal E-preconditioner: min{a,b} is
maximized.

in a polished form in [196]. However, none of these experiments used optimal
E-preconditioners.

The mignitude-optimal E-preconditioner plays a dual role to the magnitude-
optimal C-preconditioner. Whereas the magnitude-optimal C-preconditioner
maximizes the likelihood that existence or uniqueness will be verified, (see
page 126), the mignitude-optimal E-preconditioner, in a sense, maximizes the
likelihood that &;Na; = @, i.e. that non-existence within X can be verified. (See
Figure 3.5.) Further experimentation with such preconditioners will probably
be rewarding.

3.2.2 Linear Programming Formulations

Each of the preconditioners in definitions 3.4 and 3.5 can be formulated as a
nonlinear optimization problem. For example, a normal C%-preconditioner Y;
is a solution to the nonlinear optimization problem

. n;(Y;)
4,(%)=1 w(d,-(x-))' (3.17)

Computation of such preconditioners is practical because the problems such as
Problem 3.17 can be reformulated as linear programming problems.

The formulation technique involves rewriting each of the components of Y; as
a difference of positive and negative parts, using certain properties of interval
arithmetic, such as those of Lemma 3.1, and using standard techniques (such
as in [60, §4.2.3] to transform terms involving max{-, -}, min{-, -}, and | - | into
linear terms and constraints. A theoretical issue is what correspondence exists
between such linear programming formulations and the original optimization

On Preconditioning 129

problem such as Problem 3.17. A practical issue is how to implement the solu-
tion process for the linear programming problem: there is substantial structure,
and specially-designed codes are several times faster than off-the-shelf solvers.

In unpublished work, Manuel Novoa proposed a general framework for showing,
essentially, a one-to-one correspondence between solutions of the original non-
linear optimization problems and equivalence classes of solutions of the linear
programming problems, for each of the preconditioners in definitions 3.4 and 3.5
except for the width-optimal E-preconditioner. In such preconditioners, special
simplifications are possible if £; = z;, £; = T; or Z; = m(x;). Novoa’s general
unifying formulation took account of all such possibilities. However, this gen-
erality required introduction of notation that made the exposition somewhat
harder to interpret and use. For readability, only £; = m(x;) and the cW.
preconditioner, CM-preconditioner, and EM-preconditioner will be considered
in depth here, although other choices of #; and other optimal preconditioners
may be useful in algorithms. Also, for readability of the formulas in the context
of primary interest here, the preconditioners will be formulated in terms of the
interval Newton system 1.43: A(X — X) = —F(X), rather than the general
linear system AX = B, as in Novoa’s work. The reader can use the techniques
illustrated here to derive additional preconditioners, as appropriate.

One generality will be represented in the formulas presented here: The pre-
conditioned Gauss—Seidel method can be applied for F' : R* — R™, where
m # n. Consideration of such systems could be advantageous in constraint
propagation methods, in handling constrained optimization problems, or in
taking advantage of different interval extensions arising from rearranging alge-
braic expressions.

Characterizations of the Gauss—Seidel Ezrpressions

Some additional elementary properties of interval arithmetic are useful here:

Lemma 3.4 Suppose y,z € R, suppose x,a € IR, and denote the positive and
negative parts of y by y* = max{y,0} and y— = max{—y,0}. Then

1. ya=[ay* —ay~,ay* —ay~] = ym(a) + 3lylw(a)[-1,1].
2. If0 € z, then ax = [— max {@*|z|,a~|7|} ,max {a*|z|,a"|z|} |

3. If m(x) = 0, then ax = }|a|lw(z)[-1,1].

130 CHAPTER 3

4. |z| = max {—z,F}.
5. Ifx >0, then az = [a¥|z| ~ ¢~ |Z|,a"|7| — 3 |z]].
6. If z <0, then az = [a~|Z| - a*|z|,a"|z| — a*|Z]]-

7. max{y,z} =y+(z-Yt =y+(@y-2)" =2+ @y-2)r =2+ (z2-y)".

Now consider the numerator and denominator in the Gauss—Seidel iteration
Formula 1.44, namely:

i—1
n;(Y;) = YF(X) + ZYAJ(“’J - ;) + Z YAj(z; — ;)
J=1 J=it+l
and m
di(Yi) =) yeai,s.
k=1
This numerator and denominator have the following characterization.

Lemma 3.5 Suppose F' = (fi,...,fn) : R* > R™, Y; = (y1,.--Ym), and
suppose £; = m(x;) for 1 < j < n. Then the numerator in the Gauss—Seidel
iteration Formula 1.44 is

m
n¥) = 3 wm(f0) + 3 3 v (A (D) 1,1
A m
2Zw(z,) Zykak, -1,1), (3.18)
o e
while the denominator is
m 1 m
d,(Y,) = Z m(ak , 5 Z |yk|w(ak,,')[—1, 1]. (3.19)
k=1 k=1

Lemma 3.5 follows directly from Lemma 3.4.

To represent n,(Y;), 7;(Y;), and w(n;(Y;)) in the linear programming problems,
variables:

m m
=Y war;+ Y war;, 1<j<n, j#i (3:20)
k=1 k=1

On Preconditioning 131

are used. To see how these v; fit into Formula (3.18), observe first that Equa-
tion (1) of Lemma 3.4 implies:

m

> uiar; =

k=1

m
Z Yrlg,; =
k=1

(&, —vpar;) and

(¥ e ; — vi Br.5)- (3.21)

s I

x
1
-

Formula (4) of Lemma 3.4 then implies

m m m
3™ yean| = max {— T e y;gk,,-)} 6
k=1

k=1 k=1

Also, directly adding the two right-hand-sides in Equation (3.21) gives

m m
Z YeOQk,j — {_Z ykak.j}
k=1 k=1

Uj

m

m
= > (ks —vrow;) + Y WiFer; — Vi)
k=1 k=1
m
=) i —vi Ve +) (3.23)

x
1

1

Identifying y in Equation (7) of Lemma 3.4 with —) ;- | yxas,; and identifying

z in Equation (7) of Lemma 3.4 with };. | yxax,j, equations (3.22) and (3.23)
combined with the first part of Equation (7) of Lemma 3.4 give

m
Z Yrg,j
k=1

Similarly, the last part of Equation (7) of Lemma 3.4 gives

m
Z Yrar,j
k=1

m
= {Z (- yz-gk,j + y;','ﬁk,j)} +v;-*. (3.24)

k=1

= {Z (v an; - yk'gk,,-)} +v; . (3.25)

k=1

132 CHAPTER 3

For flexibility (and to tune the linear programming problems for numerical
stability in their solution), equations (3.24) and (3.25) can be added to obtain

m m
> uar;| = 5{2(—y;*@k,j+yﬁk,j) +"’f}
k=1

k=1

+(1-4) {Z (vFBrs — vi ax,;) +v,~‘} y o (3.26)

k=1

where, for various reasons, d € [0,1].

Similarly, the denominator d;(Y;) in the Gauss—Seidel iteration Formula (1.44)
can be represented as

d;(Y3)

m
E YeQr,i
k=1

= [Z (U8 @i — Vg Br.i)s Z (vdar: - y;gk,i)] , (3.27)

k=1 k=1
and

|di(Y3)| = 5{"!? - > (vias -yﬁk,z’)}

k=1

+(1-9) {v: +) (vian: - y;gk,,.)} . (3.28)
k=1

In the linear programming problems, y;c", Uk s v;." and v; will be viewed as
2(m 4+ n — 1) domain variables, subject to non-negativity constraints. The

definition of v; and Equation (3.23) thus lead to the equality constraints

m
vf v = W -y ek +Tk;) =0, 1<j<n, j#i (3.29)
k=1

Lemma 3.5 will be used with (3.26), (3.28), and (3.27) to construct the objective
function and constraints corresponding to normalization conditions.

On Preconditioning 133

The Width-Optimal Contraction Preconditioner

Recall that the width-optimal CW-preconditioner is the solution to (3.17),

namely
min w n,(Y:) .
g, (v)=1 \d;(¥)

First observe

Lemma 3.6 Assume'® 0 € n;(Y;) and d,(Y:) = 1 (valid if |F(X)|| is small).
Then
n;(Y;)/di(Y;) = ny(Y7).

On the other hand, Lemma 3.5 gives

. (3.30)

w(ng(Y:) =) luelw(£(X)) + 3 wiz;)
k=1 =1

i

m
E YiQk,;
k=1

Combining (3.30) with (3.26) gives the objective function

Ocw = Y (W +yp)w(fe(X))
k=1

n m

+ 0 8Y w(=y) {v;‘ +) (viaw, - yigk,j)}

7 =
m

; (

k
+ Z yl-ci-ak,j - y;gk,j)} . (3.31)
k

=1

+(1-~4) Xn:w(a:j) {vj

i

The constraint corresponding to the normalization condition d;(Y;) = 1 of the
optimization problem (3.17) makes use of (3.27):

m
Z (v ak,; ~ yx @k,i) = 1. (3.32)
k=1

131f 0 ¢ n;(Y;), then any preconditioner will result in w(z; N z;) < .5w(z;); see [111].

134 CHAPTER 3

Definition 3.6 Any solution of the linear programming problem with the 2(m+
n — 1) variables

+ + - -t + o+ + - - - -
P TR | VA AL AN | A P | L) R | P PE U SN

with the objective function Ogw in (3.81), and with the n constraints (3.29)
and (3.32), and subject to non-negativity constraints on all of the variables, is
called a CV-LP-preconditioner for the i-th variable.

There is a slight abuse of notation in Definition 3.6, since y{, y;, v;', and v;
are not necessarily the positive and negative parts of numbers. In fact, if the
CY-LP preconditioner is denoted

' ' "o ' ' ' " " "
(yla-'->ym’y1a"',ym’vl,"'avi—l’vi+1a'--’Umvl --~7Ui—1,vi+1a--'avn)a

then an actual preconditioner is formed by taking
Ve =Ur—yk, 1<k<m. (3.33)
Conditions under which this preconditioner solves the optimization problem

(3.17) are discussed briefly in §3.2.3, and are verified in [180].

The Magnitude-Optimal Contraction Preconditioner

The CM-preconditioner is the solution to the nonlinear optimization problem

n;(Y;)
d;(Y:)

, (3.34)

4,1
where n;(Y;)/d;(Y;) = n;(Y;) if 4,(Y:) = 1 and* 0 € n;(Y;). Three variables
M=|n(Y)l, 5 s (3.35)
will now be introduced. Then
M = max{-n;(¥:),mi(¥3)},

> —n,;(Y;), M > m,(Y;). Thinking of 5 and s as slack variables, we obtain
= —n,;(Y;) +s, M = 7;(Y;) + 5. This and Equation (4) of Lemma 3.4 will

14This assumption is valid in cases in which the magnitude-optimal preconditioner is most
likely to be effective, namely, when X = m(X) and F(X) x 0.

On Preconditioning 135

now be used for mequallty constraints to characterize M. First, (3.18) along
with the definition of yi and y; and (3.26) imply

n;(Y;) = Z(yk -y)m(fi(X)) ——Z(yk +y7)w(fi(X))
-3 Zw(wa {ij Yok — vl ;) +vj+}
e k=1
ZW(% {kZi Y Tr,j — Yy ;) +vj_}. (3.36)
Similarly, i

mY) = S - vo)m(f(X) %Z Wi +ve)w (£(0))
k=1 k=1

+= Zw(wg {Z Ye Tk.j — Ui G ;) +"’;'r}
J#'

k=1

+—— Zw(:z:J {Z yiae; - y;gk,j) + v]_} . (3.37)
k=1
J#*

The objective function for the magnitude-optimal preconditioner is thus
Ocm = M. (3.38)

Equation (4) of Lemma 3.4 and the definitions of M, 5, and s, along with the
assumption that 0 € n;(Y;) and the fact

la| = ma.x{g_,a_"},

are now used to formulate the constraints

- M - n,(Y3)
- M +7(Y5)

=

(3.39)

s
5

o
e

These formulas lead to

136 CHAPTER 3

Definition 3.7 Any solution of the linear programming problem with the 2(m+
n — 1) + 3 variables

+ — — AR - -
(yl,...,ym,yl P T IR | TR 1. sV Uiy Un s

M,3,s)

with the objective function Om in (8.38), and with the n+2 constraints (8.29),
(3.82) and (3.39) (with n;(Y:) end 7;(Y;) represented by (3.36) and (3.37),
respectively), and subject to non-negativity constraints on all of the variables,
is called a CM-LP-preconditioner for the i-th variable.

Analogously to the width-optimal preconditioner, denote a CM_LP-precondi-
tioner by

ol 1 1 " ! ! ! ! " 1" " "
(.’le'--aymayl,'--,ymvvl"'-7vi—~1’vi+1""’vn)vl ""Ui—l)vi+1a""vn7

M, M', M”),
then form the actual preconditioner by
yk =Yk — Y5, 1<k<m

Theory of when this preconditioner solves the optimization problem (3.34) is
similar to that for the width-optimal LP-preconditioner. See §3.2.3, and see
[180] for a thorough and generalized consideration of the subject.

The Mignitude-Optimal Splitting Preconditioner

Assuming 0 € d,;(Y;), and n,(Y;) > 0, Kahan-Novoa-Ratz arithmetic gives

2 = (- Y =)

Thus, the EM-preconditioner is the solution to the nonlinear optimization prob-
lem

R 1 1
iR {_d,-(lc-) ' &Y } (3.40)

However, 0 € d;(Y;) implies

min{—L L} = .
(V) di(Ys)S — max{|d,(Y?)l, |di(Y)]}
1

|d:(¥3)’

On Preconditioning 137

and 1/|d;(Y;)| is maximum when |d;(Y;)| is minimum. Thus, Problem (3.40)
can be replaced by

in |di(Y:)[. 3.41
o n 1di(Ys)] (3.41)

Problem (3.41) can be used directly to define a linear programming problem
for the mignitude-optimal LP-preconditioner. With (3.36), the normalization
condition n,(Y;) = 1 can be written as the constraint

m

> Wi - ve)m(fe(X))

k=1
n m
——ZW(% { (y;ﬁk,j—yigk,j)w;’}
k

j=1 =1
i

l\?lb—‘

Z (it + yp) w(fe(X))

——ZW(:B]) {Z ykﬁk,j—yigk,j)+v;} = 1. (3.42)
k=1
J#:

Definition 3.8 Any solution of the linear programming problem with the 2(m+
n — 1) variables

(yi",...,y,",'“yl_,...,y;,vi",...,v;"_l,v;'_"_l,...,v,";,vl' UV V)
with the objective function consisting of the right member of (3.28), and with
the n constraints consisting of (3.42) and (8.29), and subject to non-negativity
constraints on all of the variables, is called an EM-LP-preconditioner for the
i-th variable.

As with the Cw—preconditioner and CM-preconditioner, an actual precondi-
tioner is formed from a computed EM-LP-preconditioner of the form

! 1 1 " 1 1 1 1 " n n
(yl,...,ym,yl,...,ym,vl,...,vi_l,vi_'_l,...,vn,vl R AR i P 1o

by taking

Theory of when this preconditioner actually solves Problem (3.41) can also be
found in [180]. An interesting property of the solution to the optimization
problem 3.41 is the following.

138 CHAPTER 3

Lemma 3.7 Suppose a preconditioner Y; solves Problem 3.41.

1. If 0 € d;(Y;), then Y; solves Problem 3.40, and hence is a mignitude-
optimal splitting preconditioner.

2. If d;(Y;) > 0 then Y; is a left-optimal contraction preconditioner.
3. If d;(Y;) < 0 then Y; is a left-optimal contraction preconditioner.

Proof: Y; solves Problem 3.41, resulting in n;(Y;) = [1,a] for some a > 0. If
0€ d,’(Yi), then

n;(Y;) [1,a] _{_ 1 1
di(Y;) [dy(Vi), di(Y3)] (oo di(Yz-)] J [Ei(n)’oo> '
If d;(Y;) > 0, then

n;(Y;) _ 1] = [ai(lyi)’di(cg’i)] '

dY:) [d(¥3),di(¥3)]
Since d;(Y:) is minimized in this case, this is a left-optimal preconditioner.
Similarly, if d;(Y;) < 0, then

) bl __f e L]

&) 40, aM) L&) G

Since —d;(Y;) is minimized in this case, this is a right-optimal preconditioner.
O

3.2.3 On Theory of LP Preconditioners

It is instructive to know, for example, when the CW-LP—preconditioner as in
Definition 3.6 on page 134 corresponds to the width-optimal preconditioner as
in Definition 3.4. In [180], Novoa develops a general theory of when the solution
of a linear programming problem corresponds to an optimal preconditioner.
Novoa sets up a one-to-one correspondence between preconditioners satisfying
optimality conditions (such as width-optimality) and corresponding solutions
to linear programming problems (such as in Definition 3.6).

Novoa defines the set of normal solutions to the linear programming problem
to be that set of solutions of the form

+ + .- - .+ + .+ + .- - -
€T T TR T I A ser s Vi1 Uiy e e Un U1 ---"Ui—17"’i+1’-~-7"’n)

On Preconditioning 139

(or of the form

(yf’,...,y,*,;,yl_,...,y;,vf’,...,v?’_l,vit_l,...,’uj{,'ul_ I TS T Ve
M,s, §)
in the case of the mignitude-optimal splitting preconditioner) for which y;y, =
0, 'u;-"vj_ = 0 and 3s = 0 for all relevant k and j. Novoa then defines an equiv-

alence class of solutions to be that set of solutions to the linear programming
problem that map to nonzero scalar multiples of the same preconditioner under
the mapping P defined by yx + y§ — y, . Novoa then asserts that

1. the linear programming problem is feasible if and only if the corresponding
preconditioner exists;

2. the mapping P from the set of equivalence classes of solutions of the linear
programming problem to the set of equivalence classes of optimal precon-
ditioner rows!® is one-to-one and onto.

Details are available in TEX, “dvi” and Postscript forms at the FTP site
interval.usl.edu
A general treatment is in the directory
pub/interval math/papers/Novoa’s-unpublished-work/1993 work/
while a more readable version, but without some concepts, is found in

pub/interval math/papers/Novoa’s-unpublished-work/1991 work/

in the files 1p_preconditioners.dvi or 1lp_preconditioners.ps.

The above papers also treat formulations of linear programming problems when
Zr # m(xy), possibly of use in various circumstances.

3.2.4 Structure in the Linear Programming
Problems

The linear programming problems for various optimal preconditioners have a
structure that should be utilized. Beginning with the experiments in [111], it

15 where two preconditioner rows are equivalent if they differ by a scalar multiple

140 CHAPTER 3

has been observed that full utilization of this structure results in approximately
a factor of five improvement in execution speed for width-optimal precondi-
tioner computations when the derivative or slope matrix A is dense. (Similar
speed-ups should also be observable for sparse A when both the intrinsic struc-
ture and sparsity structure, rather than just sparsity structure, are utilized.)
Also, for dense A € IR™*™, storage for a tableau for the simplex method can
be reduced from 4n? + 3n — 2 to n? + 7n + 3, as in the routine!® C_LP_DENSE in
INTOPT_90.

The structure will be reviewed here for the width-optimal CW-preconditioner
with 6 = 1, following [94]. The linear programming problem as in Definition 3.6
can be written as
minimize CTX
subject to
AX = B,
X >0,

(3.43)

where

AZ —AT "In—l In—l
—T
Al A Oy 01x(n—1)

(
o - (")
(

—T
¢ = W TAZ;; W(Xﬂi)TAﬂ,', W(Xﬂ,')T, Dlx(n—l)),
X = Y+ Y-, Ut, U™)
where
Yt o= (@, ,)7,
Y— = (yl_"‘ ’yn)T7
U+ = %(‘Ui’-,. ,‘U;’-l, 1+17 ,'U;’;)
u- = %(Ul_’ ’vz_——l’ i+1s a'U;),

A_; € R**(®=1) i5 the midpoint matrix of A with the i-th column removed,
A€ R™*(*=1) ig the lower bound matrix of A with the i-th column removed,
A_; is the upper bound matrix of A with the i-th column removed, w(X-;) is
the vector w(X) with the i-th component removed, A7 is the i-th column of

) =

the lower bound matrix of A, ZT is the i-th column of the upper bound matrix

18¢_1Lp_DENSE is a minor modification of a FORTRAN-77 routine due to Manuel Novoa.

On Preconditioning 141

of A, I,_; € R®=Dx(m=1) jg the identity matrix, and 0,, € RP*? is a matrix
of 0’s.

When carrying out the simplex method, only the midpoint matrix, correspond-
ing to only the first column of .4, need be stored and updated as pivoting
proceeds. Values in the other columns may be obtained quickly from these
values.

3.2.5 Advice on Choice of Preconditioner

Our empirical observations have shown that, for small, dense A and utilizing
the structure of the linear programming problem, the CW-preconditioner can be
computed as quickly as the inverse midpoint preconditioner. In such cases, the
CW_preconditioner is preferable to the inverse midpoint preconditioner when
the interval Gauss—Seidel method is used. Furthermore, in such situations,
either the interval Gauss—Seidel method or interval Gaussian elimination is
preferable to the Krawczyk method, since the image under the interval Gauss-
Seidel method is never larger than the image under the Krawczyk method.

Depending on how sparsity is utilized in solution of the linear programming
problem, the Cw—preconditioner should be preferable to the inverse midpoint
preconditioner for large sparse problems.

The CW-preconditioner is a good general-purpose preconditioner. However,
the magnitude-optimal contraction preconditioner is, in theory, better in ex-
istence and uniqueness tests. Furthermore, the mignitude-optimal splitting
preconditioner can be an efficient alternative to generalized bisection in branch
and bound algorithms for nonlinear systems and global optimization. Further
research into both these preconditioners and into the branch and bound algo-
rithms will be useful.

The inverse midpoint preconditioner, optimal for the Krawczyk method, is
certainly appropriate when the Krawczyk method is used, such as in special
applications such as the sensitivity analysis in [208, §2.6]. Furthermore, the
difference in power between the inverse midpoint preconditioner and optimal
preconditioners is bounded in existence and uniqueness tests. Referring to (3.2)
and [208, (1.14)], a matrix is strongly regular if and only if

p(Ima)7"a) <1,

142 CHAPTER 3

where p represents the spectral radius. In this situation, the inverse midpoint
preconditioner and the Krawczyk method can result in K(X,X) C X [208].
On the other hand, [208, (1.16)] and [210, Proposition 7.3], show that if

p (|m(A)_1|A) > 2.321n17, (3.44)

then A must contain a singular matrix, and hence, no preconditioner and no
interval Newton method can prove existence or uniqueness. Furthermore, ex-
amination of the constraints in the corresponding linear programming problem
shows that the width-optimal contraction preconditioner must approach the
inverse midpoint preconditioner as w(A) — 0. Finally, software for solving
structured linear systems may be more generally available than specialized
linear programming solvers for LP-preconditioners. Thus, the inverse mid-
point preconditioner may be a good choice in existence or uniqueness verifi-
cation procedures for narrow X, in the absence of appropriate software for
LP-preconditioners.

There has been some experience with C™ and EM preconditioners.

Example 3.2 (First presented in [128]) Consider

filX) = =+ Z z;j—n—-1, 1<i<n-1,

1<5<n

%) = I[=-1

with n = 5 and initial boz X = [0,0.5] x [0, 0.5] x [0,0.5] x [0,0.5] x [0,17]). The
mean value ertension, with a slope matriz, over the initial bozx is:

[—6,13.5]

[—6,13.5]

Fa(X) = [~6,13.5]

[—6,13.5]
[~1.996,0.0625]

In Example 3.2, there is no root in the initial box, but the second-order exten-
sion cannot show this, since 0 € F3(X). (Also, a natural interval extension
gives

F(X) € ([-6,13.5],[—6,13.5],[—6,13.5], [-6,13.5], [~ 1,0.0625])

On Preconditioning 143

so non-existence cannot be obtained from that natural extension.) Thus (since
non-existence with a second-order extension is equivalent to non-existence with
the Jacobi method without a preconditioner), a preconditioner would be re-
quired. However, the EM-preconditioner with the interval Gauss—Seidel method
gives £; Nx1 = 0, so only one preconditioner need be applied to show that
there are no roots. In contrast, an empty intersection is not obtained in mul-
tiple sweeps of the interval Gauss-Seidel method when CW-preconditioners or
CM-_preconditioners are used.

Even though the CM_preconditioner is appropriate for existence/uniqueness
verification, in many cases the somewhat simpler CW_preconditioner is also
appropriate. In particular, the CM-_preconditioner and CW-preconditioner are

approximately the same when the guess point X is the center of the box X
and when F(X) =~ 0:

Theorem 3.8 (first appeared in [128]) Suppose &; is chosen to be the midpoint
of j if j > 1, and the midpoint of &; if j < i, and suppose F(X) = 0. Then
the CV -preconditioner and cM -preconditioner for &; are the same.

Theorem 3.8 says that, if the guess point X in Formula 1.44 is a solution of
F(X) = 0, and if the box X is constructed so that X is the midpoint of X,
then the width-optimal preconditioner gives the preconditioner most likely to
make the image &, under the Gauss—Seidel step be contained in the original
box. Also, our computer codes for the width-optimal preconditioner with X
the midpoint of X are at present more efficient than corresponding computer
codes for other preconditioners. Thus, the width-optimal preconditioner is a
good preconditioner to use for existence verification or uniqueness verification
in e-inflation algorithms.

In practice, perhaps due to Theorem 3.8, instances are seldom found where the
CM_preconditioner gives improvement in an overall root-finding algorithm over
the CW-preconditioner.

The linear programming preconditioners described here are appropriate for
the interval Gauss—Seidel method. Although they can also be used effectively
with interval Gaussian elimination, analogous preconditioners can be derived
specially for interval Gaussian elimination. Such preconditioners have not yet
been investigated.

144 CHAPTER 3

3.2.6 Exercises

1. Verify Lemma 3.4 from the definitions of the interval operations.
2. Verify Lemma 3.5.
3. Write an analogue of Lemma 3.5 under the assumption that
(a) £ =gz;for 1 <j<m
(b) &;j=T;for1<j<m
() n=35,%; =g; for j =1,2, #3 = m(x3), and £; = T; for j = 4,5.

4. State what expressions in Equation (3.25) correspond to y and z in Equa-
tion (7) of Lemma 3.4.

5. Prove Equation (3.27) and Equation (3.28).
6. Assume 0 € n;(Y;), and M = |n;(Y;)|. Show that equations (3.39) hold.

7. Assume 0 € n;(Y;) and equations (3.39) hold. Assuming 5§ = max{M, 0}
and s = max{—M, 0}, use Equation (4) of Lemma 3.4 to show that M =
| (Y).

8. (This one is somewhat lengthy.) Check the computations in the three
examples based on Example 3.1 on page 120 and the inverse-midpoint or
width-optimal preconditioners. You may use the software described in §2.2
or alternate systems, such as described in §2.3 on page 102.

4

VERIFIED SOLUTION OF
NONLINEAR SYSTEMS

Recall that a main goal of this book is solution of Problem 1.2, that is, finding
all solutions of an equation F(X) = 0, F : R* — R® within a box X € IR".
In previous chapters, techniques useful in parts of the solution of this problem
have been explained. Here, tessellation processes appear that combine these
pieces into an overall algorithm. The output to this overall algorithm will be a
list R of small boxes that have been verified to contain unique roots and a list
U of small boxes that have neither been verified to contain roots nor verified
to not contain roots’.

Effective use of the verification tools presented in previous chapters depends
on efficient tessellation of the original box X into sufficiently small boxes, and
on e-inflation. The tessellation is done with an exhaustive branch and bound
search, using generalized bisection, and with a box complementation process.
These processes are explained for general nonlinear equations in this chapter,
while versions taking account of objective function inclusions for constrained
and unconstrained global optimization are explained in Chapter 5. This chapter
concludes with an explanation of the general nonlinear systems software within
INTOPT_90.

Many of the ideas in this chapter appeared in [114]. The e-inflation was ex-
plained in [208], while the box complementation scheme appeared in [245].
Also, interval global search algorithms generally predate the author’s efforts in
the subject. See [165, Ch. 6] or [175, §5.6] for nonlinear equations, and [77] or
[191] for global optimization.

lIn general, U is necessary, since roots at which the Jacobi matrix is singular cannot be
verified to be unique, although boxes in which such roots exist can be verified. However, in
successful algorithms, both the number and total volume of the boxes in U is as small as
possible.

146 CHAPTER 4

4.1 AN OVERALL BRANCH AND BOUND
ALGORITHM

The branch and bound algorithm is presented here in summary. Specifics con-
cerning bisection, box complementation, and e-inflation appear in subsequent
sections, while additional details appear in [114]. Also, the actual implementa-
tion in INTOPT_90 is available.

In what follows, |[w(X(?)||zes will denote the relative diameter of the current
box X (©):

Definition 4.1 The relative diameter of a box X is

~ w(z;)
W (X)lleet = max { Wrm(w,)l}} '

The individual quotient w(z;)/ max{1, |m(x;)|} will be called the relative width
of the i-th side.

The relative diameter corresponds to the relative error norm in traditional
floating point computations.

Algorithm 7 (Overall Tessellation / Complementation Process)

INPUT: an initial box X(?, a symbolic representation for the function F, the maxi-
mum allowable number of subboxes M to be processed, and a domain tolerance eq.

OUTPUT: One of the following:

1. If the search was successful: a list R such that each box X € R has
been verified to contain a unique root, and a list U, each of whose
boxes has relative diameter on the order of /ea, such that all roots
of Fin X not in boxes in R are in boxes in U.

2. If the search did not complete with M bozes processed: a list R as
above, a list U of boxes with diameters on the order of \/eq that
may contain roots, and a list £ of boxes that have not been fully
analyzed, in the set complement of the union of the boxes in R and
Uu.

®m Place X9 onto an empty list L.

Verified Solution of Nonlinear Systems 147

m Overall box processing loop: DO k =1 to M WHILE L # 0.

1. Remove the first box from L and place it in the current boz X(©),

2. (Check function and find as many approximate roots as possible first.)

DO WHILE this step changes L, R or U:

(a) Try to verify that 0 ¢ F“(X'®)), using first, then second order ez-
tensions. IF 0 ¢ F*(X(®) is verified THEN CYCLE overall box
processing loop.

(b) (Find approximate roots in the current box.)

IF [|[w(X)||ce1 > €2 THEN
i. (Algorithm 9 below) Depending on a heuristic parameter, try to
find an approzimate root X € X©), IF such a root is found,
THEN
A. Use e-inflation to verify uniqueness of the root near X within a
boz X* (see §4.2 below).
B. Place X in either R or U, take the complement of X* in L
(see Algorithm 11 below), remove the new first boz from the list
L, and place it into X',
END IF
1. IF L is empty after complementation, THEN EXIT overall box
processing loop.
END IF

END DO

8. Reduce the widths of the current boz with a combination of Gauss—Seidel
iteration and generalized bisection. (Both X'®) and L are in general changed
by this step; see Algorithm 8 below.)

4. (After Step 3, the box X is either are proven to have no roots, or is small
and of “unknown” status.)
IF the status of X is still “unknown,”

THEN

(a) Try to verify, using first, then second-order estensions®, that 0 &
F(X"9).
IF 0 ¢ F* (X(c)) is verified THEN CYCLE overall box processing
loop.

(b) (Unconditionally attempt to find a root in the small box.)
i. (Algorithm 9 below) Try to find an approzimate root X € X,
IF such a root is found,
THEN
A. Verify uniqueness of the root near X within a boz X* with -
inflation (see §4.2 below).

2The second-order extension is particularly important here, since the boxes are small, and
the second-order extension is asymptotically better as the widths tend to zero.

148 CHAPTER 4

B. Place X* in either R of U, take the complement of X* in L
(see Algorithm 11 below), remove the new first boz from the list
L, and place it into X,

END IF

1. IF L is emply after complementation, THEN EXIT overall box
processing loop.

(c) (Attempt to avoid clusters at singular or ill-conditioned (near) roots
by artificial expansion.)
IF Step 4b did not result any change in X© R or U, THEN
i. Fori =1 to n replace z§°) by [2'9) — 64,) + 0] where

0; = max {|x§°)|\/ed, \/em/ed}, where €m is the machine epsilon.

ii. Toke the set complement of X in L.
iii. Take the set complement of X\ inU.
iv. Insert X©) into U.
ELSE Push X onto L.
END IF (cluster avoidance)

END IF (processing the small unknown box)

END DO overall box processing loop

m IF k has exceeded M in the overall processing loop
THEN Return £, R, and U.
ELSE Return R, U, and performance statistics.

END IF
End Algorithm 7

Step 3 of Algorithm 7 combines generalized bisection (see §4.3.2 below) and
interval Gauss-Seidel iteration: The input to Step 3 is a box X of rela-
tively large diameter, while the output is a new box X (© of diameter at most
eq. The process also includes checking 0 ¢ F(X®), to avoid more expensive
computations when not necessary. The process is:

Algorithm 8 (Process the current box X© in Algorithm 7.)

INPUT: the current box X©), the internal symbolic representation for F, and the
current list of boxes to search L.

OUTPUT: the following:

Verified Solution of Nonlinear Systems 149

1. a new or altered box X(c);

2. the status “unknown” or “has no root” associated with X{©), such
that, if the status of X(° is “unknown”, then the maximum relative
width of a coordinate of X(® is on the order of eg;

3. a (possibly) altered search list L.
DO WHILE ||w(X©)||;e1 > €a:

1. Compute the slope matriz S(F, X© X©), where X© is the midpoint vector
m(X©).

2. Compute (X)) (using interval arithmetic to bound roundoff errors).

3. Perform a Gauss—Seidel sweep, beginning with X(©).

4. IF the Gauss—Seidel sweep proved that X©) could not contain any roots THEN
EXIT.

5. IF the Gauss-Seidel sweep did not result in o change in X9, L, or®* U, THEN
(a) Bisect X9, modifying X' and L (see §4.5.2).

(b) Use the natural first-order extenston to check if the range of F' over the new
current boz X'© returned from bisection contains zero; if not, then mark
X©) 45 not root-containing and EXIT.

(c) (Find approximate roots in the new current box.)

Depending on the value of a heuristic parameter, find and verify approzi-
mate roots within X', and modify the list L, the list R of root-containing
bozes and the list U of small bozes of unknown status, using Algorithm 9
and Algorithm 11 below.

END IF (bisection process)
END DO
End Algorithm 8
In Step 2b of a Algorithm 7 and Step 5¢ of Algorithm 8, a heuristic is used to
determine when to try to find a root within the current box. The heuristic is

based on a parameter @ between 0 and 1: @ = 0 implies that Algorithm 9 is
always attempted, while @ = 1 implies Algorithm 9 is never attempted, except

3The interval Gauss—Seidel method can produce two boxes at each step if extended interval
arithmetic is used. In such cases, one of the boxes is placed into £, and the other one becomes
X{©), or else both boxes are placed into £, and a third box from £ becomes X ().

150 CHAPTER 4

for starting points within boxes of diameters less than the domain tolerance.
Approximate root-finding and verification are attempted within a box with
relative diameter greater than ¢4, whenever

min{|E;|, |Fil}/max{|E,|, [Fil} > e, (4.1)

where F;(X()) = [F;,F;]. The presumption is that, when zero is centered
in the interval estimate for the range, it is more likely that the actual range,
without overestimation, contains zero. Here, 0 < a < 1; a = 0 implies an
attempt to find an approximate root is always made, while @ = 1 implies
approximate root-finding is never attempted, except for starting points within
boxes with relative diameters less than the domain tolerance 4. In a significant
set of experiments reported in [114], o = 0.5 was generally found to be a good
choice, but the optimal a depends on the relative speeds of the floating point
computations in the approximate solver and of the interval arithmetic?, and
probably also varies from problem to problem.

Existence and uniqueness verification are not attempted in Algorithm 8, whose
main chore is to reduce the size of the current box X () as efficiently as possible.
Verification is usually easier when a root X* is approximately centered within
the box, while this does not usually occur while iterating the interval Gauss—
Seidel method with a width-optimal preconditioner. Furthermore, attempting
to prove existence or uniqueness within Algorithm 8 significantly complicates
the bookkeeping in implementations.

4.2 APPROXIMATE ROOTS AND
EPSILON-INFLATION

It improves the overall branch and bound algorithm to make use of approximate
roots when they are available. In particular, if an approximate root X ~ X*
is accurately known, then a box X* can be centered at X, so that ||[F(X)]| is
small. The centering and small norm make existence or uniqueness verification
easier; see Lemma 6.2 below on page 221. Alternately, if the Jacobi matrix is
ill-conditioned or singular at the root X*, floating point methods can often still
obtain good approximations X =~ X*, even though interval Newton methods
cannot reduce all coordinate widths of any box containing X*. In such cases,
efficiency of the search process is increased if a box X* containing X* can be

4In [114], the system INTLIB_90 was used, with relative speeds given by Table 2.10 on
page 105.

Verified Solution of Nonlinear Systems 151

constructed about X , placed on the list I/ of possible root-containing boxes,
and removed from the search region. These considerations are reflected in
Algorithm 7 in steps 2b, 4b, and 4c.

The process of constructing a box X* about an approximate root X, such
that existence or uniqueness can be verified within X*, is termed e-inflation
[159, 205, 208]. It has been explained as an iterative process, starting with
a small box about X, then increasing the widths until it is possible to verify
existence or uniqueness. Once existence or uniqueness is verified, the box size
may continue to be increased to obtain as large a box as possible within which
uniqueness can be verified. This large box may then be removed from the
search region, making it easier to eliminate the remaining boxes in the list £
due to 0 ¢ F(X©).

Uniqueness can be verified with slopes, based on Theorem 1.23 on page 64.
This results in the following algorithm (an elaboration of an algorithm in Rump
[208]).

Algorithm 9 (Find an approximate root, and verify uniqueness within as large a
box as possible about that root.)

INPUT: the initial box (overall bounds) X(®) and the current box X C X,

OUTPUT: one of the following:

1. an approximate root X € X and a box X* € X©, as large as
possible, X € X*, such that it is proven F has a unique root in X™;

2. an approximate root X € X and a box X* C X X ¢ X*,
such that existence of a root within X* has been proven;

3. an approximate root X (according to the approximate solver), but
no box X*;

4. failure to compute an approximate root.

1. (The “else” branch in the following is necessary because an approximate solver
sometimes behaves erratically near roots®.)

IF the relative diameter of the coordinates of X©) s greater than \/eg,
THEN

Swhen the tolerance is small

152 CHAPTER 4

Use an approzimate solver with domain tolerance® €4®° to find an approgzi-
mate root X of F within X(©).

ELSE
Take the center of X© 45 be the approzimate Toot.

END IF
IF X ¢ X or no solution is found, THEN EXIT.

2. (Verify existence in as small a box as possible.)
(a) Construct a boz X, centered at X, such that the i-th coordinate is
&; = [5] — €as, T + €as),

where s = max{|z;]|,100em } and €, is the machine epsilon.

(b) (Expand X one coordinate at a time until existence can be proven.)
DO UNTIL a larger boz X € X©) cannot be constructed.

Attempt to verify existence within X using a computed slope S(F, X, X)

IF ezistence was verified,

THEN EXIT Step 2b.

ELSE

i. IF preconditioner computation was unsuccessful or the attempt to

verify ezistence led to a disconnected image, THEN EXIT Step 2b
without having verified ezistence’.

i. Ezpand X € X© around X by widening one or more coordinates.

. If X could not be expanded in the previous step, then EXIT Step 2b
without having verified ezistence.

END IF
END DO

End existence verification
3. (Verify uniqueness within as large a box as possible: similar to Step 2b.) IF
ezistence was verified in Step 2b THEN
(o) Initialize to X the boz X* in which to prove uniqueness.
(b) (Expand X* as much as possible, subject to uniqueness verification.)
DO UNTIL a larger boz X* cannot be constructed.

Attempt to verify uniqueness within X", using a computed slope
S(F, X*, X).
IF uniqueness was verified on this iteration, THEN

6This power of the minimum size of a side of a box, in terms of the scaled width w(z) =
(T—z)/ max{1, |z|}; this ensures that the actual root will be near the center of the constructed
boxes.

TNonetheless, it is marked that an approximate root has been found. This fact can be
used in an expansion step in the main algorithm.

Verified Solution of Nonlinear Systems 153

i. Ezpand X* € X9 around X by widening one or more coordinates.
ii. IF X" could not be expanded THEN EXIT Step 3b.
ELSE IF uniqueness has not yet been wverified on any iteration of
Step 3b, THEN
i. If preconditioner computation in the verification attempt was un-
successful or the uniqueness verification atlempt led to a discon-
nected image, THEN ezit Step 3b without having verified unique-
ness.
ii. Ezpand X* € X© around X by widening one or more coordinates.
iti. IF X* could not be erpanded, THEN EXIT without having proven
uniqueness.
ELSE (Here, uniqueness was proven with the previous box X*.)
i. Reset X* to its value before the last ezpansion attempt.
1. Possibly try to expand X* again, in a different coordinate direction
than one previously found to lead to failure.
ui. If X* could not be ezpanded in the new coordinate direction, then
EXIT, having proven uniqueness within X*.
END IF

END DO

END IF (uniqueness verification)
End Algorithm 9

The three expansion steps, in Step 2(b)ii and in the branches of Step 3b, are
implemented in INTOPT_90 with a coordinate-by-coordinate procedure, in sub-

routine INFLATE DENSE_NLE_SLOPE.

A minimum smear scheme, similar to the maximum smear scheme in §4.3.2
below, is used. Alternate schemes are also possible, and more experimentation
may reveal better ones.

The list £ was effectively a last-in-first-out stack in the experiments in [114].
However, since the complement of the current list is taken when approximate
roots are found, and since approximate roots may be found more rapidly if the
region is searched in a certain order, it may be advantageous to consider £ an
ordered linked list. It is not clear, however, what the optimal orderings for

solving nonlinear equations are®.

8This is not so for global optimization: the list may be ordered in order of increasing lower
bounds on the objective function. See Chapter 5.

154 CHAPTER 4

Y,
Y,
Yl Y2 Y2 Yl
X
X
Y x
(a) (b) (c)

Figure 4.1 Complementation of a box in a box

4.3 TESSELLATION SCHEMES

Two processes, box complementation and generalized bisection, are important
in Algorithm 7 (the global root-finding algorithm). The box complementation
algorithm allows us to remove root-containing or difficult-to-analyze boxes from
the search region, while generalized bisection, if done well, is effective at rapidly
producing sub-regions in which either an interval Newton method will converge
or non-existence can be proven. Although an unambiguous process, the power
and simplicity of the box complementation algorithm is worthy of study. It is
less clear how to proceed with generalized bisection, but various heuristics can
be compared.

4.3.1 Box Complementation

Abstractly viewed, box complementation produces a list or stack of boxes whose
union is the complement (in the set-theoretic sense) of a box X* in the union of
an original list of boxes. The following two algorithms were proposed in [245] in
conjunction with the representation of one-dimensional solution manifolds asso-
ciated with parametrized systems. They are related to the trisection algorithm
proposed in [110]; there, boxes that contained roots at which the Jacobi matrix
was singular were removed. Algorithms similar to those proposed here are also
used by Ratz to remove singularities [194, §2.5.7] and by Van Iwaarden [233]
(Van Iwaarden calls the e-inflation technique “back-boxing.”)

Verified Solution of Nonlinear Systems 155

Algorithm 10 (Take the complement of a box X in a box Y.)
INPUT: the boxes X and Y.

OUTPUT: the following:
1. alist Ly such that UWGLYW= X\Y
2. X+ XNY, provided XNY# 0.

1. Initialize a list Ly to .
2 IFXNY=90

THEN Insert Y into Ly.
ELSE
(a) Do fori=1ton
i. Setz=[z,Z]==:Ny,.
i. IF z > y THEN
A. Form o new boz W whose i-th coordinate is [y,2] and whose
other coordinates are the same as those of Y.
B. Insert W into Ly.
END IF
ii. IF 2 <y THEN
A. Form a new boz W whose i-th coordinate is [Z,7] and whose
other coordinates are the same as those of Y.
B. Insert W into Ly.
END IF
iv. Replace the i-th coordinate of Y by 2.
END DO
(b) Replace X by Y.

END IF

End Algorithm 10

Possible ways that Algorithm 10 can cut a box Y are illustrated for n = 2 in
Figure 4.1. In general, if X,Y € IR", at most 2n boxes are produced. This
corresponds to case (a) of Figure 4.1, where X C int(Y'), and this list can be
produced in O (n) time. In steps 2(b)iB, 4(b)iB, and 4(c)i of Algorithm 7 (the
overall search algorithm), the complement of a box in the union of a list of
boxes must be taken. This is done by applying Algorithm 10 to each box in
the list. This results in

156 CHAPTER 4

Figure 4.2 Complementa-
tion of a box in a list of boxes

Algorithm 11 (Take the complement of a box X in a list £.)
INPUT: the box X and the list of boxes L.

OUTPUT: The list £ is replaced by that list the union of whose members is the set
complement of X in the union of the boxes in L.

1. Initialize o new list Lpew.
2. DO WHILE £ # .
(a) Remove the first item Y from L and store it in Y.
(b) Form a list Ly from the complement of X in'Y, using Algorithm 10.
(c) Append Ly to Lnew, and reinitialize Ly.
END DO
8. Replace L by Lnew-

End Algorithm 11

Although it is possible for Algorithm 10 to produce 2n boxes for Y \ X, for
given X and Y, in general, Algorithm 11 does not always significantly increase
the total number of boxes in £. For example, in Figure 4.2, the original list £
represents a uniform subdivision of an original box X © into 64 subboxes. The
list obtained by complementing with X only contains 66 boxes. Experiments
with the overall root finding algorithm in [114] indicate that list complemen-
tation (Algorithm 11) is a net advantage with approximate roots. However,
additional experience with the purely geometrical aspects should increase un-
derstanding of how complementation increases the total number of boxes in the
list.

Verified Solution of Nonlinear Systems 157

4.3.2 Generalized Bisection

As box complementation, generalized bisection operates on the list £ of boxes
within which all roots must lie. However, instead of eliminating regions from
the search list, generalized bisection replaces a single box by two smaller boxes.
This allows either the overestimation in interval extensions to be reduced, so
0 ¢ F*“(X) can be verified, or else allows consideration of smaller boxes in
which an interval Newton method can converge.

Variants of bisection for nonlinear systems are discussed in [165, pp. 78-81],
[77, §8.8], and for optimization in [20, 199]. Bisection usually proceeds with
the following algorithm.

Algorithm 12 (Generalized bisection of a box X)
INPUT: The current box X and the list L.

OUTPUT: A new current box X and an updated list L.

1. Choose the coordinate k to bisect.
2. Form two new bozes XV and X | where xy’) =z; ifj #k,
o) = 24 (e +70)/2] and 27 = [z, +F)/2, Tel.
8. Place one of XM and X@ onto L, and replace X with the other oneé®.

End Algorithm 12

Four proposed choices of bisection coordinate k were given in [165, pp. 78-81).
A natural choice would be a k for which w(z;) is maximum. However, k corre-
sponding to maximum width (or even maximum relative width) is not always
most, effective at reducing overestimation or producing boxes in which an in-
terval Newton method will converge. The mazimum smear heuristic, proposed
in [127], appears to work better in most cases.

Definition 4.2 A coordinate of maximum smear is defined to be a k such that
Sk = MaXj1<j<n S5, where

s; = max {|A;;|} w(z;). (4.2)

1<in

9r else place both X(1) and X(2) into the list, then replace X by a third box from the
list.

158 CHAPTER 4

Ly

roots
x .
* * Figure 4.3 Bisection of the
second coordinate according
x(2) to maximum smear, for Ex-
ample 4.1

(=1,0)

Example 4.1 Suppose F(X) = (fi(X), f2(X))T : R2 > R? with
fi(@1,32) = (422 — 1)(1023 +1), fa(z1,72) = (422 +1)(10a} - 1),

and consider an initial boz X = ([-1,1],[0,1])T. Then the set of roots of F is
{(-1/4,-1/10%),(1/4,-1/10"%)} ~ {(—0.25,-0.63), (0.25, —0.63)},

and both roots are in the initial boz.

The interval Jacobi matrix in Example 4.1 is

, —88,88] [~50,150
F(X)= (%_72,72% [[0, 250] !)

Following Formula (4.2), s; = (88)(2) = 176, while s, = (250)(1) = 250, k = 2,
and X is bisected in the direction of its second coordinate. This is illustrated
in Figure 4.3.

The maximum smear heuristic is similar to the heuristic proposed in [77, §8.8],
except that “Y_7 ,” is used in [77, §8.8] in place of the “maxi<i<n” of (4.2).
Both heuristics attempt to choose that coordinate k such that the function
components vary most across €; X is, roughly speaking, a maximum-width
coordinate in the range.

A careful study of heuristics for bisection in a simplified verified global opti-
mization algorithm appears in [199]. There, experimental results seemed to
indicate that an analogue of maximum smear, applied to the objective func-
tion, leads to the best results in the overall search algorithm. That is, in global
optimization codes, the coordinate k for which

vim) = 0,

0¢
B_xk(x)

()| (e (43)

appears to be a good choice.

Verified Solution of Nonlinear Systems 159

Whether to choose X + XM or X « X in Step 3 of Algorithm 12 was an
issue in [165, pp. 78-81], since, unlike in Algorithm 7, the goal in [165] was to
find, as fast as possible, at least one box within which Newton’s method or an
interval Newton method would converge. Thus, a good heuristic would make
the box most likely to contain a root into the current box X. If all roots are
sought, as in Algorithm 12, then the choice is not as critical. However, since
root-containing regions are deleted once a root is found, there still may be an
advantage in Algorithm 7 to choosing the new X to be that box most likely to
contain a root.

In algorithms for optimization corresponding to Algorithm 7, both X) and
X are inserted into a list that is ordered according to increasing ¢(X), then

the first box in this list (possibly neither XV nor X®), becomes the new
current box. Such a scheme would be appropriate in nonlinear equations if
the list were somehow ordered according to increasing likelihood of containing
roots.

4.4 DESCRIPTION OF PROVIDED
SOFTWARE

A subroutine
RODTS_DELETE(INITIAL X, ROOT_LIST, UNKNOWN_LIST)

in INTOPT_90 implements Algorithm 7. The program
RUN_ROOTS_DELETE

provides input and output, and can either be used as-is to solve nonlinear
systems, or as a template for calling ROOTS DELETE. In RUN_ROOTS_DELETE, a
code list produced by a program such as those in Figures 2.4, 2.7, or 2.8 of
§2.2.2 is input, as well as a file containing a tolerance, initial box coordinates,
and, optionally, an initial guess for a root and an assessment of how good
that initial guess is. Additionally, RUN_ROOTS_DELETE uses the configuration
file OVERLDAD.CFG as in Figure 2.6. It is important that the code list used
by RUN_ROOTS_DELETE was created with the same value of the logical variable
BINARY_CODELIST (in OVERLOAD.CFG) as is used when the code list is input to
RUN_ROOTS DELETE.

Here, use of RUN_ROOTS_DELETE as a stand-alone program is first explained,
then use of RODTS_DELETE.

160 CHAPTER 4

4.4.1 Stand-Alone Computation

The stand-alone program RUN_ROOTS_DELETE uses a second configuration file
ROOTSDL.CFG

that contains options for the root-finder. The first line of ROOTSDL.CFG is a

comment line that is ignored by the program, while the second line!® contains

the following values, in this order:

EPS_DOMAIN: the domain tolerance €g4.

PROOTSDL: a parameter specifying the amount of printing in ROOTS_DELETE. A
value of 0 indicates no printing, while a value of 5 indicates a large amount
of information (for debugging, etc.).

PRINT_INFLATE: a parameter specifying the amount of printing in the e-inflation
process (Algorithm 9). A value of 0 indicates no printing, while a value of
4 means a large amount of information is printed.

DO_INTERVAL.NEWTON is normally set to “T”. If it is set to “F”, then Steps 1
to 4 of Algorithm 8 are not done. That is, if DO_-INTERVAL NEWTON = “F”,
then interval Newton steps are not done except in e-inflation, so that the
only means of reducing the size of a box is bisection.

SLOPE_NOT_JACOBI: is set to “I” if slope matrices are to be used, and to “F”
if interval Jacobi matrices are to be used.

SECOND_ORDER: is set to “T” if second-order interval extensions are to be used
to try to determine 0 ¢ F*(X(9) after first-order extensions have failed,
and is set to “F” otherwise!l.

REFINEMENT_IN_VERIFICATION: is set to “T” if an interval Newton method is
to be applied to the small boxes in Algorithm 9 that have been proven to
contain roots, and is set to “F” otherwise.

MAXITR: is an upper bound on the number of boxes that should be processed
by the overall search algorithm (i.e. the number M in Algorithm 7).

USE_SUBSIT: is set to “T” if the algorithm is to compute with user-defined
constraints, as explained in Chapter 7 below, and is set to “F” otherwise.

10and/or subsequent lines: The parameters in this file are input in list-directed format on
one or more lines.

11 However, second-order extensions are always tried on boxes of small diameter of unknown
status, in Step 4a of Algorithm 7.

Verified Solution of Nonlinear Systems 161

PROGRAM BRANIN
USE OVERLOAD

TYPE(CDLVAR), DIMENSION(2) :: X
TYPE(CDLLHS), DIMENSION(2) :: F
TYPE (CDLVAR) :: FX1PX2

OQUTPUT FILE NAME=’BRANIN.CDL’

CALL INITIALIZE_CODELIST(X)

FX1PX2 = 4x(X(1)+X(2))

F(1) = FX1PX2

F(2) = FX1PX2 + (X(1)-X(2)) * ((X(1)-2)%*2 + X(2)**2-1)
CALL FINISH_CODELIST

END PROGRAM BRANIN

Figure 4.4 Program to produce a code list for a counterexample to a method
of Branin

PRINT_SUBSIT: controls the amount of printing in computations with user-
defined constraints, if such computations are done, with a value of 0 indi-
cating no printing, and larger values indicating more printing.

GOU, or general output unit, is the Fortran unit to which most printing is to be
done.

PRINT_LENGTH: indicates how many digits are to be printed. A value of 1
indicates four digits, while a value of 2 indicates eighteen digits!2.

The parameters define algorithm options studied in [114]. For the most part,
users will only be interested in adjusting EPS_DOMAIN, MAXITR, and
PRINT_LENGTH, while the other parameters are usually best as in the ROOTSDL. CF
file that comes with the package.

For example, suppose a code list were produced by running the program in
Figure 4.4, with OVERLOAD. CFG file:

NEQMAX, NROWMAX, NCONSTMX, BRANCHMX, BINARY_CODELIST

100 10000 2000 100 F
so that an ASCII code list is placed in the file BRANIN.CDL. Suppose
ROOTSDL. CFG has all print control variables set to zero, and PRINT_LENGTH set to
1. Suppose a box data file appears!? as in Figure 4.5. Then a sample invocation
of RUN_ROOTS_DELETE for the file in BRANIN.CDL appears in Figure 4.6.

12Most printing of floating point and interval values is done with a generic subroutine
PRINT_VECTOR defined in a module PRINT ROUTINES.

13The first line, a tolerance, is not used in RUN_ROOTS_DELETE, but is included so files in
INTOPT.90 have a universal format for several purposes.

162 CHAPTER 4

1d-9 .

99 Figure 4.5 Box data file
BRANIN.DT1

-2 2

interval% run_roots_delete

Input the code list file name without its assumed suffix "CDL”
BRANIN

Input a digit for the suffix for the input file; the prefix
is the same as the code list file name and the first two
letters of the suffix are "DT”

1

Input the heuristic parameter alpha for determining
when to try to find a root in a box, based on the
interval function values.

.5

interval%

Figure 4.6 RUN_ROOTS_DELETE for BRANIN.CDL and BRANIN.DT1

The output corresponding to Figure 4.6 is written to the file BRANIN.RO1, ex-
hibited in Figure 4.7.

The data file in Figure 4.5 does not contain an initial guess for a root, or an
assessment of the quality of that initial guess. However, if we suspect that
X = (0,0)T is a root, then we may form a data file as in Figure 4.8, and use
RUN_ROOTS DELETE to verify it. The output, in file BRANIN.RO2, is then as in
Figure 4.9.

4.4.2 Calling from Other Programs

The subroutine ROOTS_ DELETE may be called as a subroutine. The arguments
are as follows.

INITIALX is an interval vector. On entry, it must contain the coordinates of
the search box.

ROOT_LIST is a variable of type DENSE_NLE_BOX_LIST (explained below) that
will contain the list of boxes that have been verified to contain unique
roots (the list R in Algorithm 7), upon return.

UNKNOWN_LIST is a variable of type DENSE NLE BOX_LIST that will contain the
list of small boxes that could not be verified to contain unique roots, but
could not be verified to not contain roots (the list 2/ in Algorithm 7), upon
return.

Verified Solution of Nonlinear Systems

Output from RUN.ROOTS.DELETE on: 19950917 225632.877
Codelist file name is: BRANIN.CDL

Box data file name js: BRANIN.DT1

Heuristic parameter alpha: 0.5000000000000000

Singular expansion factor: 1.0000000000000000E+03

Configuration settinge:
print_roots_delete: 0

print.inflate: 0

slope.not_jacobi: T
use_second.order: T
refinement_in_verification: F
VERY_GOOD.INITIAL_GUESS: F
USE.SUBSIT: F

Initial box coordinates:
-0.2000D+01 0.2000D+01 -0.2000D+01 0.2000D+01

EPS_DOMAIN: 1.0000000000000002E-06
EPS_CHECK: 5.0000000000000003E-02

Solver statistics

Number of bisections: 10

Number of dense interval residual evaluations: 51
Total number of boxes pushed on the list: 14

Number of orig. eystem inverse midpoint preconditioner rows: 19
Number of orig. system C-LP preconditioner rows: 34
Total number of forward_substitutions: 247

Number of Gauss—Seidel stepe on the dense system: 53
Number point dense residual evaluations: 19

Total number of dense slope matrix evaluations: 46
Total number second-order interval evaluations of the
original function: 12

Number of times Epsilon-inflation wae attempted: 1

CPU time: 9.9999999627470970E-02

Time in approximate solver: 3.0000004917383194E-02
Time in point function: 0.0000000000000000E 4000
Time in SUBSIT: 0.0000000000000000E 4000

The following boxes have been verified to contain unique roots:

Box no.: 1
Box coordinates:
-0.3822D-02 0.3822D-02 -0.3822D-02 0.3822D-02

Level: 0

Box contains the following approximate root:
0.0000D+00 0.0000D+00

Interval residuals over the box:

-0.3068D-01 0.3068D-01 -0.5363D-01 0.6363D-01

Unknown = F Contains.root = T
Changed coordinates:
T T

THERE WERE NO UNRESOLVED BOXES

Figure 4.7 Sample output to RUN_ROOTS_DELETE

1d-9
-.1.1

Figure 4.8 Box data
BRANIN.DT2

Heoo!

163

file

164 CHAPTER 4

Qutput from RUN_ROOTS DELETE on: 19950918 002244.606
Codelist file name is: BRANIN.CDL

Box data file name is: BRANIN.DT2

Heuristic parameter alpha: 0.5000000000000000

Singular expansion factor: 1.0000000000000000E+03

Configuration settings:
print.roots.delete: 0

print_inflate: O

slope_not_jacobi: T
use_second_order: T
refinement.in_verification: F
VERY_GOOD.INITIAL.GUESS: T
USE.SUBSIT: F

Initial box coordinates:
-0.1000D+00 0.1000D 400 -0.1000D+00 0.1000D+-00

EPS.DOMAIN: 1.0000000000000002E-06
EPS_CHECK: 5.0000000000000003E-02

Solver statistics

Number of dense intervel residual eveluations: 2

Number of arig. system inverse midpoint preconditioner rows: 20
Total number of forward_subatitutions: 42

Number of Gausg-Seidel stepa on the dense system: 20

Total number of dense slope matrix evaluations: 10

Number of times Epsilon-inflation was attempted: 1

CPU time: 1.9999999552965164E-02

Time in approximate solver: 0.0000000000000000E+000
Time in point function: 0.0000000000000000E+000
Time in SUBSIT: 0.0000000000000000E+000

The following boxes have been verified to contain unique roots:

Box no.: 1
Box coordinates:
-0.1000D 400 0.1000D+00 -0.1000D 400 0.1000D 400

Level: 0

Box contains the following approximate root:
0.0000D 400 0.0000D +00

Interval residuales over the box:

-0.8000D 400 0.8000D+400 -0.1484D+01 0.1484D+-01

Unknown = F Contains_root = T
Changed coordinates:
TT

THERE WERE NO UNRESOLVED BOXES

Figure 4.9 Use of RUN_ROOTS_DELETE for uniqueness verification

Verified Solution of Nonlinear Systems 165

The variable type DENSE_NLE_BOX_LIST is defined and supported in the module
DENSE_NONLINEAR_EQ_BOX_LIST,

a part of INTOPT_90. These lists are dynamically allocated linked lists that
must be initialized before being passed to ROOTS_DELETE. The initialization is
as follows:

ROOT_LIST = NEW_DENSE_NLE_BOX_LIST()
UNKNOWN_LIST = NEW_DENSE_NLE_BOX_LIST()

To properly recover storage from an empty list, the statements

CALL DISCARD_EMPTY_LIST(UNKNOWN_LIST)
CALL DISCARD_EMPTY_LIST(ROOT_LIST)

are used. The lists are actually lists of variables of data type DENSE _NLE_BOX,
with structure as follows:

TYPE DENSE_NLE_BOX
TYPE (INTERVAL), DIMENSION(:), POINTER:: X
INTEGER LEVEL
LOGICAL CONTAINS_APPROX_ROOT
DOUBLE PRECISION, DIMENSION(:), POINTER:: APPROX_ROOT
TYPE(INTERVAL), DIMENSION(:), POINTER :: RESIDUALS
LOGICAL UNKNOWN, CONTAINS_ROOT
LOGICAL, DIMENSION(:), POINTER:: CHANGED_COORDINATES
INTEGER, DIMENSION(:), POINTER :: CHANGED_COORDINATE_INDICES
INTEGER NUMBER_OF_CHANGED_COORDINATES

END TYPE DENSE_NLE_BOX

Within this structure,

X contains the box coordinates,

CONTAINS_APPROX_ROOT is set to “true” if the approximate root-finder con-
verged to a point within X,

APPROX_ROOT contains the coordinates of the approximate root, if one has been
found,

RESIDUALS contains interval function values F'(X), i.e. bounds on the range of
F over X.

UNKNOWN is set to “true” if uniqueness could not be proven, and is set to “false”
otherwise,

166 CHAPTER 4

CONTAINS_ROOT is set to “true” if existence was verified in the ¢-inflation pro-
cess, and is set to “false” otherwise.

Besides initialization, the module DENSE_NONLINEAR EQ_BOX_LIST contains the
following support functions, given generic names in the module GENERIC_LIST.
Here, L is of type DENSE NLE BOX_LIST, and B is of type DENSE_NLE_BOX.

SUBROUTINE INSERT(L, B) inserts the box B into the list L.
FUNCTION EMPTY(L) returns“true” if and only if L is empty.

SUBROUTINE REMOVE FIRST_ITEM(L,B) removes the first box from L and places
it in B.

SUBROUTINE GET FIRST_ITEM(L,B) places the first box from L into B without
removing it from L.

SUBROUTINE PRINT_LIST(L) prints the list L.

In using ROOTS_DELETE as a subroutine, the parameters that RUN_ROOTS_DELETE
normally inputs from the file ROOTSDL.CFG should be set. It is safest to use
RUN_ROOTS_DELETE as a template.

4.4.3 Installation

The driver RUN_.ROOTS_DELETE and the subroutine ROOTS_DELETE are available
with the entire package INTOPT_90, including INTLIB_90 and INTLIB, from the
FTP site
interval.usl.edu
in the directory
pub/interval math/Fortran 90_software/INTOPT_90
in the Unix compressed “tar” file
INTOPT90.tar.Z

When INTOPT90.tar.Zis uncompressed and extracted, the portable Fortran 90
code will be in the directories

access, augsys, default_solvers, examples, £f90intbi,
function, intlib.alt, iterate, linpack.alt, listops,
matrixop, overload, precond, splines, symbolic.

Verified Solution of Nonlinear Systems 167

There is an overall makefile, and there are makefiles for each directory. Op-
erating system-dependent commands, such as directory names, the command
for invoking the Fortran-90 compiler, etc., are singled out as variables. There
is a READ.ME file with installation instructions in the root directory.

The author should be consulted if it is necessary to obtain INTOPT_90 in another
form.

4.5 ALTERNATE ALGORITHMS AND
IMPROVEMENTS

The subroutine ROOTS_DELETE makes use only of the Cw-preconditioner, which
practical experience seems to indicate is the best general-purpose precondition-
er'4. It is not so clear when splitting preconditioners can be used effectively,
but the EM—preconditioner holds some promise. In particular, splitting precon-
ditioners should be effective for boxes that lie between roots. The heuristic
(4.1), used to decide if it is likely that a box contains a root, might be used
effectively in reverse. That is, an EM—preconditioner may be effective in proving
no roots in X{© whenever

min{|F;|, |F;|}/max{|E;], |Fil} < B, (4.4)

for some 8 between 0 and 1 (say, 8 = .25).

14 Also, we have an implementation of the simplex method, due to Manuel Novoa, that has
been optimized for width-optimal contraction preconditioner computations.

O

OPTIMIZATION

Here, the techniques explained so far will be used to construct solution algo-
rithms to Problem (1.3), that is, to the problem

Given ¢ : X = R and constraints
C(X) = (c1(X), . cm(X))T : R* 5 R™,

rigorously find upper and lower bounds to the values of ¢
that solve

minimize ¢(X)

subject to ¢;(X) = 0, i=1,...,m,
f.lf_ijﬁ Ti;, j=1;"'q_l-l’a
Ti; < Ti,‘a .7 =p+ la'“qa (13)

and, for each minimizer X* € X, find bounds a; <z} < b;
such that

m b —a;issmall,1<i<n,and

m it is mathematically but automatically proven that
there is a unique critical point of ¢ within each

X:{X:(a:l,...,a:n)|aiSxigbi,lgign}.

In Problem (1.3), inequality constraints ¢;(X) < 0, 1 < j < p may also be
included by adding slack variables: ¢4 ;(X) = ¢;(X) + Tnyj, Tne; > 0. Also,

170 CHAPTER 5

the box X = (x1,...,T,) defines an artificial limitation on the search region,
while z;, < z;; < T, represent actual bound constraints for a subset of the
coordinates. In fact, if actual bound constraints exist, it can be advantageous to
treat bound constraints separately from the inequality and equality constraints.

Many of the same tools as those in Chapter 4 can be used. In principle, global
optima can be found by computing roots of the Fritz John conditions pre-
sented in §5.2.5 below. (Such roots represent critical points of the constrained
problem.) However, merely finding critical points ignores much important ele-
mentary and available structure, namely rigorous bounds on the values of the
objective function ¢. In contrast to nonlinear equations algorithms such as
Algorithm 7 on page 146, global optimization algorithms benefit greatly from
ordering the list £ of boxes to be considered, and from deleting boxes X from
L for which a rigorous lower bound ¢(X) over X is greater than a rigorous

upper bound for an actually computed value qS(X). Inclusion of these and other
techniques makes a branch and bound algorithm for global optimization signif-
icantly more powerful and practical than nonlinear equations solvers applied to
the same problems.

A significant amount of work has already appeared in interval methods in global
optimization. The book by Ratschek and Rokne [191] gives an overview of the
basic techniques. The more recent book of Hansen [77] also gives a compre-
hensive overview, as well as descriptions of other innovative techniques of the
author. A number of researchers, including Hansen [77] and Ratz [194] have
developed computer codes for rigorous global optimization, and have reported
the results of numerical experiments, including, more recently, work on paral-
lelization. However, most such experimental work has reported only results for
unconstrained problems.

General techniques and work to date will first be reviewed in §5.1. Section 5.2
then describes methods for handling constraints, including some proposed new
techniques. The software available in INTOPT_90 is described in §5.3.

5.1 BACKGROUND AND HISTORICAL
ALGORITHMS

We begin by reviewing the overall structure in global search algorithms for
optimization.

Optimization 171

Algorithm 13 (Abstract Branch-and-Bound Pattern for Optimization)

INPUT: an initial box Xp.

OUTPUT: a list C of boxes that have been proven to contain critical points and a
list U of boxes with small objective function values, but which could not otherwise
be resolved.

1. Initialize a list of bozes L by placing the initial search region Xo in L.
2. DO WHILE £ # 0.

(a) Remove the first' box X from L;
(b) (Process X) Do one of the following:

u reject X;

m reduce the size of X;

u determine that X contains a unique critical point, then find the critical
point to high accuracy;

u subdivide X to make it more likely to succeed at rejecting, reducing, or
verifying uniqueness.

(¢) Insert one or more bozes derived from X onto £, U or C, depending on
the size of the resulting boz(es) from Step 2b and whether the (possible)
computational existence test in that step has determined a unique critical
point.

END DO

End Algorithm 13

Algorithm 13 represents a general description, and many details, such as stop-
ping criteria and tolerances, are absent. Such details differ in particular actual
algorithms.

A combination of several techniques is used in state-of-the-art interval global
optimization codes for Step 2b of Algorithm 13. Some of these techniques are
outlined as the following algorithm.

1The boxes in £ are in general inserted in a particular order, depending on the actual
algorithm.

172 CHAPTER 5

Algorithm 14 (Range Check and Critical Point Verification)
INPUT: a box X and a current rigorous upper bound ¢ on the global minimum.

OUTPUT: one or more boxes derived from X, or the information that X cannot
contain a global minimum, or information that X contains a critical point.

1. (Feasibility check; for constrained problems only)
(a) (Exit if infeasibility is proven) DO for i =1 to m:
i. Compute an enclosure c;(X) for the range of ¢; over X.
1. IF 0 & ¢;(X) THEN discard X and EXIT.
(b) Verify, if possible, that there exists at least one feasible point in X.

2. (Range check or “midpoint test”)
(a) Compute a lower bound ¢(X) on the range of ¢ over X.
(b) IF ¢(X) > ¢ THEN discard X and EXIT.

3. (Update the upper bound on the minimum.) IF the problem is unconstrained or
feastbility was proven in Step 1b, THEN

(a) Use interval arithmetic to compute an upper bound ¢(X) of the objective
function ¢ over X.

(b) ¢ + min{$, $(X)}.
4. (“monotonicity test”)
(a) Compute an enclosure V(X)) of the range of V¢ over X. (Note: If X is

“thin”, i.e. if some bound constraints are active over X, then a reduced
gradient can be used; see §5.2.8 and [113].)

(b) IF 0 ¢ V¢(X) THEN discard X and EXIT.

5. (“concavity test”) If the Hessian matriz® V3¢ cannot be positive definite any-
where in X THEN discard X and EXIT.

6. (Quadratic convergence and computational existence/uniqueness) Use an inter-
val Newton method® (with the Fritz John equations as in §5.2.5 in the constrained
case) to possibly do one or more of the following:

W reduce the size of X;
u discard X;
m verify that a unique critical point exists in X.
7. (Bisection or geometric tessellation) If Step 6 did not result in a sufficient change

in X, then bisect X along a coordinate direction (or otherwise tessellate X),
returning all resulting bozes for subsequent processing.

End Algorithm 14

2

or reduced Hessian matrix, as in Step 4
3possibly in a subspace, as in steps 4 and 5

Optimization 173

Since techniques for constrained problems are somewhat more involved, Step 1,
checking for infeasibility and verifying existence of a feasible point, will be
explained separately in §5.2.1.

Step 2 is called the “midpoint test” because the upper bound ¢ is often ob-
tained by evaluating ¢ at the midpoint vector of X, properly taking account
of rounding errors for rigor. Of course, Step 4 is called the “monotonicity test”
since ¢ is monotone in the i-th variable over X if the i-th component of V¢
does not vanish over X.

Improved techniques for carrying out Step 5, checking non-convexity, are desir-
able. Presently, sufficient conditions, such as checking the sign of the diagonal
entries of an interval evaluation V2¢(X), can be used. One method of verify-
ing convexity appears as Theorem 14.1 in [70] and Lemma 2.7.2 in [194]. Also,
Neumaier [177] has shown that every element matrix of an interval matrix A
is positive-definite, provided some point matrix A € A is positive definite and
A is regular. This result can be sharpened as follows.

Theorem 5.1 (Shi, [222, Appendix B|) Suppose A € IR™*" is an n by n
interval matriz. If A € A is symmetric, A has p negative eigenvalues, and A
is reqular, then every symmetric point matriz in A has p negative eigenvalues.

Theorem 5.1 allows a sharper concavity test.

5.1.1 Early and Simplified Algorithms

Early algorithms worked only with the list £, without lists &/ and C. Also,
although the processes in steps 2 through 6 of Algorithm 14 make actual imple-
mentations practical and efficient, they are not an essential part of the branch
and bound structure. In the early but well-known Moore-Skelboe algorithm,
only the list £ appears, and the boxes X € £ are ordered in order of increasing
¢(X). In Step 7 of Algorithm 14, X is bisected along the largest coordinate
direction, and both progeny are placed in order in £. Steps 2 through 6 of
Algorithm 14 are absent. When the algorithm is terminated, the first box in
the list is taken to approximate the global minimizer.

An algorithm attributed to Ichida [91] improves upon the Moore-Skelboe algo-
rithm by including the midpoint test (Step 2 of Algorithm 14) to avoid placing
boxes generated during bisection onto £ if they cannot contain optimizers.

174 CHAPTER 5

Additionally, the algorithm described in [91] contains a method for grouping
together clusters of boxes corresponding to particular minimizers.

Hansen’s algorithms, described in [74], [75] and [77] generally use second-order
information (Step 6 of Algorithm 14) and other sophisticated techniques. How-
ever an algorithm sometimes called “Hansen’s algorithm” is a simplified ver-
sion. In this simplified “Hansen’s algorithm,” £ is ordered not in terms of the
function, but in order of decreasing diameter (i.e. width of largest coordinate
interval) of the X. Furthermore, in the midpoint test, the entire list £ is culled
(and not just the boxes that have just been produced by bisection) whenever
anew ¢ is obtained. (In Hansen’s actual codes of the experiments in [77, 235],
the list is ordered such that the first box is the one with smallest lower bound
on ¢. Hansen and Walster, as well as others, claim this is much better than
ordering in terms of decreasing diameter.) Various modifications of the list
crdering, such as that in [194, §2.2.5.1], have appeared more recently.

None of these simplified methods employs interval-Newton acceleration.

Convergence properties of the Moore-Skelboe, Ichida and Hansen algorithms,
as well as some numerical experiments with Hansen’s algorithm, are analyzed
in [168].

5.1.2 Recent Practical Algorithms

More recent algorithms and practical implementations usually involve interval
Newton methods for computational existence and uniqueness of critical points
and for quadratic convergence properties. However, some successful newer al-
gorithms are derivative-free, and concentrate on use of approximate optimizers,
order in which the list is searched, properties of the inclusion function, or par-
allelization.

A thorough exposition of background, starting with the elements of interval
arithmetic, and of numerous techniques for interval unconstrained optimization,
along with a substantial number of careful numerical experiments, appears in
Ratz’s dissertation [194]. Some of these ideas are implemented in the Pascal-
XSC code described in [70].

Ratz, continuing development of his algorithms, has concentrated on better
choice of coordinate in the bisection process of Step 7 of Algorithm 14, and on
splitting strategies, cf. [196, 197]. Regarding bisection strategies, Ratz claims

Optimization 175

better success when choosing the coordinate to bisect according to the scaling
[Ve(X)|w(X - X), (5.1)

rather than merely bisecting along the longest coordinate direction of X; cf.
[194], pp. 4142, [199], or and [46]. Convergence of generalized bisection based
global optimization algorithms with this coordinate selection strategy is also
proven in [46]. This scheme is essentially the maximum smear scheme of Def-
inition 4.2 on page 157, applied to the objective function rather than to the
gradient and Hessian. Box splitting is a process, first discussed by Hansen in
relation to the interval Gauss—Seidel method, by which extended interval arith-
metic in the sense of Kahan and Ratz is used to obtain two disjoint boxes. If
applied wherever possible, too many boxes are produced, thus slowing the over-
all branch and bound algorithm. Coordinate choice in bisection, box-splitting
strategies, and the ordering in the list £ can be crucial in an overall global
optimization algorithm.

Hansen’s book [77] provides an informal description of many techniques and
heuristics for use in global optimization algorithms. Many examples are given,
although results of numerical experiments appear only for unconstrained prob-
lems.

In [113], experimental results are reported for a FORTRAN-77 code containing
techniques for the monotonicity test and iteration/verification, as well as use
of a local optimization process for computing ¢ (“midpoint test ”). The op-
timal LP-preconditioners of §3.2, as well as a technique for handling bound
constraints through the tessellation, are studied there?.

In [97], Jansson and Kniippel have presented a method without derivatives (no
gradient test or interval Newton method), but with an interacting use of bisec-
tion and local optimization. In particular, a local optimization (to obtain an
approximate optimizer) is performed at certain stages of the process, and the
results are used to update ¢. Though heuristic, the algorithm performs well
on many reasonably complicated functions, including non-differentiable ones,
such as maximizing the smallest singular value of a matrix. The report [99]
contains a collection of test examples, along with numerical results and three-
dimensional graphs of those (numerous) test problems that are two-variable
functions. Jansson [98, §2.5] proposes a variant in which derivatives are used
only in an interval Newton method to verify and sharpen bounds for approxi-
mate optima. This variant is carefully tested on forty test problems in [99].

4The latter two techniques are more fully explored in [194].

176 CHAPTER 5

In [28] Caprani, Godthaab, and Madsen also propose® use of an approximate
minimizer obtained through a local method with floating point arithmetic. In
their algorithm, an approximate local minimizer is found, then a box X is
constructed about this minimizer. An interval Newton method is then applied
to X to determine existence or uniqueness of a critical point. If existence can
be proven, X is expanded as much as possible, subject to success of the interval
Newton method in verifying uniqueness, then X is removed from the region
by cutting the complement of X into remaining boxes to be processed. The
minimizer-inflation technique is related to e-inflation of §4.2 (page 150). It
is illustrated in [28] that the Caprani/Godthaab/Madsen method parallelizes
well.

In [166], basic algorithms for non-differentiable and differentiable objective
functions are reviewed, then a coarse-grained algorithm for optimization on
a distributed-memory multicomputer, implemented on a distributed system of
workstations, is explained. In this algorithm, each processor shares a portion
of the list £. The load is dynamically balanced as the computations proceed.
The algorithm was programmed in C++, based on.a system for interval arith-
metic developed by Leclerc. An encapsulated explanation appears in [152]. The
numerical experiments feature a very difficult parameter-fitting problem.

In [55] and [56], Eriksson et al. also study parallelization of an unconstrained
global optimization algorithm, implemented on an Intel hypercube. Various
load balancing strategies are compared on a set of six test problems, one of
which was designed specifically to test different parallelization schemes.

Berner [20] improves on parallel load balancing schemes of Madsen, Eriksson,
and Moore/Hansen/Leclerc. She also uses a variant of “bisection” in which the
two largest coordinate directions according to the scaling (5.1) are bisected,
thus producing four boxes rather than two. This technique (also mentioned in
a more general form in [77]) may be especially advantageous in parallel algo-
rithms, since the additional boxes can be more rapidly analyzed by otherwise
idle processors. Along these lines, Csallner [44] claims, based on experimen-
tation with a serial algorithm, that trisection in a single coordinate direction
is better than bisection, since it produces two disconnected regions, where the
objective function behaves differently, and which non-sharp interval extensions
can distinguish.

5The idea of using a local minimizer appears to go back to [29], where Caprani and
Madsen cite the formulation of Wilkinson from [241]: “In general it is the best in algebraic
computations to leave the use of interval arithmetic as late as possible so that it effectively
becomes an a posteriori weapon.”

Optimization 177

Method / Midpoint Monotonicity Concavity Interval Paralleli- Use of Local Ref.
Authors Test Test Test Newton zation Minimizer
Moore [[165] and
Skelboe (224}
Ichida yes B
“Hansen’s yes, and (o1
algorithm” to cull list
Hansen’s yes yes yes yes 1771
actual
Kearfott 92 yes yes yes yes [1x8]
Ratz yes yes yes yes yes {194] and
[70}
Jansson / yes yes yes yes 99
Kniippel
Caprani / 28]
Godthaab / yes yea yes yes
Madsen
Hansen / : subject [166]
Moore [yes yes yes yes of study
Leclerc
Eriksson yes yes yes subject 156]
of study
Wolfe yes yes yes [242]
Berner yes yea subject yes {20]
of atudy

Table 5.1 Summary attributes of various global optimization algorithms

Theoretical and empirical consequences of the order of the interval extension
used to obtain ¢(X) are studied in [52] and [125]. However, exhaustive studies
on a practical algorithm do not appear there.

Some (but not all) of the attributes of the algorithms in this section and in
§5.1.1 are summarized in Table 5.1. Here, the label “Kearfott ’92” refers to the
code of [113]. “Hansen’s actual” is used to denote the most recent algorithms
of Hansen, described in [77] and forming the basis of the work in [166] and
[152]. Blank spaces in the table indicate that the feature is not present.

5.2 HANDLING CONSTRAINTS

The book [191] contains an explanation of fundamental interval means of han-
dling inequality constraints, while [77] discusses at length many interval tech-
niques for both inequality and equality constraints. However, few numerical
results using these techniques (excepting those in [115]) have been published.
(See Table 5.2 on the next page. There, blank spaces mean the feature is
absent.)

178 CHAPTER 5

Method / Bound Inequality Equality Second Use of approx. Numerical
Authors Constraints Constraints Constraints Order minimizer Experiments
“Hansen’s” unconstrained
Hansen's (as equality yes yes yes unconstrained
book constraints) only
Opt. ’92 yes yes yes
Ratz yes yes
Jansson / yes variant yes unconstrained
Kniippel in [98, §2.5} only
Caprani / yes unconstrained
Godthaab /
Madsen
Hansgen / unconstrained
Moore [only
Leclerc
Eriksson unconstrained
Wolfe yes yes yes yes

Table 5.2 Summary of handling of constraints in various global optimization
algorithms

Handling of simple bound constraints through the tessellation process has been
explored in [113] and [194]. In general, the computational effort for such tessel-
lation techniques increases exponentially with the number of bound constraints,
but the computation times could remain reasonable for many specific problems.
However, bound-constrained problems are intrinsically hard [183]. Although
bound constraints can be handled as inequality constraints (as in [77]), it is
unclear without published experimentation how such algorithms behave: it is
possible that large numbers of small boxes, clustered on the boundaries of the
constraints, are produced through the n-dimensional tessellation.

Alternately, inequality constraints can be handled as bound constraints by in-
troduction of slack variables.

We elaborate on these concepts in the remainder of this section.

5.2.1 Checking Feasibility /Infeasibility

The following computations may be done with the constraints:

m using the constraints to delete portions of a region X that are infeasible;
m proving feasibility or infeasibility of inequality constraints;

m proving feasibility or infeasibility of equality constraints.

Optimization 179

These possibilities are discussed in the remainder of this section.

In [77, §11.6], Hansen proposes heuristics for using inequality constraints to
delete portions of a box X that cannot be feasible. Alternately, if the in-
equality constraints are converted into equality constraints first, the optimal
preconditioner techniques of [111] and [126] in conjunction with the interval
Gauss—-Seidel method or interval Gaussian elimination may be used directly on
the underdetermined m by n system of constraints. The latter provides a cer-
tain theoretical optimality not present in the heuristics of [77], with a smaller
system than with the entire Fritz John system; this appears in [115]. However,
experiments in [115] indicate that the scheme described in §5.2.4 is usually
better.

An algorithm for constructing large boxes within which inequality constraints of
the form g(z) < 0 are rigorously verified appears in [144], along with numerical
experimentation. We have not included this algorithm in our tables, however,
since it is not a general global search algorithm, but a method of dealing with
constraints.

As indicated in Step la of Algorithm 14, an elementary check for infeasibility
of an entire box X with respect to the equality constraints ¢; is to verify that
0 & ¢;(X) for some 3. There is a corresponding check if an inequality constraint
d(z) < 0 is used: the region is infeasible if simply d(X) > 0. Similarly, if only
inequality constraints of the form d; < 0 are present, feasibility is proven if
d;(X) < 0 for each i. In this case, Hansen calls the region certainly feasible.
An alternate method of proving infeasibility for a system of equality constraints
is discussed in §5.6.

On the other hand, proving feasibility for problems with equality constraints
¢;(z) = 0 (like problem (1.3)), although necessary to get useful rigorous upper
bounds ¢ on the global minimum, is more difficult. In [242], Wolfe proposes an
algorithm, based on a penalty function, for handling equality constraints. How-
ever, that algorithm considers feasibility to be rigorously proven only provided
¢i(z) € [e,€] for each ¢ and some fixed e.

In contrast, in a method proposed in Hansen [77, §12.3 ff] and investigated in
[115], existence of a point in a box X in which the constraints C(X) = 0 are
simultaneously satisfied is rigorously proven. See [115, 116] and §5.2.4 below.

180 CHAPTER 5

5.2.2 On Equality, Inequality and Bound
Constraints

The book [191] poses the optimization problem analogous to problem (1.3) with
both equality constraints ¢;{(z) = 0 and inequality constraints d;(z) < 0, while
[77] contains separate chapters on inequality constrained problems and equality
constrained problems. At first glance, inequality constrained problems seem
easier than equality-constrained ones. This is because feasibility can sometimes
be proven without use of an interval Newton method: We merely bound the
range of each d; using interval arithmetic, then check that the upper bounds so
obtained are all negative, i.e. we check d;(X) < 0 for each j. Also, besides the
more sophisticated technique in [77, §11.6], similar verification that d;(X) > 0
for each j proves infeasibility over all of X, allowing X to be eliminated from
the global search region. Such téchniques should probably be used in practical
algorithms as additional tools to verify feasibility and to eliminate subregions.
However, in such analyses, it is ignored that the inequality constraints can be
active, that is, that they are in effect equality constraints.

Various theoretical results have been published in recent years showing that
global optimization problems containing inequality constraints are NP-complete
in the number of constraints. For example, it is shown in [183] that quadratic
programming problems with one negative eigenvalue are NP-complete.

The possibility that computational effort can increase exponentially in the num-
ber of constraints becomes apparent if we examine the algorithm for bound-
constrained problems in [113], reviewed in §5.2.3 below. However, as explained
in §5.2.3, it is possible for heuristics to reduce the running time for specific
problems to less than that predicted by the exponential worst-case bounds,
without compromising rigor.

5.2.3 Bound Constraints

In [113] and here, the bound constraints z;, < zi; <T;; are handled by separat-
ing the region into all possible subregions of lower dimensions, as is illustrated
in Figure 5.1 for n = 2. These subregions are placed on the list £ and pro-
cessed as usual, except that reduced gradients and reduced Hessian matrices®
are used in the interval Newton method on lower-dimensional regions. If all
boxes are stored in £, it is not difficult to see that the total number of boxes of

6i.e. with rows and columns corresponding to variables held fixed deleted

Optimization 181

2, 8 5
3 9 6
Figure 5.1 “Peeling” a box
to produce lower-dimensional
boundary elements
L L
1 7 4

There are 1 box in Rz, 4 boxes in]Rl,
and 4 boxes in R?.

all dimensions so obtained is 37, where p is the number of bound constraints.
However, if a good upper bound ¢ on the global minimum (as can sometimes
be obtained with conventional algorithms such as that of [35]) is available, then
many of the boxes can be rejected during the “peeling” process.

The structure of the algorithm for producing the list of lower-dimensional boxes
can be described simply in recursive form, as follows.

Algorithm 15 (“Peeling” the Boundary)
INPUT: The box X.

OUTPUT: A list £ of boxes consisting of X and the lower-dimensional boundary
elements of X.

1.ie1, L0
2. IF i ¢ T THEN

(a) (Process the lower boundary box.)
. Set all coordinates of X but the i-th to corresponding coordinates of
X. Set the i-th coordinate of X to z,.
1. Set the index list Tnew to T with i appended.
9. [Fi=n
THEN store X in L.

ELSE ezecute Step 2 with i + 1, X, and Tnew replacing i, X, and
Z, respectively.

182

CHAPTER 5

END IF
(b) (Process the upper boundary box.)
i. Set all coordinates of X but the i-th to corresponding coordinates of
X. Set the i-th coordinate of X to T;.
1. Set the indez list Inew to I with ¢ appended.
wi. IFi=n
THEN store X in L.
ELSE ezecute Step 2 with i +1, X, and Inew replacing i, X, and
Z, respectively.
END IF
(c) (Process the interior box.)

i Set X to X.
7. Set the index list Inew to I with ¢ appended.
gi. IFi=n
THEN store X in L.
ELSE ezecute Step 2 with i + 1, X, and Tnew replacing i, X, and
Z, respectively.
END IF

END IF

End Algorithm 15

The numbering of the nine boxes of dimensions 2, 1, and 0 in Figure 5.1 repre-
sents the order they would appear in £ if each box generated with ¢ = n in steps
2(a)iii, 2(b)iii, and 2(c)iii of Algorithm 15 were stored. The processing order in
Algorithm 15 can be viewed as traversing a ternary tree, as in Figure 5.2. The
levels of this tree correspond to the coordinates ¢, with the root at ¢ = 1 at the
top and the leaves at 1 = n at the bottom. As drawn in Figure 5.2, the order
the leaves eventually appear in £ is from left to right.

Of course, actual implementations of Algorithm 15 have additional steps to

eliminate the boxes X and X before further processing or storage in £ by
checking ¢(X) or ¢(X) and the reduced gradient of ¢ on X or X;

skip coordinates i for which the bounds a; < x; < b; represent the extent
of the search region, and not actual bound constraints for the problem.

Optimization 183

(lay,b1], [a2, b2])

(a1, [az2, b2]) (b1, [az, b2]) ([a1,b1], [a2, b2])

s
(a1,a2) T (a1, [ag, ba]) T (b1,82) T ([a1,b1)sa2) T(["'l,bl]v[”’2vb2])
(a17b2) (b17a2) (bli[”'2)b2]) ([alvbll)ib2)

@ 2 B @ 6B 6 @O B M

Figure 5.2 “Peeling” the box into lower-dimensional boundary elements

These steps have been left out of the presentation of Algorithm 15 for clarity
in explaining the geometric process. However, they could be indispensable in
reducing the number of boxes in £ to a practical number. Observe that such
steps can prune the tree in Figure 5.2 at a high level.

In [194, §2.6.3], Ratz proposes an alternative technique to avoid the possi-
ble exponential expansion in the number of boxes in £ when the boundary
is “peeled.” In Ratz’ scheme, portions of the boundary are put onto £ only
when a reduced interval Newton method rejects a boundary segment as
a possibility. Ratz’ algorithm is similar to the following algorithm.

Algorithm 16 (Handling the Boundary with an Interval Newton method)

INPUT:

1. The box X, p of whose coordinates x;, , ..., z;, correspond
to intervals, and whose other coordinates correspond to
active bound constraints;

2. The present list £ of boxes to be processed.

184 CHAPTER 5

OUTPUT:
1. An altered box X
2. An altered list L.

DO forj=1top.

1. Perform an interval Gauss-Seidel step” for the i; coordinate z;; of X, obtaining
Z;;.

2. IF gz, corresponds to an active bound constraint and Z;; > z,,
THEN i

(a) Form a boz dey whose i-th coordinate is &; for i # i; and whose i;-th
coordinate 1s zZ;, -

(b) Place dey onto L.
END IF

3. IF i, corresponds to an active bound constraint and Z;; > T;
THEN

(a) Form a boz dey whose i-th coordinate is &; for i # t; and whose i;-th
coordinate is Ti; .

(b) Place dey onto L.
END IF

END DO

End Algorithm 16

The structure of a bound-constrained optimization code that includes Algo-
rithm 16 would be identical to that of an optimization code without bound
constraints. The only difference would be that the interval Newton step would
be replaced by Algorithm 16. Algorithm 16 holds promise of producing less
boxes in £ than the peeling process of Algorithm 15, but its practicality needs
to be verified empirically. In particular, Algorithm 15 evaluates the objective
function on many lower-dimensional parts of the boundary early in the branch
and bound process; this may result in a better estimate for the global optimum,
and hence in faster elimination of subsequent boxes that do not contain optima.

7If there are no equality constraints, the underlying system will correspond to the reduced
gradient system V¢, = 0, that is, the gradient of the system with respect to the p coordinates
that are held fixed. If equality constraints are included, the system will be a corresponding
reduced Fritz—John system, as in Equation (5.3) below.

Optimization 185

5.2.4 Feasibility of Equality Constraints in
Bound-Constrained Problems

In unconstrained and bound constrained problems, an upper bound ¢ of the
objective function over a box X can be obtained with an interval evaluation
¢(X). However, ¢(X) provides an upper bound in equality constrained prob-
lems, that is, in Problem (1.3) with m > 0, only if the points in X satisfy the
bound constraints and X contains a point X with C(X) = 0. This section is
devoted to techniques for proving this, i.e. to solve the following problem:

Given an approximate feasible point X € R"® for Prob-
lem (1.3), construct bounds

X ={(x1,....,2n)T €R" | & — ; <1 < &i + €}
(5.2)
such that there exists at least one feasible point of Prob-
lem (1.3) in X, ie. a point X € X with C(X) = 0,
such that X also satisfies the bound constraints of Prob-
lem (1.3).

Systems of equality constraints C'(X) =0, C : R®* — R™ are typically underde-
termined, with m < n. In[77, §12.3 fI.], Hansen suggests holding (n —m) of the
coordinates fixed. The basic idea is to choose to be held fixed those coordinates
to which the system is least sensitive. For example, if n = 2 and there is just
one constraint (i.e. m = 1), then C(X) = 0 is a curve in R?, and an interval
Newton method can prove the existence of a feasible point along a line parallel
to one of the coordinate directions; see Figure 5.3 (next page). Heuristics for
choosing which coordinates to hold fixed can depend on the constraint matrix
VC(X) (and corresponding interval extensions or slope matrices). See page 187
below.

It is not unusual for the opposite problem to occur when there are many active
bound constraints. In particular, it often happens that many bound constraints
are active at the optimizers. This is also true of inequality-constrained prob-
lems, which we convert to equality- and bound-constrained problems (§5.2.2).
An extreme case of many active bound constraints is linear programming, in
which, barring degeneracy, a maximal number of constraints must be active at
optimizers.

Thus, to get a good upper bound &, a local optimizer is used to obtain an
approximate feasible point X that lies near or on many bound constraints.

186 CHAPTER 5

This point is proven
to exist.

Center of box
First coordinate is held

fixed at center of box.

\

Second coordinate varies.

l— — — — — —§— —

Figure 5.3 Proving that there exists a feasible point of an underdetermined
constraint system

Active bound constraint

interval Newton image
1

b's

c(X)=0

Figure 5.4 Proving existence in a reduced space when the approximate fea-
sible point satisfies bound constraints

Optimization 187

Both bound con-
gtraints are active.

/ \ Figure 5.5 A common de-
e(X)=0 generate case, when X must
be perturbed

If a box X (in which a feasible point X will be proven to exist) is to then be
constructed about the approximate feasible point X and lying within the region
defined by the bound constraints, then X must be near the boundary of X.
If there are sufficient degrees of freedom left when the variables corresponding
to bound constraints are held fixed, then the interval Newton method can be
applied in a subspace. See Figure 5.4, as well as Example 5.2 on page 191
below.

Surprisingly, the degenerate case, illustrated for n = 2 and m = 1 in Figure 5.5,
is common®. That is, the manifold C(X) = 0 can lie near a corner of X, and
the techniques embodied in Algorithm 17 below may fail to prove that a feasible
point exists in X. This is because the image of the interval Newton method
tends to be centered at a solution of F/(X) = 0, and if the solution is near the
boundary of X, the image N (F; X, X) may overlap with points outside X. If
X lies on a corner of X (i.e. if too many bound constraints are active), then X
can be perturbed into the interior of the bounds, and the resulting point can
somehow be projected back onto the manifold C(X) = 0, for example by using
local optimization software in a hyperplane parallel to the bound constraints.
Some details of these techniques are explained on page 191 below.

Underdetermined systems

To prove existence of a feasible point of C(X) =0, C : R* - R™, m < n,
within a box X € IR", Hansen proposed a technique [77, §12.3-§12.6] of holding
n — m of the variables held fixed. This general technique was investigated
numerically in [115], with additional details in [116]. The following general
algorithm encompasses Hansen’s proposed feasibility verification methods and
the variants in [115, 116]. The variants differ in how the variables to be held
fixed are chosen, i.e. in the details of Step 2.

8in the experiments reported in [115], with problems from [58]

188 CHAPTER 5

Algorithm 17 (Prove that a point within a small box satisfies equality constraints.)

INPUT: an approximation X to a feasible point, obtained through a conventional
local constrained optimization algorithm such as that of [35], and a tolerance e.

OUTPUT: Either:
1. “failure”, or
2. “success”, and a box X of distance at most ¢ from X (i.e.

(1X = X||oo <eforevery X € X)), such that there exists a
point X € X such that C(X) = 0.

1. Let C(X) = (c1(X),...,ca(X))T and VC(X) represent the equality constraints
and Jacobi matriz of the equality constraints, respectively (C : R* —» R™).

2. Choose coordinates {pr}i—, to be varied in the interval Newton method in such

a way that the resulting system is likely to be nonsingular.

3. Evaluate C(X) and A, whem A is either a szschztz matriz or a slope ma-
triz for C over X where X has coordinates T, = &; if i # px for any k and
T = [— € i + e] for ¢ = py for some €. That is, construct & box in an m-
dimensional sybspace that is, in a sense, most nearly perpendicular to the null
space of VC(X).

4. Apply an interval Newton method to the square m-dimensional system of equa-
tions C(X) = O obtained by identifying the variables in the ezpressions for C
with indices {px}i=1 as variables, and viewing the other variables as constant.
Call the image X.

5. FXCX,

THEN return “success” and X.
ELSE return “faslure”.

End Algorithm 17

Experiments on this algorithm are reported in [115]. The general conclusions
are that Algorithm 17 is effective, and that Step 2 is effective, provided a good
approximation to a feasible point is centered in a box whose center is at X. For
a detailed explanation and additional illustrations, see [116].

The experiments reported in [115] also indicate that Hansen’s way of choosing
the coordinates to be held fixed leads to more reliable results than several
alternatives. Hansen’s technique is as follows:

Optimization 189

Algorithm 18 (Hansen’s technique for choosing the fixed coordinates in Algorithm 17
INPUT: The matrix A from Step 3 of Algorithm 17.

OUTPUT: n — m coordinate indices to be held fixed.

1. Compute the midpoint matriz A € R™*" of A.

2. Perform Gaussian elimination with complete pivoting on the rectangular matriz
A.

3. Choose the original indices of the columns of A that have been permuted into
the last n — m columns during the elimination process to be the indices of those
variables to be held fized (i.e. to be replaced by points) in the interval Newton
method.

End Algorithm 18

Alternate choices of coordinates to that of Algorithm 18 are described in [115,
116].

A more general alternative is also described in [115, 116]. In this alternative, an
n-dimensional box X is first constructed about an approximate feasible point
X. A CW-preconditioner or CM-preconditioner (as in §3.2) is then computed
for each row of the m by n interval linear system

AX - X) = -C(X)

while applying steps of the interval Gauss—Seidel method successively to each
of the n coordinates of the box X, thus obtaining an image X. If &; C x;
for m coordinates {i1,...,im}, then, for each choice of the z; € z;, j &
{il, .. .,im}, there is a unique solution to C(X) = 0 within X. Figure 5.6
illustrates this process for n = 2 and m = 1. In Figure 5.6, we imagine that
a CW-preconditioner or CM-preconditioner has been applied to obtain first
&) C x; and then &; D x2. The smallest possible #;, based on how the
curve ¢(X) = 0 intersects X, is illustrated in Figure 5.6 (next page) with the
broken vertical lines. The computation represented in Figure 5.6 shows that,
for every xo € xo, there is an x; € &, such that ¢(X) = ¢(z1,22) = 0. This
is a stronger statement than that provided by Algorithm 17. However, both
coordinates are intervals in evaluating the matrix A for the interval Newton
iteration. In contrast, only one coordinate in the expressions in the matrix
for the interval Newton iteration in Algorithm 17 would be an interval. Thus,
interval overestimation is less of a problem in Algorithm 17, and Algorithm 17 is

190 CHAPTER 5

Maximum possible !
contraction is to here.
(first coordinate of X)

Center of X

Figure 5.6 Geometry of a feasibility proof with LP preconditioners

more likely to give a positive result than preconditioning the entire rectangular
system. For details, see [115, 116].

Example 5.1 Consider
minimize §(X) = —(z1+ 12)°
subject to c¢(X)

T2 + 2z, =0,

and no bound constraints, and with approximate feasible point X = (—i, %)T

To use Algorithm 17 and Algorithm 18 on Example 5.1, first observe that
VC = (42,1)T. Therefore, Algorithm 18 states that 5 should be held fixed
at o = % Thus, to prove existence of a feasible point in a neighborhood of X,
an interval Newton method can be applied to f(z;) = ¢(21,0.5) = 0.5 — 2z;.
We may choose initial interval ; = [-0.25 — ¢,—0.25 + €] with € = 0.1, to
obtain

T [-.35, —.15],

~ 0

[—0.25, —0.25] C @1,

Optimization 191

This computation proves that, for xo = 0.5, there is a feasible point of Exam-
ple 5.1 for z; € [-0.25,-0.25].

To use the interval Gauss—Seidel method in the entire space to prove existence
of a feasible point in Example 5.1, first observe that, since m = 1, all precondi-
tioners are equivalent. Let’s start with initial box X = X + ([—¢, €], [—¢, €))7,
e =0.1,ie X = ([~0.35,-0.15],[0.4,0.6])7. We then compute &; according
to Equation 1.44, (with Y =1):

£ = -025-{0+1[-.1,.1]}/(-2)
= —0.25 +[-0.05,0.05]
= [-0.3,-0.2] C [-0.35, -0.25] = =,

This computation proves that, for every choice of o € [0.4,0.6], there is a
feasible point of Example 5.1 in the interval &, = [-0.3,-0.2].

Working directly with the rectangular system is applicable, with optimal pre-
conditioning, for general n and m < n. It is related to the continuation method
process developed in [130]. However, holding some coordinates fixed and work-
ing in a reduced space appears to succeed more often [115].

Overdetermined Systems — Many Active Bound
Constraints
As mentioned on page 187 and in Figure 5.4, if some bound constraints are

active at the approximate feasible point X, it may be possible to work in a
reduced space.

Example 5.2 Consider

minimize ¢(X) = -— ("3% + "3%)
subject to ¢(X) = =z —4z? =0,
-1 < <1,
-1 < =z <1,

and with approximate feasible point X = (0.499, l)T.

In Example 5.2, the bound constraint z, < 1 is active, so an interval Newton
method can be applied in a one-dimensional subspace. In particular, to prove

192 CHAPTER 5

the existence of a feasible point in a neighborhood of X, an interval Newton
method may be applied to f(z1) = c¢(z1,1) = 1 — 4x%. Using initial box

[3 —e,%+e]T with € = 0.1, we obtain 4

z, = [.399,.599],
3.996 x 1073

5, = .499_ 22X 1Y

o % -~ 51399, 599]

C 499 +[8.338 x 107 *,1.252 x 107?]
C [.4998,.5003] C ;.

This computation proves that there exists a feasible point of the problem in
Example 5.2 for z; = 1 and within the box & = [.4998, .5003].

However, degenerate cases as illustrated in Figure 5.5 do occur [115]. The
following simple example illustrates the phenomenon.

Example 5.3 Consider

minimize ¢(X) = —(4a% + 25+ 423)
subject to: (X)) = 22 +xi+23-3=0,
ar) = 22+x-23-1=0,
-1< =, <1,
0< 22 <2
-1< =z3 <1,

with X = (1,1,1)7.

The point X corresponds to one of two global optimizers within the box defined
by the bound constraints. However, two bound constraints (corresponding
to z1 and x3) are active at X, and the image of a two-dimensional interval
Newton method obtained by holding either x; or x3 fixed will contain points
that violate the bound constraints. (See Exercise 2.) However, if we perturb
z1, by £1 =1 - 0.1 = 0.9, then solve the constraint system

09°+22+22-3 = 0,
09 +zp—23-1 = 0,

we obtain the approximate feasible point (.9,1.1095,.9589)7. We may then
hold z; fixed, and apply an interval Newton method to the above system, with

Optimization 193

X = (2, 23)T = ([190895, 1.1195], [0.9489, 0.9689])7
F(X) = (fi(x2,x3), f2(x2,73))T = (0.92 + 22 + 23 — 3,0.9% + 5 — 22 — 1)7,

to verify that a feasible point exists for z; = 0.9, z2 € [1.1095,11096], =3 €
[0.9589, 0.95893] (Exercise 2).

The following procedure was found to be reliable [116] at perturbing points
away from bound constraints, in cases such as Example 5.3.

Algorithm 19 (Move coordinates off their bound constraints one at a time.)
INPUT: A domain tolerance ¢4, the approximate feasible point X, and the bound
constraints.

OUTPUT: Either:

1. “success” and a new X enough of whose coordinates do not
lie on bound constraints, so existence of a feasible point
can be proven, or

2. “failure.”

1. Let n, be the dimension of the reduced space, i.e. let n, be the number of coor-
dinates of X that do not lie on their bound constraints. Also let {i;};_['" be the

=1
coordinate indices of X corresponding to active bound constraints.
2.DOj=1ton—n,.

IF %;, is on its bound coordinate, THEN
(¢) Replace &;; by &:; + 8, where § = max{|%;|, 1}+/€q if :; was on its
lower bound and 6 = — max{|;,|,1}\/ea if £i; was on its upper bound.

(b) If ;; was originally on its lower bound, redefine the lower bound for
the correction step to be the perturbed value of &;,. Similarly redefine
the upper bound if Z;; was originally on its upper bound.

(c) (Correction Step) Run the local bound-constrained optimizer, using the
temporary bound constraints defined in step 2b to obtain a new X.

(d) Recompute which bound constraints are active, possibly projecting onto
bound constraints if coordinates of the new point are within a tolerance
of a boundary; oblain a new reduced dimension n,.

(e) IF n, > m THEN EXITwith success.
END IF
END DO
3. IF n, < m THEN EXIT with failure.
End Algorithm 19

194 CHAPTER 5

After successful completion of Algorithm 19, a box whose coordinates are cen-
tered on coordinates of X and whose semi-widths are on the order of ¢4 can
be constructed in the reduced space of n, coordinates not on the bound con-
straints. An interval Newton method applied over this box should then lead to
verification of existence of a feasible point.

One may think that the system of Fritz John equations described in §5.2.5
could handle bound constraints directly and easily. However, interval Jacobi
matrices and slope extensions over regions that contain limits on many bound
constraints often contain singular matrices.

Infeasibility of Systems of Equality Constraints

An elementary way of showing C'(X) = 0 is infeasible over X is to compute an
interval evaluation and verify 0 ¢ C(X). However, the same preconditioning
technique described on page 189 to verify existence of feasible points could also
be used to verify non-existence. The process is even valid when there are more
constraints than variables.

Example 5.4 Consider the system of constraints

CI(X) = :1:1—:1:2=0
Cz(X) = 21 +22=0
cs(X) = (r1+01)2+23-1=0

over the box X = ([0,1],[-1,1])7.

The exact range is C*(X) = ([-1,1],[0,2],[-0.99,1.21])7, so interval eval-
uations cannot prove infeasibility. However, an E™-preconditioner or other
preconditioner can verify infeasibility here. In fact, if X = (0,0)7, an slope

matrix for C is
1 -1
s(C,X,X):(1 1)
[0.2,1.2] 1

and the interval Newton system is

(i =0-(2):

Optimization 195

If the preconditioner row Y7 = [0 — 1,1] is used, the resulting equation is
(0.8, —0.2]z;, = —1,

whence z; € &; = [1.25,5]. Since &, Nx; = 0, this computation proves that
there are no feasible points X, C(X) =0in X.

5.2.5 The Fritz John Conditions

In certain circumstances, we wish to simultaneously verify feasibility and local
optimality. For instance, a conventional floating point constrained optimizer
may have been used to obtain an approximate global optimum X. We may
then wish to verify uniqueness of a critical point in as large a box X as pos-
sible about X, so that X may be excluded from further consideration in the
exhaustive search®. In other cases, we wish to use interval Newton iteration
to eliminate boxes X with X N N(F; X, X) = 0. In these cases, the system
of equations to be used in the interval Newton method must therefore embody
the necessary conditions for constrained optima. Such general conditions, not
requiring “constraint qualification” assumptions, are the Fritz John conditions.

The Fritz John conditions have been advocated by Hansen et al. in [77] and [79)].
Their use is thoroughly explained in those works, although empirical results are
lacking. Here, we present and discuss first a variant we have found good, then
a full variant that includes the bound constraints. That is, we give the function
F and derivative matrix VF corresponding to the Fritz John conditions for our
formulation in Equation (1.3).

The variables in our system are X = (z1,...,2n), V = (v1,...,0m), and uq,
for a total of n + m + 1 variables. We will write W = (X, up, V). The function
corresponding to the gradient of the Lagrange function is:

uVe(X) + Y 1 viVei(X)
c1(X)
F(W) = : =0, (5.3)
Cm (X)
("°+Z:7‘=1"?) -1
The v; are unconstrained and represent Lagrange multipliers for the equality
constraints ¢; = 0. The last equation is a normalization condition.

By not including the bound constraints z;;, < z;; and z;; < T;; in this func-
tion, we reduce the size of the system by g. Furthermore, it is more flexible to

9This is done in the unconstrained case in [28] and for general nonlinear systems in [114].

196 CHAPTER 5

include the bound constraints through the process reviewed in §5.2.3. Thus,
Equation (5.3) is applicable for points X when none of the bound constraints
are active. When one or more bound constraints are active, an analogue of
Equation (5.3) in the appropriate lower-dimensional subspace is used. The
technique also avoids singularities in the Jacobi matrix of the Fritz—John func-
tion that often occur when bound constraints are included.

The Jacobi matrix of F', used to form the matrix A for interval Newton meth-
ods, is:

ugV3p(X) + 37 5 V%ei(X) | V(X) | Ver(X) ... Vem(X)
(Ve (X)T 0 0 .. 0
H(W) = . (5.4)
(Vem (XNT 0 0 ... 0
0 1 21y . 2Um

The last equation in (5.3) is a normalization condition that can be chosen in
various ways. In particular, Hansen and Walster [79] recommend that it be

chosen as
m
(uo +> w11+ e,}) ~1, (5.5)
i=1

where € is on the order of the computational precision. If this is done, the last
row of the matrix H in (5.4) becomes

(o|1|m1+d ..o m1+4). (5.6)

If Hansen slopes (of §1.3.2 on page 30) are then used to compute an interval
analogue of the matrix (5.4), the “v” variables do not appear as intervals. Thus,
if Gaussian elimination is used to bound the solution set to the corresponding
preconditioned interval linear system, initial bounds on the Lagrange multipli-
ers ug and v; are not required. However, some of our experiments [121] indicate
that the search algorithm is more efficient with the quadratic normalization in
(5.4).

Optimization 197

In theory, the bound constraints can also be included in the Lagrange function.
If this is done, (5.3) becomes

ugVo(X) + Z;zl w;Vp; + 9 oo, viVe(X) \
u1P1

F(W) = C‘:*'(gg) =0, (5.7)

(u. +Zq Cu.m(-{)-()z:m u?)—l }
0 j=1 7 i=1 ¢

where u; > 0, 0 < i < g, where ¢ is the total number of bound constraints, and
pi(X) =z, —mi; for 1 < j < p, pj(X) = 25, — Ty, for p+ 1 < j < g; see,
for example, [60, §3.4.2]. Thus, Vp; = E;; for 1 < j < p and Vp; = —E;; for
u+ 1< j <gq, where F; is the i-th coordinate vector.

The analogue to the matrix (5.4) is thus

uwV ¢(X) + Zq__l u.,V P;
(+Z 2926 (X) VH(X) | Vo1 ... Vpg | Ver(X) ... Vem(X)
ul(VPl) 0 P o 0 5
ug(Vpg)” o lo o sl o I
(Ver(X))? 0 0 ... o 0 0
(Ve (X))7 0 o ... o o ... o
0 1 1 1 2vy K v
(5.8)

For example, we may plug in the coordinates x; = 0.5, 3 = 1 for the optimizer
for Example 5.2 into (5.7), to get u; = u2 = uz = 0, v1 = &—%@, up =

—4vy, and uq4 = —9v;. The matrix (5.8) corresponding to these values becomes
approximately

0 0|-1|-1.0 0 1.0 0] —4.0000

0 —06118 | —2 0 -1 0 1| 1.0000

) 0] 0] -15 0O 0 0 0

0 o| o 0o -2 0 0 0

0 o| o 06 0 -05 0 o |-

0 —06883 | 0 0 o0 0 0 0

—4 __1.0000 | 0O G 0 0 0 0
(0 0] 1] 1.0 1 1.0 1] —01529

with condition number (in the 2-norm) of approximately 11.8.

198 CHAPTER 5

| Method | # Boxes | CPU time |
RUN_ROOTS_DELETE 941 20.21
RUN_GLOBAL_OPTIMIZATION with (5.7) 10 3.02
RUN_GLOBAL_OPTIMIZATION with (5.3) 11 0.16

Table 5.3 Summary of 3 methods of handling constraints for Example 5.2

When dealing with the system (5.7), initial bounds of [0,1] may be used for
uj, 0 < j < ¢, and bounds of [—1,1] may be used for v;, 1 < i < m. When
these bounds were used for Example 5.2 in the program RUN_ROOTS.DELETE
(cf. §4.4 on page 159), three critical points (including the two optima) were
found with 941 boxes (in 8-dimensional space) considered and 20.21 CPU
seconds on a Sun Sparc 20 model 51. When the general optimization code
RUN_GLOBAL_OPTIMIZATION (see §5.3 below), configured to use (5.7) in interval
Newton iteration, was used, then both optimizers were found with a total of 10
boxes (in 2-dimensional space, but an 8-dimensional interval Newton method).
If RUN_GLOBAL _OPTIMIZATION was configured to use (5.3) instead of (5.7), a to-
tal of 11 boxes (in 2 dimensions, but a 4-dimensional interval Newton method)
were considered, in only about 5% of the CPU time. These results are summa-
rized in Table 5.3.

Additional experiments in [121] corroborate the above: It seems to usually be
better not to include the bound constraints in the Fritz John function. These
results may be different in high-dimensional problems in which the “peeling”
process of §5.2.3 leads to a combinatorial explosion in the number of boxes.

In verifying points obtained by floating point constrained optimization soft-
ware, approximate Lagrange multiplier values may be available along with the
approximate optimizers.

5.2.6 Exercises

1. Draw a picture analogous to Figure 5.5 for the problem:

minimize ¢(z) = - (2% +23)
subject to ¢(z) = zp—z1=0,
-1 S I S 1

Optimization 199

X =(@1,17.

2. Check the statements below Example 5.3 by actually performing the com-
putations.

(Hint: The interval Newton method can be done with the program
RUN_INTERVAL_NEWTON

from INTOPT_90. The computations were done using the C*' -preconditioner
and interval Gauss—Seidel method.)

3. Fill in the details of the computations below (5.8).

5.3 DESCRIPTION OF PROVIDED
SOFTWARE

Similar to RUN_.ROOTS DELETE of §4.4 on page 159, the stand-alone program
RUN_GLOBAL_OPTIMIZATION

in INTOPT_90 runs a global search algorithm for constrained optimization. The
program RUN_GLOBAL_OPTIMIZATION uses the configuration files
OVERLOAD.CFG, INTNEWT.CFG, and OPTTBND. CFG.

The file OVERLOAD. CFG, explained on page 85, defines the format for genera-
tion and subsequent use of the code list for the objective function, gradient,
and constraints, while the files OPTTBND.CFG and INTNEWT . CFG contain various
options for tolerances and limits, switches for algorithm variants, and integers
that control the amount of printing in various parts of the algorithm.

5.3.1 Use

Solving an optimization problem with RUN_GLOBAL_OPTIMIZATION involves the
following steps.

1. Create a code list for the objective function and constraints.

2. Symbolically differentiate the code list to produce a gradient code list.

200 CHAPTER 5

3. Create the box data file.

4, Run RUN_GLOBAL_OPTIMIZATION.

Creating the Code List

Creation of the code list is as in §2.2.2 and (for solving nonlinear systems)
in §4.4.1. Namely, a program is written to evaluate the objective function and
constraints, but the program uses special code list variables for the independent
and dependent variables. The dependent variables are in an array declared to
be of type CDLVAR, the objective function value is stored in a variable of type
CDLLHS, and the left-hand-sides of the equality constraints C'(X) = 0 are stored
in an array of type CDLINEQ.

For example, to create a code list for the optimization problem

minimize (z1 —10)3 + (x2 — 20)®
subject to ¢1(X) 100 - (2, — 5)2 = (X2 — 5)2 + X3 =0, P
(

(X)) = (@1-6)%+(22—-5)2-8281+z4,= ¢ (5.9
T Z 13) Wno é:g 0
T 2 Ov i = 2a 374) ;&g; ee
a
the program

PROGRAM GOULD
USE OVERLOAD

PARAMETER (NN=2)
PARAMETER (NSLACK=2)
TYPE(CDLVAR) , DIMENSION (NN+NSLACK):: X
TYPE(CDLLHS), DIMENSION(1):: PHI
TYPE(CDLINEQ), DIMENSION(2):: C
OUTPUT_FILE_NAME=’GOULD.CDL’
CALL INITIALIZE_CODELIST(X)

= (X(1)-10)**3 + (X(2)-20)**3
100 - (X(1)-5)»*2 - (X(2)-5)**2 + X(3)
(X(1)-6)*+*2 + (X(2)-5)+*2 -82.81D0 + X(4)

PHI(1)
c(1) =
c(2) =

CALL FINISH_CODELIST
END PROGRAM GOULD

could be run, to produce the code list file GOULD.CDL.

Optimization 201

Differentiating the Code List

RUN_GLOBAL_OPTIMIZATION uses a gradient code list, so the code list generated
as above must be differentiated, as described on page 91. In particular, the code
list may be differentiated with the program MAKE_GRADIENT from INTOPT_90.
If the executable program corresponding MAKE_GRADIENT is named testgrad,
then the following terminal session (on a Unix-based machine) will differenti-
ate the file GOULD.CDL created as above. (The “/” represents the command
prompt.)

% testgrad

Input the code list file name without its assumed suffix "CDL"
GOULD

%

The derivative code list will be placed in GOULDG.CDL.

The Boxz Data File

The name of the box data file is of the form

<filename>.DT?
where <filename> is any valid file name, and 7 is a single digit. It is structured
as follows.

1. The first lines are as in the box data files of §4.4.1, that is, the first line
contains a domain tolerance, while lines through n + 1 contain the lower
and upper bounds of the search region.

2. Lines n + 2 through 2n + 1 contain logical variables that indicate which of
the lower and upper bounds represent bound constraints and which merely
represent limits on the search region.

3. Lines 2n + 2 through 3n + 2 are optional. Lines 2n + 2 through 3n + 1
contain a guess for an approximate global optimizer. Line 3n + 2 contains
a logical variable that indicates whether the approximate optimizer should
be corrected by the approximate optimization code.

For example, if the search region for the problem (5.9) is to be

X = ([13,15],[0,0.9], 0, 251, [0, 24",

202 CHAPTER 5

1D-§

13 15
00.9
025
024
TF

TF

TF

TF
14.095D0
.842960788D0
0

0

T

Figure 5.7 Box data file
GOULD.DT1

and if an initial guess that does not need further correction is
X = (14.095,0.842960788,0,0)7,

then the data file will be as in Figure 5.7.

Running RUN_GLOBAL_OPTIMIZATION

Once a gradient code list, such as GOULDG.CDL, and a box data file, such as
GOULD.DT1, are created, RUN_.GLOBAL_OPTIMIZATION can be run. Assuming the
executable corresponding to RUN_GLOBAL_OPTIMIZATION is called “opttest,”
the following terminal session will solve Problem 5.9.

% opttest

Input the gradient code list file name.

Do not include its assumed suffix "#*G.CDL"
GOULD

Input a digit representing the data file number:
1

%

This produces the output files GOULD.0T1, the general output file, and the file
OPTTEST. TBL, a file with performance data that can be imported into a spread-
sheet. Created on a Sparc 20, selected portions of the output file GOULD.0T1,
corresponding to configuration values as in §5.3.2 below are:

Optimization 203

Output from RUN_.GLOBAL_OPTIMIZATION on 12/26/1995 at 19:09:42.
DATA WAS TAKEN FROM DATA FILE: WOLFE1.DT1

Initial box:

Box coordinates:

0.130000000000000000D 402 0.160000000000000000D 402
0.000000000000000000D 400 0.900000000000000022D 400
0.000000000000000000D 400 0.250000000000000000D 402
0.000000000000000000D 400 0.240000000000000000D 402

BOUND_CONSTRAINT:
TFTFTFTF

CONFIGURATION VALUES:

EPS_DOMAIN: 0.1000D-05 MAXITR: 60000
DOJINTERVALNEWTON: T QUADRATIC: T FULL_SPACE: F
VERY_GOOD.INITIAL.GUESS: T

USE_SUBSIT: F
THERE WERE NO BOXES IN COMPLETED_LIST.

LIST OF BOXES CONTAINING VERIFIED FEASIBLE POINTS:

Box no.: 1

Box coordinates:

0.139540600000000006D 402 0.142359500000000008D 402
0.882960787999999952D+00 0.852960787999999970D 400
0.000000000000000000D 400 0.100000000000000002D-01
0.000000000000000000D 400 0.100000000000000002D-01

PHIL:
-0.697967890713617136D 404 -0.694347221113063642D +04
B%LIUL(1,*):
FFFF
BY%LIUL(Z,*):
F

Level: 0

Box contains the following approximate root:
0.140950000000000006D+402 0.842960787999999961D+400
0.000000000000000000D 400 0.000000000000000000D+00

OBJECTIVE ENCLOSURE AT APPROXIMATE ROOT:
-0.696181387691836880D+04 -0.696181387691834425D 404
Unknown = T Contains.root = T

Changed coordinates:

FFFF

ALGORITHM COMPLETED WITH LESS THAN THE MAXIMUM NUMBER, 60000 OF BOXES.
No. dense interval residual evaluations — gradient code list: 110

Number of orig. system inverse midpoint preconditioner rows: 2

Number of orig. system C-LP preconditioner rows: 142

Total number of forward.substitutions: 648

Number of Gauss—Seidel steps on the dense system: 144

Number of gradient evaluations from a gradient code list: 8

Total number of dense slope matrix evaluationa: 110

Total number second-order interval evaluationa of the

original function: 41

Total number dense interval constraint evaluations: 274

Total number dense interval constraint gradient component evaluations: 486
Total number dense interval reduced gradient evaluations: 101

Total number of calls to FRITZ_.JOHN_RESIDUALS: 37

Number of times a box was rejected in the interval Newton

method due to an empty intersection: 2

Number of times the interval Newton method made a coordinate

interval smaller: 99

Number of times a box was rejected because the constraints were not satisfied: 4
Number of times a box was rejected because the gradient or

reduced gradient did not contain zero: 10

Total time spent doing linear algebra (preconditioners

and solution processes): 0.1799999177455902

Number of times the approximate solver was called: 1

Number Fritz-John matrix evaluations: 27

BEST _ESTIMATE: -6.9618129718904111E+03

Total number of boxes processed in loop: 16

Overall CPU time: 0.7099999859929085

CPU time in PEEL_.BOUNDARY: 0.1300000026822090

CPU time in REDUCED.INTERVALNEWTON: 0.3599999845027924

204 CHAPTER 5

5.3.2 The Configuration File OPTTBND.CFG

OPTTBND.CFG contains two long records. The first record, containing an ex-
planatory header, is ignored, while the second record, input in list-directed for-
mat, contains variables that determine how much printing is done and which
algorithms are used. The variables on the second line occur in the following
order.

PRINT OPTIMIZATIONJIEST (integer, values 0-5) determines how much printing i8 done in the overall
routine RUN_GLOBAL OPTIMIZATION. Smaller values mean less printing.

PRINT_REDUCED.INTERVAL NEWTON (integer, values 0-5) determines how much printing is done in what-
ever interval Newton method is used.

PRINT REDUCEDGS (integer, values 0-5) determines how much printing is done in the interval Gauss—
Seidel method.

PRINT LANCELOT OPT (integer, values 0-5) determines how much printing is done in the interface
routine LANCELOT OPT to the approximate optimization solver.

PRINT FIND_APPROX OPT (integer, values 0-5) determines how much printing is done in an overall
routine FIND_APPROX.OPT that finds an approximate optimum, executes algorithms 17, 18, and
19, and does an ¢-infiation to construct a small box verified to contain a feasible point.

PRINT CERTAINLY FEASIBLE (integer, values 0-5) determines how much printing is done in the routine
that verifies if a feasible point exists in a certain box.

PRINT_CONSTRUCT FEASIBLE (integer, values 0-5) detershines how much printing is done in the routine
CONSTRUCT FEASIBLE REGION that actually performs the ¢-infiation and verifies that the resulting
region contains a feasible point.

PRINTBDY (integer, values 0-5) determines how much printing is done in the routine
PEEL BOUNDARY DENSE, in which Algorithm 15 is implemented.

PRINT_COMPLEMENT.LIST (integer, values 0-5) determines how much printing is done in the routine
COMPLEMENT DENSE OPT in which Algorithm 10 is implemented for optimization.

PRINT INFLATE (integer, values 0-5) determines how much printing is done in the routine
INFLATE DENSE OPT_SLOPE that constructs a box about an approximate optimum in which a
unique critical point of the Fritz John equations can be proven to lie.

MAXITR (integer) is the maximum number of boxes allowed to be process in the overall algorithm
(i.e. the maximum number of times the body of the loop in Step 2b of Algorithm 13 is to be
executed).

DO_INTERVAL NEWTON (logical) is set to “T” if interval Newton steps are to be used to reduce the size
of boxes, (i.e. if Step 6 of Algorithm 14 is to be done), and is set to “F” otherwise.

DOMIDPOINT.TEST (logical) is set to “T” if the midpoint test, (i.e. Step 2 of Algorithm 14) is to be
done, and is8 set to “F” otherwise.

QUADRATIC (logical) is set to “T” if the quadratic normalization conditions for the Fritz John equa-
tions (i.e. (5.3) and (5.4)) is to be used, and is set to “F” if the linear, interval normalization
(i.e. (5.5) and (5.6)) is to be used.

FULL SPACE (logical) is set to “T” if the bound constraints are to be included in the Fritz John
equations, and is set to “F” otherwise.

Optimization 205

EPSDOMAIN (real) is the domain tolerance €4 used to determine minimum box sizes in the tessellation
and infiation?.

USE_GRADIENT TEST (logical) is set to “T” if the monotonicity test (i.e. Step 4 of Algorithm 14) is to
be used, and is set to “F” otherwise.

USESUBSIT (logical) is set to “T” if the user-defined version of the substitution-iteration process of
Chapter 7 is to be used, and is set to “F” otherwise.

An example OPTTBND. CFG file, split into three sets of columns for display, is as
follows:

first five columns:

prnt ctrl: OPT._TEST, RED._INT._NWT, REDGS, PRINT_LANCE, FIND_APPROX_OPT
0 0 0 0 0

middle seven columns:

CERT._FEAS., PRINT_CONSTR., PRINTBDY, PRNTCMPL, INFLATE MAXITR newton?
0 0 0 0 0 60000 T

last siz columns:

midpt? quad, full, epsx USE_GRADIENT_TEST USE_SUBSIT
T T F 1d-6 T F

These settings should be good for many problems.

5.3.3 Supplying a Local Constrained
Optimizer

The local approximate constrained optimizer has a major effect on the over-
all performance of RUN_GLOBAL_OPTIMIZATION. The program is originally de-
veloped with the optimization package LANCELOT [35], not supplied with
INTOPT_90 but is available for research purposes from the authors.

Interfacing other local approximate constrained optimizers with
RUN_GLOBAL_OPTIMIZATION involves modifying interface routine LANCELOT_OPT.
The argument list to LANCELOT_OPT is:

10This value overrides the value in the box data file. The quantity appears in the box data,
file to make the format compatible with other uses of box data.

206 CHAPTER 5

SUBROUTINE LANCELOT_OPT(INITIAL_GUESS_, GOOD_INITIAL_GUESS_, &
INTERVAL_X, LOWER_BOUND_CONSTRAINT,&
UPPER_BOUND_CONSTRAINT, OPTIMIZER, INFO)
USE INTERVAL_ARITHMETIC
USE CODELIST_VARIABLES
USE ROOT_SOLVER_STATISTICS
USE ROOTS_DELETE_PARAMETERS

IMPLICIT NONE
DOUBLE PRECISION INITIAL_GUESS_(:)
LOGICAL GOOD_INITIAL_GUESS_
TYPE(INTERVAL), DIMENSION(:) :: INTERVAL_ X
LOGICAL, DIMENSION(:) :: LOWER_BOUND_CONSTRAINT, &

UPPER_BOUND_CONSTRAINT

DOUBLE PRECISION OPTIMIZER(:)
INTEGER INFO

where

INITIALGUESS. is an n-vector containing an initial guess for the local optimizer.
GOOD_INITIAL GUESS. is set to “T” if the initial guess in INITIAL GUESS. is thought to be accurate.
INTERVALX is the box X24, some of whose bounds represent bound constraints.

LOWER_BOUND_CONSTRAINT The I-th component is set to “I” if and only if INTERVALX(I)%LOWER repre-
sents a bound constraint, and not just a limit on a search region.

UPPER BOUND_CONSTRAINT The I-th component is set to “T” if and only if INTERVAL X(I)%UPPER repre-
sents a bound constraint, and not just a limit on a search region.

OPTIMIZER is an n vector that contains the optimizer, upon return.
INFO is set to

0 for a successful return;

-1 if it appears that the problem has not been solved (such as when the problem seems
infeasible, or when the maximum number of iterations has been exceeded).

1 if the problem may have been solved, but some numerical difficulty, such as a small step
gize or trust region radius, was encountered.

In addition to the arguments, various global variables, including the following,
are available.

NSMALL: the number of independent variables;

NINEQ/(NSMALL+1): the number of constraints;

Optimization 207

EPS_DOMAIN: the domain tolerance €gq4;

USE_INITIALGUESS: set in other routines in INTOPT.90 to “T” if it is permissible to simply return
INITIAL GUESS. in OPTIMIZER, without calling the local optimization procedure.

N_APPROX_SOLVER: a counter that should be incremented by 1 each time LANCELOT.OPT is called.

It is recommended that the tolerance passed to the local optimization package
be approximately €;5. This is so the local optimizer returned by the local opti-
mization package will be accurate relative to the size of the boxes constructed
with e-inflation.

Other building blocks in INTOPT 90, operating with gradient code lists, that
may be of use are:

F_POINT GRADIENT(X,FVAL) that computes point approximations to the objective function ¢.
POINT_GRADIENT G(X,GVAL) that computes a point approximation for the gradient at the point X,
F_POINTGRADIENT(X,FVAL) that computes point approximations to the objective function ¢.
POINT HESSIANG(X, FP) that computes point approximations to the Hessian matrix of ¢.
POINT_CONSTRAINTS(X,CVAL) that computes point approximations to the constraint values C(X).

POINT_CONSTRAINTGRADIENTS(X,GMAT) computes approximations to VC(X).

Also see pages 99 ff in Chapter 2.

5.3.4 Installation

The program RUN_GLOBAL OPTIMIZATION comes with INTOPT_90. Obtaining
and installing INTOPT_90 is as in §4.4.3.

5.3.5 Future Improvements

It is planned to constantly improve the program RUN_GLOBAL_OPTIMIZATION
and corresponding subroutines, and to periodically place updated versions on
interval.usl.edu. The following improvements are envisioned in the near
future (by publication of this work or soon thereafter).

208 CHAPTER 5

infeasibility of inequality constraints: Presently,
RUN_GLOBAL_OPTIMIZATION does not use interval extensions g(X) > 0 of
an inequality constraint g(X) < 0 to verify that ¢ is infeasible over a box
X.

better use of the Fritz John equations: The full Fritz John equations can
be used to verify existence and uniqueness of a critical point in as large a
box as possible about a good approximation to a global optimum (analo-
gously Algorithm 9 on page 151). Doing so would allow stronger statements
in the output to RUN_GLOBAL_OPTIMIZATION, and possibly also improve the
program’s efficiency.

a more appropriate approximate optimization package: The routine
LANCELOT_OPT was initially chosen for convenience and because it handled
bound constraints. However, experimentation has hinted that other ap-
proximate optimization packages may be more appropriate. Also,
LANCELOT_OPT does not have an unrestricted license.

NON-DIFFERENTIABLE
PROBLEMS

In previous chapters, interval extensions and interval Newton methods were
developed for verified global solution of nonlinear systems of equations and
for global optimization. In Chapters 1 and 2, it was shown how to compute
and use such interval extensions and interval Newton methods when the func-
tions were given by smooth expressions, without conditional branches. In fact,
however, many practical problems, in particular those containing expressions
such as |E(X)| and max{F(X), F(X)}, E,F : R* - R, or functions defined
by IF-THEN-ELSE branches, result in functions whose derivatives have jump
discontinuities. However, if the function itself is continuous, order-1 interval
extensions can be computed within the automatic differentiation framework of
§1.4 and §2.2.

Such interval extensions of non-smooth functions can be used in the same con-
texts as other interval extensions. However, the width of such a derivative
extension F'(X) does not, in general, tend to zero as w(X) tends to zero. Be-
cause of this, interval Newton iterations are only convergent in certain cases.
However, c-inflation algorithms can always be devised to prove existence or
uniqueness for w{ X) sufficiently small, provided merely that F(X) is extended
as described in this Chapter.

Special algorithms can be developed to handle non-smooth problems such as I3
optimization and [, optimization. However, simplicity is a major advantage of
treating such non-smooth problems with the same techniques as smooth prob-
lems. This simpler, unified treatment is possible within the context described
in this chapter.

210 CHAPTER 6

First, required properties of interval extensions for non-smooth functions are
discussed. Then, formulas appropriate for interval evaluation and symbolic
differentiation are presented. Finally, a convergence and existence / unique-
ness verification theory for interval Newton methods using such extensions is
developed.

6.1 EXTENSIONS OF NON-SMOOTH
FUNCTIONS

6.1.1 Required Properties

The crucial property of all such extensions is that they contain the range,
namely, that they are actually interval extensions in the sense of Definition 1.3
on page 12. An interval extension of a derivative must be a Lipschitz matrix
in the sense of Definition 1.10 on page 26. Similarly, an interval extension of a
slope must be a slope matrix in the sense of Definition 1.12 on page 27.

Such interval extensions should be as sharp as possible (i.e. should overestimate
actual ranges as little as possible) subject to the above conditions, and subject
to the condition that they can be computed automatically. The formulas in
the next section give such extensions.

6.1.2 Formulas

These formulas first appeared in [118]. They fall into the following groups:

rules for floating-point evaluation of the operation;
rules for floating-point evaluation of the derivative of the operation;
rules for interval extensions of the operation;

. rules for symbolic differentiation of the operation;

S I

. rules for interval evaluation of the derivative of the operation, assuming
the operation represents a continuous function, such as the absolute value;

6. rules for interval evaluation of the derivative of the operation, assuming
the operation does not represent a continuous function, such as a function

Non-Differentiable Problems 211

PROGRAM CHI_EXAMPLE
USE OVERLOAD
TYPE(CDLVAR), DIMENSION(1):: X
TYPE(CDLLHS), DIMENSION(1):: F
QUTPUT_FILE_NAME=’CHI_EXAMPLE.CDL’ .
CALL INITIALIZE_CODELIST(X) Figure 6.1 Program that
generates a code list for
F(1) = CHI(X(1)-1,X(1)%%2,2¢X(1)-1) fz) = 2 if g < 1, f(z) =
CALL FINISH_CODELIST 20 —1ifz>1
END PROGRAM CHI_EXAMPLE

defined by separate formulas in separate intervals, with unmatching values
at the break point;

7. rules for interval evaluation of slopes, assuming the operation represents a
continuous function; and

8. rules for interval evaluation of slopes, assuming the operation does not
represent a continuous function.

Here, each of these rules is presented for each of the functions x (IF-THEN-ELSE
branches), | o | and max.

Formulas for IF-THEN-ELSE Branches

Introduced in [117], the function z, = x(zs, 24, Z,) is the device in INTLIB.90
that generates code lists corresponding to IF-THEN-ELSE branches. For floating-
point values, x is defined by

Formula 6.1 Floating-point evaluation

zq if £, <0,

x(zs,2q,2r) ={ z, otherwise.

For example, if
22 fzx<l1
f(”’)‘{ 92 —1 ifzx>1, 6.1)

then a code list for f is generated by the program in Figure 6.1.

Evaluation of the point derivative is straightforward.

212

OP no.

23
5
22
23
27
18

4
2
3
4
5
6
6

CHAPTER 6

Figure 6.2 Operation lines
of the code list produced by
the program of Figure 6.1

Formula 6.2 Floating-point evaluation of the derivative

Ox(Ts, Tq,Tr) {

Oz,

Ox(zs,Tq,Tr)

oz,

if x5 <05
otherwise.

if x, <05
otherwise.

The following formula leads to an interval extension in the sense of Defini-

tion 1.3.

Formula 6.3 Interval evaluation

X(wsa a’q» :l!,-) =

if T, <05
if T, > 0;
otherwise.

When used to produce derivative code lists, the following formula leads to
interval extensions of the derivative.

Formula 6.4 Symbolic differentiation

X’(:B,, Tq, Tr) = x(zs, :l::l, :l:;.)

Formula 6.4, the usual way of differentiating branches, can be combined with
Formula 6.3 in cases where 0 € x,, or when &, = 0, even in computations that
are otherwise floating point. If this is done, then the “if problem” noted by
Beck and Fischer [17] does not occur. In particular, the interval derivative will
always contain the correct derivative.

When used to compute interval enclosures for the derivative, the following two
formulas lead to Lipschitz sets.

Non-Differentiable Problems 213

Formula 6.5 Interval evaluation of Ox/dz4, Ox/0x, and 8x/0x, when x is
continuous in z,, i.e. when possibly r, = z, whenever , = 0. (This formula
may be applied in a reverse automatic differentiation process.)

1 ' <0;

X(@s, 2, Tr) _ 0 ﬁ; 2> 0;
Oz, [0,1] otherwise.

0 if ¢, <0;

x(@s, zg, 1) 1 g 2 >0,

O [0,1] otherwise.

BX(:BH’ wqa a:T)
ox,

Formula 6.6 Interval evaluation of 3x/0z,, Ox/0z, and 8x/Ozx, when x is
possibly discontinuous in x, i.e. when possibly =, # z, at some places where
z, = 0 (appropriate for a reverse automatic differentiation process). The for-
mulas are the same as Formula 6.5 except:

Ox(zx,, a’q::l’r)
Oz,

3X(:Ds,:l:q, x;)
oz,

= (-00,00)if 0 €z,

if

(—o00,00) if 0 € x,

The following formula leads to slope matrices in the sense of Definition 1.12.

Formula 6.7 Interval evaluation of the slope S(x, X, X) when x is continuous
in =, (appropriate for a forward automatic differentiation process)

i S(a:q,X,X) if ¢, U&, <O0;
S(X(:l:s,:l:q,:l:,.),X,X)z S(?T’X;X) . if T, UL, > 0;
S(z¢, X, X)US(z,, X, X) otherwise.

Amazingly, meaningful slopes may be computed even when the function is
discontinuous. This is important in computations such as [; or [, optimization,
since the objective function ¢ typically is continuous but non-smooth, and the
gradient therefore has a discontinuity. However, it is necessary to use this
gradient, and not a slope, when searching for critical points of ¢. In an interval
Newton method, a derivative of such a gradient would then be required.

214 CHAPTER 6

slope range in
T, coordinates

. z,(z)

To(zs) — 74(s) | [/ To@)

S~

Figure 6.3 Computation of slope bounds of a discontinuous function

Example 6.1 If
#(z) = max{2 - 12,27}, (6.2)

then ¢ has a minimum at £ = 1. This minimum s at a cusp of ¢, where the
gradient

Vé(z) = x(a:2 — (2 - 2?), -2z, 2z) (6.3)

has a jump discontinuity. Thus, the interval exztension of the second derivative
of ¢ (corresponding to the Hessian matriz) is R.

Definition of the interval slopes of discontinuous functions, first explained in
[122], is illustrated in Figure 6.3. In Figure 6.3, the slope

S(x(zs(x), 24(2), 2, (), @, &)

is shown in terms of z, coordinates, that is, assuming z, = z. It is seen
that, if 0 ¢ &, the slope bound is finite. Furthermore, the slope bounds will
include the jump (a finite change over an infinitely small interval), and interval
Newton methods, if they converge, will converge on critical points, be they
zeros or breaks in the gradient.

Based on Figure 6.3, the following formula can be derived.

Formula 6.8 Interval evaluation of the slope S(x, X, X) when x is discontin-
uous in x, (appropriate for a forward automatic differentiation process). The

Non-Differentiable Problems 215

formula is the same as Formula 6.7 when 0 ¢ z, UZ,. When 0 € z,U%, (as
in Figure 6.3), the following is used.

S(x(a:s(X),a:q(X), zT(X))a X, X) =

4

% (X)—T (X <) .
S(@-(X), X,) U { pH Ly S@ (X, X, 00} itz >0

‘ z, (X)—zq(X) % . ‘
S(@o(X), X, 0 U { 25 L 8@ (X), X, 0} 2.0 <0

{[-;.(x’)ia,(X)’Oo) v [L(X)ia,(f ’°°)} (@ (%) — zq(X)):
S(z.(X), X, X)
L U S(z4(X), X, X) US(z,(X), X, X) if 0 € z(X).

The first branch of Formula 6.8, for 2,(X) > 0, corresponds to Figure 6.3: The
factor 1/[x,(X), zs(X) — z,(X)] represents the distance of z,(X) to points
on the other side of the break point, while (z,(X)—x,(X)) represents the jump
at the break point, so the fraction (z(X)—z4(X))/[2s(X), zs(X) — 2,(X)]
represents the slope of the line from the point above x,(X) to points on the
other side of the break point. The factor S(z,(X), X, X) comes from the
analogue of the chain rule for slopes. The part S(z.(X), X, X) takes account
of the portion of the curve to the right of the break point. The other two
branches of Formula 6.8 are analogous.

For example, suppose Formula 6.8 is applied to compute S(f,x,%), where
f(z) = Vé(z) of Example 6.1, with & = [1,5] and # = 3. Then, following
the notation in Formula 6.8, we have z,(z) = 22 — (2 — 2?), z,(z) = -2z,
and z.(x) = 2x. Thus, z,(£) = 32 — (2 - 3%) = 16 > 0, so the first branch
of Formula 6.8 is taken. We have 1/z,(£) = 1/16, z.(z) — z,(x) = [2,10] —
(—[2,10]) = [4,20], S(zs(z),x,£) = [8,16], and S(z,(z),x,%) = 2. (Here, the
slopes may be computed with Theorem 1.13 (page 41.) The computed slope
bound is thus

S(x(a:2 - (z* - 2)), -2z, 2:1:) 2U %([4, 20])[8, 16]

2U[2,20] = [2,20].

If this slope bound is used in an interval Newton method, then f(£) = 6, and

f(&) 6

S(f,x,%) 8- [2,20]

&=i- 3-[3,3=[0,2.7].

216 CHAPTER 6

Thus, & Nz = [1,2.7], representing a significant reduction in width.
Additional examples will be given below.

Formula 6.8 is a general formula, allowing meaningful slopes of gradients of
objective functions containing ¥, | - |, and max, since the symbolic derivatives
of | - | and max are written in terms of x. (See formulas 6.11 and 6.16 below,
respectively.)

Formulas for z, = |z,|

If + € R, then |z| = x(z,—=z,z). However, x(x, —x,x) overestimates the
range of | o | over the interval «. For example, the range of | o | over [-1,2] is
[0, 2], whereas x([—1,2],[-2,1],[-1,2]) = [-2,2]. Hence,it is advantageous to
consider | o | as a separate operation, with the following computation formulas.

Formula 6.9 Floating-point evaluation of the derivative (well-known; nothing
special is done at the break point)

dlzg] [-1 if 2, <0;
dz, 1 otherwise.

Formula 6.10 Interval evaluation

| = { [0, max{z|, [2]}] f o
[min{|z|, |Z|}, max{|z|, [Z]}] otherwise.

Formula 6.11 Symbolic differentiation
lzg|" = x(2q, =1, D)zg" = x(2q, —7, 25)
Formula 6.12 Interval evaluation of d|z|/dx (appropriate for a reverse auto-
matic differentiation process)
diay| -1 if £, <0

1 if 4> 0;
dzq [-1,1] otherwise.

Non-Differentiable Problems 217

Formula 6.13 Interval evaluation of the slope S(|x,|, X, X) (appropriate for
forward automatic differentiation processes)

. —S(:rq,X,J:() if zgUd, <0;
S(lzql), X, X) = S(zq, X, X) . YUz, >0; (6.4)
S (|z4], g, 2,)S(xq, X, X) otherwise,

where
EEL for o ¢ 2;

S(d)(|a:|,:v,ii=) = h(z) UL(Z) with h(z) ={ [_”‘1 1] otherwise.

The third branch of Formula 6.13 is an application of Theorem 1.13 on page 41.

Formulas for z, = max{z,,z,}
For real values z, and z., max{zg,z,} = x(zr — z4,24,2,), but x(xz, —

g4, Tq,Tr) overestimates the range of max for interval values x, and z,. For-
mulas appropriate for max follow.

Formula 6.14 Floating-point evaluation of the derivative (well-known)

omax{zg,z.} [1 if x4 >z,;
oz,] 0 otherwise.

Omax{z,, z,} { 0 if zg > xr;
11

oz, otherwise.

Formula 6.15 Interval evaluation

max{z,, ¢, } = [max{z,, .}, max{Z,, T, }].

Formula 6.16 Symbolic differentiation

max'(zq,z,) = x(Tr — Tq, T4, Tr').

218 CHAPTER 6

Formula 6.17 Interval evaluation of 9max /8z, and d max /Jz, (appropriate
in a reverse automatic differentiation process)

1 if ©g >z,

0 if xy <z
[0,1] otherwise.

0 ¢ xg>x,;

1 if T4 < Ty
[0,1) otherwise.

Omax{xy,x,}
0z,

Omax{z,,x,}
oz,

Formula 6.18 Interval evaluation of the slope S(max{z,,z.}, X, X) (appro-
priate for a forward automatic differentiation process)

i S(zq,X,):() if 2, UEq > zr Uy,
S(max{z4,z,}, X, X) = S(z,, X, X) L iz UEg <z Uy
S(zq, X, X)US(zr,X,X) otherwise.

6.1.3 Exercises

1. Suppose f,g,h:R* > Rand E,F,G:R* - R If
f(X) = x(E(X), F(X),G(X)),

9(X) = |E(X)|, and h(X) = max{E(X), F(X)}. Show that, if interval
extensions of f, g, and h are obtained with the formulas of this section,
then f, g, and h are first-order extensions in the sense of Definition 1.4 on
page 14.

2. Let f, g and & be as in Exercise 1. Show that, if derivative and slope
extensions of f, ¢ and h are obtained with the formulas of this section,
then these formulas lead to Lipschitz matrices in the case of derivative
extensions and slope matrices in the case of slope extensions.

6.2 USE IN INTERVAL NEWTON
METHODS

The consequences of using the above formulas in the nonlinear equations and
global optimization algorithms of Chapters 4 and 5 are explored here.

Non-Differentiable Problems 219

6.2.1 Objective Function Approximation

It is not hard to show that, computed with the formulas of §6.1.2, interval
extensions involving x, | o |, and max are first-order extensions (Exercise 1
above). Thus, these interval extensions may be used to prove that no roots exist
within a box X. Similarly, since the formulas for the derivative extensions, if
they lead to finite intervals, lead to Lipschitz matrices or slope matrices, an
image of X under any interval Newton method that employed these extensions
must contain all roots within X (Exercise 2 above). Hence, the interval Newton
method can also be used to prove that no roots exist within X.

However, the mean value extension based on the above does not, in general,
lead to a second-order interval extension. For example, if £ = [—¢/2,¢], and
Z = (—¢/2 + €)/2 = ¢/4, then Formula 6.12 gives a mean value extension of

|[_€/2’€]| c 6/4 + [—1’ 1][_36/4’ 36/4] = [_6/2’ e]a

an overestimation of ¢/2 of the range, regardless of . A somewhat analogous
phenomenon, due to the fact that w(F'(X)) does not tend to zero in general,
holds for interval Newton methods. This is discussed in the next section.

6.2.2 Convergence Theory

Existence and uniqueness theory based on interval Newton methods was dis-
cussed in §1.5.2, while convergence theorems for interval Newton methods ap-
peared as Theorem 1.14 and in Exercise 3 on page 65. Combined, the existence-
uniqueness and convergence results give computational analogues of the Kan-
torovich theorem.

Convergence and existence or uniqueness verification with interval Newton
methods have, in the past, been viewed as practical only when there are smooth
first derivatives. However, convergence occurs and verification is possible in
many cases with the extensions of non-smooth functions described above. Con-
ditions under which convergence occurs are examined in this section.

Interval Newton Methods — General Convergence

Here, general formulas for convergence of interval Newton methods are devel-
oped, to later be interpreted for both the smooth and non-smooth cases. The

220 CHAPTER 6

formulas are based on characterizing and bounding the width norm
v (v (F; X, X))

of the interval Newton image of a box X.

If X €¢IR*, F: X 5 R*, and X € X, then the general interval Newton
method will be of the form (1.45), that is,

X=NFX,X)=X+V, (1.45)

where

Y(A,-F(X))cV,

where A is either a Lipschitz set (an interval Jacobi matrix F'(X)) or a slope
enclosure S(F, X, X) for F over X (and centered at X 3 X). Define

Yo=X(A4,-F(X)) and [, =[E(4,-F(X)). (6.6)

First note that the width norms obey
w(Sa) | = [lw (1Zo) (6.7)
since [[Zp is the smallest interval vector containing £ and since || - || = || - ||oo-

Also write

V=[E,+E, so w(NFX,X)=wV)=w(S)+wE). (68)

The following assumption is non-restrictive.

Assumption 6.1 There exists a Ky, depending only on the particular inter-
val Newton method, such that

Iw(B)l| = [Iw(V) = w(Z)Il < Kx, [Iw(Z)]1%.

For theory showing that particular interval Newton methods satisfy Assump-
tion 6.1, see [175, §4.2, p. 124 and §4.3.5, p. 138].

Combining (6.8) and Assumption 6.1 gives
(N E X D) < (14 K, WO W) (69)

so ||w(IN(F; X, X))|| can be bounded by bounding ||w(Zo)||. To bound ||w(Zo)||
a sensitivity bound for real linear systems will be used, namely

Non-Differentiable Problems

Theorem 6.1 (A modification of Theorem 2.7.2 in [61]) Assume

AX = B, AeR™ BeR" and

(A+AA)(X +AX) = B, AA € ™7™,

221

assume ||AA|| < 68)|A||, and assume dk(A) = r < 1, where k(A) is the condition

number ||A|| - ||A7!||. Then

1
1—-r

1
1-r

lax] < r

X1l

FAN

r——[l A7l |IB]|.

To use Theorem 6.1, identify:

B=-F(X)and A=A =m(A4), so AA = W—(;—),

so that

1[w(A)] 1 -1
6 =5 and r = Z|[w(A)|| - [|A[l.
2 4 2

Assume X; € ¥y and X, € Xp. Then (6.10) and Theorem 6.1 give

1 = Xal < Il -1 - P {0 L

Combining (6.11) and (6.9) gives

Lemma 6.2 Make Assumption 6.1. Also assume
(1 + Ky, ”W(l]zo) “) < K
for all possible 3y under consideration. Then

|w(N(F; X, X)) || < Cliw(A)l- IFX)II,

» 1 A7)
C=K{-=- - .
{2 1= 3llw(A)ll - [A=Y

where

The next assumption is necessary for proof that verification is possible.

(6.10)

(6.11)

(6.12)

(6.13)

222 CHAPTER 6

Assumption 6.2 Assume there exists an X* € X with F(X*) = 0. Also

assume that X = m(X).

Now, since A is either a Lipschitz matrix or a slope enclosure centered at X,
F(X*)=0=F(X) + A(X*-X) for some A € A.

Thus,
IF(X)| < |4l

IvCOl 6.14)

Combining (6.14) and Lemma 6.2 thus gives

Theorem 6.3 Make assumptions 6.1 and 6.2, and let C be as in (6.13) of
Lemma 6.2. Then

Iw(N(F; X,)] < Cliwiay] - ay I,

Corollary 6.4 Make assumptions 6.1 and 6.2, and let C be as in (6.18) of
Lemma 6.2. Then 3
v (N (F; X, X)) | < lIw(X)]

provided
C|w(A)| - ||A]| < 2 (for convergence). (6.15)

Furthermore, if we assume X € Z}J(F;X,X), such as when F(X) ~ 0 and
e-inflation is used, then N(F; X, X) C X, provided

[l (XOIl

minlSiSn W(:l:l)

Cllw(A)]| - | All <1 (for inclusion). (6.16)

For smooth problems and Lipschitz or slope matrices formed with the usual

computations,
lw(A)[| < Kp|lw(X)], (6.17)

so Condition (6.15) (and the more restrictive Condition 6.16 for the inclusion
N(F; X,X) ¢ X) hold for sufficiently small X centered about an approximate
solution X ~ X*. Thus, neglecting roundout error, it should always be possible
to verify existence or uniqueness with e-inflation. In fact, the following is a
direct consequence of Theorem 6.3.

Non-Differentiable Problems 223

Theorem 6.5 Make assumptions 6.1 and 6.2, and let C be as in Lemma 6.2.
Also assume ||w(A)|| < Kp||w(X)||. Then

lw (N @E; X, X)|| < Cllw(X)I,

where C = CKp||Al|/2.

Convergence for Non-Smooth Problems

For non-smooth problems, w(A) /4 0 as w(X) — 0 (i.e. Condition (6.17) does
not hold), Condition 6.15 is not in general satisfied, and the interval Newton
method does not converge. However, when the non-smoothness does not occur
in dominant terms, Condition 6.15 is often still satisfied for small w(X), and
the interval Newton method converges linearly:

Theorem 6.6 Make assumptions 6.1 and 6.2, and let C be as in Lemma 6.2.
Also assume that (for small enough w(X))

2
llw(A)|l < m

Then the width of X under iteration of
X « XNN(F; X,X)
tends-to zero linearly, with convergence factor ¢ = C||w(A)|| - ||Al|/2. That is,
(N (F; X,)| < cllw(X]l.

In some cases, Theorem 6.6 does not give reasonably sharp bounds, since the

. e w
convergence factor ¢ incorporates a worst-case bound || X* — X|| < —2—)-
Actually, in e-inflation algorithms, X can be constructed so

| x* = X| < vliw(X)I (6.18)

For example, as explained in §4.2, X* can be computed with an approximate
solver with a stopping tolerance that is proportional to the square of the width
of the tolerance of the box constructed around it. In such cases, (6.14) can be
replaced by 5

IFX) < llAlvliw(X)]?, (6.19)

and Theorem 6.6 may be replaced by

224 CHAPTER 6

Theorem 6.7 Make assumptions 6.1 and 6.2, and let C be as in Lemma 6.2.
Also assume (6.18) for some v > 0. Then, for small enough initial w(X), the
width of X under iteration of

X+« XNN(F;X,X)
tends to zero quadratically. In particular,
lw(N(F; X, X)|| < Cllw(A)]l - | Allv]lw(X)IP,
where C is as in (6.13).

Theorem 6.7 follows directly from Lemma 6.2.

Remark 6.1 Theorem 6.7 implies that, even for non-smooth functions, eris-
tence and uniqueness can always be verified with e-inflation, provided a suffi-
ciently accurate approzimate solution can be obtained.

Example 6.2 Consider
fz)=|z*—z|-22+2=0. (6.20)

This function has both a root and a cusp at z = 1, with a left derivative of —3
and a right derivative of —1 at z = 1. If 1 € &, then a slope enclosure is given
by S(f,xz,z)=[-L,1j(x+z— 1) — 2.

Consider using the interval Newton method

g« &9 fE®)/s(f,e®,5®)
D) 2 ng,

with #*) equal to the midpoint of ¥}, and ® = [0.7,1.1]. The initial
slope enclosure is then S(f,[0.7,1.1],0.9) = [-3,-1], & = .9 - .29/[-3,-1] =
[.996,1.19], and (1) = [0.996, 1.1]. Subsequent iterates are given' in Table 6.1.
Note that on iteration no. 3, existence of a root within £(® was proven, since
z® ¢ int(:n)(z). The last column of Table 6.1 gives ratios of successive widths
w(z*+1) /w(x(®). Thus, the observed convergence is linear, with a conver-
gence factor of roughly 1/3.

IThe intervals are rounded outward to 17 digits, while the other numbers are floating
point approximations.

Non-Differentiable Problems 225

k £ (k) &k w(:(")) w_“’h_
0 0.69999999999999995, 1.1000000000000001 0.90000000000000 4.0E-1 i— !
1 0.99666666666666603, 1.1000000000000001 1.04833333333333 1.0E-1 0.25
2 0.99666666666666603, 1.0337233103935069 1.01519498853009 4.0E-2 0.37
3 0.99946121840631785, 1.0102869853018799 1.00487410185410 1.1E-2 0.28
4 0.99994908830928475, 1.0032654498302074 1.00160726906975 3.3E-3 0.30
5 0.99999472584400717, 1.0010732412070054 1.00053398352551 1.1E-3 0.33
6 0.99999942598430213, 1.0003561793202454 1.00017780265227 3.6E-4 0.33
7 0.99999993663653530, 1.0001185561849595 1.00005924641075 1.2E-4 0.33
8 0.99999999297472042, 1.0000394999475355 1.00001974646113 4.0E-5 0.33
9 0.99999999921996751, 1.0000131645673783 1.00000658189367 1.3E-5 0.33
10 0.99999999991334831, 1.0000043879579972 1.00000219393567 4.4E-6 0.33

Table 6.1 Iterates of the interval Newton method for f(z) = |22 —z| -2z +2

Now we will use Theorem 6.6 to analyze the convergence for Example 6.2. The
limiting value? of the slope bound set as ¢ — [1,1] is A = [-3,~1], and the
limiting value of its center is A = ~2. From this, we compute limiting values for
C as defined in (6.13), (6.12) and Assumption 6.1: Formula 6.12 implies that,
for an € > 0 of our choosing and w([2,) sufficiently small (i.e. w(X) sufficiently
small), K can be taken to be (1 + ¢€). Furthermore, w(A) ~ —1 — (=3) = 2,
and [[A7Y]| = |1/(=2)| = 3, s0

Cr(l+¢)-

Also, || A|| ~ max{| - 3|,| — 1|} = 3, and

1 3 3
ey @373
in Theorem 6.6. Thus, Theorem 6.6 is not sharp enough in this case to predict
inclusion or convergence. Also, we observe that | — z*| is tending to zero at
about the same rate as w(x), so Theorem 6.7 would not give an appropriate
conclusion either. However, after iteration no. 2, we observe |f(z(?)| < 0.015
and w(z(?)) ~ 0.04. Plugging these values directly into Lemma 6.2 gives

1
w(m(3>) < 5 -2-0.015 = 0.015 < 0.04/2 = .02,
thus proving that verification must occur on this step. (In fact, the new width

w(z®) ~ 0.01. The left endpoints of) are converging faster than the right
endpoints.)

2although, in general, successive slope bounds are not contained in previous ones, since
the base point £(¥) is changing

7

USE OF INTERMEDIATE
QUANTITIES IN THE EXPRESSION
VALUES

7.1 THE BASIC APPROACH

Code lists as described in §1.4.4 and §2.2.2 contain complete information about
the relationships among the intermediate quantities computed during evalua-
tion of a particular natural interval extension. These relationships can some-
times be used to reduce the amount of overestimation in such interval exten-
sions, or to help in the solution of nonlinear systems of equations.

Example 7.1 (from [112]) Define F(X): R — R? by

fi(z1,72) 3+ zizy+ 23 +1
fa(zr,22) = 23 —3zizy +2k +1,

(7.1)

with initial boz X = ([-2,0],[-1,1])T and initial guess point X = (—1,0)7T.

The system (7.1) has a unique solution within X, at the initial guess point
(-1,0)T. However, the system exhibits a substantial amount of dependency
(i.e. interrelationships) among the terms, so there is overestimation in interval
extensions for the function, slope, and derivative matrices. For instance, a
Hansen slope matrix (computed by the INTOPT_90 routine DENSE_SLOPE_MATRIX

as on page 96) is
o _ (0,7 [-1,5]
S(F, X,X) = ([0,7% [-13,1])

Therefore, since S(F, X, X) contains the zero matrix, Y'S(F, X, X) will contain
the zero matrix for any preconditioner Y. Thus, since ||F(X)|| is small, the
interval Gauss—Seidel method is ineffective.

228 CHAPTER 7

However, a particular code list decomposition (not necessarily that produced
by the package INTLIB_90) corresponds to the expanded system:

nh = Iy, U2 = Iy,
(i) vy = vy, (i) v = w3,
(iii) Vs = U3Ug, (iv) V¢ = ’U%,
(v) vy = Ug+Us+1, (7.2)
(vi) vr+vs = 0,
(vil) v7—3us = 0.

The information in the code list, or, equivalently, in systems such as (7.2),
could possibly be manipulated symbolically to reduce overestimation in the
dependent variables (v7 + vs) and (v; — 3vs), but that is outside the scope of
this work. Two things can be done numerically when the code list or a system
such as (7.2) is available.

First, since each equation in (7.2) contains only a single, invertible operation,
each intermediate variable can be solved for each other intermediate variable.
This process, called substitution-iteration in our own work, can be continued
until all values of the intermediate variables become stationary. For example,
in (7.2), the last two equations, corresponding to the original system (7.1), can
be used to start the process, once the intermediate quantities are evaluated
with forward substitution. In (7.2), an initial forward substitution gives:

V= ([_2a O]7 [—1’]-]’ [07 4]’ [O’ 1]’ [—4a 4]’ [_8’ O]a [_7a 2])T-
If we solve for vy in the sixth equation, we obtain
U5 = —vy = [-2,7],

and we may replace vs by vs N 95 = [—2,4]. If we then solve for vs in the
seventh equation, we obtain

7 2
’U7/3 = [—57 5])

It

Us

and we may replace vs by vs N ¥5 = [-2,2/3)]. Finally, we may solve for v7 in
the sixth equation, to obtain

N 2
U7 = —vs = [—5,2],

and we may replace vy by vy N 97 = [-2/3,2]. Now, since both v7 and vs have
been changed, it may be possible to tighten ve, v4, va, Or vy, using the fifth
or seventh equations in (7.2). For example, 92 < vs/v3, using the new value

Use of Intermediate Quantities in the Exzpression Values 229

of vs, may result in ¥, different from v, (or even disjoint from v, in which
case the computation would have proven that there are no roots of F in X).
However, these substitutions do not result in sharper vg, v4, v3, Or v, and the
substitution-iteration process terminates.

The second numerical process is an interval Newton method, applied not to
the original system, but to the expanded system such as (7.2). Combined with
optimal preconditioners, such an interval Newton method is more likely to
result in sharper bounds on the independent variables than an interval Newton
method applied to the original system, such as (7.1). For (7.2), the actual
system is

vg ~ v} 0
vy — V3 0
Us — U3Vs 0
Fg(V) = vg ~ v =10 (7.3)
'U7—(’UG+’U4+1) 0
U7 + Us 0
U7 — 3’115 0

A natural extension of the interval Jacobi matrix will be used, with the interval
Gauss-Seidel method preconditioned with C¥ -preconditioners, and starting
with the new vector

V = ([-2,0],[-1,1],[0,4],[0,1],[~4,4],[-2,4],[-2/3,2])7.

Performing a preconditioned Gauss—Seidel step for variable 5 gives vs ¢ U5 C
[-1.9 x 107%,1.8 x 1071®], then performing a similar step for variable 6 gives
v + Ug C [—2,—1], then performing a similar step for variable 7 gives ve +
Be C [~1.3 x 10715, 1.4 x 10715],

The interval Gauss—Seidel and substitution-iteration processes can be mixed to
achieve higher efficiency. For example, after vg has been recomputed with the
interval Gauss—Seidel step, the fourth equation can be used to solve for v;:

v « U = Yve C[-1.26,-1],
then the first equation can be similarly used to solve for vs:
v « U3 = v? C [1,1.588],
then the third equation can be used to solve for vs:

vy « P2 = ws/vz C[-1.9 x 10718, 1.7 x 10719].

230 CHAPTER 7

Five more preconditioned Gauss—Seidel steps, mixed with six more steps of
the substitution-iteration process, give v; = [1, 1] to machine precision. Thus,
an enclosure for the actual oot (21,22)7 = (v — 1,v2)T = (1,0)7 has been
computed to high precision. See [112] for additional details.

7.2 AN ALTERNATE VIEWPOINT -
CONSTRAINT PROPAGATION

A number of researchers have, in a sense, independently discovered the substi-
tution-iteration process proceeding from logic programming [231], e.g. [30, 88,
89, 90, 154, 232]. In fact, logic programming languages such a Prolog, when
extended to handle interval data, are designed for this purpose, namely con-
straint propagation. However, programs written in such languages can execute
hundreds or thousands of times slower than special-purpose programs for the
same process in Fortran 90 or C++ [30]. Nonetheless, a sophisticated theory
and successful general algorithm, involving substitution-iteration, interval New-
ton, and tessellation steps, appears in [232], along with substantial numerical
experimentation.

Another research group has produced a special software system UniCalc [12]
that solves nonlinear problems (nonlinear equations, optimization, etc.), based
primarily on the substitution-iteration process (called subdefinite calculations
by the group), along with a user-friendly interactive interface.

7.3 APPLICATION TO GLOBAL
OPTIMIZATION

Additional opportunities are available when applying the process to global op-
timization. In particular, relationships among quantities common to both the
objective function and gradient appear in a gradient code list. If an upper
bound ¢ for the global optimum is known, then this value can possibly be
used to compute sharper inclusions to the gradient, and conversely. Similar
computations, implemented in BNR Prolog, were reported in [30].

Example 7.2 Let ¢(X) = z} — 23z} + 23, to be optimized over
X =([-1,1],[-1,1)*.

Use of Intermediate Quantities in the Fzpression Values 231

The global optimum of ¢ over X is 0, and the unique optimizer is (0,0)7. If ¢
is programmed as

T(1) = X(1)*%2
T(2) = X(2)**2
PHI(1) = T(1) - T(1)*T(2) + T(2)

then INTLIB_90 produces® the following code list.

vi = 73 vy = 3]
(i) vy = vf (ii) vg = vg (iii) g = vavg
(iv) v = wv3—ws] v = wvg+uvg | (vi) vg = 2u;
(vii) vg = vgug (viii) wvip = wg—wvg | (ix) w3 = 2vg
(x) w2 = wavni (xi) vz = —vig (xil) w14 = wig+tvi
¢ = vt = = vio = = vy

Suppose we know a sharp upper bound ¢ = 0 on the global optimum, and
suppose the sub-box X = ([.5,1],[-1,—.5]) is to be processed. An initial
evaluation of the code list (i.e. a forward substitution) gives:

vy = [.5,1] vy = -1, -.5]
vg = [.25,1] vy = .25,1] vs = [.0625,1]
vg = [-.75,.9375] vy = [-.5,1.9375] vg = [1,2]
vg = [-25,2] vio = [-1,1.75] viz = [~2,-1]
vy = [—2,—.25] vz = [25,2] vig = [—1.75,1]
¢ = [—.5,1.9375] %‘1’1- = [-1,1.75] = = [-1.751]

Thus, since 0 € ¢(X) and 0 € V¢@(X), the box cannot be rejected just from
the computed values. However, we may set vy = 0, and solve for vg in (v):

’69 =V7 — Vg = [—9375, 75], Vg < Vg ﬂf)g = [25, 75]
We may now solve for v,g in (viii), obtaining
v10 + D10 = [1,2] ~ [.25,.75] = [.25,1.75).

Since 0 € v10 (with vig = 8¢/Jz3), X cannot contain both the global optimum
and a critical point of ¢. Thus, the box ([.5,1],[-1, —.5])7 may be rejected?.

lwith NAG Fortran 90 compiler, version 2.1. The actual code list may vary with the
compiler.

2if the boundary elements of X corresponding to parts of the boundary of the original box
in Example 7.2 are considered separately

232 CHAPTER 7

A similar technique can be used with the equality constraints, to provide nar-
rower intervals for the bound constraints or to reject sub-boxes. Our package
INTOPT_90 provides this facility within the module COMPONENT_SOLVE.

7.4 EFFICIENCY AND PRACTICALITY

In a sense, solving for one variable in one equation represents a single operation
(one of the four arithmetic operations or evaluation of a standard function).
However, easy implementations involve significant overhead, and it is not always
advantageous to carry the substitution-iteration process until no variables are
changed. In general, a mix of substitution-iteration, interval Newton iteration
(such as interval Gauss—Seidel steps), and generalized bisection, with good
heuristics to choose when to do each, should be most appropriate.

The work [128] contains a heuristic for deciding for which coordinates to do
an interval Gauss—Seidel step for the expanded system. The assumption was
that the substitution-iteration process is inexpensive relative to a Gauss—Seidel
step.

In [30], upper bounds on the objective function were used, within a modified
Moore—Skelboe algorithm (page 173) implemented in BNR Prolog, to reject
boxes by contradiction. (That is, ¥; were computed through the substitution-
iteration process, i.e. through constraint propagation, such that 9; Nv; = @.)
The constraint propagation process was shown to greatly increase the efficiency
of the Moore—Skelboe algorithm.

The substitution-iteration process was discovered independently by Dallwig,
Neumaier, and Schichl [47]. There, experiments that hint at the practicality of
the method are presented.

However, our own research, i.e. in [128, 222] and unpublished, is less conclusive.
Differences may be due to differences in the programming environments. For
example, certain operations are much faster in Fortran than in Prolog, while
others are not. Also, algorithmic details, such as where second ‘order interval
extensions are used, and how (or if) interval Newton methods are used, affect
the conclusions. Along these lines, the work [232] shows much promise.

The substitution-iteration process could possibly be more effective if, not the
entire code list, but only selected relationships, were used to solve for one

Use of Intermediate Quantities in the Ezpression Values 233

variable in terms of the others. Not only can those operations in the code
list (i.e. the operations in Tables 2.6) be used, but any user-defined relation is
possible. Relations relating more complicated subexpressions that are shared
among various components of the gradient (or among various equations in a
nonlinear system) should be particularly effective, while redundant relations
can be omitted. Although, at the time of this book, we have set up some
machinery for experimentation with this (see below), we have not yet had
extensive experience with it.

Another improvement in efficiency is to use an efficient sparse linear program-
ming problem solver to produce preconditioners for the expanded system. In
[222] and elsewhere, empirical results reveal that Gauss—Seidel steps on the
expanded system result in less boxes considered than working with the original
system of equations, when there is much interval dependency in the original
system. Despite this, the total execution time could still be larger with sub-
stitution-iteration. However, these experiments were not done with linear pro-
gramming problem solvers that made optimal use of the sparsity and structure
associated with LP-preconditioners.

7.5 PROVIDED SOFTWARE

The following building blocks are available in INTOPT_90 for the substitution-
iteration process.

SUBROUTINE FORWARD_SUBSTITUTION(X,XX) returns a set of interval values of the intermediate quanti-
ties in the expressions to evaluate the function (the variables vy through vi4 of Example 7.2)
in XX, given the intervals corresponding to the independent variables (i.e. z; and z2 in Ex-
ample 7.2) in X. The number of intermediate variables in the code list, i.e. the dimension of
XX, is given in the variable NVAR in the module CODELIST VARIABLES.

FUNCTION COMPONENT SOLVE solves for the L-th variable in the J-th equation. See the source code for
details.

SUBROUTINE SUBSIT(X, CHANGED.COORDINATES, FLAG) performs the substitution-iteration process,
starting with those equations containing the variables indicated in the logical array
CHANGED_COORDINATES.

SUBROUTINE SUBSITDENSEOPT performs the substitution-iteration process on a gradient code list,
checking whether a contradiction occurs based on the current best approximation for an
optimum.

Additionally, there is support for user-defined operations, including the mod-
ules SUBSIT_OPERATIONS, SUBSIT PARAMETERS, and USER_SUPPORT, as well as

234 CHAPTER 7

the routine USER_SUBSIT and the user-supplied routine USER_COMPONENT _SOLVE.
The a standard sparse matrix indexing scheme is used to describe the user-
supplied equations and the variables therein.

As of the writing of this book, the user-defined substitution-iteration routines
have not been thoroughly packaged and documented. The author should be
contacted at rbk@usl.edu if details concerning these routines are desired.

7.6 EXERCISES

1. Compute the interval Jacobi matrix of the system (7.1), evaluated at X =
([_2a O]a [_]-a 1])T

2. Use the INTOPT_90 routine DENSE_GAUSS_SEIDEL_STEP to check the pre-
conditioned interval Newton method computations starting on page 229.

3. Use INTLIB_90 to generate a code list corresponding to the system (7.1).
Is the code list the same as that represented by (7.2)? Would the difference
impact the substitution-iteration process?

4. Use the INTOPT.90 routines GAUSS_SEIDEL_STEP and SUBSIT to perform a
computation similar to that on page 229, but for the code list generated
in Problem 3.

5. Repeat the computations in the preceding exercise, but using a Hansen
slope matrix, rather than an interval Jacobi matrix.

REFERENCES

[1] O. Aberth. Precise Numerical Analysis. Wm. C. Brown, Dubuque, Iowa,
1988.

[2] O. Aberth. Computation of topological degree using interval arithmetic,
and applications. Math. Comp., 62(205):171-178, January 1994.

[3] O. Aberth and M. Schaefer. Precise computation using range arithmetic,
via C++. ACM Trans. Math. Software, 18(4):481-491, December 1992.

[4] J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L.
Wagener. Fortran 90 Handbook — Complete ANSI/ISO Reference. Mc-
Graw-Hill, New York, 1992.

[5] Y. Akyildiz and M. L. Suwaiyel. No pathologies for interval Newton’s
method. Interval Computations, 1993(1):60-72, 1993.

[6] G. Alefeld. Bounding the slope of polynomial operators and some appli-
cations. Computing, 26:227-237, 1980.

[7] G. Alefeld. Inclusion methods for systems of nonlinear equations — the in-
terval Newton method and modifications. In J. Herzberger, editor, Topics
in Validated Computations, pages 7-26, Amsterdam, 1994. Elsevier Sci-
ence Publishers.

[8] G. Alefeld and J. Herzberger. Introduction to Interval Computations.
Academic Press, New York, 1983.

[9] P. Alexandroff and H. Hopf. Topologie. Chelsea, 1935.

[10] E. Allgower and K. Georg. Numerical Continuation Methods: An Intro-
duction. Springer-Verlag, New York, 1990.

[11] N. Apostolatos, U. Kulisch, Krawczyk R., B. Lortz, K. Nickel, and H.-
W. Wippermann. The algorithmic language triplex-ALGOL-60. Numer.
Math., 11:175-180, 1968.

238

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

RicoRroUSs GLOBAL SEARCH: CONTINUOUS PROBLEMS

G. F. Corliss. Guaranteed error bounds for ordinary differential equations.
In W. A. Light and M. Marletta, editors, Theory of Numerics in Ordinary
and Partial Differential Equations, Advances in Numerical Analysis, vol.
IV, pages 1-75, London, 1995. Oxford University Press.

G. F. Corliss and L. B. Rall. Computing the range of derivatives. In
E. Kaucher, S. M. Markov, and G. Mayer, editors, Computer Arith-
metic, Scientific Computation, and Mathematical Modelling, volume 12 of
IMACS Annals on Computing and Applied Math., pages 195-212, Basel,
1991. J. C. Baltzer AG.

H. Cornelius and R. Lohner. Computing the range of values of real func-
tions with accuracy higher than second order. Computing, 33(3):331-347,
1984.

F. Crary. The AUGMENT precompiler. Technical Report 1470, MRC,
University of Wisconsin, Madison, 1976.

J. Cronin. Fized Points and Topological Degree in Nonlinear Analysis.
American Mathematical Society, Providence, RI, 1964.

A. E. Csallner and T. Csendes. Convergence speed of interval methods
for global optimization and the joint effects of algorithmic modifications,
1995. Talk given at SCAN’95, Wuppertal, Germany, Sept. 26 — 29, 1995.

T. Csendes. Nonlinear parameter estimation by global optimization —
efficiency and reliability. Acta Cybernetica, 8(4):361-370, 1988.

T. Csendes and D. Ratz. Subdivision direction selection in interval meth-
ods for global optimization, 1994. Accepted for publication in SIAM J.
Numer. Anal.

S. Dallwig, A. Neumaier, and H. Schichl. GLOPT - a program for con-
strained global optimization, 1996. Preprint, Institut fiir Mathematik,
Universitit Wien, Strudlhofgasse 4, A-1090 Wien, Austria.

J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Least Squares. Prentice-Hall, Englewood
Cliffs, NJ, 1983.

L. C. W. Dixon and G. P. Szeg6. The global optimization problem:
An introduction. In L. C. W. Dixon and G. P. Szegd, editors, To-
wards Global Optimization 2, pages 1-15, Amsterdam, Netherlands, 1978.
North-Holland.

References 239

[50] J. J. Dongarra and E. Grosse. Distribution of mathematical software via
electronic mail. Comm. ACM, 30(5):403-407, May 1987.

[51] K. Du. Cluster Problem in Global Optimization using Interval Arithmetic.
PhD thesis, University of Southwestern Louisiana, 1994.

[52] K. Du and R. B. Kearfott. The cluster problem in global optimization:
The univariate case. Computing (Suppl.), 9:117-127, 1992.

[53] J. S. Ely. The VPI software package for variable precision interval arith-
metic. Interval Computations, 1993(2):135-153, 1993.

[54] W. Enger. Interval ray tracing — a divide and conquer strategy for realistic
computer graphics. The Visual Computer, 9:91-104, 1992.

[55] J. Eriksson. Parallel Global Optimization using Interval Analysis. PhD
thesis, University of Ume4, Institute of Information Processing, 1991.

[56] J Eriksson and P. Lindstroem. A parallel interval method implementation
for global optimization using dynamic load balancing. Reliable Comput-
ing, 1(1):77-92, 1995.

[57] C. Falco-Korn, S. Gutzwiller, S. Kiinig, and Ch. Ullrich. Modula-SC,
motivation, language definition and implementation. In E. Kaucher,
S. Markov, and G. Mayer, editors, Computer Arithmetic — Scientific
Computation and Mathematical Modelling, IMACS Annals on Computing
and Applied Math. 12, pages 161-180, Basel, 1992. J. C. Baltzer AG.

[58] C. A. Floudas and P. M. Pardalos. A Collection of Test Problems for
Constrained Global Optimization Algorithms. Lecture Notes in Computer
Science no. 455. Springer-Verlag, New York, 1990.

[59] J. Gargantini and P. Henrici. Circular arithmetic and the determination
of polynomial zeros. Numer. Math., 18:305-320, 1972.

[60] P. E. Gill, W. Murray, and M. Wright. Practical Optimization. Academic
Press, New York, 1981.

[61] G. H. Golub and C. F. Van Loan. Matriz Computations (Second Edition).
Johns Hopkins University Press, Baltimore, MD, 1989.

[62] R. T. Gregory and D. L Karney. A Collection of Matrices for Testing
Computational Algorithms. Wiley, New York, 1969.

[63] A. Griewank. The chain rule revisited in scientific computing. SIAM
News, 24(3):20-21, May 1991.

240 RiGoROUS GLOBAL SEARCH: CONTINUOUS PROBLEMS

[64] A. Griewank. The chain rule revisited in scientific computing. SIAM
News, 24(4):8-24, July 1991.

[65] A. Griewank and G. F. Corliss, editors. Automatic Differentiation of Al-
gorithms: Theory, Implementation, and Application, Philadelphia, 1991.
SIAM.

[66] A. Griewank and S. Reese. On the calculation of Jacobian matrices by
the Markowitz rule. In A. Griewank and G. F. Corliss, editors, Automatic
Differentiation of Algorithms: Theory, Implementation, and Application,
pages 126-135, Philadelphia, 1991. SIAM.

[67] A. Griewank and Ph. L. Toint. On the unconstrained optimization of
partially separable functions. In M. J. D. Powell, editor, Nonlinear Opti-
mization 1981, pages 301-312, New York, 1982. Academic Press.

[68] E. Grosse and J. J. Dongarra. Distribution of mathematical software via
electronic mail. SIGNUM Newsletter, 20(3):45-47, July 1985.

[69] G. D. Hager. Solving large systems of nonlinear constraints with appli-
cation to data modeling. Interval Computations, 1993(2):169-200, 1993.

[70] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz. Numerical Toolboz for
Verified Computing I. Springer-Verlag, New York, 1993.

[71] R. Hammer, M. Neaga, and D. Ratz. PASCAL-XSC, New concepts for
scientific computation and numerical data processing. In E. Adams and
U. Kulisch, editors, Scientific Computing with Automatic Result Verifi-
cation, pages 15-44, New York, etc., 1993. Academic Press.

[72] E. R. Hansen. Interval arithmetic in matrix computations, part 1. SIAM
J. Numer. Anal., 2:308-320, 1965.

[73] E. R. Hansen. Interval forms of Newton’s method. Computing, 20:153—
163, 1978.

[74] E. R. Hansen. Global optimization using interval analysis: The one-
dimensional case. J. Optim. Theory Appl., 29(3):331-44, 1979.

[75] E. R. Hansen. Global optimization using interval analysis: The multidi-
mensional case. Numer. Math., 34(3):247-270, 1980.

[76] E. R. Hansen. Bounding the solution of interval linear equations. SIAM
J. Numer. Anal., 29(5):1493-1503, October 1992.

[77] E. R. Hansen. Global Optimization Using Interval Analysis. Marcel
Dekker, Inc., New York, 1992.

References 241

[78] E. R. Hansen and R. I. Greenberg. An interval Newton method. Appl.
Math. Comput., 12:89-98, 1983.

[79] E. R. Hansen and G. W. Walster. Bounds for Lagrange multipliers and
optimal points. Comput. Math. Appl., 25(10):59, 1993.

[80] D. Harper, C. Wooff, and D. Hodgkinson. A Guide to Computer Algebra
Systems. Wiley, New York, 1991.

[81] E. Heinz. An elementary analytic theory of the degree of mapping in n-
dimensional space. Journal of Mathematics and Mechanics, 8(2):231-247,
1959.

[82] J. Herzberger. ALGOL-60 procedures evaluating standard functions in
interval analysis. Computing, 5(4):377-384, 1970.

[83] J. Herzberger, editor. Topics in Validated Computations, Studies in Com-
putational Mathematics, Amsterdam, 1994. Elsevier Science Publishers.

[84] R. Horst and M. Pardalos. Handbook of Global Optimization. Kluwer,
Dordrecht, Netherlands, 1995.

(85] C. Hu. Optimal Preconditioners for the Interval Newton Method. PhD
thesis, University of Southwestern Louisiana, 1990.

[86] C. Hu and R. B. Kearfott. On bounding the range of some elementary
functions in FORTRAN 77. Interval Computations, 1993(3):29-39, 1993.

[87] D. Husung. Precompiler for scientific computation (TPX). Technical
Report 91.1, Inst. for Comp. Sci. III, Technical University Hamburg—
Harburg, 1989.

[88] E. Hyvonen and S. De Pascale. Interval constraint satisfaction tool
InC++: A local interval arithmetic library. Technical report, VTT, Tech.
Research Center of Finland, 1994.

[89] E. Hyvonen and S. De Pascale. Interval computations on the spread-
sheet. In R. B. Kearfott and V. Kreinovich, editors, Applications of In-
terval Computations, Applied Optimization, pages 169209, Dordrecht,
Netherlands, 1996. Kluwer.

[90] E. Hyvénen and S. De Pascale. Shared computations for efficient interval
function evaluation. In G. Alefeld, A. Frommer, and B. Lang, editors,
Scientific Computing and Validated Numerics, Mathematical Research,
volume 90, pages 38-44, Berlin, 1996. Akademie Verlag.

242

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

RIGOROUS GLOBAL SEARCH: CONTINUOUS PROBLEMS

K. Ichida and Y. Fujii. An interval arithmetic method for global opti-
mization. Computing, 23(1):85-97, 1979.

M. Iri. Simultaneous computation of functions, partial derivatives and es-
timates of rounding errors — complexity and practicality —. Japan Journal
of Applied Mathematics, 1(2):223-252, December 1984.

M. Iri and K. Kubota. Methods of fast automatic differentiation and
applications. Technical Report RMI 87-02, University of Tokyo, July
1987.

C.-H. Jan. Ezpression Parsing and Rigorous Computation of Bounds on
All Solutions to Practical Nonlinear Systems. PhD thesis, University of
Southwestern Louisiana, May 1992.

P. Jansen and P. Weidner. High-accuracy arithmetic software — some tests
of the ACRITH problem solving routines. ACM Trans. Math. Software,
12(1):62-71, 1986.

C. Jansson. A global minimization method: The one-dimensional case.
Technical Report 91.2, Technical University Hamburg-Harburg, Novem-
ber 1991.

C. Jansson. A global optimization method using interval arithmetic. In
L. Atanassova and J. Herzberger, editors, Computer Arithmetic and En-
closure Methods, pages 259-268, Amsterdam, Netherlands, 1992. North-
Holland.

C. Jansson. On self-validating methods for optimization problems. In
J. Herzberger, editor, Topics in Validated Computations, pages 381-439,
Amsterdam, Netherlands, 1994. North-Holland.

C. Jansson and O. Kniippel. Numerical results for a self-validating
global optimization method. Technical Report 94.1, Technical Univer-
sity Hamburg-Harburg, February 1994.

J. P. Jeter and B. D. Shriver. Variable precision and interval arithmetic:
A portable enhancement to FORTRAN. Adv. Eng. Software, 6(1):45-50,
1984.

H.-P. Jiillig. Algorithmen mit Ergebnisverification mit C++/2.0. Tech-
nical report, Technical University Hamburg-Harburg, 1991.

W. M. Kahan. A more complete interval arithmetic. In Lecture Notes for
a Summer Course at the University of Michigan, 1968.

References 243

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

E. Kaucher, U. Kulisch, and Ch. Ullrich, editors. Computer Arithmetic
— Scientific Computation and Programming Languages, Stuttgart, 1987.
Teubner.

E. W. Kaucher and W. L. Miranker. Self-Validating Numerics for Func-
tion Space Problems. Academic Press, Orlando, 1984.

R. B. Kearfott. Computing the Degree of Maps and a Generalized Method
of Bisection. PhD thesis, University of Utah, Department of Mathemat-
ics, 1977.

R. B. Kearfott. An efficient degree-computation method for a generalized
method of bisection. Numer. Math., 32:109-127, 1979.

R. B. Kearfott. Abstract generalized bisection and a cost bound. Math.
Comp., 49(179):187-202, July 1987.

R. B. Kearfott. Some tests of generalized bisection. ACM Trans. Math.
Software, 13(3):197-220, September 1987.

R. B. Kearfott. Interval arithmetic techniques in the computational solu-
tion of nonlinear systems: Introduction, examples, and comparisons. In
E. L. Allgower and K. Georg, editors, Computational Solution of Nonlin-
ear Systems of Equations (Lectures in Applied Mathematics, volume 26),
pages 337-358, Providence, RI, 1990. American Mathematical Society.

R. B. Kearfott. Interval Newton / generalized bisection when there are
singularities near roots. Annals of Operations Research, 25:181-196, 1990.

R. B. Kearfott. Preconditioners for the interval Gauss-Seidel method.
SIAM J. Numer. Anal., 27(3):804-822, June 1990.

R. B. Kearfott. Decomposition of arithmetic expressions to improve
the behavior of interval iteration for nonlinear systems. Computing,
47(2):169-191, 1991.

R. B. Kearfott. An interval branch and bound algorithm for bound con-
strained optimization problems. Journal of Global Optimization, 2:259—
280, 1992.

R. B. Kearfott. Empirical evaluation of innovations in interval branch
and bound algorithms for nonlinear algebraic systems, 1994. Accepted
for publication in SIAM J. Sci. Comput.

244

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

Ricorous GLOBAL SEARCH: CONTINUOUS PROBLEMS

R. B. Kearfott. On proving existence of feasible points in equality con-
strained optimization problems, 1994. Preprint, Department of Mathe-
matics, Univ. of Southwestern Louisiana, U.S.L. Box 4-1010, Lafayette,
La 70504.

R. B. Kearfott. On verifying feasibility in equality constrained optimiza-
tion problems. Technical report, University of Southwestern Louisiana,
1994.

R. B. Kearfott. A Fortran 90 environment for research and prototyping
of enclosure algorithms for nonlinear equations and global optimization.
ACM Trans. Math. Software, 21(1):63-78, March 1995.

R. B. Kearfott. Interval extensions of non-smooth functions for global op-
timization and nonlinear systems solvers, 1995. Accepted for publication
in Computing.

R. B. Kearfott. Automatic differentiation of conditional branches in
an operator overloading context. In George Corliss, editor, Proceedings
of the Second International Workshop on Computational Differentiation,
Philadelphia, 1996. STAM.

R. B. Kearfott. A review of techniques in the verified solution of
constrained global optimization problems. In R. B. Kearfott and
V. Kreinovich, editors, Applications of Interval Computations, pages 23—
60, Dordrecht, Netherlands, 1996. Kluwer.

R. B. Kearfott. Test results for an interval branch and bound algorithm
for equality-constrained optimization. In C. Floudas and P. M. Pardalos,
editors, State of the Art in Global Optimization: Computational Methods
and Applications, pages 181-200, Dordrecht, Netherlands, 1996. Kluwer.

R. B. Kearfott. Treating non-smooth functions as smooth functions in
global optimization and nonlinear systems solvers. In G. Alefeld, A. From-
mer, and B. Lang, editors, Scientific Computing and Validated Numer-
1cs, Mathematical Research, volume 90, pages 160-172, Berlin, 1996.
Akademie Verlag.

R. B. Kearfott, M. Dawande, K.-S. Du, and C.-Y. Hu. Algorithm 737:
INTLIB, a portable FORTRAN 77 interval standard function library.
ACM Trans. Math. Software, 20(4):447-459, December 1994.

R. B. Kearfott, M. Dawande, Du K.-S., and C. Hu. INTLIB: A
portable FORTRAN 77 elementary function library. Interval Compu-
tations, 3(5):96-105, 1992.

References 245

[125] R. B. Kearfott and K. Du. The cluster problem in multivariate global
optimization. Journal of Global Optimization, 5:253—-265, 1994,

[126] R. B. Kearfott, C. Hu, and M. Novoa. A review of preconditioners for the
interval Gauss—Seidel method. Interval Computations, 1(1):59-85, 1991.

[127] R. B. Kearfott and M. Novoa. Algorithm 681: INTBIS, a portable interval
Newton/bisection package. ACM Trans. Math. Software, 16(2):152-157,
June 1990.

[128] R. B. Kearfott and X. Shi. Optimal preconditioners for the interval
Gauss—Seidel method. In G. Alefeld, A. Frommer, and B. Lang, editors,
Scientific Computing and Validated Numerics, Mathematical Research,
volume 90, pages 173-178, Berlin, 1996. Akademie Verlag.

[129] R. B. Kearfott and Z. Xing. Rigorous computation of surface patch in-
tersection curves, 1993. Preprint, Department of Mathematics, Univ. of
Southwestern Louisiana, U.S.L. Box 4-1010, Lafayette, La 70504.

[130] R. B. Kearfott and Z. Xing. An interval step control for continuation
methods. STAM J. Numer. Anal., 31(3):892-914, June 1994.

[131] G.Kedem. Automatic differentiation of computer programs. ACM Trans.
Math. Software, 6(2):150-165, 1980.

[132] J. B. Keiper. Interval arithmetic in Mathematica. Interval Computations,
1993(3):76-87, 1993.

[133] R. Klatte, U. Kulisch, M. Neaga, D. Ratz, and Ch. Ullrich. PASCAL-
XSC: A PASCAL Extension for Scientific Computation. Springer-Verlag,
New York, 1991.

[134] R. Klatte, U. Kulisch, A. Wiethoff, C. Lawo, and M. Rauch. C-XSC; A
C++ Class Library for Eztended Scientific Computing. Springer-Verlag,
New York, 1993.

[135] O. Kniippel. PROFIL/BIAS — A fast interval library. Computing,
53:277-287, 1994.

[136] J. Kok. The embedding of accurate arithmetic in Ada. In P. J. L. Wallis,
editor, Improving Floating Point Programming, pages 99-120, New York,
1990. Wiley.

[137] C.F. Korn and Ch. Ullrich. Extending LINPACK by verification routines
for linear systems. Mathematics and Computers in Simulation, 39(1-
2):21-37, 1995.

246

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]
[148]

[149]

RicoroUS GLOBAL SEARCH: CONTINUOUS PROBLEMS

W. Kramer. Inverse Standardfunktionen fiir reelle und komplexze Inter-
vallargumente mit a priori Fehlerabschitzungen. PhD thesis, Universitit
Karlsruhe, 1987.

W. Kramer. Multiple precision computations with result verification. In
E. Adams and U. Kulisch, editors, Scientific Computing with Automatic
Result Verification, Mathematics in Science and Engineering, volume 189,
pages 325-256, New York, 1993. Academic Press.

R. Krawczyk. Newton-Algorithmen zur Bestimmung von Nullstellen mit
Fehlershranken. Computing, 4:187-201, 1969.

R. Krawczyk and A. Neumaier. Interval slopes for rational functions and
associated centered forms. SIAM J. Numer. Anal., 22(3):604-616, June
1985.

R. Krawczyk and K. Nickel. The centered form in interval arithmetics:
Quadratic convergence and inclusion isotonicity. Computing, 28(2):117-
137, 1982.

V. N. Krishchuk, N. M. Vasilega, and G. L. Kozina. Interval operations
and functions library for FORTRAN 77 programming system and its
practice using. Interval Computations, 4(6):2-8, 1992,

B. P. Kiristinsdottir, Z. B. Zabinsky, T. Csendes, and M. E. Tut-
tle. Methodologies for tolerance intervals. Interval Computations,
1993(3):133-147, 1993.

U. W. Kulisch. A new arithmetic for scientific computation. In U. W.
Kulisch and W. L. Miranker, editors, A New Approach to Scientific Com-
putation, Notes and Reports in Comp. Sci. and Applied Math., pages
1-26, New York, 1983. Academic Press.

U. W. Kulisch and W. L. Miranker, editors. A New Approach to Scientific
Computation, Notes and Reports in Comp. Sci. and Applied Math., New
York, 1983. Academic Press.

U. W. Kulisch and W. L. Miranker. The arithmetic of the digital com-
puter: A new approach. SIAM Rev., 28(1):1-40, 1986.

L. Kupriyanova. Inner estimation of the united solution set of interval
algebraic systems. Reliable Computing, 1:15-32, 1995.

S. E. Laveuve. Definition einer Kahan-Arithmetik und ihre Implemen-
tierung. In K. Nickel, editor, Interval Mathematics, Lecture Notes in
Computer Science 25, pages 236-245, New York, 1975. Springer-Verlag.

References 247

[150] C. Lawo. C-XSC - a programming environment for verified scientific
computing and numerical data processing. In E. Adams and U. Kulisch,
editors, Scientific Computing with Automatic Result Verification, pages
71-86, New York, etc., 1993. Academic Press.

[151] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Algorithm
539 basic linear algebra subprograms for FORTRAN usage. ACM Trans.
Math. Software, 5(3):308-325, September 1979.

[152] A. Leclerc. Parallel interval global optimization in C++. Interval Com-
putations, 1993(3):148-163, 1993.

[153] N. G. Lloyd. Degree Theory. Cambridge University Press, Cambridge,
England, 1978.

[154] W. A. Lodwick. Constraint propagation, relational arithmetic in Al sys-
tems and mathematical programs. Ann. Oper. Res., 21(1-4):143-148,
1989.

[155] W. Luther and W. Otten. Computation of standard interval functions
in multiple-precision interval arithmetic. Technical Report SM-DU-233,
Uni. Duisburg Gesamthochschule, 1993.

[156] M. A. MacCallum. Algebraic Computing with REDUCE. Oxford Univer-
sity Press, London, 1992.

[157] S. Markov. On an interval arithmetic and its applications. In Proceedings
of the 5th Symposium on Computer Arithmetic. IEEE. Univ. Michigan.
1981. Ann Arbor, MI, USA. 18-19 May 1981., 1981.

[158] S. M. Markov. Some applications of extended interval arithmetic to in-
terval iterations. Computing (Suppl.), 2:69-84, 1980.

[159] G. Mayer. Epsilon-inflation in verification algorithms. J. Comput. Appl.
Math., 60:147-169, 1994.

[160] M. Metzger. FORTRAN-SC, a FORTRAN extension for engineering
/ scientific computation with access to ACRITH: Demonstration. In
R. E. Moore, editor, Reliability in Computing, Perspectives in Comput-
ing, pages 63-80, New York, 1988. Academic Press.

[161] C. Miranda. Un’ osservatione su un teorema di Brouwer. Bol. Un. Mat.
Ital., Series 2, 2:5-7, 1940.

[162] V. Mladenov. An improved interval method for solving nonlinear systems
of monotone functions. In S. M. Markov, editor, Mathematical Modelling
and Scientific Computing, pages 23-26, Sofia, 1993. DATECS Publishing.

248 Ricorous GLOBAL SEARCH: CONTINUOUS PROBLEMS

[163] R. E. Moore. Interval Arithmetic and Automatic Error Analysis in Digital
Computing. PhD thesis, Stanford University, October 1962.

[164] R. E. Moore. A test for existence of solutions to nonlinear systems. STAM
J. Numer. Anal., 14(4):611-615, September 1977.

[165] R. E. Moore. Methods and Applications of Interval Analysis. SIAM,
Philadelphia, 1979.

[166] R. E. Moore, E. Hansen, and A. Leclerc. Rigorous methods for paral-
lel global optimization. In A. Floudas and P. Pardalos, editors, Recent
Advances in Global Optimization, pages 321-342, Princeton, N.J., 1992.
Princeton Univ. Press.

[167] R. E. Moore and S. T. Jones. Safe starting regions for iterative methods.
SIAM J. Numer. Anal., 14(6):1051-1065, December 1977.

[168] R.E. Moore and H. Ratschek. Inclusion functions and global optimization
II. Math. Prog., 41(3):341-356, September 1988.

[169] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. User guide for MINPACK-
1. Technical Report ANL-80-74, Argonne National Laboratories, 1980.

[170] J. J. Moré and S. J. Wright. Optimization Software Guide. Frontiers in
Applied Mathematics 14. STAM, Philadelphia, 1993.

[171] A. P. Morgan. A method for computing all solutions to systems of poly-
nomial equations. ACM Trans. Math. Software, 9(1):1-17, 1983.

[172] A.P. Morgan and A. J. Sommese. Computing all solutions to polynomial
systems using homotopy continuation. Appl. Math. Comput., 24(2):115—
138, 1987.

[173] S. P. Mudur and P. A. Koparkar. Interval methods for processing geo-
metric objects. IEEE Comput. Graphics and Appl., 4(2):7-17, February
1984.

[174] B. A. Murtagh and M. A. Saunders. Minos 5.1 user’s guide. Technical
Report SOL 83-20R, Dept. Operations Res., Stanford University, 1987.

[175) A. Neumaier. Interval Methods for Systems of Equations. Cambridge
University Press, Cambridge, England, 1990.

[176] A. Neumaier. A compact input format for nonlinear optimization prob-
lems, 1993. Preprint, Institut fiir Mathematik, Universitiat Wien, Strud-
hofgasse 4, A-1050 Wien, Austria.

References 249

[177] A. Neumaier. Second-order sufficient optimality conditions for local and
global nonlinear programming, 1994. Accepted for publication in Journal
of Global Optimization.

[178] A. Neumaier and Z. Shen. The Krawczyk operator and Kantorovich’s
theorem. Mathematical Analysis and Applications, 149(2):437-443, July
1990.

[179] S. Ning. A report on code lists for higher-order derivatives summary of a
fall, 1993 individual study course. Technical Report Dept. Math., Univ.
of Southwestern La., University of Southwestern Louisiana, 1993.

[180] Manuel IIT Novoa. Theory of preconditioners for the interval Gauss—Seidel
method and existence / uniqueness theory with interval Newton methods,
1993. Preprint, Department of Mathematics, University of Southwestern
Louisiana, U.S.L. Box 4-1010, Lafayette, La 70504.

[181] W. Oettli. On the solution set of a linear system with inaccurate coeffi-
cients. SIAM J. Numer. Anal., 2:115-118, 1965.

182] P. M. Pardalos and J. B. Rosen. Constrained Global Optimization: Al-
[
gorithms and Applications. Lecture Notes in Computer Science no. 268.
Springer-Verlag, New York, 1987.

[183] P. M. Pardalos and S. A. Vavasis. Quadratic programming with one
negative eigenvalue is NP-hard. Journal of Global Optimization, 1(1):15~
22, 1992.

[184] G. Peterson. Object-Oriented Computing, Volume 1: Concepts. IEEE
Computer Society Press, Washington, D.C., 1987.

[185] L. Qiao. Basic interval arithmetic subroutines library in the C language.
Technical Report 335, Math./Stat./Comp. Sci., Marquette University,
November 1990.

[186] L. B. Rall. A comparison of the existence theorems of Kantorovich and
Moore. SIAM J. Numer. Anal., 17(1):148-161, 1980.

[187] L. B. Rall. Automatic Differentiation: Techniques and Applications. Lec-
ture Notes in Computer Science no. 120. Springer, Berlin, New York, etc.,
1981.

[188] L. B. Rall. An introduction to the scientific computing language Pascal-
SC. Computers and Mathematics with Applications, 14(1):53-59, 1987.

250 RicoroUS GLOBAL SEARCH: CONTINUOUS PROBLEMS

[189] R. H. Rand. Computer Algebra in Applied Mathematics: An Introduc-
tion to MACSYMA. Research notes in mathematics. Pitman Advanced
Publishing Program, Boston, London, Melbourne, 1984.

[190] H. Ratschek and J. Rokne. Computer Methods for the Range of Functions.
Horwood, Chichester, England, 1984.

[191] H. Ratschek and J. Rokne. New Computer Methods for Global Optimiza-
tion. Wiley, New York, 1988.

[192] H. Ratschek and J. Rokne. Formulas for the width of interval products.
Reliable Computing, 1(1):9-14, 1995.

[193] H. Ratschek and R. L. Voller. Global optimization over unbounded do-
mains. SIAM J. Control Optim., 28(3):528-539, 1990.

[194] D. Ratz. Automatische Ergebnisverifikation bei globalen Opti-
mierungsproblemen. PhD thesis, Universitit Karlsruhe, 1992.

[195] D. Ratz. An inclusion algorithm for global optimization in a portable
PASCAL-XSC implementation. In L. Atanassova and J. Herzberger, ed-
itors, Computer Arithmetic and Enclosure Methods, pages 329-338, Am-
sterdam, Netherlands, 1992. North-Holland.

[196] D. Ratz. Box-splitting strategies for the interval Gauss—Seidel step in a
global optimization method. Computing, 53:337-354, 1994.

[197] D. Ratz. On branching rules in second-order branch-and-bound methods
for global optimization. In G. Alefeld, A. Frommer, and B. Lang, editors,
Scientific Computing and Validated Numerics, Mathematical Research,
volume 90, pages 221-227, Berlin, 1996. Akademie Verlag.

[198] D. Ratz. On extended interval arithmetic and inclusion isotonicity, 1996.
Preprint, Institut f. Angew. Mathematik, Universitit Karlsruhe, Postfach
6980, D-76128 Karlsruhe, Germany.

[199] D. Ratz and T. Csendes. On the selection of subdivision directions in
interval branch-and-bound methods for global optimization. Journal of
Global Optimization, 7:183-207, 1995.

[200] W. C. Rheinboldt and J. M. Ortega. Iterative Solution of Nonlinear
Eguations in Several Variables. Academic Press, New York, 1970.

[201] J. Rohn. Solving systems of linear interval equations. In R. E. Moore,
editor, Reliability in Computing, Perspectives in Computing, pages 171-
182, New York, 1988. Academic Press.

References 251

[202] J. Rohn. New condition numbers for matrices and linear systems. Com-
puting, 41(1-2):167-169, 1989.

[203] J. Rohn. NP-hardness results for linear algebraic problems with interval
data, 1994. Preprint, Faculty of Math. and Physics, Charles University,
Malostranske nam. 25, 11800 Praha 1, Czech Republic.

[204] J. Rohn and V. Kreinovich. Computing exact componentwise bounds on
solutions of linear systems with interval data is NP-hard. STAM J. Matriz
Anal. Appl., 16(2), April 1995.

[205] S. M. Rump. Kleine Fehlerschranken bei Matrizproblemen. PhD thesis,
Universitiat Karlsruhe, 1980.

[206] S. M. Rump. ACRITH - high accuracy arithmetic subroutine library. In
B. Buchberger, editor, EUROCAL ’85: European Conference on Com-
puter Algebra, New York, 1985, Springer-Verlag.

[207] S. M. Rump. On the solution of interval linear systems. Computing,
47:337-353, 1992.

[208] S. M. Rump. Verification methods for dense and sparse systems of equa-
tions. In J. Herzberger, editor, Topics in Validated Computations, pages
63-135, Amsterdam, 1994. Elsevier Science Publishers.

[209] S. M. Rump. Bounds for the componentwise distance to the nearest
singular matrix. Technical Report 95.3, Technical University Hamburg-
Harburg, 1995.

[210] S. M. Rump. Expansion and estimation of the range of nonlinear func-
tions, 1995. Preprint, Informatik III — Programmiersprachen und Al-
gorithmen, Technische Universitit Hamburg, Eissendorfer Str. 38, 2100
Hamburg 90, Germany.

[211] S. M. Rump. New results on validation algorithms for large systems of
equations, 1995. Talk given at SCAN’95, Wuppertal, Germany, Sept. 26
29, 1995.

[212] C. A. Schnepper. Large Grained Parallelism in Equation-Based Flow-
sheeting Using Interval Newton / Generalized Bisection Techniques. PhD
thesis, University of Illinois, Urbana, 1992.

[213] C. A. Schnepper and M. A. Stadtherr. Application of a parallel inter-
val Newton / generalized bisection algorithm to equation-based chemical
process flowsheeting. Interval Computations, 1993(4):40-64, 1993.

252 Ricorous GLOBAL SEARCH: CONTINUOUS PROBLEMS

[214] T. W. Sederberg and S. R. Parry. Comparison of three curve intersection
algorithms. Comput. Aided Des., 18(1):58-63, 1986.

[215] S. P. Shary. Solving the tolerance problem for interval linear systems.
Interval Computations, 1994(2), 1994.

[216] S. P. Shary. On optimal solution of interval linear equations. SIAM J.
Numer. Anal., 32(2):610-630, April 1995.

[217] S. P. Shary. Algebraic approach to the interval linear static identification,
tolerance and control problems. Reliable Computing, 2(1):3-34, 1996.

[218] Z. Shen, A. Neumaier, and M. C. Eiermann. Solving minimax problems
by interval methods. BIT, 30:742-751, 1990.

[219] Z. Shen and M. A. Wolfe. On interval enclosures using slope arithmetic.
Technical report, Dept. Math., Univ. of St. Andrews, Scotland, Septem-
ber 1989.

[220] Z. Shen and M. A. Wolfe. A note on the comparison of the Kantorovich
and Moore theorems. Nonlinear Analysis, 15(3):229-232, 1990.

[221] E. C. Sherbrooke and N. M. Patrikalakis. Computation of the solutions
of nonlinear polynomial systems. Computer Aided Geometric Design,
10:379-405, 1993.

[222] X. Shi. Intermediate Ezpression Preconditioning and Verification for Rig-
orous Solution of Nonlinear Systems. PhD thesis, University of South-
western Louisiana, Department of Mathematics, August 1995.

[223] D. Shiriaev. Fast Automatic Differentiation for Vector Processors and
Reduction of the Spatial Complezity in a Source Translation Environment.
PhD thesis, University of Karlsruhe, 1993.

[224] S. Skelboe. Computation of rational interval functions. BIT, 14:87-95,
1974.

[225] B. Speelpenning. Compiling fast partial derivatives of functions given
by algorithms. Technical Report R-80-1002, Univ. of Illinois at Urbana—
Chambaign, January 1980.

[226] F. Stenger. An algorithm for the topological degree of a mapping in R".
Numer. Math., 25:23-38, 1976.

[227] Stevenson, D., chairman, Floating-Point Working Group, Microproces-
sor Standards Subcommittee. IEEE standard for binary floating point
arithmetic (IEEE/ANSI 754-1985). Technical report, IEEE, 1985.

References 253

[228] M. Stynes. An Algorithm for the Numerical Calculation of the Degree of
a Mapping. PhD thesis, Oregon State University, Department of Mathe-
matics, Corvallis, Oregon, 1977.

[229] Symbolic Computation Group Staff. Maple, Version 4.2.1. Brooks/Cole,
Monterey, California, 1990.

[230] University of Minnesota Computer Center. M77 Reference Manual: 1977
Standards Version Edition 1. University of Minnesota, 1983.

[231] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, Cambridge, MA, 1989.

[232] P. Van Hentenryck, D. McAllester, and D. Kapur. Solving polynomial
systems using a branch and prune approach. Technical Report CS-95-01,
Dept. of Comp. Sci., Brown University, 1995.

[233] R. J. Van Iwaarden. An Improved Unconstrained Global Optimization
Algorithm. PhD thesis, University of Colorado at Denver, 1996.

[234] M. N. Vrahatis. Solving systems of nonlinear equations using the nonzero
value of the topological degree. ACM Trans. Math. Software, 14(4):312—
336, December 1988.

[235] G. W. Walster, E. R. Hansen, and S. Sengupta. Test results for a global
optimization algorithm. In P. T. Boggs, R. H. Byrd, and R. B. Schnabel,
editors, Numerical Optimization 1984, pages 272-287, Philadelphia, 1985.

- STAM.

[236] W. V. Walter. FORTRAN-SC, a Fortran extension for engineering /
scientific computation with access to ACRITH: Language description. In
R. E. Moore, editor, Reliability in Computing, Perspectives in Computing,
pages 43-62, New York, 1988. Academic Press.

[237] W. V. Walter. ACRITH-XSC: A Fortran-like language for verified sci-
entific computing. In E. Adams and U. Kulisch, editors, Scientific Com-
puting with Automatic Result Verification, pages 45-70, New York, etc.,
1993. Academic Press.

[238] W. V. Walter. FORTRAN-XSC: A portable Fortran 90 module library
for accurate and reliable scientific computing. Computing (Suppl.), 9:265—
286, 1993.

[239] R. E. Wengert. A simple automatic derivative evaluation program.
Comm. ACM, 7(8):463-464, August 1964.

254 Ricorous GLOBAL SEARCH: CONTINUOUS PROBLEMS

[240] A.S. Wexler. Automatic evaluation of derivatives. Appl. Math. Comput.,
24:19-26, 1987.

[241] J. H. Wilkinson. Modern error analysis. STAM Rev., 13(4):548-568, 1971.

[242] M. A. Wolfe. An interval algorithm for constrained global optimization.
J. Comput. Appl. Math., 50:605-612, 1994.

[243] J. Wolff von Gudenberg. Programming language support for scientific
computation. Interval Computations, 1992(4):116-126, 1992.

[244] S. Wolfram. Mathematica: A System for Doing Mathematics by Computer
(Second Edition). Addison-Wesley, Reading, MA, 1991.

[245] Zh. Xing. Rigorous Step Control for Continuation. PhD thesis, University
of Southwestern Louisiana, 1993.

[246] A. G. Yakovlev. Multiaspectness and localization. Interval Computations,
1993(4):195-209, 1993.

[247] J. M. Yohe. Software for interval arithmetic: A reasonably portable
package. ACM Trans. Math. Software, 5(1):50-53, March 1979.

Accurate dot product, 8, 103-104,
106-107

ACRITH, 104-105

ACRITH-XSC, 102, 104-105

Ada, 44, 105, 107

Algol, 102

Algol-60, 103

Anonymous FTP, xv, 71, 76, 107,
111, 139, 166

Approximate optimizer, 175

Augment precompiler, 103

Automatic differentiation, 29,
36-37, 48, 94-95, 209

forward mode, 37-38, 48
reverse mode, 38, 48, 96

Automatic verification, 24

BIAS, 107-108

BIBINS, 107

Binary code list, 85

Bisection, 122, 148, 173-175

BLAS, 72, 107

BNR. Prolog, 230, 232

Bound constraints, 170, 172, 175,
178, 180182, 185, 187,
190-198, 201, 204, 206

Box complementation, 145-147,
154, 157

Box, 1, 6, 95-96

Box-splitting strategies, 174-175

Branch and bound, 145, 171, 175

Branch function, 87, 211

Brouwer degree, 66-67, 111

Brouwer fixed point theorem, 18,
60-61

C, 106

INDEX

C++, 44, 103, 105-107, 109, 111,
176, 230
Borland, version 4, 106
C-LP-DENSE, 140
C-preconditioner, 124-125, 128
C-XSC, 8, 106
free version via FTP, 106
Cancellation subtraction, 5
Case statement, 48
Fortran-90, 48
CDC mainframes, 104
CDLINEQ, 86
CDLLHS, 45, 83, 86
CDLVAR, 45, 83, 86-87
Centered form, 16
Certainly feasible, 179
CHI function, 87, 211
Circular arithmetic, 10
CM-LP-preconditioner, 136
Code list, 43—45, 47-48, 50, 78, 83,
85, 87-89, 91-101, 159, 161,
199-201, 227-228, 231-234
ASCII, 85
binary, 85
derivative, 91, 93
first derivative, 94, 99
gradient, 94-95, 99, 101, 199,
201-202, 207, 230, 233
second derivative, 93
CODELIST-VARIABLES,
module, 95
Common subexpressions, 101
Complementation, box, 145-147,
154, 157
Complete pivoting, 189

256 Ricorous GLOBAL SEARCH: CONTINUOUS PROBLEMS

Complex interval arithmetic, 10
circular, 10
rectangular, 10
Complex interval dependency, 10
COMPONENT-SOLVE, 232
Computational cost, 97
Computational fixed point theory,
59
Concavity test, 172
Configuration file, 83
Constraint logic programming,
109-110
Constraint processing, 110
Constraint propagation, 110, 129,
230, 232
Constraint satisfaction, 109
Constraints, xi, 99, 169-170,
177-180, 185, 203, 206
bound, 170, 172, 178, 180-182,
185, 187, 190-198, 201, 204,
206
equality, 170, 177, 179-180, 185,
188, 195, 200
inequality, 169, 177-180
Continuation method, 191
Controlled solution set, 19
Convergence theory, interval
Newton methods, 210, 219
Conversion error, 85
Convex hull, 6
Convexity, 173
CP/M, 104
Cray machines, 78
Degeneracy, 69
DENSE-GAUSS-SEIDEL-STEP,
234
DENSE-JACOBI-MATRIX,
subroutine, 96
DENSE-NLE-BOX-LIST, 165-166
DENSE-SLOPE-MATRIX, 96, 227
Dependency, 4, 233
Dependent variable, 93-94

Derivative code list, 91-95, 212
Derivative tensor, 94
Diameter, relative, 146
Differentiation arithmetic, 37, 41
Differentiation, 83
automatic, 29, 36-38
numerical, 36
symbolic, 36, 43, 91
Directed rounding, 3, 7, 107,
115-116, 120
simulated, 8, 71-72
Distributed-memory, 176
DOS, 104, 109
Dot product, accurate, 8, 103-107
E-preconditioner, 124-128
Eigenvalues, 173
Einzelschrittverfahren, 21
Epsilon-inflation, 143, 145, 147,
150-151, 176, 204, 207, 209
Equality constraints, 170, 178-180,
185, 188, 195, 200
feasibility of, 178
proving feasibility, 179
Excel, 103, 109
Existence verification, 18, 25,
59-61, 63, 68, 126, 128, 143,
150-151, 171-172, 174, 176,
219
Expanded system, 39, 109,
228-229, 232
Expression swell, 38
Extended interval arithmetic, 3, 9,
175
Extended interval, 9
F-2, subroutine, 96
F-POINT, subroutine, 96
Feasibility, proving, 172-173,
178-179, 195
First derivative code list, 94, 99
First order interval extension, 14
Fixed point iteration, 24, 56
Fixed point theory, 50-51, 60-61

Indez

classical, 51
computational, 56, 59
interval, 50
FORTRAN IV, 103-104
FORTRAN-66, 103
FORTRAN-77, 8, 11, 13, 44,
71-73, 76, 101, 104, 110-112,
175
Fortran-90, 7, xiii—xiv, 44-47, 50,
71, 76, 78-81, 83, 86-87, 97,
104-106, 109-110, 167,
230-232
FORTRAN-SC, 8, 102, 104
Fortran-XSC, 106
Forward mode, automatic
differentiation, 37-38, 48
Forward substitution, 231
FORWARD-SUBSTITUTION, 233
Frechét arithmetic, 94
Fritz John equations, 100, 170,
172, 179, 194-196, 204, 208
FTP, xv, 71, 76, 106-107, 111,
139, 166
F, subroutine, 95
Gap, 127
Gauss—Seidel method, interval,
21-22, 58-59, 61, 113-114,
117, 119, 121-124, 126, 141,
143, 148, 150, 175, 179, 204,
227, 229, 232, 189, 191
GAUSS-SEIDEL-STEP, 234
Gaussian elimination, complete
pivoting, 189
Gaussian elimination, interval, 21,
51, 58, 113-114, 118-119,
121-123, 141, 143, 179, 196
Generalized bisection, 69, 122, 141,
145, 148, 154, 157, 175-176,
232
coordinate selection strategies,
157
Generic functions, 47

257

Gradient code list, 94-95, 99, 101,
199, 201-202, 207, 230, 233
Gradient
reduced, 101
GRADIENT-CODELIST, module,
91,94
Hansen slope, 33, 35, 96, 227, 234
Hansen’s algorithm, 174
Hessian, 94, 99
reduced, 101
Horner’s method, 4, 17
Hull
interval, 20
solution set, 20
Hypercube, 176
IBM 360, 103, 105
IBM 370, 104
IBM PC, 107, 111
Idealized interval arithmetic, 3
IEEE binary floating point
standard, 7
Il-conditioning, 150
InC+4, 107, 109
Inclusion isotonic, 17
Inclusion monotonic, 17, 35
Inequality constraints, 169,
177-180
feasibility of, 178
proving feasibility, 179
Infeasibility, proving, 172-173,
178180, 194
INFFOR, 112
INITIALIZE-CODELIST
module, 87
Inner estimates, 9, 20
INTCOM, 111
Interior, 6
Intermediate variable, 91, 94
Internal representation, 43
Interpreter, 48
Interval arithmetic, 3
complex, 10

258 RicoroUS GLOBAL SEARCH: CONTINUOUS PROBLEMS

directed rounding, 7
extended, 3, 9
idealized, 3
Kahan, 3, 8
Kahan—Novoa—Ratz, 54
operational definitions, 3
ordinary interval division, 3
overestimation, 4, 8
complex, 10
real, 3
rounded, 7
software packages, 8
subdistributivity, 4
Interval constraint propagation,
109
Interval data type, 78
Interval dependency, 4, 233
complex, 10
Interval enclosures, 3
Interval extension, 11, 209
centered form, 16
first order, 14
inclusion isotonic, 17
inclusion monotonic, 17
mean value, 15, 96
natural, 11-13, 15-17, 26-27,
35-36, 56, 96, 142, 149, 227
non-smooth, 209
order, 14, 177
properties, 13
second order, 14, 147, 232
united, 6
Interval Gauss algorithm, 21
Interval Gauss—Seidel method,
21-22, 58-59, 61, 63,
113-114, 117, 119, 121-124,
126, 141, 143, 148, 150, 175,
179, 189, 191, 204, 227, 229,
232
Interval Gaussian elimination, 21,

51, 58, 63, 113-114, 118-119,

121-123, 141, 143, 179, 196

Interval hull, 20
Interval Jacobi matrix, 27,
121-122, 229, 234
Interval linear systems, 18, 113
preconditioning, 21
Interval Newton methods, 18,
25-26, 32-33, 50-51, 55,
59-60, 63, 69, 108, 114-115,
117, 120-121, 150, 157,
174-176, 185, 187-192,
194-196, 198-199, 209-210,
215, 219, 229, 232, 234
convergence theory, 210, 219
multivariate, 55-56
quadratic convergence, 59
univariate, 51-52
Interval, 3
dependency, 4
complex, 10
thin, 6
INTERVAL-ARITHMETIC,
module, 78, 80, 105
INTLIB, 8, 44, 71-74, 76, 78-79,
81, 107, 166
INTLIB-90, xiv, 45, 78, 89, 91-93,
95, 101-103, 105-106, 110,
150, 166, 211, 228, 231, 234
INTLIB-ARITHMETIC, module,
107
INTNEWT.CFG, 199
INTOPT-90, xiv, 78, 94, 140,
145-146, 153, 159, 162,
165-167, 170, 199, 201, 205,
207, 227, 232-234
Inverse midpoint preconditioner,
114-115, 118-122, 141-142
optimality properties, 118
IVL, 80
Jacobi matrix, 27, 66-67, 94, 96,
99, 188, 196
ill-conditioned, 150

Index

interval, 27, 119, 121-122, 229,
234
singular, 150
Kahan arithmetic, 53
Kahan—Novoa-Ratz arithmetic, 3,
8-9, 54, 115, 124, 127, 136,
175
Kantorovich theorem, 60
Karlsruhe University, 105
Kaucher arithmetic, 9
Krawczyk method, 21, 24, 51,
56-58, 60, 113, 116, 119,
141-142
Krawczyk operator, 56
Lagrange multiplier, 195-196, 198
LANCELOT, 36, 88, 205
LANCELOT-OPT, 204-205,
207-208
Left-optimal preconditioner,
125-126, 138
Linear algebra, numerical, 107
Linear programming, 185
Linear systems of equations,
interval, 18, 113
Linear systems of equations,
interval
solution set, 19
Linked list, 165
Lipschitz matrix, 26-27, 33, 60,
62-64, 210, 212, 219
Lipschitz set, 220
Load balancing, 176
Local optimization, 175
Logic programming languages,
109-110
Logic programming, 110, 230
Logical-valued operators, 80
LP-preconditioners, 136, 142, 175,
233
CM, 136
M77 compiler, 104
Machine interval arithmetic, 7

259

MACSYMA, 36, 95

Magnitude, 5

Magnitude-optimal LP
preconditioner, 136

Magnitude-optimal preconditioner,
125-126, 128-129, 134-135,
137, 141, 143, 189

MAKE-GRADIENT, 201

Maple, 36, 95, 103, 108

Markov arithmetic, 9

Mathematica, 36, 95, 103, 108

Mathematics Research Center, 104

Maximum smear, 153, 157, 175

Mean value extension, 15, 56, 96,
219

Midpoint test, 172-175, 204

Mignitude, 5

Mignitude-optimal
LP-preconditioner, 137

Mignitude-optimal preconditioner,
127

Mignitude-optimal splitting
preconditioner, 127-129, 136,
138-139, 141, 143, 167, 194

Minimum smear, 153

Miranda’s theorem, 60-61

Modula-2, 107

Modula-SC, 107

Monotonicity test, 172-173, 175,
205

Moore-Skelboe algorithm, 110,
173-174, 232

Multivariate interval Newton
methods, 55-56

NAG, 97, 231

Natural interval extension, 11-13,
15-17, 26-27, 35-36, 56, 96,
142, 149, 227

NEAREST, Fortran-90, 7

NETLIB, 76

Newton methods, interval, 18,
25-26, 32-33, 50-51, 55,

260 RiGoroUs GLOBAL SEARCH: CONTINUOUS PROBLEMS

59-60, 69, 108, 120-121, 185,
187-192, 194-195, 198-199,
229, 232, 234

Non-convexity, 173

Non-smooth functions, interval
extensions of, 209

NP-completeness, 180

Numerical differentiation, 36

Operator overloading, 43, 83,
103-104

Optimal LP-preconditioners, 124

Optimal preconditioners, 114, 129,
175, 179, 191, 229

width-, 123

OPTTBND.CFG, 199, 204205

Order, interval extension, 14, 177

Ordinary interval division, 3

Outer estimates, 9, 20

Outward rounding, 7

Overestimation, 88, 157, 189

Overhead, 97

OVERLOAD.CFG, 85, 159, 161,
199

OVERLOAD, module, 83

Parallelization, 176

Parameter-fitting, 176

Parametrized systems, 154

Partial separability, 88

Pascal-SC, 8, 104-106

Pascal-XSC, 8, 106, 174

Peeling, viii-ix, 181, 183-184, 198

Penalty function, 179

PL/1, 104, 112

POINT-JACOBI-MATRIX,
subroutine, 96

Portability, 105

Positive definite, 173

PRECISION BASIC, 111

Preconditioner

width-optimal, 143
Preconditioning, 21, 55, 58, 113

inverse midpoint, 114-115,
118-122, 141-142
left-optimal, 125-126, 138
magnitude-optimal, 125-126,
128-129, 134-135, 137, 141,
143, 189
mignitude-optimal splitting,
127-129, 136, 138, 141, 143,
167, 194
mignitude-optimal, 127
optimal C, 125
optimal LP, 124, 128, 233
theory, 138
optimal, 114, 134, 136-138, 179
C, 124-125
E, 124-128
LP, 134, 233
S, 124
width-, 123
right-optimal, 125-126, 138
splitting, 167
width-optimal, 125-126,
128-129, 133, 137, 140-141,
143, 150, 167, 189, 199, 229
PROFIL, 107
Prolog, 103, 110, 230, 232
BNR, 230, 232
Proving feasibility, 178-179, 195
equality constraints, 178-179
inequality constraints, 178-179
Quadratic convergence, 52, 59, 65,
172, 174
Quadratic programming, 180
Range arithmetic, 110
RATFOR, 104
Rational approximations, 13
Real interval arithmetic, 3
Reduce, 36, 95
Reduced gradient, 101, 172, 180,
182
Reduced Hessian matrix, 101
Regular, 19, 62

Index

Regularity, 18
strong, 119
Relative diameter, 146
Relative width, 146
Reverse mode, automatic
differentiation, 38, 48, 94, 96
Right-optimal preconditioner,
125-126, 138
RNDOUT, subroutine, 73
ROOTS-DELETE, 159160, 162,
165-167
ROOTSDL.CFG, 160-161, 166
Rounded interval arithmetic, 7
Roundout error, 7, 17, 42
RUN-GLOBAL-OPTIMIZATION,
198-202, 204205, 207-208
RUN-ROOTS-DELETE, 159-160,
162, 166, 198-199
Russian Institute of Artificial
Intelligence, 109
S-preconditioner, 124
SC languages, 8, 44, 102, 104
Second derivative code list, 93—94
Second order interval extension,
.26, 147, 232
SEPAFOR, 103
Separable, 88
SIMINI, subroutine, 76
Simulated directed rounding, 8,
71-72
Single-step method, 21
Singularity, 66, 69
Slack variables, 178
Slope arithmetic, 41
Slope matrix, 26-28, 30, 33, 35,
41-42, 51, 58, 60, 63-66, 96,
219
Slopes, 27
multivariate, 29
univariate, 27
Smear, 153, 175
Smear, maximum, 157, 175

261

Software packages, 8
Solution hull, 20
Solution set
interval linear systems, 19
Splitting preconditioners, 136, 167
Splitting strategies, 174
Spreadsheet, 109
Standard function, 11-15, 17-18,
37, 41, 44, 50, 71, 74, 103,
105
Strongly regular, 119, 141
Subdefinite calculations, 109, 230
Subdistributivity, 4
SUBSIT, subroutine, 233-234
Substitution-iteration, 101, 109,
205, 228-230, 232-234
Sun, 107
Symbolic differentiation, 36, 43,
91, 94-95
Symbolic manipulation packages,
36, 108-109
MACSYMA, 95
Maple, 95, 103, 108
Mathematica, 95, 103, 108
Reduce, 95
Symmetric interval, 115
Syntax rules, 86
Taylor arithmetic, 107
Tessellation, 145, 172, 175, 178,
205, 230
Thin interval, 6
Tolerable solution set, 19
Topological degree, 66-67, 69, 111
Tree, 182
Triplex-Algol, 103
Trisection, 176
ULP, 8, 106
Unconstrained optimization, 174
UniCalc, 103, 109, 230
Uniqueness verification, 18, 25,
59-60, 63-66, 126, 128, 143,

262

150-151, 171-172, 174, 176,
195, 219
United extension, 6
United solution set, 19
inner estimates, 20
outer estimates, 20
Univac, 103
Unix, 167
Variable precision, 103, 106,
110-111
Verification
existence, 18, 25, 59, 61, 63, 68,
126, 128, 150-151, 219
uniqueness, 150
Width, 6
relative, 146
Width-optimal LP-preconditioner,
134, 138
Width-optimal preconditioner,
123, 125-126, 128-129, 133,
137, 140-141, 143, 150, 167,
189, 199, 229
Winding number, 67
World Wide Web, 71, 74
XSC languages, 105
C-XSC, 106
Fortran-XSC, 106
free version of C-XSC via FTP,
106
Pascal-XSC, 106

Nonconvex Optimization and Its Applications

10.

11.
12,

13,

D.-Z. Du and J. Sun (eds.): Advances in Optimization and Approximation.
1994, ISBN 0-7923-2785-3
R. Horst and P.M. Pardalos (eds.): Handbook of Global Optimization. 1995

ISBN 0-7923-3120-6
R. Horst, P.M. Pardalos and N.V. Thoai: Introduction to Global Optimization
1995 ISBN 0-7923-3556-2; Pb 0-7923-3557-0
D.-Z. Du and P.M. Pardalos (eds.): Minimax and Applications. 1995

ISBN 0-7923-3615-1
P.M. Pardalos, Y. Siskos and C. Zopounidis (eds.): Advances in Multicriteria
Analysis. 1995 ISBN 0-7923-3671-2
1.D. Pintér: Global Optimization in Action. Continuous and Lipschitz Optimi-
zation: Algorithms, Implementations and Applications. 1996

ISBN 0-7923-3757-3
C.A. Floudas and P.M. Pardalos (eds.): State of the Art in Global Optimiza-
tion. Computational Methods and Applications. 1996 ISBN 0-7923-3838-3
J.L. Higle and S. Sen: Stochastic Decomposition. A Statistical Method for
Large Scale Stochastic Linear Programming. 1996 ISBN 0-7923-3840-5
LE. Grossmann (ed.): Global Optimization in Engineering Design. 1996

ISBN 0-7923-3881-2
V.F. Dem’yanov, G.E. Stavroulakis, L.N. Polyakova and P.D. Panagio-
topoulos: Quasidifferentiability and Nonsmooth Modelling in Mechanics,
Engineering and Economics. 1996 ISBN 0-7923-4093-0
B. Mirkin: Mathematical Classification and Clustering. 1996

ISBN 0-7923-4159-7
B. Roy: Multicriteria Methodology for Decision Aiding. 1996

ISBN 0-7923-4166-X
R.B. Kearfott: Rigorous Global Search: Continuous Problems. 1996

ISBN 0-7923-4238-0

KLUWER ACADEMIC PUBLISHERS - DORDRECHT / BOSTON / LONDON

