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PREFACE

This fourth volume of the Mathematical Papers of Sir William Rowan Hamilton completes
the project begun, in 1925�, by the instigators and ®rst Editors: Arthur William Conway
(1875±1950) and John Lighton Synge (1897±1995). It contains Hamilton's published papers
on geometry, analysis, astronomy, probability and ®nite differences, and a miscellany of
publications including several addresses. There are also three previously unpublished manu-
scripts, namely: the, unfortunately incomplete, Third Part of the Systems of Rays, the earlier
parts of which were published in Volume I; two letters to Augustus De Morgan, one devoted
to de®nite integrals and the other to a third order differential equation; and a very long letter
and postscript addressed to Andrew Searle Hart on Anharmonic Coordinates.

At the end of this volume will be found a list of Hamilton's papers in approximate
chronological order. As well as an index to this volume, there is also a combined index for all
four volumes.

The frontispiece is a view of Dunsink Observatory, where Hamilton lived and worked from
the time of his appointment, in 1827, as Andrews Professor of Astronomy and Royal
Astronomer of Ireland until his death in 1865. It is a reproduction of an aquatinted etching
published in 1820 by William Benjamin Sars®eld Taylor (1781±1850) and was intended to be
part of his History of the University of Dubliny.

The Royal Irish Academy acknowledges with gratitude the generous ®nancial assistance
towards the publication of this volume from the National University of Ireland; Trinity
College, Dublin; University College, Dublin; University College, Cork; University College,
Galway; The Queen's University of Belfast; The Dublin Institute for Advanced Studies.

A warm expression of thanks must be paid to the staffs of the Departments of Manuscripts
and of Early Printed Books in the Library of Trinity College, Dublin, and to the staff of the
Royal Irish Academy, for their willing and expert assistance at all times.

For help in the preparation of this volume especial thanks are due to Dr. Ian Elliott, of
Dunsink Observatory, who suggested the frontispiece and who advised on astronomical
matters, and in Trinity College to Dr. B. P. McArdle, Professor Petros Florides, Miss Hannah
O'Connor, and my brother Professor W. Garrett Scaife. Prof. T. J. Gallagher of University
College, Dublin, and my daughter, Lucy, gave invaluable help in proof reading.

The care with which the Cambridge University Press has produced this work is most
gratefully acknowledged.

B. K. P. S
Department of Electronic and Electrical Engineering
Trinity College, Dublin
January 2000

� See Selected papers of Arthur William Conway, ed. James McConnell, pp. 8±9, Dublin Institute for
Advanced Studies, Dublin: 1953.
y The history was not published until 1845 and did not contain this particular etching: W. B. S. Taylor

History of the University of Dublin, T. Cadell, London, and J. Cumming, Dublin: 1845.
The odd spelling of `Dunsinok' for Dunsink is puzzling and has not been explained. Dunsink is the

accepted English version of the Gaelic name `DuÂn Sinche' (`Fort of Sinneach').
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MANUSCR I PTS





I .

SYSTEMS OF RAYS

PART THIRD�

On extraordinary systems, and systems of rays in general

XXIII. On plane Systems of Rays

110. If the aberrations be measured from a focus, at which the radius of curvature of the
caustic vanishes, the expression (M)0 for the aberrations, or rather for their ®rst terms, vanish
also, and the convergence is much more accurate than at other points of the caustics; on
which account we may call these foci the principal foci and the corresponding rays the axes of
the system. Resuming the general formulñ (H)0, (K)0, and putting for simplicity ì � 0, i � è,
as well as ø0 � 0, that is taking the axis of the system for the axis of (x) we ®nd the following
values for the aberrations from a principal focus,

l � 1
6ø-è2, ë � 1

6ø-è3: (P)0

Besides, by (G)0, the arc of the caustic, comprised between the two rays, has for expression

S � 1
2ø-è2; (Q)0

we have therefore, by elimination of ø-,

l � 1
3S , ë � 1

3Sè: (R)0

111. The coef®cient ø-, which thus enters into the expressions (P)0, (Q)0, for the
aberrations on the arc, measured from a principal focus, has a remarkable geometrical
meaning, and is equal to three halves of the parameter of a parabola, which cuts perpendicu-
larly the rays near the axis of the system. For, if we take the principal focus for origin, and the
axis of the system for the axis of (x), conditions which give ì � 0, ø � 0, ø9 � 0, ø0 � 0, the
focus of a near ray has for coordinates,

X � 1
2ø-:i2, Y � 1

3ø-:i3,

and the approximate equation of the caustic is

� [This part is now printed for the ®rst time from the manuscript found among Hamilton's papers
after the publication, in 1931, of Vol. I of these papers (MS 1492/312 in the Library of Trinity College,
Dublin). The manuscript is undated and incomplete. According to the published table of contents (see
Vol. I, pp. 1±9) this part should begin with paragraph 107 and ®nish with paragraph `161 to the end',
but the MS begins with the last two words of the paragraph 109 on the 57th sheet and continues to the
end of paragraph 159 on the 79th sheet. Sheets 61, 62, and 63 are missing; these contain the end of
paragraph 119 to the beginning of paragraph 128.]



X 3 � 9
8ø-:Y 2, (S)0

which shews that unless ø- be nothing or in®nite, the caustic has, at the principal focus, a
cusp like the cusp of a semicubical parabola, and may be considered as the evolute of the
following common parabola

y2 � 2
3ø-:(x � 1

3ø-), (T)0

to which therefore the rays near the axis are perpendicular, and of which the parameter is
equal to two thirds of ø-.

112. We have just seen that the rays near the axis are cut perpendicularly by the common
parabola (T)0; in general, the rays of a plane system are perpendicular to a series of
rectangular trajectories, which have for equation dx � ìdy � 0, that is, by integration,

x
��������������
1� ì2

p
�
�

ìdø��������������
1� ì2

p � T , (U)0

(ì) being considered as a given function of (x, y) deduced from the equations of the ray, and
(T ) being the arbitrary constant, which may be called the parameter of the trajectory. These
curves possess many interesting properties, a few of which I shall mention. In the ®rst place,
they have the caustic for their common evolute, and the plane zone bounded by any two of
them is of the same breadth throughout, namely the difference of their parameters. A
trajectory, where it meets the caustic, has in general a cusp like the cusp of a semicubical
parabola, and may be considered as the evolute of a common parabola; of which the directrix
bisects the radius of curvature of the caustic, and of which the parameter is equal to two
thirds of that radius. The osculating parabola to a trajectory, at the point where it crosses a
given ray, has its axis inclined in general to that ray, at an angle whose tangent is the third
part of the radius of curvature of the caustic, at the focus of the ray, divided by the radius of
curvature of the trajectory, that is by the distance of the focus from the point of osculation.
But if the ray be an axis of the system, then this angle vanishes, and the axis of the parabola
coincides with the axis of the system. The parabola (T)0 is a particular case of these osculating
parabolas, but it has this peculiarity, that whereas in general there is only contact of the third
order between a parabola and the curve to which it osculates, the parabola (T)0 has contact
of the fourth order with the trajectory to which it belongs.

113. If the axes of the coordinates be chosen as in [111.], the equation of a ray, near the
axis of the system, will be

y � ix ÿ 1
6ø-:i3, (V)0

in which we may consider (i) as equal to the angle that the near ray makes with the axis. If
among all these near rays, we consider only those which make with the axis, at either side,
angles not exceeding some given small value è, we shall have i � è:sin î, (î) being an
auxiliary angle, introduced for the sake of con®ning (i) within the limits assigned; and the
entire space over which the near rays are perpendicularly diffused, at any given distance (x)
from the principal focus, is the difference of the extreme values of (y) corresponding to the
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given value of (x). In this manner it may be proved that the least linear space into which the
given parcel can be collected, has for expression

Ó � 1
12ø-:è3, (W)0

and corresponds to

x � 1
8ø-:è2; (X)0

that is, it is equal to half the lateral aberration of the extreme rays, and its distance from the
principal focus is three quarters of their longitudinal aberration. It may also be shewn, in a
similar manner, that the ends of this linear space Ó, are situated on the two branches of the
caustic curve, at the points where those branches are crossed by the extreme rays that touch
the alternate branches.

114. We have seen, that when the function ø is given, that is when we know the nature of
the system, we can deduce the equation and the properties of the caustic curve, by means of
the formula (D)0,

X � ø9, Y � ìø9ÿ ø:

If then it were required, reciprocally, to determine the nature of the function ø, the equation
of the caustic being given, we should have to integrate the following equation of the ®rst
order,

ìø9ÿ ø � f (ø9), (Y)0

y � f(x) being the given equation of the caustic. Differentiating (Y)0, we ®nd

fìÿ f 9(ø9)g:dø9 � 0; (Z)0

the ®rst factor

ìÿ f 9(ø9) � 0

belongs to a singular primitive of (Y)0, and contains the true solution of the question: the
other factor

dø9 � 0, or, ø 0 � 0 (A9)0

belongs to the complete integral, and represents a set of systems, in which the rays do not
touch the given caustic, but converge to some one point upon it.

115. In all the applications of the preceding theory, to the plane systems produced by
ordinary re¯ection or refraction, or by any other optical law, we may consider the rays as
emanating from the last re¯ecting or refracting curve, according to a given law; and if we
represent by a, b, the coordinates of this re¯ecting or refracting curve, the equation of a ray is
of the form

y ÿ b

x ÿ a
� f (í, b9), (B9)0

in which í is the tangent of the angle that the incident ray makes with the axis of (x);
b9 � (db=da), the corresponding quantity for the tangent to the re¯ecting or refracting curve;
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and f is a known function, depending on the law of re¯ection or refraction. Comparing this
equation (B9)0, with the form (A)0 which we have before employed, we ®nd

ì � f (í, b9), ø � aìÿ b, (C9)0

and therefore

dì � df

dí
dí� df

db9
db9, dø � adì� ìda ÿ db, ø9 � a � ìÿ b9

ì9
, (D9)0

if we put for abridgment dì � ì9da. Substituting this value for ø9, in the formulñ (D)0, we
®nd the focal coordinates

X � a � ìÿ b9

ì9
, Y � b � ì:

ìÿ b9

ì9
; (E9)0

and therefore, for the focal length,

F � pf(X ÿ a)2 � (Y ÿ b)2g � (1� ì2)
1
2(ìÿ b9)

ì9
: (F9)0

Hence it follows that the reciprocal of the focal length, being given by the formula

1

F
�

df

dí
:í9� df

db9
:b 0

(1� ì2)
1
2:(ìÿ b9)

, (G9)0

consists of two parts; the one independent of the curvature of the re¯ecting or refracting
curve, and varying inversely as the distance of that curve from the focus of the incident ray;
the other independent of that distance, and varying inversely as the radius of curvature: a
result remarkable for its generality, since it is independent of the form of the function f, and
therefore holds, not only for the plane systems produced by ordinary re¯ection and
refraction, but also for the extraordinary systems, produced by refraction at a chrystal of
revolution, the axis of revolution being supposed to coincide with the axis of chrystallization,
and the incident rays being contained in the plane of one of the meridians.

116. As the caustic of a given curve, is found by the formulñ

X � a � ìÿ b9

ì9
, Y � b � ì

ìÿ b9

ì9
,

so, reciprocally, if it were required to ®nd the curves corresponding to a given caustic, we
should have to integrate the equation

Y � f (X )

X Y having the same meanings as before, and f denoting a given function. Differentiating this
equation we ®nd either

dX � 0

or

ìÿ f 9(X ) � 0;
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the latter factor, which belongs to the singular primitive, contains the true solution of the
question; the other factor, which belongs to the complete integral, represents a class of focal
curves which would cause the rays to pass through some one point upon the given caustic.
This point in which a ray of a plane system touches the caustic, is the focus of a curve of this
kind which has contact of the second order with the given re¯ecting or refracting curve; the
principal foci belong to focal curves which have contact of the third order.

XXIV. On Developable Systems

117. It was shewn in the IV th Section, that systems of rays may be divided into classes,
according to the number of their elements of position. It was also shewn that the rays of a
system of the ®rst class, that is a system with but one such element, are contained upon a
surface or pencil as their locus; in the preceding section we have considered those systems of
the ®rst class, in which this locus of the rays is plane; let us now pass to the case where it is a
curve surface, developable, or undevelopable, and let us call the system corresponding,
developable and undevelopable systems.

118. The equations of a ray being put under the form x � á� ìz y � â� íz, in which á â
do not now represent the cosines of the angles that it makes with the axes, but the
coordinates of the point in which it intersects the horizontal plane; if the ray belong to a
given system of the ®rst class, we may consider the coef®cients á â í ì as given functions of
some one element of position, which we shall represent by ã. Denoting the derived functions
corresponding by á9 â9 ì9 í9 á0 . . . the partial differentials of the pencil are

p � dz

dx
� â9� í9z

ì(â9� í9z)ÿ í(á9� ì9z)

q � dz

dy
� ÿ(á9� ì9z)

ì(â9� í9z)ÿ í(á9� ì9z)

r � d2z

dx2
� í2 E � 2(ì9â9ÿ í9á9)í(â9� y9z)

fì(â9� í9z)ÿ í(á9� ì9z)g3

s � d2z

dxdy
� ÿ ìíE(ì9â9ÿ í9á9)fì(â9� í9z)� í(á9� ì9z)g

fì(â9� í9z)ÿ í(á9� ì9z)g3

t � d2z

dy2
� ì2 E � 2(ì9â9ÿ í9á9)ì(á9� ì9z)

fì(â9� í9z)ÿ í(á9� ì9z)g3

in which E � (á9� ì9z) (â 0� í 0z)ÿ (â9� í9z)(á 0� ì 0z); as appears by differentiating the
equations of the ray, and eliminating the differentials of ã. Hence

rt ÿ s2 � ÿ(ì9â9ÿ í9á9)2

fì(â9� í9z)ÿ í(á9� ì9z)g4

and the condition for the pencil being a developable surface is

ì9â9ÿ í9á9 � 0:
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When this condition is satis®ed, the rays are in general tangents to a caustic curve, whose
equations are had by eliminating ã between the following expressions

X � á� ìZ , Y � â� íZ , Z � ÿá9

ì9
� ÿ â9

í9
:

which expressions, when we assign any particular value to ã, that is when we consider any
particular ray, determine the focus of that ray, or the point where it touches the caustic. The
rays which are very near to a given ray, may be considered as intersecting that ray in the
corresponding focus, and as being contained in the tangent plane to the pencil; this plane,
which is the osculating plane of the caustic, has for equation

y ÿ â ÿ íz � í9

ì9
(x ÿ áÿ ìz):

119. This supposition, of a ray being intersected in its own focus by all the near rays, and of
these near rays being contained in the osculating plane of the caustic, being only approxi-
mately true, it is important to investigate the errors which it leads to, this is to calculate the
aberrations, lateral and longitudinal. Denoting by (i) the small increment which the element
of position receives, in passing from a given ray to a near ray, the equations of that near ray
will be

x � á� á9i � 1
2á 0i2 � � � � � (ì� ì9i � � � �)z,

y � â� â9i � 1
2â 0i2 � � � � � (í� í9i � � � �)z;

besides by the expressions for Z , we have

á9 � ÿì9Z , â9 � ÿí9Z ,

á 0 � ÿ(ì 0Z � ì9Z 9), â 0 � ÿ(í 0Z � í9Z 9),

á- � ÿ(ì-Z � 2ì 0Z 9� ì9Z 0), â- � ÿ(í-Z � 2í 0Z 9� í9Z 0):

and if, for simplicity, we take the given focus for origin; the ray for axis of z, and the
osculating plane for the plane of xz, conditions which give

Z � 0, á � 0, â � 0, ì � 0, í � 0, í9 � 0, á9 � 0, â9 � 0,

á 0 � ÿì9Z 9, â 0 � 0, á- � ÿ(2ì 0Z 9� ì9Z 0), â- � ÿ2í 0Z 9,

the equations of the near ray may be thus written

x � (ì9i � 1
2ì 0i2 � � � �)z ÿ 1

2ì9Z 9i2 ÿ 1
6(2ì 0Z 9� ì9Z 0)i3 � � � ,

y � (1
2í 0i2 � � � �)z ÿ 1

3í 0Z 9i3 � � �
and if we neglect the cube of (i), the lateral aberration measured from the focus is

ë � 1
2ì9Z 9i2 � 1

2

Z 9

ì9
:è2,

è being the angle which the near ray makes with the given ray. With respect to the
longitudinal aberration, it does not exist; in the same sense as the plane systems, because the
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near ray does not in general intersect the given ray. But if we investigate the point on the
given ray, which is nearest to the near ray, this point may be considered as the virtual
intersection, and its distance from its limiting position may be called the

[There is a gap in the manuscript at this point. Sheets 61, 62, and 63 are missing.]

XXV. On Undevelopable Systems

[Paragraphs 125±128 are missing.]

129. We have shewn how to calculate, for any given undevelopable system, the directrix of
the pencil, and the breadth of the generating rectangle; for the directrix is the arreÃt de
rebroussement of the envelope of the limiting planes, and the breadth of the rectangle is the
interval (I ), between the tangent of the directrix, and the ray to which it is parallel.
Reciprocally if we know the directrix, and the breadth of the rectangle corresponding to any
given point on that curve, we can deduce the equations of the ray, and all the other
properties of the system. In this manner we ®nd, for the ray corresponding to any given point
(abc) on the directrix, the following equations

x ÿ a � a9:(z ÿ c)� I :a 0:
1� a92 � b92

a 02 � b 02 � (b9a 0ÿ a9b 0)2

� �1
2

,

y ÿ b � b9:(z ÿ c)� I :b 0:
1� a92 � b92

a 02 � b 02 � (b9a 0ÿ a9b 0)2

� �1
2

,

in which the accents denote derived functions for c; and eliminating c, we shall have the
equation of the pencil.

130. If in the equations of the preceding paragraph, we consider the three quantities a, b, I,
as arbitrary functions of c, then that system of equations represents all surfaces composed of
straight lines; if we consider a, b, as arbitrary functions of c, and I as a constant quantity, then
the same system of equations represents a particular class of straight-lined surfaces, which
may be called isoplatal surfaces, because the breadth of their generating rectangle is constant;
and this class includes developable surfaces, for which that breadth is nothing. Finally, if we
consider a, b, as given functions of c, and I as an arbitrary function, then the system
represents a class of pencils which have all the same given directrix; eliminating c, we ®nd the
two following equations for those pencils, one with an arbitrary function ø, the other in
partial differentials of the ®rst order,

y ÿ b9:z � ø(x ÿ a9z), a9p � b9q � 1,

in which a9 b9 are to be considered as known functions of x y z, deduced from the following
equation, in which there is nothing arbitrary,

a 0:f y ÿ b ÿ b9(z ÿ c)g � b 0:fx ÿ a ÿ a9(x ÿ c)g:

131. The normals to a developable pencil, for all points of any given ray, have for their locus
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a plane passing through that ray; but when the pencil is undevelopable, the locus of these
normals is not in general a plane but an irregular hyperboloid, having for equation

(ìì9� íí9)fz � ì(x ÿ á)� í(y ÿ â)g2 ÿ fá9(x ÿ á)� â9(y ÿ â)g(1� ì2 � í2)2

ÿ fì9(x ÿ á)� í9( y ÿ â)ÿ (ìá9� íâ9)g(1� ì2 � í2)fz � ì(x ÿ á)� í(y ÿ â)g � 0:

If then we eliminate ã between this equation, and its derived [equation], we shall have the
joint equation of the two surfaces of centres of the pencil; or, if we assign any particular value
to ã, we shall ®nd the locus of the centres of curvature for all the points of the corresponding
ray. Differentiating therefore the equation of the hyperboloid, and putting for simplicity

á � 0, â � 0, ì � 0, í � 0, í9 � 0, á9 � 0, â9 � ì9u,

that is taking the ray for axis z, the virtual focus for origin, and the limiting plane for the
plane of xz, we ®nd the two following equations for the curve of the centres,

xz � uy � 0, ì92(z2 ÿ x2 � u2) � x(á 0� ì 0z)� y(â 0� í 0z);

from which it follows that the two radii of curvature of the pencil, at any given distance, z � ä,
from the virtual focus, are given by the following formula,

r � (ä2 � u2)1=2

2u2
:[n(äÿ ä9)(äÿ ä 0)�pfn2(äÿ ä9)2(äÿ ä 0)2 � 4u2(ä2 � u2)g]

in which (u) is the coef®cient of undevelopability;

n � í 0

ì92
;

and ä9, ä0 are the roots of this equation

í 0ä2 � (â 0ÿ ì 0u)äÿ á 0u � 0:

We see then that the two radii of curvature of an undevelopable pencil have opposite signs,
that is are turned in opposite directions; the geometric mean between them has for expres-
sion ���������

r9r 0
p

� ä2 � u2

u
,

which at the virtual focus reduces itself to the coef®cient of undevelopability; and they are
equal to one another in length, at two distinct points upon the ray, namely those points
whose focal distances are ä9 ä 0: we shall therefore call these points, the points of equal and
opposite curvature, and the two curves upon the pencil, which are their loci, we shall call the
lines of equal and opposite curvature.

132. If the ray be one of those axes condsidered in paragraph 126., the hyperboloid of
normals reduces itself to a plane, and the curve of centres becomes

x � 0, ì92z2 � y(â 0� í 0z);

it is therefore in this case a common hyperbola touching the ray at the origin, that is at the
focus, and having one of its asymptotes normal to the pencil at the point
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z � ÿ â 0

í 0
:

At this point both radii of curvature of the pencil are in®nite, so that we may call it the point
of evanescent curvature; in general, at a ray of the kind that we are now considering, one radius
of curvature is in®nite, while the other, the ordinate of the hyperbola of centres, has for
expression

r � ì92

í 0

ä2

äÿ E
,

E being the focal distance of the point of evanescent curvature. At this point r changes sign;
the pencil undergoes an in¯exion, and is cut by its tangent plane. We may remark also, that
the points in which the ray is crossed by the lines of equal and opposite curvature, being
given by an equation which becomes

ä2 ÿ Eä � 0,

are the focus and the point of evanescent curvature. Finally, since u � 0 gives I � 0, I being
the breadth of the generating rectangle, the ray that we are now considering touches the
directrix of the pencil, and since it may be shewn that the point of contact is determined by
the equation

z � è 0

í 0
� ÿE

this point is as far from the focus, at one side, as the point of evanescent curvature is at the
other.

133. We have seen that the two radii of curvature of an undevelopable pencil are always
turned in opposite directions. Now upon every surface which satis®es this condition, there
exist two series of lines determined by the differential equation

rdx2 � 2sdxdy � tdy2 � 0,

(r s t being partial differentials of the second order) which possess this remarkable property,
that the tangents to the two lines of this kind, passing through any given point on the surface,
coincide with the directions in which the surface is cut by its tangent plane at that point. On
an undevelopable pencil, one set of these lines are evidently the rays themselves; in general
they may be called the lines of in¯exion on the surfaces, and they are connected with the
curvatures by many interesting relations; for example, the acute angle between them is
bisected by the tangent to the greater circle of curvature, and the obtuse angle by the tangent
to the lesser; also the square of the tangent of half the acute angle is equal to the lesser radius
of curvature divided by the greater, and the square of the tangent of half the obtuse angle is
equal to the greater radius divided by the lesser; so that the only surfaces upon which these
lines of in¯exion are constantly perpendicular to one another, are those which have their
radii of curvature equal and opposite, namely, the surfaces which La Grange has shewn to
have the least possible area, for any given perimeter; and on a given undevelopable pencil,
the only points at which a ray is crossed perpendicularly by its conjugate line of in¯exion, are
the points where the same ray meets the lines of equal and opposite curvature; ®nally the
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lines of in¯exion have this other distinguishing property, that when they are curves, their
osculating plane is always a tangent plane to the surface to which they belong.

134. After the preceding remarks upon undevelopable pencils, considered as curve surfaces,
let us now investigate the aberration of a ray of such a pencil, at a small but ®nite distance
from a given ray. By calculations similar to those of the preceding section, we ®nd the
following general expression for the lateral aberration

ë � p(ä2 � u2):è,

è being the angle between the two rays, ä the distance from the virtual focus, and u the
coef®cient of undevelopability. If the given ray be one of those which touch the virtual
caustic, and if the aberration be measured from its focus, we have then u � 0, ä � 0, and by
new calculations we ®nd

ë � 1
2

R

cos2V
:è2,

R being the radius of curvature of the virtual caustic, and V the angle at which the osculating
plane of that curve is inclined to the tangent plane of the pencil, that is here, to the
osculating plane of the directrix. With respect to the longitudinal aberration, if we de®ne and
calculate it by the same reasonings as in developable systems, we ®nd

l � 1
2

u

tan v
è

v being the angle at which the ray crosses the virtual caustic.

135. The coef®cient

u

tan v

� �
in this formula for the longitudinal aberration, is the radius of curvature of a remarkable
curve, to which we may be conducted by the following reasonings. We have seen that the
coef®cient of undevelopability (u) is equal to the least distance between two in®nitely near
rays, divided by the angle between them; we have therefore

u � dS :sin v

dè
,

u

tan v
� cos v:dS

dè
,

dS being the element of the arc of the virtual caustic, and dè the angle between the rays; if
then we can ®nd a curve such that the arc comprised between two consecutive tangents,
which make with one another the same angle as that made by the two consecutive rays, may
be equal to (cos v:dS), that is to the projection of the element of the virtual caustic upon the
given ray, the radius of curvature (R9) of this curve will be equal to the coef®cient

u

tan v
,

and the formula for the longitudinal aberration may be thus written

l � 1
2R9:è:
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Now, there are two different ways of ®nding a plane curve which shall satisfy this condition;
®rst by making a plane roll round the developable envelope of the limiting planes of the
pencil, collecting the rays in its progress, till it makes them all tangents to one plane curve;
and secondly by making each ray successively a momentary axis of revolution round which all
the rays that precede it in the system, beginning with some given ray, describe little stripes of
one-branched hyperboloids, in such a manner that they are all at last brought to be parallel
to a given plane, and therefore horizontal tangents to a vertical cylinder, if we suppose the
given plane horizontal; the base of this cylinder will be the same plane curve as that before
obtained, and will, like it, satisfy the required condition. Finally we may remark, that the two
constructions here indicated, include as particular cases the known manner of unrolling a
developable surface, and may be called the virtual developments of the pencil.

XXVI. On Systems of the Second Class

136. In a system of the second class, that is a system with two arbitrary constants, if we
represent a ray, as in the two preceding sections, by equations of the form

x � á� ìz, y � â� íz,

we may in general consider any two of the coef®cients, for example á, â, as being given
functions of the two others, and put their differentials under the form

dá � á9dì� á dí, dâ � â9dì� â dí:

We may also consider [19.] the coef®cients ì, í, as being themselves given functions of x, y, z;
the derived functions corresponding are,

dì

dx
�

z � â

ó
,

dì

dy
� ÿá

ó
,

dì

dz
� ÿ ì:

dì

dx
� í:

dì

dy

� �
,

dí

dx
� ÿâ9

ó
,

dí

dy
� z � á9

ó
,

dí

dz
� ÿ ì:

dí

dx
� í:

dí

dy

� �
,

in which, ó � (z � á9)(z � â )ÿ á
9
â9. By means of these formulñ, we can ®nd the condition

for the system being rectangular, that is for the rays being cut perpendicularly by a series of
surfaces; for if this be the case, the differential equation of those surfaces,

ìdx � ídy � dz � 0,

will be integrable, and we shall have

dì

dy
ÿ í:

dì

dz
� dí

dx
ÿ ì:

dí

dz
,

that is

ìíâ ÿ (1� í2)á � ìíá9ÿ (1� ì2)â9:

When this condition is satis®ed we shall have

ìdá� ídâ � p(1� ì2 � í2):dj,

9 9

9 9

9

9 9
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ö being a function of ì, í, considered as independent variables; and the rays will be cut
perpendicularly by a series of surfaces having for equation

z
p

(1� ì2 � í2)� j � T ,

T being an arbitrary constant which may be called the parameter of the surface; we may also
remark, that the shell of space, bounded by any two of these surfaces, is of the same thickness
throughout, equal to the difference of their parameters.

137. Establishing any arbitrary relation between ì, í, the rays which satisfy that relation have
a surface or pencil for their locus; these pencils may all be represented by the partial
differential equation

ìp � íq � 1,

or by the functional equation

í � ø(ì)

and the arbitrary function may be determined by the condition that the rays shall pass
through a given curve, or envelope a given surface. Among all these pencils there is only a
certain series developable; the differential equation of the series is, by XXIV.,

dì:dâÿ dí:dá � 0,

that is, in our present notation,

á dí2 � (á9ÿ â )dídìÿ â9dì2 � 0:

Denoting by a, a9 the roots of this quadratic, so that

2á a � âÿ á9ÿpf(â ÿ á9)2 � 4á â9g,
2á a9 � â ÿ á9�pf(â ÿ á9)2 � 4á â9g,

the tangent planes to the two developable pencils passing through any given ray have for
equations

y ÿ âÿ íz � a(x ÿ áÿ ìz),

y ÿ âÿ íz � a9(x ÿ áÿ ìz),

and the corresponding foci of the ray, that is the points in which it touches the arreÃts de
rebroussement of these two pencils, have for their vertical ordinates

Ist Z � ÿ1
2(á9� â )� 1

2

pf(â ÿ á9)2 � 4á â9g,
IInd Z 9 � ÿ1

2(á9� â )ÿ 1
2

pf(â ÿ á9)2 � 4á â9g;
these focal ordinates are therefore roots of the quadratic

Z 2 � Z(á9� â )� á9â ÿ á â9 � 0,

and the joint equation of the two caustic surfaces is

ó � 0,

9 9

9 9 9

9 9 9 9

9 9 9

9 9 9

9 9 9
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ó having the same meaning as in the preceding paragraph. It may also be shewn that this
equation is a singular primitive of the partial differential equation

ìp � íq � 1,

of which the complete integral í � ø(ì) represents all the pencils of the system.

138. To ®nd the intersection of the two caustic surfaces, we have the condition

(â ÿ á9)2 � 4á â9 � 0;

when the system is rectangular, this condition resolves itself into the three following,

â ÿ á9 � 0, á � 0, â9 � 0,

which are however equivalent to but two distinct equations, in consequence of the condition
of rectangularity; and thus the intersection sought, reduces itself in rectangular systems to a
®nite number of principal foci, together with a corresponding number of rays, each of which
may be shewn to be intersected in its own focus by all the rays in®nitely near it, and which
may therefore be called the axes of the system. We have already arrived at this result, by different
reasonings, in the case of the systems produced by ordinary re¯ection and refraction, which
as we have seen are all rectangular; and though the systems produced by extraordinary
refraction are not in general rectangular, yet we shall see that for these systems also, there are
certain particular rays, or axes of the system, which satisfy the same conditions

â ÿ á9 � 0, á � 0, â9 � 0:

If in any particular system, these three conditions be identically satis®ed, by the nature of the
functions á, â, then it is easy to shew that those functions must be of the form

á � a ÿ ì:c, â � b ÿ í:c,

and therefore that the rays all pass through some one point (a b c).

139. Besides the two foci of a ray, which correspond to the two developable pencils, and
which are points of intersection with rays in®nitely near; a given ray has in general an in®nite
number of virtual foci, which correspond to the undevelopable pencils, and which are nearest
points to rays in®nitely near. These virtual foci are however, all ranged upon a ®nite portion
of the ray, which has its middle point at the middle of the interval between the foci of the
developable pencils, and its length equal to that interval divided by the sine of the angle
between the same developable pencils. The extreme virtual foci thus determined, form two
surfaces, which have for their joint equation

fìíâ ÿ (1� í2)á ÿ ìíá9� (1� ì2)â9g2 � 4ó (1� ì2 � í2),

ó having the same meaning as in 136.: these may be called the virtual caustic surfaces; they
coincide with the ordinary caustic surfaces, where the ®rst member of their equation
vanishes, that is when the system is rectangular; in general they have the same diametral surface

2z � á9� â � 0;

9 9

9 9

9 9

9 9
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and their intersection with one another reduces itself to a ®nite number of isolated points,
which are determined by the following equations,

á9ÿ â

2ìí
� â9

1� í2
� ÿá

1� ì2

and which may be called the principal virtual foci. When the system is rectangular, these points
coincide with the foci considered in 138.

140. With respect to the law, according to which the virtual focus varies between its extreme
limits, it may be shewn that these extreme positions correspond to two undevelopable pencils,
or rather to two sets of such pencils whose limiting planes are perpendicular to one another,
and are symmetrically situated with respect to the tangent planes of the developable pencils,
with which they coincide when the system is rectangular; and that if we take the ray for the
axis of z and denote by (ç) the angle which the limiting plane of any other undevelopable
pencil, makes with that corresponding to one of the extreme virtual foci, and focal ordinate
of this pencil will be

z � z1 cos2 ç� z2 sin2 ç,

z1, z2, denoting the extreme values. Moreover if we take the planes corresponding to the
extreme virtual foci, for the planes of xz, yz, and place the origin at the middle point of the
interval between those foci, the length of which interval we shall denote by V; then, the
equations of a near ray may be thus written

x � (z ÿ V ):i � V cos P :k, y � (z � V ):k ÿ V cos P :i,

i. k being the small increments received by ì, í, in passing from the given ray to the near ray,
and P the angle between the developable pencils; the general equation of thin pencils is
therefore k � ø(i), that is

y(z ÿ V )� x:V cos P

z2 ÿ V 2 sin2 P
� ø

x(z ÿ V )ÿ yV cos P

z2 ÿ V 2 sin2 P

� �
and it may be shewn as in IX. that the area of a perpendicular section is proportional to the
product of the distances from the foci of the developable pencils. It may also be shewn that if
we determine the form of the function ø, by the condition that the rays shall pass through a
little circle having for equations

z � ä, x2 � y2 � e 2;

for example through the circumference of the pupil of the eye, the radius of this pupil being
(e), and the eye being placed at a distance (ä) from the middle point between the foci; every
section of the pencil made by a plane perpendicular to the given ray, (supposed to coincide
with optic axis), is a little ellipse, whose semi-axis major is

a � e:fV (äÿ z)�
�������������������������������������������������������������������������������������������������
V 2(äÿ z)2 � (ä2 ÿ V 2 sin2 P)(z2 ÿ V 2 sin2 P)

p
g

ä2 ÿ V 2 sin2 P
,

9 9
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of which the minimum value

a � e:V : sin2 P

äÿ cos P :
p

(ä2 ÿ V 2 sin2 P)

corresponds to

z � V 2: sin2 P

äÿ cos P :
p

(ä2 ÿ V 2 sin2 P)
:

141. These results include, as particular cases, those which we had before found for systems
of re¯ected and refracted rays. We might, in a similar manner proceed to generalise the
calculations and reasonings into which we have entered, respecting the aberrations and
density in those systems; but it is more interesting to examine the general properties of
systems of rays, proceeding from any given surface according to any given law. Suppose then
that from every point of a given curve surface

F (x y z) � 0,

proceeds a ray having for equations

x9ÿ x � ì(z9ÿ z) y9ÿ y � í(z9ÿ z),

ì, í being given functions of x, y, z, dz=dx, dz=dy, that is, ultimately, of x and y; the differentials
of ì, í, z, will be of the form

dì � ì9dx � ì dy,

dí � í9dx � í dy,

dz � ìdx � qdy;

and because á � x ÿ ìz [and] â � y ÿ íz, we have

(z � á9)(ì9í ÿ ì í9) � (1ÿ ìp):í � ìqí9,

ÿá (ì9í ÿ ì í9) � (1ÿ ìp):ì � ìqì9,

ÿâ9(ì9í ÿ ì í9) � (1ÿ íq):í9� ípí,

(z � â )(ì9í ÿ ì í9) � (1ÿ íq)ì9� ípì ,

á9, á , â9, â having the same meanings as in the preceding paragraphs of the present section.
By means of these relations, we can translate all the formulñ that we have found for systems
of the second class in general into the notation of emanating systems. We ®nd, for example,
that the differential equation of the curves in which the developable pencils intersect the
surface from which the rays emanate, is

dì:(dy ÿ ídz) � dí:(dx ÿ ìdz);

the condition for these developable pencils cutting one another at right angles, is

9

9

9 9 9

9 9 9 9
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ì(í� q):ì9� (1ÿ ìp � í2):ì � (1ÿ íq � ì2)í9� í(ì� p)í ;

the equation which determines the two foci, is

fì9(z9ÿ z)� 1ÿ ìpgfí (z9ÿ z)� 1ÿ íqg � fì (z9ÿ z)ÿ ìqg:fí9(z9ÿ z)ÿ ípg:
and the condition for these two foci coinciding, that is for the intersection of the caustic
surfaces, is

f(1ÿ íq)ì9� ípì ÿ ìqí9ÿ (1ÿ ìp)í g2 � 4f(1ÿ ìp)ì � ìqì9g:f(1ÿ íq)í9� ípí g � 0:

We may remark that the condition for the rectangularity of an emanating system, is the
condition for the formula

ìdx � ídy � dzp
(1� ì2 � í2)

being an exact differential.

142. We have seen, in the two preceding parts of this essay, that if upon the plane passing
through a given re¯ected or refracted ray and through any given direction upon the
re¯ecting or refracting surface, we project the ray re¯ected or refracted from the consecutive
point upon the given direction, the projection will cross the given ray in a point whose
distance (h) from the mirror is determined by the formula

1

h
� cos2 ø

r1
� sin2 ø

r2
,

r1, r2 being the distances of the foci of the developable pencils from the mirror, and ø the
angle which the plane of projection makes with one of the tangent planes to those
developable pencils. In general, it may be shewn that

1

å
� cos2 ç

å1
� sin2 ç

å2
,

å being the distance of the analogous point from the surface from which the rays emanate;
ç the angle which the plane of projection makes [with] the plane corresponding to one of
the extreme virtual foci 140.: and å1, å2 the extreme values of å, which are connected with
r1, r2, that is with the distances of the foci of the developable pencils, by the following
relations

1

å1
� 1

å2
� 1

r1
� 1

r2
,

1

å1
ÿ 1

å2
� 1

sin P

1

r1
ÿ 1

r2

� �
,

P being the angle between the developable pencils. We may call the point thus determined,
the focus by projection; and we see that the extreme foci by projection cannot coincide with one
another, except at the intersection of the caustic surfaces, when the system is rectangular; or,
more generally, at the principal virtual foci (see 139.).

143. In the two former parts of this essay, we have arrived at various theorems respecting the
osculating foci of re¯ected and refracted systems; that is, the foci of surfaces which osculate

9 9

9 9

9 9 9 9
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to the given re¯ector or refractor, and which would themselves re¯ect or refract the given
incident rays to some one point or focus. Those theorems, abstracts as they appear, are
however only particular cases of certain more general properties of emanating systems, which
we come now to consider. Representing by (x, y, z, p, q, r, s, t), the coordinates and partial
differentials, ®rst and second order, of the given surface from which the rays emanate; and by
(x9, y9, z9, p9, q9, r 9, s9, t9) the corresponding quantities for a focal surface, that is for a surface
which would cause the rays to pass through some one point (a, b, c); the coef®cients (ì, í)
which enter into the equation of the ray being given functions of the coordinates of the
surface and the partial differentials of the ®rst order, their differentials will be, for the given
surface,

dì � dì

dx
:dx � dì

dy
:dy � dì

dz
:dz � dì

dp
:dp � dì

dq
:dq,

dí � dí

dx
:dx � dí

dy
:dy � dí

dz
:dz � dí

dp
:dp � dí

dq
:dq,

and for the focal surface

dì � dì

dx9
:dx9� dì

dy9
:dy9� dì

dz9
:dz9� dì

dp9
:dp9� dì

dq9
:dq9,

dí � dí

dx9
:dx9� dí

dy9
:dy9� dí

dz9
:dz9� dí

dp9
:dp9� dí

dq9
:dq9:

But we have also, by the notation of 141.

dì � ì9dx � ì dy dí � í9dx � í dy

for the given surface; and by the nature of the focal surface, we have, for that surface,

dì � ìdz9ÿ dx9

c ÿ z9
, dí � ídz9ÿ dy9

c ÿ z9
:

Comparing these equations, and supposing that the given surface is touched by the focal
surface, an hypothesis which gives

x9 � x, y9 � y, z9 � z, p9 � p, q9 � q,

and renders ì, í the same for both surfaces, we ®nd

ì9 � M 9� dì

dp
:r � dì

dq
:s,

ì � M � dì

dp
:s � dì

dq
:t,

í9 � N 9� dí

dp
:r � dí

dq
:s,

9 9

9 9
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í � N � dí

dp
:s � dí

dq
:t,

ìp ÿ 1

c ÿ z
� M 9� dì

dp
r 9� dì

dq
:s9,

ìq

c ÿ z
� M � dì

dp
:s9� dì

dq
:t9,

íp

c ÿ z
� N 9� dí

dp
:r 9� dí

dq
:s9,

íq ÿ 1

c ÿ z
� N � dí

dp
:s9� dí

dq
:t9,

if we put for abridgement

M 9 � dì

dx
� dì

dz
: p M � dì

dy
� dì

dz
:q,

N 9 � dí

dx
� dí

dz
: p N � dí

dy
� dí

dz
:q:

If now we wish to determine the focal surface by the condition of osculating to the given
surface in any given direction, for which dy � ôdx, we are to employ the following formula

r 9ÿ r � 2(s9ÿ s)ô� (t9ÿ t)ô2 � 0,

r 9, s9, t9 being considered as given functions of the focal ordinate c, determined by the
preceding equations. And if among all the osculating focal surfaces thus determined, we wish
to ®nd those for which this ordinate is a maximum or a minimum, together with the
corresponding directions of osculation; we shall have to employ the two following equations

r 9ÿ r � (s9ÿ s):ô � 0 s9ÿ s � (t9ÿ t):ô � 0,

that is

dp9ÿ dp � 0, dq9ÿ dq � 0,

or ®nally

ìdz ÿ dx

c ÿ z
� ì9dx � ì dy,

ídz ÿ dy

c ÿ z
� í9dx � í dy;

formulñ which give by elimination

(ìdz ÿ dx)(í9dx � í dy) � (ídz ÿ dy)(ì9dx � ì dy),

fì9(c ÿ z)� 1ÿ ìâgfí (c ÿ z)� 1ÿ íqg � fì (c ÿ z)ÿ ìqgfí9(c ÿ z)ÿ ípg:
Comparing these results with the formulñ 141. we see that the foci of the greatest and least
osculating focal surfaces, are the points in which the ray touches the two caustic surfaces; and
that the directions of osculation corresponding, are the directions of the curves in which the
developable pencils intersect the given surface from which the rays proceed.

9 9
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9
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144. The preceding theory of osculating focal surfaces conducts to many important
consequences respecting re¯ected and refracted systems, ordinary and extraordinary; for in
every such system, the rays may be considered as emanating from the last re¯ecting or
refracting surface, according to a given law, which depends both upon the law of re¯exion or
refraction, and also upon the nature of the incident system: and it will be shewn that it is
always possible to assign such a form to the last re¯ector or refractor, as to make the rays
converge to any given focus (a b c); that is in the notation that we have just employed, the
differential equation obtained by eliminating p9, q9 between the three following

a ÿ x9 � ì(c ÿ z9), b ÿ y9 � í(c ÿ z9), dz9 � p9dx9� q9dy9,

is always integrable, and the integral represents a series of focal surfaces. With respect to the
nature of this series, we have already assigned their integral equation, for the case of ordinary
re¯exion and refraction; and we shall assign it, in subsequent sections of this essay, for the
case of extraordinary re¯exion and refraction, by chrystals with one or with two axes. The
integral equation of this series may therefore, in all cases, be found by elimination alone; and
supposing it known, we may determine the four constants which it involves, (namely the three
coordinates of the focus, and the parameter introduced by integration,) by supposing the
focal surface to osculate to the given re¯ector or refractor, at any given point, in any given
direction. And if, among all the focal surfaces thus osculating at any given point, we seek the
greatest and the least, by means of the formulñ

dp9 � dp, dq9 � dq,

it follows from the theory of the preceding paragraph, that we shall ®nd the two foci of the
ray, and the directions of the two lines of re¯exion and refraction, by calculations which are
generally more simple than those which would be required in differentiating the equations of
the ray.

145. Another application of this theory, relates to the surfaces of constant action. We have
seen, in the two former parts of this essay, that the rays of an ordinary system are normals to
this series of surfaces; and it will be shewn, that in extraordinary systems, the rays may be
considered as proceeding from the corresponding series of surfaces according to a law of
such a nature that if the rays were to converge to any one point, the surfaces would become
spheroids of certain known forms, having that point for centre. Hence it follows, by our
general theory of osculating focal surfaces, that as in ordinary systems, the surfaces of
constant action have the centres of their greatest and least osculating spheres contained upon
the two caustic surfaces; so, in extraordinary systems, the two caustic surfaces contain the
centres of the greatest and least spheroids, which osculate at any given point to the surfaces
of constant action.

146. A third application relates to the axes of an extraordinary system. We have seen, in the
two ®rst parts, that in ordinary systems, there are in general one or more such axes, each of
which is intersected by all the consecutive rays, in a point which is the focus of a focal
re¯ector or refractor, that has contact of the second order with the given re¯ector or
refractor. We can now extend this theorem to extraordinary systems also; for if we determine
the focus, and the point of osculation, by the following equations
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x9 � x, y9 � y, z9 � z, p9 � p, q9 � q, r 9 � r , s9 � s, t9 � t,

which express the conditions for contact of the second order, we shall have by the equations
of [143.],

ì9 � ìp ÿ 1

c ÿ z
, ì � ìq

c ÿ z
, í9 � íp

c ÿ z
, í � íq ÿ 1

c ÿ z
,

conditions which express that the ray is an axis of the system, that is that it is intersected by all
the rays in®nitely near it, in one and the same focus; namely the focus of the osculating
surface. It may also be shewn, by similar reasonings, that this focus is the common centre of a
series of spheroids, which have contact of the second order with the surfaces of constant
action.

147. A fourth application relates to the determination of the surface of a chrystal, by means
of one of its two caustic surfaces. We have given, in Section XIX., the solution of the
corresponding questions, for the case of ordinary re¯ectors and refractors; it will be suf®cient
therefore to point out, here, the principal steps of the reasoning.

From what we have already shewn, it follows that the equation of the caustic surfaces (a, b,
c), may be obtained by eliminating x9, y9, z9 between the equations of the chrystal and of the
ray, combined with an equation of the form

(r 9ÿ r)(t9ÿ t)ÿ (s9ÿ s)2 � 0,

in which r, s, t are the partial differentials of the second order of the given chrystal, and r 9, s9,
t9 the corresponding quantities for a focal chrystal which would refract the rays to the point
(a, b, c). If then we are given the equation of one of the caustic surfaces

f (a b c) � 0,

and are required to ®nd the equation of the chrystal, we have to integrate the equation

(r 9ÿ r)(t9ÿ t)ÿ (s9ÿ s)2 � 0,

considering (r, s, t) as partial differentials of the second order belonging to the unknown
chrystal, and r 9, s9, t9 as expressions composed in a known manner of (x, y, z, p, q, a, b, c), or
simply of (x, y, z, p, q), since (a, b, c) are themselves known functions of (x, y, z, p, q), deduced
from the equations

f (a b c) � 0, a ÿ x � ì(c ÿ z), b ÿ y � í(c ÿ z),

in which ì, í are given functions of x, y, z, q depending on the law of extraordinary refraction
and on the nature of the incident system. The complete integral, with two arbitrary functions,
represents the envelope of a series of focal chrystals, which have their foci on the given caustic
surface; there is also a singular primitive of the ®rst order, which contains the true solution,
representing a series of chrystals, each of which would refract the given incident rays so as to
make them touch the given caustic surface.

148. We may also generalise the investigations of the second part, respecting the caustics of
a given curve, and the surfaces of circular pro®le; and shew that a given curve may have an
in®nite number of caustics by extraordinary refraction, according to the in®nite number of

9 9

22 I . SYSTEMS OF RAYS. PART THIRD



chrystals, on which it may be a line of extraordinary refraction, that is the base of a
developable pencil. The locus of these curves, is the envelope of a certain series of cones, the
equation of which may be calculated and, of which we shall assign the equation in a
subsequent section. In the mean time we may remark, that although we have contented
ourselves with applying to the case of extraordinary refraction, the theorems of the present
section, they possess a much greater degree of generality, and may be applied to all other
optical laws which may hereafter be discovered: provided that those laws shall be of such a
nature as to render integrable the equation of the focal surfaces 143., that is the equation
which results from elimination of p9, q9 between the three following,

a ÿ x9 � ì(c ÿ z9), b ÿ y9 � í(c ÿ z9), dz9 � pdx9� qdy9:

The conditions for the integrability are two; they are obtained by eliminating r 9, s9, t9
between the four equations 143. which result from the two following

(c ÿ z9)dì � ìdz9ÿ dx9, (c ÿ z9)dí � ídz9ÿ dy9,

considering c as arbitrary: and it will be shewn that they are necessarily satis®ed, not only for
the laws of ordinary and extraordinary re¯exion and refraction, but also for all other laws
which are included in the principle of least action.

XXVII. Systems of the Third Class

149. Before we proceed to examine specially the properties of extraordinary systems, let us
make a few remarks upon systems of classes higher than the second (IV), that is systems in
which the position of the rays depends on more than two arbitrary quantities. We have an
example of such a system, in the case of heterogeneous rays which after issuing from a
luminous point have been any number of times refracted; for besides the two arbitrary
coordinates of the ®rst point of incidence, there is also a third arbitrary element depending
on the colour of the ray: a system of this kind is therefore a system of the third class. It is
possible also to conceive systems, in which the position of a ray shall depend on more than
three arbitrary elements, these elements being restricted to remain within certain limiting
values; but as all the important questions of optics may be reduced to the consideration of
systems of the ®rst and second classes, of which we have already treated, I shall con®ne myself
to a brief view of the properties of systems of the third class.

Representing therefore, as before, a ray by the two equations

x � á� ìz, y � â� íz,

let us suppose that the four coef®cients (á, â, ì, í) are connected by some one given relation

u � 0 � j(á â ì í);

it is evident that then the system will be of the third class, because three constants remain
arbitrary, and the properties of the system will depend upon the form of the function j.
Through any given point of space, x, y, z pass in general an in®nite number of rays,
composing a cone, which has for equation u � 0, á, â, ì, í being changed into their values

ì � X ÿ x

Z ÿ z
, í � Y ÿ y

Z ÿ z
, á � x ÿ ìz, â � y ÿ íz,
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and X, Y, Z representing the coordinates of the cone. In the same manner, if we consider a
new point of space, in®nitely near the former, and having for coordinates x � dx, y � dy,
z � dz, the rays passing through this point compose another cone, having for equation

u � du

dx
:dx � du

dy
:dy � du

dz
:dz � 0;

which may also be thus written,

u � du

dì
ÿ Z

du

dá

� �
dì� du

dí
ÿ Z

du

dâ

� �
dí � 0:

The intersection of these two cones is a curve having for equations

u � 0,
du

dì
ÿ Z

du

dá
� du

dí
ÿ Z

du

dâ

� �
:

dí

dì
� 0;

and although the nature and position of this curve depend on the value of
dí

dì
, that is on the

direction in which we pass from the point x, y, z to the in®nitely near point x � dx, y � dy,
z � dz; yet the curve of intersection, and therefore the second cone, always passes through the
point (X, Y, Z) which satis®es the three following conditions

u � 0,
du

dì
ÿ Z

du

dá
� 0,

du

dí
ÿ Z

du

dâ
� 0:

This point I shall therefore call the focus of the ®rst cone, and the ray passing through it I
shall call a focal ray; the values of ì, í corresponding to this ray are determined by the two
equations

u � 0,
du

dì

du

dâ
� du

dí

du

dá
:

150. We have just seen that in a system of the third class, any assigned point of space is in
general the centre of a cone of rays, which is intersected by all the in®nitely near cones in
one and the same point of focus. It may easily be shewn that these foci have a curve surface
for their locus, the equation of which in X, Y, Z is had by eliminating ì, í between the three
following equations in (á, â, ì, í)

u � 0,
du

dì
ÿ Z

du

dá
� 0,

du

dí
ÿ Z

du

dâ
� 0,

after changing á, â to their values á � X ÿ ìZ, â � Y ÿ íZ; and since we should obtain the
same three equations, if we sought the maximum or minimum of Z, corresponding to given
values of X, Y, and considered as a function of ì, í, (that is the highest or lowest point upon
a given vertical ordinate, which has a ray of the system passing through it,) I shall call the
locus of the conic foci the limiting surface of the system. This surface is touched by all the
cones and other pencils of the system, and also by all the focal rays; if the condition

du

dì

du

dâ
� du

dí

du

dá

be identically satis®ed, for all the rays of the system, then those rays are all tangents to the
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limiting surface. Reciprocally if the rays of a system of the third class are all tangents to any
one surface, or all pass through any one curve, the condition which has just been given is
then identically satis®ed.

151. Many other remarks might be made upon the properties of the focal rays and of the
limiting surface; but I believe it more important to notice here the investigations which
Malus� has pre®xed to his TraiteÂ d'optique, which according to my division relate to systems of
the third class. Malus supposes that from every point of space x9, y9, z9 proceeds a ray of light
having for equations

x ÿ x9

m
� y ÿ y9

n
� z ÿ z9

o

(m, n, o) being functions of (x9, y9, z9), the forms of which depend upon the nature of the
system. The ray from an in®nitely near point has for equations

x ÿ x9ÿ dx9

m � dm
� y ÿ y9ÿ dy9

n � dn
� z ÿ z9ÿ dz9

o � do

and in order that it should intersect the former ray, we have the following equation of
condition

(ndz9ÿ ody9)dm � (odx9ÿ mdz9)dn � (mdy9ÿ ndx9)do � 0,

which may be put under the form

ádx92 � âdy92 � ãdz92 � ädx9dy9� ådx9dz9� ædy9dz9 � 0;

and therefore the directions in which we can pass from the given point x9, y9, z9 to the
in®nitely near point x9� dx9, y9� dy9, z9� dz9, are contained upon a conic locus, which has
for equation

á(x ÿ x9)2 � â(y ÿ y9)2 � ã(z ÿ z9)2 � ä(x ÿ x9)( y ÿ y9)� å(x ÿ x9)(z ÿ z9)

� æ(y ÿ y9)(z ÿ z9) � 0:

This cone being of the second degree, is in general cut in two directions by a plane passing
through its centre; and it is in this manner that Malus proves, that when rays issue from a
given surface according to a given law, there exist in general two series of lines upon that
surface, analogous to the lines of curvature, the rays from which compose developable
surfaces, and are tangents to two series of caustic curves, which are contained upon two
caustic surfaces: results to which we have already arrived by different reasonings.

XXVIII. On Extraordinary Systems, Produced by Single-Axed Chrystals

152. When a ray of light is refracted by extraordinary refraction, in passing from an
unchrystallised medium into a chrystal with one axis, we know by experience that if we describe
a spheroid of revolution, having its centre at the point of incidence, its axis of revolution
parallel to the axis of the chrystal, and its polar and equatorial diameters equal to two

� [EÂ tienne Louis Malus (1775±1812), his TraiteÂ d'optique appeared in 1807. See Vol. I p. 463.]
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quantities
2

m
,

2

m9
, which depend on the nature of the medium and on the colour of the ray;

the tangent plane to this spheroid, at the point where it meets the extraordinary ray, is
perpendicular to the plane of incidence, and passes through a point taken on the prolonga-
tion of the projection of the incident ray, upon the tangent plane to the chrystal, at a distance
from the centre of the spheroid is equal to the reciprocal of the sine of incidence.
Representing therefore by X, Y, Z the coordinate of the point last mentioned, thus taken, we
shall have the three following conditions

Z � pX � qY ,

(X � pZ)(â9� qã9) � (Y � qZ)(á9� pã9),

á9X � â9Y � ã9Z � ÿ1,

if we take the point of incidence for origin, denoting by p, q the partial differentials, ®rst
order, of the chrystal at that point, and by á9, â9, ã9 the cosines of the angles which the
incident ray makes with the axes of coordinates. Hence

X � ÿ á9� pã9ÿ q(â9p ÿ á9q)

(á9� pã9)2 � (â9� qã9)2 � (â9p ÿ á9q)2
,

Y � ÿ â9� qã9� p(â9p ÿ á9q)

(á9� pã9)2 � (â9� qã9)2 � (â9p ÿ á9q)2
,

Z � ÿ p(á9� pã9)� q(â9� qã9)

(á9� pã9)2 � (â9� qã9)2 � (â9p ÿ á9q)2
;

also the equation of the spheroid is

m2z2 � m92(x2 � y2) � 1 (A)

if we take the axis of the chrystal parallel to the axis of z; and if we represent by
á

í
,
â

í
,
ã

í
the

coordinates of the point in which the extraordinary ray meets the spheroid, á, â, ã being the
cosines of the angles which this ray makes with the axes, we shall have

v2 � m2 � (m92 ÿ m2)(1ÿ ã2) (B)

and the equation of the tangent plane to the chrystal will be

m2ãz � m92(áx � â y) � v:

And since this plane is to pass through the point X, Y, Z, and to be perpendicular to the
plane of incidence which has for equation

(x � pz)(â9� qã9) � ( y � qz)(á9� pã9),

we have the two following conditions

m2ã(â9p ÿ á9q)� m92fá(â9� qã9)ÿ â(á9� pã9)g � 0,

m2ãZ � m92(áX � âY ) � v,

which may be put under this simpler form
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m92á� m2 pã� v(á9� pã9) � 0,

m92â� m2qã� v(â9� qã9) � 0:

)
(C)

These two formulñ, which we shall presently combine into one, by Laplace's� principle of
least action, are the analytic representation of the law of Huyghens,y for the extraordinary
refraction produced by single-axed chrystals.

153. Adding the two preceding formulñ, after multiplying them respectively by (äx, äy) we
®nd

m92(áäx � âäy)� m2ãäz � v(á9äx � â9äy � ã9äz) � 0

äx, ä y, äz being variations of the coordinates of the chrystal. Let a9, b9, c9, represent a point
upon the incident ray, r9 its distance from the chrystal, and a, b, c, r the corresponding
quantities for a point on the refracted ray; we shall have

á9äx � â9ä y � ã9äz � ÿär9, áäx � âäy � ÿãäz ÿ är,

ãäz � ÿãä(rã) � ÿã2ärÿ rãäã

and the formula may be thus written

fm92 � (m2 ÿ m92)ã2gär� r(m2 ÿ m92)ãäy � vär9 � 0

or ®nally

ä(vr� r9) � 0 (D)

because

m92 � (m2 ÿ m92)ã2 � v2, (m2 ÿ m92)ãäã � väv

v being, as before, the reciprocal of the radius vector of the spheroid. If then we take this
reciprocal for the measure of the velocity of the extraordinary ray, that of the incident ray
being unity, the law of extraordinary refraction is included in the principle of least action.
And as in the systems produced by ordinary re¯exion and refraction we found that there
existed a certain characteristic function from which all the properties of the system might be
deduced, namely the action of the light considered as depending on the coordinates of the
point to which it is measured: so also in the case of extraordinary refraction, the properties of
the system may all be deduced by uniform methods from the form of the same characteristic
function; because its partial differentials of the ®rst order, although not proportional to the
cosines of the angles which the ray makes with the axes, as in the case of ordinary systems, are
yet connected with those cosines by the following ®xed relations

v
dV

da
� m92á, v

dV

db
� m92â, v

dV

dc
� m2ã, (E)

V being the action, measured to the point a, b, c; the velocity of the incident rays being still
supposed equal to unity, and the axis of the chrystal being taken for the axis of (z).

To prove these formulñ (E), let us observe that when light issues in all directions from a

� [Pierre-Simon Laplace (1749±1827).]
y [Christian Huyghens (Christiaan Huygens)(1629±1695).]

27I . SYSTEMS OF RAYS. PART THIRD



luminous point, and after undergoing any number of ordinary re¯exions and refractions is
®nally refracted at the surface of a chrystal; the whole variation of the action corresponding
to a variation in the point to which it is measured, is the same (by the principle of least
action) as if the last point of incidence had remained univaried. Hence,

vdV � v:ä9(vr) � v2:ä9r� r:vä9v � v2ä9r� (m2 ÿ m92)ãrä9ã

� m92ä9r� (m2 ÿ m92)ãä9(rã),

ä9 denoting the variation arising from the change in the point, a, b, c, to which the action is
measured; we have also

ä9r � áda � âdb � ãdc, ä9(rã) � ä9(c ÿ z) � dc

and therefore ®nally

vdV � m92(áda � âdb)� m2ãdc:

154. It appears from the preceding paragraph, that the surfaces of constant action of the
extraordinary system have for their differential equation

m92(áda � âdb)� m2ãdc � 0 (F)

and that therefore the rays may be considered as proceeding from them according to a law
expressed by the two following formulñ

ì � ÿ m2

m92
:P , í � ÿ m2

m92
:Q , (G)

ì, í, denoting the ratios
á

ã
,
â

ã
, and P, Q being partial differentials of the surface of constant

action. It follows also, that if we construct a series of spheroids similar to the spheroid (A),
having their axes parallel to the axis of the chrystal, and touching the surface of constant
action, the centres of these spheroids will be upon the extraordinary ray. Hence we may infer
that if the rays of the extraordinary system converge to any one point, the surfaces of constant
action are spheroids having that point for their common centre; and reciprocally, that we can
always ®nd a series of focal chrystals, which shall refract to a given point the rays of a given
system; namely by so choosing the surface of the chrystal that the action, measured to the
given point, may be equal to any constant quantity. These theorems, combined with the
general properties of emanating systems, conduct to many interesting consequences, most of
which we have anticipated in Section XXVI., and upon which therefore we shall not at
present delay. Neither shall we stop to investigate the formulñ that determine the pencils of
the system, the caustic curves and surfaces, the axes, images, foci and aberrations and density;
because these formulñ are computed on the same principles, and nearly by the same
methods, as those which we have had occasion to employ in the two preceding parts of this
essay.

155. The Equation (F), of the preceding paragraph, shews that the extraordinary ray is not
in general perpendicular to the surfaces of constant action, but inclined to the perpendicular
at an angle å, such that
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v2 tan å � (m2 ÿ v2)
1
2(v2 ÿ m92)

1
2: (H)

It is therefore interesting to investigate the condition for the rectangularity of an extraordin-
ary system, that is the condition for the rays being cut perpendicularly by any series of
surfaces. Employing for this purpose the methods of section XXVI., we ®nd the following
formula

(m2ã� vã9)(ár � âs)� v(áA9� âB9)

(m2ã� vã9)(ás � ât)� v(áâ9� âC9)
� áãÿ (á2 � â2) p

âãÿ (á2 � â2)q
, (I)

in which ( p, q, r, s, t) are partial differentials of the chrystal, and A9, B9, C9 represent for
abridgement

d2r9

dx2
� 2 p

d2r9

dxdz
� p2 d2r9

dz2
� A9,

d2r9

dxdy
� q

d2r9

dxdz
� p

d2r9

dydz
� pq

d2r9

dz2
� B9,

d2r9

dy2
� 2q

d2r9

dydz
� q 2 d2r9

dz2
� C9,

r9 being the distance of the point of incidence from a surface which cuts perpendicularly the
incident rays produced, so that

á9 � dr9

dx
â9 � dr9

dy
ã9 � dr9

dz
:

Suppose, for example, that the face of the chrystal is a plane perpendicular to the axis; we
shall then have

p � 0, q � 0, r � 0, s � 0, t � 0, A9 � d2r9

dx2
, B9 � d2r9

dxdy
, C9 � d2r

dy2
,

and because by (C)

á � ÿ v

m92
:á9, â9 � ÿ v

m92
:â9,

the condition (I) becomes

dr9

dy

dr9

dx
:
d2r9

dx2
� dr9

dy

d2r9

dxdy

 !
� dr9

dx

dr9

dx

d2r9

dxdy
� dr9

dy

d2r9

dy2

 !
, (K)

a partial differential equation of the second order, of which the integral is the result of
elimination of (a) between the two following

r9 � øf(x ÿ á)2 � ( y ÿ b)2g, x ÿ a � (y ÿ b):
db

da
� 0, (L)

(b) being considered as an arbitrary function of (a) and ø denoting another arbitrary
function. In this case therefore, that is when the face of the chrystal is a plane perpendicular
to the axis, the extraordinary system will not be rectangular unless the distance of the point
of incidence from a surface which cuts the incident rays perpendicularly, be a function of the
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perpendicular distance of the same point of incidence, from some arbitrary curve traced
upon the face of the chrystal; a condition which is manifestly satis®ed when the incident rays
diverge from a luminous point, the arbitrary curve becoming in this instance a circle. In
general, this condition (I) may be put under this other form

Q (PR � QS) � P(PS � QT ), (M)

P, Q, R, S, T being the partial differentials of the surfaces of constant action; and integrating
this equation (M), which is of the same form as (K), we ®nd that if the extraordinary system
be rectangular, the normals to each surface of constant action are tangents to a cylindric
surface, whose generating line is parallel to the axis of the chrystal.

156. The preceding remarks are suf®cient to shew the manner in which we ought to
proceed, in order to investigate the properties of the systems produced by re¯exion at the
interior surface of a single-axed chrystal or by the passage from one such chrystal into
another. I shall therefore conclude this section by shewing that when the extraordinary rays
recover their ordinary state, by emerging into an unchrystallised medium, or in any other
manner, they become again perpendicular to the surfaces of constant action; a theorem
which enables us to extend the reasonings of the two preceding parts of this Essay, to the
systems produced by combinations of mirrors, lenses and chrystals.

For this purpose it is suf®cient to observe, that when homogeneous rays issuing from a
luminous point have been any number of times modi®ed, by re¯exion and refraction,
ordinary and extraordinary, the whole variation of the action arises from the variation of the
point to which it is measured; and therefore, if the ®nal velocity of the ray be independent of
its direction, this variation has for expression

ä

�
vdr � v(áäx � âäy � ãäz)

as in 106.; from which, it follows that the partial differentials of the action are proportional to
the cosines of the angles which the ray makes with the axes, and that the rays are cut
perpendicularly by the surfaces for which the action is constant.

XXIX. On Other Extraordinary Systems

157. We come now to make some remarks upon the properties of other extraordinary
systems, beginning with those produced by the extraordinary refraction of chrystals with two
rectangular axes. Brewster� has discovered that the increment of the square of the velocity, in
a chrystal of this kind, is represented by the diagonal of a parallelogram, whose sides are the
increments produced by each axis separately, according to the law of Huyghens, and whose
angle is double of the angle formed by the planes which pass through those axes and through
the extraordinary ray. Denoting this increment by i, and putting i1, i2 to denote the two
separate increments of which it is composed, we have by the law of Huyghens

i1 � k(1ÿ á2), i2 � k9(1ÿ â2),

� [David Brewster (1781±1868).]
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k, k9 being constant coef®cients, and (á, â) the cosines of the angles which the ray makes with
the axes of the chrystal; axes which we shall take for those of (x) and ( y). The equations of
the extraordinary ray being put under the form

x

á
� y

â
� z

ã
,

the planes which pass through it and through the axes have for equations

Ist y

â
� z

ã
IInd x

á
� z

ã
;

and if we denote by P the angle which these planes form with one another, we shall have

cos2 P � á2â2

(â2 � ã2)(á2 � ã2)
, cos 2P � á2â2 ÿ ã2

á2â2 � ã2
,

and since the law of Brewster gives

i2 � i2
1 � i2

2 � 2i1 i2 cos 2P ,

we have ®nally

i2 � k2(1ÿ á2)2 � k92(1ÿ â2)2 � 2kk9(á2â2 ÿ ã2): (A)

Denoting therefore by (v9) the velocity of the incident, and by (v) the velocity of the
extraordinary ray, we have

v2 � v92 �pfk2(1ÿ á2)2 � k92(1ÿ â2)2 � 2kk9(á2â2 ÿ ã2)g,
and substituting this value in the equation of least action

ä(v9r9� vr) � 0 (B)

we shall have the relations which exist between the directions of the incident and the
refracted rays. And putting i � 0 in the formula (A), we ®nd the position of the apparent or
resultant axes, which, before the discoveries of Brewster, were thought to be the real axes of
the chrystal.

158. In the extraordinary systems produced by double-axed chrystals, as well as in those
other re¯ected and refracted systems of which we have already treated, the action may be
considered as the characteristic function, from which all the properties of the system may be
deduced; its partial differentials of the ®rst order being connected with the cosines of the
angles which the ray makes with the axes, by the following relations,

iv

ã

dV

dc
� iv2 ÿ (ká2 � k9â2)2 � (k ÿ k9)(ká2 ÿ k9â2),

iv

k

1

á

dV

da
ÿ 1

ã
:
dV

dc

� �
� ká2 � k9â2 ÿ (k ÿ k9), (C)

iv

k9

1

â

dV

db
ÿ 1

ã

dV

dc

� �
� ká2 � k9â2 � k ÿ k9;

which when the two axes of the chrystal are of equal intensity, so that
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k � k9 � m92 ÿ m2, ká2 � k9â2 � i � v2 ÿ m2,

reduce themselves to the corresponding formulñ (E) of the preceding section. And as in that
section, we found that the surfaces of constant action were touched by the spheroids of
Huyghens, so here the corresponding surfaces are touched by the spheroids of Brewster; that
is by spheroids which have their centres on the extraordinary rays, and their radius vector
inversely as the velocity. When the corresponding rays converge to any one point, the surfaces
of constant action become a series of concentric spheroids; and we can always choose the
surface of the double-axed chrystal so as to satisfy this condition, by making the action equal
to any constant quantity, in the same manner as in the analogous questions representing
other focal surfaces. For the consequences which follow from these principles, respecting the
general properties of double-axed chrystals, and of the systems which they produce, we must
refer to the theory which has been given, for systems of the second class (XXVI.).

159. When light passes through a chrystallised medium of continually varying nature; we
must consider the velocity as depending not only on the direction of the ray but also on the
coordinates. Putting therefore

v � f (x y z á â ã),

we are to express, according to the principle of least action, that the variation of the integral�
vds �

�
v:

���������������������������������
dx2 � dy2 � dz2

q
is nothing, the limits being ®xed. Now

ä

�
vds �

�
ä(vds) �

�
(äv:ds � väds);

also,

äv:ds � dv

dx
äx � dv

dy
äy � dv

dz
äz

� �
ds � dv

dá
ds:ä

dx

ds
� dv

dâ
ds:ä

dy

ds
� dv

dã
ds:ä

dz

ds
,

and

äds � áädx � âädy � ãädz;

if then we put

X � dv

dx
� á vÿ á

dv

dá
ÿ â

dv

dâ
ÿ ã

dv

dã

� �
,

Y � dv

dâ
� â vÿ á

dv

dá
ÿ â

dv

dâ
ÿ ã

dv

dã

� �
, (D)

Z � dv

dã
� ã vÿ á

dv

dá
ÿ â

dv

dâ
ÿ ã

dv

dã

� �
,

we shall have

ä(vds) � Xädx � Yädy � Zädz � dv

dx
äx � dv

dy
ä y � dv

dz
äz

� �
ds,
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ä

�
(vds) � Xäx � Yä y � Zäz ÿ (X 9äx9� Y 9ä y9� Z 9äz9)�

�
dv

dx
:ds ÿ dX

� �
äx

�
�

dv

dy
ds ÿ dY

� �
äy �

�
dv

dz
ds ÿ dZ

� �
äz,

the quantities X 9, Y 9, Z 9, äx9, äy9, äz9 being referred to the ®rst limit of the integral. Hence it
follows that the equations of the ray are the three following

dv

dx
:ds � dX ,

dv

dy
:ds � dY ,

dv

dz
:ds � dZ , (E)

which are however equivalent to but two distinct equations, as appears by adding them
multiplied respectively by á, â, ã; and if the ®rst limit be ®xed, that is if we make the integral
begin at the luminous point from which the rays originally proceed, the partial differentials
of the action, considered as a function of the coordinates of the point to which it is measured,
are

dV

dx
� X ,

dV

dy
� Y ,

dV

dz
� Z : (F)

These partial differentials are therefore, for any given point of the medium, connected by
®xed relations with the cosines of the angles which the tangent to the curved ray makes with
the axes of coordinates; a theorem which enables us to consider the action, in these systems
also, as the characteristic function from which all the other properties may be deduced. With
respect to the manner of making this deduction, the extent to which we have already
proceeded obliges us to refer to the examples which have been given in the foregoing
sections, and to the general remarks of the following one, with which we shall conclude the
essay.

Conclusion

It has been already stated, that the object of this Essay is to investigate, in the most general
manner, (the consequences of the law of least action, and) the properties of systems of rays. We have,
in the preceding sections, endeavoured to effect this object, for the cases that are most likely
to occur; we have established principles respecting the systems produced by combinations of
mirrors, lenses, and crystals, and have shewn that the properties of every such system may be
deduced from the form of one characteristic function. We have, also, pointed out some
analogous principles, respecting the systems of curved rays produced by varying mediums,
and respecting systems of rays in general. It remains therefore, in this concluding section, to
draw together these principles into one view, and to present the reasonings by which they
have been established, under a more simple and general form; that so we may not complete
our theory, with regard to those laws and systems which have been hitherto discovered; but
also may be prepared to extend that theory, to the examination of those new laws and
systems, which the progress of optical science may hereafter require to be considered.
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I I .

TWO LETTERS TO AUGUSTUS DE MORGAN (1858)�

1. On De®nite Integrals and Diverging Series

Observatory ± Feb. 15th 1858
My dear De Morgan

Although I indulge myself by taking this large sheet of paper, I hope
that I shall not ®ll it: but wish to tell you something about a few of my recent investigations,
which have little apparent af®nity to those more general researches respecting de®nite
integrals, whereof I wrote to you not long ago: notwithstanding that they have all a certain
nucleus of relation. The last results, if that be not too grand a name to give them, may
possibly interest you a little, because they have a connection with the theory of Diverging
Series: for the very welcome duplicate of your Paper on which subject, I trust that you have
ere now received my acknowledgment. And I am the more willing to lose no time in stating
to you something about my last calculations, because I have lately been requested, or
summoned, to supply some Dublin Printers with an account of those more general
Theorems, above alluded to, which relate to De®nite Integrals. Besides, I have had the
fortune to discover, a few hours ago, a certain linear differential equation, of the third order,
with variable coef®cients (between only two variables), which I think that I shall be able to
integrate, at least in series, though not proceeding solely according to powers, ascending or
descending, but introducing logarithms also: which linear equation appears to me to be likely
to be found important, at no distant time, in several physical inquiries. It has, at least, a
connection with the mathematical theories of heat, and light and vibration; for it is
connected with that very useful Transcendental function, the ft of my lately printed paper,
which is one of the links between all those theories: and the function which satis®es the
equation represents, with a proper selection of constants, what may be called the square of
the amplitude of a vibration, in a certain class of questions. It throws a strong illumination on
some old unpublished researches of mine; but since, I did not happen to perceive it, 18
years ago, I could almost wish that it had hidden itself a little longer from my view. For it

� [These letters are now printed for the ®rst time. They were sent in instalments, over a period of
months, to Augustus De Morgan (1806±1871) who was professor of Mathematics at University College,
London University. The ®rst letter started on 15 February 1858 and ended on 22 May 1858; the second
letter began on 15 July 1858 and ®nished on 15 August 1858. Copies of the letters, as sent, are MSS
1493/972 and 1493/997 in the Library of Trinity College, Dublin. Hamilton had them both copied, with
the help of his assistant Charles Thompson, into his Notebook D of 1858 (®rst letter begins on p. 151)
and Notebook E of 1858 (second letter begins on p. 301) (Trinity College Dublin MSS 1492/144 and
1492/145).]



seems quite possible that this triordinal equation� may conduct to ®nite expressions, or at
least to new and manageable series, which shall dispense with my working out, as I had
begun to do, some methods for approximating (at least probably) to the values of certain
Diverging Series, whereof only a few of the ®rst terms have been actually computed; but
which there is reason to believe to belong to that great Class, respecting which you made
very important remarks: namely the class of ``Alternating Series'', in which each � or ÿ,
after any one calculated term, determines at least the algebraical sign of the correction which
is to be made, in order to change the sum of the terms so far, into the true theoretical value of
the function whereof the Series is one development. But if any of my recent labours of
calculation should in this way come to be theoretically superceded, let us take courage. I
need not tell De Morgan, that the last thing an inventive mathematician need ever fear to
run short of, is a stock of dif®culties!

� One form of the triordinal but linear equation, to which I refer, is the following:

(xD)3 y � x2 Dxy � 0: (a)

One particular integral is,

y � a
Xm�1
m�0

1

2

� �m

([0]ÿm)3 x

2

� �2m

; (b)y

where a is an arbitrary constant. Another particular integral, with another constant, is:

y � b

x

Xm�1
m�0

[0]ÿm 1

2

� �m
 !3

x

2

� �ÿ2m

: (c)

These two series, ascending and descending, seem to exhaust all the particular integrals expressible by powers
alone; but I have found a third particular integral, not less simple than either of them, which is of the form,

y � c(Bx log x � Ax), (d)

where Bx is the series (b), and Ax is another ascending series; and which (speaking theoretically)
completes the integration of the triordinal equation (a). I think that I see how to get a fourth particular integral,
which shall involve (logx)2, and even that I shall want that form; but if (as I suspect) it exists, it cannot be
altogether independent of the other three. On this I must write again.
y [In which the symbol (introduced by Alexandre-TheÂophile Vandermonde (1735±1796, `MeÂmoires

surdes irrationelles de diffeÂrens ordres avec une application au cercle', pp. 489±498, Histoire de l'AcadeÂmie
Royale des Sciences, Part I, 1772.)

[x]n � x(x ÿ 1)(x ÿ 2) � � � (x ÿ n � 1), (á)

so that

[x]n � [x]m[x ÿ m]nÿm , (â)

[x]n � ([x]n�m)=([x ÿ n]m), (ã)

[0]ÿn � 1

[n]n
� 1

1:2:3 � � � n
� 1

n!
, (ä)

and

(1� x)n �
Xm�1
m�0

[n]m[0]ÿm xm : (å)

See Vol. I, p. 468, and this volume, pp 134.]
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I. If I now resume the function

T � 2tE� t 2

�1
t
Eÿ t 2

dt, (1)

you conceive that it is precisely because this function T is one so very well known, that it may be
conveniently used to test the success, or failure, of any proposed method for summing diverging
series, or for approximating to the numerical value of the sum, when the value of the variable is
given. We know, in fact, that if

q � 1

2t 2
, (2)

then T can be developed in the diverging series,

T � 1ÿ 1:q � 1:3:q 2 ÿ 1:3:5:q 3 �&c; (3)

which relatively to the variable t, is a descending one. We know also that the same function can
be otherwise developed, for I should not choose to call this an envelopment, ±

T � 1

1�
q

1�
2q

1�
3q

1�
4q

1� &c: (4)

The function T can also be developed, in a third known way, according to ascending powers
of t ; for it is well known that

T � ð
1
2 tE t 2 ÿ 2tE t 2

� t

0
Eÿ t 2

dt

� ð
1
2 t 1� t 2

1:2
� t 4

1:2:3:4
� t 6

1:2:3:4:5:6
� � � �

� �
ÿ 2t2 1� 2t 2

3
� 4t 4

3:5
� 8t 6

3:5:7
� � � �

� �
: (5)

And ®nally, the numerical values of the connected integral

2ÿ1 tÿ1Eÿ t 2

T � G �
�1

t
Eÿ t 2

dt, (6)

have been tabulated, by Kramp�; whose book I have unluckily not seen, but from which I
understood you to state that you reprinted Tables I & II at the end of your Treatise on the
theory of Probabilities in the Encyclopñdia Metropolitanay. The function, here called T, may
therefore be accounted to be almost as well known, as regards its values, as the functions sine
and cosine, although I am not aware that many, or any, properties of it are known, which could
be expressed as functional equations. As regards values, it is easy for instance to compute, from
Kramp'sy Table (as reprinted by you), that

for t � 1, LT � 1:8795960; T � 0:75787; (7){

for t � 2, LT � 1:9568185; T � 0:90535; (8)

� [Christian Kramp (1760±1826), Analyse des reÂfractions, pp. 195±206, Strasbourg: 1799.]
y [Encyclopñdia Metropolitana, eds. E. Smedley, H. J. Rose, and H. J. Rose, Vol. II, pp. 393±490, London:

1845.]
{ [L � log10:]
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for t � 3, LT � 1:9785541; T � 0:95182: (9)

II. Before proceeding to test any new method for even approximately summing, or in any
other way attempting to envelope, without de®nite integrals, the diverging series (3) for T, I
shall just remark, that on representing the ®nitely continued fraction

Tn � 1

1�
q

1�
2q

1� � � �
nq

1� 0
, (10)

by the expression

Tn � Nn

Mn
, (11)

when Mn and Nn are polynomial functions (rational and integral) of q, the known equations
in differences,

Mn ÿ M nÿ1 � nqM nÿ2, Nn ÿ N nÿ1 � nqN nÿ2, (12)

do not merely enable us to calculate expressions, algebraical or arithmetical, for all the
numerators N, and all the denominators M, successively, from the known initial pairs,

M0 � 1, M1 � 1� q; N0 � 1, N1 � 1; (13)

but also give, by ®nite integration, the following Rule for forming at once the polynomial Mn , or
the denominator of Tn, when the index n is given:

Develop by the binomial theorem, the power

(1� q
1
2)n�1,

under the form,

(1� q
1
2)n�1 � 1� anq � bnq 2 � cnq 3 � &c:� &c:; (14)

then

Mn � 1� 1:anq � 1:3:bnq 2 � 1:3:5:cnq 3 � &c:, (15)

without the � terms. For example

(1� q
1
2)8 � 1� 28q � 70q 2 � 28q 3 � q 4 � &c:; (16)

(1� q
1
2)9 � 1� 36q � 126q 2 � 84q 3 � 9q 4 � &c:; (17)

(1� q
1
2)10 � 1� 45q � 210q 2 � 210q 3 � 45q 4 � q 5 � &c:; (18)

whence, by the rule (15)

M7 � 1� 28q � 210q 2 � 420q 3 � 105q 4; (19)

M8 � 1� 36q � 378q 2 � 1260q 3 � 945q 4; (20)

M9 � 1� 45q � 630q 2 � 3150q 3 � 4725q 4 � 945q 5; (21)

with the veri®cation, by (12), M9 ÿ M8 � 9qM7.
As regards the numerator, Nn, although, like the denominator, Mn , it can easily be
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computed, algebraically, or arithmetically, as I suppose that it usually is, by the help of the
equation of differences which it satis®es, through successive steps from its initial pair of values;
(and although I have integrated the equation just referred to;) yet it may be allowed me here
to make the remark, ± a suf®ciently obvious one, indeed, ± that whenever we know, by any
process, for any given value of n, the coef®cients of the polynome Mn, we can easily ®nd the
corresponding coef®cients of the other polynome Nn , by forming the product TMn, where T
is the known series (3), and suppressing all the terms whose exponents are greater than n.
Veri®cations will offer themselves, in the evanescence of the coef®cients of certain lower
powers of q. For example, in the product TM7, the coef®cients of q 4, q 5, q 6, q 7 all vanish; in
the product TM8, the coef®cients of q 5, q 6, q 7, q 8 are each zero; in the product TM 9, the
coef®cients of q5, q 6, q 7, q 8, q 9 disappear.

And in this way, among others, we may ®nd that

N7 � 1� 27q � 185q 2 � 279q 3; (22)

N8 � 1� 35q � 345q 2 � 975q 3 � 384q 4; (23)

N9 � 1� 44q � 588q 2 � 2640q 3 � 2895q 4; (24)

with the veri®cation,

N9 ÿ N8 � 9qN7: (25)

III. If we assume as a numerical example

t � 1, q � 1
2, (26)

so that we have here

T � 2E
�1

1
Eÿ t 2

dt, (27)

and if we denote by An and Bn the whole numbers which take respectively the place of Mn

and Nn, when those are multiplied by suitable powers of 2, we easily ®nd in this way the values
(without passing through earlier stages,)

A7 � 16M7 � 2025; B7 � 16N7 � 1530; (28)

A8 � 16M8 � 5281; B8 � 16N8 � 4010; (29)

A9 � 32M9 � 28787; B9 � 32N9 � 21790; (30)

with the veri®cations,

A9 ÿ 2A8 � 9A7; B9 ÿ 2B8 � 9B7: (31)

Again

A10 ÿ A9 � 10A8; B10 ÿ B9 � 10B8;

A11 ÿ 2A10 � 11A9; B11 ÿ 2B10 � 11B9;

A12 ÿ A11 � 12A10; B12 ÿ B11 � 12B10;

9>>=>>; (32)

whence
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A10 � 81597; B10 � 61890;

A11 � 479851; B11 � 363470;

A12 � 1459015; B12 � 1106150:

9>>=>>; (33)

Hence

T7 � N7

M7
� B7

A7
� 1530

2025
� 34

45
� 0:75556;

T8 � � B8

A8
� 4010

5281
� 0:75933;

T9 � � B9

A9
� 21790

28787
� 0:75694;

T10 � � B10

A10
� 61890

81597
� 0:75848;

T11 � � B11

A11
� 363470

479851
� 0:75746;

T12 � �
2

10B12

2
10A12

� 221230

291803
� 0:75815:

9>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>;

(34)

We have the inequalities,

T . T7, T , T8, T . T9, T , T10, T . T11, T , T12; (35)

which are, as we see, all consistent with the order of T deduced from Kramp's Table; namely
with T � 0:75787. But it was for my purpose desirable to deduce these limits by a special
calculation, independent of any conceivable errors in the construction, transcription, or
impression of that Table; although I am very willing to believe that such errors are few or
none. For I wished to be quite sure, for reasons which will afterwards appear, that the two
following inequalities are satis®ed by T, in the case t � 1:

T , 0:75984; T , 0:75839: (36)

The inequality T , T8 proves the ®rst; and T , T12 proves the second. The ®rst presented
itself to me thus, as a thing to be examined: was it true that

T , 3ÿ
1
4? or that T ÿ4 . 3? (37)

The tabular value of LG gave LT as in (7); whence

4LT � 1:5183840; 4L
1

T
� 0:4816160; T ÿ4 � 3:03121; (38)

but I thought it more completely satisfactory to infer the inequalities (37) by the simple
arithmetical remark, that

Tÿ4
8 �

5281

4010

� �4

� 777 794 145 659 521

258 569 616 010 000
. 3; (39)

while it was known from theory, that
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T ÿ4 . Tÿ4
8 : (40)

IV. The method of continued fractions, applied to the function T, gives the expression:

T � 1

1�
q

1�
2q

1�
3q

1�
4q

1� � � �
(n ÿ 1)q

1� nèn q
; èn . 0, , 1; (41)

at least if n . 1, for there appears to be a sort of discontinuity at the very commencement of
the fractional development, and it seems safer to write, as a separate formula,

T � 1

1� è1q
; è1 . 0, , 1: (42)

Suppose now that we had only been given the ®rst few terms of the diverging series for T ; let us say,
the six terms,

T � 1ÿ q � 3q 2 ÿ 15q 3 � 105q 4 ÿ 945q 5 � � � � , (43)

where the ®nal � � � � means nothing more than the next (or seventh) term has a positive
coef®cient. We are not supposed to have even perceived that if T be written as

T � 1ÿ aq � bq2 ÿ cq 3 � dq 4 ÿ eq 5 � � � � , (44)

then not only a � 1, but also

b � 3a, c � 5b, d � 7c, e � 9d: (45)

Or, if this be assuming too vast a want of sagacity, let it at least be here supposed that the ®ve
coef®cients a, b, c, d, e, have in some laborious way been separately (or successively) calculated,
and that we have nothing beyond a guess to go upon, as to whether the law (45) will continue.
But let it be admitted that we know, or think that we have good reasons for believing, that the
series for T is an alternating one, of the kind signalised by you as important; so that we have at
least the six inequalities,

T , 1, . 1ÿ q, , 1ÿ q � 3q 2, . 1ÿ q � 3q 2 ÿ 15q 3,

, 1ÿ q � 3q2 ÿ 15q 3 � 105q 4, . 1ÿ q � 3q 2 ÿ 15q 3 � 105q 4 ÿ 945q 5;

)
(46)

if q be any real quantity . 0; to which I ®nd it necessary to append the following other supposed
inequality,

T . 0, if q . 0, ,1: (47)

How far, with only these suppositions (or at most with only a few others entirely analogous to
these) can we recover the expression (41)?

V. Consider generally the function

X � (1� áx(1� á9x(1� á 0x(1 � � � �)ÿ1
í)ÿ

1
í)ÿ

1
í)ÿ

1
í; (48)

and suppose that it is to be otherwise developed in a series of the form,

X � 1ÿ ax � bx2 ÿ cx2 � dx4 ÿ ex5 � � � � ; (49)

where the coef®cients a, b, c, d, e, . . . are certain algebraic functions of the other coef®cients
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á, á9, á0, á-, áõv , . . . or á, â, ã, ä, å, . . . which functions we are now to determine. Raising the
series (49) to the power of which the exponent is ÿí, we get an expression which may be thus
denoted,

X ÿí � 1� íaxX 9; (50)

where X 9 is a new series, of the form

X 9 � 1ÿ a9x � b9x2 ÿ c9x3 � d9x4 ÿ � � � ; (51)

a9, b9, c9, d9, . . . being algebraical functions of a, b, c, d, e, and of í: namely

a9 � b

a
ÿ í� 1

1

a

2
;

b9 � c

a
ÿ í� 1

1
b � í� 1

1

í� 2

2

a3

3
; (52)

c9 � &c:

But also, by (48),

X ÿí � 1� áxX 9, (53)

where

X 9 � (1� á9x(1� á 0x(1 � � � �)ÿ1
í)ÿ

1
í)ÿ

1
í: (54)

Comparing, we are led to infer that

á � ía, a � íÿ1á; (55)

and also that the two developments, (51), (54), for X 9, are to be regarded as transformations
of each other. A law of accentuation of the letters is thus suggested; and we ®nd that if we write

a 0 � b9

a9
ÿ í� 1

1

a9

2
,

b 0 � c9

a9
ÿ í� 1

1

b9

2
� í� 1

1

í� 2

2

a92

3
,

&c:,

9>>>>>=>>>>>;
(56)

a - � b 0

a 0
ÿ í� 1

1

a 0

2
, &c:, &c: (57)

then,

X 9ÿí � 1� ía9xX 0, X 0ÿí � 1� ía 0xX -, &c:, (58)

where

X 0 � (1� á 0x(1 � � � �)ÿ1
í)ÿ

1
í, X - � &c:, (59)

and

á9 � ía9, á 0 � ía 0, &c:, or a9 � íÿ1á9, a 0 � íÿ1á 0, &c: (60)

In this manner a system of equations can be formed, for connecting a, b, c, d, e, . . . with á, â,
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ã, ä, å, . . . and deducing successively the former from the latter, or conversely the latter from
the former, with the help of the auxiliary quantities: a9, b9, c9, d9, . . . , a 0, b 0, c 0, . . . , a -, b -,
. . . , aõv , . . . :

VI. For example, if í � 1, the equations between the constants are:

a9 � b

a
ÿ a; a 0 � b9

a9
ÿ a9; a - � b 0

a 0
ÿ a 0; aõv � b -

a -
ÿ a -;

b9 � c

a
ÿ 2b � a2; b 0 � c9

a9
ÿ 2b9� a92; b - � c 0

a 0
ÿ 2b 0� a 02;

c9 � d

a
ÿ 2c � b2

a

� �
� 3ab ÿ a3; c 0 � d9

a9
ÿ 2c9� b92

a9

� �
� 3a9b9ÿ a93;

d9 � e

a
ÿ 2 d � bc

c

� �
� 3(ac � b2)ÿ 4a2b � a4;

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(61)

together with

á � a, â � a9, ã � a 0, ä � a -, å � aõv , (62)

if we write â, ã, ä, å, for á9, á0, á-, áõv , and if we neglect x6 in X.
Thus the polynome (49) may be thrown into the form of the continued fraction,

X � 1

1�
áx

1�
âx

1�
ãx

1�
äx

1�
åx

1� � � � , (63)

and the coef®cients á, â, ã, ä, å computed, if a, b, c, d, e be given or vice versa. For instance, if,
as in (45), we assume that

a � 1, b � 3, c � 15, d � 105, e � 945, (64)

then

a9 � 2, b9 � 10, c9 � 74, d9 � 706; a 0 � 3, b 0 � 21, c 0 � 207;
a - � 4, b - � 36; aõv � 5; á � 1, â � 2, ã � 3, ä � 4, å � 5;

�
(65)

and, so far at least, we recover the known expression for T, for we ®nd

1ÿ x � 3x2 ÿ 15x3 � 105x4 ÿ 945x5 � � � � 1

1�
1x

1�
2x

1�
3x

1�
4x

1�
5x

1� � � � ; (66)

the remaining constants of the fractional development being unknown until we know the
remaining coef®cients of the diverging series, or at least their law, which for the moment we
are not supposed to do.

VII. The process may of course be varied, and the following seems to be a more elegant
form of it. Since í � 1, the equation (53) gives here

1 � (1� áxX 9)X � (1� áx ÿ áa9x2 � áb9x3 ÿ � � �)(1ÿ ax � bx2 ÿ � � �); (67)

whence

42 II . TWO LETTERS TO AUGUSTUS DE MORGAN



áÿ1a � 1; áÿ1b � a9� a; áÿ1c � b9� aa9� b;

áÿ1d � c9� ab9� ba9� c; áÿ1e � d9� ac9� bb9� ca9� d;

)
(68)

of which equations each may be accented throughout, and á9, á 0, á-, áõv then changed to â, ã,
ä, å, if we think ®t. Thus

âÿ1a9 � 1, âÿ1b9 � a 0� a9, âÿ1c9 � b 0� a9a 0� b9, âÿ1d9 � c 0� a9b 0� b9a 0� c9;

ãÿ1a 0 � 1, ãÿ1b 0 � a -� a 0, ãÿ1c 0 � b -� a 0a -� b 0

äÿ1a - � 1, äÿ1b - � aõv � a -; åÿ1aõv � 1:

9>>=>>;
(69)

These 15 equations, (68), (69), are merely transformations of the 15 equations, (61), (62), but
they are more symmetric, and better ®tted for the easy elimination of the auxiliary constants, so
as to give expressions for a, b, c, d, e in terms of á, â, ã, ä, å, involving nothing foreign, and
taking rather simple shapes. In this way, by eliminating a9, b9, c9, d9, a 0, b 0, c 0, a -, b -, aõv , I
®nd the expressions,

a � á; b � áâ � á2; c � áâã� á(â� á)2;

d � áâãä� áâ(ã� â� á)2 � á2(â� á)2;

e � áâãäå� áâã(ä� ã� â� á)2 � áfâã� (â� á)2g2;

9>>=>>; (70)

which may be veri®ed by observing that they reproduce the numerical values, 1, 3, 15, 105,
945, for a, b, c, d, e, when á, â, ã, ä, å have the values 1, 2, 3, 4, 5. It is a consequence from the
process employed that all the subsequent coef®cients, f, g, h, . . . , of the series (49), must in
like manner admit of being expressed by polynomial functions of á, â, ã, ä, å, æ, ç, è, . . . , of
the dimensions 6, 7, 8, . . . , and with all their coef®cients equal to positive whole numbers.�
And of course, it is about as easy to deduce á, â, ã, ä, å from a, b, c, d, e, by the equations (70)
as to deduce the latter from the former.

VIII. If only the ®ve coef®cients a, b, c, d, e, be given, with the values (45) or (64), we can, as
above, only deduce the ®ve related constants á, â, ã, ä, å, with the known values (65). We have no
right to assume even that the next constant æ is positive; for although we are supposed to know that
the next coef®cient f is positive, and may even presume that it is greater than 945, we cannot say
before-hand whether it will be found to be suf®ciently great to render æ. 0, when the sixth
equation of the series (70) comes to be resolved for æ. To form that sixth equation, on the plan
of (68), the formula

áÿ1 f � e9� ad9� bc9� cb9� dd9� e; (71)

that is, by (65),

f � e9� 2233; (72)

�
f � áâãäåæ� áâãä(E� ä� ã� â� á)2 � áâfã(ä� ã� 2â� á)� (â� á)2g2 � á2fâã� (â� á)2g2;

if á, â, ã, ä, å � 1, 2, 3, 4, 5, respectively, f ÿ 120æ � (24� 18� 1): 225 � 9675.
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where, by accenting the ®fth equation (70), we have

e9 � âãäåæ� âãä(å� ä� ã� â)2 � âfãä� (â� á)2g2; (73)

&c. Therefore, again by (65),

e9 � 120æ� 7462; (74)

so that, ®nally the relation between f and æ is the following:

f � 120æ� 9675: (75)

Unless, then, we know that

f . 9675, (76)

we cannot be sure that æ. 0. In point of fact, the series for T is such that in it the coef®cient of q2

is f � 11 3 945 � 10 395; giving

æ � 10 395ÿ 9675

120
� 670: (77)

But it might have been supposed that the divergent character of the series would be
suf®ciently saved by our guessing a less value than 9675 for f ; and in that case, if the guess were
right, the constant æ would be negative.

IX. Even then, if we suppose, which is certainly supposing a good deal, that all the series X 9, X 0,
X -, X õv , X v , . . . successively derived from X, or from T, by the process of paragraph V., belong
to the same great and general class as the original series itself, we cannot be sure that the series

X v � 1ÿ áv x . . . , (78)

where av � æ, has the property of being less than 1; nor even that of being greater than 0; so long as
we are left uncertain, whether æ (or av) is a positive or a negative number. Let us, however,
here admit that the value of the (presumably divergent) series denoted by X v is likely to be greater
than 0, on account of its ®rst term being positive (� 1), and let us count up all the results which, at
this stage, we might fairly be induced to call probable, respecting the value of the function,
which we conceive to be represented by the series X, for real and positive values of x.

X. I think, then, that we might, not unfairly, presume that, for any proposed real and positive
value of x, ± at least, if such value of x were not too large, ± we should have the following chain
of inequalities. We have just now supposed that

x . 0, X v . 0; (79)

and we have proved that á, â, ã, ä, å are each . 0, because they have the values 1, 2, 3, 4, 5:
though the next constant æ, for anything yet known, may perhaps be negative; namely by the
unknown coef®cient f of x6 in X, though positive being less than the limit 9675. We may then
infer that because

X õv � (1� åxX v)ÿ1,

therefore

X õv . 0, , 1; (80)
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but we are not entitled to assume that

X õv , (1� åx)ÿ1: (809)

Again since

X - � (1� äxX õv)ÿ1;

therefore

X - , 1, . (1� äx)ÿ1; (81)

although it remains uncertain whether

X - , (1� äx(1� åx)ÿ1)ÿ1: (819)

Again since

X 0 � (1� ãxX -)ÿ1,

therefore

X 0 . (1� ãx)ÿ1, , (1� ãx(1� äx)ÿ1)ÿ1; (82)

X 9 � (1� âxX 0)ÿ1, , (1� âx(1� ãx)ÿ1)ÿ1, . (1� âx(1� ãx(1� äx)ÿ1)ÿ1)ÿ1; (83)

and ®nally, the equation

X � (1� axX 9)ÿ1

gives the two limits

X . (1� áx(1� âx(1� ãx)ÿ1)ÿ1)ÿ1; X , (1� áx(1� âx(1� ãx(1� äx)ÿ1)ÿ1)ÿ1)ÿ1;

(84)

which may be written thus,

X .
1

1�
áx

1�
âx

1�
ãx

1� 0
, ,

1

1�
áx

1�
âx

1�
ãx

1� äx
; (85)

and which give (á, â, ã, ä, and x being all positive) the following expression for X:

X � 1

1�
áx

1�
âx

1�
ãx

1� èäx
; è. 0, , 1: (86)

Thus with our values of á, â, ã, ä, if we write q for x, and T for X, we have indeed, the
(probable) limits T . T3, T , T4; that is,

T .
1� 5q

1� 6q � 3q 2
, T ,

1� 9q � 8q 2

1� 10q � 15q 2
; (87)

or, for the case q � 1=2,

T .
14

19
, ,

30

39
; or T . 0:73684, T , 0:76923: (88)

But whether T be greater or less than the next fraction, namely than
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T5 � 1� 14q � 33q 2

1� 15q � 45q 2 � 15q 3
� 130

173
� 0:75145, (89)

we should not (as I conceive) be entitled to assert anything, as even probable, with our present
suppositions. We might, indeed, write

X � 1

1�
áx

1�
âx

1�
ãx

1�
äx

1� Wåx
; (90)

where W should represent the series X v � 1 . . . , whereof only the ®rst term 1 is known; or, in the
case above considered, might form the expression,

T � 1

1�
1
2

1�
2
2

1�
3
2

1�
4
2

1�
5W
2

; (91)

but in our uncertainty whether W, although presumed to be positive, is less or greater than 1, we
should get no more of (even probable) information from this last expression for T, than from the
following case of the simpler form (86),

T � 1

1�
1
2

1�
2
2

1�
3
2

1�
4è

2
, è. 0, , 1: (92)

It is unnecessary to repeat, that all this depends on the hypothesis, that we know nothing of the
law of the coef®cients a, b, c, d, e, f, . . . of the series for X, or for T ; and in particular, that even if
we have guessed the law, (as for the present series, from a few of its ®rst terms, we could
scarcely fail to do,) yet we have no such assurance of the correctness of that guess, as to pronounce
with any con®dence that the sixth coef®cient f must exceed the limit 9675. In other respects, you
see that I am seeking to give here the fullest scope to principles which favour diverging series, and
that, in fact, the supposed doubt is precisely this, whether the coef®cients increase fast enough? Is the
series suf®ciently divergent, for the safe application of the Method of Converging Fractions? (Of
course, we know that it is so: but then we are in full possession of the law and know that it must
continue.)

XI. That method of converging fractions which must also be called (I think) the ``Method
of Reciprocals'' may be presented in the following form. Let jx denote the function,

jx � xÿ1 ÿ 1; (93)

the operating by áÿ1xÿ1j on the series X, of which the ®rst term is unity, if the constant á be
suitably chosen, we deduce from it another series X 9, with its ®rst term also � 1; and so
proceeding, we have the succession of equations

áÿ1xÿ1jX � X 9; âÿ1xÿ1jX 9 � X 0; ãÿ1xÿ1jX 0 � X -;

äÿ1xÿ1jX - � X õv ; åÿ1xÿ1jX õv � X v ; (94)

whence

X 0 � âÿ1xÿ1jáÿ1xÿ1jX ; X - � ãÿ1xÿ1jâÿ1xÿ1jáÿ1xÿ1jX ;

X õv � äÿ1xÿ1jãÿ1xÿ1jâÿ1xÿ1jáÿ1xÿ1jX ;

X v � åÿ1xÿ1jäÿ1xÿ1jãÿ1xÿ1jâÿ1xÿ1jáÿ1xÿ1jX ;

9>>=>>; (95)
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&c., each symbol j governing the entire system of symbols to its right. If then we write

X õv � è, X v � W, (96)

we have the transformation, in which

jÿ1x � (1� x)ÿ1: (97)

X � jÿ1áxjÿ1âxjÿ1ãxjÿ1èäx; X � jÿ1áxjÿ1âxjÿ1ãxjÿ1äxjÿ1Wåx; (98)

where each symbol jÿ1 governs in like manner all that follows it. And if, as above, we have
computed the values of the ®ve constants, á, â, ã, ä, å, and ®nd them all to be positive, we
may presume that è lies between the limits 0 and 1; and may employ the ®rst of the two
expressions (98), so as to deduce from it, with a reasonable probability, the two following limits
for X, at least if x be not assumed too great:

X .jÿ1áxjÿ1âxjÿ1ãx; X ,jÿ1áxjÿ1âxjÿ1ãxjÿ1äx; (99)

the inverse function jÿ1x being here one which decreases continually from 1 to 0, as x
increases from 0 to 1. But because we are yet entirely ignorant whether æ is positive or
negative, we cannot say whether the series denoted by X v or by W, is greater than, or less than
one; the second expression (98) is therefore here (not false but) useless: and we have no right
to establish, as even probably true, and even for small values of x, this other and analogous inequality,

X .jÿ1áxjÿ1âxjÿ1ãxjÿ1äxjÿ1åx: (100)

Perhaps might be written for the inverse function jÿ1, as you propose to write instead of
logÿ1.

XII. Instead of assuming the form (93), for the auxiliary function jx, I was lately led to try the
effect of assuming this other form,

jx � l9x � l
1

x
; (101)�

which gave, as its inverse,

jÿ1x � l 9ÿ1x � Eÿx ; (102)

that is, with your notation , and with my symbol for jÿ1,

x � (ÿx); or simply, x � ÿ x, (103)

the ÿ being here treated as a factor, or as an operator. As I wrote to you lately on some of the
results of the assumption of this auxiliary function, j, it may suf®ce here to sketch, in the
briefest way, a few of the steps of the proofs which I employed. As analogous to the equations
of paragraph VI., I had,

j ë

ë j

j ë j ë

� [l � logE]
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a9 � b

a
ÿ a

2
, a 0 � b9

a9
ÿ a9

2
, a - � b 0

a 0
ÿ a 0

2
, aõv � b -

a -
ÿ a -

2
;

b9 � c

a
ÿ b � a2

3
, b 0 � c9

a9
ÿ b9� a92

3
, b - � c 0

a 0
ÿ b 0� a 02

3
;

c 0 � d

a
ÿ c � b2

2a

� �
� ab ÿ a3

4
, c 0 � d9

a9
ÿ c9� b92

2a

� �
� a9b9ÿ a93

4
;

d9 � e

a
ÿ d � bc

a

� �
� (ac � b2)ÿ a2b � a4

5
;

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(104)

along with

á � a, â � a9, ã � a 0, ä � a -, å � aõv : (105)

e9 � f

a
ÿ e � bd

a
� c2

2a

� �
� ad � 2bc � b3

3a

� �
ÿ a ac � 3b2

2

� �
� a3b ÿ a5

6
:

" #

As transformations, of the same kind as those already given for another form of j, in
paragraph VII., it was easy to deduce the following:

2áÿ1b � 2a9� a, 2âÿ1b9 � 2a 0� a9, 2ãÿ1b 0 � 2a -� a 0, 2äÿ1b - � 2aõv � a -;

3áÿ1c � 3b9� 2aa9� b, 3âÿ1c9 � 3b 0� 2a9a 0� b9, 3ãÿ1c 0 � 3b -� 2a 0a -� b 0;

4áÿ1d � 4c9� 3ab9� 2ba9� c, 4âÿ1d9 � 4c 0� 3a9b 0� 2b9a 0� c9;

5áÿ1e � 5d9� 4ac9� 3bb9� 2ca9� d;

9>>>>>=>>>>>;
(106)

together with the equation (105), or with

áÿ1a � 1, âÿ1a9 � 1, ãÿ1a 0 � 1, äÿ1a - � 1, åÿ1aõv � 1: (107)

Eliminating a9, b9, c9, d9, a 0, b 0, c 0, a -, b -, aõv , we obtain expressions analogous to those
marked (70), namely the following:

a ÿ á � 0; 2(b ÿ áâ) � á2; 2:3(c ÿ áâã) � á(3â2 � 6áâ � á2)

� 3á(â � á)2 ÿ 2a3;

2:3:4(d ÿ áâãä) � 12áâã(ã� 2â � 2á)� 4áâ(â2 � 6áâ� 3á2)� á4

� 12áâ(ã� â� á)2 � á(á3 ÿ 8â3);

and

2:3:4:5(e ÿ áâãäå) � 60áâãä2 � 120áâãä(ã� â� á)

� 20áâã2(ã� 6â� 3á)

� 60áâã(â2 � 4áâ � á2)

� á(5â4 � 80áâ3 � 90á2â2 � 20á3â� á4):

8>>>>>>>><>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;

(108)

XIII. Assuming, as a particular example, the values (45) or (64) for a, b, c, d, e, I found the
following values, for the other quantities above mentioned:
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a9 � 5

2
; b9 � 37

3
; c9 � 353

4
; d9 � 4081

5

a 0 � 221

60
; b 0 � 501

20
; c 0 � 1 690 091

7200
;

a - � 131 519

26 520
; b - � 103 112 711

2 366 800
;

aõv � 26 082 306 193

4 185 460 656
;

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(109)

á � 1; â � 5

2
; ã � 221

60
; ä � 131 519

26 520
;

å � 26 082 306 193

4 185 460 656
;

9>>=>>; (110)

where it is to be noted that these values of á, â, ã, ä, are exactly the doubles of the quantities
denoted by the same symbols in my letter of February 10th, for a reason which will easily
appear. There was no dif®culty in hence deducing the formula, rule and type of that recent
letter; except that the numerator of å requires to be corrected as above since å was found to
be positive it seemed to be reasonable to expect that the inequalities (99), or these,

X . áx âx ãx, , áx âx ãx äx, (111)

would turn out to hold good, unless x were too large a number; while it remained doubtful
whether

X v áx âx ãx äx åx, (112)

XIV. To convert these formulñ into numbers, we must consider how to calculate the
ordinary logarithm, L, of the expression of the form X � áxX 9, where has the signi®ca-
tion (103), so that

x � Eÿx , (113)

It is clear that this last formula of de®nition gives

L x � ÿxLE � xL
1

E
; (114)

so that if we agree, at least for the present, to write (as I did lately)

L9 � ÿL, or L9x � L
1

x
, (115)

we shall have generally

L9 x � xLE; (116)

and therefore, in particular,

L9X � L9 áxX 9 � áxX 9LE: (117)

(I take the trouble just now, of writing E to denote the natural base, because I have been using
both E and å, to denote other things in this letter.) Taking again the ordinary logarithms of

j j j j j j j

j j j j j

j j

j

j

j

j
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both numbers, and observing that all the factors in the expression (117) are positive, for all
cases to which it is proposed to apply the method, we may go on to write,

LL9X � LL9 áxX 9 � LX 9� x1 � x1 ÿ L9X 9, (118)

if we make

x1 � Lx � Lá� LLE � á1 � Lx, (119)

where

á1 � Lá� LLE � Lá� 1:6377843: (120)

In like manner

LL9X 9 � LL9 âxX 0 � x2 ÿ L9X 0, (121)

where

x2 � á2 � Lx, (122)

and

á2 � Lâ� L2å � Lâ� 1:6377843: (123)

And so we may go on. When a, b, c, d, e, and \ á, â, ã, ä, å, have the values recently assigned,
we ®nd easily that the values of á1, . . . , á5 are:

á1 � 1:6377843; á2 � 0:0357243; á3 � 0:2040254; á4 � 0:3331993; á5 � 0:4323870: (124)

If we choose to write, with reference to the known de®nite integral, which was cited at the
commencement of this Letter,

x � (q �)2ÿ1 tÿ2, (125)

we shall then have

Lx � 1:6989700ÿ 2Lt; (126)

and may write

xn � tn � an ÿ 2Lt, (127)

where

an � án � 1:6989700; (128)

the symbol tn serving merely to connect this letter with a former one. For example, con®ning
ourselves to ®ve decimal places, which are quite enough, the values found above for á, â, ã, ä,
å give the ®ve following constants:

a1 � 1:33675; a2 � 1:73469; a3 � 1:90300; a4 � 0:03217; a5 � 0:13136; (129)

and there, accordingly, were the logarithmic constants proposed in my memorandum of
February 9th, to be added algebraically to the common term, ÿ2Lt, except that the value
then assigned to what is here called a5 was somewhat different, because an error (of no great
importance in its effects) had been committed in the calculation of the numerator of the
fraction denoted in the present Letter by å (110): such error having since been discovered by

j

j
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the double system of equations between the constants above described, and having been traced
to the inadvertent substitution of ÿ625=16, instead of ÿ625=64, for ÿa94=4, as one of the
terms of the expression for a9c 0; whence c 0, and thence b - and aõv , as derived from it, came
to have not quite accurate values assigned to them. From the checks since employed, I think
that we may now rely on the correctness of the fractions (109), and therefore on that of the
set (110); which latter (except á � 1) are merely selected from among the former. But to
show how small was the practical effect of the detected mistake, and therefore of the
introduced correction, I may remark that on recomputing the approximate values of the
function X (or T),

X 3 � áx âx ãx, X 4 � áx âx ãx äx, X 5 � áx âx ãx äx åx, (130)

I ®nd now, for the case t � 2, or x � 1
8,

LX 3 � 1:95543; LX 4 � 1:95746; LX 5 � 1:95666; (131)

giving

X 3 � 0:90246; X 4 � 0:90669; X 5 � 0:90461: (132)

The correction of the fraction å in (110), or of the logarithmic constant a5, has made no
change in the two ®rst of the three logarithms (131); and has not importantly altered the third;
for the value adopted for what is here called X 5, in my note referred to, was 0´9048. If, on the
plan of that recent note, we assume it to be likely that

X � X 2
4 ÿ X 3 X 5

2X 4 ÿ X 3 ÿ X 5
, or that

1

X 4 ÿ X
� 1

X 4 ÿ X 3
� 1

X 4 ÿ X 5
, nearly, (133)

the approximations (132), whereof only the last has been modi®ed give, nearly,

X � X 4 ÿ 0:00139 � 0:90530; (134)

which coincides almost exactly with the theoretical values computed with the help of your
reprint of Kramp's Table, namely,

4E4

�1
2
Eÿ t 2

dt � 0:90534: (135)

It is not worth while to try whether 7 places would bring us any nearer. [An earlier value of]
a4 was 0´032 40, instead of 0´032 17, [was obtained] in consequence of my having taken out
the logarithm of 13 159 instead of that of 131 519. It is curious how this error (of dropping
the 1 before the 9 of 131 519) has haunted me. It led me into at least half a dozen puzzles, but
I trust that I have now (by means of checks) completely recti®ed every thing.

XV. Still, as the calculation will cost me but little trouble (the type being prepared), and as it
need not cost you any at all, so that the worst effect will be the adding slightly to the length of
this Letter, ± and as even the last mentioned values of LX 5 and X 5 were rather hastily
computed, ± I shall here go on to perform, and to write down in full, the work for ®nding,
with 7 decimal places of logarithms, the values of X 1, X 2, X 3, X 4, X 5, for the case x � 1

8, on
the plan of the preceding paragraph.

j j j j j j j j j j j j
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Type of the Calculation� (136)

Constants: á1 � 1:6377843; á2 � 0:0357243; á3 � 0:2040254; á4 � 0:3331993; á5� 0:4323870;

x � 0:125; Lx � 1:0969100 � 1:0969100 � 1:0969100 � 1:0969100 � 1:0969100:

L0:0542868 � x1 � 2:7346943 � L2 1

X 1
� Lx � á1

� �
X 1 � 0:882497; LX 1 � 1:9457132:

L0:1357170 � x2 � 1:1326343 � Lx � á2 � L L2 1

X 1
ÿ L2 1

X 2

� �
:

� �
L0:0397171 � 2:5989773 [� x1 ÿ Lÿ1x2:]

X 2 � 0:912605; LX 2 � 1:9602829: L0:1999565 � x3 � 1:3009354

L0:0856402 � 2:9326778 [� x2 ÿ Lÿ1x3:]

L0:0445712 � 2:6493541[� x1ÿ Lÿ1(x2ÿ Lÿ1x3):] L0:2692212 � x4 � 1:4301093

X 3 � 0:902462; LX 3 � 1:9554288: L0:1075757 � 1:0317142 [� x3 ÿ Lÿ1x4:]

L0:1059397 � 1:0250586[� x2ÿ Lÿ1(x3ÿ Lÿ1x4)]: L0:3382963 � x5�1:5292973

L0:0425358 � 2:6287546 L0:1235415 � 1:0918130 Assuming

X 4 � 0:906701; LX 4 � 1:9574842: L0:1504506 � 1:1773939
X 5ÿX 4

X 4ÿX 3
� X 6ÿX 5

X 5ÿX 4
�&c,

L0:0959806 � 2:9821837 L(X 4 ÿ X 3)� L0:004239 � 3:62726

L0:0435225 � 2:6387137 (X 4 ÿ X 5)2 � Lÿ16:62646 L(X 4 ÿ X 5)� L0:002057 � 3:31323

6:94049

X 5 � 0:904644; LX 5 � 1:9564775 2X 4ÿX 3ÿX 5�Lÿ13:79906 3:79906

in this example (x � 1
8), L0:000672 � 4:82740 L0:001385 � 3:14143

X 5 � 0:904644 X 4 � 0:906701

true values are by equation (8), \X1 � 0:905316; X1 � 0:905316, (137)

X � 0:905354; LX � 1:9568185 because X1 � X 5� (X 4 ÿ X 5)2

2X 4ÿX 3ÿX 5
�X 4ÿ (X 4ÿX 3)(X 4ÿX 5)

2X 4 ÿ X 3 ÿ X 5
, (138)

because X � 4E4

�1
2
Eÿ t 2

dt:

� [The following relations, (which follow from equations (118), (121), and (130)) have been used:

X 1 � Lÿ1(ÿLÿ1x1); X 2 � Lÿ1[ÿLÿ1(x1 ÿ Lÿ1x2)];

X 3 � Lÿ1fÿLÿ1[x1 ÿ Lÿ1(x2 ÿ Lÿ1x3)]g;
X 4 � Lÿ1(ÿLÿ1fx1 ÿ Lÿ1[x2 ÿ Lÿ1(x3 ÿ Lÿ1x4)]g);

X 5 � Lÿ1fÿLÿ1(x1 ÿ Lÿ1fx2 ÿ Lÿ1[x3 ÿ Lÿ1(x4 ÿ Lÿ1x5)]g)g:
These equations, together with a preliminary version of the calculation (136), are contained in a short
letter from Hamilton to De Morgan, dated 10 February 1858 (Trinity College, Dublin, MS 1493/971).]
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on the hypothesis of a geometric progression of the differences, X 4 ÿ X 3, X 5 ÿ X 4, X 6 ÿ X 5,
etc.; which indeed is a very precarious one, or rather is certainly incorrect in rigour of theory,
but which has a degree of plausibility as a rule of approximation, and in several instances, as
here, gives results pretty near the truth. The method of converging fractions gives, as the
approximations answering to X 3, X 4, X 5, for the same case,

q � x � 1

8
, or t � 2,

� �
the following closer limits, X . T3, , T4, . T5; where

T3 � 104

115
, T4 � 48

53
; T5 � 1672

1847
; that is,

T3 � 0:904348; T4 � 0:905660; T5 � 0:905252; (139)

whence on the plan (137) it might be inferred that the value of X was nearly

� 0:905349: (140)

XVI. It must be admitted that, in this example, the exponential method, or ``method of
continued and converging exponentials'', gives with more trouble a less rapidly converging
series, or system of limits, X 1, X 2, X 3, X 4, X 5, for the function X or T, than the correspond-
ing limits T1, T2, T3, T4, T5, which are obtained by the known and usual method of reciprocals,
or of ``continued and converging fractions'': although it happens that the aproximate values,

X � X 2
4 ÿ X 3 X 5

2X 4 ÿ X 3 ÿ X 5
, T � T 2

4 ÿ T3T5

2T4 ÿ T3 ÿ T5
, (141)

are here about equally near to the true value of X or of T. Again, by calculating with the same
exponential type (136), but with only ®ve places of decimals in the logarithms, I ®nd for the
case x � 1

2, the values;

X 1 � 0:6065; X 2 � 0:8665; X 3 � 0:6636; X 4 � 0:8426; X 5 � 0:6740; (142)

and therefore, nearly, on the present plan,

X � X 2
4 ÿ X 3 X 5

2X 4 ÿ X 3 ÿ X 5
� X 5 � (X 4 ÿ X 5)2

2X 4 ÿ X 3 ÿ X 5
� 0:7560; (143)

whereas the method of converging fractions gives for this case, when only as many terms of the
diverging series are supposed to be known,

T1 � 0:66667; T2 � 0:80000; T3 � 0:73684; T4 � 0:76923; T5 � 0:75145;

with the resulting aproximation

T � T5 � (T4 ÿ T5)2

2T4 ÿ T3 ÿ T5
� 0:75775; (144)

the true value being here (because t � 1), by (7),

X � T � 2E2

�1
t
Eÿ t 2

dt � 0:75787: (145)
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And here again the method of converging fractions has an advantage, over the method of converging
exponentials, as I believe that it will always be found to have, when applied to the particular
diverging series (43), and generally, to any alternating series, which diverges suf®ciently fast. For

t � 3, x � q � 1

2t 2
� 1

18
, (146)

the convergence is rapid enough, which ever method� of approximation we employ: but this
may be considered to be a case too easy and favourable, and one which need not interfere with
the belief above expressed: besides that, even in this case, the believed advantage partly shows
itself. But to explain my reason for so believing, and what I imagine to be the ground of the
preference (independently of its simplicity) which I admit that the usual method here deserves, I
must enter into a few more details, respecting the laws of the connexion between the
coef®cients a, b, c, d, e of the series, and the constants á, â, ã, ä, å which are deduced from
those coef®cients, by one or by another process, according as we adopt one of the two
foregoing methods, or the other.

XVII. Suppose that we only knew four terms of our series (43), or had only

X � 1ÿ x � 3x2 ÿ 15x3 � � � � (147)

and that we could not at all tell, as yet what might be the value of the following coef®cient d,
in the 5th term, �dx4; except that we may (let it be supposed) presume that this coef®cient d
is not only . 0, but . 15. Then there are many (perhaps in®nitely many) ways of setting
about to transform this series for X into an expression of the form,

X � áx âx ãx äx � � � ; (148)

whereof two only (but those perhaps the most essential) have been hitherto considered in the
present Letter. In the Ist, which is also the usual way, the direct function, or that with which we
operate on the given series, and on others successively derived from it, has the form,

jx � xÿ1 ÿ 1; (93)

so that the inverse function corresponding is,

jÿ1x � x � (1� x)ÿ1 � � � (97)

On this plan, the supposed values, 1, 3, 15, of the 3 ®rst coef®cients a, b, c, give, as we have
seen, the corresponding values, 1, 2, 3, for the 3 ®rst constants; á, â, ã; and then the 4th of
the equations (70) enables us to infer that the 4th coef®cient d of the diverging series for X,
and the 4th constant ä of the continued fraction which is a transformation of that series, are
connected by the linear relation, analogous to (75),

j j j j

j

� The type gives here, (if we use only 5 ®gure logarithms,) X 3 � 0:95159; X 4 � 0:95188;
X 5 � 0:95179; X � 0:95181, nearly; fractions give T3 � 0:951724; T4 � 0:951830; T5 � 0:951810;
T � 0:951813, nearly the true value being by (9), X � T � 6E9

�1
3 Eÿ t 2

dt � Lÿ11:9785541 � 0:9518184.
I ®nd that seven ®gures of logarithms gives

X 3 � 0:951600; X 4 � 0:951870; X 5 � 0:951797;

(by the exponential method) and therefore, X � 0:951813, nearly. (I ®nd that T5 � 3654=3839:)
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d � bä� 81: (149)

In order, then, that the constant ä of the fraction may be . 0, it is necessary that the
coef®cient d of the series should be greater than the limit 81. If for instance, in any
application of the method of continued fractions, we should meet with the following
succession of initial terms,

X � 1ÿ x � 3x2 ÿ 15x3 � 60x4 ÿ ex5 � � � � (150)

we must transform the series, so far, into a continued fraction of the form,

X � 1

1�
x

1�
2x

1�
3x

1�
ÿ7

2x

1� åxX v
; (151)

X v denoting here (as in previous paragraphs) a series of which the 1st term is � 1; and the
coef®cient å being as yet unknown. And here we should not be entitled to establish the
inequality,

X . áx âx ãx; (111)

or, more particularly, we could not expect to be able to write,

X . T3, if T3 � 1� 5x

1� 6x � 3x2
; compare (87);

but should, on the contrary, have ground for believing the opposite inequality (X , T3) to be
probable. The method of converging fractions would \ fail, for this case (150), and at this stage of the
approximation; in the sense that it would conduct to a quantity T3, which was not a limit of an
opposite character, as compared with the next preceding limit, or aproximate value T2. In fact, if we
develope in series the fractional expressions for these two successive approximations, T2 and
T3 we ®nd:

T2 � 1

1�
x

1�
2x

1� 0
� 1� 2x

1� 3x
� 1ÿ x � 3x2 ÿ 9x3 � � � � ; (152)

T3 � 1

1�
x

1�
2x

1� 3x
� 1� 5x

1� 6x � 3x2
� 1ÿ x � 3x2 ÿ 15x3 � 81x4 � � � ; (153)

on comparing which with the true series,

T � 1ÿ x � 3x2 ÿ 15x3 � 105x4 � � � (3)

we see, indeed, that T , T2, T . T3, as before, because 15 . 9, and 105 . 81; but, on
comparing these with the assumed (or hypothetical) series (150), for X, we ®nd that while X is
still , T2, because we have still 15 . 9, yet it must now be presumed, so far as comparison of
coef®cients goes, that X is also , T3, because 60 , 81. ± What my argument insists on, is simply
this: that if we had merely been given, or had found, the three coef®cients, 1, 3, 15, of ÿx1, �x2,
ÿx3, and knew as yet no proof of any law, (even if such law were suspected,) which could oblige
the coef®cient of x4 to be as great as it really is, (105 � 7 3 15,) we could not be sure, from the mere
divergent character of the series, that this unknown coef®cient of x4, although probably greater than 15,
would turn out to be greater than 81; and therefore, that although we should be able to derive
successively from the three given (or known) coef®cients, 1, 3, 15, of the diverging series, the
three constants, 1, 2, 3, of the continued fraction; and could thus form the ®nite expressions for the

j j j

55II . TWO LETTERS TO AUGUSTUS DE MORGAN



three approximate values, T1, T2, T3, where T1 � 1

1� x
;

� �
we should indeed be entitled to

presume that (at least if x be not to large,) X . T1, and X , T2; but should not be at all entitled to
call it even probable (as distinguished from being improbable), that it would turn out that
X . T3: the function X being as yet merely known, by the few initial terms which are expressed, in
the formula (147).

XVIII. Let us now try the effect of the IInd. Method, mentioned in this Letter, by applying it
to reduce the same given beginning, (147), of the diverging series for X, into an expression of
the same general functional form, (148), but with a different assumption of the direct function j,
(and \ also of the inverse function ,) and with different values of the constants á, â, ã. In other
words, assuming now the forms,

jx � l
1

x
, (101), and x � åÿx , (113)

we are to determine the three constants, á, â, ã, and to assign the relation, analogous to (149),
between the 4th constant ä, and the 4th coef®cient d of the diverging series, by the condition
that

Eÿáx:Eÿâx:Eÿãx:Eÿäx:&c: � 1ÿ ax � bx2 ÿ cx3 � dx4 ÿ &c:; (154)

when

a � 1, b � 3, c � 15,

but d is supposed to be unknown. In passing, I may just ask whether you think that this
notation,

Eÿáx:Eÿâx:&c:

or more fully

Eÿáx3Eÿâx3&c:

might not with advantage replace what you justly call the ``sprawling'' form,

EÿáxEÿâxEÿãxEÿäx

(155)

which you so amusingly converted into a ladder, with your humble servant walking up its
steps? ± At all events, we have here, as in (110) the values,

á � 1, â � 5

2
, ã � 221

60
,

which may be deduced from a, b, c, by the three ®rst equations (108), or by other processes
already given or indicated: and thus the 4th of those equations (108) becomes,

120(24d ÿ 221ä) � 170881: (156)

That is to say, if d and ä be connected by this linear relation (156), we shall have the
transformation,

X � 1ÿ x � 3x2 ÿ 15x3 � dx4 ÿ &c: � Eÿx:Eÿ
5x
2 :Eÿ

221x
60 :Eÿäx:&c:; (157)

j

j
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and the constant ä will be negative, if the unknown coef®cient be less than a certain limit, which is
nearly � 59 : 33; for

d � 221ä

24
� 170881

2880
: (158)

But, for the same reason, ä will be positive, if d exceed the limit thus assigned; that is, more fully

ä. 0, if 2880d . 170881: (159)

For example, if

d � 60, then ä � � 1919

26520
; (160)

so that

Eÿx:Eÿ
5x
2 :Eÿ

221x
60 :Eÿ

1919x
26520:Eÿåx:&c: � 1ÿ x � 3x2 ÿ 15x3 � 60x4 ÿ exÿ5&c: (161)

which equals the series (150), so far as that series has been written down: where e and å are
still unknown coef®cients, or constants, and E still denotes (though clumsily) the natural base
of logarithms. Again, by (156) or (158), if ä � 0, then

d � 170881

2880
� 59:33368, nearly: (162)

therefore

X 3 � Eÿx:Eÿ
5x
2 :Eÿ

221x
60 � 1ÿ x � 3x2 ÿ 15x3 � 170881

2880
x4 ÿ ex5� � � � , (163)

where the coef®cient of �x4 is , 60. In fact, without necessarily depending on the investiga-
tions contained in earlier paragraphs of this Letter, we have

X 3 � Eÿáx:Eÿâx:Eÿãx � Eÿáx:Eÿ(âxÿâãx2�&c:) � EÿAx�Bx 2ÿCx 3�Dx 4:::

� 1ÿ ax � bx2 ÿ cx3 � dx4 ÿ &c:, (164)

when A � á, B � áâ, C � áâ ã� â

2

� �
, D � áâ

ã2

2
� âã� â2

6

� �
, (165)

and

a � A, b � B � 1

2
A2, c � C � AB � 1

6
A3, d � D � AC � 1

2
B2 � 1

2
A2 B � 1

24
A4 (166)

whence the series (163), so far as it has been written, may be deduced anew; and also this
other comencement of a diverging series,

X 2 � Eÿx:Eÿ
5x
2 � 1ÿ x � 3x2 ÿ cx3 � dx4 ÿ &c:, (167)

where

c � 139

24
, and therefore c , 15: (168)

And because
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X 1 � Eÿx � 1ÿ x � bx2 ÿ � � � , where b � 1

2
, 3, (169)

we see, upon the whole, so far as coef®cients enable us to judge, that if X still denote a
diverging series, of which the initial terms are those assigned in the equation (150), and if
X 1, X 2, X 3, X 4 retain their recent signi®cations, then

X . X 1, X , X 2, X . X 3; (170)

but whether X . or , X 4, we are not yet prepared to say.

XIX. Suppose, however, in the next place, that we are given the coef®cient d of �x4 in X, and
know that it is � 105; so that the series to be discussed is known to begin as follows,

X � 1ÿ x � 3x2 ÿ 15x3 � 105x4 ÿ ex5 � &c:; (171)

where the coef®cient e has a value not yet assigned. We now (by this new supposition) know
more than we did when we had only the terms written in (147); and \ may expect to be able to
deduce closer limits of approximation, for the sought value of the function X. We can infer, for
instance, that if we adopt the ``Method of Continued Fractions'', the constant which I have
called ä has now a positive value, namely the value 4 but that if we adopt, instead, the ``Method
of Continued Exponents'', then the corresponding coef®cient, denoted above by the same
symbol ä, has this other positive value

ä � � 131 519

26 520
,

assigned in (110).
If we now proceed to consider the linear relations, which exist in the two methods

respectively, between the constants which (for the present) I continue to denote by e and å,
we ®nd that they are the following. In the ®rst method,

e � 24å� 825; (172)

and consequently, (while å � 5, if e � 945, as in the true series for T,)

q , 0, if e , 825: (173)

In the Second Method, there is this other relation, more complex, arithmetically speaking,
but quite analogous in point of theory, and the coef®cients of which have, as I think, been
examined with suf®cient care:

31824(2880e ÿ 131519å) � 60 529 892 207: (174)

I do not recommend this process, as one which is remarkably exempt from labour; but it
shows that (in this method)

å. 0, if e .
60 529 892 207

91 653 120
; (175)

or (taking the next greater integer), that

å. 0, if e > 661: (176)

We see, then, here as in former comparisons of the two methods, that when positive constants
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á, â, ã, . . . have been assigned, or found, up to a certain point, it requires a less divergence in
the series for X to secure a positive character for the next of those constants, (as here for what I
am, for the moment, calling å,) in the Second Method, than in the Ist. It is, therefore, not
quite so likely, aÁ priori, when only the coef®cients, up to some given point are known, and have
been found to give, so far in both methods, results (in the way of approximation) alternately
less and greater than the truth, that this condition of alternation will continue to be satis®ed, if the
First Method be adopted, as it is if the Second Method be used. But, for precisely the same
reason, whenever the Method of Continued Fractions gives such alternating approximations, it
gives them closer to the true value sought, than does (I confess) the Method of Continued
Exponentials. At least, it does so, in all cases which I have tried: and I see no reason for
expecting that a different result will ever be experienced. ± The old method is here the good
one.

XX. When what I may call (for shortness) the ``Exponential Method'' occurred to me, not
long ago, in connexion with some of those Diverging Series which arise out of the Researches,
in part of a physical character, that were alluded to at the commencement of this Letter; and
before I had thought of applying that Method to the function T, of equation (1), as a test; I
tried it on the diverging but geometric series;

X � 1ÿ x � x2 ÿ x3 � x4 ÿ x5 � &c:, (177)

where x was supposed to be . 1. In this application, if we use the formulñ of paragraph XII.,
we have the given values,

a � b � c � d � e � 1; (178)

and easily deduce from them the constants,

á � 1, â � 1

2
, ã � 5

12
, ä � 47

120
, å � 12917

33840
; (179)

with the approximate expression corresponding:

X � (1� x)ÿ1 � Eÿx:Eÿâx:Eÿãx:Eÿäx:Eÿèåx ; è. 0, , 1: (180)

When x was . 0, , 1, I found that this gave a set of fairly rapid successive approximations; but
even when x was > 1, the alternate character was still preserved; and, on the whole, the degree of
approach obtained, to the true value, was not to be altogether despised. By substituting the
values (179) for á, â, ã, ä, å, the constant logarithms, analogous to those marked (124), are
found to be the following:

á1 � 1:6377843; á2 � 1:3367543; á3 � 1:2575721; á4 � 1:2307010;

á5 � 1:2195156;

)
(181)

and we have merely to write these numbers in the ®rst line of the Type (136), of paragraph

XV., and then proceed as in that Type. For the case x � 9

10
, it is thus found that

X 3 � 0:5165530; X 4 � 0:5289111; X 5 � 0:5356387; X � 0:5263238 nearly; (182)

the true value being here, by a converging geometric series,
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X � 10

19
� 0:5263258 � 1ÿ 9

10
� 9

10

� �2

ÿ &c: (183)

For x � 1, or for the neutral series,

X � 1ÿ 11 � 12 ÿ 13 � 14 ÿ 15 � � � � , (184)

the type gives

X 3 � 0:4871434; X 4 � 0:5037234; X 5 � 0:4989456; X � 0:5000144 nearly, (185)

the theoretical value being here X � 1
2, and the approximate X of (185), like that of (182), being

deduced from X 3, X 4, X 5, by the formula (138). Even for x � 2, or for the diverging series,

X � 1ÿ 21 � 22 ÿ 23 � 24 ÿ 25 � &c:, (186)

the same type (136) gives with the help of the same formula (138),

X 3 � 0:27388, X 4 � 0:36428, X 5 � 0:31933; X � 0:33426, nearly; (187)

the usual theoretical value being in this case,

X � 0:33333: (188)

And I believe, without pretending to have yet proved it, that however large a (positive) value may
be assigned to x, we should in all cases ®nd the inequalities subsisting,

X � (1� x)ÿ1 . X 1, , X 2, . X 3, , X 4, . X 5, &c: (189)

XXI. In other words, although I have taken pains in this Letter to prove that a certain
degree of rapidity of divergence is requisite, if the coef®cients of the series begin by diverging;
and that, at all events, when the coef®cients up to a certain point are given, the next following
coef®cient must be at least equal to a certain minor limit, in order that the constants of the
Exponential Development of the function represented by the series may all continue to be
positive yet I believe that all such conditions will be found to be satis®ed, however far the
examination may be pursued, for the geometric series, or function,

X � (1� x)ÿ1 � 1ÿ x � x2 ÿ x3 � x4 ÿ x5 � &c:; (177)

and also for several other important functions, as for instance, the one to which most of the
foregoing investigations relate; namely the function (1), represented by the series,

T � 1ÿ q � 3q 2 ÿ 15q 3 � 105q 4 ÿ 945q 5 � &c: (3)

For various particular values of the variable x, (or q,) and with the omission of powers of that
variable which exceeded the ®fth, this fact of the condition being satis®ed has been proved
by the success, such as it has been, of what may be called the ``Exponential Method of
Approximation'' to the Value of the Series: including, as what is, for our present purpose, an
essential element of such success, the alternating character of the approximate values which the
Method gives. But because, when we take for the variable a value too large to render the method
useful, as giving (within any reasonable limits of labour), an arithmetical approach to the truth, it
has appeared to me worth while to examine, in another way, and by a different type of
calculation, for values of x which thus render (not only the original series itself divergent, but
also) the exponential development too slowly convergent, whether at least certain conditions of
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inequality, of a kind already alluded to, continue still to be satis®ed: at least when we content
ourselves with considering the ®ve ®rst exponential constants, for each of the two functions
above mentioned, because those constants alone have been as yet determined.

XXII. It is, then, to be shown, by an examination of what may seem to be a suf®cient range
of instances, that if we assign to the real variable x any value . 0, the function

X � (1� x)ÿ1, (178)

to take it ®rst, as being the most elementary in its form, ± satis®es the ®ve following
inequalities: (compare equation (94):)

1

X 9
� áx

jX
. 1;

1

X 0
� âx

jX 9
. 1; � � � 1

X v
� åx

jX õv
. 1; (190)

where the function jx denotes the (natural) logarithm of the reciprocal of x, so that

jx � l
1

x
; (101)

while á, â, . . . , å are the ®ve constants and positive fractions,

á � 1, â � 1

2
, ã � 5

12
, ä � 47

120
, å � 12917

33840
, (179)

which depend partly on the form of the function jx, and partly on that of X. Or because
(101) gives

1

jx
� LE

L
1

x

, L
1

jx
� L2Eÿ L2 1

x
, (191)

we are to show that these other ®ve inequalities subsist:

L
1

X 9
� á1 � Lx ÿ L2 1

X
. 0; L

1

X 0
� á2 � Lx ÿ L2 1

X 9
. 0;

� � � ; L
1

X v
� á5 � Lx ÿ L2 1

X õv
. 0;

9>>=>>; (192)

where

á1 � Lá� L2E, (120), á2 � Lâ� L2E, &c:; (123)

so that these ®ve logarithmic constants á1, á2 &c. have here the values (181). Writing,
therefore, on the plan of the equations (119), (122), for the present question,

x1 � Lx � 1:6377843; x2 � Lx � 1:3367543; x3 � Lx � 1:2575721;

x4 � Lx � 1:2307010; x5 � Lx � 1:2195156;

)
(193)

we are to show, for variously selected (but positive) values of x, that

L
1

X 9
� x1 ÿ L2(1� x) . 0; L

1

X 0
� x2 ÿ L2 1

X 9
. 0;

� � � ; L
1

X v � x5 ÿ L2 1

X õv
. 0:

(194)
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These formulñ will enable us at the same time, in each particular example, to assign the
fractions, X9, X 0, . . . , X v , (analogous to è in well known formulae,) which enter as ®nal or
correcting factors into those ®nite exponential expressions whereto the Method conducts. But if we
do not care for more than a mere veri®cation of the Theorem, that each such factor is . 0, , 1,
we may eliminate X 9, . . . , X v , and write simply, with the signi®cation (193) of x1, . . . , x5, and
as the inequalities to be numerically veri®ed, the following:

x1 . L2(1� x); x2 . L(x1 ÿ L2(1� x)); x3 . L(x2 ÿ L(x1 ÿ L2(1� x)));

x4 . L(x3 ÿ L(x2 ÿ L(x1 ÿ L2(1� x))));

x5 . L(x4 ÿ L(x3 ÿ L(x2 ÿ L(x1 ÿ L2(L � x))))):

9>=>; (195)

I proceed to give the calculation in full, for such veri®cation of the Theorem, in the case where
x � 100; in which case the Method, regarded as one of approximation, would be practically
useless, on account of the slow convergence of its results.

XXIII. I ®nd it convenient here to employ the following Type:

x � 100; L(1� x) � L101 �
X � 0:009 901 0 � Lÿ13:995 678 6;

L
1

X
� 2:004 321 4

� Lÿ10:301 967 3;

8>><>>:
Lx � 2:000 000 0; á1 � 1:637 784 3; x1 � 1:637 784 3;

X 9 � 0:046 151 2 � Lÿ12:664 183 0;
L

1

X 9
� 1:335 817 0

� Lÿ10:125 747 0;

8>><>>:
Lx � 2; á2 � 1:336 754 3; x2 � 1:336 754 3;

X 0 � 0:061 516 7 � Lÿ12:788 992 7;
L

1

X 9
� 1:211 007 3

� Lÿ10:083 146 7;

8>><>>:
Lx � 2; á3 � 1:257 572 1; x3 � 1:257 572 1;

X - � 0:066 922 9 � Lÿ12:825 574 6;
L

1

X -
� 1:174 4257 4

� Lÿ10:069 825 4;

8>><>>:
Lx � 2; á4 � 1:230 701 0; x4 � 1:230 701 0;

X õv � 0:069 043 8 � Lÿ12:839 124 4;
L

1

X õv
� 1:160 875 6

� Lÿ10:064 785 7;

8>><>>:
Lx � 2; á5 � 1:219 515 6; x5 � 1:219 515 6;

X v � 0:070 043 9 � Lÿ12:845 370 1; L
1

X v
� 1:154 729 9

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(196)
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The inequalities,

X 9 . 0, , 1; X 0 . 0, , 1; X - . 0, , 1; X õv . 0, , 1;

X v . 0, , 1, (197)

are therefore, in this example, satis®ed.

XXIV. The same type, (196), gives me for x � 10, X � 1
11, the values

X 9 � 0:239 789 5; X 0 � 0:285 598 7; X - � 0:300 760 9;

X õv � 0:306 750 5; X v � 0:309 587 6;

)
(198)

which again satis®es the inequalities (197). We may observe that these values of which we may
call the ``fractional factors'', (again analogous to the usual è,) X 9, &c., are here also increasing
among themselves, from X 9 to X v , like those for x � 100, in (196); but that they are also
greater than those corresponding factors. And generally it appears to me likely that each of the
5 factors, X 9, . . . , X v , increases from 0 to 1 while x decreases from 1 to 0. This seems to be
connected with the possibility of the development of each factor, X 9, &c., in the form of a series,
of which the ®rst term is � 1, while the next term of each appears to have a negative coef®cient.
At least, I have proved theoretically, or algebraically, that this negative character belongs to the
coef®cient of x1 in each of the four series, for X 9, X 0, X -, X õv ; and the comparison of the
arithmetical values of X v seems to establish the same result, for the coef®cient of the series for
X v also.

XXIV. The same type (196) gives for x � 2, X � 1=3, these other values:

X 9 � 0:549 306 2; X 0 � 0:599 099 3; X - � 0:614 795 0;

X õv � 0:621 202 8; X v � 0:624 024 9;

)
(199)

which satisfy still the same inequalities as before, and follow the same general laws of
progress. And similar remarks apply to the case

x � 1, X � 1

2
, for which X 9 � 0:693 147 3; X 0 � 0:733 025 7;

X - � 0:745 380 7; X õv � 0:750 281 3; X v � 0:752 687 7;

9=; (200)

and to the case where x � 9=10, X � 10=19, with the fractional factors,

X 9 � 0:713 181 0; X 0 � 0:751 186 7; X - � 0:762 937 7;

X õv � 0:767 599 3; X v � 0:769 894 4:

)
(201)

Indeed, the mere fact of the requisite inequalities (X (n) . 0, , 1) being satis®ed for these three
cases,

x � 2, x � 1, x � 9

10
,

� �
might have been inferred from the results of the calculations of approximation, which had
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been previously performed with a different type (136), and of which some account was given in
paragraph XX. of this Letter.

XXV. When smaller positive values are assigned to x, the Method naturally succeeds still better, as
giving still more rapid approximation; but it does not follow that the Theorem can always be more
easily; or (in extreme cases) at all veri®ed, with our usual Tables of Logarithms: a circumstance
which deserves to be remarked, because the neglect to notice it might lead to false conclu-
sions. On trying, for instance, with the type (196), and with just about the same degree of
care, but still with logarithms of seven ®gures only, (they happened to be Hutton's, edited by
O. Gregory, 1838,�) what were the factors X 9 &c. for the case

x � 1

10
, X � 10

11
, (202)

I seemed to ®nd the values,

L
1

X 9
� 0:020 860 5; L

1

X 0
� 0:017 429 6; L

1

X -
� 0:016 284 7

L
1

X õv
� 0:018 921 2; L

1

X v
� 1:942 566 9;

(203)

and it was already suspicious, that L
1

X õv
appeared to be greater than L

1

X -
; but monstrous, and

intolerable, that L
1

X v
should be actually negative! But as no blunder was detected, on revisal, I

proceeded to calculate X 5, by the other type, (136), as the best single approximation which our 5
constants, á1 to á5, (the only ones as yet determined,) would here give: though it might
perhaps be improved, on the plan (138), by combining it with X 3 and X 4. The resulting
number was,

X 5 � Lÿ11:958 607 3 � 0:909 090 9 � 10

11
; (204)

which is here (to the 7y places used) the exact theoretical value of X !! And now I saw, on a little
consideration, that the least little error of the 7 ®gure tables ± such as that committed by taking
log 11 � 1:041 392 7, instead of 1:041 392 685 . . . , ± came to be magni®ed with a frightful
rapidity, in applying the type (196) to the case x � 1

10, so as quite to interfere with our power
of verifying the Theorem, although it was so easy and satisfactory to apply the Method here.

XXVI. Some reasonings, partly mental, which it is not worth while writing to develop here,

lead me to think that, instead of being , 0, L
1

X v
is nearly � �0:015, but probably a little

greater, for this last case of x � 1
10; and accordingly, if we asume that

L
1

X v
� 0:015 000 0, (205)

� [See note on p. 166.]
y It is to be noted, generally, that I do not pretend to be sure of the last decimal ®gure set down: nor,

always, of the one before it.
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we ®nd, by (193), (194), combined with the value

Lx � ÿ1 � 1:000 000 0, (206)

L2 1

X õv
� x5 ÿ L

1

X v
� 2:219 515 6ÿ 0:015 000 0 � 2:204 515 6 � L0:016 014 6;

L2 1

X -
� x4 ÿ L

1

X õv
� 2:230 701 0ÿ 0:016 014 6 � 2:214 686 4 � L0:016 394 1;

L2 1

X 0
� x3 ÿ L

1

X -
� 2:257 572 1ÿ 0:016 394 1 � 2:241 178 0 � L0:017 425 2;

L2 1

X 9
� x2 ÿ L

1

X 0
� 2:336 754 3ÿ 0:017 425 2 � 2:319 329 1 � L0:020 860 7;

L2 1

X
� x1 ÿ L

1

X 9
� 2:637 784 3ÿ 0:020 860 7 � 2:616 923 6 � L0:041 392 7;

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

(207)

whence

L
1

X
� 0:041 392 7 � L

11

10
; (208)

giving again

X � 10

11
� (1� x)ÿ1,

as we know that X ought to be.

XXVII. The assumption X � X 5, which had been found to be sensibly correct, corresponds,
in the theory of this Letter, to the values

X v � 1, L
1

X v
� 0; (209)

we see, then, that if our object be merely to calculate, approximately, the value of the function
X, (supposed to be known only by its development in series, and by the six ®rst terms thereof,)

it is not of much importance whether we attribute to L
1

X v
the positive value (205), or the null

value (209), or the negative value (203). The Method is therefore here a good one; but the
veri®cation of the Theorem is precarious; since it would be dif®cult, or perhaps impossible,
from the foregoing calculations alone, to pronounce whether the factor X v is (in this case of
x � 1

10) , 1, or . 1. But, as above hinted, I have reasons for thinking that the assumptions and
results of paragraph XXVI. are in this case nearly correct, or at least are not very far from the
truth; and thus that, without fear of any remarkable error, at least as affecting the theory, we

may write here, instead of (203), the following equations, in which the value of L
1

X v
has

been a little increased from that assumed above, and may still require some slight correction,
but the others are more to be relied on:
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L
1

X 9
� 0:020 86; L

1

X 0
� 0:017 43; L

1

X -
� 0:016 39;

L
1

X õv
� 0:016 00; L

1

X v
� 0:015 50;

9>>=>>; (210)

with these corresponding values of the factors, X 9, . . . , X v :

X 9 � 0:953 10; X 0 � 0:960 67; X - � 0:962 95;

X õv � 0:963 84; X v � 0:964 94:

)
(211)

One con®rmation of the four ®rst values (210) is, that these four logarithms are (as they
ought to be, on account of the smallness of x) nearly proportional to the four last constants,
â, ã, ä, å, of (179).

XXVIII. Before quite leaving the subject, of the development by a Continued Exponential,
of the function X � (1� x)ÿ1, I shall mention another instance, in which not only does the
``Method of Successive Approximation'' succeed with suf®cient accuracy, but also the
``Theorem of Alternate Inequalities'' can be veri®ed by the usual Tables: namely the case
when x � 1

2. I ®nd, in this case, by using the type (136), the converging approximate values,

X 1 � 0:606 530 7; X 2 � 0:677 463 0; X 3 � 0:664 882 0;

X 4 � 0:666 956 6; X 5 � 0:666 620 3;

)
(212)

whence, by the formula (138), we derive this improved approximation,

X � X 5 � (X 4 ÿ X 5)2

2X 4 ÿ X 3 ÿ X 5
� 0:666 666 4, nearly; (213)

the true value being here

X � 2

3
� 0:666 666 7:

And if setting out with this last value for X, we compute, by the type (196), the factors X 9,
. . . , X v we ®nd that they satisfy the required inequalities; their values being, in this example,

X 9 � 0:810 93; X 0 � 0:838 29; X - � 0:846 67;

X õv � 0:849 94; X v � 0:851 92;

)
(214)

and their progression following the same general laws as before.

XXIX. It will be remembered that these factors, X 9, &c., are certain functions of x, which can
be developed in certain ascending series, namely, in the notation of this Letter, (compare
equation (51),)
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X 9 � 1ÿ á9x � b9x2 ÿ c9x3 � d9x4 ÿ � � � ;
X 0 � 1ÿ a 0x � b 0x2 ÿ c 0x3 � � � � ;
X - � 1ÿ a -x � b -x2 ÿ � � � ;
X õv � 1ÿ aõv x � � � � ;
X v � 1 ÿ � � � ; &c:

9>>>>>>>>=>>>>>>>>;
(215)

For

X � (1� x)ÿ1 � áx âx ãx � � � , with x � Eÿx ,

I ®nd that the coef®cients of these series, so far as they are written in (215), have the values:

a9 � 1

2
, b9 � 1

3
, c9 � 1

4
, d9 � 1

5
;

a 0 � 5

12
, b 0 � 1

4
, c 0 � 251

1440
;

a - � 47

120
, b - � 2443

10 800
; aõv � 12 917

33 840
;

9>>>>>>>=>>>>>>>;
(216)

where a9, a 0, a -, aõv are the same fractions as those denoted by â, ã, ä, å in (179). I have not
determined the fractional expression for the coef®cient av , or æ, which belongs to the same
forms of the two functions, X and x; but a comparison of the computed values of X v seems
to make it certain that this coef®cient is positive, like the others; and even that its value cannot
differ much from that of the fraction 1

3, although (no doubt) its numerator and denominator
are numbers which may be spoken of as large. I judge, also, from the same sort of comparison
of numerical values, that if we write, according to the same analogy, but more fully than in
(215),

X v � 1ÿ av a � bv x2 ÿ � � � , (217)

the coef®cient bv , as well as av , will be found to be positive; and I think that I see, nearly, what
its value will turn out to be. But it would be a waste of time to delay, for the purpose of
verifying such estimations: and I pass to some examples of the calculated values of the factors,
or series, X 9, &c:, for that other form of the function X, which I began by considering, in this
Letter.

XXX. After the full details which have been given, respecting the plan of calculation
adopted, it may be quite enough to mention a few of the numerical results obtained. I ®nd,
then, that if we write

X � 2

x

� �1
2

E
1

2x

�1
(2x)ÿ

1
2

Eÿ t 2

dt, (218)

so that

X � 1ÿ 1x � 1:3x2 ÿ 1:3:5x3 � 1:3:5:7x4 ÿ 1:3:3:7:9x5 � &c:, (219)

as in earlier paragraphs, the law being now supposed to be known; (on which account there is

j j j j

j

67II . TWO LETTERS TO AUGUSTUS DE MORGAN



the less harm in my indulging the last series with a new number of reference, although it had
occurred before: ± at worst, the doing so can produce no confusion, nor embarrassment,
although I admit that a greater economy of such numbers would have had a better appearance
throughout:) and if we write, on the plan of paragraph XIV., instead of (193), the equations,

x1 � Lx � 1:637 784 3; x2 � Lx � 0:035 724 3; x3 � Lx � 0:204 025 4;

x4 � Lx � 0:333 199 3; x5 � Lx � 0:432 387 0,

)
(220)

where the constants added to Lx are those denoted by á1, . . . , á5 in (124); and employed in
the type (136); if also, subject to this selection of values of those constants, we determine

successively X 9, . . . , X v by the formulñ (192), remembering that
1

x
is not now equal to

(1� x), but to the reciprocal of the expression (218), so that we have still the relations,

L
1

X 9
� x1 ÿ L2 1

X
; L

1

X 0
� x2 ÿ L2 1

X 9
; L

1

X -
� x3 ÿ L2 1

X 0
;

L
1

X õv
� x4 ÿ L2 1

X -
; L

1

X v
� x5 ÿ L2 1

X õv
,

9>>=>>; (221)

with the values (220) for x1, . . . , x5; then the ®ve inequalities,

L
1

X 9
. 0, L

1

X 0
. 0, L

1

X -
. 0, L

1

X õv
. 0, L

1

X v
. 0, (222)

continue to subsist, at least in all the cases which I have tried.

XXXI. Thus, for the case where

x � 1

18
, X � 6E9

�1
3
Eÿ t 2

dt � Lÿ11:978 554 1

� 0:951 818 4, (223)

I ®nd the ®ve following positive values:

L
1

X 9
� 0:051 167 5; L

1

X 0
� 0:071 457 6; L

1

X -
� 0:094 704 4;

L
1

X õv
� 0:101 556 7; L

1

X v
� 0:170 405 9;

9>>=>>; (224)

giving the ®ve following factors, X 9, . . . , X v , to seven decimal places, such as they were taken
out:�

X 9 � 0:888 858 2; X 0 � 0:848 286 2; X - � 0:804 073 2;

X õv � 0:791 486 2; X v � 0:675 451 5

)
(225)

whereof each is seen to be . 0, but less than 1. Again for the case where x � 1

8
,

� I think that I have declared that I do not answer for all the decimal ®gures set down, although it
does not seem worth while to abridge their extent, by way of precaution. I give them just as they came,
and shan't be surprised if corrections shall be found; or rather should be surprised at the contrary:
though I think that the theory is safe.

68 II . TWO LETTERS TO AUGUSTUS DE MORGAN



X � 4E4

�1
2
Eÿ t 2

dt � Lÿ11:956 818 5 � 0:905 354 2, (226)

I ®nd these other values,

L
1

X 9
� 0:099 396 5; L

1

X 0
� 0:135 263 2; L

1

X -
� 0:169 755 8;

L
1

X õv
� 0:200 284 7; L

1

X v
� 0:227 649 5;

9>>=>>; (227)

X 9 � 0:795 432 7; X 0 � 0:732 380 5; X - � 0:676 463 3;

X õv � 0:630 543 9; X v � 0:592 039 3;

)
(228)

which satisfy the same inequalities. For the case,

x � 1

2
, X � 2E

�1
1
Eÿ t 2

dt � Lÿ11:879 596 0 � 0:757 872 3, (229)

it is found that

L
1

X 9
� 0:256 113 4; L

1

X 0
� 0:326 262 0; L

1

X -
� 0:389 428 9;

L
1

X õv
� 0:441 741 1; L

1

X v
� 0:486 189 2;

9>>=>>; (230)

X 9 � 0:554 480 9; X 0 � 0:471 778 3; X - � 0:407 916 3;

X õv � 0:361 625 3; X v � 0:326 445 5:

)
(231)

And ®nally for the case, which may be regarded as almost an extreme one, when

x � 50, X � 1
5E

1
100

�1
1

10

Eÿ t 2

dt � Lÿ11:201 104 4 � 0:158 892 8, (232)

the same system of formulñ conducts to the values,

L
1

X 9
� 1:434 264 3; L

1

X 0
� 1:578 063 1; L

1

X -
� 1:704 871 0;

L
1

X õv
� 1:800 477 7; L

1

X v
� 1:875 969 2;

9>>=>>; (233)

X 9 � 0:036 790 5; X 0 � 0:026 420 2; X - � 0:019 730 1;

X õv � 0:015 831 5; X v � 0:013 305 5;

)
(234)

which still satisfy the same inequalities. In all those cases, therefore, the theorem (of alternate
inequalities) is veri®ed, on account of the factors X 9, . . . , X v being always included between
the limits 0 and 1. As regards the method (of successive approximations), it has been found to
succeed well for the ®rst case, (223); (see note to paragraph XVI;) since it then gave

X � 0:951 81, nearly, instead of X � 0:951 818: (235)

In the second case, (226), it gave

X � 0:905 316, nearly, instead of X � 0:905 354: (236)
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In the third case, (229), it gave

X � 0:7560, nearly, instead of X � 0:757 87: (237)

The success was therefore respectable, in the second case; and not quite to be despised in the
third. For the fourth case (232), I ®nd that the same method gives numbers which are quite
useless, as approximations; namely, to several decimal places,

X 1 � 0; X 2 � 1; X 3 � 0; X 4 � 1; X 5 � 0; (238)

so it would merely enable us to infer that X lies between 0 and 1. But the theorem continues to
be veri®ed; although the series to which it is here applied is one of excessive divergence.�

XXXII. We have hitherto considered only two Transformand Functions, namely,

X � 1ÿ x � 3x2 ÿ 15x3 � 105x4 ÿ 945x5 � &c:, and

X � 1ÿ x � x2 ÿ x3 � x4 ÿ x5 � &c:;

and in order to develop them otherwise, namely under the general form,

X � áx âx ãx äx åx . . . ,

we have used only two Auxiliary Functions, namely,

x � (1� x)ÿ1, and x � Eÿx ;

which may perhaps be called Inverse Transformers, if we give the name of Direct Transformers to
the two other Functions

jx � xÿ1 ÿ 1, and jx � l
1

x
,

whereof the two foregoing forms are the respective inverses, and with which we have operated
on the given series X, in order to deduce from it the constants, á, â, ã, ä, å. I wish now to say a
few words respecting a third transformand; and afterwards to make some remarks upon a third
transformer: with hints about inde®nitely varying both. For the moment I take the series,
(mentioned in a separate note; lately,)

j j j j j

j j

� [At this point Hamilton attached the following note:

Observatory March 23rd 1858

My Dear De Morgan,
I send on 8th Sheet, which winds up all that I wished to say, respecting the two

Transformands,

X � 1ÿ x � 3x2 ÿ 15x3 �&c:, and

X � 1ÿ x � x2 ÿ x3 �&c:,

considered as combined with the two Transformers,

x � (1� x)ÿ1, and x � Eÿx :

But I must write about a third Transformand, X, and a third Transformer, x. Then, perhaps, the perturbed
spirit which evoked my Letter of February 15th may be allayed: ± and I shall be free to begin a new one!]

j j

j
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X � 1ÿ1x0

Ã1
ÿ 20x1

Ã2
� 31x2

Ã3
ÿ 42x3

Ã4
� 53x4

Ã5
ÿ 64x5

Ã6
&c:; (239)�

which I have not met with in any book, nor do I attach much importance to it, but it will serve
for illustration. Here,

a � 1, b � 3

2
, c � 8

3
, d � 125

24
, e � 54

5
; (240)

whence, if we adopt the ®rst method of transformation, namely the method of reciprocals, we
derive (on the plan of paragraph VI.) this other series,

X 9 � X ÿ1 ÿ 1

ax
� 1ÿ a9x � b9x2 ÿ c9x3 � d9x4 ÿ &c:, (241)

when

a9 � 1

2
, b9 � 2

3
, c9 � 9

8
, d9 � 32

15
; (242)

so that we have, so far, (but I have veri®ed the law for several other successive terms, and see
no reason to doubt that it continues inde®nitely,)

X ÿ1 � ÿ(ÿ1)ÿ1x0

Ã1
� 00x1

Ã2
ÿ 11x2

Ã3
� 22x3

Ã4
ÿ 33x4

Ã5
� 44x5

Ã6
&c:, (243)

where 00 is to be interpreted as equal to 1. Pursuing we have

X 0 � X 9ÿ1 ÿ 1

a9x
� 1ÿ a 0x � b 0x2 ÿ c 0x3 � &c:, (244)

where

a 0 � 5

6
, b 0 � 7

6
, c 0 � 721

360
: (245)

Again,

X - � X 0ÿ1

a 0x
� 1ÿ a -x � b -x2 ÿ &c:, (246)

a - � 17

30
, b - � 172

225
: (247)

And ®nally, we may write, on the same plan,

X õv � X -ÿ1 ÿ 1

a -x
� 1ÿ aõv x � &c:, X v � X õvÿ1 ÿ 1

aõv x
� 1ÿ &c:, (248)

with the numerical value,

aõv � 133

170
: (249)

� [Ãn denotes the gamma function; Ã(n � 1) � nÃ(n):]
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If then we write,

á � 1, â � 1

2
, ã � 5

6
, ä � 17

30
, å � 133

170
, (250)

we shall have for the series (239), the transformation, (compare (90),)

X � 1

1�
áx

1�
âx

1�
ãx

1�
äx

1� åxX v
; (251)

in which the ®ve constants, á, â, ã, ä, å, have the positive values (250), but nothing has as yet
been proved respecting the value of the function X v ; not even that it is always . 0, for x . 0;
much less that it is , 1. If, however, we presume that this function X v is likely to have a positive
value, because it can be developed in a series whereof the ®rst term is � 1, ± a presumption
precarious enough in general, but which I think will here be found correct; and if we form the
fractional expressions,

X 1 � 1

1� áx
, X 2 � 1� âx

1� (á� â)x
, X 3 � 1� (â� ã)x

1� (á� â� ã)x � áãx2
,

X 4 � 1� (â� ã� ä)x � âäx2

1� (á� â� ã� ä)x � (áã� áä� âä)x2
,

X 5 � 1� (â� ã� ä� å)x � (âä� âå� ãå)x2

1� (á� â� ã� ä� å)x � (áã� áä� áå� âä� âå� ãå)x2 � áãåx3

9>>>>>>>>=>>>>>>>>;
(252)

then, in consistency, expect to ®nd that the following inequalities are satis®ed,

X , 1, . X 1, , X 2, . X 3, , X 4; (253)

but whether X . � , X 5 we are not yet prepared to say, because we have not yet determined
the algebraic sign of the next following constant, æ, or av . Or, substituting for á, â, ã, ä, å
their values (250), we have the converging fractions,

X 1 � 1

1� x
; X 2 � 2� x

2� 3x
; X 3 � 6� 8x

6� 14x � 5x2
;

X 4 � 60� 114x � 17x2

60� 174x � 101x2
; X 5 � 1020� 2736x � 1353x2

1020� 3756x � 3579x2 � 665x3
;

9>>=>>; (254)

which in fact may be developed as follows,

X 1 � 1ÿ x � x2 ÿ � � � ; X 2 � 1ÿ x � 3x2

2
ÿ 9x3

4
� � � � ;

X 3 � 1ÿ x � 3x2

2
ÿ 8x3

3
� 179x4

36
ÿ � � � ;

X 4 � 1ÿ x � 3x2

2
ÿ 8x3

3
� 125x4

24
ÿ 7643x5

720
� � � � ;

X 5 � 1ÿ x � 3x2

2
ÿ 8x3

3
� 125x4

24
ÿ 54x5

5
� 284 370 1x6

122 400
ÿ � � � :

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

(255)
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If then we only know the coef®cients of the series (239) for X, so far as they have been actually
written down so that we are only informed that

X � 1ÿ x � 3x2

2
ÿ 8x3

3
� 125x4

24
ÿ 54x5

5
� fx6 ÿ &c:, (256)

where f may be presumed to be positive, and even to be . 54=5; we can indeed infer the
inequalities (253), at least for small and positive values of x; but cannot conclude that, even for
such values, X . X 5; until we know that

f .
2 843 701

122 400
: (257)

This result is exactly analogous to one of paragraph VIII., in which it was found to be
necessary, for the continued success of the method of reciprocals, or at least for that method's
continuing to give alternating limits, or approximate values alternately less and greater than a
certain other minor limit; which was, in that former application, � 9675. But as we had, then, by
the law then existing,

f � 11:945 � 10 395 . 9675, (compare [(75) and] (77), )

so we have now, by the present law of the series (239) for X, the value,

f � 75

Ã7
� 16 807

720
.

2 843 701

122 400
; & therefore X . X 5, (258)

at least if x be not too large. But I think that this inequality, X . X 5, will be found to hold good,
for all positive values of x ; if X be that function of x from which, by processes not worth dwelling
upon, the series (239) was deduced: namely that real and positive quantity which satis®es the
equation,

lX � xX � 0; or,
1

X
l

1

X
� x: (259)

XXXIII. It may be noted, that because the general term of the series (239) for X is

(n � 1)nÿ1(ÿx)n

1:2 . . . n
� (n � 1)n(ÿx)n

Ã(n � 2)
(260)

so that we may write

ÿxX �
Xm�1
m�1

m mÿ1(ÿx)m

Ã(m � 1)
; (261)

therefore a distant term of this series for ÿxX is nearly equal (by a well known property of the
function Ã[viz: n!� ��������

2ðn
p

(n=E)n, due to James Stirling (1692±1770).]) to the expression,

(ÿEx)m(2m3ð)ÿ
1
2; (262)

whence it appears to follow that the series in question becomes divergent, if

x . Eÿ1;

but is on the contrary convergent, if

73II . TWO LETTERS TO AUGUSTUS DE MORGAN



x . 0, x % Eÿ1: (263)

Compare the remarks in Cauchy's Cours d'Analyse,� on the conditions of Convergence of
Series ± which I have not very carefully studied. The Corollary in his page 137 appears to
show that the series (239) converges, even if x be negative, provided that

x > ÿEÿ1 (x , 0): (264)

In fact, Cauchy seems to make out that the series,

1� 1

2ì
� 1

3ì
� 1

4ì
� &c:; (265)

converges if ì. 1, but diverges in the contrary case: and

ì � 3

2
, (266)

when we apply this principle to the asymptotic series of which the general term is (261),
supposing

x � ÿEÿ1; and therefore by (259), X � E (267)

It appears then to follow that the series,

E � 1� Eÿ1 � 31Eÿ2

1:2
� 42Eÿ3

1:2:3
� 53Eÿ4

1:2:3:4
� 64Eÿ5

1:2:3:4:5
� &c:, (268)

ought to be found to converge, though slowly, to the limit written here; but it is evident that
this other series is a divergent one,

Eÿ1 � 1ÿ E� 31E2

1:2
ÿ 42E3

1:2:3
� 53E4

1:2:3:4
ÿ 64E5

1:2:3:4:5
� &c:; (269)

and indeed the recent analysis seems to show that if a positive quantity, x, which exceeds Eÿ1,
be substituted for E in the second member of the equation (269), so as to reproduce the
development (239), this resulting series will diverge. The series (243), for X ÿ1, appears to be
just about as convergent, or as divergent, as (239), of which it is the reciprocal, for its general
term is,

ÿ(m ÿ 1)mÿ1(ÿx)m

Ã(m � 1)
� ÿEÿ1(ÿEx)m(2m3ð)ÿ

1
2, nearly, (270)

where m is a large positive number. The following series therefore would seem to be a
convergent one, though the convergence is but slow:

Eÿ1 � 1ÿ Eÿ1 ÿ Eÿ2

1:2
ÿ 22Eÿ3

1:2:3
ÿ 33Eÿ4

1:2:3:4
ÿ 44Eÿ5

1:2:3:4:5
ÿ &c: (271)

In general, for any positive quantity X, we have (it seems) these two series, converging or
diverging, as the case may be:

� [Augustin Louis Cauchy (1789±1857), Cours d'analyse de l'eÂcole royale polytechnique, Paris: 1821
(Reprinted in: êuvres compleÁtes d'Augustin Cauchy, 2nd Ser., Vol. I, Paris: 1905.).]
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X � 1� 20 X ÿ1 lX

1
� 31(X ÿ1 lX )2

1:2
� 42(X ÿ1 lX )3

1:2:3
� 53(X ÿ1 lX )4

1:2:3:4
� &c:; (272)�

X ÿ1 � 1ÿ X ÿ1 lX

1
ÿ 11(X ÿ1 lX )2

1:2
ÿ 22(X ÿ1 lX )3

1:2:3
ÿ 33(X ÿ1 lX )4

1:2:3:4
ÿ &c: (273)

It is true that (after happening to perceive them), I have not done more than verify these laws,
for about 7 or 8 terms of each separate series; but I cannot doubt that they continue to hold
good: especially as I observe that in combination with each other they satisfy the differential
equation,

d

dx

1

X
� xd

dx
:xX � 1, (274)

which is a consequence of the equation (259); so that each series can be deduced from the other.
In fact, the complete integral of the equation (274) is,

lX � xX � constant; (275)

and the constant is here � 0, because the series for X reduces itself to 1, when x becomes � 0.

XXXIV. After this discussion on the form of the series (239), let us pay a moment's attention
to its value, for the case á � 1

8, which may serve as a convenient example. The converging
fractions (254) become here,

X 1 � 8

9
� 0:888 888 9; X 2 � 17

19
� 0:894 736 8; X 3 � 448

501
� 0:894 211 6;

X 4 � 4769

5333
� 0:894 243 4; X 5 � 708 168

791 921
� 0:894 240 7; giving X � 0:894 240 9, nearly;

(276)

and in fact the equation,

1

X
l

1

X
� (x �)

1

8
, gives X � 0:894 240 9; (277)

so that the convergence is here suf®ciently rapid, and the inequalities (253) (258) are
satis®ed. Continued exponentials give, here, the very simple and elegant expression,

X � Eÿx:Eÿx:Eÿx:&c:, (278)

to be interpreted on the same plan as the expression (154); but there is still a practical
inferiority in this second method, as compared with the ®rst: since the corresponding aproximations
which it gives are somewhat less close, being these,

X 1 � 0:882 497; X 2 � 0:895 555; X 3 � 0:894 094;

X 4 � 0:894 257; X 5 � 0:894 239;

)
(279)

� Note, Thursday April 15, 1858: De Morgan has recently called my attention to an anticipation of the
series (272) by Murphyy. [Letter of De Morgan to Hamilton, April 11, 1858, Trinity College Dublin MS
1493/987.]
y [Robert Murphy, 1806±1843; A treatise on the theory of algebraic equations, p. 82, London: 1839.]
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from which, however, we might infer, on the plan (138), that

X � 0:894 241, nearly: (280)

Indeed, in this case, the original series (239) converges suf®ciently fast to give without much
trouble the few ®rst decimals of X.

XXXV. If we take x even so great as 1
2, then, (since 1

2 . Eÿ1,) the series (239) will diverge ; its
®rst terms becoming now,

X � 1ÿ a

2
� b

4
ÿ c

8
� d

16
ÿ e

32
� � � � � 1ÿ 1

2
� 3

8
ÿ 1

3
� 125

384
ÿ 27

80
� � � �

� 1ÿ 0:500 00� 0:375 00ÿ 0:333 33� 0:325 52ÿ 0:337 50 � � � ; (281)

whence we could only infer, without some such transformation as we have been discussing, that
the real and positive root X of the equation,

1

X
l

1

X
� 1

2
, (282)

considered as developed in this diverging series, was subject to the two following inequalities,

X .
13

24
, ,

111

128
; or

X . 0:541 67, , 0:867 19; (283)

and in fact this root of (282) is found by trials to be, nearly,

X � 0:703467: (284)

Converging fractions give here, by making x � 1
2 in (254),

X 1 � 2

3
, X 2 � 5

7
, X 3 � 40

57
� 0:70175, X 4 � 485

689
� 0:703 92,

X 5 � 21 810

31 007
� 0:703 39;

9>>=>>; (285)

whence, on the plan (138), we might infer that

X � 0:703 49, nearly: (286)

Converging exponentials give the corresponding, but less close, approximations:

X 3 � Eÿ
1
2:Eÿ

1
2:Eÿ

1
2 � 0:691 286; X 4 � 0:707 765; X 5 � 0:701 957; (287)

from which, however, on the same plan (138), the value (284) might very nearly be recovered.
But the ®rst method (that of fractions) preserves still its advantage over the second.

XXXVI. When we take x � 1, the series (239), of course, diverges faster than before; so fast,
indeed, as to furnish no useful guess at the true value of X. But the ®ve converging fractions
(254) give, still, the formation which is not to be disdained: even when we abstain, as we have
done, from determining the fractions which follow them. In fact, they give the successive
approximations,
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X 1 � 1

2
, X 2 � 3

5
, X 3 � 14

25
, X 4 � 191

335
, X 5 � 5109

9020
; (288)

or, expanding the three last fractions decimally,

X 3 � 0:56000; X 4 � 0:57015; X 5 � 0:56641;

whence X � 0:56742, nearly: (289)

The true value is here the real and positive root of this transcendental equation,

lX � X � 0, or

1

X
l

1

X
� 1; namely (by trials), X � 0:5671433: (290)

The exponential method (as in all the other cases hitherto considered) approaches to the mark
more slowly; although it would infallibly reach� that mark, after an in®nite time allowed, if we
had the patience to shoot with it, over and over again, each time acquiring thereby a slightly
better ground for taking aim. In fact, if we now write,

X 1 � Eÿ1; X 2 � Eÿ1:Eÿ1; X 3 � Eÿ1:Eÿ1:Eÿ1; &c:; (291)

so that

X n�1 � EÿX n , and X 0 � 1; (292)

then, rigorously, as the limit of an inde®nitely continued process, we may write the equation,
whereof the theory may perhaps be developed somewhat farther on:

X � X1: (293)

Numerical calculation gives, with these last meanings of X 1, X 2, &c., the values:

X 1 � 0:367 879; X 2 � 0:692 200; X 3 � 0:500 474;

X 4 � 0:606 243; X 5 � 0:545 396;

)
(294)

whence, on a plan already often referred to, it might be inferred that

X � 0:567617, nearly; (295)

and in fact this value is not much less accurate than the value (289). I have had the patience
to push this method of approximation farther, the type employed being easy enough; it
seems that after about twenty steps we might perhaps be content to stop: for I ®nd, as the
result of calculations performed with seven decimal places throughout,

X 18 � 0:567 156 9; X 19 � 0:567 135 5; X 20 � 0:567 147 7, nearly; (296)

which differs little from the value (290) of X ; being, however as it ought to be, a little in
excess. But the method of converging exponentials is still inferior, in practice, to the method
of converging fractions: although, if we applied the plan (138) to the values (296), we should
very exactly recover the value (290), under the term

� For the proof of this assertion, I must refer to some subsequent paragraphs.
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X � X 20 ÿ (X 20 ÿ X 19)2

X 20 ÿ 2X 19 � X 18
� 0:567 143 3: (297)

XXXVII. I scarcely intended to say anything more about the ``Third Transformand'' of this
Letter, namely the Function or Series (239). But before I pass to the consideration of what I
have already alluded to, as a ``Third Transformer'', or third form of an auxiliary function, a word
or two may be added respecting the case,

x � E, X � Eÿ1 � 0:367 88; (298)

in which case we are conducted to the highly divergent series (269). The exponential method
would here be practically useless; so slow would be the convergence of its successive approxima-
tions be: but still it would give convergence, from the very outset, and therefore, theoretically
speaking, it would not fail. In fact we have now instead of (292), the relations,

X n�1 � EÿEX n , X 0 � 1; (299)

whence,

X 1 � EÿE , Eÿ1; EX 1 , 1; X 2 . Eÿ1; X 3 , Eÿ1; X 4 . Eÿ1; X 5 , Eÿ1; &c: (300)

But also,

X 1 . 0; therefore X 2 , 1; X 3 . EÿE, therefore . X 1; X 4 , EÿEX 1 therefore , X 2; &c:;

(301)

thus, X 1, X 3, X 5, . . . form an increasing series, . 0, but never quite ascending to Eÿ1; and
X 2, X 4, X 6, . . . form a descending series , 1, but never quite descending to Eÿ1; or, in symbols,

Eÿ1 . X 2n�1 . X 2nÿ1 . � � � . X 3 . X 1 . 0; (302)

and

åÿ1 , X 2n , X 2nÿ2 , � � � , X 4 , X 2 , 1: (303)

We are therefore already entitled to infer that X 2n�1 and X 2n tend, each separately, to certain
positive limits, whereof the former cannot exceed Eÿ1, and the latter cannot fall short of it; or in
symbols, that

lim
n�1 X 2nÿ1 � A . 0, . Eÿ1; lim

n�1 X 2n � B , 1, , Eÿ1; (304)

where the marks ., ,, are the contradictories of ., ,, or, signify, respectively, ``not less than'',
and ``not greater than''. (I sometimes write, in like manner, the mark 6�, to signify ``not equal
to''.) If, then, we could, at this stage, assent that X n tended to any one ®xed limit, independent of
the odd or even character of the index n; or, in symbols, if we were already certain that

A � B, or that lim
n�1 X 2nÿ1 � lim

n�1 X 2n, (305)

n here denoting any whole number ; we might at once conclude that

X1 � lim
n�1 X n � A � B � Eÿ1: (306)

Accordingly, if we suppose that X1 has any one ®xed value, which is independent of the odd or
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even character of the whole number denoted here by1, the ®rst equation (299) will give the
condition,

X1 � EÿEX1 ; (307)

but if we write, for a moment,

øy � yE Ey, (308)

the function ø y increases, constantly and continuously, with y, from 0 to 1; it passes
therefore once, and only once, during this increase, through any one given real and positive
value; or in other words, the equation,

yE Ey � c, (309)

has one, and only one, real and positive root, y, for any given real and positive value of c: and all its
other roots are imaginary. But, with the form (308),

ø(Eÿ1) � 1; (310)

the equation (307) has therefore no other real root, except the root (306).

XXXVIII. It is, however, conceivable, before examination, that the two limits, A and B, in
(304), may be unequal; in which case, either the former limit must be less than Eÿ1, or the latter
limit must be greater than Eÿ1, or else both these inequalities must be satis®ed together. And,
in fact, if we go only a short way in the actual calculation of the numerical values of X 1, X 2, X 3,
&c., we shall not perceive any marked indication of the lately supposed convergence, of X 2nÿ1 and
X 2n, to any common limit X1. I ®nd, for example, by calculations similar to those lately
mentioned, that

X 1 � 0:065 988 0, X 2 � 0:835 793 1, X 3 � 0:103 113 9,

X 4 � 0:755 562 6, X 5 � 0:128 242 5;

)
(311)

and even after pursuing the process (with fewer decimals) to a stage much more advanced, say to
about X 60, there is still observed to remain a very decided excess of X 2n over X 2n�1; although this
excess is observed to diminish continually, as by the theory it ought to do. In fact, it is found that
we have, nearly, the values (calculated with ®ve decimals only,)

X 59 � 0:263 89; X 60 � 0:488 06; X 61 � 0:265 36: (312)

One might, therefore, perhaps, doubt, for a while, whether this diminution, though continual,
would ever quite bring down, even for in®nite values of n, the difference here spoken of to zero; and
whether we might not, perhaps, have, on the contrary, the ®nal and limiting inequality,

lim
n�1 X 2n . lim

n�1 X 2nÿ1? or, briefly, B . A? (313)

XXXIX. Retaining, for a moment longer, the two symbols, A and B, to denote the two limits,
without yet deciding whether those limits are equal, or unequal, we easily deduce from (299)
the two equations,

B � EÿEA; A � EÿEB ; (314)
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which may also be written thus,

lB � EA � 0; lA � EB � 0: (315)

If then we write,

÷y � E Ey l
1

y
, (316)

a very easy process of elimination shows that A and B must both be roots of the transcenden-
tal equation,

÷y � E; (317)

whereof the value,

y � X � Eÿ1, (298)

is also obviously a root; so that we have,

÷A � ÷B � ÷
1

E
� E: (318)

The relations,

A � B � Eÿ1, (306)

must therefore exist, unless the equation (317), in y, admits at least two real, positive, and
unequal roots. But it is easy to prove that

÷9y � d÷y

dy

� EEy E l
1

y
ÿ 1

y

� �
, 0, if y . 0, y _ Eÿ1;

9>>>=>>>; (319)

while for the particular case y � Eÿ1; we have

÷9y � ÷9
1

E
� 0: (320)

Hence, the function ÷y decreases constantly and continuously, from an inde®nitely large
positive to an inde®nitely large negative value, while y increases from an inde®nitely small to
an inde®nitely large positive number; this function ÷y being, however, for a moment stationary
in this decrease, where y � Eÿ1; at which stage we have seen that it attains the value,
÷(Eÿ1) � E. It follows hence that the transcendental equation,

÷y � c, (321)

when c denotes any given real quantity, whether positive or negative, or zero, has, in general,
only one real and positive root, y; but that in the singular case, where c � E, that is, in the case
(317), the equation may be said to have two� real and positive roots, which are however (in this
case) equal to each other, and to Eÿ1. The values (306) are therefore thus proved to be correct;
and the convergence of the two systems of increasing values X 1, X 3, X 5, . . . , and of decreasing

� Rather three real, positive and equal roots. See p. 88.
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values X 2, X 4, X 6, . . . , to one common limit, X1 � X � Eÿ1, is thus completely established. This
theoretical convergence is, however, here, in practice, excessively slow: for a rough calculation gives
me the (still) very sensibly unequal values,

X 99 � 0:285; X 100 � 0:460: (322)

The converging fractions (254) give far more rapidly the following much less rude approxima-
tions, to what is here the true value (298), of the divergent series (269):

X 1 � 0:26894; X 2 � 0:464 63; X 3 � 0:342 54;

X 4 � 0:387 33; X 5 � 0:361 63:

)
(323)

XL. More generally, in applying the exponential method to transform the series (239), we
have, instead of (292) or (299), the equation

X n�1 � EÿxX n , X 0 � 1; (324)

in which we at present suppose that x . 0, in order that the terms of the transformand series
may be alternately positive and negative. By an analysis similar to that employed in recent
paragraphs, but made a little more general, we can show that the transcendental equation

X � EÿxX , (325)

which is only another form of

lX � xX � 0, or
1

X
l

1

X
� x, (259)

has one, and only one, real and positive root X, for any given real and positive value of x. In
fact, when x is thus given, and real, and . 0, the function

øX � X ExX , (326)

which is slightly extended from the form (308), increases constantly and continuously with X,
from 0 to 1; it passes therefore once but only once, through any assigned stage of real and
positive value; and the equation (325) under the form

øX � 1, (327)

is thus seen to have, as above asserted, one real positive root X, and only one. Or we may
observe that (x being still . 0) the function,

løX � lX � xX , (328)

increases constantly and continuously from ÿ1 to �1, while X increases from 0 to 1; this
function therefore passes once, but once only through any assigned stage of real value, and in
particular through the value 0, during this increase of X. Or again we must consider this
other function

jX � 1

X
l

1

X
; (329)

of which the differential coef®cient relatively to X is

j9X � X ÿ2(lX ÿ 1); (330)
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hence

j9X , 0, if X . 0, , E, but j9X . 0, if X . E; (331)

therefore jX decreases from 1 to 0, and passes once, but only once, during such decrease,
through any one assigned stage x of real and positive value, while X increases from 0 to 1. Or
®nally we might remark that while the one member, X, of the equation (325), increases from
0 to 1, the other member, EÿxX , decreases from 1 to a quantity , 1, namely to Eÿx . In any of
these ways we may easily see, not only (as above stated) that the equation (325) has always a
real and positive and unique root X, if x . 0, but also that this root

X , 1: (332)

Such, then, must be the value of X1, if it have any determined value; that is if, in the ®rst equation
(324), we are at liberty to consider X n as tending to any one ®xed limit, (while the whole
number n increases,) which limit is independent of the odd or even character of n. But the
conditions of such independence remain to be investigated.

XLI. Meanwhile, this seems to be a natural occasion for observing, that since, by (331), the
function jX in (329) decreases from 0 to ÿEÿ1, while X increases from 1 to E, and afterwards
increases from ÿEÿ1 to 0 again, while X continues to increase from E to 1, each process of
decrease or of increase being constant and continuous, therefore each of these three forms
of one common transcendental equation,

jX � 1

X
l

1

X
� ÿx, lX ÿ xX � 0, X � ExX , (333)

has two real and unequal and positive roots, one . 1, , E,

and the other . E, if x . 0, , Eÿ1;

)
(334)

but that the same equation, under any of these forms (333), has two real and equal roots, each
being

X � E, if x � Eÿ1; (335)

and ®nally that each equation (333) has no real root X,

if x . Eÿ1: (336)

The critical stage of equal roots, (335), corresponds to the case (267), and to the barely convergent
series (268), of which the value has been seen to be E. And we now see that the series,

X � 1� 20x

Ã2
� 31x2

Ã3
� 42x3

Ã4
� 53x4

Ã5
� 64x5

Ã6
� &c:, (337)

which is formed from (239) by changing the sign of x, and may be obtained by suitable
processes from any one of the forms (333), may be said, in language of your own, to ``escape
from imaginariness, by becoming divergent'', when x comes to exceed the limit Eÿ1. At the
same time we see that this series (337), under the conditions (334), (compare paragraph
XXXIII.,) converges to a limit X, . 1, , E; namely to the lesser of the two real and unequal roots of the
equation (333).
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XLII. Hence if in this series (337), we change x to lX=X , and so recover the series,

X � 1� 20 X ÿ1 lX

1
� 31(X ÿ1 lX )2

1:2
� 42(X ÿ1 lX )3

1:2:3
� 53(X ÿ1 lX )4

1:2:3:4
� &c:, (272)

the second member will indeed be the algebraical development of the ®rst, when X is treated as
a function of X ÿ1 lX , and developed according to ascending powers thereof; in such a manner
that the equation

Ez � 1� 20zEÿz

1
� 31z2Eÿ2z

1:2
� 42z3Eÿ3z

1:2:3
� 53z4Eÿ4z

1:2:3:4
� &c:, (338)

is an algebraical identity, so far as agreement between the coef®cients of powers of z is concerned;
for instance, after multiplying the coef®cient of zn in Ez by 1:2:3 . . . n, or differentiating the
last equation n times, and then making z � 0, we have the true arithmetical relations,

1 � 1 � 20 � ÿ2:20 � 31 � �3:20 ÿ 3:21:31 � 42 � ÿ4:20 � 6:22:31 ÿ 4:31:42 � 53

� �5:14:20 ÿ 10:23:31 � 10:32:42 ÿ 5:41:53 � 64 � &c:; (339)

yet we must not conclude, unconditionally, that the arithmetical values of the two members of the
formula (272), or (338), are in all cases equal to each other. In fact, with our recent meaning
(329) of j, the function,

ÿj(Ez) � zEÿz, (340)

increases from 0 to Eÿ1, while z increases from 0 to 1, and afterwards decreases from Eÿ1 to 0,
while z increases from 1 to 1. If then we substitute for z any assumed real value c . 1, in the
series (338), that series will converge to a real limit C , E, but . 1, for reasons already stated; so
that we may write,

C � 1� 20cEÿc

1
� 31c2Eÿ2c

1:2
� 42c3Eÿ3c

1:2:3
� &c:. 1, , E, if c . 1; (341)

but this arithmetical value, C, of the second member of the equation (338), obtained from the
convergent series (341), will not be equal to the arithmetical value Ec of the ®rst member of the same
equation (338), obtained by the same substitution of the value c for z: since we shall have, on the
contrary the inequality,

C , Ec , if, c . 1: (342)

To obtain a ®nite equation, which the sum C of the series (341) shall satisfy, let us write, for a
moment,

a � cEÿc ; (343)

then

C � 1� 20a1

1
� 31a2

1:2
� 42a3

1:2:3
� &c:, (344)

so that C is what X in (337) becomes, when x is changed to a; and the conditions (334) are
satis®ed. Hence, by what was lately shown, C is the lesser root of the equation obtained from (333),
by changing x and X to cEÿc and C; and thus, not withstanding the inequality (342), we have
the equation,
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Cÿ1 lC � cEÿc ; (345)

whereof the greater root may be denoted by

C9 � Ec : (346)

In like manner, if we substitute for X in the series (272), any value A . E, the series will
converge to a limit, and will therefore have an arithmetical sum, say B, which will be . 1, , E; so
that

B � 1� 20 Aÿ1 lA

1
� 31(Aÿ1 lA)2

1:2
� 42(Aÿ1 lA)3

1:2:3
� &c:, . 1, , E, if A . E; (347)

but this sum B will not be equal to A, since we shall have, on the contrary,

B , A (348)

it will however be true that A and B are connected, by the relation

Bÿ1 lB � Aÿ1 lA: (349)

For example, if we assume

c � 5, a � 5Eÿ5, A � E5, (350)

and substitute these values in the series (341), (344), (347), we obtain the convergent series

(B �) C � 1� 2051Eÿ5

1
� 3152Eÿ10

1:2
� 4253Eÿ15

1:2:3
� &c:, (351)

of which the ®rst terms are decimally,

1� 0:033 689 7� 0:001 702 5� 0:000 102 0� 0:000 006 7� 0:000 000 5; (352)

so that the sum may thus be seen to be nearly

C � 1:035 501 4; (353)

which is very decidedly less than E5, being indeed (as it ought to be) less than E itself. And if
we resolve, by trials, the equation,

(Cÿ1 lC �)(Bÿ1 lB �)5Eÿ5, (354)

rejecting the greater root, C9 � E5, we ®nd that the lesser root is,

C � Lÿ10:015 150 7; (355)

that is, again,

C � 1:035 501 4:

XLIII. We might also approximate to this lesser root, and therefore to the sum of the series
(351), by an application of the exponential method of the present Letter. Making

x � 5Eÿ5 � Lÿ12:527 497 6 � 0:033 689 7, (356)

and writing now, instead of (324), the equations,

X n�1 � ExX n , X 0 � 1, (357)
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we easily obtain the successive approximations following:

LX 1 � 0:014 631 3; LX 2 � 0:015 132 6; LX 3 � 0:015 150 1;

LX 4 � 0:015 150 7; LX 5 � 0:015 150 7;

X 1 � 1:034 263 8; X 2 � 1:035 458 2; X 3 � 1:035 500 0;

X 4 � 1:035 501 4; X 5 � 1:035 501 4;

9>>>>>=>>>>>;
(358)

at least so far as logarithms with 7 decimal places enable us to judge. Converging fractions
give, with a little more trouble, for the same value (356), of x, the following approximation,
which are somewhat more accurate, at least in their ®rst stages:

X 1 � 1

1ÿ áx
; X 2 � 1

1ÿ
áx

1ÿ âx
; X 3 � 1

1ÿ
áx

1ÿ
âx

1ÿ ãx
; &c:, (359)

with the values (250) of á, â, ã, ä, å; that is, after the substitutions indicated,

LX 1 � 0:014 883 4; LX 2 � 0:015 142 9; LX 3 � 0:015 150 6;

LX 4 � 0:015 150 7; LX 5 � 0:015 150 7:

)
(360)

Almost the same logarithms are obtained (as they ought to be) by changing x to ÿ5Eÿ5, in the
fractional expressions (254). It is to be noted that, whichever of the two methods we employ,
the approximate values successively obtained form an increasing series, and not an alternating
one, which is a consequence of our having changed the sign of x.

XLIV. Before discussing the conditions, alluded to at the end of paragraph XL., for the
convergence of the continued exponential,

X n � (Eÿx:)n1, (361)

to any one ®xed limit, X1, when x . 0, and the whole number n increases inde®nitely, I shall
mention a mode of proving the correctness of the two series, (272), (273), at least so far as
their coef®cients are concerned, which had not (as I confessed) occurred to me, when I gave
those series as having been found through only an induction, though one which was carried
pretty far, and might (as I conceived) be relied on. Lagrange's� Theorem (as given in page
170 of your Differential and Integral Calculus)y shows (if usual things be admitted), that

øu � øz � jz:ø9z:x � d

dz
((jz)2:ø9z):

x2

z

� d

dz

� �2

((jz)3:ø9z):
x3

2:3
� &c:, if u � z � xju:

9>>>=>>>; (362)

Make, then, in particular,

ju � ÿEu, and øu � E ru , (363)

so that the ®nite equation connecting x, z, u, is

� [Joseph Louis Lagrange (1736±1813).]
y [A. De Morgan, The Differential and Integral Calculus, London: 1842.]
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u � z ÿ xEu, (364)

and the development of E ru according to ascending powers of x is the thing sought. The
Theorem gives us this development,

E ru � E rz ÿ rxE( r�1)z � r(r � 2)1

2
x2E( r�2)z ÿ r(r � 3)2

2:3
x3E(r�3)z&c:, (365)

and the equation (354) gives,

ÿxEz � (u ÿ z)Ezÿu � yEÿ y, if y � u ÿ z; (366)

we have, therefore, the identity,

rÿ1E ry � rÿ1 � yEÿ y � (r � 2)1

2
y2Eÿ2 y

� (r � 3)2

2:3
y3Eÿ3 y � &c: �

Xm�1
m�0

(r � m)mÿ1

Ã(m � 1)
ymEÿmy;

9>>>=>>>; (367)

or, changing E y to X ,

rÿ1 X r �
Xm�1
m�0

(r � m)mÿ1

Ã(m � 1)

lX

X

� �m

; (368)

which includes the two series referred to. By changing rÿ1 to á, and ry to hD, the series (367)
becomes,

EhD �
Xm�1
m�0

(md � 1)mÿ1

Ã(m � 1)
hmDmEÿmáhD ; (369)

hence (subject to exceptions for divergence &c.), we have the general transformation,

f (x � h) �
Xm�1
m�0

(má� 1)mÿ1

Ã(m � 1)
hmjm f (x ÿ máh); (370)

where á is an arbitrary constant, which may even have an imaginary value. And if in particular,
we assume á � 1, á � ÿ1, changing also in the last case h to ÿh, we obtain the two following
series:

f (x � h) � fx � hDf (x ÿ h)� 31 h2

2
D2 f (x ÿ 2h)� 42 h3

2:3
D3 f (x ÿ 3h)� &c:; (371)

f (x ÿ h) � fx ÿ hDf (x ÿ h)ÿ 11 h2

2
D2 f (x ÿ 2h)ÿ 22 h3

2:3
D3 f (x ÿ 3h)ÿ &c: (372)

These general transformations pretend only to the same kind and degree of correctness, as
that which would now be conceded to the series of Taylor� and Lagrange. In fact, a recent
paragraph (XLII.) of the present Letter proves that if fx � Ex , and if h . E, the development
in the second member of (371) converges to a limit different from f (x � h).

� [Brook Taylor (1685±1731).]
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XLV. Resuming now the investigation begun in paragraph XL., and therefore returning to
the equations

X n�1 � EÿxXn , X 0 � 1, (324)

with the supposition that x is positive; we see, ®rst, by a slight extension of the analysis
employed in paragraph XXXVII., that if X denote the real and unique root of the equation
(259), or (326), so that (see (325), (332),)

X � EÿxX . 0, , 1, (x . 0,)

then, unlimitedly many inequalities of the same general forms as those numbered (302) and
(303) exist: so that

1 . X 2 . X 4 . X 5 . � � � . X 2nÿ2 . X 2n . X 2n�1 . X 2nÿ1 . � � � . X 3 . X 1 . 0: (373)

As an extension of the formulñ (304), we may therefore write now,

lim
n�1 X 2nÿ1 � A . 0, . X ; lim

n�1 X 2n � B , 1, , X ; (374)

and the question (313) recurs, can we have B . A?

XLVI. It is evident that A and B must satisfy conditions analogous to those marked (314),
namely the following,

B � EÿxA, A � EÿxB ; (375)

and therefore that whether they be equal or unequal to each other, they must be roots of the
transcendental equation in y,

÷y � E�xy l
1

y
� x; (376)

which is extended from (316) (317), and of which the quantity X is also seen to be a root. The
question therefore reduces itself to this: can the last written equation have real and unequal
roots? Can we have

÷A � ÷X � ÷B � x, (377)

without the real and positive quantities A and B being, each of them, � X ? In paragraph
XXXIX., it was shown that for the case when x was � E, and X � Eÿ1, this latter value for X was
the only real root of the transcendental equation (317), which then took the place of (376); or
at least that there was no other real root of the equation, which was either greater or less than this

one. Indeed in consequence of our then having ÷9
1

E
� 0, (320), to which I may now add that

÷ 0
1

E
� 0, if x � E, (378)

because, by (376),

÷9y � Exy xl
1

y
ÿ 1

y

� �
, (379)

and
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÷ 0y � Exy x2 l
1

y
ÿ 2x

y
� 1

y2

� �
, (380)

while yet

÷-y � Exy x3 l
1

y
ÿ 3x2

y
� 3x

y2
ÿ 2

y3

 !
, (381)

so that

÷-
1

E
� ÿE4 , 0, if x � E, (382)

the equation which replaced (376), for this value E of x, namely the equation

EEy l
1

y
� E, (383)

may be said to have three real, positive, and equal roots in y, each � Eÿ1; but not to have any fourth
real root, whether equal or unequal to these. (In XXXIX., I omitted to notice the existence of

the third real and equal root of the equation (317), or (383); but the fact that ÷ 0
1

E
was � 0, and

that ÷-
1

E
was , 0, for the case of ÷y there considered, might have been inferred from the

remark there made, that the function ÷y in (316) decreased, constantly and continually, from
�1 to ÿ1, while y increased from 0 to 1, being however for a moment stationary at the
value E, when y was � Eÿ1.)

XLVII. But we are now to consider those other cases, in which x, though still . 0, is either ,

or . E. In general, by (379),

Eÿxy÷9y � xl
1

y
ÿ 1

y
; (384)

which function when x has any given real and positive value, increases from ÿ1 to the
maximum value,

Eÿ1÷9
1

x
� xl

x

E
(385)

while y increases from 0 to xÿ1, and then decreases again to ÿ1, while y increases to1: each
increase or decrease being constant and continuous. It follows then, that for all real and
positive values of y

÷9y , 0, if x . 0, , E; (386)

and consequently that the function ÷y, in (376), decreases, constantly and continuously, from
�1 to ÿ1, without even a moment's stationariness, while y increases from 0 to 1. This
function ÷y passes therefore once, but only once through any one given stage, such as x, of real
values; therefore the equation ÷y � x, or (376), has one real and positive root, y, there being in
this case not even any other equal root : and we conclude, as an extension of the result (306), that
we are justi®ed in writing,
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A � B � X � X1 � (Eÿx:)11 � lim
n�1 X n, if x . 0, , E: (387)

Hence the Exponential Method will give, when x is thus . 0 but , E, a succession of approximate
values, X 1, X 2, X 3, . . . alternately in defect and in excess, but always converging to the limit X; that
is, to the real, positive, and unique root of the equation X � EÿxX , (325), even when the series,

X � 1ÿ1x0

Ã1
ÿ 20x1

Ã2
� 31x2

Ã3
ÿ 42x3

Ã4
� &c:, (239)

diverges, by our having x . Eÿ1. Of such alternation, combined with such convergence, (more or
less rapid according to the value assumed for x,) we have already had several examples:
namely, in XXXIV., for the case x � 1

8, where the series (239) converged, although not quickly,
and X 5, as given by the exponential method, was already almost equal to X ; in XXXV., where
x was � 1

2, so that the series (239) diverged, but the converging exponentials, X 3, X 4, X 5,
though not very close approximations themselves, would have given, if combined on the plan
(138), a value for X very near to the true one; and ®nally in XXXVI., where x being assumed
� 1 produced a pretty rapid divergence in the series (239), but the exponentials still continued to
converge, though not so fast as before, and X 18, X 19, X 20 gave X with suf®cient exactness. ±
The extreme case, x � E, for which we had still, in theory, X � X1 � A � B, but in which the
exponential method is practically useless, has been also suf®ciently discussed in other recent
paragraphs. I may however just add, to show more fully the excessive slowness of the
convergence of the exponentials in this case, that calculations� conducted with 4 decimals, as
a sequel to those referred to in (312), gave here,

X 149 � (EÿE:)1491 � 0:2987; X 150 � (EÿE:)1501 � 0:4440;

X 151 � (EÿE:)1511 � 0:2991;

)
(388)

the true value being, in this case, as stated in (298),

X � X1 � (EÿE:)11 � Eÿ1 � 0:3679: (389)

XLVIII. It remains to consider the case where x . E. In this case, by (384), (385), the

function Eÿxy÷9y increases from ÿ1 to a positive maximum, namely to xl
x

E
, while y increases

from 0 to
1

x
; and the same function afterwards decreases from this positive maximum to ÿ1

again, while y continues to increase from
1

x
to 1; it therefore passes twice, but only twice,

through the value 0, in such a manner that the equation,

yl
1

y
� 1

x
, or ÷9y � 0, (390)

has two real and positive roots; which we may call y 1 and y 2. (In fact, I see that this agrees
with a remark in page 132, of your Differential and Integral Calculus.) Thus,

� [The details are recorded on pp. 113±115 of Notebook D of 1858, Trinity College Dublin MS
1492/144.]
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÷y , 0, if y . 0, , y 1; ÷9y 1 � 0; ÷9y . 0, if y . y 1, , y 2;

÷9y 2 � 0; ÷y , 0, if y . y 2:

)
(391)

Hence, ÷y decreases from �1 to ÷y 1; increases to ÷y 2; and then decreases to ÿ1. We see
also, already, that

y 1 . 0, , xÿ1, but that y 2 . xÿ1; (392)

indeed we have now

÷9
1

E
. 0, and therefore y 2 . Eÿ1: (393)

The limits for ÷y 1, ÷y 2 are perhaps a little less obvious; yet there is not much dif®culty in
proving that

÷y 1 , x, and that ÷y 2 . x: (394)

For this purpose it is enough to prove that ÷y becomes equal to x, or that the equation (376)
is satis®ed, for a value of y which lies between y 1 and y 2; or for which ÷9y is positive: and X is
such a value. In fact, we have already seen (377) that X is a root of the equation (376); so that
÷X � x; but it is also a root of (325), or of (259), so that

xX � l
1

X
. 1, X . xÿ1, because x . E, X , Eÿ1, (395)

since we have seen that X � Eÿ1 when x � E, and that X decreases thence forward to 0, while

x increases to1; (for we said, in XL., that the differential coef®cient
dx

dX
� j9X was negative,

if X was . 0, but , E;) hence, by (379),

÷9X � x2 ÿ X ÿ2 . 0; (396)

and therefore by (391),

X . y 1, , y 2: (397)

The inequalities (394) therefore subsist; because the function ÷y, while constantly and
continuously increasing, from ÷y 1 to ÷y 2, passes through the stage of value, ÷X , or x. For the
same reason, the equation (376), or ÷y � x, has three real and unequal positive roots, y, but only three
such roots, whereof the middle one is Y2 � X , and the least and greatest may be denoted by
Y1, Y3; so that

÷Y1 � ÷X � ÷Y3 � x, (398)

and

Y3 . X . Y1: (399)

(In fact, the function ÷y must have passed once, but only once, through the value x, while it was
decreasing from �1 to the value ÷y 1 , x, during the increase of y from 0 to y 1; and it must
pass again, once more, but not oftener, through the same stage of value, x, while decreasing from
÷y 2 . x to ÿ1, during the increase of y from y 2 to 1.) There is, therefore, no absurdity in
supposing that we may have, notwithstanding (377), the equations
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A � Y1, B � Y3; (400)

but it is not yet proved, that we have, in fact, these equations.

XLIX. We see, however, already, that if

a � Eÿx . 0, , EÿE, (401)

then the equation

aa y � y, (402)

has these real, positive, and unequal roots, y, and only three ; whereof the second is also the unique
real and positive root, X of this other and simpler equation

aX � X : (403)

Making, more generally,

ay � z, (404)

and supposing merely that y is some root of the equation (402), we have, by that equation,

az � y; (405)

hence, by elimination of y,

aaz � z; (406)

so that z must be either the same root, or else another (real and positive) root, of the same equation
(402). But it cannot be the same root, unless it coincide with what has been already seen to be
the unique root, X, of the equation (403). If then the two other (real and positive) roots of
(402) be denoted, as lately, by Y1, Y2, we must have the relations,

aY1 � Y3, aY3 � Y1; (407)

which exactly correspond to the equations (375); but which do not yet prove that these least and
greatest real roots, Y1, Y3, of the equation (402), or (376), with the two limits, A and B, (374) of
those alternate approximations, X 2nÿ1 and X 2n, which err respectively by defect and by excess,
as compared with the sought value of X, and are given by the Exponential Method; or by the
formulñ,

X n�1 � aXn , X 0 � 1: (408)

L. But it is easy to complete the proof of the two equations (400). In fact, the function a y,
under the conditions (401), decreases, while the (positive) variable y increases; if, then in
(404), we assume y , Y1, we shall have, by (407), z . Y3; and in like manner, if y . Y3, then
z , Y1. It might be enough to have made this remark; yet it may be added, that

if y . 0, , Y1, then aa y
. y, , Y1; and that

if y . Y3, then aa y
, y, . Y3;

)
(409)

inequalities which may be proved, among other ways, by remarking that, in the ®rst of these
two cases (409), and with the signi®cation (376) of ÷y we have
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÷y . x, (410)

because the function ÷y has not yet decreased from �1 to the value ÷Y1 � x, (398); therefore,
in the case here considered,

Exy l
1

y
. x, l

1

y
. xEÿxy,

1

y
. ExEÿxy

, aa y � EÿxEÿxy

. y; (411)

and similarly for the second case (409). The equations (400) are therefore, fully proved. It
may, however, be interesting to exemplify their correctness, by a few numerical applications of
the method.

LI. As such an application, let

x � 3, a � Eÿ3 � Lÿ12:697 116 6 � 0:049 787 1; (412)

then the unique root Y2 of the equation (403), or of

Eÿ3x � X , (413)

is found to be, nearly,

Y2 � X � Lÿ11:544 030 4 � 0:349 969 7; (414)

and the two other real roots, Y1, Y3, or A, B, of the equation (402), or of

Eÿ3E3 y � y, (415)

are found, by trials, to be nearly the following numbers:

A � Y1 � Lÿ11:133 921 5 � 0:136 119 9;

B � Y3 � Lÿ11:822 615 7 � 0:664 739 8;

)
(416)

with the relations, included in (407),

Eÿ3Y1 � Y3, Eÿ3Y3 � Y1; or Eÿ3A � B, Eÿ3B � A: (417)

If, in the next place, by (408), (412), we write,

X n�1 � Eÿ3X n � a X n , X 0 � 1, (418)

we ®nd (nearly) the numerical values, (with, as usual, some doubtful ®gures,)

X 1 � a � 0:049 787 1; X 2 � aa � 0:861 257 8; X 3 � aaa � 0:075 488 4;

X 4 � aaaa � 0:797 346 6; X 5 � aaaaa

� 0:091 442 9; X 6 � aaaaaa

� 0:760 082 1

9=; (419)

among which it may be noticed that X 1, X 3, X 5 are increasing, though not very rapidly,
towards the theoretical limit A; and that X 2, X 4, X 6 are decreasing, though rather slowly,
towards the other limit B. Pursuing somewhat farther, but with fewer decimals, the same train
of calculation, we ®nd, nearly

X 17 � 0:125 89; X 18 � 0:685 46; X 19 � 0:127 91; X 20 � 0:681 30; (420)

the same slow convergence towards the two alternate limits being seen to continue. With four
decimal places, a rough calculation gives these other values:
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X 37 � 0:1348; X 38 � 0:6673; X 39 � 0:1351; X 40 � 0:6668; (421)

and now we are pretty near to the limits, A and B; but the convergence is even slower than
before.

LII. I have made a few other veri®cations of the theory, set forth in paragraphs XLVIII.,
XLIX., L., that the equation (402) has 3 real, positive, and unequal roots, A, X, B, under the
conditions (401); and may state, generally, that the exponential method appears to give a more
rapid convergence, than that above exempli®ed, towards the extreme and alternate limits, A and
B, when x, in the equation

EÿxEÿxy � y,

is assumed greater than 3, being already greater than E; or when a, in the equation

aa y � y,

is assumed less than Eÿ3, or than 0´049 787 1, being already smaller than EÿE, or than
0´065 988 0. On these other veri®cations I do not wish to delay you, nor myself; but as regards
the whole Theory of the present Letter, it seems not unimportant to remark, that on trying
how the method of converging fractions would work, as applied to the recent question, or to the
case where x � 3, the results were found to be by (254), the following:

X 1 � 1

4
; X 2 � 5

11
; X 3 � 10

31
� 0:322 580 6;

X 4 � 185

497
� 0:372 233 4; X 5 � 7135

20 818
� 0:342 732 3;

9>>=>>; (422)

whence, on the plan (138), it might be inferred, as at least a less rude approximation to X
than any one of these three last fractions, that

X � 0:353 73, nearly: (423)

At all events, there is an evident convergence, by alternate de®cit and excess, to some value
not very different from this last, or from 0.35; and accordingly we saw, in (414), that the only
real root of the equation Eÿ3X � X , or the middle real root of the equation

Eÿ3Eÿ3 y � y,

is X � 0:349 97, nearly. I therefore cannot doubt that it is to this root that the fractions converge,
in this application of the ``method of reciprocals:'' although it might almost be worth while
to carry the calculation one step further for the sake of an additional veri®cation. Meanwhile we
see clearly, that the fractions (422) have no tendency whatever to either of the two alternate limits, A
and B, to which we saw, in LI., that the values given by the ``method of exponentials'' tend.

LIII. Since writing the foregoing paragraph, I have made the additional step of calculation,
which was suggested towards its end: Continuing a little farther the process of XXXIII., I ®nd
that because the coef®cients of x6, in the series (239) for X , and of x5 in the series (241) for
X 9, are respectively,
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f � 75

Ã7
� 16 807

720
, and e9 � 55

Ã7
� 625

144
, (424)

or simply from the latter of these two values, combined with those of a9, b9, c9, d9 already
deduced in (242), we can not only recover, by a process formerly explained, the values (245),
(247), (249), of a 0, b 0, c 0, a -, b -, aõv , but can also deduce these others:

d 0 � 1379

360
; c - � 6997

5400
; bõv � 917

850
; and æ � av � 1927

3230
: (425)

We have then this sixth converging fraction,

X 6 � 1

1�
áx

1�
âx

1�
ãx

1�
äx

1�
åx

1� æx
; (426)

where, by (250) and (425), the constants have the values,

á � 1, â � 1

2
, ã � 5

6
, ä � 17

30
, å � 133

170
, æ � 1927

3230
; (427)

and it seems not uninteresting to notice, that the following chain of inequalities subsists,

á. ã. å.
2

3
. æ. ä. â. 0: (428)

I suspect that, in the present question, a law of this sort would be found to continue to hold
good; or in other words, that the constants á, â, ã, ä, E, æ, . . . of the development of the function X,
in the form of a continued fraction, would be found to continue to converge to some one ®xed limit,
either exactly or nearly equal to the fraction 2

3, being still (as above) alternately in excess and in
de®cit.

LIV. Waiving, however, this question of suspected convergence of the constants, I observe that if
the numerators of the 5 fractions (254) be called N1, . . . , N5, and the denominators
M1, . . . , M5, and if we also write,

N1 � í1, N2 � 2í2, N3 � 6í3, N4 � 60í4, N5 � 1020í5,

M1 � ì1, M2 � 2ì2, M3 � 6ì3, M4 � 60ì4, M5 � 1020ì5,

)
(429)

then í1, . . . , í5 will be the numerators, and ì1, . . . , ì5 will be denominators of the more
algebraically expressed fractions (252); they will therefore be connected by the relations,

í1 � 1, í2 � í1 � âx, í3 � í2 � ãxí1, í4 � í3 � äxí2, í5 � í4 � åxí3;

ì1 � 1� áx, ì2 � ì1 � âx, ì3 � ì2 � ãxì1, ì4 � ì3 � äxì2, ì5 � ì4 � åxì3;

)
(430)

whereof the analogy would become still more obvious, if we agreed to write,

í0 � 1, íÿ1 � 0, ì0 � 1, ìÿ1 � 1, or

X 0 � í0

ì0
� 1

1
, Xÿ1 � íÿ1

ìÿ1
� 0

1
;

9>=>; (431)

for then we shall have,

í1 � í0 � áxíÿ1, í2 � í1 � âxí0; ì1 � ì0 � áxìÿ1, ì2 � ì1 � âxì0: (432)
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Combining (427), (429), (430), we easily deduce the relations,

N1 � 1, N2 � 2N1 � x, N3 � 3N2 � 5xN1, N4 � 10N3 � 17xN2, N5 � 17N4 � 133xN3;

(433)

M1 � 1� x, M2 � 2M1 � x, M3 � 3M2 � 5xM1, M4 � 10M3 � 17xM2,

M5 � 17M4 � 133xM3;

)
(434)

which may seem to verify the expressions (254), for the fractions,

X 1 � N1

M1
, X 2 � N2

M2
, . . . , X 5 � N5

M5
, (435)

and might have been employed to form these; though I think that in point of fact I deduced
those expressions in some other way, perhaps by direct substitution of the constants (250) in
the algebraical fractions (252). We have now

X 6 � N6

M6
, (436)

where if we make

N6 � 193 800í6, M6 � 193 800ì6, (437)

we may employ the relations

í6 � í5 � æxí4, ì6 � ì5 � æxì4, (438)

with the value (425) or (427) of the constant æ; thus,

N6 � 190N5 � 1927xN4, M6 � 190M5 � 1927xM4; (439)

and ®nally, by substitution of the polynomes already computed, we ®nd this sixth converging
fraction, of the series begun in (254):

X 6 � 193 800� 635 460x � 476 748x2 � 32 759x3

193 800� 829 260x � 1 015 308x2 � 320 977x3
; (440)

of which the development in series, according to ascending powers of x, would necessarily
have its ®rst 7 terms including the term � fx6, coincident with the corresponding terms of the series
(239); so that, at least if x be small, whether positive or negative, it must give a very good
approximation to the sum of that series. But I believe that even when the series diverges, if it does not
diverge very fast indeed this sixth fraction (440) will give a fair approach to the unique real root
X of the equation lX � xX � 0; where it is supposed that x is given and positive. For x � 3, we
have seen that this root is, X � 0:34997, nearly; and the fraction (440) gives, in this case,

X 6 � 2 425 135

6 828 577
� 0:355 145 0: (441)

Thus X 6, like X 2 and X 4, is somewhat greater than the true value of X; and it may be a little
improved, by subtracting from it

(X 6 ÿ X 5)2

X 6 ÿ 2X 5 � X 4
� 0:003 676 0; (442)

which leaves the remainder,
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X � 0:351 47, nearly; (443)

as a better approximation than (423).

LV. It may be added that if we compute X 6 from (440), for the case x � 1, and combine it
on the same plan with the values (289) of X 4, X 5, we ®nd,

X 6 � 1 338 767

2 359 345
� 0:567 43; X � 0:567 21, nearly; (444)

the true value of X, considered as the root of lX � X � 0, being, nearly, X � 0:567 14, by
(290). The real root of lX � 1

2X � 0, or of the equation (282), is by (284), X � 0:703 47,
nearly; or to seven decimals, it is a little more exactly,

X � 0:703 467 4; (445)

and if we make x � 1
2 in the fraction (440), and combine the result with the values (285), or

with the following which are slightly more accurate,

X 4 � 485

689
� 0:703 918 7, X 5 � 21 810

31 007
� 0:703 389 6, (446)

then for this value of x, which is still large enough to render (as we saw by (281),) the series
(239) for X divergent, we ®nd

X 6 � 507 849 5

721 903 3
� :703 486 9; X � :703 471 8 nearly: (447)

For x � 1
8, in which case the series (239) converges, having still alternately positive and

negative terms, the true value of the real root X of the equation lX � 1
8X � 0 has been seen,

in (277), to be, so far as 7 decimals seemed able to give it, X � 0:894 240 9; and the fractional
expression (440) may be said to reproduce this root, by giving

X 6 � 143 741 783

160 741 681
� 0:894 240 9: (448)

Finally for the case

x � ÿ5Eÿ5 � ÿLÿ12:527 497 6 � ÿ0:033 689 7, (449)

(compare (356),) the development (239) becomes the converging series (351), or (352), with
all its terms positive, and with a sum

C � Lÿ10:015 150 7 � 1:035 501 4,

nearly, which sum has been seen to be the lesser of the two real roots of the equation
lC ÿ 5Eÿ5C � 0, (compare (354),) the greater root being C9 � E5; and if we substitute for x the
negative value (449), in the fractional expression (440), that expression becomes, nearly,

X 6 � 172 931:38

167 002:55
� Lÿ10:015 150 7 � C ; (450)

which value may also be completed from the equivalent expression (426), with the constants
(427); so that the fraction X 6 is here very nearly equal to the lesser real root of the equation
lX � xX � 0, as I believe that it will always nearly be, when x , 0, .ÿEÿ1, so as to allow of the
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series having all its terms of one common sign, and converging to a sum X, . 1, , E; at least if
x be not too near the limiting value, ÿEÿ1, the fractions (254) and (440) become, nearly,

X 1 � 1:581 98; X 2 � 1:820 83; X 3 � 2:002 77;

X 4 � 2:108 38; X 5 � 2:196 51; X 6 � 2:255 90; (451)

and we see that they form an increasing series, converging slowly towards the only real root E of
the equation lX ÿ Eÿ1 X � 0; at least their march in (451) is quite consistent with this
theoretical convergence. When x ,ÿEÿ1, the equation lX � xX � 0 has only imaginary roots,
by elementary principles already referred to; and in such a case, I presume that the fractions
would not converge to any limit. If we assume, as an example,

x � ÿ 1

2
, (452)

the fractions then become,

X 1 � 2; X 2 � 3; X 3 � 8; X 4 � 29

ÿ7
; X 5 � ÿ78

ÿ371
; X 6 � ÿ70 703

ÿ57 001
; (453)

whereof one is even negative : and indeed it seems that any one of the fractions X n (besides its
power of vanishing with its numerator) can be made to become in®nite, and in so doing to
reverse its sign, by our assuming a real and negative value for x, if this value is suitably chosen.
Such is at least the case with each of the six fractions X n , of which the denominators Mn have
been computed, in (254) and (440): for each of the six equations,

M1 � 0, M2 � 0, M3 � 0, M4 � 0, M5 � 0, (454)

has at least one real and negative root, the quadratics of this series having two such roots, whereof
each is ,ÿEÿ1: an inequality which seems likely to be satis®ed by all the real roots of all the
equations of the series

Mn � 0: (455)

Indeed, a little re¯exion leads me to believe, that the roots of every such equation, (although all
negative) will all be real; at least if the constants á, â, ã, &c. of the continued fraction shall all be
found to be positive. But this must be reserved for discussion in another sheet.

LVI. Writing á1, á2, á3, &c., instead of á, â, ã, &c., and forming thus the continued
fraction,

X n � 1

1�
á1x

1�
á2x

1� � � �
ánÿ1x

1� án x
, (456)

in which it is here assumed that

á1 . 0, á2 . 0, . . . , án . 0; (457)

we have, by usual principles, the transformation,

X n � ín

ìn
, (458)

where ìn and ín are rational and integer polynomes; such that if we write
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í0 � 1, íÿ1 � 0, ì0 � 1, ìÿ1 � 1,

as in (431), then, for all integer values of n . 0, we may write,

ìn � ìnÿ1 � án xìnÿ2; ín � ínÿ1 � án xínÿ2; (459)

and may thus determine, to any proposed extent, the denominators ìn, and the numerators
ín, of the algebraical fraction (252). Attending at present only to the denominators ì, it is

easy to see that the polynome ìn is of the dimension
n

2
, if n be even; or

n � 1

2
, if n be odd.� (460)

Such, then, must be the number rn of the real or imaginary roots (but negative if real) of the
equation,

ìn � 0; (461)

which roots may be called, for shortness, ``roots of ìn'', and may be denoted, (in order of
decrease from 0, if they be real,) by the symbols,

x(0)
n , x(1)

n , x(2)
n , . . . , x(rnÿ1)

n ; (462)

the ®rst few of these symbols being also, if we choose, abridged to

xn, x9n, x 0n, . . . : (463)

But I propose to prove (what is very likely to be known), that all these roots are real; and that
zero and the roots of any one equation ìnÿ1, are limits of the same number of roots of each of the two next
following equations ìn, ìn�1; although ìn�1, always, and ìn also if n be odd, has one additional
root, which lies between the lesser root of ìnÿ1, and the limit ÿ1. You will tell me, at your
leisure, whether this is merely a ``discovery of the Mediterranean Sea''. Meantime I may
amuse myself, without of necessity boring you, (since you have the power to skip,) by noting
down the chief steps of the proof, such as it has occurred to me.

LVII. Beginning at the beginning, it is obvious that

x1 � ÿáÿ1
1 ; (464)

because x1 is the root of the linear equation,

1� á1x � 0: (465)

But

ì2 � ì1 � á2x � 1� (á1 � á2)x; therefore x2 � ÿ(á1 � á2)ÿ1 . x1: (466)

Without actually resolving the two quadratic equations, ì3, ì4, since we have, by (459),

ì3 � ì2 � á3xì1, ì4 � ì3 � á4xì2, (467)

we see with respect to the ®rst, that when

� The dimension of ín is
n

2
if n be even; but is

(n ÿ 1)

2
if n be odd.
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x � x1, ì1 � 0, ì2 , 0, ì3 , 0; (468)

and that when

x � x2, ì2 � 0, ì1 . 0, ì3 , 0; (469)

whence ì3 has real roots, x3, x93, whereof

x3 . x2, and x93 , x1; (470)

because the function ì3 is positive (� 1) when x � 0, and is again positive (� 1) when
x � ÿ1. The three equations ì1, ì2, ì3, give therefore the chain of inequalities,

0 . x3 . x2 . x1 . x93: (471)

In like manner, when x � x2, ì2 � 0, ì3 , 0, as before; therefore

ì4 , 0, and x4 . x2, x94 , x2; (472)

the second quadratic equation ì4 � 0 having thus two real roots, which are separated by the
limit x2. To compare these roots of ì4 with the roots of the former quadratic ì3, we may
observe that when x � x3, then

ì3 � 0, ì2 . 0, ì4 , 0; (473)

but that when x � x93, then

ì3 � 0, ì2 , 0, ì4 . 0; (474)

whence x4 must lie between 0 and x3, and x94 between x2 and x93; so that the three equations,
ì2, ì3, ì4, supply the chain

0 . x4 . x3 . x2 . x94 . x93; (475)

in which it may be noticed that no place has been as yet assigned to the root x1 of the ®rst
equation ì1. We have only shown that x1, like x94 lies between x2 and x93; but have not
determined whether the (algebraically) lesser root, x94, of ì4, is ., �, or , the unique root x1

of ì1. And in fact this question cannot be determined, without our making a new supposition.
For, where x � x1, then

ì1 � 0, ì3 � ì2 � á2x1 � ÿá2

á1
, ì4 � (1� á2x1)ì2 � á2(á4 ÿ á1)

á2
1

; (476)

so that the sign of ì4, for x � x1, will be the same as that of the difference, á4 ÿ á1, of two of
the constants of the continued fraction, which constants as yet, have only been supposed to
be each . 0. In the example last considered, we had, by (427),

á1 � á � 1, and á4 � ä � 17

30
;

therefore, in this case,

á4 ,á1, and ì4 , 0, when x � x1; (477)

but we saw, in (474), that x � x93 gives ì4 . 0; consequently, here, x94 must lie between x1 and
x93; and the complete chain of inequalities, so far, must be that assigned by the following
formula; if á4 ,á1, then
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0 . x4 . x3 . x2 . x1 . x94 . x93: (478)

Accordingly if we seek the roots of the four ®rst equations (454), under the particular forms
given by the fractions (254), namely, the equations,

0 � M1 � 1� x; 0 � M2 � 2� 3x; 0 � M3 � 6� 14x � 5x2;

0 � M4 � 60� 174x � 101x2;

)
(479)

we ®nd that they are, nearly,

x1 � ÿ1; x2 � ÿ0:667; x3 � ÿ0:528;

x93 � ÿ2:272; x4 � ÿ0:477; x94 � ÿ1:246;

)
(480)

and all the inequalities of the chain (478) are seen to be satis®ed. But it may happen that á4

shall, in some other example, be greater (instead of being less) than á1; and if so, then in that
case ì4 will, by (476), be . 0, when x � x1; but we saw that ì4 , 0, for x � x2; therefore x94
now lies between x2 and x1, and the chain becomes,

if á4 .á1, then 0 . x4 . x3 . x2 . x94 . x1 . x93: (481)

For instance, when the function T, which was just considered in this Letter, is transformed in
the well known way, (whereof Laplace appears to claim the discovery �,) into the continued
fraction (4), we have the constants á1 � 1, á4 � 4 .á1, and the inequalities (481) must
subsist. And accordingly, if we solve the four equations,

0 � M1 � 1� x; 0 � M2 � 1� 3x; 0 � M3 � 1� 6x � 3x2;

0 � M4 � 1� 10x � 15x2,

)
(482)

(compare the foot of page 34 [426?] of your Theory of Probabilities,) obtained by equating to
zero the denominators of the four ®rst of the converging fractions, we ®nd, nearly the roots,

x1 � ÿ1; x2 � ÿ:3333; x3 � ÿ:1835; x93 � 1:8165;

x4 � ÿ:1225; x94 � ÿ:5442;

)
(483)

which satisfy the chain (481), but not (478).

LVIII. In general, let us suppose it to have been proved that, for some one given value of í,
(as for the value 2 in (473), (474),) the í roots of ì2íÿ1 are real and unequal, (being of course
also negative,) and that their substitution for x (in an order decreasing from 0) renders the
function ì2í alternately negative and positive; so that, for instance, when

x � x(íÿ1)
2íÿ1 , then (ÿ1)íì2í . 0: (484)

Then, remembering that x � 0 renders ìn � 1, we see that the í roots of ì2í are real and
unequal, and lie within the í intervals comprised between the í� 1 limits,

� By his reference, in [Pierre Simon Laplace, 1749±1827] TheÂorie analytique des probabiliteÂs, Livre Ier,
Article 27, [p. 104, 3rd edn, Paris: 1820] to the MeÂc. CeÂl.y ``comme je l'ai fait . . . , ou j'ai trouveÂ''.
y [P. S. Laplace, TraiteÂ de MeÂcanique ceÂleste, Livre Xme, pp. 255±6. Paris: 1805.]
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0, x2íÿ1, x92íÿ1, . . . , x(íÿ1)
2íÿ1 ;

whence it may easily be inferred that these í roots of ì2í render ì2íÿ1 alternately positive and
negative; so that in particular, if we consider the last or íth root,

x � x(íÿ1)
2í gives (ÿ1)íì2íÿ1 , 0: (485)

But we have, by (459),

ì2í�1 � ì2í � á2í�1xì2íÿ1; (486)

where á2í�1 . 0, by (457), but x , 0, for each of the roots just now mentioned. Consequently,
whether we substitute (in algebraically decreasing order) the í roots of ì2íÿ1, or the í roots
of ì2í, in the function ì2í�1, that function will take alternately negative and positive values;
and in particular, whether we make

x � x(íÿ1)
2íÿ1 , or x � x(íÿ1)

2í ,

we shall have

(ÿ1)íì2í�1 . 0: (487)

Already therefore we see that there are at least í roots, and therefore that there are í� 1 such
roots, of the equation ì2í�1; because this last equation is of the dimension í� 1. But the
substitution

x � ÿ1 gives (ÿ1)íì2í�1 � ÿ1; (488)

and therefore, whether we take the í� 2 limits,

0, x2íÿ1, x92íÿ1, . . . , xíÿ1
2íÿ1, ÿ1,

or the í� 2 other limits,

0, x2í, x92í, . . . , x(íÿ1)
2í , ÿ1,

we shall in each case have í� 1 intervals, within which, respectively, the í� 1 roots of í2í�1

(now seen to be all real, unequal, and negative,) must be comprised. Combining the above
results, we have the chain:

0 . x2í�1 . x2í . x2íÿ1 . x92í�1 . x92í . x92íÿ1 . x 02í�1 . � � �
. x(íÿ1)

2í�1 . x(íÿ1)
2í . x(íÿ1)

2íÿ1 . x(í)
2í�1; (489)

which gives, in particular, for the relative arrangement of the roots of the two quadratic
equations, ì3, ì4, and of the cubic equation ì5,

0 . x5 . x4 . x3 . x95 . x94 . x93 . x 05: (490)

This chain, for instance, must be satis®ed by the 3 roots, x5, x95, x 05, of the cubic equation,

0 � M5 � 1020� 3756x � 3679x2 � 665x3, (491)

obtained by supposing the denominator of the 5th fraction (254) to vanish, when those roots
are compared with the 4 roots (480) of the two quadratic equations (479); and the same
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chain of inequalities (490) would doubtless be found to connect the 3 roots of this other
cubic equation,

0 � 1� 15x � 45x2 � 15x3, (492)

(compare (89)), with the roots (483) of the two quadratic equations (482), which arise from
the making null the denominators of certain celebrated fractions, connected with a con-
tinually occurring de®nite integral, to which this Letter partly relates.

LIX. Again, since

ì2í�2 � ì2í�1 � á2í�2xì2í, (493)

and since, by the chain (489), the successive substitution of the í� 1 roots of ì2í�1 renders
each of the two preceding functions ì2í and ì2íÿ1, alternately positive and negative, while we
have seen that the substitution of the í roots of í2í renders ì2í�1 alternately negative and
positive, it follows that whether we substitute successively these í roots of ì2í, or those í� 1
roots of ì2í�1, the function ì2í�2 (which is of the dimension í� 1) will become alternately
negative and positive; it has therefore í� 1 real and unequal roots, and it can have no more;
and we have this other chain,

0 . x2í�2 . x2í�1 . x2í . x92í�2 . x92í�1 . x92í . x 02í�2 . � � �
. x(íÿ1)

2í�2 . x(íÿ1)
2í�1 . x(íÿ1)

2í . x(í)
2í�2 . x(í)

2í�1: (494)

For example, having proved the chain (490), we may infer that

0 . x6 . x5 . x4 . x95 . x94 . x 06 . x 05; (495)

and this Letter must connect the roots of the quadratic equation ì4, and those of the two
cubic equations, ì5, ì6. It determines for instance, (as would doubtless be found on trial) the
relative order (of decrease from 0) of the two roots (480) of the second quadratic equation
(479), the three roots of the cubic equation (491), and the three roots x6, x96, x 06 of this other
cubic,

0 � M6 � 193 800� 829 260x � 1 015 308x2 � 320 977x3, (496)

obtained by equating to zero the denominator of the sixth converging fraction (440). And in
like manner, it cannot fail to assign the mutual arrangement of the roots (483) of the second
quadratic (482), the roots of the cubic (492), and the roots x6, x96, x 06 of this other cubic,
obtained from the sixth of Laplace's converging fractions,

0 � 1� 21x � 105x2 � 105x3: (497)

We see, moreover, that the laws expressed by the two chains of inequalities, (489) and (494),
must continue to hold good, for all greater values of í; so that, for example, if we still denote
by M7, M8, M9 the functions so called in (19), (20), (21), but write x for q, then the 4 roots
x7, . . . , x -7 of the biquadratic equation M8 � 0, and with the 5 roots x9, . . . , xõv

9 of the quintic
equation M9 � 0, by the arrangement,

0 . x9 . x8 . x7 . x99 . x98 . x97 . x 09 . x 08 . x 07 . x -9 . x -8 . x -7 . xõv
9 : (498)

All this may be perfectly well known, but I have made it out for myself as above.
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LX. It may be remarked that no place has been assigned in the chain (489) for any of the
roots of any equation earlier than ì2íÿ1; nor in (494) for those of any equation before ì2í; so
that generally each of these chains assigns only the arrangement of the roots of three successive
equations, of the form ìn � 0. And in fact we saw, in LVII., that the place where x1 ought to be
inserted, with respect to x94, in the chain (475), depended on the relative magnitude of the
two constants á1, á4 of the continued fraction. In like manner I ®nd that

x2 v x95, when á1 � á2 v á5; (499)

and that

x1 v x95, according as á1 v á4 � á5: (500)

It would be tedious to pursue the investigation of these particular conditions; but just as
examples of the application of those above assigned, I may remark that with the system of
constants (427),

á1 .á5 ÿ á2, á1 ,á5 � á4;

therefore, by (499), (500), x2 . x95, x1 , x95; but also á1 .á4, and therefore x1 . x94, as in
(478); the chain (490) comes therefore to be thus completed, for the 9 roots of the 5
equations (479), (491):

0 . x5 . x4 . x3 . x2 . x95 . x1 . x94 . x93 . x 05: (501)

On the other hand, the constants of Laplace's Fractions (á1 � 1, á2 � 2, á3, . . . , án � n) are
such that á1 ,á4, á1 ,á5 ÿ á2; therefore in this case, x1 , x94, as in (481), and x2 , x95; but
x2 . x94, by (475); and x1 . x93 by (472); thus the places of x1 and of x2 in (490) are known,
and that chain becomes, for the 9 roots of the 5 equations (482), (492):

0 . x5 . x4 . x3 . x95 . x2 . x94 . x1 . x93 . x 05: (502)

It is clear that results of the same general character must hold good, with respect to the
equations of the form

ín � 0, or Nn � 0, (503)

so far as regards the reality and inequality of all the roots of each, and the existence of chains
of inequalities, analogous to (489) and (494), and connecting the roots of any three successive
equations. ± Is all this old?

LXI.a� After this digression, on the nature and the limits of the roots of certain algebraical
equations, suggested by the converging fractions which express approximately the values of
certain functions, I wish to make a few remarks, chie¯y in the way of recapitulation, on what I
®nd that I must now call ``Murphy's Series''. Although, when I wrote it as number (239) of

� [The next three paragraphs, labelled LXI.a, LXII.a, and LXIII.a (un®nished), appear only in
Notebook D (Trinity College Dublin MS 1492/144, pp. 83±88) but not in the copy of the Letter (Trinity
College, Dublin MS 1493/972). Each of these pages has a vertical line down the centre and carries the
caption: Page not adopted. Revised versions of these paragraphs follow. It appears that the content of these
paragraphs (written on 26 April 1858) was strongly in¯uenced by De Morgan's letter to Hamilton of 11
April 1858 (Trinity College Dublin MS 1493/987) drawing attention to the work of Murphy. See footnote
to equation (272).]
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this Letter, I had not happened to see it in print. Rewriting it in the form before employed,
but marking it now with the letter (M), we have

X � 1ÿ1x0

Ã1
ÿ 20x1

Ã2
� 31x2

Ã3
ÿ 42x3

Ã4
� &c: (239) � (M)

as the development, and to ascending powers of x, of the real root X of the equation

l X � xX � 0, or x � 1

X
l

1

X
, (259)

where that real root is unique and admits of such a development. This series was shown in
XXXIII. to converge, if x2 were not . Eÿ2; its value then admitting of being expressed by the
continued exponential,

X � (Eÿx:)11

where Eÿx: y is interpreted as equal to Eÿxy. Accordingly, I observe, (since you called my

attention to his ``Theory of Equations'',) that Murphy writes (in his page 81), ``if a ,
1

E
then

Ea:Ea:Ea:E:
: :(ad:inf :)

� 1� 2a

1:2
� 32a2

1:2:3
� 43a3

1:2:3:4
� &c:; ''

adding that ``if we put a � 1

E
we ®nd the left member of this equation to be merely E; which is

obvious, by supposing the series of indices to terminate at any distance, however remote.
Hence

1 � 1

E
� 2

1:2:E2
� 32

1:2:3E3
� 43

1:2:3:4E4
� &c:''

I am not sure that this inference is quite so obvious, as he says that it is; at least if his ladder�
denote exactly the same thing as my own: but at all events, I had perceived the result, which in
this Letter was written as

E � 1� Eÿ1 � 31Eÿ2

1:2
� 42Eÿ3

1:2:3
� 53Eÿ4

1:2:3:4
&c:, (268)

before I saw it in his pages. Now it is clear to me that Murphy had considered the effects of
the substitution of a negative number for a in his series: but by all means let him have all the
credit ± and if I should ever publish even a tithe, or any smaller decimal fraction, of what I
have been abusing your good-humour by writing to you, let me have the common sense not to
pester general readers, by telling them that I had happened to perceive and discuss, for
myself, if not for you, the series above marked (M).

� In fact, I admit that each of the expressions, EaE, EaEaE
, etc., ad in®nitum, is `obviously' equal to E, when

a � 1

E
; but this was not, as I conceive, the thing to be proved. What was to be shown (and has been or will

be shown) in this Letter, is relatively to this Letter, that (when a is my ÿ 1

E
) these exponential expressions

Ea , EaEa
, EaEaEa

, etc., converge, though slowly, to the limit E. In short I adopt in this place the result, but not
the logic of Murphy.
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LXII.a As long as that Series is convergent, whether what I have called x be positive or
negative, the ``exponential method'' (perhaps not, as such, anticipated by Murphy, although
he has certainly printed one ladder) succeeds; that is to say, if we write

X n � (Eÿx:)n1; then X1 � X ;

X being the unique real root of the transcendental equation above written. But my discussion
has shown, that even when x, being . 0, is also . Eÿ1, and so renders the series divergent, still if
it be not . E, and so allow this other transcendental equation, (perhaps mine,)

EÿxEÿxX � X , or (Eÿx:)2 X � X ,

to have only one real root, X, which in that case is also still the unique real root of the former
equation, (undoubtedly in substance Murphy's) EÿxX � X , then the ``exponential method''
still theoretically succeeds, by giving a series or succession of values, X n, which converges to the limit
X; being less than that limit when the whole number n is odd, but greater than the same limit
x, when the index n is even: although this convergence is very slow, and the method
consequently useless (in practice); when x is taken equal to, or very little less than, this new limit, E,
which Murphy does not seem to have noticed. For example, whethter the ``1'' denote an odd
or an even in®nity, we have, in each case, by the present Letter, de®nitely, or unambiguously, in
point of theory

X1 � (EÿE:)11 � Eÿ1; (389)

while the series (M) becomes a very divergent one, when my x is replaced, in it, by �E; or when
Murphy's a is made � ÿE, since it then becomes the series (269). But nobody, perhaps would
have patience actually to work out, by arithmetic, including the use of logarithmic tables, the
value (389) of this last limit, X1 even to (say) ®ve decimal places; at least, if my numbers
(388) be as I think that they are, nearly correct,� so far as they go: namely,

X 149 � 0:2987, X 150 � 0:4440, X 151 � 0:2991; (388)

the distinction between the results, for odd and even values of the index, n, continuing still to
be so very well marked; although it is proved, that this distinction must ultimately vanish.

LXIII.a Still greater chance of being new, it seems that those subsequent results of the
present Letter may have, according to which, when Murphy's ``a'', or my ``ÿx'', is replaced by
a real value which is (algebraically) less than ÿE, (for example by the negative number, ÿ3)
then the sum of the diverging series, lately called (M), comes to admit of three mutually distinct,
but separately de®nite, interpretations. If we write (to use the example just now referred to),

X � 1ÿ130

Ã1
ÿ 2031

Ã2
� 3132

Ã3
ÿ 4233

Ã4
� 5334

Ã5
ÿ 6435

Ã6
� &c:,

then, as I need not tell you, from a simply arithmetical point of view, the sum, X, has no meaning
at all. But if we inquire from what algebraical process, applied to some function X, might have arisen

� At the end of the last sheet of this Letter (in the future existence of what sheet you must be
pardoned if you do not believe), I intended to give a short list of numerical errata some perhaps the fault
of the copyist, but which I have happened to observe while glancing over the copy prepared.
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a series, proceeding according to ascending powers of a variable, x, which should come to
coincide, term for term, with the diverging series last written, when the symbol x was replaced by
3; and what the arithmetical value of this function X becomes, when x was so replaced: then, it is
only just (as you have led me to see) to admit that Murphy ± though apparently with a leaning
to reject diverging series, ± has yet supplied one answer. For he has shown, what in substance
amounts to this: ± that the series last written might have been formed, but seeking to resolve,
or at least to ®nd one root, (which turns out to be the only real one,) of the following equation
in X:

Eÿ3X � X ; (413)

the number 3 being ®rst replaced by the symbol x, and x being (at ®rst) treated as small. The
real root of (413) has been found to be, nearly

X � 0:349 97; (414)

and to this limit, accordingly, it has been shown (in LIV.) that the ``Method� of Continued
Fractions'', as used with the formulñ of this Letter, gives a not despicable approximation,
derived from the series itself, or rather from its seven ®rst terms; namely, X � 0´351 47, (443).
But I am not yet aware ± being however prepared to thank you very cordially, if you shall inform
me ± whether he, or any one else, has published the remarks:

Ist, that the same series (M) may be obtained by seeking to develop X, according to ascending
powers of x, from the transcendental equation (above cited, as perhaps my own),

EÿxEÿxX � X , or aa X � x, when a � Eÿx ;

the letter a having here a different signi®cation from that in which it is used by Murphy;
IInd, that this equation has 3 real and unequal roots, but only three, if x . E, or if a . 0, , EÿE;
IIrd, that of these three real roots, the middle one is precisely the unique real root of the
equation which I am willing (or rather bound) to call Murphy's ± namely, in our recent
notation,

EÿxX � X or a X � X ;

IVth, that to this root, X, we should never (under the supposed condition of inequality, x . E) make
any approach, by continuing, ever so far, the process which is suggested by the notation,

X1 � (Eÿx:)11 � (a
:
)11,

when a
:
b is to be interpreted as denoting the exponential ab ;

Vth, that (even under the same condition of inequality) we should approach to the (middle)
root X just mentioned; by the method of converging fractions applied to the diverging series, as in
the lately cited instance (443), in which x was equal to 3;
VIth, that to the least real root, say A, of what (for the present) I call my transcendental equation
(as distinguished from Murphy's) or to the least real number A which satis®es the condition

EÿxEÿxA � A, when x . E,

� I have not yet read enough of Murphy's Book on Equations, to know whether it occurred to him to use
that method of transforming what I have called his series, (M).
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we should inde®nitely approximate, by using the formula,

A � lim
n�1(Eÿx:)2n�11;

VIIth, that to the greatest real root, B, of the same transcendental equation in X, or to the greatest
real number B which satis®es the condition

EÿxEÿxB � B, when x . E,

we should make an inde®nite approach, by using this other formula,

B � lim
n�1(Eÿx:)2n1;

VIIIth, that both these formulñ, for the two extreme roots A and B, as well as the fractions which
converge to the intermediate root X, might have been suggested (and in fact were so to me) by
applying to the series itself the methods developed in the present Letter;
IXth, that the two extreme roots, A and B, are connected with each other, by the relations,

A � EÿxB , B � EÿxA;

Xth, what perhaps I have not formally proved, but what easily follows from principles already
stated, that when we have thus two real and unequal numbers, A and B . A, which satisfy the
two equations, A � a B , and B � a A, where a . 0, , EÿE, then although there is one real and
intermediate number, X, . A, , B, such that a X � X , yet if we take any other real number, say Y,
and determine Z by the equation Z � aY , the number Z thus determined will be unequal to
Y; Z being . B, if Y , A; Z , A, if Y . B; Z , B, . X , if Y . A, , X ; and Z . A, , X , if
Y , B, . X .

LXI. After this digression, on the nature and limits of the roots of certain algebraic
equations, suggested by the converging fractions which express approximately the values of
certain functions, I wish to make a few remarks, partly in the way of recapitulation, on the ®nite
or in®nite but real values, of the combined exponential

bbb :
: : c

� (b
:
)1c; (504)

where b and c are supposed to be real and b is positive; all logarithms of negatives being for the
present excluded from our view; and the function

bc � b
:
c (505)

receiving an arithmetical signi®cation, so as to denote de®nitely one real and positive number. The
following are my results, (perhaps all anticipated,) respecting the values in question. Some
are obvious at sight; others have been proved in this Letter; and the rest can easily be
deduced from principles of the same general class.

(1) If b . E
1
E , then (b

:
)1c � 1. (506)

(2) If b � E
1
E , and c . E, (b

:
)1c � 1. (507)

(3) If b � E
1
E , and c . E, (b

:
)1c � E. (508)

(4) If b , E
1
E , but . 1, and c . y9, (b

:
)1c � 1; (509)

y9 being the greater of the two real roots of the equation
b y � y. (510)
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(5) If b , E
1
E , . 1, and c � y9, (b

:
)1c � y9. (511)

(6) If b , E
1
E , . 1, and c , y9, (b

:
)1c � y; (512)

y being the lesser of the two real roots of the equation (510).
(7) If b � 1, (b

:
)1c � 1. (513)

(8) If b , 1, but . EÿE, then (b
:
)1c � y; (514)

y being here the only real root of the equation (510).
(9) If b � EÿE, the equation b y � y (510) has still only one real root, which is now � Eÿ1; and

(b
:
)1c � (EÿE

:
)1c � Eÿ1. (515)

(10) If b , EÿE but . 0, the equation (510) has still only one real root, y; and we have (still)
(b
:
)1 y � y. (516)

(11) If b , EÿE, . 0, the following other transcendental equation,

(b
:
)2 y � bb y � y, (517)

has three real and unequal roots, whereof the middle one is the root y of (510), while
the least and greatest may be denoted respectively by A and B; and then if c . y,

(b
:
)21c � B, (b

:
)21�1c � A: (518)

(12) But, ®nally, under the same conditions, b , EÿE, b . 0, and with the same signi®cations
of A, y, B, as the 3 real roots of the equation (517),

if c , y, then (b
:
)21c � A, (b

:
)21�1c � B. (519)

And thus all possible cases of values of the continued exponential (504), (for any real c, and for
any real and positive b, with arithmetical interpretations) appear to be exhausted ± A case of
number (3) has been remarked by Murphy in his Equations (page 81), ± for calling my
attention to which work I have again to thank you; namely the case (suf®ciently ``obvious''
indeed, as he himself pronounces it to be), where

c � E; (520)

so that the formula becomes, Limit of the Exponentials,

EaE, EaEaE
, . . .

or (as he writes it)

Ea:Ea:Ea:E:
: :(ad inf :)

� E, whena � Eÿ1:

LXII. Since I have again mentioned Murphy, let me try to do to him some further justice, by
pointing out an approach which I observe that he made, in his Equations, to one of the
Theorems of the present Letter; namely to that which is expressed by the formula�

� The notation here used,
Xm�1
m�0

, is certainly cumbersome to write, and perhaps expensive to print. I

have seen one like this,
Pm�1

m
0

. Have you any favourite notation of this sort of sum? I formerly

accustomed myself to write
P1

(m)0, and am still open to suggestions ± my habits have not yet quite
hardened me.
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f (x � h) �
Xm�1
m�0

(má� 1)mÿ1

Ã(m � 1)
h m Dm f (x ÿ máh): (370)

It is very possible that I may yet ®nd for myself, or have it pointed out to me by you, that this
Theorem has been completely anticipated by him: but, as yet, I can only say that I admit him to
have at least come very near to seeing it. At this moment I cannot lay my hand upon his Book,
but from my own ``E.1858'' I extract (with some tri¯ing alteration) the following Mem-
orandum.� ``Murphy derives the series,

xn � c n � nac n�1 � n

2
(n � 2)a2c n�2 � n

2

(n � 3)2

3
a3c n�3 � &c:,

from x � cEax, by considering xn � fx as the coef®cient of
1

x
in the development of

ÿ f 9x: 1ÿ cEax

x

� �
� ÿnx nÿ1 l 1ÿ cEax

x

� �
;

(writing l as the characteristic of natural logarithms;) or in

n
1

n

c nEnax

x
� 1

n � 1

c n�1E(n�1)ax

x2
� &c:

� �
:

Change x to cX ; then ac � lX

X
; and it is found, from Murphy's cited series, that

X n � 1� n
lX

X
� n

2
(n � 2)

lX

X

� �2

� n

2

(n � 3)2

3

lX

X

� �3

� &c:;

a result which I do not observe that he has expressly drawn, but which exactly agrees with one
of my own deductions from Lagrange's Theorem. I see another mode of deducing the same
series from Murphy's principles. ± But it seems to me that if he had perceived it, he would at
once have gone on to derive from it that development for f (x � h), which I lately commu-
nicated to Charles Gravesy, and to De Morgan, and which has the peculiarity of involving a
foreign and arbitrary constant. For as soon as he obtained the equation, answering to the
particular n � 1, namely

a � 1� 2A

2
� (3A)2

2:3
� (4A)3

2:3:4
� &c:,

where A � lA=a, he seems to have immediately seen that it admitted of what he calls the
``remarkable extension'', namely

f (x � k) � fx � 2k

2
f 9(x ÿ k)� (3k)2

2:3
f 0(x ÿ 2k)� &c:

And it would scarcely have occupied more room in his Treatise on Equations, to have written
the more general series, which I happened to perceive for myself,

� [Notebook E (1858), p. 13. Trinity College, Dublin MS 1492/145.]
y [Charles Graves (1812±1899) was Erasmus Smith's professor of mathematics at Trinity College,

Dublin, from 1843 until 1862.]
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f (x � h) � fx � hDf (x ÿ áh)� (1� 2á)1

1:2
h2 D2 f (x ÿ 2áh)

� (1� 3á)2

1:2:3
h3 D3 f (x ÿ 3áh)� &c:

± But he may possibly have printed this last series in the Philosophical Transactions [of the Royal
Society of London] or in the Cambridge Memoirs [Transactions of the Cambridge Philosophical
Society]. In the meantime I am most willing to give him all credit in the matter ± and consider
it as a suf®cient repayment for my trouble in writing the present Letter ± which trouble, most
certainly, you never asked me to take ± that my attention has been called, by it and you, to
what you describe in your Differential and Integral Calculus (page 328), as ``One of the most
general and interesting contributions which analysis has received for many years''. I also
admit, most cheerfully, that Murphy printed one ``ladder'': although I do not yet see that he
had anticipated the ``Exponential Method'' of the present Letter, nor the series of Theorems
respecting (b

:
)1c, which is given in the foregoing paragraph (LXI.).

LXIII. You can scarcely be more glad than myself to have done with what I must now call
``Murphy's Series'' ± though you know that I merely brought it in (when I thought it my
own), for the sake of illustration of some general methods. Still a remark or two, in the nature
of ``wind-up'', may be endured, before wholly leaving that part of the whole subject. Rewriting
the series, in the form before adopted in this Letter, but with the signature (M), as

X � 1ÿ1x0

Ã1
ÿ 20x1

Ã2
� 31x2

Ã3
ÿ 42x3

Ã4
� &c:, (239) � (M)

I admit, (I.), that Murphy preceded me in perceiving (not only the existence but) the
convergence of this series, when x2 . E2. (He used terms all positive, but let me not nibble at a
point of that sort) ± I admit, (II.), that he saw the series to be, when convergent, the
development of at least one root of the equation which I wrote as

lX � xX � 0, or x � 1

X
l

1

X
; (259)

and have no doubt, (III.) that he was well aware that this was the lesser of the two real roots, of
the last equation considered as resolved for X, when x was given, and negative, but .ÿEÿ1.
He probably saw, (IV.), that, in your words, or something like them, the series ``escapes from
imaginariness, by becoming divergent'', when x . Eÿ1. He perceived, (V.), that the series, when
convergent, must be regarded as the development of a continued exponential. But I am not yet
aware that it even occurred to him, or that he thought it at all worth his while to inquire, (VI.),
what value ought to be, or might be, attributed to the series, when x, being positive, (in my form
of the development) exceeds the limit Eÿ1, and so causes the series to diverge, while yet the
equation from which it was derived continues to have a single real root. As yet, the results of this
Letter upon that subject appear to me to be new; but you know how very rash it would be to
make assertion of any such novelty. Still, to pursue our recapitulation, I remark, (VII.), that
when x . Eÿ1, provided that x does not exceed a certain greater limit, E, the series indeed diverges, but
the only real root X of the equation lX � xX � 0 may still be obtained, with any required
approximation, by the continued exponential, X � (Eÿx:)11, which might, by one of the meth-
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ods of the present Letter, have been obtained from the series itself. But (VIII.), when x is near
the limit, E, the convergence of this exponential becomes extremely slow; since it was found that if
X n � (EÿE:)n1, then

X 149 � 0:2987, X 150 � 0:4440, X 151 � 0:2991, (388)

nearly, the alternate values showing, even at this advanced stage of the process, (which thus
becomes here practically useless,) a well-marked difference from each other, which difference
however would necessarily at last disappear; so that the process would ultimately give (it has
been proved) the equation (EÿE:)1 � Eÿ1 (389) ± (IX.) The exponential Method would
thereby assign what may (or must)� be considered as the value, namely Eÿ1, of the very divergent
series,

Eÿ1 � 1ÿ E� 31E2

2
ÿ 42E3

2:3
� 53E4

2:3:4
ÿ &c:; (269)

which Murphy has abstained from considering, apparently as not choosing to deal with any
series except converging ones, but which it has been part of the object of this Letter to
discuss. In like manner, this less divergent series,

X � 1ÿ 2ÿ1 � 312ÿ2

2
ÿ 422ÿ3

2:3
� 532ÿ4

2:3:4
ÿ &c:, (281)

may be considered as representing this other continued exponential,

X � (Eÿ
1
2:)11 � 0:703 467 4,

nearly, by (445), namely the only real root X of the equation

1

X
l

1

X
� 1

2
, (282)

and similarly in other cases. It has been shown, (X.), that the same value X for the same
diverging series, under the same conditions, x . Eÿ1, . E, may be approached to, and with greater
rapidity, by the use of converging fractions, obtained from the series itself. We found (XI.), that
when x . E, the equation lX � xX � 0 has still one and only one real root X, to which the
fractions still converge ; although the series is now still more divergent than before. For example,
the seven ®rst terms of the highly divergent series,

X � 1ÿ 3� 3132

2
ÿ 4233

2:3
� 5334

2:3:4
ÿ &c:, (521)

the Method of Continued Fractions, combined with a plan of improving an approximation by
combining the few last results, which has somewhere been used by Legendre,y has given us the
approximate value, X � 0:351 47; (443): while the real root of the equation lX � 3X � 0, or
Eÿ3X � X , (413), is X � 0:349 97 nearly, by (414); so that the agreement of results even in
this unfavourable case, is not to be entirely despised. But (XII.), when x is thus . E, the Method

� At least I think so, if a diverging series be admitted to have any value; on account of the agreement of
the results here obtained, by different processes of transformation.
y [Adrien Marie Legendre (1752±1833).]
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of Continued Exponentials gives no approach to the value of X, however far the process may be
carried; for example it has been found that, nearly,

(Eÿ3:)371 � 0:1348; (Eÿ3:)381 � 0:6673; (Eÿ3:)391 � 0:1351; (Eÿ3:)401 � 0:6668; (421)

the convergence being here towards two alternate limits, A and B, which are respectively the
least and greatest real roots of the transcendental equation,

(Eÿ3:)2 X � Eÿ3Eÿ3 X � X , (415)

namely, A � 0:136 12, and B � 0:664 74, nearly, by (416); while the same equation (415) has
another real root, intermediate between these roots A and B, namely the root X � 0:349 97 of the
former equation Eÿ3X � X (413). ± This is perhaps the most remarkable result of the present Letter
(which may not be saying much for it); and it may be worth while to stop for a moment to
consider its geometrical signi®cation.

LXIV. Suppose that we met the equation,

EÿxEÿxy � y, (522)

and chose to regard it as the equation of a curve. Abstracting from all imaginary points, and from
all logarithms of negatives, the shape would be found such as is rudely sketched, in the annexed
Figure 1. For I can prove that the real roots y of the equation (522) are precisely the same as
those of the simpler equation

Eÿxy � y, (523)

if x be less than E; but that as soon as x becomes equal to, or greater than E, then two new real roots
start into existence, for the equation (522), which do not belong to the less complex equation
(523), except that when x is exactly equal to E, then the two new roots of (522) are equal to
each other, and to the root y � Eÿ1, of the equation (523). (Figure 1.) Now the curve
represented by this last equation, or by this other form of it,

Fig. 1 (a) This shows the curves as sketched in Hamilton's notebook D (p. 95 Trinity College, Dublin,
MS 1492/144); (b) accurately drawn versions of the same curves.
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x � 1

y
l

1

y
, (524)

is asymptotic to each of the two positive semiaxes OX, OY of coordinates; crossing the axis of
y at a point A for which x � 0, y � 1; and extending behind that axis, to a point B, for which

x � Eÿ1, y � E, (525)

and at which it is touched by the ordinate BB9: in such a manner that for every point H 9,
between 0 and B9, an ordinate cuts the curve in 2 real points, H and I ; but for every point C9,
D9, E9, . . . , on the positive side of O, an ordinate intersects the curve (523) in only one real point,
C, D, E, . . . : The cuve (522) contains all these real points of (523); but it undergoes a trifurcation at
a point D, for which

x � �E, y � Eÿ1: (526)

Each curve, for real points not too far from A, namely for the real range from B to C, if C be such
that OC9 � Eÿ1, has its ordinate, B9B, or H 9H , or OA, or C9C , respresented by the convergent
series of Murphy, or here by

y � 1ÿ x � 3x2

2
ÿ 42x3

2:3
� &c:; (M)

and the value of this ordinate, or of this series, (for x2 . Eÿ2) may be approximately found,
either by a continued exponential, or by a continued fraction, as in this Letter. For the range from
C to D, these methods still give the common ordinate of the 2 curves, although now the series diverges.
But beyond the point of trifurcation D, the 3 real ordinates of the curve (522) are found
approximately, and separately, as 3 distinct limits, by methods already explained, as so many
different transformations of the diverging series; namely the middle ordinate, y or E9E , which is also
that of the simpler curve (523), as the limit of the converging fractions deduced from the series
itself; the least ordinate, A [see equation (518)], or E9F , as the limit of the increasing exponentials
of odd orders, (Eÿx:)2n�11; and ®nally the greatest ordinate B [see equation (518)], or E9G , as the
limit of the decreasing exponentials of even orders, (Eÿx:)2n1. The branch DF, like DE, is asymptotic
to the axis OX; and the branch DG is asymptotic to a parallel to that axis, drawn through the
point A ± And now at last I take (for the present) my farewell of this curve and series. But
something still remains to be said, on the subject of those general transformations, to which
allusions have been made in this Letter.

LXV. Let us therefore now suppose that f 1x, f 2x, . . . are functions such that

f 1x � 1� 11x � 12x2 � � � � , f 2x � 1� 21x � 22x2 � � � � ,
f 3x � 1� 31x � 32x2 � � � � , &c:, (527)

where m n is a constant coef®cient, independent of x. Let us write also,

F1x � f 1xf 2xf 3xf 4x . . . , F2x � f 2xf 3xf 4x . . . , F3x � f 3xf 4x . . . , &c: (528)

where each functional characteristic is conceived to govern the whole system of symbols
which follow it, so that, for instance, we have, more fully,

F1x � f 1(xf 2(xf 3(xf 4(x . . .)))): (529)
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Then each of these functions F r x may in general be developed in a series according to
ascending powers of x, which may be thus denoted:

F r x � 1� (r , 1)x � (r , 2)x2 � (r , 3)x3 � &c:; (530)

and because we have the relation,

F r x � f r (xF r�1x); (531)

we may write also,

F1x � 1� r1xF r�1x � r2x2(F r�1x)2 � r3x3(F r�1x)3 � &c: (532)

Hence,

(r , 1) � r1; (r , 2) � r1(r � 1, 1)� r2; (r , 3) � r1(r � 1, 2)� 2r2(r � 1, 1)r3;

(r , 4) � r1(r � 1, 3)� r2f2(r � 1, 2)� (r � 1, 1)2g � 3r3(r � 1, 1) � r4;

(r , 5) � r1(r � 1, 4)� r2f2(r � 1, 3)� 2(r � 1, 1)(r � 1, 2)g
� r3f3(r � 1, 2)� 3(r � 1, 1)2g � 4r4(r � 1, 1) � r5;

(r , 6) � r1(r � 1, 5)� r2f2(r � 1, 4)� 2(r � 1, 1)(r � 1, 3)

� (r � 1, 2)2g � r3f3(r � 1, 3)� 6(r � 1, 1)(r � 1, 2) � (r � 1, 1)3g
� r4f4(r � 1, 2)� 6(r � 1, 1)2g � 5r5(r � 1, 1) � r6; &c::

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

(533)

where the calculus of derivations� may be used, to assist in determining the coef®cients and
exponents. In this manner it may be shown that

(1, 1) � 11; (1, 2) � 1121 � 12; (1, 3) � 112131 � 1122 � 2:1221 � 13;

(1, 4) � 11213141 � 112132 � 2:112231 � 1123 � 2:122131 � 12(2:22 � 22
1)� 3:1321 � 14;

(r , 5) � 1121314151 � 11213142 � 2:11213241 � 2:11223141 � 2:12213141

� 112133 � 1122(2:32 � 32
1)� 2:122132 � 3:112331 � 2:12(2:22 � 22

1)31

� 3:132131 � 1124 � 2:12(23 � 2122)� 3:13(22 � 22
1)� 4:1421 � 15;

(1, 6) � 112131415161 � 1121314152 � 2:1121314251 � 2:1121324151 � 2:1122314151

� 2:1221314151 � 11213143 � 112132(2:42 � 42
1)� 2:11223142

� 2:12213142 � 3:11213341 � 2:1122(2:32 � 32
1)41 � 4:12213241

� 3:11233141 � 2:12(2:22 � 22
1)3141 � 3:13213141 � 112134

� 2:1122(33 � 3132)� 2:122133 � 3:1123(32 � 32
1)

� 12(2:22 � 22
1)(2:32 � 32

1)� 3:132132 � 4:112431 � 6:12(23 � 2122)31

� 6:13(22 � 22
1)31 � 4:142131 � 1125 � 12(2:24 � 2:2123 � 22

2)

� 13(3:23 � 6:2122 � 23
1)� 14(4:22 � 6:22

1)� 5:1521 � 16;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
(534)

� [See: A. De Morgan, The differential and integral calculus, pp. 328Ð335, London: 1842.]
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where it is worth noticing that, with the incorporations indicated by the parentheses, of which
it is easy to see the reason, the number of terms goes on doubling, being

� 1, for (1, 1); � 2, for (1, 2); � 22, for (1, 3); � 23, for (1, 4);

� 24, for (1, 5); and � 25, for (1, 6):

)
(535)

As a veri®cation, if we assume

m n � m n, (536)

we have the particular forms,

f 1x � 1

1ÿ x
, f 2x � 1

1ÿ 2x
, . . . , f m x � 1

1ÿ mx
; (537)

thus, we must have, by a transformation which Laplace appears to claim, and which has
before been cited in this Letter, (with merely a change of certain signs,)

F1x � 1

1ÿ
1x

1ÿ
2x

1ÿ
3x

1ÿ&c: � 1� 1x � 1:3x2 � 1:3:5x3 � &c:: (538)

we ought therefore to have, with the assumption (536),

(1, n) � (2n ÿ 1)(2n ÿ 3) . . . 5:3:1 (539)

and accordingly we ®nd now the particular numerical values following:

(1, 1) � 1; (2, 1) � 2� 1 � 3; (1, 3) � 6� 4� 4� 1 � 15 � 3:5;

(1, 4) � 24� 18� 24� 8� 12� 12� 6� 1 � 105 � 3:5:7;

(1, 5) � 120� 96� 144� 96� 48� 54� 108� 36� 72� 72� 18� 16

� 32� 24� 8� 1 � 945 � 3:5:7:9;

(1, 6) � 720� 600� 960� 720� 480� 240� 384� 864� 384� 192� 648

� 864� 288� 288� 288� 72� 162� 432� 108� 432� 324� 54� 192

� 288� 144� 24� 32� 80� 80� 40� 10� 1 � 10 395 � 3:5:7:9:11:

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

(540)

In general let there be two mutually inverse functions, of the respective forms,

jx � b1(x ÿ 1)� b2(x ÿ 1)2 � &c:, and

jÿ1x � x � 1� c1x � c2x2 � &c:; (541)

and let

X � á1x á2x á3x á4x á5x á6x . . . � 1� a1x � a2x2 � &c: (542)

Then, by making

m n � c ná
n
m , and (1, n) � a n , (543)

the expressions (534) ± respecting the general composition of which, some interesting
remarks might be made ± become:

j

j j j j j j
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a1 � c1á1; a2 � c2
1á1á2 � c2á2

1;

a3 � c3
1á1á2á3 � c1c2á1á2

2 � 2c1c2á2
1á2 � c3á3

1;

a4 � c4
1á1á2á3á4 � c2

1c2á1á2(á3 � 2á2 � 2á1)á3 � c1c3á1á3
2

� c2(2c2 � c2
1)á2

1á
2
2 � 3c1c3á3

1á2 � c4á4
1

� c4
1á1á2á3á4 � c2

1c2á1á2fá2
3 � 2(á2 � á1)á3 � á1á2g

� c1c3á1á2(á2
2 � 3á2

1)� 2c2
2á

2
1á

2
2 � c4á4

1;

a5 � c5
1á1á2á3á4á5 � c3

1c2á1á2á3fá2
4 � 2(á3 � á2 � á1)á4 � á2(á3 � 2á1)g

� c2
1c3á1á2(á3

3 � 3á2
2á3 � 3á2

1á3 � 3á2
1á2)� 2c1c2

2á1á2(á2á2
3 � á1á2

3

� 2á1á2á3 � á1á2
2)� c1c4á1á2(á3

2 � 4á3
1)� c2c3á2

1á
2
2(2á2 � 3á1)� c5á5

1;

a6 � c6
1á1á2á3á4á5á6 � c4

1c2á1á2á3fá4(á2
5 � 2á4á5 � 2á3á5 � 2á2á5

� 2á1á5 � á3á4 � 2á2á3 � 2á1á2)� á1á2á3g
� c3

1c3á1á2fá3á3
4 � 3á3á4(á2

3 � á2
2 � á2

1)� 3á2á3(á2á3 � 2á2
1)

� á2
1á

2
2g � 2c2

1c2
2á1á2á3f(á3 � á2 � á1)á2

4 � 2(á2á3 � á1á3 � á1á2)á4

� á2(á2
3 � 2á1á3 � 3á1á2)g � c2

1c4á1á2fá4
3 � 4á3(á3

2 � á3
1)� 6á3

1á2g
� c1c2c3á1á2fá3(2á2á2

3 � 2á1á2
3 � 3á2

2á3 � 3á2
1á3 � 6á1á2

2 � 6á2
1á2)

� 2á1á2
2(á2 � 3á1)g � c1c5á1á2(á4

2 � 5á4
1)� c3

2á
2
1á

2
2(4á2

3 � á2
2)

� 2c2c4á2
1á

2
2(á2

2 � 2á2
1)� 3c2

3á
3
1á

3
2 � c6á6

1:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(544)

If we make, as a veri®cation and application

c n � (ÿc)n, (545)

so that the second equation (541) shall give

x � (1� cx)ÿ1 (546)

then

ÿcÿ1a1 � á1; �cÿ2a2 � á1(á2 � á1); ÿcÿ3a3 � á1á2á3 � a1(á2 � á2)2;

�cÿ4a4 � á1á2á3á4 � á1á2(á3 � á2 � á1)2 � á2
1(á2 � á1)2;

ÿcÿ5a5 � á1á2á3á4á5 � á1á2á3(á4 � á3 � á2 � á1)2 � fá2á3 � (á2 � á1)2g;

9>>=>>; (547)

and these functions of á1, á2, á3, . . . , agree precisely with those functions of á, â, ã, . . . ,
which were called a, b, c, . . . , in (70), and which were the coef®cients of ÿx, �x2, ÿx3, . . . ,
in the development of the continued fraction,

1

1�
áx

1�
âx

1�
ãx

1� . . .
:

The recent expression (544) for a6 may have its terms otherwise arranged, as follows:

j
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a6 � c6
1á1á2á3á4á5á6 � c4

1c2á1á2á3á4á2
5 � 2c4

1c2á1á2á3á4á5(á4 � á3 � á2 � á1)

� c3
1c3á1á2á3á3

4 � c2
1c2(2c2 � c2

1)á1á2á2
3á

2
4 � 2c2

1c2
2á1á2(á1 � á2)á3á2

4

� 3c3
1c3á1á2á3

3á4 � 2c2
1c2(2c2 � c2

1)á1á2
2á

2
3á4 � 4c2

1c2
2á

2
1á2á2

3á4

� 3c3
1c3á1á3

2á3á4 � 2c2
1c2(2c2 � c2

1)á2
1á

2
2á3á4 � 3c3

1c3á3
1á2á3á4

� c2
1c4á1á2á4

3 � 2c1c2(c3 � c1c2)á1á2
2á

3
3 � 2c1c2c3á2

1á2á3
3

� 3c1c3(c2 � c2
1)á1á2

2á
2
3 � c2(2c2 � c2

1)2á2
1á

2
2á

2
3 � 3c1c2c3á3

1á2á2
3

� 4c2
1c4á1á4

2á3 � 6c1c2(c3 � c1c2)á2
1á

3
2á3 � 6c1c3(c2 � c2

1)á2
1á

2
2á3 � 4c2

1c4á4
1á2á3

� c1c5á1á5
2 � c2(2c4 � 2c1c3 � c2

2)á2
1á

4
2 � c3(3c3 � 6c1c2 � c3

1)á3
1á

3
2

� 2c4(2c2 � 3c2
1)á4

1á
2
2 � 5c5á5

1á2 � c6á6
1;

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;

(548)

which when we make the substitutions (545), gives, for what would have been called the
coef®cient f in (70), the expression:

�cÿ6a6 � á1á2á3á4á5á6 � á1á2á3á4á2
5 � 2á1á2á3á4á5(á4 � á3 � á2 � á1)

� á1á2á3á2
4(á4 � 3á3 � 2á2 � 2á1)� á1á2á2

3á4(3á3 � 6á2 � 4á1)

� 3á1á2á3á4(á2 � á1)2 � á1á2á3
3(á3 � 4á2 � 2á1)

� 3á1á2á2
3(2á2

2 � 3á1á2 � á2
1)� 4á1á2á3(á2 � á1)3 � á1(á2 � á1)5

� á1á2á3á4á5á6 � á1á2á3á4(á5 � á4 � á3 � á2 � á1)2

� á1á2fá3(á4 � á3 � 2á2 � á1)� (á2 � á1)2g2 � á2
1fá2á3 � (á2 � á1)2g2:

9>>>>>>>>>>>=>>>>>>>>>>>;
(549)

Accordingly when we make án � n, this last expression becomes

720� (24� 18� 1):225 � 45(16� 215) � 45:231 � 1:3:5:7:9:11,

as otherwise found before, in (540). We also see that, in the notation of (70), the sixth
equation of that system would be

f � áâãäEæ� áâãä(E� ä� ã� â� á)2 � áâfã(ä� ã� 2â� á)� (â� á)2g2

� á2fâã� (â� á)2g2; (550)

whence by making á � 1, â � 2, ã � 3, ä � 4, E � 5, the linear equation (75), or

f � 120æ� 9675,

may be deduced at sight, by observing that 43.225 � 9675. As another bit of veri®cation we
may assume the values

á � â � ã � ä � E � æ � 1, or

á1 � á2 � á3 � á4 � á5 � á6 � 1; (551)

and then if we still adopt the expression (545) for c n , we shall have

X � 1

1�
cx

1�
cx

1� � � � &c:, (552)
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which may be written as

X � 1

1� cx:

� �1
1, (553)

and gives

X � 1

1� cxX
, cxX 2 � X � 1,

X � (1� 4cx)
1
2 ÿ 1

2cx
� 1ÿ cx � 2c2x2 ÿ 5c3x3 � 14c4x4 ÿ 42c5x5 � 132c6x6ÿ � � � ; (554)

and accordingly if án be made equal to unity in (547), (549), the resulting values of
a1, . . . , a6 are

a1 � ÿc, a2 � 2c2, a3 � ÿ5c3, a4 � 14c4, a5 � ÿ42c5, a6 � 132c6: (555)

LXVI. When the coef®cients c1, c2, . . . , of the series (541) for the transforming function , are
either immediately given, or have been deduced by reversion of series, or otherwise from the
coef®cients b1, b2, . . . , of the series for the inverse function x, they can be substituted in the
expressions (544); and then the coef®cients a1, a2, . . . , of the series (542), for the transfor-
mand function X, come to be expressed as known and explicit functions, rational and integral, of
the constants á1, á2, . . . , of the transformed functions, or expression, X � á1x á2x á3x . . . ,
to which this Letter mainly relates; as for example, in the recent equations, (547), (549). And
conversely, from the form of the equations thus obtained, it is evident that we can determine,
successively, and unambiguously, without having to resolve any equation higher than the ®rst
degree, the constants (á1, á2, . . .) of the transformee, when those of the transformand,
(a1, a2, . . .) and of the transformer, (c1, c2, . . .) are given; at least if c1 has any value different
from 0. But although it is satisfactory and useful to have the expressions (544), yet I think that
in practice it may often be convenient to employ another method, for this converse deduction
of á1, á2, . . . , from a1, a2, . . . , , and from c1, c2, . . . ; or more immediately, from a1, a2, . . . ,
and b1, b2, . . . : This method uses the Calculus of Derivations and is merely a slight extension of
the processes employed in paragraphs VI. and XII. of the Letter. Writing

X 9 � á2x á3x . . . � 1� a91x � a92x2 � � � � , (556)

we have, by (561) and (562),

á1xX 9 � jX � b1(a1x � a2x2 � a3x3 � � � �)� b2(a1x � a2x2 � � � �)2 � � � � , (557)

whence

á1 � b1a1, á1a91 � b1a2 � b2a2
1, � � �

b1a1a9n � b1 Dn a1 � b2 Dnÿ1a2
1 � b3 Dnÿ2a3

1 � � � � � b n�1a n�1
1 ;

)
(558)

where Dn a1 � a n�1, and generally Dn a m
1 is interpreted on the plan of your Differential

and Integral Calculus� (p. 328 et seq.), for I have not Arbogast's booky at hand, though it
is somewhere in the house�, and I read a good part of it long ago; so that, for instance

j

j

j j j

j j

� [See footnote to paragraph XLIV.]
y [Louis FrancËois Antoine Arbogast (1759±1803), Du calcul des deÂrivations, Strasbourg: 1800.]
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Da2
1 � 2a1a2, D2a2

1 � 2a1a3 � a2
2,

D3a2
1 � 2a1a4 � 2a2a3, D4a2

1 � 2a1a5 � 2a2a4 � a2
3,

&c:

9>>=>>; (559)

On the same plan if we write

X 0 � á3x á4x . . . � 1� a 01x � a 02x2� � � � , (560)

we have

á2xX 0 � X 9, á2 � b1a91, b1a91a 0n � b1 D n a91 � b2 Dnÿ1a91
2 � b3 Dnÿ2a91

3 � &c:; (561)

where

Da91
2 � 2a91a92, &c:

Thus, when b1, b2, &c., are given, á1 is found from a1; a2, through a91, from a1 and a2; á3,
through a 01, from a91 and a92, and so from a1, a2, and a3; and so on, for we have generally

án � b1a(nÿ1)
1 ; (562)

the accents at the top serving only to attach the coef®cients a(m) to the series X (m); and one
such series being deduced (rather than in any technical and usual sense derived) from the preceding
series of the same system, by the general relation,

án xX (n) � jX (nÿ1): (563)

As a system of veri®cations, we may operate on this last equation by , and so change it to
what indeed follows at once from the notation used,

X (nÿ1) � án xX (n); (564)

for this will give

a(nÿ1)
1 � án c1, and generally

a(nÿ1)
m � c1án D mÿ1a(n)

0 � c2á
2
n Dmÿ2a(n)2

0 � c3á
3
n Dmÿ3a(n)3

0 � � � � � c má
m
n a(n)m

0 ; (565)

where the derivations D are so interpreted that (for example)

Da(n)2
0 � 2a(n)

0 a n
1 , D2a(n)2

0 � 2a(n)
0 a(n)

2 � a(n)2
1 , &c:; (566)

and a(n)
0 is made � 1, after all these derivations have been performed. Thus

a(nÿ1)
4 � c1án D3a(n)

0 � c2á
2
n D2a(n)2

0 � c3á
3
n Da(n)3

0 � c4á
4
n a(n)4

0

� c1án a(n)
3 � c2á

2
n(2a(n)

2 � a(n)2
1 )� 3c3á

3
n a(n)

1 � c4á
4
n; &c: (567)

Finally, the relations between the two systems of constants, b and c, of the two mutually
inverse or reciprocal functions j and , may be expressed by the formula,

j j

j

j

j

j

� 15 May 1858 ± I have since found my Arbogast, and read, with the greatest pleasure, the ®rst thirty
pages, or thereabouts, at one stretch, verifying every step, as I went along, by mental calculation.
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Dnÿ11 � b1 Dnÿ1c1 � b2 Dnÿ2c2
1 � b3 Dnÿ3c3

1 � � � � � b n c n
1 : (568)

LXVII. Before, I began this Letter, I had considered (to some small extent) the case alluded
to in paragraph V., where the transforming functions were,

jx � xÿ y ÿ 1, x � jÿ1x � (1� x)ÿ
1
í; (569)

í being any given exponent. In this case, with the recent meaning of b n, we have the
expression

b n � (ÿ1)ní(í� 1)(í� 2) . . . (í� n ÿ 1)

1:2:3 . . . n
: (570)

The formula (558) becomes therefore here, compare the equations (52):

a1a9n � D n a1 ÿ í� 1

2
Dnÿ1a2

1 �
í� 1

2

í� 2

3
Dnÿ2a3

1 � � � � �
í� 1

2

í� 2

3
� � � í� n

n � 1
a n�1

1 (571)

in which every a may receive an additional accent, as in (561), and so on for ever. Hence if we
know the unaccented coef®cients a, as far as a n , we can ®rst deduce the singly accented
coef®cients a9, as far as a9nÿ1; then a 0, as far as a 0nÿ2, &c.; till we come to the coef®cient
a(nÿ1)

1 ; after which the ®rst n constants án will be known, by the formula (562), which here
becomes,

án � ÿía(nÿ1)
1 : (572)

(Compare (55) and (60).) ± The method of reciprocals, which leads to the continued fractions,
already discussed at some length, was, as remarked in paragraph VI., merely that particular
sub-case, for which í � 1. The case next in simplicity, and which perhaps will be found to be
quite devoid of utility, appears to me to be that for which

í � 2; (573)

so that the transformation to be considered here is (compare equation (48)) expressed by the
formula:

X � 1� a1x � a2x2 � &c: � á1x á2x . . . � (1� á1x(1� á2x(1 � � � �)ÿ1
2)ÿ

1
2)ÿ

1
2: (574)

The equations of the forms (571) are, for the present transformations,

a1a91 � a2 ÿ 3

2
a2

1; a1a92 � a3 ÿ 3a1a2 � 2a3
1; a1a93 � a4 ÿ 3 a1a3 � a2

2

2

� �
� 6a2

1a2 ÿ 5

2
a4

1;

a1a94 � a5 ÿ 3 a1a4 � a2a3� � � 6 a2
1a3 � a1a2

2

ÿ �ÿ 10a3
1a2 � 3a5

1;

a1a95 � a6 ÿ 3 a1a5 � a2a4 � 1

2
a2

3

� �
� 6 a2

1a4 � 2a1a2a3 � 1

3
a3

2

� �
ÿ 10 a3

1a3 � 3

2
a2

1a2
2

� �
� 15a4

1a2 ÿ 7

2
a6

1;

9>>>>>>>>>>>=>>>>>>>>>>>;
(575)

the last or right hand terms being those of the development of

j

j j
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ÿ 1

2
(1� a1)ÿ2,

and others being afterwards derived from these, with the greatest possible facility, by the Rules
of the Calculus of Derivations. In like manner, by accenting,

a91a 01 � a92 ÿ 3

2
a91

2, a91a 02 � a93 ÿ 3a91a92 � 2a91
3, &c:; (576)

and when a9, a 01, . . . , have thus been computed from a1, a2, a3, . . . , we have

á1 � ÿ2a1, á2 � ÿ2a91, &c: (577)

And the numerical calculations may be checked in various ways, on principles already stated
or suggested.

LXVIII. It seems to be worth while, however, to write down the following system of formulñ,
which may indeed be deduced by elimination from (575) but may also be otherwise and
independently found; and which may serve, not merely as a check on the numerical results
obtained from the last cited equations, in any application of this ``method of inverse square
roots'' but also as an independent instrument of calculation, for successively determining a91,
a92, . . . , when a1, a2, a3, . . . are given. The system to which I refer is included in the more
general system (567), and may be deduced there from, by simply introducing the present
values of the coef®cients c n ; or by writing,

(ÿ1)n c n � 1:3:5:7 � � � (2n ÿ 1)

2:4:6:8 � � � 2n
, (578)

for in this manner we obtain the following equations, with the help of (577):

a2 � a1a91 � 3

2
a2

1; a3 � a1a92 � 3a2
1a91 � 5

2
a3

1; a4 � a1a93 � 3a2
1 a1

2 � 1
2a91

2
� �

� 15

2
a3

1a91 � 35

8
a4

1;

a5 � a1a94 � 3a2
1(a93 � a91a92)� 15

2
a3

1(a1
2 � a91

2)� 35

2
a4

1a91 � 63

8
a5

1;

a6 � a1a95 � 3a2
1 a94 � a91a93 � 1

2a92
2

� �
� 15

2
a3

1 a93 � 2a91a92 � 1

3
a91

3

� �
� 35

2
a4

1 a92 � 3

2
a91

2

� �
� 315

8
a5

1a91 � 231

16
a6

1:

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(579)

I think that it will be scarcely possible for any arithmetical mistake to escape notice, in the
calculation of the values of a91, . . . , a95, from those of a1, . . . , a6, in any particular question, if
these two systems of equations, (575) and (579), be separately used for that purpose: so different
are the auxiliary or intermediate members which present themselves, in one and in the other
process; and so different is the play of the signs. Such, at least, is my impression from my own
little experience of such calculations; mistakes of mine having been detected, by the fore-
going system of checks; but an entire con®dence being reposed by me in the ®nal values,
when the results of the two processes agree. ± I forget whether I made much use of the
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following other system of expressions, when I was applying the ``method of inverse square
roots'', a few months ago, before I began to write the present Letter: if

X � 1� a1x � a2x2 � � � � � (1� á1x(1� á2x(1 � � � �)ÿ1
2)ÿ

1
2)ÿ

1
2 (574)

then

a1 � ÿ1
2á1; a2 � 1

4
á1 á2 � 3

2
á1

� �
; a3 � ÿ 1

8
á1á2á3 ÿ á1

16
(3á2

2 � 6á1á2 � 5á2
1);

a4 � 1

16
á1á2á3á4 � 1

32
á1á2(3á2

3 � 6á2á3 � 6á1á3 � 5á2
2 � 12á1á2 � 15á2

1)� 35

128
á4

1;

a5 � ÿ 1

32
á1á2á3á4á5 ÿ 1

64
á1á2á3(3á2

4 � 6á3á4 � 6á2á4 � 5á2
3 � 12á2á3 � 15á2

2)

ÿ 35

256
á1á

4
2 ÿ

3

64
á2

1á2á3(2á4 � 3á3 � 8á2 � 5á1)ÿ 3

8
á2

1á
3
2

ÿ 75

128
á3

2á
2
2 ÿ

35

64
á4

1á2 ÿ 63

256
á5

1;

a6 � 1

64
á1á2á3á4á5á6 � (a long polynome) � 231

1024
á6

1:

9>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>;
(580)

The arrangement of the terms in a5 might be improved, but it is not worth our while to delay
upon it. I must, however, remark that the system (580) is analogous to those before marked as
(70) and (108); and that it is, like them, included in the more general system of such equations,
which has been numbered as (544). It is clear, also, that these last equations (580) may be
used, to determine successively and linearly, the constants á1, . . . , á4, when the coef®cients
a1, . . . , a4 are given; and also to verify the values of those constants, if they have been
determined by any other process, such as those which have been already described.

LXIX. If now we introduce the values,

a1 � 1, a2 � 3, a3 � 15, a4 � 105, a5 � 945, (581)

without at ®rst assuming any value for a6, we ®nd, successively,

a91 � 3

2
, a92 � 8, a93 � 62, a94 � 612; a 01 � 37

12
, a 02 � 131

6
, a 03 � 3545

16
;

a -1 � 727

296
, a -2 � 67 591

2664
; aõv

1 �
25 743 589

3 873 456
; á1 � ÿ2a1 � ÿ2;

á2 � ÿ2a91 � ÿ3; á3 � ÿ 37

6
; á4 � ÿ 727

148
; á5 � ÿ 25 743 589

1 936 728
;

9>>>>>>>=>>>>>>>;
(582)

that is to say, the series

X � 1� x � 3x2 � 15x3 � 105x4 � 945x5 � &c:, (583)

which has occurred before in this Letter, where the &c. merely means some polynome or series,
of the 6th and higher dimensions, may be transformed into this other expression not hitherto
written down,
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X �
�

1ÿ 2x

�
1ÿ 3x

�
1ÿ 37

6
x

�
1ÿ 727

148
x

�
1ÿ 25 743 589

1 936 728
xX v

�ÿ1
2
�ÿ1

2
�ÿ1

2
�ÿ1

2
�ÿ1

2

; (584)

where we only know of X v , that it is a polynome or series, whose ®rst term is unity. Or, changing
the sign of x, we have the transformation,

X �
�

1� 2x

�
1� 3x

�
1� 37

6
x

�
1� 727

148
x

�
1� 25 743 589

1 906 728
xX v

�ÿ1
2
�ÿ1

2
�ÿ1

2
�ÿ1

2
�ÿ1

2

� 1ÿ 1x � 1:3x2 ÿ 1:3:5x3 � 1:3:5:7x4 ÿ 1:3:5:7:9x5 � a6x6 ÿ a7x7 � &c:; (585)

where

X v � 1ÿ av
1 x � &c: (586)

and the coef®cients a6, a7, . . . , of the one development are connected with the coef®cients
av

1, av
2 , . . . , of the other, by laws of the kind which has been already considered in this Letter.

And if we write,

X 1 � (1� 2x)ÿ
1
2; X 2 � (1� 2x(1� 3x)ÿ

1
2)ÿ

1
2;

X 3 �
�

1� 2x

�
1� 3x

�
1� 37

6
x

�ÿ1
2
�ÿ1

2
�ÿ1

2

;

X 4 �
�

1� 2x

�
1� 3x

�
1� 37

6
x

�
1� 727

148
x

�ÿ1
2
�ÿ1

2
�ÿ1

2
�ÿ1

2

X 5 �
�

1� 2x

�
1� 3x

�
1� 37

6
x

�
1� 727

148
x

�
1� 25 743 589

1 936 728
x

�ÿ1
2
�ÿ1

2
�ÿ1

2
�ÿ1

2
�ÿ1

2

;

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(587)

then with the last series, 1ÿ x � 3x2 ÿ &c:, which has alternate signs, and for values of x which
are positive, and not too large, we may establish the inequalities, X , 1, . X 1, X 2, . X 3, , X 4, as
in (253); or more fully, we may write the chain of inequalities,

1 . X 2 . X 4 . X . X 3 . X 1 . 0: (588)

But whether the function X, in (585), is greater or less than X 5, even for positive and moderate
values of x we cannot yet decide, until we are given the coef®cient a6, and have deduced from
it at least the algebraical sign of the connected coef®cient av

1, so as to determine whether X v is
less or greater than unity.

LXX. We may also write, with the last adopted sign of x, the series of equations,

X ÿ2 � 1� 2xX 9; X 9ÿ2 � 1� 3xX 0; X 0ÿ2 � 1� 37

6
xX -;

X -ÿ2 � 1� 727

148
xX õv ; X õvÿ2 � 1� 25 743 589

1 936 728
xX v ;

9>>=>>; (589)

and
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X 9 � 1ÿ a91x � a92x2 ÿ a93x3 � a94x4 ÿ a95x5 � � � � ;
X 0 � 1ÿ a 01x � a 02x2 ÿ a 03x3 � a 04x4 ÿ � � � ;
X - � 1ÿ a -1x � a -2x2 ÿ a -3x3 � � � � ;
X õv � 1ÿ aõv

1 x � aõv
2 x2 ÿ � � � ;

X v � 1ÿ av
1 x � � � � as above;

9>>>>>>>>=>>>>>>>>;
(590)

where a91, a92, a93, a94, a 01, a 02, a 03, a -1, a -2, aõv
1 , have still the values (582); and a95, a 04, a -3, aõv

2 , av
1 ,

will admit of being successfully calculated, as soon as a6 shall be known; a1, a2, a4, a5,
retaining still the values of (581). And for such successive calculation we may employ, at
pleasure, either of the two following systems of formulñ, which may therefore serve as checks
upon each other, and which are collected for convenience here, although they have substan-
tially been given already, in (575) and (579):
(I.)

a1a95 � a6 ÿ 3 a1a5 � a2a4 � 1

2
a2

3

� �
� 6 a2

1a4 � 2a1a2a3 � 1

3
a3

2

� �
ÿ 10 a3

2a3 � 3

2
a2

1a2
2

� �
� 15a4

1a2 ÿ 7

2
a6

1;

a91a 04 � a95 ÿ 3(a91a94 � a92a93)� 6(a91
2a93 � a91a91

2)ÿ 10a91
3a92 � 3a91

5;

a 01a -3 � a 04 ÿ 3 a 01a 03 � 1

2
a 02

2

� �
� 6a 01

2a 02 ÿ 5

2
a 01

4;

a -1aõv
2 � a -3 ÿ 3a -1á-2 � 2a -1

3; aõv
1 av

1 � aõv
2 ÿ

3

2
aõv2

1 ;

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

(591)

(II.)

a6 � a1a95 � 3a2
1 a94 � a91a93 � 1

2
a92

2

� �
� 15

2
a3

1 a93 � 2a91a92 � 1

3
a91

3

� �
� 35

2
a4

1 a92 � 3

2
a91

2

� �
a95 � a91a 04 � 3a91

2(a 03 � a 01a 02)� 15

2
a91

3(a 02 � a 01
2)� 35

2
a91

4a 01 � 63

8
a91

5;

a 04 � a 01a -3 � 3a 01 a+2 � 1

2
a -1

2

� �
� 15

2
a 01

3a -1 � 35

8
a 01

4;

a -3 � a -1aõv
2 � 3a -1

2aõv
1 �

5

2
a -1

3;

aõv
2 � aõv

1 av
1 �

3

2
aõv2

1 :

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;
(592)

Each system conducts us, with the values (581) for a1, a2, a3, a4, a5, and therefore with the
values (582) for a91, a92, a93, a94, a 01, a 02, a 03, a -1, a -2, aõv

1 , to the following chain of linear equations,
connecting successively
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a95, a 04, a -3, aõv
2 , and av

1 with a6:

a95 � a6 ÿ 3137; 48a 04 � 32a95 ÿ 98 439; 127 872a -3 � 41 472a 04 ÿ 72 370 301;

95 545 248aõv
2 � 38 901 504a -3 ÿ 6 119 799 487;

199 433 318 547 168av
1 � 30 007 322 767 872aõv

2 ÿ 1 988 197 123 802 763;

9>>>>>=>>>>>;
(593)

in which I think that the coef®cients, though large, may be relied on. Eliminating,
successively, a95, a 04, a -3, and aõv

2 , we ®nd these other equations:

48a 04 � 32a6 ÿ 198 823;

127 872a -3 � 27 648a6 ÿ 244 153 373;

859 907 232aõv
2 � 757 00 224a6 ÿ 723 570 130 657;

and finally,

199 433 318 547 168av
1 � 2 641 635 016 704a6 ÿ 27 237 900 403 209 435 . . . :

9>>>>>>>>=>>>>>>>>;
(594)

It appears, then, that if we con®ne ourselves to integer numbers as limits,

a95 , 0, if a6 , 3137; a 04 , 0, if a6 , 6213; a -3 , 0 , if a6 , 8830;

aõv
2 , 0, if a6 , 9558; and finally, av

1 , 0, if a6 , 10 311:

)
(595)

whereby it is not implied that the conditioned inequalities would in all cases not be satis®ed, if
the conditioning inequalities should cease to exist. In fact, we should have, in addition to the
result (595), these others:

a95 � 0, if a6 � 3137; a 04 , 0, if a6 � 6213; a -3 , 0, if a6 � 8830;

aõv
2 , 0, if a6 � 9558; and av

1 , 0, if a6 � 10 311:

)
(596)

On the other hand, using still integer limits,

a95 . 0, if a6 . 3137; a 04 . 0, if a6 $ 6214; a -3 . 0, if a6 $ 8831;

aõv
2 . 0, if a6 $ 9559; and finally, av

1 . 0, if a5 $ 10 312:

)
(597)

Thus, in particular, when we assume

a6 � 11:9:7:5:3:1 � 10 395, (598)

(compare (540),) then

a95 . 0, a 04 . 0, a -3 . 0, aõv
2 . 0, av

2 . 0; (599)

although the condition for the existence of this last inequality is only barely satis®ed. And, on
computing the fractional values of these coef®cients, we ®nd them to be, for this last value of
a6, (namely for that which presents itself in a series of Laplace, with which we started in this
Letter,) the following:

a95 � 7258; a 04 � 133 817

48
; a -3 � 43 247 587

127 872
; aõv

2 �
63 333 697 823

859 907 232
;

and finally av
1 �

221 895 595 428 645

199 433 318 547 168
:

9>>=>>; (600)
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LXXI. Recapitulating the results obtained by the present method of transformation, as applied to
the last mentioned series, we may say that if

X � 2

x

� �1
2

E
1

2x

�1
(2x)ÿ

1
2

Eÿ t 2

dt � 1ÿ 1:x � 1:3x2 ÿ 1:3:5x3 � 1:3:5:7x4

ÿ 1:3:5:7:9x5 � 1:3:5:7:9:11x6 ÿ &c:, ad infinitum, (601)

then

X ÿ2 � 1� 2xX 9, whenX 9 � 1ÿ 3

2
x � 8x2 ÿ 62x3 � 612x4 ÿ 7258x5 � &c:; (602)

X 9ÿ2 � 1� 3xX 0, X 0 � 1ÿ 37

12
x � 131

b6
x2 ÿ 3545

16
x3 � 133 817

48
x4 ÿ &c:; (603)

X 0ÿ2 � 1� 37

6
xX -, X - � 1ÿ 727

296
x � 67 591

2664
x2 ÿ 43 247 587

127 872
x3 � &c:; (604)

X -ÿ2 � 1� 737

148
xX õv , X õv � 1ÿ 25 743 589

3 873 456
x � 63 333 697 823

859 907 232
x2 ÿ &c:; (605)

and

X iíÿ2 � 1� 25 743 589

1 936 728
xX v , X v � 1ÿ 221 895 595 428 645

199 433 318 547 168
x &c:; (606)

where each of the ``&c.''s, in (602) to (606), remains as yet uncalculated, even the algebraic
signs of the unwritten terms being (in rigour) as yet unknown, whatever guesses may be made
respecting them: because, although the law of the celebrated series (601) is known, we have
hitherto used only the terms which have been lately written down, ± nor am I likely to think it
worth while to take even one more term of the series into account, so as to deduce any others of
these frightful fractions from it! And it is unnecessary to make the admission, which however
I cheerfully do make, that although, perhaps, some little re®nement may have been brought
into play, in the manner of calculating and verifying the fractions in these series, (602), . . . ,
(606), yet there is no dif®culty in the calculation of them, which might not have been overcome
by the mere patience of a beginner, who was just acquainted with the rules of vulgar arithmetic,
and with a few of the early rules of algebra; not even the general binomial theorem being required.

LXXII. But now that the fractional coef®cients have been, so far, computed, can any use of
them be made? I think that there can ± though well inclined to admit that, perhaps, ``le jeu
ne vaut pas la chandelle''. ± I shall begin with an Example, which had been considered by me
before this Letter was commenced, and to which you will ®nd an allusion, (unintelligible,
doubtless, hitherto,) so early as in paragraph III. Let then x be supposed to be equal to 1

2, in
the series for X, which thus acquires the value, X � Lÿ11:879 596 0 � 0:757 87, nearly as has
been seen in the course of this Letter (compare (7)). I did not know, at the time, what the
fractional coef®cient of x in X v , (606), might be; not even its algebraic sign. Assuming,
therefore, as the best guess in my power to make, that x v was equal to unity, or that the series
for X v reduced itself to its ®rst term, I had, successively, on the hypothesis that every one of the
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preceding quantities of the form X (n) was positive, and with the corresponding interpretation
of the radicals ( )ÿ

1
2,

X õv � (1� á5x)ÿ
1
2 � Lÿ11:558 28, nearly, ifx � 1

2, and á5 � 25 743 589

1 936 728
; (607)

X - � (1� á4xX õv)ÿ
1
2 � (1� 0:888 22)ÿ

1
2 � Lÿ11:861 97, where á4 � 72

148
; (608)

X 0 � (1� á3xX -)ÿ
1
2 � (1� 2:2438)ÿ

1
2 � Lÿ11:744 47, where á3 � 37

6
; (609)

X 9 � (1� á2xX 0)ÿ
1
2 � (1� 0:832 84)ÿ

1
2 � Lÿ11:868 44, where á2 � 3; (610)

and finallyX (or rather X 5) � (1� á1xX 9)ÿ
1
2 � (1� 0:738 65)ÿ

1
2

� Lÿ11:879 89 � 0:758 39 nearly, with á1 � 2: (611)

(I pick out these logarithms, &c., from a page of more than 3 months old, without at present
seeking to correct or to examine them; but the same approximate value, to 5 decimals, namely
X � 0:75839 was obtained, about the same time, by a different logarithmic process ±
introducing cosines and tangents, from the same data. ±) It struck me as remarkable then,
and still appears to me worthy of remark, that the approximate X, or rather rigorously
de®ned X 5, see (587) namely the approximate value 0´75839, ± deduced in this way, by
positive inverse square roots, is much nearer to the true value, (X � 0:75787,), not only than that
obtained by my exponential method, which value was X 5 � 0:6748, (142), but even than that of
the method of reciprocals, which gave by (89), X 5 (or T5) � 0:75145. But it surprised me to see
that the error (such as it was) of the ``Method of Square Roots'' was in the wrong direction or at
least in an unusual one : since it gave (compare (36)) X 5 greater than the true X, instead of
giving one less than it.

LXXIII. It will serve to throw light on this result, if we pursue an opposite course, or adopt
an inverted order calculation, and deduce successively X 9, X 0, X -, X õv , X v , from the value of
X considered as known, by means of the formulñ

X 9 � X ÿ2 ÿ 1

á1x
, X 0 � X 9ÿ2 ÿ 1

á2x
, X - � X 0ÿ2 ÿ 1

á3x
, X õv � X -ÿ2 ÿ 1

á4x

X v � X õvÿ2 ÿ 1

á5x
,

9>>>=>>>; (612)

with the recent values of á1, á2, á3, á4, á5; to which we may add the analogous formula,

X võ � X vÿ2 ÿ 1

á6x
, if á6 � 22 189 595 428 645

99 716 659 273 584
; (613)

so that we have, at least nearly, these 5 constant logarithms, for the question,

Lá1 � 0:301 030 0, Lá4 � 0:477 121 3, Lá3 � 0:790 050 4,

Lá4 � 0:691 272 7, Lá5 � 1:123 600 4;

)
(614)

with which may be combined, if we choose, this 6th logarithmic constant,
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Lá6 � 0:347 381 0: (615)

If we suppose

X � cos î, X 9 � cos î9, X 0 � cos î 0, X - � cos î-, X õv � cos îõv , . . . , (616)

and if each X, at least as far as X (n), is . 0, , 1, then î, î9, î 0, . . . as far as î(n), will be real,
and may be regarded as being in the ®rst positive quadrant; and after calculating, with the
help of Kramp's Table, or otherwise, the numerical value of X, and therefore that of î, we can
go on to deduce from it î9, î 0, &c., in succession, as long as they continue to be real, by the
formulñ,

á1x cos î9 � (tan î)2, á2x cos î 0 � (tan î9)2, &c: (617)

In this manner, by supposing

x � 1

2
, and therefore X � 2E

�1
1
Eÿ t 2

dt � Lÿ11:879 596 0 � cos 40843923 0, (618)

I have found,

î � 40843923 0; î9 � 42810948 0; î 0 � 56848950 0; î- � 40841942 0; and îõv � 72828929 0; (619)

but îv would be imaginary, because its cosine is equal to

X v � Lÿ10:178 691 0 � 1:508 87 . 1: (620)

Now it is from this circumstance that the angle îv is here imaginary, or that its theoretical
cosine, X v , is in the present question greater than unity, that the fact of the approximation X 5

being in excess (and not in defect) depends: as easily appears, if we apply the principles of the
present Letter. It is true, indeed, that the series (606) for X v begins with the terms 1ÿ 1

2á6x,
where á6 has been found to be positive, (613); but this series may be presumed to be a very
divergent one, and it is not surprising, on consideration, that the terms which follow those here
written should raise its value, above that of the 1st term, 1; because no proof has been given
that this development (606) belongs to that great class of alternating series, which you and
others with justice consider to possess a prerogative, and to be by eminence important. Still, I
confess that I did at ®rst expect ± or at least was under the impression ± until numerical
calculation, in the recent example, proved the contrary, ± that X v would be found to be
always less than unity, if x were positive and real, and if the coef®cient á6 were positive. And
hence, when I perceived that the approximate value X 5 was slightly in excess, (after X 1, X 2, X 3,
X 4 had comported themselves as usual, so as to be alternately less and greater than X,) I not
only inferred that X v was . 1, (which it really is), for x � 1

2, but also was led to anticipate that á6

would be found to be negative; or that the series for X v must begin with 1 � ´ ´ ´ , and not with
1 ÿ ´ ´ ´. Yet I see no reason to suspect that any arithmetical error has crept into the
calculation of the value (613) for á6; and therefore I must now condemn that anticipation, as
having been erroneous.

LXXIV. It still appeared (and appears) to me, notwithstanding, that from the way in which
the series for X v begins, the function which that series represents must be both positive and less
than unity, if x be positive, and not too large; and that the same thing may be asserted,
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respecting each of the preceding functions of the same group: so that the chain of inequal-
ities, (588), ought to admit of being enlarged, by the addition of another link, as follows:

1 . X 2 . X 4 . X . X 5 . X 3 . X 1 . 0, (621)

if we do not exceed some positive limit, which I have not attempted to determine. Or, writing not
only

X � cos î, but also X 1 � cos î1,

X 2 � cos î2, X 3 � cos î3, . . . :

�
(622)

I still expected (and expect) that, for suf®ciently moderate and positive values of x, there ought
to be found this other chain:

ð

2
. î1 . î3 . î5 . î. î4 . î2 . 0; (623)

where î1, î2, . . . , î5, and (if necessary) î6, may be computed from the usual Tables of
Logarithmic Sines, by a very easy and uniform set of processes, which admits of being
formulated thus:

tan î1 � (á1x)
1
2; (624)

tan T2 � (á2x)
1
2, tan î2 � (á1x cos T2)

1
2; (625)

tan T3 � (á3x)
1
2, tan T 93 � (á2x cos T3)

1
2, tan î3 � (á1x cos T 93)

1
2; (626)

tan T4 � (á4x)
1
2, tan T 94 � (á3x cos T4)

1
2, tan T 04 � (á2x cos T 94)

1
2, tan î4 � (á1x cos T 04)

1
2; (627)

tan T5 � (á5x)
1
2, tan T 95 � (á4x cos T5)

1
2, tanT 05 � (á3x cos T 95)

1
2,

tan T -5 � (á2x cos T 05)
1
2, tan î5 � (á1x cos T -5)

1
2; (628)

&c. ± If I shall go on to give an Example, and a Type, it will of course not be that I can
suppose you to stand in any manner in need of any such illustration, but simply, or chie¯y,
because it may be a comfort to myself, hereafter, to have such an example, and such a type,
collected along with others of the same general kind, in the copy that is to be presented for me
of this Letter.

LXXV. Let therefore x be now assumed equal to 1
18, so that the de®nite integral, to be by the

present method studied, is (compare a note to paragraph XVI.), (see also equation (9),)

X � 6E9

�1
3
Eÿ t 2

dt � Lÿ11:978 554 1 � cos 17851929 0:5 � 0:951 818: (629)

Here

Lá1x � 1:045 757 5; Lá2x � 1:221 848 8; Lá3x � 1:534 777 9; Lá4x � 1:436 000 2;

Lá5x � 1:868 327 9; (630)

and the calculations for the determination of î3, î4, î5 may proceed as follows.

Type (numbered for references as) . . . (631)
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[which is displayed on p. 131].
And here we see that î3 . î5 . î. î4, because

17851954 0:6 . 17851932 0:6 . 17851929 0:5 . 17851926 0:6: (632)

In fact we ®nd that, in this case, the angles î9, î 0, î- îõv , îv are all real, although îvõ is
imaginary or in other words, X 9, X 0, X -, X õv , and X v are here each . 0, and , 1, but X võ is
here . 1, as appears by the little Type annexed, which I number as (633).

Type. (633) 2L tan î � 1´016 212 4
(sub.)Lá1x � 1´045 757 5

î9 � 208539430´9 � (L cos)ÿ1 � 1´970 454 9
2L tan î9 � 1´163 611 4

(sub.)Lá2x � 1´221 848 8
î0 � 29809480´5 (L cos)ÿ1 � 1´941 762 6

2L tan î0 � 1´487 985 5
(sub.)Lá3x � 1´534 777 9

î- � 26879190´5 � (L cos)ÿ1 � 1´953 207 6
2L tan î- � 1´381 053 1

(sub.)Lá4x � 1´436 000 2
îõv � 28813940´3 (L cos)ÿ1 � 1´945 052 9

2L tan îõv � 1´459 296 0
(sub.)Lá5x � 1´868 327 9

îv � 6783930´2 (L cos)ÿ1 � 1´590 968 1
2L tan îv � 0´746 443 0

(sub.)Lá6x � 1´092 108 5
Xvõ � 45´11643 � Lÿ11´654 334 5

numbered for reference as (633)

and in which (as usual) I do not pledge myself for all the ®gures that are set down: for (if I
have made no important mistake) X võ even exceeds 45. Hence I should expect to ®nd that
X 6 errs by defect; or that, in the present case (x � 1

8), we must have î6 . î. And accordingly, on
calculating î6 in the same way as î3, î4, î5, (631), I ®nd the following auxilliary angles

T6 � 19822918 0:8, T 96 � 3985191 0:2, T 06 � 24835940 0:4,

T -6 � 2981092 0:2, T õv
6 � 20852952 0:6;

)
(634)

and ®nally,

î6 � 17851932 0:4 . 17851929 0:5: (635)

In this case, î6 seems to be almost exactly the same as î5, being however a little less than it. But
I give the numbers merely as illustrations; and with the same view add that in the present case
of the present method,

X 3 � cos î3 � 0:951 781; X 4 � cos î4 � 0:951 823; X 5 � cos î5 � 0:951 814; (636)

the corresponding approximations in the method of continued fractions, being

X 3 � 138

145
� 0:951 724; X 4 � 494

519
� 0:951 830; X 5 � 3654

3839
� 0:951 810; (637)
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Table II.I.

(î � cosÿ1 X � 17851929 0:5) Lá5x � 1:8683279

T5 � 40840925 0:4 � (L tan)ÿ11:9341639j5

L cos T5 � 1´8799173

Lá4x � 1´4360002 Lá4x � 1:4360002

2)1:3159175

T4 � 27834956 0:6 � (L tan)ÿ11:7180001 T 95 � 24827946 0:5 � (L tan)ÿ11:6579587j5

L cos T4 � 1:9476032 L cos T 95 � 1:9591509

Lá3x � 1:5347779 Lá3x � 1:5347779 Lá3x � 1:5347779

2)1:4823811 2)1:4939288

T3 � 38820927 0:7 � (L tan)ÿ11:7673889|5 T 94 � 28851925 0:0 � (L tan)ÿ11:7411905|5 T 05 � 29810948 0:2 � (L tan)ÿ11:7469644

L cos T3 � 1:9360280 L cos T 94 � 1:9424186 L cos T 05 � 1:9410600

Lá2x � 1:2218488 Lá2x � 1:2218488 Lá2x � 1:2218488

2)1:1578768 2)1:1642674 2)1:1629088

T 93 � 20846911 0:3 � (L tan)ÿ11:5789384 T 04 � 20854935 0:8 � (L tan)ÿ11:5821337 T -5 � 20852948 0:3 � (L tan)ÿ11:5814544

L cos T 93 � 1:9708175 L cos T 04 � 1:9704132 L cos T -5 � 1:9704996

Lá1x � 1:0457575 Lá1x � 1:0457575 Lá1x � 1:0457575

2)1:0165750 2)1:0161707 2)1:0162571

î3 � 17851954 0:6 � (L tan)ÿ11:5082875 î4 � 17851926 0:6 � (L tan)ÿ11:5080853|5 î5 � 17851932 0:6 � (L tan)ÿ11:5081285|5



while the true theoretical value is nearly,

X � 0:951 818, (629)

as above stated; so that the method of square roots gives here results which are decidedly more exact
(though not very importantly so in practice) that those given by the method of reciprocals:
although this last mentioned method was seen (in the lately cited note to paragraph XVI.) to
give results superior in accuracy to those furnished by the methods of exponentials namely than
the following:

X 5 � 0:951 600; X 4 � 0:951 870; X 5 � 0:951 797: (638)

LXXVI. I shall only add, as regards the ``method of square roots'', than when I took, as
another example, x � 1

8,

X � 4E4

�1
2
Eÿ t 2

dt � 1:956 818 5 � cos î � 0:905 354, î � 2587944 0:3 (639)

(compare equation (8)) I found (by a rather hasty calculation) the values,

î9 � 28821915 0, î 0 � 3982948 0, î- � 3182494 0, îõv � 52838914 0 (640)

so that these 4 angles, like î itself, are real; but îv is an imaginary angle,

X v � cos îv � Lÿ10:013 838 8 . 1; (641)

whence I inferred that the approximate value X 5 should err in excess; or that we should here
®nd

î5 . î: (642)

Accordingly on computing, with a little more care, the values of T5, . . . , î5, by the type (631),
I found the values

T5 � 52811945 0:7; T5 � 31811943 0:4; T 05 � 3981939 0:2;

T -5 � 28821926 0:6; (643)

and ®nally,

î5 � 2587942 0:8 , 2787944 0:3; X 5 � cos î5 � 0:905 357 . 0:905 354: (644)

It is remarkable, however, how tri¯ing these little errors, in the present method, are, as compared
with those which remained, at the corresponding stages of the applications of the two other
methods of this Letter, to the same case, x � 1

8, or to the de®nite integral (639), or (8). Thus,

the method of reciprocals has given by (139), X 5 � 1672

1847
� 0:90 464 4.

LXXVII. It appears, then, that of the three methods of transformation of a diverging series, which
have been selected for special study and discussion in this long and now almost concluded
Letter, the ``Method of Inverse Square Roots'' possesses some important advantages, as
regards rapidity of approximation, over the other two although it may fail, at a certain stage, to
produce results alternately less and greater than the true theoretical value of the function, from which
series is conceived to have been developed. The rationale of this advantage, in one respect,
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and comparative disadvantage in another respect, of the third method of this Letter, as compared
with the two other methods, and also of the ®rst method as compared with the second, appears to
consist in the circumstance that of the three elementary series,

(I :), x � (1� x)ÿ1 � 1ÿ x � x2 ÿ x3 � &c:;

(II :), x � Eÿx � 1ÿ x � x2

2
ÿ x3

2:3
� &c:;

and

(III :), x � (1� 2x)ÿ
1
2 � 1ÿ x � 3x2

2
ÿ 3:5x3

2:3
� &c:,

9>>>>>>=>>>>>>;
(645)

the Ist, when x . 1 is more divergent than the IInd, but less so than the IIIrd. We use a more
divergent tool in one transformation than in the other, but we may overdo the business, by
taking too powerful an instrument into our hands. It occurred to me, however, from such
general considerations as those to which I have been now alluding, and before I began to write
the present Letter, that the following fourth form, of an auxilliary and elementary series,
analogous to those lately mentioned, namely this one:

(IV :) x � (1� 4x)ÿ
1
4 � 1ÿ x � 5x2

2
ÿ 5:9x3

2:3
� &c: (646)

might possibly be found to be still more powerful, and useful in some important cases of
transformation of divergent developments, although it might require, for such utility, or at least for
continuing to exhibit an alternating character in its results, a still greater degree of rapidity in the
increase of the coef®cients of the transformand. And such, precisely, continues to be my impression,
although I have not expended much labour, (nor indeed any that is worth mentioning,) upon
the examination of this part of the whole question and subject. I may just add that papers, not
since examined, which were written before this Letter was begun appeared to give me, for a
transformation of the recent function X, (so well known in connexion with Laplace, &c.,) the
expression:

X �
�

1� 4x

�
1� 2x

�
1� 35

4
x

�
1ÿ 817

14
xX õv

�
ÿ1

4

�
ÿ1

4

�
ÿ1

4

�
ÿ1

4; (647)

where X õv denotes a series of which the Ist term is unity. You conceive, of course, that I
should have remarks to make on this last expression, of the same general kind as those which
have been already made. But the only remark which at present, and in the conclusion of this
Letter, I shall allow myself to add, is this, to show the great caution with which such diverging
tools as these ought to be used: that if we assume x � 1

2, we have not X .(1� 4x)
1
4, for all

positive values of x; since we saw, very early in this Letter, (37), that X , 3
1
4 when x � 1

2. ±
Such caution, combined with such encouragement, for the use of Diverging Series, may induce
you (perhaps) to forgive me, for having (potentially but I suppose not actually) occupied so
much of your time as would be required for even glancing through this Epistle, begun� on the
15th of February, but only ®nished on the 22nd of May. I am yours faithfully,

W. R. Hamilton.

j

j

j

j

� I ®nd an entry in my Book C. 1858, [Trinity College, Dublin MS 1492/143]. p. 119 dated February
15th 1858, ``Would this appear a paradox to De Morgan?'' All this long Letter has been designed, while
preserving the date of that entry, to do full justice to its spirit. . ..
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2. On The Solution of a Third Order Differential Equation

Observatory, July 15th, 1858
My dear De Morgan,

When I began, on the 15th of February last, that terribly long Letter
which you were so good humoured as to allow me to continue, by instalments, until it came at
length to a point at which I was content to close it. I stated that I had just then been led to
perceive that certain linear equations of the third order, between two variables and with variable
coef®cients, had important connexions with some mathematico-physical investigations; and
that I hoped to be able to integrate the equation in question, at least with the help of series,
though not proceeding according to powers alone, but introducing logarithms (or a logarithm)
also. Indeed, I ®nd a memorandum that in a note� to the First Sheet of that long Letter, I
remarked that the equation,

(xD)3 y � x2 Dxy � 0, (a)

had for one particular integral the ascending series,

y � a
Xm�1
m�0

ÿ 1

2

� �m

([0]ÿm)3 x

2

� �2m

; (b)

where a is an arbitrary constant, and [ÿ1=2]m , [0]ÿm are factorials, to be interpreted as in the
notation of Vandermonde,� which I learned long ago from the third Volume of La Croix,y

(long missing from my library,) and in which notation the symbol [n]m denotes the same
thing as

Ã(n � 1)

Ã(n ÿ m � 1)
;

so that, if m be a positive whole number,

[n]m � n(n ÿ 1)(n ÿ 2) � � � (n ÿ m � 1);

[n]ÿm � (n � 1)ÿ1(n � 2)ÿ1(n � 3)ÿ1 � � � (n � m)ÿ1:

(
I remarked also that another particular integral, with another arbitrary constant b, was given by
the descending series,

y � b

x

Xm�1
m�0

[0]ÿm ÿ 1

2

� �m
 !3

x

2

� �ÿ2m

; (c)

and that although these two series, (b) and (c), appeared to exhaust all the particular integrals
of the triordinal equation (a), which are expressible by powers alone, yet I had found a third
particular integral, of the form

y � c(Ax � Bx log x); (d)

� [See p. 35 of this volume.]
y [Sylvestre FrancËois Lacroix (1765±1843), TraiteÂ des diffeÂrences et des seÂries (faisant suite au TraiteÂ du

calcul diffeÂrentiel et du calcul inteÂgral), p. 74. Paris: 1800.]
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where c is a third arbitrary constant, Bx is the ascending series (b), and Ax is a new ascending
series. I stated at the same time, that although the equation of the third order (a) was thus
completely integrated, by the combination of these three particular integrals, (b), (c), (d), yet I
thought that I saw how to obtain a fourth particular integral, (with a fourth arbitrary constant,)
which should involve the square of the logarithm of x; and even that I should want such fourth
form, for the purposes of my investigation. And ®nally, in the same note, ± of which I repeat
the substance now, to save you the trouble of a reference, ± even in case that you have
preserved and can ®nd the sheet of which I speak, ± I observed that if (as I suspected) the
fourth particular integral existed, it could not be independent of the other three : but that on this
whole subject I must write again. I now propose to redeem that promise, or to ful®l that
expressed intention: and trust that if you read this new long Letter, ± for such I fear that it
must be, ± you will consider me to have at last completely overcome the dif®culties, ®rst, of
assigning the fourth form of integral, and second, of connecting it with the other three.

I. The manner in which
x

2
enters into the lately cited series, (b) and (c), may serve to suggest

the convenience of assuming, as the fundamental Equation of the present Letter, the
following:

(xD)3 y � 4x2 Dxy � 0; (1)

where D � d

dx
and the introduction of the coef®cient 4 makes, of course, no essential change,

in the nature of the question to be discussed. If we make è � log x, the equation becomes,

D3
è y � 4EèDèEè y � 0; (2)

and many other transformations may be made, whereof I have found some to be useful. For
example, we have the symbolic equations,

(xD)3 � x3 D3 � 3x2 D2 � xD, and Dx � xD � 1;

writing therefore

Dy � y9, D2 y � y 0, D3 y � y -,

we have

x2 y -� 3xy 0� (1� 4x2) y9� 4xy � 0: (3)

Let ä be a symbol of operation, such that

ä � (xD)3 � 4x2 Dx � D3
è � 4EèDèEè; (4)

then the triordinal equation may be thus brie¯y written:

äy � 0: (5)

The operation ä is such that

äx í � í3x í � 4(í� 1)xí�2; (6)

if then we assume that y can be expressed by a series, such as

y �Paíx v , (7)
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the differential equation will give this equation in ®nite differences,

í3aí � 4(íÿ 1)aíÿ2 � 0: (8)

This last equation gives,

a1 � 0, a3 � 0, a5 � 0, &c:

unless a1 be in®nite; it gives also

a2 � 0, a4 � 0, a6 � 0, &c:,

unless a0 be in®nite; if then we exclude in®nite coef®cients, and retain only whole exponents, we
must suppose the series (7) to involve only powers whose exponents are positive and even,
including 0; or only those whose exponents are negative and odd; or else a mixture of both.
The ®rst supposition gives the particular integral,

y � a0

Xm�1
m�0

ÿ 1

2

�m

(0eÿm)3x2m ; (9)

where I write for shortness,

nem instead of [n]m , or of
Ã(n � 1)

Ã(n ÿ m � 1)
;

so that

ÿ 1

2

�m

� ÿ1
2:ÿ

3

2
:ÿ 5

2
: � � � : 1ÿ 2m

2
� ÿ 1

2

� �m

:1:3:5:7: � � � :(2m ÿ 1);

and

0eÿm � Ã1

Ã(m � 1)
� 1

1:2:3:4: � � � :m :

The second supposition gives this other particular integral,

aÿ1xÿ1
Xm�1
m�0

ÿ 1

2

�m
 !3

0eÿm xÿ2m ; (10)

and the third supposition gives merely the sum of the last two values for y. If we admitted
fractional exponents, (or incommensurable ones,) the series (7) would then, of necessity,
extend inde®nitely both ways, ascending and descending; and I wish for the present to avoid the
consideration of such mixed series. It appears, then, that if we choose that our series (7) for y
should only ascend, we must adopt the form (9), which answers to the series (b) of my lately
cited note; and that if we wish the series only to descend, it must be of the form (10), which
corresponds to the development (c) of the same note.

II. But the form (2) of the triordinal equation (1) suggests the assumption of this other
expression for y:

y � Ax � èBx � è2C x ; (11)
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where è � log x, but Ax , Bx , Cx are three functions of x, which do not expressly involve this
logarithm. In fact, with the de®nition (4) of the symbol ä, we shall have

äèBx ÿ èäBx � 3D2
èBx � 4x2 Bx � (3D2

è � 4x2)Bx ;

äè2Cx ÿ è2äCx � 2è(3D2
è � 4x2)Cx � 6DèCx ;

)
(12)

therefore

äy ÿ (äAx � èäBx � è2äCx) � (3D2
è � 4x2)Bx � 6DèCx � 2è(3D2

è � 4x2)Cx ; (13)

and the differential equation äy � 0 will be satis®ed, if we satisfy the systems of the three
following equations:

äCx � 0; äBx � 2(3D2
è � 4x2)Cx � 0; äAx � (3D2

è � 4x2)Bx � 6DèCx � 0 (14)

in which,

Dè � xD, and D2
è � (xD)2 � x2 D2 � xD:

We shall therefore at least satisfy the triordinal equation äy � 0 by the expression (11) for y,
if we suppose, ®rst, that Cx � 0; second, that Bx is any particular integral of the equation (1),
for example the ascending series (9), so that äBx � 0; and third, that Ax satis®es this other
differential equation,

äAx � (3D2
è � 4x2)Bx � 0: (15)

We shall thus have

Bx � a0 � a2x2 � a4x4 � &c:, (16)

with the equation in differences (8), to connect the coef®cients a2, a4, . . . with a0 or to
determine their ratios to that initial and arbitrary constant; which equation (8), because
í � 2m, becomes, in this application,

2m3a2m � (2m ÿ 1)a2mÿ2 � 0: (17)

To satisfy (15), without introducing into Ax a part equal to Bx3 a constant, which would be
useless, because we already know that such a part will be a particular integral of ä y � 0, and
may be added, at the end of the process, to any other integral of that equation, we may
assume

Ax � á1a2x2 � á2a4x4 � á3a6x6 � &c:, (18)

where á1, á2, á3, . . . , are constants to be determined by (15). The operation ä will give, by
(6),

äám a2m x2m � 4ám a2mf2m3x2m � (2m � 1)x2m�2g; (19)

also,

(3D2 � 4x2)a2m x2m � 12m2a2m x2m � 4a2m x2m�2; (20)

therefore collecting the coef®cients of x2m in (15), changing (2m ÿ 1)a2mÿ2 to ÿ2m3a2m by
(17), and dividing by 8m3a2m , we ®nd this new equation in differences,
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ám ÿ ámÿ1 � 1

2m ÿ 1
ÿ 3

2m
: (21)

Thus,

á0 � 0, á1 � 1

1
ÿ 3

2
� ÿ 1

2
; á2 � ÿ 1

2
� 1

3
ÿ 3

4
� ÿ11

12
, á3 � ÿ11

12
� 1

5
ÿ 3

6
� 73

60
, &c:

(22)

but

a2 � ÿ 1

2
a0, a4 � 1:3

13:23
ÿ 1

2

� �2

a0 � 3a0

32
, a6 � 1:3:5

13:23:33
ÿ 1

2

� �3

a0 ÿÿ5a0

576
, &c:; (23)

therefore,

á1a2 � 1

4
a0, á2a4 � ÿ 11

128
a0, á3a6 � � 73

6912
a0, &c:; (24)

and ®nally the series for Ax and Bx are the following:

Ax � a0
x2

4
ÿ 11x4

128
� 73x6

6912
ÿ &c:

� �
; (25)

Bx � a0 1ÿ x2

2
� 3x4

32
ÿ 5x6

576
� &c:

� �
: (26)

These series, (except that x has since been changed to 2x,) were those alluded to in my cited
note, as entering into the third particular integral (d) of the equation of the 3rd order (a); and
(with our present x) the corresponding integral of the triordinal equation (1) may be thus
written:

y � c

a0
(Ax � Bx log x) � c

x2

4
ÿ 11x4

128
� 73x6

6912
ÿ � � �

� �
� cè 1ÿ x2

2
� 3x4

32
ÿ 5x6

576
� � � �

� �
(27)

where c is an arbitrary constant. As a veri®cation, this last expression (27) for y gives,

4x2 Dxy � 4(x3 Dy � x2 y) � 4c
x4

2
ÿ 11x6

32
� 73x8

1152

� ��
ÿ � � �

 !

� 4c
x4

4
ÿ 11x6

128
� 73x8

6912

� ��
ÿ � � �

 !
� 4c x2 ÿ x4

2
� 3x6

32
ÿ 5x8

576

� ��
� � � �

 !

� 4cè ÿx4 � 3x6

8
ÿ 5x2

96

� ��
� � � �

 !
� 4cè x2 ÿ x4

2
� 3x6

32
ÿ 5x8

576

� ��
� � � �

 !

� c 4x2 � x4 ÿ 43

32
x6 � � �

� �
� cè 4x2 ÿ 6x4 � 15

8
x6 � � �

� �
;

this then is one part of äy; and the other part is its negative, namely,

� The terms within square brackets, though written down, have not been used in this veri®cation.
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(xD)3 y � c 2x2 ÿ 11x4

2
� 73x6

32
ÿ � � �

� �
� 3x ÿ2x2 � 3x4

2
ÿ 5x6

16
� � � �

� �
� cè ÿ4x2 � 6x4 ÿ 15

8
x6� � � �

� �
� c ÿ4x2 ÿ x4 � 43

32
x6 � � �

� �
� cè ÿ4x2 � 6x4 ÿ 15

8
x6 � � �

� �
;

so that we have, in fact, äy � 0, as we described, if the values (25) and (26) be substituted for
Ax and Bx , and if we neglect 2x8 and èx8. The neglected term would be made to vanish like
the ones here attended to, if the developments (25) and (26) we carried on.

III. Let us now consider that fourth particular integral, which is of the trinomial form (11); the
coef®cient Cx , of the square of log x, being not now supposed to vanish. It is evident, from the
analysis of the preceding paragraph II. that we shall satisfy the two ®rst of the three equations
of condition (14), if we now assume, for Cx and Bx , the expressions:

C x � c

a0
(a0 � a2x2 � a4x4 � � � �) � c

Xm�1
m�0

ÿ 1

2

�
m(0eÿm)3x2m ; (28)

Bx � 2c

a0
(á1a2x2 � á2a4x4 � � � �) � ÿc

a0
a2x2 � 11

6
a4x4 � 73

30
a6x6 � � � �

� �
; (29)

or, developing as far as terms of the 6th dimension inclusive,

Cx � c 1ÿ x2

2
� 3x4

32
ÿ 5x6

576
� � � �

� �
; Bx � c

x2

2
ÿ 11x4

64
� 73x6

3456
ÿ � � �

� �
; (30)

where c is an arbitrary constant. The third equation of condition (14) may then be satis®ed,
by assuming for Ax a series of the form,

Ax � c

a0
(â2a4x4 � â3a6x6 � � � �); (31)

in which â2, â3, . . . , are constants yet to be determined, and terms below the 4th dimension
are suppressed, because such terms (with subsequent terms connected with them) may be
conceived to arise� from former particular integrals. In fact, with our last development (30)
for C x and Bx , we have a new series of the form

(3D2
è � 4x2)Bx � 6DèC x � c

a0
(b4x4 � b6x6 � � � �) (32)

the coef®cient of x2 vanishing; and after assuming the series (31) for Ax we shall satisfy the
third equation (14): if we so choose the factors â2, â3, &c., as to ful®ll the condition

ä(â2a4x4 � â3a6x6 � � � �)� b4x4 � b6x6 � � � � � 0: (33)

By an analysis similar to that of paragraph II., it is found that the coef®cient of x2m in

ä(â2a4x4 � &c:) is equal to 8m3a2m(âm ÿ âmÿ1);

therefore

� Perhaps this logic is a little obscure, but I have convinced myself of the correctness of the
conclusion. Besides we only want to satisfy the third of equations (14).

139II . TWO LETTERS TO AUGUSTUS DE MORGAN



8m3a2m(âm ÿ âmÿ1)� b2m � 0; (34)

with the initial values â0 � 0, â1 � 0. As regards the coef®cient b2m , the part (3D2
è � 4x2)Bx ,

of the left hand member contributes, by (20) and (29), the part,

8m3 3ám

m
ÿ 2ámÿ1

2m ÿ 1

� �
a2m

to the value of b2m ; while the other part, 6DèC x , of the same left member, contributes this
other part, 12ma2m , to the same value of b2m . Collecting these parts of b2m , substituting them
in (34), and dividing by 8m3a2m , we ®nd,

âm ÿ âmÿ1 � 2ámÿ1

2m ÿ 1
ÿ 3ám

m
ÿ 3

2m2
; (35)

where ám retains its recent signi®cation. Hence, with the help of the values (22) of ám , we
®nd Äâ0 � 2á0 ÿ 3á1 ÿ 3

2 � 0; but this is a mere vari®cation, for we knew that â1 � â0 � 0 but
proceeding,

â2 � Äâ1 � 2á1

3
ÿ 3á2

2
ÿ 3

8
� ÿ 1

3
� 11

8
ÿ 3

8
� 2

3
;

â3 � 2

3
� Äâ2 � 2

3
� 2á2

5
ÿ á3 ÿ 1

6
� 2

3
ÿ 11

30
� 73

60
ÿ 1

6
� 27

20
; &c:; (36)

and we had, by (23),

a4 � 3a0

32
, a6 � ÿ 5a0

576
; (37)

therefore

â2a4aÿ1
0 � �

1

16
; â3a6aÿ1

0 �
ÿ3

256
; . . .

therefore by (31), developing still only as far as x6 inclusive,

Ax � c
x4

16
ÿ 3x6

256
� � � �

� �
: (38)

Our fourth particular integral of the triordinal equation (1) is therefore the following:

y � c(è2U � 2èV � W ); (39)

where c is still an arbitrary constant; è still equals log x, U, V, W are 3 ascending series, which
we know how to continue inde®nitely, and which begin as follows:

U � 1ÿ x2

2
� 3x4

32
ÿ 5x6

576
� � � � ; V � x2

4
ÿ 11x4

128
� 73x6

6912
ÿ � � � , W � x4

16
ÿ 3x6

256
� � � � : (40)�

Another particular integral (the third), was of the form,

y � 2b(èU � V ); (41)

� (July 19) The next term of U is � 35x8

73 728
.
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b being another constant. And another particular integral (the ®rst) was,

y � aU ; (42)

namely the series (9), with a for a0. The complete integral of the triordinal equation (1) may
therefore be thus written:

y � (a � 2bè� cè2)U � 2(b � cè)V � cW : (43)

But how to bring under this general form that other particular integral (the second), which is
expressed by the descending series (10), was (or appeared to me to be) a dif®culty, which it has
cost me some pains to surmount. (It will be proved that

V 2 � UW ;

that

V � U

�x

0

dx

x
(U ÿ1 ÿ 1);

and that

U � 4

ð2

� ð
2

0
dù cos(x cosù)

 !
2:)

IV. The dif®culty being thus, (for it is not essentially altered by supposing that the coef®cient
aÿ1 in the development (10) is equal to unity,) to see how the particular integral,

y �
Xm�1
m�0

ÿ 1

2

�m
 !3

0eÿm xÿ2mÿ1 � xÿ1 ÿ xÿ3

8
� 27xÿ5

128
ÿ 1125xÿ7

1024
� � � � (44)

of the triordinal equation (1), namely

(xD)3 y � 4x2 Dxy � 0,

(whereof there is no reason for supposing that it is a singular solution,) can be consistent with,
and included under, the complete integral, with three arbitrary constants, expressed by our recent
formula,

y � (a � 2bè� cè2)U � 2(b � cè)V � cW ; (43)

it appears to be natural to look out for some intermediate integrals, which may assist in
establishing relations between the 3 constants a, b, c; and so, perhaps, in discovering, ultimately
the value of each of those three. Among several attempts which I have made, the following
seems to have been, on the whole, the most successful. Adopting the form (2), as thus
modi®ed,

D3
è y � 4xDèxy � 0; (45)

multiplying by 2 y; and observing that

2yD3
è y � Dèf2yD2

è y ÿ (Dè y)2g; (46)

we ®nd, by an easy ®rst integration,
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2 yD2
è y ÿ (Dè y)2 � 4x2 y2 � 4h2; (47)

where h is an arbitrary constant, real or imaginary. On substituting for y the descending series
(44), we see at once that 4h2 � 4, and that therefore we may write,

h � 1: (48)

It is a little more troublesome to substitute the expression (43) for y, in the ®rst member of
the equation (47): but if we con®ne ourselves, as we may, to the terms which do not involve
x2, we may reduce that expression (43) to a � 2bè� cè2, and suppress the term 4x2 y2 in that
left member of (47): which then becomes,

4c(a � 2bè� cè2)ÿ 4(b � cè)2 � 4h2,

or brie¯y,

ac ÿ b2 � h2: (49)

Comparing, therefore, the two expressions for the constant h2; in the result (47) of a ®rst
integration of the triordinal equation, we ®nd that the 3 constants a, b, c of the complete
integral (43), must be connected with each other by the relation,

ac ÿ b2 � 1; (50)

in order that this complete or general integral may be reduced to represent, or to coincide,
with the particular integral represented by the descending series (44).

V. It is not so easy, or at least it seems to be less obvious, to see how we are to proceed to a
second successive integration of the triordinal equation (1). But if we observe that the supposi-
tion y � aU , or simply y � U , must satisfy the ®rst integral equation (47), provided that we
suppose h � 0, in virtue of (43) and (49), we shall see that the function U, or aU, must be a
particular solution of the following differential equation of the 2nd order,

2UD2
èU ÿ (DèU )2 � 4x2U 2 � 0: (51)

Eliminating x2 between (47) and (51), we ®nd,

4h2U 2 � 2Uy(UD2
è y ÿ yD2

èU )� ( yDèU )2 ÿ (UDè y)2: (52)

Multiply by

U ÿ2 yÿ2( yDèU ÿ UDè y);

the equation becomes integrable, and gives, as the sought second integral, of the ®rst order of (1),

4h2Uyÿ1 � U ÿ1 yÿ1(UDè y ÿ yDèU )2 � 4k2; (53)

where k is a new arbitrary constant: that is,

4h2U 2 � (UDè y ÿ yDèU )2 � 4k2Uy; (54)

or, by another easy transformation,

h2 � U

2
Dè

y

U

� �2

� k2 y

U
: (55)
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Changing
y

U
to a � 2bè� cè2, and U to 1, while h2 � ac ÿ b2, we obtain the equation:

k2 � c; (56)

because we have (ac ÿ b2)� (b � cè)2 � k2(a � 2bè� cè2). But some other considerations
must be introduced, before we can obtain the value of k2 from the descending series (44), and so
determine the constant c.

VI. In the equation (51), make

U � v2; (57)

it then becomes

(D2
è � x2)v � 0; (58)�

or, if we return to xD instead of its equivalent symbol Dè,

(D2 � xÿ1 D � 1)v � 0: (59)

This differential equation of the 2nd order presented itself to Fourier, in the study of the
propagation of heat in a cylinder; and it has since occurred to others, myself included, in other
important connexions. The only value of v, consistent with this equation (59), which admits
of being developed according to ascending powers of x, and which, like

p
U , reduces itself to

unity when x � 0, may, as Fourier pointed out, be expressed, at pleasure, either by the series,

v � 1ÿ x

2

� �2

� x3

2:4

� �2

ÿ x3

2:4:6

� �2

� &c: �
Xm�1
m�0

(0eÿm)2 ÿx2

h

� �m

; (60)

or else by the de®nite integral,

v � 2

ð

� ð
2

0
dù cos(x cosù): (61)

It follows that the series lately found for U, namely the ®rst of the 3 developments (40), must
be equal to the square of Fourier's Series, denoted just now by v; or that we must have the
identity:

Xm�1
m�0

ÿ 1

2

�m

(0eÿm)3x2m �
Xm�1
m�0

(0eÿm)2 ÿx2

4

� �m !2

; (62)

that is, more fully,

1ÿ 1

13
:
x2

2
� 1:3

13:23

x2

2

� �2

ÿ 1:3:5

13:23:33

x2

2

� �3

� � � � � 1ÿ x

2

� �2

� x2

2:4

� �2

ÿ x3

2:4:6

� �2

� � � �
( )

,

(63)

a relation between these two series which perhaps is new, but which can be veri®ed with ease,
to any required extent. It follows also that the series U admits of being thus expressed;

� D2
è � (xD)2 � xDxD � x2 D2 � xD.
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U � 4

ð2

� ð
2

0
dù cos(x cosù)

 !2

: (64)

Now it was shown by Poisson�, that for very large values (real and positive) of x, the de®nite
integral above cited from Fourier took nearly the value of the following approximate expres-
sion:

v � 2

ðx

� �1
2

cos x ÿ ð

4

� �
; (65)

our function U � v2 becomes therefore, for large values of x,

U � 2

ðx
cos2 x ÿ ð

4

� �
, nearly: (66)

But the descending series (44), for y, reduces itself, at the same time, to

y � 1

x
, nearly; (67)

whence

y

U
� ð

2
sec2 x ÿ ð

4

� �
, Dè

y

U
� xD

y

U
� ð tan x ÿ ð

4

� �
sec2 x ÿ ð

4

� �
,

U

2
Dè

y

U
� tan x ÿ ð

4

� �
;

and ®nally, because h2 � 1, by (48), the equations (55) and (56) give,

c � k2 � 2

ð
: (68)

VII. It is not dif®cult, after proceeding so far, to accomplish a third and last integration of the
triordinal equation (1), which shall introduce a third arbitrary constant, l, to be combined with
h and k. In fact, if we substitute, in our second successive integral equation (54), the value of
4h2U 2 which is given by (52), and then divided by 2U 2 y, we ®nd this integrable equation,

2k2U ÿ1 � U ÿ1(UD2
è y ÿ yD2

èU )ÿ U ÿ2 DèU (UDè y ÿ yDè y); (69)

that is,

2k2U ÿ1 � Dè:U
ÿ1(UDè y ÿ yDèU ) � DèUDè

y

U
,

or

U

2
Dè

y

U
� (k2 Dÿ1

è U ÿ1) � k2

�
dx

xU
:

9>>>>=>>>>; (70)

It is true that even if we suppose the constant, say l, under this sign of integration
�

to be
known, as well as the constant k, this last equation (70) will still be a differential one, of the ®rst

� [SimeÂon Denis Poisson (1781±1840), `Sur la distribution de la chaleur dans les corps solides, second
meÂmoir', pp. 248±403, Journal de l'EÂ cole Royale Polytechnique, Vol. XII, Cahier 19, 1823.]
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order; as it ought to be, in order to permit the introduction of a third constant, such as h, into
the ®nal integral equation. We might indeed write,

y � 2k2UDÿ1
è U ÿ1 Dÿ1

è U ÿ1; (71)

and such, in fact, I suppose to be the very simplest and most elegant form, (except that we might
replace 2k2 by a single letter,) under which it is possible to express the complete integral of the
proposed triordinal equation: of which equation it may be remembered that one fundamental
form was,

D3
è y � 4EèDèEè y � 0: (2)

And it is important to observe that this equation (2) will be satis®ed by the expression (71)
for y, without it being necessary to assume for U the value (64), provided that U satis®es (51);
or that

2UD2
èU ÿ (DèU )2 � 4E2èU 2 � 0: (72)

In fact this last equation gives, by differentiation,

D3
èU � 4EèDèEèU � 0, or äU � 0, (73)

a result which agrees with the analysis of paragraph III.; to satisfy therefore the equation
äy � 0, (5) we may conveniently assume for y, an expression of the form,

y � UDÿ1
è z; (74)

which will give

D3
è y � D3

èU :Dÿ1
è x � 3D2

èU :z � 3DèU :Dèz � UD2
èz;

4EèDèEè y � 4E2è(Dè � 1) y � 4E2è(Dè � 1)U :Dÿ1
è z � 4E2èUz;

therefore

(U äy ÿ U äU :Dÿ1
è z �)U 2 D2

èz � 3UDèU :Dèz � (3UD2
èU � 4E2èU 2):z � 0; (75)

therefore substituting for 4E2èU 2 its value given by (72), the original equation comes to be
transformed to the following:

0 � U 2 D2
èz � 3UDèU :Dèz � DèUDèU :z � Dè(U 2:Dèz � UDèU :z);

that is

0 � DèUDèUz � (DèU )2z; (76)

therefore the integral is, evidently

z � constant 3 U ÿ1 Dÿ1
è U ÿ1, (77)

thus reproducing (71), without any restriction on U, beyond what is expressed by the bi-
ordinal equation (72). ± Or take it thus, for the sake of exercise, and of variety: let us propose
to eliminate U, between the 2 equations (71) and (72), and so to ®nd what differential equation
the function y must satisfy; if it depend on U by the law expressed in the former of those 2
equations, and if U be any integral of the latter of the same pair. We have, now
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2k2 � constant � (UDè)2 y

U
� UDèU ÿ1(UDè y ÿ yDèU )

� UD2
è y ÿ UDè:yU

ÿ1 DèU � UD2
è y ÿ Dè yDèU � yU ÿ1(DèU )2 ÿ yD2

èU (78)

therefore by differentiation,

0 � UD3
è y � ((DèU )2 ÿ 2UD2

èU ):Dè y � fUDè:U
ÿ1(DèU )2 ÿ UD3

èU g:y; (79)

but

(DèU )2 ÿ 2UD2
èU � 4E2èU 2, by (72);

and

UDè:U
ÿ1(DèU )2 ÿ UD3

èU � 2UDè(D2
èU � 2E2èU )ÿ UD3

èU

� U fD3
èU � 4E2è(Dè � 2U )g � 4E2èU 2, by (73);

therefore

D3
è y � 4E2è(Dè y � y) � 0, (80)

or äy � 0, as before.

VIII. But simple and elegant as the form (71) of the complete integral of the equation äy � 0
may be admitted to be, I think that for the applications which I wish to make, a certain other
form of that complete or ®nal integral possesses some important advantages. To obtain this

other form, we have merely to substitute the expression (70) for
U

2
Dè

y

U
, in the equation

(55); which equation thus becomes

y

U
� h

k

� �2

� k2

�
dx

xU

� �2

; (81)

a third arbitrary constant, l, in addition to h and k, being still conceived as entering, under
the sign of integration

�
. As a veri®cation, if we differentiate this last equation (81), we obtain

Dè
y

U
� 2k2

U

�
dx

xU
; (82)

therefore

U ÿ1(UDè y ÿ yDèU ) � 2k2

�
dx

xU
� 2k2 Dÿ1

è U ÿ1; (83)

and therefore by another differentiation,

(UD2
è y ÿ yD2

èU )ÿ U ÿ1 DèU :(UDè y ÿ yDèU ) � 2k2; (84)

which coincides with the equation (78). Conversely, from the biordinal equation (78), we
may pass through a multiplication by U ÿ1, and an integration relatively to è; to the equation
(83); and thence, by a process exactly similar, to the complete integral (81). It must, however,
be observed that we have no right, in the general question, to assume that h and k are real; so
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that we can only say, in general, and until we come to limit ourselves by some application, that
the ®nal integral of äy � 0 may be reduced to the form

y � AU � BU

�
dx

xU

� �2

; (85)

where A and B are any constants, real or imaginary; and U is any integral of the biordinal
equation (72). ± It is worthy of remark, that while the part AU of this last expression for y is
thus an integral of that equation (72), the other part,

BU

�
dx

xU

� �2

,

is also an integral of that equation of the 2nd order: although, on account of its non-linear
character, the biordinal equation here referred to is not (in general) satis®ed by the sum of
those two parts, or by the expression y itself, which has been obtained as the integral of a
higher equation. To justify the assertion just now made, respecting both parts of y in (85) being
integrals of (72), whenever the ®rst of them is such, let U be changed in (72) to w2U , and let
the resulting equation be reduced by the help of (72) itself; it is found that

DèUDèw � 0; . . . (86)

therefore &c.. Indeed, from what was shown at the commencement of paragraph VI., it would
have been suf®cient to remark, that if v and vw both satisfy the equation (58), then,

0 � 2vDèvDèw � v2 D2
èw � Dèv

2 Dèw; (87)

and conversely that if v be any integral of (58), and if v2 Dèw be constant, then vw is also an
integral. Accordingly, it has been remarked by Fourier�, that the completey integral of the
equation

gu � d2u

dx2
� 1

x

du

dx
� 0, (F0){

is

u � A � B

�
dx

x(
�

cos(x
����
g
p

:sin r)dr)2

 !�
cos(x

����
g
p

:sin r)dr , (F1){

A and B being arbitrary constants. But I am not aware that it occurred to Fourier to consider
that other function, which I am at present denoting by y; and which, to imitate as closely as
possible his just now cited notation, might be expressed as follows:

� [Jean Baptiste Joseph Fourier (1786±1830).]
y J.B.J. Fourier, TheÂorie analytique de la Chaleurs, p. 378, Paris: 1822 [The analytical theory of heat (trans. by

A. Freeman), ch. VI, p. 298, Cambridge: 1878. Reprinted New York: 1955.]
Fourier seems to have treated this complete integral of his Equation for Heat in a Cylinder as a mere

matter of Mathematical curiosity. I am not sure that it has not physical bearings. At all events, my own train
of research, resumed of late without any recollection of that page of Fourier's TheÂorie, has been
encouraged by a hope that some such bearings may exist.

{ These markings are my own.
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y � A � B

�
dx

x

�
cos(x

����
g
p

:sin r)dr

� �2

0B@
1CA

2

� C2

8>><>>:
9>>=>>;:

�
cos(x

����
g
p

:sin r)dr

� �2

: (F2)

(It is scarcely worth while mentioning, that I had not had access to Fourier's work since the
year 1840, or thereabouts, till a few months ago; but that I had made out, for purposes of my
own, a formula lately, similar to that marked (F2), just above, before I succeeded in re-
borrowing, for I have not had an opportunity of purchasing, ± the cited work of Fourier.)

IX. In the expression (85), or in the equation (81), it is a suf®ciently general procedure, and I
am content, to assume for U the value (64); which it has been shown how to develop in an
ascending series, proceeding by even powers of x, the terms being alternately positive and
negative, and the ®rst term being unity. It follows that U ÿ1 may (with this selection of value)
be developed, in a series of the form,

U ÿ1 � 1� u1x2 � u2x4 � u3x6 � &c:; (88)

the values of the ®rst coef®cients being,

u1 � 1

2
; u2 � 5

32
; u3 � 23

576
; u4 � 677

73728
; &c: (89)

which are, so far, all positive; and though I have not proved that they must be such for ever, I
think it likely that they will be found to be so. Hence,

Dÿ1
è U ÿ1 �

�
dx

xU
� constant � log x � 1

2
u1x2 � 1

4
u2x4 � 1

6
u3x6 � &c:; (90)

that is

Dÿ1
è U ÿ1 � ÷ÿ ë, (91)

where

ë � log
ã

x
, (92)

and

÷ �
�x

0

dx

x
(U ÿ1 ÿ 1); (93)

ã being an arbitrary constant, such that ÿlog ã is equal to the lately mentioned constant

l, introduced by

�
dx

xU
. We may write also

ÿë � l � è; (94)�
dx

xU
� è� ÷� l ; (95)

and therefore by (81)
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y

U
� h

k

� �2

� k2(è� ÷� l)2: (96)

Comparing this last form (96) of the complete integral of the triordinal equation (1) with the
form (43), we not only recover the two relations, k2 � c, (56), and h2 � ac ÿ b2, (50), between
the constants, h, k, l, of the one form, and the constants a, b, c of the other, but also obtained
this third relation,

l � b

c
: (97)

At the same time, we are conducted to the following relations between the new function, ÷,
and the old functions, U, V, W :

V � U :÷; (98)

and

W � U :÷2; (99)

which give, by elimination of ÷, the simple and remarkable equation,

UW � V 2: (100)

The properties (64), (98), (100), of the functions U, V, W, with the signi®cation (93) of ÷,
were mentioned by anticipation before (at the end of paragraph III.); they can be veri®ed, to
any proposed extent, by actual substitution of the 5 series, for U, V, W, ÷, and v; but the
following other proof of the equation (98) may not be without interest and instruction.

X. The series for V may be considered to have been derived from that for U, by the equation

äV � (3D2
è � 4x2)U � 0, (101)

which results from the substitution, by (25), (26), and (40), of a0V for Ax , and of a0U for Bx ,
in the equation (15); combined with the rejection of any absolute term, or coef®cient of x0 in
this sought series V, for reasons stated in paragraph II. Assume

V � UDÿ1
è v, (102)

where v denotes a new series, ascending by even powers of x, and beginning with the second
power. Then, because äU � 0, (73), we have this equation of the second order, of which v
must be a particular integral,

(3D2
è � 4x2)U :(v� 1)� 3DèU :Dèv� UD2

èv � 0: (103)

Multiplying by 2U, and observing that, by (51),�

2U (3D2
è � 4x2)U � D2

èU 2, (104)

we have this easily integrable equation,

D2
èU 2:(v� 1)� 3DèU 2:Dèv� 2U 2 D2

èv � 0; (105)

� As to the notation employed, you will easily perceive that, at present, I wish DèU 2, D2
èU 2, to denote

Dè(U 2), D2
è(U 2), and not to denote (DèU )2, (D2

èU )2; and similarly in other cases.
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which gives, ®rst,

DèU 2:(v� 1)� 2U 2 Dèv � constant � 0; (106)

and secondly, by another integration, after dividing by 2U,

U :(v� 1) � constant � 1, (107)

so that ®nally,

v � U ÿ1 ÿ 1, (108)

and

V � UDÿ1
è (U ÿ1 ÿ 1) � U

�x

0

dx

x
(U ÿ1 ÿ 1), (109)

or

V � U ÷

as in (98).

XI. By a similar analysis about equally simple, the expression W � U ë2, (99), can be
deduced from the equation

äW � 2(3D2
è � 4x2)V � 6DèU � 0, (110)

which is obtained from the third equation of condition (14), by making, in (30), (38), and
(40),

Cx � cU , Bx � 2cV , Ax � cW ; (111)

and by assuming that W is a series proceeding according to ascending and even powers of x,
beginning with the 4th; so that if we write

W � Uw, (112)

w becomes another even and ascending series beginning with the same 4th power. From the
properties of U, V, ÷, already employed, we shall have, on the one hand the transformation

U äW � DèUDèUDèw; (113)

and, on the other hand,

2U (3D2
è � 4x2)V � 6UDèU

� ÷D2
èU 2 � 6Dè÷:DèU 2 � 6D2

è÷:U
2 � 3DèU 2

� ÷D2
èU 2 � 12(1ÿ U )DèU ÿ 6DèU � 6UDèU

� ÷D2
èU 2 � 6(1ÿ U )DèU

� Dèf÷DèU 2 ÿ 2(1ÿ U )2g; (114)

a ®rst integration of the differential equation (110) gives, therefore,

(UDè)2w ÿ 2(1ÿ U )2 � ÷DèU 2 � constant � 0, (115)

150 II . TWO LETTERS TO AUGUSTUS DE MORGAN



that is,

DèUDèw � ÿ2÷DèU � 2(1ÿ U )Dè÷ � 2Dè÷(1ÿ U ):

A second integration gives, after division by U,

UDèw ÿ 2÷(1ÿ U ) � constant � 0; (116)

(and consequently Dèw � 2÷Dè÷ � Dè÷
2)

and a third integration gives after a similar division,

w ÿ ÷2 � constant � 0; (117)

so that W � U ÷2, as above. In determining the three constants, in these last equations, regard
has been had to the known form of the series for W, which is here only a particular (and not a
complete or general) integral of the differential equation of the third order (110).

XII. In this manner, after perceiving the chief properties of the simplest, namely U, of the
three functions, U, V, W in paragraph III., we might have been led without actually forming the
developments of which the ®rst terms are given in the equations (40); to infer the existence of
those relations between them, which were stated by anticipation at the end of the same
(cited) paragraph; and so to transform the expression (43) into this other:

y � ac ÿ b2

c
U � cU è� V

U
� b

c

� �2

� U
ac ÿ b2

c
� c(Dÿ1

è U ÿ1)2

� �
; (118)

which agrees with (81), and with (96), because we have

c � k2, (56); ac ÿ b2 � h2, (49); and
V

U
� ÷, (98):

As regards the function U itself, if we had happened to perceive the identity,

yD3
è y � 2Dè y

3
2 D2

è y
1
2, (119)

(in which, as usual, (when no point is inserted,) the symbol Dè governs all those that follow
it,) we should have seen at once that the triordinal equation (2), which is the main subject of
this whole Letter, may be thus written:

Dè y
3
2(D2

è � E2è) y
1
2 � 0; (120)

and then it would have been extremely natural to begin with the lower equation,

(D2
è � x2)v � 0, (58) or

(D2 � xÿ1D � 1)v � 0, (59)

which has already been cited from Fourier: for it would have been obvious that if v be any
particular integral of this last biordinal equation, then U � v2 (57) must at the same time be
a particular integral of my triordinal. But there is only one ascending series for v, proceeding
according to powers alone, which satis®es Fourier's equation (59); namely his series (60),
which he enveloped as a de®nite integral (61). There is therefore a motive for paying great
attention, in this inquiry, to the function above called U; which we have expressed, in (64), as
the square of a de®nite integral; and have found to be the only integral of the triordinal equation
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(1), which admits of being developed in ascending powers of x alone: except that, of course, the
series v in the one question, or U in the other, may be multiplied by an arbitrary constant,
without ceasing to satisfy the equation.

XIII. The complete integral of the triordinal is scarcely, even yet, under a form suf®ciently
suited to my purpose. But it may easily be further transformed. In fact the form (81) suggests
the assumption of a new auxiliary angle, or other quantity ù, real or imaginary such that

h

k

� �2

� y

U
sin2 ù; (121)

and therefore, at the same time,

k2

�
dx

xU

� �2

�
 !

k2(Dÿ1
è U ÿ1)2 � y

U
cos2 ù: (122)

(I adopt here, without quite liking it, the usual notation of sin2 ù for (sinù)2. At least, it saves
parentheses; and the symbol sinù2 which perhaps I commonly prefer, has really in these
investigations, some risk of being mistaken for sin(ù2).) Eliminating y between the two last
equations, we ®nd

cot ù � ÿk2 hÿ1 Dÿ1
è U ÿ1; (123)

the negative sign being preferred, because it conducts to the relation,

yDèù � h, (124)

whereas the other sign for cotù would have given the less simple formula,

yDèù � ÿh:

The system of these two last equations, (123) and (124), may be regarded as a new form of the
complete integral required. The auxiliary quantity ù is any solution of the new biordinal equation

DèUDè cotù � 0; or, (UDè)2 cotù � 0: (125)

In the completed integration of this equation, two constants must be conceived to be introduced;
and a third constant, namely h, is brought in by the equation (124). And it appears to me that
the clue to the arithmetical determination of that third constant which has not yet had its value
assigned, but which is to be conceived as entering under the sign

�
in the equation,

y
Xm�1
m�0

ÿ 1

2

�m
 !3

0eÿm
xÿ2mÿ1 � ð

2
U � 2

ð
U

�
dx

xU

� �2

, (126)

where

U � 4

ð2

� ð
2

0
dá cos(x cosá)

 !2

, (64)

is to be found in the use of this auxiliary angle ù, and in the study and comparison of the two
recent formulñ, (124) and (125).
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XIV. Before my own triordinal had occurred to me, I thought of solving the related
biordinal of Fourier in nearly the following manner. To satisfy the equation (D2 �
xÿ1 D � 1)v � 0, (59), I assumed

v � ar sinù, (127)

where a was an arbitrary constant, and r, ù were two variables, between which it was
permitted to establish a relation. In this manner, writing

Dr � r9, Dù � ù9, D2r � r 0, &c:

I had

aÿ1 Dv � Dr sinù � r9 sinù� ù9r cosù;

aÿ1 D2v � r 0 sinù� 2ù9r9 cosù� rù 0 cosùÿ rù92 sinù,

and ®nally, (59) was satis®ed, if I made,

r 0� xÿ1r9� r � rù92, (128)

and,

2ù9r9� rù 0� xÿ1ù9r � 0: (129)

On multiplying the last equation by xr, and integrating, the result was,

xr2ù9 � h; (130)

where h is an arbitrary constant. Multiplying (128) by x2r3, and eliminating ù9 by (130), I
had

x2r3r 0� xr3r9� x2r4 � h2; (131)

that is,

r3fx(xr9)9� x2rg � h2; (132)

which, if I had made x � Eè, would have at once become,

r3(D2
è � x2)r � h2; (133)

and, by a single differentiation, would have given, under a form only very slightly different,
the triordinal equation (120), and therefore ultimately the fundamental equation (1), if I
had thought of writing,

y � r2; (134)

which would also have reproduced, through (130), the recent equation yDèù � h (124). You
see then, that I was very nearly on my recent track, ± so far as regards the arithmetical constant
which enters into the expression for

cot ù � ÿDÿ1 ù9

sin2 ù
� &c:,

± before I began to write to you that long arithmetical Letter, which was dated February 15th,
1858: and, in fact, I had fully arrived at the point at which arithmetical labour must still begin,
until some more decided theoretical advance shall have been made, than that which has
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recently occurred to me. But on anything which may seem to relate to (even private) history, it
seems better to postpone any account, (beyond perhaps some short remark in passing,) till
after the (abridged) statement of my own (rather) recent calculations, and of the numerical
result to which they have led.

XV. In the proposed application of the Theory of the present Letter, as regards the
integration of the triordinal equation, &c., we have h � 1, (48), and y � the descending and
diverging series (44). Changing therefore Dèù to xDù, or to xù9, in the important formula
(124), that formula becomes,

xyù9 � 1; (135)

or more fully,

1 � ù9
Xm�1
m�0

ÿ 1

2

�m
 !3

0eÿm xÿ2m � ù9 1ÿ 1

1:(8x)2)1
� 13:33

1:2(8x2)2
ÿ 13:33:53

1:2:3(8x2)3
� &c:

� �
:

(136)

Thus

ù9 � (xy)ÿ1 �
Xm�1
m�0

ÿ 1

2

�m

0eÿm xÿ2m

 !ÿ1

� 1ÿ xÿ2

8
� 27xÿ4

128
ÿ 1125xÿ6

1024
� � � �

� �ÿ1

; (137)

that is, developing this reciprocal,

ù9 � 1� xÿ2

8
ÿ 27xÿ4

128
� 1125xÿ6

1024
ÿ 385 875xÿ8

32 768

� �

� xÿ4

64
ÿ 27xÿ6

512
� 5229xÿ8

16 384
ÿ � � �

� �
� xÿ6

512
ÿ 81xÿ8

8192
� � � �

� �
� xÿ8

4096
ÿ � � �

� �
� � � � (138)

or, collecting terms which have the same exponents,

ù9 � 1� xÿ2

8
ÿ 25xÿ4

128
� 1073xÿ6

1024
ÿ 375 733xÿ8

32 768
� &c: (139)

Intergrating, we have this other series:

ù � ù0 � x ÿ s, (140)

where ù0 is a constant, not yet determined, and

s �
�1

x
dx(1ÿ xÿ1 yÿ1) � xÿ1

8
ÿ 25xÿ3

384
� 1073xÿ5

5120
ÿ 375 733xÿ7

229 376
� &c:; (141)

or multiplying by 1[radian] � 206,2640´806,

s � 25 783 0:1

x
ÿ 13 428 0:7

x3
� 43 227 0:0

x5
ÿ 337 875 0:3

x7
� &c: (142)

When x is even so small as 1, this descending series diverges rapidly, and becomes almost totally
useless, unless it be treated by some such methods of transformation as those which I have
sketched in my Letter of February 15, and which I have since applied (with others only hinted
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in that Letter) to transform the series for the tangent of this angle s and so to make what has
turned out to be a curiously near approach to the value of s for x � 1. But when x is
moderately large, the series (141) or (142) for s then converges suf®ciently fast, at least in its
early terms, to give with ease an approximation as close as can be useful, for any practical
purpose. For example,

s � �2578 0:31ÿ 13 0:43� 0 0:43ÿ 0 0:03 � �2565 0:28 � 42945 0:3, for x � 10; (143)

and

s � �1841 0:65ÿ 4 0:89� 0 0:07ÿ 0 0:00 � �1836 0:83 � �30936 0:8, for x � 14; (144)

and I suppose that we may rely on these two values of s, as correct to the tenth of a second.

XVI. As regards the constant ù0, it may be determined in the following way. When x is large
enough to render s a very small angle, we have, nearly, by (140),

ù � x � ù0; (145)

and therefore by (121), and by the values (48) and (68) of h and k2, we have nearly

ð

2
:
U

y
� sin2(x � ù0): (146)

But also, under the same circumstances, we have, nearly, by (66) and (67),

ð

2
:
U

y
� sin2 x � ð

4

� �
: (147)

The comparison of these two ultimate or limiting forms gives, rigorously, the value:

ù0 � ð

4
: (148)

The ®nal and unambiguous (or determinate) expression for ù is therefore,

ù � x � ð

4
ÿ s; (149)

where s is to be computed as above, and can be so to a great degree of accuracy, by an initially
convergent series, unless x be taken too small. For example,

ù� s � 10� ð

4
� 617857928 0:06, and ù � 617857928 0:1ÿ 42945 0:3 � 3ð� 77814942 0:8,

for x � 10; (150)

ù� s � 14� ð

4
� 84788927 0:28, ù � 84788927 0:3ÿ 30936 0:8 � 4ð� 126837950 0:5, for x � 14;

(151)

The angle ù may thus be considered as known, very exactly, when x is moderately large;
consequently we can take out, from the usual Tables, under the same conditions, to about
seven decimal places, the values of each of two of the terms of the ®rst member of the
following equation, slightly transformed from (123),

ð

2
cotù� log x � ÷ � ÿl ; (152)
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where l has the same meaning as before, denoting an as yet unknown constant; ÷ is an integral
already considered; and the logarithm of x (often in this Letter denoted by è) is the natural
one.� At this stage I had arrived, in January or February last, before I began my long Letter of
the latter month, and before I thought of the triordinal equation (1). That is, I had the
formula just marked (152), the ascending series for ÷, and the descending series for ù, and wished
to determine the constant.

But I was embarrassed by the dif®culty of ®nding a value for x, which should admit of my
computing, with such means as I then possessed, and with as much accuracy as I desired, the
values of both ù and ÷; the former being given, as above, by a descending series, and the latter by
an ascending one: namely, by paragraph IX.,

÷ � x2

4
� 5x4

128
� 23x6

3456
� 677x8

589 824
� &c:; (153)

which converges moderately fast, when x is tolerably small, but not very rapidly, when x is even so
great as 1; and which, besides, is subject to the very grave inconvenience, that all its terms are
positive, at least so far as the coef®cients have been computed; and I see no reason to suspect
that the signs will afterwards change. Indeed, it was easy to see that the de®nite integral (93),
of which this series (153) is a development, must attain an in®nite value, as often as x passes
through the stage of being one of the roots of the transcendental equation,

v � 2

ð

� ð
2

0
dá cos(x cosá) � 0; (154)

which equation is important in physics. In fact, for each such value of x we have

U � v2 � 0; (155)

we have also,

cotù � �1, (156)

and therefore, must, by (152), have then,

÷ � �1: (157)

Nor is it as yet proved, that the constant, ÿl , does not then undergo discontinuity. Nevertheless,
for x � 1, the 4 written terms (153), with an estimatedy correction for the remainder of the
series gave

÷ � 0:250 00� 0:039 06� 0:006 65� 0:0014� (say)0:000 23 � 0:297 08; (158)

and from the diverging series for tan s, before I had thought of a method (not yet explained) of
transforming ÷, so as to compute its value for moderately large values of x, I estimated, by the
``method{ of inverse cube roots'',

� I shall here mention, by anticipation, that I have lately found
ð

2

� �1
2

cotù� 2

ð

� �1
2

(è� ÷) � 37

400
, at

least very nearly; but I think, rigorously.
y Each term seeming to be here about one sixth of the term before it, I add as the correction for the

remainder, about one ®fth part of the last computed term.
{ This method is merely a modi®cation of the ``method of inverse square roots'', which was explained

near the close of my Letter of February the 15th.

156 II . TWO LETTERS TO AUGUSTUS DE MORGAN



s � 58439, giving ù � 968359; (159)

this method of transforming the diverging series gave therefore, for x � l

ð

2
cot ù � ÿLÿ11:258 36 � ÿ0:181 28; (160)

also è � log 1 � 0; therefore this process, depending as it did on two distinct and independent
estimations, gave:

constant � ÿl � �0:1158: (161)

And here my good luck was really remarkable: for a process far more to be relied on has given
me since,

ð

2
cotù� è� ÷ � constant � 0:115 931, (162)

� 37

400
3

ð

2

� �1=2

[� 0:159 315 58] at least very nearly:

XVII. The more reliable process, here referred to, was of the following kind. Although it has
been seen that the series (153) for ÷ becomes in®nite when the condition (155) is satis®ed,
by x becoming a root of the equation

v � 2

ð

� ð
2

0
dá cos(x cosá) � 0; (154)

and although I think that it becomes divergent, as soon as x passes through the stage of the
least positive root of that transcendental equation, which root I have with great labour
ascertained to be, nearly�

x � �2:404 825 56; (163)

yet you may have noticed that the said series (153) for ÷, with all its terms positive, is, by (98),
the quotient of two other series, U and V, which have, by (40), their terms alternately positive and
negative: a ``progressing'' series, in a phraseology of your own, being thus equal to the
quotient of two ``alternating'' ones. And it is rather the product-series V � U ÷, (98), than the
quotient-series,

� Note ± Professor Stokes has adopted the value 2´4050 for this root, as a result of interpolation from
other values of the integral, which have been tabulated by Mr. Airyy ± but this value is certainly too great,
and indeed I think that you may rely on all the ®gures of the root, which I have above set down. Stokes
wanted the root for a physical purpose, and his estimate was quite near enough for the occasion. It was
necessary, however, for a theoretical object of my own, that I should endeavour to attain a much greater
degree of accuracy. You are probably acquainted with the Paper of Professor Stokes, in the Cambridge
Philosophical Transactions to which I allude, but on which I cannot at this moment lay my hand.{ It may,
and I hope will, turn up, before the present Letter is ®nished ± and I shall leave a line or two for
reference (Aug 10).

I can only say, in general, the Stoke's Paper relates to the Numerical Calculation of certain De®nite
Integrals, and that he referred, in it, to my own old Memoir on Fluctuating Functions.
y [George Biddell Airy (1801±1892), `On the diffraction of an annular aperture', Philosophical

Magazine, Ser. 3, Vol. 18, pp. 1±10, 1841.]
{ [See note on p. 172].
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÷ � V

U
, (164)

or the equivalent integral (93) which enters immediately into the form (43) of the complex
integral of the triordinal equation (1). That form (43) contains however another function, W,
expressed by another alternating series, of the same set (40), and connected with U and ÷ by the
relation, W � U :÷2; (99) while U was, by (57), or (64), the square of the de®nite integral (61), or
v; so that

÷ � W
1
2

v
, (165)

where W
1
2 is still another alternating series, of which I ®nd that the law is simpler than that of V,

or of W, and almost as simple, and as well adapted to numerical calculation, as that of the
series U, or even of its square-root, v. In fact, on proceeding to form this new product-series,

W
1
2 � v÷ � U

1
2

�x

0

dx

x
(U ÿ1 ÿ 1)

� 1ÿ x

2

� �2

� x2

2:4

� �2

ÿ x3

2:4:6

� �2

� � � �
( )

x2

4
� 5x4

128
� 23x6

3456
� 677x8

589 824
� � � �

� �

� x2

4
1ÿ x2

4
� x4

64
ÿ x6

2304

� �
� 5x4

128
1ÿ x2

4
� x4

64
ÿ � � �

� �

� 23x2

3456
1ÿ x2

4
� � � �

� �
� 677x8

589 824
(1 ÿ � � �) � � � �

� x2

4
� x4

128
(ÿ8� 5)� x6

13 824
(54ÿ 135� 92)� x8

1 769 472
(ÿ192� 1080ÿ 2944� 2031)

� � � � � x2

4
ÿ 3x4

128
� 11x6

13 824
ÿ 25x8

1 769 472
� � � � � x2

4
ÿ 3

2
:
x4

64
� 11

4
:

x6

2304
ÿ 25

12
:

x8

147 456
� � � �

� 1
x

2

� �2

ÿ 1� 1

2

� �
x2

2:4

� �2

� 1� 1

2
� 1

3

� �
x3

2:4:6

� �2

ÿ 1� 1

2
� 1

3
� 1

4

� �
x4

2:4:6:8

� �2

� � � �

(166)

a suf®ciently simple law becomes apparent; and I can prove that it must continue ; because, in the
notation of this Letter, not only v, but also v(÷� è) satis®es the differential equation (58); in
such a manner that we have the relation,

0 � (D2
è � x2)v÷� 2Dèv: (167)

XVIII. Indeed, I have just now noticed, for the ®rst time, a series of very similar form, in
Carmichael's Book� on the Calculus of operations, which has more than an accidental
connexion with this part of my subject, and which I must pause for a minute or two to
describe, of course for my own sake, rather than for yours, since I think that you have got the

� [Robert Bell Carmichael (1828±1861), A treatise on the calculus of operations, London: 1855.]
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Book. In his page 49, he cites from Gregory�, who cited it from Fourier, the differential
equation of the 2nd order,

xD2 y � Dy � y � 0, (F4)

which I thus mark as (F4), because it is intimately related to the equation (F0) of paragraph
VIII. of this Letter: and I shall continue to number a few equations similarly on the present
occasion. Carmichael transforms (in his page 53) the equation (F4) to

(xD)2 y � xy � 0, (F5)

and presents its integral under the symbolical form,

y � 1ÿ 1

(xD)2
x � 1

(xD)2
x

1

(xD)2
x ÿ � � �

� �
(C1 log x � C2); (F6)

or, as I might perhaps prefer to write it,

y � f1� (xD)ÿ2xgÿ1(xD)ÿ20: (F7)

Hence he obtains the ®nal transformation, in page 54,

y � (C1 log x � C2) 1ÿ x

12
� x2

12:22
ÿ x3

12:22:32
� &c:

� �
� 2C1

1

12
x ÿ 1

1
� 1

2

� �
1

12:22
x2 � 1

1
� 1

2
� 1

3

� �
1

12:22:32
x3 ÿ &c:

� �
: (F8)

(I ®nd that I have transposed some factors, but not so as to affect the sense.) On turning to
Gregory's Examples, (at page 339, not page 343, as cited by Carmichael, at least in my copy,
dated Cambridge, 1841,) I ®nd a more elementary method, but what seems to me a less
correct result: and in short, Gregory had not caught the law of the series in the 2nd line of
(F8), although he found a few terms of it, and was aware (page 311) that the series on the
®rst line was (as Fourier showed) the expansion of the de®nite integral,

1

ð

�ð
0

dè cos(2 sin èx
1
2), (F9)

to which this Letter partly relates. Change x to
x2

4
; the de®nite integral (F9) becomes what I

have also called v; log x becomes 2èÿ log 4; the series (see above) in the 2nd line of (F8)
becomes identical with the one which in my development (166) has been assigned as
representing what I have called v÷, or W

1
2; and the complete (although until today unknown)

agreement of my results on this point with those of Carmichael is established by the
corresponding transformation of his differential equation (F5), which is changed to the
following,

(D2
è � x2)y � 0; (168)

agreeing thus with my equation (58), except that y replaces v; and having, for its complete
integral, whether by his method or by mine,

� [Duncan Farquharson Gregory (1813±1844), Examples of the processes of the differential and integral
calculus, Cambridge: 1841.]
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y � av� bv(÷� è), (169)

where a and b are arbitrary constants. ± Gregory, I ®nd, writes, instead of (F8), for the
integral of Fourier's equation (F4),

y � 2A x ÿ 3x2

23
� 11x3

23:33
ÿ 51x4

23:33:43
� &c:

� �
� 1ÿ x

12
� x2

12:22
ÿ x3

12:22:32
� x4

12:22:32:42
ÿ &c:

� �
log cx; (F10)

where the 51, as I conceive, ought to be 50, at least if the result is to agree with Carmichael's
and mine. But you know that the integration of my own triordinal equation (1), and not that of
Fourier's biordinal equation, (F0), which had indeed been suf®ciently accomplished by himself
in assigning the formula (F1), has been the chief object of the present Letter: and it was only
today (July 31st) that I thought of opening, or at least that I did open, for comparison, the
books of Gregory and of Carmichael.

XIX. Resuming my own investigation, let me now write

v÷ � W
1
2 � w; (170)

so that, although the symbol w may have just been used for a moment, in passing, for another
purpose, as in (86) and (87), or in (112), &c., yet we have now the series,

w � v÷ � 1v1 ÿ (1� 1
2)v2 � (1� 1

2� 1
3)v3 ÿ (1� 1

2� 1
3� 1

4)v4 � &c: (171)

if

vn � x n

2:4:6: � � � :(2n)

� �2

� 2ÿ2n x2n(0eÿn)2, (172)

and

v � 2

ð

� ð
2

0
dá cos(x cosá) � v0 ÿ v1 � v2 ÿ v3 � v4 ÿ &c: (173)

In this manner, we shall have this other formula for computing w:

w � 1

1
(v0 ÿ v)� 1

2
(v0 ÿ v1 ÿ v)� 1

3
(v0 ÿ v1 � v2 ÿ v)� 1

4
(v0 ÿ v1 � v2 ÿ v3 ÿ v)� &c:;

(174)

which is, I think, more convenient in practice than (171); and then ÷ will be given as the
quotient of two alternating series,

÷ � w

v
: (175)

Taking, for example, x � 1, I ®nd, in this way, for v, the terms,
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v0 � 1:000 000 000 000 ÿ v1 � ÿ:250 000 000 0000

v2 � :015 625 000 000 ÿ v3 � ÿ:000 434 027 778

v4 � :000 006 781 684 ÿ v5 � ÿ:000 000 067 817

v6 � :000 000 000 471 ÿ v7 � ÿ:000 000 000 002

and therefore

v � (�1:015 631 782 155ÿ 0:250 434 095 597)

� 2

ð

� ð
2

0
dá cos(cosá) � �0:765 197 686 558 � �Lÿ11:883 773 7, nearly:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

(176)

Writing also

v � v0 ÿ v1 � v2 ÿ � � � � (ÿ1)nÿ1vnÿ1 � (ÿ1)n nwn, (177)

we shall have, in general,

w � �w1 ÿ w2 � w3 ÿ w4 � &c:; (178)

and in the present example, by successively subtracting, with their signs, the terms v0, ÿv1, v2,
. . . from their sum, we ®nd the numerical values:

ÿ1w1 � vÿ v0 � ÿ0:234 802 313 442; �2w2 � ÿ1w1 � v1 � �0:015 197 686 558;

ÿ3w3 � 2w2 ÿ v2 � ÿ0:000 427 313 442; �4w4 � ÿ3w3 � v3 � �:000 006 714 336;

ÿ5w5 � 4w4 ÿ v4 � ÿ0:000 000 067 348; �6w6 � ÿ5w5 � v5 � �:000 000 000 469;

ÿ7w7 � 6w6 ÿ v6 � ÿ0:000 000 000 002; �8w8 � ÿ7w7 � v7 � �:000 000 000 000;

9>>>>>=>>>>>;
(179)

where the ®nal 0 is a veri®cation of the correctness of all the subtractions. Dividing next by
ÿ1, ÿ2, ÿ3, ÿ4, &c., we obtain the following terms of w:

w1 � �0:234 802 313 442; ÿw2 � ÿ0:007 598 843 279;

w3 � �:000 142 437 814; ÿw4 � ÿ:000 001 678 584;

w5 � �:000 000 013 470; ÿw6 � ÿ:000 000 000 078;

therefore

w � �0:234 944 764 726 ÿ 0:007 600 521 941

� �0:227 344 242 785 � �Lÿ11:356 684 0, nearly;

9>>>>>>>>>>>=>>>>>>>>>>>;
(180)

whence, by logarithmic division,

÷ � w

v
� �Lÿ11:472 910 3 � �0:297 10j52; (181)

where the last ®gures may be doubtful, and might be more accurately obtained by arithme-
tical division, from the fraction,

÷ � 1012w

1012v
� 227 344 242 785

765 197 686 558
� � � : (182)
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However, the value (181) of ÷ agrees well enough with the former value, ÷ � �:297 08, (158)
which was deduced from the ascending series (153), with the help of a certain allowance, or
estimation, for the terms not computed, in the case x � 1. When x is larger, the operations
are of course more laborious. For

x � 14, (183)

I ®nd, by 29 terms of v,

v �
�64 709:366 887 062 333

ÿ64 709:195 813 586 219

)
�

�0:171 073 476j114

� �Lÿ11:233 182 6

( )
; (184)

and by 28 terms of w,�

w �
ÿ4 779:565 492 127 139

�4 779:333 645 842 994

)
�

ÿ0:231 846 284 145

� ÿLÿ11:365 200 1

( )
; (185)

whence, by logarithmic division

÷ � w

v
� ÿLÿ10:132 017 5 � ÿ1:355 2j44; (186)

or more exactly, by common arithmetic,

÷ � w

v
� ÿ 231 846 284

171 073 476
� ÿ1:355 243 9j0: (187)

For x � 10, I ®nd

v � ÿ0:245 935 764 4;y

w � �0:625 224 384 2; ÷ � ÿ2:542 226, nearly: (188)

XX. Although I have extracted the last results from one of my manuscript books, and
suppose them to be more than suf®ciently exact for any possible practical application, yet I
am tempted by an impulse of curiosity, connected with a theoretical question to which I
alluded in a recent note (of July 26th) from Edgeworthstown, to resume the whole calculation
of ÷ for x � 10, with a few additional ®gures at each step, and to write it out on the present
page, in order that the chief points of the investigation may be preserved, in a collected form,
for myself at least, in the copy which is to be made for me of what remains of this Letter.

We have now, by (172),

v0 � 1, and vn � 5

n

� �2

vnÿ1: (189)

Hence,

� Although the negative part of w happens here to be written above the other, it was obtained from
ÿw2, ÿw4, &c., and the positive part from �w1, �w3, &c.
y Aug. 18. Stokes found, ÿ0´245 94. Airy, he says, had found ÿ´2450.
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v0 � 1:000 000 000 000 000 v1 � 25:000 000 000 000 000

v2 � 156:250 000 000 000 000 v3 � 434:027 777 777 777 778

v4 � 678:168 402 777 777 778 v5 � 678:168 402 777 777 778

v6 � 470:950 279 706 790 123 v7 � 240:280 754 952 443 940

v8 � 93:859 669 903 298 414 v9 � 28:969 033 920 771 115

v10 � 7:242 258 480 192 779 v11 � 1:496 334 396 734 045

v12 � 0:259 780 277 210 772 v13 � 0:038 429 035 090 351

v14 � 0:004 901 662 639 075 v15 � 0:000 544 629 182 119

v16 � 0:000 053 186 443 566 v17 � 0:000 004 600 903 423

v18 � 0:000 000 355 007 980 v19 � 0:000 000 024 585 040

v20 � 0:000 000 001 536 565 v21 � 0:000 000 000 087 107

v22 � 0:000 000 000 004 499 v23 � 0:000 000 000 000 213

v24 � 0:000 000 000 000 009 v25 � 0:000 000 000 000 000

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(190)

and therefore

v � �1407:735 346 901 560ÿ 1407:981 282 115 352 909

� ÿ0:245 935 764 451 349 � 2

ð

� ð
2

0
dá cos(10 cosá), (191)

(or sin: it is immaterial which). I suppose that we shall be pretty safe in writing,

v � ÿ0:245 935 764 451 35 � nearly ÿ Lÿ11:390 821 7: (192)

Retaining however 15 places of ®gures, and subtracting successively from v its terms, v0, ÿv1,
&c., we ®nd:

ÿ1w1 � ÿ1:245 935 164 451 349 �2w2 � �23:754 064 235 548 651

ÿ3w3 � ÿ132:495 935 764 451 349 �4w4 � �301:531 842 013 326 429

ÿ5w5 � ÿ376:636 560 764 451 349 �6w6 � �301:531 842 013 326 429

ÿ7w7 � ÿ169:418 437 693 463 694 �8w8 � �70:862 317 258 980 246

ÿ9w9 � ÿ32:997 352 644 318 168 �10w10 � �5:971 681 276 452 947

ÿ11w11 � ÿ1:270 577 203 739 832 �12w12 � �0:225 757 192 994 213

ÿ13w13 � ÿ0:034 023 084 216 559 �14w14 � �0:004 405 950 873 792

ÿ15w15 � ÿ0:000 495 711 765 283 �16w16 � �0:000 048 917 416 836

ÿ17w17 � ÿ0:000 004 269 026 730 �18w18 � �0:000 000 331 876 693

ÿ19w19 � ÿ0:000 000 023 131 287 �20w20 � �0:000 000 001 453 753

ÿ21w21 � ÿ0:000 000 000 082 812 �22w22 � �0:000 000 000 004 295

ÿ23w23 � ÿ0:000 000 000 000 204 �24w24 � �0:000 000 000 000 009

ÿ25w25 � ÿ0:000 000 000 000 000

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(193)

163II . TWO LETTERS TO AUGUSTUS DE MORGAN



with the ®nal 0 as a veri®cation. Dividing by ÿ1, ÿ2, &c. the terms of w are thus found to be:

w1 � �1:245 935 764 451 349 ÿw2 � ÿ11:877 032 117 774 325

w3 � �44:165 311 921 483 783 ÿw4 � ÿ75:382 960 503 331 607

w5 � �75:327 312 152 890 270 ÿw6 � ÿ50:255 307 002 221 072

w7 � �24:202 633 956 209 099 ÿw8 � ÿ8:857 789 657 372 531

w9 � �2:555 261 404 924 241 ÿw10 � ÿ0:597 168 127 645 295

w11 � �0:115 507 018 521 803 ÿw12 � ÿ0:018 813 099 416 184

w13 � �0:002 617 160 324 351 ÿw14 � ÿ0:000 314 710 776 699

w15 � �0:000 033 047 451 019 ÿw16 � ÿ0:000 003 057 338 552

w17 � �0:000 000 251 119 219 ÿw18 � ÿ0:000 000 018 437 594

w19 � �0:000 000 001 217 436 ÿw20 � ÿ0:000 000 000 072 688

w21 � �0:000 000 000 003 943 ÿw22 � ÿ0:000 000 000 000 195

w23 � �0:000 000 000 000 009 ÿw24 � ÿ0:000 000 000 000 000

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(194)

giving

w � �147:614 612 678 596 522ÿ 146:989 388 294 386 742

� �0:625 224 384 209 780 � nearly � Lÿ11:796 032 59

)
(195)

whence (for x � 10),

÷ � w

v
� ÿ 625 224 384 209 780

245 935 764 451 349
� (nearly)ÿ Lÿ10:405 214 2

� (nearly)ÿ 2:542 226, as in (188): (196)

More exactly, by arithmetical division,

÷ � ÿ2:542 226 363 882 354; (197)

and I think that this value of ÷, for x � 10, may be relied on, to at least 13 ®gures after the
point. Adding to it the known logarithm,

loge 10 � è � �2:302 585 092 994 405, (198)

we obtain

÷� è � ÿ0:239 641 270 887 947, (199)

whence, at least very nearly,

÷� è � ÿLÿ11:379 561 4, (200)

for our present case of x � 10.

XXI. Admitting then that we can safely rely upon the value
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÷� è � ÿ0:239 641 270 88, (201)

as being at least very near to the truth, for the case of x � 10, we have in the next place to
inquire to what degree of accuracy we can compute, without (or even, if it be necessary, with)

excessive labour, the other part namely
ð

2
cotù, of the expression (compare (152) and (162))

ð

2
cotù� ÷� è � constant: (202)

It is true that this question may seem to have been already answered, by our having found, in
(150), the value for this case,

ù � 3ð� 77814942 0:8;

or a little more exactly, by (143), taking account of hundredths of seconds of arc,

ù � 458� 572857928 0:06ÿ 42958 0:31� 13 0:43ÿ 0 0:43� 0 0:03 � 3ð� 77814942 0:78; (203)

which is certainly not wrong by so much as 0 0:1, but may, so far as we yet know, be in error by
about 0 0:02, or 0 0:03, from the nature of the process employed. Adopting it, however, as a
temporary determination, we have, by Taylor's Tables,�

ð

2
cotù � ð

2
tan 12845917 0:22 � Lÿ1(0:196 119 9� 1:354 808 7)

� Lÿ11:550 928 6 � �0:355 572 9, nearly, (204)

adding to which our recent value (201), reduced to 7 decimals, namely, ÷� è � ÿ0:239 641 3,
we ®nd for the constant, in the case x � 10, the approximate value,

constant � �0:115 931 6; (205)

where the 7th decimal must, at this stage of the process, be reckoned as a doubtful ®gure. It
is, however, already worthy of note, that the constant thus found does not greatly differ from
the rough approximation (161), namely �0´1158, which was deduced by a far ruder method,
and with a much freer use of estimation, for the case x � 1; whence we may fairly infer that the
constant in question is not a discontinuous one. For, in the passage from the value x � 1 to the
value x � 10, the variable x has passed, not only through the stage (163), at which x was equal
to the ®rst, (or least) positive root of the transcendental equation (154), but also through the
second and the third roots of that equation (v � 0), which the researches of Fourier have made
immortal. Thus, the auxiliary angle ù, which I am disposed (compare my expression (127)) to
call the Phase of Fourier's De®nite Integral (in this Letter denoted by

v � 2

ð

� ð
2

0
dá cos(x cosá), )

because that Integral vanishes when the angle ù is any whole multiple of ð, and has passed
not only through ð, itself, but also through 2ð, and through 3ð, while x has increased from 1

to 10; the terms,
ð

2
cot ù, and ÷, in the trinomial expression of our constant, becoming both

in®nite, at each such stage of the progress of x, or of the connected angle ù, but their

� [Michael Taylor (1756±1789), Tables of logarithms and of sines and tangents, London: 1792.]
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algebraic sum being found to have remained ®nite, and continuous. This important conclusion
is con®rmed, when we advance to the case x � 14, whereby we pass the fourth root of the
transcendental equation (154); for we have then, to the same order of approximation as for
the case x � 10, by (144) and (151),

ù � 4ð� 126837950 0:45; (206)

therefore, by Taylor's Tables,

ð

2
cotù � ÿð

2
tan 36837950 0:45

� ÿLÿ10:067 399 0 � ÿ1:167 882 0; (207)

but also, by (187), for the case x � 14, we have, very nearly,

÷ � ÿ1:355 243 9; (208)

and Hutton� (in his Table of Hyperbolic Logarithms) gives,

è � log 14 � �2:639 057 3; (209)

whence by addition of the three last terms, we ®nd, for x � 14, the value:

constant � ð

2
cot ù� ÷� è � 0:115 731 4; (210)

the seventh decimal ®gure still being doubtful.

XXII. Having arrived at this degree of approximation, I might well have been content to stop
there, and to regard the solution of the main object of the present Letter as having been
already, for all practical purposes, accomplished. And, in fact, my most recent calculations have
given me, to seven decimals, a value which lies between the two (almost coincident) approxima-
tions, (205) and (210): namely the following value, on the improvement of which I may
however still return,

constant � ð

2
cotù� ÷� è � �0:115 931 5: (211)

But here, unluckily, came into play the inconvenience of possessing a certain share of what
some people, in their politeness, might call inventive power ± or at least some moderate

degree of mathematical sagacity. Perceiving that
���
ð
p

, and still some more that

���
ð

2

r
, played an

important part, as a familiar though transcendental constant, in a large portion of the whole
investigation, I suspected that the constant of my own theory might (perhaps) be related, in

some simple way, to the said square root,

���
ð

2

r
. This thought having occurred to me, it was not

dif®cult to see that

37

400

���
ð

2

r
� 0:115 931 558, nearly; (212)

� [Charles Hutton (1737±1823), Mathematical Tables ®rst published in London in 1785; the seventh,
published in 1830, and later editions were edited by Olinthus Gilbert Gregory (1774±1841).]
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and then I think that I may fairly count on being forgiven, if I confess again, what you already
know, from shorter notes of mine, ± mere pilot balloons, ± that I was, for a while, disposed to
believe that the following equation was perfectly rigorous, as in fact I ®nd it to be wonderfully
approximate: ���

ð

2

r
cotù�

���
2

ð

r
(÷� è) � 37

400
� 0:092 500: (213)

My latest investigation makes this last constant to be less than the fraction 37
400 by somewhat

about one thirty-millionth part of unity; so that the value (213) must be retained, if we wish to write
it correctly to the nearest ®gure in the 7th place of decimals; the error of my ®rst approximation
would bear well to be thus represented, for the bene®t of readers in general. Suppose that
somebody stated to a friend, that he knew for certain that Baron Rothschild had just that day
netted, on some great loan transaction, a Million Sterling (not a French million). I beg your
pardon, replies the friend, I am more correctly informed. The Baron did, no doubt, receive
£1,000,000 from the Treasury: but I happened to be present when he handed out no less a
sum than seven shillings and six pence afterwards, as the charge for a receipt stamp ± Was I lucky, or
unlucky, to come, so soon, so near the truth, without entirely attaining it? (The 7/6 appears to
me, at present, to be an allowance slightly too large. See the adopted constant, in a subsequent
paragraph.)

XXIII. It became, therefore, necessary for my purpose, that I should investigate, more
minutely, the value of the constant in question: because if the equation (213) had turned out
to be rigorously accurate, an indication would thereby have been given of (what I should have
considered as being) a very curious theoretical result: deserving to be carefully examined, as
perhaps pointing to some quite new part of the whole Doctrine of De®nite Integrals. ± And I still
think that the result points to something of interest, which is as yet unknown to me.

XXIV. You see for my purpose it was necessary that I should render myself quite sure, not
merely of the 7th, but even of the 8th decimal ®gure, in the expression of my constant; or
that I should reduce its error below 0´000 000 005, or at all events below 0´000 000 01. The value
of ÷� è is already known, for x � 10, beyond this limit of accuracy, and indeed I think to fully
twelve places, as in the equation (201); and it can easily be found, with the help of the
calculations already made, to almost as great a degree of accuracy as this or at any rate to
about ten places, for the case x � 14; in which case we have already determined that two
ascending series give,

v � 2

ð

� ð
2

0
dá cos(14 cosá) � 0:171 073 476 114 (184)

and

w � ÿ0:231 846 284 145; (185)

whence, by a somewhat more careful division than that mentioned in (186), or in (187) and
with 12 ®gures written, after the point, although the 2 last may be doubtful,
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÷ � w

v
� ÿ 231 846 284 145

171 073 476 114
� ÿ1:355 243 895 2j63, for x � 14: (214)

But also,

è � log 14 � L14 3 log 10 � 1:146 128 035 678 3 2:302 585 092 994 � �2:639 057 329 6j14,

(215)

whence, with an accuracy of perhaps about ten ®gures,

÷� è � �1:283 813 434 3j51, for x � 14: (216)

(The values (208), (209) would have given, ÷� è � 1:283 813 4:) We may therefore regard

÷� è as suf®ciently well known, for each of these 2 values of x; but the values of
ð

2
cotù have

not yet been computed, to the degree of accuracy which is at present aimed at. We know,

however, to what may be called (for our purpose) perfect exactness, the value of the factor
ð

2
;

and although the Tables of Taylor will not give tangents to 8 or 9 decimals, yet we can
compute such tangents for ourselves, by an endurable amount of industry. The important
thing, then, and the only remaining (theoretical) dif®culty, is to determine, more accurately
than we have yet done, the values of what I call the Phase of the Integral, or the auxiliary angle
ù. And these values must be computed, at least to thousandths of seconds, and not merely to
tenths, or even to hundredths, as above. For, when ù is nearly equal to the value (203), as it is
for x � 10, an increase of a single tenth of a second in this angle ù produces a decrease of

about 0´000 000 8 in the value of
ð

2
cotù; and therefore an increase of ù by 00´01 decreases

ð

2
cot ù by about 0´000 000 08, that is, by almost 1 in the 7th place of decimals: I must

therefore aim at knowing the value of ù, if possible, without an error of 00´001, in order that I
may avoid an incorrectness of 1 in the 8th place, in the resulting product. And when ù is
nearly equal to its other value (206), as it is when x � 14, an increase of a single thousandth of a

second in it decreases
ð

2
cotù by rather more than 1 in the 8th place of decimals: it is therefore

even more necessary, in this case, for our purpose, to avoid so great an error as 00.001 in the
determination of ù. For these reasons I am compelled to resume and improve the method,
which has been employed in this Letter, for the calculation of that angle, or phase.

XXV. The descending series (44), for that particular integral y of the fundamental
triordinal equation (1), to which the present Letter mainly relates, may be thus written:

y � xÿ1(1ÿ 0eÿ1á1 t � 0eÿ2á2 t 2 ÿ 0eÿ3á3 t 3 � &c:); (217)

where

t � 1

8x2
; (218)

0eÿm � 1

1:2:3: � � � m
, as before; and ám � 13335373 � � � (2m ÿ 1)3, (219)
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so that

á1 � 1, á2 � 27, á3 � 3375, á4 � 1 157 625,

á5 � 843 908 625, á6 � 1 123 242 379 875: (220)

Hence, by (135),

ù9 � (xy)ÿ1 � (1ÿ 0eÿ1á1 t � 0eÿ2á2 t 2 ÿ &c:)ÿ1

� 1� 0eÿ1â1 t ÿ 0eÿ2â2 t2 � 0eÿ3â3 t 3 ÿ &c:, (221)

with the relations,

á1 � â1, á2 � 2á1â1 � â2, á3 � 3á2â1 � 3á1â2 � â3, &c:, (222)

which gives

â1 � 1, â2 � 25, â3 � 3219, â4 � 1 127 199,

â5 � 830 771 625, â6 � 1 112 086 390 905: (223)

Restoring for t its value (218), and then integrating the series (211) with respect to x, and

adding the constant
ð

4
, we ®nd, as in (149),

ù � ð

4
� x ÿ s,

with the following descending series for s, carried somewhat farther than (141) or (142):

s � â1xÿ1

8
ÿ â2xÿ3

3:2:82
� â3xÿ5

5:2:3:83
� â4xÿ7

7:2:3:4:84
� â5xÿ9

9:2:3:4:5:85
ÿ â6xÿ11

11:2:3:4:5:6:86
� &c:

� 1

2
(4x)ÿ1 ÿ 25

3
(4x)ÿ3 � 2146

5
(4x)ÿ5 ÿ 375 733

7
(4x)ÿ7 � 110 769 550

9
(4x)ÿ9

�

ÿ 49 426 061 818

11
(4x)ÿ11 � &c:

�
� 2578 0:310 078

10

x

� �1

ÿ 13 0:428 698
10

x

� �3

� 0 0:432 270
10

x

� �5

ÿ 0 0:033 788
10

x

� �7

� 0 0:004 842
10

x

� �9

ÿ 0 0:001 105
10

x

� �11

�&c:g;

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
(224)

the two last terms being new, and the coef®cients of the four others being now computed to
greater exactness than before. For x � 10, the initial convergence of this ultimately diverging
series is scarcely so rapid as we require: that convergence is also inconveniently decreasing.
However, if we sum separately the ®rst ®ve and the ®rst six terms, as just now set down, we
®nd the two near limits,

s , 2565 0:2847, and s . 2565 0:2836, for x � 10; (225)

and accordingly our former approximation to s, for this value of x, was s � 2565 0:28, (143). ±

Expanding
ð

4
� x to the 4th decimal of a second of arc

169II . TWO LETTERS TO AUGUSTUS DE MORGAN



ù� s � ð

4
� x � 458� 2 062 648 0:0625; (226)

therefore

ùÿ 458 . 2060082 0:7778, ùÿ 458 , 2060082 0:7789; (227)

that is,

ùÿ 3ð. 77814942 0:7778, but , 77814942 0:7789, for x � 10; (228)

and accordingly, for this value of x, we lately found that

ù � 3ð� 77814942 0:78, nearly: (203)

Hence, for x � 10, we have

ð

2
cotù,

ð

2
tan 12845917 0:2222, .

ð

2
tan 12845917 0:2211: (229)

The arc of which the tangent is here taken is only a little greater than

2

9
� 12843956 0:6236 (230)

in such a manner that we must have, very nearly,

ð

2
cotù � ð

2

t � T

1ÿ tT
, (231)

if t � tan
2

9
, and T � tan 80 0:598: (232)

By the known series for sine and cosine,

t �
sin

2

9

cos
2

9

�
:220 397 743 456 123
:975 410 085 389 448

� 0:225 953 931 333j533; (233)

where I suppose that at least 12 or 13 ®gures are correct, the values of sin and cos having
been veri®ed by their giving,

sin2 2

9
� :048 575 165 320 551

cos2 2

9
� :951 424 834 679 450

9>>=>>;sum � 1:000 000 000 000 001: (234)

The other tangent T is so small, that for it we may conveniently employ the single ascending
series, without computing sine and cosine: and thus we have

T � tan(á � 80 0:598) � :000 390 750 130 70 � á� á3

3
� � � �

�
:000 390 750 131

�:000 000 000 020

( )
� :000 390 750 151: (235)

wherefore, by (231) and (233), at least very nearly,
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cotù � tan 12845917 0:2216 � t � T

1ÿ tT
� 0:226 364 667 569; (236)

and therefore

ð

2
cotù � �0:355 572 788 334: (237)

(We had found, by logarithms,

ð

2
cotù � nearly 0:3555729:)

Adding ÷� è � ÿ0:239 641 270 888, (201), we have thus, for x � 10, the improved approximate
value:

costant � ð

2
cotù� ÷� è � �0:115 931 517 446: (238)

For x � 14, the series for s converges much more rapidly, in its initial terms; and we thus ®nd,

ù � 458� 2 887 707 0:287 459 3ÿ s � 4ð� 12788927 0:287 459 3

ÿ 30941 0:650 055 7� 4 0:893 840 4ÿ 0 0:080 373 9� 0 0:003 205 3

ÿ 0 0:000 234 4� 0 0:000 027 3ÿ &c:� &c:

� 4ð� 126837950 0:453 86 . . . , (239)

so that we may be pretty sure of at least 4 decimals of a second, and may safely write,

ù � 4ð� 126837950 0:4539: (240)

However it is almost as easy to calculate
ð

2
cot ù from (239), as from (240), as follows: Let

t � tan 368 �
������������������
5ÿ 2

���
5
pq
� 0:726 542 528 005; (241)

T � tan 37950 0:453 86 � 0:011 007 915 529; (242)

then

ð

2
cotù � ÿð

2

t � T

1ÿ tT
� ÿ1:167 881 918 679: (243)

Adding to this,

÷� è � �1:283 813 434 351, (216)

constant � ð

2
cot ù� ÷� è � �0:115 931 515 6j72: (244)

And now, at last, I am conducted to a value of the constant, with which I am disposed to be
content, as with one likely to have 9 (nay, almost ten) ®gures correct. In fact, if we suppose, as
we may, by (228), that

ù � 3ð� 77814942 0:7786 for x � 10, (245)

then the value (238) is slightly but suf®ciently diminished, and becomes consistent with the
following, which I adopt as ®nal:
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constant � �0:115 931 516: (246)

But we see by (212) that this constant (246) is not exactly equal to the value, namely

37

400

ð

2

� �1
2

,

or 0´115 931 558, with which I had for a while supposed it to coincide, and to which in fact it
makes a very remarkable degree of approach: its defect from the conjectured value being less
than 0´000 000 4 [times] the whole, and nearly [equal to] that whole [multiplied by] 3 and
[divided by] 8 millions; or (as I said) to 7 shillings and 6 pence in a million of pounds
sterling. (The result may be thus illustrated: Let the sum on which we are to operate be one

million of Pounds Sterling; my fraction
37

400
would give a result [equal to] £92,000; and the

correction of this fraction, [equal to] ÿ1/30 000 000, would diminish this by about eight pence.)

XXVI. Conceiving that I have now completely established, as true to (at least) the 7th
decimal, the equation

ð

2

� �1
2

cot ù� 2

ð

� �1
2

:(÷� è) � �0:092 500 0 � 37

400
, (213)

where ù, ÷, and è have the signi®cations already explained, I proceed to make a few
applications of this formula. And ®rst let me connect it with some of the investigations
contained in the Memoir by Professor Stokes, to which I could only refer from memory, when
writing my fourth Sheet, but which has been found today, after the Fifth Sheet was posted.
The Paper is probably in your Library, but for my own convenience I shall here copy its Title,
and a small part of its contents. It is entitled; ``On the Numerical Calculation of a Class of
De®nite Integrals and In®nite Series''�. From the Transactions of the Cambridge Philosophical
Society. Volume IX. Part I. By G. G. Stokes, M.A., Fellow of Pembroke College, and Lucasian
Professor of Mathematics in the University of Cambridge. Engraving. Cambridge: printed at
the Pitt Press, by John W. Parker, Printer to the University, M.DCCC.L. The atrocious custom,
to which I own that I have too often been a consenting party, of giving to authors their private
copies with private paging, renders it impossible for a reader to make a reference which shall be
intelligible, or at least shall be sure to be so, to any one else who may have access to the public
copies only, by mentioning the page alone; but in this case, the leading formula (as well as
articles) being numbered, we can get along well enough: besides that I suppose Stokes is likely
to have sent you a separate copy. Turn then to his ``Second Example,'' articles 19 to 22. In
that Example, Stokes considers the integral

u � 2

ð

� ð
2

0
cos(x cos è)dè � 1ÿ x2

22
� x4

2242
ÿ x6

224262
� � � ,

which, as he remarks, ``occurs in a great many physical investigations'', and which has in this

Letter been denoted by v. He says: ``If we perform the operation x
d

dx
twice in succession on

� [Reprinted in: George Gabriel Stokes (1819±1903), Mathematical and physical papers, Vol. II, pp.
329±357, Cambridge: 1883.]
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the series, we get the original series multiplied by ÿx2, whence

d2u

dx2
� 1

x

du

dx
� u � 0:'' St(47)

(Compare the equations (58) (59) of this Letter.) As the complete integral of this differential
equation, he assigns the form,

u � Axÿ
1
2(R cos x � S sin x)� Bxÿ

1
2(R sin x ÿ S cos x), St(49)

where

R � 1ÿ 12:32

1:2(8x)2
� 12:32:52:72

1:2:3:4(8x)4
� � � , S � 12

1:8x
ÿ 12:32:52

1:2:3(8x)3
St(50)

while A and B are arbitrary constants. For very large values of x, he obtains the same
approximate results as Poisson, for the particular integral in question, namely

u � (ðx)ÿ
1
2(cos x � sin x);

(compare equation (65) of this Letter;) whence he infers that

A � B � ðÿ
1
2, and finally that u � 2

ðx

� �1
2

R cos x ÿ ð

4

� �
� 2

ðx

� �1
2

S sin x ÿ ð

4

� �
; St(52)

being pleased to observe, in a Note, that ``this expression for u, or rather an expression
differing from it in nothing but notation and arrangement, has been already obtained in a
different manner by Sir William Rowan Hamilton, in a memoir On Fluctuating Functions.
See Transactions of the Royal Irish Academy, Volume XIX. page 313''.� He refers, of course, to a
formula which (with a slightly modi®ed notation) I shall now number with the equations of
this Letter, as follows:

(u, or)v � 2

ð

� ð
2

0
dá cos(x cosá)

� ðx

2

� �ÿ1
2 Xm�1

m�0

0eÿm ÿ 1

2

�m
 !2

(2x)ÿm cos x ÿ ð

4
ÿ mð

2

� �
: (247)

XXVII. I am content to adopt Stokes's symbols, R and S, for the coef®cients of the cosine

and sine of x ÿ ð

4
, in the expansion of

2x

ð

� �1
2
� ð

2

0
dá cos(x cosá),

as given by this formula of mine, in ®nding which I was assisted by a hint in one of Poisson's
Memoirs; and then, taking nothing on the present occasion from Professor Stokes, except those
two letters, R and S, I suppose myself to be entitled to write, and to number, as follows:

� [See p. 585 of this volume.]

173II . TWO LETTERS TO AUGUSTUS DE MORGAN



ðx

2

� �1
2

v � 2x

ð

� �1
2
� ð

2

0
dá cos(x cosá) � (R sinÿ S cos) x � ð

4

� �
; (248)

R ÿ
�������
ÿ1
p

S �
Xm�1
m�0

0eÿm ÿ 1

2

�m
 !2

(2x
�������
ÿ1
p

)ÿm : (249)

Stokes gives, as an example, for the case x � 10, the values,

``R � 1ÿ :000 07� :000 01 � :999 31; S � :012 50ÿ :000 10 � :012 40;

Angle x ÿ ð

4
� 5278:957 80 � 3 3 1808ÿ 1282932 0; whence u � ÿ:245 94,

which agrees with the number (ÿ´2460) obtained by Mr. Airy by a far more laborious process,
namely by calculating from the original Series.'' The only liberty which I have taken in the
transcription has been, that I have written the decimal point a little higher up, than it is
written in his Paper. You may remember, or on turning back will ®nd, that I lately deduced,
from 25 terms of the ascending series, for the case x � 10, the value, more exact than Stokes
required for his purpose, but so far as his goes agreeing with his result, and not professing to
be itself corrected to all its 15 decimals:

v �
�1407:735 346 350 901 560

ÿ1407:981 282 115 352 907

)
� 0:245 935 764 451 349 � 2

ð

� ð
2

0
dá cos(10 cosá): (191)

And possibly you may recollect, that in my Essay on Fluctuating Functions, to which Professor
Stokes has referred, and of which you were (I think) at one time pleased to desire that I
should send you a copy, ± and I trust that the request (if made) was acted on, ± I published
the analogous results, cited in a rather recent little paper of mine, in the Philosophical
Magazine for last November, 1857�, but which I shall now, for reference sake, incorporate
with the present Letter:

2

ð

� ð
2

0
dá cos(40 cosá) �

�7447 387 396 709 949:965 7957

ÿ7447 387 396 709 949:958 4289

)
� �0:007 366 8, (250)

from the ascending series, by sixty terms employed; and from the descending series, by only three
terms,

2

ð

� ð
2

0
dá cos(40 cosá) � 1ÿ 9

204 800

� �
cos 86849952 0��������

20ð
p � 1

320

sin 86849952 0��������
20ð
p

� 0:006 973 6� 0:000 393 6 � �0:007 367 2: (251)

XXVIII. Professor Stokes proceeds to introduce two new quantities, which he denotes by M
and ø, and which are such that

R � M cosø S � M sinø:

(He does not actually print these very equations, but it is obvious that they were in his mind.)
He goes on to say:- ``whence we get for calculating u for a given value of x

� [See p. 652 of this volume.]
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M � 1ÿ 1

16
xÿ2 � 53

512
xÿ4, tanø � 1

8
xÿ1 ÿ 33

512
xÿ3 � 3417

16 384
xÿ5,

u � 2

ðx

� �1
2

M cos x ÿ ð

4
ÿ ø

� �
:'' St(53)

If I were writing for the mathematical public at large, and I gladly admit that these Letters to
De Morgan constitute in themselves a quasi-publication, very useful to myself, as forcing me to
express myself with some degree of method and arrangement, ± I might shrink from the
egotism of saying, what I cannot formally prove, and what it would be worth nobody's while
not even my own, that I should prove if I could, ± but what I still choose to assert to you, on
manuscript evidence satisfactory to me, ± that I possessed the transformation last cited, ten
years before Stokes printed it. Admitting, however, that, by all laws of evidence, he is entitled
to call his deductions (St(53)) from my formula (St(52)) his own, I suppose that I may be
allowed to adopt them: and to adopt them to the system of this Letter by a slight modi®cation
of the symbols, and a slight extension of the developments. The auxiliary angle ø of Stokes is
precisely the s of these pages; permit me therefore to write, now,

R � r cos s, S � r sin s; (252)

where R and S have the same signi®cations as in Stokes's ``Second Example''; so that (though
not in his notations)

R �
Xm�1
m�0

0eÿ2 ÿ 1

2

�2m
 !2

(ÿ4x2)ÿm ; S � 1

2x

Xm�1
m�0

0eÿ(2m�1) ÿ 1

2

�2m�1
 !2

(ÿ4x2)ÿm : (253)

Although the angle which I here denote by s, namely

s � tanÿ1 S

R
, (254)

and which Stokes has denoted by ø, has been itself developed in this Letter to a (much)
greater degree of accuracy, (compare (224)), on principles which do not appear to have
occurred to Professor Stokes, and on which I may perhaps return, yet for the tangent of this
angle I am here content to write down an expansion, which has only one term more than that
cited from the Professor's Paper:

(tanø, or) tan s � S

R
� (8x)ÿ1 ÿ 33(8x)ÿ3 � 6834(8x)ÿ5 ÿ 342 731 7(8x)ÿ7 � &c: (255)

The ``one term more'', it must be said in passing, I was able to turn to some important
account, by one of my methods of ``Transformation of Diverging Series'', even for the very
unfavourable case x � 1, before I had made out the processes of the present Letter, whereby
the value of the angle in question can be computed (as I conceive) with certainty, for every
real and positive value of x, to decidedly less than the thousandth part of a second, if the improved
value (246) of my constant be adopted; and with an error which can scarcely ever amount to
the two-hundredth part of a second, if we content ourselves with the approximate formula (213),
and deduce s from ù, by the relation (149): the semicircle, to which ù (given at ®rst by its
cotangent) belongs, being determined by a comparatively slight and rude and easy examina-
tion of the roots of the transcendental equation v � 0: (154) of which equation Stokes has
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tabulated the ®rst twelve roots, with (as I presume) an accuracy suf®cient for his purpose,
although I judge that the ®rst root, say x1, as by him deduced by interpolation from a Table of
Mr Airy, is wrong by almost two units in the fourth place of decimals: Professor Stokes
adopting for this root the value 2´4050, while I have found it to be, much more nearly,
x1 � �2:40482556, (163) ± As regards the quantity which I above, in (252), call r, and he
calls M namely the (Argandian) modulus of

R �
�������
ÿ1
p

S , or (M �)r � (R2 � S2)
1
2, (256)

I shall just write down my own result, which goes a couple of terms farther than that of Stokes:

(M �)r � 1ÿ 1

24x2
� 53

29x4
ÿ 4447

213x6
� 3 066 403

219x8
ÿ &c: (257)

Of course, I am not so foolish as to entertain even the slightest doubt, but that Stokes could
easily have deduced these additional terms from my series, ± if it ought not rather to be called
Poisson's, since I admit that I took the hint from him, although Poisson does not seem to
have assigned the general term, ± if Professor Stokes had judged it to be useful, for his purpose,
to have done so. But I confess that I do doubt whether he saw the laws which regulate the
series for what he denotes by M, or rather the square of that series, and which connect the
reciprocal of that square, with the differential coef®cient of the angle ø, or s.

XXIX. For, with every disposition in the world to look up to Professor Stokes, ± with whom I
have now a strange and Irish feeling of being almost in some degree connected, since he has
married that charming Irish girl, whom I knew a little from her infancy, ± Mary, the Daughter
of my old friend, the Reverend Doctor Thomas Romney Robinson of Armagh, ± I must, in
justice to myself, or rather to the subject of the present Letter, go on to point out a few things,
which did not, perhaps, lie exactly in Stokes's way, and which he is most excusable for not
having dwelt upon: but which it is still a little curious to me that he did not in some way notice,
or allude to, if he happened to be aware of their existence, at a time when his subject brought
him so near them.

For the moment, then, calling those series mine, which Stokes has lettered R and S, but has
in print acknowledged to have been substantially anticipated by my Paper on Fluctuating
Functions, ± which Paper I remember Jacobi holding in his hand at Manchester in 1842,
when he was pleased to style me, in his address to Section A, of the British Association, ``le
Lagrange de voÃtre pays,'' ± I venture to remark that Professor Stokes does not seem to have
been aware of some of thosedifferent relations between them, respecting which I now presume
on your good-humour, to give to them, through you, that sort of ``quasi-publication'', to
which I have already alluded: although I have no wish to print, until I can much more closely
condense.

XXX. In order that the descending series,

v � bxÿ
1
2(R sinÿ S cos)(x � c), (258)

may express (as Stokes was quite aware that it does) one form of the complete integral of the linear
and biordinal equation of Fourier,
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(D2 � xÿ1 D � 1)v � 0, (59)

while b and c are arbitrary constants, it is necessary and suf®cient that the functions R and S
should be connected with each other by the two relations:

D2 R � 2DS � R

4x2
� 0; D2S ÿ 2DR � S

4x2
� 0, (259)

which I have not noticed in any book, but which are easily veri®ed, as being satis®ed by the
two series (253), or by Stokes's expressions (St(50)) for R and S. Multiplying the ®rst of these
equations (259) by S, and the second by ÿR, adding, and integrating, we get,

SDR ÿ RDS � R2 � S2 � constant � 1; (260)

another relation which I suppose to be new. Introducing the expressions (252), we ®nd

rÿ2 � 1ÿ s9; (261)

or, in the notation of Stokes's Paper,

dø

dx
� 1ÿ Mÿ2;

a relation of which, however, I do not see any indication that he was at all aware. (It is a case
of a much more general� relation, which I perceived, but did not publish, in 1840, and to which I
may perhaps return, in the present, or in some future Letter.) ± Substitute (252) in the 1st
equation of the 2nd order,

r 3 r 0� r 4 1� 1

4x2

� �
� 1: (262)

so that in Stokes's notation, but (as it seems) without his knowing it,

M 3 d2 M

dx2
� M 4 1� 1

4x2

� �
� 1:

Divide the differential of (262) by
r 2

2
; we ®nd that

2(rr -� 3r 9r 0)� 8rr 9 1� 1

4x2

� �
ÿ r 2

x3
� 0; (263)

that is

(D3 � (4� xÿ2)D ÿ xÿ3)r 2 � 0;

or ®nally,

(xD)3xÿ1 r 2 � 4x2 Dr 2 � 0, (264)

when Dr 2 denotes D(r 2), not (Dr)2. Comparing with the fundamental and triordinal (but
linear) equation (1), of this Letter, we see that

r 2 � xy, (265)

� I have not time just now to write a note about this.
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with the value (44) for y, there being only one descending series for xÿ1 r 2, or for y, which
satis®es the triordinal equation, and gives xy � 1 when x � 1 hence, by the present Letter,
the square of Stokes's M or of my r, is:

r 2 �
Xm�1
m�0

0eÿm ÿ 1

2

�m
 !3

xÿ2m � 1ÿ 13

1(8x2)
� 1333

1:2(8x2)2
ÿ 13:33:53

1:2:3(8x2)3
� � � � , (266)

and this result which I suppose to be new. Finally, if we make ù � x � ð

4
ÿ s as in (149), equal

to what I have called the Phase of Fourier's Integral, that de®nite integral becomes,

v � 2

ð

� ð
2

0
dá cos(x cosá) � 2

ðx

� �1
2

r sinù; (267)

and the formula�

ð

2

� �1
2

cotù� 2

ð

� �1
2

(÷� è) � 37

400
, (213)

enables me to ®nd the phase for small as well as for great values of x: which it appears to have been
quite impossible to do, by the method of Stokes's Paper. I am enabled, for instance, to
enunciate this Theorem. ``The Phase ù tends to 0, when x tends to 0''; or this: ``While x, being
real and positive, tends to 0, the angle s tends to 458, and the diverging series (255) tends to 1.''

� Note added on 1 June 1860:
If v be developed in the ascending series

v � v0 ÿ v1 � v2 ÿ v3 � &c:

where

v0 � 1, v1 � x2

4
, . . . , vn � 2ÿ2n x2n(0eÿn)2,

and if

w � w1 ÿ w2 � w3 ÿ w4 � &c:,

where

ÿw1 � vÿ v0, ÿw2 � vÿ v0 � v1, ÿw3 � vÿ v0 � v1 ÿ v2, &c:,

then

÷ � w

v
; and è � log x:

Thus cot ù is de®nitely found, by the equation (213), for all real and positive values of x. As to the semicircle
in which the phase ù lies, it is the 1st positive semicircle, (ù. 0, ,ð) if x . 0, x , least positive root of
equation v � 0; it becomes [equal to] ð for this root; is in 2nd positive semicircle, until x [equals] second
positive root of same transcendental equation; and so on; being, as I ®nd, [equal to] 0, when x � 0,
which is one of the chief theoretical results of this Letter, as regards Fourier's Integral.
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I I I .

LETTER TO HART ON ANHARMONIC

COORDINATES (1860)�

Observatory, February 27th 1860
My dear Dr Hart,

1. Although I lately wrote in reply to your note about the pyramids, and suppose that you
may not consider that subject as completely disposed of, yet I believe that I have your
permission to address to you a letter, which may become a long one, on the subject of
Anharmonic Coordinates: especially as Salmony and others, to whom I lately spoke on that
subject, did not appear to have heard of such things, nor can I ®nd any equivalent
expression, nor any such coordinate system, in the Barycentric Calculus of MoÈbius;{ although it
was by combining some points of the calculus with quaternions that I happened to form
the conception. MoÈbius, in fact, expressly de®ned that his coordinates of a point P, in the
plane of a given fundamental triangle ABC, are the weights (or at least the ratio of the
weights,) with which the corners of that triangle must be loaded, in order that the point P
may become their centre of gravity: and similarly for a point P in space referred to a
fundamental pyramid ABCD. He certainly has some investigations, in which, after selecting
some one point, say D, in the plane of a fundamental triangle, and denoting its weights, or
its barycentric coordinates, by a, b, c, so that in his notation we have the congruence,
D � aA � bB � cC , he passes then to the consideration of another point P in the same plane,
which satis®es this other congruence P � xaA � ybB � zcC . But I do not ®nd, perhaps my
search has not been suf®ciently close, and I shall be glad, if so, to be set right, ± that he
gives any name to these new coef®cients x, y, z; or that he in any way proposes to make them
the main elements of a system: with the corresponding use of quotients of quotients of weights for
space, as when

E � aA � bB � cC � dD, and P � xaA � ybB � zcC � wdD,

where ABCD is the fundamental pyramid. Even his use of Greek letters to denote these

� [This long letter, which now appears in print for the ®rst time, was addressed to Dr Andrew
Searle Hart (1811±1890) who was, in 1860, a senior fellow and bursar of Trinity College, Dublin. The
present text is based on two, incomplete, copies contained in Trinity College MSS 1493/1170 (articles
1±203, 213±357, 367±382, 393±490) and 1493/1171 (articles (169±438). A short publication, based
on this letter, will be found on pp. 507±515 of this volume; see the ®rst footnote to article 490 on p.
427.]
y [George Salmon (1819±1904), fellow of Trinity College, Dublin, and, in 1860, assistant to the

Erasmus Smith's professor of mathematics, Charles Graves (1812±1899), and Donegal lecturer.]
{ [August Ferdinand MoÈbius (1790±1868), Der barycentrische Calcul, Leipzig: 1827.]



quotients is to me some argument that he regarded them as only of a secondary or derivative
character, and of merely occasional use and application, while his true coordinates (which he
denotes by italic letters) are still the weights themselves, or numbers proportional thereto. But I
shall leave the remainder of this page for a few extracts from his book, which is now just
beside me. And I shall pass, in page 3, to an account of my own way of looking at the whole
subject, which appears to me to be much more simple and elementary; and to show that the
Anharmonic Coordinates to which I allude ought really to be introduced, quite early, into
the Elements of at least the Higher Geometry, including the application of Algebra: but not
necessarily requiring an employment of Quaternions, although I ®nd that the methods easily
combine. I shall continue to number paragraphs [later referred to as articles], namely as 1, 2, 3,
. . . , leaving the Roman numerals I., II., . . . , to serve [but not exclusively] as references to my
former letters.

2. Extracts from the Barycentric Calculus of MoÈbius.�

3. To begin at the beginning, let us take the case of Cartesian coordinates, in a given plane.
Assuming, as usual, an origin O, and two axes, OX, OY, which may be conceived to be
continued to meet the line XY at in®nity, we have thus what may be called a fundamental
triangle : and it seems to be taken for granted that this is suf®cient, for the determination or
construction of any point P in the plane, as soon as its numerical coordinates, x and y, are given:
at least, I have never happened to see any use made of any fourth point of reference, as among
the data of the coordinate system. But suppose that P � (1, 1), or that it is required to construct
the point which has each coordinate equal to positive unity. How is this to be done? Of
course, the answer would be, that we must employ some assumed unit of length, ± or it may be,
two such units, one for one axis, and the other for the other, ± and must also select one of the
four regions about the origin, as that which is wholly positive. Very well: but might it not as well
be said at once, that we select a fourth point U in the given plane, (X and Y being treated as

� [This section has been left blank.]

Fig. 1
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given,) of which the coordinates are 1 and 1, and which may therefore be brie¯y called the
unit-point? At all events, we see that such a selection is virtually made, in the process usually
employed. And when it is made avowedly, we need no additional convention respecting units, or
positive direction. ± Indeed, I conceive that it is then unnecessary so much as to say that any
one direction is positive. I would prefer to speak of positive or negative quotients of segments,
their relative directions, only being considered; and then I think that the grand and received
convention, respecting signs of segments, won't fall away as useless. We can surely admit that the
quotient AB : AB � �1, and that this other quotient AB : BA � ÿ1, without ever thinking of the
question, whether AB itself be a positive or a negative line: and in fact, you are aware that I
admit no such lines, in quaternions. ± But be that as it may, I proceed to lay down my own
de®nitions, of coordinates within the plane.

4. Having assumed a triangle OXY, and a point U in its plane, let two other ®xed points A
and B be determined, by the conditions [Figure 2]

A � YU
:
OX , B � XU

:
OY ; �

that is to say, let A be the intersection of the two given lines YU, OX, and let B be the
intersection of the other given lines XU, OY. Let P be any variable or arbitrary point in the
given plane, and let Q , R be its projections on the two given axes, OX, OY, obtained by drawing
lines through the given points Y and X; so that, in symbols, Q � YP

:
OX , and R � XP

:
OY .

Finally, let x, y, z be numbers (positive or negative, as the case may be), such that

x

z
� OQ

QX
:

XA

AO
;

y

z
� OR

RY
:

YB

BO
:

Then I de®ne that x, y, z, (or any numbers proportional to them) are the three anharmonic
coordinates of the point P, with respect to the given (or assumed) triangle ABC, and the given
point U, which may (as in 3.) be called the unit-point, because by the de®nition, its three
coordinates are equal to each other, and may therefore be taken as 1, 1, 1, or more fully as

� [The . here denotes intersection.]

Fig. 2
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each � �1. And it is evident that when the line XY goes off to in®nity, as in Figure 1, and
when we assume z � 1, we thus fall back on the simple ratios, or quotients,

x � OQ

OA
, y � OR

OB
;

which are of the Cartesian kind, if we further suppose that the two given lines OA and OB are
equally long. In general, however, OAUB may be any plane quadrilateral; and the points X and Y
may be deduced from it, as the intersections of its opposite sides, by the formulae, X � OA

:
BU ,

Y � OB
:
AU ; so that we might speak of the point P as being referred to this quadrilateral OAUB,

of which the corners, expressed by their coordinates, are as follows:

O � (0, 0, 1), A � (1, 0, 1), B � (0, 1, 1), U � (1, 1, 1);

at least if we choose, as we may, that z shall be � 1 for each of them.

5. The usage respecting the symbol (ABCD), considered as denoting an anharmonic ratio, or
quotient, appearing to be not quite ®xed as regards the order of the letters, or of the points, it
is proper that I should state precisely what signi®cance I attach to that symbol. If, then A, B,
C, D be any collinear group of four points, I write,

(ABCD) � AB

BC
:
CD

DA
� AB

CB
:

AD

CD
, &c:,

so that

(ABCD) � (BCDA)ÿ1 � (CDAB) � (DABC)ÿ1 � (DCBA)

� (CBAD)ÿ1 � (BADC) � (ADCB)ÿ1 � say, a;

and if this anharmonic be thus denoted by a, we have

(ACBD) � (CBDA)ÿ1 � (BDAC) � (DACB)ÿ1 � (DBCA)

� (BCAD)ÿ1 � (CADB) � (ADBC)ÿ1 � 1ÿ a,

because

AB

BC
:CD � AC

CB
:BD � DA;

whence also,

(ACDB) � (CDBA)ÿ1 � (DBAC) � (BACD)ÿ1 � (BDCA)

� (DCAB)ÿ1 � (CABD) � (ABDC)ÿ1 � 1ÿ aÿ1:

These known relations between the 24 anharmonics of a group were quite familiar to MoÈbius,
who seems to have invented, for himself, the whole doctrine of anharmonic ratio� (Doppelsch-
nittsverhaÈltniss � ratio bissectionalisy), without even knowing (as historical) the property of a
pencil cited from Pappus by Chasles,{ as I mentioned in a former letter (par. ). I write

� [See reference to MoÈbius in article 1, pp. 243±263.]
y [The same references, p. 244 }182.]
{ [Michel Chasles, 1793±1880.]
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them here to have them ready, and partly because the symbol (ABCD) is not always interpreted
as above: it was used differently by MoÈbius, for example. In the present notation, the equation
(ABCD) � ÿ1, or (ACBD) � 2, or (ADBC) � 1

2, &c., expresses of course that D is harmonically
conjugate to B, with respect to A and C ; a relation which MoÈbius would have expressed by
(ACBD) � ÿ1, writing conjugates together, whereas I prefer to separate them. ± I may just
remark, in passing, that even if ABCD be a gauche� quadrilateral, I still write

(ABCD) � AB

BC
:
CD

DA
,

as above; and that I then say that this product of two quotients, interpreted as quaternions, is the
Anharmonic Quaternion of that quadrilateral. In like manner, I write

(ABCDEF ) � AB

BC
:
CD

DA
:
EF

FA
:

and call this the Evolutionary Function, or brie¯y, the evolutionary, of the system of the six points
A, B, C, D, E, F ; extending this also, by quaternions, to space, and therefore to gauche
hexagons.

6. With the same arrangements of the letters, if the four points A, B, C, D be collinear, and if
four other points A9, B9, C9, D9, not necessarily situated on any one right line, be on the four
right lines drawn to the former points from any origin O, I naturally write [Figure 3]

(O:A9B9C9D9) � (ABCD) � AB

BC
:
CD

DA
;

and I interpret similarly the symbol (áâãä), for the anharmonic of the pencil of the four rays á,
â, ã, ä, or OA, OB, OC, OD or OA9, OB9, OC9, OD9 from any common vertex O. Thus,

(áâãä)(áäãâ) � 1 � (áâãä)� (áãâä), etc:

With these notations, the de®nition (4.) of the anharmonic coordinates of a point P may be
expressed as follows:

x

z
� (OQXA) � (Y :OPXU )

� [That is, `not planar'.]

Fig. 3
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y

z
� (ORYB) � (X :OPYU );

and thus (as in Figure 4), by considering anharmonics of pencils, we need not introduce
expressly the projected points ABQR .

7. If, however, we choose to introduce (as in Figure 2) two other projected points, on the
third side XY of the triangle, namely

C � OU
:
XY , and S � OP

:
XY ,

then the well known equations of six segments,

OA

AX
:
XC

CY
:

YB

BO
� 1,

OQ

QX
:
XS

SY
:

YR

RO
� 1,

show that we have

y

x
� (ORYB)(OAXQ ) � OR

RY
:

YB

BO
:

OA

AX
:

XO

QO
� XS

SY
:

YC

CX

or brie¯y that

y

x
� (XSYC) � (O:XPYU ):

Of course we have also,

x

y
� (O:YPXU );

z

x
� (Y :XPOU );

z

y
� (X :YPOU ):

8. Already we may see several examples of anharmonic equations of lines. Thus, the sides of the
triangle OXY have for their respective equations,

OY , x � 0; OX , y � 0; XY , z � 0;

and the equations of the three lines drawn to its corners from the point U, are

OUC , y � x; YUA, x � z; XUB, y � z;

while any other right lines through O, Y, X are represented by equations of the slightly more
general form,

y

x
� constant,

x

z
� constant,

y

z
� constant:

Fig. 4
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9. To generalise these results, we may proceed as follows. Let LMN be any rectilinear
transversal [Ë], cutting the sides OX, OY, XY, in the points L, M, N, respectively, and passing
through the point P [see Figure 5]. By a very well known theorem,� respecting the six segments
made by such transversal, we shall have the equation,

OL

LX
:
XN

NY
:
YM

MO
� ÿ1:

But we also have the analogous equation,

OA9

A9X
:

XC9

C9Y
:

YB9

B9O
� ÿ1,

if, A9, B9, C9, be the harmonic conjugates of A, B, C, with respect to the three sides OX, XY,
YO. (I am not aiming yet, at any great symmetry of notation, but am content to use these three
letters, O, X, Y, as reminding us of Cartesian coordinates.) Dividing, therefore, the former of
these two equations by the latter, we arrive at this other equation:

(OLXA9)(XNYC9)(YMOB9) � 1;

which allows us to assume,

m

n
� (YMOB9),

n

l
� (OLXA9),

l

m
� (XNYC9),

or

n

m
� (OMYB9),

l

n
� (XLOA9),

m

l
� (YNXC9);

where l, m, n, are three new numbers, of which the ratios depend upon, and conversely
characterise, the position of the transversal line [Ë]; and which (or any numbers proportional
to them) I propose to call the Anharmonic Coordinates of that Line. I also propose to denote
the line [Ë], above considered by the symbol [l, m, n]; for example, the three points A9, B9,
C9, are situated on one right line [�], of which the symbol is [1, 1, 1], and which I therefore

� [Theorem of Menelaus; see, for example, D. Pedoe Geometry, p. 28, Cambridge University Press,
Cambridge: 1970.]

Fig. 5
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propose to call the Unit-Line. It follows that, in a known sense, (compare Salmon, Higher Plane
Curves, page 149�) the Unit-Point U, and the Unit-Line [�] are related to each other, and to
the given triangle OXY, as Pole and Polar.

10. I next combine the coordinates of point and line, as follows. Multiplying the three
anharmonics

l

n
� (LXA9O),

x

z
� (OQXA), ÿ1 � (OAXA9),

we get the product,

ÿ l

n

x

z
� (LXQO) � (OQXL);

where Q � (x, 0, z) is derived as before from P � (x, y, z), namely from a point of the line
[Ë], by drawing a line through Y to AX. Multiplying, in like manner, the anharmonics,

m

n
� (MYB9O),

y

z
� (ORYB), ÿ1 � (OBYB9),

we get this other product,

ÿ m

n

y

z
� (MYRO) � (ORYM) � (OXQL);

the last transformation being effected by means of the pencil through P. But (by article 5.),

(OQXL)� (OXQL) � 1;

therefore

lx � my � nz � 0:

that is to say, ``if the anharmonic coordinates x, y, z of any point P be multiplied by the
anharmonic coordinates l, m, n of any right line [Ë] through that point, the sum of the products
is zero''. And according as we conceive, Ist, a variable point P to move along a given right line
[Ë], or IInd, a variable right line [Ë] to turn round a given point P, (so as always to pass through
that point,) we may regard this homogeneous equation of the ®rst degree,

lx � my � nz � 0,

as being either I, the anharmonic and local equation of the line, or II, the anharmonic and
tangential equation of this point. For example, the local equation of the unit-line [�] is,

x � y � z � 0;

and the tangential equation of the unit-point, U, is,

l � m � n � 0:

And already we may see that any homogeneous equation of the pth degree,

f (x, y, z) � 0

� [G. Salmon, A treatise on the higher plane curves, Hodges and Smith, Dublin: 1852; hereinafter referred
to as: HPC.]
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between the anharmonic coordinates of a point, is the local equation of a curve of the pth order:
because it is met by any given right line [l , m, n] in p points, real or imaginary.

11. Consider, in particular, this equation of the second degree,

xy � z2,

which, (by what has just been said) must represent a conic. The line OX or (by article 8.)
y � 0, meets it at two coincident points, or touches it at the point X; and in like manner the
line OY, or x � 0, touches the conic at Y, so that O is the pole of the chord XY, with reference
to the curve [see Figure 6]. The equation shows that the unit-point U is on the conic; but (by
article 8.) the local equation of the line OU is y � x; the other intersection of this line with the
curve is therefore U 9 � (1, 1, ÿ1) � (ÿ1, ÿ1, 1); and if C � OU

:
XY , (as before) then the

equation of XY being z � 0, we have C � (1, 1, 0).
But in general, if there be any four collinear points,

P0 � (x0, y0, z0), P1 � (x1, y1, z1), P2 � &c:, P3 � &c:,

so that

x2 � tx0 � ux1, y2 � ty0 � uy1, z2 � tz0 � uz1,

x3 � t9x0 � u9x1, y3 � t9y0 � u9y1, z3 � t9z0 � u9z1,

we have the anharmonic,�

(P0 P2 P1 P3) � t9u

u9t
:

Fig. A

� [In his Notebook 160 (Trinity College MS 1492/160) Hamilton, on 6th March 1860, comments:
`The very important Theorem of article 11. . . . deserves a clear and separate proof of a purely geometrical
character; for I have a proof by quaternions.' Such a proof will be found on p. 33 of his Elements of
quaternions, Longmans, Green, & Co., London: 1866. The expression for (P0 P2 P1 P3) may be obtained as
follows.

In Figure A the points P0, P1, P2, P3, lie on the same straight line; the line YA passes through the unit-
point; the lines YP0, YP1, YP2, YP3, when projected, intersect the side OX at the points Q0, Q1, Q2, Q3,
respectively. Therefore, the anharmonic (P0 P2 P1 P3) is equal to the anharmonic (Q0Q2Q1Q3). By
de®nition

continued overleaf
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(OQ1Q2 X )

(OQ0Q2 X )

(OQ0Q3 X )

(OQ1Q3 X )
� OQ1

Q1Q2

Q2 X

XO

Q0Q2

OQ0

XO

Q0 X

OQ0

Q0Q3

Q3 X

XO

Q1Q3

OQ1

XO

Q3 X

� Q0Q2

Q1Q2

Q1Q3

Q0Q3
� Q0Q2

Q2Q1

Q1Q3

Q3Q0
� (Q0Q2Q1Q3);

by the equations in article 5,

(OQ1Q2 X ) � [1ÿ (OQ2 XQ1)]ÿ1,

and since

(OQ2 XQ1) � OQ2

Q2 X

XQ1

Q1O
� OQ2

Q2 X

XA

AO

XQ1

Q1O

AO

XA

� OQ2

Q2 X

XA

AO

Q1 X

OQ1

AO

XA
� (OQ2 XA)

(OQ1 XA)
,

we obtain

(OQ1Q2 X ) � 1ÿ (OQ2 XA)

(OQ1 XA)

� �ÿ1

,

which means that

(Q0Q2Q1Q3) � [(OQ0 XA)ÿ (OQ2 XA)][(OQ1 XA)ÿ (OQ3 XA)]

[(OQ1 XA)ÿ (OQ2 XA)][(OQ0 XA)ÿ (OQ3 XA)]
:

By article 6.

(OQ0XA) � x0

z0
, (OQ1XA) � x1

z1
, (OQ2XA) � x2

z2
, (OQ3XA) � x3

z3
,

which leads to the equation

(Q0Q2Q1Q3) � (x0z2 ÿ x2z0)(x1z3 ÿ x3z1)

(x1z2 ÿ x2z1)(x0z3 ÿ x3z0)
,

and when x2, x3, z2, and z3, are expressed in terms of x0, x1, z0, and z1, we ®nally obtain the relation:

(P0 P2 P1 P3) � (Q0Q2Q1Q3) � t9u

tu9
:

�

Fig. 6
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Taking then O, C, U, U 9 for the four points P0, P1, P2, P3, so that t � 1, u � 1, t9 � ÿ1, u9 � 1,
we have (OUCU 9) � ÿ1, that is to say, ``the point C of the polar, is harmonically conjugate to the
pole O, with respect to the intercepted chord UU 9'' as was known, I suppose to Apollonius.

12. The equation of the conic may be written thus:

y

z
� z

x
; or, (X :OPYU ) � (Y :XPOU ),

(see articles 6 and 7). That is to say, (XO and YO being tangents,) ``the anharmonic of the
pencil of which the rays pass through the four points X, P, Y, U of the conic, has the same
value, whether we place the vertex of that pencil at the point X, or at the point Y, of the
conic''. Of course, this is merely a particular case of a well known theorem: yet it would be
suf®cient to give the anharmonic equation, xy � z2, from which all other properties of the
general conic may be deduced.

13. For example, let OP meet the curve again in P 9; while it meets XY in S, as before. Then

P � (x, y, z), S � (x, y, 0), P 9 � (x, y, ÿz);

and because O � (0, 0, 1), we have

(OPSP 9) � ÿ1;

or P, P 9 are conjugates, with respect to O and S. This, however, is merely a little exercise of
calculation, the well known theorem which it expresses being suf®ciently represented by the
formula

(OUCU 9) � ÿ1, of article 11:

14. Let V � (a, b, c) be a new point upon the conic [see Figure 7], so that ab � c2. Let the
chords PU, PV meet the chord XY in the points T, W ; so that

W � (cx ÿ az, cy ÿ bz, 0), and T � (x ÿ z, y ÿ z, 0):

Then because

Fig. 7
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X � (1, 0, 0), and Y � (0, 1, 0),

we have

(P :XYVU ) � (XWYT ) � (x ÿ y)(cy ÿ bz)

( y ÿ z)(cx ÿ az)
� c

a
� b

c
;

or in words, ``the anharmonic of a pencil whose four rays pass through any four given points
X, V, Y, U of the conic, and whose vertex P is on that curve, has a value independent of the
position of that vertex, or does not change while P moves along the conic'': which is the well
known property, whereof that in article 12 was a case.

15. We see, at the same time, ± what, to say the least, I was not familiar with, if I ever met it

before, ± that this constant value of the anharmonic (P :XVYU ), is just the common value of
z

x
and of

y

z
for the point V ; that is, by article 12,

(P :XVYU ) � (X :OVYU ) � (Y :XVOU ):

However, on a moment's re¯ection, I see that this comes merely to placing P at X, and at Y,
alternately. But I make the little calculation in the foregoing article, without thinking of this
easy veri®cation.

16. In general, let f (x, y, z) � 0 be (as in article 10) the local equation of a curve of the pth
order, f being a homogeneous function, rational and whole, and of the pth dimension.
Writing

df � Dx f :dx � Dy f :dy � Dz f :dz;

we have

0 � xDx f � yDy f � zDz f ;

and therefore

0 � x9Dx f � y9Dy f � z9Dz f ,

if

x9ÿ x : y9ÿ y : z9ÿ z � dx : dy : dz;

that is if the point (x9, y9, z9) be on the tangent to the curve, f, drawn at the point (x, y, z).
The anharmonic coordinates of this tangent are therefore the following:

l � Dx f , m � Dy f , n � Dz f ;

or the tangent itself has for its symbol (compare article 9.)

[Dx f , Dy f , Dz f ]:

17. For example, when f � xy ÿ z2, as in article 11, we have

l � y, m � x, n � ÿ2z;
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so that the relation, between a point of contact (x, y, z), and a point (x9, y9, z9) upon the
tangent at that point, is expressed by the equation,

yx9� xy9ÿ 2zz9 � 0;

which may be called, more generally, the Equation of Conjugation, with respect to the conic
xy � z2, as serving to express that the two points (x, y, z) (x9, y9, z9) are conjugate, relatively
thereto. Thus, if the line at in®nity be [ë, ì, í] so that the equation of this line is

ëx � ìy � íz � 0,

then the centre of the conic is the point (2ì, 2ë, ÿí); and generally, the point (2ì, 2ë, ÿí) is
the pole of the line [ë, ì, í] with respect to the given conic, xy � z2. For example, the line XY is
z � 0, or [0, 0, 1]; its pole is therefore the point (0, 0, ÿ1), or (0, 0, 1), or O as before. (The
pole of [ë, ì, í] with respect to the given triangle OXY, is the point (ëÿ1, ìÿ1, íÿ1).)

18. The four tangents at X, V, Y, U have for their respective symbols, [0, 1, 0], [b, a, ÿ2c],
[1, 0, 0], [1, 1, ÿ2]; and they are met by the ®fth tangent [ y, x, ÿ2z], which is drawn to the
conic at P, in the ®ve points (2z, 0, y), (2az ÿ 2cx, 2cy ÿ 2bz, ay ÿ bx), (0, 2z, x), (2z ÿ 2x,
2 y ÿ 2z, y ÿ x). Calling these four points X 1, V1, Y1, U1, and comparing the coordinates of
V1 and U1, with those of X 1 and U1, as the coordinates of P2 and P3, were compared with
those of P0 and P1 in article 11., we ®nd that

t � az ÿ cx, u � cy ÿ bz, t9 � z ÿ x, u9 � y ÿ z;

whence

(X 1V1Y1U1) � t9u

tu9
� (z ÿ x)(cy ÿ bx)

(az ÿ cx)(y ÿ z)
� c

a
� a

b
,

as in 14; so that ``if four ®xed tangents to a conic be cut by any ®fth tangent, the anharmonic
of the group of the four points of section is constant, and is equal to the anharmonic of the
pencil of four rays, drawn to the four ®xed points of contact from any ®fth point of the conic'':
a well known theorem which, as we see, is here obtained, with scarcely any trouble of
calculation ± I forget whether any particular symbol is commonly used, to denote this constant
anharmonic; perhaps it might be denoted by the symbol ((XVYU )), in the case which we have
here been considering.

19. We have not much occasion, in the present method, to distinguish between the
different sorts of conics; yet it is easy to do so, by considering the line at in®nity. Let this line
be, as in article 17, [ë, ì, í], or ëx � ìy � íz, where ë, ì, í are supposed to be given: or in
other words let ëÿ1, ìÿ1, íÿ1 be the given coordinates of the mean point or (in the simplest
sense) the centre of gravity G, of the given triangle, OXY. Then the points of the conic which are
at in®nity are given by the quadratic,

(ëx � ì y)2 ÿ í2xy � 0;

so that the curve is an ellipse, a parabola, or a hyperbola, according as í2 ,, �, or . 4ëì. For
example, if G � (2, 2, 1), so that C bisects XY, U bisects OC, then ë � 1, ì � 1, í � 2, and the
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line at in®nity is [1, 1, 2], which satis®es the condition í2 � 4ëì, so that the conic is now a
parabola; [see Figure 8].

20. The same condition of parabolic form may be obtained from the tangential equation of the
conic, namely

n2 � 4lm;

when [ l, m, n] is a variable tangent, of which the conic is the envelope. For then the equation
í2 � 4ëì expresses that the curve has a tangent at in®nity. Or this last equation may be
considered as expressing that the point (2ì, 2ë, ÿí) is on the line [ë, ì, í]; and therefore that
the centre (article 17) of the conic is in®nitely distant.

21. In general, if the line OUC pass through the mean point G, so that C bisects XY, then
ë � ì, and

í

ë
� í

ì
(OGCU ) � 2

CU

UO
;

if then CU � UO, the curve is a parabola, as above, but if CU , UO, (U being on the ®nite
bisector OC,) then the conic is an ellipse; and if CU . UO (U being still on OC,) the curve is a
hyperbola; because (í2=4ëì) is in these three cases, � 1, , 1, and . 1, respectively [see Figure
9].

22. The simplest arrangement possible, of the four given points, appears to be that in which
the triangle OXY is equilateral and U its mean point (or its centre). In this case, the conic xy � z2

Fig. 9

Fig. 8
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is easily seen to become a circle ; of which the centre is, by article 17., the point
K 9 � (2, 2, ÿ1),because the line at in®nity is now the unit-line [1, 1, 1] or �, as it always is
when the unit-point (1, 1, 1), or U, is the mean point of the triangle OXY [see Figure 10].

Let I, J be the circular points at in®nity; the coordinates of each must satisfy the two
equations,

xy � z2, x � y � z � 0;

they are therefore the following,

I � (1, è, è2), J � (1, è2, è),

where è is an imaginary cube-root of unity: and every other conic,

f (x, y, z) � ax2 � by2 � cz2 � 2a9yz � 2b9zx � 2c9xy � 0,

which passes through these two points, I, J, or of which the coef®cients satisfy the two
equations,

f (1, è, è2) � 0, f (1, è2, è) � 0,

or

a � 2a9 � b � 2b9 � c � 2c9,

is necessarily a circle. The general equation of a circle, referred to the present system of
coordinates, is therefore of the form,

a(x2 ÿ yz)� b(y2 ÿ zx)� c(z2 ÿ xy)� e(yz � zx � xy) � 0,

when a, b, c, e, are any constants. For example,

x2 � yz is the circle OUY , with centre K 0 � (ÿ1, 2, 2);

y2 � zx is the circle OUX , with centre K - � (2, ÿ1, 2);

and yz � zx � xy � 0 is the circumscribed circle OXY, with U for centre: and these four real
circles have all the same imaginary intersections, I and J, situated upon the unit-line, or at
in®nity. By making a � b � c � e, we get a ®fth, but an imaginary circle,

Fig. 10
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x2 � y2 � z2 � 0;

which has this characteristic property, that the three corners of the triangle OXY are, with
respect to it, the poles of the opposite sides. In general

xx9� yy9� zz9 � 0,

is for this last circle, the equation of conjugation (article 17), which connects the coordinates of
any two conjugate points, P and P 9.

And the osculating circle to any given conic,

0 � Ax2 � By2 � Cz2 � 2A9yz � 2B9zx � 2C9xy,

at any given point (x, y, z) is obtained by comparing this last equation with the ®rst and
second differentials thereof. ± I do not [know] whether the imaginary cube-roots of unity have,
in any other systems of coordinates, been shown to have a connexion with the circular points
at in®nity.

23. It may not be quite useless to verify that the points I, J, thus determined, coincide with the
usual circular points &c. Their characteristic property being that x3 � y3 � z3 for each,
without our having x � y � z, we must, by article 7, have, in particular, the equation

(O:XIYU )3 � 1; (XI 9YC) � 1,

if I 9 be the (imaginary) intersection of OI with XY. But with the present arrangement of the
given points, YC � CX ; therefore

X 9I

I 9Y

� �3

� 1,
XI 9

I 9Y

� �2

� XI 9

I 9Y
� 1 � 0, XI 9 � èI 9Y ;

but

XI 9 � XC � CI 9, I 9Y � I 9C � CY � XC ÿ CI 9;

therefore

(1� è)CI 9 � (èÿ 1)XC :CI 9 � (èÿ è2)XC � �
�������
ÿ3
p

:XC � �
�������
ÿ1
p

:OC ,

or,

tan UOI � �
�������
ÿ1
p

,

which is the known and distinguishing property of the circular points, usually so called.

24. In general, let OXY be any triangle, inscribed in any conic [see Figure 11]. Draw
tangents at the corners YA9, XB9, OC 9, meeting the respectively opposite sides in the points
A9, B9, C9, which will therefore be on one right line. From these points draw the other
tangents, A9A 0, B9B 0, C9C 0, and join YA 0, XB 0, OC 0; these three last chords will intersect each
other in one point U ; and they will cross the sides OX, OY, XY in the points A, B, C, which are
evidently the harmonic conjugates of A9, B9, C9. In short the line A9B9C9 will be the polar line
of the point U , and the curve OA 0XC 0YB 0 will be the polar conic of that point, with respect to
the triangle OXY. (HPC, p. 149). All this being admitted, let OXY be taken for the anharmonic
triangle of article 4, of which the sides OY, OX, XY have for their respective equations (by
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article 8), x � 0, y � 0, z � 0; and let the point U be taken for the anharmonic unit-point,
x � y � z; its polar line A9 B9 C9 will become the anharmonic unit line, x � y � z � 0; and its
polar conic will have for its anharmonic equation,

yz � zx � xy � 0,

or

xÿ1 � yÿ1 � zÿ1 � 0;

on which account I am disposed to call it, with reference to the present system of coordinates,
the Unit-Conic, or brie¯y the Unit-Curve of the system. In the case of Figure 10, this unit curve
was the circumscribed circle OXY, and in general, it is that particular circumscribed conic, which
touches (as above) the three lines A9Y , B9X , C9O; A9, B9, C9 being points upon the unit line,
determined as in Figure 5; and the unit-point U being the pole of the unit-line, with respect to
the unit-curve.

25. If now we seek the intersections, I and J, of the real unit- line A9B9C9 with the real unit-
curve, or with the conic OXY, we ®nd that these intersections are always imaginary; and that
they may still, as in article 22, be represented by the symbols,

I � (1, è, è2), J � (1, è2, è),

although they are not now (in general) the circular points at in®nity, because we do not now
assume the particular arrangements of Figure 10, or of articles 22, 23. And the equation

a(x2 ÿ yz)� b(y2 ÿ zx)� c(z2 ÿ xy)� e(yz � zx � xy) � 0,

represents now (in general) not a circle, but a conic, which had the same pair of imaginary
intersections I, J with the unit-line, as the unit-curve. To this new system of conics belongs therefore
the curve xy � z2, which was considered in several former articles; and also the two other real
curves, yz � x2, zx � y2, which likewise pass through the point U, and of which the ®rst is
touched at O and Y, but the second at O and X, by sides of the unit-triangle: for so I think that we
may conveniently call the triangle OXY.

The points I, J may perhaps be called the Imaginary Unit-Points: U being then called, by
contrast, the Real Unit-Point. And the imaginary conic, x2 � y2 � z2 � 0, (compare article 22)

Fig. 11
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which passes through the two imaginary unit-points, and with respect to which each corner of
the unit-triangle is the pole of the opposite side, may, in consequence of these relations, and
of the simple form of its equation, be called the Imaginary Unit-Curve. More generally, I am
disposed to say that all the conics represented (as above) by a homogeneous and linear equation
between the four quadratic functions,

x2 ÿ yz, y2 ÿ zx, x2 ÿ xy, yz � zx � xy,

are curves of the Unit-System.

26. Another general form for the anharmonic equation of such curves is the following:

(áx � â y � ãz)(x � y � z) � yz � zx � xy

where á, â, ã are any three constants. Let

(á9x � â9y � ã9z)(x � y � z) � yz � zx � xy

be the equation of a second curve of the same system; then of their four intersections, two are
always imaginary, and are on the unit-line as a common chord, namely the points I and J ; and
the other two, whether real or imaginary, are situated on the second common chord,

(á9ÿ á)x � (â9ÿ â)y � (ã9ÿ ã)z � 0

which is always real, if the curves be such, and may be said to be their anharmonic radical axis.
The point for which

áx � ây � ãz � á9x � â9y � ã9z � á 0x � â 0y � ã 0z,

may be called the (anharmonic) radical centre of the three curves of the unit-system, which
have á, â, ã, á9, â9, ã9, and á0, â0, ã0 for their constants.

27. If

u � f (x, y, z) � Ax2 � &c:� 2A9yz &c:, and l � Ax � C9y � B9z, &c:

so that

lx � my � nz � f (x yz) and l � 1

2
Dx f , &c:

then the equation

f (x, y, z): f (x9, y9, z9) � (lx9� my9� nz9)2,

considered as an equation in x9, y9, z9, represents the pair of tangents drawn to the curve
f (x, y, z) � 0, from the point (x, y, z). If this pair passes through I and J, x9, y9, z9 must admit
of being equated either to 1, è, è2 or to 1, è2, è. Let therefore

f (1, è, è2) � a � bè2 � cè,

so that

a � A � 2A9, b � B � 2B9, c � C � 2C9,

let also
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ë � l2 � 2mn, ì � m2 � 2nl ,

so that

(l � mè� nè2)2 � ë� ìè2 � íè;

then the system of the two real equations of the 2nd degree,

au ÿ ë � bu ÿ ì � cu ÿ í,

will determine four points (x, y, z), such that the two (imaginary) tangents from any one of them,
to the conic u � 0, will pass through the two imaginary unit-points, I and J. I therefore propose to
call these four points the Four Anharmonic Foci of that conic. They become the four ordinary foci,
when I and J become (as in articles 22, 23) the two circular points at in®nity.

28. With the recent signi®cations of a, b, c, ë, ì, í, and u, if á, â, ã, be any three constants,
such that

á� â � ã � 0,

the equation

á(au ÿ ë)� â(bu ÿ ì)� ã(cu ÿ í) � 0

represents a conic, passing through the four anharmonic foci. And if we take

á � b ÿ c, â � c ÿ a, ã � a ÿ b,

this new conic breaks up into a pair of real right lines. For its equation is then,

(b ÿ c)(l2 � 2mn)� (c ÿ a)(m2 � 2nl)� (a ÿ b)(n2 � 2lm) � 0,

when (by article 27) a, b, c are known and real constants, and l, m, n are known and real
functions of x, y, z, homogeneous and of the ®rst degree: but one of the many possible
transformations of this last equation is the following,

f(b ÿ c)l � (a ÿ b)m � (c ÿ a)n � h(m ÿ n)g
3 f(b ÿ c)l � (a ÿ b)m � (c ÿ a)n � h(n ÿ m)g � 0,

when

h2 � a2 � b2 � c2 ÿ bc ÿ ca ÿ ab . 0,

so that h is a real constant, depending on the given and real conic, u. The two distinct and real
right lines,

(b ÿ c)l � (a ÿ b)m � (c ÿ a)n � h(m ÿ n) � 0,

(b ÿ c)l � (a ÿ b)m � (c ÿ a)n � h(n ÿ m) � 0,

on which the four anharmonic foci are thus situated, I propose to call the Two Anharmonic
Axes of the conic, u � 0; and the real point of intersection of these two axes, namely the point
for which l � m � n, and which is therefore the pole of the unit-line, with respect to that conic
u, may perhaps be not inconveniently called the Anharmonic Centre of that conic. ± In the case
of article 22, or of Figure 10, when the unit-line goes off to in®nity, and the unit-curve becomes
a circle, these anharmonic axes and centre become the usual axes and centre of the conic u.
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29. As anexample, let the conic of which we wish to determine the foci, &c., have for its
(local) equation,

u � x2 � y2 ÿ z2 � 0;

so that

A � B � ÿC � 1, A9 � B9 � C9 � 0, a � b � ÿc � 1

and

l � x, m � y, n � ÿz:

We have now h2 � 4, and we may write h � 2; after which the equations of the anharmonic
axes of the conic become (by article 28),

l � m ÿ 2n � 0, l ÿ m � 0;

or, substituting for l, m, n, their values, and transposing,

x ÿ y � 0, x � y � 2z � 0;

so that the anharmonic centre of the conic is the point (1, 1, ÿ1), of which the polar, with
respect to the same conic, is the unit line [1, 1, 1], as by the general theory it ought to be. One
of the conics through the four anharmonic foci is

au ÿ ë � bu ÿ ì, or ëÿ ì � 0;

but this is merely the pair of axes,

(l ÿ m)(l � m ÿ 2n) � 0:

If however we take this other conic through those foci,

0 � (a � b ÿ 2c)u � 2íÿ ëÿ ì

or

0 � 4u � 2n2 ÿ l2 ÿ m2 � 4lm ÿ 2n(l � m)

or

0 � 3(x2 � y2)ÿ 2z2 � 4xy � 2yz � 2zx,

we are conducted, by the equations of the axes, to the following quadratics:

Ist, 5x2 � 2xz ÿ z2 � 0, for the axis y � x; and

IInd, x2 � 2xz � 3z2 � 0, for the axis x � y � 2z � 0:

(
The Ist gives the two real foci, (1, 1, 1� ���

6
p

); and the IInd gives the two imaginary foci,
(ÿ1� �������ÿ2

p
, ÿ1� �������ÿ2

p
, 1). Let F, F 9 be the two real foci; they are on the line OUC, of several

former ®gures, and we have the two anharmonics,

(CFOU ) � z

x
�

� �
1�

���
6
p

, (CF 9OU ) � 1ÿ
���
6
p

;

whence (by article 5),
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(COFU ) � ÿ
���
6
p

, (COF 9U ) � �
���
6
p

:

But, if the unit-line be at in®nity, U trisects OC and
CO

UC
� ÿ3; therefore, in this case,

FU

OF
� �

���
2

3

r
,

F 9U

OF 9
� ÿ

���
2

3

r
;

whence also

OF

OU
�

���
3
p���

3
p � ���

2
p � 3ÿ

���
6
p

, and
OF 9

OU
� 3�

���
6
p

;

the anharmonic centre K � (1, 1, ÿ1) of the conic being also such, that OK � 3OU � 2OC
because (CKOU ) � ÿ1; and the curve being a hyperbola, with x � z � 0 and y � z � 0 , or YA9

and XB9, for its asymptotes; and with x ÿ z � 0, and y ÿ z � 0, or YA and XB for tangents at
®nite distances. Its anharmonic summits, on the axis y � z, are

V � (1, 1,
���
2
p

), V 9 � (1, 1, ÿ ���
2
p

);

whence

(CVOU ) � ���
2
p

,
CV

VO
�

���
1

2

r
,

OV

OC
�

���
2
p

1� ���
2
p � 2ÿ ���

2
p

,

OV

OU
� 3ÿ 3���

2
p ,

VK

OU
� 3���

2
p ; but

FK

OU
�

���
6
p

;

therefore

KF

KV
� 2���

3
p

[which] may be called the anharmonic excentricity of the hyperbola.

30. To ®x more closely the conceptions, and to verify the results by comparison with other
methods, let O be taken for the origin (0, 0) of a system of Cartesian and rectangular
coordinates; and let U be the point (1, 0) on the axis of x; so that the points ABCXYK are now
denoted as follows:

A � 3

4
, ÿ

���
3
p

4

� �
; B � 3

4
,

���
3
p

4

� �
; C � 3

2
, 0

� �
;

X � 3

2
, ÿ

���
3
p

2

� �
; Y � 3

2
,

���
3
p

2

� �
; K � (3, 0);

the triangle OXY being now again supposed (as in article 22) to be equilateral, and U to be its
mean point, while XOYK is a parallelogram [see Figure 12].

The equations of the right lines KA9, KB9 are now

x ÿ 3 � � y
���
3
p

;

and therefore the equation of the hyperbola, which has these lines for its asymptotes, and which
has
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V � 3ÿ 3���
2
p , 0

� �
for a point upon it, is

(x ÿ 3)2 ÿ 3y2 � 9

2
:

The usual methods show next that the point V is a summit: and that the lines UA, UB, of which
the joint equation is

3(x ÿ 1)2 ÿ y2 � 0,

are tangents to the curve; as, by article 29, they ought to be. In the general equation

0 � x2 ÿ 3y2 ÿ 6x � 9

2

� �
x92 ÿ 3y92 ÿ 6x9� 9

2

� �
ÿ xx9ÿ 3yy9ÿ 3x ÿ 3x9� 9

2

� �2

,

represents the pair of tangents to the hyperbola, drawn from any given point (x9, y9); and if
this point be a focus, this pair must pass through the circular points at in®nity, for which we
have now x � 1, y � �x

�������ÿ1
p

; substituting therefore these last values, we get the two
equations,

x92 ÿ y92 ÿ 6x9� 3 � 0, and y9(x9ÿ 3) � 0,

as the conditions by which the four foci are to be determined: these four are therefore the two
real points, F � (3ÿ ���

6
p

, 0), F 9 � (3� ���
6
p

, 0), and the two imaginary points, G � (3,
�������ÿ6
p

),

Fig. 12
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G9 � (3, ÿ �������ÿ6
p

). The real foci, thus determined, are seen at once to coincide with those which
were otherwise found in the preceding article; because they give

OF

OU
� 3ÿ

���
6
p

,
OF 9

OU
� 3�

���
6
p

,

as before.
And to verify the agreement of the imaginary foci, as found by these two systems of

coordinates, we may prolong OX, OY to meet the conjugate axis GG 9 of the hyperbola, in the
points X 9(3, 3ÿ ���

3
p

), Y 9 � (3, 3� ���
3
p

); and thus shall have the imaginary anharmonic

(O:XAYU ) � (X 9AY 9K ) �
���
3
p � �������ÿ6

p���
3
p ÿ �������ÿ6

p � 1� �������ÿ2
p

1ÿ �������ÿ2
p

which exactly agrees with the imaginary value of
y

x
, for the ®rst imaginary focus in article 29,

although found by so different an analysis. Finally, the real excentricity,
KF

KV
, is again seen to be���

6
p

3:
��
1
2

q � 2���
3
p ,

as in that article.

31. Resuming our anharmonic coordinates, and making no particular supposition respecting
the shape of the given triangle, OXY, or respecting the position of the given point U ; writing
also for greater symmetry, the equation (article 26) of the curves of the unit-system under the
form

(áx � ây � ãz)(x � y � z)� ä( yz � zx � xy) � 0

we see that the (anharmonic) centre (a, b, c) of any such curve, considered as being
determined by the equations l � m � n, must satisfy the conditions

(á� ä)(a � b � c)ÿ äa � (â � ä)(a � b � c)ÿ äb � (ã� ä)(a � b � c)ÿ äc

so that we may write,

ä � a � b � c, á � a � e, â � b � e, ã � c � e,

where e is a new constant. The equation of the curve thus becomes,

0 � (ax � by � cz)(x � y � z)� (a � b � c)( yz � zx � xy)� e(x � y � z)2;

and we see that ``any two (anharmonically) concentric curves of the unit-system have double contact
with each other, at the two imaginary unit-points, I and J, in which they intersect the unit-line''. ± It is
easy also to prove that for any curve of this system ``the four (anharmonic) foci close up, into the
(anharmonic) centre''; in fact, the two equations of the second degree (article 27), by which
those foci are determined become, in this case, ë � ì � í, and can only be satis®ed by
supposing l � m � n.

32. Supposing next that á, â, ã are any three new constants, of which (as in article 28) the
sum is zero, so that á� â� ã � 0, and that the point (á, â, ã) is situated upon the unit-line,
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we may propose to join this point to the (anharmonic) centre (a, b, c) of the recent conic,
and to ®nd the points (x, y, z) in which the joining line will intersect that curve. For this
purpose, we may write

x � a � tá, y � b � tâ, z � c � tã,

and substitute these expressions for x, y, z, in the last equation of the conic, so as to obtain a
quadratic in t, which must evidently be a pure one, on account of the existing harmonic
relations; and in fact the coef®cient of (a � b � c)t , in the result of this substitution, is

(aá� bâ� cã)� (bã� câ)� (cá� aã)� (aâ� bá) � (a � b � c)(á� â � ã) � 0:

If we make k � a � b � c � e, so that the equation of the curve becomes

0 � a(y2 � yz � z2)� b(z2 � zx � x2)� c(x2 � xy � y2)ÿ k(x � y � z)2,

the complete result of the substitution is easily found to be

1
2(á

2 � â2 � ã2)t 2 � k(a � b � c)ÿ (bc � ca � ab);

division by a � b � c being performed, and áâ � âã� ãá being changed to its equivalent,
ÿ1

2(á
2 � â2 � ã2). According, then, as

k(a � b � c) ., �, or , bc � ca � ab,

the two values of t are real and unequal, or equal and null, or unequal but imaginary; and
therefore the curve will, in these three respective cases, be real and ®nite, or evanescent, or
imaginary. For example, if a � b � c � 1, so that the centre of the curve is at the unit point,
the (®nite) reality, evanescence, or imaginariness of that curve will depend on the constant k
being ., �, or , 1. Accordingly, when k � 2, we get the real unit-curve (article 24), namely
the conic for which yz � zx � xy � 0; when k � 1

2, we get the imaginary unit-curve (article 25),
x2 � y2 � z2 � 0; and when k � 1, we get what may be called the Evanescent Unit-Curve,

x2 � y2 � z2 �ÿxy ÿ yz ÿ zx � 0,

which has no real point, except the unit-point.

33. These evanescent curves of the unit-system, which correspond to in®nitesimal circles, and become
such, when the triangle OXY is made an equilateral one by projection, and the point U is
made its mean point, ± may deserve a somewhat closer attention. Eliminating the constant k
from the last written equation of the curve, by the condition

k(a � b � c) � bc � ca � ab,

we are conducted without dif®culty to an equation, which breaks up into two linear (but
imaginary) factors, and may be written thus:

W :W 9 � 0

when

W � (bz ÿ cy)� è(cx ÿ az)� è2(ay ÿ bx),

W 9 � (bz ÿ cy)� è2(cx ÿ az)� è(ay ÿ bx),
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and

è2 � è� 1 � 0,

as before.
This evanescent curve may therefore be considered as a pair of imaginary lines,

W � 0, W 9 � 0,

which are drawn from the given centre (a, b, c) or K to the two imaginary unit-points, I and J, or
(1, è, è2) and (1, è2, è).

34. Curves of the unit-system occur so often in these researches, that we want a shorter
name for them. To call them Anharmonic Circles, (because they won't be projected into circles,
under conditions above assigned,) might be too great an innovation; suppose then that we
agree to name them generally, Unit-Curves: calling, then, for distinction, the three chief curves
of this system, which have been above considered, namely,

yz � zx � xy � 0, x2 � y2 � z2 � 0, x2 � y2 � z2 ÿ yz ÿ zx ÿ xy � 0,

the principal real unit-curve, the principal imaginary unit-curve and the principal evanescent unit-
curve, respectively. We may then say (by article 33), that ``the evanescent unit-curve, with any
given point K as centre, is equivalent to the pair of imaginary right lines, KI, KJ.''

35. If an evanescent unit-curve have its centre at a focus of a conic, the two imaginary
rectilinear branches of the ®rst are two of the tangents of the second; the two curves must
therefore be considered to have double contact with each other; namely, at the two imaginary
points, where the conic is cut by that real right line, which is, with respect to it, the polar of its
focus: and which I therefore propose to call its Anharmonic Directrix, corresponding to that
focus. ± I remember staring, ten or twelve years ago, when Townsend� told me, in what I call
Brinkley's Garden,y that a plane conic has double contact with each of its foci, considered, of
course, as in®nitesimal circles; and he admitted that my i, j, k, which were then comparatively
recent, had nothing in them more paradoxical, on the ®rst appearance. You see that I have
made a step or two forward since then, aided (no doubt) mainly by Salmon's books, ± though
I know something of foreign ones also, ± in what is called ``Modern Geometry'': but I have the
deepest feeling of my inferiority, in that respect, to persons who have made the subject their
special study.

36. If V be any linear and homogeneous function of the coordinates x, y, z, then the
equation

WW 9ÿ V 2 � 0

represents a conic, which has the real intersection K of the two imaginary right lines W � 0,
W 9 � 0 for one focus, and the right line V � 0 for the directrix corresponding. ± An
analogous theorem exists, of the kind here considered, for two foci on one axis, which answers

� [Richard Townsend (1821±1884), fellow of Trinity College, Dublin.]
y [John Brinkley (1763±1835) was Hamilton's predecessor at the Dunsink Observatory as Andrews

professor of astronomy and as Astronomer Royal for Ireland.]
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to the usual sum-or-difference property of the conic sections: but you will dispense with my
writing it down, at least at present, for it is just possible that I may return to that part of the
subject, before the present long letter is ®nished.

37. You conceive that several other things of the same sort, in this (perhaps new) system of
coordinate analysis, which however I can connect with quaternions, or rather which I am now
detaching from them, ± have occurred to me. But to vary the illustrations, let us next investigate
the tangential equation (compare article 20) of the general unit-curve, taking the form (article
32),

u � a(y2 � yz � z2)� b(z2 � zx � x2)� c(x2 � xy � y2)ÿ k(x � y � z)2 � 0,

for the local equation of that curve. Differentiating, we have (by article 16)

l � Dxu � b(z � 2x)� c( y � 2x)ÿ 2k(x � y � z), m � &c:, n � &c:;

between which three linear equations, and lx � my � nz � 0, we are to eliminate x, y, z.
Making, for a moment,

x � y � z � t, ax � by � cz � v, and a � b � c � g ,

w � gt ÿ vÿ 2kt � a(y � z)� b(z � x)� c(x � y)ÿ 2k(x � y � z),

we have

l � w � gx ÿ at,

m � w � gy ÿ bt,

n � w � gz ÿ ct:

Hence

l � m � n � 3w;

al � bm � cn � fg(w � v)ÿ (a2 � b2 � c2)t � (g 2 ÿ a2 ÿ b2 ÿ c2 ÿ 2kg)tg
� �2(bc � ca � ab ÿ gk)t ;

l2 � m2 � n2 � w(l � m � n)ÿ (al � bm � cn)t;

and now we have only to eliminate t and w between these three last equations. Writing, for
abridgement,

Ë � l2 � m2 � n2 ÿ lm ÿ mn ÿ nl � (l � èm � è2n)(l � è2m � èn)

the result of this elimination is easily seen to be

4fk(a � b � c)ÿ (bc � ca � ab)gË � 3(al � lm � cn)2;

so that, Ë can never be negative, the condition of reality of the general unit curve (article 32) is
again found to be expressed by the inequality,

k(a � b � c) . bc � ca � ab:

As an example, the constants of the principal real unit-curve (article 33) are a � b � c � 1,
k � 2; so that while the local equation of this curve is, as before,
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yz � zx � xy � 0,

the tangential equation of the same curve is,

4Ë � (l � m � n)2,

or,

l2 � m2 � n2 ÿ 2mn ÿ 2nl ÿ 2lm � 0:

Accordingly, this last form expresses, that the two tangents from any corner of the unit
triangle coincide, and have the positions assigned in (article 24); thus, the tangential
equation of the point O is n � 0, which gives (l ÿ m)2 � 0; and the unique tangent, [1, 1, 0],
or x � y � 0, is the line OC 9, as before. ± In general, the form of the tangential equation,
assigned above, for an unit-curve, may be veri®ed by observing that it shows the points I, J to
be on the curve, and the tangents at those points to meet in K.

38. Writing, for abridgement,

k(a � b � c)ÿ (bc � ca � ab) � 3k2,

the general tangential equation (article 37) of an unit-curve becomes,

4k2Ë � (al � bm � cn)2

a, b, c being still the coordinates of the centre K, and Ë being still the same quadratic and
essentially positive function of the coordinates l, m, n of the tangent, as before. The
tangential equation of a second unit-curve is, in like manner,

4k92Ë � (a9l � b9m � c9n)2;

and if we combine these two equations, in order to determine the common tangents to these
two curves, we ®nd that these four tangents pass, two by two, through two Anharmonic Centres of
Similitude, namely through the two points,

S � (ka9ÿ k9a, kb9ÿ k9b, kc9ÿ k9c),

S9 � (ka9� k9a, kb9� k9b, kc9� k9c),

If either of these two points be on the unit-line, so that

k(a9� b9� c9) � �k9(a � b � c),

then the two curves may be said to be Anharmonically Equal, because they would be projected
into equal circles, by throwing off the unit line to 1, &c. For example, if we make
a9 � b9 � c9 � k9 � 1, the second curve becomes, by article 37, the principal real unit-curve; if
then 3k � �(a � b � c), or if the ®rst curve have for its tangential equation,

4(a � b � c)2Ë � 9(al � bm � cn)2,

it will be, in the foregoing sense, anharmonically equal to that principal unit-curve.

39. Without yet requiring any general method for deducing the local equation of a curve from
its tangential equation, we can easily here obtain the local equation which corresponds to any
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given values of the four constants a, b, c, k, by eliminating k from the equation in article 32,
with the help of the relation (article 38) between k and k: a process which gives easily,

WW 9 � 3k2(x � y � z)2,

as the local form of the tangential equation (article 38), namely,

4k2Ë � (al � bm � cn)2:

For example, when k � 0, the local equation is WW 9 � 0, as in article 33; and the tangential
equation becomes (al � bm � cn)2 � 0, implying that ``every tangent to an evanescent unit-
curve passes through the centre of that curve''. In general, the local form, assigned in the
present article, expresses, (when compared with the equation WW 9 � V 2 in article 36,) that
``an unit-curve is a conic which has its centre for a focus, and the unit-line for a directrix'':
whence we might see again, that such a curve would be projected into a circle, under
conditions already assigned. And if we make 3k � (a � b � c)r , so that the curve is repre-
sented, at pleasure, by either of the two equations,

3WW 9 � r 2(a � b � c)2(x � y � z)2,

4r 2(a � b � c)2Ë � 9(al � bm � cn)2,

then the new constant, r, which is equal to unity for the principal real unit-curve, and which
has a common value for all anharmonically equal unit-curves, may be called the Anharmonic
Radius of the unit curve to which it belongs.

40. To justify more completely this designation of that constant r, we may resume the
analysis of article 32, eliminating the constant k, and introducing r in its stead. We then
obtain

3
2t 2(á2 � â2 � ã2) � r 2(a � b � c)2,

with the signi®cation of t in that article; hence the same right line, KL, or (a, b, c)(á, â, ã),
drawn from the centre to the unit-line, which meets [see Figure 13] a given unit-curve
(a, b, c, r) in the point P � (a � tá, b � tâ, c � tã), meets a concentric unit-curve (a, b, c, r9)

in the point P 9 � a � r 9

r
tá, b � r 9

r
tâ, c � r 9

r
tã

� �
; and therefore, by article 11, we have the

anharmonic (KP 9LP) � r 9=r : so that when L is thrown off to in®nity, we have the simple
ratio,

Fig. 13
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KP 9

KP
� r 9

r
:

41. If we develop the product WW9 in article 33, we ®nd

WW 9 � (b2 � bc � c2)x2 � (c2 � ca � a2)y2 � (a2 � ab � b2)z2 � (a2 ÿ bc)yz

� (b2 ÿ ca)zx � (c2 ÿ ab)xy ÿ (bc � ca � ab)(yz � zx � xy)

� j(x, y, z, a, b, c) � j(a, b, c, x, y, z) . 0,

except in the case x: y: z � a: b: c, for which we have (a, b, c, a, b, c) � 0. And we see that
the function,

(r �)ø(x, y, z, a, b, c) � � ��������������
3WW 9
p

(a � b � c)(x � y � z)
,

which in like manner does not change its value when x, y, z are interchanged with a, b, c, may
naturally be said to be an Anharmonic Distance, between the two points, P � (x, y, z), and
K � (a, b, c). In fact, when we project, as before, OXY into an equilateral triangle, and U into
its mean point, and take for unity the length of the radius UO of the circumscribed circle
(Figure 10), then the numerical value of r or ø will remain unchanged by such projection, as
depending solely on anharmonic quotients; but, in the new state of the ®gure, it will represent the length
of the projected line, K 9P 9, if K 9 be the projection of the point K, and P 9 of P. And similarly,
this other function,

(r �)÷(l , m, n, a, b, c) � �3(al � bm � cn)

2(a � b � c)Ë
1
2

,

may be said to represent the Anharmonic Distance of the Point (a, b, c) from the Line [l, m, n]; or
the Length of the Anharmonic Perpendicular, let fall from that point on that line. For here again the
numerical value of r, or of the function ÷, will remain unaltered by projection; but will come to
denote the length of the perpendicular of the usual kind, let fall from the projected point, on the
projected line.

42. As an example, let

a � b � c � 1, y � z � 0, x � 1, l � m � 0, n � 1;

so that

K � U , P � X , and the line [l , m, n] is z � 0, or XY :

The formulñ of article 41 give W :W 9 � 3, and r � j � 1, for the anharmonic distance from K
to P, or from U to X. They give also, (because we have now Ë � 1) r � ÷ � 1

2, for the
anharmonic perpendicular from U on XY. Accordingly, when OXY is projected into an
equilateral triangle, &c., as in Figure 10, the length of UX becomes equal to that of UO; but the
perpendicular UC on XY has a length only half as great.

43. It comes naturally to be noticed in passing, that if we take, as constants, the values
a � b � c � 1, r � 1

2, we are conducted to the local and tangential equations following,
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x2 � y2 � z2 � 2( yz � zx � xy), mn � nl � lm � 0,

whereof the latter may be written thus,

lÿ1 � mÿ1 � nÿ1 � 0,

and which represent what we may call the inscribed unit-curve, touching the sides of the unit-
triangle in the points A, B, C of former ®gures, and having its centre at the unit point U [see
Figure 14]. When the triangle is made equilateral by projection, and the unit-line thrown off
to in®nity, this curve becomes of course the inscribed circle with a radius UA equal to half the
unit-radius UO, of the circumscribed circle OXY; which may be considered as an illustration of
the result (article 39) respecting the anharmonic radius of an unit-curve. In general, (compare
HPC p. 153,) the curve represented as above by the tangential equation,

1

l
� 1

m
� 1

n
� 0,

is the polar conic of the unit-line, with respect to the unit-triangle.

44. We have hitherto only passed from local to tangential equations of curves; but it is in
general as easy to return, or to pass in the opposite order, from their tangential to their local
equations. Let the given tangential equation be

0 � F (l , m, n),

and its differential

0 � dF � Dl F :dl � DmF :dm � DnF :dn;

comparing this with the equation

0 � xdDxF � ydDyF � zdDzF ,

or

0 � xdl � ydm � zdn,

which results from article 16, we see that

x : y : z � Dl F : DmF : DnF ;

so that the symbol, (Dl F , DmF , DnF ) represents the point of contact, of the variable right line
[l , m, n], with its envelope, F � 0. The same result may be obtained, without any previous
consideration of the local equation f � 0, by seeking the intersection (x, y, z) of a given line
[l , m, n] with a consecutive line of the same system; or the condition of equal roots in that

Fig. 14
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homogeneous equation in l, m, which results, from the elimination of n, between the given
equation F � 0, and the linear equation lx � my � nz � 0. With the help, then, of this last
equation we can pass either from the tangential equation F � 0, to the local equation under
the form f (Dl F , DmF , DnF ) � 0, or from the local equation f � 0, to the tangential equation
F (Dx f , Dy f , Dz f ) � 0, as exempli®ed in former articles.

45. Examples are, of course, unnecessary: the work being exactly of the same kind, as in
calculations with trilinear coordinates. It may, however, just be noticed, as we pass, that from
the recent tangential form (article 43),

lÿ1 � mÿ1 � nÿ1 � 0,

of the principal inscribed unit-curve ABC, we pass at once to the following local form of the
same curve,

x
1
2 � y

1
2 � z

1
2 � 0;

and that, in like manner, from the local equation (article 24),

xÿ1 � yÿ1 � zÿ1 � 0

of the circumscribed unit curve OXY, we pass with equal ease to the corresponding tangential
equation of the curve,

l
1
2 � m

1
2 � n

1
2 � 0;

where by elimination of the radicals, we get, for these two curves,

x2 � y2 � z2 ÿ 2xy ÿ 2 yz ÿ 2zx � 0,

and

l2 � m2 � n2 ÿ 2lm ÿ 2mn ÿ 2nl � 0,

as in articles 43 and 37.

46. Differentiating the last general form (article 39), of the tangential equation of any unit-
curve with its centre at (a, b, c), we have (by article 44) for the coordinates of the point
contact of such a curve with a line [l , m, n] which satis®es that equation of it or for the
coordinates of the foci of the anharmonic perpendicular from (a, b, c) on [l , m, n] the expres-
sions:

x � 2r 2(a � b � c)2 DlËÿ 9a(al � bm � cn),

y � 2r 2(a � b � c)2 DmËÿ 9b(al � bm � cn),

z � 2r 2(a � b � c)2 DnËÿ 9c(al � bm � cn):

Let [l9; m9, n9] be the right line (a, b, c)(x, y, z), or KP, which is drawn from the centre K to
the point of contact P ; we shall have al9� bm9� cn9 � 0, and xl9� ym9� zn9 � 0; where the
coordinates of the two lines must be connected by the equation:

0 � l9DlË� m9DmË� n9DnË;
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or, expanding,

2( ll9� mm9� nn9) � l9(m � n)� m9(n � l)� n9(l � m):

Such, then, is the equation of condition of what may be called Anharmonic Perpendicularity
considered as a relation between two lines which become perpendicular to each other (in the usual
sense), by projection. It enables us to erect or let fall an anharmonic perpendicular, at or from a
given point, to or on a given right line; and so to deal, if we choose, anharmonically, with
problems respecting normals and evolutes, &c.

47. Anharmonic Parallelism may be said to exist between two lines which meet upon the unit-
line; the parallels to [l, m, n] are therefore in this system represented by symbols of the form,
[l � h, m � h, n � h], where h is any constant. The anharmonic direction of a line [l, m, n], ±
or of the line into which it is to be projected, ± can therefore depend only on the ratios of the
differences of the coordinates l, m, n of that line. Accordingly, if we make

l1 � 2l ÿ m ÿ n, m1 � 2m ÿ n ÿÿ l , n1 � 2n ÿ l ÿ m,

l91 � 2l9ÿ m9ÿ n9, m91 � 2m9ÿ n9ÿ l9, n91 ÿ 2n9ÿ l9ÿ m9,

so that [l1, m1, n1] is (anharmonically) parallel to [ l, m, n] and [l91, m91, n91] to [l9, m9, n9],
the recent equation of perpendicularity may be thus written:

l1l91 � m1m91 � n1n91 � 0;

the new lines [l1, m1, n1] and [l91, l91, l91], passing through the unit-point, because their
coordinates satisfy the conditions,

l1 � m1 � n1 � 0, l91 � m91 � n91 � 0:

48. These new coordinates, l1, m1, n1 have for the sum of their squares,

l2
1 � m2

1 � n2
1 � 6Ë;

if then we make

ë � l1(l2
1 � m2

1 � n2
1)ÿ

1
2,

ì � m1(l2
1 � m2

1 � n2
1)ÿ

1
2,

í � n1(l2
1 � m2

1 � n2
1)ÿ

1
2

we shall have

l1 � ë
�������
6Ë
p

, m1 � ì
�������
6Ë
p

, n1 �
�������
6Ë
p

,

and

3l � ë
�������
6Ë
p

� l � m � n, 3m � ì
�������
6Ë
p

� l � m � n, 3n � í
�������
6Ë
p

� l � m � n:

I call these new quantities, ë, ì, í, which are connected by the two relations

ë� ì� í � 0, ë2 � ì2 � í2 � 1,

and of which the geometrical signi®cation will afterwards appear, the Unit-Point Coordinates of
the Line [ l, m, n], or of any line which is (article 47) anharmonically parallel thereto; in fact,
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they do not change, in passing from a line to a parallel; and the line [ë, ì, í], (which has the
same position as the recent line [l1, m1, n1]) is a line through the unit-point.

49. I am disposed to write also,

î � x

x � y � z
, ç � y

x � y � z
, æ � z

x � y � z
,

and

á � a

a � b � c
, â � b

a � b � c
, ã � c

a � b � c
;

and to call these new coordinates, which satisfy the two equations,

î� ç� æ � 1, á� â� ã � 1,

the Unit-Coordinates of the Points,

P � (x, y, z), and K � (a, b, c),

for reasons which will be seen hereafter. Adopting in the mean time these names and
symbols, we see (by articles 41 and 48) that the anharmonic perpendicular p, from (x, y, z) on
[l , m, n], may be expressed as follows:

p � 3(ál � âm � ãn)

2
����
Ë
p �

���
3

2

r
(áë� âì� ãí)� l � m � n

2
����
Ë
p ;

where the ®rst part of the expression represents the perpendicular from (á, â, ã) on
[ë, ì, í], and the second part represents the perpendicular from (1, 1, 1) on [l, m, n]. And it
is not dif®cult to prove that the expression (article 41) for the anharmonic distance, r, between
the two points K and P, becomes in unit-line coordinates of those points, the following:

r �
���
3

2

r
f(îÿ á)2 � (çÿ â)2 � (æÿ ã)2g1

2:

50. Suppose now that the line [l, m, n], passes, with any arbitrary direction, through the
unit-point, or that l � m � n � 0, and that the point P coincides with that unit-point, U, so
that

î � ç � æ � 1
3;

while K shall still remain an arbitrary point, with any unit-line coordinates á, â, ã of which the
sum is zero. Let ë9, ì9, í9 be the unit-point coordinates of the line UK, so that

áë9� âì9� ãí9 � 0

as well as

ë9� ì9� í9 � 0, and ë92 � ì92 � í92 � 1:

We shall then have
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âÿ ã

ë9
� ãÿ á

ì9
� áÿ â

í9
�

��������������������������������������������������������������������
f(áÿ â)2 � (âÿ ã)2 � (ãÿ á)2g

p
�

���
3
p ��������������������������������������

(á2 � â2 � ã2 ÿ 1
3)

q
�

���
3
p �����������������������������������������������������������������

f(áÿ 1
3)

2 � (âÿ 1
3)

2 � (ãÿ 1
3)

2g
q

� ���
2
p

,

where r is (by article 49) the anharmonic distance UK of the point (á, â, ã) from the unit-
point (1

3,
1
3,

1
3); so that we have the expressions

ë9 � âÿ ã

r
���
2
p , ì9 � ãÿ á

r
���
2
p , í9 � áÿ â

r
���
2
p

which enables us to distinguish between the line [ë9, ì9, í9] itself considered as having a given
direction, and the line [ÿë9, ÿì9, ÿí9] of which the direction is the opposite. Conversely, we
have, for the unit-line coordinates (article 49) of a point K upon this line, the expressions

á � 1

3
� r

���
2
p

3
(í9ÿ ì9), â � 1

3
� r

���
2
p

3
(ë9ÿ ì9), ã � 1

3
� r

���
2
p

3
(ì9ÿ ë9):

51. Substituting these last values for á, â, ã, in the expression (article 49) for the
perpendicular p let fall from K on the line [ë, ì, í], we are conducted to the formula:

p
���
3
p

r
� ë(í9ÿ ì9)� ì(ë9ÿ í9)� í(ì9ÿ ë9)

� (ìë9ÿ ëì9)� (íì9ÿ ìí9)� (ëí9ÿ íë9):

But the three parts of this last expression are equal, because

(ìë9ÿ ëì9)ÿ (íì9ÿ ìí9) � ì(í9� ë9)ÿ ì9(í� ë) � ÿìì9� ì9ì � 0, &c:;

hence,

p

r
� (ìë9ÿ ëì9)

���
3
p
� (íì9ÿ ìí9)

���
3
p
� (ëí9ÿ íë9)

���
3
p

:

Hence also,

p

r

� �2

� (ìë9ÿ ëì9)2 � (íì9ÿ ìí9)2 � (ëí9ÿ íë9)2

� (ë2 � ì2 � ã2)(ë92 � ì92 � í92)ÿ (ëë9� ìì9� íí9)2

� 1ÿ (ëë9� ìì9� íí9)2;

and therefore

r 2 ÿ p2

r 2
� (ëë9� ìì9� íí9)2:

I am therefore conducted to say that the Sine of the Anharmonic Angle j between the two lines
[ë, ì, í], [ë9, ì9, í9], is

sinj � (ìë9ÿ ëì9)
���
3
p

;

and that the Cosine of the same anharmonic angle is
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cosj � ëë9� ìì9� íí9:

Accordingly, we have (by articles 47 and 48) the equation,

ëë9� ìì9� íí9 � 0,

as the condition of anharmonic perpendicularity.

52. If we place K at O, so that

á � 0, â � 0, ã � 1, r � 1,

the expressions (article 50) for ë9, ì9, í9 become,

ë9 � ÿ1���
2
p , ì9 � 1���

2
p , í9 � 0

so that the recent sine and cosine become

sinj � ÿ(ë� ì)

���
3

2

r
, cosj � ìÿ ë���

2
p ;

and therefore the unit-point coordinates ë, ì, í of any line [l , m, n] can be expressed in
terms of the angle j, as follows:

ë �
���
2

3

r
sin(jÿ 1208), ì �

���
2

3

r
sin(j� 1208), í �

���
2

3

r
sinj;

with the equations of veri®cation,

ë� ì� í � 0, ë2 � ì2 � í2 � 1:

And if we make in like manner,

ë1 �
���
2

3

r
sin(j1 ÿ 1208), ì1 �

���
2

3

r
sin(j1 � 1208), í1 �

���
2

3

r
sinj1;

then

(ìë1 ÿ ëì1)
���
3
p
� sin(jÿ j1), and ëë1 � ìì1 � íí1 � cos(jÿ j1):

53. These results enable us to establish easily connexions between anharmonic and rectangular
or polar coordinates, of the usual kinds, and so to pass, at pleasure, from either to the other.
Let æ, ç, î be the unit-line anharmonic coordinates (article 49) of a point P ; and let ë, ì, í be
the unit-point anharmonic coordinates (article 48) of the line UP, which is drawn to that
point P from the unit-point. Adopting then the expressions (article 52), which I shall here
write again in order to have all the necessary Elements of Transformation in one view before us,

ë �
���
2

3

r
:sin jÿ 2ð

3

� �
,

ì �
���
2

3

r
:sin j� 2ð

3

� �
,

í �
���
2

3

r
:sinj,
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or making

cosj � ìÿ 2���
2
p , sinj � ÿ(ì� ë)

���
3

2

r
� í

���
3

2

r
,

we see that the directions of this line UP depends on the value of the auxiliary angle j; which,
when thus used, I propose to call the Anharmonic Polar Angle, of the line UP, or of the point P
upon it. And changing, in the expression (article 49) for r, each of the coordinates á, â, ã,
(instead of æ, ç, î, as in article 50) to 1

3, so that it becomes (î� ç� æ being equal to 1,)

r �
���
3

2

r
:

������������������������������������������������������������������������������
îÿ 1

3

� �2

� çÿ 1

3

� �2

� æÿ 1

3

� �2
( )vuut

�
���
1

2

r
:
������������������������������������������������������������������
f(çÿ æ)2 � (æÿ î)2 � (îÿ ç)2g

p
�

���������������������������������������������������������������
fî2 � ç2 � æ2 ÿ çæÿ æîÿ îçg

p
� (î� èç� è2æ)

1
2(î� è2ç� èæ)

1
2,

whence (compare article 50) we have the expressions

ë � çÿ æ

r
���
2
p , ì � æÿ î

r
���
2
p , í � îÿ ç

r
���
2
p ,

which satisfy the three conditions

ë� ì� í � 0, ëî� ìç� íæ � 0, ë2 � ì2 � í2 � 1:

I call this quantity r the Anharmonic Radius Vector of the point (î, ç, æ), or P : in fact, it
represents what has been called the anharmonic distance (article 41), of that point P from the
unit-point U, which latter point I propose to call the Anharmonic Origin, on account of its central
position, and properties, when the system of the four given points OXYU is projected into what I
call the Canonical Arrangement, illustrated by Figure 10 of article 22.

54. Finally, if we write

X � r cosj � (2æÿ îÿ ç)cos
ð

3
,

Y � r sinj � (îÿ ç)sin
ð

3

which will give

r � í(X 2 � Y 2), j � tanÿ1 Y

X
,

and
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î � 1
3(1ÿ X � Y

���
3
p

),

ç � 1
3(1ÿ X ÿ Y

���
3
p

),

æ � 1
3(1� 2X ),

ë � ÿY ÿ X
���
3
p

r
���
6
p ,

ì � ÿY � X
���
3
p

r
���
6
p ,

í � 2Y

r
���
6
p ,

then I call these quantities, X and Y, the Anharmonic Rectangular Coordinates of the point P, or
(î, ç, æ); of which point, r and j are the Anharmonic Polar Coordinates.

55. An important consequence of this theory is, that if we have in any manner been led to
form an anharmonic and local equation of any curve, under the form f (x, y, z) � 0, when
the function f is homogeneous, then, because

î : ç : æ � x : y : z (by article 49)

we may substitute these unit-line coordinates, î, ç, æ, or their triples, for x, y, z, in that equation
of the curve: which thus becomes,

0 � f (1ÿ X � Y
���
3
p

, 1ÿ X ÿ Y
���
3
p

, 1� 2X );

when X and Y may be interpreted as Cartesian and rectangular coordinates: because, while their
own numerical values (compare article 41) remain entirely unaltered by projection, they become
such usual coordinates, when the system of the four given points, O, X, Y, U is projected (as already
said) into the canonical arrangement (article 22).

56. In this new or projected system, of ordinary and rectangular coordinates, the origin (com-
pare article 53) is at the projected point U [see Figure 15]; the positive semiaxis of X has the
direction of the line UO, and the length of that line is taken for the unit of length; the radius
vector r becomes (compare article 53) the quotient,

length of UP

length of UO
,

Fig. 15
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or simply the numerical expression of the distance of P from U; the polar angle j, or OUP, is
measured positively from UO towards UX, becoming [equal to] 1208 when it has attained this
last position, but increasing to �2408, or decreasing to ÿ1208, when UP becomes UY: also the
three points O, X, Y are equally distant from U, so that OXY is (as in Figure 10) an equilateral
triangle, with U for the centre (or mean point) thereof. Thus, if we denote the point P, in this
projected ®gure by the new symbol fX , Y g, we shall have

U � f0, 0g; O � f1, 0g; X � ÿ 1

2
,

���
3
p

2

� �
; Y � ÿ 1

2
, ÿ

���
3
p

2

� �
:

57. As a very simple example of such transformations, let XY be any chord of any conic, and
O its pole, while U and P are any two points of the curve; also let YU, YP meet OX in A and Q,
and let XU, XP meet OY in B and R [see Figure 16]. Then, with the earliest de®nitions in
this Letter, we saw (articles 11, &c.) that the conic is represented by the local equation
xy � z2; implying, as the immediate consequence of those de®nitions, or as the ®rst interpretation
derived from them, that (OQXA):(ORYB) � 1; or that (ORYB) � (XQOA), or that
(X :XPYU ) � (Y :XPYU ) or, in words, that the two pencils, X.XPYU and Y.XPYU, have equal
anharmonic ratios. Now let the four points, O, X, Y, U be canonically projected, as above, and let
it be required to assign the equation of the projected curve, in Cartesian and rectangular coordinates,
X and Y. Substituting as in article 55, we have at once, for this sought equation, the following
form:

(1ÿ X � Y
���
3
p

)(1ÿ X ÿ Y
���
3
p

) � (1� 2X )2;

or

X 2 � Y 2 � 2X � 0;

the projection is therefore a circle; namely the circle XUY of Figure 10: whence we might infer
that ``every conic can be projected into a circle'', if we were to adopt the foregoing anharmonic
property, as furnishing the de®nition of a conic.

58. Again, take the form (article 24),

xÿ1 � yÿ1 � zÿ1 � 0,

of the principal real unit-curve, or of the polar conic of the unit-point U, with respect to the unit-
triangle OXY. Substituting for x, y, z, as above, we have immediately

Fig. 16
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1

1ÿ X � Y
���
3
p � 1

1ÿ X ÿ Y
���
3
p � 1

1� 2X
� 0,

or

X 2 � Y 2 � 1;

the canonical projection is therefore again a circle, namely the circumscribed circle OXY of
Figure 10.

59. More generally, if we make the same substitutions for x, y, z, in the general form (article
26) for the anharmonic equation of any curve of the unit-system, the result is,

0 � X 2 � Y 2 � (2ãÿ áÿ â)X �
���
3
p

(áÿ â)Y � á� â� ãÿ 1;

where á, â, ã are constants; all unit-curves, that is (by article 25) ``all curves which pass through
the two imaginary unit-points I and (1, è, è2) and J, or (1, è2,è) are therefore'' seen anew to be
``canonically projected into circles''.

60. Although I feel that I owe you an apology for entering into so many details, when
doubtless a mere hint might have suf®ced to let you see my meaning; yet, as I expressed, near
the commencement of this letter, an opinion that this Anharmonic Method might advanta-
geously be introduced into elementary teaching, I shall go on for a while, with your hoped-for
permission, to show how easily one or two problems of conic sections may be solved by it,
through the facility which is conferred by the power of selecting any four points, O, X, Y, U, or
any four lines, such as the sides of the unit-triangle and the conic line, as data, in any
construction.

61. Suppose, then that we are (for the moment) in the position of persons who have never
heard of conic sections, but are familiar with the elementary geometrical properties of anhar-
monic ratios; and also, that we have in some manner learned the Fundamental Theorem of this
letter, expressed by the formula of article 10,

lx � my � nz � 0

which connects the anharmonic coordinates of point and line. This formula is a suf®cient basis,
whereon to build all investigations respecting local and tangential equations of plane curves; of
any order, and of any class: with all their applications, to poles and polars, in¯exions, nodes, cusps,
double tangents; and generally to whatever depends, ultimately, on collinearity of points, or upon
concurrence of lines. We shall ®nd, indeed, that all which relates to distances, normals, foci,
evolutes, and generally whatever involves in any way the conception of a circle, requires (as has
been already seen in part) modi®cation; and conversely receives (as it appears to me)
extension, in the present view.

62. Let there be now proposed the following
Problem:- ``To ®nd the locus of the vertex P of a pencil, P.XOYU, of which the rays pass

through four given points , X, O, Y, U, (no three of these points being collinear,) and which has a

given anharmonic ratio, � ÿ b

a
, where a and b are given.''
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Solution:- The anharmonic coordinates of the ®ve points being as in this letter, so that

O � (0, 0, 1), X � (1, 0, 0), Y � (0, 1, 0),

U � (1, 1, 1), P � (x, y, z),

and therefore

S � OP
:
XY � (x, y, 0)

and

T � UP
:
XY � (x ÿ z, y ÿ z, 0),

we have, on the plan of article 11,

ÿ b

a
� (P :XOYU ) � (XSYT ) � (x ÿ z)y

(y ÿ z)x
;

making therefore for symmetry, a � b � c � 0, the local equation sought is the following:

ayz � bzx � cxy � 0:

And because this equation is of the second dimension we learn that the sought locus is a curve of
the second order, namely, one which is cut, by an arbitrary transversal, in two points, real or
imaginary: while this curve passes (as its local equation shows) through the four given points, O,
X, Y, U.

63. Problem:- ``To ®nd the tangential equation of the curve, which is thus the locus of P.''
Solution:- Writing the local equation (article 62) as follows:

0 � ÿu � a

x
� b

y
� c

z
,

we ®nd by differentiation (article 16), the expressions,

l � Dxu � a

x2
, m � Dyu � b

y2
; n � Dzu � c

z2
;

whence

(al)
1
2 � (bm)

1
2 � (cn)

1
2 � 0,

or

Fig. 17
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(al)2 � (bm)2 � (cn)2 ÿ 2al :bm ÿ 2bm:cn ÿ 2cn:al � 0

or ®nally,

MN � NL � LM � 0

or

Lÿ1 � Mÿ1 � N ÿ1 � 0;

where

L � bm � cn ÿ al , M � cn � al ÿ bm, N � al � bm ÿ cn:

64. Problem:- ``To determine the tangent at the vertex P of the pencil; or more fully, to assign the
anharmonic coordinates, l, m, n, of that tangent, PV, considered as a line ; and also, the
anharmonic coordinates, x9, y9, z9, of the point V, in which that tangent crosses the given
chord XY.''

Solution: The symbol of the tangent is,

[l , m, n] � [axÿ2, byÿ2, czÿ2];

the equation of that line PV is,

ax9

x2
� by9

y2
� cz9

z2
� 0;

and the symbol of that point V is,

V � (bx2 ÿ ay2, 0):

65. Problem:- To interpret the last result.
Solution:- By article 7, &c., if C � OU

:
XY ,

y

x
� (O:XPYU ) � (XSYC), and

y9

x9
� (XVYC);

also

ÿ b

a
� (XSYC), by article 62, and ÿ b

a
:

y9

x9
� y

x

� �2

, by article 64,

hence one interpretation is, that

(XSYT ):(XVYC) � (XSYC)2:

But we can simplify, by observing that

(XVYC)

(XSYC)
� (XVYS), and

(XSYC)

(XSYT )
� (XTYC);

whence the equation to be interpreted becomes,

(XVYS) � (XTYC), or (P :XPYO) � (U :XPYO);

a result with which, of course, we are familiar, but which is here deduced without the
supposition of any previous knowledge of the doctrine of conic sections.
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66. Problem:- ``To deduce the anharmonic property of tangents to the locus.''
Solution:- Differentiating the form (article 62) of the local equation, namely,

ayz � bzx � cxy � 0

we ®nd that the general tangent PV may be denoted by the symbol

[l , m, n] � [bz � cy, cx � az, ay � bx];

whence, in particular, the four ®xed tangents at X, O, Y, U are,

[0, c, b], [b, a, 0], [c, 0, a], [b � c, c � a, a � b]:

But any two lines, [l , m, n], and [ë, ì, í], intersect in the point (ìn ÿ ím,
íl ÿ ën, ëm ÿ ìl); forming therefore thus the symbols of the four points X 1, O1, Y1, U1, in
which the variable tangent PV cuts the four ®xed tangents at O, Y, U, and comparing the
coordinates of O1, and U1 with those of X 1 and Y1, on the plan of article 11, we ®nd, after a
few reductions, and with the recent signi®cations (article 63) of L, M, N, the anharmonic,

(X 1O1Y1U1) � bM(cN ÿ aL)

aL(cN ÿ aM)
� ÿ b

a
� (P :XOYU );

so that (as is well known), ``the anharmonic ratio of the group of intersections of four ®xed
tangents with a variable tangent, is the same as the anharmonic ratio of the pencil, of the chords
drawn to the four ®xed points of contact, from the variable point of contact''. (Compare article
18.)

67. As one more Problem, of this elementary kind, let us take the following: ``To ®nd the
envelope of the line, which moves so as to be always cut by four given lines, (of which no three are
concurrent,) in a given anharmonic ratio''.

Solution:- Let the four given lines be the sides OY, OX, XY, of the unit-triangle, and the unit-
line A9, B9, C9 of Figure 5; the intersections of [l , m, n] with these are,

M � (0, ÿn, m), L � (n, 0, ÿl), N � (ÿm, l , 0), and V � (n ÿ m, l ÿ n, m ÿ l)

therefore

(LMNV ) � l(n ÿ m)

m(n ÿ l)
� constant � (say)

ÿa

b
, with a � b � c � 0;

``the envelope is therefore a curve of the second class, touching the four given lines,'' because its
tangential equation is,

amn � bnl � clm � 0; or
a

l
� b

m
� c

n
� 0;

it is therefore also of the second order, because its local equation is

(ax)
1
2 � (by)

1
2 � (cz)

1
2 � 0,

or

X ÿ1 � Y ÿ1 � Zÿ1 � 0,

where
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X � by � cz ÿ ax, Y � cz � ax ÿ by, Z � ax � by ÿ cz:

68. As another example of an envelope, which is even easier than the last in calculation, but is
in principle perhaps less elementary, or at least assumes a greater degree of previous
acquaintance with the theory, let us take the case of two unit-curves (article 24) with given
anharmonic centres, K � (a, b, c), and K 9 � (a9, b9, c9), and with a given product R of their
anharmonic radii, r and r 9; and let us investigate the tangential equation of the curve which is
always touched by one of their common tangents. The tangential equation of the two unit
curves being, by article 39,

4r 2(a � b � c)2Ë � 9(al � bm � cn)2,

4r 92 � (a9� b9� c9)2Ë � 9(a9l � b9m � c9n)2,

while

rr 9 � R :

The coordinates, l,m,n of a common tangent must be such that

�4R(a � b � c)(a9� b9� c9)Ë � 9(al � bm � cn)(a9l � b9m � c9n);

such then is the required equation of the envelope; and we see that this curve consists of a system
of two biconfocal conics, one answering to the upper, and the other to the lower sign; for when
the sign is given, the curve is of the second class, and has the two given points K and K 9 for
foci. In fact, the tangents from K (for example) satisfy the equation al � bm � cn � 0; they
therefore satisfy also Ë � 0, or

(l � èm � è2 n)( l � è2 m � èn) � 0,

and consequently they pass through the two imaginary unit-points (1, è, è2) and (l , è2, è).

69. If we introduce unit-line coordinates á, â, ã, á9, â9, ã9 (article 49) of the two given
points K, K 9, we write �4

9R � ä the recent equation of the envelope becomes, more brie¯y

(ál � âm � ãn)(á9l � â9m � ã9n) � ä:Ë;

and we see that this form may represent any conic, with (á, â, ã) (á9, â9, ã9) for two foci. In
general, when we have the tangential equation of a conic, under the form (article 44),

F (l , m, n) � 0

the partial derivatives Dl F , DmF , DnF are the coordinates of the pole of the arbitrary line
[l , m, n], taken with respect to the conic; so that the coordinates of the (anharmonic) centre
(article 28) are found by making l � m � n in the expression of these derivatives. But DlË,
DmË, DnË all vanish for equal values l, m, n; and

á� â� ã � 1, á9� â9� ã9 � 1

if then we denote by á 0, â 0, ã 0, the unit-line coordinates of the centre of the recent conic, so
that á 0� â 0� ã 0 � 1, we have

á 0 � á� á9

2
, â 0 � â� â9

2
, ã 0 � ã� ã9

2
;
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whence it may be inferred that ``the two foci K, K 9 are on one axis (article 28) of the conic, and
the interval between them is harmonically divided by the centre and the unit-line''.

70. The equation in (article 68) may be interpreted, and might have been more rapidly
deduced, by the help of the expression in (article 41), for the anharmonic perpendicular, say, p,
let fall from any given point (a, b, c) on any given line [l , m, n]; namely by the formula,

p � � 3(al � bm � cn)

2(a � b � c)Ë
1
2

;

for thus the equation becomes simply,

pp9 � �R :

The product of the two anharmonic perpendiculars, let fall from the two real anharmonic
foci of a conic, (situated on a common axis,) upon any tangent to that curve is therefore
constant''. In other words, if two unit-curves, be described so as to touch that tangent, and to
have the foci for their centres, their anharmonic radii (article 39) will have a constant product.

71. Employing unit-line coordinates of points, and the formula of (article 49) to express an
anharmonic distance, the equation

r � r 9 � s
���
6
p

,

in which r and r 9 denote the distance of (î, ç, æ) from (á, â, ã) and (á9, â9, ã9) and s is any
constant, will become,

f(îÿ á)2 � (çÿ â)2 � (æÿ ã)2g1
2 � f(îÿ á9)2 � (çÿ â9)2 � (æÿ ã9)2g1

2 � 2s;

and may without dif®culty be shown to represent a system of two conics, with the two given
points for common foci. This was what I alluded to in (article 36), as the anharmonic analogue
(and extension) of the usual sum or difference property of conics. ± But I am sure that you must
be quite tired of reading what I am almost tired of writing, on a subject which looks so
rudimentary; and which is such, except in so far as the Conception employed may introduce an
element of novelty. Even on this last point, however, I await the judgment of others, yourself
included. And I shall say no more about conics in this Letter.

72. But as the quantities î, ç, æ which I have called the Anharmonic Unit-Line Coordinates of a
point P, are found to play an important part in simplifying several formulñ ± especially
expressions for the anharmonic analogue of distance ± it may be worth while to show that they
are not merely functions of anharmonic quotients, as in the equations

î � x

x � y � z
, &c:,

by which they have been (in article 49) de®ned, but have also independent geometrical signi®ca-
tions, and can be expressed as anharmonic, themselves. With this view, however, I shall consider
®rst the following more general

Problem:- ``given any six constants, l, m, n, l 9, m9, n9, to interpret the function
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ø(x, y, z) � l9x � m9y � n9z

lx � my � nz
,

as representing the anharmonic of a pencil.''

73. Let K be the point (a, b, c) for which this function becomes

ø(a, b, c) � 0

0
,

or of which the coordinates satisfy the two equations,

la � mb � nc � 0, l9a � m9b � n9c � 0;

then these coordinates will also satisfy this third equation,

(l9ÿ kl)a � (m9ÿ km)b � (n9ÿ kn)c � 0,

or

ø(x, y, z) � k � constant

will be the equation of a right line through K. Let L, M, N be three points anywhere taken, upon
the three lines KL, KM, KN for which the constant k is, respectively, equal to: zero, unity, and
in®nity; then it will be found that for any point P, or (x, y, z), the value of the function is

ø(x, y, z) � (K :PLMN ):

74. To prove this Theorem, which contains the solution of the foregoing general problem, we
may suppose that the four points, L � (a9, b9, c9), M � (a 0, b 0, c 0), N � (a -, b -, c -), and
P � (x, y, z) are situated on one common transversal of the pencil, so that

0 �
a9 b9 c9
a 0 b 0 c 0
a - b - c -

������
������ and 0 �

a9 b9 c9
x y z
a - b - c -

������
������;

in which case we may write brie¯y,

(M) � t(N )� u(L), (P) � t9(N )� u9(L),

or more fully

a 0 � ta -� ua9, b 0 � tb -� ub9, c 0 � tc -� uc9,

x � t9a -� u9a9, y � t9b -� u9b9, z � t9c -� u9c9;

whence the anharmonic of the lately mentioned pencil will be (by article 11).

(K :PLMN ) � (K :NMLP) � t9u

tu9
;

and we are to show that this is equal to ø(x, y, z), under the assigned conditions of
construction. Those conditions give, as what may be called the equations of the three ®xed rays,
KL, KM, KN, the following:

l9a9� m9b9� n9c9 � 0; l9a 0� m9b 0� n9c 0 � la 0� mb 0� nc 0;

la -� mb -� nc - � 0;
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hence

t(l9a -� m9b -� n9c -) � u(la9� mb9� nc9),

l9x � m9y � n9z � t9(l9a -� m9b -� n9c -),

lx � my � nz � u9(la9� mb9� nc9),

and the anharmonic becomes

t9u

tu9
� l9x � m9y � n9z

lx � my � nz
� ø(x, y, z)

as asserted. ± We derive, at the same time, this slightly more general result:

ø(x9, y9, z9)

ø(x, y, z)
� l9x9� m9y9� n9z9

lx9� my9� nz9
:

lx � my � nz

l9x � m9y � n9z
� (K :NPLP 9);

in which KL and KN, are still the rays which make the function (x, y, z) vanish and become
in®nite, but P and P 9 are arbitrary points of the given plane.

75. Applying now the theorem of article 73, to the intepretation of the symbol î [see article
72] or of the quotient

x

x � y � z
� ø(x, y, z),

the denominator shows that KN is the unit-line, and the numerator shows that KL coincides
in position with the side OY of the unit-triangle: K is therefore the point B9 of Figure 5, which
thus becomes the vertex of the pencil: and the ray KM passes through the point X, for which
we have ø(1, 0, 0) � 1; in fact the equation of the line B9X 9 is

y � z � 0, or î � 1:

Hence for any point P, we have, by the theorem,

î � (B9:POXA9);

and similarly,

ç � (A9:POYB9), and æ � (C9:PXOA9):

Or we may write,

î � (B9:PYXC 9) or î � (B9:POXC9)&c:

As veri®cation, when P is anywhere on the line B9OY , each of these expressions for î vanishes;
when P is on B9X , each becomes � 1, as above; and when P is on the unit line A9B9C9, then
each of them becomes in®nite.

76. If then any triangle OXY have its sides OX , OY , XY cut by any transversal in the points
A9, B9, C9, and if P be any point in its plane, we have the following geometrical theorem, which
can be very simply otherwise proved, by projecting the transversal to in®nity:

(B9:POXA9)� (A9:POYB9)� (C9:PXOA9) � 1;

the three parts, or terms, of the ®rst member being those anharmonics which I have above
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denoted by î, ç, æ; and my motives for calling which (in article 49) the Unit-Line Coordinates of
the point P, may now be more fully understood.

77. The geometrical notation of this whole Letter might have been made much more symmetric,
by abandoning, from the outset, all reference (even in thought) to Cartesian coordinates, and by
using consequently other letters for the points: for example, by substituting, as in Figure 18, the
letters O, A, B, C, A9, B9, A 0, B 0, C 0, in the places which were occupied by U, X, Y, O, B9, A9,
B, A, C, while C9 retains its position [see Figure 5]. Calling then ABC the unit-triangle, and
A9B9C9 the unit-line, as before, I might have begun with unit-line coordinates î, ç, æ of any point
P, de®ning them by the equation,

î � (A9:PCAB9), ç � (B9:PABC 9), æ � (C 9:PBCA9);

or, which comes to the same thing, by these other equations,

î � (RCAB9) � (S9BAC 9), ç � (SABC 9) � (Q 9XBA9),

æ � (QBCA9) � (R9ACB9),

if we make, as in Figure 19,

Q � C9P
:
BC , R � A9P

:
CA, S � B9P

:
AB,

Fig. 19

Fig. 18
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Q 9 � B9P
:
BC , R9 � C9P

:
CA, S9 � A9P

:
AB:

When the unit-line is thrown off to in®nity, these anharmonics î, ç, æ become, more simply,
as in Figure 20, the quotients of segments,

î � CR

CA
� S9B

AB
, ç � AS

AB
� Q 9C

BC
, æ � BQ

BC
� R9A

CA
;

but, by similar triangles,

R9A

CA
� PS

CA
� SS9

AB
; and S9B � AS � SS9 � AB;

and generally, we have the relation

î� ç� æ � 1,

which (as before) connects the unit-line coordinates, but is now obtained by (perhaps) the
most elementary process possible: so that the theorem of article 76 is anew obtained, under
this form, that ``if a triangle ABC be cut by a transversal A9B9C9, and if P be any point in its
planes, then

(A9:PCAB9)� (B9:PABC 9)� (C9:PBCA9) � 1:00

78. Again, if we make, as in Figure 20

Q 0 � AP
:
BC , R 0 � BP

:
CA, S 0 � CP

:
AB,

and observe that A 0, B 0, C 0 are, in this projected ®gure, the middle points of the sides of the
triangle, we ®nd that

î

ç
� S9B

AS
� PQ

R9P
� S 0B

AS 0
� (S 0BC 0A) � (C :PBOA),

where O is the mean point of the triangle; and similarly for other quotients of î, ç, æ. If then
we return to the general state of the construction, as represented in Figure 18, and denote by
x, y, z any three quantities which are proportional to the unit-line coordinates î, ç, æ, but which are
not connected among themselves by the condition that their sum shall be unity, nor by any other
relation whatever; we shall have the values,

Fig. 20
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y

z
� (A:PCOB),

z

x
� (B:PAOC),

x

y
� (C :PBOA);

z

x
� (A:PBOC),

x

z
� (B:PCOA),

y

z
� (C :PAOB);

which may with advantage, so far as notation is concerned, replace the corresponding formula
of earlier articles (articles 6 and 7). And I think that these anharmonic coordinates x, y, z,
when thus de®ned by reference to the unit-point O, or when thus proved to have essential and
simple relations to that point, instead of having them to the line A9B9C9, may conveniently be
called, for distinction's sake, the Unit-Point Coordinates of P.

79. Continuing thus to improve a little the symmetry of our formulñ, let Figure 5 be
replaced by the annexed Figure 21, in which LMN is a second transversal of the triangle ABC. I
would then de®ne that the Unit-Line Coordinates of this line LMN, are any quantities l, m, n
which satisfy the two ®rst, and therefore all the others, of the six following equations
(compare article 9):

m

n
� (BLCA9),

n

l
� (CMAB9),

l

m
� (ANBC9);

n

m
� (CLBA9),

l

n
� (AMCB9),

m

l
� (BNAC9):

And then I would go on to prove, (on the plan of article 10,) what I have elsewhere called (see
article 10) the Fundamental Theorem of this Anharmonic Method: namely, that ``if (x, y, z), or P,
be a point situated anywhere upon this line [l , m, n], or LMN, then the coordinates of point
and line are connected by the following equation:

lx � my � nz � 0'';

which (as in article 10) may be regarded either as the local equation of the line, or as the
tangential equation of the point. After this, all would proceed exactly as before, only with a
more symmetrical geometrical notation (article 75).

Fig. 21
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80. Elementary, however, as was the proof given in article 10, of the important theorem just
now cited, that proof may be made perhaps a little clearer and more simple, by employing
unit-line coordinates for both point and line, or by proving that

lî� mç� næ � 0;

and by throwing off the unit-line to in®nity [see Figure 22]. In this manner we have (compare
article 77),

ÿ l

n
� AM

MC
, ÿ m

n
� BL

LC
,

î

æ
� Q 9P

PS
,

ç

æ
� PR

S9P
;

therefore

ÿ lî

næ
� AM

PS
:
Q 9P

MC
� NM

PN
:

LP

ML
� (LPNM),

ÿ mç

næ
� BL

S9P
:

PR

LC
� NL

NP
:

PM

LM
� (LNPM),

but

(LPNM)� (LNPM) � 1 (by article 5);

therefore

ÿ lî

næ
ÿ mç

næ
� 1, or, lî� mç� næ � 0;

and consequently,

lx � my � nz � 0, as before:

81. When l, m, n are given constants, and î, ç, æ are the unit-line coordinates of a point P
which is not situated upon the line [l , m, n], then the expression lî� mç� næ has a value
different from zero; and the theorem of article 73, which is unaffected by the recent change of
geometrical notation, enables us to interpret this expression as representing the anharmonic of
a pencil. Let K be the point in which the given line [l , m, n] meets the unit-line; so that the
unit-point coordinates (article 78) of this point K may be written thus

Fig. 22
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a � m ÿ n, b � n ÿ l , c � l ÿ m,

although the unit-line coordinates (article 77) are in®nite. Let L be any other point on the given
line [l , m, n], and N any other point on the unit-line [1, 1, 1]; ®nally, let M be any point for
which the proposed expression, lî� mç� næ, becomes � ÿ1. Then, generally, by the
theorem (article 73), for any point P, of which the unit-line coordinates are î, ç, æ, we have
the equation,

lî� mç� næ � (K :PLMN )

and if P 9 have î9, ç9, æ 0 for its corresponding coordinates, then, by (article 74),

lî� nç� næ

lî9� mç9� næ9
� (K :PLP 9N ):

82. As an example, let us take the expressions (article 54),

X � (2æÿ îÿ ç)cos
ð

3
, Y � (îÿ ç)sin

ð

3
,

and seek, on this plan, their anharmonic interpretations. For the ®rst of these expressions
the given line is OC 9, so that we must place K at C9, and may place L at O, and N at A9, also
X � 1 for the point C, which may therefore be taken for M: so that we may write

X � (C9:POCA9) � (QOCC -), if Q � C9P
:
OC , and C - � C9A9

:
OC :

For the second expression the given line is OC, so that we must take K � OC
:
A9B9 � C -; also

OC intersects AB in C 0, and for the point A we have î � 1, ç � 0, Y � sin
ð

3
; if then we write

R � KP
:
AB, (Q and R being here not the same points as in article 77,) and place N on AB at

C9, we shall have

îÿ ç � (C -:POAC9), and Y � (RC 0AC 9)sin
ð

3
:

83. If we now project canonically (articles 22, 55, &c.) the unit-triangle ABC into an equilateral
triangle, and the unit-point O into its mean point (or centre), as in Figure 23, the points C -,
and C 9, in these expressions for the functions X and Y, will go off into in®nity, and Q and R
will become the feet of the perpendiculars from P on OC and AB; also C 0 will bisect AB, and
we shall have

C 0A � OD:sin
ð

3
,

Fig. 23
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if OD be the radius of the circumscribed circle ABC, erected towards the same side of OC as
OA. The recent anharmonic expressions become, therefore

X � OQ

OC
, Y � C 0R

OD
;

and we see anew that these two functions are simply (in this canonical projection) the two
rectangular and Cartesian coordinates of the point P, referred to the unit-point O as their
origin, with the radius OC for the unit of length, and at the same time for the positive semiaxis of
x; while OD is the positive semiaxis of y: as was otherwise found in articles 54 and 56, with a
less symmetric geometrical notation, and as the result of an altogether different train of reasoning,
and of calculation.

84. The interpretations of these two functions, X and Y, having been thus in a new way
established, if we write, as in (article 54),

r cosj � X � (2æÿ îÿ ç)cos
ð

3
,

r sinj � Y � (îÿ ç)sin
ð

3
,

we shall again have, as in (article 53)

r 2 � X 2 � Y 2 � î2 � ç2 � æ2 ÿ îçÿ çæÿ æî,

as an expression for the square of the anharmonic radius vector of a point P, while j is (as
before) the (anharmonic) polar angle of that point; also the square of the (anharmonic)
distance R between any two points, of which the unit-line coordinates are î, ç, æ, and î9, ç9, æ9,
is

R2 � (X 9ÿ X )2 � (Y 9ÿ Y )2 � r 92 � r 2 ÿ 2rr 9 cos(j9ÿ j)

where

rr 9 cos(j9ÿ j) � XX 9� YY 9 � îî9� çç9� ææ9ÿ 1
2(îç9� çî9)ÿ 1

2(çæ9� æç9)ÿ 1
2(æî9� îæ9)

with reductions on which it is not worth while to delay, except that we may here just notice
the very simple symmetric formula (compare article 49),

2

3
R2 � (îÿ î9)2 � (çÿ ç9)2 � (æÿ æ9)2

which may be proved, among other ways, by substituting in the right hand member the values
(article 54),

î � 1
3(1ÿ X � Y

���
3
p

), ç � 1
3(1ÿ X ÿ Y

���
3
p

), æ � 1
3(1� 2X ),

with the corresponding values of î9, ç9, æ9.

85. Let f (x, y, z) � 0, or f (î, ç, æ) � 0, be any homogeneous and local equation of a curve,
which we may always suppose it to be; because if the equation be not given as homogeneous
in î, ç, æ we can always render it such, without altering its degree, by the help of the relation
î� ç� æ � 1. Then as in (article 55), we have, at once,
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f (1ÿ X � Y
���
3
p

, 1ÿ X ÿ Y
���
3
p

, 1� 2X ) � 0,

as the equation in Cartesian and rectangular coordinates, of what the curve becomes, by the
canonical projection which has already been suf®ciently described. Such substitutions having
been, in former articles 57, 58 and 59 exempli®ed for conics. I shall now venture to give an
example or two, for the case of cubic curves: although conscious how vastly inferior my
knowledge of that subject is to yours.

86. Taken then the following equation of the third degree

27îçæ � k,

when k is any real constant, and which is equivalent to the homogeneous form,

27xyz � k(x � y � z)3:

The substitutions in question give, immediately,

(1ÿ X � Y
���
3
p

)(1ÿ X ÿ Y
���
3
p

)(1� 2X ) � k;

or expanding and making X � r cosj, Y � r sinj

1ÿ 3r 2 � 2r 3 cos 3j � k;

such, then, are the equations in rectangular and polar coordinates, of the canonically
projected curve.

87. The last homogeneous form (article 86) has been discussed by others, and must be
considered as well known, although I know it only from Salmon's Book (HPC, pp. 136 and
172) but I shall be curious to learn, whether any one has assigned a short and easy process,
like that given above, for transforming it to common coordinates. Any remark on its interpreta-
tion, that I may go on to make, will of course be purely for my own satisfaction; and because it
is really easier for me, when the pen is in my hand, to write with some fullness than to be
concise. If I had taken time to write these sheets over again, instead of sending them to you as
fast as they were written, I could easily have compressed them into less than half, perhaps in to
a third part, of their extent. As it is, you will just suppose me to be writing in a private book,
the pages of which I allow you to look over, without the slightest hope of teaching you
anything.

88. Two principal cases may be distinguished [see Figure 24]: Ist, the case where k . 0, but
,1; and IInd, the case k . 0, .ÿ1. In the Ist case, there exist three in®nite branches of the
curve, lying in the three vertically opposite angles B9AC 9, C9BA, A9CB9, of the triangle ABC ; but
besides these (always real) branches, there exists a real oval, interior to those triangles, if k , 1;
which reduces itself to a conjugate point, at the centre O of the same triangle, if k � 1; and
becomes an imaginary oval, if k . 1; all this appearing easily from the considerations of the
cubic equation in r. In the IInd case, if k � 0, the cubic curve degenerates into a system of three
right lines, namely, the 3 sides of the triangle; but if k , 0, it consists again of three in®nite but
curvilinear branches, which are however situated now in the three in®nite trapezoids, C9BCB9,
A9CAB9, B9ABA9, formed by prolonging two of the sides beyond the third [see Figure 25]. In
each case, (at least if we set aside the non-curvilinear subcase k � 0), the three sides of the
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triangle are the three asymptotes; and the points at in®nity, in which they meet the curve, are
the three real points of in¯exion. The six imaginary points of in¯exion are the intersections of the
cubic with the in®nitely small circle at O. (If k � �1 the curve degenerates into three right lines
which however in this case are all at in®nity.) And it appears that cubics of the sixth class may
generally be projected into one or other of these forms: namely by projecting the triangle of
tangents drawn at the three real and distinct points of in¯exion, into an equilateral triangle; and at
the same time projecting to in®nity the line which joins those points. Indeed, it seems to be
suf®cient to accomplish this later projection, or to consider only the triangle of asymptotes,
when these are real lines, and their points at in®nity are points of in¯exion on the curve. For
then I do not see how the general shapes can change, any otherwise than as the shape of an
ellipse differs from that of a circle. But we should not have equations quite so simple, in rectangular,
or in polar coordinates.

Fig. 24

Fig. 25
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89. I grant that all this construction (article 88) comes virtually to the very simple proposition,
which I suppose is perfectly well known, although I cannot refer to it:- ``The General Cubic is
some projection of the locus of a point P, from which the three perpendiculars ( p, p9, p 0), let fall on the
three sides of a given equilateral triangle (ABC), have their product equal to a given constant''; each
such perpendicular being regarded as positive, when let fall from the opposite vertex, but is
passing from positive to negative, when the point comes to cross the side.

90. Indeed, on turning again to Salmon (HPC, p. 136), I see a Theorem, respecting the
interpretation of the equation ACE ÿ B3 � 0, containing (as he observes) nine constants: which
theorem, if we admit that the General Cubic has three real and distinct points of in¯exion, the
tangents at which form a real and non-evanescent triangle, (as not generally meeting in one point),
may certainly be said to include the foregoing proposition; although I happened to deduce it,
and the constructions in (article 88), from the Polar Equation assigned in (article 86).

91. The theorem (p. 171, article 184 of HPC), respecting the position of the conjugate point,
when such a point exists, is reproduced by the analysis of our recent article 88. ± By starting
with the supposition that the unit-line contains one real, and two imaginary points of in¯exion,
(instead of three real points,) I was led to the form of equation,

U � (x � y � z)3 � 6kz(x2 � xy � y2) � 0;

which gave, by Salmon's formula, the Hessian,

H � k2U � 4k2(y ÿ z)(z ÿ x)(x � y � z);

and accordingly, the biquadratic (HPC, p. 187) for
ë

ì
, in the system of three right lines through

the nine points of in¯exion, represented by the equation

ëU � ìH � 0,

becomes here (if I have made no slip in the calculation of S and T ),

0 � (ë� k2ì)f3ë3 ÿ 3k2ë2ìÿ 3k3(8� 5k)ëì2 ÿ k4(4� 3k)2ì3g
the cubic factor equated to 0, giving generally one real root, and two imaginary roots. ± But
whether I shall enter on any account of my interpretation of these equations is doubtful, as I
wish to ®nish soon.

92. I may however jot down a few formulñ for reference, in connexion with this form,

U � (x � y � z)3 � 6kz(x2 � xy � y)2,

or brie¯y

U � s3 � 6kzp,

if

s � x � y � z, p � x2 � xy � y2;

which form is by no means proposed as the base, but merely as one which, for a particular
purpose, I lately found it convenient to discuss. Differentiating U, we have
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l � 1
3DxU � s2 � 2kz(2x � y),

m � 1
3DyU � s2 � 2kz(x � 2 y),

n � 1
3DzU � s2 � 2kp,

l9 � 1
6D2

x U � s � 2kz,

m9 � 1
6D2

yU � s � 2kz,

n9 � 1
6D2

z U � s,

l 0 � 1
6DyDzU � s � k(x � 2y),

m 0 � 1
6DzDxU � s � k(2x � y),

n 0 � 1
6DxDyU � s � kz;

whence

H � l9l 02 � m9m 02 � n9n 02 ÿ l9m9n9ÿ 2l 0m 0n 0, (HPC , p: 71)

� k2sf(x ÿ y)2 � 6(x � y)z ÿ 3z2g � 6k2zp

� k2fU � 4s(y ÿ z)(z ÿ x)g
as in our recent article 91. ± The S, T, R came out, for this form of U,

S � 3k3(4� 3k); T � 72k4(2� 6k � 3k2); R � ÿ2833 k8(3� 2k);

whence the biquadratic in
ë

ì
, namely (HPC, p. 187)

27ë4 ÿ 18Së2ì2 ÿ Tëì3 ÿ S2ì4 � 0

because

0 � 3ë4 ÿ 6k3(4� 3k)ë2ì2 ÿ 8k4(2� 6k � 3k2)ëì3 ÿ k6(4� 3k)2ì4;

or, as in, (article 91),

0 � (ë� k2ì)f3ë3 ÿ 3k2ë2ìÿ 3k3(8� 5k)ëì2 ÿ k4(4� 3k)2ì3g
where the factor ë� k2ì corresponds to the decomposition, assigned above, of the combina-
tion H ÿ k2U into three linear factors, s, y ÿ z, z ÿ x, answering to a system of three real
right lines, on which the nine points of in¯exion are contained.

93. The line

s � 0 or x � y � z � 0

is what has been called, in this Letter (article 10) the unit-line ; it cuts the cubic U in one real
point of in¯exion, namely in C9 � (1, ÿ1, 0); and in two imaginary points of in¯exion,
namely,

I � (1, è, è2) J � (1, è2, è),
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which have been called (in article 25) the two imaginary unit-points. The tangents to the curve,
at these three points of in¯exion, are

z � 0, or C9AB; y ÿ èx � 0, or IC ; and y ÿ è2x � 0, or JC ;

as may be perceived on inspection of the given equation U � 0, and may be con®rmed by
observing that, (see article 92,)

x � 1, y � ÿ1, z � 0 give l � 0, m � 0, n � 2k;

x � 1, y � è, z � è2 give l � 2kè2(2� è), m � 2kè2(1� 2è), n � 0;

and

x � 1, y � è2, z � è give l � 2kè(2� è2), m � 2kè(1� 2è2), n � 0;

so that the tangents at C9, I, J have for their equations,

2kz � 0, 2kè2(2� è)x � 2kè2(1� 2è)y � 0,

2kè(2� è2)x � 2kè(1� 2è2)y � 0;

or, because

2� è

1� 2è
� ÿè and

2� è2

1� 2è2
� ÿè2,

z � 0, y ÿ èx � 0, y ÿ è2x � 0, as above:

The point C, or (0, 0, 1), in which the two imaginary tangents intersect, is real and is one of
the corners of what we have called the unit-triangle; and the real tangent at C9 is the opposite
side of that triangle.

And if we draw, as in former ®gures, the line CO to the unit-point O, meeting AB in C 0,
and A9B9C9 in C), and having y � x for its equation, this line will be the harmonic polar (HPC,
p. 140) of the point of in¯exion C9, with reference to the given cubic. Thus the real point C,
or (1, 1, ÿ2), is the harmonic conjugate of C9, or (1, ÿ1, 0), not only with respect to the two
real points A9 � (0, 1, ÿ1), and B9 � (ÿ1, 0, 1), but also with respect to the two imaginary
points I and J, so that

Fig. 26
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2

C9C)
� 1

C9A9
� 1

C9B9
� 1

C9I
� 1

C9J
;

and the imaginary tangents at I and J are conjugate rays of a pencil in involution, whereof the
sides CA, CB are also conjugate rays, CC 9 and CO being the double rays.

94. The constructions in the foregoing article are independent of any use, or even know-
ledge, of the Hessian, H; but we may now go on to employ the equation

kÿ2 H ÿ U � 4s( y ÿ z)(z ÿ x),

in order to discover the six remaining points of in¯exion of U : wherof we see that three are
on the real right line y ÿ z � 0, or OA; and three others on the other real line, z ÿ x � 0, or
OB. And now it is evident that at least this cubic U has three real points of in¯exion; namely the
point C 9 on the line s � 0, as before, and two new points, which we may call K 9 and K 0,
situated on the right lines OA, OB. The imaginary points on OA may be called I 9 and J 9; and
those on OB, I 0 and J 0.

95. Writing

k9 �
���
k3
p

, k 0 �
���������������������
(12� 8k)3

p
(where I intend that real cube-roots should be taken,) and

w � k9k 0(k9� k 0), w9 � k9k 0(èk9� è2 k 0), w 0 � k9k 0(è2 k9� èk 0),

the quantities w, w9, w 0 are the one real and the two imaginary roots of the following cubic
equation:

w3 � 12k(3� 2k)w ÿ 4k(3� 2k)(12� 7k) � 0:

Eliminating z from U � 0, by the equation y ÿ z � 0 of OA, we obtain this other cubic
equation, to determine the directions of the three lines, CK 9, CI 9, CJ 9, which are drawn from
the point C to the three points K 9, I 9, J 9 on in¯exion on the line OA:

0 � (x � 2 y)3 � 6ky(x2 � xy � y2)

� x3 � 6(1� k)x2 y � 6(2� k)xy2 � 2(4� 3k)y3;

in which if we make

(8� 6k)y � (4� 2k)x � wx,

we are conducted to the recent cubic in w, the roots of which have been assigned. The real
point of in¯exion in OA is therefore

K 9 � (8� 6k, w ÿ 4ÿ 2k, w ÿ 4ÿ 2k);

and the two imaginary points of in¯exion, on the same line OA, are,

I 9 � (8� 6k, w9ÿ 4ÿ 2k, w9ÿ 4ÿ 2k),

J 9 � (8� 6k, w 0ÿ 4ÿ 2k, w 0ÿ 4ÿ 2k):

In like manner the real point of in¯exion on OB is
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K 0 � (w ÿ 4ÿ 2k, 8� 6k, w ÿ 4ÿ 2k);

and the two imaginary points of in¯exion, on the same line, are,

I 0 � (w9ÿ 4ÿ 2k, 8� 6k, w9ÿ 4ÿ 2k),

J 0 � (w 0ÿ 4ÿ 2k, 8� 6k, w 0ÿ 4ÿ 2k):

96. As veri®cations, we may try whether the 9 points are collinear, 3 by 3. One such
collinearity (C9IJ ) we started with; and two others, (I 9J 9K 9) and (I 0J 0K 0), are immediate
results of the calculation. The three real points of in¯exion, C9, K 9, K 0, are collinear, because
their coordinates satisfy the common equation,

2(w � k)z � (w ÿ 4ÿ 2k)(x � y � z),

which represents a real right line. The two imaginary lines,

2(w9� k)z � (w9ÿ 4ÿ 2k)(x � y � z),

2(w 0� k)z � (w 0ÿ 4ÿ 2k)(x � y � z),

connect in like manner the two sets of three points, C9, I 9, I 0, and C9, J 9, J 0; and thereby
exhibit two other collinearities. But besides the three lines, one real and two imaginary, of
which the equations have just been written, and the three real lines, above alluded to, of
which the equations are

x � y � z � 0, y ÿ z � 0, x ÿ z � 0,

namely the three linear factors of k2U ÿ H , we ought to be able to assign six other lines, to
make up the known number of twelve.

97. For this purpose, I modify a little the foregoing expressions for the points I 9, J 9, K 9, I 0,
J 0, K 0, as follows. Writing, more brie¯y,

K 9 � (t, v, v), K 0 � (v, t , v),

where t is a real, which may still be assumed equal to 8� 6k, while
v

t
is the real root of the

cubic equation,

(2v� t)3 � 6kv(v2 � tv� t2) � 0

and supposing that
v9

t
,

v 0

t
are the two imaginary roots of the same equation, for it will, in

general, have two such roots: then by developing and reducing the equation,

(v9ÿ v)ÿ1fv(v2 � tv� t 2)(2v9� t)3 ÿ v9(v92 � tv9� t 2)(2v� t)3g � 0,

I am conducted to a quadratic, which may be written thus:

0 � v9

t
ÿ è2 t ÿ èv

t � 2è2v

� �
v9

t
ÿ èt ÿ è2v

t � 2èv

� �
:

Hence the following new symbols may be employed to represent the points I 9, . . . , J 0:
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I 9 � (t � 2è2v, è2 t ÿ èv, è2 t ÿ èv);

J 9 � (t � 2èv, èt ÿ è2v, èt ÿ è2v);

I 0 � (è2 t ÿ èv, t � 2è2v, è2 t ÿ èv);

J 0 � (èt ÿ è2v, t � 2èv, èt ÿ è2v);

t and v having the same real values in all these formulñ. The six former collineations are
again put in evidence; thus besides the original equation x � y � z � 0, which is satis®ed by
the three points C9, I, J, we have y � z for each of the points K 9, I 9, J 9, and x � z for each of
K 0, I 0, J 0; the equation (t � 2v)z � vs, (where s is still equal to x � y � z,) represents the real
right line C 9K 9K 0; and the two imaginary lines C9I 9I 0, C9J 9J 0, have for their respective
equations,

(è2 ÿ è)(t � 2v)z � (è2 t ÿ èv)s, (èÿ è2)(t � 2v)z � (èt ÿ è2v)s:

But the six other relations of collinearity, for which we were in search, come also now into view.
Thus the equation,

0 � (è2 ÿ è)vx � (vÿ è2 t)y � (èt ÿ v)z, or 0 �
x, y, z
t, v, v
1, è, è2

������
������,

is satis®ed, whether we suppose x � t, y � v, z � v, as for K 9; or x � 1, y � è, z � è2, as for I ;
or

x � z � èt ÿ è2v and y � t � 2èv

as for J 0: these three points of in¯exion K 9, I, J 0, whereof the ®rst is real, and the two others
are imaginary, are therefore situated on that one imaginary right line, of which the equation
has just been written. In like manner, K 9, J, I 0 are on this other imaginary line,

0 � (èÿ è2)vx � (vÿ èt)y � (è2 t ÿ v)z, or
x, y, z
t , v, v
1, è2, è

������
������;

K 0, I, I 9 are on

0 �
x, y, z
v, t , v
1, è, è2

������
������ � è(èt ÿ v)x � (1ÿ è2)vy � (èvÿ t)z;

and K 0, J, J 9 are on

0 �
x, y, z
v, t , v
1, è2, è

������
������ � è(t ÿ èv)x � (1ÿ è)vy � (è2vÿ t)z;

so that besides the real line C9K 9K 0, connecting the three real points, we have already found
three other real lines, and six imaginary lines, passing each through one of those three real
points, and connecting them with imaginary points. Finally, if we write

I 9 � (t9, v9, v9), J 9 � (t 0, v 0, v 0), I 0 � (v9, t9, v9), J 0 � (v 0, t 0, v 0),
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the equations

0 �
x y z
t9 v9 v9
v 0 t 0 v 0

������
������ � v9(v 0ÿ t 0)x � v 0(v9ÿ t9)y � (t9t 0ÿ v9v 0)z,

0 �
x y z
t 0 v 0 v 0
v9 t9 v9

������
������ � v 0(v9ÿ t9)x � v9(v 0ÿ t 0)y � (t9t 0ÿ v9v 0)z,

or, after expansion and division by t ÿ v, the equations,

0 � è(vÿ èt)x � (t ÿ èv)y � (è2 ÿ 1)vz,

0 � è2(vÿ è2 t)x � (t ÿ è2v)y � (èÿ 1)vz,

or still more brie¯y

0 � v9x ÿ è2v 0 y � (1ÿ è)2vz, and 0 � v 0x ÿ èv9y � (1ÿ è)vz,

represent two imaginary lines, namely JI 9J 0, and IJ 9I 0, which connect the six imaginary
points among themselves, and are the two lines that remained to be found. ± It is to be noted
that these two lines intersect each other in a real point O9 � (v, v, t), which is on the harmonic
polar (article 93) of C9; and that the product of their equations, namely

0 � (t 2 � tv� v2)(x2 � y2)� (t 2 ÿ 2tvÿ 2v2)xy ÿ 3tv(x � y)z � 3v2z2,

or

0 � (t 2 � tv� v2)(x ÿ y)2 � 3(tx ÿ vz)(ty ÿ vz),

represents an imaginary or in®nitesimal conic, which has the recently determined O9 for its only
real point, but which is to be considered as passing through the six imaginary points of in¯exion.
(Compare article 88.)

98. If we multiply the equation of this conic, by the equation

0 � vx � vy ÿ (t � v)z,

of the real right line C9K 9K 0 which connects the 3 real points of in¯exion, we obtain a new
equation of the third degree, which may be written thus:

0 � (t 2 � tv� v2)U � (t � 2v)2s(y ÿ z)(z ÿ x);

and which represents a locus, containing all the nine points of in¯exion. Accordingly, (in
articles 91 and 92) we found that

4s(y ÿ z)(z ÿ x) � kÿ2 H ÿ U ,

so that the last equation is of the form ëU � ìH � 0, as it ought to be; and I have veri®ed

that the resulting value of
ë

ì
, namely

3t 2 k2

(t � 2v)2
, is the one real root of the cubic (article 91),

0 � 3ë2 ÿ 3k2ë2ìÿ 3k3(8� 5k)ëì2 ÿ k4(4� 3k)2ì3,
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where k is treated as a function of t and v, determined by the ®rst equation in article 97, or by
the formula,

6k � ÿ(t � 2v)3

v(t 2 � tv� v2)
:

99. Writing, for greater symmetry, K instead of C9, to denote the ®rst real point of in¯exion,
which is at once suggested by the mere form of U, without any trouble of calculation, we may
collect the twelve collineations into four groups, as follows:

I.
(KK 9K 0) � v(x � y)ÿ (t � v)z � 0; (equation of right line through K , K 9, K 0)
(IJ 9I 0) � v 0x ÿ èv9y � (1ÿ è)vz � 0; (equation &c: through) I , J 9, I 0)
( JI 0J 0) � v9z ÿ è2v 0 y � (1ÿ è2)vz � 0; (equation &c:; )

8<:
II.

(KIJ � x � y � z � 0;
(K 9I 9J 9) � y ÿ z � 0;
(K 0I 0J 0) � z ÿ x � 0;

8<:
III.

(KI 9I 0) � v9(x � y)ÿ (t9� v9)z � 0;
(K 9IJ 0) � (1ÿ è)vx � v 0 y ÿ èv9z � 0;
(K 0J J 9) � v 0x � (1ÿ è)v y ÿ èv9z � 0;

8<:
IV.

(KJ 9J 0) � v 0(x � y)ÿ (t 0� v 0)z � 0;
(K 9JI 0) � (1ÿ è2)vx � v9y ÿ è2v 0z � 0;
(K 0II 9) � v9x � (1ÿ è2)vy ÿ è2v 0z � 0;

8<:
it being understood that each of these twelve linear equations in x, y, z holds only for the set
of three points of in¯exion to which it belongs; and t9, v9, t 0, v 0, still depending on t and v,
by the formulñ (article 97),

t9 � t � 2è2v; v9 � è2 t ÿ èv;

t 0 � t � 2èv; v 0 � èt ÿ è2v:

100. Multiplying the three equations of Group I, we ®nd, by article 99,

(KK 9K 0):(IJ 9I 0):( JI 9J 0) � vv9v 0U � v(t � 2v)2s(y ÿ z)(z ÿ x) � ë0U � ì0H

where

ë0

ì0
� 3

kt

t � 2v

� �2

; and s � x � y � z: (Compare 98:)

Multiplying the three equations of Group II, we have, at once, the product (article 91),

(KIJ ):(K 9I 9J 9):(K 0I 0J 0) � s(y ÿ z)(z ÿ x) � ë1U � ì1H ;
ë1

ì1
� ÿk2:

Multiplying the equations of Group III, we ®nd, after reduction,

(KI 9I 0):(K 9IJ 0):(K 0JI 9) � (1ÿ è)vv9v 0U ÿ è2v9(t � 2v)2s(y ÿ z)(z ÿ x)

� ë2U � ì2H ;
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and in like manner, the product of the three equations of Group IV is,

(KJ 9J 0):(K 9JI 0):(K 0II 9) � (1ÿ è2)vv9v 0U ÿ èv 0(t � 2v)2s( y ÿ z)(z ÿ x)

� ë3U � ì3H ;

where

ë2

ì2
� ÿ kt9

t � 2v

� �2

, and
ë3

ì3
� ÿ kt 0

t � 2v

� �2

:

I have veri®ed that while
ë0

ì0
and

ë1

ì1
are (as already seen, or stated) the real positive root and the

real negative root, respectively,
ë2

ì2
and

ë3

ì3
are the two imaginary roots, of the biquadratic equation,

already cited from Salmon, namely,

27ë4 ÿ 18Së2ì2 ÿ Tëì3 ÿ S2ì4 � 0:

101. The following method has occurred to me, ± but it is probably not new to you, ± of
proving that this important biquadratic has generally two roots imaginary. Write, for a moment
ë

ì
� t, and consider the function,

f(t) � 27t 3 ÿ 18St ÿ S2 tÿ1:

The derivative of this function is,

f 9(t) � 81t 2 ÿ 18S � S2 tÿ2 � (9t ÿ Stÿ1)2 . 0 unless 9t 2 � S ;

and even for such a value of t, the function would only be for a moment stationary, in its
positive progress, from

f (ÿ1) � ÿ1, to f (0ÿ) � �1;

where by 0ÿ I denote an in®nitely small but negative value; or again in its (still positive) progress,
from

f (0�) � ÿ1 to f (�1) � �1,

where 0� denotes a positive in®nitesimal. Hence, while the real variable t advances from ÿ1 to
�1, the function f (t) passes twice, but not more than twice, through any assigned and real value,
T, whether that given value be positive or negative. Consequently, the biquadratic equation,

0 � tf(t)ÿ tT , or 27t 4 ÿ 18St2 ÿ Tt ÿ S2 � 0,

has, generally, two real and unequal roots, and not more than two; it must therefore in general have
two imaginary roots; the coef®cients S and T being always supposed to be real. ± Determinants,
no doubt, might be employed, and in part I have made a veri®cation by them. ± It may be
noticed that the case f 9(t) � 0, above hinted at, will not give equal roots in the biquadratic
equation, unless we have at the same time

T � f (t) � �8S
3
2, and therefore R � 64S3 ÿ T 2 � 0:
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102. In some such way, it is probably well known that two of the four roots of that
biquadratic are generally imaginary: but there may be a chance of novelty in the form of those
four roots to which the foregoing discussion has conducted me; and which had offered
themselves also to my observation, in discussing, with a similar view, the form of U in article
86. These forms are:

ë0

ì0
� �á2;

ë1

ì1
� ÿ (á� â)2

3
;

ë2

ì2
� ÿ (á� èâ)2

3
;

ë3

ì3
� ÿ (á� è2â)2

3
;

where á and â are real quantities, of which the ®rst may be taken as positive. (As compared
with the formulñ of 100, è and è2 are here interchanged.) To test the generality of these
forms, ± which are to me quite new, ± I form the product

0 � (t ÿ 3á2)ft � (á� â)2gft � (á� èâ)2gft � (á� è2â2)g,
and ®nd it to be,

0 � t 4 ÿ 6á(á3 � â3)t 2 ÿ (8á6 ÿ 20á3â3 ÿ â6)t ÿ 3á2(á3 � â3)2;

comparing which with the biquadratic

0 � t4 ÿ 6St2 ÿ Tt ÿ 3S2, where t � 3ë

ì

� �
,

it only remains to prove that the two equations

á(á3 � â3) � S and 8á6 ÿ 20á3â3 ÿ â6 � T ,

can be jointly satis®ed by real values of á and â, whatever real values (including signs) may be
proposed for S and T: and this I conceive that I can do.

103. For this purpose I ®rst eliminate â by assuming

â � á
����������������
(ãÿ 1)3

p
which reduces the two equations to be satis®ed, to the forms:

á4ã � S ; á6(27ÿ 18ãÿ ã2) � T :

And now we see that it is suf®cient to prove that the new biquadratic equation,

(ã2 � 18ãÿ 27)2 � T 2

S3
ã3 � 0,

has at least one real root, ã, which satis®es the condition,

ã2 � 18ãÿ 27

T
, 0;

S and T having any given values, supposed at ®rst to be different from zero.

104. Consider the biquadratic curve,

(x2 � 18x ÿ 27)2 ÿ yx3 � 0;

which is easily found to give
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(x ÿ 9)2(x2 � 18x ÿ 27)ÿ y9x4 � 0,

if y9 � dy

dx
; or, slightly changing the notation,

yx � xÿ3(x ÿ x1)2(x ÿ x2)2,

y9x � xÿ4(x ÿ 9)2(x ÿ x1)(x ÿ x2),

x1 � ÿ9ÿ 6
���
3
p

, x2 � ÿ9� 6
���
3
p

:

Attributing (or conceiving as attributed) to x all real values in succession, from negative to
positive in®nity, and examining the correspondent march of y, or yx , we have,

yx , 0, y9x . 0, if x , x1;

yx , 0, y 0x , 0, if x . x1, , 0;

yx . 0, y9x , 0, if x . 0, , x2;

yx . 0, y9x . 0, if x . x2, , 9, or if x . 9;

with the following particular values:

yÿ1 � ÿ1; yx1 � 0; y0ÿ � ÿ1; y0� � �1; yx2 � 0; y9 � 64; y�1 � �1;

y9ÿ1 � �1; y9x1 � 0; y90ÿ � ÿ1; y90� � ÿ1; y9x2 � 0; y99 � 0; y9�1 � �1;

to which it may be added that not only y9x but also y 0x or
d2 y

dx2
vanishes for x � 9, so that we may

write,

y 09 � 0:

105. The curve of which the equation may be written thus,

y � x � 36� 270

x
ÿ 972

x2
� 729

x3
,

Fig. 27

243III . LETTER TO HART ON ANHARMONIC COORDINATES



and which has therefore the right line y � x � 36 for an asymptote, must consequently have a
shape somewhat like that which is sketched in ®gure 27; being below this asymptote for large
negative values of x, but above it for large positive values, and crossing it in two real and ®nitely
distant points, (x91, x91 � 36), and (x92, x92 � 36), when x91, x92 are the two roots of the quadratic,

10x92 ÿ 36x9� 27 � 0;

so that

x91 � 3

10
(6ÿ

���
6
p

), x92 � 3

10
(6�

���
6
p

)

or nearly

x91 � �1:07, x92 � �2:53;

while we had

x2 � ÿ9� 6
���
3
p
� �1:39, nearly;

so that

x2 . x91, , x92:

The curve, after leaving the above mentioned asymptote at (ÿ1, ÿ1), ascends until it comes
to touch the axis of x, at a point A � (x1, 0), when x1 � ÿ19:39, nearly; it then descends
again, until it touches the axis of y, which is another asymptote, at (0, ÿ1). But this is, in
modern Geometry, the same point as (0, �1); and accordingly there arises immediately a
new in®nite branch, which descends until it comes to touch the axis of x, at the point
B � (x2, 0), having crossed the former asymptote on its way, at a point C � (x91, 36� x91). It
then ascends for ever afterwards, crossing that asymptote FG, ± when F � (ÿ36, 0), and
G � (0, 36), ± in a point D � (x92, 36� x92), after undergoing (as it seems) an in¯exion
between B and D ; but its velocity of ascent may be said to vanish for a moment, at a point of
horizontal in¯exion, E � (9, 64).

106. The foregoing construction, of this auxiliary quartic, makes it evident, even to the eye, that
every right line, which coincides with neither the axis AB of x, nor with the parallel tangent of
in¯exion EH, but is parallel to each of those two lines, cuts the curve in two real and distinct
points, and in no more than two: so that if any real value, excepting 0 and 64, be substituted for the
ordinate y, in the biquadratic equation of article 104, namely in

0 � (x2 � 18x ÿ 27)2 ÿ yx3

that equation must have two of its roots real and unequal, and coincident points at E, and again in a
fourth real point H; and accordingly, by supposing y � 64, the biquadratic becomes,

0 � (x2 � 18x ÿ 27)2 ÿ 64x3

� (x ÿ 9)3(x ÿ 1);

so that the point H � (1, 64).

244 III . LETTER TO HART ON ANHARMONIC COORDINATES



107. Of course, it was not necessary to have thus constructed the curve, in order to deduce these
results, respecting the biquadratic equation. We might have simply considered the function yx

of article 104, and have observed that by the formula of that article,

yx increases (constantly and continuously) from ÿ1 to 0,
while x increases from ÿ1 to x1;

yx decreases (&c:) from 0 to ÿ1, while x increases from x1 to 0ÿ;
yx decreases (&c:) from �1 to 0, while x increases from 0, to x2;
yx increases (&c:) from 0 to �1, while x increases from x2 to �1;

8>>>><>>>>:
its rate of increase vanishing, however, for a moment, in the last of these four intervals, for
x � 9, y � 64. For this would have been suf®cient to prove, that if (without any reference to
geometry) we regard y as an arbitrary but real constant in the biquadratic equation in article
104, this equation in x will have the following solutions:

I. two real and unequal roots, and two imaginary roots if y _ 0, and + 64;or
II. two distinct pairs of equal and real roots, x1, x1, and x2, x2, if y � 0; or
III. four real roots, 1, 9, 9, 9, whereof the three are equal to each other if y � 64.

108. Returning now to the equations of article 103, we see that if (T 2=S3) have any given
and real value, distinct from 0 and from 64, two real and unequal values (but not more) can be
found for ã, which shall each satisfy the biquadratic equation of that article. There was
however a certain condition of inequality to be also satis®ed, if possible, by ã; and we now see
that it is possible to satisfy that condition likewise. For the preceding analysis shows that one of
the two real values of ã falls within, and that the other of those two values falls without, the
interval between the two roots of the quadratic equation,

ã2 � 18ãÿ 27 � 0;

according, then, as the given T is positive or negative, we take the former or the latter of these
two values of ã: and then, in each case, the condition in article 103,

T ÿ1(ã2 � 18ãÿ 27) , 0,

will be satis®ed. And if we make á the real and positive value of

T

27ÿ 18ãÿ ã

� �1
6

and â the real value of

á(ãÿ 1)
1
3,

we have (S=ã) � á4, and are led back to the ®nal equations of article 102, namely,

á(á3 � â3) � S , 8á6 ÿ 20á3â3 ÿ â6 � T ;

which we now see to admit of being satis®ed by one, but by only one, system of real values of á,
â, with the condition á. 0, if S, T, and R(� 64S3 ÿ T 2) are all real, and different from zero.

109. As an example of this determination of the real constants á, â, ã, when S and T are
given, let us suppose that U has the known canonical form,
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U � x3 � y3 � z3 � 6exyz,

whence (HPC, p. 183, }198)

H � e 2(x3 � y3 � z3)ÿ (1� 2e 3)xyz,

S � e 4 ÿ e, T � 1ÿ 20e 3 ÿ 8e 6:

We are then to satisfy, by real values of á, â, ã, the equations,

á4 � áâ3 � e 4 ÿ e; 8á6 ÿ 20á3â3 ÿ â6 � 1ÿ 20e 3 ÿ 8e 6; ã � á3 � â3

á3
;

for which purpose we are led to consider the resulting biquadratic,

0 � e 3(e 3 ÿ 1)3(ã2 � 18ãÿ 27)2 ÿ (8e 6 � 20e 3 ÿ 1)2ã3:

But the same biquadratic in ã would have been obtained, if the second equation to be
satis®ed had been

8á6 ÿ 20á3â3 ÿ â6 � 8e 6 � 20e 3 ÿ 1;

and in that case we might have assumed

á � e, â � ÿ1, ã � 1ÿ eÿ3;

this last value of ã must therefore be a root of the biquadratic, but a root that is to be rejected,
as answering to a wrong sign of T. Dividing then by (e 3ã� 1ÿ e 3), we are led to the cubic
equation,

0 � (e 3 ÿ 1)3ã3 ÿ 27e 3(e 6 � 16e 3 � 10)ã2 � 243e 3(e 3 ÿ 1)(e 3 ÿ 4)ãÿ 729e 3(e 3 ÿ 1)2;

which I ®nd to break up into two rational factors, one linear, namely,

0 � (e ÿ 1)3ãÿ 9e(e 2 � e � 1),

and the other quadratic, namely,

0 � (e 2 � e � 1)3ã2 ÿ 9e(e ÿ 1)(2e 4 � 4e 3 ÿ 6e 2 ÿ 8e ÿ 1)ã� 81e 2(e ÿ 1)(e 3 ÿ 1):

The roots of the quadratic factor must, by the theory, be imaginary, and are here to be set
aside. Con®ning ourselves therefore to the linear factor, we have the value,

ã � 9e(e 2 � e � 1)

(e ÿ 1)3
;

whence

(e ÿ 1)6

27
(ã2 � 18ãÿ 27) � 3e 2(e 2 � e � 1)2 � 6(e ÿ 1)3e(e 2 � e � 1)ÿ (e ÿ 1)6

� 8e 6 � 20e 3 ÿ 1 � ÿT ;

so that the condition,

T ÿ1(ã2 � 18ãÿ 27) , 0,
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of article 103, is satis®ed by this value of ã, but not by the rejected value (1ÿ eÿ3), which
would have given, if we denote that value by ã9,

T ÿ1(ã92 � 18ã9ÿ 27) � T ÿ1(ÿ8ÿ 20eÿ3 � eÿ6) � eÿ6 . 0:

Making next, by article 108,

áÿ6 � T ÿ1(27ÿ 18ãÿ ã2) � 27(e ÿ 1)ÿ6,

we infer that, since á is to be real we must take

á � e ÿ 1

� ���
3
p ;

and then by the same article,

â

á
�

�����������
ãÿ 13

p
� 2e � 1

e ÿ 1
,

so that

â � 2e � 1

� ���
3
p :

Or, taking the sign � for each radical whether e be . or , 1, (since it is not really important

whether á be positive or negative, provided that
â

á
has the proper sign,) we may write

de®nitely,

á � e ÿ 1���
3
p , â

2e � 1���
3
p ,

as suf®ciently representing, in the present example, the real system of values of á and â,
determined by the two given equations,

á4 � áâ3 � S , 8á6 ÿ 20á3â3 ÿ â6 � T ;

their satisfying which may be veri®ed by actual substitution.

110. When real constants, á and â, have in any manner been found so as to satisfy the last
two equations, for any given values of S and T, of which neither vanishes, and which are not
connected by the relation R � 0, it follows from article 102 that the biquadratic equation,

0 � 3ë

ì

� �4

ÿ 6S
3ë

ì

� �2

ÿ T
3ë

ì

� �
ÿ 3S2,

has its four roots expressible as follows:

3ë0

ì0
� �3á2;

3ë1

ì1
� ÿ(á� â)2;

3ë2

ì2
� ÿ(á� èâ)2;

3ë3

ì3
� ÿ(á� è2â)2:

In other words, the four following equations represent each a system of three right lines,
passing through the 9 points of in¯exion of U :
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I: á2U � H � 0;
II: (á� â)2U ÿ 3H � 0;
III: (á� èâ)2U ÿ 3H � 0;
IV: (á� è2â)2U ÿ 3H � 0:

8>><>>:
And from comparison of these general forms with those in articles 99, 100, and with the
corresponding forms derived from the case in article 86, where

U � k(x � y � z)3 ÿ 27xyz,

it appears that equation I, represents generally a system of one real right line, containing the three
real points of in¯exion of U, and of an imaginary or in®nitesimal conic, which is equivalent to a pair
of imaginary right lines, meeting each other in one real point (but not in a point of in¯exion,)
and containing the six imaginary points of in¯exion of the cubic curve (cf., articles 88 and 97).
On the other hand, equation II. represents generally a system of three real right lines, whereof
each passes through one real point of in¯exion and through two imaginary points of in¯exion of
U. Finally, each of the two remaining equations, III. and IV., represents a system of three
imaginary right lines, whereof each still passes through one real point, and through two
imaginary points of in¯exion.

I do not know whether the distinction, thus drawn, between the geometrical signi®cations of

the two ( positive and negative but) real roots of the biquadratic equation in
ë

ì
, which expresses the

condition necessary for ëU � ìH being a product of the three linear factors, (HPC, p. 187,
}201) has been published, or perceived by anyone.

111. To verify it for the canonical form of U in article 109, I observe that, for this form, the
equations I. and II. of article 110 become, by article 109,

I: (e ÿ 1)2U � 3H � 0; II: e 2U ÿ H � 0;

that is, here, after dividing by 4e 2 ÿ 2e � 1, and by 8e 3 � 1, respectively,

I: x3 � y3 � z3 ÿ 3xyz � 0; II: xyz � 0:

The latter is evidently a system of three real right lines, eash passing through one real point of
in¯exion. The form may be written thus;

I: (x � y � z)(x � è2 y � èz)(x � èy � è2z) � 0;

or,

I: (x � y � z)(x2 � y2 � z2 ÿ yz ÿ zx ÿ xy) � 0;

it consists therefore of one real right line, passing through the three real points of in¯exion, and
of an imaginary conic through the six other points. All which agrees with the general theory
enunciated in article 110.

112. We may as well verify equations III. and IV. of that article, by means of the same
canonical form of U. It is easily found that the values in article 109 of á and â in terms of e,
give

ÿ(á� èâ)2 � (e ÿ è2)2, ÿ(á� è2â)2 � (e ÿ è)2;

248 III . LETTER TO HART ON ANHARMONIC COORDINATES



the two remaining but imaginary systems of right lines are therefore here,

III: 0 � (e ÿ è2)2U � 3H ; IV: 0 � (e ÿ è)2U � 3H :

Accordingly, there is no dif®culty in seeing that

(e ÿ è2)2U � 3H

4e 2 ÿ 2è2e � è
� x3 � y3 � z3 ÿ 3è2xyz,

and that

(e ÿ è)2U � 3H

4e 2 ÿ 2è2e � è2
� x3 � y3 � z3 ÿ 3èxyz;

so that these two remaining systems are,

III: 0 � (x � èy � èz)(x � è2 y � z)(x � y � è2z),

and

IV: 0 � (x � è2 y � è2z)(x � èy � z)(x � y � èz):

And in fact, if we denote the nine points of in¯exion (for the canonical U), as follows:

K 9 � (0, 1, ÿ1), I 9 � (0, 1, ÿè), J 9 � (0, 1, ÿè2),

K 0 � (ÿ1, 0, 1), I 0 � (ÿè, 0, 1), J 0 � (ÿè2, 0, 1),

K - � (1, ÿ1, 0), I - � (1, ÿè, 0), J - � (1, ÿè2, 0),

8>><>>:
we ®nd twelve formulñ of collineation between them, which may be brie¯y written thus, on
nearly the same plane as in article 99:

I: (K 9K 0K -) � x � y � z; (I 9I 0I -) � x � è2 y � èz; ( J 9J 0J -) � x � èy � è2z;

II: (K 9I 9J 9) � x; (K 0I 0J 0) � y; (K -I -J -) � z;

III: (K 9I 0J -) � x � è y � èz; (K 0J 9I -) � x � è2 y � z; (K -I 9J 0) � x � y � è2z;

IV: (K 9J 0I -) � x � è2 y � è2z; (K 0I 9J -) � x � èy � z; (K -J 9I -) � x � y � èz:

8>>>>><>>>>>:
113. Suppose that in this, or in some other way, we had found that for the canonical form

of U in article 109, the biquadratic in
3ë

ì
, or t, becomes,

0 � t 4 ÿ 6St 2 ÿ Tt ÿ 3S2

� t 4 ÿ 6(e 4 ÿ e)t 2 � (8e 6 � 20e 3 ÿ 1)t ÿ 3(e 4 ÿ e)2

� (t � 3e 2)ft ÿ (e ÿ 1)2gft ÿ (e ÿ è)2gft ÿ (e ÿ è2)2g,
without any previous knowledge of the values of á and â; we might have proceeded to ®nd
(instead of using) those values, by comparing this last equation with the corresponding
equation of article 102,

0 � (t ÿ 3á2)ft � (á� â)2gft � (á� èâ)2gft � (á� è2â)2g:
Thus we should have,
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3á2 � (e ÿ 1)2; (á� â)2 � 3á2;

and either

(á� èâ)2 � ÿ(e ÿ è)2,

or

(á� èâ)2 � ÿ(e ÿ è2)2;

but a little examination would show that the latter alternative was to be adopted, and would
conduct to the same values as in article 109, namely,

á � e ÿ 1���
3
p , â � 2e � 1���

3
p :

114. Again, if we start with the following modi®cation of the form in article 86,

U � (c3 ÿ 1)(x � y � z)3 � 27xyz,

which gives

27U � 4H � 108(c3 ÿ 1)(x3 � y3 � z3 ÿ 3xyz),

we have the 9 following points of in¯exion:

K 9� (0, 1, ÿ1), K 0� (ÿ1, 0, 1), K -� (1, ÿ1, 0);
I 9� (c ÿ 1, èc ÿ 1, è2cÿ 1), I 0� (è2cÿ 1, c ÿ 1, ècÿ 1), I -� (ècÿ 1, è2cÿ 1, c ÿ 1);
J 9� (c ÿ 1, è2c ÿ 1, ècÿ 1), J 0� (ècÿ 1, c ÿ 1, è2cÿ 1), J -� (è2cÿ 1, ècÿ 1, c ÿ 1);

8<:
with the 4 groups of right lines (s being equal to x � y � z):

I: (K 9K 0K -)� x� y� z, (I 9I 0I -)� x � èy� è2z, ( J 9J 0J -)� x � è2 y� èz,
II: (K 9I 9J 9)� 3x� (c ÿ 1)s, (K 0I 0J 0)� 3 y� (c ÿ 1)s, (K -I -J -)� 3z� (c ÿ 1)s;
III: (K 9I -J 0)� 3x � (ècÿ 1)s, (K 0I 9J -)� 3 y� (ècÿ 1)s, (K -I 0J 9)� 3z� (èc ÿ 1)s;
IV: (K 9I 0J -)� 3x � (è2cÿ 1)s, (K 0I -J 9)� 3 y� (è2c ÿ 1)s, (K -I 9J 0)� 3z� (è2cÿ 1)s;

8>><>>:
and the four products:

I: K 9K 0K -:I 9I 0I -:J 9J 0J - � 27U � 4H

108(c3 ÿ 1)
;

II: K 9I 9J 9:K 0I 0J 0:K -I -J - � 9(2c � 1)2U ÿ 4H

36(c2 � c � 1)
;

III: K 9I 0J 0:K 0I 9J -:K -I 0J 9 � 9(2èc � 1)2U ÿ 4H

36(è2c2 � èc � 1)
;

IV: K 9I 0J -:K 0I -J 9:K -I 9J 0 � 9(2è2c � 1)2U ÿ 4H

36(èc2 � è2c � 1)
:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
The four values of

ë

ì
are, therefore, in this Example,

ë0

ì0
� � 27

4
;

ë1

ì1
� ÿ 9

4
(2c � 1)2;

ë2

ì2
� ÿ 9

4
(2èc � 1)2;

ë3

ì3
� ÿ 9

4
(2è2c � 1)2;
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and we have thus a veri®cation (above alluded to) of the Theorem of article 110; for we see

that the real and positive value of
ë

ì
answers here again (as in the cases before considered) to a

system of one real and two imaginary right lines, whereof the former connects the three real points
of in¯exion, while the latter pass through the six imaginary points; and that, on the other

hand, the real and negative value of
ë

ì
corresponds (in this, as in other instances) to a system of

three real right lines, whereof each passes through one real point of in¯exion, and through two
imaginary points . (± Have you elsewhere met with this distinction, of article 110, between the

geometrical signi®cations of the two real roots of the biquadratic
ë

ì
?).

115. Comparing the recent values of the four roots of that biquadratic, with the forms in
article 102, namely with

ë0

ì0
� á2,

ë1

ì1
� ÿ 1

3
(á� â)2,

ë2

ì2
� ÿ 1

3
(á� èâ)2,

ë3

ì3
� ÿ 1

3
(á� è2â)2,

we see that, in the present Example,

á � 3
���
3
p

2
, â � 3

���
3
p

:c;

whence (by the cited article),

S � á(á3 � â3) � 2ÿ436(1� 8c3);

T � 8á6 ÿ 20á3â3 ÿ â6 � 2ÿ339(1ÿ 20c3 ÿ 8c6):

Accordingly, if we take the form,

U � á(x � y � z)3 � 6(d ÿ a)xyz,

and seek the values of S and T in terms of a and d, by the general formula of HPC (p. 184,
}199) after correcting the signs of the last groups of terms in S, in conformity with the remark
made in the Note� to page 113 of the ``Lessons'' on ``Modern Higher Algebra'', ± which
remark I may be excused for saying that I made for myself in 1857, while engaged in a
correspondence, chie¯y on Quaternions, with our friend Salmon, who appeared to be a little
surprised at the time, and to have supposed that nobody but Cayleyy would have detected the
necessity of the correction, ± but since the summer of that year, until quite recently, I have
not been thinking of Cubics at all, ± we ®nd,

S � d4 ÿ 6a2d2 � 8a3d ÿ 3a4 � (d ÿ a)3f(d ÿ a)� 4ag;
T � ÿ8(d ÿ a)4(d2 � 4ad � a2) � ÿ8(d ÿ a)4f(d ÿ a)2 � 6a(d ÿ a)� 6a2g:

Making then, more particularly,

U � a(x � y � z)3 � 27xyz, d ÿ a � 9

2
,

� [Salmon G., Lessons introductory to the Modern Higher Algebra, p. 113, 1st edn. Hodges Smith: Dublin
1859, referred to hereinafter as LHA.]
y [Arthur Cayley, 1821±1895.]
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we have

4S � 27

2

� �2

(9� 8a), T � ÿ 27

2

� �3

(27� 36a � 8a2):

And if we ®nally write (c3ÿ1) instead of a, we obtain,

4S � 27

2

� �2

(1� 8c3), T � 27

2

� �3

(1ÿ 20c3 ÿ 8c6);

values agreeing perfectly with those found above, by a totally different method, with the
assistance of the two constants, á, and â: which if not really new, are at least such to me.

116. I shall employ those new (or supposed new) constants, á, â, to assist in resolving the
following Problem:-

``To assign the coef®cients, a and d, of the Canonical Form of the Cubic, thus written,

U � a(x3 � y3 � z3)� 6dxyz,

in terms of the constant c, so as to make the S and T of this form coincide, respectively, with
the S and T of the form in article 114, namely,

U � (c3 ÿ 1)(x � y � z)3 � 27xyz:''

In other words, we are to assign real values of a and d, which shall satisfy, the two algebraic
equations, (cf. HPC, p. 183, }198, and the last article, 409, of the present Letter,)

(S �) d4 ÿ a3d � 2ÿ436(1� 8c3);

(T �) a6 ÿ 20a3d3 ÿ 8d6 � 2ÿ339(1ÿ 20c3 ÿ 8c6);

c being still supposed to have a real value.

117. For this purpose I observe that the second form of U in article 115, gives
â

á
� 2c; and

that the second form gives, by the results of article 109,

â

á
� 2e � 1

e ÿ 1
,

where e � d

a
; comparing, therefore, we have the equation

2c � â

á
�

� �
2d � a

d ÿ a
;

where

d � (2c � 1)a

2(c ÿ 1)
:

Substituting this value for d, in the two last equations of article 116, and observing that

(2c � 1)4 ÿ 8(c ÿ 1)3(2c � 1) � 9(1� 8c3),

and
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8(c ÿ 1)6 ÿ 20(c ÿ 1)3(2c � 1)3 ÿ (2c � 1)6 � 27(1ÿ 20c3 ÿ 8c6)

we ®nd that these equations become,

a4 � 34(c ÿ 1)4, a6 � 36(c ÿ 1)6;

they are therefore both satis®ed by our supposing

a � 3(c ÿ 1), d � 3(c � 1
2),

although of course the signs of both a and d may be changed together.
Hence ``the function,

U � 3(c ÿ 1)(x3 � y3 � z3)� 9(2c � 1)xyz,

which may also be thus written,

U � 3(c ÿ 1)ss9s 0� 27cxyz,

where

s � x � y � z, s9 � x � èy � è2z, s 0 � x � è2 y � èz,

while c is still an arbitrary constant, has the same S, and the same T, namely,

S � 2ÿ436(1� 8c3), and T � 2ÿ339(1ÿ 20c3 ÿ 8c6),

as the function U � (c3 ÿ 1)s3 � 27xyz'', or more fully,

U � (c3 ÿ 1)(x � y � z)3 � 27xyz:

and the Problem of article 116 has been resolved.

118. Whatever values the constants á and â may have, the expressions in article 102 for S
and T, in terms of those constants, may easily be decomposed into linear factors, as follows.
First, we have evidently,

S � á(á3 � â3) � á(á� â)(á� èâ)(á� è2â);

or brie¯y,

S � áÐé(á� éâ),

where é is any cube root of �1, and

Ðé f (é) � f (1) f (è) f (è2):

Secondly, if we resolve the equation T � 0, as a quadratic in
8á3

â3
, we get the two roots,

8á3

â3
� 10�

��������
108
p

� (1�
���
3
p

)3;

writing therefore

á1 � 1ÿ ���
3
p

2
, á2 � 1� ���

3
p

2
,

we have
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T � 8á6 ÿ 20á3â3 ÿ â6 � 8(á3 ÿ á3
1â

3)(á3 ÿ á3
2â

3)

� 8(áÿ á1â)(áÿ èá1â)(áÿ è2á1â)(áÿ á2â)(áÿ èá2â)(áÿ è2á2â)

� 8Ðé(áÿ éá1â)(áÿ éá2â);

and the required decomposition has been effected.

119. Since

2(áÿ éá1â)(áÿ éá2â) � 2á2 ÿ 2éáâ ÿ é2â2,

we have

T 2 � Ðé(2á2 ÿ 2éáâ ÿ é2â2)2 � Ðé(4S ÿ éB) � 64S3 ÿ B3,

where

B � â(8á3 ÿ â3);

but the known

R � 64S3 ÿ T 2;

we have therefore ����
R3
p
� â(8á3 ÿ â3) � âÐé(2áÿ éâ):

Thus, making á � (3=2)
���
3
p

, â � (3
���
3
p

)c, as in article 115, we have, for each of the two
functions U of article 117, the common value,

R � 36c(1ÿ c3):

120. Let us now apply a similar analysis to the solution of this other Problem:-
``To assign real values of the coef®cients g and h, in the form

U � 9(gs3 � hzp),

where (as in article 92)

s � x � y � z, and p � x2 � xy � y2,

so that the resulting S and T may have the recent values (in articles 115, 116, 117),

S � 1

4

27

2

� �2

(1� 8c3), and T � 27

2

� �3

(1ÿ 20c3 ÿ 8c6):''

In other words (cf. article 92) we are to ®nd two real, and if possible rational functions, g and
h, of the real constant c, which shall satisfy the two algebraic equations

h3(h � 8g) � 1� 8c3 h4(h2 � 12gh � 24g 2) � 1ÿ 20c3 ÿ 8c6:

121. To solve this problem on the same general plan as before, I compare (after inter-
changing è and è2, as remarked in article 102) the expressions of article 100 for the four

roots of the biquadratic in
ë

ì

� �
, namely,
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ë0

ì0
� 3k2 t 2

(t � 2v)2
,

ë1

ì1
� ÿk2,

ë2

ì2
� ÿk2 t � 2èv

t � 2v

� �2

,
ë3

ì3
� ÿk2 t � 2è2v

t � 2v

� �2

,

in which k � h

6g

� �
, and

v

t

� �
is the real root of the cubic equation

U t,v,v � 0,

if U x, y,z be written for U, with the general forms of article 102,

ë0

ì0
� á2,

ë1

ì1
� ÿ 1

3
(á� â)2,

ë2

ì2
� ÿ 1

3
(á� èâ)2,

ë3

ì3
� ÿ 1

3
(á� è2â)2;

and thus obtain, for the present form of U, the following values of the constants á and â:

á � kt
���
3
p

t � 2v
; â � 2kv

���
3
p

t � 2v
:

Comparing these with the values of article 115, namely

á � 3
���
3
p

2
, â � 3c

���
3
p

,

we ®nd that we are to make

2kt

t � 2v
� 3,

2kv

t � 2v
� 3c;

and therefore v � ct; so that the constants of U must be such as to allow the equation

U1,c,c � 0

to subsist, and therefore we must have

h

g
� ÿ (1� 2c)3

c(1� c � c2)
, or

g

h
� ÿ c(1� c � c2)

(1� 2c)3
:

But we have, identically,

(1� 2c)3 ÿ 8c(1� c � c2) � 1ÿ 2c � 4c2 � 1� 8c3

1� 2c
;

and

(1� 2c)6 ÿ 12c(1� c � c2)(1� 2c)3 � 24c2(1� c � c2)2 � 1ÿ 20c3 ÿ 8c6;

the two last equations of article 120 become, therefore

h4 � (1� 2c)4, h6 � (1� 2c)6,

and agree in giving h2 � (1� 2c)2. We may then take, as the solution of the problem of
article 120, the values,

h � ÿ(1� 2c), g � c(1� c � c2)

(1� 2c)2
,

giving

255III . LETTER TO HART ON ANHARMONIC COORDINATES



U � 9c(1� c � c2)

(1� 2c)2
s3 ÿ 9(1� 2c)zp;

although, no doubt, the signs of g, h, U might all be changed together.

122. Collecting recent results, we see that the three following distinct forms of the cubic
function, namely,

I: U � 3(c ÿ 1)ss9s 0� 27cxyz;
II: U � (c3 ÿ 1)s3 � 27xyz;
III: U � 9c(1� c � c2)(1� 2c)ÿ2s3 ÿ 9(1� 2c)zp,

8<:
(in which we still employ the abridgments,

s � x � y � z, s9 � x � èy � è2z, s 0 � x � è2 y � èz, and p � x2 � xy � z2,

while c is still an arbitrary constant,) have all the same values of S, T, and of course R : since,
for each of these three functions, we have the expressions,

4S � 27

2

� �2

(1� 8c3); T � 27

2

� �3

(1ÿ 20c3 ÿ 8c6);
����
R3
p
� 36c(1ÿ c3);

which can all, by article 118, be decomposed into linear factors. Thus, in the notation of the
last cited article, we may write,

s � 2ÿ436Ðé(1� 2éc); T � ÿ39Ðé(á1 � éc)(á2 � éc);
����
R3
p
� 36cÐé(1ÿ éc):

123. A few words may here be said, on those particular cases (S � 0, T � 0, R � 0), which
in several of the preceding articles we have set aside, when deducing the values of the
constants á, â which answered to given values of S and T.

I. The case S � 0, T . 0, or , 0, presents no special dif®culty. We have only to consider

the ordinate, y � T 2

S3

� �
, of the biquadratic curve in Figure 27, as here becoming infinite ; and

therefore (by the nature of that curve) as corresponding either to an in®nite, or to a null value
of the abscissa, x � ã. The former supposition gives á � 0, and the latter gives á � ÿâ; with
each, therefore, we satisfy, by article 102, the proposed condition S � 0. But á � 0 gives
T � ÿâ6 , 0, while á � ÿâ gives T � �27â6 . 0; the distinction between the two real values of
ã, or between the two real points in which the curve in article 104 is cut by a given parallel to
the axis of x, depends therefore still, as in the general method or process of article 108, on the
given sign of T. Thus,

(1) if S � 0, T , 0, we take á � 0, â � (ÿT )
1
6; but

(2) if S � 0, T . 0, we then take á � ÿâ � ÿ T

27

� �1
6

.

124. In the ®rst subcase, the biquadratic in
ë

ì

� �
becomes,

0 � 27
ë

ì

� �4

� â6 ë

ì
,
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and its roots may be thus expressed,

ë0

ì0
� 0,

ë1

ì1
� ÿ â2

3
,

ë2

ì2
� ÿ (èâ)2

3
,

ë3

ì3
� ÿ (è2â)2

3
;

in the second subcase, the biquadratic is

0 � ë

ì

� �4

ÿ â6 ë

ì

� �
,

and because

è � ÿ1
3(èÿ 1)2, and è2 � ÿ1

3(è
2 ÿ 1)2,

its roots may be written thus,

ë0

ì0
� â2,

ë1

ì1
� 0,

ë2

ì2
� ÿ1

3(èâÿ â)2,
ë3

ì3
� ÿ1

3(è
2âÿ â)2;

but, in each of these two subcases, the expressions for the four roots agree perfectly with the
general forms of article 102. We can also verify here our general Theorem of article 110,
respecting the geometrical distinction between the two real roots of the biquadratic equation in
ë

ì

� �
. For we must evidently consider the null root, in subcase (1), as the limit of the positive

root; but in subcase (2), as the limit of the negative root. The theorem to which we refer leads
us therefore to conclude, that when S � 0, and T , 0, the Hessian H is the product of one real
linear factor, and of two imaginary ones; but that when S � 0, T . 0, H is, on the contrary, a
product of linear factors, which are all three real. Now this pair of contrasted conclusions
agrees precisely with what might have been otherwise inferred, from the principles of
Salmon's book, on Higher Plane Curves. For he remarks (HPC, p. 184), that S � 0 is the
condition for the Hessian H breaking up into three right lines; and also that, if we set aside the
case when U itself so breaks up, the equation S � 0 expresses also the condition for the given
equation U � 0 being reducible to a sum of three cubes. Now there are two ways, and there seem
to be only two, in which this last property can hold good; the given coef®cients of the equation
being always supposed to be real: namely, the cubes may be all three real, or two of them may be
imaginary. But the former of these two alternatives answers to the form,

U � a3x3 � b3 y3 � c3z3;

which gives (cf. HPC, p. 183),

S � 0, T � a6b6c6 . 0, H � ÿa3b3c3xyz;

it belongs therefore to our recent subcase (2), and accordingly we see that the three linear
factors of the Hessian are all real here : as was above expected, from the general Theorem in
article 110 of the present Letter. On the other hand, if we take, in conformity with the latter
alternative, respecting the composition of U,

U � a3x3 � b3 y3 � c3z3 � 6abcxyz,

so that
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3U � (ax � by � cz)3 � (ax � èby � è2cz)3 � (ax � è2by � ècz)3,

we have still S � 0, but we have now T � ÿ27a6b6c6 , 0; we are therefore here in the subcase
(1) of the present article, and accordingly we ®nd (by the last cited page),

H � a2b2c2(a3x3 � b3 y3 � c3z3 ÿ 3abcxyz)

� a2b2c2(ax � by � cz)(ax � èby � è2cz)(ax � è2by � ècz);

two linear factors of H are therefore here imaginary, as by the general theorem of this Letter,
above referred to, they ought to be.

125. Let us next consider brie¯y the case,

II. T � 0, S . 0, or , 0. In this case, the ordinate y � T 2

S3

� �
of the auxiliary quartic

constructed in Figure 27, becomes equal to zero, instead of in®nity; and because the axis of x
has double contact with that curve, the abscissa x � ã has four real values, equal however two
by two, namely those which were denoted in article 107 by x1, x1, and x2, x2; where, article
104,

x1 � ÿ9ÿ 6
���
3
p

, x2 � ÿ9� 6
���
3
p

,

so that these two distinct and real values of x, or of ã, are the two roots, one negative and the
other positive, of the quadratic equation,

ã2 � 18ãÿ 27 � 0:

But both these values of ã give T � 0; they cannot therefore be here distinguished, or separated,
by any reference to the sign of T, which reference has hitherto been our resource. Fortunately,
however, a new resource, which had not been previously available, starts up here, exactly when
it is wanted. In general, any parallel to the axis of x cuts the curve of Figure 27 in two distinct and
real points, which are at one common side of the axis of y; so that they give one common sign to the
abscissa ã, and therefore also to S � á4ã (see article 103). The sign of S is therefore generally
useless, for any purpose of separation between the two real roots ã, of the biquadratic equation of
article 103; and in fact, without thinking of any curve, the cited equation, namely,

0 � (ã2 � 18ãÿ 27)2 ÿ T 2

S3
ã,

shows immediately that, if
T 2

S3

� �
. 0, or , 0, each real root ã must have the same sign as S. Nor

could we, from this biquadratic alone, assign any reason for preferring one root to another, of this
quadratic equation above written. But neither could we, in former cases, consider one real
root of the biquadratic as deserving any preference to the other, until we went back to the
equations involving á and â, from which the equation in ã was a result. In the present case,
the two points of contact, of the curve with the axis of x, are at opposite sides of the axis of y; they give,
therefore, opposite signs to ã, and consequently to S: which corresponds analytically to the
negative product of the two roots of the quadratic.

The sign of S is therefore useful, and in fact decisive, here, as regards the choice of the root ã.
Accordingly, we now have the two subcases:
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(1) if T � 0, S , 0, then ã � ÿ9ÿ 6
���
3
p

;
(2) if T � 0, S . 0, then ã � ÿ9� 6

���
3
p

.

In the ®rst subcase, the formula of article 103,

â � á
�����������
ãÿ 13

p
,

gives â � ÿá(1� ���
3
p

); in the second subcase, â � ÿá(1ÿ ���
3
p

).
And because in each we have, by article 103, á4ã � S , we may write de®nitely,

(1) if T � 0, S , 0, then

á � ÿS

9� 6
���
3
p

� �1
4

, â � ÿ(1�
���
3
p

)á;

but
(2) if T � 0, S . 0, then

á � �S

ÿ9� 6
���
3
p

� �1
4

, â � ÿ(1ÿ
���
3
p

)á:

126. These values give, by the general formulñ of article 102,

ë0

ì0
� ÿ ë1

ì1
� 1

3
[(3� 2

���
3
p

)S]
1
2,

ë2

ì2
� ÿ ë3

ì3
� 1

3
[(3� 2

���
3
p

)S]
1
2;

8>>><>>>:
the upper signs being taken when S , 0, and the lower signs when S . 0. Hence for each of

these two subcases,
ë

ì

� �
must be a root of the equation,

3ë

ì

� �2

ÿ 3S

 !2

� 12S2;

and accordingly, under the form

27ë4 ÿ 18Së2ì2 ÿ S2ì4 � 0,

this is precisely what the general equation, already cited (HPC, p. 187) namely

27ë4 ÿ 18Së2ì2 ÿ Tëì3 ÿ S2ì4 � 0,

becomes for the case T � 0.

127. If we write a new modi®cation of the known canonical form of U,

U � ss9s 0� 3åxyz,

where s, s9, s0 denote the same three linear functions as in articles 117 or 122, and å is a new
arbitrary constant, then it is not dif®cult to prove that

4H � (åÿ 1)2ss9s 0ÿ (åÿ 3)2åxyz;
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also

16S � (åÿ 1)(åÿ 3)(å2 � 3),

and

8T � (3ÿ å2)f(3ÿ 3å� å2)2 � 3å2g:
The only real values of å, which render T � 0, are therefore å � � ���

3
p

, and å � ÿ ���
3
p

; whereof
the ®rst gives S , 0, but the second gives S . 0. Hence, for these values of å, we have the
particular forms,

U � ss9s 0� 3
���
3
p

xyz, (å� 1)2 H � ss9s 0� 2
���
3
p

xyz;

the upper signs answering to the ®rst subcase, and the lower signs to the second subcase, in
article 119. We thus con®rm, then, the known theorem (HPC, p. 184), that when T � 0, the
second� Hessian is the original curve ; since a second change of sign of the radical

���
3
p

would
bring us here from H to U again. And whether T be, or be not, thus equal to zero, we see that

(åÿ 3)2U � 12H � f(åÿ 3)2 � 3(åÿ 1)2gss9s 0;

(åÿ 1)2U ÿ 4H � f(åÿ 3)2 � 3(åÿ 1)2gåxyz;

so that we thus obtain a new veri®cation of the ( perhaps new) theorem of article 110, that ``if
ëU � ìH be a product of three linear factors, the coef®cients ë and ì being real, then
according as these two coef®cients agree or differ in sign, either (1) two of the factors are
imaginary, (as here s9, s 0,) or else (2) all the three factors (as here x, y, z) are real ''. ± By

changing å to � ���
3
p

, we must recover the real values (article 126) of
ë

ì
for the two subcases of

article 119 under the forms

ë0

ì0
� ÿ ë1

ì1
� (åÿ 1)2

4
� 2� ���

3
p

2
;

and accordingly we have, (for å � � ���
3
p

,)

S � 3

4
(3ÿ 2å) � 3

4
(3� 2

���
3
p

),

and

(3� 2
���
3
p

)2 � 3(2�
���
3
p

)2,

so that

1

3
((3� 2

���
3
p

)S)
1
2 � 2� ���

3
p

2
:

128. Another important though only particular case is the following
III. R � 0, T . 0, or T , 0; whence also S . 0.

In this case, the ordinate of the auxiliary quartic of article 104 is y � T 2

S3
� 64; we are

therefore led to consider, as at the end of article 106, that particular parallel, EH, to the axis

� The word ``second'' has dropped out of the cited page, but the context leaves no ambiguity.
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of x, which is the horizontal tangent (see Figure 27) of in¯exion at the point E, and which
therefore meets the curve in three coincident points there, cutting it again at the point H :
where

E � (9, 64), and H � (1, 64):

In other words, (as in articles 106 and 107) the biquadratic which determines the abscissñ x,
or ã, answering to the ordinate y � 64, is

0 � (x ÿ 9)3(x ÿ 1);

its roots are, therefore, all real, but three of them are equal; and they are

1, 9, 9, 9:

The distinction, between the two real and distinct values of the abscissa, comes again to depend
on the sign of T, but not on that of S, which is here given. In the Figure the two intersections E,
H, of the above mentioned tangent of in¯exion with the quartic curve, are both at one common
side of the axis of y; but they are separated by the parallel to that axis of which the equation is
ã � x � x2 � ÿ9� 6

���
3
p

; namely by the ordinate at the point b, at which (for the second time)
the function T vanishes. Accordingly, the formulñ of article 103,

S � á4ã, T � á6(27ÿ 18ãÿ ã2),

give

S � 9á4, T � ÿ216á6, R � 64S3 ÿ T 2 � (3426 ÿ (3223)2)á12 � 0,

for the point of in¯exion E; but

S � á4, T � 8á6, R � 0,

for the other point of intersection H. Combining therefore these last results with the formula

â � á
�����������
ãÿ 13

p
of article 103, we ®nd the following values of á and â, for the subcases of III:

(1) if R � 0, T , 0, then

á � (ÿT )
1
6���

6
p , â � 2á;

(2) if R � 0, T . 0, then

á � T
1
6���
2
p , â � 0:

129. If we proceed to calculate hence the value of
ë

ì

� �
, by the general formulñ of article

102, applied to the recent subcase (1), we ®nd for that subcase,

ë0

ì0
� á2 � 1

6

��������
ÿT3
p

;
ë1

ì1
� ÿ1

3(á� â)2 � ÿ3á2 � ÿ1
2

��������
ÿT3
p

:

These are the two roots which are generally real, the ®rst being generally positive, and the second
generally negative, although as a limit (cf. article 124) we have found examples of one or the
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other vanishing. The two other roots of the biquadratic in
ë

ì

� �
have been seen, in article 101,

to be generally imaginary; but in the present instance they are both real, being also equal to each

other, and to the positive root
ë0

ì0

� �
. For the formulñ of article 102 give now,

ë2

ì2
� ÿ1

3(á� èâ)2 � ÿá2

3
(1� 2è)2 � �á2 � 1

6

��������
ÿT3
p

;

ë3

ì3
� ÿ1

3(á� è2â)2 � ÿá2

3
(1� 2è2)2 � �á2 � 1

6

��������
ÿT3
p

:

The four roots
ë

ì

� �
have therefore been assigned for the subcase (1) of III.; that is, for

R � 0, T , 0; and we see that three of them are equal, and positive; while the fourth (or rather
the second, in the foregoing order of enumeration) is negative, being equal to the negative triple
of each of the other three; so that (as always) the sum of the four roots is zero.

130. In the subcase (2), R � 0, T . 0, the same general formulñ of article 102 give, by
article 128,

ë0

ì0
� á2 � 1

2

����
T3
p

;
ë1

ì1
� ÿ1

3(á� â)2 � ÿá
2

3
� 1

6

����
T3
p

;

ë2

ì2
� ÿ1

3(á� èâ)2 � ÿá2

3
;

ë3

ì3
� ÿ1

3(á� è2â)2 � ÿá2

3
;

so that here the two latter roots, which are generally imaginary, become real, and equal each to
the negative root of the equation. Whether we suppose T to be less than, or greater than, zero,
we see that in each subcase the biquadratic must admit of being written thus:

0 � ë

ì
ÿ 1

2
T

1
3

� �
ë

ì
� 1

6
T

1
3

� �3

� ë

ì

� �4

ÿ 1

6
T

2
3

ë

ì

� �2

ÿ 1

27
T
ë

ì
ÿ 1

432
T

4
3

� ë

ì

� �4

ÿ 2

3
S

ë

ì

� �2

ÿ 1

27
T
ë

ì
ÿ 1

27
S2,

because R � 0 gives T
2
3 � 4S ; and accordingly this last form agrees with that which is given by

Salmon.

131. The distinction between the two subcases of article 128 may be illustrated by the
following Example. Let the three coef®cients c1, c2, c3 vanish, in Salmon's general form
(HPC, p. 99) for the cubic function U; that function then becomes,

U � a1x3 � 3a2x2 y � 3b1xy2 � b2 y3 � 3z(a3x2 � 2dxy � b3 y2):

At the same time, the general formulñ for S and T, ± the correction of signs in the ®rst (cf.
article 115 of this Letter) not coming here into play, ± become,
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S � (d2 ÿ a3b3)2, T � ÿ8(d2 ÿ a3b3)3;

so that the condition T 2 � 64S3, or R � 0, is satis®ed. And we see that we have the ®rst or
the second subcase of article 128, T , 0 or T . 0, according as (d2 ÿ a3b3) . 0, or , 0; that is,
according as the quadratic,

a3x2 � 2dxy � b3 y2 � 0,

has real or imaginary roots; or ®nally, according as the point (0, 0, 1), ± which is called by
Salmon (but not always by me) the origin, ± is a node, or a conjugate point, of the cubic curve,
U � 0: the two tangents to that curve, at that point, being real if T , 0, but imaginary if T . 0.

132. No essential generality is lost, when we suppose for simplicity that d � 0; which gives
S � a3

2b3
2, T � 8a3

3b3
3; the distinction between the two cases, T , 0, and T . 0, being now

simply this, that the coef®cients of the two terms of a3x2 � b3 y2, whereby 3z is the multiplier
in U, have opposite signs in the ®rst subcase (namely for a node), but have similar signs in the
second subcase (namely, when there is a conjugate point). But when we thus make c1, c2, c3,
and d all vanish, the expressions (HPC, p. 182) for the coef®cients of the Hessian become:

a1 � b1a2
3; b2 � a2b2

3; c3 � 0; 3a2 � a3(a3b2 ÿ 2a2b3); 3b1 � b3(b3a1 ÿ 2a3b1);

3a3 � a2
3b3; 3c1 � 0; 3b3 � a3b2

3; 3c2 � 0; 6d � 0;

so that

H � b1a2
3x3 � a3(a3b2 ÿ 2a2b3)x2 y � b3(b3a1 ÿ 2b1a3)xy2 � a2b2

3 y3 � a3b3(a3x2 � b3 y2)z:

At the same time, in the ®rst subcase, T , 0, we have by article 129,

ë0

ì0
� ë2

ì2
� ë3

ì3
� ÿ1

3a3b3;
ë1

ì1
� a3b3;

but in the second subcase, T . 0, we have, by article 130,

ë0

ì0
� a3b3;

ë1

ì1
� ë2

ì2
� ë3

ì3
� ÿ1

3a3b3:

Whichever sign T may have, we ought therefore to ®nd that the two combinations,
a3b3U ÿ 3H , and a3b3U � H , are products of three linear factors; and the Theorem of
article 110 leads us to expect, that if a3b3 , 0, T , 0, the ®rst of these combinations should
have only one real factor, while the second should have all its three factors real ; but that, on the
contrary, if a3b3 . 0, T . 0, then the three factors of a3b3U ÿ 3H should all be real, whereas
two of the factors of a3b3U � H should here become imaginary.

133. It did not, however, seem to me easy, at ®rst sight, to verify this expectation, without
any restriction being laid upon the constants, a1, a2, b1, b2, which enter into U and H, but not
into S, nor into T; except that the given coef®cients, to which these constants belong, are always
supposed to be real (see article 124). And I was even inclined to console myself, for what I
thought might turn out to be a failure of the general theorem of article 110, in this singular case
(or case of singularity), R � 0, by observing that because S and T thus take no cognizance (here)
of the four constants a1, a2, b1, b2, ± attending, as it were, only to the immediate neighbourhood of
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the singular point, whether nodal or conjugate, ± therefore, perhaps, that theorem could not
fairly be required to extend to this case since it was established on a study of the relations generally

existing, between the roots
ë

ì

� �
, and the constants S and T, without any other constants being

supposed to be given; although I had found it convenient to introduce two auxiliary constants,
á and â, which have been proved (articles 102 to 108) to be real functions of S and T, and have
largely ®gured in several recent articles of this Letter. But happily I soon ascertained, as
follows, that this species of consolation was unnecessary: the Theorem still holding good,
without any exception or modi®cation whatever.

134. Writing the ®rst combination of article 132 as follows:

a3b3U ÿ 3H � Ax3 � 3Bx2 y � 3Cxy2 � Dy3,

where

A � a3(a1b3 ÿ 3a3b1), B � ÿa3(a3b2 ÿ 3a2b3),

D � b3(a3b2 ÿ 3a2b3), C � ÿb3(a1b3 ÿ 3a3b1),

we see at once that this combination is a product of some three linear factors, because z has
been eliminated; but it is not obvious whether all are real, or two imaginary. Calculating,
however, the discriminant,

Ä � (AD ÿ BC)2 ÿ 4(B2 ÿ AC)(C2 ÿ BD),

which is greater than zero if there be two imaginary roots, but less than zero if all three be
real and unequal, (cf. HPC, p. 296,) we ®nd that

AD ÿ BC � 0;

a2
3(B2 ÿ AC) � a3(a3 B2 � b3 A2), a2

3(C2 ÿ BD) � b3(a3 B2 � b3 A2);

therefore

Ä � ÿ4aÿ3
3 b3(a3 B2 � b3 A2)2:

Hence, my ®rst expectation is con®rmed; for we see that in the ®rst (or nodal) subcase,
T , 0, a3b3 , 0, we have Ä. 0, and there are two imaginary factors of a3b3U ÿ 3H ; but that in
the second (or conjugate) subcase, T . 0, a3b3 . 0, we have Ä, 0, and all the factors of
a3b3U ÿ 3H are real.

135. The other combination, a3b3U � H , although involving z, is still more easily discussed. For
we soon ®nd that

a3b3U � H � (a3x2 � b3 y2)f4a3b3z � (a1b3 � a3b1)x � (a2b3 � a3b2)yg;
where the linear factor f4a3b3z � � � �g is always real; and the quadratic factor, (a3x2 � b3 y2),
when equated to zero, gives real or imaginary roots, according as a3b3 is less than, or greater
than zero, and therefore according as T , 0, or . 0.

The Theorem receives therefore, again, for the singular case R � 0, a critical and scarcely
hoped for con®rmation.
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136. To complete the discussion of the equations at the end of article 102, or the
determination of real values of á and â, answering to any given and real values of S and T, a
few words must be said on the remaining case,

IV. S � 0, T � 0; that is the case of a cusp (HPC, p. 193). Here the ordinate (S2=T 3) of the
auxiliary quartic of article 104 becomes indeterminate; and therefore the abscissa ã cannot be
de®nitely found. But the equations of article 102 show, here, without any reference to that
auxiliary curve, or to its equation, that we are, in the present case, to take, simply,

á � 0, â � 0,

as the only real values which satisfy the given conditions. The four values of
ë

ì

� �
, when

expressed by the equations of article 102 in terms of á and â, all vanish here; and accordingly
the biquadratic reduces itself to ë4 � 0, in the case when S � 0, and T � 0. In this case, then,
the only combination of the form ëU � ìH , which breaks up into linear factors, is the
Hessian H itself; but the Theorem of article 110 fails here to distinguish between the cases of

real and imaginary factors, because the zero, which is at once equal to
ë0

ì0

� �
and to

ë1

ì1

� �
, is

here the common limit of the real positive and of the real negative root of the biquadratic. Hence
I conceive that we may safely in this case infer, that the imaginary factors of H become real, by
becoming equal to each other; and therefore the Hessian ought then to be found to be the
product of one real and linear function, multiplied by the square of another such factor.
Accordingly if we make a3b3 � 0, as well as d � 0, we shall have the case of a cusp; and at the
same time the Hessian will become,

H � a2
3x2(b1x � b2 y)� b2

3 y2(a1x � a2 y),

which evidently admits of the decomposition into three real factors, whereof two are equal,
whether we suppose that b3 or that a3 vanishes.

137. It will now, I think, be instructive, to resume the three general forms of article 122, of
which each involves only one arbitrary constant c, and which have been adjusted so as to give
all one common set of values of S and T ; and to consider what particular forms they assume, in the
three particular cases I., II., III., of articles 123, 125, 128; for we cannot expect to meet the
case IV. of article 136, or to satisfy the two equations S � 0, T � 0, by any one value of the still
disposable constant c.

138. Form I. of article 122 was,

U � 3(c ÿ 1)ss9s 0� 27cxyz;

and since it, like the two others, gave S � 2ÿ436(1� 8c3), it is evident that if we had written
that form as

U � 3(c ÿ a)ss9s 0� 27cxyz,

we should have found S � 2ÿ436(a4 � 8ac3 � 0c4), because S must always be conceived to rise
as high as the fourth dimension, with respect to the coef®cients of U. Hence when we come
to consider the real values of c, which render S � 0, in order to adapt the three forms of
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article 122 to the case I. of article 123, we must not merely employ the value c � ÿ(1
2), which

renders 1� 8c3 � 0, but must also take, as an alternative, the value c � 1. The ®rst value
gives T � �2ÿ6312; the second value gives T � ÿ1; we are, then, to take the latter for the
subcase (1) of article 123, and the former for the subcase (2). But the reasoning will become
much clearer, if we modify the forms of article 122, by dividing each U by c; which will of course
have the effect of dividing S and

����
R3
p

each by c4, and T by c6.

139. Consider therefore these three new forms:

I: U � 3(1ÿ cÿ1)ss9s 0� 27xyz;

II: U � (c2 ÿ cÿ1)s3 � 27cÿ1xyz;

III: U � 9
(1� c � c2)

(1� 2c)2
s3 ÿ 9

1� 2c

c
zp;

8>>>><>>>>:
where s, s9, s 0, p have the same signi®cations as in article 122. For each of these forms of U, we
must, by the theory already explained, have the common set of values following:

S � 2ÿ436(cÿ4 � 8cÿ1); T � 2ÿ339(cÿ6 ÿ 20cÿ3 ÿ 8);
����
R3
p
� 36(cÿ3 ÿ 1);

which may be decomposed into linear factors, on the plan of article 122.

140. If now it be required to assign cubics, included under the three last forms, which shall
satisfy the two conditions S � 0, T , 0, we see that we are to take c in®nite, and the three
required cubics are, or appear to be, for we shall ®nd cause to reject the second:

I: x3 � y3 � z3 � 6xyz � 0; or s3 � s93 � s 03 � 0; (cf : article 124);

II: (x � y � z)3 � 0; or s3 � 0;

III: (x � y � z)3 ÿ 8z(x2 � xy � y2) � 0; or s3 ÿ 8zp � 0:

8><>:
As a veri®cation of this last form, we may observe that it, like the ®rst, is the sum of three cubes,
one real and two imaginary: namely,

(x � y ÿ z)3 � z � y ÿ x

èÿ è2

� �3

� z � y ÿ x

è2 ÿ è

� �3

� s3 ÿ 8zp:

But we said that the second form must be rejected. In fact, although it is true that
U � as3 � 6(d ÿ a)xyz gives generally T � ÿ8(d ÿ a)4(d2 � 4ad � a2), and therefore (by

making a � c2 ÿ cÿ1, d ÿ a � 9

2
cÿ1,) T � 2ÿ339(cÿ6 ÿ 20cÿ3 ÿ 8), as in article 139, if

U � (c2 ÿ cÿ1)s3 � 27cÿ1xyz; and although this value of T tends to the ®nite limit
T � ÿ39 , 0, as c tends to1; yet when we again divide U, namely by c2, in order to reduce the
second cubic to s3 � 0, as above, we virtually divide the last expression for T by c12, and so
reduce it from a negative to zero. Accordingly if we operate directly on U � s3, we get T � 0, as
may be seen, among other ways, by making d � a in a formula of the present article. We
conclude, then, that no actual cubic curve (with real and ®nite coef®cients), of the second form of
article 139, (nor even a system of three coincident right lines,) can satisfy the two conditions,

S � 0, T , 0;
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but that these conditions are both satis®ed by the two cubics, of the ®rst and third forms respectively,

I: s3 � s93 � s 03 � 0, and III: s3 ÿ 8zp � 0;

whereof each is the sum of three cubes, one real, and two imaginary (cf. HPC, p. 184).

141. For S � 0, T . 0, there is less dif®culty; and now the two ®rst forms of article 139, or of
article 122, are available. We simply change c to ÿ1

2, in each of them, and divide by numerical
coef®cients; and thus obtain the two following cubics, which both satisfy the proposed
conditions, and are of the required forms:

I: x3 � y3 � z3 � 0; II: s3 ÿ 24xyz � 0;

where both I. and II. are sums of three real cubes, since

(x � y ÿ z)3 � ( y � z ÿ x)3 � (z � x ÿ y)3 � (x � y � z)3 ÿ 24xyz:

But when we endeavour to render the cubic III. actual, or to get rid of in®nite coef®cients in its
equation, by multiplying its U by (1� 2c)2, we thereby multiply the T � �2ÿ6312 of article
138, by (1� 2c)12, or by 012, and so reduce it from being positive to be null; so that the
equation s3 � 0, which might seem to belong here to form III., is to be rejected, as it was then
regarded as belonging to form II., in the analysis of article 140.

142. For T � 0, S , 0, we take (cf. article 122), c � ÿá2 � ÿf(1� ���
3
p

)=2g; and therefore
cÿ1 � 1ÿ ���

3
p � 2á1, so that form I. becomes,

ss9s 0� (3
���
3
p

)xyz � 0,

as in article 125. At the same time,

c2 � 2� ���
3
p

2
, c2 ÿ cÿ1 � 3

���
3
p

2
,

and form II. of article 139 becomes,

s3 ÿ 18xyz � (6
���
3
p

)xyz � 0;

also

1� 2c � ÿ
���
3
p

, 1� c � c2 � 3

2
,

1� c � c2

(1� 2c)2
� 1

2
,

1� 2c

ÿc
� (

���
3
p

)ÿ 3;

therefore the form III. becomes here,

s3 ÿ 6zp � (2
���
3
p

)zp � 0:

Collecting, then, these last results, we have, for T � 0, the following cubic curves, of the three
forms proposed:

I: ss9s 0� (3
���
3
p

)xyz � 0;

II: s3 ÿ 18xyz � (6
���
3
p

)xyz � 0;

III: s3 ÿ 6zp � (2
���
3
p

)zp � 0;

8><>:
the upper signs answering to S , 0, and the lower sign to S . 0. As a veri®cation, the second
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Hessian of each must admit of being shown (cf. article 127) to coincide with the original
curve.

143. Finally, for R � 0, T , 0, if we set aside the cases in which the cubic U breaks up
into three lines, whether all real, or two of them imaginary, we take the value c � 1, and the
form III. and ®nd III.: s3 ÿ 9zp � 0, which is a curve with a cusp, (cf. article 131,) at the point
(1, 1, 1); but for R � 0, T . 0, we take the value c � 0, and the form II., namely
s3 ÿ 27xyz � 0; and this cubic has a conjugate point, (cf. again article 131,) at the same unit-
point (1, 1, 1), or O, as earlier and otherwise seen in article 88.

144. It was early observed, in article 61, that the fundamental formula of article 10,

lx � my � nz � 0,

which connects the anharmonic coordinates of a point (x, y, z) with those of a right line
[l , m, n] whereon that point is situated, is a suf®cient basis for all investigations that depend
ultimately on the conceptions of collinearity of points, and of concurrence of right lines: and I
think that I have somewhere remarked that the mechanism of all such researches, considered
merely as a branch of calculation, cannot be expected to differ, in any essential respect, from
the usual mechanism of trilinear coordinates: although the interpretations of the elementary
symbols will be different, and may suggest, sometimes, improvements or modi®cations even in
the work. Accordingly, for at least nine of the last sheets, and in fact ever since the little
investigations of articles 86 and 88, respecting the form ks3 � 27xyz of the cubic (when
s � x � y � z, ) I may seem to have quite dropped the consideration of anharmonic coordinates;
although the name has been, for uniformity's sake, retained, in the heading of all the sheets of
this long Letter. But besides that we may always think of xyz, in all these later investigations, as
meaning anharmonic coordinates, I shall now go on, ± as it is indeed high time, ± to mention
one or two Problems, which are perhaps more immediately suggested by the conception of such
coordinates than by the notion of trilinears; and for the solution of which, the Method of this
Letter appears to offer some facilities. A brief recapitulation of the ®rst principles of that Method
may however occupy, not uselessly, the remaining pages of the present sheet.

145. Allow me therefore to state, ± selecting rather than merely repeating from former parts
of this Letter, ± that with the improved geometrical notation of article 77, and with a
corresponding modi®cation of the early and very simple Figure 4, my fundamental conception
of the anharmonic coordinates of a point, when disengaged from everything foreign, or
super¯uous, or merely illustrative, admits of being enunciated as follows (cf. article 78). Let
ABC be any given triangle, Figure 4 bis, [which is a slightly altered version of Figure 4] and O,

Fig. 4 bis
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P any two points in its plane, whereof O is treated as given or constant, but P as arbitrary or
variable. Then, whereas, by a well known theorem of segments, we have the constant product,

(A:PCOB):(B:PAOC):(C :PBOA) � �1

I write

y

z
� (A:PCOB),

z

x
� (B:PAOC),

x

y
� (C :PBOA);

and de®ne that x, y, z, or any other quantities proportional to them, are the Anharmonic
Coordinates of the point P, taken with respect to the given triangle ABC, and to the given point
O. Accordingly I denote the variable point P by the symbol (x, y, z); and because the
corresponding symbols of the four given points are thus,

A � (1, 0, 0), B � (0, 1, 0), C � (0, 0, 1), O � (1, 1, 1),

I call (as in former articles) the triangle ABC the Unit-Triangle, and the point O the Unit-Point
of the System.

146. Permit me also to restate, ± chie¯y with a view to disengage it from anything irrelevant,
and to present it in what appears to be its last degree of simplicity, ± my de®nition of the
anharmonic coordinates of a right line, taken here as being, in their conception, independent
of the coordinates of a point, although they must afterwards be connected therewith.

I take, then, again any triangle ABC, which I treat as a given one, and I cut its sides by any
two transversals, A9B9C9 and LMN, whereof I (see Figure 21) consider the former as given,
but the latter as arbitrary; and then whereas, by another well known theorem of segments, we
have this other constant product,

(LBA9C):(MCB9A):(NAC 9B) � �1,

(the � arising from a combination of two ÿ's,) I write (cf. article 79),

m

n
� (LBA9C),

n

l
� (MCB9A),

l

m
� (NAC 9B),

and de®ne that l, m, n, or any quantities thereto proportional, are the anharmonic coordinates
of the line LMN, with respect to the given triangle ABC, and to the given transversal A9B9C9. I
also denote (as before) this variable line by the symbol [l , m, n]; and because we have thus,

[1, 0, 0], [0, 1, 0], [0, 0, 1],

as the symbols of the three sides BC, CA, AB of the triangle ABC, considered here merely as
having position, we derive a new and independent motive for calling that given triangle (as
above) the Unit-Triangle of this, as well as of the former construction. At the same time, the
symbol of the line A9B9C9 is, on the same plan, [1, 1, 1]; whence it is natural to call that given
transversal, as in preceding articles, the Unit-Line.

147. It is important to observe that in this statement of my fundamental conceptions and
de®nitions, the principle of Geometrical Duality is fully recognised: no prerogative whatever [can
exist], of simplicity or anything else, belonging to point-coordinates, or to line-coordinates, as if
either were more fundamental than the other, when they are thus independently de®ned. It is

269III . LETTER TO HART ON ANHARMONIC COORDINATES



just as simple, ± but not a whit more so, ± to consider the sides of a triangle as cut by two right
lines; so as to form a group of four points on each, as to consider the corners of the same triangle
as connected with two points, so as to form, with each corner as vertex, a pencil of four rays; it is
then as natural, ± but not more so, ± to study the anharmonic functions of those three groups, as
of those three pencils.

148. No theorem however emerges, of any novelty or interest, until we combine these two
elementary constructions, by supposing that the point P is situated upon the line LMN, and that
the unit-point O is the pole of the unit-line A9B9C9, with respect to the unit-triangle ABC. Then,
however, with the help of the six auxiliary points, (see [a slightly altered and relabelled
version of Figure 5] Figure 5 bis)

A 0 � OA
:
BC , B 0 � OB

:
CA, C 0 � OC

:
AB,

Q � PA
:
BC , R � PB

:
CA, S � PC

:
AB,

and of the three harmonic equations,

(BA9CA 0) � (CB9AB 0) � (AC 9BC 0) � ÿ1,

or even with only the two ®rst of these three harmonic groups, and the four auxiliary points,
A 0, B 0, Q , R , combined with the pencil of four rays through P, we easily prove, on the plan
of article 10, that

ÿ l

n
� (MAB 0C),

x

z
� (RCB 0A),

ÿlx

nz
� (MARC),

and that

ÿm

n
� (LBA 0C),

y

z
� (QCA 0B),

ÿmy

nz
� (LBQC) � (MRAC) � 1ÿ (MARC);

whence

Fig. 5 bis
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lx � my � nz � 0,

as before. The same important and fertile Theorem may also be proved, in this comparatively
symmetric geometrical notation, (substituted for that of OXY, with which mode of denoting
the given triangle this Letter began,) by projecting the given transversal A9B9C9 to in®nity, as
was done in article 80, with the help of the simple Figure 22, but perhaps, upon the whole,
less elegantly.

149. After this recapitulation, which I thought not useless, of some ®rst principles of this
whole theory, I proceed to a few general problems, which they suggest, and which can be
understood and resolved without any reference to curves. And ®rst I shall consider the
following Problem, which is evidently suggested by those principles:-
``To express the anharmonic of a pencil,

(P0:P1 P2 P3 P4),

in terms of the anharmonic coordinates of its vertex,

P0 � (x0, y0, z0),

and of any four points,

P1 � (x1, y1, z1), . . . , P4 � (x4, y4, z4),

which are situated on its four rays respectively''.

150. The most obvious process appears to be the following. Assuming

P 92 � P0 P2
:
P1 P3 � (x92, y92, z92),

P 94 � P0 P4
:
P1 P3 � (x94, y94, z94);

we shall thus reduce the sought anharmonic of a pencil to the anharmonic of a group, and we
shall have the transformation,

(P0:P1 P2 P3 P4) � (P1 P 92 P3 P 94) � t9u

tu9
,

by the already often employed theorem of article 11; if, with an abridged notation similar to
that of article 74, we write

(P 92) � t(P1)� u(P3), (P 94) � t9(P1)� u9(P3),

or more fully,

x92 � tx1 � ux3, y92 � ty1 � uy3, z92 � tz1 � wz3,

x94 � t9x1 � u9x3, y94 � t9y1 � u9y3, z94 � t9z1 � u9z3;

as we are allowed to do, on account of the two equations,

0 �
x1, y1, z1

x92, y92, z92
x3, y3, z3

������
������, 0 �

x1, y1, z1

x94, y94, z94
x3, y3, z3

������
������,

which serve, in combination with these two other equations of the same kinds,
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0 �
x0, y0, z0

x2, y2, z2

x92, y92, z92

������
������, 0 �

x0, y0, z0

x4, y4, z4

x94, y94, z94

������
������,

to determine the coordinates of the two auxiliary points of intersection, P 92, and P 94, in terms
of the coordinates of the ®ve given points, P0, P1, . . . , P4.

151. It remains then only to express the coef®cients t, u, and t9, u9, of their ratios, in terms
of those given coordinates. But for this purpose, it is only necessary to substitute, in the latter
pair of determinant equations, the expressions

x92 � tx1 � ux3, &c:, and x94 � t9x1 � u9x3, &c:,

which satisfy the former pair. For we thus obtain,

0 � ÿt
x0, y0, z0

x1, y1, z1

x2, y2, z2

������
������� u

x0, y0, z0

x2, y2, z2

x3, y3, z3

������
������;

0 � t9
x0, y0, z0

x4, y4, z4

x1, y1, z1

������
������ÿ u9

x0, y0, z0

x3, y3, z3

x4, y4, z4

������
������;

whence, by article 150, the required anharmonic in article 149 may be thus expressed, as the
quotient of two products of determinants:

(P0:P1 P2 P3 P4) �
x0, y0, z0

x1, y1, z1

x2, y2, z2

������
������

x0, y0, z0

x3, y3, z3

x4, y4, z4

������
������ :

x0, y0, z0

x2, y2, z2

x3, y3, y3

������
������

x0, y0, z0

x4, y4, z4

x1, y1, z1

������
������:

152. Veri®cations offer themselves at sight. Thus we see that the function of the ®fteen
coordinates with second members vanishes if either the two points P1, P2, or the two points
P3, P4, be collinear with the point P0; that is, if either the two ®rst rays, or the two last rays, of
the pencil in the ®rst member coincide in position with each other. Again, if either the two
middle rays, or the two extreme rays, of the pencil coincide in position, the anharmonic in
the ®rst member becomes in®nite; and so does that quotient of products of determinants,
which is the second member of the equation. Again, the anharmonic in the ®rst member,
and the quotient in the second member, become each equal to unity, when either the ®rst
ray coincides with the third, or the second with the fourth; for if we make, for example,

(P3) � a(P0)� b(P1),

we shall have

x0, y0, z0

x3, y3, z3

x4, y4, z4

������
������ � ÿb

x0, y0, z0

x4, y4, z4

x1, y1, z1

������
������, and

x0, y0, z0

x2, y2, z2

x3, y3, z3

������
������ � ÿb

x0, y0, z0

x1, y1, z1

x2, y2, z2

������
������

and similarly if we made

(P4) � a9(P0)� b9(P2):
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Finally, if we place any one of the four points P1, P2, P3, P4 at the vertex P0 of the pencil, the
anharmonic of that pencil becomes indeterminate; and, at the same time, the quotient, to

which it is equated in the formula, takes the form
0

0
.

153. If we attribute a given or constant value k to the anharmonic of the pencil, so as to
have

(P0:P1 P2 P3 P4) � k � constant,

then, by the formula of article 151, the 15 coordinates of the ®ve points are connected by the
following equation, which is freed from fractions, and is homogeneous with respect to each
set of coordinates:

x0, y0, z0

x1, y1, z1

x2, y2, z2

������
������

x0, y0, z0

x3, y3, z3

x4, y4, z4

������
������ � k

x0, y0, z0

x2, y2, z2

x3, y3, z3

������
������

x0, y0, z0

x4, y4, z4

x1, y1, z1

������
������:

If any four of the ®ve points, including P0, be given, this equation assigns a right line through P0,
as the locus of the remaining point ; but if P0 alone be undetermined, while the other four points
are given, then because the equation is of the second dimension in x0, y0, z0, and is satis®ed
when these coordinates are replaced by x1, y1, z1; or by x2, y2, z2, or [by] &c., we see that, in
this case, the locus of the vertex P0 of the pencil is a conic, which passes through the four given points,
P1, P2, P3, P4. But these results are otherwise well known from geometry: they may therefore
be considered as additional veri®cations of the correctness of the expression in article 151,
for the anharmonic of the pencil in article 149.

154. As an example, let the vertex P0, be the ®rst real point (see article 111) of in¯exion,
K 9 or A9, of the cubic curve in the canonical form of article 109,

U � x3 � y3 � z3 � 6exyz � 0;

taking also the second real point K 0 or B9, of in¯exion on the ®rst ray P1 of the pencil, and
obliging the three other rays to pass in order through the three imaginary points of in¯exion
I 9, I 0, I -, the line connecting which is itself imaginary (see article 111). We have then the
anharmonic,

(K 9:K 0I 9I 0I -) �
0, 1, ÿ1

ÿ1, 0, 1

0, 1, ÿè

��������
��������

0, 1, ÿ1

ÿè, 0, 1

1, ÿè, 0

��������
�������� :

0, 1, ÿ1

0, 1, ÿè
ÿè, 0, 1

��������
��������

0, 1, ÿ1

1, ÿè, 0

ÿ1, 0, 1

��������
��������

� (1ÿ è)(1ÿ è2)

(è2 ÿ è)(èÿ 1)
� ÿè:

If then we denote the four rays of this pencil, or the four chords of in¯exion from K 9, whereof
the two ®rst are real, and the two last are imaginary, by the symbols K1, K2, K3, K4, we may
write, concisely,

(K1 K2 K3 K4) � ÿè;

whence also,
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(K1 K3 K2 K4) � 1� è � ÿè2 � (ÿè)ÿ1 � (K1 K4 K3 K2);

so that we have here

(K1 K2 K3 K4) � (K1 K4 K2 K3) � (K1 K3 K4 K2) � ÿè,

and

(K1 K3 K2 K4) � (K1 K2 K4 K3) � (K1 K4 K3 K2) � ÿè2,

the anharmonic function of this pencil having thus only two distinct values (both imaginary), in
whatever order the four rays may be taken whereas, in general, a pencil has six distinct values of its
anharmonic function, such as h, 1ÿ h; h ÿ 1, 1ÿ hÿ1; and (1ÿ h)ÿ1, 1ÿ (1ÿ h)ÿ1

(� h=(h ÿ 1)), when the rays are variously arranged; and even a harmonic pencil has three
distinct values (ÿ1, 2, and 1

2). I am therefore disposed to call the pencil of chords, above
considered, a Di-anharmonic Pencil; and to extend this name to every pencil which has only two
values of its anharmonic: those two values being then necessarily ÿè and ÿè2, because
1ÿ h � hÿ1.

155. The particular problem of the last article might have been resolved with even less
trouble of calculation, by our availing ourselves of the collinearity (see article 112) of the three
points of (imaginary) in¯exion, I 9, I 0, I -, and using the (imaginary) intersection, say for a
moment I 0, of the (imaginary) right line on which they are situated, with the ®rst (and real)
ray K 9K 0 of the pencil. That intersection is easily seen from the expressions already assigned,
to be precisely the point which in some early articles of this Letter was denoted by J, and was
called one of the two imaginary unit-points (I and J, articles 25 &c.,) namely the point
I 0 � J � (1, è2, è); in fact, the coordinates of this point satisfy at once the equation s � 0 of
the real line K 9K 0, and the equation s 0 � 0 of the imaginary line I 9I 0I -. In this manner it is
easily seen that

(I 9) � è(I 0)� (I 0), and (I -) � ÿè2(I 0)� (I 0),

a notation already explained; whence

(K 9:K 0I 9I 0I -) � (I 0 I 9I 0I -) � ÿè,

as above. But we shall soon consider the whole subject of the determination of such
anharmonics of pencils, in an entirely different way.

156. Meantime, as another example of the process last employed, let us take the form of the
cubic in article 114, namely:

U � (c3 ÿ 1)(x � y � z)3 � 27xyz � 0,

and seek the value of the anharmonic of the pencil which has still (K 9:K 0I 9I 0I -) for its
symbol, and which is still composed of four chords of in¯exion, two real and two imaginary, with
the real point of in¯exion K 9 for vertex as before, although (by article 114) the expressions
for the three collinear and imaginary points of in¯exion I 9, I 0, I - involve now the arbitrary
constant c; being (by the cited article),

I 9 � (c ÿ 1, èc ÿ 1, è2c ÿ 1),
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I 0 � (è2c ÿ 1, c ÿ 1, èc ÿ 1),

I - � (èc ÿ 1, è2c ÿ 1, c ÿ 1);

while the imaginary line that conects them has now s9 � 0 for its equation. Combining this
with the equation of the ®rst real ray of the pencil, which is still s � 0, we are conducted to
the following auxiliary point, of intersection of the two last lines,

I 0 � K 9K 0:I 9I 0 � (1, è, è2) � I ,

namely the other of our old imaginary unit-points; hence

(I 9) � (1ÿ è2)c(I 0)� (I 0), (I -) � (èÿ è2)c(I 0)� (I 0),

so that the arbitrary constant c disappears from the expression for the sought anharmonic of
the pencil, which is thus found to be,

(K 9:K 0I 9I 0I -) � (I 0 I 9I 0I -) � (èÿ è2)c

(1ÿ è2)c
� ÿè2;

the pencil is therefore again a di-anaharmonic one, in the sense of article 154, although we
happen to have started here with an order of the rays, and with a selection of the cube root of
unity, which gives ÿè2, instead of ÿè, for the particular value resulting. Of course, by varying
the order, we should have here,

(K 9:K 0I 0I 9I -) � 1� è2 � ÿè, &c:

157. Although, after solving the recent problem for the canonical form of U, it may be
regarded as merely an exercise of calculation to resolve it for any other form, since the
geometrical result must be the same, yet, as such an exercise, I will take, for a moment, the
equation of article 92:

U � s3 � 6kzp � 0,

with the resulting expressions, given in article 97, for the nine points of in¯exion; in which

however I shall write, as in article 121, c for
v

t
. We shall thus have, for two of the real points of

in¯exion, the values,

P0 � K � (1, ÿ1, 0), P1 � K 9 � (1, c, c);

and for three of the imaginary points, on one imaginary line,

P2 � I � (1, è, è2); P3 � J 9 � (1� 2cè, èÿ cè2, èÿ cè2);

P4 � I 0 � (è2 ÿ cè, 1� 2cè2, è2 ÿ cè):

There is no dif®culty in determining the point of intersection,

I 0 � KK 9:IJ 9 � (1� (1ÿ è2)c � 2èc2, è� (èÿ è2)c � 2c2, ÿè2c(1� 2c));

nor in deducing the formulñ,

( J 9) � t(I )� u(I 0), t � (c ÿ 1)è, u � ÿ1,

(I 0) � t9(I )� u9(I 0), 3t9 � (1ÿ è)(1ÿ c)(1� 2c), 3u9 � (èÿ 1)(1� 2c)
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whence the arbitrary constant c again disappears, in the resulting expression for the
anharmonic,

(K :IJ 9I 0K 9) � (IJ 9I 0I 0) � t9u

tu9
� ÿè2,

which gives

(K :K 9IJ 9I 0) � ÿè:
But perhaps in this case it is simpler to use the general formula of article 151, observing that
because P0 � (1, ÿ1, 0), we have

x0, y0, z0

xm , ym , zm

xn , yn, zn

������
������ � (ymzn ÿ ynzm)ÿ (zmxn ÿ xmzn) � smzn ÿ snzm ,

if we write sm � xm � ym � zm , sn � xn � yn � zn. We have here,

z1 � c, z2 � è2, z3 � è(1ÿ èc), z4 � è(èÿ c),

s1 � 1� 2c, s2 � 0, s3 � (èÿ è2)(1� 2c), s4 � (è2 ÿ è)(1� 2c);

therefore

(K :K 9IJ 9I 0) � (P0:P1 P2 P3 P4)

� s1z2 ÿ s2z1

s2z3 ÿ s3z2
:
s3z4 ÿ s4z3

s4z1 ÿ s1z4

� è2(1� 2c)

(èÿ 1)(1� 2c)
:
(èÿ è2)(c ÿ 1)(1� 2c)

è2(c ÿ 1)(1� 2c)
� è2

èÿ 1
:
1ÿ è

è
� ÿè,

as before. This pencil, therefore, as was to be expected from what was established for the
canonical form of the cubic, is found to be also di-anharmonic (see article 154).

158. It may be worth examining, whether anything depends on our having taken, in the
three preceding examples, a real point of in¯exion for the vertex of the pencil of four chords.
Employing for this purpose the canonical form, let the pencil be now (I 9:K 9K 0K -I 0); where
the vertex is imaginary, and only the ®rst ray is real. It is here convenient to consider, as in
article 155, the imaginary intersection, J � I 9I 0

:
K 9K 0 � (1, è2, è), and thus we ®nd,

(K 0) � ÿ(K 9)ÿ (K -), ( J ) � ÿè(K 9)� (K -); whence (I 9:K 9K 0K -I 0) � (K 9K 0K -J ) � ÿè;
and the pencil is still di-anharmonic.

159. We arrive then at this Theorem, which probably is known, although I do not see any
mention of it in Salmon's Book:

``If any one of the points of in¯exion of a cubic be made the vertex of a pencil of four
chords, which pass through the eight other points, the anharmonic function of this pencil, in
whatever order the rays may be arranged, is always equal to one of the imaginary cube-roots
of negative unity.''

In other words, every such pencil is di-anharmonic.
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160. As another example of the determination of the anharmonic function of a pencil,
which has an important connexion with the theory of cubic curves, let us take this problem:-
To determine the value of the anharmonic of the pencil,

(K 9:OI 9I 0I -);

where K 9I 9, K 9I 0, K 9K - are the same three chords of in¯exion as in article 154, but O is that
real point (1, 1, 1), which we have called in many former articles, (article 78, etc.) the
anharmonic unit-point; so that the two ®rst rays of this pencil are real, and the two last
imaginary. The general expression of article 151 becomes here,

(K 9:OI 9I 0I -) �
0, 1, ÿ1
1, 1, 1
0, 1, ÿè

������
������

0, 1, ÿ1
ÿè, 0, 1

1, ÿè, 0

������
������:

0, 1, ÿ1
0, 1, ÿè
ÿè, 0, 1

������
������

0, 1, ÿ1
1, ÿè, 0
1, 1, 1

������
������ � ÿè2;

so that this pencil also belongs to the di-anharmonic class. We might here have availed
ourselves of the facility given by the collinearity of the four points O, I 9, I 0, I -, since the real
point O is the intersection of the two imaginary chords of in¯exion (s 0 � 0, s9 � 0), which
connect, three by three, the six imaginary points (cf. article 112); for thus we should have
found,

(I 9) � (O)� è2(I 0), (I -) � ÿè(O)� è(I 0),

and therefore (K 9:OI 9I 0I -) � (OI 9I 0I -) � ÿè2, as before. As a veri®cation, interchanging è
and è2 we have (K 9:OJ 9J 0J -) � ÿè; therefore (K 9:OJ 9J -J 0) � ÿè2 � (K 9:OI 9I 0I -); and
accordingly these two last pencils coincide, the real and two imaginary chords, I 9J 9, I 0J -,
I -J 0, converging, by article 112, to the real point of in¯exion K 9.

161. The ®ve collinear points

O � (1, 1, 1), J � (1, è2, è), I 9 � (0, 1, ÿè),

I 0 � (ÿè, 0, 1), I - � (1, ÿè, 0),

have evidently their symbols connected by the ten following linear equations, answering to their
ten ternary combinations, of which some have been already employed:

(O) � (I 0)ÿ è2(I -), (O) � (I -)ÿ è2(I 9), (O) � (I 9)ÿ è2(I 0);

è2( J ) � (I 0)ÿ (I -), ( J ) � (I -)ÿ (I 9), è( J ) � (I 9)ÿ (I 0);

(1ÿ è2)(I 9) � (O)ÿ ( J ), (1ÿ è2)(I 0) � (O)ÿ è( J ), (1ÿ è2)(I -) � (O)ÿ è2( J );

(I 9)� è(I 0)� è2(I -) � 0;

8>>>>><>>>>>:
respecting which equations it is important to observe, that no one of them, taken simply, gives
any information respecting the relative position of the three points involved, beyond the mere fact
of their collinearity: but that because the ®ve symbols, (O), ( J ), (I 9), (I 0), (I -), are taken to
represent, in all of these equations, the same systems of anharmonic coordinates, ± the symbol
(O), for example, meaning the system of coordinates (1, 1, 1) throughout, and not that
system affected with any factor, such as (t, t, t), where t is different from unity ± therefore
any two of the ten equations, from which one common symbol is excluded, are adapted to give
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the value of the anharmonic of a group, formed by rejecting one of the 5 points, or by taking their
quarternary combinations.

162. In this manner, we derive the ®ve anharmonics of groups of which some have occurred
before:-

Retaining O and J , (OI -JI 0) � (OI 9JI -) � (OI 0JI 9) � �è
} } O, but not J , (OI 9I 0I -) �ÿ è2;

} } J , but not O ( JI 9I 0I -) �ÿ è:

The two last are therefore seen again to be di-anharmonic groups, so that we may write,

(OI 9I 0I -) � (OI 0I -I 9) � (OI -I 9I 0) � (I 9I 0I -J ) � (I 0I -I 9J ) � (I -I 9I 0J ) � ÿè2;

(I 9I 0I -O) � (I 0I -I 9O) � (I -I 9I 0O) � ( JI 9I 0I -) � ( JI 0I -I 9) � ( JI -I 9I 0) � ÿè:
But the three ®rst groups, ± each formed by excluding one of the 3 imaginary points of
in¯exion, I 9, I 0, I -, on the given line s 0 � 0, and by comparing the two others with the two
auxiliary points, O and J, in which that line is cut by the two other lines, s9 � 0 and s � 0, or
J 9J 0J - and K 9K 0K -, ± have each six different values (cf. article 154) of its anharmonic
function, according to the order in which the four points of that group are arranged. Thus,
besides the 3 anharmonic equations for those 3 groups, which have been written in the
present article, we have (by article 5) these 15 others:-

(OI 0JI -) � (OI -JI 9) � (OI 9JI 0) � �è2;

(OJI -I 0) � (OJI 9I -) � (OJI 0I 9) � 1ÿ è;

(OJI 0I -) � (OJI -I 9) � (OJI 9I 0) � 1ÿ è2;

(OI 0I -J ) � (OI -I 9J ) � (OI 9I 0J ) � (1ÿ è)ÿ1;

(OI -I 0J ) � (OI 9I -J ) � (OI 0I 9J ) � (1ÿ è2)ÿ1:

163. The two ®rst of the 18 anharmonic equations, which thus involve both O and J, suggest
the following Theorem:-

``If any two, of any three collinear points of in¯exion, (as here any two of I 9, I 0, I -) be
combined as second and third, or as ®rst and fourth with the two points (as here with O and J )
in which that line is cut by the two other chords, (here J 9J 0J - and K 9K 0K -), containing each
three other points of in¯exion, the anharmonic of the group is an imaginary cube root of positive
unity.'' I only say, for the moment, that they ``suggest'' this Theorem: for I do not think it
unreasonable to desire a proof or at least a veri®cation, such as can easily be supplied, of the
Theorem still holding good, when we pass from a line through three imaginary points of
in¯exion, to a line containing three points of which one at least is real.

164. Consider then the ®ve collinear points,

I � ( 1, è, è2), J � (1, è2, è), K 9 � (0, 1, ÿ1), K 0 � (ÿ1, 0, 1), K - � (1, ÿ1, 0);

where the three last are points of real in¯exion, while the two ®rst points are respectively on
the lines s9 � 0, s 0 � 0, or J 9J 0J - and I 9I 0I -, which connect, 3 by 3, the 6 imaginary points
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of in¯exion of the cube, expressed still by its canonical form (article 109 &c.). We have now
these ten linear equations, analogous to those of article 161:

è2(I ) � è(K 0)ÿ (K -), è(I ) � è(K -)ÿ (K 9), (I ) � è(K 9)ÿ (K 0);

è( J ) � è2(K 0)ÿ (K -), è2( J ) � è2(K -)ÿ (K 9), ( J ) � è2(K 9)ÿ (K 0);

(èÿ è2)(K 9) � (I )ÿ ( J ), (èÿ è2)(K 0) � è2(I )ÿ è( J ), (èÿ è2)(K -) � è(I )ÿ è2( J );

(K 9)� (K 0)� (K -) � 0;

whence we have not only the two di-anharmonic groups,

(IK 9K 0K -) � (K 9K 0K -J ) � ÿè,

whereof the latter was employed in article 158, but also these three other groups, which are of
the usual, or hex-anharmonic kind, ± as having each six unequal values for its anharmonic
function, ±

(IK 0JK -) � (IK -JK 9) � (IK 9JK 0) � �è;

which con®rms the theorem in article 163. Any further veri®cation of that theorem appears
to be now unnecessary.

165. It is an immediate consequence of that Theorem of article 163, that the cube of any
one of the anharmonics, which are formed according to its enunciation, must be equal to
positive unity. Substituting, then, for such an anharmonic, its value as de®ned in article 5, we
deduce from article 162 the equations

OI 9

JI 9

� �3

� OI 0

JI 0

� �3

� OI -

JI -

� �3

;

and from article 163 the analogous equations,

IK 9

JK 9

� �3

� IK 0

JK 0

� �3

� IK -

JK -

� �3

:

Indeed, I have (quite recently) reason to believe that Hesse� arrived at results of the same form
as these, but by an entirely different analysis, and without using anharmonics at all, but rather
the known properties of transversals of a triangle, which I have not had occasion (for this
purpose) to employ.

It must also be observed, that the three quotients of segments, of which the cubes are here
equated, are not anharmonic functions, and therefore are (generally) altered by projection:
although we see that, if so, their cubes must all be altered in one common ratio, in order that the
equality of those cubes may be undisturbed. Indeed it is an immediate consequence of the
fundamental property of the anharmonic of a group, that the quotients themselves alter (if at
all), in one common ratio, by projection: because, for example,

OI 9

JI 9
:

OI 0

JI 0
� the anharmonic, (OI 9JI 0):

� [Ludwig Otto Hesse, 1811±1874.]
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166. In words, we may enunciate the result of article 165 as follows:-
``If the interval, on any one of the 12 chords of in¯exion, which is comprised between the two

points, not of in¯exion, where that chord is cut by two of the eleven other chords, be divided
into two segments by any one of the three points of in¯exion upon that chord assumed; then the
cube of the quotient of those two segments has a common value, independent of the particular point
of in¯exion which may be selected for the section.''

167. A great variety of other results, which it might be too pompous to call Theorems, may
be deduced from the foregoing formulñ: expecially if we agree to introduce certain new and
auxiliary points, de®ned by the harmonic relations,

(OI 0O1 I -) � (OI -O2 I 9) � (OI 9O3 I 0) � ÿ1;

(I -I 9I 0I 91) � (I 9I 0I -I 01) � (I 0I -I 9I -1) � ÿ1;

with others of the same kind, which I am not sure that I shall think it necessary or useful to
write down. One result, however, may be here brie¯y mentioned:- ``If any two of the 3
collinear points of in¯exion, I 9, I 0, I -, be treated as conjugate points of an involution, while
the two points O, J are made another conjugate pair the remaining point of in¯exion I (n) will
be one of the two double points of the involution, its harmonic conjugate I (n)

1 being the other
double point''.

168. (April 18th, 1860) The discursive character of this long Letter allows me here to leave
for awhile the discussion of such relations between these, between the points of in¯exion of a
cubic, and other points derived from them, and to take up a totally different question, which
is however connected quite as closely with the title of these sheets: since it will require, or at
least employ, the method of anharmonic coordinates, as applied to the discussion, ± and in a
slight degree the extension, ± of a very elegant Theorem of plane Geometry, which you
communicated to me, in a note that arrived yesterday.

169. You tell me, then, that if a circle be described so as to pass through the middle points of the
three sides of any triangle, it will not only pass (which you say is well known, and can in fact,
as I see be very easily proved) through the feet of the three perpendiculars from the corners of the
triangle, but will also touch the inscribed circle, and each of the three exscribed circles. This
theorem was wholly new to me, and I thought it well worth trying to deduce a proof of it, by
the method of this Letter, but with a somewhat generalized enunciation, which that method
naturally suggested: although, indeed, the same extension has probably occurred to yourself,
from principles suf®ciently known.

170. Instead of the middle points of the sides of the triangle ABC, I take then (compare, if
you choose, the ®gure of article 148) the points A 0, B 0, C 0, which are the harmonic
conjugates of those other points A9, B9, C9, where the sides are cut by a transversal, assumed
by me as the unit-line (article 146, &c.). And instead of the circular points at in®nity, I assume
now (more generally than in some early articles) any two points Q, Q 9, real or imaginary, upon
the unit-line: of which points I thus suppose the coordinates xyz to satisfy the system of the two
equations
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a � y � z � 0, ax2 � by2 � cz2 � 0,

the coef®cients a, b, c, being three arbitrary constants. Your bisecting circle becomes thus the
conic through the ®ve points A 0, B 0, C 0, Q , Q 9; and its equation is easily found to be

0 � U � 2(ax2 � by2 � cz2)ÿ (x � y � z)(ax � by � cz),

if we remember that the points A0, B 0, C 0, are (0, 1, 1), (1, 0, 1), (1, 1, 0).

171. Such being then the conic which replaces your ®rst or bisecting circle, I substitute next
for your inscribed (or exscribed) circle another conic, touched by the three sides of the triangle ABC,
and passing through the same two points Q, Q 9, of the unit-line. The three tangencies give this
form of its equation,

O � V � á2x2 � â2 y2 � ã2z2 ÿ 2âãyz ÿ 2ãázx ÿ 2áâxy;

because the unit line, x � y � z � 0, is to be a common chord QQ 9 of this and of the former
conic, we must suppose that the two equations are connected by a relation of the following
form:

U � 2V � (x � y � z)(ëx � ìy � íz);

when ëx � ì y � íz � 0 is another common chord, passing through the two other common points, or
points of intersection of the two conics, which we may call P and P 9. Comparing coef®cients,
in the two expressions for U we have

a � ë� 2á2; b � ì� 2â2; c � í� 2ã2;

ÿ(b � c) � ì� íÿ 4âã; ÿ(c � a) � í� ëÿ 4ãá; ÿ(a � b) � ë� ìÿ 4áâ;

whence, if we write for conciseness ä � á� â� ã, we derive

a � áäÿ âã, b � âäÿ ãá, c � ãäÿ áâ,

and

ë � (ãÿ á)(áÿ â), ì � (áÿ â)(âÿ ã), í � (âÿ ã)(ãÿ á)

indeed these last values, of ë, ì, í, or the equivalent formulñ,

ì� í � ÿ(âÿ ã)2, í� ë � ÿ(ãÿ á)2, ë� ì � ÿ(áÿ â)2,

may be more rapidly obtained by observing that the second expression for U must vanish,
when x, y, z are replaced by the coordinates of any one of the three points, A0, B 0, C 0. It may
be noticed in passing that

b � c � (â� ã)2, c � a � (ã� á)2, a � b � (á� â)2:

172. Let us now calculate those two intersections, above named P and P 9, of the two conics
U and V which are not upon the unit line QQ 9; and which therefore satisfy the equation of
the other common chord, ëx � ìy � íz � 0. Eliminating z, by this linear equation, from the
equation V � 0, we are conducted to the following quadratic,

0 � f(ãë� áí)x ÿ (âí� ãì)yg2 � 4ã(áìí� âíë� ãëì)xy;

but
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áìí� âíë� ãëì � (áÿ â)(âÿ ã)(ãÿ á)fá(âÿ ã)� â(ãÿ á)� ã(áÿ â)g � 0;

the quadratic is therefore an exact square, as by your (extended) Theorem it ought to be, and
the points P, P 9 coincide: the coordinates of the point of contact P, which is thus proved to
exist, for the two conics U and V, admitting of being written thus,

x � ÿ(âí� ãì) � á(âÿ ã)2, y � â(ãÿ á)2, z � ã(áÿ â)2:

And although it was not necessary, the foregoing analysis being quite suf®cient ± yet as a sort of
synthesis or at least as an a posteriori proof, I have veri®ed that when the last values of x, y, z are
substituted in the expression,

DxU � 2ax ÿ (a � b)y ÿ (a � c)z, D yU � &c:, DzU � &c:,

and

DxV � 2á(áx ÿ â y ÿ ãy), D yV � &c:, DzV � &c:,

the results are

DxU � (á� â)(â� ã)(ã� á)ë, D yU � (á� â)(â� ã)(ã� á)ì,

DzU � (á� â)(â� ã)(ã� á)í,

DxV � 4áâãë, D yV � 4áâãì, DzV � 4áâãí

being thus, for each function, proportional to ë, ì, í; we have also

ëx � ìy � íz � ëá(â ÿ ã)2 � &c: � (áÿ â)(âÿ ã)(ãÿ á)fá(âÿ ã)� â(ãÿ á)� ã(áÿ â)g
� 0

so that xDxU � yD yU � zDzU � 0, xDxV � yD yV � z DzV � 0, or brie¯y U � 0, V � 0, for
these values of x, y, z; whence we derive a veri®cation, or rather a proof, that the two conics U
and V do in fact touch each other at the point P, or (x, y, z) which has been above assigned.

173. Your Theorem is therefore by my method proved, with this slightly extended enuncia-
tion:- ``If a conic V be touched by the three sides of a triangle ABC, and if through the two
(real or imaginary) points, Q, Q 9, in which that conic is cut by any transversal A9B9C9, and
through the harmonically conjugate points A 0B 0C 0 upon the sides, another conic (U ) be
described, then these two conics touch each other;'' namely, in the point P, determined as
above.

174. I grant that the foregoing mechanism of calculation (compare many similar admissions
made before) might have occurred to anyone, who knew any bilinear coordinates. But when we
come to interpret the results, then I conceive that the geometrical advantage of my method comes
into play. We have, for instance, here, by article 172, the equation,

áy

âx
� ãÿ á

ãÿ â

� �2

;

which I now propose to interpret, so as to derive from it a construction for the point of contact
P, of which the existence was discovered by you. Let A1, B1, C1 be the points in which the
inscribed (or exscribed) conic (V ) touches the 3 sides of the triangle; so that
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A1 � (0, âÿ1, ãÿ1), B1 � (áÿ1, 0, ãÿ1), C1 � (áÿ1, âÿ1, 0):

Then P � (x, y, z) being still the point of contact, and Q, R, S being points derived from it as
in the ®gure of article 148, my general formulñ give

á

â
� (C1 AC 0B),

â

ã
� (A1 BA 0C),

ã

á
� (B1CB 0A),

y

x
� (SAC 0B), 1ÿ â

ã
� (A1 A 0BC), 1ÿ á

ã
� (B1 B 0AC),

and therefore

(SAC 0B)(C1 AC 0B) � (B1 B 0AC)2(A1CBA 0)2;

thus S cuts the side AB in a known ratio, and similarly for Q and R.

175. When we con®ne ourselves to the circles of your enunciation, a few easy reductions
give me the very simple geometrical proportion of rectangles and squares; SAC1 :

SBC1 � B 0B1
2

: A 0A1
2
; or with the usual trigonometrical signi®cations of a, b, c, s, and for the

case of the inscribed circle
AS

SB
� s ÿ b

s ÿ a
:

c ÿ a

c ÿ b

� �2

. Accordingly it is clear that this quotient,
AS

SB
, is equal to zero, unity, or in®nity, in the three respective cases, c � a, a � b, b � c;

because, in these three cases, the point of contact P coincides evidently with B1, C1, A1; that
is, here, with B 0, C 0, A 0: the projections of which on AB, by lines from C, are A, C 0, B.

176. A simpler construction may however be derived, by considering rather the coordinates of
the common tangent [ë, ì, í], which may be conceived to be the line LMN in the ®gure of
article 148, than the coordinates of the point of contact (x, y, z), or P. We have, by article 171

ë : ì : í � (âÿ ã)ÿ1 : (ãÿ á)ÿ1 : (áÿ â)ÿ1;

also if we write ë, ì, í, for l, m, n in article 146, we have

ì

í
� (LBA9C),

í

ë
� (MCB9A),

ë

ì
� (NAC 9B),

or

ÿ ì

í
� (LBA 0C),

ÿí
ë
� (MCB 0A),

ÿë
ì
� (NAC 0B);

but, by what we have just now written,

ÿì
í
� áÿ â

áÿ ã
, ÿ í

ë
� âÿ ã

âÿ á
, ÿ ë

ì
� ãÿ á

ãÿ â

and, by article 174,

ãÿ á

ãÿ â
� (B1 B 0AC)(A1CBA 0), &c:,

therefore ®nally the 3 points L, M, N, in which your tangent cuts the sides of the triangle
ABC, are given by the three anharmonic equations,
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(LBA 0C) � (B1 ACB 0):(C1C 0BA);

(MCB 0A) � (C1 BAC 0):(A1 A 0CB);

(NAC 0B) � (A1CBA 0):(B1 B 0AC);

8>><>>:
where, as a veri®cation, it may be proved that the product of the six anharmonics, in the
three right hand members is equal to negative unity, as it ought to be, in order to allow the
product of the three anharmonics in the left hand members to be equal to the same given
value, as the transversal requires.

177. When by throwing off the line A9B9C9 to in®nity, my enunciation, in article 173, of your
Theorem takes the form;

``If through the middle points A 0, B 0, C 0 of the sides of a triangle circumscribed to a given conic (V ),
a homothetic conic (U ) be made to pass, these two conics will touch one another '',

the recent equations for the determination of the common tangent LMN, at the point of
contact P of the two conics, are simpli®ed to the following:

LB

CL
� B1 A

B 0B1
:
C1C 0

AC1
;

MC

AM
� C1 B

C 0C1
:
A1 A 0

BA1
;

NA

BN
� A1C

A 0A1
:
B1 B 0

CB1
;

of which, as a veri®cation, the product is still equal to negative unity; while A1, B1, C1 are (as
before) the points in which the conic (V ) is touched by the three sides of the triangle. And if
we suppose that this conic is the inscribed circle, while the length of the sides are denoted (as
usual) by a, b, c, then a few easy reductions give, more simply,

LB

CL
� a ÿ b

a ÿ c
;

MC

AM
� b ÿ c

b ÿ a
;

NA

BN
� c ÿ a

c ÿ b
;

so that ``the tangent LMN cuts the greatest and least sides internally, but cuts the mean side externally'',
becoming of course indeterminate, when the triangle is equilateral, because the two conics
then coincide. Veri®cations for the case of an isosceles triangle, as in article 175, are obvious.

178. If we consider that exscribed circle (V 9) which touches the side BC itself, in a point A91,
and the sides AC, AB prolonged, in points B91, C91, and denote by L9M 9N 9 the tangent to this
circle, at the new point P 9 where (by your Theorem) it touches the same bisecting circle (U )
as before, we easily ®nd, on the same plan, that

L9B

CL9
� a � b

a � c
;

M 9C

AM 9
� b ÿ c

b � a
;

N 9A

BN 9
� c � a

c ÿ b
;

so that this tangent cuts internally the side BC, and the greater of the two sides, AB, CA; but
cuts the lesser of those two sides externally. In like manner, your common tangents to the
bisecting circle (U ), and to the two other exscribed circles (V 0) and (V -), are on the present
plan determined by the following ratios of section:

L 0B

CL 0
� a � b

a ÿ c
;

M 0C

AM 0
� b � c

b � a
;

N 0A

BN 0
� c ÿ a

c � b
;

L -B

CL -
� a ÿ b

a � c
;

M -C

AM -
� b � c

b ÿ a
;

N -A

BN -
� c � a

c � b
:
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± I do not think that we need wish for any simpler construction of your four tangents, than those
given by these ratios of segments; and I doubt whether trilinear coordinates would have suggested
constructions so simple. Besides, it is to be remembered that my method gives formulñ
scarcely less simple (see article 177), for the case of two homothetic conics ; and even (by article
176), through a few anharmonics, for the more general case of article 173, where the two
conics cut, in two real or imaginary points Q, Q 9, on a ®nitely distant line A9B9C9.

179. (April 21st, 1860) ± Since the foregoing pages were written, I have received from you a
note, dated the 19th of this month, from which I collect that you have found yourself
anticipated, in the Theorem that the Bisecting Circle (U ) is touched by each of the four circles,
inscribed or exscribed, which, or their analogous Four Conics, I have above marked as (V )
(V 9) (V 0) (V -). And although I have not yet attempted to study your said Note, I see
enough, from a mere glance at it, to lead me to suppose that you, or the French, had
anticipated by ratios and section, of the sides of the triangle, made of the common tangents, at
the four points of contact. Ainsi soit il, I cordially add: for I wish now to pass or return to other
subjects which are to me more interesting at present.

180. I have already remarked, ± either in some article to which I have not just now turned
back, of this long Letter, or in some separate and recent Note, ± that ``when we replace the
bisecting and inscribed circles, (U ) and (V ), by two homothetic conics (article 177), the two right
lines drawn from the second intersection of the conic (U ) with any one of the three sides of
the given triangle, so as to be parallel to the two (real or imaginary) asymptotes of that or of
the other conic, (since these are supposed parallel to each other,) are harmonically conjugate
with respect to the intersected side, and the line drawn from the intersection to the vertex''.
A little more generally, let the conic (U ) meet the sides BC, CA, AB, not only in the three
former points A 0, B 0, C 0, but also in the three points of second intersection, A-, B -, C -,
while it still meets the unit line A9B9C9 in the two real or imaginary points Q and Q 9 (see
article 170); I say that we have then the three following harmonic equations of pencils,

(A-:AQA 0Q 9) � (B -:BQB 0Q 9) � (C -:CQC 0Q 9) � ÿ1

or the three corresponding harmonic equations of groups, upon the unit line.

(A91QA9Q 9) � (B91QB9Q 9) � (C91QC 9Q 9) � ÿ1

if A91, B91, C91 be the points AA-
:
B9C9, &c., in which the right lines drawn from the second

intersection with (U ) to the opposite vertices of the triangle, intersect that unit-line; whence
it will follow as may be just remarked in passing, that the three pairs of points, A9, A91; B9, B91;
and C9, C91, form an involution, of which Q and Q 9 are the two (real or imaginary) double
points.

181. The easiest or at all events the most obvious way, of proving this theorem by the
formulñ of the present Letter, is perhaps the following. The coordinates of A9, B9, C9 being
already known, since A9 � (0, 1, ÿ1), &c., let us investigate those of A91, B91, C91; and ®rst of
A-, B -, C -. Cutting for this purpose the conic U by the side BC, or making x � 0 in the
equation of article 170, namely:
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2(ax2 � by2 � cz2)ÿ (x � y � z)(ax � by � cz) � 0,

we get the quadratic, (y ÿ z)(by ÿ cz) � 0; rejecting therefore the point A 0, we have
A- � (0, c, b); and similarly, B - � (c, 0, a), C - � (b, a, 0). The equations of the right lines
AA-, BB -, CC - are thus seen to be,

by � cz, cz � az, ax � by,

respectively; cutting these then by the unit line x � y � z � 0, and making for conciseness

a9 � ÿb ÿ c, b9 � ÿc ÿ a, c9 � ÿa ÿ b,

we ®nd

A91 � (a9, c, b), B91 � (c, b9, a), C91 � (b, a, c9):

Any two points, Q and Q 9 upon the unit line, may be thus symbolized,

(Q ) � t(A9)� (A91), (Q 9) � t9(A9)� (A91);

or thus

Q � (a9, c � t, b ÿ t); Q 9 � (a9, c � t9, b ÿ t9);

with the resulting anharmonic equation (A9QA91Q 9) � t9

t
. In the present case, A and Q 9 are

both on the auxiliary conic of article 170,

ax2 � by2 � cz2 � 0;

hence t and t9 are the roots of the quadratic ab � bc � ca � t 2 � 0; so that t9 � ÿt, and the
harmonic relation is proved. ± But variations of this proof or rather investigations quite
different in their form, may instructively be made to replace it.

182. The following variation, for instance, may be noted, although it cannot pretend to be
important. The vertex of the ®rst pencil (article 180) being A- � (0, c, b), while
A � (1, 0, 0), and A 0 � (0, 1, 1), if (with new meanings of á, â, ã, á9, â9, ã9) we write

Q � (á, â, ã), Q 9 � (á9, â9, ã9),

we shall have, by article 151,

(A-:AQA 0Q 9) �
0, c, b
1, 0, 0
á, â, ã

������
������

0, c, b
0, 1, 1

á9, â9, ã9

������
������ :

0, c, b
á, â, ã
0, 1, 1

������
������

0, c, b
á9, â9, ã9

1, 0, 0

������
������ � á9

á
:

bâ ÿ cã

bâ9ÿ cã9
;

But, with the present signi®cations of á, â, ã, á9, â9, ã9,

0 � á� â� ã � á9� â9� ã9

� aá2 � bâ2 � cã2 � aá92 � bâ92 � cã92;

therefore

âã9ÿ ãâ9 � ãá9ÿ áã9 � áâ9ÿ âá9,

and
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a : b : c � â2ã92 ÿ ã2â92 : ã2á92 ÿ á2ã92 : á2â92 ÿ â2á92

� âã9� ãâ9 : ãá9� áã9 : áâ9� âá9;

so that

(A-:AQA 0Q 9) � ÿ1,

and the pencil is harmonic, as before.

183. Another mode of viewing the question is the following. The equation of the four rays of
the pencil here considered are, respectively,

by ÿ cz � 0; tx � by ÿ cz � 0; x � 0; ÿtx � by ÿ cz � 0;

where, as in article 181, t 2 � ab � bc � ca � 0. Hence multiplying these four equations, we get
what may be called the equation of the pencil, under the form,

0 � (ab � bc � ca)x3(by ÿ cz)� x(by ÿ cz)3

And it may perhaps be considered as evident, that every equation of the form

0 � BX 3Y � DXY 3

where B and D are any constants, and X, Y are any homogeneous rational and integral
functions, of the ®rst dimension in x, y, z, represents a harmonic pencil, with its vertex at the
point for which X � 0, Y � 0; where the present pencil is again seen to be a harmonic one.
But this suggests a much more general investigation, to which we shall now proceed; dismissing
henceforth, for the purpose of the present Letter, all further consideration of the Theorem
cited in article 169, and of every collateral theorem or construction, as being doubtless far
better treated by yourself, and by the (unnamed) French writer or writers to whom you have
alluded, in a note received by me not long ago.

184. I take therefore now the following General Problem, analogous to that proposed in
article 149, and resolved in articles 150, and 151:

``Let Ë0, or [l0, m0, n0], be a given transversal, cutting in P1, P2, P3, P4 or in (x1, y1, z1), . . . ,

(x4, y4, z4), the four given right lines Ë1, . . . , Ë4, or [l1, m1, n1], . . . , [l4, m4, n4], which (for the sake

of greater generality) we shall (at ®rst) suppose not to concur in any common point, and therefore not to

form a pencil, although they may still be said to compose a system; it is required to express the anharmonic

of the group, of the four points of section P, which anharmonic we shall denote thus,

h � (P1 P2 P3 P4) � [Ë0:Ë1Ë2Ë3Ë4],

in terms of the 15 anharmonic coordinates, l0, m0, n0, l1, m1, n1, . . . , l4, m4, n4, of the ®ve right lines

Ë.''

185. For this purpose I observe ®rst that the coordinates of Pr may be thus expressed

xr � m0, n0

mr , nr

���� ����, yr � n0, l0

nr , l r

���� ����, zr � l0, m0

l r , mr

���� ����;
so that we may write
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(Pr ) � m0, n0

mr , nr

���� ����, n0, l0

nr , l r

���� ����, l0, m0

l r , mr

���� ����
 !

:

But if we take any three of the four points of section, the collinearity of these three points
enables us to foresee that we must have a symbolic linear equation of the form,

0 � ps, t(Pr )� pt, r (Ps)� pr ,s(Pt);

which is to be considered as including the three following,

0 � ps, t xr � pt, r xs � pr ,s xt , 0 � . . . , 0 � ps, t zr � pt, r zs � pr ,s zt :

Accordingly it is not dif®cult to perceive that these equations are satis®ed, when we make

ps, t �
l0, m0, n0

l s , ms , ns

l t , mt , nt

������
������; pt, r � &c:; pr ,s � &c:

And from the two symbolical equations,

0 � p2,3(P1)� p3,1(P2)� p1,2(P3),

0 � p3,4(P1)� p1,3(P4)� p4,1(P3),

we derive by a principle already often employed in this Letter, the sought anharmonic under
the form

h � (P1 P2 P3 P4) � p1,2 p3,4

p2,3 p4,1
;

or more fully,

[Ë0:Ë1Ë2Ë3Ë4] �
l0, m0, n0

l1, m1, n1

l2, m2, n2

������
������

l0, m0, n0

l3, m3, n3

l4, m4, n4

������
������ :

l0, m0, n0

l2, m2, n2

l3, m3, n3

������
������

l0, m0, n0

l4, m4, n4

l1, m1, n1

������
������;

so that the solution of the recent Problem (article 184) is expressed by a formula exactly
analogous to the formula of solution, in article 151, for the corresponding problem of article
149, in which ®ve points, instead of ®ve lines, were given. In fact, I had expected to ®nd the
formula last deduced, as the analogue of the formula (of article 151), in virtue of that
principle of Geometrical Duality, which is so fully recognised in, and incorporated with, my
Method of Anharmonic Coordinates.

186. Veri®cations, analogous to those of articles 152 and 153, offer themselves with ease;
among which I shall only mention that if we assign a constant value to the anharmonic h, and
®xed positions to the four (non-concurrent) right lines Ë1, . . . , Ë4, the variable transversal Ë0

is then seen to envelope a conic, which touches the four given lines. As an example, by making those
four lines Ë1, Ë2, Ë3, Ë4 coincide respectively, with the three sides of the unit-triangle ABC,
and with the unit-line A9B9C 9, while the suf®x 0 may be suppressed, we have

h � [Ë:Ë1Ë2Ë3Ë4] � n(m ÿ l)

l(m ÿ n)
; so that by making h � ÿ1 and letting off the unit-line to
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in®nity, we obtain the following tangential equation of what may be called the inscribed and
harmonic parobola,

lÿ1 � nÿ1 � 2mÿ1;

which gives the local equation

x
1
2 � z

1
2 � (ÿ2 y)

1
2

or

0 � (x ÿ z)2 � 4 y(x � y � z):

In fact, it is evident on inspection that this conic is touched by each of the four lines, x � 0,
y � 0, z � 0, x � y � z � 0, namely in the four points (0, 1, ÿ2), (1, 0, 1), (1, ÿ2, 1). And
although it is almost too elementary to mention, yet I may just add, what I saw while writing
the last sentence, that we have thus the solution of the following little problem [see Figure
28]: ``To ®nd the envelope of a transversal LMN of a given triangle ABC, so drawn as to be
bisected at M.'' The curve is the parabola, of which the anharmonic and local equation has
now been written; it touches the side CA, at the middle point B 0 of that side; it has BB 0

prolonged for a diameter; and it is touched at Q and S by the sides BC and BA prolonged so
as to become the doubles of their given tangents; the tangents from B being thus both
bisected by the side AC. Of course, I suppose that all this is given in quite elementary books.

187. But to return to things more general. When the four lines Ë1, . . . , Ë4 happen to be
concurrent, and so to form a pencil, the position of the transversal Ë0 is, of course, unimportant,
the coordinates l0, m0, n0 of the line Ë0 must therefore in this case disappear from the result,
which consequently may be written in any of the three forms following:

h � [Ë1Ë2Ë3Ë4] �
m1, n1

m2, n2

�����
����� m3, n3

m4, n4

�����
����� :

m2, n2

m3, n3

�����
����� m4, n4

m1, n1

�����
�����;

h �
n1, l1

n2, l2

�����
����� n3, l3

n4, l4

�����
����� :

n2, l2

n3, l3

�����
����� n4, l4

n1, l1

�����
�����;

h �
l1, m1

l2, m2

�����
����� l3, m3

l4, m4

�����
����� :

l2, m2

l3, m3

�����
����� l4, m1

l1, m1

�����
�����;

Fig. 28
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and accordingly the consistency of these different expressions for the anharmonic h of the
pencil is easily veri®ed by means of the now existent determinant equations,

0 �
l1, m1, n1

l2, m2, n2

l3, m3, n3

������
������, 0 �

l3, m3, n3

l4, m4, n4

l1, m1, n1

������
������;

which give

m1, n1

m2, n2

���� ���� :
n1, l1

n2, l2

���� ���� :
l1, m1

l2, m2

���� ���� � m2, n2

m3, n3

���� ���� :
n2, l2

n3, l3

���� ���� :
l2, m2

l3, m3

���� ����,
and

m3, n3

m4, n4

���� ���� :
n3, l3

n4, l4

���� ���� :
l3, m3

l4, m4

���� ���� � m4, n4

m1, n1

���� ���� :
n4, l4

n1, l1

���� ���� :
l4, m4

l1, m1

���� ����;
in fact, each of these four last sets of determinants, taken separately maybe expressed as
representing the coordinates of the vertex of the pencil.

188. Quite similarly, if the four points P1, . . . , P4 in the formula of article 151, be collinear,
the position of the vertex P0 of the pencil is immaterial, and its coordinates x0, y0, z0 must
disappear from the expression of the anharmonic; which thus assumes any one of the three
following forms,

h � ((x1, y1, z1)(x2, y2, z2)(x3, y3, z3)(x4, y4, z4))

� (P1 P2 P3 P4) �
y1, z1

y2, z2

�����
����� y3, z3

y4, z4

�����
����� :

y2, z2

y3, z3

�����
����� y4, z4

y1, z1

�����
�����;

h �
z1, x1

z2, x2

�����
����� z3, x3

z4, x4

�����
����� :

z2, x2

z3, x3

�����
����� z4, x4

z1, x1

�����
�����;

h �
x1, y1

x2, y2

�����
����� x3, y3

x4, y4

�����
����� :

x2, y2

x3, y3

�����
����� x4, y4

x1, y1

�����
�����;

and the mutual compatibility of these three expressions for h maybe proved by the two
determinant equations

0 �
x1, y1, z1

x2, y2, z2

x3, y3, z3

������
������, 0 �

x3, y3, z3

x4, y4, z4

x1, y1, z1

������
������,

which give the proportions,

y1, z1

y2, z2

���� ���� :
z1, x1

z2, x2

���� ���� :
x1, y1

x2, y2

���� ���� � y2, z2

y3, z3

���� ���� :
z2, x2

z3, x3

���� ���� :
x2, y2

x3, y3

���� ����,
and

y3, z3

y4, z4

���� ���� :
z3, x3

z4, x4

���� ���� :
x3, y3

x4, y4

���� ���� � y4, z4

y1, z1

���� ���� :
z4, x4

z1, x1

���� ���� :
x4, y4

x1, y1

���� ����;
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in fact, any one of these four last sets of determinants separately taken, maybe considered as
the anharmonic coordinates of the line, on which, by supposition, the four points P1, . . . , P4 are
situated.

189. As the formulñ of the foregoing article enable us to calculate the anharmonic of a group,
in a direct manner, from the coordinates of the four points of that group, without seeking the
values of any auxiliary coef®cients, such as those denoted by t, u, and t9, u9, in many former
investigations, it may not be quite uninteresting to give an example or two of their application
to questions already discussed. In fact, if this Letter were to be rewritten, they ought to be
introduced quite early, and treated as among the fundamental elements of the Method.

190. Our ®rst Example may be taken from article 11 itself, in which those auxiliary
coef®cients t, u, t9, u9 were ®rst introduced. We were to calculate

h � (OUCU 9) � ((0, 0, 1)(1, 1, 1)(1, 1, 0)(1, 1, ÿ1));

for which the ®rst of our recent expressions (article 188) gives,

h � 0, 1
1, 1

���� ���� 1, 0
1, ÿ1

���� ���� :
1, 1
1, 0

���� ���� 1, ÿ1
0, 1

���� ���� � 1 : ÿ1 � ÿ1;

the group is therefore harmonic as in the cited article. The second expression of article 188
gives, in like manner

h � 1, 0
1, 1

���� ���� 0, 1
ÿ1, 1

���� ���� :
1, 1
0, 1

���� ���� ÿ1, 1
1, 0

���� ���� � 1 : ÿ1 � ÿ1;

but the third expression of article 188 conducts to the (not false but) useless form,

h � 0, 0
1, 1

���� ���� 1, 1
1, 1

���� ���� :
1, 1
1, 1

���� ���� 1, 1
0, 0

���� ���� � 0

0
:

In general, if any one of the four points of a given group be at a corner of the unit triangle,
(as the point O was, in the notation of article 11,) so that two of its coordinates vanish, we are
then to reject, as useless, that one of the three expressions of article 188, which combines
those two evanescent coordinates.

191. A Second Example, of slightly greater complexity, may be taken from article 18; in
which we were to calculate this other anharmonic,

h � (X 1V1Y1U1)

when

X 1 � (2z, 0, y), V1 � (2az ÿ 2cx, 2cy ÿ 2bz, ay ÿ bx),

Y1 � (0, 2z, x), U1 � (2z ÿ 2x, 2 y ÿ 2z, y ÿ x):

In this case
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y1, z1

y2, z2

�����
����� � 0, y

2cy ÿ 2bz, ay ÿ bx

�����
����� � ÿ2y(cy ÿ bz);

y2, z2

y3, z3

�����
����� � 2cy ÿ 2bz, ay ÿ bx

2z, x

�����
����� � ÿ2y(az ÿ cx);

y3, z3

y4, z4

�����
����� � 2z, x

2 y ÿ 2z, y ÿ x

�����
����� � 2y(z ÿ x);

y4, z4

y1, z1

�����
����� � 2 y ÿ 2z, y ÿ x

0, y

�����
����� � 2y(y ÿ z);

so that the ®rst expression of article 188 becomes here,

h � (cy ÿ bz)(z ÿ x)

(az ÿ cx)( y ÿ z)
,

as in the cited article. The subsequent reduction here given, of this anharmonic to the form
c

a
, or

b

c
, depended on certain supposed relations between the quantities (2 y � z2, ab � c2),

which had geometrical meanings assigned to them, but are foreign to our present purpose.

192. As a third Example, which will introduce imaginaries, let us take the group of article
155 no one of the four points of which is real. Here,

h � (I 0 I 9I 0I -) � ((1, è2, 0)(0, 1, ÿè)(ÿè, 0, 1)(1, ÿè, 0));

and if, for the sake of variety, we employ the third expression of article 188, we ®nd

h � 1, è2

0, 1

���� ���� ÿè, 0
1, ÿè
���� ���� :

0, 1
ÿè, 0

���� ���� 1, ÿè
1, è2

���� ���� � è2: ÿè � ÿè,

as in the cited article; this imaginary group being therefore a di-anharmonic one, as was
otherwise found before. The ®rst expression of article 188 would have given, in like manner,
h � 1 : ÿè2 � ÿè; and the second expression h � è : ÿ1 � ÿè. But it seems useless to multi-
ply such examples of the use of the general expressions of article 188, for the anharmonic of
a group; nor shall we think it necessary to give any instances, so particular as these, of the
corresponding application of the analogous and equally general formulñ of article 187, for
the anharmonic of a pencil.

193. The following application of the last mentioned formula appears however to deserve
attention. Let the point C, or (0, 0, 1), be assumed as the vertex of the pencil; then
n1 � n2 � n3 � n4 � 0, and the two ®rst of the expressions of article 187 for h become
illusory; but the last of them is applicable, and gives

h � [Ë1Ë2Ë3Ë4] � (l1 m2 ÿ m1 l2)(l3 m4 ÿ m3 l4)

(l2 m3 ÿ m2 l3)(l4 m1 ÿ l1 m4)
:

Under the same condition, the equations of the four rays become
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l1x � m1 y � 0, l2x � m2 y � 0, l3x � m3 y � 0, l4x � m4 y � 0;

if then the equation of the pencil, obtained by multiplying together the equations of its rays, be
in any manner known to be

Ax4 � 4Bx3 y � 6Cx2 y2 � 4Dxy3 � Ey4 � 0

when A, B, C, D, E are given or known coef®cients, we are sure that the four ratios of m to l
must be the roots of the corresponding equation,

Am4 ÿ 4Blm3 � 6Cl2 m2 ÿ 4Dl3 m � El4 � 0:

Or, if we make for abridgment,

m1 � ál1, m2 � âl2, m3 � ãl3, m4 � äl4,

then á, â, ã, ä are the four roots of the biquadratic equation,

Aá4 ÿ 4Bá3 � 6Cá2 ÿ 4Dá� E � 0:

At the same time, one value of the anharmonic (h) of the pencil, answering to one arrangement of
its rays, ± or rather to four such arrangements, because we have (cf. article 5) the four equal
anharmonics,

[Ë1Ë2Ë3Ë4] � [Ë2Ë1Ë4Ë3] � [Ë3Ë4Ë1Ë2] � [Ë4Ë3Ë2Ë1],

h1 � [Ë1Ë2Ë3Ë4] � (âÿ á)(äÿ ã)

(ãÿ â)(áÿ ä)
;

the ®ve other values of h, answering to the twenty other arrangements of the rays, being (cf.
again, article 5)

h2 � [Ë1Ë3Ë2Ë4] � (ãÿ á)(äÿ â)

(âÿ ã)(áÿ ä)
� 1ÿ h1;

h3 � [Ë1Ë4Ë3Ë2] � (äÿ á)(âÿ ã)

(ãÿ ä)(áÿ â)
� hÿ1

1 ;

h4 � [Ë1Ë3Ë4Ë2] � (ãÿ á)(âÿ ä)

(äÿ ã)(áÿ â)
� 1ÿ hÿ1

1 ;

h5 � [Ë1Ë4Ë2Ë3] � (äÿ á)(ãÿ â)

(âÿ ä)(áÿ ã)
� (1ÿ h1)ÿ1;

h6 � [Ë1Ë2Ë4Ë3] � (âÿ á)(ãÿ ä)

(äÿ â)(áÿ ã)
� 1ÿ (1ÿ h1)ÿ1 � ÿh1(1ÿ h1)ÿ1:

And it is now required to form that equation of the sixth degree, of which the roots shall be these six
values, (generally unequal), namely, h1, . . . , h6, of the anharmonic h of the pencil, that
pencil being supposed to be only given by its equation, Ax4 � 4Bx3 � &c: � 0; or to determine
the coef®cients of the resultant sextic in h, as rational functions of the coef®cients A, B, C, D, E, of the
given biquadratic equation of the said pencil.
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194. In this investigation, I do not ®nd that I can much assist myself, by taking for a guide
the analysis given [by Salmon (HPC, p. 191 }205)]. The author of that article forms ®rst, in a
known way, the cubic equation of which the roots are the three combinations,

áâ � ãä, áã� âä, áä� âã;

and then he forms a sextic, reducible (with the help of an ambiguous square root) to a cubic
form, of which the roots are the differences of the roots of the foregoing cubic equation. He
then asserts (in loco citato) that ``the anharmonic functions in question are the ratios of the
roots of this equation''; namely, of that sextic which, with the help of a � sign, is thus
presented under a cubic form: or more fully, to copy from his p. 191,

t 3 ÿ 12t � 2

������������
R

S3

� �s
� 0:

But, if you allow me here to repeat part of what I have said in a recent and separate note, ± a
general sextic would conduct to an equation of the 30th degree in h, if h were employed to
denote the quotient of one of its six roots divided by another. And even when we assume that
the coef®cients of odd powers vanish in the given sextic (as here in the equation

t 6 ÿ 24t 4 � 144t 2 ÿ 4R

S3
� 0,

which results immediately from Salmon's cited page) still the resultant equation in h, ± after
being divided by the foreign factor (h � 1)6, and after the (demonstrably possible) extraction
of a square root of the quotient has been accomplished, ± is only depressed as low as the 12th
degree; although in this last reduction, as in earlier forms no odd powers of h will appear. If the
equation last written be called Salmon's sextic, in relation to our present object then I ®nd that
the resultant equation of the twelth degree breaks up into two rational factors; which are each
of the sixth degree; and I am pretty certain, ± indeed I feel quite sure, in my own mind,
although I have not set about to ®nd any formal and general proof of it, ± that the same sort
of rational decomposition, into two distinct sextics, must be possible universally: that is to say,
whatever may be the values of the given coef®cients A, . . . , E . But how are we to decide; which
of the two sextic factors is to be retained, to the exclusion of the other ? Or how are we to know,
whether some of the six values of h may not belong to one of those two sextic factors; and the
other values of that anharmonic h to the other ?

195. For these and other reasons, I decided on attacking the Problem of article 193 by a
totally different, and yet I think by an easier analysis; namely, by forming that new auxiliary
cubic, (without any square or other radical entering into its composition,) of which the three
roots ç1, ç2, ç3 shall be the three values of the combination, ç � h(1ÿ h). Writing then
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ç1 � h1 h2 � h1(1ÿ h1) � (âÿ á)(äÿ ã):(ãÿ á)(äÿ â)

ÿ(âÿ ã)2:(áÿ ä)2
,

ç2 � h3 h4 � ÿhÿ2
1 (1ÿ h1) � (äÿ á)(âÿ ã):(ãÿ á)(âÿ ä)

ÿ(äÿ ã)2:(áÿ â)2
,

ç3 � h5 h6 � ÿh1(1ÿ h1)ÿ2 � (äÿ á)(ãÿ â):(âÿ á)(ãÿ ä)

ÿ(äÿ â)2:(áÿ ã)2
,

my proofs may be said to consist in forming the cubic equation, which has for roots these
three (partially symmetric) functions of the roots á, â, ã, ä of the given biquadratic equation
± the ®rst of these for example, not changing value, when â and ã, or when ä and á are
interchanged. But for this purpose I assist myself by the expressions here given, for the three
new roots ç1, ç2, ç3, in terms of the single quantity h1.

196. In fact I have thus not only the relation,

ç1ç2ç3 � 1,

which is evident on mere inspection, and might have been foreseen from the geometrical
principle, that to each anharmonic of a group or pencil a reciprocal anharmonic corre-
sponds, but also the less obvious formula of relation,

çÿ1
1 � çÿ1

2 � çÿ1
3 � 3;

or, in combination with the former,

ç2ç3 � ç3ç1 � ç1ç2 � 3;

because

çÿ1
1 � çÿ1

2 � çÿ1
1 (1ÿ h3

1) � hÿ1
1 (1� h1 � h2

1) � 3� hÿ1
1 (1ÿ h1)2 � 3ÿ çÿ1

3 :

If then we make

ç1 � ç2 � ç3 � 3ÿ å

where å is a new constant, the cubic in ç will take the very simple form,

(çÿ 1)3 � åç2 � 0;

or because ç � h(1ÿ h), the sextic in h will assume this form of corresponding simplicity,

(h2 ÿ h � 1)3 ÿ å(h2 ÿ h)2 � 0;

in which it only remains to express the constant å, as a rational function of the coef®cients A,
B, C, D, E, of the proposed biquadratic.

197. As I have not seen this very simple form of the sought sextic equation in print, it may
not be amiss to offer here a brief con®rmation of its correctness. Writing, for this purpose,

h � (âÿ á)(äÿ ã)

(ãÿ â)(áÿ ä)
, we wish to calculate the coef®cients an an equation of the 6th degree,

which shall have for its 6 roots the 6 values of this function h of the 4 roots á, â, ã, ä of a
given biquadratic equation. By interchanging â and ä, we change h to hÿ1, by interchanging,
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on the other hand, â and ã, we change h to 1ÿ h. If then a rational function h can be found,
such that j(h) � j(hÿ1) � j(1ÿ h), by the mere form of the function, we shall have
j(h1) � j(h2) � j(h3) � j(h4) � j(h5) � j(h6) � some constant å � a rational function

of the coef®cients of the biquadratic; but the function j(h) � (h2 ÿ h � 1)3

(h2 ÿ h)
has the

properties required; and j(h) � å when cleared of fractions is an equation of the sixth
degree: it is therefore the sought sextic.

198. For the calculation of å, in terms of A, . . . , E , two different processes present
themselves. The most obvious is to calculate it as a symmetric function of the roots á, â, ã, ä,
by substituting the expressions in article 195 for ç1, ç2, ç3 in the formula of article 196,
å � 3ÿ ç1 ÿ ç2 ÿ ç3; but it is also allowed to substitute the value in article 197 for h, in the
expression å � j(h), which must then be found to reduce either to such a symmetric
function of the roots, or to a rational function of the coef®cients, of the given biquadratic
equation.

199. Adopting the former method, and denoting for the present the product of the squares
of the differences of the roots of the given equation by Ä, so that

Ä � (áÿ â)2(áÿ ã)2(áÿ ä)2(âÿ ã)2(âÿ ä)2(ãÿ ä)2,

we have

(åÿ 3)Ä � (áÿ â)3(áÿ ã)3(âÿ ä)3(ãÿ ä)3 � (áÿ ã)3(áÿ ä)3(âÿ ã)3(âÿ ä)3

� (áÿ â)3(áÿ ä)3(ãÿ â)3(ãÿ ä)3:

This symmetric function or the function å which depends upon it, occurs, I suppose,
somewhere in books; but as I do not remember meeting it, I have been obliged to strike out
modes of treating it, or of calculating å for myself. One such mode is the following. Writing
for abridgment,

áâ � ãä � z, áã� äâ � z9, áä� âã � z 0,

we have

Ä � (z ÿ z9)2(z9ÿ z 0)2(z 0ÿ z)2,

and

(åÿ 3)Ä � (z ÿ z 0)3(z9ÿ z 0)3 � (z9ÿ z)3(z 0ÿ z)3 � (z 0ÿ z9)3(z ÿ z9)3:

Hence,

Ä� (z ÿ z 0)3(z9ÿ z 0)3 � G(z9ÿ z 0)2(z 0ÿ z)2,

Ä� (z9ÿ z)3(z 0ÿ z)3 � G(z 0ÿ z)2(z ÿ z9)2,

Ä� (z 0ÿ z9)3(z ÿ z9)3 � G(z ÿ z9)2(z9ÿ z 0)2,

if we write

G � z2 � z92 � z 02 ÿ z9z 0ÿ z 0z ÿ zz9;

but this gives
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(z9ÿ z 0)2(z 0ÿ z)2 � (z 0ÿ z)2(z ÿ z9)2 � (z ÿ z9)2(z9ÿ z 0)2 � G2,

so that å � G3

Ä
; Ä is a well known function of the coef®cients of the biquadratic, we have only

to express G as another rational function of them. But this is easily done: for we soon ®nd
that

A2G � 12(AE ÿ 4BD � 3C2) � 144S ,

with the same meaning of S as in HPC p. 191 and since we have also, with the meaning there

assigned to R , A6Ä � 2833 R , we may write ®nally å � 2433S3

R
. The sextic equation of which

the anharmonics h of the pencil are the roots, is therefore by article 196, (as was stated in a
recent note,)

(h2 ÿ h � 1)3 ÿ 432S3

R
(h2 ÿ h)2 � 0:

200. The same result may be obtained, with even less trouble of calculation, by the second
method of article 198; namely by substituting the value

h � (â ÿ á)(äÿ ã)

(ãÿ â)(áÿ ä)
,

which gives

1ÿ h � (áÿ ã)(äÿ â)

(ãÿ â)(áÿ ä)
,

in the functional expression

h � (h2 ÿ h � 1)3

(h2 ÿ h)2
,

which must then be found to be equal to a constant å. For we should thus have, at once,
åÄ � G3, when

G � (âÿ á)2(äÿ ã)2 ÿ (â ÿ á)(äÿ ã)(áÿ ä)(ãÿ â)� (áÿ ä)2(ãÿ â)2

� Óá2â2 ÿ Óá2âã� 6áâãä

� (Óáâ)2 ÿ 3ÓáÓáâã� 12áâãä;

[where
P

á2â2 stands for á2(â2 � ã2 � ä2)� â2(á2 � ã2 � ä2)� ã2(á2 � â2 � ä2), and so on;
see LHA, p. 77,] or

A2G � (6C)2 ÿ 3(4B)(4D)� 12AE

� 12(AE ÿ 4BD � 3C2) � 144S ,

as before; the rest of the proof being unaltered. Of course it would be easy to modify these
expressions in articles 199 and 200, for the symmetric function G of the roots, so as to exhibit
their agreement (numerical coef®cients excepted) with the analogous expressions given by
Salmon for S. But I do not know whether it has occurred to him to observe, by the use of
imaginary cube roots of unity, that this function S, which is of the fourth dimension relating to
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á, â, ã, ä, may be decomposed into quadratic factors. In fact, the ®rst expression of the present
article for G may be thus written:

G � f(âÿ á)(äÿ ã)� è(áÿ ä)(ãÿ â)gf(âÿ á)(äÿ ã)� è2(áÿ ä)(ãÿ â)g;
or thus

G � (ÿèz ÿ è2z9ÿ z 0)(ÿè2z ÿ è2z9ÿ z 0)

� (�è2z9� è2z 0)(z � è2z9� èz 0)

which gives accordingly, as in article 199,

G � z2 � z92 � z 02 ÿ z9z 0ÿ z 0z ÿ zz9;

and therefore, (cf. HPC, note in p. 297, and LHA p. 100)

288S

A2
� 2G � (z9ÿ z 0)2 � (z 0ÿ z)2 � (z ÿ z9)2

� (áÿ â)2(ãÿ ä)2 � (áÿ ã)2(äÿ â)2 � (áÿ ä)2(âÿ ã)2:

As a veri®cation, by changing (áÿ ã)(äÿ â) to its equivalent, namely, (ãÿ â)(áÿ ä) ÿ
(âÿ á)(äÿ ã), and halving, we return to the ®rst value of G assigned in the present article.

201. The constant T may be usefully introduced, as follows. When the pencil is a harmonic
one, so that h has one of the three values, ÿ1, �2, �1

2, the constant å � j(h) takes the
particular value 27

4 ; and accordingly we have the identity,

4(h2 ÿ h � 1)3 ÿ 27(h2 ÿ h)2 � (h � 1)2(h ÿ 2)2(2h ÿ 1)2;

so that

4åÿ 27 � (h � 1)(h ÿ 2)(2h ÿ 1)

h(h ÿ 1)

� �2

and this last function of h must be a symmetric function of á, â, ã, ä. Writing for abridgment

æ � z9ÿ z 0, æ9 � z 0ÿ z, æ 0 � z ÿ z9

so that

æ� æ9� æ 0 � 0, æ2æ92æ 02 � Ä

and

æ2 � æ92 � æ 02 � 2G , æ92æ 02 � æ 02æ2 � æ2æ92 � G2

æ2 being thus (as it is easy to verify) a root of the cubic equation

(æ2)3 ÿ 2G(æ2)2 � G2(æ2)ÿ Ä � 0,

to which we may add that (as appears from article 199)

æ93æ 03 � æ 03æ3 � æ3æ93 � 3Äÿ G3,

and that
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æ2

æ9æ 0
� æ92

æ 0æ
� æ 02

ææ9
� 3,

we have h � ÿ æ

æ 0
, and therefore

æ 0(h ÿ 2) � æ9ÿ æ 0, æ 0(h � 1) � æ 0ÿ æ, æ 0(1ÿ 2h) � æÿ æ9;

also

h ÿ 1 � æ9

æ 0
, æ 03 h(1ÿ h) � ææ9æ 0:

Hence

(4åÿ 27)Ä � f(æ9ÿ æ 0)(æ 0ÿ æ)(æÿ æ9)g2;

where not only the second member itself, but the product of which it is the square, is a
symmetric function of the roots of the biquadratic.

In fact we have

A(æ9ÿ æ 0) � A(z9� z 0ÿ 2z) � 6C ÿ 3Az � 3(2C ÿ Az);

A(æ 0ÿ æ) � A(z 0� z ÿ 2z9) � 3(2C ÿ Az9)

A(æÿ æ9) � A(z � z9ÿ 2z 0) � 3(2C ÿ Az 0)

because
6C

A
� Óáâ � z � z9� z 0. [See note about Ó in article 200.] Also

z9z 0� z 0z � zz9 � Óá2âã � Óá:Óáâãÿ 4áâãä � 4Aÿ2(4BD ÿ AE);

and

zz9z 0 � áâãäÓá2 � Óá2â2ã2 � (Óáâã)2 ÿ 4áâãäÓáâ � áâãä(Óá)2

� 8Aÿ3(2AD2 ÿ 3ACE � 2EB2);

so that z is a root of the cubic equation,

A3z3 ÿ 6A2Cz2 � 4A(4BO ÿ AE)z ÿ 8(2AD2 ÿ 3ACE � 2EB2) � 0:

which indeed is given by Salmon (HPC p. 191), apparently from Lacroix.� Changing then Az
to 2C in the ®rst member of this equation, and dividing by 8, we ®nd,

A3

216
(æ9ÿ æ 0)(æ 0ÿ æ)(æÿ æ9) � (C ÿ 1

2Az)(C ÿ 1
2Az9)(C ÿ 1

2Az 0)

� ÿ2C3 � C(4BD ÿ AE)ÿ (2AD2 ÿ 3ACE � 2EB2)

� 2(ÿC3 � ACE ÿ AD2 � 2BCD ÿ EB2) � 2T

with the signi®cation of T in the last cited page, and in the page preceding; we have therefore

� [See footnote on p. 134 of this volume.]
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(æ9ÿ æ 0)(æ 0ÿ æ)(æÿ æ9) � f(áÿ ã)(äÿ â)ÿ (áÿ ä)(âÿ ã)g
3 f(áÿ ä)(âÿ ã)ÿ (áÿ â)(ãÿ ä)g
3 f(áÿ â)(ãÿ ä)ÿ (áÿ ã)(äÿ â)g

� 432Aÿ3T � 2433 Aÿ3T ;

which agrees with the note (HPC p. 297, and LHA p. 100), except that I have been obliged to

supply the numerical coef®cient. Hence, 4åÿ 27 � 2836T 2

A6Ä
� 27T 2

R
, which might have been

at once deduced from the value å � 432S3

R
in article 199, if I had chosen to use, as known, the

relation R � 64S3 ÿ T 2, instead of proving that relation anew, as has here been virtually
done. And thus is obtained the following new form of the sextic in h:

(h � 1)(h ÿ 2)(2h ÿ 1)

h(h ÿ 1)

� �2

� 27T 2

R
;

on eliminating R, and reintroducing S,

å

4åÿ 27

� �
� (h2 ÿ h � 1)3

(h � 1)2(h ÿ 2)2(2h ÿ 1)2
� 16S3

T 2
:

202. These various forms of my sextic in h being admitted, it becomes an interesting question
to examine whether, and how far, they are reconcileable with Salmon's Analysis. In his article
205, as remarked in article 194 of this Letter, he arrives virtually at the equation of the sixth
degree;

t2(t 2 ÿ 12)2 ÿ 4R

S3
� 0,

as one of which the ratios of the roots are the sought anharmonic ratios; or rather, as I prefer
to state it, among the quotients of the roots of which, those anharmonics of the pencil must all
be found. Writing then ht, as a value for a second root; subtracting, and dividing not merely
by (h ÿ 1)t, but by (h2 ÿ 1)t2, which will get rid of some of the foreign factors; we have this
second equation,

t4(h4 � h2 � 1)ÿ 24t 2(h2 � 1)� 144 � 0;

between which, and Salmon's sextic, the quantity t is to be eliminated. Or, making

t2 � 12

v
, and å � 432S3

R
,

where å is now used as a mere arbitrary abbreviation, which will however be useful in comparison
of processes, we are to eliminate v between the two equations

v3 ÿ å(vÿ 1)2 � 0, and v2 ÿ 2(h2 � 1)v� h4 � h2 � 1 � 0:

The result of this elimination may at once be written as follows,

fv93 ÿ å(v9ÿ 1)2gfv 03 ÿ å(v 0ÿ 1)2g � 0;
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where

v9� v 0 � 2(h2 � 1), and v9v 0 � h4 � h2 � 1:

Substituting and developing, we have the following equation of the twelvth degree (cf. article 194
of this Letter):

(h4 � h2 � 1)3 ÿ 2åh2(h8 � h6 ÿ 2h4 � h2 � 1)� å2 h4(h2 ÿ 1)2 � 0

which at ®rst looks rather unmanageable. But if we observe that

(h4 � h2 � 1)3 � (h2 � h � 1)3(h2 ÿ h � 1)3, h4(h2 ÿ 1)2 � (h2 � h)2 3 (h2 ÿ h)2

and that

2h2(h8 � h6 ÿ 2h4 � h2 � 1) � h2(h3 ÿ 1)2(h2 � h � 1)� h2(h3 � 1)2(h2 ÿ h � 1)

� (h2 ÿ h)2(h2 � h � 1)3 � (h2 � h)2(h2 ÿ h � 1)3,

we shall perceive that decomposition into two rational and sextic factors (article 194), of which I
spoke before. These factors are the following:

I. (h2 � h � 1)3 ÿ å(h2 � h)2 � 0;
II. (h2 ÿ h � 1)3 ÿ å(h2 ÿ h)2 � 0;

where å � 432S3

R
, as above. In fact, these correspond to the two separate roots of the

quadratic in v, namely

v9 � h2 � h � 1, v 0 � h2 ÿ h � 1:

But my direct analysis (article 199), which introduced no foreign factor, conducted to the second of
these two sextics; that sextic therefore is to be retained, and the other is to be rejected as foreign.
(Compare a separate Note, dated [ ].)

203. If we had supposed, ± what I own that Salmon's text seems to suggest ± that the sought
anharmonics h are the quotients of the roots of the cubic equation,

t 3 ÿ 12t � 2r � 0,

where r is some one value of the radical

�����
R

S3

r
, so that r 2 � 432

å
, we should have had to

eliminate t with the help of

t 2(h2 � h � 1)ÿ 12 � 0,

and the result would have been the foreign sextic I. Hence my completion, ± if I may not call it
correction ± of Salmon's Rule is as follows: ``Determine the six quotients of the three roots of the cubic,

t3 ÿ 12t � 2

�����
R

S3

r
� 0,

attributing some one sign to the radical; those quotients, with their signs changed, will be the sought
anharmonics h of the pencil''. For example, when T � 0, the roots of

t 3 ÿ 12t � 16 � 0
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are 2, 2, and ÿ4; and the negatives of their quotients, namely ÿ1, �2, �1
2, but not the quotients

themselves, are the values of h for the pencil. And as Salmon calls such a cubic (T � 0)
Harmonic, so I am disposed to give the name of Di-anharmonic Cubics (cf. article 154) to those
for which S � 0, and therefore, h � ÿè or h � ÿè2.

204. We may now perhaps dismiss the Subject, of the determination of the anharmonics of
a pencil which is only given by the joint equation of the System of its four rays, as having been
quite fully enough discussed, for the purposes of the present Letter, although, if I were not
desirous to approach to a termination of these Sheets, I might have other connected remarks
to make, especially as regards the application of the Theorem in article 73, or of its extension
in article 74, to equations in which anharmonic coordinates of points and lines are mixed. But
at present I prefer to pass to the important, and indeed, (in this Calculus) fundamental
problem, of the transformation of such coordinates, through the adoption of new points and lines
of reference.

205. Suppose, then that we assume, as a new unit-triangle and new unit-point, any arbitrary but
given triangle, A1, B1, C1, and any arbitrary but given point, O1, in the given plane; and let
the old coordinates of these four given points be,

O1 � (x0, y0, z0); A1 � (x1, y1, z1); B1 � (x2, y2, z2); C1 � (x3, y3, z3):

The old coordinates of a variable point P being x, y, z, it is required to ®nd its new coordinates
x1, y1, z1, or some quantities proportional to these, in terms of the 15 coordinates,

x, y, z; x0, y0, z0; x1, y1, z1; x2, y2, z2; x3, y3, z3:

206. Applying here the de®nitions of article 145, I have ®rst the equation:

y1

z1
� (A1:PC1O1 B1);

z1

x1
� (B1:PA1O1C1);

x1

y1
� (C1:PB1O1 A1):

Writing, then,

O1 � P0, A1 � P1, B1 � P2, C1 � P3,

the general formula of article 151 supplies us with the expressions following:

y1

z1
� (P1:PP3 P0 P2), &c:;

that is to say,
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y1

z1
�

x1, y1, z1

x, y, z

x3, y3, z3

��������
��������

x1, y1, z1

x0, y0, z0

x2, y2, z2

��������
�������� :

x1, y1, z1

x3, y3, z3

x0, y0, z0

��������
��������

x1, y1, z1

x2, y2, z2

x, y, z

��������
��������

�
x, y, z

x3, y3, z3

x1, y1, z1

��������
��������

x0, y0, z0

x1, y1, z1

x2, y2, z2

��������
�������� :

x, y, z

x1, y1, z1

x2, y2, z2

��������
��������

x0, y0, z0

x3, y3, z3

x1, y1, z1

��������
��������

�
x

y3, z3

y1, z1

�����
������ y

z3, x3

z1, x1

�����
������ z

x3, y3

x1, y1

�����
�����

x0

y3, z3

y1, z1

�����
������ y0

z3, x3

z1, x1

�����
������ z0

x3, y3

x1, y1

�����
�����

:

x
y1, z1

y2, z2

�����
������ y

z1, x1

z2, x2

�����
������ z

x1, y1

x2, y2

�����
�����

x0

y1, z1

y2, z2

�����
������ y0

z1, x1

z2, x2

�����
������ z0

x1, y1

x2, y2

�����
�����
;

with analogous expressions for the two other quotients of the new anharmonic coordinates,
cyclically taken, namely,

z1

x1
, and

x1

y1
:

Hence we may write, as the formulae of transformation required, the following:

x1 �
x, y, z
x2, y2, z2

x3, y3, z3

������
������ :

x0, y0, z0

x2, y2, z2

x3, y3, z3

������
������;

y1 �
x, y, z
x3, y3, z3

x1, y1, z1

������
������ :

x0, y0, z0

x3, y3, z3

x1, y1, z1

������
������;

z1 �
x, y, z
x1, y1, z1

x2, y2, z2

������
������ :

x0, y0, z0

x1, y1, z1

x2, y2, z2

������
������;

or more fully,

x1 � áx � â y � ãz

áx0 � â y0 � ãz0
;

y1 � á9y � â9z � ã9x

á9y0 � â9z0 � ã9x0
;

z1 � á 0z � â 0x � ã 0 y

á 0z0 � â 0x0 � ã 0 y0
;

8>>>>>>>><>>>>>>>>:
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where

á �
y2, z2

y3, z3

�����
�����; â �

z2, x2

z3, x3

�����
�����; ã �

x2, y2

x3, y3

�����
�����;

á9 �
z3, x3

z1, x1

�����
�����; â9 �

x3, y3

x1, y1

�����
�����; ã9 �

y3, z3

y1, z1

�����
�����;

á 0 �
x1, y1

x2, y2

�����
�����; â 0 �

y1, z1

y2, z2

�����
�����; ã 0 �

z1, x1

z2, x2

�����
�����:

207. It is, then, permitted to write generally, in this species of anharmonic transformation
of coordinates, the formulñ:

x1 � ax � by � cz;

y1 � a9y � b9z � c9x;

z1 � a 0z � b 0x � c 0 y;

8><>:
in which the nine coef®cients,

a, b, c; a9, b9, c9; a 0, b 0, c 0,

are all arbitrary, although only their eight ratios are important. In fact, let us suppose that the
nine values of their coef®cients are assigned; and that we wish to interpret such data of
transformation, as having reference to the choice of a new unit triangle A1 B1 C1 and of a
new unit point O1. Since

a : b : c � á : â : ã,

a9 : b9 : c9 � á9 : â9 : ã9,

a 0 : b 0 : c 0 � á 0 : â 0 : ã 0,

8><>:
the assigned ratios of a, b, c will give as the position of the new side B1C1, for any point P on
which side we have the equation,

0 �
x, y, z
x2, y2, z2

x3, y3, z3

������
������ � áb � â y � ãz,

and therefore, also,

ax � by � cz � 0:

In like manner, the ratios of a9, b9, c9 will give us the position of the side C1 A1; and those of
a 0, b 0, c 0 will give the position of A1 B1. Six ratios of the 9 assigned coef®cients, a, . . . , c 0, are
therefore suf®cient, but not more than suf®cient, to determine the position of the new unit
triangle, including of course the positions of its three corners. And when we are also given the
two other ratios, a, a9, a 0, we have three (necessarily concurrent) right lines; as loci for the new unit
point, O1; because our formulñ of transformation give,

ax0 � by0 � cz0 � a9y0 � b9z0 � c9x0 � a 0z0 � b 0x0 � c 0y0 � 1:
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208. It follows, then, that eight distinct and independent coef®cients (or constants) of transforma-
tion are introduced by this Anharmonic Method, so even when it is con®ned, as we at present
con®ne it, to the plane and when only ratios are retained. And it is easy to foresee that there
will be, on the same or on similar principles, no fewer than ®fteen such independent constants,
or ratios for space. For we may already expect to ®nd, in applications of the Method to the
Geometry of Three Dimensions, ± on which I am not likely to enter in this Letter, ± if the four
anharmonic coordinates of a point P be denoted by w, x, y, z, (a notation to which however I
do not wish to be considered as pledged,) that we shall have four formulñ, such as the
following:

w1 � aw � bx � cy � dz;

x1 � a9x � b9y � c9z � d9w;

y1 � a 0 y � b 0z � c 0w � d 0x;

z1 � a -z � b -w � c -x � d - y;

8>>>>><>>>>>:
where all the sixteen coef®cients, a, . . . , d -, are arbitrary, although only their ®fteen ratios are
important; as depending upon, and conversely serving to determine, the ®ve points, or the
®ve planes, of reference, in that new System of what I have on that account proposed (in some
former letter) to denominate ``Quinquipunctual'', or ``Quinquiplanar Coordinates.'' ± Mais,
revenons aÁ nos moutons: let us stick for the present, to the plane, and be content with
quadripunctual, or with quadrilinear coordinates.

209. As an example of such transformation of anharmonic coordinates within the plane, let
us take the equation of article 114 of a cubic curve,

U � (c3 ÿ 1)s3 � 27xyz � 0;

where s � x � y � z, and c is an arbitrary constant. The old or given unit-triangle is here a
triangle of tangents of in¯exions; and we now propose to substitute for it a triangle of chords of
in¯exion; retaining, still, as unit-line, that real right line s � 0, which connects the three real
points of in¯exion. The new coordinates of an arbitrary point P are soon found to be, in this
example, the following linear functions of the old ones:

x1 � (c ÿ 1)s � 3x

3c
; y1 � (c ÿ 1)s � 3 y

3c
; z1 � (c ÿ 1)s � 3z

3c
;

whence

s1 � x1 � y1 � z1 � s,

and therefore,

3x � 3cx1 � (1ÿ c)s1; 3y � 3cy1 � (1ÿ c)s1; 3z � 3cz1 � (1ÿ c)s1:

It follows that the transformed equation of the curve is,
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U

3c2
� (c3 ÿ 1)s3

1 � f(1ÿ c)s1 � 3cx1gf(1ÿ c)s1 � 3cy1gf(1ÿ c)s1 � 3cz1g
3c2

� (c3 ÿ 1)� (1ÿ c)3 � 3c(1ÿ c)2

3c2
s3

1 � 3(1ÿ c)s1(x1 y1 � y1z1 � z1x1)� 9cx1 y1z1

� (c ÿ 1)s1(s2
1 ÿ 3x1 y1 ÿ 3 y1z1 ÿ 3z1x1)� 9cx1 y1z1

� (c ÿ 1)(x1 � y1 � z1)(x3
1 � y3

1 � z3
1 ÿ y1z1 ÿ z1x1 ÿ x1z1)� 9cx1 y1z1

� (c ÿ 1)(x3
1 � y3

1 � z3
1)� 3(2c � 1)x1 y1z1 � 0:

But this, when we suppress the lower accents, and multiply by the number 3, is precisely that
modi®cation of the canonical form of the cubic, which was introduced in article 117, as giving
the same S and the same T, as the curve

(c3 ÿ 1)s3 � 27xyz � 0,

with which in the present article, and in article 114, we set out this last curve, and the curve

(c ÿ 1)ss9s 0� 9cxyz � 0,

where (as in article 117),

s9 � x � èy � è2z, s 0 � x � è2 y � èz,

are therefore absolutely the same cubic, only referred to different triangles.

210. Perhaps it may not be too much of a digression here, if I enter into some account of
what led me to ®x my attention, for a while, on another form (article 91) of the equation of a
cubic; or on the equivalent but later form (article 121). But I must exhibit brie¯y the reduction
of the earlier form, namely

U � s3 � 6kzp � 0,

(articles 91, 92, &c.) when s � x � y � z, as before; p � x2 � xy � y2; and k is an arbitrary
constant, to the known canonical form

x3 � y3 � z3 � 6mxyz � 0,

by a suitable transformation of coordinates.

211. The three real points of in¯exion are here (by articles 97, 98, and 121),

K � (1, ÿ1, 0), K 9 � (1, c, c), K 0 � (c, 1, c),

where c is the real root of the cubic equation

(2c � 1)3 � 6kc(c2 � c � 1) � 0;

so that we may eliminate k (as in article 121), and denote

c(c2 � c � 1)U � c(c2 � c � 1)s3 ÿ (2c � 1)3zp � 0,

as a form for the equation of the cubic curve now under discussion. Its three real points of
in¯exion are on the right line which has for its equation in the older given coordinates,
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KK 9K 0 : c(x � y)ÿ (1� c)z � 0;

and we propose to take this line for the new unit line, so as to have

c(x � y)ÿ (1� c)2 � í(x1 � y1 � z1),

where í is some constant coef®cient. Again by equation II of article 98, the three real right
lines, of which each passes through one real and through two imaginary points of in¯exion,
are for the present curve the following:

KIJ : x � y � z � 0; K 9I 9J 9 : y ÿ z � 0; K 0I 0J 0 : z ÿ x � 0;

and we shall take these lines for the sides A9B9, B9C9, C9A9, of the new unit-triangle, writing thus

y ÿ z � kx1, z ÿ x � ë y1, x � y � z � ìz1,

where k, ë, ì are constants. These four assumed equations between old and new coordinates
become compatible, when we select the four new constants as follows:

k � ÿë � 3(c ÿ 1); ì � 3(2c � 1); í � (c ÿ 1)(2c � 1);

and then we have formulñ of transformation,

x � (c ÿ 1)(ÿx1 � 2 y1)� (2c � 1)z1;

y � (c ÿ 1)(2x1 ÿ y1)� (2c � 1)z1;

z � ÿ(c ÿ 1)(x1 � y1)� (2c � 1)z1;

which give

s3 � 27(2c � 1)3z3
1;

p

3
� x2 � y2 � (x � y)2

6
� (c ÿ 1)2(x2

1 ÿ x1 y1 � y2
1)� (c ÿ 1)(2c � 1)(x1 � y1)z1 � (2c � 1)2z2

1;

pz

3
� ÿ(c ÿ 1)3(x3

1 � y3
1)ÿ 3(c ÿ 1)2(2c � 1)x1 y1z1 � (2c � 1)3z3

1:

But

9c(c2 � c � 1)ÿ (2c � 1)3 � (c ÿ 1)3;

therefore

c(c2 � c � 1)

3(c ÿ 1)2(2c � 1)3
U � (c ÿ 1)(x3

1 � y3
1 � z3

1)� 3(2c � 1)x1 y1z1 � 0;

and the reduction to the canonical form has been accomplished.

212. We see, then, the three cubic forms of article 122, namely,

I: U � 3(c ÿ 1)ss9s 0� 27cxyz,

II: U � (c3 ÿ 1)s3 � 27xyz,

III: U � 9c(1� c � c2)(1� 2c)ÿ2s3 ÿ 9(1� 2c)zp,

8>><>>:
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with the recent meanings of p, s, s9, s 0, and with one common value of the constant c, have not
only, as in the cited article, one common set of values of S, T, and

����
R3
p

, namely,

S � 2ÿ436(1� 8c3),

T � 2ÿ339(1ÿ 20c3 ÿ 8c6),����
R3
p � 36c(1ÿ c3),

8>><>>:
(which are all decomposable, as in article 122, into linear factors), but also, when equated to
zero, represents absolutely the same cubic curve, only compared with different systems of points and
lines of reference. Indeed, I suppose that wherever both S and T have the same values, including
signs, for any two cubic curves, not affected with any of the singularities, which answer to the case
R � 0; or (which comes to the same thing), when S9 � e 4S , and T 9 � e 6T , if S and T belong
to the one cubic, and S9, T 9 to the other, while e is any real constant, then either curve may be
identi®ed with the other, by mere transformation of coordinates, as in the examples given

above. But I think that we are not at liberty to change the sign of T ; and therefore that
T 2

S3
is not

suf®cient to determine the curve, in all its essential properties: although I grant that it determines
the six anharmonics of the pencil of tangents. (Compare the two subcases of article 123, &c.) And
when there is a double point, (R � 0,) whether nodal or conjugate, we seem to have found, in
article 133, that then the functions S and T take cognizance (so to speak) only of the course of
the curve in the immediate neighbourhood of that singular point : and consequently that their
values are in this case insuf®cient to determine the whole of the cubic. In fact, we saw (in article
131, &c.) that if we suppose c1, c2, c3, to vanish, so that

U � a1x3 � 3a2x2 y � 3b1xy2 � b2 y3 � 3z(a3x2 � 2dxy � b3 y2),

then although the four coef®cients a1, a2, b1, b2, thus enter into the given cubic function U, (and
also into its Hessian H,) they do not enter at all into the composition of S and T ; which latter
functions of the constants were found to be expressed by the formulñ,

S � (d2 ÿ a3b3)2; T � ÿ8(d2 ÿ a3b3)3:

Thus, S and T would in this case remain unaltered, (their signs being, as above, included in
their values,) if we were to reduce the cubic to a system of three right lines, namely the line z � 0,
and the two (real or imaginary) tangents to the curve at the singular point (0, 0, 1). Leaving,
however, at least for the present, the consideration of such singularities, I proceed to answer
the question at the beginning of article 210, or to show what led me to discuss, with some
detail, the form U � s3 � 6kzp, of article 91, &c.

213. You may remember that I had my doubts, after I had begun to write this Letter,
whether Salmon held it to be proved, that a cubic curve has always three real points of in¯exion;
allowance being made for the possible absorption of such points, by a double point of the curve:
which allowance I did not suf®ciently make at ®rst, in endeavouring to interpret some parts
of the phraseology of HPC. At this moment, I have not beside me the notes in which you
referred me to pages of that very able and important Work, suf®cing not only to clarify the
Author's own conviction on the subject, but also to supply geometrical grounds for that
conviction; on which grounds I am quite willing to accept, as satisfactory to a candid inquirer,

308 III . LETTER TO HART ON ANHARMONIC COORDINATES



or (let us say) to a docile student : such as I wish to be, in whatever degree it is permitted to be
one, although haunted and disturbed perpetually, by aspirations after knowledge more
complete.

214. I admit that Section III., of Chapter III., ± and especially the Figures in page 145 of
HPC, ± may be considered to leave no reasonable doubt, on the mind of a geometrical student, as
to the existence of three real in¯exions on any cubic of the sixth class. Yet there seems to be
something unsatisfactory, ± as, in a note of yours (not just now at my hand), I thought that
you appeared to admit, ± in our being obliged to appeal so much to considerations of Shape,
± and in fact to what our eye can take in, ± when we are dealing virtually with this question of
pure Algebra: Whether that Equation of the Ninth Degree, which results from elimination
between the two equations,

U � 0, H � 0,

of the original cubic and of its Hessian, can ever have eight imaginary roots? For it is,
substantially, this Question, and not any that relates to visible Flexures of the Curve, which we
are called upon to investigate. And, charmed as I always am, with any help which Algebra can
derive from Geometry, I confess that, as an algebraist, I cannot help myself from even still
feeling, that we are expected to place too much reliance on our own power, or want of power, of
imagining Geometrical Form, when we are asked to draw so important, so general, and so
algebraical a conclusion, as that which I have just now referred to, from the reasonings and
the diagrams of the Section above cited.

215. Quite recently, ± at least long since this Letter was begun, ± I have happened to see a
Note (numbered as XII.), to the Second Edition ([Paris] 1854) of Serret's ``Cours d'Algebra
SupeÂrieure''�, which note is entirely devoted to an account of Hesse's own Analysis respecting
the Nine Points of In¯exion of a Curve of the Third Degree, and the Equation of the Ninth
Degree which determines them. It is only in a very cursory way that I have yet attempted to
read the cited Note: but its mere Title, ± ``Sur la ReÂsolution AlgeÂbrique de l'EÂquation du
NeuvieÁme DegreÂ, aÁ laquelle conduit la Recherche des Points d'In¯exion des Courbes du
TroisieÁme DegreÂ,'' ± is suf®cient to show that it must have a very important bearing upon the
present Subject. Serret says, in his page 539: ``L'analyse de M. Hesse est assez remarkable
pour que je croie devoir la reproduire ici:'' I suppose we may consider the twenty following
octavo pages in French to be, at least substantially, translated from the German of Hesse,
which I cannot at present consult. Now, just at the middle of the Note in question (page
549), I ®nd the following passage:

``On voit donc qu'une courbe reÂelle du troisieÁme degreÂ ne peut avoir plus de trois points d'in¯exion

reÂels, lesquels sont toujours en ligne droite, d'apreÁs le theÂoreÁme I. Je dis, en outre, qu'il y a effectivement

des courbes du troisieÁme degreÂ qui ont trois points d'in¯exion reÂels. Par exemple, la courbe dont
x

y
,

y

z

� �
deÂsignent les coordonneÂes rectilignes et qui a pour eÂquation

� [Joseph Alfred Serret, 1819±1885.]
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y � x3 ÿ xz2

3x2 � z2
,

est rencontreÂe par l'arc des abscisses en trois points d'in¯exion reÂels.''

216. I suppose that we may admit that when Hesse wrote the Memoir thus translated, or in
some form reproduced, he was not aware of any proof of the general reality of so many as three
roots, of his equation of the ninth degree; since otherwise he was not likely to have taken the
pains to give so simple looking an example (the correctness of which I have not thought it
necessary to verify) of there being sometimes three such real roots. My own reading on these
subjects, as I believe that you well know, or can guess, is indeed of very small extent; but I still
think that an algebraical proof, ± even if mixed with some geometry, ± of the impossibility of eight
imaginary roots in the equation of the ninth degree, which (as above) results from the given
cubic and its Hessian, is a desideratum in this theory. And my object in discussing that (only
partially symmetric) form of the cubic U, which was introduced in article 91 of this Letter, was
to contribute something towards the supplying of a want, which was then supposed by me to
exist.

217. I therefore started with the much more easily proved and indeed unquestioned
theorem, that there always exists at least one real point of in¯exion on any real cubic: assuming
also, as a thing admitted, that at least one real right line can be drawn through that point, so as

to contain two other points of in¯exion, real or imaginary. In fact, the biquadratic equation in
ë

ì
has, by its known form, always two real roots, one positive and the other negative; but it was
suf®cient for my purpose to know that it had always at least one real root : and therefore that
there was always at least one real and linear combination, of the form

ëìU � ìH � 0,

representing a system of three chords of in¯exion, whereof one chord at least must be real. I took
that real chord for my (anharmonic) unit-line; the real point of in¯exion upon it for the point
C9 � (1, ÿ1, 0); and the tangent at that point for the side AB, or z � 0, or [0, 0, 1] of the unit-
triangle. Assuming also for argument's sake, that the two other points of in¯exion on the same
chord were imaginary, I denoted them by the symbols (1, è, è2) and (1, è2, è), as my method
allowed me to do; and chose the real intersection of the two imaginary tangents at those points
for the corner C or (0, 0, 1) of the unit-triangle. This led me to the form

U � s3 � 6kzp � 0,

of article 92; and because this succeeded in proving that there were, with these suppositions, two
other real points of in¯exion, I inferred, ± in a way satisfactory to myself at least, ± that there were
always three such real points.

218. The calculations might, with little increase of trouble, have been presented more
generally as follows. The side AB, or z � 0, of the unit-triangle being still supposed to touch
the curve at the point C9, or (1, ÿ1, 0), where it meets the unit-line, and this real point of
contact C9 it being still supposed to be a point of in¯exion, let the unit-line A9B9C9, or
x � y � z � 0, or s � 0, be still supposed to meet the curve in two other points of in¯exion,
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respecting which we shall only now assume that the real intersection of the two (real or
imaginary) tangents at them is made, as before, the corner C, or the point (0, 0, 1), of the unit-
triangle. Then the equation of the pair of those two tangents to the cubic will be a quadratic of
the form,

v � ax2 � 2bxy � cy2 � 0,

in which the coef®cients a, b, c are real, but may satisfy either of the two inequalities,

I: b2 ÿ ac . 0, or II: b2 ÿ ac , 0:

In the Ist case, the quadratic has two real roots, answering to two real points of in¯exion of the
unit-line, besides the assumed point of in¯exion C9, so that in this case there is no question
about the existence of three real points of in¯exion. In the IInd case, ± which includes that of
articles 91 &c., ± the quadratic has imaginary roots, and the two other points of in¯exion on the
unit-line (additional to the given real point C9) are imaginary points; although the tangents to
the curve at those points still meet, as before, in the real corner C of the unit-triangle. But in
each case, the equation of the cubic takes the form, which we shall now proceed to discuss,

U � s3 � 3vz � 0;

where

s � x � y � z, and v � ax2 � 2bxy � cy2,

as above, while a, b, c are arbitrary constants.

219. Introducing, for the sake of homogeneity of constants, another coef®cient e, or writing

U � es3 � 3vz,

differentiation gives, on the plan of the expressions,

l � 1
3DxU � es2 � 2(ax � by)z,

m � 1
3DyU � es2 � 2(bx � cy)z,

n � 1
3DzU � es2 � v;

l9 � 1
6D2

x U � es � az,

m9 � 1
6D2

yU � es � cz,

n9 � 1
6D2

z U � es;

l 0 � 1
6DyDzU � es � bx � cy,

m 0 � 1
6DzDxU � es � ax � by,

n 0 � 1
6DxDyU � es � bz;

whence (writing out for my own convenience the calculations at full length) we have the
combinations,
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l9l 02 � e 3s3 � e 2s2(2bx � 2cy � az)� es(bx � cy)(bx � cy � 2az)� az(bx � cy)2,

m9m 02 � e 3s3 � e 2s2(2ax � 2by � cz)� es(ax � by)(ax � by � 2cz)� cz(ax � by)2,

n9n 02 � c3s3 � 2e 2s2bz � esb2z2,

ÿl9m9n9 � ÿe 3s3 ÿ e 2s2(a � c)z ÿ esacz2,

ÿ2l 0m 0n 0 � ÿ2e 3s3 ÿ 2e 2s2f(a � b)x � (b � c)y � bzg
ÿ 2esf(ax � by)(bx � cy)� (ax � by)bz � (bx � y)bzg
ÿ 2bz(ax � by)(bx � cy);

so that the Hessian for the present form of U, is

H � l9l 02 � m9m 02 � n9n 02 ÿ l9m9n9ÿ 2l 0m 0n 0

� csX � zZ ,

where

X � f(ax � by)ÿ (bx � cy)g2 � 2(c ÿ b)(ax � by)z

� 2(a ÿ b)(bx � cy)z � (b2 ÿ ac)z2,

� (b2 ÿ ac)(z ÿ x ÿ y)2 � (ac ÿ b2)(x � y)2 � f(ax � by)ÿ (bx � cy)g2,

� (b2 ÿ ac)(x � y ÿ z)2 � (a ÿ 2b � c)(ax2 � 2bxy � cy2);

Z � c(ax � by)2 � a(bx � xy)2 ÿ 2b(ax � by)(bx � xy),

� (ac ÿ b2)(ax2 � 2bxy � cy2);

and therefore, ®nally, since

ax2 � 2bxy � cy2 � v,

H � (b2 ÿ ac)es(x � y ÿ z)2 � f(a ÿ 2b � c)es � (ac ÿ b2)zgv:

220. We have therefore the obvious combination,

(b2 ÿ ac)U � 3H � esY ;

where

Y � (b2 ÿ ac)f(x � y � z)2 � 3(x � y ÿ z)2g
� 3(a ÿ 2b � c)(ax2 � 2by � cy2)

� (b2 ÿ ac)(x � y ÿ 2z)2 � 3f(a ÿ b)x � (b ÿ c)yg2

which is equal to a product of two linear factors; which are evidently real, when the factors of
v are imaginary; although they are, on the other hand, imaginary, when those of v are real. It
follows, then, that ``the system of the two new chords of in¯exion, represented by the equation
Y � 0, is real or imaginary, represented by the equation v � 0, is imaginary or real ''; that is,
according as the second, or the ®rst, of the two inequalities in article 218, is satis®ed: and it may
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be noticed that in each case, and for all values of the constants a, b, c, e, the two chords of
in¯exion (Y � 0) intersect each other in a real point, which is situated on the given right line,

x � y ÿ 2z � 0, or OC9;

this intersection having been (as in article 94) the unit-point O itself, when we had the
relation

a � 2b � c,

as in the less general form of article 91. Our analysis therefore enables us to conclude, that
``when two of the points of in¯exion on the given chord s � 0 are imaginary, there exist generally two
real points of in¯exion, distinct from the given real point C9 and situated on those two other real chords,
which are then represented jointly by the equation Y � 0.'' And I must say that my own conviction, of
the general existence of three real points of in¯exion on a cubic, rests mainly, at present, on this
argument.

221. The six points of in¯exion, whether some real or all imaginary, which are the
intersections of the pair of chords Y � 0 with the given cubic U � 0, ought to be arranged
upon a new System of three chords, through the given point of in¯exion C9. Accordingly, if we
write

W � (a ÿ 2b � c)es3 � 4(ac ÿ b2)zfz2 ÿ (x � y)z � (x � y)2g,
the elimination of v between the two equations,

U � 0, Y � 0,

will conduct to the equation

W � 0,

which is of cubic form with respect to
x � y

z
, and therefore represents a system of three right

lines through that given point C9: our analysis receiving thus a veri®cation.

222. If we substitute for x � y its value s ÿ z, and write, for conciseness,

9(a ÿ 2b � c)e

4(ac ÿ b2)
� g ,

we have

9W

4(ac ÿ b2)
� gs3 � 3s2(3z)ÿ 3s(3z)2 � (3z)3;

this cubic function equated to zero gives therefore the values of
3z

s
for the three chords of

in¯exion through C9, drawn to the points for which Y � 0; and if we combine with these the
given chord s � 0, we shall have all the nine points of in¯exion, answering to the System of the
two equations, U � 0, H � 0, as contained upon the pencil of four chords through C9, (the
vertex C9 being included,) which pencil is represented by the biquadratic equation

0 � gs4 � 3(3z)s3 ÿ 3(3z)2s2 � (3z)3s;
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or

0 � As4 � 4Bs3(3z)� 6Cs2(3z)2 � 4Ds(3z)3 � E(3z)4,

where

A � 4g , B � 3, C � ÿ2, D � 1, E � 0:

Hence, for this pencil,

12S � AE ÿ 4BD � 3C2 � 0,

whatever the values of the constants a, b, c, e may be; and therefore, by articles 200, &c., ``This
pencil of four chords of in¯exion is di-anharmonic '': which agrees with my Theorem of article 159,
and is a new veri®cation of the analysis.

223. Writing á3 ÿ 1 instead of g, and supposing for simplicity that á is real, so that

á �
�����������������������������������������������

1� 9(a ÿ 2b � c)e

4(ac ÿ b2)

� �
3

s
,

the cubic equation W � 0 gives for the three new chords the three separate equations,

3z

s
� 1ÿ á;

3z9

s9
� 1ÿ èá;

3z 0

s 0
� 1ÿ è2á;

one being thus a real right line, and the two others being imaginary lines, although they all pass
through the given and real point of in¯exion C9. Hence the anharmonic of the pencil of
the four chords, including the given unit-line, and treating it as the ®rst of the four, while the
three others follow in the order written above, is (by the principles of article 184, &c.) the
following:

h � 1, 0
1ÿ á, 1

���� ���� 1ÿ èá, 1
1ÿ è2á, 1

���� ���� :
1ÿ á, 1

1ÿ èá, 1

���� ���� 1ÿ è2á, 1
1, 0

���� ���� � (è2 ÿ è)á

(1ÿ è)á
� ÿè

and thus the di-anharmonic property of the pencil (compare article 159) is proved anew.

224. It may be remembered here that, for any point P, we have
3z

s
� (C9:PAOA9), and

therefore 1ÿ 3z

s
� (C9:POAA9); if then P, P 9, P 0 be any points on the three new chords, we

have the relations,

(C9:P 9OAA9) � è(C 9:POAA9),

(C9:P 0OAA 0) � è2(C9:POAA9);

and consequently,

(C9:POAA9)3 � (C 9:P 9OAA9)3 � (C9:P 0OAA9)3 � á3:

If we make e � 1, and a � 2b � c � 2k, so as to return to the particular form (articles 91 and
92)

U � s3 � 6kzp,

we have
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á3 � 1� 3

2k
;

so that the cube roots of this last constant are then the values of the anharmonic (C9:POAA9)
for the System of three new chords through C9. But we had, in article 96, for the new chord
C9K 9K 0, an equation which may be written thus,

3z

s
� 3(w ÿ 4ÿ 2k)

2(w � k)
, or 1ÿ 3z

s
� 4(3� 2k)ÿ w

2(w � k)
,

with corresponding equations for the two other chords, C9I 9I 0, and C9J 9J 0, formed by
changing w to w9 and w 0, that is, to the two other roots of a certain cubic equation (article
95); that cubic equation in w ought therefore to admit of being written under the form,

4(3� 2k)ÿ w

2(w � k)

� �3

� 1� 3

2k
,

or,

kfw ÿ 4(3� 2k)g3 � 4(3� 2k)(w � k)3 � c;

and accordingly when we expand these cubes, and divide the result by 3(4� 3k), we get the
equation

w3 � 12k(3� 2k)w ÿ 4k(3� 2k)(12� 7k) � 0,

exactly as in article 95.

225. The examination of the roots w, w9, w 0 of that Cubic equation supplies another
interesting veri®cation of the theory of the di-anharmonic property of the pencil of four
chords, which has only recently occurred to me. A given chord being still the unit-line, s � 0,
but the three other chords through C9 be the lines z � ôs, z � ô9s, z � ô 0s; the anharmonic of
the pencil is then

h � 1, 0
ô, 1

���� ���� ô9, 1
ô 0, 1

���� ���� :
ô, 1
ô9, 1

���� ���� ô 0, 1
1, 0

���� ���� � ô9ÿ ô 0

ô9ÿ ô
� ÿé,

where

é � è�1,

by the property referred to; an ambiguous exponent being thus used, to allow of variety of
arrangement of the chords, or rays of the pencil. In each case, é2 � é� 1 � 0, and
ô� éô9� é2ô 0 � 0; wherefore the relation

ô2 � ô92 � ô 02 ÿ ô9ô 0ÿ ô 0ôÿ ôô9 � 0,

or

(ô� ô9� ô 0)2 � 3(ô9ô 0� ô 0ô� ôô9),

must hold good for all such arrangements. If then we suppose that ô, ô9, ô 0 are the three roots
of the following cubic,

aô3 ÿ 3bô2 � 3côÿ d � 0,
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(where a, b, c are new constants,) the coef®cients a, b, c of this new cubic must satisfy the
equation of condition

b2 ÿ ac � 0:

226. It is worth observing that this equation between the new coef®cients can be deduced,
in a quite different way, as follows, from the same di-anharmonic theorem or property.

The equation of the pencil of the four chords being

0 � as(ôs ÿ z)(ô9s ÿ z)(ô 0s ÿ z) � s(ds3 ÿ 3czs2 � 3bz2s ÿ az3),

or

0 � As4 � 4Bs3z � 6Cs2z2 � hDsz3 � Ez4,

when

A � 9, B � ÿ3c, C � 2b, D � ÿa, E � 0,

we must have, by the theorem

0 � 12S � AE ÿ 4BD � 3C2 � 12(b2 ÿ ac)

or b2 � ac, as before. And it is now proposed to prove that this relation does in fact exist,
between the coef®cients of the cubic of which the roots are ô, ô9, ô 0; or (which will do as well),
any linear functions of those quantities, such as ëô� ì, ëô9� ì, ëô 0� ì; when

2ô � 2z

s
� w ÿ 4ÿ 2k

w � k
� 1ÿ 4� 3k

w � k
,

2ô9 � 1ÿ 4� 3k

w9� k
, 2ô 0 � 1ÿ 4� 3k

w 0� k
:

227. It is suf®cient, then, to make

w � k � vÿ1

and to try whether, on eliminating w by this from the cubic equation in article 95, which was
lately cited in article 224, the resulting equation

av3 ÿ 3bv2 � 3cvÿ d � 0,

or

d(w � k)3 ÿ 3c(w � k)2 � 3b(w � k)ÿ a � 0,

has its coef®cients a, b, c connected by the recent relation b2 � ac; whatever value the
remaining coef®cient d may happen to have. Now it is easy to perform the elimination here
required, which is found to give the coef®cients:

a � 9k(4� 3k)2, b � 3k(4� 3k), c � k, d � 1;

in fact these give 3kd ÿ 3c � 0, 3k2d ÿ 6kc � 3b � 12k(3� 2k),

k3d ÿ 3k2c � 3bk ÿ a � ÿ4k(3� 2k)(12� 7k),

whence, by substituting them in the last cubic in w � k, we are led back to the cubic (article
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95) in w. And it is evident that a, b, c have the required relation; so that this expectation of
theory is ful®lled.

228. Again, since the calculations of the last article show that the three roots, v, v9, v0, of the
cubic in v, or in (w � k)ÿ1, are connected by the relation,

0 � v2 � v92 � v 02 ÿ v9v 0ÿ v 0vÿ vv9

� (v� èv9� è2v 0)(v� è2v9� èv 0),

it follows that we must have one or other of the two factor equations

I. 0 � v� èv9� è2v 0,
or

II. 0 � v� è2v9� èv 0;
that is, either

I. 0 � 1

w � k
� è

w9� k
� è2

w 0� k
,

or

II. 0 � 1

w � k
� è2

w9� k
� è

w 0� k
;

which it is necessary here to distinguish, because the expressions for w9 and w 0, in article 95,
already involve è and è2. Nor did I at once see how to decide between these two last
alternatives; until the following analysis occurred to me.

229. Writing, as their common expression, the formula

0 � 1

w � k
� é

w9� k
� é2

w 0� k
,

when as before, é � è�1, and clearing of fractions, I had

0 � (w9� k)(w 0� k)� é(w 0� k)(w � k)� é2(w � k)(w9� k)

� w9w 0� éw 0w � é2ww9ÿ k(w � éw9� é2w 0):

But the three roots w, w9, w 0 were assigned in article 95 under the forms

w � w1 � w2, w9 � èw1 � è2w2, w 0 � è2w1 � èw2;

hence

w9w 0� éw 0w � é2ww9 � (1� éè2 � é2è)w2
1 � (1� éè� é2è2)w2

2,

and

w � éw9� é2w 0 � (1� éè2 � é2è)w2 � (1� éè� é2è2)w1;

we are therefore to prove that the ambiguous exponent of è in é can be so selected as to give

0 � (1� éè2 � é2è)(w2
1 ÿ kw2)� (1� éè� é2è2)(w2

2 ÿ kw1);

which can only be by our having either
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w2
1 � kw2, or w2

2 � kw1;

the ®rst alternative answering to é � è, and the second to é � è2. Hence, on comparing the
values in article 95 of the constants w1 and w2, namely w1 � k92 k 0, w2 � k9k 02, we see that we
are to try whether ®rst, k93 � k; or, second, k 03 � k. And because, on referring to article 95,
we ®nd that the ®rst, but not the second, of these two last equations to be good, we infer
®nally that we are to take the value é � è�1 � è; or that the roots w, w9, w 0 of the cubic in
article 95 are connected by the equation

I. 0 � (w � k)ÿ1 � è(w9� k)ÿ1 � è2(w 0� k)ÿ1,

but not by the equation II. of article 228; at least if we still make è and è2 enter into w9 and
w 0, in the same way as we did in that article 95, which has been so often lately referred to.

230. As another veri®cation, though not an important one, it ought to be found (cf. article

223) that the product of the three values of
3z

s
in article 224, is equal to 1ÿ á3; or that

9k(w ÿ 4ÿ 2k)(w9ÿ 4ÿ 2k)(w 0ÿ 4ÿ 2k)� 4(w � k)(w9� k)(w 0� k) � 0;

where w, w9, w 0 are still the roots of the same cubic of article 95 or writing for abridgement
4� 3k � ä, and (as in article 227), w � k � vÿ1, we ought to have

0 � 9k(1ÿ äv)(1ÿ äv9)(1ÿ äv 0)� 4;

v, v9, v 0 being the roots of the cubic in v, resulting from elimination of w. But this latter cubic
has been found (article 227) to be

0 � kä2v3 ÿ 9käv2 � 3kvÿ 1,

or

0 � (3ävÿ 1)3 � 1ÿ 3ä

k
;

whence

ä(v� v9� v 0) � 1,

3ä2(v9v 0� v 0v� vv9) � 1,

9kä3vv9v 0 � ä;

therefore

9k(1ÿ äv)(1ÿ äv9)(1ÿ äv 0)� 4 � 9k ÿ 9k � 3k ÿ ä� 4 � 0,

and the veri®cation succeeds. (Of course, the process may be varied.)

231. Since I have been thus led to speak again of some of the earlier formulñ of this Letter
respecting cubics, I shall just observe here that the equations of article 99 (for example), for
the twelve chords of in¯exion of the curve (articles 91 and 92)

U � S3 � 6kzp � 0,

as well as the coordinates of the 9 points of in¯exion themselves, for the same cubic, assigned
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in article 97, be considerably simpli®ed, by introducing the constant c of article 121, namely
the real root of the cubic equation of article 211,

(2c � 1)3 � 6kc(c2 � c � 1) � 0:

Writing

t9 � 1� 2è2c, v9 � è2 ÿ èc,

t 0 � 1� 2èc, v 0 � èÿ è2c,

so that

v 0ÿ èv9 � èÿ 1, v9ÿ è2v 0 � è2 ÿ 1,

v 0ÿ è2v9 � (1ÿ è2)c, v9ÿ èv 0 � (1ÿ è)c,

è2v 0ÿ t9 � (1ÿ è2)c, èv9ÿ t 0 � (1ÿ è)c,

so we have the following

Table of Coordinates of the Nine Points of In¯exion
K � (1, ÿ1, 0); K 9 � (1, c, c); K 0 � (c, 1, c);
I � (1, è, è2); J 9 � (t 0, v 0, v 0); I 0 � (v9, t9, v9);
J � (1, è2, è); I 9 � (t9, v9, v9); J 0 � (v 0, t 0, v 0):

232. We have also the following

Table of Coordinates of the Twelve Chords of In¯exion
I. [c, c, ÿ1, ÿc]; [v 0, ÿèv9, c ÿ èc]; [v9, ÿè2v 0, c ÿ è2c];
II. [1, 1, 1]; [0, 1, ÿ1]; [ÿ1, 0, 1];
III. [v9, v9, ÿt9ÿ v9]; [c ÿ èc, v 0, ÿèv9]; [v 0, c ÿ èc, ÿèv9];
IV. [v 0, v 0, ÿt 0ÿ v 0]; [c ÿ è2c, v9, ÿè2v 0]; [v9, c ÿ è2c, ÿè2v 0].

The notation [l , m, n] having been already explained (articles 9, 79, 146, &c.) it is only
necessary to add that in constructing the foregoing Table of Coordinates of Chords, I have
followed the arrangement in article 99; namely

I. KK 9K 0, IJ 9I 0, JI 9J 0;
II. KIJ , K 9I 9J 9, K 0I 0J 0;
III. KI 9I 0, K 9IJ 0, K 0JJ 9;
IV. KJ 9J 0, K 9JI 0, K 0II 9:

233. Combining the equations thus grouped, and tabulating in order, the coordinates of
the intersection of the sides 2 and 3 of the triangle I as (I, 1) etc., we soon construct the
following

Table of Coordinates of the Twelve Corners of Triangles of Chords
1. (c, c, 1);

I. 2. (1 � è2c, è2 � c, ÿèc);
3. (1 � èc, è � c, ÿè2c).
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1. (1, 1, 1);
II. 2. (1, ÿ2, 1);

3. (ÿ2, 1, 1).

1. (è ÿ c, è ÿ c, è2 � 2èc);
III. 2. (1 ÿ 2c � èc, ÿ2 ÿ è2c, è ÿ c);

3. (ÿ2 ÿ è2c, 1 ÿ 2c � èc, è ÿ c).

1. (è2 ÿ c, è2 ÿ c, è � 2è2c);
IV. 2. (1 ÿ 2c � è2c, ÿ2 ÿ èc, è2 ÿ c);

3. (ÿ2 ÿ èc, 1 ÿ 2c � è2c, è2 ÿ c).

(Division of all the coordinates by 2c � 1 has been several times here employed.)

234. These Tables are not completely symmetrical; nor could it be expected, from the partially
unsymmetrical arrangement with which we geometrically started, in deducing the here
adopted form of article 91, that they should be so. But if we now employ the formulñ of article
211 of transformation of anharmonic coordinates, we arrive at the following new Tables, in
which we write

x1 � y ÿ z

c ÿ 1
, y1 � x ÿ z

c ÿ 1
, z1 � x � y � z

2c � 1
,

(x, y, z) � y ÿ z

c ÿ 1
,

x ÿ z

c ÿ 1
,

x � y � z

2c � 1

� �
1

changing also cyclically the arrangements of the points from 1, 2, 3 to 3, 1, 2 and multiplying
or dividing, where convenient, by any common factor:

Table of Transformed Coordinates of Points of In¯exion
K 9 � (0, 1, ÿ1)1; K 0 � (ÿ1, 0, 1)1; K � (1, ÿ1, 0)1;
J 9 � (0, 1, ÿè)1; I 0 � (ÿè, 0, 1)1; I � (1, ÿè, 0)1;
I 9 � (0, 1, ÿè2)1; J 0 � (ÿè2, 0, 1)1; J � (1, ÿè2, 0)1:

235. Table of Transformed Coordinates of Chords of In¯exion
(Arrangement cyclically altered from that of article 232, in each of the three latter groups of
chords.)

I1. [1, 1, 1]1; [1, è2, è]1; [1, è, è2]1;
II1. [1, 0, 0]1; [0, 1, 0]1; [0, 0, 1]1;

III1. [è, 1, 1]1; [1, è, 1]1; [1, 1, è]1;
IV1. [è2, 1, 1]1; [1, è2, 1]1; [1, 1, è2]1.

± I am not certain whether I shall devote any space to the general theory of such transformations
of coordinates of lines, before this Letter ends; but in the present instance the meaning and
validity of the resulting expressions are evident. Thus, the three symbols of the group I1 imply
that the nine points of in¯exion may be arranged on the three chords (K 9K 0K , J 9I 0I ,
I 9J 0J ), which have for their transformed equations

x1 � y1 � z1 � 0, x1 � è2 y1 � èz1 � 0, x1 � èy1 � è2z1 � 0;

and similarly for the three other groups.
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236. Table of Transformed Coordinates of Corners of Chord Triangles
I1. (1, 1, 1)1; [1, è, è2)1; (1, è2, è)1;

II1. (1, 0, 0)1; (0, 1, 0)1; (0, 0, 1)1;
III1. (è2, 1, 1)1; (1, è2, 1)1; (1, 1, è2)1;
IV1. (è, 1, 1)1; (1, è, 1)1; (1, 1, è)1.

This last Table may be constructed from the one in article 235, by seeking the intersection of
chords 2 and 3, chords 3 and 1, and chords 1 and 2, respectively, in each of the four groups
which have been tabulated in that article; or it may be deduced, by the transformations in
article 234, from the corresponding Table of article 233, with cyclical changes of arrangement
in the three latter groups. For example, from the corner 2 of Triangle I, in the last cited
Table, of which the coordinates are x � 1� è2c, y � è2 � c, z � ÿèc, we derive immediately
the transformed coordinates,

x1 � y ÿ z

c ÿ 1
� ÿè2, y1 � x ÿ z

c ÿ 1
� ÿ1, z1 � x � y � z

2c � 1
� ÿè;

which may then be changed, as in the Table of the present article, to the proportional
expressions, 1, è, è2. Or we may determine the new coordinates x, y, z, of this corner by the
system of the two linear equations,

x1 � èy1 � è2z1 � 0, x1 � y1 � z1 � 0,

which represent the two chords whereof the transformed symbols are [1, è, è2]1 and [1, 1, 1]1,
in the 1st Triangle of article 235. I see, indeed, that some of the formulñ of recent articles had
been in substance given before, (or at least formulñ connected with them) for instance in
articles 112, &c., and 211; but it may not have been quite useless to show how completely the
constant c disappears by this transformation of coordinates (article 211), from all expressions which
involve only the nine points of in¯exion, or the intersections of the chords connecting them, &c.

237. (May 7th, 1860) Although I may have something more to say respecting points of
in¯exion, and the various forms which the cubic equation may assume, when considered
relatively to those points, and to the tangents at them, as indeed I have suggested in some
separate notes, written during the progress of this Letter, yet it will not perhaps, be
considered an unpardonable violation of system, if I now resume the consideration of that
Theorem of Pure Geometry, which you mentioned to me a few weeks ago, and which has
recently been brought under my notice again, by a reperusal of your note of April 25th:
notwithstanding my having designed to content myself with such (rather long) discussion as I
had given to it, in articles 170 to 183, written before the last mentioned note arrived; which
articles I shall suppose to be within your reach, and of which therefore I shall here retain the
notations without any new explanation of them.

238. In articles 174, and 175, a construction was given for the point S, in which the right
line CP, drawn from the corner C of the given triangle to the point of contact P of two conics
or circles, of the question, met (as in the ®gure of article 148) the opposite side AB; but I
admit that this construction, or the ratio which it assigned between the segments AS, SB of
that side, was rather complicated. In articles 176 and 177, a much simpler construction, and one
more geometrically relevant (so to speak) was given; namely one for the point (L or M or N ) in
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which the common tangent LMN to the two conics, or circles drawn at the point P where they
touch one another, intersects any one of the three sides of the given triangle ABC; and I still
think (as in article 170) that any one of the three formulñ (article 177)

LB

CL
� a ÿ b

a ÿ c
,

MC

AM
� b ÿ c

b ÿ a
,

NA

BN
� c ÿ a

a ÿ b
,

which belong to the case of contact with the inscribed circle, is not only suf®cient to determine,
but also determines with suf®cient simplicity, the point of contact P, by assigning a point on one of
the sides from which a tangent to the inscribed circle is to be drawn. Perhaps, therefore, I
should have been content with this construction; if it had not been for your subsequently
received, but above cited, note of the 25th of last month [April]; and for the elegant and
simple determinations given in it, for the point above called P, on which my eye has later
fallen again, and which I wish to prove, and in some degree also to extend, by the Method of
Anharmonic Coordinates.

239. Your little ®gure (of April 25th) was perfectly clear, and therefore was, no doubt, more
elegant than one which involves so many lines and lettered points, as those which I have just
now amused myself, by introducing into the annexed Diagram (Figure 29). It represents, as
you see, a system of two circles; one with its centre at I, which is inscribed in the triangle ABC,
touching the sides thereof at the points A1, B1, C1; and the other, with centre K, bisecting
those sides in A 0, B 0, C 0, and intersecting them again in the feet A-, B -, C - of the three
perpendiculars from the points A, B, C, which are exhibited as meeting one another in a
point $. The two circles are seen to touch at a point P, their common tangent LMN at that
point being parallel to the mean side CA, and trisecting each of the extreme sides, AB, BC;
because it has been assumed, in the construction of this Diagram (Figure 29), that the three
sides of the triangle are, as regards their relative lengths,

a � 4, b � 3, c � 2;

whence, by my formulñ of article 178, cited in article 238, we have the three ratios of section

LB

CL
� � 1

2
;

MC

AM
� ÿ1;

NA

BN
� �2:

And so far, I have made no use of the information contained in your cited note on this
subject.

Fig. 29
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240. You inform me, however, in that Note, and I understand the reasoning by which you
prove it, although my memory is not familiar with all the elementary theorems to which you
refer, that if, on that arc of the bisecting circle (K ) which lies between the mean chord C 0A 0 and
the mean corner B (my own letters being here used), a point P be taken, whose distances C 0P
and A 0B from the extremities of that chord shall be proportional to the tangents C 0C1 and
A 0A1, which are drawn from the same points C 0 and A 0 to the inscribed circle (I ), we shall
then have the more full proportion of chords and tangents

A 0P : B 0P : C 0P � A 0A1 : B 0B1 : C 0C1;

whence you infer (I.), that the two circles touch, in the point P thus determined. And you
add, without proof, an elegant construction (II.) which may be thus described, for graphically
determining that point of contact :- Bisect, say in R, the arc B 0B - of the circle (K ), which is
remote from B; the right line RB1, drawn to the point of contact B1 of this side CA with the
circle (I ) will pass through the point P.

241. To investigate these things in my own way, I form ®rst the three following anharmonics
of pencils :

h � (A 0:B 0CC 0P); h9 � (B 0:C 0AA 0P); h 0 � (C 0:A 0BB 0P);

where I begin by supposing that P is any point (x, y, z) of the plane. The formula of article
151 gives, next,

h �
0, 1, 1
1, 0, 1
0, 0, 1

������
������

0, 1, 1
1, 1, 0
x, y, z

������
������ :

0, 1, 1
0, 0, 1
1, 1, 0

������
������

0, 1, 1
x, y, z
1, 0, 1

������
������ � ÿ z � x ÿ y

x � y ÿ z
;

and similarly,

h9 � ÿ x � y ÿ z

y � z ÿ x
, and h 0 � ÿ y � z ÿ x

z � x ÿ y
;

so that hh9h 0 � ÿ1.
But we had (in article 172), for the point P of contact of the two conics (U ) and (V ) the

coordinates,

x � á(âÿ ã)2; y � â(ãÿ á)2; z � ã(áÿ â)2;

whence the three recent anharmonics become, for that point

h � áÿ â

á� â
:
á� ã

áÿ ã
; h9 � âÿ ã

â� ã
:
â� á

âÿ á
; h 0 � ãÿ á

ã� á
:
ã� â

ãÿ â
:

Again, because (by article 174) the contacts of the conic (V ) with the sides are

A1 � (0, ã, â), B1 � (ã, 0, á), C1 � (â, á, 0)

we have (cf. article 174)

â

á
� (C1 BC 0A) � ÿ(C1 BC 9A);

and therefore
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1ÿ â

á
� (C1C 0BA), 1� â

á

� �ÿ1

� (C1 ABC 9);

so that

áÿ â

á� â
� (C1C 0BA):(C1 ABC 9) � (C1C 0BC 9) � ÿ(C1C 0AC 9),

and similarly for the rest. Hence, on the conic (U ), we have the three following anharmonics
of groups (cf. end of article 18):-

h � ((B 0A-C 0P)) � ÿ(C1C 0AC9) : (B1 B 0CB9) � (B1 B9AB 0):(C1C 0AC9);

h9 � ((C 0B -A 0P)) � ÿ(A1 A 0BA9) : (C1C 0AC 9) � (C1C9BC 0):(A1 A 0BA9);

h 0 � ((A 0C -B 0P)) � ÿ(B1 B 0CB9) : (A1 A 0BA9) � (A1 A9CA 0):(B1 B 0CB9);

of which, as a veri®cation, the product is negative unity. Already the expressions thus
obtained ± any one of which suf®ces to determine the point P, ± are not of great complexity;
but they become of course, much simpler, when we throw off the line A9B9C9 to in®nity:
giving then

h � AB 0

B1 B 0
:
C1C 0

AC 0
; h9 � BC 0

C1C 0
:
A1 A 0

BA 0
; h 0 � CA 0

A1 A 0
:
B1 B 0

CB 0
;

(U ) and (V ) being now two homothetic conics (article 177), whereof the former bisects and
the latter touches, the sides of the given triangle ABC. Supposing, ®nally, that these conics
become circles, and that the latter is inscribed, we have the anharmonics of circular groups,

h � b

c
:
a ÿ b

a ÿ c
, h9 � c

a
:

b ÿ c

b ÿ a
, h 0 � a

b
:
c ÿ a

c ÿ b
,

which are easily seen to contain the ®rst or the metric part of your construction. It may be
remarked that when a . b . c, we have not only h . 0, but also h , 1; whence it may be
inferred that P falls (as in Figure 29) between A- and C 0; which indeed is geometrically
evident.

242. If we now proceed to consider, ± and to transform, ± the second or graphic construc-
tion cited (in article 240) from your Note, and which I understand to be your own, it becomes
necessary to lay down rules for dealing with questions of bisection of angles, in that extended
Calculus, to which the present Letter relates. How am I to express, ± even as a thing to be
proved, ± that the chord PB1, of the inscribed circle bisects the angle B 0PB -? And how extend
this theorem, so as to meet the more general case of two mutually tangent conics?

243. For this purpose, it will be useful to consider ®rst the analogous extension of the relation
of perpendicularity of lines, of which we have already had an example in article 180; where the
elementary relation, mentioned by you in your ®rst note on the subject, namely that the
second intersection of the side with the bisecting circle is the foot of the perpendicular let fall from
the opposite corner of the triangle, or (with my symbols) that each of the angles A 0A-A,
B 0B -B, C 0C -C (as in Figure 29) is right, was replaced by the harmonic property of the pencil,
which had its vertex at that point of second intersection, and had the two perpendicular lines
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for conjugate rays, which the other pair of conjugates passed through the two (real or
imaginary) points Q, Q 9, in which (by articles 170 and 171) the two conics (U ) and (V )
intersected each other on the unit-line : these two latter points, Q and Q 9, being in fact what I
substitute, for the circular points at in®nity, in my treatment of this whole question. In short, I
stated in article 180 and proved in articles 181 and 182, the harmonic equation,

(A-:AQA 0Q 9) � ÿ1,

as my extension of the known theorem that AA- is, in the simple case of the bisecting circle,
perpendicular to A-A 0, or to BC.

244. Let it therefore be now proposed to investigate generally the relation which must exist
between the nine anharmonic coordinates of any three points

P � (x, y, z), P1 � (x1, y1, z1), P2 � (x2, y2, z2),

in order that we may have the harmonic relation,

(P :P1QP2Q 9) � ÿ1

when Q and Q 9 are still (as in article 170) the two real or imaginary points, ± for it is
important to observe that they may here be real, ± in which the given conic
ax2 � by2 � cz2 � 0, is cut by the given unit-line

x � y � z � 0:

For we shall thus obtain the condition of perpendicularity of PP1 to PP2, in that limiting case,
when the conic becomes a circle, and the unit-line goes off to in®nity.

245. Writing

Q � (x9, y9, z9), Q 9 � (x 0, y 0, z 0)

so that
x9

y9
and

x 0

y 0
are the roots of the quadratic equation

(a � c)x2 � 2cxy � (b � c) y2 � 0;

for which roots expressions were given in article 181, but respecting which it is suf®cient here
to observe that by the quadratic, we have the proportion,

x9x 0 : x9y 0� y9x 0 : y9y 0 � b � c : ÿ2c : a � c,

which, by the linear equation, we have also

x9� y9� z9 � 0, x 0� y 0� z 0 � 0;

the general theory of article 151 gives the following expression for the anharmonic function
of the pencil in question
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h � (P :P1QP2Q 9) �
x, y, z

x1, y1, z1

x9, y9, z9

��������
��������

x, y, z

x2, y2, z2

x 0, y 0, z 0

��������
�������� :

x, y, z

x9, y9, z9

x2, y2, z2

��������
��������

x, y, z

x 0, y 0, z 0

x1, y1, z1

��������
��������

�
x9, y9, z9

x, y, z

x1, y1, z1

��������
��������

x 0, y 0, z 0

x, y, z

x2, y2, z2

��������
�������� :

x 0, y 0, z 0

x, y, z

x1, y1, z1

��������
��������

x9, y9, z9

x, y, z

x2, y2, z2

��������
��������

or

h � (a1x9� b1 y9� c1z9)(a2x 0� b2 y 0� c2z 0)

(a1x 0� b1 y 0� c1z 0)(a2x9� b2 y9� c2z9)
,

if we write for conciseness,

a1 � y, z
y1, z1

���� ����, b1 � z, x
z1, x1

���� ����, c1 � x, y
x1, y1

���� ����,
a2 � y, z

y2, z2

���� ����, b2 � z, x
z2, x2

���� ����, c2 � x, y
x2, y2

���� ����:
The condition h � ÿ1 is therefore expressed by the equation

0 � 2a1a2x9x 0� 2b1b2 y9y 0� 2c1c2z9z 0� (b1c2 � c1b2)( y9z 0� z9y 0)

� (c1a2 � a1c2)(z9x 0� x9z 0)� (a1b2 � b1a2)(x9y 0� y9x 0),

which is, as it ought to be, symmetric relatively to the two points Q and Q 9, and will therefore
allow of our rationally eliminating the quotients x9 : y9 : z9 and x 0 : y 0 : z 0, and introducing
in their stead, the coef®cients a, b, c of the given equation of the conic.

246. If for this purpose, we ®rst eliminate linearly z9 and z 0, and write

a1 ÿ c1 � a91, b1 ÿ c1 � b91,

a2 ÿ c2 � a92, b2 ÿ c2 � b92,

the equation h � ÿ1 becomes

0 � (a91x9� b91 y9)(a92x 0� b92 y 0)� (a91x 0� b91 y 0)(a92x9� b92 y9)

� 2a91a92x9x 0� (a91b92 � b91a92)(x9 y 0� y9x 0)� 2b91b92 y9 y 0;

that is, by the proportion (article 245)

0 � (b � c)a91a92 ÿ c(a91b92 � b91a92)� (a � c)b91b92;

where the coef®cient of c is

a91a92 ÿ a91b92 ÿ b91a92 � b91b92 � (a91 ÿ b91)(a92 ÿ b92) � (a1 ÿ b1)(a2 ÿ b2);

also

a1 ÿ b1 � (x � y)z1 ÿ z(x1 � y1) � sz1 ÿ zs1
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and

a2 ÿ b2 � sz2 ÿ zs2,

if we make

s � z � y � z, s1 � x1 � y1 � z1, s2 � x2 � y2 � z2;

with other but quite similar reductions. Hence, ®nally, the sought condition comes out,
under the following very simple and symmetric form, and one from which determinants have
been eliminated:

0 � a(sx1 ÿ xs1)(sx2 ÿ xs2)� b(sy1 ÿ ys1)(sy2 ÿ ys2)� c(sz1 ÿ zs1)(sz2 ÿ zs2):

247. If this points P1, P2 happened to be on the unit-line we have then s1 � 0, s2 � 0, and
the last equation becomes still more simple, namely ±

ax1x2 � by1 y2 � cz1z2 � 0;

being indeed in this case, independent of the position of the point P, as it ought to be,
because the group P1QP2Q 9, having thus become collinear, has a value for its anharmonic
function, which is independent of the position of the vertex P of the pencil. Conversely, we
might have deduced, even more easily the last form ®rst, and then have inferred the other
from it. For the following formula for this group (supplied by article 188)

h � (P1QP2Q 9) � x1, y1

x9, y9

���� ���� x2, y2

x 0, y 0

���� ���� :
x9, y9
x2, y2

���� ���� x 0, y 0
x1, y1

���� ����,
would have reduced the harmonic relation h � ÿ1 to the form,

0 � (x1 y9ÿ y1x9)(x2 y 0ÿ y2x 0)� (x1 y 0ÿ y1x 0)(x2 y9ÿ y2x9)

� 2x1x2 y9 y 0� 2 y1 y2x9x 0ÿ (x1 y2 � y1x2)(x9y 0� y9x 0),

or, by article 245, and by the equation of the unit-line,

0 � (a � c)x1x2 � (b � c)y1 y2 � c(x1 y2 � y1x2)

� ax1x2 � by1 y2 � cz1z2,

as above. And if we now return to the more general supposition (article 244), that P1 and P2

are any points in the given plane, we easily ®nd that the intersections of the lines, PP1, PP2 with
the unit-line are the points (X 1, Y1, Z1) and (X 2, Y2, Z2), where

X 1 � sx1 ÿ xs1, Y1 � sy1 ÿ ys1, Z1 � sz1 ÿ zs1,

X 2 � sx2 ÿ xs2, Y2 � sy2 ÿ ys2, Z2 � sz2 ÿ zs2;

substituting therefore these values in the formula,

aX 1 X 2 � bY1Y2 � cZ1 Z2 � 0,

we recover the general equation of the foregoing article ± I am not sure whether I shall be
disposed, before the close of this long Letter, to enter upon any comparison of that equation
(article 246), with what I called in a much earlier article 46 a formula of anharmonic
perpendicularity, and reduced (in article 47) to the form
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l1 l91 � m1 m91 � n1 n91 � 0,

beyond observing that I then virtually supposed the constants a, b, c, to be equal, or employed
the imaginary conic x2 � y2 � z2 � 0. Instead of the slightly more general conic ax2 �
by2 � cz2 � 0, of article 244.

248. The two equations,

aX 1 X 2 � bY1Y2 � cZ1 Z2 � 0, X 2 � Y2 � Z2 � 0,

allow us to write,

X 2 � bY1 ÿ cZ1, Y2 � cZ1 ÿ aX 1, Z2 � aX 1 ÿ bY1;

or to assign any values proportional to these, to the coordinates of the point in which the
unit-line is met by the line PP2. And when the points P and P2 are given, any one of the
equations

sx2 ÿ xs2

X 2
� sy2 ÿ ys2

Y2
� sz2 ÿ zs2

Z2
,

determines in general the position of the line PP2, and consequently the point in which it
meets any given line. For example, if we suppose y2 � 0, and therefore s2 � x2 � z2 we thus
obtain the formula

Z2 ÿ X 2

Z2 � X 2
� (sz2 ÿ zs2)ÿ (sx2 ÿ xs2)

(sz1 ÿ zs1)� (sx2 ÿ xs2)
� x ÿ z

y
� s

y
:
z2 ÿ x2

z2 � x2
,

or

z2 ÿ x2

z2 � x2
� y

s

z ÿ x

y
� Z2 ÿ X 2

Z2 � X 2

� �
;

and thus the intersection (x2, 0, z2) of PP2 with the side CA can be determined. Let this
intersection be called B2, the point P1 being placed at the contact B1 of the same side of the
given triangle with the conic V ; which latter point (by article 174) is (áÿ1, 0, ãÿ1), or
(ã, 0, á) so that we may write

x1 � ã, y1 � 0, z1 � á:

Let also the vertex P of the pencil be still the point of contact of the two conics (U ) and (V ),
so that (by article 172) its coordinates are,

x � á(âÿ ã)2, y � â(ãÿ á)2, z � ã(áÿ â)2;

while the constants a, b, c may (by article 171) be thus expressed

a � á(á� ã)� â(áÿ ã),

b � ÿáã� â(á� ã)� â2,

c � ã(á� ã)� â(ãÿ á):

We shall thus have all the requisite elements for the determination of the coordinates x2 and
z2, or of their ratio, in terms of á, â, ã, which are here regarded as known constants; and are
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such that the three right lines, AA1, BB1, CC1, drawn from the corners of the given triangle to
the contacts of its sides, with the conic (V ), concur (by article 174) in the point

(áÿ1, âÿ1, ãÿ1):

And thus, we can determine on the side CA the point B2, which satis®es the harmonic
relation (cf. article 244)

(P :B1QB2Q 9) � ÿ1;

and which is therefore such that the angle B1 PB2 becomes right, when we pass to the limiting
case, of the bisecting and inscribed circles.

249. Dividing sx1 ÿ xs1, sy1 ÿ ys1, sz1 ÿ zs1, by what is found to be their common factor
â(áÿ ã), we obtain the following coordinates of the point in which the right line PP1, or
PB1, intersects the unit-line:

X 1 � ã(3áÿ ã)ÿ â(á� ã);

Y1 � ã2 ÿ á2;

Z1 � á(áÿ 3ã)� â(á� ã);

of which, as a veri®cation, the sum is zero; and in which it may be noticed, that Z1 can be
formed from X 1, by ®rst interchanging á and ã, and then changing all the signs. We have
next the three products

aX 1 � áã(3á2 � 2áãÿ ã2)� â(ÿá3 � á2ãÿ 5áã2 � ã3)ÿ â2(á2 ÿ ã2);

bY1 � áã(á2 ÿ ã2)� â(ÿá3 ÿ á2ã� áã2 � ã3)ÿ â2(á2 ÿ ã2);

cZ1 � áã(á2 ÿ 2áãÿ 3ã2)� â(ÿá3 � 5á2ãÿ áã2 � ã3)ÿ â2(á2 ÿ ã2);

where cZ1 may be formed from aX 1, by the same rule as Z1 from X 1. Dividing the three
differences,

bY1 ÿ cZ1, cZ1 ÿ aX 1, aX 1 ÿ bY1,

by 2áã, we get the coordinates of the intersection of the line PP2 (or PB2) with the unit-line,
as follows

X 2 � ã(á� ã)� â(ãÿ 3á);

Y2 � (á� ã)(2âÿ áÿ ã);

Z2 � á(á� ã)� â(áÿ 3ã);

with the veri®cation, X 2 � Y2 � Z2 � 0; whence

Z2 ÿ X 2

Z2 � X 2
� áÿ ã

á� ã
:
á� 4â� ã

áÿ 2â� ã
:

We have also
z ÿ x

y
� áãÿ â2

â(áÿ ã)
; and in adding the last two fractions, the numerator of the

sum is found to be
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(áÿ ã)2â(á� 4â� ã)� (á� ã)(áãÿ â2)(áÿ 2â � ã)

� (á� 2â� ã)fá(âÿ ã)2 � â(ãÿ á)2 � ã(áÿ â)2g
� (á� 2â� ã)s;

multiplying then this expression by
y

s
, and dividing by â(áÿ ã), we get (áÿ ã)(á� 2â� ã),

as the quantity which is to be divided by Z2 � X 2, or by (á� ã)(áÿ 2â� ã), in forming an

expression for the quotient
z2 ÿ x2

z2 � x2
, by the process of article 248. Hence,

z2 ÿ x2

z2 � x2
� áÿ ã

á� ã
:
á� 2â� ã

áÿ 2â� ã
;

that is

x2

z2
� ã(á� ã)ÿ 2áâ

á(á� ã)ÿ 2ãâ
;

and therefore the required point B2 may be denoted as follows:

B2 � (áã� ã2 ÿ 2áâ, 0, á2 � áãÿ 2âã):

250. If now we compare the point B2, thus found with the three points B1, B 0, B -, on the
same side CA, for which (by articles 174, 170, and 181) we may employ the symbols
B1 � (ã, 0, á), B 0 � (1, 0, 1), B - � (c, 0, a), we soon perceive that while the three lines
AA 0, BB 0, CC 0 concurring in the point (1, 1, 1) and the three lines AA -, BB -, CC - in
$ � (aÿ1, bÿ1, cÿ1), as AA1, BB1, CC1 concur (article 248) in (áÿ1, âÿ1, ãÿ1),

(á� 2â� ã)(B1) � (B -)� â(á� ã)(B 0),

we have also

(B2) � (B -)ÿ â(á� ã)(B 0):

It follows that

(B1 B 0B2 B -) � ÿ1,

or that the points B1 and B2 are harmonically conjugate, with respect to the points B 0 and
A-; whence, of course, we have the corresponding harmonic equation, for the pencil with its
vertex at P,

(P :B1 P 0B2 B -) � ÿ1:

But we had determined the point B2, so as to have (article 248) the analogous equation

(P :B1QB2Q 9) � ÿ1;

it follows that PB1 and PB2 are the two double rays of an involution, whereof PB 0, PB - are one
pair of conjugate rays, and PQ, PQ 9 are another pair. Passing therefore to the case of the two
circles, since the rays PQ, PQ 9 are in that case directed to the circular points at in®nity, we see
that ``the line PB1 is one of the bisectors of the angle B 0PB -''; which was (article 242) for that case,
the thing to be proved.
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251. Of course, I do not pretend that the foregoing is the shortest, or the easiest mode, of
proving, even in an extended form, and by calculation the correctness of that graphic
determination of the point P ; or of the statement in article 242 of a certain property of that
point, mentioned by you to me. In fact, I think that I see ± though perhaps I may not write
down, ± another extension of the same sort, but likely to lead to simpler calculations, which shall
depend on the circumstance that ``the tangent to the conic (U ), at the point where the chord PB1 of
the inscribed conic (V ) meeting (U ) again, passes through the point B9, where the side CA of the given
triangle ABC, is met by the given transversal A9B9C 9.''

252. Whether the proof of this last extension shall, or shall not, be written out, we may
already state this Theorem:-

``If the sides of a triangle ABC touch in the points A1, B1, C1 a conic (V ) and if a
homothetic conic (U ) be described so as to bisect those sides in A0, B 0, C 0, and in cutting
them again in A-, B -, C -, then not only will these two conics touch each other (by article
177) in some point P but also if the chords PA 0, PA- of the conic (U ) be treated as conjugate
rays of a system of lines in involution, two other conjugate rays through the point of contact P of
the two conics being parallel to the two (real or imaginary) asymptotes of either, then the
chord PA1 of the conic (V ) will be one of the double rays of the system''; and similarly PB1 will be a
double ray of a second involution PC1 of a third, these two other involutions being
determined on a precisely similar plan.

253. In general, if P0 be any given vertex (x0, y0, z0) of a pencil, and if we write

X � s0x ÿ sx0, Y � s0 y ÿ sy0, Z � s0z ÿ sz0, s � x � y � z, &c:,

the equation

aX 2 � bY 2 � cZ 2 � 0

represents the pair of rays from P0 to the two real or imaginary points Q, Q 9, in which (as
before) the conic

ax2 � by2 � cz2 � 0

is cut by the unit line z � y � z � 0. Let P1, P2 be any two given points, and write

X 1 � s0x1 ÿ s1x0, &c:, X 2 � s0x2 ÿ s2x0, &c:,

a9 � Y1 Z2 � Z1Y2, b9 � Z1 X 2 � X 1 Z2, c9 � X 1Y2 � Y1 X 2;

then the equation

a9X 2 � b9Y 2 � c9Z 2 � 0

will represent the new pair of rays, P0 P1, P0 P2, from the same given vertex as before. Let
P0 P 9, P0 P 0 be supposed to be the two double rays of the involution, which is determined by
the two former pairs of rays, regarded as two pairs of conjugates therein; that is, let us
suppose, that the two following harmonic relations hold good

(P0:P9QP 0Q9) � ÿ1, (P0:P9P1P 0P2) � ÿ1:

Then the ®rst relation is expressed by the equation (cf. article 247),
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aX 9X 0� bY 9Y 0� cZ 9Z 0 � 0;

and the second harmonic relation is expressed by the analogous equation

a9X 9X 0� b9Y 9Y 0� c9Z 9Z 0 � 0

but X 9� Y 9� Z 9 � 0, X 0� Y 0� Z 0 � 0, and therefore (cf. article 248) we may write

X 0 � bY 9ÿ cZ 9, Y 0 � cZ 9ÿ aX 9, Z 0 � aX 9ÿ bY 9,

or any expressions proportional to these, as consequences of the ®rst harmonic equation;
substituting then these values for X 0, Y 0, Z 0, the second equation becomes

0 � a9X 9(bY 9ÿ cZ 9)� b9Y 9(cZ 9ÿ aX 9)� c9Z 9(aX 9ÿ bY 9);

with an exactly similar result of the elimination of X 9, Y 9, Z 9. We may therefore say that the
equation

(bc9ÿ cb9)YZ � (ca9ÿ ac9)ZX � (ab9ÿ ba9)XY � 0,

represents the system of the two double rays, of the involution above described. And thus we have a
suf®ciently simple and perfectly general solution of the problem, which in the present method
replaces (as an extension) that of ®nding the two bisectors (P0 P 9, P0 P 0) of a given angle
(P1 P0 P2).

254. It is not worth while to exemplify this general Solution, in the particular question
which we were lately considering. But I think that the following little investigation may have
some interest, as serving at once to prove, in my own way, the theorem (or extension) which
was stated in article 251; and also to show how even for the general case of two conics, the point
R where the chord PB1 of (V ) meets the conic (U ) again, and which (by the theorem) is one
point on the polar of B9, may be geometrically distinguished from the other point, where the same
conic (U ) is met by the same polar.

255. Since the constants a, b, c, (not here the sides of the triangle) can be rationally expressed,
as in articles 171 and 248, in terms of the other constants á, â, ã, but not vice versa, it seems
convenient to eliminate the former set of constants from the ®rst equation in article 170 of the
conic (U ), and to introduce the latter set in their stead. We have thus the equation

0 � U � (á� â� ã)(áx2 � â y2 � ãz2)ÿ âãx2 ÿ ãáy2 ÿ áâz2

ÿ (â � ã)2 yz ÿ (ã� á)2zx ÿ (á� â)2xy � (say)U x, y,z:

The analysis of article 172 showed us, that this equation is satis®ed by the coordinates of the
point P, namely,

x � á(âÿ ã)2, y � â(ãÿ á)2, z � ã(áÿ â)2:

Let x9, y9, z9 be the coordinates of the point (R in Figure 29) where the line PB1 meets, as
above, the conic (U ) again; the coordinates of B1 being ã, 0, á, as in article 248.

We shall thus have expressions of the forms

x9 � x � tã, y9 � y, z9 � z � tá,

which are to be made to satisfy the condition
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U x9, y9,z9 � 0;

and which will do so, if the auxiliary coef®cient t be determined by the linear equation

0 � (ãDx � áDz)U x, y,z � tUã,0,á:

But for the point P of contact of the two conics, we had (in article 172)

DxU � (á� â)(â� ã)(ã� á)ë, . . .

DzU � (á� â)(â� ã)(ã� á)í,

where (by article 171)

ë � (ãÿ á)(áÿ â), ì � (áÿ â)(â ÿ ã),

í � (âÿ ã)(ãÿ á);

hence

ãë� áí � ÿâ(áÿ ã)2,

and

(ãDx � áDz)U x, y,z � ÿâ(áÿ ã)2(á� â)(â� ã)(ã� á):

Again, without going back beyond the present article, we have

Uã,0,á � áã(á� ã)(á� â� ã)ÿ â(á3 � ã3)ÿ áã(á� ã)2

� ÿâ(á� ã)(áÿ ã)2;

whence

t � ÿ(á� â)(â � ã):

The second intersection (R) of PB1 with (U ) has therefore the coordinates,

x9 � á(âÿ ã)2 ÿ ã(á� â)(â� ã);

y9 � â(ãÿ á)2;

z9 � ã(áÿ â)2 ÿ á(á� â)(â � ã);

or, dividing by â,

x9 � â(áÿ ã)ÿ ã(3á� ã);

y9 � (áÿ ã)2;

z9 � ÿâ(áÿ ã)ÿ á(á� 3ã):

256. If now we seek the point, say R9 � (x 0, y 0, z 0) in which the same chord PB1 of the
conic (V ) meets the polar of the point B9 � (ÿ1, 0, 1) taken with respect to the conic (U )
the equation of which polar is, in x 0, y 0, z 0,

0 � (Dx 0 ÿ Dz 0)U x 0, y 0,z 0,

or more fully,
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0 � a 0x 0� b 0y 0� c 0z 0,

when

a 0 � 2á(á� â� ã)ÿ 2âã� (á� ã)2,

b 0 � (â� ã)2 ÿ (á� â)2,

c 0 � ÿ2ã(á� â� ã)� 2áâ ÿ (á� ã)2,

we are to make

x 0 � x � t9ã, y 0 � y, z 0 � z � t9á,

and determine the value of the new coef®cient t9. Substitution gives, after a few reductions,

a 0x � b 0 y � c 0z � (ã2 ÿ á2)(áÿ 2â� ã)(á� â)(â� ã),

a 0ã� c 0á � (ã2 ÿ á2)(áÿ 2â� ã);

whence

t9 � ÿ(á� â)(â� ã) � t;

and therefore the point R9 coincides with the point R. The point last named is therefore on
the polar of B9, with respect to (U ); and consequently the tangent to the conic (U ), at this
point R, passes through the point B9, as stated in article 251.

257. This circumstance enables us easily to calculate a simple expression for the anharmonic
h9 of the group of the four points A 0, B 0, C 0, R, on the conic (U ); hence we may write (cf. end of
article 18)

h9 � ((A 0B 0C 0R)) � (R :A 0B 0C 0B9),

and then employ the general formula of article 151; which gives here

h9 �
x9, y9, z9
0, 1, 1
1, 0, 1

������
������

x9, y9, z9
1, 1, 0
ÿ1, 0, 1

������
������ :

x9, y9, z9
1, 0, 1
1, 1, 0

������
������

x9, y9, z9
ÿ1, 0, 1
0, 1, 1

������
������ � x9� y9ÿ z9

x9ÿ y9ÿ z9

as the anharmonic of the pencil which has the point (x9, y9, z9) for vertex, and of which the
rays pass in order through A 0, B 0, C 0, B9 wherever in the plane that vertex may be placed; at

least if it be not upon the line C 0A 0B9 in which case h9 � 0

0
, because a suppressed factor then

vanishes, since

x9, y9, z9
1, 1, 0
ÿ1, 0, 1

������
������ �

x9, y9, z9
0, 1, 1
ÿ1, 0, 1

������
������ � x9ÿ y9� z9:

For the point R, we have (by article 255) the coordinates, (before their division by â,),

x9 � á(âÿ ã)2 ÿ ã(á� â)(â� ã), y9 � â(ãÿ á)2,

z9 � ã(áÿ â)2 ÿ á(á� â)(â� ã);

for this point, therefore
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x9ÿ z9 � â(áÿ ã)(á� 2â� ã);

x9ÿ z9� y9 � 2â(áÿ ã)(á� â), x9ÿ z9ÿ y9 � 2â(áÿ ã)(â� ã);

the anharmonic h9 of the group A 0, B 0, C 0, R on (U ) has therefore this very simple value, (cf.
article 241)

h9 � ((A 0B 0C 0R)) � á� â

â� ã
� (C1C9AB):(A1 BCA9):

For the case of two homothetic conics (articles 177, &c.), this becomes

h9 � AB

C1 B
:
BA1

BC
;

and when we pass to the limit, of a bisecting circle (U ), and an inscribed circle (V ), we have

then simply h9 � c

a
, where c and a are again sides of the triangle, and are therefore

proportional to the chords A 0B 0, B 0C 0. The two other chords C 0R , RA 0 are therefore in this
case equally long, as was to be expected; and because h9 . 0, the two points R and B 0 are situated at
one common side of the chord C 0A 0, as in my Figure 29, and (with other letters) in your ®gure
also.

258. If we took that one of the three enscribed circles, which touches the mean side CA itself,
but the two extreme sides prolonged, then the new point of contact, say (B1) of the side CA with
this new circle, should still be joined to the point R of Figure 29, in order that the new joining
line (B1)R , might furnish the new point of contact (P), of one circle with the other; as is
exhibited below, in the new Figure, numbered 30�, which will serve to illustrate many other
things. And this was to be expected from the analysis of the last article; because each of the

two new quotients,
BA

B(C1)

B(A1)

BC
, like the former quotient corresponding, is positive; and

therefore the new anharmonic (h9), which is their product is also positive; so that the point in
which the chord (P)(B1) of the new (or exscribed) circle, meets the bisecting circle again,
and which by the theory bisects one or other of the two arcs of the last circle which have A 0C 0 for
their common chord, is thus proved to be at the same side as before of that chord; and
consequently to be (as in Figure 30) the former point R itself, and not the point diametrically
opposite thereto.

259. But whereas, if we had in Figure 29, as we have done in Figure 30, bisected the `` little
arc'' A 0A- in a point Q , and joined that point to A1, the joining line QA1 (prolonged) would
have passed through the sought point of contact P, and so have suf®ced (instead of the line
RB1) to determine that sought point of contact of the bisecting circle K with the inscribed
circle I ; when, on the contrary, we seek to determine similarly the point (P), in which the
same bisecting circle K is touched by that exscribed circle (I ), represented in Figure 30,
which touches, as above, the two extreme sides of the triangle prolonged, we are to join the
point of contact (A1) not now to the point Q itself, but to the diametrically opposite point (Q )
upon the circle K, or to what may be called by contrast the bisecting point of the ``big arc''

� A systematic description of this Figure 30 is given in articles 280, &c.
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A 0A-, in order that the joining line (A1)(Q ) may pass through the new point (P), and so
determine it on either circle. Yet here again, the geometrical result is in exact conformity
with the algebraical analysis. For if, on the plan of article 257, we had sought the value of the
anharmonic h of the group C 0A 0B 0Q , upon the conic (U ), de®ning Q to be the point in which
the right line A1 P meets that conic again, as R was (in article 255) de®ned to be the point of
second intersection of the line B1 P with that conic; a mere cyclical exchange of letters shows
that we should have found, generally, and without any distinction of cases, the formula

h � ((C 0A 0B 0Q )) � ã� á

á� â
� (B1 B9CA):(C1 ABC9);

or, for two homothetic conics, (the line A9B9C9 going off to in®nity,)

h � AC

AB1
:
AC1

AB
:

Now if, as a limiting case, we suppose that the conics become circles, and that the one which
touches the sides is inscribed, as in Figure 29, ± to which, however, you need not take the
trouble of referring, since all its parts have been incorporated, although upon a smaller scale,
with the later and more complex Figure 30, ± we have the values

Fig. 30 [See article 280 for a description.]
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AC

AB1
� b

s ÿ a
,

AC1

AB
� s ÿ a

c
,

and therefore

h � � b

c

with the usual signi®cations of a, b, c, s in trigonometry; the anharmonic of the group is
therefore in this case positive, and the point Q lies at the same side of the chord B 0C 0 as the
point A 0: so that it bisects, according to your remark the little arc A 0A- for that Q bisects either
that arc, or the big one with the same chord, results from the numerical (or absolute) value of
the anharmonic h, in virtue of which the distances of this point Q from C 0 and B 0 are equal ;
because the distances of A 0 from those two points are proportional to the sides b and c, and
the anharmonic of a circular group is � � a product of quotients of chords. But when we
suppose that the conic (V ) becomes the exscribed circle (I ) of Figure 30, and when as in that
Figure, we enclose, for distinction, in parentheses, the symbols of the altered points; then
although we have still an expression of precisely the same general form for the anharmonic of
the group, namely,

(h) � AC

A(B1)
:
A(C1)

AB
,

yet we have now the new values of these two factors

AC

A(B1)
� b

s ÿ c
,

A(C1)

AB
� ÿ s ÿ c

c
,

which gives the negative value for their product, namely

h � ÿ b

c
:

The distances of the new point (Q ) like those of the old point Q , from the given points C 0 and
B 0, are therefore equal, so that this new point, like the old one must be situated at one or other
end of that diameter through K which bisects the chord B 0C 0; but because the anharmonic of the
group is now negative, the points (Q ) and A 0 must lie at opposite sides of that chord, and
therefore (Q ) must be, as in Figure 30, diametrically opposite to Q.

260. Another cyclical interchange of letters would give the general formula,

h 0 � ((B 0C 0A 0S)) � â� ã

ã� á
� (A1 A9BC):(B1CAB9);

or for two homothetic conics,

h 0 � CB

CA1
:
CB1

CA
;

S being de®ned to be the second intersection of the right line C1 P with the conic (U ). For
the case of the bisecting and inscribed circles
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CB

CA1
� a

s ÿ c
,

CB1

CA
� s ÿ c

b
, h � � a

b
;

the point S is therefore in this case not only equally distant from the ends of the chord A 0B 0,
but also on the same side of that chord as the point C 0; it therefore bisects what may be called
the little arc C 0C -, so that it happens to coincide in Figures 29 and 30, with the point B -;
because (cf. article 239) in constructing both those ®gures the sides a, b, c were taken as
proportional to the numbers 4, 3, 2, which has led to this and a few other undesigned
peculiarities, such as the parallelism of the common tangent LMN at P to the side CA, not at
all affecting however the general argument. But when we take the case of the exscribed circle
in Figure 30, and use parentheses for distinction as before, we have then the values,

CB

C(A1)
� ÿa

s ÿ a
,

C(B1)

CA
� s ÿ a

b
, (h 0) � ÿ a

b
;

the right line (C1)P therefore now meets the bisecting circle K, not in the old point S, but in
that other point (S) which is (as in Figure 30) diametrically opposite thereto, and may be said
to bisect the big arc C 0C -. ± Analogous remarks would of course apply, to the two other
exscribed circles.

261. Comparing these results, it is not dif®cult to abstract from them the following RULE,
which meets all the cases of the circles, and is therefore a little more complete than the one that
you stated to me: ``According as the point of contact of the tangent circle with a side is on that
side itself, or on the side prolonged, the right line connecting it with the point of contact of the
two circles bisects that one of the two arcs of the bisecting circle, having their common chord
coincident in position with the side, which is remote from, or is near to, the vertex opposite to
that side of the triangle''. ± I daresay you know this completed RULE quite well, but I worked
it out for myself as above.

262. Returning for a moment to the analysis of article 257, and comparing it with that of
article 241, we see that the quantities which have been lately called h, h9, h 0 may be
interpreted as anharmonics of pencils, as follows

h � (A 0:B 0CC 0Q ); h9 � (B 0:C 0AA 0R); h 0 � (C 0:A 0BB 0S);

where Q , R, S are still the second intersections of the sought lines, PA1, PB1, PC1, with the
conic (U ). These three points of intersection can therefore be found directly, as the second
intersections of the same conic with known lines, drawn from the points A 0, B 0, C 0 of that
curve. For example, the second formula gives immediately and without any original reference
to circles

sin A 0B 0R

sin RB 0C 0
� h9

sin A 0B 0A

sin AB 0C 0

with

h9 � á� â

â� ã
� (C1C9AB):(A1 BCA9),

as before; and thus the direction of the line B 0R , and thence the position of the point R, can
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generally be determined; after which by drawing the line B1 R , the point P can be found, as
the second intersection of this latter line with either of the two conics. When they are made
homothetic, the points A 0, B 0, C 0 bisect the sides BC, CA, AB; and (still abstaining from circles)
we have, by mere triangles

sin A 0B 0A

sin AB 0C 0
� ÿ sin A

sin C
� ÿ a

c
;

also, as in article 257, we have then

h9 � AB

C1 B
:
BA1

BC
;

hence

sin A 0B 0R : sin C 0B 0R � �BA1 : BC1,

BA1 and BC1 denoting the lengths of the two tangents to the conic (V ) from the point B, and
the upper or the lower sign being taken, according as h9 is positive or negative. For the circles,
the tangents are of course equally long, and we have again your graphic rule (extended to meet
all cases), under the form

sin A 0B 0R � �sin C 0B 0R ;

but I do not see how, by projective properties, we could pass from this last equation, to the
scarcely less simple proportion, written just above, between the sines of the corresponding
angles, and the lengths of tangents to a conic. Perhaps, however, an expert geometer ± such as I
do not at all pretend to be ± might see this at a glance.

263. On a little re¯ection, however, I do see how to interpret each of the two last formulñ
geometrically, in such a manner as to show that they can be projectively extended, and
interchanged. In fact, they both express, attention being paid to signs, that the chord B 0R of
the conic (U ) is parallel to the chord C1 A1 of the conic (V ), when those two conics are
homothetic; or more generally, and with more evident projectivity of relation, that ``these two
chords (B 0R and C1 A1) meet upon that other common chord of the two conics, which contains those two
of their intersection, that do not coalesce in the point of contact P ''. Accordingly, the right line
through the two points A1 � (0, ã, â), and C1 � (â, á, 0), meets the unit-line in the point
(â� ã, áÿ ã, ÿáÿ â); the line joining this latter point to B 0 � (1, 0, 1) has for equation,

(áÿ ã)(x ÿ z) � (á� 2â� ã) y;

and this last equation is satis®ed (article 257), by the coordinates x9, y9, z9 of the point R,
determined in article 255.

264. The parallelism of B 0R to A1C1, in Figures 29 and 30, did not occur to me when I drew
those ®gures; and it is perhaps curious that I saw it, half an hour ago, by reasoning about
conics, many minutes before I was able to verify it by any special argument from circles. Such
veri®cation, however, should certainly have offered itself sooner to any of your junior
freshman friends. (I was of course a junior freshman in my time; and was never beaten in
geometry ± nor as it chanced, in any other subject in my division; but things have so much
advanced generally in our University since then, that I might well meet with a different fate, in
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every department, if I could go in again now, as I have sometimes half wished to do, in order
to be lectured by Salmon and Townsend and others.)

265. The veri®cation by circles is, notwithstanding, very easy. Whether in Figure 29, or in
Figure 30, the chord B 0R of the bisecting circle is the external bisector of the angle A 0B 0C 0;
and is therefore parallel to the external bisector of the angle B of the triangle ABC ; to which
latter bisector the chord A1C1 of the inscribed circle is also parallel.

266. The recognition of this parallelism of the two chords as extending to all cases of the two
circles, (in fact, it exists, as we have seen for the more general case of two homothetic conics, with
a projective extension above indicated) throws some fresh light upon its construction. Thus B 0R
being parallel, in Figure 30, to the chord (A1)(C1) of the exscribed circle (I ), as well as to the
chord A1C1 of the inscribed circle I, the lines B1 P and (B1)(P) both pass as before, through
some point R of the bisecting circle K. But the chord (A1)(B1) of the exscribed circle is not
parallel, but perpendicular, to the corresponding chord A1 B1 of the inscribed; while then we
might have found the point S upon the circle K, (accidentally coincident, as remarked in
article 260 in the recent ®gures, with B -,) through which C1 P passes, by drawing C 0S parallel
to the latter chord A1 B1, we must (on the same plan) determine the corresponding point (S)
on the new line (C1)(P), by drawing from C 0 a line parallel to the former chord (A1)(B1) and
therefore at right angles to C 0S . In like manner, the chords A 0Q and A 0(Q ) of the bisecting
circle are indeed perpendicular to each other, but they are respectively parallel to the chords
B1C1 and (B1)(C1), of the inscribed and exscribed circles.

267. Before I had thought of this, or of any other rule for distinguishing between the
bisecting points of the little and big arcs in your ®gure; and for extending such distinction to
the more general problem of the conics, so as to determine for example, by some geometrical
construction ``which intersection of the conic (U) with the polar of the point B9 (articles 251, 254, and
256) was to be taken as the point above called R '': I reasoned in the following way. Usually, when
any geometrical investigation conducts to the consideration of the intersections of a right line
with a circle, or other conic, those two intersections enter jointly and symmetrically into the
result, and are indeed inseparably combined, so that no reason can be assigned for preferring,
generally, one of them to the other. Calculation conducts, in almost every mode of treating such
a question by algebra, to a quadratic equation, of which the roots cannot usually be separately
and rationally expressed, and of which therefore we must, in general, retain the system. (In fact, if
I remember rightly, it is on this principle that Chasles founds, in his GeÂomeÂtrie SupeÂrieure,� his
theory of geometrical imaginaries.) Whenever, therefore, we know, aliunde, that one point of
intersection has any geometrical prerogative above the other, so that it can be treated separately, we
may be sure algebraically that the quadratic equation breaks up into linear and rational factors; and
geometrically, that some linear construction exists, whereby, the particular intersection required can
be determinately found, without the aid of the conic.

268. I therefore looked out for some mode of otherwise determining ± or of dispensing
with ± the auxiliary point, by me called R, of your graphic construction; and in short, I sought

� [Michel Chasles, 1793±1880, TraiteÂ geÂomeÂtrie superieure; Paris, 1852.]
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to ®nd some other auxiliary point, on the chord PB1 of the inscribed circle, or of the conic (V ),
(distinct from B1 and from R , ) which could itself be graphically constructed, or determined,
without my being obliged to use, for that purpose, the bisecting circle, or the conic (U ), at all.
Nevertheless, as I allowed myself the fuller use of anharmonic coordinates, as analytic instruments
in this inquiry, I collected into one view the coordinates which had been already calculated, of
all the points previously considered upon that chord PB1 without excluding the point R itself.
These coordinates were the following

for P, x � á(âÿ ã)2, y � â(ãÿ á)2, z � ã(áÿ â)2; (article 172)
for B1, x1 � ã, y1 � 0, z1 � á; (article 248)
for R, x9� â(áÿ ã)ÿ ã(3á� ã), y9� (áÿ ã)2, z9� â(ãÿ á)ÿ á(á� 3ã); (article 255)

and for the point in which the line PB1 met the unit-line,

X 1 � ã(3áÿ ã)ÿ â(á� ã), Y1 � ã2 ÿ á2, Z1 � á(áÿ 3ã)� â(á� ã): (article 249)

If then, any one set of these coordinates be denoted (as above) by x9, y9, z9, and any other set
by x 0, y 0, z 0, I was to form some such combination as the following

(x -, y -, z -) � t(x9, y9, z9)� u(x 0, y 0, z 0);

for the new point

P 9 � (x -, y -, z -),

thus determined, would like the other, be on the sought line PB1, and might happen to be
simply constructible, if the coef®cients t and u were judiciously chosen, and if it should be
possible to divide the resulting coordinates by any common factor.

269. When this conception had been formed, there was no dif®culty in putting it into
immediate execution. Taking simply the sums and the differences of the coordinates of the
two points last mentioned, I had, at once,

X 1 � x9 � ÿ2ã(â� ã), Y1 � y9 � 2ã(ãÿ á), Z1 � z9 � 2ã(âÿ 3á);

X 1 ÿ x9 � �2á(3ãÿ â), Y1 ÿ y9 � 2á(ãÿ á), Z1 ÿ z9 � 2á(á� â);

whence there were seen to be these two new points on the line PB1, each having its coordinates
expressible linearly in terms of á, â, ã:

P 9 � X 1 � x9

ÿ2ã
,

Y1 � y9

ÿ2ã
,

Z1 � z9

ÿ2ã

� �
� (â� ã, áÿ ã, 3áÿ â);

P 0 � X 1 ÿ x9

2á
,

Y1 ÿ y9

2á
,

Z1 ÿ z9

2á

� �
� (3ãÿ â, ãÿ á, á� â):

But the presence of the numerical coef®cient, 3, made these expressions not yet simple enough for
my purpose. But on taking the semidifferences of the two new sets of coordinates, or
employing the formula,

2(P -) � (P 0)ÿ (P 9),

I was led to determine a third new point, P -, on the line PB1, namely,
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P - � (ãÿ â, ãÿ á, â ÿ á),

of which the expression was suf®ciently simple, to induce me to try to construct it.

270. As few people ever arrive at a simple thing in a simple way, I need not fear to confess
that I assisted myself here by suggestions drawn from sources which might seem remote. Even
quaternions were called into play, and really with very good effect: but it would interfere too
much with what I hope has been the homogeneity of the present Letter, ± whatever may have
been its discursiveness, ± if I were to say anything about quaternions at present. Nor shall I at
this moment speak of a little investigation which I made, of the value of the anharmonic,
((A1 B1C1 P)) of the group thus denoted upon the conic (V ), or on the inscribed circle in Figure
29, though it led me to some rather pretty results, and supplied me with some suggestions.
But I may at once mention that I soon came to suspect, that the last auxiliary point P - of
article 269, which I shall now denote by B2, writing therefore

B2 � (ãÿ â, ãÿ á, âÿ á),

(since we shall not have any further reason for the point B2 of articles 248, 249, and 250) was
the intersection of the chords C 0A 0 and C1 A1, of the conics (U ) and (V ).

271. And in fact I found that this suspicion was correct. For the coordinates of the extremities
of these two chords being given by the expressions,

A 0 � (0, 1, 1), C 0 � (1, 1, 0), A1 � (0, ã, â), C1 � (â, á, 0),

and equations of the same chords are, for A 0C ,

x ÿ y � z � 0,

and for A1C1,

áx ÿ â y � ãz � 0;

and these are evidently both satis®ed by the recently written coordinates of B2. Hence, then,
the following Construction results, for graphically determining the point P, of contact of the two
conics, without employing the conic (U ), or the bisecting circle, at all: ``Find the point B2, in
which the chord A1C1 of the conic (V ) is intersected by the right line A 0C 0; the right line
B1 B2 will then have the sought point P for its second intersection with that conic.'' It will be
remembered that although the line A 0C 0, here used, has been made, by the construction in
article 170, &c., a chord of the other conic (U ), ± as when we drew a circle or conic through
the middle points of the sides of a given triangle, ± yet it is given or known, before this circle K,
or conic (U ), is constructed; which justi®es my statement, that in the process of the present
article, we determine the point P on one conic, without any assistance from the other.

272. From the nature of the analysis, the point B1, although it happens in Figure 29 when
the point of contact of the mean side CA of the given triangle with the inscribed circle, has no
general prerogative above the two other points of contact, A1 and C1. We may therefore
enunciate this Theorem, or set of Theorems:

``If a triangle ABC be touched in the points A1, B1, C1, by a conic (V ), and if its sides be cut
in the points A9, B9, C9 by a right line; then, taking on those sides the harmonically conjugate
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points A 0, B 0, C 0, and forming the two inscribed triangles A1 B1C1 and A 0B 0C 0, if we denote
the intersections of their corresponding sides as follows,

A2 � B1C1
:
B 0C 0, B2 � C1 A1

:
C 0A 0, C2 � A1 B1

:
A 0B 0,

we shall have concurrences and contacts as below:

Ist the three right lines A1 A2, B1 B2, C1C2, will concur, in one common point P ;
IInd this point will be upon the conic (V );
IIIrd it will be also upon that other conic (U ), which passes through the three points A 0, B 0, C 0,

and through the two points in which the former conic (V ) is intersected by the
transversal A9B9C9; and

IVth the two conics, (V ) and (U ), will touch at this point P.''

273. Accordingly, among the many new points &c. which have been introduced in Figure
30, you may see A2, B2, C2, as the respective intersections of the three pairs of lines, B1C1 and
B 0C 0, C1 A1 and C 0A 0, A1 B1 and A 0B 0; and may observe the concurrence of the three lines
A1 A2, B1 B2, C1C2 in the point P of the inscribed circle. For the exscribed circle, in the same
®gure, I have been content to determine one� auxiliary point, namely (A2), as the intersection
of the old line B 0C 0 with the new chord (B1)(C1); but you may see that the new line (A1)(A2)
passes through the new point of contact (P), and would suf®ce to determine that point
without any use of the bisecting circle.

274. In the same complex ®gure, you may observe that the three right lines B2C2, C2 A2,
A2 B2, pass respectively through the three points A, B, C; so that the new triangle A2 B2C2 may
be said to be excribed to the given triangle ABC. Nor is this result accidental. For while we have,
by article 270,

B2 � (ãÿ â, ãÿ á, âÿ á),

we have, in like manner,

C2 � (ãÿ â, áÿ ã, áÿ â):

Since the coordinates of C2 must satisfy the two equations, (cf. article 271,)

y ÿ z � x � 0, and â y ÿ ãz � áx � 0;

so that it is not suf®cient, in passing from B2 to C2, to change cyclically á, â, ã to â, ã, á, but
we must also change x, y, z to y, z, x, or must write ®rst the coordinate ãÿ â, which is
obtained from the last coordinate âÿ á of B2: and therefore

(B2)� (C2) � (2ãÿ 2â, 0, 0) � 2(ãÿ â)(1, 0, 0) � 2(ãÿ â)(A):

A little more simply, if we denote by á9, â9, ã9 any quantities which satisfy the two equations,

á9� â9� ã9 � 0, áá9� ââ9� ãã9 � 0,

for example, the quantities,

� I have, however, since inserted the points (B2) and (C2), and drawn the lines (B1)(B2) and (C1)(C2),
which are seen to pass likewise, through (P).
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á9 � âÿ ã, â9 � ãÿ á, ã9 � áÿ â,

we may write

A2 � (ÿá9, â9, ã9), B2 � (á9, ÿâ9, ã9), C2 � (á9, â9, ÿã9);

and under these forms, the combinations,

(B2)� (C2) � (2á9, 0, 0) � 2á9(A),

(C2)� (A2) � (0, 2â9, 0) � 2â9(B),

(A2)� (B2) � (0, 0, 2ã9) � 2ã9(C),

exhibit at once the three collineations,

AB2C2, BC2 A2, CA2 B2,

which are, as above, exempli®ed in Figure 30.

275. The recent quantities á9, â9, ã9 have interesting geometrical signi®cations, which will
lead us to some additional theorems, illustrated by the same ®gure. In fact, because their sum
is zero, they are the coordinates of a point D upon the unit-line; and on account of the other
linear relations which they have been made to satisfy, this point D must also be upon the right
line which has for symbol [á, â, ã], or for equation

áx � â y � ãz � 0:

Now this last line admits of being simply constructed. For in general the right line [l , m, n]
has for its pole, with respect to the unit-triangle, the point (lÿ1, mÿ1, nÿ1); in the same sense
as that in which the unit-point O has been called, in former articles, the pole of the unit-line
with respect to the same unit-triangle ; and in which the mean point, or centre of gravity of any triangle,
is the pole of the line at in®nity. (I think that this phraseology is a received one, but I forget, just
now where to refer for it.) Now the pole (áÿ1, âÿ1, ãÿ1), of the recent line [á, â, ã], is
precisely that point in which it was remarked in article 248 that the three right lines AA1,
BB1, CC1 concur. The line [á, â, ã] is through the axis of homology of the two triangles ABC and
A1 B1C1; since its pole (with respect to one of those two triangles, and therefore also with
respect to the other) is their centre (áÿ1, âÿ1, ãÿ1) of homology. It is therefore the line A91 B91C91,
(one of the two that are strongly marked in Figure 30,) if the points A91, &c. be the intersections
of the corresponding sides of the two triangles; namely,

A91 � BC
:
B1C1 � (0, ã, ÿâ),

B91 � CA
:
C1 A1 � (ÿã, 0, á),

C91 � AB
:
A1 B1 � (â, ÿá, 0),

which in fact are seen to satisfy the equation

áx � â y � ãz � 0,

and have of course harmonic properties, not necessary to be here written down. The new
auxiliary point

D � (á9, â9, ã9),
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is therefore to be conceived to be, in Figure 30, the point at in®nity on the right line A91 B91C91; and
in general, for the case of the two homothetic conics, it is the point at in®nity on the line
similarly determined. More generally still, since the unit-point is the centre, and the unit-line
is the axis, of homology of the two triangles ABC and A 0B 0C 0, we may say that ``the point D is
the intersection of the two axes of homology, of the two inscribed triangles A 0B 0C 0 and A1 B1C1, with the
given triangle ABC ''.

276. If we now resume the expressions of article 274 for the points A2, B2, C2, and compare
them with the recent expression for D, we ®nd the symbolical relations,

(D) � (A2)� (B2)� (C2)

� (A2)� 2á9(A) � (B2)� 2â9(B) � (C2)� 2ã9(C);

whence follows this new Theorem, namely, that ``the three lines AA2, BB2, CC2, concur in the
point D''. (It was through Quaternions, cf. article 270, that I ®rst perceived this Theorem, and I
assure you, as the result of a very easy calculation, with which however I shall not at present
trouble you.) When, therefore, ± as for the case of the circles, or homothetic conics, ± the
points A 0, B 0, C 0 are made to bisect the sides of the given triangle, ``these three lines, AA2, &c.,
concur at in®nity, or are parallel to the axis of homology A91 B91C91 of the two triangles ABC and
A1 B1C1.'' Accordingly you may see the parallelism of the four lines, AA2, BB2, CC2, A91 B91C92, in
Figure 30, for the case of the inscribed circle. For the exscribed circle in that ®gure, I have
drawn the new axis of homology (A91)(B91)(C91), and marked it strongly, like the other, but
have been content to exhibit one� of its parallels, namely the line A(A2), for this case. It ought
to be observed that when A2 is considered as the intersection of the lines AD, B1C1, or (A2)
as the corresponding intersection of the lines A(D), (B1)(C1), (AD A(D) being in the Figure,
the parallels through A to the strong black lines,) we have only to draw the lines A1 A2,
(A1)(A2), as before, in order to obtain, by their second intersections with the circles I and
(I ), the points of contact P and (P); which points can thus be graphically determined, at least for
the case of circles or homothetic conics, without bisecting the sides of the given triangle at all: such
conceived bisections being now replaced by throwing off D and (D) to in®nity.

277. Since the two triangles ABC and A2 B2C2 are homologic, and have the point D, or
(á9, â9, ã9), for their centre of homology, the right line of which the anharmonic coordinates
are the respective reciprocals of the coordinates of that point; that is to say, the line of which
the symbol is, [á9ÿ1, â9ÿ1, ã9ÿ1], or [(âÿ ã)ÿ1, (ãÿ á)ÿ1, (áÿ â)ÿ1]: But we had, in article
176, the proportion

ë : ì : í � (âÿ ã)ÿ1 : (ãÿ á)ÿ1 : (áÿ â)ÿ1;

in which ë, ì, í were the coordinates of the tangent at P, to either of the two conics. We arrive
then at this other new Theorem: ``The common tangent [ë, ì, í] to the two conics (U ) and V, at
the point P, is the axis of homology of the auxiliary triangle A2 B2C2 with the given triangle ABC ''.

� Since this article was written, I have inserted the points (B2), (C2), and drawn the parallels B(B2),
C(C2); article 260 being called into play.
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278. This last theorem may be thus stated: ``the intersections L, M, N, of corresponding sides of
the two triangles, ABC and A2 B2C2, are points upon the common tangent at P.'' It was only just now
that I perceived the theorem thus enunciated: but I remember that when I was constructing, a
few days ago, that complicated Figure 30, or a sketch of it on another sheet of paper, I was
struck by the parallelism of C2 A2 to CA, which answers to their meeting at in®nity in M and by
the tangent at P appearing to concur, even more exactly than in Figure 30 of this Letter, in
one point N, with the lines AB and A2 B2; while an analogous concurrence seemed to take
place at L: but I then supposed that the concurrences might be accidental, whereas I now see
that they were necessary. For I am now entitled to assert that the tangent at P is the line LMN,
where

L � BC
:
B2C2, M � CA

:
C2 A2, N � AB

:
A2 B2;

or by article 274,

L � (0, â9, ÿã9), M � (ÿá9, 0, ã9), N � (á9, ÿâ9, 0);

which indeed may be inferred from the equation

ëx � ìy � íz � 0

of that common tangent to the conics, because by articles 171 and 274, we have the values

ë � â9ã9, ì � ã9á9, í � á9â9:

279. Quite enough may have been already said, about that Figure 30; yet, as I have yielded
to the temptation of inserting some new points and lines therein, even since the two or three
last articles were written, I may as well give here a systematic account of the Construction of
that Diagram, before I put it out of my power, by posting the last sheets, to add or alter
anything therein.

Descriptions of Figure 30, Article 258
(With a Recapitulation of several former Theorems and Constructions:)

280. ABC is a triangle, supposed to be given, and of which the sides a, b, c, have been here
assumed proportional to the numbers 4, 3, 2; so that they may be equated to numbers, and
we may write a � 4, b � 3, c � 2. Those three sides, BC, CA, AB, are conceived to be cut, by
the transversal at in®nity, in the (unexhibited) points A9, B9, C9.

The harmonic conjugates to those three points are marked as the points A 0, B 0, C 0, which
of course bisect the sides, and are joined by three right lines, forming an inscribed triangle
A 0B 0C 0.

From the three corners, A, B, C, of the given triangle, perpendiculars are let fall upon the
sides a, b, c, meeting those sides in the points A-, B -, C -, and each other in a point.

A circle, called the bisecting circle, with centre K, (called also the circle K, and representing
the conic (U ) of article 170) is described so as to pass through the three points A 0, B 0, C 0;
and therefore also, (in virtue of the elementary theorem mentioned in a note of yours,)
through the three other points, A-, B -, C -.

The particular lengths assumed for the sides give for the segments made by the three
perpendiculars, the following numerical values, marked as positive when they are measured
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in the same directions as the corresponding sides, measured from the corners ®rst named for
each, but as negative when they happen to have the respectively opposite directions:

AB - � b2 � c2 ÿ a2

2b
� ÿ 1

2
; BC - � c2 � a2 ÿ b2

2c
� � 11

4
; CA- � � 21

8
;

CB - � b2 � a2 ÿ c2

2b
� � 7

2
; AC - � c2 � b2 ÿ a2

2c
� ÿ 3

4
; BA- � � 11

8
:

(In quaternions,

AB -� B -C � AC , or B -A � CB - � CA,

and not

AB -� CB - � AC , nor � CA:

But it is here meant merely that

AB -

AC
� ÿ 1

2b
, and that

CB -

CA
� � 7

2b
&c:; whence

B -A

CA
� ÿ 1

2b
, and

CB -� B -A

CA
� 7ÿ 1

2b
� 6

2b
� 1,

as it should be.)

281. Continuing the description of the Figure, we have next an inscribed circle, with centre at
I, (called also the circle I, and answering to the conic (V ) of article 171,) which touches the
sides of the triangle ABC at the points A1, B1, C1; the segments formed by these three points,

of contact being, because s � a � b � c

2
� 9

2
,

� �
AB1 � AC1 � s ÿ a � 1

2
; BC1 � BA1 � s ÿ b � 3

2
; CA1 � CB1 � s ÿ c � 5

2
:

And we have an excribed circle, with its centre at the point (I ), (called also the circle (I ), and
being another representation of the conic (V ),) which touches the same sides in the points
(A1), (B1), (C1); the segments thus formed being the following, with signs determined as
above:

A(B1) � s ÿ c � � 5

2
; B(C1) � s � � 9

2
; C(A1) � a ÿ s � ÿ 1

2
;

C(B1) � s ÿ a � � 1

2
; A(C1) � c ÿ s � ÿ 5

2
; B(A1) � s � � 9

2
;

the algebraical sign of the side b, which is still touched internally, having changed in the
passage from the one tangent circle to the other.

282. The sides of the triangle are cut by the two transversals, LMN, (L)(M)(N ), with the
following ratios of segments (cf. articles 177, 178, 238, and 239):

LB

CL
� a ÿ b

a ÿ c
� � 1

2
;

MC

AM
� b ÿ c

b ÿ a
� ÿ1;

NA

BN
� c ÿ a

c ÿ b
� �2;
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(L)B

C(L)
� a � b

a ÿ c
� � 7

2
;

(M)C

A(M)
� b � c

b � a
� � 5

7
;

(N )A

B(N )
� c ÿ a

c � b
� ÿ 2

5
;

so that

BL � � 4

3
, CM � �1, AN � � 4

3
; B(L) � � 28

9
, C(M) � � 5

4
, A(V ) � ÿ 4

3
;

the ®rst transversal thus happening to be parallel to the side CA, and to trisect each of the
two others, with the lesser segments adjacent to B; while the second transversal cuts (cf. again
article 178) the lesser of those two sides externally.

283. The transversal LMN touches (as by article 177 it ought to do) the bisecting circle K,
in the point P where (by the theorem of article 169, of which you informed me) that circle
touches the inscribed circle I; so that this point of contact P happens, in Figure 30, to be
diametrically opposite on the inscribed circle, to the point B1 of contact of that circle with
the side CA. In like manner (as was to be expected from article 178), the transversal (L),
(M), (N ) touches the bisecting and the exscribed circles, in that common point (P) in which
(by the same theorem of article 169) they touch one another. And this construction of mine
is suf®cient for the determination of those two points of contact; indeed, it would be suf®cient
to ®nd this, by simple ratios of segments (article 282), any one of the three points L, M, N, and
any one of the three other points (L), (M), (N ), and then to draw from the ®rst point so
found, a second tangent to the inscribed circle, or from the second point a second tangent to the
exscribed circle; the side of the triangle, on which the point is thus determined, being in each
case a ®rst tangent. But whereas this construction involves a metric element, (although a very
simple one,) graphic constructions have subsequently been assigned, which require no use of
ratios, and which will be described a little farther on.

284. In the same Figure 30, ± of which, with copious recapitulation, it is thus proposed to
give here a complete and systematic description, ± the points Q , R , and S (which last
happens to coincide with B -) bisect those three ``little arcs'' (article 259) of the circle K,
which have the lines A 0A-, B 0B -, C 0C - for their chords, and are respectively remote from the
corners A, B, C of the given triangle; also (Q ) and (S) are the points diametrically opposite to
Q and S on the same circle K, so that they may be said to bisect those ``big arcs'' (article 259)
of that circle, which have A 0A- and C 0C - for their chords. And we see that, in conformity
with your graphic construction (article 240), the three right lines QA1, RB1, SC1 concur in the point
of contact P of the circles K and I; any one of them being thus suf®cient to determine it. In like
manner, with only the modi®cation (no doubt well known to you) of using in certain cases
the middle points of big, instead of those of little arcs, according to the rule assigned in article
261, the three other right lines, (Q )(A1), R(B1), (S)(C1), concur in the point of contact (P)
of the circles K and (I ); which point can therefore be determined by any one of those three
lines.

285. Instead of thus distinguishing between big and little arcs, the selection of the points, Q
and (Q ), &c., may be made without thinking of those points as bisectors, by means of another
Rule, or Theorem, in virtue of which the chord B 0R of the bisecting circle K is parallel (articles
263 and 266) at once to the chord C1 A1 of the inscribed circle (I ) as is exhibited in Figure 30.
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The chords A 0Q , A 0(Q ), and C 0S , C 0(S), of the circle K, are not actually drawn in that
Figure; but it is easy to recognise, by the eye, that they are (as the theorem of article 263
requires, and as is remarked in article 266) respectively parallel to the chords B1C1, (B1)(C1),
and A1 B1, (A1)(B1), of the two other circles. And any one of the three chords A 0Q , B 0R , C 0S of
the bisecting circle, thus drawn parallel to a known chord, B1C1 or C1 A1, or A1 B1, of the
inscribed circle, would suf®ce to determine a point, Q or R or S, upon the former circle K,
such that a right line drawn from it to a known point, A1 or B1 or C1, of the latter circle I,
would give the sought point P of contact of those two circles: with an analogous construction
for the contact (P1) of the bisecting and exscribed circles.

286. The same Figure 30, however, is designed to illustrate another, and a totally different
process, for graphically determining those points of contact, P and (P); namely, by the use of
certain other auxiliary points, A2, &c., as follows, and without its being necessary to employ the
bisecting circle at all. For if we denote, as in article 272, and in the Figure, by A2, B2, C2 the
intersections of the sides of the inscribed and bisecting triangle A 0B 0C 0 with the corresponding
sides of the triangle of contacts A1 B1C1, which also may be said to be inscribed in the given
triangle ABC, then the three lines A1 A2, B1 B2, C1C2 concur in the point P ; which point can thus
be graphically determined, upon the circle I, without any use of the circle K, by any one of those
three lines. In like manner, the ®gure exhibits the determination of three other auxiliary
points, (A2), (B2), (C2), as the intersections of corresponding sides of the two triangles
A 0B 0C 0 and (A1)(B1)(C1); and the concurrence of the three lines (A1)(A2), (B1)(B2), (C1)(C2)
in the point (P); which point can thus be found on the exscribed circle, by any one of these
three last lines, without using the bisecting circle.

287. But, although that circle K has not been used, in any of the constructions described in
the foregoing article, yet the bisecting triangle A 0B 0C 0 has been employed in all of them. Even
this triangle can, however, be dispensed with, and the points P and (P) on the circles I and
(I ) be graphically determined, without bisecting the sides of the given triangle, in the following
way, which likewise is illustrated by the Figure. Considering only the triangle of contacts
A1 B1C1, let its sides meet the corresponding points of the given triangle ABC in the points
A91, B91, C91; those three points are necessarily collinear, by a well known property of any conic
inscribed in a triangle, in virtue of which the three right lines AA1, BB1, CC1 concur, in a centre
of homology not marked in the ®gure; and the axis of homology, of the triangles ABC, A1 B1C1, is
the line A91 B91C91 thus determined, and strongly marked in the diagram. Then the auxiliary
points A2, B2, C2, upon the sides of A1 B1C1, can be found (in virtue of the theorem in article
276) by drawing the parallels AA2, BB2, CC2 to this axis A91 B91C91; after which the lines A1 A2,
B1 B2, C1C2, or any one of them, will determine the point P as before. In like manner,
(A91)(B91)(C91) with another strong black line in Figure 30, is the axis of homology of the
triangles ABC and (A1)(B1)(C1); and the auxiliary points (A2), (B2), (C2), upon the sides of
this last triangle of contacts, can be found by drawing parallels to this last axis, from the
corners of the given triangle ABC: after which the point (P) can be found, as before, upon
the exscribed circle, by means of any one of the three lines (A1)(A2), &c. ± The near
approach, in the Figure, to coincidence of the former axis A91 B91C91 with the tangent to the
circle K, at the second intersection T of that circle with the line AA -, is a purely accidental
circumstance, arising from the assumed ratios of the sides a, b, c. The latter axis of homology,
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(A91)(B91)(C91), as you see, does not even approach to contact, with any of the circles of the
®gure.

288. The same Diagram illustrates also a certain graphic determination of the common tangent
at P to the two circles K and I, and of the corresponding tangent at (P) to the circles K and
(I ), whereby we may perhaps with advantage replace that earlier and metric determination
(articles 177 and 178, or 282 and 283) of the position of those two tangents, which occurred
to me very soon after you mentioned the theorem of contact between the circles: although I
still think my metric method simple too, especially as it extended, with little modi®cation, to
homothetic and other conics; which, however, the graphic process can likewise easily be made
to do. This later and graphic method of construction for the common tangent at P is (by
article 278) the following: ``Find the point L, as the intersection of the two right lines BC ,
B2C2; M as the intersection of CA, C2 A2; and N as that of AB, A2 B2; then these three points,
L, M, N, are collinear, and the right line connecting them is the tangent sought.'' In short,
this common tangent LMN at P is (article 277) the axis of homology of the given triangle ABC,
and the auxiliary triangle A2 B2C2; the centre D, of homology of these two triangles, being (by
articles 275 and 276) the point at in®nity on the axis of homology A91 B91C91 of the other pair of
triangles, ABC, A1 B1C1. And in like manner the tangent (L)(M)(N ) at (P) is the axis of
homology of the triangles ABC and (A2)(B2)(C2), of which the centre of homology (D) is the
in®nitely distant point on the axis of homology (A91)(B91)(C 91), of the triangles ABC,
(A1)(B1)(C1).

289. The only other points marked in the ®gure are the two new ones, P 9 and (P 9), about
which I have said nothing as yet: I must therefore mention what they are, and what
suggested them to me. I consider, then, that so far as the linear element of all this
construction was concerned, the triangles A 0B 0C 0 and A1 B1C1 are really indistinguishable,
neither having any prerogative over the other, at least when projective changes are allowed.
They are simply two triangles inscribed in the given triangle ABC, and having it for a common
homologue. Accordingly, my auxiliary triangle A2 B2C2 is symmetrically related to them; its corners
having been originally determined (articles 272, and 286) as the intersections of their
corresponding sides, so that it may be said to be their common inscribed triangle, as the given one
was their common exscribed. But I have proved, ± anharmonically, I admit, and not without
calculation, ± in article 272, with the help of article 271, that this common inscribed triangle
A2 B2C2 is homologous to one of the two triangles, A 0B 0C 0 and A1 B1C1 namely to the latter of
them, since the lines A1 A2, B1 B2, C1C2 have been shown to concur in the point P ; it must
therefore, by the symmetry of relation above mentioned, be homologous to the other also, so that
the three new lines, A 0A2, B 0B2, C 0C2 must concur, in some new point P 9, as the ®gure suf®ciently
exhibits, although the framework of it had been constructed, before it occurred to me to
draw these and other additional lines. In like manner, the two triangles A 0B 0C 0 and
(A2)(B2)(C2) are homologic ; the three lines A 0(A2) &c., which connect their corresponding
corners, concurring in another new point (P 9), which is the last that I have inserted in the
Figure.

290. A few words more, however, must be said, respecting these two new points, P 9 and
(P 9). You may observe that they fall very well, in the Figure, ± which I congratulate Mr. Gill's
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Engraver� on not having to take in charge, ± on the tangents at P and (P). And this is not
accidental. In fact, the former tangent, LMN, has been proved, ± by anharmonic coordinates,
I admit, but probably you can prove it otherwise, ± in articles 277, and 278, to be (as
mentioned in article 288) the axis of homology of the two triangles ABC and A2 B2C2. But these
are symmetrically related, as we have seen, to the two triangles A 0B 0C 0 and A1 B1C1; one being
their common exscribed, and the other their common inscribed, and each being a common
homologue to them. Since, then, the axis LMN of homology of the pair A1 B1C1, A2 B2C2, it
must pass also through the centre P 9 of homology of the other pair A 0B 0C 0, A2 B2C2: in other
words, this axis must coincide with the line of those two centres. The right line PP 9 is therefore (as in
the ®gure) the common tangent to the circles K and I; and in like manner, the line (P)(P 9) is the
common tangent to K and (I ), as exhibited. ± And this much may for the present suf®ce, as
Explanationy of the Diagram: but it may be proper to devote another page or two to the
consideration of some (perhaps) new properties, of conics and even of triangles, which are
suggested by the whole construction.

291. Abstracting now from all the details of Figure 30, or using that Diagram merely in
illustration of some general properties of triangles and conics, which were just now alluded to,
I remark that, on the principle stated in article 289, we may infer from the Figure, or rather
from the reasonings which led me to construct it:

I. ``If any two triangles, t0 and t1, be each homologous to their common exscribed triangle, t,
they are also each homologous to their common inscribed triangle, say t2; and these two
triangles, t and t2, thus exscribed and inscribed to the other two, are homologous to each
other''. In the Figure, t, t0, t1, t2 are exempli®ed by the four triangles, ABC, A 0B 0C 0, A1 B1C1,
A2 B2C2.

292. It may be noticed, that the fourth triangle t2 is exscribed to the ®rst triangle t ; or that
the given triangle, t, or ABC, is conversely inscribed in t2, or in A2 B2C2: which is no mere
accident of the construction, as the calculations and reasonings, already set forth, are
suf®cient to show. Thus, whether we take the three triangles t, t0, t2, or the three others, t, t1,
t2, they form in each case a Cycle of Triangles, each of which is an exscribed homologue of that one
which follows it, in the cyclical succession thus assigned. ± A somewhat simpler and perhaps
more general theorem of the same sort, may be mentioned a little later.

293. In the next place it may be asserted, under the same conditions (article 291), that:
II. ``If a0 and a1 denote the axes of homology of the two pairs of triangles, t, t0, and t, t1,

then the intersection c � a0
:
a1 of these two axes is the centre of homology of the two

triangles, t, t2.'' In the Figure, a0 may be conceived to be the line at in®nity, and a1 is
represented by the strong black line to the right; to which line, accordingly, AA2, BB2, CC2

were found to be parallel. We might have taken that other strong black line, which is more to
the left of the diagram, as representing the axis of homology (a1), when the triangle (t1) is

� [Michael Henry Gill, 1794±1879, was Printer at the Dublin University Press from 1842 until 1872;
the engraver was William Oldham 1811±1885. See Vincent Kinane, A History of the Dublin University Press
1734±1976, Gill and Macmillan, Dublin: 1994.]
y That is, so far as points, lines and circles are concerned; for I must postpone my account of the inscribed

ellipse, which indeed I have inserted since this sheet was written.
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exempli®ed by the triangle of contacts (A1)(B1)(C1) with the exscribed circle; the centre (c)
of homology of the two triangles t and (t2) where (t2) denotes the auxiliary triangle
(A2)(B2)(C2), being the intersection a0

:
(a1), that is, the point at in®nity on that other axis

(a2); to which axis accordingly the three lines A(A2), B(B2), C(C2) are parallel.

294. Again, we have the Theorem:
III. ``If c90, c91, be the centres of homology of the two pairs of triangles, t0, t2, and t1, t2,

then their joining line, a � c90c91, is the axis of homology of the two triangles t and t2.'' In the
Figure the centres c90 and c91 are represented by the points P 9 and P, if we attend to the
inscribed circle; or by (P 9) and (P), if we employ the exscribed circle in its stead.

295. Proceeding to theorems which involve not only triangles but also conics, we may notice
the two following, which are obviously connected with each other:

IV. ``If a conic v1 be inscribed in the triangle t, so as to touch its sides at the corners of t1,
this conic will pass through the centre of homology c91 of t1 and t2, and will have for its
tangent at that point the axis a of homology of the triangles t, t2,'' or, by III., the line c91c90. In
the Figure, v1 may be the inscribed circle, touched at P by the line PP 9; or the theorem may
be exempli®ed by the contact of the exscribed circle, at (P), with the line (P)(P 9).

296. The obvious variation, above alluded to, of the Theorem IV, is the following:-
IV9. ``If a conic v0 be inscribed in t, touching its sides at the corners of t0, it will be touched

at c90, by the same axis a of the pair t, t2; which line c90c91, will thus be a common tangent to the
two conics v0, v1, although those conics do not touch one another''. In the Figure, the conic v0

is represented by the inscribed ellipse (see footnote to article 290) touching the given triangle
ABC at the middle points of its sides; and touching also, at the point P 9, the line PP 9, which
line is thus a common tangent, to this ellipse and to the inscribed circle. The same inscribed
ellipse has also, in conformity with the same theorem IV9., the line (P)(P 9) for a common
tangent with the exscribed circle, as may be seen in the Figure: all the parts of which have now
been fully (and perhaps more than fully) described, but which I shall still use, for illustrations of
another general Theorem.

297. V. ``If a conic u1 pass through the corners of the triangle t0, and be touched by the
axis a at the point c91, which point will thus count (by IV.) as two intersections of this last conic u1

with the conic v1, the two other intersections of these two conics are on the axis a0 of homology
of t and t0; which axis may thus be said to be a common chord of theirs.'' In the Figure, the
conics u1, v1 are the bisecting and inscribed circles, touching each other and the axis PP 9 at P,
and having for their other intersections the circular points at in®nity, which thus are situated (by
article 293) upon the axis a. Or the Theorem may be exempli®ed by the contact at (P) of the
bisecting and exscribed circles, with each other and with the axis (P)(P 9) of homology of the
two triangles ABC and (A2)(B2)(C2).

298. More generally we may infer, from the same recent Theorem V., what was stated in
article 177 as an extension of the elementary proposition respecting such contacts of the
bisecting circle with others, of which you have given so elegant an investigation based on
principles of geometry alone; namely, that ``if through the middle points of a plane triangle,
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exscribed to a given conic, a homothetic conic be made to pass, those two conics will touch one
another''. For there exists, by the Theorem V., a point c91 upon the conic v1 to which the
triangle t is exscribed, such that if a second conic u1 be made to touch the ®rst conic v1 at
that point, and to bisect the sides of the triangle, the line at in®nity a0 will be a common chord
of the two conics, which consequently are homothetic : but a conic, homothetic to a given one,
is determined by three given points.

299. I have had the curiosity to verify, by Cartesian Coordinates, which may be oblique this
Theorem of the homethetic conics, as follows. Let the given conic v1 be the hyperbola, xy � 1, not
necessarily equilateral. Let the three points of contact with the sides of the exscribed triangle

t be the points a,
1

a

� �
, a9,

1

a9

� �
, a 0,

1

a 0

� �
; when the abscissñ a, a9, a 0 are the three roots of

a given cubic equation;

x3 ÿ sx2 � tx ÿ v � 0:

Then, for the middle points of the sides of the triangle, I found expressions of the form,

s � a

t � a2
,

v� ta

t � a2

� �
;

so that the coef®cients k, l, m, n, in the equation of the homothetic conic, or hyperbola with
asymptotes parallel to the axes of x and y, which is evidently of the form

kxy � lx � my � n � 0,

must be such as to allow the biquadratic equation,

k(s � x)(v� tx)� l(s � x)(t � x2)� m(v� tx)(t � x2)� n(t � x2)2 � 0,

to be divisible by the cubic equation

x3 ÿ sx2 � tx ÿ v � 0;

whence it follows that I might write,

k � st ÿ v, l � ÿt 2, m � ÿs2, n � st ÿ v:

The bisecting hyperbola, with its asymptotes in the given directions, was thus found to have for its
equation,

(vÿ st)(xy ÿ 1)� t 2x � s2 y ÿ 2st � 0;

so that it touches the given hyperbola (as by the theorem it ought to do), namely at the point
s

t
,

t

s

� �
.

300. The Theorem V. may obviously be varied thus,
V9. ``If a conic u0 be exscribed to the triangle t1 and touch the axis a, and therefore also

(by IV9) the inscribed conic v0 at the point c90, its other (real or imaginary) intersections with
that conic will be upon the axis a1. In the Figure, I might have described a second ellipse,
touching the inscribed ellipse v0 (article 295) there drawn as the point P 9, and passing through
the points of contact A1, B1, C1, of the inscribed circle with the sides of the given triangle. This
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second ellipse, which I thought it better not to draw, would then have been the conic u0 of the
present theorem V9.; it would have lain wholly outside the ®rst ellipse v0, except just at their
point of contact P 9; but the two ellipses would have had the same two imaginary intersections, with
the axis a1 of homology of the two triangles ABC and A1 B1C1, that is with the strong black
line to the right of the Figure. ± I know that I mentioned, by anticipation, some or all of these
theorems in a separate Note [not found] of Saturday last, (I write now on Monday, May 21st,)
but it seemed convenient to incorporate them with the present Series of Sheets, to which
indeed they naturally belong.

301. The analysis by which I was led to perceive the foregoing Theorems, was perhaps not
altogether inelegant; but it must be admitted to have been very long, and to have involved a
great number of reductions, some of which were rather formidable. If, however, I were to
begin again, ± which, happily for your patience, and even for my own, I am not going to do, ±
I see how the processes might, in many respects, have been made shorter, and more simple.
But without returning on the question stated and solved by you, I think that it may be no
waste of time and space, to devote a few pages to the statement, and to the proof by
anharmonic coordinates, of a few theorems respecting triangles and conics, which are
perhaps a little simpler, if not more general, than those that have been recently enunciated;
because they involve the consideration of only one inscribed triangle t1; in a given triangle t,
instead of two such triangles, t0 and t1; although I shall still have to consider a third triangle
t2, which is (like A2 B2C2 in the Figure) at once exscribed to t and inscribed in t1, and is
homologous to each separately, as they likewise are to each other. In short, I am disposed to say
something about a single cycle of triangles, t, t1, t2, instead of the double cycle in article 292, ± of
which each is (as in that article) an exscribed homologue of the one which follows it in the
succession; and is of course, at the same time, an inscribed homologue of the triangle which
precedes it, in the same given Cycle.

302. Dismissing then, all considerations of Figure 30, let us attend only to the simpler
Figure 31, which is annexed; and in which ABC is, as above, any given triangle t, while
A1 B1C1 is a triangle t1, inscribed in it; and A2 B2C2 is another triangle t2, which is at once
inscribed in t1, and exscribed to t. Taking ABC as usual for the unit-triangle, let us at ®rst
suppose that the corners of t1 are expressed as follows:

Fig. 31
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A1 � (0, 1, a); B1 � (1, 0, 1); C1 � (1, 1, 0);

where a is any constant. The equation of the line B1C1 being then

ÿx � y � z � 0,

if we assume any point (á, â, ã) upon the unit-line, so that

á� â � ã � 0,

we are at liberty to write

A2 � (ÿá, â, ã),

so far as the condition of collinearity of the three points A2, B1, C1 is alone concerned, and
conversely every point A2, upon the side B1C1 of t1, is expressible by a symbol of this last form,
with the recent relation between á, â, ã. If we next write,

B2 � CA2
:
C1 A1 � (x, y, z),

and

C2 � A2 B
:
A1 B1 � (x9, y9, z9),

we shall have the equations,

0 �
x, y, z
0, 0, 1
ÿá, â, ã

������
������, 0 �

x, y, z
1, 1, 0
0, 1, a

������
������,

and

0 �
x9, y9, z9
ÿá, â, ã
0, 1, 0

������
������, 0 �

x9, y9, z9
0, 1, a
1, 0, 1

������
������;

that is,

0 � âx � á y, 0 � ax ÿ ay � z,

0 � ÿãx9ÿ áz9, 0 � x9� ay9ÿ z9;

whence we may write,

B2 � (á, ÿâ, aã), C2 � (aá, â, ÿaã);

and the line B2C2, thus determined, will pass through the point A, because we shall have the
symbolical equation,

(B2)� (C2) � (1� a)á(A),

since A � (1, 0, 0).

303. The conditions of inscription are therefore thus all satis®ed; but we have made no use, as
yet, of any conditions of homology. But if we now inquire, under what condition will the third
triangle t2 be homologous to the ®rst triangle t, we have for the three lines AA2, &c.,
connecting their corresponding corners, the equations,
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ã y ÿ âz � 0, áz ÿ aãx � 0, âx ÿ aá y � 0;

if then these three lines concur in any common point, we must have the equation,

0 �
0, ã, ÿâ
ÿaã, 0, á
â, ÿaá, 0

������
������ � áâã(1ÿ a2),

of which the only useful factor is 1ÿ a � 0; and such is also the condition of concurrence of AA1,
BB1, CC1. The ®rst triangle will therefore be homologous to the third, if it be homologous to
the second, but not otherwise; that is, other things remaining the same, if these three triangles
admit of being expressed as follows:

t � ABC � (1, 0, 0)(0, 1, 0)(0, 0, 1);

t1 � A1 B1C1 � (0, 1, 1)(1, 0, 1)(1, 1, 0);

t2 � A2 B2C2 � (ÿá, â, ã)(á, ÿâ, ã)(á, â, ÿã);

with the relation

á� â � ã � 0,

as before.

304. With these coordinates of the corners, the centres of homology of the ®rst triangle, t1,
with the two others separately taken, which centres in Figure 31 are the points O and O 0, but
which may also be expressively denoted by the symbols c0,1, c2,0, are evidently the following:

O � c0,1 � (1, 1, 1); O 0 � c2,0 � (á, â, ã):

And because t has been assumed as the unit-triangle, we can already infer, from the general
theory mentioned, or alluded to, in articles 275 and 277, that the axes of homology of the
same two pairs of triangles, t0, t1, and t2, t0, may be represented by the following analogous
symbols:

a0,1 � [1, 1, 1]; a2,0 � [áÿ1, âÿ1, ãÿ1]:

Accordingly, the intersections of corresponding sides of the pair t0, t1 are the three points,

BC
:
B1C1 � (0, 1, ÿ1), CA

:
C1 A1 � (ÿ1, 0, 1), AB

:
A1 B1 � (1, ÿ1, 0)

which are evidently on the unit line [1, 1, 1], by some of the earliest results of this whole
calculus; and the intersections of corresponding sides, of the pair of triangles t2, t0, are the
points,

B2C2
:
BC � (0, â, ÿã), C2 A2

:
CA � (ÿá, 0, ã), A2 B2

:
AB � (á, ÿâ, 0),

which obviously all satisfy the common equation

áÿ1x � âÿ1 y � ãÿ1z � 0,

and are therefore ranged upon one common axis of homology, of which the symbol is, as
above,

a2,0 � [áÿ1, âÿ1, ãÿ1]:
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305. Already, simple and unlaborious as the recent calculations have been, we may derive
from them a theorem as follows. Since the axis a0,1, or [1, 1, 1], passes through the centre c2,0,
or (á, â, ã), because á� â� ã � 0; and since the three triangles t, t1, t2 of article 303 may
represent any cycle, of the kind described in article 301, we are entitled to assert that ``In any
cycle of three triangles, of which each is an exscribed homologue of the next, the axis of homology of ®rst
and second passes through the centre of homology of ®rst and third''. (In Figure 30, this was
exempli®ed by the passage of the axis of ABC, A1 B1C1 through the centre of ABC, A2 B2C2;
or by that centre being at in®nity, and therefore on the axis of homology of ABC, A 0B 0C 0;
&c.)

306. The cycle of inscription may be written as t2 tt1; t being inscribed in t2, &c. But we have
proved that in this new arrangement, the ®rst triangle is homologous to the second; it must
therefore, by article 303, be homologous also to the third; that is to say, the two triangles t1,
t2 must have a centre of homology, c1,2, or O9, in which lines joining corresponding corners
concur, as is exhibited in Figure 31. ± to verify this geometrical result by calculation, and to
determine the coordinates of this new centre O9, we may proceed as follows. Let the
equations of A1 A2, B1 B2, C1C2 be for the moment, denoted and written thus:

lx � my � nz � 0, l9x � m9y � n9z � 0, l 0x � m 0n � n 0z � 0:

Then by the values of the coordinates of the corners in article 303, the coordinates l, m, n of
the joining line A1 A2 must satisfy the two equations,

0 � m � n, 0 � ÿál � âm � ãn;

whence

l � âÿ ã, m � á, n � ÿá:
In like manner,

0 � n9� l9, 0 � ÿâm9� ãn9� ál9;

m9 � ãÿ á, n9 � â, l9 � ÿâ;

and similarly,

n 0 � áÿ â, l 0 � ã, m 0 � ÿã:
If then we merely want to prove that the three lines A1 A2, B1 B2, C1C2, or [l , m, n],
[l9, m9, n9], [l 0, m 0, n 0], concur somewhere, it is suf®cient to observe that the equation,

0 �
l , m, n

l9, m9, n9

l 0, m 0, n 0

��������
�������� �

âÿ ã, á, ÿá
ÿâ, ãÿ á, â

ã, ÿã, áÿ â

��������
��������

� (âÿ ã)(ãÿ á)(áÿ â)� (âÿ ã)âã� (ãÿ á)ãá� (áÿ â)áâ � áâãÿ áâã,

is satis®ed, independently of any relation between á, â, ã. But if we also wish to assign the
coordinates x, y, z of the point of concurrence, we may write, further,
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x �
m, n

m9, n9

�����
����� � á, ÿá

ãÿ á, â

�����
����� � á(â� ã)ÿ á2;

y �
n, l

n9, l9

�����
����� � ÿá, âÿ ã

â, ÿâ

�����
����� � â(ã� á)ÿ â2;

z �
l , m

l9, m9

�����
����� � â ÿ ã, á

ÿâ, ãÿ á

�����
����� � ã(á� â)ÿ ã2;

no use having yet been made, in the present article, of the relation á� â � ã � 0. We may,
however, now with advantage introduce that relation; and thus, dividing each coordinate by
ÿ2, may write the following symbol for the remaining centre of homology,

O9 � c1,2 � (á2, â2, ã2):

307. The theorem of article 305, applied to the cycle t2 tt1 of article 306, would have enabled
us to foresee that this axis of homology a2,0 of the two triangles t2, t must pass through the
centre of homology c1,2 of t1 and t2. Accordingly we know now that the symbols of this axis
and of this centre are, by articles 304 and 306,

a2,0 � [áÿ1, âÿ1, ãÿ1]; c1,2 � (á2, â2, ã2);

and the relation á� â� ã � 0 gives evidently the veri®cation,

áÿ1:á2 � âÿ1:â2 � ãÿ1:ã2 � 0:

308. We have not yet investigated the axis a1,2 of homology of the two triangles t1 and t2;
which axis, as a new veri®cation of the theory, ought to pass through the centre c0,1 of
homology of t and t1 because the three triangles t1, t2, t form a cycle, of the kind considered
in article 301: so that if we write

a1,2 � [l1,2, m1,2, n1,2],

we ought to ®nd the relation,

l1,2 � m1,2 � n1,2 � 0:

Accordingly, the equation of B1C1 being still

ÿx � y � z � 0,

as in article 302, and the equation of B2C2 being

âÿ1 y � ãÿ1z � 0,

(by the value of the coordinates, as given in article 303,) we have, for the intersection of these
two corresponding sides of the triangles t1 and t2, the symbol,

B1C1
:
B2C2 � (âÿ ã, â, ÿã),

and similarly, for the two other intersections of corresponding sides, we have,

C1 A1
:
C2 A2 � (ÿá, ãÿ á, ã),

and
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A1 B1
:
A2 B2 � (á, ÿâ, áÿ â):

These three intersections are thus all ranged upon the one straight line,

áx � â y � ãz � 0,

and we may write the symbol:

a1,2 � [á, â, ã];

with the expected veri®cation, that this axis a1,2 passes through the centre c0,1, or through
the unit-point.

309. It may be convenient here to tabulate the symbols which have been thus obtained, for
the centres and axes of homology, of the three pairs of triangles considered. They are, then,
the following:

c0,1 � (1, 1, 1); c1,2 � (á2, â2, ã2); c2,0 � (á, â, ã);

a0,1 � [1, 1, 1]; a1,2 � [á, â, ã]; a2,0 � [áÿ1, âÿ1, ãÿ1]:

310. The supposed relation of t1 to t, as an inscribed and homologous triangle, allows us to
conceive a conic, v, which shall be at once inscribed to t, and exscribed to t1; and of which the
equation is easily found to be, ([left blank in MS])

x
1
2 � y

1
2 � z

1
2 � 0, or, x2 � y2 � z2 ÿ 2 yz ÿ 2zx ÿ 2xy � 0:

But this equation is satis®ed, when we suppose

x � á2, y � â2, z � ã2,

with the relation

á� â � ã � 0;

the conic v passes therefore through the centre c1,2. We have therefore this Theorem: ``If a
conic v be inscribed in a given triangle t, and if a triangle t2 be constructed, which is at once
exscribed to that given triangle t, and inscribed in the triangle of contacts t1, this conic will
pass through a point c1,2, which will be a centre of homology of the two triangles t1 and t2.'' I
need not repeat how this theorem is illustrated by Figure 30; but may just observe that it is
([Left blank in MS]) in some respects simpler than theorems stated before (IV., IV9.), as now
involving the consideration of only three triangles.

311. The tangent to the conic v, at the point c1,2, is the line [Dxv, Dyv, Dzv], [(Left blank in
MS]) when

2v � x2 � y2 � z2 ÿ 2 yz ÿ 2zx ÿ 2xy;

it is therefore the line

[x ÿ y ÿ z, y ÿ z ÿ x, z ÿ x ÿ y], or [á2 ÿ â2 ÿ ã2, â2 ÿ ã2 ÿ á2, ã2 ÿ á2 ÿ â2]

or (dividing by 2áâã), it is [áÿ1, âÿ1, ãÿ1]; but this last has been seen in article 304 to be the
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symbol of the axis a2,0. We have therefore thus the Theorem (which is again illustrated by
Figure 30, and includes theorems already stated):

``The tangent to the inscribed conic v, at the point c1,2, or at the centre of homology of its
inscribed triangle t1, and of the third or auxiliary triangle t2, is the axis of homology a2,0 of
the same auxiliary triangle t2, and of the exscribed triangle t.'' ± In fact, the right line

x

á
� y

â
� z

ã
� 0,

of article 304, touches the conic

x
1
2 � y

1
2 � z

1
2 � 0

of article 310, in the point x � á2, y � â2, z � ã2, if the condition á� â� ã � 0 be satis®ed.

312. Of course, by symmetry, we may in like manner conceive a second conic, v1, inscribed in
this triangle t1, and exscribed to t2; and then this new conic will be touched by the axis a0,1 at
the centre of homology c2,0, of the pair of triangles indicated by these symbols. And similarly
a third conic v2 may be inscribed in t2, and exscribed to t, which shall be touched by a1,2 at
c0,1. Accordingly the equations of these two new conics are, by the conditions of their
description,

0 � 2v1 � áÿ1x2 � âÿ1 y2 � ãÿ1z2,

0 � v2 � á yz � âzx � ãxy;

the former passes through the point (á, â, ã), or c2,0, and is touched there by the line
[1, 1, 1], or a0,1, and the latter passes through (1, 1, 1) or c0,1, and has for its tangent at that
point the line [á, â, ã], or a1,2. ± (In Figure 30, if we still suppose the triangles ABC and
A2 B2C2 to be denoted by t and t2, then according as we consider t1 to represent the triangle
of contacts A1 B1C1 or the bisecting triangle, A 0B 0C 0, the conic v1 will either be a hyperbola,
touching the sides of the former triangle at the points A2 B2C2, and having the strong black
line A91 B91C 91 for one of its asymptotes; or else a parabola, touching the sides of the latter triangle
at the same points A2, B2, C2, and having the same line A91 B91C91 for a parallel to its axis of
®gure.)

313. Another system is, however, suggested by preceding investigations, respecting which
new system it may be proper to say something here. Conceive then a new triangle, t91, or
A91 B91C 91, which shall (like t1) be an inscribed homologue of the given triangle t, and therefore
also (like t1 again) an exscribed homologue of t2, by the theorem of article 303.

Let the centre and axis of homology of the new pair of triangles t, t91 be thus denoted in
conformity with a theory already explained,

c90,1 � (a, b, c), a90,1 � [aÿ1, bÿ1, cÿ1];

then, because, by the theorem of article 305, this new axis must pass through the old centre
c2,0, or (á, â, ã), the new and old coordinates must be connected by the equation,

aÿ1á� bÿ1â� cÿ1ã � 0;

which, when combined with the old equation
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á� â � ã � 0,

allows us to write

á � aa9, â � bb9, ã � cc9,

or makes, for conciseness,

b ÿ c � a9, c ÿ a � b9, a ÿ b � c9;

the ratios only of the coordinates being important here.
Exscribe now, to the new triangle t91, a new conic, u, which shall touch the conic v of article

310, and therefore also, by article 311, the line a2,0, or [áÿ1, âÿ1, ãÿ1], at the point c1,2; the
equation of the new conic will be, on account of the given condition of contact, of the form,

0 � 2u � 2v� (áÿ1x � âÿ1 y � ãÿ1z)(ëx � ìy � íz),

with the expression for the function 2v which was assigned in article 311, and with values for
the three constants ë, ì, í which are to be determined by the conditions of description; namely,
in virtue of that form (article 311), of 2v,

0 � (b ÿ c)2 � (âÿ1b � ãÿ1c)(ìb � íc);

0 � (c ÿ a)2 � (ãÿ1c � áÿ1a)(íc � ëa);

0 � (a ÿ b)2 � (áÿ1a � âÿ1b)(ëa � ìb);

which arise from our having

t91 � (0, a, b)(a, 0, c)(a, b, 0):

But, by the present article,

âÿ1b � ãÿ1c � b9ÿ1 � c9ÿ1 � ÿa9b9ÿ1c9ÿ1 � ÿa9=(b9c9),

because

a9� b9� c9 � 0; and (b ÿ c)2 � a92,

with analogous reductions for the 2 other equations of exscription. Those three equations
may therefore be thus written,

a9b9c9 � ìb � íc � íc � ëa � ëa � ìb,

giving

ëa � ìb � íc � 1
2a9b9c9;

the equation of the new conic u is consequently

0 � 4u � 4v� a9b9c9(áÿ1x � âÿ1 y � ãÿ1z)(aÿ1x � bÿ1 y � cÿ1z):

314. Proceeding to interpret this result, we see that while the line

áÿ1x � âÿ1 y � ãÿ1z � 0,

or [áÿ1, âÿ1, ãÿ1] or the axis a2,0 of homology of the pair t, t2, is (by the construction to which
the recent analysis answers) the common tangent to the two conics, u and v, at the point c1,2, or
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(á2, â2, ã2), their common chord (connecting their two intersections, which are distinct from that
point of contact) is the line

aÿ1x � bÿ1 y � cÿ1z � 0,

or

[aÿ1, bÿ1, cÿ1],

or ®nally, by the foregoing article, the axis of homology, a90,1, of the new pair of triangles t, t91.
We have therefore, in this new way a Theorem, which includes those above numbered as V. and
V.9, in articles 297 and 300; namely, the following:-

``If a conic u be so exscribed to the triangle t91 as to touch the conic v at the centre c1,2 of
homology of the two triangles t1, t2 its other intersections (real or imaginary) with that conic
will be situated upon the axis of homology a90,1 of the triangles t and t91.

315. It follows that if a conic u be made to pass through the three corners of the triangle t91,
and through the two points, real or imaginary, in which the conic v is cut by the axis a90,1,
these two conics will touch one another; namely at the centre c1,2, their common tangent
there being the axis a2,0. Hence we derive, in a new way, the earlier Theorem (articles 177,
298), that two homothetic conics (and therefore in particular the two circles) touch, if one (as v)
be inscribed in a triangle (as t, including of course what in elementary language is called
exscription of a circle), and if the other (as u) pass through the middle points of the sides of the
same triangle. ± I need say nothing about the conics, u1 and u2, which touch the other conics
v1 or v2, nor about the illustration of these Theorems of contacts of Conics which are
supplied by Figure 30.

316. I may, however, before taking leave of the Subject once more, ± and I hope this time
®nally, so far at least as the present Letter is concerned, ± just sum up brie¯y, and in general
terms, the leading Theorems to which my analysis has conducted me, respecting such cycles of
triangles, &c.: though doubtless it must be possible to assign some much more elementary proof
of them, derived from geometry alone.

317. Theorem A. ± ``If a ®rst triangle (plane or spherical) be exscribed to a second, to which
it is homologous, and if a third triangle be at once inscribed in the second, and exscribed to
the ®rst, this third triangle is homologous to each of them; so that they form a cycle of triangles,
wherein each is an exscribed homologue of the one that follows it in the cycle, and an inscribed
homologue of the one that precedes it, in the same cyclical succession.''

318. Theorem B. ± ``Under the same conditions, the axis of homology of the ®rst and third
triangles passes through the centre of homology of the second and third; and touches there the
conic, which is at once inscribed in the ®rst triangle, and exscribed to the second.'' Or we may
say (articles 305 and 312) that the axis of homology of ®rst and second passes through the
centre of homology of ®rst and third, and touches there the conic, which is inscribed in the
second and exscribed to the third. Or, etc.. It may thus be seen that ``the triangle of centres of
homology is inscribed in the triangle of axes.''
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319. Theorem C. ± ``If a fourth triangle be (like the second) inscribed in the ®rst, and
exscribed to the third, in which case it will be (by A.) a common homologue of theirs, although
not of the second triangle; and if a second conic, exscribed to this fourth triangle, pass through
the intersections (real or imaginary) of the ®rst conic with the axis of homology of the ®rst
and fourth triangles; this second conic will touch the ®rst, at the point where (by B.) that former
conic touches the axis of homology of the ®rst and third triangles; which axis is thus a common
tangent to these two conics, as the axis of the ®rst and fourth triangles is (by construction) a
common chord of theirs.'' ± And so I close my account of what I had to say upon this subject: but
must add a little more on cubic curves before I conclude this Letter.

320. May 28th, 1860. ± (More last words.) Although I had fully intended not to devote
another sheet of this Letter to those little Theorems and Constructions which your Question
led me to perceive; yet as other things have prevented me hitherto from resuming Cubic
Curves, ± about which indeed I had not proposed to say much more, and as I happened to
see, this morning, a very simple and purely geometrical proof of the Theorems which I lately
marked as A. and B. in articles 317 and 318, I have amused myself just now by drawing the
annexed Figure, which might indeed have been called 31 bis, although I thought the
variations considerable enough to entitle it to a new number, as Figure 32.

321. Let ABC be any given triangle, t, and O any given point in its plane; draw AOA1, &c.
and so construct an inscribed and homologous triangle, t1, or A1 B1C1; on the side B1C1 take
any point A2, and draw A2C , A2 B; let B2, C2 be the points in which these last lines meet the
other sides, C1 A1, A1 B1, of t1; and join B2C2. We shall thus have constructed a third triangle,
t2 or A2 B2C2, which is evidently inscribed in the second triangle, t1; but I say that it is also
exscribed to the ®rst triangle, t; and that it is homologous to each.

322. I propose then to prove, geometrically: ®rst, that side B2C2 of the third triangle passes
through the vertex A of the ®rst; second, that the three right lines A1 A2, B1 B2, C1C2 concur in

Fig. 32
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one point or centre of homology, P ; and third, that if a, b, c be the points in which the sides BC,
CA, AB of the ®rst triangle are intersected by the corresponding sides B2C2, C2 A2, A2 B2 of
the third triangle, then these three points of intersection a, b, c are ranged on one right line, or
axis of homology: from which it will of course follow that the three lines AA2, BB2, CC2 concur
in another centre, namely that which is marked as Q in the Figure. But I say farther, and fourth,
that the axis abc, of homology of t, t2, passes through the centre P, of homology of t1 t2; and ®fth
that this axis touches there the conic v, or A1 B1C1, which is at once inscribed in the ®rst
triangle, t, and exscribed to the second triangle, t1.

323. Analysis (Geometrical). ± Suppose it true : and let the conic v be described, which thus
touches, at the points A1, B1, C1, the sides of the given triangle ABC . The centre of homology
P of t1 t2 will then be the second intersection of that conic with the right line A1 A2; and the
axis of homology abc of tt2 will cut the sides of the given triangle in the same points as the
tangent to the conic at P ; also the three lines aA, bB, cC will coincide in position with the
sides B2C2, C2 A2, A2 B2 of the triangle t2. We shall thus have three quadrilaterals, bcBC , caCA,
abAB, exscribed to the conic, with the three corresponding but inscribed quadrilaterals,
PC1 A1 B1, PA1 B1C1, PB1C1 A1; and the diagonals bB, cC, of the ®rst exscribed quadrilateral,
are thus found to concur (if the theorem be true) in one common point A2, with the diagonals
PA1, B1C1 of the ®rst inscribed: with analogous concurrences of diagonals, for the two other
pairs of exscribed and inscribed quadrilaterals. But such concurrences are otherwise known
to exist; the analysis therefore succeeds.

324. Synthesis. ± To convert now the geometrical analysis of the foregoing article into a
synthesis, let the point P be de®ned to be the second intersection of the line A1 A2 with the
conic A1 B1C1, inscribed as before in the given triangle; and let a, b, c be de®ned to be the
points in which the sides BC &c., of that triangle are cut by the tangent to the conic at P. We
have thus again the same three exscribed and the same three inscribed quadrilaterals as
before; but we now assume as known the concurrence in one point of the four diagonals of any
one such pair. Hence,

Ist the diagonals bB, cC, of the exscribed quadrilateral bcBC, pass each through the
intersection A2 of the diagonals PA1, B1C1, of the inscribed quadrilateral PC1 A1 B1;

IInd the lines aA, and PB1, which are diagonals respectively of the two quadrilaterals caCA
and PA1 B1C1, pass through the intersection B2, of the lines cC (or CA2) and C1 A1,
which are the other diagonals of the same two quadrilaterals; and

IIIrd the diagonals aA and PC1, of abAB and PB1C1 A1, pass through the intersection C2 of
bB (or A2 B) and A1 B1; so that the sides B2C2, C2 A2, A2 B2 of t2 are now proved (as they
were before in article 323, supposed) to coincide with the lines aA, bB, cC . Hence ®rst, the
side B2C2 passes through A and the third triangle is exscribed to the ®rst ; second, the lines
A1 A2, B1 B2, C1C2 concur in the point P , and the third triangle is homologous to the second;
third, this point of concurrence, or centre of homology P , is on the inscribed conic, v; fourth,
the three points of intersection,

a � BC
:
B2C2, b � CA

:
C2 A2, c � AB

:
A2 B2

are collinear, and the third triangle is homologous to the ®rst; ®fth, the axis of homology, abc, of tt2
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passes through the centre of homology P of t1 t2; and sixth, this axis touches, at this centre, the
inscribed conic, v. Thus all the assertions of article 322 are justi®ed, and the Theorems A. and
B. are fully and geometrically proved: for it is clear that the third triangle cannot be (as supposed
in A.) at once inscribed in the second triangle and exscribed to the ®rst, unless its vertex A2

be situated somewhere upon the side B1C1, and unless the two other vertices B2 and C2 admit
of being derived from this one, by the constructions mentioned in article 321. ± (The axis á,
â, ã, of t, t1, (ã not mentioned in the Figure) touches, at the centre Q of t2 t1 the conic
A2 B2C2, inscribed in t1; and the axis abc of t1, t2 touches, at the centre O of t, t1, the conic
ABC inscribed in t2.)

325. If the point A2 move along the line B1C1, the triangle A2 B2C2, constructed as in article
322, will vary; but it will be still an exscribed homologue of the given triangle ABC; and their
varying axis of homology, abc, will still touch the conic A1 B1C1, which conic is thus its envelope.
Let a second conic v9, or A91 B91C91, be inscribed in the given triangle; so that the triangle t91 or
A91 B91C 91, is a second inscribed homologue of ABC. The sides of that given triangle t being thus
three common tangents to the two conics v and v9, there must be a fourth real and common
tangent, which may be taken as the axis abc of homology of ABC or t, and of a triangle t2, or
A2 B2C2, exscribed to t as before; and this latter triangle t2 will then be a common inscribed
homologue of the two inscribed triangles, t1 and t91. Again, this axis abc of t, t2 will pass not only
through the old centre P of homology of t, t1, but also (for the same reason) through the new centre
P 9, of homology of t and t91; it is therefore the joining line PP 9 of those two centres, and may be
found as such. Again, if á � BC

:
B1C1, and â � CA

:
C1 A1, the line áâ, that is, the axis of

homology of t, t1, will pass (as in Figure 32) through the centre of homology Q of t2, t, for
the same reason that the axis abc of t2, t passes through the centre P of t1, t2; and in like
manner the axis á9â9 (or á9â9ã9) of homology of t, t91 if it were drawn, would necessarily be
found to pass through the same centre Q of t2, t; which centre Q is therefore the intersection
of those two axes, áâã and á9â9ã9. And thus it seems that the Theorems I., II., III., IV., IV9., of
articles 291, 293, 294, 295, and 296, with the remark made in article 292, receive a suf®cient
proof, independently of any calculation. But I do not yet see any simple and purely geometrical
proof of the Theorem V. of 297; nor (of course) of its variation v9 in article 300 or corollary in
article 298.

326. (June 2nd, 1860.) ± I have this day read, and (as I conceive) understood, the
geometrical investigation contained in your note of the 31st of May [not found], which
happened to be brought to me rather late in the evening of yesterday:- having been
entrusted by the postman to someone. Perhaps I followed the proof the more easily,
because you had paid me the compliment of adopting several letters and accents from
recent diagrams of mine ± with which yours, in its simplicity, contrasts very advantageously
for itself: but I wanted, wisely or not, to illustrate many things at once in one synoptical view.
If either of us shall draw any more ®gures, we shall of course not be bound to retain the
same notations.

327. The only hint, which you seem to have taken from this Letter of mine, consists (I think)
in your recognition of that useful triangle A2 B2C2, which is the co-inscribed of the bisecting
triangle A 0B 0C 0, and of the triangle of contacts A1 B1C1. You prove (as I take it), with the
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help of Ptolemy's Theorem (Almagest, oÃOÄ aÄ. eÃ., oÁIÂÐ. OÁ ., . . . SÏOÂ sÏsÏEÂÎ OÄ yÈUÂ IÂj�rOÂ úÎ yÈUÂ �EÂUÂÏ . . .)�,
®rst, that

PA 0 : PB 0 : PC 0 � A1 A 0 : B1 B 0 : C1C 0;

if P be de®ned to be the second intersection of the right line RB2 with the circle A 0B 0C 0; R
being on that circle (as in Figure 30) the middle point of the arc A 0B 0C 0; and B2 being the
intersection of the sides C 0A 0, C1 A1 of the two triangles inscribed in the given triangle ABC.

328. You prove, second, with the help of the celebrated Theorem of Ptolemy, and by
employing the quadrilateral PA 0B -C 0, (where B - is the foot of the perpendicular from B on
CA, or the second intersection of that side CA with the bisecting circle,) in combination with
the formerly employed quadrilateral PA 0B 0C 0, that the point B1 is on the line B2 R .

329. You prove, very simply and elegantly, third, that the lines which I called A2Q and C2S
(in my Figure 30) meet in the same point P, because P 9B2 still bisects the angle A 0P 9C2, if P 9 be
determined &c.; and therefore P 9 coincides with P [it does not seem to be possible to
reconcile this statement with Figure 30].

330. In the fourth place, you prove, with an elegant use of elementary theorems about the
bisector of the vertical angle of a plane triangle, that the following proportion exists:

PA1 : PB1 : PC1 � PQ : PR : PS :

And hence you infer, by known principles of homology (or even of similarity) of ®gures, that
the circle which touches the bisecting circle at the point P (determined as in article 327), and
which passes through the point B1 passes also through the two other points, of the same kind,
C1 and A1: or, in other words, that the two circles, A 0B 0C 0 and A1 B1C1, touch one another
(namely, at the point P). But this last is a form of the Theorem, which following the example of

� [Claudius Ptolemy (c. 100±178 AD) `Almagest, Book I, Chapter 9, . . . a most useful theorem . . .'. See:
Composition matheÂmatique de Claude PtoleÂmeÂe, translated by l'AbbeÂ Nicholas B. Halma (1755±1828) with
notes by Jean-Baptiste Joseph Delambre (1749±1822), 2 Vols, Paris: 1813±16, Vol. I, p. 29; Ptolemy's
ALMAGEST, translated and annotated by G. J. Toomer, pp. 50±51, Duckworth, London: 1984; D. Pedoe,
Geometry, p. 90, Cambridge University Press, Cambridge: 1974.

In a separate letter to Hart, dated 13 June 1860 (Trinity College Dublin MS 1493/1171, f. 88±89),
Hamilton writes:

I am happy to say that I wrote as far as page 215 [article 331, and following] of my Letter, about ten days
ago ± more accurately on the Saturday before last; intending then, as I still do intend to ®nish that
``Letter'' with page 216 [article 336]. But the sheet is not just now at my hand; it was laid aside, I think,
for the purpose of inserting some references ± one of them being to the Almagest of Ptolemy, a large part
of which I have read in the Greek, and in which the great Author very justly speaks of what we are
accustomed to call his Theorem as SÏOÂ sÏsÏEÂÎ OÄ yÈUÂ IÂj�rOÂ úÎ yÈUÂ �EÂUÂÏ . I have never had patience with
Delambre's depreciation of Ptolemy. He was, no doubt, in an important sense, a pupil, this love & study,
of Hipparchus [c. 190± c. 120 BC]; who was perhaps the more original genius of the two: but how little
would we now know of that

eUÂ OÂ r ÐOÄ SÏyÈ�yÈUÂ yÈê kAÄOÄ ÐOÄ SÏAÄSÏOÂ OÁ OÂ ê

[`diligent and upright man'] as Ptolemy delights to call Hipparchus, if the Almagest had not recorded
the disinterested admiration of its author! (I fancy that Hipparchus was far inferior to Ptolemy as a
geometer.)']
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our friend Salmon, I must be permitted to call ``Hart's Theorem'', until it is proved, to us, that
it had been anticipated abroad.

331. You feel, however, that it is natural to wish for a more purely projective proof ; or for one
which shall be more completely independent of all ratios of lengths of lines. Just now, I am not
disposed to search for any such proof of my Theorem C., or V.; but I think that you could not
wish me to suppress, before closing my remarks on this Subject, some short account of what,
at this moment, appears to me to be a remarkable or at least a curious extension, of the
geometrical fact of your circle being a common tangent to four assignable circles: which extension
has been pointed out to me by my son William,� who was a pupil of Salmon's, and attended
many lectures of Townsend, when in College.

332. My son observes, then, that if to denote, as in my Figures 29 and 30, the point of
concourse of the perpendicularity AA-, BB -, CC - of the given triangle ABC, your circle passes
through the feet of the perpendiculars of each of the three new triangles, $BC , $CA, $AB: and
therefore is the bisecting circle of each of them. Admitting then your Theorem, as proved by you,
he infers that your circle A 0B 0C 0, or A-B -C -, touches not only your four other circles, inscribed or
exscribed to the given triangle ABC, but also those twelve other circles, which are inscribed to any
of these three new triangles, with the point $ for their common vertex. And I believe that he
has made some drawings, to illustrate this result, which to me was totally unexpected.

333. I see, of course, that we are thus entitled to enunciate a Theorem, respecting a conic,
touching at once sixteen other conics, which I shall not delay to write down. But as the point of
concourse $ acquires thus a new interest, I shall just observe here that if we write,

e � abc(a � b � c), a 0 � e ÿ b2c2,

b 0 � e ÿ c2a2, c 0 � e ÿ a2b2,

a, b, c having the same signi®cation as in article 313, this centre of homology $, of the two
triangles ABC, A-B -C -, is found to be denoted as follows:

$ � 1

a 0
,

1

b 0
,

1

c 0

� �
;

the axis of homology of those two triangles being therefore on my plan denoted by the
symbol, [a 0, b 0, c 0].

334. The Subject is by no means exhausted, but I must bring this long Letter to a close. If I
had resumed the subject of Cubic Curves, I might have sought to illustrate, in a new way, a
Theorem to which some interest seems to attach, and which is indeed one of the main results
of some articles, respecting the geometrical distinction which exists (according to me) between

the real positive, and the real negative root, of the biquadratic in
ë

ì
. And I had other connected

projects, which the time warns me to abandon.

� [William Edwin Hamilton (1834±1902), was Hamilton's eldest son. He graduated in 1857.]
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335. (June 28th, 1860.) My son has lately pointed out to me a still greater extension of your
Theorem, as regards the number of the circles to which yours is a common tangent, and
which can be simply enough assigned, in a natural and geometrical connexion with the
original triangle. The principle of this new extension is, that a series of triangles may be
obtained from the original one, each capable of replacing it in the theorem: namely either, ®rst,
by forming a ®rst derived triangle, such that the old feet of perpendiculars from vertices on
sides shall be the new middles of sides; with other derived triangles ad in®nitum, each similarly
related to the preceding; or, second, by forming from the given triangle a ®rst derived
triangle, and from it an in®nite succession, so that the connecting construction at each stage
may be the converse of those in [the ®rst].

336. (November 16th, 1860.) This Sheet, having at last been found, is forwarded, to
complete your Series, ± if you have any fancy of stitching all the Sheets together. It completes
what I called the Letter, on Anharmonic Coordinates: the Postscript, which I take up only at
odd times, may almost be considered as ®nished too, although about a couple of sheets more
may yet be forwarded.

In the meantime I remain, my dear Doctor Hart,
faithfully yours,

William Rowan Hamilton
Andrew Searle Hart, Esq., LL. D., F.T.C.D.

Postscript to Letter on Anharmonic Coordinates:

Observatory, August 28th, 1860.
My dear Dr. Hart

337. It is almost exactly six months since the First Sheet of my Letter on Anharmonic
Coordinates was begun; and was handed to you at the Royal Irish Academy on the eve of their
last Meeting in February: nor have I yet sent what was designed to be the last sheet because it
chanced to be always missing, just when I wanted it for you. Indeed, I remember that the last
page of it had not been written, when I laid the sheet aside, nearly three months ago; it was my
project to have mentioned in that paper, some additional results of my son William, derived
from the study of your Theorem: perhaps I may still ®ll up the page, and send the sheet,
when I ®nd it. Meanwhile I know that the last paragraph, or article, was to have been
numbered 336; wherefore I number the present paragraph 337, as above: although I regard
anything more, which I may write now, in this resumed Series of Sheets as merely a Postscript
to the (theoretically) concluded Letter. To write, with your permission, such a Postscript, will
be useful to myself: and though it may extend to several new pages, will yet serve rather as an
economy of time to me than the reverse, by acting as a sort of safety valve, to carry off
super¯uous steam, and leave me freer in thought, to say little or nothing on the subject to
the public.

338. (September 5th, 1860.) ± I received from Salmon yesterday a proof slip of a Paper of
his, for the Quarterly Journal,� on matters connected with the Theorem which I still persist

� [The Quarterly Journal of Pure and Applied Mathematics.]
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in calling yours, until some de®nite evidence to the contrary is produced. I am getting the
paper copied here, but hope to post it back to Salmon this evening as I know that he wishes
to let you see it; and I am sure that you feel, without surprise, that he has sought to do justice
to all parties: even to your imaginary (or at least unknown) rival.

339. ± You are aware that I lately felt a wish to know whether the Theorem could be
extended, to triangles and circles on a sphere : for, of course, lemmas of mine about ellipses &c.,
extend at once, by radial projection, to spherical conics. My ®rst vague impression had been,
that it was likely to admit of such extension: and on applying quaternions, I found that certain
veri®cations were borne, (as was to be expected,) for the case of an equilateral spherical
triangle, however large. But the veri®cations did not succeed, ± as you have lately assigned to
me reasons why they should (or might) have been expected not to do ± when the spherical
triangle was scalene.

340. Still, as the theorem is undoubtedly true for the plane, whatever the shape of the
original triangle maybe, it was an object of interest to investigate the Law, ± analogous to that
of the Spherical Excess, ± according to which, what is (in rigour) false for the sphere, passes into
being true for the plane.

341. To state now de®nitely the question:-
Let ABC be a spherical and scalene triangle, inscribed in a small circle, of which the

spherical centre (or pole) is K, and the arcual radius is c, so that

_
KZ � _

KB � _
KC � c:

Let A1 B1C1 be another spherical triangle, of which the sides are bisected by the corners of
the triangle ABC. Let A9, B9, C9 be the points in which the sides of this second triangle are
touched by its inscribed small circle, of which we shall call the spherical centre K 9, and the
arcual radius c9; so that

_
K 9A9 � _

K 9B9 � _
K 9C9 � c9:

And let the arcual distance between the two centres K and K 9, be denoted by d; so that

d � _
KK 9:

342. Then, at the plane limit, by your Theorem,� we have

cÿ c9 � d;

or,

� [Andrew S. Hart, `Extension of Terquem's theorem respecting the circle which bisects three sides of
a triangle', Quarterly Journal of Pure and Applied Mathematics, Vol. IV, pp. 260±261, 1861 (communicated
15th December 1860). See also: John Casey (1820±1891), A treatise on spherical trigonometry, p. 82, Hodges,
Figgis, & Co., Dublin: 1889; Isaac Todhunter (1820±1884) Spherical trigonometry, (revised by John Gaston
Leathem (1871± )) pp. 162±170, Macmillan and Co. Limited, London: 1949; and footnotes to articles
360 and 382 of this letter.]
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a � cÿ c9ÿ d � 0;

for it is easy to prove that c . c9, in general, or that the inscribed circle touches the bisecting (or
Hartian) circle internally: the former circle being smaller than the latter, except when (as for
the equilateral case) they happen entirely to coincide.

343. But, for the sphere, if we retain the de®nition,

a � cÿ c9ÿ d,

the quantity a does not, in general, vanish. Is it, then, positive, or negative, ± to begin with?
Does the smaller circle fall wholly within the larger one, so as to produce what may be called an
Annular Eclipse of the Hartian? or is there a partial overlapping? and can any law be discovered,
according to which the one case or the other, (if it be true that sometimes one, and at other
times the other exists,) can be predicted to be the case of the question?

344. Again, the quantity a is certainly small, by your Theorem, if the sides of the spherical
triangle ABC be small, whatever the shape of that triangle may be: but of what order of smallness
is a? If there is an annular eclipse (article 343), about what is the least breadth of the annulus? Or
if there be an overlapping of the two circles, about how far do they overlap?

345. ± Being absolutely unacquainted with any branch of Mathematical Science, except the
Calculus of Quaternions, by which problems of this sort could be attacked, I lately ``turned
on the steam'' ± or, in short, applied my own Calculus.

346. But, although I wish for your permission to write to you soon on the subject of the
Quaternions themselves, the plan of the Letter, to which this sheet forms part of a Postscript,
requires that I should merely state results, derived from them, and verify them by other methods.

347. From Quaternions, then, I deduce the approximate formula, ± substantially the same as
that which I mentioned in a note of about a week ago, but more conveniently expressed, ±

Least Breadth of Annulus �

a � 8c sin c:tan è:sin
B ÿ C

2
:sin

B ÿ C

2
:sin

A ÿ B

2

� �2

;

where c is still the arcual radius of the small circle, in which the triangle ABC is inscribed: è is
an auxiliary angle, such that

sinè � 8 sin
A

2
:sin

B

2
:sin

C

2

� �1
2

;

and A, B, C may represent either the angles of the spherical or (as a limit) of the plane triangle,
ABC.

348. The positive character of a shows that your circle is annularly eclipsed; the evanescence of
a

c
with c, is a new proof of your Theorem.
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349. As to quantity, (considered independently of sign,) I have just ®nished a most
satisfactory veri®cation, by spherical trigonometry, ± for I know no other check: but it has cost me
three or four days of very hard work, on account of the long chain of triangles employed, and
the minute accuracy which was required.

350. (September 6th, 1860) I assumed as my three data, the three following quantities

c � _
KA � _

KB � _
KC � 108; AKB � 588; BKC � 938;

(whence AKC � 588� 938 � 1518;) and began by deducing from these values, supposed to be
rigorous, the values of the sides and angles of the triangle ABC, as well as I could, to
hundredths of seconds, with the help of Taylor's Tables of Logarithms�, using seven decimal
places, and proportional parts throughout [Figure 33]. In fact, if this last precaution had
been omitted, the results could not have been relied on, to the degree of accuracy at which I
thought it necessary to aim: because the value of a can be foreseen to be small.

351. For, before we begin to use spherical trigonometry at all, my formula enables me to estimate
the value of that sought annular breadth, a, as follows. Although we do not yet know the
spherical angles A, B, C, we can already assign, without any logarithmic calculation, the angles
of the plane triangle ABC, because we know the angles AK )B, BK )C , which the sides AB, BC of
that triangle subtend at the centre K ) of its own circumscribed circle; since these are precisely

equal to the spherical angles AKB, BKC, or (by supposition) 588 and 938, which the sides AB,

BC of the spherical triangle ABC subtend at the spherical centre (or pole) K of the same circle,

considered as a small one on the sphere. Hence, for the plane triangle, we have, exactly,

A � 1
2BK )C � 1

2BKC � 468 309; C � 1
2AK )B � 1

2AKB � 298 09;

and therefore

B � cÿ C ÿ A � 1048 309;

and a can be approximately calculated, by substituting these values for A, B, C, in the formula
which I deduced from Quaternions.

� [Michael Taylor, (1756±1789), Tables of logarithms, London: 1792.]

Fig. 33

371III . LETTER TO HART ON ANHARMONIC COORDINATES



352. For this little calculation, it will be found to be quite suf®cient to use minutes, and ®ve-
®gure logarithms :

And the whole work is as exhibited below.

353.

A

2
� 238 159, log10 sin . . . 1:596 32;

B ÿ C

2
� 378 459, log10 sin . . . 1:786 91

B

2
� 528 159, log10 sin . . . 1:898 01;

A ÿ C

2
� 088 459, log10 sin . . . 1:182 20

C

2
� 148 309, log10 sin . . . 1:398 60;

B ÿ A

2
� 298 009, log10 sin . . . 1:685 57

log10 8 . . . 0:903 09; c � 298 009, log10 sin . . . 1:239 67

(�2) . . . 1:796 02

è � 528 159, log10 sin . . . 1:898 01 è � 528 159, log10 tan . . . 0:111 10;

2:005 45

32

4:010 90

8c

1 0
� 288 000; log10 . . . 5:459 39

a

1 0
� 29:53; log10 . . . 1:470 29

The value of a, thus estimated, amounts to no more than 290 5́3; whence it becomes necessary
to attend to seconds, and prudent to attend to tenths of seconds, in the subsequent calculations
with spherical trigonometry. But, as already stated, I have chosen to employ even hundredths
of seconds throughout, to prevent accumulation of errors.

354. Letting fall the arcual perpendicular, KA), KB), KC), from the spherical centre K, on
the sides BC, CA, AB of the spherical triangle ABC, I form six right-angled triangles, equal to
each other two by two [Figure 34]. The triangle AKC) gives, by the usual rules, if á, â, ã
denote the sides, and A, B, C the angles of the triangle ABC, considered as a spherical one:

Fig. 34
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sin
ã

2
� sin

1

2
AB � sin AC) � sin KA sin AKC) � sin c sin

1

2
AKB;

that is, here,

sin
ã

2
� sin 108:sin 298 � sin 48 499 45 0:25;

and

cot C)AK � cos KA:tan AKC) � cos c tan
1

2
AKB,

or,

cot BAK � cos 108:tan 298 � cot 618 229 13 0:46;

with the veri®cation that

tan AC ) � sec C )AK � tan KA,

or here that

tan 48 499 45 0:25:sec 618 229 13 0:46 � tan 108 09 0 0:00:

355. In like manner, the right angled triangle BKA) gives,

á

2
� 78149 10 0:29; KCB � CBK � 438569 17 0:24;

and the triangle AKB) gives,

â

2
� 98409 42 0:10; KCA � CAK � 148429 50 0:58;

while the triangle ABC ) gave (article 354),

ã

2
� 48499 45 0:25; KBA � BAK � 618229 13 0:46:

The sides and angles of the oblique spherical triangle ABC, which is thus inscribed in the
small circle of 108 radius round K, are therefore:

á � 2 3 78 149 10 0:29 � 148 289 20 0:58; log siná � 1:397 789 4;

â � 2 3 98 409 42 0:10 � 198 219 24 0:20; log sin â � 1:520 416 2;

ã � 2 3 48 499 45 0:25 � 98 399 30 0:50; log sin ã � 1:224 727 0;

8>><>>:
A � BAK ÿ CAK � 618 229 13 0:46ÿ 148 429 50 0:58 � 468 399 22 0:88; sin . . . 1:861 683 8;

B � CBK � KBA � 438 569 17 0:24� 618 229 13 0:46 � 1058 189 30 0:70; sin . . . 1:984 310 4;

C � KCB ÿ KCA � 438 569 17 0:24ÿ 148 429 50 0:58 � 298 139 26 0:66; sin . . . 1:688 621 2;

8>><>>:
and although I do not answer for the last ®gures in these logarithms, nor for last decimals of the
seconds, (which have however been all computed by myself,) yet that the results so far are
very accurate may be judged by observing that they bear extremely well the veri®cation:

sin â sin ã sin A � sin ã siná sin B � siná sin â sin C � (say) sin å:
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In fact, the three values thus found for log sin å are,

log sin å � 2:606 827 0; � 2:606 826 8; and � 2:606 826 8;

which all agree, to the hundredth of a second, in giving

å � 28 199 3 0:93:

356. If we now again apply my formula for a, using the angles of the spherical triangle
A1 B1C1 as more accurate than those of the plane triangle, but retaining the rigorous value
c � 108 009 00 0, we have this new little calculation, which conducts to the new value,
a � 31 0:65:-

A

2
� 238 199 41 0, log10 sin . . . 1:597 69;

B ÿ C

2
� 388 029 32 0, log10 sin . . . 1:789 75

B

2
� 528 399 15 0, log10 sin . . . 1:900 36;

A ÿ C

2
� 088 429 58 0, log10 sin . . . 1:180 52

C

2
� 148 369 43 0, log10 sin . . . 1:401 87;

B ÿ A

2
� 298 199 34 0, log10 sin . . . 1:690 00

log10 8 . . . 0:903 09; c � 298 009, log10 sin . . . 1:239 67

(�2) . . . 1:803 01

è � 528 519 07 0, log10 sin . . . 1:901 50; è � 528 519 07 0, log10 tan . . . 0:120 55

2:020 49

32

4:040 98

8c

1 0
� 288 000; log10 . . . 5:459 39

a

1 0
� 31:65; log10 . . . 1:500 37

a � 31 0:65

357. Although this last value for the least breadth of the annulus, namely,

a � 31 0:65,

computed as above from the formula which Quaternions had given me, is found to coincide,
to the most astonishing degree of accuracy, with the result of a long chain of calculation with
spherical triangles, as I intend in this Postscript to show: yet when I entered on that chain, I
did not venture to expect more than that this annular breadth a would turn out, by spherical
trigonometry, to be about half a minute, for the Example here selected. ± I must now explain
how I proceeded to determine the bisected triangle A1 B1C1 (article 341); and the spherical
centre K 9, and the arcual radius c9, of the new small circle A9B9C9, which is inscribed in that
bisected triangle, as also the distance of centres, d � KK 9, which I expected to ®nd connected
with c and c9, by the approximate relation,
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a � cÿ c9ÿ d � 30 0, nearly;

so that, because c � 108, exactly, we ought to have

c9� d � 98 599 30 0, nearly;

or, more nearly, if the last value of a be adopted,

c9� d � 98 599 28 0:35:

In point of fact, my ®nal results from spherical trigonometry, have been (for the present
Example),

c9 � 68 79 25 0:49;

and

d � 38 529 2 0:82;

giving the sum,

c9� d � 98 599 28 0:31

the agreements of which with what I may call the result for quaternions would really appear
suspicious to myself, if I did not know the perfect independence of the two methods, and
were not conscious of the extreme care employed.

358.� The next step, ± and the only one which can present any dif®culty to a person who is
accustomed to the known rules of solution of spherical triangles, ± is the inscription of the
bisected triangle A1 B1C1; or the determination of its sides, which I shall call 2á1, 2â1, 2ã1, and
its angles which I shall denote simply by A1, B1, C1.

259. Quaternions, however, furnished me long ago with a mode of conquering this little
dif®culty: for they show with ease, that we have the rigorous equations,

cosá

cosá1
� cos â

cos â1
� cos ã

cos ã1
� cos å;

where å is the auxiliary angle determined by the condition (see article 355)

sin å � sin â sinã sin A � &c:

(I think, indeed, that in one of my printed ``Lectures''y, I proved this Theorem by spherical
geometry; and, very probably it may be a known one otherwise.)

360. Applying it here, we have the values,

log cosá1 � 1:986 351 1; log cos â1 � 1:975 085 0; log cos ã1 � 1:994 155 4;

whence, at least nearly,

á1 � 148 179 22 0:20; â1 � 198 139 21 0:88; ã1 � 98 229 43 0:75:

� [Articles 358±366 are based solely on MS 1493/1171.]
y [W. R. Hamilton, Lectures on Quaternions, Hodges and Smith, Dublin: 1853.]
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Arcs, however, which are even so small as these, are not well given by their cosines; and I
adopted the modi®ed formulñ (with certain auxiliary angles á), â), ã)):

taná) � tan2 å

2
cot á; tan â) � &c:; tan ã) � &c:;

tan
áÿ á1

2
� tan2 å

2
cot(áÿ á)); tan

âÿ â1

2
� &c:; tan

ãÿ ã1

2
� &c:;

which gave the slightly altered values, for the half sides of the bisected triangle:

á1 � 148 179 22 0:17; â1 � 198 139 21 0:89; ã1 � 98 229 43 0:97;

for the minute decimal fractions of which, notwithstanding, I by no means ventured
con®dently to accept.

(End of Sheet LVI. Sent to the post by Fitzpatrick on Friday 7 September 1860: with a
memorandum to mention that ``I posted a note this morning to tell you my son William ®nds
the Theorem [article 342] to be Terquem's�''.)

361. Calling for brevity, the bisecting triangle ABC the inner triangle, and the bisected triangle
A1 B1C1 (and that one of which the sides are bisected by A, B, C) the outer one: while the
three triangles A1 BC , AB1C , ABC1, which together with the inner make up the outer triangle,
may be called the three attached triangles, the angles of these latter may be denoted as follows
(see Figure 35):

� [Olry Terquem (1782±1862).]

Fig. 35
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CA1B � A1; A1BC � B9; BCA1 � C9;

CAB1 � A 0; AB1C � B1; B1CA � C 0;

C1AB � A-; ABC1 � B -; BC1A � C1;

while the sides of the same three attached triangles, respectively opposite to these angles, are

á, ã1, â1; ã1, â, á1; â1, á1, ã:

362. The values of the nine angles (article 361) were next deduced from the sides, in the three
attached triangles, by the usual roots: and thus I found

A1 � 468 559 21 0:4; B9 � 288 269 37 0:70; C9 � 1058 479 7 0:48;

B1 � 1088 189 21 0:78; A 0 � 278 499 32 0:84; C 0 � 448 599 25 0:40

C1 � 298 249 23 0:58; A- � 1058 319 5 0:72; B - � 468 149 52 0:07;

while we had before (article 355), for the angles of the inner triangle,

A � 468 399 22 0:88; B � 1058 189 30 0:70; C � 298 139 26 0:66;

so that the sines of the angles adjacent to the corners of the inner triangle ABC are:

A � A 0� A- � 1808 09 1 0:44;

B � B -� B9 � 1808 09 0 0:47;

C � C9� C 0 � 1798 599 59 0:54;

and the sum of the angles of the outer triangle is,

A1 � B1 � C1 � 1848 389 6 0:77:

363. That the angles thus obtained are very nearly accurate, may be judged by the four
following veri®cations: for each of the three points A1, B1, C1 the sum of the three angles at
that point is nearly equal to two right angles; and the sum of the three angles at A1, B1, C1

exceeds two right angles by nearly the theoretical value of the spherical excess of the outer
triangle; since such excess ought (by a theorem which I derived from Quaternions several
years ago, and con®rmed by spherical geometry, and which is probably known) to be exactly
double of that auxiliary angle for the inner triangle, which has been above called å: but (by
article 355) we have

2å � 48 389 7 0:86;

and (by article 362),

A1 � B1 � C1 ÿ ð � 48 389 6 0:77:

364. In order that the three ®rst veri®cations which appeared to be the simplest, might be
rigorously borne by the adopted angles at the corners of the inner triangle, I applied to the six
new angles at those points the following very small corrections:
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äA 0 � äA- � ÿ0 0:72; äB9 � ÿ0 0:24; äB - � ÿ0 0:23;

äC9 � �0 0:24; äC 0 � �0 0:22;

and then recomputed the three attached angles, assuming as new data the values:

for A1 BC , BC � á � 148 289 20 0:58; B9 � 288 269 37 0:46; C9 � 1058 479 7 0:72;

for B1CA, CA � â � 198 219 24 0:20; C 0 � 448 599 25 0:62; A 0 � 278 499 22 0:12;

for C1 AB, AB � ã � 98 399 30 0:50; A- � 1058 319 5 0:00; B - � 468 149 51 0:84;

employing for this purpose the Equations of Gauss�, (which I have very often worked with,
although I forget whether they are given in any usual English book,) namely,

cos

sin

1

2
(a � b):sin

1

2
C � cos

1

2
(A � B):

cos

sin

1

2
c;

cos

sin

1

2
(a ÿ b):cos

1

2
C � sin

1

2
(A � B):

cos

sin

1

2
c;

which include the Analogies of Napier, but have several advantages over them.

365. In this manner I found, from the three attached triangles thus separately resolved anew,
the values:

A1 � 468 559 21 0:05; â1 � 198 139 21 0:82; ã1 � 98 229 43 0:02;
B1 � 1088 189 22 0:30; á1 � 148 179 22 0:25; ã1 � 98 229 43 0:75;
C1 � 298 249 24 0:58; á1 � 148 179 21 0:70; â1 � 198 139 21 0:38;

in which the near agreement of the two values of á1 shows that the side B1C1 of the outer
triangle is very well bisected, and similarly for the two other sides; which the spherical excess of that
triangle A1 B1C1 being, with these last values,

A1 � B1 � C1 ÿ ð � 48 389 7 0:93,

agrees as well as we could desire, ± and a little better than as recently constructed, with the
theoretical value (article 363); namely,

2å � 48 389 7 0:84:

In fact, it would be quite unreasonable to expect a closer agreement.

366. I therefore adopted as the elements of the outer triangle A1 B1C1, the sides and angles
following:

2á1 � 288 349 43 0:95; 2â1 � 388 269 43 0:20; 2ã1 � 188 459 27 0:57;
A1 � 468 559 21 0:05; B1 � 1088 189 22 0:30; C1 � 298 249 24 0:58:

�
while I retain the sides á, â, ã, and angles A, B, C, of the inner triangle ABC, which had been
previously constructed (article 355): namely, ± to have them in one view, ±

� [See I. Todhunter, Spherical trigonometry (details in footnote to article 342), p. 36, eqns 43±46, who
attributes them to J. B. J. Delambre.]
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á � 148 289 20 0:58; â � 198 219 24 0:20; ã � 98 399 30 0:50;
A � 468 399 22 0:88; B � 1058 189 30 0:70; C � 298 139 26 0:66:

�
And thus, these two triangles, ± and the three which we have called the attached ones (article
361), ± may be now considered to have had their elements numerically determined, by
spherical trigonometry and logarithms, as well (perhaps) as Tables with Seven Decimal
Figures will permit: while the arcual radius c, of the circle ABC, continues to be exactly
108 09 0 0:00 in virtue of our ®rst assumption.

367. Continuing to spare no pains upon this one selected Example, and seeking rather to
multiply veri®cations than to employ abridgements, I resolved, independently of each other,
the three new spherical triangles,

K 9B1C1, K 9C1 A1, K 9A1 B1;

in which K 9 is still (article 341) the centre of the small circle inscribed in the outer triangle
A1 B1C1; and A9, B9, C9 are still the three points of contact, or the feet of the perpendiculars
from K 9 while r91, r92, r93 may denote the distances of that centre K 9 from the corners A1, B1,
C1, see Figure 36.

368. In the triangle K 9B1C1, I had the side, namely

B1C1 � 2á1 � 288 349 43 0:95,

and the two adjacent angles,

Fig. 36
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C1 B1 K 9 � 1
2B1 � 598 99 11 0:15, K 9C1 B1 � 1

2C1 � 148 429 12 0:29;

whence I deduced (still using Gauss's Formulñ ± though ones more common might of course
have been employed) the following values for the two other sides, and the remaining angle:

r93 � K 9C1 � 248 519 10 0:54; r92 � K 9B1 � 78 339 44 0:28;

B1 K 9C1 � 1128 419 30 0:06;

and for the altitude,

sin c9 � sin K 9A9 � sinr92 sin 1
2B1 � sin r93 sin 1

2C1 � sin 68 79 25 0:51:

369. In like manner, the triangle K 9C1 A1 gave:

r91 � K 9A1 � 158 329 31 0:05; r93 � K 9C1 � 248 519 10 0:51; C1 K 9A1 � 1438 549 54 0:58;

and

c9 � K 9B9 � 68 79 25 0:49;

while the triangle KA1 B1, ± each being still treated independently of the rest, ± gave,

r91 � K 9A1 � 158 329 30 0:95; r92 � K 9B9 � 78 339 44 0:21; A1 K 9B1 � 1038 239 34 0:98;

and

c9 � K 9C9 � 68 79 25 0:46:

370. The sum of the three angles at K 9, in these triangles is

1128 419 30 0:06� 1438 549 54 0:58� 1038 239 34 0:98 � 3598 599 59 0:62;

it therefore scarcely differs from 3608, with which theoretically it ought to coincide: and thus
one veri®cation is obtained. The near agreement of the two values found for each arc r9

which is a common side of two triangles, supplies three other veri®cations; and we may safely
adopt, for these arcs of distance, the arithmetic means,

r91 � K 9A1 � 158 329 31 0:00; r92 � K 9B1 � 78 339 44 0:25; r93 � K 9C1 � 248 519 10 0:52,

of which the differences from the separate values are insensible. Finally, as a ®fth veri®cation,
the three last triangles give almost exactly the same altitude for each; and the following value
may therefore be now adopted, for the radius of the inscribed circle A9B9C9:

c9 � 68 79 25 0:49;

as was mentioned by anticipation in article 357:± No doubt, this value might have been more
rapidly deduced from the three sides 2á1, 2â1, 2ã1, of the outer triangle, A1 B1C1, by a well
known formula: but besides choosing to have veri®cations, I wanted other arcs, determined
as above. (In fact, the formula,

tan c9 �
�������������������������������������������������������������������������������������������������������������
sin(â1 � ã1 ÿ á1)sin(ã1 � á1 ÿ â1)sin(á1 � â1 ÿ ã1)

sin(á1 � â1 � ã1)

s
,

gives precisely the last value for c9.)
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371. I proposed also to determine the arcs of distance, r1, r2, r3, of the other centre, K, from
the same three corners, of the outer triangle; and between those distances and certain other
arcs: and I resolved a system of new triangles for the purpose, as follows.

372. In the triangle A1 BK , we have two sides and the included angle, namely,

BK � c � 108; BA1 � â1 � 198 139 21 0:60; and

A1 BK � A1 BC � A)BK � B9� CBK ,

that is, by articles 355, 364,

A1 BK � 288 269 37 0:46� 438 569 17 0:24 � 728 229 54 0:70;

whence the third side

r1 � KA1 � 188 429 3 0:05;

and the two remaining angles are,

KA1 B � 318 49 36 0:66;

BKA1 � 788 99 7 0:34:

[See Figure 37.]

373. Again, in the triangle KCA1, we have the two sides,

CK � c � 108; CA1 � ã1 � 98 229 43 0:78;

and the included angle,

KCA1 � C9� KCB � 1058 479 7 0:72� 438 569 17 0:24 � 1498 439 24 0:96;

whence

r1 � KA1 � 188 429 3 0:41; CA1 K � 158 509 45 0:69; A1 KC � 148 509 51 0:31;

Fig. 37
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374. As veri®cations, the two values of the distance r1, considered as a common side of the
two last triangles, are almost exactly equal; and we shall adopt their mean, namely

r1 � KA1 � 188 429 3 0:23:

Again, the two angles at K had their sum � 928 599 58 0:65; whereas in rigour it ought (article
350) to be, BKC � 938 09 0 0:00; and I make the small difference disappear, by applying the
corrections �0 0:68, and �0 0:67, or by adopting the values:

BKA1 � 788 99 8 0:02; A1 KC � 148 509 51 0:98:

Finally, the sum of the two partial angles at A1 exceeds, by �1 0:30, the value above adopted
(article 366) for the total angle A1, namely, 468 559 21 0:05; I therefore apply to each part the
correction ÿ0 0:65 and write,

KA1 B � 318 49 36 0:01; CA1 K � 158 509 45 0:04:

375. In like manner, from the two triangles, KAB1, KB1C , (see Figure 38) I infer that the
following values are very nearly correct:

r2 � KB1 � 58 49 25 0:85;

B1 KA � 1408 439 15 0:98; CKB1 � 688 169 44 0:02;

AB1 K � 268 269 57 0:94; KB1C � 818 519 24 0:36;

the sum of the two former angles being

2098 � 3608ÿ 1518 � 2ðÿ AKC ;

(in which, 1518 is the sum 588� 938 � AKB � BKC , as in article 350;) and the sum of the two
latter angles is

B1 � 1088 189 22 0:30 (as in article 366):

376. And the two triangles, KBC1, KC1 A, (for which it is unnecessary to draw a new Figure,)
give:

r3 � KC1 � 248 79 59 0:98;

C1 KB � 508 79 44 0:65; AKC1 � 78 529 15 0:35;

BC1 K � 238 529 41 0:01; KC1 A � 58 319 43 0:57;

Fig. 38
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the sum of the two former being AKB � 588, as in article 350; and the sum of the two latter
being C1 � BCA � 298 249 24 0:58, as in article 366.

377. We are now in possession of elements, which have been carefully collated and veri®ed,
and which enable us to determine the sought distance of centres, d or KK 9, in three distinct ways,
as the common base of three new spherical triangles; which have their vertices at the points A1, B1,
C1. For we have determined, in the three last articles, the distances r of K from these three
vertices, and in article 370 the distances r9 of K 9 from the same; and the angles which the two
arcs r1, r91, or r2, r92, or r3, r93 make with each other, may be found as the semidifferences of the
angles (in the three last articles), into which the arcs r divide the angles A1, B1, C1; because
these last angles are bisected by the arcs r9. Thus,

KA1 K 9 � 1
2(KA1 B ÿ CA1 K ) � 1

2(318 49 36 0:01ÿ 158 509 45 0:04) � 78 369 55 0:48;

KB1 K 9 � 1
2(KB1C ÿ AB1 K ) � 1

2(818 519 24 0:36ÿ 268 269 57 0:94) � 278 429 13 0:21;

KC1 K 9 � 1
2(KC1 A ÿ BC1 K ) � 1

2(58 319 43 0:57ÿ 238 529 41 0:01) � ÿ98 109 28 0:72;

8>><>>:
the negative sign implying here that the rotation round C1 from K to K 9 has a contrary character
to that of the other rotation; so that we may write,

K 9C1 K � �98 109 28 0:72:

378. Solving now the triangle KA1 K 9, with the data,

A1 K � r1 � 188 429 3 0:23; A1 K 9 � r91 � 158 329 31 0:00; KA1 K 9 � 78 369 55 0:48;

I ®nd,

A1 K 9K � 1408 579 7 0:04; K 9KA1 � 318 459 59 0:18;

and

d � KK 9 � 38 529 2 0:7:9:

379. Solving the triangle KB1 K 9, with the three data,

B1 K � r2 � 58 49 25 0:85; B1 K 9 � r92 � 78 39 44 0:25; KB1 K 9 � 278 429 13 0:21,

I obtain the values,

K 9KB1 � 1148 539 33 0:48; B1 K 9K � 378 339 33 0:44; d � KK 9 � 38 529 2 0:85:

380. And solving the third triangle K 9C1 K , with

C1 K � r3 � 248 79 59 0:98; C1 K 9 � r93 � 248 519 10 0:52; K 9C1 K � 98 109 28 0:72,

there results,

C1 KK 9 � 968 309 51 0:49; KK 9C1 � 758 89 0 0:37; d � KK 9 � 38 529 2 0:80:

381. The spherical angles, found by these three last triangles, may easily be a second or two
in error, notwithstanding all the pains that have been taken; yet they bear several veri®cations
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very well. But the three closely concurrent values of the arc KK 9, which is their common base,
seem likely to be very accurate: and I adopt their mean, namely,

d � KK 9 � 38 529 2 0:81,

as mentioned (with a different hundredth) in article 357; whence the least breadth of the
annulus is, in this Example,

a � cÿ c9ÿ d � 108 09 0 0:0ÿ 68 79 25 0:49ÿ 38 529 2 0:81 � �31 0:70,

by spherical trigonometry; while it had been found (in article 356) to be nearly

a � �31 0:65

by quaternions.

382.� (September 12th, 1860) In my desire not to exaggerate the degree of approximation
thus obtained, I must admit that after all the pains which have been taken, an error of a
second, or even of two seconds, may possibly exist in the value of the annular breadth a, as
thus calculated by a long chain of spherical triangles: although I own that I think the error
does not exceed one second, in one direction or the other. And again I admit that there was
something arbitrary and conjectural, in the substitution (article 356) of the angles of the
spherical triangle ABC, for those of the plane triangle, which latter had been more immedi-
ately suggested to me by the quaternion formula. So that, after all, I do not venture to assert
more than this: that quaternions had led me to expect that the value of a would be found to be
(article 357) about half a minute, in the Example selected; and that this expectation was fully
borne out, by the result of the long calculation with spherical trigonometry.

383. It must however, be remembered, that one very important part of the prediction,
derived from quaternions, was the positive chord of a, or of cÿ c9ÿ d; and that this also was
con®rmed by spherical trigonometry: whereas I have at present no notion how such a result
could have been foreseen from Geometry, although I suppose that some way of doing it will be
discovered ± though not by me. How was one to know beforehand that the Eclipse of the
Median Circle (for I fear that some such name must now be adopted, since the theorem of its
contacts in the plane has been traced to a foreigny author) would be Annular (article 343)?

384. This may be a convenient place for mentioning something of the nature of my
Quaternion Investigation{ so far at least as to show, more distinctly than I have yet done, the
character of the result to which it led me.

385. I started with three unit vectors, á, â, ã, directed from the centre O of the sphere to the
three points A, B, C,

� [Articles 382±391 are based solely on MS 1493/1171.]
y Viz.: Terquem [see footnote to article 360], who published and proved it in his [he was an editor]

Nouvelles Annales [de MatheÂmatiques], Vol. 1, p. 196, &c., Paris, 1842. ± The place was shown me by my son
William, as I stated in my note of September 7th.

{ [In addition to Hamilton's publications on quaternions, useful references are: An elementary treatise
on quaternions, by P. G. Tait (1831±1901), Clarendon Press, Oxford: 1867; and Chapter X of Vector and
tensor analysis, by L. Brand, Chapman & Hall, London: 1947.]
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OA � á, OB � â, OC � ã,

á2 � â2 � ã2 � ÿ1, Tá � Tâ � Tã � 1;

[Tá denotes the magnitude of the vector á] which vectors, á, â, ã, became thus the
fundamental data of the question.

386. Writing,

a � 1
2T (âÿ ã), b � 1

2T (ãÿ á), c � 1
2T (áÿ â),

or

a �
�����������������������
1
2(1� Sâã)

q
, b �

�����������������������
1
2(1� Sãá)

q
, c �

�����������������������
1
2(1� Sáâ)

q
,

and taking all these radicals positively, the scalars, a, b, c, represent, on my principles, the sines
of the half sides of the spherical triangle ABC;

a � sin 1
2BC , b � sin 1

2CA, c � sin 1
2AB;

and all other scalars in the investigation must be considered as functions of these three, and may
be developed according to their ascending powers and products, when the triangle is
supposed to be small.

387. And because the ®nal scalars, ± such as those which have been called c, c9, d, a, ± are
necessarily Symmetric Functions of them, ± at least till we come to consider the circles which
touch externally, ± I conceived the three fundamental scalars, a, b, c, to be the three roots of a
given cubic equation,

x3 ÿ sx2 � tx ÿ p � 0;

in other words, I made

s � a � b � c, t � bc � ca � ab, p � abc,

and sought to express other symmetric scalars, and especially and ultimately a, (which is not
assumed to be positive,) as rational functions of s, t, p, at least through ascending series.

388. Introducing a new vector, k, and two new scalars, e, h, de®ned by the equations,

k � V (âã� ãá� áâ), e � Sáâã, h � TV áâã,

a general theorem in quaternions gave me the expression,

h2 � 1ÿ e 2 � (Sâã)2 � (Sãá)2 � (Sáâ)2 � 2SâãSãáSáâ,

� (1ÿ 2a2)2 � (1ÿ 2b2)2 � (1ÿ 2c2)2 ÿ 2(1ÿ 2a2)(1ÿ 2b2)(1ÿ 2a2),

whence

e 2 � 4(Ä2 ÿ 4p2),

if we write
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Ä2 � s(4st ÿ s3 ÿ 8p)

� 2(b2c2 � c2a2 � a2b2)ÿ (a4 � b4 � c4)

� (a � b � c)(b � c ÿ a)(c � a ÿ b)(a � b ÿ c);

so that Ä represents the area of the plane triangle ABC, of which the sides are 2a, 2b, 2c; and

2p

Ä
� r � sin c

[which is equal to the] linear radius of the circle circumscribed about the plane triangle ABC,
c being still the arcual radius of the small circle ABC on the sphere, that is, of the Median Circle
(article 383), as it may be called with respect to that other spherical triangle A1 B1C1, which
has not yet been constructed. And if we suppose the order of the rotation ABC to be so chosen
as to render e . 0, as well as Ä. 0, we have the very simple expressions,

e � 2Ä cos c; 4p � 2Ä sin c;

all the formulñ, so far, being rigorous. It may be noted that quaternions give also,�

e � S:áV âã � S :âV ãá � S :ãV áâ

� sine of base 3 sine of altitude,

for the spherical triangle ABC ; and therefore

e � sin å, h � cos å,

if å be the angle so denoted in former articles, namely the semiexcess of the bisected or outer
triangle, A1 B1C1. Quaternions give also this other very simple relation which (like all the
foregoing) is rigorous, ±

Tk � 2Ä:

389. Instead of immediately considering the circle ABC, you conceive that my method leads
me rather to consider the cone of revolution, which has its vertex at the centre O of the sphere,
and has that circle for its base. And I easily ®nd that the quaternion-equation of this cone may
thus be written:

(Skr)2 � e 2r2 � 0:

This, then, may be said to be, in the present investigation, the Equation of the Median Cone:
and if K be still the spherical centre of the median-circle ABC, I ®nd that

OK � ÿU k:y

390. Any other cone of revolution, with the same vertex O, may be represented by an equation
of the same form, such as

(Sk9r)2 � e92r2 � 0;

� [The dot after the S is to show that it refers to the whole product that follows it.]
y [Uk is the unit vector of k.]
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and the condition of contact for these two concentric cones to be expressed by the formula,

TV kk9 � T (ek9� e9k);

or

(V kk9)2 � (ek9� e9k)2;

or, by another quaternion transformation,

(Skk9� ee9)2 � (k2 � e 2)(k92 � e92);

or,

Skk9� ee9 � �9
������������������������
(Tk)2 ÿ e 2

p ��������������������������
(Tk9)2 ÿ e92

p
,

when the accent in �9 implies that the second ambiguous sign is independent of the ®rst; or

eÿ1Skk9� e9 � �916p,

if we remember that (by article 388)������������������������
(Tk)2 ÿ e 2

p
�

�������������������
4Ä2 ÿ e 2
p

� 4p,

and suppose p9 to be a new scalar such that��������������������������
(Tk9)2 ÿ e92

p
� 4ep9;

or

eÿ1Skk9�916pp9 � �e9:

391. For the case of internal contact, which exists at the plane limit, I found that I might
take the upper signs; or writing

N � eÿ1Skk9ÿ 16pp9ÿ e9 � (say)N 9� N 0� N -,

in which k9 and e9 and therefore p9 are supposed to be adapted to that second cone which rests
on the inscribed circle A9B9C9, I knew (by what you had told me) that N must vanish with a, b, c:
and I sought to develope it, for the sphere, according to their powers and products (article 386);
or at least to express its principal part, which I found to be of the ®fth dimension, N5, as a
rational (although not necessarily an integral) function of s, t, p (article 387).

392. To exhibit the geometrical signi®cation of each of the three parts N 9, N 0, N - of this
expression for N, and to show why the whole should vanish for the case of internal contact, I
observe that while the vector k makes equal obtuse angles with the three unit vectors á, â, ã,
because, by article 388,

Sák � Sâk � Sãk � Sáâã � e . 0,

so that ÿk, and not �k, is the interior semiaxis of the half cone which is ®rst considered, the
vector k9 will on the contrary be presently determined so as to make equal acute angles with
three new vectors á9, â9, ã9, answering to the sides of contact of the second (or inscribed) half
cone with the planes â1ã1, ã1á1, á1â1; where
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Uá1 � OA1, U â1 � OB1, U ã1 � OC1:

In other words, when we shall have exscribed to ABC a new spherical triangle A1 B1C1, such that
the sides of the new shall be bisected by the corners of the old, if (as in former articles of this
Postscript) we inscribe a new small circle A9B9C9 in this new triangle, and denote its spherical
centre (or interior pole) by K 9, then while we had (article 389),

OK � ÿU k,

we shall have

OK 9 � �U k9;

and therefore

SUá9k9 � SU â9k9 � SU ã9k9 � ÿcos c9

if c9 be the arcual radius of the new small circle,

c9 � K 9A9 � K 9B9 � K 9C9;

whereas

SUák � SU âk � SU ãk � e

Tk
� � cos c,

where

c � KA � KB � KC

is the arcual radius of the median (article 388), if K be still the centre (or inner pole) of that
small circle. And according as r represents a side (or ray) OP of the median half cone, or of
the inscribed one, which vector r may be supposed to terminate in a point P of one or other
circle, the one or the other of these two equations will exist:

�SU kr � cos KP � e

Tk
� cos c:

ÿSU k9r � cos K 9P � e9

Tk9
� cos c9;

which accordingly agree with the equations, in articles 389 and 390, already assigned for the
two cones and might (though with doubtful signs) have been inferred from them.

393. Without yet actually exscribing and inscribing as above, ± or making the quaternion
calculations which answer to those conceived geometrical processes, ± we can already
transform the ®rst term of N in article 391, as follows. Denoting still by d the arc KK 9, of
distance between the centres of the two small circles, or the angle KOK 9 between the interior
semiaxes of the two half cones, we have, by quaternions,

cos d � SU kk9;

and therefore,

N 9 � eÿ1Skk9 � eÿ1Tkk9:cos d � Tk9 sec c:cos d:
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394. As regards the two other terms of N, we have

ÿN - � e9 � Tk9:cos c9;

and therefore by article 390,

4ep9 � Tk9:sin c9;

but, by article 388,

4eÿ1p � tan c;

therefore

16pp9 � Tk9:tan c:sin c9 � ÿN 0;

consequently,

16pp9� e9 � Tk9:sec c:cos(cÿ c9) � N 9ÿ N ;

and the whole expression, in article 391, for N takes this new form:

N � Tk9 sec cfcos dÿ cos(cÿ c9)g;
in which nothing (so far) has been neglected. And we see that the condition of interior contact,

N � 0,

expresses simply, when thus interpreted, that the difference of the radii, cÿ c9, or c9ÿ c, is equal
to the distance of centres, d, upon the sphere.

395. It was, however, ± as I may remark in passing, ± in a less geometrical way, and by a
process of a more general and (so to speak) analytical kind, that I obtained the forms, in
article 390, for the condition of contact, internal or external, of the two cones of revolution,

(Skr)2 � e 2r2 � 0, (Sk9r)2 � e92r2 � 0;

which condition, when cleared of radicals, may be expressed as follows:

0 �(e 2k92 � e92k2 ÿ (V kk9)2 � 2ee9Skk9)

3 (e 2k92 � e92k2 ÿ (V kk9)2 ÿ 2ee9Skk9),

or,

0 � (e 2k92 � e92k2 ÿ (V kk9)2)2 ÿ 4e 2e92(Skk9)2:

396. For the plane, we have generally,

c . c9, and cÿ c9 � d;

or writing (as in former articles)

a � cÿ c9ÿ d,

we know that a vanishes for the plane. It may then be expected to be small, for a small spherical
triangle ABC: and even to be small of an order higher than the ®rst, if the sines a, b, c, of the half
sides of that triangle (article 385) be supposed to be small of the ®rst order. And however large
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that triangle ABC may be, if it be equilateral, the two circles ABC and A9B9C9 will coincide: so that
we may expect, with full con®dence, to ®nd

c � c9, d � 0, a � 0,

and ®nally

N � 0,

when

a � b � c:

But even if we have only two of these sines equal, or in other words if the triangle ABC be only
isosceles, (without being equilateral,) a contact of two circles will evidently exist, for the sphere as
well as for the plane; whence the equation of condition N � 0, must be satis®ed, if the cubic
equation in article 387 have two equal roots.

397. Introducing then, a new scalar ä, such that

ä2 � (a ÿ b)2(b ÿ c)2(c ÿ a)2 � t2(s2 ÿ 4t)ÿ 2ps(2s2 ÿ 9t)ÿ 27p2

� 4
3(s2 ÿ 3t)(t 2 ÿ 3ps)ÿ 1

3(st ÿ 9p)2,

is the discriminant of the cubic, of which a, b, c are the roots, we may foresee that the quaternion
expression (article 391) for N, when developed according to ascending powers and products
of a, b, c (article 386), and transformed (article 387) to a rational function of the coef®cients s, t,
p, will be found, ± if the calculations are properly conducted, ± to involve this combination
of them, or this discriminant ä2, as a factor : which accordingly I have ascertained to be the
case, so far as I have carried the developments.

398. But I have not shown how I determined the vectors á1, â1, ã1, á9, â9, ã9, k9, and the e9,
p9. Quaternions lead me to write,

á1 � V âáÿ1ã, â1 � V ãâÿ1á, ã1 � V áãÿ1â;

whence

Tá1 � Tâ1 � Tã1 � TV áâã � h (article 388);

so that these three new vectors á1, â1, ã1 are equally long. The expressions for á1, â1, ã1 may
also be thus written:

á1 � V ãáÿ1â, â1 � V áâÿ1ã, ã1 � V âãÿ1á;

but

âÿ1ã� ãÿ1â � ÿ(âã� ãâ) � ÿ2Sâã � 2(1ÿ 2a2) � 2 cos BC ;

hence

â1 � ã1 � 2á(1ÿ 2a2); ã1 � á1 � 2â(1ÿ 2b2); á1 � â1 � 2ã(1ÿ 2c2);

and as the sides of the median triangle ABC are here supposed to be each less than a quadrant,
so that cos BC . 0, &c., it follows that the vectors á, â, ã bisect respectively the angles between
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â1, ã1; ã1, á1; and á1, â1. Thus the three vectors, á1, â1, ã1 have the required directions of OA1,
OB1, OC1; and if they be divided by their common length h, the quotients are these last unit
vectors themselves; so that we may write,

OA1 � Uá1 � hÿ1á1; OB1 � U â1 � hÿ1â1; OC1 � U ã1 � hÿ1ã1; or

OA1 � UV âáÿ1ã, OB1 � UV ãâÿ1á, OC1 � UV áãÿ1â;

and thus the exscribed (or bisecand) triangle, A1 B1C1, is determined, very simply, by quater-
nions.

399. The recent values for â1 � ã1, &c., give easily:

á1 � â(1ÿ 2b2)� ã(1ÿ 2c2)ÿ á(1ÿ 2a2);

â1 � ã(1ÿ 2c2)� á(1ÿ 2a2)ÿ â(1ÿ 2b2);

ã1 � á(1ÿ 2a2)� â(1ÿ 2b2)ÿ ã(1ÿ 2c2);

or more concisely,

á1 � áSâãÿ âSãáÿ ãSáâ,

â1 � âSãáÿ ãSáâÿ áSâã,

ã1 � ãSáâÿ áSâãÿ âSãá;

expressions which accordingly result at once, by general quaternion transformations, from

á1 � ÿV âáã, â1 � ÿV ãâá, ã1 � ÿV áãâ:

400. The same expressions for á1, â1, ã1, give:

Sáâ1 � Sáã1 � Sâã; Sâã1 � Sâá1 � Sãá; Sãá1 � Sãâ1 � Sáâ;

but we have seen that

Tá1 � Tâ1 � Tã1 � h � cos å;

whence the proportion of cosines results (compare article 359):

cos BC

cos 1
2B1C1

� cos CA

cos 1
2C1 A1

� cos AB

cos 1
2A1 B1

� cos å;

å being still the semiexcess, or semiarea of the triangle A1 B1C1, of which the sides are
bisected by the corners of the triangle ABC. Quaternions gave me this theorem with great
ease, as above, a good many years ago; and it is stated somewhere in my Lectures: but
probably it was known� before, and in fact it can be otherwise proved, either by geometry, or
by trigonometry.

� My son William remarks to me that something of this sort ± perhaps the very thing ± is given by
Mulcahyy in his Mod. Geometry.
y [John Mulcahy (1810±1853), Principles of modern geometry, Hodges & Smith, Dublin: 1852.]
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401. The expressions for á1, â1, ã1, give also,

h2 cos B1C1 � ÿSâ1ã1 � (âSãáÿ ãSáâ)2 ÿ (áSâã)2

� (Sâã)2 ÿ (Sãá)2 ÿ 2SáâSâãSãá

� 2(Sâã)2 ÿ h2;

as might have been foreseen from the equation,

h cos 1
2B1C1 � ÿSáâ1 � ÿSâã:

And we see, at the same time, that

Sâ1ã1 � h2 ÿ 2(Sâã)2 � h2 ÿ 2(1ÿ 2a2)2; Sã1á1 � &c:; Sá1â1 � &c:

402. We shall require also expressions for the three quantities,

a1 � h2sin B1C1 � TV â1ã1, b1 � TV ã1á1, c1 � TV á1â1,

in terms of a, b, c. These new scalars, which are here considered as positive, are given by their
squares, namely,

a2
1 � h4 ÿ (Sâ1ã1)2 � 4(1ÿ 2a2)2fh2 ÿ (1ÿ 2a2)2g

� 16(1ÿ 2a2)2 a2 ÿ a4 ÿ e 2

4

� �

� 16a2(1ÿ 2a2)2 1ÿ a2 ÿ e 2

4a2

� �

� 16a2(1ÿ 2a2)2 1ÿ a2 ÿ Ä2

a2
� 4b2c2

� �
; b2

1 � &c:; c2
1 � &c:;

whence

a1 � 4a(1ÿ 2a2)

�������������������������������������������������
1ÿ a2 ÿ Ä2

a2
� 4b2c2

� �s
;

b1 � 4b(1ÿ 2b2)

�������������������������������������������������
1ÿ b2 ÿ Ä2

b2
� 4c2a2

� �s
;

c1 � 4c(1ÿ 2c2)

�������������������������������������������������
1ÿ c2 ÿ Ä2

c2
� 4a2b2

� �s
:

The same expressions for a1, b1, c1, or for h2sinB1C1, &c., may also be obtained by observing
that

h cos 1
2B1C1 � cos BC � 1ÿ 2a2, &c:;
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and that therefore

hsin 1
2B1C1 �

��������������������������������������
fh2 ÿ (1ÿ 2a2)2g

p
�

�����������������������������������
(4a2 ÿ 4a4 ÿ e 2)

p
� 2

��������������������������������������������
(a2 ÿ a4 ÿ Ä2 � 4p2)

q
� 2a

�����������������������������������������������������
(1ÿ a2 ÿ aÿ2Ä2 � 4b2c2)

p
&c:

403. Without troubling you at present with any further details of quaternion analysis, I may
just state that the remaining vectors and scalars of the question (article 398) are given by the
equations:

k9 � a1á1 � b1â1 � c1ã1;

p9 � ÿSâãSãáSáâ;

e9 � �p(Tk92 ÿ 16e 2 p92);

e9á9 � k9� 4ep9UV â1ã1; e9â9 � k9� 4ep9UV ã1á1; e9ã9 � k9� 4ep9UV á1â1;

whence follow the relations,

S:k9UV â1ã1 � S :k9UV ã1á1 � S :k9UV á1â1 � Sá1â1ã1 � 4åp9;

TV :k9UV â1ã1 � TV :k9UV ã1á1 � TV :k9UV á1â1 � e9;

Sá9â1ã1 � Sâ9ã1á1 � Sã9á1â1 � 0;

S :á9k9V â1ã1 � S:â9k9V ã1á1 � S :ã9k9V á1â1 � 0;

á92 � â92 � ã92 � ÿ1;

Sá9k9 � Sâ9k9 � Sã9k9 � ÿe9 , 0;

á9 � OA9, â9 � OB9, ã9 � OC 9;

�U k9 � OK 9; K 9A9 � K 9B9 � K 9C9 � c9 ,
ð

2
; cos c9 � e9

Tk9
:

404. It must be added that the recent expression (article 403),

k9 � a1á1 � b1â1 � c1ã1,

for a vector which coincides in direction with the interior semiaxis OK 9 (article 392) of the
second or inscribed half cone, gives easily, by the rules of quaternions, combined with the
expression (article 388)

k � V (âã� ãá� áâ),

for a vector which is in direction opposite to the interior semiaxis OK of the ®rst or median
half cone (article 392), and with the formulñ already written, the equations:

eÿ1Ská1 � Sâãÿ Sãáÿ Sáâ � 1� 2(a2 ÿ b2 ÿ c2) � 1ÿ 2s2 � 4a2,
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where�

s2 � a2 � b2 � c2 � s2 ÿ 2t;

[see articles 387 and 388 for the de®nitions of s, p, t, and e] similarly

eÿ1Skâ1 � 1ÿ 2s2 � 4b2; eÿ1Skã1 � 1ÿ 2s2 � 4c2;

and therefore, for the ®rst part (article 391) of N, we have the value,

N 9 � eÿ1Skk9 � (1ÿ 2s2)
P

a1 � 4
P

a2a1:

405. As regards the second part of the same expression for N, we have (by articles 403 and
386),

p9 � (1ÿ 2a2)(1ÿ 2b2)(1ÿ 2c2) � 1ÿ 2s2 � 4s2,2 ÿ 8p2,

if

s2,2 �
P

b2c2 � t2 ÿ 2ps;

so that

N 0 � ÿ16pp9 � ÿ16p � 32ps2 ÿ 64ps2,2 � 128p3:

406. To express the third part N - of N, let

k9 � Tk9

be a new positive scalar, such that

k92 � ÿk92 � ÿ(a1á1 � b1â1 � c1ã1)2

� a2
1Tá2

1 � b2
1Tâ2

1 � c2
1Tã2

1 ÿ 2b1c1Sâ1ã1 ÿ 2c1a1Sã1á1 ÿ 2a1b1Sá1â1

� h2 Pa2
1 ÿ 2

P
b1c1

ÿ �� 4
P

(1ÿ 2a2)2b1c1

� P
a1� �2ÿ16

P
a2b1c1 � 16

P
a4b1c1 � e 2P 2b1c1 ÿ a2

1);
ÿ

then

e9 �
���������������������������������
(k92 ÿ 16e 2 p92)

q
� (say)

P
a1 ÿ 8e 0;

and

N - � ÿPa1 � 8e 0,

where

� [Hamilton uses the following notation:

sm �
P

am � am � bm � cm ,

s n,m � s m,n �
P

ambn � am(bn � cn)� bm(an � cn)� cm(an � bn);

given on page 162 of his Notebook E (1860) (Trinity College Dublin, MS 1492/159) which contains
details of some of the quaternion calculations used in this letter.]
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e 0
P

a1 �
P

a2b1c1 ÿ
P

a4b1c1 � e 2

16

P
(a2

1 ÿ 2b1c1)� e 2 p92 � 4e 02:

407. Collecting the three parts, we have thus the expression:

N � ÿ2s2
P

a1 � 4
P

a2a1

ÿ �
� 8e 0ÿ 16pp9;

in which nothing (so far) has been neglected, or even (necessarily) considered as small.

408. But if we now introduce the supposition, above alluded to (articles 386 and 396), that
the quantities a, b, c are small of the ®rst order, we have

a1 � 4a; b1 � 4b; c1 � 4c, nearly;

which appears at once from the expressions (article 402) for a1, b1, c1, and might have been
foreseen from the very simple geometrical consideration, that the sines of the whole sides of
the outer triangle, A1 B1C1, are ultimately the quadruples of the sines of the half sides of the
inner triangle ABC. Hence P

a1 � 4
P

a � 4s, nearly,P
a2a1 � 4

P
a3 � 4s3 � 4(s3 ÿ 3st � 3p), nearly;

and

e 0 � 16
P

a2bc � e 2 p92

4s
� 4 p � Ä2

s
� 4st ÿ s3 ÿ 4p, nearly;

so that if we neglect terms of the ®fth dimension, the four parts of the last expression (article 407)
for N become

ÿ2s2
P

a1 � ÿ8ss2 � ÿ8s3 � 16st;

4
P

a2a1 � 16s3 � �16s3 ÿ 48st � 48p;

8e 0 � 8 4p � Ä2

s

� �
� ÿ8s3 � 32st ÿ 32p;

ÿ16pp9 � ÿ16p;

and therefore their sum is

N � 0;

a result which furnishes at the plane limit, a new proof of the Median Theorem, at least for the case
of the inner inscribed circle A9B9C9; but (with a little re¯exion on the nature of the analysis
employed) for the outer inscribed, or (as it has been proposed to call them) for the ex-inscribed�
circles also: since the passage from one to the other will be found to be performed (as in more
elementary questions), by simply changing the sign of one of the three sides.

� It appears that L'Huilliery proposed (at least for the plane case) the name of ``cercles ex-inscrits''
for those which are commonly called, less elegantly, exscribed circles, but which are obviously a sort of
inscribed ones.
y [Simon-Antoine-Jean L'Huiller, 1750±1840.]
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409. If, however, I had only wanted to prove the theorem of contacts for the plane, I should
not have thought of employing so re®ned and perhaps complex apparatus; although really
the labour of the calculations so far, has been extremely tri¯ing. The important thing is, that I
thus reduce the calculation of the least Annular breadth, ë, for the sphere, (article 347), to the
determination of the part, or term, N5 in the development of N, which is (as stated in article
391) of the ®fth dimension.

410. In calculating this part N5, we may neglect all terms of the seventh and higher orders,
in the expressions which present themselves; we may therefore write simply

N � N5, and N5 � N 95 � N 05 � N -5,

this last equation being rigorous, although the one before it is only approximate: if we denote by
N5, N 95, N 05, N -5, the parts of the developments of the four functions, N, N 9ÿPa1, N 0,
N -�Pa1, which are homogeneous of the third dimension, with respect to a, b, c.

411. Denoting by a1,3, b1,3, c1,3 the parts of the developments of a1, b1, c1, which are
homogeneous of the third dimension, we have, at sight, from the complete but irrational
expressions in article 402,

a1,3 � ÿ10a3 ÿ 2aÿ1Ä2 � ÿ10a3 ÿ 2pÿ1Ä2bc;

b1,3 � ÿ10b3 ÿ 2bÿ1Ä2 � ÿ10b3 ÿ 2pÿ1Ä2ca;

c1,3 � ÿ10c3 ÿ 2cÿ1Ä2 � ÿ10c3 ÿ 2pÿ1Ä2ab;

if

s5 �
P

a5 � 5p(s2 ÿ t)� s(s4 ÿ 5s2 t � 5t 2);

whence P
a1,3 � ÿ10s3 ÿ 2pÿ1 tÄ2;

P
a2a1,3 � 10s5 ÿ 2sÄ2;

and therefore, by articles 404 and 410,

N 95 � ÿ2s2
P

a1,3 � 4
P

a2a1,3:

� a known symmetric function of a, b, c,

� a rational function of the coefficients s, t, p;

namely (by a little algebraic and very easy work)

N 95 � 4 p(ÿ19s2 � 20t)� 4s(ÿ3s4 � 9s2 t ÿ 4t 2)ÿ 4 pÿ1s2 t(s4 ÿ 6st 2 t � 8t 2):

412. It is even more easy to express N 05 as a rational function of s, t, p: namely by articles
405 and 410,

N 05 � 32 ps2 � 32 p(s2 ÿ 2t):

413. As regards N -5, we have, in the ®rst place,

N -5 � 8e -5,
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by articles 406 and 410, if

e 0 � e 03 � e 05 � e 07 � &c:,

whence

e 0 � ÿ4 p ÿ s(s2 ÿ 4t),

by article 408; it remains then to calculate this term of ®fth dimension, e 05, with the help of
the last equation of article 406, on a plan exactly analogous to that of extracting the square
root of a development.

414. Attending only to terms of the sixth order, in the product e 0
P

a1, the equation just cited
gives:

4se 05 � ÿe 03
P

a1,3 � 4e 03
2 � 4

P
a2bc1,3 ÿ 16 ps3 ÿ 4Ä2(3s2 ÿ 4t)ÿ 16p2;

because

e 2 � 4Ä2 ÿ 16p2, p92 � 1ÿ 4s2, . . . ,
P

(a2
1 ÿ 2b1c1) � 16(s2 ÿ 2t) . . .;

and therefore [to the same order],

e 2

16

P
(a2

1 ÿ 2b1c1)� e 2 p92 ÿ 4Ä2 � 4Ä2(s2 ÿ 4t)ÿ 16Ä2(s2 ÿ 2t)ÿ 16p2

� ÿ12s2Ä2 � 16tÄ2 ÿ 16p2;

also P
a2bc1,3 � ÿ10ps1,2 ÿ 2pÿ1Ä2s2,3,

if

s1,2 �
P

ab2 � ÿ3p � st, and s2,3 �
P

a2b3 � ÿ p(2s2 � t)� st 2:

Hence, by [the following�] algebraic reductions, of a suf®ciently simple character.

Auxiliary calculations, connected with N 95 and N -5

By article 410

N 95 � part of fifth dimension in N 9ÿ 2
P

a1;

by article 404

N 95 � part of fifth dimension in ÿ 2s2
P

a1 � 4
P

a2a1;

therefore as in article 411

N 95 � ÿ2s2
P

a1,3 � 4
P

a2a1,3; (s2 � s2 ÿ 2t; )

but, from article 411,P
a1,3 � ÿ10s3 ÿ 2pÿ1 tÄ2,

P
a2a1,3 � 10s5 ÿ 2sÄ2;

� [Taken from p. 34 of Trinity College Dublin MS 1493/1171, dated Tuesday, 18 September 1860.]
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from articles 408 and 411 [see Notebook E60, p. 162 (footnote to article 404)]

s3 � 3p � s(s2 ÿ 3t), s5 � 5p(s2 ÿ t)� s(s4 ÿ 5s2 t � 5t 2);

and from article 388 [see Notebook E60, p. 163]

Ä2 � ÿ8ps ÿ s2(s2 ÿ 4t);

therefore P
a1,3 � ÿ30p ÿ 10s(s2 ÿ 3t)� 16st � 2 pÿ1s2 t(s2 ÿ 4t)

� ÿ30p ÿ 2s(5s2 ÿ 23t)� 2pÿ1s2 t(s2 ÿ 4t);

hence

ÿ2s2
P

a1,3 � p(60s2 ÿ 120t)� 4s(5s4 ÿ 33s2 t � 46t2)
ÿ 4 pÿ1s2 t(s4 ÿ 6s2 t � 8t 2);

4
P

a2a1,3 � ÿ4s5 ÿ 8sÄ2 � ÿ200p(s2 ÿ t)ÿ 40s(s4 ÿ 5s2 t � 5t 2)
� 64ps2 � 8s3(s2 ÿ 4t)
� p(ÿ136s2 � 200t)� 4s(ÿ8s4 � 42s2 t ÿ 50t 2);

8>>>><>>>>:
therefore

N 95 � p(ÿ76s2 � 80t)� 4s(ÿ3s4 � 9s2 t ÿ 4t 2)ÿ 4 pÿ1s2 t(s4 ÿ 6s2 t � 8t 2)

� 4 p(ÿ19s2 � 20t)� 4s(ÿ3s4 � 9s2 t ÿ 4t2)ÿ 4 pÿ1s2 t(s2 ÿ 2t)(s2 ÿ 4t):

In the expression for 4se 05 [at the beginning of] article 414, the ®rst term is ÿe 03
P

a1,3,
now, from article 413

ÿe 03 � 4 p � s(s2 ÿ 4t),

and with the expression above for
P

a1,3 we get

ÿe 03
P

a1,3 � ÿ120 p2 ÿ 2 ps(35s2 ÿ 152t)ÿ 2s2(s2 ÿ 4t)(5s2 ÿ 27t)� 2 pÿ1s3 t(s2 ÿ 4t)2:

(I)

And

4e 03
2 � �64p2 � 32ps(s2 ÿ 4t)� 4s2(s2 ÿ 4t)2: (II)

[From Notebook E60, p. 162] we have

4
P

a2bc1,3 � ÿ40ps1,2 ÿ 8 pÿ1Ä2s2,3;

s1,2 � ÿ3 p � st; s2,3 � ÿ p(2s2 � t)� st 2;

ÿ8pÿ1Ä2 � 64s � 8 pÿ1s2(s2 ÿ 4t);

therefore

ÿ40ps1,2 � �120p2 ÿ 40pst;

and
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ÿ8 pÿ1Ä2s2,3 �ÿ 64ps(2s2 � t)� 64s2 t2 ÿ 8s2(2s4 ÿ 7s2 t ÿ 4t 2)

� 64 pÿ1s3 t 2(s2 ÿ 4t);

which gives

4
P

a2bc1,3 �� 120p2 ÿ 8ps(16s2 � 13t)� 8s2(ÿ2s4 � 7s2 t � 12t 2)

� 8pÿ1s3 t 2(s2 ÿ 4t): (III)

Also

ÿ16ps3 � ÿ48p2 ÿ 16ps(s2 ÿ 3t), (IV)

ÿ4Ä2(3s2 ÿ 4t) � 32ps(3s2 ÿ 4t)� 4s2(3s2 ÿ 4t)(s2 ÿ 4t)

� 32ps(3s2 ÿ 4t)� 4s2(3s4 ÿ 16s2 t � 16t 2), (V)

and

ÿ16p2 � ÿ16p2: (VI)

The sum of these six parts is 4se 05 � 1
2sN -5; and in this sum the coef®cient of p2 is

ÿ120� 64� 120ÿ 48ÿ 16 � 0; of ps3, ÿ70� 32ÿ 128ÿ 16� 96 � ÿ86; of pst,
�304ÿ 128ÿ 104� 48ÿ 128 � ÿ8; of s6, ÿ10� 4ÿ 16� 12 � ÿ10; of s4 t, 94ÿ 32
�56ÿ 64 � �54; of s2 t 2, ÿ216� 64� 96� 64 � �8; of t 3, 0; and of 2 pÿ1(s2 ÿ 4t)s3 t ,
s2 ÿ 4t � 4t � s2.
Hence

N -5 � ÿ4 p(43s2 � 4t)� 4s(ÿ5s4 � 27s2 t � 4t 2)� 4 pÿ1s4 t(s2 ÿ 4t),

as in article 414.
Hence

N 95 � N -5 � 8 p(ÿ31s2 � 8t)� 16s3(ÿ2s2 � 9t)� 8 pÿ1s2 t 2(s2 ÿ 4t):

But, by article 412,

N 05 � 32ps2 � 8p(4s2 ÿ 8t):

415. Collecting the three parts (article 410) of the sought term N5 of N, we have (by articles
411, 412, and 414) the following expression for that term

N5 � N 95 � N 05 � N -5

� ÿ216ps2 � 16s3(ÿ2s2 � 9t)� 8 pÿ1s2 t 2(s2 ÿ 4t);

or ®nally (by article 397)

N5 � 8
s2ä2

p
;

a simple and remarkable result, which is rigorous, so far as it goes, ± as an expression for the
term N5, though not for the function N, which involves also other terms, N7 &c., of the seventh
and higher dimensions.
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416. I arrived at the same result, a few weeks ago, by two processes which were distinct, in
their details, from the recent process, and from each other; and which were much less simple,
because it had not then occurred to me to isolate the terms �Pa1, in the developments of
N 9 and N 0, which (as we see) destroy each other in the sum. Accordingly, I was obliged, in
those former calculations, to take account of terms a1,5, b1,5, c1,5, of the ®fth dimension, and
of their combinations with other terms: which introduced the inverse square and inverse cube of
p although I found, after troublesome reductions, that the terms involving those negative
powers neutralised each other. ± The process above described may fairly claim (I think) to be
regarded as simple, when the dif®culty of the question is taken into account. The work with
quaternions is really not laborious, to a person familiar with the principles of my Calculus: Tait,
I am sure, would follow the preceding pages (say articles 385±401) at sight: though I confess
that it tasked somewhat my invention, to strike out the plan of conducting the inquiry. The
labour, ± such as it is ± and incomparably inferior is it to that of the complete solution of two
or three spherical triangles, when such great numerical accuracy is aimed at, as in earlier
articles of this Postscript, ± does not begin, until Quaternions (with their best bow) hand over
the task to be ®nished by their elder sister, the Algebra of Scalars.

417. At the limit, ± or if you choose just after or before the limit (corresponding to the plane),
± the factor, Tk9:sec c, in the rigorous expression (article 394) for N, may be treated as [equal
to] Tk9 � k9 (article 406); or ultimately as [equal to]

P
a1, or [to] 4s; all these quantities

bearing to each other a limiting ratio of equality, as N does to its principal term N5. Hence, if
we introduce a new auxiliary angle, e, such that

sin e � 1

2
fcos dÿ cos(cÿ c9)g � sin

a

2
sin d� a

2

� �
,

we must have, as an approximation,

sin e � N cos c

2Tk9
� N5

8s
� sä2

p
;

s, p, ä2, d being small of the ®rst, third, sixth, and ®rst orders, and [therefore] e, a being small
of the fourth and third: and as a Theorem, true in all mathematical rigour, ±

lim
c�0

:
ep

sä2
� 1;

which may be said to be the result of my Investigation, at least for the case of the approximate
internal contact between the Median and inscribed small circles, ABC, A9B9C9: or for the Annular
Eclipse (article 343) of the four circles of the latter, on the sphere. ± That the eclipse is
annular, is shown by the positive character of e, or of a (article 348).

418. It may be remembered that (by articles 387 and 397),

s � a � b � c; p � abc; ä2 � (a ÿ b)2(b ÿ c)2(c ÿ a)2;

where (by article 386)

a � sin 1
2
cBC ; b � sin 1

2
cCA; c � sin 1

2
cAB;
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and therefore,

a � r sin 2è, b � r sin 2j, c � r sin 2ø,

if 2è, 2j, 2ø denote the angles of the plane triangle ABC, so that

è� j� ø � ð

2
;

while r � sin c (article 388), if c [is equal to the] arcual radius of the median circle ABC, as
before.

419. Hence,

s

2r
� sin 2è� sin 2j

2
� sin 2ø

2
� sin(è� j)cos(èÿ j)� sinø cosø

� cosøfcos(èÿ j)� cos(è� j)g
� 2 cos è cosj cosø;

that is,

s � 4r cos è cosj cosø,

rigorously.

420. Also,

p � 8r 3 sin è sinj sinø cos è cosj cosø;

p

s
� 2r 2 sin è sinj sinø:

421. Again,

a ÿ b

2r
� sin 2èÿ sin 2j

2
� sinø sin(èÿ j), &c:

ä � (a ÿ b)(b ÿ c)(c ÿ a)

� 8r 3 sin è sinj sin(èÿ j)sin(jÿ ø)sin(øÿ è),

and

N5

8s
� sä2

p
� sin e0,

rigorously if e0 be any new auxiliary angle, de®ned by the equation [see Notebook E, p. 236]:

sin e0 � 32r 4 sin è sinj sinø sin2(èÿ j)sin2(jÿ ø)sin2(øÿ è):

422. The Theorem of article 417 may now be enunciated:

``The angles e, e0 are ultimately equal 00,

or in symbols,
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lim
c�0

:
e

e0
� 1:

423. In the Example above selected (article 350, &c.), I assumed

r � sin 108;

and (compare article 351),

è � 238 159; j � 528 159; ø � 148 309;

whence the last formula for sin e0 gives at once, without spherical trigonometry, the value,

e � �0 0:956:

And the result (article 381) of a long train of spherical triangles gave:

a � �31 0:70; d � 38 529 2 0:81;

whence, by the ®rst formula (article 417) for sin e

e � �1 0:070:

Besides the grand point (article 383) of the agreement in sign, thus exhibited, I consider this
degree of agreement in value between the results of the processes so different, to be suf®ciently
close; especially as some of the triangles employed are really not very small: and consequently
the omitted terms, N7, &c., must have begun to produce sensibly an effect, which is at ®rst
extremely minute, but increases very rapidly with r : namely, for the auxiliary angle e, as the
sixth power of that radius: and for the annular breadth a, as the ®fth power.

424. (September 18th, 1860) ± Although I propose to return on the investigation just
described, and especially to show how it adapts itself to the case of an Ex-inscribed Circle
(article 408), ± yet I am now desirous to turn for a while to a quite different subject, which yet
has a closer connexion with the title of this Postscript: I mean, the extension of Anharmonic
Coordinates, from the plane to space; to which it is necessary, just now, that my own thoughts
should be recalled, because the Abstract of my last Communication to the Royal Irish
Academy, respecting such extension, has not yet been ®nally revised for the Proceedings.�

425. Still, ± lest anything should interfere with my resuming the account of the investigation
about the circles, ± I may as well give here some brief sketch of my results, obtained by
quaternions, and of their approximate veri®cation by spherical trigonometry, for the non-contacts of
the median and with the ex-inscribed circles.

426. At ®rst, I feared that nearly the whole of the calculations, ± which, as formerly conducted
(article 416) were certainly very troublesome, ± would have to be gone over anew, for passing
to a circle of the latter kind: and what was worse, that I should have no veri®cation of the ®nal
formula, when obtained, so simple and searching as the existence of the discriminant, ä2, as a
factor (article 397) in the result. In fact, it is clear that the sines a, b, c cannot enter
symmetrically into any result, in which one exinscribed circle is distinguished from the other two.

� [See p. 507 of this volume.]
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And I actually began an entirely new calculation, in which two of those three sines a, b, c were
treated as the roots of a quadratic equation, while the other remained isolated from them.

427. No doubt, with patience, I might thus have at last succeeded, in resolving what had the
air of a new problem, and was about to be treated by an almost enticing new method: but I
perceived that the work might be greatly abridged, or rather that no new labour need be
expended, if a simple principle were introduced.

428. Let K 0 be the spherical centre of that ex-inscribed small circle, which touches the side
B1C1 itself in a point A 0, but the prolongations of the sides A1C1, A1 B1, of the triangle A1 B1C1,
in points B 0 and C 0. Let the arcual radius of this new circle be c 0, so that

K 0A 0 � K 0B 0 � K 0C 0 � c 0;

and let d9 be the new distance of centres,

KK 0 � d9:

Finally, let

a9 � d9ÿ (c� c 0):

429. Then
a9

c
vanishes at the plane limit; or more fully, a9 is a small quantity, of an order higher

than the ®rst, if the triangles and circles on the sphere be small, and if we still treat a, b, c, and
therefore c, as small of the ®rst order: whence it was easy to foresee that this new interval of
circumferences a9 would turn out to be a quantity of the third order ; but this alone gave no clue
to its algebraic sign. Was I to expect that the two circles would partially overlap (compare
article 343), and so present the case (a9 , 0) of a Partial Eclipse, however tri¯ing, of the
Median; or that the contrary case (a9 . 0) would exist, and that thus the two circles would be
wholly external to each other? Or might there be sometimes the one result, and at other times the other,
according to the ratios of the sines, a, b, c, or the ultimate shape of the median triangle ABC?

430. The only anticipation, which I at ®rst supposed myself at liberty to form, with any
con®dence, was that because, when B1C1 is the base of an isosceles triangle (compare article
396), the median and the exinscribed circles touch, at the middle point A of that base, with
which point A9 and A 0 here coincide, ± therefore the general expression for a9, or for the
connected quantity (compare article 417),

sin e9 � 1

2
(cos(c� c 0)ÿ cos d9) � sin

a9

2
sin d9ÿ a9

2

� �
,

in which e9 is a new auxiliary angle, de®ned by this equation, would be found to contain
(b ÿ c)2 as a factor, the other factor being some symmetric function of b and c; though this
expression would not be a symmetric function of the three quantities, a, b, c, and therefore not
a rational function of s, t, p.

431. I own, however, that I did expect, with a rather strong feeling of con®dence, derived from
analogy, although at ®rst without any proof, that as the inner inscribed circle A9B9C9 was wholly
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within the median ABC, so the exinscribed circle A 0B 0C 0 would be found to be wholly without that
median, or bisecting circle.

432. Applying the quaternion calculus, I easily proved that if we write (compare article 403),

k 0 � ÿa1á1 � b1â1 � c1ã1, and e 0 � �p(Tk 02 ÿ 16e 2 p92),

when the vectors á1, â1, ã1, and the scalars a1, b1, c1, e, p9, have the same values as before,
then the equation (compare article 390),

(Sk 0r)2 � e 02r2 � 0,

represents that ex-inscribed half cone, which has its vertex at the centre O of the sphere, and
rests on the new small circle A 0B 0C 0; while (compare articles 393 and 394) we have also the
relations,

e 0 � Tk 0:cos c 0, 4ep9 � Tk 0:sin c 0, OK 0 � �U k 0,

and

cos d9 � SU kk 0:

433. Hence, if we make for abridgement (compare article 391),

N (1) � e 0ÿ 16 pp9ÿ eÿ1Skk 0,

we have rigorously (compare articles 394 and 417),

N (1) � Tk 0:sec c:fcos(c� c 0)ÿ cos dg � 2Tk 0:sec c:sin e9;

and therefore, nearly,

e9 � N (1)

2Tk 0
, and a9 � N (1)

Tk 0:d9
;

so that I was led to calculate the principal term of N (1).

434. I foresaw that this would be a term N (1)
5 , of the ®fth order (compare article 409); and

that it would be symmetric with respect to b and c, and involve (b ÿ c)2 as a factor (compare
article 430); but at ®rst, I foresaw nothing more, and commenced a new calculation.

435. I soon perceived, however, that I was thus operating on ÿa, �b, �c, precisely as I had
operated on a, b, c; and therefore that if I supposed ÿa, b, and c to be the roots of a new cubic,

x3 ÿ s9x2 � t9x � p � 0, (compare article 387)

where s9 � b � c ÿ a, and t9 � bc ÿ a(b � c), but p � abc, as before, then the new function,

ÿN (1) � eÿ1Skk 0� 16pp9ÿ e 0,

in which, as before (article 405),

p9 � (1ÿ 2a2)(1ÿ 2b2)(1ÿ 2a2),

must admit of being formed from the old function,
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�N (1) � eÿ1Skk 0ÿ 16pp9ÿ e9,

by simply changing s, t, p to s9, t9, ÿ p.

436. I had therefore, at once, without any new trouble, the new formula:

N (1)
5 � 8s92ä92

p
;

in which

ä92 � (a � b)2(a � c)2(b ÿ c)2,

so that the factor (b ÿ c)2 enters as was expected (article 430), and the whole is symmetric (as
it ought to be) with respect to b and c. And because N (1)

5 . 0, and therefore a9 . 0, it followed,
as I had thought likely from analogy (article 431), ± that (compare article 429) ``the ex-inscribed
circle is wholly exterior to the median''; at least if these circles be not too large : although I believe
that this last restriction is unnecessary, for I think that the omitted terms, N (1)

7 , &c., of N (1),
never become so great as to change the character of the result.

437. The approximate value of Tk 0 is 4s9, as that of Tk9 was 4s (article 417); hence the
auxiliary angle e9 (article 430) is nearly [equal to]

N (1)
5

8s9
� s9ä92

p

(by article 436). Transforming this last expression,
s9ä92

p
, as the corresponding expression

sä2

p

was transformed before, and equating it to the sine of a new auxiliary angle e90 we have, as the
de®nition of this new angle, the equation (compare article 419):

sin e90 � 32r 4sinè cosj cosø sin2(jÿ ø)cos2(øÿ è)cos2(èÿ ø);

where r (� sin c), and è, j, ø have the same values as before. And the new Theorem, derived
from Quaternions, is (compare article 422) that ``the angles e9 and e90 are ultimately equal ''; or,

lim
c�0

e9

e90
� 1:

438. I have compared these angles, e9 and e90, for each of the three ex-inscribed circles,
retaining the numerical data of our Example, but being obliged to resolve several new
spherical triangles. At present I shall only say, that the agreements in value were as close as
could fairly be demanded, considering that larger arcs than before were introduced. The
essential test of algebraic sign was borne in each of the three cases. In other words, each of the three
exinscribed circles when found, by spherical trigonometry, to be wholly external to the median:- as you are
aware that I had foreseen (article 436).

439. September 21st 1860. ± Resuming now the Anharmonic Coordinates themselves,
which have been much out of my thoughts for a good while, I think that I shall not in¯ict on
you any long Addition to what was said in the ``Letter'' itself: which Letter if you have ever
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read through, your patience must have been greater than mine is with the Copy of it, that has
been preserved for me. However I know that to parts of it you were so good as to lend your
attention: and I may perhaps refer to parts, in what I am about to write.

440. (September 29th) To use a vulgar, but expressive phrase, I must confess that I have
been, for the last two or three months, out of conceit with the whole System of ``Anharmonic
Coordinates,'' at least as applied to Space: because I seem to myself to have (rather lately)
invented a much better System, or at least one which, for many purposes, and especially for the
study of Geometrical Nets in Space, is such.

441. In applications of this sort, I have been conducted to use Quinary Symbols, and Quinary
Types, for Points, Lines, and Planes; which can easily be reduced to Quaternary (or Anharmonic)
Symbols and Types: but not without some sort of Symmetry, and consequently of facility of
conception, and of reasoning.

442. I am not sure that I shall enter at all on the subject of Nets, in the present Postscript,
miscellaneous as its nature may be. And as they (the nets) supply me with the chief motive, at
present, for preferring quinary to quaternary symbols for space, I shall endeavour to compel
myself to wind up with some account of the anharmonic extension.

443. As regards the mere de®nition of the ``Anharmonic Coordinates of a Point in Space'', it
is nearly enough to say that they are four positive or negative numbers, x, y, z, w, of which the

ratios, or the quotients,
x

w
,

y

w
,

z

w
, express the anharmonic functions of certain Pencils of Planes,

which determine the position of the point,

P � (x, y, z, w):

444. But to state this conception a little more in detail. Let A, B, C, D, E, F be any six points
of space; and let us select any two of them, suppose E and F, to determine a right line EF,
through which four planes are drawn,

AEF , BEF , CEF , DEF ,

so as to pass also in succession through the four other points. We have thus a Pencil of
Planes, which it seems natural to denote by the Symbol, EF :ABCD; (without parentheses, as
yet:) and if any arbitrary rectilinear Transversal, suppose GH, be drawn across this Pencil,
of four collinear planes, (for such appears to be a convenient designation of their relation
to each other,) and we denote its intersections with the four planes by A9, B9, C9, D9, so
that

A9 � GH
:
AEF , B9 � GH

:
BEF , C 9 � AG

:
CEF , D9 � GH

:
DEF ;

then the Anharmonic (A9, B9, C9, D9), of the Group of the Four Points of intersection, is
obviously independent of the position and direction of the Transversal GH; and may
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therefore be naturally said to be the ``Anharmonic of the Pencil� of Planes'', and denoted, as
such, by the new Symbol, (in which I now introduce parentheses)

(EF :ABCD):

We have therefore thus the equation, ± which is however (as you see) merely a mode of stating
a de®nition, ±

(EF :ABCD) � (A9B9C9D9);

if

A9 � GH
:
AEF ,

&c., as above, and if the symbol (A9B9C9D9), for the Anharmonic of a Group of Four Collinear
Points, be still interpreted as in the early article 5 of this Letter, to which the present
Postscript is appended: namely by the formula,

(A9B9C9D9) � A9B9

B9C9
:
C9D9

D9A9
:

445. So much being laid down, ± or admitted, ± respecting the general signi®cation of a
symbol of the form (EF :ABCD), I next proceed to consider the particular (or at all events, the
less general) symbols:

(BC :AEDP), (CA:BEDP), (AB:CEDP);

in which A, B, C, D, E denote any ®ve given points of space, whereof no four are coplanar, and P is
any sixth point. I denote the three anharmonics of pencils by the algebraic quotients,

x

w
,

y

w
,

z

w
;

and I call (compare article 443) x, y, z, w the Anharmonic Coordinates of the Point P, or
(x, y, z, w), taken with respect to the given system of the ®ve points A, . . . , E.

446. If the point P be in the plane BCD. but not on the line BC, then BCP is a determined
plane, namely the fourth plane of the ®rst pencil (article 445), and it coincides with the given
plane BCD, which is the third plane of that pencil; hence, by the de®nition adopted, the
anharmonic of the pencil vanishes, and thus we may write

x � 0, as the anharmonic equation of the given plane BCD:

y � 0 is the equation of the plane CAD;

and

z � 0 is the equation of the plane ABD.

� Chasles has a de®nition introducing sines of angles, when ®rst treating of pencils, of lines, and of
planes: but this it would be foreign to my plan to employ. MoÈbius was quite familiar in 1827 with what he
calls the ``Ratio bissectionalis'', for pencils as well as for groups, which we now call anharmonic ratio. [See
footnotes to articles 1 and 5.]
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447. If P be in the plane ABC, but not on any one of the lines BC, CA, AB, the fourth plane
of each pencil is still determined, but it now coincides with the ®rst plane of that pencil; the
anharmonic of each pencil is therefore in this case in®nite, and we have thus

w � 0,

as the equation of the given plane ABC.

448. If P be on the line BC, which is the axis of the ®rst pencil, ± or the line common to all its

planes, ± then the fourth plane of that pencil becomes indeterminate, and its anharmonic
z

w
takes the form

0

0
; while the second and third anharmonics are in®nite, because their fourth

planes, CAP and ABP, coincide now with their common ®rst plane ABC. For these reasons, we
are led to write

x � 0, w � 0,

as the joint equations of the line BC; and in fact we have just seen that these two equations,
taken separately, represent the two planes BCD, ABC, of which that line is the intersection. In like
manner,

the line CA is represented by the two equations, y � 0, w � 0;
" " AB " " " " " " z � 0, w � 0;
" " DA " " " " " " y � 0, z � 0;
" " DB " " " " " " z � 0, x � 0;
" " DC " " " " " " x � 0, y � 0:

449. For the point A we may write

x � 1, y � 0, z � 0, w � 0,

because the ®rst of the three anharmonics becomes in®nite, and each of the others is
indeterminate; and accordingly, this point may be considered as the intersection of the line
DA, of which the equations are y � 0, z � 0, with the plane ABC, of which the equation is
w � 0: the value, �1, for x being merely assumed as the simplest different from 0. Hence we
may write,

A � (1, 0, 0, 0),

or sometimes more concisely

A � (1 0 0 0);

and in like manner

B � (0, 1, 0, 0), C � (0, 0, 1, 0), D � (0, 0, 0, 1),

or brie¯y,

B � (0 1 0 0), C � (0 0 1 0), D � (0 0 0 1):

And on account of these very simple forms for the four corners of the pyramid ABCD, when
expressed thus by their anharmonic coordinates, I call this pyramid ABCD the Unit-Pyramid.
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450. The equations of the three planes BCE, CAE, ABE are

x � w, y � w, z � w;

hence the four coordinates of the point E are equal to each other, and may be supposed each
[equal to] �1; I write, therefore,

E � (1, 1, 1, 1), or E � (1 1 1 1);

and I call this ®fth given point E the Unit-Point.

451. If we write,

A9 � BC
:
ADE ,

that is, if we denote by A9 the point in which the line BC is intersected by the plane ADE, we
are conducted to the expression,

A9 � (0, 1, 1, 0), or A9 � (0 1 1 0);

with the analogous expressions,

B9 � CA
:
BDE � (1 0 1 0), C9 � AB

:
CDE � (1 1 0 0):

In like manner, if

A1 � EA
:
BCD, B1 � EB

:
CAD, C1 � EC

:
ABD,

A2 � DA
:
BCE , B2 � DB

:
CAE , C2 � DC

:
ABE ,

and

D1 � DE
:
ABC ,

it is found that

A1 � (0 1 1 1), B1 � (1 0 1 1), C1 � (1 1 0 1), D1 � (1 1 1 0),

A2 � (1 0 0 1), B2 � (0 1 0 1), C2 � (0 0 1 1);

and I may just remark in passing, that these ten derived points, of which I have thus assigned
(without proof) the anharmonic symbols, are what I call the points of ®rst construction, for the
Geometrical Net in Space, which is determined by the ®ve given points A, . . . , E ; whereof it is still
supposed that no four are situated in any common plane.

452. More generally, we have the formulñ, ± which, like several others, to save time, I offer
here without demonstration, although you may be sure that I have proofs for them, ±

(AD:BECP) � y

z
; (BD:CEAP) � z

x
; (CD:AEBP) � x

y
;

with the following immediate transformations,

(AD:CEBP) � z

y
; (BD:AECP) � x

z
; (CD:BEAP) � y

x
:

Hence every plane through the line AD has an equation of the form:
y

z
� constant; and the

particular plane ADE has for equation,
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y � z;

while the planes BDE, CDE have for their equations,

z � x, and x � y:

If this be supposed to be known, the expressions (article 451) for the points A9, B9, C9, in which
these three last planes are cut by the lines BC, CA, AB, are at once seen to be correct; and it
may be remarked that the three other planes, BCE, CAE, ABE, which are drawn through the
unit-point E (article 450), and through the three other edges of the unit pyramid ABCD
(article 449), are represented by the three analogous equations,

x � w, y � w, z � w;

which may be employed to deduce the expressions (article 451) for the points A2, B2, C2. As
regards the four other derived points, A1, . . . , D1, it may be noted that the four lines, EA, EB,
EC, ED, drawn from the unit-point to the corners of the unit-pyramid, are represented by the
four following pairs of equations (which immediately follow from those above assigned);

y � z � w; z � x � w; x � y � w; x � y � z:

453. From the foregoing examples, it is natural to suppose that a plane, generally, is
anharmonically represented by a homogeneous and linear equation, connecting the four anharmonic
coordinates of a variable point on the plane: and such I ®nd to be the fact. Let Q, R, S denote
the points in which the plane Ð intersects the three edges of the unit-pyramid, which meet in
what we may call its vertex, D; so that

Q � DA
:
Ð, R � DB

:
Ð, S � DC

:
Ð;

and let A92, B92, C92 denote the points which, on the same three edges, are harmonically
conjugate to the points A2, B2, C2 (article 451), so that

(DA2 AA92) � (DB2 BB92) � (DC2CC 92) � ÿ1;

then, writing

l

r
� (DA92 AQ ),

m

r
� (DB92 BR),

n

r
� (DC92CS),

I de®ne that l, m, n, r, or any numbers proportional to them, are the Anharmonic Coordinates of
the Plane Ð, which I denote accordingly by the Symbol,

Ð � [l , m, n, r],

or sometimes brie¯y by

Ð � [l m n r],

and I prove (quaternions and quines having assisted me, although of course the question may be
treated by geometry alone) that ``if P � (x y z w) be any point on this plane Ð � [l m n r], then the
coordinates of point and plane are connected by the equation,

lx � my � nz � rw � 0; ''

a Theorem which is analogous to that stated and proved in the Letter (articles 10, 61, and 80),
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for points and lines in the plane; and which you can at once see to be of great, and even of
fundamental importance, in the application of this Anharmonic Method to Space.

454. One immediate consequence of this Theorem is, that ``if any four points P, P1, P2, P3 be
complanar, then their sixteen coordinates are connected by the equation,

x y z w
x1 y1 z1 w1

x2 y2 z2 w2

x3 y3 z3 w3

��������
�������� � 0; ''

which may be regarded as one form of the local equation of the plane P1 P2 P3, or of the equation
of that plane considered as the locus Ð of a variable point P. And similarly ``if any four planes Ð,
Ð1, Ð2, Ð3 be concurrent, that is, if they meet in any one common point P, then their coordinates
must satisfy the analogous condition,

l m n r
l1 m1 n1 r1

l2 m2 n2 r2

l3 m3 n3 r3

��������
�������� � 0; ''

which is a form for what may be called (article 10) the tangential equation of the point P,
considered as a pivot, round which a variable plane Ð may turn, being obliged always to pass
through that point P, whatever direction it may assume in space.

455. And the very general and very useful Theorem, or rather pair of theorems, connected with
each other by the Principle of Geometrical Duality, is the following.

I. Every Quotient of two given homogeneous and linear Functions, of the Coordinates of a
variable Point may be expressed as the Anharmonic of a Pencil of Planes; whereof three
are given and collinear, (compare article 444) while the fourth passes through their
common line, and through the variable point.

II. Every Quotient of two given homogeneous and linear Functions, of the Coordinates of a
variable Plane, may be expressed as the Anharmonic of a Group of Points: whereof
three are given and collinear, while the fourth is the intersection of their common line,
with the variable plane.

456. More fully, I., if f (x y z w) and f 1(x y z w), or brie¯y f and f 1, be any two given
homogeneous and linear functions of x, y, z, w; and if we determine three planes, Ð1, Ð2, Ð3,
by the local equations,

f � 0, f 1 � f , f 1 � 0;

if also through the ®xed line Ë which is common (by their form) to these three planes and
through the variable point P � (x y z w), we draw a variable plane Ð � ËP : then we shall
have the equation,

f 1

f
� (Ð1 Ð2 Ð3 Ð):
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457. And in like manner, II., if F (l m n r) and F1(l m n r), or brie¯y F and F1, be any two
given homogeneous and linear functions of l, m, n, r; if we determine three points, P1, P2,
P3, by the tangential equations,

F � 0, F1 � F , F1 � 0,

which points will always be ranged on one common and given line Ë; and if we denote by P
the point Ë

:
Ð in which this ®xed line intersects the variable plane Ð � [l m n r]; then we

shall have the equation,

F1

F
� (P1 P2 P3 P):

458. To illustrate these two Theorems by Examples, let us consider the two quotients,
z

y
, and

n

m
. For the ®rst we have the values,

f � y, f 1 � z;

and for the second,

F � m, F1 � n:

Hence the planes Ð1, Ð2, Ð3, are, for the ®rst example,

y � 0, y � z, z � 0,

or ACD, ADE, ABD; (articles 446, and 452), their common line Ë is therefore in this case AD;
and the variable plane is Ð � ADP . We thus recover the equation,

z

y
� (AD:CEBP);

which had been stated in article 452.

459. Again,

m � 0, n � m, n � 0,

are the tangential equations (article 454) of the three collinear points,

B � (0 1 0 0), A 0 � (0 1 1 0), C � (0 0 1 0);

(in which, to save commas, I write 1 for ÿ1;) because they express the condition requisite for
a plane Ð, or [l , m, n, r], passing through the three points respectively: if then we denote by
L the point in which a variable plane Ð � [l m n r] intersects the ®xed line BC, we have, by
the Theorem in article 457, the equation,

n

m
� (B A 0 C L);

when A 0 is, on BC, the harmonic conjugate of A9, so that (B A9 C A 0) � ÿ1.

460. Similarly,

l

n
� (C B 0 A M), and

m

l
� (A C 0 B N ),
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if B 0 � (1 0 1 0), C 0 � (1 1 0 0), so that (C B9 A B 0) � (A C9 B C 0) � ÿ1, and if M and N be
the points in which the same plane Ð intersects the given lines CA and AB: with the

veri®cation that these three last expressions for
n

m
,

l

m
,

m

l
, give the product,

(B A 0 C L):(C B 0 A M):(A C 0 B N ) � �1;

which answers to the circumstance that A 0B 0C 0 and LMN are two rectilinear transversals of
the triangle ABC as in Figure 39, so that we have the two equations,

BA 0

A 0C
:

CB 0

B 0A
:
AC 0

C 0B
� ÿ1,

BL

LC
:
CM

MA
:
AN

NB
� ÿ1;

on dividing the former of which by the latter, the recent product of anharmonics is obtained.

461. The points A 0, B 0, C 0 here correspond to those which were marked as A9, B9, C9 in
earlier articles, for example in article 79, and Figure 21; and in fact we had there the
equations,

n

m
� (C L B A9)&c:,

which might have been written as

n

m
� (B A9 C L), &c:

Conversely, I have thought it convenient, in recent articles, to write A9, B9, C9 instead of the
old A0, B 0, C 0; the point O, in which the lines AA 0, BB 0, CC 0, of article 77, and Figure 18,
concurred, being now replaced by the point of concourse of the three lines AA9, BB9, CC9,
which point is now D1: namely the intersection (article 451) of the line DE with the plane
ABC. But it is unnecessary to draw a new Figure, to illustrate these small changes of notation
which have been suggested in part by the passage from the plane to space.

462. As another veri®cation, and at the same time as a new illustration of the theory, it may
be remarked that we can recover the equations of de®nition, ± if we suppose ourselves to have

forgotten them, ± for the quotients
x

w
,

y

w
,

z

w
, (in article 445), and for the quotients

l

r
,

m

r
,

n

r
, (in

article 453) by applying the theorems of articles 456 and 457: which may be otherwise
enunciated as follows.

Fig. 39
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I. If j(x y z w) be any Rational Fraction, expressed as the Quotient of two given homo-
geneous and Linear Functions of the form variables, x, y, z, w; and if we determine a
line Ë and three planes Ð1, Ð2, Ð3 through that line, by the equations,

j � 0

0
, j � 1, j � 1, j � 0,

the Fractional Function j may then be expressed as the Anharmonic of a Pencil of
Planes as follows:

j(x y z w) � (Ð1 Ð2 Ð3 Ð);

where Ð is the plane which passes through the ®xed line Ë, and through the variable
point P � (x y z w).

II. If ö(l m n r) be, in like manner, a Fractional Function of l, m, n, r, expressed as the
Quotient of two given homogeneous and linear functions of those four variables; and if
we determine a line Ë, and three points P1, P2, P3 on that line, by the equations

ö � 0

0
, ö � 1, ö � 1, ö � 0;

we shall then be able to express the Fraction or Function ö as the Anharmonic of a
Group of Points, as follows:

ö(l m n r) � (P1 P2 P3 P);

where P is the intersection of the ®xed line Ë with the variable plane, Ð � [l m n r].

463. When j � x

w
, the three ®xed planes are (by articles 446, 452, and 447), ABC, BCE,

BCD, and their common line is BC; we therefore recover the equation of de®nition (article
445),

x

w
� (BC :AEDP),

as one which is included in the Theorem I., of articles 455, 456, and 462; and in like manner,

when ö � l

r
, the three ®xed points are D, A92, A, so that if Q be (as before) the point of

intersection of the ®xed line DA with the variable plane Ð, we are conducted anew to the
equation (article 453),

l

r
� (DA92 AQ );

with (of course) similar expressions for
y

w
,

z

w
,

m

r
,

n

r
. But since these equations had been de®ned

to be true, our thus arriving at them again can only be regarded as a veri®cation (article 462)
of the consistency of this whole theory; and as an illustration of the meaning of the theorems.

464. You may perhaps remember, that so early in the Letter as in Article 11 I introduced,
and very often afterwards employed, a Theorem for the Plane, which indeed was stated
without proof: namely that if there be any four points,

P0 � (x0 y0z0), P1 � (x1 y1z1), P2 � &c:, P3 � &c:,
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related so that

x2 � tx0 � ux1, y2 � ty0 � uy1, z2 � tz0 � uz1,

x3 � t9x0 � u9x1, y92 � t9y0 � u9y1, z92 � t9z0 � u9z1,

± under which conditions those four points must be collinear, ± then the Anharmonic of their
Group may be expressed as follows:

(P0 P2 P1 P3) � t9u

tu9
:

The demonstration by quaternions of this Theorem is very easy, and I dashed it off one day on
the back of a note, while sitting in the Council Room of the Academy, for the purpose of
proving by it to Graves� the equation

(O U C U 9) � ÿ1, (article11)

which in connexion with Figure 6 (of the same article) expresses the harmonic relation of
pole and polar for a plane conic: but I really forget whether I ever proved the theorem by
geometry alone, my conviction of its truth being so complete from the ®rst (through
quaternions), and applications of it springing up so abundantly. I have now repeated the
enunciation, for the purpose of stating, in connexion with it, an analogous Theorem for Space,
which like this former has very many applications.

465. This new Theorem is, that ``if the anharmonic symbols, (x0 y0 z0 w0), &c., or brie¯y
(P0) (P1) (P2) (P3), of any four points of space, be connected by the two symbolic equations,

(P1) � t(P0)� u(P2), (P3) � t9(P 90)� u9(P 92),

then not only are those four points collinear (compare articles 453, and 454), but the
anharmonic of their group has the value

(P0 P1 P2 P3) � ut9

tu9
:''

466. Another Theorem, ± which may be said (compare article 455) to be the Dual of this
last, ± exists, and may be thus enunciated:-

``If the anharmonic symbols, [l0 m0 n0 r0], . . . , [l3 m3 n3 r3], of any four planes, be con-
nected by two equations of the forms,

[Ð1] � t[Ð0]� u[Ð2], [Ð3] � t9[Ð0]� u9[Ð2],

then not only (compare article 454) are these four planes collinear, but also the anharmonic
of their pencil has the value,

(Ð0 Ð1 Ð2 Ð3) � ut9

tu9
:''

� [Charles Graves, 1812±1899, at the time Erasmus Smith's Professor of Mathematics at Trinity
College, Dublin.]
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467. It is understood that the symbolic equation,

[Ð1] � t(Ð0)� u[Ð2],

is designed to represent the system of the four ordinary equations,

l1 � tl0 � ul2, . . . , r1 � tr0 � ur2;

and in like manner that the four equations,

x1 � tx0 � ux2, . . . , w1 � tw0 � uw2,

are brie¯y represented by the one symbolic formula,

(P1) � t(P0)� u(P2):

Analogous abridgments had occurred before, in the Letter; for example, in articles 74, 150,
&c. And it is important to remember, that any one formula, such as

(P1) � t(P0)� u(P2),

or

[Ð1] � t[Ð0]� u[Ð2],

expresses nothing more than the graphical relation of collinearity, between the three points, P0,
P1, P2, or the three planes Ð0, Ð1, Ð2: and that no metric (or anharmonic) relation is expressed,
until we have, for points or planes (compare article 161), a system of two such formulñ.

468. (October 3rd 1860) ± I think that the foregoing are the most (or among the most)
general and useful things which I made out, not very recently, about Anharmonic Coordinates
in Space: but which have been since absorbed (article 441) in a Theory of Quinary Coef®cients,
Symbols, and Types, whereon, however, I may as well abstain from entering here. But it seems
that I ought to add something respecting the Anharmonic Method, as applied to Curved
Surfaces: although, in the mere mechanism of calculation, the fundamental theorem,

lx � my � nz � rw � 0, (article 453)

causes that method to differ as little usually, in its mere working, from the known method of
Quadriplanar Coordinates, as Anharmonics differ, within the plane, from Trilinears (article 144).

469. Let it then be required to determine the anharmonic and local equation of the surface of
the second order, which passes through the nine points, denoted by

A, B, C , D, E , A9, A2, C9, C2,

in articles 445, and 451. In the ®rst place, this equation,

f (x y z w) � 0,

must be homogeneous, because only ratios enter; and of the second dimension, because if we
establish any two linear equations between the four variable coordinates, to express that the point
x y z w of the locus is on a given right line, and then eliminate two of those four variables, the
resulting homogeneous equation between the other two must have two roots (real or imagin-
ary), and not more than two. But, by article 449, we have
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A � (1, 0, 0, 0), . . . , D � (0, 0, 0, 1);

and the surface is to pass through these four points (the corners of the unit-pyramid); its
equation must therefore not contain the squares of the variables, and one may write,

f � ayz � bzx � (ex � gy � hz)w;

in which it remains to determine the ratios of the six coef®cients, by the condition that the
surface shall pass also through the ®ve other given points.

470. One of these points is (by article 451)

A9 � (0, 1, 1, 0);

the coef®cient of the product yz therefore vanishes, and the equation at this stage takes the
form,

f � x(bz � cy)� w(ex � gy � hz) � 0;

it is therefore satis®ed by every point for which z and w vanish; that is (article 448), by every
point of the right line BC. The same conclusion would have followed, if we had not supposed the
coef®cients of x2, w2, that is, if we had not obliged the locus to pass through A and D; in fact
the three points B, C, A9 are collinear, and any surface of the second order which passes
through them must therefore contain the whole inde®nite right line upon which they are
situated.

471. Obliging our locus to contain also the points A2, C9, C2, or (1, 0, 0, 1), (1, 1, 0, 0),
(0, 0, 1, 1), we are led to suppress also the coef®cients of xw, xy, zw; the equation therefore
reduces itself to the binomial form,

f � bxz � gwy � 0:

and represents any hyperboloid on which the gauche� quadrilateral ABCD is superscribed; or which
has AB, BC, CD, DA for four of its generating lines. And when we make it pass through E, we
have, ®nally

b � g � 0;

so that the equation of the sought locus, or surface, becomes simply,

0 � f (x y z w) � xz ÿ yw:

± Of course, the same nine sets of coordinates would have given the same equation, in the
quadriplanar method also (article 468).

472. But here comes into play a difference of interpretation; for while, in quadriplanar
coordinates, the equation expresses that one product of two perpendiculars on planes is equal to
another such product, my method supposes no use (nor even knowledge) of perpendiculars, or
any thing else connected with the sphere : and accordingly, I interpret the equation as

� [Not planar.]
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expressing, in either of two ways, an equality between the anharmonic functions of two pencils of
planes. In fact, if we write it as

x

w
� y

z
,

it expresses (by articles 445 and 452) the equality,

(BC :AEDP) � (DA:BECP);

and if we write it as

z

w
� y

x
,

it signi®es the other equality,

(AB:CEDP) � (CD:BEAP);

whence can be easily derived the double generation, and the anharmonic properties of any ruled
hyperboloid.

473. (November 9th, 1860.) I perceive, by a memorandum, that it is just a month since I
posted that last sheet of this ``Postscript'' but I have since been otherwise fully employed, and
of course I do not ¯atter myself that you have regretted the delay. This time, however, ± that
is, within a day or two, ± I trust that I shall really conclude, though writing only at intervals.
We had (article 472), the anharmonic equations,

(BC :AEDP) � (DA:BECP);

(AB:CEDP) � (CD:BEAP),

as two forms of the equation of the hyperboloid, on which the gauche quadrilateral ABCD is
superscribed, and which passes through the point E; see Figure 40. And we saw that, in
anharmonic coordinates, the second of the two last written equations corresponded to the
following:

z

w
� y

x
; or xz ÿ yw � 0:

It is now to be shown that this equation can be interpreted, as signifying (without any reference
to perpendiculars), that the hyperboloid in question is the locus of a point P, such that if we

Fig. 40

418 III . LETTER TO HART ON ANHARMONIC COORDINATES



draw through it a right line QPS, which cuts the two opposite sides, AB and DC, of the
quadrilateral, this line divides those two sides homographically: or more fully, ± or at least more
symbolically, ± that we shall have the anharmonic equation,

(A C9 B Q ) � (D C2 C S),

if Q � AB
:
DCP , and S � DC

:
ABP ,

as C9 � AB
:
DCE , and C2 � DC

:
ABE ,

by the notations of a recent article (451). But in fact this last anharmonic equation, under the
form (C C2 D S) � (B C9 A Q ), is an immediate consequence of the equation previously
established, namely,

(AB:CEDP) � (CD:BEAP);

in deriving which consequence, we have only to conceive that the pencil through AB is cut by
CD as a transversal; and that the pencil through CD is cut by BA as a transversal.

474. It is clear that in like manner, the other equation (article 472) between anharmonics
of pencils of planes,

(BC :AEDP) � (DA:BECP),

when we cut the one pencil by AD, and the other by BC, taking the form of an equation
between anharmonics of groups of points, as follows:

(A A2 D T ) � (B A9 C R);

when

A9 � BC
:
ADE , and A2 � AD

:
BCE ,

as in article 451; and

R � BC
:
ADP , T � AD

:
BCP ,

as is partially represented in the recent Figure 40. It follows that the right line RPT, which is
drawn through P across the other pair of opposite sides BC, AD, of the same gauche quadrilateral,
divides that pair also homographically:- as is known. (Compare [Michel] Chasles, [TraiteÂ de]
GeÂometrie SupeÂrieure, page 298: Paris, 1852. You probably have the book ± a copy was sent me
by the author.)

475. So far we have only been deriving (known) properties of the surface of the second order,
which is represented by the equation,

xz � yw,

and which is here considered as determined thereby. In that view, the shortest way of proving
that the two systems of homographic divisions exist, might be to remark, that with our last
signi®cations of Q, R, S, T, as intersections of lines with planes, we have the anharmonic
symbols,

Q � (x y 0 0); R � (0 y z 0); S � (0 0 z w); T � (x 0 0 w):

Nothing more is here supposed, than that through the point P � (x y z w), anywhere situated
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in space, are drawn two right lines, QPS and RPT, so as to intersect the lines AB, BC, CD, DA
in the points Q, R, S, T. Hence, with this signi®cation of these four last letters, and with A9

&c. signifying as before, we have the following general interpretations of the ratios of the four
anharmonic coordinates of a point P in space:

x

y
� (A C9 B Q );

y

z
� (B A9 C R);

z

w
� (C C2 D S);

w

x
� (D A2 A T );

which are quite independent of the conception of any curved surface whatever, and might have been
assumed as de®nitions of anharmonic coordinates (of a point). As an easy veri®cation, the four
last equations give,

1 � (A C9 B Q )(B A9 C R)(C C2 D S)(D A2 A T ),

AC 9

C9B
:

BA9

A9C
:

CC2

C2 D
:

DA2

A2 A
� AQ

QB
:
BR

RC
:
CS

SD
:
DT

TA
,

for any gauche quadrilateral, cut by any two transversal planes, in the points C9 A9 C2 A2, and
Q R S T; and in fact each of the two last products of quotients of segments of sides is known to be
equal to positive unity, by a theorem which (I think) is due to Carnot�, but at all events is

stated by Chasles. Admitting, then, these general interpretations of
x

y
, &c., we see at once that

if a curved surface be represented by the equation,

xz � yw, or
x

y
:

z

w
� 1,

it must have the anharmonic property,

(A C9 B Q )(C C2 D S) � 1, or (A C9 B Q ) � (D C2 C S),

as before; so that it is the locus of a right line QS, which divides AB and DC homographically: AD,
C9C2 and BC being three of its positions. And because we should have with equal ease this
other anharmonic equation,

x

w
� y

z
, or, (A A2 D T ) � (B A9 C R),

as before, we should see that the same surface of the second order may be generated in the (well
known) second mode, as the locus of another right line TR, which divides AD and BC homo-
graphically, having AB, A2 A9, and DC for three of its positions.

476. We have here been interpreting an equation, of the second order: but we might have
proposed to ®nd a locus, namely the locus of the right line which divides two given right lines in
space homographically; or (more de®nitely) the locus of a variable point P, on the variable line
QS, when the condition

(A C9 B Q ) � (D C2 C S)

is satis®ed, as before. For this purpose, the following method appears natural. Since Q is on
AB, its anharmonic symbol must be of the form (t u 0 0); and since S is its homologue on DC,
C2 being the homologue of C9, we must then have (0 0 u t) as the corresponding symbol for

� [Lazare-Nicolas-Marguerite Carnot, 1753±1823.]
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S. But P is collinear with Q, S; its symbol (x y z w) must therefore be of the form q(Q )� s(S),
or we must have

(x y z w) � q(t u 0 0)� s(0 0 u t);

(compare articles 465, and 467) whence follow the four separate equations,

x � qt, y � qu, z � su, w � st;

and by elimination of auxiliary quantities, the required equation of the locus; of the point P, or
of the line QS, is found again to be,

xz � yw:

477. I have been avoiding throughout this Letter and Postscript, to make much use of
Quaternions, or even of Vectors; but cannot resist the temptation to write here a vector-formula
for a ruled hyperboloid, which has a natural connexion with what has been said respecting
the anharmonic coordinates, although it may be arrived at, and interpreted, separately. Let
then OA, OB, OC, OD, or á, â, ã, ä, be four given and coinitial vectors not terminating on any
common plane; and let OP or r be a variable vector. Let a, b, c, d be four given or constant
scalars, and let s, t, u, v be four variable scalars, of which however only the two ratios, s : u,
and t : v are important. Then if we suppose that

r � staá� tubâ� uvcã� vsdä

sta � tub � uvc � vsd
,

the locus of P is a single-sheeted hyperboloid, having the four sides of the quadrilateral ABCD
for generating lines, and passing through the point E of which the vector is,

E � aá� bâ� cã� dä

a � b � c � d
:

478. (November 23rd, 1860.) ± I ®nd that another week has passed away, ± although not
unemployed, ± since I posted my last packet to you, including the missing Sheet LIV, which
completed the ``Letter'' itself. Perhaps I was fearful of going too far, for consistency with my
plan, ± into the application of Vectors, which I had sketched in the last Paragraph, to the
discussion of the Ruled Hyperboloid. Let me add, however, that with the same vector-
formula,

r � staá� tubâ� uvcã� vsdä

sta � tub � uvc � vsd
,

± in which a, b, c, d are constant scalars, and s, t, u, v are variable scalars, while á, â, ã, ä are
constant vectors, but r is a variable vector, namely that of a variable point P on the
hyperboloid, ± the vector k of the centre K is, by my method, found to be:

k � ac(á� ã)ÿ bd(â� ä)

2(ac ÿ bd)
;

for this among other reasons, that if we make

s9 � bt � cv, t9 � cu � ds, u9 � dv� at, v9 � as � bu,
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and

r9 � s9t9aáÿ t9u9bâ� u9v9cãÿ v9s9dä

s9t9a ÿ t9u9b � u9v9c ÿ v9s9d
,

so that r9 is the vector of another point of the same surface, then

r� r9 � 2k, or r9 � 2kÿ r;

and thus every chord PP 9 of the hyperboloid, which passes through the ®xed point K, is bisected
in that point. The theorem that the centre K of the surface is on the right line which bisects
the two diagonals, AC and BD, is also much in evidence by the foregoing expression for the
vector k.

479. When ac � bd , the centre is in®nitely distant; and the surface becomes a hyperbolic
paraboloid. In this case, since sta:uvc � tub:vsd, no generality is lost by suppressing the constant
factors a, b, c, d, and writing simply,

r � stá� tuâ� uvã� vsá

st � tu � uv� vs
;

respecting which I shall only here observe, that it shows that the point E, of which the vector
is now reduced to the simple form,

å � 1
4(á� â� ã� ä),

so that it is the mean point (or centre of gravity) of the pyramid ABCD, ± is still a point of the
surface. And conversely, if E be such a mean point, the surface of the second order which
passes through it, and has the quadrilateral ABCD superscribed upon it, is thus found to be a
ruled paraboloid:- a theorem which is probably known.

480. Resuming, for a short time, the anharmonic coordinates, I shall merely use the recent
results with vectors, so far as to observe that they enable us to infer, ± what can be otherwise
proved, ± that the harmonic conjugate of the ®xed point,

K � (c, ÿd, a, ÿb),

taken with respect to the chord PP 9 which passes through that point K, and of which the
extremities are denoted by the anharmonic symbols,

P � (st, tu, uv, vs),

P 9 � (s9t, ÿt9u9, u9v9, ÿv9s9),

when

s9 � bt � cv, t9 � cu � ds, u9 � dv� at, v9 � as � bu,

as in article 478, is a point P 0 upon the plane

Ð � [a, b, c, d];

that is, on the plane at in®nity. In fact, without vectors, if we write for abridgment,

ac ÿ bd � e, ast � btu � cuv� dvs � w9,
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these values of s9, t9, u9, v9 give,

s9t9� est � cw9; ÿt9u9� etu � ÿdw9; u9v9� euv � aw9; ÿv9s9� evs � ÿbw9;

therefore

(P 9)� e(P) � w9(K ),

a formula which exhibits the asserted collinearity of the three points, P, K, P 9. Again, as regards
the harmonic conjugation, if we suppose that it exists, or that P 0 is determined so as to satisfy
the condition,

(P P 9 P 0) � ÿ1,

we may then write,

ÿ(P 9)� e(P) � (P 0);

or

(P 0) � 2e(P)ÿ w9(K );

or

P 0 � (2est ÿ cw9, 2etu � dw9, 2euvÿ aw9, 2evs � bw9);

if then

P 0 � (x, y, z, w),

we have

ax � by � cz � dw

� a(2est ÿ cw9)� b(2etu � dw9)� c(2euvÿ aw9)� d(2evs � bw9)

� 2e(ast � btu � cuv� dvw)ÿ 2(ac ÿ bd)w9

� 2ew9ÿ 2ew9 � 0;

so that the point P 0 is on the plane [a, b, c, d], as asserted.

481. If we write, with a different signi®cation of P 0,

P 9 � (y, y, z, z), P 0 � (x, y, y, x),

then the point P 9 is at once collinear with (y, y, 0, 0) and (0, 0, z, z), or with (1, 1, 0, 0) and
(0, 0, 1, 1), or with C9 and C2, and also with (0, y, z, 0) or R, and with (y, 0, 0, z) or
(x, 0, 0, w) or T; hence we may write (compare Figure 40),

P 9 � C9C2
:
RT ,

so that the variable generatrix RT of one system intersects (as is well known) the three ®xed
generatrices AD, BC, C9C2 of the other system. And similarly the point last called P 0 is the
intersection,

P 0 � A9A2
:
QS :

423III . LETTER TO HART ON ANHARMONIC COORDINATES



482. We may write

(E) � (C9)� (C2), (P 9) � y(C9)� z(C2);

whence results the anharmonic,

(C9 E C2 P 9) � y

z
� (B C A9 R) � (A D A2 T );

so that the variable generatrix RT not only intersects the three generatrices AD, BC, C 9C2, as
before, but also divides them homographically: another known property of the hyperboloid. We
must of course expect to ®nd that RT divides QS also homographically, with AD and BC; or
that

(Q P 0 S P) � (B A9 C R) � y

z
:

Accordingly, if we write

Q � (x, y, 0, 0), S � (0, 0, z, w),

as before, we have

(P) � (Q )� (S), z(P 0) � (zx, zy, zy, yw) � z(Q )� y(S);

whence

(S P Q P 0) � y

z
,

as was expected.

483. Let [l , m, n, r] be the anharmonic symbol for the plane QRST of the two generatrices
QS, RT through P. Then

0 � lx � my � my � nz � nz � rw � vw � lx;

whence

l : m : n : r � xÿ1 : ÿ yÿ1 : zÿ1 : ÿwÿ1 � z : ÿw : x : ÿy;

the plane [z, ÿw, x, ÿ y] is therefore the tangent plane to the hyperboloid at the point P, or
(x, y, z, w). And as the local equation of that surface is:

0 � f (x y z w) � xz ÿ yw,

so the tangential equation of the same surface is

0 � F (l m n r) � lr ÿ mn:

(When ac � bd, this last equation is satis®ed by [a, b, c, d]: or the ruled paraboloid touches (as is
known) the plane at in®nity.)

484. More generally, the point (x, y, z, w) and the plane [l , m, n, r] are related as pole and
polar, with respect to the hyperboloid in question,

l � z, m � ÿw, n � x, r � ÿ y;
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whence (without vectors) the centre K of that surface, or the pole of the plane at in®nity, namely
of [a, b, c, d], is seen again to be the point (c, ÿd, a, ÿb).

485. In general, if f � 0 be the local equation of any curved surface, I ®nd that
[Dxf , Dyf , Dzf , Dwf ] is the anharmonic symbol of its tangent plane at the point (x y z w); and
that in like manner, if F � 0 be the tangential equation of any surface, then
(Dl F , DmF , DnF , Dr F ) is the anharmonic symbol of the point of contact of the plane [l m n r]
with its envelope: whence it is easy to conceive how problems of reciprocal surfaces may be
treated, by a mechanism which is in fact the same as that used in the known method of
quadriplanar coordinates. (Compare article 468.)

486. As bearing on the general determination of a tangent plane, let P � (x, y, z, w) be any
given point, and let

P 9 � (x � Äx, y � Äy, z � Äz, w � Äw),

and

P 0 � (x � Ä9x, y � Ä9y, z � Ä9z, w � Ä9w),

be any two other points, on a surface given by its local equation, f � 0; where f is any given
and homogeneous function of x, y, z, w. Let [L, M , N , R] be the symbol of the secant plane
Ð, or P P 9 P 0, which passes through these three points; we shall then have the three
equations,

Lx � My � Nz � Rw � 0,

LÄx � MÄy � NÄz � RÄw � 0,

LÄ9x � MÄ9y � NÄ9z � RÄ9w � 0,

whereby the ratios of L, M, N, R, or the position of this secant plane, may generally be
determined, when x, y, z, w, and Äx, . . . , Äw, Ä9x, . . . , Ä9w, are known. Let a ®xed right line
PP1 be conceived to be drawn through the point P, so as to be normal, or at least not
tangential, to the surface: and let the points P9, P 0 be conceived to approach inde®nitely to P,
along the respective sections, made by the two planes, PP1 P 9 and PP1 P 0. The differences,
Äx, . . . , and Ä9x, . . . , will then diminish inde®nitely, and will tend to vanish together; but
they will, in general, have certain limiting ratios, and will be ultimately proportional, for each of
the two points P 9 and P 0, to certain ®nite quantities: which, in the spirit of the Newtonian
Doctrine of Fluxions, and not without support from modern authority, may be called the
differentials of the coordinates x, . . . , and may be denoted as such by dx, . . . , dw, and
d9x, . . . , d9w; the latter sets being here supposed to be distinct from the former. Then the
coordinates L, M, N, R of the secant plane will also vary, but will tend to acquire certain
determined ratios, namely those of the coordinates l, m, n, r of the sought tangent plane at P ;
which latter plane must therefore satisfy the three conditions,

0 � lx � my � nz � rw, 0 � ldx � md y � ndz � rdw,

0 � ld9x � md9y � nd9z � rd9w;

when dx, . . . and d9x, . . . are only obliged to satisfy the two linear equations,
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0 � d f � Dxf :dx � Dyf :dy � Dzf :dz � Dwf :dw,

0 � d9f � Dxf :d9x � Dyf :d9y � Dzf :d9z � Dwf :d9w,

Dxf , . . . , Dwf being partial derivatives. But, by the supposed homogeneity of f, we have
0 � xDxf � yDyf � zDzf � wDwf ; hence

l : m : n : r � Dxf : Dyf : Dzf : Dwf ;

and therefore, as asserted in article 485,

[Dxf , Dyf , Dzf , Dwf ]

may be taken as the anharmonic symbol of the tangent plane to the surface f � 0, at the point
(x, y, z, w).

487. In like manner, let F (l m n r) � 0, when F is any homogeneous function, be the given
tangential equation of a surface, considered as the envelope of a variable plane [l , m, n, r], or Ð.
Let

Ð9 � [l � Äl , . . . , r � Är], and Ð 0 � [l � Ä9l , . . . , r � Ä9r],

denote any two other planes of the same system; and let the common intersection of these planes
be the point,

P � Ð
:
Ð9
:
Ð 0 � (X , Y , Z , W ):

Then the position of this point P, or the ratios of its coordinates X , . . . , may generally be
determined by the three equations,

0 � Xl � Ym � Zn � Wr ;

0 � XÄl � YÄm � ZÄn � W Är ;

0 � XÄ9l � V Ä9m � ZÄ9n � W Ä9r :

At the limit, when P becomes a point (x y z w) of the envelope by the three planes tending to
coincidence, the three last equations become,

0 � xl � ym � zn � wr ,

0 � xdl � ydm � zdn � wdr ,

0 � xd9l � yd9m � zd9n � wd9r ;

where d l , . . . , and d9l , . . . , are only subject to the two equations

0 � dF � Dl F :dl� � � � �Dr F :dr , 0 � d9F � Dl F :d9l� � � � �Dr F :d9r :

But by the supposed homogeneity of F, we have also,

0 � l Dl F � m DmF � n DnF � r Dr F ;

hence the coordinates of contact x, y, z, w, must be such that

x : y : z : w � Dl F : DmF : DnF : Dr F ;
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and (Dl F , DmF , DnF , Dr F ) is therefore, as in article 485, the anharmonic symbol of the point of
contact of the enveloped surface, F � 0, with the plane [l , m, n, r].

488. In general, if we differentiate the equation

lx � my � nz � rw � 0,

we get

ldx � md y � ndz � rdw � ÿ(xd l � ydm � zdn � wdr);

if then we suppose it known that [Dxf , Dyf , Dzf , Dwf ] is the symbol of the tangent plane
[l , m, n, r] to a surface given by the local equation f � 0, or that

ldx � md y � ndz � rdw � 0,

for all values of the differentials dx, . . . , dw, which are consistent with the differential
equation d f � 0, we can infer (without any new appeal to geometry) that

xdl � ydm � zdn � wdr � 0,

for all values of dl , . . . , dr which are consistent with this other differential equation, dF � 0,
when F � 0 is the tangential equation of the same surface; or that

x : y : z : w � Dl F : DmF : DnF : Dr F ;

or ®nally that (Dl F , DmF , DnF , Dr F ) is, as above, the symbol of the point of contact. And in
like manner we can return from this last symbol, to the symbol for the tangent plane. ± It is
scarcely necessary to remark that in the present method, as in that of quadriplanar
coordinates, the degree of the local equation, f � 0, (when rational and integral,) determines
the order of the surface ; and that the degree of the tangential equation, F � 0, determines its class.

489. (November 24th, 1860.) But it is really time to conclude this ``Postscript,'' and therefore
I shall not venture to look back lest I should be tempted to add anything more. For as regards
the question of the bisecting circle on a sphere, I remember that I pursued, with some success, a
couple of months ago, beyond the stage described in former sheets, the investigation of that
question by quaternions. I had also something more to say, ± but shall not say it, ± with
reference to cubic curves.

490. In conclusion, then, let me thank you for your patience and good humour, shown in
allowing me to write to you at such great length, and at such irregular intervals, whenever I
fancied that I could clear up my own thoughts, by so expressing them. Not more than a tenth
part, as I suppose, if so much, has been transferred to printed sheets: including a sketch of the
Anharmonic Coordinates for the Proceedings� of the Royal Irish Academy. ± I do not venture to
propose to begin a new Letter, on the subject of Quaternions: but should be glad if you were

� [The short account, which will be found on pp. 507±515 of this volume, was published in 1860 in
part XI of volume VII (publication of this volume was not completed until 1862) of the Proceedings of the
Royal Irish Academy, pp. 286±289 (com. Apr. 9 1860), 329 (com. May 28, 1860), 350±354 (com. Jun. 25,
1860). It was also published, in 1860, in The Natural History Review, Vol. 7, pp. 242±246, 325, 505±509. The
Natural History Review was a quarterly journal containing the proceedings of a number of Irish scienti®c
bodies, including those of the Royal Irish Academy.]
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to look over part of the manuscript, or at least some of the proof sheets, or slips, of the Second
Book of my ``Elements'', when I get them.� The First Book is nearly printed: and a pretty large
stock of copy is ready for the Second, although perhaps it may be all rewritten for the press.
You would ®nd, I hope, that Second Book quite intelligible, without its having been necessary to
read more of the First, than that initial part which was selected by yourself some months ago,
as what might be recommended for the perusal of a student, when entering on the subject.
The progress of the printing has been hitherto slow: and consequently the Grant has not
been so much encroached on, as you might apprehend, from the early sheets.y Enough, I
think remains, to bring out in a satisfactory manner, the theory of the Quaternions themselves:
although I cannot consider as foreign, or irrelevant, the previous Sections on Vectors.

I am, my dear Dr. Hart, once more, faithfully yours,
William Rowan Hamilton.

Andrew Searle Hart Esq., LL. D., &c.

� [Hamilton's major treatise, The Elements of Quaternions (London: Longmans, Green, & Co.) was not
published until 1866, the year after his death in 1865.]
y [See Thomas Leroy Hankins, Sir William Rowan Hamilton, pp. 359±365, John Hopkins University

Press, Baltimore, Maryland, and London: 1980.]
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Part II

GEOMETR Y





IV.

ON SYMBOLICAL GEOMETRY (1846 ± 49)

[Cambridge and Dublin Mathematical Journal, 1 45±57, 137±154, 256±263 (1846); 2 47±52,
130±133, 204±209 (1847); 3 68±84, 220±225 (1848); 4 84±89, 105±118 (1849).]

Introductory Remarks

The present paper is an attempt towards constructing a symbolical geometry, analogous in
several important respects to what is known as symbolical algebra, but not identical therewith;
since it starts from other suggestions, and employs, in many cases, other rules of combination
of symbols. One object aimed at by the writer has been (he confesses) to illustrate, and to
exhibit under a new point of view, his own theory, which has in part been elsewhere
published, of algebraic quaternions. Another object, which interests even him much more,
and will probably be regarded by the readers of this Journal as being much less unimportant,
has been to furnish some new materials towards judging of the general applicability and
usefulness of some of those principles respecting symbolical language which have been put
forward in modern times. In connexion with this latter object he would gladly receive from
his readers some indulgence, while offering the few following remarks.

An opinion has been formerly published� by the writer of the present paper, that it is
possible to regard Algebra as a science, (or more precisely speaking) as a contemplation, in some
degree analogous to Geometry, although not to be confounded therewith; and to separate it, as
such, in our conception, from its own rules of art and systems of expression: and that when so
regarded, and so separated, its ultimate subject-matter is found in what a great metaphysician
has called the inner intuition of time. On which account, the writer ventured to characterise
Algebra as being the Science of Pure Time ; a phrase which he also expanded into this other:
that it is (ultimately) the Science of Order and Progression. Without having as yet seen cause to
abandon that former view, however obscurely expressed and imperfectly developed it may
have been, he hopes that he has since pro®ted by a study, frequently resumed, of some of the
works of Professor Ohm,y Dr. Peacock,{ Mr. Gregory,§ and some other authors; and imagines
that he has come to seize their meaning, and appreciate their value, more fully than he was
prepared to do, at the date of that former publication of his own to which he has referred.
The whole theory of the laws and logic of symbols is indeed one of no small subtlety;
insomuch that (as is well known to the readers of the Cambridge Mathematical Journal, in which
periodical many papers of great interest and importance on this very subject have appeared)
it requires a close and long-continued attention, in order to be able to form a judgment of

� Trans. Royal Irish Acad., vol. XVII. Dublin, 1835. [See Vol. III, p 3; and this Vol. p. 762.]
y [Martin Ohm (1792±1872)].
{ [George Peacock (1791±1858)].
§ [Duncan Farquharson Gregory (1813±1844)].



any value respecting it: nor does the present writer venture to regard his own opinions on this
head as being by any means suf®ciently matured; much less does he desire to provoke a
controversy with any of those who may perceive that he has not yet been able to adopt, in all
respects, their views. That he has adopted some of the views of the authors above referred to,
though in a way which does not seem to himself to be contradictory to the results of his
former re¯exions; and especially that he feels himself to be under important obligations to
the works of Dr. Peacock upon Symbolical Algebra, are things which he desires to record, or
mark, in some degree, by the very title of the present communication; in the course of which
there will occur opportunities for acknowledging part of what he owes to other works,
particularly to Mr. Warren's Treatise� on the Geometrical Representation of the Square
Roots of Negative Quantities.

Observatory of Trinity College, Dublin, Oct. 16, 1845.

Uniliteral and Biliteral Symbols

1. In the following pages of an attempt towards constructing a symbolical geometry, it is
proposed to employ (as usual) the roman capital letters A, B, &c., with or without accents, as
symbols of points in space; and to make use (at ®rst) of binary combinations of those letters,
as symbols of straight lines: the symbol of the beginning of the line being written (for the sake
of some analogiesy) towards the right hand, and the symbol of the end towards the left. Thus
BA will denote the line to B from A; and is not to be confounded with the symbol AB, which
denotes a line having indeed the same extremities, but drawn in the opposite direction. A
biliteral symbol, of which the two component letters denote determined and different points,
will thus denote a ®nite straight line, having a determined length, direction, and situation in
space. But a biliteral symbol of the particular form AA may be said to be a null line, regarded
as the limit to which a line tends, when its extremities tend to coincide: the conception or at
least the name and symbol of such a line being required for symbolic generality. All lines BA
which are not null, may be called by contrast actual; and the two lines AB and BA may be said
to be the opposites of each other. It will then follow that a null line is its own opposite, but that
the opposites of two actual lines are always to be distinguished from each other.

On the Mark �.

2. An equation such as

B � A, (1)

between two uniliteral symbols, may be interpreted as denoting that A and B are two names for
one common point ; or that a point B, determined by one geometrical process, coincides with a
point A determined by another process. When a formula of the kind (1) holds good, in any
calculation, it is allowed to substitute, in any other part of that calculation, either of the two

� [John Warren (1796±1852) A treatise on the geometrical representation of the square roots of negative
quantities, Cambridge: 1828.]
y The writer regards the line to B from A as being in some sense an interpretation or construction of

the symbol Bÿ A; and the evident possibility of reaching the point B, by going along that line from the
point A, may, as he thinks, be symbolized by the formula Bÿ A � A � B.
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equated symbols for the other; and every other equation between two symbols of one
common class must be interpreted so as to allow a similar substitution. We shall not violate
this principle of symbolical language by interpreting, as we shall interpret, an equation such
as

DC � BA, (2)

between two biliteral symbols, as denoting that the two lines,� of which the symbols are
equated, have equal lengths and similar directions, though they may have different situations in
space: for if we call such lines symbolically equal, it will be allowed, in this sense of equality,
which has indeed been already proposed by Mr. Warren, Dr. Peacock, and probably by some
of the foreign writers referred to in Dr. Peacock's Report, as well as in that narrower sense
which relates to magnitudes only, and for lines in space as well as for those which are in one
plane, to assert that lines equal to the same line are equal to each other. (Compare Euclid, XI.
9.) It will also be true, that

D � B, if DA � BA, (3)

or in words, that the ends of two symbolically equal lines coincide if the beginnings do so; a
consequence which it is very desirable and almost necessary that we should be able to draw,
for the purposes of symbolical geometry, but which would not have followed, if an equation
of the form (2) had been interpreted so as to denote only equality of lengths, or only similarity
of directions. The opposites of equal lines are equal in the sense above explained; therefore
the equation (2) gives also this inverse equation,

CD � AB: (4)

Lines joining the similar extremities of symbolically equal lines are themselves symbolically
equal (Euc. I. 33); therefore the equation (2) gives also this alternate equation,

DB � CA: (5)

The identity BA � BA gives, as its alternate equation,

BB � AA, (6)

which symbolic result may be expressed in words by saying that any two null lines are to be
regarded as equal to each other. Lines equal to opposite lines may be said to be themselves
opposite lines.

� The writer regards the relation between two lines, mentioned in the text, as a sort of interpretation
of the following symbolic equation, Dÿ C � Bÿ A; which may also denote that the point D is ordinally
related (in space) to the point C as B is to A, and may in that view be also expressed by writing the ordinal
analogy, D::C : : B::A; which admits of inversion and alternation. The same relation between four points
may, as he thinks, be thus symbolically expressed, D � Bÿ A � C. But by writing it as an equation
between lines, he deviates less from received notation.
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On the Mark �.

3. The equation�

CB� BA � CA (7)

is true in the most elementary sense of the notation, when B is any point upon the ®nite
straight line CA; but we propose now to remove this restriction for the purposes of symbolical
geometry, and to regard the formula (7) as being universally valid, by de®nition, whatever three
points of space may be denoted by the three letters ABC. The equation (7) will then express nothing
about those points, but will serve to ®x the interpretation of the mark � when inserted between any two
symbols of lines; for if we meet any symbol formed by such insertion, suppose the symbol
HG� FE, we have only to draw, or conceive drawn, from any assumed point A, a line
BA � FE, and from the end B of the line so drawn, a new line CB � HG; and then the
proposed symbol HG� FE will be interpreted by (7) as denoting the line CA, or at least a line
equal thereto. In like manner, by de®ning that

DC� CB� BA � DA, (8)

we shall be able to interpret any symbol of the form

KI�HG� FE,

as denoting a determined (actual or null) line; at least if we now regard a line as determined
when it is equal to a determined line: and similarly for any number of biliteral symbols,
connected by marks � interposed. Calling this act of connection of symbols, the operation of
addition; the added symbols, summands; and the resulting symbol, a sum; we may therefore
now say, that the sum of any number of symbols of given lines is itself a symbol of a
determined line; and that this symbolic sum of lines represents the total (or ®nal) effect of all
those successive rectilinear motions, or translations of a point in space, which are represented
by the several summands. This interpretation of a symbolic sum of lines agrees with the conclu-
sions already published by the authors above alluded to; though the modes of symbolically
obtaining and expressing it, here given, may possibly be found to be new. The same
interpretation satisi®es, as it ought to do, the condition that the sums of equals shall be equal
(compare the demonstration of Euclid, XI. 10); and also this other condition, almost as much
required for the advantageous employment of symbolical language, that those lines which,
when added to equal lines, give equal sums, shall be themselves equal lines: or that

FE � DC, if FE� BA � DC� BA: (9)

It shows too that the sum of two opposite lines, and generally that the sum of all the
successive sides of any closed polygon, or of lines respectively equal to those sides, is a null
line: thus

� On the plan mentioned in former notes, this equation would be written as follows:

(Cÿ B)� (Bÿ A) � Cÿ A:

It might also be thus expressed: the ordinal relation of the point C to the point A is compounded of
the relations of C to B and of B to A.
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AA � AB� BA � AC� CB� BA � &c: (10)

The symbolic sum of any two lines is found to be independent of their order, in virtue of the
same interpretation; so that the equation

FE�HG � HG� FE, (11)

is true, in the present system, not as an independent de®nition, but rather as one of the modes
of symbolically expressing that elementary theorem of geometry, (Euclid, I. 33), on which was founded
the rule for deducing, from any equation (2) between lines, the alternate equation (5). For if
we assume, as we may, that three points A, B, C, have been so chosen as to satisfy the
equations FE � BA, HG � CA; and that a fourth point D is chosen so as to satisfy the
equation DC � BA; the same points will then, by the theorem just referred to, satisfy also the
equation DB � CA; and the truth of the formula (11) will be proved, by observing that each
of the two symbols which are equated in that formula is equal to the symbol DA, in virtue of
the de®nition (7) of �, without any new de®nition: since

FE�HG � DC� CA � DA � DB� BA � HG� FE:

A like result is easily shown to hold good, for any number of summands; thus

FE�HG� KI � KI�HG� FE; (12)

since the ®rst member of this last equation may be put successively under the forms

(FE �HG)� KI, KI� (FE�HG), KI� (HG� FE),

and ®nally under the form of the second member; the stages of this successive transformation
of symbols admitting easily of geometrical interpretations: and similarly in the cases. Addition
of lines in space is therefore generally (as Mr. Warren has shown it to be for lines in a single
plane) a commutative operation; in the sense that the summands may interchange their places,
without the sum being changed. It is also an associative operation, in the sense that any
number of successive summands may be associated into one group, and collected into one
partial sum (denoted by enclosing these summands in parentheses); and that then this partial
sum may be added, as a single summand, to the rest: thus

(KI�HG)� FE � KI� (HG� FE) � KI�HG� FE: (13)

On the Mark ÿ.

4. The equation�
CA ÿ BA � CB (14)

is true, in the most elementary sense of the notation, when B is on CA; but we may remove
this restriction by a de®nitional extension of the formula (14), for the purposes of symbolical
geometry, as has been done in the foregoing article with respect to the formula (7); and then
the equation (14), so extended, will express nothing about the points A, B, C, but will serve to ®x

� On the plan mentioned in some former notes, this equation would take the form

(Cÿ A)ÿ (Bÿ A) � Cÿ B:
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the interpretation of any symbol, such as KIÿ FE, formed by inserting the mark ± between the symbols
of any two lines. This general meaning of the effect of the mark ±, so inserted, is consistent
with the particular interpretation which suggested the formula (14); it is also consistent with
the usual symbolical opposition between the effects of � and ÿ; since the comparison of (14)
with (7) gives the equations

(CA ÿ BA)� BA � CA, (15)

and

(CB� BA)ÿ BA � CB, (16)

either of which two equations, if regarded as a general formula, and combined with the
formula (7), would include, reciprocally, the de®nition (14) of ±, and might be substituted
for it.

Symbolical subtraction of one line from another is thus equivalent to the decomposition of a
given rectilinear motion (CA) into two others, of which one (BA) is given; or to the addition of
the opposite (AB) of the line which was to be subtracted: so that we may write the symbolical
equation

ÿBA � �AB, (17)

because the second member of (14) may be changed by (7) to CA � AB. These conclusions
respecting symbolical subtraction of lines, differ only in their notation, and in the manner of
arriving at them, from the results of the authors already referred to, so far as the present
writer is acquainted with them. In the present notation, when an isolated biliteral symbol is
preceded by � or ÿ, we may still interpret it as denoting a line, if we agree to pre®x to it, for
the purpose of such interpretation, the symbol of a null line; thus we may write

�AB � AA � AB � AB, ÿAB � BBÿ AB � BA; (18)

�AB will, therefore, on this plan, be another symbol for the line AB itself, and ÿAB will be a
symbol for the opposite line BA.

Abridged Symbols for Lines

5. Some of the foregoing formulñ may be presented more concisely, and also in a way more
resembling ordinary Algebra, by using now some new uniliteral symbols, such as the small
roman letters a, b, &c., with or without accents, as symbols of lines, instead of binary
combinations of the roman capitals, in cases where the lines which are compared are not
supposed to have necessarily any common point, and generally when the situations of lines
are disregarded, but not their lengths nor their directions. Thus we shall have, instead of (11)
and (12), (13), (15) and (16), these other formulñ of the present Symbolical Geometry,
which agree in all respect with those used in Symbolical Algebra:

a� b � b� a, a� b� c � c� b� a; (19)

(c� b)� a � c� (b� a) � c� b� a; (20)

(bÿ a)� a � b, (b� a)ÿ a � b; (21)

436 IV. ON SYMBOLICAL GEOMETRY (1846±49)



and because the isolated but affected symbols �a, ÿa, may denote, by (18), the line a itself,
and the opposite of that line, we have also here the usual rule of the signs,

�(�a) � ÿ(ÿa) � �a, �(ÿa) � ÿ(�a) � ÿa: (22)

Introduction of the Marks 3 and �.

6. Continuing to denote lines by letters, the formula

(b� a) 3 a � b, (23)

which is, for the relation between multiplication and division, what the ®rst of the two
formulñ (21) is for the relation between addition and subtraction, will be true, in the most
elementary sense of the multiplication of a length by a number, for the case when the line b
is the sum of several summands, each equal to the line a, and when the number of those
summands is denoted by the quotient b� a. And we shall now, for the purposes of symbolical
generality, extend this formula (23), so as to make it be valid, by de®nition, whatever two lines
may be denoted by a and b. The formula will then express nothing respecting those lines
themselves, which can serve to distinguish them from any other lines in space; but will furnish
a symbolic condition, which we must satisfy by the general interpretation of a geometrical quotient,
and of the operation of multiplying a line by such a quotient.

To make such general interpretation consistent with the particular case where a quotient
becomes a quotity, we are led to write

a� a � 1, (a� a)� a � 2, &c:, (24)

and conversely

1 3 a � a, 2 3 a � a� a, &c:; (25)

and because, when quotients can be thus interpreted as quotities, the four equations

(c� a)� (b� a) � (c� b)� a, (26)

(c� a)ÿ (b� a) � (cÿ b)� a, (27)

(c� a) 3 (a� b) � c� b, (28)

(c� a)� (b� a) � c� b, (29)

are true in the most elementary sense of arithmetical operations on whole numbers, we shall
now de®ne that these four equations are valid, whatever three lines may be denoted by a, b, c;
and thus shall have conditions for the general interpretations of the four operations � ÿ 3 �
performed on geometrical quotients.

We shall in this way be led to interpret a quotient of which the divisor is an actual line, but
the dividend a null one, as being equivalent to the symbol 1ÿ 1, or zero; so that

(aÿ a)� a � 0, 0 3 a � aÿ a: (30)

Negative numbers will present themselves in the consideration of such quotients and
products as

(ÿa)� a � 0ÿ 1 � ÿ1, (ÿ1) 3 a � ÿa, &c:; (31)

437IV. ON SYMBOLICAL GEOMETRY (1846±49)



fractional numbers in such formulñ as

a� (a� a) � 1� 2 � 1
2,

1
2 3 (a� a) � a, &c:; (32)

and incommensurable numbers, by the conception of the connected limits of quotients and
products, and by the formula, which symbolical language leads us to assume,

lim
n

m

� �
3 a � lim

n

m
3 a

� �
: (33)

If then we give the name of SCALARS to all numbers of the kind called usually real, because
they are all contained on the one scale of progression of number from negative to positive
in®nity; and if we agree, for the present, to denote such numbers generally by small italic
letters, a, b, c, &c.; and to insert the mark k between the symbols of two lines when we wish to
express that the directions of those lines are either exactly similar or exactly opposite to each
other, in each of which two cases the lines may be said to be symbolically parallel; we shall have
generally two equations of the forms

b� a � a, a 3 a � b, when b k a: (34)

That is to say, the quotient of two parallel lines is generally a scalar number; and, conversely, to
multiply a given line (a) by a given scalar (or real) number a, is to determine a new line (b)
parallel to the given line (a), the direction of the one being similar or opposite to that of the
other, according as the number is positive or negative, while the length of the new line bears
to the length of the given line a ratio which is marked by the same given number. So that if
A0 A1 Aa denote any three points on one common axis of rectilinear progression, which are
related to each other, upon that axis, as to their order and their intervals, in the same manner
as the three scalar numbers 0, 1, a, regarded as ordinals, are related to each other on the
scale of numerical progression from ÿ1 to �1, then the equations

AaA0 � A1A0 � a, a 3 A1A0 � AaA0, (35)

will be true by the foregoing interpretations.
It is easy to see that this mode of interpreting a quotient of parallel lines renders the

formulñ (26) (27) (28) (29) consistent with the received rules for performing the operations
� ÿ 3 � on what are called real numbers, whether they be positive or negative, and whether
commensurable or incommensurable; or rather reproduces those rules as consequences of
those formulñ.

On Vectors, and Geometrical Quotients in General

7. The other chief relation of directions of lines in space, besides parallelism, is perpendicu-
larity; which it is not unusual to denote by writing the mark ? between the symbols of two
perpendicular lines. And the other chief class of geometrical quotients which it is important
to study, as preparatory to a general theory of such quotients, is the class in which the
dividend is a line perpendicular to the divisor. A quotient of this latter class we shall call a
VECTOR, to mark its connection (which is closer than that of a scalar) with the conception of
space, and for other reasons which will afterwards appear: and if we agree to denote, for the
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present, such vector quotients (of perpendicular lines) by small Greek letters, in contrast to
the scalar class of quotients (of parallel lines) which we have proposed to denote by small
italic letters, we shall then have generally two equations of the forms

c� a � a, c � a 3 a, if c? a: (36)

Any line e may be put under the form c� b, in which b k a, and c? a; a general geometrical
quotient may therefore, by (26) (34) (36), be considered as the symbolic sum of a scalar and a
vector, zero being regarded as a common limit of quotients of these two classes; and
consequently, if we adopt the notation just now mentioned, we have generally an equation of
the form

e� a � á� a: (37)

This separation of the scalar and vector parts of a general geometrical quotient corresponds (as
we see) to the decomposition, by two separate projections, of the dividend line into two other
lines of which it is the symbolic sum, and of which one is parallel to the divisor line, while the
other is perpendicular thereto. To be able to mark on some occasions more distinctly, in
writing, than by the use of two different alphabets, the conception of such separation, we
shall here introduce two new symbols of operation, namely the abridged words Scal. and
Vect., which, where no confusion seems likely to arise from such farther abridgment, we shall
also denote more shortly still by the letters S and V, pre®xing them to the symbol of a general
geometrical quotient in order to form separate symbols of its scalar and vector parts: so that
we shall now write generally, for any two lines a and e,

e� a � Vect:(e� a)� Scal:(e� a); (38)

or more concisely,

e� a � V(e� a)� S(e� a); (39)

in which expression the order of the two summands may be changed, in virtue of the
de®nition (26) of addition of geometrical quotients, because the order of the two partial
dividends may be changed without preventing the dividend line e from being still their
symbolic sum. A scalar cannot become equal to a vector, except by each becoming zero; for if
the divisor of the vector quotient be multiplied separately by the scalar and the vector, the
products of these two multiplications will be (by what has been already shown) respectively
lines parallel and perpendicular to that divisor, and therefore not symbolically equal to each
other, except it be at the limit where both become null lines, and are on that account
regarded as equal. A scalar quotient b� a � a, (b k a), has been seen to denote the relative
length and relative direction (as similar or opposite) of two parallel lines a, b: and in like
manner a vector quotient c� a � a, (c? a), may be regarded as denoting the relative length
and relative direction (depending on plane and hand) of two perpendicular lines a, c; or as
indicating at once in what ratio the length of one line a must be altered (if at all) in order to
become equal to the length of another line c, and also round what axis, perpendicular to both
these two rectangular lines, the direction of the divisor line a must be caused or conceived to
turn, right-handedly, through a right angle, in order to attain the original direction of the
dividend line c. A line drawn in the direction of this axis of (what is here regarded as) positive
rotation, and having its length in the same ratio to some assumed unit of length as the length
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of the dividend to that of the divisor, may be called the INDEX of the vector. We shall thus be
led to substitute, for any equation between two vector quotients, an equation between two
lines, namely between their indices; for if we de®ne that two vector quotients, such as c� a
and c9� a9 if c? a and c9? a9, are equal when they have equal indices, we shall satisfy all
conditions of symbolical equality, of the kinds already considered in connection with other
de®nitions; we shall also be able to say that in every case of two such equal quotients, the two
dividend lines (c and c9) bear to their own divisor lines (a and a9), respectively, one common
ratio of lengths, and one common relation of directions. We shall thus also, by (23), be able
to interpret the multiplication of any given line a9 by any given vector c� a, provided that the one is
perpendicular to the index of the other, as the operation of deducing from a9 another line c9, by
altering (generally) its length in a given ratio, and by turning (always) its direction round a
given axis of rotation, namely round the index of the vector, right-handedly, through a right
angle. And we can now interpret an equation between two general geometrical quotients, such as

e9� a9 � e� a, (40)

as being equivalent to a system of two separate equations, one between the scalar and another
between the vector parts, namely the two following:

S(e9� a9) � S(e� a); V(e9� a9) � V(e� a); (41)

of which each separately is to be interpreted on the principles already laid down; and which
are easily seen (by considerations of similar triangles) to imply, when taken jointly, that the
length of e9 is to that of a9 in the same ratio as the length of e to that of a; and also that the
same rotation, round the index of either of the two equal vectors, which would cause the
direction of a to attain the original direction of e, would also bring the direction of a9 into
that originally occupied by e9. At the same time we see how to interpret the operation of
multiplying any given line a9 by any given geometrical quotient e� a of two other lines,
whenever the three given lines a, e, a9, are parallel to one common plane; namely as being the
complex operation of altering (generally) a given length in a given ratio, and of turning a
given line round a given axis, through a given amount of right-handed rotation, in order to
obtain a certain new line e9, which may be thus denoted, in conformity with the de®nition
(23),

e9 � (e� a) 3 a9: (42)

The relation between the four lines a, e, a9, e9, may also be called a symbolic analogy, and may
be thus denoted:

e9 : a9 : : e : a; (43)

a9 and e being the means, and e9 and a the extremes of the analogy. An analogy or equation of
this sort admits (as it is easy to prove) of inversion and alternation; thus (43) or (42) gives,
inversely,

a9 : e9 : : a : e, a9� e9 � a� e, (44)

and alternately,

e9 : e : : a9 : a, e9� e � a9� a: (45)

These results respecting analogies between co-planar lines, that is, between lines which are in
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or parallel to one common plane, agree with, and were suggested by, the results of Mr.
Warren. But it will be necessary to introduce other principles, or at least to pursue farther the
track already entered on, before we can arrive at an interpretation of a fourth proportional to
three lines which are not parallel to any common plane: or can interpret the multiplication of a line
by a quotient of two others, when it is not perpendicular to what has been lately called the
index of the vector part of that quotient.

Determinateness of the First Four Operations on Geometrical Fractions (or Quotients)

8. Meanwhile the principles and de®nitions which have been already laid down, are
suf®cient to conduct to clear and determinate interpretations of all operations of combining
geometrical quotients among themselves, by any number of additions, subtractions, multi-
plications, and divisions: each quotient of the kind here mentioned being regarded, by what
has been already shown, as the mark of a certain complex relation between two straight lines in space,
depending not only on their relative lengths, but also on their relative directions. If we denote

now by a symbol of fractional form, such as
b

a
, the quotient thus obtained by dividing one line

b by another line a, when directions as well as lengths are attended to, the de®nitional
equations (26), (27), (28), (29), will take these somewhat shorter forms:�

c

a
� b

a
� c� b

a
;

c

a
ÿ b

a
� cÿ b

a
; (46)

c

a
3

a

b
� c

b
;

c

a
� b

a
� c

b
; (47)

� On the principles alluded to in former notes, the formulñ for the addition, subtraction, multi-
plication, and division, of any two geometrical fractions, might be thus written:

Dÿ C

Bÿ A
� Cÿ A

Bÿ A
� Dÿ A

Bÿ A
,

Dÿ A

Bÿ A
ÿ Cÿ A

Bÿ A
� Dÿ C

Bÿ A
,

Dÿ A

Cÿ A
3

Cÿ A

Bÿ A
� Dÿ A

Bÿ A
,

Dÿ A

Bÿ A
� Cÿ A

Bÿ A
� Dÿ A

Cÿ A
;

A, B, C, D being symbols of any four points of space, and Bÿ A being a symbol of the straight line drawn
to B from A. If we denote this line by the biliteral symbol BA, we obtain the following somewhat shorter
forms, which do not however all agree so closely with the forms of ordinary algebra:

DC

BA
� CA

BA
� DA

BA
,

DA

BA
ÿ CA

BA
� DC

BA
,

DA

CA
3

CA

BA
� DA

BA
,

DA

BA
� CA

BA
� DA

CA
:
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which agree in all respects with the corresponding formulñ of ordinary algebra, and serve to
®x, in the present system, the meanings of the operations �, ÿ, 3, �, on what may be called
geometrical fractions. These FRACTIONS being only other forms for what we have called
geometrical quotients in earlier articles of this paper, we may now write the identity,

b

a
� b� a: (48)

For the same reason, an equation between any two such fractions, for example the following,

f

e
� b

a
, (49)

is to be understood as signifying, 1st, that the length of the one numerator line f is to the length
of its own denominator line e in the same ratio as the length of the other numerator line b to the
length of the other denominator line a; 2nd, that these four lines are co-planar, that is to say,
in or parallel to one common plane; and 3rd, that the same amount and direction of rotation,
round an axis perpendicular to this common plane, which would bring the line a into the
direction originally occupied by b, would also bring the line e into the original direction of f.
The same complex relation between the same four lines may also (by what has been already
seen) be expressed by the inverse equation

e

f
� a

b
, (50)

or by the alternate form

f

b
� e

a
: (51)

Two fractions which are, in this sense, equal to the same third fraction, are also equal to each
other; and the value of such a fraction is not altered by altering the lengths of its numerator
and denominator in any common ratio; nor by causing both to run together through any
common amount of rotation, in a common direction, round an axis perpendicular to both;
nor by transporting either or both, without rotation, to any other positions in space. When
the lengths and directions of any three co-planar lines, a, b, e, are given, it is always possible
to determine the length and direction of a fourth line f, which shall be co-planar with them,
and shall satisfy an equation between fractions, of the form (49). It is therefore possible to
reduce any two geometrical fractions to a common denominator ; or to satisfy not only the equation
(49), but also this other equation,

h

g
� c

a
, (52)

by a suitable choice of the three lines a, b, c, when the four lines e, f, g, h, are given; since,
whatever may be the given directions of these four lines, it is always possible to ®nd (or to
conceive as found) a ®fth line a, which shall be at once co-planar with the pair e, f, and also
with the pair g, h. For a similar reason it is always possible to transform two given geometrical
fractions into two others equivalent to them, in such a manner, that the new denominator of
one shall be equal to the new numerator of the other; or to satisfy the two equations
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h

g
� c9

a9
,

f

e
� a9

b9
, (53)

by a suitable choice of the three lines a9, b9, c9, whatever the four given lines e, f, g, h, may be.
Making then for abridgment

c� b� d, cÿ b � d9, (54)

and interpreting a sum or difference of lines as has been done in former articles, we see that
it is always possible to choose eight lines a, b, c, d, a9, b9, c9, d9, so as to satisfy the conditions
(49), (52), (53), (54); and thus, by (46) and (47), to interpret the sum, the difference, the

product, and the quotient of any two given geometrical fractions,
f

e
and

h

g
, as being each equal

to another given fraction of the same sort, as follows:

h

g
� f

e
� d

a
,

h

g
ÿ f

e
� d9

a
, (55)

h

g
3

f

e
� c9

b9
,

h

g
� f

e
� c

b
, (56)

any variations in the new numerators and denominators, which are consistent with the
foregoing conditions, being easily seen to make no changes in the values of the fractions
which result. The intepretations of those four symbolic combinations, which are the ®rst
members of the four equations (55) and (56), are thus entirely ®xed: and we are no longer at
liberty, in the present system, to introduce arbitrarily any new meanings for those symbolic forms,
or to subject them to any new laws of combination among themselves, without examining
whether such meanings or such laws are consistent with the principles and de®nitions which
it has been thought right to establish already, as appearing to be more simple and primitive,
and more intimately connected with the application of symbolical language to geometry, or
at least with the plan on which it is here attempted to make that application, than any of
those other laws or meanings. If, for example, it shall be found that, in virtue of the foregoing
principles, the successive addition of any number of geometrical fractions gives a result which is
independent of their order, this consequence will be, for us, a theorem, and not a de®nition.
And if, on the contrary, the same principles shall lead us to regard the multiplication of
geometrical fractions as being in general a non-commutative operation, or as giving a result
which is not independent of the order of the factors, we shall be obliged to accept this
conclusion also, that we may preserve consistency of system.

Separation of the Scalar and Vector parts of Sums and Differences of Geometrical Fractions

9. To develope the geometrical meaning of the ®rst equation (46), we may conceive each of
the two numerator lines b, c, and also their sum d, to be orthogonally projected, ®rst on the
common denominator line a itself, and secondly on a plane perpendicular to that denomi-
nator. The former projections may be called b1, c1, d1; the latter, b2, c2, d2; and thus we shall
have the nine relations,
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b2 � b1 � b, b1 k a, b2? a,

c2 � c1 � c, c1 k a, c2? a,

d2 � d1 � d, d1 k a, d2? a,

9>>=>>; (57)

together with the three equations

c� b � d, c1 � b1 � d1, c2 � b2 � d2; (58)

of which the two last are deducible from the ®rst, by the geometrical properties of
projections. We have, therefore, by (46),

c

a
� b

a
� d

a
� d2

a
� d1

a
, (59)

d1

a
� c1

a
� b1

a
,

d2

a
� c2

a
� b2

a
: (60)

Since the three projections b1, c1, d1, are parallel to a (in that sense of the word parallel
which does not exclude coincidence), the three quotients in the ®rst equation (60) are what
we have already named scalars; that is, they are what are commonly called real numbers,
positive, negative, or zero: they are also the scalar parts of the three quotients in the ®rst
equation (59), so that we may write

b1

a
� S

b

a
,

c1

a
� S

c

a
,

d1

a
� S

d

a
, (61)

using the letter S here, as in a former article, for the characteristic of the operation of taking
the scalar part of any geometrical quotient, or fraction. (If any confusion should be appre-
hended, on other occasions, from this use of the letter S, and if the abridged word Scal.
should be thought too long, the sign S might be employed.) Eliminating the four symbols b1,
c1, d1, d, between the ®rst equation (59), the ®rst equation (60), and the three equations
(61), we obtain the result

S
c

a
� b

a

� �
� S

c

a
� S

b

a
; (62)

in which, by the foregoing article,
b

a
and

c

a
may represent any two geometrical fractions: so

that we may write generally

S
h

g
� f

e

� �
� S

h

g
� S

f

e
, (63)

and may enunciate in words the same result by saying, that the scalar of the sum of any two
such fractions is equal to the sum of the scalars. In like manner, the three other projections b2,
c2, d2, being each perpendicular to a, the three other partial quotients, which enter into the
second equation (60), are what we have already called vectors in this paper, or more fully they
are the vector parts of the three quotients in the ®rst equation (59); so that we may write

b2

a
� V

b

a
,

c2

a
� V

c

a
,

d2

a
� V

d

a
, (64)
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V being here used, as in a former article, for the characteristic of the operation of taking the
vector part; we have, therefore,

V
c

a
� b

a

� �
� V

c

a
� V

b

a
, (65)

V
h

g
� f

e

� �
� V

h

g
� V

f

e
, (66)

and may assert that the vector of the sum of any two geometrical fractions is equal to the sum of
the vectors. These formulñ (63) and (66) are important in the present system; they are
however, as we see, only symbolical expressions of those very simple geometrical principles
from which they have been derived, through the medium of the equations (58); namely, the
principles that, whether on a line or on a plane, the projection of a sum of lines is equal to the sum
of the projections, if the word sum be suitably interpreted. The analogous interpretation of a
difference of lines, combined with similar considerations, gives in like manner the formulñ

S
h

g
ÿ f

e

� �
� S

h

g
ÿ S

f

e
; (67)

V
h

g
ÿ f

e

� �
� V

h

g
ÿ V

f

e
; (68)

that is to say, the scalar and vector of the difference of any two geometrical fractions are
respectively equal to the differences of the scalars and of the vectors of those fractions; precisely as,
and because, the projection of a difference of two lines, whether on a line or on a plane, is equal
to the difference of the projections.

Addition and Subtraction of Vectors by their Indices

10. We see, then, that in order to combine by addition or subtraction any two geometrical
fractions, it is suf®cient to combine separately their scalar and their vector parts. The former
parts, namely the scalars, are simply numbers, of the kind called commonly real; and are to be
added or subtracted among themselves according to the usual rules of algebra. But for
effecting with convenience the combination of the latter parts among themselves, namely the
vectors, which have been shown in a former article to be of a kind essentially distinct from all
stages of the progression of real number from negative to positive in®nity (and therefore to
be rather extra-positives than either positive or contra-positive numbers), it is necessary to
establish other rules: and it will be found useful for this purpose to employ the consideration
of certain connected lines, namely the indices, of which each is determined by, and in its turn
completely characterises, that vector quotient or fraction to which it corresponds, according
to the construction assigned in the 7th article. If we apply the rules of that construction to
determine the indices of the vector parts of any two fractions and of their sum, we may ®rst,
as in recent articles, reduce the two fractions to a common denominator; and may, for
simplicity, take this denominator line a of a length equal to that assumed unit of length which
is to be employed in the determination of the indices. Then, having projected, as in the last
article, the new numerators b and c, and their sum d, on a plane perpendicular to a, and
having called these projections b2, c2, d2, as before; we may conceive a right-handed rotation
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of each of these three projected lines, through a right angle, round the line a as a common
axis, which shall transport them without altering their lengths or relative directions, and
therefore without affecting their mutual relation as summands and sum, into coincidence
with three other lines b3, c3, d3, such that

d3 � c3 � b3; (69)

and these three new lines will be the three indices required. For a right-handed rotation
through a right angle, round the line b3 as an axis, would bring the line a into the direction
originally occupied by b2; and the length of b2 is to the length of a in the same ratio as the
length of b3 to the assumed unit of length; therefore b3 is, in the sense of the 7th article, the

index of the vector quotient
b2

a
, that is, the index of the vector part of the fraction

b

a
, or

f

e
; and

similarly for the indices of the two other fractions, in the ®rst equation (59). We may
therefore write, as consequences of the construction lately assigned, and of the equations
(49) and (52),

b3 � I
f

e
; c3 � I

h

g
; d3 � I

h

g
� f

e

� �
; (70)

if we agree for the present to pre®x the letter I to the symbol of a geometrical fraction, as the
characteristic of the operation of taking the index of the vector part. Eliminating now the three
symbols b3, c3, d3 between the four equations (69) and (70), we obtain this general formula:

I
h

g
� f

e

� �
� I

h

g
� I

f

e
, (71)

which may be thus enunciated: the index of the vector part of the sum of any two geometrical
fractions is equal to the sum of the indices of the vector parts of the summands. Combining this
result with the formula (63), which expresses that the scalar of the sum is the sum of the
scalars, we see that the complex operation of adding any two geometrical fractions, of which each is
determined by its scalar and by the index of its vector part, may be in general decomposed into
two very simple but essentially distinct operations; namely, ®rst, the operation of adding together
two numbers, positive or negative or null, so as to obtain a third number for their sum,
according to the usual rules of elementary algebra; and second, the operation of adding
together two lines in space, so as to obtain a third line, according to the geometrical rules of
the composition of motions, or by drawing the diagonal of a parallelogram. In like manner
the operation of taking the difference of two fractions may be decomposed into the two
operations of taking separately the difference of two numbers, and the difference of two
lines; for we can easily prove that

I
h

g
ÿ f

e

� �
� I

h

g
ÿ I

f

e
; (72)

or, in words, that the index (of the vector part) of the difference of any two fractions is equal to
the difference of the indices. And because it has been seen that not only for numbers but also for
lines, considered among themselves, any number of summands may be in any manner
grouped or transposed without altering the sum; and that the sum of a scalar and a vector is
equal to the sum of the same vector and the same scalar, combined in a contrary order; it
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follows that the addition of any number of geometrical fractions is an associative and also a
commutative operation: in such a manner that we may now write

h

g
� f

e
� f

e
� h

g
;

k

i
� h

g
� f

e

� �
� k

i
� h

g

� �
� f

e
� f

e
� h

g
� k

i
, &c:, (73)

whatever straight lines in space may be denoted by e, f, g, h, i, k, &c. We may also write,
concisely,

SÓ � ÓS; VÓ � ÓV; IÓ � ÓI; (74)

SÄ � ÄS; VÄ � ÄV; IÄ � ÄI; (75)

using Ó, Ä as the characteristics of sum and difference, while S, V, I are still the signs of scalar,
vector, index.

Separation of the Scalar and Vector Parts of the Product of any Two Geometrical Fractions

11. The de®nitions (46), (47) of addition and multiplication of fractions, namely

c

a
� b

a
� c� b

a
,

c

a
3

a

b
� c

b
,

give obviously, for any 4 straight lines a, b, c, a9, the formula

c

a
� b

a

� �
3

a

a9
� c� b

a9
� c

a
3

a

a9

� �
� b

a
3

a

a9

� �
, (76)

and this other formula of the same kind,

a9

a
3

c

a
� b

a

� �
� a9

a

c� b
3 a
� a9

a
3

c

a

� �
� a9

a
3

b

a

� �
, (77)

may be proved without dif®culty to be a consequence of the same de®nitions; the operation
of multiplying a line, by the quotient of two others with which it is co-planar, being
interpreted by the de®nition (23), so as to give, in the present notation,

e

a
3 a � e: (78)

In fact, if we assume, as we may, seven new lines, db9c9d9b 0c 0d 0, so as to satisfy the seven
conditions

c� b � d,
b

a
� a

b9
,

c

a
� a

c9
,

d

a
� a

d9
,

b 0

a9
� a9

b9
,

c 0

a9
� a9

c9
,

d 0

a9
� a9

d9
,

9>>=>>; (79)

we shall have the ®rst member of the formula (77) equal to
a9

a
3

a

d9
� a9

d9
� the second

member of that formula; it will therefore be equal to
d0

a9
, and consequently will be shown to

be � c 0

a9
� b 0

a9
� a9

c9
� a9

b9
� the third member of that formula, if we can show that the

conditions (79) give the relation
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d 0 � c 0� b 0: (80)

Now those conditions show that the line a is common to the planes of b, b9 and c, c9, and
that it bisects the angle between b and b9, and also the angle between c and c9; therefore the
mutual inclination of the lines b9 and c9 is equal to the mutual inclination of b and c; while
the lengths of the two former lines are, by the same conditions, inversely proportional to
those of the two latter. And on pursuing this geometrical reasoning, in combination with the
de®nitional meanings of the symbolic equations (79), it appears easily that the mutual
inclinations of the lines b 0, c 0, d 0, are equal to those of b9, c9, d9, and therefore to those of b,
c, d; while the lengths of b 0, c 0, d 0 are inversely proportional to those of b9, c9, d9, and
therefore directly proportional to the lengths of b, c, d: since then the line d is the symbolic
sum of b and c, or the diagonal of a parallelogram described with those two lines as adjacent
sides, it follows that the line d 0 is similarly related to b 0 and c 0, or that the relation (80) holds
good. The formula (77) is therefore shown to be true: and although we have not yet proved
that the multiplication of two geometrical fractions is always a distributive operation, we see at
least that either factor may be distributed into two partial factors, and that the sum of the two
partial products will give the total product, whenever either total factor and the two parts of
the other factor are co-linear; that is, whenever the planes of these three fractions are parallel
to any common line, such as the line a in the formulñ (76) (77): the plane of a geometrical
fraction being one which contains or is parallel to the numerator and denominator thereof.
A scalar fraction, being the quotient of two parallel lines, of which either may be transported
without altering its direction to any other position in space while both may revolve together,
may be regarded as having an entirely indeterminate plane, which may thus be rendered
parallel to any arbitrary line; we shall therefore always satisfy the condition of co-linearity, by
distributing either or both of two factors into their scalar and vector parts, and may
consequently write,

h

g
3

f

e
� V

h

g
3

f

e

� �
� S

h

g
3

f

e

� �
� h

g
3 V

f

e

� �
� h

g
3 S

f

e

� �
� V

h

g
3 V

f

e

� �
� V

h

g
3 S

f

e

� �
� S

h

g
3 V

f

e

� �
� S

h

g
3 S

f

e

� �
; (81)

or more concisely,

(â� b)(á� a) � âá� âa � bá� ba, (82)

if we denote, as in a former article, vectors by greek and scalars by italic letters, and omit the
mark of multiplication between any two successive letters of these two kinds, or between sums
of such letters, when those sums are enclosed in parentheses. But the multiplication of scalars
is effected, as we have seen, by the ordinary rules of algebra; and to multiply a vector by a
scalar, or a scalar by a vector, is easily shown, by the de®nitions already laid down, to be
equivalent to multiplying by the scalar, on the plan of the sixth article, either the index or the
numerator of the vector, without altering the denominator of that vector: thus, in the second
member of (82), the term ba is a known scalar, and the terms bá, âa are known vectors, if the
partial factors a, b, á, â be known; in order therefore to apply the equation (82), which in its

448 IV. ON SYMBOLICAL GEOMETRY (1846±49)



form agrees with ordinary algebra, to any question of multiplication of any two geometrical
fractions, it is suf®cient to know how to interpret generally the remaining term âá, or the
product of one vector by another. For this purpose we may always conceive the index Iâ of
the vector â to be the sum of two other indices, which shall be respectively parallel and
perpendicular to the index Iá of the other vector á, as follows:

Iâ9 k Iá, Iâ 0? Iá, Iâ 0� Iâ9 � Iâ; (83)

and then the vector â itself will be, by the last article, the sum of the two new vectors â9 and
â 0, and the planes of these two new vector fractions will be respectively parallel and
perpendicular to the plane of the vector reaction á; consequently, the three fractions â9, â 0,
á will be co-linear, and we shall have, by the principle (76),

âá � (â 0� â9)á � â 0á� â9á: (84)

The problem of the multiplication of any two vectors is thus decomposed into the two
simpler problems, of multiplying ®rst two parallel, and secondly two rectangular, vectors
together. If then we merely wish to separate the scalar and the vector parts, it is suf®cient to
observe that if, in the general formula (47), for the multiplication of any two fractions, we
suppose the factors to be parallel vectors, then the line a is perpendicular to both b and c,
and is also co-planar with them, so that they are necessarily parallel to each other, and the

product
c

b
is a scalar; but if, in the same general formula, we suppose the factors to be

rectangular vectors, then the three lines a, b, c are themselves mutually rectangular, and the
product of the fractions is a vector. Thus, in the formula (84), the partial product â9á is a
scalar, but the other partial product â 0á is a vector: and we may write

S:âá � â9á; V:âá � â 0á: (85)

We may therefore, more generally, under the conditions (83), decompose the formula of
multiplication (82) into the two following equations:

S:(â � b)(á� a) � â9á� ba;

V:(â� b)(á� a) � â 0á� âa � ba

)
(86)

Or we may write, for abridgment,

c � â9á� ba; ã � â 0á� âa � ba; (87)

and then we shall have this other equation of multiplication,

ã� c � (â� b)(á� a): (88)

And thus the general separation of the scalar and vector parts of the product of any two
geometrical fractions may be effected. But it seems proper to examine more closely into the
separate meanings of the two partial products of vectors, denoted here by the two terms â9á
and â 0á; which will be done in the two following articles.

Products of Two Parallel Vectors; Geometrical Representations of the Square Roots of Negative Scalars

12. It was shown, in the last article, that the product of any two parallel vectors, such as á
and â9, that is, the product of any two vectors of which the planes or the indices are parallel,
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is equal to a scalar. By pursuing the reasoning of that article, it is easy to show, farther, that
this scalar product of two parallel vectors is equal to the product of the numbers which express the
lengths of the two parallel indices; this numerical product being taken with a negative or with
a positive sign, according as these indices are similar or opposite in direction. In fact, in the

general formula
c

a
3

a

b
� c

b
, we have now b? a, c kb; the length of c is to the length of b, in a

ratio compounded of the ratio of the length of c to that of a, and of the ratio of the length of
a to that of b; and the direction of c is opposite or similar to that of b, according as the two
quadrantal rotations in one common plane, from b to a, and from a to c, are performed
right-handedly round the same index, or round opposite indices.

We know then perfectly how to interpret the product of any two parallel vectors; and, as a
case of such interpretation, if we agree to say that the product of any two equal fractions is
the square of either, and to write

b

a
3

b

a
� b

a

� �2

, (89)

whatever two lines may be denoted by a and b, we see that, in the present system, the square of
a vector is always a negative scalar, namely the negative of the square of the number which
denotes the length of the index of the vector; in such a manner that, for any vector á, we
shall have the equation

á2 � ÿá2, (90)

if we agree to denote by the symbol á that positive or absolute number which expresses the
length of the index Iá. We have then, reciprocally,

a2 � ÿá2; (91)

and may therefore write

á � p(ÿá2), (92)

ÿá2 being here a positive number (because á2 is negative), and
p

(ÿá2) being its positive or
absolute square root, which is an entirely determined (and real) number, when the vector á, or
even when the length of its index, is determined. But although we might be led to write, in
like manner, from (90), the equation

á � p(ÿá2), (93)

yet the same principles prove that this expression, which may denote generally any square root
of a negative number, by a suitable choice of the positive number á, is equal to a vector á, of
which the index Iá has indeed a determined length, but has an entirely undetermined direction;
the symbol in the second member of the equation (93) may therefore receive (in the present
system) in®nitely many different geometrical representations, or constructions, though they
have all one common character: and it will be a little more consistent with the analogies of
ordinary algebra to write the equation under the form

á � (ÿá2)
1
2, (94)

using a fractional exponent which suggests a certain degree of indeterminateness, rather
than a radical sign which it is often convenient to restrict to one determined value. Thus, for
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example, the symbol (ÿ1)
1
2, or the square root of negative unity, will, in the present system,

denote, or be geometrically constructed by, any vector of which the index is equal to the unit of
length; that is, any geometrical fraction of which the numerator and the denominator are lines
equal to each other in length, but perpendicular to each other in direction. And we see that
the geometrical principle, on which this conclusion ultimately depends, is simply this: that
two successive and similar quadrantal rotations, in any arbitrary plane, reverse the direction of any
straight line in that plane. Mr. Warren, con®ning himself to the consideration of lines in one
®xed plane, has been led to attribute to his geometrical representations of the square roots of
negative numbers, one ®xed direction, or rather axis, perpendicular to that other axis on which
he represents square roots of positive numbers. And other authors, both before and since the
publication of Mr. Warren's work,� seem to have been in like manner disposed to represent
positive or negative numbers by lines in some one direction, or in the direction opposite, but
symbols of the form á

p
(ÿ1) by lines perpendicular thereto. Such is at least the impression

on the mind of the present writer, produced perhaps by an insuf®cient acquaintance with the
works of those who have already written on this class of subjects. It will however be attempted
to show, in a future article of this paper, that the geometrical fractions which have been
called vectors, in the present and in former articles, may be symbolically equated to their own
indices; and that thus every straight line having direction in space may properly be looked upon
in the present system as a geometrical representation of a square root of a negative number; while
positive and negative numbers are in the same system regarded indeed as belonging to one
common scale of progression, from ÿ1 to �1, but to a scale which is not to be considered as
having any one direction rather than any other, in tridimensional space.

Products of Two Rectangular Vectors; Non-commutativeness of the Factors, in the General Multiplication
of Two Geometrical Fractions

13. The reasoning by which it was shown, in the 11th article, that the product â 0á of any two
rectangular vectors, á and â 0, is itself a vector, may be continued so as to show that the number
expressing the length of the index of this vector product is the product of the numbers which
express the lengths of the indices of the factors; or that, in a notation similar to one employed
in the last article,

â 0á � â 0á, when Iâ 0? Iá; (95)

and therefore that, by the principle (92), for the same case of rectangular vectors, we have the
formula

pfÿ(â 0á)2g � p(ÿâ 02)
p

(ÿá2): (96)

Also in the general formula of multiplication
c

a
3

a

b
� c

b
, the three lines a, b, c compose here a

rectangular system; and therefore the index of the product is parallel to the line a, and is
consequently perpendicular to the indices of the two factors; I:â 0á is therefore perpendicular to

� Treatise on the Geometrical Representation of the Square Roots of Negative Quantities, by the Rev. John
Warren, Cambridge, 1828. See also Dr. Peacock's Treatises on Algebra [A Treatise on Algebra, Cambridge:
1836; A Treatise on Algebra, 2 Vols, Cambridge: 1842±5], and his Report to the British Association,
containing references to other works.
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both Iâ 0 and Iá; a conclusion which may be extended by (83) and (85) to the multiplication
of any two vectors, so that we may write generally,

I:âá? Iâ; I:âá? Iá: (97)

Again, we are allowed to suppose, in applying the same general formula of multiplication to

the same case of rectangular vectors, that the index Iá of the multiplicand
a

b
is not only

parallel to the line c, but similar (and not opposite) in direction to that line; in such a
manner that the rotation round c from b to a is positive: and then the rotation round b from
a to c is positive, and so is the rotation round a from c to b, and also that round ÿa from b to
c; therefore the index Iâ 0 of the multiplier is similar in direction to �b, and the index I:â 0á
of the product is similar in direction to ÿa; consequently the rotation round the index of the
product, from the index of the multiplier to that of the multiplicand, is positive. And although this last
result has only been proved here for the case of two rectangular vectors, yet it may easily be
shown, by the principles of the 11th article, to extend to the multiplication of two general
geometrical fractions. For, in the notation of that article, ã denoting the vector part of the
product of any two such fractions, we have, by (87),

Iã � I:â 0á� aIâ� bIá; (98)

Iã is therefore the symbolic sum of I:â 0á and of two other lines which are respectively parallel
to the indices of the vector parts of the two factors, and which consequently have their sum
co-planar with those indices, and therefore also co-planar, by (83), with Iâ 0 and Iá;
consequently Iã and I:â 0á both lie at the same side of the plane of Iá and Iâ 0; and therefore
the rotation round Iã, like that round I:â 0á, from Iâ 0 to Iá, and consequently from Iâ to Iá,
is positive. Hence also the rotation round Iâ from Iá to Iã is positive; that is to say, in the
multiplication of two general geometrical fractions, the rotation round the index of the vector part
of the multiplier, from that of the multiplicand to that of the product, is positive; from which may
immediately be deduced a remarkable consequence, already alluded to by anticipation in the
8th article, namelyÐthat the multiplication of two general geometrical fractions is not a commutative
operation, or that the order of the factors is not in general indifferent; since the index of the vector
part of the product lies at one or at the other side of the plane of the indices of the vector
parts of the two factors, according as those factors are taken in one or in the other order. We
have, for example, by the present article, a relation of opposition of signs between the products
of two rectangular vectors, taken in two opposite orders; which relation may be expressed by
the following equation of perpendicularity,

áâ 0 � ÿâ 0á, when Iâ 0? Iá: (99)

But in the case where the indices of the vector parts á and â of two fractional factors are
parallel (which includes the case where either of those indices vanishes, the corresponding
factor becoming then a scalar), the part â 0 of the vector â vanishes, and the latter vector
reduces itself by (83) to its other part â9; so that in this case, by the results of the last article,
the order of the factors is indifferent, and the operation of multiplication is commutative:
and thus we may write, as the equation of parallelism between two vectors,

áâ9 � â9á, when Iâ9 k Iá: (100)

It is easy to infer hence, by (84) and (77), that in the more general case of the multi-
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plication of any two vectors á and â, we may write, instead of (85), the following formulñ for
the separation of the scalar and vector parts of the product:

S:âá � 1
2(âá� áâ) � S:áâ

V:âá � 1
2(âáÿ áâ) � ÿV:áâ

)
(101)

with corresponding formulñ instead of (86), which give

(â� b)(á� a)ÿ (á� a)(â� b) � âáÿ áâ, (102)

the second member of this last equation being a vector different from 0, unless it happen that
the planes (or the indices) of the vectors á and â are parallel to each other. Finally, we may
here observe that in virtue of the principles and de®nitions already laid down, the length of the
index (I:âá) of the vector part of the product of any two vectors bears to the unit of length the same ratio
which the area of the parallelogram under the indices (Iâ and Iá) of the factors bears to the unit of area;
the direction of this index of the product being also (as we have seen) perpendicular to the plane
of the indices of the factors, and therefore to the plane of the parallelogram under them;
and being changed to its own opposite when the order of the factors is inverted, which inversion
of their order may be considered as corresponding to a reversal of the face of the parallelogram:
for all which reasons, there appears to be a propriety in considered this index of the vector
part of a product of any two vectors as a symbolical representation of this parallelogram
under the indices of the factors, and in writing the symbolical equation

I:âá � (Iâ, Iá): (103)

It will be remembered that the indices I(â� á), I(âÿ á), of the sum and difference of the
same two vectors, are symbolically equal to two different diagonals of the same parallelogram,
by former articles of this paper.

On the Distributive Character of the Operation of Multiplication, as Performed Generally on
Geometrical Fractions

14. We are now prepared to extend the formulñ (76), (77), respecting the multiplication of
sums of geometrical fractions; and to show that similar results hold good, even when the
condition of colinearity, assumed in those two formulñ, is no longer supposed to be satis®ed.
That is, the two equations

h

g
� f

e

� �
3

k

i
� h

g
3

k

i

� �
� f

e
3

k

i

� �
, (104)

k

i
3

h

g
� f

e

� �
� k

i
3

h

g

� �
� k

i
3

f

e

� �
, (105)

can both be shown to be true, whatever may be the lengths and directions of the six lines e, f,
g, h, i, k; although, by the general non-commutativeness of geometrical fractions as factors,
which was pointed out in the last article, the expressions contained in these two equations are
not to be confounded with each other.

Making for this purpose
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f

e
� â1 � b1,

h

g
� â2 � b2,

k

i
� á� a,

Iâ91 k Iá, Iâ 01? Iá, Iâ 01 � Iâ91 � Iâ1,

Iâ92 k Iá, Iâ 02? Iá, Iâ 02 � Iâ92 � Iâ2,

â92 � â91 � â9, â 02 � â 01 � â 0, â2 � â1 � â, b2 � b1 � b,

9>>>>>>>=>>>>>>>;
(106)

the conditions (83) will be satis®ed; and if we still assign to ã and c the meanings (87), the
equation (88) will hold good, and ã� c will be an expression for the ®rst member of (104).
Making also, in imitation of (87),

c1 � â91á� b1a, ã1 � â 01a � â1a � b1á,

c2 � â92á� b2a, ã2 � â 02á� â2a � b2á,

)
(107)

the second member of the same equation (104) becomes, by the principles of the 11th
article, (ã2 � c2)� (ã1 � c1); and the equation resolves itself into the two following,

c � c2 � c1, ã � ã2 � ã1; (108)

which are easily seen to reduce themselves to these two,

(â92 � â91)á � â92á� â91á; (â 02 � â 01)á � â 02á� â 01á; (109)

the one being an equation between scalars, and the other between vectors. In like manner
the equation (105) may be shown to depend on the two following equations, less general
than itself, but of the same form,

á(â92 � â91) � áâ92 � áâ91; á(â 02 � â 01) � áâ 02 � áâ 01: (110)

And since, by (101), the three scalar products in the equations (110) are respectively equal,
and the three vector products are respectively opposite (in their signs) to the corresponding
products in the equations (109), it is suf®cient to prove either of these two pairs of equations;
for example, the pair (110). Now the ®rst equation of this pair is true, because the scalars
denoted by the three products áâ91, áâ92, á(â92 � â91), are proportional, both in their
magnitudes and in their signs, to the indices of the three parallel vectors â91, â92, â92 � â91; and
the second equation of the same pair is true, because the indices of the vectors denoted by
the three other products áâ 01, áâ 02, á(â 02 � â 01) are formed from the indices of the three
coplanar vectors â 01, â 02, â 02 � â 01, by causing the three latter indices to revolve together, as one
system, in their common plane, round the index Iá, their lengths being at the same time
changed (if at all) in one common ratio, namely, in that of á to 1. The formulñ (104) (105)
are therefore proved to be true; and the same reasoning shows, that in any multiplication of
two geometrical fractions, either of the factors may be distributed into any number of parts, and
that the sum of the partial products will be equal to the total product: so that we may write,
generally,

Ó
k

i

� �
3 Ó

f

e

� �
� Ó

k

i
3

f

e

� �
: (111)

The multiplication of geometrical fractions is therefore a distributive operation; although it has
been shown to be not, in general, a commutative one.
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On the Associative Property of the Multiplication of Geometrical Fractions

15. Proceeding now, with the help of the distributive property established in the last article,
and of the principle that a product is multiplied by a scalar when any one of its factors is
multiplied thereby, to prove that the multiplication of geometrical fractions is generally an
associative operation, or that the formula

k

i
3

h

g
3

f

e

� �
� k

i
3

h

g

� �
3

f

e
, (112)

holds good for any three fractions (with other formulñ of the same sort for more fractional
factors than three), it will be suf®cient to prove that the formula is true for any three vectors; or
that we may write generally

ã 3 âá � ãâ 3 á, (113)

the vector ã being not here obliged to satisfy the equation (87); we may even content
ourselves with proving that the equation (113) is true in the two following cases, namely ®rst,
when any two of the three vectors are parallel; and secondly, when all three are rectangular to
each other. The ®rst case may be expressed by the three following equations as its typesÐ

â 3 âá � ââ 3 á, (114)

â 3 áâ � âá 3 â, (115)

á 3 ââ � áâ 3 â; (116)

and the second case may be expressed by the equation

áâ 3 âá � (áâ 3 â) 3 á, when â?á; (117)

because, under this last condition, áâ is, by Art. 13, a vector, rectangular to both á and â.
Under the same condition we may, by (99), change áâ to ÿâá; therefore the ®rst member of
the equation (117) may be equated to ÿ(âá)2, and consequently, by (96), to
(ÿâ2) 3 (ÿá2) � â2 3 á2 � â2á 3 á � (á 3 ââ) 3 á, because â2 or ââ is, by Art. 12, a scalar;
thus we may make (117) depend on (116), which again depends on (114), and on the
following equation,

â 3 âá � áâ 3 â: (118)

Equations (118) and (115) may both be proved by observing that, by Art. 13, whatever two
vectors may be denoted by á and â, we have the expressions

âá � S:âá� V:âá,

áâ � S:âáÿ V:âá,

)
(119)

with the relations

â 3 S:âáÿ S:âá 3 â � 0,

â 3 V:âá� V:âá 3 â � 0,

)
(120)

It remains then to prove the equation (114); and it is suf®cient to prove this for the case
where á and â are two rectangular vectors. But, in this case, âá is a vector formed from á by
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causing its index Iá to revolve right-handedly through a right angle round the index Iâ, to
which it is perpendicular, changing at the same time in general the length of this revolving
index from á to â 3 á; and the repetition of this process, directed by the symbol â 3 âá,
conducts to a new vector, of which the index is in direction opposite to the original direction
of Iá, and in length equal to â2 3 á: this new vector may therefore be otherwise denoted by
ÿâ2 3 á, or by â2 3 á, and the equation (114) is true. The equations (113) and (112) are
therefore also true; and since the latter formula may easily be extended to any number of
fractional factors, we are now entitled to conclude what it was at the beginning of the present
article proposed to prove; namely, that the multiplication of geometrical fractions is always an
associative operation: as the addition of fractions, and the addition of lines, have in former
articles been shown to be. In other words, any number of successive fractional factors may be
associated or grouped together by multiplication (without altering their order) into a single
product, and this product substituted as a single factor in their stead; a result which
constitutes a new agreement (the more valuable on account of the absence of identity in
some other important respects), between the rules of operation on ordinary algebra, and those
of the present Symbolical Geometry.

Other forms of the Associative Principle of Multiplication

16. By the principles already established respecting the transformation of geometrical

fractions, any three such fractions,
f

e
,

h

g
,

k

i
, may be so prepared that the numerator of the ®rst

shall be in the plane of the second, and that the numerator of the second shall coincide with
the denominator of the third; we may, therefore, without diminishing the generality of the
theorem expressed by the formula (112), suppose that the line i is equal to h, and that the
fourth proportional to g, h, f, is a new line l; and with this preparation the associative
principle of multiplication, established in the foregoing article, may be put under the
following form, in which the mark of multiplication between two fractional factors is omitted
for the sake of conciseness:

if
h

g
� l

f
, then

k

g

l

e
� k

g

f

e
; (121)

that is to say, the product of any two geometrical fractions will remain unaltered in value, or will still
continue to represent the same third fraction, if the denominator of the multiplier and the
numerator of the multiplicand be changed to any two new lines to which they are proportional, or with
which they form a symbolic analogy, including a relation between directions as well as a
proportion of lengths, of the kind considered in Mr. Warren's work, (and earlier by Argand
and FrancËais,) and in the seventh article of this paper. Reciprocally, by the associative
principle, the former of the two equations (121) is in general a consequence of the latter;
that is, if the product of two geometrical fractions be equal to the product of two other
fractions of the same sort, and if the multipliers have a common numerator, and the
multiplicands a common denominator, then the numerators of the two multiplicands and
the denominators of the two multipliers are the antecedents and consequents of a symbolical
proportion or analogy, of the kind considered in the seventh article: for we may write
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h

g
� h

k

k

g

f

e

� �
e

f
,

h

k

k

h

l

e

� �
e

f
� l

f
;

so that the ®rst equation (121) may be obtained from the second, by suitably grouping or
associating the factors.

Again, the same associative principle shows that

if
c

c9
� b9

b

a9

a
, then

c

b9
� c9

a

a9

b
; (122)

for the ®rst equation (122) may be replaced by the system of the three following equations,

a9

a
� b 0

a 0
,

b9

b
� c 0

b 0
,

c9

c
� a 0

c 0
; (123)

of which the two last give, for the ®rst member of the second equation (122), the expression

c

b9
� c9

a 0

b 0

b
,

which is equal to the second member of the same second equation (122), by the ®rst of the
three equations (123), and by the theorem (121): whenever, therefore, we meet an equation
between one geometrical fraction and the product of two others, we are at liberty to
interchange the denominator of the product and the numerator of the multiplier, provided that we at
the same time interchange the denominators of the two factors; no change being made in the
numerators of the product and the multiplicand. Conversely, this assertion respecting the
liberty to make these interchanges, and the formula (122), to which the assertion corre-
sponds, are modes of expressing the associative principle of multiplication; for by introducing
the equations (123) we ®nd that the theorem (122) conducts to the following relation, or
identity between the two ternary products of three fractions, associated in two different ways, but with
one common order of arrangement,

c9

a 0

a 0

a

a9

b

� �
� c9

a 0

a 0

a

� �
a9

b
; (124)

in which last form, as in (112), the three factors multiplied together may represent any three
geometrical fractions. We may also present the same principle under the form of the
following theoremÐ

if
c9

c

b9

b

a9

a
� 1, then

c9

a

a9

b

b9

c
� 1; (125)

and may derive from it, with the help of (123), the following value of a certain product of six
fractional factors,

a 0

c 0

c

a

b 0

a 0

a

b

c 0

b 0

b

c
� 1: (126)

which must hold good whenever the three lines a, b, c are respectively coplanar with the three
pairs a 0b 0, b 0c 0, c 0a 0. Finally, it may be stated here, as a theorem essentially equivalent to the
associative principle of multiplication, although not expressly involving any product of two or
more fractions, that in the system of the six equations of which those marked (123) are three, and
of which the others are the three following analogous equations,
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a

c9
� a-

c-
,

b

a9
� b-

a-
,

c

b9
� c-

b-
; (127)

any ®ve equations of the system include the sixth.

Geometrical Interpretation of the Associative Principle: Symbolic Equations between Arcs upon a Sphere:
Theorem of the two Spherical Hexagons

17. If we attended only to the lengths of the various lines compared, the associative principle
of multiplication, under all the foregoing forms, would be nothing more than an easy and
known consequence of a few elementary theorems respecting compositions of ratios of
magnitudes. On the other hand it is permitted, in the present symbolical geometry, to assume
at pleasure the situations of straight lines denoted by small roman letters, provided that the
lengths and directions are preserved. The general theorem or property of multiplication,
which has been expressed in various ways in the two foregoing articles, may therefore be
regarded as being essentially a relation, or system of relations, between the directions of certain lines
in space.

In this view of the subject no essential loss of generality (or at least none which cannot
easily be supplied by known and elementary principles) will be sustained by supposing all the
straight lines abc, a9b9c9, a 0b 0c 0, a-b-c-, efghikl, of the two last articles to be radii of one
sphere, setting out from one common origin or centre O, and terminating in points upon one
common spheric surface, which may be denoted respectively by the symbols ABC, A9B9C9,
A 0B 0C 0, A -B-C-, EFGHIKL. In order more conveniently to study and express relations
between points so situated, we may agree to say that two arcs upon one sphere, such as those
from G to H and from F to L, are symbolically equal, when they are equally long and similarly
directed portions of the circumference of one great circle; and may denote this symbolical equality
between arcs, so called for the sake of suggesting that (like the symbolical equality between
straight lines considered in the second article) it involves a relation of identity of directions, as
well as a relation of equality of lengths, by writing any one of the three formulñ,

_ LF � _ HG,

_ FL � _ GH,

_ LH � _ FG,

9>>=>>; (128)

of which the second may be called the inverse, and the third the alternate of the ®rst. Any one
of these three formulñ (128) will thus express the same relation between the directions of four
coplanar radii, namely, the four lines fghl, as that expressed by the ®rst equation (121), or by
its inverse, or its alternate equation; that is, by any one of the three following equations
between geometrical fractions,

l

f
� h

g
,

f

l
� g

h
,

l

h
� f

g
: (129)

The formulñ (128) express also the same relation between the same four directions, as that
which would be expressed in a notation of a former article, by any one of the three following
symbolic analogies between the same four lines,
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l : f : : h : g, f : l : : g : h, l : h : : f : g; (130)

although it must not be forgotten that any one of the six latter formulñ, (129) and (130),
expresses at the same time a proportion between the lengths of four straight lines, not
generally equal to each other, which is not expressed by any one of the three former
symbolical equations (128), between pairs of arcs upon a sphere. In this notation (128), the
last form of the associative principle of multiplication which was assigned in the foregoing
article, so far as it relates to directions only, may be expressed by saying that any one of the six
following symbolical equations between arcs is a consequence of the other ®ve,

_ A9A � _ B 0A 0,

_ B9B � _ C 0B 0,

_ C9C � _ A 0C 0,

9>>=>>; (131)

_ BA9 � _ B-A -,

_ CB9 � _ C-B-,

_ AC9 � _ A -C-:

9>>=>>; (132)

Regarding any six points upon a spheric surface, in any one order of succession, as the six
corners of a spherical hexagon (which may have re-entrant angles, and of which two or more sides
may cross each other without being prolonged), we may speak of the arcs joining successive
corners as the sides; those joining alternate corners, as the diagonals; and those joining opposite
corners, as the diameters of this hexagon: the ®rst side, ®rst diagonal, and ®rst diameter,
respectively, being those three arcs which are drawn from the ®rst corner to the second,
third, and fourth corners of the ®gure. With this phraseology, the form just now obtained for
the result of the two foregoing articles may be expressed as a relation between two spherical
hexagons, AA9BB9CC9, A 0A -B 0B-C0C-, and may be enunciated in words as follows: If ®ve
successive sides of one spherical hexagon be respectively and symbolically equal to ®ve successive diagonals
of another spherical hexagon, the sixth side of the ®rst hexagon will be symbolically equal to the sixth
diagonal of the second hexagon. This theorem of spherical geometry, which may be called, for
the sake of reference, the theorem of the two hexagons, is therefore a consequence, and may be
regarded as an interpretation of the associative principle of multiplication: and conversely, in
all applications to spherical geometry, and generally in all investigations respecting relations
between the directions of straight lines in space, the associative principle of multiplication
may be replaced by the theorem of the two spherical hexagons.

Other Interpretation of the Associative Principle of Multiplication: Theorem of the two Conjugate
Transversals of a Spherical Quadrilateral (which are the Cyclic Arcs of a circumscribed Spherical Conic)

18. The theorem of the two hexagons gives also the following theorem: If upon each of the
four sides of a spherical quadrilateral, or on that side prolonged, a portion be taken
commedial with the side (two arcs being said to be commedial when they have one common
point of bisection); and if four extreme points of the four portions thus obtained be ranged
on one transversal arc of a great circle, in such a manner that the part of this arc comprised
between the ®rst and third sides is commedial with the part comprised between the second
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and fourth: then the four other extremities of the same four portions will be ranged on
another great circle; and the parts of this second or conjugate transversal, which are
intercepted respectively by the same two pairs of opposite sides of the quadrilateral, will be in
like manner commedial with each other.

For let the corners of the quadrilateral be denoted by the letters A, B, C, D, and let the side
from A to B be cut in two points A9 and B 0, while the three other sides are cut in three other
pairs of points, which may be called B9 and C 0, C9 and D 0, and D9 and A 0 respectively. Then,
if the arcs from A9 to C9 and from B9 to D9 be commedial portions of one common great
circle, or of a ®rst transversal arc, the arcs from A9 to B9 and from D9 to C9 will be symbolically
equal arcs, in the sense of the preceding article; and therefore, in the notation of that article,
we may now write the equation

_ B9A9 � _ C9D9: (133)

In like manner the conditions, that the four portions of the sides of the quadrilateral shall be
commedial with the sides themselves, give the four other equations of the same kind,

_ A9A � _ BB 0; _ B9B � _ CC 0;

_ C9C � _ DD 0; _ D9D � AA 0:

)
(134)

Hence, by alternation and inversion, we ®nd that the ®ve successive sides

_ AB 0, _ D9A, _ C9D9, _ CC9, _ C 0C,

of the spherical hexagon B 0AD9C9CC 0 are respectively and symbolically equal to the ®ve
successive diagonals

_ A9B, _ DA 0, _ B9A9, _ D 0D, _ BB9,

of the other hexagon BA 0A9DB9D 0; and therefore, by the theorem of the two hexagons, the
sixth side of the former ®gure must be symbolically equal to the sixth diagonal of the latter;
that is, we may write the symbolical equation,

_ B 0C 0 � _ A 0D 0: (135)

But this expresses a relation equivalent to the following, that the two arcs from A 0 to C 0 and
from B 0 to D 0 are commedial portions of one common great circle, or second transversal arc,
which was the thing to be proved.

Reciprocally, the associative principle of geometrical multiplication, in so far as it relates to
the directions of straight lines in space, may be expressed by the assertion that the symbolical
equation between arcs (135) is a consequence of the ®ve other equations of the same kind
(133) and (134); this principle of symbolical geometry may therefore be so interpreted as to
coincide with the foregoing theorem of the two conjugate transversals of a spherical quadrilateral,
instead of the theorem of the two spherical hexagons. It is easy to see that to a given
quadrilateral correspond in®nitely many such pairs of conjugate transversal arcs; and those
readers who are familiar with the theory of spherical conics� will recognise in these conjugate

� The plane of the ®rst side of the quadrilateral, or the plane of OAB, if O denote the centre of the
sphere, is cut by the plane of the ®rst transversal arc in the radius A9O, and by the plane of the second
transversal arc in the radius B 0O. Thus the four plane faces of the tetrahedral angle, of which the four
edges are the four radii from O to the four corners A, B, C, D of the quadrilateral, are cut by any secant
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transversals, A9B9C 0D9, A 0B 0C 0D 0, the two cyclic arcs of such a conic, circumscribed about the
proposed quadrilateral ABCD; but it suits better the plan of this communication on
symbolical geometry to pass at present to another view of the subject.

It may however be noticed here, that in the ®rst of the two hexagons already mentioned,
any two pairs of opposite sides intercept commedial portions on either of the two sides remaining; and
that the associative principle asserts that if a spherical hexagon have ®ve of its sides thus cut
commedially, the sixth side also will be cut in the same way. Or, because the two sets of alternate
diagonals of the second hexagon are sides of two triangles, which have for their corners the
alternate corners of this hexagon, we may in another way eliminate this second hexagon, and
may express the same principle of spherical geometry by saying, that if one set of alternate sides
of a (®rst) spherical hexagon, taken in their order (as ®rst, third, and ®fth), be respectively and
symbolically equal to the three successive sides of a triangle, then the other set of alternate sides of the
same hexagon will be in like manner symbolically equal to the sides of another triangle. This last
interpretation of the associative principle is even more immediately suggested than any other,
by the forms of the equations (131) (132); in the notation of the present article, the two
triangles are BA9B9 and A 0DD 0, which may be considered as having their bases A9B9 and A 0D 0

on the two cyclic arcs above alluded to, while their vertical angles at B and D may be said to be
angles in the same segment (or in alternate segments) of the spherical conic: since, by (134), the
two arcual sides BA9, BB9 of the one angle intersect respectively the two sides DA 0, DD 0 of the
other angle, in the points A and C, which points of intersection, as well as the vertices B and
D, are corners of the quadrilateral inscribed in that spherical conic.

Symbolical Addition of Arcs upon a Sphere; Associative and Non-commutative Properties of such
Addition

19. The foregoing geometrical interpretations of the associative principle or property of the
multiplication of geometrical fractions, may assist us in forming and applying the conception
of the symbolical addition of arcs of great circles upon a sphere, and in establishing and
interpreting an analogous principle or property of such symbolical addition.

As it has been already proposed in the third article of this paper, and also in the works of
other writers on subjects connected with the present, to adopt, for the addition of straight lines
having direction, a rule expressed by the formula

plane parallel to the plane of the ®rst transversal arc in four inde®nite straight lines, which are
respectively parallel to the four other radii A9O, B9O, C9O, D9O of the sphere; and consequently, in
virtue of the equation (133), between the arcs which these last radii include, these four new lines in one
common secant plane have the angular relation required for their being the (prolonged) sides of a
(plane) quadrilateral inscribed in a circle; therefore the four edges of the same tetrahedral angle are cut
by the same secant plane in points which are on the circumference of a circle; therefore they are edges
or sides of a cone which has this circle for its base, and has its vertex at the centre of the sphere. But the
intersection of such a cone with such a concentric sphere is called a spherical conic; a plane through its
vertex, parellel to its circular base, is called a cyclic plane; and the intersection of this latter plane with the
sphere has received the designation of a cyclic arc. Therefore the ®rst transversal arc A9B9C0D9 is (as
asserted in the text) a cyclic arc of a spherical conic circumscribed about the quadrilateral ABCD: and by
a reasoning of exactly the same kind it may be proved, that the second transversal A 0B0C 0D 0 is another
cyclic arc of the same conic, or that its plane is a second cyclic plane, being parallel to the plane of
another (or subcontrary) circular section.
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CB� BA � CA, (7)

in whatever manner the three points ABC may be situated or related to each other; so it
seems natural to adopt now, for the analogous addition of arcs upon a sphere, when directions as
well as lengths are attended to, the corresponding formula,

_ CB�_ BA � _ CA: (136)

Admitting this latter formula as the de®nition of the effect of the sign � when inserted between two
such symbols of arcs, and granting also that it is permitted, in any such formula, to substitute for
any arcual symbol another which is equal thereto, we shall have, by the two ®rst and two last
equations (134) respectively, the two following other equations,

_ B 0C 0 � _ AA9�_ B9C

_ A 0D 0 � _ AD9 �_ C9C

)
(137)

The two sums in these second members will therefore be symbolically equal if we have the
equation

_ A9D9 � _ B9C9, (138)

because (135) has been seen to follow from (133) and (134). But by (136) and (138), we have
the expression

_ B9C � _ A9D9 �_ C9C (139)

consequently the associative principle of multiplication, considered in several recent articles,
when combined with the formula of arcual addition (136), conducts to the following formula,

_ AA9� (_ A9D9�_ C9C) � (_ AA9 �_ A9D9)�_ C9C, (140)

or, as it may be more concisely written,

_ -� (_ 0 �_9) � (_ - �_ 0)�_9: (141)

which in its form agrees with ordinary algebra, and may be said to express the associative
principle of the symbolical addition of arcs; since the three arcs added in (140) or (141) may be
any three arcs of great circles upon one common spheric surface. It is remarkable that so
much geometrical meaning should be contained in so simple and elementary a form; for this
form (141), which is apparently an algebraic truism, and has been here deduced from the
associative principle of multiplication of geometrical fractions, may reciprocally be substi-
tuted for it, and therefore includes in its interpretation, if we adopt the symbolical de®nition
(136) of the effect of � between two symbols of arcs, all those theorems respecting spherical
great circles, triangles, quadrilaterals, hexagons, and conics, which have been deduced or
mentioned as geometrical results of the associative principle in the two foregoing articles.
And this encouragment to adopt the foregoing very simple de®ntion (136) of the meaning of
a symbol such as _ 0 �_9, is the more worthy of attention, because the same de®nition
conducts to a departure from the ordinary rules of symbolical addition in another important point;
since, when combined with the de®nition of symbolical equality between arcs assigned in the 17th
article, it shows that addition of arcs is in general a non-commutative operation. For if we conceive
two arcs of different great circles on one sphere, from A to B and from C to D, to bisect each
other in a point E, we shall then have the two symbolical equations
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_ AE � _ EB, _ CE � _ ED; (142)

and therefore, whereas by (136),

_ AE �_ ED � _ AD, (143)

the result of the addition of the same two arcs, taken in a different order, will be

_ ED �_ AE � _ CB: (144)

And although the two sum-arcs, _ AD and _ CB, thus obtained, connecting two opposite
pairs of extremities of the two commedial arcs _ AB and _ CD, are equally long, yet they are
in general parts of different great circles, and therefore not symbolically equal in the sense of the
17th article. This result, which may at ®rst sight seem a paradox, illustrates and is intimately
connected with the analogous result obtained in the 13th article, respecting the general non-
commutativeness of geometrical multiplication; for we shall ®nd that there exists a species of
logarithmic connexion between arcs situated in different great circles on a sphere and fractional
factors belonging to different planes, which is analogous to, and includes as a limiting case,
the known connexion between ordinary imaginary logarithms and angles in a single plane. It
may be here remarked, that with the same de®nition (136) in any symbolical addition of three
successive arcs, the two partial sum-arcs,

_ 0 �_9 and _ - �_ 0, (145)

are portions of the cyclic arcs of a certain spherical conic, circumscribed about a quadrilateral which has

_9, _ 0, _ -, and _ - �_ 0 �_9, (146)

that is, the three proposed summand-arcs and their total sum-arc, for portions of its four sides, or of
those sides prolonged; as will appear by supposing that the three summands, _9, _ 0, _ -,
coincide respectively with the arcs _ CC9, _ B9C, _ AA9, in the notation of the preceding
article.

Symbolical Expressions for a Cyclic Cone; Relations of such a Cone, and of its Cyclic Planes, to a Product
of two Geometrical Fractions

20. It is evidently a determinate� problem to construct a cyclic cone, that is, a cone with
circular base (called usually a cone of the second degree), when three of the sides (or
generating straight lines) of the cone are given in position, and when the plane of the base is
parallel to a given cyclic plane, which passes through the vertex. To treat this problem, which
may be regarded as a fundamental one in the theory of such cones, by a method derived from
the principles of foregoing articles, let the three given sides be denoted by the letters a, b, c;

� The evident and known determinateness of this problem, corresponding to that of the elementary
problem of circumscribing a circle about a given plane triangle, was tacitly assumed, but might with
advantage have been expressly referred to, in the outline of a demonstration which was given in the note
to Art. (18). The reasoning, towards the end of that note, would then stand thus:± If D be any fourth
point on the determined spherical conic, which passes through the three points A, B, C, and has the arc
A9B9 for a cyclic arc, it is also a fourth point on the determined spherical conic which passes through the
same three points and has the arc B 0C0 for a cyclic arc; therefore the two conics, determined by these
two sets of conditions, coincide one with the other: or, in other words, the arc B 0C 0 is a second cyclic arc
of the same spherical conic, of which the arc A9B9 is a ®rst cyclic arc.
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and let the two known lines, in which the given cyclic plane is cut by the planes of the two
pairs, ab and bc, be denoted by a9 and b9; also let d denote any fourth side of the sought cyclic
cone, and c9, d9 the lines of intersection of the given cyclic plane with the variable planes of
cd and da; then, if suitable lengths be assigned to these straight lines, of which the relative
directions in space are the chief object of the present investigation, the following equality
between two products of certain geometrical fractions will exist, and may be regarded as a
form of the equation of the cone:

c

b9

a9

a
� c

c9

d9

a
: (147)

That is to say, when this equation is satis®ed, the two lines which are the respective
intersections of the planes of the fractional factors of these two equal products, namely the
intersection b of the planes aa9 and b9c, and the intersection d of the planes ad9 and c9c, are
two sides of a cyclic cone, which has for two other sides the lines a and c, and which has for
one cyclic plane the common plane of the four lines a9, b9, c9, and d9; these eight lines, a, b, c,
d, a9, b9, c9, d9, being here supposed to diverge from one common origin, namely the vertex
(or centre) of the cone. This may easily be shown to be a consequence of what has been
already established, respecting the connexion of the cyclic arcs of a spherical conic with the
symbolic sums of certain other arcs. Or, without introducing any sphere, we may observe that,
by (121) and its converse, the equation (147) may be abridged to the following:

a9

b9
� d9

c9
; or,

a9

b9

c9

d9
� 1; (148)

which shows, in virtue of the notation here employed, that besides a certain proportionality
of lengths, not necessary now to be considered, there exists an equality between the angles of
rotation, in one common plane, which would transport the lines b9 and c9, respectively, into
the directions of a9 and d9. But the four lines a9, b9, c9, d9 are respectively parallel to the four
symbolic differences, bÿ a, cÿ b, dÿ c, aÿ d, or to the four straight lines BA, CB, DC, AD,
that is to the successive sides of the plane quadrilateral ABCD, if we now suppose the lines a,
b, c, d to terminate, in the points A, B, C, D, on a transversal plane parallel to the plane of a9

b9 c9 d9. We may therefore present the relation (148) under either of the two forms:

bÿ a

cÿ b

dÿ c

aÿ d
� x; or

BA

CB

DC

AD
� x; (149)

in which x is a positive or negative scalar; or, using the characteristic V of the operation of
taking the vector part, we may write;

V:
bÿ a

cÿ b

dÿ c

aÿ d
� 0; or V:

BA

CB

DC

AD
� 0: (150)

When the scalar x is positive, then, by considering the two rotations above mentioned, we
easily perceive that the two points B and D are at one common side of the straight line AC,
and that this line subtends equal angles at those two points; being in one common plane with
them, as indeed the second equation (149) suf®ciently expresses, since it gives

V
BA

CB
� xV

DA

CD
; (151)
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so that the two triangles ABC, ADC, on the common base AC, have one common perpendi-
cular to their planes, which must therefore coincide with each other. In the contrary case,
namely when x is negative, the equation (151) still shows that the four points are (as above)
coplanar with each other; and while the points B and D are now at opposite sides of the line
AC, the angles which this line subtends at those two points are now not equal but
supplementary. In each case, therefore, the four points ABCD are on the circumference of
one common circle; the four lines a, b, c, d are consequently sides of a cyclic cone; and the
plane of the four other lines a9, b9, c9, d9 is a cyclic plane of that cone.

21. In the foregoing article, the coplanarity of each of the four sets of three lines, a9ab, b9bc,
c9cd, d9da, allows us to suppose that four other lines b 0, c 0, d 0, a 0, in the same four planes
respectively, and all, like the eight former lines, diverging from the vertex of the cone, are
determined so as to satisfy the four equations:

b 0

b
� a

a9
;

c 0

c
� b

b9
;

d 0

d
� c

c9
;

a 0

a
� d

d9
; (152)

and then, since these equations, combined with (148), give, by the associative property of the
multiplication of geometrical fractions, this other equation,

b 0

c 0
� a 0

d 0
, (153)

it follows that these four new lines are in one common plane; and also that the rotations in
that plane, from b 0 and c 0 to a 0 and d 0, respectively, are equal. And this new plane is evidently
a second� cyclic plane of the same cone; for we may now write, instead of (147), the analogous
equation:

c

c 0

b 0

a
� c

d 0

a 0

a
; (154)

the two members being here equal respectively to the reciprocals of the two members of the
®rst equation (148): nor is it necessary to retain the restriction that the lines a, b, c, d should
terminate in one common plane. In like manner, the two members of the equation (147) are
respectively equal to the reciprocals of the two members of the equation (153); a geometrical
(like an arithmetical) fraction being said to be changed to its reciprocal, when the numerator
and denominator are interchanged. We have therefore this theorem :± A cyclic cone is the locus
of the intersection of the planes of two geometrical fractions, of which the product is a constant fraction,
while the numerator of the multiplier and the denominator of the multiplicand are constant lines. These
two lines are two ®xed sides of the cone; the plane of the two other and variable lines, which enter as
denominator and numerator into the expressions of the same two fractional factors, is one
cyclic plane of that cone; and the plane of the constant product is the other cyclic plane. The
investigation in the last article shows also that the condition for four points ABCD being
concircular or homocyclic, that is, for their being corners of a quadrilateral inscribed in a circle,
is expressed by the second equation (150); which may therefore be called the equation of
homocyclicism. The same investigation shows that if we only know that ABCD are four points on

� See the remarks made in the note to the foregoing article.
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one common plane, we may still write an equation of the form (151); which may for that
reason be said to be a formula of coplanarity.

Symbolical Expressions and Investigations of some Properties of Cyclic Cones, with reference to their
Tangent Planes

22. If the side b of the cyclic cone be conceived to approach to the side a, and ultimately to
coincide with it, the ®rst equation (152) will take this limiting form:

b 0

a
� a

a9
; (155)

which expresses the known theorem that the side of contact a bisects the angle between the
traces a9 and b 0 of the tangent plane on the two cyclic planes; bisecting also the vertically
opposite angle between the traces ÿa9 and ÿb 0, but being pependicular to the bisector of
either of the two other angles, which are supplementary to the two already mentioned,
namely the angle between the traces a9 and ÿb 0, and that between ÿa9 and b 0. And if in like
manner we conceive the side d to approach inde®nitely to the side c, the plane of these two
sides will tend to become another tangent plane to the cone; of which plane the traces c9 and
d 0 on the two cyclic planes will satisfy an equation of the same form as that last written,
namely the following, which is the limiting form of the third equation (152):

d0

c
� c

c9
: (156)

At the same time, the two secant planes bc and da will tend to coalesce in one secant plane,
containing the two sides of contact a and c, with which the two other sides b and d tend to
coincide; so that the traces d9 and a 0 of the latter secant plane, on the two cyclic planes, will
ultimately coincide with the traces b9 and c 0 of the former secant plane on the same two cyclic
planes; and the equations (148) (153) become:

a9

b9
� b9

c9
;

b 0

c 0
� c 0

d 0
; (157)

which express that the traces b9 and c 0 of the one remaining secant plane bisect respectively
the angles between the pairs of traces, a9, c9, and b 0, d 0, of the two tangent planes, on the two
cyclic planes. And the two remaining equations (152) concur in giving this other equation:

c 0

c
� a

b9
: (158)

expressing that the rotations in the secant plane from b9 to a and from c to c 0, that is to say
from one trace to one side, and from the other side to the other trace, are equal in amount,
and similarly directed; in such a manner that these two traces b9 and c 0, of the secant plane
on the two cyclic planes, are equally inclined to the straight line which bisects the angle
between these two sides a and c, along which the plane cuts the cone: all which agrees with
the known properties of cones of the second degree.

23. The eight straight lines a, c, a9, b9, c9, b 0, c 0, d 0, being supposed to be equally long, the
®rst of them, which has been seen to coincide in direction with the bisector of the angle
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between the third and sixth, can differ only by a scalar (or real and numerical) coef®cient
from their symbolic sum; because the diagonals of a plane and equilateral quadrilateral ®gure
(or rhombus) bisect the angles of that ®gure. We have therefore, by (155), and by the
supposition of the equal lengths of the eight lines,

a9� b 0 k a; or, a9� b 0 � la, (159)

l being a numerical coef®cient, and the sign of parallelism being designed to include the
case of coincidence.

In like manner, by (156), we have

d 0� c9 k c; or, d 0� c9 � l9c, (160)

l9 being another scalar coef®cient. Again, by (157),

c9� a9 kb9; c9� a9 � mb9;

b 0� d 0 k c 0; b 0� d 0 � m9c 0;

)
(161)

m and m9 being two other scalars. But, by (158),

c 0

c

b9

a
� 1; (162)

therefore

b 0� d0

d 0� c9

c9� a9

a9� b 0
� m9

l9

m

l
� V ÿ10; (163)

this symbol V ÿ10 denoting generally, in the present system, any geometrical fraction of which the
vector part is zero, and therefore any positive or negative number (including zero). (Compare
the de®nition and remarks in the 7th article).

By comparing this equation (163) with the ®rst form (150), we see that the four straight
lines,

ÿb 0, d 0, ÿc9, a9, (164)

which have been supposed to diverge from one common origin, namely the vertex of the
cone, have their terminations on the circumference of one common circle. But these four
lines, by supposition, are also equally long; they must therefore be four sides of a new cone,
which is not only cyclic, as having a circular base, but is also a cone of revolution. The axis of
revolution of this new cone is perpendicular to the plane of the circle in which the four lines
(164) terminate; and this plane is parallel to the plane of the symbolic differences of those
four lines, namely, the following,

d 0� b 0, ÿc9ÿ d 0, a9� c9, ÿb 0ÿ a9; (165)

but these have been seen to be parallel respectively to the four lines c 0, c, b9, a, which are
contained in the secant plane of the former cone; consequently the axis of revolution of the
new cone is perpendicular to this secant plane. We arrive therefore, by this symbolical
process, at a new proof of the known theorem, discovered by M. Chasles,� that two planes,

� See the Translation of Two Geometrical Memoirs by M. Chasles, on the General Properties of Cones
of the Second Degree, and on the Spherical Conics; which Translation was published, with an Appendix,
by the Rev. Charles Graves, in Dublin, 1841.
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touching a cyclic cone along any two sides, intersect the two cyclic planes in four right lines,
which are sides of one common cone of revolution, whose axis of revolution is perpendicular
to the plane of the two sides of contact of the former cone.

24. If we conceive the ®rst and fourth of the sides (164) of the cone of revolution to tend to
coincide with each other, then the fourth of the sides (165) of the plane quadrilateral
inscribed in the circular base of that cone will tend to vanish; consequently the direction of
this last mentioned side ÿb 0ÿ a9, or the opposite direction of a9� b 0, will become at last
tangential to this circular base; and the plane of the two sides previously mentioned, namely
ÿb 0 and a9, which plane has been seen to touch the cyclic cone along the side a, will become
ultimately tangential also to the cone of revolution, touching it along the line a9, which
becomes one trace of the second cyclic plane on the ®rst cyclic plane; the opposite line, ÿa9,
being of course also situated in the intersection of those two planes, so that it may be
regarded as the opposite trace of one cyclic plane on the other. Thus, at the limit here
considered, the equation (155) and the second equation (157) are replaced by the equations

ÿa9

a
� a

a9
,
ÿa9

c 0
� c 0

d 0
; (166)

of which the ®rst expresses that the side a is equally inclined to the two opposite traces, a9

and ÿa9; while the numerical coef®cient l vanishes, and the formula (163) is replaced by this
other,

V :
d 0ÿ a9

d 0� c9

c9� a9

a
� 0: (167)

We see also that the two rectangular but equally long lines a, a9, of which the former is a
side of the cyclic cone, while the latter is part of the line of intersection of the two cyclic
planes of that cone, are such that their plane is a common tangent to both the cyclic cone
and the cone of revolution; which latter cone has also, as sides of the same sheet with a9, the
two other of the four lines (164), namely the lines ÿc9 and d 0. Indeed, the formula (167) is
suf®cient to show, by comparison with the ®rst formula (150), that if the three straight lines
a9, d 0, ÿc9 be still supposed to diverge from one common origin, the circle passing through
the three points in which they terminate is touched, at the termination of the line a9, by a
straight line parallel to the line a; and therefore that the cone of revolution, having these
three equally long lines a9, ÿc9, d 0 for sides of one common sheet, is touched along the side
a9 by the plane which contains the two rectangular lines aa9; so that we may regard this
formula (167) as containing the symbolical solution of the problem, to draw a tangent plane,
along any proposed side, to the cone of revolution which passes through that side and
through two other sides also given, and belonging to the same sheet as the former. Now if
three such sides be connected by three planes, forming three faces of a triangular pyramid,
inscribed in a single sheet of a cone of revolution, and having its vertex at the vertex of that
cone, while the sheet is touched by a fourth plane along one edge of the pyramid, it follows
from the most elementary principles of solid geometry, that the difference between the two
exterior angles which the faces meeting at that edge make with the tangent plane to the cone
is equal to the difference of the two interior angles which the same two faces make with the
third face of the pyramid; the greater exterior angle being the one which is the more remote
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from the greater interior angle; as may be shown by conceiving three planes to pass through
the three edges respectively, and through the axis of revolution of the cone. The same
equality between the differences of these two pairs of angles between planes, will become still
more evident if, without making use of any formula of spherical trigonometry, we consider a
spherical triangle inscribed in a small circle on the sphere, which small circle is touched at
one corner of the triangle by a great circle, while arcs are drawn to that and to the two other
corners from a pole of the small circle; the only principles required being these: that the base
angles of a spherical isosceles triangle are equal, and that the arcs from the pole of a small
circle are all perpendicular to its perimeter. If then we denote by the symbol /(a, b, c) the
acute or right or obtuse dihedral or spherical angle, at the edge b, between the planes ab and
bc, in such a manner as to write, generally,

/(a, b, c) � /(c, b, a) � /(ÿa, b, ÿc) � /(a, ÿb, c)

� ðÿ/(a, b, ÿc); (168)

ð being the symbol for two right angles, we shall have, in the present question, the equation

/(a9, d 0, ÿc9)ÿ/(a9, ÿc9, d 0) � /(ÿa, a9, ÿc9)ÿ/(a, a9, d 0); (169)

and therefore, by subtracting both members from ð,

/(a9, d 0, c9)�/(a9, c9, d 0) � /(ÿa, a9, c9)�/(a, a9, d 0): (170)

We have also here the relation

/(c9, a9, d 0) � /(a, a9, c9)�/(a, a9, d 0); (171)

because the plane aa9 is intermediate between the planes a9c9 and a9d 0, or lies within the
dihedral angle (c9, a9, d 0) itself, and not within either of the two angles which are exterior
and supplementary thereto; which again depends on the circumstance that both the cyclic
planes are necessarily exterior to each sheet of the cyclic cone. Adding therefore the
equations (170) and (171), member to member, and subtracting ð on both sides of the
result, we ®nd for the spherical excess of the new triangular pyramid (a9, c9, d 0), or for the
excess of the sum of the mutual inclinations of its three faces a9c9, a9d 0, c9d 0, above two right
angles, the expression:

/(a9, d 0, c9)�/(a9, c9, d 0)�/(c9, a9, d 0)ÿ ð � 2/(a, a9, d 0): (172)

This spherical excess therefore remains unchanged, while the two lines c9, d 0, move
together on the two cyclic planes, in such a manner that their plane, always passing through
the vertex of the cone, continues to touch that cyclic cone; a9 being still a line situated in the
intersection of the two cyclic planes, and a being still a side of contact of the cone with a
plane drawn through that intersection. And hence, or more immediately from the equation
(170), the known property of a cyclic cone is proved anew, that the sum of the inclinations
(suitably measured) of its variable tangent plane to its two ®xed cyclic planes is constant.

Condition of Concircularity, resumed. New Equation of a Cyclic Cone

25. The equation (150) of homocyclicism, or of concircularity, which was assigned in the 20th
article, and which expresses the condition requisite in order that four straight lines in space,
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a, b, c, d, diverging from one common point O, as from an origin, may terminate in four
other points A, B, C, D, which shall all be contained on the circumference of one common
circle, may also, by (149), be put under the form

bÿ a

cÿ b
� x

dÿ a

cÿ d
, (173)

where x is a scalar coef®cient. It gives therefore the two following separate equations, one
between scalars, and the other between vectors:

S
bÿ a

cÿ b
� xS

dÿ a

cÿ d
; V

bÿ a

cÿ b
� xV

dÿ a

cÿ d
, (174)

of which the latter is only another way of writing the equation (151). If then we agree to use,

for conciseness, a new characteristic of operation,
V

S
, of which the effect on any geometrical

fraction, to the symbol of which it is pre®xed, shall be de®ned by the formula

V

S
:
b

a
� V

b

a
� S

b

a
; (175)

so that this new characteristic
V

S
, which (it must be observed) is not a distributive symbol, is to be

considered as directing to divide the vector by the scalar part of the geometrical fraction on which
it operates; we shall then have, as a consequence of (173), this other form of the equation of
concircularity:

V

S
:
bÿ a

cÿ b
� V

S
:
dÿ a

cÿ d
: (176)

Conversely we can return from this latter form (176) to the equation (173); for if we
observe that, in the present system of symbolical geometry, every geometrical fraction is equal to
the sum of its own scalar and vector parts, so that we may write generally (see article 7),

S
b

a
� V

b

a
� V

b

a
� S

b

a
� b

a
, (177)

or more concisely,

S� V � V � S � 1; (178)

and, if we add the identity,

S
bÿ a

cÿ b
� S

bÿ a

cÿ b
� S

dÿ a

cÿ d
� S

dÿ a

cÿ d
, (179)

of which each member is equal to unity, to the equation (176), attending to the de®nition
(175) of the new characteristic lately introduced, we are conducted to this other formula,

bÿ a

cÿ b
� S

bÿ a

cÿ b
� dÿ a

cÿ d
� S

dÿ a

cÿ d
; (180)

which allows us to write also

bÿ a

cÿ b
� dÿ a

cÿ d
� S

bÿ a

cÿ b
� S

dÿ a

cÿ d
, (181)

where the second member, being the quotient of two scalars, is itself another scalar, which
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may be denoted by x; and thus the equation (173) may be obtained anew, as a consequence
of the equation (176). We may therefore also deduce from the last-mentioned equation the
following form,

cÿ d

dÿ a
� x

cÿ b

bÿ a
; (182)

and thence also, by a new elimination of the scalar coef®cient x, performed in the same
manner as before, may derive this other form,

V

S
:
cÿ d

dÿ a
� V

S
:
cÿ b

bÿ a
: (183)

Indeed, the geometrical signi®cation of the condition (176) shows easily that we may in any
manner transpose, in that condition, the symbols a, b, c, d; since if, before such a transposition,
those symbols denoted four diverging straight lines (not generally in one common plane),
which terminate on the circumference of one common circle, then after this transposition
they must still denote four such diverging lines. We may therefore interchange the symbols a
and c, in the condition (176), which will thus become

V

S
:
bÿ c

aÿ b
� V

S
:
dÿ c

aÿ d
; (184)

but also, as in ordinary algebra, we have here,

bÿ c

aÿ b
� cÿ b

bÿ a
;

dÿ c

aÿ d
� cÿ d

dÿ a
; (185)

this equation (183) might therefore have been in this other way deduced from the equation
(176), as another form of the same condition of concircularity: and it is obvious that several
other forms of the same condition may be obtained in a similar way.

26. From the fundamental importance of the circle in geometry, it is easy to foresee that
these various forms of the condition of concircularity must admit of a great number of
geometrical applications, besides those which have already been given in some of the
preceding articles of this essay on Symbolical Geometry. For example, we may derive in a new
way a solution of the problem proposed at the beginning of the 20th article, by conceiving
that the symbols a, b, c denote three given sides of a cyclic cone, extending from the vertex to
some given plane which is parallel to that one of the two cyclic planes which in the problem is
supposed to be given; for then the equation (183) may be employed to express that the
variable line d is a fourth side of the same cyclic cone, drawn from the same vertex as an
origin, and bounded by the same given plane, or terminating on the same circumference, or
circular base of the cone, as the three given sides, a, b, c. Or we may change the symbol d to
another symbol of the form xx, and may conceive that x denotes a variable side of the cone,
still drawn as before from the vertex, but not now necessarily terminating on any one ®xed
plane, nor otherwise restricted as to its length; while x shall denote a scalar coef®cient, or
multiplier, so varying with the side or line x as to render the product-line xx a side of which
the extremity is (like that of d) concircular with the given extremities of a, b, c; and we may
express these conceptions and conditions by writing as the equation of the cone the
following:
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V

S
:
cÿ xx

xxÿ a
� â; (186)

where â is a given geometrical fraction of the vector class, namely, that vector which is
determined by the equation

V

S
:
cÿ b

bÿ a
� â: (187)

The index Iâ of this vector â is such that

Iâ k I
cÿ b

bÿ a
, (188)

it is therefore (by the principles of articles 7 and 10) a line perpendicular to each of the two
lines represented by the two symbolical differences cÿ b, bÿ a, and therefore also perpendi-
cular to the line denoted by their symbolic sum, cÿ a; so that we may establish the three
formulñ,

Iâ? cÿ b; Iâ? bÿ a; Iâ? cÿ a, (189)

and may say that Iâ is a line perpendicular to the plane in which the three lines a, b, c all
terminate. This constant index Iâ, connected with the equation (186) of the cyclic cone just
now determined, as being the index of the constant vector fraction â, to which the ®rst member
of that equation is equal, is therefore perpendicular also to the given cyclic plane of the same
cone, and may be regarded as a symbol for one of the two cyclic normals of that conical locus
of the variable line x lately considered. In the particular case when the three given lines a, b,
c are all equally long, so that the cyclic cone (186) becomes a cone of revolution, then the index
Iâ, which has been generally a symbol for a cyclic normal, becomes a symbol for the axis of
revolution of the cone. Other forms of equations of such cyclic and other cones will offer
themselves when the principles of the present system of symbolical geometry shall have been
more completely unfolded; but the forms just given will be found to be suf®cient, when
combined with some of the equations assigned in previous articles, to conduct to the solution
of some interesting geometrical problems: to which class it will perhaps be permitted to refer
the general determination of the curvature of a spherical conic, or the construction of the cone
of revolution which osculates along a given side to a given cyclic cone.

Curvature of a Spherical Conic, or of a Cyclic Cone

27. To treat this problem by a method which shall harmonise with the investigations of
recent articles of this paper, let the symbols a9, c9, d 0, be employed with the same signi®ca-
tions as in article 24, so as to denote three equally long straight lines, of which a9 is a trace of
one cyclic plane on the other, while c9 and d 0 are the traces of a tangent plane on those two
cyclic planes; and let c (still bisecting the angle between c9 and d 0) be still the equally long
side of contact of that tangent plane with the given cyclic cone. We shall then have, by (156),
the symbolic analogy,

d 0 : c : : c : c9, (190)

which, on account of the supposed equality of the lengths of the lines c, c9, d 0, gives also the
two following formulñ, of parallelism and perpendicularity,
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d 0� c9 k c; d 0ÿ c9? c; (191)

of which indeed the former has been given already, as the ®rst of the two formulñ (160).
Conceive next that through the side of contact c we draw two secant planes, cutting the same
sheet of the cone again in two known sides, c1, c2, and having for their known traces on the
®rst cyclic plane (which contains the trace c9 of the tangent plane) the lines c91, c92, but for
their traces on the second cyclic plane (or on that which contains d 0) the lines d 01, d 02; these
lines, cc1c2c91c92d 01d 02, being supposed to be all equally long. We may then write (in virtue of
what has been shown in former articles) at once the two new symbolic analogies,

d 01 : c1 : : c : c91; d 02 : c2 : : c : c92; (192)

the two new parallelisms,

d 01 � c91 k c1 � c; d 02 � c92 k c2 � c; (193)

and the two new perpendicularities,

d 01 ÿ c91? c1 � c; d 02 ÿ c92? c2 � c: (194)

we shall have also these two other formulñ of parallelism,

d 01 ÿ c91 k c1 ÿ c; d 02 ÿ c92 k c2 ÿ c: (195)

Now if we conceive a cone of revolution to contain upon one sheet the three equally long
lines c, c1, c2, which are also (by the construction) three sides of one sheet of the given cyclic
cone, we may (by the last article) represent a line in the direction of the axis of this cone of
revolution by the symbol,

I
c2 ÿ c

cÿ c1
; (196)

or by this other symbol, which denotes indeed a line having an opposite direction, but still
one contained upon the inde®nite axis of the same cone of revolution, if drawn from a point
on that axis,

I
c2 ÿ c

c1 ÿ c
: (197)

On account of the parallelisms (195) we may substitute for the last symbol (197) this other
of the same kind,

I
d 02 ÿ c92
d 01 ÿ c91

; (198)

which expression, when we add to it another, which is a symbol of a null line (because in
general the index of a scalar vanishes), namely the following,

I
c91 ÿ d 01
d 01 ÿ c91

� 0, (199)

takes easily this other form,

I
d 02 ÿ c92
d 01 ÿ c91

� I
d 02 ÿ d 01
d 01 ÿ c91

� I
c91 ÿ c92
d 01 ÿ c91

: (200)

The sought axis of the cone of revolution through the sides cc1c2 of the cyclic cone, or a
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line in the direction of this axis, is therefore thus given, by the expression (200), as the
symbolic sum of two other lines; which two new lines, by comparison of their expressions with
the form (188), are seen to be in the directions of the axes of revolution of two new or
auxiliary cones of revolution; one of these auxiliary cones containing, upon a single sheet, the
three lines

c91, d 01, d 02, (201)

so that it may be brie¯y called the cone of revolution c91, d 01, d 02; while the other auxiliary cone
of revolution, which may be called in like manner the cone c92, c91, d 01, contains on one sheet
this other system of three straight lines,

c91, d 01, c92: (202)

The symbolic difference of the same two lines, namely, that of the lines denoted by the
symbols

I
d 02 ÿ d 01
d 01 ÿ c91

, I
c91 ÿ c92
d 01 ÿ c91

, (203)

which lines are thus in the directions of the axes of these two new cones of revolution, may
easily be expressed under the form

I
1
2(d 02 � c92)ÿ 1

2(d 01 � c91)
1
2(d 01 � c91)ÿ c91

; (204)

it is therefore (by the same last article) a line perpendicular to the plane in which the three
following straight lines terminate, if drawn from one common point, such as the common
vertex of the four cones,

c91, 1
2(d 01 � c91), 1

2(d 02 � c92): (205)

This plane contains also the termination of the line d 01, if that line be still drawn from the
same vertex; because, in general, whatever may be the value of the scalar x, the three straight
lines denoted by the symbols

c91, (1ÿ x)d 01 � xc91, d 01, (206)

all terminate on one straight line, if they be drawn from one common origin; and this last
straight line is situated in the ®rst secant plane, and connects the extremities of the two
equally long lines c91, d 01, which are the traces of that secant plane on the two cyclic planes.
The remaining line, 1

2(d 02 � c92), of the system (205), if still drawn from the same vertex as
before, bisects that other straight line, situated in the second secant plane, which connects
the extremities of the two equally long traces c92, d 02, of that other secant plane on the same
two cyclic planes. And these two connecting lines, thus situated respectively in the ®rst and
second secant planes do not generally intersect each other; because they cut the line of
mutual intersection of those two secant planes, namely the side c of the given cyclic cone, in
points which are in general situated at different distances from the vertex. It is therefore in
general a determinate problem, to draw through the ®rst of these two connecting lines a
plane which shall bisect the second: and we see that the plane so drawn, being that in which
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the three lines (205) terminate, is perpendicular to the line (204), that is to the symbolic
difference,

I
d 02 ÿ d 01
d 01 ÿ c91

ÿ I
c91 ÿ c92
d 01 ÿ c91

, (207)

of the two lines (203), of which the symbolic sum (200) has been seen to be a line in the
direction of the axis (197) of the ®rst cone of revolution considered in the present article;
while the two lines (203), of which we have thus taken the symbolic sum and difference, have
been perceived to be in the directions of the axes of the two other and auxiliary cones of
revolution, which we have also had occasion to consider. But in general, by one of those
fundamental principles which the present system of symbolical geometry has in common with
other systems, the symbolical sum and difference of two adjacent and coinitial sides of a
parallelogram may be represented or constructed geometrically by the two diagonals of that
®gure; namely the sum by that diagonal which is intermediate between the two sides, and the
difference by that other diagonal which is transversal to those sides: and every other
transversal straight line, which is drawn across the same two sides in the same direction as the
second diagonal, is bisected by the ®rst diagonal, because the two diagonals themselves bisect
each other. We may therefore enunciate this theorem:± If across the axes (203) of the two
auxiliary cones of revolution, which contain respectively the two systems of straight lines (201) and
(202), (each system of three straight lines being contained upon a single sheet), we draw a
rectilinear transversal, perpendicular to the plane which contains the ®rst and bisects the second of the
two connecting lines, drawn as before in the two secant planes; and if we then bisect this transversal by a
straight line drawn from the common vertex of the cones: this bisecting line will be situated on the axis of
revolution (197) of that other cone of revolution, which contains upon one sheet the three given sides of
the given cyclic cone. (The drawing of this transversal is possible, because the preceding
investigation shows that the plane of the axes of revolution of the two auxiliary cones is
perpendicular to that other plane which is described in the construction.)

28. Since, generally, in the present system of symbolical geometry, the vector part of the
quotient of any two parallel lines, and the scalar part of the quotient of any two perpendicular
lines, are respectively equal to zero, we may express that three straight lines, a, b, c, if drawn
from a common origin, all terminate on one common straight line, by writing the equation

V
cÿ a

bÿ a
� 0; (208)

and may express that two straight lines, a, c, are equally long, or that they are ®t to be made
adjacent sides of a rhombus (of which the two diagonals are mutually rectangular), by this
other formula:

S
c� a

cÿ a
: (209)

If then we combine these two conditions, which will give

S
c� a

bÿ a
� 0, (210)

and therefore
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S
c

bÿ a
� ÿS

a

bÿ a
, V

c

bÿ a
� V

a

bÿ a
, (211)

we shall thereby express that the chord or secant of a circle or sphere, which passes through
the extremity of one given radius a, and also through the extremity of another given and
coinitial straight line b, meets the circumference of the same circle or the surface of the same
sphere again at the extremity of the other straight line denoted by c, which will thus be
another radius. But with the same mode of abridgment as that employed in the formula
(178), we have, by (211),

(V � S)
c

bÿ a
� (V ÿ S)

a

bÿ a
, (212)

and therefore

c � (V ÿ S)
a

bÿ a
:(bÿ a): (213)

This last is consequently an expression for the second radius c, in terms of the ®rst radius a,
and of the other given line b from the same centre, which terminates at some given point
upon the common chord or secant, connecting the extremities of the two radii. If therefore
we write for abridgment

m � 1
2(d 02 � c92), (214)

so that m shall be a symbol for the last of the three lines (205); and if we employ the two
following expressions, formed on the plan (213),

m9 � (V ÿ S)
c91

mÿ c91
:(mÿ c91)

m9 � (V ÿ S)
d 01

mÿ d 01
:(mÿ d 01)

9>>=>>; (215)

the symbols c91, d 01 retaining their recent meanings; then the four straight lines,

c91, d 01, m9, m 0, (216)

all drawn from the given vertex of the cones, will be equally long, and will terminate in four
concircular points; or, in other words, their extremities will be the four corners of a certain
quadrilateral inscribed in a circle: of which plane quadrilateral the two diagonals, connecting
respectively the ends of c91, m9, and of d 01, m 0, will intersect each other at the extremity of the
line m, which is drawn from the same vertex as before. It may also be observed respecting this
line m, that in virtue of its de®nition (214), and of the second parallelism (193), it bisects the
angle between the two equally long sides c, c2, of the given cyclic cone. Thus the four lines
(216) are four sides of one common sheet of a new cone of revolution, of which the axis is perpendicular
to the plane described in the construction of the foregoing article; because these four equally long
lines (216) terminate on the same plane as the three lines (205), that is on a plane
perpendicular to the line (204) or (207), which latter line has thus the direction of the axis of
revolution of the new auxiliary cone. It is usual to say that four diverging straight lines are
rays of an harmonic pencil, or simply that they are harmonicals, when a rectilinear transversal,
parallel to the fourth, and bounded by the ®rst and third, is bisected by the second of these
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lines: so that, in general, any four diverging straight lines which can be represented by the
four symbols

a, a� b, b, aÿ b,

or by symbols which are obtained from these by giving them any scalar coef®cients, have the
directions of four such harmonicals. We are then entitled to assert that the fourth harmonical to
the axes of the three cones of revolution

(c91d 01d 02), (cc1c2), (c92c91d 01), (217)

which three axes have been already seen to be all situated in one common plane, is the axis of
that new or fourth cone of revolution (c91d 01m9m 0), which contains on one sheet the four straight lines
(216). And if we regard the four last-mentioned lines as edges of a tetrahedral angle, inscribed in
this new cone of revolution, we see that the two diagonal planes of this tetrahedral angle intersect
each other along a straight line m, which bisects the plane angle (c, c2) between two of the edges of the
trihedral angle (cc1c2); which latter angle is at once inscribed in the given cyclic cone, and also
in that cone of revolution which it was originally proposed to construct.

29. Conceive now that this original cone of revolution (cc1c2) comes to touch the given
cyclic cone along the side c, as a consequence of a gradual and unlimited approach of the
second secant plane (cc2), to coincidence with the given tangent plane (c9cd 0), which
touches the given cone along that side; or in virtue of a gradual and inde®nite tendency of
the side c2 to coincide with the given side c. The line m, bisecting always the angle between
these two sides c, c2, will thus itself also tend to coincide with c; and the diagonal planes of
the tetrahedral angle (c91d 01m9m 0), which planes still intersect each other in m, will tend at
the same time to contain the same given side. But that side c is (by the construction) a line
in the plane of one face of that tetrahedral angle, namely in the plane of c91 and d 01, which
was the ®rst secant plane of the cyclic cone; consequently the tetrahedral angle itself, and its
circumscribed cone of revolution, tend generally to ¯atten together into coincidence with
this secant plane, as c2 thus approaches to c: and the axis of the cone (c91d 01m9m 0) coincides
ultimately with the normal to the ®rst secant plane (c91d 01). At the same time the traces c92
and d 02, of the second secant plane on the two cyclic planes, tend to coincide with the traces
c9 and d 0 of the given tangent plane thereupon. We have therefore this new theorem, which
is however only a limiting form of that enunciated in article 27:± If through a given side (c)
of a given cyclic cone, we draw a tangent plane (c9cd 0), and a secant plane (c91cc1d 01); and if
we then describe three cones of revolution, the ®rst of these three cones containing on one
sheet the two traces (c91, d 01) of the secant plane, and one trace (d 0) of the tangent plane;
the second cone of revolution touching the cyclic cone along the side of contact (c), and
cutting it along the side of section (c1); and the third cone of revolution containing the
same two traces (c91, d 01) of the secant plane, and the other trace (c9) of the tangent plane:
the fourth harmonical to the axes of revolution of these three cones will be perpendicular to the secant
plane.

30. Finally, conceive that the remaining secant plane c91d 01 tends likewise to coincide with
the tangent plane c9d 0; the cone of revolution which lately touched the given cyclic cone
along the given side c, will now come to osculate to that cone along that side: and because a
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line in the direction of the mutual intersection of the two cyclic planes has been already
denoted by a9, therefore the ®rst and third of the three last-mentioned cones of revolution
tend now to touch the planes a9d 0 and a9c9, respectively, along the lines d 0 and c9. The
theorem of article 27, at the limit here considered, takes therefore this new form:± If three
cones of revolution be described, the ®rst cone cutting the ®rst cyclic plane (a9c9) along the ®rst trace
(c9) of a given tangent plane (c9cd9) to a given cyclic cone, and touching the second cyclic plane
(a9d 0) along the second trace (d 0) of the same tangent plane; the second cone of revolution osculating
to the same cyclic cone, along the given side of contact (c); and the third cone of revolution touching the
®rst cyclic plane and cutting the second cyclic plane, along the same two traces as before: then the fourth
harmonical to the axes of revolution of these three cones will be the normal to the plane (c9d 0) which
touches at once the given cyclic cone, and the sought osculating cone, along the side (c) of contact or of
osculation.

31. To deduce from this last theorem an expression for a line e in the direction of the axis of
the osculating cone of revolution, by the processes of this symbolical geometry, we may
remark in the ®rst place, that when any two straight lines a, b, are equally long, we have the
three equations following:

S
a

b
� S

b

a
, V

a

b
� ÿV

b

a
, I

a

b
� ÿI

b

a
, (218)

from the two former of which it may be inferred that the relation

V

S
:
a

b
� ÿV

S
:
b

a
(219)

holds good, not only when the two lines a, b are thus equal in length, but generally for any
two lines: because if we multiply or divide either of them by any scalar coef®cient, we only
change thereby in one common (scalar) ratio both the scalar and vector parts of their
quotient, and so do not affect that other quotient which is obtained by dividing the latter of
these two parts by the former. We may also obtain the equation (219), as one which holds
good for any two straight lines a, b, under the form

S
b

a
V

a

b
� V

b

a
S

a

b
� 0, (220)

by operating with the characteristic V on the identity,

S
b

a
:
a

b
� V

b

a
:
a

b
� b

b
� 1; (221)

while, if we operate on the same identity (221) by the characteristic S, we obtain this other
general formula, which likewise holds good for any two straight lines a, b, whether equal or
unequal in length, and will be useful to us on future occasions,

S
b

a
S

a

b
� V

b

a
V

a

b
� 1: (222)

Again, if there be three equally long lines, a, b, c, then since the principle contained in the
third equation (218) gives
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I
bÿ a

c
� I

b

c
ÿ I

a

c
� I

c

a
ÿ I

c

b
, (223)

which last expression is only multiplied by a scalar when the line c is multiplied thereby; while
the index of a geometrical fraction is (among other properties) a line perpendicular to both

the numerator and denominator of the fraction; we see that the symbol I
c

a
ÿ I

c

b
denotes

generally a line perpendicular to both c and bÿ a, if only the two lines a and b have their
own lengths equal to each other, without any restriction being thereby laid on the length of
c: this symbol denotes therefore, under this single condition, a straight line contained in a
plane perpendicular to c, and having equal inclinations to a and b. Thus, under the same

condition, the same symbol I
c

a
ÿ I

c

b
may represent the axis d of a cone of revolution, which

contains upon one sheet the two equally long lines a and b, while the third line c is in or
parallel to the single cyclic plane of this monocyclic cone, or the plane of its circular base, or of
one of its circular sections; or coincides with or is parallel to some tangent to such circular
base or section. If then we know any other line a9, contained in the plane which touches this

monocyclic cone along the side a, we may substitute for c, in this symbol I
c

a
ÿ I

c

b
, that part or

component of this new line a9 which is perpendicular to the side of contact a; and therefore
may write with this view,

c � V
a9

a
:a � a9ÿ S

a9

a
:a, (224)

which will give

d � I
a9

a
ÿ I

a9

b
� S

a9

a
I

a

b
, (225)

as a general expression for a line d in the direction of the axis of a cone of revolution which is
touched by the plane aa9 along the side of contact a, and contains on the same sheet the
equally long side b. We may also remark that because the normal plane to a cone of
revolution, drawn along any side of that cone, contains the axis of revolution, so that the
plane containing the axis and the side is perpendicular to the tangent plane, we have a
relation between the three directions of a, a9, d, which does not involve the direction of b,
and may be expressed by any one of the three following formulñ:±

/(a9, a, d) � ð

2
, d?V

a9

a
:a, S

a9

d
� S

a9

a
S

a

d
; (226)

in each of which it is allowed to reverse the direction of d, or to change d to ÿd. (Compare
the formulñ (168), for the notation of dihedral angles.) It may indeed be easily proved,
without the consideration of any cone, that any one of these three formulñ (226) involves the
other two; but we see also by the recent reasoning, that they may all be deduced when an
expression of the form (225) for d is given; or when this line d can be expressed in terms of a,
a9, and of another line b which is supposed to have the same length as a, by any symbol which
differs only from the form (225) through the introduction of a scalar coef®cient.

These things being premised, if we change a, b, d, in this form (225), to c9, d 0, n9, we ®nd

n9 � I
a9

c9
ÿ I

a9

d 0
� S

a9

c9
I

c9

d 0
, (227)
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as an expression for a line n9 in the direction of the axis of revolution of the cone which
touches the ®rst cyclic plane a9c9 along the ®rst trace c9 of the tangent plane, and cuts the
second cyclic plane a9d 0 along the second trace d9 of the same tangent plane; that is to say, in
the direction of the axis of the third cone of revolution, described in the enunciation of the
theorem of article 30. Again, if we change a, b, d, in the same general formula (225), to d 0,
c9, ÿn 0, and attend to the third equation (218), we ®nd

n 0 � I
a9

c9
ÿ I

a9

d 0
� S

a9

d 0
I

c9

d 0
, (228)

as an expression for another line n 0, in the direction of the axis of another cone of
revolution, which cuts the ®rst cyclic plane a9c9 along the trace c9, and touches the second
cyclic plane a9d 0 along the other trace d 0 of the tangent plane; that is, in the direction of the
axis of revolution of the ®rst of the three cones, described in the enunciation of the same
theorem of article 30. And since these expressions give

n 0ÿ n9 � S
a9

d 0
ÿ S

a9

c9

� �
I

c9

d 0
, (229)

we have the two perpendicularities

n 0ÿ n9? c9, n 0ÿ n9?d 0; (230)

so that a transversal drawn across the two axes of revolution last determined, in the direction
of this symbolic difference n 0ÿ n9, is perpendicular to both the traces of the tangent plane
c9d 0, and therefore has the direction of the normal to that plane, or to the cyclic cone; or, in
other words, this transversal has the direction of the fourth harmonical mentioned in the
theorem. But the lines n 0 and n9, of which the symbolic difference has thus been taken, have
been seen to be in the directions of the ®rst and third of the same four harmonicals; and the
axis of the osculating cone, which axis we have denoted by e, has (by the theorem) the
direction of the second harmonical: it has therefore the direction of the symbolical sum of
the same two lines n 0, n9, because it bisects their transversal drawn as above. Thus by
conceiving the bisector to terminate on the transversal, we ®nd, as an expression for this
sought axis e, the following,

e � 1
2(n 0� n9) � I

a9

c9
ÿ I

a9

d 0
� 1

2 S
a9

c9
� S

a9

d 0

� �
I

c9

d 0
: (231)

32. This symbolical expression for e contains, under a not very complex form, the solution
of the problem on which we have been engaged; namely, to ®nd the axis of the cone of revolution,
which osculates along a given side to a given cyclic cone. It may however be a little simpli®ed, and
its geometrical interpretation made easier, by resolving the line a9 into two others, which shall
be respectively parallel and perpendicular to the lateral normal plane, as follows:

a9 � a)� a)); a)?d 0ÿ c9; a)) kd 0ÿ c9; (232)

so that

a) � V
a9

d0ÿ c9
:(d 0ÿ c9); a) � S

a9

d 0ÿ c9
:(d 0ÿ c9); (233)

480 IV. ON SYMBOLICAL GEOMETRY (1846±49)



which will give, by (191) and (218), because a))?d 0� c9,

S
d 0

a))
� S

c9

a))
� 0; S

a))
c9
� S

a))
d 0
� 0; (234)

also

I
d 0

a))
ÿ I

c9

a))
� 0; I

a))
c9
ÿ I

a))
d 0
� 0; (235)

and

S
d 0

a)
ÿ S

c9

a)
� 0; S

a)
c9
ÿ S

a)
d 0
� 0: (236)

For by thus resolving a9, in (231), into the two components a) and a)), it is at once seen, by
(234) (235), that the latter component a)) disappears from the result, which reduces itself by
(236) to the following simpli®ed form,

e � I
a)

c9
ÿ I

a)

d 0
� S

a)

c9
I

c9

d 0
; (237)

and this gives, by comparison with the forms (225) and (226), a remarkable relation of
rectangularity between two planes, of which one contains the axis e of the osculating cone,
namely the planes a)c9 and c9e; which relation is expressed by the formula,

/(a), c9, e) � ð

2
: (238)

In like manner, from the same expression (231), by the same decomposition of a9, we
may easily deduce, instead of (237), this other expression for the axis of the osculating
cone,

e � I
a)
c9
ÿ I

a)
d 0
ÿ S

a)
d 0

I
d 0

c9
; (239)

and may derive from it this other relation, of rectangularity between two other planes, namely
the planes a)d 0 and d0e,

/(a), d 0, e) � ð

2
: (240)

Hence follows immediately this theorem, which furnishes a remarkably simple construction
with planes, for determining generally a line in the required direction of the axis of the
osculating cone:± If we project the line a9 of mutual intersection of the two cyclic planes a9c9, a9d 0, of
any given cyclic cone, on the lateral normal plane which is drawn along any given side c; if we next draw
two planes, a)c9, a)d 0, through the projection a) thus obtained, and through the two traces, c9, d 0, of the
tangent plane on the two cyclic planes; and if we then draw two new planes, c9e, d 0e, through the same
two traces of the tangent plane, perpendicular respectively to the two planes a)c9, a)d 0, last drawn: these
two new planes will intersect each other along the axis e of the cone of revolution, which osculates along
the given side c to the given cyclic cone.

And by considering, instead of these cones and planes, their intersections with a spheric
surface described about the common vertex, we arrive at the following spherographic

481IV. ON SYMBOLICAL GEOMETRY (1846±49)



construction,� for ®nding the spherical centre of curvature of a given spherical conic at a given point,
or the pole of the small circle which osculates at that point to that conic:± From one of the two
points of mutual intersection of the two cyclic arcs let fall a perpendicular upon the normal arc to the
conic, which latter arc is drawn through the given point of osculation; connect the foot of this (arcual)
perpendicular by two other arcs of great circles, with those two known points, equidistant from the point
upon the conic, where the tangent arc meets the two conic arcs; draw through the same two points two new
arcs of great circles, perpendicular respectively to the two connecting arcs: these two new arcs will cross
each other on the normal arc, in the pole of the osculating circle, or in the spherical centre of curvature of
the spherical conic, which centre it was required to determine.

On Elliptic Cones, and on their Osculating Cones of Revolution

33. With the same signi®cations of a9, a), c, c9, d 0, and e, as symbols of certain straight lines,
connected with a given cyclic cone, as in the last article of this Essay; and with the same use of
the sign I, as the characteristic of the index of the vector part of any geometrical fraction in
general; if we now write

f � I
a9

c9
; g � I

d 0

a9
; h � I

d 0

c
� I

c

c9
; (241)

i � I
a)
c9

; k � I
d 0

a)
; l � h

c
a) k I

a9

a)
; (242)

we shall thus form symbols for certain other straight lines, f, g, h, and i, k, l, which may be
conceived to be all drawn from the same common origin as the former lines, namely from
the vertex of the cyclic cone. And these new lines will be found to be connected with another
cone, which may be called an elliptic§ cone ; namely the cone which is normal, supplementary, or
reciprocal to the former cyclic cone. They may also be employed to assist in the determination
of the cone of revolution, which osculates along a given side to this new or elliptic cone; as will be
seen by the following investigation.

� This construction was communicated to the Royal Irish Academy (see Proceedings)y, at its meeting of
November 30th, 1847, along with a simple geometrical construction for generating a system of two
reciprocal ellipsoids by means of a moving sphere, as new applications of the author's Calculus of
Quaternions to Surfaces of the Second Order. With that Calculus, of which the fundamental principles
and formulñ were communicated to the same Academy{ on the 13th of November, 1843, it will be found
that the present System of Symbolical Geometry is connected by very intimate relations, although the
subject is approached, in the two methods, from two quite different points of view: the algebraical
quaternion of the one method being ultimately the same as the geometrical fraction of the other.
y [See Vol. III, pp. 378±380.]
{ [See Vol. III, pp. 111±116.]
§ The methods of the present Symbolical Geometry might here be employed to prove that the normal

cone, here called elliptic, from its connexion with its two focal lines, is itself another cyclic cone ; being cut in
circles by two sets of planes, which are perpendicular respectively to the two focal lines of the former
cone. But it may be suf®cient thus to have alluded to this well-known theorem, which it is not necessary
for our present purpose to employ. There is even a convenience in retaining, for awhile, the two
contrasted designations of cyclic and elliptic, for these two reciprocal cones, to mark more strongly the
difference of the modes in which they here present themselves to our view.
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34. The lines f and g being, as is shown by their expressions (241), perpendicular
respectively to the planes a9c9 and a9d 0, which were the two cyclic planes of the former or
cyclic cone, are themselves the two cyclic normals of that cone; and because the line h is, by the
same system of expressions (241), perpendicular to the plane c9d0 which touches that cyclic
cone along the side c, it is the variable normal of that former cone: or this new line h is the
side of the new or normal cone, which corresponds to that old side c. The inclinations of h to f
and g, respectively, are given by the following equations, which are consequences of the same
expressions (241):

/(f, h) � /(a9, c9, c) � /(a9, c9, d 0)

/(h, g) � /(a9, d 0, c) � /(a9, d 0, c9)

)
(243)

and we have seen, in article 24, that for the cyclic cone an equation which may now be thus
written holds good:

/(a9, c9, d 0)�/(a9, d 0, c9) � 2a; (244)

where a is a constant angle: therefore for the cone of normals to that cyclic cone, the
following other equation is satis®ed:

/(f, h)�/(h, g) � 2a; (245)

a being here the same constant as before. The sum of the inclinations of the variable side h
of the new or elliptic cone to the two ®xed lines f and g is therefore constant; in consequence
of which known property, these two ®xed lines are called the focal lines of the elliptic cone.
And we see that these two focal lines f, g, of the normal cone, coincide, respectively, in their
directions, with the two cyclic normals (or with the normals to the two cyclic planes) of the
original cone: which is otherwise known to be true.

35. Another important and well-known property of the elliptic cone may be proved anew by
observing that the expressions (241) give

/(f, h, c) � /(f, h, c9)ÿ/(c, h, c9) � 1
2ðÿ/(c, c9)

/(c, h, g) � /(d 0, h, g)ÿ/(d 0, h, c) � 1
2ðÿ/(d 0, c)

)
(246)

and that we have, by (190),

/(d 0, c) � /(c, c9); (247)

for thus we see that

/(f, h, c) � /(c, h, g); (248)

that is to say, the lateral normal plane hc to the reciprocal or elliptic cone (which is at the
same time the lateral normal plane of the original or cyclic cone) bisects the dihedral angle
/(f, h, g), comprised between the two vector planes, fh, hg, which connect the side h of the
elliptic cone with the two focal lines f and g.

Or because the expressions (241) show that these two vector planes, fh, hg, of the elliptic
cone, are perpendicular respectively to the two traces c9 and d 0 of the tangent plane to the
cyclic cone, on the two cyclic planes of that cone; which traces are, as the formula (247)
expresses, inclined equally to the side of contact c of the original or cyclic cone, while that
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side or line c is also the normal to the reciprocal or elliptic cone; we might hence infer that
the tangent plane to the latter cone is equally inclined to the two vector planes: which is
another form of the same known relation.

36. The expressions (242), combined with (241), show that the two new lines i and k, as
being perpendicular respectively to the two traces c9 and d 0, are contained respectively in the
two vector planes, fh and hg. But each of the same two new lines, i, k, is also perpendicular to
the line a), to which the remaining new line l is also perpendicular, as the same expressions
show; they show too that a) is a line in the common lateral and normal plane ch of the two
cones, while l is also contained in that plane: the plane ik therefore cuts the plane ch
perpendicularly in the line l. This latter line l is also, by the same expressions, perpendicular
to the line a) (that is to the intersection of the two cyclic planes of the cyclic cone), which is
perpendicular to both f and g; and therefore l can be determined, as the intersection of the
common normal plane ch with the plane of the two focal lines fg; after which, by drawing
through the line l, thus found, a plane ik perpendicular to ch, the lines i and k may be
obtained, as the respective intersections of this last perpendicular plane with the two vector
planes, fh, hg. And we see that these three new lines, i, k, l, introduced by the expressions
(242), are such as to satisfy the following conditions of dihedral perpendicularity:

1
2ð � /(h, l, i) � /(k, l, h); (249)

1
2ð � /(h, i, c9) � /(d 0, k, h); (250)

1
2ð � /(a), c9, i) � /(a), d 0, k); (251)

with which we may combine the following relations:

/(f, h, i) � /(k, h, g) � 0; /(f, l, g) � ð; /(f, h, l) � /(l, h, g): (252)

37. The positions of these three lines i, k, l, being thus fully known, by means of the
expressions (242), or of the corollaries which have been deduced from those expressions, let
us now consider, in connexion with them, the two formulñ of dihedral perpendicularity,
(238), (240), which were given in article 32, to determine the axis e of a cone of revolution,
which osculates along the side c to the given cyclic cone, and which formulñ may be thus
collected:

1
2ð � /(a), c9, e) � /(a), d 0, e): (253)

The comparison of (253) with (251) shows that the planes c9e, d 0e, must coincide respectively
with the planes c9i, d 0k; because they are drawn like them respectively through the lines c9,
d 0, and are like them perpendicular respectively to the planes a)c9, a)d 0; the line e must
therefore be the intersection of the two planes c9i, d 0k, which contain respectively the two
lines i, k, and are, by (250), perpendicular to the two planes ih, kh, or (by what has been seen
in the last article) to the two vector planes fh, gh. We can therefore construct the line e as the
intersection of the two planes ie, ke, which are thus drawn through the lately determined
lines i, k, at right angles to the two vector planes; and we may write, instead of (253), the
formulñ

1
2ð � /(h, i, e) � /(h, k, e): (254)
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38. Again, because this line e is (by Art. 32) the axis of a cone of revolution which osculates
to the given cyclic cone, or which touches that cone not only along the side c itself but also
along another side in®nitely near thereto; while, in general, the lateral normal planes of a
cone of revolution all cross each other along the axis of that cone; it is clear that e must be
the line along which the common lateral and normal plane ch of the two reciprocal cones is
intersected by an in®nitely near normal and lateral plane to the ®rst or cyclic cone, which is
also at the same time a lateral and normal plane to the second or elliptic cone; consequently
the two cones of revolution which osculate to these two reciprocal cones, along these two corresponding
sides, c and h, have one common axis, e. And it is evident that a similar result for a similar reason
holds good, in the more general case of any two reciprocal cones, which have a common vertex,
and of which each contains upon its surface all the normals to the other cone, however
arbitrary the form of either cone may be; any two such cones having always one common system of
lateral and normal planes, and one common conical envelope of all those normal planes: which
common envelope is thus the common conical surface of centres of curvature, for the two
reciprocal cones.

Eliminating therefore what belongs, in the present question, to the original or cyclic cone,
or con®ning ourselves to the formulñ (245), (249), (252), (254), we are conducted to the
following construction, for determining the axis e of that new cone of revolution, which osculates along
a given side h to a given elliptic cone ; this latter cone having f and g for its given focal lines, or
being represented by an equation of the form (245):± Draw, through the given side, h, the
normal plane hl, bisecting the angle between the two vector planes, fh, gh, and meeting in the line l the
plane fg of the two given focal lines; through the same line l draw another plane ik, perpendicular to the
normal plane hl, and cutting the vector planes in two new lines, i and k; through these new lines draw
two new planes, ie, ke, perpendicular respectively to the two vector planes, ®, gk, or fh, gh: these new
planes will cross each other on the normal plane, in the sought axis e of the osculating cone of revolution.

39. Or if we prefer to consider, instead of cones and planes, their intersections with a
spheric surface described about the common vertex, as its centre; we then arrive at the
following spherographic construction, for ®nding the spherical centre of curvature of a given spherical
ellipse, at any given point of that curve, which may be regarded as being the reciprocal of the
construction assigned at the end of the 32nd article of this essay:± Draw, from the given point
H, of the ellipse, the normal arc HL, bisecting the spherical angle FHG between the two
vector arcs FH, GH, and terminated at L by the arc FG which connects the two given foci, F
and G; through L draw an arc of a great circle IK, perpendicular to the normal arc HL, and
cutting one of the two vector arcs HF, HG, and the other of those two vector arcs prolonged,
in two new points, I and K; through these two new points draw two new arcs of great circles,
IE, KE, perpendicular respectively to the two vector arcs, or to the arcs HI, HK: the two new
arcs so drawn will cross each other on the normal arc (prolonged), in a point E, which will be the
spherical centre of curvature sought, or the pole of the small circle which osculates at the given
point H to the given spherical ellipse.

And since it is obvious (on account of the spherical right angles HIE, HKE, in the
construction), that the points I, K are the respective middle points of those portions of the
vector arcs, or of those arcs prolonged, which are comprised within this osculating circle; so
that the arc IK, which has been seen to pass through the point L, and which crosses at that
point L the arcual major axis of the ellipse (because that axis passes through both foci), is the
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common bisector of these two intercepted portions of the vector arcs, which intercepted arcs of
great circles may be called (on the sphere) the two focal chords of curvature of the spherical
ellipse; we are therefore permitted to enunciate the following theorem,� which is in general
suf®cient for the determination of the spherical centre of curvature, or pole of the osculating
small circle, at any proposed point of any such ellipse:± The great circle which bisects the two focal
(and arcual) chords of curvature of any spherical ellipse, for any point of osculation, intersects the
(arcual) axis major in the same point in which that axis is cut by the (arcual) normal to the ellipse,
drawn at the point of osculation.

On the Tensor of a Geometrical Quotient

40. The equations (218) (222), of Art. 31, show that for any two equally long straight lines,
a, b, the following relation holds good,

S
b

a

� �2

ÿ V
b

a

� �2

� 1; (255)

or, more concisely, that

T
b

a
� 1, (256)

if we introduce a new characteristic T of operation on a geometrical quotient, de®ned by the
general formula,

T
b

a
�
r

S
b

a

� �2

ÿ V
b

a

� �2
( )

; (257)

where it is to be observed, that the expression of which the square root is taken is essentially a
positive scalar, because the square of every scalar is positive, while the square of every vector is
on the contrary a negative scalar, by the principles of the 12th article. Hence, generally, for
any two straight lines a, b, of which the lengths are denoted by a, b, we have the equation,

T
b

a
� b� a; (258)

because the expression (257) is doubled, tripled, or multiplied by any positive number, when
the line b is multiplied by the same number, whatever it be, while the line a remains

unchanged. This geometrical signi®cation of the expression T
b

a
, may induce us to name that

� This theorem was proposed by the present writer, in June 1846, at the Examination for Bishop Law's
Mathematical Premium, in Trinity College, Dublin; and it was shown by him in a series of Questions on
that occasion, which have since been printed in the Dublin University Calendar for 1847, (see p. LXX),
among the University Examination Papers for the preceding year, that this theorem, and several others
connected therewith (for example, that the trigonometric tangent of the focal half chord of curvature is
the harmonic mean between the tangents of the two focal vector arcs), might be deduced by spherical
trigonometry, from the known constancy of the sum of the two vector arcs, or focal distances, for any one
spherical ellipse. But in the method employed in the present essay, no use whatever has hitherto been
made of any formula of spherical or even plane trigonometry, any more than of the doctrine of
coordinates.
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expression the TENSOR of the geometrical quotient
b

a
, on which the characteristic T has

operated; because this tensor is a number which directs us how to extend (directly or inversely,
that is, in what ratio to lengthen or shorten) the denominator line a, in order to render it as
long as the numerator line b: and it appears to the writer, that there are other advantages in
adopting this name ``tensor'', with the signi®cation de®ned by the formula (257). Adopting
it, then, we might at once be led to see, by (258), from considerations of compositions of
ratios between the lengths of lines, that in any multiplication of geometrical quotients among
themselves, ``the tensor of the product is equal to the product of the tensors.'' But to
establish this important principle otherwise, we may observe that by the equations (87), (88),
(99), (100), of Arts. 11, 13, the vector part ã of the product c � ã of any two geometrical
quotients, represented by the binomial forms b � â, a � á, is changed to its own opposite,
ÿã, while the scalar part c of the same product remains unchanged, when we change the
signs of the vector parts â, á, of the two factors, without changing their scalar parts b, a, and
also invert, at the same time, the order of those factors; in such a manner that either of the two
following conjugate equations includes the other:

c � ã � (b � â)(a � á)

c ÿ ã � (a ÿ á)(b ÿ â)

)
(259)

and these two conjugate equations give, by multiplication,

c2 ÿ ã2 � (b2 ÿ â2)(a2 ÿ á2), (260)

because the product (a � á)(a ÿ á) � a2 ÿ á2 is scalar, so that

(a2 ÿ á2)(b ÿ â) � (b ÿ â)(a2 ÿ á2):

This product, a2 ÿ á2, of the two conjugate expressions, or conjugate geometrical quotients,
denoted here by

a � á, a ÿ á, (261)

is not only scalar, but is also positive; because we have, by the principles of the 12th article, the
two inequalities,

a2 . 0, á2 , 0: (262)

Making then, in conformity with (257),

T(a � á) � T(a ÿ á) � p(a2 ÿ á2), (263)

we see that either of the two conjugate equations (259) gives, by (260),

T(c � ã) � T(b � â):T(a � á); (264)

or eliminating c � ã,

T(b � â)(a � á) � T(b � â):T(a � á): (265)

It is easy to extend this result to any number of geometrical quotients, considered as factors
in a multiplication; and thus to conclude generally that, as already stated, the tensor of the
product is equal to the product of the tensors; a theorem which may be concisely expressed by the
formula,
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TÐ � ÐT: (266)

On Conjugate Geometrical Quotients

41. It will be found convenient here to introduce a new characteristic, K, to denote the
operation of passing from any geometrical quotient to its conjugate, by preserving the scalar
part unchanged, but changing the sign of the vector part; with which new characteristic of
operation K, we shall have, generally,

K
b

a
� S

b

a
ÿ V

b

a
; (267)

or,

K(a � á) � a ÿ á, (268)

if a be still understood to denote a scalar, but á a vector quotient. The tensors of two conjugate
quotients are equal to each other, by (263); so that we may write

TK
b

a
� T

b

a
, or briefly, TK � T; (269)

and the product of any two such conjugate quotients is equal to the square of their common tensor,

b

a
K

b

a
� T

b

a

� �2

: (270)

By separation of symbols, we may write, instead of (267),

K � Sÿ V, (271)

and the characteristic K is a distributive symbol, because S and V have been already seen to be
such: so that the equations (74) (75), of Art. 10, give now the analogous equations,

KÓ � ÓK, KÄ � ÄK, (272)

or in words, the conjugate of a sum (of any number of geometrical quotients) is the sum of the
conjugates; and in like manner, the conjugate of a difference is equal to the difference of the
conjugates. But also we have seen, in (178), that

1 � S� V,

because a geometrical quotient is always equal to the sum of its own scalar and vector parts;
we may therefore now form the following symbolical expressions for our two old characteristics of
operation, in terms of the new characteristic K,

S � 1
2(1� K)

V � 1
2(1ÿ K)

)
: (273)

We may also observe that

KK
b

a
� b

a
, or K2 � 1; (274)

the conjugate of the conjugate of any geometrical quotient being equal to that quotient itself.
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Combining (273), (274), we ®nd, by an easy symbolical process, which the formulñ(272)
show to be a legitimate one,

KS � 1
2(K � K2) � 1

2(K � 1) � �S

KV � 1
2(K ÿ K2) � 1

2(K ÿ 1) � ÿV

)
(275)

and accordingly the operation of taking the conjugate has been de®ned to consist in changing
the sign of the vector part, without making any change in the scalar part, of the quotient on
which the operation is performed. From (273), (274), we may also infer the symbolical
equations,

S2 � 1
4(1� K)2 � 1

2(1� K) � S

V2 � 1
4(1ÿ K)2 � 1

2(1ÿ K) � V

SV � VS � 1
4(1ÿ K2) � 0

9>>=>>; (276)

and in fact, after once separating the scalar and vector parts of any proposed geometrical
quotient, no farther separation of the same kind is possible; so that the operation denoted by
the characteristic S, if it be again performed, makes no change in the scalar part ®rst found,
but reduces the vector part to zero; and, in like manner, the operation V reduces the scalar
part to zero, while it leaves unchanged the vector part of the ®rst or proposed quotient. We
may note here that the same formulñ give these other symbolical results, which also can easily
be veri®ed:

KS � SK; KV � VK; (277)

and

(S� V)n � Sn � Vn � S� V � 1; (278)

at least if the exponent n be any positive whole number, so as to allow a ®nite and integral
development of the symbolic power

(S� V)n � 1n: (279)

With respect to the geometrical signi®cation of the relation between conjugate quotients, we
may easily see that if c and d denote any two equally long straight lines, and x any scalar
coef®cient or multiplier, then the two quotients

xc

c� d
,

xd

c� d
(280)

will be, in the foregoing sense, conjugate; because their sum will be a scalar, namely x, but their
difference will be a vector, on account of the mutual perpendicularity of the lines cÿ d and
c� d, which are there the diagonals of a rhombus, and of which the latter bisects the angle
between the sides c and d of that rhombus. (Compare (209).)

Conversely, if the relation

b9

a
� K

b

a
, (281)

be given, we shall have, by the de®nition (267) of K,
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0 � V
b9� b

a
� S

b9ÿ b

a
; (282)

whence it is easy to infer that, if two conjugate geometrical quotients or fractions be so prepared as to
have a common denominator (a), their numerators (b, b9) will be equally long, and will be equally
inclined to the denominator, at opposite sides thereof, but in one common plane with it; in such a
manner that the line a (or ÿa) bisects the angle between the lines b and b9, if these three
straight lines be supposed to have all one common origin. We are then conducted, in this
way, to a very simple and useful expression, for (what may be called) the re¯exion (b9) of a straight
line (b), with respect to another straight line (a), namely the following:

b9 � K
b

a
3 a: (283)

And whenever we meet with an expression of this form, we shall know that the two lines b
and b9 are equally long; and also that if they have a common origin, the angle between them
is bisected there by one of the two opposite lines � a, or by a parallel thereto.

Finally, we may here note that, by the principles of the present article, and of the foregoing
one, we have the following expressions, which hold good for any pair of straight lines, a and
b:

a

b
� T

a

b

� �2

K
b

a

S
a

b
� T

a

b

� �2

S
b

a

V
a

b
� ÿ T

a

b

� �2

V
b

a

9>>>>>>>>>=>>>>>>>>>;
(284)

42. The equation

S
r

a
� 0, (285)

signi®es, by what has been already shown, that the straight line r is perpendicular to a; it is
therefore the equation of a plane perpendicular to this latter line, and passing through some
®xed origin of lines, if r be regarded as a variable line, but a as a ®xed line from that origin.
The equation

S
rÿ a

a
� 0, or S

r

a
� 1, (286)

expresses, for a similar reason, that the variable line r terminates on another plane, parallel
to the former plane, and having the line a for the perpendicular let fall upon it from the
origin. If b denote the perpendicular let fall from the same origin upon a third plane, the
equation of this third plane will of course be, in like manner,

S
r

b
� 1; (287)

and it is not dif®cult to prove, with the help of the transformations (284), that this other
equation,
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S
r

b
� S

r

a
, (288)

represents a fourth plane, which passes through the intersection of the second and third
planes just now mentioned, namely, the planes (286), (287), and through the origin.

In general, the equation

S
r

a
� r

a9
� r

a 0
� &c:

� �
� a, (289)

expresses that r terminates on a ®xed plane, if it be drawn from a ®xed origin, and if the lines
a, a9, a 0, &c:, and the number a be given. It may also be noted here that the equation of the
plane which perpendicularly bisects the straight line connecting the extremities of two given
lines, a and b, may be thus written:

T
rÿ b

rÿ a
� 1: (290)

43. On the other hand, the equation

S
rÿ b

rÿ a
� 0, (291)

expresses that the lines from the extremities of a and b to the extremity of r are perpendi-
cular to each other; or that the line r terminates upon a spheric surface, in two diametrically
opposite points of which surface the lines a and b respectively terminate: and this diameter
itself, from the end of a to the end of b, regarded as a rectilinear locus, is represented by the
equation

V
rÿ b

rÿ a
� 0; (292)

which may however be put under other forms. A transformation of the equation (291) is the
following:

T
2rÿ bÿ a

bÿ a

� �
� 1; (293)

which expresses that the variable radius rÿ 1
2(b� a) has the same length as the ®xed radius

1
2(bÿ a). For example, by changing ÿa to �b, in this last equation of the sphere, we ®nd

T
r

b
� 1, or S

r

b

� �
ÿ V

r

b

� �2

� 1 (294)

as the equation of a spheric surface described about the origin of lines, as centre, with the line
b for one of its radii, so as to touch, at the end of this line b, the plane (287). (Comp. (255)).

And a small circle of this sphere (294), if it be situated on a secant plane, parallel to this
tangent plane (287), which new plane will thus have for its equation,

S
r

b
� x, (295)

where x is a scalar, numerically less than unity, and constant for each particular circle, will also
be situated on a certain corresponding cylinder of revolution, which will have for its equation
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V
r

b

� �2

� x2 ÿ 1; (296)

where x2 ÿ 1 is negative, as it ought to be, by the 12th article, being equal to the square of a
vector. The sphere may be regarded as the locus of these small circles; and its equation (294)
may be supposed to be obtained by the elimination of the scalar x between the equations of
the plane (295), and of the cylinder (296).

44. Conceive now that instead of cutting the cylinder (296) perpendicularly in a circle, we cut
it obliquely, in an ellipse, by the plane having for equation

S
r

a
� x, (297)

where x is the same scalar as before; so that this new plane is parallel to the ®xed plane (286),
and cuts the plane of the circle (295) in a straight line situated on that other ®xed plane
(288), which has been seen to contain also the intersection of the same ®xed plane (286)
with the tangent plane (287). The locus of the elliptic sections, obtained from the circular
cylinders by this construction, will be an ellipsoid; and conversely, an ellipsoid may in general
be regarded as such a locus. The equation of the ellipsoid, thus found, by eliminating x
between the equations (296), (297), is the following;

S
r

a

� �2

ÿ V
r

b

� �2

� 1; (298)

and by some easy modi®cations of the process, it may be shown that a hyperboloid, regarded as
a certain other locus of ellipses, may in general be represented by an equation of the form

S
r

a

� �2

� V
r

b

� �2

� �1: (299)

The upper sign belongs to a hyperboloid of one sheet, but the lower sign to a hyperboloid of
two sheets; while the common asymptotic cone of these two (conjugate) hyperboloids (299) is the
locus of a certain other system of ellipses, and is represented by the analogous but
intermediate equation,

S
r

a

� �2

� V
r

b

� �2

� 0: (300)

These equations admit of several instructive transformations, to some of which we shall
proceed in the following article.

On some Transformations and Constructions of the Equation of the Ellipsoid

45. The equation (298) of the ellipsoid resolves itself into factors, as follows:

S
r

a
� V

r

b

� �
S

r

a
ÿ V

r

b

� �
� 1 (301)

where the sum and difference, which when thus multiplied together give unity for their
product, are conjugate expressions (in the sense of recent articles); they have therefore a common
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tensor, which must itself be equal to unity; and consequently we may write the equation of the
ellipsoid thus,

T S
r

a
� V

r

b

� �
� 1, (302)

where the sign of the vector may be changed. Substituting for the characteristics of operation,
S and V, their symbolical values (273), we are led to introduce two new ®xed lines g and h,
depending on the two former ®xed lines a and b, and determined by the equations

r

2a
� r

2b
� r

g
;

r

2a
ÿ r

2b
� r

h
; (303)

and thus the equation of the ellipsoid may be changed from (302) to this other form,

T
r

g
� K

r

h

� �
� 1; (304)

which, by the principles (269), (272), (274), may also be thus written,

T
r

h
� K

r

g

� �
� 1; (305)

so that the symbols, g and h, may be interchanged in either of the two last forms of the
equation of the ellipsoid.

46. Let r, g, h be conceived to be numerical symbols, denoting respectively the lengths of
the three lines r, g, h; and make, for conciseness,

r� r2 � r9; g� g2 � g9; h� h2 � h9; (306)

so that the symbols r9, g9, h9 shall denote three new lines, having the same directions as the
three former lines r, g, h, but having their lengths respectively reciprocals of the lengths of
those three former lines. Then, by the properties of conjugate quotients already established,
we shall have the transformations

r

g
� K

g9

r9
; K

r

h
� h9

r9
; (307)

whereby the equation (304) of the ellipsoid becomes

T
h9

r9
� K

g9

r9

� �
� 1: (308)

Let g 0 be a new line, not ®xed but variable, and determined for each variable direction of
r9 or of r by the formula

g 0 � K
g9

r9
3 r9; or g 0 � K

g9

r
3 r; (309)

so that this new and variable line g 0 is, by what was shown respecting the expression (283),
the re¯exion of the ®xed line g9 with respect to a line having the variable direction just
mentioned, of r9 or of r: we may then write the equation (308) of the ellipsoid as follows,
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T
h9� g 0

r9
� 1: (310)

And by comparing this with the formula (256), we see that the length of the line r9, or the
reciprocal of the length r of the variable semidiameter r of the ellipsoid, is equal to the length of the line
h9� g 0; which latter line is the symbolical sum of one ®xed line, h9, and of the variable
re¯exion, g 0, of another ®xed line, g9; this re¯exion having been already seen to be performed
with respect to the variable radius vector or semidiameter, r, of the ellipsoid, of which
semidiameter the dependence of the length on the direction admits of being thus represented, or
constructed, by a very simple geometrical rule.

47. To make more clear the conception of this geometrical rule, let a denote the centre of
the ellipsoid, which centre is the origin of the variable line r; and let two other ®xed points, b
and c, be determined by the symbolical equations

g9 � aÿ c � ac; h9 � bÿ c � bc: (311)

these two notations, ac and aÿ c, (of which one has been already used in the text of the ®rst
article� of this Essay on Symbolical Geometry, while the other was suggested in a note to the
same early article,) being each designed to denote or signify a straight line drawn to the point
a from the point c. Let d be a new or fourth point, not ®xed but variable, and determined by
the analogous equation

g 0 � cÿ d � cd: (312)

then because, in virtue of the relation (309), the lines g9, g 0 are equally long, it follows that
the variable point d is situated on the surface of that ®xed and diacentric sphere, which we may
conceive to be described round the ®xed point c as centre, so as to pass through the centre a
of the ellipsoid as through a given super®cial point of this diacentric sphere. Again, in virtue
of the same relation (309), or of the geometrical re¯exion which the second formula so
marked expresses, the symbolic sum of the two lines, g9, g 0, has the direction of the line r, or
the exactly contrary direction; in fact, that relation (309) conducts to the following scalar
quotient,

g9� g 0

r
� g9

r
� K

g9

r
� 2S

g9

r
; (313)

and this symbolic sum, g9� g 0, may also, by (311) (312), be thus expressed,

g9� g 0 � (aÿ c)� (cÿ d) � aÿ d � ad: (314)

If then we denote by e that variable point on the surface of the ellipsoid at which the line r
terminates, so that

r � eÿ a � ea, (315)

� It was for the sake of making easier the transition to the notation bÿ a, which appears to the present
writer an expressive one, for the straight line drawn to the point b from the point a, that he proposed to
use, with the same geometrical signi®cation, the symbol ba, instead of ab: although it is certainly more
ususal, and perhaps also more natural, when direction is attended to, to employ the latter symbol ab, and
not the former ba, to denote the line thus drawn from a to b.
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we shall have the relation

aÿ d
eÿ a

� ad
ea
� 2S

g9

r
� Vÿ10, (316)

which requires that the three points, a, d, e, should be situated on one common straight line.
We know then the geometrical position of the auxiliary and variable point d, or have a simple
construction for determining this variable point d, as corresponding to any particular point e
on the surface of the ellipsoid, when the centre a, and the two other ®xed points, b and c,
are given; for we see that we have merely to seek the second intersection of the semi-diameter
eÿ a (or ea) of the ellipsoid, with the surface of the diacentric sphere, the ®rst intersection
being the centre a itself; since this second point of intersection will be the required point d.

48. But also, by (311) (312), we have

h9� g 0 � (bÿ c)� (cÿ d) � bÿ d � bd: (317)

this line bd has therefore, by (310), the length of the line r9; which length is, by (306), (315)
the reciprocal of the length r of the semidiameter ea of the ellipsoid. The lines g, h have
generally unequal lengths; and because, by (304) (305), their symbols may be interchanged,
we may choose them so that the former shall be the longer of the two, or that the inequality

g . h (318)

shall be satis®ed; and then, by (306), the line g9 will, on the contrary, be shorter than the line
h9, or the ®xed point b will be exterior to the ®xed diacentric sphere. Drawing, then, from this
external point b, a tangent to this diacentric sphere, and taking the length of the tangent so
drawn for the unit of length, the reciprocal of the length of the line bd, which is considered
in (317), will be the length of that other line bd9, which has the same direction as bd, but
terminates at another variable point d9 on the surface of the diacentric sphere; in such a
manner that this new variable point d9, without generally coinciding with the point d, shall
satisfy the two equations,

d9ÿ b
dÿ b

� Vÿ10;
d9ÿ c
dÿ c

� Tÿ11; (319)

for then the two lines d9ÿ b, dÿ b (or d9b, db) will be, in this or in the opposite order, the
whole secant and external part, while the length of the tangent to the sphere has been above
assumed as unity. Under these conditions, then, the lengths of the lines d9b and ea will be equal,
because they will have the length of the line db for their common reciprocal; so that we shall
have the equation

eÿ a
d9ÿ b

� Tÿ11; (320)

or, in a more familiar notation,

ae � bd9: (321)

It may be noted here that the new radius d9ÿ c of the diacentric sphere admits (compare
the formula (213)) of being symbolically expressed as follows,
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d9ÿ c � K
g 0

h9� g 0
:(h9� g 0); (322)

and, accordingly, this last expression satis®es the two conditions (319), because it gives

d9ÿ b
dÿ b

� S
h9ÿ g 0

h9� g 0
, (323)

and

d9ÿ c
dÿ c

� K
g 0

h9� g 0
:
h9� g 0

ÿg 0
, (324)

of which latter expression the tensor is unity.

49. The remarkably simple formula,

ae � bd9, (321)

to which we have thus been conducted for the ellipsoid, admits of being easily translated into
the following rule for constructing that important surface; which rule for the construction of
the ellipsoid does not seem to have been known to mathematicians, until it was communicated
by the present writer to the Royal Irish Academy in 1846,� as a result of his Calculus of
Quaternions, between which and the present Symbolical Geometry a very close af®nity exists.

From a ®xed point a, on the surface of a given sphere, draw a variable chord of that sphere, da; let d9

be the second point of intersection of the spheric surface with the secant db, which connects the variable
extremity d of this chord da with a ®xed external point b; and take the radius vector ea equal in length
to d9b, and in direction either coincident with, or opposite to, the chord da: the locus of the point e, thus
constructed, will be an ellipsoid, which will have its centre at the ®xed point a, and will pass through the
®xed point b.

The ®xed sphere through a, in this construction of the ellipsoid, is the diacentric sphere of
recent articles; it may also be called a guide-sphere, from the manner in which it assists to mark
or to represent the direction, and at the same time serves to construct the length of a variable
semidiameter of the ellipsoid; while, for a similar reason, the points d and d9 upon the surface
of this sphere may be said to be conjugate guide-points; and the chords da and d9a may receive
the appellation of conjugate guide-chords. In fact, while either of these two guide-chords of the
sphere, for instance (as above) the chord da, coincides in direction with a semidiameter ea of
the ellipsoid, the distance d9b of the extremity d9 of the other or conjugate guide-chord, d9a,
from the ®xed external point b, represents, as we have seen, the length of that semidiameter.
And that the ®xed point b, although exterior to the diacentric sphere, is a super®cial point of
the ellipsoid, appears from the construction, by conceiving the conjugate guide-point d9 to
approach to coincidence with a; for e will then tend to coincide either with the point b itself,
or with another point diametrically opposite thereto, upon the surface of the ellipsoid.

50. Some persons may prefer the following mode of stating the same geometrical construc-
tion, or the same fundamental property, of the ellipsoid: which other mode also was

� [See Vol. III, p. 375.]
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communicated by the present writer to the Royal Irish Academy in 1846.� If, of a rectilinear
quadrilateral abed9, of which one side ab is given in length and in position the two diagonals ae, bd9

be equal to each other in length, and intersect (in d) on the surface of a given sphere (with centre c),
of which sphere a chord ad9 is a side of the quadrilateral adjacent to the given side ab, then the other side
be, adjacent to the same given side ab, is a chord of a given ellipsoid.

Thus, denoting still the centre of the sphere by c, while a is still the centre of the ellipsoid,
we see that the form, magnitude, and position, of this latter surface are made by the
foregoing construction to depend, according to very simple geometrical rules, on the
positions of the three points a, b, c; or on the form, magnitude, and position of what may
(for this reason) be named the generating triangle abc. Two of the sides of this triangle,
namely bc and ca, are perpendicular, as it is not dif®cult to show from the construction, to
the two planes of circular section of the ellipsoid; and the third side ab is perpendicular to one
of the two planes of circular projection of the same ellipsoid: this third side ab being the axis of
revolution of a circumscribed circular cylinder; which also may be proved, without dif®culty,
from the construction assigned above. (See Articles 52, 53.) The length bc of the side bc of
the triangle, is (by the construction) the semisum of the lengths of the greatest and least
semidiameters of the ellipsoid; and the length ca of the side ca is the semidifference of the
lengths of those extreme semidiameters, or principal semiaxes, of the same ellipsoid: while
(by the same construction) these greatest and least semiaxes, or their prolongations, intersect
the surface of the diacentric sphere in points which are situated, respectively, on the ®nite
side cb of the triangle abc itself, and on the side cb prolonged through c. The mean
semiaxis of the ellipsoid, or the semidiameter perpendicular to the greatest and least
semiaxes, is (by the construction) equal in length (as indeed it is otherwise known to be) to
the radius of the enveloping cylinder of revolution, or to the radius of either of the two
diametral and circular sections: the length of this mean semiaxis is also constructed by the
portion bg of the axis of the enveloping cylinder, or of the side ba of the generating triangle,
if g be the point, distinct from a, in which this side ba meets the surface of the diacentric
sphere. And hence we may derive a simple geometrical signi®cation, or property, of this
remaining side ba of the triangle abc, as respects its length ba; namely, that this length is a
fourth proportional to the three semiaxes of the ellipsoid, that is to say, to the mean, the
least, and the greatest, or to the mean, the greatest, and the least of those three principal
and rectangular semiaxes.

On the Law of the Variation of the Difference of the Squares of the Reciprocals of the Semiaxes of a
Diametral Section

51. To give a specimen of the facility with which the foregoing construction serves to
establish some important properties of the ellipsoid, we shall here employ it to investigate
anew the known and important law, according to which the difference of the squares of the
reciprocals of the greatest and least semidiameters, of any plane and diametral section, varies
in passing from one such section to another. Conceive then that the ellipsoid itself, and the

� [See Vol. III. p. 375.]
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auxiliary or diacentric sphere which was employed in the foregoing construction, are both
cut by a plane ab9c9, passing through the centre a of the ellipsoid, and having b9 and c9 for
the orthogonal projections, upon this secant plane, of the ®xed points b and c. The auxiliary
or guide-point d comes thus to be regarded as moving on the circumference of a circle, which
passes through a, and has its centre at c9: and since the semidiameter ea of the ellipsoid, as
being equal in length to d9b, by the formula (321) of Art. 48, (or because these are the two
equally long diagonals of the quadrilateral abed9 of Art. 50), must vary inversely as db (by an
elementary property of the sphere), we are led to seek the difference of the squares of the
greatest and least values of db, or of db9, since the square of the perpendicular b9b is constant
for the section. But the shortest and longest straight lines, d1b9, d2b9, which can thus be
drawn to the circumference of the auxiliary circle round c9 (namely the section of the
diacentric sphere), from the ®xed point b9 in its plane, are those drawn to the extremities d1,
d2 of that diameter d1c9d2 which passes through, or tends towards this point b9; in such a
manner that the four points b9d1c9d2 are situated on one straight line. Hence the difference
of the squares of d1b9, d2b9, is equal to four times the rectangle under d1c9, or ac9, and b9c9;
that is to say, under the projections of the sides ac, bc, of the generating triangle, on the
plane of the diametral section. It is, then, to this rectangle, under these two projections of two ®xed
lines, on any variable plane through the centre of the ellipsoid, that the difference of the squares of the
reciprocals of the extreme semidiameters of the section is proportional. Hence, in the language of
trigonometry, this difference of squares is proportional (as indeed it is well known to be) to
the product of the sines of the inclinations of the cutting plane to two ®xed planes of circular
section; which latter planes are at the same time seen to be perpendicular to the two ®xed
sides ac, bc, of the generating triangle in the construction.

It seems worth noting here, that the foregoing process proves at the same time this other
well-known property of the ellipsoid, that the greatest and least semidiameters of a plane
section through the centre are perpendicular to each other; and also gives an easy
geometrical rule for constructing the semiaxes of any proposed diametral section; for it shows that
these semiaxes have the directions of the two rectangular guide-chords d1a, d2a; while their
lengths are equal, respectively, to those of the lines d91b, d92b.

On the Planes of Circular Section and Circular Projection

52. It may not be uninstructive to state brie¯y here some simple geometrical reasonings, by
which the line bg of Art. 50 may be shown to have its length equal to that of the radius of an
enveloping cylinder of revolution, as was asserted in that article; and also to the radius of
either of the two diametral and circular sections of the ellipsoid. First, then, as to the
cylinder: the equation ae � bd9 shows that the rectangle under the two lines ae and bd is
constant for the ellipsoid, because the rectangle under bd9 and bd is constant for the sphere;
and the point d has been seen to be situated upon the straight line ae (prolonged if
necessary). Hence the double area of the triangle abe, or the rectangle under the ®xed line
ab, and the perpendicular let fall thereon from the variable point e of the ellipsoid, is always
less than the lately mentioned constant rectangle; or than the square of the tangent to the
diacentric sphere from b; or, ®nally, than the rectangle under the same ®xed line ab and its
constant part gb: except at the limit where the angle adb is right, at which limit the double
area of the triangle abe becomes equal to the last mentioned rectangle. The ellipsoid is
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therefore entirely enveloped by that cylinder of revolution which has ab for axis, and gb for
radius; being situated entirely within this cylinder, except for a certain limiting curve or
system of points, which are on (but not outside) the cylinder, and are determined by the
condition that adb shall be a right angle. This limiting condition determines a second spherical
locus for the guide-point d, besides the diacentric sphere; it serves therefore to assign a
circular locus for that point, which circle passes through the centre a of the ellipsoid, because
this centre is situated on each of the two spherical loci. And hence by the construction we
obtain an elliptic locus for the point e, namely the ellipse of contact of the ellipsoid and
cylinder; which ellipse presents itself here as the intersection of that enveloping cylinder of
revolution with the plane of the circle which has been seen to be the locus of d.± It may also
be shown geometrically, by pursuing the same construction into its consequences, that the
ellipsoid is enveloped by another (equal) cylinder of revolution, giving a second diametral
plane of circular projection; the ®rst such plane being (by what precedes) perpendicular to the
line ab: and that the axis of this second circular cylinder, or the normal to this second plane
of circular projection of the ellipsoid, is parallel to the straight line which touches, at the
centre c of the diacentric sphere, the circle circumscribed about the generating triangle
abc.

53. Again, with respect to the diametral and circular sections of the ellipsoid, considered as
results of the construction: if we conceive that the guide-point d, in that construction,
approaches in any direction, on the surface of the diacentric sphere, to the centre a of the
ellipsoid, the conjugate guide-point d9 must then approach to the point g, because this is the
second point of intersection of the side ba of the triangle with the surface of the diacentric
sphere, if the point a itself be regarded as the ®rst point of such intersection. Thus, during
this approach of d to a, the semidiameter ea of the ellipsoid, having always (by the
construction) the direction of � da, and the length of d9b, must tend to touch the diacentric
sphere at a, and to have the same ®xed length as the line bg, or as the radius of the cylinder.
And in this way the construction offers to our notice a circle on the ellipsoid, whose radius
� bg, and whose plane is perpendicular to the side ac of the generating triangle; which side
is thus seen to be a cyclic normal of the ellipsoid, by this process as well as by that of the 51st
article.

Finally, with respect to that other cyclic plane which is perpendicular to the side bc of the
triangle abc, it is suf®cient to observe that if we conceive the point d9 to revolve in a small
circle on the surface of the diacentric sphere, from g to g again, preserving a constant
distance from the ®xed external point b, then the semidiameter ea of the ellipsoid will retain,
by the construction, during this revolution of d9, a constant length � bg; while, by the same
construction, the guide-chord da, and the semidiameter ea of the ellipsoid, will at the same
time revolve together in a diametral plane perpendicular to bc: in which second cyclic plane,
therefore, the point e will thus trace out a second circle on the ellipsoid, with a radius equal to
the radius of the former circle; or to that of the mean sphere (constructed on the mean axis as
diameter, and containing both the circles hitherto considered); or to the radius of either of
the two enveloping cylinders of revolution.Ð It is evident that if the guide-point d describe
any other circle on the diacentric sphere, parallel to this second cyclic plane, the conjugate
guide-point d9 will describe another parallel circle, leaving the length bd9 � ea unaltered;
whence the known theorem ¯ows at once, that if the ellipsoid be cut by a concentric sphere,
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the section is a spherical ellipse;� and also that the concentric cyclic cone which rests thereon
(being the cone described by the guide-chord da in the construction) has its two cyclic planes
coincident with the two cyclic planes of the ellipsoid.

� This easy mode of deducing, from the author's construction of the ellipsoid, the known spherical
ellipses on that surface, was pointed out to him in 1846, by a friend to whom he had communicated that
construction, namely by the Rev. J. W. Stubbs, Fellow of Trinity College, Dublin.y Several investigations,
by the present author, connected with the same construction of the ellipsoid, have appeared in the
Proceedings of the Royal Irish Academy, (see in particular those for July 1846); and also in various
numbers of the (London, Edinburgh, and Dublin) Philosophical Magazine, in which magazine several
articles on Quaternions have been already published by the writer,{ and are likely to be hereafter
continued, which may on some points be perhaps usefully compared with the present Essay on
Symbolical Geometry.
y [See Vol. III, p. 375, footnote.]
{ [See Vol. III.]
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V.

ON SOME NEW APPLICATIONS OF QUATERNIONS TO

GEOMETRY (1849)

[British Association Report 1849, Part II., p. 1.]



VI.

ON POLYGONS INSCRIBED ON A SURFACE OF THE

SECOND ORDER (1850)

[British Association Report 1850, Part II., p. 2.]



VII .

SYMBOLICAL EXTENSIONS OF QUATERNIONS;

AND

GEOMETRICAL APPLICATIONS OF QUATERNIONS (1855)

[Communicated June 11, 1855]
[Proceedings of the Royal Irish Academy, 6 250 (1858).]

SirWilliam R. Hamilton commenced the reading of a Paper on some symbolical extensions
of quaternions, and especially on a theory of associative quines.

2. Sir William R. Hamilton also commenced an account of some geometrical applications
of his theories, especially as founded on the notion of the anharmonic quaternion, and as
leading to an enlarged conception of involution, not merely in one plane, but on a sphere,
and generally in space.

[Communicated June 25, 1855]
[Proceedings of the Royal Irish Academy, 6 260 (1858).]

Sir William R. Hamilton read a continuation of his Paper on some new geometrical
applications of quaternions.

[Communicated February 25 1856]
[Proceedings of the Royal Irish Academy, 6 311 (1858).]

Sir W. R. Hamilton, LL. D., read a paper on a geometrical extension of the Calculus of
Quaternions, as concerns its fundamental interpretations.



VIII .

ON A GENERAL EXPRESSION BY QUATERNIONS FOR CONES OF THE

THIRD ORDER (1857)

[Communicated May 11, 1857]
[Proceedings of the Royal Irish Academy, 6 506 (1858).]

The President read the following note:-
``Sir William Rowan Hamilton wished to hand in a memorandum of the following `General

Expression by Quaternions, for Cones of the Third Order,' which he hoped to be allowed to
develope and illustrate at some subsequent meeting of the Academy during the present
Session. The equation in question is,

Sqrq9rq 0r � 0; (A)

where r is the variable vector (or side) of the cone of the third order, drawn from its vertex as
the origin; while q, q9, q 0, are three arbitrary but constant quaternions, which may be
regarded as ®xed parameters of the surface.''

[Communicated May 25, 1857]
[Proceedings of the Royal Irish Academy, 6 512 (1858).]

Sir W. R. Hamilton, LL. D., read some remarks on the General Equation in Quaternions for
Cones of the Third Order.



IX.

ON A CERTAIN HARMONIC PROPERTY OF THE ENVELOPE OF THE

CHORD CONNECTING TWO CORRESPONDING POINTS OF THE

HESSIAN OF A CUBIC CONE (1857)

[Communicated June 22, 1857]
[Proceedings of the Royal Irish Academy, 6 524 (1858).]

Sir William R. Hamilton read a paper on a certain harmonic property of the envelope of the
chord connecting two corresponding points of the Hessian of a cubic cone.



X.

ON SOME APPLICATIONS OF QUATERNIONS TO CONES OF THE

THIRD DEGREE (1857)

[British Association Report 1857, Part II., p. 3.]



XI.

ON ANHARMONIC CO-ORDINATES (1860)

[Communicated April 9, 1860; May 28, 1860; June 25, 1860]
[Proceedings of the Royal Irish Academy, 7, 1862, pp. 286±289, 329, 350±354

and
Natural History Review and Journal of Science, 7, 1860, pp. 242±246, 325±327, 506±509.]

1. Let ABC be any given triangle; and let O, P be any two points in its plane, whereof O shall
be supposed to be given or constant, but P variable. Then, by a well-known theorem,
respecting the six segments into which the sides are cut by right lines drawn from the vertices
of a triangle to any common point the three following anharmonics of pencils have a product
equal to positive unity:-

(A:PCOB):(B:PAOC):(C:PBOA) � �1:

It is, therefore, allowed to establish the following system of three equations, of which any
one is a consequence of the other two:-

y

z
� (A:PCOB);

z

x
� (B:PAOC);

x

y
� (C:PBOA);

and, when this is done, I call the three quantities x, y, z, or any quantities proportional to
them, the Anharmonic Co-ordinates of the Point P, with respect to the given triangle ABC, and to
the given point O. And I denote that point P by the symbol,

P � (x, y, z); or, P � (tx, ty, tz); &c:

2. When the variable point P takes the given position O, the three anharmonics of pencils
above mentioned become each equal to unity; so that we may write then,

x � y � z � 1:

The given point O is therefore denoted by the symbol,

Fig. 1



O � (1, 1, 1);

on which account I call it the Unit-Point.

3. When the variable point P comes to coincide with the given point A, so as to be at the
vertex of the ®rst pencil, but on the second ray of the second pencil, and on the fourth ray of
the third, without being at the vertex of either of the two latter pencils, then the ®rst
anharmonic becomes indeterminate, but the second is equal to zero, and the third is in®nite.
We are, therefore, to consider y and z, but not x, as vanishing for this position of P; and
consequently may write,

A � (1, 0, 0):

In like manner,

B � (0, 1, 0), and C � (0, 0, 1);

and on account of these simple representations of its three corners, I call the given triangle
ABC the Unit-Triangle.

4. Again, let the sides of this given triangle ABC be cut by a given transversal A9B9C9, and by
a variable transversal LMN. Then, by another very well known theorem respecting segments,
we shall have the relation,

(LBA9C):(MCB9A):(NAC9B) � �1;

it is therefore permitted to establish the three equations,

m

n
� (LBA9C),

n

l
� (MCB9A),

l

m
� (NAC9B);

where l, m, n, or any quantities proportional to them, are what I call the Anharmonic Co-
ordinates of the Line LMN, with respect to the given triangle ABC, and the given transversal
A9B9C9. And I denote the line LMN by the symbol,

LMN � [l , m, n]:

Fig. 2
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For example, if this variable line come to coincide with the given line A9B9C9, then

l � m � n;

so that this given line may be thus denoted,

A9B9C9 � [1, 1, 1];

on which account I call the given transversal A9B9C9 the Unit-Line of the Figure. The sides, BC,
&c., of the given triangle ABC, take on this plan the symbols [1, 0, 0], [0, 1, 0], [0, 0, 1].

5. Suppose now that the unit-point and unit-line are related to each other, as being (in a
known sense) pole and polar, with respect to the given or unit-triangle; or, in other words, let
the lines OA, OB, OC be supposed to meet the sides BC, CA, AB of that given triangle, in
points A0, B0, C0, which are, with respect to those sides, the harmonic conjugates of the points
A9, B9, C9, in which the same sides are cut by the given transversal A9B9C9. Also, let the
variable point P be situated upon the variable line LMN; and let Q, R, S be the intersections of
AP, BP, CP with BC, CA, AB. Then, because

(BA9CA 0) � (CB9AB 0) � (AC9BC 0) � ÿ1,

we have

ÿ m

n
� (LBA 0C), ÿ n

l
� (MCB 0A), ÿ l

m
� (NAC 0B)

ÿ n

m
� (LCA 0B), ÿ l

n
� (MAB 0C), ÿ m

l
� (NBC 0A);

8>><>>:
as well as

y

z
� (QCA 0B),

z

x
� (RAB 0C),

x

y
� (SBC 0A),

z

y
� (QBA 0C),

x

z
� (RCB 0A),

y

x
� (SAC 0B);

8>><>>:

Fig. 3
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and therefore,

ÿlx

nz
� (MARC);

ÿmy

nz
� (LBQC):

But, by the pencil through P,

(MARC) � (LQBC);

and by the de®nition of the symbol (ABCD), for any four collinear points,

(ABCD) � AB

BC
:
CD

DA
,

which is here throughout adopted, we have the identity,

(ABCD) � (ACBD) � 1;

therefore

(MARC)� (LBQC) � 1,

or,

lx � my � nz � 0:

6. We arrive then at the following Theorem, which is of fundamental importance in the
present system of Anharmonic Co-ordinates:-

``If the unit-point O be the pole of the unit-line A9B9C9, with respect to the unit-triangle
ABC, and if a variable point P, or (x, y, z), be situated anywhere on a variable right line LMN,
or [l , m, n], then the sum of the products of the corresponding co-ordinates of point and
line is zero.''

7. It may already be considered as an evident consequence of this Theorem, that any
homogeneous equation of the pth dimension,

f p(x, y, z) � 0,

represents a curve of the pth order, considered as the locus of the variable point P; and that any
homogeneous equation of the q th dimension, of the form

Fq(l , m, n) � 0,

may in like manner be considered as the tangential equation of a curve of the q th class, which is
the envelope of the variable line LMN. But any examples of such applications must be reserved
for a future communication. Meantime, I may just mention that I have been, for some time
back, in possession of an analogous method for treating Points, Lines, Planes, Curves, and
Surfaces in Space, by a system of Anharmonic Co-ordinates.

8. As regards the advantages of the Method which has been thus brie¯y sketched, the ®rst
may be said to be its geometrical interpretability, in a manner unaffected by perspective. The
relations, whether between variables or between constants, which enter into the formula of this
method, are all projective; because they all depend upon, and are referred to, anharmonic
functions, of groups or of pencils.
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9. In the second place, we may remark that the great principle of geometrical Duality is
recognised from the very outset. Con®ning ourselves, for the moment (as in the foregoing
articles), to ®gures in a given plane, we have seen that the anharmonic co-ordinates of a point,
and those of a right line, are deduced by processes absolutely similar, the one from a system of
four given points, and the other from a system of four given right lines. And the fundamental
equation (lx � my � nz � 0) which has been found to connect these two systems of co-ordinates,
is evidently one of the most perfect symmetry, as regards points and lines. An analogous
symmetry will show itself afterwards, in relation to points and planes.

10. The third advantage of the anharmonic method may be stated to consist in its possessing
an increased number of disposable constants. Thus, within the plane, trilinear co-ordinates give us
only six such constants, corresponding to the three disposable positions of the sides of that
assumed triangle, to the perpendicular distances from which the co-ordinates are supposed to
be proportional; but anharmonics, by admitting an arbitrary unit-point, enable us to treat two
other constants as disposable, the number of such constants being thus raised from six to eight.
Again, in space, whereas quadriplanar co-ordinates, considered as the ratios of the distances from
four assumed planes, allow of only twelve disposable constants, corresponding to the possible
selection of the four planes of reference, anharmonic co-ordinates, on the contrary, which admit
either ®ve planes or ®ve points as data, and which might, therefore, be called quinquiplanar or
quinquipunctual, permit us to dispose of no fewer than ®fteen constants as arbitrary, in the
general treatment of surfaces.

11. To myself it naturally appears as a fourth advantage of the anharmonic method, that it is
found to harmonize well with the method of quaternions, and was in fact suggested thereby;
though not without suggestions from other methods previously known.

12. Thus, if a, â, ã denote three given vectors, oa, ob, oc, from a given origin o, while a, b, c
are three given and constant scalars, but t, u, v are three variable scalars, subject to the
condition that their sum is zero,

t � u � v � 0;

then the equation,

op � r � t r aá� ur bâ� vr cã

t r a � ur b � vr c
,

in which r is any positive and whole exponent, expresses generally that the locus of the point
p is a curve of the r th order, in the given plane of abc; which curve has the property, that it is
met in r coincident points, by any one of the three sides of the given triangle abc. But the
coef®cients t r ur vr are examples here of what have been above called anharmonic co-
ordinates.

13. Proceeding to space, let a, b, c, d be the four corners of a given triangular pyramid, and
let e be any ®fth given point, which is not on any one of the four faces of that pyramid. Let p
be any sixth point of space; and let xyzw be four positive or negative numbers, such that
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x

w
� (bc:aedp),

y

w
� (ca:bedp),

z

w
� (ab:cedp);

the right-hand member of these equations representing anharmonics of pencils of planes, in a
way which is easily understood, with the help of the de®nition (5) of the symbol (abcd).
Then I call x, y, z, w (or any numbers proportional to them), the Anharmonic Co-ordinates of
the Point p, with respect to what may be said to be the Unit-Pyramid, abcd, because its corners
may (on the present plan) be thus denoted,

a � (1, 0, 0, 0); b � (0, 1, 0, 0); c � (0, 0, 1, 0); d � (0, 0, 0, 1);

and with respect to that ®fth given point e, which may be called the Unit-Point, because its
symbol, in the present system, may be thus written:-

e � (1, 1, 1, 1):

And I denote the general or variable point by the symbol,

p � (x, y, z, w):

14. When we have thus ®ve given points, a . . . e, of which no four are situated in any
common plane, we can connect any two of them by a right line, and the three others by a
plane, and determine the point in which these last intersect each other, deriving in this way a
system of ten lines, ten planes, and ten points, whereof the latter may be thus denoted:-

a9 � bc:ade � (0, 1, 1, 0), b9 � &c:, c9 � &c:;

a1 � ae:bcd � (0, 1, 1, 1), b1 � &c:, c1 � &c:;

a2 � ad:bce � (1, 0, 0, 1), b2 � &c:, c2 � &c:;

d1 � de:abc � (1, 1, 1, 0), ;

and the harmonic conjugates of these last points, with respect to the ten given lines on which
they are situated, may on the same plan be represented by the following symbols:-

a 0 � (0, 1, ÿ1, 0), b 0 � &c: c 0 � &c:

a91 � (2, 1, 1, 1), b91 � &c: c91 � &c:

a92 � (1, 0, 0, ÿ1), b92 � &c: c92 � &c:

d91 � (1, 1, 1, 2);

so that

(ba9ca 0) � . . . � (ea1aa91) � . . . � (da2aa92) � . . . � (ed1dd91) � ÿ1:

15. Let any plane Ð intersect the three given lines da, db, dc in points q, r, s; and let lmnr
be any positive or negative numbers, such that

l

r
� (da92aq),

m

r
� (db92br),

n

r
� (dc92cs);

then I call l, m, n, r, or any numbers proportional to them, the Anharmonic Coordinates of the
Plane Ð; which plane I also denote by the Symbol,
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Ð � [l , m, n, r]:

In particular the four faces of the unit pyramid come thus to be denoted by the symbols,

bcd � [1, 0, 0, 0], cad � [0, 1, 0, 0], abd � [0, 0, 1, 0], abc � [0, 0, 0, 1];

and the six planes through its edges, and through the unit point, are denoted thus:-

bce � [1, 0, 0, ÿ1]; cae � [0, 1, 0, ÿ1]; abe � [0, 0, 1, ÿ1];

ade � [0, 1, ÿ1, 0]; bde � [ÿ1, 0, 1, 0]; cde � [1, ÿ1, 0, 0];

in connexion with which last planes it may be remarked that we have, generally, as a
consequence of the foregoing de®nitions, the formulñ,

n

m
� (ba 0cl),

l

n
� (cb 0am),

m

l
� (ac 0bn),

if l, m, n be the points in which a variable plane Ð intersects the sides bc, &c., of the given
triangle abc: as we have also, generally,

z

y
� (ad:cebp),

x

z
� (bd:aecp), � y

x
(cd:beap):

16. If a point, p � (xyzw), be situated on a plane, Ð � [lmnr], then I ®nd that the following
relation between their co-ordinates exists, which is entirely analogous to that already assigned
(6) for the case of a point and line in a given plane, and is of fundamental importance in the
application of the present Anharmonic Method to space:

lx � my � nz � rw � 0;

or in words, ``the sum of the products of corresponding co-ordinates, of point and plane, is zero.''
For example, all planes through the unit point (1, 1, 1, 1) are subject to the condition,

l � m � n � r � 0,

as may be seen for the six planes (15) already drawn through that point e; and the six points
a 0b 0c 0a92b92c92 (14), in which the six edges bc, ca, ab, da, db, dc, of the given or unit pyramid
abcd, intersect the six corresponding edges of the inscribed and homologous pyramid
a1b1c1d1, with the unit point e for their centre of homology, are all ranged on one common
plane of homology, of which the equation and the symbol may be thus written,

x � y � r � w � 0, [e] � [1, 1, 1, 1],

and which may be called (comp. 4) the Unit-Plane.

17. Any four collinear points, p0, p1, p2, p3, have their anharmonic symbols connected by
two equations of the forms,

(p1) � t(p0)� u(p2), p3 � t9(p0)� u9(p2)

each including four ordinary linear equations between the co-ordinates of the four points,
such as

x1 � tx0 � ux2, y1 � ty0 � uy2, &c:;

and the anharmonic of their group is then found to be expressed by the formula,
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(p0, p1, p2, p3) � ut9

tu9
:

And similarly, if any four planes Ð0: :Ð3 be collinear (that is, if they have any one right line
common to them all), their symbols satisfy two linear equations of the corresponding forms,

[Ð1] � t[Ð0]� u[Ð2], [Ð3] � t9[Ð0] � u9[Ð2];

and the anharmonic of the pencil is,

(Ð0Ð1Ð2Ð3) � ut9

tu9
:

18. If ö(xyzw) be any rational fraction, the numerator and denominator of which are any two
given homogeneous and linear functions of the co-ordinates of a variable point; and if we
determine a line Ë, and three planes Ð0, Ð1, Ð2 through that line, by the four local equations,

ö � 0

0
, ö � 1, ö � 1, ö � 0;

then I ®nd that the function ö may be expressed as the anharmonic of a pencil of planes, as
follows:-

ö(xyzw) � (Ð0Ð1Ð2Ð);

where Ð is the variable plane Ëp, which passes through the ®xed line Ë, and through the
variable point p � (xyzw).

19. And in like manner, as the geometrical dual (9) of this last theorem (18), if Ö(lmnr) be
any rational fraction, of which the numerator and denominator are any two given functions,
homogeneous and linear, of the co-ordinates of a variable plane ; and if we determine a line Ë,
and three points p0, p1, p2 on that line, by the four tangential equations,

Ö � 0

0
, Ö � 1, Ö � 1, Ö � 0;

I ®nd that the proposed function Ö may then be thus expressed as the anharmonic of a group
of points.

Ö(lmnr) � (p0p1p2p);

p here denoting the variable point Ë:Ð, in which the ®xed line Ë intersects the variable plane
Ð � [lmnr].

20. All problems respecting intersections of lines with planes, &c., are resolved, with the help of
the Fundamental Theorem (16) respecting the relation which exists between the anharmonic
co-ordinates of point and plane, as easily by the present method, as by the known method of
quadriplanar co-ordinates (10); and indeed, by the very same mechanism, of which it is therefore
unnecessary here to speak.

But it may be proper to say a few words respecting the application of the anharmonic
method to Surfaces (7); although here again the known mechanism of calculation may in great
part be preserved unchanged, and only the interpretations need be new.
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21. In general, it is easy to see (comp. 7) that, in the present method, as in older ones, the
order of a curved surface is denoted by the degree of its local equation, f (xyzw) � 0; and that the
class of the same surface is expressed, in like manner, by the degree of its tangential equation,
F (lmnr) � 0: because the former degree (or dimension) determines the number of points
(distinct or coincident, and real or imaginary), in which the surface, considered as a locus, is
intersected by an arbitrary right line; while the latter degree determines the number of planes
which can be drawn through an arbitrary right line, so as to touch the same surface,
considered as an envelope. It may be added, that I ®nd the partial derivatives of each of these two
functions, f and F, to be proportional to the co-ordinates which enter as variables into the
other ; thus we may write

[Dxf , Dyf , Dzf , Dwf ],

as the symbol (15) of the tangent plane to the locus f, at the point (xyzw); and

(Dl F , DmF , DnF , Dr F ),

as a symbol for the point of contact of the envelope F, with the plane [lmnr]: whence it is easy to
conceive how problems respecting the polar reciprocals of surfaces are to be treated.

22. As a very simple example, the surface of the second order which passes through the nine
points, above called abcdea9a2c9c2, is easily found to have for its local equation, 0 �
f � xz ÿ yw; whence the co-ordinates of its tangent plane are, l � Dxf � z, m � Dyf � ÿw,
n � Dzf � x, r � Dwf � ÿ y, and its tangential equation is, therefore, 0 � F � ln ÿ mr , so
that it is also a surface of the second class. In fact it is the hyperboloid on which the gauche
quadrilateral abcd is superscribed, and which passes also through the point e; and the known
double generation, and anharmonic properties, of this surface, may easily be deduced from either
of the foregoing forms of its anharmonic equation, whereof the ®rst may (by 13, 15) be
expressed as an equality between the anharmonic functions of two pencils of planes, in either
of the two following ways:-

(bc:aedp) � (da:becp); (ab:cedp) � (cd:beap):
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XII .

ON GEOMETRICAL NETS IN SPACE

[Communicated June 24, 1861]
[Proceedings of the Royal Irish Academy, 7, 532±582 (1862).]

June 24, 1861.
The Very Rev. Dean GRAVES, President, in the Chair.

The following communication was read:-
``On Geometrical Nets in Space.'' By Sir Wm. R. Hamilton, LL. D., Astronomer Royal of

Ireland, and Andrews' Professor of Astronomy.

1. When any ®ve points of space, ABCDE, are given, whereof no four are supposed to be
complanar, we can connect any two of them by a right line, and the three others by a plane,
and determine the point in which these last intersect each other: deriving thus a system of ten
lines Ë1, ten planes Ð1, and ten points P1, from the given system of ®ve points P0, by what may be
called a First Construction.

We may next propose to determine all the new and distinct lines Ë2, and planes Ð2, which
connect the ten derived points P1, with the ®ve given points P0, and with each other; and may
then inquire what new and distinct points P2 arise, as intersections� Ë:Ð of lines and planes
already obtained: all such new lines, planes, and points being said to belong to a Second
Construction. And then we might proceed, on the same plan, to a Third Construction, and to
inde®nitely many others following: building up thus what Professor MoÈbius, in his Barycentric
Calculus,y has proposed to call a Geometrical Net in Space.

2. In general, if n denote ®ve or any greater number of independent points of space, the
number of the derived points of the form Ë:Ð, or ab:cde, which can be obtained by what is
relatively to them a First Construction, of the kind just now described, is easily seen to be the
function,

f (n) � n(n ÿ 1)

2
:
(n ÿ 2)(n ÿ 3)(n ÿ 4)

2:3
;

so that f (5) � 10, as above, but f (15) � 30030. If then the ®fteen points P0, P1 were thus
independent, or unconnected with each other, we might expect to ®nd that the number of points

� Intersections Ë:Ë of line with line (when complanar) are included in this class Ë:Ð; and intersections
Ð:Ð:Ð of three distinct planes, when not included at this stage, may be reserved for a subsequent construction,
in which they naturally offer themselves, as of the standard form Ë:Ð.
y Der Calcul Barycentrische, Leipzig, 1827, p. 291. Some ®rst results connected with the subject were

given, according to the writer's recollection, in a Memoir by Carnot on Transversals, to which he cannot at
present refer.



P2 derived from them, at the next stage, should exceed thirty thousand. And although it was
obvious that many reductions of this number must occur, on account of the dependence of the
ten points P1 on the ®ve points P0, yet when I happened to feel a curiosity, some time ago, to
determine the precise number of those which have been above called Points of Second
Construction, and to assign their chief geometrical relations to each other, and to the ®fteen
former points, it must be confessed that I thought myself about to undertake the solution of a
rather formidable Problem. But the motive which had led me to attack that problem, namely
the desire to try the ef®ciency of a certain system of Quinary Symbols, for points, lines, and
planes in space, which the Method of Vectors had led me to invent, inspired me with a hope,
which I trust that the result of the attempt has not altogether failed to justify. And, in the
present communication, I wish ®rst to present some outline of what may be called perhaps a
Quinary Calculus, before proceeding to give, in the second place, some sketch of the results of
its application to the geometrical Net in Space.

Part I. On a Quinary Calculus for Space

3. Let abcde be (as in 1.) any ®ve given points of space, whereof no four are situated in any
common plane; then, by decomposing ed in the directions of ea, eb, ec, we can always obtain
an equation of the form,

a:ea� b:eb� c:ec� d:ed � 0, (1)

in which the coef®cients abcd have determined ratios. And if we next introduce a ®fth
coef®cient e, such that

a � b � c � d � e � 0, (2)

and add to (1) the identity

(a � b � c � d � e)oe � 0, (3)

in which o is any arbitrary point (or origin of vectors), we arrive at the following equivalent
but more symmetric form,

a:oa� b:ob� c:oc� d:od� e:oe � 0, (4)

in which abcde may be called the ®ve (numerical) constants of the given system of ®ve points,
a . . . e, although only their ratios are important, and (as above) their sum is zero.

4. Let p be any other point of space, and let xyzwv be coef®cients satisfying the equation,

(x ÿ v)a:pa� ( y ÿ v)b:pb� (z ÿ v)c:pc� (w ÿ v)d:pd � 0; (5)

then, adding the identity,

v(a:pa� b:pb� c:pc� d:pd� e:pe) � 0, (6)

which results from (4), we obtain this other symmetric formula,

xa:pa� yb:pb� zc:pc� wd:pd� ve:pe � 0, (7)

which may also be thus written,

517XII . ON GEOMETRICAL NETS IN SPACE



op � xa:oa� yb:ob� zc:oc� wd:od� ve:oe
xa � yb � zc � wd � ve

, (8)

o being again an arbitrary origin; and the ®ve new and variable coef®cients, xyzwv, whereof the
ratios of the differences determine the position of the point p, when the ®ve points a . . e are given,
may be called the Quinary Coordinates of that Point p, with respect to the given system of ®ve
points.

5. Under these conditions, we may agree to write, brie¯y,

p � (x, y, z, w, v), or even p � (xyzwv), (9)

whenever it seems that the omission of the commas will not give rise to any confusion; and
may call this form a Quinary Symbol of the Point p. But because (as above) only the ratios of the
differences of the coef®cients or coordinates are important, we may establish the following
Formula of Quinary Congruence, between two equivalent Symbols of one common point,

(x9y9z9w9v9) � (xyzwv), (10)

if x9ÿ v9 : y9ÿ v9 : z9ÿ v9 : w9ÿ v9 � x ÿ v : y ÿ v : w ÿ v; (11)

reserving the Quinary Equation,

(x9y9z9w9v9) � (xyzwv), (12)

to imply the coexistence of the ®ve separate and ordinary equations,

x9 � x, y9 � y, z9 � z, w9 � w, v9 � v: (13)

We shall also adopt, as abridgments of notation, the formulñ,

t(x, y, z, w, v) � (tx, ty, tz, tw, tv); (14)

(x9 : : v9)� (x : : v) � (x9� x, : : v9� v); (15)

and shall ®nd it convenient to employ occasionally what may be called the Quinary Unit
Symbol,

u � (11111); (16)

although this symbol represents no determined point, because both the denominator and
numerator of the expression (8) vanish, by (2) and (4), when the ®ve coef®cients xyzwv
become each equal to unity.

6. With these notations, if q and q9 be any other quinary symbols, and t and u any two
coef®cients, we shall have the congruence,

q9 � q, if q9 � tq� uu; (17)

the two points p and p9, which are denoted by these two symbols, in this case coinciding. Again
the equation,

q 0 � tq� t9q9� uu, (18)

is found to express that q, q9, q0 are symbols of three collinear points ; and the complanarity of
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four points, of which the symbols are q, q9, q0, q-, is expressed by this other equation of the
same form,

q- � tq� t9q9� t 0q 0� uu: (19)

7. If then a variable point p be thus complanar with three given points, p0, p1, p2, its coordinates
4. must be connected with theirs, by ®ve equations of the form,

x � t0x0 � t1x1 � t2x2 � u; : : v � t0v0 � t1v1 � t2v2 � u; (20)

whence, by elimination of the four arbitrary coef®cients t0 t1 t2u, a linear equation is obtained,
of the form

lx � my � nz � rw � sv � 0, (21)

with the general relation

l � m � n � r � s � 0 (22)

between its coef®cients; and this equation (21) may be said to be the Quinary Equation of the
Plane p0p1p2. The ®ve new coef®cients lmnrs may be called the Quinary Coordinates of that
Plane ; and the plane itself may be denoted by the Quinary Symbol,

Ð � [l , m, n, r , s], or briefly, Ð � [lmnrs], (23)

when the commas can be omitted without confusion.
R, R9, . . be symbols of this form, for planes Ð, Ð9, . . , then the equation

R9 � tR, (24)

in which t is an arbitrary coef®cient, expresses that the two planes Ð, Ð9 coincide ; the equation

R 0 � tR � t9R9 (25)

expresses that the three planes Ð, Ð9, Ð0 are collinear, or that the third passes through the line of
intersection of the other two ; and the equation

R - � tR � t9R9� t 0R 0 (26)

expresses that the four planes Ð, Ð9, Ð0, Ð- are compunctual (or concurrent), or that the fourth
passes through the point of intersection of the other three.

8. It is easy to conceive how problems respecting intersections of lines and planes can be
resolved, on the foregoing principles. And if we de®ne that a point p, or plane Ð, is a Rational
Point, or a Rational Plane, of the System determined by the ®ve given Points a . . e, or that it is
rationally related to those ®ve points, when its coordinates are equal (or proportional) to whole
numbers, it is obvious, from the nature of the eliminations employed, that a plane which is
determined as containing three rational points, or a point which is determined as the intersec-
tion of three rational planes, is itself, in the above sense, rational. We may also say that a right
line Ë is a Rational Line, when it is the line p´p which connects two rational points, or the
intersection Ð´Ð of two rational planes: and then the intersection of a rational line with a
rational plane, or of two complanar and rational lines with each other, will be a rational
point.
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9. When any two points, p, p9, or any two planes, Ð, Ð9, have symbols which differ only by
the arrangement (or order) of the ®ve coef®cients or coordinates in each, those points, or those
planes, may then be said to have one common type ; or brie¯y, to be syntypical. For example, the
®ve given points are thus syntypical, because (omitting commas, as in 5.) their symbols are,

a � (10000), b � (01000), c � (00100), d � (00010), e � (00001): (27)

In general, any two syntypical points, or planes, admit of being derived from the ®ve given
points, by precisely similar processes of construction, the order only of the data being varied ; and
in the most general case, a single type includes 120 distinct points, or distinct planes, although this
number may happen to be diminished, even when the coordinates are all unequal: for
example, the type (12345) includes only sixty distinct points, because, by (17), we have in this
case the congruence,

(12345) � (54321): (28)

10. The anharmonic function of any group of four collinear points abcd being denoted by
the symbol (abcd), and de®ned by the equation,

(abcd) � ab
bc
:
cd
da
� ab

cb
:
ad
cd

, (29)

it will be found that if p0 : : p3 be thus any four collinear points, of which therefore, by (18), the
quinary symbols Q 0 : : Q 3 are connected by two linear relations, of the forms,

Q 1 � t0Q 0 � t2Q 2 � uU , Q 3 � t90Q 0 � t92Q 2 � u9u, (30)

then the anharmonic of this group of points is given by the formula,

(p0p1p2p3) � t2 t90
t0 t92

, (31)

of which the applications are numerous and important.
And in like manner, if Ð0 . .Ð3 be any four collinear planes, of which consequently, by (25),

the symbols R0 : : R3 are connected by two other linear relations, such as

R1 � t0R0 � t2R2, R3 � t90R0 � t92R2, (32)

we have then this other very useful formula of the same kind, for the anharmonic of this pencil
of planes,

(Ð0Ð1Ð2Ð3) � t2 t90
t0 t92

; (33)

it being understood that the anharmonic function of such a pencil is the same as that of the
groups of points, in which its planes are cut by any rectilinear transversal : so that we may write
generally, for any six points a . . f, the formula,

(ef:abcd) � (a9b9c9d9), (34)

if any transversal gh cut the four planes efa, . . efd in the four points a9, . . d9; or in symbols, if

a9 � gh:efa, : :d9 � gh:efd: (35)

11. The expression of fractional form,
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j(xyzwv) � l9x � m9y � n9z � r 9w � s9v

lx � my � nz � rw � sv
� f 9

f
, (36)

in which the ten coef®cients, l . . s and l9 . . s9, are supposed to be given, and to be such (comp.
(22)) that

l � : :� s � 0, and l9� : :� s9 � 0, (37)

may represent the quotient of any two linear and homogeneous functions, f and f 9, of the
coordinates x . . v of a variable point p, or rather of the differences of those coordinates (comp.
5.); and if we assign any particular or constant value, such as k, to this quotient, or fractional
function, j, the equation so obtained will represent (comp. (21)) a plane locus for that point,
which plane Ð will always pass through a given line Ë, determined by equating separately the
denominator and numerator of j to zero. Hence the four equations,

f � 0, f 9 � f , f 9 � 0, f 9 � kf , (38)

which answer to the four values,

j � 1, j � 1, j � 0, j � k, (39)

represent a pencil of four planes Ð0 : :Ð3, of which the quinary symbols (23) may be thus
written:-

R0 � [lmnrs]; R2 � [l9m9n9r 9s9]; R1 � R2 ÿ R0; R3 � R2 ÿ kR0; (40)

and of which the anharmonic is consequently, by (33), the same quotient,

(Ð0Ð1Ð2Ð3) � (k � j �)
f 9

f
, (41)

as before. We have therefore this Theorem :-

``The Quotient of any two given homogeneous and linear Functions, of the Differences of the Quinary
Coordinates of a variable Point in Space, can always be expressed as the Anharmonic of a Pencil of
Planes, whereof three are given, while the fourth passes through the variable Point, and through a given
Right Line, which is common to the three former Planes.''

12. For example, we ®nd thus that

x ÿ v

w ÿ v
� (bc:aedp);

y ÿ v

w ÿ v
� (ca:bedp);

z ÿ v

w ÿ v
� (ab:cedp); (42)

and that

x ÿ v

y ÿ v
� (cd:aebp);

y ÿ v

z ÿ v
� (ad:becp);

z ÿ v

x ÿ v
� (bd:ceap); (43)

the product of these three last anharmonics of pencils being therefore equal to positive unity,
so that we have, for any six points of space, abcdef, the general equation,

(ad:becf):(bd:ceaf):(cd:aebf) � 1: (44)

If then we suppress the ®fth coef®cient, v, in the quinary symbol (9) of a point p, which comes to ®rst
substituting, as the congruence (10) permits, the differences x ÿ v, y ÿ v, z ÿ v, w ÿ v, and
vÿ v or 0, for x, y, z, w, and v, and then writing simply x, . . w instead of x ÿ v, : : w ÿ v, and
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omitting the ®nal zero, whereby the quinary symbol (00001) for the ®fth given point e (27)
becomes ®rst (ÿ1, ÿ1, ÿ1, ÿ1, 0) or (11110), and is then reduced to the quaternary unit
symbol (1111), we shall fall back on that system of anharmonic coordinates in space, of which some
account was given in a former communication� to this Academy: the anharmonic (or
quaternary) symbol of a plane Ð being, in like manner, derived from the quinary symbol (23), by
simply suppressing the ®fth coef®cient, or coordinate, s. Anharmonic coordinates, whether for point
or for plane, are therefore included in quinary ones ; but although they have some advantages of
simplicity, it appears that their less perfect symmetry, of reference to the ®ve given points a . . e,
renders them less adapted to investigations respecting the Geometrical Net in Space, which is
constructed with those ®ve points as data: and that therefore they are less ®t than quinary
coordinates for the purposes of the present paper.

13. Retaining then the quinary form, we may next observe that although, when the ®ve coef®cients
l . . s are given, as in 7., and the coordinates x . . v of a point p are variable, the linear equation
lx � : :� sv � 0 (21) may be said to be the Local Equation of a Plane, namely of the plane [l . . s],
considered as the locus of the point (x . . v); yet if, on the contrary, we now regard x . . v as given,
and l . . s as variable, the same linear equation (21) expresses the condition necessary, in order that
a variable plane [l . . s] may pass through a given point (x . . v); and in this view, the formula (21) may
be considered to be the Tangential Equation of that given Point. Thus the very simple equation,

l � 0, (45)

expresses the condition requisite for the plane [l . . s] passing through the given point
(10000), or a (27); and it is, in that sense, the tangential equation of that point : while m � 0 is,
in like manner, the equation of b, &c. This being understood, if we suppose that f and f9

denote two given, linear, and homogeneous functions of the coordinates l . . s of a variable
plane Ð, we may consider the four equations,

f � 0, f9 � f, f9 � 0, f9 � kf, (46)

as the tangential equations of four collinear points, p0, p1, p2, p3, whereof the three ®rst are
entirely given, but the fourth varies with the value of the coef®cient k, although always
remaining on the line Ë of the other three; and then it is easy to deduce, from the formula
(31), by reasonings analogous to those employed in 11., the following anharmonic of the group :

(p0p1p2p3) � k � f1

f
: (47)

We have therefore this new Theorem, analogous to one lately stated:-
``The Quotient of any two given, homogeneous, and linear Functions, of the Quinary Coordinates of a

variable Plane, may always be expressed as the Anharmonic of a Group of Points ; whereof three are given
and collinear, while the fourth is the Intersection of the variable Plane with the given Line on which the
other three are situated.''

14. For example, if we wish in this way to interpret the quotient m :n, of these two coordinates
of a variable plane Ð, or [lmnrs] (23), as denoting the anharmonic of a group of points, the three
®rst points p0, p1, p2 of that group (47) have here for their tangential equations,

� See the Proceedings for the Session of 1859±60.
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n � 0, m ÿ n � 0, m � 0, (48)

whereof the third has recently been seen 13. to represent the given point b, and the ®rst
represents in like manner another given point, namely c, of the initial system: while the second
represents the point (0, 1, ÿ1, 0, 0), or brie¯y (01100), if, to save commas, we write 1 for ÿ1.
To construct this last point, let us write

a9 � (01100) � (10011), and a0 � (01100); (49)

then, by (18), these two new points a9 and a0 are each collinear with b, c, or are on the line
bc; and they are, with respect to that line (or to its extreme points) harmonically conjugate to
each other, because the formula (31) gives easily, by the ®rst symbol for a9, the harmonic
equation,

(ba9ca0) � ÿ1; (50)

but also the second (or congruent) symbol for a9 shows, by (19), that a9 is in the plane ade; we
may therefore write the formula of intersection,

a9 � bc
:
ade, (51)

whereby this point a9 is entirely determined; and then the point a0, as being its harmonic
conjugate with respect to b and c, or as satisfying the equation (50), is to be considered as
being itself a known point. We have thus assigned the three ®rst points p0, p1, p2, of the group
(47), namely the points c, a0, b; and if we denote by l the point bc.Ð in which the variable
plane Ð, or [l . . s], intersects the given line bc, so that

l � (0, n, ÿm, 0, 0), or briefly, l � (0nm00), (52)

writing m for ÿm, then the fourth point p3 is l; and the required formula of interpretation for
the quotient m :n becomes,

m

n
� (ca0bl): (53)

In like manner, if we write

b9 � (10100), c9 � (11000), b 0 � (10100), c 0 � (11000), (54)

and

m � (n0l00), n � (ml000), (55)

in which �n � ÿn, and l � ÿl , so that m � ca
:
Ð, n � ab

:
Ð, and

b9 � ca
:
bde, c9 � ab

:
cde, (cb9ab 0) � (ac9bc 0) � ÿ1, (56)

we shall have these two other formulñ of interpretation, analogous to (53),

n

l
� (ab 0cm),

l

m
� (bc 0an); (57)

and therefore,

(ab 0cm):(bc 0an):(ca0bl) � 1: (58)
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15. Again, if we denote by q, r, s the intersections da:Ð, db:Ð, dc:Ð, so that

q � (r00l0), r � (0r0m0), s � (00r n0), (59)

where r � ÿr ; if also we introduce seven new points syntypical 9. with the three points a9b9c9,
and seven others syntypical with a0b 0c 0, as follows:

a1 � (10001), b1 � (01001), c1 � (00101), d1 � (00011); (60)

a2 � (10010), b2 � (01010), c2 � (00110); (61)

a91 � (10001), b91 � (01001), c91 � (00101); d91 � (00011); (62)

a92 � (10010), b92 � (01010), c92 � (00110); (63)

so that, by principles already established, we shall have the seven relations of intersection,

a1 � ea:bcd, b1 � eb:cad, c1 � ec:abd, d1 � ed:abc, (64)

a2 � da:bce, b2 � db:cae, c2 � dc:abe, (65)

and the seven harmonic relations,

(ea1aa91) � (eb1bb91) � (ec1cc91) � (ed1dd91) � ÿ1, (66)

(da2aa92) � (db2bb92) � (dc2cc92) � ÿ1, (67)

by means of which 14 last relations these 14 new points can all be geometrically constructed;
we shall then be able to interpret, on the recent plan 13., the three new quotients, l : r ,
m : r , n : r , as anharmonics of groups, as follows:

l

r
� (da92aq);

m

r
� (db92br);

n

r
� (dc92cs); (68)

with the analogous interpretations,

l

s
� (ea91ax);

m

s
� (eb91by);

n

s
� (ec91cz);

r

s
� (ed91dw), (69)

if x, y, z, w denote the intersections ea:Ð, eb:Ð, ec:Ð, ed:Ð, so that

x � (s000 l), y � (0s00m), z � (00s0n), w � (000s r), where s � ÿs: (70)

16. As regards the notations employed, it may be observed that although we have often, as in
(9) or (27), &c., equated a point, or rather its literal symbol, a or p, &c., to the corresponding
quinary symbol (10000) or (xyzwv), &c., of that point, yet in some formulñ, such as (17) (18)
(19), in which we had occasion to treat of linear combinations of such quinary symbols, we
substituted new letters, such as Q , Q9, for p, p9, &c., in order to avoid the apparent strangeness
of writing such expressions� as tp� t9p9 &c. To economise symbols, however, we may agree to
retain the literal symbols ®rst used, for any system of given or derived points, but to enclose them in
parentheses, when we wish to employ them as denoting quinary symbols in combination with each
other ; writing, at the same time, for the sake of uniformity, (u) instead of U , as the quinary unit

� Expressions of this form occur continually in the Barycentric Calculus of Moebius but with signi®cations
entirely different from those here proposed.
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symbol (16). And thus, if we agree also that an equation between two unenclosed and literal
symbols of points, p and p9, shall be understood as expressing that the two points so denoted
coincide, we may write anew those formulñ (17) (18) (19) as follows:

p9 � p, if (p9) � t(p)� u(u); (71)

p 0 on line pp9, if (p 0) � t(p)� t9(p9)� u(u); (72)

p- in plane pp9p 0, if (p-) � t(p)� t(p9)� t 0(p 0)� u(u): (73)

17. We may also occasionally denote a point in the given plane of a, b, c by the ternary symbol,

(x, y, z), or (xyz), (74)

considered here as an abridgment of the quinary symbol (xyz00); and the right line which is the
trace on that plane, of any other plane Ð, or [lmnrs] (23), may be denoted by this other ternary
symbol,

[l , m, n], or [lmn]; (75)

these two last ternary symbols being connected by the relation,

lx � my � nz � 0, (76)

if the point (xyz) be on the line [lmn]. And the point p in which any other line Ë, not situated in
the plane abc, intersects that plane, may be said to be the trace of that line.

18. For example, the point d1 is, by (64), the trace of the line de; and if we write,

a0 � (111), b0 � (111), c0 � (111), (77)

then these three points are the respective traces of the three lines a1a2, b1b2, c1c2; because
they are, by the notation (74), in the given plane, and we have, by (60) and (61), the three
following symbolical equations of the form (72),

(a0)� (a1)� (a2) � (b0)� (b1)� (b2) � (c0)� (c1)� (c2) � (u), (78)

which express the three collineations, a0a1a2, b0b1b2, c0c1c2.
We have also the three other collineations, ad1a9, bd1b9, cd1c9, because the quinary

symbols (27) (49) (54) (60) give the equations,

(a)� (a9)� (d1) � (b)� (b9)� (d1) � (c)� (c9)� (d1) � (u); (79)

and these three lines, aa9d1, &c., are the traces of the three planes ade, bde, cde, of which planes
the respective equations (21), and quinary symbols (23), are

y ÿ z � 0, z ÿ x � 0, x ÿ y � 0, (80)

and

[01100], [10100], [11000]; (81)

so that the ternary symbols of the three last lines, regarded as their traces, are simply, by (75),

[011], [101], [110]: (82)

Accordingly, whether we consider the point a � (100), or a9 � (011), or d1 � (111), (this
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ternary symbol of d1 being congruent to the former quinary symbol (00011) for that point
(60),) we have in each case the relation y ÿ z � 0 between its coordinates; and similarly for
the two other lines.

19. As other examples, the four planes,

a1b1c1, a2b2c2, a91b91c91, a92b92b92, (83)

have for their quinary equations,

x � y � z � 2w � v, x � y � z � w � 2v, x � y � z � v � 4w, x � y � z � w � 4v,

(84)

and for their quinary symbols,

[11121], [11112], [11141], [11114]; (85)

they have therefore a common trace, namely the line

[111], or a0b 0c 0, (86)

because, by (49) and (54), we may now write,

a0 � (011), b 0 � (101), c 0 � (110), (87)

and the coordinates of each of these three last points satisfy the equation,

x � y � z � 0: (88)

Accordingly, because we have, by (60) (61) (62) (63), the three following sets of symbolical
equations of the form (72),

(a0) � (b1)ÿ (c1) � (b2)ÿ (c2) � (b91)ÿ (c91) � (b92)ÿ (c92),

(b 0) � (c1)ÿ (a1) � (c2)ÿ (a2) � (c91)ÿ (a91) � (c92)ÿ (a92),

(c 0) � (a1)ÿ (b1) � (a2)ÿ (b2) � (a91)ÿ (b91) � (a92)ÿ (b92),

9>>=>>; (89)

we see that the point a0 is the common trace of the four lines, b1c1, b2c2, b91c91, b92c92; b 0 of c1a1,
c2a2, c91a91, c92a92; and c 0 of a1b1, a2b2, a91b91, a92b92.

20. In all such cases as these, in which we have to consider a set of three points p, or a set of
three planes Ð, of which the ®rst is geometrically derived from abcde according to the same rule of
construction, as that according to which the second is derived from bcade, and the third from
cabde, we can symbolically derive the second from the ®rst, and in like manner the third from the
second, (or again the ®rst from the third,) by writing, in each case, the third, ®rst, and second
coef®cients, or coordinates, in the places of the ®rst, second, and third, respectively. In symbols,
we may express this law of successive derivation, of certain syntypical points or planes 9. from
one another, by the formulñ,

if p(abc) � (xyzwv), then p(bca) � (zxywv), and p(cab) � (yzxwv); (90)

and if

Ð(abc) � [lmnrs], then Ð(bca) � [nlmrs], and Ð(cab) � [mnlrs]; (91)
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as has been already exempli®ed in the systems (27), (60), (61), (62), (63), (77), (81), (87),
for points or planes, and in (82) for lines, considered as traces of planes. In all these cases,
therefore, we can, with perfect clearness and de®niteness of signi®cation, abridge the notation, by
writing only the ®rst (or indeed any one) of the three equations (90) or (91), and then
appending an ``&c.''; for the law which has been just stated will always enable us to recover (or
deduce) the other two. We may therefore brie¯y but suf®ciently express several of the foregoing
results, by writing,

a � (100), &c:; a9 � (011), &c:; a0 � (011), &c:; a0 � (111), &c:;

a1 � (10001), &c:; a2 � (10010), &c:; a91 � (10001), &c:; a92 � (10010), &c:;

)
(92)

Plane ade � [01100], &c:; Line ad1a9 � [011], &c:; (93)

to which we may add these other symbols of planes and lines, each supposed to be followed
by an ``&c.'':

plane bcd � [10001]; bce � [10010]; trace � bc � [100]; (94)

plane db9b1c9c1 � [11101]; eb9b2c9c2 � [11110]; trace � b9c9a0 � [111] (95)

plane ab1c2c1b2 � [01111]; trace � aa0 � [011]; (96)

this line aa0 passing also, by (77), through the two points b0 and c0;

plane b1c1d1 � [21111]; b2c2d1 � [21111]; trace � d1a0 � [211]; (97)

plane a9b1b2 � [2 1111]; trace � a9b0 � [2 11];

plane a9c1c2 � [21111]; trace � a9c0 � [211];

)
(98)

where it may be noticed that the symbol for a9c1c2, or for a9c0, may be deduced from that for
a9b1b2 or for a9b0, by simply interchanging the second and third coef®cients, or coordinates.
It is easy to see that the quinary symbol for the plane abc itself is on the same plan [00011],
the equation of that plane being w � v; and it will be remembered that, by 18., the ternary
symbol for the point d1 in that plane is (111).

21. A right Line Ë in Space may be regarded in two principal views, as follows. Ist, it may be
considered as the locus of a variable point p, collinear with two given points p0, p1; and in this view,
the symbol

t0(p0)� t1(p1), (comp: (72),)

for the variable point upon the line, may be regarded as a Local Symbol (or Point-Symbol) of the
Line Ë itself. Thus

(0tt9), or (0 yz), (99)

may either represent an arbitrary point on the line bc; or, as a local symbol, that line itself. Or IInd,
we may consider a line Ë as a hinge, round which a plane Ð turns, so as to be always collinear 7.
with two given planes Ð0, Ð1 through the line; and then a symbol of the form

t0[Ð0]� t1[Ð1], (comp: (25),)
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which represents immediately the variable plane Ð, may be regarded as being also a Tangential
Symbol (or Plane-Symbol) for the Line Ë. For example, the line bc may thus be represented, not
only by the local symbol (99), but also by the tangential symbol,

[ó00tu], if ó � t � u, and ó � ÿó : (100)

In fact, this last symbol can be derived, by linear combinations, from the symbols (94) for the
two planes bcd, bce, which intersect in the line bc; and if any particular value be assigned to
the ratio t :u, a particular plane through that line results. But it is time to apply these general
principles to the Geometrical Net in Space.

Part II. Applications to the Net in Space: Enumeration and Classi®cation of the Lines, Planes,

and Points of that Net, to the end of the Second Construction

22. The data of the Geometrical Net are, by 1., the ®ve points abcde, or p0; of which the
quinary symbols (27) have been assigned, and shown to be syntypical 9.; and also the ternary
symbols (92) of the three ®rst of them. Of these the symbol

a � (100)

may be taken as the type ; and the point a itself may be said to be a First Typical Point.

23. The derived lines Ë1, of First Construction 1., are the ten following,

bc, &c:; da, &c:; ea, and de;

the ``&c.'' being interpreted as in 20.; and each line Ë1 connecting, by its construction, two
points p0. Among these the line bc may be selected, as a First Typical Line ; and its symbols 21.,
namely,

(0 yz), and [ó00tu],

whereof the former represents this line bc considered as the locus of a variable point, while the
latter represents the same line considered as the hinge of a variable plane, may be taken as types
(the point-type and the plane-type) of the group of the ten lines Ë1.

24. The derived planes Ð1 of ®rst construction are in like manner ten ; namely,

ade, &c:; bce, &c:; bcd, &c:; and abc,

each obtained by connecting three points p0. Of these the last has, by 20. the quinary symbol,

abc � [00011],

which may be taken as a type of the group Ð1; and the plane abc itself may be called a First
Typical Plane. As a veri®cation, we see that when we make ó � t � u � 0, in the second symbol
23., and divide by t, we are led to the recent symbol for abc, as one of the planes which pass
through the line bc.

25. The derived points p1, of the same ®rst construction, which are all, by 1., of the form
Ë1:Ð1, are in like manner ten ; namely the intersections,
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bc:ade, &c:; da:bce, &c:; ea:bcd, &c:; and de:abc,

which have been denoted in 14. and 15. by the letters, or literal symbols,

a9, &c:; a2, &c:; a1, &c:; and d1,

and for which quinary symbols (49) (54) (60) (61) have been assigned. Of these ten points four,
namely a9, b9, c9, d1, are situated in the plane abc, and have accordingly been represented 20.
by ternary symbols also: and we may take the particular symbol of this sort,

a9 � (011),

as a type of this group p1; understanding, however, that the full or quinary type is to be
recovered from this ternary type, by restoring the two omitted zeros ; so that we have, more fully,

a9 � (01100) � (10011):

And the point a9 itself may be considered as a Second Typical Point.

26. We have thus denoted, by literal and by quinary symbols, whereof some have been abridged
to ternary ones 17., and have been also represented by types 9., not only the ®ve given points p0,
but all the ten lines Ë1, ten planes Ð1, and ten points p1, of what has been called, in 1., the First
Construction. And it is evident that we have, at this stage, ten triangles t1, namely the ten,

ade, &c:; bce, &c:; bcd, &c:; and abc,

whereof each is contained in a plane Ð1; and also ®ve pyramids r1, each bounded by four of
these triangles, namely the pyramids,

bcde, cade, abde, abce, abcd,

which may be called the pyramids a, b, c, d, e; each being marked by the literal symbol of
that one of the ®ve points p0, which is not a corner of the pyramid.

27. It may be remarked, that ten arbitrary lines in space intersect generally, ten arbitrary planes,
in one hundred points ; but that this number of intersections Ë1

:
Ð1 is here reduced to ®fteen,

whereof only ten are new ; because each of the ®ve points p0 counts as twelve, since in each of
those points four lines cut (each) three planes, while each of the ten planes contains three lines ; so
that thirty binary combinations are not cases of intersection, and sixty such cases conduct only to
the ®ve old (or given) points. This sort of arithmetical veri®cation of the accuracy of an
enumeration of derived points, or lines, or planes, will be found useful in more complex cases,
although it was not necessary here.

28. Proceeding to a Second Construction 1., we may begin by determining the lines Ë2,
whereof each connects some two (at least) of the ®fteen points p0, p1, but not any two of the ®ve
points p0, since otherwise it would be a line Ë1. If the 15 points to be connected were
independent, they would give, generally, by their binary combinations, 105 lines; but the ten
collineations of construction,

bca9, &c:; daa2, &c:; eaa1, &c:; and edd1,

show that 30 of these combinations are to be rejected, as giving only the ten old lines. The
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remaining number, 75, is still farther reduced by the consideration that we have (comp.
(79)) the ®fteen derived collineations,

aa9d1, &c:; ab1c2, &c:; ac1b2, &c:; da9a1, &c:; ea9a2, &c:;

which represent only ®fteen new lines, of a group which we shall denote by Ë2,1, but count
(comp. 27.) as 45 binary combinations of the 15 points. There remain therefore only 30 such
combinations to be considered; and these give in fact a second group, Ë2,2, consisting of thirty
lines of second construction : namely, the thirty edges of the ®ve new pyramids r2,

c9b9a2a1, a9c9b2b1, b9a9c2c1, a2b2c2d1, a1b1c1d1,

which are respectively inscribed in the ®ve former pyramids r1 26., and are homologous to them,
the ®ve given points a . . e being the respective centres of homology ; for example, c9 � ab

:
cde,

&c. The corresponding planes of homology will present themselves somewhat later, in connex-
ion with the points p2.

29. On the whole, then, there are only forty-®ve distinct lines of second construction Ë2; and
these naturally divide themselves into two groups, of 15 lines Ë2,1, and 30 lines Ë2,2, as above.
Each line of the ®rst group Ë2,1 connects one point p0 with two points p1; as each line Ë1 had
connected one point p1 with two points p0; but no line of the second group Ë2,2 connects, at this
stage of the construction, more than two points, which are both points p1. Through no point
p0, therefore, can we draw any line Ë2,2; but through each point p0 we can draw three lines Ë2,1;
and each of these is determined as the intersection of two planes Ð1 through that point, or as
crossing two opposite edges of that pyramid r1, which has not the point p0 for a corner (comp.
26.): for example, aa9d1 is the intersection of abc, ade, and crosses the lines bc, de. And
besides being, as in 28., the edges of certain other and inscribed pyramids r2, the 30 lines Ë2,2

are also the sides of ten new triangles t2, namely,

d1a1a2, &c:; c1b1a9, &c:; c2b2a9, &c:; and a9b9c9,

situated in the ten planes Ð1, and inscribed in the ten old triangles t1, to which also they are
homologous ; the corresponding centres of homology being the ten points p1, in the same order,

a9, &c:; a2, &c:; a1, &c:; and d1, as before:

The axes of homology of these ten pairs of triangles t1, t2, will offer themselves a little later, in
connexion with points p2.

30. All this may be considered as evident from geometry alone, at least with the assistance of
literal symbols, such as those used above. But to deduce the same things by calculation, with
quinary symbols and types, on the plan of the present Paper, we may observe that the symbolical
equation,

(10000) � (01100)� (00011) � (11111),

considered as a type of all equations of the same form, proves by (18) or (72) that each point
p1 can, in three different ways, be combined with another point p1, so that their joining line
shall pass through a point p0; and that thus the group of the 15 lines Ë2,1 arises, of which the
line aa9d1 is a specimen, and may be called a Second Typical Line (the ®rst such line having
been bc, by 23.). The complete quinary symbol of a point on this line is (tuuvv), which is
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however congruent to one of the form (tuu00), and may therefore be abridged to the ternary
symbol (tuu), or (xyy); and the quinary symbol of a plane through the same line is of the form
[0mmrr], or [0ttuu]; we may therefore, by 21. (comp. 23.) consider the two expressions,

(xyy), and [0t�tu �u],

as being not only local and tangential symbols for the particular (or typical) line aa9d1 itself, but
also local and tangential types for the group Ë2,1; or as the point-type, and the plane-type, of that
group.

31. The two points p1, of which the quinary symbols have been thus combined in 30., had
no common coordinate different from zero ; but there remains to be considered the case, in which
two points of that group have such a coordinate: for example, when the points have for their
symbols,

(10100) and (11000), or (101) and (110):

The point-symbol and plane-symbol of the line Ë2 connecting these two points p1 are easily
seen to be (with the same signi®cations of ó and ó as before),

(ó tu00), or (ó tu), and [�tttu �ó ];

but no choice of the arbitrary ratio, t : u, with ó � t � u, will reduce the symbol (ótu) to
denote any one of the 15 points p0, p1, except the two points p1 (in this example, b9 and c9),
by joining which the line is obtained; considering therefore the two last symbols as types, we see
that they represent a second group, consisting of thirty lines Ë2,2; but that there can be no third
group, of lines Ë2 of second construction. The particular line b9c9, which the symbols in the
present paragraph represent, may be taken as typical of this second group ; and may be called
(comp. 23. and 30.) a Third Typical Line of the System, or Net, determined by the ®ve given
points a . . e. And the pyramids r1, r2, and triangles t1, t2, of ®rst and second constructions, of
which the literal symbols have been assigned in 26. 28. 29., might also have easily been
suggested and studied, by quinary symbols and types alone.

32. As regards the Planes Ð2 of Second Construction 1., it is easily seen that no such plane
contains any two points p0, or any one line Ë1; for example, the ®rst typical line bc 23. contains
the point a9; and if we connect it with any one of the four points a, b9, c9, d1, we only get a
plane Ð1, namely abc; if with d, a1, b2, or c2, we get another plane Ð1, namely bcd; and if
with any one of the four remaining points e, a2, b1, c1, the plane bce is obtained. Accordingly,
the general symbol [ó00tu], in 23., for a plane through the line bc, gives ó � 0, or t � 0, or
u � 0, when we seek to particularize it, by the ®rst, the second, or the third of these three sets
of conditions respectively.

33. But if we take the symbol [0t�tu�u], in 30., for a plane through the second typical line aa9d1,
and seek to particularize this symbol by the condition of passing through some one of the
eight points p1 which are not situated upon it, we are conducted to the following results. The
points b9, c9 give t � 0, and the points a1, a2 give u � 0; these points therefore give only two
planes Ð1, namely the two planes abc and ade, of which the line Ë2,1 is the intersection. But
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the points b1, c2 give t � u, and the points c1, b2 give t � ÿu; these points therefore give two
planes of a new group, Ð2,1, namely (comp. 20.) the two following:

plane aa9d1b1c2 � [01111]; plane aa9d1c1b2 � [01111];

which are of the same type as the plane (96), namely,

plane ab1c2c1b2 � [01111]:

There are ®fteen such planes Ð2,1, as the type suf®ciently shows; each passes through one point
p0, and contains two lines Ë2,1, containing also four lines Ë2,2; as, for instance, the last-
mentioned plane ab1c2c1b2, which we shall call (comp. 24.) the Second Typical Plane, contains
the two lines ab1c2, ac1b2 28., and the four lines b1c1, c1c2, c2b2, b2b1; that is to say, the two
diagonals and the four sides of the quadrilateral b1c1c2b2, of which the plane Ð2,1 passes
through a.

34. We have now exhausted all the planes Ð2 which contain any point p0; but there exists a
second group of planes, Ð2,2, each of which is determined as connecting three points p1,
although passing through no point p0. Thus if we take the third typical line b9c9 31., and the
symbol [tttuó] for a plane through it, we get indeed t � 0, or a plane Ð1, namely, abc, if we
oblige the plane through b9c9 to contain a, or b, or c, or a9, or d1; and we get u � 0, or
[11101], or a plane Ð2,1, namely db9b1c9c1, as in (95), if we oblige it to contain d, or b1, or
c1; while we get ó � 0, or [11110], or eb9b2c9c2, again as in (95), if we oblige it to contain e,
or b2, or c2. But there remain the two points a1 and a2, determining the two new planes
b9c9a1 and b9c9a2, for the former of which we have t � ó � 0, or u � ÿ2t, ó � ÿt, and
therefore have the symbol [11121]; while for the latter we have u � t, ó � 2t, and therefore
the syntypical symbol [11112]. There are twenty planes of this group Ð2,2, as may be at once
concluded from inspection of the type ; among which (comp. 19.) we shall select the
following,

plane a1b1c1 � [11121],

and call this a Third Typical Plane. And it is evident that these 20 planes Ð2,2 are the twenty
faces of the ®ve inscribed pyramids r2 28., of which the edges have been seen to be the thirty lines
Ë2,2. On the whole, then, there are only thirty-®ve planes Ð2 of second construction ; which thus
divide themselves into two groups, of ®fteen and twenty, respectively.

35. To verify arithmetically (comp 27. 28.) the completeness of the foregoing enumeration of the
planes Ð2, we may proceed as follows. In general, ®fteen independent points would determine
455 planes, by their ternary combinations ; but the 25 collineations 28., which give only the lines
Ë1, Ë2,1, account for 25 such combinations, leaving only 430 to be accounted for, by so many
triangles. Now each plane Ð1 contains three points p0, and four points p1, connected by six
collineations; it contains therefore 29 (� 35ÿ 6) triangles, and thus the ten planes Ð1

account for 290 triangles, leaving only 140, situated in planes Ð2. But each of the 15 planes
Ð2,1 contains one point p0, and four points p1, connected by two collineations; it contains
therefore 8 (� 10ÿ 2) triangles, and thus 120 are accounted for, leaving only 20 ternary
combinations to be represented, by triangles in other planes Ð2. And these accordingly have
presented themselves, as the twenty faces Ð2,2 of the ®ve inscribed pyramids r2. It must be
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mentioned, that the enumeration and classi®cation of the foregoing lines and planes had been
completely performed by MÎbius, although with an entirely different notation and analysis.

36. It is much more dif®cult, however, or at least without the aid of types it would be so, to
enumerate and classify what we have called in 1. the Points p2 of Second Construction ; and to
assign their chief geometrical relations, to each other, and to the ®ve given and ten (formerly)
derived points, p0 and p1. In fact, it is obvious that these new points p2, being (by their
de®nition) all the intersections of lines Ë1 or Ë2 with planes Ð1 or Ð2, which have not already
occurred, as points p0 or p1, may be expected to be (comp. 2.) considerably more numerous,
than either the lines or the planes themselves.

37. The total number of derived lines and planes, so far, is exactly one hundred ; namely, 55 lines
Ë, and 45 planes Ð, of ®rst and second constructions. Their binary combinations, of the form
ËÐ, are therefore 2475 in number; but as it is not dif®cult to prove that there are 240 distinct
cases of coincidence of line with plane (or of a plane containing a line), we must subtract this
from the former number, and thus there remain only 2235 cases of intersection, of the kind
which we have proposed to consider. Every one , however, of these 2235 cases, must be
accounted for, either as a given point p0, or as a derived point p1 of ®rst construction, or ®nally
as one of those new points p2, of which we have proposed to accomplish the enumeration, and
to determine the natural groups, as represented by their respective types.

38. We saw, in 27., that each point p0, as for instance the point a, represents twelve
intersections of the form Ë1:Ð1; and it is easy to prove that the same point p0 represents twelve
other intersections of the form Ë1:Ð2,1; twelve, of the form Ë2,1:Ð1; and three, of the form
Ë2,1:Ð2,1; but none of any other form. It represents therefore, on the whole, a system of 39
intersections, included in the general form Ë:Ð; and we must, for this reason, subtract 195
(� 5 3 39) from 2235, leaving 2040 other cases of intersection of line with plane, to be
accounted for by the old and new derived points, p1 and p2.

39. An analysis of the same kind shows, that each of the ten points of ®rst construction, as for
example the typical point a9 25., represents one intersection of the form Ë1:Ð1; six, of the form
Ë1:Ð2,1; six, of the form Ë1:Ð2,2; six, of the form Ë2,1:Ð1; twelve, of the form Ë2,1:Ð2,1; eighteen,
of the form Ë2,1:Ð2,2; eighteen, of the form Ë2,2:Ð1; twenty-four of the form Ë2,2:Ð2,1; and
twenty-four others, of the remaining form Ë2,2:Ð2,2. It represents, therefore, in all, 115
intersections Ë´Ð; and there remain only 890 (� 2040ÿ 1150) cases of intersection to be
accounted for, or represented, by the points p2 of which we are in search. But all these 890
cases of intersection must be accounted for, by such new points, if the investigation is to be
considered as complete.

40. A ®rst, but important, and well-known group of such points p2, consists of the ten points
(already considered in Part I. of this Paper),

a0, &c:; a92, &c:; a91, &c:; and d91,

namely, the harmonic conjugates of the ten points p1, with respect to the ten lines Ë1, which we
shall call collectively the points, or the group, p2,1; and among which we shall select the point
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a0 � (011),

as a Third Typical Point of the Net. In fact, it is what we have called a point p2, because, without
belonging to either of the two former groups, p0, p1, it is an intersection Ë1:Ð2,2; or rather, it
represents six such intersections, of the line bc with planes of second construction, and of
the second group: namely, with two such through b9c9, two through b2c2, and two through
b1c1, being pairs of faces 28. of three pyramids b2, inscribed in those three pyramids r1,
which have been distinguished, in 26., by the letters a, d, e. The same point a0 is also the
intersection of the same line bc with three planes Ð2,1; namely, with the three which connect,
two by two, the three lines b9c9, b2c2, b1c1, and contain the three points a, d, e. It is also, in
six ways, the intersection of one or other of these three last lines Ë2,2, with a plane Ð1; in three
ways, with a plane Ð2,1; and in twelve ways, with a plane Ð2,2; so that a single point p2,1

represents thirty intersections of the form Ë´Ð; and the group of the ten such points represents
300 such intersections. We have therefore only to account for 590 (� 890ÿ 300) intersections
Ë´Ð, by other groups p2,2, &c., of points of second construction.

41. A second group, p2,2, of such points p2, has already presented itself, in the case of the traces
a0, b0, c0 18., of the lines a1a2, b1b2, c1c2, on the plane abc. The ternary symbol of the point
a0 has been found (77) (92) to be (111); its quinary symbol is therefore (11100), which is
congruent (10) with (20011); hence in the full, or quinary sense 9., this point a0 is syntypical with
the following other point, in the same plane abc,

a- � (211),

which we shall call a Fourth Typical Point, and shall consider as representing the group p2,2; this
group consisting of thirty such points, namely of two on each of the 15 lines a2,1.

42. Each of these thirty points p2,2 represents seven intersections of line with plane; namely,
two of each of the three forms, Ë2,1´Ð2,1, Ë2,1´Ð2,2, Ë2,2´Ð2,1, and one of the form Ë2,2´Ð1.
For example, the typical point a-, which is the intersection of the two lines aa9d1 and b9c9, is
at the same time the intersection of the former line Ë2,1 with each of four planes Ð2 which
contain the latter line Ë2,2; being also the intersection of this last line b9c9 with a plane Ð1,
namely ade, and with two planes Ð2,1 which contain the ®rst line aa9d1. The group p2,2

represents therefore 210 intersections Ë:Ð; and there remain only 380 (� 590ÿ 210)
intersections of this standard form, to be accounted for by other groups of second construction,
such as p2,3, &c.

43. In investigating such groups, we need only seek for typical points ; and because every such
point is on a line of one of the three forms, Ë1, Ë2,1, Ë2,2, we may con®ne ourselves to the three
typical lines,

bc, aa9d1, b9c9; or (0tu), (tuu), (ó tu);

in which, as before, ó � t � u, and in which the ratio of t to u is to be determined. And
because a line in the plane abc intersects any other plane in the point in which it intersects the
line which is the trace of the latter plane upon the former, we need only, for the present
purpose, consider these lines, or traces: whereof there are, by what has been already seen,
seven distinct ternary types, namely the following:
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[100], [011], [111], [111], [011], [211], [211];

which answer to the seven typical traces of planes,

bc, aa9d1, b9c9, a0b 0c 0, aa0, d1a0, a9c0:

There are 22 (� 3� 3� 3� 1� 3� 3� 6) such lines, answering to 44 (� 3:2� 3:3 �
3:4� 1:2� 3:1� 3:2� 6:1) planes; namely to all the 45 planes Ð1, Ð2, except the particular
plane abc, on which the traces are thus taken. And we have now to combine these seven types
of lines, with the three symbols of points, (0tu), (tuu) (ótu), according to the general law,
lx � my � nz � 0 (76).

44. The line bc is itself one of the three traces of the ®rst type; and it intersects the twelve
other traces, of the ®ve ®rst types, only in points which have been already considered. The
line aa9d1 is, in like manner, a trace of the second type; and it gives no new point, by its
intersections with the eight other traces, of the three ®rst types; but its intersection with the
common trace a0b0c0, of the two planes a1b1c1 and a2b2c2 19., which is the only line of the
fourth type, gives what we shall call a Fifth Typical Point, namely the following:

aõv � (211); or more fully, aõv � (21100) � (30011):

This last quinary symbol shows that the point aõv is syntypical with this other point in the
plane abc,

aõv
1 � (31100) � (311);

so that this plane contains six points p2,3, which (in the quinary sense) belong to one common
group, although their two ternary types are different. In fact, the point aõv

1 is the common
intersection of the line aa9d1 with the two planes [12111] and [11211], or b9c1c2 and c9b1b2,
as the point aõv is the common intersection of the same line with the two planes [11121] and
[11112], or a1b1c1 and a2b2c2, as above.

45. There are thirty distinct points p2,3, of this third group of second construction ; and each
represents two (but only two) intersections, which are both of the form Ë2,1:Ð2,2. The group
therefore represents a system of 60 intersections Ë´Ð; and there remain only 320
(� 380ÿ 60) such intersections to be accounted for by other points, or groups, such as p2,4,
&c. It will be found that we have now exhausted all the points, or groups, of second
construction, which are situated on lines Ë2,1; but that two other groups of points p2 may be
determined on lines Ë1, by combining the typical line bc with the two last sets of traces 43. as
follows.

46. Combining thus bc with d1c0 and d1b0, or with the traces [112] and [121], we get the
two following points, of a fourth group of second construction,

av � (021); av
1 � (012);

whereof the former may be taken as a Sixth Typical Point. There are twenty points of this group
p2,4, whereof each represents three intersections, of the form Ë1´Ð2,2; for example, the typical
point av is the common intersection of the line bc with the three planes c9a1a2, d1a1b1,
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d1a2b2; the group therefore represents sixty intersections Ë´Ð, and there remain 260
(� 320ÿ 60) to be accounted for.

47. Again, combining bc with c9b0, and with b9c0, or with [112] and [121], we get the two
following other points, belonging to a ®fth group of second construction,

avõ � (021); avõ
1 � (012);

whereof the ®rst may be said to be a Seventh Typical Point. There are twenty points of this new
group p2,5, whereof each represents only one intersection, of the form Ë1´Ð2,2; for example,
avõ � bc:c9b1b2. We are therefore to subtract 20 from the recent number 260; and thus
there remain still 240 intersections to be accounted for, by new points p2 upon the lines
Ë2,2: since the lines Ë1 as well as Ë2,1 have been exhausted, as on examination will easily
appear.

48. The line b9c9 intersects the traces bb0 and cc0 of the ®fth type 43. in the two following
points, of a sixth group of second construction,

avõõ � (121); avõõ
1 � (112);

whereof the former may be called an Eighth Typical Point. There are sixty points of this new
group, p2,6, whereof each represents one intersection, of the form Ë2,2´Ð2,1; for example, avõõ

is the intersection of the line b9c9 with the plane bc1a2a1c2; there remain therefore 180
(� 240ÿ 60) intersections Ë´Ð to be still accounted for, by other points p2, on the same set
of lines Ë2,2.

49. The traces d1b0, d1c0, which belong to the sixth type 43. intersect the line b9c9 in two
new points, namely,

avõõ � (321); avõõ
1 � (312);

which belong to a seventh group p2,7, of second construction, and of which the former may be
regarded as a Ninth Typical Point. There are sixty points of this group, namely two on each of
the 30 lines Ë2,2; and each is the intersection of one such line with two distinct planes Ð2,2;
their group therefore represents a system of 120 such intersections; and only 60
(� 180ÿ 120) intersections remain to be accounted for, by other points of this last form,
Ë2,2:Ð2,2.

50. Accordingly, when we combine the line b9c9 with the traces a9c0, a9b0, which are of the
seventh type 43., we obtain, for the intersections of that line Ë2,2 with two new planes Ð2,2,
namely with a9c1c2 and a9b1b2 (98), two new points, belonging to a new or eighth group p2,8 of
second construction, namely,

aõx � (231); aõx
1 � (213);

whereof the former may be selected, as a Tenth (and, for our purpose, last) Typical Point : for
the sixty points of this last group represent each one intersection, and thus account for all the
intersections which lately remained 49., after all the preceding groups had been exhausted.
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51. We are now therefore enabled to assert that the proposed Enumeration of the Points p2 of
Second Construction, and the proposed Classi®cation of such Points in Groups, have both been
completely effected. For the number of such groups p2,1, . . p2,8 has been seen to be eight,
represented by the 8 typical points, a0 . . aõx ; which, along with the ®rst given point a, and the
®rst derived point a9, make up a system of ten types, as follows:

a � (100); a9 � (011); a0 � (011); a- � (211); aõv � (211);

av � (021); avõ � (021); avõõ � (121); avõõõ � (321); aõx � (231);

and the number of the points p2 is (10� 30� 30� 20� 20� 60� 60� 60 �)290; so that,
when combined with the points p1, they make up a system of exactly three hundred points, p1,
p2, derived from the ®ve points p0.

52. It is to be remembered that the three other ternary types,

d1 � (111), a0 � (111), aõv
1 � (311),

have been seen to represent points which are, in the quinary sense, syntypical with a9, a-, aõv ,
and therefore belong to the same three groups, p1, p2,2, p2,3; all these three points being in
the plane abc, and on the line aa9d1. And it is evident that the ®ve other points,

av
1 � (012); avõ

1 � (012); avõõ
1 � (112); avõõõ

1 � (312); aõx
1 � (213),

belong (as has been seen) to the same ®ve last groups, p2,4, . .p2,8, as the ®ve points above
selected as typical thereof, namely the points av . . aõx , and are situated on the same two
typical lines, bc and b9c9. The transition from a9 to b9, c9, or from a0 to b0, c0, &c., is very
easily made, by a rule already stated 20.; and therefore it is unnecessary to write down here
the symbols for these derived points, b9, b0, &c., or c9, c0, &c. But we must now proceed, in the
remainder of this Paper, to investigate some of the chief Geometrical Relations which connect
the points, lines, and planes of the Net, so far as they have been hitherto determined: namely,
to the end of the Second Construction.

Part III. Applications to the Net, continued: Enumeration and Classi®cation of the

Collineations of the Fifty-Two Points in a Plane of First Construction

53. The plane abc has been seen to contain, besides the three points p0 which determine it,
four points p1, namely a9, b9, c9, and d1; and it contains forty-®ve points p2 namely the three
points a0, b0, c0 of the group p2,1, and six points of each of the seven remaining groups of
second construction. This plane Ð1 contains therefore ®fty-two points p0, p1, p2; and we
propose to examine, in the ®rst place, the various relations of collinearity which connect these
different points among themselves: intending afterwards to investigate their principal
harmonic and involutionary relations.

54. The points on the ®rst typical line bc 23. are, in number, eight ; their literal symbols being,
by what precedes,

b, c, a9, a0, av , av
1 , avõ , avõ

1 ;

the ternary symbols corresponding to which have been shown to be,
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(010), (001), (011), (011), (021), (012), (021), (012):

In fact, that these eight points are all on the line bc, is evident on mere inspection of their
symbols, which are all of the common form,

(0yz) [23:]

55. The points on the second typical line, aa9 30., are in number seven : their literal symbols
being,

a, a9, d1, a-, a0, aõv , aõv
1 ;

and their ternary symbols being,

(100), (011), (111), (211), (111), (211), (311):

In fact, each of these seven symbols is evidently of the form (tuu), or (xyy) 30..

56. The points on the third typical line, b9c9 31., are in number ten ; namely the points,

b91, c9, a0, a-, avõõ
1 , avõõõ

1 , aõx , aõx
1 ,

of which the ternary symbols are,

(101), (110), (011), (211), (121), (112), (321), (312), (231), (213);

each of these ten symbols being of the form (ótu) 31., with ó � t � u, as before.

57. These three typical lines, in the plane abc, which may be denoted by the ternary symbols,
[100], [011], [111], and represent a system of nine lines Ë1, Ë2 in that plane Ð1, are also
three typical traces 43. of other planes thereon; and the remaining traces of such planes are in
number thirteen, represented by four other lines, as types : of which lines, considered as such
traces, the ternary symbols have been found 43. to be,

[111], [011], [211], [211];

answering to the literal symbols,

a0b 0c 0, aa0, d1a0, a9c0,

and serving as abridged expressions for the four equations of ternary form,

x � y � z � 0, y � z � 0, 2x � y � z, 2x � y ÿ z:

58. Each of these four last lines passes through six points; thus the trace [111] passes
through the points (011) (101) (110) (211) (121) (112), or through a0b 0c 0 aõv bõv cõv ; [011]
through (100) (011) (111) (111) (211) (211), or aa0b0c0cvõõbvõõ

1 ; [211] through (111) (011)
(102) (120) (213) (231), or d1a0bvcv

1c
võõõbvõõõ

1 ; and [211] through (011) (111) (131) (120)
(102) (231), or a9c0bõv

1 cv
1b

võaõx ; the correctness of the ternary symbols being evident on
inspection, if the law lx � my � nz � 0 (76) be remembered: and the literal symbols being
thence at once deduced, by 51. and 52..

59. So far, then, that is when we attend only to the twenty-two traces 43. of planes Ð1, Ð2 on
the plane abc, we ®nd a system of three collineations of eight points; three of seven points;
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three of ten points; and thirteen of six points each. Each collineation of the ®rst of these four
systems counts as 28 binary combinations of the 52 points in the plane 53.; each of the second
system counts as 21 such combinations; each of the third system as 45; and each of the fourth
as 15. We therefore account, in this way, for 84� 63� 135� 195 � 477 binary combinations:
but the total number is 26:51 � 1326; there remain then 849 to be accounted for, by lines Ë3

which are not traces, of any one of the foregoing groups.

60. In seeking for such new lines, it is natural to consider ®rst those which pass through one
or other of the three given points a, b, c; and the types of such are found to be the ®ve
following, each representing a new group of six lines Ë3:

[021]; [021]; [031]; [032]; [031]:

As symbols, these answer respectively to the ®ve new lines :

(100)(112)(012)(112)(312), or acõvaõv
1 a

võõ
1 cõx ;

(100)(112)(012)(112)(312), or ac-av
1b

võõavõõõ ;

(100)(113)(213), or acõv
1 c

võõõ;

(100)(123)(123), or acvõõõ
1 bõx ;

(100)(213), or aaõx
1 :

We have thus twelve lines Ë3, each connecting a point p0, with four points p2, and counting as
ten binary combinations; twelve other lines, each connecting a point p0 with two points p2, and
counting as three such combinations; and six lines, each of which connects a point p0 with one
point p2, and counts as only one combination. In this manner, then, we account for
120� 36� 6 � 162, out of the 849 which had remained in 59.; but there still remain 687
combinations to be accounted for, by new lines of third construction, which pass through no
given point.

61. Considering next the new lines which connect a point of the ®rst construction, with one
or more points of the second, we ®nd these ®ve new types,

[311]; [122]; [123]; [133]; and [134];

which as symbols denote the ®ve lines,

(011)(121)(112); (011)(201)(210); (111)(210)(121);

(011)(312); (111)(132);

)
or a9bõvavõõ

1 ; a9bv
1c

võ; d1cvõcvõõ
1 ; a9avõõõ

1 ; and d1cõx
1 ;

but as types represent each a group of six lines. We thus get 18 new lines, each passing through
1 point p1, and 2 points p2; and 12 other lines, each connecting a point p1 with only one point
p2. And these thirty lines Ë3 account for 54� 12 � 66 binary combinations of points: leaving
however 621 such combinations to be accounted for, by new lines Ë3, of which each must
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connect at least two points p2, without passing through any point p0 or p1, and without being
any one of the traces already considered.

62. The symbol [233], which denotes a line passing through two points p2, namely, (011)
and (311), or a0 and aõv

1 , but through no other point, represents, when considered as a type, a
group of three such lines; and 40 other types, as for example [134], which as a symbol denotes
the line (111) (132), or a0bvõõõ , are found to exist, representing each a group of six lines,
whereof each connects in like manner two points p2, but only those two points. We have thus
a system of 243 new lines, which represent only so many binary combinations: and there
remain 378 such combinations to be accounted for, by new lines Ë3, whereof each must
connect at least three points p2.

63. For lines connecting three such points, and no more, it is found that there are twenty types;
whereof eight, as for instance the type [311], which as a symbol denotes the line (011) (121)
(112), or a0b-c-, represent each a group of three such lines; while each of the twelve others,
like [123], which as a symbol denotes the line (111) (121) (210), or a0b-cv , represents a
group of six lines. We have thus 96 new lines, counting as 288 binary combinations: but we
must still account for 90 other combinations, by new lines Ë3, connecting each more than three
points p2.

64. Accordingly, we ®nd three new types of lines, which alone remain, when all those which have
been above exhibited, or alluded� to, are set aside: namely

[124]; [124]; [112]:

And these represent, respectively, groups of six, of six, and of three new lines, and therefore
on the whole a system of ®fteen new lines, each passing through four points p2, and
consequently counting as six combinations; for example, as symbols, they denote the three
following lines:

(210)(211)(021)(231), or cvaõvavbvõõõ
1 ;

(210)(211)(021)(231), or cvcvõõavõaõx ;

(201)(110)(021)(111), or bvõ
1 c 0avõc0:

But 6:15 � 90; we are therefore entitled to say, that all the 1326 binary combinations 59., of the
52 points p0, p1, p2 53. in the plane abc, have now been fully accounted for.

65. Collecting the results, respecting the collineations in the plane abc, it has been found that
there are 261 lines Ë3, whereof each connects two, but only two, of the 52 points in that plane;
and that these lines, which at the present stage of the construction are not properly cases of
collinearity at all, are represented by a system of 44 ternary types.

� It has been thought that it could not be interesting to set down all the types of lines, above referred
to; especially as those which relate to lines not passing through at least four points give rise, at the present
stage of the construction, to no theorems of harmonic (or anharmonic) ratio.
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66. There are 126 other lines Ë3, each connecting three (but only three) points; they are
represented by a system of 25 types; and account for 378 binary combinations.

67. There are 15 lines Ë3, each connecting four points p2; they are represented by a system
of 3 types, and account for 90 combinations.

68. There are 12 lines Ë3, each connecting one point p0 with four points p2; they are
represented by 2 types, and represent 120 combinations.

69. There are 13 other lines Ë3, namely the traces of planes Ð1 or Ð2, whereof each connects
six points, namely a point p0 or p1 with ®ve points p2, or else six points p2 with each other;
they are represented by 4 types, and account for 195 combinations.

70. There are 3 lines Ë2,2, each connecting two points p1 with eight points p2; they have one
common type, and represent 135 combinations.

71. There are, in like manner, 3 lines Ë2,1, each connecting one point p0 with two points p1,
and with four points p2, but having only one common type; and they represent 63 combinations.

72. Finally, there are (in the same plane) 3 lines Ë1, each connecting two points p0 with one
point p1, and with ®ve points p2; these lines also have all one type ; and they account for 84
combinations: with the arithmetical veri®cation, that

261� 378� 90� 120� 195� 135� 63� 84 � 1326 � 26:51;

which proves that the enumeration is complete.

73. The total number of distinct lines, above obtained, is 261� 126� 15� 12� 13� 3 �
3� 3 � 436; and the total number of their ternary types is 81. But if we set aside (as conducting
to no general metric relations) all those lines which contain fewer than four points, there then remain
only forty-nine lines, and only twelve types, to be discussed, with reference to harmonic (or
anharmonic) relations, of the points upon those lines.

74. For the purpose of studying completely all such relations, it will therefore be permitted
to con®ne ourselves to the three ®rst typical lines, bc, aa9, b9c9, or [100], [011], [111]; the four
other typical traces, a0b0c0, aa0, d1a0, a9c0, or [111], [011], [211], [211]; and ®ve new typical lines
Ë3, connecting each at least four points: namely the two lines, [021] and [021], of 60., whereof
each connects the given point a with four points p2; and the three lines [124], [124], [112], of
64., of which each connects four other points p2 among themselves, but does not pass
through any point p0, or p1.

Part IV. Applications to the Net, continued: Harmonic and Involutionary Relations, of the
Points situated on the Twelve Typical Lines, in a Plane of First Construction

75. Commencing here with the examination of the last typical lines, because they contain
only four points each, let us adopt, as temporary symbols, of the literal kind, the ten following:
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a � (210), b � (211), c � (021), d � (231);

b9 � (211), c9 � (021), d9 � (231);

a 0 � (201), b 0 � (110), d 0 � (111);

instead of the more systematic but less simple symbols, cvaõvavbvõõõ
1 cvõõavõaõxbvõ

1 c0c0.

76. The three lines referred to 64., are then the three following:

abcd; ab9c9d9; a 0b 0c9d 0:

And because we have (comp. 16.) the six symbolical relations,

(c)ÿ (a) � (b); (c)� (a) � (d);

(a)ÿ (c9) � (b9); (a)� (c9) � (d9);

(a 0)ÿ (c9) � 2(b 0); (a 0)� (c9) � 2(d 0),

it results (31) that the three harmonic equations exist:

(abcd) � (ab9c9d9) � (a 0b 0c9d 0) � ÿ1:

We have therefore this Theorem :-

``Each of the 150 lines Ë3, which connect four points p2, in any one of the ten planes Ð1, and pass through no other

of the 305 points p0, p1, p2, is harmonically divided.''

77. As veri®cations, the three right lines bb9, cc9, dd9 concur in the point c; bd9, cc9, db9, in b;
aa 0, b9b 0, d9d 0, in a9; and aa 0, b9d 0, d9b 0, in a point p3, namely in (411): the existence of
which four concurrences of lines was to be expected, from a known principle of homography, as
consequences of the harmonic relations 76.. It is worth noticing, however, how simply these
concurrences are here expressed, by the ternary symbols of the points, according to the law (18);
or, if we choose, by the corresponding symbols of the lines, with the analogous law (25): for
example, the three last concurrent lines aa0, &c., have for their respective symbols, [122],
[011], and [115] � [122]� [033].

78. To examine, in like manner, the analogous relations of arrangement, on the two new
typical lines 60., namely [021] and [021], whereof each connects the given point a with four
points of second construction, let us write as eight new temporary symbols of the literal kind,
more convenient than the former symbols, cõv avõ

1 avõõ
1 cõx bvõõ av

1 c- avõõõ
1 , the following:

b � (112), c � (012), d � (112), e � (312);

â � (112), ã � (012), ä � (112), E � (312);

so that the two lines in question are,

abcde , and aâãäE:

We have thus the eight following new symbolical relations, a being still � (100):

(a)ÿ (c) � (b), (a)� (c) � (d); (e)ÿ (b) � 2(d), (e)� (b) � 4(a);
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(ã)ÿ (a) � (â), (ã)� (a) � (ä); (E)� (â) � 2(ä), (E)ÿ (â) � 4(a);

whence result at once the four harmonic relations,

(abcd) � (abde) � (aâãä) � (aâäE) � ÿ1:

These two lines from a are therefore homographically divided, the point a corresponding to
itself, and b to â, &c.; and accordingly the four right lines, bâ, cã, dä, eE, which connect
corresponding points, concur in one common point, which is easily found to be b. And other
veri®cations, by such concurrences, can be assigned with little trouble.

79. It may assist the conception of the common law of arrangement, of the ®ve points on each
of the two typical lines last considered, to suppose that the joining line bâ is thrown off, by
projection, to in®nity: or, what comes to the same thing, that the two points b and â,
themselves, are thus made in®nitely distant. For thus the harmonic equations 78. will
simply express that, in this projected state of the ®gure, the four points, d, e, ä, E, bisect
respectively the four intervals, ac, ad, aã, aä; whence it is easy to construct a diagram, not
necessary here to be exhibited. The consideration of the two other lines through the same
given point a, which have [012] [012] for their symbols, and belong to the same two types
as the two last, would offer to our notice a pencil of four rays, which has some interesting
properties, especially as regards its intersections with other pencils, but which we cannot here
delay to describe.

80. It may, however, be worth while to state here, as a consequence from the preceding
discussion, this other Theorem :-

``The 120 lines Ë3, in the ten planes Ð1, whereof each connects a point p0 with four points p2, and
with no other of the 305 points, although not all syntypical, are all homographically divided.''

81. Proceeding to consider the arrangements of those six typical lines 58. which contain
each six points, we ®nd that whether we write, as new temporary and literal symbols,

a � (011), b � (101), c � (110), a9 � (211), b9 � (121), c9 � (112),

or

a � (011), b � (111), c � (120), a9 � (231), b9 � (131), c9 � (102),

the six points abca9b9c9 being in the one case on the line [111], and in the other case on the
line [211], we have in each case the three harmonic equations:

(caba9) � (abcb9) � (bcac9) � ÿ1:

We may then at once infer this Theorem :
``The 70 lines Ë3, in the ten planes Ð1, which are represented by the fourth and seventh typical traces

of planes on the plane abc, although not all syntypical (or generated by similar processes of
construction), are all homographically divided.''

82. This common mode of their division may deserve, however, a somewhat closer examina-
tion, its consequences being not without interest. When any six collinear points, a . . c9, are
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connected by the three equations 81., we are permitted to suppose that their symbols are so
prepared (if necessary), by coef®cients,� as to give,

(a)� (b)� (c) � 0;

(a9) � (b)ÿ (c), (b9) � (c)ÿ (a), (c9) � (a)ÿ (b);

and therefore,

(a9)� (b9)� (c9) � 0,

3(a) � (c9)ÿ (b9), 3(b) � (a9)ÿ (c9), 3(c) � (b9)ÿ (a9):

Whenever, then, the three harmonic equations 81. exist, for a system of six collinear points, a . . c9, the
three other harmonic equations, formed by interchanging accented and unaccented letters,

(c9a9b9a) � (a9b9c9b) � (b9c9a9c) � ÿ1,

are also satis®ed; and the three pairs (or segments),

aa9, bb9, cc9,

which connect corresponding points, compose an involution.y

83. Under the same conditions, the two points a and a9 are harmonically conjugate to each
other, not only with respect to b and c, but also with respect to b9 and c9; they are therefore
the double points (or foci) of that other involution which is determined by the two pairs of points,
bc, b9c9. In like manner, b, b9 are the double points of the involution, determined by the two
pairs, or segments, ca, c9a9; and c, c9 are the double points of the involution determined by
ab, a9b9.

84. From any one of the three last involutions 83., we could return, by known principles, to
the involution 82.; we can also infer from them that the three new pairs of points (or segments of
the common line), aa9, bc9, cb9; the three pairs, or segments, bb9, ca9, ac9; and the three others,
cc9, ab9, ba9, form three other involutions, making seven distinct involutions of the six points, so far:
in three of which, as we have seen in 83. two of those six points are their own conjugates.

85. For these and other reasons we propose to say, that when any three collinear points (as a, b,
c) are assumed (or given), and three other points on the same line are derived from them, by the
condition that each shall be the harmonic conjugate of one, with respect to the other two, then these two
sets of points are two Triads of Points in Involution. And it is easy to extend this de®nition so as to
include cases of two triads of complanar and co-initial lines, or of collinear planes, which shall
be, in the same general but (as it is supposed) new sense, in involution with each other: every
such involution of triads including, by what precedes, a system of seven involutions of the old or
usual kind.

� For example, in the second case 81., we should change the symbols for c and b9 to their negatives,
before employing the formulñ of 82.
y Compare p. 127 of the GeÂomeÂtrie SupeÂrieure (Paris, 1852). In general, the reader is supposed to be

acquainted with the chapter (chap. ix.) of that excellent work of M. Chasles, which treats of Involution.
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86. For example, because the two triads of points, a0b0c0 and aõvbõvcõv , are thus in involution,
by the equations 81. applied to the fourth typical trace 43., it follows that the two pencils, each
of three rays,

d1:a0b 0c 0, and d1:abc,

are triads of lines, in involution with each other; and that, for a similar reason, the two triads of
planes, all passing through the line de,

dea, deb, dec, and dea0, deb 0, dec 0,

are, in the sense above explained, in involution. In fact, when the point d1 is thus taken as a
vertex of the pencils in the plane abc, the three harmonic equations of the ®rst case 81.,
namely,

(c 0a0b 0aõv) � (a0b 0c 0bõv) � (b 0c 0a0cõv) � ÿ1,

or rather the three reciprocal equations (comp. 82.),

(cõvaõvbõva0) � (aõvbõvcõvb 0) � (bõvcõvaõvc 0) � ÿ1,

correspond simply to the elementary equations, (50), (56),

(ca9ba0) � (ab9cb 0) � (bc9ac 0) � ÿ1,

which may be employed to de®ne the three important points a0, b0, c0, (87), of the ®rst group
of second construction 40., as being the (well known) harmonic conjugates of the points a9, b9, c9

of ®rst construction, with respect to the three lines of the same ®rst construction, bc, ca, ab,
on which those points are situated.

87. The equations 82., which connect the symbols (a) . . (c9) of the six points, give, by easy
eliminations, these other equations of the same kind:

(b9) � (b)� 2(c); ÿ(c9) � 2(b)� (c);

we have therefore, by (31), the following anharmonic of the group b, b9, c, c9:

(bb9cc9) � �4;

and other easy calculations of the same sort given, in like manner, the equal anharmonics,

(cc9aa9) � �4; (aa9bb9) � �4:

But in general, for any four collinear points, a, b, c, d, the de®nition (29) of the symbol (abcd)
gives easily the relation,

(abcd)� (acbd) � 1;

and hence, or immediately by calculations such as those recently used, we have this other set
of anharmonics, with a new common value:

(bcb9c9) � (cac9a9) � (aba9b9) � ÿ3;

the negative character of which shows, by the same de®nition (29), that the segment (or
interval) aa9, for example, is cut internally by one of the two points b, b9, or by one of the two
points c, c9, and externally by the other : with similar results for each of the two other segments,
bb9, cc9.
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88. We may then say that each of the three segments, aa9, bb9, cc9, overlaps each of the two others, in
the sense that any two of them have a common part , and also parts not common : whence it
immediately follows that the involution 82., to which these three segments belong, has its double
points imaginary : whereas it may be proved, on the same plan, that each of the three
involutions of segments mentioned in 84., namely aa9, bc9, cb9; bb9, ca9, ac9; cc9, ab9, ba9, has
real� double points ; and the double points of the three other involutions, determined by the
three pairs of segments, bc, b9c9; ca, c9a9; ab, a9b9, are likewise real, and have been assigned 83.;
namely, in each of these three last cases, the two remaining points of the system.

89. Now, in general, when the foci (or double points) of an involution of collinear
segments, aa9, bb9, . . . are imaginary, so that conjugate points, a, a9, or b, b9, &c., fall at opposite
sides of the central point o, it is known, and may indeed be considered as evident, that if an
ordinate op be erected, equal to the constant geometrical mean between the two distances oa,
oa9, or ob, ob9, &c., then, all the segments aa9, bb9, &c., subtend right angles, at the extremity p of this
ordinate. It follows, then, by what has been proved in 82. and 88., and by the ®rst case of 81.,
that each of the three segments a0 aõv , b0 bõv , c0 cõv , of the fourth typical trace 43., subtends a right
angle at some one point, p, in the plane abc, or rather generally at each of two such points: and in
like manner, by the second case 81., that each of the three other segments, a9 aõx , c0 bõv

1 , cv
1 bvõ, of

the seventh typical trace, subtends a right angle, at each of two other points, p, p9, in the same
plane.

90. These results, by their nature, like all the foregoing results of the present Paper, are quite
independent of the assumed arrangement of the ®ve given (or initial ) points of space a . . e, and are
unaffected by projection, or perspective. In saying this, it is not meant, of course, that one right
angle will generally be projected into another ; or that the new point p, at which the three new
segments a0aõv , b0bõv , c0cõv , or a9aõx , c0bõv

1 , cv
1b

võ , subtend right angles, will be itself (what may
be called) the projection of the old point p 89., which was so related to the three old segments,
denoted by the same literal symbols, when the arrangement (or con®guration) of the ®ve initial
points is varied, by a process analogous to projection. We only assert that there will always, in
every state of the Figure, or of the Net, be some point p, possessing the above-mentioned
property: or rather that there will be a circle of such points in space, having for its axis the line
to which the three segments belong.

91. To ®x a little more de®nitely the conceptions, let a, b, c, d be supposed, for a moment,
to be the corners of a regular pyramid, with e for its mean point, or centre of gravity. With this
arrangement of the ®ve given points p0, six of the derived points p1, namely a9, b9, c9, a2, b2,
c2, bisect the six edges, bc, ca, ab, da, db, dc, of the given pyramid; and the four other points
p1, namely a1, b1, c1, d1, are the mean points of the four faces, opposite to a, b, c, d. Six of the
ten points p2,1, namely a0, b0, c0, a29, b29, c29, are now in®nitely distant ; and the line a0b0c0

aõvbõvcõv to which three of the lately mentioned segments belong, becomes the line at in®nity in
the plane abc: which might seem, at ®rst sight, to render dif®cult, with respect at least to
them, the veri®cation of a recent theorem 89.. That theorem is, however, veri®ed in a very

� The determination of these double points gives rise naturally to some new theorems, which cannot
conveniently be stated here.
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simple manner, by observing that, with the arrangement here conceived, the three angles
a0d1aõv , b0d1bõv , c0d1cõv , which those in®nite and in®nitely distant segments may be imagined to
subtend at the point d1, are all right angles ; d1a0, for example, being parallel to the side bc of
the triangle abc, which is now an equilateral one; while d1aõv is perpendicular to the same side,
because it is drawn from the mean point d1, and passes through the opposite corner, a. As
another veri®cation of the theorem 89., it will be found that, with the arrangement here
supposed, the segments a9aõx , c0bõv

1 , cv
1b

võ , of the seventh trace 43., subtend right angles at the given
point b.

92. the involution of the three segments 82. is only one of the consequences of the three harmonic
equations 81., or of what we have called in 85. the Involution of the two Triads, abc, and a9b9c9.
We can therefore infer more, respecting the geometrical relations of the six points, even in the
general state of the whole Figure, or Net, than merely that those three segments subtend right
angles, as above, at every point of one real circle, which has its centre on the common line, and its
plane perpendicular thereto. The order of succession of the six points being supposed to be the
following, ac9ba9cb9, from which it can only differ, if at all, by changes not important to the
argument, let p be, as in 90., a point such that the angles apa9, bpb9, cpc9, are right. Then,
because the three pencils,

p:ac9bc, p:c9ba9b9, and p:ba9ca,

are all harmonic pencils by 81., it follows that (with the supposed order of the points) the lines
pc9 and pc are respectively the internal and external bisectors of the angle apb; pb and pb9, of the
angle c9pa9; and pa9, pa, of bpc: the line pc bisecting also the angle a9pb9 internally. Hence it
is easy to infer the following continued equation between angles (which is supposed to be new):

apc9 � c9pb � bpa9 � a9pc � cpb9 � ð

6
;

and therefore we may enunciate this Theorem :- ``When six collinear points form a system of two
triads in involution, their ®ve successive intervals subtend angles each equal to the third part of a right
angle, at every point of a certain circle, of which the axis is their common line.''

For example, with the particular arrangement 91. of the ®ve initial points a . . e, it is found
that the ®ve successive portions, c0aõx , aõxcv

1, cv
1b

õv
1 , bõv

1 a9, a9bvõ , of the seventh trace, subtend
each an angle of thirty degrees, at the given point b; and the six lines d1a0, d1cõv , d1b0, dõv

1 ,
d1c0, d1bõv , if suitably distinguished from their own opposites, succeed each other at angular
intervals, of the same common amount.

93. In general, if three equally inclined diameters of a circle, forming a regular and six-rayed star,
be taken as a given triad of lines 85., the triad in involution therewith is represented by that other
star of the same kind, of which the diameters bisect the angles between those of the former star:
so that if we consider any six successive rays of the compound or twelve-rayed star, which results
from the combination of these two, their successive angles are evidently each equal to thirty
degrees. But we now see further, that if a star of this last kind be cut in six points by an arbitrary
transversal in its plane; and if these six points of section be in any manner put into perspective,
by any new pencil and transversal: the six new points, thus obtained, as forming still two triads
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in involution, must admit of having their ®ve successive intervals seen, from every point of some
new circle, under angles still equal each to the same third part of a right angle.

94. We have not yet considered the arrangement of the six points on either the ®fth or the
sixth typical trace 43.; but it is easy to do this as follows. Let abcáâã denote, as new temporary
symbols, either the six points of the ®fth trace (comp. 58.),

I: a � (100), b � (111), c � (111), á � (011), â � (211), ã � (211);

or these six other points, belonging to the sixth trace,

II: a � (111), b � (102), c � (120), á � (011), â � (231), ã � (213);

we shall then have, in each case, the three harmonic equations,

(bacá) � (câaá) � (aãbá) � ÿ1:

In each case, therefore, we may consider ourselves at ®rst deriving from three points a
fourth, as the harmonic conjugate of the ®rst with respect to the other two; and then deriving
a ®fth point, and a sixth, as the harmonic conjugates of that fourth point, with respect, on
the one hand, to the third and ®rst points; and on the other hand, to the ®rst and second
points of the system.

95. Having regard merely to this common law, we may enunciate (comp. 80. 81.) this
theorem:-

``The sixty lines, in the ten planes of ®rst construction, represented by the fourth and ®fth typical traces
of the planes on the plane abc, although not all syntypical, are all homographically divided.''

And this common mode of their division is such, that if the fourth point be thrown off to
in®nity, the ®rst point bisects the interval between the second and third; the ®fth point
bisects the interval between third and ®rst; and the sixth point bisects the interval between
®rst and second: so that, on the whole, we have a ®nite line, bc quadrisected in the points ã,
a, â, and cut at in®nity in á; whereas if, on either the fourth or the seventh trace, one of the
six points, but only one, had been thus made in®nitely distant, the ®ve others would have
presented the ®gure of a ®nite right line, bisected and trisected. With the equations 94., if a,
instead of á, be projected to in®nity, it is then the line âã which is quadrisected, namely,
in the points c, á, b. In general, with these last equations, the ®rst set of three points, abc,
can be derived from the second set, áâã, by the same rule 94., as that by which the second set
has been derived from the ®rst: so that there is a sense in which these two sets may be said
to be reciprocal triads, although they are not triads in involution, according to the de®nition
85..

96. It may be added that, on either the ®fth or the sixth trace, the two points which we
have called ®rst and fourth, are the double points of a new involution, determined by the two
pairs, second and third, ®fth and sixth; or, with the recent notations 94., that aá are the foci of
the involution bc, âã; because the three last harmonic equations conduct to this fourth
equation,

(âaãá) � ÿ1:
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97. And, as regards the homography of the divisions on the same two traces, if we denote, for
the sake of distinction, the six points on the sixth trace by a9 . . ã9, then (because á9 � á) the
®ve lines aa9, bb9, a9, ââ9, ãã9, or (comp. 58.) the ®ve lines,

ad1, b0bv , c0cv
1 , bvõõ

1 bvõõõ
1 , cvõõcvõõõ ,

ought to concur in some one point : which accordingly it is easy to see that they do, namely in
the point a9; in fact, with the recent signi®cation of a, . . and a9, . . , we have the symbolic
equations,

(a9)ÿ (a) � (b9)ÿ (b) � (c9)ÿ (c) � (011) � (a9);

and

(â9)ÿ (â) � (ã9)ÿ (ã) � (022) � 2(a9):

98. The two sets of six points , on these two traces, with one point common, are thus the points
in which a certain six-rayed pencil, with a9 for vertex, is cut by the two traces as transversals; the
symbols of the six rays being the following:

a9ad1 � [011]; a9b0bv � [211]; a9c0cv
1 � [211];

a9a0 � [100]; a9bvõõ
1 bvõõõ

1 � [111]; a9cvõõcvõõõ � [111]:

And from a mere inspection of these symbols, we can infer (comp. (33)) that the ®rst and
fourth rays are the common harmonic conjugates of the two pairs, second and third, ®fth and sixth ;
or that they are the double rays of the involution , which those two pairs of rays determine: the
theorem 96. being thus, in a new way, con®rmed.

99. We have now discussed the arrangements of the points on those nine typical lines Ë3,
whereof each passes through not less than four , nor more than six , of the 52 points in the
plane abc; but we have still three other typical lines to consider, namely the lines Ë1 and Ë2, of
which each passes through at least seven points. Taking ®rst, for this purpose, the typical line
Ë2,1, namely, aa9, which contains only seven points, whereof the ternary symbols have been
assigned in 55., and the literal symbols there given may be retained, we shall, for the moment,
reserve the consideration of the two points p2,3; but shall introduce a new and auxiliary point
p3,1 on the same line, which may be thus denoted:

ax � (122) � aa9:bc-:cb-;

and which may be said to represent, or typify, a ®rst group of third construction, containing ®fteen
points , one on each of the ®fteen lines Ë2,1; although, in the present Paper, we can only allude
to such new points p3, and cannot here attempt to enumerate, or even to classify them.

100. We have thus again six points, at this stage, to consider, namely the points a, a9, d1, a-,
a0, ax ; and their symbols easily show that they are connected by the three following harmonic
equations,

(aa9d1a-) � (ad1a9a0) � (a9ad1ax) � ÿ1;

from which it follows, by 85., that the two triads of points,
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aa9d1 and axa-a0,

are triads in involution : with, of course, all the properties which have been proved, in recent
paragraphs of this Paper, to belong generally to any two such triads. As a veri®cation, it may
be mentioned that, with the particular arrangement 91. of the ®ve initial points a . . e, if we
determine two new points p, p9, of third construction, by the formulñ,

p � (214) � bc-:ca-, p9 � (241) � cb-:ba-,

it can be proved that each of the ®ve successive intervals (comp. 92.) between the six points,

a, a-, d1, ax , a9, a0,

subtends the third part of a right angle at each of these two new auxiliary points, p and p9.
But with other initial con®gurations, the coordinates of these two new vertices would be different,
because they are connected with angles, which are not generally projective 90.; although, as has
been already remarked, there would always be some new points p, or rather a circle of such,
possessing the property in question.

101. We may however enunciate generally, and without reference to any such particular
arrangement of the ®ve initial points, this Theorem :-

``On any one of the ®fteen lines Ë2,1, of second construction, and ®rst group, the given point p0, and
the two derived points of ®rst construction p1, compose a triad, the triad in involution to which 85.
consists of the point p3,1, of third construction and ®rst group, and of the two points p2,2, of second
construction and second group, upon that line ;'' with seven involutions of segments (comp. 84.)
included under this general relation.

For example, on the line aa9, the three segments aax , a9a-, d1a0 form always an involution of
the ordinary kind, with its double points imaginary ; the three other sets of segments, aax , a9a0,
d1a-; a9a-, aa0, d1ax ; and d1a0, aa-, a9ax , form each an involution, with real double points ;
the points a, ax are the real foci of a ®fth involution, determined by the two pairs of segments
a9d1, and a-a0; the points a9, a- are, in like manner, the real double points of that sixth
involution, which the two other pairs, a, d1, and a0, ax , determine: and ®nally, d1 and a0 are
such points, for the seventh involution, determined by aa9, a-ax .

102. Introducing now the consideration of the two lately reserved points p2,3 99., of second
construction and third group 45., upon the typical line Ë2,1, we may derive them from the point
p0, the two points p1, and the two points p2,2, upon that line aa9, by the two following
harmonic equations:

(aa-a9aõv) � (aa0d1aõv
1 ) � ÿ1;

or by these two others,

(aa9a0aõv) � (ad1a-aõv
1 ) � ÿ1,

which may indeed be inferred from the two former, with the help of the relations between
the six points previously considered: for, in general, if abc, a9b9c9 be collinear triads in
involution, and if d and d9 be the harmonic conjugates of b9 and c9, with respect to the two
pairs, ab, ac, they are also the harmonic conjugates of b and c, with respect to the two other
pairs, ac9, ab9; or in symbols,
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(abc9d) � (acb9d9) � ÿ1, if (ab9bd) � (ac9cd9) � ÿ1,

when the three harmonic equations 81. exist. We have also, generally, under these condi-
tions, the equation

(ada9d9) � ÿ1;

for example, on the line aa9, we have

(aaõvaxaõv
1 ) � ÿ1:

103. It is scarcely worth while to remark that the 15 lines Ë2,1 of the net, as being all
syntypical , are all homographically divided ; although it may just be noticed, as a veri®cation, that
the six lines,

bc, b9c9, b-c-, b0c0, bõvcõv , bõv
1 c

õv
1 ,

which connect corresponding points on the two other lines of the same group in the given
plane, namely bb9d1 and cc9d1, concur in one point a0. But it may not be without interest to
observe, that ax is the common harmonic conjugate of a, with respect to each of the three pairs,
a9d1, a-a0, aõvaõv

1 ; which three pairs,� or segments, form thus an involution, with a and ax for
its double points. We have therefore this Theorem :-

``On each of the ®fteen lines Ë2,1, the three pairs of derived points, of ®rst and second constructions,
namely the pair p1, the pair p2,2, and the pair p2,3, compose an involution, one double point of which
is the given point p0; the other double point being the point p3,1, of third construction and ®rst group,
upon the line.''

104. We have thus discussed the arrangements of the points p0, p1, p2, on each of the ten
typical lines which connect not fewer than four, and not more than seven of them; but there are
still two other typical lines to be considered, belonging to the groups Ë1 and Ë2,2; whereof
one, as bc, passes through eight points 54.; and the other, as b9c9, has ten points upon it 56..
Beginning with the ®rst, we easily ®nd that the two sets of points, a9bc and a0av

1a
v , are triads

in involution 85.; the latter set being thus deducible from the former: while the two other
points upon the line may be determined by the condition that they satisfy this other involution
of two triads, a0bc, a9avõ

1 avõ. With the initial arrangement 91., the line avõavõ
1 is trisected in b and

c, and its middle part bc is likewise trisected in av and av
1 ; while each line is bisected in a9, and cut

at in®nity in a0. And in general we may enunciate these two Theorems :-

I. ``On every line of ®rst construction, the point p1 and the two points p0 form a triad, the triad in
involution with which consists of the point p2,1, and the two points p2,4.''

II. ``On every such line Ë1, the triad formed by the point p2,1, and the two points p0, is in involution
with a triad which consists of the point p1 and the two points p2,5.''

105. Besides these two involutions of triads, we have two distinct involutions of the ordinary kind,
into each of which all the eight points enter ; two being double points in each. For we have these two

� That the two ®rst of these three pairs belong to an involution, with those two double points, was seen
in 101.
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other Theorems, deducible, indeed, from the two former, but perhaps deserving to be separately
stated:-

III. ``On every line of ®rst construction, the two given points are foci of an involution of six points, in
which the points p1, p2,1, are one pair of conjugates, while the two other pairs are of the common
form, p2,4, p2,5.'' For example,av , avõ are such a pair, on the line bc.

IV. ``On every such line Ë1, the points p1, p2,1, are the double points of a second involution of six
points, obtained by pairing the two points of each of the three other groups.''

106. Finally, as regards the remaining typical line b9c9, which connects two points p1, and
passes through eight points p2, if we reserve for a moment the consideration of the last pair,
p2,8, or aõx and aõx

1 , we have a system of eight points upon that line, homographic with the recent system
of eight points on the line bc; being indeed the intersections of the line b9c9 with the eight-rayed
pencil, a.a9bca0av

1a
vavõ

1 avõ , when taken in the order a-c9b9a0 Avõõõ
1 avõõõavõõ

1 avõõ. No description of
the arrangement of these latter points is therefore at this stage required: but as regards the
pencil, it may be remarked that, by 104., the 1st, 2nd and 3rd rays form a triad of lines, in
involution 85. with the triad formed by the 4th, 5th and 6th; and that the triad of the 2nd, 3rd
and 4th rays is, in the same new sense, in involution with the triad of the 7th, 8th, and 1st:
from which double involutions of triads, the ®ve last rays may be derived, if the three ®rst are given.
We have also by 105. a double involution of the rays, considered as paired with each other, or with
themselves : thus the second and third rays are the double rays of an involution (of the usual
kind), in which the ®rst is conjugate to the fourth, the ®fth to the seventh, and the sixth to
the eighth; while the ®rst and fourth rays are the double rays of another involution, in which
the second and third, the ®fth and sixth, and the seventh and eighth are conjugate.

107. It only remains to assign the arrangement of the two last points of second construction,
p2,8, with respect to the other points, p1, p2, on a line Ë2,2, or to some three of them; or to show
how aõx and aõx

1 can be derived,� for example, from b9, c9, and a0: which derivation may easily
be effected, on the plan already described for the ®fth and sixth typical traces. In fact, if we
denote the six points a0c9b9a-aõx

1 a
õx by abcáâã, we have the three harmonic equations of 94.;

and if, by one of the modes of perspective, or projection, mentioned in 95., which answers to the
initial arrangement 91., we throw off the ®rst point a0 to in®nity, the ®nite line aõxaõx

1 is then
quadrisected : being itself bisected at a-, while c9 and b9 bisect its halves. In general, we shall have
again the equations 94., if we otherwise represent the six lately mentioned points on b9c9 by
áâãabc; and thus it is seen that those six points are always homographic, in every state of the ®gure,
or net, with the six points a0bvõõ

1 cvõõab0c0 on the ®fth trace aa0, and with the six points
a0bvõõõ

1 cvõõõd1bvcv
1 on the sixth trace d1a0; in fact they are, if taken in a suitable order, the points

in which the six-rayed pencil 98., with a9, for vertex, is cut by the line b9c9.

108. We have thus shown for each of the twelve typical lines 74., in the plane abc, how all the
points but three, upon that line, may be derived from those three by a system of harmonic equations,

� This point aõx may also, by 81., be determined on the seventh trace, or seventh typical line 74., as the
harmonic conjugate of a9, with respect to c0 and cv

1 .
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not necessarily employing any point p3, or other foreign� or merely auxiliary point : although it
appeared that something was gained, in respect to elegance and clearness, by introducing, on
the line aa9, such a point ax 99.; or by considering generally, on any one of the ®fteen lines
Ë2,1, a point p3,1 of third construction, belonging to what may perhaps deserve to be regraded
as a ®rst group 103. of the points p3, in any future extension 1. of the results of the present
Paper.

Part V. Applications to the Net, continued: Distribution of the Given or Derived Points, in a
Plane of Second Construction, and of First or Second Group

109. It will be necessary to be much more concise, in our remarks on the distribution of the
net-points in planes of second construction ; but a few general remarks may here be offered, from
which it will appear that each plane Ð2,1 contains forty-seven of the 305 points p0, p1, p2; and
that each plane Ð2,2 contains forty-three of those points; with many cases of collineation for
each.

110. We saw in 33., that each plane Ð2,1 contains two lines Ë2,1, which intersect in a point
p0, and may be regarded as the diagonals of a quadrilateral, of which the four sides are lines
Ë2,2. It contains, therefore, as has been seen, one point p0, and four points p1; but it is found
to contain also 42 points p2, arranged in six groups , as follows.

111. There are 2 points p2,1, namely the intersections of opposite sides of the quadrilateral;
thus, in what we have called the second typical plane 33., the sides b1c1, c2b2 intersect in the point
a0; and the sides c1c2, b2b1 in d19 (62).

112. The plane contains also 8 points p2,2; namely, two on each of the two diagonals, and one
on each of the four sides ; and it contains 4 points p2,3, namely two on each diagonal: but it
contains no point of either of the two groups, p2,4, p2,5, as a comparison of their types
suf®ciently proves, or as may be inferred from the laws of their construction 46. 47.

113. The same plane contains 12 points p2,6; namely two on each side of the quadrilateral;
and four others, in which the plane is intersected by four lines Ë2,2; as the types suf®ciently
prove. But to show, geometrically, why there should be only four such intersections, conducting
thus to new points p2,6 in the plane, let the ®ve inscribed pyramids 28. be denoted by the
symbols a9 . . e9; then the six edges of the pyramid a9 are found to intersect the present plane
Ð2,1 in points already considered, namely in the two points p2,1, of meetings of opposite sides,
and in those four points p2,2, which are situated on the diagonals of the quadrilateral; they give
therefore no new points. Also, each side of the same quadrilateral is an edge of one of the four
other pyramids, b9 . . e9; but there remains, for each such pyramid, an opposite edge ; and these are

� This non-requirement of foreign points is the only remarkable thing here: for the anharmonic function of
every group of four collinear net-points is necessarily rational ; and whenever (abcd) � any positive or negative
quotient of whole numbers, it is always possible to deduce the fourth point d from the three points a, b, c, by
some system of auxiliary points, derived successively from them through some system of harmonic equations.
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the four lines, out of the plane, which intersect it in the four points p2,6, additional to the eight
points p2,6, which are ranged, two by two, upon the sides. There are thus twelve points of the group
p2,6, in any one plane Ð2,1; and we have now exhausted the intersections of that plane with
lines Ë2,2; and also, as it will be found, with the lines Ë2,1, and Ë1.

114. But there remain eight points p2,7, and eight points p2,8, in the plane now considered;
namely two of each group, on each of the four sides of the quadrilateral. There are, therefore,
16 such points; which, with the 12 points p2,6 the 4 points p2,3; the 8 points p2,2; the 2 points
p2,1; the 4 points p1; and the one point p0, make up (as has been said in 109.) a system of 47
points, given or derived, in any one of the ®fteen planes Ð2,1.

It may be remarked that with the initial arrangement 91. of the ®ve given points, the four
points b9c9b2c2, in a new plane Ð2,1, are corners of a square, which has the point e for its
centre ; and that thus the Figure, of the 47 points in such a plane, may be thrown into a clear
and elegant perspective.

115. As regards the distribution in a plane Ð2,2, such as the Third Typical Plane 34., it may
here be suf®cient to observe, that besides containing three lines Ë2,2, namely the sides of a
triangular face 34. of one of the ®ve inscribed pyramids 28., and three points p1, which are the
corners of that triangle, and serve to determine the plane 1., it contains also forty points p2, which
are arranged in groups, as follows. Each of the four ®rst groups, of second construction, p2,1 . .p2,4,
gives three points to the plane; the ®fth group, p2 furnishes only one point ; and the sixth, seventh,
and eighth groups, p2,6, . .p2,8, supply six, twelve, and nine points, respectively, Of these 40
points p2, twenty-four are ranged, eight by eight, on the three sides of the triangle, as was to be
expected from 56.; and the existence of at least 27 points, p1, p2, in a plane Ð2,2, might thus
have been at once foreseen. But we have also to consider the traces, on that plane, of the 52
lines, Ë1, Ë2, which are not contained therein. Of these lines, it is found that 36 intersect the
sides of the triangle, and give therefore no new points. But the sixteen other lines intersect the
plane, in so many new and distinct points ; and thus the total number 109., of forty-three derived
points, p1, p2, in a plane Ð2,2, which contains no given point p0, is made up.

116. Without attempting here to enumerate the cases of collineations, in either of the two
typical planes Ð2, we may just remark, that while the traces of four of the planes Ð1 on the
typical plane Ð2,1 are the four sides, and the traces of four others are the diagonals, of the
quadrilateral already mentioned, the trace of a ninth plane Ð1, namely abc, on that plane
Ð2,1, has been already considered, as the trace aa0 of the latter on the former; but that the
trace of the tenth plane Ð1, namely ade, or [01100], on ab1c2c1b2, or on [01111], is a new line,
ad19; which passes thus through one point p0 and one point p2,1, and also through two points
p2,2, namely (01120) and (01102), and through two points p2,6, namely (20011) and (20011):
being, however, syntypical with the formerly considered trace aa0, and therefore leading to no
new harmonic or anharmonic relations.

117. As a specimen of a case of collineation which conducts to such new relations, let us take
the four following points p2, in the second typical plane,

a � (01120), b � (00211), c � (02031), d � (01302),
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whereof the two ®rst are points p2,2, and the two last are points p2,8; and of which the symbols
satisfy the equations,

(c) � 2(a)ÿ (b), (d) � ÿ(a)� 2(b); whence (adbc) � 4:

These four points, therefore, with which it is found that no other given or derived point of the
system p0, p1, p2 is collinear, do not form a harmonic group ; and consequently we cannot construct
the fourth point, d, when the three other points, a, b, c are given, by means of harmonic relations
alone (comp. 108.), unless we introduce some auxiliary point, or points, e, . . , which shall be at
lowest of the third construction. But if we write

e � (12020) � (01111), f � (10220) � (01331),

so that e is a point p3,1 99., while f may be said to be a point p3,2, we ®nd that these two new or
auxiliary points, e, f, are the double points of the involution, determined by the two pairs, ab, cd ;
because we have the two harmonic equations,

(aebf ) � (cedf ) � ÿ1:

And because we have also,

(cabe) � (abde) � ÿ1,

we need only employ the one auxiliary point e, considered as the harmonic conjugate of a,
with respect to b and c; and then determine the fourth point d, as the harmonic conjugate of
a, with respect to b and e. It may be added that abe and dcf are triads in involution 85.; so that if
e be projected to in®nity, the ®nite line cd is trisected at a and b.

Part VI. On some other Relations of Complanarity, Collinearity, Concurrence, or Homology,
for Geometrical Nets in Space

118. Although we have not proposed, in the present Paper, to enumerate, or even to classify,
any points, lines, or planes, beyond what we have called the Second Construction 1., yet some
such points, lines, and planes have offered themselves naturally to our consideration: and we
intend, in this Sixth Part, to consider a few others, chie¯y in connexion with relations of
homology, of triangles or pyramids which have been already mentioned.

119. It was remarked in 29., that the thirty lines Ë2,2 are the sides of ten triangles t2, of second
construction, which are certain inscribed homologues of ten other triangles t1, of ®rst construction
26.; the ten corresponding centres of homology being the ten points p1. For example, the
triangle a9b9c9 is inscribed in abc, and is homologous thereto, the point d1 being their centre
of homology; because we have the three relations of intersection,

a9 � d1a:bc, &c:;

or because, a9 being a point on bc, &c., the three joining lines aa9, &c., concur in the point d1.

120. Proceeding to determine the axis of this homology, or the right line which is the locus
of the points of intersection of corresponding sides, we easily see that it is the line a0b0c0;
because we had a0 � bc:b9c9, &c. And because an analogous result must take place in each of
the ten planes Ð1, we see that the ten points p2,1, are ranged, three by three, on ten lines Ë3,1, in the
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ten planes Ð1; namely on the axes of homology of the ten pairs of triangles, t1, t2, in those ten
planes: which axes are the lines,

d91a91a92, &c:; c19b19a0, c29b29a 0, &c:; and a 0b 0c 0;

each point p2,1 being thus common to three of them, because it is common to those three planes
Ð1, which contain the line Ë1 whereupon it is situated. Each point p2,1 is also the common
intersection of this last line with three lines Ë2,2; we have for example, the formulñ of concurrence,

a0 � bc:b9c9:b1c1
:b2c2:

121. The line a0b0c0 was seen to be the common trace of two planes Ð2,2, namely of a1b1c1 and
a2b2c2, on the plane Ð1, namely abc, in which it is situated; and a similar result must
evidently hold good for each of the ten lines Ë3,1. But we may add that the three triangles abc,
a1b1c1, a2b2c2, in the plane of each of which the line a0b0c0 is contained, are homologous, two
by two, and have this line for the common axis of homology of each of their three pairs ; having
however three distinct centres of homology, namely d19 for second and third, d for third and
®rst, and e for ®rst and second: with (as we need not again repeat) analogous results for the
other lines Ë3,1, of which group we here take the line a0b0c0 as typical. It may be remarked that
the four centres, recently determined, are collinear, and compose an harmonic group ; and that
the inscribed triangle a9b9c9 is also homologous with each of the two triangles a1b1c1, a2b2c2,
although not complanar with either ; the line a0b0c0 being still the common axis of homology;
while the two centres, of these two last homologies, are the two given points, d and e.

122. The six points p2,2, in the plane abc, have been seen to range themselves, according to
their two ternary types 41., into two sets of three, which are the corners of two new triangles ; one of
these, namely a-b-c-, being an inscribed homologue of a9b9c9; while the other, namely a0b0c0, is
an exscribed homologue of abc; and these two new triangles are also homologous to each other :
the line a0b0c0 being still the common axis, and the point d1 being the common centre of
homology. And the same thing holds good for any one of these four triangles, a0b0c0, abc,
a9b9c9, a-b-c-, in the plane Ð1 here considered, as compared with the triangle aõv

1 b
õv
1 c

õv
1 ,

whereof the corners are those three points p2,3, which are not ranged on the line a0b0c0, as
the three other points p2,3, namelyaõv , bõv , cõv , have been seen to be.

123. It was remarked in 28., that each of the ®ve pyramids r2 is not only inscribed in the
corresponding pyramid r1 26., but is also homologous therewith; the centre of their homology
being a point p0: thus the point e is such a centre, for the two pyramids abcd and a1b1c1d1,
or for those which we have lettered as e and e9 26. 113.. The planes bcd, b1c1d1, of two
corresponding faces, intersect in the line c29b29a0; the planes cad, c1a1d1 in a92c92b0; the
planes abd, a1b1d1 in b29a29a0; and the planes abc, a1b1c1 in a0b0c0. Hence it is easy to infer
that these six points p2,1, namely

a0, b 0, c 0, a29, b29, c29,

are all situated in one plane, which is the plane of homology of the two pyramids e and e9, and
which we shall denote by [e]; its quinary symbol being

[e] � [11114],
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which may also serve as a type of the group [a] . . [e]. And in fact, the quinary symbols of the
six points all satisfy the equation (comp. 19.),

x � y � z � w � 4v:

124. It may be noted that the two planes of homology, [d] and [e], have the line a0b0c0 for
their common trace on the plane abc; and that the traces of the three other planes of the same
group, [a], [b], [c], which have

[411], [141], [114],

for their ternary symbols, pass respectively through the points ax , bx , cx , (comp. 99.), and
coincide with the lines bõv

1 c
õv
1 , &c., or with the sides of the last mentioned triangle 122.. And it

follows from 123., that the ten points p2,1 are ranged six by six, and that the ten lines Ë3,1 are
ranged four by four, in ®ve planes Ð3,1; namely, in the ®ve planes [a] . . [e] of homology of
pyramids. But these last laws of arrangement, of points and lines, must be considered as
included in results which have been comparatively long known, respecting transversal� lines
and planes in space.

125. Instead of inscribing a pyramid e9 in the pyramid e, we may propose to exscribe to the
latter a new pyramid a)b)c)d), or e), which shall be homologous with it, the given point e being
still the centre of homology. In other words, the four new planes b)c)d), : , a)b)c), or eA, eB, eC,
eD, are to pass through the four given points a, b, c, d; and the four new lines aa), bb), cc), dd) are
to concur, in the ®fth given point e. The solution of this problem is found to be expressed by
the following quinary symbols for the four sought planes:

[eA] � [01113], : : [eD] � [11103]:

In fact, the pyramid e), with these four planes for faces is evidently exscribed to the pyramid
abcd, or e; and because its corners may be represented by these other quinary symbols,

a) � (30001), : :d) � (00031),

the condition of concurrence is satis®ed. We may remark that the plane [e] of 123. is the plane
of homology of the two last pyramids e and e); and that this exscribed pyramid e) is homologous
also to the inscribed pyramid e9, the point e being still the centre, and the plane [e] the plane
of their homology.

126. It may be remarked that the common trace of the two planes eD and dE, on the plane
abc, is the line a0b0c0; to construct, then, the exscribed pyramid e), we may construct the plane ed
of one of its faces, by connecting the point d with the line a0b0c0; and similarly for the rest. Or
if we wish to determine separately the new point, or corner, d), which corresponds to the given
point d, we may do so, by the anharmonic equation,

(dd1ed)) � 3;

for which may be substitutedy the system of the two following harmonic equations:

� Compare the second note to 1. y Compare the note to 108..
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(dd1ef) � (dd)d1f) � ÿ1;

where f is an auxiliary point, namely d19.

Part VII. On the Homography and Rationality of Nets in Space; and on a Connexion of such

Nets with Surfaces of the Second Order

127. In general, all geometric nets in space are homographic ®gures ; corresponding points, lines,
and planes, being those which have the same (or congruent) quinary symbols, in whatever
manner we may pass from one to another system of ®ve initial points, a . . e; whereof it is still
supposed that no four are complanar. All points, lines, and planes of any such Net are evidently
rational, in the sense 8. already de®ned, with respect to the initial system; and conversely it is
not dif®cult to prove that every rational point, line, or plane, in space, is a net-point, net-line, or
net-plane, whatever that initial system of ®ve points may be. It follows that although no
irrational point, line, or plane, can possibly belong to the net, with respect to which it is thus
irrational, yet it can be inde®nitely approached to, by points, lines, or planes which do so belong:
a remarkable and interesting theorem, which appears to have been ®rst discovered by
MoÈbius;� to whom indeed, as has been already said, the conception of the net is due, but whose
analysis differs essentially from that employed in the present Paper.

128. As regards the passage from one net in space to another, let the quinary symbols of some
®ve given points, p1 . .p5, whereof no four are in one plane, be with respect to the given initial
system a . . e the following:-

p1 � (x1 : : v1), : : p5 � (x5 : : v5);

and let a9 . . e9 and u9 be six coef®cients, determined so as to satisfy the quinary equations 5.,

a9(p1)� b9(p2)� c9(p3)� d9(p4)� e9(p5) � ÿu9(u),

or the ®ve ordinary equations which it includes, namely,

a9x1 � : :� e9x5 � : : : � a9v1 � : :� e9v5 � ÿu9:

Let p9 be any sixth point of space, such that

(p9) � xa9(p1)� yb9(p2)� zc9(p3)� wd9(p4)� ve9(p5)� u(u);

then this sixth point p9 can be derived from the ®ve points p1 . . p5, by the same constructions, as those by
which the point p � (xyzwv) is derived from the ®ve given points abcde. For example, if we take the
®ve points,

a1 � (10001), b1 � (01001), c1 � (00101), d1 � (00011), e � (00001),

we have the symbolic equation,

� See page 295 of the Barycentric Calculus. As regards the theory of homographic ®gures, chapter xxv, of
the GeÂomeÂtrie SupeÂrieure of M. Chasles may be consulted with advantage. But with respect to anharmonic
ratio, generally, it must be remarked that Professor MoÈbius was thoroughly familiar with its theory and
practice, when he published in 1827; although he called it by the longer but perhaps more expressive
name of DoppelschnittsverhaÈltniss (ratio bissectionalis). It may be added that he denotes by (a, c, b, d),
what I write as (abcd).
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(a1)� (b1)� (c1)� (d1)ÿ 3(e) � (u);

if then we write v9 � x � y � z � w ÿ 3v, the point (xyzwv9) is derived from a1b1c1d1e, by the
same constructions as (xyzwv) from abcde. In particular, d is related to a1b1c1d1e, as the
point p � (00031) is related to abcde; but this point p satis®es the anharmonic equation,
(dd1ep) � �3; if then e1 � d1e:a1b1c1 � (00012), we must have the corresponding equation
(d1e1ed) � �3: which is accordingly found to exist, and furnishes a construction for exscribing a
pyramid abcd to a given pyramid a1b1c1d1, with which it is to be homologous, and to have a given
point e for the centre of their homology, agreeing with the construction assigned in 126. for a
similar problem of exscription. And in general, from any ®ve given points of a net whereof no four
are complanar, we can (as was ®rst shown by MoÈbius) return, by linear constructions, to the ®ve
initial points a . . e; and therefore can, in this way, reconstruct the net.

129. If we content ourselves with quarternary (or anharmonic) coordinates 12., or suppose (as
we may) that v � o, the equation of a surface of the second order takes the form,

0 � f (xyzw) � ax2 � â y2 � ãz2 � äw2 � 2(Eyz � æzx � çxy)� 2w(èx � éy � kz);

and if the ten coef®cients á . . k, or their ratios, be determined by the condition that the
surface shall pass through nine given net-points, those coef®cients may then be replaced by whole
numbers, and the surface may be said to be rationally related to the given net, or to the initial system
a . . e, or brie¯y to be (comp. 8.) a Rational Surface. For example, if the nine points be
abcdec9a9c2a2, so that, besides passing through e, the surface has the gauche quadrilateral
abcd superscribed upon it, the equation is

I : : 0 � f � xz ÿ yw;

and if they be a, b, a9, b9, a2, b2, a1, avõõ � (1210), and f � (1201), so that this new point f,
like avõõ, belong to the group p2,6, the equation of the surface is then found to be,

II : : 0 � f � w2 � z2 ÿ (w � z)(x � y)ÿ 2xy:

130. In general, whether the surface of the second order be rational or not, it results from
the principles of a former communication that any point p � (xyzw) of space is the pole of the
plane II � [XYZW ], if X : :W be the derivatives,

X � dx f , Y � d y f , Z � dz f , W � dw f ;

hence, in particular, the pole of the plane [e] of homology of the three pyramids e, e9, e), 26. 113.
125., of which plane the quaternary symbol 12. is [1111], is the point k determined by the
equations,

X � Y � Z � W , or dx f � d y f � dz f � dw f ;

and if the point e be the mean point of the pyramid abcd, the plane [e] is then in®nitely
distant, and this point k is the centre of the surface.

131. For example, in the case of the Ist surface 129., this pole k is the point
(1111) � (20201), which belongs to the group p3,1; and because it is on the plane [e], that
plane touches the surface in that point: so that when the point e is the mean point of the
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pyramid abcd, the surface becomes a ruled paraboloid. In the case of the IInd surface 129.,
the pole k of [e] is always the point (1100), or c9; this point c9 becomes therefore the centre
of the surface, when e is the mean point of the pyramid; and the ®ve following lines,

ab, a9bvõõ
1 , b9avõõ , a2f, and b2g,

where g is the new point (2101) of the group p2,6, which are always chords through c9, become
in that case diameters. It may be added that, with the initial arrangement 91., the surface last
considered becomes the sphere, which is described with ab for diameter; and that it always
passes through the auxiliary point p, of third construction, which was mentioned in 100..

132. We have then here an example, of a surface of the second order, which was determined so
as to pass 129. through nine net-points

a, b, a9, b9, a2, b2, a1, avõõ, and f,

but which has been subsequently found to pass also through at least four other points of the net,
namely

b1, bvii
1 , g, and p:

This is, however, only a very particular case of a much more general Theorem, with the
enunciation of which I shall conclude the present Paper, regretting sincerely that it has
already extended to a length, so much exceeding the usual limits of communications
designed for the Proceedings� of the Academy, but hoping that some at least of its processes
and results will be thought not wholly uninteresting:-

``If a Surface of the Second Order be determined by the condition of passing through nine given points

of a Geometrical Net in Space, it passes also through inde®nitely many others: and every Point upon the

Surface, which is not a point of the Net, can be included within a Geodetic Triangle on that surface, of

which the corners are net-points, and of which the sides can be made as small as we may desire.''

In fact, the surface is a rational one 129., or the coef®cients of its equation may be made
whole numbers; and therefore every rational line 8., from any one net point, or rational point,
upon it, if not happening to touch the surface, is easily proved to meet it again, in another
rational point : whence, with the aid of a lately mentioned principle 127., the theorem evidently
follows.

� Some of the early formulñ of this Paper are unavoidably repeated from a communication of the
preceding Session (1859±60), but with extended signi®cations, as connected now with a quinary calculus.
And in a not yet published volume, entitled ``Elements of Quaternions,'' the subject of Nets in Space is
incidentally discussed, as an illustration of the Method of Vectors. But it will be found that the present
Paper is far from being a mere reprint of the Section on Nets, in the unpublished work thus referred to:
many new theorems having been introduced, and the plan of treatment generally being different,
although the notations have, on the whole, been retained. Besides it was thought that Members of the
Academy might like to see the subject treated in their Proceedings without any express reference to
quaternions : with which indeed the nets have not any necessary connexion.
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XIII .

ON GEOMETRICAL NETS IN SPACE (1861)

[British Association Report 1861, Part II., p. 4.]



XIV.

ELEMENTARY PROOF THAT EIGHT PERIMETERS OF THE REGULAR

INSCRIBED POLYGON OF TWENTY SIDES EXCEED TWENTY-FIVE

DIAMETERS OF THE CIRCLE� (1862)

[Philosophical Magazine (4S), 23, 267±269 (1862).]

It was proved by Archimedes that 71 perimeters, of a regular polygon of 96 sides inscribed in
a circle, exceed 223 diameters; whence follows easily the well-known theorem, that eight
circumferences of a circle exceed twenty-®ve diameters, or that 8ð. 25. Yet the following
elementary proof, that eight perimeters of the regular inscribed polygon of twenty sides are
greater than twenty-®ve diameters, has not perhaps hitherto appeared in any scienti®cy work
or periodical; and if a page of the Philosophical Magazine can be spared for its insertion,
some readers may ®nd it interesting from its extreme simplicity. In fact, for completely
understanding it, no preparation is required beyond the four ®rst Books of Euclid, and the
few ®rst Rules of Arithmetic, together with some rudimentary knowledge of the connexion
between arithmetic and geometry.

1. It follows from the Fourth Book of Euclid's `Elements,' that the rectangle under the side
of the regular decagon inscribed in a circle, and the same side increased by the radius, is
equal to the square of the radius. But the product of the two numbers, 791 and 2071, whereof
the latter is equal to the former increased by 1280, is less than the square of 1280 (because
1638161 is less than 1638400). If then the radius be divided into 1280 equal parts, the side of
the inscribed decagon must be greater than a line which consists of 791 such parts; or brie¯y,
if the radius be equal to 1280, the side of the decagon exceeds 791.

2. When a diameter of a circle bisects a chord, the square of the chord is equal, by the Third
Book, to the rectangle under the doubled segments of that diameter. But the product of the
two numbers, 125 and 4995, which together make up 5120, or the double of the double of
1280, is less than the square of 791 (because 624375 is less than 625681). If then the radius be
still represented by 1280, and therefore the doubled diameter by 5120, and if the bisected
chord be a side of the regular decagon, and therefore greater (by what has just been proved)
than 791, the lesser segment of the diameter is greater than the line represented by 125.

� Communicated by the Author.
y A sketch of the proof was published, at the request of a friend, in an eminent literary journal last

summer, but in a connexion not likely to attract the attention of mathematical readers in general. At all
events, it pretends to no merit but that of brevity, and the simplicity of the principles on which it rests.



3. The rectangle under this doubled segment and the radius, is equal to the square of the
side of the regular inscribed polygon of twenty sides. But the product of 125 and 1280 is equal
to the square of 400; and if the radius be still 1280, it has been proved that the doubled
segment exceeds 125; with this representation of the radius, the side of the inscribed polygon
of twenty sides exceeds therefore the line represented by 400; and the perimeter of that
polygon is consequently greater than 8000.

4. Dividing then the numbers 1280 and 8000 by their greatest common measure 320, we
®nd that if the radius be now represented by the number 4, or the diameter by 8, the
perimeter of the polygon will be greater than the line represented by 25; or in other words,
that eight perimeters of the regular inscribed polygon of twenty sides (and by still stronger reason, eight
circumferences of the circle itself) exceed twenty-®ve diameters.

Observatory, March 7, 1862.
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XV.

ON THE LOCUS OF THE OSCULATING CIRCLE TO A CURVE IN

SPACE (1863)

[Communicated June 22, 1863]
[Proceedings of the Royal Irish Academy 8, 394 (1864).]

Sir W. R. Hamilton read a communication ``On the Locus of the Osculating Circle to a Curve
in Space.''



XVI.

ON THE EIGHT IMAGINARY UMBILICAL GENERATRICES OF A

CENTRAL SURFACE OF THE SECOND ORDER (1864)

[Communicated January 11, 1864]
[Proceedings of the Royal Irish Academy 8, 471 (1864).]

[Sir W. R. Hamilton] stated that he had been lately led, by quaternions, to perceive that the
twelve known umbilics of such a surface are ranged on eight imaginary right lines, of which he
has assigned the vector equations, and deduced a variety of properties.



XVII .

ON ROÈ BER'S CONSTRUCTION OF THE HEPTAGON� (1864)

[Philosophical Magazine (4S), 27, 124±132 (1864).]

1. In a recent Number of the Philosophical Magazine, observations were made on some
approximate constructions of the regular heptagon, which have recalled my attention to a
very remarkable construction of that kind, invented by a deceased professor of architecture at
Dresden, Friedrich Gottlob RoÈbery, who came to conceive, however, that it had been known
to the Egyptians, and employed by them in the building of the temple at Edfu. RoÈber, indeed,
was of opinion that the connected triangle, in which each angle at the base is triple of the
angle at the vertex, bears very important relations to the plan of the human skeleton, and to
other parts of nature. But without pretending to follow him in such speculations, attractive as
they may be to many readers, I may be permitted to examine here the accuracy of the
proposed geometrical construction, of such an isosceles triangle, or of the heptagon which
depends upon it. The closeness of the approximation, although short of mathematical rigour,
will be found to be very surprising.

2. RoÈber's diagram is not very complex, and may even be considered to be elegant; but the
essential parts of the construction are suf®ciently expressed by the following formulñ: in
which p denotes a side of a regular pentagon; r, r9 the radii of its inscribed and circumscribed
circles; r0 the radius of a third circle, concentric with but exterior to both; p9 a segment of the
side p; and q, s, t, u, v ®ve other derived lines. The result is, that in the right-angled triangle
of which the inner diameter 2r is the hypotenuse, and u, v supplementary chords, the former
chord (u) is very nearly equal to a side of a regular heptagon, inscribed in the interior circle;
while the latter chord (v) makes with the diameter (2r) an angle ö, which is very nearly equal
to the vertical angle of an isosceles triangle, whereof each angle at the base is triple of the
angle at the vertex. In symbols, if we write

u � 2r sinö, v � 2r cosö,

� Communicated by the Author.
y The construction appears to have been ®rst given in pages 15, 16 of a quarto work by his son,

Friedrich RoÈber, published at Dresden in 1854, and entitled BeitraÈge zur Erforschung der geometrischen
Grundformen in den alten Tempeln Aegyptens, und deren Beziekung zur alten Naturerkenntniss. It is repeated in
page 20 of a posthumous work, or collection of papers, edited by the younger RoÈber, and published at
Leipzig in 1861, entitled Elementar-BeitraÈge zur Bestimmung des Naturgesetzes der Gestaltung und des Wide-
rstandes, und Anwendung dieser BeitraÈge auf Natur und alte Kunstgestaltung, von Friedrich Gottlob RoÈber,
ehemaligen KoÈniglich-SaÈchsischen Professor der Baukunst und Land-Baumeister. Both works, and a
third upon the pyramids, to which I cannot at present refer, are replete with the most curious
speculations, into which however I have above declined to enter.



then ö is found to be very nearly � ð

7
. It will be seen that the equations can all be easily

constructed by right lines and circles alone, having in fact been formed as the expression of
such a construction; and that the numerical ratios of the lines, including the numerical values
of the sine and cosine of ö, can all be arithmetically computed�, with a few extractions of
square roots.

(A)

(r � r 9)2 � 5r 2 r 9

r
� 1:2360680

p2 � 4(r 92 ÿ r 2)
p

r
� 1:4530851

p9

p
� r � 1

2r 9

r � r 9

p9

r
� 1:0514622

q 2 � p2 ÿ p92 q

r
� 1:0029374

s2 � ps � ( p ÿ q � r)2 s

r
� 0:8954292

r 02 � r 2 � s2 r 0

r
� 1:3423090

t 2 � r 9r 0

r

� �2

ÿ (r 0ÿ r)2 t

r
� 1:6234901

u2 � 2r(2r ÿ t)
u

r
� 0:8677672

v2 � 2rt
v

r
� 1:8019379

u � 2r sinö sinö � 0:4338836

v � 2r cosö cosö � 0:9009689

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
3. On the other hand, the true septisection of the circle may be made to depend on the
solution of the cubic equation,

8x3 � 4x2 ÿ 4x ÿ 1 � 0,

of which the roots are cos
2ð

7
, cos

4ø

7
, cos

6ð

7
. Calculating then, by known methodsy, to eight

decimals, the positive root of this equation, and thence deducing to seven decimals, by square
roots, the sine and cosine of

ð

7
, we ®nd, without tables, the values:

� The computations have all been carried to several decimal places beyond what are here set down.
Results of analogous calculations have been given by RoÈber, and are found in page 16 of the ®rst-cited
publication of his son, with the assumption p � p3, and with one place fewer of decimals.
y Among these the best by far appears to be Horner's method,Ðfor practically arranging the ®gures

in the use of which method, a very compact and convenient form or scheme was obligingly commu-
nicated to me by Professor De Morgan, some time ago. We arrived independently at the following value,
to 22 decimals, of the positive root of the cubic mentioned above:

cos
2ð

7
� 0:62348 98018 58733 53052 50:
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cos
2ð

7
� x � 0:62348980;

sin
ð

7
�
r

1ÿ x

2
� 0:4338837;

cos
ð

7
�
r

1� x

2
� 0:9009689;

and these last agree so nearly with the values (A) of sinö and cosö, that at this stage a doubt
may be felt, in which direction does the construction err. In fact, RoÈber appears to have believed
that the construction above described was geometrically rigorous, and had been known and
prized as such from a very remote antiquity, although preserved as a secret doctrine,
entrusted only to the initiated, and recorded only in stone.

4. The following is an easier way, for a reader who may not like so much arithmetic, to
satisfy himself of the extreme closeness of the approximation, by formulñ adapted to
logarithms, but rigorously derived from the construction. It being evident that

r 9 � r sec
ð

5
, and p � 2r tan

ð

5
,

let ö1 . . . ö6 be six auxiliary angles, such that

r 9 � 2r tanö1, p9 � p sin 2ö2, p ÿ q � r tan2 ö3,

p ÿ q � r � 1
2 p tan 2ö4, s � r tan 2ö5, r(r 0ÿ r) � r 9r 0 sinö6;

we shall then have the following system of equations, to which are annexed the angular
values, deduced by interpolation from Taylor's seven-®gure logarithms, only eleven openings
of which are required, if the logarithms of two and four be remembered, as they cannot fail
to be by every calculator.

(B)

cot ö1 � 2 cos
ð

5
ö1 � 318439 2 0:91

sin 2ö2 � cos2 ö1 ö2 � 23 10 35:52

tan2 ö3 � 4 sin2 ö2 tan
ð

5
ö3 � 33 51 31:90

cot 2ö4 � cos2 ö3 tan
ð

5
ö4 � 31 41 39:37

tan 2ö5 � 2 sin2 ö4 sec 2ö4 tan
ð

5
ö5 � 20 55 15:93

sinö6 � sin2 ö5 cot ö1 ö6 � 11 54 22:60

cos2 ö � cosö6 sec 2ö5 tanö1 ö � 25 42 51:4:

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
I had however found, by trials, before using Horner's method, the following approximate value:

cos
2ð

7
� 0:62348 98018 587;

which was more than suf®ciently exact for comparison with RoÈber's construction.
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It is useless to attempt to estimate hundredths of seconds in this last value, because the
difference for a second, in the last logarithmic cosine, amounts only to ten units in the
seventh place of decimals, or to one in the sixth place. But if we thus con®ne ourselves to
tenths of seconds, a simple division gives immediately that ®nal value, under the form

ð

7
� 1808

7
� 25842951 0:4;

it appears therefore to be dif®cult, if it be possible, to decide by Taylor's tables, whether the
equations (B), deduced from RoÈber's construction, give a value of the angle ö, which is greater
or less than the seventh part of two right angles. (It may be noted that tan 2ö1 � 2; but that to
take out ö1 by this equation would require another opening of the tables.)

5. To ®x then decisively the direction of the error of the approximation, and to form with any
exactness an estimate of its amount, or even to prove quite satisfactorily by calculation that any
such error exists, it becomes necessary to fall back upon arithmetic; and to carry at least the
®rst extractions to several more places of decimals,Ðalthough fewer than those which have
been actually used in the resumed computation might have suf®ced, except for the extreme
accuracy aimed at in the resulting values. For this purpose, it has been thought convenient to
introduce eight auxiliary numbers, a . . . h, which can all be calculated by square roots, and
are de®ned with reference to the recent equations (B), as follows:

a � 1� 2 tanö1; b � 4 cos 2ö2 cot
ð

5
; c � 2 cos 2ö2 ÿ cot

ð

5
;

d � sec 2ö4; e � sec 2ö5; f � 2 cos2 ö; g � 2 cosö; h � 2 cos
ö

2
;

or thus with reference to the earlier equations (A):

a � r � r 9

r
; b � 8qr

p2
; c � 2(q ÿ r)

p
; d � 2s � p

p
; e � r 0

r
;

f � t

r
; g � v

r
; h2 � 2r � v

r
;

and respecting which it is to be observed that c, like the rest, is positive, because it may be put
under the form

c �
r

14ÿ 2
p

5

5
ÿ
r

5� 2
p

5

5
,

and 14ÿ 2
p

5 . 5� 2
p

5, because 9 . 4
p

5, or 92 . 425. With these de®nitions, then, of the
numbers a . . . h, and with the help of the following among other identities,

cos
7ö

2
sec

ö

2
� 2 cos 3öÿ 2 cos 2ö� 2 cosöÿ 1

� 2(2 cosöÿ 1)cos 2öÿ 1,

I form without tables a system of values as below, the early numbers of which have been
computed to several decimals more than are set down.
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(C)

a2 � 5 a � 2:23606 79774 99789 6964

b2 � 8� 72a

25
b � 3:79998 36545 96345 0138

c2 � 19

5
ÿ b c � 0:00404 29449 23565 7641

d2 � 1� (2ÿ c)2 d � 2:23245 25898 01044 7849

e 2 � 1� (5ÿ 2a)(d ÿ 1)2 e � 1:34230 90137 74792 5831

f 2 � (5ÿ 2a)e 2 � 2e ÿ 1 f � 1:62349 00759 24105 2470

g 2 � 2f g � 1:80193 78878 99638 5912

h2 � 2� g h � 1:94985 58633 65197 2049

sin
ðÿ 7ö

2
� h ( f ÿ 1)(g ÿ 1)ÿ 1

2

� �
� �0:00000 06134 49929 1683:

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:
Admitting then the known value,

ð � 3:14159 26535 89793 . . . ,

or the deduced expression,

10 � ð

648000
� 0:00000 48481 36811 095 . . . ,

I infer as follows:

(D)

ðÿ 7ö

2
� �0 0:12653 31307 822,

ð

7
ÿ ö � �0 0:03615 23230 806,

ö � 258 429 51 0:39241 91054 91,

8>>>>><>>>>>:
and think that these twelve decimals of a second, in the value of the angle ö, may all be relied
on, from the care which has been taken in the calculations.

6. The following is a quite different way, as regards the few last steps, of deducing the same
ultimate numerical results. Admitting (comp. Art. 3) the value�,

2 cos
2ð

7
� z � 1:24697 96037 17467 06105,

as the positive root, computed by Horner's method, of the cubic equation

z3 � z2 ÿ 2z ÿ 1 � 0,

and employing the lately calculated value f of 1� cos 2ö, I ®nd by square roots the following
sines and cosines, with the same resulting error of the angle ö as before:

� Compare a preceding note.
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(E)

sin
ð

7
� 1

2

�����������
2ÿ z
p � 0:43388 37391 17558 1205;

cos
ð

7
� 1

2

�����������
2� z
p � 0:90096 88679 02419 1262;

sinö � 1

2

��������������
4ÿ 2f

p � 0:43388 35812 03469 1138;

cosö � 1

2

������
2f

p � 1

2
g � 0:90096 89439 49819 2956

sin
ð

7
ÿ ö

� �
� �0:00000 01752 71408 3339;

ð

7
ÿ ö � �0 0:03615 23230 806:

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
7. If we continue the construction, as RoÈber did, so as to form an isosceles triangle, say ABC,
with ö for its vertical angle, and if we content ourselves with thousandths of seconds, the
angle of this triangle will be as follows:

(F)

A � ö � 25842951 0:392;

B � ðÿ ö

2
� 778 8934 0:304;

C � B � 778 8934 0:304;

8>>><>>>:
and we see that each base-angle exceeds the triple of the vertical by only about an eighth part
of a second, namely by that small angle which occurs ®rst in the system (D), and of which the
sine is the last number in the preceding system (C). And if we compare a base-angle of the

triangle thus constructed, with the base-angle
3ð

7
� 7788934 0:2857 . . . of the true triangle, in

which each angle at the base is triple of the angle at the vertex, we ®nd an error in excess
equal nearly to 0 0:018, or, more exactly,

Bÿ 3ð

7
� ð

14
ÿ ö

2
� �0 0:01807 61615 403,

which amounts to less than a ®fty-®fth part of a second, but of which I conceive that all the
thirteen decimals here assigned are correct. And I suppose that no artist would undertake to
construct a triangle which should more perfectly, or so perfectly, ful®l the conditions
proposed. The problem, therefore, of constructing such a triangle, and with it the regular
heptagon, by right lines and circles only, has been practically solved by that process which RoÈber
believed to have been known to the ancient Egyptians, and to have been employed by them in
the architecture of some of their templesÐsome hints, as he judged, being intentionally
preserved in the details of the workmanship, for the purpose of being recognized, by the
initiated of the time, or by men of a later age.

8. Another way of rendering conceivable the extreme smallness of the practical error of that
process, is to imagine a series of seven successive chords inscribed in a circle, according to the
construction in question, and to inquire how near to the initial point the ®nal point would be.
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The answer is, that the last point would fall behind the ®rst, but only by about half a second
(more exactly by 00´506). If then we suppose, for illustration, that these chords are seven
successive tunnels, drawn eastward from station to station of the equator of the earth, the last
tunnel would emerge to the west of the ®rst station, but only by about ®fty feet.

9. My own studies have not been such as to entitle me to express an opinion whether the
architectural and geometrical drawings of RoÈber in connexion with the plan of the temple at
Edfu, and his comparisons of the numbers deduced from the details of his construction with
French measurements previously made, are suf®cient to bear out his conclusion, that the
process had been anciently used: but I wish that some quali®ed person would take up the
inquiry, which appears to me one of great interest, especially as I see no antecedent
improbability in the supposition that the construction in question may have been invented in
a very distant age. The geometry which it employs is in no degree more dif®cult than that of
the Fourth Book of Euclid�; and although I have no conjecture to offer as to what may have
suggested the particular process employed, yet it seems to me quite as likely to have been
discovered thousands of years ago, perhaps after centuries of tentation, as to have been ®rst
found in our own time, which does not generally attach so much importance to the heptagon
as a former age may have done, and which perhaps enjoys no special facilities in the search
after such a construction, although it supplies means of proving, as above, that the proposed
solution of the problem is not mathematically perfect.

10. If RoÈber's professional skill as an architect, combined with the circumstance stated of
his having previously invented the construction for himself, did really lead him to a correct
interpretationy of the plan of the temple at Edfu, which he believed to embody a tradition
much older than itself, we are thus admitted to a very curious glimpse, or even a partial view,
of the nature and extent, but at the same time the imperfection, of that knowledge of
geometry which was possessed, but kept secret, by the ancient priests of Egypt. I say the
imperfection, on the supposition that the above described construction of the heptagon, if
known to them at all, was thought by them to be equal in rigour, as the elder RoÈber appears to
have thought it to be, to that construction of the pentagon which Euclid may have learned
from them, rejecting perhaps, at the same time, the other construction, as being not based on
demonstration, and not by him demonstrable, although Euclid may not have known it to be,
in its result, imperfect. The interest of the speculation stretches indeed back to a still earlier
age, and may be connected in imagination with what we read of the ``wisdom of the
Egyptians.'' But I trust that I shall be found to have abstained, as I was bound to do, from any
expression which could imply an acquaintance of my own with the archñology of Egypt, and
that I may at least be pardoned, if not thanked, for having thus submitted, to those who may

� The segment p9 of the side p of the pentagon, and the fourth proportional
r 9r 0

r
to the three radii,

which enter into the equations (A), and of which the latter is the greater segment of the third diameter,
2r 0, if this last be cut in extreme and mean ratio, may at ®rst appear to depend on the Sixth Book of
Euclid, but will be found to be easily constructible without going beyond the Fourth Book.
y It ought in fairness to be stated that RoÈber's interpretation of Egyptian antiquities included a vast deal

more than what is here described, and that he probably considered the geometrical part of it to be the least
interesting, although still, in his view, an essential and primary element.
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be disposed to study the subject, a purely mathematical� discussion, although connected with
a question of other than mathematical interest.

W. R. H.
Observatory of Trinity College, Dublin,

December 22, 1863.

� Note added during printing.ÐSome friends of the writer may be glad to know that these long
arithmetical calculations have been to him rather a relaxation than a distraction from his more habitual
studies, and that there are already in type 672 octavo pages of the `Elements of Quaternions', a work
which (as he hopes) is rapidly approaching to the stage at which it may be announced for publication.

Observatory, January 19, 1864
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XVIII .

ON A NEW SYSTEM OF TWO GENERAL EQUATIONS OF

CURVATURE (1865)

[Communicated June 26, 1865]
[Proceedings of the Royal Irish Academy 9, 302±305 (1867).]

The President read the following paper by the late Sir William R. Hamilton:Ð

On a New System of Two General Equations of Curvature,

Including as easy consequences a new form of the Joint Differential Equation of the Two
Lines of Curvature, with a new Proof of their General Rectangularity; and also a new
Quadratic for the Joint Determination of the Two Radii of Curvature: all deduced by Gauss's
Second Method, for discussing generally the Properties of a Surface; and the latter being
veri®ed by a Comparison of Expressions, for what is called by him the Measure of Curvature.

1. Notwithstanding the great beauty and importance of the investigations of the illustrious
Gauss, contained in his Disquisitiones Generales circaÁ Super®cies Curvas, a Memoir� which was
communicated to the Royal Society of GoÈttingen in October, 1827, and was printed in Tom. vi.
of the Commentationes Recentiores, but of which a Latin reprint has been since very judiciously
given, near the beginning of the Second Part (DeuxieÁme Partie, Paris, 1850) of Liouville's
Editiony{ of Monge, it still appears that there is room for some not useless Additions to the
Theory of Lines and Radii of Curvature, for any given Curved Surface, when treated by what
Gauss calls the Second Method of discussing the General Properties of Surfaces. In fact, the Method
here alluded to, and which consists chie¯y in treating the three co-ordinates of the surface as
being so many functions of two independent variables, does not seem to have been used at all
by Gauss, for the determination of the Directions of the Lines of Curvature; and as regards the
Radii of Curvature of the Normal Sections which touch those Lines of Curvature, he appears to
have employed the Method, only for the Product, and not also for the Sum, of the Reciprocals, of
those Two Radii.

2. As regards the notations, let x, y, z be the rectangular co-ordinates of a point P upon a
surface (S), considered as three functions of two independent variables, t and u; and let the 15
partial derivatives, or 15 partial differential coef®cients, of x, y, z taken with respect to t and
u, be given by the nine differential expressions.§

� [Reprinted in: Carl Friedrich Gauss (1777±1855), Werke, Vol. 4, pp. 217±258, GoÈttingen: 1863.]
y The foregoing dates, or references, are taken from a note to page 505 of that Edition.
{ [Gaspard Monge, comte de PeÂluse (1741±1818), Application de l'analyse aÁ la geÂomeÂtrie, 5th edn,

edited by Joseph Liouville (1809±1882), Paris: 1850.]
§ [x9 � dx=dt; x � dx=du:]

9



dx � x9dt � x du; dx9 � x 0dt � x 9du; dx � x 9dt � x du;

dy � y9dt � y du; dy9 � y 0dt � y 9du; dy � y 9dt � y du;

dz � z9dt � z du; dz9 � z 0dt � z 9du; dz � z 9dt � z du:

8>>><>>>: (a)

3. Writing also, for abridgment,

e � x92 � y92 � z92; e9 � x9x � y9y � z9z ; e 0 � x 2 � y 2 � z 2 (b)

we shall have

ee 0ÿ e92 � K 2, (c)

if

: : K 2 � L2 � M 2 � N 2, (d)

and

L � y9z ÿ z9y ; M � z9x ÿ x9z ; N � x9y ÿ y9x ; (e)

so that

Lx9� My9� Nz9 � 0, Lx � My � Nz � 0: (f)

Hence Kÿ1 L, Kÿ1 M , Kÿ1 N are the direction-cosines of the normal to the surface (S) at P; and
if x, y, z be the co-ordinates of any other point Q of the same normal, we shall have the
equations,

K (X ÿ x) � LR ; K (Y ÿ y) � MR ; K (Z ÿ z) � NR ; (g)

with

R2 � (X ÿ x)2 � (Y ÿ y)2 � (Z ÿ z)2; (h)

where R denotes the normal line PQ, considered as changing sign in passing through zero.

4. The following, however, is for some purposes a more convenient form (comp. (f)) of the
Equations of the Normal;

(X ÿ x)x9� (Y ÿ y)y9� (Z ÿ z)z9 � 0; (i)

(X ÿ x)x � (Y ÿ y)y � (Z ÿ z)z � 0: (j)

Differentiating these, as if X , Y, Z were constant, that is, treating the point Q as an
intersection of two consecutive normals, we obtain these two other equations,

(X ÿ x)dx9� (Y ÿ y)dy9� (Z ÿ x)dz9 � x9dx � y9dy � z9dz;

(X ÿ x)dx � (Y ÿ y)dy � (Z ÿ x)dz � x dx � y dy � z dz:

(
(k)

If, then, we write, for abridgment,

v � du : dt; E � Lx 0� My 0� Nz 0;

E9 � Lx 9� My 9� Nz 9; E 0 � Lx � My � Nz ;

(
(l)

9 9 9 9 99

9 9 9 9 99

9 9 9 9 99

9 9 9 9 9 9

9 9 9 9 9 9

9 9 9

9 9 9

9 9 9 9 9 9

9 9 9 99 99 99
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we shall have, by (a) (b) (g), the two important formulñ:

R(E � E9v) � K (e � e9v); R(E9� E 0v) � K (e9� e 0v); (m)

which we propose to call the two general Equations of Curvature.

5. In fact, by elimination of R, these equations (m) conduct to a quadratic in v, of which the
roots may be denoted by v1 and v2, which ®rst presents itself under the form,

(e � e9v)(E9� E 0v) � (e9� e 0v)(E � E9v), (n)

but may easily be thus transformed,

Av2 ÿ Bv� C � 0, or Adu2 ÿ Bdtdu � Cdt 2 � 0,

with A � e9E 0ÿ e 0E9, B � e 0E ÿ eE 0, C � eE 0ÿ e9E ;

(
(o)

so that we have the following general relation,

eA � e9B � e 0C � 0, (p)

(of which we shall shortly see the geometrical signification), between the coef®cients, A, B, C,
of the joint differential equation of the system of the two Lines of Curvature on the surface.

6. The root v1 of the quadratic (o) determines the direction of what may be called the First
Line of Curvature, through the point P of that surface; and the ®rst Radius of Curvature, for the
same point P, or the Radius R1 of curvature of the normal section of the surface which touches
that ®rst line, may be obtained from either of the two equations (m), as the value of R which
corresponds in that equation to the value v1 of v. And in like manner, the Second Radius of
Curvature of the same surface at the same point has the value R2, which answers to the value
v2 of v, in each of the same two Equations of Curvature (m). We see, then, that this name for
those two equations is justi®ed by observing that when the two independent variables t and u
are given or known; and therefore also the seven functions of them, above denoted by e, e9,
e0, E, E9E 0, and K. The equations (m) are satis®ed by two (but only two) systems of values, v1,

R1, and v2, R2, of (I.) the differential quotient v, or
du

dt
, which determines the direction of a line

of curvature on the surface; and (II.) the symbol R, which determines (comp. No. 4) at once
the length and the direction, of the radius of curvature corresponding to that line.

7. Instead of eliminating R between the two equations (m), we may begin by eliminating v; a
process which gives the following quadratic in Rÿ1 (the curvature):±

(eRÿ1 ÿ eKÿ1)(e 0Rÿ1 ÿ e 0Kÿ1) � (e9Rÿ1 ÿ eKÿ1)2; (q)

or

Rÿ2 ÿ FRÿ1 � G ; where (because ee 0ÿ e92 � K 2), (r)

F � R1
ÿ1 � R2

ÿ1 � (eE 0ÿ 2e9E9� e 0E)Kÿ3, and (s)

G � R1
ÿ1 R2

ÿ1 � (EE 0ÿ E92)Kÿ4: (t)

We ought, therefore, as a First General Veri®cation, to ®nd that this last expression, which may
be also thus written,
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G � R1
ÿ1 R2

ÿ1 � EE 0ÿ E9E9

(L2 � M 2 � N 2)2
, (u)

agrees with that reprinted in page 521 of Liouville's Monge, for what Gauss calls the Measure
of Curvature (k) of a Surface ; namely,

k � DD 0ÿ D9D9

(AA � BB � CC)2
; (v)

which accordingly it evidently does, because our symbols L M N A B C represent the
combinations which he denotes by ABCD D9D0.

8. As a Second General Veri®cation, we may observe that if I be the inclination of any linear
element, du � vdt, to the element du � 0, at the point P, then

tan I � Kv

e � e9v
; (w)

and therefore, that if H be the angle at which the second crosses the ®rst of any two lines
represented jointly by such an equation as

Av2 ÿ Bv� C � 0, with v1 and v2 for roots, then (x)

tan H � tan(I 2 ÿ I 1) � K (B2 ÿ 4AC)1=2

eA � e9B � e 0c
; (y)

so that the Condition of Rectangularity (cos H � 0), for any two such lines, may be thus written:

eA � e9B � e 0C � 0: (z)

But this condition (z) had already occurred in No. 5, as an equation (p) which is satis®ed
generally by the Lines of Curvature; we see therefore anew, by this analysis, that those lines on
any surface are in general (as is indeed well known) orthogonal to each other.

9. Finally, as a Third General Veri®cation, we may assume x and y themselves (instead of t and
u), as the two independent variables of the problem, and then, if we use Monge's Notation of
p, q, r, s, t, we shall easily recover all his leading results respecting Curvatures of Surfaces, but by
transformations on which we cannot here delay.
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Part III

ANA LY SIS





XIX.

ON THE ERROR OF A RECEIVED PRINCIPLE OF ANALYSIS,

RESPECTING FUNCTIONS WHICH VANISH WITH THEIR VARIABLES

(1830)

[Read January 25, 1830]
[Transactions of the Royal Irish Academy 16, 63±64 (1830).]

It appears to be a received principle of analysis, that if a real function of a positive variable
(x) approaches to zero with the variable, and vanishes along with it, then that function can be
developed in a real series of the form

Axá � Bxâ � Cxã � &c:,

the exponents á, â, ã, . . being constant and positive, and the coef®cients A, B, C, . . . being
constant, and all these constant exponents and coef®cients being ®nite and different from
zero. This principle has been made the foundation of important theories, and has not ever,
so far as I know, been questioned; but I believe that the following example of exception,
which it would be easy to put in a more general form, will suf®ciently prove it to be erroneous;
since if the principle be true, it is by its nature universal.

The real function eÿxÿ2
, in which e is the base of the neperian logarithms, approaches to

zero along with x and vanishes along with it. Yet if we could develope this function in a series
of the kind described, we should have

xÿáeÿxÿ2 � A � Bxâÿá � Cxãÿá � &c:

in which we might suppose á the least exponent; and then, while x approached to 0, the
second member would tend to the limit A, which by hypothesis is different from 0; and yet,
from the nature of exponential functions, the limit of the ®rst member is zero.

We conclude, therefore, that the function eÿxÿ2
cannot be developed in a series of the kind

assumed, although it vanishes with its variable; and consequently that, if we only know this
property of a function, that it vanishes when its variable vanishes, we cannot correctly assume
that it may be developed in such a series.

If any doubt should be felt respecting the truth of the remark, that the function xÿáeÿxÿ2

tends to zero along with x, when á is any positive constant, this doubt will be removed by
observing that the function xáe xÿ2

, which is the reciprocal of the former, increases without
limit while x decreases to zero. For we may develope this latter function, by the known
theorems, in the essentially converging series,



xáe xÿ2 � yÿáe y2 � yÿá � y2ÿá � 1

2
y4ÿá � 1

2:3
y6ÿá � 1

2:3:4
y8ÿá � &c:,

y being the reciprocal of x; and while y tends to �1, the terms of this series remain all
positive, and all after a certain constant number increase inde®nitely.
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XX.

NOTE ON A PAPER ON THE ERROR OF A RECEIVED PRINCIPLE OF

ANALYSIS (1831)

[Read April 18, 1831]
[Transactions of the Royal Irish Academy 16, 129±130 (1830).]

The Royal Irish Academy having done me the honour to publish, in the First Part of the
Sixteenth Volume of their Transactions, a short Paper, in which I brought forward a certain
exponential function as an example of the Error of a received Principle respecting Develop-
ments, I am desirous to mention that I have since seen (within the last few days) an earlier
Memoir by a profound French Mathematician, in which the same function is employed to
prove the fallacy of another usual principle. In the French Memoir, (tom. v. of the Royal

Academy of Sciences, at page 13, of the History of the Academy,) the exponential (eÿ1=x 2
)

is given by M. Cauchy, as an example of the vanishing of a function and of all its differential
coef®cients, for a particular value of the variable (x), without the function vanishing for other
values of the variable. In my Paper the same exponential is given as an example of a function,
which vanishes with its variable, and yet cannot be represented by any development according
to powers of that variable, with constant positive exponents, integer or fractional. There is
therefore a difference between the purposes for which this function has been employed in
the two Memoirs, although there is also a suf®cient resemblance to induce me to wish, that at
the time of publishing my Paper, I had been acquainted with the earlier remarks of M.
Cauchy, in order to have noticed their existence.

Observatory,
April 16, 1831.



XXI.

ON FLUCTUATING FUNCTIONS (1840)

[Communicated June 22, 1841]
[Proceedings of the Royal Irish Academy 1, 475±477 (1841).]

The President gave an account of some investigations respecting Fluctuating Functions, from
which the following are extracts:-

``Let px denote any real function x, continuous or discontinuous, but such that its ®rst and
second integrals, �x

0
dx px , and

�x

0
dx

� �2

px ,

are always comprised between given ®nite limits. Let also the equation�x

0
dx

� �2

px � ì,

in which ì is some given constant, have in®nitely many real roots, both positive and negative,
which are not themselves comprised between any ®nite limits, but are such that the interval
between any one and the next greater root is never greater than some given ®nite interval.
Then,

lim:
t�1

�b

a
dx

� tx

0
dypy fx � 0, (A)

if a and b are any ®nite values of x, between which the function fx is ®nite.
``Again, the same things being supposed, let the arbitrary function fx vary gradually

between the same values of x; and let px be ®nite and vary gradually when x is in®nitely small;
then

f y � $ÿ1

�1
0

dt

� b

a
dx p txÿ ty fx , y

. a
, b

� �
, (B)

in which

$ �
�1
ÿ1

dx

�1

0
dt p tx :

``For the case y � a, we must change $, in (B), to

$) �
�1

0
dx

�1

0
dt p tx ;

and for the case y � b, we must change it to



$)) �
�0

ÿ1
dx

�1

0
dt p tx :

``For values of y . b, or , a, the second member of the formula (B) vanishes.
``If fx , although ®nite, were to receive any sudden change for some particular value of y

between a and b, so as to pass suddenly from the value f)) to the value f), we should then have,
for this value of y, �1

0
dt

� b

a
dx p txÿ ty fx � $)f)�$))f)):

By changing px to cos x, we obtain from (B) the celebrated theorem of Fourier. Indeed, that
great mathematician appears to have possessed a clear conception of the principles of
¯uctuating functions, although he is not known to have deduced from them consequences so
general as the above.

``Again, another celebrated theorem is comprised in the following:-

f y � $ÿ1p0

� b

a
dx fx �

X1
(n)1

� b

a
dx qxÿ y,n fx

 !
, (C)

in which, the function q is de®ned by the conditions

qx,n

�x

0
dx px �

�2nx�x

2nxÿx
dx px ;

y is . a, , b; and no real root of the equation�x

0
dx px � 0,

except the root 0, is included between the negative number a ÿ y and the positive number
b ÿ y, nor are those numbers themselves supposed to be roots of that equation. When these
conditions are not satis®ed, the theorem (C) takes other forms, which, with other analogous
results, may be deduced from the same principles.''
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XXII .

ON FLUCTUATING FUNCTIONS (1840)

[Read June 22, 1840]
[Transactions of the Royal Irish Academy 19, 264±321 (1843).]

The paper now submitted to the Royal Irish Academy is designed chie¯y to invite attention to
some consequences of a very fertile principle, of which indications may be found in Fourier's
Theory of Heat, but which appears to have hitherto attracted little notice, and in particular
seems to have been overlooked by Poisson. This principle, which may be called the Principle
of Fluctuation, asserts (when put under its simplest form) the evanescence of the integral,
taken between any ®nite limits, of the product formed by multiplying together any two ®nite
functions, of which one, like the sine or cosine of an in®nite multiple of an arc, changes sign
in®nitely often within a ®nite extent of the variable on which it depends, and has for its mean
value zero; from which it follows, that if the other function, instead of being always ®nite,
becomes in®nite for some particular values of its variable, the integral of the product is to be
found by attending only to the immediate neighbourhood of those particular values. The
writer is of opinion that it is only requisite to develope the foregoing principle, in order to
give a new clearness, and even a new extension, to the existing theory of the transformations
of arbitrary functions through functions of determined forms. Such is, at least, the object
aimed at in the following pages; to which will be found appended a few general observations
on this interesting part of our knowledge.

1. The theorem, discovered by Fourier, that between any ®nite limits, a and b, of any real
variable x, any arbitrary but ®nite and determinate function of that variable, of which the
value varies gradually, may be represented thus,

fx � 1

ð

� b

a
dá

�1
0

dâ cos(âáÿ âx) f á, (a)

with many other analogous theorems, is included in the following form:

fx �
� b

a
dá

�1
0

dâö(x, á, â) f á; (b)

the function ö being, in each case, suitably chosen. We propose to consider some of the
conditions under which a transformation of the kind (b) is valid.

2. If we make, for abridgment,

ø(x, á, â) �
�â

0
dâö(x, á, â), (c)



the equation (b) may be thus written:

fx �
�b

a
dáø(x, á, 1) f á: (d)

This equation, if true, will hold good, after the change of f á, in the second member, to
f á� fá; provided that, for the particular value á � x, the additional function fá vanishes;
being also, for other values of á, between the limits a and b, determined and ®nite, and
gradually varying in value. Let then this function f vanish, from á � a to á � ë, and from
á � ì to á � b; ë and ì being included, either between a and x, or between x and b; so that x
is not included between ë and ì, though it is included between a and b. We shall have, under
these conditions,

0 �
�ì
ë

dáø(x, á, 1)fá; (e)

the function f, and the limits ë and ì, being arbitrary, except so far as has been above
de®ned. Consequently, unless the function of á, denoted here by ø(x, á, 1), be itself � 0, it
must change sign at least once between the limits á � ë, á � ì, however close those limits
may be; and therefore must change sign inde®nitely often, between the limits a and x, or x
and b. A function which thus changes sign inde®nitely often, within a ®nite range of a
variable on which it depends, may be called a ¯uctuating function. We shall consider now a
class of cases, in which such a function may present itself.

3. Let ná be a real function of á, continuous or discontinuous in value, but always
comprised between some ®nite limits, so as never to be numerically greater than �c, in which
c is a ®nite constant; let

má �
�á

0
dáná; (f)

and let the equation

má � a, (g)

in which a is some ®nite constant, have in®nitely many real roots, extending from ÿ1 to
�1, and such that the interval án�1 ÿ án, between any one root án and the next succeeding
án�1, is never greater than some ®nite constant, b. Then,

0 � mán�1 ÿ mán �
�án�1

án

dáná; (h)

and consequently the function ná must change sign at least once between the limits á � án

and á � án�1; and therefore at least m times between the limits á � án and á � án�m , this
latter limit being supposed, according to the analogy of this notation, to be the mth root of
the equation (g), after the root án . Hence the function nâá, formed from ná by multiplying á
by â, changes sign at least m times between the limits á � ë, á � ì, if�

� These notations and are designed to signify the contradictories of . and ,; so that ``a b'' is
equivalent to ``a not . b'', and ``a b'' is equivalent to ``a not , b.''
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ë âÿ1án, ì âÿ1án�m ;

the interval ìÿ ë between these limits being less than âÿ1(m � 2)b, if

ë. âÿ1ánÿ1, ì, âÿ1án�m�1;

so that, under these conditions, (â being . 0,) we have

m .ÿ2� âbÿ1(ìÿ ë):

However small, therefore, the interval ìÿ ë may be, provided that it be greater than 0, the
number of changes of sign of the function nâá, within this range of the variable á, will
increase inde®nitely with â. Passing then to the extreme or limiting supposition, â � 1, we
may say that the function n1á changes sign in®nitely often within a ®nite range of the variable á
on which it depends; and consequently that it is, in the sense of the last article, a fluctuat-
ing function. We shall next consider the integral of the product formed by multiplying
together two functions of á, of which one is n1á, and the other is arbitrary, but ®nite, and
shall see that this integral vanishes.

4. It has been seen that the function ná changes sign at least once between the limits
á � án, á � án�1. Let it then change sign k times between those limits, and let the k
corresponding values of á be denoted by án,1, án,2, . . . án,k . Since the function ná may be
discontinuous in value, it will not necessarily vanish for these k values of á; but at least it will
have one constant sign, being throughout not , 0, or else throughout not . 0, in the interval
from á � án to á � án,1; it will be, on the contrary, throughout not . 0, or throughout not
, 0, from án,1 to án,2; again, not , 0, or not . 0, from án,2 to án,3; and so on. Let then ná be
never , 0 throughout the whole of the interval from án,i to án,i�1; and let it be . 0 for at least
some ®nite part of that interval; i being some integer number between the limits 0 and k, or
even one of those limits themselves, provided that the symbols án,0, án,k�1 are understood to
denote the same quantities as án, án�1. Let fá be a ®nite function of á, which receives no
sudden change of value, at least for that extent of the variable á, for which this function is to
be employed; and let us consider the integral�án,i�1

án,i

dánáfá: (i)

Let f) be the algebraically least, and f)) the algebraically greatest value of the function fá,
between the limits of integration; so that, for every value of á between these limits, we shall
have

fá ÿ f) 0, f))ÿ fá 0;

these values f) and f)), of the function fá, corresponding to some values á)n,i and á))n,i of the
variable á, which are not outside the limits án,i and án,i�1. Then, since, between these latter
limits, we have also

ná 0,

we shall have
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�án,i�1

án,i

dáná(fá ÿ f)) 0;�án,i�1

án,i

dáná(f))ÿ fá) 0;

9>>>=>>>; (k)

the integral (i) will therefore be not , sn,if), and not . sn,if)), if we put, for abridgment,

sn,i �
�án,i�1

án,i

dáná; (l)

and consequently this integral (i) may be represented by sn,if9, in which

f9 f), f9 f)),

because, with the suppositions already made, sn,i . 0. We may even write

f9 . f), f9 , f)),

unless it happen that the function fá has a constant value through the whole extent of the
integration; or else that it is equal to one of its extreme values, f) or f)), throughout a ®nite
part of that extent, while, for the remaining part of the same extent, that is, for all other
values of á between the same limits, the factor ná vanishes. In all these cases, f9 may be
considered as a value of the function fá, corresponding to a value á9n,i of the variable á which
is included between the limits of integration; so that we may express the integral (i) as
follows: �án,i�1

án,i

dánáfá � sn,ifá9n,i ; (m)

in which

á9n,i .án,i , ,án,i�1: (n)

In like manner, the expression (m), with the inequalities (n), may be proved to hold good, if
ná be never . 0, and sometimes , 0, within the extent of the integration, the integral sn,i

being in this case , 0; we have, therefore, rigorously,�án�1

án

dánáfá � sn,0fá9n,0 � sn,1fá9n,1 � � � � � sn,kfá9n, k : (o)

But also, we have, by (h)

0 � sn,0 � sn,1 � � � � � sn,k ; (p)

the integral in (o) may therefore be thus expressed, without any loss of rigour:�án�1

án

dánáfá � sn,0Än,0 � � � � � sn,kÄn,k , (q)

in which

Än,i � fá9n,i ÿ fán ; (r)

so that Än,i is a ®nite difference of the function fá, corresponding to the ®nite difference
á9n,i ÿ án of the variable á, which latter difference is less than án�1 ÿ án, and therefore less
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than the ®nite constant b of the last article. The theorem (q) conducts immediately to the
following, �âÿ1án�1

âÿ1án

dánâáfá � âÿ1(sn,oän,o � � � � � sn,kän,k), (s)

in which

än,i � fâÿ1á9n,i
ÿ fâÿ1án

; (t)

so that, if â be large, än,i is small, being the difference of the function fá corresponding to a
difference of the variable á, which latter difference is less than âÿ1b. Let �än be the greatest
of the k � 1 differences än,o , . . . än,k , or let it be equal to one of those differences and not
exceeded by any other, abstraction being made of sign; then, since the k � 1 factors
sn,o , . . . sn,k are alternately positive and negative, or negative and positive, the numerical value
of the integral (s) cannot exceed that of the expression

�âÿ1(sn,o ÿ sn,1 � sn,2 ÿ � � � � (ÿ1)k sn,k)än : (u)

But, by the de®nition (1) of sn,i , and by the limits �c of value of the ®nite function ná, we
have

�sn,i (án,i�1 ÿ án,i)c; (v)

therefore

�(sn,o ÿ sn,1 � � � � � (ÿ1)k sn,k) (án�1 ÿ án)c; (w)

and the following rigorous expression for the integral (s) results:�âÿ1án�1

âÿ1án

dánâáfá � ènâ
ÿ1(án�1 ÿ án)cän; (x)

èn being a factor which cannot exceed the limits �1. Hence, if we change successively n to
n � 1, n � 2, . . . n � m ÿ 1, and add together all the results, we obtain this other rigorous
expression, for the integral of the product nâáfá, extended from á � âÿ1án to á � âÿ1án�m :�âÿ1án�m

âÿ1án

dánâáfá � èâÿ1(án�m ÿ án)cä; (y)

in which ä is the greatest of the m quantities än , än�1, . . . , or is equal to one of those
quantities, and is not exceeded by any other; and è cannot exceed �1. By taking â suf®ciently
large, and suitably choosing the indices n and n � m, we may make the limits of integration
in the formula (y) approach as nearly as we please to any given ®nite values, a and b; while, in
the second member of that formula, the factor âÿ1(án�m ÿ án) will tend to become the ®nite
quantity b ÿ a, and èc cannot exceed the ®nite limits �c; but the remaining factor ä will tend
inde®nitely to 0, as â increases without limit, because it is the difference between two values
of the function fá, corresponding to two values of the variable á of which the difference
diminishes inde®nitely. Passing then to the limit â � 1, we have, with the same rigour as
before:
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�b

a
dán1afá � 0; (z)

which is the theorem that was announced at the end of the preceding article. And although it
has been here supposed that the function fá receives no sudden change of value, between
the limits of integration; yet we see that if this function receive any ®nite number of such
sudden changes between those limits, but vary gradually in value between any two such
changes, the foregoing demonstration may be applied to each interval of gradual variation of
value separately; and the theorem (z) will still hold good.

5. This theorem (z) may be thus written:

lim
â�1

� b

a
dánâáfá � 0; (a9)

and we may easily deduce from it the following:

lim
â�1

� b

a
dánâ(áÿx)fá � 0; (b9)

the function fá being here also ®nite, within the extent of the integration, and x being
independent of á and â. For the reasonings of the last article may easily be adapted to this
case; or we may see, from the de®nitions in article 3., that if the function ná have the
properties there supposed, then náÿx will also have those properties. In fact, if ná be always
comprised between given ®nite limits, then náÿx will be so too; and we shall have, by (f),�á

0
dánáÿx �

�áÿx

ÿx
dáná � máÿx ÿ mÿx ; (c9)

in which mÿx is ®nite, because the suppositions of the third article oblige má to be always
comprised between the limits a� bc; so that the equation�á

0
dánáÿx � aÿ mÿx , (d9)

which is of the form (g), has in®nitely many real roots, of the form

á � x � án, (e9)

and therefore of the kind assumed in the two last articles. Let us now examine what happens,
when, in the ®rst member of the formula (b9), we substitute, instead of the ®nite factor fá, an
expression such as (áÿ x)ÿ1 f á, which becomes in®nite between the limits of integration, the
value of x being supposed to be comprised between those limits, and the function f á being
®nite between them. That is, let us inquire whether the integral�b

a
dánâ(áÿx)(áÿ x)ÿ1 f á, (f9)

(in which x . a, , b), tends to any and to what ®nite and determined limit, as â tends to
become in®nite.

In this inquiry, the theorem (b9) shows that we need only attend to those values of á which
are extremely near to x, and are for example comprised between the limits x � E, the quantity

591XXII . ON FLUCTUATING FUNCTIONS



E being small. To simplify the question, we shall suppose that for such values of á, the
function f á varies gradually in value; we shall also suppose that no � 0, and that nááÿ1 tends
to a ®nite limit as á tends to 0, whether this be by decreasing or by increasing; although the
limit thus obtained, for the case of in®nitely small and positive values of á, may possibly differ
from that which corresponds to the case of in®nitely small and negative values of that
variable, on account of the discontinuity which the function ná may have. We are then to
investigate, with the help of these suppositions, the value of the double limit:

lim
E�0

: lim
â�1

:

�x�E

xÿE
dánâ(áÿx)(áÿ x)ÿ1 f á; (g9)

this notation being designed to suggest, that we are ®rst to assume a small but not evanescent
value of E, and a large but not in®nite value of â, and to effect the integration, or conceive it
effected, with these assumptions; then, retaining the same value of E, make â larger and larger
without limit; and then at last suppose E to tend to 0, unless the result corresponding to an
in®nite value of â shall be found to be independent of E. Or, introducing two new quantities
y and ç, determined by the de®nitions

y � â(áÿ x), ç � âE, (h9)

and eliminating á and â by means of these, we are led to seek the value of the double limit
following:

lim
E�0

: lim
ç�1:

�ç
ÿç

dyny yÿ1 f x�Eçÿ1 y; (i9)

in which ç tends to1, before E tends to 0. It is natural to conclude that since the sought limit
(g9) can be expressed under the form (i9), it must be equivalent to the product

f x 3

�1
ÿ1

dyny yÿ1; (k9)

and in fact it will be found that this equivalence holds good; but before ®nally adopting this
conclusion, it is proper to consider in detail some dif®culties which may present themselves.

6. Decomposing the function f x�Eçÿ1 y into two parts, of which one is independent of y, and
is � f x , while the other part varies with y, although slowly, and vanishes with that variable; it is
clear that the formula (i9) will be decomposed into two corresponding parts, of which the
®rst conducts immediately to the expression (k9); and we are now to inquire whether the
integral in this expression has a ®nite and determinate value. Admitting the suppositions
made in the last article, the integral �æ

ÿæ
dyny yÿ1

will have a ®nite and determinate value, if æ be ®nite and determinate; we are therefore
conducted to inquire whether the integrals�ÿæ

ÿ1
dyny yÿ1,

�1
æ

dyny yÿ1,
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are also ®nite and determinate. The reasonings which we shall employ for the second of these
integrals, will also apply to the ®rst; and, to generalize a little the question to which we are
thus conducted, we shall consider the integral�1

a
dánáfá; (l9)

fá being here supposed to denote any function of á which remains always positive and ®nite,
but decreases continually and gradually in value, and tends inde®nitely towards 0, while á
increases inde®nitely from some given ®nite value which is not greater than a. Applying to
this integral (l9) the principles of the fourth article, and observing that we have now
fá9n,i , fán , á9n,i being .án , and án being assumed a; and also that

�(sn,0 � sn,2 � � � �) � �(sn,1 � sn,3 � � � �) 1
2bc; (m9)

we ®nd

�
�án�1

án

dánáfá , 1
2bc(fán ÿ fán�1 ); (n9)

and consequently

�
�án�m

án

dánáfá , 1
2bc(fán

ÿ fán�m
): (o9)

This latter integral is therefore ®nite and numerically less than 1
2 bc fán , however great the

upper limit án�m may be; it tends also to a determined value as m increases inde®nitely,
because the part which corresponds to values of á between any given value of the form án�m

and any other of the form án�m� p is included between the limits �1
2 bc fán�m , which limits

approach inde®nitely to each other and to 0, as m increases inde®nitely. And in the integral
(l9), if we suppose the lower limit a to lie between ánÿ1 and án, while the upper limit, instead
of being in®nite, is at ®rst assumed to be a large but ®nite quantity b, lying between án�m and
án�m�1, we shall only thereby add to the integral (o9) two parts, an initial and a ®nal, of which
the ®rst is evidently ®nite and determinate, while the second is easily proved to tend
inde®nitely to 0 as m increases without limit. The integral (l9) is therefore itself ®nite and
determined, under the conditions above supposed, which are satis®ed, for example, by the
function fá � áÿ1, if a be . 0. And since the suppositions of the last article render also the
integral �a

0
dánáá

ÿ1

determined and ®nite, if the value of a be such, we see that with these suppositions we may
write

$) �
�1

0
dánáá

ÿ1, (p9)

$) being itself a ®nite and determined quantity. By reasonings almost the same we are led to
the analogous formula
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$)) �
�0

ÿ1
dánáá

ÿ1; (q9)

and ®nally to the result

$ � $)�$)) �
�1
ÿ1

dánáá
ÿ1; (r9)

in which $)) and $ are also ®nite and determined. The product (k9) is therefore itself
determinate and ®nite, and may be represented by $ f x .

7. We are next to introduce, in (i9), the variable part of the function f, namely,

f x�Eçÿ1 y ÿ f x ,

which varies from f xÿE to f x�E, while y varies from ÿç to �ç, and in which E may be any
quantity . 0. And since it is clear, that under the conditions assumed in the ®fth article,

lim
E�0

: lim
ç�1:

�æ
ÿæ

dyny yÿ1( f x�Eçÿ1 y ÿ f x) � 0, (s9)

if æ be any ®nite and determined quantity, however large, we are conducted to examine
whether this double limit vanishes when the integration is made to extend from y � æ to
y � ç. It is permitted to suppose that f á continually increases, or continually decreases, from
á � x to á � x � E; let us therefore consider the integral�ç

æ
dánáfágá, (t9)

in which the function fá decreases, while gá increases, but both are positive and ®nite, within
the extent of the integration.

By reasonings similar to those of the fourth article, we ®nd under these conditions,

�
�án�1

án

dánáfágá , bc(fángán�1 ÿ fán�1gán ); (u9)

and therefore

� 1

bc

�án�m

án

dánáfágá , fán�mÿ1gán�m ÿ fán�1gán

� (fán ÿ fán�2 )gán�1 � (fán�2 ÿ fán�4 )gán�3 � &c:

� (fán�1 ÿ fán�3 )gán�2 � (fán�3 ÿ fán�5 )gán�4 � &c:

9>>>>=>>>>; (v9)

This inequality will still subsist, if we increase the second member by changing, in the positive
products on the second and third lines, the factors g to their greatest value gán�m ; and, after
adding the results, suppress the three negative terms which remain in the three lines of the
expression, and change the functions f, in the ®rst and third lines, to their greatest value fán .
Hence,

�
�án�m

án

dánáfágá , 3bc fángán�m ; (w9)
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this integral will therefore ultimately vanish, if the product of the greatest values of the
functions f and g tend to the limit 0. Thus, if we make

fá � áÿ1, gá � �( f x�Eçÿ1á ÿ f x),

the upper sign being taken when f á increases from á � x to á � x � E; and if we suppose that
æ and ç are of the forms án and án�m ; we see that the integral (t9) is numerically less than
3bcáÿ1

n ( f x�E ÿ f x), and therefore that it vanishes at the limit E � 0. It is easy to see that the
same conclusion holds good, when we suppose that ç does not coincide with any quantity of
the form án�m , and when the limits of the integration are changed to ÿç and ÿæ. We have
therefore, rigorously,

lim
E�0

: lim
ç�1:

�ç
ÿç

dyny yÿ1( f x�Eçÿ1 y ÿ f x) � 0, (x9)

notwithstanding the great and ultimately in®nite extent over which the integration is
conducted. The variable part of the function f may therefore be suppressed in the double
limit (i9), without any loss of accuracy; and that limit is found to be exactly equal to the
expression (k9); that is, by the last article, to the determined product $ f x . Such, therefore, is
the value of the limit (g9), from which (i9) was derived by the transformation (h9); and such
®nally is the limit of the integral (f9), proposed for investigation in the ®fth article. We have,
then, proved that under the conditions of that article,

lim
â�1

:

� b

a
dánâ(áÿx)(áÿ x)ÿ1 f á � $ f x ; (y9)

and consequently that the arbitrary but ®nite and gradually varying function f x , between the
limits x � a, x � b, may be transformed as follows:

f x � $ÿ1

� b

a
dán1(áÿx)(áÿ x)ÿ1 f á; (z9)

which is a result of the kind denoted by (d) in the second article, and includes the theorem
(a) of Fourier. For all the suppositions made in the foregoing articles, respecting the form
of the function n, are satis®ed by assuming this function to be the sine of the variable on
which it depends; and then the constant $, determined by the formula (r9), becomes
coincident with ð, that is, with the ratio of the circumference to the diameter of a circle, or
with the least positive root of the equation

sin x

x
� 0:

8. The known theorem just alluded to, namely, that the de®nite integral (r9) becomes � ð,
when ná � siná, may be demonstrated in the following manner. Let

a �
�1

0
dá

sin âá

á
;

b �
�1

0
dá

cos âá

1� á2
;
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then these two de®nite integrals are connected with each other by the relation

a �
�â

0
dâ ÿ d

dâ

 !
b,

because �â
0

dâb �
�

0
dá

sin âá

á(1� á2)
,

ÿ d

dâ
b �

�1
0

dá
á sin âá

1� a2
;

and all these integrals, by the principles of the foregoing articles, receive determined and
®nite (that is, not in®nite) values, whatever ®nite or in®nite value may be assigned to â. But
for all values of â. 0, the value of a is constant; therefore, for all such values of â, the relation
between a and b gives, by integration,

eÿâ
�â

0
dâ� 1

 !
bÿ a

( )
� const:;

and this constant must be � 0, because the factor of eÿâ does not tend to become in®nite
with â. That factor is therefore itself � 0, so that we have

a �
�â

0
dâ� 1

 !
b, if â. 0:

Comparing the two expressions for a, we ®nd

b� d

dâ
b � 0, if â. 0;

and therefore, for all such values of â,

b e â � const:

The constant in this last result is easily proved to be equal to the quantity a, by either of the
two expressions already established for that quantity; we have therefore

b � aeÿâ,

however little the value of â may exceed 0; and because b tends to the limit
ð

2
as â tends to 0,

we ®nd ®nally, for all values of â greater than 0,

a � ð

2
, b � ð

2
eÿâ:

These values, and the result �1
ÿ1

dá
siná

á
� ð,

to which they immediately conduct, have long been known; and the ®rst relation, above
mentioned, between the integrals a and b, has been employed by Legendre to deduce the
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former integral from the latter; but it seemed worth while to indicate a process by which that
relation may be made to conduct to the values of both those integrals, without the necessity
of expressly considering the second differential coef®cient of b relative to â, which coef®cient
presents itself at ®rst under an indeterminate form.

9. The connexion of the formula (z9) with Fourier's theorem (a), will be more distinctly
seen, if we introduce a new function pá de®ned by the condition

ná �
�á

0
dá pá, (a 0)

which is consistent with the suppositions already made respecting the function ná. According
to those suppositions the new function pá is not necessarily continuous, nor even always
®nite, since its integral ná may be discontinuous; but pá is supposed to be ®nite for small
values of á, in order that ná may vary gradually for such values, and may bear a ®nite ratio to
á. The value of the ®rst integral of pá is supposed to be always comprised between given ®nite
limits, so as never to be numerically greater than �c; and the second integral,

má �
�á

0
dá

� �2

pá, (b 0)

becomes in®nitely often equal to a given constant, a, for values of á which extend from
negative to positive in®nity, and are such that the interval between any one and the next
following is never greater than a given ®nite constant, b. With these suppositions respecting
the otherwise arbitrary function pá, the theorems (z) and (z9) may be expressed as follows:

lim
â�1

:

� b

á
dá

�âá
0

dãpã

 !
f á � 0; (a)

and

f x � $ÿ1

� b

a
dá

�1
0

dâ pâ(áÿx) f á; (x . a, , b) (b)

$ being determined by the equation

$ �
�1
ÿ1

dá

�1

0
dâ pâá: (c 0)

Now, by making

pá � cosá,

(a supposition which satis®es all the conditions above assumed), we ®nd, as before,

$ � ð,

and the theorem (b) reduces itself to the less general formula (a), so that it includes the
theorem of Fourier.

10. If we suppose that x coincides with one of the limits, a or b, instead of being included
between them, we ®nd easily, by the foregoing analysis,
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f a � $)ÿ1

� b

a
dá

�1
0

dâ pâ(áÿa) f á; (d 0)

f b � $))ÿ1

� b

a
dá

�1
0

dâ pâ(áÿb) f á; (e 0)

in which

$) �
�1

0
dá

�1

0
dâ pâá; (f 0)

$)) �
�0

ÿ1
dá

�1

0
dâ pâá; (g 0)

so that, as before,

$ � $)�$)):

Finally, when x is outside the limits a and b, the double integral in (b) vanishes; so that

0 �
� b

a
dá

�1
0

dâ pâ(áÿx) f á, if x , a, or . b: (h 0)

And the foregoing theorems will still hold good, if the function f á receive any number of
sudden changes of value, between the limits of integration, provided that it remain ®nite
between them; except that for those very values á) of the variable á, for which the ®nite
function f á receives any such sudden variation, so as to become � f ) for values of á in®nitely
little greater than á), after having been � f )) for values in®nitely little less than á), we shall
have, instead of (b), the formula

$) f )�$)) f )) �
� b

a
dá

�1
0

dâ pâ(áÿá)) f á: (i 0)

11. If pá be not only ®nite for small values of á, but also vary gradually for such values, then,
whether á be positive or negative, we shall have

lim
á�0

:náá
ÿ1 � p0; (k 0)

and if the equation

náÿx � 0 (l 0)

have no real root á, except the root á � x, between the limits a and b, nor any which

coincides with either of those limits, then we may change f á to
(áÿ x)p0

náÿx
f á, in the formula

(z9), and we shall have the expression:

f x � $ÿ1p0

�b

a
dán1(áÿx)nÿ1

áÿx f á: (m 0)

Instead of the in®nite factor in the index, we may substitute any large number, for example,
an uneven integer, and take the limit with respect to it; we may, therefore, write
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f x � $ÿ1p0 lim
n�1

�b

a
dá

�(2n�1)(áÿx)

0
dá pá�áÿx

0
dá pá

f á: (n 0)

Let �(2n�1)á

(2nÿ1)á
dá pá � qá,n

�á
0

dá pá; (o 0)

then

1� qá,1 � qá,2 � � � � � qá,n �

�(2n�1)á

0
dá pá�á

0
dá pá

, (p 0)

and the formula (n0) becomes

f x � $ÿ1p0

� b

a
dá f á �

P 1
(n)1

� b

a
dá qáÿx,n f á

 !
; (c)

in which development, the terms corresponding to large values of n are small. For example,
when pá � cosá, then

$ � ð, p0 � 1, qá,n � 2 cos 2ná,

and the theorem (c) reduces itself to the following known result:

f x � ðÿ1

� b

a
dá f á � 2

P 1
(n)1

� b

a
dá cos(2náÿ 2nx) f á

 !
; (q 0)

in which it is supposed that x . a, x , b, and that b ÿ a ð, in order that áÿ x may be
comprised between the limits �ð, for the whole extent of the integration; and the function
f á is supposed to remain ®nite within the same extent, and to vary gradually in value, at least
for values of the variable á which are extremely near to x. The result (q0) may also be thus
written:

f x � ðÿ1P 1
(n)ÿ1

� b

a
dá cos(2náÿ 2nx) f á; (r 0)

and if we write

á � â

2
, x � y

2
, f y

2
� ö y,

it becomes

ö y � 1

2ð

P 1
(n)ÿ1

�2b

2a
dâ cos(nâÿ ny)öâ, (s 0)

the interval between the limits of integration relatively to â being now not greater than 2ð,
and the value of y being included between those limits. For example, we may assume
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2a � ÿð, 2b � ð,

and then we shall have, by writing á, x, and f, instead of â, y, and ö,

f x � 1

2ð

P 1
(n)ÿ1

�ð
ÿð

dá cos(náÿ nx) f á, (t 0)

in which x .ÿð, x ,ð. It is permitted to assume the function f á such as to vanish when
a , 0, .ÿð; and then the formula (t0) resolves itself into the two following, which (with a
slightly different notation) occur often in the writings of Poisson, as does also the formula
(t0):

1
2

�ð
0

dá f á �
P 1

(n)1

�ð
0

dá cos(náÿ nx) f á � ð f x ; (u 0)

1
2

�ð
0

dá f á �
P 1

(n)1

�ð
0

dá cos(ná� nx) f á � 0; (v 0)

x being here supposed . 0, but ,ð; and the function f á being arbitrary, but ®nite, and
varying gradually, from á � 0 to á � ð, or at least not receiving any sudden change of value
for any value x of the variable á, to which the formula (u0) is to be applied. It is evident that
the limits of integration in (t0) may be made to become �l , l being any ®nite quantity, by

merely multiplying náÿ nx under the sign cos., by
ð

l
, and changing the external factor

1

2ð
to

1

2l
; and it is under this latter form that the theorem (t0) is usually presented by Poisson: who

has also remarked, that the difference of the two series (u0) and (v0) conducts to the
expression ®rst assigned by Lagrange, for developing an arbitrary function between ®nite
limits, in a series of sines of multiples of the variable on which it depends.

12. In general, in the formula (m0), from which the theorem (c) was derived, in order that
x may be susceptible of receiving all values . a and , b (or at least all for which the function
f x receives no sudden change of value), it is necessary, by the remark made at the beginning
of the last article, that the equation �á

0
dá pá � 0, (w 0)

should have no real root á different from 0, between the limits �(b ÿ a). But it is permitted
to suppose, consistently with this restriction, that a is , 0, and that b is . 0, while both are
®nite and determined; and then the formula (m0), or (c) which is a consequence of it, may
be transformed so as to receive new limits of integration, which shall approach as nearly as
may be desired to negative and positive in®nity. In fact, by changing á to ëá, x to ëx, and f ëx

to f x , the formula (c) becomes

f x � ë$ÿ1p0

�ëÿ1 b

ëÿ1 a
dá f á �

P 1
(n)1

�ëÿ1 b

ëÿ1 a
dá qëáÿëx,n f á

 !
; (x 0)

in which ëÿ1a will be large and negative, while ëÿ1b will be large and positive, if ë be small
and positive, because we have supposed that a is negative, and b positive; and the new variable
x is only obliged to be . ëÿ1a, and , ëÿ1b, if the new function f x be ®nite and vary gradually
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between these new and enlarged limits. At the same time, the de®nition (o0) shows that
p0 qëáÿëx,n will tend inde®nitely to become equal to 2p2në(áÿx); in such a manner that

lim
ë�0

:
p0qëáÿëx,n

2 p2në(áÿx)
� 1, (y 0)

at least if the function p be ®nite and vary gradually. Admitting then that we may adopt the

following ultimate transformation of a sum into an integral, at least under the sign

�1
ÿ1

dá,

lim
ë�0

:2ë(1
2p0 �

P1
(n)1p2në(áÿx)) �

�1
0

dâ pâ(áÿx), (z 0)

we shall have, as the limit of (x0), this formula:

f x � $ÿ1

�1
ÿ1

dá

�1
0

dâ pâ(áÿx) f á; (d)

which holds good for all real values of the variable x, at least under the conditions lately
supposed, and may be regarded as an extension of the theorem (b), from ®nite to in®nite
limits. For example, by making p a cosine, the theorem (d) becomes

f x � ðÿ1

�1
ÿ1

dá

�1
0

dâ cos(âáÿ âx) f á, (a-)

which is a more usual form than (a) for the theorem of Fourier. In general, the deduction
in the present article, of the theorem (d) from (c), may be regarded as a veri®cation of the
analysis employed in this paper, because (d) may also be obtained from (b), by making the
limits of integration in®nite; but the demonstration of the theorem (b) itself, in former
articles, was perhaps more completely satisfactory, besides that it involved fewer suppositions;
and it seems proper to regard the formula (d) as only a limiting form of (b).

13. This formula (d) may also be considered as a limit in another way, by introducing,
under the sign of integration relatively to â, a factor fkâ such that

f0 � 1, f1 � 0, (b-)

in which k is supposed positive but small, and the limit taken with respect to it, as follows:

f x � lim
k�0

:$ÿ1

�1
ÿ1

dá

�1
0

dâ pâ(áÿx)fkâ

� �
f á: (e)

It is permitted to suppose that the function f decreases continually and gradually, at a ®nite
and decreasing rate, from 1 to 0, while the variable on which it depends increases from 0 to
1; the ®rst differential coef®cient f9 being thus constantly ®nite and negative, but constantly
tending to 0, while the variable is positive and tends to1. Then, by the suppositions already
made respecting the function p, if áÿ x and k be each different from 0, we shall have�â

0
dâpâ(áÿx)fkâ � fkânâ(áÿx)(áÿ x)ÿ1 ÿ k(áÿ x)ÿ1

�â
0

dânâ(áÿx)f9kâ; (c-)

and therefore, because f1 � 0, while n is always ®nite, the integral relative to â in the formula
(e) may be thus expressed:
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�1
0

dâ pâ(áÿx) fkâ � (áÿ x)ÿ1økÿ1(áÿx), (d-)

the function ø being assigned by the equation

øë � ÿ
�1

0
dãnëã f9ã: (e-)

For any given value of ë, the value of this function ø is ®nite and determinate, by the
principles of the sixth article; and as ë tends to 1, the function ø tends to 0, on account of
the ¯uctuation of n, and because f9 tends to 0, while ã tends to1; the integral (d-) therefore
tends to vanish with k, if á be different from x; so that

lim
k�0

:

�1
0

dâpâ(áÿx)fkâ � 0, if á .
, x: (f -)

On the other hand, if á � x, that integral tends to become in®nite, because we have, by (b-),

lim
k�0

:p0

�1
0

dâ fkâ � 1: (g-)

Thus, while the formula (d-) shows that the integral relative to â in (e) is a homogeneous
function of áÿ x and k, of which the dimension is negative unity, we see also, by (f -) and
(g-), that this function is such as to vanish or become in®nite at the limit k � 0, according as
áÿ x is different from or equal to zero. When the difference between á and x, whether
positive or negative, is very small and of the same order as k, the value of the last mentioned
integral (relative to â) varies vary rapidly with á; and in this way of considering the subject,
the proof of the formula (e) is made to depend on the veri®cation of the equation

$ÿ1

�1
ÿ1

dëøëë
ÿ1 � 1: (h-)

But this last veri®cation is easily effected; for when we substitute the expression (e-) for øë,
and integrate ®rst relatively to ë, we ®nd, by (r9),�1

ÿ1
dënëãë

ÿ1 � $; (i-)

it remains then to show that

ÿ
�1

0
dã f9ã � 1; (k-)

and this follows immediately from the conditions (b-). For example, when p is a cosine, and
f a negative neperian exponential, so that

pá � cosá, fá � eÿá,

then, making ë � kÿ1(áÿ x), we have�1
0

dâ eÿkâ cos(âáÿ âx) � (áÿ x)ÿ1øë;

øë �
�1

0
dãeÿã sin ëã � ë

1� ë2
;
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and

$ÿ1

�1
ÿ1

dëøëë
ÿ1 � ðÿ1

�1
ÿ1

dë

1� ë2
� 1:

It is nearly thus that Poisson has, in some of his writings, demonstrated the theorem of
Fourier, after putting it under a form which differs only slightly from the following:

f x � ðÿ1 lim
k�0

�1
ÿ1

dá

�1
0

dâeÿkâ cos(âáÿ âx) f á; (l-)

namely, by substituting for the integral relative to â its value

k

k2 � (áÿ x)2
;

and then observing that, if k be very small, this value is itself very small, unless á be extremely
near to x, so that f á may be changed to f x ; while, making á � x � kë, and integrating
relatively to ë between limits inde®nitely great, the factor by which this function f x is
multiplied in the second member of (l-), is found to reduce itself to unity.

14. Again, the function fá retaining the same properties as in the last article for positive
values of á, and being further supposed to satisfy the condition

fÿá � fá, (m-)

while k is still supposed to be positive and small, the formula (d) may be presented in this
other way, as the limit of the result of two integrations, of which the ®rst is to be effected with
respect to the variable á:

f x � lim
k�0

:$ÿ1

�1
0

dâ

�1
ÿ1

dá fká pâ(áÿx) f á: (f)

Now it often happens that if the function f á be obliged to satisfy conditions which determine
all its values by means of the arbitrary values which it may have for a given ®nite range, from
á � a to á � b, the integral relative to á in the formula (f) can be shown to vanish at the
limit k � 0, for all real and positive values of â, except those which are roots of a certain
equation

Ùr � 0; (g)

while the same integral is, on the contrary, in®nite, for these particular values of â; and then
the integration relatively to â will in general change itself into a summation relatively to the
real and positive roots r of the equation (g), which is to be combined with an integration
relatively to á between the given limits a and b; the resulting expression being of the form

f x �
P

r

� b

a
dáöx,á,r f á: (h)

For example, in the case where p is a cosine, and f a negative exponential, if the conditions
relative to the function f be supposed such as to conduct to expressions of the forms
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�1
0

dáeÿhá f á � ø(h)

ö(h)
, (n-)�ÿ1

0
dáe há f á � ø(ÿh)

ö(ÿh)
, (o-)

in which h is any real or imaginary quantity, independent of á, and having its real part
positive; it will follow that�1

ÿ1
dáeÿk

����
á2
p

(cos âáÿ
�������
ÿ1
p

sin âá) f á � ø(â
�������ÿ1
p � k)

ö(â
�������ÿ1
p � k)

ÿ ø(â
�������ÿ1
p ÿ k)

ö(â
�������ÿ1
p ÿ k)

, (p-)

in which
�����
á2
p

is � á or � ÿá, according as á is . or , 0, and the quantities â and k are real,
and k is positive. The integral in (p-), and consequently also that relative to á in (f), in
which, now,

pá � cosá, fá � eÿk
����
á2
p

,

will therefore, under these conditions, tend to vanish with k, unless â be a root r of the
equation

ö(r
�������
ÿ1
p

) � 0, (q-)

which here corresponds to (g); but the same integral will on the contrary tend to become
in®nite, as k tends to 0, if â be a root of the equation (q-). Making therefore â � r� kë, and
supposing kë to be small, while r is a real and positive root of (q-), the integral (p-) becomes

kÿ1

1� ë2
(ar ÿ

�������
ÿ1
p

br), (r-)

in which ar and br are real, namely,

ar � ø(r
�������ÿ1
p

)

ö9(r
�������ÿ1
p

)
� ø(ÿr �������ÿ1

p
)

ö9(ÿr �������ÿ1
p

)
,

br �
�������ÿ1
p ø(r

�������ÿ1
p

)

ö9(r
�������ÿ1
p

)
ÿ ø(ÿr �������ÿ1

p
)

ö9(ÿr �������ÿ1
p

)

 !
;

9>>>>=>>>>; (s-)

ö9 being the differential coef®cient of the function ö. Multiplying the expression (r-) by
ðÿ1 dâ(cos âx � �������ÿ1

p
sin âx), which may be changed to ðÿ1 kdë(cos rx � �������ÿ1

p
sin rx); inte-

grating relatively to ë between inde®nitely great limits, negative and positive; taking the real
part of the result, and summing it relatively to r; there results,

f x �
P

r(ar cos rx � br sin rx); (t-)

a development which has been deduced nearly as above, by Poisson and Liouville, from the
suppositions (n-), (o-), and from the theorem of Fourier presented under a form equiva-
lent to the following:

f x � lim
k�0

:ðÿ1

�1
0

dâ

�1
ÿ1

dáeÿk
����
á2
p

cos(âáÿ âx) f á; (u-)

and in which it is to be remembered that if 0 be a root of the equation (q-), the
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corresponding terms in the development of f x must in general be modi®ed by the
circumstance, that in calculating these terms, the integration relatively to ë extends only from
0 to1.

For example, when the function f is obliged to satisfy the conditions

fÿá � f á, f lÿá � ÿ f l�á, (v-)

the suppositions (n-) (o-) are satis®ed; the functions ö and ø being here such that

ö(h) � e hl � eÿhl ,

ø(h) �
� l

0
dá(e h( lÿá) ÿ e h(áÿ l)) f á;

therefore the equation (q-) becomes in this case

cosrl � 0, (w-)

and the expressions (s-) for the coef®cients of the development (t-) reduce themselves to
the following:

ar � 2

l

� l

0
dá cos rá f á; br � 0; (x-)

so that the method conducts to the following expression for the function f, which satis®es the
conditions (v-),

f x � 2

l

P 1
(n)1 cos

(2n ÿ 1)ðx

2l

� l

0
dá cos

(2n ÿ 1)ðá

2l
f á; (y-)

in which f á is arbitrary from á � 0 to á � l , except that f l must vanish. The same method
has been applied, by the authors already cited, to other and more dif®cult questions; but it
will harmonize better with the principles of the present paper to treat the subject in another
way, to which we shall now proceed.

15. Instead of introducing, as in (e) and (f), a factor which has unity for its limit, we may
often remove the apparent indeterminateness of the formula (d) in another way, by the
principles of ¯uctuating functions. For if we integrate ®rst relatively to á between inde®nitely
great limits, negative and positive, then, under the conditions which conduct to develop-
ments of the form (h), we shall ®nd that the resulting function of â is usually a ¯uctuating
one, of which the integral vanishes, except in the immediate neighbourhood of certain
particular values determined by an equation such as (g); and then, by integrating only in
such immediate neighbourhood, and afterwards summing the results, the development (h) is
obtained. For example, when p is a cosine, and when the conditions (v-) are satis®ed by the
function f, it is not dif®cult to prove that�2ml� l

ÿ2mlÿ l
dá cos(âáÿ âx) f á � 2 cos(2mâl � âl � mð)

cos âl
cos âx

� l

0
dá cos âá f á; (z-)

m being here an integer number, which is to be supposed large, and ultimately in®nite. The
equation (g) becomes therefore, in the present question and by the present method, as well
as by that of the last article,
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cosrl � 0;

and if we make â � r� ã, r being a root of this equation, we may neglect ã in the second
member of (z-), except in the denominator

cos âl � ÿsin rl sin ãl ,

and in the ¯uctuating factor of the numerator

cos(2mâl � âl � mð) � ÿsin rl sin(2mãl � ãl);

consequently, multiplying by ðÿ1dã, integrating relatively to ã between any two small limits of
the forms �E, and observing that

lim
m�1:

2

ð

�E
ÿE

dã
sin(2mlã� lã)

sin lã
� 2

l
,

the development

f x � 2

l

P
r cos rx

� l

0
dá cos rá f á,

which coincides with (y-), and is of the form (h), is obtained.

16. A more important application of the method of the last article is suggested by the
expression which Fourier has given for the arbitrary initial temperature of a solid sphere, on
the supposition that this temperature is the same for all points at the same distance from the
centre. Denoting the radius of the sphere by l, and that of any layer or shell of it by á, while
the initial temperature of the same layer is denoted by áÿ1 f á, we have the equations

f 0 � 0, f 9l � íf l � 0, (a IV )

which permit us to suppose

f á � fÿá � 0, f 9l�á � f 9lÿá � í( f l�á � f lÿá) � 0; (b IV )

í being here a constant quantity not less than ÿlÿ1, and f 9 being the ®rst differential
coef®cient of the function f, which function remains arbitrary for all values of á greater than
0, but not greater than l. The equations (b IV ) give

(â cos âl � í sin âl)

� l�á

lÿá
dá sin âá f á � (c IV )

(â sin âl ÿ í cos âl)

�á� l

áÿ l
dá cos âá f á ÿ cos âá( f á� l � f áÿ l );

so that

(r sin rl ÿ í cos rl)

�á� l

áÿ l
dá cos rá f á � cos rá( f á� l � f áÿ l ), (d IV )

if r be a root of the equation

r cos rl � í sinrl � 0: (e IV )
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This latter equation is that which here corresponds to (g); and when we change â to r� ã, ã
being very small, we may write, in the ®rst member of (c IV ),

â cos âl � í sin âl � ãf(�íl)cos rl ÿ rl sin rlg, (f IV )

and change â to r in all the terms of the second member, except in the ¯uctuating
factor cos âá, in which á is to be made extremely large. Also, after making cos âá �
cos rá cos ãáÿ sin rá sinãá, we may suppress cos ãá in the second member of (c IV ), before
integrating with respect to ã, because by (d IV ) the terms involving cos ãá tend to vanish with

ã, and because ãÿ1 cos ãá changes sign with ã. On the other hand, the integral of
dã sin ãá

ã
is

to be replaced by ð, though it be taken only for very small values, negative and positive, of ã,
because á is here inde®nitely large and positive. Thus in the present question, the formula

f x � 1

ð
: lim
á�1:

�1
0

dâ sin âx

� l�á

lÿá
dá sin âá f á, (g IV )

(which is obtained from (a-) by suppressing the terms which involve cos âx, on account of
the ®rst condition (bIV ),) may be replaced by a sum relative to the real and positive roots of
the equation (e IV ); the term corresponding to any one such root being

rr sin rx

(�íl)cos rl ÿ rl sin rl
, (h IV )

if we suppose r. 0, and make for abridgment

rr � (í cos rl ÿ r sin rl)

�á� l

áÿ l
dá sin rá f á � sin rá( f á� l � f áÿ l ): (i IV )

The equations (b IV ) show that the quantity rr does not vary with á, and therefore that it may
be rigorously thus expressed:

rr � 2(í cos rl ÿ r sin rl)

� l

0
dá sin rá f á; (k IV )

we have also, by (e IV ), r being . 0,

2(í cos rl ÿ r sin rl)

cos rl � l(í cos rl ÿ r sin rl)
� 2r

rl ÿ sin rl cos rl
: (l IV )

And if we set aside the particular case where

íl � 1 � 0, (m IV )

the term corresponding to the root

r � 0, (n IV )

of the equation (e IV ), vanishes in the development of f x ; because this term is, by (g IV ),

x

ð

�â
0

dâ â

� l�á

lÿá
dá sin âá f á

 !
, (o IV )

á being very large, and â small, but both being positive; and unless the condition (m IV ) be
satis®ed, the equation (c IV ) shows that the quantity to be integrated in (o IV ), with respect to
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â, is a ®nite and ¯uctuating function of that variable, so that its integral vanishes, at the limit
á � 1. Setting aside then the case (m IV ), which corresponds physically to the absence of
exterior radiation, we see that the function f x , which represents the initial temperature of
any layer of the sphere multiplied by the distance x of that layer from the centre, and which is
arbitrary between the limits x � 0, x � l , that is, between the centre and the surface, (though
it is obliged to satisfy at those limits the conditions (a IV )), may be developed in the following
series, which was discovered by Fourier, and is of the form (h):

f x �
P

r

2r sin rx

� l

0
dá sin rá f á

rl ÿ sin rl cos rl
; (p IV )

the sum extending only to those roots of the equation (e IV ) which are greater than 0. In the
particular case (m IV ), in which the root (n IV ) of the equation (e IV ) must be employed, the
term (o IV ) becomes, by (c IV ) and (d IV ),

3x

ðl3

�á� l

áÿ l
dá f áácÿ l( f á� l � f áÿ l )ác

( )
, (q IV )

in which, at the limit here considered,

c �
�1

0
dè

vers è

è2
� ð

2
; (r IV )

but also, by the equations (bIV ), (m IV ),�á� l

áÿ l
dá f ááÿ l( f á� l � f áÿ l )á � 2

� l

0
dá f áá; (s IV )

the sought term of f x becomes, therefore, in the present case,

3x

l3

� l

0
dá f áá, (t IV )

and the corresponding term in the expression of the temperature xÿ1 f x is equal to the mean
initial temperature of the sphere; a result which has been otherwise obtained by Poisson, for
the case of no exterior radiation, and which might have been anticipated from physical
considerations. The supposition

íl � 1 , 0, (u IV )

which is inconsistent with the physical conditions of the question, and in which Fourier's
development (pIV ) may fail, is excluded in the foregoing analysis.

17. When a converging series of the form (h) is arrived at, in which the coef®cients ö of the
arbitrary function f , under the sign of integration, do not tend to vanish as they correspond
to larger and larger roots r of the equation (g); then those coef®cients öx,á,r must in general
tend to become ¯uctuating functions of á, as r becomes larger and larger. And the sum of
those coef®cients, which may be thus denoted,P

röx,á,r � øx,á,r, (i)
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and which is here supposed to be extended to all real and positive roots of the equation (g),
as far as some given root r, must tend to become a ¯uctuating function of á, and to have its
mean value equal to zero, as r tends to become in®nite, for all values of á and x which are
different from each other, and are both comprised between the limits of the integration
relative to á; in such a manner as to satisfy the equation�ì

ë
daøx,á,1 f á � 0, (k)

which is of the form (e), referred to in the second article; provided that the arbitrary function
f is ®nite, and that the quantities ë, ì, x, á are all comprised between the limits a and b,
which enter into the formula (h); while á is, but x is not, comprised also between the new
limits ë and ì. But when á � x, the sum (i) tends to become in®nite with r, so that we have

øx,x,1 � 1, (l)

and �x�E

xÿE
dáøx,á,1 f á � f x , (m)

E being here a quantity inde®nitely small. For example, in the particular question which
conducts to the development (y-), we have

öx,á,r � 2

l
cos rx cos rá, (v IV )

and

r � (2n ÿ 1)ð

2l
; (w IV )

therefore, summing relatively to r, or to n, from n � 1 to any given positive value of the
integer number n, we have, by (i),

øx,á,r �
sin

nð(áÿ x)

l

2l sin
ð(áÿ x)

2l

�
sin

nð(á� x)

l

2l sin
ð(á� x)

2l

; (x IV )

and it is evident that this sum tends to become a ¯uctuating function of á, and to satisfy the
equation (k), as r, or n, tends to become in®nite, while á and x are different from each
other, and are both comprised between the limits 0 and l. On the other hand, when a

becomes equal to x, the ®rst part of the expression (x IV ) becomes � n

l
, and therefore tends

to become in®nite with n, so that the equation (l) is true. And the equation (m) is veri®ed by
observing, that if x . 0, , l , we may omit the second part of the sum (x IV ), as disappearing in
the integral through ¯uctuation, while the ®rst part gives, at the limit,

lim
n�1

�x�E

xÿE
dá

sin
nð(áÿ x)

l

2l sin
ð(áÿ x)

2l

f á � f x : (y IV )
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If x be equal to 0, the integral is to be taken only from 0 to E, and the result is only half as
great, namely,

lim
n�1:

�E
0
dá

sin
nðá

l

2l sin
ðá

2l

f á � 1
2 f 0; (z IV )

but, in this case, the other part of the sum (x IV ) contributes an equal term, and the whole
result is f 0. If x � l , the integral is to be taken from l ÿ E to l, and the two parts of the
expression (x IV ) contribute the two terms 1

2 f l and ÿ1
2 f l , which neutralize each other. We may

therefore in this way prove, aÁ posteriori, by the consideration of ¯uctuating functions, the truth
of the development (y-) for any arbitrary but ®nite function f x , and for all values of the real
variable x from x � 0 to x � l , the function being supposed to vanish at the latter limit;
observing only that if this function f x undergo any sudden change of value, for any value x)
of the variable between the limits 0 and l, and if x be made equal to x) in the development
(y-), the process shows that this development then represents the semisum of the two values
which the function f receives, immediately before and after it undergoes this sudden change.

18. The same mode of aÁ posteriori proof, through the consideration of ¯uctuating functions,
may be applied to a great variety of other analogous developments, as has indeed been
indicated by Fourier, in a passage of his Theory of Heat. The spirit of Poisson's method,
when applied to the establishment, aÁ posteriori, of developments of the form (h), would lead
us to multiply, before the summation, each coef®cient öx,á,r by a factor fk,r which tends to
unity as k tends to 0, but tends to vanish as r tends to 1; and then instead of a generally
¯uctuating sum (i), there results a generally evanescent sum (k being evanescent), namely,P

rfk,röx,á,r � ÷x,á,k,r, (n)

which conducts to equations analogous to (k) (l) (m), namely,

lim
k�0

�ì
ë

dá÷x,á,k,1 f á � 0; (o)

lim
k�0

÷x,x,k,1 � 1; (p)

lim
k�0

�x�E

xÿE
dá÷x,á,k,1 f á � f x : (q)

It would be interesting to inquire what form the generally evanescent function ÷ would take
immediately before its vanishing, when

fk,r � Eÿkr,

and

öx,á,r � 2r sin rx sin rá
rl ÿ sin rl cos rl

,

r being a root of the equation

rl cotanrl � const:,

and the constant in the second member being supposed not greater than unity.
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19. The development (c), which, like (h), expresses an arbitrary function, at least between
given limits, by a combination of summation and integration, was deduced from the expres-
sion (m0) of the eleventh article, which conducts also to many other analogous developments,
according to the various ways in which the factor with the in®nite index, n1(áÿx), may be
replaced by an in®nite sum, or other equivalent form. Thus, if, instead of (o0), we establish
the following equation, �2ná

(2nÿ2)á
dá pá � rá,n

�á
0

dá pá, (aV )

we shall have, instead of (c), the development:

f x � $ÿ1p0
P 1

(n)1

� b

a
dá ráÿx,n f á; (r)

which, when p is a cosine, reduces itself to the form,

f x � 2

ð

P 1
(n)1

� b

a
dá cos(2n ÿ 1:áÿ x) f á, (bV )

x being . a, , b, and b ÿ a being not .ð; and easily conducts to the known expression

f x � 1

l

P 1
(n)1

� l

ÿl
dá cos

(2n ÿ 1)ð(áÿ x)

2l
f á, (cV )

which holds good for all values of x between ÿl and �l . By supposing f á � fÿá, we are
conducted to the expression (y-); and by supposing f á � ÿ fÿá, we are conducted to this
other known expression,

f x � 2

l

P 1
(n)1 sin

(2n ÿ 1)ðx

2l

� l

0
dá sin

(2n ÿ 1)ðá

2l
f á; (dV )

which holds good even at the limit x � l , by the principles of the seventeenth article, and
therefore offers the following transformation for the arbitrary function f l :

f l � ÿ 2

l

P 1
(n)1 (ÿ1)n

� l

0
dá sin

(2n ÿ 1)ðá

2l
f á: (eV )

For example, by making f á � ái , and supposing i to be an uneven integer number; effecting
the integration indicated in (eV ), and dividing both members by l i , we ®nd the following
relation between the sums of the reciprocals of even powers of odd whole numbers:

1 � [i]1ù2 ÿ [i]3ù4 � [i]5ù6 ÿ . . . ; (f V )

in which

[i]k � i(i ÿ 1)(i ÿ 2) . . . (i ÿ k � 1); (gV )

and

ù2k � 2
2

ð

� �2kP 1
(n)1 (2n ÿ 1)ÿ2k ; (hV )

thus
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1 � ù2 � 3ù2 ÿ 3:2:1:ù4 � 5ù2 ÿ 5:4:3ù4 � 5:4:3:2:1ù6, (iV )

so that

ù2 � 1, ù4 � 1
3, ù6 � 2

15: (kV )

Again, by making f á � ái , but supposing i � an uneven number 2k, we get the following
additional term in the second member of the equation (f V ),

(ÿ1)k[2k]2kù2k�1, (lV )

in which

ù2k�1 � ÿ2
2

ð

� �2k�1P 1
(n)1 (ÿ1)n(2n ÿ 1)ÿ2kÿ1; (mV )

thus

1 � ù1 � 2ù2 ÿ 2:1ù3 � 4ù2 ÿ 4:3:2ù4 � 4:3:2:1ù5, (nV )

so that

ù1 � 1, ù3 � 1
2, ù5 � 5

24: (oV )

Accordingly, if we multiply the values (kV ) by
ð2

8
,
ð4

32
,
ð6

128
, we get the known values for the

sums of the reciprocals of the squares, fourth powers, and sixth powers of the odd whole

numbers; and if we multiply the values (oV ) by
ð

4
,
ð3

16
,
ð5

64
, we get the known values for the

sums of the reciprocals of the ®rst, third, and ®fth powers of the same odd numbers, taken
however with alternately positive and negative signs. Again, if we make f á � siná, in (eV ),
and divide both members of the resulting equation by cos l , we get this known expression for
a tangent,

tan l �P 1
(n)ÿ1

2

(2n ÿ 1)ðÿ 2l
; (pV )

which shows that, with the notation (hV ),

tan l � ù2 l1 � ù4 l3 � ù6 l5 � � � � ; (qV )

so that the coef®cients of the ascending powers of the arc in the development of its tangent
are connected with each other by the relations (f V ), which may be brie¯y represented thus:�������

ÿ1
p

� (�
�������
ÿ1
p

d0)2kÿ1 tan 0; (rV )

the second member of this symbolic equation being supposed to be developed, and di
0 tan 0

being understood to denote the value which the ith differential coef®cient of the tangent of
á, taken with respect to á, acquires when á � 0; thus,

1 � d0 tan 0 � 3d0 tan 0ÿ d3
0 tan 0

� 5d0 tan 0ÿ 10d3
0 tan 0� d5

0 tan 0:

)
(sV )

Finally, if we make f á � cosá, and attend to the expression (pV ), we obtain, for the secant of
an arc l, the known expression:
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sec l �P 1
(n)ÿ1

2(ÿ1)n�1

(2n ÿ 1)ðÿ 2l
; (tV )

which shows that, with the notation (mV ),

sec l � ù1 l0 � ù3 l2 � ù5 l4 � � � �, (uV )

and therefore, by the relations of the form (nV ),�������
ÿ1
p

(ÿ(
�������
ÿ1
p

d0)2k sec 0) � (�
�������
ÿ1
p

d0)2k tan 0; (vV )

thus

1 � sec 0 � 2d0 tan 0ÿ d2
0 sec 0

� 4d0 tan 0ÿ 4d3
0 tan 0� d4

0 sec 0:

)
(wV )

Though several of the results above deduced are known, the writer does not remember to
have elsewhere seen the symbolic equations (rV ), (vV ), as expressions for the laws of the
coef®cients of the developments of the tangent and secant, according to ascending powers of
the arc.

20. In the last article, the symbol r was such, thatP n
(n)1 rá,n � n2ná nÿ1

á ; (xV )

and in article 11., we had

1�P n
(n)1 qá,n � n2ná�á nÿ1

á : (yV )

Assume, now, more generally,

=âsá,â � nâá nÿ1
á ; (zV )

and let the operation =â admit of being effected after, instead of before, the integration
relatively to á; the expression (m0) will then acquire this very general form:

f x � $ÿ1p0=1
� b

a
dá sáÿx,â f á; (s)

which includes the transformations (c) and (r), and in which the notation =1 is designed to
indicate that after performing the operation =â we are to make the variable â in®nite,
according to some given law of increase, connected with the form of the operation denoted
by =.

21. In order to deduce the theorems (c), (r), (s), we have hitherto supposed (as was stated
in the twelfth article), that the equation ná � 0 has no real root different from 0 between the
limits � (b ÿ a), in which a and b are the limits of the integration relative to á, between which
latter limits it is also supposed that the variable x is comprised. If these conditions be not
satis®ed, the factor nÿ1

áÿx , in the formula (m0), may become in®nite within the proposed
extent of integration, for values of á and x which are not equal to each other; and it will then
be necessary to change the ®rst member of each of the equations (m0), (c), (r), (s), to a
function different from f x , but to be determined by similar principles. To simplify the
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question, let it be supposed that the function ná receives no sudden change of value, and that
the equation

ná � 0, (aVI )

which coincides with (w 0), has all its real roots unequal. These roots must here coincide with
the quantities án,i of the fourth and other articles, for which the function ná changes sign;
but as the double index is now unnecessary, while the notation án has been appropriated to
the roots of the equation (g), we shall denote the roots of the equation (aVI ), in their order,
by the symbols

íÿ1, . . . íÿ1, í0, í1, . . . í1; (bVI )

and choosing í0 for that root of (aVI ) which has already been supposed to vanish, we shall
have

í0 � 0, (cVI )

while the other roots will be . or , 0, according as their indices are positive or negative. If
the differential coef®cient pá be also supposed to remain always ®nite, and to receive no
sudden change of value in the immediate neighbourhood of any root í of (aVI ), we shall
have, for values of á in that neighbourhood, the limiting equation:

lim
á�í :ná(áÿ í)ÿ1 � pí; (dVI )

and pí will be different from 0, because the real roots of the equation (aVI ) have been
supposed unequal. Conceive also that the integral�1

ÿ1
dáná�âíáÿ1 � $í,â (eVI )

tends to some ®nite and determined limit, which may perhaps be different for different roots
í, and therefore may be thus denoted,

$í,1 � $í, (f VI )

as â tends to1, after the given law referred to at the end of the last article. Then, by writing

á � x � í� âÿ1 y, (gVI )

and supposing â to be very large, we easily see, by reasoning as in former articles, that the
part of the integral � b

a
dánâ(áÿx)nÿ1

áÿx f á, (hVI )

which corresponds to values of áÿ x in the neighbourhood of the root í, is very nearly
expressed by

$ípÿ1
í f x�í; (iVI )

and that this expression is accurate at the limit. Instead of the equation (s), we have therefore
now this other equation:
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P
í$ípÿ1

í f x�í � =1
�b

a
dá sáÿx,â f á; (t)

the sum in the ®rst member being extended to all those roots í of the equation (aVI ), which
satisfy the conditions

x � í. a, , b: (kVI )

If one of the roots í should happen to satisfy the condition

x � í � a, (lVI )

the corresponding term in the ®rst member of (t) would be, by the same principles,

$)ípÿ1
í f á, (mVI )

in which

$)í � lim
â�1

�1
0

dáná�âíáÿ1: (nVI )

And if a root í of (aVI ) should satisfy the condition

x � í � b, (oVI )

the corresponding term in the ®rst member of (t) would then be

$))ípÿ1
í f b , (pVI )

in which

$))í � lim
â�1

�0

ÿ1
dáná�âíáÿ1: (qVI )

Finally, if a value of x � í satisfy the conditions (kVI ), and if the function f undergo a sudden
change of value for this particular value of the variable on which that function depends, so
that f � f )) immediately before, and f � f ) immediately after the change, then the
corresponding part of the ®rst member of the formula (t) is

pÿ1
í ($)í f )�$))í f ))): (rVI )

And in the formulñ for $í, $)í, $))í, it is permitted to write

ná�âíáÿ1 �
�1

0
dt p tá�âí: (sVI )

22. One of the simplest ways of rendering the integral (eVI ) determinate at its limit, is to
suppose that the function pá is of the periodical form which satis®es the two following
equations,

pÿá � pá, pá� p � ÿpá; (tVI )

p being some given positive constant. Multiplying these equations by dá, and integrating from
á � 0, we ®nd, by (a0),

nÿá � ná � 0, ná� p � ná � n p ; (uVI )
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therefore

n p � n p
2
� nÿ p

2
� 0, (vVI )

and

ná� p � ÿná, ná�2 p � ná, &c: (wVI )

Consequently, if the equations (tVI ) be satis®ed, the multiples (by whole numbers) of p will
all be roots of the equation (aVI ); and reciprocally that equation will have no other real roots,

if we suppose that the function pá, which vanishes when á is any odd multiple of
p

2
, preserves

one constant sign between any one such multiple and the next following, or simply between

á � 0 and á � p

2
. We may then, under these conditions, write

íi � ip, (xVI )

i being any integer number, positive or negative, and íi denoting generally, as in (bVI ), any
root of the equation (aVI ). And we shall have�1

ÿ1
dáná�kpá

ÿ1 � (ÿ1)k$, (yVI )

k being any integer number, and $ still retaining the same meaning as in the former articles.
Also, for any integer value of k,

pkp � (ÿ1)kp0: (zVI )

These things being laid down, let us resume the integral (eVI ), and let us suppose that the law
by which â increases to 1 is that of coinciding successively with the several uneven integer
numbers 1, 3, 5, &c., as was supposed in deducing the formula (c). Then âí in (eVI ) will be
an odd or even multiple of p, according as í is the one or the other, so that we shall have by
(xVI ), (yVI ), the following determined expression for the sought limit (f VI ):

$íi � (ÿ1)i$; (aVII )

but also, by (xVI ), (zVI ),

pí i � (ÿ1)ip0; (bVII )

therefore

$ípÿ1
í � $pÿ1

0 , (cVII )

the value of this expression being thus the same for all the roots of (aVI ). At the same time, in
(iVI ),

f x�í � f x�ip ; (dVII )

the equation (t) becomes therefore nowP
i f x�ip � $ÿ1p0 =1

� b

a
dá sáÿx,â f á, (u)

â tending to in®nity by passing through the successive positive odd numbers, and i receiving
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all integer values which allow x � ip to be comprised between the limits a and b. If any integer
value of i render x � ip equal to either of these limits, the corresponding term of the sum in
the ®rst member of (u) is to be 1

2 f a , or 1
2 f b ; and if the function f receive any sudden change

of value between the same limits of integration, corresponding to a value of the variable
which is of the form x � ip, the term introduced thereby will be of the form 1

2 f )� 1
2 f )).

For example, when

pá � cosá, $ � ð, p � ð, (eVII )

we obtain the following known formula, instead of (r0),P
i f x�ið � ðÿ1P 1

(n)ÿ1

� b

a
dá cos(2náÿ 2nx) f á; (f VII )

which may be transformed in various ways, by changing the limits of integration, and in which
halves of functions are to be introduced in extreme cases, as above.

On the other hand, if the law of increase of â be, as in (r), that of coinciding successively
with larger and larger even numbers, then

$í � $, pí � �p0, (gVII )

and the equation (t) becomesP
i(ÿ1)i f x�ið � $ÿ1p0=1

� b

a
dá sáÿx,â f á: (v)

For example, in the case (eVII ), we obtain this extension of the formula (bV ),P
i(ÿ1)i f x�ið � ðÿ1P 1

(n)ÿ1

� b

a
dá cos(2n ÿ 1:áÿ x) f á: (hVII )

We may verify the equations (f VII ) (hVII ) by remarking that both members of the former
equation remain unchanged, and that both members of the latter are changed in sign, when
x is increased by ð. A similar veri®cation of the equations (u) and (v) requires that in general
the expression

=1
� b

a
dá sáÿx,â f á (iVII )

should either receive no change, or simply change its sign, when x is increased by p,
according as â tends to1 by coinciding with large and odd or with large and even numbers.

23. In all the examples hitherto given to illustrate the general formulñ of this paper, it has
been supposed for the sake of simplicity, that the function p is a cosine; and this supposition
has been suf®cient to deduce, as we have seen, a great variety of known results. But it is
evident that this function p may receive many other forms, consistently with the suppositions
made in deducing those general formulñ; and many new results may thus be obtained by the
method of the foregoing articles.

For instance, it is permitted to suppose

pá � 1, if á2 , 1; (kVII )
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p1 � 0; (lVII )

pá�2 � ÿpá; (mVII )

and then the equations (tVI ) of the last article, with all that were deduced from them, will still
hold good. We shall now have

p � 2; (nVII )

and the de®nite integral denoted by $, and de®ned by the equation (r9), may now be
computed as follows. Because the function ná changes sign with á, we have

$ � 2

�1
0

dáná á
ÿ1; (oVII )

but

ná � á, from á � 0 to á � 1;

. . . 2ÿ á, . . . 1 . . . 3;

. . . áÿ 4, . . . 3 . . . 4;

9>=>; (pVII )

and

ná�4 � ná: (qVII )

Hence �4

0
dáná á

ÿ1 � 6 log 3ÿ 4 log 4, (rVII )

the logarithms being Napierian; and generally, if m be any positive integer number, or zero,�4m�4

4m
dáná á

ÿ1 �
�4

0
dá N á(á� 4m)ÿ1

� 4m log(4m)ÿ (8m � 2)log(4m � 1)� (8m � 6)log(4m � 3)

ÿ (4m � 4)log(4m � 4)

�P 1
(k)1

1ÿ 2ÿ2k

k(k � 1
2)

(2m � 1)ÿ2k : (sVII )

But, by (hV ),

P 1
(m)0 (2m � 1)ÿ2k � 1

2

ð

2

� �2k

ù2k , (tVII )

if k be any integer number . 0; therefore

$ �P 1
(k)1

1ÿ 2ÿ2k

k(k � 1
2)

ð

2

� �2k

ù2k ; (uVII )

ù2k being by (qV ) the coef®cient of x2kÿ1 in the development of tan x. From this last
property, we have
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P 1
(k)1

ù2k x2k

k(k � 1
2)
� 4

x

�x

0
dx

� �2

tan x � 4

x

�x

0
dx log sec x; (vVII )

therefore, substituting successively the values x � ð

2
and x � ð

4
, and subtracting the result of

the latter substitution from that of the former, we ®nd, by (uVII ),

$ � 8

ð

� ð
2

ð
4

ÿ
� ð

4

0

 !
dx log sec x

� 8

ð

� ð
2

ð
4

dx log tan x

� 8

ð

� ð
4

0
dx log cotan x: (wVII )

Such, in the present question, is an expression for the constant $; its numerical value may be
approximately calculated by multiplying the Napierian logarithm of ten by the double of the
average of the ordinary logarithms of the cotangents of the middles of any large number of
equal parts into which the ®rst octant may be divided; thus, if we take the ninetieth part of

the sum of the logarithms of the cotangents of the ninety angles
10

4
,

30

4
,

50

4
, . . .

1770

4
,

1790

4
, as

given by the ordinary tables, we obtain nearly, as the average of these ninety logarithms, the
number 0,5048; of which the double, being multiplied by the Napierian logarithm of ten,
gives, nearly, the number 2,325, as an approximate value of the constant $. But a much more
accurate value may be obtained with little more trouble, by computing separately the doubles
of the part (rVII ), and of the sum of (sVII ) taken from m � 1 to m � 1; for thus we obtain the
expression

$ � 12 log 3ÿ 8 log 4

� 2
P 1

(k)1

1ÿ 2ÿ2k

k(k � 1
2)

P 1
(m)1 (2m � 1)ÿ2k , (xVII )

in which each sum relative to m can be obtained from known results, and the sum relative to
k converges tolerably fast; so that the second line of the expression (xVII ) is thus found to be
nearly � 0,239495, while the ®rst line is nearly � 2,092992; and the whole value of the
expression (xVII ) is nearly

$ � 2,332487: (yVII )

There is even an advantage in summing the double of the expression (sVII ) only from m � 2
to m � 1, because the series relative to k converges then more rapidly; and having thus

found 2

�1
8

dáná á
ÿ1, it is only necessary to add thereto the expression

2

�8

0
dáná á

ÿ1 � 12 log 3ÿ 20 log 5� 28 log 7ÿ 16 log 8: (zVII )

The form of the function p and the value of the constant $ being determined as in the
present article, it is permitted to substitute them in the general equations of this paper; and
thus to deduce new transformations for portions of arbitrary functions, which might have
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been employed instead of those given by Fourier and Poisson, if the discontinuous function
p, which receives alternately the values 1, 0, and ÿ1, had been considered simpler in its
properties than the trigonometrical function cosine.

24. Indeed, when the conditions (tVI ) are satis®ed, the function px can be developed

according to cosines of the odd multiples of
ðx

p
, by means of the formula (y-), which here

becomes, by changing l to
p

2
, and f to p,

px �
P 1

(n)1 a2nÿ1 cos
(2n ÿ 1)ðx

p
, (aVIII )

in which

a2nÿ1 � 4

p

� p
2

0
dá cos

(2n ÿ 1)ðá

p
pá; (bVIII )

the function nx at the same time admitting a development according to sines of the same odd
multiples, namely,

nx � p

ð

P 1
(n)1

a2nÿ1

2n ÿ 1
sin

(2n ÿ 1)ðx

p
; (cVIII )

and the constant $ being equal to the following series,

$ � p
P 1

(n)1

a2nÿ1

2n ÿ 1
: (dVIII )

Thus, in the case of the last article, where p � 2, and pá � 1 from á � 0 to á � 1, we have

a2nÿ1 � 4

ð

(ÿ1)n�1

2n ÿ 1
; (eVIII )

px � 4

ð
cos

ðx

2
ÿ 3ÿ1 cos

3ðx

2
� 5ÿ1 cos

5ðx

2
ÿ � � �

� �
; (f VIII )

nx � 8

ð2
sin

ðx

2
ÿ 3ÿ2 sin

3ðx

2
� 5ÿ2 sin

5ðx

2
ÿ � � �

� �
; (gVIII )

$ � 8

ð
(1ÿ2 ÿ 3ÿ2 � 5ÿ2 ÿ 7ÿ2 � � � �); (hVIII )

so that, from the comparison of (wVII ) and (hVIII ), the following relation results:� ð
4

0
dx log cot x �P 1

(n)0 (ÿ1)n(2n � 1)ÿ2: (iVIII )

But most of the suppositions made in former articles may be satis®ed, without assuming for
the function p the periodical form assigned by the conditions (tVI ). For example, we might
assume

pá � 4

ð

�ð
0

dè sin è2 cos(2á sin è); (kVIII )

which would give, by (a0), and (b0),
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ná � 2

ð

�ð
0

dè sinè sin(2á sin è); (lVIII )

má � 1

ð

�ð
0

dè vers(2á sin è); (mVIII )

and ®nally, by (r9),

$ � 2

�ð
0

dè sin è � 4: (nVIII )

This expression (kVIII ) for pá satis®es all the conditions of the ninth article; for it is clear that

it gives a value to ná which is always numerically less than
4

ð
; and the equation

má � 1, (oVIII )

which is of the form (g), is satis®ed by all the in®nitely many real and unequal roots of the
equation �ð

0
dè cos(2á sin è) � 0, (pVIII )

which extend from á � ÿ1 to á � 1, and of which the interval between any one and the
next following is never greater than ð, nor even so great; because (as it is not dif®cult to
prove) these several roots are contained in alternate or even octants, in such a manner that
we may write

án .
nð

2
ÿ ð

4
, ,

nð

2
: (qVIII )

We may, therefore substitute the expression (kVIII ) for p, in the formulñ (a), (b), (c), &c.;
and we ®nd, by (b), if x . a, , b,

f x � ðÿ1

� b

a
dá

�1
0

dâ

�ð
0

dè sin è2 cosf2â(áÿ x)sin èg f á; (rVIII )

that is,

f x � 1

2ð
lim
â�1

�ð
0

dè sinè

�b

a
dá sinf2â(áÿ x)sin èg(áÿ x)ÿ1 f á; (sVIII )

a theorem which may be easily proved aÁ posteriori, by the principles of ¯uctuating functions,
because those principles show, that (if x be comprised between the limits of integration) the
limit relative to â of the integral relative to á, in (sVIII ), is equal to ð f x . In like manner, the
theorem (c), when applied to the present form of the function p, gives the following other
expression for the arbitrary function f x :

f x � 1
2

� b

a
dá f á �

P 1
(n)1

� b

a
dá f á

�ð
0

dè sin è sin(2(áÿ x)sin è)cos(4n(áÿ x)sin è)�ð
0

dè sin è sin(2(áÿ x)sin è)
; (tVIII )

x being between a and b, and b ÿ a being not greater than the least positive root í of the
equation
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1

í

�ð
0

dè sin è sin(2í sin è) � 0: (uVIII )

And if we wish to prove, aÁ posteriori, this theorem of transformation (tVIII ), by the same
principles of ¯uctuating functions, we have only to observe that

1� 2
P n

(n)1 cos 2ny � sin(2ny � y)

sin y
, (vVIII )

and therefore that the second member of (tVIII ) may be put under the form

lim
n�1

� b

a
dá f á

�ð
0

dè sin è sin((4n � 2)(áÿ x)sin è)

2

�ð
0

dè sin è sin(2(áÿ x)sin è)
; (wVIII )

in which the presence of the ¯uctuating factor

sin((4n � 2)(áÿ x)sin è),

combined with the condition that áÿ x is numerically less than the least root of the equation
(uVIII ), shows that we need only attend to values of á inde®nitely near to x, and may therefore
write in the denominator, �ð

0
dè sin è sin(2(áÿ x)sin è) � ð(áÿ x); (xVIII )

for thus, by inverting the order of the two remaining integrations, that is by writing� b

a
dá

�ð
0

dè . . . �
�ð

0
dè

� b

a
dá . . . , (yVIII )

we ®nd ®rst

lim
n�1

� b

a
dá f á

sin((4n � 2)(áÿ x)sin è)

2ð(áÿ x)
� 1

2 f x , (zVIII )

for every value of è between 0 and ð, and of x between a and b; and ®nally,

1
2 f x

�ð
0

dè sin è � f x :

25. The results of the foregoing articles may be extended by introducing, under the
functional signs n, p, a product such as âã, instead of âá, ã being an arbitrary function of á;
and by considering the integral � b

a
dánâã fá, (a IX )

in which f is any function which remains ®nite between the limits of integration. Since ã is a
function of á, it may be denoted by ãá, and á will be reciprocally a function of ã, which may
be denoted thus:

á � öãá : (b IX )
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While á increases from a to b, we shall suppose, at ®rst, that the function ãá increases
constantly and continuously from ãa to ãb , in such a manner as to give always, within this
extent of variation, a ®nite and determined and positive value to the differential coef®cient
of the function ö, namely,

dá

dã
� ö9ã: (c IX )

We shall also express, for abridgment, the product of this coef®cient and of the function f by
another function of ã, as follows,

ö9ã fá � ø: (d IX )

Then the integral (a IX ) becomes �ãb

ãá

dãnâã øã; (e IX )

and a rigorous expression for it may be obtained by the process of the fourth article, namely�âÿ1án

ãá

�
�ãb

âÿ1án�m

 !
dãnâã øã � èâÿ1(án�m ÿ án)cä; (f IX )

in which, as before, án , án�m are suitably chosen roots of the equation (g); c is a ®nite
constant; è is included between the limits �1; and ä is the difference between two values of
the function øã, corresponding to two values of the variable ã of which the difference is less
than âÿ1b, b being another ®nite constant. The integral (a IX ) therefore diminishes inde®-
nitely when â increases inde®nitely; and thus, or simply by the theorem (z) combined with
the expression (e IX ), we have, rigorously, at the limit, without supposing here that n0

vanishes, � b

a
dán1ã fá � 0: (W)

The same conclusion is easily obtained, by reasonings almost the same, for the case where ã
continually decreases from ãa to ãb , in such a manner as to give, within this extent of
variation, a ®nite and determined and negative value to the differential coef®cient (c IX ). And
with respect to the case where the function ã is for a moment stationary in value, so that its
differential coef®cient vanishes between the limits of integration, it is suf®cient to observe
that although ø in (e IX ) becomes then in®nite, yet f in (a IX ) remains ®nite, and the integral
of the ®nite product dánâã fá, taken between in®nitely near limits, is zero. Thus, generally,
the theorem (W), which is an extension of the theorem (z), holds good between any ®nite
limits a and b, if the function f be ®nite between those limits, and if, between the same limits
of integration, the function ã never remain unchanged throughout the whole extent of any
®nite change of á.

26. It may be noticed here, that if â be only very large, instead of being in®nite, an
approximate expression for the integral (aIX ) may be obtained, on the same principles, by
attending only to values of á which differ very little from those which render the coef®cient
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(c IX ) in®nite. For example, if we wish to ®nd an approximate expression for a large root of
the equation (pVIII ), or to express approximately the function

f â � 1

ð

�ð
0

dá cos(2â siná), (g IX )

when â is a large positive quantity, we need only attend to values of á which differ little from
ð

2
; making then

siná � 1ÿ y2, dá � 2dy�������������
2ÿ y2

p , (h IX )

and neglecting y2 in the denominator of this last expression, the integral (g IX ) becomes

f â � aâ cos 2â� bâ sin 2â, (i IX )

in which, nearly,

aâ �
p

2

ð

�1
ÿ1

dy cos(2ây2) � 1���������
2ðâ

p ;

bâ �
p

2

ð

�1
ÿ1

dy sin(2ây2) � 1���������
2ðâ

p ;

9>>>>=>>>>; (k IX )

so that the large values of â which make the function (g IX ) vanish are nearly of the form

nð

2
ÿ ð

8
, (l IX )

n being an integer number; and such is therefore the approximate form of the large roots án

of the equation (pVIII ): results which agree with the relations (qVIII ), and to which Poisson
has been conducted, in connexion with another subject, and by an entirely different analysis.

The theory of ¯uctuating functions may also be employed to obtain a more close
approximation; for instance, it may be shown, by reasonings of the kind lately employed, that
the de®nite integral (g IX ) admits of being expressed (more accurately as â is greater) by the
following semiconvergent series, of which the ®rst terms have been assigned by Poisson:

f â � 1������
ðâ

p P 1
(i)0 [0]ÿi([ÿ1

2]
i)2(4â)ÿi cos 2â ÿ ð

4
ÿ ið

2

� �
; (m IX )

and in which, according to a known notation of factorials,

[0]ÿi � 1ÿ1:2ÿ1:3ÿ1: . . . iÿ1;

[ÿ1
2]

i � ÿ1

2
:
ÿ3

2
:
ÿ5

2
� � � 1ÿ 2i

2
:

9=; (n IX )

For the value â � 20, the 3 ®rst terms of the series (m IX ) give

f 20 � 1ÿ 9

204800

� �
cos 86849952 0��������

20ð
p � 1

320

sin 86849952 0��������
20ð
p

� 0,0069736� 0,0003936 � �0,0073672:

9>=>; (o IX )

For the same value of â, the sum of the ®rst sixty terms of the ultimately convergent series

624 XXII . ON FLUCTUATING FUNCTIONS



f â �
P 1

(i)0 ([0]ÿi)2(ÿâ2)i (p IX )

gives

f 20 � �7 447 387 396 709 949,9657957

ÿ7 447 387 396 709 949,9584289

� �0,0073668:

9>>=>>; (q IX )

The two expressions (m IX ) (p IX ) therefore agree, and we may conclude that the following
numerical value is very nearly correct:

1

ð

�ð
0

dá cos(40 siná) � �0,007367: (r IX )

27. Resuming the rigorous equation (w), and observing that�1
0

dâpâã � lim
â�1

:nâã ã
ÿ1
á , (s IX )

we easily see that in calculating the de®nite integral� b

a
dá

�1
0

dâpâã f á, (t IX )

in which the function f is ®nite, it is suf®cient to attend to those values of á which are not
only between the limits a and b, but are also very nearly equal to real roots x of the equation

ãx � 0: (u IX )

The part of the integral (t IX ), corresponding to values of a in the neighbourhood of any
one such root x, between the above-mentioned limits, is equal to the product

f x

ã9x
3

�1
ÿ1

dá
nâã9x (áÿx)

áÿ x
, (v IX )

in which â is inde®nitely large and positive, and the differential coef®cient ã9x of the function
ã is supposed to be ®nite, and different from 0. A little consideration shows that the integral
in this last expression is � �$, $ being the same constant as in former articles, and the
upper or lower sign being taken according as ã9x is positive or negative. Denoting then by�������

ã9x 2
p

the positive quantity, which is � �ã9x or � ÿã9x , according as ã9x is . 0 or , 0, the part
(v IX ) of the integral (t IX ) is

$ f x�������
ã9x 2

p ; (w IX )

and we have the expression � b

a
da

�1
0

dâpâã f a � $
P

x
f x�������
ã9x 2

p , (x IX )

the sum being extended to all those roots x of the equation (u IX ) which are . a but , b. If
any root of that equation should coincide with either of these limits a or b, the value of á in
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its neighbourhood would introduce, into the second member of the expression (x IX ), one or
other of the terms

$) f a

ã9a
,
ÿ$)) f a

ã9a
,
$)) f b

ã9b
,
ÿ$) f b

ã9b
; (y IX )

the ®rst to be taken when ãa � 0, ã9a . 0; the second when ãa � 0, ã9a , 0; the third when
ãb � 0, ã9b . 0; and the fourth when ãb � 0, ã9b , 0. If, then, we suppose for simplicity, that
neither ãa nor ãb vanishes, the expression (x IX ) conducts to the theorem

P
x f x � $ÿ1

� b

a
dá

�1
0

dâ pâã f á

�������
ã92
á

q
; (X)

and the sign of summation may be omitted, if the equation ãx � 0 have only one real root
between the limits a and b. For example, that one root itself may then be expressed as
follows:

x � $ÿ1

� b

a
dá

�1
0

dâ pâãá
�������
ã92
á

q
: (z IX )

The theorem (x) includes some analogous results which have been obtained by Cauchy, for
the case when p is a cosine.

28. It is also possible to extend the foregoing theorem in other ways; and especially by
applying similar reasonings to functions of several variables. Thus, if ã, ã(1) . . . be each a
function of several real variables á, á(1), . . . ; if p and n be still respectively functions of the
kinds supposed in former articles, while p(1), n(1), . . . are other functions of the same kinds;
then the theorem (w) may be extended as follows:� b

a
dá

� b(1)

a(1)

dá(1) . . . n1ã n
(1)
1ã(1) . . . fá,á(1),... � 0, (y)

the function f being ®nite for all values of the variables á, á(1), . . . , within the extent of the
integrations; and the theorem (x) may be thus extended:

P
f x,x (1),... � $ÿ1$(1)ÿ1 . . .

� b

a
dá

� b(1)

a(1)

dá(1) . . .

�1
0

dâ

�1
0

dâ(1) . . . pâãp
(1)
â(1)ã(1) . . .

. . . f á,á(1) , . . .
�����
l2
p

;

9>=>; (z)

in which, according to the analogy of the foregoing notation,

$(i) �
�1
ÿ1

dá

�1

0
dâ p(i)

âá ; (aX )

and l is the coef®cient which enters into the expression, supplied by the principles of the
transformation of multiple integrals,

ldá dá(1) . . . � dã dã(1) . . . ; (bX )

while the summation in the ®rst member is to be extended to all those values of x, x (1), . . .
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which, being respectively between the respective limits of integration relatively to the
variables á, á(1), . . . are values of those variables satisfying the system of equations

ãx,x (1) , . . . � 0, ã(1)
x,x (1) , . . .� 0, . . . : (cX )

And thus may other remarkable results of Cauchy be presented under a generalized form.
But the theory of such extensions appears likely to suggest itself easily enough to any one who
may have considered with attention the remarks already made; and it is time to conclude the
present paper by submitting a few general observations on the nature and the history of this
important branch of analysis.

Lagrange appears to have been the ®rst who was led (in connexion with the celebrated
problem of vibrating cords) to assign, as the result of a species of interpolation, an expression
for an arbitrary function, continuous or discontinuous in form, between any ®nite limits, by a
series of sines of multiples, in which the coef®cients are de®nite integrals. Analogous
expressions, for a particular class of rational and integral functions, were derived by Daniel
Bernouilli, through successive integrations, from the results of certain trigonometric
summations, which he had characterized in a former memoir as being incongruously true. No
farther step of importance towards the improvement of this theory seems to have been made,
till Fourier, in his researches on Heat, was led to the discovery of his well known theorem, by
which any arbitrary function of any real variable is expressed, between ®nite or in®nite limits,
by a double de®nite integral. Poisson and Cauchy have treated the same subject since, and
enriched it with new views and applications; and through the labours of these and, perhaps,
of other writers, the theory of the development or transformation of arbitrary functions,
through functions of determined forms, has become one of the most important and
interesting departments of modern algebra.

It must, however, be owned that some obscurity seems still to hang over the subject, and
that a farther examination of its principles may not be useless or unnecessary. The very
existence of such transformations as in this theory are sought for and obtained, appears at
®rst sight paradoxical; it is dif®cult at ®rst to conceive the possibility of expressing a perfectly
arbitrary function through any series of sines or cosines; the variable being thus made the
subject of known and series of sines or cosines; the variable being thus made the subject of
known and determined operations, whereas it had offered itself originally as the subject of
operations unknown and undetermined. And even after this ®rst feeling of paradox is
removed, or relieved, by the consideration that the number of the operations of known form
is in®nite, and that the operation of arbitrary form reappears in another part of the
expression, as performed on an auxiliary variable; it still requires attentive consideration to
see clearly how it is possible that none of the values of this new variable should have any
in¯uence on the ®nal result, except those which are extremely nearly equal to the variable
originally proposed. This latter dif®culty has not, perhaps, been removed to the complete
satisfaction of those who desire to examine the question with all the diligence its importance
deserves, by any of the published works upon the subject. A conviction, doubtless, may be
attained, that the results are true, but something is, perhaps, felt to be still wanting for the
full rigour of mathematical demonstration. Such has, at least, been the impression left on the
mind of the present writer, after an attentive study of the reasonings usually employed,
respecting the transformations of arbitrary functions.

627XXII . ON FLUCTUATING FUNCTIONS



Poisson, for example, in treating this subject, sets out, most commonly, with a series of
cosines of multiple arcs; and because the sum is generally indeterminate, when continued to
in®nity, he alters the series by multiplying each term by the corresponding power of an
auxiliary quantity which he assumes to be less than unity, in order that its powers may
diminish, and at last vanish; but, in order that the new series may tend inde®nitely to coincide
with the old one, he conceives, after effecting its summation, that the auxiliary quantity tends
to become unity. The limit thus obtained is generally zero, but becomes on the contrary
in®nite when the arc and its multiples vanish; from which it is inferred by Poisson, that if this
arc be the difference of two variables, an original and an auxiliary, and if the series be
multiplied by any arbitrary function of the latter variable, and integrated with resepct thereto,
the effect of all the values of that variable will disappear from the result, except the effect of
those which are extremely nearly equal to the variable originally proposed.

Poisson has made, with consummate skill, a great number of applications of this method;
yet it appears to present, on close consideration, some dif®culties of the kind above alluded
to. In fact, the introduction of the system of factors, which tend to vanish before the
integration, as their indices increase, but tend to unity, after the integration, for all ®nite
values of those indices, seems somewhat to change the nature of the question, by the
introduction of a foreign element. Nor is it perhaps manifest that the original series, of which
the sum is indeterminate, may be replaced by the convergent series with determined sum,
which results from multiplying its terms by the powers of a factor in®nitely little less than
unity; while it is held that to multiply by the powers of a factor in®nitely little greater than
unity would give an useless or even false result. Besides there is something unsatisfactory in
employing an apparently arbitrary contrivance for annulling the effect of those terms of the
proposed series which are situated at a great distance from the origin, but which do not
themselves originally tend to vanish as they become more distant therefrom. Nor is this
dif®culty entirely removed, when integration by parts is had recourse to, in order to show that
the effect of these distant terms is insensible in the ultimate result; because it then becomes
necessary to differentiate the arbitrary function; but to treat its differential coef®cient as
always ®nite, is to diminish the generality of the inquiry.

Many other processes and proofs are subject to similar or different dif®culties; but there is
one method of demonstration employed by Fourier, in his separate Treatise on Heat, which
has, in the opinion of the present writer, received less notice than it deserves, and of which it
is proper here to speak. The principle of the method here alluded to may be called the
Principle of Fluctuation, and is the same which was enunciated under that title in the remarks
pre®xed to this paper. In virtue of this principle (which may thus be considered as having
been indicated by Fourier, although not expressly stated by him), if any function, such as
the sine or cosine of an in®nite multiple of an arc, changes sign in®nitely often within a ®nite
extent of the variable on which it depends, and has for its mean value zero; and if this, which
may be called a ¯uctuating function, be multiplied by any arbitrary but ®nite function of the
same variable, and afterwards integrated between any ®nite limits; the integral of the product
will be zero, on account of the mutual destruction or neutralization of all its elements.

It follows immediately from this principle, that if the factor by which the ¯uctuating
function is multiplied, instead of remaining always ®nite, becomes in®nite between the limits
of integration, for one or more particular values of the variable on which it depends; it is then
only necessary to attend to values in the immediate neighbourhood of these, in order to
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obtain the value of the integral. And in this way Fourier has given what seems to be the most
satisfactory published proof, and (so to speak) the most natural explanation of the theorem
called by his name; since it exhibits the actual process, one might almost say the interior
mechanism, which, in the expression assigned by him, destroys the effect of all those values
of the auxiliary variable which are not required for the result. So clear, indeed, is this
conception, that it admits of being easily translated into geometrical constructions, which
have accordingly been used by Fourier for that purpose.

There are, however, some remaining dif®culties connected with this mode of demonstra-
tion, which may perhaps account for the circumstance that it seems never to be mentioned,
nor alluded to, in any of the historical notices which Poisson has given on the subject of
these transformations. For example, although Fourier, in the proof just referred to, of the
theorem called by his name, shows clearly that in integrating the product of an arbitrary but
®nite function, and the sine or cosine of an in®nite multiple, each successive positive portion
of the integral is destroyed by the negative portion which follows it, if in®nitely small
quantities be neglected, yet he omits to show that the in®nitely small outstanding difference
of values of these positive and negative portions, corresponding to the single period of the
trigonometric function introduced, is of the second order; and, therefore, a doubt may arise
whether the in®nite number of such in®nitely small periods, contained in any ®nite interval,
may not produce, by their accumulation, a ®nite result. It is also desirable to be able to state
the argument in the language of limits, rather than in that of in®nitesimals; and to exhibit, by
appropriate de®nitions and notations, what was evidently foreseen by Fourier, that the result
depends rather on the ¯uctuating than on the trigonometric character of the auxiliary function
employed.

The same view of the question had occurred to the present writer, before he was aware that
indications of it were to be found among the published works of Fourier; and he still
conceives that the details of the demonstration to which he was thus led may be not devoid of
interest and utility, as tending to give greater rigour and clearness to the proof and the
conception of a widely applicable and highly remarkable theorem.

Yet, if he did not suppose that the present paper contains something more than a mere
expansion or improvement of a known proof of a known result, the Author would scarcely
have ventured to offer it to the Transactions� of the Royal Irish Academy. It aims not merely
to give a more perfectly satisfactory demonstration of Fourier's celebrated theorem than any
which the writer has elsewhere seen, but also to present that theorem, and many others
analogous thereto, under a greatly generalized form, deduced from the principle of ¯uctua-
tion. Functions more general than sines or cosines, yet having some correspondent proper-
ties, are introduced throughout; and constants, distinct from the ratio of the circumference
to the diameter of a circle, present themselves in connexion therewith. And thus, if the

� The Author is desirous to acknowledge, that since the time of his ®rst communicating the present
paper to the Royal Irish Academy, in June, 1840, he has had an opportunity of entirely rewriting it, and
that the last sheet is only now passing through the press, in June, 1842. Yet it may be proper to mention
also that the theorems (A) (B) (C), which suf®ciently express the character of the communication, were
printed (with some slight differences of notation) in the year 1840,y as part of the Proceedings of the
Academy for the date pre®xed to this paper.
y [See this volume, p. 583.]
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intention of the writer have been in any degree accomplished, it will have been shown,
according to the opinion expressed in the remarks pre®xed to this paper, that the develop-
ment of the important principle above referred to gives not only a new clearness, but also (in
some respects) a new extension, to this department of science.
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XXIII .

SUPPLEMENTARY REMARKS ON FLUCTUATING FUNCTIONS (1842)

[Communicated February 28, 1842]
[Proceedings of the Royal Irish Academy 2, 232±238 (1844).

(Identical with pp. 317±321 of No. 4.)]



XXIV.

NEW DEMONSTRATION OF FOURIER'S THEOREM (1841)

[Communicated June 28, 1841]
[Proceedings of the Royal Irish Academy 2, 129 (1844).]

The President communicated a new demonstration of Fourier's theorem.



XXV.

ON CERTAIN DISCONTINUOUS INTEGRALS CONNECTED WITH THE

DEVELOPMENT OF THE RADICAL WHICH REPRESENTS THE

RECIPROCAL DISTANCE BETWEEN TWO POINTS� (1842)

[Philosophical Magazine (3S) 20, 288±294 (1842).]

1. It is well known that the radical

(1ÿ 2xp � x2)ÿ
1
2, (1)

in which x and 1 may represent the radii vectors of two points, while p represents the cosine
of the angle between those radii, and the radical represents therefore the reciprocal of the
distance of the one point from the other, may be developed in a series of the form

P0 � P1x � P2x2 � . . . � Pn x n � . . . ; (2)

the coef®cients Pn being functions of p, and possessing many known properties, among
which we shall here employ the following only,

Pn � [0]ÿn d

dp

� �n p2 ÿ 1

2

� �n

; (3)

the known notation of factorials being here used, according to which

[0]ÿn � 1

1
:
1

2
:
1

3
. . .

1

n
: (4)

It is proposed to express the sum of the ®rst n terms of the development (2.), which may
be thus denoted, Pnÿ1

(n)0Pn xn � P0 � P1x � P2x2 � . . . � Pnÿ1x nÿ1: (5)

2. In general, by Taylor's theorem,

f ( p � q) �P1(n)0[0]ÿn qn d

dp

� �n

f ( p); (6)

hence, by the property (3.), Pn is the coef®cient of qn in the development of

( p � q)2 ÿ 1

2

� �n

; (7)

it is therefore also the coef®cient of q 0 in the development of

� Communicated by the Author.



p2 ÿ 1

2q
� p � q

2

 !n

: (8)

If then we make, for abridgment,

W � p � p2

2
cos è�

�������
ÿ1
p

1ÿ p2

2

� �
sin è, (9)

we shall have the following expression, which perhaps is new, for Pn:

Pn � 1

2ð

�ð
ÿð

Wn dè; (10)

and hence, immediately, the required sum (5.) may be expressed as follows:Pnÿ1
(n)0Pn xn � 1

2ð

�ð
ÿð

dè
1ÿ Wn xn

1ÿ Wx
; (11)

in which it is to be observed that x may be any quantity, real or imaginary.

3. We have therefore, rigorously, for the sum of the n ®rst terms of the series

P0 � P1 � P2 � . . . , (12)

the expression Pnÿ1
(n)0Pn � 1

2ð

�ð
ÿð

dè
1ÿ Wn

1ÿ W
; (13)

of which we propose to consider now the part independent of n, namely,

F(p) � 1

2ð

�ð
ÿð

dè

1ÿ W
, (14)

and to examine the form of this function F of p, at least between the limits p � ÿ1, p � 1.

4. A little attention shows that the denominator 1ÿ W may be decomposed into factors, as
follows:

1ÿ W � ÿ1
2(á� e è

�����ÿ1
p

)(1ÿ âeÿè
�����ÿ1
p

); (15)

in which,

á � 2s(1ÿ s), â � 2s(1� s), (16)

and

p � 1ÿ 2s2; (17)

so that s may be supposed not to exceed the limits 0 and 1, since p is supposed not to exceed
the limits ÿ1 and 1. Hence

1

1ÿ W
� ÿ2(á� eÿè

�������ÿ1
p

)(1ÿ âe è
�������ÿ1
p

)

(1� 2á cos è� á2)(1ÿ 2â cos è� â2)
; (18)

of which the real part may be put under the form
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ë

1� 2á cos è� á2
� ì

1ÿ 2â cos è� â2
, (19)

if ë and ì be so chosen as to satisfy the conditions

ë(1� â2)� ì(1� á2) � 2(âÿ á), (20)

ëâÿ ìá � 1ÿ áâ, (21)

which give

ë � 1ÿ á2

á� â
, ì � â2 ÿ 1

á� â
: (22)

The imaginary part of the expression (18) changes sign with è, and disappears in the
integral (14.); that integral therefore reduces itself to the sum of the two following:

F(p) � 1

4sð

�ð
0

(1ÿ á2)dè

1� 2á cos è� á2
� 1

4sð

�
0

(â2 ÿ 1)dè

1ÿ 2â cos è� â2
; (23)

in which, by (16), á� â has been changed to 4s. But, in general if a2 . b2,�ð
0

dè

a � b cos è
� ð����������������

a2 ÿ b2
p , (24)

the radical being a positive quantity if a be such; therefore, in the formula (23),�ð
0

(1ÿ á2)dè

1� 2á cos è� á2
� ð, (25)

because, by (16.), á cannot exceed the limits 0 and 1
2, s being supposed not to exceed the

limits 0 and 1, so that 1ÿ á2 is positive. On the other hand, â varies from 0 to 4, while s varies
from 0 to 1; and â2 ÿ 1 will be positive or negative, according as s is greater or less than the
positive root of the equation

s2 � s � 1
2: (26)

Hence, in (23), we must make�ð
0

(â2 ÿ 1)dè

1ÿ 2â cos è� â2
� ð, or � ÿð, (27)

according as

s . or ,

p
3ÿ 1

2
; (28)

and thus we ®nd, under the same alternative,

F(p) � 1

4s
(1� 1), (29)

that is,

F(p) � 1

2s
, or � 0: (30)

But, by (17),
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s �
������������
1ÿ p

2

r
; (31)

the function F(p), or the de®nite integral (14), receives therefore a sudden change of form
when p, in varying from ÿ1 to 1, passes through the critical value

p � p3ÿ 1; (32)

in such a manner that we have

F(p) � (2ÿ 2 p)ÿ
1
2, if p ,

p
3ÿ 1; (33)

and, on the other hand,

F(p) � 0, if p .
p

3ÿ 1: (34)

For the critical value (32) itself, we have

s �
p

3ÿ 1

2
, á � 2

p
3ÿ 3, â � 1, (35)

and the real part of (18) becomes

1ÿ á

1� 2á cos è� á2
; (36)

multiplying therefore by dè, integrating from è � 0 to è � ð, and dividing by ð, we ®nd, by
(25) and (14), this formula instead of (29),

F(p) � 1

1� á
� 1

4s
, (37)

that is,

F(p) � 1
2(2ÿ 2 p)ÿ

1
2, if p � p3ÿ 1: (38)

The value of the discontinuous function F is therefore, in this case, equal to the semisum
of the two different values which that function receives, immediately before and after the
variable p attains its critical value, as usually happens in other similar cases of discontinuity.

5. As veri®cations of the results (33), (34), we may consider the particular values p � 0,
p � 1, which ought to give

F(0) � 2ÿ
1
2, F(1) � 0: (39)

Accordingly, when p � 0, the de®nitions (9) and (14) give

W �
�������
ÿ1
p

sin è, (40)

F(0) � 1

2ð

�ð
ÿð

dè

1ÿ �������ÿ1
p

sin è
� 1

ð

�ð
0

dè

1� sin è2
; (41)

which easily gives, by (24),

F(0) � 2

ð

�ð
0

dè

3ÿ cos 2è
� 1

ð

�2ð

0

dè

3ÿ cos è
� 2ÿ

1
2: (42)
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And when p � 1, we have

1ÿ W � ÿ1
2(cos è�

�������
ÿ1
p

sin è), (43)

1

2ð

dè

1ÿ W
� ÿðÿ1(cos èÿ

�������
ÿ1
p

sin è)dè, (44)

of which the integral, taken from è � ÿð to è � ð, is F(1) � 0.

6. Let us consider now this other integral,

G(p) � 1

2ð

�ð
ÿð

Wn dè

Wÿ 1
: (45)

The expression (13) gives Pnÿ1
(n)0Pn � F(p)� G(p); (46)

therefore, by (34), we shall have

G( p) �Pnÿ1
(n)0Pn, if p .

p
3ÿ 1: (47)

For instance, let p � 1; then multiplying the expression (44) by

ÿWn � ÿ(1� 1
2e è

�����ÿ1
p

)n, (48)

the only term which does not vanish when integrated is 1
2nðÿ1dè, and this term gives the

result

G(1) � n, (49)

which evidently agrees with the formula (47), because it is well known that

Pn � 1 when p � 1, (50)

the series (2) becoming then the development of (1ÿ x)ÿ1.

7. On the other hand, let p be ,
p

3ÿ 1; then, observing that, by (33),

F(p) � (2ÿ 2 p)ÿ
1
2 �P1(n)0Pn , (51)

we ®nd, by the relation (46) between the functions F and G,

G(p) � ÿP1(n)nPn

� ÿ(Pn � Pn�1 � Pn�2 � . . .):

)
(52)

For instance, let p � 0; then, by (40) and (45),

G(0) � ÿ(
�������ÿ1
p

)n

2ð

�ð
ÿð

dè(sin è)n

1ÿ �������ÿ1
p

sin è
; (53)

that is,

G(0) � (ÿ1)i�1

ð

�ð
0

dè sin è2i

1� sinè2
; (54)
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if n be either � 2i ÿ 1, or � 2i. Now, when p � 0, Pn is the coef®cient of xn in the
development of (1� x2)ÿ

1
2; therefore,

P2iÿ1 � 0, when p � 0, (55)

and, in the notation of factorials,

P2i � [0]ÿi[ÿ1
2]

i � (ÿ1)iðÿ1

�ð
0

dè sin è2i ; (56)

so that, by (54),

G(0) � ÿ(P2i � P2i�2 � . . .), (57)

when p � 0, and when n is either 2i or 2i ÿ 1.

8. For the critical value p � p3ÿ 1, we have, by (38),

F(p) � 1
2

P1
(n)0Pn; (58)

therefore, for the same value of p, by (46),

G( p) � 1
2

Pnÿ1
(n)0Pn ÿ 1

2

P1
(n)nPn

� 1
2(P0 � P1 � . . . � Pnÿ1 ÿ Pn ÿ Pn�1 ÿ . . .); (59)

so that the discontinuous function G, like F, acquires, for the critical value of p, a value which
is the semisum of those which it receives immediately before and afterwards.

9. We have seen that the sum of these two discontinuous integrals, F and G, is always equal
to the sum of the ®rst n terms of the series (12), so that

F(p)� G(p) � P0 � P1 � . . . � Pnÿ1; (60)

and it may not be irrelevant to remark that this sum may be developed under this other form:

1

2ð

�ð
ÿð

dè
Wn ÿ 1

Wÿ 1
�Pn

(k)1[n]k[0]ÿkQ kÿ1; (61)

in which the factorial expression [n]k[0]ÿk denotes the coef®cient of xk in the development
of (1� x)n; and

Q k � 1

2ð

�ð
ÿð

dè(Wÿ 1)k: (62)

Thus

P0 � Q0;

P0 � P1 � 2Q0 �Q1;

P0 � P1 � P2 � 3Q0 � 3Q1 �Q2;

&c:;

9>>>>>=>>>>>;
(63)

and consequently
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P0 � Q0;

P1 � Q0 �Q1;

P2 � Q0 � 2Q1 �Q2;

&c:;

9>>>>>=>>>>>;
(64)

which last expressions, indeed, follow immediately from the formula (10).

10. With respect to the calculation of Q0, Q1, &c. as functions of p, it may be noted, in
conclusion, that, by (15) and (62), Q k is the term independent of è in the development of

2ÿk(á� e è
�������
ÿ1
p

)k(1ÿ âeÿè
�������
ÿ1
p

)k ; (65)

thus

Q0 � 1,

Q1 � 2ÿ1(áÿ â),

Q2 � 2ÿ2(á2 ÿ 4áâ � â2),

Q3 � 2ÿ3(á3 ÿ 9á2â� 9áâ2 ÿ â3),

&c:

9>>>>>>>>=>>>>>>>>;
(66)

in which the law of formation is evident. It remains to substitute for á, â, their values (16) as
functions of s, and then to eliminate s2 by (17); and thus we ®nd, for example,

Q1 � p ÿ 1;

Q2 � 1
2(p ÿ 1)(3p ÿ 1);

Q3 � 1
2(p ÿ 1)2(5p � 1);

Q4 � 1
8(p ÿ 1)2(35p2 ÿ 10p ÿ 13):

9>>>>>=>>>>>;
(67)

This, then, is at least one way, though perhaps not the easiest, of computing the initial
values of the successive differences of the function Pn, that is, the quantities

Q0 � Ä0P0 � P0,

Q1 � Ä1P0 � P1 ÿ P0,

Q2 � Ä2P0 � P2 ÿ 2P1 � P0,

&c:

9>>>>>=>>>>>;
(68)

And we see that it is permitted to express generally those differences, as follows:

ÄkP0 � skPk
(i)0(ÿ1)i([k]i[0]ÿi)2(1� s)i(1ÿ s)kÿi ; (69)

in which

s2 � 1
2(1ÿ p): (70)

Observatory of Trinity College, Dublin,
Feb. 12, 1842.
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XXVI.

ON A MODE OF EXPRESSING FLUCTUATING OR ARBITRARY

FUNCTIONS BY MATHEMATICAL FORMULá (1842)

[British Association Report 1842, Part II., p. 10.]



XXVII .

ON AN EXPRESSION FOR THE NUMBERS OF BERNOULLI BY MEANS

OF A DEFINITE INTEGRAL, AND ON SOME CONNECTED PROCESSES

OF SUMMATION AND INTEGRATION (1843)

[Philosophical Magazine (3S) 13, 360±367 (1843).]

The following analysis, extracted from a paper which has been in part communicated to the
Royal Irish Academy, but has not yet been printed, may interest some readers of the
Philosophical Magazine.

1. Let us consider the function of two real variables, m and n, represented by the de®nite
integral

ym,n �
�1

0
dx

sin x

x

� �m

cos nx; (1)

in which we shall suppose that m is greater than zero; and which gives evidently the general
relation

ym,ÿn � ym,n :

By changing m to m � 1; integrating ®rst the factor xÿmÿ1dx, and observing that
xÿm sin x m�1 cos nx vanishes both when x � 0, and when x � 1; and then putting the

differential coef®cient
d

dx
(sin x m�1 cos nx) under the form

1
2 sin xmf(m � 1� n)cos(nx � x)� (m � 1ÿ n)cos(nx ÿ x)g;

we are conducted to the following equation, in ®nite and partial differences,

2mym�1,n � (m � 1� n) ym,n�1 � (m � 1ÿ n) ym,nÿ1; (2)

and if we suppose that the difference between the two variables on which y depends is an
even integer number, this equation takes the form

mym�1,m�1ÿ2k � (m � 1ÿ k) ym,m�2ÿ2k � kym,mÿ2k : (3)

The same equation in differences (2) shows easily that

ym�1,n � 0, when n � or . m � 1,

if ym,nÿ1 � 0, when n ÿ 1 . m;

but, by a well-known theorem, which in the present notation becomes

y1,0 � ð

2
, (4)



it is easy to prove, not only that

y1,1 � y1,ÿ1 � ð

4
, (5)

but also that

y1,n � 0, if n2 . 1; (6)

we have therefore, generally, for all whole values of m . 1, and for all real values of n,

ym,n � 0, unless n2 , m2: (7)

2. If then we make

Tm �
P

ym,mÿ2k(ÿt)k , (8)

the sign
P

indicating a summation which may be extended from as large a negative to as
large a positive whole value of k as we think ®t, but which extends at least from k � 0 to
k � m, m being here a positive whole number; this sum will in general (namely when m . 1)
include only m ÿ 1 terms different from 0, namely those which correspond to k � 1, 2,
. . . m ÿ 1; but in the particular case m � 1, the sum will have two such terms, instead of none,
namely those answering to k � 0 and k � 1, so that we shall have

T1 � y1,1 ÿ y1,ÿ1 t � ð

4
(1ÿ t): (9)

Multiplying the ®rst member of the equation in differences (3) by (ÿt)k , and summing with
respect to k, we obtain mTm�1, m being here any whole number . 0. Multiplying and
summing in like manner the second member of the same equation (3), the term mym,m�2ÿ2k

of that member gives ÿmtTm , because we may change k to k � 1 before effecting the

inde®nite summation; kym,mÿ2k gives t
d

dt
Tm ; and (1ÿ k) ym,m�2ÿ2k gives t2 d

dt
Tm ; but

ÿmt:Tm � (t � t 2)
d

dt
Tm � (1� t)m�1 td

dt
(1� t)ÿmTm ;

therefore

m(1� t)ÿmÿ1Tm�1 � d

d log t
(1� t)ÿmTm : (10)

This equation in mixed differences gives, by (9),

Tm � ð

4

(1� t)m

1:2:3 . . . (m ÿ 1)

d

d log t

� �mÿ11ÿ t

1� t
; (11)

the factorial denominator being considered as � 1, when m � 1, as well as when m � 2. If

m . 1, we may change
1ÿ t

1� t
to

2

1� t
, from which it only differs by a constant; and then by

changing also t to e h , and multiplying by
2

ð
, we obtain the formula:

(e h � 1)m

1:2:3 . . . (m ÿ 1)

d

dh

� �mÿ1

(e h � 1)ÿ1 � 2

ð

Pmÿ1
(k)1

�1
0

dx
sin x

x

� �m

(ÿe h)k cos(mx ÿ 2kx); (12)
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which conducts to many interesting consequences. A few of them shall be here mentioned.

3. The summation indicated in the second member of this formula can easily be effected in
general; but we shall here consider only the two cases in which m is an odd or an even whole
number greater than unity, while h becomes � 0 after the m ÿ 1 differentiations of
(e h � 1)ÿ1, which are directed in the ®rst member.

When m is odd (and greater than one), each power, such as (ÿe h)k in the second member,
is accompanied by another, namely (ÿe h)mÿk , which is multiplied by the cosine of the same
multiple of x; and these two powers destroy each other, when added, if h � 0: we arrive
therefore in this manner at the known result, that

d

dh

� �2p

(e h � 1)ÿ1 � 0, when h � 0, if p . 0: (13)

On the contrary, when m is even, and h � 0, the powers (ÿe h)k and (ÿch)mÿk are equal, and
their sum is double of either; and because

(ÿ1) pf1ÿ 2 cos 2x � 2 cos 4x ÿ � � � � (ÿ1)pÿ12 cos(2px ÿ 2x)g � ÿ cos(2px ÿ x)

cos x
,

by making m � 2p we arrive at this other result, which perhaps is new, that (if p . 0 and
h � 0)

d

dh

� �2pÿ1

(e h � 1)ÿ1 � ÿ1:2:3 . . . (2p ÿ 1)

22pÿ1ð

�1
0

dx
sin x

x

� �2p
cos(2px ÿ x)

cos x
: (14)

Developing therefore (e h � 1)ÿ1 according to ascending powers of h; subtracting the develop-
ment from 1

2, multiplying by h, and changing h to 2h; we obtain

h
e h ÿ eÿh

e h � eÿh
� 2

ð

�1
0

dx

cos x

P1
(p)1

h sin x

x

� �2p

cos(2px ÿ x); (15)

that is, effecting the summation, and dividing by h2,

1

h

e h ÿ eÿh

e h � eÿh
� 2

ð

�1
0

dxxÿ2 sin x2(1ÿ h2xÿ2 sin x2)

1ÿ 2h2xÿ2 sin x2 cos 2x � h4xÿ4 sin x4
; (16)

or, integrating both members with respect to h,� h

0

dh

h

e h ÿ eÿh

e h � eÿh
� 1

ð

�1
0

dx

x
tan x log

r
1� hxÿ1 sin 2x � h2xÿ2 sin x2

1ÿ hxÿ1 sin 2x � h2xÿ2 sin x2
: (17)

It might seem, at ®rst sight, from this equation, that the integral in the ®rst member
ought to vanish, when taken from h � 0 to h � 1; because, if we set about to develope the
second member, according to descending powers of h, we see that the coef®cient of h0

vanishes; but when we ®nd that, on the same plan, the coef®cient of hÿ1 is in®nite, being

� 2

ð

�1
0

dx, we perceive that this mode of development is here inappropriate: and in fact, it is

clear that the ®rst member of the formula (17) increases continually with h, while h increases
from 0.
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4. Again, since

ÿh

e h � 1
� ø(2h)ÿ ø(h), if ø(h) � h

e h ÿ 1
, (18)

we shall have (for p . 0) the expression

A2p � 21ÿ2pðÿ1

22p ÿ 1

�1
0

dx
sin x

x

� �2p
cos(2px ÿ x)

cos x
, (19)

if, according to a known form of development, which the foregoing reasonings would suf®ce
to justify, we write

h

e h ÿ 1
� h

2
� 1� A2 h2 � A4 h4 � A6 h6 � &c: (20)

If p be a large number, the rapid and repeated changes of sign of the numerator of the

fraction
cos(2px ÿ x)

cos x
produce nearly a mutual destruction of the successive elements of the

integral (19), except in the neighbourhood of those values of x which cause the denominator

of the same fraction to vanish; namely those values which are odd positive multiples of
ð

2
(the

integral itself being not extended so as to include any negative values of x). Making therefore

x � (2i ÿ 1)
ð

2
� ù, (21)

in which i is a whole number . 0, and ù is positive or negative, but nearly equal to 0; we shall
have

cos(2px ÿ x) � (ÿ1)p�iÿ1 sin(2pùÿ ù),

exactly, and cos x � (ÿ1)iù, nearly; changing also
sin x

x

� �2p

to the value which it has when

ù � 0, namely
2

ð

� �2p

(2i ÿ 1)ÿ2p ; and observing that�ù
ÿù

dù
sin(2pùÿ ù)

ù
� ð, nearly, (22)

even though the extreme values of ù may be small, if p be very large; we ®nd that the part of
A2p , corresponding to any one value of the number i, is, at least nearly, represented by the
expression

(ÿ1)pÿ12(2i ÿ 1)ÿ2p

(22p ÿ 1)ð2p
; (23)

which is now to be summed, with reference to i, from i � 1 to i � 1. But this summation
gives rigorously the relationP1

(i)1(2i ÿ 1)ÿ2p � (1ÿ 2ÿ2p)
P1

(i)1 iÿ2p ; (24)

we are conducted, therefore, to the expression

A2p � (ÿ1)pÿ12(2ð)ÿ2pP1
(i)1 iÿ2p , (25)

as at least approximately true, when the number p is large. But in fact the expression (25) is
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rigorous for all whole values of p greater than 0; as we shall see by deducing from it an
analogous expression for a Bernoullian number, and comparing this with known results.

5. The development

1

e h ÿ 1
� 1

2
� hÿ1 � B1

h

1:2
ÿ B3

h3

1:2:3:4
� &c:, (26)

being compared with that marked (20), gives, for the pth Bernoullian number, the known
expression

B2pÿ1 � (ÿ1)pÿ11:2:3:4 . . . 2pA2p ; (27)

and therefore, rigorously, by the equation (19) of the present paper,

B2pÿ1 � (ÿ1)pÿ11:2 . . . 2p

22pÿ1(22p ÿ 1)ð

�1
0

dx
sin x

x

� �2p
cos(2px ÿ x)

cos x
; (28)

a formula which is believed to be new. Treating the de®nite integral which it involves by the
process just now used, we necessarily obtain the same result as if we combine at once the
equations (25) and (27). We ®nd, therefore, in this manner, that the equation

22pÿ1ð2pB2pÿ1

1:2:3:4 . . . 2p
�P1(i)1 iÿ2p , (29)

(in which, by the notation here employed,P1
(i)1 iÿ2p � 1ÿ2p � 2ÿ2p � 3ÿ2p � &c:)

is at least nearly true, when p is a large number; but Euler has shown, in his Institutiones Calculi
Differentialis (vol. i. cap. v. p. 339. ed. 1787)�, that this equation (29) is rigorous, each member
being the coef®cient of u2p in the development of 1

2(1ÿ ðu cot ðu). [See also Professor De
Morgan's Treatise on the Diff. and Int. Calc., `Library of Useful Knowledge,' part xix. p.
581.]y. The analysis of the present paper is therefore not only veri®ed generally, but also the
modi®cations which were made in the form of that de®nite integral which entered into our
rigorous expressions (19) and (28) for A2p and B2pÿ1, by the process of the last article, (on
the ground that the parts omitted or introduced thereby must at least nearly destroy each
other, through what may be called the ``principle of ¯uctuation,'') are now seen to have
produced no ultimate error at all, their mutual compensation being perfect; a result which
may tend to give increased con®dence in applying a similar process of approximation, or
transformation, to the treatment of other similar integrals; although the logic of this process
may deserve to be more closely scrutinized. Some assistance towards such a scrutiny may be
derived from the essay on ``Fluctuating Functions,'' which has been published by the present
writer in the second part of the nineteenth volume of the Transactions of the Royal Irish
Academy.{

� [See Euler, L., Opera Omnia, Series 1, Vol. 10, p. 327, Leipzig and Berlin: 1913.]
y [De Morgan, A., The differential and integral calculus, London: 1842.]
{ [See this volume, p. 585.]
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6. It may be worth while to notice, in conclusion, that the property marked (7) of the

de®nite integral (1), enables us to change
cos(2px ÿ x)

cos x
to sin 2px tan x, in the equations

(14), (15), (19), (28); so that the pth Bernoullian number may rigorously be expressed as
follows:-

B2pÿ1 � (ÿ1)pÿ1:1:2 . . . 2p

22pÿ1(22p ÿ 1)ð

�1
0

dx
sin x

x

� �2p

sin 2px tan x; (30)

under which form the preceding deduction of its transformation (29) admits of being slightly
simpli®ed. The same modi®cation of the foregoing expressions conducts easily to the
equation

log
e h � eÿh

2
� 1

ð

�1
0

dx tan x tanÿ1 h2 sin x2 sin 2x

x2 ÿ h2 sin x2 cos 2x
; (31)

in which tanÿ1 is a characteristic equivalent to arc tang., and which may be made an
expression for log sec x, by merely changing the sign of h2 in the last denominator; and from
this equation (31) it would be easy to return to an expression for the coef®cients in the

development of
e h ÿ eÿh

e h � eÿh
, or in that of tan h, and therefore to the numbers of Bernoulli.

Those numbers might thus be deduced from the following very simple equation:

ð log sec h �
�1

0
dx y tan x; (32)

in which y is connected with x and h by the relation

sin y

sin(2x ÿ y)
� h sin x

x

� �2

: (33)

Observatory of Trinity College, Dublin,
October 6, 1843.
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XXVIII .

ON THE INTEGRATIONS OF CERTAIN EQUATIONS (1854)

[Communicated February 27, 1854]
[Proceedings of the Royal Irish Academy 6, 62±63 (1858).]

Rev. Dr. Graves read a note from Sir W. R. Hamilton, in which he stated that he had lately
arrived at a variety of results respecting the integrations of certain equations, which might not
be unworthy of the acceptance of the Academy, and the investigation of which had been
suggested to him by Mr. Carmichael's� printed Paper, and by a manuscript which he had lent
Sir W. Hamilton, who writes, ± ``In our conclusions we do not quite agree, but I am happy to
acknowledge my obligations to his writings for the suggestions above alluded to, as I shall
hereafter more fully express.

``So long ago as 1846, I communicated to the Royal Irish Academy a transformation which
may be written thus (see the Proceedings for the July of that year)y:

D2
x � D2

y � D2
z � ÿ(iDx � jDy � kDz)

2; (1)

and which was obviously connected with the celebrated equation of Laplace.
``But it had quite escaped my notice that the principles of quaternions allow also this other

transformation, which Mr. Carmichael was the ®rst to point out:

D2
z � D2

x � D2
y � (Dz ÿ iDx ÿ jDy)(Dz � iDx � jDy): (2)

And therefore I had, of course, not seen, what Mr. Carmichael has since shown, that the
integration of Laplace's equation of the second order may be made to depend on the
integrations of two linear and conjugate equations, of which one is

(Dz ÿ iDx ÿ jDy)V � 0: (3)

``I am disposed, for the sake of reference, to call this `Carmichael's Equation;' and have had
the pleasure of recently ®nding its integral, under a form, or rather forms, so general as to
extend even to biquaternions.

``One of those forms is the following:{

Vxyz � e z(iDx� jD y)V xy0: (4)

� [Robert Bell Carmichael, 1828±1861, Fellow of Trinity College, Dublin.]
y [See Vol. III, pp. 376±7.]
{ ``Note, added during printing.ÐSince writing the above, I have convinced myself that Mr. Carmichael

had been in full possession of the exponential form of the integral, and probably also of my chief
transformations thereof; although he seems to have chosen to put forward more prominently certain
other forms, to which I have found objections, arising out of the non-commutative character of the
symbols ijk as factors, and on which forms I believe that he does not now insist.ÐW. R. H.''



``Another is

Vxyz � (Dz � iDx � jDy)

� z

0
cosfz(D2

x � D2
y)

1
2gV xy0dz; (5)

where V xy0 is generally an initial biquaternion; and where the single de®nite integral admits of
being usefully put under the form of a double de®nite integral, exactly analogous to, and (when
we proceed to Laplace's equation) reproducing, a well known expression of Poisson's, to
which Mr. Carmichael has referred.

``These specimens may serve to show to the Academy that I have been aiming to collect
materials for future communications to their Transactions.''
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XXIX.

ON THE SOLUTION OF THE EQUATION OF LAPLACE'S

FUNCTIONS (1855)

[Communicated February 26, 1855]
[Proceedings of the Royal Irish Academy 6, 181±185 (1858).]

Rev. Professor Graves communicated the following extract from a letter addressed to him
(under date of January 26th, 1855) by Sir William R. Hamilton:-

``My dear Graves, ± You may like, perhaps, to see a way in which I have to-day, for my own
satisfaction, con®rmed (not that they required con®rmation) some of the results announced
by you to the Academy on Monday evening last.

``Let us then consider the function (suggested by you),P
il jmkn � (l , m, n)il jmkn; (1)

where l, m, n are positive and integer exponents (0 included); the summation
P

refers to all
the possible arrangements of the l � m � n factors, whereof the number is

N l ,m,n � (l � m � n)!

l !m!n!
; (2)

each of these N arrangements gives (by the rules of ijk) a product � �1:il jmkn ; and the sum
of all these positive or negative unit-coef®cients, �1, thus obtained, is the numerical coef®-
cient denoted by (l , m, n).

``Since each arrangement must have i or j or k to the left, we may write,P
il jmkn � i

P
i lÿ1 jmkn � j

P
il j mÿ1 kn � k

P
il jmk nÿ1; (3)

and it is easy to see that the coef®cient (l , m, n), or the sum
P

(�1), vanishes, if more than one
of the exponents, l, m, n, be odd. Assume, therefore, as a new notation,

(2ë, 2ì, 2í) � fë, ì, íg; (4)

which will give, by (3), and by the principle last mentioned respecting odd exponents,

(2ë� 1, 2ì, 2í) � fë, ì, íg;
(2ëÿ 1, 2ì, 2í) � fëÿ 1, ì, íg:

(5)

We shall then have, by the mere notation,P
i2ë j2ìk2í � fë, ì, ígi2ë j2ìk2í; (6)

and, by treating this equation on the plan of (3),

fë, ì, íg � fëÿ 1, ì, íg � fë, ìÿ 1, íg � fë, ì, íÿ 1g: (7)



By a precisely similar reasoning, attending only to j and k, or making ë � 0, we have an
expression of the form, P

j2ìk2í � fì, íg j2ìk2í, (8)

where the coef®cients fì, ígmust satisfy the analogous equation in differences,

fì, íg � fìÿ 1, íg � fì, íÿ 1g, (9)

together with the initial conditions,

fì, 0g � 1, f0, íg � 1: (10)

Hence, it is easy to infer that

fì, íg � (ì� í)!

ì!í!
; (11)

one way of obtaining which result is, to observe that the generating function has the form,Pfì, ígu ìví � (1ÿ u ÿ v)ÿ1: (12)

In like manner, if we combine the equation in differences (7), with the initial conditions
derived from the foregoing solution of a less complex problem, namely, with

f0, ì, íg � fì, íg, fë, 0, íg � fë, íg, fë, ì, 0g � fë, ìg, (13)

when the second members are interpreted as in (11), we ®nd that the (slightly) more
complex generating function sought is,Pfë, ì, ígt ëu ìví � (1ÿ t ÿ u ÿ v)ÿ1; (14)

and therefore that the required form of the coef®cient is,

fë, ì, íg � (ë� ì� í)!

ë!ì!í!
; (15)

as, I have no doubt, you had determined it to be.
``With the same signi®cation of f g, we have, by (2),

N l ,m,n � fl , m, ng; (16)

therefore, dividing
P

by N, or the sum by the number, we obtain, as an expression for what
you happily call the mean value of the product i2ë j2ìk2í, the following:

Mi2ë j2ìk2í � fë, ì, íg
f2ë, 2ì, 2íg i2ë j2ìk2í; (17)

or, substituting for f g its value (15), and writing for abridgment

k � ë� ì� í, (18)

Mi2ë j2ìk2í � (ÿ1)kk!(2ë)!(2ì)!(2í)!

(2k)! ë! ì! í!
: (19)

In like manner,

650 XXIX. SOLUTION OF THE EQUATION OF LAPLACE'S FUNCTIONS



Mi2ë�1 j2ìk2í � i(ÿ1)kk!(2ë� 1)!(2ì)!(2í)!

(2k� 1)! ë! ì! í!
: (20)

``The whole theory of what you call the mean values, of products of positive and integer
powers of ijk, being contained in the foregoing remarks, let us next apply it to the determina-
tion of the mean value of a function of x � iw, y � jw, z � kw; or, in other words, let us
investigate the equivalent for your

Mf (x � iw, y � jw, z � kw): (21)

by developing this function f according to ascending powers of w, and by substituting, for
every product of powers of ijk, its mean value determined as above. Writing, as you propose,

d

dw
� D,

d

dx
� D1,

d

dy
� D2,

d

dz
� D3, (22)

we are to calculate and to sum the general term of (21), namely,

Mil jmkn 3
w l�m�n

l !m!n!
D l

1 D m
2 D n

3 f (x, y, z): (23)

One only of the exponents, l, m, n, can usefully be odd, by properties of the mean function,
which have been already stated. If all be even, and if we make

l � 2ë, m � 2ì, n � 2í, (24)

the corresponding part of the general term of Mf, namely, the part independent of ijk, is by
(15), (18), (19),

(ÿw2)k

(2k)!
fë, ì, ígD2ë

1 D2ì
2 D2í

3 f (x, y, z); (25)

whereof the sum, relatively to ë, ì, í, when their sum k is given, is,

(ÿw2)k

(2k)!
(D2

1 � D3
2 � D2

3)k f (x, y, z) � (w/)2k

(2k)!
f (x, y, z), (26)

if my signi®cation of / be adopted, so that

v � iD1 � jD2 � kD3; (27)

and another summation, performed on (26), with respect to k, gives, for the part of Mf
which is independent of ijk, the expression,

1
2(e w/ � eÿw/) f (x, y, z): (28)

``Again, by supposing, in (23),

l � 2ë� 1, m � 2ì, n � 2í, (29)

and by attending to (20), we obtain the term,

wiD1(ÿw2)

(2k� 1)!
fë, ì, ígD2ë

1 D2ì
2 D2í

3 f (x, y, z): (30)

Adding the two other general terms correspondent, in which iD1 is replaced by jD2 and by
kD3, we change iD1 to /; and obtain, by a ®rst summation, the term
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(w/)2k�1

(2k� 1)!
f (x, y, z); (31)

and, by a second summation, we obtain

1
2(e w/ ÿ eÿw/) f (x, y, z), (32)

as the part of the mean function Mf, which involves expressly ijk. Adding the two parts, (28)
and (32), we are conducted ®nally to the very simple and remarkable transformation of the
mean function Mf, of which the discovery is due to you:

Mf (x � iw, y � jw, z � kz) � e w/ f (x, y, z): (33)

In like manner,

Mö(x ÿ iw, y ÿ jw, z ÿ kz) � eÿw/ö(x, y, z): (34)

Each of these two means of arbitrary functions, and therefore also their sum, is thus a value of
the expression

(D2 ÿ /2)ÿ10; (35)

that is, the partial differential equation,

(D2 � D2
1 � D2

2 � D2
3)V � 0, (36)

has its general integral, with two arbitrary functions, f and ö, expressible as follows:

V � Mf (x � iw, y � jw, z � kw)� Mö(x ÿ iw, y ÿ jw, z ÿ kw); (37)

which is another of your important results. You remarked that if the second member of the
equation (36) had been U, the expression for V would contain the additional term,

e w/Dÿ1eÿ2w/Dÿ1e w/U : (38)

In fact,

D � / � eÿw/De w/, D ÿ / � e w/Deÿw/, (39)

and therefore,

(D ÿ /)ÿ1(D � /)ÿ1 � e w/Dÿ1eÿ2w/Dÿ1e w/: (40)

``Most of this letter is merely a repetition of your remarks, but the analysis employed may
perhaps not be in all respects identical with yours: a point on which I shall be glad to be
informed.

``I remain faithfully yours,
``William Rowan Hamilton.

``The Rev. Charles Graves, D. D.''
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XXX.

ON THE CALCULATION OF NUMERICAL VALUES OF A CERTAIN

CLASS OF MULTIPLE AND DEFINITE INTEGRALS� (1857)

[Philosophical Magazine (4S) 14, 375±382 (1857).]

Section I

1. The results, in part numerical, of which a sketch is here to be given, may serve to illustrate
some points in the theory of functions of large numbers, and in that of de®nite and multiple
integrals. In stating them, it will be convenient to employ a notation which I have formerly
published, and have often found to be useful; namely the following,

I t �
� t

0
dt; (1)

or more fully,

I t ft �
� t

0
ft dt; (1)9

with which I am now disposed to combine this other symbol,

J t �
�1

t
dt; (2)

in such a manner as to write,

J t ft �
�1

t
ft dt, (2)9

and therefore

I t � J t �
�1

0
dt: (3)

I shall also retain, for the present, the known notation of Vandermonde for factorials,
which has been described and used by Lacroix, and in which, for any positive whole value
of n,

[x]n � x(x ÿ 1)(x ÿ 2) . . . (x ÿ n � 1); (4)

so that there are the transformations,

[x]n � [x]m[x ÿ m]nÿm � [x]n�m : [x ÿ n]m , &c:; (4)9

� Communicated by the Author.



which are extended by de®nition to the case of null and negative indices, and give, in
particular,

[0]ÿn � 1

[n]n
� 1

1:2:3 . . . n
: (4) 0

For example,

(1� x)n �
Xm�1
m�0

[n]m[0]ÿm xm : (5)

It is easy, if it be desired, to translate, these into other known notations of factorials, but they
may suf®ce on the present occasion.

2. With the notations above described, it is evident that

In
t 1 � [0]ÿn tn ; (6)

and more generally, that

In
t t m � t m�n

[m � n]n
� [m]ÿn t m�n (6)9

Hence results the series,

(1� I t � I2
t � : :)1 � (1ÿ I t)

ÿ11 � e t ; (7)

and accordingly, we have the ®nite relation,

I t e
t � e t ÿ 1: (7)9

The imaginary equation,

e t
�����ÿ1
p
� (1ÿ

�������
ÿ1
p

I t)
ÿ11, (8)

breaks up into the two real expressions,

cos t � (1� I2
t )
ÿ11, (8)9

sin t � I t(1� I2
t )
ÿ11: (8) 0

The series of Taylor may be concisely denoted by the formula,

f (x � t) � (1ÿ I t Dx)ÿ1 fx; (9)

and accordingly,

I t Dxf (x � t) � I t f 9(x � t) � f (x � t)ÿ fx: (9)9

And other elementary applications of the symbol I t may easily be assigned, whereof some
have been elsewhere indicated.

3. The following investigations relate chie¯y to the function,

Fn, r t � In
t (1� 4I2

t )
ÿ rÿ1

21; (10)

or
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Fn, r t � In
t (1� 4I2

t )
ÿ r ft, (10)9

where

ft � F0,0 t � (1� 4I2
t )
ÿ1

21: (11)

Developing by (5) and (6), and observing that

22m[ÿ1
2]

m � (ÿ1)m[2m]m , (12)

and that therefore

22m[ÿ1
2]

m[0]ÿm[0]ÿ2m � (ÿ1)m([0]ÿm)2, (12)9

we ®nd the well-known series,

ft � 1ÿ t

1

� �2

� t 2

1:2

� �2

ÿ t3

1:2:3

� �2

� &c:, (13)

which admits of being summed as follows,

ft � 2

ð

� ð
2

0
dù cos(2t cosù); (13)9

the function ft being thus equal to a celebrated de®nite integral, which is important in the
mathematical theory of heat, and has been treated by Fourier and by Poisson.

4. It was pointed out� by the great analyst last named, that if there were written the
equation,

y �
�ð

0
cos(k cosù)dù, (14)

so that, in our recent notation,

y � ð f
k

2

� �
, (14)9

then for large, real, and positive values of k, the function y
p

k might be developed in a series
of the form,

y
p

k � A � A9

k
� A 0

k2
� &c:

� �
cos k � B� B9

k
� B 0

k2
� &c:

� �
sin k; (15)

where a certain differential equation of the second order, which y
p

k was obliged to satisfy,
was proved to be suf®cient for the successive deduction of as many of the other constant
coef®cients, A9, A0, . . and B9, B0, . . of the series, as might be desired, through an assigned
system of equations of condition, after the two ®rst constants, A and B, were determined; and
certain processes of de®nite integration gave for them the following values,

A � B � pð; (15)9

� In his Second Memoir on the Distribution of Heat in Solid Bodies, Journal de l'Ecole Polytechnique,
tome xii. cahier 19, Paris, 1823, pages 349, &c.
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so that when k is very large, we have nearly, as Poisson showed,

y
p

k � (cos k � sin k)
p
ð: (15) 0

5. In my own paper on Fluctuating Functions�, I suggested a different process for arriving
at this important formula of approximation, (15)0, which, with some slight variation, may be
brie¯y stated as follows. Introducing the two de®nite integrals,

A t � 2

ð

� ð
2

0
dù cos(2t versù),

B t � 2

ð

� ð
2

0
dù sin(2t versù),

9>>>=>>>; (16)

which give the following rigorous transformation of the expression (13)9, or of the function ft,

ft � A t cos 2t � B t sin 2t; (16)9

and employing the limiting values,

lim t�1:t
1
2A t � 2

ð

�1
0

dx cos(x2) � (2ð)ÿ
1
2,

lim t�1:t
1
2B t � 2

ð

�1
0

dx sin(x2) � (2ð)ÿ
1
2;

9>>>=>>>; (16) 0

(which two last and well-known integrals have indeed been used by Poisson also,) I obtained
(and, as I thought, more rapidly than by his method) the following approximate expression,
equivalent to that lately marked as (15)0, for large, real, and positive values of t:

ft � (ðt)ÿ
1
2 sin 2t � ð

4

� �
; (17)

which is suf®cient to show that the large and positive roots of the transcendental equation,� ð
2

0
dù cos(2t cosù) � 0, (17)9

are (as is known)y very nearly of the form,

t � nð

2
ÿ ð

8
, (17) 0

where n is a large whole number.

� In the Transactions of the Royal Irish Academy, vol. xix. part 2, p. 313; Dublin, 1843. Several copies
of the paper alluded to were distributed at Manchester in 1842, during the Meeting of the British
Association for that year: one was accepted by the great Jacobi.
y It must, I think, be a misprint, by which, in p. 353 of Poisson's memoir, the expression k � ið� ð

4
, is

given, instead of iðÿ ð

4
, for the large roots of the transcendental equation y � 0. It is

remarkable, however, that this error of sign, if it be such, does not appear to have had any in¯uence on
the correctness of the physical conclusions of the memoir: which, no doubt, arises from the circumstance
that the number i is treated as in®nite, in the applications.
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6. Poisson does not appear to have required, for the applications which he wished to make,
any more than the two constants, which he called A and B, of his descending series (15);
although (as has been said) he showed how all the other constants of that series could be
successively computed, from them, if it had been thought necessary or desirable to do so. In
other words, he seems to have been content with assigning the values (15)9, and the formula
(15)0, as suf®cient for the purpose which he had in view. In my own paper, already cited, I
gave the general term of the descending series for ft, by assigning a formula, which (with one or
two unimportant differences of notation) was the following:

(ðt)
1
2 ft �Pm�1

m�0 [0]ÿm([ÿ1
2]

m)2(4t)ÿm cos 2t ÿ ð

4
ÿ mð

2

� �
: (18)

As an example of the numerical approximation attainable hereby, when t was a moderately
large number, (not necessarily whole,) I assumed t � 20; and found that sixty terms of the
ultimately convergent, but initially divergent series (13), gave

f (20) � 2

ð

� ð
2

0
dù cos(40 cosù)

� �7 447 387 396 709 949: 965 795 7ÿ 7 447 387 396 709 949: 958 428 9

� �0:007 366 8; (19)

while only three terms of the ultimately divergent, but initially convergent series (18), suf®ced
to give almost exactly the same result, under the form,

f (20) � 1ÿ 9

204800

� �
cos 868 499 52 0��������

20ð
p � 1

320

sin 868 499 52 0��������
20ð
p

� 0:0069736� 0:0003936 � �0:0073672: (19)9

7. The function ft becomes in®nitely small, when t becomes in®nitely great, on account of
the inde®nite ¯uctuation which cos(2t cosù) then undergoes, under the sign of integration
in (13)9; so that we may write

F0,01 � f1 � 0: (20)

But it is by no means true that the value of this other series,

F1,0 t � I t ft � t

1
ÿ t

3

t

1

� �2

� t

5

t 2

1:2

� �2

ÿ &c:, (21)

which may be expressed by the de®nite integral,

F1,0 t � 1

ð

� ð
2

0
dù secù sin(2t cosù), (219)

is in®nitesimal when t is in®nite. On the contrary, by making

2t cosù � x, dù secù � ÿ dx

x
1ÿ x2

4t 2

� �ÿ1
2

, (22)

the integral (21)9 becomes, at the limit in question,
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F1,01 � 1

ð

�1
0

dx

x
sin x � 1

2: (21) 0

Accordingly I veri®ed, many years ago, that the series (21) takes nearly this constant value, 1
2,

when t is a large and positive number. But I have lately been led to inquire what is the
correction to be applied to this approximate value, in order to obtain a more accurate
numerical estimate of the function F1,0 t, or of the integral I t ft, when t is large. In other
words, having here, by (3) and (21)0, the rigorous relation,

F1,0 t � I t ft � 1
2ÿ J t ft , (23)

I wished to evaluate, at least approximately, this other de®nite integral, ÿJ t ft, for large and
positive values of t. And the result to which I have arrived may be considered to be a very
simple one; namely, that

ÿJ t ft � Dÿ1
t ft; (24)

where Dÿ1
t ft is a development analogous to the series (18), and reproduces that series, when

the operation Dt is performed.

8. As an example, it may be suf®cient here to observe that if we thus operate by Dt on the
function,

f )t � 1ÿ 129

29 t 2

� � sin 2t ÿ ð

4

� �
2
�����
ðt
p ÿ

5 cos 2t ÿ ð

4

� �
25 t

�����
ðt
p , (25)

and suppress tÿ
1
2 in the result, we are led to this other function of t,

D t f )t � 1ÿ 9

29 t 2

� � cos 2t ÿ ð

4

� �
�����
ðt
p �

sin 2t ÿ ð

4

� �
24 t

�����
ðt
p ; (25)9

which coincides, so far as it has been developed, with the expression (18) for ft: so that we
may write, as at least approximately true, the equation

f )t � Dÿ1
t ft: (25) 0

Substituting the value 20 for t, in order to obtain an arithmetical comparison of results, we
®nd,

f )(20) � 1ÿ 129

204800

� �
sin 868 499 52 0��������

20ð
p ÿ cos 868 499 52 0

128
��������
20ð
p

� �0:062942ÿ 0:000054 � �0:062888; (26)

which ought, if the present theory be correct, to be nearly equal to the de®nite integral,
ÿJ t ft, for the case where t � 20. In other words, I am thus led to expect, after adding the
constant term 1

2, that the value of the connected integral,

I t ft � ðÿ1

� ð
2

0
dù secù sin(40 cosù), (26)9

658 XXX. CALCULATION OF NUMERICAL VALUES OF INTEGRALS



must be nearly equal to the following number,

�0:562888: (26) 0

And accordingly, when this last integral (26)9 is developed by means of the ascending series
(21), I ®nd that the sum of the ®rst sixty terms (beyond which it would be useless for the
present purpose to go) gives, as the small difference of two large but nearly equal numbers,
(which are themselves of interest, as representing certain other de®nite integrals,) the value:

ðÿ1

� ð
2

0
dù secù sin(40 cosù) � �3 772 428 770 679 800:537 705 8

ÿ 3 772 428 770 679 799:974 817 7

� �0:562 888 1; (26)-

which can scarcely (as I estimate) be wrong in its last ®gure, the calculation having been
pushed to more decimals than are here set down; and which exhibits as close an agreement
as could be desired with the result (26)0 of an entirely different method.

9. It must however be stated, that in extending the method thus exempli®ed to higher
orders of integrals, the development denoted by Dÿn

t ft , or the de®nite and multiple integral
(ÿJ t)n ft, to which it is equivalent, comes to be corrected, in passing to the other integral In

t ft ,
not by a constant term, such as 1

2, but by a ®nite algebraical function, which I shall here call f nt ,
and of which I happened to perceive the existence and the law, while pursuing some
unpublished researches respecting vibration, a considerable time ago. Lest anything should
prevent me from soon submitting a continuation of the present little paper, (for I wish to
write on one or two other subjects,) let me at least be permitted now to mention, that the
spirit of the process alluded to, for determining this ®nite and algebraical correction�,

In
t ft ÿ (ÿJ t)

n ft � In
t ft ÿ Dÿn

t ft � f nt, (27)

(where :Dÿn
t ft still denotes a descending and periodical series, analogous to and including

those above marked (18) and (25),) consists in developing the algebraical expression (10), (for
the case r � 0, but with a corresponding development for the more general case,) according to
descending powers of the symbol I t , and retaining only those terms in which the exponent of that symbol is
positive or zero: which process gives the formula,

f n t � 1
2I

nÿ1
t (1� 2ÿ2Iÿ2

t )ÿ
1
21 � (1

2I
nÿ1
t ÿ 1

16I
nÿ3
t � 3

236I
nÿ5
t ÿ : :)1; (28)

that is, by (5) and (6),

� Although this algebraical part, f nt, of the multiple integral In
t ft, is here spoken of as a correction of the

periodical part, denoted above by Dÿn
t ft, yet for large and positive values of t it is, arithmetically speaking, by

much the most important portion of the whole: and accordingly I perceived (although I did not publish) it
long ago, whereas it is only very lately that I have been led to combine with it the trigonometrical series,
deduced by a sort of extension of Poisson's analysis. ± When I thus venture to speak of any results on this
subject as being my own, it is with every deference to the superior knowledge of other Correspondents of
this Magazine, who may be able to point out many anticipations of which I am not yet informed. The
formulñ (27) (28) are perhaps those which have the best chance of being new.
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f n t �
Xm�1
m�0

2ÿ2mÿ1[ÿ1
2]

m[0]ÿm[0]ÿ(nÿ2mÿ1)t nÿ2mÿ1; (28)9

where the series may be written as if it were an in®nite one, but the terms involving negative
powers of t have each a null coef®cient, and are in this question to be suppressed.

For instance, I have arithmetically veri®ed, at least for the case t � 10, that the two ®nite
algebraical functions,

f6 t � t 5

240
ÿ t3

96
� 3t

256
, (28) 0

f7 t � t 6

1440
ÿ t 4

384
� 3t 2

512
ÿ 5

2048
, (28)-

express the values of the two following sums or differences of integrals,

f6 t � I6
t ft ÿ J6

t ft, (27)9

f7 t � I7
t ft � J7

t ft; (27) 0

the calculations having been carried to several places of decimals, and the integrals I6
t ft, I7

t ft
having each been found as the difference of two large numbers.

Observatory of Trinity College, Dublin,
September 29, 1857.
[To be continued.]
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Part IV

ASTRONOM Y





XXXI.

INTRODUCTORY LECTURE ON ASTRONOMY (1832)

[Delivered November 8, 1832]
[Dublin University Review 1, 72±85 (1833).]

The time has returned when, according to the provisions of this our University, we are to join
our thoughts together, and direct them in concert to astronomyÐthe parent of all the
sciences, and the most perfect and beautiful of all. And easily and gladly could I now
expatiate on the dignity and interest of astronomy, but the very assurance of your complete
and perfect sympathy renders needless any attempt at excitement. I must not and cannot
suppose that any of those who are assembled here this day, are insensible to the inward
impulses, and unconscious of the high aspirations, by which the stars, from their thrones of
glory and of mystery, excite and win toward themselves the heart of man; that the golden
chain has been let down in vain; and that celestial beauty and celestial power have offered
themselves in vain to human view. And if I could suppose that this were soÐthat any here
had been till now untouched by the majesty and loveliness with which astronomy commu-
nesÐstill less could I persuade myself that in the mind of such a person my words could do
what the heavens had failed to effect. The heart, because it is human, say rather because it is
not wholly not divine, lifts itself up in aspiration, and claims to mingle with the lights of
heaven; and joyfully receives into itself the skyey in¯uences, and feels that it is no stranger in
the courts of the moon and the stars. Though between us and the nearest of those stars there
be a great gulph ®xed, yet beyond that mighty gulph (oh, far beyond!) ¯y, on illimitable
pinions, the thoughts and affections of man, and tell us that there, too, are beings, akin to
usÐmembers of one great familyÐbeings animated, thoughtful, lovingÐsusceptible of joy
and hope, of pain and fearÐable to adore God, or to rebel against himÐable to admire and
speculate upon that goodly array of worlds with which they also are surrounded. And often
this deep instinct of affection, to the wide family of being, to the children of God thus
scattered throughout all worlds, has stirred within human bosoms; often have men, tired of
petty cares and petty pleasures, fretting within this narrow world of ours, seeking for other
suns and ampler ether, gone forth as it were colonists from earth, and become naturalized
and denizens in heaven. Not of one youthful enthusiast alone, are the words of a great living
poet� true, that,

``Thus, before his eighteenth year was told,

Accumulated feelings pressed his heart

With still increasing weight; he was o'erpower'd

By natureÐby the turbulence subdued

� Wordsworth.



Of his own mindÐby mystery and hope,

And the ®rst virgin passion of a soul

Communing with the glorious universe.''

I must not and do not doubt, that many, let me rather say that all, of those whom I now
address, have, from time to time, been stirred by such visitations, and been conscious of such
aspirings; and that you need not me to inform you, that astronomy, though a science, and an
eminent one, is yet more than a science,Ðthat it is a chain woven of feeling as well as
thoughtÐan in¯uence pervading not the mind only, but the soul of man. Thus much,
therefore, it may suf®ce to have indulged in the preliminary and general expression of these
our common aspirations; and I now may pass to the execution of my particular duty, my
appointed and pleasant task, and ful®l, so far as in me lies, the intentions and wishes of the
heads of our University; who, in ®xing the order of your studies, directed ®rst your attention
to the sciences of the pure reasonÐthe logical, the metaphysical, and the mathematicalÐ
and call you now to those in which the reason is combined with experience; and who have
judged it expedient, among all the physical sciences, to propose astronomy the ®rst, as a
favourable introduction to the rest, and a specimen and type of the whole.

It is, then, my of®ce, this day, to present to you astronomy as itself a part, and as an
introduction to the other parts, of physical science in generalÐand thus to greet you at the
®rst steps and vestibule of that majestic edi®ce which patient intellect has been rearing up
through many a past generation; and which, with changes doubtless, but such as rather
improve than destroy the unity of the whole, shall remain, as we trust, for the exercise, the
contemplation, and the delight, of many a generation yet unborn. It were dif®cult for any
one, and it is impossible for me, to do full justice to so vast a subject; but I shall hope for a
renewal of that indulgent attention with which I have more than once before been favoured
upon similar occasions, while, in pursuit and illustration of the subject, I touch brie¯y, and as
it were by allusion only, on the following points:Ðthe distinction between the physical and
the purely mathematical sciencesÐthe end which should be considered as proposed in
physical science in generalÐand the means which are to be employed for the attainment of
this endÐthe objections, utilitarian and metaphysical, which are sometimes expressed, and
perhaps oftener felt, against the study of physical scienceÐthe existence of a scienti®c faculty
analogous to poetical imagination, and the analogies of other kinds between the scienti®c
and the poetical spirit.

I have said that I design to speak brie¯y of the end proposed, and the means employed, in
the physical sciences on which you are entering; and of the distinction between them and the
pure mathematics, in which you have lately been engaged. It seems necessary, or at least
useful, for this purpose, to remind you of the nature and spirit of these your recent studiesÐ
the sciences of geometry and algebra. In all the mathematical sciences we consider and
compare relations. The relations of geometry are evidently those of space; the relations of
algebra resemble rather those of time. For geometry is the science of ®gure and extent;
algebra, of order and succession. The relations considered in geometry are between points,
and lines, and surfaces; the relations of algebra, at least those primary ones, from the
comparison of which others of higher kinds are obtained, are relations between successive
thoughts, viewed as successive and related states of one more general and regularly changing
thought. Thus algebra, it appears, is more re®ned, more general, than geometry; and has its
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foundation deeper in the very nature of man; since the ideas of order and succession appear
to be less foreign, less separable from us, than those of ®gure and extent. But, partly from its
very re®nement and generality, algebra is more easily and often misconceived; more easily
and often degraded to a mere exercise of memoryÐa mere application of rulesÐa mere
legerdemain of symbols: and thus, except in the hands of a very skilful and philosophical
teacher, it is likely to be a less instructive discipline to the mind of a beginner in science.

Motion, although its causes and effects belong to physical science, yet furnishes, by its
conception and by its properties, a remarkable application of each of these two great divisions
of the pure mathematics: of geometry, by its connexion with space; of algebra, by its
connexion with time. Indeed, the thought of position, whether in space or time, as varied in
the conception of motion, is an eminent instance of that passage of one general and regularly
changing thought, through successive and related states, which has been spoken of as
suggesting to the mind the primary relations of algebra. We may add, that this instance,
motion, is also a type of such passage; and that the phrases which originally belong to and
betoken motion, are transferred by an expressive ®gure to every other unbroken transition.
For with time and space we connect all continuous change; and by symbols of time and space
we reason on and realise progression. Our marks of temporal and local site, our then and
there, are at once signs and instruments of that transformation by which thoughts become
things, and spirit puts on body, and the act and passion of mind are clothed with an outward
existence, and we behold ourselves from afar.

These purely mathematical sciences of algebra and geometry, are sciences of the pure
reason, deriving no weight and no assistance from experiment, and isolated, or at least
isolable, from all outward and accidental phenomena. The idea of order, with its subordinate
ideas of number and of ®gure, we must not indeed call innate ideas, if that phrase be de®ned
to imply that all men must possess them with equal clearness and fulness; they are, however,
ideas which seem to be so far born with us, that the possession of them, in any conceivable
degree, appears to be only the development of our original powers, the unfolding of our
proper humanity. Foreign, in so far that they touch not the will, nor otherwise than indirectly
in¯uence our moral being, they yet compose the scenery of an inner world, which depends
not for its existence on the ¯eeting things of sense, and in which the reason, and even the
affections may at times ®nd a home and a refuge. The mathematician, dwelling in that inner
world, has hopes, and fears, and vicissitudes of feeling of his own; and even if he be not
disturbed by anxious yearnings for an immortality of fame, yet has he often joy, and pain, and
ardour: the ardour of successful research, the pain of disappointed conjecture, and the joy
that is felt in the dawning of a new idea. And when, as on this earth of ours must sometimes
happen, he has sent forth his wishes and hopes from that lonely ark, and they return to him,
having found no resting-place: while he drifts along the turbulent current of passion, and is
tossed about by the storm and agony of grief, some sunny bursts may visit him, some moments
of delightful calm may be his, when his old habits of thought recur, and the ``charm severe''
of lines and numbers is felt at intervals again.

It has been said, that in all the mathematical sciences we consider and compare relations.
But the relations of the pure mathematics are relations between our own thoughts
themselves; while the relations of mixed or applied mathematical science are relations
between our thoughts and phenomena. To discover laws of nature, which to us are links
between reason and experienceÐto explain appearances, not merely by comparing them
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with other appearances, simpler or more familiar, but by showing an analogy between them
on the one hand, and our own laws and forms of thought on the other, ``darting our being
through earth, sea, and air''�Ðsuch seems to me the great design and of®ce of genuine
physical science, in that highest and most philosophical view in which also it is most
imaginative. But, to ful®l this designÐto execute this of®ceÐto discover the secret unity and
constancy of nature amid its seeming diversity and mutabilityÐto construct, at least in part, a
history and a prophecy of the outward world adapted to the understanding of manÐto
account for past, and to predict future phenomenaÐnew forms and new manifestations of
patience and of genius become requisite, for which no occasion had been in the pursuits of
the pure mathematics. Induction must be exercised; probability must be weighed. In the
sphere of the pure and inward reason, probability ®nds no place; and if induction ever enter,
it is but tolerated as a mode of accelerating and assisting discovery, never rested in as the
ground of belief, or testimony of that truth, which yet it may have helped to suggest. But in
the physical sciences, we can conclude nothing, can know nothing without induction. Two
elements there are in these, the outward and the inward; and if the latter, though higher in
dignity, usurp the place which of right pertains to the former, there ensues only a specious
show, a bare imagination, and not a genuine product of the imaginative faculty, exerting
itself in due manner and measure on materials which nature supplies. Here, then, in the use
and need of induction and probability, we have a great and cardinal distinction between the
mixed and the pure mathematics.

Does any, then, demand what this induction is, which has been called the groundwork of
the physical sciences, the key to the interpretation of nature? To answer this demand, I must
resume my former statement of the main design and of®ce of physical science in general. I
said, that this design was to explain and account for phenomena, by discovering links
between reason and experience. Now the essence of genuine induction appears to me to
consist in this, that in seeking for such links we allow to experience its due in¯uence, and to
reason not more than its dueÐthat we guard against false impressions from the mechanism
and habits of our own understandingsÐand submit ourselves teachably to facts; not that we
may ultimately abide in mere facts, and sensations, and arranged recollections of sensation,
but from the deep and sublime conviction, that the author, and sustainer, and perpetual
mover of nature has provided in nature a school, in which the human understanding may
advance ever more and more, and discipline itself with continual improvement. We must not
conclude a law from facts too small in number, or observed with too little care; or if the
scienti®c imagination, impatient of restraint, press onward at once to the goal, and divine
from the falling of an apple the law of gravitation, and in the trivial and every day changes
which are witnessed around us on this earth perceive the indications of a mighty power,
extending through all space, and compelling to their proper orbits the ``planets struggling
®erce towards heaven's free wilderness;''y yet must such divinations be long received, even by
the favoured discoverer himself, if he be of the true inductive school, with candid dif®dence
and philosophic doubt, until they have been con®rmed by new appeals to other, and more

� Shakespeare.
y ``As the sun rules, even with a tyrant's gaze,

The unquiet republic of the maze
Of planets struggling ®erce towards heaven's free wilderness.'' Ð Shelley.
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remote, and more varied phenomena. If, as in this case of gravitation, the law, concluded or
anticipated from the ®rst few facts, admit of a mathematical enunciation, and consequently
can be made a basis of mathematical reasoning, then it is consistent with, and required by,
the spirit of induction, that the law should be made such a basis. We may and ought to
employ aÁ priori reasoning here, and consider what consequences must happen if the law
supposed be a true one. These consequences ought to be mathematically developed, and a
detailed prediction made of the yet unobserved phenomena which the law includes, and with
which it must stand or fall, the truth of the one and of the other being connected by an
indissoluble tie. New and more careful observations must then be made, to render closer and
more ®rm the connexion between thoughts and things. For,� in order to derive from
phenomena the instruction which they are ®tted to afford, we must not content ourselves
with the ®rst vague perceptions, and obvious and common appearances. We must discrimi-
nate the similar from the sameÐmust vary, must measure, must combineÐuntil, by the
application of reason and of the scienti®c imagination to carefully recorded facts, we ascend
to an hypothesis, a theory, a law, which includes the particular appearances, and enables
them to be accounted for and foreseen. Then, when the passive of our being has been so far
made subject to the active, and sensation absorbed or sublimed into reason, the philosopher
reverses the process, and asks how far the conceptions of his mind are realised in the outward
world. By the deductive process following up induction, he seeks to make his theory more
than a concise expression of the facts on which it ®rst was founded; he seeks to deduce from
it some new appearances which ought to be observed if the theory be co-extensive with
nature. He then again consults sensation and experience, and often their answer is
favourable; but often, too, they speak an unexpected language. Yet, undismayed by the
repulse, and emboldened by partial success, he frames, upon the ruins of the former, some
new and more general theory, which equally with the former accounts for the old appear-
ances, while it includes within its ampler verge the results of more recent observation. Nor
can this struggle ever end between the active and the passive of our beingÐbetween the
imagination of the theorist and the patience of the observerÐuntil the time, if such a time
can ever come, when the mind of man shall grasp the in®nity of nature, and comprehend all
the scope, and character, and habits of those innumerable energies which to our under-
standing compose the material universe. Meanwhile, this struggle, with its alternate victories
and defeats, its discoveries of laws and exceptions, forms an appointed discipline for the
mind, and its history is justly interesting. Nor can we see without admiring sympathy, the
triumph of astronomy and Newton; Newton, who in astronomy, by one great stride of
thought, placed theory at once so far in advance of observation, that the latter has not even
yet overtaken the former, nor has the law of gravitation, in all its wide dominion, yet met with
one rebellious fact in successful revolt against its authority. Yet, haply, those are right, who,
seeing that Newton himself had sat at the feet of another master, and had deeply drunk from
the fountain of a still more comprehending intellect, have thought it just to divide the glory,
and award more than half to Bacon. He, more than any other man, of ancient or of modern
times, appears to have been penetrated with the desire, and to have conceived and shown the
possibility, of uniting the mind to things, say rather of drawing things into the mind. Deeply

� Some of the following remarks on physical science were published in the Dublin Literary Gazette in
1830.
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he felt, and eloquently and stirringly he spake. In far prophetic vision he foresaw, and in
language as of inspiration he gave utterance to the vision, of the progress and triumphs of
the times then futureÐnay more, of times which even now we do but look for. And thus, by
highest suffrage, and almost unanimous consent, the name of Bacon has been enrolled as
eminent high-priest in the spousal temple� of man's mind and of the universe. And if,
impressed with the greatness of his task and importance of his of®ce, and burning to free
mankind from those intellectual letters in which the injudicious manner of their admiration
of the philosophers of Greece had bound them, he appears to have been sometimes blind to
the real merit of those great philosophers, and uttered harsh words, and words seeming to
imply a spirit which (we will trust) was not the habitual spirit of Bacon; let us pardon this
weakness of our great intellectual parent, let us reverently pardon, but let us not imitate it.
For, I cannot suppress my fear, that the signal success, which since the time, and in the
country, and by the method of Bacon, has attended the inductive research into the
phenomena of the material universe, has injuriously drawn off the intellect from the study of
itself and its own nature; and that while we know more than Plato did of the outward and
visible world, we know less, far less, of the inward and ideal. But not now will I dwell on this
high theme, fearing to desecrate and degrade by feeble and unworthy utterance those deep
ideal truths which in the old Athenian days the eloquent philosopher poured forth.

I have now touched on some of the points which at the beginning of this lecture I
proposed. I have stated my view of the great aim and design of physical science in generalÐ
the explanation of appearances, by linking of experience to reason; an aim which is itself
subordinate to another higher end, but to an end too high and too transcendent to come
within the sphere of science, till science shall attain its bright consummation in wisdomÐthe
end of restoring and preserving harmony between the various elements of our own being; a
harmony which can be perfect only when it includes reconciliation with our God. I have
stated the chief means which since the time of Bacon are generally admitted as ®t and
necessary for the just explanation of appearancesÐthe alternate use of induction and
deduction, and the judicious appreciation of probabilities; and have shown how by this use of
induction and probability, an essential difference is established between the physical
sciencesÐamong which astronomy ranks so highÐand the sciences of the pure mathematics;
and as an example of successful induction, have referred you to the discovery of gravitation.
Many other examples will occur in the course of the subsequent lectures, in which I shall have
occasion to speak of ancient as well as of modern discoveries, and to show you from the
Almagest of Ptolemy, what the state of astronomy was in his time and the time of Hipparchus.
You will, I think, accompany and share the interest which I have felt in a review of the science
of a time so ancient. The contemplations, like the objects, of astronomy, are not all of
modern growth. Not to us ®rst do Arcturus, and Orion, and the Pleiades glide on in the still
heaven. The Bear, forbidden here and now to bathe in ocean, circled the Pole in that
unceasing round, three thousand years ago, and its portraiture was imagined by Homer as an
ornament for the shield of Achilles. And if that old array of ``cycle and epicycle, orb in orb,''
with which the Greek astronomer had ®lled the planetary spaces, have now departed with its
principle of uniform and circular motion, yet the memory of it will long remain, as of a

� And thus, by the divine assistance, we shall have prepared and decked the nuptial chamber of the
mind and of the universe. Ð Bacon.
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mighty work of mind, and (for the time) a good explanation of phenomena. The principle
itself has in a subtler form revived, and seems likely to remain for ever, as a conviction that
some discoverable unity exists, some mathematical harmony in the frame of earth and
heaven. We live under no despotism of caprice, are tossed about in no tempest and whirlwind
of anarchy; what is law and nature in one age, is not repealed and unnatural in the next; the
acquisitions of former generations are not all obsolete and valueless in ours, nor is ours to
transmit nothing which the generations that are to come shall prize: our life, the life of the
human race, is no life of perpetual disappointment and chaotic doubt, nor doomed to end in
blank despondence, it is a life of hope and progress, of building on foundations laid, and of
laying the foundations for other and yet greater buildings. And thus are distant generations
knit together in one celestial chain, by one undying instinct: while, yielding to kindred
impulses, our fathers, ourselves, and our children all seek and ®nd, in the phenomenal and
outward world, the projection of our own inward being, of the image of God within us.
Astronomy is to man an old and ancestral possession. Through a long line of kings of mind,
the sceptre of Astronomy has come down, and its annals are enshrined among the records of
the royalty of genius. Its in¯uence has passed, with silent but resistless progress, from simple
shepherds watching their ¯ocks by night, to the rulers of ancient empires, and the giants of
modern thought. When we thus trace its history, and change of habitation, from the ®rst
rude pastoral and patriarchal tents of Asia, to some old palace roof of Araby or Egypt, or to
the courts of that unforgotten king of China, who, noting in his garden the shadows of
summer and of winter, left a record by which we measure after three thousand years the
changes that the seasons have undergone; and passing from these imperial abodes of the East
to dwellings not less worthy, when we see astronomy shrined in the observatories and studies
of Europe, and nation vying with nation, and man with man, which shall produce the
worthier temple, and yield the more acceptable homage; when we review the long line of
scienti®c ancestry, from Hipparchus and Ptolemy, to Copernicus and Galileo, from Tycho
and Kepler, to Bradley, Herschel, and Brinkley; or call before us those astronomical
mathematicians, who, little provided with instruments and outward means of observing, while
they seemed in the silence of their closets to have abandoned human affairs, and to live
abstracted and apart, have shown that genius in the very solitude of its meditations is yet
essentially sympathetic, and must rule the minds of men by the instinct of its natural regality,
and have ®lled the intervals of the great succession, from Archimedes to Newton, from
Newton to Lagrange: when the imagination is crowded and possessed by all these old and
recent associations, must we not then, if self be not quite forgotten, if our own individuality
be not all merged in this extended and exalted sympathy, this wide and high communion, yet
long to bow for a while, and veil ourselves, as before superior spirits, and think it were a lot
too happy, if we might but follow in the train, and serve under the direction of this immortal
band!

In such a mood, can we discuss with patience, can we hear without indignation the
utilitarian objection, ``of what use is Astronomy?'' meaning thereby, what money will it
make?Ðwhat sensual pleasure will it procure?

Against astronomy, indeed, the objection from utility is singularly infelicitous, and almost
ludicrously inapplicable: astronomy, which binding in so close connexion the earth with the
visible heaven, and mapping the one in the other, has guided through wastes, which else were
trackless, the ¯eet and the caravan, and made a path over the desert and the deep. But
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suppose it otherwise, or take some other science which has not yet been so successfully
applied. What, then; and is the whole of life to be bound down to the exchange and the
market-place? Are there no desires, no pleasures, but the sensualÐno wants, and no
enjoyments, but of the outward and visible kind? Are we placed here only to eat, and drink,
and die? Some less magni®cent stage, methinks, might have suf®ced for that. It was not
needed, surely, for such a race of sorry animalsÐso void themselves of power and beauty
within, so incapable and so undesigned for the contemplation of power and beauty withoutÐ
that they should have been placed in this world of power and beauty; and the evermoving
universe commanded to roll before our view, ``making days and equal years, an all-suf®cing
harmony,''� that the heavens should declare the glory of God, and the ®rmament show his
handywork. I am almost ashamed to have dwelt so long, here, amid these in¯uences, and
before such an audience, on objections of a class and character so quite unworthy of your
consideration. More important is it that I should endeavour to answer another class of
objections, founded on the misapprehension and misapplication of deep, and inward, and
important truth, and of a nature ®tted to captivate and carry away the young and ardent
spirit.

It is, then, sometimes said, and, perhaps, oftener felt, that astronomy itself is too
unre®nedÐtoo material a thing;Ðthat the mind ought to dwell within its own sphere of
reason and imagination, and not be drawn down into the world of phenomena and
experience. Now, with respect to the pure Reason, I will grant that this objection would
assume a force, which I cannot now concede to it, if it were indeed possible for man, on that
etherial element alone, to feed and live. But if this be not soÐif we must quit at all the sphere
of the pure reason, and descend at all into the world of experience, as surely we must
sometimes doÐwhy narrow our intercourse with experience to the smallest possible range?
why tread, with delicate step, this common earth of ours, and not rather wander freely
through all her heights and depths, and gaze upon the wonders and beauties that are her
own, and store our minds and memories with truths of fact, were it only to have them ready,
as materials and implements, for the exercise of that transforming and transmuting power,
which is gradually to draw those truths into its own high sphere, and to prepare them for the
ultimate beholding of pure and inward intuition? And as to the imagination, it results, I
think, from the analysis which I have offered of the design and nature of physical science,
that into such science generally, and eminently into astronomy, imagination enters as an
essential element: if that power be imagination, which ``darts our being through earth, sea,
and air;'' and if I rightly transferred this profound line of our great dramatist to the faculty
which constructs dynamical and other physical theories, by seeking for analogies in the laws
of outward phenomena to our own inward laws and forms of thought. Be not startled at this,
as if in truth there were no beauty, and in beauty no truth; as if these two great poles of love
and contemplation were separated by a diametral space, impassable to the mind of man, and
no connecting in¯uences could radiate from their common centre. Be not surprised that
there should exist an analogy, and that not faint nor distant, between the workings of the

� ``And bade the ever-moving universe
Roll round us, making days and equal years,
An all-suf®cing harmony.''

From a Manuscript Poem, by A. de. V. [Aubrey de Vere]
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poetical and of the scienti®c imagination; and that those are kindred thrones whereon the
spirits of Milton and Newton have been placed by the admiration and gratitude of man. With
all the real differences between Poetry and Science, there exists, notwithstanding, a strong
resemblance between them; in the power which both possess to lift the mind above the stir of
earth, and win it from low-thoughted care; in the enthusiasm which both can inspire, and the
fond aspirations after fame which both have a tendency to enkindle; in the magic by which
each can transport her votaries into a world of her own creating; and perhaps, in the
consequent un®tness for the bustle and the turmoil of real life, which both have a disposition
to engender. Doubtless there are enthusiasts here this day, whom, without knowing, I
affectionately sympathise with: who bear upon them that character of all good and genuine
enthusiasm, highly to conceive, intensely to admire, and ardently to aspire after excellence. If
any such have chosen poetry for its own sake, and with a hope of adding to the literature of
his country; aware of the greatness of the task and responsibility of the of®ce, knowing that
the poet should be no pandar to sensual pleasure, no tri¯er upon frivolous themes, but an
interpreter between the heart and beauty, an utterer of divine and of eternal oracles; and if
no more imperious duty interfere, I do not seek to dissuade him: but if he have only been
repelled from science by its seeming to possess no power of similar excitement, I would not
that, so far as in me lay, he should be unaware of the kindred enthusiasm. In science, as in
poetry, there are enthusiasts, who, ®xing their gaze upon the monuments which kindred
genius has reared, press on to those pyramids in the desert, forgetting the space between.
And when I think that among the new hearers whom a new year has brought, it is likely that
some, perhaps many, are conscious of such aspirations; that some may go forth from this
room to-day, whom after-times shall hail with love and reverence, as worthy children and
champions of their college and their country; and that I, in however small a degree, may have
in¯uenced and con®rmed their purpose: I feel, I own, ``a presence that disturbs me with the
joy of elevated thoughts,''� a sublime and kindling sense of the unseen majesty of mind.
Doubtless in that period of generous ardour to which in part the philosophic poety alluded,
when, mourning over the too frequent degeneracy that attends the cares and temptations of
manhood, the loss of enthusiasm without the gain of wisdom, or with the acquisition only of
``that half-wisdom half-experience gives,'' he framed that magni®cent stanzaÐ

``Not in entire forgetfulness,

And not in utter nakedness,

But trailing clouds of glory do we come

From God who is our home;

Heaven lies about us in our infancy;

Shades of the prison-house begin to close

Upon the growing boy,

But he beholds the light, and whence it ¯ows,

He sees it in his joy;

The youth, who daily farther from the east

Must travel, still is nature's priest,

And by the vision splendid

� Wordsworth. y Ibid.
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Is on his way attended;

At length the man beholds it die away,

And fade into the light of common day:''

doubtless, (I was about to say,) in this period of youthful ardour, there are many vague and
some determined aspirations after excellence, among those whom I now address; and some
assuredly there are, who, burning to consecrate themselves to the service of truth and
goodness, and ideal beauty, and wedding themselves in imagination to the spirit of the
human race, feed on the hope of future and perpetual fame, and fondly look for that pure
ideal recompense, and long to barter ease, and health, and life itself for that in¯uence,
surviving life, that power and sympathy, which has been attained by the few, who, after long
years of thought, produce some immortal work, a Paradise Lost, or a Principia, and win their
sublime reward of praise and wonder;� who do not wholly die, but through all time continue
to in¯uence the minds and hearts of men; who leave behind them some enduring
monument, which, while it shall be claimed as the honour of their age and nation, bears also
their own name engraven on it in imperishable characters, like Phidias on the statue of
Minerva. Of such emotions I will not risk the weakening, by dwelling now on a conceivable
superior state, in which perfection should be sought for its own sake, and as independent
even of this ®ne unmercenary reward: and the spirit, puri®ed even from this ``last in®rmity of
noble minds,''y feel, in the words of one who has attained the earthly and (we will trust) the
heavenly fame, the words of the immortal Milton, that

Fame is no plant that grows on mortal soil,

Nor in the glistering foil,

Set off to the world, nor in broad rumour lies;

But lives, and spreads abroad, by those pure eyes,

And perfect witness of alljudging God:

As He pronounces lastly of each deed,

Of so much fame in Heaven expect thy meed.

� And win he knows not what sublime reward
Of praise and wonder.ÐAkenside.

y Milton.
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XXXII .

THE COMET

[Dublin Penny Journal 207, 208 (Dec. 1832); and 223, 224 (Jan. 1833).]

The little comet which at present excites so much the interest of astronomers and of the
public, was ®rst seen by Montaigne, at Limoges, in March 1772. It was soon afterwards
observed by Messier, and on the 3rd of April in the same year, a small telescopic star was seen
by him shining through it, and was mistaken for a nucleus, or bright and solid body of the
comet, such as many are found to possess; a more attentive examination, however, con®rmed
the suspicion suggested by its ®rst appearance, that it had neither nucleus nor tail. In its
appearance it resembled perfectly those faint nebulñ, or little clouds of light, which are seen
in great numbers among the stars by the help of telescopes, in every part of the sky, and could
only be distinguished from a nebula by observing that it shifted its place among the stars, and
passed from constellation to constellation. In 1806, a little comet was observed, which passed
the perihelion of its orbit, that is the point nearest to the sun, on the 2nd of January in that
year; it was not, however, at that time recognised to be the same comet which had been seen
in 1772, nor was this identity perceived until the comet was re-discovered in 1826. On the
evening of the 27th of February in that year, it was perceived by Biela, whose name it now
bears, at Josephstadt, in Bohemia, as a small round nebulosity, which on the following
evening had advanced about a degree towards the east, and had a little increased in size and
brightness. Biela continued to observe it for some time. Gambart, at Marseilles, discovered it
independently, on the 9th of March following, and from his observations, he concluded that
it passed its perihelion on the 18th of the same month. The comet was observed soon
afterwards, at GoÈttingen, by Harding, and at Altona, by Clausen; it disappeared about the
beginning of the following May. The calculations of Gambart and of Clausen established the
identity of the comet, thus discovered by Biela in 1826, with that of 1772, and with that of
1806, and shewed that this little body revolves about the sun in an ellipse or oval curve, the
sun being out of the centre of the oval by about three quarters of the half length of the oval;
that is, as it is technically expressed, the linear eccentricity being about three quarters of the
mean distance. The time of revolution was found to be about six years and three quarters; so
that, although through its faintness it happened not to be perceived, it must have passed its
perihelion ®ve times in the interval from 1772 to 1806, and twice in the interval from 1806 to
1826. It was also an inference from the time of revolution thus found, that the comet would
pass its perihelion again towards the end of 1832; and a more accurate calculation since made
by Baron Damoiseau, in which the attractions of the planets, especially of Jupiter, were
allowed for, conducted to the expectation that this perihelion passage would take place on
the 27th of November, 1832. Whether this prediction has been veri®ed to the very letter, it is
dif®cult as yet to say, for the faintness of the comet has scarcely suffered it to be seen; it has,



however, been perceived in the excellent telescopes of Herschel, and in a part of the sky but
little differing from that expected.

In our former number, we stated that the perihelion passage of the comet was predicted to
take place on the 27th of November, 1832. It was also predicted that it would pass near the
orbit of the earth. These predictions, which there is no reason to think inaccurate, excited
however a very disproportionate interest in the minds of persons unacquainted with
astronomy, who thought that nobody would take all this trouble about an almost invisible
thing, and that the expected and talked-of comet must be some enormous and terrible
visitant. Accordingly, a few months ago, the newspapers abounded with accounts of persons,
who, without any incumbrance of telescopes, (and for ought we know in the day time) had
seen this monstrous comet: there were even detailed descriptions of comet hurricanes, which
regularly set in, every night at the very time of the comet's passing the meridian. In reality,
however, the comet is so extremely faint an object that we have not received any authentic
account of its being seen at all, except by Sir John Herschel. He, indeed, inheriting the
immense re¯ectors, and not degenerating from the fame of his illustrious father, was able to
detect this little wanderer in a place not much differing from that which theory had assigned:
and the sublime delight was experienced, which attends the ful®lment of scienti®c predic-
tion, the realization of scienti®c idea.

It is this periodical return and consequent ®tness for frequent comparison with theory, that
invests with so great an interest, in the minds of astronomers, a body which, from its smallness
and faintness, would otherwise be utterly insigni®cant. Revolving about the sun in less than
seven years, it seems to belong to our own system, to our own solar family. We can compare
its motions with those of our own sister planets, and trace in the one, as in the other, the
in¯uence of the sun's attraction, and the ful®lment of the laws of Kepler: an in¯uence and a
ful®lment which can indeed be also traced in the orbits of all other comets, for example in
that of the great comet of 1811, but only through very small portions of those enormous
orbits, the rest being invisible by distance. Only a very few, out of the many comets that have
been seen, are known as yet to revolve in moderate periods about the sun; and the comet of
Biela was hailed with interest and delight, as an accession to this little band. Astronomers
expect that near the end of 1835 another of these periodic comets will return to its
perihelion, the celebrated comet of Halley, which was last seen about the time of the
accession [1760] of George the Third, and which, at intervals of about three quarters of a
century, had several times before attracted the notice of Europe.

The periodicity of Biela's comet has been assigned as a reason for its interesting astron-
omers notwithstanding its smallness. But there is a view, in which its very smallness gives to it an
interest that it would not otherwise possess. To explain this other source of interest, we must
be allowed to make some remarks on another little periodic comet, the comet of Encke's,
which passed its perihelion last May, though from its faintness and southern position it was
not seen this year in Europe, and was only detected at the observatory of the Cape of Good
Hope, by Mr. Henderson, who has the charge of that establishment. This comet, also, though
never easily visible, had been long watched by astronomers with interest from the rapidity of
its revolution about the sun. But this interest has of late been greatly increased, by the
detection, in its motion, of a little irregularity, which has been successfully accounted for on
the supposition of a resisting ether diffused through the planetary spaces, while it does not
seem to admit of any other explanation. No effect, indeed, of such resistance, has been yet
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detected in the motions of the planets: but this objection to an ether is not formidable, much
less decisive. For there is abundant evidence that the planets are bodies far more dense and
massy than any ordinary comets, and especially than those little comets now in question; and
we know that a feather is greatly resisted by an atmosphere through which a stone makes its
way without any sensible hindrance. And as, in order to observe the effects of the resistance
of our atmosphere, we do not use the densest but the rarest moveables, a feather not a stone,
so astronomers are glad when they ®nd themselves furnished in the heavens with a new
celestial feather, if we may call it so, wherewith to prove the existence and watch the effects of
that ®ne ether, through which the old cannon balls of planets held on so free a way. Thus
then the very smallness of Biela's (as of Encke's) comet, is favourable to the inquiries of
astronomers on an important question. But if this smallness were not combined with period-
ical return, the comet would disappear for ever, before it could be long enough observed to
give any decisive testimony on this question of a resisting ether, and then it would be only
one of a crowd, to which every few years are adding, and which have little other interest than
the possibility that a remote posterity may one day detect, in the celestial phenomena of their
age, some unexpected connexions with our then ancient records.

We have not spoken of the near approach of the orbit of Biela's comet to the orbit of the
earth, although this has often been popularly put forward as a ground of alarming interest.
There is indeed a very near approach of the two oval orbits to each other at their nearest
points, an approach within about twenty thousand miles, according to the elements of Baron
Damoiseau; so that the comet, moving in its own oval path, came, about the end of last
October, according to calculations founded on those elements, to be only twenty thousand
miles from the nearest point of the oval path of the earth: and, therefore, if the earth had
happened to be at the same time in that nearest point, the comet would have been much
nearer than the moon, and would only have been removed from the earth's surface by about
two diameters of the earth. But the earth did not come up to that nearest point till about the
end of November; and this difference of a month in time had so great an in¯uence on the
mutual distance of the two bodies, that the comet in its late approach came no nearer than
within about ®fty millions of miles, and is now receding from us. It is little likely that the earth
and comet will ever happen to arrive together at the nearest points of their respective paths;
still less that the changes which the attractions of the planets are perpetually making will ever
so alter the comet's oval as to make the two paths exactly intersect, or approach so near as to
render a collision possible: but even a collision with a body so light and cloudlike as the
comet, would not be attended with those disastrous effects which some have amused
themselves with imagining, and we need not be much concerned on this head for the fate of
our great great great great grand children.

H.
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XXXIII .

REVIEW OF ARAGO'S WORK, ` ` THE COMET ' ' , TRANSLATED BY

COLONEL CHARLES GOLD, LONDON, 1833

[Dublin University Review 1 365±372 (1833).]

This entertaining little Treatise of M. Arago� will, we think, be welcomed in its English form
by an extensive class of readers, who might not have happened to meet with it in the pages of
the French Annuaire. The original appears to have been drawn up of®cially, at the request of
the French Government,y to prevent the danger of a return of one of those comet-panics,
which so lately as the time of Lalande produced the most serious effects in Paris. Lalande, we
believe, had published a calculation of the injuries which might be occasioned to the earth, if
a Comet suf®ciently large were to come suf®ciently near; and Lalande being known to the
Parisian public as one who used to give notice of eclipses, and compile astronomical
almanacs, a report went abroad that he had given notice of an actually coming Comet, which
was in fact to do what he had only spoken of as possible. In vain did the Astronomer protest
against this interpretation, and refer to his printed reasonings; the alarmists answered, that in
order to pacify people he had suppressed the original work, and substituted another in its
place. In short, there was a comet-fever in Paris, and many died in consequence. On the
recent occasion of the approach of Biela's Comet, to which chie¯y the work before us relates,
fears as unreasonable, though less intense, prevailed. It had been predicted that the Comet
would cross the orbit of the Earth; and in the minds of many persons, unfamiliar with
astronomical language, and uninformed in astronomical theory, the announcement excited
a fear of approaching collision, which was not always removed by the assurance of astron-
omers, that at the predicted time of crossing, the Earth would be a month in arrear. ``Who
knows,'' said the alarmists, `whether we can depend on these Astronomers for this month of
odds? They own that they do not know every thing about the nature of Comets, and that their
methods of cometary calculation are less perfect than their planetary rules; perhaps the truth
is, that they know nothing about the matter, and only use ®ne words to disguise their real
ignorance.'' Such thoughts, perhaps, were at least silently entertained by many persons; and
it was judged useful to lay before the public, in the instructive and amusing Treatise upon
Comets which we have now the pleasure of noticing, a clear and frank avowal of the
remaining degree of astronomical ignorance on the one hand, and a plain and popular
sketch of the extent of astronomical knowledge on the other.

Respecting the chemical constitution of Comets, our ignorance may be said to be
complete; but respecting the manner of their motion, the knowledge of Astronomers is
almost perfect. When we think of a transparent mass, exceeding the earth in size, and,

� [Dominique FrancËois Jean Arago, 1786±1853.] y Translator's Preface



perhaps, the air in rarity, undergoing rapid and enormous changes in shape and magnitude,
but such that it seems to contract with heat and dilate with cold, and when we compare it with
any of the known terrestrial or planetary bodies, we are compelled to account it a most
striking and singular novelty. But when we ®nd this novel object pursuing tranquilly its
regular ellipse, and harmonising with the ancient planets by the long known laws of Kepler;
obedient to the same sun as centre of attraction, and subject to the same mutual in¯uences,
according to the same theory of Newton; disturbed only in a greater, though still in a slight
degree, by the resistance of a celestial ether, which opposed no sensible obstruction to its
elder and stronger brethren: we recover the serenity of contemplation, and merge the
wonder of novelty in the admiration of harmony and law.

In the Treatise before us, M. Arago having aimed to correct some prejudices, and to
circulate some accurate but simple notions respecting the present state of cometary science,
has judiciously begun by giving some popular and preliminary illustrations of the elliptic and
parabolic orbits in which the Planets and the Comets move. This part of the work is made still
more clear and popular by an interesting diagram, which the Translator has procured from
M. Pond. The diagram contains an outline of the nearly circular orbits of the Planets, as far as
Jupiter, and of the much more oval orbit of that Comet of last year, which forms the chief
subject of the Treatise, and is usually called Biela's Comet, from the name of the Bohemian
Astronomer who ®rst perceived it in its last foregoing approach to the Sun, at which time the
shortness of its period (not quite seven years) was discovered; although the Comet itself had
been seen in 1772 by Montaigne and Messier, and afterwards at an intermediate passage in
1806. The successive positions of this Comet for some months, before and after its perihelion
passage of last November, and for the ®rst days of several years to come, are marked in the
diagram, in a manner easily understood, and likely to interest the public.

After the preliminary illustrations already mentioned, of cometary orbits in general, the
author proceeds to lay before his readers a sketch of the course and history of some of the
most remarkable periodical Comets yet known, namely those which are usually called after
the names of Halley, Lexell, Encke, and Biela. Of these the Comet of Halley is remarkable, as
that of which ®rst, in the history of science, a prediction of the return was made and realised;
thus manifesting, even to the unlearned, the power of theory, and existence of order, in a
region which had before seemed strewed only with vague alarms and meteoric symbols of
uncertainty: a tranquil ministry, imposed upon that very wanderer, which but three centuries
before had conspired with the Turks to alarm invaded Christendom, and ``from its horrid
hair'' seemed to ``shake pestilence and war.'' The Comet of Lexell is noticed as having
perplexed astronomers at least, (though not monarchs,) by its singular changes of course, until
it was found to have had its orbit, by one approach to Jupiter, in¯ected towards the earth,
and brought within reach of our visionÐbut, at its next approach to the same great
disturbing planet, de¯ected anew to regions beyond our ken. Next comes in review the faint
cloud-like Comet of Encke, scarce visible except in powerful telescopes and favouring skiesÐ
but interesting to astronomers, as having the shortest period of all, and as that which ®rst has
given proof, within our own times, of the resistance of the celestial ether: And last the Comet
of Biela, already mentioned as having lately crossed the orbit of the earth, and as having, by
the expectation of that event, excited some ignorant alarm.

It fell within the plan of the treatise to state the times when these different Comets might
be expected, according to astronomical calculation, to return next to their respective

677XXXIII . REVIEW OF ``THE COMET ' '



perihelia, and become visible to us again. Of the four great Comets just mentioned, that of
Lexell indeed is not likely to be ever seen again, since its last great de¯ection from the
disturbance of Jupiter; but when the work was written the three other Comets were approach-
ing to the sun and to the earth, though two have since passed perihelion. That of Halley, last
seen about the time of its last perihelion passage, in 1759, is announced, on the authority of
Baron Damoiseau, as expected to return to perihelion on the 16th of November, 1835. We
may add, that from the extreme intricacy of the calculations respecting a body which moves
in so long and so eccentric an orbit, withdrawing from the sun in one part of its course, to a
distance almost double that of the Herschel, and approaching in another part, within a
distance less than that of Venus, astronomers differ a little in their predictions of the time of
its next return, though only by a few days out of more than seventy-six years. Baron
Damoiseau himself, by a later calculation, in which he allowed for the attraction of the earth,
was led to alter his former result from the 16th to the 4th of November; and M. Pontecoulant,
in a recent and elaborate memoir, which has received the prize of the French Academy of
Sciences, as the memoir of Damoiseau did the prize of the Academy of Turin, has assigned
the 7th of the same month (November, 1835) as the time of the next passage. The Comet
will, no doubt, be seen before that passage, but it seems to have been gradually wasting away,
at least diminishing in brightness, from period to periodÐso that we need not hope to see, at
its next return, appearances so terrible or splendid as those which history records of it.
Astronomers, however, will still regard it with deep interest, as a fresh trial of their theories
on a large scale, and as a new witness (probably) respecting the resistance of the ether, and
perhaps the disturbance of some planet too distant to be visible to us. The time, no doubt,
will come, when the few days of present uncertainty, in the predicted epochs of its secular
returns, will, by the progress of science, be reduced to a few hours, and these again to
narrower limits.

The perihelion passage of the Comet of Encke was predicted for the 4th of May, 1832; but
it was added, that the position of this faint Comet would be unfavourable for observations in
the northern hemisphere. Accordingly, in the treatise before us, we ®nd it remarked by M.
Arago, as it had been by Professor Encke, that the chief hope of seeing this Comet must rest
with the southern observatories of Paramatta and the Cape of Good Hope. These expecta-
tions have since been realized: the Comet, though not (we believe) perceived by any one in
Europe, was seen by Mr. Henderson, at the Cape, and by M. Mossotti, at Buenos Ayres, and its
position in the heavens agreed remarkably with the predictions of Encke, founded on the
combined theories of attraction and etherial resistance.

Having spoken of Encke's result respecting this etherial resistance, as a recent and
remarkable discovery, we must add, that the possibility of an ether, diffused through the
planetary spaces, had been conjectured by Newton; who, in the celebrated Queries, while he
attacks the hypothesis of a dense celestial ¯uid, as incompatible with the observed freeness and
continuance of the planetary motions, yet thinks it probable that an etherial medium exists,
far rarer and more elastic than our air. Thus, in the 22d query, he asks, ``May not Planets and
Comets perform their motions more freely and with less resistance, in this etherial medium,
than in any ¯uid which ®lls space adequately, without leaving any pores? And may not its
resistance be so small as to be inconsiderable? For instance, if this ether (for so I will call it)
should be supposed seven hundred thousand times more elastic than our air, and above seven
hundred thousand times more rare; its resistance would be above six hundred million times
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less than that of water. And so small a resistance would scarce make any sensible alterations in
the motions of the planets in ten thousand years.'' Again, in the 28th queryÐ``And therefore
to make way for the regular and lasting motions of the Planets and Comets, it is necessary to
empty the heavens of all matter, except perhaps some very thin vapours, steams, or ef¯uvia,
arising from the atmospheres of the Earth, Planets, and Comets, and from such an exceedingly
rare ethereal medium as we described above.'' But, notwithstanding these early conjectures of
one endowed with a sagacity so uncommon, the existence of an ether, or in other words, the
non-existence of a vacuum between planet and planet, remained long doubtful and doubted,
or rather disbelieved; and the establishment of the fact on a mathematical discussion of
astronomical phenomena, was reserved for our own days and for Professor Encke.

The Comet of Encke has another title to attention, as appearing to have established
another very remarkable fact in celestial physicsÐwhich seemed indeed to result from an old
observation of Hevelius, but was little noticed or believed till lately: the fact which we already
mentioned of a Comet's contracting with heat and dilating with cold, at least in its visible
dimensions. The treatise of M. Arago presents us with a little table of the observed
magnitudes of Encke's Comet, when approaching to the sun in 1828: from which it appears,
that on the 24th of December, in that year, the Comet was nearly three times nearer to the
sun than on the 28th of October; and yet that its volume, or bulk, when we may thus presume
it to have been exposed to a nearly ninefold increase of heat, was diminished to about the sixteen
thousandth� part of what it originally was.

M. Valz, an accomplished Astronomer, of Nismes, has endeavoured to account for this
extraordinary circumstance, by supposing that the ether, which in Encke's theory is consid-
ered to be denser near the Sun, exerts in that neighbourhood a more powerful compression
on the Comet; as a bladder, which seems full of air when on the top of a mountain, contracts
and falls in when brought down to a denser atmosphere. But against this explanation it has
been urged, that a compression of this kind requires an impenetrable envelope; the bladder,
we know, is air-tight, but where is the skin of the Comet? Sir John Herschel, if we are rightly
informed, has offered lately two other explanations of the phenomenon. He thinks that the
Comet of Encke, being little else than a fog or light cloud of vapour, may have its particles so
slightly connected, that, without any sensible cohesion among themselves, they describe each
its own parabola, or rather ellipse, about the Sun; the whole family of these elliptic paths
separating never far from each other, but more so as they recede from the sunÐa supposition
which does not seem to contradict any known law or principle, and which, if admitted, would
account for a real decrease of dimension of the groupe of cometary particles, when approaching
independently to the Sun. But, secondly, it is suggested by Herschel, that this decrease may
perhaps not be real, but only an optical illusion, arising from increased transparency. In fact, if
the Comet were perfectly transparent, we could not see it at all, though we might, perhaps,
conclude by calculation, that it was interposed between us and a star, from some observed
refraction. If, then, the increase of heat should quite remove the slight defect of transparency
which before existed, in a large part of the cometary vapour, it is plain that a real increase of
volume might be accompanied with an apparent diminution; and that thus the observed
optical fact respecting this singular body might be reconciled with terrestrial analogies.

� Not sixteen millionth, as in the Translation. A few other strange mistakes occur in the English
version, though it seems to be generally faithful, and is written in a spirited and pleasant style.
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As we have mentioned the observed return of this Comet of Encke, in the summer of last
year, our readers may be glad to know that Biela's Comet alsoÐthe last of those spoken of
aboveÐwhich was expected to pass its perihelion on the 27th of November (1832), has been
seen, though only with powerful telescopes, and has been found to follow nearly the path and
time which calculation had assigned. It was perceived ®rst by Sir John Herschel, on the 23d of
last September, and afterwards (though with great dif®culty, from its faintness,) by other
Astronomers. Professor Nicolai, of Manheim, has concluded from his observations, that it
passed its perihelion on the 26th of November, that is, about a day sooner than the time
predicted by Baron Damoiseau. Even this small difference between theory and observationÐ
this anticipation of a day in an orbit of nearly seven yearsÐwill (there can be little doubt)
disappear hereafter, when instruments and methods shall be improved, and especially when
allowance shall be made, in the case of this as of Encke's Comet, for the accelerating effect of
the ether already mentioned. For, strange as it must appear on the ®rst view, that a Comet
should come sooner to its perihelion because it is resisted, yet Astronomers are unanimous that
such must be the effect of an ether. The dif®culty of understanding how resistance can ever
produce acceleration, arises from not attending to another antagonist power (in this case the
attraction of the Sun,) which is, as it were, provoked into stronger action. The immediate and
direct effect of the resisting ether is indeed to retard; and if the Comet were con®ned to one
particular path, like a bead strung upon a wire, there would then be nothing to compensate
for the retardation, and the arrival at perihelion would be delayed; but, in reality, the Comet
being free to obey the solar attraction, which has not now so great a centrifugal force to
overcome, the orbit is diminished in its dimensions, and the perihelion is changed in place ; and, at
the same time, the increase of attraction arising from diminished distance produces an indirect
increase in the velocity, which is more than enough to make up for the former direct
diminution. The subject may be illustrated by the motions of pendulum clocks, which are
found to go faster and gain, when they are about to stop for want of oil; the direct retarding
effect of the clogging of the wheels being more than compensated by the indirect accelera-
tion produced by the shortening of the swing.

Besides the Comets of Encke and Biela, another faint telescopic Comet was seen in 1832. It
was discovered on the 19th of July, by Gambart, at Marseilles, and passed its perihelion in
September. Its orbit appears to be parabolic, or nearly so, and, consequently, it can never
return, or not till after many ages. Encke's Comet will return in 1835, and Biela's in 1839.

We regret that our limits will not permit us to extract from M. Arago's work, any of his
humerous pleadings in favour of Comets, that is for their utter innocence and insigni®cance in
the great physical changes which the earth has undergone, and even in the more modern
and less important changes of weather and of temperature. Under this latter head, of
atmospheric changes, which by some have been attributed to Comets, the treatise contains
many curious facts respecting the great European fogs of 1783 and 1831; and also respecting
the harmattan, a periodical wind which blows from Africa to the Atlantic, remarkable for its
extreme dryness, and for disinfecting qualities; which, as the Translator ingeniously remarks,
might, perhaps, be practically applied to the prevention or cure of many contagious diseases,
if the harmattan were chemically analysed. But we think that enough has been said to
convince our readers of the entertainment and information to be found in this little volume,
and that they will join with us in thanking Colonel Gold for introducing the work to the
notice of the British public.
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XXXIV.

ON THE DAY OF THE VERNAL EQUINOX AT THE TIME OF THE

COUNCIL OF NICE (1842)

[Communicated May 9, 1842]:
[Proceedings of the Royal Irish Academy 2, 249±250 (1844).]

The President made some remarks on the day of the Vernal Equinox at the time of the
Council of Nice [Nicaea].

It has been stated by some eminent writers on astronomy, for example by Brinkley and
Biot, and seems to be generally supposed, that the vernal equinox in the year 325, a.d. fell on
the 21st of March. But Sir W. Hamilton ®nds that Vince's Solar Tables (or Delambre's, from
which those are formed) conduct to about 21

4 hours before the Greenwich mean noon of the
20th of March, as the true date of the equinox in that year; which thus appears to have been
assigned to a wrong day, by some erroneous computation or report, perhaps as long ago as
the time of the phenomenon in question.

As this result is curious, Sir W. Hamilton conceives that it may not be uninteresting to
con®rm it by a very simple process of calculation, derived from the Gregorian Calendar.
According to that calendar, 400 years contain 146097 days, being a number less by 3 than that
of the days in four Julian centuries; and if the farther re®nement be adopted, which some
have suggested, of suppressing the intercalary day in each of the years, 4000, 8000, &c., then,
in the calendar thus improved, 4000 civil years will contain 1460969 solar days. Assuming
then, as a suf®ciently near approximation, that such is the real length of 4000 tropical years;
multiplying by 3, and dividing by 8, we ®nd that 1500 tropical years are equivalent to 547863
days and a fraction; which fraction of a day, according to this simple arithmetic, would be
equivalent to 9 hours. But 1500 Julian years contain 547875 days, that is, 12 more than the
number last determined; and these 12 days are precisely the difference of new and old styles
in the present century. If, then, we neglect the fraction, the new-style date of an equinox in
any year of the nineteenth century ought to be the same with the old-style date of the same
equinox in the corresponding year of the fourth century; and in particular the vernal equinox
of 325 ought to have fallen on the 20th of March, because that of 1825 fell on the day so
named: while the fraction of a day above referred to, though not entirely to be relied on,
renders this result a little more exact, by throwing back the equinox from the evening to a
time more near to noon.



XXXV.

ON APPROXIMATING TO THE CALCULATION OF ECLIPSES (1844)

[Communicated May 27, 1844]
[Proceedings of the Royal Irish Academy 2, 597 (1844).]

The President communicated a method of mentally approximating to the calculation of
ancient eclipses, and applied it to the eclipse of the moon recorded by Tacitus as having
happened soon after the death of Augustus.



XXXVI.

ON THE NEW PLANET, METIS (1848)

[Communicated May 22, 1848]
[Proceedings of the Royal Irish Academy 4, 169 (1850).]

Sir William R. Hamilton handed in the following diagram, representing (rudely) the manner
in which the planet� Metis was seen on April 28, 1848, in an inverting telescope:

On April 30, 1848, the other seven stars, a, b, c, d, e, f, g, of this group, retained their
respective positions; but the planet Metis had withdrawn from the position p, and had left the
(circular) ®eld indicated above, in the direction of the arrow.

The planet was thus seen at the Observatory of Trinity College, Dublin, in consequence of
information from the discoverer, Mr. Grahamy, principal assistant to E. J. Cooper, Esq{.

Fig. 1

� [In modern parlance: Asteroid 9 Metis.]
y [Andrew Graham, 1815± .]
{ [Edward Joshua Cooper, 1798±1863.]



XXXVII .

REMARKS, CHIEFLY ASTRONOMICAL, ON WHAT IS KNOWN AS THE

PROBLEM OF HIPPARCHUS (1855)

[Hermathena (Dublin) 4, 480±506 (1883).]
To the Editor of `Hermathena.'

My dear Sir,
Among the papers of Sir W. Rowan Hamilton which are in my hands, I ®nd two

bearing titles connecting them with The Problem of Hipparchus. They are incomplete; but I
send them for your perusal, thinking that they may be deemed by you suited to publication in
the pages of `Hermathena'.

In sequence with them is a manuscript book containing an extended discussion of a
problem of Snellius, `having much af®nity to' that of Hipparchus, but which, in contra-
distinction to the astronomical character of the latter, is called by Sir William Hamilton a
geodetical problem; the distances from the observer to the things observed being what was
sought, instead of the central point of the excentric or epicycle.

Sir William Hamilton took much delight in studying the Almagest of Ptolemy, and expressed
admiration of his mathematical powers, and of the justice done by him to the astronomical
discoveries of his predecessor Hipparchus. The papers I send may be regarded as evidencing
the Author's respect for these ancient men of science, and also possess an interest as
exhibiting Hamilton at work upon matter strictly astronomical, instead of on the higher
mathematics, which more generally occupied his attention. I may remark, however, that he
considered himself, by his Essay on Dynamics, as well as by other scienti®c memoirs, to have
earned a place in the history of Physical Astronomy, and not to have been, as by some he has
been thought to be, an originator only in the region of pure mathematics.

I am able to report that Dr. Ball, our present Royal Astronomer, is of opinion that value,
both intrinsic and personal, attaches to these papers of Hamilton; and I may add my belief,
that an examination by competent persons of the scienti®c manuscripts of Hamilton in my
hands and in the Library of Trinity College, would not improbably be rewarded by the
discovery of other unpublished work that ought to be rescued from oblivion. I have heard
with great satisfaction that such an examination is contemplated by the authorities of the
University: it would give me pleasure to contribute towards it every facility in my power.

I remain,
Very faithfully yours,

R. P. Graves.
i, Winton-road, Dublin,

7th July, 1883.



Remarks, Chie¯y Astronomical on What is Known as the Problem of Hipparchus

} I.ÐOn the Mean Motions of the Sun and Moon, as Determined by Hipparchus, and Recorded in the
Almagest of Ptolemy

1. Hipparchus� estimated the length of the tropical year as falling short, by one day in three
hundred years, of the old approximate amount, best known to us as the Julian, of 365 days
and a-quarter. He therefore conceived that 300 revolutions of the sun in longitude occupied

300 3 365� 75ÿ 1 � 109574 days;

or that 150 tropical years were � 54787 days; whence the mean daily motion of the sun in
longitude is

150 3 3608

54,787
� 08 599 8 0 17- 13iv 12v 31vi,

as, in fact, he foundy it to be, though probably by a very different arithmetic.
2. Astronomers before HipparchusÐyÈOÄ^ fÎOÄ �AÄSÏAÄOÄÎIÂryÈOÄ , as described by Ptolemy{Ð

namely, the Chaldeans, as is commonly supposed, or the Greeks, perhaps Meton, as is
conjectured by Delambre,§ who, in the absence of evidence in their favour, is not disposed to
concede even so much of accurate and mathematical knowledge to the Chaldeans as would
be involved in their understanding what goes to the name of their own Saros,k had conceived
that in a certain Period of a little more than 18 years, but more exactly in one of 65851

3 days,}

the following lunar revolutions were accomplished. The moon had gained (it was supposed)
223 circumferences on the sun, or had performed 223 complete lunations, by having
described 241 circumferences of the ecliptic, with a surplus of about 108 409, as compared
with the ®xed�� stars (�rNêÎ yÈOê AÄ\ �SÏAÄUÂ IÂ~éê AÄ\ úÎ õÈ�AÄê), while the sun had described only
18 circumferences, with the same sidereal surplus. In this interval it was thought that the
moon had gone 239 times through her knownyy alternations of slow and quick motion in
longitude, or had described 239 revolutions with respect to its (variable) place of slower
motion, as referred to the ecliptic; or had accomplished 239 restitutions of anomaly.

It was believed also by some astronomers before Hipparchus, that in the same period, called
the Chaldean, and which, in fact, the Chaldean observers are likely enough to have recognized
at Babylon, as approximately bringing back eclipses of the moon (whether they knew, or even
suspected, anything of all these mathematical conceptions of the lunar motions, more probably
due to the Greeks), that the moon accomplished 242 restitutions of latitude,{{ or (as we should

� See Halma's edition of the Almagest, Paris, tome i. page 164, to which work other references shall
be made, sometimes by tome and page, at other times by book and chapter, or by both.
y Almagest, tome i. p. 166, Book iii. chap. ii. (sÏyÈOÄ rù̂UÂ �o UÂ OÁ 9 OÂ 99 OÄ ê999 OÄ �9999 OÄ aÄ99999 SÏAÄ 999999 f��OÄ EÃAÄ).
{ Alm., tom. i. p. 215, book iv., chap. ii.
§ Hist. of Anct. Astry., by Delambre, tome ii., Paris, 1817, p. 144. This volume will for the present be

referred to simply as `Delambre.'
k Brinkley's Astronomy, &c. } Ptolemy, vol. i. p. 216. �� Ibid.
yy Delambre doubts whether the Chaldeans had ever noticed these variations in the longitudinal

motion of the moon at all; and indeed the discovery of them, but still more any theory to account for
them, seems more likely to be due to the Greeks (Delambre ii. p. 143).

{{ Ptolemy, vol. i. p. 216.
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now express it) performed 242 complete revolutions with respect to its ascending node; the
node (as we should now say) having thus regressed once (242ÿ 241 � 1) in the course of the
Chaldean Period.

3. It could not, of course, have been with any hope of improving the astronomical accuracy,
but only of increasing the arithmetical convenience of such determinations as these, that some
astronomer (perhaps Meton) before Hipparchus (one of the `yet more ancients' already
referred to, as mentioned by Ptolemy in the Almagest) proposed to triple� all the numbers,
for the sake of escaping from fractions. It had thus been collected, as a mere numerical
inference from former results, that in a certain longer period, called 'eÂYÈIÂSÏOÄ �sÏê (�
Evolution), consisting of 19756 days, the moon performed 669 lunations, or gained 669
circumferences on the sun; the moon describing 723 times the ecliptic, but the sun only 54
times, with a common sidereal surplus of 328. The moon was also calculated to make, in the
same tripled period, or `Exeligm,' of 19756 days, 717 restitutions of anomaly, and 726
restitutions of latitude. But all these estimates, though originally not quite useless, came to be
set aside by Hipparchus, in his deeper study of the subject.

4. In their stead, Hipparchus introduced into the theory of the moon's mean motions two
other principal periods: one relating chie¯y to the `restitution of the anomaly,' but involving also
means for a more accurate determination of the mean returns of the moon to the sun, or of
the length of a mean lunation; and the other referring to what was called (as above
mentioned) the `restitution of the latitude.' The ®rst, or anomalistic period, of Hipparchus
consisted, according to Ptolemy, of 126,007 days and about an hour.y Ptolemy does not even
insert, in his mention of it, as regards the surplus hour, the usual f��OÄ úÎ AÄ , but I ®nd myself
obliged to believe that Hipparchus had designed this period to consist, very exactly, of 126,007
days, one hour, ®ve minutes, and three and one-third seconds, such as those by which we now
count time; and that Ptolemy suppressed the ®ve minutes odd, as being of very slight
astronomical importance in a period of about 345 tropical years; though I ®nd myself obliged
to restore this tri¯ing surplus, in so long an interval, as what appears to me a correction of the
lost text of Hipparchus, on this particular subject, as reported in the Almagest; because thus,
and thus only, I can recover by calculation the mean motions there recorded, to the very sixth
of the sexagesimal division. Be that as it may, from the comparison of ancient Babylonian
eclipses of the moon with others observed, some centuries later, by himself, Hipparchus
inferred that in his ®rst period, of about 126,007 days, the moon accomplished 4573
restitutions of anomaly, and 4267 complete lunations; having described the ecliptic 4612
times, with a defect of about 71

28, as compared with the ®xed stars, inclination being here
neglected; while the sun had only moved through 345 circumferences, with the same sidereal
de®ciency. His second, or latitudinal period, after which the lunar eclipses were observed to
return with nearly the same magnitudes as before, consisted of 5458 lunations,{ wherein the
moon was found by him to accomplish 5923 restitutions of latitude, or revolutions with
regard to its regressing node.

5. If we divide the period of 126,007 days and an hour by the number, namely 4267, of
lunations which it was found to contain, we shall obtain a quotient which exceeds

29d 12h 44m 3s,

� Ibid. y Ptolemy, vol. i. p. 216. { Ptolemy, vol. i. p. 216.
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by somewhat more than a quarter of a second of time. But whether it were that Hipparchus
suspected that the surplus hour of his ®rst period required to be a little increased, or merely
that he wished to combine, with a suf®cient accuracy of determination, a more manageable
expression, he adopted (what with our division of the day is equivalent to) the exact third part
of a second, as what was to be added to the approximate quotient above mentioned. His
adopted value of the mean lunation was then, in our notation, exactly

29d 12h 44m 31
3

s;

or in his more purely sexagesimal� division of the day,

29d � 31d

60
� 50d

602
� 8d

603
� 20d

604
;

the hour of the period coming thus to be increased, as I have already said, by 5m 31
3

s, in above
345 years. In vulgar fractions, each expression becomes,

Mean lunation � 29d 13754

25920
� 765434d

123:15
:

6. Dividing the whole circumference by this number of days (and fractions of a day) in the
mean lunation, I ®nd:

Mean daily motion of the moon, in elongation from the sun,

� 25920 3 3608

765433
� 128 119 26 0 41- 20iv 17v 59vi

� 568771489079vi:

And adding to this quantity, the

599 8 0 17- 13iv 12v 31vi,

which were found, in Art. 1, to be the mean daily motion of the sun, we obtain,
Mean daily motion of the moon in longitude,

� 138 109 34 0 58- 33iv 30v 30vi:

And such are precisely the results of Hipparchus, respecting the mean motions of the moon in
elongation and in longitude, as recorded in the Almagesty of Ptolemy. (YYÈyÈsÏIÂUÂ AÄ\ �yÈ�~çê
sÏõÈúyÈUÂ OÂ̂ sÏIÂrûúOÄ yÈUÂ kOÃ UÂ OÂ sÏAÄ , sÏyÈOÃ �AÄê OÄ �â OÄ AÄ 9 kê99 sÏAÄ 999 k9999 OÄ IÁ99999 UÂ OÁ 999999 RYÈyÈsÏIÂUÂ

OÂ̂ sÏIÂrûúOÄ yÈUÂ sÏõÈúyÈUÂ kOÃ UÂ OÂ sÏAÄ sÏûkyÈÏê, sÏyÈOÃ �AÄê OÄ �ã OÄ 9 SÏ�99 UÂ OÂ 999 SÏ�9999 SÏ99999 SÏ999999 f��OÄ úÎ AÄ).
7. In the anomalistic period of 126,007 days, Hipparchus had found (Art. 4) that there

were 4573 restitutions of the moon's anomaly, but only 4267 returns to opposition with the
sun: the mean motion in anomaly was, therefore, concluded to be more rapid than the mean
motion in elongation, in the ratio of 4573 to 4267, or of 269 to 251. Increasing, therefore, the
last-mentioned motion in this ratio, I ®nd:

Mean daily motion of the moon in anomaly,

� Ptolemy, vol. i. p. 223. y Ptolemy, vol. i. p. 223.
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� 269

251
3 568, 771, 489, 079vi � 609, 559, 882, 718vi

� 138 39 53 0 56- 29iv 38v 38vi;

and such, to the very sixth, is the result� of Hipparchus (RYÈyÈsÏIÂUÂ kAÄM AÄ\ UÂ ãsÏAÄSÏOÃ AÄê
OÂ̂ sÏIÂ�ûúOÄ yÈUÂ sÏõÈúyÈUÂ kOÃ UÂ OÂ sÏAÄ , sÏyÈOÃ rAÄê OÄ �ã �9 UÂ �99 UÂ ê999 kOÁ 9999 SÏOÂ 99999 SÏOÂ 999999). And by
subtracting this mean motion in anomaly from the mean motion in longitude, namely, from
138 109 34 0 58- 33iv 30v 30vi, we obtain:

Mean daily progression of the moon's apogee,

� 08 69 41 0 2- 3iv 51v 52vi;

the word `apogee' being here used unhypothetically, to express merely that variable and
progressive point of the ecliptic where the moon was observed to move most slowly in
longitude.

8. Finally, the latitudinal period of 5458 lunations, with 5923 restitutions of latitude, gives,
in exact agreement with what Hipparchus determined it to be,y

Mean daily motion of the moon with respect to its ascending node,

� 5923

5458
3 568, 771, 489, 079vi � 617, 228, 569, 039vi

� 138 139 45 0 39- 40iv 17v 19vi:

(RYÈyÈsÏIÂUÂ kAÄM �SÏEÂÎ yÈÏê OÂ̂ sÏIÂ�ûúOÄ yÈUÂ sÏõÈúyÈUÂ kOÃ UÂ OÂ sÏAÄ , sÏyÈOÃ rAÄê OÄ �ã OÄ �9 sÏIÂ99 SÏOÁ 999 sÏ9999 OÄ IÁ99999
OÄ OÁ 999999).

Whence, by subtracting the mean motion of the moon in longitude, it may be inferred, as a
consequence of the foregoing data, that

Mean daily regression of the moon's node,

� 08 39 10 0 41- 6iv 46v 49vi:

But of course all these results have merely an arithmetical accuracy, as being consistent among
themselves, and cannot be relied on as astronomically correct, to anything like the extent to
which they have been developed.

9. As regards the node, I may remark that Hipparchus's ratio of 5923 to 5458 is very nearly
the same as that of 777 to 716, which many years ago occurred to me, from more modern
data, as approximately expressing the rate of the moon's mean gain upon its ascending node,
as compared with its mean gain upon the sun, and which I have often found useful in the

mental or approximate calculation of the returns of eclipses of the moon. Let the arc
ð

358
,

which is little more than half a degree, be called, for conciseness, a moon-breadth (or
sometimes simply a `moon'); then, in one mean lunation, one satellite, on an average,
overtakes a given (say the ascending node), and passes it by 61 `moon-breadths'; that is, by
about a sign of the zodiac, rendering thus the return of a lunar eclipse impossible, after so
short an interval. After six lunations, supposed, for simplicity, to commence with the moment
of one central and total eclipse in the ascending node, the moon has gained 6 3 61 � 366

� Ptolemy, vol. i. p. 223. y Ibid.
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moonbreadths on that node, or has passed the opposite (the descending node), by
366ÿ 358 � 8 such parts, � about 4 degrees, rendering thus the return of an eclipse certain.
After 12 lunations, or one lunar year, the moon has passed the original node by 16 moon-
breadths (of the kind above described), � about 8 degrees, and an eclipse must again take
place. After 18 lunations the opposite node is passed by 24 such spans: after 24 lunations the
original node is passed by 32 moon-breadths, and no eclipse can take place. After 48
lunations the excess on the ®rst node amounts to 64 such parts; and therefore (subtracting
61), after 47 lunations, the excess is only 3 parts (moon-breadths), and a great eclipse is
certain to recur. After 141 � 3 3 47 lunations the surplus on the original node amounts to
3 3 3 � 9 parts; and, therefore, subtracting 6 from the number of lunations, and 8 from the
number of parts, and changing the node, the moon is found to be only 1 moon-breadth
advanced beyond the opposite node, after 135 lunations; which interval is therefore a pretty
good period of eclipses of the moon, so far as mere nodations are concerned. The (so-called)
Chaldean Saros is a sort of complement of this little period; for in 358 lunations there are
(according to the approximations here adopted) 777 semi-nodations, bringing thus the moon
to the opposite node; subtracting, therefore, 135 from 358, and 1 from 0, and again reversing
the node, we ®nd that in 223 lunations the mean moon falls short of returning to its original
node by about one moon-breadth. All this I have occasionally lectured on.

} II.ÐOn Hipparchus's Hypothesis of the Excentric

10. Such being the chief mean motions (yÈ̂ sÏAÄSÏAÄM kOÄ UÂ ûúIÂOÄ ê) of the sun and moon, as
determined by Hipparchus, we have next to consider the hypotheses by which he sought to
account for, and reduce to calculation, the apparent inequalities (AÄ\ UÂ ãsÏAÄSÏOÃ AÄOÄ ) of the
observed motions of those two bodies. Plato is reported by Delambre� to have laid down the
principle, that the object of mathematicians ought to be to represent all the celestial
phenomena by uniform and circular motions. (. . . PtoleÂmeÂe, pour suivre le principe de
Platon, que l'objet des matheÂmaticiens doit eÃtre de representer tous les pheÂnomeÁnes ceÂlestes
par des mouvements circulaires et uniformes, . . .). The principle is worthy of Plato, and I
agree with Moebiusy and with Laplace in considering that it is only in appearance obsolete; but
I regret to be obliged to confess that I know not where, in Plato's works, the enunciation of it
is to be found. In the Almagest it is thus laid down, as having been at least adopted by
Ptolemy{:Ð�rOÁ IÂúOÄ UÂ sÏKUÂ kAÄM úkyÈ�NUÂ OÂ̂ �yÈ»sÏIÂOÁ AÄ �IÂ~éUÂÏ̂ �EÂr�IÂOÄ UÂÎ ~ùC sÏAÄOÁ OÂ sÏAÄÎ OÄ k~ùC
�IÂ~éYÈAÄOÄÎ J ÐAÄOÄ UÂ sÏIÂUÂ AÄ IÂ\UÂÎ ~ùC yÈÏ\ �AÄUÂ ~ùC �EÂUÂÎ AÄ , �OÄ \ yÈ̂ sÏAÄSÏ ~ùUÂ kAÄM IÂ\�kkSÏOÃ ãUÂ kOÄ UÂ ûúIÂãUÂ

AÄ\ �yÈÎIÂSÏyÈ»sÏIÂUÂ AÄ , . . . The author of the Almagest had, however, the advantage of the example of
his great master, Hipparchus, whom he is never weary of praising as `a labour-loving and
truth-loving man,' AÄUÂ OÂ r ÐOÄ SÏyÈ�yÈUÂ yÈê kAÄM ÐOÄ SÏAÄSÏOÂ OÁ OÂ ê; and whom we too must
reverence (in this nineteenth century of Christ), as the true founder of modern astronomy:
ancient, indeed, if 2000 years can make him such, but not less modern, in a deeper sense, than
Thucydides. Between Hipparchus and all known predecessors of his in astronomy the
difference is one of kind rather than of degree. Compared with him, the Chaldeans, for
instance, remind one of those children at play on the woody banks of the Orinoko, who were

� Delambre, vol. ii. p. 113. y Die Mechanik des Himmels. { Ptolemy, vol. i. p. 165.
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found by Humboldt rubbing the dry, ¯at, and shining seeds of a creeping leguminous plant
(he thought it might be the negretia) until they attracted ®bres of cottonwool and chips of
the bamboo, and thus exempli®ed `electricity by friction,' without having even begun to theorize
upon the subject.

11. Hipparchus selected the very simple and natural conception of which he seems to have
been, in the strictest sense, the author, and which Ptolemy scarcely improved by a modi®ca-
tion proposed by himselfÐthat the sun and moon moved each in a certain `excentric circle' of
its own, and that each described its own excentric uniformly. More precisely (see earlier
articles of this little Paper), he conceived that the sun's excentric circle was ®xed with respect
to the equinoctial points; for he had failed, and so did Ptolemy, to detect any progression of
the sun's apogee in longitude, which is no way to be wondered at, though the precession of
the equinoxes was one of the many discoveries of Hipparchus; and he regarded the sun as
describing its excentric at the uniform rate of 599 80 17- . . . for each mean solar day. The
moon's excentric was conceived by him to be described also uniformly, but at the greater mean
daily rate of about 138 39 540 (Art. 7), from apogee to apogee; while the lunar apogee itself, or
rather the projection of the apogee diameter of the moon's orbit on the plane of the ecliptic,
had a mean daily progression of about 69 410 in longitude. Hipparchus thus regarded the
apparent anomalies of the observed motions of the sun and moon as phenomena purely
optical; and doubtless it was right to try this mode of explanation before seeking for any more
re®ned one. That it is insuf®cient we, with the help of telescopes, can very easily establish. For
it would have given, in the theory of the sun, the equality which we now know not to exist:

Spring plus autumn � summer plus winter;

if by the word `spring,' as denoting an interval, be understood the time elapsed between the
vernal equinox and the summer solstice; and similarly in the other cases. Hipparchus,
however, supposed the equality to hold good; for he estimated the spring quarter of the year
as � 941

2 days; the summer quarter as 921
2 days; and deduced by a calculation to be soon

explained:

Autumn quarter = nearly 88 8
60 days (IÂ\UÂ OÂ̂ sÏõÈ�AÄOÄ ê �OÂ kAÄM OÂ 9)

and

Winter quarter = nearly 90 8
60 days (IÂ\UÂ OÂ̂ sÏõÈrAÄOÄ ê ê kAÄM OÂ 9)

the favourite `aÁ peu preÁs,' or m��OÄ êAÄ, being added. Indeed Hipparchus can have only
considered these results as rough approximations to the truth; for they would have given the
length of the tropical year

� 941
2� 921

2� 88 8
60� 90 8

60 days � 365 4
15 days;

whereas he was well aware (see Art. 1) that the surplus of the year was less than a quarter of a
day.

12. To determine the details of the sun's apparently anomalous motion (�IÂrMÎ ~çêÎ yÈÏ OÂ̂ SÏOÃ yÈÏ

ÐAÄOÄ UÂ yÈsÏõÈUÂ OÂ ê AÄ\ UÂ ãsÏAÄSÏOÃ AÄê), Hipparchus rested his whole weight on those two determina-
tions, which he had made with all the care in his power, and which Ptolemy, after more than
two centuries, found himself unable to improve, of the lengths (in days) of the two intervals
called lately `spring' and `summer.' Very rudely determined, no doubt, those intervals were;
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the observation of a solstice, even of the summer one, being still ruder in that age, and
indeed essentially more dif®cult still, than that of an equinox. It would, therefore, be merely
pedantic to attempt to improve, by a new calculation, on the numbers, 938 99, and 918 119,
which Hipparchus estimated as expressing the arcs of mean anomaly (or of mean longitude)
described by the sun during the spring and summer quarters of the year. The ®rst case,
therefore, of the

`Problem of Hipparchus, '

as actually and historically proposed and resolved by that great and venerable astronomer,
consists in ®nding the position of the excentric point (the earth's centre) at which two given
consecutive arcs, 938 99, and 918 119, of a given circle (the sun's excentric) shall subtend angles of
908 each, with the same apparent directions of motion.

13. In a question of so great historical interest, I may be permitted to transcribe the
diagram, which is preserved in the Almagest of Ptolemy.

In this diagram Figure 1 A, B, Ã,Ä represent the four points of the ecliptic (supposed to be
homocentric with the earth), to which the observer at the point E refers the four places of the
sun, at the moments of spring, summer, autumn, and winter; their longitudes being 08, 908,
1808, and 2708. The centre of the sun's excentric circle is supposed to be Z; the apogee, as
referred to the ecliptic, is H, and the perigee, so referred, is I; the true positions of the sun in
its excentric, at the moments of spring, summer, and autumn, are conceived to be Ö, K, Ë;
the diameters NTZÎO, and ÐÖZÓ, of the excentric are drawn parallel to the equinoctial and
solstitial diameters of the eclipse, namely, AÃ and BÄ; and to these are drawn parallel the
chords of the excentric, XÖK and �TÈ.

14. Hipparchus (as it has been said) adopted the values 938 99 and 918 110 for the arcs, ÈK
and KË, of the excentric circle of the sun, as computed from the observed times elapsed,
namely, as the arcs described between the observed spring equinox, summer solstice, and
autumn equinox, in virtue of the known (or assumed) rate of mean daily motion of the sun,
which is a consequence of the assumed length of the tropical year. He had thusÐ

(arc) È� � ÈN�OË � ÈK � KËÿNO � 938 99� 918 119ÿ 180 � 48 209;

(arc) XK � ÈK ÿÈX � ÈK ÿ KË � 938 99ÿ 918 119 � I8 589:

Hence, if the radius,

Fig. 1
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ZÈ � ZN � Z � ZÎ � ZÐ � ZK � ZO � ZË � ZÓ,

of the sun's excentric be taken for unity, we have nearly the numbers adopted by
HipparchusÐ

EÎ � ÈT � 1
2 chord ÈN� � 1

2 chord 48 209 � 2

60
� 16

602
;

ZÎ � ÖK � 1
2 chord XÐK � 1

2 chord 18 589 � 1

60
� 2

602
;

which last numbers might, however, have been more accurately determined, at least by
Ptolemy, from his Table of Chords in the Almagest, to have been, respectivelyÐ

EÎ � sin 28 109 � 2

60
� 16

602
� 6

603
;

ZÎ � sin 08 599 � 1

60
� 1

602
� 47

603
:

15. As neither Hipparchus, nor even Ptolemy, possessed any Table of Tangents, the right-
angled triangle was resolved by ®nding its hypotenuse on the famous Pythagorean principle. It
having been estimated that (with ZÈ � &c: � 1),

3600:EÎ � 136, � 3600 sin 28 109,

and

3600:ZÎ � 62, � 3600 sin 599,

it was inferred that

3600:EZ �
�����������������������
1362 � 622

p
� 1491

2, very nearly, � nearly 150;

whence EZ � 1
24, nearly. In other words, he judged that the distance between the centre of

the earth (E) and the centre of the sun's excentric (Z) equalled very nearly the 24th part of
the radius of that excentric circle: whence he inferred that the greatest equation of the
centre, or the greatest difference between mean and apparent longitude, was
(sinÿ1 1

24) � 28 239. This result would not have been materially improved by using more
accurate expressions for the sides about the right angle, EÎ and ZÎ, in the triangle. But the
slightly too large (assumed) value for the side EÎ, and the slightly too small (assumed) value
for the other side ZÎ, led Hipparchus to an expression somewhat too small for the longitude
of the apogee of the sun, as determined from his own data. He judged that longitude, ÎZH,
to be only 658 309; because he found that

ZÎ: EZ � 62: 1491
2 �

24

60
� 53

602
� 1

2

49

60
� 46

602

� �
� 1

2 chord 498 09 � sin 248 309;

and therefore judged the apogee to precede the summer solstice by 24 degrees and a-half.
16. The more accurate values for the sides about the right angle, which may be taken out

(as above) from the Table of Chords in the Almagest, would have given, however,

×
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216000:EÎ � 216000 sin 28 109 � 8166;

216000:EÎ � 216000 sin 599 � 3707;

\216000:EZ �
������������������������������
81662 � 37072

p
� 8968, nearly;

sine of greatest equation of centre

� 8968

216000
� 2

60
� 29

602
� 28

603
;

chord of same angle

� 4

60
� 58

602
� 56

603
� nearly

4

60
� 59

602
� chord 48 469,

and greatest equation of centre � nearly 28 239, as before;

but 2(ZÎ: EZ) � 2 3 3707

8968
� 49

60
� 36

602
� 11

603
� chord 488 509,

nearly, by the Table in the Almagest; so that (with the supposed data) the apogee preceded the
solstice of summer (that is, had less longitude) by only about 248 259, instead of 248 309; or the
longitude of the apogee ought to have been inferred to be, not 658 309, but 658 359.
Hipparchus, however, was probably well aware that it was idle, astronomically, to insist on an
accuracy of minutes, in a result of calculation from observed data, which might easily permit a
®nal error of degrees.

17. Our modern tables of logarithmic sines and tangents give easily the same greatest
equation, 28 239, answering to the same approximate excentricity, 1

24; and also the same
(corrected) longitude of the apogee, 658 359, as above. Let e � sin å � excentricity � distance EZ
of centres, divided by the radius ZÈ of the excentric; let ù � longitude of apogee, � AEH �
ÎZE � 908ÿ ZEÎ; and, ®nally, let 908� é � ÈK � mean motion in spring quarter, and
908� é9 � KË � mean motion of the sun in the summer quarter of the year: these latter arcs
being computed from the observed number of days elapsed, with the help of the known
mean daily motion, derived from the length of the year. Then the equations for this case of
the `Problem of Hipparchus' are simply these two:Ð

e sinù � sin
é� é9

2
; e cosù � sin

éÿ é9

2
;

giving, of course, tanù � sin
é� é9

2
: sin

éÿ é9

2
.

Hipparchus assumed é � 38 99; é9 � 18 119; whence

é� é9

2
� 28 109;

éÿ é9

2
� 599;

tanù � sin 28 109

sin 599
� tan 658 359;

e � sin å � sin 28 109

sin 658 359
� sin 599

cos 658 359
� 1

24
;

å � 28 239: all as before:
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log sin 28 109 � 8:57757ÿ 10;

log sin 599 � 8:23456ÿ 10;

log tan 658 359 � 10:34301ÿ 10;

taking out this angle to the nearest minute.

log sin 28 109 � 8:57757ÿ 10;

log sin 658 359 � 9:95931ÿ 10;

8:61826ÿ 10

(Mean)log sin(å � 28 239) . . . 8:61824ÿ 10:

log sin 599 � 8:23456ÿ 10;

log cos 658 359 � 9:61634ÿ 10;

8:61822ÿ 10

(Compt:)eÿ1 � 24:086 . . . 1:38176:

} III.ÐOn the Problem of Hipparchus

18. The Problem, which was resolved two thousand years ago by Hipparchus, and which is at
this day known by his name, may be thus stated:Ð

`Given, in degrees, &c., the angles which two successive arcs, AB, BC, of a given circle ABC,
subtend at an excentric point D, as well as at the centre E of the circle, directions of rotation
being included: to ®nd the position of the excentric point'.

More fully, if we write [see Figure 2]

ADB � è, BDC � è9, AEB � é� è, BEC � é9� è9,

DBE � k, EDB � í, ED : DB � e,

the four angles è, è9, é, é9 are given, with their respective algebraic signs; and the two angles k,
í, and the ratio e, are sought. In the astronomical applications, if we retain Hipparchus's own
hypothesis of the excentric, è, è9 are the two observed or geocentric motions in longitude, in
two successive intervals of time, diminished (for the moon) by the computed progressions of
the apogee, in order to render the two extreme observations (at A and C) comparable with
the middle observation (at B), by allowing for the supposed progressive motion of the
excentric; é, é9, are the computed mean motions in longitude, minus the observed motions in
longitude; whence also é� è, é9� è9, are equal to the computed mean motions in anomaly,
since these are the mean motions in longitude, minus the progressions of the apogee, in the
intervals between the three observations (from ®rst to second, and from second to third);
thus the four angles è, è9, and é, é9, with their algebraic signs, are known, without trigonometry,
from observation and arithmetic: and as regards the three sought quantities, k, í, e, the ®rst,
namely, k, is the correction for excentricity (or equation of the centre), at the time of the
middle observation, to be algebraically added to the observed longitude, or to the angle.
ë � Y DB, in order to obtain the mean longitude, k� ë � Y 9EB (where Y 9 may be confounded
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with Y ), the second sought angle, í, is the apparent or geocentric anomaly, EDB or FDB, at the
time of the same middle observation; so that

ëÿ í � ù � Y DF � Y 9EF � longitude of apogee at that time;

also

k� í � FEB � mean anomaly of the body at the middle time;

so that if m denote the mean daily motion in anomaly, and t the middle time, expressed in

days, and counted from some ®xed era, t ÿ k� í

m
is the date of the apogean passage; ®nally, e

may be called the numerical excentricity of the orbit; and in Hipparchus's own hypothesis
(though not in Ptolemy's modi®cation of it, by epicycles) this excentricity was less than unity (the
earth being interior to the excentric, although exterior to the epicycle), so that we may write (as
in former articles) e � sin å, where å � greatest equation of the centre.

19. It is evident that EDA � íÿ è, and EDC � í� è9; and it is not dif®cult to prove that
DAE � kÿ é, DCE � k� é9; in fact, it is clear that é, é9, as being the excesses of the mean over
the observed motions in longitude, must be the (algebraical) increments of the correction
(k) for excentricity (applied as above), in the intervals between the three observations. Since
then we had also EDB � í, DBE � k, and DE � e � sin å, if EA � EB � EC � 1, the three
equations of the Problem are as follows:Ð

(I):

sin(kÿ é) � sin å sin(íÿ è); (1)

sin k � sin å sin í; (2)

sin(k� é9) � sin å sin(í� è9); (3)

8><>:
which are now to be resolved by trigonometry, so as to deduce the 3 angles k, í, å, from the 4
angles è, è9, é, é9. And to render the question still more de®nite, it is permitted to assume that
å is positive and acute, and that k lies between the limits �å.

20. In the solar example of Hipparchus, è � è9 � 908; also ë � 908, ù � 908ÿ í;

sin(éÿ k) � sin(é9� k) � sin å cos í � sin å sinù; k � éÿ é9

2
; and the general equations (I.) take

(as in Art. 17) the simpli®ed forms,

sin å sinù � sin
é� é9

2
, sin å cosù � sin

éÿ é9

2
,

giving ù � 658 359, å � 28 239, as before, if é � 38 99, é9 � 18 119. But, of course, the general
solution cannot be expected to be so simple.

Fig. 2
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21. In general, the identity,

sinè9 sin(íÿ è)� sin è sin(í� è9) � sin(è� è9)sin í, (4)

makes it easy to eliminate í and å between the three equations (I.), and gives,

sinè9 sin(kÿ é)� sinè sin(k� é9) � sin(è� è9)sin k, . . . (5)

whence

D:cot k � sin è9 cos é� sinè cos é9ÿ sin(è� è9), . . . (6)

if

D � sinè9 sin éÿ sinè sin é9, . . . (7)

and this result, though not in the received and technical sense, adapted to logarithms, I have
found not ill-suited to calculations with the usual logarithmic tables. We have also,

D:tan(í� 908) � cos è9 sin é� cos è sin é9ÿ sin(é� é9), . . . (8)

with the same denominator, D; but when k has once been computed, by the foregoing or by a
better method, to be presently explained, we may more conveniently deduce í from it, by any
one of the three following formulñ, which follow easily from the original system (I.):Ð

(II:)

tan íÿ è

2

� �
� tan

è

2
cot

é

2
tan kÿ é

2

� �
, . . . (9)

tan í� è9

2

� �
� tan

è9

2
cot

é9

2
tan k� é9

2

� �
, . . . (10)

tan í� è9ÿ è

2

� �
� tan

è9� è

2
cot

é9� é

2
tan k� é9ÿ é

2

� �
, . . . (11)

8>>>>>>>>><>>>>>>>>>:
and may serve as veri®cations of each other. With tables of natural sines, the angle k might be
easily computed from the formula, derived from the equations (6) and (7),

cot k � sin(è9ÿ é)� sin(è9� é)� sin(è� é9)� sin(èÿ é9)ÿ 2 sin(è� è9)

cos(è9ÿ é)ÿ cos(è9� é)� cos(è� é9)ÿ cos(èÿ é9)
(12)

And there would be an analogous expression for tan(í� 908). When k and í have been
found, the original equations give three distinct expressions for sin å, which may be used as
checks on each other. If we dispense with all such veri®cations, and have no natural sines at
hand, the system (6 and 7) requires six openings of a table of logarithmic sines (sin é and cos é
being taken out at one opening, and sin é9, cos é9 at another); it requires also 7 openings, of a
table of logarithms of numbers, or (in all) 13 openings of tables, in order to compute the
angle k: after which 4 openings will give í, by (9); and then 3 more openings will enable us to
compute å by (2). Instead of these 20 openings of logarithmic tables, Delambre has supplied
a method which requires essentially only 17 different logarithms; but his method appears to
me to be much embarrassed by constructions, which render it dif®cult to adapt the process to
new varieties of the ®gure, without recommencing the reasonings. I shall, therefore, mention
here a second method of my own, in which only 8 logarithms are required for the calculation
of k from the equation (5), and therefore only 15 logarithms in all; unless (as will always be
prudent) we choose to employ formulñ of veri®cation, which my method also furnishes. No
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reference whatever to a ®gure need be made, if once the algebraical signs of the given angles
è, è9, é, é9 have been determined, as already explained.

22. Writing the equation (5) under the form,

sin è9fsin k cos è� sin(éÿ k)g � sin èfsin(é9� k)ÿ sin k cos è9g, (13)

and adding, on both sides, cos k sin è sin è9, we ®nd

sinè9fsin(è� k)� sin(éÿ k)g � sin èfsin(é9� k)� sin(è9ÿ k)g, (14)

that is,

sinè9 sin
è� é

2
cos k� èÿ é

2

� �
� sin è sin

è9� é9

2
cos kÿ è9ÿ é9

2

� �
: (15)

Hence

(III:)

tan k� èÿ éÿ è9� é9

4

� �
� tan(îÿ 458)cot

èÿ éÿ è9ÿ é9

4
, (16)

if tan î �
sin è9 sin

è� é

2

sin è sin
è9� é9

2

; (17)

8>>>>>>><>>>>>>>:
and we see that this system (III.) requires only 8 different logarithms, for the calculation of k.
Any one of the 3 equations (II.) will then give í, by 4 other logarithms; and all the 3 equations of
that system may be used as checks on each other. And, ®nally, any one of the 3 original equations
(I.) will give å, by 3 logarithms; only 15 logarithms being thus essentially required, in this Second
Method of mine. If, however, for any reason, we wish to calculate, though not really required for
the astronomical purpose of Hipparchus, the distance, r � DB, from the earth to the body observed,
at the middle time, it is easily found that we may do so by either of the two following formulñ:Ð

(IV:)

DB � r �
2 sin

è� é

2
sinè

cos k� èÿ é

2

� �
; (18)

or, r �
2 sin

è9� é9

2
sin è9

cos kÿ è9ÿ é9

2

� �
; (19)

8>>>>>><>>>>>>:
and thus shall introduce 2 new logarithms, raising the total to Delambre's number of 17. In
fact, it will be found that

/BAD � ð

2
ÿ è� é

2
ÿ (kÿ é) � /BAE ÿ/DAE , (20)

and

/DCB � ð

2
ÿ è9� é9

2
� (k� é9) � /ECB �/DCE ; (21)

while the arcs AB, BC, of the excentric are è� é, and è9� é9, respectively.

NOTES AND EXAMPLES CONNECTED WITH THE PROBLEM OF HIPPARCHUS.

In the original Problem of Hipparchus, the points here represented by A, B, C were three
positions of the sun or moon, in the ®xed or moveable excentric but circular orbit of that
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body, reduced to one common date, by allowing when necessary for the progression of the
apogee; D was the ®xed centre of the earth, and E was the centre of the excentric circle,
supposed to be ®xed (in longitude) for the sun, but to advance uniformly in longitude at a
mean daily rate of about 69 410 for the moon; while F (in the present ®gure [Fig. 3]) denotes
what was supposed to be the ®xed or revolving apogean point of the circle. The two angles
AEB, BEC, were known by computation from the two observed intervals of time between three
observations of longitude of the body (equinoxes and solstices were selected for the sun,
eclipses for the moon), combined with the known (or supposed) mean daily motion in
anomaly (599 8 0 for the sun, 138 39 54 0 for the moon); these angles being conceived by
Hipparchus to be described uniformly about the ®xed or revolving centre E, in respect of the
apogee F, according to the order of the signs, and therefore from right to left as seen as in a
northern latitude, whereas the present ®gure exhibits the contrary rotation.

The two other angles, ADB, BDC, subtended by the same two chords of the excentric circle,
not at its own centre, but at the centre of the earth, were the observed motions in geocentric
longitude, diminished (in the case of the moon) by the before-mentioned progressions of
the apogee, in order to make the observations comparable, by reduction of them to a
common date. Thus, the problem which was (really and historically) proposed and solved by
Hipparchus was this:ÐFrom the four known angles, subtended by the two chords, AB, BC, of
the (reduced) excentric, at the centre E of that circle, and at the centre D of the earth
(directions of rotation being included), to ®nd the position of D, with respect to the
excentric. Or more fully, to ®nd the angles of the triangle BDE, at the time of the middle
observation; and also the ratio, ED : EB, of the distance between the centres of the earth and
the excentric, to the radius of that excentric circle: for Hipparchus had no particular motive
for investigating the other ratio, DB : EB, of sides of that triangle, since he had no mode of
observing the angular diameters of sun or moon, and was but rudely acquainted with their
parallaxes. Ptolemy's discovery of the Lunar Evection gave him a motive and an excuse for
substituting, in the stead of Hipparchus's Hypothesis of the Excentric, another hypothesis of
the Epicycle; but of this I need not speak at present, because Ptolemy himself took pains to
prove that, mathematically considered, the one view was equivalent to the other (nor does he
seem to have attached any the slightest physical reality to either of them); and because, in fact,
the only geometrical modi®cation made by him, in the problem of Hipparchus, consists in
his having placed the sought point D outside an epicycle, instead of placing it inside an excentric.

SIR W. R. HAMILTON.
Observatory, Dec., 1855.

Fig. 3
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Part V

PROBABILIT Y AND FINITE DIFFERENCES





XXXVIII .

ON DIFFERENCES AND DIFFERENTIALS OF FUNCTIONS

OF ZERO (1831)

[Read June 13, 1831]
[Transactions of the Royal Irish Academy 17, 235±236 (1830).

Translation in Quetelet's Correspondance MatheÂmatique et Physique 8, 235±237 (1834).]

The ®rst important researches on the differences of powers of zero, appear to be those which
Dr. Brinkley published in the Philosophical Transactions for the year 1807.� The subject
was resumed by Mr. Herschel in the Philosophical Transactions for 1816y; and in a
collection of Examples on the Calculus of Finite Differences, published a few years afterwards
at Cambridge. In the latter work, a remarkable theorem is given, for the development of any
function of a neperian exponential, by means of differences of powers of zero. In meditating
upon this theorem of Mr. Herschel, I have been led to one more general, which is now
submitted to the Academy. It contains three arbitrary functions, by making one of which a
power and another a neperian exponential, the theorem of Mr. Herschel may be obtained.

Mr. Herschel's Theorem is the following:

f (e t) � f (1)� tf (1� Ä)o1 � t 2

1:2
f (1� Ä)o2 � &c: (A)

f (1� Ä) denoting any function which admits of being developed according to positive
integer powers of Ä, and every product of the form Äm on being interpreted, as in Dr.
Brinkley's notation, as a difference of a power of zero.

The theorem which I offer as a more general one may be thus written:

ö(1� Ä) f ø(o) � f (1� Ä9)ö(1� Ä)(ø(o))o9; (B)

or thus

F (D) f ø(o) � f (1� Ä9)F (D)(ø(o))o9: (C)

In these equations, f, ö, F, ø, are arbitrary functions, such however that f (1� Ä9),
ö(1� Ä), F (D), can be developed according to positive integer powers of Ä9 Ä D; and after
this development, Ä9 Ä are considered as marks of differencing, referred to the variables o9o,
which vanish after the operations, and D as a mark of derivation by differentials, referred to

� [Brinkley, J., `An investigation of the general term of an important series in the inverse method of
®nite differences' Philosophical Transactions of the Royal Society of London, 97, 114±132 (1807).]
y [Herschel, J. F. W., `On the development of exponential functions together with several new

theorems relating to ®nite differences' Philosophical Transactions of the Royal Society of London, 106, 25±45
(1816).]



the variable o. And if in the form (C) we particularise the functions F, ø, by making F a power,
and ø a neperian exponential, we deduce the following corollary:

Dxf (e o) � f (1� Ä9)Dxe o9 � f (1� Ä9)o9x ;

that is, the coef®cient of
t x

1:2 : : x
in the development of f (e t) may be represented by

f (1� Ä)ox ; which is the theorem (A) of Mr. Herschel.
June 13, 1831.

ADDITION

The two forms (B) (C) may be included in the following:

=9 f ø(o9) � f (1� Ä)=9(ø(o9))o : (D)

To explain and prove this equation, I observe that in Maclaurin's series,

f (x) � f (o)� Df (o)

1
x � D2 f (o)

1:2
x2 � : :� Dnf (o)

1:2 : : n
xn � : :

we may put x � (1� Ä)xo and therefore may put the series itself under the form

f (x) � f (o)� Df (o)

1
:(1� Ä)xo � D2 f (o)

1:2
:(1� Ä)2xo � &c:

or more concisely thus

f (x) � f (1� Ä)xo : (E)

which latter expression is true even when Maclaurin's series fails, and which gives, by
considering x as a function ø of a new variable o9 and performing any operation =9 with
reference to the latter variable,

=9 f ø(o9) � =9 f (1� Ä)(ø(o9))o : (F)

If now the operation =9 consist in any combination of differencings and differentiatings, as
in the equations (B) and (C), and generally if we may transpose the symbols of operation =9

and f (1� Ä), which happens for an in®nite variety of forms of =9, we obtain the theorem
(D). It is evident that this theorem may be extended to functions of several variables.

June 20, 1831.
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XXXIX.

ON A THEOREM IN THE CALCULUS OF DIFFERENCES (1843)

[British Association Report 1843, Part II., pp. 2±3.]

It is a curious and may be considered as an important problem in the Calculus of Differences
to assign an expression for the sum of the series

X � un(x � n)n ÿ u nÿ1:
n

1
:(x � n ÿ 1)n � u nÿ2:

n(n ÿ 1)

1:2
:(x � n ÿ 2)n ÿ &c:; (1)

which differs from the series for Än xn only by its introducing the coef®cients u, determined
by the conditions that

ui � �1, 0, or ÿ 1, according as x � i . 0, � 0, or , 0: (2)

These conditions may be expressed by the formula

ui � 2

ð

�1
0

dt

t
sin(xt � it); (3)

and if we observe that

d

dt
sin(at � b) � a sin at � b � ð

2

� �
,

d

dt

� �
n sin(at � b) � an sin at � b � nð

2

� �
,

we shall see that the series (1.) may be put under the form

X � 2

ð

�1
0

dt

t

d

dt

� �n

Än sin xt ÿ nð

2

� �
; (4)

the characteristic Ä of difference being referred to x. But

Ä sin(2áx � â) � 2 siná sin 2áx � â� á� ð

2

� �
,

Än sin(2áx � â) � (2 siná)n sin 2áx � â� ná� nð

2

� �
;

therefore, changing t, in (4.), to 2á, we ®nd

X �
�1

0

dá

á

dnË

dán
, (5)

if we make, for abridgement,



Ë � 2

ð
sinán sin(2xá� ná): (6)

Again, the process of integration by parts gives�1
0

dá

ái

d nÿi�1Ë

dánÿi�1
� i

�1
0

dá

ái�1

d nÿiË

dánÿi
,

provided that the function

1

ái

d nÿiË

dánÿi

vanishes both when á � 0 and when á � 1, and does not become in®nite for any inter-
mediate value of á, conditions which are satis®ed here; we have, therefore, ®nally,

X � 1:2:3 . . . n

�1
0

dá
Ë

án�1
: (7)

Hence, if we make

P � X

1:2:3 . . . n
, and c � 2x � n, (8)

we shall have the expression

P � 2

ð

�1
0

dá
siná

á

� �n
sin cc

á
, (9)

as a transformation of the formula

P � 1

1:2:3 . . . n:2n
(n � c)n ÿ n

1
(n � c ÿ 2)n � n(n ÿ 1)

1:2
(n � c ÿ 4)n ÿ &c:

�
ÿ(n ÿ c)n � n

1
(n ÿ c ÿ 2)n ÿ n(n ÿ 1)

1:2
(n ÿ c ÿ 4)n � &c:

�
;

9>>>=>>>; (10)

each partial series being continued only as far as the quantities raised to the nth power are
positive. Laplace has arrived at an equivalent transformation, but by a much less simple
analysis.
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XL.

ON THE CALCULUS OF PROBABILITIES (1843)

[Communicated July 31, 1843]
[Proceedings of the Royal Irish Academy 2, 420±422 (1844).]

Dr. Lloyd having taken the Chair, the President gave an account of some researches in the
Calculus of Probabilities.

Many questions in the mathematical theory of probabilities conduct to approximate
expressions of the form

p � 2p
ð

� t

o
dteÿ t 2

;

that is,

p � è(t),

è being the characteristic of a certain function which has been tabulated by Encke in a
memoir� on the Method of Least Squares, translated from the Berlin Ephemeris, in vol. ii.
part 7 of Taylor's Scienti®c Memoirs; p being the probability sought, and t an auxiliary
variable.

Sir William Hamilton proposes to treat the equation

p � è(t)

as being in all cases rigorous, by suitably determining the auxiliary variable t, which variable
he proposes to call the argument of probability, because it is the argument with which Encke's
Table should be entered, in order to obtain from that Table the value of the probability p.
He shows how to improve several of Laplace's approximate expressions for the argument t,
and uses in many such questions a transformation of a certain double de®nite integral, of the
form,

4s
1
2

ð

� r

0
dr

�1
0

du eÿsu2

u cos(2s
1
2 ru v) � è(r(1� í1sÿ1 � í2sÿ2 � . . .));

in which

u � 1� á1u2 � á2u4 � � � �
v � 1� â1u2 � â2u4 � � � �

while í1, í2, . . . depend on á1, . . . â1, . . . and on r ; thus

� [J. F. Encke (1791±1865), `On the method of least squares', pp. 317±370, Taylor's Scienti®c Memoirs,
Vol. II, London: 1841.]



í1 � 1
2á1 ÿ â1 r 2:

The function è has the same form as before, so that if, for suf®ciently large values of the
quantity s (which represents, in many questions, the number of observations or events to be
combined), a probability p can be expressed, exactly or nearly, by the foregoing double
de®nite integral, then the argument t, of this probability p, will be expressed nearly by the
formula,

t � r(1� í1sÿ1 � í2sÿ2):

Numerical examples were given, in which the approximations thus obtained appeared to
be very close. For instance, if a common die (supposed to be perfectly fair) be thrown six
times, the probability that the sum of the six numbers which turn up in these six throws shall
not be less than 18, nor more than 24, is represented rigorously by the integral

p � 2

ð

� ð
2

0

dx
sin 7x

sin x

sin 6x

6 sin x

� �6

, or by the fraction 27448
46656;

while the approximate formula deduced by the foregoing method gives 27449 for the
numerator of this fraction, or for the product 66p; the error of the resulting probability being
therefore in this case only 6ÿ6. The advantage of the method is that the quantity which has
here been called the argument of probability, depends in general more simply than does the
probability itself on the conditions of a question; while the introduction of this new
conception and nomenclature allows some of the most important known results respecting
the mean results of many observations to be enunciated in a simple and elegant manner.

706 XL. ON THE CALCULUS OF PROBABILITIES



XLI.

ON SOME INVESTIGATIONS CONNECTED WITH THE CALCULUS OF

PROBABILITIES (1843)

[British Association Report 1843, Part II., pp. 3±4.]

Identical with previous paper.



Part VI

MISCELLANEOUS





XLII .

ON THE DOUBLE REFRACTION OF LIGHT ACCORDING TO THE

PRINCIPLES OF FRESNEL�
(REVIEW OF TWO SCIENTIFIC MEMOIRS OF

JAMES MACCULLAGH B.A.) (1830)

[National Magazine 1, 145±149. Dublin (August 1830).]

It was noticed, in the last number of this magazine, under the head of proceedings of the
Royal Irish Academy, that two papers of Mr. M`Cullagh, (a scholar of Trinity College, Dublin,
and candidate for a fellowship there,)y were to have been read at the June meeting of the
academy, and were only prevented from being so, by the adjournment which took place, in
consequence of the death of the king. These papers relate, one to the double refraction of
light, and the other to the recti®cation of the conic sections; they had been before referred,
in the council of the academy, to a committee, consisting of Dr. Lloyd, Dr. Sadleir, and
Professor Hamilton; and in consequence of the favourable report of the committee, they
have since been ordered to be printed, and will appear in the forthcoming volume of the
Irish Transactions. Although this volume will very soon be published, yet as we have been
favoured with a sight of Mr. M`Cullagh's papers, and think them creditable to the university
of which he is a member, we shall endeavour to present our readers with a sketch of their
subject and plan.

The ®rst of the two papers relates, as we have already said, to the double refraction of light,
which is one of the most curious and interesting subjects in mathematical and physical optics.
The refraction produced by water has long been known; for Virgil alludes to the oar broken in
the Sicilian wave; although the discovery of the law of this breaking, was reserved for Snellius
and Descartes. But the double refraction produced by crystals, seems to have been unknown
to the ancients; the earliest observations on the subject having been published in 1669, by
Erasmus Bartholinus, professor of geometry at Copenhagen. Bartholinus found that when a
piece of the transparent crystal, technically called carbonate of lime, and more familiarly
known by the name of Iceland spar, was laid upon any object, the object was seen double; each
line or letter, for example, of a printed book, being changed into two such lines or letters,
both equally distinct. Huyghens, the great contemporary, and almost rival of Newton, made
new experiments upon the subject, and deduced a remarkable law of the phenomena, which
he connected, by elegant geometrical reasonings, with his theory of the undulations of a
luminous ether. So decidedly was Newton opposed to this theory of luminous undulations,

� Mr. M`Cullagh's Papers. (Transactions of the Royal Irish Academy Vol. xvi. Part Second.)
y [See: Scaife, B. K. P., `James MacCullagh, M. R. I. A., F. R. S., 1809±1847' Proceedings of the Royal Irish

Academy 90C, 67±106 (1990).]



that it seems to have prevented him from giving suf®cient attention to any researches which
were connected therewith; although he was always ready to admit the great merit of
Huyghens, as a geometer and as a physician. At least, this bias against the theory of waves
appears to be the only mode of accounting for Newton's having proposed, in one of the
celebrated Queries annexed to the third book of his Optics, an inaccurate law of double
refraction, instead of that which Huyghens had given; although he had seen the treatise of
his contemporary, and alludes to it in another of his Queries. The authority of Newton seems
to have prejudiced those who succeeded him, until the experiments of Wollaston con®rmed
the law of Huyghens, and revived it after a century of oblivion. Herschell, in his treatise upon
Light, (Encyclopñdia Metropolitana,) observes, that since this time, a new impulse has been
given to this department of optics; and the successive labours of Laplace, Malus, Brewster,
Biot, Arago, and Fresnel, present a picture of emulous and successful research, than which
nothing prouder has adorned the annals of physical science, since the development of the
true system of the universe. ``To enter, however, (Mr. Herschell continues,) into the history
of these discoveries, or to assign the share of honour which each illustrious labourer has
reaped in this ample ®eld, forms no parts of our plan. Of the splendid constellation of great
names just enumerated, we admire the living and revere the dead, far too warmly and too
deeply, to suffer us to sit in judgment on their respective claims to priority, in this or that
particular discovery, to balance the mathematical skill of one against the experimental
dexterity of another, or the philosophical acumen of a third. So long as one star differs from
another in gloryÐso long as there shall exist varieties, or even incompatibilities of excel-
lenceÐso long will the admiration of mankind be found suf®cient for all who truly merit it.''
In the sentiments thus expressed by Mr. Herschell, we fully concur; and think ourselves, by
still stronger reason, excused and forbidden from attempting to decide on the respective
eminence of these illustrious names. We shall, however, endeavour to give such brief and
popular account of the facts and hypotheses respecting double refraction, as may explain the
value of that theory of Fresnel, which Mr. M`Cullagh, in the paper before us, has sought to
illustrate and simplify.

We have already mentioned the obvious and fundamental fact, of objects appearing
double, when seen through certain crystals. But in order to derive from the phenomena of
nature, the instruction and intellectual exercise which they are ®tted to afford, we must not
content ourselves with such general and obvious perceptions. We must discriminate the
similar from the same; must vary, must measure, must combine; until, by the application of
reasoning and invention to carefully recorded facts, we ascend to an hypothesis, a law, a
theory, which includes the particular appearances, and enables them to be accounted for and
foreseen. Then, when the passive of our being has been so far made subject to the active, and
sensation absorbed or sublimed into reason, the philosopher reverses the process, and asks
how far the conceptions of his intellect are realised in the outward world. He seeks to extend
his hypothesis beyond the facts on which it was founded, and to deduce from it some new
appearance which ought to be observed, if his theory be coextensive with nature. He then
consults sensation and experiment, and often their answer is favourable; but often too, they
speak an unexpected language. Yet undismayed by the repulse, and emboldened by partial
success, he frames upon the ruins of his former, some new and more general theory; which,
equally with the former, accounts for the old appearances, while it includes, within its ampler
verge, the results of more recent observation. Nor can this struggle ever end, between the
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active and the passive of our being, between the ingenuity of the theorist and the patience of
the observer, until the mind of man shall grasp the in®nity of nature; and comprehend all
the scope and character and habits of those innumerable energies which compose the
material universe. Meanwhile this warfare, with its alternate triumphs and defeats, its
discoveries of laws and exceptions, forms an appointed discipline for the human mind, and
its history is justly interesting. And in no part of physical inquiry, has the struggle been more
vigorous and various, than in the research of the phenomena of light. In astronomy, Newton,
by one great stride of thought, respecting the law according to which the heavenly bodies act
upon each other, placed theory at once so far in advance of observation, that the latter has
not even yet overtaken the former, nor has the law of gravitation, in all its wide dominions,
yet met with one rebellious fact in successful revolt against its authority. But in optics, no
theory sits thus upon an old ancestral throne. The very nature of light, and the mode of its
propagation, have been the subjects of a lengthened controversy. The theory that light, like
sound, diffuses itself in waves, which had been maintained by Huyghens, and combated by
Newton, is now, after a long interval of neglect, again acquiring defenders, and gaining
ground in scienti®c opinion. And to return to the more immediate subject of the present
article, the opinions respecting double refraction have undergone a great and recent change,
in consequence of the researches of Fresnel.

To give an idea of this revolution of opinion, we must distinguish between the phenomena
of single-axed and double-axed crystals; and for this purpose we shall borrow Mr. Herschell's
illustration of the meaning of axes of a crystal. ``Suppose a mass of brick-work, or masonry, of
great magnitude, built of bricks, all laid parallel to each other. Its exterior form may be what
we please; a cube, a pyramid, or any other ®gure. We may cut it (when hardened into a
compact mass,) into any shapeÐa sphere, a cone, a cylinder; but the edges of the bricks
within it will still lie parallel to each other; and their directions, as well as those of the
diagonals of their surfaces, or of their solid ®gures, may all be regarded as so many axes, that
is, lines having (so long as the mass remains at rest,) a determinate position, or rather direction
in space, no way related to the exterior surfaces, or linear boundaries of the mass, which may
cut across the edges of the bricks in any angles we please. Whenever then we speak of ®xed
lines, or axes of, or within, a crystal, we always mean directions in space parallel to each of a
system of lines drawn in the several elementary molecules of the crystal, according to given
geometrical laws, and related in a given manner to the sides and angles of the molecules
themselves. We must conceive the axis, then, of a crystallized mass, not as a single line having
a given place, but as any line whatever having a given direction in space, that is, parallel to the
axis of each molecule, which is a line having a determinate place and position within it.'' We
may add that the directions of those axes of a crystal which have important optical properties,
are usually connected in a regular manner with the planes in which the crystal is found to
cleave most easily, or with the other ®xed planes or lines which the facts of crystallography
indicate. For example, in the case of Iceland spar, the natural or primitive form appears to be
that of a regular rhomboid, with six plane faces, and eight corners, of which two are blunter
than the rest, and are opposite to one another; and the line that may be conceived to go
within the crystal, from one of these corners to the other, is called by mineralogists the
primitive axis of the crystal. And the same line is said to be the optical axis also, for the reason
which we are going to mention.

When we look perpendicularly down upon any object, through a piece of common glass
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with two parallel horizontal faces, as for instance, when we lay upon a book a part of a window
pane, or a cube of glass, we not only see the object single, but we see it exactly under us. But
when we look in the same manner at an object, through a piece of Iceland spar, one of the two
images which (as was before remarked) we almost always see, is not exactly under us; and thus
the light which forms this image has undergone an extraordinary refraction, since it has come
obliquely through the crystal to the eye, while in the ordinary mode of refraction (such as
takes place with ordinary refracting substances,) it would have come perpendicularly
through. However there is one case in which this extraordinary refraction disappears, namely,
when the two plane faces of the crystal, through which we are supposed to look, have been
arti®cially obtained, by cutting off the two bluntest corners of the primitive form, in
directions perpendicular to the line that joins those corners; for then, that is when we look
perpendicularly down through the crystal in the direction of its primitive axis, we see but one
image of the object below, and that one perpendicularly under us.

Analogous phenomena are observed in other crystals. In each there is at least one optical
axis, distinguished by the property that along it there is no double refraction. To all such crystals
the law of Huyghens applies. But there are other crystals, more recently discovered, which
possess two optical axes, distinguished by the same property. To these latter crystals the law of
Huyghens is inapplicable, and many attempts had been made to ®nd another which should
replace it. In the course of these attempts, many valuable theories were discovered, respecting
the connexions between the two separate rays produced by the double refraction. But it was
always taken for granted that one of the two rays followed that law of ordinary refraction which
Snellius and Descartes had long since established for the passage of light through water and
glass, and which Huyghens had found to extend to one of the two rays produced by a single-
axed crystal. Fresnel, however, has overthrown this supposition, by his experiments upon prisms
of topaz, and by other experiments and reasonings; and has thus produced that great
revolution of opinion to which we have before alluded.

Nor is this change of opinion con®ned to the rejection of a law which had been extended
by a too hasty induction from single-axed to double-axed crystals. The whole theory of the
motion of light has undergone a change, in consequence of the researches and speculations
of Fresnel. On the ruins of old hypotheses, he has erected a new one, which may indeed itself
be overthrown or changed hereafter, but which will, probably, long continue to guide the
thoughts of mathematicians, and the experiments of the physical observer.

The sketch (or at least the notice) which we have thus endeavoured to give, of the optical
labours of Fresnel, is indeed a rapid and imperfect one; yet it may serve to give an idea of the
nature and importance of those labours, and so may explain the subject of that memoir of Mr.
M`Cullagh, in which the latter mathematician has chosen to be a commentator on the
former. With regard to the plan of the commentary, we can only mention here that Mr. M.
has aimed, and (we think) successfully, to simplify, by the use of geometrical reasoning, and
by several elegant lemmas upon the properties of ellipsoids, the proof of some theorems
respecting the shape of the luminous waves, and the positions of the planes of polarization,
in the double refraction of light, to which Fresnel had arrived by long analytic processes.

We must be still more brief in our notice of Mr. M`Cullagh's other paper, which relates to
the recti®cation of the conic sections, and contains a geometrical demonstration of a
celebrated theorem of Landen, respecting the connexion of hyperbolic and elliptic arcs,
which had before been proved by means of de®nite integrals, in an entirely different manner.
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It is evident that Mr. M. wields, with no common skill, the ancient armour of geometry. Those
who have compared the synthetic and the analytic methods, have usually concluded that the
latter is ®tter for the discovery, and the former for the communication of truth. Perhaps,
however, as algebra is now employed so often as a mode of elementary exposition, the powers
of geometry may not have been exhausted as an instrument of high investigation. In the
papers which form the subject of our foregoing notice, Mr. M`Cullagh has, on the whole,
sought rather to illustrate known theorems by elegant geometrical demonstrations, than to
open for himself a ®eld entirely new; since, though the method which he uses, and most of
the steps, are his own, yet the grand results had before been obtained by others. But he has
given a favourable omen that he may hereafter apply his facility of geometrical conception,
not only to illustrate but to discover. Let us, therefore, hope that he will aim at this brilliant
union; and we, though ourselves devoted analysts, shall attend him with the sincerest good
wishes, and give him our most cordial applause.
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XLIII .

ADDRESS AS SECRETARY OF THE DUBLIN MEETING OF THE

BRITISH ASSOCIATION (1835)

[British Association Report 1835, pp. xli±lvi.]

It has fallen to my lot, Gentlemen, as one of your Secretaries for the year, to address you on
the present occasion. The duty would, indeed, have been much better discharged had it been
undertaken by my brother secretary; but so many other duties of our secretaryship had been
performed almost entirely by him, that I could not refuse to attempt the execution of this
particular of®ce, though conscious of its dif®culty and its importance. For if we may regard it
as a thing established now by precedent and custom that an annual address should be
delivered, it is not, therefore, yet, and I trust that it will never be, an of®ce of mere cold
routine, a ®lling up of a vacant hour, on the ground that the hour must be some way or other
got rid of. You have not left your homes±you have not adjourned from your several and
special businessesÐyou have not gathered here, to have your time thus frittered away in an
idle and unmeaning ceremonial. There ought to be, and there is, a reason that some such
thing should be done; that from year to year, at every successive reassembling, an of®cer of
your body should lay before you such an address; and in remembering what this reason is, we
shall be reminded also of the spirit in which the duty should be performed. The reason is the
®tness and almost the necessity of providing, so far as an address can provide, for the
permanence and progression of the body, by informing the new members, and reminding
the old, of the objects and nature of the Association, or by giving utterance to at least a few of
those re¯ections which at such a season present themselves respecting its progress and its
prospects; and it is a valid reason, and deserves to be acted upon now, however little may have
been left unsaid in the addresses of my predecessors in this of®ce. For if even amongst the
members who have attended former meetings, and have heard those eloquent addresses
delivered by former secretaries, it is possible that some may have been so dazzled by the
splendour of the spectacle, and so rapt away by the enthusiasm of the time, as to have given
but little thought to the purport and the use, the meaning and the function of the whole;
much more may it be presumed that of the several hundred persons who have lately joined
themselves as new members to this mighty body, there are some, and even many, who have
re¯ected little as yet upon its characteristic and essential properties, and who have but little
knowledge of what it has been, and what it is, and what it may be expected to become. First,
then, the object of the Association is contained in its title; it is the advancement of science.
Our object is not literature, though we have many literary associates, and though we hail and
love as brethren those who are engaged in expressly literary pursuits, and who are either
themselves the living ornaments of our land's language, or else make known to us the literary
treasures of other languages, and lands, and times. Our object is not religion in any special



sense, though respect for religious things, and religious men, has always marked these
meetings, and though we are all bound together by that great tie of brotherhood which
unites the whole human family as children of one Father who is in heaven. Still less is our
object politics, though we are not mere citizens of the world, but are essentially a British
Association of fellow-subjects and of fellow-countrymen, who give, however, glad and cordial
welcome to those our visitors who come to us from foreign countries, and thankfully accept
their aid to accomplish our common purpose. That common purpose, that object for which
Englishmen, and Scotchmen, and Irishmen have banded themselves together in this colossal
Association, to which the eyes of the whole world have not disdained to turn, and to see
which, and to raise it higher still, illustrious men from foreign lands have come, is Science;
the acceleration of scienti®c discoveries, and the diffusion of scienti®c in¯uences. And if it be
inquired how is this aim to be accomplished, and through what means, and by what
instruments and process we as a body hope to forward scienceÐthe answer brie¯y is, that this
great thing is to be done by us through the agency of the social spirit, and through the
means, and instruments, and process which are contained in the operation of that spirit. We
meet, we speak, we feel together now, that we may afterwards the better think and act and feel
alone. The excitement with which this air is ®lled will not pass at once away; the in¯uences
that are now among us will not (we trust) be transient, but abiding; those in¯uences will be
with us longÐlet us hope that they will never leave us; they will cheer, they will animate us
still, when this brilliant week is over; they will go with us to our separate abodes, will attend us
on our separate journeys; and whether the mathematician's study, or the astronomer's
observatory, or the chemist's laboratory, or some rich distant meadow unexplored as yet by
botanist, or some untrodden mountain-top, or any of the other haunts and homes and
oracular places of science, be our allotted place of labour till we meet together again, I am
persuaded that those in¯uences will operate upon us all, that we shall all remember this our
present meeting, and look forward with joyful expectation to our next reassembling, and by
the recollection, and by the hope, be stimulated and supported. It is true, that it is the
individual man who thinks and who discovers; not any aggregate or mass of men. Each
mathematician for himself, and not any one for any other, not even all for one, must tread
that more than royal road which leads to the palace and sanctuary of mathematical truth.
Each, for himself, in his own personal being, must awaken and call forth to mental view the
original intuitions of time and space; must meditate himself on those eternal forms, and
follow for himself that linked chain of thought which leads, from principles inherent in the
child and the peasant, from the simplest notions and marks of temporal and local site, from
the questions when and where, to results so varied, so remote, and seemingly so inaccessible,
that the mathematical intellect of full-grown and fully cultivated man cannot reach and pass
them without wonder, and something of awe. Astronomers, again, if they would be more than
mere artizans, must be more or less mathematicians, and must separately study the mathema-
tical grounds of their science; and although in this as in every other physical science, in every
science which rests partly on the observation of nature, and not solely on the mind of man, a
faith in testimony is required, that the human race may not be stationary, and that the
accumulated treasures of one man or of one generation of men may not be lost to another;
yet even here, too, the individual must act, and must stamp on his own mental possessions
the impress of his own individuality. The humblest student of astronomy, or of any other
physical science, if he is to pro®t at all by his study, must in some degree go over for himself,
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in his own mind, if not in part with the aid of his own observation and experiment, that
process of induction which leads from familiar facts to obvious laws, then to the observation
of facts more remote, and to the discovery of laws of higher orders. And if even this study be a
personal act, much more must that discovery have been individual. Individual energy,
individual patience, individual genius, have all been needed, to tear fold after fold away,
which hung before the shrine of nature; to penetrate, gloom after gloom, into those Delphic
depths, and force the reluctant Sibyl to utter her oracular responses. Or if we look from
nature up to nature's God, we may remember that it is writtenÐ``Great are the works of the
Lord, sought out of all those who have pleasure therein.'' But recognising in the fullest
manner the necessity for private exertion, and the ultimate connexion of every human act
and human thought with the personal being of man, we must never forget that the social
feelings make up a large and powerful part of that complex and multiform being. The
affections act upon the intellect, the heart upon the head. In the very silence and solitude of
its meditations, still genius is essentially sympathetic; is sensitive to in¯uences from without,
and fain would spread itself abroad, and embrace the whole circle of humanity, with the
strength of a world-grasping love. For fame, it has been truly said, is love disguised. The desire
of fame is a form of the yearning after love; and the admiration which rewards that desire, is a
glori®ed form of that familiar and every-day love which joins us in common life to the friends
whom we esteem. And if we can imagine a desire of excellence for its own sake, and can so
raise ourselves above (Well if we do not in the effort sink ourselves below) the common level of
humanity, as to account the aspiration after fame only ``the last in®rmity of noble minds,'' it
will still be true that in the greatest number of cases, and of the highest quality,

Fame is the spur that the clear spirit doth raise,

To scorn delights, and live laborious days.

That mysterious joyÐincomprehensible if man were wholly mortalÐwhich accompanies the
hope of in¯uencing unborn generations; that rapture, solemn and sublime, with which a
human mind, possessing or possessed by some great truth, sees in prophetic vision that truth
acknowledged by mankind, and itself long ages afterward remembered and associated there-
with, as its interpreter and minister, and sharing in the offering duly paid of honour and of
love, till it becomes a power upon the earth, and ®lls the world with felt or hidden in¯uence;
that joy which thrills most deeply the minds the most contemptuous of mere ephemeral
reputation, and men who care the least for common marks of popular applause or outward
dignityÐdoes it not show, by the revival, in another form, of an instinct seemingly extin-
guished, how deeply man desires, in intellectual things themselves, the sympathy of man? If
then the ascetics of scienceÐif those who seem to shut themselves up in their own separate
cells, and to disdain or to deny themselves the ordinary commerce of humanityÐare found,
after all, to be thus in¯uenced by the social spirit, we can have little hesitation in pronouncing
that to the operation of this spirit must largely be ascribed the labours of ordinary minds; of
those who do not even affect or seem to shun the commerce of their kind; who accept gladly,
and with acknowledged joy, all present and outward marks of admiration or of sympathy, and
who are willing, and confess themselves to be so, to do much for immediate reward, or speedy
though perishing reputation. Look where we will, from the highest and most solitary sage
who ever desired ``the propagation of his own memory,'' and committed his lonely labours to
the world, in full assurance that an age would come, when that memory would not willingly
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be led to die, down to the humblest labourer who was ever content to cooperate outwardly
and subordinately with others, and hoped for nothing more than present and visible
recompense, we still perceive the operation of that social spirit, that deep instinctive yearning
after sympathy, to use the power, and (if it may be done) to guide the in¯uences of which,
this British Association was framed. Thus much I thought that I might properly premise, on
the social spirit in general, and its in¯uence upon the intellect of man; since that is the very
bond, the great and ultimate reason, of this and of all other similar associations and
companies of studious men. But you may well expect that in the short remaining time which
your leisure this evening can spare, I should speak more especially, and more de®nitely, of
this British Association in particular. And here it may be right to adopt in part a more
technical style, and to enter more minutely into detail, than I could yet persuade myself to
do, till I had eased myself in some degree of those over¯owing emotions, which on such an
occasion as this could hardly be altogether suppressed. Presuming, therefore, that some one
now demands, how this Association differs from its fellows, and what peculiar means it has of
awakening and directing to scienti®c purposes the power of the social spirit; or why, when
there were so many old and new societies for science, it was thought necessary or expedient
to call this society also into being: I proceed to speak of some of the characteristic and
essential circumstances of this British Association, which contain the answer to that reason-
able demand. First, then, it differs in its magnitude and universality from all lesser and more
local societies. So evidently true is this, that you might justly blame me if I were to occupy
your time by attempting any formal proof of it. What other societies do upon a small scale,
this does upon a large; what others do for London, or Edinburgh, or Dublin, this does for the
whole triple realm of England, Scotland, and Ireland. Its gigantic arms stretch even to
America and India, insomuch that it is commensurate with the magnitude and the majesty of
the British empire, on which the sun never sets; and that we hail with pleasure, but without
surprise, the enrolment of him among our members who represents the sovereign here, and
is to us the visible image of the head of that vast empire; and the joy with which we welcome
to our assemblies and to our hospitality those eminent strangers who have come to us from
foreign lands, rises almost above the sphere of private friendship, and partakes of the dignity
of a compact between all the nations of the earth. Forgive me that I have not yet been able to
speak calmly in such a presence, and on such a theme. But it is not merely in its magnitude
and universality, and consequently higher power of stimulating intellect through sympathy,
that this Association differs from others. It differs also from them in its constitution and
details; in the migratory character of its meetings, which visit, for a week each year, place after
place in succession, so as to indulge and stimulate all, without wearying or burdening any; in
encouraging oral discussion, throughout its several separate sections, as the principal
medium of making known among members the opinions, views, and discoveries of each
other; in calling upon eminent men to prepare reports upon the existing state of knowledge
in the principal departments of science; and in publishing only abstracts or notices of all
those other contributions which it has not as a body called for; in short, in attempting to
induce men of science to work more together than they do elsewhere, to establish a system of
more strict cooperation between the labourers in one common ®eld, and thus to effect, more
fully than other societies can do, the combination of intellectual exertions. In other societies,
the constitution and practice are such, that the labours of the several members are
comparatively unconnected, and few attempts are systematically made to combine and
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harmonize them together; so that if we except that general and useful action of the social
spirit upon the intellect of which I have already spoken, and the occasional incitement to
speci®c research, by the previous proposal of prizes, there remains little beyond the
publication of Transactions, whereby they seek as bodies to cooperate in the work of science.
In them an author, of his own accord, hands in a paper; the title and subject are announced;
it is referred to a Committee for examination, and if it be approved of, it is published at the
expense of the society. This is a very great and real good, because the most valuable papers
are seldom the most attractive to common purchasers, and because the authors of these
papers are rarely able to defray from their own funds the cost of an expensive publication.
There is no doubt that if it had not been for this resource, many essays of the greatest value
must have been altogether suppressed, for want of pecuniary means. Besides, the approbation
of a body of scienti®c men, which is at least partially implied in their undertaking to publish a
paper, however limited and guarded it may be by their disclaimer of corporate responsibility,
cannot fail to be accounted a high and honourable reward; and one, of which the hope must
much assist to cheer and support the author in his toils, by virtue of the principle of
sympathy. It is known, and (I believe) was mentioned in an address to this Association, at one
of the former meetings, that the Principia and Optics of Newton were published at the
request of the Royal Society of London. Newton, indeed, might well have thought that those
works did not need that sanction, if the meekness of his high faculties had permitted him to
judge of himself as all other men have judged of him; but our gratitude is not therefore due
the less to the Society whose request prevailed over his own modest reluctance, and procured
those treasures for that and for every age. It must be added that the Royal and Astronomical
Societies print abstracts of their communications, for speedy circulation among their
members, which is a useful addition to the service done in publishing the papers themselves,
and is an example well worthy of being followed by all similar institutions; and that the Royal
Society has even gone so far as to procure and print, in at least one recent instance (I mean
in the case of a paper of Mr. Lubbock's), and perhaps also in some other instances, a report
from some of its members, on a memoir presented by another, thus imitating an excellent
practice of the Institute of France, which has probably contributed much to the high state of
science in that country. This last procedure, and doubtless other acts of some other scienti®c
societies, such as the discussions in the Geological Society, the lending of instruments by the
Astronomical Society to its members, and the occasional exhibition of models and experi-
ments by members to the body, in the Irish and other institutions, are examples of direct co-
operation; and perhaps there is nothing to prevent such cases being greatly multiplied
hereafter. But admitting freely these and other claims of the several societies and academies
of the empire to our gratitude for their services to science, and accounting it a very valuable
privilege to belong, as most of us do, to one or other of those bodies, and acknowledging that
there is much work to be done which can only be done by them, we must still turn to this
British Association, as the body which is cooperative by eminence.ÐThe discussions in its
sections are more animated, comprehensive and instructive, and make minds which were
strangers, more intimately acquainted with each other, than can be supposed to be the case
in any less general body; the general meetings bring together the cultivators of all different
departments of science; and even the less formal conversations, which take place in its halls of
assembly during every pause of business, are themselves the working together of mind with
mind, and not only excite but are co-operation. Express requests also are systematically made
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to individuals and bodies of men, to cooperate in the execution of particular tasks in science,
and these requests have often been complied with. But more perhaps than all the rest, the
reports which it has called forth on the existing state of the several branches of knowledge
are astonishing examples of industry and zeal exerted in the spirit and for the purpose of
cooperation. No other society, I believe, has yet ventured to call on any of its members for
any such report, and indeed it would be a dif®cult, perhaps an invidious thing, for any one of
the other societies or academies so to do. For such a report should contain a large and
comprehensive view of the treasures of all the academies; and would it not be dif®cult for a
zealous member of any one of them, undertaking the task at the request of his own body, to
form and to express that view with all the impartiality requisite? Would there not be some
danger of a bias, in some things to palliate the defects of his own particular society, and in
other things to exalt beyond what was strictly just, its true and genuine merits? But a body like
the British Association which receives indeed all communications, but publishes (except by
abstract) none, save only those very reports which it had previously and specially called for,Ð
a body such as this, and governed by such regulations, may hope, that standing in one
common relation to all the existing academies, and not belonging to the same great class of
societies publishing papers, the members whom it has selected for the task may come before
it to report what has resulted from the labours of all those different societies, without any
excessive depression or any undue exultation, and in a more unbiassed mood of mind than
would be possible under other circumstances. Accordingly the reports already presented by
those eminent men who were selected for the of®ce, (and rightly so selected, because a
comprehensive mind was not less needed than industry,) appear to have been drawn up with
as much impartiality as diligence; they comprise a very extensive and perfect view of the
existing state of science in most of its great departments: and if in any case they do not quite
bring down the history of science to this day (as certainly they go near to do), they furnish
some of the best and most authentic materials to the future writer of such history. But we
should not only underrate the value of those reports, but even quite mistake the character of
that value if we were to refer it all to its connexion with distant researches, and some unborn
generation. They will, indeed, assist the future historian of science; but it was not solely, nor
even chie¯y for that purpose they were designed, nor is it solely or chie¯y for that purpose
which they will answer. They belong to our own age; they are the property of ourselves as well
as of our children. To stimulate the living, not less than to leave a record to the unborn, was
hoped for, and will be attained, through those novel and important productions. In holding
up to us a view of the existing state of science, and of all that has been done already, they
show us that much is still to be done, and they rouse our zeal to do it. Can any person look
unmoved on the tablet which they present of the brilliant discoveries of this century, in any
one of the regions of science? Can he see how much has been achieved, what large and
orderly structures have been in part already built up, and are still in process of building,
without feeling himself excited to give his own aid also in the work, and to be enrolled among
the architects, or at least among the workmen? or can any person have his attention guided
to the many wants that remain, can he look on the gaps which are still un®lled, even in the
most rich and costly of those edi®ces (like the un®nished window that we read of in the
palace of eastern story), without longing to see those wants supplied, that palace raised to a
still more complete perfection; without burning to draw forth all his own old treasures of
thought, and to elaborate them all into one new and precious offering?ÐThe volume
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containing the reports which were presented at the last meeting of the Association has been
published so very recently, that it is perhaps scarcely yet in the hands of more than a few of
the members; some notice of its contents may therefore be expected from me now, though
the notice which I can give must of necessity be brief and inadequate. I shall speak ®rst of two
reports, which may in a certain sense be said to be on foreign science. Science, indeed, as has
been well remarked, is not properly of any country; but men of science are, and in studying
the works of their brethren of foreign nations, they at once increase their own stock of
knowledge, and cultivate those kindly feelings of general good will, which are among the very
best results of all our studies, and of all our assemblings together. The ®rst report of the
volume is that which Professor Rogers, of Philadelphia, has presented, at the request of the
British Association, upon American Geology. The kindness of an eminent British Geologist,
whose name would command attention if I thought myself at liberty to mention it, and whom
I had requested to state to me in writing his opinion on this report, enables me to furnish you
with a notice respecting its nature, which I shall accordingly read, instead of presuming to
substitute any remarks of my own on the subject.

``The object proposed by Professor Rogers was to convey a clear summary of what had been
ascertained concerning the geology of America, whether the knowledge acquired had been
communicated to the public or not. This is not very different from the object contemplated
by other reporters; but in the execution of the report it is found that a marked peculiarity
arises. For the far greater portion of the report contains the result of Mr. Rogers's own
reasonings on data, many of which appear for the ®rst time in his essay. It has therefore more
the character of a memoir than of an ordinary report. Were any one to adopt this plan in
treating of the state of European geology he might be blamed, because the value of such a
report would consist in the discussion of a vast mass of published data, and in the comparison
of theoretical notions proposed by persons of high reputation. But in treating of America this
was not the case; because, ®rst, little authentic was known in Europe on the subjectÐsecond,
there are few American authors of high repute in geology. This character of originality is
certainly well supported by the author's own researches, and it is not surprising if his work
contains some errors, still less remarkable that it should have excited some opposition at
home. But the writer of the report has really taken much pains, has exhibited much patience,
and has brought to his task a competent knowledge of European geology. It has certainly
cleared our notions of the general features of American geology, and particularly augmented
our positive knowledge of the more recent deposits, as regards organic remains, mineral
characters, and geographical features. It is to be continued.''

The other report which I alluded to, as almost entitled to be called a report on foreign
science, is the report of the Rev. Mr. Challis on the theory of capillary attraction, which is a
sequel to that presented at Cambridge on the common theory of ¯uids, and which the author
proposes to follow up hereafter by another report on the propagation of motion as affected
by the development of heat. Mr. Challis remarks, that while many questions in physics are to
be resolved by unfolding through deductive reasoning the consequences of facts actually
observed, there is also another class of questions in physical science, in which the facts that
are to be reasoned from are not phñnomena; for example, the fact of universal gravitation
for which the evidence is inductive indeed, but yet essentially mathematical, the fact not
coming itself under the cognisance of any of our senses, although its mathematical con-
sequences are abundantly attested by observations. Mr. Challis goes on to sayÐ``The great
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problem of universal gravitation, which is the only one of this class that can be looked upon
as satisfactorily solved, relates to the large masses of the universe, to the dependence of their
forms on their own gravitation, and the motions resulting from their actions on one another.
The progress of science seems to tend towards the solution of another of a more comprehen-
sive nature, regarding the elementary constitution of bodies and the forces by which their
constituent elements are arranged and held together. Various departments of science appear
to be connected together by the relation they have to this problem. The theories of light,
heat, electricity, chemistry, mineralogy, crystallography, all bear upon it. A review, therefore,
of the solutions that have been proposed of all such questions as cannot be handled without
some hypotheses respecting the physical condition of the constituent elements of bodies,
would probably conduce by a comparison of the hypotheses towards reaching that general-
ization to which the known connexion of the sciences seems to point.'' The author ®nally
remarks, that ``questions of this kind have of late largely engaged the attention of some
French mathematicians, and the nature of their theories, and the results of the calculations
founded on them, deserve to be brought as much as possible into notice.'' Acting upon these
just views, Mr. Challis has accordingly performed, for the British Association and for the
British public, the important of®ce of reviewing and reporting upon those researches of
Laplace, Poisson, and Gauss, respecting the connexion of molecular attraction, and of the
repulsion of heat, with the ascent of ¯uids in tubes, which give to his report so much of that
foreign character which I have already ventured to ascribe to it; yet, it is just to add, and,
indeed, Mr. Challis does so, that as Newton ®rst resolved the mathematical problem of
gravitation, in its bearings on the motion of a planet about the sun, and went far to resolve
the same extensive problem in its details of perturbation also; he likewise ®rst resolved a
problem of molecular forces, and clearly foresaw and foretold the extensive and almost
universal application of such forces to the mathematical explanation of the most varied
classes of phñnomena; and that the theory of capillary attraction, in particular, has received
some very valuable illustrations in England from the late Dr. Thomas Young. I ought to
mention that a very interesting report, on the foreign mathematical theories of electricity and
magnetism was read in part this morning to the mathematical and physical section, by the
Rev. Mr. Whewell.

The next report after that of Mr. Challis in the volume, is the report I have already alluded
to, by Professor Lloyd, on the progress and present state of physical optics; respecting which I
should have much to say, if I did not fear to offend the modesty of the author, and were not
restrained by the recollection that he is a member of the same University with myself, and a
countryman and friend of my own. I shall therefore simply express my belief, that no person
who shall hereafter set about to form an opinion of his own on the question between the two
theories of light, will think himself at liberty to dispense with the study of this report. I may
add that it also, as well as that of Mr. Challis, draws largely from foreign stores; but if Huygens
was the ®rst inventor, and Fresnel the ®nest unfolder, and Cauchy the profoundest
mathematical dynamician, of the theory of the propagation of light by waves; and if the
names of Malus, and Biot, and Arago, and Mitscherlich, and other eminent foreigners are
familiar words in the annals of physical optics, we also can refer, among our own illustrious
dead, to names enshrined in the history of this scienceÐto the names of Newton, and
Wollaston, and YoungÐand among our living fellow-countrymen and fellow-members of this
Association, (unhappily not present here,) we have Brewster and Airy to glory of. It should be
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mentioned that the author of the report has himself made contributions to the science of
light, more valuable than any one could collect from the statements in the report itself, and
that important communications in that science are expected to be made during the present
week, by Professor Powell, to a general meeting, and by Mr. MacCullagh to the physical
section.

(The Secretary here read a notice, which he had procured from a scienti®c friend, of the
report by Professor Jenyns on zoology; and afterwards continued his own remarks, as follows:)

The remaining reports in the new volume are those by Mr. Rennie on hydraulics; by Dr.
Henry of Manchester, on the laws of contagion; and by Professor Clark of Cambridge, on
animal physiology, and especially on our knowledge respecting the blood. Mr. Rennie's
report contains, I believe, new facts from the manuscripts of his father, and is in other ways a
valuable statement, industriously drawn up, of the recent improvements in the practice of
hydraulics, to the theory of which science it is to be lamented that so little has lately been
added: and without pretending to judge myself of the merits of the two other reports, I may
mention them as compositions which I know to have interested persons, with whose
professional and habitual pursuits they have no close connexion, and therefore, as an
instance of the accomplishment of one great end proposed by our Association, that of
drawing together different minds, and exciting intellectual sympathy. The other contents of
the volume are accounts of researches undertaken at the request of the Association, notices
in answers to queries and recommendations of the same body, and miscellaneous commu-
nications. Of these, it is of course impossible to speak now; your time would not permit it. Yet,
perhaps, I ought not to pass over the mention of one particular recommendation which has
happened to become the subject of remarks elsewhereÐI mean that recommendation which
advised an application to the Lords of the Treasury for a grant of money, to be used in the
reduction of certain Greenwich observations, the result of which recommendation is noticed
in the volume before us. In all that I have hitherto said respecting this Association, I have
spoken almost solely of its internal effects, or those which it produces on the minds and acts
of its own members. But it is manifest that such a society cannot fail to have also effects which
are external, and that its in¯uence must extend even beyond its own wide circle of members.
It not only helps to diffuse through the community at large a respect and interest for the
pursuits of scienti®c men, but ventures even to approach the throne, and to lay before the
King the expression of the wishes of this his Parliament of science, on whatever subject of
national importance belongs to science only, and is unconnected with the predominance in
the state of any one political party. It was judged that the reduction of the astronomical
observations on the sun and moon, and planets, which had been accumulating under the
care of Bradley and his successors, at the Royal and national Observatory of Greenwich, since
the middle of the last century, but which, except so far as foreign astronomers might use
them, had lain idle and useless till now, to the great obstruction of the advance of practical as
well as theoretical science, was a subject of that national importance, and worthy of such an
approach to the highest functionaries of the state. It happened that I was not present when
the propriety of making this application was discussed, so that I do not know whether the
authority of Bessel was quoted. That authority has not at least been mentioned, to my
knowledge, in any printed remarks upon the question, but as it bears directly and powerfully
thereupon, you will permit me, perhaps, to occupy a few moments by citing it.

Professor Bessel of Koenigsberg, who, for consummate union of theory and practice, must
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be placed in the very foremost rank, may be placed perhaps at the head of astronomers now
living and now working, published not long ago that classical and useful volume, the Tabulñ
Regiomontanñ, which I now hold in my hand. In the introduction to this volume of tables,
Bessel remarks, that ``the present knowledge of the solar system has not made all the progress
which might have been expected from the great number and goodness of the observations
made on the sun, and moon, and planets, from the times of Bradley down. It may, indeed, be
said with truth, that astronomical tables do not err now by so much as whole minutes from
the heavens; but if those tables differ by more than ®ve seconds now, after using all the
present means of accurate reduction, from a well-observed opposition of a planet (for
example), their error is as manifest and certain now as an error exceeding a minute was, in a
former state of astronomyÐand the discrepancies between the present tables and observa-
tions are not uncommonly outside that limit. The cause is doubtful. Errors of observation to
such amount they cannot be; and therefore they can only arise from some wrong method of
reduction, or wrongly assumed elliptic elements or masses of the planets, or insuf®ciently
developed formulñ of perturbation, or else they point to some disturbing cause, which still
remains obscure, and has not yet been reached by the light of theory. But it ought surely to
be deemed the highest problem of astronomy, to examine with the utmost diligence into that
which has been often said, but not as yet in every case suf®ciently established, whether theory
and experience do really always agree. When the solution of this weighty problem shall have
been most studiously made trial of, in all its parts, then either will the theory of Newton be
perfectly and absolutely con®rmed, or else it will be known beyond all doubt that in certain
cases it does not suf®ce without some little change, or that besides the known disturbing
bodies there exist some causes of disturbance still obscure.'' And then after some technical
remarks, less connected with our present subject, Bessel goes on to say, ``To me, considering
all these things together, it appears to be of the highest moment ( plurimum valere) towards our
future progress in the knowledge of the solar system, to reduce into catalogues as diligently as
can be done, according to one common system of elements, the places of all the planets observed
since 1750, than which labour, I believe that no other now will be of greater use to astronomy''
(. . quo labore nullum credo nunc majorem utilitatem Astronomiñ allaturum esse). Such is the
opinion of Bessel; but such is not the opinion of an anonymous censor, who has written of us
in a certain popular review. To him it seems a matter of little moment that old observations
should be reduced. Nothing good, he imagines, can come from the study of those obsolete
records. It may be very well that thousands of pounds should continue to be spent by the
nation, year after year, in keeping up the observatory at Greenwich; but as to the spending
500l. in turning to some scienti®c pro®t the accumulated treasures there, that is a waste of
public money, and an instance of misdirected in¯uence on the part of the British Association.
For you, gentlemen, will rejoice to hear, if any of you have not already heard it, and those
who have heard it already will not grudge to hear it again, that through the in¯uence of this
Association, what Bessel wished, rather than hoped, is now in process of accomplishment:
and that, under the care of the man who in England has done most to show how much may
be done with an observatory, that national disgrace is to be removed, of ignorance or
indifference about those scienti®c treasures which England has almost unconsciously been
long amassing, and which concern her as the country of Newton and the maritime nation of
the world. For the spirit of exactness is diffusive, and so is the spirit of negligence. The
closeness, indeed, of the existing agreement between the tables and the observations of
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astronomers is so great, that it cannot easily be conceived by persons unfamiliar with that
science. No theory has ever had so brilliant a fortune, or ever so outrun experience, as the
theory of gravitation has done. But if astronomers ever grow weary, and faintly turn back from
the task which science and nature command, of constantly continuing to test even this great
theory by observation, if they put any limit to the search, which nature has not put, or are
content to leave any difference unaccounted for between the testimony of sense and the
results of mathematical deduction, then will they not only become gradually negligent in the
discharge of their other and more practical duties; and their observations themselves, and
their nautical almanacs, will then degenerate instead of improving, to the peril of navies and
of honour; but also they will have done what in them lay, to mutilate outward nature, and to
rob the mind of its heritage. For, be we well assured that no such search as this, were it only
after the smallest of those treasures which wave after wave may dash up on the shore of the
ocean of truth, is ever unrewarded. And small as those ®ve seconds may appear, which stir the
mind of Bessel, and are to him a prophecy of some knowledge undiscovered, perhaps
unimagined by man, we may remember that when Kepler was ``feeling'' as he said, ``the walls
of ignorance, ere yet he reached the brilliant gate of truth,'' he thus expressed himself
respecting discrepancies which were not larger for the science of his time:Ð``These eight
minutes of difference, which cannot be attributed to the errors of so exact an observer as
Tycho, are about to give us the means of reforming the whole of astronomy.'' We indeed
cannot dream that gravitation shall ever become obsolete; perhaps it is about to receive some
new and striking con®rmation; but Newton never held that the law of the inverse square was
the only law of the action of body upon body; and the question is, whether some other law or
mode of action, coexisting with this great and principal one, may not manifest some sensible
effect in the heavens to the delicacy of modern observation, and especially of modern
reduction. It was worthy of the British Association to interest themselves in such a subject: it
was worthy of British rulers to accede promptly to such a request.

I have been drawn into too much length by the consideration of this instance of the
external effects of our Association, to be able to do more than allude to the kindred instance
of the publication of the observations on the tides in the port of Brest, which has, I am
informed, been ordered by the French Government, at the request of M. Arago and the
French Board of Longitudes, who were stimulated to make that request by a recommendation
of the British Association at Edinburgh. Many other topics, also, connected with your
progress and prospects, I must pass over, having occupied your time so long; and in particular
I must waive what, indeed, is properly a subject for your general committeeÐthe considera-
tion whether anything can be done, or left undone, to increase still more the usefulness of
this Association, and the respect and good will with which it is already regarded by the other
institutions of this and of other countries. As an Irishman, and a native of Dublin, I may be
suffered in conclusion to add my own to the many voices which welcome this goodly company
of English, and Scottish, and foreign visitors to Ireland and to Dublin. We cannot, indeed,
avoid regretting that many eminent persons, whose presence we should much enjoy, are not
in this assembly; though not, we trust, in any case, from want of their good will or good
opinion. Especially we must regret the absence of Sir David Brewster, who took so active a
part in forming this association: but I am authorized, by a letter from himself, to mention that
his absence proceeds entirely from private causes, and that they form the only reason why he
is not here. Herschel, too, is absent; he has borne with him to another hemisphere his
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father's fame and his own; perhaps, from numbering the nebulñ invisible to northern eyes,
he turns even now away to gaze upon some star, which we, too, can behold, and to be in spirit
among us. And other names we miss; but great names, too, are here: enough to give
assurance that in brilliance and useful effect, this Dublin meeting of the Association will not
be inferior to former assemblings, but will realize our hopes and wishes, and not only give a
new impulse to science, but also cement the kindly feeling which binds us all together
already.

727XLIII . DUBLIN MEETING OF THE BRITISH ASSOCIATION



XLIV.

ON A NEW THEORY OF LOGOLOGUES:

ALSO

ON A NEW THEORY OF VARYING ORBITS:

AND

EXPLANATION OF THE METHOD OF INVESTIGATION PURSUED BY

MR G. B. JERRARD FOR ACCOMPLISHING THE SOLUTION OF

EQUATIONS OF THE FIFTH AND OF HIGHER DEGREE (1835)

[British Association Report 1835, Part 11., p. 7.]



XLV.

NEW APPLICATION OF THE CALCULUS OF PRINCIPAL RELATIONS;

AND

EXPOSITION OF MR. TURNER'S THEOREM RESPECTING THE

SERIES OF ODD NUMBERS, AND THE CUBES AND OTHER POWERS

OF THE NATURAL NUMBERS (1837)

[British Association Report 1837, Part II., p. 1.]



XLVI.

INAUGURAL ADDRESS AS PRESIDENT OF THE ROYAL IRISH

ACADEMY (1838)

[January 8, 1838]
[Proceedings of the Royal Irish Academy 1, pp. 107±120 (1841).]

My Lords and Gentlemen of the Royal Irish Academy,
The position in which your kind-

ness has placed me, entitles me, perhaps, to address to you a few remarks. Called by your
choice to ®ll a chair, which Charlemont, and Kirwan, and others, not less illustrious, have
occupied, I cannot suffer this ®rst occasion of publicly accepting that high trust to pass in
silence by, as if it were to me a thing of course. Nor ought I to forego this natural opportunity
of submitting to you some views respecting the objects and prospects of this Academy, which,
if they shall be held to have no other interest, may yet be properly put forward now, as views,
by the spirit at least of which I hope that my own conduct will be regulated, so long as your
continuing approbation shall con®rm your recent choice, and shall retain me in the of®ce of
your President.

First, then, you will permit me to thank you for having conferred on me an honour, to my
feelings the most agreeable of any that could have been conferred, by the unsolicited
suffrages of any body of men. Gladly indeed do I acknowledge a belief, which it would pain
me not to entertain, that friendship had, in in¯uencing your decision, a voice as potent as
esteem. An Irishman, and attached from boyhood to this Academy of Ireland, I see with
pleasure in your choice a mark of affection returned. But knowing that the elective act
partakes of a judicial character, and that the exercise of friendship has its limits, I must
suppose that the same long attachment to your body, which had won for me your personal
regard, appeared also to you a pledge, more strong than promises could be, that if any
exertions of mine could prevent the interests of the Academy from suffering through your
generous con®dence, those exertions should not be withheld; and that you thought they
might not be entirely unavailing. After every deduction for kindness, there remains a
manifestation of esteem, than which I can desire no higher honour, and for which I hope
that my conduct will thank you better than my words.

And yet, Gentlemen, it is to me a painful thought, that the opportunity for your so soon
bestowing this mark of con®dence and esteem has arisen out of the deaths, too rapidly
succeeding each other, of the two last Presidents of our body, who, while they are on public
grounds deplored, and for their private worth were honoured and beloved by all of us, must
ever be remembered by me with peculiar love and honour:ÐBrinkley, who introduced me to
your notice, by laying on your table long ago my ®rst mathematical paper; and Lloyd, whose
works, addressed to the University of Dublin, ®rst opened to me that new world of mind, the



application of algebra to geometry. But of these personal feelings, the occasion has betrayed
me into speaking perhaps too much already. Into that fault, I trust, I shall not often fall again.
I pass to the exposition of views respecting the objects and prospects of our Society.

The Royal Irish Academy was incorporated (as you know) in 1786, having been founded a
short time before, for the promotion generally, but particularly in Ireland, of Science, Polite
Literature, and Antiquities. Its objects were to be the True, the Beautiful, and the Old: with
which ideas, of the True and Beautiful, is intimately connected the coordinate (and perhaps
diviner) idea of the Good. So comprehensive, therefore, was the original plan of this Academy,
that it was designed to include nearly every object of human contemplation, and might
almost be said to adapt itself to all conceivable varieties of study; insomuch that scarce any
meditation or inquiry is directly and necessarily excluded from a place among our pleasant
labours: and precedents may accordingly be found, among our records, for almost every kind
of contribution. If only a diligence and patient zeal be shown, such as be®t the high aims of
our body; and if due care be taken, that the spirit of love be not violated, nor brother offend
brother in anything; no strict nor narrow rules prevent us from receiving whatever may be
offered to our notice, with an indulgent and joyful welcome. And though we meet only as
studious, meditative men, and abstain from including among our objects any measures of
immediate, outward, practical utility, such as improvements in agriculture, or other useful
arts,Ða ®eld which had been occupied, in this metropolis, by another and elder society,
before the institution of our own; yet no philosopher nor statesman, who has re¯ected
suf®ciently on the well-known connexion between theory and practice, or on the re®ning
and softening tendencies of quiet study, will think that therefore we must necessarily be
useless or unimportant as a body, to Ireland, or to the Empire.

The object of this Academy being thus seen to be the encouragement of study, we have
next to consider the means by which we are to accomplish, or to tend towards accomplishing
that object. Those means are of many kinds, but they may all be arranged under the two great
heads of inward and outward encouragement; or, in other words, stimuli and assistances; in
short, spurs and helps to study. The encouragement that is given may act as supplying a
motive, or as removing a hindrance; it may be indirect, or it may be direct; invisible or visible;
mental or material. Not that these two great kinds of good and useful action are altogether
separated from each other. On the contrary, they are usually combined; and what gives a
stimulus, gives commonly a facility too. In our meetings, for example, the stimulating principle
prevails; yet in them we are not only caused to feel an increased interest in study generally,
through the operation of that social spirit, or spirit of sympathy, of which I spoke so largely,
in the presence of most of you, at the meeting of the British Association� in this city; but also
are directly assisted in pursuing our own particular studies, by having the results of other
studious persons early laid before us, and commented upon, by themselves and by others, in
a fresh familiar way. We are not only spurred but helped to study, by mixing freely with other
students.ÐA library, again, is designed rather to assist than to stimulate; and yet it is
impossible for a person of ardent mind to contemplate a well selected assemblage of books,
containing what Milton has described as ``the precious life-blood of a master-spirit, embalmed
and treasured up on purpose to a life beyond life,'' without feeling a deep desire to add, to

� See the Address printed in the Fifth Report of the British Association for the Advancement of
Science,ÐNote by President. [See this Vol. p. 716.]
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the store already accumulated, some newer treasure of his own. Our library, then, spurs as
well as helps.ÐThe prizes which from time to time we award for successful exertion in the
various departments of study, might seem to be stimulants only; yet if we were to act
suf®ciently upon the spirit of precedents, of which we have several among our past proceed-
ings, and which allow us to make our awards in part pecuniary, as well as honorary, they might
become important assistances, and not merely excitements to study; they might serve, for
instance, to enrich the private libraries of the authors on whom they were conferred. Why
might we not, for example, instead of giving one gold medal, which can (according to the
custom of this country) only be gazed at for a while and then shut up, allow the author who
has been thought worthy of a prize to select any books for himself, which he might think most
useful for his future researches, within a certain speci®ed limit of expense; and then not only
purchase those books for him out of our own prize funds, but also stamp them with the arms
of the Academy, or otherwise testify that they were given to him by us as a reward? Or might
not some such presentation of books be at least combined with the presentation of medals?
But the whole system of prizes will deserve an attentive reconsideration, for which this is not
the proper time nor place; and anything that I may now have said, or may yet say on that
subject, in this address, is to be looked upon as merely intended to illustrate a few general
views and principles, and not as any proposal of measures for your adoption; since, upon
measures of detail, I have not as yet even made my own mind up; and am aware that, by the
constitution of our Society, all measures of that kind must ®rst be matured in the Council,
before they are submitted to the Academy at large for ®nal sanction or rejection.

The publication of our Transactions is another ®eld of action for our body, and perhaps the
most important of all; in which it is not easy to determine whether the stimulating or the
assisting principle prevails; so much both of inducement and of facility do they give to study
and to its communication. It is indeed a high reward for past, and inducement to future
labours, to know that whatever of value may be elicited by the studies of any members of this
body, (nor are we to be thought to wish to con®ne the advantage to them,) is likely or rather is
sure to be adopted by the Society at large, and published to the world, at least to the learned
world, in the name and by the order of the whole:Ðthe responsibility for any errors of detail,
and the credit for any merit of originality, remaining still in each case with the author, while
the Academy exercises only a right of preliminary or primaÃ facie examination, and a super-
intendence of a general kind. Nay, the more rigorous this preliminary examination is, and
the more strict this general superintendence, the greater is the compliment paid to the writer
whose productions stand the test; and the more honourable does it become to any particular
essay, to be admitted among the memoirs of a Society, in proportion as those memoirs are
made more select, and expected and required to be more high. But besides this honorary
stimulus, which we should all in our several spheres exert ourselves to make more effective,
by each endeavouring, according to his powers, to contribute, or to judge, or to diffuse, there
is also a powerful and direct assistance given to study, by the publishing of profound
intellectual works at the expense of a corporate body, rather than at the expense of
individuals; a course which spares the private funds of authors and of readers; and thus
procures, for the collections of learned and studious men, many works of value, which
otherwise might never have appeared. Indeed, the publication of Transactions has long been
regarded by me as the most direct and palpable advantage resulting from the institution of
scienti®c and literary societies like our own; and, I believe, that I expressed myself accord-
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ingly, on the occasion� to which I lately alluded. But having then to deal with science only, I
felt that it was unnecessary, and would have been improper for me to have introduced any
view of the connexion and contrast between science and other studies, which are, not less
than science, included among the objects of this Academy, and may therefore be ®tly, if
brie¯y, brought now before your notice. The union of all studies is indeed that at which we
aim; but the three great departments, which our founders distinguished without dividing,
may now also with advantage be distinctly considered, and separated, that they may be re-
combined; a clearness of conception being likely to be thus attained, without any sacri®ce of
unity.

Directing our attention, therefore, ®rst to science, or the study of the True,Ð

Inter sylvas Academi quñrere verum,Ð

we ®nd that, even when thus narrowed, the ®eld to be examined is still so wide as to make
necessary a minuter distinction; whether we would inquire, however brie¯y, what has been
already done by this Academy, or what may ®tly be desired and hopefully proposed to be
done. Were we to rush into this inquiry without any previous survey of its limits, and, as were
natural, allowed ourselves to begin by considering the actual and possible relation of our
studies to the primal science, or First Philosophy, the Science of the Mind itself; we might
easily be drawn, by the consideration of this one topic, into a discussion, interesting indeed,
and (it might be) not uninstructive, but of such vast extent as to leave no room for other
topics, which ought even less to be omitted, because they have hitherto come, and are likely
to come hereafter, more often than it before our notice, in actual contributions to our
Transactions. Indeed I think it prudent at this moment to resist altogether the temptation of
expatiating on this attractive theme, of Philosophy, eminently so called; and to content myself
with remarking, that as metaphysical investigation has more than once already found place
among the scienti®c labours of this Academy, so ought it to take rank among them still, and
to reappear in that character, from time to time, in our pages.

Con®ning ourselves, therefore, at present to Science, in the usual acceptation of the term,
and inquiring what are its chief divisions, in relation mainly to the connected distribution or
classi®cation of scienti®c essays in our Transactions, we soon perceive that three such parts of
science may conveniently be distinguished from each other, and marked out for separate
consideration; namely those three, which, with some latitude of language, are not uncom-
monly spoken of as Mathematics, Physics, and Physiology. The ®rst, or mathematical part,
being understood to include not only the pure but the mixed mathematics; not only the
results of our original intuitions of time and space, but also the results of the combination of
those intuitions with the not less original notion of cause, and with the observed laws of
nature, so far and no farther than that ever-widening sphere extends, within which observa-
tion is subordinate to reasoning; in short, all those deductive studies, in which Algebra and
Geometry are dominant, though the dynamical and the physical may enter as elements also.
The second, or physical part of science, embracing all those inductive studies respecting
unliving or unorganized bodies, which proceed mainly through outward observation or
experiment, and can as yet make little progress in ``the high priori road.'' And ®nally, the

� See Address, already cited, p. 720.ÐNote by President.
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third, or physiological part, including all studies of an equally inductive kind, respecting living
or organized bodies. (I do not pretend that this arrangement is the most philosophical that
can be imagined, but it may suf®ce for our present purpose.)

In all these divisions of science, and in several subdivisions of each, our published
Transactions contain many valuable essays; and there seems to be no cause for apprehension
that in this respect, at least, (if indeed in any other,) the Academy is likely to lose character.
Death has, it is true, removed some mighty names from among usÐelders and chiefs of our
society: but the stimulus and instruction of their example have not been thrown away: an
ardent band of followers has been raised up by themselves to succeed them. To keep the trust
thus handed down, is an arduous, but noble charge, from which it is not to be thought that
any here will shrink, whatever his share of that charge may be.

And yet, while Mathematics and Physics seem likely not to be neglected here, or rather
certain to be ardently pursued, it may be pardoned me if I express a fear and a regret, that
Physiology, or more precisely, the study of the phenomena and laws of life, and living bodies,
has not been represented lately in the published Transactions of our Academy, to a degree
correspondent with the eminence of the existing School of physiological study in Dublin.
Our medical men and anatomists, our zoologists and botanists also, will take, I hope, this
little hint in good part. They know how far I am from pretending to criticize their
productions, and that I only wish to have more of their results brought forward here, for the
instruction of myself and of others. That is not, I think, too much to ask from gentlemen who
have subscribed the obligation which is signed by every member of this body, and who are
quali®ed, by intellect and education, to take an enlarged yet not exaggerated view of the
importance of a central society. I know that many other, and indeed more appropriate
outlets exist, for the publication of curious, isolated, or semi-isolated facts: but it is not so
much remarkable facts, as remarkable views, that I wish to see communicated to us, and
through us to the world; although such views ought, of course, to be illustrated and
con®rmed by facts.

It seems possible, that in each of the three great divisions of science already enumerated,
our Transactions may be enriched in future, through a judicious system of rewards, (of the
kinds to which I lately alluded,) intended to encourage contributions of a more elaborate
kind than usual, from strangers as well as from members of our body. It has appeared, for
example, to some members of your Council, and to me, that for each of those three divisions
of science a triennial prize might be given; these three triennial prizes succeeding each other
in such rotation, for mathematics, physics, and physiology, that a prize should be awarded
every year, on some one principal class of scienti®c subjects, for the best essay which had been
communicated for publication, on any subject of that class, whether by a member or by a
stranger, during the three preceding years. A plan of this sort has been lately tried, and (it
would seem) with advantage, in the distribution of the Royal Medals entrusted by the late
King� to the Royal Society of London; and the principle is not unsanctioned by you, that a
greater range of investigation may sometimes be allowed to the authors of prize-essays, than
the terms of an ordinary prize-question would allow. So that it only remains for your Council
to consider and report to you, as they are likely soon to do, to what extent this principle may

� And continued by her present Majesty: whose gracious intention of becoming Patroness of the Royal
Irish Academy has been made known since the delivery of this Address.ÐNote by President.
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advantageously be pushed, and by what regulations it may conveniently be carried into effect.
In saying this, I do not presume to pronounce that it is expedient to give up entirely the
system of proposing occasionally prize-questions, of a much more de®nite kind than those to
which I have been referring as desirable; but thus much I may venture to lay down, that
original genius in inquirers ought to be as far indulged as it is possible to indulge it, both in
respect of subject and of time; and that due time ought also to be allowed to those members
of a Scienti®c Society, on whom is put the important and delicate of®ce of pronouncing an
award in its name.

The length at which I have spoken of our relations to Science, as a Society publishing
Transactions, though far from exhausting that subject, leaves me but little room, in this
address, to speak of our relations to Literature and Antiquities; subjects to which, indeed, I
am still less able to do justice, than to that former theme. But the spirit of many of my recent
remarks applies to these other subjects also; and you will easily make the application, without
any formal commentary from me. A word or two, however, must be said on some points of
distinction and connexion between the one set of subjects and the other.

As, in Science, or the study of the True, the highest rank must be assigned to the science of
the investigating Mind itself, and to the study of those Faculties by which we become
cognizant of truth; so, in Literature, or the study of the Beautiful, the highest place belongs to
the relation of Beauty to the mind, and the study of those essential Forms, or innate laws of
taste, in and by which, alone, man is capable of beholding the beautiful. Above all particular
fair things is the Idea of Beauty general: which in proportion as a man has suffered to possess
his spirit, and has, as it were, won down from heaven to earth, to irradiate him with inward
glory, in the same proportion does he become ®tted to be a minister of the spirit of beauty, in
the poetry of life, or of language, or of the sculptor's, or the painter's art. The mathematician
himself may be inspired by this in-dwelling beauty, while he seeks to behold not only truth
but harmony; and thus the profoundest work of a Lagrange may become a scienti®c poem.
And though I am aware that little can be communicated by expressions so general (and some
will say so vague) as these, and check myself accordingly, to introduce some remarks more
speci®c and de®nite; yet I will not regret that I have thus for a moment attempted to give
words to that form of emotion, which many here will join with me in acknowledging to be the
ultimate spring of all genuine and genial criticism, in literature and in all the ®ne arts. For
we, in so far as we are an Academy of Literature, are also a Court of Criticism;ÐCriticism
which is to Beauty, what Science is to Nature. Between the divine of genius and the human of
enjoyment, we hold a kind of middle place; creating not, nor merely feeling, but aspiring to
understand: and yet incapable of rightly understanding, unless we at the same time
sympathize.

To express myself then in colder and more technical terms, I should wish that metaphysico-
ethical and metaphysico-ñsthetical essays,Ðthose which treat generally of the beautiful in
action and in art, and are connected rather with the study of the beauty-loving mind itself,
than of the particular products or objects which that mind may generate or contemplate,Ð
should be considered as entitled to the foremost place among our literary memoirs. After
these aÁ priori inquiries into the principles of beauty, which are rather preparatory to criticism
than criticism itself, or which, at least, deserve to be called criticism universal, should be
ranked, I think, that important but aÁ posteriori and inductive species of criticism, which, from
the study of some actual master-pieces, collects certain great rules as valid, without deducing
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them as necessary from any higher principles. And last, yet still deserving of high honour, I
would rank those researches of detail, those particulars, and helps, and applications of
criticism, which, if they be, in a large philosophical view, subordinate and subsidiary to
principles, and to rules of universal validity, yet form perhaps the larger part of the habitual
and ordinary studies of men of erudition; such as the differences and af®nities of languages,
and the explication of obscure passages in ancient authors. Whatever metaphysical prefer-
ence I may feel for inquiries of the two former kinds, no one, I hope, will misconceive me as
speaking of this last class of researches with any other feelings than those of profound
respect, and of desire and hope to see them cultivated here; nor as presenting other than
hearty congratulations to the Academy on the fact, that whereas no single paper on Literature
appeared in our last volume, two memoirs, interesting and erudite, have been presented to
us, and probably are by this time printed, to be in readiness for our next publication;Ðone,
on the Punic Passage in Plautus, by a near and dear relative of my own; and the other, on the
Sanscrit Language, by a gentleman of great attainments and of high station in our national
University: from which seat of learning, it seems not too much to hope, that we shall soon
receive many other contributions in the department of Polite Literature, as well as in other
departments. It is, of course, understood that the awarding of prizes is not to be con®ned to
scienti®c papers, but is to be extended, as indeed it has always been, under some convenient
regulations, to literary and antiquarian papers also.

I was to say a few words respecting that other department of our Transactions, namely,
Antiquities, or the study of the Old; and if, at this stage of my address, those words must be
very few, I regret this circumstance the less, because I know that the study is deservedly a
favourite here, and that I am surrounded by persons who are, beyond all comparison, more
familiar with the subject than myself.

In general, I may say, that whether the study of Antiquities be regarded in its highest aspect,
as the guardian of the purity of history,Ðthe history of nations and of mankind; or as
ministering to literature, by recovering from the wreck of time the fragments of ancient
compositions; or as indulging a natural and almost ®lial curiosity to know the details of the
private life of eminent men of old, and to gaze upon those relics which invest the past with
reality, as the palñontologist from his fossils reconstructs lost forms of life: in all these various
aspects, the study is worthy to interest any body of learned men, and to occupy a considerable
part of the Transactions of any society so comprehensive as our own. The historian of the
Peloponnesian war was also himself an antiquarian; and prefaced that work which was to be
``a possession for ever,'' by an inquiry into the antiquities of Greece. And while he
complained of the bÏÎ ãê AÄ\ÎAÄSÏAÄOÃ �ãryÈêÎ yÈ~éê �yÈSÏSÏyÈ~éê ~ç IÁûÎOÂ úOÄ êÎ ~çê AÄ\ SÏOÂ OÁ IÂOÃ AÄê, that easy
search after truth which cost the multitude nothing; he also claimed to have arrived at an
IÂ̂ YÈ~çêÎ IÂoÄsÏOÂ rOÃ yÈUÂ , a linked chain of antiquarian proof, by which he could establish his
correction of their errors. Indeed, the uninitiated are apt to doubt,Ðperhaps too they may
sometimes smile,Ðwhen they observe the earnest con®dence which the zealous Antiquary
reposes in results deduced from arguments which seem to them to be but slight; nor dare I
say that I have never yielded to that sort of sceptical temptation. But I remember a fact which
ought to have given me a lesson, on the danger of hastily rejecting conclusions which have
been maturely considered by others. A learned Chancellor of Ireland, now no more, assured
me often and earnestly, that he gave no faith to the inductions of astronomers respecting the
distances and sizes of the sun and moon; and hinted that he disliked our year, for containing
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the odd fraction of a day. Yet this was a man, not only of great private worth, but of great
intellectual power, and eminent in his profession as in the state. Astronomers and mathema-
ticians, it may be, look sometimes on other inductions with a not less unfounded incredulity.
It is one of the advantages of an Academy, so constituted as ours is, that it brings together
persons of the most different tastes and the most varied mental habits, and teaches them an
intellectual toleration, which may ripen into intellectual comprehension. Thus, while the
antiquary catches from the scienti®c man his ardent desire for progression, and for that
clearer light which is future, the man of science imbibes something in return, of the
antiquarian reverence for that which remains from the past. The literary man and the
antiquary, again, re-act upon each other, through the connexion of the Beautiful and the
Old, which in conception are distinct, but in existence are often united. And ®nally, the
scienti®c man learns elegance of method from the man of literature, and teaches him
precision in return.

Before I leave the subject of Transactions, I may remark that their value, both as stimulants
and as assistants to study, must much depend on the rapidity and extent of their circulation,
and on the care that is taken to put them as soon as possible into the hands or within the
reach of studious men abroad. Reciprocally it is of importance that measures should be taken
for obtaining speedy information here of what is doing by such men in other countries. On
both these points, some reforms have lately been made, but others still are needed, and will
soon be submitted to your Council. On these and all questions of improvement, I rely upon
receiving the assistance of all those gentlemen who are in authority among us; but especially
am encouraged by the hope of the cordial co-operation of your excellent Vice-President,
Professor Lloyd, who has done so much already for this Academy, in these and in other
respects.

It may deserve consideration, as connected with the last-mentioned point, whether Reports
upon some foreign memoirs of eminent merit, accompanied by extracts, and, perhaps,
translations, might not sometimes be advantageously called for. There is, I think, among our
early records, some hint that the Academy had once a paid Translator. It may or it may not be
expedient to revive the institution of such an of®ce; or to give direct encouragement to the
exertions of those,� who, without any express reference to our own body, work in this way for
us, while working for the public; but no one can doubt that it is desirable to diminish the too
great isolatedness which at present exists among the various learned bodies of the world. The
Reports of the British Association on the actual state of science in each of its leading
subdivisions, do not exactly meet the want to which I have alluded; because, upon the whole,
they aim rather at condensing into one view the ultimate conclusions of scienti®c men in
general, than at diffusing the fame and light of individual scienti®c genius, by selecting some
few great foreign works, and making known at home their method as well as well as their
results. Besides we must remember that far as that colossal Association exceeds the body to
which we belong, in numbers, wealth, and in¯uence, yet in plan it is less comprehensive;
since it restricts itself to science exclusively, while we aspire, as I have said, to comprehend

� For instance, Mr. Richard Taylor [1781±1858], of London, F. S. A., &c., who lately began to publish
Scienti®c Memoirs, selected and translated from the Transactions of Foreign Academies of Science, and
other foreign sources; which valuable publication is now suspended for want of suf®cient support from
the public.ÐNote by President.
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nearly the whole sphere of thought,Ðat least of thought as applied to merely human things:
in making which last reservation, I shall not, I hope, be supposed wanting in reverence for
things more sacred and divine.

With that powerful and good Association, however, we should endeavour to continue
always on our present, or if possible, on closer terms of amicable relation. I need not say that
we should also aim to preserve and improve our friendly relation with all the other Scienti®c,
Literary, and Antiquarian Societies, of these and of foreign countries. Especially we ought to
regard, with a kind of ®lial feeling of respect and love, the Royal Society of LondonÐthat
central and parent institution, from which so many others have sprung; over which Newton
once presided; and in which our own Brinkley wrote. While feelings of this sort are vigilantly
guarded, and public and private jealousies excluded vigilantly, a vast and almost irresistible
moral weight belongs to companies like these, of studious men; and, amid the waves of civil
affairs, the gentle voice of mind makes itself heard at last. Societies such as ours, if they do
their duty well, and ful®l, so far as in them lies, their own high purpose, become entitled to
be regarded as being, on all purely intellectual and unpolitical questions, hereditary
counsellors of crown and nation. The British Association has already made applications to
government with success, for the accomplishment of scienti®c objects; and I am not without
hopes that our own recent memorial, for the printing, at the public expense, of some
valuable manuscripts in our possession, adapted to throw light on history, and interesting in
an especial degree to us as Irishmen, will receive a favourable consideration.

On the present occasion, which to me is solemn, and to you not unimportant, I may be
pardoned for expressing, in conclusion, the pleasure which it gives me to believe, that while
we cautiously abstain from introducing polemics or politics, or whatever else might cause an
angry feeling in this peaceful and happy society, some great and fundamental principles, of
duty to heaven and to the state, are universally recognized amongst us. Admitted at an early
age to join your body, I now have known you long, and hope to know you longer; but have
never seen the day, and trust that I shall never see it, when piety to God, or loyalty to the
Sovereign, shall be out of fashion here.
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XLVII .

ADDRESS AS PRESIDENT OF THE ROYAL IRISH ACADEMY ON

PROFESSOR MACCULLAGH'S PAPER ON THE LAWS OF

CRYSTALLINE REFLEXION AND REFRACTION (1838)

[June 25, 1838]
[Proceedings of the Royal Irish Academy 1, 212±221 (1841).]

The time has now arrived for terminating the present session; and it will, no doubt, be
gratifying to you, as it is to me, that our closing act should be the public presentation of a
Medal to one of our most distinguished Members; that Medal being the ®rst which has been
awarded by your Council in the exercise of the new and fuller power con®ded by you lately to
them, and in execution of the plan which was announced to you at the time when you gave
them that enlarged discretion, with respect to the bestowal of honorary rewards.

That plan, as you may remember, differs little from the scheme suggested by me in the
inaugural address which I had the honor to deliver on the occasion of ®rst taking the chair of
this Academy: the only difference, indeed, so far as science is concerned, being the subse-
quent adoption of a suggestion of Professor Lloyd, respecting a change of distribution of
those subjects which were included by me under the two great heads of Physics and
Physiology, but by him under those of Experimental and Observational Science, or Physics
and Natural History. The time for acting upon this modi®cation has not, however, as yet
arrived; and before the suffrages of your Council were collected, at its last meeting, on the
question of the absolute and relative merits of the various communications which have lately
been made to our Transactions, it was resolved to postpone, till after the recess, the
consideration of all scienti®c or other awards, except only that which should be made for the
most important paper in pure or mixed mathematics, communicated during the three years
which ended in March 1837, and already actually printed. The papers coming within this
de®nition were few; the authors of them were only two, Professor MacCullagh and myself.
The decision, which in theory is a decision of the President and Council, and which did in
fact receive my cordial and previously expressed concurence, was in favour of Mr. MacCulla-
gh's paper ``On the Laws of Crystalline Re¯exion and Refraction,'' contained in the just
published part of the eighteenth volume of the Transactions of this Academy.

It may happen that upon future occasions of this sort, if it shall again become my duty to
present from this Chair those Medals which may hereafter be awarded, for papers of other
triennial cycles, and upon other subjects, I may not think it necessary or expedient to occupy
your time by any but the briefest statement of the grounds on which those future awards may
have been made. But on the present occasion, which is (to me at least, and in relation to our
new plan) the ®rst occasion of its kind; while the subject is one of a class to which my own
inquiries have been much directed, and upon which, therefore, I may speak with a less risk of



impropriety than upon many others; and while we, as an Academy, by extra hours and extra
nights of attendance, during that busy session which is now about to close, have earned for
ourselves a little leisure, on this last night of meeting, without interfering (as we hope) with
the rights, or even with the convenience of authors; I think myself allowed to enter more at
large into the merits of the award, and to lay before you some of the thoughts which the
perusal of the present prize essay has suggested to my own mind.

When ordinary light is re¯ected at the common boundary of two transparent and
uncrystallized media, as when we see (for example) for re¯exion of the sun in water, the
re¯ected light differs from the incident in both direction and intensity, according to laws
which were known to Euclid in so far as they regard direction, but of which the discovery, in so
far as intensity is concerned, was reserved for the sagacity of Fresnel. In general, the laws which
regulate the changes of the direction of light have been found easier of discovery than those
which regulate its changes of intensity; the laws of the re¯exions and refractions of the lines
along which light is propagated, than the laws of the accompanying determinations or
alterations of its planes of polarisation; or, to express the same distinction in the language of
the theory of indulations, it has been found easier to assign the form of the waves which
spread from any origin of disturbance through any given portion of the elastic luminiferous
ether, than to assign the directions and relative magnitudes of the vibrations which constitute
those waves, and the laws which regulate the changes of such vibrations, in the passage from
one medium to another.

The laws which regulate such changes of vibration, produced by re¯exion and refraction, at
the boundaries of crystallized media, have been the special object of Mr. MacCullagh's
investigations, in the paper now before us. But in investigating them, he has been obliged to
consider also the laws which regulate the vibrations of the ether, in the interior of a crystallized
body, and not at its surface only; the laws of the propagation as well as those of the re¯exion and
refraction of light. His researches are therefore connected intimately with a wide range of
optical phenomena; and the hypotheses on which his formulñ are founded, and which seem
to have their own correctness proved by the experiments of many kinds with which they have
been successfully compared, though liable, of course, like every physical induction, to be
modi®ed in some degree by future observation, appear to be entitled to assume henceforth a
very high rank among the principles of physical optics.

The method which Mr. MacCullagh has adopted may be said to be in general the method
of mathematical induction, as distinguished from dynamical deduction. He has not sought to
deduce, from any pre-supposed attractions or repulsions, and arrangements of the molecules
of the ether, any conclusions respecting the vibrations in the interior or at the boundaries of
a medium, as necessary consequences of those dynamical principles or assumptions. But he
has sought to gather from phenomena a system of mathematical laws by which those
phenomena might be expressed and grouped together, be conceived in connexion with each
other, and receive an inductive unity. He has sought to arrive at laws which might bear
somewhat the same relation to the optical observations already made, as the laws of Kepler
did to the astronomical observations of his predecessor Tycho Brahe, without seeking yet to
deduce these laws, as Newton did the laws of Kepler, from any higher and dynamic principle.
And though, no doubt, it is to such deduction that science must continually tend; and
though, in optics, some progress has been actually made, by Cauchy and by others, to a
dynamical theory of light, as a system of vibrations regulated by forces of attraction and
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repulsion; yet it may well be judged a matter of congratulation when minds are found
endowed with talents so high as those which Mr. MacCullagh possesses, and willing to apply
them to the preparatory but important task of discovering, from the phenomena themselves,
the mathematical laws which connect and represent those phenomena, and are in a manner
intermediate between facts and principles, between appearances and causes.

It was thus, that, in a former paper, Mr. MacCullagh proposed, as mathematical expressions
for the phenomena of Quartz, a system of differential equations, which are indeed simple in
themselves, and seem to agree well with observation, but have not yet been shown to be
consistent with dynamic views. And in that later memoir for which the present prize is
awarded, he has, in like manner, adopted some hypotheses, and rejected others, without
apparently regarding whether and how far it may seem possible at present to reconcile such
adoption or such rejection with received opinions respecting the mechanism of light;
exhibiting thus, a kind of intellectual courage, in admiring which I am forti®ed by the
opinion of Sir John Herschel, who lately, in a conversation and a letter, expressed himself
thus to me: ``The perusal of Mr. MacCullagh's paper on the Laws of Re¯exion and
Polarisation in Crystals, has, although cursory, produced a very strong impression on my
mind that the theory of light is on the eve of some considerable improvement, and that by
abandoning for a while the aÁ priori or deductive path, and searching among phenomena for
laws simple in their geometrical enunciation, and of more or less wide applicability, without
( for a while) much troubling ourselves how far those laws may be in apparent accordance with any
preconceived notions, or even with what we are used to consider as general principles in dynamics, it may
be possible to unite scattered fragments of knowledge into such groups and masses as shall
afford glimpses of their ®tness to combine into a regular edi®ce.''

The hypotheses which are the bases of Mr. MacCullagh's theory of Crystalline Re¯exion
and Refraction are the following. He supposes that the form of the wave surface in a doubly-
refracting crystal is that which was assigned by Fresnel, and that the vibrations are tangential
to this surface, but that they are perpendicular to the ray, and consequently parallel to the
plane of polarisation; whereas Fresnel supposed them to coincide with the projection of the
ray upon the wave, and consequently to be perpendicular to the plane of polarisation.
Professor MacCullagh supposes also, with Fresnel, that the vis viva is preserved, or in other
words, that the re¯ected and refracted lights are together equal to the incident; but in
applying this principle to investigate the refracted vibrations, he supposes, in opposition to
Fresnel, that the density of the ether is not changed in passing from one body to another. And
he supposes, ®nally, that the vibrations in two contiguous transparent media are equivalent; or, in
other words, that the resultant of the incident and re¯ected vibrations is the same, both in
length and direction, as the resultant of the refracted vibrations; whereas Fresnel had
supposed only that the vibrations parallel to the separating surface, but not that the vibrations
perpendicular to the same surface were equivalent.

And here I may be permitted to state, what indeed cannot fail to be remembered by many
here, that when the British Association for the Advancement of Science met in this city, about
three years ago, (in August, 1835), a communication was made by Mr. MacCullagh to the
Mathematical and Physical section, ``on the Laws of Re¯exion and Refraction at the Surface
of Crystals,'' which embodied nearly all the principles or hypotheses that I have now recited,
and of which an abstract was printed in the London and Edinburgh Philosophical Magazine
for October, 1835, having indeed been published even earlier (in September, 1835) by Mr.
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Hardy here. The only supposition, which was not either formally stated or clearly indicated in
this abstract, was that of the preservation of the vis viva; instead of which principle of Fresnel,
Mr. MacCullagh was, at one time, inclined to employ a relation between pressures, proposed
by M. Cauchy. Since, therefore, the leading principles of the new theory of Re¯exion and
Refraction were all made known by Mr. MacCullagh so early as the August of 1835, were
printed in Dublin in the September of that year, and in London in the October following, it
will not, perhaps, be attributed solely to national partiality if we claim for him the priority of
discovery on this curious and important question, notwithstanding that a very valuable and
elaborate memoir on the same subject, embodying the same results, was communicated, in
December, 1835, to the Academy of Sciences at Berlin, by M. Neumann, and was published in
1837, before the publication (though after the reading) of that essay of Mr. MacCullagh, to
which the present prize is awarded.

It is, however, an interesting circumstance, and one which is adapted to increase our
con®dence in these new laws of light, that they should have been independently and almost
simultaneously discovered in these and in foreign countries; and it will not, I trust, be
supposed that I desire to depreciate M. Neumann's admirable essay, if having recalled some
facts and dates which bear upon the question of priority, I proceed to point out a few of the
features of Mr. MacCullagh's briefer paper, which have appeared to me to deserve a peculiar
and special attention. I mean the geometrical elegance of the principal enunciations, and the
philosophical character of the interspersed remarks.

As a specimen of the former, I shall select the theorem of the polar plane. When light in air
is incident on a doubly-refracting crystal, it may be polarised in such a plane, that one of the
two refracted rays shall disappear; and then the one refracted vibration which corresponds to
the one remaining refracted ray, must (by the hypotheses or laws already mentioned) be the
resultant of the one incident and one re¯ected vibration; and consequently these three
vibrations must be contained in one common plane, which plane it is therefore an object of
interest to assign a simple rule for constructing. In fact, the refracted vibration is known, in
direction, from the laws of propagation of light in the crystal, and the hypotheses already
mentioned; if, then, we know how to draw through its direction the plane just now referred
to, we should only have to examine in what lines this plane intersected the incident and
re¯ected waves, in order to obtain the direction of the incident and re¯ected vibrations, and
afterwards (by the rules of statical composition) the relative magnitudes of all the three
vibrations, or the relative intensities of the incident, re¯ected, and refracted lights. Now Mr.
MacCullagh shows, that the desired construction can be deduced from the properties of the
doubly refracting medium or wave, as follows: Let ot, op represent in length and in direction
the velocity of the refracted ray, and the slowness of the refracted wave; so that, by what has
been before supposed, the refracted vibration ov is perpendicular to the plane top; then, if a
plane be drawn through the vibration ov, parallel to the line tp, this plane, which Mr. MacCullagh
calls the polar plane of the ray ot, will be the plane desired; that is, it will contain the incident
and the re¯ected vibrations, if these be uniradial, or, in other words, if they have such
directions, or correspond to such polarisations, as to cause one of the two refracted rays in
the crystal to disappear.

Many elegant geometrical corollaries are drawn, in the Essay, from this theorem of the
polar plane; but I shall only mention one, (which includes, as a particular case, the
remarkable law for determining the angle of polarisation of light re¯ected at the surface of

742 XLVII . ADDRESS ON PROFESSOR MACCULLAGH'S PAPER



an ordinary medium, discovered by Sir David Brewster,) namely, that when the light re¯ected
from the surface of a doubly refracting crystal is completely polarised, or, in other words,
when the re¯ected vibration has a determined direction, independent of the direction of the
incident vibration, then the re¯ected ray is perpendicular to the intersection of the polar planes of the
two different refracted rays.

In this and other applications of the theorem of the polar plane to the case where the
incident light is polarised so as to undergo a double refraction, the obvious manner of
proceeding is to decompose its one biradial vibration into two uniradial vibrations, and to treat
these separately, by applying to each the construction above described. Yet Mr. MacCullagh
remarks, that it requires proof that the re¯ected and refracted intensities, thus determined,
will have their sum exactly equal to the intensity of the incident light; or, in other words, that
the law of the vis viva will hold good for the resultant vibrations, though we know, by the
construction, that it holds good for each system of uniradial components taken separately. In
fact, if the two separate incident vibrations, which correspond to the two separate refracted
vibrations, be inclined at an acute angle to each other, they will generate by their super-
position (according to the law of interference) a compound incident light, of which the
intensity exceeds, by a determined amount, the sum of the two separate or component
intensities; and it requires proof that the two separate re¯ected vibrations will in like manner
be inclined to each other at that precise acuteness of angle which will allow the intensity of
the compound re¯ected light to exceed, by precisely the same determined amount, the sum
of the two separate intensities, corresponding to the two separate re¯ected vibrations: (or
that the same sort of equality of differences between incident and re¯ected resultants and
sums will take place, when the angles are obtuse and not acute;) the two refracted vibrations
being not in general (in either case) superposed upon each other. Professor MacCullagh has
arrived at an equation of condition, as necessary for the foregoing agreement, which
expresses a property of the laws of propagation deduced from the laws of re¯exion and
refraction, however singular it may appear that the latter laws should give any information
respecting the former; and he states that he has found this equation to express rigorously a
property of Fresnel's wave. His demonstration of this latter property having not yet been
published, I have been induced to investigate one for myself; and have thus been conducted
to a construction of the condition in question, so simple that it may perhaps be mentioned
here. Let r and w denote the planes vot and vop in the ®gure before referred to, which may
also be called the planes of ray-polarisation and of wave-polarisation, for the ray ot, or for the
corresponding wave; and let p9, t9, r9, w9 be analogous to p, t, r, w, but referred to any other
ray or wave; then the following is the relation to be satis®ed:

ot:op9:cos rw9 � ot9:op:cos r9w;

rw9 and r9w denoting here diedral angles. Under this form, it is easily proved that Fresnel's
wave surface possesses rigorously the property in question. Mr. MacCullagh's equation has
been otherwise obtained by M. Neumann, namely, as a condition for the possibility of
depressing the equation of the vis viva to the ®rst from the second degree.

On this and many other points of the investigation, Mr. MacCullagh (as I have already said)
has thrown out many interesting and philosophical remarks; for instance, that the perfect
adaptation which thus appears to exist between the laws of the propagation and those of the
re¯exion and refraction of light, is a strong indication that these two sets of laws are derived
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from some one common source, in other and more intimate laws not yet discovered; and that
it is allowed to hope that the next step in physical optics will lead us to those higher and more
elementary principles by which the laws of re¯exion and propagation are linked together as
parts of the same system. His remarks on the probable connexion between the theories of
metallic and crystalline re¯exion, and on the hopefulness of ascending to a true theory of
light by the method of mathematical induction from phenomena, (exempli®ed, as has been
seen, in his own papers,) rather than by attempting prematurely to make deductions from
dynamical principles, are also well worthy of attention, though my own habits of thought lead
me to feel an even stronger interest in dynamic and deductive researches.

But I have suffered myself to speak at greater length than has been usually occupied by
others before, or is likely to be occupied by me hereafter on other similar occasions, and
certainly at greater length than was required to justify the award of your Council. The reasons
which I pleaded at the commencement of this address may, perhaps, serve partly as my excuse
for having occupied your time so long; and some additional indulgence may have been
thought due by those who remember that many years ago, both here and elsewhere, in public
and in private, I expressed strongly my admiration of the talents of him to whom I have now
the gratifying of®ce of presenting this ®rst public mark of honour from his scienti®c brethren
and cotemporaries.

[The President then, delivering the Medal to Professor MacCullagh, addressed him as follows:Ð]

Professor MacCullagh,
I present to you this medal, awarded to you by the President and

Council of the Royal Irish Academy. Accept it as a mark of the interest and intellectual
sympathy with which we regard your researches; of the pleasure with which we have received
the communications wherewith you have already favoured us; and of our hope to be favoured
with other communications hereafter. And when your genius shall have ®lled a wider sphere
of fame than that which (though already recognized, and not here only) it has yet come to
occupy, let this attest, that minds were found which could appreciate and admire you early in
this your native country.
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XLVIII .

NOTICE OF A SINGULAR APPEARANCE OF THE CLOUDS OBSERVED

ON THE 16TH OF DECEMBER, 1838 (1839)

[Communicated January 14, 1839]
[Proceedings of the Royal Irish Academy 1, 249 (1841).]

The President gave an account of a singular appearance of the clouds, observed on the 16th
December, 1838, at the Observatory of Trinity College, Dunsink. They appeared, for at least
the last four hours of day light, to be arranged in arches which converged very exactly to the
N. E. and S. W. points of the horizon; while the breaks or joints in these arches were directed,
though with less exactness, to two other horizontal points, which seemed to be always
opposite to each other, but ranged from N. W. and S. E. to N. and S. Conjectures were
offered with respect to the cause of this appearance.



XLIX.

ADDRESS AS PRESIDENT OF THE ROYAL IRISH ACADEMY ON

DR. APJOHN'S RESEARCHES ON THE SPECIFIC HEAT OF GASES

(1839)

[February 25, 1839]
[Proceedings of the Royal Irish Academy 1, 276±284 (1841).]

The President delivered the following Address to the Academy.
I have now the honour to inform you, that your Council, in the exercise of the discretion

entrusted to them by you, have taken into their consideration, since the commencement of
the present session, the various papers which had been for a few years past communicated to
our Transactions, on several different subjects, in order to determine whether any and which
of those papers should be distinguished by the award of a Cunningham Medal: and that the
medal for the most important Paper in Physics, communicated to us during the three years
ending in March, 1838, has been adjudged to Dr. Apjohn, for his Essay on a New Method of
investigating the Speci®c Heats of the Gases, published in the First Part of the Eighteenth
Volume of the Transactions of this Academy.

The importance of the study of what are called the imponderable agents, is known to all
physical inquirers. Indeed it would appear, that as the scienti®c history of Newton, and of his
successors during the century which followed the publication of his Principles of Natural
Philosophy, is connected mainly with the establishment of the law of universal gravitation,
and with the deduction of its chief consequences; so are the mathematical and physical
researches of the present age likely to be associated, for the most part, with the study of light
and heat and electricity, and of their causes, effects, and connexions. Whatever, then,
whether on the practical or on the theoretical side, in the inductive or the deductive way, may
serve to extend or to improve the knowledge of these powerful and subtle agents or states of
body, which are always and everywhere present, but always and everywhere varying, and which
seem to be concerned in all the phenomena of the whole material world, must be received by
scienti®c men as a welcome and valuable acquisition.

Among researches upon heat, the highest rank is, (I suppose,) by common assent, assigned
to such works as those of Fourier and Poisson, which bring this part of physics within the
domain of mathematical analysis. That such reduction, and to such extent, is possible, is itself
a high fact in the intellectual history of man; and from the contemplation of this fact,
combined with that of the analogous success which it was allowed to Newton to attain in the
study of universal gravitation, we derive a new encouragement to adopt the sublime belief,
that all physical phenomena could be contemplated by a suf®ciently high intelligence as
consequences of one harmonious system of intelligible laws, ordained by the Author and
Upholder of the universe; perhaps as the manifold results of one such mathematical law.



But if those profound and abstract works, in which so large a part is occupied by purely
mathematical reasoning, suggest more immediately the thought of that great intellectual
consummation, we must not therefore overlook the claims of experimental and practical
inquirers, nor forget that they also have an important of®ce to perform in the progress of
human knowledge; and that the materials must be supplied by them, though others may
arrange and re®ne them. Especially does it become important to call in the aid of
experimental research, when facts of a primary and (so to speak) a central character require
to be established; above all, if the establishment of such facts has been attempted in vain, or
with only doubtful success, by eminent experimentalists already. Now, in the theory of heat,
the research of the speci®c heats of the gases is one not far removed from such primary or
central position, being no mere question of detail, but intimately connected with the inquiry
into the nature of heat itself; it is also one which has been agitated by eminent men, and
results have been obtained by some, and disputed by others, of which it is interesting, in a
high degree, to examine the correctness or invalidity. For a new examination of this kind,
conducted by new methods of experiment, the present award has been made. Of the nature
and grounds of this award, I now proceed brie¯y to speak; and ®rst, it may be proper that I
should remind the Academy of the meaning of this phrase speci®c heats, and of the
phenomena which suggest the name and the conception.

When any two equal volumes of water at any two unequal temperatures are mixed together,
the mixture acquires, in general, a temperature which is either exactly or at least very nearly
intermediate between the two original temperatures, being as many degrees of the thermo-
meter below the one, as it is higher than the other. But if a pint of mercury at 608 and a pint
of water at 808 be brought in contact and acquire thereby a common temperature, it is found
that this last is not so low as 708; and that thus, this passage of heat, from the warmer water to
the colder mercury, has cooled the former less than it has warmed the latter, as indicated by
the degrees of a thermometer. Phenomena of this kind suggest the conception, that only a
part of the heat contained at any one time, in any particular body, affects the senses or the
thermometer; and that the remainder of the heat is insensible, latent, or hidden: so that
water, for example, absorbs or hides more heat than the same bulk of mercury at any
temperature common to both, and that for any given increase of that temperature (measured
by the thermometer) the former absorbs or renders latent more than the latter, while, on the
contrary, in cooling through any given number of degrees, it sets a greater quantity free.
Many other phenomena are made intelligible by such a conception, and even more
immediately suggest it. Thus, if we put a pound of freshly frozen ice in contact with a pound
of water, which is warmer than it by about 1408 of Fahrenheit's thermometer, the result will
be two pounds of water, not at an intermediate, but at the lower temperature; the excess of
heat of the originally warmer water having been all employed in the mere act of melting the
ice, or having all become insensible or latent, in the new water formed by melting it. And the
principle that heat is absorbed or rendered latent in the production of steam from water, but
is given out or set free again when the former is condensed into the latter, is part of the
theory of the steam-engine. But because this phraseology suggests a view of the intimate
nature of heat, which is at most hypothetical only, it has by many persons been thought better
to use the word speci®c, instead of latent; and to speak of the speci®c heats of bodies in a sense
analogous to that in which we speak of their speci®c gravities, to express only certain known
and measurable properties of these bodies, in relation to the unknown principle of heat. And
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thus we say, that water has a greater speci®c heat than mercury, implying only that, whatever be
the reason, any given bulk or weight of water produces a more powerful heating effect than is
produced by the same bulk or weight of mercury, when both are cooled through the same
number of degrees, by contact with a body of a lower temperature.

The speci®c heats of solids and of liquids are comparatively easy of determination; but the
great rarity or lightness of the gases renders the measure of their speci®c heats more dif®cult.
The former may be investigated with much accuracy, by the aid of Laplace's calorimeter:
which is an instrument for measuring (by weight) the quantity of ice that is melted by the
heat produced or set free in the cooling of a given weight of the proposed solid or liquid
body through a given range of temperature. But in applying the same method to the latter
question, that is to the inquiry into the heats of the gases, it appears to be dif®cult to
disentangle the small effect of this sort produced by the cooling of any moderate bulk of gas
from the effect produced by the cooling of the envelope in which that gas is contained.
Several other methods also of inquiry into this delicate subject, however ingeniously devised
and carefully executed, by men of deservedly high reputation, have been considered liable to
the same or to other objections, and have failed to inspire any general con®dence in their
results. It seems, however, that the problem has been at length, to a great extent, resolved, by
the employment of that other method, which was invented a few years ago by Dr. Apjohn
here, and elsewhere by Dr. Suerman;� and which may be said to consist in determining,
(indirectly,) through the help of a thermometer with moistened bulb, the weight of gas which
is required for the conversion (at a known temperature and under a known pressure) of a
known weight of water into vapour, by cooling through a number of degrees which is known
from observation of another thermometer.

The general theory of the evaporation hygrometer, or the manner of employing a
thermometer with moistened bulb, to discover the amount of moisture which is contained at
any given time in the atmosphere, was very well and clearly set forth by Mr. (now Sir James)
Ivory, in Tilloch's Philosophical Magazine for August, 1822. The same theory was also
discovered by M. August of Berlin, with the date of whose work upon the subject I am
unacquainted, having only seen the extracts made from it in M. Kupffer's Meterological and
Magnetical Observations, (published at St. Petersburgh in 1837,) and in a recent volume of
M. Quetelet's Correspondence. It appears, indeed, that M. Gay Lussac had prepared the way
for this discovery, by his researches on the cold of evaporation; and the laws of the elastic
force of vapour, and of its mixture with the gases, without which the theory could not have
been constructed, are due to the venerable Dalton. Notwithstanding all that had thus been
done, the subject seems to have attracted little general notice in these countries, until it was
recommended to the attention of scienti®c men at the ®rst meeting of the British Associa-
tion; and Dr. Apjohn, who was thus led to examine it anew,y was not aware of the results that
had been already obtained. He thus arrived at a new and independent solution, of which he
had the satisfaction of testing the correctness, by several different series of experiments; and
this success encouraged him to extend the research, and to apply the same principles and

� Dissertatio Physica Inauguralis de Calore Fluidorum Elasticorum Speci®co; auctore A. C. G. Suer-
man: Trajecti ad Rhenum, 1836. An excellent work, to which every student of this subject must refer.
y It appears that another Member of the Academy, Dr. Henry Hudson, was also led, by this

recommendation, to consider this interesting subject.
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methods to other gases, and not to atmospheric air alone. He perceived that whatever the
gas� might be, in a current of which was placed the thermometer with moistened bulb, the
minimum or stationary temperature of that thermometer must be attained when just enough
of heat was given out in cooling, by each new portion of gas, to cause the evaporation of that
new portion of moisture with which this gas was at the same time saturated; and that thus the
amount of depression would vary inversely as the speci®c heat of the gas, all other
circumstances being the same. He investigated, however, the allowances that should be made
for variations in such other circumstances, and took all other precautions which his
experience pointed out to be important. The consequence has been a new determination of
the speci®c heats of several different gases, on which it seems that much reliance may be
placed, from the nature of the method, and from the agreement of the partial results with
each other, and with those of Dr. Suerman, though some of these results differ widely from
those obtained by methods previously employed; the speci®c heat of hydrogen, for instance,
being found by Apjohn and Suerman, to be, under equal volumes, greater than that of
atmospheric air in the ratio nearly of seven to ®ve; whereas some former experimenters had
supposed it to be equal or inferior. And by such results the law which had been thought to be
obtained by a former eminent observer, namely, that all the simple gases have, under equal
volumes, the same speci®c heat, appears to be overthrown. It is impossible not to feel some
degree of regret, when we are thus compelled to abandon a view which had recommended
itself by its simplicity, and had been found to be in at least partial accordance with facts; but
besides that the search after truth is the primary duty of science, the whole tenor of scienti®c
history assures us, that each new seeming complexity, or apparent anomaly, which the study
of nature presents, is adapted ultimately to lead to the discovery of some new and higher
simplicity.

A somewhat more distinct conception than the foregoing remarks may have given, of the
nature of Dr. Apjohn's method, may be attained by a short study of that ®rst experiment
described by him, in which it was found that in a stream of dry hydrogen gas, in which a
thermometer with a dry bulb stood at 688, the one that had the moistened bulb was cooled to
488 of Fahrenheit; the barometer indicating at the same time an atmospheric pressure of
30.114 inches. From the stationary state to which the second of these two thermometers had
been reduced, it is clear that the continual supply of heat, required for the continuing
evaporation of moisture from the bulb, was supplied neither from the water with which that
bulb was moistened, nor from the mercury which it contained, but only from the stream of
warmer gas which continued to pass along it; the small effect of radiation from surrounding
bodies being neglected in comparison herewith. Each new portion of the current of
hydrogen, in cooling from 688 to 488, must therefore have given out very nearly the precise
amount of heat absorbed by that new portion of moisture, which passed at the same time
from the state of water to the state of vapour, at the temperature of 488. It is also assumed,
apparently upon good grounds, that after the moist bulb attains its stationary temperature,
the whole (or almost the whole) of the new gas, in becoming fully cooled, becomes at the same
time fully moistened, or saturated with the new vapour; this vapour being intimately mixed with

� Dr. Suerman states, that M. Gay Lussac perceived that the speci®c heat of any gas must be connected
with the degree of cold produced by the evaporation of a liquid placed therein; but the remark appears
to have been merely made in passing, and to have been afterwards neglected and forgotten.
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the gas which had assisted to form it; and every cubic inch of this mixture containing exactly
(or almost exactly) as much moisture as a cubic inch could contain, in the form of vapour, at
its own temperature: a quantity which is known from the results of Dalton, respecting the
elastic force of vapour. From those results it follows, that in the present case, the temperature
of the vapour being 488, its elastic force must have been such that it could by itself have
supported the pressure of a column of mercury, 35 hundredths of an inch in height; but the
pressure upon the mixture was equivalent to a column 30 inches and 11 hundredths high;
therefore the pressure which could have been supported by the hydrogen alone, at the same
temperature of 488, was equivalent to 29 inches and 76 hundredths: so that, by the known
proportionality between density and pressure, the weight of the gas which was contained in
the whole or in any part of this mixture would have exceeded the weight of the vapour in the
ratio of 2976 to 35, or in the ratio nearly of 85 to 1, if the weight of a cubic inch of hydrogen
gas were as great as that of watery vapour, under a common pressure, and at a common
temperature. But under such circumstances, a cubic inch of vapour weighs about nine times
as much as a cubic inch of hydrogen; we must therefore divide the number 85 by 9, and we
®nd that in the present case the mixture contained only about 91

2 grains of hydrogen for every
grain of vapour; and thus we learn, from this experiment, that the heat required for the
evaporation of a grain of water at the temperature of 488 might be (and was in fact) supplied
by the cooling of about 91

2 grains of hydrogen from 688 to 488. But in order to produce the
same amount of evaporation by the heat which water would give out, in cooling through the
same range of temperature, it is known from other experiments that it would be necessary to
employ about 56 grains; therefore 91

2 grains of hydrogen have nearly as much heating power
as 56 grains of water, or one grain of the former contains almost as much speci®c heat as six
grains of the latter. All this is stated in round numbers, and with the omission of all lesser
corrections, for the sake merely of such members as may not have attended to the subject,
and yet may wish to have a clear, though general notion of it. Those who desire a more exact
account will, of course, turn to the Essay itself.�

� The formula given by Dr. Apjohn for the general solution of the problem of the moist bulb
hygrometer, in any gaseous atmosphere, is,

f 0 � f 9ÿ 48ad

e
3

p

30
;

in which e is the caloric of elasticity of vapour, at the temperature t9 of the hygrometer; p is the
atmospheric pressure; d is the difference between the temperatures of the dry and wet thermometers: f 9
and f 0 are the elastic forces of the vapour of water, at the temperature of the hygrometer, and at that
other temperature at which dew would begin to be deposited; and a is the speci®c heat of the gas,
compared with that of an equal weight of water, and multiplied by the speci®c gravity of the same gas,
compared with that of atmospheric air. For the case of a current of dry gas f 0 � o, and

a � ef 9

48d
3

30

p
;

in which, as also in the other formula, it would be a little more exact to write p ÿ f 9 instead of p. A
correction is given for the case of a mixture of gas with air; and the in¯uence of other corrections also is
taken into account. When a is divided by the known number 0,267 the quotient is the speci®c heat of the
gas compared with that of an equal volume of atmospheric air: and the sensible inequality of the speci®c
heats so found, for different simple gases, is the chief physical conclusion of the paper.
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With respect to those independent, but analogous researches of Dr. Suerman,� to which
allusion has been made, they seem (as has been said) to con®rm as closely as could be
expected, under the differing circumstances of the experiments, the results of Dr. Apjohn; of
whose labours, indeed, that eminent foreigner has spoken in the most handsome terms, and
in favour of whom he has freely waived, upon this subject, all contest for priority. But even if
among the many persons who now are cultivating science in many distant countries, and
whose results are sometimes long in coming to the knowledge of each other, it should be
found that some one has anticipated our countryman and brother academician in the
publication or invention of the method which I have endeavoured brie¯y to describe to you,
or if, on the other hand, his own future re¯ections and experiments, or those of any other
person, shall indicate hereafter the necessity of any new improvement, your Council still will
have no cause to regret that they have adjudged the present distinction to a paper which
contains so much of independent thought, and so much of positive merit.

[The President then delivered the Medal to Doctor Apjohn, addressing him as follows.]

Doctor Apjohn,
In the name of the Royal Irish Academy, I present to you this Medal, for your

investigations respecting the speci®c heats of the gases; hoping that it will be received and
valued by you, as attesting our sense of the services which you have already rendered to that
important and delicate department of physical research; and that it will also be to you a
stimulus and an encouragement to pursue the same inquiry further still, so as to improve still
more the results already obtained, and to establish other new ones; and thus to connect,
more and more closely, your name and our Transactions with the history of this part of
Science.

� It is proper to remember that Dr. Suerman published his Dissertation without having seen the last
and most correct results of Dr. Apjohn, contained in the present prize Essay. This remark applies
particularly to the speci®c heat of hydrogen.
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L.

ADDRESS AS PRESIDENT OF THE ROYAL IRISH ACADEMY ON

MR. PETRIE'S PAPER ON THE HISTORY AND ANTIQUITIES OF

TARA HILL (1839)

[June 24, 1839]
[Proceedings of the Royal Irish Academy 1, 350±354 (1841).]

The President delivered the following Address:

Before the present session closes, as it is now about to do, I am to inform you, that your
Council have continued to consider the expediency of awarding any medal or medals, from
the resources of the Cunningham Fund, to any of the papers which had been communicated
to us for publication, within the last few years, and which had not previously been so
distinguished; adopting still the same plan of triennial cycles, and the same principles
connected with that plan, which have been announced to you on former occasions; and
thinking themselves bound to lean rather to the side of caution, than to that of indulgence,
in deliberating on questions of this kind. The award of a medal, in the name of a learned
body, is attended with a grave responsibility. It does not indeed pronounce, in the name of
the Society, on the rigorous accuracy, or perfect novelty, of the paper which is thus marked
out; but it at least offers the peculiar thanks of that Society to the author of that paper, and
expresses a desire, on the part of the body, to be connected, to a peculiar degree, in present
observation and in future history, with the communication for which the honour is awarded.
The with-holding of a medal is, for the converse reason, no expression of unfavourable
opinion, nor any denial of the existence of a large share of positive merit in the paper or
papers which it is thus forborne to distinguish: even when the principle of competition does
not happen to come into play, and when no other essay, of the same class and cycle, is
adjudged to have superior pretensions. It has, however, appeared to your Council, that they
were authorized and bound to award a medal to Mr. Petrie, for his Paper on the History and
Antiquities of Tara Hill, printed in the Second Part of the Eighteenth Volume of the
Transactions of this Academy; as being, in their opinion, the most important of those which
were communicated to us, during the three years ending with December, 1838, in the
departments of Polite Literature and Antiquities; and as possessing also such amount of
positive merit and interest as to entitle it to this mark of distinction. Having attended the
discussions which took place in the committees on the merits of the various papers, and on
Mr. Petrie's Essay in particular, I shall venture now to lay before you, in the briefest possible
manner, a few of the grounds of this award; without attempting to offer a complete statement
of those grounds, or anything approaching to a full analysis of the memoir itself, which
memoir indeed will very soon be in your hands.

Mr. Petrie's Essay may be considered as consisting of two principal parts: the ®rst contain-



ing an account of Events connected with Tara, compiled from Irish manuscripts and
illustrative of the History of Ireland; and the second part being devoted to an identi®cation
of the existing Remains, including an examination of the various descriptive notices also
contained in ancient Irish manuscripts. The documents brought forward, possess a great
degree of curiosity and interest; many of them, also, are now for the ®rst time published; and
(which is of importance to observe) are given in an entire, unmutilated form; accompanied
with literal translations, and with philological and other notes, adapted to increase their value
to the student of the ancient literature and history of Ireland. And what gives to these literary
relics a value and an interest perhaps greater than, or at least different from, what might
attach to them if considered merely as curious fragments, illustrative of the mode of thinking
and feeling in times long passed away, is the circumstance that the accuracy of their
topographical descriptions has been tested by recent and careful examination. The resources
of the Ordnance Survey have been called in, to check or to con®rm, by appeal to existing
vestiges, the statements still preserved of the writers of former centuries, respecting the relics
of what was even then an ancient and almost forgotten greatness; the time-worn traces have
been measured, and compared with those old descriptions; and an agreement has been
found, which establishes as well the truly wonderful antiquity of the remains still to be found
at Tara, on what was once, and for so many centuries, the royal hill of Ireland, as the
correctness and authenticity of documents, which it has been little the fashion to esteem.

It is this clear establishment of the authenticity of what had been commonly thought
doubtful, this employment of a manifestly rigorous method of inquiry in what had seemed to
many persons a region of fancy and of fable, in a word this evident approach to the character
of scienti®c proof, which has made (I own) a stronger impression on my own mind, and (I
believe) on the minds of others too, than even the literary and antiquarian interest of those
curious and valuable details (such as the Hymn of Patrick, and the particulars respecting the
Lia Fail, or ancient Coronation Stone of Ireland,) brought forward in the present Essay. I
shall not venture here to give utterance to any opinion respecting the extent to which the
once common and still lingering prejudice against the value and authenticity of Irish
Manuscripts, almost against the very existence of any ancient History or Literature of Ireland,
may have been removed or exposed before, by the labours of other antiquaries. But it may be
allowed me to express a conviction, that it is only by pursuing some such plan as that
exempli®ed in Mr. Petrie's Essay, namely, by a diligent examination of existing Irish Manu-
scripts, and of existing Irish Remains, and by an unreserved publication of all which may be
found in the one and in the other, that full historic certainty can be attained, respecting the
ancient state of Ireland. And that if, on the other hand, this diligent search be made, and this
full and free publication, they will not fail to produce a clearness and convergence of
opinions, among all who attend to these subjects; and will throw such a steady light, not on
Irish History alone, but on other cognate histories, as will repay the labour and expense
required for such an enterprize.

The Royal Irish Academy has already, from its limited means, contributed much to
accomplish this object, or to prepare materials for accomplishing it. By purchase or transcrip-
tion, we have gradually collected originals, or carefully collated copies, of many of the most
valuable manuscripts which are extant, in the ancient Irish language. At a no slight expense,
our volumes of Transactions have been and still continue open to receive such fruits of
diligent and judicious research, in this department of study, as are contained in the paper on
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Tara. The sum which, by a recent vote, has been placed at the disposal of the Council, will
enable them to push on with vigour the printing and engraving of that other elaborate work
of the same author, which was honoured with the award of a medal here some years ago,Ð
the Essay (by Mr. Petrie) on the Round Towers of Ireland. And the liberality of Members
concurs with that of extern Subscribers to place, from time to time, upon our table, such
splendid donations of ancient Irish Relics, as the Cross and the Torques of this evening.

It is, however, to the resources of the Nation that we must look, to aid us in accomplishing
what is truly a national object. As it was long ago pronounced to be a symptom of the health
of a State, and an element in its well-being, that all should interest themselves in the weal of
each, and that if one member suffer, the whole body should suffer with it; in order that thus
whatever injury was offered to a part might be repelled by the energy of the whole, and that
every limb might be animated by one pervading vigour: so too it is another fruit and sign of
the dignity and happiness of brotherhood, another opposite and contrast to the misery of
savage isolation, when not the present only of a nation's life, but the past and future also are
regarded with a vivid interest; and, caring for posterity, men care for their ancestors likewise.
Each people owes it to the human race, to do what in it lies for preserving its own separate
history, and guarding its own annals from decay: and each, according to its power, should
cheer and help the rest in their exertions to accomplish this, which is an object common to
all. Ireland is rich in records of an ancient civilization; and looks with a just hope to Britain
for assistance towards rescuing those records from oblivion, and from the risk of perishing
obscurely. Though this Academy possesses many manuscripts, and although many are
contained in the Library of our national University, enough has not been done until they
have been placed beyond all danger of destruction, and made accessible to students every
where, by printing and by publishing them, with notes and with translations, such as can be
supplied by some of the few persons who are now versed in the ancient Irish Language. For
doing all this well, opportunities can now be had, which the lapse of a generation may almost
remove, which the casualties of each year may diminish.

We have had more occasions than one to hear, this evening, of the assistance recently and
wisely given by Government to Science. Nor ought (I think) the presence of the representa-
tive of our Sovereign and Patron, to restrain me from avowing the hope, in which you all will
join, that our desire, long since expressed, for the publication of our Irish Records, may after
no long time be granted; and that the State may soon resolve to undertake, or to assist in
undertaking, a task for which the materials and the labourers are ready, but of which the
expense, though to a Nation tri¯ing, is too great for an Academy to bear.

Of the possibility of accomplishing that task, and of the fruit which may be expected from
so doing, if a proof and specimen sought, they may be found in that Essay, on the History and
Antiquities of Tara Hill, for which I now, in the name of this Academy, present this Medal to
its Author.

The President then delivered the Gold Medal to George Petrie, Esq., R.H.A., M.R.I.A., and
the Academy adjourned to November.
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LI.

ON DR. ROBINSON'S TABLE OF MEAN REFRACTIONS (1843)

[Communicated May 22, 1843]
[Proceedings of the Royal Irish Academy 2, 400±401 (1844).]

Sir William Hamilton remarked that Dr. Robinson's mean refractions, published in the
second Part of the Nineteenth Volume of the Transactions of the Academy, might be
represented nearly by the formula,

r � 57,546 tan(èÿ 4 0 3 r); (1)

or by this other formula,

r cot è� r2 sin 3 0, 8 � 57,346; (2)

r being the number of seconds in the refraction corresponding to the apparent zenith
distance è, when the thermometer is 508, and the barometer 29,60 inches.

The ®rst formula seems to give a maximum positive deviation from Dr. Robinson's Table,
of about a quarter of a second, at about 808 of zenith distance; it agrees with the Table at
about 838 109; is de®cient by a second at about 848 309; and by 4

5 0 at 858.
The second formula, which may be reduced to logarithmic calculation by the equations,

log tan 2 r � log tan è� 2,81296,

log r � log tan r� 3,24657,

)
(3)

does not agree quite so closely with Dr. Robinson's Table, in the earlier part of it; but the
error, positive or negative, seems never to exceed half a second, within the extent of the
Table, that is, as far as 858.

It appeared to Sir W. H. worth noticing, that the results of such (necessarily) long and
complex calculations, as those which Dr. R. had made, could be so nearly represented by
formulñ so simple: of which, indeed, the ®rst is evidently analogous to Bradley's well known
form, but differs in its coef®cients. The second form is more unusual, and gives (approxi-
mately) the mean refraction as a root of a quadratic equation. It has been used (with other
logarithms) by Brinkley, for low altitudes.



LII .

ADDRESS AS PRESIDENT OF THE ROYAL IRISH ACADEMY ON

DR. KANE'S RESEARCHES ON THE NATURE OF AMMONIA (1839)

[June 24, 1839]
[Proceedings of the Royal Irish Academy 2, 411±419 (1844).]

The President, on presenting to Dr. Kane the Cunningham Medal, awarded to him for his
Researches on the Nature of Ammonia, gave an account of the progress of his discoveries.

It is now my duty to inform you, that a Cunningham Medal has been awarded by the
Council to Dr. Robert Kane, for his Researches on the Nature and Constitution of the
Compounds of Ammonia, published in the First Part of the Nineteenth Volume of the
Transactions of this Academy. It would, indeed, have been much more satisfactory to myself,
and doubtless to you also, if one of your Vice-Presidents, who is himself eminent in Chemistry,
had undertaken the task which thus devolves upon me, of laying before you a sketch of the
grounds of this award; but at least, my experience of your kindness encourages me to hope,
that while thus called upon of®cially to attempt the discharge of a duty, for which I cannot
pretend to possess any personal ®tness, or any professional preparation, I shall meet with all
that indulgence of which I feel myself to stand so much in need.

Although, in consequence of the variety of departments of thought and study which are
cultivated in this Academy, and the impossibility of any one mind's fully grasping all, it is
likely that many of its members are unacquainted with the details of chemistry, yet it has
become matter of even popular knowledge, that in general the chemist aims to determine
the constitution or composition of the bodies with which we are surrounded, by discovering
the natures and proportions of their elements. Few need, for instance, to be told that water,
which was once regarded as itself a simple element, and which seems to be so unlike to air, or
®re, or earth, has been found to result from the intimate union of two different airs or gases,
known by the names of oxygen and hydrogen, of which the one is also, under other
circumstances, the chief supporter of combustion, is an ingredient of the atmosphere we
breathe, and is closely connected with the continuance and healthful action of our own vital
processes, by assisting to purify the blood, and to maintain the animal heat; this same gas
combining also, at other times, with some metals to form rusts, with others acids, with others
again alkalies and earths, entering largely into the composition of marble and of limestone,
and, in short, insinuating itself, with a more than Protean ease and variety, into almost every
bodily thing around us or within us; while the other gas which contributes to compose water,
though endowed with quite different properties, is also extensively met with in nature,
especially in organized bodies, and in particular occurs as an element in that important
substance, on the con®nes of the mineral and organic kingdoms, to which the Researches of
Doctor Kane relate; ammonia being, as all chemists admit, a compound of hydrogen and



nitrogen, which last-named gas is well known as being the other chief ingredient (besides
oxygen) of atmospheric air.

Again, it is generally known, to those who take an interest in physical science, as a truth
which is almost the foundation of modern chemistry, that the elements of bodies of well-
marked and de®nite constitutions, such as pure (distilled) water, or dry (anhydrous)
ammonia, are combined, not in arbitrary, but in ®xed and determined proportions; for
example, the oxygen contained in any quantity of pure water weighs exactly, or almost
exactly, eight times as much as the hydrogen contained in the same quantity, but occupies
(when collected and measured) a space or volume only half as great; and the nitrogen
contained in any given amount of dry ammoniacal gas, is to the hydrogen with which it is
combined, by weight as 14 to 3, and by volume in the proportion, equally ®xed, of 1 to 3.

Yet such results as these, respecting the constitution of compound bodies, however
numerous and accurate they may be, are still not suf®cient to satisfy the curiosity, or to
terminate the researches of chemists. They aspire to understand, if possible, not only the
ultimate constitution of bodies, or the elements of which they are composed, and the
proportions of those elements, but also the proximate constitution of the same bodies, or the
manner in which they arise from other intermediate and less complex compounds. Water,
for instance, is believed to enter, in many cases, into composition with other bodies, as water,
not as oxygen and hydrogen. Has ammonia any such component, which itself is composite? It
is admitted to consist of one volume of nitrogen, combined with three of hydrogen. Can any
order be discovered in this combination, any proximate constituent, any simpler and earlier
product, from which the ammonia is afterwards produced? Until experiments decide, it
appears not impossible, may seem even not unlikely, that nitrogen may combine (more
intimately than by mere mixture) not only with thrice but with twice or once its own volume
of hydrogen, and that thus other substances may be formed, from which, by the addition of
new hydrogen, ammonia may result. It is interesting, therefore, to inquire whether either of
these conceived possibilities is actually realized in nature; whether these two important gases
do ever actually combine with each other in either of these two proportions. In the symbolic
language of chemists, as usually written in these countries, the compound NH3 is well known,
being no other than ammonia; but does NH� or does NH2 exist?

An eminent French chemist, M. Dumas, in examining a substance, which he called
oxamide, and which was one of the results of the action of oxalic acid on ammonia, was led to
the conclusion, that the last mentioned compound of nitrogen and hydrogen, namely NH2,
does really exist in nature, and he proposed for it the name of amide. The same chemist
considered it also to exist in the substance formed by heating potassium in ammoniacal gas;
and the same combination, amide, had been (I believe) regarded as a proximate constituent
of certain other compound bodies, such as urea, sulphamide, and carbamide, before Dr.
Kane's researches on the White Precipitate of Mercury. Yet is has been judged by Berzelius,
that the investigations of Dr. Kane have assisted in an important degree to establish the actual
existence (der wirklichen existenz) of amide, or of amidogene (as Kane prefers to call it, from
its analogy with oxygen and cyanogen), and have thrown much light upon its chemical history
and relations.

� The compound NH, or as it is otherwise better written, HN, has been suspected to exist, as one of
the proximate elements of melamine and of some connected bodies. See Gregory's edition of Turner's
Chemistry, 1840, page 757.
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In fact, the body oxamide, which seems to have ®rst led Dumas to infer the existence of
amide, was one of those organic compounds, respecting which it has often been found
dif®cult, by chemical inquirers, to pass with con®dence from the empirical to the rational
formula; from the knowledge of the ultimate elements (or of those which are at present to be
viewed as such), and of the proportions in which they combine, to a satisfactory view
respecting the proximate elements, or intermediate and less complex combinations on which
the ®nal result depends. Oxamide may be, and was considered to be, probably composed of
amide and carbonic oxide (in the foregoing notation, NH2 � C2O2); but it was perceived to
admit also� of being possibly compounded of nitric oxide and a certain combination of
carbon and hydrogen (NO2 � C2H2); or of cyanogen and water (C2N�H2O2). And even the
amidides of potassium (KNH2) and of sodium (NaNH2), have, from the energetic af®nities
of those metallic bases, been thought to prove less decisively the existence of amidogene
itself, than the amidide of mercury (HgNH2) discovered by Dr. Kane, in his analysis of the
white precipitate of the last mentioned metal. (Trans. R.I.A., vol. xviii. part iii.)

Although this precipitate had been long known, and often analyzed, erroneous views (as
they are now regarded) were entertained respecting its composition, and it had, for instance,
been supposed to contain oxygen, till Kane pointed out the absence of this element, and
showed, with a high degree of probability, that the proximate elements were the chloride and
the amidide of mercury; white precipitate being thus a chlor-amidide of that metal
(HgCl�HgNH2, if the Berzelian equivalent of mercury be adopted, instead of its double).
Ullgren, a friend of Berzelius, obtained the chemical prize from the Swedish Academy of
Sciences, for the year 1836, for a paper in which, having with great care repeated and varied
the experiments, he con®rmed this and other connected results of our countryman; and
Berzelius himself, in his Report read to the above-mentioned Academy in 1837, on the recent
progress of the Physical Sciences in Europe (to which Report allusion has been made above),
expressed his opinion that these researches of Kane were among the most important of the
preceding year.y

In the essay for which your Council have awarded the present prize, Dr. Kane has pursued
his researches on ammonia, and has shown, with apparently a high probability, that there
exist amidides (though not yet insulated) of other{ metals besides mercury, especially of silver
and copper; that is, combinations of these metals with the proximate element amide or
amidogene. He has also given, in great detail, a series of analyses performed by him on a
large number of compound bodies, of which some had been imperfectly examined before,
while others were discovered by himself. But as it would lead into far too great length, and
too minute detail, if any attempt were made at present to review these laborious processes of
analytical chemistry, and as indeed they derive their chief philosophical interest from the

� L'Oxamide peut done, aÁ volonteÂ, eÃtre consideÂreÂe comme un composeÂ de cyanogeÁne et d'eau, ou
bien comme un composeÂ de deutoxide d'azote et d'hydrogeÁne bicarboneÂ, ou bien en®n comme un
composeÂ d'oxide de carbone et d'un azoture d'hydrogeÁne diffeÂrent de l'ammoniaque.ÐDumas, sur
l'Oxamide, &c. Annales de Chimie et de Physique, tome xliv. page 142.
y Diese Untersuchungen von Kane gehoÈren meiner Ansicht nach zu den wichtigeren des ver¯ossenen

Jahres.ÐWoÈhler's German Translation of Berzelius's Report, Jahres-Bericht uÈber die Fortschritte der
physischen Wissenschaften, 17th year, page 179. (TuÈbingen, 1838).

{ Dr. Kane has since made it probable that there exist amidides of palladium and platinum also. (Phil.
Trans. 1842, part ii.)
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views with which they have been associated, it may be proper to attempt no more than a very
brief (I fear that it will also be a very inadequate) sketch of those views.

Dr. Kane considers that in ammonia, which, in the usual language of chemists, is said to
consist of one atom of nitrogen and three atoms of hydrogen, one of these atoms of hydrogen
is more loosely combined than the two others with the nitrogen, so as to be capable of a
comparatively easy replacement, by many, perhaps by all, of the metals, as well as by organic
radicals; the other two atoms of hydrogen being already, in the ammonia itself, and not
merely in the products of such replacement of hydrogen by metals, combined in a particular
way with the one atom of nitrogen, so as to form that substance named amide or amidogene,
which was detected by Dumas (as has been mentioned) in performing the analysis of
oxamide. From Dr. Kane's own study of the combinations of this substance amidogene
(H2N), with metals, he infers it to be a compound radical of feebly electro-negative energy,
analogous to that important one cyanogen (C2N), of which the discovery by Gay-Lussac has
exercised so powerful an in¯uence on modern chemistry. He considers this radical, amido-
gene, as existing ready formed, in combination with hydrogen, in ammonia; which latter
substance is thus, according to him, to be regarded as amidide of hydrogen; and as, in this
respect, analogous to water, and to the hydrocyanic, hydro-sulphuric, and muriatic acids, that
is, to the oxide, cyanide, sulphuret, and chloride of hydrogen; from all of which bodies it is
possible, as from ammonia, to expel an atom of hydrogen, and to replace it by an atom of
metal,Ðif indeed hydrogen be not (as there seems to be a tendency to believe it to be) itself
of metallic nature, notwithstanding its highly rare®ed form. By developing this view of the
constitution and function of ammonia, Dr. Kane has offered explanations of a large number
of replacements of that substance by others, some of which replacements (I believe) were
known before, while many have been discovered by himself.

One of the most remarkable points in Dr. Kane's views is the way in which he considers the
ordinary salts of ammonia. Many of these are known to contain an atom of water, the
existence of which led to the proposition of the very remarkable theory by Berzelius, of the
existence in them of a compound metal ammonium, which has not indeed been insulated, but
has been found to form, in combination with mercury, a certain metallic amalgam. Dr. Kane
looks upon these salts as double salts of hydrogen. He considers them to contain ammonia
ready formed, united with a hydrated acid or with a hydrogen acid. He seeks to establish the
similarity of the common ammoniacal salts to those complex metallic amidides, whose nature
he has developed by analysis.

Thus, for example, the well-known body, sal-ammoniac, is, in the Berzelian view, regarded
as chloride of ammonium; but, in the view put forward by Dr. Kane, it is chlor-amidide of
hydrogen. The former view supposes that the ammonia robs the hydrochloric acid of its
hydrogen, to form, by a combination with it, a metallic base, NH4, with which the chlorine
unites; as this last element combines with the metal sodium, in the formation of common salt.
The latter view supposes that in the action between hydrochloric acid and dry ammoniacal
gas, there is no separation of the chlorine from the hydrogen,Ðno breaking up of a
previously existing union,Ðno overcoming of the af®nity which these two elements (chlorine
and hydrogen) have for each other; but an exempli®cation of a general tendency of
chlorides, oxides, and amidides of the same or similar radicals, to unite, and form chlor-
oxides, chlor-amidides, or oxamidides. Sal-ammoniac is, according to Kane, a double haloid
salt; he looks upon it as being a compound exactly analogous to the white mercurial
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precipitate, which was ®rst accurately analyzed by himself; the one being HCl�HAd (if Ad
be the symbol of amidogene), while the other is HgCl�HgAd, so that the mercury in the
latter takes the place of the hydrogen in the former.

It was, however, in the oxysalts, such as the sulphate of ammonia, that the presence of an
atom, or equivalent, of water, or at least of the elements required for the composition of such
an equivalent, appears to have suggested to Berzelius the theory, that what seemed to be
hydrate of ammonia (NH3 �HO) was really oxide of ammonium (NH4 �O). There are,
undoubtedly, many temptations to adopt this view, besides the high reputation of its
propounder. One is, that it assimilates the constitution of sulphate of ammonia to what seems
to be regarded by the greater number of modern chemists, as the probable constitution of
other sulphates, nitrates, &c., for example, the sulphate of iron. When green vitriol is to be
formed by the action of sulphuric acid upon iron, it is requisite to dilute the acid with water,
before the action will take place. The hydrogen of the water then bubbles off, but what
becomes of the oxygen which had been combined with it? Does it combine immediately, and
as it were in the ®rst instance, with the iron, to form oxide of iron, on which the anhydrous
sulphuric acid may act, to produce sulphate of oxide of iron, according to the view which seems,
till lately, to have been adopted: or does this oxygen, from the water, combine rather with the
sulphuric acid to produce a sort of oxide thereof, and does this sulphat-oxygen act on the pure
metallic iron to form with it a sulphat-oxide, as many eminent chemists now appear to think?
Whatever may be the ®nal judgment of those who are entitled to form opinions on questions
such as these, it cannot, I conceive, be justly said, that the questions themselves are
unimportant. They touch on points connected with the philosophy of chemistry, are
essentially connected with its theory, and cannot always be without an in¯uence upon its
practice.

Now according to the Berzelian view of sulphate of ammonia, that is the salt produced by
the mutual action of sulphuric acid, water, and ammonia, this salt is properly a sulphat-oxide
of the compound metal ammonium (NH4 � SO4), in the same way as green vitriol, on the
view last mentioned, is sulphat-oxide of iron (Fe� SO4), or as sulphate of potash is sulphat-
oxide of potassium (K � SO4), and this analogy is doubtless pleasing to contemplate.

Dr. Kane does not entirely reject this Berzelian theory of ammonium; he acknowledges that
the substance NH4, which he regards as subamidide of hydrogen, and compares to some
suboxides, possesses metallic properties, and is a proximate constituent of certain com-
pounds, especially of the ammoniacal amalgam; but he conceives that the evidence for the
existence of ammonia itself, in many of the ammoniacal salts, is too strong to be resisted: and
he looks upon the hydrated ammonia, which is found to combine with sulphuric and other
oxacids, as being not, in general, oxide of ammonium, but oxyamidide of hydrogen; the sulphate
of ammonia being thus a bibasic compound, of which one base is ammonia, while the other
base is water.

Between the con¯icting opinions of such men, supported each by powerful arguments and
analogies,Ðand it will easily be conceived that in so short a sketch as this, and upon such a
subject, it has been found impossible by me to mention even the names of all the eminent
chemists whose experiments and writings should be studied, by persons inquiring for
themselves,Ðnot only do I not venture to express any judgment of mine, but I conceive also
that your Council did not desire to express on their part any decision. To justify the present
award, it was, I believe, deemed by them suf®cient, that great research and great talents had
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been brought, in the investigations of the author to whom that award has been made, to bear
on an important subject, which has derived, from those investigations, an additional degree
of importance. Whatever may be the ®nal and unappealable judgment of those persons who
shall, at some future time, be competent and disposed to pronounce it, we need not fear that
the honour of this Academy shall have been compromised by the recognition which the
Council have thought it right on the present occasion to make, of that combination of genius
and industry, which has already caused the researches of Kane to in¯uence in no slight
degree the progress of chemical science, and has won for him an European reputation.

The President then presented the Gold Medal to Dr. Kane, and the Academy adjourned
for the summer.
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LIII .

SIR W. ROWAN HAMILTON ON THE ELEMENTARY CONCEPTIONS

OF MATHEMATICS

(Seven letters to Viscount Adare (March and April, 1835))
[Hermathena (Dublin) 3, 469±489 (1879).]

To the Editor of ``hermathena.''
Sir,

The accompanying letters from Sir William Rowan Hamilton to his pupil and friend Lord
Adare,� afterwards Earl of Dunraven, were written in the early part of the year 1835. Forming
a series of six letters, with a fragment of a seventh they were, nevertheless, scattered through
the great mass of papers which after his death were placed in my hands by his representatives;
and I have thought myself fortunate in being able to link them together, for they seem to me
to contain an exposition of the elementary conceptions of Mathematics valuable at once for
characteristic depth and comprehensiveness, and for clear development. The series, though
continuous, stops far short of its intended completion, for it will be seen that, towards the
close of the sixth, a seventh letter is promised, in which was to be commenced the application
to Algebra of the principles previously laid down. Of such continuation only a draft of the
beginning of the seventh letter has been discovered, but the fragment is an important one,
and I have reason, from other parts of his correspondence, to infer that this seventh letter
expanded into that Essay on Algebra as the Science of Pure Time, which was presented by him on
the 1st of June, 1835, to the Royal Irish Academy, and publishedy in the seventeenth volume
of the Academy's ``Transactions'', as preliminary to the treatise on Conjugate Functions which
had been communicated by him to the same Body on the 4th of November, 1833.

A comparison of the Introductory Remarks to that Essay with these letters will show that in the
former he resumes from the latter his distinction between the several schools of Algebraists,
and that the very ®rst of the letters anticipates the de®nition of Algebra which, through the
title of his Essay, has since become famous.

I offer these letters for insertion in ``HERMATHENA'' in the belief that their contents will
opportunely appear at a time when the fundamental ideas of Algebra are engaging much
attention, and I desire that they may serve as earnest of more from the same source likely ere
long to see the light; for I may take this occasion to state, that at length some hopeful
progress has been made by me in the task of arranging for publication the papers of Sir W. R.
Hamilton in connexion with a biographical memoir. The task has been unavoidably a very

� [Edwin Richard Windham Wyndham-Quin (1812±1871), Viscount Adare, later third Earl of
Dunraven and Mount-Earl; BA Trinity College Dublin 1833.]
y [See Vol. III, p. 3.]



prolonged one, in consequence of the great number and the disorder of the papers, and of
other causes needless here to mention.

I remain, Sir,
Faithfully yours,

R. P. GRAVES.
1, Winton-Road,
October 1st, 1878.

I.

Observatory,
March, 4, 1835.

My dear Adare,
I have often intended to try to revive, in an easy, but systematic form, my

own and your recollections of early conversations upon Algebra, especially with regard to the
spirit and philosophy of that science: and will not longer defer the attempt, though I may be
only making a beginning now, which may remain for a long time, and perhaps for ever, an
uncompleted sketch.

When you commenced your studies with me, I did not assume any knowledge on your part
of Algebra, nor of anything beyond the ®rst elements of Arithmetic. I was anxious to begin at
the beginning, and to initiate you by a method which should suppose no previous attainment.
And I was glad that you had, in fact, read no Algebraical work, though you were a good and
expert arithmetician.

In Arithmetic, properly so-called, Number is considered as an answer to the question How
many, and as constituting a Science of Multitude, founded on the relation of more and fewer, or
ultimately of the many, and the one. In a more complex Science, of Magnitude and Measure,
which may perhaps be called Metrology (though often classed as a higher part of Arithmetic)
Number is the answer to the question How much, and the fundamental relation is that of
greater and less, or of whole and part. But in Algebra I taught that Number answers the question
How placed in a succession, the guiding relation being that of before and after (or of positive,
negative, and zero); and the Science itself being one of Order and Progression, or, as it might be
called concisely, of PURE TIME. To count, to measure, to order, are three different, although
connected, acts of thought, and belong to these three different, although closely connected,
Sciences, of Arithmetic, Metrology, and Algebra. Groups as Counted, magnitudes as measured,
positions or states as ordered; and, therefore, ®nally the relations of the counted to the counter,
of the measured to the measurer, of the ordered to the ordererÐsuch are the ultimate
objects of these three acts of thought, and the ultimate or elementary conceptions of these
three Sciences.

To dwell a little longer on this distinction. In Arithmetic we consider and compare groups
of individuals, with reference, not to the nature, but merely to the multitude, of those
individuals; regarding, for example, a pair of stars and a pair of men as similar, in so far as
both are pairs, and denoting both for this reason by a common name, by the cardinal or
counting number ``Two''. In Metrology, we consider and compare such magnitudes as
lengths or times, or any other measurable magnitudes, with reference to their measures
merely; regarding, for example, a yard and an interval of three weeks as similar, if measured
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by a foot and by a week respectively, and denoting them then by one common name of
measure, the quantitative or measuring number ``Triple''. In Algebra, we consider and
compare positions of states of the same or of different progressions, with reference only to
their arrangements in that or in those progressions; regarding, for example, to-day as similar
to a point upon a line, if to-day be referred to yesterday and to-morrow as standards of
arrangement in time, and if the point upon the line be referred in like manner to any two
other points thereon, between which it is supposed to be also exactly intermediate: and we
use in this case one common ordinal or ordering number, or name of arrangement [such as
``Halfway''], for these two similar states, as will be afterwards more fully explained. Equinu-
merous groups in the ®rst science, proportional magnitudes in the second, and correspond-
ing positions in the third, are considered, for the purposes of these sciences, as entirely
coinciding with each other, group with group, magnitude with magnitude, position with
position; and the name of any one such group, or magnitude, or position, is extended to
every other which in this view coincides with it. By forming such general thoughts, and
marking them with such general names, it becomes possible to construct and to use a
quotitative, quantitative, or ordinal language; and so to propose and resolve (at least in part)
this widely comprehensive problem, including perhaps all others in these sciencesÐ``To
name every thought, and to interpret every name, of multitude, magnitude, or succession.''

Let this suf®ce at present, from your affectionate friend,
William R. Hamilton.

II.

Observatory,
March 13, 1835.

My dear Adare,
I attempted, in the former letter, to distinguish Algebra, as the Science of

Order, from Arithmetic, as the Science of Multitude, and from an intermediate Science of
Magnitude, which I proposed to call Metrology. And having shown the possibility and
advantage of establishing general names, or names of relation, quotitative, quantitative, and
ordinal, which should belong, some to groups as counted, others to magnitudes as measured,
and others to states of a succession as ordered, or ultimately to the relations of multitude,
magnitude, and orderÐthe comprehensive problem was proposed, ``To name every thought,
and to interpret every name, of multitude, magnitude, and succession''; or, ``To construct and
to use a quotitative, a quantitative, and an ordinal language.''

Now, whether we look to the Arithmetical or to the Metrological, or to the Algebraical part
of this great problem, we ®nd that in each it is possible to adopt three principal views, and
thus to impress on the research any one of three different characters. Whether Arithmetic, or
Metrology, or Algebra be our study (and the remark extends to other studies also), we may
belong to one or other of three great schools, which I shall call the Theoretical, the Philological,
and the Practical, according as we chie¯y aim at clearness of thought, or symmetry of
expression, or ease of operation; Ð according as Intuition, or Language, or Rule, the sapere, or
the fari, or the agere, is eminently prized and sought for; Ð according as obscurity, or
inelegance, or tediousness is most dreaded and guarded against. You know enough of my
habits and inclinations to determine without dif®culty the school to which I belong, and to
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place me at once in the class of the theoretical, as seeking more a clear and lively intuition, by
whatever cost of meditation or mental discipline to be attained, than language, however
perfect in its structure, or rules, however easy of application. But you also know how willingly
I admit the utility of those more practical persons, who study to improve such rules and such
applications; and how highly I respect those algebraical grammarians or philologists who,
pursuing Algebra as a language, care chie¯y for removing its anomalies, and would reduce it
to an elegant and symmetrical system of words and signs. For to this philological school
belong very many of the best modern writers upon Algebra; and especially Woodhouse and
Peacock, of Cambridge, and Professor Ohm, of Berlin, men of learning, patience, and
originality, to whom we may add the brilliant name of Lagrange; though Fourier and Cauchy
lean more to the Theoretical School, in the sense in which I have de®ned it, as elevating
Intuition above Language.

Indeed it must be owned that if the Theoretical Algebraists be rightly possessed by the idea
that Algebra is more than a Language, yet the language is so beautiful in its kind, so wonderful
as an organ, so necessary and so prominent in the study of the science itself, that reasonably
and naturally has it received a large share of attention, and not only now, but from the
earliest times, has the philological spirit directed or in¯uenced the progress of Algebraic
discovery. And, therefore, though I have professed myself as belonging to the Theoretical
School, and make it my chief aim to imbue and, as it were, impregnate the whole of Algebra
with Intuition, yet in subordination to this I desire to cultivate its Philology too; and in now
seeking to revive your remembrance of our old conversations, I shall perhaps make the
language of the science Ð its symmetrical system of signs, with their logical rules of
combination Ð hold even a prominent place; or at least shall treat this department of study
with a deserved and sincere respect. But for this entrance on the Language, along with the
Science, of Succession, Ð for the beginning of the solution of that great two-fold problem of
Algebra, already mentioned, ``To name every thought, and to interpret every name of order''
Ð I must refer you to a future letter, and remain in the meanwhile,

Affectionately yours,
William R. Hamilton.

III.

Observatory,
March 14, 1835

My dear Adare,
In writing a third letter of this series Ð for a series it seems to be growing,

and no doubt an extensive series would be needed, to do justice to Algebra as a subject Ð let
me indulge myself a little longer with generalities before we proceed to details. It is the less
improper to do so because you are not actually beginning, but only reviewing the study; and
you, as well as I, must exert a sort of imaginative, and as it were dramatic power, in throwing
ourselves back into that state and time in which you made your earliest steps in Algebra, while
I had the pleasure to assist. Having, therefore, devoted the ®rst of these Letters to the
distinguishing of Algebra from other kindred Sciences; and the second Letter to the
distinction between the Theoretical and other Schools; I shall now make a few general
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remarks on the connexion and the contrast of the Analytic and Synthetic processes, or Forms
of thought, as applicable to every Science and to every School.

The two Greek words, Analysis and Synthesis (AÄUÂ AÄSÏÏúOÄ ê, úÏ UÂ OÁ IÂúOÄ ê), are used by
Mathematicians and Metaphysicians in many senses, which seem however to have all some
reference to the etymology of those two words, or of the cognate Latin forms, Resolution and
Composition; as if we said, in a more English style, Putting asunder and Putting together Ð
Taking to pieces, and Making up Ð Loosing and Binding Ð Decomposing a thing or thought
into its simpler elements, and Compounding these elements again, so as to produce that
thing or thought. Thus, in Chemistry, there is an Analysis performed, when Water is
decomposed into Oxygen and Hydrogen; and there is a Synthesis, when these elements are
combined in such a manner that Water results. In Dynamical Astronomy, it was Analysis, when
Newton extracted from the complex phenomena of the motions of the planets and satellites
the elementary laws of motion and of attraction; it was Synthesis, when he proceeded to
combine these elementary laws, and to deduce from them the planetary and lunar motions.
The general process of reasoning, itself, was analysed by Aristotle into the principles and rules
of Logic; and, consciously or unconsciously, those principles and rules are applied to, and
combined synthetically with, the premisses of every argument, when anyone reasons correctly.
Assertions, propositions, judgments, are divided by Kant into Analytic and Synthetic, by an
analogous and subtle distinction. He holds that an assertion or Judgment is Analytic, when the
agreement of the Predicate with the Subject of the assertion is an identical and purely logical
truth, deduced from a mere analysis (or examination) of the meanings already supposed to
belong to the two signs compared (without any new and foreign connexion between the two
thoughts themselves, whether established by Experience, or by purely mental Intuition): as,
for example, the assertion, All Bodies are extended, which is indeed an useful assertion, but only
useful for purposes of language, or, at most, for clearness only, and not for enlargement of
thought, belonging to the class ErlaÈuterungsurtheile, but not to the class Erweiterung-
surtheile; since it results from a mere analysis or examination of the meaning previously
attached to the word Bodies. On the other hand, Kant gives the assertion, All Bodies are heavy,
as an example of a Synthetic Judgment, deduced not from the mere taking to pieces of the
meanings of subject and predicate, but rather from the putting of these meanings together,
through the cement of Experience and Induction. The thought of Body, such as we usually
form it, and such as in these assertions we intend it to be formed, includes the thought of
Extension. But not the thought of Heaviness; it gives therefore Extension by Analysis, but
cannot be connected with Heaviness, except through a foreign and (in this case) empirical
Synthesis. Following out the same principle of distinction, Kant holds that all judgments of
Experience, and nearly all those of Pure Mathematics, are Synthetic, not Analytic; the
judgments of Experience pronouncing never that two thoughts are inseparable in the mind,
but that two properties go together in nature; and those of Pure Mathematics, pronouncing
indeed of two thoughts, that they ought to accompany each other, but not that the one does in
fact contain the other, by logical, as well as scienti®c comprehension, if we except some few
elementary axioms, such as ``the Whole is greater than the Part.'' Thus, in geometry, he
remarks that the thought of straight does not contain the thought of short, though we see,
through the intuition of Space, that the shortest line is the straight one. And in Arithmetic,
the thoughts of Five and Seven and Sum do not include the thought of Twelve; but we ®nd, by a
mental trial, by calling up an Intuition of counted things, that the sum of Seven and Five is
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Twelve. I am disposed to agree with these remarks of Kant; but since they relate to the
classi®cation of Judgments, Assertions, Propositions, Sentences, they leave free for a separate
classi®cation the combinations, and the processes of discovery, of such judgments or proposi-
tions; and do not tend to weaken the received distinction between the Analytic and Synthetic
Methods, or processes, in mathematical researches generally, whether of a geometrical or
algebraical kind. On this distinction, especially in its reference to arithmetic, I shall touch in
the following Letter.

Meanwhile remaining
Your affectionate friend,

William Rowan Hamilton.
The Viscount Adare.

IV.

Observatory,
March 16, 1835.

My dear Adare
The remarks in my last letter on Analysis and Synthesis in general may have

prepared you to recollect the distinction between the Analytic and Synthetic Methods of
arriving at any truth;Ðbuilding it up;Ðthe one by analysing the truth into its simpler
elements, the other by constructing it from those;Ðthe analytic method by going from the
unknown to the known, the synthetic method by proceeding from the known to the
unknown. If I were fonder than I am of coining words, or giving them new meanings I might
be tempted to call these two the Centripetal and Centrifugal, or the Centre-seeking and Centre-
¯ying Methods. For the Analytic tends always inwards from the obscure surrounding space to
some central home of light already known and won; while the Synthetic Method radiates
from that centre, and is ever aiming outwards to the unconquered world around. But
Examples, better than Poetry, may make the contrast clear, and I shall take ®rst the
arithmetical example already given from Kant, as an instance of a Synthetic Judgment, which,
although truly such, may yet be discovered by the Analytic, as well as by the Synthetic Method.

I admitted that the Assertion, ``The Sum of Seven and Five is Twelve,'' is rightly called by
Kant a Synthetic assertion, in the sense that we might fully understand the meanings of Seven
and Five and Sum, and therefore the meaning of the ``Sum of Seven and Five,'' as a number
which is to be determined by the process of summing from the given numbers Seven and
Five, and yet we might not have actually determined this new number, so as to know it to be
the number ``Twelve''; whereas the assertion, ``Eight is the Sum of Seven and One,'' may
fairly be called by contrast an Analytic assertion, because there is no better way of explaining
the word, or of forming the notion of Eight, than by de®ning it to be (in Arithmetic) the
mark of that multitude which is next greater than, or exceeds by one, the multitude named
Seven; so that in thinking of Eight, we have already thought of the sum of Seven and One, while
in merely thinking of Twelve (as the sum of Eleven and One, or, if you like that other
de®nition better, as the Sum of Ten and Two) we have not yet actually thought of the Sum of
Seven and Five; nor in merely thinking of this latter Sum have we actually thought of Twelve,
though Arithmetical Trial or Proof may effect a Synthetical connection between these two
different complex thoughts, and show that they belong or conduct to one common intuition of
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multitude. When we say that Eight is, the Sum of Seven and One, we take to pieces the
complex meaning which we had already given to the subject of the proposition, we analyse
the thought already formed of Eight; but when we say, ``The Sum of Seven and Five is
Twelve,'' we pass to a new thought, by a mental pulling-together. A simpler instance of what
Kant would call an Analytic proposition is the following:Ð``Seven is Seven''; and a simpler
instance of a Synthetic proposition is this, ``Five more than Seven is also Seven more than Five'':
for this last assertion appears to me (as it has also done to several other thinkers) to require a
proof, however easily such proof may be supplied.

But what is the process of mind by which we discover the Synthetical connexion above
asserted to exist between ``The Sum of Seven and Five,'' as one thought, and the number
``Twelve,'' or the ``Sum of Ten and Two,'' as the other? This Process may certainly be Synthetical;
and for a full and formal proof, it must be so; but we may, instead, adopt an analytical method,
so far at least as discovery is concerned. We may proceed synthetically from the known to the
unknown, or analytically from the unknown to the known. It is a synthetical method, when
setting out with the known number ``Seven,'' we pass successively through the ®ve other known
numbers, ``Eight, Nine, Ten, Eleven, Twelve,'' and rest in the last as the result. It is an analytical
method, when we set out from the unknown and sought result, the Sum, whatever it may be, of
Seven and Five, and go backwards by successive decomposition through the stages ``Seven and
Four and One,'' ``Seven., and Three and One and One,'' till we are conducted to something
known, such as we may here suppose that the sum of ``Seven and Three'' already is. But it is
highly important to observe (as a check on the usurpations of Analysis, and in vindication of
the rights of Synthesis), that even when something known has thus been reached, by this centre-
seeking process, the problem is not yet fully and formally solved, the communication between
the Subject and Predicate of the theorem is not yet entirely established, until we have returned
upon our steps, or at least made sure that starting from the known we can, by the alternate way,
the centre-¯ying method, arrive again at the unknown, and effect a Synthetic connexion. Thus,
in the last example, if we suppose it known that the ``Sum of Seven and Three'' is ``Ten,'' we
have analysed the ``Sum of Seven and Five'' by successive steps into this other phrase, ``The
Sum of Ten and One and One''; but the arithmetical problem is not yet entirely resolved, nor
is the theorem that was proposed entirely and formally demonstrated, until a Synthesis, though
short, has compounded these last elements of ``Ten and One and One'' into ``Eleven and
One,'' or ``Ten and Two,'' that is, ultimately into the complex thought which we have agreed
to mark by the name ``Twelve'': besides that other Synthesis, supposed to have been before
effected, which showed that the sum of Seven and Three was Ten.

This little example may suf®ce as a preliminary specimen of the connexion and contrast
between the Analytical and Synthetical Methods; and I remain, &c., &c.,

W. R. H.

V.

Observatory,
March 17, 1835.

My dear Adare,
I do not know whether you may not think the remarks of the last two letters

too subtle or too vague to be connected in any useful way with the problem of the two ®rst;
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but perhaps a little consideration will convince you that the distinction between Analysis and
Synthesis, however obscurely or vaguely it may have been set forth by me, has really a very clear
and close connexion with the distinction between the two parts of that problem: the Naming
of thoughts, and the Interpretation of names, of multitude, magnitude, or order. To name a
thought or an intuition, is either to pass from that Thought, or from that Intuition, to its own
proper sign and mark in a system of signs already established and known; or else it is to ®x
now for the ®rst time on some new sign, which sign, however, by the very act, we adopt as
thenceforth to become a permitted point of reference, and which we now by de®nition
attach to the thought or intuition in question, admitting thus that thought or that intuition
into the household of the known and the familiar, and assigning to it, in that household, a
place of its own for ever: and both these, modes of naming, the mediate and the immediate,
seem plainly to be modes of analysis, as passages from the unknown to the known, from the
thought regarded as obscure or new, to the name which is, or is to become familiar. But in the
converse process of interpreting a name, we do not analyse but construct a thought, by rules
already established, or from elements already given. The sign to be interpreted is here the
starting post and centre, from which known point we go, by a known path of Synthesis, until
we reach the thought or intuition signi®ed. It appears then that on the whole, the Naming is
an Analytic and the Interpreting is a Synthetic of®ce; at least in that Theoretical School described
in my Second Letter, in which the mind aspires to thoughts rather than words, though it
must reach the former through the latter, and views things signi®ed, through a transparent
veil of signs. In the Philological School, on the contrary, in which Names are regarded not as
media or instruments of vision, but as actually constituting of themselves the principal objects
of research, the foregoing distinction would be reversed, and instead of Analysing or
Constructing a Thought by Names, we should have to speak of Constructing or Analysing a
Name by Thoughts; if indeed this School in its consistency and ultimate rigour should not
reject these operations altogether, and substitute for them a mere logical and symbolical
composition and decomposition of signs, according to rules of language, in which nothing
but symmetry is required, and the absence of express contradiction: while the meaning or
signi®cation of the signs, Ð their reference to thoughts or intuitions, Ð is put aside as a
foreign thing from this merely symbolical science. But in that other and (I think) higher
School, the Theoretical Ð which looks beyond and through the sign to the thing signi®ed,
Ð the three great acts of mind described in my First Letter, to count, to measure, and to order,
are evidently analytic acts, and the naming of things or thoughts through them is essentially
an analytic process: while the converse of®ce is the synthetic, which interprets a name proposed,
and by the rule embodied in that name (of multitude, or magnitude, or succession)
constructs the thought or the intuition (of the group, or quantity, or state), in Arithmetic,
Metrology, or Algebra.

It may illustrate these general remarks to apply them to the Roman Numeration: for
example to the symbol IX, which is, we know, equivalent to our English ``Nine.'' This written
name, or sign of multitude, IX, bears obvious traces of the analysis by which it has been
formed. Hold up to view the ®ngers of both hands, counting both thumbs as ®ngers; you will
have the intuition of a multitude or group, which from its natural connexion with our bodies
and our wants has received in perhaps all spoken languages a simple or special name, and has
been treated as a known or simple thought, to which analysis may tend, and from which
synthesis may begin. The English call it ``Ten'': the Romans wrote it X. Hide now one thumb,
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and you will have� another intuition; you will see a different group, a lesser multitude: the
English name it ``Nine,'' a word as simple as the former, but the Romans marked it by a
complex written sign, IX. Our Ten and Nine, and their Decem and Novem, seem all alike to be
simple and arbitrary and uncompounded names, and they may be supposed to have been
immediately given to the respective groups, without any derivation of the one English word
from the other, or of the one Latin word from the other; as if these two different multitudes
had, been named in an arbitrary order, and both the intuitions been regarded as equally
simple and elementary Ð both equally ®t to be the close of any future analysis, or the
starting-post in a process of synthesis. But in the forming of the Roman written sign IX, there
is an obvious reference to the sign X already chosen: we see that the group ten, composed of
all the ®ngers, was regarded as more familiar (although more numerous) than the group
nine, with one thumb away: the less familiar and (thus far) less simple intuition was compared
with the more familiar, it was analysed that it might be named, and the result was the sign IX,
recording this distinctive property of Nine that it has been found by analysis to be one less than
Ten, Ð not indeed by a separation of the multitude Nine into its parts, but by a resolution of
the complex thought into its simpler connected conceptions. I need not dwell upon the
converse process of Synthesis by which we return from the familiar thoughts of One and Ten
in this particular mode of combination, and interpret the written name IX, till it yields up the
intuition of Nine: for you will easily apply these remarks to all the past arithmetical examples,
and will see their bearing on those questions of Algebra to which we shall next proceed.

W. R. H.

VI.

Observatory,
March 18, 1835.

My dear Adare,
For the reasons given in my last letter I hold that in Algebra, as in other

sciences (if studied in that Theoretical school which uses Names as subordinate to
Thoughts), to name is an analytic act, and every spoken or written name (whether word or other
sign) is the result or record of an analysis: declaring, if immediately and arbitrarily imposed (as in
the Roman Arithmetic the word Decem or the sign X), that the signi®ed thing or thought
either must be or at least is chosen to be regarded as a simple element, insusceptible of further
analysis, or at least not analysed yet into any simpler or more familiar components; or else
recording, if the name be mediately given, and by rules of composition of signs (like the
Roman numeral IX discussed in the foregoing letter), that the signi®ed thought has already
been analysed into others, and recording likewise the special process of that analysis. But
since the use of a sign is to signify, and since every analysis supposes a previous possible
synthesis Ð because a mark should be the mark of something and a thing or thought which
may be analysed may be compounded also, Ð therefore I hold that every Name is not only
formed as the result or record of an analysis, but may be likewise used as the beginning or the
rule of a synthesis, and is accordingly so used when we interpret it To name is a verb active; it

� (Construct) Ð thus added to MS. by W. R. H., without striking out ``have''.
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supposes some object to be named, some thing or thought or intuition, which either is or
might be given and present. Now the having of such an intuition, the contemplating of such
an object, is the natural and necessary antecedent of the earliest act of naming; although
analogies of language and of thought may afterwards suggest derived and complex names, for
which the objects and answering intuitions remain to be discovered or called forth. Such
seems to be the process of the mind in the actual formation of Science; and such (I think)
should be the process in study and instruction also. Among our conscious processes and acts,
Analysis precedes and Synthesis must follow. The determination of the relation from the
related thing must be the ®rst act; and not till after this can we hopefully or reasonably
attempt to determine consciously the related thing from the relation. For the conscious
knowledge of a relation seems never in the growth of the human mind to precede the
perception of a related thing, as given by thought or intuition; though relations themselves
have all their seats aÁ priori in the constitution of that very mind, and are so far innate ideas, or
more correctly innate forms. The form precedes the matter in order of nature and of dignity,
but in order of time and of visible progressive development the perception of the matter
precedes the consciousness of the form. And therefore, in instruction, the naming of a given
object should be earlier taught than the interpreting of a given name. The teacher ought ®rst to
present to the learner the matter, the complete intuition, and then assist him to attain from
this to the consciousness of the form within him. But after lie has thus analysed he may
construct; after he has acquired an inductive method of relating a given object to others more
simple or familiar, he may be led to a converse method of constructing or applying this
relation, so as to discover or make new objects, by deduction. Having ®rst turned inward on
himself from the obscure manifold around him, he may then look forth with cleared and
strengthened sight, and choose his own path of progress.

It may seem inconsistent with these views, respecting the natural order of instruction, that I
have dwelt so long on generalities and preliminary principles, instead of proceeding sooner,
or perhaps immediately, to the actual objects or intuitions in Algebra to which they are
designed to apply. But you remember that, at the outset of these letters, I announced it to be
my chief purpose to revive your recollections, and to make them more clear and systematic,
respecting the views which I had put forward in our old conversations, on the spirit and
philosophy of the science. And since, as was remarked in an intermediate letter of the series,
you are not now actually beginning but only reviewing the study, it is permitted and almost
required that I should adopt a different method now from that which I employed when I
wished to introduce you for the ®rst time to a class of conceptions then new to you. I may
now address you more as a man, and as one in whom the consciousness of the processes of
his mind has been already developed by exercise Ð though there are none of us to whom it is
not useful to have this consciousness developed more and more. Yet, it seems time that I
should come to particulars, and apply to Algebra, as the Science of Order, those general
remarks which I have been making on all scienti®c processes, and which I have only
exempli®ed as yet in the simplest questions of Arithmetic. And this application to Algebra I
think that I shall really commence, in my next letter, without any intervening digression:
though I will not answer for my long keeping close to the details, or that I may not soon leave
them for a while in pursuit of some new generality. Meantime, I remain, &c.,

W. R. H.
April 7.
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Kant holds that in the application of our thoughts to things there is a Synthesis pervious to
all Analysis, and that indeed we never analyse but what we had ourselves compounded: Ð
and this, which is a fundamental article of Kant's system, may seem to contradict what I have
said in the Sixth Letter; but you will observe that in dating (there) Analysis as earlier than
Synthesis, I spoke of conscious acts, while that ®rst Synthesis assumed or proved by Kant is
confessed to be a blind unconscious working of the Mind reacting upon Sensible Objects,
and giving them their unity, and even their existence as Objects de®nite and speci®c, by
casting them in its own innate forms or moulds of sense and thought.

VII.

April 16th, 1835.
My dear Adare,

I have often expressed in conversation and in these letters my opinion� that
Algebra is the Science of Order and Progression, or, more concisely, of Pure Time; that is,
the mathematical Science of Time as disengaged on the one hand from the dynamical notion
of Cause and Effect, and on the other hand from all empirical marks and measures suggested
by particular phenomena; just as Geometry is the Science of Pure Space, or the mathematical
Science of Space as disengaged from all dynamical notions of localised force, and from all
empirical knowledge of actual shapes and sizes, and positions and motions of bodies. I must
now add that the Science of Pure Time according to this conception contains not only Algebra, as
contrasted in these letters with Arithmetic and with Metrology, but Arithmetic and Metrology
also; that is, it contains the Sciences of Quotity and Quantity, or of number and measure, as
well as the Science of Order. We use familiarly the phrases ``How many times?'' ``For how
long a time?'' ``At what time?'' Ð and these familiar forms of inquiry contain within
themselves the outlines and principles of construction of the three last named Sciences. If we
can answer, under all suf®cient conditions, the question How often, or How many times and can
interpret or understand every suf®cient answer to such a question, then are we perfect
masters of Arithmetic as the Science of Quotity or Number. If, whenever the conditions are
suf®cient, we can enunciate and can interpret an answer to the question How long. or For how
long a time, we are acquainted with the whole of Metrology, as the abstract Science of Quantity
and Measure. And if, in every case of appropriate and suf®cient conditions, we can assign and
interpret a date, so as to form and to use in each case the answer to the question When, or At
what time, we possess [(as it appears to me)] all that Algebra can ask or teach as the Science of
Order and Progression. And these three questions Quoties, Quamdiu, Quando, Ð the How
often, [the] How long, and [the] When, Ð with their respective answers So often, So long, or
Then, Ð the Toties, Tamdiu, and Tunc, Ð while they contain those three separate Sciences
of Arithmetic, Metrology, and Algebra, are plainly subordinate to the general conception of
Time; and a Science of Pure Time, to be complete, must comprehend them all.

� Without striking out this word, the word ``conviction'' is written over it by W.R.H.
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LIV.

ADDRESS TO ACADEMY OF SIR W. R. HAMILTON ON RETIRING FROM

THE PRESIDENCY (1846)

[March 16, 1846]
[Proceedings of the Royal Irish Academy 3, 199±201 (1846).]

The President delivered the following Address:

``My Lords and Gentlemen of the Royal Irish Academy,ÐAlthough it is, I believe, well
known to most, perhaps to all, of you, that it has been for a considerable time my wish and
intention to retire this evening from the Chair to which, in 1837, your kindness called me, on
the still lamented event of the death of my distinguished predecessor, the late admirable
Doctor Lloyd, and in which your continuing con®dence has since replaced me on eight
successive occasions, yet a few parting words from me may be allowed, perhaps expected; and
I should wish to offer them, were it only to guard against the possibility of any one's
supposing that I look upon my thus retiring from your Chair as a step unimportant to myself,
or as one which might be taken by me with indifference, or without deliberation. It was under
no hasty impulse that I resolved to retire from the of®ce of your President into the ranks of
your private members, nor was it lightly that I determined to lay down the highest honour of
my life.

``My reasons have been stated in an Address delivered in another place, at a meeting of
some members of your body. They are, brie¯y, these: that after the expiration of several years,
I have found the duties of the of®ce press too heavily upon my energies, indeed, of late, upon
my health, when combined with other duties; and that I have felt the anxieties of a
concentrated responsibilityÐexaggerated, perhaps, by an ardent or excitable tempera-
mentÐtend more to distract my thoughts from the calm pursuits of study, than I can judge to
be desirable or right in itself, or consistent with the full redeeming of those pledges which I
may be considered to have long since given, as an early Contributor to your Transactions.

``When I look back on the aspirations with which ®rst I entered on that of®ce from which I
am now about to retire, it humbles me to re¯ect how far short I have come of realizing my
own ideal; but it cheers me to remember how greatly beyond what I could then have ventured
to anticipate, the Academy itself has ¯ourished. Of this result I may speak with little fear,
because little is attributable to myself. Gladly do I acknowledge that it has been my good
fortune, rather than my merit, to have presided over your body during a period in which,
through the exertions of others much more than through my own (though mine, too, have
not been withheld), the Academy is generally felt to have prospered in all its departments.
The original papers which have been read; the volumes of Transactions which have been
published; the closer communication which has been established with kindred societies of
our own and of foreign countries; the enhanced value of our Library and Museum, which



have been, at least, as much enriched in the quality as in the quantity of their contents; the
improved state (as it is represented to me) of our ®nances, combined with an increased
strength of our claims on public and parliamentary support; the heightened interest of
members and visiters in our meetings, which have been honoured on four occasions, during
my presidency, by the presence of representatives of Royalty; even the convenience and
appropriate adornment of the rooms in which we assemble;Ðall these are things, and others
might be named, in which, however small may have been the share of him who now addresses
you, the progress of the Academy has not been small, and of which the recollection tends to
console one who may, at least, be allowed to call himself an attached member of the body,
under the sense, very deeply felt by him, of his own personal and of®cial de®ciencies.

``Whoever may be the member elected by your suffrages, this evening, to occupy that
important and honourable post which I am now about to resign, it will, of course, become my
duty to give to that future President my faithful and cordial support, by any means within the
compass of my humble power. But if it be true, as I collect it to be, that your unanimous
choice will fall upon the very member whom, out of all others, I should have myself selected,
if it could have been mine to make the selectionÐwith whom I have been long connected by
the closest ties of college friendship, strengthened by the earnest sympathy which we have felt
in our aspirations for the welfare of this Academy which has already bene®ted by his exertions
in many and important waysÐthen will that course, which would have been in any event my
duty, be in an eminent degree my pleasure also.

``And now, my Lords and Gentlemen, understanding that an old and respected member is
prepared to propose for your votes, as my successor, the friend to whom I have ventured to
alludeÐvery inadequately, as regards my opinion of his merits, yet, perhaps, more pointedly
than his modesty will entirely forgive or approve of,ÐI shall detain you no longer from that
stage of the proceedings of the evening which must be the most interesting to all of us, but
shall conclude these words of farewell from this Chair, by expressing a hope that my future
exertions, though in a less conspicuous position, shall manifest, at least in some degree, that
grateful and affectionate sense which I must ever retain of the constant con®dence and
favour which you have, at all times, shewn towards me.''

Resolved,ÐThat the thanks of the Academy be given to Sir William R. Hamilton, and that
the Academy desire to express their entire sense of the value of his services as President, of
his high and impartial bearing in the Chair, and of his untiring efforts to advance the
interests of the body; and they also wish to record their satisfaction that he has determined to
remain in the Council of the Academy.
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LV.

OBITUARY NOTICE OF SIR W. R. HAMILTON (1865)

[Proceedings of the Royal Irish Academy 9, 383 (1867).]

We have lost by death, within the year, two Honorary Members, viz.:Ð

1. Sir W. Jackson Hooker, K. H., F. R. S.; elected June 27, 1825;
2. The Rev. William Whewell, D. D., F. R. S., Master of Trinity College, Cambridge; elected

January 25, 1836.

And nine Ordinary Members, viz.:Ð

1. Rev. W. H. Drummond, D. D.; elected November 29, 1817.
2. Right Hon. the Earl of Donoughmore; elected January 11, 1864.
3. Sir W. R. Hamilton, LL. D.; elected October 22, 1827.
4. Edward Hutton, M. D.; elected April 27, 1835.
5. Thomas Hutton, Esq., D. L.; elected February 10, 1840.
6. George A. Kennedy, M. D.; elected November 30, 1835.
7. George Petrie, LL. D.; elected February 25, 1828.
8. Sir Thomas Staples, Bart.; elected June 13, 1842.
9. Right Hon. John Wynne; elected April 10, 1843.

In this list are included two names of European celebrityÐnames which stand in the
foremost ranks of Mathematical Science, and Archñological Learning, respectively. After the
able and eloquent tributes lately paid by our President to the memories of Sir William
Hamilton and Dr. Petrie, it is unnecessary for us to enlarge on the loss sustained by our
country, and by the republic of letters, in the deaths of these distinguished men. But we may
be permitted to observe how closely the labours and the renown of both were associated with
this institution. Almost all the important researches of Hamilton were published in our
``Transactions'' or ``Proceedings,'' from the ``Essay on Systems of Rays,'' which ®rst estab-
lished his reputation, and for which he obtained our Cunningham Medal, to the ``Theory of
Quaternions,'' which was the latest product of his genius. The ®rst hints of this Theory were
given in communications read before the Academy; and up to the close of his life, he
continued to bring before us, from time to time, the newest developments and applications
of the method.



INDEX

Achilles, 668

Adare, Viscount, letters to, 762±774

Adare, Viscount, see Wyndham-

Quin, E. R. W.

Addition of arcs on a sphere, 461

Ð non-commutatity of, 462

Address on retiring from the

presidency of the Royal Irish

Academy, 773±774

Airy, G. B., 157, 162, 723

Akenside, M., 672

Algebra as the science, of order, 771

Ð of pure time, 762

Alternating series, 35, 40

Altona, 673

Analogies of Napier, 378

Analysis, error of a received

principle, 580

Anharmonic angle, 212

Ð axes, 197

Ð centre, 197

Ð centre of similitude, 205

Ð circles, 203

Ð coordinates, 507±515

Ð Ð of a line, 185, 508

Ð Ð of a plane, 410

Ð Ð of a point in space, 406, 416

Ð Ð fundamental triangle, 180

Ð Ð letter to Hart on, 179±428

Ð Ð three, of a point, 181

Ð Ð unit-plane 513

Ð Ð unit-point, 181, 508

Ð direction of a line, 210

Ð directrix, 203

Ð distance between two points,

207

Ð equation of a line, 184

Ð excentricity, 199

Ð foci, 197

Ð function, 520

Ð method, application to curved

surfaces, 416

Ð Ð application to space, 411

Ð Ð fundamental theorem, 186,

227

Ð of a pencil, 183

Ð of circular groups, 324, 337

Ð of the pencil of planes, 407

Ð origin, 214

Ð parallelism, 210

Ð perpendicular, 207

Ð perpendicularity, condition of,

210, 213

Ð polar angle, 214

Ð polar coordinates, 215

Ð quaternion, 503

Ð Ð de®ned, 183

Ð radical axis, 196

Ð radical centre, 196

Ð radius, 206

Ð Ð vector, 214

Ð ratio, or quotient

(DoppelschnittsverhaÈltniss,

ratio bissectionalis), 182

Ð rectangular coordinates, 215

Ð symbol of the tangent plane,

426

Anharmonical equality, 205

Annular eclipse of the Hartian, 370,

400

Apjohn, J., award of Cunningham

Medal to, 751

Ð review of his work on the

speci®c heats of gases,

746±751

Apollonius of Perga, 189

Arago, D. F. J., 676, 677, 678, 679,

680, 712, 723

Arbogast, L. F. A., 118, 119

Archimedes, 562

Arcturus, 668

Arcual radius, 388

Associative principle, of

multiplication, 459

Ð of the symbolic addition of arcs,

462

Astronomical Society, 720

Astronomy, introductory lecture,

663±672

Augustus, 682

Axes of homology, intersection

of, 345

Ð for two triangles, 344, 349, 350,

351, 352, 357

Bacon, F., 667, 668

Ball, R. S., 684

Bartholinus, E., see Berthelsen

Berlin, 748

Bernoulli, D., 626

Bernoulli, James, numbers of, in

terms of de®nite integrals,

640±645

Berthelsen, E., 711

Berzelius, J. J., 757, 758

Bessel, F. W., 724, 725

Biela, W. von, 573

Biot, J. B., 712, 723

Biquaternions, 647

Bishop Law's Mathematical

Premium, 486

Bradley, J., 669, 724, 755

Brahe, Tycho, 669, 740

Brand, L., 384

Brest, tides at, 726

Brewster, D., 30, 31, 32, 712, 723,

726, 743

Brinkley, J., 203, 669, 685, 701, 730,

738, 755

British Association for the

Advancement of Science, 176,

731, 740, 742, 748

Ð Hamilton's address as secretary

of the Dublin meeting,

716±727

Buenos Aires, 678

Calculus of differences, a theorem

in, 703

Calculus of probabilities, 705, 707

Canonical arrangement, 214

Cape of Good Hope, 674, 678

Carmichael, R. B., 158, 647, 648

Carnot, L. N. M., 420, 516

Casey, J., 369

Cauchy, A. L., 74, 583, 627, 723,

740, 742, 765

Caulfeild, James, Earl of

Charlemont, 730

Cayley, A., 251



Centre of homology for two

triangles, 344, 352, 357

Chaldean Saros, 689

Chaldeans, 685

Challis, J., 722, 723

Characteristic function, 31

Charlemont, Lord, see Caulfeild,

James

Chasles, M, 182, 340, 407, 419, 420,

467, 544, 558

Ð theory of geometrical

imaginaries, 340

Chords of in¯exion, 314, 319

Ð coordinates of, 319

Ð transformed coordinates of, 320

Clark, W. M., 724

Clausen, T., 673

Clouds, singular appearance of, 745

Collinearity, relations of, for

geometrical nets in space, 555

Comet, Biela's, 573, 674, 675, 676,

677, 680

Ð Encke's, 673, 674, 675, 677, 678,

679, 680

Ð Gambart's, 680

Ð Halley's 674

Ð Lexell's, 677, 678

Ð Montaigne's, see Biela's, 673,

677

Complanarity, relations of, for

geometrical nets in space, 555

Conceptions, elementary, of

mathematics, 762±772

Concurrence, relations of, for

geometrical nets in space, 555

Conjugate geometrical quotients,

488

Continued exponentials, method

of, 75, 111, 112

Continued fractions, expansion of

a de®nite integral, 36

Ð method of, 106, 111, 120, 130

Converging exponentials, method

of, 54

Converging fractions, method

of, 54, 93, 111

Conway, A. W., ix

Cooper, E. J., 683

Coordinates, homogeneous, see

anharmonic coordinates

Copenhagen, 711

Copernicus, N., 669

Cubic cone and its Hessian, 505

Cunningham Medal, 744, 746, 751,

752, 754, 756, 761

Curvature, Gauss measure of for a

surface, 576

Ð lines of equal and opposite, 10

Ð lines of, 574

Ð point of evanescent, 11

Ð points of equal and opposite, 10

Ð two general equations of, 571

Cycle of triangles and homology,

351, 354

Cyclic cone, 463, 466, 469

Ð curvature of, 472

De Damoiseau de Montfort,

M. C. T., 673, 678, 680

De®nite integrals, 34

Ð researches relating to, 34

Delambre, J. B. J., 366, 378, 685,

689, 696, 697

Ð Tables of, 681

de Morgan, A., ix, 85, 109, 114, 118,

567, 645

Ð letters from Hamilton, 34±178

Descartes, R., 711

Developable systems, 7

De Vere, A., 670

Di-anharmonic cubic, 302

Ð groups, 279

Ð pencil, 274, 275, 276

Ð property, 314, 315, 316

Difference operator, 701, 703

Differential equation, linear third

order with variable

coef®cients, 34, 134±178

Discontinuous integrals, 633

Diverging series, 34

DoppelschnittsverhaÈltniss, 182, 558

Dublin University Press, 351

Dublin, University of, 730

Dumas, J. B. A., 757, 758, 759

Dunraven, Earl of, see Wyndham-

Quin, E. R. W.

Eclipse of the median circle, 384

Eclipses, approximating to the

calculation of, 682

Edfu, temple at, 566

Elementary conceptions of

mathematics, 762±772

Elliptic cones, 482

Encke, J. F., 673, 678, 679, 705

Encyclopñdia Metropolitana, 36, 712

Equation of conjugation, 191, 194

Equations of curvature, 575

ErlaÈuterungsurtheile, 766

Erweiterungsurtheile, 766

Ether, luminous, 711

Euclid, 434, 435, 562, 572, 740

Euler, L., 645

Evanescent unit-curve, 202

Evolutionary function, 183

Exeligm, 686

Exponential method, 89, 91, 132

Exponentials, ``sprawling form'' or

ladder form, 56

Exscribed homologue, 354, 360,

362

Extraordinary refraction, 25

Fahrenheit, G. D., thermometer

of, 747

Fluctuating functions, 176, 584±

585, 586±630, 631, 640, 645,

656

Fluxions, Newtonian doctrine of,

425

Focal coordinates, 6

Ð length, 6

Ð ray, 24

Foci, principal, 3

Focus by projection, 18

Fourier, J. B. J., 147, 153, 585, 606,

610, 619, 627, 628, 629, 655,

746, 765

Ð biordinal equation of, 169, 176

Ð de®nite integral, phase of, 165,

178

Ð theorem of, 586, 595, 597, 601,

604, 629

Ð Ð new demonstration 632

Freeman, A., 147

Fresnel, A. J., 712, 723, 740,

741, 743

Functions of zero, differences and

differentials of, 701

Functions which vanish with their

variables, 581

Galileo (Galileo Galilei), 669

Gamma function, 71

Gauche hexagons, 183

796 INDEX



Ð quadrilateral, 417

Gauss, C. F., 574, 723

Ð equations of, 378, 380

Gay-Lussac, J. L., 748, 749, 759

Generatrices, imaginary umbilical,

of a central second order

surface, 565

Geological Society, 720

Geometric fraction, or quotient, 441

Geometrical duality, 269, 288

Ð principle of, 411

Geometrical fractions, scalar and

vector parts of, 443

Geometrical functions, non-

commutativeness of the

product of, 451

Ð product of, 447

Geometrical nets in space, 409,

516±560, 561

Geometry, symbolical, 431±500

Gill, M. H., 351

Glan, P., xxvii

Gold, C., 676, 680

GoÈttingen, 673

Graham, A., 683

Graves, C. 109, 179, 415, 467, 516,

647, 649

Graves, R. P., 684

Greenwich, 681, 724, 725

Gregorian Calendar, 681

Gregory, D. F., 159, 431

Gregory, O. G., 64, 166

Gregory, W., 757

Halley, E., 674, 677, 678

Halma, N. B., 685

Hamilton, W. E., xxvii, 367, 368,

376, 384, 391

Hamilton, W. R., Lectures on

Quaternions, 375

Ð obituary notice of, 776

Ð The Elements of Quaternions, 428

Hankins, T. L., 428

Harding, C. L., 673

Harmattan, 680

Harmonic conjugate, 189

Ð conjugation, 423

Hart, A. S., ix, 179, 366, 368, 370

Ð theorem of, 280, 367

Ð Ð new proof, 370

Hartian, 370

Ð annular eclipse of, 370, 400

Henderson, T., 674, 678

Henry, C., 724

Heptagon, RoÈber's construction

for, 566

Hermathena, 762

Herschell, J. F. W., 674, 679, 680,

712, 726, 741

Ð theorem of, 701

Herschel, W., 669

Hesse, L. O., 279, 309, 310

Hessian, 236, 257, 265, 308, 310

Ð Salmon's formula for, 233

Hex-anharmonic groups, 279

Hipparchus, 366, 668, 669

Ð problem of, 684±698

Homogeneous coordinates, see

anharmonic coordinates

Homographical division, 419, 420

Homography of nets in space, 558

Homologous triangles, 345, 350

Homology, axis of, for two

triangles, 344, 349, 350, 351,

352, 357

Ð centre of, for two triangles, 344,

352, 357

Ð conditions of, 355

Ð relations of, for geometrical nets

in space, 555

Homothetic conics, 284, 285, 335,

337, 339, 345, 352, 362

Horner, W. G., method for

calculating roots, 567

Hudson, H., 748

Humboldt, F. H. A. von, 689

Hutton, C., mathematical tables,

64, 166

Huygens, C., 27, 30, 32, 711, 712

Huyghens, see Huygens

Hymn of Patrick, 753

Iceland spar, 711

Imaginary anharmonic, 201

Ð unit-curve, 196

Ð unit-points, 195

Index of a vector, 446

In¯exion, chords of, 314, 319

Ð lines of, 11

Ð points of, 319

Ð transformed coordinates of

chords of, 320

Ð transformed coordinates of

points of, 320

Inscribed homologue, 354,

360, 362

Ð unit-curve, 208

Institute of France, 720

Integrals, multiple and de®nite,

numerical values for, 653±660

Integration of certain partial

differential equations,

647±648

Inverse cube roots, method of, 156

Ð square roots, method of, 121,

122, 127, 132, 156

Involution, 544

Ð enlarged conception of, 503

Isoplatal surfaces, 9

Ivory, J., 748

Jacobi, C. G. J., 176, 656

Jenyns, L., 724

Joly, C. J., xxvii

Josephstadt, Bohemia, 673

Julian Calendar, 681

Jupiter, 673, 678

Kane, R., award of Cunningham

Medal

to, 756, 761

Ð review of his researches on the

nature of ammonia, 756±761

Kant, I., 766, 767

Kepler, J., 669, 674, 677, 726, 740

Kinane, V., 351

Kirwan, R., 730

Kramp, C., mathematical tables, 36,

39, 51

Lacroix, S. F., 134, 299, 653

Ladder form of exponentials, 56

Lagrange, J. L., 11, 85, 86, 176, 600,

627, 765

Lalande, J. J. L. de, 676

Landen, J., theorem of, 714

Laplace, P. S., 27, 100, 115, 133,

704, 705, 723

Ð calorimeter of, 748

Ð converging fractions of, 102

Ð equation, integration of, 647

Ð fractions of, 103

Ð functions of, 649

Least squares, method of, 705

797INDEX



Leathem, J. G., 369

Legendre, A. M., 111

Lexell, A. J., 677

L'Huiller, S. A. J., 395

Lia Fail, 753

Limoges, 673

Liouville, J., 574, 604

Lloyd, B., 730, 773

Lloyd, H., 705, 711, 723, 739

Logologues, a new theory of, 728

London and Edinburgh Philosophical

Magazine, 740

London, University College, 34

Lubbock, J. W., 720

MacCullagh, J., 724

Ð award of Cunningham Medal to,

744

Ð early work of, 711±715

Ð review of his papers on

crystalline re¯exion and

refraction, 739±744

Ð theorem of the polar plane, 742

Maclaurin, C., series of, 702

Malus, E. L., 25, 712, 723

Marseilles, 673, 680

Mathematics, elementary

conceptions of, 762±772

McConnell, J. R., ix

Median theorem, new proof, 395

Menelaus, theorem of, 185

Messier, C., 673, 677

Metis, Asteroid 9, 683

Meton, 686

Milton, J., 672, 731

Minerva, 672

Mitscherlich, E., 723

MoÈbius, A. F., 179, 183, 407

Ð Der barycentrische Calcul, 179,

182, 516, 524, 558

Ð Die Elemente der Mechanik des

Himmels, 689

Monge, G., 574

Ð notation of, 577

Moon, ancient Babylonian eclipses

of, 686

Ð apogee of, 688

Ð eclipse of, 682

Moon-breadth, 688

Moon's node, regression of, 688

Mossotti, O. F., 678

Mulcahy, J., 391

Murphy, R., 75, 104, 106, 108

Ð and exponential method, 105

Ð series of, 103

Napier's analogies, 378

Neumann, F. E., 742, 743

Newton, I., 667, 669, 677, 678, 711,

712, 720, 723, 740

Nicaea, Council of, 681

Nice, see Nicaea

Nismes, 679

Observatory of Trinity College,

Dublin, at Dunsink, 683

Ohm, M., 431, 765

Oldham, W., 351

Optical axes of a crystal, 713

Ordnance Survey, 753

Orinoco, 689

Orion, 668

Osculating circle to a curve in

space, locus of, 564

Pappus, 182

Paramatta, 678

Paris, 676

Parker, J. W., 172

Peacock, G., 431, 433, 451, 765

Pedoe, D., 185, 366

Pencil of chords, 274

Ð of planes, 406

Ð equation of, 293

Petrie, G., award of Cunningham

Medal to, 754

Ð review of his paper on the

history and antiquities of Tara

Hill, 752±754

Phase of Fourier's de®nite integral,

165, 178

Phidias, 672

Philadelphia, 722

Philosophical Magazine, 740, 748

Planes of circular section and

circular projection, 498

Planet Metis, 683

Plato, 668, 689

Points of ®rst construction, 409

Points of in¯exion, transformed

coordinates of, 320

Poisson, S. D., 144, 173, 176, 586,

600, 604, 610, 619, 627, 628,

629, 648, 655, 656, 659, 723,

746

Polygons inscribed on a second

order surface, 502

Pond, J., 677

PonteÂcoulant, J. de, 678

Powell, B., 724

Principal foci, 3, 15

Ð virtual foci, 16, 18

Ptolemy, C., Almagest, 366, 668, 669,

684, 685, 686, 687

Pyramid, unit, 512

Quadrilateral, gauche, 183

Quadriplanar coordinates, 425, 511

Quadripunctual, or quadrilinear,

coordinates, 305

Quaternions, 181, 187, 204, 342,

345, 369, 370, 374, 375, 377,

384, 386, 388, 390, 391, 393,

400, 404, 410, 415, 421, 427,

428, 482, 500, 501, 503, 511,

558, 565, 574

Ð and cones of third degree, 506

Ð and general equation for cones

of the third order, 504

Ð geometrical application of, 503

Ð symbolic extension of, 503

Quetelet, A., 748

Quinary calculus for space, 517

Quinary symbols and types for

points, lines and planes, 406,

416

Quines, 410

Ð associative, theory of, 503

Quinquiplanar, or

quinquipunctual, coordinates,

305, 511

Quotity and quantity, 772

Ratio bissectionalis, 182, 407, 558

Rational plane, 519

Ð point, 519

Rationality of nets in space, 558

Real unit-point, 195

Reciprocals, method of, 93, 120,

132

Rectangularity, condition of, 577

Refraction, extraordinary, 714

798 INDEX



Rennie, G., 724

RoÈber, F. G., architect, 566

RoÈber, F., 566

Robinson, M., 176

Robinson, T. R., 176

Ð table of mean refractions, 755

Rogers, H. D., 722

Rose, H. J., 36

Round Towers of Ireland, 754

Royal Irish Academy, 368, 731, 773

Ð presidential address to, 730±738

Royal Society of London, 720, 734,

738

Sadleir, F., 711

St Petersburg, 748

Salmon, G., 179, 186, 203, 223, 233,

251, 257, 262, 263, 276, 294,

299, 300, 301, 302, 308, 340,

367, 368

Salmon's harmonic cubic, 302

Ð rule, completion of, 301

Ð sextic, 294, 300

Scalars, 438

Science of pure time, 762

Serret, J. A., 309

Shakespeare, W., 666

Single-axed crystals, 25

Smedley, E., 36

Snel, W., 684, 711

Snellius, see Snel

Speci®c heats of gases, 746±751

Spherical conic, 459, 463, 467

Ð curvature of, 472

Spherical ellipse, 500

Ð excess, 369, 377

Ð trigonometry, 384, 402

Sprawling form of exponentials, 56

Sprawling form of exponentials, see

ladder form,

Square roots of negative numbers,

geometrical representation of,

432, 449

Square roots, method of, 132

Stirling, J., approximation of, 73

Stokes, G. G., 157, 162, 172, 173,

175, 176, 178

Stubbs, J. W., 500

Suerman, A. C. G., 748±751

Sun, 679

Surface of constant action, 22

Ð diametral, 15

Ð limiting, 24

Surfaces of second order and nets

in space, 558

Surfaces, virtual caustic, 15

Synge, J. L., ix

Syntypical points and planes 520

Systems of rays, developable, 7

Ð emenating, 19

Ð extraordinary, 25

Ð of the second class, 13

Ð of the third class, 23

Ð part third, 3±33

Ð undevelopable, 9

Tables of Delambre, 681

Ð of Hutton, 64, 166

Ð of Kramp, 36, 39, 51

Ð of Robinson, 755

Ð of Taylor, 165, 168, 371

Ð of Vince, 681

Tacitus, 682

Tait, P. G., 384

Tara Hill 752

Taylor, B., series of, 86, 632, 653

Taylor, M., logarithm tables of, 165,

168, 371

Taylor, R., Scienti®c Memoirs, 705,

737

Taylor, W. B. S., ix

Tensor of a geometrical quantity,

486

Terquem, O., theorem of, 369, 376,

384

Thompson, C., 34

Thucydides, 689

Tilloch, A., founder of the

Philosophical magazine, 748

Time, pure, algebra as the science

of, 762

Todhunter, I., 369, 378

Toomer, G. J., 366

Townsend, R., 203, 340, 367

Trilinear coordinates, 285

Triordinal differnetial equation, 35,

134

Turin, 678

Turner, E., 757

Turner, S. A., theorem of, 729

Twenty-sided polygon, calculation

relating to, 562

Two spherical hexagons, theorem

of, 458

Tycho, see Brahe

Typical points and planes, 528

Undevelopability, coef®cient

of, 10, 12

Undevelopable systems, 9

Unit-conic, or unit-curve, 195

Unit-curve, inscribed, 208

Ð principal evanescent, 203

Unit-curves, 203

Ð principal imaginary, 203

Ð principal real, 203

Unit-line, 186

Ð coordinates, 225

Unit-point, 186

Ð coordinates of the line, 210

Ð in space, 409

Ð tangential equation of, 186

Unit-pyramid, 408, 417

Unit-system, curves of, 196

Unit-triangle, 195

Valz, 679

Vandermonde, A. T., notation of,

35, 134, 652

Varying orbits, a new theory of, 728

Vectors, 438

Venus, 678

Vernal equinox, 681

Vince, S., Solar Tables of, 681

Virtual developments of the pencil,

13

Vis viva, 743

Warren, J., 432, 433, 441, 451

Wayman, P. A., xxvii

Whewell, W., 723

Wollaston, W. H., 712

Woodhouse, 765

Wordsworth, W., 663, 671

Wyndham-Quin, E. R. W., Viscount

Adare and Earl of Dunraven,

762

Young, T., 723

Zero, functions of, differences

and differentials of, 701

799INDEX



LIST OF WORKSLIST OF THE WORKS

OF

SIR WILLIAM ROWAN HAMILTON

IN

APPROXIMATE CHRONOLOGICAL ORDER

1. On Caustics. Part First. Unpublished manuscript. (1824)
I. 345.

2. Theory of Systems of Rays. Part First. (1827)�
Transactions of the Royal Irish Academy 15, 69±174 (1828).
I. 1.y

3. Theory of Systems of Rays. Part Second. Unpublished manuscript.
I. 88.

4. Systems of Rays. Part Third. Unpublished manuscript.
IV. 3.

5. Supplement to an Essay on the Theory of Systems of Rays. (1830)
Transactions of the Royal Irish Academy 16, 1±61 (1830).
I. 107.

6. On the Error of a received principle of Analysis, respecting Functions which vanish
with their Variables. (1830)
Transactions of the Royal Irish Academy 16, 63±64 (1830).
IV. 580.

7. Note on a Paper on the Error of a received Principle of Analysis. (1831)
Transactions of the Royal Irish Academy 16, 129±130 (1830).
IV. 582.

� In the case of papers communicated, the date (or dates) immediately following the title is the date
of communication.
y The volume and page numbers, where the item will be found, are given at the end of each entry.



8. On the double refraction of light according to the principles of Fresnel (Review of two
scienti®c memoirs of James MacCullagh, B.A.). (1830)
National Magazine (Dublin) 1, 145±149 (1830).
IV. 711.

9. Second Supplement to an Essay on the Theory of Systems of Rays. (1830)
Transactions of the Royal Irish Academy 16, 93±125 (1831).
I. 145.

10. Optical Investigations. Unpublished manuscript. (1831)
I. 364.

11. Third Supplement to an Essay on the Theory of Systems of Rays. (1832)
Transactions of the Royal Irish Academy 17, 1±144 (1837).
I. 164.

12. On the Differences and Differentials of Functions of Zero. (1831)
Transactions of the Royal Irish Academy 17, 235±236 (1837).
(French translation in: Correspondance MatheÂmatique et Physique 8, 235±237 (1834).)
IV. 701.

13. On a View of Mathematical Optics. (1832)
British Association Report for 1st Meeting, York 1831, and 2nd Meeting, Cambridge 1832�, pp.
545±547.
I. 295.

14. The Comet. (1832)
Dublin Penny Journal, pp. 207, 208 (December 1832) and pp. 223, 224 (January 1833).
IV. 673.

15. Introductory Lecture on Astronomy. (1832)
Dublin University Review, pp. 72±85 (January 1833).
IV. 663.

16. Review of Arago's work, ``The Comet '', translated by Colonel Charles Gold, London,
1833. (1833)
Dublin University Review, pp. 365±372 (April 1833).
IV. 676.

17. On some Results of the View of a Characteristic Function in Optics. (1833)
British Association Report for 3 rd Meeting, Cambridge 1833, pp. 360±370.
I. 297.

� The date indicated for Reports of Meetings of the British Association for the Advancement of Science is
that of the meeting; publication was in London and usually occurred in the following year.

777LIST OF WORKS



18. On a New Method of investigating the relations of Surfaces to their Normals, with
results respecting the Curvature of Ellipsoids. (1833)
Dublin University Review, pp. 653±654 (July 1833).
I. 304.

19. On the Effect of Aberration in prismatic Interference. (1833)
Philosophical Magazine (3S) 2, 191±194 (1833).
(German translation in Annalen der Physik und Chemie, Leipzig, 29, 316±319 (1833).)
I. 305.

20. On the undulatory Time of Passage of Light through a Prism. (1833)
Philosophical Magazine (3S) 2, 284±287 (1833).
(German translation in Annalen der Physik und Chemie, Leipzig, 29, 323±328 (1833).)
I. 307.

21. Note on Mr Potter's Reply respecting his experiment of prismatic Interference. (1833)
Philosophical Magazine (3S) 2, 371 (1833).
(German translation in Annalen der Physik und Chemie, Leipzig, 29, 328±329 (1833).)
I. 310.

22. On a general Method of expressing the Paths of Light and of the Planets, by the
Coef®cients of a Characteristic Function. (1833)
Dublin University Review, pp. 795±826 (November 1833).
(French translation, with a condensed introduction, in: Correspondance MatheÂmatique et
Physique 8, 69±89, 200±211 (1834).)
I. 311.

23. Remarques de M. Hamilton, directeur de l'observatoire de Dublin, sur un meÂmoire de
M. Plana inseÂreÂ dans le tome vii de la Correspondance Math. (extrait d'une lettre).
(1833)
Correspondance MatheÂmatique et Physique 8, 27±30 (1834).
I. 333.

24. Theory of Conjugate Functions, or Algebraic Couples; with a Preliminary and Elemen-
tary Essay on Algebra as the Science of Pure Time. (1833, 1835)
Transactions of the Royal Irish Academy 17, 293±422 (1837).
III. 3.

25. The auxiliary function T for a telescope, when the axis of eyepiece is not coincident
with, but parallel to, that of object glass. Unpublished manuscript. (1833)
I. 367.

26. The auxiliary function T for two thin lenses close together in vacuo, and for a single
thin lens in vacuo. Unpublished manuscript. (1833)
I. 369.

778 LIST OF WORKS



27. The aberrations of an optical instrument of revolution. Unpublished manuscript.
(1833)
I. 376.

28. Problem of Three Bodies by my Characteristic Function. Unpublished manuscript.
(1833)
II. 1.

29. On the Application to Dynamics of a General Mathematical Method previously applied
to Optics. (1834)
British Association Report for 4th Meeting, Edinburgh 1834, pp. 513±518.
II. 212.

30. On Conjugate Functions, or Algebraic Couples, as tending to illustrate generally the
Doctrine of Imaginary Quantities and as con®rming the Results of Mr Graves respect-
ing the Existence of Two independent Integers in the complete expression of an
Imaginary Logarithm. (1834)
British Association Report for 4th Meeting, Edinburgh 1834, pp. 519±523.
III. 97.

31. On a General Method in Dynamics, by which the Study of the Motions of all free
Systems of attracting or repelling Points is reduced to the Search and Differentiation
of one central Relation, or Characteristic Function. (1834)
Philosophical Transactions of the Royal Society, London, Part II, 247±308 (1834).
II. 103.

32. Sir W. Rowan Hamilton on the Elementary Conceptions of Mathematics (Seven Letters
to Viscount Adare (March and April 1835).) (1879)
Hermathena (Dublin) 3, 469±489 (1879).
IV. 762.

33. Address as Secretary of the Dublin Meeting of the British Association. (1835)
British Association Report for 5 th Meeting, Dublin 1835, pp. xli±lvi.
IV. 716.

34. On a new theory of Logologues. (1835)
British Association Report for 5 th Meeting, Dublin 1835, part ii, p. 7 (title only).
IV. 728.

35. On a new theory of varying Orbits. (1835)
British Association Report for 5 th Meeting, Dublin 1835, part ii, p. 7 (title only).
IV. 728.

779LIST OF WORKS



36. Explanation of the method of investigation pursued by Mr G. B. Jerrard for accom-
plishing the solution of equations of the ®fth or of higher degrees.
British Association Report for 5 th Meeting, Dublin 1835, part ii, p. 7 (title only).
IV. 728.

37. Second Essay on a General Method in Dynamics. (1835)
Philosophical Transactions of the Royal Society, London, Part I, 95±144 (1835).
II. 162.

38. On the Propagation of Light in Crystals. Unpublished manuscript. (1835±1838)
II. 413.

39. Correspondence. Unpublished manuscripts. (1835±1839)
II. 583.

40. On nearly Circular Orbits. Unpublished manuscript. (1836)
II. 217.

41. Calculus of Principal Relations. Unpublished manuscript. (1836)
II. 297.

42. Calculus of Principal Relations. Unpublished manuscript. (1836)
II. 332.

43. Calculus of Principal Relations. A new series of investigations. Unpublished manu-
script.
II. 358.

44. Integration of Partial Differential Equations by the Calculus of Variations. Unpublished
manuscript. (1836)
II. 391.

45. Calculus of Principal Relations. (1836)
British Association Report for 6th Meeting, Bristol 1836, part ii, pp. 41±44.
II. 408.

46. Theorems respecting Algebraic Elimination, connected with the Question of the
Possibility of resolving in ®nite Terms the general Equation of the Fifth Degree. (1836)
Philosophical Magazine (3S) 8, 538±543 (1836), and 9, 28±32 (1836).
III. 471.

47. Inquiry into the validity of a Method recently proposed by George B. Jerrard, Esq., for
Transforming and Resolving Equations of Elevated Degrees. (1836)
British Association Report for 6 th Meeting, Bristol 1836, pp. 295±348.
III. 481.

780 LIST OF WORKS



48. Theory of the Moon. Unpublished manuscript. (1837)
II. 238.

49. Correspondence with J. W. Lubbock. Unpublished manuscript. (1837)
II. 249.

50. Exposition of the Arguments of Abel, respecting Equations of the Fifth Degree. (1837)
British Association Report for 7 th Meeting, Liverpool 1837, part ii, p. 1 (title only). See Nos.
51 and 54, below.
Not included in Vol. III.

51. On the Argument of Abel, respecting the Impossibility of expressing a Root of any
General Equation above the Fourth Degree, by any ®nite Combination of Radicals and
Rational Functions. (1837)
Transactions of the Royal Irish Academy 18, 171±259 (1839).
III. 517.

52. New Application of the Calculus of Principal Relations. (1837)
British Association Report for 7 th Meeting, Liverpool 1837, part ii, p. 1.
IV. 729.

53. Exposition of Mr Turner's Theorem respecting the Series of Odd Numbers and the
Cubes and other powers of the Natural Numbers. (1837)
British Association Report 7 th Meeting, Liverpool 1837, part ii, p. 1 (title only).
IV. 729.

54. Investigations respecting equations of the Fifth Degree. (1837)
Proceedings of the Royal Irish Academy 1, 76±80 (1841).
III. 478.

55. Inaugural Address as President of the Royal Irish Academy. (1838)
Proceedings of the Royal Irish Academy 1, 107±120 (1841).
IV. 730.

56. Address as President of the Royal Irish Academy on Professor MacCullagh's Paper on
the Laws of Crystalline Re¯exion and Refraction. (1838)
Proceedings of the Royal Irish Academy 1, 212±221 (1841).
IV. 739.

57. On the Propagation of Light in vacuo. (1838)
British Association Report for 8 th Meeting, Newcastle 1838, part ii, pp. 2±6.
II. 446.

781LIST OF WORKS



58. On the Propagation of Light in Crystals. (1838)
British Association Report for 8 th Meeting, Newcastle 1838, part ii, p. 6.
II. 450.

59. Researches respecting Vibration connected with the Theory of Light. Unpublished
manuscript. (1839)
II. 451.

60. Propagation of Motion in Elastic Medium Ð Discrete Molecules. Unpublished manu-
script. (1839)
II. 527.

61. Notice of a singular appearance of the clouds observed on the 16th December, 1838.
(1839)
Proceedings of the Royal Irish Academy 1, 249 (1841).
IV. 745.

62. Researches on the Dynamics of Light. (1839)
Proceedings of the Royal Irish Academy 1, 267±270 (1841).
II. 576.

63. Address as President of the Royal Irish Academy on Dr Apjohn's researches on the
Speci®c Heat of Gases. (1839)
Proceedings of the Royal Irish Academy 1, 276±284 (1841).
IV. 746.

64. Researches respecting Vibration connected with the Theory of Light. (1839)
Proceedings of the Royal Irish Academy 1. 341±349 (1841).
II. 578.

65. Address as President of the Royal Irish Academy on Mr Petrie's Paper on the History
and Antiquities of Tara Hill. (1839)
Proceedings of the Royal Irish Academy 1, 350±354 (1841).
IV. 752.

66. On Fluctuating Functions. (1840)
Proceedings of the Royal Irish Academy 1, 475±477 (1841).
IV. 583.

67. On Fluctuating Functions. (1840)
Transactions of the Royal Irish Academy 19, 264±321 (1843).
IV. 585.

782 LIST OF WORKS



68. New Demonstration of Fourier's theorem. (1841)
Proceedings of the Royal Irish Academy 2, 129 (1844).
IV. 631.

69. On the Focal Lengths and Aberrations of a thin Lens of Uniaxal Crystal, bounded by
Surfaces which are of Revolution about its axis. (1841)
Philosophical Magazine (3S) 19, 289±294 (1841).
I. 336.

70. On a mode of deducing the equation of Fresnel's Wave. (1841)
Philosophical Magazine (3S) 19, 381±383 (1841).
I. 341.

71. On the Composition of Forces. (1841)
Proceedings of the Royal Irish Academy 2, 166±168 (1844).
II. 284.

72. Supplementary Remarks on Fluctuating Functions. (1842)
Proceedings of the Royal Irish Academy 2, 232±238 (1844).
Identical with pp. 317±321 of No. 67 above.
IV. P. 630.

73. On the Day of the Vernal Equinox at the time of the Council of Nice. (1842)
Proceedings of the Royal Irish Academy 2, 249±250 (1844).
IV. 681.

74. On certain discontinuous Integrals connected with the Development of the Radical
which represents the Reciprocal Distance between two Points. (1842)
Philosophical Magazine (3S) 20, 288±294 (1842).
IV. 632.

75. On a mode of expressing Fluctuating or Arbitrary Functions by mathematical formulñ.
(1842)
British Association Report for 12 th Meeting, Manchester 1842, part ii, p. 10.
IV. 639.

76. On a Method proposed by Professor Badano for the solution of Algebraic Equations.
(1842)
Proceedings of the Royal Irish Academy 2, 275±276 (1844).
III. 570.

77. On Equations of the Fifth Degree and especially on a certain System of Expressions
connected with these Equations, which Professor Badano has lately proposed. (1842)
Transactions of the Royal Irish Academy 19, 329±376 (1843).
III. 572.

783LIST OF WORKS



78. Two Letters to Professor Phillips on the construction of object glasses. Unpublished
manuscript. (1843±1844)
I. 383.

79. On a Theorem in the Calculus of Differences. (1843)
British Association Report for 13 th Meeting, Cork 1843, part ii, pp. 2±3.
IV. 703.

80. On some investigations connected with the Calculus of Probabilities. (1843)
British Association Report for 13 th Meeting, Cork 1843, part ii, pp. 3±4.
IV. 707.

81. On an Expression for the Numbers of Bernoulli by means of a De®nite Integral, and
on some connected Processes of Summation and Integration. (1843)
Philosophical Magazine (3S) 23, 360±367 (1843).
IV. 640.

82. On Dr Robinson's Table of Mean Refraction. (1843)
Proceedings of the Royal Irish Academy 2, 400±401 (1844).
IV. 755.

83. Address as President of the Royal Irish Academy on Dr Kane's Researches on the
Nature of Ammonia. (1843)
Proceedings of the Royal Irish Academy 2, 411±419 (1844).
IV. 756.

84. On the Calculus of Probabilities. (1843)
Proceedings of the Royal Irish Academy 2, 420±422 (1844).
IV. 705.

85. Quaternions. Unpublished manuscript. (1843)
III. 104.

86. On Quaternions, or on a new System of Imaginaries in Algebra. (A letter to John T.
Graves, dated 17 October 1843).
Philosophical Magazine (3S) 25, 489±495 (1844).
III. 106.

87. On a new species of Imaginary Quantities connected with the Theory of Quaternions.
(1843)
Proceedings of the Royal Irish Academy 2, 424±434 (1844).
III. 111.

784 LIST OF WORKS



88. Researches respecting Quaternions. First Series. (1843)
Transactions of the Royal Irish Academy 21, 199±296 (1848).
III. 159.

89. On the improvement of the double achromatic object glass. Unpublished manuscript.
(1844)
I. 387.

90. On approximating to the calculations of Eclipses. (1844)
Proceedings of the Royal Irish Academy 2, 597 (1844).
IV. 682.

91. On Quaterntions; or on a new System of Imaginaries in Algebra. (1844±1850)
Philosophical Magazine (3S) 25, 10±13, 241±246 (1844); 26, 220±224 (1845); 29. 26±31,
113±122, 326±328 (1846); 30, 458±461 (1847); 31, 214±219, 278±293, 511±519
(1847); 32, 367±374 (1848); 33, 58±60 (1848); 34, 294±297, 340±343, 425±439
(1849); 35, 133±137, 200±204 (1849); 36, 305±306 (1850).
III. 227.

92. On Quaternions. (1844)
British Association Report for 14th Meeting, York 1844, part ii, p. 2 (brief abstract).
Not included in Vol. III.

93. On Quaternions, or on a New system of Imaginaries in Algebra; with some Geometrical
Illustrations. (1844)
Proceedings of the Royal Irish Academy 3, 1±16 (1847).
III. 355.

94. A Theorem on Spherical Quadrilaterals and Spherical Conics. (1845)
Proceedings of the Royal Irish Academy 3, 109 (1847).
III. 363.

95. On Quaternions. (1845)
British Association Report for 15 th Meeting, Cambridge 1845, part ii, p. 3 (Brief summary of
an exposition of basic ideas. Hamilton poses the question: `Is there not an analogy
between the fundamental pair of equations ij � k, ji � ÿk, and the facts of opposite
currents of electricity corresponding to opposite rotations?').
Not included in Vol. III.

96. Illustrations from Geometry of the Theory of Algebraic Quaternions. (1845)
Proceedings of the Royal Irish Academy 3, Appendix, pp. xxxi±xxxvi (1847).
III. 364.

97. On the application of the Method of Quaternions to some Dynamical Questions,
(1845)

785LIST OF WORKS



Proceedings of the Royal Irish Academy 3, Appendix xxxvi±l (1847).
III. 441.

98. Additional applications of the Theory of Algebraic Quaternions to Dynamical Ques-
tions. (1845)
Proceedings of the Royal Irish Academy 3, Appendix, pp. li±lx (1847).
III. 449.

99. On Symbolical Geometry. (1846±1849)
Cambridge and Dublin Mathematical Journal 1, 45±57, 137±154, 256±263,
(1846); 2, 47±52, 130±133, 204±209 (1847); 3, 68±84, 220±225 (1848); 4, 84±89, 105±
118 (1849).
IV. 431.

100. On a Proof of Pascal's Theorem by means of Quaternions; and on some other
connected subjects. (1846)
Proceedings of the Royal Irish Academy 3, 273±292 (1847).
III. 367.

101. On Theorems of Central Forces. (1846)
Proceedings of the Royal Irish Academy 3, 308±309 (1847).
II. 286.

102. The Hodograph, or a new method of expressing in symbolical language the Newtonian
Law of Attraction. (1846)
Proceedings of the Royal Irish Academy 3, 344±353 (1847).
II. 287.

103. On Theorems of Hodographic and Anthodographic Isochronism. (1847)
Proceedings of the Royal Irish Academy 3, 417, 465±466 (1847).
II. 293.

104. Address to Academy of Sir W. R. Hamilton on Retiring from the Presidency. (1846)
Proceedings of the Royal Irish Academy 3, 199±201 (1847).
IV. 773.

105. On the application of the Calculus of Quaternions to the Theory of the Moon. (1847)
Proceedings of the Royal Irish Academy 3, 507±520 (1847).
III. 455.

106. On some applications of the calculus of quaternions to the theory of the moon. (1847)
British Association Report for 17 th Meeting, Oxford 1847, part ii, p. 4 (title only).
Not included in Vol. III.

786 LIST OF WORKS



107. Example of an Isoperimetrical Problem treated by the Calculus of Quaternions. (1847)
British Association Report for 17 th Meeting, Oxford 1847, part ii, p. 4 (title only).
Not included in Vol. III.

108. On additional applications of Quaternions to Surfaces of the Second Order. (1847)
Proceedings of the Royal Irish Academy 4, 14±19 (1850).
III. 378.

109. On Quarternions and the Rotation of a Solid Body. (1848)
Proceedings of the Royal Irish Academy 4, 38±56 (1850).
III. 381.

110. On Quaternions and the determination of the Distances of any recently discovered
Comet or Planet from the Earth. (1848)
Proceedings of the Royal Irish Academy 4, 75 (1850).
III. 464.

111. On the New Planet Metis. (1848)
Proceedings of the Royal Irish Academy 4, 169 (1850).
IV. 683.

112. On the Double Mode of Generation of an Ellipsoid. (1848)
Proceedings of the Royal Irish Academy 4, 173 (1850).
III. 392.

113. Additional Theorems respecting certain reciprocal Surfaces. (1848)
Proceedings of the Royal Irish Academy 4, 192±193 (1850).
III. 393.

114. On Quaternions applied to Problems respecting the construction of a Circle touching
three given Circles on a Sphere; and of a Sphere touching four given Spheres. (1848)
Proceedings of the Royal Irish Academy 4, 255 (1850).
III. 394.

115. On Theorems relating to Surfaces, obtained by the method of Quaternions. (1849)
Proceedings of the Royal Irish Academy 4, 306±308 (1850).
III. 395.

116. On an Equation of the Ellipsoid. (1849)
Proceedings of the Royal Irish Academy 4, 324±325 (1850).
III. 397.

117. On the inscription of certain `gauche' Polygons in Surfaces of the Second Degree.
(1849)

787LIST OF WORKS



Proceedings of the Royal Irish Academy 4, 325±326 (1850).
III. 398.

118. On the Construction of the Ellipsoid by two sliding Spheres. (1849)
Proceedings of the Royal Irish Academy 4, 341±342 (1850).
III. 399.

119. On a Theorem respecting Ellipsoids, obtained by the method of Quaternions. (1849).
Proceedings of the Royal Irish Academy 4, 349±350 (1850).
III. 401.

120. On some results obtained by the Quaternion analysis respecting the inscription of
`gauche' Polygons in Surfaces of the Second Order. (1849)
Proceedings of the Royal Irish Academy 4, 380±387 (1850).
III. 403.

121. On some new applications of Quaternions to Geometry. (1849)
British Association Report for 19 th Meeting, Birmingham 1849, part ii, p. 1 (title only).
IV. 501.

122. Exercises in Quaternions. (1849)
Cambridge and Dublin Mathematical Journal 4, 161±168 (1849).
III. 298.

123. On `gauche' Polygons in Central Surfaces of the Second Order. (1850)
Proceedings of the Royal Irish Academy 4, 541±557 (1850).
III. 407.

124. On Polygons inscribed on a Surface of the Second Order. (1850)
British Association Report for 20 th Meeting, Edinburgh 1850, part ii, p. 2 (title only).
IV. 502.

125. On a Proof from Quaternions of the celebrated Theorem of Joachimsthal. (1851)
Proceedings of the Royal Irish Academy 5, 71 (1853).
III. 416.

126. A generalization of Pascal's Theorem. (1851)
Proceedings of the Royal Irish Academy 5, 100±101 (1853).
III. 417.

127. Of the nature and properties of the Aconic Function of six Vectors. (1851)
Proceedings of the Royal Irish Academy 5, 177±186 (1853).
III. 418.

788 LIST OF WORKS



128. On the connexion of Quaternions with Continued Fractions and Quadratic Equations.
(1851±1852)
Proceedings of the Royal Irish Academy 5, 219±221, 299±301 (1853).
III. 304.

129. On continued Fractions in Quaternions. (1852±1853)
Philosophical Magazine (4S) 3, 371±373 (1852); 4, 303 (1852); 5, 117±118, 236±238,
321±326 (1853).
III. 307.

130. On Biquaternions. (1852)
British Association Report for 22nd Meeting, Belfast 1852, part ii, p. 2 (brief abstract).
Not included in Vol. III.

131. On the Geometrical Interpretation of some results obtained by calculation with
Biquaternions. (1853)
Proceedings of the Royal Irish Academy 5, 388±390 (1853).
III. 424.

132. Sur les Quarternions. (1853)
Nouvelles Annales de MatheÂmatiques 12, 275±283 (1853).
An abbreviated version, in French, of the ®rst paper in the series published in the
Philosophical Magazine, starting in 1844. See No. 91 above and the footnote on p. 233 of
Vol. III.

133. On the Geometrical Demonstration of some Theorems obtained by means of the
Quaternion analysis. (1853)
Proceedings of the Royal Irish Academy 5, 407±415 (1853).
III. 426.

134. A Theorem concerning Polygonic Syngraphy. (1853)
Proceedings of the Royal Irish Academy 5, 474±475 (1853).
III. 431.

135. Lectures on Quaternions, i±viii, 64, ix±lxxii, 1±736, (Hodges and Smith, Dublin; Whit-
taker & Co., London; Macmillan & Co., Cambridge: 1853).
The preface (pp. 1±64) is reprinted in III. 117±158.

136. On the Integrations of certain Equations. (1854)
Proceedings of the Royal Irish Academy 6, 62±63 (1858).
IV. 646.

137. On the celebrated Theorem of Dupin. (1854)
Proceedings of the Royal Irish Academy 6, 86±88 (1858).
III. 432.

789LIST OF WORKS



138. On some Extensions of Quaternions. (1854)
Proceedings of the Royal Irish Academy 6, 114±115 (1858).
III. 316.

139. On some Extensions of Quaternions. (1854±1855)
Philosophical Magazine (4S) 7, 492±499 (1854); 8, 125±137, 261±269 (1854); 9, 46±51,
280±290 (1855).
III. 317.

140. On an Extension of Quaternions. (1854)
British Association Report for 24 th Meeting, Liverpool 1854, part ii, p. 1 (brief abstract).
Not included in Vol. III.

141. On the Solution of the Equation of Laplace's Functions. (1855)
Proceedings of the Royal Irish Academy 6, 181±185 (1858).
IV. 648.

142. Remarks, chie¯y Astronomical, on what is known as the Problem of Hipparchus.
(1855)
Hermathena (Dublin) 4, 480±506 (1883).
IV. 684.

143. Symbolical Extensions of Quaternions; and Geometrical Applications of Quaternions.
(1855)
Proceedings of the Royal Irish Academy 6, 250, 260, 311 (1858).
Notices only, no details.
IV. 503.

144. On the conception of the Anharmonic Quaternion, and on its application to the
Theory of Involution in space. (1855)
British Association Report for 25 th Meeting, Glasgow 1855, part ii, p. 7 (title only).
Not included in Vol. III.

145. Account of the Icosian Calculus. (1856)
Proceedings of the Royal Irish Academy 6, 415±416, 462 (1858).
III. 609.

146. Memorandum respecting a New System of Roots of Unity. (1856)
Philosophical Magazine (4S) 12, 446 (1856).
III. 610.

147. Memorandum for John T. Graves. Unpublished manuscript. (1856)
III. 611.

790 LIST OF WORKS



148. Letter to John T. Graves on the Icosian. Unpublished manuscript. (1856)
III. 612.

149. On a General Expression by Quaternions for Cones of the Third Order. (1857)
Proceedings of the Royal Irish Academy 6, 506, 512 (1858).
IV. 504.

150. On a certain harmonic property of the envelope of the chord connecting two
corresponding points of the Hessian of a Cubic Cone. (1857)
Proceedings of the Royal Irish Academy 6, 524 (1858).
IV. 505.

151. On some applications of Quaternions to Cones of the Third Degree. (1857)
British Association Report for 27 th Meeting, Dublin 1857, part ii, p. 3 (title only).
IV. 506.

152. On the Icosian Calculus. (1857)
British Association Report for 27 th Meeting, Dublin 1857, part ii, p. 3 (brief abstract).
Not included in Vol. III.

153. On the Calculation of Numerical Values of a certain class of Multiple and De®nite
Integrals. (1857)
Philosophical Magazine (4S) 14, 375±382 (1857).
IV. 652.

154. Two Letters to Augustus De Morgan. Unpublished manuscripts. (1858)
IV. 34.

155. On some Quaternion Equations connected with Fresnel's wave-surface for biaxal
crystals. (1859)
Proceedings of the Royal Irish Academy 7, 122±124, 163 (1862).
III. 465.

156. On some Quaternion Equations connected with Fresnel's wave-surface for biaxal
crystals. (1859)
British Association Report for 29 th Meeting, Aberdeen 1859, part ii, p. 248.
A preÂcis of No. 155 above; not included in Vol. III.

157. On some Quaternion Equations connected with Fresnel's wave-surface for biaxal
crystals. (1859)
Natural History Review 6, 240±242, 365 (1859).
Identical with No. 155 above.

158. Letter to Hart on Anharmonic Coordinates. Unpublished manuscript. (1860)
IV. 179.

791LIST OF WORKS



159. On Anharmonic Co-ordinates. (1860)
Proceedings of the Royal Irish Academy 7, 286±289, 329, 350±354 (1862).
IV. P. XI.

160. On Anharmonic Co-ordinates. (1860)
Natural History Review 7, 242±246, 325±327, 506±509 (1860).
Identical with No. 159 above.

161. On Geometrical Nets in Space. (1861)
Proceedings of the Royal Irish Academy 7, 532±582 (1862)
IV. 516.

162. On Geometrical Nets in Space. (1861)
British Association Report for 31 st Meeting, Manchester 1861, part ii, p. 4 (title only).
IV. 561.

163. Quaternion Proof of a Theorem of Reciprocity of Curves in Space. (1862)
British Association Reporty for 32nd Meeting, Cambridge 1862, part ii, p. 4.
III. 434.

164. Elementary Proof that Eight Perimeters of the Regular inscribed Polygon of Twenty
Sides exceed Twenty-®ve Diameters of the Circle. (1862)
Philosophical Magazine (4S) 23, 267±269 (1862).
IV. 562.

165. On a New and General Method of Inverting a Linear and Quaternion Function of a
Quaternion. (1862)
Proceedings of the Royal Irish Academy 8, 182±183 (1864).
III. 348.

166. On the Existence of a Symbolic and Biquadratic Equation, which is satis®ed by the
Symbol of Linear Operation in Quaternions. (1862)
Proceedings of the Royal Irish Academy 8, 190±191 (1864).
III. 350.

167. On the Existence of a Symbolic and Biquadratic Equation, which is satis®ed by the
Symbol of Linear Operation in Quaternions. (1862)
Philosophical Magazine (4S) 24, 127±128 (1862).
Identical with No. 166 above.

168. On `Gauche' Curves of the Third Degree. (1863)
Proceedings of the Royal Irish Academy 8, 331±334 (1864).
III. 435.

792 LIST OF WORKS



169. On a General Centre of Applied Forces. (1863)
Proceedings of the Royal Irish Academy 8, 394 (1864).
III. 468.

170. On the Locus of the Osculating Circle to a Curve in Space. (1863)
Proceedings of the Royal Irish Academy 8, 394 (1864).
IV. 564.

171. On the Eight Imaginary Umbilical Generatrices of a Central Surface of the Second
Order. (1864)
Proceedings of the Royal Irish Academy 8, 471 (1864).
IV. 565.

172. On RoÈber's Construction of the Heptagon. (1864)
Philosophical Magazine (4S) 27, 124±132 (1864).
IV. 566.

173. On a Theorem relating to the Binomial Coef®cients. (1865)
Proceedings of the Royal Irish Academy 9, 297±302 (1867).
III. 603.

174. On a New System of Two General Equations of Curvature. (1865)
Proceedings of the Royal Irish Academy 9, 302±305 (1867).
IV. 574.

175. Obituary notice of Sir W. R. Hamilton. (1865)
Proceedings of the Royal Irish Academy 9, 383 (1867).
IV. 775.

176. Elements of Quaternions, ed. W E Hamilton�, i±lix , 1± 762, (Longmans, Green, & Co.,
London: 1866).

177. Elemente der Quaternionen, trans. P. Glany, 2 Vols, Vol.1 Theorie der Quaternionen, Vol.
2 Anwendungen, (Johann Ambrosius Barth, Leipzig: 1882±1884).

178. Elements of Quaternions, 2nd edn, ed. C. J. Joly{, 2 Vols (Longmans, Green & Co.,
London, New York, and Bombay: 1899, 1901).

� [William Edwin Hamilton (1834±1902) was Hamilton's son. See foot note on p. 367 of this volume.]
y [Paul Glan (1846±1898).]
{ [Charles Jasper Joly (1864±1906) was Director of Dunsink Observatory from 1897 until his death.

See P. A. Wayman, Dunsink Observatory, 1785±1985 (Dublin Institute for Advanced Studies and Royal
Dublin Society, Dublin: 1987).]

793LIST OF WORKS



COMBINED INDEX FOR ALL FOUR
VOLUMES

Abbe, E., I. 162, 406
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Ð Ð for two thick lenses, I. 459,

460

Ð Ð for two thin lenses, close

together, I. 373

Ð Ð see also I. T (4)
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Ð Ð in re¯ected system, I. 40
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Ð Ð of two thin lenses, close

together, I. 428, 443

Ð of a star, curve of, II. 290

Ð orders of, I. xxiv, 49

Ð plane of, see I. Plane of

aberration

Ð spherical, comparison with

Herschel, I. 437, 454

Ð Ð of instrument of revolution,

I. xxiii, xxvii, 378, 383, 457, 510

Ð Ð of thin double lens, I. xxiv,

xxvii, xxviii, 406, 435
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I. xxviii, 431, 435
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xxv
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I. Aberration coef®cients
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Distortion (aberrational)

Academy, Royal Irish, II. v, 103,

283, 286, 291, 293; IV. 368,

731, 773

Aconic function of six vectors,

III. 368, 418, 422

Accumulated disturbance,

principle of, I. 313

Ð living force, II. 107; see also

II. Action; Characteristic
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Achilles, IV. 668
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I. Object glass

Achromatism, conditions of, I. 104

Action, or Action integral,

de®nition of, in optics, I. 8, 10,

14, 104, 109, 132, 168, 316,

317, 318, 324
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minimum, I. 318
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168, 295, 328
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in the expansion for T (I., p. 298), instead of Hamilton's expression ``constants of aberration''.



Action, II. 25, 107, 214

Ð function, differentiation of,

with respect to vis viva, II. x,

xii, 49

Ð law of least, II. 108, 109

Ð Ð of stationary, II. 96, 98, 109

Ð Ð of varying, II. 105

Ð Ð Ð for binary system, II. 129
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Ð Ð Ð for three-body problem,
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II. 115, 120

Ð parabolic, II. 89

Ð principle of constant, I. 9, 107

Ð principle of least, I. xxi, xxv, 8,

10, 89, 104, 107, 109, 295, 487,

500

Ð Ð deduced from law of

ordinary re¯ection, I. 10

Ð Ð deduced from law of

ordinary refraction, I. 89

Ð Ð history of, I. 316

Ð principle of stationary, I. 316,

317, 318, 324

Ð principle of varying, I. 316,

318, 327

Ð relative, II. 122, 125, 150

Ð Ð approximate value for,

II. 151

Ð Ð law of varying, II. 122, 125

Ð spheroids of constant, I. 133

Ð Ð as waves in undulatory

theory, I. 259

Ð surfaces of constant, as waves in

undulatory theory, I. 107, 259

Ð Ð cutting rays perpendicularly,

I. 13, 89, 97, 105

Ð Ð directions of spheric

in¯exion on, I. 87

Ð Ð in extraordinary systems,

I. 132

Ð Ð in uniaxal and biaxal crystals,

I. 8

Ð Ð osculation and intersection

of, I. 133, 270, 479

Ð see also I. V

Ð see also II. Characteristic

function

Action-function, see I. V

Action-surfaces, extreme

osculating, I. 270

Adare, Viscount, II. 439

Adare, Viscount, letters to, IV. 762±

774

Adare, Viscount, see Wyndham-

Quin, E. R. W.

Adeuteric function, III. 154, 249, 422

Ð and a determinant, III. 423

Addition of arcs on a sphere,

IV. 461

Ð non-commutatity of, IV. 462

Address on retiring from the

presidency of the Royal Irish

Academy, IV. 773±774

Aether, Faraday-Maxwell, II. xii

Ð Hamilton's luminiferous, II. 638

Ð law of force between particles

of, II. xiv, 448, 449

Ð propagation of light in, II. 446

Airy, G. B., I. 164, 165, 307, 310,

383, 384, 385, 464; II. 249, 256,

275, 563; IV. 157, 162, 723

Airy's integral II. 563

Akenside, M., IV. 672

Albert, A., III. xvii, 656

AlcinoeÈ, II. 291
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III. xvii, 3, 5, 117

Ð associative division, III. xvi

Ð as the science of order, IV. 771

Ð considered as the Science of

pure Time, I. xi, xiii; IV. 762

Ð geometrical conception of,

III. 118

Ð linear associative, III. xix

Ð normed, III. xvii

Ð science of pure time, III. 3, 5,

117

Ð triple, III. 141, see also

III. triplets

Algebraic couples, I. xi; III. 3, 7, 76,

159

Ð equation, III. xiii, xx, 471

Ð keys, III. 155

Ð operations, III. 33, 44, 120

Ð ratios of steps in time, III. 121

Algorithms of spherical

trigonometry, III. 230

Alternating series, IV. 35, 40

Altona, IV. 673

Amaldi, U., I. 487

AmpeÁre, A. M., I. 463

Amplitude, II. 459

Ð constants of, II. 454

Analogies of Napier, 378

Analogy to geometry of Descartes,

I. xix, 295, 330, 473
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steps, III. 60

Ð of time, continued, III. 13, 15

Analysis, error of a received

principle, IV. 580

Ð method of, I. 314

Angle of chromatic dispersion,

I. 232

Ð of intersection of developable

surfaces, I. 334, 351, 464

Angular momentum, integrals of,

II. 623

Anharmonic angle, IV. 212

Ð axes, IV. 197
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Ð centre of similitude, IV. 205

Ð circles, IV. 203

Ð coordinates, IV. 179±428,

507±515

Ð Ð of a line, IV. 185, 508

Ð Ð of a plane, IV. 410

Ð Ð of a point in space, IV. 406,

416

Ð Ð fundamental triangle,

IV. 180

Ð Ð letter to Hart on, IV. 179±

428

Ð Ð three, of a point, IV. 181

Ð Ð unit-plane IV. 513

Ð Ð unit-point, IV. 181, 508

Ð direction of a line, IV. 210

Ð directrix, IV. 203

Ð distance between two points,

IV. 207

Ð equation of a line, IV. 184

Ð excentricity, IV. 199

Ð foci, IV. 197

Ð function, IV. 520

Ð method, application to curved

surfaces, IV. 416

Ð Ð application to space, IV. 411

Ð Ð fundamental theorem,

IV. 186, 227

Ð of a pencil, IV. 183

Ð of circular groups, IV. 324, 337

Ð of the pencil of planes, IV. 407

Ð origin, IV. 214

Ð parallelism, IV. 210

Ð perpendicular, IV. 207

Ð perpendicularity, condition of,

IV. 210, 213
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Ð polar angle, IV. 214

Ð polar coordinates, IV. 215

Ð quaternion, IV. 503

Ð Ð de®ned, IV. 183

Ð radical axis, IV. 196

Ð radical centre, IV. 196

Ð radius, IV. 206

Ð Ð vector, IV. 214

Ð ratio, or quotient

(DoppelschnittsverhaÈltniss,

ratio bissectionalis), IV. 182

Ð rectangular coordinates, IV. 215

Ð symbol of the tangent plane,

IV. 426

Anharmonical equality, IV. 205

Anisotropic media, I. see Media
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Ð true, II. 208

Anthode, II. xiv, 293, 630

Ð of a comet, II. 293

Ð relation of hodograph to, II. 630
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theorem of, II. xiv, 293, 630
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I. 425

Apjohn, J., award of Cunningham

Medal to, IV. 751

Ð review of his work on the

speci®c heats of gases, IV. 746±

751

Apollonius of Perga, III. 5; IV. 189

Aplanatic, meaning of, I. xxvii,

406

Aplanaticity, direct, I. xxvii

Ð condition of, for surfaces of

revolution close together,

I. 434, 435, 447, 451, 452

Ð Ð for two thin lenses, I. 406,

429, 435, 437, 438, 440

Ð see also I. Aberration, spherical

Ð Herschel's second condition of,
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Ð oblique, I. xxvii

Ð Ð condition of, for surfaces of

revolution close together,

I. 435, 447, 451, 452

Ð Ð Ð for two thin lenses, close

together, I. 405, 406, 429, 435,

437, 440

Ð Ð see also I. Coma

Apparent distance of luminous

point, I. 32

Appell, P., II. 48

Application of analysis to optics,

I. 17, 88

Ð of calculus of principal relations

to lunar theory, II. xiii, 238,

257

Ð of characteristic function to

dynamics, II. x, 103

Ð Ð to problem of three bodies,

II. x, xii, 1
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dynamics, II. x, 162, 212
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Approximate determination of
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problem,
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body problem,
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multiple system, II. 155
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Ð method of, by calculus of
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Ð to principal integral, II. 335,

339, 344, 348, 367, 631

Ð to S, II. 161, 169, 214, 631

Ð Ð for lunar theory, II. 243,
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medium, II. 351

Ð Ð for nearly circular orbits, II.

220, 225, 229

Ð Ð for particle, II. 183
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120, 354; see also I. Caustic

curves; Caustics

Argand, J. R., III. 135, 137, 150,

177

Argument of latitude, II. 208

Arragonite, I. 303, 312

Arrangement, elements of, see

I. Elements of arrangement

Ð of ®nal rays in instrument of

revolution, I. xxiii, xxvi, 300,

366, 503; see also Aberrations

Ð of near ®nal ray-lines, I. 232

Ð Ð from oblique plane, I. 241

Ð of rays near principal focus,

I. 275; see also I. Aberration

Association, equations of, III. 114,

148, 195, 213, 233, 318, 337,

346

Associative polynomes and quines,

III. 339

Associative principle, of

multiplication, IV. 459

Ð of the symbolic addition of arcs,

IV. 462

Astigmatism, I. xxiii, xxvii, 378, 383,

431, 435, 457, 510
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Astronomy, characteristic function

in, I. xi, xxi, xxvi, 9, 301, 311,

330

Ð introductory lecture, IV. 663±

672

Ð Professorship of, I. x

Astronomical bodies, perturbations

of, see II. Perturbations

Ð refraction, II. 98

Ð Society, IV. 720

Asymptotic expansions of Bessel

functions, II. xii, 509, 539

Ð lines, see I. Lines of in¯exion

Ð values of integrals, II. xv, 539,

547, 554

Atmosphere, equations of rays in,

I. xxv, 104, 326

Atmospheric refraction, II. 96

Attracting systems, motion of,

II. 105, 150, 197

Attraction between particles of

aether, law of, II. xiv, 448, 449

Ð energy of, II. 547

Augustus, IV. 682

Automorphism of quaternions,

III. 643

Auxiliary function, II. 160

Ð approximation to, II. 161

Ð law of variation of, II. 160

Ð partial differential equations

for, II. 161

Ð see also II. Principal function

Auxiliary functions, I. 174; see also

I. Characteristic function; T ;

W

Ð paraboloid for ray-lines from

oblique plane, I. 248, 252

Auxiliary sphere, III. 249

Axes, conjugate guiding, I. 232

Ð natural, at principal focus, I. 85,

143

Ð of distortion, I. 256

Ð of elasticity in biaxal crystal,

I. 165, 280

Ð of homology, intersection of,

IV. 345

Ð Ð for two triangles, IV. 344,

349, 350, 351, 352, 357

Ð of plane system of rays, I. 6

Ð of re¯ected system of rays, I. 34;

see also I. Principal rays

Ð of refracted system of rays, I. 93;

see also I. Principal rays

Ð of undevelopable pencil, I. 7

Ð optic, II. 442

Ð Ð in biaxal crystal, I. 283

Ð principal, in instrument of

revolution, I. 366

Ð Ð of developable system, I. 7

Axis of chromatic dispersion, I. 232

Ð of curvature of ray, I. 232

Ð Ð rotation round, I. 253

Ð of de¯exion, I. 243

Ð of de¯exure, I. 244

Bacon, F., IV. 667, 668

Badano, P.G., III. 570, 581±602

Ð and the twenty-four values of

Lagrange's function, III. 571

Ð inadequacy for ®fth degree

equations, III. 582, 602

Ball, R. S., IV. 684

Bartolinus, E., see Berthelsen

Barycentric calculus, III. 435;

IV. 179, 182, 183, 516, 524, 558

Base, multiple of a given, III. 8, 24

Ð of surface of rays, I. 346

Bases of developable surfaces of

rays, I. 348

Baxandall, D., I. 383

Beaufort, Admiral Sir F., II. 103

Ð D. A., II. 103

Berkeley, G., I. xiii

Berlin, IV. 748

Bernoulli, D., IV. 626

Bernoulli, James, numbers of, in

terms of de®nite integrals,

IV. 640±645

Berthelsen, E., I. 312; IV. 711

Berzelius, E., IV. 711

Bessel, F. W., II. 292, 451; IV. 724,

758

Bessel functions, II. xii, xv, 451,

458, 509, 511, 526, 547

Ð asymptotic expansions of, II. xii,

509, 539

Biaxal crystal, see I. Crystal, biaxal

Ð dispersion in, II. 437

Ð Fresnel's law of polarisation in,

II. 434, 444

Ð Ð of wave-velocity in, II. 433,

434, 444, 639

Ð optic axes of, II. 442

Ð wave-surface in, II. 432, 442

Ð see also II. Dispersive crystal

Ð energy, I. 285

Biaxial wave, conical and circular

ridges in, III. 467

Biela, W. von, IV. 573

Binary system, II. 128

Ð canonical elements for, II. 202,

206

Ð characteristic function for,

II. xii, 128

Ð differential equations of varying

elements for, II. 206

Ð equation for motion of, III.

451

Ð integrals of motion of, II. 132,

207

Ð law of varying action for, II. 129

Ð partial differential equation for

S, II. 619

Ð partial differential equations for

V, II. 130, 135

Ð principal function for, II. 619

Ð relative motion of, characteristic

function for, II. 134

Ð variational equation for, II. 128

Binomial coef®cients, theorem

relating to, III. 603

Biot, J.-B., II. 440, 442; IV. 712, 723

Biquaternions, III. 125, 305, 313,

406, 424, 430, 656; IV. 645

Birkhoff, G., I. 486; III. xix

Bishop Law's Mathematical

Premium, IV. 486

Bivectors, III. 424

Ð with null square, III. 424

Blij, F. van der, III. 656

Bliss, G. A., I. 467

Bodies, attracted according to

Newton's Law, III. 441, 449

Ð hodographic theory of motion

of a system of, III. 457

Boone (London bookseller),

II. 283

Born, M., II. 638

Boscovich, R. J., II. 104, 118

Boscovich's hypothesis, II. 104

Bounding pencil of vision, I. 31

Boyton, C., I. 345

Bradley, J., IV. 669, 724, 755

Brahe, Tycho, IV. 669, 740

Brand, L., IV. 384

Brauer, R., III. xxi

Bremiker, C., II. 292

Brest, tides at, IV. 726
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Brewster, D., IV. 30, 31, 32, 712,

723, 726, 743

Ð spheroids of, I. 8

Bring, E. S., III. xx

Brinkley, J., I. ix, x, 345, 462;

IV. 203, 669, 685, 701, 730,

738, 755

British Association, II. 256, 257,

267, 278, 410, 595; IV. 176,

731, 740, 742, 748

Ð in Dublin, I. xiv; IV. 716±727

Brown, E. W., II. 240, 246, 248, 277,

627

Brownin, B., III. xvii

Bruns, H., I. xxiii, 488, 493

BueÂe, A. Q., AbbeÂ, III. 135, 136,

137, 150

Buenos Aires, IV. 678

Cajori, F., I. 370, II. 202, 630

Calculation, Hamilton's faculty for,

I. xii

Calculus, Icosian, III. 609; and a

new system of roots of unity,

610; and quaternions, 609

Ð for spherical trigonometry,

III. 230

Ð of differences, a theorem in,

IV. 703

Ð of ®nite differences, I. 69, 96

Ð of polarities, III. 111

Ð of probabilities, IV. 703

Ð of principal functions, see

II. Principal relations

Ð Ð relations, see II. Principal

relations, I. xi

Ð of quaternions, see II.

Quaternions, III. 117, 152, 281,

298, 356

Ð of variations, I. xx, xxv, 8, 104,

107, 110, 319, see II. Variations,

calculus of

Ð Ð dynamical use, III. 450

Ð canonical arrangement, IV. 214

Canonical elements, II. xiii, 202,

206

Ð equations of motion, II. x, xiii,

166, 215

Ð form of equations of ray, I. 171,

182

Ð forms of equations of motion,

Lagrange's, II. 117

Ð set of constants, II. 206

Cape of Good Hope, IV. 674, 678

Capital problem of dynamics,

II. 212

Cardinal forms for T(2), I. 509

Ð points, I. 508

Carmichael, R., III. 155, 433;

IV. 158, 647, 648

Carnot, L. N. M., III. 135; IV. 420,

516

Carslaw, H. S., II. 571

Cartan, E., I. 486, 487

Cartesian surfaces, I. 89

Casey, J., IV. 369

Cauchy, A. L., I. 164, 279, 291, 292,

293, 303, 463; II. xii, 277, 391,

413, 447, 448, 450, 469, 476,

516, 552, 561, 570, 578, 580,

583, 584, 585, 595, 596, 598,

601, 634, 638, 639; III. 7, 123,

233, 237; IV. 74, 583, 627, 723,

740, 742, 765

Cauchy's law of dispersion, II. 447,

582, 584, 586, 596, 601

Ð of force between particles of

aether, II. 448

Ð method of characteristics, II. xii,

391, 634

Ð principal value, II. 469, 476, 516,

552, 580

Ð researches on light-propagation

in crystals, comparison with

Hamilton, II. xii, 638

Cauchy±Riemann equations, III.

97, 155

Ð extension of, III. 664

Ð Caulfeild, James, Earl of

Charlemont, IV. 730

Caustic curve, arc of, I. 24, 102

Ð cusp on, I. 83

Ð in developable system, I. 7

Ð in plane system, arc and

curvature of, I. 6

Ð curves, connections of

characteristic functions with,

I. 120, 477

Ð Ð in extraordinary systems of

rays, I. 120, 477

Ð Ð in rectangular systems of

rays, I. 19, 92

Ð Ð transition-points on, I. 270

Ð ®nding plane system of rays by

means of, I. 6

Ð pencils, I. 270

Ð principal, I. 362

Ð surface, curvatures of, I. 45

Ð Ð density at, I. 82

Ð Ð density near, I. 54

Ð Ð partial differential

coef®cients of, I. 355, 361

Ð Ð quadrature of section of,

I. 300

Ð Ð shape of, near cusps, I.

366

Ð Ð sharp edge on, I. 83

Ð surfaces, as branches of one

surface, I. 354

Ð Ð as loci of points of vergency,

I. 240

Ð Ð as singular primitives, I. 23,

347

Ð Ð coincident, I. 102

Ð Ð connections of characteristic

functions with, I. 120, 477

Ð Ð determination of, by

methods of Third Supplement,

I. 265

Ð Ð determining re¯ecting or

refracting surfaces, I. 97

Ð Ð equation of, I. 21

Ð Ð for instrument of revolution,

I. 300, 364, 366

Ð Ð for re¯ection at mirror,

I. 22, 25

Ð Ð for spheric lenses, I. 364

Ð Ð generations of, I. 357

Ð Ð history of, I. 315

Ð Ð in extraordinary systems of

rays, I. 7, 120, 265, 477

Ð Ð in rectangular systems of

rays, I. 19

Ð Ð intersection of, I. 7, 34, 83,

92, 102, 130, 362

Ð Ð intersections of, with plane

of aberration at principal

focus, I. 48

Ð Ð of congruence, I. xxvii

Ð Ð partial differential equation

of, I. 357

Ð surfaces, touched by guiding

lines, I. 240

Ð Ð virtual, I. 7

Ð virtual, I. 7

Caustics as areÃtes of developable

pencils, I. 354

Ð of a given curve, I. 7
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Caustics as areÃtes of developable

pencils (cont.)

Ð of a given re¯ecting or

refracting curve, I. 102

Ð paper on, I. ix, x, xviii, xix, xxii,

xxvii, 345, 462

Ð see also I. AreÃtes de

rebroussement; Foci

Cayley, A., I. 21; II. 104, 211; III.

xvii, 108, 153, 155, 236, 237,

330, 361, 391, 423, 436, 650;

IV. 251

Ð characteristics of quaternion

derivation, III. 168

Ð characteristics of transposition,

III. 161

Ð numbers, III. 650

Cayley±Hamilton theorem, III.

xviii, 350

Central ellipsoid (Poinsot), III. 385

Ð focus, see I. Focus

Ð forces, theorems on, II. xiii, 286

Ð orbit, III. 443

Ð Ð approximation to V for

various laws of force, II. 83

Ð Ð characteristic function for,

II. 79

Ð Ð curvature of, II. 100

Ð Ð hodograph of, II. 287, 288

Ð Ð partial differential equations

for V in, common solution of,

II. 79

Ð Ð Ð transformations of, II. 95

Ð Ð see also II. Binary system;

Elliptic motion; Planetary

motion

Ð ray in instrument of revolution,

I. 300, 366

Ð sun, II. 291, 292

Centre of gravity, law of motion of,

II. 112, 199

Ð motion relative to, II. 121

Centre of homology for two

triangles, IV. 344, 352, 357

Centres of curvature, I. 475

Ð of ellipsoid, surface of, I. 34, 300

Ð of undevelopable pencil,

surfaces of, I. 7

Ð of de¯exure, I. 241

Ð Ð and foci by projection, I.

245

Centrobaric coordinates, II. 2,

124

Ð of Jupiter and Saturn,

perturbations of, II. 20

Ð radius vector, perturbations of,

in three-body problem, II. 57,

67

Ð velocity, II. 199

Chaldeans, IV. 685

Chaldean Saros, IV. 689

Challis, J., IV. 722, 723

÷, chromatic index or measure of

colour, see I. Chromatic index

Changes, sudden, in re¯ection or

refraction, see I. Re¯ection or

refraction

Characteristic curve of partial

differential equation, I. 99,

473, 474

Characteristic function, II. xiii, 105,

107, 214; IV. 31

Ð action as, I. xx, xxi, xxv, 8, 106,

107, 111, 132, 168, 295, 328

Ð application of, to dynamics,

II. x, 103

Ð applied to dynamics and

astronomy, I. x, xi, xxi, xxvi, 9,

301, 311, 330, 484

Ð applied to physical optics, I. 301

Ð applied to three-body problem,

II. xii, 1

Ð applied to undulatory theory of

light, I. 277, 497

Ð approximation to, II. 147, 150

Ð Ð for central orbits, II. 83, 88,

89, 92, 93, 94, 95

Ð Ð for multiple system, II. 151,

153

Ð Ð in three-body problem, II.

25, 27, 32, 44, 53

Ð derivative of, with respect to vis

viva, II. x, xii, 46, 49, 108

Ð disturbing part of, for multiple

system, II. 153, 155

Ð disturbing part of, for ternary

system, II. 154

Ð equation of the, I. 107, 109, 168

Ð Ð for binary system, II. xii, 128

Ð for crystal with two axes, I. 8

Ð for elliptic motion, II. 44, 46,

135

Ð for parabolic motion, II. 139

Ð for planetary motion, II. 135

Ð for relative motion, II. 121

Ð for ternary system, II. 140

Ð for three-body problem, II. 3

Ð integrals of motion deduced

from, II. 107, 108, 115

Ð law of variation of, II. 107, 168

Ð for binary system, II. 129, 131

Ð Ð for relative motion, II. 121

Ð Ð for ternary system, II. 142, 143

Ð Ð in general coordinates,

II. 115, 120

Ð Ð in three-body problem, II. 3,

4, 29

Ð Ð see also II. Action, law of

varying

Ð method of improving

approximation to, II. 147

Ð method of the, I. xix, xxvi, 17,

107, 145, 295, 297, 311, 330

Ð of extraordinary systems, I. 8,

111, 168

Ð of ordinary re¯ected systems,

I. 17

Ð of ordinary refracted systems,

I. 91

Ð of systems of curved rays, I. 106,

111, 168

Ð partial differential equations

for, II. 109

Ð Ð common solution for, II. 79

Ð Ð in binary system, II. 130, 135

Ð Ð in elliptic motion, II. 45, 79,

138

Ð Ð in general coordinates,

II. 116

Ð Ð in ternary system, II. 142,

143

Ð Ð in three-body problem, II. 5

Ð relation of principal function to,

II. 160, 168

Ð time of propagation as, I. xxi,

168, 277, 296, 307, 329, 473,

475, 489, 497

Characteristic functions, changes

in, due to re¯ection or

refraction, I. 117, 214

Ð connections between partial

differential coef®cients of,

I. 112, 184, 190, 199, 490

Ð deductions of, from each other,

I. 174

Ð in oblique and curvilinear

coordinates, I. 222

Ð of single uniform medium,

I. 207
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Ð respective advantages of, I. 174

Ð see also I. I ; Integration; Partial

differential equation; S ; T ; U ;

V ; W

Characteristics, Cauchy's method

of, II. xiii, 391, 634

Ð of partial differential equation

of ®rst order, II. xii, 392, 634

Ð Ð of second order, II. 636

Charlemont, Lord, see Caulfeild,

James

Chasles, M., I. xiv; III. 154, 246, 267,

368, 430, 435; IV. 182, 340,

407, 419, 420, 467, 544, 558

Ð theory of geometrical

imaginaries, IV. 340

Chords of in®exion, IV. 314, 319

Ð coordinates of, IV. 319

Ð transformed coordinates of,

IV. 320

Chromatic aberrations, I. 104

Ð dependent on T (2), I. 299

Ð dispersion, I. 16, 232

Ð index c, I. xxi, xxv, 168; see also

I. Measure of colour

Ð Ð in dynamics, I. 484

Ð Ð in wave mechanics, I. 500

Circle touching three circles on a

sphere, III. 394,

Circles of contact on Fresnel's

wave, I. 164, 283, 302

Ð of de¯exure, I. 241

Ð of refracting, T for, I. 412

Circular contact, normals of, on

Fresnel's wave, I. 283

Ð planes of, on Fresnel's wave,

I. 285

Circular hodograph, law of, II. 288;

III. 457

Ð varying, II. 290

Ð image, vertices of, I. 40

Ð orbits, nearly, II. xiii, 6, 217

Ð Ð characteristic function for,

II. 32, 43

Ð Ð perturbations of, II. 30, 235

Ð Ð principal function for,

II. 218

Ð Ð Ð approximations to, II.

220, 228, 235

Ð Ð Ð general expansion for,

II. 225

Ð Ð Ð in polar coordinates,

II. 228

Ð pro®le, surfaces of, I. 103

Ð sections of ellipsoid, see under

III. ellipsoid

Clairaut, A. C., I. 304

Clark, W. M., IV. 724

Classi®cation of systems of rays,

I. 15

Clausen, T., IV. 673

Clouds, singular appearance of,

IV. 745

Coaxality, equation of, III. 239

Cockle, J., III. 149, 155

Coddington, H., I. 509

Coef®cient of undevelopability,

I. 7, 33,

Coef®cients of longitudinal

aberration, I. xxv, 160, 427,

429

Ð partial differential, see I. Partial

differential coef®cients

Coincidence, quadruple momental,

III. 163

Coleridge, S. T., I. xiii

Collinearity, relations of, for

geometrical nets in space,

IV. 555

Colour, measure of, c, I. 168; see

also Chromatic index

Coloured systems, I. 9

Coma, I. xxii, xxiii, xxiv, xxvii,

xxviii, 48, 378, 379, 383, 406,

431, 435, 457; see also

I. Aplanaticity, oblique

Combination of mirrors, I. 37

Ð of re¯ectors or refractors, I. 93,

214

Ð optical, fundamental problem

for, I. 297

Ð Ð visible magnitudes and

distortions of objects viewed

through, I. 256

Ð Ð see also I. Optical instruments

Combinations, compound and

component, I. 214

Comet, anthode of, II. 293

Ð Biela's, IV. 573, 674, 675, 676,

677, 680

Ð distance of, III. 464

Ð Encke's, IV. 673, 674, 675, 677,

678, 679, 680

Ð equations of motion of, I. 331

Ð Gambart's, IV. 680

Ð Halley's, IV. 674

Ð Lexell's, IV. 677, 678

Ð Montaigne's, see Biela's, IV. 673,

677

Ð motion of, II. 135

Ð see also II. Parabolic motion;

Planetary motion

Common solution of partial

differential equations for V ,

II. 79

Comparison of Hamilton's and

Lagrange's methods of

perturbation, II. 160, 207, 622

Ð in lunar theory, II. 269, 628

Ð results in perturbations of three-

body problem, II. 73, 77

Complanarity, relations of, for

geometrical nets in space,

IV. 555

Complex, I. 242; see also I. Systems

of rays of the third class

Ð numbers, see III. imaginary

quantities and couples

Component combinations, I. 214

Components of aberration at

mirror, I. 77

Ð of normal slowness, I. 172, 277,

301, 327, 497

Ð Ð in biaxal crystal, I. 280

Ð Ð sudden changes in, in

re¯ection or refraction, I. 118,

215, 285, 301, 325, 329

Ð Ð surface of, see I. Surface of

components

Composition and the comparison

of step couples, III. 8, 16, 76

Ð of forces, III. 381

Ð Ð statical proof of, II. xiii, 284

Ð of partial deviations, I. 253

Compound combinations, I. 214

Computation of aberration

coef®cients for instrument of

revolution, I. 512; see also

I. Aberration coef®cients

Concave curvature of central orbit,

II. 100

Conceptions, elementary, of

mathematics, IV. 762±772

Concurrence, relations of, for

geometrical nets in space,

IV. 555

Condensation, lines of uniform, at

principal focus, I. 143

Ð see also I. Density
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Condition of developability, I. 7

Ð of rectangularity of

extraordinary system of rays,

I. 7, 8, 335

Conditions of achromatism, I. 104

Ð of aplanaticity, see I. Aplanaticity

Cone, and osculating cone, III. 380

Ð common centres of curvature of

two reciprocal, III. 393

Ð containing six vectors, III. 214

Ð generation of reciprocal, III.

393

Ð of second degree, III. 367

Congruence, I. xxii, xxiv, 15, 140,

235, 345, III. 657

Ð aberrations of, I. xxii, xxv

Ð density of, at focus, I. 82

Ð Ð at principal focus, I. 85

Ð normal, I. xix, xxii, xxiv, xxv, 16,

350; see also I. Rectangular

systems of rays; Surfaces

cutting system of rays

perpendicularly; Ordinary

systems

Ð singularities of, I. xxii, xxvii,

345, 504

Ð see also I. Elements of

arrangement; Ray-lines;

Systems of rays of the second

class

Conical locus connected with

intersections of ray-lines, I. 252

Ð polarisation, I. 288

Ð refraction, I. x, xxi, xxv, xxvi,

164, 285, 302, 303, 312, 330

Conics, description of, under

central forces, II. xiii, 286

Conjugate functions, I. xii; III. 3, 7,

76, 97

Ð geometrical quotients, IV. 488

Ð guiding axes, I. 232

Ð planes of de¯exure, I. 241,

258

Ð planes of vergency, I. 293,

Ð point, I. 272; see also

I. Transition-point

Ð quaternion, III. 235

Conjugation, equations of, III. 97

Ð law of, III. 320

Connections between partial

differential coef®cients of

characteristic functions, I. 112,

184, 190, 199, 490

Conoidal cusps on Fresnel's wave,

I. 164, 283, 302

Constant action, see I. Action,

principle of constant

Ð of chromatic dispersion, I. 232

Ð of deviation, I. 232, 238, 241,

248

Constants of aberration, I. 299; see

also I. Aberration coef®cients

Ð canonical set of, II. 206

Ð method of variation of, II. 175,

249; see also II. Parameters,

method of variation of

Ð of amplitude and epoch, II.

454

Ð of cubic lattice, II. 418

Ð variation of elliptic, in three-

body problem, II. 32

Construction for emergent ray in

instrument of revolution,

I. 398

Ð for re¯ected or refracted wave

or ray, I. 293, 302

Ð for unit-wave in any uniform

medium, I. 291

Ð of object glass, see I. Object glass

Ð of microscopes and telescopes,

I. 104, 301, 383

Contact, circles of, on Fresnel's

wave, I. 164, 283, 302

Ð normals of circular, on Fresnel's

wave, I. 283

Ð planes of circular, on Fresnel's

wave, I. 285

Ð transformation, II. 179

Ð transformations, I. xxi, 171, 474,

487

Continued analogies (as series of

proportional steps), see

III. analogies or equidistant

series of moments, III. 13, 14,

15

Continued exponentials, method

of, IV. 75, 111, 112

Continued fractions, III. xvi, 304

Ð applied to geometry, III. 310,

425

Ð converge to root of a quadratic,

III. 308

Ð expansion of a de®nite integral,

IV. 36

Ð method of, IV. 106, 111, 120,

130

Continuous progression, notion of,

III. 5

Convergence of system of lenses,

I. 423

Converging exponentials, method

of, IV. 54

Converging fractions, method of,

IV. 54, 93, 111

Convex curvature of central orbit,

II. 100

Conway, A. W., III. 643, 644; IV. ix

Cooke, T., I. 386

Cooper, E. J., IV. 683

Coordinate axes, natural, at

principal focus, I. 85, 143

Ð planes, natural, through any

straight ray, see I. Natural

coordinate planes

Coordinates, see II. Centrobaric;

General; Geocentric;

Heliocentric; Polar; Relative

Ð anharmonic, IV. 179±421, 507±

515

Ð curvilinear, I. 222; see also

I. Marks of position

Ð homogeneous, see anharmonic

coordinates

Ð natural, for systems of rays of

the second class, I. 7

Ð oblique and polar, I. 222

Ð tangential, I. xxiii, xxvi, 304,

475, 503

Ð transformation of, I. 128, 222

Copenhagen, IV. 711

Copernicus, N., IV. 669

Coplanarity, equation of, III. 239

Coriolis, G. G. de, II. 106

Corpuscular theory of light, see

I. Emission theory

Correspondence with Herschel,

II. xv, 599

Ð with Lubbock, II. xiii, 249

Ð with Powell, II. xv, 583

Couples, III. 3, 76, 97, 159, 180, 206

Ð algebraic, I. xi

Ð and contra positives, III. 7

Ð central, energy of, III. 468

Ð circular functions of, III. 90

Ð derivation of ordinal, III. 180

Ð exponential function, III. 9, 88,

95, 124

Ð logarithmic function, III. 9, 86,

95, 124
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Ð number, see III. number

Ð of moments (and steps in time),

III. 8, 16, 76, 121

Ð ordinal, III. 167

Ð statistical, III. 381

Coxeter, H. S. M., III. xviii, xxiv

Criticism, Jacobi's, II. 109, 613

Ð Poisson's, II. 614

Crystal, biaxal, axes of elasticity in

I. 165, 280

Ð characteristic function for, I. 8

Ð conical polarisation in, I. 288

Ð conical refraction in, see I.

Conical refraction

Ð dispersion in, II. 437

Ð double polarisation in, I. 288

Ð double refraction in, I. 288,

312

Ð extraordinary refraction in, I. 8,

285

Ð Fresnel's law of polarisation in,

II. 433, 444

Ð Ð of wave-velocity in, II. 433,

434, 444, 639

Ð lenses of, I. 293

Ð medium function n in, I. 282

Ð optic axes of, II. 442

Ð propagation of light in, I. 165,

280, 288, 301, 330

Ð wave-surface in, II. 432, 442

Ð directions of vibration in,

II. 423, 434

Ð dispersive, Fresnel's law of

propagation in, II. 438, 444,

445, 639

Ð wave-surface in, II. 444

Ð wave-velocity in, II. 437, 439, 441

Ð law of vis viva for vibrations in,

II. 437

Ð one-axed, see I. Crystal, uniaxal

Ð plane waves in, conditions for,

II. 416

Ð Ð velocity of, II. 423, 427, 433

Ð re¯ection at interior surfaces of,

I. 8

Ð refraction of, and least action,

I. 317

Ð single-axed, see I. Crystal,

uniaxal

Ð uniaxal, medium function n for,

I. 130

Ð Ð surfaces cutting rays

perpendicularly in, I. 8, 335

Ð Ð system of rays produced by, I.

8

Ð Ð thin lens of, I. xxvi, 336

Ð Ð used for object glass of

telescope, I. 340

Ð wave-velocities in, II. 423

Ð with two axes, see I. Crystal,

biaxal

Crystalline media, see I. media

Crystalline medium, potential

energy of, II. 638

Crystallized medium of continually

varying nature, I. 8

Crystals, biaxial, III. 465

Ð optical properties of,

comparison with Cauchy's and

Green's results, II. 638

Ð osculating focal, I. 8

Ð propagation of light in, II. xii,

xiv, 413, 450

Ð re¯ection and refraction in,

II. 435

Cube, III. 609, 623, 646

Cubic cone and its Hessian, IV.

505

Cubic lattice, II. 418, 450

Cubic, osculating to given curve of

double curvature, III. 436

Cunningham Medal, I. v, x; IV. 744,

746, 751, 752, 754, 756, 761

Curtis, C.W., III. 656

Curvature, axis of, of ®nal ray,

I. 232

Ð rotation round, I. 253

Ð centres of, I. 475

Ð curves of, I. 348, 361; see also

I. Lines of curvature

Ð Gauss measure of for a surface,

IV. 576

Ð lines of, see I. Lines of curvature,

III. 261, 396; IV. 574

Ð lines of equal and opposite,

IV. 10

Ð line of focal, I. 102

Ð of caustic curve, I. 83

Ð of central orbit, II. 100

Ð of curve in space, I. 7

Ð of ellipsoid, surface of centres

of, I. 34, 300

Ð of general wave surface, I. 131

Ð of image (aberrational), I. xxiii,

378, 510

Ð of locus of focus, I. 432

Ð of normal section (ellipsoid),

III. 396

Ð of ray, I. 232

Ð of undevelopable pencil, I. 7

Ð two general equations of, IV.

571

Ð Ð point of evanescent, I. 7; IV.

11

Ð Ð points of equal and opposite,

IV. 10

Ð surface of centres of, I. 7

Curvatures of object glass, I. 384

Ð of caustic surface, I. 45

Ð of ellipsoids, I. 304

Curve, caustic, see I. Caustic curve

Ð in space, curvature of, I. 7

Ð limiting, for general system of

rays, I. 349, 504

Ð of double curvature, re¯ection

or refraction from, I. 102

Ð surface, I. 98

Curved rays, systems of, I. 104, 109,

168, 227, 275

Curves, focal I. 6

Ð Gauche, third degree, III. 435

Ð of curvature, I. 348, 361; see also

I. Lines of curvature

Ð of re¯ection, I. 24; see also

I. Lines of re¯ection

Ð reciprocity of, III. 434

Ð re¯ecting or refracting, focal

lengths of, I. 6

Ð refracting, T (2) for any number

of, I. 417

Curvilinear coordinates, I. 222; see

also I. Marks of position

Cusp on caustic curve, I. 83

Ð on caustic surface, I. 366

Cusp-rays, I. 283, 303

Cusps, conoidal, on Fresnel's wave,

I. 164, 283, 302

Cycle of triangles and homology,

IV. 351, 354

Cycles, Icosian, III. 626±639

Cyclic cone, IV. 463, 466, 469

Ð curvature of, IV. 472

Cylinder, indicating, of de¯exion,

I. 241

Ð of rays emergent from biaxal

crystal, I. 288, 303

Cylindrical surfaces, T for system

of, I. 493

Czapski, S., I. xxiv
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D'Alembert, J.-le-R., III. 97

Ð principle of, I. 315

Darboux, J. G., I. 475

Darkness, dynamics of, II. xii, 541,

555, 599, 600

Davies, T.S., III. 294

de Broglie, L.-V. P. R., I. 277, 500

De Damoiseau de Montfort, M. C.

T., IV. 673, 678, 680

Deductive method, I. 314

Defects of imagery, see

I. Aberrations; Aplanaticity;

Astigmatism; Coma; Curvature;

Distortion

De®nite integrals. IV. 34

Ð researches relating to, IV. 34

De¯ected lines, I. 241

De¯exion, I. 243

Ð indicating cylinder of, I. 241

De¯exure, axis and radius of, I. 244

Ð centre of, and focus by

projection, I. 245

Ð conjugate planes of, I. 258

Ð planes of extreme, see I. Planes

of extreme de¯exure

De¯exures, extreme, I. 243

Ð of surfaces, I. 241

Degen, C. B., III. 655

Degree of periodicity, II. 485

Delambre, J. B. J., IV. 366, 378, 685,

689, 696, 697

Ð Tables of, IV. 681

de Moivre, A., III. 432, 482, 564

Ð soluble form of equation of ®fth

degree, III. 483, 495

de Morgan, A., III. 107, 135, 141,

150, 155, 270; IV. ix, 85, 109,

114, 118, 567, 645

Ð letters from Hamilton, IV. 34±

178

Density along ray, I. 32, 52, 464

Ð at caustic surface, I. 82

Ð at focus, I. 82

Ð at principal focus, I. 83, 85, 143

Ð differing from observed

intensity of light, I. 87

Ð geometrical, I. xxv, 87

Ð lines of uniform, I. 86

Ð near caustic surface, I. 54

Ð of re¯ected light, I. 32, 51

Ð of refracted light, I. 94

Ð on plane of aberration through

focus, I. 53, 54, 58

Ð Ð through principal focus,

I. 83, 143

Ð see also I. Condensation

Depression of order of

approximation, in lunar

theory, II. 273, 274

Derivation, III. 171, 179, 186

Derivatives, Lagrange's notation for

partial and total, II. 316, 317,

336

Ð partial, see I. Partial differential

coef®cients

Desargues' theorem (for surfaces of

second degree), III. 407

Descartes, R., I. xix, 89, 295, 311,

312, 317, 330, 473; III. 550;

IV. 711

Ð analogy to geometry of, I. xix,

295, 330, 473

Description of areas, law of, see

II. Areas

Ð of conics and sphero-conics

under central forces, II. xiii,

286

Ð of wave-motion in elastic

medium, II. 563, 604, 640

Detachment, conditions of, III. 179,

184

Determinant, III. 423

Determination of principal

function, II. 613, 631

Ð approximate, II. 335, 339

Ð conditions for, II. 334, 335, 409

Developable pencils, see I. Pencils,

developable

Ð surfaces, I. xxvii, 351

Ð Ð angle of intersection of,

I. 334, 351, 464

Ð Ð bases of, I. 348

Ð Ð near singular curve, I. 504

Ð Ð T for refracting system of,

I. 493

Ð Ð see also I. Pencils,

developable

Ð systems of rays, I. 7; IV. 7

Development of theoretical

dynamics, II. 104

Ð surface, III. 295

De Vere, A., IV. 670

Deviation, constant of, I. 232, 238,

241, 248

Deviations, partial, composition of,

I. 253

Diametral parabola, I. 63

Ð surface for system of rays of the

second class, I. 7

Di-anharmonic cubic, IV. 302

Ð groups, IV. 279

Ð pencil, IV. 274, 275, 276

Ð property, IV. 314, 315, 316

Dickson, L. E., III. 517, 656

Difference operator, IV. 701, 703

Differences, equation in, I. 413±

416, 418, 422, 424

Differences, ®nite, I. 69, 96, see

III. ®nite

Ð of Zero, I. xi

Differential coef®cients, partial, see

I. Partial differential

coef®cients

Ð equation, linear third order with

variable coef®cients, IV. 34,

134±178

Ð Ð of bases of developable

surfaces, I. 348, 359, 504

Ð Ð of focal mirrors, I. 11, 28

Ð Ð of focal refractors, I. 90

Ð Ð of lines of re¯ection, I. 24

Ð Ð of lines of refraction, I. 95

Ð equations, see II. Partial; Total

differential equations

Ð equations of motion

(dynamical), I. xi, 331, 485

Ð Ð of ray in atmosphere, I. xix,

xxv, 105, 326

Ð Ð Ð in canonical form, I. 171,

182

Ð Ð Ð in curvilinear

coordinates, I. 227

Ð Ð Ð in general medium,

I. xxv, 110, 172, 180, 224, 325

Ð Ð Ð in oblique coordinates,

I. 224

Ð Ð see also I. Partial differential

equation

Ð expression of ®rst order,

calculus of principal relations

for, II. 332

Ð Ð principal integral of, II. 308,

309, 332

Ð Ð principal supplementary

equations of, II. 333

Diffraction, II. 569

Ð spectrum, II. 591

Dioptrics, fundamental formula of,

I. 89
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Dirac, P. A. M., III. 644

Direct aplanaticity, see

I. Aplanaticity, direct

Direction cosines of ray as partial

differential coef®cients of V ,

I. 17, 91, 297, 322

Ð dependence of, on extreme

coordinates, I. 169, 297

Direction of light vector, II. xii

Directions of vibration in crystal,

II. 423, 434

Directrix of undevelopable pencil,

I. 7

Discontinuous integrals, IV. 632

Dispersion, chromatic, I. 16, 232

Ð in biaxial crystal, II. 437

Ð law of, II. 447, 582, 584, 586,

596, 601

Ð of light, II. 578, 583, 586

Ð prismatic, II. 594

Dispersive crystal, law of wave-

propagation in, II. 438, 444,

445, 639

Ð wave-surface in, II. 444

Ð wave-velocity in, II. 437, 439, 441

Ð see also II. Biaxal crystal

Ð medium, law of wave-velocity in,

II. 447, 582, 584, 586, 596, 601

Ð Ð propagation of vibration in,

II. 437, 446, 569, 572, 578, 583,

596

Ð Ð three dimensional waves in,

II. 569

Distance, apparent, of luminous

point, I. 32

Distortion (aberrational), I. xxiii,

378, 510

Ð eye-axes and object-axes of,

I. 256

Ð planes of no, I. 256

Distortions of objects viewed from

each other, I. 256

Disturbance, principle of

accumulated, I. 313

Disturbed motion, principal

function for II. 171

Disturbing function, for particle, II.

183, 184

Ð function, for projectile, II. 189

Ð Ð in general perturbation

theory, II. 172, 173

Ð Ð in lunar theory, Laplace's, II.

239, 257

Ð Ð in three-body problem, II.

32, 34, 44, 49, 53, 231, 232

Ð Ð Ð approximation to,

II. 49, 237

Ð Ð Ð Ð Hamilton's and

Laplace's compared, II. 51

Ð Ð Ð Ð heliocentric, II. 70

Ð Ð Ð Ð law of variation of,

II. 37

Ð part of S, II. 170, 172

Ð Ð for particle, II. 183

Ð Ð for projectile, II. 189, 190,

191

Ð Ð of V, for multiple system, II.

153, 155

Ð Ð Ð for ternary system, II. 154

Diverging series, IV. 34

Dodecahedron, III. xxii, 609, 610,

611, 646

Dollond (London instrument

maker), I. 303

Donkin, W. F., II. 206, III. 155

Donkin's theorem, II. 206

DoppelschnittsverhaÈltniss, IV. 182,

558

Double achromatic object glass, see

I. Object glass

Ð lens, see I. Lenses, two; Object

glass

Ð polarisation in biaxal crystal,

I. 288

Ð refraction in biaxal crystal, I.

288, 312

Dublin University Press, IV. 351

Dublin, University of, II. 283;

IV. 730

Dumas, J. B. A., IV. 757, 758, 759

Dunkel, O., I. 349

Dunraven Castle, II. 238

Dunraven, Earl of, see Wyndham-

Quin, E. R. W

Dupin, C., I. 246, 274, 304, 463,

464

Ð theorem of, III. 432

Dyck, W., III. xxii

Dynamics, III. 441, 449

Dynamics, application of

characteristic function to, I. x,

xi, xxi, xxvi, 9, 301, 311, 330,

484; II. x, 103

Ð of principal function to, II. x,

163, 212

Ð capital problem of, II. 212

Ð development of theoretical,

II. 104

Ð fundamental theorem of, II. 3

Ð General Method in, I. xi, 301,

485

Ð general Method in, II. xiii, 103,

162, 212

Ð of darkness, II. xii, 541, 555,

599, 600

Ð of light, II. xii, 411

Ð of material bodies, II. 1

Ð of a rigid system, III. 383

Ð reciprocal theorem in, II. xv,

451, 458, 490, 493

Dyson, F. J., III. xix

Earth's annual motion,

hodograph of, II. 290

Eccentric anomaly, II. 43, 136, 624

Eccentricity, medial, III. 401

Ð vector of, II. 290

Eclipse of the median circle,

IV. 384

Eclipses, approximating to the

calculation of, IV. 682

Edfu, temple at, IV. 566

Edgeworth, Miss Maria, I. xiii

Eight squares, theorem of, III. xvii,

648

Eikonal, I. xxiii, 488; see also I.

Characteristic function; T ;

V ; W

Elastic ether, vibrations in, I. 165,

280, 313

Ð medium, description of wave-

motion in, II. 563, 604, 640

Ð Ð energy of attraction between

particles of, II. 547

Ð Ð equations of vibration in,

II. 527

Ð Ð Ð general integral of,

II. 547, 548, 576, 601, 602

Ð Ð propagation of motion in,

II. xv, 527, 599

Ð Ð three-dimensional waves in,

II. 569

Ð Ð two-dimensional waves in, II.

568

Elasticity, axes of, in biaxal crystal,

I. 165, 280

Element of contact, II. 634
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Elementary conceptions of

mathematics, IV. 762±772

Elements, III. xiii, xviii, 435

Ð approximate determination of,

in three-body problem, II. 14

Ð canonical, II. xiii, 202, 206

Ð elliptic, II. 30, 43, 104, 202

Ð Ð perturbations of, in lunar

theory, II. 245, 247, 262, 269

Ð Ð Ð in three-body problem,

II. 32

Ð function of, II. 163, 177, 179

Ð Ð approximations to, II. 180

Ð Ð for multiple system, II. 209

Ð Ð for particle, II. 185

Ð Ð for projectile, II. 193, 196

Ð Ð law of variation of, II. 179

Ð Ð partial differential equations

for, II. 179, 185, 194, 210

Ð Lagrange's, II. 163

Ð method of variation of, II. 174,

622

Ð of arrangement of near

luminous paths, I. 232, 238,

241, 248, 253, 256, 262

Ð of position of ray, I. 15

Ð of undisturbed motion, II. 174,

200

Ð varying, II. 163, 174, 177, 209

Ð Ð differential equations of,

II. 175, 201, 206

Ð Ð for binary system, II. 206

Ð Ð for multiple system, II. 200

Ð Ð for particle, II. 185

Ð Ð for projectile, II. 192

Ð Ð in three-body problem, II. 77

Elimination, algebraic, III. 471, 481

Ð of incident variables in

re¯ection or refraction, I. 214

Ð of intermediate variables in

calculation of T, I. 217, 370,

408, 413, 493, 507

Ellipse, ®xed, II. 57, 628

Ð Hamilton's, II. 208, 209, 266,

269, 628

Ð Lagrange's, II. 209, 269, 628

Ð momentary, II. 77

Ð of aberration at any point of ray,

I. xxii, 42

Ð Ð at principal focus, xxii, I. 47,

83, 86

Ð varying, II. 208, 209, 269

Ellipses of constant density or

uniform condensation at

principal focus, I. 85, 143

Ellipsoid, III. 401

Ð circular sections of, III. 258,

270, 376

Ð curvature of normal section,

III. 396

Ð directions of lines of curvature,

III. 396

Ð equation of, III. 248, 259, 280,

283, 374, 378, 397, 453

Ð focal ellipse and hyperbola,

III. 397

Ð generated by intersecting

diagonals of a quadrilateral on

a sphere, III. 250, 273, 375

Ð generated by rhombus of

constant perimeter, III. 275

Ð generated by two sliding

spheres, III. 276, 392, 399

Ð Ð confocal, III. 400

Ð mirror of revolution, I. 11

Ð Ð perpendicular to rays in

instrument of revolution,

I. xxiii, xxvi, 300, 503

Ð Ð surface of centres of, I. 34,

300

Ð radius vector, length of,

III. 258

Ð reciprocal, III. 267, 274, 278,

379

Ð tangent plane, III. 260

Ð tangents to lines of curvature,

III. 267

Ð theorem on foci and

quadrilateral, III. 290

Ellipsoids, giving lines of vibration

on Fresnel's wave, I. 288

Ð Results respecting Curvatures

of, I. 304

Elliptic cones, IV. 482

Elliptic elements, II. 30, 43, 104,

202

Ð perturbations of, in lunar

theory, II. 245, 247, 262, 269

Ð Ð in three-body problem, II. 32

Ð motion, II. 43, 135, 217, 624

Ð Ð characteristic function for,

II. 44, 46, 135

Ð Ð principal function for,

II. 217, 624

Ð orbit, longitude in, II. 208

Ð Ð time in, II. 139, 140

Ð variations, in three-body

problem, II. 34

Elliptic integrals, I. 85, 86, 300

Elliptical image of planet's disc,

I. 39

Ð section of thin pencil of rays,

I, xxii, 31, 42

Emanating systems, I. 6, 7

Emission theory, xxi, xxv, I. 10, 107,

497

Ð history of, I. 313

Ð medium-function n as velocity

in, I. 9, 110, 147, 168, 335, 500

Ð surfaces of constant action in,

see I. Action

Encke, J. F., IV. 673, 678, 679, 705

Encyclopñdia Metropolitana, IV. 36,

712

Energy, II. 106

Ð biaxal, I. 285

Ð of attraction between particles

of elastic medium, II. 547

Ð of vibrating system, II. 463

Ð potential, for crystalline

medium, II. 638

Ð see also II. Living force; Vis viva

Envelope of Cartesian surfaces,

I. 89

Ð of ellipsoids and hyperboloids,

I. 13

Ð of spheres, I. 15

Ephemerides, II. 256

Epoch, II. 459

Ð constants of, II. 454

Eppenstein, O., I. xxiv

Epstein, P. S., I. 502

Equation in differences, I. 413-416,

418, 422, 424

Ð of Fresnel's wave, I. xxvi, 280,

341

Ð Ð polar form of, I. 282

Ð of the characteristic function,

I. 107, 109, 168

Ð see also I. Differential equation;

Partial differential equation

Equation of conjugation, IV. 191,

194

Ð of curvature, IV. 575

Ð of limits, II. 309

Ð variational, Lagrange's, II. 105,

164, 212

Ð Ð for binary system, II. 128

Ð Ð for ternary system, II. 140
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Ð Ð in lunar theory, II. 239, 257

Equations, biquadratic, III. 519

Ð canonical, II. x, xiii, 166, 215

Ð cubic, III. 518, 575

Ð de Moivre's form, III. 495

Ð nth degree in quaternions have

n4 roots, III. 314

Ð of association, see III. association

Ð of elevated degree: validity of

Jerrard's method for reaching

same, III. 482, 564

Ð of ®fth degree, III. xx, 471, 478,

561, 565, 579, 582;

Ð Ð numerical example, III.

593

Ð of homoconicism, III. 244, 247,

368

Ð of homodeuterism, III. 417, 421,

423

Ð of motion (dynamical), I. xi,

331, 485

Ð Ð Hamilton's, II. xiii, 166, 215

Ð Ð Ð for particle, II. 182

Ð Ð Ð for projectile, II. 186

Ð Ð Lagrange's, II. 117, 164

Ð Ð of a binary system, III. 451

Ð Ð of a rigid body, III. 383

Ð Ð transformation of, II. 164

Ð of ray, I. 16, 345; see also I.

Differential equations

Ð Ð in instrument of revolution,

I. xxvii, 299, 365, 366, 376, 457,

508

Ð Ð in terms of S, I. 268

Ð Ð in terms of T, I. 180, 299,

493, 494, 508

Ð Ð in terms of V, I. 111, 169,

172, 498

Ð Ð in terms of W, I. 147, 148,

180, 473, 474

Ð of the Fifth Degree, Insolubility

of, I. xi

Ð of vibration, in elastic medium,

II. 527

Ð Ð general integral of, II. 547,

548, 576, 601, 602

Ð Ð of attracting or repelling

system, II. 413, 446, 569, 578

Ð Ð of linear system of particles,

II. 452, 576, 600

Ð quadratic, III. 518, 574

Ð see also II. Partial; Total

differential equations;

Principal supplementary

equations

Equilibrium of forces, III. 381

Equivalent vibrations, principle of,

II. 437

ErlaÈuterungsurtheile, IV. 766

Erweiterungsurtheile, IV. 766

Ether, elastic, vibrations in, I. 165,

280, 313

Ether, luminous, IV. 711

Euclid, I. 315; II. 289; III. 5, 149,

292; IV. 434, 435, 562, 572, 740

Euclidean algorithm, III. xviii, 658

Euler, L., I. xv, 304, 317, 331; II.

139; III. xvii, 226, 555, 655; IV.

644

Euler's theorem, II. 139

Evanescent unit-curve, IV. 202

Evolutes, I. 360

Evolutionary function, IV. 183

Excess, spherical, III. 390; IV. 369,

377

Exdiametral rays, see I. Rays,

exdiametral

Exeligm, IV. 686

Exponential method, IV. 89, 91,

132

Exponentials, ``sprawling form'' or

ladder form, IV. 56

Exscribed homologue, IV. 354, 360,

362

Extensions of quaternions, III. 316,

317

Extinction, velocity of, II. 571

Extraordinary re¯ection, I. 118,

214; see also I. Re¯ection

Ð refraction, I. 118, 214; IV. 25; see

also I. Refraction

Ð systems of rays, I. 6, 107-144,

147, 164-293, 324-330; see also I.

Systems of rays

Extreme de¯exure, axes of, I. 241

Ð planes of, see I. Planes of

extreme de¯exure

Ð de¯exures, I. 243

Ð foci by projection, I. 7, 138

Ð osculating action-surfaces or

waves, I. 270

Ð Ð focal systems, I. 126, 478

Ð Ð foci, I. 274, 480

Ð projection, planes of, see I.

Planes of extreme projection

Ð virtual foci, I. 7, 140

Ð Ð planes of, see I. Planes of

extreme virtual foci

Eye-axes and object-axes of

distortion, I. 256

Factor in T for thin optical

system, I. 403, 456, 511, 652

Factorials, Vandermonde's

notation for, II. 523; IV. 35,

134,

Fahrenheit, G. D., thermometer of,

IV. 747

Faraday, M., I. xiii; II. xii

Faraday±Maxwell aether, II. xii

Fermat, P., I. 316, 317

Ð principle of least time of, I. 316,

463, 487, 499, 500

Ferrari, L., III. 556

Fictitious moon, III. 452

Ð sun, III. 460

Figure of eight curve of aberration,

I. xxii, 44

Finite differences, III. 304

Ð calculus of, I. 69, 96

First class, system of rays of, I. 7, 15,

17; see also I. Pencil

Fit, II. 597

Five points in space, relation

connecting, II. 146

Fixed ellipse, II. 57, 628

Ð sinusoid, II. 502

Flatness of image, condition for,

I. 510

Ð of locus of primary focus, I. 431

Fluctuating Functions, I. xi, II. xii,

xv, 451, 458, 504, 520, 557; IV.

176, 584±585, 586±630, 631,

640, 645, 656

Fluctuation, method of, II. 476,

504, 520, 555, 557

Ð principle of, II. 520, 581

Fluxion, notion of, III. 5

Fluxions, Newtonian doctrine of,

IV. 425

Focal centres and images, I. xviii,

421, 509

Ð of thick lens, I. 395, 410, 419,

509

Ð of two hemispheres, I. 397

Ð of two thick lenses, I. 397

Ð coordinates, IV. 6

Ð in plane system, I. 6
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Focal centres and images (cont.)

Ð crystals, osculating, I. 8

Ð curvature, line of, I. 102

Ð curves, I. 6

Ð distance, osculating, I. 29

Ð distances for general system,

I. 353, 361

Ð Ð for re¯ection at mirror,

I. 23, 25

Ð Ð see also I. Focal lengths

Ð in¯ection, directions of, on

mirror, I. 51

Ð length, IV. 6

Ð Ð of focal refractor, I. 92

Ð Ð of instrument with three

refracting media, I. 420

Ð Ð of system of refracting

surfaces of revolution close

together, I. 423, 441

Ð Ð of thick lens, I. 395

Ð Ð of two hemispheres, I. 397

Ð lengths of instrument of

revolution dependent on T (2),

I. 299

Ð Ð of mirror for parallel

incident rays, I. 99

Ð Ð of thin lens of uniaxal

crystal, I. xxvi, 336

Ð Ð see also I. Focal distances

Ð lines, I. xxii, 44, 240; see also

I. Guiding lines

Ð Ð in instrument of revolution,

I. 378, 383, 385, 457

Ð Ð of a cone, III. 214

Ð mirrors, I. 11, 28

Ð Ð osculating, I. 26

Ð planes, I. 239; see also I. Planes of

vergency

Ð points, I. 508

Ð ray, IV. 24

Ð re¯ectors, osculating, I. 135, 275

Ð refractors, I. 89

Ð Ð osculating, I. 92, 135, 275

Ð surfaces, osculating, I. 7

Ð systems, osculating, I. 125, 478

Foci by projection, I. 7, 135, 240,

241, 245

Ð ®rst and second, in instrument

of revolution, I. 366

Ð for oblique indiametral rays,

I. 444, 445, 447, 448, 450, 452,

453

Ð kinetic, II. 78

Ð medial, III. 401

Ð of greatest and least focal

refractors, I. 92

Ð of greatest and least osculating

mirrors, I. 28

Ð of mirror for parallel incident

rays, I. 23, 28, 99

Ð of osculating systems, I. 126, 479

Ð on ray in general system, I. 355

Ð in ordinary system, I. 19, 33

Ð Ð see also I. Caustic curves;

Caustic surfaces; Focal

distances; Focal lengths;

Intersections of consecutive

rays; Points of vergency

Ð osculating, I. 30, 35

Ð Ð extreme, I. 274, 480

Ð principal, IV. 3

Ð Ð in developable systems, I. 7

Ð Ð in extraordinary systems,

I. 130, 134, 241, 275, 495

Ð Ð in general systems, I. 362

Ð Ð in ordinary systems, I. 34, 92

Ð Ð in plane systems, I. 6

Ð Ð in uniaxal crystal, I. 8

Ð Ð of instrument of revolution,

for oblique rays, I. 300, 366,

377

Ð virtual, extreme, I. 140

Ð Ð planes of, see I. Planes of

extreme virtual foci

Ð Ð in extraordinary systems,

I. 135, 138

Ð Ð in general systems, I. 7

Ð Ð in normal congruences,

I. xxii

Ð Ð in ordinary systems, I. 33, 35

Ð Ð in undevelopable systems,

I. 7

Ð Ð principal, I. 7

Focus, by projection, IV. 18

Ð central, of instrument of

revolution, I. 159

Ð Ð for oblique rays, I. 366, 453

Ð extraordinary, of lens of uniaxal

crystal, I. 338

Ð of general system of rays, I. 346

Ð of instrument of revolution for

direct rays, I. 376

Ð of system of refracting surfaces

of revolution close together,

I. 429, 431

Ð of thick lens, I. 395

Ð (one of two on ray), density at,

I. 82

Ð Ð density on plane of

aberration through, I. 53, 54,

58

Ð Ð lateral aberration from,

I. xxii, 42

Ð primary, I. 431

Ð Ð curvature of locus of, I. 432

Ð principal, aberrations near,

I. 275

Ð Ð density at, I. 83, 85, 143

Ð Ð ellipse of aberration at,

I. xxii, 47, 83, 86

Ð Ð ellipses of constant density

at, I. 85

Ð Ð hyperbolas of constant

density at, I. 86

Ð Ð lateral aberrations from,

I. xxii, 46, 83, 141

Ð Ð Ð conditions of vanishing,

I. 49

Ð Ð longitudinal aberrations

from, I. 159

Ð Ð natural axes at, I. 85, 143

Ð Ð of instrument of revolution,

I. 159, 457

Ð Ð shape of caustic surface near,

I. 366

Ð prismatic, I. 306

Force, approximation to V for

various laws of, II. 83, 88, 89,

92, 93, 94, 95

Ð between particles of aether, law

of, II. xiv, 448, 449

Ð -function, II. 106, 164, 198

Ð Ð for binary system, II. 128

Ð Ð for ternary system, II. 140

Ð living, see II. Living force; Vis

viva

Ð Newtonian law of, II. 135; see

also II. Planetary motion

Ð Ð hodographic representation

of, II. 287, 290

Forces, central, theorems on, II.

xiii, 286

Ð of attraction, III. 442

Ð centre of applied, III. 468

Ð equilibrium of, III. 381

Ð parallelogram of, statistical

proof, II. xiii, 284

Ð system of three remultiplication

of quaternions, III. 113
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Formula, fundamental, of dioptrics,

I. 89

Ð of mathematical optics, see I.

Fundamental formula

Ð of optical systems, I. 109

Forsyth, A. R., I. 475

Four squares theorem, III. xvii, 144,

648

Fourier, J. B. J., II. 529, 579; IV. 147,

153, 585, 606, 610, 619, 627,

628, 629, 655, 746, 765

Ð biordinal equation of, IV. 169,

176

Ð de®nite integral, phase of, IV.

165, 178

Ð theorem of, II. 529, 579; IV. 586,

595, 597, 601, 604, 629

Ð Ð new demonstration IV. 631

FrancËais, J. F., III. 135, 150, 277

Fraunhofer, J. von, II. 587, 588,

589, 590, 591, 592, 593, 594

Fraunhofer's Condition, I. 429

Freeman, A., IV. 147

Frequency, chromatic index as,

I. 500

Fresnel, A. J., I. 164, 165, 280, 281,

283, 288, 314, 341, 343; II. 432,

433, 434, 438, 439, 444, 445,

595, 639; IV. 712, 723, 740,

741, 743

Ð undulatory theory of, I. 165,

280, 285, 288, 302, 314, 330

Fresnel's law of polarisation in

biaxal crystal, II. 434, 444

Ð of propagation in dispersive

crystal, II. 438, 439, 444, 445,

639

Ð of wave-velocity in biaxal crystal,

II. 433, 434, 444, 639

Fresnel's wave, see I. Wave

Ð wave-surface, II. 432, 442, III.

465

Frobenius, F. G., III. xvi

Function, see II. Action; Bessel;

Characteristic; Disturbing;

Elements, function of;

Fluctuating; Force-; Gamma;

Hamiltonian; Principal

Ð aconic, of six vectors, III. 368,

418

Ð adeuretic, III. 154, 249, 422

Ð characteristic, see I.

Characteristic function

Ð conjugate, III. 3, 7

Ð couples, exponential and

logarithmic, see under

III. couples

Ð irrational and irreducible,

III. 526

Ð Lagrange, of roots of an

equation, III. 572

Ð Lagrange, roots of an equation

of sixth degree, III. 573

Ð of zero, differences and

differentials of, IV. 701

Ð principal, III. 451

Ð rational, irreducible, III. 520,

524

Ð rational reduced by quintic,

III. 471

Ð six valued of three variables with

a two valued cube, III. 545

Ð symmetric, III. 543

Ð syntypical, III. 541, 546

Ð twenty-four, etc., valued

function of four variables, III.

546, 579

Ð which vanish with their

variables, IV. 581

Functions, Conjugate, I. xi

Ð Fluctuating, I. xi

Fundamental formula of dioptrics,

I. 89

Ð of mathematical optics, I. 168,

174, 295

Ð Ð for oblique and curvilinear

coordinates, I. 222

Ð Ð in undulatory theory, I. 277

Ð of optical systems, I. 109

Ð problem of mathematical optics,

I. 169

Ð Ð of optical instruments, I. 297

Ð theorem of calculus of principal

relations, II. 363, 364

Ð Ð of dynamics, II. 3

Galileo (Galileo Galilei), I. 311,

II. 104; IV. 669

Gamma function, II. 508; IV. 71

Gauche, curve of the third degree,

III. 435

Ð hexagons, IV. 183

Ð polygons, III. 293, 398, 403, 407;

in reciprocal surface, III. 404

Ð quadrilaterals, IV. 417

Gauss, C. F., I. 395; III. xvii, 135;

IV. 574, 723

Ð equations of, IV. 378, 380

Ð property of geodetic lines,

III. 396

Gaussian integers, III. 657

Gay-Lussac, J. L., IV. 748, 749, 759

General coordinates, II. 113, 118,

164, 214

Ð characteristic function in,

II. 115, 167, 168

Ð equations of motion in, II. 117,

164

Ð Hamiltonian function in,

II. 165, 215

Ð integrals of motion in, II. 115,

167, 215

Ð law of varying action in, II. 115,

120, 125

Ð partial differential equations for

S in, II. 168, 631

Ð Ð for V in, II. 116, 169

Ð principal function in, II. 166,

215

General media, see I. Media

Ð Method in Dynamics, I. xi, 301,

485

Ð systems of rays, I. 1, 6, 345

Generators of point groups, III.

xxv, 624, 626, 629

Geocentric coordinates of moon,

II. 238

Ð longitude of moon, II. 240

Ð Ð perturbations of, II. 243, 245,

248, 262, 263, 272, 274, 277

Ð radius vector of moon, II. 240

Ð Ð perturbations of, II. 243, 245,

248, 262, 263, 272, 274, 277

Generatrices, imaginary umbilical,

of a central second order

surface, IV. 565

Geodetic lines, III. 396

Geological Society, IV. 720

Geometric fraction, or quotient, IV.

441

Geometrical application of V and

W, I. xxvi, 304, 475

Ð aspects, I. xxi

Ð construction for re¯ected or

refracted rays, I. 293, 302

Ð density, I. xxv, 87

Ð duality, IV. 269, 288

Ð Ð principle of, IV. 411
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Geometrical application of V and

W (cont.)

Ð fraction, or quotient, IV. 441

Ð fractions, scalar and vector parts

of, IV. 443

Ð functions, non-commutativeness

of the product of, IV. 451

Ð Ð product of, IV. 447

Ð illustrations of condition of

intersection of ray-lines,

I. 253

Ð Nets in Space, I. xi; IV. 409,

516±560, 561

Ð relations of in®nitely near rays,

I. 227

Geometry, symbolical, IV. 431±500

Gergonne, J. D., I. 463, 464, III.

135, 150

Gibbs, J. W., III. xix

Gill, M. H., IV. 351

Glan, P., IV. xxvii

Gold, C., IV. 676, 680

Gompertz, B., III. 136, 150

Gormley, P., III. 644

GoÈttingen, IV. 673

Goursat, E. J. B., I. 349, 466, 474;

II. 635, 636, 637

Gradient, vector, III. 262, 432

Graham, A., IV. 683

Grammarithm, III. 145, 147, 367

Graph theory, III. xxii

Grassman, H. G., III. xviii, xix, 153

Grating, II. 591

Graves, Charles, I. v, ix; II. 286; III.

139, 140, 141, 195, 225, 226,

280, 361, 362, 603, 609; IV.

109, 179, 415, 467, 516, 647,

649

Ð John Thomas, I. xi; III. xiv, xvii,

xxi, 7, 96, 97, 100, 106, 108,

129, 138, 140, 142, 153, 217,

221, 225, 226, 237, 266, 279,

294, 330, 365, 611, 612, 648,

656, 657

Ð letter to, III. 106, 217, 612, 625

Ð memorandum to, III. 611

Ð Robert Perceval, Hamilton's

biographer, I. v, xvi, xvii, 88,

462, 464, 506; II. 104, 106, 297,

599, 607; IV. 684

Gravity, centre of, see II. Centre of

gravity

Ð motion under, see II. Projectile

Green, G., II. 638

Greenwich, IV. 681, 724, 725

Gregorian Calendar, IV. 681

Gregory, D. F., III. 141, 153;

IV. 159, 431

Gregory, O. G., IV. 64, 166

Gregory, W., 757

Group generators and Hamiltonian

paths, III. xxv, 624, 631

Group-point, I. 501

Group velocity, I. 500, II. xii; see also

II. Velocity of progress of

vibration; Velocity of

propagation of disturbance;

Velocity of propagation of

vibration

Ð distinguished from phase-

velocity, II. xv, 510, 517, 556,

571, 572, 577, 582, 605, 641

Guiding axes, conjugate, I. 232

Ð lines, I. 44, 238

Ð paraboloid, I. 232, 238, 241

Ð Ð removed, I. 248

Ð planes, I. 232

Ð surface, I. 235

H function, see II. Hamiltonian

function; Living force; Vis viva

Halley, E., II. 585; IV. 674, 677, 678

Halma, N. B., IV. 685

Hamilton, Archibald, I. ix; III. xv

Ð integral, II. 614

Ð James, I. i

Ð numbers, III. xxi, 514

Ð William Edwin, III. xiii; IV. xxvii,

367, 368, 376, 384, 391

Ð William Rowan, Life of, II. 104,

106, 297, 599, 607

Ð Ð Lectures on Quaternions,

IV. 375

Ð Ð obituary notice of, IV. 776

Ð Ð The Elements of Quaternions,

IV. 428

Hamiltonian

Ð function, II. 165, 215

Ð Ð law of variation of, II. 215

Ð method and the ®ve regular

solids, III. 646

Ð paths, III. xxii, 610, 611, 646,

647

Hamilton's ellipse, II. 208, 209,

266, 269, 628

``Hamilton's Equation'' for

congruences, I. xxii, 33, 140

Ð equations of motion, II. x, xiii,

166, 215

Ð luminiferous aether, II. 638

Ð principle, II. 167,

Ð theorem on central orbits

II. xiii, 286

Hammond, J., III. xxi

Hankins, T. L., IV. 428

Harding, C. L., IV. 673

Harmattan, IV. 680

Harmonic conjugate, IV. 189

Ð conjugation, IV. 423

Ð oscillator, principal function

for, II. 618

Ð section of bounding pencil of

vision, I. 32

Hart, A. S., IV. ix, 179, 366, 368, 370

Ð theorem of, IV. 280, 367

Ð Ð new proof, IV. 370

Harte, H. H., I. x, 462

Hartian, IV. 370

Ð annular eclipse of, IV. 370, 400

Heart-shaped curve or pycnoid,

I. 62, 83

Heat, effect of, on indices of

refraction, II. 440

Heaviside, O., II. xv, 542

Heaviside's operator, II. xv, 542

Hedrick, E. R., I. 349, 466, 474

Heliocentric coordinates, II. 51, 53,

70, 207, 208

Ð perturbations of, in three-body

problem, II. 24, 70, 71, 72

Ð disturbing function, II. 70

Ð longitude, perturbations of

Jupiter's, II. 11

Ð Ð of Saturn's, II. 14

Ð plane, perturbation of

coordinate perpendicular to,

II. 77

Ð radius vector, perturbations of,

II. 71

Ð Ð of Jupiter's, II. 11

Ð Ð of Saturn's, II. 14

Ð velocity, II. 208

Hemans, Mrs F., I. xiii

Hemisphere, re¯ecting,

longitudinal aberration of,

I. 390

Ð refracting or re¯ecting, T for,

I. 389
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Hemispheres, two, focal centres,

power, and focal length of,

I. 397

Henderson, T., IV. 674, 678

Henry, C., IV. 724

Heptagon, RoÈber's construction

for, IV. 566

Hermathena, IV. 762

Herschel, J. F. W., I. 162, 163, 341,

384, 407, 442, 443, 448, 451,

454; II. xv, 202, 527, 589, 593,

599, 607; III. 154, 249, 260,

304, 441; IV. 674, 679, 680,

712, 726, 741

Ð Correspondence with, II. xv, 599

Ð Miss C., II. 607

Ð second condition of aplanaticity

of, I. 376, 385, 386, 432, 437,

439, 454

Ð theorem of, IV. 701

Herschel's notation for inverse

trigonometrical functions,

II. 202

Hesse, L. O., IV. 279, 309, 310

Hessian, IV. 236, 257, 265, 308, 310

Ð Salmon's formula for, IV. 233

Heterogeneous media, see I. Media

Hexahedron, see III. cube

Hex-anharmonic groups, IV. 279

Hilbert, D., III. xxi

Hipparchus, IV. 366, 668, 669

Ð problem of, IV. 684±698

History of optics, I. xxvi, 311

Hodograph, II. xiii, 287

Ð law of circular, II. 288, 293,

III. 457

Ð momentary relative, II. 291

Ð of central orbit, II. 287, 288

Ð of earth's annual motion, II,

290

Ð relation of anthode to, II. 630

Ð relative, II. 290

Ð varying circular, II. 290

Hodographic isochronism,

theorem of, II. xiv, 293, 630

Ð representation of moving point,

II. 289

Ð theory of the motion of a system

of bodies, III. 457

Ð vector, II. 291

Hodographs, reciprocal, II. 288

Homoconicism, equation of, III.

244, 247, 368

Homodeuterism, equation of, III.

417, 421, 423

Homogeneous coordinates, see

anharmonic coordinates

Homogeneous media, see I.

Media

Ð system of rays, I. 111

Ð transformations of W and T ,

I. 198, 205

Homographical division, IV. 419,

420

Homography, III. 427

Ð of nets in space, IV. 558

Homology, axis of, for two

triangles, IV. 344, 349, 350,

351, 352, 357

Ð centre of, for two triangles,

IV. 344, 352, 357

Ð conditions of, IV. 355

Ð relations of, for geometrical nets

in space, IV. 555

Homospheric, III. 368

Homothetic conics, IV. 284,

285, 335, 337, 339, 345, 352,

362

Horner, W. G., method for

calculating roots, IV. 567

HouÈel, G. J., II. 211

Hour-glass curve of aberration,

I. xxii, 44

Hudson, H., IV. 748

Humboldt, F. H. A. von, IV. 689

Hurwitz, A., III. xviii, xix

Hutton, C., mathematical tables,

IV. 64, 166

Huygens or Huyghens, C., I. xxi. 8,

293, 302, 312, 314, 315, 317,

463, 464, 479, 487; IV. 27, 30,

32, 711, 712

Ð Theorem of, I. 315, 330, 334,

464; see also I. Malus, Theorem

of; Orthogonal trajectories;

Surfaces cutting system of rays

perpendicularly

Ð undulatory theory of, I. 313

Hymn of Patrick, IV. 753

Hyperbolas of constant density at

principal focus, I. 86, 143

Hyperbolic space, III. 644

Hyperboloid

Ð equation of, III. 248

Ð mirror of revolution, I. 11

Ð of two sheets having double

contact with an ellipsoid,

III. 294

Ð osculating, for ray-lines from

oblique plane, I. 248

Hypersurface, II. 617

Hypothesis, Boscovich's, II. 104

Ð of molecular emission, I. 107; see

also I. Emission theory

Ð of undulation, I. 107; see also I.

Undulatory theory; Wave

theory

I, characteristic function, I. 106

I, operator, II. 542

Iceland spar, I. 302, 312; IV. 711

Ð double wave-surface in, II. 441

Ð indices of refraction of ordinary

ray in, II. 439, 440

Ð velocity of light in, II. 439, 441,

442

Icosahedron, III. 609, 610, 611, 646

Icosian

Ð calculus, III. xiii, xxi, 609, 645;

non±commutative, associative

multiplication, III. 613; solids,

III. 646; summary of

Hamiltonian method and the

®ve regular solids, III. 646

Ð complete non-cyclical

successions, III., 618

Ð cycles, III. 626, 639; applied to

Hamiltonian paths, III. 614

Ð cyclical successions, III. 616

Ð game, III. xxii

Image, circular, vertices of, I. 40

Ð in instrument of revolution,

I. 421, 509

Ð lines, I. 44; see also I. Focal lines;

Guiding lines

Ð of a point after re¯ections or

refractions, I. 94

Ð of planet, I. 37, 94, 420

Ð of star in uncentred telescope,

I. 368

Ð prismatic, I. 306

Ð undistorted, of small plane

object, I. 39

Ð visible, of luminous point, I. 32

Imagery, defects of, see I.

Aberrations; Aplanaticity;

Astigmatism; Coma; Curvature;

Distortion
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Images and focal centres, I. xviii,

421, 509

Ð formed by mirrors, I. 37

Ð theory of, I. 446

Imaginary anharmonic, IV. 201

Ð unit-curve, IV. 196

Ð unit-points, IV. 195

Imaginary logarithms, I. xi

Ð quantities, III. xiii, 111, 117;

geometrical representation of,

III. 106, 117, 136;

multiplication of, III. 222

Ð quaternion, III. 212, 214, 305,

312; as roots of quadratic

equation, III. 123

Imponential function, see III.

logarithmic

Index, chromatic, see I. Chromatic

index

Ð of a vector, IV. 446

Ð refractive, I. 146, 316, 324; see

also I. Refractive power

Indiametral aberration, I. 454

Ð rays, see I. Rays, indiametral

Indicating cylinder of de¯exion,

I. 241

Indices of refraction, effect of heat

on, II. 440

Inductive method, I. 314

Inequality, parallactic,

approximation to, II. 248, 272,

277, 627

Inertia, moment of, III. 385

In®nite linear system, vibration of

doubly-, II. 458, 459, 460, 461,

465, 482, 502, 503, 511

Ð of semi-, II. 457, 459, 460, 461,

465, 482, 500, 511

Ð recapitulation of results, II. 495

Ð Ð recapitulation of results,

II. 492

In¯ection, directions of focal, on

mirror, I. 51

In®exion, chords of, IV. 314, 319

Ð directions of spheric, on

surfaces cutting rays

perpendicularly, I. 48, 87

Ð lines of, I. 7; IV. 11

Ð points of, IV. 319

Ð transformed coordinates of

chords of, IV. 320

Ð transformed coordinates of

points of, IV. 320

Ingleby, C. M., I. v

Inscribed homologue, IV. 354, 360,

362

Ð unit-curve, IV. 208

Insolubility of Equations of the

Fifth Degree, I. xi

Instantaneous axis of rotation,

III. 385, 386

Institute of France, IV. 720

Instrument of revolution, I. xxiii

Ð aberration coef®cients for, I.

xxvi, 298, 512

Ð aberrations of, I. xxiii, xxvi,

xxvii, 299, 366, 376, 383, 457,

488, 508

Ð cardinal points of, I. 508; see also

I. Focal centres; Nodal points;

Principal points

Ð caustic surfaces for, I. 300, 364,

366

Ð central focus of, I. 159, 366, 453

Ð central ray in, I. 300, 366

Ð construction for emergent ray

in, I. 398

Ð ellipsoid normal to rays

emerging from, I. 300, 503

Ð equations of ray in, see I.

Equations

Ð exdiametral rays in, I. 299, 364,

367, 376, 383, 457, 506, 509

Ð ®rst and second foci of, I. 366

Ð focal lines in, I. 378, 383, 385,

457

Ð focus of, for direct rays, I. 376

Ð general theory of, I. 298

Ð image formed by, I. 421, 509

Ð intention to treat of, I. 165, 277

Ð longitudinal aberration of,

I. 159

Ð oblique indiametral rays in,

I. 407±454

Ð parallel rays incident on, I. 364,

376, 383, 429, 457, 508

Ð principal axes in, I. 366

Ð principal foci of, for oblique

rays, I. 300, 366, 377

Ð principal focus of, I. 159, 457

Ð principal rays in, I. 300, 366, 377

Ð rays symmetrical about axis of,

I. 155

Ð T for, I. xxiii, xxvi, xxvii, 298,

376, 412, 434, 455, 503, 508,

512

Ð T (2) for, I. xxvii, xxviii, 298, 396,

397, 434, 455, 508, 512

Ð T (4) for, I. xxvii, xxviii, 298, 434,

455, 509, 513

Ð V for, I. xxvii, 155, 298, 364

Ð W for, I. xxvii, 155, 364, 515

Ð with three refracting media,

I. 420

Ð see also I. Aplanaticity;

Astigmatism; Coma; Curvature;

Distortion; Lens; Object glass;

Surfaces of revolution

Instruments, optical, fundamental

problem of, I. 297

Integers, quaternion, III. 657

Integrability of equation of focal

mirrors, I. 11

Ð of equation of focal refractors,

I. 90

Integral, Airy's, II. 563

Ð complete, determination of

principal function from, II. 614

Ð Ð of partial differential

equation of ®rst order, II. 393,

396

Ð general, of partial differential

equation of ®rst order, II. 329,

330, 393, 396, 401, 402

Ð Ð connection with principal

integral of total differential

equation, II. 329, 330

Ð Hamilton, II. 614

Ð of action, see I. Action

Ð of partial differential equation

of second order, II. 401, 402

Ð principal, see II. Principal

integral

Ð relation, principal, see II.

Principal integral

Integrals, asymptotic values of,

II. xv, 539, 547, 554

Ð multiple and de®nite,

numerical values for, IV. 653±

660

Ð of equations of motion of system

of bodies, I. xi

Ð of momentum, II. 113

Ð of motion, deduced from Q ;

I. 167

Ð Ð from S, II. 167, 213, 215

Ð Ð from V, II. 108, 115

Ð for binary system, II. 132, 133

Ð for particle, II. 182
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Ð for projectile, II. 186

Ð veri®cation of, II. 109

Ð of undisturbed motion, II. 171,

174

Ð Ð for binary system, II. 202

Ð Ð for multiple system,

II. 200

Ð Ð for particle, II. 183

Ð Ð for projectile, II. 188, 189

Integration of certain partial

differential equations, IV. 647±

648

Ð of differential equations of rays,

I. 172

Ð of partial differential equation

for V, I. xx, xxv. 145, 146, 153,

155, 178, 364, 473

Ð of partial differential equations,

by calculus of principal

relations, II. xii, xiv, 391, 634

Ð Ð by Pfaff's method, II. 329,

331

Intensity of light different from

geometrical density, I. 87

Intention of Hamilton to treat of

instruments of revolution, I.

165, 277

Interchangeability of eye-axes and

object-axes of distortion, I. 256

Interference, I. 296

Ð prismatic, I. xxvi, 305, 307, 310

Ð of polarised rays, II. 598

Ð phenomena of, II. 591, 596

Ð spectrum of, II. 591

Intermediate variables, elimination

of, in calculation of T, I. 217,

370, 408, 413, 493, 507

Intersection of caustic surfaces, I. 7,

34, 83, 92, 102, 130, 362; see

also I. Foci, principal

Ð of sheets of surface of centres of

ellipsoid, I. 34, 300

Ð of surfaces of constant action,

I. 270

Intersections of consecutive rays or

ray-lines, I. 238, 252, 253, 270,

347, 354; see also I. Caustic

curves; Caustic Surfaces; Foci;

Focus; Points of vergency

Ð indiametral rays, I. 444, 446,

447, 450, 453

Ð of rays at ®nite distances, I. 363

Ð virtual, of rays, I. 139

Interval of wave, II. 421

Inverse cube roots, method of,

IV. 156

Ð of hodograph, anthode as,

II. 630

Ð square law, see III. Newton's Law

Ð square roots, method of, IV.

121, 122, 127, 132, 156

Inverse trigonometrical functions,

Herschel's notation for, II. 202

Inversion, method of, II. 630

Involution, III. 427; IV. 544

Ð enlarged conception of, IV. 503

Irish Academy, Royal, II. v, 103,

283, 286, 291, 293

Isochronism, hodographic and

anthodographic, II. xiv, 293,

630

Isoplatal surfaces, I. 7; IV. 9

Isotropic media, see I. Media

Ð medium, II. 638, 639

Ivory, J., IV. 748

Jacobi, C. G. J., II. 48, 109, 168,

206, 283, 613, 614; IV. 176, 656

Ð elliptic functions, III. xvii

Jacobi's criticism, II. 109, 613

Jeffreys, H., II. 542

Jenyns, L., IV. 724

Jerrard, G. B., III. xx, 478, 481, 488,

489, 490, 492, 493, 495, 496,

499, 501, 564, 566

Ð failure of method for resolving

equations of higher degree,

III. 481

Ð limitations to method, III.

488

Ð method of reducing equation of

®fth degree, III. 479, 480

Ð two functions of ten variables,

III. 565

Jerrard's notation for symmetric

functions, III. 484

Joachimsthal, F., theorem of,

III. 416

Joly, C. J., III. xiii; IV. xxvii

Josephstadt, Bohemia, IV. 673

Julia, G., I. 345

Julian Calendar, IV. 681

Jupiter, IV. 673, 678

Ð equations of motion of, II. 2

Ð perturbations of, II. 8

Ð Ð agreement with Laplace,

II. 11

Ð Ð in centrobaric coordinates,

II. 20

Ð Ð in heliocentric coordinates,

II. 70

Jupiter's centrobaric longitude,

perturbations of, II. 10, 11

Ð radius vector, perturbations of,

II. 9, 10

Ð heliocentric longitude,

perturbations of, II. 11

Ð radius vector, perturbations of,

II. 11

Kane, R., award of Cunningham

Medal to, IV. 756, 761

Ð review of his researches on the

nature of ammonia, IV. 756±

761

Kant, I., I. xiii, III. 117, 118; IV. 766,

767

Kelvin, Lord (W. Thomson), II.

561

Kepler, J., II. x, 290; IV. 669, 674,

677, 726, 740

Ð laws of, III. 451

Ð orbit, II. x; see also II. Planetary

motion

Keys, algebraic, III. 155

Kilmister, C., III. 644

Kinane, V., IV. 351

Kinetic foci, II. 78

Kirkman, T. P., III. 155, 294, 656

Ð on pluquaternions, III. 294, 406,

656

Kirwan, R., IV. 730

Klein, F.C., III. xliii, I. 487, 488

Kleinfeld, E., III. 656

Knight problem, III. xxii

Known planets in 1834, II. 104

Kramp, C., mathematical tables,

IV. 36, 39, 51

Kummer, E. E., I. xxii

Lacroix, S. F., IV. 134, 299, 653

Ladder form of exponentials,

IV. 56
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Lagrange, J. L., I. xviii, 315, 317,

504; II. x, 53, 73, 74, 77, 104,

105, 106, 108, 109, 117, 118,

121, 160, 163, 164, 166, 167,

175, 209, 212, 213, 255, 263,

266, 269, 276, 279, 280, 282,

283, 316, 317, 331, 336, 613,

614, 622, 629; III. xix, 570, 572,

579, 649; IV. 11, 85, 86, 176,

600, 627, 765

Ð Theorem of, I. 154

Ð function of roots of an

equation, III. 572

Ð and resolution of, quadratic, III.

574; biquadratic, III. 575;

cubic, III. 575

Lagrange's elements, II. 163

Ð ellipse, II. 209, 269, 629

Ð equations of motion, II. 117,

164

Ð method of variation of

parameters, applied to

perturbation problem, II. 255,

279, 280

Ð Ð compared with method of

principal function, II. 255, 263,

269, 279, 280, 281, 282, 622

Ð multipliers, II. 120, 121

Ð notation for partial and total

derivatives, II. 316, 317, 336

Ð results in perturbations of three-

body problem, compared with

Hamilton's, II. 77

Lalande, J. J. L. de, IV. 676

Lambert, J. H., II. 139

Lambert's theorem, II. 139

Lancret, M. A., I.103

Lanczos, C.

Ð Dirac's wave equation, III. 644

Ð extension of Cauchy±Riemann

equations to four dimensions,

III. 644

Ð Lorentz transformation p (q),

III. 79

Landen, J., theorem of, IV. 714

Laplace, P. S., I. 10, 316, 317, 464;

II. x, 8, 11, 12, 49, 51, 105, 109,

519, 563; IV. 27, 100, 115, 133,

704, 705, 723

Ð agreement with, in

perturbations of Jupiter, II. 11

Ð calorimeter of, IV. 748

Ð converging fractions of, IV. 102

Ð equation, integration of, IV. 647

Ð fractions of, IV. 103

Ð functions of, IV. 649

Ð operator, III. 263, 376

Ð Theorem of, I. 70, 82, 145, 148,

149, 466

Laplace's disturbing function,

compared with Hamilton's,

II. 51

Ð in lunar theory, II. 239, 257

Lardner, D., I. x, 462

Lateral aberration, see I. Aberration

Latitude, argument of, II. 208

Lattice, cubic, II. 418. 450

Law of circular hodograph, II. 288,

293; III. 457

Ð of description of areas, see II.

Areas

Ð of dispersion, II. 447, 582, 584,

586, 596, 601

Ð of force between particles of

aether, II. xiv, 448, 449

Ð of living force, II. 107

Ð of modulus, III. 104, 190

Ð of motion of centre of gravity,

II. 112, 199

Ð of polarisation in biaxal crystal,

Fresnel's, II. 434, 444

Ð of propagation in dispersive

crystal, Fresnel's, II. 438, 439,

444, 445, 639

Ð of rectilinearity, I. 411

Ð of scales, III. 152

Ð of variation, see II. Action

function; Characteristic

function; Disturbing function;

Elements, function of;

Hamiltonian function;

Principal function; Principal

integral

Ð of wave-velocity in biaxal crystal,

Fresnel's, II. 433, 439, 444, 445,

639

Laws of least, stationary and varying

action, see I., II., III. Action

Ð of re¯ection and refraction,

ordinary and extraordinary, I.

118, 214; see also I. Re¯ection;

Refraction

Least action, see I. Action

Ð law of, see II. Action

Ð squares, method of, II. 594; IV.

705

Ð time, see I. Fermat

Leathem, J. G., IV. 369

Legendre, A. M., II. 508, 627;

IV. 111

Ð transformation of, I. 474

Legendre's celebratedfunction,

II. 508

Ð polynomials, II. 9, 240, 258, 627

Leibnitz, G. W., I. 317, II. 106

Length, line of stationary, I. 319

Ð of path of light measuring

action, I. 10

Ð of undulation, II. 446

Ð wave-, I. 446

Lens, double, see I. Lenses, two;

Object glass

Ð thick, aberration coef®cients

for, I. 401

Ð Ð focal centres of, I. 395, 410,

419, 509

Ð Ð focal length of, I. 395

Ð Ð focus of, I. 395

Ð Ð power of, I. 395

Ð Ð T (2) for, I. xxvii, 394, 396,

410, 419

Ð Ð T (4) for, I. xxvii, 400, 401

Ð thin, aberration coef®cients for,

I. 375

Ð Ð longitudinal aberration of,

I. xxv, 162, 427, 443

Ð Ð of uniaxal crystal, I. xxvi, 336

Ð Ð power of, I. 365, 370, 423

Ð Ð refraction through, I. 162,

365

Ð Ð T for, I. xxvii, 369

Ð Ð thin, T (2) and T (4) for, I. 375

Ð Ð V for, I. xxvii, 365

Ð Ð W for, I. xxvii, 365

Lenses, convergence of system of,

I. 423

Ð of biaxal crystal, I. 293

Ð plano-spheric, combination of,

I. 397

Ð spheric, aberrations and caustic

surfaces of, I. 364

Ð two (thick), aberration

coef®cients for, I. 459, 460

Ð Ð focal centres of, I. 397

Ð Ð power of, I. 397

Ð Ð T (2) for, I. xxiv, xxvii, 396

Ð Ð T (4) for, I. xxiv, xxvii, 402,

458

Ð Ð (thin and close together),
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aberration coef®cients for,

I. 373

Ð Ð condition of direct

aplanaticity for, I. 406, 429,

435, 437, 438, 440

Ð Ð condition of oblique

aplanaticity for, I. 405, 406,

429, 435, 437, 440

Ð Ð curvature of locus of primary

focus for, I. 432

Ð Ð longitudinal aberration of, I.

428, 443

Ð Ð T for, I. xxvii. 369

Ð Ð T (2) for, I. 371

Ð Ð T (4) for, I. 373, 405

Ð Ð V for, I. 369

Ð see also I. Object glass; Surfaces

of revolution

Le Verrier, U. J. J., II. 292

Le Verrier's planet, II. 292

Levi-Civita, T., I. 90, 487

Lexell, A. J., IV. 677

L'Huiller, S. A. J., IV. 395

Lia Fail, IV. 753

Lie, S., I. 487

Life of Hamilton, II. 104, 106, 297,

599, 607

Light, dispersion of, II. 578, 583,

586

Ð dynamics of, II. xii. xiv, 411

Ð Ð correspondence on,

II. xv, 583

Ð Ð researches on, II. 576

Ð history of theory of, I. 311

Ð propagation of, see I.

Propagation; Emission theory;

Ray; Undulatory theory;Wave

Ð propagation of, in crystals,

II. xii, xiv, 413, 450

Ð Ð in vacuo, II. xiv, 446

Ð Ð rectilinearity of, II. 569

Ð Ð velocity of, see II. Velocity

Ð theory of, researches respecting

vibration connected with,

II. xiv, 451, 578

Ð vector, direction of, II. xii

Ð see also II. Crystals; Propagation;

Re¯ection; Refraction;

Velocity; Vibration

LimacË on, I. 380

Limit points of congruence, I. xxii,

140; see also I. Extreme virtual

foci

Limiting curve for general system

of rays, I. 349, 504

Ð lines of aberration, I. 47

Ð surface for general system of

rays, I. 358

Limits, equation of, II. 309

Limoges, IV. 673

Line, condition that three points

lie on, III. 371

Ð directed, III. 298

Ð equation of, III. 302

Ð of focal curvature, I. 102

Ð of stationary length, I. 319

Ð operations on, III. 299, 366, 368

Ð quotient of, III. 364

Ð transition, on re¯ector or

refractor, I. 275

Linear function of a quaternion,

III. xviii, 348, 350

Linear system of particles, energy of

vibrating, II. 463

Ð equations of vibration of,

II. 452, 576, 600

Ð Ð general integral of, II. 452,

490, 492, 576, 601, 602

Ð vibrations of, II. xiv, 451, 576,

600

Ð see also II. Vibration

Lines, de¯ected, I. 241

Ð focal, see I. Focal lines; Guiding

lines

Ð guiding, I. 44, 238

Ð image, I. 44; see also I. Guiding

lines

Ð limiting, of aberration, I. 47

Ð of curvature, I. 19, 95, 96, 274,

475

Ð Ð coincident, I. 97

Ð Ð see also I.Curves of curvature

Ð of equal and opposite curvature,

I. 7

Ð of extraordinary refraction, I. 8

Ð of in¯exion, I. 7

Ð of re¯ection, I. xxiv, 24, 94

Ð of refraction, I. xxv, 92, 94

Ð of single normal velocity, I. 280,

283

Ð of single ray-velocity, I. 280, 283

Ð of uniform condensation or

density at principal focus, I. 86,

143

Ð of vibration on Fresnel's wave,

I. 288

Ð separating, on re¯ector or

refractor, I. 275

Liouville, J., II. 277; IV. 574, 604

Lipschitz, R., III. xviii

Lister, J. J., I. 48

Living force, II. 3, 106

Living force, accumulated, II. 107,

108; see also II. Action;

Characteristic function

Ð equation of, II. 107

Ð Ð in three-body problem, II. 2,

17, 25

Ð law of, II. 107

Ð Ð deduced from hodograph,

II. 24

Ð relative, II. 121, 126, 150

Ð see also II. Vis Viva

Lloyd, II. 439, 595

Lloyd, Bartholomew, I. x, xiv; IV.

730, 773

Ð Humphrey, I. x, 164, 165, 303,

312, 330; II. 439, 595; III. 145;

IV. 705, 711, 723, 739

Logarithmic

Ð couples, III. 124

Ð and exponential function-

couples, III. xiv, 8, 9, 86, 95,

100

Logarithms, imaginary I. xi

Logologues, a new theory of,

IV. 728

Logometers, III. 150

London and Edinburgh Philosophical

Magazine IV. 740

London, University College, IV. 34

Longitude, in elliptic orbit, II. 208

Ð moon's geocentric, II. 240

Ð Ð perturbations of, II. 243, 245,

248, 262, 263, 272, 274, 277

Ð of node, II. 208

Ð of perihelion, II. 208

Ð perturbation of Jupiter's, II. 10,

11

Ð Ð of Saturn's, II. 14

Longitudinal aberration, see

I. Aberration

Lorentz transformation, III. 643

Lovett, E. O., I. 487, II. 160, 175

Lubbock, J. W., II. xii, xiii, 238, 246,

248, 249, 250, 256, 257, 263,

264, 266, 274, 275, 276, 277,

278, 279, 283; III. 567; IV.

720
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Lubbock (cont.)

Ð correspondence with, II. xiii,

249

Ð Lord, II. 249

Lubbock's expression for

perturbation of moon's

coordinates, II. 277

Ð results in lunar theory

compared with Hamilton's, II.

246, 248, 263, 272, 275, 627

Luminiferous aether, Hamilton's,

II. 638

Lunar regression of node, III. 462

Ð tables, II. 249, 256

Ð theory, II. xiii, 238, 256; III. 455

Ð Ð application of calculus of

principal relations to, II. 257,

266

Ð Ð comparison of Hamilton's,

Lubbock's and Plana's results

in, II. 246, 248, 263, 272, 275,

627

Ð Ð disturbing function in,

Laplace's, II. 239, 257

Ð Ð lowering of order of

approximation in, II. 273, 274

Ð Ð method of principal function

applied to, II. xiii, 238, 257,

266

Ð Ð perturbational parts of

elements in, II. 242, 245, 247,

262, 268, 269

Ð Ð perturbations in, Hamilton's

and Lagrange's methods

compared, II. 263, 264, 269,

276, 628

Ð Ð principal function in

II. 238, 239

Ð Ð Ð approximations to,

II. 243, 247

Ð Ð variation of, II. 238, 239, 258

Ð Ð variational equation in,

II. 239, 257

Ð Ð see also II. Moon, motion of;

Moon's coordinates,

perturbations of

Ð variations, III. 461; laws of,

III. 462

M, constant, connected with

aberrations, I. 429, 433, 441,

442, 443, 447, 451, 452

MacCullagh, J., I. ix, xii, 164, 292,

303, 330, 342, 343; II. xii, 639;

III. 142, 376, 379, 385, 386,

387, 391, 465; IV. 724

Ð award of Cunningham Medal to,

IV. 744

Ð early work of, IV. 711±715

Ð review of his papers on

crystalline re¯exion and

refraction, IV. 739±744

Ð theorem of the polar plane,

IV. 742

MacDonald, II. 638

Maclaurin, C., series of, IV. 702

MaÈdler, J. H., II. 291, 292

Magnifying power of instrument of

revolution dependent on T (2),

I. 299

Magnitudes, visible, of small

objects, viewed from each

other, I. 256

Malus, EÂ . L., II. 440, 442; IV. 25,

712, 723

Ð Hamilton's corrections of, I.

xxvi, 1, 52, 97, 315, 339, 464

Ð on caustic surfaces and foci,

I. 51, 120, 299, 315, 384

Ð on density, I. 34, 51, 52, 464

Ð on general systems of rays, I. 1,

8, 345

Ð on intersections of rays, I. 252

Ð on lines of re¯ection and

refraction, I. 24, 94, 95, 96

Ð on rays in atmosphere, I. 105

Ð on re¯ection and refraction

from curve of double

curvature, I. 103

Ð on uniaxal crystals, I. xxvi, 339

Ð Theorem of, I. xix, xxii, xxvi, 90,

315, 333, 463; see also I.

Huyghens, Theorem of;

Orthogonal trajectories;

Surfaces cutting system of rays

perpendicularly

Marginal rays, I. 429

Marks of position, I. 222, II. 113,

114, 164, 214

Ð of relative position, II. 125

Marseilles, IV. 673, 680

Mathematical optics, division of,

into two parts, I. 298

Ð fundamental formula of, see I.

Fundamental formula

Ð fundamental problem of,

I. 169

Ð science of, I. 314

Ð view of, I. xxvi, 295, 297

Mathematical Papers, Vol. I, II. 3, 5,

105, 109, 168, 613

Mathematics, elementary

conceptions of, IV. 762±772

Matrices, III. xviii

Ð and quaternions, III. 643

Maxima and minima in deductions

of characteristic functions

from each other, I. 174

Ð in elimination in re¯ection or

refraction, I. 214; see also I.

Stationary value

Ð of time or action, I. 270, 318

Maxwell, J. Clerk, II. xii

McConnell, A. J., III. xvi

McConnell, J. R., IV. ix

Measure of colour c, I. 168; see also

I. Chromatic index

MeÂcanique Analytique, II. 73, 74, 104,

106, 109, 117, 160, 163, 164,

165, 166, 622

MeÂcanique CeÂleste, II. 9, 10, 11, 24,

51, 71, 264, 285

Mechanics, wave, I. 500

Ð see I. Dynamics

Medals, I. v, x, xi

Media, general (heterogeneous

anisotropic), I. xx, xxv, 8, 109±

111, 168±277, 324±330

Ð in dynamics, I. 486

Ð ordinary (homogeneous

isotropic), I. xix, xx, xxiv, xxv,

1±104, 146±163, 364±460

Ð ordinary, of varying density

(heterogeneous isotropic), I.

xix, xxv, 104; see also I.

Atmosphere

Ð uniform or crystalline

(homogeneous anisotropic),

I. xx, xxv, 8, 111±144, 147,

175±277 ( passim), 277±293,

326; see also I. Crystal

Median theorem, new proof,

IV. 395

Medium, crystalline, potential

energy of, II. 638

Ð see also II. Crystal

Ð dispersive, see II. Dispersive

Ð elastic, see II. Elastic
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Ð resisting, approximation to S for

motion in, II. 351

Ð single uniform, characteristic

functions for, I. 207

Medium-function Ù and partial

differential equation for V,

I. xxv, 170, 301

Ð connections of partial

differential coef®cients of, with

those of v and õ, I. 207

Ð deduced from V, I. 169, 482

Ð in dynamics, I. 484

Ð in undulatory theory, I. 278, 497

Medium-function v as molecular

velocity of light in emission

theory, I. 9, 109, 147, 168, 335

Ð as undulatory slowness, I. 168,

279, 499

Ð connections of partial

differential coef®cients of, with

those of Ù and õ, I. 207

Ð deduced from V, I. 169, 482

Medium-function v for

atmosphere, I. 104

Ð for biaxal crystal, I. 282

Ð for general medium, I. 9, 109,

147, 168, 324

Ð for ordinary medium, I. 147,

324

Ð for uniaxal crystal, I. 130

Ð in dynamics, I. 484, 501

Ð see also I. Refractive power

Menelaus, theorem of, IV. 185

Messier, C., IV. 673, 677

Metaphysics, I. xiii

Method, General, in Dynamics, I.

xi, 301, 485, II. xiii, 103, 162,

212

Ð Hamilton's, of approximating to

motion of moon, II. 628

Ð of characteristic function,

applied to dynamics, II. x, 103

Ð Ð to three-body problem, II.

xii, 1

Ð of ¯uctuation, II. 476, 504, 520,

555, 557

Ð of integration of partial

differential equations, II. 391,

634

Ð of least squares, II. 594

Ð of principal function, see II.

Principal function; Principal

relations, calculus of

Ð Ð relations; see II. Principal

relations, calculus of

Ð of variation of constants, see II.

Constants, method of variation

of

Ð Ð of parameters, see II.

Parameters, method of

variation of

Methods, inductive and deductive,

I. 314

Ð of analysis and synthesis, I. 314

Ð of approximation, see II.

Approximation

Ð of determining principal

function, II. 334, 335, 613, 631

Ð of perturbation, see II.

Perturbation

Ð operational, applied to vibration

in elastic medium, II. xv, 527

Metis, Asteroid 9, IV. 683

Meton, IV. 686

Meusnier de la Place, J. B. M. C.,

I. 97

Microscopes, construction of,

I. 301

Milton, J., IV. 672, 731

Minerva, IV. 672

Minimal surfaces, see I. Surfaces of

least area

Mirror, caustic surfaces for

re¯ection at, I. 22, 25

Ð components of aberration at,

I. 77

Ð developable pencils for

re¯ection at, I. 22

Ð directions of focal in¯ection on,

I. 51

Ð ellipsoid, of revolution, I. 11

Ð focal distances of, I. 23, 25

Ð hyperboloid, of revolution, I. 11

Ð image of planet formed by, I. 37

Ð lines of re¯ection on, I. xxiv,

24, 94

Ð paraboloids of revolution

osculating, I. 23, 25, 27

Ð parallel rays re¯ected at, I. 23,

28, 99

Ð plane, I. 11

Ð Ð characteristic function V for,

I. 297

Ð principal foci for, I. 35

Ð rays diverging from a point

re¯ected at, I. 25, 36, 94

Ð re¯ection at, I. 9

Ð vertices of, I. 35

Ð see also I. Hemisphere; Re¯ector;

Surface; Surface of revolution

Mirrors, combination of two,

re¯ecting parallel incident

rays, I. 37

Ð focal, I. 11

Ð Ð differential equation of, I. 28

Ð Ð osculating, I. 26

Ð images formed by, I. 37

Mitscherlich, E., II. 440; IV. 723

MoÈbius, A. F., II. 124, 287; III. 154;

IV. 179, 183, 407

Ð barycentric calculus, III. 435

Ð Der barycentrische Calcul, IV. 179,

182, 516, 524, 558

Ð Die Elemente der Mechanik des

Himmels, IV. 689

Mode of vibration, permanent, II.

489, 492, 495, 496, 498, 499

Ð simple, II. 464

Ð sinusoidal, II. 488, 489, 492, 495,

497

Modular theory of quaternions, III.

657

Modulus, law of, III. xvii, 190, 218

Ð barycentric calculus, III. 435

Molecular emission, hypothesis of,

I. 107; see also I. Emission

theory

Ð velocity v, I. 168; see also I.

Emission theory; Medium-

function v

Molecules of elastic medium,

vibration of, II. 527

Molini (London bookseller), II. 283

Momenta, generalised, II. 165, 214

Ð perturbations of, II. 172, 173

Momental, quaternion, III. 160

Ð separation, characteristics of,

III. 160

Ð set, see III. sets

Momentary ellipse, II. 77

Moments, comparison of pairs,

III. 162

Ð couples of, III. 8, 16, 76, 121

Ð ordinal relations between,

III. 119, 162

Ð set of, III. 159, 162, 163, 173;

composition and

decomposition of original

relations between, III. 176
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Momentum, integrals of, II. 113

Monge, G., I. 88, 94±99, 101, 304,

360, 361; IV. 574

Ð notation of, IV. 577

Moon, see III. lunar theory

Ð ancient Babylonian eclipses of,

IV. 686

Ð apogee of, IV. 688

Ð eclipse of, IV. 682

Ð motion of, Hamilton's method

of approximating to, II. 628

Ð theory of, II. xiii, 238, 249

Ð Ð application of calculus of

principal relations to, II. 257,

266

Ð Ð comparison of Hamilton's,

Lubbock's and Plana's results

in,II. 246, 248, 263, 272, 275,

627

Ð Ð disturbing function in, II.

238, 239

Ð Ð lowering of order of

approximation in, II. 273, 274

Ð Ð method of principal function

applied to, II. xiii, 238, 257,

266

Ð Ð perturbational parts of

elements in, II. 242, 245, 247,

262, 268, 269

Ð Ð perturbations in, Hamilton's

and Lagrange's methods

compared, II. 263, 264, 269,

276, 628

Ð Ð principal function in, II. 238,

239

Ð Ð Ð approximations to, II.

243, 247

Ð Ð Ð variation of, II. 238, 239,

258

Ð Ð variational equation in, II.

239, 257

Moon-breadth, IV. 688

Moon's coordinates, perturbations

of, II. 243, 245, 248, 262, 263,

272, 274, 277

Ð Hamilton's results compared

with Lubbock's and Plana's,

II. 246, 248, 263, 272, 275,

627

Ð node, regression of, IV. 688

Mossotti, O. F., IV. 678

Motion, equations of, see I.

Equations of motion

Ð of bodies, characteristic

function applied to, I. x, xi,

xxi, xxvi, 9, 301, 311, 330, 484

Mourey, C. V., III. 150, 277

Muir, T., I. 21

Mulcahy, J., IV. 391

Multiple system, II. 150, 200

Ð characteristic function for,

approximation to, II. 150

Ð Ð disturbing part of, II. 153,

155

Ð function of elements for, II. 209

Ð integrals of undisturbed motion

of, II. 200

Ð rigorous transition from binary

to, II. 155

Ð with one predominant mass,

perturbations of, II. 150, 155,

200

Multiplication, coef®cients of

derivation and, III. 186

Ð constants of, III. 122

Ð of a real by a quaternion,

III. 222

Ð of step couple by a couple, III. 8,

9, 122

Ð of step couple by a number,

III. 8, 9, 78, 121

Ð of two pure imaginaries, III. 222

Multiplicity, II. 634

Multipliers, Lagrange's, II. 120, 121

Murnaghan, F. D., I. 502

Ð quaternions as four by four real

matrices, III. 643

Murphy, R., III. 100, 567, 569;

IV. 75, 104, 106, 108

Ð analysis of roots of equations,

III. 567

Ð and exponential method, IV.105

Ð series of, IV. 103

N, constant, connected with

aberrations, I. 429, 433, 441,

442, 443, 447, 451, 452

Napier, J., III. 6, 225

Ð analogies of, IV. 378

Natural axes at principal focus,

I. 85, 143

Ð coordinate planes through ray,

I. 138, 140, 240; see also

I. Planes of extreme

projection; Planes of extreme

virtual foci

Ð coordinates for systems of rays

of the second class, I. 7

Nearly circular orbits, see II.

Circular orbits, nearly

Negative quantities, square root of

(geometrical representation),

III. 106

Neptune, discovery of, II. 104, 291

Neumann, F. E., II. 639; IV. 742,

743

Newton, I., I. 89, 312, 313, 314, 317;

II. x, 104, 140, 208, 217, 231,

286, 288, 289, 290, 291, 597;

III. 5; IV. 667, 669, 677, 678,

711, 712, 720, 723, 740

Newtonian law of force, II. 135, 217

Ð hodographic representation of,

II. 287, 290

Ð orbit, II. x, see also II. Elliptic

motion; Planetary motion

Newton's Law of attraction, III. 441,

449

Nicaea, Council of, IV. 681

Nice, see Nicaea

Nismes, IV. 679

Nodal points, I. 395, 508; see also I.

Focal centres

Node, II. 454, 456

Ð longitude of, II. 208

Non-distributive operator, III. 268

Norm, III. xvii, 657±665

Normal congruence, see I.

Congruence, normal

Ð slowness of propagation, I. 278

Ð Ð components of, see

I. Components

Ð surfaces, see I. Surfaces cutting

system of rays perpendicularly

Normal velocity of propagation

(w), I. 277, 280, 327, 497; see

also I. w; Velocity

Normals of circular contact on

Fresnel's wave, I. 283

Ð Relations of Surfaces to, I. xxvi,

304

Notation, Herschel's, for inverse

trigonometrical functions,

II. 202

Ð Lagrange's, for partial and

total derivatives, II. 316, 317,

336
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Ð Vandermonde's, for factorials,

523

Number couple, III. 167

Ð addition, subtraction,

multiplication and division of,

III. 8, 78, 80, 83

Ð of rays through a point, I. 346

Ð pair, quotient of two step-pairs,

III. 122

Ð power of, III. 8, 84, 92

Numbers, algebraic, operation in

positive or contrapositive,

III. 120, 121

Numeral separation, characteristics

of, III. 184

Numeral sets, addition and

subtraction of, III. 196

Ð conception of, III. 178

Ð division of, III. 197

Ð multiplication of, III. 184, 193

Ð powers of, III. 201

Ð pre-multiplying one by another,

III. 199

Ð submultiplying and reciprocal

of, III. 201

Numerical quaternions, product

and quotient of, III. 190

O, constant, connected with

aberrations, I. 430, 441, 443,

452

Ù, see I. Medium-function Ù
ù, I. 171; see also I. Normal velocity

of propagation

O'Brien, M., III. 155

Object-axes and eye-axes of

distortion, I. 256

Object glass, thin double

achromatic, I. xxiv, xxvii, xxviii,

379, 383, 407, 430, 434, 451; see

also I. Aplanaticity; Lenses, two

Ð thin triple, I. 430

Ð uniaxal crystal as, I. 340

Ð small plane, undistorted image

of, I. 39

Objects, visible magnitudes and

distortions of, viewed from

each other, I. 256

Oblique aplanaticity, see

I. Aplanaticity

Ð coordinates, I. 222

Ð exdiametral rays in instrument

of revolution, I. 299, 364, 367,

376, 383, 457, 506, 509

Ð indiametral rays in instrument

of revolution, I. 407±454

Ð plane, ray-lines from, I. 241, 248,

252

Observatory of Trinity College,

Dublin, at Dunsink, IV. 683

Octadic transposition, III. 168,

171

Octahedron, III. 609, 623, 646

Octaves, III. xvii, 648, 650

Ð law of moduli, III. 651

Ð multiplication table, III. 648

Ð non-associative, III. 650

Octonians, see III. octaves

Octonomials, III. 406

Ohm, M., III. 100, 124, 125, 126,

153; IV. 431, 765

Oldham, W., III. 154; IV. 351

One-axed crystal, see I. Crystal,

uniaxal

Operational methods, applied to

vibration in elastic medium,

II. xv, 527

Operator D, II. 544

Ð =, II. 530

Ð (=ÿ2 ÿ 1)ÿ1=2, II. 542

Ð I, II. 542

Ð tan ä, II. 543

Optic axes in biaxal crystal, I. 283

Ð of biaxal crystal, II. 442

Optical axes of a crystal, IV. 713

Ð combination, see I. Combination

Ð instruments, fundamental

problem of,

I. 297

Ð Ð see also I. Instrument of

revolution; Lens; Lenses;

Mirror; Object glass; Re¯ector;

Refractor; Surface; Surfaces of

revolution; Telescope

Ð systems, fundamental formula

of, I. 109

Optics, application of analysis to,

I. 17, 88

Ð history of, I. xxvi, 311

Ð mathematical, division into two

parts, I. 298

Ð Ð fundamental formula of, see

I. Fundamental formula

Ð Ð fundamental problem of, I.

169

Ð Ð science of, I. 314

Ð Ð view of, I. xxvi, 295, 297

Ð physical, characteristic function

may be applied to, I. 301

Orbit, plane relative, II. 135,

136

Ð varying, II. 208, 209, 269

Ð see also II. Central; Elliptic;

Kepler; Newtonian; Parabolic;

Planetary

Orbits, astronomical, I. 330

Ð nearly circular, see II. Circular

orbits, nearly

Order, see III. progression

Orders of aberration, I. xxiv, 49

Ordinal couple, III. 167

Ð derivation, characteristics of,

III. 167

Ð sets, see III. sets

Ordinary media, see I. Media

Ð re¯ection, analytic expressions

of law of, I. 9

Ð Ð see also I. Re¯ection

Ð refraction, analytic expressions

of law of, I. 88

Ð Ð see also I. Refraction

Ð systems of re¯ected rays, I. 9; see

also I. Systems of rays

Ð systems of refracted rays, I. 88;

see also I. Systems of rays

Ordnance Survey, IV. 753

Orinoco, IV. 689

Orion, IV. 668

Orthogonal trajectories, theorem

of, I. 333; see also I. Huyghens,

Theorem of; Malus, Theorem

of; Surfaces cutting system of

rays perpendicularly

Osculating action-surfaces,

extreme, I. 270

Ð circle to a curve in space, locus

of, IV. 564

Ð foci, I. 30, 35

Ð Ð extreme, I. 274, 480

Ð focal crystals, I. 8

Ð Ð distance, I. 29

Ð Ð mirrors, I. 26

Ð Ð re¯ectors, I. 135, 275

Ð Ð refractors, I. 92, 135, 275

Ð Ð surfaces, I. 7

Ð Ð systems, I. 125, 478

Ð hyperboloid for ray-lines from

oblique plane, I. 248
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Osculating action-surfaces, extreme

(cont.)

Ð sinusoid, II. 497

Ð sphere to perpendicular surface,

I. 49

Ð spheroids, I. 132

Ð surface of second order, III.

395

Ð twisted cubic to a curve of

double curvature, III. 435

Ð waves, extreme, I. 270

Osculation, plane of, of osculating

focal system, I. 126, 134,

479

Ð of surfaces of constant action, I.

133, 270, 479

Oughtred, W., I.370

Pair numbers, quotient of two step

pairs, III. 122

Pappus, IV. 82

Parabola, diametral, I. 63

Parabolic action, II. 89

Ð motion, characteristic function

for, II. 139

Ð Ð approximation to, II. 88

Ð see also II. Comet; Projectile

Ð orbit, II. 75, 76

Ð Ð time in, II. 75, 139, 294

Ð re¯ector or refractor of

revolution, I. 216

Paraboloid, auxiliary, for ray-lines

from oblique plane, I. 248,

252

Ð guiding, see I. Guiding

paraboloid

Paraboloids of revolution

osculating a mirror, I. 23,

25, 27

Parallactic inequality,

approximation to, II. 627

Parallel rays incident on

combination of mirrors, I. 37

Ð on instrument of revolution, I.

364, 376, 383, 429, 457, 508

Ð on mirror, I. 23

Ð Ð foci for, I. 23, 28, 99

Ð Ð lines of re¯ection for, I. 28

Ð on refractor, I. 93

Parallelogram of forces, statical

proof of, II. xiii, 284

Paramatta, IV. 678

Parameters, method of variation of,

applied to perturbation

problem, II. 255, 279, 280

Ð compared with method of

principal function, II. 255, 263,

269, 279, 280, 281, 282, 622

Ð Poisson's mode of applying,

II. 280

Ð see also II. Constants, method of

variation of

Paris, IV. 676

Ð inch, II. 587, 591

Parker, J. W., IV. 172

Partial differential coef®cients of

caustic surface, I. 355, 361

Ð of characteristic functions,

changes in, due to re¯ection

or refraction, see I. Re¯ection

or refraction

Ð Ð connections between, I. 112,

184, 190, 199, 490

Ð Lagrange's notation for, II. 316,

317, 336

Ð of V , as components of normal

slowness, I. 172, 277, 301, 497

Ð Ð as direction cosines of ray,

I. 17, 91, 297, 322

Ð Ð see also. V

Ð Ð v, Ù, õ, of connections

between, I. 207

Partial differential equation (®rst

order):

Ð Ð characteristics of, II. xii, 391,

392, 634

Ð Ð complete integral of, II. 393,

396

Ð Ð for I, in atmosphere, I. 106

Ð Ð for T, I. 178

Ð Ð for V, in dynamics, I. 331,

485

Ð Ð in extraordinary systems, I.

xxv, 147, 170, 178, 301, 328,

474

Ð Ð in oblique coordinates,

I. 224

Ð Ð in ordinary systems, I. xx,

xxv, 18, 146, 322, 364, 473

Ð Ð in plane systems, I. 153

Ð Ð in systems of revolution,

I. 155

Ð Ð see also I. Integration;

Transformation

Ð Ð for W, I. 178

Ð Ð general integral of, II. 393,

396

Ð Ð integration of, II. 391, 634

Ð Ð Pfaff's method of, II. 326,

329, 331

Ð Ð of caustic surfaces, I. 357

Ð Ð of pencils or surfaces of rays,

I. 19, 91, 346

Ð (second order): expressing

condition of rectangularity of

extraordinary system of rays,

I. 8, 335

Ð Ð characteristics of, II. 636

Ð Ð integral of, II. 401, 402

Ð Ð integration of, II. 397, 635

Ð Ð Ð examples, II. 403

Ð Ð for T, I. 180

Ð Ð for V, I. 170

Ð Ð for W, I. 179

Ð Ð of vibrating chords, I. 96

Ð Ð peculiar to spheric surfaces,

I. 97

Ð Ð representing crystals with

given caustic surfaces, I. 8

Ð equations (second order)

connected with re¯ecting or

refracting surfaces, I. 94±101

Ð Ð see also I. Singular primitives

Ð Ð for function of elements,

II. 179

Ð Ð Ð in motion of particle,

II. 185

Ð Ð Ð Ð of projectile, II. 194

Ð Ð for function of elements in

multiple system, II. 210

Ð Ð for principal integral of

differential expression, II. 334

Ð Ð Ð of total differential

equation, II. 360, 365, 409

Ð Ð for Q, II. 169

Ð Ð for S, II. 161, 214, 631

Ð Ð Ð for particle, II. 182

Ð Ð Ð for projectile, II. 187

Ð Ð Ð in elliptic orbit, II. 217,

219

Ð Ð Ð Ð compatibility of,

II. 219

Ð Ð Ð in general coordinates,

II. 168, 631

Ð Ð Ð in three-body problem,

II. 230, 231, 233, 234

Ð Ð for V, 109

Ð Ð Ð in binary system, II. 130
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Ð Ð Ð in central orbits, II. 79, 95

Ð Ð Ð Ð common solution of,

II. 79

Ð Ð Ð Ð transformations of,

II. 95

Ð Ð Ð in general coordinates,

II. 116, 169

Ð Ð Ð in relative coordinates,

II. 127

Ð Ð Ð in ternary system, II. 142,

143

Ð Ð Ð in three-body problem,

II. 5

Particle, motion of, II. 181

Ð disturbing function for, II. 183,

185

Ð function of elements for, II. 185

Ð Hamilton's equations for, II.

182

Ð integrals of, II. 182

Ð perturbation theory for, II. 181

Ð principal function for, II. 182

Ð Ð disturbing part of, II. 183

Ð varying elements for, II. 185

Particles, linear system of, see II.

Linear system

Ð of aether, law of force between,

II. xiv, 448, 449

Pascal, B., theorem of, III. 246, 367,

417

Pascal's theorem, generalization of,

III. 417, 431

Paths of light, I. xxvi, 311; see also

I. Rays

Ð of planets, I. xxvi, 311; see also

I. Dynamics

Peacock, G., III. xiv, 125, 126, 135,

150, 153, 279, 356, 359;

IV. 431, 433, 451, 765

Ð treatises on algebra, III. 359;

IV. 451

Pedoe, D., IV. 185, 366

Pencil, equation of, IV. 293

Ð of chords, IV. 274

Ð of planes, IV. 406

Ð of vision, bounding, I. 31

Pencils, caustic, I. 270

Ð de®nition of, I. 18

Ð developable, I. 7, 19

Ð Ð and undevelopable,

difference between, I. 32

Ð Ð connections of characteristic

functions with, I. 120, 477

Ð Ð for re¯ection at mirror, I. 22

Ð Ð in extraordinary systems,

I. 120, 477

Ð Ð symmetrically situated with

respect to planes of extreme

projection, I. 138

Ð Ð see also I. Developable

surfaces

Ð of re¯ected system, I. 17

Ð of refracted system, I. 91

Ð partial differential equation of,

I. 19, 91, 346

Ð thin and undevelopable, I. xxii,

7, 30

Pentagon, continued product of

sides, III. 368, 369

Ð spherical, III. 214

Perihelion distance, II. 208

Ð longitude of, II. 208

Ð passage, time of, II. 208

Periodicity, degree of, II. 485

Permanent mode of vibration of

linear system, II. 489, 492, 495,

496, 498, 499

Perpendicular surfaces, see I.

Surfaces cutting system of rays

perpendicularly

Perturbation, Lagrange's and

Hamilton's methods

compared, II. 159, 160, 255,

279, 280, 281, 282, 622

Ð in lunar theory, II. 263, 264,

269, 276, 628

Ð problem of, II. 171, 177

Ð problems of, calculus of

principal relations applied to,

II. 250, 257, 278

Ð rigorous theory of, by principal

function, II. 170, 174

Ð theorem of, II. 73

Ð theory, III. 459

Ð theory of, disturbing function

in, II. 172, 173

Ð Ð for motion of particle,

II. 181

Ð Ð Ð of projectile, II. 188

Ð Ð Ð Ð with variation of

gravity, II. 197

Ð Ð for multiple system, II. 150,

155, 200

Perturbations, independence of, on

disturbed mass, to ®rst order,

II. 78

Ð in three-body problem, II. 5, 20,

30, 231, 235

Ð of astronomical bodies, II. xiii;

see also II. Lunar theory; Three-

body problem

Ð of dynamical system,

approximations to, II. 155, 172

Ð of elliptic elements, in lunar

theory, II. 245, 247, 262, 269

Ð Ð in three-body problem, II. 32

Ð of Jupiter, II. 8

Ð of Moon, see II. Lunar theory;

Moon

Ð of multiple system, II. 150, 155,

200

Ð of nearly circular orbits, II. 30,

235

Ð of orbits, I. 330

Ð of Saturn, II. 12

Petrie, G., award of Cunningham

Medal to, IV. 754

Ð review of his paper on the

history and antiquities of Tara

Hill, IV. 752±754

Petzval, J. M., condition, I. 431

Pfaff, J. F., II. 326, 329, 331

Pfaff's method, II. 326, 329, 331

Phase, II. 459

Ð change of, II. 507, 509, 561

Ð phase of Fourier's de®nite

integral, IV. 165, 178

Ð -velocity, II. xii, 451, 556, 605; see

also II. Phase, velocity of

passage of; Phase, velocity of

transmission of

Ð Ð distinguished from group-

velocity, II. xv, 510, 517, 556,

571, 572, 577, 582, 602, 641

Ð velocity of passage of, II. 577,

581

Ð of transmission of, II. 459, 487,

491, 494, 496, 510, 517, 582

Phidias, IV. 672

Philadelphia, IV. 722

Phillips, J., I. xxvii, 383, 405, 407,

438

Philosophical Magazine, IV. 740,

748

Physical optics, characteristic

function may be applied to,

I. 301

Picard, C. EÂ ., I. 349, 504

Pierce, B., III. xix
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Plana, G. A. A., I. xxvi, 315, 333,

464; II. xiii, 246, 248, 249, 263,

272, 273, 275, 276, 277, 283,

627

Plana's results in lunar theory,

compared with Hamilton's, II.

246, 248, 263, 275, 627 Plane

mirror, see I. Mirror, plane

momentary, II. 77

Ð of aberration through any point

of ray, I. xxii, 40

Ð Ð through one of two foci on

ray, I. xxii, 42

Ð Ð Ð density on, I. 53, 54, 58

Ð Ð through principal focus, I.

xxii, 47, 83, 141

Ð of curvature of ray, I. 232

Ð of dispersion, I. 232

Ð of ecliptic, II. 2

Ð of osculation of osculating focal

system, I. 126, 134, 479

Ð polarisation, II. 597, 598

Ð re¯ecting or refracting curves,

I. 6

Ð relative orbit, II. 135, 136

Ð surfaces, media bounded by,

I. 177, 217, 493

Ð systems of rays, I. 6, 153; see also

I. Rays, indiametral

Ð waves in aether, II. 446

Ð Ð in crystal, II. 416

Ð Ð Ð velocities of propagation

of, II. 423, 427, 433

Planes, focal, I. 239; see also I.

Planes of vergency

Ð guiding, I. 232

Ð natural coordinate, through ray;

see I. Natural coordinate planes

Ð of circular contact on Fresnel's

wave, I. 285

Ð of circular section and circular

projection, IV. 498

Ð of de¯exure, conjugate, I. 241,

258

Ð of extreme de¯exure, I. 241,

245, 253; or of extreme

projection, I. 137, 141, 238,

240, 245, 253; or of extreme

virtual foci, I. 7, 141; see also I.

Natural coordinate planes

Ð of no distortion, I. 256

Ð of single normal velocity, I. 283

Ð of vergency, I. 238, 258

Ð Ð conjugate, I. 293

Ð Ð real or imaginary, I. 239, 253

Ð principal, of congruence, I. 140;

see also I. Natural coordinate

planes

Ð separating, I. 270

Ð Ð transition, I. 270

Planet, heliocentric coordinates of,

II. 207, 208

Ð image of, I. 37, 94, 420

Ð Metis, IV. 683

Ð motion of, see II. Central orbit;

Elliptic motion; Planetary

motion

Ð paths or orbits of, I. xxvi, 311,

330

Planetary distance, III. 464

Ð motion, II. 135, 217, 624

Ð Ð characteristic function for,

II. 135

Ð Ð principal function for,

II. 217, 624

Ð Ð see also II. Central orbit;

Elliptic motion; Parabolic

motion

Ð orbit, time in, II. 139, 140

Planets, known in 1834, II. 104

Plate, refraction through, I. 419,

421

Plates, phenomena of thin, II. 597

Plato, III. 609; IV. 668, 689

Pleiades, II. 291; IV. 668

Pluquaternions, III. 155, 294,

406, 656

Poetry, I. xiii

Poggendorff, J. C., I. 306, 309, 310;

II. 439

Poinsot, L., III. 368, 381, 385, 387,

406

Poinsot's theory of mechanical

couples, III. 452

Point, conjugate, I. 272; see also I.

Transition-point

Ð group-, I. 501

Ð motion of single, see II. Particle,

motion of

Ð of evanescent curvature, I. 7

Ð transition-, I. 270

Points, cardinal, I. 508

Ð focal, I. 508

Ð limit, of congruence, I. xxii,

140; see also I. Extreme virtual

foci

Ð nodal, I. 395, 508; see also I. focal

centres

Ð of ®rst construction, IV. 409

Ð of in®exion, transformed

coordinates of, IV. 320

Ð of vergency, I. 240, 265, 274

Ð Ð aberrations near, I. 275

Ð Ð loci of, I. 240; see also I.

Caustic surfaces

Ð Ð see also I. Foci on ray; Focus

(one of two) on ray;

Intersections of consecutive

rays

Ð principal, in instrument of

revolution, I. 457, 508

Poisson, S. D., II. xiv, 109, 160, 163,

175, 177, 264, 276, 277, 280,

283, 419, 449, 536, 537, 614,

638; IV. 144, 173, 176, 586,

600, 604, 610, 619, 627, 628,

629, 648, 655, 656, 659, 723,

746

Poisson brackets, II. 175, 176, 201,

203, 204, 206

Ð constancy of, II. 177

Ð criticism, II. 614

Ð law of force between particles of

aether, II. 449

Ð mode of applying Lagrange's

method of varying parameters,

II. 280

Polar coordinates, I. 222

Ð equation of Fresnel's wave,

I. 282

Ð Ð of living force in, for three-

body problem, II. 17, 25

Ð perturbations of, in three-body

problem, II. 20

Ð Ð of nearly circular orbits in, II.

228

Polarisation, Fresnel's law of,

II. 434, 444

Ð in biaxal crystal, I. 280

Ð Ð conical, I. 288

Ð Ð double, I. 288

Ð plane, II. 597, 598

Polars, reciprocal, III. 239

Polygenic syngraphy, III. 431

Polygons (Gauche), inscription of,

in surfaces of second degree,

III. 291, 293, 295, 297, 316,

398, 403, 407; IV. 502 (see also

III. spherical polygons) and
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with sides through ®xed

points, III. 404, 408

Polynomes, addition law, III. 317

Ð associative law, III. 318, 322,

339

Ð conjugate, III. 319, 321

Ð constants of multiplication,

III. 322, 331

Ð distributive law, III. 329

Ð equality of, III. 317

Ð as linear algebra, III. 318

Ð scalar of, III. 319

Ð vector of, III. 322

Ð versor of, III. 322

Ð with S, V, K as operators, III.

320

Poncelet, J. V., I. xiv

Pond, J., IV. 677

PonteÂcoulant, P. de, II. 249, 256,

264, 277, 283, 627; IV. 678

Poole, E. G. C., II. 542

Position, marks of, II. 113, 164, 214

Ð of relative, II. 125

Ð vector of, II. 287

Positive square root of general

existence, III. 8, 54

Potential energy of crystalline

medium, II. 638

Potter, R., I. xxvi, 305, 307, 309, 310

Powell, B., II. xv, 439, 583, 595, 596,

599, 601; IV. 724

Ð correspondence with, II. xv, 583

Power of system of refractors, I. 423

Ð of thick lens, I. 395

Ð of thin lens, I. 365, 370, 423

Ð of two hemispheres, I. 397

Ð of two thick lenses, I. 397

Ð refractive, of medium, I. 91,

104; see also I. Medium-

function v; Refractive index

Powering of a number couple by a

whole number, III. 8, 9

Prange, G., I. xxiv, 475, 487

Precedence, non-analogy of, III.

164

President of Royal Irish Academy,

I. v, x, xiv

Primary focus, see I. Focus, primary

Primitives, singular, see I. Singular

primitives

Principal axes in instrument of

revolution, I. 366

Ð of de¯exure, I. 244

Ð caustic, I. 362

Ð circles of de¯exure, I. 244

Ð coef®cient of aberration, I. 161

Ð foci or focus, see I. Foci; Focus

Ð foci, IV. 3, 15

Ð function, II. x, xiii, 72, 160, 163,

166, 167, 213, 215

Ð Ð application of, to dynamics,

II. x, 162, 212

Ð Ð applied to perturbation

theory, II. 170, 174

Ð Ð approximations to, II. 170,

335, 339

Ð Ð Ð for nearly circular orbits,

II. 220, 228, 235

Ð Ð Ð for particle, II. 182, 183

Ð Ð Ð for projectile, II. 189, 190,

191, 351

Ð Ð Ð in lunar theory II. 243,

247

Ð Ð Ð in three-body problem,

II. 235

Ð Ð determination of, from

complete integral, II. 613

Ð Ð Ð Hamilton's method of,

II. 334, 335, 631

Ð Ð disturbing part of, for

particle, II. 183

Ð Ð Ð for projectile, II. 189, 190,

191

Ð Ð Ð in perturbation theory,

II. 170, 172

Ð Ð for binary system, II. xiii, 619

Ð Ð for disturbed motion, II. 171

Ð Ð for elliptic orbit, II. 217, 624

Ð Ð for general dynamical

system, II. 160, 166, 167, 213,

215

Ð Ð for harmonic oscillator,

II. 618

Ð Ð for lunar theory, II. 238,

239

Ð Ð for particle, II. 182

Ð Ð for projectile, II. 186, 187

Ð Ð for relative motion, II. 200

Ð Ð for three-body problem,

II. 230, 231, 232

Ð Ð for undisturbed motion,

II. 171

Ð Ð general expansion for, for

nearly circular orbit, II. 225

Ð Ð integrals of motion deduced

from, II. 167, 213, 215

Ð Ð Ð law of variation of, II. 160,

166, 213, 215

Ð Ð Ð for elliptic orbit, II. 217

Ð Ð Ð for relative motion,

II. 200

Ð Ð Ð in lunar theory, II. 238,

239, 258

Ð Ð Ð in three-body problem,

II. 233

Ð Ð method of, applied to lunar

theory, II. xiii, 238, 257, 266

Ð Ð Ð compared with method of

varying parameters, II. 255,

263, 279, 280, 281, 282

Ð Ð Ð of improving

approximation to, II. 169,

214

Ð Ð Ð see also II. Principal

relations, calculus of

Ð Ð of the motional system of

bodies, III. 451

Ð Ð of total differential

equations, see II. Principal

integral

Ð Ð partial differential equations

for, II. 161, 168, 214, 631

Ð Ð Ð for particle, II. 182

Ð Ð Ð for projectile, II. 187

Ð Ð Ð in elliptic orbit, II. 217,

219

Ð Ð Ð in three-body problem,

II. 230, 231, 233, 234

Ð Ð relation of characteristic

function to, II.168

Ð Ð Ð of Q to, II. 168

Ð functions, calculus of, see II.

principal relations, calculus of

Ð integral of differential

expression of ®rst order,

II. 308, 309, 332

Ð Ð approximation to, II. 335,

339, 631

Ð Ð for two variables, II. 344, 348

Ð Ð determination of, II. 334,

631

Ð Ð partial differential equations

for, II. 334, 409

Ð of system of total differential

equations of any order, II. xi,

363, 372

Ð Ð law of variation of, II. 363, 364

Ð Ð of ®rst order, II. 369

Ð Ð law of variation of, II. 370
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Principal axes in instrument of

revolution (cont.)

Ð Ð of second order, II. 372

Ð of total differential equation of

®rst order, II. xi, 305, 306, 316,

358, 365, 408

Ð Ð improvement of

approximation to, II. 367

Ð Ð law of variation of, II. 359

Ð Ð partial differential equations

for, II. 360, 365, 409

Ð Ð relation of general integral

to, II. 329, 330

Ð planes of congruence, I. 140; see

also I. Natural coordinate

planes; Planes of extreme

projection; Planes of extreme

virtual foci

Ð points of instrument of

revolution, I. 395, 419, 457,

508; see also I. Focal centres

Ð rays, I. 130, 241, 275; see also I.

Axes of re¯ected system; Axes

of refracted system

Ð in instrument of revolution,

I. 300, 366, 377

Ð Relations, Calculus of, I. xi, II.

xi, xiv, 105, 163, 212, 297, 322,

334, 358, 408

Ð Ð applied to lunar theory,

II. xiii, 257, 266

Ð Ð Ð to perturbation problems,

II. 250, 278

Ð Ð for differential expression of

®rst order, II. xi, 322

Ð Ð for system of differential

equations of any order, II. xi,

360, 372

Ð Ð Ð of ®rst order, I. 368

Ð Ð Ð of second order, II. 372

Ð Ð for total differential equation

of ®rst order, II. xi, 297, 316,

358, 364, 408

Ð Ð fundamental theorem of,

II. 363, 364

Ð Ð particular cases, II. 375

Ð supplementary equations of

differential expression of ®rst

order, II. 333

Ð Ð of system of differential

equations of any order, II. 360,

362, 372, 373, 374

Ð Ð Ð of ®rst order, II. 368, 370

Ð Ð Ð of second order, II. 372

Ð Ð of total differential equation

of ®rst order, II. 302, 303, 316,

358, 364, 408

Ð value, Cauchy's, II. 469, 516,

552, 580

Ð virtual foci, I. 7; IV. 16, 18

Principia II. 100, 286

Principle, Hamilton's, II. 167

Ð of accumulated disturbance,

I. 313

Ð of equivalent vibrations,

II. 437

Ð of ¯uctuation, II. 520, 581

Ð of least time, see I. Fermat

Ð Rayleigh's, II. xii, 340

Principles of constant, least,

stationary and varying action,

see I. Action

Ð of least, stationary and varying

action, see II. Action

Prism, passage of light through,

I. xxvi, 305, 307, 310

Prismatic dispersion, II. 594

Ð spectra, II. 594

Prisms, ordinary and extraordinary,

I. 177, 184; see also I. Plane

surfaces

Probabilities, I. xi

Problem, capital, of dynamics,

II. 212

Ð fundamental, of mathematical

optics, I. 169

Ð Ð of optical instruments, I. 297

Ð of perturbation, II. 171, 177

Ð of three bodies, see II. Ternary

system; Three-body problem

Ð of two bodies, see II. Binary

system; Elliptic motion;

Planetary motion

Problems of perturbation, calculus

of principal relations applied

to, II. 250, 257, 278

Professorship of Astronomy, I. x

Progress of wave, velocity of, II. 577;

see also II. Group-velocity;

Velocity of propagation of

vibration

Progression, III. 5, 117, 118

Progressive wave, simple, see II.

Travelling sinusoid

Projectile, integrals of motion for,

II. 186, 187, 188

Ð motion of, II. 186

Ð Ð disturbing function for,

II. 189

Ð Ð function of elements for,

II. 193, 196

Ð Ð Hamilton's equations for,

II. 186

Ð Ð perturbations of, II. 188

Ð Ð principal function for,

II. 186, 187

Ð Ð Ð approximations to,

II. 189, 190, 191

Ð Ð Ð disturbing part of,

II. 189, 190, 191

Ð Ð varying elements for, II. 192

Ð Ð with variation of gravity, II.

197

Projection, foci by, I. 7, 135, 240,

241, 245

Ð planes of extreme, see I. Planes

of extreme projection

Propagation of disturbance,

velocity of, II. 606

Ð of light, in biaxal crystal, I. 165,

280, 288, 301, 330

Ð Ð rival theories of, I. 107, 313

Ð Ð see also I. Slowness; Velocity

Ð of light in crystals, II. xii, xiv,

413, 450

Ð Ð in vacuo, II. xiv, 446

Ð Ð rectilinearity of, II. 569

Ð of motion in elastic medium,

II. 527

Ð of plane wave in crystal,

velocities of, II. 423, 427, 433

Ð of vibration, II. 413, 450, 451,

527, 576, 578, 599

Ð Ð general law of, II. 571, 572

Ð Ð velocity of, II. 510, 517, 556,

560, 571, 572, 574, 575, 582,

605; see also II. Group-velocity

Ð slowness of, II. 417, 596

Ð wave-, Fresnel's law of, in biaxal

crystal, II. 433, 434, 444, 639

Ð Ð in dispersive crystal, II. 438,

439, 444, 445, 639

Ð law of velocity of, in dispersive

medium, II. 447, 582, 584, 586,

596

Ptolemy (Claudius Ptolemñus),

I. 312, 315, 316

Ð Almagest, IV. 366, 668, 669, 684,

685, 686, 687
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Pycnoid, I. 83

Pyramid, see III. tetrahedron

Pyramid, unit, IV. 408, 417, 512

Pyramidal function, III. 419, 422

Q-coef®cients in expansion for T,

I. 298; see also I. Aberration

coef®cients

Q function, II. 167, 170

Ð integrals of motion deduced

from, II. 167

Ð law of variation of, II. 167

Ð partial differential equations

for, II. 169

Ð relation of principal function to,

II. 168

Quadratic equation and

quaternions, III. 206

Quadrature of section of caustic

surface, I. 300

Quadric, cone, III. 436

Ð surfaces, III. 214

Quadrilateral, inscribed in a circle,

III. 370

Ð gauche, IV. 183

Ð plane, III. 370

Ð spherical, III. 213, 292, 369

Quadriplanar coordinates, IV. 425,

511

Quadripunctual, or quadrilinear,

coordinates, IV. 305

Quantity of vibration, II. 463

Quaternion, calculus, III. xiii, 117,

152, 232, 241, 349, 415

Ð derivation, III. 161, 166, 189

Ð equation, of ellipsoid, III. 259;

of index surface, III. 465

Ð factors, III. 233

Ð integers, III. 657

Ð units, III. xv, 103, 108, 111, 113,

142, 170, 217, 227, 231, 355;

inverses of, III. 171

Quaternions, I. xi, xiii, xv, xvii; II.

286, 287, 291, 293; III. xv, 103,

106, 111; IV. 181, 187, 204,

342, 345, 369, 370, 374, 375,

377, 384, 386, 388, 390, 391,

393, 400, 404, 410, 415, 421,

427, 428, 482, 500, 501, 503,

511, 558, 565, 574

Ð addition and subtraction,

III. 111, 174, 227

Ð amplitude of, III. 111, 174, 208,

218, 227, 364

Ð arithmetic of, III. 648

Ð associative law, III. 114, 148,

153, 195, 213, 233

Ð and astronomy, III. 452

Ð coaxial (multiplication of),

III. 364, 366

Ð codirectional, III. 225, 234

Ð coef®cients of multiplication,

III. 186, 192

Ð colatitude of, see III. latitude

Ð and cones of third degree,

IV. 506

Ð conjugate, III. 235, 238

Ð constituents of, III. 227

Ð and continued fractions, III.

304, 307

Ð and couples, III. 206

Ð cubes and cube roots of, III. 204

Ð discovery of, III. xiii, xv, 103,

106, 111, 142

Ð distance of comet or planet,

III. 464

Ð distributive law of, III. 142, 233

Ð division, III. 109, 197, 200, 232

Ð division algorithm for, III. 658

Ð exercises, III. 298

Ð exponential function of,

III. 207, 223, 225

Ð extension of, III. 316, 317

Ð fourth roots of unity, III. 172

Ð Fresnel's wave surface, III. 463,

467

Ð and general equation for cones

of the third order, IV. 504

Ð geometrical application of,

IV. 503

Ð geometrical basis of, III. 125

Ð grammarithm, III. 144

Ð Icosian calculus and, III. 609

Ð imaginary, see III. biquaternions

Ð inverse of, see III. division and

reciprocal set

Ð latitude and longitude of, III.

112, 218, 229, 364

Ð law of moduli, III. 191, 218, 229,

365

Ð linear function of, inversion of,

III. 348, 356

Ð logarithm of, III. 116, 211;

involves two indeterminates,

III. 212

Ð matrix representation, III. 643

Ð modulus of, III. 104, 112, 144,

190, 209, 218, 228, 364

Ð moment, III. 159

Ð multiplication, geometrical

interpretation, III. 144

Ð multiplication (non-

commutative), III. 105, 108,

111, 147, 153

Ð and Pascal's theorem, III. 246,

367, 417

Ð powers of, III. 202, 223

Ð product of two lines in space,

III. 144, 146, 220

Ð proportional fourth, III. 152,

356

Ð and quadratic equations, III.

206

Ð quantum mechanics, III. xix

Ð as quotient of two directed lines,

III. 153, 366

Ð reciprocal of, III. 238

Ð and reciprocity of curves in

space, III. 434

Ð roots of, III. 223, 230

Ð rotations, III. 151, 215, 226, 229,

643; in hyperbolic space, III.

645

Ð scalar part of, III. 236, 366, 372

Ð as sets, III. 186

Ð spherical geometry, III. 112,

212, 220, 230, 236, 365

Ð squares and square roots of,

III. 202, 222

Ð and surfaces of the second

order, III. 378

Ð symbolic extension of, IV. 503

Ð tensor of, III. 237, 249, 372

Ð theorem of Dupin, III. 432

Ð theorem of Joachimsthal, III 416

Ð theory of relativity, III. 643

Ð transformations of, III. 644

Ð vector part, III. 208, 236, 356,

366, 372

Ð versor of, III. 237, 249, 372

Quetelet, L. A. J., I. xvii, 332, 333,

463; IV. 748

Quinary calculus for space, IV. 517

Quinary symbols and types for

points, lines and planes,

IV. 406, 416

Quines, III. 336; IV. 410

Ð associative, theory of, IV. 503
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Quines (cont.)

Ð constants of multiplication,

III. 339

Ð equations of association,

III. 337, 346

Ð multiplication of, III. 337

Quinquiplanar, or

quinquipunctual, coordinates,

IV. 305, 511

Quotity and quantity, IV. 772

Radical, as function of roots,

III. 529

Ð coextensive in multiplying with

a rational function, III. 534

Ð constants of aberration, I. 299;

see also I. Aberration

coef®cients

Radii of curvature of caustic

surface, I. 46

Ð of undevelopable pencil, I. 7

Ð of object glass, I. 384

Radius of curvature of curve in

space I. 7

Ð of de¯exure I. 244

Ð vector, centrobaric,

perturbations of, II. 57, 67

Ð Ð heliocentric, perturbations

of, II. 71

Ð Ð Jupiter's, perturbations of,

II. 9, 10, 11

Ð Ð Moon's geocentric,

perturbations of, II. 243, 245,

248, 262, 263, 272, 274, 277

Ð Ð Saturn's, perturbations of,

II. 14

Rahn, J. H., I. 370

Ratio bissectionalis, IV. 182, 407,

558

Rational plane, IV. 519

Ð point, IV. 519

Rational function, reduced by

quintic, III. 471

Ð of three variables, III. 540

Rationality of nets in space, IV. 558

Ratios, power, roots and logarithms

of, III. 8, 60

Ð square roots of impossible,

ambiguous and

incommensurable, III. 8, 50

Ray, central, in instrument of

revolution, I. 300, 366

Ð curvature of, I. 232

Ð de®nition of, I. 15

Ð direction cosines of, as partial

differential coef®cients of V,

I. 17, 91, 297, 322

Ð Ð dependent on extreme

coordinates, I. 169, 297

Ð elements of position of, I. 15

Ð emergent, construction for, in

instrument of revolution,

I. 398

Ð equations of, see I. Equations;

Differential equations

Ð re¯ected or refracted,

construction for, I. 293, 302

Ð undulatory slowness along,

I. 168, 279, 499

Ð Ð velocity along, I. 279, 498,

500

Ð Ð Ð in biaxal crystal, I. 281

Ð vector, connection with index

surface, III. 466

Rayleigh, Lord ( John William

Strutt), I. 148, 488; II. xii, 340,

490

Rayleigh's principle, II. xii, 340

Ray-lines, I. 233, 238

Ð from oblique plane, I. 241, 248,

252

Ð intersections of, I. 238, 252, 253

Ð see also I. Elements of

arrangement

Rays, curved, I. 104, 109, 168,

227, 275

Ð cusp-, I. 283, 303

Ð cut perpendicularly by surfaces,

see I. Ellipsoid; Surfaces cutting

system of rays perpendicularly

Ð diverging from point, incident

on mirror, I. 25, 36, 94

Ð Ð on refractor, I. 93, 94

Ð exdiametral, I. 454, 455, 456; see

also I. 299, 364, 367, 376, 383,

457, 506, 509

Ð in atmosphere, I. xxv, 104, 326

Ð in history of optics I. 312

Ð in undulatory theory, I. 278, 498

Ð indiametral, I. 396, 432, 450,

451, 455, 458

Ð intersections of, see I.

Intersections; Caustic; Foci;

Focus; Points of vergency

Ð marginal, I. 429

Ð number of, through a point,

I. 346

Ð oblique, see I. Oblique

Ð parallel, see I. Parallel rays

Ð principal, see I. Principal rays

Ð surfaces of, I. 346; see also I.

Pencils; Developable surfaces

Ð systems of, see I. Systems of rays

Ð Theory of system of, II. 105, 214

Ð Theory of Systems of, see I.

Theory

Ray-velocity, lines of single, I. 280,

283

Real unit-point, IV. 195

Reciprocal and fractional numbers,

III. 8, 33

Ð hodographs, II. 288

Ð of a product, III. 201

Ð surfaces I. 164, 291, 292, 301;

III. 379, 393

Ð theorem in dynamics, II. xv,

451, 458, 490

Reciprocals, method of, IV. 93, 120,

132

Reciprocity of curves in space,

III. 434

Rectangular systems of rays, I. 16,

138; see also I. Surfaces cutting

system of rays perpendicularly

Rectangularity, condition of, IV.

577

Ð of extraordinary system of rays,

condition of, I. 7

Ð Ð expressed by partial

differential equation, I. 8, 335

Rectilinear congruence, see I.

Congruence

Rectilinearity, law of, I. 411

Ð of light propagation, II. 569

Re¯ected ray, construction for,

I. 293, 302

Re¯ected rays, ordinary systems of,

I. 9; see also I. Systems of rays

Ð system, axes of, I. 34

Ð Ð pencils of, I. 17

Re¯ection and refraction of light in

crystals, II. 435

Ð laws of, II. 437

Ð of vibrations, II. 457, 459

Re¯ecting curve, caustics of, I. 102

Ð hemisphere, I. 389, 390

Ð surface, see I. Mirror; Re¯ector;

Surface
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Re¯ection at interior surface of

crystal, I. 8

Ð from curve of double curvature,

I. 102

Ð history of law of, I. 312

Ð lines of, I. xxiv, 24, 94

Ð ordinary, analytic expressions of

law of, I. 9

Ð Ð and least action, I. xxiv, 10

Ð Ð systems of rays produced by,

I. 16

Ð or refraction, ordinary or

extraordinary, formula, laws or

rules of, I. 118, 214, 285, 301,

325

Ð Ð maxima or minima of time

or action-function for, I. 270

Ð Ð sudden changes due to, in

partial differential coef®cients

(®rst order) of V, 118, 215,

285, 301, 325, 329

Ð Ð Ð in partial differential

coef®cients (second order) of

T, I. 218; of V, I. 118, 218; of

W, I. 119, 218

Ð Ð Ð in T, I. xxv, 214, 388

Ð Ð Ð in V (zero), I. 117, 214,

329

Ð Ð Ð in W, I. xxv, 119, 214

Re¯ector, lines of re¯ection on,

I. xxiv, 24, 94

Ð of revolution, parabolic, T for,

I. 216

Ð separating lines on, I. 275

Ð T (2), T (4) for,

I. 391

Ð transition-line on, I. 275

Ð see also I. Mirror; Surface

Re¯ectors, combinations of, I. 93,

214

Ð osculating focal, I. 135, 275

Refracted ray, construction for,

I. 293, 302

Ð rays, ordinary systems of, I. 88;

see also I. Systems of rays

Ð systems, principal properties of,

I. 91

Refracting curve, caustics of, I.

102

Ð hemisphere, I. 389

Ð sphere, T (2) for, I. 395

Ð surface, see I. Refractor; Surface

Refraction, astronomical, I. 98

Ð atmospheric, II. 96

Ð at spheric surface, I. 162, 338,

442

Ð at surface of revolution, I. xxv,

160

Ð change of density at, I. 94

Ð conical, I. x, xxi, xxv, xxvi, 164,

285, 302, 303, 312, 330

Ð double, I. 288, 312

Ð extraordinary, IV. 714

Ð Ð at surface of revolution,

I. 336

Ð Ð in biaxal crystals, I. 8, 285

Ð Ð law of, I. 118, 214; see also I.

Re¯ection or refraction

Ð from curve of double curvature,

I. 102

Ð history of law of, I. 312

Ð index of, see I. Refractive index;

Refractive power

Ð indices of, effect of heat on,

II. 440

Ð in Iceland Spar, II. 439, 440

Ð lines of, I. xxv, 92, 94

Ð Ð extraordinary, I. 8

Ð of crystals, and least action,

I. 317

Ð of spheric lenses, I. 364

Ð of system of revolution, I. 160

Ð ordinary, law of, I. 88, 411

Ð Ð and least action, I. xxiv, 89,

317

Ð Ð and least time, I. 316

Ð systems of rays produced by, I. 91

Ð see also II. Re¯ection and

refraction

Ð through plate, I. 419, 421

Ð Ð prism, see I. Prism

Refraction through thin spheric

lens, I. 162, 365

Refractive index, I. 146, 316, 324;

see also I. Refractive power

Ð power of medium, I. 91, 104; see

also I. Refractive index;

Medium-function v

Refractor of revolution, parabolic,

T for, I. 216

Ð T for, I. 388

Ð T (2) and T (4) for, I. 391

Ð lines of refraction on, I. xxv,

92, 94

Ð rays diverging from a point

incident on, I. 93, 94

Ð separating lines on, I. 275

Ð transition line on, I. 275

Refractors, combinations of, I. 93,

214

Ð focal, I. 89

Ð osculating focal, I. 92, 135, 275

Ð system of, I. 423

Ð see also I. Surfaces

Relation between ®ve points in

space, II. 146

Relations, calculus of principal, see

II. Principal relations

Relative action, see II. Action

Ð coordinates, II. 113, 198

Ð Ð for binary system, II. 207

Ð Ð hodograph, II. 290

Ð living force, II. 121, 126, 150

Ð motion, II. 121, 197

Ð Ð characteristic function for,

II. 121

Ð Ð Ð in binary system, II. 134

Ð Ð Ð in elliptic orbit, II. 136

Ð Ð Ð in ternary system, II. 143,

147

Ð Ð Ð variation of, II. 121

Ð Ð principal function for,

II. 200

Ð Ð Ð variation of, II. 200

Ð orbit, plane, II. 135, 136

Ð position, marks of, II. 125

Relativity, III. 643

Rennie, G., IV. 724

Resisting medium, approximation

to principal function for

motion in, II. 351

Reversion of series, I. xxv, 55, 465

Revolution, optical instrument of,

see I. Instrument of revolution

Ð parabolic re¯ector or refractor

of, I. 216

Ð refracting surface or surfaces of,

I. 160; see also I. Refractor;

Surface; Surfaces

Ð systems of rays of, I. xxv, 155,

159, 160

Riccati, V., II. 563

Rigid body motion, III. 385

Ð unaccelerated, III. 384

Rings, phenomena of, II. 445

Ritz, W., II. 340

Robb, A. A., I. v

RoÈber, F. G., architect, IV. 566

RoÈber, F., IV. 566
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Robinson, M., IV. 176

Robinson, T. R., I. 468; III. 145;

IV. 176

Ð table of mean refractions,

IV. 755

Roemer, O., I. 311

Rogers, H. D., IV. 722

Rohr, M. von, I. 395

Root, as function of coef®cients of

an equation, III. 518

Rose, H. J., IV. 36

Rotation round axis of curvature of

ray, I. 253

Ð Rotations, and quaternions,

III. 361, 643

Ð composition of successive,

III. 361

of a solid body, III. 381

Round Towers of Ireland, IV. 754

Routh, E. J., II. 168, 206

Royal Irish Academy, IV. 368, 731,

773

Ð presidential address to,

IV. 730±738

Royal Society of London, IV. 720,

734, 738

Rudberg, F., II. 439

Ruf®ni, P., III. xx

Ruled surface, I. 15; IV. 418; see also

I. Pencil; Surface of rays

S, I. 268

Ð and points of vergency, I. 268

Ð and principal foci and principal

rays, I. 276, 495

ó , ô, õ, 169, 324

Ð as components of normal

slowness in undulatory theory,

I. 172, 277, 301, 327, 497

Ð sudden changes in, in re¯ection

or refraction, I. 118, 215, 285,

301, 325, 329

S function, see II. Principal function

Sadleir, F., 711

St Petersburg, IV. 748

Salmon, G., I. 33, 140, 283; II. 146;

III. xix, 406, 435; IV. 179, 186,

203, 223, 233, 251, 257, 262,

263, 276, 294, 299, 300, 301,

302, 308, 340, 367, 368

Salmon's harmonic cubic, IV. 302

Ð higher plane curves, III. 436

Ð rule completion of, IV. 301

Ð sextic, IV. 294, 300

Ð twisted cubic, III. 435, 481

Saturn, equations of motion of,

II. 2

Ð perturbations of, II. 12

Ð Ð in centrobaric coordinates,

II. 20

Ð Ð in heliocentric coordinates,

II. 70

Saturn's longitude, perturbations

of, II. 14

Ð radius vector, perturbations of,

II. 14

Scalars, III. 358, 359; IV. 438

Scales, law of, III. 152

Schef¯er, H., III. xvii, 657

SchroÈdinger, E. R. A., I. 277, 500

Schwarzchild, K., I. xxiv, 488

Science of pure time, IV. 762

Second class, system of rays of, I. 7,

15, 242

Segre, B., III. xxi

Seidel, L., I. 148, 429, 434, 435, 510

Semi-in®nite linear system of

particles, vibration of, see II.

In®nite linear system

Separating lines on re¯ector or

refractor, I. 275

Ð planes, I. 270

Separation, characteristics of

momental, III. 160

Ð of numeral, III. 184

Series for T, I. 298

Ð for U, I. 149

Ð for V, I. 150, 154, 156, 158,

160, 364

Ð for W, I. 149, 155, 364

Ð Lagrange's, I. 154

Ð Laplace's, I. 70, 82, 145, 148,

149, 466

Ð reversion of, I. xxv, 55, 465

Serret, J. A., IV. 309

Servois, F., III. 135, 150

Sets, III. 126, 133, 135, 299

Ð addition and subtraction of,

III. 132, 196

Ð conception of successive,

III. 178

Ð constants of multiplication of,

III. 132

Ð division of, III. 132, 175, 176,

197

Ð exponential and inponential

function of, III. 207

Ð logarithm of, III. 211

Ð multiplication of, III. 132, 134,

194, 196, 199, 201; and

associative law, III. 184, 196;

and cummutative law, III. 196;

and distributive law, III. 196;

negative, III. 184

Ð numeral, conception of,

III. 178

Ð of moments, III. 159, 162, 163,

173

Ð ordinal, division of one by

another, III. 175, 176;

multiplication of by a number,

III. 174; operations on, III.

166, 174

Ð powers of, III. 202

Ð product and quotient of

numerical quaternions,

III. 176, 190

Ð quotient of two, III. 133

Ð reciprocal of, III. 201

Ð submultiplication and

reciprocal of successive,

III. 201

Ð successive multiplication,

III. 154

Shakespeare, W., IV. 666

Silberstein, L., III. 643

Similar and similarly situated

ellipses, III. 295

Sine condition, I. 406

Single-axed crystals, IV. 25

Single normal velocity, lines of,

I. 280, 283

Ð planes of, I. 283

Ð ray-velocity, lines of, I. 280, 283

Single-axed crystal, see I. Crystal,

uniaxal

Singular primitives or solutions,

I. 23, 100, 347, 349, 357,

359, 505

Singularities of congruence, I. xxii,

xxvii, 345, 504

Sinusoid, II. 488, 489, 492

Ð ®xed, II. 502

Ð oscillating, II. 497

Ð travelling, II. 497, 499, 501, 502

Sinusoidal mode of vibration, II.

488, 489, 492, 495, 497

Ð wave, II. 451
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Six valued function of three

variables, III. 545

Skotodynamics, II. xii; see also I.

Darkness, dynamics of

Slowness, normal, I. 278

Ð components of, see I.

Components

Ð of propagation of wave, II. 417

Ð undulatory, along ray (v), I. 168,

279, 499

Ð vector of, II. 293

Smedley, E., IV. 36

Smith, T., I. 48, 488

Snellius (Snel, W. van R.), I. 301,

312, 316, 326; IV. 684, 711

Solar system, approximation to

characteristic function for,

II. 83, 94

Solid, regular, III. 623, 646

Ð body, rotation of, III. 381

Solution, common, of partial

differential equations for V ,

II. 79

Solutions, singular, see I. Singular

primitives

Sommerfeld, A., II. 571

Sonnet, I. xvi

Southall, J. P. C., I. 44, 162, 395,

431, 435

Southey, R., I. xiii

Space, order in, III. 7

Ð osculating in a given direction,

III. 395

Speci®c heats of gases, IV.

746±751

Spectra, prismatic, II. 594

Spectrum, diffraction-, II. 591

Ð of interference, II. 591

Sphere, a-parabolicity for, I. 425

Ð condition that ®ve points lie on

a, III. 369

Ð osculating perpendicular

surface, I. 49

Ð refracting, T (2) for, I. 395

Ð see also I. Hemisphere

Ð touching four given spheres,

III. 394

Spheric in¯exion, directions of, on

surfaces cutting rays

perpendicularly, I. 48, 87

Ð lenses, see I. Lens; Lenses

Ð surface, refraction at, I. 162,

338, 442

Ð surfaces, partial differential

equation peculiar to, I. 97

Spherical aberration, see I.

Aberration; Aberrations;

Aplanaticity, direct

Ð conic, IV. 459, 463, 467

Ð Ð curvature of, IV. 472

Ð ellipse, IV. 369, 377

Ð excess, III. 390; IV. 369, 377

Ð geometry and quaternions,

III. 212

Ð parallelogram, III. 363

Ð polygon, formula for, III. 212

Ð polygons and product of

quaternions, III. 213, 214, 236,

291

Ð quadrilaterals and conics,

III. 363

Ð trigonometry, IV. 384, 402

Sphero-conic, description of, under

central force, II. xiii, 286

Spheroids of Brewster, I. 8

Ð of constant action, I. 133; see also

I. Action

Ð Ð as waves in undulatory

theory, I. 259

Ð osculating, I. 132

Spottiswoode, W., III. 155

Square roots, method of, IV. 132

Square roots of negative numbers,

geometrical representation of,

IV. 432, 449

Square system of particles, vibration

of, II. 568

Squares, method of least, II. 594

Sprawling, or ladder, form of

exponentials, IV. 56

Star, aberration of, II. 290

Stationary action, see I. Action

Ð law of, see II. Action

Ð length, line of, I. 319

Ð value of T with respect to

intermediate variables, I. 217,

370, 408, 413, 493

Step, null, III. 119

Ð triplet, III. 127

Step-couple, multiplication of by a

number, III. 8, 9, 78, 121

Ð multiplication of by a number-

couple, III. 8, 9, 80, 122

Ð ratio of one to another, III. 8, 80

Step-triads, addition and

subtraction of, III. 126

Ð division of, III. 127

Ð multiplication of, III. 127

Steps, addition and subtraction of

numeral, III. 196, 197, 299

Ð in the progression of time, III. 8,

16; subtraction, multiplication,

reciprocal and fractional

numbers, III. 8, 33

Ð in time, III. 22, 117, 119, 120,

126

Ð mean proportional between

two, III. 8, 50

Ð proportional, series of, III. 8, 60

Ð submultiple and fractions of,

III. 8, 33

Ð unit, primary, secondary and

tertiary, III. 127

Steward, G. C., I. 296, 406, 488,

489

Stirling, J., approximation of, IV. 73

Strained cubic lattice, II. 418, 450

Stokes, G. G., IV. 157, 162, 172,

173, 175, 176, 178

Stubbs, J. W., III. 375; IV. 500

Study, E., I. 487

Sturm, J. C. F., I. xxii, 44

Subsequences, non-analogy of,

III. 164

Suerman, A. C. G., 748±751

Sun, IV. 679

Ð central, II. 291, 292

Supplement, First, I. xxv, 107

Ð Second, I. xxv, 145

Ð Third, I. xxv, 164

Supplementary equations,

principal, see II. Principal

supplementary equations

Surface, diametral, for system of

rays, I. 7; IV. 15

Ð guiding, I. 235

Ð limiting for general system of

rays, I. 358; IV. 24

Ð of constant action, IV. 22

Ð of centres of ellipsoid, I. 34, 300

Ð Ð of undevelopable pencil, I. 7

Ð of components, I. 291, 303

Ð Ð and Fresnel's wave, I. 291,

301

Ð of revolution, extraordinary

refraction at, I. 336

Ð Ð re¯ecting, lateral and

longitudinal aberrations of,

I. 390
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Surface, diametral, for system of

rays (cont.)

Ð Ð Ð T for, I. 390

Ð Ð Ð see also I. Mirror;

Re¯ector

Ð Ð refracting, longitudinal

aberration of, I. xxv, 160

Ð Ð Ð T for, I. 389

Ð Ð Ð T (2) for, I. 409

Ð Ð Ð see also I. Refractor

Ð ruled, I. 15; see also I. Pencil;

Surface of rays

Ð spheric, refraction at, I. 162,

338, 442

Ð wave-, double, in Iceland Spar,

II. 441

Ð Ð Fresnel's, II. 432, 442

Ð Ð in dispersive crystal, II. 444

Surfaces, Cartesian, I. 89

Ð caustic, see I. Caustic surfaces

Ð cutting system of rays

perpendicularly, I. 7, 14, 90,

97, 138, 233, 315, 330, 334

Ð Ð as envelopes of spheres,

I. 15, 463

Ð Ð directions of spheric

in¯exion on, I. 48, 87

Ð Ð for curved rays, I. 105

Ð Ð in uniaxal crystal, I. 8, 335

Ð Ð lines of curvature on, I. 19

Ð Ð see also I. Action, surfaces of

constant; Huyghens, Theorem

of; Malus, Theorem of;

Orthogonal trajectories; Waves

Ð cylindrical, T for system of,

I. 493

Ð de¯exures of, I. 241

Ð developable, see I. Developable

surfaces

Ð isoplatal, I. 7

Ð of circular pro®le, I. 103

Ð of constant action, see I. Action

Ð of fourth degree, as envelope of

side of a polygon inscribed in

surface of second degree,

III. 404

Ð of least area, I. 7

Ð of rays, I. 346; see also I. Pencils;

Developable surfaces

Ð of revolution for central forces

and orbits, III. 445

Ð of revolution, refracting system

of any number of, close

together: aberration

coef®cients for, I. 457

Ð Ð condition of direct

aplanaticity for, I. 434, 435,

447, 451, 452

Ð Ð condition of oblique

aplanaticity for, I. 435, 447,

451, 452

Ð Ð constants M , N , O for, see

I. M , N , O

Ð Ð focal lengths and aberrations

of, I. 441, 444

Ð Ð focus of, for direct rays,

I. 429

Ð Ð for oblique rays, I. 431, 453

Ð Ð longitudinal aberration of,

I. 427, 429, 441

Ð Ð T for, I. 426, 431, 434, 445,

454

Ð Ð T (2) for, I. 417±420, 423,

426, 431, 434, 455

Ð Ð T (4) for, I. 426, 431, 433,

434, 455

Ð Ð see also I. Instrument of

revolution

Ð refracting system of two, T (2)

for, I. 418, 419, 420; see also I.

Lens

Ð of second degree, III. 248, 378,

393, 395, 447

Ð Ð and nets in space, IV. 5580

Ð osculating focal, I. 7

Ð plane, media bounded by, I.

177, 217, 493

Ð reciprocal, I. 164, 291, 292, 301

Ð re¯ecting and refracting,

determined by caustic surfaces,

I. 97

Ð Ð determined by lines of

re¯ection and refraction, I. 94

Ð Ð partial differential equations

connected with, I. 94±101

Ð Ð see also I. Mirrors; Re¯ectors;

Refractors; Surfaces of

revolution

Ð Relations of, to their Normals,

I. xxvi, 304

Ð through nine given points, III.

248, see III. polygon inscribed,

etc.

Ð virtual caustic, IV. 15

Sylvester, L., III. xxi, 489

Symbolic and biquadratic equation

satis®ed by the symbol of linear

operation in quaternions, III.

350

Symmetric functions, III. 543

Symmetrical optical instrument, see

I. Instrument of revolution

Synge, J. L., IV. ix

Syngraphy, geometrical, III. 421

Ð polygonic, III. 431

Synthesis, method of, I. 314

Syntypical functions, III. 541,

546

Ð points and planes, IV. 520

System of bodies, motion of, I. xi, 9,

331

Ð of rays, de®nition of a, I. 15

Ð Ð surfaces perpendicular to, see

I. Ellipsoid; Surfaces cutting

system of rays perpendicularly

Ð of refracting surfaces, see I.

Surfaces; Lens; Lenses

Ð of total differential equations,

Calculus of principal relations

applied to, see II. Principal

relations

Ð Ð Principal integral of, see II.

Principal integral

Ð see also II. Binary; Linear;

Multiple; Solar; Square;

Ternary

Systems of curved rays, I. 104, 109,

168, 227, 275

Ð of rays, classi®cation of, I. 15

Ð Ð developable, I. 7; IV. 7; see

also I. Pencils; Developable

Ð Ð emanating, IV. 19

Ð Ð extraordinary, I. 6, 107±144,

147, 164±293; IV. 25

Ð Ð in general, I. 1, 6, 345

Ð Ð of revolution, I. xxv, 155,

159, 160

Ð Ð of the ®rst class, I. 7, 15, 17

Ð Ð of the second class, I. 7, 15,

242; IV. 13

Ð Ð of the third class, I. 8, 242;

IV. 23

Ð Ð osculating focal, I. 125, 478

Ð Ð plane, I. 6, 153; see also I.

Rays, indiametral

Ð Ð produced by single-axed

crystal, I. 8

Ð Ð rectangular, I. 16, 138; see

also I. Rectangularity; Surfaces
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cutting system of rays

perpendicularly

Ð Ð Theory of, see I. Theory,

II. 105, 214

Ð Ð undevelopable, I. 7; IV. 9; see

also I. Pencils

Ð of re¯ected rays, ordinary, I. 9

Ð of refracted rays, ordinary, I. 88

T, auxiliary or characteristic

function, I. xx, xxv, 168, 174,

488, 492

Ð approximate method of

calculating, I. 372, 390, 408,

507

Ð elimination of intermediate

variables in calculating, I. 217,

370, 408, 413, 493, 507

Ð equations of ray in terms of,

I. 180, 299, 493, 464, 508,

Ð extended to curvilinear

coordinates, I. 222

Ð factor in, for thin system, I. 403,

456, 511

Ð for hemisphere, I. 389

Ð for instrument of revolution,

I. xxiii, xxvi, xxvii, 298, 376,

412, 434, 455, 503, 508, 512

Ð for paraboloid of revolution,

I. 216

Ð for single uniform medium,

I. 208

Ð for surface of revolution, I. 388

Ð for system of circles, I. 412

Ð for system of plane, cylindrical

or developable surfaces, I. 493

Ð for system of surfaces of

revolution, close together,

I. 426, 431, 434, 445, 454

Ð for thick lens, see I. T (2), T (4)

Ð for thin lens, I. xxvii, 369

Ð Ð of uniaxal crystal, I. xxvi,

337

Ð for thin system, I. xxiv, xxviii; see

also I. T for system of surfaces

Ð for two thick lenses, see I. T (2),

T (4)

Ð for two thin lenses (close

together), I. xxvii, 369

Ð for uncentred telescope,I. xxvii,

367

Ð general expression for, for all

optical combinations, I. 218

Ð homogeneous transformation

of, I. 205

Ð in undulatory theory, I. 489

Ð integration of partial

differential equation for V by

means of, I. 178

Ð partial differential coef®cients

of, deduced from those of W,

I. 199, 490

Ð Ð sudden changes in, in

re¯ection or refraction, I. 218

Ð partial differential equation

(®rst order) for, I. 178

Ð Ð (second order) for, I. 180

Ð principal foci and principal rays

in terms of, I. 276, 496

Ð stationary value of, with respect

to intermediate variables,

I. 217, 370, 408, 413, 493

Ð sudden change in, in re¯ection

or refraction, I. xxv, 214, 388

Ð transformation of, for change of

origin, I. 367

Ð transformation of partial

differential equation for V by

means of, I. 178

Ð V , W , deductions of, from each

other, I. 174

T (2), cardinal forms for, I. 509

Ð for instrument of revolution,

I. xxvii, xxviii, 298, 396, 397,

434, 455, 508, 512

Ð for re¯ector or refractor of

revolution, I. 391, 409

Ð for refracting sphere, I. 395

Ð for system of refracting curves,

I. 417

Ð for system of refracting surfaces

of revolution (close together),

I. 417-420, 423, 426, 431, 434,

455

Ð for thick lens, I. xxvii, 394, 396,

410, 419

Ð for thin lens, I. 375

Ð Ð of uniaxal crystal, I. 337

Ð for two thick lenses, I. xxvii, 396

Ð for two thin lenses (close

together), I. 371(4) for

instrument of revolution,

I. xxvii, xxviii, 298, 434, 455,

509, 513

Ð for re¯ector or refractor of

revolution, I. 391

Ð for system of surfaces of

revolution (close together),

I. 426, 431, 433, 434, 455

Ð for thick lens, I. xxvii, 400, 401

Ð for thin lens, I. 375

Ð Ð of uniaxal crystal, I. 337

T (4) for thin system, I. xxviii; see

also I. T (4) for system of

surfaces

Ð for two thick lenses, I. xxiv,

xxvii, 402, 458

Ð for two thin lenses, (close

together), I. 373, 405

Ð for uncentred telescope, I. 368

T function, see II. Living force;

Vis viva

Tables, Delambre's, IV. 681

Ð Hutton's, IV. 64, 166

Ð Kramp's, IV. 36, 39, 51

Ð lunar, II. 249, 256

Ð Robinson's, IV. 755

Ð Taylor's, IV. 165, 168, 371

Ð Vince's, IV. 681

Tacitus, IV. 682

Tait, P. G., II. 106; III. xix; IV. 384

Ð on Fresnel's wave, III. 467

Tangent, to circumscribed circle of

a triangle at a vertex, III. 370

Ð plane to sphere and point of

contact, III. 373

Ð to line of curvature, III. 266

Tangential coordinates, I. xxiii,

xxvi, 304, 475, 503

Tara Hill, IV. 752

Taylor, B., II. 335, 354

Taylor, M., logarithm tables of,

IV. 165, 168, 371

Taylor, R., Scienti®c Memoirs,

IV. 705, 737

Taylor, W. B. S., IV. ix

Taylor's series, IV. 86, 632, 653

Ð theorem, II. 335, 354

Teixeira, F. G., I. 380

Telescope, uncentred, I. xxvii,

367

Ð uniaxal crystal as object glass of,

I. 340

Telescopes, construction of, I. 104,

301, 383

Tension, total of a system of forces,

III. 383
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Tensor, factors of, III. 237

Ð of a geometrical quantity,

IV. 486

Ð quaternion, III. 237, 249, 372

Ternary system, II. 140

Ð characteristic function for,

II. 140

Ð Ð disturbing part of, II. 154

Ð Ð law of variation of, II. 143

Ð force-function for, II. 140

Ð integrals of motion of, II. 142,

143, 144

Ð law of varying action for, II. 142

Ð partial differential equations for

V, II. 142, 143

Ð variational equation for, II. 140

Ð with one predominant mass,

perturbations of, II. 150,

200

Ð see also II. Lunar theory; Moon,

theory of; Three-body problem

Terquem, O., theorem of, IV. 369,

376, 384

Tetrads, III. 316, 327, 330

Tetrahedron, III. 609, 646

Theorem, fundamental, of calculus

of principal relations, II. 363,

364

Ð of dynamics, II. 3

Ð see II. Euler's; Fourier's;

Hamilton's; Lambert's;

Reciprocal; Taylor's

Theoretical dynamics, development

of, II. 104

Theory of Systems of Rays, I. ix, x,

xix, xxii, 1, 88, 163, 314, 462,

II. 105, 214

Ð of light, see II. Light, theory of

Ð Moon, see II. Lunar theory;

Moon, theory of

Therefore, symbol {for, I. 370

Thickness of wave, II. 417, 421

Thin optical system, correction of

spherical aberration and coma

in, I. xxviii; see also I.

Aplanaticity

Ð factor in T for, I. 403, 456, 511

Ð T for, I. xxiv, xxviii

Ð T(4) for, I. xxviii

Ð see also I. Lens; Lenses; Surfaces

of revolution

Ð pencils, see I. Pencils

Ð plates, phenomena of, II. 597

Third class, systems of rays of, I. 8,

242; IV. 3±33

Thompson, C., IV. 34

Three bodies, problem of, see II.

Three-body problem

Ð system of, III. 451

Three-body problem, II. x, xii,

1, 230

Ð application of characteristic

function to, II. xii, 1

Ð characteristic function for, II. 3

Ð Ð approximation to, II. 25, 27,

32, 44, 53

Ð Ð variation of, II. 3

Ð disturbing function for, II. 32,

34, 44, 49, 53, 231, 232

Ð Ð approximation to, II. 49, 237

Ð Ð Hamilton's and Laplace's

compared, II. 51

Ð Ð heliocentric, II. 70

Ð Ð variation of, II. 37

Ð elements in, approximate

determination of, II. 14

Ð elliptic elements in,

perturbations of, II. 32

Ð partial differential equations for

S in, II. 230, 231, 233, 234

Ð Ð for V in, II. 5

Ð perturbations in, II. 5, 20, 30,

231, 235

Ð principal function for, II. 230

Ð Ð approximation to, II. 235

Ð Ð variation of, II. 233

Ð time in, approximation to,

II. 37, 612

Ð vis viva in, approximation to,

II. 17

Ð see also II. Lunar theory; Moon,

theory of; Ternary system

Three-dimensional waves in

dispersive medium, II. 569

Thucydides, IV. 689

Tilloch, A., founder of the

Philosophical Magazine,

IV. 748

Time, III. 3, 5, 6, 117, 159

Ð approximation to, in multiple

system, II. 155, 156

Ð Ð in three-body problem,

II. 37, 612

Ð in parabolic orbit, II. 75, 139,

294

Ð in planetary orbit, II. 139, 140

Ð mathematical science of, III. 7,

117

Ð obtained from characteristic

function, II. 49, 108

Ð of passage of light through

prism, I. xxvi, 305, 307, 310

Ð of perihelion passage, II. 208

Ð of propagation as characteristic

function, I. xxi, 168, 277, 296,

307, 329, 473, 475, 489, 497

Ð order in, III. 7, 9, 14, 117

Ð principle of least, see I. Fermat

Ð progression of, III. 8, 16

Ð pure, algebra as the science of,

IV. 762

Ð steps in, III. 22, 117, 119, 120,

126

Time-function, see I. V

Timmermans, A., I. 463

Todd, J. H., III. 355

Todhunter, I., IV. 369, 378

Toomer, G. J., IV. 366

Total derivatives, Lagrange's

notation for, II. 316, 317, 336

Ð differential equations, see II.

Principal integral; Principal

relations, calculus of; Principal

supplementary equations

Townsend, R., IV. 203, 340, 367

Trajectories, orthogonal, see I.

Orthogonal trajectories

Transformation, contact, I. xxi,

171, 474, 487, II. 179

Ð homogeneous, of W and T,

I. 198, 205

Ð of coordinates, I. 128, 222

Ð of Legendre, I. 474

Ð of T for change of origin, I. 367

Ð of partial differential equation

for V by means of W and T,

I. 178, 474

Travelling salesman problem,

III. xxii

Transition line on re¯ector or

refractor, I. 275

Ð planes, I. 270,

Ð points, I. 270

Transmission of phase, velocity of,

II. 459, 487, 491, 494, 496, 510,

517, 582; see also II. Phase-

velocity

Transverse vibrations, see II.

Vibration of linear system
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Travelling sinusoid, II. 497, 499,

501, 502

Triads step, see III. triplets

Triangle, spherical, III. 212

Trilinear coordinates, IV. 285

Trinome, III. 326

Trinomial form of equation of ®fth

degree, III. 480

Triordinal differnetial equation,

IV. 35, 134

Triple algebra, III. 141

Ð object glass, I. 430

Triplets, III. xiv, 107, 109, 126, 235

Ð addition and subtraction of,

III. 126

Ð commutative law, III. 139

Ð commutativity of multiplication,

III. 131

Ð coplanar, III. 143

Ð distributive law, III. 127, 138,

139

Ð division, III. 128

Ð divisors of zero, III. 129, 131

Ð extension to sets, III. 132

Ð geometrical interpretation of,

III. 135, 137, 140

Ð latitude and longitude of,

III. 140

Ð multiplication, III. 128, 137,

138, 142; constants of, III. 128;

by a number, III. 127

Ð product of lines in space,

III. 130

Ð units of, III. 127

True anomaly, II. 208

Turin, IV. 678

Turner, E., IV. 757

Turner, S. A., Hamilton's host in

Aigburth, Liverpool, II. 267;

IV. 729

Twenty-sided polygon, calculation

relating to, IV. 562

Two bodies, problem of, see II. Two-

body problem

Two-body problem, see II. Binary

system; Elliptic motion;

Parabolic motion; Planetary

motion

Two-dimensional waves in elastic

medium, II. 568

Two spherical hexagons, theorem

of, IV. 458

Two variables, principal integral for

differential expression in,

II. 344

Ð examples of, II. 348

Tycho, see Brahe

Typical points and planes, IV. 528

U, I. 148

Ð development in series for, I. 149

Ð Ð in plane system, I. 153

Ð Ð in system of revolution,

I. 155

U function, see II. Force-function

õ, connections of partial

differential coef®cients of,

with those of v mand Ù, I. 207;

also ó
Ullswater, II. 599

Ultimate state of vibration in elastic

medium, II. 555, 565, 566

Umbilical points, III. 267, 288, 295

Umbilics, I. 275, 300, 475; see also I.

Principal rays

Undevelopability, coef®cient of,

I. 7, 33; IV. 10, 12

Undevelopable pencils, see I.

Pencils

Ð systems of rays, I. 7; IV. 9

Undistorted image of small plane

object, I. 39

Undisturbed motion of binary

system, II. 202

Ð of general system, integrals of,

II. 171, 174

Ð Ð principal function for,

II. 171

Ð of multiple system, integrals of,

II. 200

Ð of particle, II. 183

Ð of planet, principal function for,

II. 217, 624

Ð of projectile, II. 188, 189

Undulatory slowness along ray (v),

I. 168, 279, 499; see also I.

Medium-function v

Ð theory of light and prismatic

aberration, I. 305, 310

Ð Ð application of characteristic

function to, I. 277, 497

Ð Ð components of normal

slowness in, I. 172, 277, 301,

327, 497; see also I.

Components of normal

slowness

Ð Ð history of, I. 313

Ð Ð laws of re¯ection and

refraction in, I. 285, 301; see

also I. Re¯ection or refraction

Ð Ð medium-function Ù in,

I. 278, 497

Ð Ð Ð normal velocity of

propagation (ù) in,

I. 277, 280, 327, 497

Undulatory theory of light of

Fresnel, I. 165, 280, 285, 302,

314, 330

Ð of Huyghens, I. 313

Ð rays in, I. 278, 498

Ð T in, I. 489

Ð V as time of propagation in, I.

xxi, 168, 277, 296, 307, 329,

473, 497

Ð W in, I. 278, 475, 489

Ð waves in, and surfaces of

constant action, I. 107, 259,

335

Ð see also I. Wave theory

Ð velocity along ray (1=v), I. 279,

498, 500; see also I. Medium-

function v

Uniaxal crystal, see I. Crystal

Uniconality, equation of, III. 244

Uniform media, see I. Media

Unit-conic, or unit-curve, IV. 195

Unit-curve, inscribed, IV. 208

Ð principal evanescent, IV. 203

Unit-curves, IV. 203

Ð principal imaginary, IV. 203

Ð principal real, IV. 203

Unit-line, IV. 186

Ð coordinates, IV. 225

Unit-point, line, III. 135, 137

Unit-point, IV. 186

Ð coordinates of the line,

IV. 210

Ð in space, IV. 409

Ð tangential equation of, IV. 186

Unit-pyramid, IV. 408, 417

Unit-system, curves of, IV. 196

Unit-triangle, IV. 195

Unit-wave in biaxal crystal, I. 281

Ð in any uniform medium,

construction for, I. 291

Unity, roots of, III. 116, 139, 372,

609, 610, 623, 624
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University of Dublin, II. 283

Uranus, II. 291

V, characteristic function, I. xix

Ð as action, I. xx, xxi, xxv, 111,

132, 168, 328

Ð as function of ®nal coordinates,

I. xx, 17, 111, 488

Ð Ð ®rst de®nition (see I. xix),

I. 91, 105

Ð as function of initial and ®nal

coordinates, I. xx, 168, 488

Ð as time of propagation in

undulatory theory, I. xxi, 168,

277, 307, 329, 473, 497

Ð change in, produced by passage

through thin spheric lens,

I. xxvii, 365

Ð development in series for,

I. 150, 364

Ð Ð in plane system, I. 154

Ð Ð in system of revolution,

I. 156, 158, 160

Ð equations of ray in terms of,

I. 111, 169, 172, 498

Ð for instrument of revolution,

I. xxvii, 155, 298, 364

Ð for plane mirror, I. 297

Ð for prism, I. 307

Ð for single uniform medium,

I. 208

Ð for system of curved rays (®rst

de®nition), I. 105

Ð for thin spheric lens, I. xxvii,

365

Ð for two thin lenses, close

together, I. 369

Ð function, see II. Action function;

Characteristic function

Ð general expression for, for all

optical combinations, I. 218

Ð in dynamics, I. 331, 485

Ð in geometry of surfaces, I. xxvi,

304

Ð maxima and minima of, I. 270

Ð medium-functions W, v

deduced from, I. 169, 482

Ð partial differential coef®cients

of, as components of normal

slowness, I. 172, 277, 301, 497

Ð Ð as direction cosines of ray,

I. 17, 91, 297, 322

Ð Ð connections of, with those of

W, I. 112, 184, 490

Ð Ð sudden changes in, in

re¯ection or refraction, I.

118, 215, 218, 285, 301, 325,

329

Ð partial differential equation

(®rst order) for, see I.

Integration; Partial differential

equation; Transformation

Ð Ð (second order) for, I. 170

Ð principal foci and principal rays

in terms of, I. 134, 276, 495

Ð unchanged in value by

re¯ection or refraction, I. 117,

214, 329

Ð W, T, deductions of, from each

other, I. 174

v, see I. Medium-function v

Vacuo, propagation of light, in,

II. xiv, 446

Value, asymptotic, II. xv, 539, 547,

554

Valz, IV. 679

Vandermonde, A. T., I. 64, 468;

II. 523

Vandermonde's notation for

factorials, II. 523; IV. 35, 134,

652

Variation, law of, see II. Action

function; Characteristic

function; Disturbing function;

Elements, function of;

Hamiltonian function;

Principal function; Principal

integral

Ð of constants, method of, II. 175,

249; see also II. Parameters,

method of variation of

Ð of gravity, projectile with, II. 197

Ð of parameters, method of, see II.

Parameters, method of

variation of

Ð of elements, method of, II. 174,

622

Variational equation, Lagrange's,

II. 105, 164, 212

Ð for binary system, II. 128

Ð for ternary system, II. 140

Ð in lunar theory, II. 239, 257

Ð principle and contact

transformation, I. xxi, 487

Variations, calculus of, I. xx, xxv, 8,

104, 107, 110, 319, II. xi, 107,

109, 166, 303, 309, 317, 359,

363, 391, 408

Ð applied to integration of partial

differential equations, II. xiv,

391

Varying action, see I. Action; see II.

Action

Ð elements, see II. Elements,

varying

Ð ellipse, II. 208, 209, 269

Ð orbit, II. 208, 209, 269

Ð Ð a new theory of, IV. 728

Vector, III. xv, 145, 153, 209, 211,

346, 359, 366

Ð aconic function of six, III. 418

Ð adeuretic function of ten,

III. 419

Ð an alternating function,

III. 421

Ð coplanarity, III. 239

Ð general formula for four,

III. 285

Ð general formula for three,

III. 284

Ð gradient and curl of, III. 377

Ð gradient operator, III. 263, 377,

432

Ð hodographic, II. 291

Ð light, direction of, II. xii

Ð of eccentricity, II. 290

Ð of position, II. 287

Ð of proximity, III. 260, 376; and

reciprocal surface, III. 379

Ð of slowness, II. 293

Ð of velocity, II. 287, 293

Ð on cone of second degree,

III. 244

Ð parallelism, III. 239

Ð product of two (unit), III. 215,

360

Ð pyramidal function of four,

III. 419

Ð quotient of two (unit), III. 216

Ð re¯exion of, III. 255, 258, 264

Ð units, in general, III. 319, 358

Vectors, IV. 438

Velocities, wave-, in crystal, II. 423

Ð in dispersive crystal, II. 437, 439,

441

Velocity, areal, II. 208

Ð centrobaric, II. 199

Ð components of, III. 448
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Ð distinction between group- and

phase-, II. xv, 510, 517, 556,

571, 572, 577, 582, 602, 641

Ð group, I. 500

Ð group-, II. xii; see also II. Velocity

of progress of vibration;

Velocity of propagation of

disturbance; Velocity of

propagation of vibration

Ð heliocentric, II. 208

Ð molecular (v), I. 168; see also I.

Medium-function v;

Undulatory slowness; Velocity

of light

Ð normal, of wave propagation

(w), I. 277, 327, 497,

Ð Ð in biaxal crystal, I. 280

Ð Ð lines of single, I. 280, 283

Ð Ð planes of single, I. 283

Ð of extinction, II. 571

Ð of light, I. Fermat on, I. 316

Ð Ð Galileo and Descartes on,

I. 311

Ð Ð in emission theory, I. 9, 110,

147, 168, 335, 500

Ð Ð in Iceland Spar, II. 439, 441,

442

Ð Ð Newton on, I. 317

Ð of passage of phase, II. 577,

581

Ð of progress of vibration, II. 577

Ð of propagation of disturbance,

II. 606

Ð of propagation of vibration,

II. 510, 517, 556, 560, 571,

572, 582, 605

Ð of transmission of phase, II. 459,

487, 491, 494, 496, 510, 517,

582

Ð phase-, II. xii, 451, 556, 605; see

also II. Velocity of passage of

phase; Velocity of

transmisssion of phase

Ð ray-, lines of single, I. 280, 283

Ð undulatory, along ray, I. 279,

498, 500

Ð Ð in biaxal crystal, I. 281

Ð vector of, II. 287, 293

Ð wave-, Fresnel's law of, in biaxal

crystal, II. 433, 434, 444, 639

Ð Ð in aether, II. 447, 448

Ð Ð law of, in dispersive medium,

II. 447, 582, 584, 586, 596

Venter, ``point of extreme

excursion'', II. 454, 456

Venus, IV. 678

Verdet, E., I. 281

Vergency, I. 238

Ð planes of, see I. Planes of virgins

Ð points of, see I. Points of virgins

Vernal equinox, IV. 681

Versor, see III. quaternions, versor

of

Vertices of circular image, I. 40

Ð of mirror, I. 35

Ð of surface, I. 102, 362

Vibrating chords, equation of, I. 96

Vibrating system, energy of, II. 463

Ð equations of motion of, II. 413,

446, 569, 578

Vibration, directions of, in crystal,

II. 423

Ð general law of propagation of,

II. 571, 572

Ð lines of, on Fresnel's wave, I. 288

Ð in aether, propagation of, II.

446

Ð in crystals, propagation of, II.

413, 450

Ð in elastic medium, equations of,

II. 527

Ð Ð general integral of, II. 547,

548, 576, 601, 602

Ð Ð for large values of t, II. 555,

565, 566

Ð Ð propagation of, II. xv, 527,

599

Ð of cubic system, II. 418

Ð of in®nite linear system, II. 458,

459, 460, 461, 465, 482, 502,

503, 511

Ð Ð rec of cubic system, II. 418

Ð of in®nite linear system, II. 458,

459, 460, 461, 465, 482, 502,

503, 511

Ð Ð recapitulation of results,

II. 495

Ð of linear system, II. 451, 576,

600

Ð Ð for large values of t, II. 503

Ð Ð initially oscillating in simple

mode, II. 463

Ð Ð Ð progressive wave, II. 487,

497

Ð Ð one particle vibrating in

prescribed manner, II. 511

Ð Ð passage from ®nite to

in®nite system, II. 465, 468,

477, 495, 500

Ð Ð Ð from in®nite to ®nite

system, II. 478, 482, 485

Ð Ð permanent mode of, II. 489,

492, 495, 496, 498, 499

Ð Ð recapitulation of results,

II. 488

Ð Ð with arbitrary initial

conditions, II. 451, 576

Ð of semi-in®nite linear system,

II. 457, 459, 460, 461, 465,

482, 500, 511

Ð Ð recapitulation of results

II. 492

Ð of square system, II. 568

Ð quantity of, II. 463

Ð researches respecting,

connected with theory of light,

II. xiv, 451, 578

Ð sinusoidal mode of, II. 488, 489,

492, 495, 497

Ð velocity of progress of, II. 577

Ð Ð of propagation of, II. 510,

517, 556, 560, 571, 572, 582,

605

Vibrations in crystals, law of vis viva

for, II. 437

Ð principle of equivalent, II. 437

Ð re¯ection of, II. 457, 459

Ð in elastic ether, I. 165, 280,

313

Vince, S., Solar Tables of, IV. 681

Vincent, III. 100

Virtual caustic, I. 7

Ð caustic surfaces, I. 7

Ð development of the pencil,

IV. 13

Ð foci, I. see I. Foci; Focus

Ð intersection of rays, I. 139

Visible image of luminous point,

I. 32

Vision, bounding pencil of, I. 31

Vis viva, II. 106; IV. 743; see also

II. Living force

Ð approximations to, in three-

body problem, II. 17

Ð derivative of V with respect to,

II. x, xii, 46, 49, 108

Ð law of, for vibrations in crystal,

II. 437

Voss, A., II. 285
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W, characteristic or auxiliary

function, I. xx, xxv, I. 111, 147,

168, 174, 473, 488

Ð applied to geometry of surfaces,

I. xxvi, 304, 475

Ð development in series for,

I. 149, 155, 364

Ð equations of ray in terms of,

I. 147, 148, 180, 473, 474

Ð for focal system of rays, I. 125

Ð for instrument of revolution,

I. xxvii, 155, 364, 515

Ð for parabolic re¯ector or

refractor of revolution, I. 216

Ð for single uniform medium,

I. 208

Ð for thin spheric lens, I. xxvii, 365

Ð function, see II. Disturbing

function

Ð general expression for, for all

optical combinations, I. 218

Ð homogeneous transformation

of, I. 198

Ð in curvilinear coordinates, I. 222

Ð in undulatory theory, I. 278,

475, 489

Ð integration of partial

differential equation for V by

means of,

I. xx, xxv, 146, 153, 155, 178,

364, 473

Ð partial differential coef®cients

of, and those of T, I. 199, 490

Ð Ð and those of V, I. 112, 184,

190, 490

Ð Ð sudden changes in, in re¯ec-

tion or refraction, I. 119, 218

Ð partial differential equations

for, I. 178, 179

Ð principal foci and principal rays

in terms of, I. 132, 276, 495

Ð sudden change in, in re¯ection

or refraction, I. xxv, 119, 214

Ð transformation of partial

differential equation for V by

means of, I. 178

Ð V , T , deductions of, from each

other, I. 174

Wallis, J., III. 136, 137, 145, 150, 225

Warren, J., III. 100, 103, 106, 107,

135, 139, 277, 279, 356, 359;

IV. 432, 433, 441, 451

Watson, G. N., II. 509, 563

Wave, Fresnel's, application of

quaternions to, I. xi, xvii

Ð cusps and circles of contact on,

I. 164, 283, 302

Ð equation of, I. xxvi, 280, 341

Ð in polar form, I. 282

Ð lines of vibration on, I. 288

Ð relations of, to surface of

components, I. 291, 301

Ð -front, II. xv, 640

Ð description of, II. 563, 604, 605,

606, 640

Ð in any uniform medium,

construction for, I. 291

Ð Ð curvature of, I. 131

Ð in biaxal crystal, polarisation of,

I. 280

Ð interval of, II. 421

Ð -length, II. 446

Ð mechanics, I. 500

Ð motion in elastic medium,

description of, II. 563, 599,

640; see also II. Vibration in

elastic medium

Ð Ð in linear system, see II.

Vibration of linear system

Ð -normal, II. 638, 639

Ð normal slowness of propagation

of, I. 278; see also I.

Components

Ð normal velocity of propagation

of, I. 277, 280, 327, 497; see also

I. w ; Velocity

Ð re¯ected or refracted,

construction for, I. 302

Ð simple progressive, see II.

Travelling sinusoid

Ð sinusoidal, II. 451

Ð slowness of, II. 417

Ð surface (Fresnel), III. 465

Ð -surface, double, in Iceland

Spar, II. 441

Ð Ð Fresnel's, II. 432, 442

Ð Ð Ð optic axes of, II. 442

Ð Ð Ð section by principal

plane, II. 442

Ð Ð in dispersive crystal, II. 444

Ð theory and emission theory,

I. xxi, xxv, 107, 313, 497

Ð Ð see also I. Undulatory theory

Ð thickness of, II. 417, 421

Ð unit-, see I. Unit-wave; Wave

Ð -velocities, in crystal, II. 423

Ð Ð in dispersive crystal, II. 437,

439, 441

Ð -velocity, in aether, II. 447, 448

Ð Ð in biaxal crystal, Fresnel's law

of, II. 433, 434, 444, 639

Ð Ð in dispersive crystal, Fresnel's

law of, II. 438, 439, 444, 445,

639

Ð Ð in dispersive medium, law of,

II. 447, 582, 584, 586, 596

Ð Ð see also II. Group-velocity;

Phase-velocity; Velocity of

propagation of vibration;

Velocity of transmission of

phase

Waves as surfaces of constant

action, I. 107, 259,

Ð cutting rays perpendicularly,

I. 330, 335

Ð extreme osculating, I. 270

Ð plane, in aether, II. 446

Ð Ð in crystal, II. 416

Ð Ð Ð velocities of propagation

of, II. 423, 427, 433

Ð three-dimensional, in dispersive

medium, II. 569

Ð two-dimensional, in elastic

medium, II. 568

Wayman, P. A., IV. xxvii

Whewell, W., IV. 723

Whittaker, E. T., I. 318, 468, 487;

II. 139, 166, 286, 638, 639

Winkeleikonal, I. 488

Wollaston, W. H., IV. 712

Woodhouse, IV. 765

Wordsworth, W., I. xiii, xiv, xvi;

IV. 663, 671

Work, II. 106

Wyndham-Quin, E. R. W., Viscount

Adare and Earl of Dunraven,

IV. 762

Young, T., I. 165, 314; II. 106;

IV. 723

Young, J. R., III. xvii, 135, 155, 651,

652, 655

Zero, Differences of, I. xi

Ð functions of, differences and

differentials of, IV. 701

Zero-invariant, I. 162
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