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PREFACE

This fourth volume of the Mathematical Papers of Sir William Rowan Hamilton completes
the project begun, in 1925%, by the instigators and first Editors: Arthur William Conway
(1875-1950) and John Lighton Synge (1897-1995). It contains Hamilton’s published papers
on geometry, analysis, astronomy, probability and finite differences, and a miscellany of
publications including several addresses. There are also three previously unpublished manu-
scripts, namely: the, unfortunately incomplete, Third Part of the Systems of Rays, the earlier
parts of which were published in Volume I; two letters to Augustus De Morgan, one devoted
to definite integrals and the other to a third order differential equation; and a very long letter
and postscript addressed to Andrew Searle Hart on Anharmonic Coordinates.

At the end of this volume will be found a list of Hamilton’s papers in approximate
chronological order. As well as an index to this volume, there is also a combined index for all
four volumes.

The frontispiece is a view of Dunsink Observatory, where Hamilton lived and worked from
the time of his appointment, in 1827, as Andrews Professor of Astronomy and Royal
Astronomer of Ireland until his death in 1865. It is a reproduction of an aquatinted etching
published in 1820 by William Benjamin Sarsfield Taylor (1781-1850) and was intended to be
part of his History of the University of Dublin'.

The Royal Irish Academy acknowledges with gratitude the generous financial assistance
towards the publication of this volume from the National University of Ireland; Trinity
College, Dublin; University College, Dublin; University College, Cork; University College,
Galway; The Queen’s University of Belfast; The Dublin Institute for Advanced Studies.

A warm expression of thanks must be paid to the staffs of the Departments of Manuscripts
and of Early Printed Books in the Library of Trinity College, Dublin, and to the staff of the
Royal Irish Academy, for their willing and expert assistance at all times.

For help in the preparation of this volume especial thanks are due to Dr. Ian Elliott, of
Dunsink Observatory, who suggested the frontispiece and who advised on astronomical
matters, and in Trinity College to Dr. B. P. McArdle, Professor Petros Florides, Miss Hannah
O’Connor, and my brother Professor W. Garrett Scaife. Prof. T. J. Gallagher of University
College, Dublin, and my daughter, Lucy, gave invaluable help in proof reading.

The care with which the Cambridge University Press has produced this work is most
gratefully acknowledged.

B.K.P.S
Department of Electronic and Electrical Engineering
Trinity College, Dublin
January 2000

* See Selected papers of Arthur William Conway, ed. James McConnell, pp. 8-9, Dublin Institute for
Advanced Studies, Dublin: 1953.

 The history was not published until 1845 and did not contain this particular etching: W. B. S. Taylor
History of the University of Dublin, T. Cadell, London, and J. Cumming, Dublin: 1845.

The odd spelling of ‘Dunsinok’ for Dunsink is puzzling and has not been explained. Dunsink is the
accepted English version of the Gaelic name ‘Dun Sinche’ (‘Fort of Sinneach’).
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MANUSCRIPTS






I.

SYSTEMS OF RAYS
PART THIRD*

On extraordinary systems, and systems of rays in general

XXIII. On plane Systems of Rays

110. If the aberrations be measured from a focus, at which the radius of curvature of the
caustic vanishes, the expression (M)” for the aberrations, or rather for their first terms, vanish
also, and the convergence is much more accurate than at other points of the caustics; on
which account we may call these foci the principal foci and the corresponding rays the axes of
the system. Resuming the general formule (H)", (K)”, and putting for simplicity x4 =0, i= 0,
as well as v" = 0, that is taking the axis of the system for the axis of (x) we find the following
values for the aberrations from a principal focus,

- %me?’ 1= %1/)”,03. (P)rr
Besides, by (G)”, the arc of the caustic, comprised between the two rays, has for expression
S — %1/),”02; (Q)I/
we have therefore, by elimination of ",
1=1S, 1=1S6. (R)"

3

111. The coefficient ¥"”, which thus enters into the expressions (P)”, (Q)", for the
aberrations on the arc, measured from a principal focus, has a remarkable geometrical
meaning, and is equal to three halves of the parameter of a parabola, which cuts perpendicu-
larly the rays near the axis of the system. For, if we take the principal focus for origin, and the
axis of the system for the axis of (x), conditions which give 4 =0, ¥ =0, ¥’ =0, " =0, the
focus of a near ray has for coordinates,

X = %w,”.iQ, Y = %wm.if‘}’

and the approximate equation of the caustic is

* [This part is now printed for the first time from the manuscript found among Hamilton’s papers
after the publication, in 1931, of Vol. I of these papers (MS 1492/312 in the Library of Trinity College,
Dublin). The manuscript is undated and incomplete. According to the published table of contents (see
Vol. I, pp. 1-9) this part should begin with paragraph 107 and finish with paragraph ‘161 to the end’,
but the MS begins with the last two words of the paragraph 109 on the 57th sheet and continues to the
end of paragraph 159 on the 79th sheet. Sheets 61, 62, and 63 are missing; these contain the end of
paragraph 119 to the beginning of paragraph 128.]



4 I. SYSTEMS OF RAYS. PART THIRD
X?) — %,‘/}m- YQ, (s)//

n

which shews that unless " be nothing or infinite, the caustic has, at the principal focus, a
cusp like the cusp of a semicubical parabola, and may be considered as the evolute of the
following common parabola

y2 — %wm.(x + %wrrr)’ (T)/r

to which therefore the rays near the axis are perpendicular, and of which the parameter is

"

equal to two thirds of .

112. We have just seen that the rays near the axis are cut perpendicularly by the common
parabola (T)”; in general, the rays of a plane system are perpendicular to a series of
rectangular trajectories, which have for equation dx + udy = 0, that is, by integration,

d
x 1+#2+J&: T, (U)/r

1+ u?

(u) being considered as a given function of (x, y) deduced from the equations of the ray, and
(T) being the arbitrary constant, which may be called the parameter of the trajectory. These
curves possess many interesting properties, a few of which I shall mention. In the first place,
they have the caustic for their common evolute, and the plane zone bounded by any two of
them is of the same breadth throughout, namely the difference of their parameters. A
trajectory, where it meets the caustic, has in general a cusp like the cusp of a semicubical
parabola, and may be considered as the evolute of a common parabola; of which the directrix
bisects the radius of curvature of the caustic, and of which the parameter is equal to two
thirds of that radius. The osculating parabola to a trajectory, at the point where it crosses a
given ray, has its axis inclined in general to that ray, at an angle whose tangent is the third
part of the radius of curvature of the caustic, at the focus of the ray, divided by the radius of
curvature of the trajectory, that is by the distance of the focus from the point of osculation.
But if the ray be an axis of the system, then this angle vanishes, and the axis of the parabola
coincides with the axis of the system. The parabola (T)" is a particular case of these osculating
parabolas, but it has this peculiarity, that whereas in general there is only contact of the third
order between a parabola and the curve to which it osculates, the parabola (T)” has contact
of the fourth order with the trajectory to which it belongs.

113. If the axes of the coordinates be chosen as in [111.], the equation of a ray, near the
axis of the system, will be

y= ix_%ww'if%’ (V)r/

in which we may consider () as equal to the angle that the near ray makes with the axis. If
among all these near rays, we consider only those which make with the axis, at either side,
angles not exceeding some given small value 6, we shall have i = 0.sin§, (§) being an
auxiliary angle, introduced for the sake of confining (i) within the limits assigned; and the
entire space over which the near rays are perpendicularly diffused, at any given distance (x)
from the principal focus, is the difference of the extreme values of (y) corresponding to the
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given value of (x). In this manner it may be proved that the least linear space into which the
given parcel can be collected, has for expression

> 11_21/J ///.03’ (W)//
and corresponds to
X = %1/1’”.02; X)"

that is, it is equal to half the lateral aberration of the extreme rays, and its distance from the
principal focus is three quarters of their longitudinal aberration. It may also be shewn, in a
similar manner, that the ends of this linear space %, are situated on the two branches of the
caustic curve, at the points where those branches are crossed by the extreme rays that touch
the alternate branches.

114. We have seen, that when the function ¢ is given, that is when we know the nature of
the system, we can deduce the equation and the properties of the caustic curve, by means of
the formula (D)",

X=y', Y=uyp —y.

If then it were required, reciprocally, to determine the nature of the function ), the equation
of the caustic being given, we should have to integrate the following equation of the first
order,

wp' =y = [, )"
y= f(x) being the given equation of the caustic. Differentiating (Y)", we find
{u—f"(")}dy" =0; ()"
the first factor
u—f'@)=0

belongs to a singular primitive of (Y)”, and contains the true solution of the question: the
other factor

d’l/), — 07 or, 'l/}" — 0 (A/)I/

belongs to the complete integral, and represents a set of systems, in which the rays do not
touch the given caustic, but converge to some one point upon it.

115. In all the applications of the preceding theory, to the plane systems produced by
ordinary reflection or refraction, or by any other optical law, we may consider the rays as
emanating from the last reflecting or refracting curve, according to a given law; and if we
represent by a, b, the coordinates of this reflecting or refracting curve, the equation of a ray is
of the form

—-b
y :f(V, b,), (B!)U

X —a

in which v is the tangent of the angle that the incident ray makes with the axis of (x);
b' = (db/ da), the corresponding quantity for the tangent to the reflecting or refracting curve;
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and f is a known function, depending on the law of reflection or refraction. Comparing this
equation (B')", with the form (A)” which we have before employed, we find

u = f(V, b,); w = au — b7 (C,)”
and therefore

— b'
Ay = adu + uda — db, ' = a—l—ﬂﬂ, , (D')"

4 dv + 4 av’,

du=9
=" b’

if we put for abridgment du = u'da. Substituting this value for ¥’, in the formule (D)", we
find the focal coordinates

-0 -
X=a+tf 2, v=prut ()"
u U
and therefore, for the focal length,
1+ u2)(u— b
F= VA= @ (1 - 2y = O, @y
Hence it follows that the reciprocal of the focal length, being given by the formula
d, da
1 ch v+ dg’ 0"
- 4 (G/)r/

Foo(l+ )b u—0)

consists of two parts; the one independent of the curvature of the reflecting or refracting
curve, and varying inversely as the distance of that curve from the focus of the incident ray;
the other independent of that distance, and varying inversely as the radius of curvature: a
result remarkable for its generality, since it is independent of the form of the function f, and
therefore holds, not only for the plane systems produced by ordinary reflection and
refraction, but also for the extraordinary systems, produced by refraction at a chrystal of
revolution, the axis of revolution being supposed to coincide with the axis of chrystallization,
and the incident rays being contained in the plane of one of the meridians.

116. As the caustic of a given curve, is found by the formulze

_ b, _ b,
B0 y=p+ut—2,
Iz u

X=a+

so, reciprocally, if it were required to find the curves corresponding to a given caustic, we
should have to integrate the equation

Y= f(X)

X Yhaving the same meanings as before, and fdenoting a given function. Differentiating this
equation we find either

aX =0
or

u—f1(X)=0;



I. SYSTEMS OF RAYS. PART THIRD 7

the latter factor, which belongs to the singular primitive, contains the true solution of the
question; the other factor, which belongs to the complete integral, represents a class of focal
curves which would cause the rays to pass through some one point upon the given caustic.
This point in which a ray of a plane system touches the caustic, is the focus of a curve of this
kind which has contact of the second order with the given reflecting or refracting curve; the
principal foci belong to focal curves which have contact of the third order.

XXIV. On Developable Systems

117. It was shewn in the IV" Section, that systems of rays may be divided into classes,
according to the number of their elements of position. It was also shewn that the rays of a
system of the first class, that is a system with but one such element, are contained upon a
surface or pencil as their locus; in the preceding section we have considered those systems of
the first class, in which this locus of the rays is plane; let us now pass to the case where it is a
curve surface, developable, or undevelopable, and let us call the system corresponding,
developable and undevelopable systems.

118. The equations of a ray being put under the form x = o + uz y = + vz, in which a j
do not now represent the cosines of the angles that it makes with the axes, but the
coordinates of the point in which it intersects the horizontal plane; if the ray belong to a
given system of the first class, we may consider the coefficients a 8 v u as given functions of
some one element of position, which we shall represent by y. Denoting the derived functions
corresponding by @’ 8’ u’ v' a” ... the partial differentials of the pencil are

_dz p+v'z
r= dx  u(B +v'z) —v(a + u'z)
_dz —(a' + u'z)

7% kB v (@ )
L@z _vEL 2B —v'a)v(B + y'2)
dx? {u(B’' +v'z) —v(a' + u'2)}?
o @r_ wE@W —v'a){uB +v'2) +v(a +u'n)}
dxdy {uB +v'z) —v(a' +u'2)}?
{ = &z WE+2'B —v'a)u(a' +u'z)
dy? {uB' +v'z) —v(a' +u'z)}®
in which E = (a’'+u'z) (B"+v"2) — (B’ +v'2) (0" + u"z); as appears by differentiating the
equations of the ray, and eliminating the differentials of y. Hence
52: _(ﬂ/ﬂr_v/ar)Q
{u(B' +v'z) —v(a' + u'z) }*

rt —

and the condition for the pencil being a developable surface is

‘Lt’ﬁ, 7V’a, — O.
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When this condition is satisfied, the rays are in general tangents to a caustic curve, whose
equations are had by eliminating y between the following expressions

X=a+uZ, Y=B+vZ Z=—-——=——:

which expressions, when we assign any particular value to y, that is when we consider any
particular ray, determine the focus of that ray, or the point where it touches the caustic. The
rays which are very near to a given ray, may be considered as intersecting that ray in the
corresponding focus, and as being contained in the tangent plane to the pencil; this plane,
which is the osculating plane of the caustic, has for equation

!

v
—B—vz=—(x—a—uz).
) u

119. This supposition, of a ray being intersected in its own focus by all the near rays, and of
these near rays being contained in the osculating plane of the caustic, being only approxi-
mately true, it is important to investigate the errors which it leads to, this is to calculate the
aberrations, lateral and longitudinal. Denoting by (¢) the small increment which the element
of position receives, in passing from a given ray to a near ray, the equations of that near ray
will be

x=a+ai+ia"® + -+ (utui+-)z
Yy=PB+Bi+ T 4+ v HVi+ )z
besides by the expressions for Z, we have

o' =—-u'zZ, p=-v7Z,

Q
|

n _(//tNZ_l_//t!Z!)’ U:_(,VNZ_’_,V!Z!)’
a/” — _(//tVNZ + 2/L£UZI _"_ //t’Z”)’ ﬂ/" — _(,V/UZ _"_ Q,VNZ/ + ,V!ZI/):

and if, for simplicity, we take the given focus for origin; the ray for axis of z, and the
osculating plane for the plane of xz, conditions which give

Z=0, a=0, =0, u=0, v=0, v =0, a' =0, p =0,
a"=—-u'7', p"=0, a"=-Qu"Z' +u'z", p"=-22"7,
the equations of the near ray may be thus written
x=(Wi+du® + ) a— W ZE =Y W2 -
y= G+ =tz
and if we neglect the cube of (i), the lateral aberration measured from the focus is

. VARSY
_ 1,72 1 2
l—iﬂZl —§—‘u(.0,

0 being the angle which the near ray makes with the given ray. With respect to the
longitudinal aberration, it does not exist; in the same sense as the plane systems, because the
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near ray does not in general intersect the given ray. But if we investigate the point on the
given ray, which is nearest to the near ray, this point may be considered as the virtual
intersection, and its distance from its limiting position may be called the

[There is a gap in the manuscript at this point. Sheets 61, 62, and 63 are missing. |

XXV. On Undevelopable Systems

[Paragraphs 125—-128 are missing. ]

129. We have shewn how to calculate, for any given undevelopable system, the directrix of
the pencil, and the breadth of the generating rectangle; for the directrix is the arrét de
rebroussement of the envelope of the limiting planes, and the breadth of the rectangle is the
interval (/), between the tangent of the directrix, and the ray to which it is parallel.
Reciprocally if we know the directrix, and the breadth of the rectangle corresponding to any
given point on that curve, we can deduce the equations of the ray, and all the other
properties of the system. In this manner we find, for the ray corresponding to any given point
(abc) on the directrix, the following equations

1+a?+0"? )é
d”2 + b/rQ + (b/a/r _ a/b//)g 4

1

1+ a2+ 0" >2

—b=0"(2— 1.b".| —: z 5] >
y (Z C) + (auz + b!rz + (bran_ arb/r)z

x—a=a.(z—c¢)+ I.a”.<

in which the accents denote derived functions for ¢; and eliminating ¢, we shall have the
equation of the pencil.

130. Ifin the equations of the preceding paragraph, we consider the three quantities a, , I,
as arbitrary functions of ¢, then that system of equations represents all surfaces composed of
straight lines; if we consider a, b, as arbitrary functions of ¢, and 7 as a constant quantity, then
the same system of equations represents a particular class of straight-lined surfaces, which
may be called isoplatal surfaces, because the breadth of their generating rectangle is constant;
and this class includes developable surfaces, for which that breadth is nothing. Finally, if we
consider a, b, as given functions of ¢, and [ as an arbitrary function, then the system
represents a class of pencils which have all the same given directrix; eliminating ¢, we find the
two following equations for those pencils, one with an arbitrary function 1, the other in
partial differentials of the first order,

y=>b'z=y(x—a'z), ap+dqg=1,

in which &’ b’ are to be considered as known functions of x y z, deduced from the following
equation, in which there is nothing arbitrary,

a"{y—b—0(z—¢)}=b"{x—a—a(x—¢)}.

131. The normals to a developable pencil, for all points of any given ray, have for their locus
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a plane passing through that ray; but when the pencil is undevelopable, the locus of these
normals is not in general a plane but an irregular hyperboloid, having for equation

(uu' +vv) {z+ux—a) +v(y—P)Y —{a' (x—a) + B/ (y = P} (1 + u* + v*)?

—{Wx—a)+v'(y—=P) — (ua' +vp")} A+ u* +vH{z+ ux —a) +v(y—p)} = 0.

If then we eliminate y between this equation, and its derived [equation], we shall have the
joint equation of the two surfaces of centres of the pencil; or, if we assign any particular value
to v, we shall find the locus of the centres of curvature for all the points of the corresponding
ray. Differentiating therefore the equation of the hyperboloid, and putting for simplicity

a=0, =0, u=0, v=0, v =0, o =0, p =uu,

that is taking the ray for axis z, the virtual focus for origin, and the limiting plane for the
plane of xz, we find the two following equations for the curve of the centres,

xz 4+ wy = 0, ILL,Q(ZQ _ X2 + u?) _ X(Oﬂ”ﬂ’ﬂ"Z) + y(ﬁ"+v"z);
from which it follows that the two radii of curvature of the pencil, at any given distance, z = 9,
from the virtual focus, are given by the following formula,
(52 + u?)l/?

53 0@ =0 (0 —0") £ /{n*(0 =020 —0")?2 + 4u(0* + u?)}]

p:

in which (u) is the coefficient of undevelopability;

”n

n =

u?
and 0, 0" are the roots of this equation
V"% + (B — u"u)d — a"u = 0.
We see then that the two radii of curvature of an undevelopable pencil have opposite signs,

that is are turned in opposite directions; the geometric mean between them has for expres-
sion

" 62+ 2
VPP = u’

u

which at the virtual focus reduces itself to the coefficient of undevelopability; and they are
equal to one another in length, at two distinct points upon the ray, namely those points
whose focal distances are 0’ 6”: we shall therefore call these points, the points of equal and
opposite curvature, and the two curves upon the pencil, which are their loci, we shall call the
lines of equal and opposite curvature.

132. If the ray be one of those axes condsidered in paragraph 126., the hyperboloid of
normals reduces itself to a plane, and the curve of centres becomes
x = O, II,L,QZ? — y(ﬂ/r+ V”Z);

it is therefore in this case a common hyperbola touching the ray at the origin, that is at the
focus, and having one of its asymptotes normal to the pencil at the point
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ﬁ//

/A

v

=

At this point both radii of curvature of the pencil are infinite, so that we may call it the point
of evanescent curvature; in general, at a ray of the kind that we are now considering, one radius
of curvature is infinite, while the other, the ordinate of the hyperbola of centres, has for
expression

#r‘z 52

v'o—¢

¢ being the focal distance of the point of evanescent curvature. At this point p changes sign;
the pencil undergoes an inflexion, and is cut by its tangent plane. We may remark also, that
the points in which the ray is crossed by the lines of equal and opposite curvature, being
given by an equation which becomes

p:

0% —ed =0,

are the focus and the point of evanescent curvature. Finally, since u = 0 gives / = 0, I being
the breadth of the generating rectangle, the ray that we are now considering touches the
directrix of the pencil, and since it may be shewn that the point of contact is determined by
the equation
6//
P

n

—c
v

this point is as far from the focus, at one side, as the point of evanescent curvature is at the

other.

133. We have seen that the two radii of curvature of an undevelopable pencil are always
turned in opposite directions. Now upon every surface which satisfies this condition, there
exist two series of lines determined by the differential equation

rdx® + 2sdxdy + tdy* = 0,

(r s t being partial differentials of the second order) which possess this remarkable property,
that the tangents to the two lines of this kind, passing through any given point on the surface,
coincide with the directions in which the surface is cut by its tangent plane at that point. On
an undevelopable pencil, one set of these lines are evidently the rays themselves; in general
they may be called the lines of inflexion on the surfaces, and they are connected with the
curvatures by many interesting relations; for example, the acute angle between them is
bisected by the tangent to the greater circle of curvature, and the obtuse angle by the tangent
to the lesser; also the square of the tangent of half the acute angle is equal to the lesser radius
of curvature divided by the greater, and the square of the tangent of half the obtuse angle is
equal to the greater radius divided by the lesser; so that the only surfaces upon which these
lines of inflexion are constantly perpendicular to one another, are those which have their
radii of curvature equal and opposite, namely, the surfaces which La Grange has shewn to
have the least possible area, for any given perimeter; and on a given undevelopable pencil,
the only points at which a ray is crossed perpendicularly by its conjugate line of inflexion, are
the points where the same ray meets the lines of equal and opposite curvature; finally the



12 I. SYSTEMS OF RAYS. PART THIRD

lines of inflexion have this other distinguishing property, that when they are curves, their
osculating plane is always a tangent plane to the surface to which they belong.

134. After the preceding remarks upon undevelopable pencils, considered as curve surfaces,
let us now investigate the aberration of a ray of such a pencil, at a small but finite distance
from a given ray. By calculations similar to those of the preceding section, we find the
following general expression for the lateral aberration

A=/(0% + u?).6,

0 being the angle between the two rays, d the distance from the virtual focus, and u the
coefficient of undevelopability. If the given ray be one of those which touch the virtual
caustic, and if the aberration be measured from its focus, we have then u =0, 6 = 0, and by
new calculations we find

R 02
cos?V '’

P-4

R being the radius of curvature of the virtual caustic, and Vthe angle at which the osculating
plane of that curve is inclined to the tangent plane of the pencil, that is here, to the
osculating plane of the directrix. With respect to the longitudinal aberration, if we define and
calculate it by the same reasonings as in developable systems, we find

u

1=1
2tan v

U being the angle at which the ray crosses the virtual caustic.

()

in this formula for the longitudinal aberration, is the radius of curvature of a remarkable
curve, to which we may be conducted by the following reasonings. We have seen that the
coefficient of undevelopability (u) is equal to the least distance between two infinitely near
rays, divided by the angle between them; we have therefore

135. The coefficient

_ dSsinv w  cosv.dS

~ d0 ’ tanv  do

dS being the element of the arc of the virtual caustic, and d6 the angle between the rays; if
then we can find a curve such that the arc comprised between two consecutive tangents,
which make with one another the same angle as that made by the two consecutive rays, may
be equal to (cosv.dS), that is to the projection of the element of the virtual caustic upon the
given ray, the radius of curvature (R’) of this curve will be equal to the coefficient

u

u

tanv’

and the formula for the longitudinal aberration may be thus written

__1pr
1=1R"6.
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Now, there are two different ways of finding a plane curve which shall satisfy this condition;
first by making a plane roll round the developable envelope of the limiting planes of the
pencil, collecting the rays in its progress, till it makes them all tangents to one plane curve;
and secondly by making each ray successively a momentary axis of revolution round which all
the rays that precede it in the system, beginning with some given ray, describe little stripes of
one-branched hyperboloids, in such a manner that they are all at last brought to be parallel
to a given plane, and therefore horizontal tangents to a vertical cylinder, if we suppose the
given plane horizontal; the base of this cylinder will be the same plane curve as that before
obtained, and will, like it, satisfy the required condition. Finally we may remark, that the two
constructions here indicated, include as particular cases the known manner of unrolling a
developable surface, and may be called the virtual developments of the pencil.

XXVI. On Systems of the Second Class

136. In a system of the second class, that is a system with two arbitrary constants, if we
represent a ray, as in the two preceding sections, by equations of the form

x=a+uz, y=p+vz

we may in general consider any two of the coefficients, for example a, 8, as being given
functions of the two others, and put their differentials under the form

da=a'du+a,dv, df = p'du+ ,dv.

We may also consider [19.] the coefficients u, v, as being themselves given functions of x, v, z
the derived functions corresponding are,

dﬂ_z+ﬁr du  a, du du+v du
dx« o dy o dz ar “dy)’
dv —fp" dv z+a dv dv dv
- = , = ,—=—u—+v.—|,
dx o  dy o dz dx dy

in which, 0 = (z+ a’) (z+ f,) — a,’. By means of these formula, we can find the condition
for the system being rectangular, that is for the rays being cut perpendicularly by a series of
surfaces; for if this be the case, the differential equation of those surfaces,

udx +vdy+ dz= 0,
will be integrable, and we shall have

dp du dv av

dy Ve T Mo
that is
wp, — (1 +v*)a, =uwva — (1+u*)p’.
When this condition is satisfied we shall have

uda +vdf = /(1 + u® +v?).do,
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¢ being a function of u, v, considered as independent variables; and the rays will be cut
perpendicularly by a series of surfaces having for equation

o/ (A+u+v) +o=T,

T being an arbitrary constant which may be called the parameter of the surface; we may also
remark, that the shell of space, bounded by any two of these surfaces, is of the same thickness
throughout, equal to the difference of their parameters.

137. Establishing any arbitrary relation between u, v, the rays which satisfy that relation have
a surface or pencil for their locus; these pencils may all be represented by the partial
differential equation

up+vg=1,
or by the functional equation
v=1y(u)

and the arbitrary function may be determined by the condition that the rays shall pass
through a given curve, or envelope a given surface. Among all these pencils there is only a
certain series developable; the differential equation of the series is, by XXIV.,

du.df — dv.da = 0,
that is, in our present notation,
a,dv? + (a' — B,)dvdu — B'du* = 0.
Denoting by a, @' the roots of this quadratic, so that
20,a=p—a — {(B,—a)’+4ap},
2a,a' =B, —a +{(B,—a) +4a,B'},

the tangent planes to the two developable pencils passing through any given ray have for
equations

y—pf—vz=alx—a— uz),
y—pf—vz=a'(x—a—uz),

and the corresponding foci of the ray, that is the points in which it touches the arréts de
rebroussement of these two pencils, have for their vertical ordinates

ISt Z:_%(a,—i_ﬁr)+%\/{(ﬁ1_a,)2+4a’ﬁ’}’
7' = L' +B) - WAB, —a)?+4a,p'};

these focal ordinates are therefore roots of the quadratic
224 2(a +B) +a'B,—af =0,
and the joint equation of the two caustic surfaces is

o=0,
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o having the same meaning as in the preceding paragraph. It may also be shewn that this
equation is a singular primitive of the partial differential equation

up+vg=1,

of which the complete integral v = 1 (1) represents all the pencils of the system.

138. To find the intersection of the two caustic surfaces, we have the condition
(B, —a')? +4a,p = 0;
when the system is rectangular, this condition resolves itself into the three following,
p,—a' =0, a,=0, p =0,

which are however equivalent to but two distinct equations, in consequence of the condition
of rectangularity; and thus the intersection sought, reduces itself in rectangular systems to a
finite number of principal foci, together with a corresponding number of rays, each of which
may be shewn to be intersected in its own focus by all the rays infinitely near it, and which
may therefore be called the axes of the system. We have already arrived at this result, by different
reasonings, in the case of the systems produced by ordinary reflection and refraction, which
as we have seen are all rectangular; and though the systems produced by extraordinary
refraction are not in general rectangular, yet we shall see that for these systems also, there are
certain particular rays, or axes of the system, which satisfy the same conditions

B, —a' =0, a =0, p =0.

If in any particular system, these three conditions be identically satisfied, by the nature of the
functions a, f, then it is easy to shew that those functions must be of the form

a=a—u.c pf=>b—r.ug,

and therefore that the rays all pass through some one point (a b ).

139. Besides the two foci of a ray, which correspond to the two developable pencils, and
which are points of intersection with rays infinitely near; a given ray has in general an infinite
number of virtual foci, which correspond to the undevelopable pencils, and which are nearest
points to rays infinitely near. These virtual foci are however, all ranged upon a finite portion
of the ray, which has its middle point at the middle of the interval between the foci of the
developable pencils, and its length equal to that interval divided by the sine of the angle
between the same developable pencils. The extreme virtual foci thus determined, form two
surfaces, which have for their joint equation

{uvp, — (1 +v¥)a, — pva’ + (1 +u)B'Y =40 (1+p* +v%),

o having the same meaning as in 136.: these may be called the virtual caustic surfaces; they
coincide with the ordinary caustic surfaces, where the first member of their equation
vanishes, that is when the system is rectangular; in general they have the same diametral surface

2z4+a' +5,=0;
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and their intersection with one another reduces itself to a finite number of isolated points,
which are determined by the following equations,

a/_ﬁl ﬁ, —Q,
Quv T+ v2  1+u?

and which may be called the principal virtual foci. When the system is rectangular, these points
coincide with the foci considered in 138.

140. With respect to the law, according to which the virtual focus varies between its extreme
limits, it may be shewn that these extreme positions correspond to two undevelopable pencils,
or rather to two sets of such pencils whose limiting planes are perpendicular to one another,
and are symmetrically situated with respect to the tangent planes of the developable pencils,
with which they coincide when the system is rectangular; and that if we take the ray for the
axis of z and denote by (1) the angle which the limiting plane of any other undevelopable
pencil, makes with that corresponding to one of the extreme virtual foci, and focal ordinate
of this pencil will be

2=z cos>n + z9sin’7,

21, 29, denoting the extreme values. Moreover if we take the planes corresponding to the
extreme virtual foci, for the planes of xz, yz, and place the origin at the middle point of the
interval between those foci, the length of which interval we shall denote by V; then, the
equations of a near ray may be thus written

x=(z—V).i+ VcosP.k, y=(z+V).k— VcosP.i

i. kbeing the small increments received by u, v, in passing from the given ray to the near ray,
and P the angle between the developable pencils; the general equation of thin pencils is
therefore k = (i), thatis

y(z—V)+xVcosP (x(z— V) — yV cos P)
22 — V2sin? P N 22 — V2sin? P

and it may be shewn as in IX. that the area of a perpendicular section is proportional to the
product of the distances from the foci of the developable pencils. It may also be shewn that if
we determine the form of the function , by the condition that the rays shall pass through a
little circle having for equations

for example through the circumference of the pupil of the eye, the radius of this pupil being
(e), and the eye being placed at a distance (J) from the middle point between the foci; every
section of the pencil made by a plane perpendicular to the given ray, (supposed to coincide
with optic axis), is a little ellipse, whose semi-axis major is

eV —2)+ VV2(0 — 2)2 + (62 — VZsin? P) (22 — V2sin? P)}
“= 02 — V2sin2 P ’
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of which the minimum value

e.V.sin? P
0 — cos P.\/(02 — V2sin? P)

a =

corresponds to

_ V2. sin% P
0 —cos P.\/(6%2 — V2sin2 P)

141. These results include, as particular cases, those which we had before found for systems
of reflected and refracted rays. We might, in a similar manner proceed to generalise the
calculations and reasonings into which we have entered, respecting the aberrations and
density in those systems; but it is more interesting to examine the general properties of
systems of rays, proceeding from any given surface according to any given law. Suppose then
that from every point of a given curve surface

F(xyz) =0,
proceeds a ray having for equations
¥ —x=uE' —z2 y—y=vE —2),

U, v being given functions of x, v, z, dz/dx, dz/dy, that is, ultimately, of xand y; the differentials
of u, v, z, will be of the form

du = w'dx + u,dy,

dv =v'dx +v,dy,

dz = udx + qdy;
and because a = x — uz [and] § = y — vz, we have

(zta)ywv, —uv')=0—-up)v, +uq',
—a,(u'v, —uy') =1 —up).u, +uqu,
=B W, —uv')=~0-vg)v' +vpv,

(Z+ﬁ/)(/’t,1}l - //t,’l//) = (1 - ’Vq)//t’ + ’Vl)//t,,

a',a,, B', B, having the same meanings as in the preceding paragraphs of the present section.
By means of these relations, we can translate all the formulz that we have found for systems
of the second class in general into the notation of emanating systems. We find, for example,
that the differential equation of the curves in which the developable pencils intersect the
surface from which the rays emanate, is

du.(dy — vdz) = dv.(dx — udz);

the condition for these developable pencils cutting one another at right angles, is
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uw+ @' + A —pup+v*)u, = A —vg+ @) +vu+ p)v,;
the equation which determines the two foci, is
W@ =2+ 1 —pupp{v,(z' = 2) + 1 —vg} = {u,(z' = 2) —ug}{v'(z' = 2) —vp}:

and the condition for these two foci coinciding, that is for the intersection of the caustic
surfaces, is

{Q—vpyu' +vpu, —uqv' — 1 —up)v,}* + 4{(1 — up)u, + uqu'y{(1 —vg)v' + vpv,} = 0.

We may remark that the condition for the rectangularity of an emanating system, is the
condition for the formula

udx +vdy + dz
V(I u? +v?)

being an exact differential.

142. We have seen, in the two preceding parts of this essay, that if upon the plane passing
through a given reflected or refracted ray and through any given direction upon the
reflecting or refracting surface, we project the ray reflected or refracted from the consecutive
point upon the given direction, the projection will cross the given ray in a point whose
distance (4) from the mirror is determined by the formula

2 N2
1 _ cos 1p+sm 1/),

h P p2

p1, p2 being the distances of the foci of the developable pencils from the mirror, and v the
angle which the plane of projection makes with one of the tangent planes to those
developable pencils. In general, it may be shewn that

2 2

1 _cos™y n sin® 7 ’
& €1 &9
¢ being the distance of the analogous point from the surface from which the rays emanate;
7 the angle which the plane of projection makes [with] the plane corresponding to one of
the extreme virtual foci 140.: and &1, €9 the extreme values of €, which are connected with
p1, p2, that is with the distances of the foci of the developable pencils, by the following
relations

1 1 1 1 1 1 1 < 1 1 )

—t =t === — =

€& & p1 p2 & & sinP\p1 po
P being the angle between the developable pencils. We may call the point thus determined,
the focus by projection; and we see that the extreme foci by projection cannot coincide with one

another, except at the intersection of the caustic surfaces, when the system is rectangular; or,
more generally, at the principal virtual foci (see 139.).

143. In the two former parts of this essay, we have arrived at various theorems respecting the
osculating foci of reflected and refracted systems; that is, the foci of surfaces which osculate
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to the given reflector or refractor, and which would themselves reflect or refract the given
incident rays to some one point or focus. Those theorems, abstracts as they appear, are
however only particular cases of certain more general properties of emanating systems, which
we come now to consider. Representing by (x, y, z, p, ¢, 7, 5, #), the coordinates and partial
differentials, first and second order, of the given surface from which the rays emanate; and by
(x', 9,2, p', ¢, r', s', ') the corresponding quantities for a focal surface, that is for a surface
which would cause the rays to pass through some one point (a, b, ¢); the coefficients (u, v)
which enter into the equation of the ray being given functions of the coordinates of the
surface and the partial differentials of the first order, their differentials will be, for the given
surface,

du du du du du
du =—.dx+—.dy+—.dz+— —d,
u Ix x+dy y+d +dp p + dq q
v av av
dv=—.d —d —d .d —d,
v=- X + ly + Z+dp P+ q

and for the focal surface

du du du dﬂ du
d d d .dz d dq’,
= e ey Gy
dv dv dv dv dv
dv = dx' +—.dy +— . d +—.dp +—.dq’.

But we have also, by the notation of 141.
du =u'dx +u,dy dv=v'de+v,dy
for the given surface; and by the nature of the focal surface, we have, for that surface,

_ udz' — dx’ v — vdz' — dy

! b
c—Z c— 7

Comparing these equations, and supposing that the given surface is touched by the focal
surface, an hypothesis which gives
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dv dv
=N, +—. — .1,
-1 d d
L:M’—l——fur'—}-—'u.s/,
c—z dp dq
d d
9oy S
c—z dp dq
vp dv
:Nr = - r’
c—z T T4
izl _ W
c—z "odp dg "’
if we put for abridgement
du  du du du
M =—+— —+—
dx+dz ' dy+dz ’
dv dv dv dv
N =—+—.p N,=—+—.4q
PR ' dy+dz 1

If now we wish to determine the focal surface by the condition of osculating to the given
surface in any given direction, for which dy = 7dx, we are to employ the following formula
Y —r+2(s' — )T+ (' — )T* =0,

r', s', t' being considered as given functions of the focal ordinate ¢, determined by the
preceding equations. And if among all the osculating focal surfaces thus determined, we wish
to find those for which this ordinate is a maximum or a minimum, together with the
corresponding directions of osculation; we shall have to employ the two following equations

r—r+(s'—s5)7=0 s —s+{'—t).1=0,

that is
dp' —dp=0, dg —dg=0,

or finally

udz — dx

vidx + v, dy;

& — d
= wdx+udy, oD

c— 2z
formulae which give by elimination
(udz — dx) (v'dx 4+ v,dy) = (vdz — dy) (u'dx + u,dy),
{u'(c=2) +1=upi{v,(c—2) +1—vg}t ={u,(c—2) —ugH{v'(c—2) —vp}.

Comparing these results with the formulae 141. we see that the foci of the greatest and least
osculating focal surfaces, are the points in which the ray touches the two caustic surfaces; and
that the directions of osculation corresponding, are the directions of the curves in which the
developable pencils intersect the given surface from which the rays proceed.
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144. The preceding theory of osculating focal surfaces conducts to many important
consequences respecting reflected and refracted systems, ordinary and extraordinary; for in
every such system, the rays may be considered as emanating from the last reflecting or
refracting surface, according to a given law, which depends both upon the law of reflexion or
refraction, and also upon the nature of the incident system: and it will be shewn that it is
always possible to assign such a form to the last reflector or refractor, as to make the rays
converge to any given focus (a b c); that is in the notation that we have just employed, the
differential equation obtained by eliminating p’, ¢' between the three following

a—x"=u(c—2"), b—y =v(c—2), dd=pdx'+ ¢dy,

is always integrable, and the integral represents a series of focal surfaces. With respect to the
nature of this series, we have already assigned their integral equation, for the case of ordinary
reflexion and refraction; and we shall assign it, in subsequent sections of this essay, for the
case of extraordinary reflexion and refraction, by chrystals with one or with two axes. The
integral equation of this series may therefore, in all cases, be found by elimination alone; and
supposing it known, we may determine the four constants which it involves, (namely the three
coordinates of the focus, and the parameter introduced by integration,) by supposing the
focal surface to osculate to the given reflector or refractor, at any given point, in any given
direction. And if, among all the focal surfaces thus osculating at any given point, we seek the
greatest and the least, by means of the formulae

dp’ = dp, dq' = dq,

it follows from the theory of the preceding paragraph, that we shall find the two foci of the
ray, and the directions of the two lines of reflexion and refraction, by calculations which are
generally more simple than those which would be required in differentiating the equations of
the ray.

145. Another application of this theory, relates to the surfaces of constant action. We have
seen, in the two former parts of this essay, that the rays of an ordinary system are normals to
this series of surfaces; and it will be shewn, that in extraordinary systems, the rays may be
considered as proceeding from the corresponding series of surfaces according to a law of
such a nature that if the rays were to converge to any one point, the surfaces would become
spheroids of certain known forms, having that point for centre. Hence it follows, by our
general theory of osculating focal surfaces, that as in ordinary systems, the surfaces of
constant action have the centres of their greatest and least osculating spheres contained upon
the two caustic surfaces; so, in extraordinary systems, the two caustic surfaces contain the
centres of the greatest and least spheroids, which osculate at any given point to the surfaces
of constant action.

146. A third application relates to the axes of an extraordinary system. We have seen, in the
two first parts, that in ordinary systems, there are in general one or more such axes, each of
which is intersected by all the consecutive rays, in a point which is the focus of a focal
reflector or refractor, that has contact of the second order with the given reflector or
refractor. We can now extend this theorem to extraordinary systems also; for if we determine
the focus, and the point of osculation, by the following equations
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X'=x, y=9y zZ=z p=p q¢g=9q r=r, s=s5 =4
which express the conditions for contact of the second order, we shall have by the equations
of [143.],
-1 -1
;u’:lup ’ H, = 49 > v = Vp v :Vq

c—z c—z c—z ' c— 2z

s

conditions which express that the ray is an axis of the system, that is that it is intersected by all
the rays infinitely near it, in one and the same focus; namely the focus of the osculating
surface. It may also be shewn, by similar reasonings, that this focus is the common centre of a
series of spheroids, which have contact of the second order with the surfaces of constant
action.

147. A fourth application relates to the determination of the surface of a chrystal, by means
of one of its two caustic surfaces. We have given, in Section XIX., the solution of the
corresponding questions, for the case of ordinary reflectors and refractors; it will be sufficient
therefore to point out, here, the principal steps of the reasoning.

From what we have already shewn, it follows that the equation of the caustic surfaces (a, b,
¢), may be obtained by eliminating x’, y', 2’ between the equations of the chrystal and of the
ray, combined with an equation of the form

(r'=n(t'—1t)— (s —s%=0,

in which 7, s, tare the partial differentials of the second order of the given chrystal, and +', s,
¢’ the corresponding quantities for a focal chrystal which would refract the rays to the point
(a, b, ¢). If then we are given the equation of one of the caustic surfaces

flabc)=0,
and are required to find the equation of the chrystal, we have to integrate the equation
(=N =1 — (s —95*=0,

considering (7, s, t) as partial differentials of the second order belonging to the unknown
chrystal, and 7', s’, ¢’ as expressions composed in a known manner of (x, y, z, p, ¢, a, b, ¢), or
simply of (x, y, z, p, ), since (a, b, c¢) are themselves known functions of (x, y, z, p, ¢), deduced
from the equations

flabe)y=0, a—x=u(c—2, b—y=v(c—2),

in which u, v are given functions of x, y, z, ¢ depending on the law of extraordinary refraction
and on the nature of the incident system. The complete integral, with two arbitrary functions,
represents the envelope of a series of focal chrystals, which have their foci on the given caustic
surface; there is also a singular primitive of the first order, which contains the true solution,
representing a series of chrystals, each of which would refract the given incident rays so as to
make them touch the given caustic surface.

148. We may also generalise the investigations of the second part, respecting the caustics of
a given curve, and the surfaces of circular profile; and shew that a given curve may have an
infinite number of caustics by extraordinary refraction, according to the infinite number of
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chrystals, on which it may be a line of extraordinary refraction, that is the base of a
developable pencil. The locus of these curves, is the envelope of a certain series of cones, the
equation of which may be calculated and, of which we shall assign the equation in a
subsequent section. In the mean time we may remark, that although we have contented
ourselves with applying to the case of extraordinary refraction, the theorems of the present
section, they possess a much greater degree of generality, and may be applied to all other
optical laws which may hereafter be discovered: provided that those laws shall be of such a
nature as to render integrable the equation of the focal surfaces 143., that is the equation
which results from elimination of p', ¢’ between the three following,

a—x':u(c—z'), b_y’:V(C_Z’), dz’:pdx’+qdy"

The conditions for the integrability are two; they are obtained by eliminating ', s, ¢
between the four equations 143. which result from the two following

(¢c—2)du =pde — dx', (¢c—2")dv=vdZ — dy,

considering c¢ as arbitrary: and it will be shewn that they are necessarily satisfied, not only for
the laws of ordinary and extraordinary reflexion and refraction, but also for all other laws
which are included in the principle of least action.

XXVII. Systems of the Third Class

149. Before we proceed to examine specially the properties of extraordinary systems, let us
make a few remarks upon systems of classes higher than the second (IV), that is systems in
which the position of the rays depends on more than two arbitrary quantities. We have an
example of such a system, in the case of heterogeneous rays which after issuing from a
luminous point have been any number of times refracted; for besides the two arbitrary
coordinates of the first point of incidence, there is also a third arbitrary element depending
on the colour of the ray: a system of this kind is therefore a system of the third class. It is
possible also to conceive systems, in which the position of a ray shall depend on more than
three arbitrary elements, these elements being restricted to remain within certain limiting
values; but as all the important questions of optics may be reduced to the consideration of
systems of the first and second classes, of which we have already treated, I shall confine myself
to a brief view of the properties of systems of the third class.
Representing therefore, as before, a ray by the two equations

x=a+uz y=p+vz
let us suppose that the four coefficients (a, 8, u, v) are connected by some one given relation
u=0=q(ap uv);

it is evident that then the system will be of the third class, because three constants remain

arbitrary, and the properties of the system will depend upon the form of the function ¢.

Through any given point of space, x, y 2z pass in general an infinite number of rays,

composing a cone, which has for equation « = 0, a, 5, 4, v being changed into their values
X—x Y-y

M:Z—z’ VﬁZ—z’ a=x—uz, PB=y—vz
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and X, Y, Zrepresenting the coordinates of the cone. In the same manner, if we consider a
new point of space, infinitely near the former, and having for coordinates x + dx, y+ dy,
z+ dz, the rays passing through this point compose another cone, having for equation

@ du du

dx +—.dy+—.dz=0;
i x+dy Y=Y

which may also be thus written,

du du du du
——7Z—\d ——Z7Z—]dv=0.
u+(du da> M+<dv dﬂ) '

The intersection of these two cones is a curve having for equations
du du du du\ dv
Z—+\——Z—|.—=0
du da dv ag) du

5

d
and although the nature and position of this curve depend on the value of d—v, that is on the

u
direction in which we pass from the point x, y, z to the infinitely near point x + dx, y + dy,
z+ dz; yet the curve of intersection, and therefore the second cone, always passes through the
point (X, Y, Z) which satisfies the three following conditions

du du du du
Y/ = Z

u=0, — —=0, —— Z—=0.

du da dv ag

This point I shall therefore call the focus of the first cone, and the ray passing through it I
shall call a focal ray; the values of u, v corresponding to this ray are determined by the two
equations

dudu  dudu

' dudp dvda’

150. We have just seen that in a system of the third class, any assigned point of space is in
general the centre of a cone of rays, which is intersected by all the infinitely near cones in
one and the same point of focus. It may easily be shewn that these foci have a curve surface
for their locus, the equation of which in X, Y, Zis had by eliminating u«, v between the three
following equations in (a, 8, u, v)

du 7 du 0 du 7 du

u=0 ——

> — Y T 0 — 09
du da dv ap

after changing a, 8 to their values o =X — uZ, f =Y — vZ; and since we should obtain the
same three equations, if we sought the maximum or minimum of Z, corresponding to given
values of X, Y, and considered as a function of u, v, (that is the highest or lowest point upon
a given vertical ordinate, which has a ray of the system passing through it,) I shall call the

locus of the conic foci the lmiting surface of the system. This surface is touched by all the
cones and other pencils of the system, and also by all the focal rays; if the condition

du du _ du du
dudf  dvda

be identically satisfied, for all the rays of the system, then those rays are all tangents to the
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limiting surface. Reciprocally if the rays of a system of the third class are all tangents to any
one surface, or all pass through any one curve, the condition which has just been given is
then identically satisfied.

151. Many other remarks might be made upon the properties of the focal rays and of the
limiting surface; but I believe it more important to notice here the investigations which
Malus™ has prefixed to his Traité d’optique, which according to my division relate to systems of
the third class. Malus supposes that from every point of space x’, y', 2’ proceeds a ray of light
having for equations

(m, m, o) being functions of (x’, y', '), the forms of which depend upon the nature of the
system. The ray from an infinitely near point has for equations

x—x'—dx'  y—y —dy z2—2 —d

m+ dm n+ dn 0+ do

and in order that it should intersect the former ray, we have the following equation of
condition

(ndz' — ody")dm + (odx' — mdz")dn + (mdy’ — ndx")do = 0,
which may be put under the form

adx'® 4 Bdy'® + ydz'* + ddx'dy’ + edx'dz’ + Cdy'dz = 0;

!

and therefore the directions in which we can pass from the given point x', y’, z' to the
infinitely near point x’ + dx’, y' + dy’, 2’ + dz’, are contained upon a conic locus, which has
for equation

alx—x)+B(y—y) 2 +yz—2) +0(x—x)(y—y) +elx—x)(z—2)
+C(y—y)(z—2) =0.

This cone being of the second degree, is in general cut in two directions by a plane passing
through its centre; and it is in this manner that Malus proves, that when rays issue from a
given surface according to a given law, there exist in general two series of lines upon that
surface, analogous to the lines of curvature, the rays from which compose developable
surfaces, and are tangents to two series of caustic curves, which are contained upon two
caustic surfaces: results to which we have already arrived by different reasonings.

XXVIII. On Extraordinary Systems, Produced by Single-Axed Chrystals

152. When a ray of light is refracted by extraordinary refraction, in passing from an
unchrystallised medium into a chrystal with one axis, we know by experience that if we describe
a spheroid of revolution, having its centre at the point of incidence, its axis of revolution
parallel to the axis of the chrystal, and its polar and equatorial diameters equal to two

* [Etienne Louis Malus (1775-1812), his Traité d optique appeared in 1807. See Vol. I p. 463.]
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. 202 . .
quantities —, —;, which depend on the nature of the medium and on the colour of the ray;
m m

the tangent plane to this spheroid, at the point where it meets the extraordinary ray, is
perpendicular to the plane of incidence, and passes through a point taken on the prolonga-
tion of the projection of the incident ray, upon the tangent plane to the chrystal, at a distance
from the centre of the spheroid is equal to the reciprocal of the sine of incidence.
Representing therefore by X, Y, Zthe coordinate of the point last mentioned, thus taken, we
shall have the three following conditions

7= pX + qv,

X+ pZ)(B" + qv") = (Y + qZ) (¢’ + py"),
aX+pBY+y'Z=-1,
if we take the point of incidence for origin, denoting by p, ¢ the partial differentials, first

order, of the chrystal at that point, and by a’, f’, y' the cosines of the angles which the
incident ray makes with the axes of coordinates. Hence

__ a'+py—qB'p—ayq)

(@ +py)V2+ B +qr)2+ B'p—aq?
_ B +qr+ pB'p—a'g)

(@ +py)2+ B+ )+ Bp—a?
_ pa’ + py") + 9B + qv") .

(@ 4+ py" )2+ B +qy)2+ B'p—a'q?’

also the equation of the spheroid is

m*22 + w2 (x® %) =1 (A)
apfy

if we take the axis of the chrystal parallel to the axis of z and if we represent by i the

coordinates of the point in which the extraordinary ray meets the spheroid, a, 3, v being the
cosines of the angles which this ray makes with the axes, we shall have

v =’ 4 (m* = m®) (1 -y (B)
and the equation of the tangent plane to the chrystal will be
myz+ m'?(ax+ By) = v.

And since this plane is to pass through the point X, Y, Z and to be perpendicular to the
plane of incidence which has for equation

(x+p2) (B +qv') = (h+ g (@ + py"),
we have the two following conditions
my(B'p—a'q) + m*{a(B + qv') - Bla’ + py')} =0,
m’y Z 4+ m'*(aX + BY) = v,

which may be put under this simpler form
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m'%a + m? py +v(a’ + py') =0, }

L ) (C)
m'*p+ miqy +v(B + qy') = 0.

These two formule, which we shall presently combine into one, by Laplace’s® principle of
least action, are the analytic representation of the law of Huyghens,! for the extraordinary
refraction produced by single-axed chrystals.

153. Adding the two preceding formulza, after multiplying them respectively by (0x, dy) we
find

m'?(adx + BOy) + m*ydz+v(a'dx+ B0y +y'0z) =0

0x, 0y, 0z being variations of the coordinates of the chrystal. Let a', ¥, ¢/, represent a point
upon the incident ray, p' its distance from the chrystal, and a, b, ¢, p the corresponding
quantities for a point on the refracted ray; we shall have

a'dx+pB'0y+y'dz=—0p', adx+Pdy=—ydz— Op,
yoz=—yd(py) = —y*dp — pydy
and the formula may be thus written
{m’ 4+ (m* — m"*)y*}op + p(m® — m'"*)ydy+vdp' =0
or finally
o(p+p)=0 (D)

because

2

m'? 4+ (m® — m'Hy? =0 (m® — m'?)ydy = vov

U being, as before, the reciprocal of the radius vector of the spheroid. If then we take this
reciprocal for the measure of the velocity of the extraordinary ray, that of the incident ray
being unity, the law of extraordinary refraction is included in the principle of least action.
And as in the systems produced by ordinary reflexion and refraction we found that there
existed a certain characteristic function from which all the properties of the system might be
deduced, namely the action of the light considered as depending on the coordinates of the
point to which it is measured: so also in the case of extraordinary refraction, the properties of
the system may all be deduced by uniform methods from the form of the same characteristic
function; because its partial differentials of the first order, although not proportional to the
cosines of the angles which the ray makes with the axes, as in the case of ordinary systems, are
yet connected with those cosines by the following fixed relations
U%: m'*a, U%: m'?B,  v— = m?y, (E)
V being the action, measured to the point a, b, ¢; the velocity of the incident rays being still
supposed equal to unity, and the axis of the chrystal being taken for the axis of (z).
To prove these formule (E), let us observe that when light issues in all directions from a

* [Pierre-Simon Laplace (1749-1827).]
f [Christian Huyghens (Christiaan Huygens) (1629-1695).]
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luminous point, and after undergoing any number of ordinary reflexions and refractions is
finally refracted at the surface of a chrystal; the whole variation of the action corresponding
to a variation in the point to which it is measured, is the same (by the principle of least
action) as if the last point of incidence had remained univaried. Hence,

vdV = v.0" (vp) = V>.0'p + p.vd'v =020 p + (m®> — m'*)ypd'y
= m'2'p + (m* — m'*)yd" (py),

0’ denoting the variation arising from the change in the point, a, b, ¢, to which the action is
measured; we have also

0'p =ada+ Bdb+ yde, 0'(py) =0"(¢c—2z) =dc
and therefore finally

vdV = m'? (ada + Bdb) + m®ydc.

154. It appears from the preceding paragraph, that the surfaces of constant action of the
extraordinary system have for their differential equation

m'? (ada + Bdb) + m>ydc =0 (F)

and that therefore the rays may be considered as proceeding from them according to a law
expressed by the two following formula

m? m?

=——.P, v=——0.0, G
w=—"5.P v=—"5.0 (©)

u, v, denoting the ratios %, é, and P, Q being partial differentials of the surface of constant

action. It follows also, that if we construct a series of spheroids similar to the spheroid (A),
having their axes parallel to the axis of the chrystal, and touching the surface of constant
action, the centres of these spheroids will be upon the extraordinary ray. Hence we may infer
that if the rays of the extraordinary system converge to any one point, the surfaces of constant
action are spheroids having that point for their common centre; and reciprocally, that we can
always find a series of focal chrystals, which shall refract to a given point the rays of a given
system; namely by so choosing the surface of the chrystal that the action, measured to the
given point, may be equal to any constant quantity. These theorems, combined with the
general properties of emanating systems, conduct to many interesting consequences, most of
which we have anticipated in Section XXVI., and upon which therefore we shall not at
present delay. Neither shall we stop to investigate the formule that determine the pencils of
the system, the caustic curves and surfaces, the axes, images, foci and aberrations and density;
because these formule are computed on the same principles, and nearly by the same
methods, as those which we have had occasion to employ in the two preceding parts of this
essay.

155. The Equation (F), of the preceding paragraph, shews that the extraordinary ray is not
in general perpendicular to the surfaces of constant action, but inclined to the perpendicular
at an angle ¢, such that
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V2tane = (m? — 02)(v? — m'?)e. (H)

It is therefore interesting to investigate the condition for the rectangularity of an extraordin-
ary system, that is the condition for the rays being cut perpendicularly by any series of
surfaces. Employing for this purpose the methods of section XXVI., we find the following
formula

(m*y +vy") (ar+fs) +v(aA' +pB)  ay— (a*+ %) p
(m2y +oy")(as+ 1) +o(ap’ +pC) By — (a2 +p2)q’

in which (p, ¢, r, s, ¢) are partial differentials of the chrystal, and A’, B’, C’ represent for
abridgement

I

d’p’ d?p' 5 d%p’
= A/
dx? +2p dxdz ey dz? ’
d’p’ d’p’ d’p’ d’p’
= B,’
dxdy T dydz P42
d’p’ d’p’ d’p’
5 +2 s =Cl
dy? =4 dydz T

p' being the distance of the point of incidence from a surface which cuts perpendicularly the
incident rays produced, so that

!

dp’ ﬁ,:d_p’ ,_ dp’

dx dy YT

Suppose, for example, that the face of the chrystal is a plane perpendicular to the axis; we
shall then have

d’p’ d’p’ d’p
=0, =0, =0, s=0, (=0, A =—Fp, =, =,
b 1 " * dx? dxdy dy?
and because by (C)
v ' r % ’
a:—m.a, ﬂ——m,2.ﬁ,

the condition (I) becomes

dp' (dp' d*p’ dp'd*p’\ _dp' [dp' d*p' dp' d*p’
dy \ dx dx® " dy dxdy]  dx \ dx dxdy dy dy? )’

(K)

a partial differential equation of the second order, of which the integral is the result of
elimination of (a) between the two following

db

p'=yp{x—a)*+ (y—b)?}, x—at (y=b.-- =0, (L)

(b) being considered as an arbitrary function of (a¢) and ¥ denoting another arbitrary
function. In this case therefore, that is when the face of the chrystal is a plane perpendicular
to the axis, the extraordinary system will not be rectangular unless the distance of the point
of incidence from a surface which cuts the incident rays perpendicularly, be a function of the
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perpendicular distance of the same point of incidence, from some arbitrary curve traced
upon the face of the chrystal; a condition which is manifestly satisfied when the incident rays
diverge from a luminous point, the arbitrary curve becoming in this instance a circle. In
general, this condition (I) may be put under this other form

Q(PR+ QS) = P(PS + QT), (M)

P, Q, R, S, Tbeing the partial differentials of the surfaces of constant action; and integrating
this equation (M), which is of the same form as (K), we find that if the extraordinary system
be rectangular, the normals to each surface of constant action are tangents to a cylindric
surface, whose generating line is parallel to the axis of the chrystal.

156. The preceding remarks are sufficient to shew the manner in which we ought to
proceed, in order to investigate the properties of the systems produced by reflexion at the
interior surface of a single-axed chrystal or by the passage from one such chrystal into
another. I shall therefore conclude this section by shewing that when the extraordinary rays
recover their ordinary state, by emerging into an unchrystallised medium, or in any other
manner, they become again perpendicular to the surfaces of constant action; a theorem
which enables us to extend the reasonings of the two preceding parts of this Essay, to the
systems produced by combinations of mirrors, lenses and chrystals.

For this purpose it is sufficient to observe, that when homogeneous rays issuing from a
luminous point have been any number of times modified, by reflexion and refraction,
ordinary and extraordinary, the whole variation of the action arises from the variation of the
point to which it is measured; and therefore, if the final velocity of the ray be independent of
its direction, this variation has for expression

6JUdp =v(adx+ BOy+ yoz)

as in 106.; from which, it follows that the partial differentials of the action are proportional to
the cosines of the angles which the ray makes with the axes, and that the rays are cut
perpendicularly by the surfaces for which the action is constant.

XXIX. On Other Extraordinary Systems

157. We come now to make some remarks upon the properties of other extraordinary
systems, beginning with those produced by the extraordinary refraction of chrystals with two
rectangular axes. Brewster™ has discovered that the increment of the square of the velocity, in
a chrystal of this kind, is represented by the diagonal of a parallelogram, whose sides are the
increments produced by each axis separately, according to the law of Huyghens, and whose
angle is double of the angle formed by the planes which pass through those axes and through
the extraordinary ray. Denoting this increment by i, and putting ¢;, s to denote the two
separate increments of which it is composed, we have by the law of Huyghens

ii=k(1—a?), do=Fk1-p,

* [David Brewster (1781-1868).]
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k, k' being constant coefficients, and (a, ) the cosines of the angles which the ray makes with
the axes of the chrystal; axes which we shall take for those of (x) and (y). The equations of
the extraordinary ray being put under the form

Xy oz

PRt
the planes which pass through it and through the axes have for equations

z X oz

IS‘% = =2
and if we denote by P the angle which these planes form with one another, we shall have
cos’> P = aQﬁQ , Cos2P = M,
(B% + 72 (a® +9?) ap? +y?
and since the law of Brewster gives
# = i + i3 + 2i1ig cos 2P,
we have finally
P =K1 —a®)?+ k(1= + 2k (a*B° — 7). (A)

Denoting therefore by (v') the velocity of the incident, and by (v) the velocity of the
extraordinary ray, we have

U2 _ U/? 4 \/{k2(1 _ a?)Q + kl?(l _ﬁ?)? + Qkk/(aQﬁQ _ V2)}’
and substituting this value in the equation of least action
o('p' +vp)=0 (B)

we shall have the relations which exist between the directions of the incident and the
refracted rays. And putting ¢ = 0 in the formula (A), we find the position of the apparent or
resultant axes, which, before the discoveries of Brewster, were thought to be the real axes of
the chrystal.

158. In the extraordinary systems produced by double-axed chrystals, as well as in those
other reflected and refracted systems of which we have already treated, the action may be
considered as the characteristic function, from which all the properties of the system may be
deduced; its partial differentials of the first order being connected with the cosines of the
angles which the ray makes with the axes, by the following relations,

v d

DAV i (ka1 WP+ (ke ) (ha — K,

y dc
w(lav 1 av
— e — ) = kd® + KB — (k= k), C
k(adaydc) @+ K= ) (€)
v /1dv 1dv ( c
— o) = kP + RBP4 k- K
k’(ﬂdb ydc) O+ KB Ak

which when the two axes of the chrystal are of equal intensity, so that



32 I. SYSTEMS OF RAYS. PART THIRD
=k =m?—m? ka®+Kp*=i=0"—n

reduce themselves to the corresponding formula (E) of the preceding section. And as in that
section, we found that the surfaces of constant action were touched by the spheroids of
Huyghens, so here the corresponding surfaces are touched by the spheroids of Brewster; that
is by spheroids which have their centres on the extraordinary rays, and their radius vector
inversely as the velocity. When the corresponding rays converge to any one point, the surfaces
of constant action become a series of concentric spheroids; and we can always choose the
surface of the double-axed chrystal so as to satisfy this condition, by making the action equal
to any constant quantity, in the same manner as in the analogous questions representing
other focal surfaces. For the consequences which follow from these principles, respecting the
general properties of double-axed chrystals, and of the systems which they produce, we must
refer to the theory which has been given, for systems of the second class (XXVI.).

159. When light passes through a chrystallised medium of continually varying nature; we
must consider the velocity as depending not only on the direction of the ray but also on the
coordinates. Putting therefore

we are to express, according to the principle of least action, that the variation of the integral

Juds = JU.q/ dx? + dy* + dz?

is nothing, the limits being fixed. Now
(5Jl)ds = Jé(uds) = J(éu.ds + vdds);

also,
dv dx dv dv
ov.ds = o) —(5 —(3 ds +— ds.0 — —dé —dé—
V.ds < x + y + z>s+d +dﬁ +dy @
and
0ds = addx + Body + yddz;

if then we put

<X—dv+a v adv ﬁdu dv
dx da "ap dy)’
dv dv dv dv
Y =— —a——pf——y— D
Grb(o- G- T). )

o0 (o pdv v
AR da Pap " Vay)
we shall have

dv dv dv
=X Y V4 — — =
0 (vds) Odx + Yddy + Zodz + (dx Ox + & 0y + 7 (5z>ds



I. SYSTEMS OF RAYS. PART THIRD 33

6J(Uds) =X0x+ YOoy+ Zoz— (X'0x' + Y'0y' + Z'02") —i—J(%.ds— dX>6x

dv dv

the quantities X', Y', Z’, 6x', dy’, 2z’ being referred to the first limit of the integral. Hence it
follows that the equations of the ray are the three following

dv dv dv

—.ds=dX, —.ds=dY, —.ds=dZ, E
dx " dy $ a " ®)
which are however equivalent to but two distinct equations, as appears by adding them
multiplied respectively by a, 3, y; and if the first limit be fixed, that is if we make the integral
begin at the luminous point from which the rays originally proceed, the partial differentials
of the action, considered as a function of the coordinates of the point to which it is measured,
are

av
v _ A
dx dy

Y, v _ Z. (F)
dz

These partial differentials are therefore, for any given point of the medium, connected by
fixed relations with the cosines of the angles which the tangent to the curved ray makes with
the axes of coordinates; a theorem which enables us to consider the action, in these systems
also, as the characteristic function from which all the other properties may be deduced. With
respect to the manner of making this deduction, the extent to which we have already
proceeded obliges us to refer to the examples which have been given in the foregoing
sections, and to the general remarks of the following one, with which we shall conclude the

essay.

Conclusion

It has been already stated, that the object of this Essay is to investigate, in the most general
manner, (the consequences of the law of least action, and) the properties of systems of rays. We have,
in the preceding sections, endeavoured to effect this object, for the cases that are most likely
to occur; we have established principles respecting the systems produced by combinations of
mirrors, lenses, and crystals, and have shewn that the properties of every such system may be
deduced from the form of one characteristic function. We have, also, pointed out some
analogous principles, respecting the systems of curved rays produced by varying mediums,
and respecting systems of rays in general. It remains therefore, in this concluding section, to
draw together these principles into one view, and to present the reasonings by which they
have been established, under a more simple and general form; that so we may not complete
our theory, with regard to those laws and systems which have been hitherto discovered; but
also may be prepared to extend that theory, to the examination of those new laws and
systems, which the progress of optical science may hereafter require to be considered.
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TWO LETTERS TO AUGUSTUS DE MORGAN (1858)*

1. On Definite Integrals and Diverging Series

Observatory — Feb. 15th 1858

My dear De Morgan
Although I indulge myself by taking this large sheet of paper, I hope
that I shall not fill it: but wish to tell you something about a few of my recent investigations,
which have little apparent affinity to those more general researches respecting definite
integrals, whereof I wrote to you not long ago: notwithstanding that they have all a certain
nucleus of relation. The last results, if that be not too grand a name to give them, may
possibly interest you a little, because they have a connection with the theory of Diverging
Series: for the very welcome duplicate of your Paper on which subject, I trust that you have
ere now received my acknowledgment. And I am the more willing to lose no time in stating
to you something about my last calculations, because I have lately been requested, or
summoned, to supply some Dublin Printers with an account of those more general
Theorems, above alluded to, which relate to Definite Integrals. Besides, I have had the
fortune to discover, a few hours ago, a certain linear differential equation, of the third order,
with wvariable coefficients (between only two variables), which I think that I shall be able to
integrate, at least in series, though not proceeding solely according to powers, ascending or
descending, but introducing logarithms also: which linear equation appears to me to be likely
to be found important, at no distant time, in several physical inquiries. It has, at least, a
connection with the mathematical theories of heat, and light and vibration; for it is
connected with that very useful Transcendental function, the f# of my lately printed paper,
which is one of the links between all those theories: and the function which satisfies the
equation represents, with a proper selection of constants, what may be called the square of
the amplitude of a vibration, in a certain class of questions. It throws a strong illumination on
some old unpublished researches of mine; but since, I did not happen to perceive it, 18
years ago, I could almost wish that it had hidden itself a little longer from my view. For it

* [These letters are now printed for the first time. They were sent in instalments, over a period of
months, to Augustus De Morgan (1806-1871) who was professor of Mathematics at University College,
London University. The first letter started on 15 February 1858 and ended on 22 May 1858; the second
letter began on 15 July 1858 and finished on 15 August 1858. Copies of the letters, as sent, are MSS
1493/972 and 1493/997 in the Library of Trinity College, Dublin. Hamilton had them both copied, with
the help of his assistant Charles Thompson, into his Notebook D of 1858 (first letter begins on p. 151)
and Notebook E of 1858 (second letter begins on p. 301) (Trinity College Dublin MSS 1492/144 and
1492/145).]
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seems quite possible that this triordinal equation™ may conduct to finite expressions, or at
least to new and manageable series, which shall dispense with my working out, as I had
begun to do, some methods for approximating (at least probably) to the values of certain
Diverging Series, whereof only a few of the first terms have been actually computed; but
which there is reason to believe to belong to that great Class, respecting which you made
very important remarks: namely the class of ‘“‘Alternating Series’’, in which each + or —,
after any one calculated term, determines at least the algebraical sign of the correction which
is to be made, in order to change the sum of the terms so far, into the true theoretical value of
the function whereof the Series is one development. But if any of my recent labours of
calculation should in this way come to be theoretically superceded, let us take courage. I
need not tell De Morgan, that the last thing an inventive mathematician need ever fear to
run short of, is a stock of difficulties!

* One form of the triordinal but linear equation, to which I refer, is the following:
(w)3y+x20xy: 0. (a)
One particular integral is,
m=00 1 m x 2m
_ - o1~ ™ 32 ; b T
y aZOH ([0] )(2) (b)

where ais an arbitrary constant. Another particular integral, with another constant, is:

3
m=00 . 1 m x —2m
y=1 3 [0 ({5] ) <§> . ©

These two series, ascending and descending, seem to exhaust all the particular integrals expressible by powers
alone; but I have found a third particular integral, not less simple than either of them, which is of the form,

y=c¢(Bylogx + A,), (d)

where B, is the series (b), and A, is another ascending series; and which (speaking theoretically)
completes the integration of the triordinal equation (a). I think that I see how to get a fourth particular integral,
which shall involve (logx)g, and even that I shall want that form; but if (as I suspect) it exists, it cannot be
altogether independent of the other three. On this I must write again.

f [In which the symbol (introduced by Alexandre-Théophile Vandermonde (1735-1796, ‘Mémoires
surdes irrationelles de différens ordres avec une application au cercle’, pp. 489-498, Histoire de l’Académie
Royale des Sciences, Part I, 1772.)

[x]"=x(x—1)(x—2) --- (x— n+1), (a)
so that
[x]" = [x]"[x— m]"" ", (B)
[x]" = ([x]""™)/([x — n]™), )
1 1 1
o = = 1es ©
and

(L+x"= Y [n]"[0] ", (&)
m=0

See Vol. I, p. 468, and this volume, pp 134.]
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I. IfInow resume the function

o0

T:Qte“?J ca, 1)
t

you conceive that it is precisely because this function T is one so very well known, that it may be

conveniently used to test the success, or failure, of any proposed method for summing diverging

series, or for approximating to the numerical value of the sum, when the value of the variable is

given. We know, in fact, that if

1
q:ﬁ, (2)

then 7 can be developed in the diverging series,
T=1-1.¢+13.¢"-135.¢"+&c (3)

which relatively to the variable ¢, is a descending one. We know also that the same function can
be otherwise developed, for 1 should not choose to call this an envelopment, —

1 8¢ 4
_ 1 9293949 ( )

S 11+ 1414
The function 7 can also be developed, in a third known way, according to ascending powers
of t; for it is well known that

t

1 2 2 2

T =mite’ —21e! J e ldt
0

—n%t(1+t2+ & + & + ) 2t2(1+2t2+4t4+8t6+ ) (5)
B 12 1234 123456 3 35 357 ‘

And finally, the numerical values of the connected integral

(o]

o e T=G6= J ", (6)

¢
have been tabulated, by Kramp* ; whose book I have unluckily not seen, but from which I
understood you to state that you reprinted Tables I & II at the end of your Treatise on the
theory of Probabilities in the Encyclopaedia Metropolitanal. The function, here called 7, may
therefore be accounted to be almost as well known, as regards its values, as the functions sine
and cosine, although I am not aware that many, or any, properties of it are known, which could
be expressed as functional equations. As regards values, it is easy for instance to compute, from
Kramp’s' Table (as reprinted by you), that

for ¢ =1, LT = 1-8795960; T = 0-75787; (7)1
for (=2, LT = 1-9568185; T = 0-90535; (8)

* [Christian Kramp (1760-1826), Analyse des réfractions, pp. 195—206, Strasbourg: 1799.]

T [ Encyclopedia Metropolitana, eds. E. Smedley, H. J. Rose, and H. J. Rose, Vol. II, pp. 393—-490, London:
1845.]

I [L=log.]
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for ¢ =3, LT = 1-9785541; T = 0-95182. 9)

II. Before proceeding to test any new method for even approximately summing, or in any
other way attempting to envelope, without definite integrals, the diverging series (3) for 7, I
shall just remark, that on representing the finitely continued fraction

1 ¢ 2¢ nq
_ L 929 " 1
1+ 1+ 1+ 1+0° (10)

n
by the expression
Ty =—+ (11)

when M, and N, are polynomial functions (rational and integral) of ¢, the known equations
in differences,

My = M,y = ngMy—2,  Np— Ny = ngNys, (12)
do not merely enable us to calculate expressions, algebraical or arithmetical, for all the
numerators N, and all the denominators M, successively, from the known initial pairs,

My=1, My=1+¢q No=1, N =1 (13)
but also give, by finite integration, the following Rulefor forming at once the polynomial M,, or

the denominator of T,, when the index nis given:
Develop by the binomial theorem, the power

a+ q%)n-‘rl’
under the form,
(1£¢)" " =1+ ang+ bug® + cng’® + &c. & &c.; (14)
then
M, =1+1.a,qg+1.3.0,¢° +1.3.5.c,¢° + &c., (15)
without the £ terms. For example
(1+ ¢5)® =1+ 28¢+70¢% +28¢° + ¢" + &c; (16)
(14 ¢%)° =14 36¢+126¢° + 84¢° + 9¢* + &c.; (17)
(19" =1+ 459 +210¢° +210¢° +45¢" + ¢° + &c; (18)
whence, by the rule (15)
My =1+ 28¢+210¢* +4204° + 1054*; (19)
Mg =1+ 36¢ + 378¢> + 1260¢> + 945 ¢*; (20)
My =1+ 45¢ + 6304¢° + 3150¢° 4 4725¢* + 9454°; (21)

with the verification, by (12), M9 — Mg = 9¢Ms.
As regards the numerator, N,, although, like the denominator, M,, it can easily be
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computed, algebraically, or arithmetically, as I suppose that it usually is, by the help of the
equation of differences which it satisfies, through successive steps from its initial pair of values;
(and although I have integrated the equation just referred to;) yet it may be allowed me here
to make the remark, — a sufficiently obvious one, indeed, — that whenever we know, by any
process, for any given value of n, the coefficients of the polynome M,, we can easily find the
corresponding coefficients of the other polynome N,, by forming the product TM,, where T
is the known series (3), and suppressing all the terms whose exponents are greater than n.
Verifications will offer themselves, in the evanescence of the coefficients of certain lower
powers of ¢. For example, in the product TMj, the coefficients of q4, q5, qﬁ, q7 all vanish; in
the product TMsg, the coefficients of q5, q6, q7, q8 are each zero; in the product TMy, the
coefficients of ¢°, ¢%, 47, ¢%, ¢° disappear.
And in this way, among others, we may find that

Ny =1+27¢+185¢% + 279¢%; (22)
Ng =1+ 35¢+ 3454 +975¢° + 384¢%; (23)
No =1+ 44¢ + 588¢% + 26404° + 2895¢*; (24)
with the verification,
Ng — Ng = 9¢Ny. (25)

III.  If we assume as a numerical example
t=1, q=4 (26)

so that we have here

o 2
T = QeJ e tdt, (27)
1
and if we denote by A, and B, the whole numbers which take respectively the place of M,
and N,, when those are multiplied by suitable powers of 2, we easily find in this way the values

(without passing through earlier stages,)

A7 = 16 M7 = 2025; B; = 16 N; = 1530; (28)
Ag = 16 Mg = 5281; Bg = 16 Ng = 4010; (29)
Ag = 32Mq = 28787, By = 32Ny = 21790; (30)
with the verifications,
Ag — 2Ag = 9A7; By —2Bg = 9B;. (31)
Again
Ajg — Ag = 10Ag; By — By = 10 Bg;
Ay —2A190 =1149;  Bi1 — 2Bio = 11 By; (32)

A9 — A11 = 12A10;  Bi2 — Bi1 = 12 Byy;

whence



II. TWO LETTERS TO AUGUSTUS DE MORGAN 39
Ay = 81597; By = 61890;
Ay = 479851, By, = 363470; (33)
A1 = 1459015; By = 1106150.

Hence
N, B, 1530 34
T, =1 =27 "7 "7 _(.75556;
T M, A, 2025 45 ’
Bs 4010
Te= =—2 =" = 0-75933;
8 Ag 5281 ’
By 21790
To= =—2 =" = 0-75694;
9 Ao 928787 ’
(34)
Bio 61890
10 Ao 81597
B 363470
Th= =21 = — 0-75746;
Anp 479851
iy 221230
Ty —  —10712 = 0-75815.
" 2 A1, 291803
We have the inequalities,
T> T7, T< Tg, T> Tg, T< T](), T> T, T< T]Q; (35)

which are, as we see, all consistent with the order of 7"deduced from Kramp’s Table; namely
with T = 0-75787. But it was for my purpose desirable to deduce these limits by a special
calculation, independent of any conceivable errors in the construction, transcription, or
impression of that Table; although I am very willing to believe that such errors are few or
none. For I wished to be quite sure, for reasons which will afterwards appear, that the two
following inequalities are satisfied by 7, in the case ¢ = 1:

T <0-75984; T <0-75839. (36)

The inequality 7' < Ty proves the first; and T < Tj9 proves the second. The first presented
itself to me thus, as a thing to be examined: was it true that

T<87% orthat T"*>3%? (37)
The tabular value of LG gave LT as in (7); whence

— 1
4LT = 1-5183840; 4L? = 0-4816160; T *=3.03121; (38)

but I thought it more completely satisfactory to infer the inequalities (37) by the simple
arithmetical remark, that

4
Tt = {5281} 777794145 659 521 (39)

= >3
4010 258569616010 000

while it was known from theory, that
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> 15" (40)

IV. The method of continued fractions, applied to the function 7, gives the expression:

1 ‘12‘]39441_. (n_l)q.e >0.<1: (41)

1+ 1+ 1+ 1414+ 1+ nb,g
at least if n> 1, for there appears to be a sort of discontinuity at the very commencement of
the fractional development, and it seems safer to write, as a separate formula,

1

T=—6,>0, <1 42
a0 (42)

Suppose now that we had only been given the first few terms of the diverging series for T} let us say,
the six terms,

T=1-q+38¢"—15¢° +105¢* —945¢° + - - -, (43)

where the final + --- means nothing more than the next (or seventh) term has a positive
coefficient. We are not supposed to have even perceived that if T be written as

T=1—aq+bg®>— cq®+dg* —eq® +---, (44)
then not only a = 1, but also
b=38a, c¢=5bb d=7Tc, e=29d. (45)

Or, if this be assuming too vast a want of sagacity, let it at least be here supposed that the five
coefficients a, b, ¢, d, ¢, have in some laborious way been separately (or successively) calculated,
and that we have nothing beyond a guess to go upon, as to whether the law (45) will continue.
But let it be admitted that we know, or think that we have good reasons for believing, that the
series for T'is an alternating one, of the kind signalised by you as important; so that we have at
least the six inequalities,

T<l, >1-g¢ <l-g+3¢ >1-q+3¢—15¢", (46)
<1—gq+3¢°—15¢° +105¢", >1-q+3¢° —15¢° +105¢" — 945¢;

if ¢ be any real quantity > 0; to which I find it necessary to append the following other supposed
inequality,

T>0, if ¢>0, <oo. (47)
Houw far, with only these suppositions (or at most with only a few others entirely analogous to

these) can we recover the expression (41)?

V. Consider generally the function
X=(1+ax(l+ax(l+a"s(l+-) )™ (48)
and suppose that it is to be otherwise developed in a series of the form,

X=1-—ax+ bx®>— x>+ dx* — ex® + - - -; (49)

where the coefficients a, b, ¢, d, e, ... are certain algebraic functions of the other coefficients
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a,a',a’,a”,a”,...ora,f,y,0,¢, ... which functions we are now to determine. Raising the
series (49) to the power of which the exponent is —v, we get an expression which may be thus

denoted,
XV =14+vaxX’;
where X' is a new series, of the form

X’:l—a’x+b’x2—c’x?’+d’x4 — g

a, b, d,d, ... being algebraical functions of a, b, ¢, d, ¢, and of v: namely
o — é v+ 1 a.
a 1 27
yzﬁ_v+1b+v+lv+2f;
a 1 1 2 3
¢ = &c.

But also, by (48),
X7"=1+axX’,
where
X =1 +ax(1+a"x(l+-)7) ¥
Comparing, we are led to infer that

oa=va, a = v‘la;

(50)

(51)

(52)

(53)

(54)

(55)

and also that the two developments, (51), (54), for X', are to be regarded as transformations
of each other. A law of accentuation of the letters is thus suggested; and we find that if we write

n

71)' v+1a
T ad 1 2’
¢ v+1d v+1v+24a?

YET T 2T g s
&c.,
”’:Z—:—VTI%", &c., &c.
then,
X7V =14va'xX", X"7V"=1+4+wva"xX", &c.,
where
X'=1+a"x(1 47 X"=&e.,

and

1

! !

a' =va', a"=wva", &c., ora =v~

a, a"=v'a" &c

(56)

(57)

(58)

(59)

(60)

In this manner a system of equations can be formed, for connecting a, b, ¢, d, ¢, ... with a, f3,
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¥, 0, &, ... and deducing successively the former from the latter, or conversely the latter from
the former, with the help of the auxiliary quantities: a', ', ¢/, d', ..., a", ", ¢", ..., a", b",
L, a’, ...

VI. For example, if v = 1, the equations between the constants are:

’ ” "m
b b m __ b ", o_w __ b m,
=5 asa =—,—a;

a =——aa" =——2ad;a
a a

’ "
r_

b= 20+ a% b”:C—,—Qb’—Fa'Q; b”’:c—”—Qb"—F a";
a a a

d b? d' b'? (61)
¢ =—— <26+—> +8ab— a*; ¢"=—— (26’+ ,> +3a'b — a'®;
a a a a
b
d :f—2<d+—”> 4 3(ac+ b?) — 4a%b + at;
a ¢
together with
a=a, f=d, y=d, 0=d", e=ad", (62)
if we write 3, y, 0, ¢, for a’, @”, a”, o', and if we neglect x% in X.
Thus the polynome (49) may be thrown into the form of the continued fraction,
x o L axPryxox ex (63)

IR T T T B A

and the coefficients a, 3, y, 0, € computed, if @, b, ¢, d, ebe given or vice versa. For instance, if,
as in (45), we assume that

a=1, b=3, ¢=15 d=105 - e=945, (64)
then

ad =2 b=10, =74 d =706, a"=3, b"=21, 6_207;.} (65)

a"=4, b"=36, a'=5 a=1, =2, y=3, 0=4, €=
and, so far at least, we recover the known expression for 7, for we find

c ] 1 1x 2x 3x 4x 5
1= xt3x%  15x% 1 105x* — 0455 ... — L 1¥2x 3xdx Sx (66)

the remaining constants of the fractional development being unknown wuntil we know the
remaining coefficients of the diverging series, or at least their law, which for the moment we
are not supposed to do.

VII. The process may of course be varied, and the following seems to be a more elegant
form of it. Since v = 1, the equation (53) gives here

l=0+axX)X=(1+ax—aax*+ab'x®> —-- )1 — ax+ bx* — ---); (67)

whence
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ala=1, a'b=ad+a a'lc=0b+ ad + b
(68)

ald=c +ab +ba +¢; ale=d + ac + bb' + ca’ + d;

of which equations each may be accented throughout, and a’, a”, a”, @™ then changed to 3, y,
0, &, if we think fit. Thus

ﬁfla/ — 1, ﬁflbl — Ll”+ a/, ﬁflc/ — b”+ arau_|_ b,, ﬁfldr — C”+ a/b/r_|_ b'a"+ C’;

'yild” — 1’ yflbn — am+ d", ')/71()” — bm+ d”dm+ bu

0 la”=1, oW =a"+a"; ela*=1.
(69)

These 15 equations, (68), (69), are merely transformations of the 15 equations, (61), (62), but
they are more symmetric, and better fitted for the easy elimination of the auxiliary constants, so
as to give expressions for a, b, ¢, d, e in terms of a, 3, y, 0, &, involving nothing foreign, and
taking rather simple shapes. In this way, by eliminating «', ¥, ¢, d', a”, b", ¢", a", 0", @', 1
find the expressions,

a=a; b=af+a* c=oafy+alf+a)?;
d=apyd+af(y+p+a)* +a*(B+a)% (70)
e =afyde +afyO+y+B+a)’+a{By+ B+ a)}%

which may be verified by observing that they reproduce the numerical values, 1, 3, 15, 105,
945, for a, b, ¢, d, ¢, when a, 3, y, 0, € have the values 1, 2, 3, 4, 5. It is a consequence from the
process employed that all the subsequent coefficients, f, g, A, ..., of the series (49), must in
like manner admit of being expressed by polynomial functions of @, 8, y, 0, ¢, 8,7, 0, ..., of
the dimensions 6, 7, 8, ..., and with all their coefficients equal to positive whole numbers.*
And of course, it is about as easy to deduce a, 3, v, 0, € from q, b, ¢, d, ¢, by the equations (70)
as to deduce the latter from the former.

VIIL.  If only the five coefficients a, b, ¢, d, e, be given, with the values (45) or (64), we can, as
above, only deduce the five related constants a, 3, y, 0, €, with the known values (65). We have no
right to assume even that the next constant § is positive, for although we are supposed to know that
the next coefficient f is positive, and may even presume that it is greater than 945, we cannot say
before-hand whether it will be found to be sufficiently great to render >0, when the sixth
equation of the series (70) comes to be resolved for {. To form that sixth equation, on the plan
of (68), the formula

Oflf =e +ad + bc' + b + dd' + ¢ (71)
that is, by (65),
f=¢ 42233 (72)

*

[ =apyoel+apyd(c+0+y+B+a) +ap{y(O+y+28+a)+ B+ )’ +a*{By+ B+ )’}
ifa,B,y,0,e=1,2,3,4,5, respectively, [ — 120 = (24 + 18 + 1). 225 = 9675.
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where, by accenting the fifth equation (70), we have

¢ = Byoel+ fyde +0+y + )%+ p{ro + (B+ )} (73)
&c. Therefore, again by (65),

¢’ = 1208 + 7462; (74)
so that, finally the relation between fand ¢ is the following:
J = 1208 + 9675. (75)
Unless, then, we know that
f>9675, (76)

we cannot be sure that § > 0. In point of fact, the series for T is such that in it the coefficient of ¢
is [ =11 X 945 = 10 395; giving
‘- 10395 — 9675
120
But it might have been supposed that the divergent character of the series would be

sufficiently saved by our guessinga less value than 9675 for f; and in that case, if the guess were
right, the constant { would be negative.

= 670. (77)

IX. Even then, if we suppose, which is certainly supposing a good deal, that all the series X', X",
X", X", X?, ... successively derived from X, or from 7, by the process of paragraph V., belong
to the same great and general class as the original series itself, we cannot be sure that the series

X'=1-—a’x..., (78)

where a” = , has the property of being less than 1; nor even that of being greater than 0; so long as
we are left uncertain, whether § (or @) is a positive or a negative number. Let us, however,
here admit that the value of the (presumably divergent) series denoted by X7 is likely to be greater
than 0, on account of its first term being positive (= 1), and let us count up all the results which, at
this stage, we might fairly be induced to call probable, respecting the value of the function,
which we conceive to be represented by the series X, for real and positive values of x.

X. [Ithink, then, that we might, not unfairly, presume that, for any proposed real and positive
value of x, — at least, if such value of x were not too large, — we should have the following chain
of inequalities. We have just now supposed that

x>0, X">0; (79)

and we have proved that a, 3, v, 0, € are each > 0, because they have the values 1, 2, 3, 4, 5:
though the next constant {, for anything yet known, may perhaps be negative, namely by the
unknown coefficient fof x® in X, though positive being less than the limit 9675. We may then
infer that because

le _ (1 +£va)—1’
therefore

X7>0, <1; (80)
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but we are not entitled to assume that
X< (1+ex) L. (80")
Again since
X" = (1+8xX")"1;
therefore
X"<1,>0+0x)"% (81)
although it remains uncertain whether
X"<(140x(1+ex) H L (81"
Again since
X"=(1+yxX")",
therefore
X">(1+yx)", <(I+yx(1+dx)™H™h (82)
X'= (14X <A +Bx(1+y0) )7 >+ Bx(l+yx(l+0x)7H )7 (83)

and finally, the equation

X=(14 axX')"!
gives the two limits
X>1+ax(l+Bx(1+yx) )™ X< (I +ax(l+Bx(1+yx(1+0x)"HHH,
(84)
which may be written thus,
S Loxfx yx 1 axfx yx (85)
I+1+1+1+0 I+ 1+1+1+dx
and which give (a, f, y, 0, and x being all positive) the following expression for X:
1
1 axpx yx 9>0, <I1. (86)

TIF 14141+ 60x°

Thus with our values of a, §, y, 0, if we write ¢ for x, and T for X, we have indeed, the
(probable) limits 7"> Ty, T < Ty; that is,

145 1+9 84>
T . R (87)
1+64g+ 342 14+ 10g + 1542
or, for the case ¢ = 1/2,
14 30
T>E’ <%; or T>0-73684, T <0-76923. (88)

But whether T'be greater or less than the next fraction, namely than
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1+ 14¢ + 334> 130
= — = 075145, 89
14+ 15¢+45¢%+15¢% 173 (89)

we should not (as 1 conceive) be entitled to assert anything, as even probable, with our present
suppositions. We might, indeed, write

X = iﬂ&ﬁ Ox ; (90)
1+ 14+ 14+ 1+1 + Jex
where 3 should represent the series X* =1 ..., whereof only the first term 1 is known; or, in the

case above considered, might form the expression,

L2 3 4
1 5 5 35 359

I+1+1+1+1+ 2

but in our uncertainty whether §, although presumed to be positive, is less or greater than 1, we
should get no more of (even probable) information from this last expression for 7, than from the
following case of the simpler form (86),

; (O1)

T=—-22 2"~ , 0>0, <l. 92
I+14+1+1+ 2 (92)

It is unnecessary to repeat, that all this depends on the hypothesis, that we know nothing of the
law of the coefficients a, b, ¢, d, e, f, ... of the series for X, or for T; and in particular, that even if
we have guessed the law, (as for the present series, from a few of its first terms, we could
scarcely fail to do,) yet we have no such assurance of the correctness of that guess, as to pronounce
with any confidence that the sixth coefficient f must exceed the limit 9675. In other respects, you
see that I am seeking to give here the fullest scope to principles which favour diverging series, and
that, in fact, the supposed doubt is precisely this, whether the coefficients increase fast enough? Is the
series sufficiently divergent, for the safe application of the Method of Converging Fractions? (Of
course, we know that it is so: but then we are in full possession of the law and know that it must
continue.)

XI. That method of converging fractions which must also be called (I think) the ‘“Method
of Reciprocals’” may be presented in the following form. Let ¢ x denote the function,
px=x1—1; (93)

the operating by a ! x~!¢ on the series X, of which the first term is unity, if the constant a be
suitably chosen, we deduce from it another series X', with its first term also = 1; and so
proceeding, we have the succession of equations

alxloX =X BlxloX' =X" ylaleX' = X"
O lxlpX" = X", e lx X" = XY (94)
whence
X"=pB"xlpa'xloX; X"=y lxlof xlpa v g X;
X" =0""x"loy Tx o v Tpa x 1o X; (95)
XY= e x oo Loy x B x lpa x g X;
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&c., each symbol ¢ governing the entire system of symbols to its right. If then we write

Xv=0, X'=39, (96)

we have the transformation, in which
e lx=(0+x)"" (97)
X=0¢ laxe Bxp lyxe~100x; X = o laxe Bxp lyxep 10xp 1 ex; (98)

where each symbol ¢! governs in like manner all that follows it. And if, as above, we have
computed the values of the five constants, a, f, v, 0, ¢, and find them all to be positive, we
may presume that 0 lies between the limits 0 and 1; and may employ the first of the two
expressions (98), so as to deduce from it, with a reasonable probability, the two following limits
for X, at least if x be not assumed too great:

X>o¢ taxg Bxo lyx; X< laxe 'fxe lyxelox; (99)

the inverse function ¢ !'x being here one which decreases continually from 1 to 0, as x
increases from 0 to oco. But because we are yet entirely ignorant whether  is positive or
negative, we cannot say whether the series denoted by X" or by 9, is greater than, or less than
one; the second expression (98) is therefore here (not false but) useless: and we have no right
to establish, as even probably true, and even for small values of x, this other and analogous inequality,

X>o taxp Bxo lyxo 1 oxe ex. (100)

Perhaps ¢ might be written for the inverse function ¢!, as you propose to write y instead of
log™!

XII. Instead of assuming the form (93), for the auxiliary function @x, I was lately led to try the
effect of assuming this other form,

1
px=1Ix=1—; (101)*
X

which gave, as its inverse,
o lx=1"x=¢% (102)
that is, with your notation v, and with my symbol & for ¢,

dx =vy(—x); orsimply, bx=y— «x, (103)

the — being here treated as a factor, or as an operator. As I wrote to you lately on some of the
results of the assumption of this auxiliary function, ¢, it may suffice here to sketch, in the
briefest way, a few of the steps of the proofs which I employed. As analogous to the equations
of paragraph VI, I had,

* 1= log ]
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, b a Y b/ a/ ” b” a” w b//’ a”!
:———, a :———, a :———’ a :———;
a 2 a 2 a”" 2 a” 2
2 ’ 12 ” ”2
¢ a ¢ a ¢ a
b’:——b —, b”———b’ , b!!/:__bn :
a + 3 ! + 3 a” + 3 (104)
, d < N b2) o a3 . d’ < - br2> oy a'?
¢ =——\|c+— ab — —, c=——\c a - 5
a 2a 4 a 2a 4
b 4
= <d+—6> +(ac+ 8?) — @b+
a a 5
along with
a=af=a,y=d",0=a",e=a". (105)

bd b 3h° 5
e zi— (e+—+c—> + <ad+2bc+—> — a<ac+—) -
a a 2a 3a 2 6

As transformations, of the same kind as those already given for another form of ¢, in
paragraph VIIL,, it was easy to deduce the following:

2070 =2a" + a, 270 =2a" 4+ a’, 2y 10" = 24" + a”, 2071 0" = 24" + a";
3alc=38b"+2aa’ + b, 387 'c' =8b"+2a’a" + b, 3y " =3b" 4+ 2a"a" + b,

da=ld = 4c' +8ab’ + 2ba’ + ¢, 4B d = 4¢" + 3a'b" +2b'a" + ¢'; (106
507V e =5d +4ac’ + 3bb’ + 2¢a’ + d;
together with the equation (105), or with
ala=1, pla=1, yla"=1 o 'a"=1, ela"=1. (107)

Eliminating a', %', ¢', d’, a”, b", ¢", a”, 0", a’, we obtain expressions analogous to those
marked (70), namely the following:

a—a=0;2(b—af) =a? 2.3(c— afy) = a(38* + 608 + a?)
= 3a(B+a)? — 2a%
2.3.4(d — afyd) = 1208y (y + 2B + 2a) + 4af(B* + 6aB + 3a?) + a*
=12aB(y + B+ a)? + a(a® — 88%);
and (108)
2.3.4.5(e — afyde) = 60afyd? + 120aByd(y + B+ )
+2008y*(y + 65 + 3a)
+ 60aBy (B2 + 408 + a?)
+ a (5B + 80aB® + 90a>B2 4 20038 + at).

XIII. Assuming, as a particular example, the values (45) or (64) for a, b, ¢, d, ¢, I found the
following values, for the other quantities above mentioned:
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, b b,_37. , 353 d,_4081
@79 VT T ~ 75
L, 221 . 501 , 1690091
a =-——, = —; =
60 20 7200 (109)
, 181519 = 103112711
T 26520 © 2366800
o 26082306193
4185460656 °
5 221 181519
a=1 f=<; y=—7o =———;
2 60 26 520
(110)
e 26082 306 193
4185460656 °

where it is to be noted that these values of a, 3, v, J, are exactly the doubles of the quantities
denoted by the same symbols in my letter of February 10th, for a reason which will easily
appear. There was no difficulty in hence deducing the formula, rule and type of that recent
letter; except that the numerator of ¢ requires to be corrected as above since ¢ was found to
be positiveit seemed to be reasonable to expect that the inequalities (99), or these,

X>obaxdfxdyx, <bdaxdfxdyxdox, (111)

would turn out to hold good, unless x were too large a number; while it remained doubtful
whether

X Z daxofxdyxddxdex, (112)

XIV. To convert these formule into numbers, we must consider how to calculate the
ordinary logarithm, L, of the expression of the form X = daxX’, where & has the significa-
tion (103), so that

dx =%, (113)

Itis clear that this last formula of definition gives

1
L(bxz—xLe:xLz; (114)
so that if we agree, at least for the present, to write (as I did lately)
1
L'=—-L, or Lx=L—, (115)
x
we shall have generally
L'dx = xLe; (116)
and therefore, in particular,
L'X = L'daxX' = axX'Le. (117)

(I take the trouble just now, of writing € to denote the natural base, because I have been using
both € and ¢, to denote other things in this letter.) Taking again the ordinary logarithms of
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both numbers, and observing that all the factors in the expression (117) are positive, for all
cases to which it is proposed to apply the method, we may go on to write,

LL'X = LL'doaxX' = LX' + x = x; — L' X', (118)
if we make
x1 = Lx+ La+ LLe = a; + Lx, (119)
where
a; = Lo+ LLe = Lo + 1-6377843. (120)
In like manner
LL'X = LL'ofxX" = x9 — L' X", (121)
where
Xo = a9 + Lx, (122)
and
as = LB+ L%e = LB + 1-6377843. (123)

And so we may go on. When a, b, ¢, d, ¢, and .. @, 3, ¥, 0, &, have the values recently assigned,
we find easily that the values of a4, ..., as are:

ay = 1:6377843; ag = 0-0357243; as = 0-2040254; a4 = 0-3331993; a5 = 0-4323870. (124)

If we choose to write, with reference to the known definite integral, which was cited at the
commencement of this Letter,

x=(g=)2""17, (125)
we shall then have
Lx = 1-6989700 — 2 Lt; (126)
and may write
X, = b, = a, — 2Lt, (127)
where
a, = a, + 1-6989700; (128)

the symbol ¢, serving merely to connect this letter with a former one. For example, confining
ourselves to five decimal places, which are quite enough, the values found above for a, 3, v, 0,
¢ give the five following constants:

a; = 1-33675; a9 = 1-73469; a3 = 1-90300; a4 = 0-03217; a5 = 0-13136; (129)

and there, accordingly, were the logarithmic constants proposed in my memorandum of
February 9th, to be added algebraically to the common term, —2L¢, except that the value
then assigned to what is here called as was somewhat different, because an error (of no great
importance in its effects) had been committed in the calculation of the numerator of the
fraction denoted in the present Letter by £ (110): such error having since been discovered by
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the double system of equations between the constants above described, and having been traced
to the inadvertent substitution of —625/16, instead of —625/64, for —a'*/4, as one of the
terms of the expression for a’'c¢”; whence ¢”, and thence 4" and «", as derived from it, came
to have not quite accurate values assigned to them. From the checks since employed, I think
that we may now rely on the correctness of the fractions (109), and therefore on that of the
set (110); which latter (except a = 1) are merely selected from among the former. But to
show how small was the practical effect of the detected mistake, and therefore of the
introduced correction, I may remark that on recomputing the approximate values of the

function X (or 1),
X5 = daxdfxdyx, X4= daxdfxdyxddx, X;= daxdfxdyxddxdex, (130)

I find now, for the case t = 2, or x = %,

LXs5 =195543; LX4=1.95746; LX5= 1-95666; (131)
giving
X3 = 0:90246; X4 = 0-90669; X5 = 0-90461. (132)

The correction of the fraction ¢ in (110), or of the logarithmic constant as, has made no
changein the two first of the three logarithms (131); and has not importantly altered the third,
for the value adopted for what is here called X5, in my note referred to, was 0-9048. If, on the
plan of that recent note, we assume it to be likely that

X2 — X3 X5 1 1 1

X=—> "~ orthat = + )
2X4— X5 — X5 Xe— X X4— X35 X4— X5

nearly, (133)

the approximations (132), whereof only the last has been modified give, nearly,
X = X4 —0-00139 = 0-90530; (134)

which coincides almost exactly with the theoretical values computed with the help of your
reprint of Kramp’s Table, namely,

48‘] " dt = 0-90534. (185)
2

It is not worth while to try whether 7 places would bring us any nearer. [An earlier value of]
as was 0-032 40, instead of 0-03217, [was obtained] in consequence of my having taken out
the logarithm of 13 159 instead of that of 131519. It is curious how this error (of dropping
the 1 before the 9 of 131519) has haunted me. It led me into at least half a dozen puzzles, but
I trust that I have now (by means of checks) completely rectified every thing.

XV. Still, as the calculation will cost me but little trouble (the type being prepared), and as it
need not cost you any at all, so that the worst effect will be the adding slightly to the length of
this Letter, — and as even the last mentioned values of LX; and X5 were rather hastily
computed, — I shall here go on to perform, and to write down in full, the work for finding,
with 7 decimal places of logarithms, the values of X;, X9, X5, X4, X5, for the case x = %, on
the plan of the preceding paragraph.
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Type of the Calculation™ (136)
Constants: a; = 1-6377843; ag = 0-0357243; a5 = 0-2040254; a4 = 0-3331993; a5 = 0-4323870;
x = 0-125; Lx =1-0969100 = 1-0969100 =1-0969100 =1-0969100 =1-0969100.

_ 5 1
L0-0542868 = x; = 2-7346943 <: I? <= Lx + al)
- 1

X, = 0-882497; LX; = 1-9457132.

_ , 1 o 1
L0-1857170 =  x = 1-1326343 (: Lx+ a9 = L<L2— - L2—>.>
= X, Xo
L0-0397171 = 25989773 [=x — L 'xo.]
Xo = 0-912605; LXo = 1-9602829. L0-1999565 = x3 = 1-3009354
L0-0856402 =92.9326778 [= %0 — L x3.]
L0-0445712  =2-6493541[= x; — L' (%0 — L 'x3).] L0-2692212 = xs = 1-4301093
X3 = 0-902462; LX3 = 1-9554288. L0-1075757 =1.0317142 [= x3 — L7 ay.]
10-1059397 =1-0250586[= xo — L' (x3 — L™ 'xy)]. 10-3382963 = x5 =1-5292973
100425358 = 2.6287546 10-1235415 =1-0918180 |Assuming
- - 5 — Xe—X
X, = 0-906701; LX, = 1-9574842. L0-1504506 =T1-1773939 Xs =Xy _ 6725 — &,
= X4— X5 X5 — X4
L0-0959806 = 2.9821837 L(X4 — X3) = L0-004239 = 362726
L0-0435225 = 26387137 (X4 — X5)2 = L716-62646|L(X4 — X5) = L0-002057 = 3-31323
6-94049
X5 = 0-904644; LX5 = 1.9564775 |2X4— X3— X5=L"13-79906 3.79906
in this example (x =1}), L0-000672 = 4-82740) L0-001385 = 3-14143
X5 = 0-904644 X4 = 0-906701
true values are by equation (8), = Xoo = 0-905316; Xoo = 0-905316, (137)
- X, — X5)? Xi—X3)(Xs—X
X = 0-905354; LX = 1-9568185 |because Xoo = X5+ (X4 = X5) =X, — (X4 = X5) (X4 5), (138)
00 2X4—X3— X5 2X4 — X35 — X5
because X = 464J €7l2 di.
2

* [The following relations, (which follow from equations (118), (121), and (130)) have been used:
X\ =L Y=L 'w); Xo=L'[-L"(x— L 'x)];
Xs=LY{~L"[x;— L (xs— L 'x3)1};
Xy =L N(—L Y{x — L' [xg— L' (xs — L") 1});
Xs=L YL — LY xo— L' [xs — L7 (. — L7 '55) 1)}

These equations, together with a preliminary version of the calculation (136), are contained in a short
letter from Hamilton to De Morgan, dated 10 February 1858 (Trinity College, Dublin, MS 1493/971).]
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on the hypothesis of a geometric progression of the differences, X4 — X3, X5 — X4, Xo — X5,
etc.; which indeed is a very precarious one, or rather is certainly incorrect in rigour of theory,
but which has a degree of plausibility as a rule of approximation, and in several instances, as
here, gives results pretty near the truth. The method of converging fractions gives, as the
approximations answering to X3, X4, X5, for the same case,

1
(q:x:§, or t:2,>

the following closer limits, X > T3, < Ty, > T5; where

104 48 1672
Ty =t T, =2, =22 that s,
3T 115 17530 T qggy A
Ty = 0-904348; Ty = 0-905660: T5 = 0-905252; (139)

whence on the plan (137) it might be inferred that the value of Xwas nearly
= 0-905349. (140)

XVI. It must be admitted that, in this example, the exponential method, or “method of
continued and converging exponentials”’, gives with more trouble a less rapidly converging
series, or system of limits, X7, Xo, X3, X4, X5, for the function Xor 7, than the correspond-
ing limits T3, Te, T3, Ty, T5, which are obtained by the known and usual method of reciprocals,
or of “‘continued and converging fractions’’: although it happens that the aproximate values,

X3 — X3 X5 T2 — T5Ts

_ , _ iz fsls (141)
92X, — X5 — X5 9Ty — T — Ts

are here about equally near to the true value of Xor of 7. Again, by calculating with the same
exponential type (136), but with only five places of decimals in the logarithms, I find for the
case x = %, the values;

X1 =0-6065; Xo=0-8665; X5 =0-6636; X, =0-8426; X5 = 0-6740; (142)
and therefore, nearly, on the present plan,

X2 - X3X X, — X5)2
4~ 7375 :X5+M:O~7560; (143)

X=—rr——7_—-—
2Xy — X5 — X5 2X4y — X3 — X5

whereas the method of converging fractions gives for this case, when only as many terms of the
diverging series are supposed to be known,

T1 = 0-66667; T = 0-80000; T5=0-73684; T, =0-76923; T5 = 0-75145;
with the resulting aproximation

B (Ty— T5)* )
T= T gt e = 075775, (144)

the true value being here (because ¢ = 1), by (7),

X=T= 262{ " dt = 0-75787. (145)

t
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And here again the method of converging fractions has an advantage, over the method of converging
exponentials, as I believe that it will always be found to have, when applied to the particular
diverging series (43), and generally, to any alternating series, which diverges sufficiently fast. For

1 1

[:3, :q:ﬁzﬁ’

(146)
the convergence is rapid enough, which ever method® of approximation we employ: but this
may be considered to be a case too easy and favourable, and one which need not interfere with
the belief above expressed: besides that, even in this case, the believed advantage partly shows
itself. But to explain my reason for so believing, and what I imagine to be the ground of the
preference (independently of its simplicity) which I admit that the usual method here deserves, 1
must enter into a few more details, respecting the laws of the connexion between the
coefficients a, b, ¢, d, ¢ of the series, and the constants a, f3, y, 0, € which are deduced from
those coefficients, by one or by another process, according as we adopt one of the two
foregoing methods, or the other.

XVII. Suppose that we only knew four terms of our series (43), or had only
X=1-x+3x"—15x" +--- (147)

and that we could not at all tell, as yet what might be the value of the following coefficient d,
in the 5th term, +dx*; except that we may (let it be supposed) presume that this coefficient d
is not only >0, but > 15. Then there are many (perhaps infinitely many) ways of setting
about to transform this series for X into an expression of the form,

X = daxdfxdyxddx - - -; (148)

whereof two only (but those perhaps the most essential) have been hitherto considered in the
present Letter. In the Ist, which is also the usual way, the direct function, or that with which we
operate on the given series, and on others successively derived from it, has the form,

ox=x ' —1; (93)
so that the inverse function corresponding is,

p'x=dx=1+x""- (97)

On this plan, the supposed values, 1, 3, 15, of the 3 first coefficients a, b, ¢, give, as we have
seen, the corresponding values, 1, 2, 3, for the 3 first constants; a, 8, y; and then the 4th of
the equations (70) enables us to infer that the 4th coefficient d of the diverging series for X,
and the 4th constant d of the continued fraction which is a transformation of that series, are
connected by the linear relation, analogous to (75),

* The type gives here, (if we use only 5 figure logarithms,) Xs;=0-95159; X, = 0-95188;
X5 =0-95179; X =0-95181, nearly; fractions give T3 = 0-951724;2 Ty = 0-951830; T5 = 0-951810;
T = 0-951813, nearly the true value being by (9), X = T'=6¢" [;* ¢ * dt = L™'1-9785541 = 0-951818,.
I find that seven figures of logarithms gives

X3 =0-951600; X4 =0-951870; X5 = 0-951797;

(by the exponential method) and therefore, X = 0-951813, nearly. (I find that 75 = 3654/3839.)
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d = bd + 81. (149)

In order, then, that the constant 0 of the fraction may be >0, it is necessary that the
coefficient d of the series should be greater than the limit 81. If for instance, in any
application of the method of continued fractions, we should meet with the following
succession of initial terms,

X=1-x+3x>—15x°> +60x* — ex® + - -- (150)
we must transform the series, so far, into a continued fraction of the form,

1 % 2x3x 5 (151)

X7 denoting here (as in previous paragraphs) a series of which the Ist term is = 1; and the
coefficient ¢ being as yet unknown. And here we should not be entitled to establish the
inequality,

X > daxdfxdyx; (111)

or, more particularly, we could not expect to be able to write,

1+5x

X=Ty T =1p g

compare (87);

but should, on the contrary, have ground for believing the opposite inequality (X < T3) to be
probable. The method of converging fractions would .. fail, for this case (150), and at this stage of the
approximation; in the sense that it would conduct to a quantity 73, which was not a limit of an
opposite character, as compared with the next preceding limit, or aproximate value I3. In fact, if we
develope in series the fractional expressions for these two successive approximations, 79 and
Ts we find:

1 x 2x  1+4+2x

Ty = —— = =1- 3x2 —9x% + - 15
271514140 1+ 3« Xk OxT = 9xT e (152)
1 x 2x 1+5x o .
Ty=— 2 = =1—x+3x? —15x° +81x* -+ +; 153
3T 1¥1+1+3x 1+ 6x+3x2 ¥ ox ¥y (153)
on comparing which with the #rue series,
T=1-x+3x>—15x>+105x"* - -- (3)

we see, indeed, that T'<Ty, T > Ts, as before, because 15>9, and 105>81; but, on
comparing these with the assumed (or hypothetical) series (150), for X, we find that while Xis
still < Ts, because we have still 15>9, yet it must now be presumed, so far as comparison of
coefficients goes, that X is also < T3, because 60 <81. — What my argument insists on, is simply
this: that if we had merely been given, or had found, the three coefficients, 1, 3, 15, of —x!, a2,
—x%, and knew as yet no proof of any law, (even if such law were suspected,) which could oblige
the coefficient of x* to be as great as it really is, (105 =7 X 15,) we could not be sure, from the mere
divergent character of the series, that this unknown coefficient of x*, although probably greater than 15,
would turn out to be greater than 81; and therefore, that although we should be able to derive
successively from the three given (or known) coefficients, 1, 3, 15, of the diverging series, the
three constants, 1, 2, 3, of the continued fraction; and could thus form the finite expressions for the



56 II. TWO LETTERS TO AUGUSTUS DE MORGAN
1
three approximate values, Ty, To, T3, (where T = r,) we should indeed be entitled to
%
presume that (at least if x be not to large,) X > T, and X < Ty; but should not be at all entitled to
call it even probable (as distinguished from being improbable), that it would turn out that

X > Ts: the function X being as yet merely known, by the few initial terms which are expressed, in
the formula (147).

XVIIL. Let us now try the effect of the IInd. Method, mentioned in this Letter, by applying it
to reduce the same given beginning, (147), of the diverging series for X, into an expression of
the same general functional form, (148), but with a different assumption of the direct function @,
(and .. also of the inverse function &,) and with different values of the constants a, 3, y. In other
words, assuming now the forms,

1
ox=1—, (101), and dx=¢""%, (113)
X

we are to determine the three constants, a, 3, v, and to assign the relation, analogous to (149),
between the 4tk constant 0, and the 4th coefficient d of the diverging series, by the condition
that

PR Ton&e — 1 g4 g — ox® + dxt — &c; (154)

when

but d is supposed to be unknown. In passing, I may just ask whether you think that this
notation,

éfamefﬁ&&c

or more fully

—axX —fxX&ec.
axX LxX&c

might not with advantage replace what you justly call the “‘sprawling” form,

—Bxe TV XE —ox

o (155)

which you so amusingly converted into a ladder, with your humble servant walking up its
steps? — At all events, we have here, as in (110) the values,

5 221
“b PRy Yo%y

which may be deduced from a, b, ¢, by the three first equations (108), or by other processes
already given or indicated: and thus the 4th of those equations (108) becomes,
120(24d — 2210) = 170881. (156)

That is to say, if d and 0 be connected by this linear relation (156), we shall have the
transformation,

X=1—x+3x2—15x% + dx — &c. = ¢ F¢ 2e 00 Ox&e, (157)
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and the constant O will be negative, if the unknown coefficient be less than a certain limit, which is
nearly = 59 : 33; for
~ 2216 170881

=g + 5880 (158)
But, for the same reason, 0 will be positive, if d exceed the limit thus assigned; that is, more fully
0>0, if 28804 >170881. (159)

For example, if

1919
d =60, then 6:+m; (160)
so that

cre T eI e e = 1 — 4 3x% — 15x% 4 60x* — ex P& (161)

which equals the series (150), so far as that series has been written down: where ¢ and ¢ are
still unknown coefficients, or constants, and ¢ still denotes (though clumsily) the natural base
of logarithms. Again, by (156) or (158),if 6 = 0, then

170881
92880

= 59-33368, nearly: (162)

therefore

170881
2880

where the coefficient of +x* is < 60. In fact, without necessarily depending on the investiga-
tions contained in earlier paragraphs of this Letter, we have

Xs=c et =1—x+3x2—15x% + xt— e (163)

X5 = E—ax.e—[)’x.e—yx _ 6—ax.6—(ﬁx—ﬁyx2+&c.) _ e—Ax+Bx2—Cx3+Dx4...
=1—-ax+ x‘—cx—i— X — &cC.,
1 bx® S pdxt — & (164)
B Y B
when A=a, B=af, C=af y—|—§ , D=ap g—l—ﬂy—kg , (165)

and

1 1 1 1 1
a=A, b:B+§A2, c:C+AB+€A3, d:D+AC+§BQ+§AQB+2—4A4 (166)

whence the series (163), so far as it has been written, may be deduced anew; and also this
other comencement of a diverging series,

Xo=c % T =1-x+3x%— ex® + dx* — &c., (167)
where
139
c= o5 and therefore ¢<15. (168)

And because
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1
Xi=c*=1—x+bx?—---, whereb:§<?>, (169)

we see, upon the whole, so far as coefficients enable us to judge, that if X still denote a
diverging series, of which the initial terms are those assigned in the equation (150), and if
X1, X9, X3, X4 retain their recent significations, then

X > le X< XQ, X> Xg; (170)

but whether X > or < X4, we are not yet prepared to say.

XIX. Suppose, however, in the next place, that we are given the coefficient d of +x* in X, and
know that it is = 105; so that the series to be discussed is known to begin as follows,

X=1-x+43x>—15x> + 105x* — ex® + &c.; (171)

where the coefficient ¢ has a value not yet assigned. We now (by this new supposition) know
more than we did when we had only the terms written in (147); and .. may expect to be able to
deduce closer limits of approximation, for the sought value of the function X. We can infer, for
instance, that if we adopt the ‘““Method of Continued Fractions’’, the constant which I have
called 6 has now a positive value, namely the value 4 but that if we adopt, instead, the ‘“Method
of Continued Exponents”, then the corresponding coefficient, denoted above by the same
symbol 8, has this other positive value

131519

0=+ 36520 °

assigned in (110).

If we now proceed to consider the [linear relations, which exist in the two methods
respectively, between the constants which (for the present) I continue to denote by e and ¢,
we find that they are the following. In the first method,

e = 24¢ + 82b; (172)
and consequently, (while € = 5, if e = 945, as in the frueseries for 7))
q<0, if e<<825. (173)

In the Second Method, there is this other relation, more complex, arithmetically speaking,
but quite analogous in point of theory, and the coefficients of which have, as I think, been
examined with sufficient care:

31824(2880e¢ — 131519¢) = 60529 892 207. (174)

I do not recommend this process, as one which is remarkably exempt from labour; but it
shows that (in this method)

60529 892 207
>0,if e>——F————; 1
TN T gre53120 (175)
or (taking the next greater integer), that
e>0,if e = 661. (176)

We see, then, here as in former comparisons of the two methods, that when positive constants
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a, B, v, ... have been assigned, or found, up to a certain point, it requires a less divergence in
the series for X to secure a positive character for the next of those constants, (as here for what I
am, for the moment, calling ¢,) in the Second Method, than in the Ist. It is, therefore, not
quite so likely, a priori, when only the coefficients, up to some given point are known, and have
been found to give, so far in both methods, results (in the way of approximation) alternately
less and greater than the truth, that this condition of alternation will continue to be satisfied, if the
First Method be adopted, as it is if the Second Method be used. But, for precisely the same
reason, whenever the Method of Continued Fractions gives such alternating approximations, it
gives them closer to the true value sought, than does (I confess) the Method of Continued
Exponentials. At least, it does so, in all cases which I have tried: and I see no reason for
expecting that a different result will ever be experienced. — The old method is here the good
one.

XX. When what I may call (for shortness) the ‘“Exponential Method” occurred to me, not
long ago, in connexion with some of those Diverging Series which arise out of the Researches,
in part of a physical character, that were alluded to at the commencement of this Letter; and
before I had thought of applying that Method to the function 7, of equation (1), as a test; I
tried it on the diverging but geometric series;

X=1-x+x*>— x>+ x* — x° + &c., (177)

where x was supposed to be > 1. In this application, if we use the formula of paragraph XII.,
we have the given values,

a=b=c=d=e=1; (178)
and easily deduce from them the constants,
1 5 47 12917
= 1 = — = — = — = —_— 1
«=b P=y 7719 0T “T a0 (179)
with the approximate expression corresponding:
X=(14x)t=xcPrervgongatx. 9>, <1. (180)

When xwas >0, <1, I found that this gave a set of fairly rapid successive approximations; but
even when x was = 1, the alternate character was still preserved; and, on the whole, the degree of
approach obtained, to the true value, was not to be altogether despised. By substituting the
values (179) for a, 3, v, 0, €, the constant logarithms, analogous to those marked (124), are
found to be the following:

ar = T-6377843;  ay = 18367543, a5 = 1-2575721;  ay = 1-2307010; (181)
a; = 1-2195156;

and we have merely to write these numbers in the first line of the Type (136), of paragraph

9
XV., and then proceed as in that Type. For the case x = 10 itis thus found that

X5 =0-5165530; X4 =0-5289111; X5 =0-5356387; X = 0-5263238 nearly; (182)

the true value being here, by a converging geometric series,
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2
10 9 9
X =—=0-5263 =1-- =] — . 1
19 0-5263258 10-1—(10) &c (183)
For x = 1, or for the neutral series,
X=1-1"+12-1V4+1"-1°>+..., (184)

the type gives
X3 =0-4871434; X4 = 0-5037234; X5 = 0-4989456; X = 0-5000144 nearly, (185)

the theoretical value being here X = %, and the approximate X of (185), like that of (182), being
deduced from X3, X4, X5, by the formula (138). Even for x = 2, or for the diverging series,

X=1-2"4922_-934 91954 &c.,, (186)
the same type (136) gives with the help of the same formula (138),
X5 =0-27388, X4 =0-36428, X;=0-31933; X = 0-33426, nearly; (187)
the usual theoretical value being in this case,
X = 0-33333. (188)

And I believe, without pretending to have yet proved it, that however large a (positive) value may
be assigned to x, we should in all cases find the inequalities subsisting,

X=0+x"'>X, <Xo, >Xs5 <Xu >X; &c. (189)

XXI. In other words, although I have taken pains in this Letter to prove that a certain
degree of rapidity of divergence is requisite, if the coefficients of the series begin by diverging;
and that, at all events, when the coefficients up to a certain point are given, the next following
coefficient must be at least equal to a certain minor limit, in order that the constants of the
Exponential Development of the function represented by the series may all continue to be
positive yet 1 believe that all such conditions will be found to be satisfied, however far the
examination may be pursued, for the geometric series, or function,

X=0Q+x)'=1—x+x— x>+ x* — x® + &c.; (177)

and also for several other important functions, as for instance, the one to which most of the
foregoing investigations relate; namely the function (1), represented by the series,

T=1-q+3¢"—15¢" +105¢* — 945¢° + &c. (3)

For various particular values of the variable x, (or ¢,) and with the omission of powers of that
variable which exceeded the fifth, this fact of the condition being satisfied has been proved
by the success, such as it has been, of what may be called the ‘“‘Exponential Method of
Approximation” to the Value of the Series: including, as what is, for our present purpose, an
essential element of such success, the alternating character of the approximate values which the
Method gives. But because, when we take for the variable a value too large to render the method
useful, as giving (within any reasonable limits of labour), an arithmetical approach to the truth, it
has appeared to me worth while to examine, in another way, and by a different type of
calculation, for values of x which thus render (not only the original series itself divergent, but
also) the exponential development too slowly convergent, whether at least certain conditions of
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inequality, of a kind already alluded to, continue still to be satisfied: at least when we content
ourselves with considering the five first exponential constants, for each of the two functions
above mentioned, because those constants alone have been as yet determined.

XXII. Itis, then, to be shown, by an examination of what may seem to be a sufficient range
of instances, that if we assign to the real variable x any value > 0, the function

X=(1+x7", (178)
to take it first, as being the most elementary in its form, — satisfies the five following
inequalities: (compare equation (94):)
1_ax o 1 e 1 e (190)
X' oX X o X Xv @pXw
where the function ¢ x denotes the (natural) logarithm of the reciprocal of x, so that
1
x
while a, 3, ..., € are the five constants and positive fractions,
1 5 47 12917
:1, = —, = —, 6:7’ - -, 179
¢ P=9 71 120" ©7 33840 (179)

which depend partly on the form of the function ¢x, and partly on that of X. Or because
(101) gives

1 L 1 1
2 _i, L— = [2c— 122, (191)
X

we are to show that these other five inequalities subsist:

1 1 1 1
L—,:a1+Lx—L2}>o; L——a2+Lx—L27>O;

X f ) (192)
. _ 2 .
,LF—OL{,#»LX—L XW>O7
where
ay = La+ L%, (120), a9 = LB+ L%, &c.; (123)

so that these five logarithmic constants a;, as &c. have here the values (181). Writing,
therefore, on the plan of the equations (119), (122), for the present question,

% = Lx+ 1-6377843; xo = Lx+ 1-3367543; x5 = Lx+ 1-2575721; (193)
xg = Lx +1-2307010; x5 = Lx + 1-2195156;
we are to show, for variously selected (but positive) values of x, that
1 1
L_/:XI_L2(1+W)>O§ L_,/::XQ—LQ—,>0,
X X D¢
| ] (194)
i L— = x5 — L*—>0.
XY Xw
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These formula will enable us at the same time, in each particular example, to assign the
fractions, X', X", ..., X, (analogous to 0 in well known formulae,) which enter as final or
correcting factors into those finite exponential expressions whereto the Method conducts. But if we
do not care for more than a mere verification of the Theorem, that each such factoris >0, <1,
we may eliminate X', ..., X¥, and write simply, with the signification (193) of «1, ..., x5, and
as the inequalities to be numerically verified, the following:

x> L1+ x); x> Ll — LP(1+%); x> Lixe — L(xi — L*(1+x)));
x4 > L(xs — L(xo — L(x1 — L*(1 + x)))); (195)
%5 > L(xg — L(xs — L(xe — L(x1 — L*(L + x))))).

I proceed to give the calculation n full, for such verification of the Theorem, in the case where

x = 100; in which case the Method, regarded as one of approximation, would be practically
useless, on account of the slow convergence of its results.

XXIII. I find it convenient here to employ the following Type:

1
x=100; L(1 + x) = L101 = L~ = 20045214

— 0. = _]7~ 5
X =0-0099010 = L~ "'3-995 678 6; = L710-301 967 3;

Lx =2-0000000; a; =1-6377843; «x = 1-6377843;

;=

1
B L= 1:3358170
X'=0-0461512 = L'2-6641830;

= L710-1257470;
Lx = 2; as = 1-3367543; xo = 1-336 754 3;

1
L? = 12110073
X" =0-0615167 = L~12.7889927:

= L710-083 146 7;

(196)
Lx=9; as = 1-2575721; x5 = 1-2575721;
LXL =1.17449257 4
X" =0-0669229 = [.-19.825 574 6;
= 1.710-069 825 4;
Lx=9; as =1-2307010; x4 = 1-2307010;

LL =1-1608756

X" = 0.0690438 = 1-19.839 124 4; % %
— 1710-064 785 7;
Lx = 2; as = 1-2195156; x5 = 1-219515 6;
_ 1
X?=0.0700439 = 1'9.8453701;  L— = 1-1547299

Xv
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The inequalities,
X'>0,<1;, X">0,<1; X">0,<1; X">0,<I;
X'>0, <1, (197)

are therefore, in this example, satisfied.

XXIV. The same type, (196), gives me for x = 10, X = 11—1, the values

(198)

X'=0-2397895; X"=0-2855987, X" =0-3007609;
X" =0-3067505; X" =0-3095876;

which again satisfies the inequalities (197). We may observe that these values of which we may
call the “fractional factors”, (again analogous to the usual 8,) X', &c., are here also increasing
among themselves, from X' to X7, like those for x = 100, in (196); but that they are also
greater than those corresponding factors. And generally it appears to me likely that each of the
5 factors, X', ..., X", increases from 0 to 1 while x decreases from oo to 0. This seems to be
connected with the possibility of the development of each factor, X', &c., in the form of a series,
of which the first term is = 1, while the next term of each appears to have a negative coefficient.
At least, I have proved theoretically, or algebraically, that this negative character belongs to the
coefficient of x! in each of the Sour series, for X', X”, X", X™; and the comparison of the
arithmetical values of X" seems to establish the same result, for the coefficient of the series for
X" also.

XXIV. The same type (196) gives for x = 2, X = 1/3, these other values:

(199)

X'=05493062; X" =0-5990993; X" =0-6147950;
X" =0-6212028; X" =0-6240249;

which satisfy still the same inequalities as before, and follow the same general laws of
progress. And similar remarks apply to the case

1
x=1, X= 3 for which X' =0-6931473; X" =0-7330257;

200
X" =0-7453807; X" =0-7502813;, X"=0-7526877, o
and to the case where x = 9/10, X = 10/19, with the fractional factors,
X'=0-7131810; X"=0-7511867; X" =0-7629377,
X" =0-7675993; X" =0-7698944. } (200

Indeed, the mere fact of the requisite inequalities (X™ >0, < 1) being satisfied for these three

cases,
9
= 4, :1’ = —,
(x 2 X X 10)

might have been inferred from the results of the calculations of approximation, which had
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been previously performed with a different type (136), and of which some account was given in
paragraph XX. of this Letter.

XXV. When smaller positive values are assigned to x, the Method naturally succeeds still better, as
giving still more rapid approximation; but it does not follow that the Theorem can always be more
easily; or (in extreme cases) at all verified, with our usual Tables of Logarithms: a circumstance
which deserves to be remarked, because the neglect to notice it might lead to false conclu-
sions. On trying, for instance, with the type (196), and with just about the same degree of
care, but still with logarithms of seven figures only, (they happened to be Hutton’s, edited by
O. Gregory, 1838,*) what were the factors X’ &c. for the case

1 10
— X =
10 Tk (202)
I seemed to find the values,
1 1 1
L— =0-0208605;, L— =0-0174296; L— =0-0162847
X X X (208)

1 1 -
L—=0-0189212; L— =1-9425669;
le 2 2 Xv 2

1 1
and it was already suspicious, that Lﬁ appeared to be greater than LW; but monstrous, and

1
intolerable, that LF should be actually negativel But as no blunder was detected, on revisal, I

proceeded to calculate X5, by the other type, (136), as the best single approximation which our 5
constants, a; to as, (the only ones as yet determined,) would here give: though it might
perhaps be improved, on the plan (138), by combining it with X3 and X4. The resulting
number was,

10
1’
which is here (to the 7' places used) the exact theoretical value of X!! And now I saw, on a little
consideration, that the least little error of the 7 figure tables — such as that committed by taking
log11 = 1-0413927, instead of 1-041392685 ..., — came to be magnified with a frightful
rapidity, in applying the type (196) to the case x = {5, so as quite to interfere with our power
of verifying the Theorem, although it was so easy and satisfactory to apply the Method here.

X5 = L7'1-958607 3 = 0-909 090 9 = (204)

XXVI. Some reasonings, partly mental, which it is not worth while writing to develop here,
1
lead me to think that, instead of being <0, Lﬁ is nearly = +0.015, but probably a little

greater, for this last case of x = 7; and accordingly, if we asume that

1.
10°
1
LFZ 0-0150000, (205)
* [See note on p- 166.]

f It is to be noted, generally, that I do not pretend to be sure of the last decimal figure set down: nor,
always, of the one before it.
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we find, by (193), (194), combined with the value

Lx = —1 =1-000 0000, (206)
12 Xl = % = Loy = 22195156 — 0-015000 0 = 2:2045156 = £0-0160146;
LQ% = x4 — L% =2.2307010 — 0-0160146 = 2-214 6864 = L0-016394 1;

L2 ; = x3 — LXL =2.2575721 - 0-016394 1 = 2:241 1780 = 1.0-0174252; (207)
L2% = x9 — L% =2:3367543 — 0-0174252 = 2:3193291 = L0-020 860 7;
LQ% = x; — L% = 26377843 — 00208607 = 2:616923 6 = 1.0-041 392 7;

whence
1 11
L = 00413927 = Lig (208)

giving again

10 »

as we know that X ought to be.

XXVII. The assumption X = X5, which had been found to be sensibly correct, corresponds,
in the theory of this Letter, to the values

1
X"=1, L—=0; 09
= (209)
we see, then, that if our object be merely to calculate, approximately, the value of the function
X, (supposed to be known only by its development in series, and by the six first terms thereof,)

1
it is not of much importance whether we attribute to LF the positivevalue (205), or the null

value (209), or the negative value (203). The Method is therefore here a good one; but the
verification of the Theorem is precarious; since it would be difficult, or perhaps impossible,
from the foregoing calculations alone, to pronounce whether the factor X” is (in this case of
x = %) <1, or > 1. But, as above hinted, I have reasons for thinking that the assumptions and
results of paragraph XXVI. are in this case nearly correct, or at least are not very far from the
truth; and thus that, without fear of any remarkable error, at least as affecting the theory, we

1
may write here, instead of (203), the following equations, in which the value of LF has

been a little increased from that assumed above, and may still require some slight correction,
but the others are more to be relied on:
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1 1 1
L—=10-02086; L— =0-01743; L— =0-01639;
X/ XU X!N

] I (210)
L—=0-01600; L— =0-01550;
XZU X‘U
with these corresponding values of the factors, X', ..., X
X'=095310; X"=096067; X" =0-96295; ©o11)
X" =096384; X"=0-96494.

One confirmation of the four first values (210) is, that these four logarithms are (as they

ought to be, on account of the smallness of x) nearly proportional to the four last constants,
B,y.,0,¢ of (179).

XXVIII. Before quite leaving the subject, of the development by a Continued Exponential,
of the function X = (1 + x)~!, I shall mention another instance, in which not only does the
“Method of Successive Approximation’ succeed with sufficient accuracy, but also the
‘“Theorem of Alternate Inequalities’” can be verified by the usual Tables: namely the case
when x = % I find, in this case, by using the type (136), the converging approximate values,

X1 =06065307; Xo=06774630; X;= 0-6648820;
X4 =0-6669566; X; = 0-666620 3; } (12
whence, by the formula (138), we derive this improved approximation,
X=X5+ m = 0:666 6664, nearly; (213)
the true value being here
2

X = 3= 0-666 666 7.

And if setting out with this last value for X, we compute, by the type (196), the factors X',
.., X7 we find that they satisfy the required inequalities; their values being, in this example,

X'=0-81093; X"=0-83829; X" =0-84667;
(214)

X" =0-84994; X" =0-85192;
and their progression following the same general laws as before.
XXIX. Itwill be remembered that these factors, X', &c., are certain functions of x, which can

be developed in certain ascending series, namely, in the notation of this Letter, (compare
equation (51),)
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X =1—-ax+bx*>—c'x>+dx* -
X'=1-a"x+b"x*—c"x> +---;

X" =1 st b oo (215)
X"=1—a"x +---;
XU=1 —- ;&

For
X=(1+x) "= odaxdfxdyx---, with ox=c*

I find that the coefficients of these series, so far as they are written in (215), have the values:

’ 1 /_1 1_1 /_1,
a _§’ b _3’ 4 _4’ d _53
5 1 951
n_ [ — " _ . 16
2 YT T 1o (216)
m __ 47 mo__ 2443 . l‘l}712917
120° “10800° ¢ T 33840°

"

where d', a”, a”, a" are the same fractions as those denoted by f3, y, 9, € in (179). I have not
determined the fractional expression for the coefficient a”, or {, which belongs to the same
forms of the two functions, Xand ¢ x; but a comparison of the computed values of X? seems
to make it certain that this coefficient is positive, like the others; and even that its value cannot
differ much from that of the fraction %, although (no doubt) its numerator and denominator
are numbers which may be spoken of as large. I judge, also, from the same sort of comparison
of numerical values, that if we write, according to the same analogy, but more fully than in

(215),
X'=1—a’a+b"x* — -, (217)

the coefficient 67, as well as a”, will be found to be positive; and I think that I see, nearly, what
its value will turn out to be. But it would be a waste of time to delay, for the purpose of
verifying such estimations: and I pass to some examples of the calculated values of the factors,
or series, X', &c., for that other form of the function X, which I began by considering, in this
Letter.

XXX. After the full details which have been given, respecting the plan of calculation
adopted, it may be quite enough to mention a few of the numerical results obtained. I find,

then, that if we write
9\? | [*
X = <_> géj el (218)

so that
X=1-1x+1.3x>—-1.35x>+1.35.7x* — 1.3.3.7.94° + &c., (219)

as in earlier paragraphs, the law being now supposed to be known; (on which account there is



68 II. TWO LETTERS TO AUGUSTUS DE MORGAN

the less harm in my indulging the last series with a new number of reference, although it had
occurred before: — at worst, the doing so can produce no confusion, nor embarrassment,
although I admit that a greater economy of such numbers would have had a better appearance
throughout:) and if we write, on the plan of paragraph XIV., instead of (193), the equations,

x = Lx+1-6377843; x = Lx+0-0357243; x5 = Lx+ 0-2040254; (220)
x4 = Lx+0-3331993; x5 = Lx -+ 0-4323870,

where the constants added to Lx are those denoted by ay, ..., as in (124); and employed in
the type (136); if also, subject to this selection of values of those constants, we determine

1
successively X', ..., X" by the formule (192), remembering that — is not now equal to
(1 + x), but to the reciprocal of the expression (218), so that we have still the relations,

1 1 1 1 1 1
L—=x—1~; L—=x—1*—; L—w=x3—L"—;
X X X X X X
(221)
r o 1 I3 - 12 1
LXw_x‘liL X"’ ﬁ_xf)i Xw’
with the values (220) for x1, ..., x5; then the five inequalities,
1 1 1 1 1
L—> L > L—> L > L—>
X’ O’ X/! 0’ Xm 07 Xw Oa X0 O; (222)
continue to subsist, at least in all the cases which I have tried.
XXXI. Thus, for the case where
1 L -
x=—, X= 669J c"dt = L7'1.978554 1
18 3
= 0-951 8184, (223)
I find the five following positive values:
1 1 1
L— =0-0511675; L— =0-0714576; L—. = 0-0947044;
X X X
] 1 (224)
L—=0-1015567; L— =0-1704059;
XZU XU
giving the five following factors, X', ..., X7, to seven decimal places, such as they were taken
out:*
X' =0-8888582; X" =0-8482862; X" =0-8040732; (
225)
X% =0-7914862; X" =0-6754515

whereof each is seen to be > 0, but less than 1. Again for the case where x = 3’

* I think that I have declared that I do not answer for all the decimal figures set down, although it
does not seem worth while to abridge their extent, by way of precaution. I give them just as they came,
and shan’t be surprised if corrections shall be found; or rather should be surprised at the contrary:
though I think that the theoryis safe.
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X = 454J " dt = L7'T-956 8185 = 0-905 354 2, (226)
2

I find these other values,

1 1 1
L— =0-0993965, L— =0-1352632; L—. =0-1697558;
X( ’ XI/ 2 2’ XI/I

] ] (227)
L—=0-2002847; L— =0-2276495;
Xw 2 2 ’ Xv 22 ’
X' =0-7954327; X"=0-7323805; X" =0-6764633; (
228)
X" =0-6305439; X" =0-592039 3;
which satisfy the same inequalities. For the case,
1 R T
=3 X = QCJ ¢ "di= L7'1-879596 0 = 0-757 872 3, (229)
1
itis found that
1 1 1
L— =02561134; L—,;=0-3262620; L—;, =0-3894289;
X! XI/ XHI
) ] (230)
X' =0-5544809; X" =04717783; X" =0-4079163; (231)
X" =0-3616253; X?=0-3264455.
And finally for the case, which may be regarded as almost an extreme one, when
(o]
x=50, X= geﬁj ¢ Cdt = L7'1-2011044 = 0-158 89238, (232)
1
0
the same system of formulae conducts to the values,
1 1 1
L— =14342643; L—,=15780631; L—,=17048710;
X! XI/ XHI
) ] (233)
L—=18004777, L— =1-8759692;
Xw Xv
X' =0-0367905; X"=0-0264202; X" =0-0197301; (234)
X" =0-0158315; X" =0-0133055;

which still satisfy the same inequalities. In all those cases, therefore, the theorem (of alternate
inequalities) is verified, on account of the factors X', ..., X" being always included between
the limits 0 and 1. As regards the method (of successive approximations), it has been found to
succeed well for the first case, (223); (see note to paragraph XVI;) since it then gave

X =095181, nearly, instead of X = 0-951818. (235)
In the second case, (226), it gave
X =0905316, nearly, instead of X = 0-905 354. (236)
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In the third case, (229), it gave
X =0-7560, nearly, instead of X = 0-75787. (237)

The success was therefore respectable, in the second case; and not quite to be despised in the
third. For the fourth case (232), I find that the same method gives numbers which are quite
useless, as approximations; namely, to several decimal places,

X] = O; XQ = 1; X3 = O; X4 = 1; X5 = 0; (238)

so it would merely enable us to infer that X lies between 0 and 1. But the theorem continues to

be verified; although the series to which it is here applied is one of excessive divergence.™

XXXII. We have hitherto considered only two Transformand Functions, namely,
X =1—x+3x"—15x" +105x" — 945" + &c., and
X:1—x+x2—x3+x4—x5—|—&c.;
and in order to develop them otherwise, namely under the general form,

X = daxdfxdyxddxdex ...,

we have used only two Auxiliary Functions, namely,
bdx=(1+x)"1, and dx=¢%

which may perhaps be called Inverse Transformers, if we give the name of Direct Transformers to
the two other Functions

1
px=x"'1—1, and ox=[—,
X

whereof the two foregoing forms are the respective inverses, and with which we have operated
on the given series X, in order to deduce from it the constants, a, B, y, 0, €. I wish now to say a
few words respecting a third transformand; and afterwards to make some remarks upon a third
transformer. with hints about indefinitely varying both. For the moment I take the series,
(mentioned in a separate note; lately,)

* [At this point Hamilton attached the following note:
Observatory March 23rd 1858

My Dear De Morgan,
I send on 8th Sheet, which winds up all that I wished to say, respecting the two
Transformands,

X =1-x+3x" — 15x" + &c., and
X=1-x+x>—x°+ &c,
considered as combined with the two Transformers,

dx=(1+x"", and odx=e"

But I must write about a third Transformand, X, and a third Transformer, dx. Then, perhaps, the perturbed
spirit which evoked my Letter of February 15th may be allayed: — and I shall be free to begin a new one!]
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17140 20,1 3142 42,3 5344 G*xD

X= ~To " T3 TaT5 T6

&c.; (239)*

which I have not met with in any book, nor do I attach much importance to it, but it will serve
for illustration. Here,

3 8 125 54
a=1, 50 =3 55 ‘=5 (240)
whence, if we adopt the first method of transformation, namely the method of reciprocals, we
derive (on the plan of paragraph VI.) this other series,

’ X71_1 ’ 12 ] r.4
X =—=1—dax+0bx"—c'x"+dx" — &c., (241)
ax
when
1 2 9 32
I =_ brzf = _ d':—' 4
a=g 3 =g 5 (242)

so that we have, so far, (but I have verified the law for several other successive terms, and see
no reason to doubt that it continues indefinitely,)

_(_1)71‘%0 OOxl lle 22x3 ?)3X4 44965

X '= &ec. 43
I re T3 T4 T5 ' T6 - (245)
where 0° is to be interpreted as equal to 1. Pursuing we have
X' 1-1
X'="———=1—-a"x+b"%* — ¢"x* + &c,, (244)
a'x
where
5 7 721
n_ = b/r:_ !I:_' 45
“ 76 6’ 360 (245)
Again,
n—1
X"="o=1-a"x+b"x* — &c., (246)
a"x
17 172
" — b/N = 47
“ T30 295 (247)
And finally, we may write, on the same plan,
X"1_1 X©' —1
XVM=——a—=1-a"x+&c, X'=——=1-%&c, (248)
a’x a’x
with the numerical value,
133
Y= 49
“ 710 (249)

* [I'n denotes the gamma function; I'(n + 1) = nl(n).]



72 II. TWO LETTERS TO AUGUSTUS DE MORGAN
If then we write,

1 5 17 133
a_la ﬁ_ga 7—6, 6_%’ 8_m’ (250)
we shall have for the series (239), the transformation, (compare (90),)

1 axfxyx  ox (251)

in which the five constants, a, 3, y, d, €, have the positive values (250), but nothing has as yet
been proved respecting the value of the function X7; not even that it is always > 0, for x > 0;
much less that it is <1. If, however, we presume that this function X7 is likely to have a positive
value, because it can be developed in a series whereof the first term is = 1, — a presumption
precarious enough in general, but which I think will Aere be found correct; and if we form the
fractional expressions,

1 1+ fBx 1+B+y)x
X, = X B s B+7y)

1+ax RN Tk T1t (@ +tBty)xtayx?’
1 0 O x?
X, = + (B+y+0)x+pox . (259)
1+ (@a+pB+y+d)x+ (ay+ad+po)x
\ - 14+ B+y+0+e)x+ (BO+ Pe + ye) x>
b 1+ (a+pf+y+0+e)x+ (ay + ad + ae + B6 + fe + ye) x* + ayex®
then, in consistency, expect to find that the following inequalities are satisfied,
X<1, >Xi;, <Xo, >X5 <Xy (253)

but whether X > = < Xj we are not yet prepared to say, because we have not yet determined
the algebraic sign of the next following constant, §, or a”. Or, substituting for a, 8, v, 0, €
their values (250), we have the converging fractions,

1 2+ x 6+ 8x
X = ;0 Xo= ; 8= T o T )
14+ x 2+ 3x 6+ 14x+bx (254)
X, — 6O+114x+17x2. B 1020 + 2736 x + 1353 x> .
Y760+ 174x + 101x2° 7 1020 + 3756x + 3579x2 + 665x3
which in fact may be developed as follows,
. 3x% 9«
2 4
3x2  8x®> 179x*
Xo—=1— o0 2% .
. A R R TS ’
(255)
x 1 +3x2 8x3+125x4 7643x5+
— — X R — S — R
' 2 3 24 720 ’
Xoo 1 g3 820 195y 540 284370150
R BV 5 122 400 '




II. TWO LETTERS TO AUGUSTUS DE MORGAN 73

If then we only know the coefficients of the series (239) for X, so far as they have been actually
written down so that we are only informed that
X =1 + 3x*  8x° n 125x*  54x°
B T R S
where fmay be presumed to be positive, and even to be >54/5; we can indeed infer the
inequalities (253), at least for small and positive values of x; but cannot conclude that, even for
such values, X > X5; until we know that

+ fx® — &c., (256)

2843701

/= T99200 (257)

This result is exactly analogous to one of paragraph VIIIL., in which it was found to be
necessary, for the continued success of the method of reciprocals, or at least for that method’s
continuing to give alternating limits, or approximate values alternately less and greater than a
certain other minor limit; which was, in that former application, = 9675. But as we had, then, by
the law then existing,

f=11.945=10395>9675, (compare [(75) and] (77),)

so we have now, by the present law of the series (239) for X, the value,
_1 B 16807>2848701‘
/= r7 1720 122400 °

at least if x be not too large. But 1 think that this inequality, X > Xj, will be found to hold good,
Jor all positive values of x; if X be that function of x from which, by processes not worth dwelling
upon, the series (239) was deduced: namely that real and positive quantity which satisfies the
equation,

& therefore X > Xj, (258)

1 1

X+ xX=0; or, }l}: X. (259)

XXXIII. It may be noted, that because the general term of the series (239) for Xis
(n+ D" (=" _ (n+1)"(=x)"

60
1.2...n I'(n+2) (260)
so that we may write
m=00 mm—l(ix)m
—xX = —_ 1
X=D Fmr (260)

m=1

therefore a distant term of this series for —xX is nearly equal (by a well known property of the
function I'[viz: n!~ v/27n(n/e)", due to James Stirling (1692-1770).]) to the expression,

(—ex)"(2m’m) (262)
whence it appears to follow that the series in question becomes divergent, if
x>l

>

but is on the contrary convergent, if
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x>0, x=cL (263)

Compare the remarks in Cauchy’s Cours d’Analyse,” on the conditions of Convergence of
Series — which I have not very carefully studied. The Corollary in his page 137 appears to
show that the series (239) converges, even if x be negative, provided that

x=—c! (x<0). (264)
In fact, Cauchy seems to make out that the series,
1 1 1
1+2—#+3—ﬂ+ﬂ+&c., (265)
converges if u > 1, but diverges in the contrary case: and
3
H=5
when we apply this principle to the asymptotic series of which the general term is (261),
supposing

(266)

x=—c'; and therefore by (259), X =¢ (267)
It appears then to follow that the series,

32 4273 53t 6t

=1+¢!
=t T e T 193 1934 12345

+ &c., (268)

ought to be found to converge, though slowly, to the limit written here; but it is evident that
this other series is a divergent one,

4 3162 4263 5364 6465
€ =1—¢€e+

- - &c.; 69
12 123 1234 12345 -7 (269)
and indeed the recent analysis seems to show that if a positive quantity, x, which exceeds ¢!,
be substituted for ¢ in the second member of the equation (269), so as to reproduce the
development (239), this resulting series will diverge. The series (243), for X!, appears to be
just about as convergent, or as divergent, as (239), of which it is the reciprocal, for its general
term is,

—(m=D)" N =) e
T'(m+1) =—¢ (—ex)"(2m )72, nearly, (270)

where m is a large positive number. The following series therefore would seem to be a
convergent one, though the convergence is but slow:

2 223 33 4170
12 123 1234 12345

el=1-¢"! &c. (271)

In general, for any positive quantity X, we have (it seems) these two series, converging or
diverging, as the case may be:

* [Augustin Louis Cauchy (1789-1857), Cours d’analyse de lécole royale polytechnique, Paris: 1821
(Reprinted in: Qtuvres completes d’Augustin Cauchy, 2nd Ser., Vol. I, Paris: 1905.).]
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N 90 X -17x . SLX1X)2 42(X~'x)® 53 (Xlix)t

_ . *
X=1 1 1.9 123 T34 & (272)
X 'ix 1'x'x)? 22x'ix)? $(xlix)t
X '=1- _ _ _ _ &e.
1 1.2 1.2.3 1934 % (273)

It is true that (after happening to perceive them), I have not done more than verify these laws,
for about 7 or 8 terms of each separate series; but I cannot doubt that they continue to hold
good: especially as I observe that in combination with each other they satisty the differential
equaltion,

d 1 xd
Ao M x=1 4
X " ’ (274)

which is a consequence of the equation (259); so that each series can be deduced from the other.
In fact, the complete integral of the equation (274) is,

IX + xX = constant; (275)

and the constant is here = 0, because the series for Xreduces itself to 1, when x becomes = 0.

XXXIV. After this discussion on the form of the series (239), let us pay a moment’s attention
to its value, for the case a =1

3 Which may serve as a convenient example. The converging
Jractions (254) become here,

8 17 448
Xy =35= 0-8888889; Xo —E—0-8947368, X3 = el = 0-894 211 6;
4769 708168

= =08942434; X5 =-—"-=0-8942407;, giving X =0-8942409 ly;

* = 5333 2L X =75rg91 2407 giving 2409, nearly;
(276)

and in fact the equation,
! l1 = ( —)1 i X =0-8942409; (277)
xix= (=g, sgives = ;

so that the convergence is here sufficiently rapid, and the inequalities (253) (258) are
satisfied. Continued exponentials give, here, the very simple and elegant expression,

X=c*c*c"&c., (278)

to be interpreted on the same plan as the expression (154); but there is still a practical
inferiority in this second method, as compared with the first: since the corresponding aproximations
which it gives are somewhat less close, being these,

X; =0-882497; Xy =0-895555; X5 = 0-894094; }

(279)
X4 =0-894257; X5 = 0-894239;

* Note, Thursday April 15, 1858: De Morgan has recently called my attention to an anticipation of the
series (272) by Murphy'. [Letter of De Morgan to Hamilton, April 11, 1858, Trinity College Dublin MS
1493/987.]

T [Robert Murphy, 1806—1843; A treatise on the theory of algebraic equations, p. 82, London: 1839.]
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from which, however, we might infer, on the plan (138), that

X = 0-894 241, nearly. (280)
Indeed, in this case, the original series (239) converges sufficiently fast to give without much

trouble the few first decimals of X

XXXV. If we take x even so great as 3, then, (since $>¢ ') the series (239) will diverge; its
first terms becoming now,

Xfl_il_‘_é_f_l_i_i_'_ 71_1+§_1+§_277+
2 4 8 16 32 2 8 3 384 80
=1—0-50000 4+ 0-37500 — 0-333 33 + 0-32552 — 0-33750 - - - ; (281)

whence we could only infer, without some such transformation as we have been discussing, that
the real and positive root X of the equation,

LWRERES (282)
X X 2
considered as developed in this diverging series, was subject to the two following inequalities,
X> 15 < 1 or
24° 128°
X>0-54167, <0-86719; (283)

and in fact this root of (282) is found by trials to be, nearly,
X = 0:703467. (284)
Converging fractions give here, by making x = %in (254),
2 5 40 485

X = 3 Xo = - X5 = B = 0-70175, X4= 689 = 0-703 92,
21810 (282)
Xy = 31007 — 0-703 39;
whence, on the plan (138), we might infer that
X =0-70349, nearly. (286)
Converging exponentials give the corresponding, but less close, approximations:
X3 =ttt =0-691286; Xy = 0-707765; X5 = 0-701957; (287)

from which, however, on the same plan (138), the value (284) might very nearly be recovered.
But the first method (that of fractions) preserves still its advantage over the second.

XXXVI. When we take x = 1, the series (239), of course, diverges faster than before; so fast,
indeed, as to furnish no useful guess at the true value of X. But the five converging fractions
(254) give, still, the formation which is not to be disdained: even when we abstain, as we have
done, from determining the fractions which follow them. In fact, they give the successive
approximations,
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Xlzé, X2:§a XS:;%’ 42%, 52%; (288)
or, expanding the three last fractions decimally,
X3 = 0-56000; X4 =0-57015; X5 = 0-56641;
whence X = 0-56742, nearly. (289)
The true valueis here the real and positive root of this transcendental equation,
X+ X=0, or
1 1 .
X l} =1; namely (by trials), X = 0-5671433. (290)

The exponential method (as in all the other cases hitherto considered) approaches to the mark
more slowly, although it would infallibly reach™ that mark, after an infinite time allowed, if we
had the patience to shoot with it, over and over again, each time acquiring thereby a slightly
better ground for taking aim. In fact, if we now write,

X = e_l; X9 = e_l'e_l; X5 = e_l'e_l'e_l; &c.; (291)
so that
Xp=c X, and Xy=1; (292)

then, rigorously, as the limit of an indefinitely continued process, we may write the equation,
whereof the theory may perhaps be developed somewhat farther on:

X = Xo. (293)

Numerical calculation gives, with these last meanings of X;, Xo, &c., the values:

X1 =0-367879; Xy =0-692200; X3 = 0-500474;
X4 =0-606243; X5 = 0-545 396; } (294
whence, on a plan already often referred to, it might be inferred that
X = 0567617, nearly; (295)

and in fact this value is not much less accurate than the value (289). I have had the patience
to push this method of approximation farther, the type employed being easy enough; it
seems that after about twenty steps we might perhaps be content to stop: for I find, as the
result of calculations performed with seven decimal places throughout,

X1 =0-5671569; X9 =0-5671355; Xop = 0-567147 7, nearly; (296)
which differs little from the value (290) of X; being, however as it ought to be, a little in
excess. But the method of converging exponentials is still inferior, in practice, to the method

of converging fractions: although, if we applied the plan (138) to the values (296), we should
very exactly recover the value (290), under the term

* For the proof of this assertion, I must refer to some subsequent paragraphs.
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(Xo0 — X19)?
X = Xog — = 0-567143 3. 297
7 X0 — 2X10 + Xig (297)

XXXVII. I scarcely intended to say anything more about the ““Third Transformand’ of this
Letter, namely the Function or Series (239). But before I pass to the consideration of what I
have already alluded to, as a *‘ Third Transformer”’, or third form of an auxiliary function, a word
or two may be added respecting the case,

x=¢, X=c!=036788; (298)

in which case we are conducted to the highly divergent series (269). The exponential method
would here be practically useless; so slow would be the convergence of its successive approxima-
tions be: but still it would give convergence, from the very outset, and therefore, theoretically
speaking, it would not fail. In fact we have now instead of (292), the relations,

X =% Xo=1; (299)
whence,
X, =c ‘<l X <1; Xo > o Xs<eah, Xy>ealy Xs<ely & (300)
But also,

X, >0; therefore Xo<1; Xs>¢ ¢, therefore > X1; X4 <e Y therefore < Xo; &c.;

(301)
thus, Xi, X3, X5, ... form an increasing series, >0, but never quite ascending to e !5 and
Xo, X4, X, ... form a descending series <1, but never quite descending to ¢ or, in symbols,

€ 1> Xopi1 > Xop1 > -+ > Xg> X >0; (302)
and
el < Xoy < Xopo< - <Xy < Xo<1. (303)

We are therefore already entitled to infer that Xy, 1 and X, tend, each separately, to certain
positive limits, whereof the former cannot exceed ¢!, and the latter cannot fall short of it; or in
symbols, that

lim Xop_1 = A>0, »e';  lim Xo, = B<1, <¢ (304)
n=oo n=oo
where the marks 3, <, are the contradictories of >, <, or, signify, respectively, ‘‘not less than’,
and ‘‘not greater than’’. (I sometimes write, in like manner, the mark #, to signify ‘‘not equal

to’’.) If, then, we could, at this stage, assent that X,, tended to any one fixed limit, independent of
the odd or even character of the index n; or, in symbols, if we were already certain that

A=B, orthat lim X, | = lim Xo,, (305)

n here denoting any whole number; we might at once conclude that

Xy =1lim X, =A=B=¢". (306)

Accordingly, if we suppose that X, has any one fixed value, which is independent of the odd or
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even character of the whole number denoted here by oo, the first equation (299) will give the
condition,

X = ¢ K (307)
but if we write, for a moment,
Py =y, (308)

the function ¥y increases, constantly and continuously, with y, from 0 to oo; it passes
therefore once, and only once, during this increase, through any one given real and positive
value; or in other words, the equation,

ye? = ¢, (309)

has one, and only one, real and positive root, vy, for any given real and positive value of ¢: and all its
other roots are imaginary. But, with the form (308),

Y =1 (310)
the equation (307) has therefore no other real root, except the root (306).
XXXVIII. It is, however, conceivable, before examination, that the f{wo limits, A and B, in
(304), may be unequal; in which case, either the formerlimit must be less than ¢!

limit must be greater than ¢!, or else both these inequalities must be satisfied together. And,
in fact, if we go only a short way in the actual calculation of the numerical values of X;, Xo, Xs,

, or the latter

&c., we shall not perceive any marked indication of the lately supposed convergence, of Xs,_; and
Xon, to any common limit X. I find, for example, by calculations similar to those lately
mentioned, that

(311)

X, =0-0659880, Xo=0-8357931, X3=0-1031139,
X4 =07555626, X;=0-1282425;

and even after pursuing the process (with fewer decimals) to a stage much more advanced, say to
about Xg, there is still observed to remain a very decided excess of Xo, over Xo,41; although this
excess is observed to diminish continually, as by the theory it ought to do. In fact, it is found that
we have, nearly, the values (calculated with five decimals only,)

One might, therefore, perhaps, doubt, for a while, whether this diminution, though continual,
would ever quite bring down, even for infinite values of n, the difference here spoken of to zero; and
whether we might not, perhaps, have, on the contrary, the final and lmiting inequality,

lim Xy, > lim Xo, 1?7 or, briefly, B> A? (313)

XXXIX. Retaining, for a moment longer, the two symbols, A and B, to denote the two limits,
without yet deciding whether those limits are equal, or unequal, we easily deduce from (299)
the two equations,

B=c“ A= (314)
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which may also be written thus,
B+e¢A=0; I[A+eB=0. (315)

If then we write,
€y 1
Xy = e‘”;, (316)

a very easy process of elimination shows that A and B must both be roots of the transcenden-
tal equation,

XY =6 (317)
whereof the value,
y=X= ! (298)
is also obviously a root; so that we have,
1
XAz){B:Xz:e. (318)
The relations,
A=B=c", (306)

must therefore exist, unless the equation (317), in y, admits at least two real, positive, and
unequal roots. But it is easy to prove that

Gy
11 (819)
:6Cy<6l—><0, if y>0, st‘l;
Yy
while for the particular case y = ¢~!; we have
1

Hence, the function xy decreases constantly and continuously, from an indefinitely large
positive to an indefinitely large negative value, while y increases from an indefinitely small to
an indefinitely large positive number; this function yy being, however, for a moment stationary
in this decrease, where y= e ! at which stage we have seen that it attains the value,
% (e71) = ¢. It follows hence that the transcendental equation,

XYy =06 (321)

when ¢ denotes any given real quantity, whether positive or negative, or zero, has, in general,
only one real and positive root, y; but that in the singular case, where ¢ = ¢, that is, in the case
(317), the equation may be said to have two® real and positive roots, which are however (in this
case) equal to each other, and to € !. The values (306) are therefore thus proved to be correct;
and the convergence of the two systems of increasing values Xj, X3, X5, ..., and of decreasing

* Rather threereal, positive and equal roots. See p. 88.
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values Xo, X4, Xg, ..., to one common limit, Xoo = X = ¢!, is thus completely established. This
theoretical convergence is, however, here, in practice, excessively slow: for a rough calculation gives
me the (still) very sensibly unequal values,

ng == 0285, X]oo = (0-460. (322)

The converging fractions (254) give far more rapidly the following much less rude approxima-
tions, to what is here the true value (298), of the divergent series (269):
X7 =0-26894; Xy =0-46463; X5 = 0-34254; }

(323)
X, =0-38733; X5 =0-36163.

XL. More generally, in applying the exponential method to transform the series (239), we
have, instead of (292) or (299), the equation

Xy =¥, Xo=1; (324)

in which we at present suppose that x> 0, in order that the terms of the transformand series
may be alternately positive and negative. By an analysis similar to that employed in recent
paragraphs, but made a little more general, we can show that the transcendental equation

X =X (325)
which is only another form of
11
X+ xX=0, —l==x, 59
+ x or ply=x (259)
has one, and only one, real and positive root X, for any given real and positive value of «x. In
fact, when x1is thus given, and real, and > 0, the function

PYX = XX, (326)

which is slightly extended from the form (308), increases constantly and continuously with X,
from 0 to oo; it passes therefore once but only once, through any assigned stage of real and
positive value; and the equation (325) under the form

WX =1, (327)

is thus seen to have, as above asserted, one real positive root X, and only one. Or we may
observe that (x being still > 0) the function,

WX = IX + xX, (328)

increases constantly and continuously from —oo to +oo, while X increases from 0 to oo; this
function therefore passes once, but once only through any assigned stage of real value, and in
particular through the value 0, during this increase of X. Or again we must consider this
other function
1 1
X=—=1l=; 329
pX =I5 (329)
of which the differential coefficient relatively to Xis

o' X=X2(IX-1); (330)
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hence
' X<0, if X>0,<¢, but ¢'X>0, if X>g¢g (331)

therefore ¢ X decreases from oo to 0, and passes once, but only once, during such decrease,
through any one assigned stage x of real and positive value, while Xincreases from 0 to 1. Or
finally we might remark that while the one member, X, of the equation (325), increases from
0 to 1, the other member, ¢ **, decreases from 1 to a quantity <1, namely to ¢ *. In any of
these ways we may easily see, not only (as above stated) that the equation (325) has always a
real and positive and unique root X, if x> 0, but also that this root

X<1. (332)

Such, then, must be the value of X, if it have any determined value; that is if, in the first equation
(324), we are at liberty to consider X, as tending fo any one fixed limit, (while the whole
number 7 increases,) which limit is independent of the odd or even character of n. But the
conditions of such independence remain to be investigated.

XLI. Meanwhile, this seems to be a natural occasion for observing, that since, by (331), the
function ¢ X in (329) decreases from 0 to —¢ !, while Xincreases from 1 to ¢, and afterwards
increases from —¢ ! to 0 again, while X continues to increase from ¢ to oo, each process of
decrease or of increase being constant and continuous, therefore each of these three forms
of one common transcendental equation,

1 1
pX=—Il—=—-x, IX—xX=0, X=c*¥, (333)
X X
has two real and unequal and positive roots, one > 1, <g, } (834)

and the other >¢, if x>0, <c¢ 1;

but that the same equation, under any of these forms (333), has two real and equal roots, each
being
X=¢ ifx=cl (335)
and finally that each equation (333) has no real root X,
if x>¢ . (336)

The critical stage of equal roots, (335), corresponds to the case (267), and to the barely convergent
series (268), of which the value has been seen to be €. And we now see that the series,
20x  31x?  42x%  5%x*  6%x°

X=14——— .
+F2+ I + T4 + 5 + 76 + &c., (337)

which is formed from (239) by changing the sign of x, and may be obtained by suitable
processes from any one of the forms (333), may be said, in language of your own, to “‘escape
from imaginariness, by becoming divergent”’, when x comes to exceed the limit ¢!. At the
same time we see that this series (337), under the conditions (334), (compare paragraph
XXXIIL.,) converges to a limit X, > 1, <¢; namely to the lesser of the two real and unequal roots of the
equation (333).
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XLII. Hence if in this series (337), we change x to {X/ X, and so recover the series,
20x—lix 3h(x~lix)? 42X'ix)® R3(Xlix)t
+ + + +
1 1.2 1.2.3 1.2.34

the second member will indeed be the algebraical development of the first, when Xis treated as
a function of X 11X, and developed according to ascending powers thereof; in such a manner
that the equation

X=1 + &, (272)

QOZE—Z N 91,222 N 42,332 N 53,44z N
1 1.2 1.2.3 1.2.3.4
is an algebraical identity, so far as agreement between the coefficients of powers of z is concerned;

for instance, after multiplying the coefficient of z" in ¢* by 1.2.3 ... n, or differentiating the
last equation 7 times, and then making z = 0, we have the true arithmetical relations,

1=1=2"=-29"4+38 =4899 392131 + 42=_49° 16923 — 431 4% +5°

c=1+

&c., (338)

=+45.11.2° - 10.22.3' +10.82.4%> — 5.4' 5% + 6% = &c.; (339)

yet we must not conclude, unconditionally, that the arithmetical values of the two members of the
formula (272), or (338), are in all cases equal to each other. In fact, with our recent meaning
(329) of ¢, the function,

- (") = 27, (340)

increases from 0 to ¢!, while z increases from 0 to 1, and afterwards decreases from ¢! to 0,
while z increases from 1 to oo. If then we substitute for z any assumed real value ¢>1, in the
series (338), that series will converge to a real limit C <e, but > 1, for reasons already stated; so
that we may write,

¢ 8l2¢20  423c73¢

_ >1,<e, if ¢>1;
=77+ 19 Trigy THReTbTe ek o

but this arithmetical value, C, of the second member of the equation (338), obtained from the
convergent series (341), will not be equal to the arithmetical value ¢ of the first member of the same
equation (338), obtained by the same substitution of the value ¢ for z: since we shall have, on the
contrary the inequality,

c<e, if, ¢>1. (342)

To obtain a finite equation, which the sum C of the series (341) shall satisfy, let us write, for a
moment,

a=cc (343)

then

1 t1e T1as T (344)

so that Cis what Xin (337) becomes, when x is changed to «; and the conditions (334) are
satisfied. Hence, by what was lately shown, C is the lesser root of the equation obtained from (333),
by changing x and Xto ce © and C; and thus, not withstanding the inequality (342), we have
the equation,
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CHC = e (345)
whereof the greater root may be denoted by
C'=¢". (346)
In like manner, if we substitute for X in the series (272), any value A>¢, the series will

converge to a limit, and will therefore have an arithmetical sum, say B, which will be > 1, <¢; so
that

+2°A*11A 3L(A1IA)2 42(A1A)3

B=1 T T 12 T 193

L&, >1,<e¢, if A>¢ (347)

but this sum B will not be equal to A, since we shall have, on the contrary,

B<A (348)
it will however be true that A and B are connected, by the relation
B l'iB=A1A. (349)
For example, if we assume
¢c=5 a=5" A=¢, (350)

and substitute these values in the series (341), (344), (347), we obtain the convergent series

2051675 31526710 42536715
(B=) C=14-—— 4" o+ oo +&e, (351)

of which the first terms are decimally,
1+0:0336897 + 0-001 7025 + 0-000 102 0 4 0-000 006 7 + 0-000 000 5; (852)
so that the sum may thus be seen to be nearly
C =1-0355014; (353)

which is very decidedly less than ¢°, being indeed (as it ought to be) less than e itself. And if
we resolve, by trials, the equation,

(CY1Cc =) (B 'IB=)5¢7, (354)
rejecting the greater root, C' = ¢®, we find that the lesser root is,
C=L"00151507; (355)
that is, again,
C =1-0355014.

XLIII. We might also approximate to this lesser root, and therefore to the sum of the series
(351), by an application of the exponential method of the present Letter. Making

x =5 ? = L712.5274976 = 0-033 689 7, (356)
and writing now, instead of (324), the equations,

X1 =%, X =1, (357)
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we easily obtain the successive approximations following:
LX; =0-0146313; LXo=0-0151326; LX3=0-0151501;
LX,=0-0151507; LX;=0-0151507;
X1 =1-0342638; Xs =1-0354582; X3 =1-035500 0;
X4 =1-0355014; X5 =1-035501 4;

(358)

at least so far as logarithms with 7 decimal places enable us to judge. Converging fractions
give, with a little more trouble, for the same value (356), of x, the following approximation,
which are somewhat more accurate, at least in their first stages:

1 1 ax 1 ax fx
X; = D Xe=— Y Xy = ; &c. 359
PP 0ax PN TIN5 (359)

with the values (250) of a, f3, y, 0, €; that is, after the substitutions indicated,

LX) =0-0148834; LXp=00151429; LX; = 0-0151506; } (360)

LX4=0-0151507; LX5;=0-0151507.

Almost the same logarithms are obtained (as they ought to be) by changing x to —5¢~°, in the
fractional expressions (254). It is to be noted that, whichever of the two methods we employ,
the approximate values successively obtained form an increasing series, and not an alternating
one, which is a consequence of our having changed the sign of x.

XLIV. Before discussing the conditions, alluded to at the end of paragraph XL., for the
convergence of the continued exponential,

X, = (€ *)"1, (361)

to any one fixed limit, X,, when x>0, and the whole number 7 increases indefinitely, I shall
mention a mode of proving the correctness of the two series, (272), (273), at least so far as
their coefficients are concerned, which had not (as I confessed) occurred to me, when I gave
those series as having been found through only an induction, though one which was carried
pretty far, and might (as I conceived) be relied on. Lagrange’s* Theorem (as given in page
170 of your Differential and Integral Calculus)' shows (if usual things be admitted), that

’ d 2 xQ
Yyu=vyz+oezy'zx+—(02)"¢Y'z).—
dz z

2 (362)
+(d> ((92)°.9'2) x3+& if +
— 2)°YP'z). — c., if u=2z4 xQu.
&) (05 : ¢
Make, then, in particular,
pu=—c*, and yYyu=c", (363)

so that the finite equation connecting x, z, u, is

* [Joseph Louis Lagrange (1736-1813).]
f [A. De Morgan, The Differential and Integral Calculus, London: 1842.]
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u=z— xc", (364)

and the development of €™ according to ascending powers of x is the thing sought. The
Theorem gives us this development,

1 2
ETM — erz _ Txe(r+])z _’_wa6(7+2)2 _ 1%7‘2;3?))X36(11+3)Z&C., (365)
and the equation (354) gives,

z—u

—xe* = (u— 2)e =y 7, if y=u-—z (366)

we have, therefore, the identity,

Nl 5 o
rle = 74 ye) —1—7(7_'_ ) yre

2
- 367
(r+3) 337 4 g _”’i"(r+m)m1 _— (367)
2.3 = I'(m+1) ’
or, changing ¢” to X,

_ +m)y™ 1 Ix\"

]Xr_ (T <_> .
=y () (868)

which includes the two series referred to. By changing r~! to a, and ry to iD, the series (367)
becomes,

111) (md myym ,—ma hD .
Z m+1) h D"e : (369)

hence (subject to exceptions for divergence &c.), we have the general transformation,

Mm=00 (ma + l)mfl

St =3 T(m+1)

m=0

h"o" f(x — mah); (370)

where a is an arbitrary constant, which may even have an imaginary value. And if in particular,
we assume a = 1, a = —1, changing also in the last case & to — A, we obtain the two following
series:

132 213
flx+h) = fx+ th(x—h)+3 h DQf(x—Qh)+4 "

Df“f(x—gh) + &c.; (371)

11 42 213
f(x—h) = fx— hDf(x — h) — 5 —— D*f(x—2h) — 2 Dgf( —3h) — &c. (372)
These general transformations pretend only to the same kind and degree of correctness, as
that which would now be conceded to the series of Taylor™ and Lagrange. In fact, a recent
paragraph (XLIIL.) of the present Letter proves that if fx = €¢*, and if 4> ¢, the development

in the second member of (371) converges to a limit different from f(x+ ).

* [Brook Taylor (1685-1731).]
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XLV. Resuming now the investigation begun in paragraph XL., and therefore returning to
the equations

Xn+1 = 6_xxn’ XO = 17 (324)

with the supposition that x is positive; we see, first, by a slight extension of the analysis
employed in paragraph XXXVII., that if X denote the real and unique root of the equation
(259), or (826), so that (see (325), (332),)

X=c"¥>0, <1, (x>0,)

then, unlimitedly many inequalities of the same general forms as those numbered (302) and
(303) exist: so that

1>Xo>Xy>Xg> o> Xop o> Xop > Xopy1 > Xop1 > --- > X3> X1 >0. (373)
As an extension of the formule (304), we may therefore write now,

lim X9, 1 =A>0,*>X; lim Xy, =B<1, <X, (374)
n=0oo

n=oo
and the question (313) recurs, can we have B> A?
XLVI. It is evident that A and B must satisfy conditions analogous to those marked (314),
namely the following,
B=c™, A= (375)

and therefore that whether they be equal or unequal to each other, they must be roots of the
transcendental equation in y,

1
=€cYl-=x (876)
)

which is extended from (316) (317), and of which the quantity Xis alsoseen to be a root. The
question therefore reduces itself to this: can the last written equation have real and unequal
roots? Can we have

YA=xX=yB=x, (377)

without the real and positive quantities A and B being, each of them, = X? In paragraph
XXXIX., it was shown that for the casewhen xwas = ¢, and X = ¢ 1, this latter value for X was
the only real root of the transcendental equation (317), which then took the place of (376); or
at least that there was no other real root of the equation, which was either greater or less than this

1
one. Indeed in consequence of our then having y’ = 0, (320), to which I may now add that

—0, if x=¢ (378)
because, by (376),
1 1
X,yzéxy(xl___) (879)

and



88 II. TWO LETTERS TO AUGUSTUS DE MORGAN

1 1
X”y—éx)'(xgl——%“'—?), (380)
y oy oy
while yet
1 3x* 3
x"y =€ x?’l——i-i-—f;—% , (381)
y ooy oy b
so that
" 1 4 :
X Z:_E <0, if x=g¢ (382)
the equation which replaced (376), for this value ¢ of x, namely the equation
1
Vl-=¢, (383)
y

may be said to have three real, positive, and equal roots in y, each = €~'; but not to have any fourth
real root, whether equal or unequal to these. (In XXXIX., I omitted to notice the existence of

1
the third real and equal root of the equation (317), or (383); but the fact that y"— was = 0, and
€

1
that XWZ was <0, for the case of yy there considered, might have been inferred from the

remark there made, that the function xy in (316) decreased, constantly and continually, from
+00 to —oo, while y increased from 0 to oo, being however for a moment stationary at the
value ¢, when ywas = ¢ 1)

XLVII. But we are now to consider those other cases, in which x, though still > 0, is either <
or > ¢. In general, by (379),
1 1
€ Vy'y=xl———; (384)
Yy
which function when x has any given real and positive value, increases from —oo to the
maximum value,

1 X
A (385)
x €

while yincreases from 0 to x~!, and then decreases again to —oo, while yincreases to co: each
increase or decrease being constant and continuous. It follows then, that for all real and
positive values of y

2'y<0, if x>0, <g (386)

and consequently that the function yy, in (376), decreases, constantly and continuously, from
400 to —oo, without even a moment’s stationariness, while y increases from 0 to oo. This
function xy passes therefore once, but only once through any one given stage, such as x, of real
values; therefore the equation yy = x, or (376), has one real and positive root, y, there being in
this case not even any other equal root: and we conclude, as an extension of the result (306), that
we are justified in writing,
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A=B=X=X =(")"1=1lmX,, if x>0, <ec (387)

n=0o0
Hence the Exponential Method will give, when x is thus > 0 but <¢, a succession of approximate

values, Xi, Xo, X3, ... alternately in defect and in excess, but always converging to the limit X; that
is, to the real, positive, and unique root of the equation X = X, (325), even when the series,

1—1 x() 20x1 31 X2 42 X3
T T2 T3 T4

X = + &c., (239)
diverges, by our having x> ¢~'. Of such alternation, combined with such convergence, (more or
less rapid according to the value assumed for x,) we have already had several examples:
namely, in XXXIV., for the case x = %, where the series (239) converged, although not quickly,
and Xj, as given by the exponential method, was already almost equal to X; in XXXV., where
X was = %, so that the series (239) diverged, but the converging exponentials, X3, X4, Xs,
though not very close approximations themselves, would have given, if combined on the plan
(138), a value for Xvery near to the true one; and finally in XXXVI., where x being assumed
= 1 produced a pretty rapid divergence in the series (239), but the exponentials still continued to
converge, though not so fast as before, and Xig, Xi9, Xo9 gave X with sufficient exactness. —
The extreme case, x = ¢, for which we had still, in theory, X = X, = A = B, but in which the
exponential method is practically useless, has been also sufficiently discussed in other recent
paragraphs. I may however just add, to show more fully the excessive slowness of the
convergence of the exponentials in this case, that calculations™ conducted with 4 decimals, as
a sequel to those referred to in (312), gave here,

X409 = (7)1 = 0-2987; X150 = (¢ )51 = 0-4440;
. (388)
X151 = (¢ €)1 = 0-2991;
the true value being, in this case, as stated in (298),
X=Xo= (%1 =¢"!=0-3679. (389)

XLVIIL. It remains to consider the case where x>¢. In this case, by (384), (385), the

. . . .. . X . .
function € ¥x'y increases from —oo to a positive maximum, namely to xI—, while y increases
€
1 . . -, .
from 0 to —; and the same function afterwards decreases from this positive maximum to —oo
x

again, while y continues to increase from — to oo; it therefore passes twice, but only twice,

X
through the value 0, in such a manner that the equation,
[ 1.1 ! 0 (390)
—=—, or =0, g
Y ) x Xy

has two real and positive roots; which we may call y; and ys. (In fact, I see that this agrees
with a remark in page 132, of your Differential and Integral Calculus.) Thus,

* [The details are recorded on pp. 118-115 of Notebook D of 1858, Trinity College Dublin MS
1492/144.]
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<0, if y>0,<y;; gy =0; x'y>0, if y>y1, <y } (391)
2y =0, xy<0, if y> yo.

Hence, xy decreases from +oo to xy;; increases to xye; and then decreases to —oo. We see
also, already, that

y1 >0, < x~!,  but that Yo > x (392)
indeed we have now
1
x - >0, and therefore yo> L (393)
The limits for xy;, xye are perhaps a little less obvious; yet there is not much difficulty in
proving that
a1 <x, and that yxys> x. (394)

For this purpose it is enough to prove that yy becomes equal to x, or that the equation (376)
is satisfied, for a value of y which lies between y; and ys; or for which y'y is positive: and Xis
such a value. In fact, we have already seen (377) that Xis a root of the equation (376); so that
¥ X = x; butitis also a root of (325), or of (259), so that

1
xX:l§>1, X>x"!, because x>¢ X<el, (395)

since we have seen that X = ¢! when x = ¢, and that X decreases thence forward to 0, while
x increases to 0o; (for we said, in XL., that the differential coefficient 5—; = ¢’ X was negative,
if Xwas >0, but <¢;) hence, by (379),
Y X=x*—X2>0; (396)
and therefore by (391),
X> 91, <ye. (397)

The inequalities (394) therefore subsist; because the function xy, while constantly and
continuously increasing, from xy; to xye, passes through the stage of value, y X, or x. For the
same reason, the equation (376), oryy = x, has three real and unequal positive roots, y, but only three
such roots, whereof the middle one is Yo = X, and the least and greatest may be denoted by
Y1, Y3; so that

Y1=xX=yxYs=x, (398)
and
Ys> X > Y. (399)

(In fact, the function yy must have passed once, but only once, through the value x, while it was
decreasing from +oc to the value yy; < x, during the increase of y from 0 to y;; and it must
pass again, once more, but not oftener, through the same stage of value, x, while decreasing from
xy2 > x to —oo, during the increase of y from ys to 00.) There is, therefore, no absurdity in
supposing that we may have, notwithstanding (377), the equations
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A=Y, B=Ys; (400)

but it is not yet proved, that we have, in fact, these equations.

XLIX. We see, however, already, that if
a=¢c* >0, <c " (401)
then the equation
a” =y, (402)

has these real, positive, and unequal roots, y, and only three; whereof the second is also the unique
real and positive root, X of this other and simpler equation

a* = X. (403)
Making, more generally,

@ =z (404)
and supposing merely that yis someroot of the equation (402), we have, by that equation,

a=y; (405)
hence, by elimination of y,

a® =z (406)

so that zmust be either the same root, or else another (real and positive) root, of the same equation
(402). But it cannot be the same root, unless it coincide with what has been already seen to be
the unique root, X, of the equation (403). If then the two other (real and positive) roots of
(402) be denoted, as lately, by Y7, Yo, we must have the relations,

a" =Ys, " =Y (407)

which exactly correspond to the equations (375); but which do not yet prove that these least and
greatest real roots, Y1, Y3, of the equation (402), or (376), with the two lmits, A and B, (374) of
those alternate approximations, Xo,—1 and Xs,, which err respectively by defect and by excess,
as compared with the sought value of X, and are given by the Exponential Method; or by the
formulee,

X1 =a™, Xo=1. (408)

L. But it is easy to complete the proof of the two equations (400). In fact, the function a”,
under the conditions (401), decreases, while the (positive) variable y increases; if, then in
(404), we assume y<< Y}, we shall have, by (407), z> Y3; and in like manner, if y> Y3, then
z<Yp. It might be enough to have made this remark; yet it may be added, that

if y>0,<Y;, then a“ >y <Y;; and that

(409)
if y>Ys, then a® <y, >VYs;

inequalities which may be proved, among other ways, by remarking that, in the first of these
two cases (409), and with the signification (376) of yy we have
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XY= x, (410)

because the function yy has not yet decreased from +oo to the value y Y, = x, (398); therefore,
in the case here considered,

e”yll> X, ll> xe™ Y, l>e’“7”
y Y

and similarly for the second case (409). The equations (400) are therefore, fully proved. It

may, however, be interesting to exemplify their correctness, by a few numerical applications of

the method.

,av =T >y, (411)

LI. Assuch an application, let

x=3, a=¢°=L1"26971166=00497871; (412)
then the unique root Ys of the equation (403), or of
e = X, (413)
is found to be, nearly,
Yo= X = L '1:5440304 = 0-349 969 7 (414)

and the two otherreal roots, Y7, Y3, or A, B, of the equation (402), or of
3 =y, (415)

are found, by trials, to be nearly the following numbers:

A=Y= L'1-1839215 = 0-1361199; }
_ (416)
B=Ys;= L'1.8226157 = 0-664 739 8;
with the relations, included in (407),
=y, 3=y, or €3=B ¢3=A (417)
If, in the next place, by (408), (412), we write,
Xp =€ 2% =405 X,=1, (418)
we find (nearly) the numerical values, (with, as usual, some doubtful figures,)
X1 =a=00497871; Xo = a® = 0-8612578; X3 = a® = 0-075 488 4; 19

X, = a = 0797346 6; X5 = a® = 0-0914429; X, = a®" = 0-760082 1

among which it may be noticed that X;, X3, X5 are increasing, though not very rapidly,
towards the theoretical limit A; and that Xo, X4, X are decreasing, though rather slowly,
towards the other limit B. Pursuing somewhat farther, but with fewer decimals, the same train
of calculation, we find, nearly

X7 =0-12589; X5 =0:68546; X9 =0-12791; Xy = 0-681 30; (420)

the same slow convergence towards the two alternate limits being seen to continue. With four
decimal places, a rough calculation gives these other values:
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Xg7 = 0-1348;  Xas = 0-6673; X390 = 0-1351; Xy = 0-6668; (421)

and now we are pretty near to the limits, A and B; but the convergence is even slower than
before.

LIL. I have made a few other verifications of the theory, set forth in paragraphs XLVIII.,
XLIX., L., that the equation (402) has 3 real, positive, and unequal roots, A, X, B, under the
conditions (401); and may state, generally, that the exponential method appears to give a more
rapid convergence, than that above exemplified, towards the extreme and alternate limits, A and
B, when x, in the equation

—xe Y

€ =y,
is assumed greater than 3, being already greater than ¢; or when g, in the equation

a’
a® =y,

is assumed less than ¢ 3, or than 0-0497871, being already smaller than ¢ ¢, or than
0-065988 0. On these other verifications I do not wish to delay you, nor myself; but as regards
the whole Theory of the present Letter, it seems not unimportant to remark, that on trying
how the method of converging fractions would work, as applied to the recent question, or to the
case where x = 3, the results were found to be by (254), the following:

1 5 10
Xi=—; Xo=-—; X3=5-=0-3225806;
4 11 31 (499)
185 7185
Xy = —2 =0-372923%4: X;—=———" —(.3427323;
T 497 22334 X = 50318 27323,

whence, on the plan (138), it might be inferred, as at least a less rude approximation to X
than any one of these three last fractions, that

X = 0-35373, nearly. (423)

At all events, there is an evident convergence, by alternate deficit and excess, to some value
not very different from this last, or from 0.35; and accordingly we saw, in (414), that the only

real root of the equation ¢ *X = X, or the middle real root of the equation

6736’3}' =y,
is X = 0-34997, nearly. I therefore cannot doubt that it is fo this root that the fractions converge,
in this application of the “method of reciprocals:’” although it might almost be worth while
to carry the calculation one step further for the sake of an additional verification. Meanwhile we
see clearly, that the fractions (422) have no tendency whatever to either of the two alternate limits, A
and B, to which we saw, in LI, that the values given by the ‘““‘method of exponentials’ tend.

LIII. Since writing the foregoing paragraph, I have made the additional step of calculation,
which was suggested towards its end: Continuing a little farther the process of XXXIII., I find
that because the coefficients of x%, in the series (239) for X, and of x° in the series (241) for
X', are respectively,
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7> 16807 d4 o 5° 625

= — an bC = — = —

I r7 720 7 144°

or simply from the latter of these two values, combined with those of a’, &', ¢', d’ already

deduced in (242), we can not only recover, by a process formerly explained, the values (245),
(247), (249), of a”, b", ¢", a", b", a', but can also deduce these others:

1879, 6997 . 917 1927
T360° © T 5400° “g50° A b= =g (425)

We have then this sixth converging fraction,

(424)

n

1 ax fxyx ox ex
Xo=——t—1-— : 426
STl 1+ 1+ 1+ 14+ 1+ Ex (426)

where, by (250) and (425), the constants have the values,

1 5 17 133 1927
= 1 = — = — = — = - 5 4
a=1f=5, y=g O0=g5 =105 E=g5a0 (427)
and it seems not uninteresting to notice, that the following chain of inequalities subsists,
a>y>e>§>§>(§>/3>0. (428)

I suspect that, in the present question, a law of this sort would be found to continue to hold
good; or in other words, that the constants a, B, v, 0, ¢, G, ... of the development of the function X,
in the form of a continued fraction, would be found to continue to converge to some one fixed limit,
either exactly or nearly equal to the fraction £, being still (as above) alternately in excess and in
deficit.

LIV. Waiving, however, this question of suspected convergence of the constants, I observe that if

the numerators of the 5 fractions (254) be called Nj, ..., N5, and the denominators
My, ..., M5, and if we also write,
N1 =1, N2 = 21/2, Ng = 61/3, N4 = 601/4, N:, = 10201/5, } (429>
My = u1, Mo =2us, Ms=06us, My=060uy, Ms=1020us,
then vy, ..., v5 will be the numerators, and u, ..., 45 will be denominators of the more
algebraically expressed fractions (252); they will therefore be connected by the relations,
v =1, v9 = v1 + fx, V3 = Vg + YxV1, V4 = V3 + OXVo, V5 = V4 + EXV3; (130)
w1 =14 ax, us = 1 + fx, us = o + yxur, fa = s + Oxtlo, ts = ts + EXUs;
whereof the analogy would become still more obvious, if we agreed to write,
1/0:1, Y1 :0, ﬂozl, “U-1 :1, or
1 _ 0 431
Xp=2—2, X, =—t-2 (#30
mo 1 ZE

for then we shall have,

Vi =vo+axv_y, Vo=vi+Bxvo; i1 = po+axu_y, He = 1+ Bxu. (432)
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Combining (427), (429), (430), we easily deduce the relations,
N1 =1, No=2N; + x, N3 = 3No + 5xNy, Ny = 10N5 + 17xNy, N5 = 17Ny + 133xNs;

(433)
My =1+ x, Mo =2M; 4+ x, Ms =3 Mo + bxM;, My =10Ms + l7ng, (434)
My =17M4 + 133 xMs;
which may seem to verify the expressions (254), for the fractions,
Nl N2 N5
Xi=—, Xo=—+, ..., Xs=—-, 435
T 2=, M, (435)

and might have been employed to form these; though I think that in point of fact I deduced
those expressions in some other way, perhaps by direct substitution of the constants (250) in
the algebraical fractions (252). We have now

Xe = My (436)
where if we make
Ne = 193800v, Mp = 193800us, (437)
we may employ the relations
ve = V5 + Cavy, U = s + Cxpta, (438)
with the value (425) or (427) of the constant &; thus,
N = 190N; + 1927xNy, Mg = 190 M5 + 1927 xMy; (439)

and finally, by substitution of the polynomes already computed, we find this sixth converging
fraction, of the series begun in (254):

193 800 + 635 460x + 476 748 x> + 32 759 x°

= ; 440
7193800 + 829 260x + 1015 308x2 + 3209773 (440)

of which the development in series, according to ascending powers of x, would necessarily
have its first 7 terms including the term + fx%, coincident with the corresponding terms of the series
(239); so that, at least if x be small, whether positive or negative, it must give a very good
approximation to the sum of that series. But I believe that even when the series diverges, if it does not
diverge wvery fast indeed this sixth fraction (440) will give a fair approach to the unique real root
Xof the equation X + xX = 0; where it is supposed that xis given and positive. For x = 3, we
have seen that this root is, X = 0-34997, nearly; and the fraction (440) gives, in this case,

2425135
6828577

Thus X, like X9 and X4, is somewhat greater than the true value of X; and it may be a little
improved, by subtracting from it

6 = 0-3551450. (441)

(X6 — X5)2

——————=0-0036760; 442
Xo —2X5 + X4 (442)

which leaves the remainder,
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X = 0-35147, nearly; (443)

as a better approximation than (423).

LV. It may be added that if we compute X from (440), for the case x = 1, and combine it
on the same plan with the values (289) of X4, X5, we find,

1338767
2359345

the true value of X, considered as the root of IX + X = 0, being, nearly, X = 0-567 14, by
(290). The real root of lX+%X =0, or of the equation (282), is by (284), X = 0-70347,
nearly; or to seven decimals, it is a little more exactly,

X = 0-703 467 4; (445)

6 =0-56743; X =0-56721, nearly; (444)

and if we make x = % in the fraction (440), and combine the result with the values (285), or
with the following which are slightly more accurate,

485 21810
=—=0-7039187, Xz=-——=20-7033896 446
689 31007 ’ (446)
then for this value of x, which is still large enough to render (as we saw by (281),) the series
(239) for X divergent, we find

5078495

1

For x =g, in which case the series (239) converges, having still alternately positive and
negative terms, the true value of the real root X of the equation /X 4+ X = 0 has been seen,
in (277), to be, so far as 7 decimals seemed able to give it, X = 0-894 240 9; and the fractional

expression (440) may be said to reproduce this root, by giving

143741783
"~ 160741 681

X4

6 = 0-894 240 9. (448)

Finally for the case
x=—5c?=—-1"125274976 = —0-033 689 7, (449)

(compare (356),) the development (239) becomes the converging series (351), or (352), with
all its terms positive, and with a sum

C=L'0-0151507 = 1-035501 4,

nearly, which sum has been seen to be the lesser of the two real roots of the equation
IC —5¢5C =0, (compare (354),) the greater root being C’ = ¢®; and if we substitute for x the
negative value (449), in the fractional expression (440), that expression becomes, nearly,

~ 172931-38
~ 167002:55
which value may also be completed from the equivalent expression (426), with the constants

(427); so that the fraction Xg is here very nearly equal to the lesser real root of the equation
(X 4+ xX = 0, as I believe that it will always nearly be, when x <0, > —e 1, so as to allow of the

6 = 17100151507 = C; (450)
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series having all its terms of one common sign, and converging to a sum X, > 1, <¢; at least if
x be not too near the limiting value, —¢7 !, the fractions (254) and (440) become, nearly,

X, =158198;, Xo,=1-82083; X5=2-00277;
X4 =2-10838; X5 =2-19651; Xp = 2-25590; (451)

and we see that they form an increasing series, converging slowly towards the only real root € of
the equation IX — ¢ !X =0; at least their march in (451) is quite consistent with this
theoretical convergence. When x < —¢!, the equation (X + xX = 0 has only imaginary roots,
by elementary principles already referred to; and in such a case, I presume that the fractions
would not converge to any limit. If we assume, as an example,

Xx=—— (452)

the fractions then become,

29 78 ~70703

_ =7 — . - 4
7 T e ®~ 57001’ (453)

whereof one is even negative: and indeed it seems that any one of the fractions X, (besides its
power of vanishing with its numerator) can be made to become infinite, and in so doing to
reverse its sign, by our assuming a real and negative value for x, if this value is suitably chosen.
Such is at least the case with each of the six fractions X,,, of which the denominators M, have
been computed, in (254) and (440): for each of the six equations,

M, =0, My=0, Ms=0, My=0, M;=0, (454)

has at least one real and negative root, the quadratics of this series having two such roots, whereof
each is < —¢!': an inequality which seems likely to be satisfied by all the real roots of all the
equations of the series

M, =0. (455)

Indeed, a little reflexion leads me to believe, that the roots of every such equation, (although all
negative) will all be real; at least if the constants a, 3, v, &c. of the continued fraction shall all be
found to be positive. But this must be reserved for discussion in another sheet.

LVI. Writing a;, ag, as, &c., instead of a, B, y, &c., and forming thus the continued
fraction,

1 arxdoXx Ap—1X
X, =——-22. lr 456
1+ 1+ 1+ 14a,x (456)

in which it is here assumed that

a1 >0, as>0, ..., a,>0; (457)
we have, by usual principles, the transformation,
X, =~ (458)
U

where u, and v, are rational and integer polynomes; such that if we write
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vo=1, v1=0, wu=1, wu1=1,
asin (431), then, for all integer values of n > 0, we may write,
Un=Un 1+ OpXihy 9, Vy="Vy 1+ ApXVy_9; (459)

and may thus determine, to any proposed extent, the denominators u,, and the numerators
vn, of the algebraical fraction (252). Attending at present only to the denominators u, it is

easy to see that the polynome u, is of the dimension > if n be even; or

n—+1
2

Such, then, must be the number p,, of the real or imaginary roots (but negative if real) of the
equation,

,if 7 be odd.* (460)

T (461)

which roots may be called, for shortness, “roots of x#,”’, and may be denoted, (in order of
decrease from 0, if they be real,) by the symbols,

KO @

n n n L

xPn=1); (462)

the first few of these symbols being also, if we choose, abridged to

’

Xns Xy Xomy .. (463)

But I propose to prove (what is very likely to be known), that all these roots are real; and that
zero and the roots of any one equation u,_1, are limits of the same number of roots of each of the two next
Sfollowing equations W, U1 although p, 1, always, and u, also if n be odd, has one additional
root, which lies between the lesser root of u,_1, and the limit —oo. You will tell me, at your
leisure, whether this is merely a “‘discovery of the Mediterranean Sea”’. Meantime I may
amuse myself, without of necessity boring you, (since you have the power to skip,) by noting
down the chief steps of the proof, such as it has occurred to me.

LVIL. Beginning at the beginning, it is obvious that

x] = —al_l; (464)
because x; is the root of the linear equation,
l+a1x=0. (465)
But
Uo =ty +asx =1+ (a; + as)x; therefore x = —(a; 4+ as) ™' > x;. (466)

Without actually resolving the two quadratic equations, us, U4, since we have, by (459),
U3 = po + agxuy, 4 = pus + agxiy, (467)

we see with respect to the first, that when

) if n be odd.

* The dimension of v,, is 5 if n be even; but is (
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x=ux, w1=0, <0, u3<0; (468)
and that when
x=wx9, pe=0, >0, us<0; (469)
whence us has real roots, x3, x5, whereof
x3>xo, and x5 < x; (470)
because the function ug is positive (= 1) when x =0, and is again positive (= co) when
x = —o0. The three equations u, ue, us, give therefore the chain of inequalities,
0> x3> x9 > x1 > x3. (471)

In like manner, when x = xo, s = 0, us <0, as before; therefore
Uy <0, and x4>x0, x4 < xg; (472)

the second quadratic equation 4 = 0 having thus two real roots, which are separated by the
limit xo. To compare these roots of u4 with the roots of the former quadratic u3, we may
observe that when x = x3, then

pus =0, ws>0, pus<0; (473)
but that when x = x4, then
ps =0, us<0, uy4>0; (474)

whence x4 must lie between 0 and x3, and xj between xo and x3; so that the three equations,
Ue, U3, Us, supply the chain

0> x4 > x3 > x90 > x4 > x35; (475)

in which it may be noticed that no place has been as yet assigned to the root x; of the first
equation u;. We have only shown that x;, like xj lies between x and x3; but have not
determined whether the (algebraically) lesser root, x4, of uy, is >, =, or < the unique root x;
of u1. And in fact this question cannot be determined, without our making a new supposition.
For, where x = x;, then

w=0, ps=py=am=—2, py=(1+agm)py = 2%, (476)

ap aq

so that the sign of u4, for x = x;, will be the same as that of the difference, a4 — a;, of two of
the constants of the continued fraction, which constants as yet, have only been supposed to
be each > 0. In the example last considered, we had, by (427),

17
ap=a=1, and a4:6:%;
therefore, in this case,
as<a;, and wuy4<0, when «x= x; 477)

but we saw, in (474), that x = x5 gives u4 > 0; consequently, here, x4 must lie between x; and
x3; and the complete chain of inequalities, so far, must be that assigned by the following
formula; if a4 < a1, then
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0> x4 > x3> x0 > x1 > x4 > X5 (478)

Accordingly if we seek the roots of the four first equations (454), under the particular forms
given by the fractions (254), namely, the equations,

O0=M =14%x 0=My=2+3x; 0= Ms=06+ 14x+ 5x%; (479)
0= M, =060+ 174x + 101 x%;
we find that they are, nearly,
x1=—1; x=-0-667; x3=—0-528;
(480)
xy = —2.272; x4 = —0477; x4 = —1-246;

and all the inequalities of the chain (478) are seen to be satisfied. But it may happen that a4
shall, in some other example, be greater (instead of being less) than ay; and if so, then in that
case yg will, by (476), be >0, when x = x;; but we saw that u4 <0, for x = xy; therefore x}
now lies between xe and x;, and the chain becomes,

if a4>ay, then O>x4>xg>x2>x£1>x1>x§. (481)

For instance, when the function 7, which was just considered in this Letter, is transformed in
the well known way, (whereof Laplace appears to claim the discovery *,) into the continued
fraction (4), we have the constants a; =1, ay = 4>, and the inequalities (481) must
subsist. And accordingly, if we solve the four equations,

0=M=14%x 0=My=1+3x 0= Ms=1+6x+3x%;
(482)

0= Ms=1+10x+ 15x2,

(compare the foot of page 34 [4267] of your Theory of Probabilities,) obtained by equating to
zero the denominators of the four first of the converging fractions, we find, nearly the roots,

(483)

xp=—1; x0=—3333; «x3=—1835; «x}=1-8165;
x4 = —-1225;  xj = —-5442;

which satisfy the chain (481), but not (478).

LVIIL. In general, let us suppose it to have been proved that, for some one given value of v,
(as for the value 2 in (473), (474),) the v roots of ug,_; are real and unequal, (being of course
also negative,) and that their substitution for x (in an order decreasing from 0) renders the
function us, alternately negative and positive; so that, for instance, when

x=xy"), then (—1)"ug >0. (484)

Then, remembering that x = 0 renders u#, = 1, we see that the v roots of uy, are real and
unequal, and lie within the v intervals comprised between the v + 1 limits,

* By his reference, in [Pierre Simon Laplace, 1749-1827] Théorie analytique des probabilités, Livre I,
Article 27, [p. 104, 3rd edn, Paris: 1820] to the Meéc. celt “‘comme je I'ai fait ..., ouj’ai trouvé”.

t [P.S. Laplace, Traité de Mécanique céleste, Livre X™¢, pp. 255—6. Paris: 1805.]
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’ (v—1),
O, 'xQV—l9 'x(ZV—la ctto x?y,l s

whence it may easily be inferred that these v roots of us, render ug,_1 alternately positive and
negative; so that in particular, if we consider the last or vth root,

x=ax0"" gives  (=1)"ug, 1 <O0. (485)
But we have, by (459),
Uov1 = Uy + Qop1 XUoy—1; (486)

where ag,11 >0, by (457), but x <0, for each of the roots just now mentioned. Consequently,
whether we substitute (in algebraically decreasing order) the v roots of us,_1, or the v roots
of us,, in the function us,,1, that function will take alternately negative and positive values;
and in particular, whether we make

x = xg;:ll), or x= xé’fl),
we shall have
(=1)"ugy11>0. (487)

Already therefore we see that there are at least v roots, and therefore that there are v 4- 1 such
roots, of the equation s, 1; because this last equation is of the dimension v + 1. But the
substitution

x = —oo gives (—1)"ugy11 = —00; (488)

and therefore, whether we take the v + 2 limits,

v—1

1
O’ Xoy—1, X2y—1, st x?v—l’ —00,
or the v + 2 other limits,
’ v—1)
05 Xov s X9y, R xQV ’ —00,

we shall in each case have v 4- 1 intervals, within which, respectively, the v + 1 roots of v,
(now seen to be all real, unequal, and negative,) must be comprised. Combining the above
results, we have the chain:

0> Xopp1 > Xoy > Xoy—1 > X9y 1 > X3y > Xdp—1 > Xdpp1 >

(v (v=1)

—-1) (v=1) ) .
> KXoy iy = X, L Ko, Koy q; (489)

which gives, in particular, for the relative arrangement of the roots of the two quadratic
equations, us, 14, and of the cubic equation us,

0> x5 > x4 > x5 > x5 > x4 > x5 > x5, (490)
This chain, for instance, must be satisfied by the 3 roots, x5, x5, x5, of the cubic equation,
0= M; = 1020 + 3756x + 3679x> + 665x°, (491)

obtained by supposing the denominator of the 5th fraction (254) to vanish, when those roots
are compared with the 4 roots (480) of the two quadratic equations (479); and the same
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chain of inequalities (490) would doubtless be found to connect the 3 roots of this other
cubic equation,

0=1+15x+ 45x> + 15x°, (492)

(compare (89)), with the roots (483) of the two quadratic equations (482), which arise from
the making null the denominators of certain celebrated fractions, connected with a con-
tinually occurring definite integral, to which this Letter partly relates.

LIX. Again, since
Moy = Moyl + Ooyro Xfloy, (493)

and since, by the chain (489), the successive substitution of the v 4 1 roots of w9, renders
each of the two preceding functions ug, and us,_1, alternately positive and negative, while we
have seen that the substitution of the v roots of ve, renders w1 alternately negative and
positive, it follows that whether we substitute successively these v roots of us,, or those v 4 1
roots of U941, the function pe,, o (which is of the dimension v + 1) will become alternately
negative and positive; it has therefore v + 1 real and unequal roots, and it can have no more;
and we have this other chain,

0> x99 > Xoy1 > Xoy > Xdy19 > Xdyy1 > Xy > Xgpy9 > - - -

(v—1) (v—1) (v—1) ) )
= Xogyyg = Xoyiy = Xgy | Xgyo = Xgyyg- (494)
For example, having proved the chain (490), we may infer that
0> x> x5 > x4 > x5 > x4 > x> x5, (495)

and this Letter must connect the roots of the quadratic equation u4, and those of the two
cubic equations, us, ue. It determines for instance, (as would doubtless be found on trial) the
relative order (of decrease from 0) of the two roots (480) of the second quadratic equation
(479), the three roots of the cubic equation (491), and the three roots xs, x4, x§ of this other
cubic,

0= Mg = 193800 + 829 260x + 1015 308x2 + 320977, (496)

obtained by equating to zero the denominator of the sixth converging fraction (440). And in
like manner, it cannot fail to assign the mutual arrangement of the roots (483) of the second
quadratic (482), the roots of the cubic (492), and the roots xs, x5, x¢ of this other cubic,
obtained from the sixth of Laplace’s converging fractions,

0=1+21x+ 105x> + 105x°>. (497)

We see, moreover, that the laws expressed by the two chains of inequalities, (489) and (494),
must continue to hold good, for all greater values of v; so that, for example, if we still denote
by My, Mg, My the functions so called in (19), (20), (21), but write x for ¢, then the 4 roots

X7, ..., x7 of the biquadratic equation Mg = 0, and with the 5 roots xy, ..., x5 of the quintic
equation Mg = 0, by the arrangement,

0> x9 > x3 > x7 > %9 > xg > x5 > x§ > X8 > x7 > x4 > x8 > x7 > x4 . (498)

All this may be perfectly well known, but I have made it out for myself as above.
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LX. It may be remarked that no place has been assigned in the chain (489) for any of the
roots of any equation earlier than us,_1; nor in (494) for those of any equation before us,; so
that generally each of these chains assigns only the arrangement of the roots of three successive
equations, of the form u, = 0. And in fact we saw, in LVII., that the place where x; ought to be
inserted, with respect to x4, in the chain (475), depended on the relative magnitude of the
two constants aj, a4 of the continued fraction. In like manner I find that

X0 = x5, when o] +as = as; (499)
and that
x; = x4, according as o = a4 + as. (500)

It would be tedious to pursue the investigation of these particular conditions; but just as
examples of the application of those above assigned, I may remark that with the system of
constants (427),

ap>das —adg, ap <ds+ oy;

therefore, by (499), (500), xo > x5, x; < x3; but also a; >ay, and therefore x; > xj, as in
(478); the chain (490) comes therefore to be thus completed, for the 9 roots of the 5
equations (479), (491):

0> x5 > x4 > x5 > x9 > x5 > x1 > x4 > x5 > x4, (501)

On the other hand, the constants of Laplace’s Fractions (a1 =1, ag = 2, ag, ..., &, = n) are
such that a; <ay, a; < az — as; therefore in this case, x; < x4, as in (481), and x < x§; but
x9 > x4, by (475); and x; > x5 by (472); thus the places of x; and of xo in (490) are known,
and that chain becomes, for the 9 roots of the 5 equations (482), (492):

0> x5 > x4 > x5 > x5 > X0 > x4 > X1 > X5 > X5, (502)

It is clear that results of the same general character must hold good, with respect to the
equations of the form

v, =0, or N,=0, (503)

so far as regards the reality and inequality of all the roots of each, and the existence of chains
of inequalities, analogous to (489) and (494), and connecting the roots of any three successive
equations. — Is all this old?

LXI.a* After this digression, on the nature and the limits of the roots of certain algebraical
equations, suggested by the converging fractions which express approximately the values of
certain functions, I wish to make a few remarks, chiefly in the way of recapitulation, on what I
find that I must now call ““Murphy’s Series’’. Although, when I wrote it as number (239) of

* [The next three paragraphs, labelled LXIL.a, LXILa, and LXIILa (unfinished), appear only in
Notebook D (Trinity College Dublin MS 1492/144, pp. 83-88) but not in the copy of the Letter (Trinity
College, Dublin MS 1493/972). Each of these pages has a vertical line down the centre and carries the
caption: Page not adopted. Revised versions of these paragraphs follow. It appears that the content of these
paragraphs (written on 26 April 1858) was strongly influenced by De Morgan’s letter to Hamilton of 11
April 1858 (Trinity College Dublin MS 1493/987) drawing attention to the work of Murphy. See footnote
to equation (272).]
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this Letter, I had not happened to see it in print. Rewriting it in the form before employed,
but marking it now with the letter (M), we have
1-1x0 90,1 gly2 42,3

X =
Il F2+F3 I4

+ &c. (239) = (M)

as the development, and to ascending powers of x, of the real root X of the equation

1 1
IX+xX =0, ==l-, 59
+ x or «x x % (259)
where that real root is unique and admits of such a development. This series was shown in
XXXIIL to converge, if x* were not > ¢~2; its value then admitting of being expressed by the

continued exponential,

X = (">
where € *y is interpreted as equal to € . Accordingly, I observe, (since you called my
attention to his “Theory of Equations’,) that Murphy writes (in his page 81), “‘if a <% then

o ladinf) 32 a2 43 a%
1.2.3 N 1.2.3.4

a.e®

2a
a.c :1 -
€ +1.2+

+ &c.;

1
adding that “‘if we put a = —we find the left member of this equation to be merely ¢; which is

obvious, by supposing the series of indices to terminate at any distance, however remote.
Hence

1 32 43
1 2

[ & .”
c 102 1988 T19840 &€

I am not sure that this inference is quite so obvious, as he says that it is; at least if his ladder*
denote exactly the same thing as my own: but at all events, I had perceived the result, which in
this Letter was written as

316—2 N 426_3 N 536_4 N
19 1923 19345

before I saw it in his pages. Now it is clear to me that Murphy had considered the effects of
the substitution of a negative number for a in his series: but by all means let him have all the
credit — and if I should ever publish even a tithe, or any smaller decimal fraction, of what I
have been abusing your good-humour by writing to you, let me have the common sense not to
pester general readers, by telling them that I had happened to perceive and discuss, for
myself, if not for you, the series above marked (M).

e=1+ec'+ (268)

ae’

* In fact, I admit that each of the expressions, ¢“, ¢ " etc., ad infinitum, is ‘obviously’” equal to ¢, when

1 . . . .
a = —; but this was not, as I conceive, the thing to be proved. What was to be shown (and has been or will
€

be shown) in this Letter, is relatively to this Letter, that (when ais my ——) these exponential expressions
€

a
ae’ L ae™
b

€, €, €™, etc., converge, though slowly, to the limit €. In short I adopt in this place the result, but not
the logic of Murphy.
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LXII.a As long as that Series is convergent, whether what I have called x be positive or
negative, the “‘exponential method” (perhaps not, as such, anticipated by Murphy, although
he has certainly printed one ladder) succeeds; that is to say, if we write

X,=(*)"l; then X, =X,

Xbeing the unique real root of the transcendental equation above written. But my discussion
has shown, that even when x, being > 0, is also > ¢!, and so renders the series divergent, still if
it be not > ¢, and so allow this other transcendental equation, (perhaps mine,)

=X, or (€)?X=X,

to have only one real root, X, which in that case is also still the unique real root of the former
equation, (undoubtedly in substance Murphy’s) ¢ *X = X, then the ‘‘exponential method”
still theoretically succeeds, by giving a series or succession of values, X ,,, which converges to the limit
X; being less than that limit when the whole number 7 is odd, but greater than the same limit
x, when the index n is even: although this convergence is very slow, and the method
consequently useless (in practice); when x is taken equal to, or very little less than, this new limit, €,
which Murphy does not seem to have noticed. For example, whethter the ‘00’ denote an odd
or an even infinity, we have, in each case, by the present Letter, definitely, or unambiguously, in
point of theory

X = (€9l =¢ (389)

while the series (M) becomes a very divergent one, when my x is replaced, in it, by +¢€; or when
Murphy’s ais made = —¢, since it then becomes the series (269). But nobody, perhaps would
have patience actually to work out, by arithmetic, including the use of logarithmic tables, the
value (389) of this last limit, X, even to (say) five decimal places; at least, if my numbers
(388) be as I think that they are, nearly correct,® so far as they go: namely,

X149 = 02987,  Xj50 = 0-4440, X;5; = 0-2991; (388)

the distinction between the results, for odd and even values of the index, n, continuing still to
be so very well marked; although it is proved, that this distinction must ultimately vanish.

LXIII.a Still greater chance of being new, it seems that those subsequent results of the
present Letter may have, according to which, when Murphy’s ““a”’, or my *“‘—«"’, is replaced by
a real value which is (algebraically) less than —¢, (for example by the negative number, —3)
then the sum of the diverging series, lately called (M), comes to admit of three mutually distinct,

but separately definite, interpretations. If we write (to use the example just now referred to),

17130 2031 3132 4233 5334 gigd
X = e
Il 2 r3 r4 I'5 6

+ &c.,

then, as I need not tell you, from a simply arithmetical point of view, the sum, X, has no meaning
at all. But if we inquire from what algebraical process, applied to some function X, might have arisen

* At the end of the last sheet of this Letter (in the future existence of what sheet you must be
pardoned if you do not believe), I intended to give a short list of numerical errata some perhaps the fault
of the copyist, but which I have happened to observe while glancing over the copy prepared.
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a series, proceeding according to ascending powers of a variable, x, which should come to
coincide, term for term, with the diverging series last written, when the symbol x was replaced by
3; and what the arithmetical value of this function X becomes, when x was so replaced: then, it is
only just (as you have led me to see) to admit that Murphy — though apparently with a leaning
to reject diverging series, — has yet supplied one answer. For he has shown, what in substance
amounts to this: — that the series last written might have been formed, but seeking to resolve,
or at least to find one ro0t, (which turns out to be the only real one,) of the following equation
in X:

e =X; (413)

the number 3 being first replaced by the symbol x, and x being (at first) treated as small. The
real root of (413) has been found to be, nearly

X = 0-34997; (414)

and to this limit, accordingly, it has been shown (in LIV.) that the “Method™ of Continued
Fractions”, as used with the formula of this Letter, gives a not despicable approximation,
derived from the series itself, or rather from its seven first terms; namely, X = 0-351 47, (443).
But I am not yet aware — being however prepared to thank you very cordially, if you shall inform
me — whether he, or any one else, has published the remarks:

Ist, that the same series (M) may be obtained by seeking to develop X, according to ascending
powers of x, from the transcendental equation (above cited, as perhaps my own),

XX X _
€™ =X, or a* =x, when a=¢ 7%

the letter a having here a different signification from that in which it is used by Murphy;

IInd, that this equation has 3 real and unequal roots, but only three, if x> ¢, or if >0, <c™;
IIrd, that of these three real roots, the middle one is precisely the unique real root of the
equation which I am willing (or rather bound) to call Murphy’s — namely, in our recent

notation,
e =X or a* = X;

IVth, that to this root, X, we should never (under the supposed condition of inequality, x > ¢) make
any approach, by continuing, ever so far, the process which is suggested by the notation,

Xoo = (€)%l = (a)™1,

when @ bis to be interpreted as denoting the exponential a’;

Vth, that (even under the same condition of inequality) we should approach to the (middle)
root X just mentioned; by the method of converging fractions applied to the diverging series, as in
the lately cited instance (443), in which xwas equal to 3;

VIth, that to the least real root, say A, of what (for the present) I call my transcendental equation
(as distinguished from Murphy’s) or to the least real number A which satisfies the condition

"
€* =A, when x>¢

* T have not yet read enough of Murphy’s Book on Equations, to know whether it occurred to him to use
that method of transforming what I have called his series, (M).
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we should indefinitely approximate, by using the formula,

A= lim (¢7*)*"*'1;
n=oo
VIIth, that to the greatest real root, B, of the same transcendental equation in X, or to the greatest
real number Bwhich satisfies the condition

e —XB
™ =B, when x>g¢

we should make an indefinite approach, by using this other formula,

B = 117HI (efx.)in;

VIIIth, that both these formulae, for the two extreme roots A and B, as well as the fractions which
converge to the intermediate root X, might have been suggested (and in fact were so to me) by
applying to the series itself the methods developed in the present Letter;

IXth, that the two extreme roots, A and B, are connected with each other, by the relations,

A=c ™ B=c™

Xth, what perhaps I have not formally proved, but what easily follows from principles already
stated, that when we have thus two real and unequal numbers, A and B> A, which satisfy the
two equations, A = a®, and B = a4, where a>0, <¢ ¢, then although there is one real and
intermediate number, X, > A, < B, such that aX = X, yet if we take any other real number, say Y,
and determine Z by the equation Z = a”, the number Z thus determined will be unequal to
Y; Zbeing > B, if Y<A; Z<A i Y>B; Z<B, >X,if Y>A <X;and Z> A, <X, if
Y<B,>X.

LXI. After this digression, on the nature and limits of the roots of certain algebraic
equations, suggested by the converging fractions which express approximately the values of
certain functions, I wish to make a few remarks, partlyin the way of recapitulation, on the finite
or infinite but real values, of the combined exponential

= (0% (504)

where band ¢ are supposed to be real and b is positive; all logarithms of negatives being for the
present excluded from our view; and the function

b=1bc (505)

receiving an arithmetical signification, so as to denote definitely one real and positive number. The
following are my results, (perhaps all anticipated,) respecting the values in question. Some
are obvious at sight; others have been proved in this Letter; and the rest can easily be
deduced from principles of the same general class.

(1) Ifb>e, then (b')*¢ = oco. (506)
(2) Ifb=¢c,and c>¢, (b')¥c= cc. (507)
(8) Ifb=c,and c¥e, () c=c. (508)
(4) Ifb<e,but>1,and ¢>y, (b')®c=oc; (509)

y" being the greater of the two real roots of the equation
b = y. (510)
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(5) Ifb<e,>1,andc=y, (b)) c=y. (511)

6) Ifb<e,>1,and c<y, (b)¥c=y; (512)
ybeing the lesser of the two real roots of the equation (510).

(7) Ifb=1,()%c=1. (513)

(8) Ifb<1,but>c ¢ then (b')>¥c =y (514)

ybeing here the only real root of the equation (510).

(9) If b= e, the equation 0> = y (510) has still only one real root, which is now = e !5 and
(0)Y®¥c= (e)®c=¢l. (515)
(10) If b<e © but >0, the equation (510) has still only one real root, y; and we have (still)
(0)>*y=y. (516)
(11) If b <e™¢, >0, the following other transcendental equation,
(b)y=10" =y, (517)

has three real and unequal roots, whereof the middle one is the root y of (510), while
the least and greatest may be denoted respectively by A and B; and then if ¢> y,

(b)2%c= B, (b)2*l¢= A (518)

(12) But, finally, under the same conditions, b6 <¢™¢, »> 0, and with the same significations
of A, y, B, as the 3 real roots of the equation (517),

if ¢ <y, then (5')%%¢c = A, (b)) ¢= B. (519)

And thus all possible cases of values of the continued exponential (504), (for any real ¢, and for
any real and positive b, with arithmetical interpretations) appear to be exhausted — A case of
number (3) has been remarked by Murphy in his Equations (page 81), — for calling my
attention to which work I have again to thank you; namely the case (sufficiently ‘“‘obvious”
indeed, as he himself pronounces it to be), where

(=g (520)

so that the formula becomes, Limit of the Exponentials,

ac  _ac™
€, € s e

or (as he writes it)

(ad inf.)
a.e

a.c _
@c = ¢, whena = ¢ L.

LXII. Since I have again mentioned Murphy, let me try to do to him some further justice, by
pointing out an approach which I observe that he made, in his Equations, to one of the
Theorems of the present Letter; namely to that which is expressed by the formula™

m=0oC
* The notation here used, Z , is certainly cumbersome to write, and perhaps expensive to print. I
m=0

have seen one like this, Y » . Have you any favourite notation of this sort of sum? I formerly
0

accustomed myself to write Z}Xjﬂ)(,, and am still open to suggestions — my habits have not yet quite
hardened me.
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"= (ma + 1)}

ICEEDS T(m+1)

m=0

h"D™ f(x — mah). (370)

It is very possible that I may yet find for myself, or have it pointed out to me by you, that this
Theorem has been completely anticipated by him: but, as yet, I can only say that I admit him to
have at least come very near to seeing it. At this moment I cannot lay my hand upon his Book,
but from my own “E.1858 I extract (with some trifling alteration) the following Mem-
orandum.® ““Murphy derives the series,

ﬁ(n—i—S)2
2 3

xn: C"+ naanrl +g(n+2)a26n+2+ a3cn+3+&c.,

ax

1
from x = ce™, by considering x" = fx as the coefficient of —in the development of

X

CEIM CELIX
—fx|1— = —nx" (1 - ;
re(1-55) = =mei(1-5)

(writing /as the characteristic of natural logarithms;) or in

1 ¢menax 1 Cn+le(n+l)ax
ny— + + &ec. .
n x n+1 x2

X
Change x to ¢X; then ac = 7; and it is found, from Murphy’s cited series, that

2 3
. X n X n(n+3)2<zx> .
X —1+nX+2(n+2)<X> +t53 ) &

a result which I do not observe that he has expressly drawn, but which exactly agrees with one
of my own deductions from Lagrange’s Theorem. I see another mode of deducing the same
series from Murphy’s principles. — But it seems to me that if &e had perceived it, he would at
once have gone on to derive from it that development for f(x -+ h), which I lately commu-
nicated to Charles Graves', and to De Morgan, and which has the peculiarity of involving a
foreign and arbitrary constant. For as soon as he obtained the equation, answering to the
particular » = 1, namely
24  (3A)%  (4A)°
TR E P

where A = [A/a, he seems to have immediately seen that it admitted of what he calls the
‘“‘remarkable extension’’, namely

(8k)*
2.3

And it would scarcely have occupied more room in his Treatise on FEquations, to have written
the more general series, which I happened to perceive for myself,

flx+ k):fx+%f’(x—k)+ F(x—2k) + &c.

* [Notebook E (1858), p- 13. Trinity College, Dublin MS 1492/145.]
t [Charles Graves (1812-1899) was Erasmus Smith’s professor of mathematics at Trinity College,
Dublin, from 1843 until 1862.]
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1+ 2a)!

2 2 .
Ty D (= 2ah)

f(x+ h) = fx+ hDf(x — ah) +
(14 3a)?

SDP f(x — .
123 D’ f(x—3ah) + &c

— But he may possibly have printed this last series in the Philosophical Transactions [ of the Royal
Society of London] or in the Cambridge Memoirs [ Transactions of the Cambridge Philosophical
Society]. In the meantime I am most willing to give him all credit in the matter — and consider
it as a sufficient repayment for my trouble in writing the present Letter — which trouble, most
certainly, you never asked me to take — that my attention has been called, by it and you, to
what you describe in your Differential and Integral Calculus (page 328), as ““One of the most
general and interesting contributions which analysis has received for many years”. I also
admit, most cheerfully, that Murphy printed one ‘‘ ladder’: although I do not yet see that he
had anticipated the ‘““Exponential Method’” of the present Letter, nor the series of Theorems
respecting (b")* ¢, which is given in the foregoing paragraph (LXL.).

LXIII. You can scarcely be more glad than myself to have done with what I must now call
“Murphy’s Series” — though you know that I merely brought it in (when I thought it my
own), for the sake of illustration of some general methods. Still a remark or two, in the nature
of “‘wind-up’’, may be endured, before wholly leaving that part of the whole subject. Rewriting
the series, in the form before adopted in this Letter, but with the signature (M), as

171 XO 20 Xl Sl x? 42 xS
12 T3 Ta

X = + &c., (239) = (M)

I admit, (I.), that Murphy preceded me in perceiving (not only the existence but) the
convergence of this series, when x? 3> ¢2. (He used terms all positive, but let me not nibble at a

point of that sort) — I admit, (II.), that he saw the series to be, when convergent, the
development of at least one root of the equation which I wrote as
IX+xX=0 ! l1 (259)
xX=0, or x=—1I[1—;
X X

and have no doubt, (III.) that he was well aware that this was the lesser of the two real roots, of
the last equation considered as resolved for X, when x was given, and negative, but > —¢ !,
He probably saw, (IV.), that, in your words, or something like them, the series ‘“‘escapes from
imaginariness, by becoming divergent’, when x> ¢! He perceived, (V.), that the series, when
convergent, must be regarded as the development of a continued exponential. But I am not yet
aware that it even occurred to him, or that he thought it at all worth his while to inquire, (VI.),
what value ought to be, or might be, attributed to the series, when x, being positive, (in my form
of the development) exceeds the limit ¢!, and so causes the series to diverge, while yet the
equation from which it was derived continues to have a single real root. As yet, the results of this
Letter upon that subject appear to me to be new; but you know how very rash it would be to
make assertion of any such novelty. Still, to pursue our recapitulation, I remark, (VIL.), that
when x> ¢!, provided that x does not exceed a certain greater limit, ¢, the series indeed diverges, but
the only real root X of the equation IX + xX = 0 may still be obtained, with any required
approximation, by the continued exponential, X = (¢~ *)>1, which might, by one of the meth-
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ods of the present Letter, have been obtained from the series itself. But (VIIL.), when x is near
the limit, €, the convergence of this exponential becomes extremely slow; since it was found that if

X, = (%)™, then
X149 = 0-2987,  Xi50 = 0-4440, Xy51 = 0-2991, (388)

nearly, the alternate values showing, even at this advanced stage of the process, (which thus
becomes here practically wuseless,) a well-marked difference from each other, which difference
however would necessarily at last disappear; so that the process would ultimately give (it has
been proved) the equation (¢ “)* =¢ ! (889) - (IX.) The exponential Method would
thereby assign what may (or must)™ be considered as the value, namely ¢!, of the very divergent
series,

. 312 ﬁ_ﬁ_ 53¢t -
2 23 234

&c.; (269)

which Murphy has abstained from considering, apparently as not choosing to deal with any
series except converging ones, but which it has been part of the object of this Letter to
discuss. In like manner, this less divergent series,

3192 429-3 g539—4

X=1-2"1 —
2t 2 93 934

&c., (281)

may be considered as representing this other continued exponential,
X = (€)®1 = 0703467 4,

nearly, by (445), namely the only real root X of the equation

1.1 1

X l} =5 (282)
and similarly in other cases. It has been shown, (X.), that the same value X for the same
diverging series, under the same conditions, x> ¢!, ¥ ¢, may be approached to, and with greater
rapidity, by the use of converging fractions, obtained from the series itself. We found (XI.), that
when x>¢, the equation IX 4 xX = 0 has still one and only one real root X, to which the
Jractions still converge; although the series is now still more divergent than before. For example,
the seven first terms of the highly divergent series,

31 32 4233 5334

X=1-3 - -
T T 93 a3

&c., (521)

the Method of Continued Fractions, combined with a plan of improving an approximation by
combining the few last results, which has somewhere been used by Legendre,' has given us the
approximate value, X = 0-351 47; (443): while the real root of the equation X +3X =0, or
¢ 3% =X, (413), is X = 0-34997 nearly, by (414); so that the agreement of results even in
this unfavourable case, is not to be entirely despised. But (XII.), when xis thus > ¢, the Method

* At least I think so, if a diverging series be admitted to have any value; on account of the agreement of
the results here obtained, by different processes of transformation.
t [Adrien Marie Legendre (1752-1833).]



112 II. TWO LETTERS TO AUGUSTUS DE MORGAN

of Continued Exponentials gives no approach to the value of X, however far the process may be
carried; for example it has been found that, nearly,

(€%)771 = 0-1348; (¢ ¥)™1 = 0-6673; (¢ *)™1 = 0-1351; (¢ )1 =0-6668;  (421)

the convergence being here towards two alternate limits, A and B, which are respectively the
least and greatest real roots of the transcendental equation,

(€)2X=c>*" =X, (415)

namely, A = 0-136 12, and B = 0-664 74, nearly, by (416); while the same equation (415) has
another real root, intermediate between these roots A and B, namely the root X = 0-349 97 of the
former equation ¢ %X = X (413). — This is perhaps the most remarkable result of the present Letter
(which may not be saying much for it); and it may be worth while to stop for a moment to
consider its geometrical signification.

LXIV. Suppose that we met the equation,

=y, (522)
and chose to regard it as the equation of a curve. Abstracting from all imaginary points, and from
all logarithms of negatives, the shape would be found such as is rudely sketched, in the annexed
Figure 1. For I can prove that the real roots y of the equation (522) are precisely the same as
those of the simpler equation

€Y=y, (523)

if x be less than ¢; but that as soon as x becomes equal to, or greater than ¢, then two new real roots
start into existence, for the equation (522), which do not belong to the less complex equation
(523), except that when x is exactly equal to ¢, then the two new roots of (522) are equal to
each other, and to the root y= ¢!, of the equation (523). (Figure 1.) Now the curve
represented by this last equation, or by this other form of it,

/4 y
1
b g trsy Yeneokor bt Moz
9% 4 [ [022) a.,(_e/,o,c_f.v_sfgém B
//.fﬁ ! e/ 23y, Qg#-) \
S N ¢ A G
} WA, ¢ p<r BN c :
~ L S 4 —
B K o r DT B X J ) i X
'-; 447.“}('{:21‘2_ K eand P Ao BH O C’ D’ E'

(@) (b)

Fig. 1 (a) This shows the curves as sketched in Hamilton’s notebook D (p. 95 Trinity College, Dublin,
MS 1492/144); (b) accurately drawn versions of the same curves.
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1.1
x=-10-, (524)
yy
is asymptotic to each of the two positive semiaxes OX, OY of coordinates; crossing the axis of
yat a point A for which x = 0, y = 1; and extending behind that axis, to a point B, for which

x=c', y=¢ (525)

and at which it is touched by the ordinate BB': in such a manner that for every point H’,
between 0 and B’, an ordinate cuts the curve in 2 real points, H and I; but for every point C’,
D', E', ..., on the positive side of O, an ordinate intersects the curve (523) in only one real point,
C, D, E, .... The cuve (522) contains all these real points of (523); but it undergoes a trifurcation at
a point D, for which

x=-+4¢ y=c (526)

Each curve, for real points not too far from A, namely for the real range from B to C, if Cbe such
that OC' = ¢!, has its ordinate, B'B, or H' H, or OA, or C'C, respresented by the convergent
series of Murphy, or here by

+ &c.; (M)

and the value of this ordinate, or of this series, (for x? >¢~2) may be approximately found,
either by a continued exponential, or by a continued fraction, as in this Letter. For the range from
Cto D, these methods still give the common ordinate of the 2 curves, although now the series diverges.
But beyond the point of trifurcation D, the 3 real ordinates of the curve (522) are found
approximately, and separately, as 3 distinct limits, by methods already explained, as so many
different transformations of the diverging series; namely the middle ordinate, y or E'E, which is also
that of the simpler curve (523), as the limit of the converging fractions deduced from the series
itself, the least ordinate, A [see equation (518)], or E'F, as the limit of the increasing exponentials
of odd orders, (e7*)2"*11; and finally the greatest ordinate B [see equation (518)], or E’G, as the
limit of the decreasing exponentials of even orders, (¢~*)?"1. The branch DF, like DE, is asymptotic
to the axis OX; and the branch DG is asymptotic to a parallel to that axis, drawn through the
point A — And now at last I take (for the present) my farewell of this curve and series. But
something still remains to be said, on the subject of those general transformations, to which
allusions have been made in this Letter.

LXV. Letus therefore now suppose that fix, fox, ... are functions such that
flx:l+11x+lgx2+---, fgx:l+21x+22x2+~«,
fax=1431x439x> + -+, &c,, (527)
where m, is a constant coefficient, independent of x. Let us write also,

Fix = fixfoxfsxfax ..., Fox= foxfsxfax ..., Fsx= faxfax..., &c. (528)

where each functional characteristic is conceived to govern the whole system of symbols
which follow it, so that, for instance, we have, more fully,

Fix = f1(xfo(%fs(xfs(x...)))). (529)
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Then each of these functions F,x may in general be developed in a series according to

ascending powers of x, which may be thus denoted:
Fox=1+ (r, Dx+ (r, 2)x> + (1, 3) x> + &c.;
and because we have the relation,
Fox= f,(xF,11x);
we may write also,
Fix=14 rnxF,.1x+ er?(F,Hx)2 + 1"396?’(F,+1x)3 + &c.
Hence,
(r,)=r; (rn2)=n(r+11)+ry (r,3)=n(r+1,2)+2r(r+1, 1)rs;
(r, ) =n(r+1,3) +n{20r+1,2) + (r+1, )2} +3rs(r+ 1, 1) + ry;
(r,5) = r(r+1,4) + r{2(r+1,3) +2(r + 1, )(r + 1, 2)}
+7r3{8(r+1,2) +3(r+1, )2} +4ry(r+1,1) + r5;
(r,6) =n(r+1,5) +nrn{2(r+1,4) +2(r+ 1, 1)(r+1, 3)
+(r+1, 23+ r{8(r+1,3) +6(r+1,1)(r+1,2) + (r+1, 1)*}
+r{4(r+1,2) +6(r+1, D)2} +5r5(r+1,1) + 15, &c.:

(530)

(531)

(532)

(533)

where the calculus of derivations® may be used, to assist in determining the coefficients and

exponents. In this manner it may be shown that

(1L, ) =1;; (1,2) =1121+1o; (1, 3) = 112131 + 1129 + 2.192; + 13;

(1,4) = 11213141 + 112130 + 2.112031 + 1125 + 2.102131 + 12(2.20 + 2%) + 3.1521 + 14

(r,5) = 11213:14:5; + 11213140 + 2.1,2,304; + 2.1129314; + 2.102,3,4,
+ 112135 + 1122(2.39 + 33) + 2192139 + 3.11233; + 2.19(2.29 + 22)3,
+ 38152181 + 1124 + 2.19(25 + 2129) + 3.15(20 + 23) + 4.142; + 15;

(1, 6) = 112131415161 + 1121314159 + 2.1121314951 + 2.1121394151 + 2.11293,415,

+ 21921314151 + 11213145 + 112139(2.49 + 43) + 2.11293,49

+ 219213149 + 3.11213541 + 2.1129(2.39 + 32)41 + 4.1921 394
+8.11233141 + 2.19(2.29 + 22)314; + 3.1521314; + 1,234
+2.1129(35 + 3132) + 2.122135 + 3.1,25 (39 + 3%)

+ 19(2.29 + 22)(2.39 + 33) + 3.152130 + 4.112431 + 6.19(25 + 2129) 3,
+6.15(20 + 27)31 + 4.142131 + 1125 + 15(2.24 + 2.2125 + 23)

+ 15(3.25 + 6.2129 + 23) + 14(4.29 + 6.22) +5.152; + 1g;

* [See: A. De Morgan, The differential and integral calculus, pp. 328—335, London: 1842.]

(534)
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where it is worth noticing that, with the incorporations indicated by the parentheses, of which
it is easy to see the reason, the number of terms goes on doubling, being

=1,for (1,1); =2, for (1, 2); =922 for (1, 3); =23 for (1, 4);
=24 for (1, 5); and = 2%, for (1, 6). } (535)
As a verification, if we assume
m, = m", (536)
we have the particular forms,
1 1
flx:lfx’ﬁx:lf—Qx’“"fmx:lfmx; (537)

thus, we must have, by a transformation which Laplace appears to claim, and which has
before been cited in this Letter, (with merely a change of certain signs,)

&c. =1+ 1x+1.3x> + 1.3.5x% + &c.: (538)

we ought therefore to have, with the assumption (536),
(1, m)=2n—-1)(2n—-3) ...5.3.1 (539)
and accordingly we find now the particular numerical values following:
1,1)=1(21)=24+1=3;(1,3) =6+4+4+1=15=35;
(1,4) =24 +184+24+8+12+12+6+1 =105 = 3.5.7;
(1,5) =120 + 96 + 144 + 96 + 48 + 54 + 108 + 36 + 72 + 72 + 18 + 16
+32+2448+1=945 =3.5.7.9; (540)
(1, 6) =720 + 600 + 960 + 720 + 480 + 240 + 384 + 864 + 384 + 192 + 648
+ 864 + 288 + 288 + 288 + 72 + 162 + 432 + 108 + 432 + 324 + 54 + 192
+ 288 + 144424 +32+4 80 +80+40 + 10+ 1 = 10395 = 3.5.7.9.11.

In general let there be two mutually inverse functions, of the respective forms,

ox=b(x—1) 4 bo(x — 1)® + &c., and

@71x2¢x21+61x+ cox® + &c.; (b41)
and let
X = da; xdasxbasxdosxdasxdax ... =1 + a;x + asx® + &c. (542)
Then, by making
my = cpan, and (1, n) = a,, (543)

the expressions (534) — respecting the general composition of which, some interesting
remarks might be made — become:
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ay = c101; a9 = c?alag + CQa(f;
as = cjaj0e0s + ¢1coras + 2c1 coaias + c3a;
as = dlayagasay + G cgayag(as + 2as + 2ay)as + 1 30103
+ ¢2(2¢0 + ) atad + 3cresadas + csaf
= clajasasay + ¢ coaas{al +2(as + ar)as + ajas}
+ cresaras(al + 3a3) + 2c3atad + cial;
as = Sayasasasas + ¢ caayagas{a? +2(as + ag + ar)ay + as(as + 20;) }
+ c? Cgalag(ag + 30(3(13 + 3(1%063 + 3(1%(12) +2¢ cgalag(agag + alag
+ 2a1a9as + a1a3) + c1 a0 (0 + 4a3) + cocsaiad(2as + 3a1) + e5ad; (544)
ag = c?a1a2a3a4a5a6 + c}lcQalagag{aél(ag + 2a405 + 20305 + 20905
+ 2a105 + asay + 200035 + 20109) + aj09as}
+ S esaas{asal + Basas(al + ai + a?) + 3asas(asas + 2a?)
+ a%ag} + 25%53‘11“20‘3{(0‘3 +ag + 0!1)05421 + 2(agas + ajas + ajag)ay
+ a9 (af 4+ 2a1as + 3a1a9) } + cfaaaras{al + 4as(ad + ) + 6alas}
+ c1cocsanao{as(2a9003 + 20105 + 3asas + 3atas + 6ajaj + 6aias)

+ 20103 (as + 3a1) } + c1esaras(as + 5at) + Gajad(4a3 + a3)

+ 2cocsaia3(aj + 2a7) + 3c3atal + ceal.
If we make, as a verification and application
cn=(=0)", (545)

so that the second equation (541) shall give

dx = (14 cx)7! (546)
then
—clar=a;; +cla=a(a+a); —cag=aasas + ai(as + a9)?;
+ctay = apavasay + ayas(as + as + a1)? + o (as + ar)%; (547)

—cPay = qagasasas + ajasas (o + as + ag + a1)? + {asas + (ag + a1)?};

and these functions of ay, as, as, ..., agree precisely with those functions of a, 3, v, ...,

which were called q, b, ¢, ..., in (70), and which were the coefficients of —x, +x%, —x3,

in the development of the continued fraction,

1 ax fx yx

1+14+14+14+ ...

The recent expression (544) for ag may have its terms otherwise arranged, as follows:
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as = Sayasasasasas + ¢f coaaoasasoi + 2¢tcoaasasasas (as + as + as + ap)

+ ¢ esayasasal + F oo (2¢0 + ¢} arasazol + 265 czaras(ay + ag)asa]

+ 3¢} csaranadoy + 265 co(2co + ) arajaiay + 4cf csaiasaiay

+ 3§ csaradasas + 2 ca(2¢0 + ) adadasay + 3¢ csalasasay

+ C? C4a1a2a§ 4+ 2¢1¢9(cs + 1 CQ)alagag 4+ 2¢1 ¢ 63(1‘%(120(2 (548)

+3c1c3(co + H)aradal + co (200 + ¢3)2adaial + 3eicocsadasal
+ 43 cpar o805 + 6¢100(cs + c100)atadas + 6¢res(co + B)aladas + 4 cqatasas

+ 150105 + c0(2¢4 + 2¢1 05 + c3)adas + ¢3(3es + 6crco + ) ajad

+2¢4(2¢9 + 3¢2) atad + besadag + csal;

which when we make the substitutions (545), gives, for what would have been called the
coefficient f in (70), the expression:

+c%as = ajavasasasas + a1asas04ad + 201 a9050405 (As + a5 + 0 + A1)
+ a1agasal(ag + 3as + 209 + 2a1) + a1asaias(3as + 6as + 4a;)
+ 3ayasasay(ag + a1)? + ajasad (as + 4as + 2ay)
+ 30903 (203 + 3aras + ai) + 4ayasas(as + a1)® + aj (as + a1)®
= 1203040506 + 01 A20304 (05 + Ay + asg + as + ap)?

+ ajao{as(as + as + 209 + ay) + (as + a1)?}? + af{asas + (as + a1)*}2.

(549)
Accordingly when we make a,, = n, this last expression becomes
720 4 (24 + 18 4 1).225 = 45(16 + 215) = 45.231 = 1.3.5.7.9.11,

as otherwise found before, in (540). We also see that, in the notation of (70), the sixth
equation of that system would be

f = aBydct +afyd(c+0+y+B+a)? +ap{yO+y+28+a) + B+ a)?}?
+a{By + (B+ )"} (550)
whence by makinga =1, =2,y = 3,0 = 4, ¢ = b, the linear equation (75), or
f = 120 + 9675,

may be deduced at sight, by observing that 43.225 = 9675. As another bit of verification we
may assume the values

a=pf=y=0=e¢=¢=1, or
a1:a2:a3:a4:a5:a6:1; (551)
and then if we still adopt the expression (545) for c,,, we shall have

1 ex cx

= ke, (552)
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which may be written as

1 o0
X = 1, 553
<1+cx.> (553)
and gives
X=——, aX’+X=1
1+ch’cx + ’
1+4ex)t—1 :

x o UHA oL 92 — B 4 14t xt — 495 x5 4 132550 s (BB4)

2c¢x

and accordingly if a, be made equal to unity in (547), (549), the resulting values of
al, ..., Qg are

ar=—c, as=2¢% as=-5c, ay=14c", a5=—-42", ag =132, (555)

LXVI. When the coefficients ¢y, ¢, ..., of the series (541) for the transforming function &, are
either immediately given, or have been deduced by reversion of series, or otherwise from the
coefficients b1, bo, ..., of the series for the inverse function ¢ x, they can be substituted in the
expressions (544); and then the coefficients ay, ao, ..., of the series (542), for the transfor-
mand function X, come to be expressed as known and explicit functions, rational and integral, of
the constants ay, ag, ..., of the transformed functions, or expression, X = dajxdagxdagx ...,
to which this Letter mainly relates; as for example, in the recent equations, (547), (549). And
conversely, from the form of the equations thus obtained, it is evident that we can determine,
successively, and unambiguously, without having to resolve any equation higher than the first
degree, the constants (aj, o, ...) of the transformee, when those of the transformand,
(a1, ag, ...) and of the transformer, (c;, co, ...) are given; at least if ¢; has any value different
from 0. But although it is satisfactory and useful to have the expressions (544), yet I think that
in practice it may often be convenient to employ another method, for this converse deduction
of aj, ag, ..., from ay, as, ...,, and from ¢;, ¢y, ...; or more immediately, from ay, ao, ...,
and by, by, .... This method uses the Calculus of Derivations and is merely a slight extension of
the processes employed in paragraphs VI. and XII. of the Letter. Writing

X' = dasxdasx ... =1+ alx+ abx® + -, (556)

we have, by (561) and (562),

arxX' = @X = by (a1 x+ agx® + agx® + ) + ba(arx 4+ agx® + - )2 4+ -+, (557)
whence
a; = bay, arai = bias + bed, - -
c (558)
biaial, = byD"ay + bsD" ' a? + bsD"2a} + - + byralth

where D"a; = a,41, and generally D"af" is interpreted on the plan of your Differential
and Integral Caleulus® (p. 328 et seq.), for I have not Arbogast’s book' at hand, though it
is somewhere in the house®, and I read a good part of it long ago; so that, for instance

* [See footnote to paragraph XLIV.]
f [Louis Francois Antoine Arbogast (1759-1803), Du calcul des dérivations, Strasbourg: 1800.]
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Da(f = 2a as, DQa? =2aas + ag,
Dga? =2aj1a4 + 2asas, D“a% =2a1a5 + 2asaqs + ag, (559)
&ec.

On the same plan if we write

X" = dagxdosx ... =1+ afx+ adx’+ -, (560)
we have
asxX" =0 X', as = byal, byalal, = byD"al + bo D" ' a}® + bsD" 2 a}® + &c.; (561)
where

Da;? =24 ab, &c.

Thus, when by, bo, &c., are given, a; is found from a;; ae, through a1, from @ and ao; as,
through «f, from ai and a$, and so from «;, a9, and as; and so on, for we have generally

a,=bal""; (562)

the accents at the top serving only to attach the coefficients a™ to the series X™; and one
such series being deduced (rather than in any technical and usualsense derived) from the preceding
series of the same system, by the general relation,

a,xX™ =X, (563)

As a system of verifications, we may operate on this last equation by &, and so change it to
what indeed follows at once from the notation used,

XD = pa, xX ™, (564)
for this will give
a\" =a,c;, and generally
a(n—l) —¢ Dm—l (n) 2Dm—2 (n)2 3Dm—3 (n)3 m , (n)m, 56
= €10y ag’ + coa, ag "+ ez, ag’” + + cpayay (565)

where the derivations D are so interpreted that (for example)
Daé")2 = Qa(()”) ay, Dgol(()")2 = Qaé") aén) + agn)g, &c.; (566)

and aO") is made = 1, after all these derivations have been performed. Thus

"V = qa,D*al" + ced® D*al"? + 503 Dal"? + cyat ol
= ca,al” + ca® (248" + a\"*) + 333 al” + gt &e. (567)

Finally, the relations between the two systems of constants, 4 and ¢, of the two mutually
inverse or reciprocal functions ¢ and ¢, may be expressed by the formula,

* 15 May 1858 — I have since found my Arbogast, and read, with the greatest pleasure, the first thirty
pages, or thereabouts, at one stretch, verifying every step, as I went along, by mental calculation.
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D" M = b D" ey + by D" + bs DV 4+ by (568)
LXVII. Before, I began this Letter, I had considered (to some small extent) the case alluded
to in paragraph V., where the transforming functions were,
px=x"—1,bx=0¢ 'x=(1+x) 7 (569)

v being any given exponent. In this case, with the recent meaning of b,, we have the
expression

_ D+ D +2) . (v n— 1)

b . 570
" 123...n (570)
The formula (558) becomes therefore here, compare the equations (52):
v+l e vH1IVH2 o g v+1lv+2 wv+n
w=D"a; — D" — D" I 571
ain = “T T3 L s T SR

in which every a may receive an additional accent, as in (561), and so on for ever. Hence if we
know the unaccented coefficients a, as far as a,, we can first deduce the singly accented
coefficients a', as far as a)_1; then a”, as far as a,_o, &c.; till we come to the coefficient
ai"il); after which the first n constants a, will be known, by the formula (562), which here
becomes,

o, =—val"V. (572)

(Compare (55) and (60).) — The method of reciprocals, which leads to the continued fractions,
already discussed at some length, was, as remarked in paragraph VI., merely that particular
sub-case, for which v = 1. The case next in simplicity, and which perhaps will be found to be
quite devoid of wutility, appears to me to be that for which

v=2; (573)

so that the transformation to be considered here is (compare equation (48)) expressed by the
formula:

X =14 ajx+ asx®+ &c. = bajxdasx ... = (1 +ayx(1 +agx(l +---)72) )72 (574)

The equations of the forms (571) are, for the present transformations,

3 az 5
a1al = ag——a?; ayas = a3—3a1a2+2a?; ajab = ay — 3\ ajas + -2 +6a?a2—§a?;

2 2

ajay = as — 3(ara4 + agag) + 6(a$a3 + @ ag) — 10@?@2 + Sa?;

1. . 1 3
ayas = ag —3<a1 as + a2a4+§a§> +6<afa4+2a1a2a3+§a§) — 10<a?a3+§a%a§>

7
+15ajay ) af;

(575)

the last or right hand terms being those of the development of
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1
—5(1 +a) 7,

and others being afterwards derived from these, with the greatest possible facility, by the Rules
of the Calculus of Derivations. In like manner, by accenting,

3
alai = ab — 3 al?,  djal = as—3alab+2a}% &c.; (576)
and when a', af, ..., have thus been computed from a;, as, as, ..., we have
a) = —2&1, a9 = —Qa{, &c. (577)

And the numerical calculations may be checked in various ways, on principles already stated
or suggested.

LXVIIL. Itseems to be worth while, however, to write down the following system of formulz,
which may indeed be deduced by elimination from (575) but may also be otherwise and
independently found; and which may serve, not merely as a check on the numerical results
obtained from the last cited equations, in any application of this ‘‘method of inverse square
roots”” but also as an independent instrument of calculation, for successively determining af,
as, ..., when aj, ag, as, ... are given. The system to which I refer is included in the more
general system (567), and may be deduced there from, by simply introducing the present
values of the coefficients ¢,; or by writing,
1.35.7--- 2n—1)

D e =568 o0 (578)

for in this manner we obtain the following equations, with the help of (577):

3 . 5 . . 1 35
as = ayaj —|—§af; as = a ab —|—3afai —I—Ea?; as = ayas —I—Saf(aé—l—%aiz) +§a‘;’ai +§a411;
15 . 35 63
as = ayaj —|—3a%(a§ + aiad) —|—§a?(aé + aiz) +?a;1ai +§a‘?;
] 15 1
ag = a1 as +3af(a4 + aj aj +%aé2> +?a?<a§ + 2aj a$ +§a{3>
35 4, 3 5 315 5 , 231 4
—|—?a1 a2+§a1 +?dldl+l—6al.
(579)

I think that it will be scarcely possible for any arithmetical mistake to escape notice, in the
calculation of the values of ai, ..., a5, from those of a1, ..., as, in any particular question, if
these two systems of equations, (575) and (579), be separately used for that purpose: so different
are the auxiliary or intermediate members which present themselves, in one and in the other
process; and so different is the play of the signs. Such, at least, is my impression from my own
little experience of such calculations; mistakes of mine having been detected, by the fore-
going system of checks; but an entire confidence being reposed by me in the final values,
when the results of the two processes agree. — I forget whether I made much wuse of the
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following other system of expressions, when I was applying the ‘“‘method of inverse square
roots’’, a few months ago, before I began to write the present Letter: if

X=1+ax+ax®+ - =0+ax(1+agx(l +---)72)72)2 (574)
then
1 3 1 o
_ 1. _ . _ 2 24.
ay = —301; ag—zal (OLQ +§a1>, agf—galagag—E(3a2+6a1a2+5a1),
—laaaa —I—laa(Sa + 6asas + 6aias + 5as + 120,a +15a)—|—35 b
a4—1612343212 3 203 103 9 102 128
1
as = 39 — A 09030405 — aalaQag(SaZ + 6asay + 6asas + 50&3 + 12as03 + 15(13)
—ﬁococ4 aaa(?a + 3as + 8a +5a)—§a2a3
956 1&%o 64 2U3 4 3 2 1 1%
7 5 9 3B dta 63 .
T 128 T g 1 T g5 M0
ag —ia Ao030.40506 + (a long polynome) +2—a6
6 = Ggq 1020840506 g poly 1024 1
(580)

The arrangement of the terms in a; might be improved, but it is not worth our while to delay
upon it. I must, however, remark that the system (580) is analogous to those before marked as
(70) and (108); and that it is, like them, included in the more general system of such equations,
which has been numbered as (544). It is clear, also, that these last equations (580) may be
used, to determine successively and linearly, the constants aj, ..., a4, when the coefficients
ay, ..., a4 are given; and also to wverify the values of those constants, if they have been
determined by any other process, such as those which have been already described.

LXIX. If now we introduce the values,

a1 =1, as =3, as = 15, a4 = 105, a5 = 945, (581)
without at first assuming any value for as, we find, successively,
3 37 131 3545
ai =5, =8 =62 a=61% al=5, a=—, a=—-;
727 67591 25743 589
m__ =7 m__ VYT w __ 2 P YEY o — _o9. 582
296" “* 7 2664 = "1 T 3873456 2a1 = =2, (582)
u ou! 3. g 37 u 727 u 25743 589
9 = —ZaA1 = —I. = —_——" e _— @
? ! o 6° Tt 1480 7P 1936728 °

that is to say, the series
X =1+ x+3x"+ 15x° + 105x* + 945x° + &c., (583)

which has occurred before in this Letter, where the &c. merely means some polynome or series,
of the 6th and higher dimensions, may be transformed into this other expression not hitherto
written down,
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37 727 25743589\ 7\ T\ P\ 7\

where we only know of X7, that it is a polynome or series, whose first term is unity. Or, changing
the sign of x, we have the transformation,

1 1 1 1 1
37 727 25743589 .\ 2\ 2\ %\ %\ ?

=1—1x+1.38x>—1.85x>+1.8.5.7x* — 1.8.5.7.9x° + agx® — arx” + &c.; (585)
where

X'=1-ajx+ &c. (586)

and the coefficients ag, ay, ..., of the one development are connected with the coefficients

aj, ay, ..., of the other, by laws of the kind which has been already considered in this Letter.

And if we write,

X, =q +2x)’%; Xo = (1 +2x(1 +3x)’%)*%;

X3 = <1+2x(1+3x(1 +3—(;7x> 2) 2) 2;
87 (1 727 \“hh (587)
X4<1+2x(1+3x(1+€x(1+mx) ) ) >

101 1. _1_ _1
37 727 25743589 1\ 2\ 7\ 2\ 2\ ?
X5<1+2x(1+3x(1—I—Ex(l—i-mx(l-i-mx) ) > ) ) ;

then with the last series, 1 — x + 3x% — &c., which has alternate signs, and for values of x which
are positive, and not too large, we may establish the inequalities, X <1, > X1, X9, > X3, < X4, as
in (253); or more fully, we may write the chain of inequalities,

1> Xo> X4 > X> X3> X, >0. (588)

But whether the function X, in (585), is greater or less than X5, even for positive and moderate
values of x we cannot yet decide, until we are given the coefficient ag, and have deduced from
it at least the algebraical sign of the connected coefficient af, so as to determine whether XV is
less or greater than unity.

LXX. We may also write, with the last adopted sign of x, the series of equations,

37
X 2=142xX"; X' 2=143xX"; X" 2=14+"xX";
6
727 25743 589 (589)
X"2 —1 sz; sz’Q -1 Xv;
VTR " To36728 ¥

and
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X' =1-ajx+ abx*> — asx® + ajx*

"3

X"=1-af{x+ asx®> — afx® + aix

Xw: 1 _ a’{'x+ d’QNDCQ m.3

lezl_aivx_i_azzva .

>

X?=1-ai{x + ---as above;

" n w

! 4 A ! " " "
Where ai, GQ, a39 ay, ay, dQ, Clg, at, LlQ, al >

"4

—a¥x® + -

>

_a:%x:)_i_...;

)

have still the values (582); and a3, a4, a

n

3> 612,

(590)

w v
ay,

will admit of being successfully calculated, as soon as ag shall be known; a;, as, a4, as,
retaining still the values of (581). And for such successive calculation we may employ, at
pleasure, either of the two following systems of formula, which may therefore serve as checks
upon each other, and which are collected for convenience here, although they have substan-

tially been given already, in (575) and (579):
(1)

1 . 1
ayas = ag — 3<a1a5 + asay +—a§> +6<afa4+ 2ay as as +—a§>

2

3 7
— 10<a;a3 +§a%a§> + 15a?a2 —§a6'

aiai = at — 3(aias+ aba) + 6(ai®as + aiai?) — 10ai*ab + 3ai’;

1
ala¥ = af — 3<ai’a§’ + 5 as® | +6ai?as — 5

atay = a% — 3aiad + 2a?; al’ai = ay

(I

1
ag = alag+3a%<a4+aiaé+aé2

2 2

1°

5
5 an;

w*",
__al ;

3

n4.

2

2

3

15 3 7 o 1 ) 35 4 7 3 ’
+—ajlas +2a1as + 5 a1 +§al a2+§a1

15 . 35 63 .
@ = aiaf+ 3ai?(af + afad) + 5 af*(af + af®) + 3 af'af + 5 af’s
1 . 15 35
d!},: dl”d%’ﬂ’ 301” dé”#‘*d’lﬂz + ai/3arlrr+ ai/4;
2 2 8
m " _ v m2 5 m3
a3 = atay +3ai”a —|—§a1 ;

3 2
[ — w U w*"
ay = ay’ay +say .

2

)

(591)

(592)

Each system conducts us, with the values (581) for a;, ao, as, a4, a5, and therefore with the

values (b82) for ai, as, a3, a4, af, a3, a3, af, a9,
connecting successively

ay’, to the following chain of linear equations,
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as, af, a’, ay, and ai with as:
as = ag — 3187; 48a4 = 32ai — 98439; 127872a% = 41472ai — 72 370 301;
95 545 248ay’ = 38901 504 a8 — 6119 799 487;

199 433 318 547 168 a{ = 30007 322767 87245’ — 1988 197 123 802 763;

(593)

in which I think that the coefficients, though large, may be relied on. Eliminating,

" w

successively, a5, a4, a3, and af, we find these other equations:
48ai = 32as — 198 823;
127872a% = 27648 as — 244 153 373;
8599072324y’ = 75700224 a5 — 723 570 130 657; (594)
and finally,
199433 3185471684} = 2641635016 704a¢ — 27 237900403 209435 .. ..

It appears, then, that if we confine ourselves to integer numbers as limits,
a; <0, if ag<3137; ai<0, if a5<6213; a¥<0, if as<8830;
(595)
ay <0, if ag<9558; and finally, af <0, if as<10311:

whereby it is not implied that the conditioned inequalities would in all cases not be satisfied, if
the conditioning inequalities should cease to exist. In fact, we should have, in addition to the
result (595), these others:

at =0, if ag =31387; ai<0, if ag=06213; a%¥<0, if ag = 8830;
ay <0, if ag =9558; and af <0, if ag=10311. } (596)
On the other hand, using still integer limits,
a5 >0, if ag>3137, ai>0, if ag=6214; a5>0, if as = 8831;
ay >0, if ag = 9559; and finally, a{ >0, if a5 = 10312. } (597
Thus, in particular, when we assume
ag =11.9.7.5.3.1 = 10 395, (598)
(compare (540),) then
a5>0, a{>0, a¥>0, ay>0, a53>0; (599)

although the condition for the existence of this last inequality is only barely satisfied. And, on
computing the fractional values of these coefficients, we find them to be, for this last value of
as, (namely for that which presents itself in a series of Laplace, with which we started in this
Letter,) the following:

L7958,y = 20817 48247587 -, 63333697893
G MTTT YT T1ore2 T 7859907232 (600)
991895595 428 645

d finally a? = .
an@ Mty 4= 199433318547 168
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LXXI. Recapitulating the results obtained by the present method of transformation, as applied to
the last mentioned series, we may say that if

2\ | [* ) . .
X = () e%J e dt=1—-1.x+13x>—1385x>+1.8.5.7x*
X (2x)

-4
—1.35.7.9x° + 1.8.5.7.9.11x°% — &c., ad infinitum, (601)

then

3 .
X ?2=1+2xX,whenX' =1 — 3 +8x% — 62x% + 612x* — 7258x° + &c.;  (602)

X o1 gan, xr=1 -0 W I8 IBNT 0 es e03)
X"r=1+ ‘% xX", X" =1- % x4 627621 x* — 4?;3;527 X+ &c; (604)
and

R TR

where each of the “&c.”’s, in (602) to (606), remains as yet uncalculated, even the algebraic
signs of the unwritten terms being (in rigour) as yet unknown, whatever guesses may be made
respecting them: because, although the law of the celebrated series (601) is known, we have
hitherto used only the terms which have been lately written down, — nor am I likely to think it
worth while to take even one more term of the series into account, so as to deduce any others of
these frightful fractions from it! And it is unnecessary to make the admission, which however
I cheerfully do make, that although, perhaps, some little refinement may have been brought
into play, in the manner of calculating and verifying the fractions in these series, (602), ...,
(606), yet there is no difficulty in the calculation of them, which might not have been overcome
by the mere patience of a beginner, who was just acquainted with the rules of vulgar arithmetic,
and with a few of the early rules of algebra; not even the general binomial theorem being required.

LXXII. But now that the fractional coefficients have been, so far, computed, can any use of
them be made? I think that there can — though well inclined to admit that, perhaps, “le jeu
ne vaut pas la chandelle”. — I shall begin with an Example, which had been considered by me
before this Letter was commenced, and to which you will find an allusion, (unintelligible,
doubtless, hitherto,) so early as in paragraph III. Let then x be supposed to be equal to }, in
the series for X, which thus acquires the value, X = L711-879596 0 = 0-757 87, nearly as has
been seen in the course of this Letter (compare (7)). I did not know, at the time, what the
fractional coefficient of x in X, (606), might be; not even its algebraic sign. Assuming,
therefore, as the best guess in my power to make, that x” was equal to unity, or that the series
for X7 reduced itself to its first term, I had, successively, on the hypothesis that every one of the
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preceding quantities of the form X" was positive, and with the corresponding interpretation
of the radicals ( )72,

_ 5743 589

X" =1+ C(5X)_% = [7'1-558 28, nearly, ifx = %, and a5 = QIQ?)TQS; (607)
m wy —1 _1 15 72

X"=(1+o04xX")2=(1+0-88822) 2= L "1-86197, where a4 = 148’ (608)

" m —3 1 1y 37
X"=1+asxX")2=(1+2-2438) 2 = L~ 174447, where a3 = 5 (609)
X' = (14 asxX") 2= (1 +0-83284) ¢ = [."'1.868 44, where as = 3; (610)

and finally X (or rather X5) = (1 4+ o4 xX’)_% = (1+0-738 65)_%

= L7'1-87989 = 0-758 39 nearly, with a; = 2. (611)

(I pick out these logarithms, &c., from a page of more than 3 months old, without at present
seeking to correct or to examine them; but the same approximate value, to 5 decimals, namely
X = 0-75839 was obtained, about the same time, by a different logarithmic process —
introducing cosines and tangents, from the same data. —) It struck me as remarkable then,
and still appears to me worthy of remark, that the approximate X, or rather rigorously
defined X5, see (587) namely the approximate value 0-75839, — deduced in this way, by
positive inverse square roots, is much nearer to the true value, (X = 0-75787,), not only than that
obtained by my exponential method, which value was X5 = 0-6748, (142), but even than that of
the method of reciprocals, which gave by (89), X5 (or T5) = 0-75145. But it surprised me to see
that the error (such as it was) of the ‘““Method of Square Roots’’ was in the wrong direction or at
least in an wnusual one: since it gave (compare (36)) X5 greater than the true X, instead of
giving one less than it.

LXXIII. It will serve to throw light on this result, if we pursue an opposite course, or adopt
an inverted order calculation, and deduce successively X', X", X", X*, X7, from the value of
X considered as known, by means of the formulze

-2 -2 n—2 _ m—2 _
X,:Xa 1’ X,,:Xa 1’ X,,,:Xa 1’ Xw:Xa 1
X % X X
1 2 3 4 (612)
sz72 —1
XV=—w
as X
with the recent values of a1, a9, ag, as, as; to which we may add the analogous formula,
X 22189 595 428 645
XY — , if ap = ; 613
dox %6 = 99716 659 273 584 (613)
so that we have, at least nearly, these 5 constant logarithms, for the question,
Loy =0-3010300, Lay = 0-4771213, Las = 0-790 050 4, (614)
Loy = 0-6912727, Las = 1-123 600 4;

with which may be combined, if we choose, this 6th logarithmic constant,
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Lag = 0-347381 0. (615)

If we suppose
X=cosé, X =cos&, X"=cos&", X"=cos&", X" =cos&", ..., (616)
and if each X, at least as far as X, is >0, <1, then &, &, &", ... as far as £, will be real,

and may be regarded as being in the first positive quadrant; and after calculating, with the
help of Kramp’s Table, or otherwise, the numerical value of X, and therefore that of &, we can
go on to deduce from it &', §”, &c., in succession, as long as they continue to be real, by the
formulee,

arxcosE = (tan€)?, asxcosE” = (tan&')?,  &c. (617)

In this manner, by supposing

1 SR _
=3 and therefore X = QEJ ¢ "dt = L11-879596 0 = cos 40°43'23", (618)
1

I have found,
£ =40°43'23"; &' = 42°10'48"; " = 56°48'50"; £ = 40°41'42"; and & = 72°28'29"; (619)
but £¥ would be imaginary, because its cosine is equal to
X"=L7""10-1786910 = 1-508 87> 1. (620)

Now it is from this circumstance that the angle &” is here imaginary, or that its theoretical

cosine, X", is in the present question grealer than unity, that the fact of the approximation Xjs
being in excess (and not in defect) depends: as easily appears, if we apply the principles of the
present Letter. It is true, indeed, that the series (606) for X* begins with the terms 1 — %aG X,
where o has been found to be positive, (613); but this series may be presumed to be a very
divergent one, and it is not surprising, on consideration, that the terms which follow those here
written should raise its value, above that of the 1st term, 1; because no proof has been given
that this development (606) belongs to that great class of alternating series, which you and
others with justice consider to possess a prerogative, and to be by eminence important. Still, I
confess that I did at first expect — or at least was under the impression — until numerical
calculation, in the recent example, proved the contrary, — that X” would be found to be
always less than unity, if x were positive and real, and if the coefficient as were positive. And
hence, when I perceived that the approximate value X5 was slightly in excess, (after X, Xo, X3,
X4 had comported themselves as usual, so as to be alternately less and greater than X,) I not
only inferred that X” was > 1, (which it really is), for x = %, but also was led to anticipate that o
would be found to be negative; or that the series for X must begin with 1 + ---, and not with
1 —---. Yet I see no reason to suspect that any arithmetical error has crept into the
calculation of the value (613) for ag; and therefore I must now condemn that anticipation, as
having been erroneous.

LXXIV. It still appeared (and appears) to me, notwithstanding, that from the way in which
the series for X7 begins, the function which that series represents must be both positive and less
than unity, if x be positive, and not too large; and that the same thing may be asserted,
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respecting each of the preceding functions of the same group: so that the chain of inequal-
ities, (588), ought to admit of being enlarged, by the addition of another link, as follows:

1>Xo> Xy > X> X5 > X3 > X; >0, (621)

if we do not exceed some positive limit, which I have not attempted to determine. Or, writing not
only

X = , butal X; = ,
cos& ut also 1 =cos &y } (629)

X9 =cos&s, X3=cosé&s,....

I still expected (and expect) that, for sufficiently moderate and positive values of x, there ought
to be found this other chain:

g>§1>§3>§5>§>54>§2>0; (623)

where &, &, ..., &, and (if necessary) &, may be computed from the usual Tables of
Logarithmic Sines, by a very easy and uniform set of processes, which admits of being
formulated thus:

ané; = (a1x)% (624)
tan To = (a2x)%, tan & = (aj x cos TQ)%; (625)
tan T3 = (agx)%, tan T% = (a9 x cos Tg)%, tan &5 = (ay x cos Té)%; (626)

tan Ty = (a4x)%, tan T4 = (a3xcos T4)$, tan T4 = (asxcos TA)%, tan &4 = (ajxcos T!{)%; (627)

1 1 1
tan Ty = (a5x)?, tan T§ = (aqxcos T5)?, tan T4 = (asxcos T5)?,

tan T% = (09 x cos T;’,’)%, tan &5 = (aj x cos T’é’)%; (628)
&c. — If I shall go on to give an Example, and a Type, it will of course not be that I can
suppose you to stand in any manner in need of any such illustration, but simply, or chiefly,
because it may be a comfort to myself, hereafter, to have such an example, and such a type,
collected along with others of the same general kind, in the copy that is to be presented for me
of this Letter.

LXXV. Let therefore x be now assumed equal to 11—8, so that the definite integral, to be by the

present method studied, is (compare a note to paragraph XVI.), (see also equation (9),)

X = 669J ¢ “di = L1978 5541 = cos 17°51'29"-5 = 0-951 818. (629)
3

Here
Loyx =1-0457575; Lasx = 1-2218488; Lasx = 1-5347779; Lasx = 1-436 0002;
Lasx = 1-868 3279; (630)
and the calculations for the determination of &3, &4, §5 may proceed as follows.

Type (numbered for references as) ... (631)
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[which is displayed on p. 131].
And herewe see that &3 > &5 > &> &, because

17°51'54"-6 > 17°51'32"-6 > 17°51'29"-5 > 17°51'26"-6. (632)

In fact we find that, in this case, the angles &', §", §” &%, &V are all real, although & is
imaginary or in other words, X', X", X", X*, and X" are here each >0, and <1, but X" is
here > 1, as appears by the little Type annexed, which I number as (633).

Type. (633) 2Ltan & = 10162124
(sub.) La; x = 10457575
& =20°53'43"-9 = (Lcos)~! =1-9704549

2Ltan &' =1-1636114

(sub.) Lagx = 1-221 848 8

£"=29°0'48"-5 (Lcos)™! =1-9417626

92Ltan & =1-4879855

(sub.) Lagx = 1-534 7779

E" =26°7'19"-5 = (Lcos)"! =1-9532076

2Ltan &" =1-381053 1

(sub.) Lasx = 1-436 000 2

Ew =28°13'4"-3 (Lcos)™! =1-9450529

2 Ltan £ = 1-459 296 0

(sub.) Lasx = 1-868 3279

Ev =67°3'3".2 (Lcos)™! =1-590968 1

2Ltan &Y = 0-746 4430

(sub.) Lagx=1-092108 5

X" = 45.11643 = [711-6543345
numbered for reference as (633)

and in which (as usual) I do not pledge myself for all the figures that are set down: for (if I
have made no important mistake) X™ even exceeds 45. Hence I should expect to find that
X errs by defect; or that, in the present case (x = %), we must have £ > &. And accordingly, on
calculating &g in the same way as &s, &4, &5, (631), I find the following auxilliary angles

Te =19°22'18"8, T§=39°51'1"2, T¢=24°35"40"4,
(634)
T§=29°10'2"2, Tg = 20°52'52"-6;
and finally,
&6 =17°51'32"-4>17°51'29"-5. (635)

In this case, & seems to be almost exactly the same as &5, being however a little less than it. But
I give the numbers merely as illustrations; and with the same view add that in the present case
of the present method,

X3 =cos&s =0951781; X4=cos&y =0951823; X5 = cos&s; =0-951814; (636)
the corresponding approximations in the method of continued fractions, being

138 494 3654
Xo = 2 — 0.951724: X, = — — 0951 - X:=""—-0.951810:
5 =115 0-951 724; 1= 519 0-951 830; 5 = 3939 0-951 810; (637)
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(E =cos ' X =17°51'29"-5)

Lasx = 1-5347779

Ts = 88°20'27"7 = (Ltan)~'1-7673889|5

Lagx = 1-4360002

Ty = 27°34'56"-6 = (L tan) '1-7180001

Lasx = 1-8683279

Ts = 40°40'25"-4 = (Ltan)'1.9341639|5

Lcos T3 =1-8799173
Lasx = 1-4360002
2)1-3159175

T4 = 24°27'46"-5 = (Ltan)~'1-6579587|5

Lcos Ty = 1-9476032
Lasx = 1-5347779
2)1.4823811

Ti = 28°51'25"-0 = (Ltan)~'1-7411905|5

Lcos T4 = 1-9591509
Lasx = 1-6347779
2)1-4939288

TY = 29°10'48"-2 = (L tan)~'1.7469644

Lcos Ts = 1-9360280

Lagx = 1-2218488

2)1-1578768

T4 = 20°46'11"-3 = (Ltan)'1-5789384

Lcos Ty = 1-9424186
Lagx = 1-2218488
2)1-1642674

T{=20°54'35"-8 = (Ltan) '1-5821337

Lcos TY = 19410600
Lagx = 1-2218488
2)1-1629088

T¥ = 20°52'48".3 = (Ltan) '1-5814544

Lcos T4 =1-9708175

Lajx = 1-0457575

2)1-0165750

£ = 17°51'54"-6 = (L tan) '1-5082875

Lcos T} =1-9704132
Lajx = 1-0457575
2)1.0161707
£ = 17°51'26"-6 = (L tan)~'1-5080853|5

Lcos T% =1-9704996
Lajx = 1-0457575
2)1-0162571
& = 17°51'32"-6 = (Ltan)'1-5081285|5
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while the true theoretical value is nearly,
X = 0951818, (629)

as above stated; so that the method of square roots gives here results which are decidedly move exact
(though not very importantly so in practice) that those given by the method of reciprocals:
although this last mentioned method was seen (in the lately cited note to paragraph XVI.) to
give results superior in accuracy to those furnished by the methods of exponentials namely than
the following:

X5 =0-951600; X4=0-951870; X; = 0-951797. (638)

LXXVI. I shall only add, as regards the ‘‘method of square roots’’, than when I took, as
another example, x = %,

X = 464J ¢’ dt =1-9568185 = cos & = 0-905 354, § = 25°7'44"-3 (639)
2

(compare equation (8)) I found (by a rather hasty calculation) the values,
&' =28°21'15", £" = 39°2'48", £" = 31°24'4", £ = 52°38'14" (640)
so that these 4 angles, like & itself, are real; but §7 is an imaginary angle,

X" =cosE" = 17100138388 >1; (641)
whence I inferred that the approximate value X5 should err in excess; or that we should here
find

£>¢. (642)

Accordingly on computing, with a little more care, the values of T, ..., &, by the type (631),
I found the values

Ts =52°11'45"7, T =31°11'43"4; T35 =39°1'39".2;
T3 = 28°21'26"-6; (643)
and finally,
&5 = 25°7'42".8 <27°7'44"-3; X5 = cos &5 = 0-905 357 > 0-905 354. (644)

It is remarkable, however, how trifling these little errors, in the present method, are, as compared

with those which remained, at the corresponding stages of the applications of the two other

methods of this Letter, to the same case, x = é, or to the definite integral (639), or (8). Thus,
1672

the method of reciprocals has given by (139), X5 = 87— 0-90 464 4.

LXXVIIL. It appears, then, that of the three methods of transformation of a diverging series, which
have been selected for special study and discussion in this long and now almost concluded
Letter, the ‘“Method of Inverse Square Roots’” possesses some important advantages, as
regards rapidity of approximation, over the other two although it may fail, at a certain stage, to
produce results alternately less and greater than the true theoretical value of the function, from which
series is conceived to have been developed. The rationale of this advantage, in one respect,
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and comparative disadvantagein another respect, of the third method of this Letter, as compared
with the fwo other methods, and also of the first method as compared with the second, appears to
consist in the circumstance that of the three elementary series,

(1), dx=04+x)"=1—-x+ x> — 5%+ &c;
x? xS
II), dx=c*=1—x+————+&c;
(L), dx ¥y Tog e (645)

I 3x> 3.5x°

.y, odx=(1+2x)2=1—-x+ 5 53

the Ist, when x> 1 is more divergent than the IInd, but less so than the Illrd. We use a more

divergent tool in one transformation than in the other, but we may overdo the business, by

taking too powerful an instrument into our hands. It occurred to me, however, from such

general considerations as those to which I have been now alluding, and before I began to write

the present Letter, that the following fourth form, of an auxilliary and elementary series,
analogous to those lately mentioned, namely this one:

and

552 5.9x%
(V) d)x:(l+4x)_%:l—x+%f 2.;“

+ &c. (646)

might possibly be found to be still more powerful, and useful in some important cases of
transformation of divergent developments, although it might require, for such wutility, or at least for
continuing to exhibit an alternating character in its results, a still greater degree of rapidity in the
increase of the coefficients of the transformand. And such, precisely, continues to be my impression,
although I have not expended much labour, (nor indeed any that is worth mentioning,) upon
the examination of this part of the whole question and subject. I may just add that papers, not
since examined, which were written before this Letter was begun appeared to give me, for a
transformation of the recent function X, (so well known in connexion with Laplace, &c.,) the

expression:
1
X = <1+4x<1+2x<1 +%x(1—81—47x W>—%>—%>—%>—%; (647)

where X" denotes a series of which the Ist term is unity. You conceive, of course, that I
should have remarks to make on this last expression, of the same general kind as those which
have been already made. But the only remark which at present, and in the conclusion of this
Letter, I shall allow myself to add, is this, to show the great caution with which such diverging
tools as these ought to be used: that if we assume x = %, we have not X >(1+ 4x)%, for all
positive values of x; since we saw, very early in this Letter, (37), that X < 31 when x = % -
Such caution, combined with such encouragement, for the use of Diverging Series, may induce
you (perhaps) to forgive me, for having (potentially but I suppose mnot actually) occupied so
much of your time as would be required for even glancing through this Epistle, begun™ on the
15th of February, but only finished on the 22nd of May. I am yours faithfully,

W. R. Hamilton.

* 1 find an entry in my Book C. 1858, [Trinity College, Dublin MS 1492/143]. p. 119 dated February
15th 1858, “Would this appear a paradox to De Morgan?”’ All this long Letter has been designed, while
preserving the date of that entry, to do full justice to its spirit. . ..
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2. On The Solution of a Third Order Differential Equation

Observatory, July 15th, 1858
My dear De Morgan,

When I began, on the 15th of February last, that terribly long Letter
which you were so good humoured as to allow me to continue, by instalments, until it came at
length to a point at which I was content to close it. I stated that I had just then been led to
perceive that certain linear equations of the third order, between two variables and with variable
coefficients, had important connexions with some mathematico-physical investigations; and
that I hoped to be able to integrate the equation in question, at least with the help of series,
though not proceeding according to powers alone, but introducing logarithms (or a logarithm)
also. Indeed, I find a memorandum that in a note* to the First Sheet of that long Letter, I
remarked that the equation,

(xD)sy—i—xQny:O, (a)
had for one particular integral the ascending series,
m=00 11" x 2m
= — = 0 —my3 a ; b
ya;)b]m)(?) (b)

where ais an arbitrary constant, and [—1/2]™, [0]~ ™ are factorials, to be interpreted as in the
notation of Vandermonde,* which I learned long ago from the third Volume of La Croix,'
(long missing from my library,) and in which notation the symbol [#]™ denotes the same
thing as

I'(n+1)
I'n—m+1)’

so that, if m be a positive whole number,
[#n]"=n(n—1)(n—-2) - (n—m+1);
[n] " =(n+ 1) (n+2) " (n+3)7" - (n+m) .

I remarked also that another particular integral, with another arbitrary constant b, was given by

the descending series,
3
b= m 17" x\ 2"
=3 0 ([—5} ) (3) (0

and that although these two series, (b) and (c¢), appeared to exhaust all the particular integrals
of the triordinal equation (a), which are expressible by powers alone, yet I had found a third
particular integral, of the form

y= ¢(Ax + B,log x); (d)

Tk [See p. 35 of this volume.]
T [Sylvestre Francois Lacroix (1765-1843), Traité des différences et des séries (faisant suite au Traité du
calcul différentiel et du calcul intégral), p. 74. Paris: 1800.]
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where cis a third arbitrary constant, By is the ascending series (b), and A, is a new ascending
series. I stated at the same time, that although the equation of the third order (a) was thus

completely integrated, by the combination of these three particular integrals, (b), (c), (d), yet I
thought that I saw how to obtain a fourth particular integral, (with a fourth arbitrary constant,)
which should involve the square of the logarithm of x; and even that I should want such fourth
form, for the purposes of my investigation. And finally, in the same note, — of which I repeat
the substance now, to save you the trouble of a reference, — even in case that you have
preserved and can find the sheet of which I speak, — I observed that if (as I suspected) the
fourth particular integral existed, it could not be independent of the other three: but that on this
whole subject I must write again. I now propose to redeem that promise, or to fulfil that
expressed intention: and trust that if you read this new long Letter, — for such I fear that it
must be, — you will consider me to have at last completely overcome the difficulties, first, of
assigning the fourth form of integral, and second, of connectingit with the other three.

I. The manner in which _ enters into the lately cited series, (b) and (c), may serve to suggest
the convenience of assuming, as the fundamental Equation of the present Letter, the
following:

(xD)3y+4x2ny:O; (1)
d
where D = In and the introduction of the coefficient 4 makes, of course, no essential change,
X
in the nature of the question to be discussed. If we make 0 = log x, the equation becomes,
Dy + 4’ Do’y = 0; (2)

and many other transformations may be made, whereof I have found some to be useful. For
example, we have the symbolic equations,

(xD)® = x*D* + 3x*D* + xD, and Dx = xD + 1;
writing therefore

Dy — y/’ D2y — yu’ D?)y — ym,

we have
x*y" + 3xy" + (1 + 4x%) y' + 4xy = 0. (3)
Let 6 be a symbol of operation, such that
0 = (xD)® + 4x*Dx = D}, + 4¢ Dpé?; (4)
then the triordinal equation may be thus briefly written:
0y=0. (5)
The operation 0 is such that
Ox" = v x¥ + 4w+ 1)x""% (6)

if then we assume that y can be expressed by a series, such as

Y=Y ayx”, (7)
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the differential equation will give this equation in finite differences,
via, +4(v —1)a,_s = 0. (8)
This last equation gives,
a=0, a3=0, a5=0, &c.
unless a; be infinite; it gives also
as =0, a3=0, a5=0, &c.,

unless ap be infinite; if then we exclude infinite coefficients, and retain only whole exponents, we
must suppose the series (7) to involve only powers whose exponents are positive and even,
including 0; or only those whose exponents are negative and odd; or else a mixture of both.
The first supposition gives the particular integral,

M=00 1 m .
y=an Y j ™) s )
m=0

where I write for shortness,

) I'(n+1)
m f m f—.
n]™ instead of [n]", or o Tn—m+1)’
so that
" . 8 5 1-2m "
) =|—2=] .1.357.---.2m—1);
2 o202 2 ( 2) Gm=b
and
I 1

0|~ "= = :
0] I'(m+1) 1234.---.m

The second supposition gives this other particular integral,

Mm=00 m 3
a_1x ! Z (g‘ ) 0] mx2m, (10)
m=0

and the third supposition gives merely the sum of the last two values for y. If we admitted
Sfractional exponents, (or incommensurable ones,) the series (7) would then, of necessity,
extend indefinitely both ways, ascending and descending; and I wish for the present to avoid the
consideration of such mixed series. It appears, then, that if we choose that our series (7) for y
should only ascend, we must adopt the form (9), which answers to the series () of my lately
cited note; and that if we wish the series only to descend, it must be of the form (10), which
corresponds to the development (¢) of the same note.

II. But the form (2) of the triordinal equation (1) suggests the assumption of this other
expression for y:

y=A,+ 0B, +6°Cy; (11)
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where 0 = log x, but A,, B,, C, are three functions of x, which do not expressly involve this
logarithm. In fact, with the definition (4) of the symbol J, we shall have

00B, — 06 B, = 3D3 B, + 4x* B, = (3D + 4x?) B,; } a2
86°C, — 0%0C, =20(3D% + 4x?) C, + 6Dy C,;
therefore
8y — (0A, +00B, +0°0C,) = (3D + 4x*) B, + 6Dy C, + 20(3D3 + 4x*) C; (13)

and the differential equation 0y =0 will be satisfied, if we satisfy the systems of the three
following equations:

0C,=0; OB, +208D5+4x")C,=0; OA,+ (3D3+4x*)B,+6DpC, =0 (14)
in which,
Dy = xD, and D3 = (xD)* = x*D* + xD.

We shall therefore at least satisfy the triordinal equation 0y = 0 by the expression (11) for y,
if we suppose, first, that C, = 0; second, that B, is any particular integral of the equation (1),
for example the ascending series (9), so that d B, = 0; and third, that A, satisfies this other
differential equation,

O0A, + (8D +4x*) B, = 0. (15)

We shall thus have
By = ap + asx® + asx® + &c., (16)
with the equation in differences (8), to connect the coefficients as, a4, ... with ay or to

determine their ratios to that initial and arbitrary constant; which equation (8), because
v = 2m, becomes, in this application,

2m3 ag 4+ (2m — 1) ag,_o = 0. (17)

To satisfy (15), without introducing into A, a part equal to B,X a constant, which would be
useless, because we already know that such a part will be a particular integral of  y = 0, and
may be added, at the end of the process, to any other integral of that equation, we may
assume

Ax:alagxg+aga4x4+a3a6x6+&c., (18)
where a1, ag, as, ..., are constants to be determined by (15). The operation 6 will give, by
(6),

00ty agx*" = 4y ag,{2m° *" 4+ (2m+ 1) x* "2, (19)
also,
(BD% + 4x%) ag px*™ = 12m° ag px*™ + 4ag x> ™2; (20)

therefore collecting the coefficients of x2™ in (15), changing (2m — 1) ag,_3 to —2m®ay,, by
(17), and dividing by 8 m3 a9, we find this new equation in differences,
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1 3
m — Um—1 = — — . 1
“ G-t 2m—1 2m (21)
Thus,
“ 0. « 1 3 1 u 1+1 3 —11 “ 111 3_73
0T T e Ty T 93 120 P12 5 6 60
(22)
but
1 13 [ 1\° 3a 1.3.5 1\° 5a
. 0 Lo, —aa
= — = = _—— = — = _— _——_— & e 3
@= T M 13.23( 2) =39 13.23.33< 2) %~ g > &es (23)
therefore,
1 11 73
ajas = Z apg, Ooayg = —@ ap, Ogag = +@ao, &c.; (24)
and finally the series for A, and B, are the following:
x2 11x* 7348 }
Ay = apy - — &e. p;
“0{4 198 Tore ¢ (25)
x2  3x* 5ab }
B, = l]——+——— (.
X ao{ 5 + 39 576+&C (26)

These series, (except that x has since been changed to 2x,) were those alluded to in my cited
note, as entering into the third particular integral (d) of the equation of the 3rd order (a); and
(with our present x) the corresponding integral of the triordinal equation (1) may be thus
written:

2

c x2 11x*  73x8 ) ( x2  3x* 5« )
y—a—O(Ax—}—Bxlogx)—c(Z— 128+6912_“. + ¢0 1—54—@—%—!-“- (27)

where cis an arbitrary constant. As a verification, this last expression (27) for y gives,

4110 [ 73817
4x2Dxy = 4(x> Dy + x2y) = 4e| X — [ ] .
x” Dxy (x" Dy + x“y) c<2 39 +1152

i g_ngxs]*_ » g_x_4+3_»<6[_5_»c8]*+
‘A4 7128 | 6012 A¥ T2 32 576
38 [ 59c2}>I< xt  3xb [ 5XS:|*
40| —xt 4+ 2| 40| x2 - 42 |
+r<x+8 9% + +4c0| x 2—1-32 576+

43 15
= c<4x2+x4——x6~--> +69<4x2—6x4+§x6--~>;

32

this then is one part of d y; and the other part is its negative, namely,

* The terms within square brackets, though written down, have not been used in this verification.
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11 4 6 4 6
(xD)sy:c<2x2— > +73x —'~)+3x<—2x2+3x—5x+ )

2 32 2 16

15 43 15
+ 69<—4x2 + 6" — — x0+ ) = —4x? — x4+ X0 )+ 00<—4x2 +6x" — —x° ),
8 32 8
so that we have, in fact, d y = 0, as we described, if the values (25) and (26) be substituted for
Ay and B,, and if we neglect 2x® and 6x®. The neglected term would be made to vanish like
the ones here attended to, if the developments (25) and (26) we carried on.

III.  Let us now consider that fourth particular integral, which is of the trinomial form (11); the
coefficient C,, of the square of log x, being not now supposed to vanish. It is evident, from the
analysis of the preceding paragraph II. that we shall satisfy the fwo first of the three equations
of condition (14), if we now assume, for C, and B,, the expressions:

. m:oo_l .
Cy= i(ao + agx® + agxt + ) = ¢ Z _—‘ (01" s (28)
ag m=0 2
— 11 73
Bx_&(a]a2x2+a2a4x4+...)——<a29€2+—a4x4+_a6x6+"'>; (29)
@ a0 6 30

or, developing as far as terms of the 6th dimension inclusive,
x*  3xt  5x > <x2 11x*  73x5 )
Co=cll-4+=" "4 ...]; B, =c|l=>- — ) 30
C( 2 32 576 “=\2 " 6 3456 G0

where ¢ is an arbitrary constant. The third equation of condition (14) may then be satisfied,
by assuming for A, a series of the form,

C
sza—o(ﬂ2a4x4+ﬁ3dﬁx6 + ) (31)

in which B, fs, ..., are constants yet to be determined, and terms below the 4th dimension
are suppressed, because such terms (with subsequent terms connected with them) may be
conceived to arise* from former particular integrals. In fact, with our last development (30)
for C, and B,, we have a new series of the form

(31)3+4x2)3x+61)(,cx:aio<b4x4+b6x6 +) (32)
the coefficient of x? vanishing; and after assuming the series (31) for A, we shall satisfy the
third equation (14): if we so choose the factors 9, 83, &c., as to fulfill the condition

O(Boasx® + Bsagx® + ---) + byx* 4 bgx® + --- = 0. (33)
By an analysis similar to that of paragraph IL., it is found that the coefficient of x*™ in
O(Boasx* + &c.) is equal to 8m° a9 (Bm — Bm-1);

therefore

* Perhaps this logic is a little obscure, but I have convinced myself of the correctness of the
conclusion. Besides we only want to satisfy the third of equations (14).
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8m’ag(Bm —Bn-1) + baw = 0; (34)

with the initial values So = 0, 51 = 0. As regards the coefficient by, the part (SDE, + 4x%) By,
of the left hand member contributes, by (20) and (29), the part,

3 _
8m3 <am - Qam 1>“2m

m 2m — 1

to the value of b9,,; while the other part, 6Dy C,, of the same left member, contributes this
other part, 12mas,,, to the same value of by,,. Collecting these parts of bs,,, substituting them
in (34), and dividing by 8m>as ,,, we find,

ﬁm _ﬂmfl -

2a m—1 3a m 3 .
2m — 1 m  2m’
where a,, retains its recent signification. Hence, with the help of the values (22) of a,,, we

find A8y = 2a — 3a; — % = 0; but this is a mere varification, for we knew that 81 = 8y = 0 but
proceeding,

(35)

200 3as 3 1 11 3 2
:A =" — = — — _—— == =
Pr=dh =5 5= 3T % 8%
2 2 2a9 1 2 11 73 1 27
=-+dAfe=c+——a3— - =5~ + ———=-;&c; 36
Pa=gtdbr=gt 5 s 5=3 5 60 6 20" < .
and we had, by (23),
361() 5a0
=—, 5 = — =03 37
“T B T TET6 G7
therefore
_ 1 _ -3
ﬁ2a4aO]:+E; ﬂgagaolz%—ﬁ;...
therefore by (31), developing still only as far as x® inclusive,
xt 3xb >
Ax = _ e ).
C<16 956 + (38)
Our fourth particular integral of the triordinal equation (1) is therefore the following:
y=c(0°U +20V + W); (39)

where c¢ s still an arbitrary constant; 0 still equals log x, U, V, Ware 3 ascending series, which
we know how to continue indefinitely, and which begin as follows:

x> 3x* bHxb x2  11x*  73x° x* 3xb
U=1-"4+"" _~"2 +....y=2__ — W= 40
2 + 32 576+ ’ 4 128 +6912 16 256+ (40)
Another particular integral (the third), was of the form,
y=26(0U + V); (41)
358

* (July 19) The next term of Uis + 73798
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bbeing another constant. And another particular integral (the first) was,
y = aU, (42)

namely the series (9), with a for ag. The complete integral of the triordinal equation (1) may
therefore be thus written:

y=(a+200+ 0*)U +2(b+ B)V + W. (43)

But how to bring under this general form that other particular integral (the second), which is
expressed by the descending series (10), was (or appeared to me to be) a difficulty, which it has
cost me some pains to surmount. (It will be proved that

V:=UW;
that
*d
V= UJ KUty
0 X
and that

7

4 z
U= — (JQda) cos(xcoscz)))?-)
44 0

IV. The difficulty being thus, (for it is not essentially altered by supposing that the coefficient
a_1 in the development (10) is equal to unity,) to see how the particular integral,

- 3 "
TN A w1 X3 27x7% 1125x77
yzz(_i )m S B TR T\ T S D

m=0
of the triordinal equation (1), namely
(xD)? y + 4x*Dxy = 0,

(whereof there is no reason for supposing that it is a singular solution,) can be consistent with,
and included under, the complete integral, with three arbitrary constants, expressed by our recent
formula,

y=(a+2b0+ cO*)U +2(b+ cO)V + cW; (43)

it appears to be natural to look out for some intermediate integrals, which may assist in
establishing relations between the 3 constants a, b, ¢; and so, perhaps, in discovering, ultimately
the value of each of those three. Among several attempts which I have made, the following
seems to have been, on the whole, the most successful. Adopting the form (2), as thus
modified,

D}y + 4xDgxy = 0; (45)
multiplying by 2 y; and observing that
2305y = Do{2yDy — (Dp3)*}; (46)

we find, by an easy first integration,
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QyDZy— (Dgy)2—|—4x2y2 =442 (47)
where £ is an arbitrary constant, real or imaginary. On substituting for y the descending series
(44), we see at once that 44> = 4, and that therefore we may write,

h=1. (48)

It is a little more troublesome to substitute the expression (43) for y, in the first member of

the equation (47): but if we confine ourselves, as we may, to the terms which do not involve

x?, we may reduce that expression (43) to a + 2b6 + ¢6?, and suppress the term 4x2y? in that

left member of (47): which then becomes,
4c(a+2b0 + c0%) — 4(b+ c0)* = 41,
or briefly,
ac— b = h’. (49)

Comparing, therefore, the two expressions for the constant A% in the result (47) of a first
integration of the triordinal equation, we find that the 3 constants a, b, ¢ of the complete
integral (43), must be connected with each other by the relation,

ac— b =1; (50)
in order that this complete or general integral may be reduced to represent, or to coincide,

with the particularintegral represented by the descending series (44).

V. Itis not so easy, or at least it seems to be less obvious, to see how we are to proceed to a
second successive integration of the triordinal equation (1). But if we observe that the supposi-
tion y = aU, or simply y = U, must satisfy the first integral equation (47), provided that we
suppose h = 0, in virtue of (43) and (49), we shall see that the function U, or aU, must be a
particular solution of the following differential equation of the 2nd order,

2UDAU — (DyU)? + 4x*U? = 0. (51)
Eliminating x% between (47) and (51), we find,
41K U? = 2Uy(UD5y — yD3U) + (yDyU)? — (UDpy)*. (52)
Multiply by
U2y 2(yDyU — UDyy);
the equation becomes integrable, and gives, as the sought second integral, of the first order of (1),
4Ry + Uy (UDgy — yDpU)? = 4K (53)
where kis a new arbitrary constant: that is,
4h2U? + (UDpy — yDyU)? = 4k Uy, (54)

or, by another easy transformation,

i (Yp,2 2:k21 (55)
9 U U
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Changing % to a+ 260 + 02, and Uto 1, while A2 = ac — b%, we obtain the equation:

k= (56)
because we have (ac— %) + (b+ ¢0)2 = k*(a + 200 + ¢6%). But some other considerations
must be introduced, before we can obtain the value of k* from the descending series (44), and so
determine the constant c.

VI. In the equation (51), make
U =0v?% (57)
it then becomes
(D3 + x%)v = 0; (58)*
or, if we return to xD instead of its equivalent symbol Dy,
(D> +x 'D+1)v=0. (59)

This differential equation of the 2nd order presented itself to Fourier, in the study of the
propagation of heat in a cylinder; and it has since occurred to others, myself included, in other
important connexions. The only value of v, consistent with this equation (59), which admits
of being developed according to ascending powers of x, and which, like /U, reduces itself to
unity when x = 0, may, as Fourier pointed out, be expressed, at pleasure, either by the series,

x\ 2 x32 x32 m:w72_x2m
U:1_<§> " <27) - (2.4.6) + &e. = ;@ ) <7) ; (60)

or else by the definite integral,

U:grdwcos(xcosa)). (61)
T Jo

It follows that the series lately found for U, namely the first of the 3 developments (40), must
be equal to the square of Fourier’s Series, denoted just now by v; or that we must have the

identity:
m=00 2 m\ 2
3 K2m — (Z —m)2< X > ) : (62)

m=0

WIOC

|
N =

that is, more fully,

R <_)_&<_>+_ L[ +<_)_< )+
1372 1323\ 2 13.93.33 \ 2 N 2 2.4 2.4.6 ’

(63)

a relation between these two series which perhaps is new, but which can be verified with ease,
to any required extent. It follows also that the series Uadmits of being thus expressed;

* D = (xD)? = xDxD = x*D? + xD.
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3 2
U 4 (J da)cos(xcosa))) . (64)

_752 .

Now it was shown by Poisson™®, that for very large values (real and positive) of «, the definite
integral above cited from Fourier took nearly the value of the following approximate expres-

sion:
%
v= <2> cos <x — n); (65)
X 4

our function U = v? becomes therefore, for large values of x,

U= % cos? <x - %) , nearly. (66)

But the descending series (44), for y, reduces itself, at the same time, to
1
y=—, nearly; (67)
x
whence
% = g sec? <x — %), Dg% = XD% = man(x — %)se@(x — %),

U y T
— Dy == ——
5 Do tan(x 4),

and finally, because =1, by (48), the equations (55) and (56) give,

c=kK==. (68)
4

VII. Itis not difficult, after proceeding so far, to accomplish a third and last integration of the
triordinal equation (1), which shall introduce a third arbitrary constant, I, to be combined with

h and k. In fact, if we substitute, in our second successive integral equation (54), the value of
412 U? which is given by (52), and then divided by 2U?y, we find this integrable equation,

2K°U " = U (UDjy— yDjU) — U *DyU(UDyy — yDyy); (69)
that is,
2k2U~" = Dp. U1 (UDyy — yDpU) = DQUDQ%,
or (70)
%D(,%: (KD, U™y = kQJj—;.

It is true that even if we suppose the constant, say /, under this sign of integration | to be
known, as well as the constant £, this last equation (70) will still be a differential one, of the first

* [Siméon Denis Poisson (1781-1840), ‘Sur la distribution de la chaleur dans les corps solides, second
mémoir’, pp. 248-403, Journal de I’Ecole Royale Polytechnique, Vol. XII, Cahier 19, 1823.]
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order; as it ought to be, in order to permit the introduction of a third constant, such as h, into
the finalintegral equation. We might indeed write,

y=2r2UD,' U D, U, (71)
and such, in fact, I suppose to be the very simplest and most elegant form, (except that we might
replace 2% by a single letter,) under which it is possible to express the complete integral of the

proposed triordinal equation: of which equation it may be remembered that one fundamental
form was,

Dy + 4’ Do’y = 0. (2)

And it is important to observe that this equation (2) will be satisfied by the expression (71)
for y, without it being necessary to assume for U the value (64), provided that U satisfies (51);
or that

QUDRU — (DyU)? + 42 U? = 0. (72)
In fact this last equation gives, by differentiation,
DU 44D’ U =0, or 06U =0, (73)

a result which agrees with the analysis of paragraph III.; to satisfy therefore the equation
0y =0, (5) we may conveniently assume for y, an expression of the form,

y= UDglz; (74)
which will give
Djy= DyU.D," x+ 3DjU.z+ 3Dy U.Dyz + UDjz;
4" Dyc? y = 4 (Dg + 1)y = 42 (Dg + 1) U. D' 2+ 4¢* Uz
therefore
(USy— USU.Dy'z=)U?D32+ 3UDgU.Dyz+ (3UDSU + 4¢*° U?) .2 = 0; (75)

therefore substituting for 4¢2¢ U?

transformed to the following:

its value given by (72), the original equation comes to be

0= U?Dj2+3UDyU.Dyz+ DyUDgU.z = Dy(U?.Dyz+ UDpU.2);
that is
0= DyUDyUz = (DpU)?z (76)
therefore the integral is, evidently
z = constant X U~ D;l U, (77)

thus reproducing (71), without any restriction on U, beyond what is expressed by the bi-
ordinal equation (72). — Or take it thus, for the sake of exercise, and of variety: let us propose
to eliminate U, between the 2 equations (71) and (72), and so to find what differential equation
the function y must satisfy; if it depend on U by the law expressed in the former of those 2
equations, and if Ube any integral of the latter of the same pair. We have, now
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2k? = constant = (UD@)Q% — UDy U~ (UDyy — yDyU)
= UDjy — UDy.yU 'DoU = UDjy — DyyDeU + yU ' (DyU)? — yD5U (78)

therefore by differentiation,

0= UDgy+ ((DyU)* — 2UDZU).Dyy+ {UDy. U (DyU)* — UDj U} y; (79)
but
(DpU)? —2UD3U = 42° U?, by (72);
and
UDp. U™ (DgU)? — UDJU = 2UDy(D3U 4 262 U) — UDJU
= U{DjU + 4 (Dp + 2U)} = 42 U?, by (73);
therefore

Dy +4¢(Dgy+y) =0, (80)
or 0y = 0, as before.
VIII. Butsimple and elegant as the form (71) of the complete integral of the equation dy =0

may be admitted to be, I think that for the applications which I wish to make, a certain other
form of that complete or final integral possesses some important advantages. To obtain this

U
other form, we have merely to substitute the expression (70) for §D9 %, in the equation

(55); which equation thus becomes

(R QJﬂ
U—(k> +k( xU), (81)

a third arbitrary constant, /, in addition to % and k, being still conceived as entering, under
the sign of integration [. As a verification, if we differentiate this last equation (81), we obtain

Dyl = 2—5 = (82)
therefore
U (UDgy— yDpU) = 21? :—l’; =21k*D,' U, (83)
and therefore by another differentiation,
(UD3y — yD3U) — U™' DyU.(UDgy — 3Dy U) = 21%; (84)

which coincides with the equation (78). Conversely, from the biordinal equation (78), we
may pass through a multiplication by U~!, and an integration relatively to 6; to the equation
(83); and thence, by a process exactly similar, to the complete integral (81). It must, however,
be observed that we have no right, in the general question, to assume that h and k are real; so
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that we can only say, in general, and until we come to limit ourselves by some application, that
the final integral of 6 y = 0 may be reduced to the form

dx\?
=AU+ BU| | = ; 85
Y= AU + (j xU) (85)
where A and B are any constants, real or imaginary, and U is any integral of the biordinal
equation (72). — It is worthy of remark, that while the part AU of this last expression for y is
thus an integral of that equation (72), the other part,

dx\?
BU(|— ]|,
(%)
is also an integral of that equation of the 2nd order: although, on account of its non-linear
character, the biordinal equation here referred to is not (in general) satisfied by the sum of
those two parts, or by the expression 1y iself, which has been obtained as the integral of a
higher equation. To justify the assertion just now made, respecting both parts of yin (85) being

integrals of (72), whenever the first of them is such, let Ube changed in (72) to w? U, and let
the resulting equation be reduced by the help of (72) itself; it is found that

DoUDyw = 0; ... (86)

therefore &c.. Indeed, from what was shown at the commencement of paragraph VI., it would
have been sufficient to remark, that if v and vw both satisty the equation (58), then,

0 = 20DgvDyw + V* Diw = Dyv® Dyw; (87)

and conversely that if v be any integral of (58), and if v?Dyw be constant, then vw is also an
integral. Accordingly, it has been remarked by Fourier®, that the complete’ integral of the
equation

d?u ldu

gut—s

=0, Fo)E
x2  x dx (Fo)

is

B dx . 1
‘= <A * BJ x([ cos(x,/g.sin r)dr)2> J coslxy/gsin r)dr, ()

A and B being arbitrary constants. But I am not aware that it occurred to Fourier to consider
that other function, which I am at present denoting by y; and which, to imitate as closely as
possible his just now cited notation, might be expressed as follows:

* [Jean Baptiste Joseph Fourier (1786-1830).]

I J.B,J. Fourier, Théorie analytique de la Chaleurs, p. 378, Paris: 1822 [ The analytical theory of heat (trans. by
A. Freeman), ch. VI, p. 298, Cambridge: 1878. Reprinted New York: 1955.]

Fourier seems to have treated this complete integral of his Equation for Heat in a Cylinder as a mere
matter of Mathematical curiosity. I am not sure that it has not physical bearings. At all events, my own train
of research, resumed of late without any recollection of that page of Fourier’s Théorie, has been
encouraged by a hope that some such bearings may exist.

! These markings are my own.
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2
dx

2
x(J cos(x,/g.sin r)dr)

2
y= A+ B + ? <J cos(x,/g.sin r)dr) . (F)

(It is scarcely worth while mentioning, that I had not had access to Fourier’s work since the
year 1840, or thereabouts, till a few months ago; but that I had made out, for purposes of my
own, a formula lately, similar to that marked (f5), just above, before I succeeded in re-
borrowing, for I have not had an opportunity of purchasing, — the cited work of Fourier.)

IX. In the expression (85), or in the equation (81), it is a sufficiently general procedure, and I
am content, to assume for U the value (64); which it has been shown how to develop in an
ascending series, proceeding by even powers of x, the terms being alternately positive and
negative, and the first term being unity. It follows that U ! may (with this selection of value)
be developed, in a series of the form,

U™ =14 w2+ uox® + ugx® + &c.; (88)
the values of the first coefficients being,

1 5 23 677
Ty MTaer W TEret M T 73708’

2’ 392’ 576’ &ec. (89)

which are, so far, all positive; and though I have not proved that they must be such for ever, 1
think it Zikely that they will be found to be so. Hence,

d 1 1 1
Dgl Ul = J% = constant + log x + 3 u x% + 1 uox® + 5 usx® + &c.; (90)
that is
DU =y -1, (91)
where
14
A=log?, 9
g (92)
and
X
d
XZJ Fwt -y (93)
0o X

y being an arbitrary constant, such that —logy is equal to the lately mentioned constant

d
[, introduced by J—; We may write also
x

—-A=1+06; (94)

dx
— =80 l; 95
JxU +x+ L (95)

and therefore by (81)
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) R\
L == k(0 2. 96
U (k) + kO +x+ 1) (96)

Comparing this last form (96) of the complete integral of the triordinal equation (1) with the
form (43), we not only recover the two relations, k2 = ¢, (56), and h* = ac — b2, (50), between
the constants, h, k, [, of the one form, and the constants a, b, ¢ of the other, but also obtained
this third relation,

| =

° (97)
C

At the same time, we are conducted to the following relations between the new function, y,
and the old functions, U, V, W:

V=Uy (98)
and

W= Uy® (99)
which give, by elimination of y, the simple and remarkable equation,

UW = V2. (100)

The properties (64), (98), (100), of the functions U, V, W, with the signification (93) of y,
were mentioned by anticipation before (at the end of paragraph III.); they can be verified, to
any proposed extent, by actual substitution of the 5 series, for U, V, W, y, and v; but the
following other proof of the equation (98) may not be without interest and instruction.

X. The series for Vmay be considered to have been derived from that for U, by the equation

OV + (8D3 +4x*) U =0, (101)

which results from the substitution, by (25), (26), and (40), of ay V for A,, and of ay U for B,,
in the equation (15); combined with the rejection of any absolute term, or coefficient of x° in
this sought series V, for reasons stated in paragraph II. Assume

V = UD,'v, (102)

where v denotes a new series, ascending by even powers of x, and beginning with the second
power. Then, because 6U = 0, (73), we have this equation of the second order, of which v
must be a particular integral,

(8D5 + 4x*)U.(v+ 1) + 3Dy U.Dgv + UDjv = 0. (103)
Multiplying by 2U, and observing that, by (51),*
2U(3D3 + 4x*) U = D3U?, (104)
we have this easily integrable equation,
DU (v+1) + 8Dy U?. Dyv + 2U* Div = 0; (105)

* As to the notation employed, you will easily 2percelve that, at present, I wish Dy U2, DZ U?, to denote
Dy(U?), DQ( U?), and not to denote (DgU)?, ( ; and similarly in other cases.
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which gives, first,

DyU®.(v+ 1) + 2U* Dyv = constant = 0; (106)
and secondly, by another integration, after dividing by 20,
U.(v+1) = constant = 1, (107)
so that finally,
v=U"1-1, (108)
and
V=UD"(U"'-1) = UJ:%(Ul—l), (109)
or
V="Uy
as in (98).

XI. By a similar analysis about equally simple, the expression W = UA?, (99), can be
deduced from the equation

OW +2(8D5 +4x*) V + 6Dy U = 0, (110)

which is obtained from the third equation of condition (14), by making, in (30), (38), and
(40),

C.= cU, By =2cV, A, = cW; (111)

and by assuming that Wis a series proceeding according to ascending and even powers of x,
beginning with the 4th; so that if we write

W = Uuw, (112)

w becomes another even and ascending series beginning with the same 4th power. From the
properties of U, V, y, already employed, we shall have, on the one hand the transformation

UOW = DyUDy UDyw; (113)
and, on the other hand,
QU (3D + 4x*)V + 6UDp U

=y D3U? + 6Dyy.DoU* + 6D5x. U* + 3Dy U*

= yD3U? +12(1 — U)DpU — 6DpU + 6 UDy U

=yD3U? +6(1 — U)DyU

= Do{xDyU* = 2(1 = U)*}; (114)
a firstintegration of the differential equation (110) gives, therefore,

(UDg)?w —2(1 — U)2+XD9U2:constant:0, (115)
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that is,
DoUDgw = —2xDoU + 2(1 — U) Doy = 2Dgx (1 — U).
A second integration gives, after division by U,
UDgw — 2y (1 — U) = constant = 0; (116)
(and consequently Dyw = 2y Dgy, = Dox?)
and a third integration gives after a similar division,
w— x2 = constant = 0; (117)

so that W = Uy?, as above. In determining the three constants, in these last equations, regard
has been had to the known form of the series for W, which is here only a particular (and not a
complete or general) integral of the differential equation of the third order (110).

XII. In this manner, after perceiving the chief properties of the simplest, namely U, of the
three functions, U, V, Win paragraph III., we might have been led without actually forming the
developments of which the first terms are given in the equations (40); to infer the existence of
those relations between them, which were stated by anticipation at the end of the same
(cited) paragraph; and so to transform the expression (43) into this other:

ac — b?

2
Vb g~
y— U+cU<0+—+—) :U{“C +c(D91U1)2}; (118)
C C

U

which agrees with (81), and with (96), because we have
c=k, (56); ac— b = h% (49); and %:x, (98).
As regards the function Uitself, if we had happened to perceive the identity,
WDy = 2Dy ) D3 37, (119)

(in which, as usual, (when no point is inserted,) the symbol Dy governs all those that follow
it,) we should have seen at once that the triordinal equation (2), which is the main subject of
this whole Letter, may be thus written:

Dyy* (D} + )yt = 0; (120)
and then it would have been extremely natural to begin with the lower equation,
(D3 + x*)v =0, (58) or
(D*+ x"'D+1)v =0, (59)

which has already been cited from Fourier: for it would have been obvious that if v be any
particular integral of this last biordinal equation, then U = v? (57) must at the same time be
a particular integral of my triordinal. But there is only one ascending series for v, proceeding
according to powers alone, which satisfies Fourier’s equation (59); namely his series (60),
which he enveloped as a definite integral (61). There is therefore a motive for paying great
attention, in this inquiry, to the function above called U; which we have expressed, in (64), as
the square of a definite integral; and have found to be the only integral of the triordinal equation



152 II. TWO LETTERS TO AUGUSTUS DE MORGAN

(1), which admits of being developed in ascending powers of x alone: except that, of course, the
series U in the one question, or Uin the other, may be multiplied by an arbitrary constant,
without ceasing to satisfy the equation.

XIII. The complete integral of the triordinal is scarcely, even yet, under a form sufficiently
suited to my purpose. But it may easily be further transformed. In fact the form (81) suggests
the assumption of a new auxiliary angle, or other quantity w, real or imaginary such that

n\* y
. 2 .
<_k> = = sin” w; (121)

and therefore, at the same time,

2
(3 g

(I adopt here, without quite liking it, the usual notation of sin? w for (sin w)?. At least, it saves
parentheses; and the symbol sin w? which perhaps I commonly prefer, has really in these
investigations, some risk of being mistaken for sin(w?).) Eliminating y between the two last
equations, we find

cotw = -k h D U (123)
the negative sign being preferred, because it conducts to the relation,
yDow = h, (124)
whereas the other sign for cot w would have given the less simple formula,
yDgw = — h.

The system of these two last equations, (123) and (124), may be regarded as a new form of the
complete integral required. The auxiliary quantity w is any solution of the new biordinal equation

DyUDgcotw =0; or, (UDg)?cotw =0. (125)

In the completed integration of this equation, two constants must be conceived to be introduced;
and a third constant, namely h, is brought in by the equation (124). And it appears to me that
the clue to the arithmetical determination of that third constant which has not yet had its value
assigned, but which is to be conceived as entering under the sign [ in the equation,

3
XTI S ey T, 2 dx\
)o@ e

where

4

2
U 1 (rdacos(xcosa)) , (64)
0

T

is to be found in the use of this auxiliary angle w, and in the study and comparison of the two
recent formula, (124) and (125).
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XIV. Before my own triordinal had occurred to me, I thought of solving the related
biordinal of Fourier in nearly the following manner. To satisfy the equation (D? +
x "D+ 1)v =0, (59), I assumed

V= apsinw, (127)

where @ was an arbitrary constant, and p, w were two variables, between which it was
permitted to establish a relation. In this manner, writing

Dp=p', Dw=w', Dp=p" &c.
I had
a'Dv= Dpsinw = p'sinw + o'p cos w;
a 'D?v=p"sinw + 20'p’ cosw + pw" cosw — pw'?sin w,
and finally, (59) was satisfied, if I made,
p"+x o +p = po'? (128)
and,
20'p" 4 po" + x'w'p = 0. (129)
On multiplying the last equation by xp, and integrating, the result was,
xp’w' = (130)

where £ is an arbitrary constant. Multiplying (128) by x?p®, and eliminating w’ by (130), I
had

x2p%p" + xp®p’ + x*pt = K% (131)
that is,
p{x(xp") + x*p} = (132)
which, if I had made x = €%, would have at once become,
P> (D + %) p = h*; (133)

and, by a single differentiation, would have given, under a form only very slightly different,
the triordinal equation (120), and therefore ultimately the fundamental equation (1), if I
had thought of writing,

y=p% (134)

which would also have reproduced, through (130), the recent equation yDgw = & (124). You
see then, that I was very nearly on my recent track, — so far as regards the arithmetical constant
which enters into the expression for

!

)
cotw = —D!

= &c.,

sin? ¢
— before I began to write to you that long arithmetical Letter, which was dated February 15th,
1858: and, in fact, I had fully arrived at the point at which arithmetical labour must still begin,
until some more decided theoretical advance shall have been made, than that which has
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recently occurred to me. But on anything which may seem to relate to (even private) history, it
seems better to postpone any account, (beyond perhaps some short remark in passing,) till
after the (abridged) statement of my own (rather) recent calculations, and of the numerical
result to which they have led.

XV. In the proposed application of the Theory of the present Letter, as regards the
integration of the triordinal equation, &c., we have & =1, (48), and y = the descending and
diverging series (44). Changing therefore Dyw to xDw, or to xe', in the important formula
(124), that formula becomes,

xyw' = 1; (135)

or more fully,

3

e A N L 1 1.3 13.3%.53 )
I=o Z(‘ﬂ )W xoTe (1_1.(8x)2)1+1.2(8x2)2_1.2.3(8x2)3+&° ‘

m=0
(136)

Thus

= m -1 -1
=1 x2 27x* 1125x°6 )
r_ —]: - —-m,,—2m — (12— o . 1
o' =0 (;) g O ) ( s "TT1e8 " 1024 . (137)
that is, developing this reciprocal,
o =14 <x—2 27t 1125470 385 875x-8)
B 8 128 1024 32768

N <x_—4_ 97x6 N 5220x % >+ (x_—ﬁ_ 81x~8 N >+ < xS > N (158)
64 512 16384 512 8192 4096

or, collecting terms which have the same exponents,

x 2 25x % 1073x % 375733x°8
A _ &e. 139
» =1t " 98 T 1024 39768 | ¢ (139)

Intergrating, we have this other series:

w=wy+ x—s, (140)
where wy is a constant, not yet determined, and

o0 -1 95x3 1073x° 375733x7
| - xty =2 - &c.: 141
S J A VA S 1Y) 999376 | <7 (141)

or multiplying by 1[radian] = 206,264"-806,

25783"-1 13428".7 n 43227"-0 337875"-3
s = — —

: + &c. (142)

x x x? x7
When x is even so small as 1, this descending series diverges rapidly, and becomes almost totally
useless, unless it be treated by some such methods of transformation as those which I have

sketched in my Letter of February 15, and which I have since applied (with others only hinted
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in that Letter) to transform the series for the tangent of this angle s and so to make what has
turned out to be a curiously near approach to the value of s for x = 1. But when «x is
moderately large, the series (141) or (142) for s then converges sufficiently fast, at least in its
early terms, to give with ease an approximation as close as can be useful, for any practical
purpose. For example,

s =+2578"-31 — 13”43 +0"-43 — 0"-03 = +2565"-28 = 42'45"-3, for x = 10; (143)
and

s = +1841"-65 — 4"-89 4+ 0"-07 — 0"-00 = +1836"-83 = +30'36"-8, for x = 14; (144)
and I suppose that we may rely on these two values of s, as correct to the tenth of a second.

XVI. As regards the constant wy, it may be determined in the following way. When x is large
enough to render sa very small angle, we have, nearly, by (140),

w = x+ wy; (145)
and therefore by (121), and by the values (48) and (68) of #and k2, we have nearly
a U
— = =sin®(x+ wy). (146)
2
But also, under the same circumstances, we have, nearly, by (66) and (67),
U g
g.;:siﬁ(x—i—%). (147)
The comparison of these two ultimate or limiting forms gives, rigorously, the value:
4
wo =7 (148)
The final and unambiguous (or determinate) expression for w is therefore,
w:x—i—%—s; (149)

where sis to be computed as above, and can be so to a great degree of accuracy, by an nitially
convergent series, unless x be taken too small. For example,

o+s=10+ % = 617°57"28"-06, and w = 617°57'28"-1 — 42'45".3 = 3m + 77°14'42"-8,
for x = 10; (150)
w+s=14+ % = 847°8'27"-28, w = 847°8'27"-3 — 30'36"-8 = 47 + 126°37'50"-5, for x = 14;
(151)

The angle w may thus be considered as known, very exactly, when x is moderately large;
consequently we can take out, from the usual Tables, under the same conditions, to about
seven decimal places, the values of each of two of the terms of the first member of the
following equation, slightly transformed from (123),

gcota)Jrlongrx:—l; (152)
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where [has the same meaning as before, denoting an as yet unknown constant; y is an integral
already considered; and the logarithm of x (often in this Letter denoted by 0) is the natural
one.™ At this stage I had arrived, in January or February last, before I began my long Letter of
the latter month, and before I thought of the triordinal equation (1). That is, I had the
formula just marked (152), the ascending series for y, and the descending series for w, and wished
to determine the constant.

But I was embarrassed by the difficulty of finding a value for x, which should admit of my
computing, with such means as I then possessed, and with as much accuracy as I desired, the
values of both w and y; the former being given, as above, by a descending series, and the latter by
an ascending one: namely, by paragraph IX.,

x2 n 5t n 23 x6 n 677 x8 L&
=—+— c;
X =4 "128 " 3456 ' 589824 ’

(153)

which converges moderately fast, when x is tolerably small, but not very rapidly, when xis even so
great as 1; and which, besides, is subject to the very grave inconvenience, that all its terms are
positive, at least so far as the coefficients have been computed; and I see no reason to suspect
that the signs will afterwards change. Indeed, it was easy to see that the definite integral (93),
of which this series (153) is a development, must attain an nfinite value, as often as x passes
through the stage of being one of the roots of the transcendental equation,

T

U:%Edacos(xcosa) =0; (154)
which equation is important in physics. In fact, for each such value of x we have
U=0v"=0; (155)
we have also,
cotw = +oo, (156)
and therefore, must, by (152), have then,
X = £oo. (157)

Nor is it as yet proved, that the constant, — [, does not then undergo discontinuity. Nevertheless,
for x = 1, the 4 written terms (153), with an estimated’ correction for the remainder of the
series gave

% = 0-250 00 + 0-039 06 + 0-006 65 + 0-0014 + (say)0-000 23 = 0-297 08; (158)

and from the diverging series for tan s, before I had thought of a method (not yet explained) of
transforming y, so as to compute its value for moderately large values of x, 1 estimated, by the
“method! of inverse cube roots”’,

1

\? 2)\? 37
* 1 shall here mention, by anticipation, that I have lately found <§> cotw + (E) O+ = 100 at

least very nearly; but I think, rigorously.

T Each term seeming to be here about one sixth of the term before it, I add as the correction for the
remainder, about one fifth part of the last computed term.

! This method is merely a modification of the *‘method of inverse square roots”, which was explained
near the close of my Letter of February the 15th.
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s =543, giving w = 96°35; (159)
this method of transforming the diverging series gave therefore, for x = [

g cotm = — L1258 36 = —0-181 28; (160)

also 0 =log 1 = 0; therefore this process, depending as it did on two distinct and independent
estimations, gave:

constant = —[ = +0-1158. (161)

And here my good luck was really remarkable: for a process far more to be relied on has given
me since,

gcotw+9+x:constant:0-115931, (162)

37 7\ ?
=100 X <§> [= 0-159 315 58] at least very nearly.
XVIL. The more reliable process, here referred to, was of the following kind. Although it has
been seen that the series (153) for ¥ becomes infinite when the condition (155) is satisfied,
by x becoming a root of the equation

U:grdacos(xcosa) =0; (154)
T Jo

and although I think that it becomes divergent, as soon as x passes through the stage of the

least positive root of that transcendental equation, which root I have with great labour
ascertained to be, nearly™

x = +2-404 825 56; (163)

yet you may have noticed that the said series (153) for x, with all its terms positive, is, by (98),
the quotient of two other series, U and V, which have, by (40), their terms alternately positive and
negative: a ‘‘progressing’’ series, in a phraseology of your own, being thus equal to the
quotient of two “‘alternating’ ones. And it is rather the product-series V = Uy, (98), than the
quotient-series,

* Note — Professor Stokes has adopted the value 2-4050 for this root, as a result of interpolation from
other values of the integral, which have been tabulated by Mr. Airy' — but this value is certainly too great,
and indeed I think that you may rely on all the figures of the root, which I have above set down. Stokes
wanted the root for a physical purpose, and his estimate was quite near enough for the occasion. It was
necessary, however, for a theoretical object of my own, that I should endeavour to attain a much greater
degree of accuracy. You are probably acquainted with the Paper of Professor Stokes, in the Cambridge
Philosophical Transactions to which I allude, but on which I cannot at this moment lay my hand.? It may,
and I hope will, turn up, before the present Letter is finished — and I shall leave a line or two for
reference (Aug 10).

I can only say, in general, the Stoke’s Paper relates to the Numerical Calculation of certain Definite
Integrals, and that he referred, in it, to my own old Memoir on Fluctuating Functions.

I [George Biddell Airy (1801-1892), ‘On the diffraction of an annular aperture’, Philosophical
Magazine, Ser. 3, Vol. 18, pp. 1-10, 1841.]
¥ [See note on p- 172].
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v
=—, 164
=7 (164)
or the equivalent inftegral (93) which enters immediately into the form (43) of the complex
integral of the triordinal equation (1). That form (43) contains however another function, W,
expressed by another alternating series, of the same set (40), and connected with Uand y by the
relation, W = U.y?; (99) while U was, by (57), or (64), the square of the definite integral (61), or

v; so that

o=

W;

=, 165
1= (165)

where W? is still another alternating series, of which I find that the lawis simpler than that of V,

or of W, and almost as simple, and as well adapted to numerical calculation, as that of the
series U, or even of its square-root, v. In fact, on proceeding to form this new product-series,

J@(U*—l)

0 X

[ x2+<x2>2_<x3 >2+ {962+W+23x6+677x8 n }
2 2.4 2.4.6 128 3456 589824

_x_2<1_x_2+x_4_ xG >+5_x4<1_x_2+x_4_ )

T4 4 64 2304 128 4 64

3x? 2 6778
+2x (1_x_+...>+ X (1 =) +---

rol=
rol—

We=vy=U

3456 4 589 824
x> xt x5 x®
=— 4+ — (- 4—1 — (-1 1 — 2944 1
—|-12 ( 8+5)+13824(5 35+92)—|—1769472( 92 4+ 1080 — 2944 + 2031)
x2  Jxt 115 25x8 x2 3 x* 11 xS 25 x®

T T T 1es T 188 1760472 9 ea T 19304 12 147456

ENTEARN TS <x2)2+ 1+1+1>(x3 )2 <1+1+1+1>< al )2+
- \2 2/\2.4 2 3)\2.4.6 23 4)\2.46.8

(166)

a sufficiently simple law becomes apparent; and I can prove that it must continue; because, in the
notation of this Letter, not only v, but also v(y + 0) satisfies the differential equation (58); in
such a manner that we have the relation,

0 = (D3 + x*)vy + 2Dyv. (167)
XVIII. Indeed, I have just now noticed, for the first time, a series of very similar form, in
Carmichael’s Book™ on the Calculus of operations, which has more than an accidental

connexion with this part of my subject, and which I must pause for a minute or two to
describe, of course for my own sake, rather than for yours, since I think that you have got the

* [Robert Bell Carmichael (1828-1861), A treatise on the calculus of operations, London: 1855.]
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Book. In his page 49, he cites from Gregory*, who cited it from Fourier, the differential
equation of the 2nd order,

xD2y+Dy+y:O, (Fy)

which I thus mark as (/3), because it is intimately related to the equation (/f79) of paragraph
VIII. of this Letter: and I shall continue to number a few equations similarly on the present
occasion. Carmichael transforms (in his page 53) the equation (f7) to

(xD)?y + xy = 0, (F5)
and presents its integral under the symbolical form,
1 1 1
T {1 BT ERAN T R e e "'}(Cl log X o) w
or, as I might perhaps prefer to write it,
y= {1+ (xD)2x} "' (xD) 20 (F7)
Hence he obtains the final transformation, in page 54,
x x? x?
y= (Cilog x + Cg){l —ﬁ—kl(z—gg—m—l—&c.}
+2C1{%x<%+%> 1;22xg+<%+%+%>%xs&c.}. (Fg)

(I find that I have transposed some factors, but not so as to affect the sense.) On turning to
Gregory’s Examples, (at page 339, not page 343, as cited by Carmichael, at least in my copy,
dated Cambridge, 1841,) I find a more elementary method, but what seems to me a less
correct result: and in short, Gregory had not caught the law of the series in the 2nd line of
(F3), although he found a few terms of it, and was aware (page 311) that the series on the
first line was (as Fourier showed) the expansion of the definite integral,

T

lj d@cos(?sin@x%), (Fy)

7)o ,
to which this Letter partly relates. Change «x to x—; the definite integral (Fy) becomes what I
have also called v; log x becomes 20 — log 4; the series (see above) in the 2nd line of (Fy)
becomes identical with the one which in my development (166) has been assigned as
representing what I have called vy, or W2; and the complete (although until today unknown)
agreement of my results on this point with those of Carmichael is established by the
corresponding transformation of his differential equation (F3), which is changed to the
following,

(D3 + x%) y = 0; (168)
agreeing thus with my equation (58), except that y replaces v; and having, for its complete

integral, whether by his method or by mine,

* [Duncan Farquharson Gregory (1813-1844), Examples of the processes of the differential and integral
calculus, Cambridge: 1841.]
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y=av+ bv(y+6), (169)

where @ and b are arbitrary constants. — Gregory, I find, writes, instead of (Fg), for the
integral of Fourier’s equation (),

3x2  11x° 51 x*
y‘“("‘?+W‘m+&°>

x x? x? x*

* (1 T s Eega &C'> log x; (F0)
where the 51, as I conceive, ought to be 50, at least if the result is to agree with Carmichael’s
and mine. But you know that the integration of my own triordinal equation (1), and not that of
Fourier’s biordinal equation, (Fy), which had indeed been sufficiently accomplished by himself
in assigning the formula (F9), has been the chief object of the present Letter: and it was only
today (July 31st) that I thought of opening, or at least that I did open, for comparison, the
books of Gregory and of Carmichael.

XIX. Resuming my own investigation, let me now write
vy = W2 = w; (170)

so that, although the symbol w may have just been used for a moment, in passing, for another
purpose, as in (86) and (87), orin (112), &c., yet we have now the series,

w=vy=1v1 — 1+Hhvo+ A +3i+DHvs— A +i+1+ o, + &e (171)
if
v, = (x—")z — 9 2m ({1 my2) (172)
2.4.6.---.(2n)
and
9 (%
U:ﬂjodacos(xcosa) = Uy — U] + Vs — Vg + Uy — &c. (173)

In this manner, we shall have this other formula for computing w:

1 1 1 1
wZT(Uo—U)-FE(U()—U]—U)+§(Uo—Ul+UQ—U)+1(Uo—l)1+02—03—0)+&c.;
(174)

which is, I think, more convenient in practice than (171); and then x will be given as the
quotient of two alternating series,

w
= (175)

Taking, for example, x = 1, I find, in this way, for v, the terms,
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vy = 1-000000000000 — v; = —-250 000000 0000
vy =-015625000000 — vs = —-000434027778
vy = -000006 781684 — v; = —-000000067817
vg = -000000000471 — v; = —-000000 000 002

(176)
and therefore
v = (+1-015631 782155 — 0-250 434 095 597)
= %r da cos(cosa) = +0-765 197 686 558 = + L 11-883 7737, nearly.
0
Writing also
V=0g— 01+ Uy — -+ (=1)" v,y + (—1) "nw,, (177)
we shall have, in general,
w=+w; — wo + wy — wy + &c.; (178)

and in the present example, by successively subtracting, with their signs, the terms vy, —01, U9,
... from their sum, we find the numerical values:

—lw; =v—vy) =—-0234802313442; +2wy = —1w; +v; = +0-015197 686 558;
—3ws = 2wy — vy = —0-000427 313 442; 44wy = —3ws + v3 = +-000 006 714 336;
—bws = 4wy — vy = —0-000000067 348;  +6ws = —Hws + v5 = +-000 000 000 469;

—7w; = 6w — vg = —0-000 000000 002;  +8ws = —7wy + v7 = +-000 000 000 000;
(179)

where the final 0 is a verification of the correctness of all the subtractions. Dividing next by
-1, -2, =3, —4, &c., we obtain the following terms of w:

w) = +0-234802313442; —wy = —0-007598 843 279;

ws = +-000142437814; —ws= —000001678584;

ws = +-000000013470; —wg= —-000000000078;
therefore (150

w = +0-234944 764 726 —0-007 600 521 941

= +0-227 344 242785 = + L. '1-356 684 0, nearly;
whence, by logarithmic division,

A= % = +17'1-472910 8 = +0-297 10|52; (181)

where the last figures may be doubtful, and might be more accurately obtained by arithme-
tical division, from the fraction,

10w 227344242785
%= 70y ~ 765197 686 558

(182)
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However, the value (181) of y agrees well enough with the former value, y = +-29708, (158)
which was deduced from the ascending series (153), with the help of a certain allowance, or
estimation, for the terms not computed, in the case x = 1. When x is larger, the operations
are of course more laborious. For

x = 14, (183)

I find, by 29 terms of v,

+64709-366 887 062 333 +0-171073 476|114 (184)
U = = _ 5
—64709-195 813 586 219 = +17'1-2331826
and by 28 terms of w,*
—4779-565492 127 139 —0-231 846284 145 a
w= = _ ; 85)
+4779-333 645 842 994 = —17'1-365200 1
whence, by logarithmic division
X:%: —L710-1320175 = —1-355 2|44; (186)
or more exactly, by common arithmetic,
w 231 846 284
=—=—-————=-1-3552439|0. 187
Xy T T 171073476 2489 (187)
For x =10, I find
v = —0-245935 764 4;
w = +40-6252243842; y = —2-542226, nearly. (188)

XX. Although I have extracted the last results from one of my manuscript books, and
suppose them to be more than sufficiently exact for any possible practical application, yet I
am tempted by an impulse of curiosity, connected with a theoretical question to which I
alluded in a recent note (of July 26th) from Edgeworthstown, to resume the whole calculation
of y for x = 10, with a few additional figures at each step, and to write it out on the present
page, in order that the chief points of the investigation may be preserved, in a collected form,
for myself at least, in the copy which is to be made for me of what remains of this Letter.
We have now, by (172),

5 2
vo=1,and v, = <—) Uyi- (189)
n
Hence,

* Although the negative part of w happens here to be written above the other, it was obtained from
—ws, —ws, &c., and the positive part from 4w, +ws, &c.
T Aug. 18. Stokes found, —0-245 94. Airy, he says, had found —-2450.
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vp = 1-000 000 000 000 000 | vy = 25-000 000 000 000 000

U9 = 156-250 000 000 000 000 |v3 = 434-027 777777777778

vy = 678-168 402777777778 |vs = 678-168 402 777777778

v = 470-950 279 706 790 123 | v; = 240-280 754 952 443 940

vg = 93-859 669903298 414 | vy = 28-969 033 920 771 115

Uip = 7-242258480192779 | vy = 1-496 334396 734 045
vie = 0:259780277210772 | wv13 = 0-038 429035090 351 (190)

U14 = 0-:004901 662639075 | v;5 = 0-000544 629182119

U1 = 0-000053 186 443566 | vy7 = 0-000 004600903 423

v1g = 0-000 000 355007980 | wvi9 = 0-000 000024 585040

V9o = 0-000 000001 536565 | vy = 0-000 000000087107

Vg9 = 0-000 000000 004499 | w93 = 0-000 000000000213

Vo4 = 0-000 000 000 000009 | o5 = 0-000 000 000 000 000

and therefore
v = +1407-735 346 901 560 — 1407-981 282 115 352 909
= —0-245 935 764 451 349 :%rdacos(wcosa), (191)
0
(or sin: it is immaterial which). I suppose that we shall be pretty safe in writing,

v = —0-245935764 451 35 = nearly — L.7'1-390821 7. (192)

Retaining however 15 places of figures, and subtracting successively from v its terms, vy, —01,
&c., we find:

—lw; = —1-245935164 451 349
—3ws = —132-495 935 764 451 349
—bws = —376-636 560 764 451 349
—7w; = —169-418 437 693 463 694

—9wy = —32-997 352 644 318 168
—11wy; = —1-270577203 739 832
—13w13 = —0-034 023 084 216 559
—15w;5 = —0-000495 711 765 283
—17wy7 = —0-000 004 269 026 730
—19w19 = —0-000 000 023 131 287
—21we; = —0-000 000 000 082 812
—23w9g = —0-000 000 000 000 204
—25w95 = —0-000 000 000 000 000

+2wo = +23-754 064 235 548 651
+4ws = 4+301-531 842013 326 429
+6ws = +301-531 842013 326 429

+8wg = +70-862 317258 980 246
+10wp = +5-971 681 276 452 947
+12wy9 = +0-225 757192994 213
+14w4 = +0-004 405 950 873 792
+16w;6 = +0-000 048917 416 836
+18w;3 = +0-000 000 331 876 693
+20w9p = +0-000 000 001 453 753
+22w99 = +0-000 000 000 004 295
+24wy4 = +0-000 000 000 000 009

(193)
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with the final 0 as a verification. Dividing by —1, —2, &c. the terms of ware thus found to be:
w; = +1-245935764451349 |—we = —11-877032117774 325

ws = +44-165 311921483783 |—wy = —75-382960 503 331 607

ws, = +75-327312152890270 |—ws = —50-255 307 002 221 072

wr; = +24-202 633956 209099 | —wg = —8-:857789 657372531

wy = +2-555 261404924241 | —w;o = —0-597 168 127 645 295

wy; = 4+0-115507018 521 803 | —w;9 = —0-018 813099416 184

(194)
w13 = +0-002617160 324 351 | —w;4 = —0-000314 710776 699
wis = +0-000 033 047451019 | —w;6 = —0-000 003 057 338 552
w7 = +0:000000251119219 | —w;g = —0-000 000 018 437 594
w9 = +0-000 000001217436 | —wsy = —0-000 000 000 072 688
wo1 = +-0-000 000 000 003943 | —w9e = —0-000 000 000 000 195
wo3 = +0-000 000 000 000 009 | —woq = —0-000 000 000 000 000
giving
w = +147-614612 678 596 522 — 146-989 388 294 386 742
= +0-625 224 384 209 780 = nearly + L 11-796 032 59 } (199)
whence (for x = 10),
I
= (nearly) — 2-542 226, as in (188). (196)
More exactly, by arithmetical division,
¥ = —2-542 226 363 882 354; (197)

and I think that this value of y, for x = 10, may be relied on, to at least 13 figures after the
point. Adding to it the known logarithm,

log, 10 = 6 = +2-302 585 092 994 405, (198)
we obtain
x+ 0= —0-239641 270887947, (199)
whence, at least very nearly,
¥+ 60=—L"11.3795614, (200)

for our present case of x = 10.

XXI. Admitting then that we can safely rely upon the value
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%+ 6 =—0-239 641 270 88, (201)

as being at least very near to the truth, for the case of x = 10, we have in the next place to
inquire to what degree of accuracy we can compute, without (or even, if it be necessary, with)

excessive labour, the other part namelyg cotw, of the expression (compare (152) and (162))

g cotw + x + 0 = constant. (202)

It is true that this question may seem to have been already answered, by our having found, in
(150), the value for this case,

o =37+ 77°14'42"-8;
or a little more exactly, by (143), taking account of hundredths of seconds of arc,

w = 45° 4 572°57'28"-06 — 42'58"-31 4 13"-43 — 0"-43 + 0"-03 = 37 + 77°14'42".78; (203)
which is certainly not wrong by so much as 0”-1, but may, so far as we yet know, be in error by
about 0”-02, or 0”-03, from the nature of the process employed. Adopting it, however, as a
temporary determination, we have, by Taylor’s Tables,*

g cotw = g tan 12°45'17"-22 = L-1(0-196 1199 + 1-354 808 7)

= L '1-550928 6 = +0-3555729, nearly, (204)

adding to which our recent value (201), reduced to 7 decimals, namely, ¥ + 8 = —0-239 641 3,
we find for the constant, in the case x = 10, the approximate value,

constant = +0-115931 6; (205)

where the 7th decimal must, at this stage of the process, be reckoned as a doubtful figure. It
is, however, already worthy of note, that the constant thus found does not greatly differ from
the rough approximation (161), namely +0-1158, which was deduced by a far ruder method,
and with a much freer use of estimation, for the case x = 1; whence we may fairly infer that the
constant in question is not a discontinuous one. For, in the passage from the value x =1 to the
value x = 10, the variable x has passed, not only through the stage (163), at which xwas equal
to the first, (or least) positive root of the transcendental equation (154), but also through the
second and the third roots of that equation (v = 0), which the researches of Fourier have made
immortal. Thus, the auxiliary angle @, which I am disposed (compare my expression (127)) to
call the Phase of Fourier’s Definite Integral (in this Letter denoted by

3
v :gj da cos(xcosa), )
T Jo

because that Integral vanishes when the angle w is any whole multiple of 7, and has passed
not only through 7z, itself, but also through 27, and through 3, while x has increased from 1

to 10; the terms, ) cotw, and ¥, in the trinomial expression of our constant, becoming both

infinite, at each such stage of the progress of x, or of the connected angle w, but their

* [Michael Taylor (1756-1789), Tables of logarithms and of sines and tangents, London: 1792.]
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algebraic sum being found to have remained finite, and continuous. This important conclusion
is confirmed, when we advance to the case x = 14, whereby we pass the fourth root of the
transcendental equation (154); for we have then, to the same order of approximation as for
the case x = 10, by (144) and (151),

w = 4 + 126°37'50"-45; (206)

therefore, by Taylor’s Tables,

g cotw = —g tan 36°37'50"-45

= —17'0-0673990 = —1-1678820; (207)
but also, by (187), for the case x = 14, we have, very nearly,
x = —1-3552439; (208)
and Hutton™ (in his Table of Hyperbolic Logarithms) gives,
0 =log14 = +2-639057 3; (209)

whence by addition of the three last terms, we find, for x = 14, the value:
T
constant:§ cotw +y+ 60 =0-1157314; (210)

the seventh decimal figure still being doubtful.

XXII. Having arrived at this degree of approximation, I might well have been content to stop
there, and to regard the solution of the main object of the present Letter as having been
already, for all practical purposes, accomplished. And, in fact, my most recent calculations have
given me, to seven decimals, a value which lies between the two (almost coincident) approxima-
tions, (205) and (210): namely the following value, on the improvement of which I may
however still return,

T
constant:§cotw+x+9=+0-115931 5. (211)
But here, unluckily, came into play the inconvenience of possessing a certain share of what
some people, in their politeness, might call inventive power — or at least some moderate
T
degree of mathematical sagacity. Perceiving that /7, and still some more that \/g, played an

important part, as a familiar though transcendental constant, in a large portion of the whole
investigation, I suspected that the constant of my own theory might (perhaps) be related, in

some simple way, to the said square root, \/; This thought having occurred to me, it was not
difficult to see that

37 |n
100 §_0-115931 558, nearly; (212)

* [Charles Hutton (1737-1823), Mathematical Tables first published in London in 1785; the seventh,
published in 1830, and later editions were edited by Olinthus Gilbert Gregory (1774-1841).]
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and then I think that I may fairly count on being forgiven, if I confess again, what you already
know, from shorter notes of mine, — mere pilot balloons, — that I was, for a while, disposed to
believe that the following equation was perfectly rigorous, as in fact I find it to be wonderfully

appmm’mata
Ecotw+\/§( +0) =3 0092500 (213)
9 T ' -

My latest investigation makes this last constant to be less than the fraction % by somewhat
about one thirty-millionth part of unity; so that the value (213) must be retained, if we wish to write
it correctly to the nearest figurein the 7th place of decimals; the error of my first approximation
would bear well to be thus represented, for the benefit of readers in general. Suppose that
somebody stated to a friend, that he knew for certain that Baron Rothschild had just that day
netted, on some great loan transaction, a Million Sterling (not a French million). I beg your
pardon, replies the friend, I am more correctly informed. The Baron did, no doubt, receive
£1,000,000 from the Treasury: but I happened to be present when he handed out no less a
sum than seven shillings and six pence afterwards, as the charge for a receipt stamp — Was 1 lucky, or
unlucky, to come, so soon, so near the truth, without entirely attaining it? (The 7/6 appears to
me, at present, to be an allowance slightly too large. See the adopted constant, in a subsequent
paragraph.)

XXIII. It became, therefore, necessary for my purpose, that I should investigate, more
minutely, the value of the constant in question: because if the equation (213) had turned out
to be rigorously accurate, an indication would thereby have been given of (what I should have
considered as being) a wvery curious theoretical result: deserving to be carefully examined, as
perhaps pointing to some quite new part of the whole Doctrine of Definite Integrals. — And I still
think that the result points to something of interest, which is as yet unknown to me.

XXIV. You see for my purpose it was necessary that I should render myself quite sure, not
merely of the 7th, but even of the 8th decimal figure, in the expression of my constant; or
that I should reduce its error below 0-000 000 005, or at all events below 0-000 000 01. The value
of x + 0 is already known, for x = 10, beyond this limit of accuracy, and indeed I think to fully
twelve places, as in the equation (201); and it can easily be found, with the help of the
calculations already made, to almost as great a degree of accuracy as this or at any rate to
about ten places, for the case x = 14; in which case we have already determined that two
ascending series give,

u:%rdacos(ucosa) — 0-171 073476 114 (184)
0

and
w = —0-231 846 284 145; (185)

whence, by a somewhat more careful division than that mentioned in (186), or in (187) and
with 12 figures written, after the point, although the 2 last may be doubtful,
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w 231846284145

But also,

0 =log14 = L14 X log 10 = 1-146 128 035 678 X 2-302 585 092 994 = +2:639 057 329 6|14,
(215)

whence, with an accuracy of perhaps about ten figures,

x+0=+12838134343|51, for x = 14. (216)
(The values (208), (209) would have given, y + 6 = 1283813 4.) We may therefore regard
¥+ 0 as sufficiently well known, for each of these 2 values of x; but the values of g cotw have
not yet been computed, to the degree of accuracy which is at present aimed at. We know,
however, to what may be called (for our purpose) perfect exactness, the value of the factor g;

and although the Tables of Taylor will not give tangents to 8 or 9 decimals, yet we can
compute such tangents for ourselves, by an endurable amount of industry. The important
thing, then, and the only remaining (theoretical) difficulty, is to determine, more accurately
than we have yet done, the values of what I call the Phase of the Integral, or the auxiliary angle
. And these values must be computed, at least to thousandths of seconds, and not merely to
tenths, or even to hundredths, as above. For, when w is nearly equal to the value (203), as it is
for x = 10, an increase of a single tenth of a second in this angle w produces a decrease of

about 0-000 000 8 in the value of g cotw; and therefore an increase of w by 0”-01 decreases

gcotw by about 0-00000008, that is, by almost 1 in the 7th place of decimals: I must

therefore aim at knowing the value of , if possible, without an error of 0”-001, in order that I
may avoid an incorrectness of 1 in the 8th place, in the resulting product. And when o is
nearly equal to its other value (206), as it is when x = 14, an increase of a single thousandth of a

second in it decreases 5 cotw by rather more than 1 in the 8th place of decimals: it is therefore

even more necessary, in this case, for our purpose, to avoid so great an error as 0".001 in the
determination of w. For these reasons I am compelled to resume and improve the method,
which has been employed in this Letter, for the calculation of that angle, or phase.

XXV. The descending series (44), for that particular integral y of the fundamental
triordinal equation (1), to which the present Letter mainly relates, may be thus written:

y=x""(1—=0"a;t+ 0] 2agt® — 0] 3ast® + &c.); (217)
where
1
[ =——: 18
yeE (218)
1 (
0™ =—————, as before; and a,, = 133%5%7% ... (2m — 1)3, (219)

1.23. .- - m
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so that
ar=1, as=27, a3=23375, a4=1157625,
as = 843908625, as = 1123242379 875. (220)
Hence, by (135),
o' = (xy) ' =1 -0"ayt+0] 2agt* — &c.)!
=140]"181t—0]"2B21> +0] B> — &c., (221)
with the relations,
ar=p1,  ag =21+ Py, as=3asfi + 3a1fe + Ps, &c., (222)
which gives
=1, Po=25p3=13219, p4=1127199,
Bs =830771625, P =1112086390905. (223)
Restoring for ¢ its value (218), and then integrating the series (211) with respect to x, and

adding the constant %, we find, as in (149),

a)*ﬂ—l-
=2 X — s,

with the following descending series for s, carried somewhat farther than (141) or (142):

Prx' Pax®  BaxTd Bax~" Bsx" Box~"!
- - : - &e.
‘T8 3928 5238 79348 0923458 11234568 ¢
1 14 11
_ 2{(4x>_1 B 2?5 (43 + 2 . 6 (4x)5 — 3757733 (4x)7 + 07;59550 (4x) "

1 3
49 426 061 818 10 10\°
_ 49426061818 (4x) "1 4 &c. p = 2578"-310078 <—> — 13”428 698 <—>
11 x X
5 7 9 11

10 10 10 10

+0"-432 270 (—) —0"-033 788 (—) +0"-004 842 <—> —0".001105 <—> + &c.};
X X X X

(224)

the two last terms being new, and the coefficients of the four others being now computed to
greater exactness than before. For x = 10, the initial convergence of this ultimately diverging
series is scarcely so rapid as we require: that convergence is also inconveniently decreasing.
However, if we sum separately the first five and the first six terms, as just now set down, we
find the two near limits,

$<2565"-2847, and s>2565"-2836, for x = 10; (225)
and accordingly our former approximation to s, for this value of x, was s = 2565"-28, (143). —

Expanding % + x to the 4th decimal of a second of arc
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w+s= % + x = 45° + 2062 648"-0625; (226)
therefore
w — 45°>2060082"-7778, w — 45° < 2060082"-7789; (227)
that is,
o — 3 >"77°14'42"-7778, but <77°14’'42"-7789, for x = 10; (228)
and accordingly, for this value of x, we lately found that
o = 3w+ 77°14'42".78, nearly. (203)
Hence, for x = 10, we have
14 4 4
3 cotw < 3 tan 12°45'17"-2222, > 3 tan 12°45'17"-2211. (229)
The arc of which the tangent is here taken is only a little greater than
g = 12°43'56"-6236 (230)

in such a manner that we must have, very nearly,

§C0tw:§17tT’ (231)
if t= tang, and T = tan 80"-598. (232)
By the known series for sine and cosine,
l= o 9 _ 220 897743 456123 = 0-225953 931 333|533; (233)
o8 % 975410 085 389 448

where I suppose that at least 12 or 13 figures are correct, the values of sin and cos having
been verified by their giving,

sin? g = -048 575165 320 551
sum = 1-000 000 000 000 001. (234)

cos? g = -951424 834 679 450

The other tangent 7'is so small, that for it we may conveniently employ the single ascending
series, without computing sine and cosine: and thus we have

3
T = tan (o = 80"-598) = -000 390 750 130 70 = « +% T

-000 390 750 131
+-000 000 000 020

} =-000390750151: (235)

wherefore, by (231) and (233), at least very nearly,
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(4T
cotw = tan 12°45'17":2216 = < + 7 = 0-226 364 667 569; (236)
and therefore
g cotm = +0-355572 788 334. (237)

(We had found, by logarithms,

g cotw = nearly 0-3555729.)

Adding x + 0 = —0-239 641 270 888, (201), we have thus, for x = 10, the improved approximate
value:

costant = g cotw +y + 0 =+0-115931 517 446. (238)

For x = 14, the series for s converges much more rapidly, in its initial terms; and we thus find,
o = 45°+ 2887707"-2874593 — s = 4 + 127°8'27"-287 459 3
—30'41"-6500557 +4"-8938404 — 0"-080 3739 + 0"-003 205 3
— 070002344 + 0"-000027 3 — &c. + &c.

= 47 + 126°37'50"-453 86 ..., (239)
so that we may be pretty sure of at least 4 decimals of a second, and may safely write,
o = 4w+ 126°37'50"-4539. (240)
However it is almost as easy to calculate g cotw from (239), as from (240), as follows: Let
t = tan 36° = \/5 — 2v/5 = 0-726 542 528 005; (241)
T = tan 37'50"-453 86 = 0-011 007 915 529; (242)
then
gcotw:—gltj£:—1-167881918679. (243)
Adding to this,
x+ 60 =+1-283813434351, (216)
constant :gcotw+x+9 = +0-115931 515 6[72. (244)

And now, at last, I am conducted to a value of the constant, with which I am disposed to be
content, as with one likely to have 9 (nay, almost ten) figures correct. In fact, if we suppose, as
we may, by (228), that

w = 3 + 77°14'42"-7786 for x = 10, (245)

then the value (238) is slightly but sufficiently diminished, and becomes consistent with the
following, which I adopt as final:
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constant = +0-115931 516. (246)

Butwe see by (212) that this constant (246) is not exactly equal to the value, namely

37 [\

400 \2 /"’
or 0-115931 558, with which I had for a while supposed it to coincide, and to which in fact it
makes a very remarkable degree of approach: its defect from the conjectured value being less
than 0-000 0004 [times] the whole, and nearly [equal to] that whole [multiplied by] 3 and

[divided by] 8 millions; or (as I said) to 7 shillings and 6 pence in a million of pounds
sterling. (The result may be thus illustrated: Let the sum on which we are to operate be one

37
million of Pounds Sterling; my fraction 100 would give a result [equal to] £92,000; and the

correction of this fraction, [equal to] —1/30 000 000, would diminish this by about eight pence.)

XXVI. Conceiving that I have now completely established, as true to (at least) the 7th
decimal, the equation

7\? 2\? 37
(5) cotw + <5) G+ 6) = 400925000 =

00’ (213)

where , %, and 6 have the significations already explained, I proceed to make a few
applications of this formula. And first let me connect it with some of the investigations
contained in the Memoir by Professor Stokes, to which I could only refer from memory, when
writing my fourth Sheet, but which has been found today, after the Fifth Sheet was posted.
The Paper is probably in your Library, but for my own convenience I shall here copy its Title,
and a small part of its contents. It is entitled; ““On the Numerical Calculation of a Class of
Definite Integrals and Infinite Series”*. From the Transactions of the Cambridge Philosophical
Society. Volume IX. Part I. By G. G. Stokes, M.A., Fellow of Pembroke College, and Lucasian
Professor of Mathematics in the University of Cambridge. Engraving. Cambridge: printed at
the Pitt Press, by John W. Parker, Printer to the University, M.DCCC.L. The atrocious custom,
to which I own that I have too often been a consenting party, of giving to authors their private
copies with private paging, renders it impossible for a reader to make a reference which shall be
intelligible, or at least shall be sure to be so, to any one else who may have access to the public
copies only, by mentioning the page alone; but in this case, the leading formula (as well as
articles) being numbered, we can get along well enough: besides that I suppose Stokes is likely
to have sent you a separate copy. Turn then to his ““Second Example,” articles 19 to 22. In
that Example, Stokes considers the integral

2 J g x? xt x®

u:; OCOS(XCOSG)dGZ1—§+@—m"',

which, as he remarks, ““occurs in a great many physical investigations’’, and which has in this

Letter been denoted by v. He says: “If we perform the operation X twice in succession on
x

* [Reprinted in: George Gabriel Stokes (1819-1908), Mathematical and physical papers, Vol. T1, pp.
329-357, Cambridge: 1883.]
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the series, we get the original series multiplied by —x?, whence
d*u  1du
—— = =0 St(47
a2 " (47)

(Compare the equations (58) (59) of this Letter.) As the complete integral of this differential
equation, he assigns the form,

u = Axfé(Rcos x+ Ssin x) + Bxf%(Rsin x — Scos x), St(49)
where
12.32 12.32.52.72 12 12.32.52
R=1- + e, S= - St(50)
1.2(8x)2  1.2.3.4(8x)* 1.8x 1.2.3(8x)3

while A and B are arbitrary constants. For very large values of x, he obtains the same
approximate results as Poisson, for the particular integral in question, namely

u = (er)%(cos X + sin x);

(compare equation (65) of this Letter;) whence he infers that

! :
A= B= J‘fé, and finally that u = <3> Rcos| x — i + <i> Ssin| x — i ; St(52)
X 4 TX 4

being pleased to observe, in a Note, that “this expression for u, or rather an expression
differing from it in nothing but notation and arrangement, has been already obtained in a
different manner by Sir William Rowan Hamilton, in a memoir On Fluctuating Functions.
See Transactions of the Royal Irish Academy, Volume XIX. page 313”.* He refers, of course, to a
formula which (with a slightly modified notation) I shall now number with the equations of
this Letter, as follows:

2
(u, or)v = ZJ do cos(xcosa)
T Jo

1 — m 2
XN gem | L o _m_mm
= <?> 2, 0 ( 5 > (2x) cos(x 179 ) (247)

XXVII. I am content to adopt Stokes’s symbols, R and S, for the coefficients of the cosine

and sine of x — T in the expansion of

33
<%> sza cos(xcosa),
T/ Jo

as given by this formula of mine, in finding which I was assisted by a hint in one of Poisson’s
Memoirs; and then, taking nothing on the present occasion from Professor Stokes, except those
two letters, Rand S, I suppose myself to be entitled to write, and to number, as follows:

* [See p- 585 of this volume.]
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7x\? 2x 53 . LAY
(?> U= <?> L da cos(xcosa) = (Rsin — S cos) <x—|—z>, (248)
m=00 1 m 2
R—V-1§= mz()m—m<—§ > (2xv/—1)"". (249)

Stokes gives, as an example, for the case x = 10, the values,

“R=1--00007+-00001 =-99931; S=-01250—-00010 = -01240;
Angle x — % = 527°95780 = 3 X 180° — 12°2'32"; whence u = —-24594,

which agrees with the number (—-2460) obtained by Mr. Airy by a far more laborious process,
namely by calculating from the original Series.”” The only liberty which I have taken in the
transcription has been, that I have written the decimal point a little higher up, than it is
written in his Paper. You may remember, or on turning back will find, that I lately deduced,
from 25 terms of the ascending series, for the case x = 10, the value, more exact than Stokes
required for his purpose, but so far as his goes agreeing with his result, and not professing to
be itself corrected to allits 15 decimals:

+1407-735 346 350 901 560 9 (%
v= = 0-245935 764 451 349 = ,J dacos(10cosa).  (191)
—1407-981 282 115 352 907 7)o

And possibly you may recollect, that in my Essay on Fluctuating Functions, to which Professor
Stokes has referred, and of which you were (I think) at one time pleased to desire that I
should send you a copy, — and I trust that the request (if made) was acted on, — I published
the analogous results, cited in a rather recent little paper of mine, in the Philosophical
Magazine for last November, 1857*, but which I shall now, for reference sake, incorporate

with the present Letter:

9 (3 +7447 387 396 709 949-965 7957

—J da cos(40cosa) = = +0-007 366 8, (250)
T Jo —7447 387 396 709 949-958 4289

from the ascending series, by sixty terms employed; and from the descending series, by only three
terms,

2 r det cos(40 cos @) ( ) 9 >cos 86°49’52”+ 1 sin86°49'52"
— COS COS = — -
7)o 204 800 207 320 207

= 0-006973 6 + 0-000 3936 = +0-007 367 2. (251)
XXVIII. Professor Stokes proceeds to introduce two new quantities, which he denotes by M
and ¥, and which are such that

R = Mcosy S = Msiny.
(He does not actually print these very equations, but it is obvious that they were in his mind.)

He goes on to say:- “‘whence we get for calculating « for a given value of x

* [See p- 652 of this volume.]
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Me1 1 n 53 . 1 ., 33 4 n 3417
=1—-——x —x anyY =<x ———x x
16 5127 v 3 512 16384
1
2\? 4
=|—| M —— =y |.” St(53
u <nx> cos<x 1 1/)) (53)

If T were writing for the mathematical public at large, and I gladly admit that these Letters to
De Morgan constitute in themselves a quasi-publication, very useful to myself, as forcing me to
express myself with some degree of method and arrangement, — I might shrink from the
egotism of saying, what I cannot formally prove, and what it would be worth nobody’s while
not even my own, that I should prove if I could, — but what I still choose to assert to you, on
manuscript evidence satisfactory to me, — that I possessed the transformation last cited, ten
years before Stokes printed it. Admitting, however, that, by all laws of evidence, he is entitled
to call his deductions (S¢(53)) from my formula (St(52)) his own, I suppose that I may be
allowed to adopt them: and to adopt them to the system of this Letter by a slight modification
of the symbols, and a slight extension of the developments. The auxiliary angle 1 of Stokes is
precisely the s of these pages; permit me therefore to write, now,

R = rcoss, S = rsins; (252)

where Rand S have the same significations as in Stokes’s ‘“‘Second Example’’; so that (though
not in his notations)

m=00 —1 2m 2 1 Mm=00 1 2m+1 2
R = Z 6'72 _é—‘ (_4’x2)7m’ SZ% me(2m+l) _§ (_4x2)7m. (253)
m=0 m=0

Although the angle which I here denote by s, namely

a S
s = tan 7 (254)
and which Stokes has denoted by 3, has been itself developed in this Letter to a (much)
greater degree of accuracy, (compare (224)), on principles which do not appear to have
occurred to Professor Stokes, and on which I may perhaps return, yet for the tangent of this
angle I am here content to write down an expansion, which has only one term more than that
cited from the Professor’s Paper:

(tan1p, or) tan s = % = (8x) 7! — 33(8x) 7% + 6834(8x) ° — 342731 7(8x) 7 + &c.  (255)
The ““one term more’’, it must be said in passing, I was able to turn to some important
account, by one of my methods of “Transformation of Diverging Series”’, even for the very
unfavourable case x = 1, before I had made out the processes of the present Letter, whereby
the value of the angle in question can be computed (as I conceive) with certainty, for every
real and positive value of x, to decidedly less than the thousandth part of a second, if the improved
value (246) of my constant be adopted; and with an error which can scarcely ever amount to
the two-hundredth part of a second, if we content ourselves with the approximate formula (213),
and deduce s from w, by the relation (149): the semicircle, to which w (given at first by its
cotangent) belongs, being determined by a comparatively slight and rude and easy examina-
tion of the roots of the transcendental equation v = 0: (154) of which equation Stokes has
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tabulated the first twelve roots, with (as I presume) an accuracy sufficient for his purpose,
although I judge that the first root, say x;, as by him deduced by interpolation from a Table of
Mr Airy, is wrong by almost two units in the fourth place of decimals: Professor Stokes
adopting for this root the value 2-4050, while I have found it to be, much more nearly,
x1 = +2-40482556, (163) — As regards the quantity which I above, in (252), call », and he
calls M namely the (Argandian) modulus of

R+vV—1S, or (M=)r=(R2+ §%), (256)
I shall just write down my own result, which goes a couple of terms farther than that of Stokes:

1 53 4447 3066403
21_24x2 994~ 13,6 919,8

(257)

Of course, I am not so foolish as to entertain even the slightest doubt, but that Stokes could
easily have deduced these additional terms from my series, — if it ought not rather to be called
Poisson’s, since I admit that I took the hint from him, although Poisson does not seem to
have assigned the general term, — if Professor Stokes had judged it to be wuseful, for his purpose,
to have done so. But I confess that I do doubt whether he saw the laws which regulate the
series for what he denotes by M, or rather the square of that series, and which connect the
reciprocal of that square, with the differential coefficient of the angle v, or s.

XXIX. For, with every disposition in the world to look up to Professor Stokes, — with whom I
have now a strange and Irish feeling of being almost in some degree connected, since he has
married that charming Irish girl, whom I knew a little from her infancy, — Mary, the Daughter
of my old friend, the Reverend Doctor Thomas Romney Robinson of Armagh, — I must, in
justice to myself, or rather to the subject of the present Letter, go on to point out a few things,
which did not, perhaps, lie exactly in Stokes’s way, and which he is most excusable for not
having dwelt upon: but which it is still a little curious to me that he did not in some way notice,
or allude to, if he happened to be aware of their existence, at a time when his subject brought
him so near them.

For the moment, then, calling those series mine, which Stokes has lettered Rand S, but has
in print acknowledged to have been substantially anticipated by my Paper on Fluctuating
Functions, — which Paper I remember Jacobi holding in his hand at Manchester in 1842,
when he was pleased to style me, in his address to Section A, of the British Association, ‘“‘le
Lagrange de votre pays,”’ — I venture to remark that Professor Stokes does not seem to have
been aware of some of those different relations between them, respecting which I now presume
on your good-humour, to give to them, through you, that sort of ‘“‘quasi-publication”, to
which I have already alluded: although I have no wish to print, until I can much more closely
condense.

XXX. In order that the descending series,
v= bx_%(Rsin— Scos)(x+ ¢), (258)

may express (as Stokes was quite aware that it does) one form of the complete integral of the linear
and biordinal equation of Fourier,
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(D*+x'D+1v=0, (59)
while b and ¢ are arbitrary constants, it is necessary and sufficient that the functions Rand §

should be connected with each other by the two relations:

R S
D*R+2DS+-—=0;  D*S—2DR+—— =0, (259)
4x2 4x?
which I have not noticed in any book, but which are easily verified, as being satisfied by the
two series (253), or by Stokes’s expressions (St(50)) for Rand S. Multiplying the first of these
equations (259) by S, and the second by — R, adding, and integrating, we get,

SDR — RDS + R? + §% = constant = 1; (260)
another relation which I suppose to be new. Introducing the expressions (252), we find
r2=1-—5s (261)
or, in the notation of Stokes’s Paper,
dy -9
—=1-M7
dx

a relation of which, however, I do not see any indication that he was at all aware. (It is a case
of a much more geneml* relation, which I perceived, but did not publish, in 1840, and to which I
may perhaps return, in the present, or in some future Letter.) — Substitute (252) in the 1st
equation of the 2nd order,

1
3. n 4
1+—)=1: 6
rr+r(+4x2> (262)
so that in Stokes’s notation, but (as it seems) without his knowing it,

a>M 1

M=+ M(1+-—) =1
dx? + < +4x2>

2
Divide the differential of (262) by %; we find that

2(w"'+3w”)+8w’<1+4%> —:—§=0; (263)
that is
(D + @4+ x)D—x)r* =0;
or finally,
(xD)3x 172 4 4x2Dr? = 0, (264)

when Dr? denotes D(r%), not (Dr)2. Comparing with the fundamental and triordinal (but
linear) equation (1), of this Letter, we see that

r? = XY, (265)

* 1 have not time just now to write a note about this.
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with the value (44) for y, there being only one descending series for x 172, or for y, which
satisfies the triordinal equation, and gives xy = 1 when x = oco hence, by the present Letter,

the square of Stokes’s M or of my 7, is:

3
S 1" r 1% 1%.33 58
2 - - ) 72”1‘ = - - PR
"o ;)m (j‘ ) ¥ ! 1(8x2) +1.2(8x2)2 1.2.3(8x2)% o (266)

4
and this result which I suppose to be new. Finally, if we make w = x + 15w in (149), equal

to what I have called the Phase of Fourier’s Integral, that definite integral becomes,

2 (* 2\
v :—J da cos(xcosa) = (—) rsin w; (267)
4 0 JTX
and the formula*®
w\ ! 2\ 37
= il - 1
<2> cotw + (ﬂ) (+0) = 5o, (213)

enables me to find the phase for small as well as for great values of x: which it appears to have been
quite @mpossible to do, by the method of Stokes’s Paper. I am enabled, for instance, to
enunciate this Theorem. ‘‘ The Phase @ tends to 0, when x tends to 0°’; or this: “While x, being
real and positive, tends to 0, the angle s tends to 45°, and the diverging series (255) tends to1.”

* Note added on 1 June 1860:
If v be developed in the ascending series

V=10)—U; +0y — U3+ &c.

where

xl
vo=1,0v = Z, e, Uy = 2—2n,x2n(6|—n)2’
and if
w=w — wy+ws — wy + &c.,
where
—w] =U—Vy, —wy =V — Uy + V1, —wg =V — Uy + U] — Vg, &c.,
then

x:%; and 0 = log x.

Thus cotw is definitely found, by the equation (213), for all real and positive values of x. As to the semicircle
in which the phase w lies, it is the 1Ist positive semicircle, (w >0, <m) if x>0, x < least positive root of
equation v = 0; it becomes [equal to] 7 for this root; is in 2nd positive semicircle, until x [equals] second
positive root of same transcendental equation; and so on; being, as I find, [equal to] 0, when x =0,
which is one of the chief theoretical results of this Letter, as regards Fourier’s Integral.



III.

LETTER TO HART ON ANHARMONIC
COORDINATES (1860)*

Observatory, February 27" 1860
My dear Dr Hart,

1. Although I lately wrote in reply to your note about the pyramids, and suppose that you
may not consider that subject as completely disposed of, yet I believe that I have your
permission to address to you a letter, which may become a long one, on the subject of
Anharmonic Coordinates: especially as Salmon' and others, to whom 1 lately spoke on that
subject, did not appear to have heard of such things, nor can I find any equivalent
expression, nor any such coordinate system, in the Barycentric Calculus of Mibius;* although it
was by combining some points of the calculus with quaternions that I happened to form
the conception. Mobius, in fact, expressly defined that his coordinates of a point P, in the
plane of a given fundamental triangle ABC, are the weights (or at least the ratio of the
weights,) with which the corners of that triangle must be loaded, in order that the point P
may become their centre of gravity: and similarly for a point P in space referred to a
fundamental pyramid ABCD. He certainly has some investigations, in which, after selecting
some one point, say D, in the plane of a fundamental triangle, and denoting its weights, or
its barycentric coordinates, by a, b, ¢, so that in his notation we have the -congruence,
D = aA + bB + ¢C, he passes then to the consideration of another point P in the same plane,
which satisfies this other congruence P = xaA + ybB + zcC. But I do not find, perhaps my
search has not been sufficiently close, and I shall be glad, if so, to be set right, — that he
gives any name to these new coefficients x, y, z; or that he in any way proposes to make them
the main elements of a system: with the corresponding use of quotients of quotients of weights for
space, as when

E=aA+ 0B+ cC+dD, and P = xaA+ ybB+ zcC + wdD,

where ABCD is the fundamental pyramid. Even his use of Greek letters to denote these

* [This long letter, which now appears in print for the first time, was addressed to Dr Andrew
Searle Hart (1811-1890) who was, in 1860, a senior fellow and bursar of Trinity College, Dublin. The
present text is based on two, incomplete, copies contained in Trinity College MSS 1493/1170 (articles
1-203, 213-357, 367-382, 393-490) and 1493/1171 (articles (169-438). A short publication, based
on this letter, will be found on pp. 507-515 of this volume; see the first footnote to article 490 on p.
427.]

t [George Salmon (1819-1904), fellow of Trinity College, Dublin, and, in 1860, assistant to the
Erasmus Smith’s professor of mathematics, Charles Graves (1812-1899), and Donegal lecturer.]

* [August Ferdinand Mobius (1790-1868), Der barycentrische Calcul, Leipzig: 1827.]
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quotients is to me some argument that he regarded them as only of a secondary or derivative
character, and of merely occasional use and application, while his true coordinates (which he
denotes by italic letters) are still the weights themselves, or numbers proportional thereto. But I
shall leave the remainder of this page for a few extracts from his book, which is now just
beside me. And I shall pass, in page 3, to an account of my own way of looking at the whole
subject, which appears to me to be much more simple and elementary; and to show that the
Anharmonic Coordinates to which I allude ought really to be introduced, quite early, into
the Elements of at least the Higher Geometry, including the application of Algebra: but not
necessarily requiring an employment of Quaternions, although I find that the methods easily
combine. I shall continue to number paragraphs [later referred to as articles], namely as 1, 2, 3,

, leaving the Roman numerals I, II., .. ., to serve [but not exclusively] as references to my
former letters.

2. Extracts from the Barycentric Calculus of M6bius.*

3. To begin at the beginning, let us take the case of Cartesian coordinates, in a given plane.
Assuming, as usual, an origin O, and two axes, OX, OY, which may be conceived to be
continued to meet the line XY at infinity, we have thus what may be called a fundamental
triangle: and it seems to be taken for granted that this is sufficient, for the determination or
construction of any point Pin the plane, as soon as its numerical coordinates, x and y, are given:
at least, I have never happened to see any use made of any fourth point of reference, as among
the data of the coordinate system. But suppose that P = (1, 1), or that it is required to construct
the point which has each coordinate equal to positive unity. How is this to be done? Of
course, the answer would be, that we must employ some assumed wunit of length, — or it may be,
two such units, one for one axis, and the other for the other, — and must also select one of the
four regions about the origin, as that which is wholly positive. Very well: but might it not as well
be said at once, that we select a fourth point U in the given plane, (X and Y being treated as

/// X

Fig. 1

* [This section has been left blank.]
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given,) of which the coordinates are 1 and 1, and which may therefore be briefly called the
unit-point? At all events, we see that such a selection is virtually made, in the process usually
employed. And when it is made avowedly, we need no additional convention respecting units, or
positive direction. — Indeed, I conceive that it is then unnecessary so much as to say that any
one direction is positive. I would prefer to speak of positive or negative quotients of segments,
their relative directions, only being considered; and then I think that the grand and received
convention, respecting signs of segments, won’t fall away as useless. We can surely admit that the
quotient AB : AB = +1, and that this other quotient AB : BA = —1, without ever thinking of the
question, whether AB itself be a positive or a negative line: and in fact, you are aware that I
admit no such lines, in quaternions. — But be that as it may, I proceed to lay down my own
definitions, of coordinates within the plane.

4. Having assumed a triangle OXY, and a point U in its plane, let two other fixed points A
and B be determined, by the conditions [Figure 2]

A=YU OX, B=XUOY;*

that is to say, let A be the intersection of the two given lines YU, OX, and let B be the
intersection of the other given lines XU, OY. Let P be any variable or arbitrary point in the
given plane, and let Q, Rbe its projections on the two given axes, OX, OY, obtained by drawing
lines through the given points Y and X; so that, in symbols, Q = YP'OX, and R = XP OY.
Finally, let x, y, zbe numbers (positive or negative, as the case may be), such that

x 0Q XA 'y OR YB

z QX A0’ = RY BO’
Then I define that x, y, z, (or any numbers proportional to them) are the three anharmonic
coordinates of the point P, with respect to the given (or assumed) triangle ABC, and the given

point U, which may (as in 3.) be called the wunit-point, because by the definition, its three
coordinates are equal to each other, and may therefore be taken as 1, 1, 1, or more fully as

* [The " here denotes intersection. ]
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each = +1. And it is evident that when the line XY goes off to infinity, as in Figure 1, and
when we assume z = 1, we thus fall back on the simple ratios, or quotients,

_oe | _OR

~oa” Y7o’

which are of the Cartesian kind, if we further suppose that the two given lines OA and OB are
equally long. In general, however, OAUB may be any plane quadrilateral; and the points Xand Y
may be deduced from it, as the ntersections of its opposite sides, by the formulae, X = OA BU,
Y = OB'AU; so that we might speak of the point P as being referred to this quadrilateral OAUB,
of which the corners, expressed by their coordinates, are as follows:

0=1(0,0,1), A=(,0,1), B=(0,11), U=(,11)

X

at least if we choose, as we may, that zshall be = 1 for each of them.

5. The usage respecting the symbol (ABCD), considered as denoting an anharmonic ratio, or
quotient, appearing to be not quite fixed as regards the order of the letters, or of the points, it
is proper that I should state precisely what significance I attach to that symbol. If, then A, B,
C, D be any collinear group of four points, I write,

AB CD AB AD

ABCD) = — . — = —= | ——
(ABCD) BC DA CB CD’

&c.,

so that
(ABCD) = (BCDA) ™! = (CDAB) = (DABC)™' = (DCBA)
= (CBAD) ™' = (BADC) = (ADCB) ' = say, a;
and if this anharmonic be thus denoted by 4, we have
(ACBD) = (CBDA)~! = (BDAC) = (DACB) ' = (DBCA)
= (BCAD)™' = (CADB) = (ADBC) ' =1 — a,

because

AB CD+AC BD = DA;
BC’ cBT 7

whence also,
(ACDB) = (CDBA) ™! = (DBAC) = (BACD)™! = (BDCA)
= (DCAB)™' = (CABD) = (ABDC) ' =1—-a".

These known relations between the 24 anharmonics of a group were quite familiar to Mobius,
who seems to have invented, for himself, the whole doctrine of anharmonic ratio® (Doppelsch-
nittsverhdliniss = ratio bissectionalis'), without even knowing (as historical) the property of a
pencil cited from Pappus by Chasles,* as I mentioned in a former letter (par. ). I write

* [See reference to Mébius in article 1, pp. 243-263.]
t [The same references, p. 244 §182.]
E [Michel Chasles, 1793-1880.]
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them here to have them ready, and partly because the symbol (ABCD) is not always interpreted
as above: it was used differently by Mobius, for example. In the present notation, the equation
(ABCD) = —1, or (ACBD) = 2, or (ADBC) = %, &c., expresses of course that D is harmonically
conjugate to B, with respect to A and C; a relation which Mébius would have expressed by

(ACBD) = —1, writing conjugates together, whereas 1 prefer to separate them. — I may just
remark, in passing, that even if ABCD be a gauche™® quadilateral, 1 still write
AB CD
ABCD) = — . —
( ) BC DA’

as above; and that I then say that this product of two quotients, interpreted as quaternions, is the
Anharmonic Quaternion of that quadrilateral. In like manner, I write

AB CD EF

ABCDEF) = — . — . —.

( ) BC DA FA
and call this the Evolutionary Function, or briefly, the evolutionary, of the system of the six points
A, B, C, D, E, F; extending this also, by quaternions, to space, and therefore to gauche

hexagons.

6. With the same arrangements of the letters, if the four points A, B, C, D be collinear, and if
four other points A’, B', C’, D', not necessarily situated on any one right line, be on the four
right lines drawn to the former points from any origin O, I naturally write [Figure 3]

AB CD

0.A'B'C'D') = (ABCD) = —.—;
( ) = (ABCD) = T2 T

and I interpret similarly the symbol (afy9d), for the anharmonic of the pencil of the four rays a,
B, vy, 0,or OA, OB, OC, OD or OA’, OB’, OC’, OD' from any common vertex O. Thus,
(afyd)(adyp) =1 = (afyd) + (aypd), etc.

With these notations, the definition (4.) of the anharmonic coordinates of a point P may be
expressed as follows:

; = (0QXA) = (Y.OPXU)

Fig. 3

* [That is, ‘not planar’.]
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Y — (ORYB) = (X.OPYU):
z

and thus (as in Figure 4), by considering anharmonics of pencils, we need not introduce
expressly the projected points ABOR.

7. If, however, we choose to introduce (as in Figure 2) two other projected points, on the
third side XY of the triangle, namely

C=0UXY, and S= OPXY,
then the well known equations of six segments,
OA XC YB_1 0Q XS YR_1

AX'CY ' BO ~ QX'SY RO

show that we have

OR YB OA XO XS YC
Y — (ORYB) (0AXQ) = —— .~ =2 22 20 -
x RY BO AX Q0 SY CX

or briefly that

2 — (xsyc) = (0.xPYU).
x
Of course we have also,

*_0.ypxvu); Z=(v.xpou); Z= (X.YPOU).
y x y

8. Already we may see several examples of anharmonic equations of lines. Thus, the sides of the
triangle OXY have for their respective equations,

0Y,x=0; OX,y=0;, XY,z=0;
and the equations of the three lines drawn to its corners from the point U, are
oUuC, y=x; YUA x=z XUB, y=z

while any other right lines through 0O, Y, Xare represented by equations of the slightly more
general form,

X
2 = constant, — = constant, 2 = constant.
X Z zZ
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9. To generalise these results, we may proceed as follows. Let LMN be any rectilinear
transversal [A], cutting the sides OX, OY, XY, in the points L, M, N, respectively, and passing
through the point P [see Figure 5]. By a very well known theorem,” respecting the six segments
made by such transversal, we shall have the equation,

OL XN YM ]
LX NY MO
But we also have the analogous equation,
OA" XC'" YB'
A'X'C'Y BO
if, A’, B, C’, be the harmonic conjugates of A, B, C, with respect to the three sides OX, XY,
YO. (I am not aiming yet, at any great symmetry of notation, but am content to use these three
letters, O, X, Y, as reminding us of Cartesian coordinates.) Dividing, therefore, the former of
these two equations by the latter, we arrive at this other equation:

(OLXA") (XNYC') (YMOB') = 1;

which allows us to assume,
!
" _ «ymoB), = (oLxA"), L= (XNYC),
n l m

or

2 _omyBy, L= (xwoan, ™= (ynxch:

m n l
where [, m, n, are three new numbers, of which the ratios depend upon, and conversely
characterise, the position of the transversalline [A]; and which (or any numbers proportional
to them) I propose to call the Anharmonic Coordinates of that Line. 1 also propose to denote
the line [A], above considered by the symbol [, m, n]; for example, the three points A’, B’,
C', are situated on one right line [Y], of which the symbolis [1, 1, 1], and which I therefore

Fig. 5

* [Theorem of Menelaus; see, for example, D. Pedoe Geometry, p. 28, Cambridge University Press,
Cambridge: 1970.]
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propose to call the Unit-Line. It follows that, in a known sense, (compare Salmon, Higher Plane
Curves, page 149*) the Unit-Point U, and the Unit-Line [Y] are related to each other, and to
the given triangle OXY, as Pole and Polar.

10. I next combine the coordinates of point and Uline, as follows. Multiplying the three
anharmonics

_i:(LXA'o), ;:(OQXA), —1 = (OAXA"),

we get the product,
I x
== (LXQO) = (OQXL);
where Q = (x, 0, z) is derived as before from P = (x, y, z), namely from a point of the line
[A], by drawing a line through Y to AX. Multiplying, in like manner, the anharmonics,

™ _ (MYB'0), 2= (ORYB), —1= (OBYB),
n Z

we get this other product,
- 7—5% = (MYRO) = (ORYM) = (OXQL);
the last transformation being effected by means of the pencil through P. But (by article 5.),
(OQXL) + (OXQL) = 1;
therefore
Ix 4+ my+ nz=0:

that is to say, ‘‘if the anharmonic coordinates x, y, z of any point P be multiplied by the
anharmonic coordinates [, m, n of any right line [A] through that point, the sum of the products
is zero”’. And according as we conceive, Ist, a variable point P to move along a given right line
[A], or IInd, a variable right line [A] to turn round a given point P, (so as always to pass through
that point,) we may regard this homogeneous equation of the first degree,

lx+ my+ nz =0,

as being either I, the anharmonic and local equation of the line, or 1I, the anharmonic and
tangential equation of this point. For example, the local equation of the unit-line [ Y] is,

x+y+z=0;

and the tangential equation of the unit-point, U, is,
[+m+n=0.

And already we may see that any homogeneous equation of the pth degree,
f(x,9,2)=0

* [G. Salmon, A treatise on the higher plane curves, Hodges and Smith, Dublin: 1852; hereinafter referred
to as: HPC.]
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between the anharmonic coordinates of a point, is the local equation of a curve of the pth order.
because it is met by any given right line [/, m, n] in p points, real or imaginary.

11. Consider, in particular, this equation of the second degree,

xy = 2%,
which, (by what has just been said) must represent a conic. The line OX or (by article 8.)
y = 0, meets it at two coincident points, or fouches it at the point X; and in like manner the
line OY, or x = 0, touches the conic at Y, so that Ois the pole of the chord XY, with reference
to the curve [see Figure 6]. The equation shows that the unit-point Uis on the conic; but (by
article 8.) the local equation of the line OUis y = x; the other intersection of this line with the
curve is therefore U’ = (1,1, —1) = (=1, —1, 1); and if C = OU XY, (as before) then the
equation of XY being z = 0, we have C = (1, 1, 0).

But in general, if there be any four collinear points,

Py = (x0, Y0, 20), P1=(x1, 31, 21), Po=&c, P3=&c,
so that
Xo = txg + uxy, yo = by + wy, z9 = tz9 + uzy,
xg=txo+ u'x, ys=10Uyw+uy, z253="12+u'z,
we have the anharmonic,*

t'u

(PyPo Py P3) =—-.
ut

* [In his Notebook 160 (Trinity College MS 1492/160) Hamilton, on 6th March 1860, comments:
‘The very important Theorem of article 11. ... deserves a clear and separate proof of a purely geometrical
character; for I have a proof by quaternions.” Such a proof will be found on p. 33 of his Elements of
quaternions, Longmans, Green, & Co., London: 1866. The expression for (PyPs P; Ps) may be obtained as
follows.

Y

0, o 9 O
Fig. A

In Figure A the points Py, Pi, Ps, P3, lie on the same straight line; the line YA passes through the unit-
point; the lines YPy, YP;, YPs, YP3, when projected, intersect the side OX at the points Qg, Q1, Qs, Qs,
respectively. Therefore, the anharmonic (PyPeP;Ps3) is equal to the anharmonic (QoQ2Q1Q3). By
definition

continued overleaf
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(0Q1Q2X) (0QQsX)  0Q1 Qo X QoQy XO 0Qy QsX 01 Qs XO
(000 Q2 X) (00103X) Q10Q9s XO 0Qp QoX QpQ3 XO 00Q; QsX
_ Q0Q0 0105 QoQo Q103 )
TRl Qg (2eUe):

by the equations in article 5,

(0Q1Q2X) = [1 - (0QsXQ1)] ",

and since
_ 0Qy X01 _ 0Qy XA XQy AO
(0Q: XQ1) = 0:X 010 QsXA0Q,0 XA
_0Q2 XA X A0 _ (0Q9 XA)
T QaX A0 0Q; XA (0Q; XA)’
we obtain

[, (0QexA)]!
(0Q1Q:X) = {1 (00 X )}
which means that

[(0Q0XA) — (0Qs XA)1[(0Q) XA) — (005 XA) ]
(QQQ1Q) =[50, x4) — (003 XA)1[(0Q) XA) — (00; XA)]

By article 6.
X1

(0QuXA) =2 (0Q1XA) =

X9 X3
) O XA -, O XA -,
o - (0Q2XA) ZQ (0QsXA) .

which leads to the equation

(%022 — x020) (X123 — X321)

(QQiQs) = (x120 — xo21) (X023 — X3%0)

and when xp, x3, 29, and z3, are expressed in terms of Xy, X1, z9, and z;, we finally obtain the relation:

'

(PoP2PLPS) = (Q0 Q201 Q) = 1.
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Taking then O, C, U, U’ for the four points Py, P1, Ps, Ps,sothatt =1, u=1,¢ = -1, u' =1,
we have (OUCU') = —1, that is to say, ‘‘the point Cof the polar, is harmonically conjugate to the
pole O, with respect to the intercepted chord UU"’ as was known, I suppose to Apollonius.

12. The equation of the conic may be written thus:

J_Z. o (X.0OPYU) = (Y.XPOU),
Z X

(see articles 6 and 7). That is to say, (XO and YO being tangents,) ‘‘the anharmonic of the
pencil of which the rays pass through the four points X, P, ¥, U of the conic, has the same
value, whether we place the wvertex of that pencil at the point X, or at the point Y, of the
conic”’. Of course, this is merely a particular case of a well known theorem: yet it would be
sufficient to give the anharmonic equation, xy = z°, from which all other properties of the
general conic may be deduced.

13. For example, let OP meet the curve again in P’; while it meets XY'in S, as before. Then
P=(xy2, S$=(x30, P=(xy—2);
and because O = (0, 0, 1), we have
(OPSP") = —1;

or P, P' are conjugates, with respect to O and S. This, however, is merely a little exercise of
calculation, the well known theorem which it expresses being sufficiently represented by the
formula

(OUCU") = —1, of article 11.

14. Let V = (a, b, ¢) be a new point upon the conic [see Figure 7], so that ab = ¢*. Let the
chords PU, PVmeet the chord XYin the points 7, W; so that
W= (ex—az, ¢cy—02,0), and T =(x—2z y—20).

Then because

N

Fig. 7
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X=(,0,0), and Y =(0,1,0),
we have

(P.XYVU) = (XWYT) :wzﬁzé;
(y—2)(ex—az) a ¢

or in words, ‘“‘the anharmonic of a pencil whose four rays pass through any four given points
X, V, Y, Uof the conic, and whose vertex P is on that curve, has a value independent of the
position of that vertex, or does not change while P moves along the conic’’: which is the well
known property, whereof that in article 12 was a case.

15. We see, at the same time, — what, to say the least, I was not familiar with, if I ever met it
before, — that this constant value of the anharmonic (P.XVYU), is just the common value ofE
X
and of 2 for the point V; that is, by article 12,
z
(P.XVYU) = (X.0VYU) = (Y.XVOU).

However, on a moment’s reflection, I see that this comes merely to placing Pat X, and at ¥,
alternately. But I make the little calculation in the foregoing article, without thinking of this
easy verification.

16. In general,let f(x, y, z) = 0 be (as in article 10) the local equation of a curve of the pth
order, fbeing a homogeneous function, rational and whole, and of the pth dimension.
Writing

df = Dyf.dx+ Dyf.dy+ D.f.dz
we have
0=xDyf + yD,f + zD. f;
and therefore
0=x"Dyf +yDyf +2D.f,
if
X —x:y —yrzd —z=dx:dy: dz

that is if the point («', y', z') be on the tangent to the curve, f, drawn at the point (x, y, z).
The anharmonic coordinates of this tangent are therefore the following:

l=D.f, m=Dyf, mn=D,f;
or the tangent itself has for its symbol (compare article 9.)

LDxf, Dyf, D:f].

17. For example, when f = xy — 22, as in article 11, we have



ITI. LETTER TO HART ON ANHARMONIC COORDINATES 191

so that the relation, between a point of contact (x, y, z), and a point (&', ', z') upon the
tangent at that point, is expressed by the equation,

yx' 4+ xy' — 222" =0

which may be called, more generally, the Equation of Conjugation, with respect to the conic
xy = 2%, as serving to express that the two points (x, y, z) (¥, y, 2') are conjugate, relatively
thereto. Thus, if the line at infinity be [4, u, ¥] so that the equation of this line is

Ax+uy+vz=0,

then the centre of the conic is the point (2u, 24, —v); and generally, the point (24, 24, —v) is
the pole of the line [A, u, v] with respect to the given conic, xy = 22. For example, the line XY is
z= 0, or [0, 0, 1]; its pole is therefore the point (0, 0, —1), or (0, 0, 1), or O as before. (The
pole of [4, u, v] with respect to the given triangle OXY, is the point (A1, u=1, v=1).)

18. The four tangents at X, V, Y, U have for their respective symbols, [0, 1, 0], [b, a, —2¢],
[1, 0, 0], [1, 1, —2]; and they are met by the fifth tangent [y, x, —2z], which is drawn to the
conic at P, in the five points (2z, 0, y), (2az — 2¢x, 2¢y — 20z, ay — bx), (0, 2z, x), (2z — 2x,
2y—2z, y — x). Calling these four points X;, Vj, Y;, U;, and comparing the coordinates of
Vi and Uy, with those of X; and U, as the coordinates of Py and Ps;, were compared with
those of Py and P; in article 11., we find that

l=az—cx, u=c¢—bz, t'=z—x u=y—z
whence

tu  (z—x)(y—0bx) ¢ a

(lellel):tu'_(az—cx)(y—z) a b’

as in 14; so that “‘if four fixed tangents to a conic be cut by any fifth tangent, the anharmonic
of the group of the four points of section is constant, and is equal to the anharmonic of the
pencil of four rays, drawn to the four fixed points of contact from any fifth point of the conic’’:
a well known theorem which, as we see, is here obtained, with scarcely any trouble of
calculation — I forget whether any particular symbolis commonly used, to denote this constant
anharmonic; perhaps it might be denoted by the symbol ((XVYU)), in the case which we have
here been considering.

19. We have not much occasion, in the present method, to distinguish between the
different sorts of conics; yet it is easy to do so, by considering the line at infinity. Let this line
be, as in article 17, [4, u, v], or Ax + uy+ vz, where A, u, v are supposed to be given: or in
other words let 17!, u~1, v~ be the given coordinates of the mean point or (in the simplest
sense) the centre of gravity G, of the given triangle, OXY. Then the points of the conic which are
at infinity are given by the quadratic,

(Ax + uy)® —v*xy = 0;

so that the curve is an ellipse, a parabola, or a hyperbola, according as v* <, =, or >4Au. For
example, if G= (2, 2, 1), so that Cbisects XY, Ubisects OC, then A =1, u = 1, v = 2, and the
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line at infinity is [1, 1, 2], which satisfies the condition v? = 4Au, so that the conic is now a
parabola; [see Figure 8].

20. The same condition of parabolic form may be obtained from the tangential equation of the
conic, namely

n? = 4 Im;

when [, m, n] is a variable tangent, of which the conic is the envelope. For then the equation
v2 = 42u expresses that the curve has a tangent at infinity. Or this last equation may be
considered as expressing that the point (2u, 2, —v) is on the line [, u, v]; and therefore that
the centre (article 17) of the conic is infinitely distant.

21. In general, if the line OUC pass through the mean point G, so that C bisects XY, then
A =u,and

v v CcU

—=—(0GCU) =2—;

A ou ( ) =2 Uo
if then CU = UO, the curve is a parabola, as above, but if CU < UO, (U being on the finite
bisector OC,) then the conic is an ellipse; and if CU > UO (U being still on OC,) the curve is a
hyperbola; because (1/2/4/1/1) is in these three cases, = 1, <1, and > 1, respectively [see Figure
9].

22. The simplest arrangement possible, of the four given points, appears to be that in which
the triangle OXY is equilateral and U'its mean point (or its centre). In this case, the conic xy = 22

Y
B C
0 A X
Fig. 8
Y
C
0) X

Fig. 9
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is easily seen to become a circle; of which the centre is, by article 17., the point
K' = (2, 2, —1),because the line at infinity is now the unit-line [1, 1, 1] or Y, as it always is
when the unit-point (1, 1, 1), or U, is the mean point of the triangle OXY [see Figure 10].

Let I, | be the circular points at infinity; the coordinates of each must satisfy the two
equations,

=22 x+y+z=0;
they are therefore the following,
I=(@1,0,6°, J=(Q,060),

where 0 is an imaginary cube-root of unity: and every other conic,

S(x, 9, 2) = ax? + by2 + ® + 2a’'yz 4+ 2b'zx + 2¢'xy = 0,

which passes through these two points, /, J, or of which the coefficients satisfy the two
equations,

f(1,6,60%) =0, f(,6%0) =0,
or
a+2a =b+2b = c+ 2,

is necessarily a circle. The general equation of a circle, referred to the present system of
coordinates, is therefore of the form,

a(x® — yz) + b(y2 —2x) + ¢(2* — xy) + e(yz+ zx + xy) =0,
when q, b, ¢, ¢, are any constants. For example,
X2 = yz is the circle OUY, with centre K" = (-1, 2, 2);
y2 = zx is the circle OUX, with centre K" = (2, —1, 2);

and yz+ zx + xy = 0 is the circumscribed circle OXY, with U for centre: and these four real
circles have all the same ¢maginary intersections, I and J, situated upon the unit-line, or at
infinity. By making @ = b = ¢ = ¢, we get a fifth, but an imaginary circle,
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x? + y2 +22=0;
which has this characteristic property, that the three corners of the triangle OXY are, with
respect to it, the poles of the opposite sides. In general
xx' + ' + 22 =0,
is for this last circle, the equation of conjugation (article 17), which connects the coordinates of

any two conjugate points, Pand P'.
And the osculating circle to any given conic,

0= Ax* 4+ By* + C22 + 2A"yz + 2B'zx + 2C'xy,

at any given point (x, y, z) is obtained by comparing this last equation with the first and
second differentials thereof. — I do not [know] whether the imaginary cube-roots of unity have,
in any other systems of coordinates, been shown to have a connexion with the circular points
at infinity.

23. It may not be quite useless to verify that the points 1, J, thus determined, coincide with the
usual circular points &c. Their characteristic property being that x* = y* = z* for each,
without our having x = y = z, we must, by article 7, have, in particular, the equation

(0.XIYU) =1; (XI'YC) =1,

if I' be the (imaginary) intersection of OI with XY. But with the present arrangement of the
given points, YC = CX; therefore

3 2
X'T XI' X1’
(—) =1, <—> I 41=0, XI'=6I'Y;
'Y Iy) 1Y

but
XI'=XC+CI', I'Y=1IC+ CY=XC— CI';
therefore
(1+6)CI' = (0 —1)XC.CI' = (6 — 6%) XC = £V/—3.XC = £V —1.0C,
or,

tan UOI = v —1,

which is the known and distinguishing property of the circular points, usually so called.

24. In general, let OXY be any triangle, inscribed in any conic [see Figure 11]. Draw
tangents at the corners YA', XB', OC’, meeting the respectively opposite sides in the points
A’, B', C', which will therefore be on one right line. From these points draw the other
tangents, A’A”, B'B", C'C", and join YA", XB", OC"; these three last chords will intersect each
other in one point U; and they will cross the sides OX, OY, XYin the points A, B, C, which are
evidently the harmonic conjugates of A’, B’, C'. In short the line 4'B’C’ will be the polar line
of the point U, and the curve OA” XC"YB" will be the polar conic of that point, with respect to
the triangle OXY. (HPC, p. 149). All this being admitted, let OXY be taken for the anharmonic
triangle of article 4, of which the sides OY, OX, XY have for their respective equations (by
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1=(1,0,8")
J=(1,66)

Fig. 11

article 8), x =0, y =0, z=0; and let the point U be taken for the anharmonic unit-point,
x = y=z its polar line A" B' C' will become the anharmonic unit line, x + y+ z = 0; and its
polar conic will have for its anharmonic equation,

Yz 4 zx + xy = 0,
or
x4 y71 +z271=0;

on which account I am disposed to call it, with reference to the present system of coordinates,
the Unit-Conic, or briefly the Unit-Curve of the system. In the case of Figure 10, this unit curve
was the circumscribed circle OXY, and in general, it is that particular circumscribed conic, which
touches (as above) the three lines A'Y, B'X, C'O; A’, B, C' being points upon the unit line,
determined as in Figure 5; and the unit-point U being the pole of the unit-line, with respect to
the wunit-curve.

25. If now we seek the intersections, I and J, of the real unit-line A’B'C’ with the real unit-
curve, or with the conic OXY, we find that these intersections are always imaginary; and that
they may still, as in article 22, be represented by the symbols,

1=(1,6,6%, J=(@1,60),

although they are not now (in general) the circular points at infinity, because we do not now
assume the particular arrangements of Figure 10, or of articles 22, 23. And the equation

a(x* — y2) + b(y* — 2x) + ¢(2* — xy) + e(yz+ = + xy) =0,

represents now (in general) not a circle, but a conic, which had the same pair of imaginary
intersections I, | with the unit-line, as the unit-curve. To this new system of conics belongs therefore
the curve xy = 22, which was considered in several former articles; and also the two other real
curves, yz = %2, 2x = yQ, which likewise pass through the point U, and of which the first is
touched at O and Y, but the second at O and X, by sides of the unit-triangle: for so I think that we
may conveniently call the triangle OXY.

The points I, ] may perhaps be called the Imaginary Unit-Points: U being then called, by

contrast, the Real Unit-Point. And the imaginary conic, x% + yQ +22=0, (compare article 22)
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which passes through the two imaginary unit-points, and with respect to which each corner of
the unit-triangle is the pole of the opposite side, may, in consequence of these relations, and
of the simple form of its equation, be called the Imaginary Unit-Curve. More generally, I am
disposed to say that all the conics represented (as above) by a homogeneous and linear equation

between the four quadratic functions,
2 2 2
X" —yz, Yy —azx, X" —xy, yz+zx+ xy,

are curves of the Unit-System.

26. Another general form for the anharmonic equation of such curves is the following:
(ax+By+yz)(x+y+2) =+t x

where a, 8, y are any three constants. Let
(a'x+B'y+y2)(x+ y+2) = y2+ 2x + xy

be the equation of a second curve of the same system; then of their four intersections, two are
always imaginary, and are on the unitline as a common chord, namely the points /and J; and
the other two, whether real or imaginary, are situated on the second common chord,

(@ —a)yx+PB =Py+ ' —v)z=0

which is always real, if the curves be such, and may be said to be their anharmonic radical axis.
The point for which

ax+py+yz=a'x+py+yz=a"x+p"y+y"z
may be called the (anharmonic) radical centre of the three curves of the unit-system, which
have a, B, v,a’, ', y',and ", B, y" for their constants.
27. If
u= f(x, y z) = Ax® + &c. + 2A4'yz &c., and = Ax+ C'y+ Bz, &c.

so that
1
Ix + my+ nz= f(xyz) and l:§Dxf, &c.

then the equation
Sy 2) [ 9, ) = (I + my' + '),

considered as an equation in x', y', Z', represents the pair of tangents drawn to the curve
f(x, y, z) =0, from the point (x, y, z). If this pair passes through 7and J, x’, y’, 2’ must admit
of being equated either to 1, 0, 62 or to 1, 62, 6. Let therefore

7, 0,0% = a+ b6* + 0,
so that
a=A+2A", b=B+2B, c¢=C+2C,

let also
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A=0C+2mn, u=m?+2nl,
so that
(1+ mb + nb*)? = A+ ub? + v,
then the system of the two real equations of the 2nd degree,
au—A=bu—pu=cu—v,

will determine four points (x, y, z), such that the two (imaginary) tangents from any one of them,
to the conic u = 0, will pass through the two imaginary unit-points, I and J. I therefore propose to
call these four points the Four Anharmonic Foci of that conic. They become the four ordinary foci,
when /and Jbecome (as in articles 22, 23) the two circular points at infinity.

28. With the recent significations of a, b, ¢, A, 4, v, and w, if a, §, v, be any three constants,
such that

a+p+y=0,
the equation
alau—2A) + Bbu—u) +y(cu—v) =0
represents a conic, passing through the four anharmonic foci. And if we take
a=b—¢, Pf=c—a y=a-—0b,
this new conic breaks up into a pair of real right lines. For its equation is then,
(b—¢)(I*+2mn) + (¢ — a)(m® +2nl) + (a— b)(n* +2Im) =0,

when (by article 27) a, b, ¢ are known and real constants, and /, m, n are known and real
functions of x, y, z, homogeneous and of the first degree: but one of the many possible
transformations of this last equation is the following,

{(b=o)l+(a—b)ym+ (c—a)yn+ h(m— n)}
X{(b—c)l+ (a—b)ym+ (c—a)yn+ h(in—m)} =0,
when
WP=a>+ b+ —bc— ca— ab>0,
so that his a real constant, depending on the given and real conic, u. The two distinct and real
right lines,
b—c)l+(a—bym+ (¢c—a)n+ h(m—n) =0,
(b—c)l+(a—bym+ (¢c— a)n+ h(n— m) =0,
on which the four anharmonic foci are thus situated, I propose to call the Two Anharmonic
Axes of the conic, u = 0; and the real point of intersection of these two axes, namely the point
for which I = m = n, and which is therefore the pole of the unit-line, with respect to that conic
u, may perhaps be not inconveniently called the Anharmonic Centre of that conic. — In the case

of article 22, or of Figure 10, when the unit-line goes off to infinity, and the unit-curve becomes
a circle, these anharmonic axes and centre become the usual axes and centre of the conic w.
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29. As anexample, let the conic of which we wish to determine the foci, &c., have for its
(local) equation,

u:x2—|—y2—z2:O;
so that
A=B=-C=1, A'=B=C=0, a=b=—-c=1

and

We have now h* = 4, and we may write h = 2; after which the equations of the anharmonic
axes of the conic become (by article 28),

l+m—2n=0, [—m=0;
or, substituting for /, m, n, their values, and transposing,
x—y=0, x+y+22=0;

so that the anharmonic centre of the conic is the point (1, 1, —1), of which the polar, with
respect to the same conigc, is the unit line [1, 1, 1], as by the general theory it ought to be. One
of the conics through the four anharmonic foci is

au—A=bu—u, or A—u=0;
but this is merely the pair of axes,
(I=m)(l+m—2n) =0.
If however we take this other conic through those foci,
O0=(a+b—20)u+2v—~A—wu
or
0 =4u+2n° — I* — m® + 4lm — 2n(l+ m)
or
0 =3(x? + y?) — 22% + 4dxy + 29z + 2zx,
we are conducted, by the equations of the axes, to the following quadratics:
Ist, 5x2 + 2xz — 22 = 0, for the axis y= x; and
{Ilnd, x2 + 2xz + 322 = 0, for the axis x + y+2z=0.

The Ist gives the two real foci, (1,1,1++/6); and the IInd gives the two imaginary foci,
(-1£v-2, -1++/—2,1). Let F, F' be the two real foci; they are on the line OUC, of several
former figures, and we have the two anharmonics,

(CFOU) = (g :)1 V6, (CF'OU) =1— 6

whence (by article 5),
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(COFU) = —V6, (COF'U) = +V/6.

Cco
But, if the unitline be at infinity, U trisects OC and e —3; therefore, in this case,
U \F F'U \F
or  \3 oF \3%

OF V3 OF'

——=—"" =316, and =3+ V6;

oUu /3++2 ou
the anharmonic centre K = (1, 1, —1) of the conic being also such, that OK = 30U = 20C
because (CKOU) = —1; and the curve being a hyperbola, with x + z=0and y+ z=0, or YA’
and XB', for its asymptotes; and with x — 2z =0, and y— z=0, or YA and XB for tangents at
finite distances. Its anharmonic summits, on the axis y = z, are

V=(1,1,v2), V' =(,1,-v2);

whence also

whence
cv 1 ov V2
CVOU == 2, _—= - —:—:2_ s
( )=V2 VO \é oC 1++2 Ve
oV 3 VK 3 FK
0= ov- P op=Ve
therefore
KF_ 2
KV /3

[which] may be called the anharmonic excentricity of the hyperbola.

30. To fix more closely the conceptions, and to verify the results by comparison with other
methods, let O be taken for the origin (0, 0) of a system of Cartesian and rectangular
coordinates; and let U be the point (1, 0) on the axis of x; so that the points ABCXYK are now

denoted as follows:
A:@,_@); B:<§,@>; c=(%0):
4 4 4" 4 2

(3 ﬂ) (Sx/%) o
’“(5"7’ Y=\g3) K=6G0

the triangle OXY being now again supposed (as in article 22) to be equilateral, and U to be its
mean point, while XOYK is a parallelogram [see Figure 12].

The equations of the right lines KA’, KB are now
x—3=FW3

and therefore the equation of the hyperbola, which has these lines for its asymptotes, and which
has
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V=33
G =3v-6
4 K=30
4 B
UXe G=3~-6
(0] A /X X'=3-~3
|14
Bl
Fig. 12
3
V=(3—-——,0
(- 2)
for a point upon it, is
; s 9
—3)2 -8y =,
(x—3) Y =3

The usual methods show next that the point Vis a summit: and that the lines UA, UB, of which
the joint equation is

3(x— 12—y =0,

are tangents to the curve; as, by article 29, they ought to be. In the general equation

9 9 9\’
0= <x2—3y2—6x+§> <x'2—3y'2—6x’+§> - <xx’—3yy’—3x—3x'+§> ,

represents the pair of tangents to the hyperbola, drawn from any given point (x’, y); and if
this point be a focus, this pair must pass through the circular points at infinity, for which we
have now x =00, y=+xv/—1; substituting therefore these last values, we get the two
equations,

X2 _ yl‘l —6x'4+3=0, andy(x' —3)=0,

as the conditions by which the four foci are to be determined: these four are therefore the two
real points, I = (3 — \/6, 0), F' =3+ \/6, 0), and the two maginary points, G = (3, v —6),
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G’ = (3, —V—6). The real foci, thus determined, are seen at once to coincide with those which
were otherwise found in the preceding article; because they give

OF OF'
_— — = 3
o =3 V6, on =3t V6,

as before.

And to verify the agreement of the imaginary foci, as found by these two systems of
coordinates, we may prolong OX, OY to meet the conjugate axis GG’ of the hyperbola, in the
points X'(3, 3 — V3), Y' = (3, 3+ v/3); and thus shall have the imaginary anharmonic

V3+V=6 1+vV-2
V3-v=6 1-V-2

which exactly agrees with the imaginary value of 2, for the first imaginary focus in article 29,
X

(0O.XAYU) = (X'AY'K) =

KF
although found by so different an analysis. Finally, the real excentricity, XV is again seen to be

V6 2
as in that article.

31. Resuming our anharmonic coordinates, and making no particular supposition respecting
the shape of the given triangle, OXY, or respecting the position of the given point U; writing
also for greater symmetry, the equation (article 26) of the curves of the unit-system under the
form

(ax+By+yz)(x+y+2) +0(yz+2zx+ xy) =0

we see that the (anharmonic) centre (a, b, ¢) of any such curve, considered as being
determined by the equations [ = m = n, must satisfy the conditions

(a+0)(a+b+c¢c)—da=(B+0)(a+b+c)—0b=(y+3)(a+b+c) —dc
so that we may write,
=a+b+tc, a=ate P=bt+e y=c+e,
where ¢is a new constant. The equation of the curve thus becomes,
O:(ax+by+cz)(x+y+z)+(a+b+c)(yz+zx+xy)+e(x+y+z)2;

and we see that ““any two (anharmonically) concentric curves of the unit-system have double contact
with each other, at the two imaginary unit-points, I and [, in which they intersect the unit-line”’. — It is
easy also to prove that for any curve of this system ‘“‘the four (anharmonic) foci close up, into the
(anharmonic) centre’; in fact, the two equations of the second degree (article 27), by which
those foci are determined become, in this case, A =u =v, and can only be satisfied by
supposing [ = m = n.

32. Supposing next that a, 8, y are any three new constants, of which (as in article 28) the
sum is zero, so that a + 8+ y = 0, and that the point (a, 3, y) is situated upon the unit-line,
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we may propose to join this point to the (anharmonic) centre (a, b, ¢) of the recent conic,
and to find the points (x, y, z) in which the joining line will intersect that curve. For this
purpose, we may write

x=a+ta, y=b+if, z=c+1ty,

and substitute these expressions for x, v, z, in the last equation of the conic, so as to obtain a
quadratic in ¢, which must evidently be a pure one, on account of the existing harmonic
relations; and in fact the coefficient of (a + b+ ¢)t, in the result of this substitution, is

(aa+ bB + cy) + (by + ¢f) + (ca + ay) + (af + ba) = (a+ b+ ¢) (a+B+y) =0.
If we make k = a+ b+ ¢+ e, so that the equation of the curve becomes
0= a(y2 + yz—l—z2) + b(22 4 2+ %) + o(x® + xy + y2) — k(x+ y+z)2,

the complete result of the substitution is easily found to be

N+ B+ vyt =k(a+ b+ c) — (be + ca+ ab);
division by @+ b+ ¢ being performed, and af + Sy + ya being changed to its equivalent,
—%(0{2 + 2 + ¥?). According, then, as

k(a+b+c¢)>, =, or <bc+ ca+ ab,

the two values of ¢ are real and unequal, or equal and null, or unequal but imaginary; and
therefore the curve will, in these three respective cases, be real and finite, or evanescent, or
imaginary. For example, if a = b = ¢ = 1, so that the centre of the curve is at the unit point,
the (finite) reality, evanescence, or imaginariness of that curve will depend on the constant k&
being >, =, or <1. Accordingly, when k = 2, we get the real unit-curve (article 24), namely
the conic for which yz+ zx + xy = 0; when £k = %, we get the imaginary unit-curve (article 25),
x? 4+ y% + 22 = 0; and when k = 1, we get what may be called the Evanescent Unit-Curve,

x2+y2+z2+—xy—yz—zx20,
which has no real point, except the unit-point.
33. These evanescent curves of the unit-system, which correspond to infinitesimal circles, and become
such, when the triangle OXY is made an equilateral one by projection, and the point U is

made its mean point, — may deserve a somewhat closer attention. Eliminating the constant k&
from the last written equation of the curve, by the condition

k(a4 b+ ¢) = bc+ ca—+ ab,

we are conducted without difficulty to an equation, which breaks up into two /linear (but
imaginary) factors, and may be written thus:

WW =0
when
W = (bz— ¢y) +0(cx — az) + 02(ay— bx),
W' = (bz — ¢y) + 0% (ex — az) + 0(ay — bx),
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and
6> +60+1=0,
as before.
This evanescent curve may therefore be considered as a pair of imaginary lines,
wW=0, W =0,

which are drawn from the given centre (a, b, ¢) or K to the two imaginary unit-points, I and J, or
(1, 0, %) and (1, 62, 9).

34. Curves of the unitsystem occur so often in these researches, that we want a shorter
name for them. To call them Anharmonic Circles, (because they won’t be projected into circles,
under conditions above assigned,) might be too great an innovation; suppose then that we
agree to name them generally, Unit-Curves: calling, then, for distinction, the three chief curves
of this system, which have been above considered, namely,

e+t ay=0, x4+ +22=0, 2+ +2—p—m—x=0,

the principal real unit-curve, the principal imaginary unit-curve and the principal evanescent unit-
curve, respectively. We may then say (by article 33), that “‘the evanescent unit-curve, with any
given point Kas centre, is equivalent to the pair of imaginary right lines, KI, KJ.”’

35. If an evanescent unit-curve have its centre at a focus of a conic, the two imaginary
rectilinear branches of the first are two of the tangents of the second; the two curves must
therefore be considered to have double contact with each other; namely, at the two imaginary
points, where the conic is cut by that real right line, which is, with respect to it, the polar of its
focus: and which I therefore propose to call its Anharmonic Directrix, corresponding to that
focus. — I remember staring, ten or twelve years ago, when Townsend™ told me, in what I call
Brinkley’s Garden,’ that a plane conic has double contact with each of its foci, considered, of
course, as infinitesimal circles; and he admitted that my ¢, j, k, which were then comparatively
recent, had nothing in them more paradoxical, on the first appearance. You see that I have
made a step or two forward since then, aided (no doubt) mainly by Salmon’s books, — though
I know something of foreign ones also, — in what is called ‘““Modern Geometry’’: but I have the
deepest feeling of my inferiority, in that respect, to persons who have made the subject their
special study.

36. If V be any linear and homogeneous function of the coordinates x, y, z, then the
equation

WW' — V2 =0

represents a conic, which has the real intersection K of the two imaginary right lines W = 0,
W' =0 for one focus, and the right line V =0 for the directrix corresponding. — An
analogous theorem exists, of the kind here considered, for two foci on one axis, which answers

* [Richard Townsend (1821-1884), fellow of Trinity College, Dublin.]
T [John Brinkley (1763-1835) was Hamilton’s predecessor at the Dunsink Observatory as Andrews
professor of astronomy and as Astronomer Royal for Ireland. ]
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to the usual sum-or-difference property of the conic sections: but you will dispense with my
writing it down, at least at present, for it is just possible that I may return to that part of the
subject, before the present long letter is finished.

37. You conceive that several other things of the same sort, in this (perhaps new) system of
coordinate analysis, which however I can connect with quaternions, or rather which I am now
detaching from them, — have occurred to me. But to vary the illustrations, let us next investigate
the tangential equation (compare article 20) of the general unit-curve, taking the form (article
32),

u= a(y2 + yz+ 22) 4+ 022+ x4 &%) + o(x® + xy+y2) — k(x+y+ 22 =0,
for the local equation of that curve. Differentiating, we have (by article 16)

l=Dyu=0b(z+2x) + c(y+2x) — 2k(x+ y+ 2), m = &c., n = &c;

between which three linear equations, and Ix + my+ nz =0, we are to eliminate x, y, z
Making, for a moment,
x+y+z=t ax+by+cz=v, and a+b+c=g,
w=gt—v—2kt=a(y+2z) +b(z+x) + c(x+y) —2k(x+ y+ 2),

we have
l=w+ gx— al,
m=w+ gy— b,
n=uw-+ gz— ct.
Hence

I+ m+ n=3uw;
al+bm+en={gw+v) — (@ + 0+ *t= (g% a®— 0" — & —2kg)t}
= +2(bc+ ca+ ab — gk)t;
P4m®>+n®=wll+ m+ n) — (al + bm+ cn)t;

and now we have only to eliminate ¢ and w between these three last equations. Writing, for
abridgement,

A=DC+m®+n®>—lm— mn— nl= (14 0m+ 6°n) (I + 6*m + On)
the result of this elimination is easily seen to be
4{k(a+ b+ ¢) — (bc+ ca+ ab)}A = 3(al + Im + cn)?;

so that, A can never be negative, the condition of reality of the general unit curve (article 32) is
again found to be expressed by the inequality,

k(a+ b+ ¢) > bc+ ca+ ab.

As an example, the constants of the principal real unit-curve (article 33) are a =b = c =1,
k = 2; so that while the local equation of this curve is, as before,
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Yz 4 zx + xy = 0,
the tangential equation of the same curve is,
4N = (I+ m+ n)?,
or,
B+ m®+ n® — 2mn — 2nl — 2lm = 0.

Accordingly, this last form expresses, that the two tangents from any corner of the unit
triangle coincide, and have the positions assigned in (article 24); thus, the tangential
equation of the point Ois n = 0, which gives (/ — m)?> = 0; and the unique tangent, [1, 1, 0],
or x+ y =0, is the line OC’, as before. — In general, the form of the tangential equation,
assigned above, for an unit-curve, may be verified by observing that it shows the points I, | to
be on the curve, and the tangents at those points to meetin K.

38. Writing, for abridgement,
k(a+ b+ ¢) — (bc + ca+ ab) = 3x2,
the general tangential equation (article 37) of an unit-curve becomes,
4Kk’ = (al + bm + cn)?

a, b, ¢ being still the coordinates of the centre K, and A being still the same quadratic and
essentially positive function of the coordinates [, m, n of the tangent, as before. The
tangential equation of a second unit-curve is, in like manner,

4K"°A = (a'l + b'm + ¢'n)?;

and if we combine these two equations, in order to determine the common tangents to these
two curves, we find that these four tangents pass, two by two, through two Anharmonic Centres of
Similitude, namely through the two points,

S=(ka" —K'a, kb — K'b, k' — K'c),
S"' = (kad' +«'a, kb' + K'b, k¢’ 4+ K'c),
If either of these two points be on the unit-line, so that
k(a" +0 +c¢')==xk'(a+ b+ c),

then the two curves may be said to be Anharmonically Equal, because they would be projected
into equal circles, by throwing off the unit line to oo, &c. For example, if we make
a' =b" = ¢ =x' =1, the second curve becomes, by article 37, the principal real unit-curve; if
then 3x = £(a + b+ ¢), or if the first curve have for its tangential equation,

4(a+ b+ ¢)’A =9(al + bm + cn)?,

it will be, in the foregoing sense, anharmonically equal to that principal unit-curve.

39. Without yet requiring any general method for deducing the local equation of a curve from
its tangential equation, we can easily here obtain the local equation which corresponds to any
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given values of the four constants a, b, ¢, x, by eliminating x from the equation in article 32,
with the help of the relation (article 38) between kand x: a process which gives easily,

WW' = 3K (x + y+ 2)%,
as the local form of the tangential equation (article 38), namely,
41°A = (al + bm + cn)>.

For example, when k = 0, the local equation is WW' = 0, as in article 33; and the tangential
equation becomes (al + bm + ¢n)® = 0, implying that “‘every tangent to an evanescent unit-
curve passes through the centre of that curve’. In general, the local form, assigned in the
present article, expresses, (when compared with the equation WW' = V2 in article 36,) that
“an unit-curve is a conic which has its centre for a focus, and the wunit-line for a directrix’’:
whence we might see again, that such a curve would be projected into a circle, under
conditions already assigned. And if we make 3x = (a+ b+ ¢)r, so that the curve is repre-
sented, at pleasure, by either of the two equations,

SWW' = r*(a+ b+ ¢)*(x+ Y+ 2)%,
472(a+ b+ ¢)’A = 9(al + bm+ cn)?,

then the new constant, r, which is equal to unity for the principal real unit-curve, and which
has a common value for all anharmonically equal unit-curves, may be called the Anharmonic
Radius of the unit curve to which it belongs.

40. To justify more completely this designation of that constant 7, we may resume the
analysis of article 32, eliminating the constant k, and introducing r in its stead. We then
obtain

s+ B2+ = r*(a+ b+ o),

with the signification of ¢ in that article; hence the same right line, KL, or (a, b, ¢)(a, B, ),
drawn from the centre to the unitline, which meets [see Figure 13] a given unit-curve
(a, b, ¢, r) in the point P = (a+ ta, b+ i, ¢+ ty), meets a concentric unit-curve (a, b, ¢, v')

!’ ! !

in the point P' = | « —}—L ta, b+ r B, c+ r ty |; and therefore, by article 11, we have the
r r r

anharmonic (KP'LP) = r'/r: so that when L is thrown off to infinity, we have the simple
ratio,

Fig. 13
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KP' 7'

KP r’

41. If we develop the product WW in article 33, we find
WW’' = (b® + be+ x> + (® + ca+ a2)y2 +(a®+ab+ )2+ (a® — be) yz
+ (8% — ca)zx + (2 — ab)xy — (bc + ca + ab) (yz + zx + xy)
=¢(x, % 2z a b, ¢)=0¢(a, b, c x, 9 2) >0,

except in the case x: y: z = a: b: ¢, for which we have (a, b, ¢, a, b, ¢) = 0. And we see that
the function,

+VIWW’
(a+b+c)(x+y+2)’

(r=)y(x, 5,2, a, b, ¢) =

which in like manner does not change its value when x, y, z are interchanged with q, b, ¢, may
naturally be said to be an Anharmonic Distance, between the two points, P = (x, y, z), and
K = (a, b, c). In fact, when we project, as before, OXY into an equilateral triangle, and Uinto
its mean point, and take for unity the length of the radius UO of the circumscribed circle
(Figure 10), then the numerical value of r or vy will remain unchanged by such projection, as
depending solely on anharmonic quotients; but, in the new state of the figure, it will represent the length
of the projected line, K' P', if K' be the projection of the point K, and P’ of P. And similarly,
this other function,

+3(al + bm + cn)
2a+b+ N

(r=)x(l, m, n, a, b, ¢) =

may be said to represent the Anharmonic Distance of the Point (a, b, ¢) from the Line [, m, n]; or
the Length of the Anharmonic Perpendicular, let fall from that point on that line. For here again the
numerical value of r, or of the function y, will remain wunaltered by projection; but will come to
denote the length of the perpendicular of the usual kind, let fall from the projected point, on the
projected line.

42. Asan example, let

a=b=c=1, y=2=0, x=1, [=m=0, n=1;
so that

K=U, P=2X, andtheline [, m, n]isz=0, or XY.
The formulea of article 41 give W.W' = 3, and r = ¢ = 1, for the anharmonic distance from K
to P, or from U to X They give also, (because we have now A=1) r=y = %, for the
anharmonic perpendicular from U on XY. Accordingly, when OXY is projected into an

equilateral triangle, &c., as in Figure 10, the length of UX becomes equal to that of UO; but the
perpendicular UC on XY has a length only halfas great.

43. It comes naturally to be noticed in passing, that if we take, as constants, the values
a=b=c=1,r= %, we are conducted to the local and tangential equations following,
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X%+ y2—|— 22 = 2(yz+ 2x + xy), mn+ nl+ Im =0,
whereof the latter may be written thus,
'+ m =0,

and which represent what we may call the inscribed unit-curve, touching the sides of the unit-
triangle in the points A, B, C of former figures, and having its centre at the unit point U [see
Figure 14]. When the triangle is made equilateral by projection, and the unit-line thrown off
to infinity, this curve becomes of course the inscribed circle with a radius UA equal to half the
unit-radius UO, of the circumscribed circle OXY; which may be considered as an illustration of
the result (article 39) respecting the anharmonic radius of an unit-curve. In general, (compare

HPCp. 153,) the curve represented as above by the tangential equation,
1 1 1
-+—+—-=0,
I m n

is the polar conic of the unitline, with respect to the unit-triangle.

44. We have hitherto only passed from local to tangential equations of curves; but it is in
general as easy to return, or to pass in the opposite order, from their tangential to their local
equations. Let the given tangential equation be

0= F(I, m, n),
and its differential
0=dl'=D/F.dl+ D,F.dm+ D,F.dn;

comparing this with the equation

0 = xdDyF + ydDyF + zdD.F,
or

0 = xdl + ydm + zdn,

which results from article 16, we see that

x:y:z2=DJF:D,F:D,F;

so that the symbol, (D;F, D,F, D,F) represents the point of contact, of the variable right line
[/, m, n], with its envelope, FF = 0. The same result may be obtained, without any previous
consideration of the local equation f = 0, by seeking the intersection (x, y, z) of a given line
[/, m, n] with a consecutive line of the same system; or the condition of equal roots in that

A
4
1)

O

Y

Fig. 14
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homogeneous equation in /, m, which results, from the elimination of n, between the given
equation F' = 0, and the linear equation Ix + my -+ nz = 0. With the help, then, of this last
equation we can pass either from the tangential equation I = 0, to the local equation under
the form f(DiF, D, F, D,IF) = 0, or from the local equation f = 0, to the tangential equation
F(D.f, Dyf, D.f) = 0, as exemplified in former articles.

45. Examples are, of course, unnecessary: the work being exactly of the same kind, as in
calculations with #rilinear coordinates. It may, however, just be noticed, as we pass, that from
the recent tangential form (article 43),

' mlynl= 0,

of the principal inscribed unit-curve ABC, we pass at once to the following local form of the
same curve,

and that, in like manner, from the local equation (article 24),
x4yt =0

of the circumscribed unit curve OXY, we pass with equal ease to the corresponding tangential
equation of the curve,

12 + m2 + mt= 0;

where by elimination of the radicals, we get, for these two curves,

X2+ 92+ 2% — 2xy — 29z — 22 = 0,
and

P+ m®+ n® —20m—2mn — 2nl = 0,
as in articles 43 and 37.
46. Differentiating the last general form (article 39), of the tangential equation of any unit-
curve with its centre at (a, b, ¢), we have (by article 44) for the coordinates of the point
contact of such a curve with a line [/, m, n] which satisfies that equation of it or for the

coordinates of the foci of the anharmonic perpendicular from (a, b, ¢) on [[, m, n] the expres-
sions:

x=2r(a+ b+ ¢)* DA — 9a(al + bm + cn),
y=2r*(a+ b+ ¢)> DA —9b(al + bm + cn),
z2=2r2(a+ b+ ¢)’D,A —9c(al + bm + cn).

Let [I"; m', n'] be the right line (a, b, ¢)(x, y, z), or KP, which is drawn from the centre K to
the point of contact P; we shall have al' + bm' + ¢n’ =0, and xI' + ym’ + zn’ = 0; where the
coordinates of the two lines must be connected by the equation:

0=1U'DA+ m'D,A+ n'D,A\,;
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or, expanding,
20"+ mm' + nn'"y =U'(m~+n) +m'(n+ 1) + n'({+ m).

Such, then, is the equation of condition of what may be called Anharmonic Perpendicularity
considered as a relation between two lines which become perpendicular to each other (in the usual
sense), by projection. It enables us to erect or let fall an anharmonic perpendicular, at or from a
given point, to or on a given right line; and so to deal, if we choose, anharmonically, with
problems respecting normals and evolutes, &c.

47. Anharmonic Parallelism may be said to exist between two lines which meet upon the unit-
line; the parallels to [, m, n] are therefore in this system represented by symbols of the form,
[+ h, m+ h, n+ k], where his any constant. The anharmonic direction of a line [, m, n], —
or of the line into which it is to be projected, — can therefore depend only on the ratios of the
differences of the coordinates [, m, n of that line. Accordingly, if we make

Lh=2l—-m—n, m=2m—n——1, n=2n—101—m,
HU=20—-m'—-n', m=2m'—n" =10, n—-2n-101—-mw,

so that [ {1, m;, n1] is (anharmonically) parallel to [/, m, n] and [{1, m1, n1] to [{’, m', n'],
the recent equation of perpendicularity may be thus written:

L+ mimi + ning = 0;

the new lines [, my, m1] and [{1, i, {1], passing through the unit-point, because their
coordinates satisfy the conditions,

Lh4+m +n =0 111+ m +n =0.

48. These new coordinates, {1, m, n; have for the sum of their squares,
I+ mi 4+ n} = 6A;
if then we make
A= (B+md+nd)
w=mi(B+md+ nd),
v=n(E+ md+ n?)*é
we shall have
L= l\/ﬁ, mp = u\/ﬁ, ny = \/6_,
and
31=IV6A+ 1+ m+ n, Sm:u\/6_/\—|— I+m+n 3n=vW6A+I+m+n
I call these new quantities, A, 4, v, which are connected by the two relations
Adu+v=0 2+ +v>=1,

and of which the geometrical signification will afterwards appear, the Unit-Point Coordinates of
the Line [, m, n], or of any line which is (article 47) anharmonically parallel thereto; in fact,
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they do not change, in passing from a line to a parallel; and the line [4, u, v], (which has the
same position as the recent line [/;, my, n1]) is a line through the unit-point.

49. Iam disposed to write also,

fm = e
x+y+2 g x+y+ 2z x+y+2
and
o — a B b _ c )
Ca+ b+’ Ca+ b+’ Vﬁa—‘—b—l—c’

and to call these new coordinates, which satisfy the two equations,
E+n+i=1 oa+p+y=1,
the Unit-Coordinates of the Points,
P=(x,9 2, and K= (a, b, ¢),

for reasons which will be seen hereafter. Adopting in the mean time these names and
symbols, we see (by articles 41 and 48) that the anharmonic perpendicular p, from (x, y, z) on
[/, m, n], may be expressed as follows:

_ 3(al+pm+yn) I+ m+n
VA WA

where the first part of the expression represents the perpendicular from (a, 3, y) on
[A, u, v], and the second part represents the perpendicular from (1, 1, 1) on [/, m, n]. And it
is not difficult to prove that the expression (article 41) for the anharmonic distance, r, between
the two points Kand P, becomes in unitline coordinates of those points, the following:

vg«m+ﬂﬂ+ym+

3 o 5 0.1
r= \[2{@— ay + =B+ (& — )7k

50. Suppose now that the line [/ m, n], passes, with any arbitrary direction, through the
unit-point, or that /+ m + n = 0, and that the point P coincides with that unit-point, U, so
that

E=n=C=3

while Kshall still remain an arbitrary point, with any unitline coordinates a, f3, y of which the
sum is zero. Let A’, u’, v be the unit-point coordinates of the line UK, so that

al'+pu’ +yv' =0
as well as
A+u +v' =0, and AZ4+u?4+r?=1

We shall then have
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B—y v—a a-f — — —
i A (R R R RN

=VB\/(@+ B+ - = VB (@D -1+ (-2 = V2,

where ris (by article 49) the anharmonic distance UK of the point (a, 5, y) from the unit-
point (%, %, %); so that we have the expressions

l,—ﬁ_‘y ’ y—a ’ a_ﬁ

- 4 - s V=
/2 a 2 rv2
which enables us to distinguish between the line [A’, u’, v'] itself considered as having a given
direction, and the line [—A', —u', —v'] of which the direction is the opposite. Conversely, we
have, for the unitline coordinates (article 49) of a point Kupon this line, the expressions

"3

2
u), pB=<5+ A =u", y=5+ u —21.

3 3 ~3

51. Substituting these last values for a, f, y, in the expression (article 49) for the
perpendicular plet fall from Kon the line [4, u, v], we are conducted to the formula:

3

r

=A0 =) +ud —=v') +v -1
= (uA" —2u') + (vu' —uv') + (Av' —vl').
But the three parts of this last expression are equal, because
(A" =" — (v’ — ') =pu(v' +4") — ' (v+4) = —up’ + u'u =0, &c;

hence,
§= (uh' = A )3 = (v’ — uv') V'3 = (' —vA')V/3.
Hence also,
b 2
(7> = (A" =2V + (v’ — ') + (' —vA')?
_ (/12_'_/12 —i—‘}/?)(/l'Q +u’2+v’2) _ (/1/1/ +ﬂﬂ/ —i—’VV,)Q
=1— A\ +uu' +vv')%
and therefore

1’2—[72

r2

= (A" 4 up' +vv")2

I am therefore conducted to say that the Sine of the Anharmonic Angle ¢ between the two lines
(A, v], [, @', v']L s

sin g = (ud' — Au')V'3;

and that the Cosine of the same anharmonic angle is
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cosp = AL 4+ uu' +vv'.
Accordingly, we have (by articles 47 and 48) the equation,
A 4 pup +vv' =0,

as the condition of anharmonic perpendicularity.

52. If we place Kat O, so that
a=0, =0 y=1 r=1,
the expressions (article 50) for A', u’, v' become,
-1 1
i’ = —, =
V2
so that the recent sine and cosine become
3 u—A
sing = —(A+ )\/:, Cos P = ——;
p u 9 @ NG
and therefore the unit-point coordinates 4, u, v of any line [/, m, n] can be expressed in
terms of the angle ¢, as follows:

A= \@sin(qo —120°), wu= \/gsin(w +120°), v= \@sin ®;

with the equations of verification,
Atu+v=0 P+u*+v’=1

And if we make in like manner,
2 . o 2 . o 2 .
M= gsm(q)l —120°%), w1 = gsm(ql)l +120°%), v = gsmqol;

(udy — im)\/g =sin(@ — ¢1), and Ady + pu; +vvy = cos(p — @1).

then

53. These results enable us to establish easily connexions between anharmonic and rectangular
or polar coordinates, of the usual kinds, and so to pass, at pleasure, from either to the other.
Let &, n, & be the unit-line anharmonic coordinates (article 49) of a point P; and let A, u, v be
the unit-point anharmonic coordinates (article 48) of the lne UP, which is drawn to that
point P from the unit-point. Adopting then the expressions (article 52), which I shall here
write again in order to have all the necessary Elements of Transformation in one view before us,

A= \/gsin( _2_7t>,
3 3
= \/gsin( +2_7t>
V= \/gsin
- 3 (p’
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cosco=ﬂ—\;;, sin ¢ = —(u+l)\@=v\/§

we see that the directions of this line UP depends on the value of the auxiliary angle ¢; which,
when thus used, I propose to call the Anharmonic Polar Angle, of the line UP, or of the point P
upon it. And changing, in the expression (article 49) for 7, each of the coordinates a, f, y,
(instead of ¢, 77, £, as in article 50) to %, so that it becomes (& 4 77 + { being equal to 1,)

3 1\? 1\? 1\?
"~V {(5‘§> +(r-3) *(“5)}
=\gV{(n—C)H(C—§>2+(§—n>2}

= V{E+n2+ 2 —nt—CE—En}
= (&4 0+ 0°0)1(E + 0% + 00)",

or making

whence (compare article 50) we have the expressions

pon=b o L=E gy
2’ 2’ 2’

which satisfy the three conditions

Adu+v=0, AE+up+vi=0, 22+u2+v>=1.
I call this quantity r the Anharmonic Radius Vector of the point (&, 7, §), or P: in fact, it
represents what has been called the anharmonic distance (article 41), of that point P from the
unit-point U, which latter point I propose to call the Anharmonic Origin, on account of its central
position, and properties, when the system of the four given points OXYUis projected into what I
call the Canonical Arrangement, illustrated by Figure 10 of article 22.

54. TFinally, if we write

X =rcosp = (2 —&—n)cos g,
Y = rsingp = (§ — 7)sin g
which will give

Y
r=v(X?+Y?), ® = tan ! X’

and
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E=11-X+7YV3),
n=141-X-YV3),
E=1(1+2X),
_ —Y-XV3
e
Y+ X3
u 6
2y
/6’
then I call these quantities, Xand Y, the Anharmonic Rectangular Coordinates of the point P, or
(&, 1, §); of which point, rand ¢ are the Anharmonic Polar Coordinates.

y)

14

55. An important consequence of this theory is, that if we have in any manner been led to
form an anharmonic and local equation of any curve, under the form f(x, y, z) =0, when
the function f is homogeneous, then, because

E:np:C=x:y:z (byarticle 49)
we may substitute these unit-line coordinates, &, 1, §, or their triples, for x, y, z, in that equation
of the curve: which thus becomes,
0=f(1-X+YV31—X-YV3 1+2X);

when X and Y may be interpreted as Cartesian and rectangular coordinates: because, while their
own numerical values (compare article 41) remain entirely unaltered by projection, they become
such usual coordinates, when the system of the four given points, O, X, Y, Uis projected (as already
said) into the canonical arrangement (article 22).

56. In this new or projected system, of ordinary and rectangular coordinates, the origin (com-
pare article 53) is at the projected point U [see Figure 15]; the positive semiaxis of X has the
direction of the line UO, and the length of that line is taken for the wunit of length; the radius
vector rbecomes (compare article 53) the quotient,

length of UP

length of UO’

A
[

Fig. 15

o
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or simply the numerical expression of the distance of Pfrom U; the polar angle ¢, or OUP, is
measured positively from UO towards UX, becoming [equal to] 120° when it has attained this
last position, but increasing to +240°, or decreasing to —120°, when UP becomes UY: also the
three points O, X, Y are equally distant from U, so that OXY is (as in Figure 10) an equilateral
triangle, with U for the centre (or mean point) thereof. Thus, if we denote the point P, in this
projected figure by the new symbol { X, Y}, we shall have

U=1{0,0}: 0={1,0}; x_{_%,g}; Y_{—%,—g}.

57. As avery simple example of such transformations, let XY be any chord of any conic, and
Oits pole, while Uand Pare any two points of the curve; also let YU, YPmeet OXin A and 0,
and let XU, XP meet OY in B and R [see Figure 16]. Then, with the earliest definitions in
this Letter, we saw (articles 11, &c.) that the conic is represented by the local equation
xy = 2%; implying, as the immediate consequence of those definitions, or as the first interpretation
derived from them, that (OQXA).(ORYB) =1; or that (ORYB) = (XQOA), or that
(X.XPYU) = (Y.XPYU) or, in words, that the two pencils, X. XPYU and Y.XPYU, have equal
anharmonic ratios. Now let the four points, O, X, Y, Ube canonically projected, as above, and let
it be required to assign the equation of the projected curve, in Canrtesian and rectangular coordinates,
Xand Y. Substituting as in article 55, we have at once, for this sought equation, the following
form:

(1-X+YV3)(1—-X-YV3) = (1+2X)%

or

X*+Y?+2X =0;
the projection is therefore a circle; namely the circle XUY of Figure 10: whence we might infer
that ““every conic can be projected into a circle’, if we were to adopt the foregoing anharmonic
property, as furnishing the definition of a conic.
58. Again, take the form (article 24),

by T4 =0,

of the principal real unit-curve, or of the polar conic of the unit-point U, with respect to the unit-
triangle OXY. Substituting for x, y, z, as above, we have immediately

Fig. 16
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1 1 1
+ + =0,
1-X+YV3 1-X-YV3 142X

or
X*+v*=1;

the canonical projection is therefore again a circle, namely the circumscribed circle OXY of
Figure 10.

59. More generally, if we make the same substitutions for x, v, z, in the general form (article
26) for the anharmonic equation of any curve of the unit-system, the result is,

0=X24+Y2 4+ -a-PX+V3a—-BY+a+B+y—1;

13

where a, 3, y are constants; all unit-curves, that is (by article 25) ““all curves which pass through
the two imaginary unit-points I and (1, 6, 6%) and J, or (1, 6,0) are therefore’ seen anew to be
*“canonically projected into circles’ .

60. Although I feel that I owe you an apology for entering into so many details, when
doubtless a mere hint might have sufficed to let you see my meaning; yet, as I expressed, near
the commencement of this letter, an opinion that this Anharmonic Method might advanta-
geously be introduced into elementary teaching, 1 shall go on for a while, with your hoped-for
permission, to show how easily one or two problems of conic sections may be solved by it,
through the facility which is conferred by the power of selecting any four points, O, X, Y, U, or
any four lines, such as the sides of the unit-triangle and the conic line, as data, in any
construction.

61. Suppose, then that we are (for the moment) in the position of persons who have never
heard of conic sections, but are familiar with the elementary geometrical properties of anhar-
monic ratios; and also, that we have in some manner learned the Fundamental Theorem of this
letter, expressed by the formula of article 10,

x4+ my+nz=0

which connects the anharmonic coordinates of point and line. This formula is a sufficient basis,
whereon to build all investigations respecting local and tangential equations of plane curves; of
any order, and of any class: with all their applications, to poles and polars, inflexions, nodes, cusps,
double tangents; and generally to whatever depends, ultimately, on collinearity of points, or upon
concurrence of lines. We shall find, indeed, that all which relates to distances, normals, foct,
evolutes, and generally whatever involves in any way the conception of a circle, requires (as has
been already seen in part) modification; and conversely receives (as it appears to me)
extension, in the present view.

62. Let there be now proposed the following
Problem:- ‘“To find the locus of the wvertex P of a pencil, P.XOYU, of which the rays pass
through four given points , Xb, 0, Y, U, (no three of these points being collinear,) and which has a

given anharmonic ratio, = — —, where aand b are given.”
a
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P
oy
A_'
oN__~
Fig. 17

Solution:- The anharmonic coordinates of the five points being as in this letter, so that
0=(0,0,1), X=(1,0,0), Y= (0,1, 0),
U=(1,1,1), P=(x, 9, 2),
and therefore
S= OPXY = (x, y 0)
and
T=UPXY=(x—1zy—z0),
we have, on the plan of article 11,

b -
_ P (pxovuy = (xsyry = X2,
a (y—2)x
making therefore for symmetry, a + b + ¢ = 0, the local equation sought is the following:
ayz + bzx + cxy = 0.

And because this equation is of the second dimension we learn that the sought locus is a curve of
the second order, namely, one which is cut, by an arbitrary transversal, in two points, real or
imaginary: while this curve passes (as its local equation shows) through the four given points, O,
X Y, U

63. Problem:- ‘“To find the tangential equation of the curve, which is thus the locus of P.”’
Solution:- Writing the local equation (article 62) as follows:

a b ¢

we find by differentiation (article 16), the expressions,

a b ¢

l=Du=—, m=Du=—; n=Du=-—;
2 b) 2 2
x y z

whence
(al)? + (bm)t + (en)t =0,

or
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(al)® 4+ (bm)® + (en)? — 2al.bm — 2bm.cn — 2en.al = 0

or finally,
MN + NL+ LM =0
or
L'+M'+NT=0;
where

L=bm+cm—al, M=cn+al—bm, N=a+ bm— cn.

64. Problem:- ““To determine the tangent at the vertex P of the pencil; or more fully, to assign the
anharmonic coordinates, I, m, n, of that tangent, PV, considered as a line; and also, the
anharmonic coordinates, x', y’, z’, of the point V, in which that tangent crosses the given
chord XY.”

Solution: The symbol of the tangent is,

(L, m, n] =[ax"%, by ™2, ez *];
the equation of that line PVis,

!

ax' by’

PR R

and the symbol of that point Vis,
V= (bx*— ayQ, 0).

65.  Problem:- To interpret the last result.
Solution:- By article 7, &c., if C = OU XY,
Y= (0.XPYU) = (XSYC), and 2 = (XV¥C);
x X
also

b . by () .
——= (XS8Y(), by article 62, and ——.= = (=] , by article 64,
a a X

x/
hence one interpretation is, that
(XSYT).(XVYC) = (XSYC)*.
But we can simplify, by observing that

(XVYe) (XSYC)
(xsyc) — XYY, and Toeas =

(XTYC);

whence the equation to be interpreted becomes,
(XVYS) = (XTYC), or (P.XPYO)= (U.XPYO);

a result with which, of course, we are familiar, but which is here deduced without the
supposition of any previous knowledge of the doctrine of conic sections.
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66. Problem:- ‘“To deduce the anharmonic property of tangents to the locus.”
Solution:- Differentiating the form (article 62) of the local equation, namely,

ayz + bax 4+ cxy = 0

we find that the general tangent PV may be denoted by the symbol

[l, m, n] = [bz+ ¢y, cx + az, ay+ bx];
whence, in particular, the four fixed tangents at X, O, Y, Uare,

[0, ¢, 0], [b, a, 0], [c, 0, al, [b+ ¢, c+ a, a+ b].

But any two lines, [I, m, n], and [4, 4, v], intersect in the point (un—vm,
vl —An, Am — ul); forming therefore thus the symbols of the four points X;, Oy, Y3, Uy, in
which the variable tangent PV cuts the four fixed tangents at O, Y, U, and comparing the

coordinates of Oy, and U; with those of X; and Y7, on the plan of article 11, we find, after a
few reductions, and with the recent significations (article 63) of L, M, N, the anharmonic,

bM (cN — al) b
Xio0h)) =————=——=(P.XOYU);
(X710, Y1Uy) aL.(cN — ab) g ( )

so that (as is well known), “the anharmonic ratio of the group of intersections of four fixed
tangents with a variable tangent, is the same as the anharmonic ratio of the pencil, of the chords
drawn to the four fixed points of contact, from the variable point of contact’’. (Compare article
18.)

67. As one more Problem, of this elementary kind, let us take the following: “To find the
envelope of the line, which moves so as to be always cut by four given lines, (of which no three are
concurrent,) in a given anharmonic ratio’’.

Solution:- Let the four given lines be the sides OY, OX, XY, of the unit-triangle, and the unit-
line A', B', C' of Figure 5; the intersections of [/, m, n] with these are,

M=(0,—n, m), L=mn0 -0, N=(-m,[,0), and V=m—m, [—n, m—1[)
therefore

l(n — _
(LMNV) = M = constant = (say) —a, with a+ b+ ¢ =0;
m(n — 1) b

“the envelope is therefore a curve of the second class, touching the four given lines,”’ because its
tangential equation is,

amn+bnl+cdm=0;, or —+—+—=0;
it is therefore also of the second order, because its local equation is
(ax)? + (by)% + ()t =0,
or
X4y 'ty zl=o,

where
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X=W+acz—ax, Y=caca+ax—-0by, Z=ax+by— cz

68. As another example of an envelope, which is even easier than the last in calculation, but is
in principle perhaps less elementary, or at least assumes a greater degree of previous
acquaintance with the theory, let us take the case of two unit-curves (article 24) with given
anharmonic centres, K = (a, b, ¢), and K' = (a’, V', ¢'), and with a given product R of their
anharmonic radii, rand r'; and let us investigate the tangential equation of the curve which is
always touched by one of their common tangents. The tangential equation of the two unit
curves being, by article 39,

472 (a+ b+ ¢)*A =9(al + bm + cn)?,
472 = (a' + b + ¢'VPA =9(d'l + b'm+ ¢'n)?,
while
' = R.
The coordinates, [,m,n of a common tangent must be such that
+4R(a+ b+ c¢)(a" + b + YA=9(al+ bm+ cn)(a'l+ b'm+ ¢'n);

such then is the required equation of the envelope; and we see that this curve consists of a system
of two biconfocal conics, one answering to the upper, and the other to the lower sign; for when
the sign is given, the curve is of the second class, and has the two given points K and K’ for
foci. In fact, the tangents from K (for example) satisfy the equation al+ bm + cn = 0; they
therefore satisfy also A = 0, or

(I+0m+6*n)(l+6>m+6n) =0,
and consequently they pass through the two imaginary unit-points (1, 8, 6%) and (/, 6%, 0).

69. If we introduce unitline coordinates a, 8, v, a', B', ¥’ (article 49) of the two given

points K, K’, we write £2R = 0 the recent equation of the envelope becomes, more briefly
(al+Bm+yn)(a'l+p'm+y'n) =0.A;

and we see that this form may represent any conic, with (a, 8, y) (a', ', y") for two foci. In
general, when we have the tangential equation of a conic, under the form (article 44),

F(l, m,n)=0

the partial derivatives D, D,F, D,F are the coordinates of the pole of the arbitrary line
[/, m, n], taken with respect to the conic; so that the coordinates of the (anharmonic) centre
(article 28) are found by making / = m = n in the expression of these derivatives. But DA,
D, A, D,A all vanish for equal values [, m, n; and

atf+y=1 o +p+y =1

if then we denote by a”, 5", v”, the unitline coordinates of the centre of the recent conic, so
thata” + 8"+ y” = 1, we have

”

a—+a Y
fr— ﬁ fr—

B+, v+
2 2 7

14 9
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whence it may be inferred that “‘the two foci K, K' are on one axis (article 28) of the conic, and
the interval between them is harmonically divided by the centreand the unit-line”.

70. The equation in (article 68) may be interpreted, and might have been more rapidly
deduced, by the help of the expression in (article 41), for the anharmonic perpendicular, say, p,
let fall from any given point (a, b, ¢) on any given line [/, m, n]; namely by the formula,

3(al + bm + cn)

::l: 5
? 2a+ b+ c)A?

for thus the equation becomes simply,
pp ==+R.

The product of the two anharmonic perpendiculars, let fall from the two real anharmonic
foci of a conic, (situated on a common axis,) upon any tangent to that curve is therefore
constant’. In other words, if two unit-curves, be described so as to touch that tangent, and to
have the foci for their centres, their anharmonic radii (article 39) will have a constant product.

71. Employing unit-line coordinates of points, and the formula of (article 49) to express an
anharmonic distance, the equation

r+ 1 = sV6,

in which rand ' denote the distance of (§, 5, {) from (a, B, y) and (a', B', y') and sis any
constant, will become,

{(E—aP+—PP+C -y EE{E—aP+ - P+ (E—y )P} =2s

and may without difficulty be shown to represent a system of two conics, with the two given
points for common foci. This was what I alluded to in (article 36), as the anharmonic analogue
(and extension) of the usual sum or difference property of conics. — But I am sure that you must
be quite tired of reading what I am almost tired of writing, on a subject which /looks so
rudimentary; and which is such, except in so far as the Conception employed may introduce an
element of novelty. Even on this last point, however, I await the judgment of others, yourself
included. And I shall say no more about conics in this Letter.

72. But as the quantities &, #, { which I have called the Anharmonic Unit-Line Coordinates of a
point P, are found to play an important part in simplifying several formulae - especially
expressions for the anharmonic analogue of distance — it may be worth while to show that they
are not merely functions of anharmonic quotients, as in the equations

E=

X

—, &c,
X+ y+z

by which they have been (in article 49) defined, but have also independent geometrical significa-
tions, and can be expressed as anharmonic, themselves. With this view, however, I shall consider
first the following more general

Problem:- ‘‘given any six constants, [, m, n, I', m’, n’, to interpret the function
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_U'x+m'y+ n'z
W(X,%Z)* lx—l—my—l—nz >

as representing the anharmonic of a pencil.”
73. Let Kbe the point (a, b, ¢) for which this function becomes

w%hw:%

or of which the coordinates satisfy the two equations,
la+mb+nc=0, lU'a+ m'b+ n'c=0;
then these coordinates will also satisfy this third equation,
(I'—kD)a+ (m' — km)b+ (n' — kn)c =0,
or
Y(x, y, z) = k = constant

will be the equation of a right line through K. Let L, M, N be three points anywhere taken, upon
the three lines KL, KM, KN for which the constant k is, respectively, equal to: zero, unity, and
infinity; then it will be found that for any point P, or (x, y, z), the value of the function is

Y(x, v, z) = (K.PLMN).
74. To prove this Theorem, which contains the solution of the foregoing general problem, we

may suppose that the four points, L = (a’, b', ¢'), M = (a", b", ¢"), N= (a", b", ¢"), and
P = (x, y, ) are situated on one common transversal of the pencil, so that

a b a b

O0=(a" 0" ¢"| and O0=|x 'y =z |;
n n n n n n
a b ¢ a b ¢

in which case we may write briefly,
(M) = t(N) + u(L), (P)=1(N)+u(L),
or more fully
a"=ta" +ua', b ="+ ub, "= 1t"+ uc,
x=1ta"+u'a, y=00"+ub, z=1c"+u'c;
whence the anharmonic of the lately mentioned pencil will be (by article 11).
t'u

(K.PLMN) = (K.NMLP) =
u

and we are to show that this is equal to ¥(x, y, z), under the assigned conditions of
construction. Those conditions give, as what may be called the equations of the three fixed rays,
KL, KM, KN, the following:

l/al + m/b/ + nlcl — O; lla//+ mlbl/_"_ nlc//: la//_"_ mb//_"_ nc/l;
la/ll_"_ mbl//_"_ ncl!/:();
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hence
t(l'a” + m'd" + n'c¢") = u(la’ + mb" + nc'),
Us+m'y+ n'z=t'{U'a” + m'd" + n'c"),
Ix+ my+ nz=u'(la" + mbd" + nc'),
and the anharmonic becomes
tu  U'x+m'y+ n'z
Ix + my + nz

r = w(xa y’ Z)

tu

as asserted. — We derive, at the same time, this slightly more general result:
Y(x',y,2)  Ux'+m'y + 02 e+ my+ nz

Yx, y,2) I +my +n T Ux+my+ nz

= (K.NPLP');

in which KL and KN, are still the rays which make the function (x, y, z) vanish and become
infinite, but Pand P’ are arbitrary points of the given plane.

75. Applying now the theorem of article 73, to the intepretation of the symbol & [see article
72] or of the quotient
x

m =Y(x, y, 2),

the denominator shows that KN is the unit-line, and the numerator shows that KL coincides
in position with the side OY of the unit-triangle: Kis therefore the point B’ of Figure 5, which
thus becomes the vertex of the pencil: and the ray KM passes through the point X, for which
we have (1, 0, 0) = 1; in fact the equation of the line B’ X' is

y+2=0, or§=1.
Hence for any point P, we have, by the theorem,
&= (B'.POXA');
and similarly,
n=(A".POYB'), and (= (C'.PXOA').
Or we may write,
§= (B .PYXC') or &= (B'.POXC')&c.

As verification, when Pis anywhere on the line B'OY, each of these expressions for § vanishes;
when Pis on B’ X, each becomes = 1, as above; and when Pis on the unit line A’B’'C’, then
each of them becomes infinite.

76. If then any triangle OXY have its sides OX, OY, XY cut by any transversal in the points
A', B, €', and if P be any point in its plane, we have the following geometrical theorem, which
can be very simply otherwise proved, by projecting the transversal to infinity:

(B'.POXA") + (A'.POYB') + (C'.PXOA") = 1;

the three parts, or terms, of the first member being those anharmonics which I have above
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denoted by &, 1, §; and my motives for calling which (in article 49) the Unit-Line Coordinates of
the point P, may now be more fully understood.

77. The geometrical notation of this whole Letter might have been made much more symmetric,
by abandoning, from the outset, all reference (even in thought) to Cartesian coordinates, and by
using consequently other letters for the points: for example, by substituting, as in Figure 18, the
letters O, A, B, C, A’, B', A", B", C", in the places which were occupied by U, X, Y, O, B', A/,
B, A, C, while C' retains its position [see Figure 5]. Calling then ABC the unit-triangle, and
A'B'C’ the unit-line, as before, I might have begun with unit-line coordinates &, 17, { of any point
P, defining them by the equation,

§=(A".PCAB"), n=(B'.PABC"), = (C'.PBCA');
or, which comes to the same thing, by these other equations,
&= (RCAB') = (S'BAC’), n = (SABC") = (Q'XBA"),
£ = (QBCA") = (R'ACB'),
if we make, as in Figure 19,

Q=CPBC, R=APCA S=BPAB,

Fig. 19
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Q'=B'PBC, R =CPCA S =APAB

When the unit-line is thrown off to infinity, these anharmonics &, 1, { become, more simply,
as in Figure 20, the quotients of segments,
CR S'B AS Q'C

E=—

_AS _BQ R'A
cA-aB> "TaB” BC’

~ BC  CA’

g

but, by similar triangles,
R'A _PS SS"
CA  CA  AB’

and §'B+ AS + SS' = AB;

and generally, we have the relation
E+n+E=1,

which (as before) connects the unitline coordinates, but is now obtained by (perhaps) the
most elementary process possible: so that the theorem of article 76 is anew obtained, under
this form, that *‘if a triangle ABC be cut by a transversal A’B’C’, and if P be any point in its
planes, then

(A".PCAB') + (B'.PABC') + (C'.PBCA’) = 1."

78. Again, if we make, as in Figure 20
Q"= AP BC, R"=BPCA, S"=CPAB,

and observe that A”, B”, C" are, in this projected figure, the middle points of the sides of the
triangle, we find that
E§ SB_PQ S"B

n AS RP _AS"

= (S"BC"A) = (C.PBOA),

where O is the mean point of the triangle; and similarly for other quotients of &, #, . If then
we return to the general state of the construction, as represented in Figure 18, and denote by
x, y, z any three quantities which are proportional to the unit-line coordinates &, n, ¢, but which are
not connected among themselves by the condition that their sum shall be wunity, nor by any other
relation whatever; we shall have the values,
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J_a.pcoB)y, Z=(B.PAOC), X=(C.PBOA);
z x y
z x y
2 _a.pBOC), = (B.PCOA), 2= (C.PAOB);
X Z z

which may with advantage, so far as notation is concerned, replace the corresponding formula
of earlier articles (articles 6 and 7). And I think that these anharmonic coordinates x, y, z,
when thus defined by reference to the unit-point O, or when thus proved to have essential and
simple relations to that point, instead of having them to the line A'B’'C’, may conveniently be
called, for distinction’s sake, the Unit-Point Coordinates of P.

79. Continuing thus to improve a little the symmetry of our formulz, let Figure 5 be
replaced by the annexed Figure 21, in which LMNis a second transversal of the triangle ABC. 1
would then define that the Unit-Line Coordinates of this line LMN, are any quantities [, m, n
which satisfy the two first, and therefore all the others, of the six following equations
(compare article 9):

!
™ _ (BLcA), = (cMAB), = (ANBC'):
n [ m

!
" _ (cLBA"), <= (AMCB'), = (BNAC).
m n l

And then I would go on to prove, (on the plan of article 10,) what I have elsewhere called (see
article 10) the Fundamental Theorem of this Anharmonic Method: namely, that “‘if (x, y, z), or P,
be a point situated anywhere upon this line [/, m, n], or LMN, then the coordinates of point
and line are connected by the following equation:

Ix+ my+ nz=10";

which (as in article 10) may be regarded either as the local equation of the line, or as the
tangential equation of the point. After this, all would proceed exactly as before, only with a
more symmetrical geometrical notation (article 75).

Fig. 21
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80. Elementary, however, as was the proof given in article 10, of the important theorem just
now cited, that proof may be made perhaps a little clearer and more simple, by employing
unitline coordinates for both point and line, or by proving that

&+ mn+ ni =0;

and by throwing off the unitline to infinity [see Figure 22]. In this manner we have (compare
article 77),

[ AM m BL & QP n PR
n  MC’ n LC & PSS’ ¢ SP’
therefore
l AM Q'P NM LP
L6 _AM QP NM LP g
n PS MC PN ML
BL. PR NL PM
_m_ O TR T (LNPM),
ne S'’PLC NP LM
but
(LPNM) + (LNPM) =1 (by article 5);
therefore
l
——E—m—nzl, or, &+ mn+ ni=0;
ng  ng

and consequently,

Ix+ my+ nz =0, as before.

81. When [, m, nare given constants, and &, 7, { are the unitline coordinates of a point P
which is not situated upon the line [, m, n], then the expression I§ + mn + n has a value
different from zero; and the theorem of article 73, which is unaffected by the recent change of
geometrical notation, enables us to interpret this expression as representing the anharmonic of
a pencil. Let K be the point in which the given line [/, m, n] meets the unitline; so that the
unit-point coordinates (article 78) of this point K may be written thus
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a=m—n, b=n—1 c¢c=1—m,

although the unit-line coordinates (article 77) are infinite. Let L be any other point on the given
line [/, m, n], and N any other point on the unitline [1, 1, 1]; finally, let M be any point for
which the proposed expression, I§+ mny+ n{, becomes = —1. Then, generally, by the
theorem (article 73), for any point P, of which the unitline coordinates are &, 1, §, we have
the equation,

IE + my + nE = (K.PLMN)
and if P" have &', 5, " for its corresponding coordinates, then, by (article 74),

&+ ny + nC

— > —(K.PLP'N).
IE"+ mn' + nl’ ( )

82. Asan example, let us take the expressions (article 54),

X = <2§—§—n>cos§, Y = <§—n>sin§,

and seek, on this plan, their anharmonic interpretations. For the first of these expressions
the given line is OC’, so that we must place Kat C’, and may place L at O, and Nat A’, also
X =1 for the point C, which may therefore be taken for M: so that we may write

X = (C'.POCA’) = (QOCC"), if Q= CPOC, and C"=C'A OC.

For the second expression the given line is OC, so that we must take K = OC'A'B’ = C"; also
4
OC intersects ABin C”, and for the point Awe have § =1, =0, ¥ =sin g; if then we write

R = KP'AB, (Qand R being here not the same points as in article 77,) and place Non AB at
C’, we shall have

§—n=(C".POAC"), and Y = (RC"AC')sin g

83. If we now project canonically (articles 22, 55, &c.) the unit-triangle ABC into an equilateral
triangle, and the unit-point O into its mean point (or centre), as in Figure 23, the points C",
and C', in these expressions for the functions X and Y, will go off into infinity, and Q and R
will become the feet of the perpendiculars from Pon OCand AB; also C” will bisect AB, and
we shall have

C"A = OD.sin g

c

a %]
Q

Fig. 23
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if OD be the radius of the circumscribed circle ABC, erected towards the same side of OC as
OA. The recent anharmonic expressions become, therefore

X = oQ _C'R.
~oc’ oD’
and we see anew that these two functions are simply (in this canonical projection) the two
rectangular and Cartesian coordinates of the point P, referred to the unit-point O as their
origin, with the radius OC for the unit of length, and at the same time for the positive semiaxis of
x; while OD is the positive semiaxis of y: as was otherwise found in articles 54 and 56, with a
less symmetric geometrical notation, and as the result of an altogether different train of reasoning,
and of calculation.

84. The interpretations of these two functions, X and Y, having been thus in a new way
established, if we write, as in (article 54),

rcosp = X = (QC—S—n)cosg,
rsing =Y = (£ — n)sin g,

we shall again have, as in (article 53)

=XV =8+ O - Ep -l - G,
as an expression for the square of the anharmonic radius vector of a point P, while ¢ is (as
before) the (anharmonic) polar angle of that point; also the square of the (anharmonic)

distance R between any {wo points, of which the unit-line coordinates are &, , §, and &', 5, T,
is

R=X - X2+ @ =Y)2=r24+7r—2n" cos(¢p’ — @)
where
' cos(p' — @) = XX'+ YY" = &8+’ + 50 —5(En' + &) — 58’ +En') —5(LE + EL)
with reductions on which it is not worth while to delay, except that we may here just notice
the very simple symmetric formula (compare article 49),

SR E-EF - O
which may be proved, among other ways, by substituting in the right hand member the values
(article 54),

E=11-X+YV3),n=11-X-YV3),E=11+2X),

with the corresponding values of &', ', £'.

85. Let f(x, v, 2z) =0, or f(§ n, ) =0, be any homogeneous and local equation of a curve,
which we may always suppose it to be; because if the equation be not given as homogeneous
in &, n, € we can always render it such, without altering its degree, by the help of the relation
E+n+ ¢ =1.Then as in (article 55), we have, at once,
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fA=X+YV3,1—X—-YV3,1+2X)=0,

as the equation in Cartesian and rectangular coordinates, of what the curve becomes, by the
canonical projection which has already been sufficiently described. Such substitutions having
been, in former articles 57, 58 and 59 exemplified for conics. I shall now venture to give an
example or two, for the case of cubic curves: although conscious how vastly inferior my
knowledge of that subject is to yours.

86. Taken then the following equation of the third degree
27En¢ = k,
when kis any real constant, and which is equivalent to the homogeneous form,
27xyz = k(x4 y+ 2)°.
The substitutions in question give, immediately,
A-—X+YV3)(1—-X-YV3(I+2X) =k

orexpanding and making X = rcos @, Y = rsin ¢

1-3r"+2%cos3 ¢ =k

such, then, are the equations in rectangular and polar coordinates, of the canonically
projected curve.

87. The last homogeneous form (article 86) has been discussed by others, and must be
considered as well known, although I know it only from Salmon’s Book (HPC, pp. 136 and
172) but I shall be curious to learn, whether any one has assigned a short and easy process,
like that given above, for transforming it to common coordinates. Any remark on its interpreta-
tion, that I may go on to make, will of course be purely for my own satisfaction; and because it
is really easier for me, when the pen is in my hand, to write with some fullness than to be
concise. If I had taken time to write these sheets over again, instead of sending them to you as
fast as they were written, I could easily have compressed them into less than half, perhaps in to
a third part, of their extent. As it is, you will just suppose me to be writing in a private book,
the pages of which I allow you to look over, without the slightest hope of teaching you
anything.

88. Two principal cases may be distinguished [see Figure 24]: Ist, the case where k>0, but
< o00; and IInd, the case k30, > —o0. In the Ist case, there exist three infinite branches of the
curve, lying in the three vertically opposite angles B'AC’, C'BA, A'CB’, of the triangle ABC; but
besides these (always real) branches, there exists a real oval, interior to those triangles, if £k <1;
which reduces itself to a conjugate point, at the centre O of the same triangle, if k= 1; and
becomes an imaginary oval, if k> 1; all this appearing easily from the considerations of the
cubic equation in r. In the IInd case, if k = 0, the cubic curve degenerates into a system of three
right lines, namely, the 3 sides of the triangle; but if k£ <0, it consists again of three infinite but
curvilinear branches, which are however situated now in the three infinite trapezoids, C'BCB’,
A'CAB', B'ABA’, formed by prolonging two of the sides beyond the third [see Figure 25]. In
each case, (at least if we set aside the non-curvilinear subcase k = 0), the three sides of the
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Fig. 24

Fig. 25

triangle are the three asymptotes; and the points at infinity, in which they meet the curve, are
the three real points of inflexion. The six imaginary points of inflexion are the intersections of the
cubic with the infinitely small circle at O. (If k = Loo the curve degenerates into three right lines
which however in this case are all at infinity.) And it appears that cubics of the sixth class may
generally be projected into one or other of these forms: namely by projecting the triangle of
tangents drawn at the three real and distinct points of inflexion, into an equilateral triangle; and at
the same time projecting fo infinity the line which joins those points. Indeed, it seems to be
sufficient to accomplish this later projection, or to consider only the triangle of asymptotes,
when these are real lines, and their points at infinity are points of inflexion on the curve. For
then I do not see how the general shapes can change, any otherwise than as the shape of an
ellipse differs from that of a circle. But we should not have equations quite so simple, in rectangular,
orin polar coordinates.
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89. I grant that all this construction (article 88) comes virtually to the very simple proposition,
which I suppose is perfectly well known, although I cannot refer to it:- “The General Cubic is
some projection of the locus of a point P, from which the three perpendiculars (p, p', p"), let fall on the
three sides of a given equilateral triangle (ABC), have their product equal to a given constant’; each
such perpendicular being regarded as positive, when let fall from the opposite vertex, but is
passing from positive to negative, when the point comes to cross the side.

90. Indeed, on turning again to Salmon (HPC, p. 136), I see a Theorem, respecting the
interpretation of the equation ACE — B® = 0, containing (as he observes) nine constants: which
theorem, if we admit that the General Cubic has three real and distinct points of inflexion, the
tangents at which form a real and non-evanescent triangle, (as not generally meeting in one point),
may certainly be said to include the foregoing proposition; although I happened to deduce it,
and the constructions in (article 88), from the Polar Equation assigned in (article 86).

91. The theorem (p. 171, article 184 of HPC), respecting the position of the conjugate point,
when such a point exists, is reproduced by the analysis of our recent article 88. — By starting
with the supposition that the wunit-line contains one real, and two imaginary points of inflexion,
(instead of three real points,) I was led to the form of equation,

U= (x+ y+2)° +6k(x? + xy+ y%) = 0;
which gave, by Salmon’s formula, the Hessian,
H=RKU+4k(y—2)(z— x) (x + y+ 2);
and accordingly, the biguadratic (HPC, p. 187) for i, in the system of three right lines through

the nine points of inflexion, represented by the equation

AU+uH=0,
becomes here (if I have made no slip in the calculation of Sand 7),

0= A+ Ku){31° — 3k2A%u — 3K (8 + bk)Au® — k*(4 + 3k)°u®}
the cubic factor equated to 0, giving generally one real root, and two imaginary roots. — But
whether I shall enter on any account of my interpretation of these equations is doubtful, as I
wish to finish soon.
92. Imay however jot down a few formula for reference, in connexion with this form,
U= (x+y+2)°+6k(x*+ xy+ y)°,

or briefly

U=s>+ 6 kzp,
if

s=x+y+z p:x2+xy+y2;

which form is by no means proposed as the base, but merely as one which, for a particular
purpose, I lately found it convenient to discuss. Differentiating U, we have
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1=1DU = §° + 2ka(2x + y),
m=1D,U = s* + 2kz(x + 2y),
n=1D.U = s* + 2kp,
U'=1D2U = s+ 2k,
m' =§DIU = s+ 2k,
n' = %Dg U=s,
I"=1D,D.U = s+ k(x+2y),
m" =iD.D,U = s+ k(2x + y),
n" =3DD,U = s+ kz
whence
H=1UU"4+mm"?+n'n?=Umn —20"m"n", (HPC, p. 71)
= Ks{(x— y)?+6(x+ y)z— 322} + 6k
= kK{U+4s(y—2)(z— x)}
as in our recent article 91. — The S, T, R came out, for this form of U,
S=3K(4+3k); T=T72k"Q2+6k+3k); R=-2°3"1%3+2k);
whence the biquadratic in %, namely (HPC, p. 187)
2724 — 18SA%u* — TAuw® — S°u* =0
because
0=31"—6k%(4 + 3k)A%u® — 8k* (2 + 6k + 3k*)Au® — k°(4 + 3k)2u?;
or, as in, (article 91),
0= A+ Ku){32° — 3k2A%u — 3K (8 + bk)Au® — k*(4 + 3k)*u®}
where the factor A + k*u corresponds to the decomposition, assigned above, of the combina-
tion H — k?U into three linear factors, s, y— 2z, z— X, answering to a system of three real
right lines, on which the nine points of inflexion are contained.
93. The line
s=0 or x+y+2=0

is what has been called, in this Letter (article 10) the unit-line; it cuts the cubic U in one real
point of inflexion, namely in C" = (1, —1, 0); and in two imaginary points of inflexion,
namely,

I=(1,0,0% J=(@,6%80),
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which have been called (in article 25) the two imaginary unit-points. The tangents to the curve,
at these three points of inflexion, are

2=0, or C'AB; y—0x=0, or IC; and y—6°x=0, or JC;

as may be perceived on inspection of the given equation U = 0, and may be confirmed by
observing that, (see article 92,)

x=1, y=-1, z=0 give [=0, m=0, n=2k

x=1, y=0, z=0> give 1=2k0*(2+6), m=2k0*(1+20), n=0;
and

x=1, y=6% 2=0 give [=2k0(2+0%, m=2k0(1+20%), n=0;
so that the tangents at C’, I, J have for their equations,

2hz =0, 2kO*(2+ O)x+ 2kO>(1 +20)y =0,
2k0(2 + 0%)x + 2kO(1 + 260%)y = 0;

or, because

2+6 2 + 62
=—6 and =6
1+20 S Y ’

z=0, y—0x=0, y—02x:0, as above.

The point C, or (0, 0, 1), in which the two imaginary tangents intersect, is real and is one of
the corners of what we have called the unit-triangle; and the real tangent at C’ is the opposite
side of that triangle.

And if we draw, as in former figures, the line CO to the unit-point O, meeting AB in C”,
and A'B'C’ in C', and having y = x for its equation, this line will be the harmonic polar (HPC,
p- 140) of the point of inflexion C’, with reference to the given cubic. Thus the real point C,
or (1, 1, —2), is the harmonic conjugate of C’, or (1, —1, 0), not only with respect to the two
real points A’ = (0, 1, —1), and B’ = (-1, 0, 1), but also with respect to the two imaginary
points /and J, so that
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and the imaginary tangents at [ and [ are conjugate rays of a pencil in involution, whereof the
sides CA, CB are also conjugate rays, CC’ and CO being the double rays.

94. The constructions in the foregoing article are independent of any use, or even know-
ledge, of the Hessian, H; but we may now go on to employ the equation

E2H —U=4s(y—2)(z— %),

in order to discover the six remaining points of inflexion of U: wherof we see that three are
on the real right line y — z = 0, or OA; and three others on the other real line, z— x = 0, or
OB. And now it is evident that at least this cubic U has three real points of inflexion; namely the
point C' on the line s =0, as before, and (wo new points, which we may call K’ and K",
situated on the right lines OA, OB. The imaginary points on OA may be called /' and J'; and
those on OB, I"and J".

95. Writing
K=k Kk =1/(2+8k
(where I intend that real cube-roots should be taken,) and
w=kEk'(K+ k), o =KkKOF+6k), w" =Kk 6K +0k"),
the quantities w, w’, w” are the one real and the two imaginary roots of the following cubic
equation:

w® + 12k(3 + 2k)w — 4k(3 + 2k) (12 + Tk) = 0.

Eliminating z from U =0, by the equation y—z=0 of OA, we obtain this other cubic
equation, to determine the directions of the three lines, CK', CI', CJ', which are drawn from
the point Cto the three points K', I', ' on inflexion on the line OA:

0= (x+29)° +6ky(x® + xy+ »%)
= x>+ 6(1+ k)x>y+ 62+ k)xy® + 2(4 + 3k)y;
in which if we make
(8+6k)y+ (4+ 2k)x = wx,

we are conducted to the recent cubic in w, the roots of which have been assigned. The real
point of inflexion in OA is therefore

K' = (8+6k w—4—2k w—4—2k);
and the two imaginary points of inflexion, on the same line OA, are,

I'=(8+6k w —4—2k w' —4—2k),

J = (8+6k w"—4—2k w"—4—2k).

In like manner the real point of inflexion on OB is
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K'=(w—4—2k 846k w—4—2k);
and the two imaginary points of inflexion, on the same line, are,

I"= (' —4—2k 8+ 6k w —4—2k),
J' = (w"—4—2k 846k w' —4—2k).

96. As verifications, we may try whether the 9 points are collinear, 3 by 3. One such
collinearity (C'IJ) we started with; and two others, (/'/'K') and (/”"J"K"), are immediate
results of the calculation. The three real points of inflexion, C’, K', K”, are collinear, because
their coordinates satisfy the common equation,

2w+ k)z=(w—4—2k) (x+ y+ 2),
which represents a real right line. The two imaginary lines,

2w + k)z= (w' —4—2k) (x+ y+ 2),

2(w" + k)z= (w" —4—=2k) (x+ y+ 2),

connect in like manner the two sets of three points, C’, I', I”, and C’, J', J”"; and thereby
exhibit two other collinearities. But besides the three lines, one real and two imaginary, of
which the equations have just been written, and the three real lines, above alluded to, of
which the equations are

x+9y+2=0, y—2=0, x—2z2=0,
namely the three linear factors of KU — H, we ought to be able to assign six other lines, to
make up the known number of twelve.
97. For this purpose, I modify a little the foregoing expressions for the points I', J', K', I",
J", K", as follows. Writing, more briefly,
K'=(,v,v), K"=(v t,0),

v
where tis a real, which may still be assumed equal to 8 + 6k, while m is the real root of the

cubic equation,

Qu+ 1)} +6kv(W* + w4+ 12) =0

and supposing that - 7 are the two imaginary roots of the same equation, for it will, in

general, have two such roots: then by developing and reducing the equation,
(' —0) Ho@® + w4+ *) (20 + 1) —v' (0?2 + w' + *) (2 + 1)°} =0,
I am conducted to a quadratic, which may be written thus:
0 <U’ 621 — 61)) <v’ 01— 020)
S\t +20%)\ 1t 14+200)

Hence the following new symbols may be employed to represent the points I', ..., J"
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I' = (1 + 26, 6°t — Ov, 6*t — Ov);
J' = (t+260v, 01— 6%v, 0t — 6°v);
I"= (6%t — Ov, t + 26°v, 6%t — Ov);
J"= (0t — 0%, t+20v, 01— 6%v);

t and v having the same real values in all these formula. The six former collineations are
again put in evidence; thus besides the original equation x + y 4 z = 0, which is satisfied by
the three points C’, I, J, we have y = z for each of the points K', I, J', and x = z for each of
K", 1", J"; the equation (¢ + 2v)z = vs, (where sis still equal to x + y + z,) represents the real
right line C'K'K"; and the two imaginary lines C'I'I", C'J']", have for their respective
equations,

(62— 0) (1 +20)z= (0%t — Ov) s, (0 — 0 (1 + 20)z = (01t — 6°D)3s.

But the six other relations of collinearity, for which we were in search, come also now into view.
Thus the equation,

X, Yy oz
0=(0>—0uvx+ (v—60%t)y+ (0t—v)z, or 0=t v, v |,
1, 6, 6

is satisfied, whether we suppose x = t, y=0, z=v,asfor K';or x=1, y= 6, z = 6%, as for I,
or

x=2z=0t—0% and y=t+20v

as for J": these three points of inflexion K', I, ", whereof the first is real, and the two others
are imaginary, are therefore situated on that one imaginary right line, of which the equation
has just been written. In like manner, K’, J, I” are on this other imaginary line,

X Y, z
0=(0—0)vx+ (v—00)y+ (0t —0v)z, or [t v, v|;
1, 6% 0
K" I, I' are on
X, Yy Z
0=|v, t, v |[=00t—v)x+(1—-0"vy+ (Bv— 1)z
1, 60, 6
and K", J, J' are on
X, 9, z
0=|v, t, v|=0@—0v)x+ (1-0)vy+ (0*v— 1)z
1, 6, 6

so that besides the real line C'K'K", connecting the three real points, we have already found
three other real lines, and six imaginary lines, passing each through one of those three real
points, and connecting them with imaginary points. Finally, if we write

I/ — (t/’ U/’ U/)’ ]/ — (t//’ UU’ U”), [// — (U/’ t/’ U/)’ ]/l — (U//’ t”, U//)’
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the equations

Xy z

O — t/ Ul U/ — U!(U/I _ t/’)x—’_ UU(U/ _ t/)y_"_ (t/tl/ _ U’U”)Z,
UI/ t!/ UH
Xy z

O — tl/ UH UH — UH(U/ _ t’)x+ U!(UH _ t/!)y + (t!tll _ U/U/!)Z,
vt v

or, after expansion and division by ¢ — v, the equations,
0=0w—0t)x+ (t—0v)y+ (6 —1)vz,
0=0*—0*t)x+ (1 — 6%0)y+ (0 — vz,
or still more briefly
0=0v'x— 020"y—|— (1 —6)°vz, and 0=0"x— ov'y+ (1 —0)vz,

represent two imaginary lines, namely /I'/”, and IJ'I", which connect the six imaginary
points among themselves, and are the two lines that remained to be found. — It is to be noted
that these two lines intersect each other in a real point O' = (v, v, t), which is on the harmonic
polar (article 93) of C’; and that the product of their equations, namely

0= (*+ tw+0*)(x*+ y*) + (1> — 2w — 20%)xy — Btv(x + y) 2+ 3027,
or
0= (> + tv+v*) (x — y)* + 3(tx — v2) (ty — v2),
represents an imaginary or infinitesimal conic, which has the recently determined O’ for its only
real point, but which is to be considered as passing through the six imaginary points of inflexion.
(Compare article 88.)
98. If we multiply the equation of this conic, by the equation
O0=vx+vy— (t+0)z

of the real right line C'K'K" which connects the 3 real points of inflexion, we obtain a new
equation of the third degree, which may be written thus:

0=+ w+ U+ (t+20)7°%s(y— 2) (2 — x);

and which represents a locus, containing «/l the nine points of inflexion. Accordingly, (in
articles 91 and 92) we found that

4s(y—2)(z—x) = kK 2H - U,

so that the last equation is of the form AU + u H = 0, as it ought to be; and I have verified
312 k?

(t+20)¥
0 =32% — 3k%A%u — 3k3 (8 + 5k)Au® — k' (4 + 3k)*u®,

A
that the resulting value of —, namely is the one real root of the cubic (article 91),
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where kis treated as a function of ¢and v, determined by the first equation in article 97, or by
the formula,

= (t+20)°
Co(2 4+ w+v?)

99. Writing, for greater symmetry, Kinstead of C’, to denote the first real point of inflexion,
which is at once suggested by the mere form of U, without any trouble of calculation, we may
collect the twelve collineations into four groups, as follows:

(KK'K") = v(x+ y) — (t+ v)z= 0; (equation of right line through K, K', K")
(J'1")y =v"x—0v'y+ (1 — 0)vz = 0; (equation &c. through) 1, J', I")
(JI']") =v'z— 60*0"y+ (1 — 6?)vz = 0; (equation &c.; )

L {

(KI] =x+y+2=0;
II. (K'I']"y =y—2=0;

(K'I"]") =2—x=0;

(KI'I"y=v'(x+y) — (' +0)z2=0;
III. (K'II"y =1 —-0)vx+v"y— 0v'z=0;

(K"J]") =v"x+ (1 —-0)vy—0v'z=0;

(K],],/) — U”(x + y) _ (t” + U”)Z — 0;
V. (K'JI")y = (1 — 0*)ox +0'y— 6%0"2 = 0;

(K"II') =v'x+ (1 — 0*)vy— 0%0"2 = 0;
it being understood that each of these twelve linear equations in x, y, z holds only for the set
of three points of inflexion to which it belongs; and ¢', v, t”, v”, still depending on ¢and v,
by the formula (article 97),

' =t+260%; v =6%t— Ou;

"= t+20v; v"=860t—6%.

100. Multiplying the three equations of Group I, we find, by article 99,
(KK'K").(I]'T").(JI']") = v0'v"U + v(t + 20)*s(y — 2) (z — x) = AgU + uo H

where
A 7%
,LT(()) = 3<t+ 20) ; and s= x+ y+ z (Compare 98.)
Multiplying the three equations of Group II, we have, at once, the product (article 91),
A
(KINH (K'T']Y(K"T"]") = s(y—2) (z— x) =AU + u1 H; /1_11 = — K.

Multiplying the equations of Group III, we find, after reduction,
(KI'T"Y (K" I]"Y(K"JT') = (1 — 0)ov'v"U — 6%0 (t + 20)*s(y — 2) (2 — x)
=AU+ usH;
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and in like manner, the product of the three equations of Group IV is,
(KJ'J").(K'JI").(K"II") = (1 — 8*)vv'v"U — 60" (1 + 20)*s(y — z) (z — )
=A3U + usH;

Ao < kt' )2 d As ( kt" >2
—=- , and —=-— .
o t+2v Us t+ 2v

. LA A iy
I have verified that while ~> and ~* are (as already seen, or stated) the real positive root and the
Ho 4 M1
real megative root, respectively, — and 23 are the two imaginary roots, of the biquadratic equation,
U3

where

U2
already cited from Salmon, namely,

270 — 185A%u® — TAu® — S?u* = 0.

101. The following method has occurred to me, — but it is probably not new to you, — of
Eroving that this important biquadratic has generally two roots imaginary. Write, for a moment

— = t, and consider the function,
f(t) =27¢% — 1885t — %7
The derivative of this function is,
f/(t) = 8112 — 188+ S*¢7% = (9t — St7')* >0 unless 9¢* = §;

and even for such a value of ¢ the function would only be for a moment stationary, in its
positive progress, from

f(=00) =—00, to f(0_) = +o0;

where by 0_ I denote an infinitely small but negative value; or again in its (still positive) progress,
from

f(04) = —o00 to f(+400) = +o00,

where 04 denotes a positive infinitesimal. Hence, while the real variable tadvances from —oo to
~+00, the function f(#) passes twice, but not more than twice, through any assigned and real value,
T, whether that given value be positive or negative. Consequently, the biquadratic equation,

0= tf(t) — T, or 27¢* —18S* — Tt— $* =0,

has, generally, two real and unequal roots, and not more than two; it must therefore in general have
two imaginary roots; the coefficients S and T being always supposed to be real. — Determinants,
no doubt, might be employed, and in part I have made a verification by them. — It may be
noticed that the case f'(¢) =0, above hinted at, will not give equal roots in the biquadratic
equation, unless we have at the same time

T = f(t) = F8S’, and therefore R=645>— T?=0.
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102. In some such way, it is probably well known that fwo of the four roots of that
biquadratic are generally imaginary: but there may be a chance of novelty in the form of those
four roots to which the foregoing discussion has conducted me; and which had offered
themselves also to my observation, in discussing, with a similar view, the form of Uin article
86. These forms are:

b e M (@+BP Ak (@t 0P A (a+ 6P

Ho T 3 7w 37wy 3

>

where a and f are real quantities, of which the first may be taken as positive. (As compared
with the formule of 100, 6 and 6% are here interchanged.) To test the generality of these
forms, — which are to me quite new, — I form the product

0= (=3 {1+ (@a+pPHi+ (a+ 0B}t + (a+ 6°6%)},
and find it to be,
0=¢*—6a(a®+p% 12— (8a® —20a°B% — %) t — 3% (a® + )%

comparing which with the biquadratic

3
0=1*—68%—Tt—3S8°, (where { = —),
u

it only remains to prove that the two equations
a(@®+p% =58 and 8a®—-20a°8° —p° =T,
can be jointly satisfied by real values of a and S, whatever real values (including signs) may be

proposed for Sand T: and this I conceive that I can do.

103. For this purpose I first eliminate by assuming
p=ai/GT
which reduces the two equations to be satisfied, to the forms:
aty=15;, a%Q7-18y —y*) =T.
And now we see that it is sufficient to prove that the new biquadratic equation,

T2
(v + 18y —27)° = 7" =0,
has at least one real root, y, which satisfies the condition,

2 —
y<+ 18y 27<

0;
T

Sand T having any given values, supposed at first to be different from zero.

104. Consider the biquadratic curve,
(x% + 18x — 27)? — yx3 =0;

which is easily found to give
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(x — 92 (x? + 18x — 27) — y'x* =0,

d
ity = d—i; or, slightly changing the notation,

,3 9 g
Yo = x(x — x1)*(x — x9)%,

!

Ye=x "t (x =9 (x — x) (x = %),

x1=-9—6V3, x =—-9+6V3.

243

Attributing (or conceiving as attributed) to x all real values in succession, from negative to

positive infinity, and examining the correspondent march of y, or y,, we have,

Yw<0, 9:>0, if x<xi;
%<0, yy<0, if x>x, <O0;
>0, y:<0, if x>0, <uxo;
%w>0, y:,>0, if x>x, <9, or if x>9;
with the following particular values:
Yoo = —00; Yy =0;  yo_ =—00; 9y, =+00; Yy =0; =064
Yoo =+ yy =05 oo =—00; . =-—00; yyu=0; =0

de

Moo = +00;

Yoo = +1;

to which it may be added that not only y} but also yx or 2 vanishes for x = 9, so that we may

. XQ
write,

3§ = 0.

105. The curve of which the equation may be written thus,

270 972 729
y=x+36+"———+—,
X X X

80

—40 -20 0 20
~“F A B X

Fig. 27
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and which has therefore the right line y = x + 36 for an asymptote, must consequently have a
shape somewhat like that which is sketched in figure 27; being below this asymptote for large
negative values of x, but above it for large positive values, and crossing it in two real and finitely
distant points, (x{, xi + 36), and (x3, x5 + 36), when x{, x5 are the two roots of the quadratic,

10x'2 — 36x' + 27 = 0;

so that
=2 6-VE), xb=—(6+6)
770 ST

or nearly
x{ = +1-07, x5 = +2-53;
while we had
X0 = —9 + 6v3 = +1-39, nearly;
so that
X0 > x1, < x9.

The curve, after leaving the above mentioned asymptote at (—oo, —00), ascends until it comes
to touch the axis of x, at a point A = (x;, 0), when x; = —19-39, nearly; it then descends
again, until it touches the axis of y, which is another asymptote, at (0, —oc). But this is, in
modern Geometry, the same point as (0, +oc); and accordingly there arises immediately a
new infinite branch, which descends until it comes to touch the axis of x, at the point
B = (x9, 0), having crossed the former asymptote on its way, at a point C = (x1, 36 + x1). It
then ascends for ever afterwards, crossing that asymptote FG, — when I = (—36, 0), and
G = (0, 36), — in a point D = (x5, 36 + x5), after undergoing (as it seems) an inflexion
between Band Dj; but its velocity of ascent may be said to vanish for a moment, at a point of
horizontal inflexion, E = (9, 64).

106. The foregoing construction, of this auxiliary quartic, makes it evident, even to the eye, that
every right line, which coincides with neither the axis AB of x, nor with the parallel tangent of
inflexion EH, but is parallel to each of those two lines, cuts the curve in two real and distinct
points, and in no more than two: so that if any real value, excepting 0 and 64, be substituted for the
ordinate y, in the biquadratic equation of article 104, namely in

0= (x*+18x —27)* — yx*

that equation must have two of its roots real and unequal, and coincident points at F, and again in a
fourth real point H; and accordingly, by supposing y = 64, the biquadratic becomes,

0= (x> +18x — 27)* — 64x°
= (x =9 (x — 1);

so that the point H = (1, 64).
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107. Of course, it was not necessary to have thus constructed the curve, in order to deduce these
results, respecting the biquadratic equation. We might have simply considered the function y,
of article 104, and have observed that by the formula of that article,

¥y increases (constantly and continuously) from — oo to 0,

while x increases from — 0o to xi;
9y, decreases (&c.) from 0 to — oo, while x increases from x; to 0_;
9y, decreases (&c.) from + oo to 0, while x increases from 0, to xo;
¥y increases (&c.) from 0 to + oo, while x increases from xs to + oc;

its rate of increase vanishing, however, for a moment, in the last of these four intervals, for
x =9, y = 64. For this would have been sufficient to prove, that if (without any reference to
geometry) we regard yas an arbitrary but real constant in the biquadratic equation in article
104, this equation in x will have the following solutions:

I.  two real and unequal roots, and two imaginary roots if y = 0, and = 64;or
II.  two distinct pairs of equal and real roots, xi, x1, and xp, xo, if y = 0; or
III. four real roots, 1, 9, 9, 9, whereof the three are equal to each other if y = 64.

108. Returning now to the equations of article 103, we see that if (7%/S®) have any given
and real value, distinct from 0 and from 64, two real and unequal values (but not more) can be
found for y, which shall each satisfy the biquadratic equation of that article. There was
however a certain condition of inequality to be also satisfied, if possible, by y; and we now see
that it is possible to satisfy that condition likewise. For the preceding analysis shows that one of
the two real values of y falls within, and that the other of those two values falls without, the
interval between the two roots of the quadratic equation,

v+ 18y — 27 =0;

according, then, as the given T'is positive or negative, we take the former or the latter of these
two values of y: and then, in each case, the condition in article 103,

T-'(y* + 18y — 27) <0,

will be satisfied. And if we make a the real and positive value of
-
(27 — 18y — 7)

aly =13,
we have (S/y) = a*, and are led back to the final equations of article 102, namely,

a(@+p%) =S, 8a®—20a°p" - p° = T;

and f the real value of

which we now see to admit of being satisfied by one, but by only one, system of real values of a,
B, with the condition o> 0, if S, T, and R(= 6453 — TQ) are all real, and different from zero.

109. As an example of this determination of the real constants a, 3, y, when S and T are
given, let us suppose that Uhas the known canonical form,
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U=x"+y +2° +6exyz,
whence (HPC, p. 183, §198)
H=22(x"+ 9 + 2% — (1+26%) 2,
S=e¢*—e, T=1-20e" —86S.
We are then to satisfy, by real values of a, 3, v, the equations,

a®+ B3
y = ;

at+af® =et—e; 8a® —200°B° — B =1 —20¢° — 8e°; Pt

for which purpose we are led to consider the resulting biquadratic,
0=e’(’ = 1)’ (y* + 18y — 27)* — (8¢° +20¢° — 1)*)°,

But the same biquadratic in ¥ would have been obtained, if the second equation to be
satisfied had been

8% — 200%8% — B® = 8% +206° — 1;
and in that case we might have assumed
a=e pB=-1, y=1-¢73

this last value of y must therefore be a root of the biquadratic, but a root that is to be rejected,
as answering to a wrong sign of 7. Dividing then by (¢®y 4+ 1 — ¢%), we are led to the cubic
equation,

0= (e®—1)%p% — 2763 (% + 166 +10)y? + 243¢% (> — 1) (> — 4)y — 729¢° (¢® — 1)%;
which I find to break up into two rational factors, one linear, namely,
0=(e— 1%y —9e(e®+e+1),
and the other quadratic, namely,
0= (> +e+1)2%2 —9¢(e—1)(2e* +4¢® — 6% —8e— 1)y + 812 (e — 1) (e — 1).

The roots of the quadratic factor must, by the theory, be imaginary, and are here to be set
aside. Confining ourselves therefore to the linear factor, we have the value,

796(62—|—€—|—1).
o (e—1p 7

whence

__1\6
(62771)(3/24_18’}/_27):382(€2+€+1)2+6(€—1)%€(€2+g+1)_(e_l)ﬁ

=8e%+200° —1=—T;
so that the condition,

T (y* 4+ 18y — 27) <0,
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of article 103, is satisfied by this value of y, but not by the rejected value (1 — ¢~%), which
would have given, if we denote that value by y’,

T 'y? 418y —27) = T (=8 =20 + ¢ %) = ¢ 5>0.
Making next, by article 108,
a®=T7127 18y —y?) =27(e—1)"5,

we infer that, since « is to be real we must take

o e—1
V3’
and then by the same article,
é: s 7/71:26+1,
a e—1
so that
2e+1
ﬁ:

£v3

Or, taking the sign + for each radical whether ebe > or <1, (since it is not really important

whether a be positive or negative, provided that — has the proper sign,) we may write
a

definitely,

a_e—l ﬁQe—i-l
V3 V3

as sufficiently representing, in the present example, the real system of values of a and f,
determined by the two given equations,

at+af=S, 8a®—-20a°8-p°=T;

their satisfying which may be verified by actual substitution.

110. When real constants, o and f, have in any manner been found so as to satisfy the last
two equations, for any given values of Sand 7, of which neither vanishes, and which are not
connected by the relation R = 0, it follows from article 102 that the biquadratic equation,

4 2
- () - () o
I I Iz

has its four roots expressible as follows:

31 31 31
“L=480% = —(a+ P o=
Mo 1231 H2

—(a+ 6p)%; 8 _ —(a+ 6%B)%.
Us

In other words, the four following equations represent each a system of three right lines,
passing through the 9 points of inflexion of U:
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I U+ H =0
II. (a +pBPU—-3H =0;
III. (a+6B)*U — 3H = 0;
IV. (a+6%82°U—-3H =0.

And from comparison of these general forms with those in articles 99, 100, and with the
corresponding forms derived from the case in article 86, where

U= k(x+ y+ 2~ 27xy,

it appears that equation I, represents generally a system of one real right line, containing the three
real points of inflexion of U, and of an imaginary or infinitesimal conic, which is equivalent to a pair
of imaginary right lines, meeting each other in one real point (but not in a point of inflexion,)
and containing the six imaginary points of inflexion of the cubic curve (cf., articles 88 and 97).
On the other hand, equation II. represents generally a system of three real right lines, whereof
each passes through one real point of inflexion and through two imaginary points of inflexion of
U. Finally, each of the two remaining equations, III. and IV., represents a system of three
imaginary right lines, whereof each still passes through one real point, and through two
imaginary points of inflexion.

I do not know whether the distinction, thus drawn, between the geometrical significations of
the two ( positive and negative but) real roots of the biquadratic equation in —, which expresses the

u
condition necessary for AU + ¢ H being a product of the three linear factors, (HPC, p. 187,
§201) has been published, or perceived by anyone.

111. To verify it for the canonical form of Uin article 109, I observe that, for this form, the
equations I. and II. of article 110 become, by article 109,
I. (¢e—1°U+3H=0; 1. 2U—-H=0;
that is, here, after dividing by 4¢? — 2¢ + 1, and by 8¢® + 1, respectively,
L x*+ 9y +2° —8x2=0; II.  xyz=0.

The latter is evidently a system of three real right lines, eash passing through one real point of
inflexion. The form may be written thus;

1. (x—l—y+z)(x+02y+9z)(x+0y+02z):();
or,
L (x+y—|—z)(x2+y2+z2—yz—zx—xy):O;

it consists therefore of one real right line, passing through the three real points of inflexion, and
of an imaginary conic through the six other points. All which agrees with the general theory
enunciated in article 110.

112. We may as well verify equations IIl. and IV. of that article, by means of the same
canonical form of U. It is easily found that the values in article 109 of @ and 8 in terms of e,
give

—(a+ 0B = (e— 6%, —(a+0°B)* = (e—0);
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the two remaining but imaginary systems of right lines are therefore here,
. 0= (e—6*°U+3H,; IV. 0=(e—6)7>°U+3H.
Accordingly, there is no difficulty in seeing that

— 022U +3H
(Zeﬁ —)292e+0 =04y 42 = 30"

and that

(e—02U+3H 4 4
T —op, gt =X TV HF 300z

so that these two remaining systems are,
M. 0= (x+0y+02)(x+ 0*y+2)(x+ y+ 6%2),
and
IV. 0= (x+02y+02z)(x—|—9y+z)(x—l-y+0z).
And in fact, if we denote the nine points of inflexion (for the canonical U), as follows:
K' =(0,1,-1), I'=(0,1,-6), J =(0,1,-6%),
K'=(-1,0,1), I"=(-0,0,1), J"'=(-6%0,1),
K"=(1,-1,0), I"=(@1,-6,0), J"=(,-6%0),

we find twelve formulze of collineation between them, which may be briefly written thus, on
nearly the same plane as in article 99:

L. (K'K"'K"™) =x+ y+ % (I'1"1")y = x+60%y+ 0z (J']J"]") = x+0y+ 6%z
L (K1) = x (K"I']") = (K"1"]") = z
L. (K'I"]") = x+0y+ 0z (K"J'T"y =x+60y+2z (K"I']") =x+y+ 6z
IV. (K'J'I")=x+60y+ 0% (K'I']")=x+0y+z (K"]J'I")=x+y+ 0z
113. Suppose that in this, or in some other way, we had found that for the canonical form
of Uin article 109, the biquadratic in ;, or {, becomes,
0=t"—68"— Tt— 38"
=" —6(c" — o)1+ (8e® +20e” — 1)t — 3(e* — ¢)?
= (t+3e){t—(e—1)*Ht— (e— 0 Ht— (e— 6%},

without any previous knowledge of the values of a and f3; we might have proceeded to find
(instead of wusing) those values, by comparing this last equation with the corresponding
equation of article 102,

0= (t—3a®){t+ (a+ B2 i+ (a+ 0>+ (a + %)}

Thus we should have,
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3a® = (e— 1% (a+p) =3a%
and either
(a+6B)* = —(e— 0,
or

(a+6B) = —(e— 6%

but a little examination would show that the latter alternative was to be adopted, and would

conduct to the same values as in article 109, namely,

114. Again, if we start with the following modification of the form in article 86,

U= (= 1)(x+ y+2)° + 27xy2,

which gives

27U +4H =108(c® — 1) (x* 4+ y* + 2% — 3xy2),

we have the 9 following points of inflexion:

K,:(Oa 1; _1)7 K”:(_la 0; 1)7 KW:(I; _1?0)’
I'=(c—1,0c—1,0%c—1), I"=(0%c—1,¢c—1,0c—1), I"=0Oc—1,60%°c—1,c—1);

J =(—1,0%—1,0c-1), J'=@Oc—1,¢c—1,0%c—1), J"

with the 4 groups of right lines (sbeing equal to x + y + z):

I (K'K'K")=x+y+2 (I'T"I") = x+ 0y + 622,
0. (K'I'J)=3x+(c—1)s,  (K'I"]")=3y+ (c—1)s,
. (K'I"]")=3x+ (0c—1)s, (K'I'J")=3y+ (6c—1)s,
IV. (K'I"]")=3x+ (0%c—1)s, (K'I"]')=3y+ (02c—1)s,

and the four products:

! 4 n ! norm ! nym 27U+4H
L KK'K"I'I'I"]J']"] = T8 1)
9(2c+ 12U —4H
36(c2+c+1)
9(20c+ 12U —4H
©86(62c2+0c+1)
9(20%c+1)°U —4H
36(0¢% + 0%c+1)

II. K!I!\]!.K//IU‘]I/.K///]/N\]/H —

III. KI]U‘]N.KUI!]/U.KHIII/ !

IV. K/1/7/77.KI/IVIIJI.K/H]!]N —

A
The four values of ; are, therefore, in this Example,

A A Py
B2 A Sy 2o gty
Ho 4 281 4 M2 4

(
(
(
(

A3

Us

(0%c—1,0c—1, c—1);

JJJ") =+ 6+ 65
KII/II//]/N) — 3Z+ (C_ 1)3;
K

"T"]")y =3z+ (Bc—1)s;

K"I']")y =38z+ (0*c—1)s

= —%(20264- 1)%

>
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and we have thus a verification (above alluded to) of the Theorem of article 110; for we see
that the realand positive value of — answers here again (as in the cases before considered) to a

system of one real and two imaginary right lines, whereof the former connects the three real points
of inflexion, while the latter pass through the six imaginary points; and that, on the other

hand, the real and negative value of — corresponds (in this, as in other instances) to a system of
three real right lines, whereof each passes through one real point of inflexion, and through two

imaginary points . (— Have you elsewhere met with this distinction, of article 110, between the

e . A
geometrical significations of the two real roots of the biquadratic —?).

115. Comparing the recent values of the four roots of that biquadratic, with the forms in
article 102, namely with

Ao o M 1 o Ao 1 o A3 1 99
—=a°, —=-—-(a+p)y, —=-—=(a+0p), —=-—-(a+06p),
. = oglatp =g (@ 0pr, = —g (@t 0%h)

we see that, in the present Example,

a:%\/g, ﬁz?)\/g.c;

whence (by the cited article),
S=a@®+p%) =27"3°(1 +8¢);
T =8a° — 20a°B° — B% = 2738%(1 — 20° — 8%).
Accordingly, if we take the form,
U=a(x+y+ 2)° +6(d— a)xyz,

and seek the values of Sand 7'in terms of @ and d, by the general formula of HPC (p. 184,
§199) after correcting the signs of the last groups of terms in S, in conformity with the remark
made in the Note® to page 113 of the ‘“Lessons” on ‘“Modern Higher Algebra’’, — which
remark I may be excused for saying that I made for myself in 1857, while engaged in a
correspondence, chiefly on Quaternions, with our friend Salmon, who appeared to be a little
surprised at the time, and to have supposed that nobody but Cayley' would have detected the
necessity of the correction, — but since the summer of that year, until quite recently, I have
not been thinking of Cubics at all, — we find,

S=d"—6d°d*+84°d — 34" = (d — a)*{(d — a) + 4a};
T =—-8(d— a)*(d® +4ad + a*) = —8(d — a)*{(d — a)* + 6a(d — a) + 64*}.
Making then, more particularly,

U:a(x+y+z)3+27xyz, d—a:g,

* [Salmon G., Lessons introductory to the Modern Higher Algebra, p. 113, 1st edn. Hodges Smith: Dublin
1859, referred to hereinafter as LHA.]
T [Arthur Cayley, 1821-1895.]
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we have

48 = <227>2(9+8a), T = —<227>3(27+36a+8a2).
And if we finally write (¢*—1) instead of a, we obtain,

48 = (2?7)2(1 +8¢%), T= (%)3(1 —20¢" —8c°%);

values agreeing perfectly with those found above, by a totally different method, with the
assistance of the fwo constants, o, and B: which if not really new, are at least such to me.

116. I shall employ those new (or supposed new) constants, o, 3, to assist in resolving the
following Problem:-
“To assign the coefficients, a and d, of the Canonical Form of the Cubic, thus written,

U= a(x’+ vy’ +2°) + 6dxyz,

in terms of the constant ¢, so as to make the Sand T of this form coincide, respectively, with
the Sand T of the form in article 114, namely,

U= (-1 (x+ Y+ 2)? + 27xyz.”

In other words, we are to assign real values of a and d, which shall satisfy, the two algebraic
equations, (cf. HPC, p. 183, §198, and the last article, 409, of the present Letter,)

(S=) d* —a®d=2""3°(1 +8¢%);
(T =) a®—20a°d®> —8d° =27%3%(1 — 20¢% — 8¢%);
¢ being still supposed to have a real value.

117.  For this purpose I observe that the second form of U in article 115, gives b = 2¢; and
that the second form gives, by the results of article 109, “

E_Qe—Fl
a e—1"

d . .
where ¢ = —; comparing, therefore, we have the equation
a

9 — (§:> 2d+a

a d—a’
where
d— (264—1)0.
2(c—1)

Substituting this value for d, in the two last equations of article 116, and observing that
Qe+ D' =8(c—1)%2c+1) =9(1 +8¢°),

and
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8(c—1)°—20(c—1)°(2c+1)° — (2¢+1)° = 27(1 — 20¢° — 8°)
we find that these equations become,
at=3"c—-1*% a®=3(—-1"%
they are therefore both satisfied by our supposing
a=3(c—1), d=3(c+d),

although of course the signs of both @ and d may be changed together.
Hence ‘‘the function,

U=3(c—1)(x>+ " +2%) +92c+ Dxyz,
which may also be thus written,
U=3(c—1)ss's" + 27 cxyz,

where

s=x+ytz S=x+0y+0% " =x+02y+ 0z
while c¢ is still an arbitrary constant, has the same S, and the same T, namely,

§=2"*3°1+8¢%, and T=273"(1-20—8c"),
as the function U = (¢® — 1) s® + 27xy2”", or more fully,

U= (-1 (x+ Y+ 2)° + 27 xyz:

and the Problem of article 116 has been resolved.
118. Whatever values the constants a and  may have, the expressions in article 102 for §

and 7, in terms of those constants, may easily be decomposed into linear factors, as follows.
First, we have evidently,

S=a(a’ +p) = a(a+p)(a+0p)(a+6°p);
or briefly,
S = all,(a + fp),
where ¢ is any cube root of +-1, and

ILf () = f(1) f(6) f(6%).

8 3
Secondly, if we resolve the equation T = 0, as a quadratic in i, we get the two roots,
B
8a® 5
Vo 10 £V108 = (1 £V3)%;
writing therefore
1-v3 1++3
a] = a9 =

we have
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T = 8a° — 208" — B° = 8(a® — aiff°) (& — a3B°)
= 8(a — @) (@ — 0 ) (@ — 021 f) (@ — as) (@ — Basf) (o — 6%asf)
= 8IL,(a — i p) (a — wasp);

and the required decomposition has been effected.

119. Since
2(a — 11 B) (a0 — 1asf) = 2a® — Aaf — 262,
we have
T? =11,(2¢° — 2waf — *f%)* = T1,(4S — 1 B) = 64S° — B,

where

B=p(8a’ - f°);
but the known

R=645" - T%

we have therefore
VR =BB8a’ — ) = pIL,(2a — 1f3).

Thus, making a = (3/2)\/5, p= (Sx/g) ¢, as in article 115, we have, for each of the two
functions U of article 117, the common value,

R=13%1—-¢.

120. Let us now apply a similar analysis to the solution of this other Problem:-
“To assign real values of the coefficients gand #, in the form

U =9(gs’+ hzp),

where (as in article 92)
s=x+y+z and p=x>+xp+ )%
so that the resulting Sand 7 may have the recent values (in articles 115, 116, 117),
2 3
1/27 ; 27 ;
S=1 <2> (1+8c%, and T= <2> (1—20¢" —8c°).”

In other words (cf. article 92) we are to find two real, and if possible rational functions, gand
h, of the real constant ¢, which shall satisfy the two algebraic equations

P (h+8g) =1+8h (h? +12gh+24g%) =120 — 8c°.

121. To solve this problem on the same general plan as before, I compare (after inter-
changing 0 and 62, as remarked in article 102) the expressions of article 100 for the four

roots of the biquadratic in | — |, namely,
u



IIT. LETTER TO HART ON ANHARMONIC COORDINATES 255

o _ BB b, /12_k2<t+20u>2 ig_k2<t+2020)2
a t+2v Us (+2v )’

o (202 w7 w
h v
in which k = (6—> ,and <_t> is the real root of the cubic equation
g
Ut,v,u = O,
if U,,,,. be written for U, with the general forms of article 102,
A A 1 A 1 A 1
Tt (@B’ Z=-c(@t0h)’ T=—C(at6h)
Ho 251 3 U 3 Us 3
and thus obtain, for the present form of U, the following values of the constants a and f:

a_kt\/g_ ﬁ_ka\/g
i+ 20 i+ 20

Comparing these with the values of article 115, namely

3v3
a:T\/—, ﬂ:?)cx/g,
we find that we are to make
2kt 2k
(+20 7 it °

and therefore v = ct; so that the constants of Umust be such as to allow the equation

Ul,c,c =0
to subsist, and therefore we must have
h (1+20)3 g c(1+c+ )
ST o 2= T
g c(1+ c+ ¢?) h (1+2¢)3
But we have, identically,
1+8¢
(1420°—8c(l+c+ ) =1—92+42=-1°,
1+2¢

and
(14+20)° = 12c(1+ c+ ) (1 +20)° + 247 (1 + ¢+ ¢*)* = 1 - 206" — 8¢%;
the two last equations of article 120 become, therefore
M=a0+20% KB =1+20)°
and agree in giving h* = (1 +2¢)%. We may then take, as the solution of the problem of
article 120, the values,
I+t %)

h=—(1+42¢), 11202

giving
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91+ ¢+ %)
(14 2¢)2

although, no doubt, the signs of g, -, Umight all be changed together.

5 —9(1 + 2¢) zp;

122. Collecting recent results, we see that the three following distinct forms of the cubic
function, namely,

I. U=3(c—1)ss's"+ 27 cxyz;
I. U= (—1)s*+27x
. U=9c(1+c+ 62)(1—&—26)’253—9(14—26)4),

(in which we still employ the abridgments,
s=x+ytz sS=x+0y+0%, s"=x+60%y+0z and p=ax*+xyp+ 2t

while ¢ is still an arbitrary constant,) have all the same values of S, T, and of course R: since,
for each of these three functions, we have the expressions,

27\* | s 27\’ s . B a6 3
45= (5 ) (148 T=(%5) (1-206 —8c); VR =3%(1 - %);
which can all, by article 118, be decomposed into linear factors. Thus, in the notation of the
last cited article, we may write,

s =271 (1 + uc); T = =3I, (ay +tc) (ag +tc);  VR=3%IL,(1—tc).

123. A few words may here be said, on those particular cases (S =0, T'= 0, R = 0), which
in several of the preceding articles we have set aside, when deducing the values of the
constants a, $ which answered to given values of Sand T.

I. The case $ =0, T>0, or <0, presents no special difficulty. We have only to consider
2

T
the ordinate, y = (—) , of the biquadratic curve in Figure 27, as here becoming infinite; and

S3
therefore (by the nature of that curve) as corresponding either to an infinite, or to a null value
of the abscissa, x =y. The former supposition gives oo = 0, and the latter gives oo = —f; with

each, therefore, we satisfy, by article 102, the proposed condition S = 0. But a =0 gives
T = —%<0, while a = —f gives T = +275° > 0; the distinction between the two real values of
y, or between the two real points in which the curve in article 104 is cut by a given parallel to
the axis of x, depends therefore still, as in the general method or process of article 108, on the
given sign of T. Thus,
(1) ifS=0,T<0,wetakea =0,0= (—T)tls; but ,

T

(2) ifS=0, T>O,wethentakea:—ﬁ=—<§> .

A
124. In the first subcase, the biquadratic in (;) becomes,

4
0= 27@) L g2
u u
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and its roots may be thus expressed,

h_o A__ B 0B A _ (0B

po 37 ue 3 7 us 3

in the second subcase, the biquadratic is
A A
u u

6=-16-1)% and 6°=-16*-1)%

and because

its roots may be written thus,
A A A
40 _ ﬁ?’ M 0, 2 _
Uo 251 U2

A
OB =N - P
us

but, in each of these two subcases, the expressions for the four roots agree perfectly with the
general forms of article 102. We can also verify here our general Theorem of article 110,
respecting the geometrical distinction between the two real roots of the biquadratic equation in

(—). For we must evidently consider the null root, in subcase (1), as the lmit of the positive

root; but in subcase (2), as the limit of the negative root. The theorem to which we refer leads
us therefore to conclude, that when S = 0, and 7 <0, the Hessian H is the product of one real
linear factor, and of two imaginary ones; but that when S=0, T>0, H is, on the contrary, a
product of linear factors, which are all three real. Now this pair of contrasted conclusions
agrees precisely with what might have been otherwise inferred, from the principles of
Salmon’s book, on Higher Plane Curves. For he remarks (HPC, p. 184), that § =0 is the
condition for the Hessian H breaking up into three right lines; and also that, if we set aside the
case when Ultself so breaks up, the equation S = 0 expresses also the condition for the given
equation U = 0 being reducible to a sum of three cubes. Now there are two ways, and there seem
to be only two, in which this last property can hold good; the given coefficients of the equation
being always supposed to be real: namely, the cubes may be all three real, or two of them may be
imaginary. But the former of these two alternatives answers to the form,

U=ax"+ by + 2
which gives (cf. HPC, p. 183),
S$=0, T:a6b666>0, H:—a‘%bgcsxyz;

it belongs therefore to our recent subcase (2), and accordingly we see that the three linear
factors of the Hessian are all real here: as was above expected, from the general Theorem in
article 110 of the present Letter. On the other hand, if we take, in conformity with the latter
alternative, respecting the composition of U,

U=dx>+ by + 2% + 6abexyz,

so that
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3U = (ax + by + ) + (ax + O0by + 0% c2)® + (ax + 02by+ 0cz)®,

we have still S = 0, but we have now T = —274%0°¢® < 0; we are therefore here in the subcase
(1) of the present article, and accordingly we find (by the last cited page),

H= a0+ 6>y + *2° — Babexyz)
=V (ax + by + ¢z) (ax + 0by + 6% cz) (ax + 92by—|— Ocz);

two linear factors of H are therefore here imaginary, as by the general theorem of this Letter,
above referred to, they ought to be.

125. Let us next consider briefly the case,

T2
II. T=0, $>0, or <0. In this case, the ordinate y= <S‘%> of the auxiliary quartic

constructed in Figure 27, becomes equal to zero, instead of infinity; and because the axis of x
has double contact with that curve, the abscissa x = y has four real values, equal however two

by two, namely those which were denoted in article 107 by xj, x;, and xg, x9; where, article
104,

x1=-9—6V3, x =-9+6V3,

so that these two distinct and real values of x, or of y, are the two roots, one negative and the
other positive, of the quadratic equation,

y? +18y — 27 = 0.

But both these values of y give T = 0; they cannot therefore be here distinguished, or separated,
by any reference to the sign of T, which reference has hitherto been our resource. Fortunately,
however, a new resource, which had not been previously available, starts up here, exactly when
it is wanted. In general, any parallel to the axis of x cuts the curve of Figure 27 in two distinct and
real points, which are at one common side of the axis of y; so that they give one common sign to the
abscissa y, and therefore also to S = a'y (see article 103). The sign of S is therefore generally
useless, for any purpose of separation between the two real roots y, of the biquadratic equation of
article 103; and in fact, without thinking of any curve, the cited equation, namely,
2
0= (y*+18y —27)% — %y,

2

T
shows immediately that, if < > >0, or <0, each real root y must have the same sign as S. Nor

<3
could we, from this biquadratic alone, assign any reason for preferring one root to another, of this
quadratic equation above written. But neither could we, in former cases, consider one real
root of the biquadratic as deserving any preference to the other, until we went back to the
equations involving a and f3, from which the equation in y was a result. In the present case,
the two points of contact, of the curve with the axis of x, are at opposite sides of the axis of y; they give,
therefore, opposite signs to y, and consequently to §: which corresponds analytically to the
negative product of the two roots of the quadratic.

The sign of S is therefore useful, and in fact decisive, here, as regards the choice of the root y.
Accordingly, we now have the two subcases:
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(1) if T=0,8<0,theny =—9 — 6/3;
(2) if T=0,8>0,theny = —9+ 6+/3.

In the first subcase, the formula of article 103,
ﬂ =a \/3 Y- 1,

gives f = —a (1 + V/3); in the second subcase, 8 = —a(1 — V/3).
And because in each we have, by article 103, a4y = §, we may write definitely,

(1) if T=0,85<0,then

_s A\
a = <m) P ﬁ—_(l“r\/g)a;

but
(2) if T=0,5>0, then

+5 O\t
a—<m>, ﬁ—_(l_\/g)a

126. These values give, by the general formulz of article 102,

A A1 1
== S = D[ F2V3)SI,
Mo mr 3
2 _ —@:1[(?@2@)515;
U2 us 3

the upper signs being taken when S <0, and the lower signs when S > 0. Hence for each of

these two subcases, <—> must be a root of the equation,

81\ :
() —38 | =128%
U

272 —18522u® — S*u* =0,

and accordingly, under the form

this is precisely what the general equation, already cited (HPC, p. 187) namely
270 — 185A%u® — TAu® — S?u* = 0,

becomes for the case T = 0.

127. If we write a new modification of the known canonical form of U,

r.n

U = ss's" + 3exyz,

where s, §', §" denote the same three linear functions as in articles 117 or 122, and ¢ is a new
arbitrary constant, then it is not difficult to prove that

4H = (e — 1)2ss's" — (¢ — 3)%exyz
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also
16S = (e — 1) (e — 3) (> + 3),
and
8T = (3 —e2){(3 — 3e +£2)2 + 3¢%).

The only real values of ¢, which render 7" = 0, are therefore ¢ = +\/§, and € = —\/g; whereof
the first gives S <0, but the second gives §>0. Hence, for these values of ¢, we have the
particular forms,

U=ss's"+ 3\/§xyz, (e+1)%H = ss's"F 2\/§xyz;

the upper signs answering to the first subcase, and the lower signs to the second subcase, in
article 119. We thus confirm, then, the known theorem (HPC, p. 184), that when T = 0, the
second™ Hessian is the original curve; since a second change of sign of the radical v/3 would
bring us here from H to Uagain. And whether T'be, or be not, thus equal to zero, we see that
(e—3)2U+12H = {(e — 3)% 4+ 3(e — 1)?} ss's";
(e—1)2U—4H = {(¢—3)*+3(e — 1)*}exyz;
so that we thus obtain a new verification of the ( perhaps new) theorem of article 110, that *‘if
AU+ puH be a product of three linear factors, the coefficients 4 and u being real, then

according as these two coefficients agree or differ in sign, either (1) two of the factors are
imaginary, (as here s', s",) or else (2) all the three factors (as here x, vy, z) are real”’. — By

changing ¢ to /3, we must recover the real values (article 126) of = for the two subcases of
article 119 under the forms :

do A _ (=1 2FV3

Ho H 4 2

and accordingly we have, (for & = +1/3,)

3 3
§=7(3—2) _Z(Sq:2x/§),
and
(3F2V3)2 =3(2F V3)%
so that

%«SW\/E)S)% = 22\@.

128. Another important though only particular case is the following

III. R=0, T>0, or T"<0; whence also $ > 0. 70
In this case, the ordinate of the auxiliary quartic of article 104 is y = &= 64; we are
therefore led to consider, as at the end of article 106, that particular parallel, EH, to the axis

* The word “‘second’” has dropped out of the cited page, but the context leaves no ambiguity.
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of x, which is the horizontal tangent (see Figure 27) of inflexion at the point E, and which
therefore meets the curve in three coincident points there, cutting it again at the point H:
where

E=(9,64), and H = (1,64).

In other words, (as in articles 106 and 107) the biquadratic which determines the abscissz x,
or Y, answering to the ordinate y = 64, is

0= (x—9)°%x-1);
its roots are, therefore, all real, but three of them are equal; and they are
1,9,9,9.

The distinction, between the two real and distinct values of the abscissa, comes again to depend
on the sign of T, but not on that of S, which is here given. In the Figure the two intersections L,
H, of the above mentioned tangent of inflexion with the quartic curve, are both at one common
side of the axis of y; but they are separaled by the parallel to that axis of which the equation is
y = x = x3 = —9 + 61/3; namely by the ordinate at the point b, at which (for the second time)
the function T'vanishes. Accordingly, the formula of article 103,

S=a'y, T=0a%27-18y—y?),
give
S=9a*, T=-216a° R=645%— 7%= (3'2°— (322%)%)a'? =0,
for the point of inflexion E; but
S=a', T=8d" R=0,
for the other point of intersection H. Combining therefore these last results with the formula
B=ayy—1
of article 103, we find the following values of @ and f3, for the subcases of III:

(1) if R=0, T<0, then

(2) if R=0, T>0,then

A
129. If we proceed to calculate hence the value of <>, by the general formule of article
102, applied to the recent subcase (1), we find for that subcase,

A A

—OzaQ:%\/‘%—T; —1:—%(a+ﬁ)2:—3a2:—%3—T.

Ho h

These are the two roots which are generally real, the first being generally positive, and the second

generally negative, although as a limit (cf. article 124) we have found examples of one or the
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A
other vanishing. The two other roots of the biquadratic in <;) have been seen, in article 101,

to be generally imaginary; but in the present instance they are both real, being also equal to each

other, and to the positive root 0) . For the formule of article 102 give now,
Ho

/12 1 9 a2 2 2 13 .

As 1 29\ 2 o’ 212 2 _ 13
—=—(a+0ph)" =——(1+20°)" =+a" =xv-T.
M3 : 3

A
The four roots g—) have therefore been assigned for the subcase (1) of IIL; that is, for

“ iy .
R =0, T <0; and we see that three of them are equal, and positive; while the fourth (or rather
the second, in the foregoing order of enumeration) is negative, being equal to the negative triple
of each of the other three; so that (as always) the sum of the fourroots is zero.

130. In the subcase (2), R =0, T>0, the same general formula of article 102 give, by
article 128,

A A —a

HUo “
A 1 9 ot A 1 2 012 a?
— = —3(a+ 0p) =3 —=—3(a+0°0)" =——;
U2 us

so that here the two latter roots, which are generally imaginary, become real, and equal each to
the negative root of the equation. Whether we suppose 7'to be less than, or greater than, zero,
we see that in each subcase the biquadratic must admit of being written thus:

_<i_1T%><i+lT%>g
=T G+sT

)
T%& ,iT&,LT%
u 27 u 432

because R = 0 gives T3 = 48; and accordingly this last form agrees with that which is given by
Salmon.

131. The distinction between the two subcases of article 128 may be illustrated by the
following Example. Let the three coefficients ¢1, c2, ¢3 vanish, in Salmon’s general form
(HPC, p. 99) for the cubic function U; that function then becomes,

U= a1x*+3asx®y + 3b1xy” + boy® + 3z(asx® + 2dxy + b3 y?).

At the same time, the general formulae for S and 7, — the correction of signs in the first (cf.
article 115 of this Letter) not coming hereinto play, — become,
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S = (d*— asbs)®, T =-8(d*— asbs)’;

so that the condition 72 = 645% or R = 0, is satisfied. And we see that we have the first or
the second subcase of article 128, T'<<0 or T >0, according as (d? — asbs) >0, or <O0; that is,
according as the quadratic,

ang + 2dxy + bng =0,

has real or imaginary roots; or finally, according as the point (0, 0, 1), — which is called by
Salmon (but not always by me) the origin, — is a node, or a conjugate point, of the cubic curve,
U = 0: the two tangents to that curve, at that point, being realif T <0, but imaginaryif T > 0.

132. No essential generality is lost, when we suppose for simplicity that d = 0; which gives
S = as®bs®, T = 8as®bs®; the distinction between the two cases, T <0, and T >0, being now
simply this, that the coefficients of the two terms of asx? + b3 y%, whereby 3z is the multiplier
in U, have opposite signs in the first subcase (namely for a node), but have similar signs in the
second subcase (namely, when there is a conjugate point). But when we thus make ¢1, co, ¢3,
and d all vanish, the expressions (HPC, p. 182) for the coefficients of the Hessian become:

ay = bia3; be = agbl; c3=0; 3ag= as(asby —2ashs); 3by = bs(bsar —2ashy);
8as = a3bs; 3c1 =0; 38bs=azby; 38cy=0; 6d=0;

so that
H=0»n a§x3 + as(asbs — Qagbg)x2y+ bs(bsa; — 2b, ag)xy2 + agbif,y?’ + asbs(asx® + b3y2)z.

At the same time, in the first subcase, 7" <0, we have by article 129,
b _ Ao _ A,

A
=—=—=—3asbs; “L = asb;
Uo U2 U3 “1
but in the second subcase, T"> 0, we have, by article 130,
Ao oM _ e A

= = — = —zasbs.
Ho woope ops o O

Whichever sign T may have, we ought therefore to find that the two combinations,
asbsU — 3H, and agbsU + H, are products of three linear factors; and the Theorem of
article 110 leads us to expect, that if agbs <0, T <0, the first of these combinations should
have only one real factor, while the second should have all its three factors real; but that, on the
contrary, if azbs >0, T'> 0, then the three factors of agbsU — 3 H should all be real, whereas
two of the factors of agbs U + H should here become imaginary.

133. It did not, however, seem to me easy, at first sight, to verify this expectation, without
any restriction being laid upon the constants, a1, ag, b1, be, which enter into Uand H, but not
into S, nor into 7; except that the given coefficients, to which these constants belong, are always
supposed to be real (see article 124). And I was even inclined to console myself, for what I
thought might turn out to be a failure of the general theorem of article 110, in this singular case
(or case of singularity), R = 0, by observing that because Sand T thus take no cognizance (here)
of the four constants ay, ag, b1, be, — attending, as it were, only to the immediate neighbourhood of
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the singular point, whether nodal or conjugate, — therefore, perhaps, that theorem could not
fairly be required to extend to this case since it was established on a study of the relations generally

. A . .
existing, between the roots <— , and the constants S and T, without any other constants being
u

supposed to be given; although I had found it convenient to introduce two auxiliary constants,
a and 3, which have been proved (articles 102 to 108) to be real functions of S and T, and have
largely figured in several recent articles of this Letter. But happily I soon ascertained, as
follows, that this species of consolation was unnecessary: the Theorem still holding good,
without any exception or modification whatever.

134. Writing the first combination of article 132 as follows:
asbsU — 3 H = Ax® + 3Bx? y + 3Cxy* + Dy’,
where
A= az(a1bs —3azhy), B= —as(asbs —3azbs),
D = bs(agby — 3aghs), C= —bs(arbs —3azh),

we see at once that this combination is a product of some three linear factors, because z has
been eliminated; but it is not obvious whether all are real, or two imaginary. Calculating,
however, the discriminant,

A = (AD — BC)? — 4(B? — AC)(C? — BD),
which is greater than zero if there be two imaginary roots, but less than zero if all three be
real and unequal, (cf. HPC, p. 296,) we find that
AD — BC = 0;
a3(B* — AC) = as(asB* + b3 A®),  a3(C® — BD) = bs(asB® + by A%);
therefore
A = —4a;’bs(as B2 + b3 A?)?.

Hence, my first expectation is confirmed; for we see that in the first (or nodal) subcase,
T <0, asbs <0, we have A >0, and there are two imaginary factors of azbs U — 3 H; but that in
the second (or conjugate) subcase, T>0, asbs >0, we have A <0, and all the factors of
asbs U — 3 H are real.

135. The other combination, agbs U + H, although involving z, is still more easily discussed. For
we soon find that

asbsU + H = (asx® + bsy*){4asbsz + (a1bs + asby)x + (agbs + asby)y};

where the linear factor {4asbsz + -+ -} is always real; and the quadratic factor, (asx* + bsy?),
when equated to zero, gives real or imaginary roots, according as agbs is less than, or greater
than zero, and therefore according as 7" <0, or > 0.

The Theorem receives therefore, again, for the singular case R = 0, a critical and scarcely
hoped for confirmation.
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136. To complete the discussion of the equations at the end of article 102, or the
determination of real values of a and f, answering to any given and real values of Sand T, a
few words must be said on the remaining case,

IV. § =0, T = 0; that is the case of a cusp (HPC, p. 193). Here the ordinate (8%2/T?) of the
auxiliary quartic of article 104 becomes indeterminate; and therefore the abscissa’y cannot be
definitely found. But the equations of article 102 show, here, without any reference to that
auxiliary curve, or to its equation, that we are, in the present case, to take, simply,

a=0, p=0,

A
as the only real values which satisfy the given conditions. The four values of (ﬂ)’ when

expressed by the equations of article 102 in terms of a and f3, all vanish here; and accordingly
the biquadratic reduces itself to A* =0, in the case when S = 0, and 7 = 0. In this case, then,
the only combination of the form AU + u H, which breaks up into linear factors, is the
Hessian H itself, but the Theorem of article 110 fails here to distinguish between the cases of

A A
real and imaginary factors, because the zero, which is at once equal to <M_O> and to (ﬂ—l> , is
0 1

here the common limit of the real positive and of the real negative root of the biquadratic. Hence
I conceive that we may safely in this case infer, that the imaginary factors of H become real, by
becoming equal to each other; and therefore the Hessian ought then to be found to be the
product of one real and linear function, multiplied by the square of another such factor.
Accordingly if we make agbs = 0, as well as d = 0, we shall have the case of a cusp; and at the
same time the Hessian will become,

H = a%xg(blx—i— boy) + b§y2(a1x+ asy),

which evidently admits of the decomposition into three real factors, whereof two are equal,
whether we suppose that b3 or that ag vanishes.

137. It will now, I think, be instructive, to resume the three general forms of article 122, of
which each involves only one arbitrary constant ¢, and which have been adjusted so as to give
all one common set of values of S and T; and to consider what particular forms they assume, in the
three particular cases 1., I1., III., of articles 123, 125, 128; for we cannot expect to meet the
case IV. of article 136, or to satisfy the two equations S = 0, T = 0, by any one value of the still
disposable constant c.

138. Form L. of article 122 was,
U=3(c—1)ss's" + 27 cxyz;

and since it, like the two others, gave S = 2435(1 + 8¢%), it is evident that if we had written
that form as

U=3(c— a)ss's" + 27 cxyz,

we should have found S = 2743 (a* 4+ 8ac® + 0¢*), because S must always be conceived to rise
as high as the fourth dimension, with respect to the coefficients of U. Hence when we come
to consider the real values of ¢, which render S =0, in order to adapt the three forms of
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article 122 to the case I. of article 123, we must not merely employ the value ¢ = — (%), which
renders 1+ 8¢% = 0, but must also take, as an alternative, the value ¢ = co. The first value
gives T = +92-6312. the second value gives T = —oo; we are, then, to take the latter for the
subcase (1) of article 123, and the former for the subcase (2). But the reasoning will become
much clearer, if we modify the forms of article 122, by dividing each U by ¢; which will of course
have the effect of dividing Sand +/R each by ¢*, and Tby .

139. Consider therefore these three new forms:
. U=3(1-c¢")ss's"+27xyz
. U= (®—c1)s®+27c¢ ayz

(14 ¢+ ¢®) 3—91+26ZP'

. U=09 : ;
1+202 ° ¢

where s, 5", s”, phave the same significations as in article 122. For each of these forms of U, we
must, by the theory already explained, have the common set of values following:

S=973%(c*+8c7"); T=273"(c%-20c7-8); VR=3%(c%-1);

which may be decomposed into linear factors, on the plan of article 122.

140. If now it be required to assign cubics, included under the three last forms, which shall
satisfy the two conditions § =0, 7 <0, we see that we are to take ¢ infinite, and the three
required cubics are, or appear to be, for we shall find cause to reject the second:

L x®+ 93 +22+6x2=0; or s>+ s> + 5" = 0; (cf. article 124);
II. (x+y+z)3:O;or53:O;
O (x+ y+2)® —8z(x* + xy + y*) = 0; or s> —8zp = 0.

As a verification of this last form, we may observe that it, like the first, is the sum of three cubes,
one real and two imaginary: namely,

3 _ 3
(x+y—2°+ <z+9y_0’;> +<z+0yg_9;> =5 — 8zp.

But we said that the second form must be rejected. In fact, although it is true that
U= as®+6(d— a)xyz gives generally T = —8(d — a)*(d? + 4ad + a*), and therefore (by
making a = E—cl d—a==c1') T= 2733%(¢% —20¢7% - 8), as in article 139, if
U= (- c1)s®+27¢ 'xyz; and although this value of T tends to the finite limit
T = —3%<0, as ¢ tends to oo; yet when we again divide U, namely by ¢?, in order to reduce the
second cubic to s® = 0, as above, we virtually divide the last expression for T by ¢!, and so
reduce it from a negative to zero. Accordingly if we operate directly on U = s°, we get T = 0, as
may be seen, among other ways, by making d = a in a formula of the present article. We
conclude, then, that no actual cubic curve (with real and finite coefficients), of the second form of
article 139, (nor even a system of three coincident right lines,) can satisfy the two conditions,

S=0, T<0;
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but that these conditions are both satisfied by the two cubics, of the firstand third forms respectively,
I. $+s%+5%=0, and nr. s — 8zp = 0;

whereof each is the sum of three cubes, one real, and two imaginary (cf. HPC, p. 184).

141. For S =0, T >0, there is less difficulty; and now the two first forms of article 139, or of
article 122, are available. We simply change ¢ to —%, in each of them, and divide by numerical
coefficients; and thus obtain the two following cubics, which both satisfy the proposed
conditions, and are of the required forms:

I £+ ys + 22 =0; 0 R - 24xyz = 0;
where both I. and II. are sums of three real cubes, since
(x+9y— 2)% + (y+z— x)3 4+ (z+ x — y)3 =(x+y+ 2)® — 24 xyz.

But when we endeavour to render the cubic II. actual, or to get rid of infinite coefficients in its
equation, by multiplying its U by (1 + 2¢)2, we thereby multiply the T = +27%31? of article
138, by (1 +2¢)'%, or by 0%, and so reduce it from being positive to be null; so that the
equation s® = 0, which might seem to belong here to form IIL., is to be rejected, as it was then
regarded as belonging to form II., in the analysis of article 140.

142. For T =0, S<O0, we take (cf. article 122), ¢ = —ag = —{(1 ++/3)/2}; and therefore
¢! =1-+/3 = 2ay, so that form I. becomes,
ss's" + (8\/§)xyz =0,

as in article 125. At the same time,

s 24+V3 . | 33
4

2 2’

and form II. of article 139 becomes,
s% — 18xyz + (6V/3)xyz = 0;

also

s 3 1+c¢+¢2 1 1+ 2¢
14+2¢c=—-v3 1+ct+d=2= L _ 3 3
26 \/—7 ¢ ¢ 2’ (1 +26)2 2’ —C (\/7) ’

therefore the form III. becomes here,
s — 62p + (2\/§)zp =0.

Collecting, then, these last results, we have, for 7" = 0, the following cubic curves, of the three
forms proposed:

I ss's"=+ (3\/§)xyz =0;
I s — 18xyz 4 (6v/3)xyz = 0;
I s —62p £ (2V3)2p = 0;

the upper signs answering to § <0, and the lower sign to $>0. As a verification, the second
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Hessian of each must admit of being shown (cf. article 127) to coincide with the original
curve.

143. Finally, for R =0, T <0, if we set aside the cases in which the cubic U breaks up
into three lines, whether all real, or two of them imaginary, we take the value ¢ = 1, and the
form III. and find IIL.: s® — 9zp = 0, which is a curve with a cusp, (cf. article 131,) at the point
(1,1, 1); but for R=0, T>0, we take the value ¢=0, and the form II., namely
5% — 27xyz = 0; and this cubic has a conjugate point, (cf. again article 131,) at the same unit-
point (1, 1, 1), or O, as earlier and otherwise seen in article 88.

144. It was early observed, in article 61, that the fundamental formula of article 10,
lx+ my+ nz =0,

which connects the anharmonic coordinates of a point (x, y, z) with those of a right line
[l, m, n] whereon that point is situated, is a sufficient basis for all investigations that depend
ultimately on the conceptions of collinearity of points, and of concurrence of right lines: and I
think that I have somewhere remarked that the mechanism of all such researches, considered
merely as a branch of calculation, cannot be expected to differ, in any essential respect, from
the wusual mechanism of trilinear coordinates: although the interpretations of the elementary
symbols will be different, and may suggest, sometimes, improvements or modifications even in
the work. Accordingly, for at least nine of the last sheets, and in fact ever since the little
investigations of articles 86 and 88, respecting the form ks® = 27xyz of the cubic (when
s = x+ y+ z, ) I may seem to have quite dropped the consideration of anharmonic coordinates;
although the name has been, for uniformity’s sake, retained, in the heading of all the sheets of
this long Letter. But besides that we may always think of xyz, in all these later investigations, as
meaning anharmonic coordinates, I shall now go on, — as it is indeed high time, — to mention
one or two Problems, which are perhaps more immediately suggested by the conception of such
coordinates than by the notion of trilinears; and for the solution of which, the Method of this
Letter appears to offer some facilities. A brief recapitulation of the first principles of that Method
may however occupy, not uselessly, the remaining pages of the present sheet.

145. Allow me therefore to state, — selecting rather than merely repeating from former parts
of this Letter, — that with the improved geometrical notation of article 77, and with a
corresponding modification of the early and very simple Figure 4, my fundamental conception
of the anharmonic coordinates of a point, when disengaged from everything foreign, or
superfluous, or merely illustrative, admits of being enunciated as follows (cf. article 78). Let
ABCbe any given triangle, Figure 4 bis, [which is a slightly altered version of Figure 4] and O,

B
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P any two points in its plane, whereof O is treated as given or constant, but P as arbitrary or
variable. Then, whereas, by a well known theorem of segments, we have the constant product,

(A.PCOB).(B.PAOC).(C.PBOA) = +1

I write

y z x

o= (A.PCOB), = (B.PAOC), ;: (C.PBOA);
and define that x, y, z, or any other quantities proportional to them, are the Anharmonic
Coordinates of the point P, taken with respect to the given triangle ABC, and to the given point
O. Accordingly I denote the variable point P by the symbol (x, y, z); and because the
corresponding symbols of the four given points are thus,

A=(1,0,0), B=(0,1,0), C=(0,0,1), O0=(,11),

I call (as in former articles) the triangle ABC the Unit-Triangle, and the point O the Unit-Point
of the System.

146. Permit me also to restate, — chiefly with a view to disengage it from anything irrelevant,
and to present it in what appears to be its last degree of simplicity, — my definition of the
anharmonic coordinates of a right line, taken here as being, in their conception, independent
of the coordinates of a point, although they must afterwards be connected therewith.

I take, then, again any triangle ABC, which I treat as a given one, and I cut its sides by any
two transversals, A'B'C’' and LMN, whereof I (see Figure 21) consider the former as given,
but the latter as arbitrary; and then whereas, by another well known theorem of segments, we
have this other constant product,

(LBA'C).(MCB'A).(NAC'B) = +1,
(the + arising from a combination of two —’s,) I write (cf. article 79),

l
M _Ba'c), = (MCBA), -~ = (NAC'B),
n l m
and define that [, m, n, or any quantities thereto proportional, are the anharmonic coordinates
of the line LMN, with respect to the given triangle ABC, and to the given transversal A'B'C’. I

also denote (as before) this variable line by the symbol [ [, m, n]; and because we have thus,
(1, 0,0], [0,1,0], [O,0,1],

as the symbols of the three sides BC, CA, AB of the triangle ABC, considered here merely as
having position, we derive a new and independent motive for calling that given triangle (as
above) the Unit-Triangle of this, as well as of the former construction. At the same time, the
symbol of the line A’B’C’ is, on the same plan, [1, 1, 1]; whence it is natural to call that given
transversal, as in preceding articles, the Unit-Line.

147. It is important to observe that in this statement of my fundamental conceptions and
definitions, the principle of Geometrical Duality is fully recognised: no prerogative whatever [can
exist], of simplicity or anything else, belonging to point-coordinates, or to line-coordinates, as if
either were more fundamental than the other, when they are thus independently defined. 1t is
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just as simple, — but not a whit more so, — to consider the sides of a triangle as cut by two right
lines; so as to form a group of four points on each, as to consider the corners of the same triangle
as connected with two points, so as to form, with each corner as vertex, a pencil of four rays; it is
then as natural, — but not more so, — to study the anharmonic functions of those three groups, as
of those three pencils.

148. No theorem however emerges, of any novelty or interest, until we combine these two
elementary constructions, by supposing that the point Pis situated upon the line LVN, and that
the unit-point O is the pole of the unit-line A'B'C’, with respect to the unit-triangle ABC. Then,
however, with the help of the six auxiliary points, (see [a slightly altered and relabelled
version of Figure 5] Figure 5 bis)
A"= OA'BC, B"= OB CA, ("= OCAB,
Q=PA'BC, R=PBCA S= PCAB,

and of the three harmonic equations,

(BA'CA") = (CB'AB") = (AC'BC") = —1,

or even with only the two first of these three harmonic groups, and the four auxiliary points,
A", B", Q, R, combined with the pencil of four rays through P, we easily prove, on the plan
of article 10, that

! 1l

S —(MAB"C), Y= (RrRcB"A), % — (MARC),
n z nz

and that

4

_—nm:(LBA”C), Y~ (oca"p), _T’?:(LBQC):(MRAC)Zl—(AMRC);

whence

Fig. 5 bis
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Ix+ my+ nz =0,

as before. The same important and fertile Theorem may also be proved, in this comparatively
symmetric geometrical notation, (substituted for that of OXY, with which mode of denoting
the given triangle this Letter began,) by projecting the given transversal A'B’C’ to infinity, as
was done in article 80, with the help of the simple Figure 22, but perhaps, upon the whole,
less elegantly.

149. After this recapitulation, which I thought not useless, of some first principles of this
whole theory, I proceed to a few general problems, which they suggest, and which can be
understood and resolved without any reference to curves. And first I shall consider the
following Problem, which is evidently suggested by those principles:-

‘“To express the anharmonic of a pencil,

(Po.P1PaPsPy),
in terms of the anharmonic coordinates of its vertex,
Py = (x0, Y0, 20),
and of any four points,
Py = (x1, y1, 21), - .., Py = (x4, Y1, 24),

which are situated on its four rays respectively’’.

150. The most obvious process appears to be the following. Assuming
P5 = PyPy P\ Ps = (x5, 5, ),
Py = PyPy P\ Ps = (x4, y4, 24);

we shall thus reduce the sought anharmonic of a pencil to the anharmonic of a group, and we
shall have the transformation,

t'u
(Po.P1PoPsPy) = (P Py P3Py) = —;

7

by the already often employed theorem of article 11; if, with an abridged notation similar to
that of article 74, we write

(P3) = t(P1) + u(Ps), (Pi)=1(P1)+ u'(Ps),
or more fully,
xo = tx) + uxs, yo = In + wys, 2= {2 + wzs,
xp=tx +u'xg, yi=1ty+uy, u=tzn+uz;

as we are allowed to do, on account of the two equations,

X1, M, 21 X1, Y, Z1

! ! ! ! ! !
0=|xo, o, 2|, O=|0xs, i, 24,

X3, Y3, Z3 X3, Y3, Z3

which serve, in combination with these two other equations of the same kinds,
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X0, Yo, 20
0=1|x, 9, 2],
X9,  yo, 29

O:

X05

X4,
’

X4,

%,
V4
V4,
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2
Z 4 b
4

to determine the coordinates of the two auxiliary points of intersection, Ps, and P4, in terms

of the coordinates of the five given points, Py, P, ...

151.

, Py

It remains then only to express the coefficients ¢, u, and ¢, u’, of their ratios, in terms

of those given coordinates. But for this purpose, it is only necessary to substitute, in the latter

pair of determinant equations, the expressions

!

x5 = tx; + uxs, &c., and xj
which satisfy the former pair. For we thus obtain,
X0 5 Yo, 20 X0, o,
0= —t|x, 9y, 21|+ u/x, y,
X2, Y2, %2 X3, )3,
X0, Yo, 20 X0, Yo
0=1"%s y4, za|— |3, s,
X1, Y1, 2 X4, Y4,

! !
= t'x) + u'x3, &c.,

20
22 |5
23

20
23 |5
24

whence, by article 150, the required anharmonic in article 149 may be thus expressed, as the
quotient of two products of determinants:

X0,
(Po. Py PoP3 Py) = | x1,

X2,

Yo, 20 || X0, Yo, 20 X0,
M Z1 X3, 3, z3 X2,
Yo,  Z2 || X4, V4, Z4 X3,

Yo, Zo || X0, Yo, 20
Yo, 22 || X4, Y4, Z4 |-
Y3, Y8 || X1, Y1, 21

152. Verifications offer themselves at sight. Thus we see that the function of the fifteen
coordinates with second members vanishes if either the two points P;, Ps, or the two points
Ps, P4, be collinear with the point Py; that is, if either the two first rays, or the two last rays, of
the pencil in the first member coincide in position with each other. Again, if either the two
middle rays, or the two extreme rays, of the pencil coincide in position, the anharmonic in
the first member becomes infinite; and so does that quotient of products of determinants,
which is the second member of the equation. Again, the anharmonic in the first member,
and the quotient in the second member, become each equal to unity, when either the first
ray coincides with the third, or the second with the fourth; for if we make, for example,

we shall have

X0, Yo, 20 X0,
X3, s, 23| = — b X4,
X4, Y4, %4 X1,

and similarly if we made

(P3) = a(Po) + b(Py),

Yo, 20 X0, Yo,
Y4, 24|, and |x2, 9o,
N, 21 X3, 93,

(Py) = a' (Py) + b'(Po).

20 X0, Yo, %0
2| =—=blx1, M, =
23 X, Y2, 22
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Finally, if we place any one of the four points Py, P, Ps, P4 at the vertex P, of the pencil, the
anharmonic of that pencil becomes indeterminate; and, at the same time, the quotient, to

0
which it is equated in the formula, takes the form o

153. If we attribute a given or constant value k to the anharmonic of the pencil, so as to
have

(Po. Py Py Py Py) = k = constant,
then, by the formula of article 151, the 15 coordinates of the five points are connected by the

following equation, which is freed from fractions, and is homogeneous with respect to each
set of coordinates:

X0, Yo, %0 || X0, Yo, 20 X0, Yo, %o || X0, Yo, 20
X, Y, Z||Xs, 3, z3|=k|xo, Yo, zof||Xa, Y4, 24|
X2, Y2, Z2 X4, V4, Z4 X35 Y3, Z3 X1, 3> sl

If any four of the five points, including Py, be given, this equation assigns a right line through Py,
as the locus of the remaining point; but if Py alone be undetermined, while the other four points
are given, then because the equation is of the second dimension in xy, y, z, and is satisfied
when these coordinates are replaced by x;, y, z1; or by xs, y», 29, or [by] &c., we see that, in
this case, the locus of the vertex Py of the pencil is a conic, which passes through the four given points,
Py, Py, P3, P4. But these results are otherwise well known from geometry: they may therefore
be considered as additional verifications of the correctness of the expression in article 151,
for the anharmonic of the pencil in article 149.

154. As an example, let the vertex Py, be the first real point (see article 111) of inflexion,
K’ or A’, of the cubic curve in the canonical form of article 109,

U= x4y +2°+6exyz = 0;

taking also the second real point K” or B’, of inflexion on the first ray P; of the pencil, and
obliging the three other rays to pass in order through the three imaginary points of inflexion
I', I", 1", the line connecting which is itself imaginary (see article 111). We have then the
anharmonic,

o, 1, -1llo, 1, -1 o, 1, —-1]l0o, 1, -1
(K'.K'T'T"T"y=1|-1, 0, 11| -0, 0o, 1|:/0 1, —0||1, -6, 0

o, 1, -6 1, -6, 0 -6, 0, 1/||-1, 0O, 1
_a-ea- _
C@-o00-1

If then we denote the four rays of this pencil, or the four chords of inflexion from K', whereof
the two first are real, and the two last are imaginary, by the symbols K;, Ko, K3, K4, we may
write, concisely,

(K1 K3K3Ky) = —0;

whence also,
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(KiKsKoKy) = 1+ 0= —6° = (=0)"' = (K1 K1 K3 Ko);
so that we have here
(K1 Ko K3 Ky) = (K1 K4 K9 Ks) = (K1 K3 K4 Ke) = —0,
and
(K1 KsK2Ky) = (K1 KoKy K3) = (K1 K4 K3Ko) = =6,

the anharmonic function of this pencil having thus only two distinct values (both imaginary), in
whatever order the four vays may be taken whereas, in general, a pencil has six distinct values of its
anharmonic function, such as # 1—% hA—1, 1— k' and 1—-h)"" 1 -1 - h)~!
(= h/(h—1)), when the rays are variously arranged; and even a harmonic pencil has three
distinct values (-1, 2, and %). I am therefore disposed to call the pencil of chords, above
considered, a Di-anharmonic Pencil; and to extend this name to every pencil which has only two
values of its anharmonic: those two values being then necessarily —6 and —6?, because
1—h=nh"

155. The particular problem of the last article might have been resolved with even less
trouble of calculation, by our availing ourselves of the collinearity (see article 112) of the three
points of (imaginary) inflexion, /', ", I", and using the (imaginary) intersection, say for a
moment /°, of the (imaginary) right line on which they are situated, with the first (and real)
ray K'K" of the pencil. That intersection is easily seen from the expressions already assigned,
to be precisely the point which in some early articles of this Letter was denoted by /, and was
called one of the two imaginary unit-points (I and J, articles 25 &c.,) namely the point
1° = J=(, 02, 0); in fact, the coordinates of this point satisfy at once the equation s = 0 of
the real line K'K", and the equation s” = 0 of the imaginary line /'7"I". In this manner it is
easily seen that

(I)=0"+ (1", and (I")=-6>(1")+ "),
a notation already explained; whence
(KI-KHI/INI///) — (IO[/I/II/N) — _0,

as above. But we shall soon consider the whole subject of the determination of such
anharmonics of pencils, in an entirely different way.

156. Meantime, as another example of the process last employed, let us take the form of the
cubic in article 114, namely:

U= (3 —1)(x+y+2)°+27x2=0,

and seek the value of the anharmonic of the pencil which has still (K'.K"I'1"I") for its
symbol, and which is still composed of four chords of inflexion, two real and two imaginary, with
the real point of inflexion K’ for vertex as before, although (by article 114) the expressions
for the three collinear and imaginary points of inflexion /', I”, I" involve now the arbitrary
constant ¢; being (by the cited article),

I'=(c—1,0c—1,60%—1),
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I"=(6°c—1,¢c—1,60c—1),
I"=(0c—1,60%c—1, c—1);

while the imaginary line that conects them has now s = 0 for its equation. Combining this
with the equation of the first real ray of the pencil, which is still s =0, we are conducted to
the following auxiliary point, of intersection of the two last lines,

I"=KK"I'l'= (1,0, 0% =1,
namely the other of our old imaginary unit-points; hence
(1) =1 =6%)e(I) +(I"), (") =(0-6%)c(I") + ("),
so that the arbitrary constant ¢ disappears from the expression for the sought anharmonic of
the pencil, which is thus found to be,

0—0%c¢ 2
K . K'I'T"I") = IO]!]!![W _ = —_0?
( ) =( ) Y ;

the pencil is therefore again a di-anaharmonic one, in the sense of article 154, although we
happen to have started here with an order of the rays, and with a selection of the cube root of
unity, which gives —6?, instead of —6, for the particular value resulting. Of course, by varying
the order, we should have here,

(K'.K"I"I'I"y =1+ 6* = —6, &c.
157. Although, after solving the recent problem for the canonical form of U, it may be
regarded as merely an exercise of calculation to resolve it for any other form, since the

geometrical result must be the same, yet, as such an exercise, I will take, for a moment, the
equation of article 92:

U:s?’+6kzp:O,
with the resulting expressions, given in article 97, for the nine points of inflexion; in which

however I shall write, as in article 121, ¢ for " We shall thus have, for two of the real points of

inflexion, the values,
Py=K=(1,-1,0), P=K =(,c¢ c);
and for three of the imaginary points, on one imaginary line,
Po=1=(1,0,0%; Ps=] =(1+2¢0,0— 6, 60— c6?);
Py=1"=(6%—¢O,1+2c6% 6% — c0).

There is no difficulty in determining the point of intersection,

P=KK'.J'=0+0-60*c+20 0+ (0—0c+23, —60%c(1+20));
nor in deducing the formulza,

(JH)=t)+ull"), t=(-10, u=-1,
(I =¢'() +u'(I"), 3t'=1—-0)1—¢c)(1+20), 3u' = (0-1)(1+2¢)
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whence the arbitrary constant ¢ again disappears, in the resulting expression for the
anharmonic,

=—6°

(K.U,I”K,) — (UIIHIO) — .
which gives

(K.K'I]'I") = —0.

But perhaps in this case it is simpler to use the general formula of article 151, observing that
because Py = (1, —1, 0), we have

X0, Yo, 20
Xms  Ym>  Zm | = (ymzn - yan) - (men - xmzn) = SmZn — SnZm,
Xns Yn>  Zn

if we write s, = X, + Y + Zm, Sp = Xy + Y + 2,. We have here,
n=c¢ 2=0, 2=001-0c, z=6000-:c),
si=142¢, 55=0, s3=(0-6°)(1+2¢), s1=(6"—6)(1+20);
therefore

(K.K'I]'I") = (Py.P; Py P3 Py)

S$1%2 — S§2Z1 S3Z4 — S$423

$923 — 8322 Cs471 — S124

?(1+2c) (0—0")(c—1)(1+2) 6> 1-06

TO-1D)(1+20) 2c-—DA+20 6-1 0 =9,

as before. This pencil, therefore, as was to be expected from what was established for the
canonical form of the cubic, is found to be also di-anharmonic (see article 154).

158. It may be worth examining, whether anything depends on our having taken, in the
three preceding examples, a real point of inflexion for the wvertex of the pencil of four chords.
Employing for this purpose the canonical form, let the pencil be now (/'.K'K"K"I"); where
the vertex is imaginary, and only the first ray is real. It is here convenient to consider, as in
article 155, the imaginary intersection, | = I'I"K'K"= (1, 62, 0), and thus we find,
(K") = —(K') = (K™, (J) =—60(K") + (K"); whence (I'".K'K"K"I") = (K'K"K"]) = -0,
and the pencil is still di-anharmonic.

159. We arrive then at this Theorem, which probably is known, although I do not see any
mention of it in Salmon’s Book:

“If any one of the points of inflexion of a cubic be made the vertex of a pencil of four
chords, which pass through the eight other points, the anharmonic function of this pencil, in
whatever order the rays may be arranged, is always equal to one of the imaginary cube-roots
of negative unity.”’

In other words, every such pencil is di-anharmonic.
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160. As another example of the determination of the anharmonic function of a pencil,
which has an important connexion with the theory of cubic curves, let us take this problem:-
To determine the value of the anharmonic of the pencil,

(K!- OII I//I!I/);

where K'I', K'I", K'K" are the same three chords of inflexion as in article 154, but O is that
real point (1, 1, 1), which we have called in many former articles, (article 78, etc.) the
anharmonic wunit-point; so that the two first rays of this pencil are real, and the two last
imaginary. The general expression of article 151 becomes here,

o, 1, -1l o, 1, -1 0, 1, —1]|o
(K'.orr'i"y=\1, 1, 1{|—-6, 0, 1|:| o0, 1, —6|l1, -6, 0|=-6%
0, 1, =6 1, -6, 0| |-6, 0, 1]1

so that this pencil also belongs to the di-anharmonic class. We might here have availed
ourselves of the facility given by the collinearity of the four points O, I', I", I", since the real
point O is the intersection of the two imaginary chords of inflexion (s” =0, s" = 0), which
connect, three by three, the six imaginary points (cf. article 112); for thus we should have
found,

(I') = (0) +6*(I"), (I")=-6(0)+6(1"),

and therefore (K'.OI'I"I1") = (OI'I"I") = —6?, as before. As a verification, interchanging 6
and 6% we have (K'.0J'J"]") = —0; therefore (K'.O]'J"]") = —6? = (K'.OI'["I"); and
accordingly these two last pencils coincide, the real and two imaginary chords, I'J’, I"]",
I"]", converging, by article 112, to the real point of inflexion K'.

161. The five collinear points
0= (1,1,1), J=@1,6%0), I'=(,1,-0),
I”: (70, 0) 1)a IW: (la 76’ O)a

have evidently their symbols connected by the fen following linear equations, answering to their
ten ternary combinations, of which some have been already employed:

(0) =" —6*U"), (0)=U")=6*"), (0)=(')—6*U");

()= =", (H=U") =), 0()=U)~U");

(1= =)= (), A=6*U")=(0)—-06(), A-6*UI")=(0)—-06());

(I + 0" +6*(1") = 0;
respecting which equations it is important to observe, that no one of them, taken simply, gives
any information respecting the relative position of the three points involved, beyond the mere fact
of their collinearity: but that because the five symbols, (0), (J), (I'), (I"), (I"), are taken to
represent, in all of these equations, the same systems of anharmonic coordinates, — the symbol
(0), for example, meaning the system of coordinates (1, 1, 1) throughout, and not that

system affected with any factor, such as (¢, ¢, ), where ¢ is different from unity — therefore
any two of the ten equations, from which one common symbol is excluded, are adapted to give
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the value of the anharmonic of a group, formed by rejecting one of the 5 points, or by taking their
quarternary combinations.

162. In this manner, we derive the five anharmonics of groups of which some have occurred
before:-

Retaining O and J, (OI"]JI") = (OI'JI") = (OI"JI') = +0
O, but not [, (OI'I"I") = — 6%
J,butnot O (JI'I"I") =—6.

The two last are therefore seen again to be di-anharmonic groups, so that we may write,
(OI!IN]!N) — (0]/!]///[/) — (O]IH]/IN) — (1!]!/1!//]) — (I!I]/!!I!]) — (I/!!I!I!j) — 792;
(III//II//O) — ([”I”II’O) — ([”IIIINO) — (]I’I”]/N) — (]I/’III/II) — (]IHIIIII/) — _6.

But the three first groups, — each formed by excluding one of the 3 imaginary points of

inflexion, I’, 1", I", on the given line s” = 0, and by comparing the {wo others with the two

auxiliary points, O and [, in which that line is cut by the (wo other lines, s' = 0 and s =0, or

J'J"]" and K'K"K", — have each six different values (cf. article 154) of its anharmonic

function, according to the order in which the four points of that group are arranged. Thus,

besides the 3 anharmonic equations for those 3 groups, which have been written in the
present article, we have (by article 5) these 15 others:-
(OI"]]/N) — (0][//]]/) = (OII]I/’) — +02;
(OJIW[I/) — (0]]![!”) — (0][/![/) — 1 _ 6;
(O]]//I///) — (OJIWI/) — (O]I’I”) -1 02;
(O]”[IN]) — (OIII/]I]) — (OI!II/J) — (1 _ 0)—1;
(0 I//I//‘]) — (0[![!//]) — (OINI/]) — (1 _ 02)_1.

163. The two first of the 18 anharmonic equations, which thus involve both O and J, suggest
the following Theorem:-

“If any two, of any three collinear points of inflexion, (as here any two of I', I”, I") be
combined as second and third, or as first and fourth with the two points (as here with O and J)
in which that lineis cut by the two other chords, (here J'J"]" and K'K"K™), containing each
three other points of inflexion, the anharmonic of the group is an imaginary cube root of positive
unity.”” I only say, for the moment, that they ‘‘suggest” this Theorem: for I do not think it
unreasonable to desire a proof or at least a verification, such as can easily be supplied, of the
Theorem still holding good, when we pass from a line through three imaginary points of
inflexion, to a line containing three points of which one at least is real.

164. Consider then the five collinear points,
[=(1,0,6%, J=(1,6%6), K =(0,1,-1), K'=(-101), K"=(,-1,0);

where the three last are points of real inflexion, while the two first points are respectively on
the lines s’ =0, s" =0, or J'J"J"” and I'T"I", which connect, 3 by 3, the 6 imaginary points
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of inflexion of the cube, expressed still by its canonical form (article 109 &c.). We have now
these ten linear equations, analogous to those of article 161:

0°(1) = 0(K") — (K"), 6(I) =60(K") = (K'), (1) =6(K') - (K");
0()) = 0*(K") — (K"),  0°()) =0*(K") — (K'), () =0*(K') = (K");
(0 —6*)(K) = (D) (), (00 (K")=6*(1)—0()), (0-6)(K")=0()—06(]);
(K') + (K") + (K") = 0;
whence we have not only the two di-anharmonic groups,
(IK'K"K") = (K'K"K"]) = -0,

whereof the latter was employed in article 158, but also these three other groups, which are of
the wusual, or hex-anharmonic kind, — as having each six unequal values for its anharmonic
function, —

(IKU] IN) — ([K/U]K!) — (IK!]KN) — +0;

which confirms the theorem in article 163. Any further verification of that theorem appears
to be now unnecessary.

165. It is an immediate consequence of that Theorem of article 163, that the cube of any
one of the anharmonics, which are formed according to its enunciation, must be equal to
positive unity. Substituting, then, for such an anharmonic, its value as defined in article 5, we
deduce from article 162 the equations

() () - ()’
) ) )

and from article 163 the analogous equations,

(%) - Gee) - i)
&) k) Tk

Indeed, I have (quite recently) reason to believe that Hesse* arrived at results of the same form
as these, but by an entirely different analysis, and without using anharmonics at all, but rather
the known properties of transversals of a triangle, which I have not had occasion (for this
purpose) to employ.

It must also be observed, that the three quotients of segments, of which the cubes are here
equated, are not anharmonic functions, and therefore are (generally) altered by projection:
although we see that, if so, their cubes must all be altered in one common ratio, in order that the
equality of those cubes may be undisturbed. Indeed it is an immediate consequence of the
fundamental property of the anharmonic of a group, that the quotients themselves alter (if at
all), in one common ratio, by projection: because, for example,

OII O ”n

—- ¢ — = the anharmonic, (OI'JI").
]I/ ][H

* [Ludwig Otto Hesse, 1811-1874.]
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166. In words, we may enunciate the result of article 165 as follows:-

“If the interval, on any one of the 12 chords of inflexion, which is comprised between the two
points, not of inflexion, where that chord is cut by two of the eleven other chords, be divided
into (wo segments by any one of the three points of inflexion upon that chord assumed; then the
cube of the quotient of those two segments has a common value, independent of the particular point
of inflexion which may be selected for the section.”

167. A great variety of other results, which it might be too pompous to call Theorems, may
be deduced from the foregoing formulz: expecially if we agree to introduce certain new and
auxiliary points, defined by the harmonic relations,

(O[HOIIHI> — (0]!!!02]!) — (0]!03]/!) — _1;
(I//!I/I//Ii) — (]/I/IIWIIH) — ([/!I///I/I{l/!) — _1;

with others of the same kind, which I am not sure that I shall think it necessary or useful to
write down. One result, however, may be here briefly mentioned:- ““If any two of the 3
collinear points of inflexion, I, I", I", be treated as conjugate points of an involution, while
the two points O, Jare made another conjugate pair the remaining point of inflexion 7™ will
be one of the two double points of the involution, its harmonic conjugate [/ %n) being the other
double point’’.

168. (April 18th, 1860) The discursive character of this long Letter allows me here to leave
for awhile the discussion of such relations between these, between the points of inflexion of a
cubic, and other points derived from them, and to take up a totally different question, which
is however connected quite as closely with the title of these sheets: since it will require, or at
least employ, the method of anharmonic coordinates, as applied to the discussion, — and in a
slight degree the extension, — of a very elegant Theorem of plane Geometry, which you
communicated to me, in a note that arrived yesterday.

169. You tell me, then, thatif a circle be described so as to pass through the middle points of the
three sides of any triangle, it will not only pass (which you say is well known, and can in fact,
as I see be very easily proved) through the feet of the three perpendiculars from the corners of the
triangle, but will also touch the inscribed circle, and each of the three exscribed circles. This
theorem was wholly new to me, and I thought it well worth trying to deduce a proof of it, by
the method of this Letter, but with a somewhat generalized enunciation, which that method
naturally suggested: although, indeed, the same extension has probably occurred to yourself,
from principles sufficiently known.

170. Instead of the middle points of the sides of the triangle ABC, I take then (compare, if
you choose, the figure of article 148) the points A", B”, C”, which are the harmonic
conjugates of those other points A’, B', C’, where the sides are cut by a transversal, assumed
by me as the unit-line (article 146, &c.). And instead of the circular points at infinity, I assume
now (more generally than in some early articles) any two points Q, Q', real or imaginary, upon
the unit-line. of which points I thus suppose the coordinates xyz to satisfy the system of the two
equations
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at+y+z=0, ax®+b?+ =0,

the coefficients a, b, ¢, being three arbitrary constants. Your bisecting circle becomes thus the
conic through the five points A", B”, C", Q, Q'; and its equation is easily found to be

0= U:2(ax2+by2+cz2) —(x+y+2)(ax+ by+ cz),
if we remember that the points A”, B”, C”, are (0, 1, 1), (1, 0, 1), (1, 1, 0).

171. Such being then the conic which replaces your first or bisecting circle, I substitute next
for your inscribed (or exscribed) circle another conic, touched by the three sides of the triangle ABC,
and passing through the same two points Q, Q', of the unitline. The three tangencies give this
form of its equation,

0=V =a’x"+ B2y + 92 — 2By yz — 2yazx — 2aPxy;

because the unit line, x + y+ z =0, is to be a common chord QQ' of this and of the former
conic, we must suppose that the two equations are connected by a relation of the following
form:

U=2V+ (x+y+z)Ax+ uy+vz);

when Ax + uy+ vz = 0 is another common chord, passing through the two other common points, or
points of intersection of the two conics, which we may call Pand P’. Comparing coefficients,
in the two expressions for U we have

a=A+2a% b=u+2B% c=v+2%
—(b+c)=u+v—4py; —(c+a)=v+1—4ya; —(a+0b) =A+u—4ap;
whence, if we write for conciseness 6 = a + 3 + v, we derive
a=0a0—py, b=p0—vya, c¢=y0—ap,
and
A=y -—a)ya=p), u=(@=pHE-y), v=B-1-a)
indeed these last values, of A, u, v, or the equivalent formulz,
ptv==B-p* vii=-@-o Atp=-(a-p)*

may be more rapidly obtained by observing that the second expression for U must vanish,
when x, y, zare replaced by the coordinates of any one of the three points, A", B”, C". It may
be noticed in passing that

b+c=B+y)? c+ta=@y+a)? a+b=(a+p)>

172. Let us now calculate those two intersections, above named Pand P’, of the two conics
U and Vwhich are not upon the unit line QQ’; and which therefore satisfy the equation of
the other common chord, Ax 4+ uy+ vz = 0. Eliminating z, by this linear equation, from the
equation V = 0, we are conducted to the following quadratic,

0= {(yA+av)x — (Bv + yu)y}* + 4y (apuv + Bvi + yAp)xy;

but
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auv +Pvi+yiu = (a =B B —-y)(y —a)y{a(B—y) +B(y —a) +y(a—B)} = 0;

the quadratic is therefore an exact square, as by your (extended) Theorem it ought to be, and
the points P, P’ coincide: the coordinates of the point of contact P, which is thus proved to
exist, for the two conics Uand V, admitting of being written thus,

x=—Prv+yw) =aB-y)> y=pry-a)?® z=ya-p>

And although it was not necessary, the foregoing analysis being quite sufficient — yet as a sort of
synthesis or at least as an a posteriori proof, I have verified that when the last values of x, y, z are
substituted in the expression,

DU =2ax— (a+b)y— (a+¢)z, D,U=&c., D.,U=%&c.,
and
D,V =2a(ax—By—vyy), D,V =k&c, D)V=k&c,
the results are
DU =(a+B)B+y)(y+a)d, DyU=(a+B) B+ (r+au,
D.U = (a+p)B+7)(y+ay,
D.V = 4apyi, D,V =4afyu, D.V =4afyv

being thus, for each function, proportional to 4, u, v; we have also

Ax+uy+ve=2AaB—y)* +&c.=(@a—BB-1(y—a){aB-y) +B(y—a) +y(a—pB)}
—0

so that xD,U + yD,U + zD,U =0, xD,.V + yD,V + zD.V =0, or briefly U =0, V' =0, for
these values of x, y, z; whence we derive a verification, or rather a proof, that the two conics U
and V do in fact touch each other at the point P, or (x, y, z) which has been above assigned.

173. Your Theorem is therefore by my method proved, with this slightly extended enuncia-
tion:- “If a conic V be touched by the three sides of a triangle ABC, and if through the two
(real or imaginary) points, Q, Q’, in which that conic is cut by any transversal A'B'C’, and
through the harmonically conjugate points A”B”C"” upon the sides, another conic (U) be
described, then these two conics fouch each other;” namely, in the point P, determined as
above.

174. I grant that the foregoing mechanism of calculation (compare many similar admissions
made before) might have occurred to anyone, who knew any bilinear coordinates. But when we
come to interpret the results, then I conceive that the geometrical advantage of my method comes
into play. We have, for instance, here, by article 172, the equation,

ay (y—a\?
px \r—8
which I now propose to interpret, so as to derive from it a construction for the point of contact

P, of which the existence was discovered by you. Let A;, By, C; be the points in which the
inscribed (or exscribed) conic (V) touches the 3 sides of the triangle; so that




III. LETTER TO HART ON ANHARMONIC COORDINATES 283
A=,y ™, Bi=(@0y?"h, C=@!po.

Then P = (x, y, z) being still the point of contact, and Q, R, S being points derived from it as
in the figure of article 148, my general formulze give

“_coacpy. P—(apare). Y= (B cBay,

B 4 a
Y _(sac"B), 1- g — (A1A"BC), 1-— % — (B B"AC),
X

and therefore
(SAC"B)(C,AC"B) = (B B"AC)%(A; CBA")?;
thus S cuts the side ABin a known ratio, and similarly for Q and R.

175. When we confine ourselves to the circles of your enunciation, a few easy reductions
give me the very simple geometrical proportion of rectangles and squares; SACi:

———9 —— 9 . . . . . .
SBCy; = B"B; " : A"A;7; or with the usual trigonometrical significations of 4, b, ¢, s, and for the

s—a \c¢—
is equal to zero, unity, or infinity, in the three respective cases, c=a, a= b, b= ¢;

AS —b (¢c—
case of the inscribed circle B ’ <C Z) . Accordingly it is clear that this quotient,

SB’
because, in these three cases, the point of contact P coincides evidently with B;, Cj, Aj; that
is, here, with B”, C”, A": the projections of which on AB, by lines from C, are A, C”, B.

176. A simpler construction may however be derived, by considering rather the coordinates of
the common tangent [A, u, v], which may be conceived to be the line LMN in the figure of
article 148, than the coordinates of the point of contact (x, v, z), or P. We have, by article 171

Auwv=B-y» - @-pY

also if we write A, u, v, for [, m, nin article 146, we have

A
“_ aac), Y= (mcpaA), L= (NAC'B),
v A u
or
ILL ” _V ” _i "
2 _(LBA"C), =X = (MCB"A), —Z = (NAC"B);
v A u

but, by what we have just now written,

—#_a-p v _B-v A
v a-y A B-a  u y-p

and, by article 174,

Y% (B B"AC) (A, CBA", &c.,

y =B
therefore finally the 3 points L, M, N, in which your tangent cuts the sides of the triangle
ABC, are given by the three anharmonic equations,
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(LBA"C) = (B1ACB").(C; C"BA);

(MCB"A) = (C1BAC").(A; A"CB);

(NAC"B) = (A1 CBA").(B1 B"AC);
where, as a verification, it may be proved that the product of the six anharmonics, in the
three right hand members is equal to negative unity, as it ought to be, in order to allow the

product of the three anharmonics in the left hand members to be equal to the same given
value, as the transversal requires.

177. When by throwing off the line A’B’C’ to infinity, my enunciation, in article 173, of your
Theorem takes the form;

“If through the middle points A", B", C" of the sides of a triangle circumscribed to a given conic (V),
a homothetic conic (U) be made to pass, these two conics will touch one another’,

the recent equations for the determination of the common tangent LMN, at the point of
contact P of the two conics, are simplified to the following:

LB BiA CC" MC CB AA” NA AC BB
CL. B"B;  AC;° AM (C"C;  BAy,° BN A"A; CB’

of which, as a verification, the product is still equal to negative unity; while A;, By, C; are (as
before) the points in which the conic (V) is touched by the three sides of the triangle. And if
we suppose that this conic is the inscribed circle, while the length of the sides are denoted (as
usual) by a, b, ¢, then a few easy reductions give, more simply,

LB a—-b MC b—c NA c¢—a

CL a—¢ AM b—a BN c¢—b’
so that “‘ the tangent LMN cuts the greatest and least sides internally, but cuts the mean side externally”’,
becoming of course indeterminate, when the triangle is equilateral, because the two conics
then coincide. Verifications for the case of an isosceles triangle, as in article 175, are obvious.

178. If we consider that exscribed circle (V') which touches the side BC itself, in a point Aj,
and the sides AC, AB prolonged, in points Bi, Ci, and denote by L' M'N' the tangent to this
circle, at the new point P’ where (by your Theorem) it touches the same bisecting circle (U)
as before, we easily find, on the same plan, that

L'B a+b MC b—c NA cta

CL a+c¢ AM'  b+a BN c—b’
so that this tangent cuts internally the side BC, and the greater of the two sides, AB, CA; but
cuts the lesser of those two sides externally. In like manner, your common tangents to the
bisecting circle (U), and to the two other exscribed circles (V") and (V"), are on the present
plan determined by the following ratios of section:

L'B _a+b M'C _b+c N'A c—a

CL" a—c¢ AM" b+a BN" c¢+0b’

L"B a—b M"C b+c¢ N"A c+a

CL" a+c¢ AM" b—a BN" c¢+b
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— I do not think that we need wish for any simpler construction of your four tangents, than those
given by these ratios of segments; and I doubt whether trilinear coordinates would have suggested
constructions so simple. Besides, it is to be remembered that my method gives formulze
scarcely less simple (see article 177), for the case of two homothetic conics; and even (by article
176), through a few anharmonics, for the more general case of article 173, where the two
conics cut, in two real or imaginary points Q, Q', on a finitely distant line A'B'C'.

179. (April 21st, 1860) — Since the foregoing pages were written, I have received from you a
note, dated the 19th of this month, from which I collect that you have found yourself
anticipated, in the Theorem that the Bisecting Circle (U) is touched by each of the four circles,
inscribed or exscribed, which, or their analogous Four Conics, I have above marked as (V)
(V") (V") (V™). And although I have not yet attempted to study your said Note, I see
enough, from a mere glance at it, to lead me to suppose that you, or the French, had
anticipated by ratios and section, of the sides of the triangle, made of the common tangents, at
the four points of contact. Ainsi soit il, I cordially add: for I wish now to pass or return to other
subjects which are to me more interesting at present.

180. I have already remarked, — either in some article to which I have not just now turned
back, of this long Letter, or in some separate and recent Note, — that ‘“‘when we replace the
bisecting and inscribed circles, (U) and (V), by two homothetic conics (article 177), the two right
lines drawn from the second intersection of the conic (U) with any one of the three sides of
the given triangle, so as to be parallel to the two (real or imaginary) asymptotes of that or of
the other conic, (since these are supposed parallel to each other,) are harmonically conjugate
with respect to the intersected side, and the line drawn from the intersection to the vertex’ .
A little more generally, let the conic (U) meet the sides BC, CA, AB, not only in the three
former points A”, B”, C", but also in the three points of second intersection, A", B”, C",
while it still meets the unit line A’B’C’ in the two real or imaginary points Q and Q' (see
article 170); I say that we have then the three following harmonic equations of pencils,

(AI//.AQA”QI) — (B/”.BQB/IQ/) — (C”I.CQCNQI) — _1
or the three corresponding harmonic equations of groups, upon the unit line.
(A1QA’Q") = (B1QB' Q") = (C1QC'Q") = —1

if A1, Bi, Ci be the points AA™ B'C’, &c., in which the right lines drawn from the second
intersection with (U) to the opposite vertices of the triangle, intersect that unit-line; whence
it will follow as may be just remarked in passing, that the three pairs of points, A’, A1; B, Bi;
and C’, Ci, form an involution, of which Q and Q' are the two (real or imaginary) double
poinls.

181. The easiest or at all events the most obvious way, of proving this theorem by the
formulza of the present Letter, is perhaps the following. The coordinates of A’, B’, C' being
already known, since A" = (0, 1, —1), &c., let us investigate those of Aj, Bi, Ci; and first of
A", B", C". Cutting for this purpose the conic U by the side BC, or making x = 0 in the
equation of article 170, namely:



286 III. LETTER TO HART ON ANHARMONIC COORDINATES
2(ax® + by2 + ) — (x+ Y+ z)(ax + by + cz) =0,

we get the quadratic, (y— z)(dy — cz) = 0; rejecting therefore the point A", we have
A" = (0, ¢, b); and similarly, B” = (c, 0, a), C" = (b, a, 0). The equations of the right lines
AA", BB", CC" are thus seen to be,

by=cz, cz=az, ax= by,

respectively; cutting these then by the unit line x + y + z = 0, and making for conciseness

ad=—-b—¢, b=—c—a ¢ =—a—0>b,
we find

Al=(a',¢,b), Bi=(cb,a), Ci=(bac).

Any two points, Qand Q' upon the unit line, may be thus symbolized,

(Q) = t(A") + (A1), (Q) = "(A") + (A1);
or thus

Q=(d,c+t,b—1t); Q' =(d,c+t,b-1);

t
with the resulting anharmonic equation (A'QA1Q’) = " In the present case, A and Q' are

both on the auxiliary conic of article 170,
ax® + by? + * = 0;

hence tand ¢’ are the roots of the quadratic ab+ bc + ca + t2 = 0; so that t' = —¢, and the
harmonic relation is proved. — But variations of this proof or rather investigations quite
different in their form, may instructively be made to replace it.

182. The following variation, for instance, may be noted, although it cannot pretend to be
important. The vertex of the first pencil (article 180) being A" = (0, ¢, ), while
A=(1,0,0),and A" = (0, 1, 1), if (with new meanings of a, 8, v, a', ', ') we write

Q=(ap,y), Q =@, p,y),
we shall have, by article 151,

0, ¢ bll 0, ¢ b 0,
(A".AQA"Q") =11, 0, 0|l 0, 1, 1 |:|a,
a, B, yl|la, B, ¥ 0,

But, with the present significations of a, 38, y, @', ', y’,

bB — cy

b o
' ﬂ” y’ = ! 1
0. 0 a bp —cy

vam
—_—~
Q

O=a+p+y=a +p +y
= ad® + 0B + ¢y® = aa'* + bB* + oy'%
therefore
By —yp' =vya' —ay' = ap’ - pa’,

and
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a: b: ¢ :ﬁQ,y/Q _ ,}/‘Zﬂ/Q: ]/2(1,2 _ a?,yl?: a?ﬁr? —ﬁ2a’2
=By +ypiyd +ay':af’ +pa’;
so that
(AW.AQA”Q,) — _1’

and the pencil is harmonic, as before.

183. Another mode of viewing the question is the following. The equation of the four rays of
the pencil here considered are, respectively,

by—cz=0; tx+by—cz=0; x=0; —tx+by— cz=0;

where, as in article 181, 2 + ab + bc + ca = 0. Hence multiplying these four equations, we get
what may be called the equation of the pencil, under the form,

0= (ab+ bc+ ca)xs(by— cz) + x(by — z)?
And it may perhaps be considered as evident, that every equation of the form
0= BX’Y + DXY®

where B and D are any constants, and X, Y are any homogeneous rational and integral
functions, of the first dimension in x, y, z, represents a harmonic pencil, with its vertex at the
point for which X = 0, Y = 0; where the present pencil is again seen to be a harmonic one.
But this suggests a much more general investigation, to which we shall now proceed; dismissing
henceforth, for the purpose of the present Letter, all further consideration of the Theorem
cited in article 169, and of every collateral theorem or construction, as being doubtless far
better treated by yourself, and by the (unnamed) French writer or writers to whom you have
alluded, in a note received by me not long ago.

184. I take therefore now the following General Problem, analogous to that proposed in
article 149, and resolved in articles 150, and 151:

“Let Ay, or [ly, mg, ng], be a given transversal, cutting in P;, Ps, Ps, P4 or in (x1, yi, z1), ...,
(x4, 4, z4), the four given right lines Ay, ..., A4, or [, m1, ni], ..., [l4, ms4, ng], which (for the sake
of greater generality) we shall (at first) suppose not to concur in any common point, and therefore not to
form a pencil, although they may still be said to compose a system; it is required to express the anharmonic

of the group, of the four points of section P, which anharmonic we shall denote thus,

h= (P1PaP3Py) = [Ao.A1A2AsA4],
in terms of the 15 anharmonic coordinates, Iy, mg, no, 1, m1, n1, ..., lu, my, ny, of the five right lines
A
185. For this purpose I observe first that the coordinates of P, may be thus expressed

lo, mo
lyy my

ng, lo
Ny, lr

mo, no
My, Ny

> r T

s r = 5

v —|

so that we may write
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(P) = (‘ mo, o )

mra nr
But if we take any three of the four points of section, the collinearity of these three points
enables us to foresee that we must have a symbolic linear equation of the form,

0= ps,t(Pr) + pt,r(Ps) + p'r,s(Pt);

lo, mg
lra mr

ng, o
nr, lT

> 5

which is to be considered as including the three following,
0= ps,txr + pt,rxs + pr,sxta 0=... s 0= px,tz'r + pt,'rzx + l)r,szt-
Accordingly it is not difficult to perceive that these equations are satisfied, when we make

lo, mo, mo
px,l = ls, mg, ng |3 p[,r = &Q; pr,s = &c.

by,  my, my

And from the two symbolical equations,
0= pos(P1) + psa(Po) + pro(Fs),
0= psa(Pr1) + pr3(Ps) + paa(Ps),

we derive by a principle already often employed in this Letter, the sought anharmonic under
the form

h= (P Pypy Py = D200,

b
P23 pat
or more fully,
lo, mo, mol|lo, my, M lo, mo, mol||lo, mo, M
[AgAiAoAsA4]l = | by, my, mi||ls, mg, mg|:|le, me, mol|lls, my ngl;
lo, mg, mo||ly, my, my ls, m3, m3||ll, m, m

so that the solution of the recent Problem (article 184) is expressed by a formula exactly
analogous to the formula of solution, in article 151, for the corresponding problem of article
149, in which five points, instead of five lines, were given. In fact, I had expected to find the
formula last deduced, as the analogue of the formula (of article 151), in virtue of that
principle of Geometrical Duality, which is so fully recognised in, and incorporated with, my
Method of Anharmonic Coordinates.

186. Verifications, analogous to those of articles 152 and 153, offer themselves with ease;
among which I shall only mention that if we assign a constant value to the anharmonic h, and
fixed positions to the four (non-concurrent) right lines Ay, ..., Ay, the variable transversal A
is then seen to envelope a conic, which touches the four given lines. As an example, by making those
four lines Aj, Ag, Ag, A4 coincide respectively, with the three sides of the unit-triangle ABC,
and with the unitline A'B'C’, while the suffix 0 may be suppressed, we have
n(m— 1)

h = [AA1AsAsA4] = ﬁ; so that by making 4 = —1 and letting off the unitline to
m—n
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infinity, we obtain the following tangential equation of what may be called the inscribed and
harmonic parobola,

It =2m™l
which gives the local equation
X2 = (—Qy)%
or
0= (x—2)°+4y(x+ y+2).

In fact, it is evident on inspection that this conic is touched by each of the four lines, x = 0,
y=0, 2z=0, x+ y+ z= 0, namely in the four points (0, 1, —2), (1,0, 1), (1, =2, 1). And
although it is almost too elementary to mention, yet I may just add, what I saw while writing
the last sentence, that we have thus the solution of the following little problem [see Figure
28]: “To find the envelope of a transversal LVMN of a given triangle ABC, so drawn as to be
bisected at M.”” The curve is the parabola, of which the anharmonic and local equation has
now been written; it touches the side CA, at the middle point B” of that side; it has BB”
prolonged for a diameter; and it is touched at Q and S by the sides BC and BA prolonged so
as to become the doubles of their given tangents; the tangents from B being thus both
bisected by the side AC. Of course, I suppose that all this is given in quite elementary books.

187. But to return to things more general. When the four lines A;, ..., A4 happen to be
concurrent, and so to form a pencil, the position of the transversal Ay is, of course, unimportant,
the coordinates /y, mg, ng of the line Ay must therefore in this case disappear from the result,
which consequently may be written in any of the three forms following:

my, ny || ms, ng mg, no || M4, Ny
h = [A1AsAgA4] = ;

mo, Ng || Mg, N4 ms, ng || m, N
ny, hilns, I3 ng, lo||ng, U

h= ;
ng, lo||ng, U ng, 3|l ni, h
by, myl|l3, mg lo, mo||lly, my

h= ;
lo, mo||ly, my I3, mg||l, m

Fig. 28
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and accordingly the consistency of these different expressions for the anharmonic 4 of the
pencil is easily verified by means of the now existent determinant equations,

b, my, m l3, mg, n3
O - l?r mo, ne |, O - 14; my, nyg |;
l3, mg, mng by, mi, m
which give
my, nmi| |n, L |h, mi| _ |me, me| |ng, lo| |la, me
: : = : : ,
me, N ng, Iy lo, mg mg, N3 ng, I3 l3, ms
and
mg, mng| |ns, 3| |ls, mg| |my, ng| | n4, lg| |l ma|
: : = : : :
my, N4 ng, Uy ly, my my, N ni, b b, m

in fact, each of these four last sets of determinants, taken separately maybe expressed as
representing the coordinates of the vertex of the pencil.

188. Quite similarly, if the four points P, ..., P4 in the formula of article 151, be collinear,
the position of the vertex Py of the pencil is immaterial, and its coordinates xj, y), zp must

disappear from the expression of the anharmonic; which thus assumes any one of the three
following forms,

h= ((x1, y1, 21) (%2, Yo, z2) (X3, 3, 23) (X4, Y4, 24))

M, Z1|| )3, %3 ¥2,  Z2|| V4 24
= (P1PoPsPy) = : ;
Yo, 2o || M, 24 Y, 23 || M1, 21
Z1, X1 || %3, X3 22, X2 || Z4, X4
h= : ;
22, X2 ||Z4, X4 23, X3 || &1, X1
X1, Y1 || X3, )3 X2, Y2 || X4, Y4
h= : ;
X2, Y2 || X4, )4 X3, Y|l X1, N

and the mutual compatibility of these three expressions for 2 maybe proved by the two
determinant equations

X1, Y, 21 X3, Y3, 23
0=|x2, 2y, 2 0=|x4 nm, 2|
X3, Y3, 23 X1, Y, 21
which give the proportions,
Y, Z1| .| R, X1 | X1, Y| | Yo, R . |Z2, X2 | X2, Yo
: : = : : ,
¥, 22 29, X2 X2, e y3, 23 23, X3 X3, )3
and
Y3,  Z3| | %3, X3 | | X3, N3 | __ | V4> Z4|  |Z4, X4| | X4, V4|,
: : = : : ;
Y, %4 24, X4 X4, V4 M, 2 21, X X1, M
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in fact, any one of these four last sets of determinants separately taken, maybe considered as
the anharmonic coordinates of the line, on which, by supposition, the four points Py, ..., P4 are
situated.

189. As the formula of the foregoing article enable us to calculate the anharmonic of a group,
in a direct manner, from the coordinates of the four points of that group, without seeking the
values of any auxiliary coefficients, such as those denoted by ¢ u, and ¢', %', in many former
investigations, it may not be quite uninteresting to give an example or two of their application
to questions already discussed. In fact, if this Letter were to be rewritten, they ought to be
introduced quite early, and treated as among the fundamental elements of the Method.

190. Our first Example may be taken from article 11 itself, in which those auxiliary
coefficients ¢, u, t', u’ were first introduced. We were to calculate

h=(0UCU') = (0,0, 1)(1, 1, 1) (1, 1, 0) (L, 1, —1));
for which the first of our recent expressions (article 188) gives,

0, 1H1, oHl, 1H1, ~1

1, 1/]1, —1|°|1, o}o, 1‘:1:_1:_1;

the group is therefore harmonic as in the cited article. The second expression of article 188
gives, in like manner

1, of o, 1| |1, 1]-1, 1
-1, 1

but the third expression of article 188 conducts to the (not false but) useless form,

0, Of1, 1} |1, 11, 1]_0
1, 1|{1, 1| |1, 1}{0, 0| o

In general, if any one of the four points of a given group be at a corner of the unit triangle,
(as the point Owas, in the notation of article 11,) so that two of its coordinates vanish, we are
then to reject, as useless, that one of the three expressions of article 188, which combines
those two evanescent coordinates.

191. A Second Example, of slightly greater complexity, may be taken from article 18; in
which we were to calculate this other anharmonic,

h=(XiVithUn)
when
X1=(220,9, Vi=2az—2cx, 2¢y — 2bz, ay — bx),
Y1 =1(0,2z x), U= (22—2x,2y—2z y— x).

In this case
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N, 2 0, y
= = —2y(¢ey — b2);
Yo,  Z2 20y —2bz, ay— bx
, 20 2cy — 2bz, ay— bx
” _ |7 ) = —2y(az — cx);
3, %3 22z, x
V3, 23 2z, x
= =2y(z— x);
V4, 24 2y—2z, y—x
V4, 24 2y—2z, y—x
= =2y(y — 2);
N, 2 0, y

so that the first expression of article 188 becomes here,
b (ey — bz) (2 — x)
C(az— ) (y—2)’

as in the cited article. The subsequent reduction here given, of this anharmonic to the form

¢ . . -
—, or —, depended on certain supposed relations between the quantities (2y = 22, ab = ¢?),
¢

which had geometrical meanings assigned to them, but are foreign to our present purpose.

192. As a third Example, which will introduce imaginaries, let us take the group of article
155 no one of the four points of which is real. Here,

h=(I"T'I"T") = ((1, 6, 0)(0, 1, =6) (=6, 0, 1) (1, =6, 0));
and if, for the sake of variety, we employ the third expression of article 188, we find

2
1,0 = 6% 0= -0,

—6, 0 | o, 1|1, -6
-6, 0|1, 62

as in the cited article; this imaginary group being therefore a di-anharmonic one, as was
otherwise found before. The first expression of article 188 would have given, in like manner,
h=1:—60% = —0; and the second expression = 6: —1 = —0. But it seems useless to multi-
ply such examples of the use of the general expressions of article 188, for the anharmonic of
a group; nor shall we think it necessary to give any instances, so particular as these, of the
corresponding application of the analogous and equally general formulza of article 187, for
the anharmonic of a pencil.

193. The following application of the last mentioned formula appears however to deserve
attention. Let the point C, or (0, 0, 1), be assumed as the vertex of the pencil; then
np = ng = ng = ng =0, and the two first of the expressions of article 187 for % become
illusory; but the last of them is applicable, and gives

(limg — mylo) (I3my — mgly)

h=[A1AsAsA,] = .
[A1A9A3A4] (lomg — mals) (lymy — Iy my)

Under the same condition, the equations of the four rays become
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hx+my=0, lox+my=0, Isx+mgy=0, lLx+ mgy=0;

if then the equation of the pencil, obtained by multiplying together the equations of its rays, be
in any manner known to be

Ax* +4Bx’y+ 6Cx*y? +4Dxy* + Ey* =0

when A, B, C, D, I are given or known coefficients, we are sure that the four ratios of m to [
must be the roots of the corresponding equation,

Am* — 4Blm® + 6 Cl* m* — 4D m + EI* = 0.
Or, if we make for abridgment,
mp=al, me=pBl, ms=yls, m=0dl,
then a, 5, v, 6 are the four roots of the biquadratic equation,
Aa* —4Ba® +6Ca® —4Da + E = 0.

At the same time, one value of the anharmonic (h) of the pencil, answering to one arrangement of
its rays, — or rather to four such arrangements, because we have (cf. article 5) the four equal
anharmonics,

[A1A9A3A4] = [AoA1A4As] = [AgA4A 1 Ag] = [AgA3A9A],

B—a)(0—vy)
h = [AMAsASAy] = —FF—F—"=
1= [A1A9A3A4] =B a0

the five other values of h, answering to the twenty other arrangements of the rays, being (cf.
again, article 5)

_ _(y—a)(0-p) ,
he = [A1AsA9A4] = B (a—0) 1 — hy;
_ _G-—aB-y) .
hs = [A1A4A3A9] = o) a—p) hy's
(y —a)(B-0) 1
hy = [AMiASA4N] = ——F————=1— h]";
4= [A1A3A4A9] © =) (a=p) 1
(6—a)(y—p) .
5 = [A1A4AAs] B0 (a—7) ( 1)
(B—a)(y—0) 1 1
s = [AJAoA4A3] = ———"— " =1— (1 — = — (11— .
he = [A1A9A4As] ©—B)a—y) (I— M) hi (1 — hy)
And it is now required to form that equation of the sixth degree, of which the roots shall be these six
values, (generally unequal), namely, hi, ..., hs, of the anharmonic % of the pencil, that

pencil being supposed to be only given by its equation, Ax* + 4Bx® + &c. = 0; or to determine
the coefficients of the resultant sextic in h, as rational functions of the coefficients A, B, C, D, E, of the
given biquadratic equation of the said pencil.
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194. In this investigation, I do not find that I can much assist myself, by taking for a guide
the analysis given [by Salmon (HPC, p. 191 §205)]. The author of that article forms first, in a
known way, the cubic equation of which the roots are the three combinations,

af +yo, ay-+p0, ad+ PBy;

and then he forms a sextic, reducible (with the help of an ambiguous square root) to a cubic
form, of which the roots are the differences of the roots of the foregoing cubic equation. He
then asserts (in loco citato) that ‘“‘the anharmonic functions in question are the ratios of the
roots of this equation’’; namely, of that sextic which, with the help of a =+ sign, is thus
presented under a cubic form: or more fully, to copy from his p. 191,

2 —12t+2 <§> =0.

But, if you allow me here to repeat part of what I have said in a recent and separate note, — a
general sextic would conduct to an equation of the 30th degree in h, if h were employed to
denote the quotient of one of its six roots divided by another. And even when we assume that
the coefficients of odd powers vanishin the given sextic (as here in the equation

4R
6 4 2
1% — 244 4+ 1444 - =0,

which results immediately from Salmon’s cited page) still the resultant equation in h, — after
being divided by the foreign factor (% + 1)°, and after the (demonstrably possible) extraction
of a square root of the quotient has been accomplished, — is only depressed as low as the 12th
degreg although in this last reduction, as in earlier forms no odd powers of h will appear. If the
equation last written be called Salmon’s sextic, in relation to our present object then I find that
the resultant equation of the twelth degree breaks up into two rational factors; which are each
of the sixth degree; and I am pretty certain, — indeed I feel quite sure, in my own mind,
although I have not set about to find any formal and general proof of it, — that the same sort
of rational decomposition, into two distinct sextics, must be possible universally: that is to say,
whatever may be the values of the given coefficients A, ..., E. But how are we to decide; which
of the two sextic factors is to be retained, to the exclusion of the other ? Or how are we to know,
whether some of the six values of 2 may not belong to one of those two sextic factors; and the
other values of that anharmonic 4 to the other?

195. For these and other reasons, I decided on attacking the Problem of article 193 by a
totally different, and yet I think by an easier analysis; namely, by forming that new auxiliary
cubic, (without any square or other radical entering into its composition,) of which the three
roots 171, e, 173 shall be the three values of the combination, 7 = h(1 — h). Writing then
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B-a)(—y).(y —a)(0 —p)
—(B—7)%(a—0)? ’
O—a)y(B—=y).(y —a)(B—0)
—©O-9i-pr
O—-a)(y=PB).(B—a)(y —9)
—(0=pB)2.(a—1y)? ’

my proofs may be said to consist in forming the cubic equation, which has for roots these
three (partially symmetric) functions of the roots a, 3, y, 0 of the given biquadratic equation
— the first of these for example, not changing value, when  and Yy, or when 0 and a are
interchanged. But for this purpose I assist myself by the expressions here given, for the three
new roots 71, 172, 73, in terms of the single quantity ;.

m=hhy=mnl- )=

Mo = hshy=—h*(1 — In) =

N3 = hshe = —h(1— h) %=

196. In fact I have thus not only the relation,

mnans =1,

which is evident on mere inspection, and might have been foreseen from the geometrical
principle, that to each anharmonic of a group or pencil a reciprocal anharmonic corre-
sponds, but also the less obvious formula of relation,

ml g =3

or, in combination with the former,
n2Ns + sy + Mg = 3;
because
m et = =) = A B =34 (= )t =3 -t

If then we make

m+ne+ns=3—¢
where ¢ is a new constant, the cubic in 1 will take the very simple form,

(7= 1)° +en* = 0;
or because 7 = A(1 — &), the sextic in hwill assume this form of corresponding simplicity,
(B = h+1)° —e(h* — h)* = 0;

in which it only remains to express the constant ¢, as a rational function of the coefficients A,

B, C, D, E, of the proposed biquadratic.

197. As I have not seen this very simple form of the sought sextic equation in print, it may
not be amiss to offer here a brief confirmation of its correctness. Writing, for this purpose,
(B0 —y)

(v —B)(a—0)
which shall have for its 6 roots the 6 values of this function % of the 4 roots a, 3, ¥, 0 of a
given biquadratic equation. By interchanging 8 and 0, we change % to h~!, by interchanging,

we wish to calculate the coefficients an an equation of the 6th degree,
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on the other hand, § and y, we change & to 1 — k. If then a rational function % can be found,
such that ¢(h) = @(h™ ') =@(1 — h), by the mere form of the function, we shall have
o(h)) = @(he) = @(hs) = @(hs) = @(hs) = @(hg) = some constant & =2 rationa] function

h? — h+1)°
((h?——_;)) has the
properties required; and ¢ (k) = ¢ when cleared of fractions is an equation of the sixth

degree: it is therefore the sought sextic.

of the coefficients of the biquadratic; but the function ¢(h) =

198. For the calculation of ¢ in terms of A, ..., E, two different processes present
themselves. The most obvious is to calculate it as a symmetric function of the roots a, S, v, 0,
by substituting the expressions in article 195 for 7, 792, 73 in the formula of article 196,
e =3 —1n1 —ne — Ns; but it is also allowed to substitute the value in article 197 for 4, in the
expression & = @ (h), which must then be found to reduce either to such a symmetric
function of the roots, or to a rational function of the coefficients, of the given biquadratic
equation.

199. Adopting the former method, and denoting for the present the product of the squares
of the differences of the roots of the given equation by A, so that

A=(a=pB)*a—7)(a—0)*B-y)*B—-0)>*y—09)7>
we have
(e=3)A=(a=P)@-’B-0*r-0"+(@-*a-0)°B-»*B-09°
+(@=P)a=0)>y—p>y—0)°

This symmetric function or the function & which depends upon it, occurs, I suppose,
somewhere in books; but as I do not remember meeting it, I have been obliged to strike out
modes of treating it, or of calculating ¢ for myself. One such mode is the following. Writing
for abridgment,

aﬁ—i—yé:z, (1)/4—5,8:2/, aé‘f’ﬁ)/:z",

we have
A= (z—2)%(Z — 2")2%(2" — 2)?,
and
(e=3)A= (-0 -2+ (=2 -2+ ("= 2) (- 2)".

Hence,

A+ (z—2")3 (2 —2")% = G(z' — 2")% (2" — 2)%,

A+ (2 — 22" —2)° = G("—2)%(z— 22,

A+ (2" —2) (2= 2) = G(z—2)2 (2 — "%,
if we write

G = ZQ + Z/? 4 Z/!Q _ Z,Z”— Z”Z— ZZ,;

but this gives
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(Z, _ Z//)Q(Z//_ Z)2 + (Z” _ Z)‘Z(Z_ Zr)‘Z 4 (Z— ZI)‘Z(Z/ _ Z//)? — GQ’
3
so that ¢ = w A is a well known function of the coefficients of the biquadratic, we have only

to express G as another rational function of them. But this is easily done: for we soon find
that

A’G = 12(AE — 4BD + 3C?) = 1448,

with the same meaning of Sas in HPC p. 191 and since Vxeghgve also, with the meaning there

assigned to R, AA = 2833 R, we may write finally ¢ =

. The sextic equation of which

the anharmonics % of the pencil are the roots, is therefore by article 196, (as was stated in a
recent note,)

43253

W —h+1)° -
( +1) R

(h* — h)* = 0.

200. The same result may be obtained, with even less trouble of calculation, by the second
method of article 198; namely by substituting the value

(B0 —y)
(v =P)(a=9)’
which gives
(a—=y)(0—p)
1-h=——"7""—"",
(y =P (a—0)
in the functional expression
b (B2 — h+1)3
IR

which must then be found to be equal to a constant &. For we should thus have, at once,
eA = G®, when

G=B-a)’O0—9)°—B-a)0—)(a=0)(y—Pp) + (a—038)*( —p)°
= Sa?B? — Za®By + 6aByd
= (Zap)? — 3ZaZafy + 12apy0;

[where > a?f8? stands for a? (8% + y2 + 02) + B2 (a® + ¥ + 6%) +y*(a® + B2 + 6?), and so on;
see LHA, p. 77,] or

A’G = (6C)%2 — 3(4B) (4D) + 12AE
= 12(AE — 4BD + 3C?) = 1445,

as before; the rest of the proof being unaltered. Of course it would be easy to modify these
expressions in articles 199 and 200, for the symmetric function G of the roots, so as to exhibit
their agreement (numerical coefficients excepted) with the analogous expressions given by
Salmon for §. But I do not know whether it has occurred to him to observe, by the use of
imaginary cube roots of unity, that this function S, which is of the fourth dimension relating to
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a, B, v, 6, may be decomposed into quadratic factors. In fact, the first expression of the present
article for G may be thus written:

G={B-ax)O—=y)+0(a—=3)(y=PHPB-)O -7+ @-0)(y P}
or thus
G=(—0z—0% —2")(—60°2— 6°2 — 2")
= (462 + 6°2") (z + 6°2' + 0z2")
which gives accordingly, as in article 199,
G=22+4+224+27 22" —2"2—z';
and therefore, (cf. HPC, note in p. 297, and LHA p. 100)

888
=926 = (¢ )+ (D (= 2)?

= (a=P)*(y = 0)* + (a=)*(0 = B)* + (@ = )*(B - )*
As a verification, by changing (a —y)(0 — ) to its equivalent, namely, (y —f)(a —9) —

(8 — a) (6 — y), and halving, we return to the first value of Gassigned in the present article.

201. The constant 7 may be usefully introduced, as follows. When the pencil is a harmonic
one, so that A has one of the three values, —1, +2, —i—%, the constant ¢ = ¢@(h) takes the
particular value %; and accordingly we have the identity,

AR = h+1)° = 27(h% = ) = (h+ D*(h—2)*(2h - 1)%;

so that

2
de — 97 — {(h—i—l)(h—?)(?h—l)}

h(h—1)
and this last function of # must be a symmetric function of , f, y, 6. Writing for abridgment
t=2-2", & =z2"—2 "=z—2
so that
C+E+8"=0, L™ =A
and
24?2 =9G, E2EM 4R 4 Bt = G2

&? being thus (as it is easy to verify) a root of the cubic equation

(6 —2G(E)* + G*(&*) —A =0,
to which we may add that (as appears from article 199)

g3 4 e L B30 = 3A — G,

and that
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o g2 em
ot Tt =
we have 4 = — %, and therefore
g"(h—2)=C0-2C" C'(h+1)=¢"-8& C"01-2h)=C0-0C
also
h—1= g— §"®h(1l— h) =CE'L".
Hence

(46 —2T)A = {(§' =& ("= O)(E -}

where not only the second member itself, but the product of which it is the square, is a
symmetric function of the roots of the biquadratic.
In fact we have

AL =C") = A(Z +2"—22) =6C —3Az=3(2C — Az);
A" —0) = A(2"+ 2 —27") =3(2C — A7)
AL —-C) = A(z+ 2 —22") =3(2C — Az")
because % =3afl = z+ 2’ + 2". [See note about X in article 200.] Also
27"+ 22+ 2 = Za’By = Sa.Zafy — 4afyd = 4A"2(4BD — AE);
and
22" = afydZa’® + Za’fy? = (Zapfy)? — 4afyoZap + afyd (Za)?
= 8A3(2AD* — 3ACE + 2EB%);
so that zis a root of the cubic equation,
A% —6A%C2% + 4A(4BO — AE)z — 8(2AD? — 3ACE + 2EB%) = 0:

which indeed is given by Salmon (HPC p. 191), apparently from Lacroix.* Changing then Az
to 2Cin the first member of this equation, and dividing by 8, we find,

AS

916 (E' =& =0 (E—-C") = (C—342)(C—1AZ) (C — A"
= —9C%+ C(4BD — AE) — (2AD? — 3ACE + 2EB?)
=2(—C®+ ACE — AD?> + 2BCD — EB?) = 2T

with the signification of T'in the last cited page, and in the page preceding; we have therefore

* [See footnote on p- 134 of this volume.]
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(& =CNE"=0E-0) ={la=n©G-p —(a=90) -7}
X{(a=98)(B—y)—(a—PB)(y—90)}
X{a=PB)(y—=0)—(a—y)(6-p)}
=432A°T = 2'3%A7%T;
which agrees with the note (HPC p. 297, and LHA p. 100), except that I have been obliged to

283572 9772

supply the numerical coefficient. Hence, 4¢ — 27 = WA - R

3

X

, which might have been

at once deduced from the value ¢ = in article 199, if I had chosen to use, as known, the

relation R = 64S% — T2, instead of proving that relation anew, as has here been virtually
done. And thus is obtained the following new form of the sextic in A

(h+1)(h—2)2h—1)* 27T%
h(h—1) R’

on eliminating R, and reintroducing S,

€ _ (h* = h+1)° _168°
(4s—27> (kDR -2)22h-1)2 T2

202. These various forms of my sexticin hbeing admitted, it becomes an interesting question
to examine whether, and how far, they are reconcileable with Salmon’s Analysis. In his article
205, as remarked in article 194 of this Letter, he arrives virtually at the equation of the sixth
degree;

4R
212 —12)2 -5 = 0,

as one of which the ratios of the roots are the sought anharmonic ratios; or rather, as I prefer
to state it, among the quotients of the roots of which, those anharmonics of the pencil must all
be found. Writing then At as a value for a second root; subtracting, and dividing not merely
by (h—1)t, but by (A% — 1) ¢, which will get rid of some of the foreign factors; we have this
second equation,

OB+ R4 1) — 2407 (B 4 1) + 144 = 0;
between which, and Salmon’s sextic, the quantity tis to be eliminated. Or, making

, 12 4325°
1° = — Fol— s
R

, and

where ¢ is now used as a mere arbitrary abbreviation, which will however be useful in comparison
of processes, we are to eliminate v between the two equations

v —e(w—-1)>2=0, and v -2 +Do+r'+r+1=0.
The result of this elimination may at once be written as follows,

{Ul3 o €(U, . 1)2}{Urr3 . S(U" . 1)2} — O;
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where
v +v" =2k +1), and vv"=ht+ K +1.

Substituting and developing, we have the following equation of the twelvth degree (cf. article 194
of this Letter):

(B 4+ B2+ 1% —2en? (WS + 1% — 20 + 12 + 1) + 2h* (K* —1)2 =0
which at first looks rather unmanageable. But if we observe that
W+ R+ =R+ h+ D3R = h+1°, (2 =12 = (K2 + h)? X (h* — h)?
and that
2R (K + 1° —2h* + B+ 1) = B (B° = 1)* (B + h+ 1) + B (* + 1D*(h* — h+ 1)
= (K= 2R+ h+1)°+ (B2 + h)*(h2 — h+1)°,

we shall perceive that decomposition into two rational and sextic factors (article 194), of which I
spoke before. These factors are the following:

L (B +h+1)°—e(h®+ h)? =0;
IL (B* = h+1)° —e(h® — h)> = 0;
4325°

where & = , as above. In fact, these correspond to the two separate roots of the

quadratic in v, namely
vV'=W+h+l, v =H"-h+l

But my direct analysis (article 199), which introduced no foreign factor, conducted to the second of
these two sextics; that sextic therefore is to be retained, and the other is to be rejected as foreign.
(Compare a separate Note, dated [ 1.)

203. If we had supposed, — what I own that Salmon’s text seems to suggest — that the sought
anharmonics h are the quotients of the roots of the cubic equation,

2 —12t4+2r=0,

/R , 43
where r is some one value of the radical & so that r2 272, we should have had to

eliminate ¢with the help of
(WP 4+ h+1) - 12 =0,

and the result would have been the foreign sextic 1. Hence my completion, — if I may not call it
correction — of Salmon’s Rule is as follows: *‘ Determine the six quotients of the three roots of the cubic,

IR
2 —12t42 §=o,

attributing some one sign to the radical; those quotients, with their signs changed, will be the sought
anharmonics h of the pencil’. For example, when T = 0, the roots of

2 —12t4+16=0
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are 2, 2, and —4; and the negatives of their quotients, namely —1, +2, —1-%, but not the quotients
themselves, are the values of h for the pencil. And as Salmon calls such a cubic (T = 0)
Harmonic, so I am disposed to give the name of Di-anharmonic Cubics (cf. article 154) to those
for which S = 0, and therefore, h = —6 or h = —62.

204. We may now perhaps dismiss the Subject, of the determination of the anharmonics of
a pencil which is only given by the joint equation of the System of its four rays, as having been
quite fully enough discussed, for the purposes of the present Letter, although, if I were not
desirous to approach to a termination of these Sheets, I might have other connected remarks
to make, especially as regards the application of the Theorem in article 73, or of its extension
in article 74, to equations in which anharmonic coordinates of points and lines are mixed. But
at present I prefer to pass to the important, and indeed, (in this Calculus) fundamental
problem, of the transformation of such coordinates, through the adoption of new points and lines
of reference.

205. Suppose, then that we assume, as a new unit-triangle and new unit-point, any arbitrary but
given triangle, A;, By, C;, and any arbitrary but given point, Oy, in the given plane; and let
the old coordinates of these four given points be,

O1 = (x0, Y0, 20); A1 = (x1, M1, 21);  B1 = (%2, y2, 22);  C1 = (x3, y3, 23).

The old coordinates of a variable point Pbeing x, v, z, it is required to find its new coordinates
X1, Y1, 21, Or some quantities proportional to these, in terms of the 15 coordinates,

X, Y, 25 X0, Yo, Z05 X1, Y1, 215 X2, Y2, Z2; X3, )3, Z3.

206. Applying here the definitions of article 145, I have first the equation:

N (A.PCLOBY); L= (BI.PAIO,C)); L= (C1.PB O AY).
21 X1 n

Writing, then,
O=PF, A=P, B =P =00,

the general formula of article 151 supplies us with the expressions following:

N (P PPy Py Py), &c.:
21

that is to say,
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N _

21

X1, Y1, Z1|| X1, Y, Z1 X1, Y1,
- xa y, Z x()’ y07 ZO x?)’ y?)’
X3, Y3,  Z3|| X2, Yo, %2 X0, Yo,
X, Y Z | X0, Yo, Z0 X, Y,
= |X3 Y3, 23| X1, M, 21 X1, Y1
X1, Y1, Z1 || X2, Yo, 22 X2, Y2,
Y3, %3 23, X3 X3, Y3
X +y + z
B Y, Z1 21, X1 X1, N
Y3, Z3 23, X3 X3, )3
X0 + Y + 20
Y, Z1 21, X1 X1, N
M,  Z1 21, X1 X1, N
X +y + z
Y2, Z2 z2, X2 X2, )2
Y,  Z1 21, X1 X1, N
X0 + % + 29
Y2,  Z2 22, X2 X2, Y2

>

z1
23
2

Z
21

Z2

X1,
X2,
X,

X0,
X35

X1

B
)2,
ya

21

z2

Z

20

Z3

Z1
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with analogous expressions for the two other quotients of the new anharmonic coordinates,

cyclically taken, namely,
2 , and adl .
X1 N

Hence we may write, as the formulae of transformation required, the following:

X, s 4 X0, Yo, 20
XL = | X2, Yo, Zg|i|Xe, Yo, 22|
X3, Y3, 23 X3, Y3, 23
X,y oz X0, Yo, %
M= |X3, Y3, Z3|:|X3 Y3, Z3|;
X1, Y, 21 X1, Yy, 21
X, b2 Z X0, Yo, 20
21 = | X1, Y, Z1|:|X1, M, 21
X2, Y2, Z2 X2, )2, %2
or more fully,
oo Xt Byt yz
1= (% >
axo+ By + vz
) a'y+pz+y'x
1= ;
a'yo+p'w+y %
a/lz+ﬁ//x+ V"y
1 =
aUZO +ﬁ//x0 + ,J///yo >




304 ITI. LETTER TO HART ON ANHARMONIC COORDINATES

where

Y2,

o =
yi%;
T

o =
Zl’
Y X1,

o =
X2,

z2

Z3

X3

X1

nl

Y2

29, X2 X9, Y2
B = ;oy= ;
23, X3 X3, 3
, X3, )3 , Y3, 23
B = ;Y = ;
X1, ) M, Z1
M, Z1 Z1, X1
n n
B ;o y'=
yz, Z9 Z9, X9

207. It is, then, permitted to write generally, in this species of anharmonic transformation

of coordinates, the formulae:

in which the nine coefficients,

a, b, ¢

x1 = ax + by + ¢z
n=ay+bz+c'x;
21 =a"z+b"x+ c"y;

! n

al’ bl, C; a//’ b!l, c ,

are all arbitrary, although only their eight ratios are important. In fact, let us suppose that the
nine values of their coefficients are assigned; and that we wish to interpret such data of
transformation, as having reference to the choice of a new unit triangle A; By C; and of a

new unit point 0. Since

a:b:c=a:p:vy,
a:b:d=a:p:y,
al/: bN: C”:a”:ﬂ”: yl/’

the assigned ratios of a, b, ¢ will give as the position of the new side By C;, for any point P on
which side we have the equation,

0:

and therefore, also,

»
Y2, z9 :ab—l-ﬁy-H/z,
Y3, %3

ax+by+ ¢z = 0.

In like manner, the ratios of a’, b’, ¢’ will give us the position of the side CjA;; and those of
a”, b", ¢" will give the position of Ay B;. Six ratios of the 9 assigned coefficients, a, ..., ¢”, are
therefore sufficient, but not more than sufficient, to determine the position of the new unit
triangle, including of course the positions of its three corners. And when we are also given the

two other ratios, a, a', a”, we have three (necessarily concurrent) right lines; as loci for the new unit
point, Op; because our formula of transformation give,

axo 4+ byo + czo = a'yo+ b’z + ¢'xo = a2+ b"xo+ "y = 1.
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208. It follows, then, that eight distinct and independent coefficients (or constants) of transforma-
tion are introduced by this Anharmonic Method, so even when it is confined, as we at present
confine it, to the plane and when only ratios are retained. And it is easy to foresee that there
will be, on the same or on similar principles, no fewer than fifteen such independent constants,
or ratios for space. For we may already expect to find, in applications of the Method to the
Geometry of Three Dimensions, — on which I am not likely to enter in this Letter, — if the four
anharmonic coordinates of a point P be denoted by w, x, y, z, (a notation to which however I
do not wish to be considered as pledged,) that we shall have four formule, such as the
following:

wy; = aw + bx + ¢y + dz;
x1=a'x+b0'y+ 2+ d' w;
n=a"y+b"z+ "w+ d"x;
z1=a"z+0"w+ ¢"x+ d"y;

where all the sixteen coefficients, a, ..., d", are arbitrary, although only their fifieen ratios are
important; as depending upon, and conversely serving to determine, the five points, or the
five planes, of reference, in that new System of what I have on that account proposed (in some
former letter) to denominate ‘‘Quinquipunctual’, or ‘‘Quinquiplanar Coordinates.” — Mais,
revenons & nos moutons: let us stick for the present, to the plane, and be content with
quadripunctual, or with quadrilinear coordinates.

209. Asan example of such transformation of anharmonic coordinates within the plane, let
us take the equation of article 114 of a cubic curve,

U=("- 1)53+27xyz: 0;

where s = x + y+ z, and ¢ is an arbitrary constant. The old or given unit-triangle is here a
triangle of tangents of inflexions; and we now propose to substitute for it a triangle of chords of
inflexion; retaining, still, as unit-line, that real right line s = 0, which connects the three real
points of inflexion. The new coordinates of an arbitrary point P are soon found to be, in this
example, the following linear functions of the old ones:

(c—1)s+3x
3¢ ’

(¢c—1)s+3y (c—1)s+ 3z
— s A=
3¢

3¢

X1 = N

whence
S1 =X+ )tz =,
and therefore,
3x=3cx; +(1—c¢)s;; 3y=3cym+(1—0¢)s;; 3z=3cei + (1 —¢)sy.

It follows that the transformed equation of the curve is,
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U A-Ds+{0-c)s1+3exi {1 —¢)s1 +3em {1 —¢)s1 +3eu}
3¢? 32
S—1D4+1A-0)>%+3c(1—¢)?
:( ) + ( 362) ( ) s?+3(1—c)sl(xlyl+y1z1+z1x1)+9cx1y1z1

= (¢— l)sl(s? —3x1y1 —3yz1 —3z1%1) +9eximz

= (c—1)(x1 + y +21) (%] + 9} + 25 — yz1 — zx — x121) + Dexy y 21
=(c— l)(x‘;’—l— yif + z‘;’) +32c+ 1)xy iz =0.

But this, when we suppress the lower accents, and multiply by the number 3, is precisely that
modification of the canonical form of the cubic, which was introduced in article 117, as giving
the same S and the same T, as the curve

(¢ —1)s®+ 27xyz = 0,
with which in the present article, and in article 114, we set out this last curve, and the curve
(¢c—1)ss's" +9cxyz =0,
where (as in article 117),
s’ = x+0y+92z, s" = x+92y—|—0z,
are therefore absolutely the same cubic, only referred to different triangles.
210. Perhaps it may not be too much of a digression here, if I enter into some account of
what led me to fix my attention, for a while, on another form (article 91) of the equation of a

cubic; or on the equivalent but later form (article 121). But I must exhibit briefly the reduction
of the earlier form, namely

U=s"+6kp=0,

(articles 91, 92, &c.) when s = x + y+ z, as before; p = x® + xy + y%; and k is an arbitrary
constant, to the known canonical form

x* 4+ % + 2% + 6mayz = 0,

by a suitable transformation of coordinates.

211. The three real points of inflexion are here (by articles 97, 98, and 121),
K=(@1,-1,0), K'=Q{,¢c¢, K'=(,1,ec0)),
where cis the real root of the cubic equation
(2¢+1)2 4+ 6ke(>+ c+1) = 0;
so that we may eliminate k (as in article 121), and denote
(P e+ DU=c(P+c+1)s® = 2c+1)°2p =0,

as a form for the equation of the cubic curve now under discussion. Its three real points of
inflexion are on the right line which has for its equation in the older given coordinates,
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KK'K": ¢(x+9y) —(14+¢)z=0;
and we propose to take this line for the new unit line, so as to have
c(x+9y) — A+ ) =v(x + y + 21),

where v is some constant coefficient. Again by equation II of article 98, the three real right
lines, of which each passes through one real and through two imaginary points of inflexion,
are for the present curve the following:

Kl : x+9y+2=0, KI'J':y—2=0;, K'I"]":2—x=0;
and we shall take these lines for the sides A'B’, B'C’, C'A’, of the new unit-triangle, writing thus
y—z=Kkx, z—x=Ay, x+y+z=uz,

where x, A, u are constants. These four assumed equations between old and new coordinates
become compatible, when we select the four new constants as follows:

k=—-1=3(c—-1); u=32c+1); v=(c—1)Q2c+1);
and then we have formulz of transformation,
x=(c—1)(—=x1 +2y) + 2c+ 1)z;
y=(c—=1)2x; — y) + 2c+ Dz
z=—(c—1)(x1+n) + 2c+ D
which give

2 =27(2¢+ 1)3z§;

4y (x4 p)°
DX AT I (1268w 3D+ (= D@ D+ ya + Qet D
Z
B (= 163+ ) = 3(c = D*@e+ Dy + @o+ 1),
But
9c(®+c+1)— 2c+ 1) = (c— 13
therefore

c(®+c+1)

3(c—1)%(2c+1)3 U= (c—D(a+ 5] +2) +32c+ Duynz = 0;

and the reduction to the canonical form has been accomplished.

212. We see, then, the three cubic forms of article 122, namely,
I. U=3(c—1)ss's"+27cxyz,
. U= (—1)s*+27xyz,
L. U=9c(1+ c+ ) (1+2¢)2s> —9(1 + 2¢) zp,
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with the recent meanings of p, s, s, s”, and with one common value of the constant ¢, have not
only, as in the cited article, one common set of values of S, T, and v/ R, namely,

S =2"436(1 +8¢%),
T =2733%(1 —20¢% — 8¢%),
VR =3%(1-¢%,

(which are all decomposable, as in article 122, into linear factors), but also, when equated to
zero, represents absolutely the same cubic curve, only compared with different systems of points and
lines of reference. Indeed, I suppose that wherever both S and T have the same values, including
signs, for any two cubic curves, not affected with any of the singularities, which answer to the case
R = 0; or (which comes to the same thing), when §' = e*S,and 7" = €57, if Sand Tbelong
to the one cubic, and S', T to the other, while ¢is any real constant, then either curve may be
identified with the other, by mere transformation of coordinates, as in the examples2 given

above. But I think that we are not at liberty to change the sign of T; and therefore that & is not

sufficient to determine the curve, in all its essential properties: although I grant that it determines
the six anharmonics of the pencil of tangents. (Compare the two subcases of article 123, &c.) And
when there is a double point, (R = 0,) whether nodal or conjugate, we seem to have found, in
article 133, that then the functions Sand T take cognizance (so to speak) only of the course of
the curve in the immediate neighbourhood of that singular point: and consequently that their
values are in this case insufficient to determine the whole of the cubic. In fact, we saw (in article
131, &c.) that if we suppose ¢y, ¢, c3, to vanish, so that

U= arx® +3asx®y+ 3b1xy* + bay® + 3z(asx® + 2dxy + b3 y?),

then although the four coefficients ay, as, b1, be, thus enter into the given cubic function U, (and
also into its Hessian H,) they do not enter at all into the composition of S and T; which latter
functions of the constants were found to be expressed by the formulz,

S=(d?— asbhs)?; T = —8(d*>— ashs)>.

Thus, S and T would in this case remain unaltered, (their signs being, as above, included in
their values,) if we were to reduce the cubic to a system of three right lines, namely the line z = 0,
and the two (real or imaginary) fangents to the curve at the singular point (0, 0, 1). Leaving,
however, at least for the present, the consideration of such singularities, I proceed to answer
the question at the beginning of article 210, or to show what led me to discuss, with some
detail, the form U = S+ 6 kzp, of article 91, &c.

213. You may remember that I had my doubts, after I had begun to write this Letter,
whether Salmon held it to be proved, that a cubic curve has always three real points of inflexion;
allowance being made for the possible absorption of such points, by a double point of the curve:
which allowance I did not sufficiently make at first, in endeavouring to interpret some parts
of the phraseology of HPC. At this moment, I have not beside me the notes in which you
referred me to pages of that very able and important Work, sufficing not only to clarify the
Author’s own conviction on the subject, but also to supply geometrical grounds for that
conviction; on which grounds I am quite willing to accept, as satisfactory to a candid inquirer,
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or (let us say) to a docile student: such as I wish to be, in whatever degree it is permitted to be
one, although haunted and disturbed perpetually, by aspirations after knowledge more
complete.

214. I admit that Section III., of Chapter III., — and especially the Figures in page 145 of
HPC, — may be considered to leave no reasonable doubt, on the mind of a geometrical student, as
to the existence of three real inflexions on any cubic of the sixth class. Yet there seems to be
something unsatisfactory, — as, in a note of yours (not just now at my hand), I thought that
you appeared to admit, — in our being obliged to appeal so much to considerations of Shape,
— and in fact to what our eye can take in, — when we are dealing virtually with this question of
pure Algebra: Whether that Equation of the Ninth Degree, which results from elimination
between the two equations,

of the original cubic and of its Hessian, can ever have eight imaginary roots® For it is,
substantially, this Question, and not any that relates to visible Flexures of the Curve, which we
are called upon to investigate. And, charmed as I always am, with any help which Algebra can
derive from Geometry, I confess that, as an algebraist, I cannot help myself from even still
feeling, that we are expected to place too much reliance on our own power, or want of power, of
imagining Geometrical Form, when we are asked to draw so important, so general, and so
algebraical a conclusion, as that which I have just now referred to, from the reasonings and
the diagrams of the Section above cited.

215. Quite recently, — at least long since this Letter was begun, — I have happened to see a
Note (numbered as XII.), to the Second Edition ([Paris] 1854) of Serret’s ““ Cours d’Algebra
Supérieure”™, which note is entirely devoted to an account of Hesse’s own Analysis respecting
the Nine Points of Inflexion of a Curve of the Third Degree, and the Equation of the Ninth
Degree which determines them. It is only in a very cursory way that I have yet attempted to
read the cited Note: but its mere Title, — ““Sur la Résolution Algébrique de I'Equation du
Neuvieme Degré, a laquelle conduit la Recherche des Points d’Inflexion des Courbes du
Troisiéme Degré,” — is sufficient to show that it must have a very important bearing upon the
present Subject. Serret says, in his page 539: “L’analyse de M. Hesse est assez remarkable
pour que je croie devoir la reproduire ici:”’ I suppose we may consider the twenty following
octavo pages in French to be, at least substantially, translated from the German of Hesse,
which I cannot at present consult. Now, just at the middle of the Note in question (page
549), I find the following passage:

“On voit donc qu'une courbe réelle du troisicme degré ne peut avoir plus de trois points d’inflexion
réels, lesquels sont toujours en ligne droite, d’apres le théoreme I. Je dis, en outre, qu’il y a effectivement
des courbes du troisieme degré qui ont trois points d’inflexion réels. Par exemple, la courbe dont

X . . o . ~ .
-, 2 désignent les coordonnées rectilignes et qui a pour équation
Yy oz

* [Joseph Alfred Serret, 1819-1885.]
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X3 - XZZ

y:3x2+22’

est rencontrée par 'arc des abscisses en trois points d’inflexion réels.”’

216. I suppose that we may admit that when Hesse wrote the Memoir thus translated, or in
some form reproduced, he was not aware of any proof of the general reality of so many as three
roots, of his equation of the ninth degree; since otherwise he was not likely to have taken the
pains to give so simple looking an example (the correctness of which I have not thought it
necessary to verify) of there being sometimes three such real roots. My own reading on these
subjects, as I believe that you well know, or can guess, is indeed of very small extent; but I still
think that an algebraical proof, — even if mixed with some geometry, — of the impossibility of eight
imaginary roots in the equation of the ninth degree, which (as above) results from the given
cubic and its Hessian, is a desideratum in this theory. And my object in discussing that (only
partially symmetric) form of the cubic U, which was introduced in article 91 of this Letter, was
to contribute something towards the supplying of a want, which was then supposed by me to
exist.

217. 1 therefore started with the much more easily proved and indeed unquestioned
theorem, that there always exists at least one veal point of inflexion on any real cubic: assuming
also, as a thing admitted, that at least one real right line can be drawn through that point, so aj

to contain two other points of inflexion, real or imaginary. In fact, the biquadratic equation in —

has, by its known form, always two real roots, one positive and the other negative; but it was
sufficient for my purpose to know that it had always at least one real root: and therefore that
there was always at least one real and linear combination, of the form

AuU+uH =0,

representing a system of three chords of inflexion, whereof one chord at least must be real. 1 took
that real chord for my (anharmonic) unit-line; the real point of inflexion upon it for the point
C' = (1, —1, 0); and the tangent at that point for the side AB, or z =0, or [0, 0, 1] of the unit-
triangle. Assuming also for argument’s sake, that the two other points of inflexion on the same
chord were imaginary, I denoted them by the symbols (1, 6, 6%) and (1, 62, 0), as my method
allowed me to do; and chose the real intersection of the two imaginary tangents at those points
for the corner Cor (0, 0, 1) of the unit-triangle. This led me to the form

U=s"+6kp=0,

of article 92; and because this succeeded in proving that there were, with these suppositions, two
other real points of inflexion, 1 inferred, — in a way satisfactory to myself at least, — that there were
always three such real points.

218. The calculations might, with little increase of trouble, have been presented more
generally as follows. The side AB, or z = 0, of the unit-triangle being still supposed to touch
the curve at the point C’, or (1, —1, 0), where it meets the unitline, and this real point of
contact C' it being still supposed to be a point of inflexion, let the unitline A’B'C’, or
x+ y+2z2=0, or s =0, be still supposed to meet the curve in two other points of inflexion,
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respecting which we shall only now assume that the real intersection of the two (real or
imaginary) tangents at them is made, as before, the corner C, or the point (0, 0, 1), of the unit-
triangle. Then the equation of the pair of those two tangents to the cubic will be a quadratic of
the form,

v = ax® + 2bxy + ¢y* = 0,
in which the coefficients a, b, c are real, but may satisfy either of the two inequalities,
L 0—ac>0, or IL & —ac<0.

In the Ist case, the quadratic has two real roots, answering to two real points of inflexion of the
unitline, besides the assumed point of inflexion C’, so that in this case there is no question
about the existence of three real points of inflexion. In the IInd case, — which includes that of
articles 91 &c., — the quadratic has imaginary roots, and the two other points of inflexion on the
unitline (additional to the given real point C’) are imaginary points; although the tangents to
the curve at those points still meet, as before, in the real corner C of the unit-triangle. But in
each case, the equation of the cubic takes the form, which we shall now proceed to discuss,

U = 53+Suz:0;
where
s=x+y=12 and v=ax®+2bxy+ ¢y%

as above, while q, b, ¢ are arbitrary constants.

219. Introducing, for the sake of homogeneity of constants, another coefficient ¢, or writing
U= es®+ 3vz,
differentiation gives, on the plan of the expressions,
= %DXU = es® + 2(ax + by) z,
m= %DyU = es®> + 2(bx + o)z,

1 2 .
n=3D.U = es” +v;

r 192 _
l —EDxU— es + az,
m' :%DQ),U: es+ ez,

r 1192 _ .
n —EDZU—es,

"= %DyDZU =es+ bx+ oy,
m" = %DZD,CU = es+ ax + by,
n" = %DnyU = es+ bz

whence (writing out for my own convenience the calculations at full length) we have the
combinations,
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Ui =63 + e?s% (20 + 2¢y 4 az) + es(bx + ¢y) (bx + ¢y + 2az) + az(bx + cy)Q,
m'm"™ = e3s® + 2% (2ax + 20y + ¢z) + es(ax + by) (ax + by + 2¢z) + cz(ax + by)g,
n'n" = 3%+ 225 bz + esh®2>,
—U'm'n' = —e*s> — ®5%(a+ )z — esaci®,
—20"m"n" = —2e°s% — 2e2s*{(a+ b)x + (b + ¢)y+ bz}
— 2es{(ax + by) (bx + ¢y) + (ax + by) bz + (bx + y) bz}
— 2bz(ax + by) (bx + ¢y);
so that the Hessian for the present form of U is
H=10U1I"+mm™+n'n"*—U'mn —20"m"n"
= csX + 27,
where
X = {(ax+ by) — (bx+ ) }* +2(c — b) (ax + by)z
+2(a—b)(bx+ cy)z+ (0% — ac) 2,
= (0" — ac) (z— x— )° + (ac = b*) (x + y)* + {(ax + by) — (bx + ) }%,
= (b* — ac)(x + y— )2+ (a—2b+ ¢)(ax® + 2bxy + cyQ);
Z = c(ax + by)? + a(bx + xy)? — 2b(ax + by) (bx + xy),
= (ac — b*) (ax® + 2bxy + cyQ);
and therefore, finally, since
ax® + 2bxy + oy® = v,
H= (b= ac)es(x+ y—2)* + {(a—2b+ ¢)es + (ac — b*) z}v.

220. We have therefore the obvious combination,
(0* — ac)U + 3H = esY;
where
Y= —a){(x+y+2)2+3(x+y—2?%}
+3(a—2b+ ¢)(ax® + 2by + ¢y%)
= (B —ac) (x+ y—22)* + 3{(a— b)x + (b — ¢)y}?

which is equal to a product of two linear factors; which are evidently real, when the factors of
v are imaginary; although they are, on the other hand, imaginary, when those of v are real. It
follows, then, that *“the system of the two new chords of inflexion, represented by the equation
Y =0, is real or imaginary, represented by the equation v = 0, is imaginary or real’’; that is,
according as the second, or the first, of the two inequalities in article 218, is satisfied: and it may
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be noticed that in each case, and for all values of the constants a, b, c, e, the two chords of
inflexion (Y = 0) ntersect each other in a real point, which is situated on the given right line,

x+y—22=0, or OC

this intersection having been (as in article 94) the unit-point O itself, when we had the
relation

a=2b=c,

as in the less general form of article 91. Our analysis therefore enables us to conclude, that
“when two of the points of inflexion on the given chord s = 0 are imaginary, there exist generally two
real points of inflexion, distinct from the given real point C' and situated on those two other real chords,
which are then represented jointly by the equation Y = 0.”” And I must say that my own conviction, of
the general existence of three real points of inflexion on a cubic, vests mainly, at present, on this
argument.

221. The six points of inflexion, whether some real or all imaginary, which are the
intersections of the pair of chords Y = 0 with the given cubic U = 0, ought to be arranged
upon a new System of three chords, through the given point of inflexion C'. Accordingly, if we
write

W= (a—2b+ c)es® +4(ac — b*)2{z* — (x+ y)z+ (x + y)?},
the elimination of v between the two equations,
U=0, Y=0,
will conduct to the equation

W =0,

x +

which is of cubic form with respect to ) , and therefore represents a system of three right

lines through that given point C': our analysis receiving thus a verification.

222. If we substitute for x 4 yits value s — z, and write, for conciseness,

9(a—2b+c)e
f(ac— b _©

we have

9w

— o3 2 _ 2 3.
) gs” + 357 (32) — 3s(32)" + (32)7;

this cubic function equated to zero gives therefore the values of — for the three chords of

inflexion through C’, drawn to the points for which ¥ = 0; and if V\fe combine with these the
given chord s = 0, we shall have all the nine points of inflexion, answering to the System of the
two equations, U =0, H = 0, as contained upon the pencil of four chords through C', (the
vertex C’ being included,) which pencilis represented by the biquadratic equation

0= gs* +3(32)s® —3(32)%* + (32)%s;
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or
0 = As* + 4Bs*(32) + 6Cs*(32)% 4 4Ds(32)° + E(32)%,
where
A=4g, B=3, C=-2, D=1, E=0.
Hence, for this pencil,
128 = AE —4BD + 3C* =0,

whatever the values of the constants a, b, ¢, emay be; and therefore, by articles 200, &c., *“ This
pencil of four chords of inflexion is di-anharmonic’’: which agrees with my Theorem of article 159,
and is a new verification of the analysis.

223. Writing a® — 1 instead of g and supposing for simplicity that a is real, so that

3 9(0—2b+ c)e
O‘_\/{IJr 4(ac — 1?) }

the cubic equation W = 0 gives for the three new chords the three separate equations,

3 3! 3/!
—Zzl—a; Z—1—005; Z—1—(9201;
s

r no

N N

one being thus a real right line, and the two others being imaginary lines, although they all pass
through the given and real point of inflexion C’. Hence the anharmonic of the pencil of
the four chords, including the given unitline, and treating it as the first of the four, while the
three others follow in the order written above, is (by the principles of article 184, &c.) the
following:

Ll L of[1-6a 1
“ll—a, 1||1=603%a, 1

J1—a, 1]|1-6%, 1| (*—-0)a
“11=0a, 1 1, 0 (1-60a

and thus the di-anharmonic property of the pencil (compare article 159) is proved anew.

224. It may é)ze remembered here that, for any point P, we have 3—;: (C'.PAOA"), and
therefore 1 — - = (C'.POAA’"); if then P, P’, P" be any points on the three new chords, we
have the relations,

(C'".P'OAA") = 6(C'.POAA"),

(C'.P"OAA") = 6%(C'.POAA’);
and consequently,

(C'.POAA")® = (C'.P'OAA")® = (C'.P"0AA")® = a°.
If we make e =1, and a = 2b = ¢ = 2k, so as to return to the particular form (articles 91 and
92)
U=s"+6kp,

we have
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3.

2k’

so that the cube roots of this last constant are then the values of the anharmonic (C'.POAA")

for the System of three new chords through C'. But we had, in article 96, for the new chord

C'K'K", an equation which may be written thus,
32 3(w—4—2Fk) 3z 4(3+2k) —w
—=——————" or _—— =
s 2(w + k) s 2(w+ k)

with corresponding equations for the two other chords, C'I'[", and C’J'J", formed by
changing w to w’ and w”, that is, to the two other roots of a certain cubic equation (article
95); that cubic equation in w ought therefore to admit of being written under the form,

{4(3+2k) w}3 3

:1 e
2(w+ k) TS

a® =1+

or,
Rlw—48+2k)P +408+2k) (w+ k)® = ¢
and accordingly when we expand these cubes, and divide the result by 3(4 + 3k), we get the
equation
w® + 12k(3 + 2k)w — 4k(3 + 2k) (12 + Tk) =0,

exactly as in article 95.

225. The examination of the roots w, w’, w” of that Cubic equation supplies another
interesting verification of the theory of the di-anharmonic property of the pencil of four
chords, which has only recently occurred to me. A given chord being still the unitline, s = 0,
but the three other chords through C’ be the lines z = s, z = t's, 2 = 7”s; the anharmonic of
the pencil is then

h— 1, Oof||7z, 1 T, 1||7", l_r’—t”__L
Tz, 1|7, 17, 1|1, o -7 "
where
L= 6*!

by the property referred to; an ambiguous exponent being thus used, to allow of variety of
arrangement of the chords, or rays of the pencil. In each case, +¢+1=0, and
7+t + 21" = 0; wherefore the relation

T? + Tr? + T/!2 T — " — 1T = O,
or
(T+ ,L,/ + _L_/r)2 — ?)(T,T”—F T”T+ TT’),

must hold good for all such arrangements. If then we suppose that 7, 7', t” are the three roots
of the following cubic,

at® = 30 + 3ct — d =0,
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(where a, b, ¢ are new constants,) the coefficients a, b, ¢ of this new cubic must satisfy the
equation of condition

b — ac=0.
226. It is worth observing that this equation between the new coefficients can be deduced,

in a quite different way, as follows, from the same di-anharmonic theorem or property.
The equation of the pencil of the four chords being

0= as(ts—2)(T's — 2) (t"s — 2) = s(ds® — Sczs® + 3b2%s — az®),
or
0= As* + 4Bs®2+ 6Cs%2> + hDs2® + E*,
when
A=9, B=-3¢, C=2b, D=—a, LE=0,
we must have, by the theorem
0=12S = AE —4BD + 3C* = 12(b" — ac)

or b = ac, as before. And it is now proposed to prove that this relation does in fact exist,
between the coefficients of the cubic of which the roots are 7, 7/, t”; or (which will do as well),
any linear functions of those quantities, such as At + u, A" + u, A7” + u; when

2 _w—4-2k_ 4+3k

2T =1- ,

S w+ k w—+ k
N C SN e 13
w + k w"+ k

227. Itis sufficient, then, to make
w+ k=v"

and to try whether, on eliminating w by this from the cubic equation in article 95, which was
lately cited in article 224, the resulting equation

av® — 3> +3cw—d=0,
or
d(w+ k) —3c(w+ k> +3b(w+ k) —a=0,

has its coefficients a, b, ¢ connected by the recent relation b2 = ac; whatever value the
remaining coefficient d may happen to have. Now it is easy to perform the elimination here
required, which is found to give the coefficients:

a=9k(4+3k)2% b=3k(4+3k), c=k d=1;
in fact these give 3kd — 3¢ = 0, 3k?d — 6ke+ 3b = 12k(3 + 2k),
kBd— 3k c+3bk — a=—4k(3+2k) (12 + 7k),

whence, by substituting them in the last cubic in w + k, we are led back to the cubic (article
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95) in w. And it is evident that a, b, ¢ have the required relation; so that this expectation of
theory is fulfilled.

228. Again, since the calculations of the last article show that the three roots, v, v’, V", of the
cubic in v, orin (w + k)~!, are connected by the relation,

!

0=04+0v%+0v”?-0vv" —v"v—V
= (W+ 00V +6%0")(v+ 6% + 6v"),
it follows that we must have one or other of the two factor equations
I. O0=v+60 +6%"
or
II. 0=v+6% +6v"

that is, either
1 0 62

1. 0=
w+ k+w’+k+w”—|— 3
or
1 62 0
II. 0=

w+ k+w’+k+w”+ k;

which it is necessary here to distinguish, because the expressions for w’ and w”, in article 95,
already involve 6 and 6% Nor did I at once see how to decide between these two last
alternatives; until the following analysis occurred to me.

229. Writing, as their common expression, the formula

1 ¢ 2

w+ k+w/+k+w”—|—k’

when as before, ¢ = 6%, and clearing of fractions, I had
0= (w + k) (w"+ k) +o(w"+ k) (w+ k) +(w+ k) (w + k)
= w0 +w'"w+ Cww' — k(w+ 1w +Pw").
But the three roots w, w', w” were assigned in article 95 under the forms
w=w +ws, w =0w+60w, w'=060w + Ows;
hence
w'w" + 1w"w+ Cww' = (1 + 6% + LQG)w% + (1+:0+ L292)w§,
and
w4 1w + Fw’ = (140 + 20wy + (1 + 10 + 26%) wy;
we are therefore to prove that the ambiguous exponent of 6 in ¢ can be so selected as to give
0= (1+10%+20) (w] — kws) + (1 + 10 + (26%) (wh — kw:);

which can only be by our having either
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W = kwy, or wy= kw;

the first alternative answering to ¢ = 6, and the second to ¢ = 6?. Hence, on comparing the
values in article 95 of the constants w; and ws, namely w; = E'2k" wo = k' k"2, we see that we
are to try whether first, k'3 = k; or, second, k" = k. And because, on referring to article 95,
we find that the first, but not the second, of these two last equations to be good, we infer
finally that we are to take the value ¢ = 61! = 6; or that the roots w, w’, w" of the cubic in
article 95 are connected by the equation

L O0=(w+k)'+0@ +k+6*w+ k1,
but not by the equation II. of article 228; at least if we still make 6 and 62 enter into w’ and

w", in the same way as we did in that article 95, which has been so often lately referred to.

230. As another verification, though not an important one, it ought to be found (cf. article

3
223) that the product of the three values of—Z in article 224, is equal to 1 — a?; or that
s
Ik(w—4—2k) (w' —4—2k)(w" —4 —2k) +4(w+ k) (w' + k) (w"+ k) = 0;

where w, w’, w" are still the roots of the same cubic of article 95 or writing for abridgement
4+ 3k = 0, and (as in article 227), w+ k= v"!, we ought to have

0=9k(1—06v)(1—0v")(1—0v") + 4

v, V', v”" being the roots of the cubic in v, resulting from elimination of w. But this latter cubic
has been found (article 227) to be

0= k6%0® — 9kOV> + Skv — 1,

or
30

0= (30v—1)°+1 -

whence
o(v+v +v") =1,
302" +v'v+ ') =1,
9k vv'v" = O

therefore

9k(1 —ov)(1 —=0ov')(1 —0v") +4 =9k -9k +3k—0+4=0,
and the verification succeeds. (Of course, the process may be varied.)
231. Since I have been thus led to speak again of some of the earlier formule of this Letter

respecting cubics, I shall just observe here that the equations of article 99 (for example), for
the twelve chords of inflexion of the curve (articles 91 and 92)

U=S+6kp=0,

as well as the coordinates of the 9 points of inflexion themselves, for the same cubic, assigned
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in article 97, be considerably simplified, by introducing the constant ¢ of article 121, namely
the real root of the cubic equation of article 211,

(2¢+1)® + 6ke(® + ¢+ 1) = 0.
Writing
!'=1420%, v =6%-6c,
t"=1+420c, v'=0- 6,
so that
v —0v =60-1, vV -0 =6%-1,
v — 6% = (1 - 6%)¢, v —60v"=(1-0)c,
0’0" —t' = (1 — 0%, Ov' —t"=(1-0)c,

so we have the following

Table of Coordinates of the Nine Points of Inflexion

K=(@1, -1, 0); K' = (1, ¢ ¢o); K" = (¢, 1, ¢);
I1=(1,0,6%; J =u" " v, I"= (', t', v');
J=(1,6%0); I'=(t',v,v'); J'=" " "),

232. We have also the following

Table of Coovdinales of the Twelve Chords of Inflexion

1. [e, ¢, =1, —cl; [v", =0V, ¢ — Oc]; [v', —6%v", ¢ — 6%¢];
IL. (1, 1, 1]; [0, 1, —1]; [-1,0,1];
I11. [v, v, -t —v']; [c—0c V", —6U']; [V, ¢ — B¢, —OV'];

Iv. ", v", —t"—v"]; [c—6%c, v, —0%v"]; [V, c— 6%, —6%v"].

The notation [/, m, n] having been already explained (articles 9, 79, 146, &c.) it is only
necessary to add that in constructing the foregoing Table of Coordinates of Chords, 1 have
followed the arrangement in article 99; namely

L. KK'K',I[J'I" JI'J"
1. KIJ,K'I'J,K"I"]"
UL KI'1", K'[j", K"JJ’;
V. KJ'J" K'JI", K"II'.

233. Combining the equations thus grouped, and tabulating in order, the coordinates of
the intersection of the sides 2 and 3 of the triangle I as (I, 1) etc., we soon construct the
following

Table of Coordinates of the Twelve Corners of Triangles of Chords
1. (¢ ¢ 1);
1. 2. (14 6%60%+ ¢, —00¢);
3. (14+0¢0+c —0%).
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1. (1,1,1);

Im. 2. (1,-2,1);
3. (=2, 1L, 1).
1. (0—1¢0—c 0%+ 200);

O 2. (1 —2c+60c —2—60%,0— ¢);
3. (=2—6%¢1—2c+0c¢ 60— 0.
1. (6% — ¢ 02 — ¢, 0+ 26%);

IV. 2. (1 =2¢+6%,—-2—0¢6%—0);
3. (=2—0¢1—2c+ 6%, 6% —¢).

(Division of all the coordinates by 2¢ + 1 has been several times here employed.)

234. These Tables are not completely symmetrical; nor could it be expected, from the partially
unsymmetrical arrangement with which we geometrically started, in deducing the here
adopted form of article 91, that they should be so. But if we now employ the formulz of article
211 of transformation of anharmonic coordinates, we arrive at the following new Tables, in

which we write
y—z X— 2z _x—i—y—l—z

c—10 T T o+

(Y2 x—z x+y+z
(x’yaz)_<c_1’c_1’ 2C+1 )1

X1 =

>

changing also cyclically the arrangements of the points from 1, 2, 3 to 3, 1, 2 and multiplying
or dividing, where convenient, by any common factor:

Table of Transformed Coordinates of Points of Inflexion
K' =(0,1,-1);; K"=(-1,0,1)1; K=(1,-1,0);
J =0,1,-0); I"=(=0,0,1);;  I=(1,-6,0);
=(0,1, =601 J"'= (=00, J=(,—6%0).

235. Table of Transformed Coordinates of Chords of Inflexion
(Arrangement cyclically altered from that of article 232, in each of the three latter groups of
chords.)

L. [1,1, 1] (1, 6% 611; (1,6, 6%]:;
IIl' [1> O: 0]1; [0,11 0]1; [0, 0’1]13
IIIl' [6’1;1]1; [179:1]1; [171’0]1;

Vi (651,10 [1,6% 10 [1,1,6°h.

— I'am not certain whether I shall devote any space to the general theory of such transformations
of coordinates of lines, before this Letter ends; but in the present instance the meaning and
validity of the resulting expressions are evident. Thus, the three symbols of the group I; imply
that the nine points of inflexion may be arranged on the three chords (K'K"K, J'I"I,
I'J"]), which have for their transformed equations

x1+ 9y +2 =0, x1+02y1+9z120, x1+9y1+92z120;

and similarly for the three other groups.
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236. Table of Transformed Coordinates of Corners of Chord Triangles
L. (L LDy [1,0,0;  (1,6%0);
. (1,0,0)1; (0,1, 0)1; (0,0,1)3;
on. (6%, (1,64 D) (1,1,60%);
IVi. (6,1, 1)5; (1,0, 1); (1,1, 0);.

This last Table may be constructed from the one in article 235, by seeking the intersection of
chords 2 and 3, chords 3 and 1, and chords 1 and 2, respectively, in each of the four groups
which have been tabulated in that article; or it may be deduced, by the transformations in
article 234, from the corresponding Table of article 233, with cyclical changes of arrangement
in the three latter groups. For example, from the corner 2 of Triangle I, in the last cited
Table, of which the coordinates are x = 1 + 6%, Y= 02 + ¢, 2 = —6¢, we derive immediately
the transformed coordinates,

X—z _x+yt+z

frg __1’ =—=—0;
= AT o T

y_Z__QQ

xlz =
c—1

which may then be changed, as in the Table of the present article, to the proportional
expressions, 1, 0, 62. Or we may determine the new coordinates x, y, z, of this corner by the
system of the two linear equations,

X140y +60%2 =0, x5+ 9y +2z =0,

which represent the two chords whereof the transformed symbols are [1, 0, 621, and [1, 1, 11,4,
in the 1st Triangle of article 235. I see, indeed, that some of the formulz of recent articles had
been in substance given before, (or at least formula connected with them) for instance in
articles 112, &c., and 211; but it may not have been quite useless to show how completely the
constant ¢ disappears by this transformation of coordinates (article 211), from all expressions which
involve only the nine points of inflexion, or the intersections of the chords connecting them, &c.

237. (May 7th, 1860) Although I may have something more to say respecting points of
inflexion, and the various forms which the cubic equation may assume, when considered
relatively to those points, and to the tangents at them, as indeed I have suggested in some
separate notes, written during the progress of this Letter, yet it will not perhaps, be
considered an unpardonable violation of system, if I now resume the consideration of that
Theorem of Pure Geometry, which you mentioned to me a few weeks ago, and which has
recently been brought under my notice again, by a reperusal of your note of April 25th:
notwithstanding my having designed to content myself with such (rather long) discussion as I
had given to it, in articles 170 to 183, written before the last mentioned note arrived; which
articles I shall suppose to be within your reach, and of which therefore I shall here retain the
notations without any new explanation of them.

238. In articles 174, and 175, a construction was given for the point S, in which the right
line CP, drawn from the corner C of the given triangle to the point of contact P of two conics
or circles, of the question, met (as in the figure of article 148) the opposite side AB; but I
admit that this construction, or the ratio which it assigned between the segments AS, SB of
that side, was rather complicated. In articles 176 and 177, a much simpler construction, and one
more geometrically relevant (so to speak) was given; namely one for the point (L or M or N) in



322 ITII. LETTER TO HART ON ANHARMONIC COORDINATES

which the common tangent LMN to the two conics, or circles drawn at the point P where they
touch one another, intersects any one of the three sides of the given triangle ABC; and I still
think (as in article 170) that any one of the three formula (article 177)

LB a—1b MC  b—c NA c¢—a

CL a—¢ AM b—a BN a-—10b

which belong to the case of contact with the inscribed circle, is not only sufficient to determine,
but also determines with sufficient simplicity, the point of contact P, by assigning a point on one of
the sides from which a tangent to the inscribed circle is to be drawn. Perhaps, therefore, I
should have been content with this construction; if it had not been for your subsequently
received, but above cited, note of the 25th of last month [April]; and for the elegant and
simple determinations given in it, for the point above called P, on which my eye has later
fallen again, and which I wish to prove, and in some degree also to extend, by the Method of
Anharmonic Coordinates.

239. Your little figure (of April 25th) was perfectly clear, and therefore was, no doubt, more
elegant than one which involves so many lines and lettered points, as those which I have just
now amused myself, by introducing into the annexed Diagram (Figure 29). It represents, as
you see, a system of two circles; one with its centre at /, which is inscribed in the triangle ABC,
touching the sides thereof at the points A;, By, Ci; and the other, with centre K, bisecting
those sides in A”, B”, C”, and intersecting them again in the feet A”, B"”, C" of the three
perpendiculars from the points A, B, C, which are exhibited as meeting one another in a
point w. The two circles are seen to touch at a point P, their common tangent LMN at that
point being parallel to the mean side CA, and {risecting each of the extreme sides, AB, BC;
because it has been assumed, in the construction of this Diagram (Figure 29), that the three
sides of the triangle are, as regards their relative lengths,

a=4, b=3, =2
whence, by my formula of article 178, cited in article 238, we have the three ratios of section
LB 1 MC  NA

-t am- ¢ BN

+2.

And so far, I have made no use of the information contained in your cited note on this
subject.

B
A A" L
M LN LZP N,
A”_ ”C”
JA
K\
C A B
BI/ \Bl
R C o

Fig. 29
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240. You inform me, however, in that Note, and I understand the reasoning by which you
prove it, although my memory is not familiar with all the elementary theorems to which you
refer, that if, on that arc of the bisecting circle (K) which lies between the mean chord C"A" and
the mean corner B (my own letters being here used), a point P be taken, whose distances C"P
and A"B from the extremities of that chord shall be proportional to the tangents C"C; and
A"A;, which are drawn from the same points C” and A" to the inscribed circle (1), we shall
then have the more full proportion of chords and tangents

A"P: B"P: C"P = A"A; : B"B, : C"Cy;

whence you infer (I.), that the two circles touch, in the point P thus determined. And you
add, without proof, an elegant construction (II.) which may be thus described, for graphically
determining that point of contact:- Bisect, say in R, the arc B"B" of the circle (K), which is
remote from B; the right line RB;, drawn to the point of contact By of this side CA with the
circle (1) will pass through the point P.

241. To investigate these things in my own way, I form first the three following anharmonics
of pencils:

h — (A”.B”CC”P); hl — (B”.C"AA”P); h/l — (C”.AHBB”P);

where I begin by supposing that Pis any point (x, y, z) of the plane. The formula of article
151 gives, next,

o, 1, 1llo, 1, 1| Jo, 1, 1[0, 1, 1 e
r=1|1, 0, 1||1, 1, o|:|o, 0, 1|lx, y 2|=- "2
0, 0, 1|x y =z| |1, 1, of|1, 0, 1 Xt y-z
and similarly,
o= XTITE L nd pr= - 2TETR
yt+z—x 2+ x—Y

so that hh' h" = —1.
But we had (in article 172), for the point P of contact of the two conics (U) and (V) the
coordinates,

x=aB-0% y=pr-a z=ya-p%
whence the three recent anharmonics become, for that point
a-poaty , _B-ypfta ,, y-ay+
h= . ;0 B =———. ;0 A= . .
at+p a—y B+y B—a y+ay—p
Again, because (by article 174) the contacts of the conic (V) with the sides are
A1: (O’ y?ﬁ)’ Bl:(ya Oa a)} Cl:(ﬁa a, O)

we have (cf. article 174)

S::KHBCDU::—«hBC%x

and therefore
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-1
-8 .oy, <1 + é) = (C1ABC');
a a
so that
a—p
et~ (CCBNGABC) = (GIC'BC) = —(GIC"AC),

and similarly for the rest. Hence, on the conic (U), we have the three following anharmonics
of groups (cf. end of article 18):-

h= ((B"A"C"P)) = —(C,C"AC") : (ByB"CB') = (B; B'AB").(C, C"AC');

)
B = ((C"B"A"P)) = —(A;A"BA") : (C;C"AC') = (C;C'BC").(A; A"BA');
)

h" = ((A"C"B"P)) = —(B1B"CB’") : (AJA"BA") = (A{A’CA").(BB"CB');

of which, as a verification, the product is negative unity. Already the expressions thus
obtained — any one of which suffices to determine the point P, — are not of great complexity;
but they become of course, much simpler, when we throw off the line A’B'C’ to infinity:
giving then

B AB" Cl CN‘ , BC” AlA//. . CA" B]B”'
- B] BH’ AC" ’ - (:1 CU' BA" ’ - A]A/r' CB" >

(U) and (V) being now two homothetic conics (article 177), whereof the former bisects and
the latter touches, the sides of the given triangle ABC. Supposing, finally, that these conics
become circles, and that the latter is inscribed, we have the anharmonics of circular groups,

b a—1"> , ¢ b—c , a4 c—a
ca—c’ a b—a’ b c—b’

h

which are easily seen to contain the first or the metric part of your construction. It may be
remarked that when a> 6> ¢, we have not only A>0, but also 2 <1; whence it may be
inferred that P falls (as in Figure 29) between A" and C"; which indeed is geometrically
evident.

242. If we now proceed to consider, — and to transform, — the second or graphic construc-
tion cited (in article 240) from your Note, and which I understand to be your own, it becomes
necessary to lay down rules for dealing with questions of bisection of angles, in that extended
Calculus, to which the present Letter relates. How am I to express, — even as a thing to be
proved, — that the chord PBj, of the inscribed circle bisects the angle B"PB"? And how extend
this theorem, so as to meet the more general case of two mutually tangent conics?

243. For this purpose, it will be useful to consider first the analogous extension of the relation
of perpendicularity of lines, of which we have already had an example in article 180; where the
elementary relation, mentioned by you in your first note on the subject, namely that the
second intersection of the side with the bisecting circle is the foot of the perpendicularlet fall from
the opposite corner of the triangle, or (with my symbols) that each of the angles A"A"A,
B"B"B, C"C"C (as in Figure 29) is right, was replaced by the harmonic property of the pencil,
which had its vertex at that point of second intersection, and had the two perpendicular lines
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for conjugate rays, which the other pair of conjugates passed through the two (real or
imaginary) points Q, Q’, in which (by articles 170 and 171) the two conics (U) and (V)
intersected each other on the unit-line: these two latter points, Q and Q’, being in fact what I
substitute, for the circular points at infinity, in my treatment of this whole question. In short, I
stated in article 180 and proved in articles 181 and 182, the harmonic equation,

(AW.AQAHQ!) — _1’

as my extension of the known theorem that AA” is, in the simple case of the bisecting circle,
perpendicularto A"A", or to BC.

244. Let it therefore be now proposed to investigate generally the relation which must exist
between the nine anharmonic coordinates of any three points

P=(x 92, Pur=_0xy a) Po=(x ), 2),
in order that we may have the harmonic relation,
(P.PLQPQ") = —1

when Q and Q' are still (as in article 170) the two real or imaginary points, — for it is
important to observe that they may here be real, — in which the given conic
ax? + by?* + ¢z = 0, is cut by the given unit-line

x+y+z=0.

For we shall thus obtain the condition of perpendicularity of PP; to PPs, in that limiting case,
when the conic becomes a circle, and the unit-line goes off to infinity.

245. Writing

Q: (xI’ y!’ Z!)’ Ql — (xll’ y/!’ ZH)

x . .
so that — and —; are the roots of the quadratic equation

Y
(a+ c)x2+26xy+(b—0— c)y2:O;

for which roots expressions were given in article 181, but respecting which it is sufficient here
to observe that by the quadratic, we have the proportion,

wx"xy Fyx" Yy =b+c: —2¢c:a+te,
which, by the linear equation, we have also

x! _"_ y! + Z/ — O’ x/l_"_ yl/_"_ ZH — 0;

the general theory of article 151 gives the following expression for the anharmonic function
of the pencil in question
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h= (P.PiQPQ") = |x1, 9y, z1||%, Y, =z2o|:|x, o, 2 |[x", y", 2"

x, 0y, X", Y, 2 X9, Yo, zo|| X1, M, 21
x, 0y, 2| X", 9, 2 x", oy, AT X, Yy, 7
=lx, y zl||lx 3y 9z Xy oz ||x oy oz
X1, Y1, Z1|| X2, Y2, 22 X1, Y, Z1|| X2, Yo, 22

or

b= (a1x" + b1y + c12") (agx" + b y" + co2")
(ar1x"+ b1y + c12") (agx’ + bay' + coz')’

if we write for conciseness,

z z, X x
a =" bh=\" a=" 2
. A 21, X1 XL, N
ag = y s b? - s 2 = y .
2, z9 29, X9 X9, Y2
The condition # = —1 is therefore expressed by the equation

0=2a1a9x'x" +2b1bay'y" + 2¢1¢02'2" + (b1co + ¢1b9) (y'2" + 2'y")
+ (cras + aico) (2'x" + x'2") + (a1bs + brag) (x'y" + y'x"),
which is, as it ought to be, symmetric relatively to the two points Q and Q', and will therefore
allow of our rationally eliminating the quotients x' : y' : 2’ and x” : y” : z”, and introducing
in their stead, the coefficients a, b, ¢ of the given equation of the conic.
246. If for this purpose, we first eliminate linearly z’ and z", and write
a—c=ai, b —a=0b,
ag — ca = a3, by — co = b3,
the equation h = —1 becomes
0= (aix’ + b y') (abx"+ b5y") + (aix" + b y") (asx’ + B3 ')
=2atiasx'x" + (a1bs + brag) (x'y" + y'x") +2b1b5y" y";
that is, by the proportion (article 245)
0= (b4 c)ajas — c(aibs + bjag) + (a+ c)byb;
where the coefficient of c¢is
aias — aiby — bias + bibs = (ai — b1) (a2 — b3) = (a1 — br) (az — be);
also

a; — by = (x+ y)z1 — z(x1 + y1) = sz1 — z81
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and
as — bo = sz9 — 289,
if we make
s=z+y+z s1=x1+y+z, S2= X+ %+ 29

with other but quite similar reductions. Hence, finally, the sought condition comes out,
under the following very simple and symmetric form, and one from which determinants have
been eliminated:

0= a(sx; — xs1) (sx2 — xs9) + b(sy1 — ys1) (Sy2 — ys9) + c(sz21 — 281) ($29 — 289).

247. 1If this points P;, P; happened to be on the unitline we have then s; =0, s =0, and
the last equation becomes still more simple, namely —

axy xg + by yo + cz120 = 0;

being indeed in this case, independent of the position of the point P, as it ought to be,
because the group Py QPsQ’', having thus become collinear, has a value for its anharmonic
function, which is independent of the position of the vertex P of the pencil. Conversely, we
might have deduced, even more easily the last form first, and then have inferred the other
from it. For the following formula for this group (supplied by article 188)

_ o[ X || X, 2 X',y x"
h = (P QF: - ' ’ ” ” 5
(PRRQD =1 ) y[|x" oy X, Y|l x, wm
would have reduced the harmonic relation 2 = —1 to the form,

0= (ay = mx')(xgy" = yx") + (01 y" = nx") (xgy" = yx')
= 2x1x2)"y" + 2y o' x" — (x1 32 + yag) (23" + y'x"),
or, by article 245, and by the equation of the unitline,
0= (a+ c)xixe+ (b+ c)y1y2 + c(x1 2 + y1x2)
= ax;xo + by yo + cz1 29,

as above. And if we now return to the more general supposition (article 244), that P; and Po
are any points in the given plane, we easily find that the intersections of the lines, PP;, PP, with
the unit-line are the points (X;, Y7, Z;) and (Xo, Yo, Zs), where

X1 = sx1 — xs1, Y1 = sy1 — ys1, Z1 = sz1 — 281,
Xo = sxg — xs9, Yo = sy9 — 959, Zo = sz9 — zs9;
substituting therefore these values in the formula,
aX1Xo+ bY1Yo + ¢Z1 Zo = 0,

we recover the general equation of the foregoing article — I am not sure whether I shall be
disposed, before the close of this long Letter, to enter upon any comparison of that equation
(article 246), with what I called in a much earlier article 46 a formula of anharmonic
perpendicularity, and reduced (in article 47) to the form
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Ll 4 mymi+ ning =0,
beyond observing that I then virtually supposed the constants a, b, ¢, to be equal, or employed

the imaginary conic x? + y* + 22 = 0. Instead of the slightly more general conic ax® +
by? + cz? = 0, of article 244.

248. The two equations,
aX1Xo+ 1Yo+ cZ1Z9 =0, Xo+ Yo+ Zo =0,
allow us to write,
Xo=bY1 — 7y, Yo=cZi— aXy, Zo=aX;— bYy;

or to assign any values proportional to these, to the coordinates of the point in which the
unitline is met by the line PPs. And when the points P and P, are given, any one of the
equations
§X9 — XS$9 2 — Ys2 Sz — 282
Xo Yo Zy

determines in general the position of the line PPs, and consequently the point in which it
meets any given line. For example, if we suppose y» = 0, and therefore sy = x9 4 20 we thus
obtain the formula

Zo — Xo  (s20— 2s9) — (Sxog — Xs9)  X—2 5§ 29— Xo
Zo+ Xo (s —251) 4 (sx2 — xs2) ) y 224 %

or

29— xo y[(z—x Zo— Xo\
Z2+XQ_S y Zo + Xo ’

and thus the intersection (xo, 0, z0) of PP with the side CA can be determined. Let this
intersection be called By, the point P; being placed at the contact B; of the same side of the
given triangle with the conic V; which latter point (by article 174) is (™1, 0, y71), or
(v, 0, a) so that we may write

X1 =19, y1:O, 21 = .

Let also the vertex P of the pencil be still the point of contact of the two conics (U) and (V),
so that (by article 172) its coordinates are,

x=aB-?% y=pr-a? z=yla-p%
while the constants g, b, ¢ may (by article 171) be thus expressed
a=a(aty)+pa—y),
b=—ay+pBa+y)+p
c=yla+y) +Hy—a).

We shall thus have all the requisite elements for the determination of the coordinates xp and
z9, or of their ratio, in terms of @, 3, ¥, which are here regarded as known constants; and are
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such that the three right lines, AA;, BBy, CCy, drawn from the corners of the given triangle to
the contacts of its sides, with the conic (V), concur (by article 174) in the point

(a ', BNy h.

And thus, we can determine on the side CA the point By, which satisfies the harmonic
relation (cf. article 244)

(P.B1QB:Q") = —1;

and which is therefore such that the angle B; PBo becomes right, when we pass to the limiting
case, of the bisecting and inscribed circles.

249. Dividing sx; — xs1, s)1 — ys1, $z1 — 251, by what is found to be their common factor
B(a —y), we obtain the following coordinates of the point in which the right line PP;, or
PB4y, intersects the unit-line:

X1 =yBa—y) —Bla+y);
Yy =9* - o’
Zy =a(a—3y) +pa+y);

of which, as a verification, the sum is zero; and in which it may be noticed, that Z; can be
formed from Xj, by first interchanging a and y, and then changing all the signs. We have
next the three products

aXy = ay(3a® + 20y — ¥*) + f(—a® + a®y — bay® +y°) — f*(a® — ¥*);
bY1 = ay(a® —y®) + f(—a® — a®y + ay® +y°) — (@ — ¥*);
cZy = ay(@® — 2ay — 3y%) + f(—a® + 5a*y — ay® + ) — f*(a* — ¥*);

where ¢Z; may be formed from aX;, by the same rule as Z; from Xj. Dividing the three
differences,

bYl—ch, CZl—LlX1, aXl—bYl,

by 2ay, we get the coordinates of the intersection of the line PPs (or PBg) with the unit-line,
as follows

Xy =y(a+7y)+p(y —3a);

Yo=(a+y)@2f—a—-y);

Zy = a(a+y) + f(a—3y);
with the verification, X9 + Yo + Zo = 0; whence

Z2—X27a—y a+4,8—|—’)/
Zo+ X9 a+y a—260+y’

i—x  ay—f?

We have also ; and in adding the last two fractions, the numerator of the

sum is found to be
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(a—7)°Bla+4B+y) + (a+y)(ay — ) (a—26+7)
= (a+ 28+ {aB -1’ +B(y - ) +y(@—p)*}
=(a+2B+7y)s

multiplying then this expression by %, and dividing by (o — y), we get (a —y) (o + 28 + ),

as the quantity which is to be divided by Zs + Xo, or by (a + y) (o — 26 + y), in forming an
= XQ, by the process of article 248. Hence,
29 + Xo

29— Xp Oo—Y a+2ﬁ+y

Z2+X2_O£+V'a72ﬁ+j/,

expression for the quotient

that is
x _ylaty) —2ap
2 ala+y) —2y8°

and therefore the required point By may be denoted as follows:

By = (ay +y* — 2ap, 0, a® + ay — 2By).

250. If now we compare the point By, thus found with the three points B;, B”, B”, on the
same side CA, for which (by articles 174, 170, and 181) we may employ the symbols
B =(y,0,a), B"=(1,0,1), B”" = (¢, 0, a), we soon perceive that while the three lines
AA", BB", CC" concurring in the point (1, 1, 1) and the three lines AA"”, BB", CC" in
w = (a’l, b1, c’l), as AAy, BB;, CCy concur (article 248) in (a’l, ﬂ’l, y’l),

(a+2B+y)(B1) = (B") +f(a+y)(B"),
we have also
(Bg) = (B") = pla+y)(B").
It follows that
(BiB"ByB") = —1,

or that the points B; and By are harmonically conjugate, with respect to the points B” and
A"; whence, of course, we have the corresponding harmonic equation, for the pencil with its
vertex at P,

(P.B,P"ByB") = —1.
But we had determined the point By, so as to have (article 248) the analogous equation
(P.B1QB: Q") = —1;

it follows that PB; and PBy are the two double rays of an involution, whereof PB”, PB" are one
pair of conjugate rays, and PQ, PQ' are another pair. Passing therefore to the case of the two
circles, since the rays PQ, PQ’ are in that case directed to the circular points at infinity, we see
that ** the line PB is one of the bisectors of the angle B"PB"”’; which was (article 242) for that case,
the thing to be proved.
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251. Of course, I do not pretend that the foregoing is the shortest, or the easiest mode, of
proving, even in an extended form, and by calculation the correctness of that graphic
determination of the point P; or of the statement in article 242 of a certain property of that
point, mentioned by you to me. In fact, I think that I see — though perhaps I may not write
down, — another extension of the same sort, but likely to lead to simpler calculations, which shall
depend on the circumstance that *“ the tangent to the conic (U), at the point where the chord PB; of
the inscribed conic (V) meeting (U) again, passes through the point B', where the side CA of the given
triangle ABC, is met by the given transversal A'B'C'.”

252. Whether the proof of this last extension shall, or shall not, be written out, we may
already state this Theorem:-

“If the sides of a triangle ABC touch in the points A;, By, C; a conic (V) and if a
homothetic conic (U) be described so as to bisect those sides in A”, B”, C", and in cutting
them again in A”, B”, C"”, then not only will these two conics touch each other (by article
177) in some point P but also if the chords PA", PA" of the conic (U) be treated as conjugate
rays of a system of lines in involution, two other conjugate rays through the point of contact P of
the two conics being parallel to the two (real or imaginary) asymptotes of either, then the
chord PAy of the conic (V) will be one of the double rays of the system’’; and similarly PB; will be a
double ray of a second involution PC; of a third, these two other involutions being
determined on a precisely similar plan.

253. In general, if Py be any given vertex (xp, Y, z0) of a pencil, and if we write
X =sox —sxo, Y =1s0y— 80, Z=s0z— sz, S=x+y-+z &c,
the equation
aX® + bY? 4+ ¢Z* =0

represents the pair of rays from Py to the two real or imaginary points Q, Q’, in which (as
before) the conic

ax® + by2 +a?=0
is cut by the unit line z+ y+ z = 0. Let P;, P2 be any two given points, and write
X1 = sox1 — S1X0, &c.,  Xo = soxo — SoXp, &c.,
a=Y1Zo+ Z1Ye, b =701Xo+ X170, ¢ =X1Yo+ Y1 Xy
then the equation
aX*+ 'Y+ 77 =0

will represent the new pair of rays, PyP;, PyPs, from the same given vertex as before. Let
Py P', PyP" be supposed to be the two double rays of the involution, which is determined by
the two former pairs of rays, regarded as two pairs of conjugates therein; that is, let us
suppose, that the two following harmonic relations hold good

(Py.P'OP"Q') = —1, (Py.P'P,P"Py) = —1.

Then the first relation is expressed by the equation (cf. article 247),
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aX'X"+0Y'Y"+ ¢Z'2" = 0;
and the second harmonic relation is expressed by the analogous equation
aX'X"+0Y'Y"+'2'2"=0
but X'+ Y' 4+ 7Z'=0, X"+ Y"+ Z" = 0, and therefore (cf. article 248) we may write
X'"=bY'—cZ', Y'=c¢l'—aX', Z"=aX —-0bY',

or any expressions proportional to these, as consequences of the first harmonic equation;
substituting then these values for X", Y", Z”, the second equation becomes

0=a X' (bY' — cZ') + b Y'(¢Z' — aX') + ' Z'(aX' — bY');

with an exactly similar result of the elimination of X', Y’, Z'. We may therefore say that the
equation

(bc' — cb"YYZ + (ca’ — ac’) ZX + (ab' — ba') XY =0,

represents the system of the two double rays, of the involution above described. And thus we have a
sufficiently simple and perfectly general solution of the problem, which in the present method
replaces (as an extension) that of finding the two bisectors (PyP', PyP") of a given angle
(P1PyPy).

254. It is not worth while to exemplify this general Solution, in the particular question
which we were lately considering. But I think that the following little investigation may have
some interest, as serving at once to prove, in my own way, the theorem (or extension) which
was stated in article 251; and also to show how even for the general case of two conics, the point
Rwhere the chord PB; of (V) meets the conic (U) again, and which (by the theorem) is one
point on the polar of B', may be geometrically distinguished from the other point, where the same
conic (U) is met by the same polar.

255. Since the constants a, b, ¢, (not here the sides of the triangle) can be rationally expressed,
as in articles 171 and 248, in terms of the other constants «, 3, v, but not vice versa, it seems
convenient to eliminate the former set of constants from the first equation in article 170 of the
conic (U), and to introduce the latter set in their stead. We have thus the equation

0="U= (a+B+y)(ax’ +By* +yz*) — Byx* — yay* — oafz*
—(BH+7?yz— (r+a)ax — (a+f)*xy = (say) Uy ...

The analysis of article 172 showed us, that this equation is satisfied by the coordinates of the
point P, namely,

x=aB-7?% y=Br-a)? z=ya-p>~

Let x', y', 2’ be the coordinates of the point (R in Figure 29) where the line PB; meets, as
above, the conic (U) again; the coordinates of By being v, 0, a, as in article 248.
We shall thus have expressions of the forms

X =x+1ty, Y=y Z=z2+1a,

which are to be made to satisfy the condition
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Uy yw=0;
and which will do so, if the auxiliary coefficient ¢ be determined by the linear equation
0= (yDi+aD) Uy .+ tUypq
But for the point P of contact of the two conics, we had (in article 172)
DU = (a+B)B+y)(y+a)i, ...
D.U = (a+p)B+y)(y+a),
where (by article 171)
A= -a)@a=p), p=@=pF-y),
v=0B-y-a);
hence
YA+av=—fla—y)?
and
(yDy+aD) Uy = —Bla—y)*(a+B)(B+7)(y+a).
Again, without going back beyond the present article, we have
Uppa = ay(a+y)(a+p+y) —pla +y") —ay(a+y)*
= —Bla+y)(a—p?%
whence
t=—(a+p)B+7).
The second intersection (R) of PB; with (U) has therefore the coordinates,
¥ =a(B-y)?—y@+p)B+y);
y =By —a)*
Z=y(a-p* —al@+p)B+y);
or, dividing by 3,
x'=pla—y) —yBa+y);
Y =(@-p)%
7= —fla—y)—ala+3y).

333

256. If now we seek the point, say R' = (x”, y", z") in which the same chord PB; of the
conic (V) meets the polar of the point B’ = (—1, 0, 1) taken with respect to the conic (U)

the equation of which polar is, in x”, y”, 2",
0= (Dyr — D) Uy yo 1,

or more fully,
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0=a"x"+0"y"+ ¢"2",
when
a"=2a(a+pf+y) — 28y + (a+)?
b= (B+y)*— (a+p)?
¢ ==2y(a+p+y)+2a — (a+y)
we are to make
x"=x+1ty, y =y 2"=z2+tlaqa,
and determine the value of the new coefficient ¢'. Substitution gives, after a few reductions,
a"x+b"y+ "2 =y — o) (@ = 2B+ ) (a+ B (B+7),
a'y +c'a = (y* - a®)(a 2B+ y);
whence
'=—(a+p)B+y) =4

and therefore the point R’ coincides with the point R. The point last named is therefore on
the polar of B’, with respect to (U); and consequently the tangent to the conic (U), at this
point R, passes through the point B’, as stated in article 251.

257. This circumstance enables us easily to calculate a simple expression for the anharmonic
k' of the group of the four points A", B”, C”, R, on the conic (U); hence we may write (cf. end of
article 18)

h/ — ((ANBI/CI/R)) — (R.A”BUCUBI)’
and then employ the general formula of article 151; which gives here

!

x, oy, Z|x, 9y, z x', oy, A« 7 R,
w=lo, 1, 11, 1, ol|:|1, 0, 1|-1, 0, 1|=XFr—*%
1, 0, 11/-1, o0 1 1, 1, ollo, 1, 1 x=y-z

as the anharmonic of the pencil which has the point (x', y’, z’) for vertex, and of which the
rays pass in order through A”, B”, C”", B" wherever in the plane that vertex may be placed; at

0
least if it be not upon the line C"A"B’ in which case ' = o because a suppressed factor then

vanishes, since

9y z

1, 1=« —9y+7.
0 1

For the point R, we have (by article 255) the coordinates, (before their division by f3,),
X=aB-y)—ya+pB+r), ¥y =pr—a?
Z=y(a—Pp)—ala+p)B+y);

for this point, therefore
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¥ =z =pla-y)(a+26+7);
X =2ty =28(a—y)a+p), x -z -y =28a-y)B+7);

the anharmonic 4’ of the group A”, B”, C", Ron (U) has therefore this very simple value, (cf.
article 241)

W= (AB'C"RY) = AP _ (¢ cra) (4 B,
B+y
For the case of two homothetic conics (articles 177, &c.), this becomes
,_ AB BA
CiB BC’

and when we pass to the lmit, of a bisecting circle (U), and an inscribed circle (V), we have
then simply A’ =£, where ¢ and a are again sides of the triangle, and are therefore
a

proportional to the chords A"B", B"C". The two other chords C"R, RA" are therefore in this
case equally long, as was to be expected; and because h' >0, the two points Rand B" are situated at
one common side of the chord C"A", as in my Figure 29, and (with other letters) in your figure
also.

258. If we took that one of the three enscribed circles, which touches the mean side CA itself,
but the two extreme sides prolonged, then the new point of contact, say (B;) of the side CA with
this new circle, should still be joined to the point R of Figure 29, in order that the new joining
line (B;) R, might furnish the new point of contact (P), of one circle with the other; as is
exhibited below, in the new Figure, numbered 30*, which will serve to illustrate many other
things. And this was to be expected from the analysis of the last article; because each of the

BA  B(Ar)
B(C;) BC
therefore the new anharmonic (h'), which is their product is also positive; so that the point in
which the chord (P)(B;) of the new (or exscribed) circle, meets the bisecting circle again,
and which by the theory bisects one or other of the two arcs of the last circle which have A"C" for
their common chord, is thus proved to be at the same side as before of that chord; and
consequently to be (as in Figure 30) the former point R itself, and not the point diametrically
opposite thereto.

two new quotients, , like the former quotient corresponding, is positive; and

259. But whereas, if we had in Figure 29, as we have done in Figure 30, bisected the “‘ little
arc’ A"A" in a point Q, and joined that point to Aj, the joining line QA; (prolonged) would
have passed through the sought point of contact P, and so have sufficed (instead of the line
RBy) to determine that sought point of contact of the bisecting circle K with the nscribed
circle I; when, on the contrary, we seek to determine similarly the point (P), in which the
same bisecting circle K is touched by that exscribed circle (/), represented in Figure 30,
which touches, as above, the two extreme sides of the triangle prolonged, we are to join the
point of contact (A;) not now to the point Q iself, but to the diametrically opposite point (Q)
upon the circle K, or to what may be called by contrast the bisecting point of the ““big arc”’

* A systematic description of this Figure 30 is given in articles 280, &c.
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C,

Fig. 30 [See article 280 for a description. ]

A"A", in order that the joining line (A;)(Q) may pass through the new point (P), and so
determine it on either circle. Yet here again, the geometrical result is in exact conformity
with the algebraical analysis. For if, on the plan of article 257, we had sought the value of the
anharmonic 7% of the group C"A"B"Q, upon the conic (U), defining Q to be the point in which
the right line A; P meets that conic again, as Rwas (in article 255) defined to be the point of
second intersection of the line B; P with that conic; a mere cyclical exchange of letters shows
that we should have found, generally, and without any distinction of cases, the formula

nAnrpn V + a ! !
h= ((C"A"B ="——= (B B'CA).(C,ABC');
(( Q) =14 B (By )(Cy )
or, for two homothetic conics, (the line A'B'C’ going off to infinity,)
_AC AG
- AB," AB’

Now if, as a limiting case, we suppose that the conics become circles, and that the one which
touches the sides is inscribed, as in Figure 29, — to which, however, you need not take the
trouble of referring, since all its parts have been incorporated, although upon a smaller scale,
with the later and more complex Figure 30, — we have the values
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and therefore
b
h=+-
c

with the usual significations of a, b, ¢, s in trigonometry; the anharmonic of the group is
therefore in this case positive, and the point Q lies at the same side of the chord B"C” as the
point A": so that it bisects, according to your remark the littlearc A”A" for that Q bisects either
that arc, or the big one with the same chord, results from the numerical (or absolute) value of
the anharmonic #, in virtue of which the distances of this point Q from C” and B” are equal;
because the distances of A” from those two points are proportional to the sides 4 and ¢, and
the anharmonic of a circular group is = £ a product of quotients of chords. But when we
suppose that the conic (V) becomes the exscribed circle (/) of Figure 30, and when as in that
Figure, we enclose, for distinction, in parentheses, the symbols of the altered points; then
although we have still an expression of precisely the same general form for the anharmonic of
the group, namely,

W _ACA(G)
()_A(Bl)' AB

yet we have now the new values of these two factors

AC b AC))  s—c¢

A(B)) s—¢  AB P

which gives the negative value for their product, namely

h=—-.
¢
The distances of the new point (Q) like those of the old point Q, from the given points C” and
B”, are therefore equal, so that this new point, like the old one must be situated at one or other
end of that diameter through K which bisects the chord B"C"; but because the anharmonic of the
group is now negative, the points (Q) and A” must lie at opposite sides of that chord, and
therefore (Q) must be, as in Figure 30, diametrically opposite to Q.

260. Another cyclical interchange of letters would give the general formula,

h" = ((B"C"A"S)) = ﬁﬂ = (A1 A'BC).(B; CAB');
Y +a

or for two homothetic conics,

_CB Ch,
T CAy CAC

n

S being defined to be the second intersection of the right line C; P with the conic (U). For
the case of the bisecting and ¢nscribed circles
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CB__a CB_s—c ,_ . a
CAy s—¢ CA b~ Oy

the point Sis therefore in this case not only equally distant from the ends of the chord A"B",
but also on the same side of that chord as the point C”; it therefore bisects what may be called
the little arc C"C", so that it happens to coincide in Figures 29 and 30, with the point B";
because (cf. article 239) in constructing both those figures the sides a, b, ¢ were taken as
proportional to the numbers 4, 3, 2, which has led to this and a few other undesigned
peculiarities, such as the parallelism of the common tangent LMN at P to the side CA, not at
all affecting however the general argument. But when we take the case of the exscribed circle
in Figure 30, and use parentheses for distinction as before, we have then the values,
CB —a CBy) s—a

a
- 3 - B h” :__;
CA) s—a CA b (2% b

the right line (Cy) P therefore now meets the bisecting circle K, not in the old point S, but in
that other point (S) which is (as in Figure 30) diametrically opposite thereto, and may be said
to bisect the big arc C"C". — Analogous remarks would of course apply, to the two other
exscribed circles.

261. Comparing these results, it is not difficult to abstract from them the following RULE,
which meets all the cases of the circles, and is therefore a little more complete than the one that
you stated to me: ‘‘According as the point of contact of the tangent circle with a sideis on that
side itself, or on the side prolonged, the right line connecting it with the point of contact of the
two circles bisects that one of the two arcs of the bisecting circle, having their common chord
coincident in position with the side, which is remote from, or is near to, the vertex opposite to
that side of the triangle”’. — I daresay you know this completed RULE quite well, but I worked
it out for myself as above.

262. Returning for a moment to the analysis of article 257, and comparing it with that of
article 241, we see that the quantities which have been lately called 4, &', A" may be
interpreted as anharmonics of pencils, as follows

h — (A”.BHCC”Q); h/ — (BH.C"AANR); h/! — (C”.A”BB"S);

where Q, R, §are still the second intersections of the sought lines, PA;, PB;, PCy, with the
conic (U). These three points of intersection can therefore be found directly, as the second
intersections of the same conic with known lines, drawn from the points A", B”, C" of that
curve. For example, the second formula gives immediately and without any original reference

to circles
sin A"B"R _ sin A"B"A
sin RB"C" " sin AB"C"
with
a
h = +h = (C,C'AB).(A{BCA"),

T

as before; and thus the direction of the line B"R, and thence the position of the point R, can
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generally be determined; after which by drawing the line B R, the point P can be found, as
the second intersection of this latfer line with either of the two conics. When they are made
homothetic, the points A”, B", C" bisect the sides BC, CA, AB; and (still abstaining from circles)
we have, by mere triangles

>

sin A”B"A sin A a
c

sin AB"C"~ sinC

also, as in article 257, we have then
_AB BA
C1B" BC’

hence
sin A”B"R :sin C"B"R = + BA, : BC,,

BA; and BC, denoting the lengths of the two tangents to the conic (V) from the point B, and
the upper or the lower sign being taken, according as 4’ is positive or negative. For the circles,
the tangents are of course equally long, and we have again your graphic rule (extended to meet
all cases), under the form

sin A”B"R = +sin C"B"R;

but I do not see how, by projective properties, we could pass from this last equation, to the
scarcely less simple proportion, written just above, between the sines of the corresponding
angles, and the lengths of tangents to a conic. Perhaps, however, an expert geometer — such as I
do not at all pretend to be — might see this at a glance.

263. On a little reflection, however, I do see how to interpret each of the two last formulae
geometrically, in such a manner as to show that they can be projectively extended, and
interchanged. In fact, they both express, attention being paid to signs, that the chord B”R of
the conic (U) is parallel to the chord CiA; of the conic (V), when those two conics are
homothetic; or more generally, and with more evident projectivity of relation, that *‘these two
chords (B"R and Cy Ay) meet upon that other common chord of the two conics, which contains those two
of their intersection, that do mot coalesce in the point of contact P’’. Accordingly, the right line
through the two points A; = (0, y, §), and C; = (8, a, 0), meets the unitline in the point
(B +y,a—y, —a—p); the line joining this latter point to B”" = (1, 0, 1) has for equation,

(a=y)(x—2) = (a+26+7y)y

and this last equation is satisfied (article 257), by the coordinates x’, y', z’ of the point R,
determined in article 255.

264. The parallelism of B"R to A; Cy, in Figures 29 and 30, did not occur to me when I drew
those figures; and it is perhaps curious that I saw it, half an hour ago, by reasoning about
conics, many minutes before I was able to verify it by any special argument from circles. Such
verification, however, should certainly have offered itself sooner to any of your junior
freshman friends. (I was of course a junior freshman in my time; and was never beaten in
geometry — nor as it chanced, in any other subject in my division; but things have so much
advanced generally in our University since then, that I might well meet with a different fate, in
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every department, if I could go in again now, as I have sometimes half wished to do, in order
to be lectured by Salmon and Townsend and others.)

265. The wverification by circles is, notwithstanding, very easy. Whether in Figure 29, or in
Figure 30, the chord B"R of the bisecting circle is the external bisector of the angle A"B"C";
and is therefore parallel to the external bisector of the angle B of the triangle ABC; to which
latter bisector the chord A; C; of the inscribed circle is also parallel.

266. The recognition of this parallelism of the two chords as extending to all cases of the two
circles, (in fact, it exists, as we have seen for the more general case of two homothetic conics, with
a projective extension above indicated) throws some fresh light upon its construction. Thus B"R
being parallel, in Figure 30, to the chord (A7) (C1) of the exscribed circle (/), as well as to the
chord A; C; of the inscribed circle [, the lines By P and (B;) (P) both pass as before, through
some point R of the bisecting circle K. But the chord (A7) (B;) of the exscribed circle is not
parallel, but perpendicular, to the corresponding chord A; B; of the inscribed; while then we
might have found the point § upon the circle K, (accidentally coincident, as remarked in
article 260 in the recent figures, with B",) through which C; P passes, by drawing C"S parallel
to the latter chord A; By, we must (on the same plan) determine the corresponding point (S)
on the new line (C;) (P), by drawing from C” a line parallel to the former chord (A1) (B;1) and
therefore at right angles to C”S. In like manner, the chords A”Q and A"(Q) of the bisecting
circle are indeed perpendicular fo each other, but they are respectively parallel to the chords
B, C; and (By) (Cy), of the inscribed and exscribed circles.

267. Before I had thought of this, or of any other rule for distinguishing between the
bisecting points of the little and big arcs in your figure; and for extending such distinction to
the more general problem of the conics, so as to determine for example, by some geometrical
construction *‘which intersection of the conic (U) with the polar of the point B (articles 251, 254, and
256) was to be taken as the point above called R”’: 1 reasoned in the following way. Usually, when
any geometrical investigation conducts to the consideration of the intersections of a right line
with a circle, or other conic, those two intersections enter jointly and symmetrically into the
result, and are indeed inseparably combined, so that no reason can be assigned for preferring,
generally, one of them to the other. Calculation conducts, in almost every mode of treating such
a question by algebra, to a quadratic equation, of which the roots cannot usually be separately
and rationally expressed, and of which therefore we must, in general, retain the system. (In fact, if
I remember rightly, it is on this principle that Chasles founds, in his Géométrie Supérieure,” his
theory of geometrical imaginaries.) Whenever, therefore, we know, aliunde, that one point of
intersection has any geometrical prerogative above the other, so that it can be treated separately, we
may be sure algebraically that the quadratic equation breaks up into linear and rational factors; and
geometrically, that some linear construction exists, whereby, the particular intersection required can
be determinately found, without the aid of the conic.

268. I therefore looked out for some mode of otherwise determining — or of dispensing
with — the auxiliary point, by me called R, of your graphic construction; and in short, I sought

* [Michel Chasles, 1793-1880, Traité géométrie superieure; Paris, 1852.]
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to find some other auxiliary point, on the chord PB; of the inscribed circle, or of the conic (V),
(distinct from By and from R,) which could itself be graphically constructed, or determined,
without my being obliged to use, for that purpose, the bisecting circle, or the conic (U), at all.
Nevertheless, as I allowed myself the fuller use of anharmonic coordinates, as analytic instruments
in this inquiry, I collected into one view the coordinates which had been already calculated, of
all the points previously considered upon that chord PB; without excluding the point R itself.
These coordinates were the following

for bLx=aB-p)2 y=By —a), z=y(a—-PB)% (article 172)
for Bi, xi =y, n=0,2 =0 (article 248)
for R, x' = B(a—y)—yBa+y),y=(a—y)2 2 =By —a)—a(a+3y); (article 255)

and for the point in which the line PB; met the unit-line,
X =yBa—-y)—Ba+y), YVi=y*—d®, Z =a(a—3y)+p(a+y). (article 249)

If then, any one set of these coordinates be denoted (as above) by x’, y', 2z, and any other set
by x”, ", 2", I was to form some such combination as the following

(x", 9", 2"y = t(x', ¥, 2') + u(x", y", 2");
for the new point
Pl = (x, y", 2,
thus determined, would like the other, be on the sought line PB;, and might happen to be

simply constructible, if the coefficients t and u were judiciously chosen, and if it should be
possible to divide the resulting coordinates by any common factor.

269. When this conception had been formed, there was no difficulty in putting it into
immediate execution. Taking simply the sums and the differences of the coordinates of the
two points last mentioned, I had, at once,

Xi+x'==2yB+y), NM+y=20@(r-a), Zi+z=2yp-3a;
Xi—x'=42a8y—-p), Y1—y =2a(y—a), Z—72=2a(a+p);

whence there were seen to be these two new points on the line PB;, each having its coordinates
expressible linearlyin terms of a, f3, y:

P X1+x' Y1+y’ Zl+Z'
-2y 7 =2y -2y

>

)—(ﬁ+y’a_y’3a_ﬂ);

lex' Ylfy, Zl—z’
P”: = — — .
( 2(1 > 2Cl > 2(1 > (3)/ 18? Y a, a+ﬁ)

But the presence of the numerical coefficient, 3, made these expressions not yet simple enough for
my purpose. But on taking the semidifferences of the two mnew sets of coordinates, or
employing the formula,

2(P") = (P") — (P'),

I was led to determine a third new point, P", on the line PB;, namely,
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P" = (V—ﬁ,)/_a,ﬂ—a),

of which the expression was sufficiently simple, to induce me to try to construct it.

270. As few people ever arrive at a simple thing in a simple way, I need not fear to confess
that I assisted myself here by suggestions drawn from sources which might seem remote. Even
quaternions were called into play, and really with very good effect: but it would interfere too
much with what I hope has been the homogeneity of the present Letter, — whatever may have
been its discursiveness, — if I were to say anything about quaternions at present. Nor shall I at
this moment speak of a little investigation which I made, of the value of the anharmonic,
((A1 B1 C1 P)) of the group thus denoted upon the conic (V), or on the inscribed circle in Figure
29, though it led me to some rather pretty results, and supplied me with some suggestions.
But I may at once mention that I soon came to suspect, that the last auxiliary point P" of
article 269, which I shall now denote by Bs, writing therefore

BQZ(V—ﬁ’V—a,ﬁ—a),

(since we shall not have any further reason for the point By of articles 248, 249, and 250) was
the intersection of the chords C"A" and Cy Ay, of the conics (U) and (V).

271. And in fact I found that this suspicion was correct. For the coordinates of the extremities
of these two chords being given by the expressions,

A"=(0,1,1), C"=(1,1,0), A =(0,7p), C=(@f a0,
and equations of the same chords are, for A"C,
x—9y+2=0,
and for A; Cy,
ax—fy+yz=0;

and these are evidently both satisfied by the recently written coordinates of By. Hence, then,
the following Construction results, for graphically determining the point P, of contact of the two
conics, without employing the conic (U), or the bisecting circle, at all: “‘Find the point By, in
which the chord A;C; of the conic (V) is intersected by the right line A"C”; the right line
By By will then have the sought point P for its second intersection with that conic.”” It will be
remembered that although the line A"C”", here used, has been made, by the construction in
article 170, &c., a chord of the other conic (U), — as when we drew a circle or conic through
the middle points of the sides of a given triangle, — yet itis given or known, before this circle K,
or conic (U), is constructed; which justifies my statement, that in the process of the present
article, we determine the point P on one conic, without any assistance from the other.

272. From the nature of the analysis, the point By, although it happens in Figure 29 when
the point of contact of the mean side CA of the given triangle with the inscribed circle, has no
general prerogative above the two other points of contact, A; and C;. We may therefore
enunciate this Theorem, or set of Theorems:

“If a triangle ABC be touched in the points A;, By, Cj, by a conic (V), and if its sides be cut
in the points A’, B’, C' by a right line; then, taking on those sides the harmonically conjugate
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points A”, B”, C", and forming the two inscribed triangles A; B; C; and A"B"C”, if we denote
the intersections of their corresponding sides as follows,

Ao = B C;'B"C", Bos= CiA|'C"A", Cy= A; B A"B",
we shall have concurrences and contacts as below:

Ist the three right lines A Ag, By Bo, C; Co, will concur, in one common point P;

IInd this point will be wpon the conic (V);

IIIrd it will be also wpon that other conic (U), which passes through the three points A”, B”, C",
and through the two points in which the former conic (V) is intersected by the
transversal A'B’C’; and

IVth the two conics, (V) and (U), will touch at this point P.”’

273. Accordingly, among the many new points &c. which have been introduced in Figure
30, you may see Ao, Bo, Co, as the respective intersections of the three pairs of lines, By C; and
B"C", C1A; and C"A", A1 B; and A"B"; and may observe the concurrence of the three lines
Ay Ag, By By, CyCs in the point P of the inscribed circle. For the exscribed circle, in the same
figure, I have been content to determine one* auxiliary point, namely (A), as the intersection
of the old line B"C"” with the new chord (B;) (Cy); but you may see that the new line (A1) (A9)
passes through the new point of contact (P), and would suffice to determine that point
without any use of the bisecting circle.

274. 1In the same complex figure, you may observe that the three right lines By Co, CoAs,
Ag By, pass respectively through the three points A, B, C; so that the new triangle As B Co may
be said to be excribed to the given triangle ABC. Nor is this result accidental. For while we have,
by article 270,

By=(y—p,v—a p—a,
we have, in like manner,
Co=(y=Ppa—y,a=p).
Since the coordinates of Co must satisfy the two equations, (cf. article 271,)
y—z+x=0, and By—yz+ax=0;

so that it is not sufficient, in passing from By to Cs, to change cyclically a, 3, y to 3, v, @, but
we must also change x, y, z to y z x or must write first the coordinate y — f, which is
obtained from the last coordinate 8 — a of Be: and therefore

(Bg) + (C2) = (2y —2B,0,0) =2(y — B)(1, 0, 0) = 2(y — B) (A).
A little more simply, if we denote by a’, #, ¥’ any quantities which satisfy the two equations,
a/ +ﬂf + V, — O’ aal +ﬁﬁ/ + y,}/l — 0,

for example, the quantities,

* T have, however, since inserted the points (Bz) and (Cq), and drawn the lines (By) (Bg) and (C1) (Cy),
which are seen to pass likewise, through (P).
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a=p-y, B=rv-a y=a-p,
we may write
Ay = (=a', B, y"), Ba=(a',=py"), Co=(a',p" =y");

and under these forms, the combinations,

(Bg) + (Co) = (20, 0, 0) = 2a’(A),

(C2) + (A9) = (0, 26", 0) = 25" (B),

(A2) + (B2) = (0, 0, 2y") = 2y'(C),
exhibit at once the three collineations,

AByCy, BC9Asg, CAsBo,

which are, as above, exemplified in Figure 30.

275. The recent quantities a’, ', ¥’ have interesting geometrical significations, which will
lead us to some additional theorems, illustrated by the same figure. In fact, because their sum
is zero, they are the coordinates of a point D upon the unit-line; and on account of the other
linear relations which they have been made to satisfy, this point D must also be upon the right
line which has for symbol [a, 5, v], or for equation

ax+pBy+yz=0.

Now this last line admits of being simply constructed. For in general the right line [/, m, n]
has for its pole, with respect to the unit-triangle, the point (l’l, mt, n’l); in the same sense
as that in which the wunit-point O has been called, in former articles, the pole of the unit-line
with respect to the same unit-triangle; and in which the mean point, or centre of gravity of any triangle,
is the pole of the line at infinity. (I think that this phraseology is a received one, but I forget, just
now where to refer for it.) Now the pole (a’l, [3’1, y’l), of the recent line [a, 3, y], is
precisely that point in which it was remarked in article 248 that the three right lines AA;,
BB, CC, concur. The line [a, B, y] is through the axis of homology of the two triangles ABC and
Ay By Cy; since its pole (with respect to one of those two triangles, and therefore also with
respect to the other) is their centre (a ', gLy of homology. 1t is therefore the line Aj Bi Ci,
(one of the two that are strongly marked in Figure 30,) if the points Aj, &c. be the intersections
of the corresponding sides of the two triangles; namely,

Al = BC'B1C = (0, y, —p),
Bl = CACiA = (-7, 0, a),
Ci = AB'A B, = (8, —a, 0),
which in fact are seen to satisfy the equation
ax+pBy+yz=0,

and have of course harmonic properties, not necessary to be here written down. The new
auxiliary point

D= (a,p, 7",
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is therefore to be conceived to be, in Figure 30, the point at infinity on the right line A1 Bi C1; and
in general, for the case of the two homothetic conics, it is the point at infinity on the line
similarly determined. More generally still, since the unit-point is the centre, and the unitline
is the axis, of homology of the two triangles ABC and A"B"C", we may say that ‘‘the point D is
the intersection of the two axes of homology, of the two inscribed triangles A"B"C" and A; By Cy, with the
given triangle ABC”’.

276. If we now resume the expressions of article 274 for the points Ag, By, Co, and compare
them with the recent expression for D, we find the symbolical relations,

(D) = (Ag) + (B2) + (C2)
= (A2) +2a'(A) = (B) + 28" (B) = (G2) + 2y"(C);

whence follows this new Theorem, namely, that “‘the three lines AAs, BBy, CCs, concur in the
point D°. (It was through Quaternions, cf. article 270, that I first perceived this Theorem, and I
assure you, as the result of a very easy calculation, with which however I shall not at present
trouble you.) When, therefore, — as for the case of the circles, or homothetic conics, — the
points A”, B”, C" are made to bisect the sides of the given triangle, ‘‘ these three lines, AAs, &c.,
concur at infinity, or are parallel to the axis of homology A1 BiCi of the two triangles ABC and
A1 By Cy.”” Accordingly you may see the parallelism of the four lines, AAs, BBs, CCo, A1 BiCj, in
Figure 30, for the case of the inscribed circle. For the exscribed circle in that figure, I have
drawn the new axis of homology (A7) (B1)(C1), and marked it strongly, like the other, but
have been content to exhibit one* of its parallels, namely the line A(Ag), for this case. It ought
to be observed that when Ay is considered as the intersection of the lines AD, By Cy, or (Ay)
as the corresponding intersection of the lines A(D), (By)(C1), (AD A(D) being in the Figure,
the parallels through A to the strong black lines,) we have only to draw the lines AjAg,
(A1) (A2), as before, in order to obtain, by their second intersections with the circles / and
(I), the points of contact Pand (P); which points can thus be graphically determined, at least for
the case of circles or homothetic conics, without bisecting the sides of the given triangle at all: such
concetved bisections being now replaced by throwing off Dand (D) to infinity.

277. Since the two triangles ABC and AsBsCs are homologic, and have the point D, or
(o', B', y"), for their centre of homology, the right line of which the anharmonic coordinates
are the respective reciprocals of the coordinates of that point; that is to say, the line of which
the symbol is, [a'~!, /71, y'" 1, or [((B—y)"', (y —a)7}, (¢ —B)"!]. But we had, in article
176, the proportion

liuwv=@B-N": - (@-pH7Y

in which 4, u, v were the coordinates of the tangent at P, to either of the two conics. We arrive
then at this other new Theorem: *‘ The common tangent [A, u, v] to the two conics (U) and V, at
the point P, is the axis of homology of the auxiliary triangle As Bo Co with the given triangle ABC”.

* Since this article was written, I have inserted the points (Bz), (C2), and drawn the parallels B(Bs),
C(Cy); article 260 being called into play.
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278. This last theorem may be thus stated: “‘ the intersections L, M, N, of corresponding sides of
the two triangles, ABC and A9 By Co, are points upon the common tangent at P.”’ It was only just now
that I perceived the theorem thus enunciated: but I remember that when I was constructing, a
few days ago, that complicated Figure 30, or a sketch of it on another sheet of paper, I was
struck by the parallelism of CoAs to CA, which answers to their meeting at infinity in M and by
the tangent at P appearing to concur, even more exactly than in Figure 30 of this Letter, in
one point N, with the lines AB and As By; while an analogous concurrence seemed to take
place at L: but I then supposed that the concurrences might be accidental, whereas I now see
that they were necessary. For I am now entitled to assert that the tangent at Pis the line LMN,
where

L= BCByCy, M= CACysAs, N = AB AsBo;
or by article 274,
L=(0,6,=y), M= (=d,0,7), N=(a,—p0);
which indeed may be inferred from the equation
Ax+uy+vz=0
of that common tangent to the conics, because by articles 171 and 274, we have the values
A=BY, wu=y'a, v=ap.

279. Quite enough may have been already said, about that Figure 30; yet, as I have yielded
to the temptation of inserting some new points and lines therein, even since the two or three
last articles were written, I may as well give here a systematic account of the Construction of
that Diagram, before I put it out of my power, by posting the last sheets, to add or alter
anything therein.

Descriptions of Figure 30, Article 258
(With a Recapitulation of several former Theorems and Constructions.)

280. ABCis a triangle, supposed to be given, and of which the sides a, b, ¢, have been here
assumed proportional to the numbers 4, 3, 2; so that they may be equated to numbers, and
we may write a=4, b= 3, ¢= 2. Those three sides, BC, CA, AB, are conceived to be cut, by
the transversal at infinity, in the (unexhibited) points A’, B’, C'.

The harmonic conjugates to those three points are marked as the points A”, B”, C”, which
of course bisect the sides, and are joined by three right lines, forming an inscribed triangle
A"B"C".

From the three corners, A, B, C, of the given triangle, perpendiculars are let fall upon the
sides a, b, ¢, meeting those sides in the points A”, B”, C"”, and each other in a point.

A circle, called the bisecting circle, with centre K, (called also the circle K, and representing
the conic (U) of article 170) is described so as to pass through the three points A”, B”, C";
and therefore also, (in virtue of the elementary theorem mentioned in a note of yours,)
through the three other points, A", B”, C".

The particular lengths assumed for the sides give for the segments made by the three
perpendiculars, the following numerical values, marked as positive when they are measured
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in the same directions as the corresponding sides, measured from the corners first named for
each, but as negative when they happen to have the respectively opposite directions:

b2+ % — a? 1 A+ a2 - 11 21
AB///: =—__; BC//r: — . CA/rr: —
% 9 9 T3 *3g

b2+ a® — 2 7 A+ b2 — a2 3 11

C NI: — _; AC/H: — __; BAI//: _
% *3 9 4 3

(In quaternions,
AB" + B"C= AC, or B"A+ CB" = CA,
and not
AB" + CB" = AC, nor = CA.

Butitis here meant merely that

AB" 1 CB" 7
YRR TR and that A= +%&c.; whence
B"A 1 CB”"+B"A 7-1 6
= ——,and = =--=1,
CA 2b CA 2b 2b

as it should be.)

281. Continuing the description of the Figure, we have next an inscribed circle, with centre at

I, (called also the circle 7, and answering to the conic (V) of article 171,) which touches the

sides of the triangle ABC at the points Ay, By, Cy; the segments formed by these three points,
a+b+c¢ 9

of contact being, (because s= —5 =3 ,>

1 3 5
ABi=ACi=s—a=—-; BCi=BAi=s—b=—-; CA I =CBi=s—c¢==

2 2 2
And we have an excribed circle, with its centre at the point (/), (called also the circle (/), and
being another representation of the conic (V),) which touches the same sides in the points
(A1), (B1), (Cy1); the segments thus formed being the following, with signs determined as
above:

1
AB) =s—c=+: BG)=s=+y3 CA)=a-s=—g

|© no

1 5
C(Bl):s_a:+§; A(Cl):c—s:—é; B(Al):s:+2;

the algebraical sign of the side b, which is still touched internally, having changed in the
passage from the one tangent circle to the other.

282. The sides of the triangle are cut by the two transversals, LMN, (L) (M) (N), with the
following ratios of segments (cf. articles 177, 178, 238, and 239):

LB a—-b 1 MC b—c L. NA c¢c—a

CL_a—c_+§’ AM b—a BN c¢—b

+2;
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(DB _a+b_ 7 (MC_b+e_ 5 (NA_c—a_ 2

C(L) a—c 27 AM) b+a

7 BIN) c+b 5
so that

4 4 28 5 4
BL=+-,CM=%*00, AN=+5; B(L)=4+—,C(M)=+-, A(V) =—5;
+3 00, AN =435 B(L) =+ C(M) = +7, A(V) = —
the first transversal thus happening to be parallel to the side CA, and to trisect each of the
two others, with the lesser segments adjacent to B; while the second transversal cuts (cf. again

article 178) the lesser of those two sides externally.

283. The transversal LMN touches (as by article 177 it ought to do) the bisecting circle K,
in the point P where (by the theorem of article 169, of which you informed me) that circle
touches the inscribed circle I; so that this point of contact P happens, in Figure 30, to be
diametrically opposite on the inscribed circle, to the point B; of contact of that circle with
the side CA. In like manner (as was to be expected from article 178), the transversal (L),
(M), (N) touches the bisecting and the exscribed circles, in that common point (P) in which
(by the same theorem of article 169) they touch one another. And this construction of mine
is sufficient for the determination of those two points of contact; indeed, it would be sufficient
to find this, by simple ratios of segments (article 282), any one of the three points L, M, N, and
any one of the three other points (L), (M), (N), and then to draw from the first point so
found, a second tangent to the inscribed circle, or from the second point a second tangent to the
exscribed circle; the side of the triangle, on which the point is thus determined, being in each
case a first tangent. But whereas this construction involves a metric element, (although a very
simple one,) graphic constructions have subsequently been assigned, which require no use of
ratios, and which will be described a little farther on.

284. In the same Figure 30, — of which, with copious recapitulation, it is thus proposed to
give here a complete and systematic description, — the points Q, R, and S (which last
happens to coincide with B") bisect those three ‘‘little arcs” (article 259) of the circle K,
which have the lines A"A", B"B", C"C" for their chords, and are respectively remote from the
corners A, B, C of the given triangle; also (Q) and (S) are the points diametrically opposite to
Qand S on the same circle K, so that they may be said to bisect those *‘big arcs’ (article 259)
of that circle, which have A"A" and C"C" for their chords. And we see that, in conformity
with your graphic construction (article 240), the three right lines QA;, RBy, SCy concur in the point
of contact P of the circles Kand I; any one of them being thus sufficient to determine it. In like
manner, with only the modification (no doubt well known to you) of using in certain cases
the middle points of big, instead of those of lttle arcs, according to the rule assigned in article
261, the three other right lines, (Q) (A1), R(B1), (S)(Cy), concur in the point of contact (P)
of the circles K and ([/); which point can therefore be determined by any one of those three
lines.

285. Instead of thus distinguishing between big and little arcs, the selection of the points, Q
and (Q), &c., may be made without thinking of those points as bisectors, by means of another
Rule, or Theorem, in virtue of which the chord B"R of the bisecting circle Kis parallel (articles
263 and 266) at once to the chord C1 A; of the inscribed circle (7) as is exhibited in Figure 30.
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The chords A”Q, A"(Q), and C"S, C"(S), of the circle K, are not actually drawn in that
Figure; but it is easy to recognise, by the eye, that they are (as the theorem of article 263
requires, and as is remarked in article 266) respectively parallel to the chords By Cy, (By) (C1),
and A; By, (A1) (B1), of the two other circles. And any one of the three chords A"Q, B"R, C"S of
the bisecting circle, thus drawn parallel to a known chord, B; C; or CjA;, or A; By, of the
inscribed circle, would suffice to determine a point, Q or R or S, upon the former circle K,
such that a right line drawn from it to a known point, A; or B; or Cj, of the latter circle I,
would give the sought point P of contact of those two circles: with an analogous construction
for the contact (P;) of the bisecting and exscribed circles.

286. The same Figure 30, however, is designed to illustrate another, and a totally different
process, for graphically determining those points of contact, P and (P); namely, by the use of
certain other auxiliary points, As, &c., as follows, and without its being necessary to employ the
bisecting circle at all. For if we denote, as in article 272, and in the Figure, by Ag, B, Co the
intersections of the sides of the inscribed and bisecting triangle A"B"C" with the corresponding
sides of the triangle of contacts A1 B C1, which also may be said to be inscribed in the given
triangle ABC, then the three lines Ay As, By Be, Cy Co concur in the point P; which point can thus
be graphically determined, upon the circle I, without any use of the circle K, by any one of those
three lines. In like manner, the figure exhibits the determination of three other auxiliary
points, (Ag), (Bg), (Ce), as the intersections of corresponding sides of the two triangles
A"B"C" and (A1) (B1)(Cy); and the concurrence of the three lines (A1) (As), (B1) (Ba), (C1)(Cs)
in the point (P); which point can thus be found on the exscribed circle, by any one of these
three last lines, without using the bisecting circle.

287. But, although that circle K has not been used, in any of the constructions described in
the foregoing article, yet the bisecting triangle A”B"C" has been employed in all of them. Even
this triangle can, however, be dispensed with, and the points P and (P) on the circles 7/ and
(I) be graphically determined, without bisecting the sides of the given triangle, in the following
way, which likewise is illustrated by the Figure. Considering only the triangle of contacts
Ay B; Cy, let its sides meet the corresponding points of the given triangle ABC in the points
Af, Bi, Ci; those three points are necessarily collinear, by a well known property of any conic
inscribed in a triangle, in virtue of which the three right lines AA;, BBy, CC; concur, in a centre
of homology not marked in the figure; and the axis of homology, of the triangles ABC, A; By Cy, is
the line AjBjCj thus determined, and strongly marked in the diagram. Then the auxiliary
points Ao, By, Co, upon the sides of Aj By C1, can be found (in virtue of the theorem in article
276) by drawing the parallels AAs, BBy, CCy to this axis Aj Bi Ci; after which the lines Aj Ao,
B1 By, C1Cy, or any one of them, will determine the point P as before. In like manner,
(A1) (B1)(C1) with another strong black line in Figure 30, is the axis of homology of the
triangles ABC and (A1) (B1) (C1); and the auxiliary points (Ag), (B2), (Ce), upon the sides of
this last triangle of contacts, can be found by drawing parallels to this last axis, from the
corners of the given triangle ABC: after which the point (P) can be found, as before, upon
the exscribed circle, by means of any one of the three lines (A;)(Ag), &c. — The near
approach, in the Figure, to coincidence of the former axis Aj Bj C{ with the tangent to the
circle K, at the second intersection 7 of that circle with the line AA", is a purely accidental
circumstance, arising from the assumed ratios of the sides a, b, ¢. The latter axis of homology,
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(A1) (B1)(C1), as you see, does not even approach to contact, with any of the circles of the
figure.

288. The same Diagram illustrates also a certain graphic determination of the common tangent
at Pto the two circles Kand 7, and of the corresponding tangent at (P) to the circles K and
(I), whereby we may perhaps with advantage replace that earlier and metric determination
(articles 177 and 178, or 282 and 283) of the position of those two tangents, which occurred
to me very soon after you mentioned the theorem of contact between the circles: although I
still think my metric method simple too, especially as it extended, with little modification, to
homothetic and other conics; which, however, the graphic process can likewise easily be made
to do. This later and graphic method of construction for the common tangent at P is (by
article 278) the following: “‘Find the point L, as the intersection of the two right lines BC,
By Co; M as the intersection of CA, CyAg; and N as that of AB, A Be; then these three points,
L, M, N, are collinear, and the right line connecting them is the tangent sought.” In short,
this common tangent LMN at Pis (article 277) the axis of homology of the given triangle ABC,
and the auxiliary triangle Ag By Co; the centre D, of homology of these two triangles, being (by
articles 275 and 276) the point at infinity on the axis of homology AiBiCi of the other pair of
triangles, ABC, A; B; C;. And in like manner the tangent (L)(M)(N) at (P) is the axis of
homology of the triangles ABCand (Ag) (Bg) (Co), of which the centre of homology (D) is the
infinitely distant point on the axis of homology (A7)(B1)(C1), of the triangles ABC,
(A1) (B1) (Cy).

289. The only other points marked in the figure are the two new ones, P’ and (P'), about
which I have said nothing as yet: I must therefore mention what they are, and what
suggested them to me. I consider, then, that so far as the linear element of all this
construction was concerned, the triangles A"B"C” and A; B; C; are really indistinguishable,
neither having any prerogative over the other, at least when projective changes are allowed.
They are simply two triangles inscribed in the given triangle ABC, and having it for a common
homologue. Accordingly, my auxiliary triangle As Bs Co is symmetrically velated to them; its corners
having been originally determined (articles 272, and 286) as the intersections of their
corresponding sides, so that it may be said to be their common inscribed triangle, as the given one
was their common exscribed. But I have proved, — anharmonically, I admit, and not without
calculation, — in article 272, with the help of article 271, that this common inscribed triangle
A9 By Cy is homologous to one of the two triangles, A"B"C" and A; B C; namely to the latter of
them, since the lines AjAs, B1Bs, C1Co have been shown to concur in the point P; it must
therefore, by the symmetry of relation above mentioned, be homologous to the other also, so that
the three new lines, A"Ag, B"Ba, C"Cqo must concur, in some new point P', as the figure sufficiently
exhibits, although the framework of it had been constructed, before it occurred to me to
draw these and other additional lines. In like manner, the two triangles A"B"C" and
(A9) (B2) (Cq) are homologic; the three lines A”(Ag) &c., which connect their corresponding
corners, concurring in another new point (P'), which is the last that I have inserted in the
Figure.

290. A few words more, however, must be said, respecting these two new points, P’ and
(P"). You may observe that they fall very well, in the Figure, — which I congratulate Mr. Gill’s
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Engraver™ on not having to take in charge, — on the tangents at P and (P). And this is not
accidental. In fact, the former tangent, LMN, has been proved, — by anharmonic coordinates,
I admit, but probably you can prove it otherwise, — in articles 277, and 278, to be (as
mentioned in article 288) the axis of homology of the two triangles ABC and As By Cs. But these
are symmetrically related, as we have seen, to the two triangles A”B"C" and A; B C1; one being
their common exscribed, and the other their common inscribed, and each being a common
homologue to them. Since, then, the axis LVMN of homology of the pair A; B; C1, AsBs Co, it
must pass also through the centre P’ of homology of the other pair A"B"C", As By Co: in other
words, this axis must coincide with the line of those two centres. The right line PP' is therefore (as in
the figure) the common tangent to the circles K and I, and in like manner, the line (P) (P') is the
common tangent to Kand (/), as exhibited. — And this much may for the present suffice, as
Explanation' of the Diagram: but it may be proper to devote another page or two to the
consideration of some (perhaps) new properties, of conics and even of triangles, which are
suggested by the whole construction.

291. Abstracting now from all the details of Figure 30, or using that Diagram merely in
llustration of some general properties of triangles and conics, which were just now alluded to,
I remark that, on the principle stated in article 289, we may infer from the Figure, or rather
from the reasonings which led me to construct it:

I. “If any two triangles, ¢y and ¢, be each homologous to their common exscribed triangle, ¢,
they are also each homologous to their common inscribed triangle, say to; and these two
triangles, ¢ and {9, thus exscribed and inscribed to the other two, are homologous fo each
other’. In the Figure, ¢, ty, 1, to are exemplified by the four triangles, ABC, A"B"C", A B, Cy,
A9 By Co.

292. It may be noticed, that the fourth triangle ¢ is exscribed to the first triangle ¢; or that
the given triangle, t, or ABC, is conversely inscribed in f9, or in Ag Bs Co: which is no mere
accident of the construction, as the calculations and reasonings, already set forth, are
sufficient to show. Thus, whether we take the three triangles ¢, ty, 2, or the three others, ¢, ¢,
to, they form in each case a Cycle of Triangles, each of which is an exscribed homologue of that one
which follows it, in the cyclical succession thus assigned. — A somewhat simpler and perhaps
more general theorem of the same sort, may be mentioned a little later.

293. In the next place it may be asserted, under the same conditions (article 291), that:

II. “If ap and a; denote the axes of homology of the two pairs of triangles, ¢, ¢, and ¢, 1,
then the intersection ¢ = ay a; of these two axes is the centre of homology of the two
triangles, ¢, t2.”” In the Figure, ap may be conceived to be the line at infinity, and a; is
represented by the strong black line to the right; to which line, accordingly, AAs, BBy, CCs
were found to be parallel. We might have taken that other strong black line, which is more to
the left of the diagram, as representing the axis of homology (a;), when the triangle (#;) is

* [Michael Henry Gill, 1794-1879, was Printer at the Dublin University Press from 1842 until 1872;
the engraver was William Oldham 1811-1885. See Vincent Kinane, A History of the Dublin University Press
1734-1976, Gill and Macmillan, Dublin: 1994.]

T That s, so far as points, lines and circles are concerned; for I must postpone my account of the inscribed
ellipse, which indeed I have inserted since this sheet was written.
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exemplified by the triangle of contacts (A1) (By) (C1) with the exscribed circle; the centre (c¢)
of homology of the two triangles ¢ and (#2) where (#) denotes the auxiliary triangle
(A2) (B2) (C9), being the intersection ay (a;), that is, the point at infinity on that other axis
(a2); to which axis accordingly the three lines A(Ag), B(Bs), C(Cg) are parallel.

294. Again, we have the Theorem:

II. “If ¢, ci, be the centres of homology of the two pairs of triangles, t, to, and ¢, to,
then their joining line, @ = ¢{¢i, is the axis of homology of the two triangles ¢and #.”’ In the
Figure the centres ¢) and ¢] are represented by the points P’ and P, if we attend to the
inscribed circle; or by (P’) and (P), if we employ the exscribed circle in its stead.

295. Proceeding to theorems which involve not only #riangles but also conics, we may notice
the two following, which are obviously connected with each other:

IV. “If a conic vy be inscribed in the triangle ¢, so as to touch its sides at the corners of {1,
this conic will pass through the centre of homology ¢; of #; and t9, and will have for its
tangent at that point the axis @ of homology of the triangles ¢, &, or, by IIL, the line ¢f¢). In
the Figure, v; may be the inscribed circle, touched at P by the line PP’; or the theorem may
be exemplified by the contact of the exscribed circle, at (P), with the line (P) (P').

296. The obvious variation, above alluded to, of the Theorem 1V, is the following:-

IV'. “If a conic vy be inscribed in ¢, touching its sides at the corners of #, it will be touched
at ¢y, by the same axis a of the pair ¢, to; which line b}, will thus be a common tangent to the
two conics Vo, U1, although those conics do not touch one another”’. In the Figure, the conic vy
is represented by the inscribed ellipse (see footnote to article 290) touching the given triangle
ABC at the middle points of its sides; and touching also, at the point P’, the line PP’, which
line is thus a common tangent, to this ellipse and to the inscribed circle. The same inscribed
ellipse has also, in conformity with the same theorem IV'., the line (P)(P’) for a common
tangent with the exscribed circle, as may be seen in the Figure: all the parts of which have now
been fully (and perhaps more than fully) described, but which I shall still use, for illustrations of
another general Theorem.

297. V. “If a conic u; pass through the corners of the triangle f), and be touched by the
axis a at the point ci, which point will thus count (by IV.) as two intersections of this last conic u,
with the conic vy, the two other intersections of these two conics are on the axis ag of homology
of ¢t and tp; which axis may thus be said to be a common chord of theirs.”” In the Figure, the
conics uy, Uy are the bisecting and inscribed circles, touching each other and the axis PP’ at P,
and having for their other intersections the circular points at infinity, which thus are situated (by
article 293) upon the axis a. Or the Theorem may be exemplified by the contact at (P) of the
bisecting and exscribed circles, with each other and with the axis (P)(P’) of homology of the
two triangles ABC and (As) (Bg) (Co).

298. More generally we may infer, from the same recent Theorem V., what was stated in
article 177 as an extension of the elementary proposition respecting such contacts of the
bisecting circle with others, of which you have given so elegant an investigation based on
principles of geometry alone; namely, that “‘if through the middle points of a plane triangle,
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exscribed to a given conic, a homothetic conic be made to pass, those two conics will fouch one
another”. For there exists, by the Theorem V., a point ¢; upon the conic v; to which the
triangle tis exscribed, such that if a second conic u; be made to touch the first conic vy at
that point, and to bisect the sides of the triangle, the line at infinity ap will be a common chord
of the two conics, which consequently are homothetic: but a conic, homothetic to a given one,
is determined by three given points.

299. I have had the curiosity to verify, by Cartesian Coordinates, which may be oblique this
Theorem of the homethetic conics, as follows. Let the given conic v; be the hyperbola, xy = 1, not
necessarily equilateral. Let the three points of contact with the sides of the exscribed triangle

. 1 1 1 .
t be the points (a, —),la,—=]), | a",— |; when the abscissz a, a’, a” are the three roots of
a a a

n
a given cubic equation;
X — s+ tx—v=0.

Then, for the middle points of the sides of the triangle, I found expressions of the form,

st+a U+ ta .

t+a2 t+ a2)’
so that the coefficients &, [, m, n, in the equation of the homothetic conic, or hyperbola with
asymptotes parallel to the axes of xand y, which is evidently of the form

kxy+ lx+ my+ n =0,
must be such as to allow the biquadratic equation,
k(s+ %) (0 + ) + (s + %) (1 + x°) + m( + &) (1+ &) + n(t+ x*)* =0,

to be divisible by the cubic equation

x3—5x2+tx—U:O;

whence it follows that I might write,

k=st—uv, l:—tz, m:—s2, n = st— 0.
The bisecting hyperbola, with its asymptotes in the given directions, was thus found to have for its
equation,

(—st)(xy— 1) + 2x+ %y — 25t = 0;

so that it touches the given hyperbola (as by the theorem it ought to do), namely at the point
s 1
ts)
300. The Theorem V. may obviously be varied thus,

V'. “If a conic uy be exscribed to the triangle ¢; and touch the axis «, and therefore also
(by IV’) the inscribed conic vy at the point ¢, its other (real or imaginary) intersections with
that conic will be upon the axis a;. In the Figure, I might have described a second ellipse,
touching the inscribed ellipse vy (article 295) there drawn as the point P', and passing through
the points of contact A1, B1, Cy, of the inscribed circle with the sides of the given triangle. This
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second ellipse, which I thought it better not to draw, would then have been the conic uy of the
present theorem V'.; it would have lain wholly outside the first ellipse vy, except just at their
point of contact P'; but the two ellipses would have had the same two imaginary intersections, with
the axis a; of homology of the two triangles ABC and A; B; C;, that is with the strong black
line to the right of the Figure. — I know that I mentioned, by anticipation, some or all of these
theorems in a separate Note [not found] of Saturday last, (I write now on Monday, May 21st,)
but it seemed convenient to incorporate them with the present Series of Sheets, to which
indeed they naturally belong.

301. The analysis by which I was led to perceive the foregoing Theorems, was perhaps not
altogether inelegant; but it must be admitted to have been very long, and to have involved a
great number of reductions, some of which were rather formidable. If, however, I were to
begin again, — which, happily for your patience, and even for my own, I am not going to do, —
I see how the processes might, in many respects, have been made shorter, and more simple.
But without returning on the question stated and solved by you, I think that it may be no
waste of time and space, to devote a few pages to the statement, and to the proof by
anharmonic coordinates, of a few theorems respecting triangles and conics, which are
perhaps a little simpler, if not more general, than those that have been recently enunciated;
because they involve the consideration of only one inscribed triangle t1; in a given triangle ¢,
instead of two such triangles, ¢, and t;; although I shall still have to consider a third triangle
l, which is (like A9 BsCs in the Figure) at once exscribed to t and inscribed in ¢, and is
homologous to each separately, as they likewise are to each other. In short, I am disposed to say
something about a single cycle of triangles, t, t1, to, instead of the double cycle in article 292, — of
which each is (as in that article) an exscribed homologue of the one which follows it in the
succession; and is of course, at the same time, an inscribed homologue of the triangle which
precedes it, in the same given Cycle.

302. Dismissing then, all considerations of Figure 30, let us attend only to the simpler
Figure 31, which is annexed; and in which ABC is, as above, any given triangle ¢, while
Ay B; Cy is a triangle #, inscribed in it; and As By Cy is another triangle to, which is at once
inscribed in ¢, and exscribed to ¢ Taking ABC as usual for the unit-triangle, let us at first
suppose that the corners of ¢; are expressed as follows:

Fig. 31
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A1=1(0,1,a0); B=(,01); C=(,10);

where ais any constant. The equation of the line B; C; being then

—x+y+2z2=0,
if we assume any point (o, 8, v) upon the unitline, so that
a+p+y=0,
we are at liberty to write
Ay = (—a, B, ),

so far as the condition of collinearity of the three points Ao, By, C; is alone concerned, and
conversely every point As, upon the side By C; of 1), is expressible by a symbol of this last form,
with the recent relation between «a, 3, y. If we next write,

By = CAy'Cr1 Ay = (x, , 2),
and
Co= AB A B = (x', ), 2),

we shall have the equations,

X, )z X,y oz
0=]0, O 1|, 0=11, 1, 0,
_a’ ﬁ’ V > ls a
and
xl, y/’ Z, 'xl, y!, ZI
0O=|—-a, B, y|, 0=10, 1, al;
0, 1, 0 1, 0, 1
that is,

0=p3x+ay, 0=ax—ay+z
0=—yx' —az, 0=x"+a —2;
whence we may write,
By = (a, =B, ay), Co = (aa, B, —ay);

and the line Bs Co, thus determined, will pass through the point A, because we shall have the
symbolical equation,

(B2) + (Co) = (1 + a)a(A),
since A = (1, 0, 0).

303. The conditions of inscription are therefore thus all satisfied; but we have made no use, as
yet, of any conditions of homology. But if we now inquire, under what condition will the third
triangle ¢» be homologous to the first triangle t, we have for the three lines AAs, &c.,
connecting their corresponding corners, the equations,
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yy—Pz=0, az—ayx=0, Px—aay=0;

if then these three lines concurin any common point, we must have the equation,

O) V, _ﬁ
0=|—ay, O, a | =apy(l —a*),
B, —aa, O

of which the only useful factor is 1 — @ = 0; and such is also the condition of concurrence of AA;,
BB, CCy. The first triangle will therefore be homologous to the third, if it be homologous to
the second, but not otherwise; that is, other things remaining the same, if these three triangles
admit of being expressed as follows:

t=ABC=(1,0,0)(0, 1, 0)(0, 0, 1);
h=4B0C=(011)(@1,01)1, L 0);
t? = AQBQCQ = (7(1’ ﬂa V) (a’ 7[37 V) (a’ ﬁa 73/)7

with the relation
a+p+y=0,

as before.

304. With these coordinates of the corners, the centres of homology of the first triangle, ¢;,
with the two others separately taken, which centres in Figure 31 are the points O and O”, but
which may also be expressively denoted by the symbols ¢y 1, ¢9, are evidently the following:

0= o1 = (1, 1, 1), 0”: €20 = (O(, ﬂ, ‘J/)

And because ¢ has been assumed as the unit-triangle, we can already infer, from the general
theory mentioned, or alluded to, in articles 275 and 277, that the axes of homology of the
same two pairs of triangles, ¢y, {1, and t9, ¢y, may be represented by the following analogous

symbols:
aor =1L, 1,11 agg=T[a™, 7, 771,
Accordingly, the intersections of corresponding sides of the pair ¢y, ¢ are the three points,
BCB C, = (0,1, -1), CACA =(-1,0,1), ABA B =(1,-1,0)

which are evidently on the unit line [1, 1, 1], by some of the earliest results of this whole
calculus; and the intersections of corresponding sides, of the pair of triangles t9, ty, are the
points,

ByCo'BC = (0, B, —y), CoAs’CA=(—a,0,y), AsByAB= (a,—f,0),
which obviously all satisfy the common equation
alx+py+ylz=0,

and are therefore ranged upon one common axis of homology, of which the symbol is, as
above,

ago = [a™ !, By
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305. Already, simple and unlaborious as the recent calculations have been, we may derive
from them a theorem as follows. Since the axis ag 1, or [1, 1, 1], passes through the centre ¢,
or (a, B, y), because a + f +y = 0; and since the three triangles ¢, ¢;, to of article 303 may
represent any cycle, of the kind described in article 301, we are entitled to assert that “‘In any
cycle of three triangles, of which each is an exscribed homologue of the next, the axis of homology of first
and second passes through the centre of homology of first and third’. (In Figure 30, this was
exemplified by the passage of the axis of ABC, Ay B; C; through the centre of ABC, As By Cy;
or by that centre being at infinity, and therefore on the axis of homology of ABC, A"B"C";
&c.)

306. The cycle of inscription may be written as fo ¢t1; ¢ being inscribed in o, &c. But we have
proved that in this new arrangement, the first triangle is homologous to the second; it must
therefore, by article 303, be homologous also to the third; that is to say, the two triangles ¢,
o must have a centre of homology, ¢ 9, or O', in which lines joining corresponding corners
concur, as is exhibited in Figure 31. — to verify this geometrical result by calculation, and to
determine the coordinates of this new centre O’, we may proceed as follows. Let the
equations of A; As, By By, Cy Cs be for the moment, denoted and written thus:

Ix+my+nz=0, U'x+m'y+nz=0, U"x+m"n+n"2=0.

Then by the values of the coordinates of the corners in article 303, the coordinates [, m, n of
the joining line A; A must satisfy the two equations,

O=m+mn O0=—-al+pfm+yn;
whence
I=B—-y, m=a n=-—a.
In like manner,
O0=n"4+10, 0=-Bm +yn +al;
m=y—a n'=p1=-p0
and similarly,
n"=a-p "=y, m'=-—y.

If then we merely want to prove that the three lines A;Ag, BiBs, CiCo, or [I, m, n],
[I', m', n'], [I", m", n"], concur somewhere, it is sufficient to observe that the equation,

L, m, = B—7, a, —a
o=1|1U, m, »|=| -8 y—a, J5}
l”, mu’ n/r ,y’ _,y, o — ﬁ

=B-Ny-a)ya—=PF+B-v)By+ —a)ya+ (a—PpRaf+afy —apy,

is satisfied, independently of any relation between a, 3, y. But if we also wish to assign the
coordinates x, vy, z of the point of concurrence, we may write, further,
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m, n a, —a 9
x=| = =a(B+y) - o
m, mn Yy —a,
n, l —-a, p—vy
y= = =By +a) - f%
n', 1 B, —p
L, m B—v, a )
z= = =y(a+p) - 7%
U, m -5, v-—a

no use having yet been made, in the present article, of the relation a 4+ + y = 0. We may,
however, now with advantage introduce that relation; and thus, dividing each coordinate by
—2, may write the following symbol for the remaining centre of homology,

0 = 9= (% B y%).

307. The theorem of article 305, applied to the cycle ¢ it of article 306, would have enabled
us to foresee that this axis of homology as of the two triangles fy, # must pass through the
centre of homology ¢;9 of ¢ and ts. Accordingly we know now that the symbols of this axis
and of this centre are, by articles 304 and 306,

2 .2y
’)/)7

as o = [a_l? ﬁ_la V_l]; 1,2 = (aQa ﬁ
and the relation o + 8 + y = 0 gives evidently the verification,
ala® +p 182 +y tyt=0.

308. We have not yet investigated the axis aj 2 of homology of the two triangles #; and ty;
which axis, as a new verification of the theory, ought to pass through the centre co; of
homology of ¢tand ¢; because the three triangles ¢, fo, ¢ form a cycle, of the kind considered
in article 301: so that if we write

are = [l12, mig, nigl,
we ought to find the relation,
lio+ myo + nye = 0.
Accordingly, the equation of By C; being still
—x+y+2z=0,
as in article 302, and the equation of By Cs being
Bly+ylz=0,

(by the value of the coordinates, as given in article 303,) we have, for the intersection of these
two corresponding sides of the triangles ¢; and 9, the symbol,

Bl CI.BQCQ = (ﬁ - V, ﬁ) _V);
and similarly, for the two other intersections of corresponding sides, we have,
Cl Al.CQAQ = (_a’ Y —aQ, 7),

and
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A1 B A9 By = (a, =B, a — ).
These three intersections are thus all ranged upon the one straight line,
ax+pfy+yz=0,
and we may write the symbol:
are = la, B, y1;

with the expected verification, that this axis a;9 passes through the centre ¢, or through
the unit-point.

309. It may be convenient here to tabulate the symbols which have been thus obtained, for
the centres and axes of homology, of the three pairs of triangles considered. They are, then,
the following:

o1 =1 1L1); as=(@, v o= (aph )

apg =1, 1,11, ao=1I[a Byl ao=Ila", "y '

310. The supposed relation of # to ¢, as an inscribed and homologous triangle, allows us to
conceive a conic, v, which shall be at once inscribed to ¢, and exscribed to ¢;; and of which the
equation is easily found to be, ([left blank in MS])

x%—i-y%—i—z%:O, or, x2+y2+z2—2yz—2zx—2xy:().

But this equation is satisfied, when we suppose

2 2 2
x=a, y=p, 2=y,

with the relation
atf+y=0;

the conic v passes therefore through the centre ¢;9. We have therefore this Theorem: “If a
conic v be inscribed in a given triangle ¢, and if a triangle # be constructed, which is at once
exscribed to that given triangle ¢ and inscribed in the triangle of contacts ¢;, this conic will
pass through a point ¢ 9, which will be a centre of homology of the two triangles ¢; and .’ I
need not repeat how this theorem is illustrated by Figure 30; but may just observe that it is
([Left blank in MS]) in some respects simpler than theorems stated before (IV., IV'.), as now
involving the consideration of only three triangles.

311. The tangent to the conic v, at the point ¢ 9, is the line [ D0, D,v, D.v], [(Left blank in
MS]) when

20 = x* + y* 4+ 2 — 292 — 22x — 2uxy;
it is therefore the line
[x—y—zy—z—x2—x—3], or [®=B -y B -y —d y¥*—d—p]
or (dividing by 2afy), it is [a~ !, ﬂ’l, y’l]; but this last has been seen in article 304 to be the
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symbol of the axis asy. We have therefore thus the Theorem (which is again illustrated by
Figure 30, and includes theorems already stated):

“The tangent to the inscribed conic v, at the point ¢ 2, or at the centre of homology of its
inscribed triangle ¢;, and of the third or auxiliary triangle t9, is the axis of homology as of

the same auxiliary triangle %, and of the exscribed triangle ¢.”” — In fact, the right line
X oy oz
—+5+-=0,
a By

of article 304, touches the conic

of article 310, in the point x = a?, y = %, z = ¥, if the condition a + 8 + y = 0 be satisfied.

312. Of course, by symmetry, we may in like manner conceive a second conic, U1, inscribed in
this triangle ¢, and exscribed to fy; and then this new conic will be touched by the axis ay; at
the centre of homology ¢s, of the pair of triangles indicated by these symbols. And similarly
a third conic vy may be inscribed in ¢y, and exscribed to ¢, which shall be touched by a; - at
co,1. Accordingly the equations of these two new conics are, by the conditions of their
description,

0=20 =a 'x*+ 41y +y 122
0 =vo = ayz+ Pax+ yxy;

the former passes through the point (a, f, y), or csp, and is touched there by the line
[1, 1, 1], or ap,, and the latter passes through (1, 1, 1) or ¢y1, and has for its tangent at that
point the line [a, B, y], or a19. — (In Figure 30, if we still suppose the triangles ABC and
Ag By Cy to be denoted by tand ¢, then according as we consider ¢; to represent the triangle
of contacts Ay By Cy or the bisecting triangle, A"B"C”, the conic v; will either be a hyperbola,
touching th