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Foreword

These notes approximately transcribe a 15-week course on symplectic geometry 1
taught at UC Berkeley in the Fall of 1997.

The course at Berkeley was greatly inspired in content and style by Victor
Guillemin, whose masterly teaching of beautiful courses on topics related to sym-
plectic geometry at MIT, I was lucky enough to experience as a graduate student. I
am very thankful to him!

That course also borrowed from the 1997 Park Cily summer courses on
symplectic geometry and topology, and from many talks and discussions of the
symplectic geometry group at MIT. Among the regular participants in the MIT in-
formal symplectic seminar 93-96, I would like to acknowledge the contributions of
Allen Knutson, Chris Woodward, David Metzler, Eckhard Meinrenken, Elisa Prato,
Eugene Lerman, Jonathan Weitsman, Lisa Jeffrey, Reyer Sjamaar, Shaun Martin,
Stephanie Singer, Sue Tolman and, last but not least, Yael Karshon.

Thanks to everyone sitting in Math 242 in the Fall of 1997 for all the com-
ments they made, and especially to those who wrote notes on the basis of which I
was better able to reconstruct what went on: Alexandru Scorpan, Ben Davis, David
Martinez, Don Barkauskas, Ezra Miller, Henrique Bursztyn, John-Peter Lund, Laura
De Marco, Olga Radko, Peter Pribik, Pieter Collins, Sarah Packman, Stephen
Bigelow, Susan Harrington, Tolga Etgii and Yi Ma.

I'am indebted to Chris Tuffley, Megumi Harada and Saul Schleimer who read the
first draft of these notes and spotted many mistakes, and to Fernando Louro, Grisha
Mikhalkin and, particularly, Jodo Baptista who suggested several improvements and
careful corrections. Of course I am fully responsible for the remaining errors and
imprecisions.

The interest of Alan Weinstein, Allen Knutson, Chris Woodward, Hugene
Lerman, Jiang-Hua Lu, Kai Cieliebak, Rahul Pandharipande, Viktor Ginzburg
and Yael Karshon was crucial at the last stages of the preparation of this man-
uscript. 1 am grateful to them, and to Micheéle Audin for her inspiring texts and
lectures.



Vi Foraword

Finally, many thanks to Faye Yeager and Debbie Craig who typed pages of
messy notes into neat ISTEX, to Jodo Palhoto Matos for his technical support, and
to Catriona Byrne, Ina Lindemann, Ingrid Mirz and the rest of the Springer-Verlag
mathematics editorial team for their expert advice.

Berkeley, November 1998 Ana Cannas da Silva
and Lisbon, September 2000



Contents

Foreword . ..........o i i e s v

Introduckion .. ... ... i e e s Xiii

PartI Symplectic Manifolds

1

Symplectic Forms .. ... .. ... 3
1.1 Skew-Symmetric Bilinear Maps ............ ... ..l 3
1.2 Symplectic Vector Spaces. ... . . o i 4
1.3 Symplectic Manifolds . ... ... o 6
14 Symplectomorphisms ............ . 7
Homework 1: Symplectic Linear Algebra . ........ ... ... ... ... bt
Symplectic Form on the Cotangent Bundle .. ...................... 9
2.1 Cotangent Bundle ...... .. ... 9
2.2 Tautological and Canonical Forms in Coordinates ............... 10
2.3 Coordinate-Free Definitions. . ....... ... o i i 10
2.4 Naturality of the Tautological and Canonical Forms .............. 11
Homework 2: Symplectic Volume .. .............................. 14

PartIT Symplectomorphisms

3

Lagrangian Submanifolds . .. ....... ... ... ... ... .. ... 17
3.1 Swbmanifolds. ... 17
3.2 Lagrangian Submanifolds of TX .. ... ... ... ... ... ... ... ... 18
33 ConormalBundles........... .. ... 19
3.4 Application to Symplectomorphisms .. ....... ... ... .. ... 20
Homework 3: Tautological Form and Symplectomorphisms......... 22

vii



viii Contents
4  Generating Functions. .... ... ... .. .. o o o i L 25
4.1 Constructing Symplectomorphisms. ........................... 25
4.2 Method of Generating Functions . ......... ... ... ... o ... 26
4.3  Application to Geodesic Flow ....... ... .. ... . o ... 28
Homework 4: GeodesicFlow .. .................................. 30
5 ReCUITeNce . . ... .. e 33
5.1 Periodic Poimts . . ..o e e e 33
5.2 Billiards . ... 35
5.3 Poincard RecUrrence .. .ot ir e i ie et 36
Part I Local Forms
6  Preparation for the Local Theory . ... ... . ... ... ... . ... ..., 41
6.1 Isotopiesand Vector Fields.............. ... ... ............ 41
6.2 Tubular Neighborhood Theorem ...... ... ... . oot 43
6.3 Homotopy Formula......... ... . o i i i i 45
Homework 5: Tubular Neighborhoods in R*.......... .. .. ... ... 47
T MoserTheorems ............... it 49
7.1 Notions of Equivalence for Symplectic Structures ............... 49
7.2 Moser Trick ..o 50
7.3 Moser Relative Theorem ..........0v i 52
8  Darboux-Moser-Weinstein Theory ............................... 55
B.1 Darboux Theoreml ..o v v e e e e ie e en s 55
8.2 Lagrangian Subspaces. .. ... ... i i 56
8.3 Weinstein Lagrangian Neighborhood Theorem .................. 57
Homework 6: Oriented Surfaces .......... ... ... .. ... .. ... ....... 60
9  Weinstein Tubular Neighborhood Theorem ....................... 61
9.1 Observation from Linear Algebra ....... ... ... ... ... ... 61
9.2 Tubular Neighborhoods . ..... ... .. i 61
9.3  Application 1: Tangent Space to the
Group of Symplectomorphisms . . ... i 63
9.4 Application 2: Fixed Points of Symplectomorphisms .. ........... 05
Part IV Contact Manifolds
10 Contact Forms . ... ... .. .. . . e e 69
10,1 Contact Structures . ... v e e e e e e 69
10.2 Examples ... e 70
10.3 First Properties . ... 71

Homework 7: Manifolds of Contact Elements ..................... 73



Contents ix

11 Contact Dynamics......... ... .. ... . 75
11.1 Reeb VectorFields ..... ... ... ... .. ... . . . .. 75
11.2 Symplectization .. ... ... 76
11.3 Conjectures of Seifert and Weinstein ....... ... ... ... ... .. 77

Part V Compatible Almost Complex Structures

12 Almost Complex Structures . ............... .. ... ... ....... ..., 83
12.1 Three Geometries .. ... ... e 83
12.2 Complex Structures on Vector Spaces. ............ ... oo .. 84
12.3 Compatible Structures. . . ... ... o 8O
Homework 8: Compatible Linear Structures ...................... g8

13 Compatible Triples . ... ... . ... . .. 89
13.1 Compatibility . ... .. e 89
13.2 Triple of Structures .. ... .. o o 90
13.3 First ConsequeriCes . .. oo it 91
Homework 9: Contractibility ...... ... ... .. ... .. ... .. ... ........ 92

14 Dolbeault Theory ....... ... . i i e 93
141 Spltings .. oo ot e 93
14.2 Forms of Type (£,m1) ... oo 94
14.3 J-Holomorphic Functions. . ........ .. ... ... oot 95
14.4 Dolbeault Cohomology. . ..ot 96
Homework 10: Integrability .. ................................... o8

Part VI Kihler Manifolds

15 Complex Manifolds ....... ... ... . ... .. ... ... ... ... 101
15.1 Complex Charts. ...t e 101
15.2 Forms on Complex Manifolds .. ...... ... .. ... o .. 103
153 Differentials . .. ... ... .. 104
Homework 11: Complex Projective Space .. ....................... 107

16 KiahlerForms............... .. ... ... . . 109
16.1 Kahler FoTms . . ..o oo e 109
16.2 An Application ........ .. ... 111
16.3 Recipe to Obtain KihlerForms ............................... 112
16.4 Local Canonical Form for Kihler Forms ......... ... ... ... ... 113

Homework 12: The Fubini-Study Structure ....................... 115



17

Contents

Compact Kiihler Manifolds ........ ... .. ... ... .. ........... 117
171 Hodge Theory ... o e e e 117
17.2 Immediate Topological Consequences . .......... ... 119
17.3 Compact Examples and Counterexamples ............ ... .. ..... 120
174 Main Kédhler Manifolds. . ......... ... ... 122

Part ¥YII Hamiltonian Mechanics

18

19

20

Hamiltonian Vector Fields ...................................... 127
18.1 Hamiltonian and Symplectic Vector Fields. ..................... 127
18.2 Classical Mechanics ... o i i 129
183 Brackets . ... . s 130
18.4 Integrable Systems .. ... o o i i 131
Homework 13: Simple Pendulum ................................ 134
Variational Principles. . . .. ... .. . . ... 135
19.1 Equations of Motion ........ ... o i i 135
19.2 Principle of Least Action .......... ... ... i 136
19.3 Variational Problems. ... ... . .. i 137
19.4 Solving the Buler-Lagrange Equations ......................... 138
19.5 Minimizing Properties . ... ... oo 140
Homework 14: Minimizing Geodesics ............................ 141
Legendre Transform. ........ . ... ... ... .. ... ... .......... 143
2001 Strict Convexity .. ..o e 143
20.2 Legendre Transform ....... ... . . i i 144
20.3 Application to Variational Problems ......... .. ... ... .o . 145
Homework 15: Legendre Transform. .......................... ... 147

Part YIII Moment Maps

21

22

ActiOnS ... .. e 151
21.1 Omne-Parameter Groups of Diffeomorphisms .................... 151
21.2 LAe GrOUPS « oottt e 152
213 Smooth Actions . ... ... 152
214 Symplectic and Hamiltonian Actions ............. ... ... .. ... 153
21.5 Adjoint and Coadjoint Representations. . ....................... 154
Homework 16: Hermitian Maftrices ......... ... ... . ... ... .... 156
Hamiltonian Actions ......... ... . ... .. ... ... .. .. ... ... 157
22.1 Moment and Comoment Maps. . ........ ... ... o L. 157

22.2 Orbit SPaCES . - . -t 159



Contents xi

22.3 Preview of Reduction . ... .. o i 160
224 Classical Examples ... ... .. i 161
Homework 17: Coadjoint Orbits .. ........ . ... ... ... ......... 163

Part IX Symplectic Reduction

23 The Marsden-Weinstein-Meyer Theorem ......................... 167
23,1 Stalement .. ... 167
23.2 Ingredients .. ... . o e e 168
23.3 Proof of the Marsden-Weinstein-Meyer Theorem ................ 171
24 Reduction ....... ... ... 0 i 173
24.1 Noether Principle. ... ... 173
24.2 Elementary Theory of Reduction. ......... ... .o oo .. 173
24.3 Reduction for Product Groups ... ......... .. i i 175
244 Reduction at Other Levels ... .. ... o o o i 176
245 Orbifolds .. ... o e 176
Homework 18: Spherical Pendulum .. ..... ... ... ... .. ... ..... 178

Part X Moment Maps Revisited

25 Moment MapinGauge Theory .................................. 183
25.1 Connections on a Principal Bundle .. ... ... . ... .o L. 183
25.2 Connection and Curvature Forms ............................. 184
25.3 Symplectic Structure on the Space of Connections ............... 186
254 Actionof the Gauge Group .. ... oot 187
255 CaseofCircle Bundles ........... ... ... ... .. .. ... .. 187
Homework 19: Examples of Moment Maps ....................... 191

26 Existence and Uniqueness of Moment Maps ....................... 193
26.1 Lie Algebras of Vector Fields ......... ... . ... . .. . ..., 193
20.2 Lie Algebra Cohomology . ....... .. .. i i 194
26.3 Existence of Moment Maps ........ ... . i it 195
26.4 Uniqueness of Moment Maps ........ ... . o it 196
Homework 20: Examples of Reduction ........................... 198

27 Convexily . ... ... 199
27.1 Convexity Theorem. . ...... ... i i e 199
27.2 Effective ACHONS .. ..o oo 201
273 Bxamples ... 202

Homework 21: Connectedness .. ................. ... ... icuio... 204



Xii Contents

Part XI Symplectic Toric Manifolds

28 Classification of Symplectic Toric Manifolds. . ... ............. ... .. 209
28.1 Delzant Polytopes ... ... o i e 200
28.2 Delzant Theorem . ... .ot e e e 211
28.3 Sketch of Delzant Construction .. ... oo e e i e i 212

29 Delzant Construction .............. . .. .. .. . .. . . . 215
29.1 Algebraic Set-Up....... o i 215
202 The Zero-Level .. ... i e e e i e 216
29.3 Conclusion of the Delzant Construction . ........... .. ... ....... 218
29.4 Idea Behind the Delzant Construction. .. .......cvvivirernvnens 219
Homework 22: Delzant Theorem.......... ... ... .. ... .. ... ....... 221

30 Duistermaat-Heckman Theorems .................... ... ..cov... 223
30.1 Duistermaat-Heckman Polynomial ............................ 223
30.2 Local Form for Reduced Spaces .............................. 225
30.3 Variation of the Symplectic Volume ......................... .. 227
Homework 23: § 1-Equivariant Cohomology . ...................... 229

References . .. ... ... . e 233



Introduction

The goal of these notes is to provide a fast introduction to symplectic geometry.

A symplectic form is a closed nondegenerate 2-form. A symplectic manifold is a
manifold equipped with a symplectic form. Symplectic geometry is the geometry of
symplectic manifolds. Symplectic manifolds are necessarily even-dimensional and
orientable, since nondegeneracy says that the top exterior power of a symplectic
form is a volume form. The closedness condition is a natural differential equation,
which forces all symplectic manifolds to being locally indistinguishable. (These
assertions will be explained in Lecture 1 and Homework 2.)

The list of questions on symplectic forms begins with those of existence and
unigueness on a given manifold. For specific symplectic manifolds, one would like
to understand the geometry and the topology of special submanifolds, the dynamics
of certain vector fields or systems of differential equations, the symmetries and extra
structure, etc.

Two centuries ago, symplectic geometry provided a language for classical me-
chanics. Through its recent huge development, it conquered an independent and rich
territory, as a central branch of differential geometry and topology. To mention just
a few key landmarks, one may say that symplectic geometry began to take its mod-
ern shape with the formulation of the Arnold conjectures in the 60’s and with the
foundational work of Weinstein in the 70’s. A paper of Gromov [49] in the 80’s
gave the subject a whole new set of tools: pseudo-holomorphic curves. Gromov also
first showed that important results from complex Kihler geometry remain true in the
more general symplectic category, and this direction was continued rather dramati-
cally in the 90’s in the work of Donaldson on the topology of symplectic manifolds
and their symplectic submanifolds, and in the work of Taubes in the context of the
Seiberg-Witten invariants. Symplectic geometry is significantly stimulated by im-
portant interactions with global analysis, mathematical physics, low-dimensional
topology, dynamical systems, algebraic geometry, integrable systems, microlocal
analysis, partial differential equations, representation theory, quantization, equivari-
ant cohomology, geometric combinatorics, etc.

As a curiosity, note that two centuries ago the name symplecric geometry did not
exist. If you consult a major English dictionary, you are likely to find that symplecric
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is the name for a bone in a fish’s head. However, as clarified in [103], the word symi-
plectic in mathematics was coined by Weyl [110, p.165] who substituted the Latin
root in complex by the corresponding Greek root, in order to label the symplectic
group. Weyl thus avoided that this group connote the complex numbers, and also
spared us from much confusion that would have arisen, had the name remained the
former one in honor of Abel: abelian linear group.

This text is essentially the set of notes of a 15-week course on symplectic geome-
try with 2 hour-and-a-half lectures per week. The course targeted second-year grad-
nate students in mathematics, though the audience was more diverse, including ad-
vanced undergraduates, post-docs and graduate students from other departments.
The present text should hence still be appropriate for a second-year graduate course
or for an independent study project.

There are scattered short exercises throughout the text. At the end of most lec-
tures, some longer guided problems, called homework, were designed to comple-
ment the exposition or extend the reader’s understanding.

Geometry of manifolds was the basic prerequisite for the original course, so the
same holds now for the notes. In particular, some familiarity with de Rham theory
and classical Lie groups is expected.

As for conventions: unless otherwise indicated, all vector spaces are real and
finite-dimensional, all maps are smooth (i.e., C) and all manifolds are smooth,
Hausdorff and second countable.

Here is a brief summary of the contents of this book. Parts I-111 explain classical
topics, including cotangent bundles, symplectomorphisms, lagrangian submanifolds
and local forms. Parts IV-VT concentrate on important related areas, such as contact
geometry and Kihler geometry. Classical hamiltonian theory enters in Parts VII-
VIII, starting the second half of this book, which is devoted to a selection of themes
from hamiltonian dynamical systems and symmetry. Parts IX-XTI discuss the mo-
ment map whose preponderance has been growing steadily for the past twenty years.

There are by now excellent references on symplectic geometry, a subset of which
is in the bibliography. However, the most efficient introduction to a subject is often a
short elementary treatment, and these notes attempt to serve that purpose. The author
hopes that these notes provide a taste of areas of current research, and will prepare
the reader to explore recent papers and extensive books in symplectic geometry,
where the pace is much faster.



Part I
Symplectic Manifolds

A symplectic form is a 2-form satisfying an algebraic condition — nondegeneracy —
and an analytical condition — closedness. In Lectures 1 and 2 we define symplectic
forms, describe some of their basic properties, introduce the first examples, namely
even-dimensional euclidean spaces and cotangent bundles.



Chapter 1
Symplectic Forms

1.1 Skew-Symmetric Bilinear Maps

Let V be an m-dimensional vector space over I?, and let £ : V x V — R be a bilinear
map. The map £ is skew-symmetric if Q(x,v) = —Q{v,u), forall u,v € V.

Theorem 1.1. (Standard Form for Skew-symmeftric Bilinear Maps)
Let & be a skew-symmetric bilinear map on V. Then there is a basis
Moo Mk, @10 sy f1ye oo, o of V osuch that

Qu,v) =0, foralliandallveV,
Qle;e;) =0=Q(fi,f;), foralli, j, and
Qle;, fi) = 8y, foralli, j.

Remarks.

1. The basis in Theorem 1.1 is not unique, though it is traditionally also called a
“canonical” basis.
2. In matrix notation with respect to such basis, we have

00 0]/
Qav)=[—u—] |0 0 Id| |v
0—Id 0 |

@

Proof. This induction proof is a skew-symmelric version of the Gram-Schmidt

process.
Let 7 :={u eV |Q(u,v) =0forall ve V}. Choose abasisu,...,m of U, and
choose a complementary space W to I/ in V|

V=UsW.
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Take any nonzero e; € W. Then there is fi € W such that Q(eq, fi) # 0. Assume
that Q(ey, f1) = 1. Let

W) =spanofeq, fi
W ={weW|Qwv)=0forallve Wi} .

Claim, W, n\W = {0}.

Suppose that v = aey +bf; € WinWS2.
0=Q(ve;)=-b|
0=Q(,fi)= af

Claim. W =W, o WS
Suppose that v = W has Q{v,e;) = ¢ and (v, fi) = 4. Then

v=(—cfi+de)+(v+chi—dey) .

W GWIQ

Goon: let ey £ WI'Q, er # 0. There is f € ng such that Q(ez, f2) # 0. Assume
that Q(eq, f2) = 1. Let W = span of e;, f2. Etc.
This process eventually stops because dimV < eo. We hence obtain

V=UasW aeWd. - &W,

where all summands are orthogonal with respect to €, and where W; has basis ¢;, f;
with Q(e;, f;) = 1. O

The dimension of the subspace I/ = {u € V | Q(1,v) =0, for all v € V} does not
depend on the choice of basis.

= k:=diml is an invariant of (V,Q) .

Since k+2rn =m =dimV,
= pis aninvariant of {V,Q); 2n is called the rank of Q.

1.2 Symplectic Vector Spaces

Let V be an m-dimensional vector space over I?, and let £ : V x V — R be a bilinear
map.

Definition 1.2. The map Q : V — V* is the linear map defined by fl(v) (1) =Qw,u).

The kernel of € is the subspace I/ above.
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Definition 1.3. A skew-symmetric bilinear map € is symplectic (or nondegener-
ate) if Q is bijective, i.e., U = {0}. The map € is then called a linear symplectic
structure on 'V, and (V,Q) is called a symplectic vector space.

The following are immediate properties of a linear symplectic structure £2:

¢ Duality: the map Q:ViVtisa bijection.
¢ By the standard form theorem, k =dimI/ =0, so dimV = 2n is even.
e By Theorem 1.1, a symplectic vector space (V,Q) hasabasis e1,...,en, fi,. .-, fa
satisfying
Qlenf7) =8;  and Qleye) =0=0Q(fi, f) .

Such a basis is called a symplectic basis of (V, ). We have

?

Q) = (—u—]| 3, |

where the symbol | v | represents the column of coordinates of the vector v with
|
respect to a symplectic basis ey,...,en, fi,...,fn Whereas [—v—] represents its
transpose line.
Not all subspaces W of a symplectic vector space (V, Q) look the same:

o A subspace W is called symplectic if Q|w is nondegenerate. For instance, the
span of ey, f1 is symplectic.

o A subspace W is called isotropic if Q|y = 0. For instance, the span of ey ,e; is
isotropic.

Homework 1 describes subspaces W of (V,Q) in terms of the relation between W

and W,

The prototype of a symplectic vector space is (R, Q) with £ such that the
basis

i
er = (1,0,...,0), s en=1(0,...,0,71,0,...,0),
fim (00, 1 ,0,,0), oy fi=(0,..,0,1),
nt+l

is a symplectic basis. The map £2g on other vectors is determined by its values on a
basis and bilinearity.

Definition 1.4. A symplectomorphism @ between symplectic vector spaces (V, Q)
and (V/, Q') is a linear isomorphism ¢ : V = V' such that ¢*Q' = Q. (By definition,
(0* Q) {(1,v) = Q' (@), @(¥)).) If a symplectomorphism exists, (V,£2) and (V', ")
are said to be symplectomorphic.
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The relation of being symplectomorphic is clearly an equivalence relation in
the set of all even-dimensional vector spaces. Furthermore, by Theorem 1.1, every
2n-dimensional symplectic vector space (V,£) is symplectomorphic to the proto-
type (R¥ Qq); a choice of a symplectic basis for (V,£2) yields a symplectomor-
phism to {E**,Qq). Hence, nonnegative even integers classify equivalence classes
for the relation of being symplectomorphic.

1.3 Symplectic Manifolds

Let @ be a de Rham 2-form on a manifold M, that is, for each p € M, the map
w,  T,M x T,M — R is skew-symmetric bilinear on the tangent space to M at p,
and @, varies smoothly in p. We say that @ is closed if it satisfies the differential
equation do = 0, where d is the de Rham differential (i.e., exterior derivative).

Definition 1.5. The 2-form @ is symplectic if @ is closed and ®,, is symplectic for
all pe M.

It @ is symplectic, then dim 7, = dim M must be even.

Definition 1.6. A symplectic manifold is a pair (M, @) where M is a manifold and
 is a symplectic form.

Example. Let M = R? with linear coordinates xy,...,X,,1,..., ¥, The form

i
ap — E dx; Ady;
i=1

is symplectic as can be easily checked, and the set

55, () ()3,
l axl p’“" axu p’ a}d p’“" ayu PJ
is a symplectic basis of T,M. &

Example. Let M = C" with linear coordinates zy,...,z,. The form
1‘ .
=% dp Adz
2] 5 kgl k *

is symplectic. In fact, this form equals that of the previous example under the iden-
tification " ~ B¥ 7, — xp + iyy. &

Example. Let M — S7 regarded as the set of unit vectors in R*. Tangent vectors to
52 at p may then be identified with vectors orthogonal to p. The standard symplectic
form on $? is induced by the inner and exterior products:
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@, (i, V) 1= {p, X v}, for u,v e T,8% = {p}* .

This form is closed because it is of top degree; it is nondegenerate because
{p,ux v} # 0 whenu # 0 and we take, for instance, v =u x p. &

1.4 Symplectomorphisms

Definition 1.7. Let (M, ®, ) and (M, @;) be 2n-dimensional symplectic manifolds,
and let ¢ : My — M> be a diffeomorphism. Then ¢ is a symplectomorphism if

(P*Cl)z :ﬂ)l-l

We would like to classify symplectic manifolds up to symplectomorphism. The
Darboux theorem (proved in Lecture 8 and stated below) takes care of this classi-
fication locally: the dimension is the only local invariant of symplectic manifolds
up to symplectomorphisms. Just as any n-dimensional manifold looks locally like
", any 2r-dimensional symplecric manifold looks locally like (R*", ax)). More pre-
cisely, any symplectic manifold (M**, ®) is locally symplectomorphic to (R**, ax).

Theorem 8.1 (Darboux) Ler (M, @) be a 2n-dimensional symplectic manifold, and
let p be any point in M.
Then there is a coordinare chart (U4, x1,..., X0, Y1,...,¥n) centered ar p such rhar
on
n
= dx; A dy,- .
=1

A chart (4, xy,..., X, ¥1,...,¥) as in Theorem 8.1 is called a Darboux chart.

By Theorem 8.1, the prototype of a local piece of a 2n-dimensional symplec-
tic manifold is M = R?, with linear coordinates (x;,...,X;,¥1,...,%), and with
symplectic form

dx; ~ndyy
1

ab:

H

E

! Recall that, by definition of pullback, at tangent vectors u,v € TpM1, we have (@*w2),(n,v) =
(@2)p) (Ao (1), dPp (V).
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Homework 1: Symplectic Linear Algebra

Given a linear subspace ¥ of a symplectic vector space (V,Q), its symplectic or-
thogonal Y is the linear subspace defined by

Y& = {veV|Qu) =0foralluc Y}.

1. Show that dim¥ +dimY* =dimV.
Hint: What is the kernel and image of the map

V — ¥*=Hom(Y,R) ?
v Qv )y

2. Show that (Y®)® =7,
3. Show that, if ¥ and W are subspaces, then

YOW — wWocCre,

4. Show that:
Y is symplectic (i.e., Q|y.y is nondegenerate) +—= Y N¥® = {0} «—= V=
Yere

5. We call Y isotropic when ¥ C Y2 (ie, Qly.y =0).
Show that, if ¥ is isotropic, then dim¥ < %dimV.

6. We call Y coisotropic when Y2 C Y.
Check that every codimension 1 subspace ¥ is coisotropic.

7. Anisotropic subspace ¥ of (V,Q) is called lagrangian when dim¥ = %dimV.
Check that:

Y is lagrangian <= Y is isotropic and coisotropic <= Y =¥%.
8. Show that, if ¥ is a lagrangian subspace of (V,Q), then any basis eq,...,e, of ¥
can be extended to a symplectic basis ey, ..., en, fi,..., fu of (V,Q).
Hint: Choose fi in WS, where W is the linear span of {&;,...,&,}.

9. Show that, if ¥ is a lagrangian subspace, (V,£2) is symplectomorphic to the space
(Y@ Y*, Qq), where £y is determined by the formula

Qo(u@avep) =) —alv).

In fact, for any vector space E, the direct sum V = E & E* has a canonical sym-
plectic structure determined by the formula above. If ¢y,...,¢, is a basis of E,
and fi,..., f, is the dual basis, then e; &0,...,e, 0,00 f1,...,0D £, is asym-
plectic basis for V.



Chapter 2
Symplectic Form on the Cotangent Bundle

2.1 Cotangent Bundle

Let X be any n-dimensional manifold and M = T*X its cotangent bundle. If the
manifold structure on X is described by coordinate charts (¢4, xq,...,x,) with x; :
U — R, then at any x € U, the differentials (dx;)s,...(dx,); form a basis of T*X.
Namely, if £ € T’X, then £ =¥ | £,(dx;), for some real coefficients &,...,&,.
This induces a map

T*L{;}Rm
(I,é) — (xla“‘:xﬂpél:'“:'én) .

The chart (T*d,xy,...,%4,&1,...,&,) is a coordinate chart for T*X; the coordinates
Xyee3 X, &1y.. ., &, are the cotangent coordinates associated to the coordinates
X1,..., X%, onl{. The transition functions on the overlaps are smooth: given two charts
Uy xr,...,x), (U X, 0, andx e UNU,if € € T*X, then

n

Fl a .' Fl ,
E= E Ei(dxy)y = Egi (%) (dx)), = Z Ei{dx)x
i=1 L 7 i=1

where §; =Y,& (%}) is smooth. Hence, T*X is a 2n-dimensional manifold.

J
We will now construct a major class of examples of symplectic forms. The

canonical forms on cotangent bundles are relevant for several branches, including
analysis of differential operators, dynamical systems and classical mechanics.
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2.2 Tautological and Canonical Forms in Coordinates

Let {¢4,x1,...,x,) be a coordinate chart for X, with associated cotangent coordinates
(T*U 2y, o2, 81, &) Define a 2-form @ on T*U by

R
o — de,j /\dg,j .
=1
In order to check that this definition is coordinate-independent, consider the 1-form

on T*U
o= Z é,’ dx,- .
=1

Clearly, ® = —da.

Claim. The form « is intrinsically defined (and hence the form @ is also intrinsically
defined) .

Proof. Let (U, xy,...,x,,&,...,&) and U x,... . x & ..., &) be two cotan-
gent ceordinate charts. On U NI, the two sets of coordinates are related by

@; =¥ & (g—;%) Since dx; = ¥, (i—i) dx;, we have
i F

O

The 1-form « is the tautological form or Liouville 1-form and the 2-form @ is
the canonical symplectic form. The following section provides an alternative proof
of the intrinsic character of these forms.

2.3 Coordinate-Free Definitions

Let
M=TX p=(n§) EcIiX

lz l
X X

be the natural projection. The tautological 1-form ¢« may be defined pointwise by

o, =(dm,)"s < TM,
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where {(dx,)" is the transpose of dx,, that is, (dn,)*E =€ odm,:

p=xE) .M T;M
lx L dm, T {dmp)*
X /9.4 X

Equivalently,
a,(v)=£& ((djrp)v) , forveT,M.

Exercise, Let ({4, x,...,x,) be a chart on X with associated cotangent coordinates
Xy, %, 81,000, &y Show that on T*U, a = il‘g',; dx;. &
The canonical symplectic 2-form @ on TI*X is defined as
o =—da.
Locally, @ =Y | dx; Ad&;.

Exercise. Show that the tautological 1-form « is uniquely characterized by the
property that, for every 1-form gt : X — T*X, yu*a = . (See Lecture 3.) &

2.4 Naturality of the Tautological and Canonical Forms

Let Xy and X> be s-dimensional manifolds with cotangent bundles My = T*X; and
M, = T*X;, and tautological 1-forms @ and og. Suppose that £ X; — X; is a
diffeomorphism. Then there is a natural diffeomorphism

fu:M1—>M2

which lifts f; namely, if p1 = (x1,&) e My forx £Xy and & € 13Xy, then we
define

e (x wi [ 2= f(x) € Xy and
fi(p1) = p2 = (00,82) th lgfz(dﬁtl)*gzz,

where (dfy, )" T} X2 = 13 X1, 50 fy 7 is the inverse map of (dfs )"

Exercise. Check that f; is a diffeomorphism. Here are some hints:

i

M — M
1. m | ) commutes;
x L ox

2. fﬁ : My — M3 is bijective;
3. fyand fuf ! are smooth.
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Proposition 2.1. The lift fy of a diffeomorphism f : Xy — Xz pulls the tautological
Jorm on T*Xy back 1o the tanrclogical form on T*X, i.e.,

(fi) o = .
Proof. At py = (x1,&1) € My, this identity says
Mfﬂ);l (82)p, = (€1} py (*)

where p2 = fy(p1).
Using the following facts,
e Definition of fy:

pr=filp1) <= pr=(x,2) wherexy = f(xy) and (df,)*& = &1
¢ Definition of tautological 1-form:

()p, = (dm )5 &1 and (o), = (dm2)}, &2

AL VA
e The diagram ol | m commutes.
x L ox

the proof of (%) is:

{dfi)y, (2)p, = (dfy)p (dm); 8 = (d(ﬁzofu)); &
(d(fem)), &2 = (dm)}, (df)} &
= (dm )}, St = (01 )p, -

Corollary 2.2. The lift fy of a diffeomorphism f: X, — Xz is a symplectomor-
phism, i.e.,
(i) an = an

where @y, an are the canonical symplectic forms.

In summary, a diffeomorphism of manifolds induces a canonical symplectomor-
phism of cotangent bundles:

fu . T*X1 — T*X2
1
f: X1 — X2

Example. Let X; = X; = §'. Then T*5" is an infinite cylinder 8! x R. The canonical
2-form @ is the area form @ = 46 AdE.If 1 81 — S! is any diffeomorphism, then
fi: §'x R — 8! x R is a symplectomorphism, i.e., is an area-preserving diffeomor-
phism of the cylinder. &
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If f:X; — Xy and g : X2 — X3 are diffeomorphisms, then (go f)y = gyo fy. In
terms of the group Diff(X) of diffeomorphisms of X and the group Sympl{(M, @) of
symplectomorphisms of (M, @), we say that the map

Diff(X) — Sympl(3M, ®)
fe—rf

is a group homomorphism. This map is clearly injective. Is it surjective? Do all
symplectomorphisms T*X — T*X come from diffeomorphisms X — X? No: for
instance, translation along cotangent fibers is not induced by a diffeomorphism of
the base manifold. A criterion for which symplectomorphisms arise as lifts of dif-
feomorphisms is discussed in Homework 3.
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Homework 2: Symplectic Volume

1. Given a vector space V, the exterior algebra of its dual space is

dimV
AV = P ARV,
¥=0
p
e,
where A¥(V*) is the set of maps @ : V x --- x V — R which are linear in each
entry, and for any permutation &, &{vy,,..., v, ) = (signa@) - a(vq,...,vx). The

elements of A¥(V*) are known as skew-symmetric k-linear maps or -forms
onV.

(a) Show that any @ < AZ(V*) is of the form Q = e} A ff ...+ et A £}, where
ul,..oup.el,. ek ff... fr is a basis of V* dual to the standard basis
(k+2n=dimV).

(b) In this language, a symplectic map £ : ¥V x V — R is just a nondegenerate
2-form Q € AZ(V*), called a symplectic form on V.

Show that, if € is any symplectic form on a vector space V of dimension 2r,
then the nth exterior power " = Q A... A Q does not vanish.
S— e

(¢) Deduce that the nth exterior power ®" of any symplectic form ® on a
2n-dimensional manifold M is a volume form.!

Hence, any symplectic manifold (M, @) is canonically oriented by the sym-
plectic structure. The form i‘:—f is called the symplectic volume or the
Liouville volume of (M, ®).

Does the Mébius strip support a symplectic structure?

(d) Conversely, given a 2-form Q & AZ(V*), show that, if Q" £ 0, then Q is
symplectic.

Hint: Standard form.

2. Let (M, ®) be a 2n-dimensional symplectic manifold, and let @™ be the volume
form obtained by wedging @ with itself » times.

(a) Show that, if M is compact, the de Rham cohomology class [@"]
H*{M;R) is non-zero.

Hint: Stokes’ theorem.

(b) Conclude that [@] itself is non-zero (in other words, that @ is not exact).
(c) Show that if n > 1 there are no symplectic structures on the sphere $,

1 A volume formis a nonvanishing form of top degree.



Part I1
Symplectomorphisms

Equivalence between symplectic manifolds is expressed by a symplectomorphism.
By Weinstein’s lagrangian creed [1035], everything is a lagrangian manifold! We will
study symplectomorphisms according to the creed.



Chapter 3
Lagrangian Submanifolds

3.1 Submanifolds

Let M and X be manifolds with dim X < dim M.

Definition 3.1. Amapi: X — M is an immersion if di, : T,X — T;;,)M is injective
for any point p < X.

An embedding is an immersion which is a homeomorphism onto its image.!

A closed embedding is a proper? injective immersion.

Exercise. Show that a map i : X — M is a closed embedding if and only if 7 is an

embedding and its image #(X) is closed in M.
Hints:

e If i is injective and proper, then for any neighborhood i of p € X, there is a
neighborhood V of i(p) such that (V) CU.

¢ Omn a Hausdorff space, any compact set is closed. On any topological space, a
closed subset of a compact set is compact.

¢ Anembedding is proper if and only if its image is closed.

&

Definition 3.2. A submanifold of M is a manifold X with a closed embedding i :
X—M?

Notation. Given a submanifold, we regard the embedding 7 : X — M as an inclu-
sion, in order to identify points and tangent vectors:

p=i(p) and T,X=di,(1,X)CT,M.

! The image has the topology induced by the target manifold.
* A map is proper if the preimage of anv compact set is compact,
* When X is an open subset of a manifold M, we refer to it as an epen submanifold.

17
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3.2 Lagrangian Submanifolds of T*X

Definition 3.3. Let (M, ®) be a 2n-dimensicnal symplectic manifold. A submani-
fold ¥ of M is a lagrangian submanifold if, at each p ¢ ¥, T,Y is a lagrangian
subspace of T,M, ie, mp\rpy =0 and dim7,Y = %dimTpM. Equivalently, if
i Y — M is the inclusion map, then ¥ is lagrargian if and only if i*@ = 0 and
dim¥ = § dim M.

Let X be an m-dimensional manifold, with M = T*X its cotangent bundle.
If x1,...,x, are coordinates on Y C X, with associated cotangent coordinates
X1, 0%, &y & on T*U, then the tautological 1-form on T*X is

o =Y &adx,

and the canonical 2-form on T*X is
o=—du :de,'f\déf .

The zero section of T*X
Xoi= {(r,E) e T'X | £ =0 in 1'X)

is an p-dimensional submanifold of 7*X whose intersection with T*U/ is given by
the equations & = ... = &, = Q. Clearly a = ¥ &dx; vanishes on Xo nT*U. In
particular, if i : Xo < 7'*X is the inclusion map, we have ija = 0. Hence, i{o =
ifda =0, and Xy, is lagrangian,
What are all the lagrangian submanifolds of T*X which are “C'-close to X,”?
Let X}, be (the image of) another section, that is, an #-dimensicnal submanifold
of T*X of the form

Xo = {(x i) | x< X, 4, € )X} (%)

where the covector p, depends smoothly on x, and yu : X — T*X is a de Rham

I-form. Relative to the inclusion i : X, — 7™X and the cotangent projection 7 :

T*X — X, X, is of the form (%) if and only if mwoi: X, — X is a diffeomorphism.
When is such an X}, lagrangian?

Proposition 3.4. Ler X, be of the form (%), and lei | be the associared de Rham
L-form. Denore by s 1 X — T*X, x — (x, ), the 1-form y regarded exclusively as
a map. Notice that the image of s, is Xy, Ler ¢ be the rautclogical 1-form on T*X.
Then .

St =p .
Proof. By definition of « (previous lecture), a, = (dn,)*§ at p = (x,§) € M. For
p=su(x) = (x, 1), we have o, = (d7,)* t;. Then

(50 = (@) = (05,0707 e = (0 )b = b

idy
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Suppose that X, is an »-dimensicnal submanifold of T*X of the form (%), with
associated de Rham 1-form . Then s, : X — T*X is an embedding with image X,
and there is a diffeomorphism 7: X — X,,, 7(x) := (x, t,), such that the following
diagram commutes.

S
X a T*X

/r)

Xu

We want to express the condition of X, being lagrangian in terms of the form u:

X, is lagrangian <= i*do =0

T i*da =0
(ieT)*da=0
spda =0
dsjoe =0

du =20

U is closed .

111117

Therefore, there is a one-to-one correspondence between the set of lagrangian
submanifolds of T*X of the form () and the set of closed 1-forms on X.

When X is simply commected, Hc}eRham (X) =0, so every closed 1-form gt is equal
to df for some f € C(X). Any such primitive f is then called a generating func-
tion for the lagrangian submanifold X, associated to g. {Two functions generate
the same lagrangian submanifold if and only if they differ by a locally constant
function.) On arbitrary manifolds X, functions f € C™(X) originate lagrangian sub-
manifolds as images of 4f.

Exercise, Check that, if X is compact (and not just one point) and f € C=(X), then
#(XgrnXo) > 2. &

There are lots of lagrangian submanifolds of T*X not covered by the description
in terms of closed 1-forms, starting with the cotangent fibers.

3.3 Conormal Bundles

Let 8 be any k-dimensional submanifold of an r-dimensional manifold X.

Definition 3.5. The corormal space at x € § is

NiS={EeT}X|&E(v)=0, forallve T,S}.
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The conormal bundle of S is

NS ={(x,E)eT'X |xe§, E NS,

Exercise. The conormal bundle ¥*S is an »-dimensional submanifold of T*X.
Hint: Use coordinates on X adapted* to §. &

Proposition 3.6, Ler i : N*S — T*X be the inclusion, and let o be the tauiological
I-form on T*X. Then

Fa=0.

Proof. Let (U,x;,...,x,) be a coordinate system on X centered at x € S
and adapted to 8, so that i/ N§ is described by xp) =+ = x, = 0. Let
(T*U,xp,. o2, 61, &) be the associated cotangent coordinate system. The
submanifold N*§ M T*{ is then described by

Xypp =+ =x,=0 and Ci==6=0.

Since a =Y &;dx; on T*i4, we conclude that, at p € N*§,

(i"a)p = ap| 7,15y = E@fdxf =0.

=k span{-;‘i—. k)
s

Corollary 3.7. For any submanifold S C X, the conormal bundle N*S is a la-
grangian submanifold of T*X.

Taking S = {x} to be one point, the conormal bundle I, = N*§ = T*X is a cotan-
gent fiber. Taking § = X, the conormal bundle I. = Xj is the zero section of T#X.

3.4 Application to Symplectomorphisms
Let (M, @) and (M3, ®;) be two 2n-dimensional symplectic manifolds. Given a

diffeomorphism ¢ : M, — M, when is it a symplectomorphism? (Le., when is
Q*an = ay?)

* A coordinate chart (U, x1,... %) on X is adapted to a k-dimensional submanifold S if SN/ is
described bv xp 1 = - - =1, =0.
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Consider the two projection maps

{(p1.p2 My x M, (p1,p2)

/ \
M, P

Then @ = (pr))*ay 4 (pry)*ax is a 2-form on My x M which is closed,

)
Pl M 2

do = *do *darn =0
{pry) doy+ (pry) don =0,
(] (]

and symplectic,

o = (3 ) (o) (r)an) ' £0.

More generally, if 41,2 € B\ {0}, then Ay (pr;}* & + A2(pr;)*o; is also a symplec-
tic form on M| x M. Take Ay = 1, A, = —1 to obtain the twisted product form on
M1 X Mz:
@ = (pry) @y — (pra)* @y .

The graph of a diffeomorphism ¢ : M; ——+ M5 is the 2n-dimensional submanifold

of Ml X Mg:
Lo 1= Graphe = {(p,9(p)) | p € M1} .
The submanifold I'y is an embedded image of M; in M| x M5, the embedding being
the map
Y M — M| x M,
p—(po).

Proposition 3.8. A diffeomorphism @ is a symplectomorphism if and only if I'y is a
lagrangian submanifold of (M) x My, ©).

Proof. The graph Iy is lagrangian if and only if y*® = 0. But

Yo =y prf ey — v pr3 an
= (pr; oy)*w; — (pryo ¥)*an

and pry o ¥ is the identity map on M; whereas pr, o ¥ = ¢@. Therefore,

Yo=0 — o'o;=o0.
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Homework 3:
Tautological Form and Symplectomorphisms

This set of problems is from [53].
1. Let {M, @) be a symplectic manifold, and let & be a 1-form such that

W= —dc.

Show that there exists a unique vector field v such that its interior product with
is &, i.e., 1,00 = — (.
Prove that, if g is a symplectomorphism which preserves « (that is, g*a = ),
then g commutes with the one-parameter group of diffeomorphisms generated
by v, ie.,

(exptv)og =go(expry).

Hint: Recallthat, for p € M, (exptv)(p) is the unigire curve in M solving the ordinary
differential equation

{ L{exprv(p)) = v(exptv(p))
{(expV)(p)li=o=p

for ¢ in some neighborhood of 0. Show that g o (exp#v) e gt is the one-parameter
group of diffeomorphisms generated by g,v. (The push-forward of v by g is defined
by (24¥)gip) = d8p{Vp).} Finally check that g preserves v (that is, g,v =),

2. Let X be an arbitrary rm-dimensional manifold, and let M = T*X. Let
(M4, x1,...,x,) be a coordinate system on X, and let xy,...,x,,&,...,&, be
the corresponding coordinates on T*4.

Show that, when « is the tautological 1-form on M (which, in these coordi-
nates, is ¥ &; dx;), the vector field v in the previcus exercise is just the vector field
Yéior

Let expfv, —so <C f < oo, be the one-parameter group of diffeomorphisms gener-
ated by v.

Show that, for every point p = (x,£) in M,

(exprv)(p) =pr  where  p; = (x,€'8) .

3. Let M be as in exercise 2.
Show that, if g is a symplectomorphism of M which preserves «, then

gx, 5 =0n = g8 ={in)

forall (x,£) e M and A c R.

Conclude that g has to preserve the cotangent fibration, i.e., show that there exists
a diffeomorphism f:X — X such that ;o g = fom, where m: M — X is the
projection map 7 (x,&) =x.

Finally prove that g = f%, the map fi being the symplectomorphism of A lift-
ing f.
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Hint: Suppose that g(p) = g where p = (x,&) and ¢ = (v, 7).
Combine the identity
{dgp)t oy = oy
with the identity
dngodg, =dfyodn, .
(The first identity expresses the fact that g% ¢ = o, and the second identity is obtainad
by differentiating both sides of the equation Teg = fomat p.)
4. Let M be as in exercise 2, and let 4 be a smooth function on X. Define 75, M — M
by setting
T(x, &) = (x,& +dhy) .

Prove that
Tro = o+ atdh

where 7 is the projection map

M (x§)

o

X X
Deduce that

0 =0,

i.e., that 7, is a symplectomorphism.
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Generating Functions

4.1 Constructing Symplectomorphisms

Let X;,X; be m-dimensional manifolds, with cotangent bundles M, = T*X],
My = T*X;, tautological 1-forms o , o, and canonical 2-forms @y, ;.
Under the natural identification

M1 X M2 = T*Xl X T*Xg o~ T*(Xl XXg) ,
the tautological 1-form on T*(X) x X;) is
o = (pry)* oy + (pry)*on

where pr; : My x M2 — M;, i = 1,2 are the two projections. The canonical 2-form on
T* (X1 X Xg) is

o = —do = —dprfoy —dpriog = priw; + priey .

In order to describe the twisted form & = prie —praa;, we define an involution of
M2 = T*X2 by
oy ! My, — M,

(x2,82) +—— (x,-&)

which yields o7t = —p. Let 0 = idpyy x 02 1 My x Mz — M) x M>. Then
oo =prio; +prion = 0.

If Y is a lagrangian submanifold of (M| x M,, @), then its “twist” ¥ := (Y} is a
lagrangian submanifold of (M| x Mz, ®).

Recipe for producing symplectomorphisms M; = T*X| — My = T#Xa:

1. Start with a lagrangian submanifold ¥ of (M| x M,, o).
2. Twist it to obtain a lagrangian submanifold ¥¥ of (M) x M, ®).
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3. Check whether ¥ is the graph of some diffeomorphism ¢ : My — Ma.
4. If it is, then ¢ is a symplectomorphism (by Proposition 3.8).

Leti: YT — My x M; be the inclusion map

YO'

9
M, ¢ M,

Step 3 amounts to checking whether pr, of and pr; o are diffeomorphisms. If yes,
then @ 1= (pr, of) o (pry o) ! is a diffeomorphism.

In order to obtain lagrangian submanifolds of M) x M; ~ T*(X| x X3), we can
use the merhod of generating functions.

4.2 Method of Generating Functions

For any f € C*(X; x X2), df is a closed 1-form on X x X». The lagrangian sub-
manifold generated by f is

Zf = {((x,y), (df)(x,y)) | (x:y) <Xy XX2} -

We adopt the notation

dyf 1= (df)(xy) Projected to 17X x {0},
dyf 1= (df)(xy) projected to {0} x T'Xs

which enables us to write

Yr ={(xnduf,dyf) | (x,3) € Xi x X2}

and
77 ={londuf,~df) | (ry) € X1 x Xa}
When ¥ ;’ is in fact the graph of a diffeomorphism ¢ : M}, — M,, we call ¢ the
symplectomorphism generated by f, and call f the generating function, of ¢ :
Ml — Mz.
So when is Y r‘.’ the graph of a diffeomorphism ¢ : My — M,?

Let (Uy,xq,...,.xn), (42,¥1,...,¥,) be coordinate charts for X),X,, with asso-
ciated charts (T*L{I S PR AT gl yees :‘g’fl)’ (T*Ml’:yl v Y M- - :nn) for MI:MZ'
The set Y77 is the graph of ¢ : My — M; if and only if, for any (x,§) € My and
(v, 1) € M2, we have
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q’(%@):(yafl) — {=dyfandn = — 'yf-

Therefore, given a point (x, &) M|, to find its image (v,11) = @(x,&) we must solve
the “Hamilton” equations

. G

- —%(x,m L)

If there is a solution ¥ = @, (x,£) of (x), we may feed it to (3x) thus obtaining

N =@(x,E), sothat @(x,&) = (@1 (x, &), 02(x,E)). Now by the implicit function
theorem, in order to solve (&) locally for v in terms of x and &, we need the condition

a af H
det {a—yf (a—ﬂ T

This is a necessary local condition for f to generate a symplectomorphism . Lo-
cally this is also sufficient, but globally there is the usual bijectivity issue.

2
Example. Let X| =4 ~ R", X5 = Uy ~ RB", and f{x,v) = —%, the square of
euclidean distance up to a constant.
The “Hamilton” equations are

Jf

Si ErR Yi = Xi+§
Jf _E,

i = oy Yi— % ni=5&.

The symplectomorphism generated by f is
e(,5) = (x+5,5).

If we use the euclidean inner product to identify T*R* with TR", and hence regard
@ as ¢ : TR — TR™ and interpret £ as the velocity vector, then the symplectomor-
phism ¢ corresponds to free translational motion in euclidean space.
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4.3 Application to Geodesic Flow

Let V be an n-dimensional vector space. A positive inner product G onV is a
bilinear map G : V x V — R which is

symmelric : Gvw) =G(w,v), and
positive-definite ©  G(wv) >0  when v#0.

Definition 4.1. A riemannian metric on a manifold X is a function g which assigns
to each point x £ X a positive inner product g, on X,

A riemannian metric g is smooth if for every smooth vector field v: X — TX the
real-valued function x — gy(vy,vy) is a smooth function on X.

Definition 4.2. A riemannian manifold (X,g) is a manifold X equipped with a
smooth riemannian metric g.

The arc-length of a piecewise smooth curve ¥ : [¢,4] — X on a riemannian man-

ifold (X, g) is
b dy dy
_L 0] (gag>d’-

y=7(b)

x = v{a)

Definition 4.3, The riemannian distance between two points x and y of a connected
riemannian manifold (X,g) is the infimum 4{x,y) of the set of all arc-lengths for
piecewise smooth curves joining x to y.

A smooth curve joining x to y is a minimizing geodesic' if its arc-length is the
riemannian distance d{x,v).

A riemannian manifold (X, g) is geodesically convex if every point x is joined to
every other point v by a unique minimizing geodesic.
Example. On X = " with TX ~ R x B, let g,(v,w) = (n,w}, g:(v,v) = v/,
where {-,-} is the euclidean inner product, and | -| is the euclidean norm. Then

! In riemannian geometry, a geodesic is a curve which locally minimizes distance and whose
velocity is constant.
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(R™,{-,-}) is a geodesically convex riemannian manifold, and the riemannian dis-
tance is the usual euclidean distance d{x,v) = [x — . &

Suppose that (X, g) is a geodesically convex riemannian manifold. Consider the
function
d(x,y)*

S XxX —R, f(x,y):—T.

‘What is the symplectomorphism ¢ : T*X — T*X generated by f?
The metric gy : T,X x T.X — R induces an identification
& LX — I'X
Vi— 8 (‘V, )
Use g'to translate ¢ into amap ¢ : I'X — T'X.

‘We need to solve B
I{;.’vx(v) = gi = dxf(x:y)
| &(w) = mi = —dyf(x,y)

for (y,n) in terms of (x,&) in order to find ¢, or, equivalently, for (y,w) in terms
(x,v) in order to find §.
Let ¥ be the geodesic with initial conditions ¥{0) = x and %(0) =

Then the symplectomorphism ¢ corresponds to the map

. TX —TX
(e, v) — (¥(1), 1)) .

This is called the geodesic flow on X {(see Homework 4).
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Homework 4: Geodesic Flow

This set of problems is adapted from [53].

Let (X,g) be a riemannian manifold. The arc-length of a smooth curve ¥ :
[a,b] = X is

bl dy

arc-length of ¥ 1= / T

a

dy dy dy
dr, where E‘ = gT@(E’E )

1. Show that the arc-length of 7 is independent of the parametrization of ¥y, i.e.,
show that, if we reparametrize yby 7 : [d',5'] — [a,b], the new curve ' = yo 7
[@',b'] — X has the same arc-length. A curve ¥ is called a curve of constant

velocity when

%" is independent of ¢. Show that, given any curve v: [a,b] — X

{with % never vanishing}, there is a reparametrization 7 : [4,8] — [4,5] such that
vot:|a,b] — X is of constant velocity.

5| dv|?

2. Given a smooth curve ¥ : [@,b] — X, the action of yis A(y) := / d_il dr.

Show that, among all curves joining x to y, ¥ minimizes the action if and only if
v is of constant velocity and y minimizes arc-length.

Hint: Suppose that 7 is of constant velocity, and let 7 : [a,5] — [a,b] be a reparame-
trization. Show that A(ye ) > A(y), with equality only when 7 = identity.

3. Assume that (X,g) is geodesically convex, that is, any two points x,y € X are
joined by a unique (up to reparametrization) minimizing geodesic; its arc-length
d{x,y) is called the riemannian distance between x and y.

Agsume also that (X, g) is geodesically complere, that is, every geodesic can be
extended indefinitely. Given (x,v) £ TX, let exp(x,v) : R — X be the unique
minimizing geodesic of constant velocity with initial conditions exp(x,v){0) =x
and —(—Heng‘v 0) =v.

Consider the function f: X x X — R given by f(x,y) = —% -d(x,y)?. Let d,f
and d, f be the components of d f, ,) with respect to T’(;)y) X xX)>TIXxT7X.
Recall that, if

L% = {(xydifo—dyf) | (x,3) € X x X}

is the graph of a diffeomorphism f: T*X — T*X then f is the symplectomor-
phism generated by f. In this case, f(x,&) = (y, 1) if and only if £ =4, f and
n=—dyf.

Show that, under the identification of TX with T*X by g, the symplectomorphism
generated by f coincides with the map TX — TX, {(x,v) — exp(x,v)(1}.
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Hint: The metrdic g provides the identifications ToXv =~ &()) = g{v,) €

T*X., We need to show that, given (x,¥) € TX, the unique solution of
[} d=da .

() {y& _)) :d_’ff;é}(_) is (3,0) = (exp(x, ) (1), 4222 (1)),

Look up the Gauss lemma in a book on riemannian geometry. It asserts that geodesics

are orthogonal to the level sets of the distance function.

To solve the first line in (%) for y, evaluate both sides at v = @%EQ(O). Conclude

that y = exp{x, v)(1). Check that &y f{v') = 0 for vectors v’ £ T, X orthogonal to v (that

i8, gx(v,v") = O); this is a consequence of f(x,¥) being the arc-length of a miininizing

geodesic, and it suffices to check locally.

The vector w is obtained from the second line of (x). Compute —a{yf(“—xggjﬂl(l)).

Then evaluate —d, f at vectors w' € T,X orthogonal to de—;:i.gm(l); this pairing is

again 0 because f(x,y) is the arc-length of a minimizing geodesic. Conclude, using

the nondsgeneracy of g, thatw = dc—xggﬂ (1).

For both steps, it might be useful to recall that, given a function ¢ : X — R and a

tangent vector v € TpX, we have dep(v) = % [g{exp(x,v)(ir))] =0
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Chapter 5
Recurrence

5.1 Periodic Points

Let X be an »-dimensional manifold. Let M = T*X be its cotangent bundle with
canonical symplectic form .

Suppose that we are given a smooth function f: X x X — R which generates a
symplectomorphism @ : M — M, @(x,d, f) = (¥, —d,f), by the recipe of the previ-
ous lecture.

What are the fixed points of ¢?
Define v : X — E by y(x) = f(x,x).
Proposition 5.1. There is a one-to-one correspondence berween the fixed points of

@ and the critical points of .

Proof. Atxp € X, dyyyr = (dr f +d,f)

(s3)=Gror0) Lt & = dufl )=o)
Xo is a critical point of W <= dy, W =0 = dyf| )~ = S -
Hence, the point in I'} corresponding to (x,¥) = (x0,%0) is (x0,%,&,E). But F;’.

is the graph of @, so @(x,&) = (x0,&) is a fixed point. This argument also works
backwards. O

Consider the iterates of g,
oM —gogo...ocp:M—M, N=12,...,
— —

N

each of which is a symplectomorphism of M. According to the previous proposition,
if (p(N VM Mis generated by f V) then there is a correspondernce

. WM AL | critical points of _
{ﬁxed points of ¢ } ]\ W(N) X SR, W(N) (x) = f(N) (x,%) ,[

33
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Knowing that ¢ is generated by f, does (p(z) have a generating function? The
answer is a partial yes:

Fix x,y € X. Define a map
X—R
e flez)+fzy) .

Suppose that this map has a unique critical peint zg, and that zp is nondegenerate.
Let

f&)(x:y) ::f(x,ZO) +f(20:y) :
Proposition 5.2, The fimcrion 2 : X x X — R is smooth and is a generating func-

tion for 92 if we assume that, for each & € TpX, there is a unique y X for which

dxf(z) = g

Proof. The point zo is given implicitly by d, f(x,z0) + d, f (z0,¥) = 0. The nondegen-
eracy condition is

0 [ 9d J
det L_)—:r (a—;;(x,z)Jrg{(z,y)ﬂ #£0.

By the implicit function theorem, zo = zo(x,¥) is smooth.
As for the second assertion, f(z) {(x,¥) is a generating function for (p(z) if and
only if

(P(z) (x:dxf(z)) =, _dyfm)

{assuming that, for each £ € TX, there is a unique y € X for which dyf @ = &)
Since ¢ is generated by f, and zq is critical, we obtain

(P(z) (x:dxf(z)(x:y)) = (P((P(x:dxf(z)(x:y)) = (P(Zoafdyf(x:zo))
=dxf(x20)
= (P(Z—O,dxf(ZO,y)) - (ya_dyf(ZO:y)) .
—

—a, (s y)

Exercise. What is a generating function for tp(3) ?
Hint: Suppose that the function

IxX —R
(z,2) > fn,2) + fz00) + F ()

has a unique critical point (zo,#0), and that it is a nondegenerate critical point. Let

3 (x,3) = f(x,20) + f(z0,10) + f (10, )- &



5.2 Billiards 35

5.2 Billiards

Let ¥ : R — R? be a smooth plane curve which is 1-periodic, i.e., x{(s+ 1) = x{5),
and parametrized by arc-length, ie.,

%‘ = 1. Assume that the region ¥ enclosed

by x is convex, i.e, for any s € R, the tangent line {x(s) + t% |+ € R} intersects
X :=dY (= the image of ¥) at only the point ¥ (s).

Suppose that we throw a ball into ¥ rolling with constant velocity and bouncing
off the boundary with the usval law of reflection. This determines a map

o R/Zx (—1,1) — R/Zx (—1,1)
(e, v) — (3w)
by the rule

when the ball bounces off x (x) with angle 6 = arccosv, it will next collide with x (y)
and bounce off with angle v = arccosw.

x(x)

x()
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Let 1 R/Z x R/7 — R be defined by f(x,y) = —|x(x) — x{¥)|; f is smooth off
the diagonal. Use y to identify R /Z with the image curve X.

Suppose that @{x,v) = (y,w), i.e., (x,v) and (y,w) are successive points on the
orbit described by the ball. Then

d —

% = —% projected onto T,.X = v
df y—x

—— = ——— projected onto ILX = —w
dy ~ oy P ’

or, equivalently,

y—x dy

=2 - g —
Ty ds coS v

d W x—=y dx L
Ef(x’x“))_\x—y\ 4 = TeosV = —w.

We conclude that f is a generating function for ¢. Similar approaches work for
higher dimensional billiards problems.

Periodic points are obtained by finding critical points of

Xx...xX —R, N>=1
N
(X1, an) s flo,x2) + fle,xs) o flav—n,aw) 4 f (o, )
=[xy —xa| 4. 4 av— — v+ v —x ],

that is, by finding the N-sided (generalized) polygons inscribed in X of critical
perimeter.
Notice that

R/ZX (*1:1) = {(x:v) ‘IEX,‘VE EX:‘V‘ < 1} ~A

is the open unit tangent ball bundle of a circle X, that is, an open annulus A. The
map ¢ : A — A is area-preserving.

5.3 Poincaré Recurrence

Theorem 5.3. (Poincaré Recurrence Theorem) Suppose that ¢ 1 A — A is an
area-preserving diffeomorphism of a finite-area manifold A. Let p € A, and ler U
be a neighborhood of p. Then there is g = U and a positive integer N such rhat

™ (q) € U
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Proof. Let Uy = U, U = o), Uy = @ (U),.... I all of these sets were disjoint,
then, since Area (1{;) = Area (I{) > O for all i, we would have

Area A > Area (U()Uf/{l UUQU...) :Z Area (f/{,) =oo,

To avoid this contradiction we must have @* () N () £ @ for some k > 1.
which implies @* 9 () U £ 0. O

Hence, eternal return applies to billiards...

Remark. Theorem 5.3 clearly generalizes to volume-preserving diffeomorphisms in
higher dimensions. &

Theorem 5.4. (Poincaré’s Last Geometric Theorem) Suppose ¢ : A — A is an
area-preserving diffeomorphism of the closed annidus A = R/Z < [—1,1] which pre-
serves the two components of the boundary, and rwisis thent in opposite directions.
Then ¢ has at least iwo fixed points.

This theorem was proved in 1913 by Birkhoff, and hence is also called the
Poincaré-Birkhoff theorem. It has important applications to dynamical systems
and celestial mechanics. The Arnold conjecture (1966) on the existence of fixed
points for symplectomorphisms of compact manifolds (see Lecture 9) may be re-
garded as a generalization of the Poincaré-Birkhoff theorem. This conjecture has
motivated a significant amount of recent research involving a more general notion
of generating function; see, for instance, [34, 45].



Part 111
Local Forms

Inspired by the elementary normal form in symplectic linear algebra (Theorem 1.1),
we will go on to describe normal neighborhoods of a point (the Darboux theorem)
and of a lagrangian submanifold (the Weinstein theorems), inside a symplectic man-
ifold. The main tool is the Moser trick, explained in Lecture 7, which leads to the
crucial Moser theorems and which is at the heart of many arguments in symplectic
geometry.

In order to prove the normal forms, we need the (non-symplectic) ingredients
discussed in Lecture 6; for more on these topics, see, for instance, [ 18, 55, 96].



Chapter 6
Preparation for the Local Theory

6.1 Isotopies and Vector Fields

Let M be a manifold, and p : M x R — M a map, where we set p;(p) :=p(p,).

Definition 6.1. The map p is an isetopy if each p; : M — M is a diffeomorphism,
and Po= idM.

Given an isotopy p, we obtain a time-dependent vector field, that is, a family
of vector fields w, r € R, which at p € M satisfy

d .
v(p) = 7-ps(q) where g =p;'(p),
4 s=t
ie.,
d

Conversely, given a time-dependent vector field v,, if M is compact or if the v,'s
are compactly supported, there exists an isotopy p satisfying the previous ordinary
differential equation.

Suppose that M is compact. Then we have a one-to-one correspondence

{isotopies of M} L {time-dependent vector fields on M}
proreRe— v, telk

Definition 6.2. When v, = v is independent of #, the associated isotopy is called the
exponential map or the flow of v and is denoted exprv; i.e., {exptv: M —M |1 =R}
is the unique smooth family of diffeomorphisms satisfying

d
expivjy—o =idy and E(exptv) (p) =v{exprv(p)) .

41
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Definition 6.3. The Lie derivative is the operator

L, QN M) — QM) defined by Ly = %(exptv)*a)h:o .

When a vector field v, is time-dependent, its flow, that is, the corresponding iso-
topy p, still locally exists by Picard’s theorem. More precisely, in the neighborhood
of any point p and for sufficiently small time ¢, there is a one-parameter family of
local diffeomorphisms p; satisfying

dp.

dr =Vrop and p():ld

Hence, we say that the Lie derivative by v, is

L, Q5 M) — QX (M) definedby L, 0:= %(p,)*mh:o :

Exercise. Prove the Cartan magic formula,
Loo=ndo+d.o,

and the formula

djp’*m = p,*ﬁv,a) ) (*)

where p is the (local) isotopy generated by v.. A good strategy for each formula is
to follow the steps:

1. Check the formula for O-forms ® € QY(M) = C=(M).

2. Check that both sides commute with 4.

3. Check that both sides are derivations of the algebra (Q*(M), A). For instance,
check that

Liora)=(L,0) ator(la).

4. Notice that, if { is the domain of a coordinate system, then Q*({{) is generated
as an algebra by Q°(U) and dQ°(i1), i.e., every element in Q*{{{) is a linear
combination of wedge products of elements in Q%({4) and elements in dQ°(U4).

%
We will need the following improved version of formula {x).

Proposition 6.4, For a smooth family ax, t € R, of d-forms, we have

d o % day
Epr @y = Py (EV,GJI_._?) .
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Proof If f(x,y) is a real function of two variables, by the chain rule we have

0= gfen| o+ gren)|
Therefore,
d ., d d
PO = TP B + PR —
S——
PECyin| by  pri
r=t Y=t

doy
. *
_“<%Q+EJ'

6.2 Tubular Neighborhood Theorem

Let M be an n-dimensional manifold, and let X be a k-dimensional submanifold
where k << r and with inclusion map

X M.

Ateachx < X, the tangent space to X is viewed as a subspace of the tangent space to
M viathe linear inclusion di, : T,X — T, M, where we denote x =i{x). The quotient
NX :=T,M/TX is an {n — k)-dimensional vector space, known as the normal
space to X at x. The normal bundle of X is

NX={(xv)|xcX , veNX}.

The set NX has the structure of a vector bundle over X of rank » — &k under the natural
projection, hence as a manifold NX is n-dimensional. The zero section of NX,

io: X — NX | x— (x,0),

embeds X as a closed submanifold of NX. A neighborhood I, of the zero section X
in NX is called convex if the intersection Lo NN, X with each fiber is convex.

Theorem 6.5. (Tubular Neighborhood Theorem) There exist a convex neighbor-
hood Uy of X in NX, a neighborhood U of X in M, and a diffeomorphism ¢ 1 Uy — U
such thar
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NX 2y UM

12

COHIILIES.

X
Outline of the proof.
o Case of M = R", and X is a compact submanifold of IR*.

Theorem 6.6. (e-Neighborhood Theorem)

LetUd® ={pe R*: |p—q| < € for some g € X} be the set of points af a distance
less than € from X. Then, for & sufficiendy small, each p € U® has a unigue
nearest point g € X (i.e., a unigue g € X minimizing |q —x|).

Moreover, setting q = n(p), the map U* 5 X is a (smoorh) submersion wirh the
property that, for all p € UF, the line segment (1 —t)p+1q, 0 <r < 1, is inl{°.

The proof is part of Homework 5. Here are some hirnts.
At any x € X, the normal space NyX may be regarded as an (n — k)-dimensional
subspace of R*, namely the orthogonal complement in R™ of the tangent space
to X atx:

NXow[veR' v lw, forallwe TX}.

We define the following open neighborhood of X in NX:
NX® ={(x,v)eNX: |v|<e€}.

Let
exp: NX — R"
(x,v) — x+v.

Restricted to the zero section, exp is the identity map on X.
Prove that, for & sufficiently small, exp maps NX* diffeomorphically onto 4%,
and show also that the diagram

exp

NXE - Ut

biry) 3 commutes.

X

o Case where X is a compact submanifold of an arbitrary manifold M.
Put a riemannian metric g on M, and let d(p,q) be the riemannian distance be-
tween p,g € M. The e-neighborhood of a compact submanifold X is

U ={peM|d(p,q) <eforsomegeX}.
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Prove the g-neighborhood theorem in this setting: for £ small enough, the fol-
lowing assertions hold.

— Any p € 4* has a unique point g £ X with minimal d{p,q). Set g = x(p).
—The map U* Z. X is a submersion and, for all p € UE, there is a unique geodesic
curve ¥ joining pto g = a(p).

—The normal space to X at x € X is naturally identified with a subspace of T,M:

NX o {ve TM| g(vyw)=0, forany we ILX}.

Let NX® = {{(x,v) e NX | /g:(v,v) < €}
—Define exp : NX® — M by exp(x,v) = ¥(1), where v: [0,1] — M is the geodesic
with ¥(0) = x and %’(O) = v. Then exp maps NX? diffeomorphically to I4%.

o General case.
When X is not compact, adapt the previous argument by replacing € by an ap-
propriate continuous function £ : X — R* which tends to zero fast enough as x
tends to infinity.

0O
Restricting to the subset 4/ € NX from the tubular neighborhood theorem, we

obtain a submersion Uy —— X with all fibers T L(x) convex. We can carry this
fibration to I by setting 7 = g o @\

Uy < NX isafibration — U C M isafibration

T | T
X X

This is called the tubular neighborhood fibration.

6.3 Homotopy Formula

Let i be a tubular neighborhood of a submanifold X in M. The restriction i* :
HY pham M) — Hgnam (X) by the inclusion map is surjective. As a corollary of the
tubular neighborhood fibration, 7* is also injective: this follows from the homotopy-
invariance of de Rham cohomology.

Corollary 6.7. For any degree £, Hjppam (U) =~ HS prom (X).

At the level of forms, this means that, if @ is a closed £-form on I/ and i* is
exact on X, then @ is exact. We will need the following related result.

Proposition 6.8. If a closed E-form @ onl{ has restriction i*® = 0, then o is exac,
ie., @ =dy for some p c Q" V{U). Moreover, we can choose 1 such that pt, = 0
atallxcX.
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Proof. Via @ : Uy — U, it is equivalent to work over I4p. Define for every 0 <r < 1
a map
Pt U — iy
() — (x,0v) .

This is well-defined since Uy is convex. The map p, is the identity, pp = ip o m,
and each py fixes X, that is, p; oo = ip. We hence say that the family {p, |0 <7 <
1} is a homotopy from iy o 7 to the identity fixing X. The map 7y : Uy — X is
called a retraction because 7 ¢ ig is the identity. The submanifold X is then called
a deformation retract of 4.

A (de Rham) hometopy operator between pp = ig o mp and p) = id is a linear
map

0 Q4 Uy) — QN ()

satisfying the homotopy formula
Id—(ipom)*=dQ+Qd.

When do = 0 and ijo = 0, the operator @ gives @ = 4@, so that we can take
U= Q. A concrete operator () is given by the formula:

1
QCD:/ pr*(IV¢m) dt:
40

where 1, at the point ¢ = p(p), is the vector tangent to the curve p;(p) at s = #. The
proof that (2 satisfies the homotopy formula is below.

In our case, for x € X, p:(x) = x (all #) is the constant curve, so v, vanishes at all
x for all £, hence y, = 0. a

To check that Q above satisfies the homotopy formula, we compute

1 1
Qdo+dQo — / P (1, d@)di +d / i, 0)dr
J0 40

1
_ / P, do | diy,@)dr |
Ly

where £, denotes the Lie derivative along v (reviewed in the next section), and we
used the Cartan magic formula: £, @ = 1,d ® + di,o. The result now follows from

Epr*m = pr*ﬁvrw

and from the fundamental theorem of calculus:

L d
Qda)—i—anJ:[ Ep,*a)dt:pl*a)—pga).
Jo dt
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Homework 5: Tubular Neighborhoods in R

1. Let X be a k-dimensional submanifold of an #-dimensional manifold M. Let x be
a point in X. The normal space to X at x is the quotient space

NX=TM/TX,

and the normal bundle of X in M is the vector bundle NX over X whose fiber at
xis N, X.

(a) Prove that NX is indeed a vector bundle.

(b) If M is R*, show that N, X can be identified with the usual “normal space” to
X in R™, that is, the orthogonal complement in R* of the tangent space to X
atx.

2. Let X be a k-dimensional compact submanifold of R”. Prove the tubular neigh-
borhood theorem in the following form.

(a) Given & > 0 let U, be the set of all points in " which are at a distance less
than £ from X. Show that, for & sufficiently small, every point p € iz has a
nigue nearest point T(p) € X.

(b) Let 7 : if; — X be the map defined in (a) for & sufficiently small. Show tha,
if p € U, then the line segment (1 —¢)-p-+r 7w(p), 0 < < 1, joining pto
x(p) lies in U,

(c) Let ¥X; = {(x,v) € NX such that |v| < €}. Let exp: NX — E" be the map
(x,v) = x+v, and let v : NX; — X be the map (x,v) — x. Show that, for &
sufficiently small, exp maps NX, diffeomorphically onto U, and show also
that the following diagram commutes:

exp

NX,

X

3. Suppose that the manifold X in the previous exercise is not compact.
Prove that the assertion about exp is still true provided we replace £ by a contin-

uous function
£: X — R+

which tends to zero fast enough as x tends to infinity.



Chapter 7
Moser Theorems

7.1 Notions of Equivalence for Symplectic Structures

Let M be a 2n-dimensional manifold with two symplectic forms @y and @), so that
(M, ) and (M, an ) are two symplectic manifolds.

Definition 7.1. We say that

o (M,am) and (M, @) are symplectomorphic if there is a diffeomorphism ¢ : M —
M with 9*ay = ay;

o (M,aq) and (M, @) are strongly isofopic if there is an isotopy p, : M — M such
that pf'ay = an;

o (M,am) and (M, @) are deformation-equivalent if there is a smooth family ay
of symplectic forms joining ax to ax;

o (M,am) and (M,an) are isofopic if they are deformation-equivalent with [ay]
independent of r.

Clearly, we have
strongly isctopic = symplectomorphic , and

isotopic = deformaticn-equivalent .

We also have
strongly isotopic = isotopic

because, if p; : M — M is an isotopy such that p[ @, = ax, then the set ay == pfay
is a smooth family of symplectic forms joining @ to ay and [ax] = [@y], ¥, by
the homotopy invariance of de Rham cohomology. As we will see below, the Moser
theorem states that, on a compact manifold,

isotopic == strongly isotopic .

49
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7.2 Moser Trick

Problem. Given a 2r-dimensional manifold M, a k-dimensional submanifold X,
neighborhoods 44,44 of X, and symplectic forms ay, @ on i4y,l4), does there exist
a symplectomorphism preserving X? More precisely, does there exist a diffeomor-
phism ¢ : 4y — Uy with ¢*@ = @p and @(X) = X7

At the two extremes, we have:
Case X = point: Darboux theorem — see Lecture 8.
Case X =M. Moser thecrem — discussed here:

Let M be a compacr manifold with symplectic forms axy and @, .

— Are (M,ax) and (M, @) symplectomorphic?
Le., does there exist a diffeomorphism ¢ : M — M such that ¢f ap = @?

Moser asked whether we can find such an @ which is homotopic to idas. A neces-
sary condition is [an] = [@1] € H? (M;R) because: if ¢ ~ idy, then, by the homotopy
formula, there exists a homotopy operator € such that

idjyon —@* oy = dQo, day
idy o — @ oy =dQon +Qdoy
0
— o = @*o,+d{Qw)
= o] = [p*on] = [an].
—If [ap] = [@], does there exist a diffeomorphism ¢ homotopic to iday such that
oo = ay?

Moser [87] proved that the answer is yes, with a further hypothesis as in Theo-
rem 7.2. McDuff showed that, in general, the answer is no; for a counterexample,
see Example 7.23 in [B3].

Theorem 7.2, (Moser Theorem — Version I)  Suppose rhar M is compact, [axy] =
[@] and that the 2-form @, = (1 —ryaoo+F oy is svmplectic for each t € [0,1]. Then
there exists an isctopy p : M x B — M such thar p} o, = o, for all t € [0,1].

In particular, @ = p; : M —+ M, satisfies @* @ = an.
The following argument, due to Moser, is extremely useful; it is known as the
Moser trick.

Proof. Suppose that there exists an isotopy p : M x R — M such that pfay = an,
0<r<1 Let
_dps

VrfﬁOpr_l, rcR.
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Then

d doy
0=—(p/@)=p/(Lyo+—]
dr J dr
— Lv,m,+%:o. (%)

Suppose conversely that we can find a smooth time-dependent vector field vy,
t € R, such that (%) holds for 0 < r < 1. Since M is compact, we can integrate v to
anisotopy p: M x R — M with

d
i) =0 = pla=piam=ay.

So everything boils down to solving () for v,.
First, from @ = (1 —r)aq +7 @, we conclude that

d

— = —ay.
7 1 — @

Second, since [ax] = [an], there exists a 1-form g such that
W — o =du .
Third, by the Cartan magic formula, we have

’CVI(DI = dlv,ga)t _._IVI\?L% .
0

Putting everything together, we must find v, such that
dig, oy +dp =0

It is sufficient to solve 1,, &x 4 4 = 0. By the nondegeneracy of @y, we can solve this
pointwise, to obtain a unique (smooth) v;. |

Theorem 7.3. (Moser Theorem — Versior II) Let M be a compact manifold with
symplectic forms oy and ©. Suppose that @, 0 <r <1, is a smoorh family of closed
2-forms joining ax) to ay and sarisfying:

(1) cohomology assumption: [@] is independent of 1, i.e., %[GJJ = [£@] =0,

(2) nondegeneracy assumpltion: @ is nordegenerate for 0 <r < 1.

Then there exists an isotopy p : M x R — M such thar pfoy = ap, 0 <r < 1.

Proof. (Moser mrick) We have the following implications from the hypotheses:
(1) == dfamily of 1-forms g, such that

day,
T;:du,, 0<r<1.
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We can indeed find a smoorh family of 1-forms g, such that ‘{Tﬁr” = dy,. The

argument involves the Poincaré lemma for compactly-supported forms, together

with the Mayer-Vietoris sequence in order to use induction on the number of

charts in a good cover of M. For a sketch of the argument, see page 935 in [83].
{2) = Junique family of vector fields v, such that

Ly @+ =0 (Moser equation) .

Extend v to all r € R. Let p be the isotopy generated by v, {p exists by compact-
ness of M). Then we indeed have

d d oy
S lpion) =pl(Ly o+ —=) = p(dn, o +di) =0.

O

The compactness of M was used to be able to integrate v, for allr € . If M is nor
compact, we need to check the existence of a solution p, for the differential equation

%:V:Op,forogggl,

Picture. Fix ¢ € H*(M). Define S, = {symplectic forms @ in M with [@] = ¢}. The
Moser theorem implies that, on a compact manifold, all symplectic forms on the
same path-connected component of S, are symplectomorphic.

7.3 Moser Relative Theorem

Theorem 7.4. (Moser Theorem — Relative Version) Let M be a manifold, X a
compact submanifold of M, i+ X — M the inclusion map, ayy and ay symplectic
forms in M.

Hypothesis: an|, =ai],, YpeX.
Conclusion: There exist neighborhoods Uy, Uy of X in M,
and a diffeomorphism @ - Uy — Uy such rhar

¢

f/{o Z/{1

commiiies

and @*ay = ay .
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Proof.

1.

bt

Pick a tubular neighborhood Uy of X. The 2-form @y — ay is closed on Up, and
() — an), = 0 at all p € X. By the homotopy formula on the tubular neighbor-
hood, there exists a 1-form pt on iy such that @y — e = 4y and g, = 0 at all
reX.

. Consider the family ey = (1 —r)an +to; = oo+ #d e of closed 2-forms on Up.

Shrinking 4y if necessary, we can assume that @, is symplectic for 0 <r < 1.
Solve the Moser equation: &, @y = —pt. Notice that vy =0on X.

Integrate v,. Shrinking U4, again if necessary, there exists an isotopy p : Ly ¥
[0,1] — M with p}ay = ax, for all + € [0,1]. Since v|x =0, we have py|x = idy.

Set ¢ = p1, Uy = p1(Up). O

Exercise. Prove the Darboux theorem. (Hint: apply the relative version of the Moser
theorem to X = {p}. as in the next lecture.) &



Chapter 8
Darboux-Moser-Weinstein Theory

8.1 Darboux Theorem

Theorem 8.1. (Darboux) Ler (M, ®) be a symplectic manifold, and ler p be any
point in M. Then we can find a coordinare system (U,x1,... %y, ¥1,... ) centered
at p such rthat on U ,
w = dx; Adv; .
i=1
As a consequence of Theorem 8.1, if we prove for (R%",Y dx; A dy;) a local as-
sertion which is invariant under symplectomorphisms, then that assertion holds for

any symplectic manifold.

Proof. Apply the Moser relative theorem (Theorem 7.4)to X = {p}:
Use any symplectic basis for T,M to construct coordinates (x|,...,x,,¥|,...¥))
centered at p and valid on some neighborhood U, so that

wp =Y d¥Ady) .

There are two symplectic forms on 44”: the given @y = @ and @ = Y.dx, Ady,. By
the Moser theorem, there are neighborhoods iy and 24y of p, and a diffeomorphism
@ Uy — Uy such that

ep)=p ad @'} drdy)=o0.
Since @* (T dxl Ady.) =Y d(x} o @) Ad(y, o @), we only need to set new coordinates
xi=xo@andy; =ycg. =
If in the Moser relative theorem (Theorem 7.4) we assume instead

Hypothesis: X is an n-dimensional submanifold with
oy =i*w =0 wherei: X — M is inclusion, i.e.,
X is a submanifold lagrangian for @y and @y ,

then Weinstein [104] proved that the conclusion still holds. We need some algebra
for the Weinstein theorem.

L
[V
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8.2 Lagrangian Subspaces

Suppose that {7, W are r-dimensional vector spaces, and £2: &/ x W — R is a bilinear

pairing; the map € gives rise to a linear map Q : I/ — W*, Q(ir) = Q(n, ). Then Q
is nondegenerate if and only if Q is bijective.

Proposition 8.2, Suppose thar (V,Q) is a 2n-dimensional symplectic vector space.
Let U be alagrangian subspace of (V,82) {(i.e., Q|y .y =0 and U is n-dimensional).
Let W be any vector space complement to U, not necessarily lagrangian.

Then from W we can canonically build a lagrangian complement ro U.

! —
Proof. The pairing €2 gives a nondegenerate pairing 7 x W LR, Therefore, €' :
U — W* is bijective. We look for a lagrangian complement to I/ of the form

W ={wt+Aw|weW},
the map A : W — U/ being linear. For W' to be lagrangian we need

le,WZEW , Q(W1+AW1,W2+AW2) =0

— .Q.(wl,W2) +Q(W1 ,AW;) +Q(AW1 ,Wg) + Q(Aw,Awz) =10

=
N—

0
— .Q(Wl,WZ) = .9(AW2,W1) —.QLAWl,Wz)
= Qr(AW2) (wl) — Q’(Awl)(W2) .
LetA' = QoA : W — W*, and look for A’ such that
Vwpwa e W, Qwy,wa) =AN(wa)(wy) —A'(wy){w2) .

The canonical choice is A’ (w) = —%Q(W, ). Thenset A = (Q') L oA’ O

Proposition 8.3, Ler V be a 2n-dimensional vector space, ler Qg and Qy be sym-
plectic forms in 'V, let U be a subspace of V lagrangian for Qo and £y, and ler W
be any complement to U in'V. Then from W we can canonically construct a linear
isomorphism IV 2V such that Lly = 1dy and L*Qy = Q.

Proof. From W we canonically obtain complements Wy and Wy to IJ in V such that
Wo is lagrangian for 2o and Wy is lagrangian for €. The nondegenerate bilinear
pairings

WoxU 2R . Qo Wo = U
o give isomorphisms =~ =" m s
W xU SR QW —U*.
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Consider the diagram
W 2 g
B Lid
w0

where the linear map B satisfies Q0B =Qq, ie, Qo (wo,it) = Qp (Bwo, i), Ywp €
Wo, Vi € U, Extend B to the rest of V by setting it to be the identity on [J:

L.=1ldg&B . UsW, —UsW,.
Finally, we check that L¥€; = Q.

(L*Qq) (B wo,of D wjy) = Qi (i Bwo,1’ &Bw))
=0y (H,BWE))—Q—.Ql (BWo,t{.!)
= Qo(u,WB)+QQ(W0,H’)
= Qo(uBwo, 1’ Bwp) .

8.3 Weinstein Lagrangian Neighborhood Theorem

Theorem 8.4. (Weinsteir Lagrangian Neighborhood Theorem [104]) Let M be a
2n-dimensional manifold, X a compact n-dimensional submanifold, i : X — M the
inclusion map, and oo and ay symplectic forms on M such that i*an =i*ay =0,
i.e., X is a lagrangian submanifold of both (M,an) and (M, ®,). Then there exist
neighborhoods Uy and Uy of X in M and a diffeomorphism @ : Uy — U\ such that

¢

o i

COnIMILes and eray =ay .

X

The proof of the Weinstein theorem uses the Whitney extension theorem.

Theorem 8.5. (Whitney Extension Theorem) Let M be an n-dimensional manifold
and X a k-dimensional submanifold with k < n. Suppose that at each p € X we
are given a linear isomorphism L, 1 T,M = T,M such thar Ly|r,x = ldr,x and
L, depends smoothly on p. Then there exists an embedding h ' N — M of some
neighborhood N of X in M such thar h|x = idy and dh, =L, for all p € X.
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The linear maps L serve as “germs” for the embedding.

Proof of the Weinstein theorem. Put a riemannian metric g on M; at each p € M,
gp(+,+) Is a positive-definite inner product. Fix p € X, and let V = T,M, U = T,.X
and W = U the orthocomplement of I/ in V relative to g,(-, ).

Since i*ay = i*ay = 0, the space U/ is a lagrangian subspace of both (V, ax/,)
and (V,a|,). By symplectic linear algebra, we canonically get from U+ a linear
isomorphism L, : T,M — T,M, such that LP\J}X = ldz,x and L;a)1|p = |y Lp
varies smoothly with respect to p since our recipe is canonical!

By the Whitney theorem, there are a neighborhood A" of X and an embedding
h: N — M with k|y =idy and dk, = L, for p € X. Hence, at any p € X,

(hran)p = (dhp)* @u]p = Ly, = axp .

Applying the Moser relative theorem (Theorem 7.4) to ay and A*@y, we find a
neighborhood Uy of X and an embedding f : Uy — A such that f|x = idy and
o) =agonld, Set ¢ =hof. O

Sketch of proof for the Whitney theorem.
Case M =R™
For a compact k-dimensional submanifold X, take a neighborhood of the form

U* ={peM| distance (p,X) < e}.

For € sufficiently small so that any p € ({® has a unique nearest point in X, define a
projection & : ¢ — X, p — point on X closest to p. If #(p) =g, then p = g+ v for
some v € N X where N,X = (I, X)! is the normal space at g; see Homework 5. Let

Y — s L
pr—q+Lgv,

where g = m(p) and v = p—n(p) € N,X. Then hy = idy and dh, =L, for p e X.
If X is not compact, replace & by a continuous function & : X — R™ which tends to
zero fast enough as x tends to infinity.

General case:

Choose a riemannian metric on M. Replace distance by riemannian distance,
replace straight lines g +7v by geodesics exp(g,v)(¢) and replace g+ L,v by the
value at r =1 of the geodesic with initial value g and initial velocity Lgv. |

In Lecture 30 we will need the following generalization of Theorem 8.4. For a
proof see, for instance, either of [47, 58, 107].

Theorem 8.6. (Coisotropic Embedding Theorem) Lei M be a manifold of dimen-
sion 2n, X a submanifold of dimension k = n, i : X < M the inclusion map, and ax
and ay symplectic forms on M, such that i*ay = i* @ and X is coisorropic for both
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(M, x) and (M, ®,). Then there exist neighborhoods Uy and Uy of X in M and a
diffeomorphism @ : Uy — Uy such thar

P

f/{o * Z/{l

COnIMILes and eray =ay .
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Homework 6: Oriented Surfaces

1. The standard symplectic form on the 2-sphere is the standard area form:
If we think of $? as the unit sphere in 3-space

§* = {u < R? such that [u| =1} ,
then the induced area form is given by
o, (v, W) = (1, v x w)

where u € $2, v, W e 7,82 are vectors in R3, x is the exterior product, and {-,-} is
the standard inner product. With this form, the total area of 82 is 47.

Consider cylindrical polar coordinates (8,z) on 52 away from its poles, where
0<8<2rand -1 <z < 1.

Show that, in these coordinates,

o =d8  rdz.

2. Prove the Darboux theorem in the 2-dimensional case, using the fact that every
nonvanishing 1-form on a surface can be written locally as f dg for suitable func-
tions f,g.

Hint: ® = df A dg is nondegenerate <= (f,g) is alocal diffeomorphism.
3. Any oriented 2-dimensional manifold with an area form is a symplectic manifold.

(a) Show that convex combinations of two area forms ax, @y that induce the
same orientation are symplectic.

This is wrong in dimension 4: find two symplectic forms on the vector space
[* that induce the same orientation, yet some convex combination of which
is degenerate. Find a path of symplectic forms that connect them.

(b) Suppose that we have two area forms axy,®; on a compact 2-dimensional
manifold M representing the same de Rham cohomology class, i.e., [an] =
[(Dﬂ € Hc%eRham(M)'

Prove that there is a 1-parameter family of diffeomorphisms ¢ : M — M such
that @ @n = @y, @o =1id, and @ ax is symplectic for all r € [0,1].

Hint: Exercise (a) and the Moser trick.

Sucha l-parameter family ¢ is called a strong isofopy between axy and @, . In
this language, this exercise shows that, up to strong isotopy, there is a unique
symplectic representative in each non-zero 2-cohomology class of M.



Chapter 9
Weinstein Tubular Neighborhood Theorem

9.1 Observation from Linear Algebra

Let (V,Q) be a symplectic linear space, and let {7 be a lagrangian subspace.

Claim. There is a canonical nondegenerate bilinear pairing Q" : V /U x U — R,
Proof. Define Q' ([v], 1) = Q(v,1) where [v] is the equivalence class of v in V/I/. O

Exercise. Check that (' is well-defined and nondegenerate. &

Consequently, we get ~
= Q' :V/U — U* defined by Q'([v]) = (|v], ) is an isomorphism.
= V /U ~ U are canonically identified.

In particular, if (M, ®} is a symplectic manifold, and X is a lagrangian submani-
fold, then ToX is a lagrangian subspace of (T,M, @) foreachx € X.
The space N,X := T.M/T.X is called the normal space of X at x.

= There is a canonical identification N, X ~ T*X.
—

Theorem 9.1. The vector bundles NX and T*X are canonically identified.

9.2 Tubular Neighborhoods

Theorem 9.2. (Standard Tubular Neighborhood Theorem) [Ler M be an
n-dimensional manifold, X a k-dimensional submanifold, NX the normal bun-
dle of X in M, ip : X — NX the zero section, and i : X — M inclusion. Then there
are neighborhoods U of X in NX, U of X in M and a diffeomorphism w1 Uy — U
siuch that

61
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U

COmHesS .

For the proof, see Lecture 6.

Theorem 9.3. (Weinstein Tubular Neighborhood Theorem) Ler (M, ®) be a
symplectic manifold, X a compact lagrangian submanifold, oy the canonical sym-
pleciic form on T*X, ip: X — T*X the lagrangian embedding as the zero section,
and i: X — M the lagrangian embedding given by inclusion.

Then there are neighborhoods Uy of X in T*X, U of X in M, and a diffeomorphism
@ Uy — U such rhat

U L U
\ / commuttes and @ o = ay.
X

Proof. This proof relies on (1) the standard tubular neighborhood theorem, and (2)
the Weinstein lagrangian neighborhood theorem.

{1} Since NX ~ T*X, we can find a neighborhood A of X in T*X, a neighborhood
A of X in M, and a diffeomorphism v : A — A such that

No Ld N

commutes .

X

@ = canenical form on T*X |

o = o '
The submanifold X is lagrangian for both @y and @y .

{2) There exist neighborhoods U4y and U, of X in Aj, and a diffeomorphism 8 :
Uy — Uy such that

Let symplectic forms on Af.
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Z/{o Z1/{1

commutes and 8%y =axy.

Take ¢ = wo 8 and i = @(Uy). Check that o* 0 = 8*y" o = ay.
N

o]
[l

Remark. Theorem 9.3 classifies lagrangian embeddings: up to local symplectomor-
phism, the set of lagrangian embeddings is the set of embeddings of manifolds into
their cotangent bundles as zero sections.

The classification of isefropic embeddings was also carried out by Weinstein
in [105, 107]. An isotropic embedding of a manifold X into a symplectic mani-
fold (M, ) is a closed embedding i : X — M such that i*® = 0. Weinstein showed
that neighbourhood equivalence of isotropic embeddings is in one-to-one correspon-
dence with isomorphism classes of symplectic vector bundles.

The classification of coisotropic embeddings is due to Gotay [47]. A coisotropic
embedding of a manifold X carrying a closed 2-form « of constant rank into a
symplectic manifold (M, @) is an embedding i : X — M such that i*@ = « and i(X)
is coisotropic as a submanifold of M. Let E be the characteristic distribution of
a closed form o of constant rank on X, i.e., E, is the kernel of &, at p € X. Gotay
showed that then E* carries a symplectic structure in a neighbourhood of the zero
section, such that X embeds coisotropically onto this zero section, and, moreover
every coisotropic embedding is equivalent to this in some neighbourhood of the
Zero section, &

9.3 Application 1: Tangent Space to the Group
of Symplectomorphisms

The symplectomorphisms of a symplectic manifold (M, @) form the group
Sympl(M,0) ={f:M = M| flo=o}.

— What is Tig (Sympl{(M, @))?

{What is the “Lie algebra” of the group of symplectomorphisms?)
— What does a neighborhood of id in Sympl{M, ®) look like?

We use notions from the C!-topology:

C!-topology.
Let X and ¥ be manifolds.
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Definition 9.4. A sequence of maps f; : X — Y converges in the ("-topology to
f:X — Y if and only if f; converges uniformly on compact sets.

Definition 9.5. A sequence of C! maps f; : X — Y converges in the C'-tfopology to
f X — Y if and only if it and the sequence of derivatives df; : TX — TY converge
uniformly on compact sets.

Let (M,@) be a compact symplectic manifold and f € Sympl(M,@). Then

Graph f 1 , . « "
Graphid = A | are lagrangian submanifolds of (M x M,pr{o — prim).

{pr; : M xM — M.,i=1,2, are the projections to each factor.)

By the Weinstein tubular neighborhood theorem, there exists a neighborhood i of
A (~M) in (M x M,prf @ —pr3e) which is symplectomorphic to a neighborhood iy
of Min (T*M, ap). Let @ : I{ — U4 be the symplectomorphism satisfying @ {p, p) =
(p,0),Ype M.

Suppose that f is sufficiently C'-close to id, i.e., f is in some sufficiently small
neighborhoed of id in the C! -topology. Then:
1. We can assume that Graph f C .

Let j:M — U bethe embedding as Graph [,
i:M < U bethe embedding as Graphid=A.

2. The map J is sufficiently C'-close to 7.
3. By the Weinstein theorem, i{ ~ Uy C T*M, so the above j and i induce

Jo M — Uy embedding, where jo=¢ocj,
i M — Uy embedding as O-section .

Hence, we have

i ¢ Uy U Zh
M M
where i(p) = (p,p). io(p) = (p,0), j(p) = (p, f(p)) and jo(p) = @(p, f(p)) for
4. %iaﬂrfﬁp Jjo is sufficiently C*-close to iq.

U
The image set jo(M) intersects each T;M at one point tt, depending smoothly

on p.
5. The image of jp is the image of a smooth section g : M — T#M, that is, a 1-form
1= joo(mo jo)y t.

Therefore, Graph f o~ {(p,p1,) | pe M, 1, € TM}.
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Exercise. Vice-versa: if g is a 1-form sufficiently C'-close to the zero 1-form, then

{(p1tp) | peM, pp « T/M} ~ Graph f
for some diffeomorphism f : M — M. By Lecture 3, we have
Graph f is lagrangian <= y is closed. &

Conclusion. A small C'-neighborhood of id in Sympl{M, o) is homeomorphic to a
€' -neighborhood of zero in the vector space of closed 1-forms on M. So:

Ta(Sympl(M, @) ~ {g € Q' (M) | du = 0}
In particular, Tig(Sympl(M, @)) contains the space of exact 1-forms

{u=dh | heC” (M)} ~ C”(M)/ locally constant functions.

9.4 Application 2: Fixed Points of Symplectomorphisms

Theorem 9.6. Let (M, @) be a compact symplectic manifold with Hlpp . (M) = 0.
Then any symplectomorphism of M which is sufficiently C'-close to the identiry has
at least two fixed points.

Proaof. Suppose that f € Sympl(M, @) is sufficiently C!-close to id.
Then Graph f ~ closed 1-form g on M.

du=20

1 = i = dh for some h € C™ (M) .
HdleRham(M) = 0,[ *)

Since M is compact, # has at least 2 critical points.

Fixed points of f = critical points of A

I |
Graph fMA = {p:pp=dh,=0}.

Lagrangian intersection problem:
A submanifold ¥ of M is C'-close to X when there is a diffeomorphism X — ¥
which is, as a map into M, Cl-close to the inclusion X — M.

Theorem 9.7, Lei (M, @) be a symplectic manifold. Suppose that X is a compact
lagrangian submanifold of M with Hi g, . (X) = 0. Then every lagrangian sub-
manifold of M which is C'-close to X intersects X in at least two points.
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Proof. BExercise. |

Arnold conjecture:

Let (M,®) be a compact symplectic manifold, and f: M — M a symplectomor-
phism which is “exactly homotopic to the identity” (see below). Then

#{fixed points of £} > minimal # of critical points
a smooth function on M can have.

Together with Morse theory,! we obtain?

#{nondegenerate fixed points of f} > minimal # of critical points
a Morse function on M can have

i
> ¥ dimH(M:R) .

=0

The Arnold conjecture was proved by Conley-Zehnder, Floer, Hofer-Salamorn,
Omno, Fukaya-Ono, Liu-Tian using Floer homology (which is an ee-dimensional ana-

logue of Morse theory). There are open conjectures for sharper bounds on the num-
ber of fixed points.

Meaning of “f is exactly homotopic to the identity:”

Suppose that &, : M — R is a smooth family of functions which is 1-periodic,
ie., fy = hyr. Let p: M x R — M be the isotopy generated by the time-dependent
vector field v defined by @(v;, ) = dk,. Then “f being exactly homotopic to the
identity” means f = py for some such 4.

In other words, f is exactly homotopic to the identity when f is the time-1 map
of an isotopy generated by some smooth time-dependent 1-periodic hamiltonian
function.

There is a one-to-one correspondence

fixed points of f A, period-1 orbitsof p : M xR — M

because f{p) = pif and only if {p{r,p), r £[0,1]} is a closed orbit.

Proof of the Arnold conjecture in the case when & : M — R is independent of #:
p is acritical point of & = dh, =0 <= v, =0
= p(t,p) = p, Vi € R = p is a fixed point of p,. O

Exercise. Compute these estimates for the number of fixed points on some compact
symplectic manifolds (for instance, 52, §2 x §% and T2 = §' x §1). O

1" A Morse function on M is a function # : M — R whose critical points (i.e., points p where
o . . . . . . 2
dhy = 0) are all nondegenerate (i.e., the hessian at those points is nonsingular: det (m)p #+ 0.

T A fixed point p of f: M — M is nondegenerate if 4/, : T,M — T, M is nonsingylar.



Part IV
Contact Manifolds

Contact geometry is also known as “the odd-dimensional analogue of symplectic
geometry.” We will browse through the basics of contact manifolds and their relation
to symplectic manifolds.



Chapter 10
Contact Forms

10.1 Contact Structures

Definition 10.1. A confact element on a manifold M is a point p € M, called
the contact point, together with a tangent hyperplane at p, H, C T,M, that is, a
codimension-1 subspace of T,M.

A hyperplane H, C T,M determines a covector &, € T;M Y\ {0}, up to multipli-
cation by a nonzero scalar:

(p.Hp) is a contact element +—— H, =ker o, with &t : T,M — R linear ,# 0

keray, =kera, <= @, = A, forsome A € R\ {0} .

Suppose that H is a smooth field of contact elements (i.e., of tangent hyperplanes)
on M:
H. p—H,CT,M.

Locally, H = ker «x for some 1-form «, called a locally defining 1-form for H.
{a is not unique: ker @ = ker(fet), for any nowhere vanishing f: M — R.)

Definition 10.2. A contact structure on M is a smooth field of tangent hyperplanes
H — TM, such that, for any locally defining 1-form «, we have d¢|g nondegenerate
{i.e., symplectic). The pair (M, H) is then called a contact manifold and « is called
a local contact form.

Ateachpe M,
To,M = kera, & kerda,
S’ E——

Hy 1—dimensional

The ker de, summand in this splitting depends on the choice of «.

dimH, =2r iseven

daty|y, nondegenerate — | (de,)"|g, # 0 is a volume form on H,,

Opierdo, NONdegenerate

6%
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Therefore,
e any contact manifold (M, H) has dimM = 2n+ 1 odd, and

o if a is a (global) contact form, then a A (da)™ is a volume form on M.

Remark. Let (M ,H) be a contact manifold. A global contact form exists if and
only if the quotient line bundle TM /H is orientable. Since H is also orientable, this
implies that M is orientable. &

Proposition 10.3. Ler H be a field of tangent hyperplanes on M. Then

H is a contact sirncture < oA (dat)" £ 0 for every locally defining 1-form a .

Proof.
= Done above.
<= Suppose that H = ker a locally. We need to show:

det|y nondegenerate <= a A (da)" #0.

Take a local trivialization {ey, fi,...,eu, fu,7} of TM =kera rest , such that
ker o = span{ey, fi,...,e,, f,} and rest = span{r}.

(an{de)) (e, fi,... en, fu ) = (r) (de) (e1, f1, .. en, fu)
Py

andhence o A{da)* #0 < (da)"|g #0 <= da|y is nondegenerate . 0

10.2 Examples

1. OnR? with coordinates (x,y,z), consider & = xdy + dz. Since
ardo = (xdy+dz) A(dxAdy)y=dxAdyrdz #£0,
« is a contact form on ¥,

The corresponding field of hyperplanes H =ker & at (x,v,z) € ¥ is

o d o
H(x,y,z) :{V :aa +ba_y+6'a—z ‘ CE(V) =bx+c= 0} R

Exercise. Picture these hyperplanes. &

2. (Martinet [80], 1971) Any compact orientable 3-manifold admits a contact
structure.
Open Problem, 2000. The classification of compact orientable contact
3-manifolds is still not known. There is by now a huge collection of results in
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contact topology related to the classification of contact manifolds. For a review
of the state of the knowledge and interesting questions on contact 3-manifolds,
see [33, 43, 100].

3. Let X be a manifold and 7*X its cotangent bundle. There are two canonical
contact manifolds associated to X (see Homework 7):

P(T*X) = the projectivization of T*X, and
S(T*X) = the cotangent sphere bundle.

4, On R¥"t! with coordinates (x1,¥1,...,X,Yn,2). & = ¥, X;dy; +dz is contact,

10.3 First Properties

There is a local normal form theorem for contact manifolds analogous to the
Darboux theorem for symplectic manifolds.

Theorem 10.4, Let (M, H) be a contact manifold and p € M. Then there exisis a
coordinare systemi (U, x1,¥1,... Xy, Yu,2) centered at p such that on U

o= Zx,»dy,; +dzis a local contact form for H.

The idea behind the proof is sketched in the next lecture.
There is also a Moser-type theorem for contact forms.

Theorem 10.5, (Gray) Let M be a compact manifold. Suppose that &, 1 € [0,1], is
a smoorh family of (global) contact forms on M. Ler Hy =ker «. Then there exists
anisoropy p - M x R — M such that H, = py Hy, for all 0 <r < 1.

Exercise. Show that i, = p.. Hy = pag =1, - o for some family 1, M — R,
0 <r < 1, of nowhere vanishing functions. &

Proof. (A la Moser)

=id
‘We need to find p, such that J’ po=1 For any isoto \
Pt l%(p;*ar):%(lt:ao)- y Py P

d e do
E(pr a,)fpt (EVrafJFE) »

where v, = % op; ! is the vector field generated by p,. By the Moser trick, it
suffices to find v, and then integrate it to p,. We will search for v, in H, =ker o this
unnecessary assumption simplifies the proof.
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‘We need to solve

dar dl{.;
* Ev Ny -
p‘(qﬁ +dt) di e
Aty O+, A0 %Pr‘af
da, dl{,r 1
* ate n  dde 1 s
- Py <1vxdat+ d?.‘) ar P
dar . dli; 1
— v dtg - — = == — o .
o G = (G @

Restricting to the hyperplane H, = ker ¢, equation (&) reads

de
Cdr

IvrdaF|H, -
H,

which determines v, uniquely, since d ¢¢|g, is nondegenerate. After integrating v, to
p:, the factor i, is determined by the relation p @ = u, - . Check that this indeed
gives a solution. |
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Homework 7: Manifolds of Contact Elements

Given any manifold X of dimension », there is a canonical symplectic manifold of
dimension 2rn attached to it, namely its cotangent bundle with the standard sym-
plectic structure. The exercises below show that there is also a canonical confact
manifold of dimension 2r — 1 attached to X.

The manifold of contact elements of an n-dimensional manifold X is
C={(x,¥%:)|» <X and ¥, is a hyperplane in T,X} .
On the other hand, the projectivization of the cotangent bundle of X is
P*X = (T"X\ zero section)/ ~

where (x,&) ~ (x,&") whenever & = A&’ for some A € R\ {0} (here x € X and
£, e TX "\ {0}). We will denote elements of P*X by (x,[£]), [§] being the ~
equivalence class of £.

1. Show that C is naturally isomorphic to P*X as a bundle over X, i.e., exhibit a
diffeomorphism ¢ : C — P*X such that the following diagram commutes:

c -2, px
=l =
X - X

where the vertical maps are the natural projections (x,¥,) — x and (x,£) — x.

Hint: The kernel of a non-zero £ € T*X is a hvperplane ¥, C T.X.
What is the relation between & and & if ker& — ker&'?

2. There is on C a canonical field of hyperplanes 7{ (that is, a smooth map attaching
to each point in C a hyperplane in the tangent space to C at that point): H at the
point p = (x, %) € C is the hyperplane

H, = (dr,) 5 < T,C,

where
¢ p=(np) IC
L= | | dny
X X X

are the natural projections, and (d7,) ™!, is the preimage of y,  T,X by d7,.
Under the isomorphism C ~ P*X from exercise 1, H induces a field of hyper-
planes H on P*X. Describe H.

Hint: If & < X\ {0} has kernzl ¥,, what is the kernel of the canonical 1-form
) = (@) )*€7
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3. Check that (P*X,H) is a contact manifold, and therefore (C,H) is a contact man-
ifold.

Hint: Let (x,[§]) € P*X. For any & representing the class [£], we have

H e = ker ((d )78 -

Let x1,...,%, be local coordinates on X, and let x1,...,%,,&,...,&, be the as-
sociated local coordinates on T*X. In these coordinates, (x,[]) is given by
(1, &L €1, -, &) Since at least one of the &;’s is nonzero, without loss of gener-
ality we may assume that £; 7 0 so that we may divide & by & to obtain a representa-
tive with coordinates (1,&z,...,&,). Hence, by choosing always the representative of
[E]with & =1, thesetxy,...,x,,&,. .., &, defines coordinates on some neighborhood
U of (x,|€]) in P*X. On U, consider the 1-form

o = dx; + E Edx, .

=)

Show that o is a contact form on U4, ie., show that ker ) = H@[‘?D’ and that
doy () is nondegenerate on Hy, 4.

4. What is the symplectization of C?
What is the manifold C when X = B and when X = §1 x 512

Remark. Similarly, we could have defined the manifold of oriented contact ele-
ments of X to be

o | " x¢ is a hyperplane in T,X
= l(x: X) | e X and equipped with an orientation J '

The manifold C? is isomorphic to the cotangent sphere bundle of X
S*X = (T*X )\ zero section)/ =

where (x, &) = (x, &) whenever & = A&/ for some A € RT.
A construction analogous to the above produces a canonical contact structure on
(?. See [3, Appendix 4].

&



Chapter 11
Contact Dynamics

11.1 Reeb Vector Fields

Let (M, H) be a contact manifold with a contact form a.

J’ 1pdoe =0

Claim. There exists a unique vector field R on M such that | a=1
15 06 =

[ 1zdax = 0 = R € kerdar , which is a line bundle, and
| ;zx =1 = normalizes R .

The vector field R is called the Reeb vector field determined by a.

Proof.

Claim. The flow of R preserves the contact form, i.e., if p, = exprR is the isotopy
generated by R, then pfa = «, ¥r € R.
Proof. We have £ (pFot) = pf (L, 0) = pH{d 1,06 +1,da) = 0.

) R

1 0
Hence, pfoc = pfoe = o, ¥Vr e R. 0

Definition 11.1. A contactomorphism is a diffeomorphism f of a contact manifold
(M, H) which preserves the contact structure (i.e., fi = H).

Examples.

1. Euclidean space R with & = ¥, x;dv; +dz.

i YdyAdy; =01 . R- J

" Y oxdyi+dz — 1 J 3 is the Reeb vector field.

The contactomorphisms generated by R are translations

pt(xlayl:-'- JxHJyH:Z) = (xlayla-'-:xﬂay”:Zth) .
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2. Regard the odd sphere §71 <L B2 a5 the set of unit vectors

{021, %) | E nyr

Consider the 1-form on B, o = %}:(x;dy,- — vidx;).

Claim. The form « = i*o is a contact form on §¥*1,

Proof. We mneed to show that @ A (da)*™! # 0. The l-form on R** y =
dY,(xf +y7) = 2X.(x;dx; + y;dy;) satisfies T,5% 1 =kerv,, at p € 21, Check
that v Ao A {do)y—! #£0. 0

The distribution H = ker e is called the standard contact structure on S¥* 1,
The Reeb vector fieldisR = 2%, (x,'aiyi — y,-a%), and is also known as the Hopf

vector field on %'~ !, as the orbits of its flow are the circles of the Hopf fibration.

@

11.2 Symplectization

Example. Let M = §21 x R, with coordinate T in the R-factor, and projection
mM 8771 (p, 1) — p. Under the identification M ~ R*\ {0}, where the R-
factor represents the logarithm of the square of the radius, the projection 7 becomes

T RZ\{0} — szl
X Y T, el
(Xl,Yl,...,)(;,,Y”) S (ﬁ:ﬁ:"' ) 58_1:1 \}fe_t)
where ¢* = ¥(X? + ¥7). Let @ = i*0 be the standard contact form on §%*~! (see
the previous example). Then ® = d{e*7*ct) is a closed 2-form on R*\{0}. Since

o = f—;;f, Ty, = %, we have

e = mtite = %E(%d(\/}%) \/’—d(\/g—r))
= 2 Y (X,dY; - Y,dX)) .

Therefore, @ = ¥.dX; A dY; is the standard symplectic form on R*\{0} C R*".
(M, ®) is called the symplectization of (S*~1 a).

Proposition 11.2. Ler (M, H) be a contact manifold with a contact form . Let M=
M xR, and lerm .M — M, (p,T) v p, be the projection. Then @ = d(e*n* @) is a
svimplectic form on M, where T is a coordinate on R,
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Proof. BExercise. |

Hence, M has a symplectic form @ canonically determined by a contact form
o on M and a coordinate function on R; (M, ®) is called the symplectization of
(M, a).

Remarks.

1. The contact version of the Darboux theorem can now be derived by applying the
symplectic theorem to the symplectization of the contact manifold (with appro-
priate choice of coordinates); see [3, Appendix 4].

2. There is a coordinate-free description of M as

M={(p&)|pecM, Ec T;M, such that ker = H,} .

The group B\ {0} acts on M by multiplication on the cotangent vector:

A(p,§)=(p,Ag), AeRA{0}.

The quotient M/ (R \ {0}) is diffeomorphic to M. M has a canonical 1-form &
defined at v € Tf, syM by

ey () = S ((dpr) p.e)V)

where pr M — M is the bundle projection.

11.3 Conjectures of Seifert and Weinstein

Question. (Seifert, 1948) Let v be a nowhere vanishing vector field on the 3-
sphere. Does the flow of v have any periodic orbits?

Counterexamples.

o (Schweitzer, 1974) 3! vector field without periodic orbits.
¢ (Kristina Kuperberg, 1994) 3 C™ vector field without periedic orbits.

Question. How about volume-preserving vector fields?

s (Greg Kuperberg, 1997) 3 C! counterexample.
o (™ counterexamples are not known.
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Natural generalization of this problem:
Let M = §° be the 3-sphere, and let ¥ be a volume form on M. Suppose that v is
a nowhere vanishing vector field, and suppose that v is volume-preserving, i.e.,

Ly=0 = dny=0 <= ny=da

for some 1-form «, since H(S%) = 0.
Given a 1-form ¢, we would like to study vector fields v such that

[y=da
| na>0.

A vector field v satisfying & > O is called pesitive. For instance, vector fields in
a neighborhood of the Hopf vector field are positive relative to the standard contact
form on 8.

Renormalizing as R := =

e e should study instead

mda =0
la == 1
o Adais a volume form,

that is, study pairs (o, R) where

[ e is a contact form, and
| R is its Reeb vector field.

Conjecture. (Weinstein, 1978 [106]) Suppose that M is a 3-dimensional manifold
with a (global) contact form c. Let v be the Reeb vector field for «. Then v has a
periodic orbit.

Theorem 11.3. (Viterbo and Hofer, 1993 [63, 64, 103]) The Weinstein conjecture
is true when

HM=25§, or

2) m(M) #£0, or
3) the contact structure is overtwisted."

1 A surface § inside a contact 3-manifold determines a singular foliation on §, called the char-
acleristic foliation of S, by the intersection of the contact planes with the tangent spaces to S. A
contact structure on a 3-manifold A is called overtwisted if there exists an embedded 2-disk whose
characteristic foliation contains one closed leaf C and exactly one singular point inside C; other-
wise, the contact structure is called tight. Eliashberg [32] showed that the isotopy classification of
overtwisted contact structures on closed 3-manifolds coincides with their homotopy classification
as tangent plane fields. The classification of tight contact structures is still open.
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Open questions.

How many periodic orbits are there?
What do they look like?

Is there always an unknotted one?
What about the linking behavior?

79



Part V
Compatible Almost Complex Structures

The fact that any symplectic manifold possesses almost complex structures, and
even so in a compatible sense, establishes a link from symplectic geometry to com-
plex geometry, and is the point of departure for the modern technique of counting
pseudo-holomorphic curves, as first proposed by Gromov [49].



Chapter 12
Almost Complex Structures

12.1 Three Geometries

1. Symplectic geometry:

geometry of a closed nondegenerate skew-symmetric bilinear form.
2. Riemannian geometry:

geometry of a positive-definite symmetric bilinear map.
3. Complex geometry:

geometry of a linear map with square -1.

Example. The euclidean space R%* with the standard linear coordinates
(X1, %, ¥1,...,¥) has standard structures:

ayy = Y.dx; Ady; , standard symplectic structure;

2o=1{,, standard inner product; and

if we identify R** with € with coordinates z; = x;++/—1 y;, then multiplication
by +/—1 induces a constant linear map J, on the tangent spaces of R%*:

d d o d

Jol=—)==— Jol=—)=——
O(axlf ayf ) 0((9_')77) axf )
with Jg = —Id. Relative to the basis 3%1’“"%’ é,‘%, ey 6%”’ the maps Jp, ax and

go are represented by

0 —Id
Jo@t) = (Id a )u

0 —Id
— ot
an(u,v) = v (Id 0 >u

2o, v) =V

83



84 12 Almost Complex Structures

where #,v € R* and v' is the transpose of v. The following compatibility relation
holds:

an(u,v) = golJo(u),v) .

12.2 Complex Structures on Vector Spaces

Definition 12.1. Let V be a vector space. A complex structure on 'V is a linear map:
J:V—V  with JF=-Id.
The pair (V,J) is called a complex vector space.

A complex structure J is equivalent to a structure of vector space over C if we
identify the map J with multiplication by +/—1.

Definition 12.2. Let (V,£2) be a symplectic vector space. A complex structure J on
V is said to be compatible (with Q, or Q-compatible) if

G, (1, v) :==Qu,Jv), Vu,veV,isapositive inner producton V.
That is,

[ Q. dv) = Q(u,v) [symplectomorphism]

J1s -compatible <= | Qi) >0, Vu#£0  [taming condition]

Compatible complex structures always exist on symplectic vector spaces:

Proposition 12.3, Ler (V,Q) be a symplectic vector space. Then there is a compar-
ible complex striscture J on'V,

Proof. Choose a positive inner product (7 on V. Since Q and ( are nondegenerate,

neVi— Q) eV |

; ; ®
WeV e Glw,) e V* ,[ are isomorphisms between V and V*.

Hence, Q(u,v) = G(Au,v) for some linear map 4 : V — V. This map A is skew-
symmetric because

G(A*n,v) = G(i,Av) = G{Awu)
= Q(wu) = —Q(u,v) = G{(—Am,v) .

Also:

o AA* issymmetric: (AA*)* = AA*.
o AA* ispositive: G{AA*1,i1) = G(A 1, A%) > 0, for 1 £ O,
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These properties imply that AA* diagonalizes with positive eigenvalues A;,
AA* = Bdiag(Aq,...,22,) B L.
We may hence define an arbitrary real power of AA* by rescaling the eigenspaces,
in particular,
VAAY = Bdiag (v/A1,... 7/ 2aa) BL.

Then +/AA* is symmetric and positive-definite. Let

J=(VAA)TIA

The factorization A = +/AA*J is called the polar decomposition of A. Since A
commutes with +/AA*, J commutes with v/AA*. Check that J is orthogonal, JJ* =
Id, as well as skew-adjoint, J* = —J, and hence it is a complex structure on V:

JP— gt =—1d.

Compatibility:
Q(Ju, Jv) = G(AJi, Jv) = G(JAu, Jv) = G{An,v)
= Q(u,v)
Qo Jur) = G{Au,Ju) = G(—JAu, 1)
= G(VAA*u,u) >0, foru#0.
Therefore, J is a compatible complex structure on V. |

As indicated in the proof, in general, the positive inner product defined by

Qe Jv) = G(vVAA*u,v) is different from Gu,v) .

Remarks.

1. This construction is canonical after an initial choice of (. To see this, notice that
+/AA* does not depend on the choice of Bnor of the ordering of the eigenvalues in
diag (\/l_l v N ). The linear transformation +/AA* is completely determined
by its effect on each eigenspace of AA*: on the eigenspace corresponding to the
eigenvalue Az, the map +/AA* is defined to be multiplication by \/?L_;c

2. If {(V;,€,) is a family of symplectic vector spaces with a family G, of positive
inner produets, all depending smoocthly on a real parameter #, then, adapting the
proof of the previous proposition, we can show that there is a smooth family J
of compatible complex structures on V;.

3. To check just the existence of compatible complex structures on a symplectic
vector space (V, ), we could also proceed as follows. Given a symplectic basis
€Lyl Jl, o fu (e, Qleye;) = Q(f, f;) = 0 and Q(e;, f;) = &), one can
define Je; = f; and J f; = —e;. This is a compatible complex structure on (V,£2).
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Moreover, given £ and J compatible on V, there exists a symplectic basis of V
of the form:
e, en 1 =Jdep, . fy=Jey .

The proof is part of Homework 8.

4. Conversely, given (V,J), there is always a symplectic structure & such that J
is Q-compatible: pick any positive inner product & such that J* = —J and take
Qu,v) = GlJu,v).

@

12.3 Compatible Structures

Definition 12.4. An almost complex structure on a manifold M is a smooth field of
complex structures on the tangent spaces:

x— S T M—TM linear, and Jf =-Id.

The pair (M,.J) is then called an afmost complex manifold.

Definition 12.5, Let (M, @) be a symplectic manifold. An almost complex structure
J on M is called compatible (with ® or @-compatible) if the assignment

xr—— g TMxTM R
&xi,v) 1= (i, Jyv)

is a riemannian metric on M.

For a manifold M,

@ is a symplectic form — x— ay: LM x T,M — R is bilinear,
nondegenerate, skew-symmetric;
g 1s a riemannian metric = xr— g LIMxTM R
is a positive inner product;
J almost complex structure — x+— J, . LM — LM
is linear and J* = —Id.

The triple (@, g, J) is called a compatible triple when g(-,-) = o(.,J.).

Proposition 12.6. Ler (M, ®) be a symplectic manifold, and g a riemannian metric
on M. Then there exists a canonical almost complex structure J on M which is
compatible.

Proof. The polar decomposition is caronical (after a choice of metric), hence this
construction of J on M is smocth; cf. Remark 2 of the previous section. O
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Remark. In general, g, (-, ) = (.,J) # g(-,). &
Since riemannian metrics always exist, we conclude:

Corollary 12.7. Any symplectic manifold has compatible almost complex struc-
fures.

— How different can compatible almost complex structures be?

Proposition 12.8. Ler (M, @) be a symplectic manifold, and Jy,J; two almost com-
plex structures compatible with . Then there is a smooth fawily J,,0 <r <1, of
compatible alwmost complex structures joining Jo fo Ji.

Proof. By compatibility, we get

o, Jo ~+ goly) = @(, o) |

two riemannian metrics on M .
m:‘]1 o gl(':') - m(':‘]l ) J

Their convex combinations
g;(-,-):(1—I)go(-,-)+tg1(-,-), D<r<t,
form a smooth family of riemannian metrics. Apply the polar decomposition to

(@, g,) to obtain a smoath family of 4’s joining Jy to J;. O

Corollary 12.9. The set of all compatible almost complex structures on a symplectic
manifold is path-connected.
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Homework 8: Compatible Linear Structures

1. Let (V) and J(V) be the spaces of symplectic forms and complex structures
on the vector space V, respectively. Take Q € Q(V) and J £ J(V). Let GL(V)
be the group of all isomorphisms of V, let Sp(V,Q) be the group of symplecto-
morphisms of (V,Q), and let GL(V,J) be the group of complex isomorphisms of
(V,J).

Show that
Q(V) ~GL(V)/Sp(V,Q) and J(V)~GL(V)/GL{V,J).
Hint: The group GL(V) acts on (V) by pullback. What is the stabilizer of a
given 7

2. Let (R*",Qq) be the standard 2n-dimensional symplectic euclidean space.
The symplectic linear group is the group of all linear transformations of R
which preserve the symplectic structure:

Sp(2n) := {A € GL(21:R) | Qo (Ane, Av) = Qo (n,v) for all w,v € R*} .
Identifying the complex n x » matrix X + i¥ with the real 2» x 2n malrix

(? }Y ) , consider the following subgroups of GL(2n; K):

Sp(2m) , O(2n) , GL(mC) and U(n) .
Show that the intersection of any two of them is U{r). (From [83, p.41].)

Sp{2n)

Uln)
GL(m:C) O(2n)

3. Let (V,Q) be a symplectic vector space of dimension 2»n, and let J: V — V,
J* = —1d, be a complex structure on V.

{a)Prove that, if J is Q-compatible and L is a lagrangian subspace of (V,Q),
then JL is also lagrangian and JL = L+, where | denotes orthogonality with
respect to the positive inner product G, (i, v) = Q.(x,Jv).

{byDeduce that J is Q-compatible if and only if there exists a symplectic basis
for V of the form

81,82,...,8,,,f1 :Jel,fzzJez,..., 1 :JE,,

where Q{e;,e;) = Q(f;, f;) =0 and Q(e;, f7) = &;.



Chapter 13
Compatible Triples

13.1 Compatibility

Let (M, @) be a symplectic manifold. As shown in the previous lecture, compatible
almost complex structures always exist on (M, ). We also showed that the set of all
compatible almost complex structures on (M, @) is path-connected. In fact, the set of
all compatible almost complex structures is even contractible. (This is important for
defining invariants.) Let 7 (T3M, @) be the set of all compatible complex structures
on (LM, ) forxe M.

Proposition 13.1, The ser 7 (T, M, @) is conrraciible, i.e., there exists a homoropy
bt J(OM,0,) — J(LM,0,), 0<r<1,

starting ar the identity by = Id,
finishing ar a rivial map by J (LM, @) — {J&o},
and fixing Jo (i.e., b (Jo) = Jo, ¥t) for some Jy € T(TM, o).

Proof. Homework 9. |
Consider the fiber bundle .7 — M with fiber
Ty =J (LM, o) overxeM.
A compatible almost complex structure J on (M, ®) is a section of 7. The space of
sections of 7 is contractible because the fibers are contractible.

Remarks.

¢ Wenever used the closedness of @ to construct compatible almost complex struc-
tures. The construction holds for an almost symplectic manifold (M, o), that is,
a pair of a manifold M and a nondegenerate 2-form @, not necessarily closed.
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¢ Similarly, we could define a symplectic vector bundle to be a vector bundle £ —
M over a manifold M equipped with a smoocth field w of fiberwise nondegenerate
skew-symmelric bilinear maps

o E.xE, —R.

The existence of such a field @ is equivalent to being able to reduce the struc-
ture group of the bundle from the general linear group to the linear symplectic
group. As a consequence of our discussion, a symplectic vector bundle is always
a complex vector bundle, and vice-versa.

&

13.2 Triple of Structures

If (@,J, 2) is a compatible triple, then any one of ®, J or g can be written in terms
of the other two:
20,y = o, Jv)
o(u,v) = g(Ju,v)
T(u) = & (@)
where _
o: TM — T*M w— @,
5. TM — T*M it — g1, )
are the linear isomorphisms induced by the bilinear forms @ and g.

The relations among ®, J and g can be summarized in the following table. The
last column lists differential equations these structures are usually asked to satisfy.

Data Condition/Technique Consequence Question

7 o (Ju,Jv) = @i, v) 2(u,v) = @, Jv) (g flat?)

' @, Ju) > 0,0 #0 is positive inner product S
. gld, vy = g(u,v) (i, v) 1= g(Ji,v) 0
&7 (i.e., J is orthogonal) is nondeg., skew-symm. @ closed’
@,g  polar decomposition ~+  J almost complex str. J integrable?

An almost complex structure J on a manifold M is called integrable if and only
if J is induced by a structure of complex manifold on M. In Lecture 15 we will
discuss tests to check whether a given J is integrable.
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13.3 First Consequences

Proposition 13.2. Les (M,J) be an almost complex manifold. Suppose thar J is
comparible with two symplectic structures ®p,® Then o, w0 are deformation-
equivalens, that is, there exists a smooth family oy, O <t < 1, of symplectic forms
Jjoining @y to oy.

Proof. Take @y = (1 —t)am+7ay, 0 <r < 1. Then:

e ) is closed.
¢ @) is nondegenerate, since

gf(': ) = a)f(:‘]) = (1 —I)go(-,-) +'tgl(': )
is positive, hence nondegenerate.

|

Remark. The converse of this proposition is not true. A counterexample is provided
by the following family in R*:

@, = cos Tt dx1dy| + sinwt dxydys +sinzt dydxa +cosmt dxgdy, ,0<r < 1.

There isno J in R* compatible with both @y and @y. &

Definition 13.3. A submanifold X of an almost complex manifold (M.J) is an
almost complex submanifold when J(TX) C TX, ie, for allx € X,v € TLX, we
have J,ve X,

Proposition 13.4. Ler (M, @) be a symplectic marnifold equipped with a comparible
almost complex srructure J. Then any almosr complex submanifold X of (M,J) is a
svimplectic submanifold of (M, ©).

Proof. Leti: X — M be the inclusion. Then i* @ is a closed 2-form on X.
Nondegeneracy:

ay (10, V) = gx( e, v) VreX  Vu,ve X .

Since g,

7.x is nondegenerate, so is @,

r.x- Hence, 7o is symplectic. O

— When is an almost complex manifold a complex manifold? See Lecture 15.
Examples.

52 is an almost complex manifold and it is a complex manifold.

§%is not an almost complex manifold (proved by Ehresmann and Hopf ).
5% is almost complex and it is not yet known whether it is complex.

58 and higher spheres are not almost complex manifolds.
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Homework 9: Contractibility

The following proof illusirates in a geomelric way the relation between lagrangian
subspaces, complex structures and inner products; from [11, p.45].

Let {V,Q) be a symplectic vector space, and let 7 (V, Q) be the set of all complex
structures on (V, £2) which are Q-compatible; i.e., given a complex structure J on V
we have

Je J(V,Q) < G,(-,) :==Q(,J) is a positive inner product on V.

Fix a lagrangian subspace Lo of (V,Q). Let £(V,Q,Lo) be the space of all la-
grangian subspaces of (V,Q) which intersect [y transversally. Let G{Ly) be the
space of all positive inner products on L.

Consider the map

¥ T (V,Q) — L(V,Q L) x G(Lo)
I = (JLo,G[1)

Show that:
1. W is well-defined.
2. W is a bijection.

Hint: Given (L,G) ¢ L(V,Q,Ly) x G(Ly), define J in the following mannear:

For v e Ly, vi = {n e Lo|G(rn,v) =0} is a {n— 1)-dimensional space of Lo; its
symplectic orthogonal (v1) is (n 4 1)-dimensional. Check that (v1Y? 1L is 1-
dimensional. Let Jv be the unique vector in this line such that Q(v,Jv) = 1. Check
that, if we take v’s in some G-orthonormal basis of Lg, this defines the required ele-
ment of 7 (V,£2).

3. £(V,Q, L) is contractible.

Hint: Prove that £(V,£2, Lo} can be identified with the vector space of all symmetric
n x nmatrices. Notice that any n-dimensional subspace Z. of V which is transversal to
Ly is the graph of alinear map §': Jlg — Lo, ie.,

L = span of {Je1 +SJeq,...,Je. + Ste.}
when Ly = spanof {er,...,e,}.

4. G(Lo) is contractible.
Hint: G({Lg) is even convex.

Conclude that 7 (V, Q) is contractible.



Chapter 14
Dolbeault Theory

14.1 Splittings

Let (M,J) be an almost complex manifold. The complexified tangent bundle of M
is the bundle
TMeC

|
M

with fiber (TM@C),=T,Me@Catpc M. If

1,M is a 2n-dimensional vector space over R , then
T,M @ C is a 2n-dimensional vector space over T .

We may extend J linearly to TM & C:
Jvaco=Jdvee, velM, ceC.

Since J? = —1Id, on the complex vector space (TM & C),, the linear map J, has
eigenvalues +i. Let

Tio={ve TM®C|Jv=—+iv} = (+i)-eigenspace of J
={vel-Jvai|lve TM}
= (J-)holomorphic tangent vectors ;

1 ={veTM&C|Jv=—iv} = (—i)-eigenspace of J
={val+ivai|lve TM}
= (J/-)anti-holomorphic tangent vectors .

Since
o ™ — TI,O
Ve 2vel - Jveid)
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is a (real) bundle isomorphism such that 7y g oJ = 77 0, and

o TM — 1n
v 2@ 1+ /vei)

is also a (real) bundle isomorphism such that /& o J = —ifp 1, we conclude that we
have isomorphisms of complex vector bundles

(TM,J) ~ T g E ,

where E denotes the complex conjugate bundle of 75 ;. Extending 7 o and mo; to
projections of TM @ C, we obtain an isomorphism

(o, M1) TMRC T o8 T .
Similarly, the complexified cotangent bundle splits as
(?1_1,0’ ?1_0,1) M e C =, 70 g 70l
where

TYW = Tio)={neT*aC|n(Jo)=in(e) Yo c TMa T}
={fal—(E-D@i|EcT*M}

= complex-linear cotangent vectors ,

T = () = {neT*eC|nlo) = —in(o) Yo TMa T}
= {E@ltEol)oi| LT M)
= complex-antilinear cotangent vectors ,

0

and 4, 79! are the two natural projections

70 T*MeC — T1O
N 0=t —inold);

L TMeC — T
n—ni=Lin+ineld).

14.2 Forms of Type (£ ,m)

For an almost complex manifold (M,.J), let

QF(M;C) := sections of A¥(T*M & C)
= complex-valued k-forms on M, where
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AHT*M e C) = AF T e T
= Pyrm—k (AETLO) A (A”’TOJ)

A% (definition)
= ®E+m:kA £ .

In particular, A% = 710 and AGT = 701,

Definition 14.1. The differential forms of type (£,m) on (M,J) are the sections of
Aﬁ,m:
QY .— sections of AS"

Then
-Q'k (M7 C) = @E-}—m:kgﬁ)m .

Let 7% : AX(T*M &) — A% be the projection map, where £+ m = k. The usual
exterior derivative d composed with two of these projections induces differential
operators @ and ¢ on forms of type (¢,m):

(? — n-é'+l,m od: Qé’,m (M) ., Q£+1>”"(M)
J = n-é',nH—l od: Qé’,m (M) N QE,HH—I (M) )

If § e Q¥ (M), with k = £ 4 m, then d§ € Q1 (M; C):

dp= Y wvdp=n"dB .t Bt apt+a T dp .
ro=k+1

14.3 J-Holomorphic Functions

Let f: M — € be a smooth complex-valued function on M. The exterior derivative
d extends linearly to C-valued functions as 4f = d(Ref) +id (Imf).

Definition 14.2. A function f is (J-)kolomorphic at x = M if 4 f,, is complex linear,
ie., dfyod =idf,. Afunction f is (J-}holomorphic if it isholomorphic at all p € M.

Exercise. Show that
dfpol =idf, <= df,eT)’ <« m'df,=0.

@

Definition 14.3. A function f is (J-)anfi-holomorphic at p < M if df, is complex
antilinear, ie., df,0d = —idf,.
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Exercise.
dfyod=—idf, < df, e T} — m df, =0

= df,e " — n'df,=0
<= fis holomorphic at p = M .

Definition 14.4, On functions, d = @ + @, where
d:=x"ed and @ :=7a%cd.
Then B
[ isholomorphic «— Jf =0,
f is anti-holomorphic <= Jf=0.

— What about higher differential forms?

14.4 Dolbeault Cohomology

Suppose that d = d | d, i.e.,
df= df + 9f , ¥peir.
\.v/ \—\,/
6Q€+l,m Egﬂ,m+l

Then, for any form f§ Qb

0=d’B = 9°B +adf+ddf+ I8 ,
S S — N’

€Q€+2,m €Q€+1JH+1 EQE,;.’J+2
which implies B
dt=0
dd+dd =0
=0

Since 9% =0, the chain
0500 2,00 2,0t 7,
is a differential complex; its cohomology groups

gl M) — ker o - Qbm _, fmtl
Dolbeault : 'm C:) ol 1T o

are called the Dolbeault cohomelogy groups.



14.4 Dolbeault Cohomology

QO 0

— When is d = @ + @7 See the next lecture.
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Homework 10: Integrability

This set of problems is from [11, p.46-47].

1. Let (M,J) be an almost complex manifold. Tts Nijenhuis tensor A/ is:
N(v,w) o= [, dw] —J[v,Jw] —J[Jv,w] —[v,w]
where v and w are vector fields on M, [-, ] is the usual bracket
[ ] f 1= v (e ) —w (v f) , for £ € C7(M)
and v- f = df{v).

{a)Check that, if the map v — [v,w] is complex linear (in the sense that it com-
mutes with J), then A = 0.

(b)Show that A is actually a tensor, that is: A'{v,w) at x € M depends only on
the values v,, w, € T,M and not really on the vector fields v and w.

{cyCompute A (v,Jv). Deduce that, if M is a surface, then A" = 0.

A theorem of Newlander and Nirenberg [89] states that an almost complex man-
ifold (M,J) is a complex (analytic) manifold if and only if A" = 0. Combining
(c) with the fact that any orientable surface is symplectic, we conclude that any
orientable surface is a complex manifold, a result already known to Gauss.

2. Let A be as above. For any map f : B¥ — C and any vector field v on R, we
have v- f=v. (fi+ifa) =v fi+iv- f2, so that f — v f is a complex linear
map.

{ayLet R™ be endowed with an almost complex structure J, and suppose that f
is a J-holomorphic function, that is,

dfed=idf.

Show that 4 f (A (y,w)) = O for all vector fields v, w.

{(b)Suppose that there exist » J-holomorphic functions, fi,...,f,, on R,
which are independent at some point p, i.e., the real and imaginary parts
of (dfi)p,...,(df)p form a basis of TyR*. Show that A" vanishes identi-
cally at p.

(c)Assume that M is a complex manifold and J is its complex structure. Show
that A/ vanishes identically everywhere on M.

In general, an almost complex manifold has ne J-holomorphic functions at
all. On the other hand, it has plenty of J-holomoerphic curves: maps f: C —
M such that df oi = Jodf. J-holomorphic curves, also known as pseudo-
holomorphic curves, provide a main tool in symplectic topology, as first realized
by Gromov [49].



Part VI
Kahler Manifolds

Kihler geometry lies at the intersection of complex, riemannian and symplectic
geometries, and plays a central role in all of these fields. We will start by reviewing
complex manifolds. After describing the local normal form for Kdhler manifolds
(Lecture 16), we conclude with a summary of Hodge theory for compact Kihler
manifolds (Lecture 17).



Chapter 15
Complex Manifolds

15.1 Complex Charts

Definition 15.1. A complex manifold of {complex) dimension » is a set M with a
complete complex atlas

A={(Uy,Va,0q) ,a € indexset [}

where M = Ugldy, the V’s are open subsets of C*, and the maps @ : Uy — Vg
are such that the transition maps v,z are bikolomorphic as maps on open subsets

of T
L{a ﬂf/{‘g

Vap - Vgu
where Vg = @a(Ua Nldg) € C" and Vo = @g (U Nl ) © C". yrgg being biholo-
morphic means that s, is a bijection and that yrg and l;f;& are both holomorphic.

Proposition 15.2. Any complex manifold has a canonical almost complex structure.

Proof.

1) Local definition of J.
Let ((4,V,@ :i{ — V) be a complex chart for a complex manifold M with ¢ =

(21,...,2a) written in components relative to complex coordinates z; = x; +iy;.
Atpeld
d d
TM:R-spanof-[— ,=— s j=1,,n .
? ]\ axj 7 ayj 7 J

Define J over I{ by

101
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d d

d d
J | — -
P (aylf p) ax‘,»

2) This J is well-defined globally:
If U4, V, ) and (I/',V', ¢") are two charts, we need to show that J = 7' on their
overlap.
OnUnU', wep=¢' Ifz; =x;+iy; and w; = u; +iv; are coordinates on I{ and
U', respectively, so that ¢ and ¢ can be written in components @ = (z1,...,z,),
@ = (Wy,...,wy), then wiz),...,z,) = (wy,...,w,). Taking the derivative of a

composition
d Jit; av, 7
ox, E <8xk BH, ax 8v,>
dit; o av,
Y Zf‘ (Byk Br{, E 8v,>

Since vy is biholomorphic, each component of y satisfies the Cauchy-Riemann
equations:

2
Jj=1,...,n.

v

altlf _ av‘,»
dxy  dwn
Lk=1...,n.
altlf B avj
Vi B Jxy

These equations imply

du; d dv; du; av d
/ b oV J oV
T E <8xk dit; T o Jx 8v,> Z]‘ ( Vi 81.'1 ayk 8v,>

7 axk v; Bxf du;
a“' au
Pk Ty

which matches the equation
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15.2 Forms on Complex Manifolds

Suppose that M is a complex manifold and J is its canonical almost complex struc-
ture. What does the splitting €% (M,C) = ®g+,,.,=ng>”’ lock like? ([22, 48, 66, 109]
are good references for this material.)

Let & € M be a coordinate neighborhood with complex coordinates zy, ..., 7,
z; = X;+iy;, and real coordinates xy,y1,... Xy, Yo At pE U,

= R- 2| &
T,M = R-span ZARE AR
= 2| &
T,M T = C-span AR
1{ 2 AR [1{ 2 AR
7CspanJ, —i— @ C-span = | =—| +i=—
l (ax, p O P)J 12 9xil,  Oil, J
Ti o = (+i)-eigenspace of J To,1 = (—i)-eigenspace of J

J J 2 : d 2 : d
1) =il i) (i) =i i)
This can be written more concisely using:
Definition 15.3.

3 1/a 2 L 100
g 2\am oy, M 3 T2\ ey )

1

Hence,

(Tip)p =C-span

€\1

/—'/\‘
l\l\

{ n} (To,1)p =C-span
Similarly,
"M@ C = Cspan{dx;,dy;: j=1,...,n}
= C-span{dx;+idy; : j=1,...,n} @ C-span{dx; —idy;: j=1,...,n}

Tl,O TO,l
(dxj -+ idyj) o = i(dxj -+ idyj) (dxj — idyj) od =—i (dxj — idyj)

Putting

we obtain

T = C-span{dz;: j=1,...,n}, 701 = C-span{dz;: j=1,...,n}.
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Omn the coordinate neighborhood 14,

(1,0)-forms = {¥.;b;dz; (i C){

(0,1)-forms = lsz d (U;C)

(2,0)-forms = LGﬂz 7, 72d~71 Nz, | by g € C7(UC) |

(1, 1)-forms = (¥, ;, by dzj Adzpy | by gy € C7(U; C)%
J

Pl iz

(0,2)-forms = (¥ ;) by ,d2jy Adzpy | by gy € C (U C)

HESS!
If we use multi-index notation:
:(jl;---,jm) 1< jp<..<jmwsn

|J =m
dz, = dz; Adzy AL Adz

A Im

then

Q5" — (2, m)-forms = J, Y b dzndz by 1k € C“’(L{;C)1 .
1\f\=f,\K\—m J

15.3 Differentials

On a coordinate neighborhood i, a form 8 & Q*(M;C) may be written as

B= Y a.dxrdy, with @, € C*(U;T) .
|7+ &=~

We would like to know whether the following equality holds:

dff = E JK+aa dx Ady, = (C_)—O—CT))EG.J’KJJC] Adyy .
If we use the identities

J’dx;—i—idyf:dzf J’dxf:l(dszrde)
P T e P
]\ dx; —idy; = dz; | dy; = %(dzj —dz;)

after substituting and reshuffling, we obtain

B= Y bdendz

I+ &|=%

- Y ( Y b]’KdzJ/\dZK),
fm=k \|J|=4|K|=m

cqbm
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g = db, . Adz, A de)

f+m=k (|J|E,|Km

= ¥ Y (9D, +09b, ) ndz, Adz,

frm=k J|=£,|K|=m B
(because d = ¢ + ¢ on functions)
= ¥ Y b AdrAdi+ Y b, Adz Adz
frm=k | |J|=L,|K|=m |J|=4,| K| =t
cnHLm cnfmtl
=adf+ap.

Therefore, d = o + d on forms of any degree for a complex manifold.

Conclusion. If M is a complex manifold, then d = d 4 ¢. (For an almost complex
manifold this fails because there are no coordinate functions z; to give a suitable
basis of 1-forms.)

Remark. If b € C™ (4, C), in terms of z and Z, we obtain the following formulas:

b b

_[1/0b . ob . | /b | b .
- Zf‘ {5 (a_x, Jc')_y,> (dx; +idy;) + 3 (c')_x, +za—yj> (dx; zdy,»)}
db ob
- Z;l (a_z‘jd4.f+ zd.@j) .
Hence:

[ o= wtldb =¥ 42 dz;
1 db = ntdb = ¥, 22 dz;
! gl

In the case where 8 € ", we have

dfp = 9B +dp = (£41,m)-form+ (¢,m + 1)-form
0=d*8 = ({4 2,m)-form+ (£ +1,m+ 1)-form -+ (¢,m - 2)-form

= *B+ (2 +dNP+ 8 .
\"E;/ \T \..B//

Hence, 92 = 0.
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The Dolbeault theorem states that for complex manifolds
Htipeau (M) = H” (4, 0(Q4))
where O (Q49) is the sheaf of forms of type (£,0) over M.

Theorem 15.4. (Newlander-Nirenberg, 1957 [89])
Ler (M, J) be an almost complex manifold. Let N be the Nijenhuis tensor (de-
Jfined in Homework 10). Then:

M is a complex manifold <= J is integrable

— N =0
— d=0d+7
= JdiP=0

— E2’0d|goﬁ1 =0.

For the proof of this theorem, besides the original reference, see_also [22, 30, 48,
66, 109]. Naturally most almost complex manifolds have 4 # d + d.
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Homework 11: Complex Projective Space

The complex projective space CP" is the space of complex lines in €71

CP" is obtained from C"t!\ {0} by making the identifications (zo,...,7,) ~
(Azo,...,Azy) for all A € C {0}. One denotes by [zo,. ..,z the equivalence class
of (z0,...,z4), and calls zo,...,z, the homogenecus coordinates of the point p =
[z0, . - .1Za)- (The homogeneous coordinates are, of course, only determined up to
multiplication by a non-zero complex number A.)

Let 4; be the subset of CIP* consisting of all peints p = [zp,...,z4] for which
z; # 0. Let ¢ : U; — CT" be the map

(Pf([ZO:“'aan = (2—?,,%,%,,2—7) K
1. Show that the collection
{1, Ch ), i=0,...,n}

is an atlas in the complex sense, i.e., the transition maps are biholomorphic. Con-
clude that CP" is a complex manifold.

Hint: Work out the transition maps associated with (U, T, @) and (U, C*, 1),
Show that the transition diagram has the form

Uy My

00,1
Vo1 Vip

where Vo1 = Vig = {(z1,...,2) € C" |21 # 0} and
%11(317"'734): La &

H?m,...,a .

2. Show that the 1-dimensional complex manifold CP' is diffeomorphic, as a real
2-dimensional manifold, to $2.

Hint: Stereographic projection.



Chapter 16
Kiahler Forms

16.1 Kihler Forms

Definition 16.1. A Kéhler manifold is a symplectic manifold (M, @) equipped with
an integrable compatible almost complex structure. The symplectic form @ is then

called a Kdhler form.
It follows immediately from the previous definition that

(M, o) is Kihler = M is a complex manifold

J/ QF (M; C), = eBEqu:kQE’m
|d=d+0
where
g = EEJrl,m od: Qf,m _ QE+1,;H
9 — n-é',nH—l od: Qé’,m ., QE,HH—I )

On a complex chart (i4,zy,...,z,), » = dimc M,

Qb _ J, Z bdz, NdZ, | b, € CW(U,C)} ’

|F=2, K| =
where
J= (o), h<...<ljp, dz; =dz;n.ondz,,
K=(ki,...;kp), k<. <ky, dip=dg, A ... Ndg, .
On the other hand,

(M, ) is Kiihler — @ is a symplectic form .

— Where does @ fit with respect to the above decomposition?
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A Kihler form o is

a 2-form,

compatible with the complex structure,
closed,

real-valued, and

nondegenerate.

o Wk

These properties translate into:

L QM C) =0 Qble Q02
On a local complex chart ((4,z1,...,2).

o = Eajk de Adzy + E bjk de ANdzy + EC,fk dff Adzy

for some @, by, cp € C(U;C).
2. Jis a symplectomorphism, that is, J*@ = ® where (J*©)(1,v) := @ (Jir, Jv).

J*dzj = dzjoJ = idz‘,»
J*d?,j = dzjjo.] = —id?,j

_1 1 -1
I

I I
Jo =Y (i-i) agdzyndot i(—1) Loy dzy nd5et () Yopd 2 AdZ
Jfo = — ajk:D:Cjk: all_],k — weQbl,

[ do =0 o is d-closed

3. 0=do= sz’f, + \‘?f;", 90 =0 o is d-closed

(2,1)—form  (1,2)—form
Hence, @ defines a Dolbeault (1,1) cohomology class,

(0] € HEL (M) .

olbeault
Putting bﬂc = %}iﬂc,
@ :lz' Y hpdipndm, b CUU0).
A=l

4. @ real-valued <— 0 =T.
— I em— . P o P )
= —EZH# dz; Ndz = 3 Zh‘.fk dzp NdZ; = 5 Ehki dz; Adzy

oreal < hy=h;,

ie. at every point p € {{, the » x n matrix (h;(p)) is hermitian.
5. nondegeneracy: @ = @A ... A F£0.
. e

n
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Exercise. Check that

o —n! (%) det(h ) dzy AdZy AL N dzy AdZy,

&
Now
o nondegenerate <= detg(hy) £ 0,
ie. atevery pe M, (hu(p)) is a nonsingular matrix.
2. Again the positivity condition: @(v,Jv) >0, Yv#£ 0.
Exercise. Show that (4 (p)) is positive-definite. &

o positive <= (hy) >0,

ie., ateach p e U, (hp(p)) is positive-definite.

Conclusion. Kihler forms are d- and d-closed (1, 1)-forms, which are given on a
local chart ({4,z1,...,z,) by

i

W=
2

"
Z hjk dZ‘j Adzy
JE=1

where, at every point p € U, (hz(p)) is a positive-definite hermitian matrix.

16.2 An Application

Theorem 16.2. (Banvaga) Ler M be a compact complex manifold. Let @g and an
be Kihler forms on M. If [an] = [on] € Hi gy (M), then (M, @o) and (M, an) are
symplectomorphic.

Proof. Any combination @y = {1 —#yap +# @ is symplectic for 0 <7 < 1, because,
on a complex chart (i4,z1,...,z,), where n = dimg M, we have

wy = %E}t?}cdzlf Adz
o = %E}f.}kdzlf AdZy
), = %}:}t}kdzj Adz, where h.}k ={l— t)h.?.k + th.}k .

#H%) > 0,(h) >0 = (Hy) >0,
Apply the Moser theorem (Theorem 7.2). |
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16.3 Recipe to Obtain Kihler Forms

Definition 16.3. Let M be a complex manifold. A function p € C™(M;R) is strictly
plurisubharmonic (s.p.s.h.) if, on each local complex chart {(¢4,zy,..., z,), where

n = dimg M, the matrix (%(p)) is positive-definite at all p € i4.
il

Proposition 16.4. Ler M be a complex manifold and let p € C*(M,R) be s.p.s.h..
Then

= %aép is Kahler .
A function p as in the previous proposition is called a (global) Kéhler potential.

Proof. Simply observe that:

0
,/\\_

do =4 9% dp =0

doo =< dd dp=—_id 3% p=

am_z\\fa/ap 28\_&\)/,0 0
—a33 0

dw = dw-+dw =0 — o is closed .
®=—1tddp=4ddp =00 = wisreal .
ocQb = Jto =0 = o(.,J)is symmelric .

Exercise, Show that, for f € C=(U4;,T),

J - J
af = Z a;j dzlf and af = E a;f d?ﬁj R

Since the right-hand sides are in Q1Y and Q%! respectively, it suffices to show that
the sum of the two expressions is 4 f. &

S——
h;’k

Cdi- iy d [dp i d%p o
ﬂ)—aaap—axa’_ (a—zk> d‘-f/\déka):(a jaZk>d<.Jf\d.ck.

pisspsh = (hz)»0 = o(.,J.) is positive .

In particular, o is nondegenerate. |

Example. Let M = C" ~ 2% with complex coordinates (zy,. .. ,z,) and correspond-
ing real coordinates (x{,¥y,...,X,,¥,) via z; =x;+1y;. Let
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=Yg

J

&

Zy

P(M,M,-- . ;xrl.;yu) = E(x?‘I“y%) = E
=1

Then

S0

d*p .
(hjp) = Joon = () =Id>» 0 = pisspsh..
-\-J £y

The corresponding Kihler form
o = éaép = % Y 8y dz; A dhy
ik ‘

:%Edzj/\dz‘fzxdx,»/\dy,» is the standard form .
i R ‘

16.4 Local Canonical Form for Kihler Forms

There is a local converse to the previous construction of Kihler forms.

Theorem 16.5, Let @ be a closed real-valued (1,1)-form on a complex manifold M
and let p € M. Then there exist a neighborhood U of p and p € C™ (U, R) such thar,
onld,

i
m:§aap.

The function p is then called a (local) Kihler potential.

The proof requires holomorphic versions of Poincaré’s lemma, namely, the local
triviality of Dolbeault groups:

¥pe M Ineighborhood 4 of p such that Hé‘gfbeault(b{) =0,m>0,

and the local triviality of the holomorphic de Rham groups; see [48].

Proposition 16.6. Ler M be a complex manifold, p € C* (M, R) s.p.s.h., X a complex
submanifold, and i: X — M the inclusion map. Then i*p is s.p.5.h..

Proof Let dimg M =n and dime X = n—m. For p € X, choose a chart (U, zy,...,2,)
for M centered at p and adapted to X, ie., X Nif isgivenbyz; = ... =z, =0. In
this chart, 7*p = p(0,0,.. ., 0,2yt 1, .-, Z0)-
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82
i"pisspsh +— (—p_([), N VN RETI ,z;;)) is positive-definite ,
azm-&—j Ttk
. . L . 92
which holds since this is a minor of (W(O, ez, ,z,,)) . O

Corollary 16.7. Any complex submanifold of a Kihler manifold is also Kikhler.

Definition 16.8. Let (M, @) be a Kihler manifold, X a complex submanifold, and
i:X — M the inclusion. Then (X,7* @) is called a Kédhler submanifold.

Example. Complex vector space ([, @) where @y = %}:dzj A dZ; is Kihler.
Every complex submanifold of " is Kihler. &

Example. The complex projective space is
O = Cthl\{O}/ ~
where
(zoy. - vzn) ~ (Azo,..., Azy), A C\{0}.

The Fubini-Study form (see Homework 12) is Kihler. Therefore, every non-
singular projective variety is a Kihler submanifold. Here we mean

non-singular = smooth
projective variety = zero locus of a collection
of homogeneous polynomials .
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Homework 12: The Fubini-Study Structure

The purpose of the following exercises is to describe the natural Kihler structure on
complex projective space, CF".

1. Show that the function on C”*

2+1)

z—+ log(

is strictly plurisubharmonic. Conclude that the 2-form

W = 4ddlog(|z]* + 1)

z

is a Kéhler form. (It is usually called the Fubini-Study form on C".)

Hint: A hermitian n x » matrix A is positive definite if and only if v*Hv = 0 for anv
ve U {0}, where v* is the transpose of the vector v. To prove positive-definiteness,
either apply the Cauchy-Schwarz inequality, or use the following svmmetrv observa-
tion: U{n) acts transitively on S~ and @y is U{n)-invariant, thus it suffices to show
positive-definiteness along one direction.

2. Letlf bethe open subset of C* defined by the inequality 73 £ 0, and let @ : Id — U
be the map

O, o) = (Lo a).
Show that @ maps i biholomorphically onto {4 and that

1) =log(

4 Z

@™ log( Srhdlogry . ()

3. Notice that, for every point p € I4, we can wrile the second term in (%) as the
sum of a holomorphic and an anti-holomorphic function:

—logzy —logzy
on a neighborhood of p. Conclude that
dadg*log(

241) = addlog{lz]*+1)

Z 4

and hence that @* @y, = @

Hint: You need to use the fact that the pullback by a holomorphic map ¢* com-

mutes with the  and 9 operators. This is a consequence of ¢* preserving form tvpe,
@*(QP+7) C QP4 which in turn is implied by p*dz; = dg; C Q5° and 9*dz; = 0; C

?Ql, whe§e ¢; is the jth component of ¢ with respect to local complex coordinates
Zlyesin)

4. Recall that CP" is obtained from €'\ {0} by making the identifications
(20y--+12Zn) ~ (Azp,...,Az,) for all A € ©\ {0}; [z0,...,2s] is the equivalence
class of (za,...,2)-
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Fori=0,1,...,n,let

U; = {[zo,...,Zn] e CP"|z #0}
(Pj:uf_}cn (Pj([ZO:'-'az”]) - (z_?:,zrz;rl:%,,%) .

Homework 11 showed that the collection {({4;,C™, ¢;),i =0,...,n}is a complex
atlas (i.e., the transition maps are biholomorphic). In particular, it was shown that
the transition diagram associated with (U, C*, ¢} and (U, C*, ¢, ) has the form

iy My

/ K
Vo) 1 (PO)I VI,O

where Vo 1=Vio={(z1....,2:) €C"|z1 0} and @0 1 (z1,. .. ,z,.,_):(ZL, %,. .. ,2—’1’)
Now the set U{ in exercise 2 is equal to the sets V1 and Vo, and the map ¢
coincides with ¢q ;.
Show that ¢} @.. and ¢ @ are identical on the overlap idoMif;.
More generally, show that the Kihler forms @@y, “glue together” to define a
Kihler structure on CP*. This is called the Fubini-Study form on complex pro-
jective space.

5. Prove that for CP! the Fubini-Study form on the chart Uy = {[z0,2;] € CP*
0} is given by the formula

0 #
o — dx Ady
Ry 1)?

where ;—é =z = x+iy is the usual coordinate on C,
6. Compute the total area of CP! = C U {e} with respect to @:

/ o _/' dx A dy
Jopt 7 JRe (24 1)

7. Recall that CP' ~ §? as real 2-dimensional manifolds (Homework 11). On §2
there is the standard area form e , induced by regarding it as the unit sphere in
R? (Homework 6): in cylindrical polar coordinates (8,4) on $% away from its
poles (0 < 8 < 2 and —1 < & < 1), we have

=46 rdh.

Using stereographic projection, show that

1
Wy = Zwstd :



Chapter 17
Compact Kihler Manifolds

17.1 Hodge Theory

Let M be a complex manifold. A Kihler form @ on M is a symplectic form which
is compatible with the complex structure. Equivalently, a Kihler form @ is a d- and
d-closed form of type {1,1) which, on a local chart (i4,zy,...,z,) is given by © =
3L i hpdz; AdZ, where, at eachx € U, (h(x)) is a positive-definite hermitian
matrix. The pair (M, ®) is then called a Kihler manifold.

Theorem 17.1. (Hodge) ©On a compact Kihler manifold (M, ®) the Dolbeauls co-
homology groups satisfy

Higpam(M;C) ~ P Hé’gfbeault(M) (Hodge decomposition)
L=k

; Lt o Fimk : . .yl . .
with Ho™ ~ Hm4 | In particular, the spaces Hy o are finife-dimensional.

Hodge identified the spaces of cohomology classes of forms with spaces of ac-
tual forms, by picking the representative from each class which solves a certain
differential equation, namely the harmonic representative.

(1) The Hodge *-operator.
Each tangent space V = T, M has a positive inner product {-, .}, part of the rie-
mannian metric in a compatible triple; we forget about the complex and sym-
plectic structures until part (4).
Letey,... e, be apositively oriented orthonormal basis of V.
The star operator is a linear operator + : A(V) — A(V) defined by

(1) =e1A...rey
#(eg Ao Aey) =1
wlep AL hep) = e AL Ay

We see that * : Ak(V) — A”_k(V) and satisfies ** = (71)1{‘(”_"‘)_

117
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(2) The codifferential and the laplacian are the operators defined by:

8 = (MU g QF (M) — Q1 (M)

A=dé+ 8d L QR (M) - QF (M) .
The operator A is also called the Laplace-Beltrami operator.
Exercise. Check that, on QO(R*) = C*(R™), A= — Y%, %22-. &
Exercise. Check that Ax = xA. &

Suppose that M is compact. Define an inner product on forms by

() OFxQF LR <a,ﬁ>:/ ant .
JM

Exercise. Check that this is symmetric, positive-definite and satisfies (da, 3) =

{a,80). @

Therefore, & is often denoted by d* and called the adjoint of 4. (When M is not
compact, we still have a formal adjoint of 4 with respect to the nondegenerate
bilinear pairing {-,.) : Q% x Q% — R defined by a similar formula, where QF is
the space of compactly supported k-forms.) Also, A is self-adjoint:

Exercise. Check that {Aa, 8} = (&, Af}, and that {Aa, ) = |[da|*+ |8 > 0,
where | - | is the norm with respect to this inner product. &

(3) The harmonic k-forms are the elements of H* .= {@ € QF | Aa = 0}.

Note that Aa =0 +<— dua = §a = 0. Since a harmonic form is d-closed, it
defines a de Rham cohomology class.

Theorem 17.2. (Hodge) Every de Rham cohomology class on a compact ori-
ented riemannian marnifold (M, g) possesses a unique harmonic representative,
ie.,

Hk = HdkeRham (M; R) .

In particular, the spaces H* are finite-dimensional. We also have the following
orthogonal decomposifion with respect to (-, -):

QF ~ HE B A(QF (M)
~ HE @ dQF g 50!
The proof involves functional analysis, elliptic differential operators, pseudodif-
ferential operators and Fourier analysis; see [48, 109].
So far, this was ordinary Hodge theory, considering only the metric and not the
complex structure.

(Hodge decomposition on forms) .
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(4) Complex Hodge Theory.
When M is Kihler, the laplacian satisfies A = 2(dd* + d*d) (see, for exam-
ple, [48])and preserves the decomposition according to type, A : Q5" — Q57
Hence, harmonic forms are also bigraded

Hk _ @ Hf,m )

f+m=k

Theorem 17.3. (Hodge) Every Dolbeault cohomology class on a compact

E}m ~ E,}H
H - HDolbeault(M )

and the spaces H™" are finite-dimensional. Hence, we have the following
isomorphisms:

i £n
Hé:eRham(M) - Hk =~ @ /Hﬁ’ =~ @ HDolbeault(M) .
L=k It m=k
For the proof, see for instance [48, 109].

17.2 Immediate Topological Consequences

Let B*(M) := dim HY . (M) be the usual Betti numbers of M, and let A" (M) :=

dime)’gfbeault(M) be the so-called Hodge numbers of M.

bk = ZEerzk hf}m

Hodge Theorem = ]\ o — ppind

Some immediate topological consequences are:
1. On compact Kihler manifolds “the odd Betti numbers are even:”
k

PR+ Y plm o y RO g aven |
fm=2k+1 =0

2. On compact Kihler manifolds, 20 = %bl is a topological invariant.
3. On compact symplectic manifolds, “even Betti numbers are positive,” because
o is closed but not exact (k= 0,1,...,n).

Proof. If o* = da, by Stokes’ theorem, / o' = / dlaro"™) =0,
M M

This cannot happen since @ is a volume form. |

4. On compact Kihler manifolds, the A% are positive.
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. .
Claim. 0 7& [mé‘] € Hﬁ lbeault(M)'

0

Proof.
oe Qb — of € QY )
do =0 — 0 =do’ = do’ + do’
\.V/
(E418)  (L411)

£

{

— do’ =0,

so [o] defines an element of Hf;ﬁlbeault. Why is o’ not d-exact?
If o’ = 3 for some 8 € QF 1Y, then

£ A mnﬂf _ 9(,6 A mnfﬁ) — 0= [ﬂ)”} c qH (M) )

no__
O = o Dolbeault

But [@"] £0in HEL, (M3 C) ~ H5h (M) sinee it is a volume form.
0

There are other constraints on the Hodge numbers of compact Kéihler manifolds,

and ongoing research on how to compute Hé’g{beault. A popular picture to describe

the relations is the Hodge diamond:

Jitit
hu,u—l hn—l,u
p—2 n—1n—1 n—2.n
H R e
hZ,O hl’l hO,l
hl,O };,0)1
h0,0

Complex conjugation gives symmetry with respect to the middle vertical, whereas
the Hodge * induces symmetry about the center of the diamond. The middle vertical
axis is all non-zero. There are further symmetries induced by isomorphisms given
by wedging with .

The Hodge conjecture relates Hé‘ﬁlbeault(M) NHY(M; %) for projective mani-
folds M (i.e., submanifolds of complex projective space) to codimg = £ complex
submanifolds of M.

17.3 Compact Examples and Counterexamples

symplectic <= Kihler

U U

almost complex <= complex
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smooth even-dimensional orientable

almost complex

symplectic

complex
Kihler

Is each of these regions nonempty? Can we even find representatives of each
region which are simply connected or have any specified fundamental group?

¢ Not all smooth even-dimensional manifolds are almost complex. For example,
54, 88, 810 etc., are not almost complex.
e [ M is both symplectic and complex, is it necessarily Kihler?

No. For some time, it had been suspected that every compact symplectic manifold
might have an underlying Kihler structure, or, at least, that a compact symplectic
manifold might have to satisfy the Hodge relations on its Betti numbers [52]. The
following example first demonstrated otherwise.

The Kodaira-Thurston example (Thurston, 1976 [101]):

Take I* with dx; A dy; + dxz Adyz, and T the discrete group generated by the
following symplectomorphisms:

Yo, v1,y2) - (e, 1y, v2)
Y2 (X1, x2,¥1,¥2) — (X1, x2,¥1,02+ 1)
1 (X2, v1,52) — (241,202, 31,52)
Ya o (e, X, 1,02) — (o, X+, v+ 1,y

Then M = R* /I is a flat 2-torus bundle over a 2-torus. Kodaira [70] had shown
that M has a complex structure. However, (M) = I, hence H'(R*/T\Z) =
I'/[I",I'] has rank 3, B! =3 is 0dd, so M is nor Kihler [101].

¢ Does any symplectic manifold admit some complex structure (not necessarily
compatible}?

No.

(Fernandez-Gotay-Gray, 1988 [37]): There are symplectic manifolds which do
not admit any complex structure [37]. Their examples are circle bundles over
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circle bundles over a 2-torus.

St M
|

sty p tower of circle fibrations

!
']IQ

¢ (iven a complex structure on M, is there always a symplectic structure (not nec-
essarily compatible)?

No.

The Hopf surface S* x §° is not symplectic because H*(S! x §%) = 0. But it
is complex since §' x §* ~ CH{0}/T where I' = {2"1d | n € Z} is a group
of complex transformations, i.e., we factor C2\{0} by the equivalence relation
(ZIJZZ) ~ ( ZIJEZZ)'

¢ [s any almost complex manifold either complex or symplectic?

No.

CP*#CP*#CF? is almost complex (proved by a computation with characteris-
tic classes), but is neither complex (since it does not fit Kodaira’s classification
of complex surfaces), nor symplectic (as shown by Taubes [97] in 1995 using
Seiberg-Witten invariants).

e In 1993 Gompf [46] provided a construction that yields a compact symplectic
4-manifold with fundamental group equal to any given finitely-presented group.
In particular, we can find simply connected examples. His construction can be
adapted to produce rornKihler examples.

17.4 Main Kihler Manifolds

¢ Compact Riemann surfaces
As real manifolds, these are the 2-dimensional compact orientable manifolds
classified by genus. An area form is a symplectic form. Any compatible al-
most complex structure is always integrable for dimension reasons (see Home-
work 10).

¢ Stein manifolds

Definition 17.4. A Stein manifold is a Kihler manifold (M, ®) which admits
a global proper Kihler potential, i.e., @ = §ddp for some proper function p :
M- R,

Proper means that the preimage by p of a compact set is compact, i.e., “p(p) —
cods p— o
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Stein manifolds can be also characterized as the properly embedded analytic sub-
manifolds of C*,

o Complex tori
Complex tori lock like M = C*/Z" where Z" is a lattice in C". The form ® =
Y dz; Adz; induced by the euclidean structure is Kahler.

o Complex projective spaces
The standard Kihler form on CP* is the Fubini-Study form (see Homework 12).
{In 1995, Taubes showed that CP? has a unique symplectic structure up to sym-
plectomorphism.)

¢ Products of Kiihler manifolds

¢ Complex submanifolds of Kiihler manifolds



Part VII
Hamiltonian Mechanics

The equations of motion in classical mechanics arise as solutions of variational
problems. For a general mechanical system of » particles in &>, the physical path
satisfies Newton’s second law. On the other hand, the physical path minimizes the
mean value of kinetic minus potential energy. This quantity is called the action. For
a system with constraints, the physical path is the path which minimizes the action
among all paths satisfying the constraint.

The Legendre transform (Lecture 20) gives the relation between the variational
(Euler-Lagrange) and the symplectic (Hamilton-Jacobi) formulations of the equa-
tions of motion.



Chapter 18
Hamiltonian Vector Fields

18.1 Hamiltonian and Symplectic Vector Fields

— What does a symplectic geometer do with a real function?...

Let (M, @) be a symplectic manifold and let H : M — R be a smooth function.
Its differential 4H is a 1-form. By nondegeneracy, there is a unique vector field
X, on M such that 1y, @ = 4H. Integrate X, . Supposing that M is compact, or at
least that X,, is complete, let p, : M — M, r € R, be the one-parameter family of
diffeomorphisms generated by X, :

Po = idu
dp,
o o =Xe

Claim. Each diffeomorphism p; preserves o, i.e., pf®o = @, ¥r.

Proof. We have £p @ = p/ Lx @ = p}(dix, ©+ix, do)=0. 0
dH

Therefore, every function on (M,®) gives a family of symplectomorphisms.
Notice how the proof involved both the nondegeneracy and the closedness of ®.

Definition 18.1. A vector field X, as above is called the kamiltonian vector field
with kamiltorian function H.

Example. The height function H(8,k4) =k on the sphere (M, ®) = (52,40 A dh)
has

iy (dendhy=dh = X = % .
Thus, p,(8,h) = (8 +¢,k), which is rotation about the vertical axis; the height
function H is preserved by this motion. &

127



128 18 Hamiltonian Vector Fields

Exercise. [.et X be a vector field on an abstract manifold W. There is a unigque
vector field Xy on the cotangent bundle T*W, whose flow is the lift of the flow of
X; cf. Lecture 2. Let « be the tautological 1-form on T*W and let @ = —da be the
canonical symplectic form on T*W. Show that Xy is a hamiltonian vector field with
hamiltonian function H = 1, Ct. &

Remark. If X, is hamiltonian, then
EXHH = IXHdH = 1Xy Xy @ = 0.

Therefore, hamiltonian vector fields preserve their hamiltonian functions, and each
integral curve {p,(x) | r € R} of X, must be contained in a level set of H:

H(x) = (p/H)(x) = H(p:(x)) , V7.
%

Definition 18.2. A vector field X on M preserving @ (i.e., such that Lx® = 0) is
called a symplectic vector field.

J'X is symplectic <= iywisclosed,
IX is hamiltonian <= 1y @ is exact .

Locally, on every contractible open set, every symplectic vector field is hamil-
tonian. If Hjp,.. (M) = 0, then globally every symplectic vector field is hamil-
tonian. In general, HdleRham (M) measures the obstruction for symplectic vector fields
to be hamiltonian.

Example. On the 2-torus (M, o) = (T?,d8, Ad#&), the vector fields X| = aa_el and

Xy = % are symplectic but not hamiltonian. &

To summarize, vector fields on a symplectic manifold (M, @) which preserve @
are called symplectic. The following are equivalent:

X is a symplectic vector field;

the flow p; of X preserves w, i.e, p/ow =, forall 1;
Exﬂ) = 0;

iy @ is closed.

A hamiltonian vector field is a vector field X for which
® iy is exact,

i.e., ixy® = dH for some H € €= (M). A primitive H of 1y @ is then called a hamil-
tonian function of X.
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18.2 Classical Mechanics

Consider euclidean space R¥ with coordinates (G1y s Gy P1ae -y ) a0d @ =
Y.dqg; Adp;. The curve p, = (q(r), p(r)) is an integral curve for X, exactly if

dq,' o
I (1) = ap
(Hamilton equations)
dp,' - of
ETA

i
Indeed, let X, = ¥ (32 2 — S8 2 ). Then,
.':1 i T i i

Ix, @ = 21 Ixy (dg; ndp;) = ZI[(Ideq,’) ANdp;—dq; i (x,dp;)]
= J=

—);( dp;+ "f:dq‘,»):dH.

Remark. The gradient vector field of H relative to the euclidean metric is

* dH d dH o
VH = ——+——> .
,-:):i (afh dg;  dp;dp;

If J is the standard (almost) complex structure so that J(-;%) = 3% and
H(35) = — 55 » we have JX,, = VH. &

The case where » = 3 has a simple physical illustration. Newton's second law
states that a particle of mass m moving in configuration space R with coordinates
g = (g1,92,93) under a potential V(g) moves along a curve g(¢) such that

d*q
My = —VV{(qg).
Introduce the momenta p; = miqé for i =1,2.3, and energy function H{p,q) =
| p? +V(g). Let R® = T*2* be the corresponding phase space, with coordi-

nates (q1,q2,q3, P1, P2, P3). Newton’s second law in R? is equivalent to the Hamil-
ton equations in R®:

dq,j 1 JH

d m" " Tp
dp; a* d*q; dV of

T g dg

The energy H is conserved by the physical motion.
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18.3 Brackets

Vector fields are differential operators on functions: if X is a vector field and f
C> (M), df being the corresponding 1-form, then

X f=dfX)=L,f.
Given two vector fields X, ¥, there is a unique vector field W such that
Lyf =Ly (Lyf)—Ly(Lxf)

The vector field W is called the Lie bracket of the vector fields X and ¥ and denoted
W =[X,¥], since Lw = [Lx, Ly] is the commutator.

Exercise. Check that, for any form e,
I[X,Y]a = Exlya'— lyﬁxa' = [ﬁx,ly}a' .

Since each side is an anti-derivation with respect to the wedge product, it suffices
to check this formula on local generators of the exterior algebra of forms, namely
functions and exact 1-forms. &

Proposition 18.3. If X and Y are symplectic vecror fields on a symplectic manifold
(M, ®), then [X,Y] is hamiltonian with hamiltonian fiunciion o(¥Y, X).

Proof.
l[XJf]G) = Lxlya)—lyﬁ}((ﬂ
=dixty®+ix diy® —iydix® —1yixy do
N’ S’ e

o] 0 0
=d(o(Y,X)).
O
A (real) Lie algebra is a (real) vector space g together with a Lie bracket [-, ],
i.e., a bilinear map [-,] : g x g — g satisfying:
(a) [x:y] - —[y,x] ) Vx,y =g, (antisymmetry)
Ol ]+ [z + [z =0, Yxyzeg. (Jacobi identity)
Let

¥ (M) = { vector fields on M }
¥R (M) = { symplectic vector fields on M }
%™ (M) = { hamiltonian vector fields on M } .

Corollary 18.4. The inclusions (x™™(M),[.,-]) € (™™ (M),[., ]) € (x(M),[-,])
are inclisions of Lie algebras.

Definition 18.5, The Poisson bracket of two functions f,g € C°(M;R) is

{f:g} = w(Xf:Xg) :



18.4 Integrable Systems 131
We have X;; n = —|Xy,X,| because Xoo(x,.x,) = [Xo, Xy].
Theorem 18.6, The bracket {-, .} satisfies the Jacobi identity, i.e.,

{f: {g:h}}"i' {g:{h‘:f}}"i_{h:{f:g}} =0.

Proof. BExercise. |

Definition 18.7. A Poissor algebra (P,{.,-}) is a commutative associative algebra
P with a Lie bracket {., .} satisfying the Leibniz rule:

{f.gh} ={f.ath+g{f.h}.

Exercise. Check that the Poisson bracket {-,-} defined above satisfies the Leibniz
rule. &

We conclude that, if (M, @) is a symplectic manifold, then (C(M),{..-}) is a
Poisson algebra. Furthermore, we have a Lie algebra anti-homomorphism

C=(M) — x (M)
Hr— X,
{':'} o _[':'}‘

18.4 Integrable Systems

Definition 18.8. A kamiltonian system is a triple (M, @, H), where (M, @) is a sym-
plectic manifold and H < C(M;R) is a function, called the kamiltonian function.

Theorem 18,9, We have {f,H} = 0if and onlyif f is constant along integral curves
of X,,.

Proof. Let p; be the flow of X,,. Then

L(fop) = prLxgf = plixedf = plixgix, ©
- pr*m(Xf:XH) - P;*{f,H} .

O

A function f as in Theorem 18.9 is called an integral of motion (or a first
integral or a constant of motion). In general, hamiltonian systems do not admit
integrals of motion which are independenr of the hamiltonian function. Functions
fis-.,fo o0 M are said to be independent if their differentials (df1),....,(df.)p
are linearly independent at all points p in some open dense subset of M. Loosely
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speaking, a hamiltonian system is (completely) infegrable if it has as many commut-
ing integrals of motion as possible. Commutativity is with respect to the Poisson
bracket. Notice that, if fi,...,f, are commuting integrals of motion for a hamil-
tonian system (M, ®, H), then, at each p £ M, their hamiltonian vector fields gener-
ate an isotropic subspace of T,M:

(X5, Xp) = {fu fi} =0.

If f1,...,fu are independent, then, by symplectic linear algebra, » can be at most
half the dimension of M.

Definition 18.10. A hamiltonian system (M, ®,H) is (completely) integrable if it
possesses i = %dimM independent integrals of motion, fi = H, f2,..., f4, which
are pairwise in involution with respect to the Poisson bracket, i.e., {f;, f;} = 0, for
alli, j.

Example. The simple pendulum (Homework 13) and the harmonic oscillator are
trivially integrable systems — any 2-dimensional hamiltonian system (where the set
of non-fixed points is dense) is integrable. &

Example. A hamiltonian system (M, @, H) where M is 4-dimensional is integrable
if there is an integral of motion independent of H {the commutativity condition
is automatically satisfied). Homework 18 shows that the spherical pendulum is
integrable. &

For sophisticated examples of integrable systems, see [10, 62].

Let (M, w,H) be an integrable system of dimension 2n with integrals of motion
fi=H.fr,... . fuLetc € R* be aregular value of f:={fi,..., f,). The correspond-
ing level set, f!(¢), is a lagrangian submanifold, because it is n-dimensional and
its tangent bundle is isotropic.

Lemma 18.11. If the hamiltonian vecior fields Xy, , ..., Xy, are complere on the level
F1(e), then the connected components of f~1(c) are homogeneous spaces for R™,
i.e., are of the form "% x T* for some k, O < k < n, where T* is a k-dimensional
rorus.

Proof. BExercise (just follow the flows to obtain coordinates). |

Any compact component of £~ (¢) must hence be a torus. These components,
when they exist, are called Liouville tori. (The easiest way to ensure that compact
components exist is to have one of the f;'s proper.)

Theorem 18.12. (Arnold-Liouville [3]) Ler (M, ,H) be an integrable system of
dimension 2n with integrals of mofion fi = H, f>,.. ., fu- Let ¢ € R* be a regular
value of f := (fi,...,fn). The corresponding level f~'(c) is a lagrangian subman-
ifold of M.
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(a) If the flows of Xy, ,..., Xy, starting at a point p € fY(e) are complete, then the
connected component of f*(c) containing p is a homogeneous space for I,

With respect to this affine structure, that component has coordingres @, ..., @,
known as angle coordinates, in which the flows of the vector fields Xy, ,... Xy,
are linear.

(b) There are coordinates W ,..., W, known as action coordinates, complemen-

tary to the angle coordinates such thar the w;’s are integrals of motion and
@1, Py, Y, ..., Wy form a Darboux chart.

Therefore, the dynamics of an integrable system is extremely simple and the
system has an explicit solution in action-angle coordinates. The proof of part (a) —
the easy part — of the Arnold-Liouville theorem is sketched above. For the proof of
part (b), see [3, 28].

Geometrically, regular levels being lagrangian submanifolds implies that, in a
neighborhood of a regular value, the map f: M — R” collecting the given integrals
of motion is a lagrangian fibration, i.e., it is locally trivial and its fibers are la-
grangian submanifolds. Part (a) of the Arnold-Liouville theorem states that there
are coordinates along the fibers, the angle coordinates ¢@;,' in which the flows of
Xp,..., Xy, are linear. Part (b) of the theorem guarantees the existence of coordi-
nates on ", the action coordinates y;, which (Poisson) commute among them-
selves and satisfy {¢;, y;} = &;; with respect to the angle coordinates. Notice that,
in general, the action coordinates are not the given integrals of motion because
QL@ 1., fip donot form a Darboux chart.

! The name “angle coordinates” is used even if the fibers are not tori.
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Homework 13: Simple Pendulum

This problem is adapted from [53].

The simple pendulum is a mechanical system consisting of a massless rigid
rod of length I, fixed at one end, whereas the other end has a plumb bob of mass m,
which may oscillate in the vertical plane. Assume that the force of gravity is constant
pointing vertically downwards, and that this is the only external force acting on this
system.

(a) Let 8 be the oriented angle between the rod (regarded as a line segment) and
the vertical direction. Let & be the coordinate along the fibers of T*S! induced
by the standard angle coordinate on S'. Show that the function H : T*S! — R
given by

xg'l
H(8,&) = W—i—ml(l—cos(?) ,
S’ VY
K

is an appropriate hamiltonian function to describe the simple pendulum. More
precisely, check that gravity corresponds to the potential energy V(8) = mi (1 —
cos8) {we omit universal constants), and that the kinetic energy is given by
K(8,8) = gre?.

(b) For simplicity assume that m=1=1.
Plot the level curves of H inthe (8,&) plane.
Show that there exists a number ¢ such that for 0 < & < ¢ the level curve H = &
is a disjoint union of closed curves. Show that the projection of each of these
curves onto the 8-axis is an interval of length less than 7.
Show that neither of these assertions is true if & > c.
What types of motion are described by these two types of curves?
What about the case H = ¢?

(c) Compute the critical points of the function H. Show that, modulo 27 in 8, there
are exactly two critical points: a critical point s where H vanishes, and a critical
point z# where H equals ¢. These points are called the stable and unstable points
of H, respectively. Justify this terminology, i.e., show that a trajectory of the
hamiltonian vector field of H whose initial point is close to s stays close to s
forever, and show that this is not the case for #. What is happening physically?



Chapter 19
Variational Principles

19.1 Equations of Motion

The equations of motion in classical mechanics arise as solutions of variational
problems:

A peneral mechanical svstem possesses both kinetic and potential energy. The quantity that
is minimized is the mean value of kinetic minus potential energy.

Example. Suppose that a point-particle of mass m moves in R under a force field
Filet x(£), a <t < b, be its path of motion in R3. Newton’s second law states that

Iy
mi? () =F(x(®) .

Define the work of a path y: [a,b] — R?, with y(a) = p and ¥(b) = g, to be

W= [ Foe) Lo

Suppose that F is conservative, i.e., W, depends only on p and 4. Then we can
define the potential energy V : R — R of the system as

Vig) =Wy

where v is a path joining a fixed base point po € R? (the “origin”) to g. Newton’s
second law can now be written

Ix
mz?(t) = —C_;—Z(x(t)) .

In the previous lecture we saw that

Newton'’s second law <= Hamilton equations
in R* = {(g1,42,43)} in T*R> = {(g1,92,93,P1,P2,P3)}
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where p; = m% and the hamiltonian is H{p,q) = ﬁ\p\z +V{(g). Hence, solving
Newton’s second law in configuration space R? is equivalent to sclving in phase
space T*R? for the integral curve of the hamiltonian vector field with hamiltonian
function H. &

Example. The motion of earth about the sun, both regarded as point-masses and
assuming that the sun to be stationary at the origin, obeys the inverse square law

d*x gV
Wi—s = ——
dr? dx '
where x(f) is the position of earth at time #, and V (x) = @E’S—t' is the gravitational
potential. &

19.2 Principle of Least Action

When we need to deal with systems with constraints, such as the simple pendu-
lum, or two point masses attached by a rigid rod, or a rigid body, the language of
variational principles becomes more appropriate than the explicit analogues of New-
ton’s second laws. Variational principles are due mostly to D’ Alembert, Maupertius,
Euler and Lagrange.

Example. (The n-particle system.) Suppose that we have r point-particles of
TMasses My, . .., M, moving in 3-space. At any time f, the configuration of this system
is described by a vector in configuration space R

X=(X1,..., %) € R

with x; ¢ R? describing the position of the ith particle. If V < C*(R*") is the poten-
tial energy, then a path of motion x(#), @ < ¢ < b, satisfies

2y,
27(1) - *g_v(xl (1), Xa(0))-

Xi

HY

Consider this path in configuration space as a map ¥ : [a,b] — R** with y(a) = p
and 1(b) = g, and let

P={y:la,b] —F"|y(a) = pand y(b) = q}
be the set of all paths going from p to g over time ¢ € [a, b]. &

Definition 19.1. The action of a pathye P is

b
A ::/ =
T ();1 2

dy;

2
Zo)

vw») d
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Principle of least action.
The physical path y is the path for which Ay is minimal.

Newton’s second law for a constrained system.

Suppose that the » point-masses are restricted to move on a submanifold M of
R*" called the constraint set. We can now single out the actual physical path ¥ :
la,b] — M, with % (a) = p and % (b) = ¢, as being “the” path which minimizes Ay
among all those hypothetical paths y: [a,8] — R¥ with y(a) = p, y(b) = g and
satisfying the rigid constraints ¥(r) € M for all r.

19.3 Variational Problems

Let M be an n-dimensional manifold. Its tangent bundle T'M is a 2n-dimensional
manifold. Let ¥ T'M — R be a smooth function.

If v:[a,b] — M is a smooth curve on M, define the lift of ¥ to TM to be the
smooth curve on TM given by

¥:la,b] — TM
e (v, 5 0) -

The action of yis

Ayi= fab(}'/*F)(x)dt . /bF (y(t),%(r)) dr .

For fixed p,q € M, let
Pla,b,p,q) :={v:[a,b] — M| vy(a) = p, v(b) = q} .
Problem.

Find, among all y € P{a,b, p,q), the curve 3 which “minimizes” .4,
First observe that minimizing curves are always locally minimizing:
Lemma 19.2. Suppose that Yo : [a,b] — M is minimizing. Ler [ay, 1] be a subinter-

val of [a,b] and let p1 = % (a1). g1 = Ww(by1). Then 1 | is minimizing among the
curves in Play, by, prgr).

[a1,51

Proof. Exercise:
Argue by contradiction. Suppose that there were ¥ € P(a1,51, p1,q1) for which
Ay < “4?’0|[a ] . Consider a broken path obtained from 9 by replacing the segment

0|(a;,61 DY ¥i- Construct a smooth curve ¥ < P(a, b, p,q) for which Ay, < Ay, by
rounding off the corners of the broken path.
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We will now assume that p,g and % lie in a coordinate neighborhood
(U,x1,...,%,). On TU we have coordinates (xy,...,X,v1,...,¥,) associated with a
trivialization of TU by -5‘371 yen ,-3%. Using this trivialization, the curve

y:lab) — U, (&)= (n@), ..., %)

lifts to

pilah —TU, 70 = (1000, 20 0]

Necessary condition for % € P(a,5, p,g) to minimize the action.
Let ¢q,...,c0 € C([a,b]) be such that c;(a) = ¢;(B) = 0. Let ¥, : [a,b] — U be
the curve

Yelt) = (n) +ec1(r),.., w0 +Eca(r) .
For £ small, ¥, is well-defined and in P (a,b, p, q).
Let Ag =Ay, = ’F (]/g(t), a;,—j:(r)) dr. If y minimizes A, then

dAe
oo )=

d A» d OF de.
=0 = [T |5 (50,220 )+ 5 (00, 20| S|
d JF
B l E{g _EW(“‘)} ci(tydr=0
where the first equality follows from the Leibniz rule and the second equality fol-

lows from integration by parts. Since this is true for all ¢;’s satisfying the boundary
conditions ¢;(a) = ¢;{b) = 0, we conclude that

3i< ()’d}’o()>_%3_i< ()"?;0(,)). E-L

These are the Euler-Lagrange equations.

19.4 Solving the Euler-Lagrange Equations

Case 1: Suppose that F{x,v) does not depend on v.

The Euler-Lagrange equations become

( 1), — (r)> =0 <= the curve 7 sits on the critical set of F' .
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For generic F, the critical points are isolated, hence 9 (r) must be a con-
stant curve.
Case 2: Suppose that F(x,v) depends affinely on v:

Fx,v) = Fo(x)+ iﬂ(x)vj .
=1

LHS of E-L : aFO( ())+):a @(:)
. d - i aF dyf
RHS of E-L : - ): ax (r)
The Euler-Lagrange equations become
aFO _ aF d]/;,
Soom =1 (55 oo Zo.
\—V—/

rxn matrix

If the # x n matrix (gf : ‘;x ) has an inverse G;;(x), then
“t

2 - zcw NI ()

is a system of first order ordinary differential equations. Locally it has a
unique solution through each point p. If ¢ is not on this curve, there is no
solution at all to the Euler-Lagrange equations belonging to P(a, b, p,g).

Therefore, we need non-linear dependence of F on the v variables in order to have
appropriate solutions. From now on, assume that the

Legendre condition: det 82_]7 #0
g . av,'av‘,'

Letting Gy;(x,v) = ( Ferv; {x, v)) , the Euler-Lagrange equations become

d*y; IF [/ dy d°F ayy dn
T~ LGy (%E) P (%E) U

This second order ordinary differential equation has a unique solution given initial
conditions

dy
via)y=p and E(a) =v.
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19.5 Minimizing Properties

Is the above solution locally minimizing?
Assume that ( 3,07, (x, v)) 3 0, ¥(x,v), ie., with the x variable frozen, the func-

tion v — F(x,v) is strlctly convex.
Suppose that yp € P(a,b, p, q) satisfies E-L. Does yo minimize .4,? Locally, yes,
according to the following theorem. (Globally it is only critical.)

Theorem 19.3. For every sufficiently small subinterval [a1,D1] of [a,b], Yoljay 5, i
locally minimizing in P (ay by, py,q1) where pr = Yolay), g1 = ¥o(by).

Proof. As an exercise in Fourier series, show the Wirtinger inequality: for [ €
C'{[a,b]) with f(a) = f(b) =0, we have

b
/ > s [ 7.
Suppose that ¥ : [2,5] — I satisfies E-L. Take ¢; € C™([a

o
Lete =(ecy,...,cn). Let yp = p+ece Pla,b,p,q), and let A,
E-L «— %) =0

d* Ag b, 9%F dw
d82 (0) [ ):'ax,-axj (r}b’?> ¢ C'f r (D
82F d}{) dc Cy
+2L ) xavj< ,df> ata

Jd2F d'}{) de; de
fa v (*f%?) i

ff

df
dr

b)), :( ) =ci(l) =

; 22F
Since (W(x,v)) 3 0atall x,v,

del*

>
I > K 7

L [aB]
2
1 < ‘KI|C|L2[a)b]

de

'II' < ICILgab df

L?[a,B]

where K ,K;,K; > 0. By the Wirtinger inequality, if » — a is very small, then
IOI > || + |II] when ¢ # 0. Hence, 9 is a local minimum. 0
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Homework 14: Minimizing Geodesics

This set of problems is adapted from [53].

Let (M, g) be ariemannian manifold. From the riemannian metric, we get a func-
tion F': T'M — R, whose restriction to each tangent space 7,M is the quadratic form
defined by the metric.

Let p and g be points on M, and let y: [2,5] — M be a smooth curve joining p to

g.Let ¥:[a,b] — TM, %(1) = (y(t),%’(t)) be the lift of ¥ to TM. The action of yis

2
dr .

b dy

A= [[arya- [ |2

o

1. Let ¥: [a,b] — M be a smooth curve joining p to ¢. Show that the arc-length of ¥
is independent of the parametrization of ¥, i.e., show that if we reparametrize yby
7., b'] — [a,b], the new curve ¥ = yo 7 : [@',b'] — M has the same arc-length.

2. Show that, given any curve y: [z, — M (with %}’ never vanishing), there is
a reparametrization T : [a,b] — [a,b] such that Yo 7 : [a,b] — M is of constant
velocity, that is, |%l| is independent of 7.

3. Let t:[a,b] — [a,]] be a smooth monctone map taking the endpoints of [z, 2] to
the endpoints of [a, b]. Prove that

bdrh
— | dr>b—a
L(m>f .

with equality holding if and only if % =1

4. Lety: [a,b] — M be a smooth curve joining p to ¢. Suppose that, as s goes from
alo b, its image ¥(s) moves at constant velocity, i.e., suppose that | i—z\ is constant
as a function of 5. Let ¥ = yo 1 : [a,b] — M be a reparametrization of y. Show
that A(y") > A(y), with equality holding if and only if 7(r) =+.

5. Let 3% : [a,b] — M be a curve joining p to g. Suppose that ¥ is action-
minimizing, i.e., suppose that

Alw) < Aly)

for any other curve v : [a,b] — M joining p to g. Prove that 1y is also arc-length-
minimizing, i.e., show that 3 is the shortest geodesic joining p to ¢.

6. Show that, among all curves joining p to g, ¥ minimizes the action if and only if
% is of constant velocity and y minimizes arc-length.

7. On a coordinate chart (I4,x',...,x") on M, we have

Fx) = Y ai(ovy/

Show that the Huler-Lagrange equations associated to the action reduce to the
Christoffel equations for a geodesic
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d2y d}f a‘y
drr +E( dr dr

where the Ff-‘j’s {called the Christoffel symbols) are defined in terms of the co-
efficients of the riemannian metric by

Z ok agf.' dg é’j ao.';
© Bx, dxi  ox
(g') being the matrix inverse to (g;;).
8. Let pand g be two non-antipodal points on 8. Show that the geodesic joining p

to g is an arc of a great circle, the great circle in question being the intersection
of § with the two-dimensional subspace of R*! spanned by p and g.

Hint: No calculations are needed: Show that an isometry of a riemannian manifold
has to carry geodesics into geodesics, and show that there is an isometry of R*H!
whose fixed point set is the plane spanned by p and ¢, and show that this isometry
induces on S an isometry whose fixed point set is the great circle containing p and g.



Chapter 20
Legendre Transform

20.1 Strict Convexity

LetV be an n-dimensional vector space, withey,...,e, abasisof V andvy,..., v, the
associated coordinates. Let F 1V — R, F = F(vq,...,w), be a smooth function. Let
peV,u=Y" me;cV. Thehessian of F is the quadratic function on V defined by

(EF)p) = ¥ =y,
1) (u .7§’avaVIj it .

Exercise, Show that (d*F) ,(1) = %F(pur 114) |r=0- &

Definition 20.1. The function F is strictly convex if (d*F), > 0,Vpe V.

Proposition 20.2. For a strictly convex function F on V, the following are equiva-
fent:

{a) I has a critical point, i.e., a point where df, = 0;
{b) F has a local mininum at some poini;

{c) F has a unique crirical point (global minimum); and
(d) F is proper, thatis, F(p) — +=as p— =inV.

Proof. Homework 15. O

Definition 20.3. A strictly convex function F is sfable when it satisfies conditions
(a)-(d) in Proposition 20.2.

Example. The function e + ax is strictly convex for any g = R, but it is stable only
for @ < 0. The function x* + ax is strictly convex and stable for any a < 2., &

143
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20.2 Legendre Transform

Let F be any strictly convex function on V. Given £ € V*, let
Fp:vV—R, F(v)=F(@) —£(v).

Since (d*F), = (d*Fy),,

F is strictly convex <= [} is strictly convex.
Definition 20.4. The stability set of a strictly convex function F is

Sp = {{ V" | F}isstable} .

Proposition 20.5. The ser Sg is an open and convex subser of V¥,
Proof. Homework 15. O

Homework 15 also describes a sufficient condition for §p = V*.

Definition 20.6. The Legendre transform associated to F € C=(V;R) is the map

Lp:V — V"
pl—}dFPET;VSV*.

Proposition 20.7. Suppose that F is strictly convex. Then
LF Vv i} SF y

i.e., Lp is a diffeomorphism onto Sg.

The inverse map L;l : Sp — V is described as follows: for £ & Sp, the value
L' (2) is the unique minimum point p; € V of Fy = F —£.

Exercise. Check that p is the minimum of F (v) — dF,(v). &

Definition 20.8. The dual function F* (o F is

F*: 8 — R, F'{{)=-minF(p).
peEV

Theorem 20.9. We have rhar L}l = Lp+.

Proof. Homework 15. |
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20.3 Application to Variational Problems

Let M be a manifold and # : TM — R a function on TM.
Problem. Minimize Ay = [ #*F.

Atpe M, let
Fp Z:F‘TpMiTpM%R.

Assume that F), is strictly convex for all p € M. To simplify notation, assume also
that Sp, = T;M. The Legendre transform on each tangent space

Ly, T,M —T;M

is essentially given by the first derivatives of F in the v directions. The dual function
to Fp is Fy : TyM — IR Collect these fiberwise maps into

L:TM — T*M, E‘IPM - LFP y and
H:T*M—>R, H|T;M:F;.
Exercise. The maps H and £ are smooth, and £ is a diffeomorphism. &
Let
yilab) — M be a curve, and

¥ila b — TM s lift.

Theorem 20.10. The curve v satisfies the Enler-Lagrange equarions on every coor-
dinate chartifand onlyif Lo ¥ [a,b] — T*M is an integral curve of the hamiltonian
vector field Xy.

Proof. Let
(U, x1,...,x,) coordinate neighborhood in M,
(TU,x1,. .., %, V1,..., V) coordinates in TM ,
(T*U,x1,...,%,81,...,&) coordinates in T*M .

On Tl we have F = F(x,v).
On T*U we have H = H (i, &).

L: TU — T*U
(e, v) —— (x, &) where E=ILp(v)= a—f(x,v) .

{This is the definition of momentum &.)

Hx,5)=F'(&)=&-v=F(xy) where L(x,v)=(xE).
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Integral curves (x(r},E(r)) of Xp satisfy the Hamilton equations:

dx J0H
J i E(x’é)
H
d§ J0H
] E - _g(xaé) )

whereas the physical path x{r) satisfies the Euler-Lagrange equations:

aF dx d oF dx
E-L E (x, E) = EE (I,E> .
Let (x(),& (1)) = £ (x(r), % (r)). We want to prove:
fe (x(r),E(n)) satisfies H <— 1+— (x(t), i—f(r)) satisfies E-L .

The first line of H is antomatically satisfied:

9 '
%_a_?(%é)—%f(é)—%l(‘g) = s=ls (g>

Claim. If (x,&) = £ (x,v), then %(x,v) = —%(x,é).

This follows from differentiating both sides of H{x,&) = & - v—F{(x,v) with res-
pect to x, where § = Ly, (v) = E(x,v).

oH oHJs _d5 ~ OF
ax ToE o ax U ox

Now the second line of H becomes

d oF dE oH oF
EE(I:V)—E__E(xaé)_g(xav) — E-L.

since £ = Lr, (v) by the claim



203 Application to Variational Problems 147

Homework 15: Legendre Transform

This set of problems is adapted from [54].

1. Let f: R — [ be a smooth function. f is called strictly convex if f"(x) > 0
for all x £ K. Assuming that f is strictly convex, prove that the following four
conditions are equivalent:

(a) f(x) =0 for some point xp,

(h) f has alocal minimum at some point xg,

(¢) f has aunique (global) minimum at some point xp,
(d) fx) — +ocasx — too.

The function f is stable if it satisfies one (and hence all) of these conditions.
For what values of 4 is the function e¢* 4 ax stable? For those values of a for
which it is not stable, what does the graph look like?

2. Let V be an r-dimensional vector space and F : ¥V — R a smooth function. The
function F is said to be strictly convex if for every pair of elements p,v € V,
v £ 0, the restriction of F to the line {p+xv|x € R} is strictly convex.
The hessian of F at p is the quadratic form

d2
szp R T— EF(pjtxv)\x:o .

Show that F is strictly convex if and only if szp is positive definite forall p e V.
Prove the n-dimensional analogue of the result you provedin (1). Namely, assum-
ing that F is strictly convex, show that the four following assertions are equiva-
lent:

(a) dF, =0 at some point pg,

(b) F has alocal minimum at some point py,

(¢) F has a unique (global) minimum at some point po,
(d) F(p)—>+ooasp—>OO.

3. Asinexercise 2, let V be an n-dimensional vector space and F : V — IR a smoaoth
function. Since V is a vector space, there is a canonical identification TP*V o~ V¥,
for every p € V. Therefore, we can define a map

L.:V—V* (Legendre transform)

by setting
L.(p)=dF,e T;V~V".

Show that, if F is strictly convex, then, for every point p € V, L, maps a neigh-
borhood of p diffeomorphically onto a neighborhood of L, (p).

4. A strictly convex function F : V — [ is stable if it satisfies the four equivalent
conditions of exercise 2. Given any strictly convex function ¥, we will denote
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by S8, the set of I € V* for which the function F; : V - R, p— F(p)—I{p). is
stable. Prove that:

{a) The set §, is open and convex.

(b) L, mapsV diffeomorphically onto ;.

{c) fée S, and pp = L;l (#), then pq is the unique minimum point of the function
F.

Let F*: 8§, — R be the function whose value at [ is the quantity —mei{/lﬁ (p).
»

Show that F'* is a smooth function.
The function F* is called the dual of the function F.

5. Let ¥ be a strictly convex function. F is said to have quadratic growth at infin-
ity if there exists a positive-definite quadratic form  onV and a constant X such
that F(p) > Q{p) — K, for all p. Show that, if F has quadratic growth at infinity,
then §, = V* and hence L, maps V diffecmorphically onto V*.

6. Let F: V — [ be strictly convex and let F* : S, — I be the dual function. Prove
that forall pe V andall £ € §,,

F(p)+F*() > £(p) (Young inequality).

7. On one hand we have V x ¥V* ~ T*V_ and on the other hand, since ¥V = V**, we
have V x V* o V* x V ~ TV,

Let ¢ be the canonical 1-form on T*V and «; be the canonical 1-form on T*V*,
Via the identifications above, we can think of both of these forms as living on
V x V*. Show that &y = df§ — cp, where 51 V x V* — R is the function B (p,{) =
£(p).

Conclude that the forms ay = dey and @, = dog satisfy @y = —an.

8. Let F: V — IR be strictly convex. Assume that F has quadratic growth at infinity
so that §, = V*. Let A, be the graph of the Legendre transform £, . The graph
A, is a lagrangian submanifold of V x V* with respect to the symplectic form
; why? Hence, A, is also lagrangian for ;.

Let pry : A, — V and pry : A, — V™ be the restrictions of the projection maps
VxV*—=VandVxV*—=V* andlet i: A, — V x V™ be the inclusion map.
Show that

i*oy =d(pr)*F .

Conclude that
"oy = d (i — (pr)"F) = d(pry)"F"

and from this conclude that the inverse of the Legendre transform associated with
F is the Legendre transform associated with F'*.



Part VIII
Moment Maps

The concept of a momens map* is a generalization of that of a hamiltonian function.
The notion of a moment map associated to a group action on a symplectic manifold
formalizes the Noether principle, which states that to every symmetry (such as a
group action) in a mechanical system, there corresponds a conserved quantity.

1 Sourian [95] invented the french name “application moment.” In the US, East and West coasts
could be distinguished by the choice of translation: momtent map and womentiai map, respectively.
We will stick to the more economical version.



Chapter 21
Actions

21.1 One-Parameter Groups of Diffeomorphisms

Let M be a manifold and X a complete vector field on M. Let p, : M — M, r € I,
be the family of diffeomorphisms generated by X. Foreach p € M, p,(p), 1 € R, is
by definition the unique integral curve of X passing through p at time 0, i.e., p;(p)
satisfies

polp)=r

PP) _ ¥ (o, (p)).

dr
Claim. We have that p, o p; = pyys.

Proof Let p;(g) = p. We need to show that (py o ps){g) = prts(g), for all £ £ R.
Reparametrize as B (g) := ps4s(g). Then

Polq) = pslg)=p

dﬁéEQ) _ dPr;;(Q') — X (pras (@) = X(Bi(q) |

ie., p(g) is an integral curve of X through p. By uniqueness we must have
Pi(q) = pr(p). that is, prys(g) = pi(ps(g))- =

Consequence. We have that p, ' =p_,.

In terms of the group (K,+) and the group (Diff(M),o) of all diffeomorphisms
of M, these results can be summarized as:

Corollary 21.1. The map R — Diff (M), r — py, is a group homomorphism.

The family {p, | r £ R} is then called a one-parameter group of diffeomor-
phisms of 3 and denoted
Py =exptX .
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21.2 Lie Groups

Definition 21.2. A Lie group is a manifold  equipped with a group structure where
the group operations

GxG— G and G— G
(@,by — a-b ar—al
are smooth maps.

Examples.

o R (with addition").

S! regarded as unit complex numbers with multiplication, represents rotations of
the plane: §' = U(1) = SO(2).

U(n), unitary linear transformations of €.

SU(n), unitary linear transformations of C* with det = 1.

O(#), orthogonal linear transformations of R”.

SO(n), elements of O(n) with det = 1.

GL.(V), invertible linear transformations of a vector space V.

&

Definition 21.3. A representation of a Lie group G on a vector space V is a group
homomorphism G — GL{V'}.

21.3 Smooth Actions

Let M be a manifold.
Definition 21.4. An action of a Lie group & on M is a group homomorphism
v G — Diff{M)
§— VY,

{We will only consider left actions where v is a homomorphism. A right action is
defined with y being an anti-homomorphism.) The evaluation map associated with
an action y : G — Diff (M) is

evy MxG —M
(P,8) — v (p).

The action v is smooth if evy, is a smooth map.

! The operation will be omitted when it is clear from the context,
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Example. If X is a complete vector field on M, then

p: R — Diff(M)
t— p=exptX

is a smooth action of B on M. &

Every complete vector field gives rise to a smooth action of R on M. Conversely,
every smooth action of iR on M is defined by a complete vector field.

{complete vector fields on M} =L {smooth actions of R on M}

X —— exprX

~ dyi(p) )
Xp=—— a4

21.4 Symplectic and Hamiltonian Actions

Let (M, @) be a symplectic manifold, and & a Lie group. Let v : G — Diff{M) be
a (smooth) action.
Definition 21.5. The action yr is a symplectic action if
v & — Sympl(M, ®) C Diff(M) ,
i.e., (G “acts by symplectomorphisms.”

{complete symplectic vector fields on M} L {symplectic actions of R on M}

Example. On B* with @ = Ydx; Ady, let X = —aiyl. The orbits of the action
generated by X are lines parallel to the y(-axis,

L0,y — 8,32, ¥2, .., X, V) | 1 € R}

Since X = X;, is hamiltonian (with hamiltonian function H = xy ), this is actually an
example of a hamilronian action of k. &

Example. On $? with @ = d8 A dh (cylindrical coordinates), let X = %. Each orbit
is a horizontal circle (called a “parallel”) {(8+17,4) | r € R}. Notice that all orbits
of this [2-action close up after time 27, so that this is an action of $*:

v 81— Sympl($?, @)
t — rotation by angle 7 around A-axis .
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Since X = Xj, is hamiltonian (with hamiltonian function H = k), this is an example
of a hamiltonian action of S'. &

Definition 21.6. A symplectic action y of §! or R on (M, ®) is hamiltonian if the
vector field generated by v is hamiltonian. Equivalently, an action w of §' or R on
(M, o) is hamiltonian if there is H : M — R with dH = 1y o, where X is the vector
field generated by .

What is a “hamiltonian action” of an arbitrary Lie group?

For the case where G = T" = 8! x ... x §! is an n-torus, an action w: G —
Sympl(M, @) should be called hamiltonian when each restriction

1#’! = W‘ ith 5! factor * st—s Sympl(M: (D)

is hamiltonian in the previous sense with hamiltonian function preserved by the
action of the rest of G.

When G is not a product of §'’s or R’s, the solution is to use an upgraded
hamiltonian function, known as a moment map. Before its definition though {in Lec-
ture 22), we need a little Lie theory.

21.5 Adjoint and Coadjoint Representations

Let G be a Lie group. Given g € G let

L,:G—G

a— g-a

be left multiplication by g. A vector field X on & is called left-invariant if
(Lg)+X =X for every g € G. (There are similar righ notions.)

Let g be the vector space of all left-invariant vector fields on G. Together with
the Lie bracket [, ] of vector fields, g forms a Lie algebra, called the Lie algebra of
the Lie group G.

Exercise. Show that the map

g — LG
X— X,

where e is the identity element in (, is an isomorphism of vector spaces. &
Any Lie group G acts on itself by conjugation:

G — DIff(G)

g Vs, vy =g-ag".
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The derivative at the identity of

W, G — G

—1
ar—g-a-g

is an invertible linear map Ad, : g — g. Here we identify the Lie algebra g with the
tangent space 1.(. Letting g vary, we obtain the adjoint representation (cr adjoint
action) of & on g

Ad: G — GL(g)

g Adg .

Exercise. Check for matrix groups that

d
—Adepx¥| =XY], VK Yeq.
- =0

Hint: For a matrix group & {i.e., a subgroup of GL{#:R) for some »), we have
Ad,(Y) =g¥g™!, YgeG,¥Feg

and
[X,Y] =XY -YX, VX, Yeg.

Let {-,} be the natural pairing between g* and g
(g xg—R
(6, X) — {§,X) =c(X).
Given § € g*, we define Ad;E by
(Ad;E,X) = (§,Ad, 1X} forany X e g.

The collection of maps Ad:, forms the coadjoint representation (or coadjoint ac-
tion) of G on g*:
Ad*: G — GL(g*)

%
g — Ad, .

We take ¢! in the definition of Ad:,é in order to obtain a (left) representation,
i.e., a group homomorphism, instead of a “right” representation, i.e., a group anti-
homomorphism.

Exercise. Show that Ad,cAd, =Ady; and Ad;oAdy =Ad;, . &
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Homework 16: Hermitian Matrices

Let H be the vector space of kX n complex hermitian matrices.

The unitary group U(r) acts on H by conjugation: A.& =AEA !, forA e
Un) ,£ = H.

Foreach A = {),...,4,) € R", let 'H; be the set of all n x » complex hermitian
matrices whose spectrum is .

1. Show that the orbits of the U{#)-action are the manifolds Hy .
For a fixed A € R*, what is the stabilizer of a point in H ?

Hint: If A41,...,A, are all distinct, the stabilizer of the diagonal matrix is the torus T"
of all diagonal unitary matrices.

2. Show that the symmetric bilinear form on H, (X,¥) — trace (XY), is nonde-
generate.
For § e H, define a skew-symmetric bilinear form @, on u(n) = TiU@n) = iH
{space of skew-hermitian matrices) by )

o, (X,Y) =itrace (X,Y]E), XYeil.

Check that @, (X,Y) =itrace (X(¥& —CY))and Y& — Y € H.
Show that the kernel of @, is K, := {¥ € u(n)|[¥,S] =0}.
3. Show that K, is the Lie algebra of the stabilizer of &.

Hint: Differentiate the relation AEA~™! = &

Show that the @, ’s induce nondegenerate 2-forms on the orbits H .
Show that these 2-forms are closed.
Coriclude that all the orbits H; are compact symplectic manifolds.
4. Describe the manifolds 7 .
When all eigenvalues are equal, there is only one point in the orbit.
Suppose that ) # A3 = ... = A,. Then the eigenspace associated with A; is aline,
and the one associated with A; is the orthogonal hyperplane. Show that there is a
diffeomorphism H; ~ CP*1. We have thus exhibited a lot of symplectic forms
on CP*~!, on for each pair of distinct real numbers.
What about the other cases?
Hint: When the eigenvalues A4 < ... < A, are all distinct, any element in H; defines
a family of pairwise orthogonal lines in C: its eigenspaces.
5. Show that, for any skew-hermitian matrix X < u{n), the vector field on 7{ gener-
ated by X < u(n) for the U(r)-action by conjugation is Xf =[X,&]



Chapter 22
Hamiltonian Actions

22.1 Moment and Comoment Maps

Let

(M,®) be asymplectic manifold,
& aLie group, and
v G — Sympl(M,®) a(smooth) symplectic action, i.e., a group homomorphism
such that the evaluation map evy (g, p):=ys, (p) is smooth.

Case G=R:

‘We have the following bijective correspondence:

{symplectic actions of K on M} K {complete symplectic vector fields on M}

dy
w— X, = ]‘Z,Ep)

y=exptX — X
“flow of X" “vector field generated by w”

The action v is hamiltonian if there exists a function H : M — R such that dH =
ry @ where X is the vector field on M generated by .

Case G = S:

An action of $! is an action of R which is 27-pericdic: wag = Wo. The §"-action
is called hamiltonian if the underlying R-action is hamiltonian.
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General case:
Let
(M, @) be a symplectic manifold,
G alLie group,
g the Lie algebra of G,
g* the dual vector space of g, and
v 1 G— Sympl{M, &) a symplectic action.
Definition 22.1. The action yr is a kamiltonian action if there exists a map
Mg
satisfying:
1. Foreach X € g, let

o u* MR, u*(p) = {u(p),X}, be the component of y along X,
o X¥be the vector field on M generated by the one-parameter subgroup {expiX |
reR}YCG.

Then
dpt =10

ie., u¥ is a hamiltonian function for the vector field X*.

2. U is eguivariant with respect to the given action y of & on M and the coadjoint
action Ad* of Gon g*:

Heoyy =Ad;ou, forallge G

The vector (M, ®,G, ) is then called a hamiltonian G-space and g is a mement
map.

For connected Lie groups, hamiltonian actions can be equivalently defined in
terms of a comoment map

W g O,
with the two conditions rephrased as:

1. u*(X) := p* is a hamiltonian function for the vector field X*,
2. u*is a Lie algebra homomaorphism:

pHX Y] = {ut(X), u* (Y)}

where {-,-} is the Poisson bracket on O™ (M).

These definitions match the previous ones for the cases G = R, 5% torus, where
equivariance becomes invariance since the coadjoint action is trivial.
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Case G =S§" (or R):
Here g ~ R, g* ~ R. A moment map g : M — R satisfies:

1. For the generator X = 1 of g, we have u* (p) = u(p) -1, i.e, ¥ =y, and X* is
the standard vector field on M generated by §'. Then dy — Tys .

2. pis invariant: Cyept = 1gedpt =0,

Case G = T" = p-torus:

Here g ~ R", g* ~ R". A moment map g : M — [ satisfies:

1. For each basis vector X; of R™, ;,LXf is a hamiltonian function for Xj#.
2. U is invariant.

22.2 Orbit Spaces

Let v : G — Diff{M) be any action.

Definition 22.2. The orbit of G through p € M is {y,(p) | g € G}.
The stabilizer (or isotropy) of p € M is the subgroup G, := {g € G| w,(p) = p}.

Exercise. If g is in the orbit of p, then G, and G, are conjugate subgroups. &

Definition 22.3. We say that the actionof Gon M is ...

e [ransitive if there is just one orbit,
o freeif all stabilizers are trivial {e},
o locally free if all stabilizers are discrete.

Let ~ be the orbit equivalence relation; for p,g € M,
p~4qg <= pandg are onthe same orbit.
The space of orbits M/ ~ = M /G is called the orbit space. Let

M —M/G
p — orbit through p
be the point-orbit projection.
Topology of the orbit space:

We equip M/G with the weakest topology for which & is continuous, i.e.,
U C M/G is open if and only if £~ (i) is open in M. This is called the quotient
topology. This topology can be “bad.” For instance:
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Example. et G=TR acton M =R by
r — v, = multiplication by 7.

There are three orbits RT, B~ and {0}. The point in the three-point orbit space
corresponding to the orbit {0} is not open, so the orbit space with the quotient
topology is ror Hausdorff. &

Example. Let &G =C\{0} act on M =" by
A — yry, = multiplication by A .

The orbits are the punctured complex lines (through non-zero vectors z € C*), plus
one “unstable” orbit through O, which has a single point. The orbit space is

M/G =CP" ! Li{point} .

The quotient topology restricts to the usual topology on CPF*~L. The only open set
containing {point} in the quotient topology is the full space. Again the quotient
topology in M/ G is not HausdorfT.

However, it suffices to remove O from C” to obtain a Hausdorff orbit space:
CP*!. Then there is also a compact (yet not complex) description of the orbit space
by taking only unit vectors:

CPt = (e {o}) /{0y ) = s/t

22.3 Preview of Reduction

Let o = %}:dz; ~dZy =Y dx; Ady; = Y rdr; A dB; be the standard symplectic form
on €. Consider the following §!-action on (C", @):

rest— y, = multiplication by 7 .
The action v is hamiltonian with moment map

u: R

2
— —% -+ constant

]

since
du = —3d(¥r})
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d o d
#_ Y 9 .9
X" = +892+ +89,,

a8
ixt® = —Yridri = —+ Y dr? .

If we choose the constant to be 3, then =1 (0) = §2~! is the unit sphere. The orbit
space of the zero level of the moment map is

”71(0)/31 _ 82”71/81 _ CP}I*I )

CP*! is thus called a reduced space. Notice also that the image of the moment
map is half-space.

These particular observations are related to major theorems:

Under assumptions (explained in Lectures 23-29),

[Marsden-Weinstein-Meyer] reduced spaces are symplectic manifolds;
[Atiyah-Guillemin-Sternberg] the image of the moment map is a convex poly-
tope;

¢ [Delzant] hamiltonian T"-spaces are classified by the image of the moment map.

22.4 Classical Examples

Example, Let G = SO(3) = {4 € GL(3;R) | A A = Id and detA = 1}. Then
g=1{Acgl(3;R)|A+A" =0} is the space of 3 x 3 skew-symmetric matrices and
can be identified with B*. The Lie bracket on g can be identified with the exterior
product via

0 —as dz
—
A=\ o 0 —a | — @ =(a1.42,a3)
—d2 4y 0

[AB|=AB—BA — @ x b.

Exercise. Under the identifications g, g™ ~ R, the adjoint and coadjoint actions are
the usual SO(3)-action on R? by rotations. &

Therefore, the coadjoint orbits are the spheres in R* centered at the origin.
Homework 17 shows that coadjoint orbits are symplectic. &

The name “moment map” comes from being the generalization of linear and
angular momenta in classical mechanics.

Translation: Consider R® with coordinates x;, x5, X3, ,¥2, ¥3 and symplectic form
® = Y.dx; Ady,. Let R? act on R® by translations:
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@ e — y € Sympl(RS, o)
Vs (¥,9) = (F+7,7).
#__ 2 J 2 _
Then X =019 taage T asy forX = &, and
wR— R, w5y =%

is a moment map, with

—

R = (F )3 =TT

Classically, 3 is called the momentum vector corresponding to the position vector
¥, and the map g is called the linear momentum.

Rotation: The SQ(3)-action on R? by rotations lifts to a symplectic action y on the
cotangent bundle R®. The infinitesimal version of this action is

T e dy(7a@) € xR

Then
#:R64>R33 H(?;?):?x?

is a moment map, with
p’a(?:y}) = (H(?,?),E}> - (T> x 7) ?

The map g is called the angular momentum.
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Homework 17: Coadjoint Orbits

Let GG be a Lie group, g its Lie algebra and g* the dual vector space of g.

1. Let 9X* be the vector field generated by X & g for the adjoint representation of
(G on g. Show that
0x! = XY VY¥eg.

2. Let X* be the vector field generated by X & g for the coadjoint representation of
G on g*. Show that

X1y) = (&, [r.X]) Vieg.

3. For any & < g*, define a skew-symmetric bilinear form on g by
. X, ¥):= (£, X.,7]).

Show that the kernel of @, is the Lie algebra g, of the stabilizer of & for the
coadjoint representation. )
4. Show that o, defines a nondegenerate 2-form on the tangent space at £ to the

coadjoint orbit through &.
5. Show that . defines a closed 2-form on the orbit of § in g*.

Hint: The tangent space to the orbit being generated by the vector fields X*, this is a
consequence of the Jacobi identitv in g.

This canonical symplectic form on the coadjoint orbits in g* is also known as
the Lie-Poisson or Kostant-Kirillov symplectic structure.
6. The Lie algebra structure of g defines a canonical Poisson structure on g*:

{f:g}(é) = (é:[dfg:dggb

for f,g € C(g*) and & < g*. Notice that df, : T, g* ~ g* — R is identified with
an element of g ~ g**. o
Check that {-, -} satisfies the Leibniz rule:

{f,gh}y=e{f.h}+h{f g}.

7. Show that the jacobiator

J(f,8. 1) = ghht+ g n}. fH+ {{h 1}
is a frivector field, i.e., J is a skew-symmetric trilinear map C™(g*) x C(g*) X
C*(g*) — C™(g*), which is a derivation in each argument.
Hint: Being a derivation amounts to the Leibniz rule from exercise 6.

&. Show that J =0, i.e., {-,-} satisfles the JTacobi identity.

Hint: Follows from the Jacobi identity for [+, -] in g. It is enongh to check on coordi-
nate functions.



Part IX
Symplectic Reduction

The phase space of a system of » particles is the space parametrizing the position
and momenta of the particles. The mathematical model for the phase space is a sym-
plectic manifold. Classical physicists realized that, whenever there is a symmetry
group of dimension & acting on a mechanical system, then the number of degrees
of freedom for the position and momenta of the particles may be reduced by 2k.
Symplectic reduction formulates this feature mathematically.



Chapter 23
The Marsden-Weinstein-Meyer Theorem

23,1 Statement

Theorem 23.1. (Marsden-Weinstein-Mever [77, 85]) Let (M, 0,G, 1) be a hamil-
tonian G-space for a compact Lie group G. Ler i : ;,1,_1(0) < M be the inclusion
map. Assume that G acis freely on 11 (0). Then

o the orbir space Mg = ,u_l(O) /G is a manifold,
o 1 Y0) — M, is a principal G-bundle, and
o ihere is a symplectic form (g on Myy sarisfving i*o = 7* @yg.

Definition 23.2. The pair (Maq, 0req) is called the reduction of (M, ®) with res-
pect to G, u, or the reduced space, or the symplectic quotient, or the Marsden-
Weinstein-Meyer quotient, etc.

Low-brow proof for the case G = §! and dimM = 4.

In this case the moment mapis ¢ : M — R. Let p € p~'{0). Choose local coor-
dinates:

s @ along the orbit through p,
¢ U given by the moment map, and
o 71, M2 pullback of coordinates on ="' (0) /8.

Then the symplectic form can be written
O =AdOAdy+ B;d0 rndn; +Cpdundn; +Ddm Adn

Since dy =1 (%) @, we must have A = 1, B; = 0. Hence,

©=d0 Adu+C;dpAdn;+ D dmy Adny

Since @ is symplectic, we must have D # 0. Therefore, i*@ = D dmy Adna is the
pullback of a symplectic form on M;.4. |

The actual proof of the Marsden- Weinstein-Meyer theorem requires the following
ingredients.

167
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23.2 Ingredients

1. Let g, be the Lie algebra of the stabilizer of p € M. Then dpt,, : T,M — g* has

ker du, = (T,0,)%*
im dy, = ¢

where (,, is the G-orbit through p, and gg ={ cg"|{E.X)=0,YXegy}is
the annihilator of g,.

Proof. Stare at the expression @,(X};,v) = (dp, (v),X), for all v € T,M and all
X € g, and count dimensions. |

Consequences:

¢ The action is locally free at p
= gp={0}
= dl, is surjective
<= pisaregular point of .
o G acts freely on g~ (0)
= 0is aregular value of
= p~{0) is a closed submanifold of M
of codimension equal to dimG.
e G acts freely on gt~ (0)
— T,u~'(0) =kerdp, (for p < p=1(0))
— T,u (D) and T, O, are symplectic orthocomplements in T,M.
In particular, the tangent space to the orbit through pe g~! (0 is an isolropic
subspace of T,M. Hence, orbits in g~ (0) are isotropic.

Since any tangent vector to the orbit is the value of a vector field generated by
the group, we can confirm that orbits are isotropic directly by computing, for any
X,Yegandany pe pu'(0),
®, (lejf,Y;)EqE ) = hamiltonian function for [Y*,X*] at p
= hamiltonian function for [¥,X]* at p
= ulPH(p) =0,

2. Lemma 23.3, Ler (V,0) be a symplectic vector space. Suppose thar I is an
isotropic subspace, that is, ®|; = 0. Then @ induces a canonical symplectic form
Qonl®/L

Proof. Let u,v € I, and [u], [v] € I”/1. Define Q([u],[v]) = o(u,v).
o 0 is well-defined:

ou+iv+ ) =o(yv)+o(,)+oi,v+ol ), Yijel.
0 0 0
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¢ () isnondegenerate:
Suppose that 1 € I has @ (s, v
Thenu e (I®)* =1 1ie., [u] =

) =0, forall v I?,
0.

O

3. Theorem 23.4, If a compact Lie group G acts freely on a manifold M, then M/ G
is a manifold and the map #: M — M/Gis a principal G-bundle.

Proof. We will first show that, for any p € M, the G-orbit through p is a compact
embedded submanifold of M diffeomorphic to G.

Since the action is smooth, the evaluation mapev: Gx M — M, ev(g,p) =g p,
is smooth. Let ev, : G — M be defined by ev,(g) = g p. The map ev, provides
the embedding we seek:

The image of ev, is the G-orbit through p. Injectivity of ev, follows from the
action of & being free. The map ev, is proper because, if A is a compact, hence
closed, subset of M, then its inverse image (ev,) '(A), being a closed subset
of the compact Lie group &, is also compact. It remains to show that ev,, is an
immersion. For X < g ~ T,(, we have

devy).(X) =0 + X; =0 + X =0,

as the action is free. We conclude that d(ev,), is injective. At any other point
g€ G, for X € T,G, we have

d(ev,),(X) =0 = d(ev,oR,), o (dR,-1),(X) =0,

where R, : G — G isright multiplication by g. But ev, o R, = ev,., has an injec-
tive differential at e, and (dR,-1), is an isomorphism. It follows that d(ev,,), is
always injective.

Exercise. Show that, even if the action is not free, the G-orbit through p is a
compact embedded submanifold of M. In that case, the orbit is diffeomorphic to
the quotient of G by the isotropy of p: O, >~ G/G,. &

Let 8 be a transverse section to (7, at p; this is called a slice. Choose a coordinate
system xy,...,x, centered at p such that

Op~Gixy =...=x=0
8 Xy = ... =X, = 0.

Let S; = SN B:({0,R") where B;(0,[R") is the ball of radius € centered at 0 in
R*. Let n: Gx S — M, n1(g,s) =g-5. Apply the following equivariant tubular
neighborhood theorem.

Theorem 23.5. (Slice Theorem) Let G be a compact Lie group acting on a man-
ifold M such thar G acts freely at p € M. For sufficiently small e, 1 :Gx 8: = M
maps G x 8¢ diffeomorphically onto a G-invariant neighborhood U of the G-orbit
through p.
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The proof of this slice theorem is sketched further below.

Corollary 23.6. If the action of G is free ar p, then the action is free on .
Corollary 23.7. The ser of points where G acts freely is open.

Corollary 23.8. The set Gx Sg~id is G-invarianr. Hence, the quorient U /G ~ §¢
is sHOOH.

Conclusion of the proof that M/G is a manifold and 7. M — M/G is a smooth
fiber map.

For pe M. let g = m(p) € M/G. Choose a G-invariant neighborhood & of p asin
the slice theorem: I{ ~ G x § (where § = S, for an appropriate £). Then 7{l{) =
U/G=:YV is an open neighborhood of g in M /G. By the slice theorem, § = Vis a
homeomorphism. We will use such neighborhoods V' as charts on M/ G. To show
that the transition functions associated with these charts are smooth, consider two
G-invariant open sets 141,14y in M and corresponding slices 51, Sz of the G-action.
Then Sj2 = 8 Nz, 851 = 8> MU are both slices for the G-action on U] Mif;. To
compute the transition map Sy2 — 87, consider the diagram

812 = idx 82 — Gx 82

8oy Zhidx 821 = GX 8y
Then the composition
S12 ‘—bf/{l QL{Z ti Sm LSZl

is smooth.
Finally, we need to show that 7 : M — M/G is a smooth fiber map. For p € M,
g = x(p), choose a G-invariant neighborhood I{ of the G-orbit through p of the
formn: Gx § = U. Then V =4 /G ~ § is the corresponding neighborhood of
ginM/G:

M2 U 2 GxS ~GxV

Iz !
M/GD VY — V

Since the projection on the right is smooth, & is smooth.

Exercise. Check that the transition functions for the bundle defined by & are
smooth. &

O

Sketch for the proof of the slice theorem. We need to show that, for £ suffi-
ciently small, 1 : G x S — U is a diffeomorphism where I C M is a G-invariant
neighborhood of the G-orbit through p. Show that:
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() dniqg,p) is bijective.

(b) Let G act on G x § by the product of its left action on G and trivial action on
8. Then 11 : G x § — M is G-equivariant.

(c) dr is bijective at all peints of G x {p}. This follows from (a) and (b).

(d) Theset G x {p} is compact, and 17 : G x § — M is injective on G x {p} with
41 bijective at all these points. By the implicit function theorem, there is a
neighborhood Uy of G x {p} in G x S such that 11 maps 44 diffeomorphically
onto a neighborhood If of the G-orbit through p.

(e) The sets G x Sg, varying &, form a neighborhood base for G x {p} in G x S.
So in (d) we may take Up = G x S;.

23.3 Proof of the Marsden-Weinstein-Meyer Theorem

Since

G acts freely on p=1(0) = dp,, is surjective for all p € p=1(0)
= 0 is a regular value
= g 1(0) is a submanifold of codimension = dimG

for the first two parts of the Marsden-Weinstein-Meyer theorem it is enough to apply
the third ingredient from Section 23.2 to the free action of G on g~ (D).

At p e p 1 (0) the tangent space to the orbit 1,0, is an isotropic subspace of the
symplectic vector space (T,M, 0,), i.e., T,0, C (T,0,)°.

(T,0,)® =kerdu, = T,u~ ' (0) .

The lemma (second ingredient) gives a canonical symplectic structure on the
quotient T,p=1(0)/T,0,. The point [p] € Mieq = 4~ (0)/G has tangent space
Ty Meeq ~ T 1 (0)/T,O)p. Thus the lemma defines a nondegenerate 2-form @reg
on M..4. This is well-defined because o is G-invariant.

By construction i*® = 1*ay.g where

p o) oM
i3
Mred

Hence, m¥*d ey = d ™ g = di" 0 = 1"dw = 0. The closedness of @yeq follows from
the injectivity of z*. 0

Remark. Suppose that another Lie group H acts on (M, ®) in a hamiltonian way
with moment map ¢ : M — h*. If the H-action commutes with the G-action, and if
¢ is G-invariant, then M.y inherits a hamiltonian action of H, with moment map

Ored * Mreg — b satisfying fregom = P o &



Chapter 24
Reduction

24.1 Noether Principle

Let (M, »,G, 1) be a hamiltonian G-space.

Theorem 24.1. (Noether) A function [ M — R is G-invariant if and only if U is
constant on the wajectories of the hamiltonian vector field of f.

Proof. Let vy be the hamiltonian vector fleld of f. Let X € g and p* = (u,X):
M — R. Wehave
Evfp,X = zvfdp,x =1, g O
= —Ixhly, @ = —ixrd f
= 7Lx#f = 0

because f is G-invariant. |

Definition 24.2. A G-invariant function f: M — R is called an infegral of motion
of (M,,G,u). If u is constant on the trajectories of a hamiltonian vector field vy,
then the corresponding one-parameter group of diffeomorphisms {exprv, |7 € R}
is called a symmetry of (M, ®,G, ).

The Noether principle asserts that there is a one-to-one correspondence between
symmetries and integrals of motion.

24.2 Elementary Theory of Reduction

Finding a symmetry for a 2m-dimensional mechanical problem may reduce it
to a (2n — 2)-dimensional problem as follows: an integral of motion f for a
2n-dimensional hamiltonian system (M,®,H) may enable us to understand the
trajectories of this system in terms of the trajectories of a (2r — 2)-dimensional

173
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hamiltonian system (Mred, @red, Hred). To make this precise, we will describe this
process locally. Suppose that I is an open set in M with Darboux coardinates
X1, X, 8,000, &, such that £ = &, for this chart, and write H in these coordi-
nates: H = H(xqy,...,%,,&,...,&). Then

the trajectories of vy lie on the
hyperplane &, = constant

{é,,H} =0= — 8
— H= H(xl,. .. ,x,,_l,‘g'l,. . .,g,-,_).

£, is an integral of motion =

If we set &, = ¢, the motion of the system on this hyperplane is described by the
following Hamilton equations:

dxy JH

? - a_gl(xl,...,xnflgél,...,é,fl,c)
dx.;f—l - aH

. 9&_4 (e 1,8,0, 860 1,0)
d&  oH

? - _a_xl ('xl’“‘?x.’fflaélgu-,éu—l,c)
déf‘l*l - BH

df - _ax_ufl (xl"“,x”_l’él"“’én_l7c)
dy,  JH

o 9E,
&, _ IH _

dt dwm,

The reduced phase space is

ured = {(xl,...,x,,,l,él,...,@,,1) = sz'72|
(x4, .., &m1, 0) € U Tor some a}.

The reduced hamiltonian is

Hiad i Ured — R )
Hred(xl,...,I”fl,él,...,éf,fl) :H(Il,...,I”fl,él,...,é,,fl,c‘).

In order to find the trajectories of the original system on the hypersurface £, = ¢,
we look for the trajectories

* (I);---:xnfl (I),él(t),...,é,,,l(l‘)
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of the reduced system on Ueq. We integrate the equation

%(f) = g—g(x1 (I),...,x”_l (?-‘),51(1),---,5”_1(1‘),0)

to obtain the original trajectories

[ 30t) = xa0) + 5 22 (..)dr
| &) =c

24.3 Reduction for Product Groups

Let Gy and (7 be compact connected Lie groups and let & = Gy x (2. Then
g=m@gp ad g =g,
Suppose that (M, @,G, ) is a hamiltonian G-space with moment map
wiM—gidg;.

Write y = (yi, W) where vw; : M — gf fori = 1,2. The fact that y is equivariant
implies that vy is invariant under G, and ye is invariant under G. Now reduce
(M, o) with respect to the Gy-action. Let

Zi =y (0).

Assume that Gy acts freely on Zy. Let My = 73 /Gy be the reduced space and let ay
be the corresponding reduced symplectic form. The action of G2 on Z; commutes
with the G-action. Since Go preserves @, it follows that G acts symplectically
on (My,my). Since () preserves y», Gy also preserves yaoty 7 — g5, where
11 : Zy — M is inclusion. Thus y» o 1 is constant on fibers of Z; " pm 1. We conclude
that there exists a smooth map pz : My — g suchthat gz 0 py = Yoy,

Exercise. Show that:

(a) the map ys is a moment map for the action of G; on (M, a_)l), and
(b) if G acts freely on w~'(0,0), then Gy acts freely on p3'(0), and there is a
natural symplectomorphism

11 (0)/Gr = v (0,0)/G.
<

This technique of performing reduction with respect to one factor of a product
group at a time is called reduction in stages. It may be extended to reduction by a
normal subgroup H C & and by the corresponding quotient group G/H.
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24.4 Reduction at Other Levels

Suppose that a compact Lie group & acts on a symplectic manifold (M,®) in a
hamiltonian way with moment map tt : M — g* Let £ € g*.

To reduce at the level & of y, we need g~ '(&) to be preserved by G, or else
take the G-orbit of 11 {), or else take the quotient by the maximal subgroup of G
which preserves g~ (&).

Since g is equivariant,

G preserves (1! () <= G preserves &
= Ad;{ =8, Vge G

Of course the level 0 is always preserved. Also, when G is a torus, any level is
preserved and reduction at & for the moment map g, is equivalent to reduction at 0
for a shifted moment map ¢ : M — g*, ¢ (p) ;== u(p) —£.

Let @ be a coadjoint arbit in g* equipped with the canonical symplectic form
{also know as the Kestant-Kirillov symplectic form or the Lie-Poisson symplectic
form) o¢ defined in Homework 17. Let O~ be the orbit (? equipped with —@@. The
natural product action of G on M x @ is hamiltonian with moment map po(p, &)=
i{p) — &. If the Marsden-Weinstein-Meyer hypothesis is satisfied for M x 7, then
one obtains a reduced space with respect to the coadjoint orbit O.

24.5 Orbifolds

Example. Let G = T" be an n-torus. For any & € (t")*, u ' (&) is preserved by
the T™-action. Suppose that £ is a regular value of y. (By Sard’s theorem, the sin-
gular values of g form a set of measure zero.) Then ¢ ~!(E) is a submanifold of
codimension . Note that

£ regular = d\t, is surjective atall p = ()
= g, =0 forall pe u (&)
= the stabilizers on p ! (&) are finite
= p~1(E)/G is an orbifold [91, 92].

Let G, be the stabilizer of p. By the slice theorem (Lecture 23), 1~ (§)/G is
modeled by S/G,, where 8 is a G p-invariant disk in g=! (&) through p and trans-
verse to . Hence, locally £~ *(£)/G looks indeed like R divided by a finite
group action. &

Example. Consider the $!-action on €% given by e’ . (z1,z2) = (¢*%zy,e® ) for
some fixed integer k > 2. This is hamiltonian with moment map

. C2—>R

(z1,22) — —L(k|z1 | +]z2

2y,




24.5 Orbifolds 177

Any & < 01s aregular value and g~ (&) is a 3-dimensional ellipsoid. The stabilizer
of (z1,22) € N is {1} if 73 # 0, and is 7y = {e"%‘-e 12=0,1,... k1) if

z2 = 0. The reduced space u~!(E)/S" is called a teardrop orbifold or conehéad;
it has one cone {also known as a dunce cap) singularity of type & (with cone

angle %). &

Example. Let S' act on T2 by e . (z1,22) = (¢™z;,e%?z3) for some integers

k,£ > 2. Suppose that k and £ are relatively prime. Then
(z1,0) has stabilizer Zy (forzy #0),
(0,z2) has stabilizer 7y (for zz2 # 0,
(z1,z2) has stabilizer {1} (for zy,z2 #£0).

The quotient g1 (&)/5" is called a foothall arbifold. It has two cone singularities,
one of type k and ancther of type £. &

Example. More generally, the reduced spaces of 8! acting on C" by
P A(Zyy o) = (eiklezl,...,ejk”ez,,),

are called weighted (or twisted) projective spaces. &
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Homework 18: Spherical Pendulum

This set of problems is from [53].

The spherical pendulum is a mechanical system consisting of a massless rigid
rod of length [, fixed at one end, whereas the other end has a plumb bob of mass m,
which may oscillate freely in all directions. Assume that the force of gravity is con-
stant pointing vertically downwards, and that this is the only external force acting
on this system.

Let ,8 (0 < ¢ < m, 0 < 8 < 2x) be spherical coordinates for the bob. For
simplicity assume that m=1=1.

1. Let 17,& be the coordinates along the fibers of T#S? induced by the spherical
coordinates ¢, 8 on $%. Show that the function H : T*$? — R given by
12, &
H(‘Pﬁﬂ?a@) - 5 (ﬂ + (S]Il(p)2> +coseg,
is an appropriate hamiltonian function to describe the spherical pendulum.

2. Compute the critical points of the function H. Show that, on $2, there are exactly
two critical points: s (where H has a minimum) and #. These points are called
the stable and unstable points of H, respectively. Justify this terminology, i.e.,
show that a trajectory whose initial point is close to s stays close to s forever, and
show that this is not the case for . What is happening physically?

3. Show that the group of rotations about the vertical axis is a group of symmetries
of the spherical pendulum.

Show that, in the coordinates above, the integral of motion associated with these
symmetries is the function

J(e.0,m,8)=C.

Give a more coordinate-independent description of J, one that makes sense also
on the cotangent fibers above the North and South poles.
4. Locate all points p = T*5% where dH » and dJ,, are linearly dependent:

(a) Clearly, the two critical points s and # belong to this set. Show that these are
the only two points where dH, = dJ, = 0.

(b) Show that, if x € § is in the southern hemisphere (x3 < 0), then there exist
exactly two points, p1 = (x,1,&) and p_ = (x,—n,—E&), in the cotangent
fiber above x where dH,, and dJ,, are linearly dependent.

(c) Show that 4H, and 4/, are linearly dependent along the trajectory of the
hamiltonian vector field of H through p, .

Conclude that this trajectory is also a trajectory of the hamiltonian vector
field of J, and, hence, that its projection onto 52 is a latitudinal circle (of the
form x3 = constant).

Show that the projection of the trajectory through p_ is the same latitudinal
circle traced in the opposite direction.
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5.

Show that any nonzero value j is a regular value of J, and that 8! acts freely on
the level set J = j. What happens on the cotangent fibers above the North and
South poles?

For j +# 0 describe the reduced system and sketch the level curves of the reduced
hamiltonian.

Show that the integral curves of the original system on the level set J = j can be
obtained from those of the reduced system by “quadrature”, in other words, by a
simple integration.

Show that the reduced system for j =% 0 has exactly one equilibrium point. Show
that the corresponding relative equilibrium for the original system is one of the
horizontal curves in exercise 4.

. The energy-momentum map is the map (H,J) : T*S? — k2. Show that, if j £0,

the level set (H,J) = (h, j) of the energy-momentum map is either a circle (in
which case it is one of the horizontal curves in exercise 4), or a two-torus. Show
that the projection onto the configuration space of the two-torus is an annular
region on 8.



Part X
Moment Maps Revisited

Moment maps and symplectic reduction have been finding infinite-dimensional
incarnations with amazing consequences for differential geometry. Lecture 25
sketches the symplectic approach of Atiyah and Bott to Yang-Mills theory.

Lecture 27 describes the convexity of the image of a torus moment map, one of
the most striking geometric characteristics of moment maps.



Chapter 25
Moment Map in Gauge Theory

25.1 Connections on a Principal Bundle

Let & be a Lie group and B a manifold.

Definition 25.1. A principal G-bundle over B is a manifold P with a smooth map
% . P — B satisfying the following conditions:

(a) 7 acts freely on P (on the left),

(b} B is the orbit space for this action and 7 is the point-orbit projection, and

(c) there is an open covering of B, such that, to each set I{ in that covering corre-
sponds a map @ &) — U x G with

@u(p) = (w(p),sup)) and su(g-p) =g sulp), Ypexm '(U).

The G-valued maps sy, are determined by the corresponding ¢;,;. Condition {¢) is
called the property of being locally trivial.

If P with map m: P — B is a principal G-bundle over B, then the manifold B is
called the base, the manifold P is called the total space, the Lie group  is called
the structure group, and the map 7 is called the projection. This principal bundle
is also represented by the following diagram:

G——P

B

Example. Let P be the 3-sphere regarded as unit vectors in C%:

P=8={(z1,22) € C*: |z)|* +|z2|* = 1}.

71

72

183
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Let G be the circle group, where ¢ = S acts on §? by complex multiplication,
o o
(z1,22) — (e"zy,€z2).

Then the quotient space B is the first complex projective space, that is, the two-
sphere. This data forms a principal §'-bundle, known as the Hopf fibration:

Sl‘_—b-S?’
T

32

An action v G — Diff (P) induces an infinitesimal action

dy: g — x(P)
X — X# — vector field generated by the
one-parameter group {exprX(e) [r R} .

From now on, fix a basis Xj,..., X, of g.

Let P be a principal G-bundle over 5. Since the G-action is free, the vector fields
Xf bees ,Xf are linearly independent at each p € P. The vertical bundle V is the rank
k subbundle of TP generated by X},..., X}

Exercise. Check that the vertical bundle V is the set of vectors tangent to P which
lie in the kernel of the derivative of the bundle projection z. (This shows that V is
independent of the choice of basis for g.) &

Definition 25.2. A (Ekresmann) connection on a principal bundle P is a choice of
a splitting

TP=V&H,
where H is a G-invariant subbundle of TP complementary to the vertical bundle V.
The bundle H is called the horizontal bundle.

25.2 Connection and Curvature Forms

A connection on a principal bundle P may be equivalently described in terms of
1-forms.

Definition 25.3. A connection form on a principal bundle P is a Lie-algebra-valued
1-form

A=V A2X e Q' (P)ag

k
=1

E
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such that:

{a)A is G-invariant, with respect to the product action of G on Q! (P) (induced by
the action on P) and on g (the adjoint representation), and
{b)A is vertical, in the sense that iy2A =X forany X < g.

Exercise. Show that a connection TP = V & H determines a connection form A and
vice-versa by the formula

H=kerA={veTP|1A=0}L

@

Given a commection on P, the splitting TP =V @& H induces the following split-
tings for bundles:

™p =V*qeH*

AIT*P = (A*V*) @ (V¥ AHY) @ (APHY)

and for their sections:

Q! (P) = Q;{rert(P) 69Ql%mriz(P)

mix horiz

QHP) = Qo (P) 000 (P) © Qf 1, (P)

The corresponding connection form A is in QL. © g. Its exterior derivative dA is in
‘Qz (P) @g= (Qgeﬂ: & ‘lemx & ‘Qll;oriz) @4,
and thus decomposes into three components,

dA = (dA)Vert + (dA)mix + (dA)horiz .

Exercise. Check that:

(a) ([dA)vert (X, ¥) = [X,¥], €., (dA)yer = 5 L ¢, A A AR ©X;, where the ¢}, s are
the structure constants of the Lie algeb;"a) with respect to the chosen basis, and
defined by [X,. X, = . Xis

iLm
(5 (dA) iz = 0.
&

According to the previous exercise, the relevance of dA may come only from its
horizontal component.
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Definition 25.4. The curvature form of a connection is the horizontal component
of its connection form. Le., if A is the connection form, then

curv A = (dA)horiz € leloriz @g.

Definition 25.5. A connection is called flat if its curvature is zero.

25.3 Symplectic Structure on the Space of Connections

Let P be a principal G-bundle over 5. If A is a connection form on P, and if a <
Qllmﬂz @ g is G-invariant for the product action, then it is easy to check that A + a is
also a connection form on P. Reciprocally, any two connection forms on P differ by
ana &€ (Q}mriz & g)G. ‘We conclude that the set .4 of all connections on the principal
G-bundle P is an affine space modeled on the linear space

0= (Qllloriz @ E[)G :

Now let P be a principal G-bundle over a compact oriented 2-dimensional rie-
mannian manifold B (for instance, B is a Riemann surface). Suppose that the group
( is compact or semisimple. Atiyah and Bott [7] noticed that the corresponding
space .4 of all connections may be treated as an infinite-dimensional symplectic
manifold. This will require choosing a G-invariant inner product {-,-) on g, which
always exists, either by averaging any inner product when & is compact, or by using
the Killing form on semisimple groups.

Since .4 is an affine space, its tangent space at any point A is identified with
the model linear space a. With respect to a basis X;,...,X; for the Lie algebra g,
elements a,b < a' are written

a:Ea,'@X,- and b:Zb,@X;.

If we wedge @ and b, and then integrate over B using the riemannian volume, we
obtain a real number:

o axa— (QF.(P)"~0B) — R

(a,b) — Za;ﬁ\l}j<X,§,Xj> — B[Ea, /\bj(X,f,Xj).
L %4

We have used that the pullback 7* : Q*(B) — Q*(P) is an isomorphism onto its
. 2 G
lmage (Qhoriz(P)) ’

Exercise. Show that if w(a,&) =0 for all b € g, then g must be zero. &

! The choice of symbols is in honor of Ativah and Bott!
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The map @ is nondegenerate, skew-symmetric, bilinear and constant in the sense
that it does not depend on the base point A. Therefore, it has the right to be called
a symplectic form on .4, so the pair (4,®) is an infinite-dimensional symplectic
manifold.

25.4 Action of the Gauge Group

Let P be a principal G-bundle over 5. A diffeomorphism f: P — P commuting with
the G-action determines a diffeomorphism foggic : 8 — B by projection.

Definition 25.6. A diffeomorphism f : P — P commuting with the G-action is a
gauge transformation if the induced figc is the identity. The gauge group of P is
the group G of all gauge transformations of P.

The derivative of an f = G takes a connection TP =V @ H to another cormection
TP=V & Hy, and thus induces an action of G in the space .4 of all connections.
Recall that A has a symplectic form . Atiyah and Bott [7] noticed that the action
of G on (A, @) is hamiltonian, where the moment map (appropriately interpreted) is
the map

oA -— (Qz(P)QZ)g)G

A —— curv A,

i.e., the moment map “is” the curvature! We will describe this construction in detail
for the case of circle bundles in the next section.

Remark. The reduced space at level zero
M=p~'0)/G

is the space of flat connections modulo gauge equivalerice, known as the moduli
space of flat connections. It turns out that A4 is a finite-dimensional symplectic
orbifold. &

25.5 Case of Circle Bundles

What does the Atiyah-Bott construction of the previous section look like for the case
when G = §19
St P
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Let v be the generator of the §!-action on P, corresponding to the basis 1 of g ~ R.
A connection form on P is a usual 1-form A € Q!(P) such that

L,A=0 and 1A=1.

If we fix one particular connection Ag, then any other connection is of the form A =
Ap+aforsomeacu= (Qf . (P)) © — Q!(B). The symplectic form on a = Q! (B)
is simply

®:axa— R

(a,by — | aib.
€QI(R)

The gauge group is G =Maps(B, §!), because a gauge transformation is multiplica-
tion by some element of ' over each point in B:

0 G — Diff(P)

h:B—S8'—— ¢: P—P
p— him(p))-p

The Lie algebra of G is
Lie G =Maps(B,R) =C"(B) .

Its dual space is
(Lie G)* = Q*(B) ,

where the duality is provided by integration over 8

C*(B) x Q*B) — R

(1, B) — thﬁ .

{it is topological or smooth duality, as opposed to algebraic duality) .
The gauge group acts on the space of all connections by

G — DIff(A)

h(x) = e — (A A—7*d6)
S’

€a

Exercise. Check the previous assertion about the action on connections.
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Hint: First deal with the case where P = S' x B is a trivial bundle, in which case
heGactson P by

dn (0,0 — 4+ 8(x),x),

and where every connection can be written A = dr 4+ 3, with 5 = Q'(B). A gavge
transformation # £ G acts on .4 by

A pr 1 (A)

The infinitesimal action of G on .4 is
do: LieG — y(A)
X —— X* = vector field described by the transformation
A — A —dX )
[—
€Ql(B)=a

so that X* = —dX.
Finally, we will check that

po A — (Lie G)* = Q*(B)
Ar—curvA

is indeed a moment map for the action of the gauge group on A.
Exercise. Check that in this case:
(@) cuvA=dA € (Qf,(P)) =QXB),
(b) y is G-invariant.
&

The previous exercise takes care of the equivariance condition, since the action
of G on Q*(B) is trivial.

Take any X € Lie G = C(B). We need to check that

du*(a) = o(X*,a) va e Q(B). (*)
As for the left-hand side of (x), the map u¥,
ufi A —R
A { X , dA ):[X-dA,
—— - Jr

<C=(B) 69\2/(3)

is linear in A. Consequently,

du¥:a — R
aF»/X-da.
JB
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As for the right-hand side of (%), by definition of @, we have

m(X#,a):/X#-a:—/dX-a.
/B /B

But, by Stokes theorem, the last integral is

ﬁ/dX-a:/X-da,
JB JB

so we are done in proving that g is the moment map.
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Homework 19: Examples of Moment Maps

1. Suppose that a Lie group & acts in a hamiltonian way on two symplectic mani-
folds (M;, w;), j = 1,2, with moment maps p; : M; — g*. Prove that the diago-
nal action of G on My X M, is hamiltonian with moment map g : My x My — g*
given by

w(p1,p2) = pi(p1) +ta(p2), forp; e M; .

2. Let T" ={(r1,...,t,) € C" : |r;] =1, for all j } be atorus acting on " by

('tl yeee :'tﬂ) ' (Zl e :ZH) - (tflzla s ,,t::”z”) ,

where ki, ...k, € 7Z are fixed. Check that this action is hamiltonian with moment
map g C" — (t")* ~ R* given by

- |2 -
L1 ge - ;kn. L

3 ( + constant ).

H(Zl,---,zu) :7%(’]{1

3. The vector field X* generated by X & g for the coadjoint representation of a Lie
group G on g* satisfies <Xf,Y} = {&,[Y,X]}, for any ¥ € g. Equip the coadjoint
orbits with the canonical symplectic forms. Show that, for each & € g*, the coad-
joint action on the orbit G- £ is hamiltonian with moment map the inclusion map:

wiG-§—g".

4. Consider the natural action of U(n) on (C", @p). Show that this action is hamil-
tonian with moment map gt : C"* — u{n) given by

u(z) = 522",

where we identify the Lie algebra u(n) withits dual via the inner product (4,B) =
trace(A*B).
Hint: Denote the elements of U{n) in terms of real and imaginary parts g = b +ik.

i h
Then g acts on R¥ by the linear symplectomorphism ( th ) The Lie algebra

u(n) is the set of skew-hermitian matrices ¥ =V +iW where V = —V? ¢ R and
W =W" ¢ R*%, Show that the infinitesimal action is generated by the hamiltonian
functions

pH@) = 3w Wa) + nVa) 1 (W)
where z=x+iy, x,y € R* and (-, -} is the standard inner prodoct. Show that
u*(z) = $iz* Xz = Litrace(za*X) .
Check that ¢t is equivariant.

5. Consider the natural action of U(k) on the space (C**", ag) of complex (k x n)-
matrices. Identify the Lie algebra u{k) with its dual via the inner product (4, B) =
trace(A*B). Prove that a moment map for this action is given by
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p(A) = {AA* 8 for A e OB

{The choice of the constant 4 s for convenience in Homework 20.)
pi

Hint: Exercises 1 and 4.

6. Consider the U{n)-action by conjugation on the space ((C”z,wo) of complex
(n x m)-matrices. Show that a moment map for this action is given by

1(A) = 44,47

Hint: Previous exewise and its “transpose” version.



Chapter 26
Existence and Uniqueness of Moment Maps

26.1 Lie Algebras of Vector Fields

Let (M, @) be a symplectic manifold and v & ¥ (M) a vector field on M.

v is symplectic <= 1, @ is closed,
vishamiltonian <= 1, @ is exact.

The spaces

¥*Y"PH (M) = symplectic vector fields on M,
#M*™ (M) = hamiltonian vector fields on M.

are Lie algebras for the Lie bracket of vector fields. C* (M) is a Lie algebra for the
Poisson bracket, {f,g} = ®(vy,v,). H' (M;R) and R are regarded as Lie algebras
for the trivial bracket. We have two exact sequences of Lie algebras:

0 — ym(a) — ¥l (M) — H'(M;R) — 0
v i— [1,0]

0— R = =M — yan —o
fr—vr.

In particular, if H' (M;R) = 0, then "™ (M) = ¥l (M).
Let & be a connected Lie group. A symplectic action y : G — Sympl(M, ®)
induces an infinitesimal action

dy: g — ¥ (M)

X — X# — vector field generated by the
one-parameter group {exprX(e) [r R} .

193
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Exercise. Check that the map dy is a Lie algebra anti-homomorphism. &

The action v is hamiltonian if and only if there is a Lie algebra homomorphism
p* g — C°(M) lifting dy, i.e., making the following diagram commute.

- 2 ()

= (M)
\ /
g

The map u* is then called a comoment map (defined in Lecture 22).

Existence of yu* <= Existence of u
comoment map moment map

Lie algebra homomorphism +— equivariance

26.2 Lie Algebra Cohomology

Let g be a Lie algebra, and

C* = A*g* = k-cochains on g
= alternating k-linear maps gx -~ xg— R.
e
3

Define a linear operator & : € — C¥1 by

SolXo,... Xe) = ¥ (~1) (X X Koy Koo Ko Ke)

by
Exercise. Check that §2 =0, O

The Lie algebra cohomology groups (or Chevalley cohomology groups) of g

are the cohomology groups of the complex 0 NS A

kerd :Ck . k!

koo R
el = e — -

Theorem 26.1. If g is the Lie algebra of a compact connected Lie group G, then
L k
H (ﬂ, R) = HieRham (G) .

Proof. Exercise. Hint: by averaging show that the de Rham cohomology can be
computed from the subcomplex of G-invariant forms. |
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Meaning of H'(g; ) and H*(g; R):

e An element of C' = g* is a linear functional on g. If ¢ & g, then 8¢(Xy,X,) =
—2([X0,X1]). The commutator ideal of g is

[g,g] := {linear combinations of [X,¥] for any X,Y € g} .
Since 8¢ =0 if and only if ¢ vanishes on [g,g], we conclude that
H' (g R) = [o,9°

where [g, g]° C g* is the annihilator of [g,g].
e Anelement of C? is an alternating bilinear map c: g x g — R.

8c(Xo,X1,X2) = —c([Xo,X1],X2) + c([X0,Xa], X1) —c{[X1,X2], X0) .
If ¢ = 8B for some b = C, then

o(Xo,X1) = (8b)(Xo, X1) = —b([Xo, Xi] ).

26.3 Existence of Moment Maps

Theorem 26.2. If ' (¢; ) = H*(g,R) = O, then any symplectic G-action. is hamil-
tonian.

Proof. Let w: G — Sympl(M, @) be a symplectic action of  on a symplectic man-
ifold (M, ). Since

H'(gR) =0 < [g.0] =g
and since commutators of symplectic vector fields are hamiltonian, we have
dy:g=[g,0] — x"" (M),

The action y is hamiltonian if and only if there is a Lie algebra homomorphism
p* 1 g — C*(M) such that the following diagram commutes.

R - )

= (M)
g
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We first take an arbitrary vector space lift T: g — C* (M) making the diagram com-
mute, i.e., for each basis vector X < g, we choose

T(X) =7 € C™(M)  suchthat  vex) =dw(X).
The map X — ¥ may not be a Lie algebra homomorphism. By construction, 7l%:!
is a hamiltonian function for [X,¥], and (as computed in Lecture 16) {7%,7¥} is

a hamiltonian function for —[X* Y#]. Since [X,¥]# = —[X* ¥¥, the corresponding
hamiltonian functions must differ by a constant:

Y (X, V) eR.

By the Jacobi identity, 8¢ = 0. Since H?(g; R) = 0, there is b < g* satisfying ¢ = 8b,
c(X,¥Y)=—b([X,Y]). We define
urg— C*(M)
X— ' X) =" +pX) = p* .

Now pt* is a Lie algebra homomorphism:

pHx ) = 1 e(xy) = {75 7 = ('t}

So when is H! (g; ) = H*(g; ) = 0?
A compact Lie group G is semisimple if g = [g,g].

Examples. The unitary group U(#) is not semisimple because the multiples of the
identity, 51.1d, form a nontrivial center; at the level of the Lie algebra, this corre-
sponds to the 1-dimensional subspace It - Id of scalar matrices which are not com-
mutators since they are not traceless.

Any direct product of the other compact classical groups SU(n), SO(n) and
Sp(r) is semisimple (n > 1). Any commutative Lie group is not semisimple. &

Theorem 26.3. (Whitehead Lemmas) Ler G be a compact Lie group.
Gis semisimple <= HY(g:R)=H*(gR) =0.

A proof can be found in [67, pages 93-95].

Corollary 26.4. If G is semisimple, then any symplectic G-action is hamiltonian.

26.4 Uniqueness of Moment Maps

Let G be a compact connected Lie group.

Theorem 26.5. If H' (g:R) = 0, then moment maps for hamiltonian G-actions are
unique.
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Proof. Suppose that g and {3 are two comoment maps for an action

C=(M) 2 (M)

Foreach X € g, yi* and pf are both hamiltonian functions for X, thus uf — uf =
c(X) is locally constant. This defines ¢ € g%, X — o(X).

Since yff, u3 are Lie algebra homomorphisms, we have ¢([X,¥]) =0, VX,Y € g,
ie,ce[g,g”={0}. Hence, i} = 1. o

Corollary of this proof. In general, if 4 : M — g* is a moment map, then given any
c < [g,q)% 1 = W+ cis another moment map.

In other words, moment maps are unigue up to elements of the dual of the Lie
algebra which annihilate the commurator ideal.

The two extreme cases are:

G semisimple: any symplectic action is hamiltonian,
moment maps are unigue.

G commutative: symplectic actions may not be hamiltonian,
momernt maps are unique up to any constant ¢ € g*.

Example. The circle action on (T?, & = d8; A d8,) by rotations in the 8, direction
has vector field X* = aiel; this is a symplectic action but is not hamiltonian. &
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Homework 20: Examples of Reduction

1. For the natural action of U(k) on C** with moment map computed in exer-
cise 5 of Homework 19, we have g1 (0) = {A € C** | AA* = Id}. Show that the
quotient

1 0)/UK) = G(kn)

is the grassmannian of k-planes in C*.

2. Consider the §'-action on (R¥72, @) which, under the usual identification of
R¥2 with C"t1, corresponds to multiplication by e . This action is hamiltonian
with a moment map g : C**! — R given by

Prove that the reduction u='(0)/S"' is CP* with the Fubini-Study symplectic
form e, = @y
Hint: Letpr: Y [0} — CP” denote the standard projection. Check that
prtay = $9dlog(2]) .

Prove that this form has the same restriction to 571 as @,

3. Show that the natural actions of T**! and U(n + 1) on (CP*, @) are hamil-
tonian, and find formulas for their moment maps.

Hint: Previous exemwise and exercises 2 and 4 of Homework 19.



Chapter 27
Convexity

27.1 Convexity Theorem

From now on, we will concentrate on actions of a torus G = T" = R /7™,

Theorem 27.1. (Ativah [6], Guillemin-Sternberg [537]) Ler (M, @) be a compact
connected symplectic manifold, and ler T be an m-torus. Suppose that y . T" —
Sympl(M,®) is a hamiltonian action with moment map L. M — R™. Then:

1. the levels of 1t are connecred;
2. the image of U is convex;
3. the image of W is the convex hull of the images of the fixed points of the action.

The image 1 (M) of the moment map is hence called the moment polytope.

Proof. This proof (due to Atiyah) involves induction over s = dim T*". Consider the
statements:

A,y “the levels of y are connected, for any T"-action;”
Byt “the image of y is convex, for any T™-action.”

Then

(1) < A, holds for all m,
(2) < B, holds for all 1.

A is a non-trivial result in Morse theory.

Ay | = Ay, (induction step) is in Homework 21.
By is trivial because in R connectedness is convexity.
Ay = By, is proved below.

189
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Choose an injective matrix A € 770"~ Consider the action of an (m—1)-

subtorus _
yy T s Sympl(M, @)

8 — Y.

Exercise. The action vy is hamiltonian with moment map pq = A’ : M — B* L,

&

Given any po € iy (£),

pe (&) <= A'u(p) =& =A'u(po)

so that _
ui(E) ={pe M| u(p)— p(po) ckerA'} .

By the first part (statement A,,_), ,u;l(é) is connected. Therefore, if we connect
poto p1 by apath p, in p; ' (§), we obtain a path p1(p:) — p(po) inkerA’. But ker A’
is 1-dimensional. Hence, p(p,) must go through any convex combination of g{(po)
and p(py), which shows that any point on the line segment from 1(pg) to p(py)
must be in g (M):

(1 —nppo) +ru(pr) € u(M), 0<r<1.

Any pg,p1 € M can be approximated arbitrarily closely by points pg and p’1
with p(p)) — 1 (p),) € kerA” for some injective matrix A e 770"~ 1)_ Taking limits
Ph — po. P\ — p1, we obtain that t2(M) is convex.!

To prove part 3, consider the fixed point set € of w. Homework 21 shows that
C is a finite union of connected symplectic submanifolds, C = C; U .- UCy. The
moment map is constant on each C;, u(C;) = n; e R”, j=1,... N. By the second
part, the convex hull of {1,..., 1y} is contained in p(M).

For the converse, suppose that £ € R™ and £ ¢ convex hull of {ny,...,nx}
Choose X € E* with rationally independent components and satisfying

(€,X) > (n;,X), forall j.

By the irrationality of X, the set {expsX(e) | 7 € R} is dense in T™, hence the zeros
of the vector field X* on M are the fixed points of the T"-action. Since u* = (1, X}
aftains its maximum on one of the sets (';, this implies

(§,X) > suppu(p), Xy,
peEM

hence & ¢ p(M). Therefore,

u(M) = convex hull of {my,..., v} .

! Clearly u(M) is closed becavse it is compact,
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27.2 Effective Actions

An action of a group ¢ on a manifold M is called effective if each group element
£ # e moves at least one p € M, that is,

M Gp={e},

peM
where G, = {g € G| g+ p = p} is the stabilizer of p.

Corollary 27.2. Under the conditions of the convexity theorem, if the T"-action is
effective, then there wust be at least m+ 1 fixed points.

Proof. If the T™-action is effective, there must be a point p where the moment map
is a submersion, i.e., (dii)p,...,(diL,), are linearly independent. Hence, p{p) is
an interior point of g (M), and 11 (M) is a nondegenerate convex polytope. Any non-
degenerate convex polytope in R™ must have at least # + 1 vertices. The vertices of
1 {M) are images of fixed points. O

Theorem 27.3. Let (M, @, 1", 1t} be a hamilionian 1" -space. If the T™-action is
effective, then dimM > 2n.

Proof. On an orbit O, the moment map p{(?) = & is constant. For p € &, the exterior
derivative

dy: T,M — g*
maps 1, to 0. Thus
T,0 Ckerdp, = (T,0)%,

which shows that erbits O of a hamiltonian torus action are always isotropic sub-
manifolds of M. In particular, dim & < %dim M.

Facr: If w . " — Diff(M) is an effective action, then it has orbits of dimension
nt; a proof may be found in [17]. O

Definition 27.4. A (symplectic) toric manifold® is a compact connected symplec-
tic manifold (M, @) equipped with an effective hamiltonian action of a torus T of
dimension equal to half the dimension of the manifold:

dimT = %dimM

and with a choice of a corresponding moment map gi.

% In these notes, a toric manifold is always a symplectic toric manifold,
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Exercise. Show that an effective hamiltonian action of a torus T" on a 2n-
dimensional symplectic manifold gives rise to an integrable system.

Hint: The coordinates of the moment map are commuting integrals of motion. &

27.3 Examples

1. The circle 8! acts on the 2-sphere (8%, @yu40q = 46 /A dh) by rotations with
moment map g = A equal to the height function and moment polytope [—1,1].

1. The circle 8! aets on TP = 2 0/ ~ with the Fubini-Study form aps =
1 Ostandards bY € - [z0,21] = [20,€"21]. This is hamiltonian with moment map
2
flzoyz1] = =%~ HE%‘W’ and moment polytope [—3,0].
2. The T?-action on CF? by

01,

7 eiez
<1y

2]

2
14 222) '

(€ ,¢%) [z0,21,72) = [z0,e

has moment map
2

2+

72

z1

o 1
H[-CO;-CI;-CZ} = 75 _ 7

20

71 T4z

I+

Z2 Z0

The fixed points get mapped as

Notice that the stabilizer of a preimage of the edges is §!, while the action is free
at preimages of interior points of the moment polytope.
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(~3,0 (0,0)

Exercise. What is the moment polytope for the T?-action on CP? as

0 _ 0 L0179

(efelaejezaejes)'[20721:?«2723}:[Zoze Z1,8 °22,€ 43}‘

Exercise. What is the moment polytope for the T2-action on CP! x CP! as

(ejgaem) ' ([Zo,Zl],[VVO,WlD = ([Z'anfezl]: [wo,ef”wl]) ?
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Homework 21: Connectedness

Consider a hamiltonian action v : T" — Sympl (M,®), 8 — o, of an m-
dimensional torus on a 2r-dimensional compact connected symplectic manifold
(M, o). If we identify the Lie algebra of T™ with R” by viewing T = k™ /7",
and we identify the Lie algebra with its dual via the standard inner product, then the
moment map for yris u : M — R™.

1. Show that there exists a compatible almost complex structure J on (M, @) which
is invariant under the T"-action, that is, wjJ = Jyj, for all 8 € T,
Hint: We cannot average almost complex structures, but we can average riemannian

metrics (why?). Given a riemannian metric gq on M, its T"-average g = fpw W}2od0
is T"-invariant.

2. Show that, for any subgroup G € T, the fixed-point set for G,

Fix (G) = () Fix (ya),
0

is a symplectic submanifold of M.

Hint: Foreach p € Fix () and each 8 € G, the differential of yy at p,
dvo(p)  T,M — T,M,

preserves the complex structure J, on T,M. Consider the exponential map exp, !
T.M — M with respect to the invariant riemannian metric g(-,-) = ®{-,J-). Show
that, by uniqueness of geodesics, exp,, is equivariant, i.e.,

exp, (dwe(p)v) = walexp, v)

forany 8 € G, v € T,M. Conclude that the fixed points of y; near p correspond to the
fixed points of dyg (p) on T, M, that is

T,Fix (G = () ker(ld — dyi (p))
oeF

Since dyy (p) o Jy = J, o dyp(p), the edgenspace with eigenvalue 1 is invariant under
J;,, and is therefore a symplectic subspace.

3. A smooth function f: M — R on a compact riemarmmian manifold M is called
a Morse-Bott function if its critical set Crit (f) = {p € M|df(p) =0} is a
submanifold of M and for every p < Crit (f), T,Crit (f) = ker V* f(p)where
Vifip): T,M — T,M denotes the linear operator obtained from the hessian via
the riemannian mefric. This is the natural generalization of the notion of Morse
function to the case where the critical set is not just isolated points. If f is a
Morse-Bott function, then Crit (f) decomposes into finitely many connected crit-
ical manifolds C. The tangent space 1, M at p € C decomposes as a direct sum

LM=T,COE) DE,
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where E; and k, are spanned by the positive and negative eigenspaces of
V2f(p). The index of a connected critical submanifold C is rz = dim £, for
any p € ', whereas the coindex of C is n.g = dimE;'.

For each X  R”, let u* = (u,X) : M — R be the comporent of y along X.
Show that pu¥ is a Morse-Bott function with even-dimensional critical manifolds
of even index. Moreover, show that the critical set

Crit (u*) = (7] Fix (we)
feTx

is a symplectic manifold, where T¥ is the closure of the subgroup of T" gener-
ated by X.

Hint: Assume first that X has components independent over €, so that T =
T and Crit (u¥) = Fix (T"). Apply exercise 2. To prove that T,Crit (u*) =
ker V2 u® (p), show that ker V2 u® (p) = Mgepn ker{ld — dy{p}). To see this, notice
that the 1-parameter group of matrices (4w )p coincides with exp(tv,), where
vy = —J, Vot {p) : T,M — T,M is avector field on 7, M. The kernel of V2 g% {p) cor-
responds to the fixed points of dy,y (p), and since X has rationally independent com-
ponents, these are the common fixed points of all dyg(p), 8 € T, The eigenspaces
of Vz,u,}" (p) are even-dimensional becavse they are invariant under J;.

4. The moment map 4 = (thy, ..., Hy) is called effective if the 1-forms dty, . .. ,d iy,
of its components are linearly independent. Show that, if y is not effective, then
the action reduces to that of an (s — 1)-subtorus.

Hint: If yisnoteffective, then the function ,u.X = {u,X) is constant for some nonzero
X R™. Show that we can neglect the direction of X

5. Prove that the level set g~1(&) is connected for every regular value & & R™.

Hint: Prove by induction over m = dimT™. For the case m = 1, vuse the lemma
that all level sets f~!(¢) of a Morse-Bott function £ : M — R on a compact mani-
fold M are necessarily connected, if the critical manifolds all have index and coin-
dex # 1 (see [83, p.178-179]). For the induction step, you can assume that y is
effective. Then, for every 0 £ X = R, the function g : M — R is not constant,
Show that C := Uy _«Crit g% = Ugsyep»Crit u¥ where each Crit y¥ is an even-
dimensional proper submanifold, so the complement M %, C must be dense in M. Show
that M C is open, Hence, by continuity, to show that 4! (£) is connected for every
regular value & = (&,...,&,) € R”, it suffices to show that g~ 1{£) is connected
whenever (&;,...,&,_1)is a regular value for a reduced moment map (1, . .., 1)
By the induction hypothesis, the manifold § = ﬂ;f:ll,u,;l(’c:j) is connected whenever
(&1,...,En1) is aregular value for (u,...,Hm—1). It suffices to show that the func-
tion 4, : @ — R has only critical manifolds of even index and coindex (see [83,
p.183]), because then, by the lemma, the level sets u~1 (&) = QN u ' (&) are con-
nected for everv &,,.



Part XI
Symplectic Toric Manifolds

Native to algebraic geometry, toric manifolds have been studied by symplectic
geometers as examples of extremely symmetric hamiltonian spaces, and as guinea
pigs for new theorems. Delzant showed that symplectic toric manifolds are classified
(as hamiltonian spaces) by a set of special polytopes.



Chapter 28
Classification of Symplectic Toric Manifolds

28.1 Delzant Polytopes

A 2n-dimensional (symplectic) toric manifold is a compact connected symplectic
manifold (Mz”,a)) equipped with an effective hamiltonian action of an r-torus T*
and with a corresponding moment map ¢ : M — R™.

Definition 28.1. A Delzant polytope A in R” is a convex polytope satisfying:

¢ it is simple, i.e., there are n edges meeting at each vertex;

¢ it is rational, i.e., the edges meeting at the vertex p are rational in the sense that
each edge is of the form p+ i, 1 > 0, where i; € Z*,

¢ it is smooth, i.e., for each vertex, the corresponding #,...,u, can be chosen to
be a Z-basis of 7.

Remark. The Delzant polytopes are the simple rational smooth polytopes. These
are closely related to the Newton polytopes (which are the nonsingular n-valent
polytopes), except that the vertices of a Newton polytope are required to lie on the
integer lattice and for a Delzant polytope they are not. &

Examples of Delzant polytopes:

209
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The dotted vertical line in the trapezoidal example means nothing, except that it is
a picture of a rectangle plus an isosceles triangle. For “taller” triangles, smoothness
would be violated. “Wider” triangles (with integral slope) may still be Delzant. The
family of the Delzant trapezoids of this type, starting with the rectangle, correspond,
under the Delzant construction, to Hirzebruch surfaces; see Homework 22.

Examples of polytopes which are not Delzant:

The picture on the left fails the smoothness condition, whereas the picture on the
right fails the simplicity condition.

Algebraic description of Delzant polytopes:

A facet of a polylope is a (n— 1)-dimensional face.

Let A be a Delzant polytope with » = dim A and 4 = number of facets.

A lattice vector v € Z" is primitive if it cannot be written as v = ki with u € 7%,
ke Zand |k > 1; for instance, (1,1), (4,3), (1,0) are primitive, but (2,2), (3,6)

are not.

Letv; e Z* i=1,...,d, be the primitive outward-pointing normal vectors to the
facets.
n=2
d=73

Then we can describe A as an intersection of halfspaces

A={xe (R | (v} <A, i=1,...,d} forsomel eR.
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Example. For the picture below, we have

A:{IE(Rz)*‘xlzo, x220,x1+xggl}
= {IE (Rz)* ‘ <x=(*1:0)> < 0= <x= (03*1» < 0: <x=(1=1)> < 1}‘

(0,1)

(0,0) (1,0)

28.2 Delzant Theorem

We do not have a classification of symplectic manifolds, but we do have a classifi-
cation of toric manifolds in terms of combinatorial data. This is the content of the
Delzant theorem.

Theorem 28.2. (Delzant [23]) Toric manifolds are classified by Delzant polytopes.
More specifically, there is the following one-to-one correspondence

{roric manifolds’ i {Delzant polyropes}
(M, 0, T p) s p(M).
We will prove the existence part (or surjectivity) in the Delzant theorem follow-
ing [54]. Given a Delzant polytope, what is the corresponding toric manifold?

2

(MA , Cl)A , Ti'l_’ u) 47 AH
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28.3 Sketch of Delzant Construction

Let A be a Delzant polytope with 4 facets. Letv; € Z", i =1,...,d, be the primitive
outward-pointing normal vectors to the facets. For some A; € K,

A={xc (R | (x,v) <A i=1,...,d}.
Lete; = (1,0,...,0),...,e4 = (0,...,0,1) be the standard basis of R?. Consider
TR R

e — V.

Claim. The map 7 is onto and maps Z¢ onto 7.

Proof. The set {ey,...,es} is a basis of Z%. The set {v|,...,vs} spans Z" for the
following reason. At a vertex p, the edge vectors wy,... 1, € (R™)*, form a basis for
(Zy* which, without loss of generality, we may assume is the standard basis. Then
the corresponding primitive normal vectors to the facets meeting at p are symmetric
{in the sense of multiplication by —1) to the u;’s, hence form a basis of 7. o

Therefore, 7 induces a surjective map, still called x, between tori:

Rd / Zd L B / g
I |
™ — T —0.
Let

N = kernel of © (N is a Lie subgroup of T¢)

n = Lie algebra of N
R? = Lie algebra of T¢
R" = Lie algebra of T".

The exact sequence of tori
0N " g
induces an exact sequence of Lie algebras
0—n—" R R0
with dual exact sequence
0 EY 7L (rY Dar o,

Now consider T with symplectic form wq = %}:dzk A dzy, and standard hamil-
tonian action of T4
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(8271:."1?1 . :e2yrr'rd) . (Zl . ;Zd) _ (e2m'rlzl . el’nitdzd)-

The moment map is ¢ : C7 — (R7)*

2 . |zal®) + constant,

qb(zl,...,zd) :*TC(

where we choose the constant to be (Ay,...,Az). What is the moment map for the
action restricted to the subgroup N7

Z1

id

Exercise, Let (¢ be any compact Lie group and H a closed subgroup of G, with g
and [y the respective Lie algebras. The inclusion i : h — g is dual to the projection
*: g* — b* Suppose that (M, ®,G,¢) is a hamiltonian G-space. Show that the
restriction of the G-action to H is hamiltonian with moment map

fop M -— B

The subtorus N acts on ¢ in a hamiltonian way with moment map
i*og: C4— n,
Let Z = (i* o ¢)~1(0) be the zero-level set.
Claim. The set 7 is compact and & acts freely on Z.

This claim will be proved in the next lecture.

By the first claim, 0 € n* is a regular value of i* o ¢. Hence, Z is a compact
submanifold of C¢ of dimension

dimpZ=2d—(d—n)=d+n.
Rnp—

dimn*

The orbit space Ma = Z/N is a compact manifold of dimension

dimpMa=d+n—{d—n)=2n.
et
dim¥&¥
The point-orbit map p: Z — M, is a principal N-bundle over M.
Consider the diagram
z L
rl
My

where j: Z — © is inclusion. The Marsden-Weinstein-Meyer theorem guarantees
the existence of a symplectic form w, on M, satisfying

praw = jfap.
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Exercise. Work out all details in the following simple example.
Let A=[0,a] © R* (n=1,d =2). Let v(=1) be the standard basis vector in R,

Then
A {xv ) <0 v =—v

{x,m) <a Vg =v.

The projection
R? R
€] — —V

ey — ¥V

has kernel equal to the span of (eq + e2), so that N is the diagonal subgroup of
T? = 8§ x 8%, The exact sequences become

(N VLN N Y
0— R = (R%)* om0
(x1,X2) > X+ a2.
The action of the diagonal subgroup N = {(*™ ¥} = §! x §'} on €2,

(elmfr’elﬂir) . (Z ,Zz) _ (e2mrzl,e2mr22) ,

has moment map

H+a,

T+

(i*o@)(z1,72) = —7( 22

71
with zero-level set

(i*0¢) 1 (0) = {(z1,22) € C% 1 |z [P+

12
-}

72
Hence, the reduced space is

(i*cp) 1(0)/N = CP! projective space!
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Delzant Construction

29.1 Algebraic Set-Up

Let A be a Delzant polytope with 4 facets. We can write A as
A={xc (R | vy <A ,i=1,...,d},
for some A; € R. Recall the exact sequences from the previous lecture

0— N1 2o 0
0—>n—f>Rdi>R”—>D

ey —— Vi

and the dual sequence
0 B "L (m Tar o,
The standard hamiltonian action of T¢ on C¢
(e ey (zy ) = (eF gy, e )
has moment map ¢ : C¢ — (R%)* given by

I B (A, ).

0(z1,...,zq) = — [

21 Zd

.
The restriction of this action to & has moment map

itop 09—,
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29.2 The Zero-Level

Let Z = (i* o) 1(0).

Proposition 29.1. The level Z is compact and N acts freely on Z.

Proof. Let A’ be the image of A by x*. We will show that ¢(Z) = A'. Since ¢ is a
proper map and A’ is compact, it will follow that Z is compact.

Lemma 29.2. Ler y € (RY)*. Then:

ve A <= yisinthe image of Z by ¢.
Proof of the lemma. The value v is in the image of Z by ¢ if and only if both of
the following conditions hold:

1. yisin the image of ¢;
2. ify=0.

Using the expression for ¢ and the third exact sequence, we see that these condi-
tions are equivalent to:

1. ey <A fori=1,....,d.
2. y=x*(x) for some x € (B")*,

Suppose that the second condition holds, so that y = 7% (x). Then

(y,e,:) <A,V = (J’C*(I),erf) < A Vi
= L Ele)) < Vi
= xEA
Thus, y € ¢(Z) «— yea*(A)=A" 0
Hence, we have a surjective proper map ¢ : Z — A'. Since A’ is compact, we
conclude that Z is compact. [t remains to show that N acts freely on Z.
We define a stratification of Z with three equivalent descriptions:
¢ Define a stratification on A’ whose ith stratum is the closure of the union of the
i-dimensional faces of A’. Pull this stratification back to Z by ¢.
We can obtain a more explicit description of the stratification on Z:

e Let I be aface of A" with dimF = n—r. Then F is characterized (as a subset of
A') by r equations

(y,€j> :l,j, i:il,...,ir.

We write F = Fy where I = (i),...,5;) has 1 <i) <ip... <i, <d.
Letz=(z1,...,24) € Z.
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¢ ) = o)k
= {(p(z),e) =X, Viel
= —myt+ =4, Viel
e z;=0, Viel.

Zf

e The T-action on C¢ preserves ¢, so the T?-action takes Z = ¢~ 1 (A”) onto itself,
so T acts on Z.

Exercise. The stratification of Z is just the stratification of Z into T orbit types.
More specifically, if z ¢ Z and ¢ (z) € F; then the stabilizer of z in T¢ is (T%);
where
I=(1,....,i:),
fr = {y c A | (y:ei> = )"-":Vi € I}:
and ’ } ’
(r]Id)I _ {(elmrl . ,eszd) ‘ elmrg _ 1,V,S' ¢ I}
Hint: Suppose thatz = (zy,...,24} € C7. Then
(8211#1&, . ,82’”’%4) — (Zl, . ,Zd)

if and only if &*™ =1 whenever z, # 0.

@

In order to show that N acts freely on Z, consider the worst case scenario of points
z € Z whose stabilizer under the action of T is a large as possible. Now {T9); is
largest when Fy = {y} is a vertex of A", Then y satisfies » equations

(vey =2, iel="{,. i}

Lemma 29.3. Ler z < Z be such that ¢(z) is averrex of A'. Let (T%); be the stabilizer
of z. Then the map 7 = T¢ — T" maps (T%); bijectively onro T".

Since N = keryx, this lemma shows that in the worst case, the stabilizer of z
intersects & in the trivial group. It will follow that N acts freely at this point and
hence on Z.

Proof of the lemma. Suppose that ¢ (z) = y is a vertex of A”. Renumber the indices
so that

Then ’ }
(T9); = {(e¥,... e 1, 1) |1, e R).

The hyperplanes meeting at y are
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By definition of Delzant polytope, the set &(e1),..., 7 (e,) is a basis of Z". Thus,
7 (T9); — T" is bijective. o

This proves the theorem in the worst case scenario, and hence in general. |

29.3 Conclusion of the Delzant Construction

We continue the construction of (M, ®,) from A. We already have that
My=Z7Z/N

is a compact 2»-dimensional manifold. Let ax be the reduced symplectic form.

Claim. The manifold (M, @a) is a hamiltonian T"-space with a moment map u
having image t (Ma) = A.

Suppose that z € Z. The stabilizer of z with respect to the T¢-action is (']Td) 7, and
(T9); NN = {e} .

In the worst case scenario, Fj is a vertex of A" and (']I"')I is an x-dimensional sub-
group of T¢, In any case, there is a right inverse map @ ! : T — (). Thus, the
exact sequence

0—N—T¢—T"—0

splits, and T9 = N x T*.
Apply the results on reduction for product groups (Section 24.3) to our situation
of T4 = N x T" acting on (M4, @, ). The moment map is
0 e, (Rd)* ) (R”)* )
Let j: Z — (C? be the inclusion map, and let
pri: (B — ' and  pry: (B9 (BY)
be the projection maps. The map
pryopojiZ— (BY)*

is constant on N-orbits. Thus there exists a map

T :MA R (RH)*
such that

Hop=przopoj.
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The image of g is equal to the image of pry e ¢ o j. We showed earlier that ¢(Z) = A’
Thus
Image of g = pry(A") =prye 7™ (A) = A
S
id

Thus (M,, ®,) is the required toric manifold corresponding to A.

29.4 Idea Behind the Delzant Construction

We use the idea that R is “universal” in the sense that any »-dimensional polytope
A with d facets can be obtained by intersecting the negative orthant R? with an
affine plane A. Given A, to construct A first write A as:

A={xeR| (xv) <A i=1,....d}.

Define
n:R — R* withdualmap #*:R* — R

ej — Vi
Then
Tt — AR — R

is an affine map, where A = (Ay,...,4;). Let A be the image of ¥ — A. Then A is

an r-dimensional affine plane.

Claim. We have the equality (7" — 1)(A) = R¢ NA.

Proof. Let x € R™ Then

(" =) () e RY = (n*(x) —A,e;) <0,Vi

< (I, ?I(e,;)) — A <0,V
= {x,v) <A,V
= xeA

O

We conclude that A ~ R nA. Now R? is the image of the moment map for the
standard hamiltonian action of T¢ on €9

o: 0 — RY

(215 s2a) — =7

2
yerea|2d

2)‘

z1

Facts.

o The set $~1(A) € T is a compact submanifold. Let 7 : ¢ 1{A) < C9 denote
inclusion. Then i*®q is a closed 2-form which is degenerate. Its kernel is an
integrable distribution. The corresponding foliation is called the null foliation.
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e The null foliation of i*@g is a principal fibration, so we take the quotient:
N o7l (4)
My =9 HA)/N

Let wu be the reduced symplectic form.

o The (non-effective) action of T¢ =N x T on ¢ ~!(A) has a “moment map” with
image ¢(¢ '(A)) = A. (By “moment map” we mean a map satisfying the usual
definition even though the closed 2-form is not symplectic.)

Theorem 29.4. For any x € A, we have that 111 (x) is a single T"-orbir.

Proof. BExercise.
First consider the standard T¢-action on C? with moment map ¢ : C¢ — R?.
Show that ¢ () is a single T9-orbit for any y € ¢{C¥). Now observe that

yedN =x*A) <= o' (»CZ.

Suppose that y = 7*(x). Show that p='(x) = ¢~ (y)/N. But ¢71(y) is a single
T4-orbit where T¢ = N x T", hence g~! (x) is a single T"-orbit. O

Therefore, for toric manifolds, A is the orbit space.

Now A is a manifold with corners. At every point p in a face F, the tangent space
T,A is the subspace of R” tangent to F. We can visualize (Ma,wa,T", 1t) from A as
follows. First take the product T" x A. Let p lie in the interior of T" x A. The tangent
space at p is R x (R")*. Define , by:

ap(v8) =5 = —0,(§,v)  and @, (nY) = a(5,8) =0.

for all v,v' € B" and £,& < (R")*. Then @ is a closed nondegenerate 2-form on
the interior of T" x A. At the comner there are directions missing in {R*)*, so @ is
a degenerate pairing. Hence, we need to eliminate the corresponding directions in
k. To do this, we collapse the orbits corresponding to subgroups of T" generated
by directions orthogonal to the annihilator of that face.

Example. Consider
(8%, 0 =do Adh, S u=h),

where §! acts on 5% by rotation. The image of y is the line segment 7 = [—1,1]. The
product §* x I is an open-ended cylinder. By collapsing each end of the cylinder to
a point, we recover the 2-sphere. &

Exercise. Build CP? from T? x Awhere A is a right-angled isosceles triangle. ¢

Finally, T* acts on T" x A by multiplication on the T* factor. The moment map
for this action is projection onto the A factor.
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Homework 22: Delzant Theorem

1.(a) Consider the standard (S!)*-action on CP?:
01 i i T 6 '
(er 1,er 2:6" 3) ' [20:21322323} = [ZOJer lzlael 22236r%z3} -

Exhibit explicitly the subsets of CF® for which the stabilizer under this ac-
tion is {1}, §1, (1Y% and (§1)*. Show that the images of these subsets under
the moment map are the interior, the facets, the edges and the vertices, re-
spectively.

(b) Classify all 2-dimensional Delzant polytopes with 4 vertices, up to transla-
tion and the action of SL(2; Z).

Hint: By a linear transformation in SL(2;Z), you can make one of the angles in the
polvtope into a square angle. Check that automatically another angle also becomes
90°.

(c) What are all the 4-dimensional symplectic toric manifolds that have four

fixed points?
2. Take a Delzant polytope in R* with a vertex p and with primitive (inward-
pointing) edge vectors #y,...,m, at p. Chop off the corner to obtain a new poly-
tope with the same vertices except p, and with p replaced by n new vertices:

preu;, j=1,...n,

where € is a small positive real number. Show that this new polytope is also
Delzant. The corresponding toric manifold is the £-symplectic blowup of the
original one.

7
s F

3. The toric 4-manifold H,, corresponding to the polygon with vertices (0,0),
(41,03, (0,1) and (1,1), for » a nonnegative integer, is called a Hirzebruch
surface.
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(a) What is the manifold Hp? What is the manifold H ?

Hint:

(b) Construct the manifold 7, by symplectic reduction of C* with respect to an
action of (§1)2,
(c) Exhibit 7, as a CP!-bundle over CP!.

4. Which 2n-dimensional toric manifolds have exactly n+ 1 fixed points?



Chapter 30
Duistermaat-Heckman Theorems

30.1 Duistermaat-Heckman Polynomial

Let (M*', ) be a symplectic manifold. Then ‘:’,—T is the symplectic volume form.

Definition 30.1. The Liouville measure (or symplectic measure) of a Borel subset!

U of Mis
Cl)”
e () = | — .
mw() Ju n!

Let & be a torus. Suppose that (M, ®,G, ) is a hamiltonian G-space, and that
the moment map y is proper.

Definition 30.2. The Duistermaat-Heckman measure, mpy, on g* is the push-

forward of g, by 1 M — g*. That is,

a)ﬂ
mpa(U) = (i) (U) = [ @
Jum i)
for any Borel subset {J of g*.

For a compactly-supported function k € C={g*), we define its integral with re-
spect to the Duistermaat-Heckman measure to be

f

/ hd”"DH*/ (hop',) T

On g* regarded as a vector space, say R", there is also the Lebesgue (or euclid-
gan) measure, k. The relation between mipy and mig is governed by the Radon-

Nikodym derivative, denoted by ‘%ﬁf}f, which is a generalized function satisfying

/ h dHIDH—/ h deH
. dmo

! The set B of Borel subsets is the o-ring generated bv the set of compact subsets,ie, if A Bc B,
then A\ Be B, andif 4, € B,i=1,2,..., then U A; € B,

223
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Theorem 30.3. (Duistermaat-Heckman, 1982 [31]) The Duistermaar-Heckman
measure is a piecewise polynomial multiple of Lebesgue (or euclidean) measure my
on g* o~ R" rhat is, the Radon-Nikodym derivative

Fo dHipy
dmy

is piecewise polynomial. More specifically, for any Borel subset U of g*,

mou(U) = | &),

where dx = dmy is the Lebesgue volwme formon U and f: g* ~ R" — R is polyno-
mial on any region consisting of regular values of i.

The proof of Theorem 30.3 for the case G = S! is in Section 30.3. The proof for
the general case, which follows along similar lines, can be found in, for instance,
[54], besides the original articles.

The Radon-Nikodym derivative f is called the Duistermaat-Heckman polyno-
mial. In the case of a toric manifold, the Duistermaat-Heckman polynomial is a
universal constant equal to (27)" when A is n-dimensional. Thus the symplectic
volume of (Ma, @4} is (27)" times the euclidean volume of A.

Example. Consider (8%, = d8 A dh,S', i = k). The image of g is the interval
[—1,1]. The Lebesgue measure of [a, 5] € [—1,1] is

mo(la,by=b—a.

The Duistermaat-Heckman measure of [a,5] is

mpg (|a,b]) = / 48 dh=2n{b—a) .
H (6,182 a<h<h]

Consequently, the spherical area between two horizontal circles depends only on the

vertical distance between them, a result which was known to Archimedes around
230 BC.

Corollary 30.4. For the standard hamiltonian actionof §* on (82, @), we have

wipg = 27T Mg .
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30.2 Local Form for Reduced Spaces

Let (M, e, G, 1) be a hamiltonian G-space, where G is an n-torus.? Assume that g
is proper. If G acts freely on g *(0), it also acts freely on nearby levels g !(r),
t € g* and r = (0. Consider the reduced spaces

Mg = H(0)/G and  M,=u (/G

with reduced symplectic forms @ and @,. What is the relation between these
reduced spaces as symplectic manifolds?

For simplicity, we will assume G to be the circle 8'. Let Z = g~ (0) and let i :
Z — M be the inclusion map. We fix a connection form « & Q! (Z) for the principal

bundle
St Z

Moy

that is, £y#e = 0 and ty# @ = 1, where X* is the infinitesimal generator for the §*-
action. From e we construct a 2-form on the product manifold Z x (—e,&) by the
recipe

C="n'ty—dxa),

x being a linear coordinate on the interval (—e,e) < R =~ g*. (By abuse of nota-
tion, we shorten the symbols for forms on Z x (—¢,€) which arise by pullback via
projection onto each factor.)

Lemma 30.5, The 2-form © is symplectic for £ small enough.

Proof. The form ¢ is clearly closed. At points where x = 0, we have

Oly0 = A" eg + € Adx,

J
Olr—o (X#,a> =1,

so o is nondegenerate along Z x {0}. Since nondegeneracy is an open condition, we
conclude that ¢ is nondegenerate for x in a sufficiently small neighborhood of 0. O

which satisfies

Notice that & is invariant with respect to the S!-action on the first factor of Z x
(—£,€). In fact, this S§'-action is hamiltonian with moment map given by projection
onto the second factor,

% The discussion in this section mayv be extended to hamiltonian actions of other compact Lie
groups, not necessarily tori; see [54, Exercises 2.1-2.10].
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x:Zx(—e,e) —(—&,8),

as is easily verified:

x40 = —Ixad (x0t) = — Lyw(x0t) +-digs () = dx.
0 x

Lemma 30.6. There exists an equivariant symplectomorphism between a neighbor-
hood of Z in M and a neighborhood of Z x {0} in Z x (—g,€), interrwining the two
moment maps, for € small enough.

Proof. The inclusion i : Z — Z x (—e,&) as Z x {0} and the natural inclusion
i:7Z < M are S'-equivariant coisotropic embeddings. Moreover, they satisfy
ito = i*o since both sides are equal to 7* @y, and the moment maps coincide
on Z because ifx = 0 = i*pt. Replacing £ by a smaller positive number if neces-
sary, the result follows from the equivariant version of the coisotropic embedding
theorem stated in Section 8.3, O

Therefore, in order to compare the reduced spaces
M= pl /s, im0,
we can work in Z x (—&,&) and compare instead the reduced spaces
x 1)/ s, P
Proposition 30.7. The reduced space (M;, @) is symplectomorphic ro
(Mred, @red — 1)

where 3 is the curvature form of the connection «.

Proof By Lemma 30.6, (M;, ®,) is symplectomorphic to the reduced space at level
¢ for the hamiltonian space (Z x (—¢,£),0,5%,x). Since x () = Z x {t}, where §*
acts on the first factor, all the manifolds x 1 (r)/S! are diffeomorphic to Z/5' = Mpeq.
As for the symplectic forms, let 1, : Z x {r} — Z x (—&, &) be the inclusion map. The
restriction of g to Z x {r} is

170 = Bt epeq —fdex .

% The equivariant version of Theorem 8.6 needed for this purpose may be phrased as follows: Let
(Mo, i), (M1, a0) be symplectic manifolds of dimension 2n, G a compact Lie group acting on
{(M;, @), 1=0,1, in a hamiltonian way with nioment maps U and [, respectively, Z a manifold of
dimension k > nwith a G-action, and v, 1 Z — M;, i =0,1, G-equivariant coisotropic embeddings.
Suppose that 1fong = 17w and 1} g =t 41, Then there exist G-invariant neighborhoods Uy and
U1 of 10(Z) and 11 (Z) in My and My, respectively, and a G-equivariant symplectomorphism ¢
Uy — Uy suchthat oty =14 and o = ©* 1.
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By definition of curvature, do¢ = #*3. Hence, the reduced symplectic form on
x i) /8 is

Oreg —13 .
0

In loose terms, Proposition 30.7 says that the reduced forms @, vary linearly in
t, for r close enough to 0. However, the identification of M, with M.y as abstract
manifolds is not natural. Nonetheless, any two such identifications are isotopic. By
the homotopy invariance of de Rham classes, we obtain:

Theorem 30.8. (Duistermaat-Heckman, 1982 [31]) The cohomology class of the
reduced symplectic form (@] varies linearly in t. More specifically,

@] = [@red] +1C,

where c =[—f§] € HdzeRham (Myeq) is the first Chern class of the S'-bundle Z — M.

Remark on conventions. Connections on principal bundles are Lie algebra-valued
1-forms; cf. Section 25.2. Often the Lie algebra of 5! is identified with 27ziR under
the exponential map exp : g ~ 2miR — §1, & — ¢5. Given a principal §!-bundle,
by this identification the infinitesimal action maps the generator 277 of 27iR to the
generating vector fleld X*. A connection form A is then an imaginary-valued 1-
form on the total space satisfying LysA = 0 and 1y#A = 277, Its curvature form B
is an imaginary-valued 2-form on the base satisfying 7*B = dA. By the Chern-Weil
isomorphism, the first Chern class of the principal §'-bundle is ¢ = [ﬁB]

In this lecture, we identify the Lie algebra of S* with B and implicitly use the
exponential map exp : g~ R — 8!, r — 2™ Hence, given a principal S!'-bundle,
the infinitesimal action maps the generator 1 of R to X¥, and here a connection
form ¢ is an ordinary 1-form on the total space satisfying Cyrx =0 and 1yrx =
1. The curvature form f is an ordinary 2-form on the base satisfying 7*f3 = de.
Consequently, we have A = 2zic, B = 2xif} and the first Chern class is given by

¢ =[-B]. &

30.3 Variation of the Symplectic Volume

Let (M,,S", 1) be a hamiltonian §'-space of dimension 2n and let (M,, ®,) be its
reduced space at level x. Proposition 30.7 or Theorem 30.8 imply that, for x in a
sufficiently narrow neighborhood of (), the symplectic volume of M,,

e (!
vol(Mz) = sy (n—1)0 -/f-;fmd S -nt
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is a polynomial in x of degree » — 1. This volume can be also expressed as

* o n—1
vol(Mx)—LJMaEé—iﬁ)/'\a.

Recall that e is a chosen connection form for the S'-bundle Z — M,oq and 8 is its
curvature form.

Now we go back to the computation of the Duistermaat-Heckman measure. For
a Borel subset IJ of (—¢, £), the Duistermaat-Heckman measure is, by definition,

(D”

mpe () = /

iyt

Using the fact that (¢ (—g,£), ®) is symplectomorphic to (Z x (—£,£),0) and,
moreover, they are isomorphic as hamiltonian §!-spaces, we obtain

O-H

mpg (1) :[

Jzwu n!
Since 0 = T*@reg — d(xa), its power is
6" = n(7"* Wreg —xd )" At Adx .

By the Fubini theorem, we then have

n'r.DH(U):/ Ad| Adx .

JU .

Therefore, the Radon-Nikodym derivative of mpy with respect to the Lebesgue
measure, 4x, is

* —x n—l1
Jx) = .[zn(mgf—l)ﬁ!}) Ao = vol(My) .

The previous discussion proves that, for x & 0, f(x) is a polynomial in x. The
same holds for a neighborhood of any other regular value of y, because we may
change the moment map ¢ by an arbitrary additive constant.
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Homework 23: S!-Equivariant Cohomology

1. Let M be a manifold with a circle action and X* the vector field on M generated
by S, The algebra of S!-equivariant forms on M is the algebra of §'-invariant
forms on M tensored with complex polynomials in x,

Q% (M) = (Q* (M) ©p O] .

The product A on Qf, (M) combines the wedge product on Q* (M) with the prod-
uct of polynomials on Clx].

{a)We grade QF, (M) by adding the usual grading on Q°(M) to a grading on
Clx] where the monomial x has degree 2. Check that (Q2%, (M), A) is then a
supercommutative graded algebra, i.e.,

anf = (—1)*eedRig g

for elements of pure degree &, f§ < Q% (M).
{(b)On Q% (M) we define an operator

dsl ::d®1—lx#®x .
In other words, for an elementary form o = o @ p(x),
dopa=do@p(x) —rpaxp(x).

The operator dg is called the Cartan differentiation. Show that dg is a su-
perderivation of degree 1, i.e., check that it increases degree by 1 and that it
satisfies the super Leibniz rule:

dg (@A B) = (dgpa) A+ (—1)* & g nduf .

{c)Show that dZ, = 0.
Hint: Cartan magic formula.

2. The previous exercise shows that the sequence

4 4, 4
0_>Q§1(M)i»gél(M)ﬁggl(M)ﬁ...

forms a graded complex whose cohomology is called the equivariant coho-
mology* of M for the given action of S'. The kth equivariant cohomology

* The equivariant ecohomology of a topological space M endowed with a continuous action of
a topological group G is, by definition, the cohomology of the diagonal quotient (M x EG)/G,
where EG is the universal bimdle of G, i.e., EG is a contractible space where G acts freely. H.
Cartan [21, 59] showed that, for the action of acompact Lie group G on a manifold M, the d2 Rham
model (Q%(M),ds) computes the equivariant cohomology, where Q%{M) are the G-eguivariant
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group of M is

Ok k-1
ker dg 1 Qg — QY

: o1 P
imdg Qg — Q

o5 (M) =

{a)What is the equivariant cohomology of a point?

(byWhat is the equivariant cohomology of 8! with its multiplication action on
itself?

{¢)Show that the equivariant cohomology of a manifold M with a free S'-action
is isomorphic to the ordinary cohomology of the quotient space M/ st

Hint: Let m: M — M/S" be projection. Show that

mt s HYM/SYy — HY (M)
(o] — [m*a@1]

is a well-defined isomorphism. It helps to choose a connection on the principal §1-
bundle M — M/Sl, thatis, a 1-form & on M such that £+ 6 = 0 and 1+ 8 = 1. Keep
in mind that a form 3 on M is of type m* e for some « if and only if it is basic, that is
EX#ﬁ :0 ELI]d lx#ﬁ = 0.

3. Suppose that (M, ®) is a symplectic manifold with an §'-action. Let g € C* (M)
be a real function. Consider the equivariant form

O =01 +pHax.

Show that @ is equivariantly closed, i.e., dy1@ = 0 if and only if g is a moment
map. The equivariant form @ is called the equivariant symplectic form.

4, Let M* be a compact oriented manifold, not necessarily symplectic, acted upon
by S'. Suppose that the set M 5t of fixed points for this action is finite. Let a2 be
an 8! -invariant form which is the top degree part of an equivariantly closed form
of even degree, that is, & € Q2*(M)S" is such that there exists & € Q3 (M)
with

o= a(l’n) + a(2n72) 4o+ a(O)
where (%) & (Qz’k(M))S1 @Clx] and dpx =0.

a. Show that the restriction of ") to M\ MS" is exact.

Hint: The generator X* of the §'-action does not vanish on M, M Hence, we can
vt
define a connection on M\MS1 by 8(F) = (_5‘{13’%%’ where {-, -} is some S!-invariant

metric on M. Use 8 ¢ Q1(M\ M) to chase the primitive of o> all the way up
from a®),

b. Compute the integral of @ over M.

Hint: Stokes’ theorem allows to localize the answer near the fixed points.

Jorms on M. [8, 9, 29, 54] explain equivariant cohomology in the svmplectic context and [59]
discusses equivariant de Rham theorv and manv applications.
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This exercise is a very special case of the Atiyah-Bott-Berline-Vergne localiza-
tion theorem for equivariant cohomology [&, 14].

5. What is the integral of the symplectic form @ on a surface with a hamiltonian
S'-action, knowing that the S!-action is free outside a finite set of fixed points?

Hint: Exercises 3 and 4.
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classical mechanics, 129 connection
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subspace, 8 local contact form, 69
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almost complex structure, 86, 89 point, 69
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complete vector field, 153 convexity, 199
completely integrable system, 132 Cgta_nge[;t bundle
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chart, 101 coordinates, 9

differentials, 104, 105 is a symplectic manifold, 9
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definition, 17
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of motion, 133
eqnivariant
cohomology, 229
coisotropic embedding, 226
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form, 229
moment map, 158
symplectic form, 230
tubular neighborhood theorem, 169
euclidean
distance, 27, 29
inner product, 27, 28
measure, 223
norm, 28
space, 27
Euler
Euler-Lagrange equations, 125, 138, 141,
145
variational principle, 136
evaluation map, 152
exactly homotopic to the identity, 66
example
2-sphere, 116
coadjoint orbits, 161, 163
complex projective space, 107, 123, 214
complex submanifold of a Kihler manifold,
123
complex torus, 123
Delzant construction, 214
Fernandez-Gotay-Gray, 121
Gompf, 122
hermnitian matrices, 156
Hirzebruch surfaces, 210, 221
Hopf surface, 122
Kodaira-Thurston, 121
McDuff, 50
non-singular projective variety, 114
of almost complex manifold, 91
of compact complex manifold, 120
of compact Kdhler manifold, 115, 120
of compact symplectic manifold, 120
of complex manifold, 107
of contact manifold, 74
of contact structure, 70
of Delzant polytope, 209
of hamiltonian actions, 133, 1534
of infinite-dimensional symplectic manifold,
186
of Kihler submanifold, 114
of lagrangian submanifold, 18
of mechanical system, 135
of non-almost-complex manifold, 91
of non-Delzant polvtope, 210
of reduced svstem, 179
of symplectic manifold, 6, 10
of symplectomorphism, 23
oriented surfaces, 60
product of Kihler manifolds, 123
quotient topology, 160
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reduction, 198

Riemann surface, 122

simple pendulum, 134

spherical pendulum, 178

Stein manifold, 122

Taubes, 122

toric manifold, 202

weighted projective space, 177
exponential map, 41

facet, 210
Fernandez-Gotay-Gray example, 121
first Chern class, 227
first integral, 131
fixed point, 33,37, 65
flat connection, 187
flow, 41
form
area, 60
canonical, 10, 11
complex-valued, 94
connection, 184
curvature, 186
da Rham, 6
Fubini-Study, 115, 198
harmonic, 117, 118
Kihler, 109, 117
Killing, 186
Liouville, 10
on a complex manifold, 103
positive, 111
symplectic, 6
tautological, 10, 22
tvpe, 94, 95
free action, 159
Fubini theorem, 228
Fubini-Study form, 115, 198
function
biholomorphic, 107
duoal, 144, 148
generating, 34
hamiltonian, 128, 158
J-holomorphic, 98
Morsa-Bott, 204
stable, 143, 147
strictly convex, 143, 147

(-space, 158
gauge
group, 187
theorv, 183
transformation, 187
Gauss lemma, 31
generating function, 19, 23, 26, 34

Index

geodesic
curve, 28
flow, 29, 30
geodesically convex, 28
minimizing, 28, 141
Gompf construction, 122
Gotay
coisotropic embedding, 63
Fernandez-Gotay-Gray, 121
gradient vector field, 129
gravitational potential, 136
gravity, 134,178
Gray
Fernandez-Gotay-Gray (A. Gray), 121
theorem (I. Gray), 71
Gromov
pseudo-holomorphic curve, 81, 98
group
gauge, 187
Lie, 152
of symplectomorphisms, 13, 63
one-parameter group of diffeomorphisms,
151
product, 175
semisimple, 186
structure, 183
Guillemin
Atiyah-Guillemin-Sternberg theorem, 199
Hamilton equations, 27, 129, 133, 146, 174
Hamilton-Jacobi equations, 125
hamiltonian
action, 153, 154, 157, 158, 194
function, 127, 128, 131, 158
G-space, 158
mechanics, 126
moment map, 158
reduced, 174
systemn, 131
vector field, 127, 128
harmonic form, 117, 118
Hausdortt quotient, 160
Heckman, see Duistermaat-Heckman
hermitian matrix, 156
hessian, 143, 147, 204
Hirzebruch surface, 210, 221
Hodge
complex Hodge theory, 119
conjecture, 120
decomposition, 117, 118
diamond, 120
number, 119
+-operator, 117
theorem, 117-119
theory, 117
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(/-)holomorphic tangent vectors, 93
homotopy
definition, 46
formula, 43, 46
imvariance, 45
operator, 46
Hopt
fibration, 76, 184
§* is not almost complex, 91
surface, 122
vector field, 76

immersion, 17
index, 205
infinitesimal action, 184, 193
integrable
almost complex structure, 90, 98
system, 131, 132, 202
integral
curve, 128, 136, 151
first, 131
of motion, 131, 173

intersection of lagrangian submanifolds, 65

inverse square law, 136
isometry, 142
isotopy
definition, 41
symplectic, 49
vs, vector field, 41
isotropic
embedding, 63
subspace, 8
isotropy, 159

J-anti-holomorphic function, 93
(J-)anti-holomorphic tangent vectors, 93
J-holomorphic curve, 98
J-holomorphic function, 93, 98
(/-)holomorphic tangent vectors, 93
Tacobi
Hamilton-Jacobi equations, 125
identity, 130, 163
jacobiator, 163

Kihler
compact Kihler manifolds, 117
form, 109, 117
local form, 113
manifold, 109, 117
potential, 112, 113
recipe, 112
submanifold, 114
Killing form, 186
kinetic energv, 134, 135

Kinllov
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Kostant-Kirillov symplectic form, 163, 176

Kodaira
complex surface, 122
complex surfaces, 121
Kodaira-Thurston example, 121

Kostant-Kirillov svmplectic form, 163, 176

Lagrange
Euler-Lagrange equations, 141
variational principle, 136
lagrangian complement, 56
lagrangian fibration, 133
lagrangian submanifold
closed 1-form, 19
conormal bundle, 19, 20
definition, 18
generating function, 19, 26
intersection problem, 63
of T*X, 18
vs. svmplectomorphism, 17, 21
zero section, 18
lagrangian subspace, 8, 56, 92
Laplace-Beltrami operator, 118
laplacian, 118
Lebesgue
measure, 223, 224
volume, 224
left multiplication, 154
left-invariant, 154
Legendre
condition, 139
transform, 143, 144, 147, 148
Leibniz rule, 131, 163
Lie
algebra, 130, 154, 193
algebra cohomology, 194
bracket, 130
derivative, 42, 46
group, 152
Lie-Poisson svmplectic form, 163, 176
lift
of a diffeomorphism, 11
of a path, 137, 141
of a vector field, 128
linear momentum, 161, 162
Liouville
Arnold-Liouville theorem, 132
form, 10
measure, 223
torus, 132
volume, 14
local form, 40, 113,225
locally free action, 159
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manifold
almost symplectic, 89
complex, 101
infinite-dimensional, 186
Kihler, 109, 117
of contact elements, 73
of orientad contact elements, 74
riemannian, 141
symplectic, 6
toric, see toric manifold
with corners, 220
Marsden-Weinstein-Meyer
quotient, 167
theorem, 161, 167
Maupertius
variational principle, 136
McDuff counterexample, 50
measure
Duistermaat-Heckman, 223
Lebesgue, 224
Liouville, 223
symplectic, 223
mechanical system, 135
mechanics
celestial, 37
classical, 129
metric, 28, 86, 141
Meyver, see Marsden-Weinstein-Meyer
minimizing
action, 137
locally, 137, 140
property, 140
moduli space, 187
moment map
actions, 130
definition, 157
effective, 203
equivariance, 158
example, 191
existence, 193, 195
hamiltonian G-space, 158
in gauge theory, 183
origin, 149
uniqueness, 193, 196
upgraded hamiltonian function, 154
moment polytope, 199
momentum, 129, 145, 161
momentum vector, 162
Morse
Morse-Bott function, 204
Morse function, 66
Morse theory, 66, 199
Moser
equation, 52

theorem — relative version, 52
theorem — version I, 50
theorem — version II, 51
trick, 30, 31, 60

motion
constant of motion, 131
equations, 135
integral of motion, 131, 173

neighborhood
convex, 43
e-neighborhood theorem, 44
tubular neighborhood, 61
tubular neighborhood fibration, 45
tubular neighborhood in R”, 47
tubular neighborhood theorem, 43

Index

Weinstein lagrangian neighborhood, 55, 57

Weinstein tubular neighborhood, 61,
Newlander-Nirenberg theorem, 98, 106
Newton

polytope, 209

second law, 123, 129, 135-137
Nijenhuis tensor, 98, 106
Nikodvm

Radon-Nikodvm derivative, 224
Nirenberg

Newlander-Nirenberg theorem, 98
Noether

principle, 149, 173

theorem, 173
non-singular projective variety, 114
nondegenearate

bilinear map, 3

fixed point, 66
normal

bundle, 43, 47

space, 43, 47, 61
number

Betti, 119

Hodge, 119

62

one-parameter group of diffeomorphisms, 151

operator
Laplace-Beltrami, 118

orbifold
conehead, 177
dunce cap, 177
examples, 176
reduced space, 176
teardrop, 177

orbit
definition, 159
point-orbit projection, 159
space, 159



Index

topology of the orbit space, 159
unstable, 160

oriented surfaces, 60

overtwisted contact structure, 78

pendulum
simple, 134, 136
spherical, 178
petiodic point, 33
phase space, 129, 136, 174
Picard theorem, 42
Poincaré
last geometric theorem, 37
Poincaré-Birkhoff theorem, 37
recurrence theorem, 36
point-orbit projection, 159
Poisson
algebra, 131
bracket, 130, 132, 138, 193
Lie-Poisson svmplectic form, 163, 176
structure on g*, 163
polar decomposition, 85, 86
polytope
Delzant, 209, 221
example of Delzant polytope, 209
example of non-Delzant polytope, 210
facet, 210
moment, 199
Newton, 209
rational, 209
simple, 209
smooth, 209
positive
form, 111
inner product, 28, 92
vector field, 78
potential
energy, 134, 135
gravitational, 136
Kihler, 112, 113
strictly plurisubharmonic, 112
primitive vector, 210
principal bundle
connection, 183
gauge group, 187
principle
Noether, 149, 173
of least action, 136, 137
variational, 136
product group, 175
projectivization, 73
proper function, 17, 122, 143
pseudo-holomorphic curve, 81, 98
pullback, 7

quadratic growth at infinity, 148
quadrature, 179
quotient
Hausdorff, 160
Marsden-Weinstein-Mever, 167
svmplectic, 167
topology, 159

Radon-Nikodym derivative, 223, 224
rank, 4
rational polytope, 209
recipe
for Kahler forms, 112
for symplectomorphisms, 25
recurrence, 33, 36
reduced
hamiltonian, 174
phase space, 174
space, 161, 167, 176
reduction
example, 198
for product groups, 175
in stages, 175
local form, 225
low-brow proof, 167
Noether principle, 173
other levels, 176
preview, 160
reduced space, 161
symmetry, 173
Reeb vector field, 75
representation
adjoint, 154, 155
coadjoint, 134, 135
of a Lie group, 152
retraction, 46
Riemann
Cauchy-Riemann equations, 102
surface, 122, 186
riemannian
distance, 28
manifold, 28, 141
metric, 28, 58, 86, 141
right multiplication, 154
right-imvariant, 154

s.p.s.h, 112

Seiberg-Witten invariants, 122

Seifert conjecture, 77

semisimple, 186, 196

simple pendulum, 134

simple polvtope, 209

skew-symmetric bilinear map
nondegenerate, 3
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rank, 4
standard form, 3
symplectic, 5
skew-symmetry
dafinition, 3
forms, 14
standard form for bilinear maps, 3
slice theoram, 169
smooth polvtope, 209
space
affine, 186
conflguration, 129, 136
moduli, 187
normal, 47, 61
of connections, 186
phase, 129, 136
total, 183
spherical pendulum, 178
splittings, 93
stability
dafinition, 143
set, 144
stabilizer, 159
stable
function, 147
point, 134, 178
Stein manifold, 122
stereographic projection, 107, 116
Sternberg
Ativah-Guillemin-Sternberg theorem, 199
Stokes theorem, 14, 190
strictly convex function, 140, 143, 147
strictly plurisubharmonic, 112
strong isotopy, 49, 60
submanifold, 17
almost complex, 91
Kahler, 114
subspace
coisotropic, 8
isotropic, 3, 8
lagrangian, 8, 56, 92
symplectic, 3, 8
supercommutativity, 229
superderivation, 229
symplectic
action, 153
almost svmplectic manifold, 89
basis, 5
bilinear map, 5
blowup, 221
canonical symplectic form on a coadjoint
orbit, 163, 176, 191
cotangent bundle, 9
deformation equivalence, 49

Index

duality, 5

equivalence, 49

equivariant form, 230

form, 6, 14

Fubini-Study form, 198

isotopy, 49

linear algebra, 8, 61

linear group, 88

linear symplectic structure, 5

manifold, 6

measure, 223

normal forms, 55

orthogonal, 8

properties of linear symplectic structures, 5

quotient, 167

reduction, see reduction

strong isotopy, 49

structure on the space of connactions, 186

subspace, 8

toric manifold, see toric manifold

vector bundle, 90

vector field, 127, 128, 153

vector space, 4,5

volume, 14, 223, 227
symplectization, 76, 77
symplectomorphic, 5, 49
symplectomorphism

Arnold conjecture, 37, 66

canonical, 12

definition, 7

equivalence, 13

exactly homotopic to the identity, 66

fixed point, 37, 65

generating function, 26

group of symplectomorphisms, 13, 63

linear, 5

recipe, 25

tautological form, 22

vs. lagrangian submanifold, 17, 20, 21
system

conservative, 133

constrainad, 137

mechanical, 133

Taubes
CP*4CP2#CP? is not complex, 122
unique symplectic structure on TP, 123
tautological form on T*X
coordinate definition, 10
intrinsic definition, 10
naturality, 11
propertv, 11
symplectomorphism, 22
teardrop orbifold, 177
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theorem

Archimedes, 224

Arnold-Liouville, 132

Ativah-Guillemin-Sternberg, 161, 199

Banyaga, 111

coisotropic embedding, 58

convexity, 199

Darboux, 7, 55, 60

Delzant, 161, 211, 221

Dolbeault, 106

Duistermaat-Heckman, 224, 227

e-neighborhood, 44

equivariant coisotropic embedding, 226

Euler-Lagrange equations, 145

Fubini, 228

Gray, 71

Hodge, 117-119

implicit function, 27

local normal form for contact mavifolds, 71

Marsden-Weinstein-Mever, 161, 167

Moser — relative version, 32

Moser — version I, 50

Moser — version I1, 51

Newlander-Nirenberg, 98, 106

Noether, 173

Picard, 42

Poincaré racurrence, 36

Poincaré’s last geometric theorem, 37

Poincaré-Birkhoff, 37

slice, 169

standard form for skew-symmetric bilinear
maps, 3

Stokes, 14, 190

symplectomorphism vs. lagrangian
submanifold, 21

tubular neighborhood, 43, 61

tubular neighborhood in R”, 47

Weinstein lagrangian neighborhood, 33, 37

Weinstein tubular neighborhood, 61, 62

Whitehead lemmas, 196

Whitney extension, 57, 58

Thurston

Kodaira-Thurston example, 121

tight contact structure, 78
time-dependent vector field, 41
topological constraint, 119
topology of the orbit space, 159
toric manifold

classification, 209
definition, 201, 209
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example, 202
4-dimensional, 221
total space, 183
transitive action, 159
tubular neighborhood
equivariant, 169
fibration, 45
homotopy-invariance, 45
in R, 47
theorem, 43, 61
‘Weinstein theorem, 62
twisted product form, 21
twisted projective space, 177

uuique symplectic structure on CP?, 123
unstable

orbit, 160

point, 134, 178

variational
principle, 135, 136
problem, 135, 143
vector field
complete, 153
gradient, 129
hamiltonian, 127, 128
Lie algebra, 193
svmplectic, 127, 128, 153
vector space
complex, 84
symplectic, 4, 5
velocity, 141
volume, 14, 223, 227

weighted projective space, 177
‘Weinstein
conjecture, 77, 78
isotropic embedding, 63
lagrangian embedding, 62
lagrangian neighborhood theorem, 55, 57
Marsden- Weinstein-Mever quotient, 167
Marsden-Weinstein-Mever theorem, 167
tubular neighborhood theorem, 61, 62
Whitehead lemmas, 196
Whitney extension theorem, 57, 58
Wirtinger inequality, 140
Witten
Seiberg-Witten invariants, 122
work, 133

Young inequality, 148
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